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Abstract: A neutrosophic (indeterminate fuzzy) multivalued set (NMS) can be effectively described 

by neutrosophic number sequences with identical or different neutrosophic numbers zi = i + viI  

[0, 1] (i = 1, 2, …, q) for , v  R and I  [I, I+]. Therefore, NMS is a stronger and more valuable tool 

for describing indeterminate fuzzy multivalued information. In this article, we propose the 

weighted hyperbolic sine similarity measure of NMSs to deal with the multi-criteria group decision-

making (MCGDM) issue of teaching quality assessment with different indeterminate ranges of 

decision makers. To do so, first according to the hyperbolic sine function, we propose a hyperbolic 

sine similarity measure of NMSs and a weighted hyperbolic sine similarity measure of NMSs and 

investigate their desirable properties. Second, we develop a MCGDM approach with some 

indeterminate ranges in terms of the proposed weighted hyperbolic sine similarity measure of 

NMSs. Lastly, an illustrative example on the teaching quality assessment of teachers is presented to 

illustrate the applicability of the developed approach, then the developed approach is compared 

with the existing related approach to reveal the effectiveness of the developed approach for the 

teaching quality assessment of teachers in the environment of NMSs. 

Keywords: neutrosophic (indeterminate fuzzy) multivalued set; neutrosophic number; hyperbolic 

sine similarity measure; group decision making; teaching quality assessment 

 

 

1. Introduction 

Fuzzy set (FS) [1] is represented by the degree of membership, which occurs only once for each 

element. Since FS can describe problems related to imprecise and ambiguous judgments, it has been 

used in various applications [2-7]. To express that an element occurs more than once with identical 

or different membership values, a fuzzy multiset (FM) [8-10] was proposed as the generalization of 

FS. Then, FMs were used for some applications, such as decision making and data analysis, clustering 

analysis, and medical diagnosis [11-16].  

To describe the vagueness and indeterminacy of human judgments in real life environment, the 

neutrosophic number z =  + vI for , v  R and I  [I, I+] introduced by Smarandache [17-19] can 

flexibly indicate indeterminate information according to an indeterminate range of I. Therefore, it is 

also regarded as a variable neutrosophic number, depending on indeterminate ranges of I. In a multi-

criteria group decision-making (MCGDM) problem, to express multiple evaluation values of a 

criterion to an alternative given by multiple decision makers, Du and Ye [20] proposed a neutrosophic 
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(indeterminate fuzzy) multivalued set (NMS), which is described by neutrosophic number sequences 

(NNS) with different and/or identical neutrosophic numbers (zi = [i + viI, i + viI+]  [0, 1] (i = 1, 2, …, 

q) for , v  R and I  [I, I+]), as a particularly challenging generalization of FM, and then they 

developed the parameterized correlation coefficients (PCCs) of NMSs to perform MCGDM problems 

with some indeterminate ranges of decision makers. In indeterminate MCGDM problems, NMS 

implies its highlighting advantage in expressing indeterminate fuzzy multivalued problems with 

indeterminate ranges of I  [I, I+]. However, it is worth noting that the similarity measure is a key 

mathematical tool in decision-making problems, but unfortunately there is no similarity measure 

between NMSs in the current research. Therefore, this paper proposes a hyperbolic sine similarity 

measure (HSSM) between two NMSs and a weighted HSSM between two NMSs in view of the 

hyperbolic sine function, and then develops a MCGDM approach using the weighted HSSM to solve 

the assessment problem of teachers' teaching quality with some indeterminate ranges of decision 

makers in the setting of NMSs. 

The rest of this article consists of the following sections. Section 2 reviews some notions of NMSs. 

In Section 3, the HSSM and weighted HSSM of NMSs are proposed according to the hyperbolic sine 

function. Section 4 develops a MCGDM approach using the weighted HSSM of NMSs along with 

specific indeterminate ranges of decision makers in the environment of NMSs. In Section 5, the 

developed MCGDM approach is applied in an illustrative example on the teaching quality 

assessment of teachers with some indeterminate ranges of decision makers. In Section 6, a 

comparative analysis with the related method is given to reveal the efficiency of the developed 

MCGDM approach in the environment of NMSs. Conclusions and future research are addressed in 

Section 7. 

2. Some Notions of NMSs 

Definition 1 [20]. Let Z = {z1, z2, …, zm} be a fixed set. A neutrosophic (indeterminate fuzzy) 

multivalued set (NMS) E on Z is denoted by  , ( , ) | , [ , ]k E k kE z e z I z Z I I I    , where eE(zk, I) is the 

increasing neutrosophic number sequence  1 2( , ) ( , ), ( , ),..., ( , )kp
E k k k ke z I e z I e z I e z I  with identical 

and/or different neutrosophic numbers 1 1 1( , ) ( , ) [0,1]i i i i i i
E k k k E k k ke z I v I e z I v I          (i = 1, 2, …, 

pk; k = 1, 2, …, m) of an element zk to the set E for I  [I, I+], ki, vki  R and zk  Z. 

For convenient expression, each element eE(zk, I) (k = 1, 2, …, m) in Z is simply represented as the 

NNS 1 2( ) ( ( ), ( ),..., ( ))kp
Ek k k ke I e I e I e I  for I  [I, I+]. If ( ) [ , ] [0,1]i i i i i

k k k k ke I v I v I       or 

( ) [0,1]i i i
k k ke I v I    (i = 1, 2, …, pk; k = 1, 2, …, m) in eEk(I), the NNS eEk(I) can contain an interval-

valued fuzzy sequence or a single-valued fuzzy sequence depending on a range/value of I. It is 

obvious that NMS contains the fuzzy multivalued set and interval-valued fuzzy multivalued set. 

Definition 2 [20]. Let two NNSs be 1 2
1 1 1 1( ) ( ( ), ( ),..., ( ))kp
k k k ke I e I e I e I  and 

1 2
2 2 2 2( ) ( ( ), ( ),..., ( ))kp

k k k ke I e I e I e I  with neutrosophic numbers 1 1 1( ) [0,1]i i i
k k ke I v I    and 

2 2 2( ) [0,1]i i i
k k ke I v I    for I  [I, I+] and 1 1 2 2, , ,i i i i

k k k kv v   R (i = 1, 2, …, pk; k = 1, 2, …, m). Then, 

their relations are indicated below: 

(1) e1k(I)  e2k(I)  1 1 1 2 2 2( ) ( )i i i i i i
k k k k k ke I v I e I v I      ; 

(2) e1k(I) = e2k(I)  e1k(I)  e2k(I) and e2k(I)  e1k(I); 

(3) 

 1 1 2 2
1 2 1 2 1 2 1 2

1 1 1 1 1 1 1 1
1 1 2 2 1 1 2 2
2 2 2 2 2 2 2 2
1 1 2 2 1 1 2 2

1 1 2 2

( ) ( ) ( ) ( ), ( ) ( ),..., ( ) ( )

[ , ],
[ , ],...,

[

k k

k k k k

p p
k k k k k k k k

k k k k k k k k

k k k k k k k k
p p p p
k k k k

e I e I e I e I e I e I e I e I

v I v I v I v I
v I v I v I v I

v I v I

   

   

 

   

   

 



     

      

   1 1 2 2, ]k k k kp p p p
k k k kv I v I  
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(4) 

 1 1 2 2
1 2 1 2 1 2 1 2

1 1 1 1 1 1 1 1
1 1 2 2 1 1 2 2
2 2 2 2 2 2 2 2
1 1 2 2 1 1 2 2

1 1 2 2

( ) ( ) ( ) ( ), ( ) ( ),..., ( ) ( )

[ , ],
[ , ],...,

[

k k

k k k k

p p
j j k k k k k k

k k k k k k k k

k k k k k k k k
p p p p
k k k k

e I e I e I e I e I e I e I e I

v I v I v I v I
v I v I v I v I

v I v I

   

   

 

   

   

 



     

      

   1 1 2 2, ]k k k kp p p p
k k k kv I v I  

 
 
 
 

   

; 

(5) 
1 1 1 1

1 1 1 1 1 1 1 1
1 2 2 2 2 1 1 1 1

1 1 1 1 1 1 1 1

[1 ( ),1 ( )],[1 ( ),1 ( )],
( )

...,[1 ( ),1 ( )],[1 ( ),1 ( )]

k k k k k k k kp p p p p p p p
k k k k k k k kc

k
k k k k k k k k

v I v I v I v I
e I

v I v I v I v I
   

   

      

   

        
           

(Complement of e1k(I)). 

Suppose that there are two NMSs E1 = {e11(I), e12(I), …, e1m(I)} and E2 = {e21(I), e22(I), …, e2m(I)}, where 

 1 2
1 1 1 1( ) ( ), ( ),..., ( )kp
k k k ke I e I e I e I  and  1 2

2 2 2 2( ) ( ), ( ),..., ( )kp
k k k ke I e I e I e I  (k = 1, 2, …, m) are two collections 

of NNSs with neutrosophic numbers 1 1 1( ) [0,1]i i i
k k ke I v I    and 2 2 2( ) [0,1]i i i

k k ke I v I    for I  

[I, I+] and 1 1 2 2, , ,i i i i
k k k kv v   R (i = 1, 2, …, pk; k = 1, 2, …, m). Then, the importance of the NNS ejk(I) 

(j = 1, 2; k = 1, 2, …, m) in E1 and E2 is specified by its weight k  [0, 1] with 
1

1m
kk




 . Thus, Du 

and Ye [20] proposed the weighted PCCs of NMSs E1 and E2 with an indeterminate parameter   [0, 

1] below: 

1 1 1 1 1 1
1 1 1 2 2 2

2 2 2 2 2 2
1 1 1 2 2 2

1

1 1 1 2 2 2
1 1 2

[ ( )][ ( )]
[ ( )][ ( )]

... [ ( )][ ( )]
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k k k k k k

k k k k k km

k j j j j j j
k p p p p p p
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w
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R E E
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3. Hyperbolic Sine Similarity Measures of NMSs 

According to the hyperbolic sine function, this section proposes the HSSM and weighted HSSM 

between two NMSs. 

Definition 3. Set two NMSs as E1 = {e11(I), e12(I), …, e1m(I)} and E2 = {e21(I), e22(I), …, e2m(I)}, where 

 1 2
1 1 1 1( ) ( ), ( ),..., ( )kp
k k k ke I e I e I e I  and  1 2

2 2 2 2( ) ( ), ( ),..., ( )kp
k k k ke I e I e I e I  (k = 1, 2, …, m) are two collections 

of NNSs with neutrosophic numbers 1 1 1( ) [0,1]i i i
k k ke I v I    and 2 2 2( ) [0,1]i i i

k k ke I v I    for I  

[I, I+] and 1 1 2 2, , ,i i i i
k k k kv v   R (i = 1, 2, …, pk; k = 1, 2, …, m). Thus, HSSM between two NMSs E1 and 

E2 is expressed below: 
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Proposition 1. The HSSM Sh(E1, E2) reveals the following properties: 

(C1) Sh(E1, E2) = Sh(E2, E1); 

(C2) 0 ≤ Sh(E1, E2) ≤ 1; 

(C3) Sh(E1, E2) = 1 if only if E1 = E2; 

(C4) If E1  E2  E3 for any NMSs E1, E2, E3, then Sh(E1, E2)  Sh(E1, E3) and Sh(E2, E3)  Sh(E1, E3). 

Proof:  

(C1) It is straightforward.  

(C2) Since the values of 1 1 2 2)( )(i i i i
k k k kv I v I      and 1 1 2 2)( )(i i i i

k k k kv I v I      (i = 1, 2, 

…, pk; k = 1, 2, …, m) are between 0 and 1, the value of the hyperbolic sine function in Eq. (3) falls in 

the interval [0, 1], and then the value of Eq. (3) also falls in the interval [0, 1]. Therefore, there is 0 ≤ 

Sh(E1, E2) ≤ 1. 

(C3) If E1 = E2, this reveals e1k(I) = e2k(I), and then there is 1 1 1( )i i i
k k ke I v I   = 2 2 2( )i i i

k k ke I v I   

(i = 1, 2, …, pk; k = 1, 2, …, m) for I  [I, I+]. Thus, there are 1 1 2 2( () ) 0i i i i
k k k kv I v I      and 

1 1 2 2( () ) 0i i i i
k k k kv I v I     . Hence, Sh(E1, E2) = 1 exists. 

If Sh(E1, E2) = 1, this reveals sinh(x) = 0 in Eq. (3), then there are 1 1 2 2( () ) 0i i i i
k k k kv I v I      

and 1 1 2 2( () ) 0i i i i
k k k kv I v I      (i = 1, 2, …, pk; k = 1, 2, …, m). Thus, there is 1 1 1( )i i i

k k ke I v I   

= 2 2 2( )i i i
k k ke I v I  . Therefore, there exists e1k(I) = e2k(I). It is obvious that E1 = E2 exists. 

(C4) Since E1  E2  E3, there are e1k(I)  e2k(I)  e3k(I), then there is also 1 1 1( )i i i
k k ke I v I   

2 2 2( )i i i
k k ke I v I    3 3 3( )i i i

k k ke I v I  . Therefore, there are 1 1 2 2)( )(i i i i
k k k kv I v I       

1 1 3 3)( )(i i i i
k k k kv I v I     , 2 2 3 3)( )(i i i i

k k k kv I v I       1 1 3 3)( )(i i i i
k k k kv I v I     ,

1 1 2 2)( )(i i i i
k k k kv I v I      1 1 3 3)( )(i i i i

k k k kv I v I     , and 2 2 3 3)( )(i i i i
k k k kv I v I      

1 1 3 3)( )(i i i i
k k k kv I v I     . Since the hyperbolic sine function sinh(x) for x  0 is an increasing 

function, there are Sh(E1, E2)  Sh(E1, E3) and Sh(E2, E3)  Sh(E1, E3) corresponding to Eq. (3). 

When the weight of eik(I) (i = 1,2; k = 1, 2, …, m) is specified by k with k  [0, 1] and 
1

1m
kk





, we give the weighted HSSM of NMSs: 

1 1 2 2
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It is obvious that the weighted HSSM ShW(E1, E2) also reveals the following properties: 

(C1) ShW(E1, E2) = ShW(E2, E1); 

(C2) 0 ≤ ShW(E1, E2) ≤ 1; 

(C3) ShW(E1, E2) = 1 if only if E1 = E2; 

(C4) If E1  E2  E3 for NMSs E1, E2, E3, then ShW(E1, E2)  ShW(E1, E3) and ShW(E2, E3)  ShW(E1, E3). 
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4. MCGDM Approach Using the Weighted HSSM of NMSs 

The section develops a MCGDM approach using the weighted HSSM of NMSs with some 

indeterminate ranges of decision makers in the environment of NMSs.  

When performing a MCGDM issue, a set of alternatives F = {F1, F2, …, Fq} is preliminarily 

provided and assessed by a set of criteria Z = {z1, z2, …, zm}. The weight vector of Z is given by  = (1, 

2, …, m). Thus, we can carry out the MCGDM issue in terms of the following steps. 

Step 1: Every alternative Fj (j = 1, 2, …, q) is assessed over the criteria zk (k = 1, 2, …, m) by a group 

of p decision makers/experts, and then their evaluation values are represented by the NNSs 

 1 2( ) ( ), ( ),..., ( )p
jk jk jk jke I e I e I e I  for ( ) [0,1]i i i

jk jk jke I v I    (i = 1, 2, …, p; j = 1, 2, ..., q; k = 1, 2, …, 

m) and 1 1 2 2{[ , ],[ , ],...,[ , ]}s sI I I I I I I      . Thus, all the NNSs Ej = {ej1(I), ej2(I), …, ejm(I)} (j = 1, 2, …, q) 

is constructed as the NMS decision matrix E = (ejk(I))qm. 

Step 2: The ideal solution is given by the ideal NMS: 

* [1,1],[1,1],...,[1,1] , [1,1],[1,1],...,[1,1] ,..., [1,1],[1,1],...,[1,1]
p p p

m

E

 
      
        
           
 
 

. 

Thus, the weighted HSSM of the NMSs Ej and E* for Fj (j = 1, 2, ..., q) is given by the following 

equation: 

 *
1 1

1 1

ln(1 2)( , ) 1 sinh ) )
2

2 ( (i i i i
jk jk

pm

W j kk
k i

kSh v IE E I v
p

   

 

 
     

 
  .       (5) 

Step 3: In terms of the weighted HSSM values, the alternatives are sorted in descending order, 

and the best one is chosen. 

Step 4: End. 

5. Illustrative Example on the Teaching Quality Evaluation of Teachers  

In the process of university education, the teaching quality of teachers is a key issue, because it 

will affect students' career choices, employment, and professional status. Establishing a teaching 

quality evaluation system in colleges and universities is an effective operating mechanism and 

management strategy to improve teaching quality. Since the teaching quality evaluation of teachers 

is a MCGDM issue with some indeterminacy, this section applies the developed MCGDM approach 

to an illustrative example on the teaching quality assessment of teachers to reveal the applicability 

and efficiency of the developed MCGDM approach in the environment of NMSs. 

A university hopes to select one teacher with the best teaching quality from the School of 

Mechanical and Electrical Engineering. The school preliminarily provides four potential teachers, 

which are indicated by a set of alternatives F = {F1, F2, F3, F4}. To assess their teaching quality, they 

must satisfy the requirements of four criteria: teaching ability (z1), teaching method (z2), teaching 

attitude (z3), and student satisfaction (z4). Then, the weight vector of the four criteria is specified as  

= (0.3, 0.25, 0.2, 0.25). The decision steps are described below. 

First, the evaluation values of each alternative with respect to the four criteria are given by three 

experts/decision makers and expressed as the NNSs  1 2 3( ) ( ), ( ), ( )jk jk jk jke I e I e I e I  for 

( ) [0,1]i i i
jk jk jke I v I    (i = 1, 2, 3; j, k = 1, 2, 3, 4) and I  {[0, 0.1], [0, 0.3], [0, 0.6]}. Then, the NMS 

decision matrix E = (ejk(I))44 is tabulated in Table 1. 

Next, using Eq. (5) for I  {[0, 0.1], [0, 0.3], [0, 0.6]}, the weighted HSSM values of the NMSs Ej 

and E* for Fj (j = 1, 2, 3, 4) and the decision results are given in Table 2. 
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In view of the decision results in Table 2, all sorting orders are the same and reveal their 

robustness corresponding to some indeterminate ranges of I. Then, the best teacher is F4. 

 

Table 1. The decision matrix of NMSs 

 z1 z2 z3 z4 

F1 
(0.5+0.1I, 0.7+0.2I, 

0.8+0.1I) 

(0.6+0.3I, 0.7+0.2I, 

0.8+0.1I) 

(0.7+0.2I, 0.8+0.2I, 

0.9+0.1I) 

(0.6+0.1I, 0.7+0.2I, 

0.7+0.1I) 

F2 
(0.7+0.3I, 0.8+0.1I, 

0.8+0.1I) 

(0.7+0.2I, 0.7+0.1I, 

0.8+0.2I) 

(0.6+0.1I, 0.7+0.1I, 

0.8+0.2I) 

(0.7+0.2I, 0.8+0.2I, 

0.8+0.2I) 

F3 
(0.6+0.4I, 0.7+0.2I, 

0.8+0.1I) 

(0.5+0.2I, 0.6+0.1I, 

0.6+0.1I) 

(0.7+0.1I, 0.8+0.2I, 

0.8+0.1I) 

(0.7+0.1I, 0.8+0.2I, 

0.8+0.1I) 

F4 
(0.7+0.3I, 0.8+0.1I, 

0.8+0.2I) 

(0.7+0.2I, 0.8+0.1I, 

0.8+0.1I) 

(0.8+0.3I, 0.8+0.2I, 

0.8+0.1I) 

(0.7+0.2I, 0.8+0.3I, 

0.8+0.2I) 

 
Table 2. The decision results for I  {[0, 0.1], [0, 0.3], [0, 0.6]} 

I ShW(E1, E*), ShW(E2, E*), ShW(E3, E*), ShW(E4, E*) Sorting order The best teacher 

I = [0, 0.1] 0.7409, 0.7809, 0.7362, 0.8075 F4 > F2 > F1 > F3 F4 

I = [0, 0.3] 0.7551, 0.7960, 0.7511, 0.8247 F4 > F2 > F1 > F3 F4 

I = [0, 0.6] 0.7764, 0.8187, 0.7733, 0.8503 F4 > F2 > F1 > F3 F4 

6. Comparison with the Related MCGDM Approach  

This section compares the developed MCGDM approach with the related MCGDM approach 

[20] to reveal the efficiency of the developed MCGDM approach by the illustrative example on the 

teaching quality evaluation of teachers in the setting of NMSs. 

Using Eqs. (1) and (2), the values of the weighted PCCs *
1( , )w jR E E  and *

2( , )w jR E E  for I = 

[0, 1] and  = 0.1, 0.3, 0.6 and their decision results are shown in Tables 3 and 4. 

 

Table 3. The decision results corresponding to *
1( , )w jR E E  for I = [0, 1] and  = 0.1, 0.3, 0.6 

 
*

1 1( , )wR E E , *
1 2( , )wR E E , *

1 3( , )wR E E , *
1 4( , )wR E E

 Sorting order The best teacher 

 = 0.1 0.9898, 0.9967, 0.9908, 0.9986 F4 > F2 > F3 > F1 F4 

 = 0.3 0.9907, 0.9967, 0.9920, 0.9987 F4 > F2 > F3 > F1 F4 

 = 0.6 0.9914, 0.9962, 0.9926, 0.9984 F4 > F2 > F3 > F1 F4 

 

Table 4. The decision results corresponding to *
2( , )w jR E E  for I = [0, 1] and  = 0.1, 0.3, 0.6 

 
*

2 1( , )wR E E , *
2 2( , )wR E E , *

2 3( , )wR E E , *
2 4( , )wR E E

 Sorting order The best teacher 

 = 0.1 0.7173, 0.7618, 0.7130, 0.7925 F4 > F2 > F1 > F3 F4 

 = 0.3 0.7487, 0.7955, 0.7457, 0.8308 F4 > F2 > F1 > F3 F4 

 = 0.6 0.7957, 0.8460, 0.7947, 0.8883 F4 > F2 > F1 > F3 F4 
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In view of the sorting results in Tables 2-4, the sorting orders in Tables 2 and 4 are the same, but 

slightly different from the sorting orders in Table 3. However, the best teacher is always F4 among all 

decision results. It is obvious that the developed MCGDM approach is effective in the MCGDM 

example with some indeterminate ranges of decision makers. 

7. Conclusions  

According to the hyperbolic sine function, this article proposed the HSSM and weighted HSSM 

between NMSs. Then, a MCGDM approach with some indeterminate ranges was developed in terms 

of the weighted HSSM of NMSs. Next, the developed MCGDM approach was applied to an 

illustrative example on the teaching quality evaluation of teachers in the setting of NMSs. Through 

the comparison of the developed MCGDM approach with the related MCGDM approach, the results 

revealed the efficiency of the developed MCGDM approach for the teaching quality evaluation of 

teachers in the setting of NMSs. However, the proposed HSSMs and MCGDM approach will also be 

used for pattern recognition, clustering analysis, and medical diagnosis in the environment of NMSs, 

which are considered as the future research targets. 

Conflicts of Interest: The authors declare no conflict of interest. 
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Abstract: Neutrosophy is introduced by F. Smarandache in 1980 which studies the origin, nature, and scope of
neutralities, as well as their interactions with different ideational spectra. Neutrosophy considers a proposition, theory,
event, concept, or entity, ”A” in relation to its opposite, ”Anti-A” and that which is not A, ”Non-A”, and that which
is neither ”A” nor ”Anti-A”, denoted by ”Neut-A”. Neutrosophy is the basis of neutrosophic logic, neutrosophic
probability, neutrosophic set, and neutrosophic statistics. In this article, we apply the notion of neutrosophic set
theory to (positive implicative) ideals in BCK-algebras by using the concept of falling shadows. The notions of a
positive implicative (∈, ∈)-neutrosophic ideal and a positive implicative falling neutrosophic ideal are introduced,
and several properties are investigated. Characterizations of a positive implicative (∈, ∈)-neutrosophic ideal are
considered, and relations between a positive implicative (∈, ∈)-neutrosophic ideal and an (∈, ∈)-neutrosophic ideal
are discussed. Conditions for an (∈, ∈)-neutrosophic ideal to be a positive implicative (∈, ∈)-neutrosophic ideal are
provided, and relations between a positive implicative (∈, ∈)-neutrosophic ideal, a falling neutrosophic ideal and a
positive implicative falling neutrosophic ideal are studied. Conditions for a falling neutrosophic ideal to be positive
implicative are provided.

Keywords: neutrosophic random set, neutrosophic falling shadow, (positive implicative) (∈, ∈)-neutrosophic ideal,
(positive implicative) falling neutrosophic ideal.

1 Introduction
In the study of a unified treatment of uncertainty modelled by means of combining probability and fuzzy set
theory, Goodman [5] pointed out the equivalence of a fuzzy set and a class of random sets. Wang and Sanchez
[26] introduced the theory of falling shadows which directly relates probability concepts to the membership

H. Bordbar, X.L. Xin, R.A. Borzooei, Y.B. Jun, Positive implicative ideals of BCK-algebras based on
neutrosophic sets and falling shadows.
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function of fuzzy sets. Falling shadow representation theory shows us a method of selection relaid on the joint
degree distributions. It is a reasonable and convenient approach for the theoretical development and the practi-
cal applications of fuzzy sets and fuzzy logics. The mathematical structure of the theory of falling shadows is
formulated in [27]. Tan et al. [24, 25] established a theoretical approach for defining a fuzzy inference relation
and fuzzy set operations based on the theory of falling shadows. Neutrosophic set (NS) developed by Smaran-
dache [20, 21, 22] is a more general platform which extends the concepts of the classic set and fuzzy set,
intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. Neutrosophic set theory is applied to various
part which is refered to the site http://fs.gallup.unm.edu/neutrosophy.htm. Jun, Bordbar, Borumand Saeid and
Ozturk studied neutrosophic subalgebras/ideals inBCK/BCI-algebras based on neutrosophic points (see [3],
[4], [9], [11], [15], [17], [19] and [23]). It is a reasonable and convenient approach for the theoretical devel-
opment and the practical applications of neutrosophic sets and neutrosophic logics. Jun et al. [12] introduced
the notion of neutrosophic random set and neutrosophic falling shadow. Using these notions, they introduced
the concept of falling neutrosophic subalgebra and falling neutrosophic ideal in BCK/BCI-algebras, and
investigated related properties. They discussed relations between falling neutrosophic subalgebra and falling
neutrosophic ideal, and established a characterization of falling neutrosophic ideal [13]. Jun et al. [14] intro-
duced the concepts of a commutative (∈, ∈)-neutrosophic ideal and a commutative falling neutrosophic ideal,
and investigate several properties. They obtained characterizations of a commutative (∈, ∈)-neutrosophic
ideal, and discussed relations between a commutative (∈, ∈)-neutrosophic ideal and an (∈, ∈)-neutrosophic
ideal. They provided conditions for an (∈, ∈)-neutrosophic ideal to be a commutative (∈, ∈)-neutrosophic
ideal, and considered relations between a commutative (∈, ∈)-neutrosophic ideal, a falling neutrosophic ideal
and a commutative falling neutrosophic ideal. They also gave conditions for a falling neutrosophic ideal to be
commutative [18].

In this paper, we introduce the concepts of a positive implicative (∈, ∈)-neutrosophic ideal and a positive
implicative falling neutrosophic ideal, and investigate several properties. We obtain characterizations of a
positive implicative (∈, ∈)-neutrosophic ideal, and discuss relations between a positive implicative (∈, ∈)-
neutrosophic ideal and an (∈, ∈)-neutrosophic ideal. We provide conditions for an (∈, ∈)-neutrosophic ideal
to be a positive implicative (∈, ∈)-neutrosophic ideal, and consider relations between a positive implicative
(∈, ∈)-neutrosophic ideal, a falling neutrosophic ideal and a positive implicative falling neutrosophic ideal.
We give conditions for a falling neutrosophic ideal to be positive implicative.

2 Preliminaries
A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki (see [6] and [7]) and
was extensively investigated by several researchers.

By a BCI-algebra, we mean a set X with a special element 0 and a binary operation ∗ that satisfies the
following conditions:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

H. Bordbar, X.L. Xin, R.A. Borzooei, Y.B. Jun, Positive implicative ideals of BCK-algebras based on
neutrosophic sets and falling shadows.
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(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following conditions:

(∀x ∈ X) (x ∗ 0 = x) , (2.1)
(∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x) , (2.2)
(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) , (2.3)
(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y) (2.4)

where x ≤ y if and only if x ∗ y = 0. A BCK-algebra X is said to be positive implicative if the following
assertion is valid.

(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) = (x ∗ y) ∗ z) . (2.5)

A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S. A
subset I of a BCK/BCI-algebra X is called an ideal of X if it satisfies:

0 ∈ I, (2.6)
(∀x ∈ X) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I) . (2.7)

A subset I of a BCK-algebra X is called a positive implicative ideal (see [16]) of X if it satisfies (2.6) and

(∀x, y, z ∈ X)(((x ∗ y) ∗ z ∈ I, y ∗ z ∈ I ⇒ x ∗ z ∈ I) . (2.8)

Observe that every positive implicative ideal is an ideal, but the converse is not true (see [16]).
We refer the reader to the books [8, 16] for further information regarding BCK/BCI-algebras.
For any family {ai | i ∈ Λ} of real numbers, we define∨

{ai | i ∈ Λ} := sup{ai | i ∈ Λ}

and ∧
{ai | i ∈ Λ} := inf{ai | i ∈ Λ}.

If Λ = {1, 2}, we will also use a1∨a2 and a1∧a2 instead of
∨
{ai | i ∈ Λ} and

∧
{ai | i ∈ Λ}, respectively.

Let X be a non-empty set. A neutrosophic set (NS) in X (see [21]) is a structure of the form:

A∼ := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1] is an indeterminate membership
function, and AF : X → [0, 1] is a false membership function. For the sake of simplicity, we shall use the
symbol A∼ = (AT , AI , AF ) for the neutrosophic set

A∼ := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.

Given a neutrosophic set A∼ = (AT , AI , AF ) in a set X , α, β ∈ (0, 1] and γ ∈ [0, 1), we consider the

H. Bordbar, X.L. Xin, R.A. Borzooei, Y.B. Jun, Positive implicative ideals of BCK-algebras based on
neutrosophic sets and falling shadows.



Neutrosophic Sets and Systems, Vol. 48, 2022 12

following sets:

T∈(A∼;α) := {x ∈ X | AT (x) ≥ α},
I∈(A∼; β) := {x ∈ X | AI(x) ≥ β},
F∈(A∼; γ) := {x ∈ X | AF (x) ≤ γ}.

We say T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are neutrosophic ∈-subsets.

A neutrosophic set A∼ = (AT , AI , AF ) in a BCK/BCI-algebra X is called an (∈, ∈)-neutrosophic
subalgebra of X (see [9]) if the following assertions are valid.

(∀x, y ∈ X)

 x ∈ T∈(A∼;αx), y ∈ T∈(A∼;αy) ⇒ x ∗ y ∈ T∈(A∼;αx ∧ αy),
x ∈ I∈(A∼; βx), y ∈ I∈(A∼; βy) ⇒ x ∗ y ∈ I∈(A∼; βx ∧ βy),
x ∈ F∈(A∼; γx), y ∈ F∈(A∼; γy) ⇒ x ∗ y ∈ F∈(A∼; γx ∨ γy)

 (2.9)

for all αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

A neutrosophic set A∼ = (AT , AI , AF ) in a BCK/BCI-algebra X is called an (∈, ∈)-neutrosophic ideal
of X (see [19]) if the following assertions are valid.

(∀x ∈ X)

 x ∈ T∈(A∼;αx) ⇒ 0 ∈ T∈(A∼;αx)
x ∈ I∈(A∼; βx) ⇒ 0 ∈ I∈(A∼; βx)
x ∈ F∈(A∼; γx) ⇒ 0 ∈ F∈(A∼; γx)

 (2.10)

and

(∀x, y ∈ X)

 x ∗ y ∈ T∈(A∼;αx), y ∈ T∈(A∼;αy) ⇒ x ∈ T∈(A∼;αx ∧ αy)
x ∗ y ∈ I∈(A∼; βx), y ∈ I∈(A∼; βy) ⇒ x ∈ I∈(A∼; βx ∧ βy)
x ∗ y ∈ F∈(A∼; γx), y ∈ F∈(A∼; γy) ⇒ x ∈ F∈(A∼; γx ∨ γy)

 (2.11)

for all αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

In what follows, letX and P(X) denote aBCK/BCI-algebra and the power set ofX , respectively, unless
otherwise specified.

For each x ∈ X and D ∈ P(X), let

x̄ := {C ∈ P(X) | x ∈ C}, (2.12)

and

D̄ := {x̄ | x ∈ D}. (2.13)

An ordered pair (P(X),B) is said to be a hyper-measurable structure on X if B is a σ-field in P(X) and
X̄ ⊆ B.

Given a probability space (Ω,A, P ) and a hyper-measurable structure (P(X),B) on X , a neutrosophic
random set on X (see [12]) is defined to be a triple ξ := (ξT , ξI , ξF ) in which ξT , ξI and ξF are mappings from
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Ω to P(X) which are A-B measurables, that is,

(∀C ∈ B)

 ξ−1T (C) = {ωT ∈ Ω | ξT (ωT ) ∈ C} ∈ A
ξ−1I (C) = {ωI ∈ Ω | ξI(ωI) ∈ C} ∈ A
ξ−1F (C) = {ωF ∈ Ω | ξF (ωF ) ∈ C} ∈ A

 . (2.14)

˜

˜

˜

˜

˜

˜

˜

˜

˜

˜
˜

˜

Given a neutrosophic random set ξ := (ξT , ξI , ξF ) on X , consider functions:

HT : X → [0, 1], xT 7→ P (ωT | xT ∈ ξT (ωT )),

HI : X → [0, 1], xI 7→ P (ωI | xI ∈ ξI(ωI)),

HF : X → [0, 1], xF 7→ 1− P (ωF | xF ∈ ξF (ωF )).

Then H̃ := (HT , H̃I , H̃F ) is a neutrosophic set on X , and we call it a neutrosophic falling shadow (see [12])
of the neutrosophic random set ξ := (ξT , ξI , ξF ), and ξ := (ξT , ξI , ξF ) is called a neutrosophic cloud (see [12])
of H̃ := (HT , H̃I , H̃F ).

For example, consider a probability space (Ω,A, P ) = ([0, 1],A,m) where A is a Borel field on [0, 1]
and m is the usual Lebesgue measure. Let H̃ := (HT , H̃I , H̃F ) be a neutrosophic set in X . Then a triple
ξ := (ξT , ξI , ξF ) in which

ξT : [0, 1]→ P(X), α 7→ T∈(H;α),

ξI : [0, 1]→ P(X), β 7→ I∈(H; β),

ξF : [0, 1]→ P(X), γ 7→ F∈(H; γ)

is a neutrosophic random set and ξ := (ξT , ξI , ξF ) is a neutrosophic cloud of H̃ := (HT , H̃I , H̃F ). We will call
ξ := (ξT , ξI , ξF ) defined above as the neutrosophic cut-cloud (see [12]) of H̃ := (HT , H̃I , H̃F ).

Let (Ω,A, P ) be a probability space and let ξ := (ξT , ξI , ξF ) be a neutrosophic random set onX . If ξT (ωT ),
ξI(ωI) and ξF (ωF ) are subalgebras (resp., ideals) of X for all ωT , ωI , ωF ∈ Ω, then the neutrosophic falling
shadow H̃ := (HT , H̃I , H̃F ) of ξ := (ξT , ξI , ξF ) is called a falling neutrosophic subalgebra (resp., falling
neutrosophic ideal) of X (see [12]).

3 Positive implicative (∈, ∈)-neutrosophic ideals
Definition 3.1. A neutrosophic set A∼ = (AT , AI , AF ) in a BCK-algebra X is called a positive implicative
(∈, ∈)-neutrosophic ideal of X if it satisfies the condition (2.10) and

(x ∗ y) ∗ z ∈ T∈(A∼;αx), y ∗ z ∈ T∈(A∼;αy) ⇒ x ∗ z ∈ T∈(A∼;αx ∧ αy)
(x ∗ y) ∗ z ∈ I∈(A∼; βx), y ∗ z ∈ I∈(A∼; βy) ⇒ x ∗ z ∈ I∈(A∼; βx ∧ βy)
(x ∗ y) ∗ z ∈ F∈(A∼; γx), y ∗ z ∈ F∈(A∼; γy) ⇒ x ∗ z ∈ F∈(A∼; γx ∨ γy)

(3.1)

for all x, y, z ∈ X , αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

Example 3.2. Consider a set X = {0, 1, 2, 3, 4} with the binary operation ∗ which is given in Table 1
Then (X; ∗, 0) is a BCK-algebra (see [16]). Let A∼ = (AT , AI , AF ) be a neutrosophic set in X defined by
Table 2
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Table 1: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 0 2
3 3 3 3 0 3
4 4 4 4 4 0

Table 2: Tabular representation of A∼ = (AT , AI , AF )

X AT (x) AI(x) AF (x)
0 0.8 0.6 0.1
1 0.7 0.6 0.4
2 0.6 0.5 0.4
3 0.4 0.2 0.6
4 0.2 0.3 0.9

Routine calculations show that A∼ = (AT , AI , AF ) is a positive implicative (∈, ∈)-neutrosophic ideal of X .

Theorem 3.3. Every positive implicative (∈, ∈)-neutrosophic ideal of a BCK-algebra X is an (∈, ∈)-
neutrosophic ideal of X .

Proof. It is clear by taking z = 0 in (3.1) and using (2.1).

Theorem 3.4. For a neutrosophic set A∼ = (AT , AI , AF ) in a BCK-algebra X , the following are equivalent.

(1) The non-empty ∈-subsets T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are positive implicative ideals of X for
all α, β ∈ (0, 1] and γ ∈ [0, 1).

(2) A∼ = (AT , AI , AF ) satisfies the following assertions.

(∀x ∈ X)
(
AT (0) ≥ AT (x), AI(0) ≥ AI(x), AF (0) ≤ AF (x)

)
(3.2)

and

(∀x, y, z ∈ X)

 AT (x ∗ z) ≥ AT ((x ∗ y) ∗ z) ∧ AT (y ∗ z)
AI(x ∗ z) ≥ AI((x ∗ y) ∗ z) ∧ AI(y ∗ z)
AF (x ∗ z) ≤ AF ((x ∗ y) ∗ z) ∨ AF (y ∗ z)

 (3.3)

Proof. Assume that the non-empty ∈-subsets T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are positive implicative
ideals of X for all α, β ∈ (0, 1] and γ ∈ [0, 1). If AT (0) < AT (a) for some a ∈ X , then a ∈ T∈(A∼;AT (a))
and 0 /∈ T∈(A∼;AT (a)). This is a contradiction, and so AT (0) ≥ AT (x) for all x ∈ X . Similarly, AI(0) ≥
AI(x) for all x ∈ X . Suppose that AF (0) > AF (a) for some a ∈ X . Then a ∈ F∈(A∼;AF (a)) and
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0 /∈ F∈(A∼;AF (a)). This is a contradiction, and thus AF (0) ≤ AF (x) for all x ∈ X . Therefore (3.2) is valid.
Assume that there exist a, b, c ∈ X such that

AT (a ∗ c) < AT ((a ∗ b) ∗ c) ∧ AT (b ∗ c).

Taking α := AT ((a ∗ b) ∗ c) ∧ AT (b ∗ c) implies that (a ∗ b) ∗ c ∈ T∈(A∼;α) and b ∗ c ∈ T∈(A∼;α) but
a ∗ c /∈ T∈(A∼;α), which is a contradiction. Hence

AT (x ∗ z) ≥ AT ((x ∗ y) ∗ z) ∧ AT (y ∗ z)

for all x, y, z ∈ X . By the similar way, we can verify that

AI(x ∗ z) ≥ AI((x ∗ y) ∗ z) ∧ AI(y ∗ z)

for all x, y, z ∈ X . Now suppose there are x, y, z ∈ X such that

AF (x ∗ z) > AF ((x ∗ y) ∗ z) ∨ AF (y ∗ z) := γ.

Then (x ∗ y) ∗ z ∈ F∈(A∼; γ) and y ∗ z ∈ F∈(A∼; γ) but x ∗ z /∈ F∈(A∼; γ), a contradiction. Thus

AF (x ∗ z) ≤ AF ((x ∗ y) ∗ z) ∨ AF (y ∗ z)

for all x, y, z ∈ X .
Conversely, let A∼ = (AT , AI , AF ) be a neutrosophic set in X satisfying two conditions (3.2) and (3.3).

Assume that T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are nonempty for α, β ∈ (0, 1] and γ ∈ [0, 1). Let x ∈
T∈(A∼;α), a ∈ I∈(A∼; β) and u ∈ F∈(A∼; γ) for α, β ∈ (0, 1] and γ ∈ [0, 1). Then AT (0) ≥ AT (x) ≥ α,
AI(0) ≥ AI(a) ≥ β, and AF (0) ≤ AF (u) ≤ γ by (3.2). It follows that 0 ∈ T∈(A∼;α), 0 ∈ I∈(A∼; β) and
0 ∈ F∈(A∼; γ). Let a, b, c ∈ X be such that (a∗ b)∗ c ∈ T∈(A∼;α) and b∗ c ∈ T∈(A∼;α) for α ∈ (0, 1]. Then

AT (a ∗ c) ≥ AT ((a ∗ b) ∗ c) ∧ AT (b ∗ c) ≥ α

by (3.3), and so a ∗ c ∈ T∈(A∼;α). If (x ∗ y) ∗ z ∈ I∈(A∼; β) and y ∗ z ∈ I∈(A∼; β) for all x, y, z ∈ X and
β ∈ (0, 1], then AI((x ∗ y) ∗ z) ≥ β and AI(y ∗ z) ≥ β. Hence the condition (3.3) implies that

AI(x ∗ z) ≥ AI((x ∗ y) ∗ z) ∧ AI(y ∗ z) ≥ β,

that is, x ∗ z ∈ I∈(A∼; β). Finally, suppose that (x ∗ y) ∗ z ∈ F∈(A∼; γ) and y ∗ z ∈ F∈(A∼; γ) for all
x, y, z ∈ X and γ ∈ (0, 1]. Then AF ((x ∗ y) ∗ z) ≤ γ and AF (y ∗ z) ≤ γ, which imply from the condition
(3.3) that

AF (x ∗ z) ≤ AF ((x ∗ y) ∗ z) ∨ AF (y ∗ z) ≤ γ.

Hence x ∗ z ∈ F∈(A∼; γ). Therefore the non-empty ∈-subsets T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are
positive implicative ideals of X for all α, β ∈ (0, 1] and γ ∈ [0, 1).

Theorem 3.5. Let A∼ = (AT , AI , AF ) be a neutrosophic set in a BCK-algebra X . Then A∼ = (AT , AI , AF )
is a positive implicative (∈, ∈)-neutrosophic ideal of X if and only if the non-empty neutrosophic ∈-subsets
T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are positive implicative ideals of X for all α, β ∈ (0, 1] and γ ∈ [0, 1).
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Proof. Let A∼ = (AT , AI , AF ) be a positive implicative (∈, ∈)-neutrosophic ideal of X and assume that
T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are nonempty for α, β ∈ (0, 1] and γ ∈ [0, 1). Then there exist x, y, z ∈
X such that x ∈ T∈(A∼;α), y ∈ I∈(A∼; β) and z ∈ F∈(A∼; γ). It follows from (2.10) that 0 ∈ T∈(A∼;α),
0 ∈ I∈(A∼; β) and 0 ∈ F∈(A∼; γ). Let x, y, z, a, b, c, u, v, w ∈ X be such that (x ∗ y) ∗ z ∈ T∈(A∼;α),
y ∗ z ∈ T∈(A∼;α), (a∗ b)∗ c ∈ I∈(A∼; β), b∗ c ∈ I∈(A∼; β), (u∗ v)∗w ∈ F∈(A∼; γ) and v ∗w ∈ F∈(A∼; γ).
Then x ∗ z ∈ T∈(A∼;α∧α) = T∈(A∼;α), a ∗ c ∈ I∈(A∼; β ∧ β) = I∈(A∼; β), and u ∗w ∈ F∈(A∼; γ ∨ γ) =
F∈(A∼; γ) by (3.1). Hence the non-empty neutrosophic ∈-subsets T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are
positive implicative ideals of X for all α, β ∈ (0, 1] and γ ∈ [0, 1).

Conversely, let A∼ = (AT , AI , AF ) be a neutrosophic set in X for which T∈(A∼;α), I∈(A∼; β) and
F∈(A∼; γ) are nonempty and are positive implicative ideals ofX for all α, β ∈ (0, 1] and γ ∈ [0, 1). Obviously,
(2.10) is valid. Let x, y, z ∈ X and αx, αy ∈ (0, 1] be such that (x∗y)∗z ∈ T∈(A∼;αx) and y∗z ∈ T∈(A∼;αy).
Then (x ∗ y) ∗ z ∈ T∈(A∼;α) and y ∗ z ∈ T∈(A∼;α) where α = αx ∧ αy. Since T∈(A∼;α) is a positive
implicative ideal of X , it follows that x ∗ z ∈ T∈(A∼;α) = T∈(A∼;αx ∧ αy). Similarly, if (x ∗ y) ∗ z ∈
I∈(A∼; βx) and y ∗ z ∈ I∈(A∼; βy) for all x, y, z ∈ X and βx, βy ∈ (0, 1], then x ∗ z ∈ I∈(A∼; βx ∧ βy). Now,
suppose that (x ∗ y) ∗ z ∈ F∈(A∼; γx) and y ∗ z ∈ F∈(A∼; γy) for all x, y, z ∈ X and γx, γy ∈ [0, 1). Then
(x∗y)∗z ∈ F∈(A∼; γ) and y∗z ∈ F∈(A∼; γ) where γ = γx∨γy. Hence x∗z ∈ F∈(A∼; γ) = F∈(A∼; γx∨γy)
since F∈(A∼; γ) is a positive implicative ideal of X . Therefore A∼ = (AT , AI , AF ) is a positive implicative
(∈, ∈)-neutrosophic ideal of X .

Corollary 3.6. LetA∼ = (AT , AI , AF ) be a neutrosophic set in aBCK-algebraX . ThenA∼ = (AT , AI , AF )
is a positive implicative (∈, ∈)-neutrosophic ideal of X if and only if it satisfies two conditions (3.2) and (3.3).

Lemma 3.7 ([18]). Every (∈, ∈)-neutrosophic ideal A∼ = (AT , AI , AF ) of a BCK/BCI-algebra X satisfies
the following assertion.

(∀x, y ∈ X)

x ≤ y ⇒


AT (x) ≥ AT (y)
AI(x) ≥ AI(y)
AF (x) ≤ AF (y)

 . (3.4)

Lemma 3.8 ([18]). Given a neutrosophic set A∼ = (AT , AI , AF ) in a BCK/BCI-algebra X , the following
assertions are equivalent.

(1) A∼ = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X .

(2) A∼ = (AT , AI , AF ) satisfies the following assertions.

(∀x ∈ X)
(
AT (0) ≥ AT (x), AI(0) ≥ AI(x), AF (0) ≤ AF (x)

)
(3.5)

and

(∀x, y ∈ X)

 AT (x) ≥ AT (x ∗ y) ∧ AT (y)
AI(x) ≥ AI(x ∗ y) ∧ AI(y)
AF (x) ≤ AF (x ∗ y) ∨ AF (y)

 (3.6)

Proposition 3.9. Every positive implicative (∈, ∈)-neutrosophic idealA∼ = (AT , AI , AF ) of aBCK-algebra
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X satisfies the following assertions.

(∀x, y ∈ X)

 AT (x ∗ y) ≥ AT ((x ∗ y) ∗ y)
AI(x ∗ y) ≥ AI((x ∗ y) ∗ y)
AF (x ∗ y) ≤ AF ((x ∗ y) ∗ y)

 , (3.7)

(∀x, y ∈ X)

 AT ((x ∗ z) ∗ (y ∗ z)) ≥ AT ((x ∗ y) ∗ z)
AI((x ∗ z) ∗ (y ∗ z)) ≥ AI((x ∗ y) ∗ z)
AF ((x ∗ z) ∗ (y ∗ z)) ≤ AF ((x ∗ y) ∗ z)

 , (3.8)

and

(∀x, y ∈ X)

 AT (x ∗ y) ≥ AT (((x ∗ y) ∗ y) ∗ z) ∧ AT (z)
AI(x ∗ y) ≥ AI(((x ∗ y) ∗ y) ∗ z) ∧ AI(z)
AF (x ∗ y) ≤ AF (((x ∗ y) ∗ y) ∗ z) ∨ AF (z)

 . (3.9)

Proof. Let A∼ = (AT , AI , AF ) be a positive implicative (∈, ∈)-neutrosophic ideal of a BCK-algebra X .
Then A∼ = (AT , AI , AF ) be an (∈, ∈)-neutrosophic ideal of a BCK-algebra X (see Theorem 3.3). Since
x ∗ x = 0 for all x ∈ X , putting z = y in (3.3) and using (3.2) induce (3.7). Since

((x ∗ (y ∗ z)) ∗ z) ∗ z = ((x ∗ z) ∗ (y ∗ z)) ∗ z ≤ (x ∗ y) ∗ z

for all x, y, z ∈ X , we have

AT ((x ∗ z) ∗ (y ∗ z)) = AT ((x ∗ (y ∗ z)) ∗ z)
≥ AT (((x ∗ (y ∗ z)) ∗ z) ∗ z)
≥ AT ((x ∗ y) ∗ z),

AI((x ∗ z) ∗ (y ∗ z)) = AI((x ∗ (y ∗ z)) ∗ z)
≥ AI(((x ∗ (y ∗ z)) ∗ z) ∗ z)
≥ AI((x ∗ y) ∗ z)

and

AF ((x ∗ z) ∗ (y ∗ z)) = AF ((x ∗ (y ∗ z)) ∗ z)
≤ AF (((x ∗ (y ∗ z)) ∗ z) ∗ z)
≤ AF ((x ∗ y) ∗ z)

by (2.3), (3.7) and Lemma 3.7. Thus (3.8) is valid. Note that

(x ∗ y) ∗ z = ((x ∗ z) ∗ y) ∗ (y ∗ y)
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for all x, y ∈ X . It follows from Lemma 3.8, (3.8) and (2.3) that

AT (x ∗ y) ≥ AT ((x ∗ y) ∗ z) ∧ AT (z)

= AT (((x ∗ z) ∗ y) ∗ (y ∗ y)) ∧ AT (z)

≥ AT (((x ∗ z) ∗ y) ∗ y) ∧ AT (z)

= AT (((x ∗ y) ∗ y) ∗ z) ∧ AT (z),

AI(x ∗ y) ≥ AI((x ∗ y) ∗ z) ∧ AI(z)

= AI(((x ∗ z) ∗ y) ∗ (y ∗ y)) ∧ AI(z)

≥ AI(((x ∗ z) ∗ y) ∗ y) ∧ AI(z)

= AI(((x ∗ y) ∗ y) ∗ z) ∧ AI(z),

and

AF (x ∗ y) ≤ AF ((x ∗ y) ∗ z) ∨ AF (z)

= AF (((x ∗ z) ∗ y) ∗ (y ∗ y)) ∨ AF (z)

≤ AF (((x ∗ z) ∗ y) ∗ y) ∨ AF (z)

= AF (((x ∗ y) ∗ y) ∗ z) ∨ AF (z)

for all x, y, z ∈ X . Therefore (3.9) is valid.

The converse of Theorem 3.3 is not true as seen in the following example.

Example 3.10. Consider a set X = {0, 1, 2, 3, 4} with the binary operation ∗ which is given in Table 3

Table 3: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 1 3 0 3
4 4 4 4 4 0

Then (X; ∗, 0) is a BCK-algebra (see [16]). Let A∼ = (AT , AI , AF ) be a neutrosophic set in X defined by
Table 4
Routine calculations show that A∼ = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X . Neutrosophic ∈-
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Table 4: Tabular representation of A∼ = (AT , AI , AF )

X AT (x) AI(x) AF (x)
0 0.7 0.9 0.3
1 0.4 0.7 0.5
2 0.5 0.6 0.4
3 0.4 0.7 0.5
4 0.1 0.4 0.6

subsets are given as follows.

T∈(A∼;α) =


∅ if α ∈ (0.7, 1],
{0} if α ∈ (0.5, 0.7],
{0, 2} if α ∈ (0.4, 0.5],
{0, 1, 2, 3} if α ∈ (0.1, 0.4],
X if α ∈ (0, 0.1],

I∈(A∼; β) =


∅ if β ∈ (0.9, 1],
{0} if β ∈ (0.7, 0.9],
{0, 1, 3} if β ∈ (0.6, 0.7],
{0, 1, 2, 3} if β ∈ (0.4, 0.6],
X if β ∈ (0, 0.4],

and

F∈(A∼; γ) =


X if γ ∈ [0.6, 1),
{0, 1, 2, 3} if γ ∈ [0.5, 0.6),
{0, 2} if γ ∈ [0.4, 0.5),
{0} if γ ∈ [0.3, 0.4),
∅ if γ ∈ [0, 0.3).

If α ∈ (0.4, 0.5] and γ ∈ [0.4, 0.5), then T∈(A∼;α) and F∈(A∼; γ) are not positive implicative ideals of X .
Thus A∼ = (AT , AI , AF ) is not a positive implicative (∈, ∈)-neutrosophic ideal of X by Theorems 3.4 and
3.5.

We provide conditions for an (∈, ∈)-neutrosophic ideal to be a positive implicative (∈, ∈)-neutrosophic
ideal.

Theorem 3.11. Given a neutrosophic set A∼ = (AT , AI , AF ) in a BCK-algebra X , the following assertions
are equivalent.

(1) A∼ = (AT , AI , AF ) is a positive implicative (∈, ∈)-neutrosophic ideal of X .

(2) A∼ = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X that satisfies the condition (3.7).
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(3) A∼ = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X that satisfies the condition (3.8).

(4) A∼ = (AT , AI , AF ) satisfies two conditions (3.2) and (3.9).

Proof. Assume that A∼ = (AT , AI , AF ) is a positive implicative (∈, ∈)-neutrosophic ideal of X . Then
A∼ = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X by Theorem 3.3. If we take z = y in (3.3) and use
(3.2), then we get the condition (3.7). Suppose that A∼ = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X
satisfying the condition (3.7). Note that

((x ∗ (y ∗ z)) ∗ z) ∗ z = ((x ∗ z) ∗ (y ∗ z)) ∗ z ≤ (x ∗ y) ∗ z

for all x, y, z ∈ X . It follows from (2.3), (3.7) and Lemma 3.7 that

AT ((x ∗ z) ∗ (y ∗ z)) = AT ((x ∗ (y ∗ z)) ∗ z)
≥ AT (((x ∗ (y ∗ z)) ∗ z) ∗ z)
≥ AT ((x ∗ y) ∗ z),

AI((x ∗ z) ∗ (y ∗ z)) = AI((x ∗ (y ∗ z)) ∗ z)
≥ AI(((x ∗ (y ∗ z)) ∗ z) ∗ z)
≥ AI((x ∗ y) ∗ z),

and

AF ((x ∗ z) ∗ (y ∗ z)) = AF ((x ∗ (y ∗ z)) ∗ z)
≤ AF (((x ∗ (y ∗ z)) ∗ z) ∗ z)
≤ AF ((x ∗ y) ∗ z).

Hence (3.8) is valid. Assume that A∼ = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X satisfying the
condition (3.8). It is clear that A∼ = (AT , AI , AF ) satisfies the condition (3.2). Using (3.6), (III), (2.3) and
(3.8), we have

T∈(x ∗ y) ≥ T∈((x ∗ y) ∗ z) ∧ T∈(z)
= T∈(((x ∗ z) ∗ y) ∗ (y ∗ y)) ∧ T∈(z)
≥ T∈(((x ∗ z) ∗ y) ∗ y) ∧ T∈(z)

= T∈(((x ∗ y) ∗ y) ∗ z) ∧ T∈(z),

I∈(x ∗ y) ≥ I∈((x ∗ y) ∗ z) ∧ I∈(z)
= I∈(((x ∗ z) ∗ y) ∗ (y ∗ y)) ∧ I∈(z)
≥ I∈(((x ∗ z) ∗ y) ∗ y) ∧ I∈(z)

= I∈(((x ∗ y) ∗ y) ∗ z) ∧ I∈(z),
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and

F∈(x ∗ y) ≤ F∈((x ∗ y) ∗ z) ∨ F∈(z)
= F∈(((x ∗ z) ∗ y) ∗ (y ∗ y)) ∨ F∈(z)
≤ F∈(((x ∗ z) ∗ y) ∗ y) ∨ F∈(z)

= F∈(((x ∗ y) ∗ y) ∗ z) ∨ F∈(z)

for all x, y, z ∈ X . Thus (3.9) is valid. Finally suppose that A∼ = (AT , AI , AF ) satisfies two conditions (3.2)
and (3.9). Using (2.1) and (3.9), we get

AT (x) = AT (x ∗ 0)

≥ AT (((x ∗ 0) ∗ 0) ∗ y) ∧ AT (y)

= AT (x ∗ y) ∧ AT (y),

AI(x) = AI(x ∗ 0)

≥ AI(((x ∗ 0) ∗ 0) ∗ y) ∧ AI(y)

= AI(x ∗ y) ∧ AI(y),

and

AF (x) = AF (x ∗ 0)

≤ AF (((x ∗ 0) ∗ 0) ∗ y) ∨ AF (y)

= AF (x ∗ y) ∨ AF (y)

for all x, y ∈ X . Hence A∼ = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X . Since

((x ∗ z) ∗ z) ∗ (y ∗ z) ≤ (x ∗ z) ∗ y = (x ∗ y) ∗ z

for all x, y, z ∈ X , it follows from (3.9) and (3.4) that

AT (x ∗ z) ≥ AT (((x ∗ z) ∗ z) ∗ (y ∗ z)) ∧ AT (y ∗ z)
≥ AT ((x ∗ y) ∗ z) ∧ AT (y ∗ z),

AI(x ∗ z) ≥ AI(((x ∗ z) ∗ z) ∗ (y ∗ z)) ∧ AI(y ∗ z)
≥ AI((x ∗ y) ∗ z) ∧ AI(y ∗ z),

and

AF (x ∗ z) ≤ AF (((x ∗ z) ∗ z) ∗ (y ∗ z)) ∨ AF (y ∗ z)
≤ AF ((x ∗ y) ∗ z) ∨ AF (y ∗ z)

for all x, y, z ∈ X . Therefore A∼ = (AT , AI , AF ) is a positive implicative (∈, ∈)-neutrosophic ideal of
X .
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4 Positive implicative falling neutrosophic ideals

˜

˜

˜

˜

Definition 4.1. Let (Ω,A, P ) be a probability space and let ξ := (ξT , ξI , ξF ) be a neutrosophic random set on
a BCK-algebra X . If ξT (ωT ), ξI(ωI) and ξF (ωF ) are positive implicative ideals of X for all ωT , ωI , ωF ∈ Ω,
then the neutrosophic shadow H̃ := (HT , H̃I , H̃F ) of the neutrosophic random set ξ := (ξT , ξI , ξF ) on X , that
is,

HT (xT ) = P (ωT | xT ∈ ξT (ωT )),

HI(xI) = P (ωI | xI ∈ ξI(ωI)),

HF (xF ) = 1− P (ωF | xF ∈ ξF (ωF ))

(4.1)

is called a positive implicative falling neutrosophic ideal of X .

Example 4.2. Consider a set X = {0, 1, 2, 3, 4} with the binary operation ∗ which is given in Table 5

Table 5: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 0
2 2 2 0 2 0
3 3 3 3 0 3
4 4 4 4 4 0

Then (X; ∗, 0) is a BCK-algebra (see [16]). Consider (Ω,A, P ) = ([0, 1],A,m) and let ξ := (ξT , ξI , ξF ) be
a neutrosophic random set on X which is given as follows:

ξT : [0, 1]→ P(X), x 7→


{0, 3} if t ∈ [0, 0.25),
{0, 1} if t ∈ [0.25, 0.55),
{0, 1, 2} if t ∈ [0.55, 0.85),
{0, 1, 3} if t ∈ [0.85, 0.95),
X if t ∈ [0.95, 1],

ξI : [0, 1]→ P(X), x 7→


{0, 1, 2} if t ∈ [0, 0.45),
{0, 1, 2, 3} if t ∈ [0.45, 0.75),
{0, 1, 2, 4} if t ∈ [0.75, 1],

and

ξF : [0, 1]→ P(X), x 7→


{0} if t ∈ (0.9, 1],
{0, 3} if t ∈ (0.7, 0.9],
{0, 1, 2} if t ∈ (0.5, 0.7],
{0, 1, 2, 3} if t ∈ (0.3, 0.5],
{0, 1, 2, 4} if t ∈ [0, 0.3].
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˜

˜

Then ξT (t), ξI(t) and ξF (t) are positive implicative ideals of X for all t ∈ [0, 1]. Hence the neutrosophic
falling shadow H̃ := (HT , H̃I , H̃F ) of ξ := (ξT , ξI , ξF ) is a positive implicative falling neutrosophic ideal of
X , and it is given as follows:

HT (x) =


1 if x = 0,
0.75 if x = 1,
0.35 if x = 2,
0.4 if x = 3,
0.05 if x = 4,

H̃I(x) =


1 if x ∈ {0, 1, 2},
0.3 if x = 3,
0.25 if x = 4,

and

H̃F (x) =


0 if x = 0,
0.7 if x ∈ {1, 2},
0.4 if x = 3,
0.3 if x = 4.

˜

˜
˜

Given a probability space (Ω,A, P ), let H̃ := (HT , H̃I , H̃F ) be a neutrosophic falling shadow of a neutro-
sophic random set ξ := (ξT , ξI , ξF ). For x ∈ X , let

Ω(x; ξT ) := {ωT ∈ Ω | x ∈ ξT (ωT )},
Ω(x; ξI) := {ωI ∈ Ω | x ∈ ξI(ωI)},
Ω(x; ξF ) := {ωF ∈ Ω | x ∈ ξF (ωF )}.

Then Ω(x; ξT ),Ω(x; ξI),Ω(x; ξF ) ∈ A (see [12]).

Proposition 4.3. Let H̃ := (HT , H̃I , H̃F ) be a neutrosophic falling shadow of the neutrosophic random set
ξ := (ξT , ξI , ξF ) on a BCK-algebra X . If H̃ := (HT , H̃I , H̃F ) is a positive implicative falling neutrosophic
ideal of X , then

(∀x, y, z ∈ X)

 Ω((x ∗ y) ∗ z; ξT ) ∩ Ω(y ∗ z; ξT ) ⊆ Ω(x ∗ z; ξT )
Ω((x ∗ y) ∗ z; ξI) ∩ Ω(y ∗ z; ξI) ⊆ Ω(x ∗ z; ξI)
Ω((x ∗ y) ∗ z; ξF ) ∩ Ω(y ∗ z; ξF ) ⊆ Ω(x ∗ z; ξF )

 , (4.2)

(∀x, y, z ∈ X)

 Ω(x ∗ z; ξT ) ⊆ Ω((x ∗ y) ∗ z; ξT )
Ω(x ∗ z; ξI) ⊆ Ω((x ∗ y) ∗ z; ξI)
Ω(x ∗ z; ξF ) ⊆ Ω((x ∗ y) ∗ z; ξF )

 . (4.3)

Proof. Let ωT ∈ Ω((x ∗ y) ∗ z; ξT )∩Ω(y ∗ z; ξT ), ωI ∈ Ω((x ∗ y) ∗ z; ξI)∩Ω(y ∗ z; ξI) and ωF ∈ Ω((x ∗ y) ∗
z; ξF ) ∩ Ω(y ∗ z; ξF ) for all x, y, z ∈ X . Then

(x ∗ y) ∗ z ∈ ξT (ωT ) and y ∗ z ∈ ξT (ωT ),
(x ∗ y) ∗ z ∈ ξI(ωI) and y ∗ z ∈ ξI(ωI),
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(x ∗ y) ∗ z ∈ ξF (ωF ) and y ∗ z ∈ ξF (ωF ).
Since ξT (ωT ), ξI(ωI) and ξF (ωF ) are positive implicative ideals of X , it follows from (2.8) that x ∗ z ∈
ξT (ωT ) ∩ ξI(ωI) ∩ ξF (ωF ) and so that ωT ∈ Ω(x ∗ z; ξT ), ωI ∈ Ω(x ∗ z; ξI) and ωF ∈ Ω(x ∗ z; ξF ). Hence
(4.2) is valid. Now let x, y, z ∈ X be such that ωT ∈ Ω(x ∗ z; ξT ), ωI ∈ Ω(x ∗ z; ξI), and ωF ∈ Ω(x ∗ z; ξF ).
Then x ∗ z ∈ ξT (ωT ) ∩ ξI(ωI) ∩ ξF (ωF ). Note that

((x ∗ y) ∗ z) ∗ (x ∗ z) = ((x ∗ y) ∗ (x ∗ z)) ∗ z
≤ (z ∗ y) ∗ z = (z ∗ z) ∗ y
= 0 ∗ y = 0,

which yields

((x ∗ y) ∗ z) ∗ (x ∗ z) = 0 ∈ ξT (ωT ) ∩ ξI(ωI) ∩ ξF (ωF ).

Since ξT (ωT ), ξI(ωI) and ξF (ωF ) are positive implicative ideals and hence ideals of X , it follows that (x ∗ y) ∗
z ∈ ξT (ωT )∩ξI(ωI)∩ξF (ωF ). Hence ωT ∈ Ω((x∗y)∗z; ξT ), ωI ∈ Ω((x∗y)∗z; ξI), and ωF ∈ Ω((x∗y)∗z; ξF ).
Therefore (4.3) is valid.

Given a probability space (Ω,A, P ), let

F(X) := {f | f : Ω→ X is a mapping}. (4.4)

Define a binary operation ~ on F(X) as follows:

(∀ω ∈ Ω) ((f ~ g)(ω) = f(ω) ∗ g(ω)) (4.5)

for all f, g ∈ F(X). Then (F(X);~, θ) is a BCK/BCI-algebra (see [10]) where θ is given as follows:

θ : Ω→ X, ω 7→ 0.

For any subset A of X and gT , gI , gF ∈ F(X), consider the followings:

Ag
T := {ωT ∈ Ω | gT (ωT ) ∈ A},

Ag
I := {ωI ∈ Ω | gI(ωI) ∈ A},

Ag
F := {ωF ∈ Ω | gF (ωF ) ∈ A}

and

ξT : Ω→ P(F(X)), ωT 7→ {gT ∈ F(X) | gT (ωT ) ∈ A},
ξI : Ω→ P(F(X)), ωI 7→ {gI ∈ F(X) | gI(ωI) ∈ A},
ξF : Ω→ P(F(X)), ωF 7→ {gF ∈ F(X) | gF (ωF ) ∈ A}.

Then Ag
T , A

g
I , A

g
F ∈ A (see [12]).
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˜
˜ ˜ ˜

˜

˜

˜

˜ ˜

Theorem 4.4. If K is a positive implicative ideal of a BCK-algebra X , then

ξT (ωT ) = {gT ∈ F(X) | gT (ωT ) ∈ K},
ξI(ωI) = {gI ∈ F(X) | gI(ωI) ∈ K},
ξF (ωF ) = {gF ∈ F(X) | gF (ωF ) ∈ K}

are positive implicative ideals of F(X).

Proof. Assume that K is a positive implicative ideal of a BCK-algebra X . Since θ(ωT ) = 0 ∈ K, θ(ωI) =
0 ∈ K and θ(ωF ) = 0 ∈ K for all ωT , ωI , ωF ∈ Ω, we have

θ ∈ ξT (ωT ) ∩ ξI(ωI) ∩ ξF (ωF ).

Let fT , gT , hT ∈ F(X) be such that (fT ~ gT ) ~ hT ∈ ξT (ωT ) and gT ~ hT ∈ ξT (ωT ). Then

(fT (ωT ) ∗ gT (ωT )) ∗ hT (ωT ) = ((fT ~ gT ) ~ hT )(ωT ) ∈ K

and gT (ωT ) ∗ hT (ωT ) ∈ K. Since K is a positive implicative ideal of X , it follows from (2.8) that

(fT ~ hT )(ωT ) = fT (ωT ) ∗ hT (ωT ) ∈ K,

that is, fT ~hT ∈ ξT (ωT ). Hence ξT (ωT ) is a positive implicative ideal of F(X). Similarly, we can verify that
ξI(ωI) is a positive implicative ideal of F(X). Now, let fF , gF , hF ∈ F(X) be such that (fF ~ gF ) ~ hF ∈
ξF (ωF ) and gF ~ hF ∈ ξF (ωF ). Then

(fF (ωF ) ∗ gF (ωF )) ∗ hF (ωF ) = ((fF ~ gF ) ~ hF )(ωF ) ∈ K

and gF (ωF ) ∗ hF (ωF ) ∈ K. Then

(fF ~ hF )(ωF ) = fF (ωF ) ∗ hF (ωF ) ∈ K,

and so fF~hF ∈ ξF (ωF ). Hence ξF (ωF ) is a positive implicative ideal ofF(X). This completes the proof.

Theorem 4.5. If we consider a probability space (Ω,A, P ) = ([0, 1],A,m), then every positive implicative
(∈, ∈)-neutrosophic ideal of a BCK-algebra is a positive implicative falling neutrosophic ideal.

Proof. Let H̃ := (HT , H̃I , H̃F ) be a positive implicative (∈, ∈)-neutrosophic ideal of a BCK-algebra X .
Then T∈(H;α), I∈(H; β) and F∈(H; γ) are positive implicative ideals of X for all α, β ∈ (0, 1] and γ ∈ [0, 1)
by Theorem 3.5. Hence a triple ξ := (ξT , ξI , ξF ) in which

ξT : [0, 1]→ P(X), α 7→ T∈(H;α),

ξI : [0, 1]→ P(X), β 7→ I∈(H; β),

ξF : [0, 1]→ P(X), γ 7→ F∈(H; γ)

is a neutrosophic cut-cloud of H̃ := (HT , H̃I , H̃F ), and so H̃ := (HT , H̃I , H̃F ) is a positive implicative falling
neutrosophic ideal of X .

The converse of Theorem 4.5 is not true as seen in the following example.
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Table 6: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 0 2
3 3 2 1 0 3
4 4 4 4 4 0

Example 4.6. Consider a set X = {0, 1, 2, 3, 4} with the binary operation ∗ which is given in Table 6

Then (X; ∗, 0) is a BCK-algebra (see [16]). Consider (Ω,A, P ) = ([0, 1],A,m) and let ξ := (ξT , ξI , ξF ) be
a neutrosophic random set on X which is given as follows:

ξT : [0, 1]→ P(X), x 7→


{0, 1} if t ∈ [0, 0.2),
{0, 2} if t ∈ [0.2, 0.55),
{0, 2, 4} if t ∈ [0.55, 0.75),
{0, 1, 2, 3} if t ∈ [0.75, 1],

ξI : [0, 1]→ P(X), x 7→


{0, 2} if t ∈ [0, 0.26),
{0, 4} if t ∈ [0.26, 0.68),
{0, 1, 2, 3} if t ∈ [0.68, 1]

and

ξF : [0, 1]→ P(X), x 7→


{0} if t ∈ (0.77, 1],
{0, 1} if t ∈ (0.66, 0.77],
{0, 2} if t ∈ (0.48, 0.66],
{0, 2, 4} if t ∈ (0.23, 0.48],
{0, 1, 2, 3} if t ∈ [0, 0.23].

˜

˜

Then ξT (t), ξI(t) and ξF (t) are positive implicative ideals of X for all t ∈ [0, 1]. Hence the neutrosophic
falling shadow H̃ := (HT , H̃I , H̃F ) of ξ := (ξT , ξI , ξF ) is a positive implicative falling neutrosophic ideal of
X , and it is given as follows:

HT (x) =


1 if x = 0,
0.45 if x = 1,
0.8 if x = 2,
0.25 if x = 3,
0.2 if x = 4,
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H̃I(x) =


1 if x = 0,
0.32 if x ∈ {1, 3},
0.58 if x = 2,
0.42 if x = 4,

and

H̃F (x) =


0 if x = 0,
0.66 if x = 1,
0.34 if x = 2,
0.77 if x = 3,
0.75 if x = 4.

˜

˜ ˜

˜ ˜

˜
˜

˜

˜

But H̃ := (HT , H̃I , H̃F ) is not a positive implicative (∈, ∈)-neutrosophic ideal of X since

HT (3 ∗ 4) = H̃T (3) = 0.25 < 0.8 = H̃T ((3 ∗ 2) ∗ 4) ∧HT (2 ∗ 4)

and/or

HT (3 ∗ 4) = H̃T (3) = 0.77 > 0.66 = H̃T ((3 ∗ 1) ∗ 4) ∨HT (1 ∗ 4).

We provide relations between a falling neutrosophic ideal and a positive implicative falling neutrosophic
ideal .

Theorem 4.7. Let (Ω,A, P ) be a probability space and let H̃ := (HT , H̃I , H̃F ) be a neutrosophic falling
shadow of a neutrosophic random set ξ := (ξT , ξI , ξF ) on a BCK-algebra X . If H̃ := (HT , H̃I , H̃F ) is a
positive implicative falling neutrosophic ideal of X , then it is a falling neutrosophic ideal of X .

Proof. Let H̃ := (HT , H̃I , H̃F ) be a positive implicative falling neutrosophic ideal of a BCK-algebra X .
Then ξT (ωT ), ξI(ωI) and ξF (ωF ) are positive implicative ideals of X , and so ξT (ωT ), ξI(ωI) and ξF (ωF ) are
ideals of X for all ωT , ωI , ωF ∈ Ω. Therefore H̃ := (HT , H̃I , H̃F ) is a falling neutrosophic ideal of X .

The following example shows that the converse of Theorem 4.7 is not true in general.

Example 4.8. Consider a set X = {0, 1, 2, 3, 4} with the binary operation ∗ which is given in Table 7

Table 7: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 1
2 2 2 0 0 2
3 3 3 2 0 3
4 4 4 4 4 0

H. Bordbar, X.L. Xin, R.A. Borzooei, Y.B. Jun, Positive implicative ideals of BCK-algebras based on
neutrosophic sets and falling shadows.
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Then (X; ∗, 0) is a BCK-algebra (see [16]). Consider (Ω,A, P ) = ([0, 1],A,m) and let ξ := (ξT , ξI , ξF ) be
a neutrosophic random set on X which is given as follows:

ξT : [0, 1]→ P(X), x 7→


{0, 4} if t ∈ [0, 0.37),
{0, 1, 2, 3} if t ∈ [0.37, 0.67),
{0, 1, 4} if t ∈ [0.67, 1],

ξI : [0, 1]→ P(X), x 7→
{
{0, 4} if t ∈ [0, 0.45),
{0, 1, 2, 3} if t ∈ [0.45, 1],

and

ξF : [0, 1]→ P(X), x 7→


{0} if t ∈ (0.74, 1],
{0, 1} if t ∈ (0.66, 0.74],
{0, 4} if t ∈ (0.48, 0.66],
{0, 1, 2, 3} if t ∈ [0, 0.48].

˜

˜

˜

˜
˜

Then ξT (t), ξI(t) and ξF (t) are ideals of X for all t ∈ [0, 1]. Hence the neutrosophic falling shadow H̃ :=
(HT , H̃I , H̃F ) of ξ := (ξT , ξI , ξF ) is a falling neutrosophic ideal ofX . But it is not a positive implicative falling
neutrosophic ideal of X because if α ∈ [0.67, 1], β ∈ [0, 0.45) and γ ∈ (0.66, 0.74], then ξT (α) = {0, 1, 4},
ξI(β) = {0, 4} and ξF (γ) = {0, 1} are not positive implicative ideals of X respectively.

Since every ideal is positive implicative in a positive implicative BCK-algebra, we have the following
theorem.

Theorem 4.9. Let (Ω,A, P ) be a probability space and let H̃ := (HT , H̃I , H̃F ) be a neutrosophic falling
shadow of a neutrosophic random set ξ := (ξT , ξI , ξF ) on a positive implicative BCK-algebra. If H̃ :=
(HT , H̃I , H̃F ) is a falling neutrosophic ideal of X , then it is a positive implicative falling neutrosophic ideal
of X .

Corollary 4.10. Let (Ω,A, P ) be a probability space. For any BCK-algebra X which satisfies one of the
following assertions

(∀x, y ∈ X)(x ∗ y = (x ∗ y) ∗ y),

(∀x, y ∈ X)((x ∗ (x ∗ y)) ∗ (y ∗ x) = x ∗ (x ∗ (y ∗ (y ∗ x)))),

(∀x, y ∈ X)(x ∗ y = (x ∗ y) ∗ (x ∗ (x ∗ y))),

(∀x, y ∈ X)(x ∗ (x ∗ y) = (x ∗ (x ∗ y)) ∗ (x ∗ y)),

(∀x, y ∈ X)((x ∗ (x ∗ y)) ∗ (y ∗ x) = (y ∗ (y ∗ x)) ∗ (x ∗ y)),

let H̃ := (HT , H̃I , H̃F ) be a neutrosophic falling shadow of a neutrosophic random set ξ := (ξT , ξI , ξF ) on X .
If H̃ := (HT , H̃I , H̃F ) is a falling neutrosophic ideal ofX , then it is a positive implicative falling neutrosophic
ideal of X .
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[6] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125–130.
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Abstract: The theory of Neutrosophy fuzzy set is the extension of the fuzzy set that deals with 

imprecise and indeterminate data Neutrosophy is a new branch of Philosophy. We already 

conceptualized the Neutrosophic fuzzy bi-ideals of Near –subtraction Semigroups(NFBI).In this 

article, We extend our study to strong bi-ideals. We examine some of its fundamentals and algebraic 

structures. Our aim of this manuscript are given as follows: 

(i)To explore the new ideas in Neutrosophic fuzzy Near-subtraction semigroups of said 

bi-ideals and strong bi-ideals. 

(ii)To examine the some basic properties and fundamentals. 

(iii)Also expand the direct product and regularity of Neutrosophic fuzzy strong 

bi-ideals(NFSBI) of a Near- Subtraction Semigroups.   

 

Keywords: Neutrosophic Fuzzy sub algebra, Neutrosophic fuzzy X-sub algebra, Neutrosophic 

fuzzy bi-ideal, Neutrosophic fuzzy strong bi-ideal.  

 

 

1.Introduction 

The fuzzy set was first introduced by L.A. Zadeh [18] .It was conceptualized the grade of truth 

values belonging to a unit interval.The fuzzy sub nearrings and fuzzy ideals of near-rings was 

introduced by Abou zaid[1]. V.Chinnadurai and S.Kadalarasi[4] examined  the direct product of 

fuzzy subnearring, fuzzy ideal and fuzzy R-subgroups. Atanassov[3] expanded the intuitionstic 

fuzzy set to deal with complicated version.It explained the truth and false membership functions.It 

may applicable in various fields such as medicine, decision making techniques.   

 Later, Florentin Smarandache[13]introduced the concept of Neutrosophy. Neutrosophy is an 

extension of fuzzy logic in which indeterminancy also included. In Neutrosophic logic, we may 

have truth membership functions, false membership function and indeterminate functions. This 

idea of neutrosophic set have a remarkable achievement in various fields like medical diagnosis, 

image processing, decision making problem,robotics and so on. I.Arockiarani[8] consider the 

neutrosophic set with value from the subset of [0,1] and extended the research in fuzzy 

mailto:e-mail@mahalakshmi@apcmcollege.ac.in
mailto:sivaranjini@apcmcollege.ac.in
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neutrosophic set. We gained inspiration from the advantages of Neutrosophy fuzzy 

set.J.Sivaranjini, V. Mahalakshmi[10]examined the concept of fuzzy bi-ideals in Near-Subtraction 

Semigroups.The results obtained are entirely more beneficial to the researchers.  

2. Preliminaries 

The aim of this section is to recall some basic definitions. 

2.1 Definition[7] 

A non-empty set X together with the binary operation '-' and'•' is said to be a right(left) 

near-subtraction semigroup if it satisfies the following. 

(i)( X ,-)is a subtraction algebra (ii)(X ,•)is a semigroup (iii)(p-q)r=pr-qr for all  p,q,r in X. It is clear 

that 0p=0 for all p in X. Similarly, we can define for left near-subtraction semigroup. 

2.2 Definition[12] 

A Neutrosophic Fuzzy Set S on the universe of discourse X Characterised by a truth 

membership function TS(p), a indeterminacy function IS(p) and a non- membership function FS(p) is 

defined as S={<p, TS(p), IS(p), FS(p)>/pϵX} where TS, IS, FS:X→[0,1] and 0≤ TS(p)+ IS(p)+ FS(p)≤3. 

2.3 Definition[12] 

If V is said to be Neutrosophic fuzzy sub algebra of a near Subtraction Semigroup X , then  it 

satisfies the following conditions: 

(i)TV(p-q) ≥min{TV(p), TV(q)} (ii)IV(p-q) ≤max{IV(p), IV(q)}  

(iii)FV(p-q) ≤max{ FV(p), FV(q)} for all p,q, in V. 

2.4 Definition[14] 

A near- subtraction Semigroup X is said to be left permutable if pqr=qpr for all p,q,r in X. 

2.5 Definition[12] 

Let S and V be any two Neutrosophic Fuzzy Sets of X and pϵ X. Then 

(1)S V={<p,  (p),  (p),  (p)>/pϵX} 

(i)  (p)=max{TS(p), TV(p)} (ii) (p)=min{ IS(p), IV(p)} (iii)  (p)=min{ FS(p), FV(p)} 

(2) ={<p,  (p),  (p),  (p)>/pϵX}where, 

(i)  (p)=min{ TS(p), TV(p)} (ii)  (p)=max{ IS(p), IV(p)} (iii)  (p)=max{ FS(p), FV(p)} 

2.6Definition[10]  

An fuzzy sub algebra is deal to be fuzzy bi-ideal of X if µ (pqr) ≥ min {µ (p) , (r)} where  

p,q, r  in X. 

 

2.7 Definition[10] 

A Neutrosophic Fuzzy Sub algebra S in a near Subtraction Semigroup X is said to be 

Neutrosophic Fuzzy Bi-ideal of X if it satisfies the following conditions: 

(i) TS(pqr)≥min{TS(p), TS(r)} 

(ii) IS(pqr)≤max{IS(p), IS(r)} 
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(iii) FS(pqr)≤max{ FS(p), FS(r)} for all p,q,r ϵX  

2.7 Definition[10] 

A Neutrosophic fuzzy set S of X is said to be Neutrosophic fuzzy right(left)X-sub algebra of X if  

(i)TS(p-q) ≥ min{TS(p), TS(q)} ;TS(pq) ≥TS(p)[ TS(pq) ≥TS(q)] 

(ii)IS(p-q) ≤max{IS(p), IS(q)} ; IS(pq) ≤IS(p) [IS(pq) ≤IS(q)]  

(iii)FS(p-q) ≤ max{FS(p), F S(q)};FS(pq) ≤FS(p), [FS(pq) ≤FS(q)]  for all p,q, in X. 

2.8 Definition[14] 

 Let S and V be any two Neutrosophic Fuzzy subsets of Near Subtraction Semigroups X and Y 

respectively. Then the direct product  is defined by  

S× V={<(p,q), TS×V(p,q), IS×V(p,q), FS×V(p,q)>/p ϵX, q ϵY}where, 

TS×V(p,q)=min{TS(p),TV(q)};IS×V(p,q)=max{IS(p),IV(q)};FS×V(p,q)=max{FS(p),FV(q)} 

3. Neutrosophic Fuzzy Strong Bi-ideals of Near-Subtraction Semigroups 

The aim of this section is to explore the idea of this concept. 

3.1.Definition 

  A Neutrosophic Fuzzy Bi-Ideal S of X is said to be Neutrosophic Fuzzy Strong Bi- Ideal 

(NFSBI) of X if it satisfies the following conditions: 

(i)TS(pqr)≥min{TS(q), TS(r)} (ii)IS(pqr)≤max{IS(q), IS(r)} (iii)FS(pqr)≤max{ FS(q), FS(r)} for all p,q,r ϵX. 

3.2 Example 

Assume that X={0,p,q,r} in which ‘˗’ and ‘•’ defined by  

 

˗ 0 p q R 

    0 0 0 0 0 

p P 0 p 0 

q Q q 0 0 

r R q p 0 

Consider the Fuzzy set S:X→[0,1] be a fuzzy subset of X defined by 

TS(0)=.7 TS(p)=.5 TS(q)=.3 TS(r)=.2 ;IS(0)=.3 IS(p)=.4 IS(q)=.6 IS(r)=.8;FS(0)=.2 FS(p)=.3 

FS(q)=.7 FS(r)=.9. 

3.3Theorem 

• 0 P q r 

0 0 0 0 0 

P 0 Q 0 q 

Q 0 0 0 0 

R 0 Q 0 q 
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Consider S=( TS, IS, FS) to be a NFSBI of X iff XTT T(XII I,XFF F) 

Proof: Assume that S is a NFSBI of X. Let p,q,l,m,aϵX.  

Consider a=pq and p=lm. We already prove that T is a NFBI X[10]. Therefore  

XTT(a)= {min{(XT)(p), T(q)}} 

  = {min{ {min{X(l),T(m)},T(q)}= {min{ {T(m)},T(q)} 

Since T is a NFBIof X.  

          = min{T(m),T(q)}≤ {T(lmq)}=T(lmq)=T(a) 

We have,   XTT T. Conversely, Assume that XTT T 

If a cannot expressed as a=pq then, XTT(a)=0≤T(a) .In both cases XTT T. Choose p,q,r,a,b,c ϵX such 

that a=pqr. Then 

T(pqr)=T(a)≥XTT(a) 

  = min{(XT)(b),T(c)}≥min{X(p),T(q),T(r)}=min{T(q),T(r)} 

XII(a)= {max{(XI)(p), I(q)}} 

 = {max{ {max{X(l),I(m)},I(q)} 

     = {max{ {I(m)},I(q)} 

Since I is a NFSBI of X.  

           = max{I(m),I(q)}≥ {I(lmq)}=I(lmq)=I(a) 

We have, IXI I. If a cannot expressed as a=pq then XII(a)=0≥I(a).In both cases, XII I 

Conversely, Assume that XII I.Choose p,q,r,a,b,c ϵX such that a=pqr. Then  

I(pqr)=I(a)≤XII(a) 

 = max{(XI)(b),I(c)} ≤max{X(p),I(q),I(r)}=max{I(q),I(r)} 

FXF(a)= {max{(XF)(p), F(q)}} 

 = {max{ {max{X(l),F(m)},F(q)} 
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     = {max{ {F(m)},F(q)} 

Since F is a Neutrosophic Fuzzy strong bi-ideal of X.  

          = max{F(m),F(q)}≥ {F(lmq)}=F(lmq)=F(a) 

Hence FXF F If a cannot expressed as a=pq then XFF(a)=0≥F(a).In both cases, XFF F 

Conversely, Assume FXF F.Choose p,q,r,a,b,c ϵX such that a=pqr.Then  

F(pqr)=F(a)≤XFF(a) 

 = max{(XF)(b),F(c)}≤max{X(p),F(q),F(r)}=max{F(q),F(r)} 

3.4 Theorem 

The Direct Product of any two NFSBI of a Near-Subtraction Semigroups is again a NFSBI of 

X×Y. 

Proof: 

Consider S and V be any two NFSBI of X and Y respectively.We already prove that S×V is a NFBI of 

X×Y[10]. 

Now p=(p1,p2) q=(q1,q2) r=(r1,r2)ϵX×Y respectively. 

(i) TS×V((p1,p2),(q1,q2),(r1,r2))= TS×V(p1q1r1,p2q2r2) 

=min{TS(p1q1r1), TV(p2q2r2)} 

≥min{min{TS(q1), TS(r1)},min{TV(q2), TV(r2)}} 

=min{ TS×V(q1,q2), TS×V(r1,r2)} 

(ii) IS×V((p1,p2),(q1,q2),(r1,r2))= IS×V(p1q1r1,p2q2r2) 

=max{IS(p1q1r1), IV(p2q2r2)} 

≤max{max{IS(q1), IS(r1)},min{IV(q2), IV(r2)}} 

=max{ IS×V(q1,q2), IS×V(r1,r2)} 

(iii) FS×V((p1,p2),(q1,q2),(r1,r2))= FS×V(p1q1r1,p2q2r2) 

=max{FS(p1q1r1), FV(p2q2r2)} 

≤max{max{FS(q1), FS(r1)},min{FV(q2), FV(r2)}} 

=max{ FS×V(q1,q2), FS×V(r1,r2)} 

Hence, S×V is a NFSBI of X×Y. 
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3.5Theorem 

If S×V=(TS×V, IS×V,  FS×V) be a NFSBI of X×Y .Then S×V=(TS×V,IS×V, FC S×V) is a NFSBI of X×Y. 

Proof: 

Consider S×V=(T S×V, I S×V, F S×V) be a NFSBI of X×Y. 

 Now p=(p1,p2) q=(q1,q2) r=(r1,r2)ϵX×Y 

By [Theorem 3.4] TS × V, I S ×V and F S ×V are NFSBI of X ×Y. 

Now it is enough to prove TS ×VC(p1,p2)( q1,q2)( r1,r2)≤max{TS × V(q1,q2), TS × V(r1,r2)} 

Now, TC S ×V(p1,p2)( q1 ,q2)( r1,r2) =1- TS ×V(p1,p2)( q1,q2)( r1,r2) 

≤1-min{ TS ×V(q1,q2), TS ×V( r1,r2)} 

=max{1- TS × V(q1,q2), 1-T S × V(r1,r2)} 

=max{ TC S ×V( q1,q2), TC S ×V( r1,r2)} 

Thus, S×V=(TS×V,IS×V, FC S×V)  is a NFSBI of X ×Y. 

3.6Corollary 

If S×V=(TS×V, IS×V, FS×V) be a NFSBI of X×Y.Then S×V=(FCS×V,IS×V, TC S×V) is NFSBI of X×Y. 

3.7Corollary 

Consider S×V=(TS×V, I S×V, FS×V) be a NFSBI of X×Y.Then S×V=(FS×V C,IS×V, IS×V) is a NFSBI of X×Y. 

3.8 Theorem 

Let X be a Strong regular Near –Subtraction Semigroup. Let S =( TS, IS, FS) be a NFSBI of X,then 

XTT=T, XII=I and XFF=F 

Proof: 

Consider S =( TS, IS, FS) be a NFSBI of X. Choose pϵX. Since X is a strong regular near subtraction 

semigroup there exists a ϵX such that p=ap2. 

Now, XTT(p)=XTT(ap2).   

(i)XTT(p)= {min{(XT)(ap), T(p)}}≥min{XT(ap),T(p)} 

=min{ {min{X(l),T(m)},T(p)}} 

      ≥min{min{X(a),T(p)},T(p)}=min{T(p),T(p)}=T(p) 

Also we know that XTT T.From that, XTT=T 
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(ii) XII(p)= {max{(XI)(ap), I(p)}} 

≤max{XI(ap),I(p)} 

=max{ {min{X(l),I(m)},I(p)}} 

         ≤max{max{X(a),I(p)},I(p)}=max{I(p),I(p)}=I(p) 

Also we know that XII I.From that, XII=I 

(iii) XFF(p)= {max{(XF)(ap), F(p)}} 

≤max{XF(ap),F(p)} 

=max{ {min{X(l),F(m)},F(p)}} 

          ≤max{max{X(a),F(p)},F(p)}=max{F(p),F(p)}=F(p) 

Also we know that XFF F.From that, XFF=F 

3.9 Theorem 

Every left permutable fuzzy right X-sub algebra of X is a NFSBI of X. 

Proof: 

Consider S=( TS, IS, FS) be a Neutrosophic  fuzzy right X-sub algebra of X.First we prove S is a NFBI 

of X.Choose a,p,q,l,mϵX.Also a=pq,p=lm 

TXT(a) = {min{(TX)(p), T(q)}}= {min{ {min{T(l),X(m)},T(q)} 

          = {min{ {T(l)},T(q)}= min{T(l),T(q)} 

Since T is a Neutrosophic fuzzy right X-sub algebra T(pq)=T((lm)q)≥T(l) 

  ≤ min{T(pq),X(q)}sinceX(q)=1=T(pq)=T(a) 

Therefore, TXT T 

IXI(a)= {max{(IX)(p), I(q)}} 

 = {max{ {max{I(l),X(m)},I(q)} 

     = {max{ {I(l)},I(q)}= max{I(l),I(q)} 

Since I is a Neutrosophic fuzzy right X-sub algebra I(pq)=I((lm)q)≤I(l) 
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 ≥ max{I(pq),X(q)}sinceX(q)=0=I(pq)=I(a) 

Therefore, IXI I 

FXF(a) = {max{(FX)(p), F(q)}} 

  = {max{ {max{F(l),X(m)},F(q)} 

          = {max{ {F(l)},F(q)} = max{F(l),F(q)} 

Since I is a Neutrosophic fuzzy right X-sub algebra F(pq)=F((lm)q)≤F(l) 

  ≥ max{F(pq),X(q)}sinceX(q)=0=F(pq) =F(a) 

Therefore, FXF F 

XTT(a) = {min{(XT)(p), T(q)}}= {min{ {min{X(l),T(m)},T(q)} 

          = {min{ {T(m)},T(q)} 

Since T is a left permutable Neutrosophic Fuzzy right X-Sub algebra of 

X.T(pq)=T((lm)q)=T(mlq)≥T(m)≤ {min{T(pq),X(q)}.Since X(q)=1=T(pq)=T(a) 

XII(a)= {max{(XI)(p), I(q)}} 

 = {max{ {max{X(l),I(m)},I(q)} 

     = {max{ {I(m)},I(q)} 

Since I is a left permutable Neutrosophic Fuzzy right X-sub algebra of X.  

I(pq)=I((lm)q)=I(mlq)≤I(m)  

 ≥ max{I(pq),X(q)}. Since X(q)=0=I(pq)=I(a) 

We have,   XII I 

XFF(a) = {max{(XF)(p), F(q)}} 

  = {max{ {max{X(l),F(m)},F(q)} 

          = {max{ {F(m)},F(q)} 
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Since F is a left permutable Neutrosophic Fuzzy right X-sub algebra of X. 

F(pq)=I((lm)q)=F(mlq)≤F(m)  

 ≥ max{F(pq),X(q)}. Since X(q)=0=F(pq)=F(a) 

We have,   FXX I 

3.10Theorem 

Every left permutable fuzzy left X-sub algebra of X is a NFSBI of X. 

Proof: Consider S=( TS, IS, FS) be a Neutrosophic  fuzzy left X-sub algebra of X.First we prove S is a 

NFBI of X.Choose  a,p,q,l,mϵX. Also a=pq,p=lm 

TXT(a) = {min{(T)(p), XT(q)}} 

  = {min{T(p), { min{X(l)},T(m)}} 

          = {min{T(p), T(m)}= min{T(p),T(m)} 

Since T is a Neutrosophic fuzzy left X-sub algebra T(pq)=T((pl)m)≥T(m) 

 ≤ min{X(p),T(pq)}sinceX(q)=1=T(pq)=T(a) 

Therefore, TXT T 

IXI(a) = {max{I(p), XI(q)}}= {max {I(p), max{X(l),I(m)} 

= {max{I(p), { I(m)} 

          = max{I(p),I(m)} 

Since I is a Neutrosophic fuzzy left X-sub algebra I(pq)=I((pl)m)≤I(m) 

 ≥ max{X(p),I(pq)}sinceX(q)=0=I(pq)=I(a) 

Therefore, IXI I 

FXF(a) = {max{F(p), XF(q)}} 

  = {max {F(p), max{X(l),F(m)} 

          = {max{F(p), { F(m)}= max{F(p),F(m)} 
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Since I is a Neutrosophic fuzzy left X-sub algebra F(pq)=F((pl)m)≤F(m) 

  ≥ max{X(p),F(pq)}sinceX(q)=0=F(pq)=F(a) 

Therefore, FXF F 

XTT(a) = {min{(X)(p), TT(q)}}= {min{X(p), min{T(l),T(m)}} 

            Since T is a left permutable Neutrosophic Fuzzy left X-Sub algebra of 

X.T(pq)=T(plm)=T((lp)m)≥T(m) 

         ≤ {min{X(l),T(pq)}.Since X(l)=1=T(pq) =T(a) 

XII(a)= {max{(X)(p), II(q)}}= {max{X(p), max{I(l),I(m)}} 

            Since I is a left permutable Neutrosophic Fuzzy left X-Sub algebra of 

X.I(pq)=I(plm)=I((lp)m)≤I(m) 

         ≥ {max{X(l),I(pq)}.Since X(l)=0 =I(pq)=I(a) 

XFF(a) = {max{(X)(p), FF(q)}}= {max{X(p), max{F(l),F(m)}} 

            Since F is a left permutable Neutrosophic Fuzzy left X-Sub algebra of 

X.F(pq)=F(plm)=F((lp)m)≤F(m) 

         ≥ {max{X(l),F(pq)}.Since X(l)=0=F(pq)=F(a) 

We have,   FXX F 

3.11 Theorem 

Every Neutrosophic fuzzy two-sided (left and right) X- sub algebra of X is a NFSBI of X. 

Proof: Straight forward 

Conclusion 

 The theory of Neutrosophy fuzzy set is basically the extension of the Intuitionistic fuzzy set. In 

the present manuscript, we have defined the Union, direct product, Intersection, Homomorphism of 

Neutrosophic fuzzy Strong Biideal in Near subtraction Semi group In future, we will investigate the 

Neutrosophy fuzzy Ideals and their fundamentals. 
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Abstract: The main objective of this study is to introduce a new class of closed sets namely Neutrosophic Nano RW-closed sets and 

Neutrosophic Nano RW-continuous functions in Neutrosophic Nano topological spaces. Some of its properties and 

interrelationship with some existing Neutrosophic nano closed sets have been discussed. 

Keywords: NNRW-closed set, NNRW-open set, NNRWT1/2 space, NNRW-connected space, NNRW-continuous, NNRW-irresolute, 

NNRW-open and NN- closed maps. 

1. Introduction 

The theory of neutrosophic sets with three components namely, membership T (Truth), Indeterminacy I, 

and non-membership F (Falsehood), one of the interesting generalizations of theory of fuzzy sets and 

Intuitionistic fuzzy sets introduced by F.Smarandache [8]. In 2012, A.A. Salama and S.A. Alblowi [13] 

introduced and studied the theory of neutrosophic topological spaces. Since then several mathematicians 

contributed many papers to this area. Various results in ordinary topological spaces have been put in the 

neutrosophic setting, and also various departures have been observed. Neutrosophic set is a powerful tool 

to deal with indeterminate and inconsistent data. The concept of nano topology explored by M. Lellis 

Thivagar et. al[11] can be described as a collection of nano approximations for which equivalence classes 

are building blocks. In 2018, M. Lellis Thivagar et. al. [12] introduced a new concept called as 

Neutrosophic Nano topology and discussed neutrosophic nano interior and neutrosophic nano closure.  

In 2007, S.S. Benchalli and R.S. Wali [4] introduced RW-closed sets in topological spaces. The authors D. 

Savithiri and C. Janaki [15] introduced the concept of Neutrosophic RW-closed sets in Neutrosophic 

topological spaces. In this article we introduce Neutrosophic Nano RW-closed sets and discuss some of its 

properties. 

2 PRELIMINARIES 

The following recalls requisite ideas and preliminaries necessary in the sequel of our work. 

mailto:janakicsekar@gmail.com
mailto:savithirisngcmat@gmail.com
mailto:savithirisngcmat@gmail.com
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Definition 2.1:[9]  Let X be a non-empty fixed set a Neutrosophic set (NS for short) A is an object having 

the form A = < x, µA(x),A(x),A(x)> , xX where µA(x), A(x), A(x) which represents the degree of 

membership function, the degree of indeterminacy and the degree of non-membership function 

respectively of each element xX to the set A. 

Definition 2.2:[11] Let U be a non-empty finite set of objects called the universe and R be an equivalence 

relation on U named as the indiscernibility relation. Elements belonging to the same equivalence class are 

said to be indiscernible with one another. The pair (U,R) is said to be the approximation space. Let X  U. 

(i)  The lower approximation of X with respect to R is the set of all objects, which can be classified as X 

with respect to R and it is denoted by LR(X). That is LR(X) =
Ux

XxRxR


 })(:)({( , where R(x) denotes 

the equivalence class determined by x.  

(ii) The upper approximation of X with respect to R is the set of all objects which can be possibly classified 

as X with respect to R and it is denoted by UR(X). That is UR(X) = 
Ux

XxRxR


 })(:)({  . 

(iii) The boundary region of X with respect to R is the set of all objects, which can be classified neither as X 

nor as not X with respect to R and it is denoted by BR(X). That is BR(X) = UR(X) – LR(X). 

Remark 2.3:[11]  

(i) LR(X)  X  UR(X). 

(ii) LR() = UR() =  and  LR(U) = UR(U) = U. 

(iii) UR(X  Y) = UR(X)  UR(Y). 

(iv) LR(X  Y) = LR(X)  LR(Y). 

(v) UR(X  Y)  UR(X)  UR(Y). 

(vi) LR(X  Y)  LR(X)  LR(Y). 

(vii) LR(X)  LR(Y) and  UR(X)  UR(Y), whenever X  Y. 

(viii) UR(XC) = [LR(X)]C and LR(XC) = [UR(X)]C. 

(ix) URUR(X) = LRUR(X) = UR(X). 

(x) LRLR(X) = LRUR(X) = LR(X). 

Definition 2.4:[11] Let U be the universe, R be an equivalence relation on U and R(X) = {U, , LR(X), UR(X), 

BR(X)} where X  U. R(X) satisfies the following axioms: 

(i) U and   R(X). 
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(ii) The union of the elements of any sub-collection of R(X) is in R(X). 

(iii) The intersection of the elements of any finite sub collection R(X) is in R(X). 

That is, R(X) forms a topology on U called the nano topology on U with respect to X. We call (U, R(X)) as 

the nano topological space. The elements of R(X) are called nano-open sets. 

Definition 2.5:[12] Let U be a non-empty set and R be an equivalence relation on U. Let S be a 

neutrosophic set in U with the membership function S, the indeterminacy function S, and the 

non-membership function S. The neutrosophic nano lower, neutrosophic nano upper approximation and 

neutrosophic nano boundary of S in the approximation (U,R) denoted by 𝑁(𝑆), 𝑁(𝑆)𝑎𝑛𝑑 𝐵(𝑆)  are 

respectively defined as follows: 

(i) 𝑁(𝑆) = {〈𝑥, 𝜇𝑅(𝐴)(𝑥), 𝜎𝑅(𝐴)(𝑥), 𝛾𝑅(𝐴)(𝑥)〉/𝑦 ∈ [𝑥]𝑅, 𝑥 ∈ 𝑈}. 

(ii) 𝑁(𝑆) =  {〈𝑥, 𝜇𝑅(𝐴)(𝑥), 𝜎𝑅(𝐴)(𝑥), 𝛾𝑅(𝐴)(𝑥)〉/ 𝑦 ∈ [𝑥]𝑅 , 𝑥 ∈ 𝑈}. 

(iii) B(S) = 𝑁(𝑆) − 𝑁(𝑆). 

where 𝜇𝑅(𝐴)(𝑥) =    ),(yARxy   𝜎𝑅(𝐴)(𝑥) =    ),(yARxy  𝛾𝑅(𝐴)(𝑥) =    )(yARxy  , 

      ).()(),()(),()(
)()()(

yxyxyx AxyARAxyARAxyAR RRR
    

Definition 2.6:[12] Let U be an universe, R be an equivalence relation on U and S be a neutrosophic set in 

U and if the collection N(S) = {0N, 1N, 𝑁(𝑆), 𝑁(𝑆), 𝐵(𝑆)}  forms a topology then it is said to be a 

neutrosophic nano topology. We call (U, N(S)) as the neutrosophic nano topological space (Briefly 

NNTS). The elements of N(S) are called as neutrosophic nano open (In Short NNO) sets. 

Remark 2.7:[12][N(S)]C is called as dual neutrosophic nano topology of N(S). The elements of [N(S)]C  

are called  neutrosophic nano closed (In Short NNC) sets. 

Remark 2.8:[12] In neutrosophic nano topological space, the neutrosophic nano boundary cannot be 

empty. Since the difference between neutrosophic nano upper and neutrosophic nano lower 

approximations is defined as the maximum and minimum of the values in the neutrosophic sets. 

Proposition 2.9:[12] Let U be a non-empty finite universe and S be a neutrosophic set on U. Then the 

following statements hold: 

(i) The collection N(S) = {0N, 1N}, is the indiscrete neutrosophic nano topology on U. 

(ii) If 𝑁(𝑆) =  𝑁(𝑆) =  𝐵(𝑆),  then the neutrosophic nano topology, N(S) = {0N, 1N, 𝑁(𝑆), 𝐵(𝑆)}. 

(iii) If 𝑁(𝑆) =  𝐵(𝑆), then N(S) = {0N, 1N, 𝑁(𝑆), 𝑁(𝑆)} is a neutrosophic nano topology. 

(iv) If  𝑁(𝑆) =  𝐵(𝑆), then N(S) = {0N, 1N, 𝑁(𝑆), 𝐵(𝑆)}. 
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(v) The collection N(S) = {0N, 1N, 𝑁(𝑆), 𝑁(𝑆), 𝐵(𝑆)} is the discrete neutrosophic nano topology on U 

Definition 2.10:[12] Let (U, N(S)) be NNTS and A = < x, µA(x),A(x),A(x), x  U> be a NNS in X. Then the 

neutrosophic nano closure and neutrosophic nano interior of A are defined by  

NNCl (A) =  { K : K is a NNCS in X and A  K } 

NNInt (A) =  { G : G is a NNOS in X and G  A }. 

Definition 2.11:[12] A subset A of a neutrosophic nano topological space Let (U, N(S)) is said to be  

(i) a neutrosophic nano pre closed (NNpre-closed) set if NNCl(NNInt(A))  A.                                            

(ii) a neutrosophic nano semi-closed (NNsemi-closed) set if NNInt(NNCl(A))  A.    

(iii) a neutrosophic nano regular open (In short NNRO) set if A =NNInt(NNCl(A)) and regular closed (In 

short NNRC) set if A = NNCl(NNInt(A)) . 

(iv) a neutrosophic regular semi open (In short NRSO) if there exists a NRO set U such that U  A  

NCl(A)  

 (v) a neutrosophic nano -closed (NN-closed) set if NNCl(NNInt(NNCl(A)))  A.      

(vi) a neutrosophic nano g-closed (NN g-closed) set if NNCl(A)  F whenever A  F and F is NNO in  U. 

Definition 2.11:[6] The difference between two neutrosophic nano sets A and B is defined as  

A\B (S) = {x, min [(µA(x), B(x)], min [(A(x),1- B(x)], max [A(x), µB(x)]. 

3. NEUTROSOPHIC NANO RW-CLOSED SETS 

Definition 3.1: A subset A of a neutrosophic nano topological space (U, N(S)) is called as neutrosophic 

nano regular weakly closed (In short NNRW-closed) set, if NNCl(A)  V whenever A  V and V is a 

neutrosophic nano regular open in U. 

Definition 3.2: The neutrosophic nano RW-closure and neutrosophic nano RW-interior of A are defined 

by  

NNRWCl (A) =  { K : K is a NNRWCS in X and A  K } 

NNRWInt (A) =  { G : G is a NNRWOS in X and G  A }. 

Definition 3.3: (i) neutrosophic nano RG- Closed set (shortly NNRG – closed set) of X if there exists a 

neutrosophic nano regular open set U such that NNCl(A)  U whenever A  U. 

 (ii) neutrosophic nano RWG- closed set  (shortly NNRWG – closed set) of X if there exists a 

neutrosophic nano regular open set U such that NNCl(NNInt(A))  U whenever A  U. 
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 (iii) neutrosophic nano W-closed set  (shortly NNW – closed set) of X if there exists a neutrosophic nano 

semi-open set U such that NNCl(A)  U whenever A  U. 

  (iv) neutrosophic nano g-closed set (shortly NNG – closed set) of X if there exists a neutrosophic  open 

set U such that NNCl(A)  U whenever A  U. 

Proposition 3.3: (i) Every NN-closed set is NNRW-closed. 

(ii) Every NN- regular closed set is NNRW-closed. 

(iii) Every NN- closed set is NNRW-closed. 

(iv) Every NNW-closed set is NNRW-closed. 

Proof: Follows from [4]. 

The following example makes clear that the converse of the Proposition 3.3 need not be true. 

Example 3.4: Let U = {𝑝1, 𝑝2, 𝑝3} be the universe set and the equivalence relation U\R = {{𝑝1 , 𝑝}, {𝑝2}}. Let   

𝑆 =  {〈
𝑝1

(0.1,0.2,0.3)
〉 , 〈

𝑝2

(0.2,0.3,0.4)
〉 , 〈

𝑝3

(0.1,0.6,0.4)
〉} be a neutrosophic nano subset of U. Then 𝑁(𝑆) =

 {〈
𝑝1,𝑝3

(0.1,0.6,0.3)
〉 , 〈

𝑝2

(0.2,0.3,0.4)
〉}, 𝑁(𝑆) =  {〈

𝑝1,𝑝3

(0.1,0.2,0.4)
〉 , 〈

𝑝2

(0.2,0.3,0.4)
〉} and B (𝑆) =  {〈

𝑝1,𝑝3

(0.1,0.6,0.3)
〉 , 〈

𝑝2

(0.2,0.3,0.4)
〉} . So the 

neutrosophic nano topology N = {0𝑁 , 1𝑁 , 𝑁, 𝐵}  where the neutrosophic closed sets are NC = 

{0𝑁 , 1𝑁 , 𝑁𝐶 , 𝐵𝐶 }. Let 𝑄1 = {〈
𝑝1

(0.2,0.1,0.3)
〉 , 〈

𝑝2

(0.3,0.1,0.2)
〉 , 〈

𝑝3

(0.1,0.2,0.3)
〉} , then 𝑄1 is NNRW-closed but it is not an 

NN-closed set in U. 𝑄2 = {〈
𝑝1

(0.2,0.3,0.5)
〉 , 〈

𝑝2

(0.3,0.6,0.5)
〉 , 〈

𝑝3

(0.2,0.3,0.3)
〉} , 𝑄2 is NNRW-closed but it is neither NN 

Regular-closed nor NN-closed set and 𝑄3  = {〈
𝑝1

(0.1,0.3,0.6)
〉 , 〈

𝑝2

(0.2,0.6,0.6)
〉 , 〈

𝑝3

(0.1,0.2,0.6)
〉}  , then 𝑄3  is 

NNRW-closed but not NNW-closed set. 

Proposition 3.5: (i) Every NNRW-closed set is NNRG-closed. 

(ii) Every NNRW-closed set is NNGPR-closed. 

(iii) Every NNRW-closed set is NNRWG-closed. 

Proof: Follows from [4]. 

The converse of the Proposition 3.4 need not be true. 

Example 3.6: * Let U = {𝑝1 , 𝑝2, 𝑝3,𝑝4, 𝑝5}  be the universe set and the equivalence relation U\R = 

{{𝑝1, 𝑝3}, {𝑝2}, {𝑝4, 𝑝5}}  . Let S = {〈
𝑝1

(0.4,0.3,0.4)
〉 , 〈

𝑝2

(0.5,0.3,0.5)
〉 , 〈

𝑝3

(0.5,0.3,0.5)
〉 , 〈

𝑝4

(0.6,0.3,0.1)
〉 , 〈

𝑝5

(0.5,0.3,0.1)
〉}  be a 

neutrosophic nano subset of U 𝑁(𝑆) =  {〈
𝑝1,𝑝3

(0.5,0.3,0.2)
〉 , 〈

𝑝2

(0.5,0.3,0.5)
〉 , 〈

𝑝4,𝑝5

(0.6,0.3,0.1)
 〉} , 𝑁(𝑆) =
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 {〈
𝑝1,𝑝3

(0.4,0.3,0.4)
〉 , 〈

𝑝2

(0.5,0.3,0.5)
〉 , 〈

𝑝4,𝑝5

(0.5,0.3,0.1)
 〉} and B (𝑆) =  {〈

𝑝1,𝑝3

(0.4,0.3,0.4)
〉 , 〈

𝑝2

(0.5,0.3,0.5)
〉 , 〈

𝑝4,𝑝5

(0.1,0.3,0.6)
 〉} . The neutrosophic 

nano topology N = {0𝑁 , 1𝑁 , 𝑁, 𝑁, 𝐵}. Let 𝑅1 =  {〈
𝑝1

(0.3,0.3,0.7)
〉 , 〈

𝑝2

(0.2,0.3,0.6)
〉 , 〈

𝑝3

(0.2,0.3,0.5)
〉 , 〈

𝑝4

(0.1,0.2,0.7)
〉 , 〈

𝑝5

(0.1,0.3,0.8)
〉} . 

Then 𝑅1 is both NNGPR-closed and NNRWG – closed but it is not an NNRW-closed. 

* In example 3.4, let 𝑅2 =  {〈
𝑝1

(0.3,0.7,0.5)
〉 , 〈

𝑝2

(0.3,0.4,0.6)
〉 , 〈

𝑝3

(0.2,0.5,0.5)
〉 , 〈

𝑝4

(0.1,0.5,0.6)
〉 , 〈

𝑝5

(0.1,0.6,0.7)
〉}  , then 𝑅2  is 

NNRG-closed but not an NNRW-closed. 

Proposition 3.7: The finite union of NNRW – closed subsets of U is also an NNRW – closed subset of U. 

Proof:  Assume that  P and Q are NNRW –closed sets in U. Let R be an NNRSO set in X such that P  Q  

R. Then P  R and Q  R. Since P and Q are NNRW – closed sets, NNCl(P)  R and NNCl (Q)  R. Then 

NNCl(PQ) = NNCl(P)  NNCl(Q)  R. Hence P  Q is an NNRW – closed set in U. 

Remark 3.8: The intersection of two NNRW-closed sets in (U, N(S)) need not be an NNRW-closed set in U. 

Example 3.9: Let U = {𝑝1, 𝑝2, 𝑝3,𝑝4, 𝑝5} be the universe set and the equivalence relation U\R = 

{{𝑝1, 𝑝3}, {𝑝2}, {𝑝4, 𝑝5}}. Let S= {〈
𝑝1

(0.4,0.3,0.4)
〉 , 〈

𝑝2

(0.5,0.3,0.5)
〉 , 〈

𝑝3

(0.5,0.3,0.5)
〉 , 〈

𝑝4

(0.6,0.3,0.1)
〉 , 〈

𝑝5

(0.5,0.3,0.1)
〉} be a neutrosophic 

nano subset of U𝑁(𝑆) =  {〈
𝑝1,𝑝3

(0.5,0.3,0.2)
〉 , 〈

𝑝2

(0.5,0.3,0.5)
〉 , 〈

𝑝4,𝑝5

(0.6,0.3,0.1)
 〉}, 𝑁(𝑆) =  {〈

𝑝1,𝑝3

(0.4,0.3,0.4)
〉 , 〈

𝑝2

(0.5,0.3,0.5)
〉 , 〈

𝑝4,𝑝5

(0.5,0.3,0.1)
 〉} 

and B(𝑆) =  {〈
𝑝1,𝑝3

(0.4,0.3,0.4)
〉 , 〈

𝑝2

(0.5,0.3,0.5)
〉 , 〈

𝑝4,𝑝5

(0.1,0.3,0.6)
 〉}. The neutrosophic nano topology N = {0𝑁 , 1𝑁 , 𝑁, 𝑁, 𝐵}. 

𝑅1 =  {〈
𝑝1

(0.6,0.3,0.3)
〉 , 〈

𝑝2

(0.5,0.3,0.3)
〉 , 〈

𝑝3

(0.5,0.2,0.3)
〉 , 〈

𝑝4

(0.3,0.3,0.1)
〉 , 〈

𝑝5

(0.4,0.4,0.1)
〉}, 𝑅2 =  {〈

𝑝1

(0.2,0.3,0.5)
〉 , 〈

𝑝2

(0.3,0.5,0.7)
〉 , 〈

𝑝3

(0.2,0.3,0.5)
〉 ,

〈
𝑝4

(0.1,0.5,0.6)
〉 , 〈

𝑝5

(0.1,0.7,0.6)
〉} . Then 𝑅1 and 𝑅2 are NNRW-closed sets but 𝑅1 ∩  𝑅2 is not an NNRW-closed set. 

Proposition 3.10: If a subset A of U is NNRW – closed set in U, then NNCl(A)\A does not contain any 

non-empty neutrosophic nano regular semi-open set in U. 

Proof:  Suppose that A is an NNRW –closed set in U. We shall prove by contradiction. Let R be an NNRSO 

set such that NNCl(A)\A  R which implies R  U\A i.e., A  U\R. Since R is NNRSO, U\R is also NNRSO 

set in U. Since A is an NNRW – closed set, NNCl(A)  U\R. So R  U\NNCl(A) also R  NNCl(A) implies R 

= . Hence NNCl (A)\A does not contain any non-empty NNRSO set in U. 

The converse of the Proposition 3.10 need not be true as shown in the following example. 

Example 3.11: In example 3.9, in the neutrosophic nano topological space (U, N(S)), let 𝐴 =

 {〈
𝑝1

(0.3,0.2,0.5)
〉 , 〈

𝑝2

(0.3,0.2,0.6)
〉 , 〈

𝑝3

(0.2,0.3,0.5)
〉 , 〈

𝑝4

(0.1,0.2,0.7)
〉 , 〈

𝑝5

(0.1,0.3,0.8)
〉} , then NNCl(A)\A does not contain any 

non-empty NNRSO set, but A is not an NNRW-closed set in U. 
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Corollary 3.12: If a subset A of U is NNRW – closed set in U, then NNCl(A)\A does not contain any 

non-empty neutrosophic nano regular- open set in U. 

Proof: Follows from the Proposition 3.10 and the fact that every NNRO set is NNRSO in U. 

Proposition 3.13: If A is NNRO and NNRW-closed, then A is NNRC set and hence NN-clopen. 

Proof: Suppose A is NNRO and NNRW – closed. As every NNRO set is NNRSO and A  A, we have 

NNCl(A)  A. Also A  NNCl(A), thus NNCl(A) = A. Hence A is a NNC set. Since A is NNRO it is NNO set. 

Now NNCl(NNInt(A) = NNCl(A) = A. Therefore A is NNRC and Neutrosophic nano clopen. 

Proposition 3.14: If A is an NNRW – closed subset of U such that A  B  NCl(A), then B is an NNRW –

closed set in U. 

Proof: Let A be an NNRW – closed set of U such that A  B  NNCl(A). Let R be NNRSO set of U such that 

B  R. Then A  R. Since A is NNRW –closed set, we have NNCl(A)  R and NNCl(B)  NNCl(NNCl(A))  

R. Therefore B is also an NNRW – closed set in U. 

The following example shows that the converse of the Proposition 3.13 need not be true. 

Example 3.15: Let U = {𝑛1, 𝑛2, 𝑛3} be the universe set and the equivalence relation U\R = {{𝑛1, 𝑛3}, {𝑛2}}. 

Let  𝑆 =  {〈
𝑥1

(0.1,0.2,0.3)
〉 , 〈

𝑥2

(0.2,0.3,0.4)
〉 , 〈

𝑥3

(0.1,0.6,0.4)
〉} be a neutrosophic nano subset of U. Then 𝑁(𝑆) =

 {〈
𝑥1,𝑥3

(0.1,0.6,0.3)
〉 , 〈

𝑥2

(0.2,0.3,0.4)
〉} , 𝑁(𝑆) =  {〈

𝑥1,𝑥3

(0.1,0.2,0.4)
〉 , 〈

𝑥2

(0.2,0.3,0.4)
〉}  and B (𝑆) =  {〈

𝑥1,𝑥3

(0.1,0.6,0.3)
〉 , 〈

𝑥2

(0.2,0.3,0.4)
〉} . So the 

neutrosophic nano topology N = {0𝑁, 1𝑁, 𝑁, 𝐵} and the neutrosophic closed sets are NC = {0𝑁, 1𝑁, 𝑁𝐶, 𝐵𝐶}. 

Let A = {〈
𝑥1

(0.1,0.3,0.6)
〉 , 〈

𝑥2

(0.2,0.6,0.6)
〉 , 〈

𝑥3

(0.1,0.2,0.6)
〉} and B = {〈

𝑥1

(0.2,0.3,0.5)
〉 , 〈

𝑥2

(0.3,0.6,0.5)
〉 , 〈

𝑥3

(0.2,0.3,0.3)
〉}. Then A and B are 

NNRW-closed sets in (U, N(S)), but A  B is not a subset of NNCl(A). 

Proposition 3.16: Let A be an NNRW-closed in (U, N(S)). Then A is NN-closed if and only if NNCl(A)\A is 

NNRSO. 

Proof: Let A be an NN-closed in (U, N(S)).  Then NNCl(A)\A =  which is NNRSO. 

Conversely, suppose NNCl(A)\A is NNRSO in U. By hypothesis, A is NNRW-closed implies NNCl(A)\A 

does not contain any non-empty NNRSO in U. Then NNCl(A)\A =  which implies that A is NN-closed in 

U. 

Proposition 3.17: If A is NNRO and NNRG closed, then A is NNRW-closed in U. 

Proof: Let A be an NNRO and NNRG-closed. Let Q be any NNRSO set in U such that A  R. since A is 

NNRO and NNRG we have NNCl(A)  A  R. Therefore A is NNRW-closed. 
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Proposition 3.18: If a subset A of a neutrosophic nano topological space U is both NNRSO and 

NNRW-closed, then it is NN-closed. 

Proof: Suppose A be a subset of a neutrosophic nano topological space U is both NNRSO and 

NNRW-closed. Then A  A and NNCl(A)  A which implies A is NN-closed. 

Remark 3.19: The concept of NNRW-closed set is independent with the concepts of (i) NNsemi –closed (ii) 

NNRW-preclosed (iii) NN-closed (iv) NNWG - closed sets which is shown by the following example. 

Example 3.20: Let U = {𝑛1, 𝑛2, 𝑛3} be the universe set. U\R = {{𝑛1}, {𝑛2, 𝑛3}} be an equivalence relation. 

Let 𝑆 =  {〈
𝑛1

(0.1,0.2,0.3)
〉 , 〈

𝑛2

(0.3,0.4,0.5)
〉 , 〈

𝑛3

(0.6,0.4,0.1)
〉}  be a neutrosophic nano subset of U. Then 𝑁(𝑆) =

 {〈
𝑛1,𝑛3

(0.1,0.2,0.3)
〉 , 〈

𝑛2

(0.6,0.4,0.1)
〉} , 𝑁(𝑆) =  {〈

𝑛1,𝑛3

(0.1,0.2,0.3)
〉 , 〈

𝑛2

(0.3,0.4,0.5)
〉} and B(𝑆) =  {〈

𝑛1,𝑛3

(0.1,0.2,0.3)
〉 , 〈

𝑛2

(0.1,0.4,0.6)
〉} . So the 

neutrosophic nano topology N = {0𝑁,1𝑁 , 𝑁, 𝑁, 𝐵} . In the neutrosophic nano topology (U, N(S)),  

 Let A = {〈
𝑛1

(0.2,0.5,0.3)
〉 , 〈

𝑛2

(0.1,0.5,0.6)
〉 , 〈

𝑛3

(0.1,0.4,0.7)
〉}  and B = {〈

𝑛1

(0.2,0.7,0.4)
〉 , 〈

𝑛2

(0.5,0.6,0.4)
〉 , 〈

𝑛3

(0.4,0.5,0.4)
〉}  , then A is 

NNsemi-closed but not an NNRW-closed and B is NNRW-closed but it is not an NNsemi-closed. 

 Let C = {〈
𝑛1

(0.1,0.2,0.4)
〉 , 〈

𝑛2

(0.3,0.3,0.6)
〉 , 〈

𝑛3

(0.1,0.3,0.5)
〉} and D = {〈

𝑛1

(0.1,0.4,0.7)
〉 , 〈

𝑛2

(0.1,0.6,0.7)
〉 , 〈

𝑛3

(0.3,0.4,0.4)
〉}, then C is both 

NNpre-closed set and NNWG-closed but not an NNRW-closed and D is NNRW-closed but it is neither 

NNpre-closed nor an NNWG-closed sets. 

 In example 3.8, in the topological space (U,N(S)), E = 

{〈
𝑛1

(0.6,0.3,0.3)
〉 , 〈

𝑛2

(0.5,0.3,0.3)
〉 , 〈

𝑛3

(0.5,0.2,0.3)
〉 , 〈

𝑛4

(0.3,0.3,0.1)
〉 , 〈

𝑛5

(0.4,0.4,0.1)
〉}  and F = 

{〈
𝑛1

(0.3,0.3,0.7)
〉 , 〈

𝑛2

(0.2,0.3,0.6)
〉 , 〈

𝑛3

(0.2,0.3,0.5)
〉 , 〈

𝑛4

(0.1,0.2,0.7)
〉 , 〈

𝑛5

(0.1,0.3,0.8)
〉}, E is NNRW-closed set but not an NN-closed 

set and F is NN-closed but it is not an NNRW-closed set. 

Proposition 3.21: If an NN subset A is both NN-open and NNG-closed in (U, N(S)), then it is NNRW-closed 

in U. 

Proof: Let A be NN-open and NNG-closed in U. Let A  U and U be an NNRSO in U. Now, A  A. By 

hypothesis, NNCl(A)  U. Thus A is NNRW-closed. 

Remark 3.22: If A is both NN-open and NNRW-closed in U, then A need not be NNG-closed in general 

which is shown in the following example. 

Example 3.23: In example 3.8, the NN-open set B is NNRW-closed but it is not an NNG-closed set. 

 

The above discussions are implicated in the following diagram. 
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1. NNRW-closed     2. NN-closed      3. NNR-closed      4. NN-closed        5. NNRG-closed           

6. NNRWG-closed        7. NNGPR-closed           8. NNsemi-closed            9. NNpre-closed      

10. NN-closed      11.NNWG-closed. 

Proposition 3.24:  If a subset A of a neutrosophic nano topological space U is both NN-open and 

NNWG-closed, then it is NNRW-closed. 

Proof: Suppose a subset A of U is both NN-open and NNWG-closed. Let A  U and U is NNRSO. Then 

NNCl (NNInt(A)) = A  A, since A is NN-open. Hence NNCl(A)  U implies that A is an NNRW-closed in 

U. 

Definition 3.25: A neutrosophic nano subset A of a neutrosophic nano topological space (U,N(S)) is 

called an NNRW-open if and only if its complement AC is NNRW-closed. 

Proposition 3.26: An NN set A of a topological space (U,N(S)) is NNRW-open if F  NNInt(A) whenever 

F is NNRSO and F  A. 

Proof: Follows from the definition 3.1. 

Proposition 3.27: Let A be an NNRW-open set of neutrosophic nano topological space (U,N(S)) and 

NNInt(A)  B  A. Then B is NNRW-open. 

Proof: Suppose that A is an NNRW-open in U and NNInt(A)   B  A implies Ac  Bc  NNCl(Ac). Since Ac

is NNRW-closed, by Proposition 3.14, Bc is NNRW-closed. Hence B is NNRW-open.  

Proposition 3.28: Let (U,N(S)) be a neutrosophic nano topological space and NNRSO(X) and NNC(X) be 

the family of all NNRSO sets and NNC sets respectively. Then NNRSO(X)  NNC(X) if and only if every  
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neutrosophic nano set of U is NNRW-closed. 

Proof: Necessity: Suppose that NNRSO(X)  NNC(X) and let A be an NN – set of U such that A  R  

NNRSO(X). Then NNCl(A)  NNCl(R) = R, by hypothesis. Hence NNCl(A)  R when A  R and R is NNRSO 

which implies that A is NNRW-closed.  

Sufficiency: Assume that every neutrosophic nano set of U is NNRW-closed. Let R  NNRSO(X). Then 

since R  R and R is NNRW-closed, NNCl(R)  R then R  NNCl(X). Therefore NNRSO(X)  NNCl(X). 

Definition 3.29: A neutrosophic nano topological space (U,N(S)) is called as NNRW-connected if there is 

no proper NN-subset of U which is both NNRW-open NNRW-closed.  

Proposition 3.30: Every NNRW-connected space is NN-connected. 

Proof: Let (U,N(S)) be an NNRW-connected and suppose that (U,N(S)) is not NN-connected. Then there 

exists a proper NN-set A (A  0N, A  1N) such that A is both NN-open and NN-closed set. Since every 

NN-open and NN-closed set is NNRW-open and NNRW-closed, (U,N(S)) is not an NNRW-connected which 

is a contradiction. This shows that U is NN-connected. 

Proposition 3.31: A NNT space is NNRW- connected if and only if there exists no non-zero NNRW- open 

sets A and B in X such that A = BC. 

Proof: Necessity:  Suppose that A and B are NNRW-open sets such that A  0N  B. and A = BC. Since B = 

AC, A is NNRW-closed set and B  0N implies BC  1N, i.e., A  1N. Hence there exists a proper NN –set A 

which is both NNRW-open and NNRW-closed which is a contradiction to the fact that U is 

NNRW-connected. 

Sufficiency: Let (U,N(S)) be an NNTS and A is both NNRW-open and NNRW-closed set in U such that 0N  

A  1N. Take B = AC implies that B is NNRW-open and A  1N B = AC  0N which is a contradiction. Hence 

there is no proper NN-subset of U which is both NNRW-open and NNRW-closed. Therefore NNTS (U,N(S)) 

is NNRW-connected. 

Definition 3.32: A neutrosophic nano topological space(U,N(S)) is said to be an  NNRWT1/2-space if 

every NNRW-closed set in U is NN-closed in U. 

Proposition 3.33: A neutrosophic nano topological space (U,N(S)) is NNRWT1/2 space, then the following 

statements are equivalent:  

(i) U is NNRW-connected      (ii) U is NN-connected. 

Proof: (i)  (ii): Follows from the Proposition 3.29. 

(ii)  (i): Assume that U is NNRWT1/2-space, and NN-connected. Suppose that U is not an 

NNRW-connected, then there exists a proper NN-set A which is both NNRW-open and NNRW-closed. 

Since (U,N(S)) is NNRWT1/2, A is both NN-open and NN-closed which is a contradiction to the fact that U is 

NN-connected. This shows that U is NNRW-connected. 
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4. NNRW-CONTINUOUS FUNCTIONS 

Definition 4.1: (i) A function f: (U,N(S))  (V,N(T)) is said to be a neutrosophic nano RW-continuous (In 

short NNRW-continuous) if the inverse image of NN-closed set of V is NNRW-closed in (U,N(S)). 

(ii) A function f: (U,N(S))  (V,N(T)) is said to be a neutrosophic nano RW-irresolute (In short 

NNRW-irresolute) if the inverse image of NNRW-closed set of V is NNRW-closed in (U,N(S)). 

Proposition 4.2: A mapping f: (U,N(S))  (V,N(T)) is NNRW-continuous if and only if the inverse image 

of every NN-open set of V is NNRW-open in U. 

Proof: It is obvious because f-1(Ac) = [f-1(A)]c for every NN-set A of V. 

Proposition 4.3: If f: (U,N(S))  (V,N(T)) is NNRW-continuous, then f(NNRWCl(A))  NNCl(f(A)) for 

every NN-set A of U. 

Proof: Let A be an NN-set of U. Then NNCl(f(A)) is an NN-closed set of V. Since f is an NNRW-continuous 

function, f-1(NNCl(f(A)) is NNRW-closed in U. Clearly A  f-1(NNCl(f(A)). Therefore NNRWCl(A)  

NNRWCl    (f-1(NNCl f(A))) = f-1(NNCl(f(A)). Hence f(NNRWCl(A))  NNCl(f(A)) for every NN-set A of U. 

Proposition 4.4: (i) Every NN-continuous map is NNRW-continuous. 

(ii) Every NN- regular continuous map is NNRW-continuous. 

(iii) Every NN- -continuous set is NNRW-continuous. 

(iv) Every NNW-continuous map is NNRW-continuous. 

(v) Every NNRW-irresolute map is NNRW-continuous.  

Proof: Obvious. 

Remark 4.4: The following example makes clear that the converse of the Proposition 4.4 may not be true. 

Example 4.5: Let U = {𝑛1, 𝑛2, 𝑛3}  = V be the universe sets. U\R1 = {{𝑛1}, {𝑛2, 𝑛3}}   and U\R2 = 

{{𝑛1,𝑛3}, {𝑛2}}  be equivalence relations. Let 𝑆1 =  {〈
𝑛1

(0.3,0.4,0.3)
〉 , 〈

𝑛2

(0.6,0.3,0.1)
〉 , 〈

𝑛3

(0.2,0.6,0.2)
〉}  , 𝑆2 =

 {〈
𝑛1

(0.1,0.2,0.3)
〉 , 〈

𝑛2

(0.2,0.3,0.4)
〉 , 〈

𝑛3

(0.1,0.6,0.4)
〉}  be a neutrosophic nano subsets of U. Then N(S1) = 

{0𝑁 , 𝑁(𝑆1), 𝑁(𝑆1), 𝐵(𝑆1), 1𝑁}, N(S2) = {0𝑁 , 𝑁(𝑆2), 𝐵(𝑆2), 1𝑁} be the neutrosophic nano topologies on U and V 

respectively. Define an identity map f: (U,N(S1))  (V.N(S2)). Then f is NNRW-continuous but is neither 

NN-continuous nor NNW-continuous. Similarly it’s not an NNR-continuous, NN-continuous and 

NNRW-irresolute. 

Proposition 4.6: (i) Every NNRW-continuous map is NNRG-continuous. 

(ii) Every NNRW- continuous map is NNGPR- continuous. 
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(iii) Every NNRW- continuous map is NNRWG- continuous. 

Proposition 4.7: If f: (U,N(S))  (V,N(T)) is NNRW-continuous and g: (V,N(T))  (W,N(R)) is 

NN-continuous. Then gf: f: (U,N(S))  (W,N(R)) is NNRW-continuous. 

Proof: Let A be an NN-closed in W. Then g-1(A) is NN-closed in V, because g is NN-continuous. Therefore      

(gf)-1(A) = f-1(g-1(A)) is NNRW-closed in U. Hence gf is NNRW-continuous. 

Proposition 4.8: If f: (U,N(S))  (V,N(T)) is NNRW-continuous and g: (V,N(T))  (W,N(R)) is 

NNG-continuous and (V,N(T)) is NNT1/2 then gf: (U,N(S))   (W,N(R)) is NNRW-continuous. 

Proof: Let A be an NN-closed set in W, then g-1(A) is NNG-closed in V. Since V is NNT1/2 then g-1(A) is 

NN-closed in V. Hence, (gf)-1(A) = f-1(g-1(A)) is NNRW-closed in U. Hence gf is NNRW-continuous. 

Proposition 4.9: If f: (U,N(S))  (V,N(T)) is NNRG - irresolute and g: (V,N(V))  (W,N(R)) is 

NNRW-continuous, then gf: (U,N(S))   (W,N(R)) is NNRG-continuous. 

Proof: Let A be an NN-closed set in W, then g-1(A) is NNRW-closed in V, since g is NNRW-continuous. 

Every NNRW-closed set is NNRG-closed, g-1(V) is NNRG-closed set in V. Then (gf)-1(A) = f-1(g-1(A)) is 

NNRG-closed in U, by hypothesis. Hence gf: (U,N(S))   (W,N(R)) is NNRG-continuous. 

Proposition 4.10: If f: (U,N(S))  (V,N(T)) is NNRW-continuous surjection and U is NNRW-connected 

then V is NN-connected. 

Proof: Assume that V is not an NN-connected space. Then there exists a proper NN-subset F of V which is 

both NN-open and NN-closed. Therefore, by hypothesis, f-1(F) is a proper NN-set of U which is both 

NNRW-open and NNRW-closed in U implies that U is not an NNRW-connected which is a contradiction. 

This shows that V is NN-connected. 

Definition 4.11: (i) A mapping f: (U,N(S))  (V,N(T)) is said to be NNRW-open map if the image of every 

NN-open set of U is NNRW-open set in V. 

(ii) A mapping f: (U,N(S))  (V,N(T)) is said to be NNRW-closed map if the image of every NN-closed set 

of U is NNRW-closed set in V. 

Proposition 4.12: A mapping f: (U,N(S))  (V,N(T)) is NNRW-open if and only if for every NN-set A of U, 

f(NNInt(A))  NNRW Int(f(A)).  

Proof: Necessity: Let f be an NNRW-open map and A is an NN-open set in U, NNInt(A)  A which implies 

that f(NNInt(A))  f(A). Since f is an NNRW-open mapping, f(NNInt(A)) is NNRW-open set in V such that 

f(NNInt(A))  f(A). Therefore f(NNInt(A))  NNRWInt f(A). 

Sufficiency: Suppose that A is an NN-open set of U. Then f(A) = f(NNInt(A)  NNRWInt f(A). But 

NNRWInt (f(A))  f(A). Consequently f(A) = NNRWInt(A) which implies that f(A) is an NNRW-open set of 

V and hence f is an NNRW-open map. 
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Proposition 4.13: A mapping f: (U,N(S))  (V,N(T)) is NNRW-open if and only if for every neutrosophic 

nano  set A of V and for each NN-closed set B of U containing f-1(A) there is a NNRW-closed set F of V 

such that A  F and f-1(F)  B. 

Proof: Necessity: Suppose that f is NNRW-open map. Let A be a NN-closed set of V and B be a NNC set of 

U such that f-1(A)  B. Then F = f-1(Bc)c is a NNRW- closed set of V such that f-1(F)  B. 

Sufficiency: Let F be a NNO set of U. Then f-1(f(F))c  Fc and Fc is a NNC set in X. By hypothesis there is an 

NNRW- closed set G of V such that (f(F))c  G and f-1(G)  Fc. Therefore F  (f-1(G))c. Hence Gc  f(F)             

f((f-1(G))c)  Gc i.e., f(F) = Gc which is NNRW-open in V and thus f is NNRW-open map. 

Proposition 4.14: If a mapping f: (U,N(S))  (V,N(T)) is NNRW-open, then NNInt(f-1(G))  

f-1(NNRWInt(G)) for every neutrosophic nano set G of Y. 

Proof: Let G be neutrosophic nano set of V. Then NNIntf-1(G) is a NNO set in U. Since f is NNRW – open 

f(NNIntf-1(G))  NNRWInt(f(f-1(G))  NNRWInt(G)). Thus NNInt(f-1(G))   f-1(NNRWInt(G)). 

Proposition 4.15: A mapping f: (U,N(S))  (V,N(T)) is NNRW-closed if and only if for every neutrosophic 

nano set A of V and for each NNO set B of U containing f-1(A) there is a NNRW -open set F of V such that A 

 F and   f-1(F)  B. 

Proof: Necessity: Suppose that f is NNRW -closed map. Let A be a NNC set of V and B be a NNO set of U 

such that f-1(A)  B. Then F = V\f-1(Bc) is a NNRW –open set of V such that f-1(F)  B.  

Sufficiency: Let F be a NNC set of X. Then f-1(f(F))c  Fc and Fc is a NNO set in U. By hypothesis there is an 

NNRW - open set R of V such that (f(F))c  R and f-1(R)  Fc. Therefore F  (f-1(R))c. Hence Rc  f(F)  

f((f-1(R))c)  Rc i.e., f(F) = Rc which is NNRW -closed in V. Thus f is NNRW -closed map. 

Proposition 4.16: If f: (U,N(S))  (V,N(T)) is NN-almost irresolute and NNRW-closed map. If A is 

NNRW-closed set of U, then f(A) is NNRW-closed in V. 

Proof: Let f(A)  R where R is an NNRSO set of V. since f is an NN-almost irresolute, f-1(R) is an NNSO set 

of U such that A  f-1(R). Since A is NNW-closed set of U which implies that NNCl(A)  f-1(R)  f(NNCl(A)) 

 R, i.e., NNCl(f(NNCl(A))  R. Therefore NNCl(f(A))  R whenever f(A)  R where R is an NNRSO set of 

V. Hence f(A) is an NNRW-closed set of V. 

Proposition 4.17: If f: (U,N(S))  (V,N(T)) is NN-closed and g: (V,N(T))  (W,N(R)) is NNRW-closed then 

gf: (U,N(S))   (W,N(R)) is NNRW-closed. 

Proof: Let F be an NN-closed set of neutrosophic nano topological space (U, N(S)). Then f(F) is an NN-closed 

set of (V,N(T)). By hypothesis, gf(F) = g(f(F)) is an NNRW-closed set in NN-topological space W. Thus gf: 

(U,N(S))   (W,N(R)) is NNRW-closed. 

Conclusions:  In this article, the authors have introduced and studied the concepts such as, 

Neutrosophic nano RW- closed set, NNRW-open set, NNRWT1/2 space, NNRW-connected space, 

NNRW-continuous, NNRW-irresolute, NNRW-open and NN- closed maps. In future it can be extended to 
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some new forms of continuous functions and homeomorphisms. 
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Abstract: The new normal of the world has been shaped by the COVID-19 outbreak by avoiding 

public transportation in order to prevent the spread of the disease. Due to the high financial burden 

of purchasing a car, new business models have been developed in order to make possible of 

utilizing vehicles to meet the transportation needs in pay-per-use base concept called “servicizing” 

or “servicization” which is based on presenting a product as a service, and selling the functionality 

of that product instead of the product itself. In order to meet the increasing demand for individual 

vehicle use, the existing car rental service providers have provided a new mobile application 

controlled business model which makes the rental process easier. The aim of this study is to 

evaluate the customers’ preferences of purchasing, renting through an agency, or mobile 

application supported new pay-as-you-go business model use, in order to determine which 

criterion is prominent in the decision-making process, and to identify the weights of these criteria. 

Due to the uncertain and indeterminate attitudes of the customers in decision making, the data 

were collected as neutrosophic data sets and analyzed with a novel neutrosophic Analytic 

Hierarchy Process (nAHP) approach. The study provides implications both theoretically and 

practically in terms of revealing new servicization possibilities and analyzing real user judgments. 

Keywords: servicization; servicizing business model; car sharing program; neutrosophic sets; 

neutrosophic Analytic Hierarchy Process. 

 

 

1. Introduction 

Circular Economy which based upon the reuse, remanufacture and recycling of the products is 

a well-known and well-accepted movement of sustainable operations management research [1]. The 

servicizing business models, i.e. servicization or product-as-a-service concept, grounds on selling the 

functionality of a product / item / device instead of selling the product itself to the customers. This is 

a phenomenon converting the products into services [2], or transforming the consumers into users 

[3] by bringing the functionalization into the forefront. In this case, companies don’t transfer the 

product ownership to the customers, instead, they charge the them in pay-per-use base.  

Servicizing business models have been drawn attention with its sustainable and environmental 

side owing to the durability and reliability requirement of these repeatedly in use products, and they 

have been defined as an "opportunity to research" [1] in the literature. Besides, the companies have 

made serious investments for this business model recently [4]. However, the COVID-19 pandemic 

has caused a serious decrease in individual purchasing power, and the companies have developed a 

mailto:salihakaradayiusta@gmail.com
mailto:saliha.usta@fbu.edu.tr
mailto:salihakaradayiusta@gmail.com
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new servicization versions in order to minimize the face-to-face communication and contracting 

process with an easier way of payment via mobile applications.  

This change in the way of business has motivated this research to analyze the customer 

perception and attitude towards different individual transportation options. Hence, this study aims 

to develop a decision model for evaluating the customers’ decisions on purchasing, renting through 

an agency (walk-in or using the website of provider or a website comparing all providers), or new 

mobile application controlled way of renting alternatives of driving in order to determine which 

criterion is more important in the decision-making process, and to identify the weights of these 

criteria. 

Since the decision criteria have often vague, uncertain, indeterminate or inconsistent 

information, the data were collected as neutrosophic data sets from the real customers having 

experiences in both purchasing, renting through an agency and renting through the mobile 

application alternatives were analyzed with a neutrosophic AHP approach. The fuzzy AHP 

provides a wide range of application areas and remarkable results for many sectors [5-9]. The study 

provides theoretical and practical implications by revealing new servicization alternatives and 

analyzing real customer attitudes. 

The literature points out that there is an obvious research gap in the field of study [42-46]. The 

researchers investigating and doing research on this topic especially for the sake of sustainability. 

The topic is important owing to the significance of achieving sustainable supplier selection, green 

supply chain management practices, and sustainability evaluation of transportation technologies. 

This study introduces a new way of servicizing business model as a contribution to the 

literature with real customer preferences shaping the decision making process. The analysis results 

addressed the weights of criteria and alternative ranking by real user preferences. 

The following sections include literature review, objective of the study, methodology, analysis 

and conclusion parts. 

2. Materials and Methods 

2.1. Literature Review 

Current servicization literature focuses on the intensions of the organizations towards 

servicizing [10-12], product-as-a-service [13], device-as-a-service [3, 14], the potential of Industry 4.0 

adoption in servicizing [15-16].  

There are successful examples in servicization such as Xerox printing services, Runway car 

rental, Michelin fleet solutions, Philips’ lighting solutions, Rolls-Royce’s total care solutions [17], and 

Bundles’ household appliance services [1]. 

Servicization studies implementing AHP discuss construction servicization [18], design 

requirements for plumbing services [19], prioritization of product-service business model elements 

at aerospace industry [20], and cloud manufacturing [21]. Moreover, there are Neutrosophic AHP 

papers addressing system selection [22-23], AHP-SWOT analysis for strategic planning and 

decision-making [24], AHP and TOPSIS framework [25], AHP and DEA methodology [26], and 

performance analysis [27], comparative analysis of AHP, FAHP and Neutrosophic-AHP [41],  

However, the new mobile application driven pay-as-you-go model of servicization research is 

missing in the literature. Besides, there are limited number of AHP studies applied neutrosophic 

sets. Therefore, the priorities of the customers having experiences in both purchasing and renting 

cars will be examined in this study with neutrosophic sets in order to serve as a good example of 

neutrosophic AHP for servicizing.  

 

2.2. Methodology 
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The evaluation criteria that the real customers consider in transportation through driving 

alternatives have been specified via an in-depth interview with a car rental service provider X 

representative. The model is based on the literature review and information provided by the 

company X representative. The goal, criteria and alternatives are presented in Figure 1.  

 
Figure 1. Developed AHP model. 

The cost criterion includes the sub criteria of possessing cost by purchasing or renting payment 

[28], maintenance / repair cost [29], tax / insurance cost [30]. The parking criterion consists of two sub 

criteria such as accessing the car and finding it where you left, and leaving the car wherever you 

want [31]. The transaction criterion refers to receiving the car from the service provider, and leaving 

it to again the service provider [32]. Moreover, the risk criterion forms from hygiene sub criterion 

due to the COVID-19 pandemics, and the high possibility of car breakdown due to the repeated and 

extreme use [33].  

In order to obtain the customer judgements, a user survey has been used, and neutrosophic sets 

have been used to gather the preferences. The experts were selected from the car rental service 

provider X’s real users who had comments about the mobile application in the website of the 

company. 36 users were identified as candidate experts, and just 3 of them accepted to state their 

opinions. 

2.2.1. Preliminaries 

Neutrosophic sets (NSs) are proposed by Smarandache [34] as a general form of fuzzy sets and 

intuitionistic fuzzy set. This is a powerful technique to handle incomplete, indeterminate and 

inconsistent information that is valid in the real world applications. Besides, there are many 

neutrosophic sets: single valued, interval-valued, multi-valued, bipolar, hesitant, refined, simplified, 

rough and hyper-complex neutrosophic sets [35]. Basic definitions and operations of neutrosophic 

sets: 

Definition 1. A neutrosophic set A in E (let E be a universe) is characterized by a 

truth-membership function TA(x), an indeterminacy-membership function IA(x), and a 

falsity-membership function FA(x) where x ∈ E.  
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A can be defined as A={⟨x, TA(x), IA(x), FA(x), │x ∈ E ⟩}   

where TA(x), IA(x), FA(x) ∈ ]0-,1+[ such that 0- ≤ TA(x), IA(x), FA(x) ≤ 3+. 

Definition 2. A single-valued neutrosophic set A is a subclass of NS and is stated as 

A={⟨x,  TA(x), IA(x), FA(x) │x ∈ E ⟩} where TA, IA, FA : X→ [0,1]  

such that 0 ≤ TA(x) + IA(x) + FA(x)  ≤ 3.  

In particular, if E has only 1 element, A is called a simplified neutrosophic number (SNN), 

which is represented as A=⟨ TA, IA, FA ⟩ [36]. 

Definition 3. Let A and B be two SNN, and p(A) be the complement of A, the following 

operations are valid [22, 36]. 

A⨁ B=〈TA + TB - TA * TB, IA * IB, FA * FB 〉 

A⨂ B=〈TA * TB, IA + IB - IA * IB, FA + FB - FA * FB 〉 

A/ B=〈TA / TB, IB - IA  / 1 - IA , FB - FA / 1 - FA 〉 

αA = 〈 1-(1-TA)α, IAα, (FAα) 〉, α>0 

A/α = 〈 1-(1-TA)1/α, IA1/α, (FA1/α) 〉, α>0 

p(A)= 〈FA, 1 - IA, TA〉 

Definition 4. The score function is defined as s(A) = (2 + TA - IA  - FA) / 3 for a SNN to 

deneutrosophicate or rank [35].   

Definition 5. Geometric means are defined as [26]: 

T1 = [1 × T12 × … × T1n ] 1/n, …, Tn = [T1n × … × 1 ] 1/n 

I1m = [1 × I12m × … × I1nm ] 1/n, …, Iim = [In1m × … × 1 ] 1/n 

F1m = [1 × F12m × … × F1nm ] 1/n, …, Fim = [Fn1m × … × 1 ] 1/n 

Definition 6. Aggregation formula is [35]: Fw (A1, A2, …, An) =  

 where W = (w1, 

w2 , …, wn ) is the weight vector of Aj (j = 1, 2, …, n), wj ∈ [0,1] and  = 1.  

The truth-membership TA stands for “the possibility in which the statement is true”, the 

indeterminacy-membership IA is “the degree in which he/she is not sure”, and the 

falsity-membership FA means that “the statement is false” [37].  

All of the above definitions will be applied to the proposed nAHP methodology in the 

following sections.  

2.2.2. Procedure in Gathering and Aggregating the Individual Evaluations 

There are different proposed scales for the neutrosophic linguistic variable such as [22] and [26]. 

However, there is also a fair criticism for these scales due to the defined structure of them. For 

example, the aforementioned Radwan et al. [22] scale defines “extremely highly preferred” as <.9 .1 

.1>. The truth-membership can be thought as the reverse of falsity-membership; this is acceptable by 

definition. However, since the indeterminacy means “the degree in which one is not sure”, we 

cannot define this indeterminacy proportional to the truth-membership value with a scale. 
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Participants should express “the degree in which he/she is not sure”. Therefore, this study gathers 

the truth and indeterminacy values separately from the participants instead of using these defined 

tables in order to deal with this criticism. 

In order to aggregate the individual neutrosophic evaluations into group evaluations, the 

captured expert opinions have been processed with the proposed formula of [26] (the definition 6). 

There are nAHP papers use the neutrosophic weighted arithmetic average aggregation operator of 

[37], such as [38]. However, since the average operator is problematic in terms of finding reciprocals, 

this study prefers to adopt a geometric mean based formulation in aggregating the expert opinions.  

2.2.3. Steps of the Methodology 

The steps of the nAHP used in this study: 

Step 1. Defining the problem, criteria and alternatives with a structured hierarchy.  

Step 2. Gathering the expert evaluations by taking truth- and indeterminacy-membership 

values separately via a survey in order to obtain pairwise comparisons of criteria and alternatives.  

Step 3. Checking the consistency of pairwise matrices by Eigenvector solution. 

Step 4. Aggregating the individual evaluations into group decision. 

Step 5. Obtaining the weights of each criteria. Repeating these steps for the alternatives’ 

pairwise comparisons.  

Step 6. Ranking the alternatives with respect to the calculated weights. 

3. Application 

The defined problem with criteria and alternatives in a structured hierarchy is provided in 

Figure 1 previously by fulfilling the Step 1.  

Step 2. The user survey provided real users’ judgements on the goal “transportation via car” 

and the alternative ways of transportation. Table 1 presents the individual judgements of the 

experts.  

Table 1. Pairwise comparison matrix with respect to goal by experts. 

 Expert # Cost Parking Transactions Risks 

Cost 

1 < .5 .5 .5 > < .7 .2 .3 > < .7 .2 .3 > < .4 .7 .6 > 

2 < .5 .5 .5 > < .9 .1 .1 > < .9 .1 .1 > < .9 .1 .1 > 

3 < .5 .5 .5 > < .9 .1 .1 > < .9 .1 .1 > < .7 .2 .3 > 

Parking 

1 < .3 .8 .7 > < .5 .5 .5 > < .7 .2 .3 > < .3 .8 .7 > 

2 < .1 .9 .9 > < .5 .5 .5 > < .9 .1 .1 > < .6 .2 .4 > 

3 < .1 .9 .9 > < .5 .5 .5 > < .8 .1 .2 > < .5 .1 .5 > 

Transactions 

1 < .3 .8 .7 > < .3 .8 .7 > < .5 .5 .5 > < .2 .8 .8 > 

2 < .1 .9 .9 > < .1 .9 .9 > < .5 .5 .5 > < .9 .1 .1 > 

3 < .1 .9 .9 > < .2 .9 .8 > < .5 .5 .5 > < .7 .1 .3 > 

Risks  

1 < .6 .3 .4 > < .7 .2 .3 > < .8 .2 .2 > < .5 .5 .5 > 

2 < .1 .9 .9 > < .4 .8 .6 > < .1 .9 .9 > < .5 .5 .5 > 

3 < .3 .8 .7 > < .5 .9 .5 > < .3 .9 .7 > < .5 .5 .5 > 

 

Step 3. The consistency was checked with the score function value definition for each 

participant evaluations via Eigenvector solution procedure [39].  
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The score function was applied to deneutrosophicate the evaluations into crisp values. The sum 

of each column was taken, next, each element of the matrix was divided into the sum of its columns 

in order to have normalized relative weights. Then, the normalized principal Eigenvector (also 

called priority vector) is obtained by averaging across the rows. This calculation provides the 

experts’ priorities with respect to goal. For example, while the risk criterion is the priority of the 

expert 1, cost criterion is the most important criteria for expert 2 and 3. Besides of the relative weight 

calculation, this procedure paves the way for checking the consistency of participants’ answers. 

Here, one needs Principal Eigen value (λmax) obtaining from summation of products between each 

element of Eigen vector and sum of columns of the reciprocal matrix. Table 2 states the score 

function values, normalization, weights and Principal Eigen value.  

The largest Eigen value equals to the size of comparison matrix, or λmax = n [40], which gives a 

measure of consistency named Consistency Index (CI = (λmax – n)/(n-1)). The CI values should be 

compared with Random Consistency Index as a previously defined index of sample size 500, and RI 

is 0.89 for n=4 (4×4 matrix). The Consistency Ratio CR was calculated (CR = CI / RI), and if the CR is 

≤ 10% in comparison with the CI, the inconsistency is acceptable. Accordingly, while the evaluations 

of expert 1 and 3 are within the acceptable inconsistency limits, the evaluations of expert 2 cannot be 

taken into consideration due to the CR = 23%.   

Table 2. Score function values, normalization, weights and principal Eigen value. 

wrt. Goal 

Score function values x / sum values w  

C  P  T  R  C  P  T  R  
Row 

average 
λmax 

E1 

C  0,500 0,733 0,733 0,367 0,300 0,328 0,265 0,275 0,292 

3,681 
P  0,267 0,500 0,733 0,267 0,160 0,224 0,265 0,200 0,212 

T  0,267 0,267 0,500 0,200 0,160 0,119 0,181 0,150 0,153 

R  0,633 0,733 0,800 0,500 0,380 0,328 0,289 0,375 0,343 

 
Sum 1,667 2,233 2,767 1,333 1 1 1 1     

E2 

C  0,500 0,900 0,900 0,900 0,313 0,429 0,338 0,303 0,345 

4,409 
P  0,367 0,500 0,900 0,667 0,229 0,238 0,338 0,225 0,257 

T  0,367 0,367 0,500 0,900 0,229 0,175 0,188 0,303 0,224 

R  0,367 0,333 0,367 0,500 0,229 0,159 0,138 0,169 0,173 

 
Sum 1,600 2,100 2,667 2,967 1 1 1 1 1,000   

E3 

C  0,500 0,900 0,900 0,733 0,333 0,466 0,365 0,278 0,361 

4,002 
P  0,367 0,500 0,833 0,633 0,244 0,259 0,338 0,241 0,270 

T  0,367 0,167 0,500 0,767 0,244 0,086 0,203 0,291 0,206 

R  0,267 0,367 0,233 0,500 0,178 0,190 0,095 0,190 0,163 

 
Sum 1,500 1,933 2,467 2,633 1 1 1 1 1,000   

 

Step 4. In order to aggregate the individual evaluations into group decision, the aggregation 

definition 6 was used (see Table 3).  
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Step 5. The weights of each criterion were obtained, ant the step was repeated for the 

alternatives’ and sub-criteria’s pairwise comparisons.  

Step 6. The alternatives were ranked with respect to the calculated weights.  

According to the analysis results, renting through an agency was the most preferred alternative 

in terms of the cost criterion. Secondly the new system, and then the purchasing option was 

preferred by the weight values. When the parking criterion was considered, the ranking was 

purchasing, renting through an agency and new system, respectively. Similarly, in case we had a 

focus on the transactions, the same ranking was valid. However, participants addressed the new 

system as the most risky alternative, next renting through an agency and then the purchasing option, 

respectively. 

Table 3. Aggregating the individual evaluations into group decision. 

 Cost Parking Transactions Risks 

wrt. Goal T I F T I F T I F T I F 

Cost 0,4 0,4 0,4 0,7 0,1 0,1 0,7 0,1 0,1 0,4 0,3 0,3 

Parking 0,1 0,3 0,6 0,3 0,3 0,3 0,5 0,1 0,1 0,2 0,3 0,4 

Transactions 0,1 0,2 0,5 0,1 0,5 0,4 0,2 0,2 0,2 0,2 0,2 0,3 

Risks  0,3 0,3 0,3 0,4 0,4 0,2 0,5 0,4 0,2 0,3 0,3 0,3 

 

The sub criteria analysis revealed that there was a tax/insurance, maintenance / repair cost, and 

possession cost sequence with respect to cost criterion. Moreover, “hygiene problem” sub criterion 

had a greater importance than the “high possibility of car breakdown due to the repeated and 

extreme use” in terms of risks criterion. Besides, the “accessing the car, finding it where you left” sub 

criterion and the “leaving the car wherever you want” sub criterion had close weights as 0,51 and 

0,49.  

When the criteria weights and alternatives were combined, this analysis resulted that the effect 

of alternatives on the goal was identified with the weights as renting through an agency (0.358), 

purchasing option (0.326), and the new system (0.316). 

4. Conclusions  

This study introduces a new way of servicizing business model as a contribution to the 

literature with real customer preferences shaping the decision making process. The analysis results 

addressed the weights of criteria and alternative ranking by real user preferences.  

The cost, parking, transactions and risks parameters have been investigated via a user survey 

provided real users’ judgements on the goal “transportation via car” and the alternative ways of 

transportation. The results point out that; 

 Renting through an agency was the most preferred alternative in terms of the cost 

criterion.  

 Secondly the new system, and then the purchasing option was preferred by the weight 

values. 

 When the parking criterion was considered, the ranking was purchasing, renting 

through an agency and new system, respectively.  

 Similarly, in case we had a focus on the transactions, the same ranking was valid.  

 However, participants addressed the new system as the most risky alternative, next 

renting through an agency and then the purchasing option, respectively. 

As a theoretical implication, this study tries to handle the criticism of previously defined 

linguistic variable tables by a different way of data gathering. In addition, the study adopts the score 

functions to deneutrosophicate the fuzzy sets in analysis procedure as a new approach.  
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The practical implications of the paper provide a real world customer preference point of view 

for the industry representatives. Since the new normal of the world requires new way of business 

models, this analysis addresses new initiatives to overcome the burden of this hard time. One can 

infer from these results that the companies can introduce new way servicization by taking the 

defined significant criteria into consideration. 

The number of company representatives, number of participants, and the possibility of biased 

attitudes of the both these representatives and the participants are the main limitations of this study. 

Hence, this study tries to select the real participants who have experienced these services previously 

in order to reflect the real world case. In addition, the participants were asked whether they are 

willing to participate the survey, or they are feeling obliged at the beginning of the survey questions.  

Furthermore, this paper serves both theoretical implications by using the neutrosophic sets to 

AHP and practical implications by presenting the real user priorities. One can infer from the study to 

understand which criteria is prominent in contrast with the others, and the theoretical background 

can be applied to different decision making problems.  

Further researches may have a large number of participants and representatives, or different 

mathematical assumptions can be utilized in the calculations. This study differs from the existing 

ones by gathering the indeterminacy values of neutrosophic sets by the participants instead of using 

the defined linguistic variable tables.    

 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Agrawal, V. V., Atasu, A., & Van Wassenhove, L. N. (2019). OM Forum—New Opportunities for 

Operations Management Research in Sustainability. Manufacturing & Service Operations Management 21(1), 

1-12. 

2. Systems Innovation (2020). https://www.systemsinnovation.io/   

3. McIntyre, K., & Ortiz, J.A. (2015). Multinational corporations and the circular economy: How Hewlett 

packard scales innovation and technology in its global supply chain, Taking Stock of Industrial Ecology, 

317-330. 

4. Syncron (2020). 

https://www.syncron.com/why-invest-in-servitization-qa-with-syncron-ceo-anders-gruden/  

5. Karatop, B., Taşkan, B., Adar, E., Kubat, C. (2020). Decision analysis related to the renewable energy 

investments in Turkey based on a Fuzzy AHP-EDAS-Fuzzy FMEA approach, Computers and Industrial 

Engineering, 106958 

6. Akgün, İ., Erdal, H. (2019). Solving an ammunition distribution network design problem using 

multi-objective mathematical modeling, combined AHP-TOPSIS, and GIS, Computers and Industrial 

Engineering, 129, pp. 512-528. 

7. Sirisawat, P., Kiatcharoenpol, T. (2018). Fuzzy AHP-TOPSIS approaches to prioritizing solutions for 

reverse logistics barrier, Computers and Industrial Engineering, 117, pp. 303-318 

8. Ganguly, A., Kumar, C. (2019). Evaluating supply chain resiliency strategies in the Indian pharmaceutical 

sector: A Fuzzy Analytic Hierarchy Process (F-AHP) approach, International Journal of the Analytic 

Hierarchy Process, 11(2), pp. 153-180. 

9. Karasan, A. (2019). A novel hesitant intuitionistic fuzzy linguistic AHP method and its application to 

prioritization of investment alternatives, International Journal of the Analytic Hierarchy Process, 11(1), pp. 

127-142. 

10. Khan, O., Daddi, T., Slabbinck, H., Kleinhans, K., Vazquez-Brust, D., & De Meester, S. (2020). Assessing the 

determinants of intentions and behaviors of organizations towards a circular economy for plastics, 

Resources, Conservation and Recycling, 163. 

11. Lieder, M., Asif, F.M.A., Rashid, A. (2020). A choice behavior experiment with circular business models 

using machine learning and simulation modeling, Journal of Cleaner Production, 258. 

https://www.systemsinnovation.io/
https://www.syncron.com/why-invest-in-servitization-qa-with-syncron-ceo-anders-gruden/


Neutrosophic Sets and Systems, Vol. 48, 2020     64  

 

 
Saliha Karadayi-Usta, A new servicizing business model of transportation: Comparing the new and existing alternatives via 
neutrosophic Analytic Hierarchy Process 

12. Hofmann, F. (2019). Circular business models: Business approach as driver or obstructer of sustainability 

transitions? Journal of Cleaner Production, 224, pp. 361-374. 

13. Patwa, N., Sivarajah, U., Seetharaman, A., Sarkar, S., Maiti, K., Hingorani, K. (2020). Towards a circular 

economy: An emerging economies context, Journal of Business Research, 122, 725-735. 

14. HP (2017). HP device as a service (DaaS) 

https://www8.hp.com/h20195/v2/getpdf.aspx/4AA6-5363ENW.pdf    

15. Keivanpour, S. (2021). A Fuzzy Strategy Analysis Simulator for Exploring the Potential of Industry 4.0 in 

End of Life Aircraft Recycling, Advances in Intelligent Systems and Computing, 1197, 797-806. 

16. Bag, S., Gupta, S., Kumar, S. (2021). Industry 4.0 adoption and 10R advance manufacturing capabilities for 

sustainable development, International Journal of Production Economics, 231. 

17. Agrawal, V. V., & Bellos, I. (2016). Servicizing in Supply Chains and Environmental Implications. A. Atasu 

(ed.), Environmentally Responsible Supply Chains, Springer Series in Supply Chain Management, 109 – 

124. 

18. Chen, J., Qu, Y., He, M. (2020). Research on Construction Servitization Enterprises Based on AD-AS model 

and AHP Theory, IOP Conference Series: Earth and Environmental Science, 455(1).  

19. Jadhav, S.S., Kalita, P.C., Das, A.K. (2020). Analytic Hierarchy Process for Prioritization of Design 

Requirements for Domestic Plumbing Services, Lecture Notes in Mechanical Engineering, pp. 145-157. 

20. Salomon, M.F.B., Mello, C.H.P., Salgado, E.G. (2019). Prioritization of product-service business model 

elements at aerospace industry using analytical hierarchy process, Acta Scientiarum – Technology, 41. 

21. Cao, Y., Wang, S., Kang, L., Gao, Y. (2016). A TQCS-based service selection and scheduling strategy in 

cloud manufacturing, International Journal of Advanced Manufacturing Technology, 82(1-4), pp. 235-251. 

22. Radwan, N. M., Senousy, M. B., & Riad, A. E. D. M. (2016). Neutrosophic AHP Multi Criteria Decision 

Making Method Applied on the Selection of Learning Management System. International Journal of 

Advancements in Computing Technology, 8(5), 95–105. 

23. Bilandi, N., Verma, H. K., & Dhir, R. (2020). AHP-neutrosophic decision model for selection of relay node 

in wireless body area network. CAAI Transactions on Intelligence Technology, 5(3), 222–229.  

24. Abdel-Basset, M., Mohamed, M., & Smarandache, F. (2018). An extension of neutrosophic AHP-SWOT 

analysis for strategic planning and decision-making. Symmetry, 10(4). https://doi.org/10.3390/sym10040116  

25. Junaid, M., Xue, Y., Syed, M. W., Li, J. Z., & Ziaullah, M. (2020). A neutrosophic AHP and TOPSIS 

framework for supply chain risk assessment in automotive industry of Pakistan. Sustainability 

(Switzerland), 12(1). https://doi.org/10.3390/SU12010154  

26. Kahraman, C., Otay, İ., Öztayşi, B., & Onar, S. Ç. (2019). An integrated AHP & DEA methodology with 

neutrosophic sets. Studies in Fuzziness and Soft Computing, 369, 623–645. 

https://doi.org/10.1007/978-3-030-00045-5_24  

27. Kahraman, C., Oztaysi, B., & Cevik Onar, S. (2020). Single interval-valued neutrosophic AHP methods: 

Performance analysis of outsourcing law firms. Journal of Intelligent and Fuzzy Systems, 38(1), 749–759.  

28. Chen, J., Chen, H., Gao, J., Dave, K., & Quaranta, R. (2021). Business models and cost analysis of 

automated valet parking and shared autonomous vehicles assisted by internet of things. Proceedings of the 

Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 

https://doi.org/10.1177/0954407021994445 

29. Wisdom, B. (2010). Need a vehicle? Take ours. Better Roads, 80(11), 34–35.  

30. DeCorla-Souza, P. (2002). Estimating benefits from mileage-based vehicle insurance, taxes, and fees. 

Transportation Research Record, 1812, 171–178. https://doi.org/10.3141/1812-21 

31. Jie, T., Juan, W., Yunhao, Z., & Xiaoyue, H. (2020). Study on the Optimization of Parking Location of 

Car-sharing. 434–440. https://doi.org/10.1109/ICITE50838.2020.9231470 

32. Morency, C., Trépanier, M., Agard, B., Martin, B., & Quashie, J. (2007). Car sharing system: What transaction 

datasets reveal on users’ behaviors. 284–289. https://doi.org/10.1109/ITSC.2007.4357656 

33. Storme, T., Casier, C., Azadi, H., & Witlox, F. (2021). Impact assessments of new mobility services: A 

critical review. Sustainability (Switzerland), 13(6). https://doi.org/10.3390/su13063074 

34. Smarandache, F., (1998). Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis & 

synthetic analysis. Rehoboth: American Research Press. 

https://www8.hp.com/h20195/v2/getpdf.aspx/4AA6-5363ENW.pdf
https://doi.org/10.3390/sym10040116
https://doi.org/10.3390/SU12010154
https://doi.org/10.1007/978-3-030-00045-5_24
https://doi.org/10.1177/0954407021994445
https://doi.org/10.3141/1812-21
https://doi.org/10.1109/ICITE50838.2020.9231470
https://doi.org/10.1109/ITSC.2007.4357656
https://doi.org/10.3390/su13063074


Neutrosophic Sets and Systems, Vol. 48, 2020     65  

 

 
Saliha Karadayi-Usta, A new servicizing business model of transportation: Comparing the new and existing alternatives via 
neutrosophic Analytic Hierarchy Process 

35. Broumi, S., Bakali, A., Talea, M., Smarandache, F., Uluçay, V., Sahin, M., Dey,, A., Dhar, M., Tan, R.-P., 

Bahnasse, A., Pramanik, S. (2018). Neutrosophic Sets: An Overview, New Trends in Neutrosophic Theory and 

Applications. F. Smarandache, S. Pramanik (Editors), 2, 388 – 418. 

36. Wang, H., Smarandache, F., Zhang, Y. Q., & Sunderraman, R.  (2010). Single valued neutrosophic sets. 

Multispace Multistructure, 4, 410–413. 

37. Ye, J. A. (2014). Multicriteria Decision-Making Method Using Aggregation Operators for Simplified 

Neutrosophic Sets. Journal of Intelligent & Fuzzy Systems, 26, 2459–2466.  

38. Aydın, S., Aktaş, A., & Kabak, M. (2018). Neutrosophic Fuzzy Analytic Hierarchy Process Approach for 

Safe Cities Evaluation Criteria, 13th International Conference on Applications of Fuzzy Systems and Soft 

Computing, Warsaw- Poland. 

39. Teknomo, K. (2006). AHP Tutorial. https://people.revoledu.com/kardi/tutorial/AHP/ 

40. Saaty, T. L. (1986). Axiomatic foundation of the analytic hierarchy process. Management Science, 32(7), 

741–755. 

41. Slamaa, A.A., H.A. El-Ghareeb, and A. Aboelfetouh. (2021). Comparative Analysis of AHP, FAHP and 

Neutrosophic- AHP Based on Multi-Criteria for Adopting ERPS. Neutrosophic Sets and Systems 41, 64–86. 

42. Abdel-Basset, M., et al. (2019). An approach of TOPSIS technique for developing supplier selection with 

group decision making under type-2 neutrosophic number. Applied Soft Computing, 77, 438-452. 

43. Abdel-Baset, M., Chang, V., Gamal, A., Smarandache, F. (2019a). An integrated neutrosophic ANP and 

VIKOR method for achieving sustainable supplier selection: A case study in importing field. Computers in 

Industry, 106, 94–110. https://doi.org/10.1016/j.compind.2018.12.017 

44. Abdel-Baset, M., Chang, V., Gamal, A., (2019b). Evaluation of the green supply chain management 

practices: A novel neutrosophic approach. Computers in Industry, 108, 

210–220. https://doi.org/10.1016/j.compind.2019.02.013 

45. Abdel-Basset, M., Gamal, A., Chakrabortty, R. K., & Ryan, M. (2021). Development of a Hybrid 

Multi-Criteria Decision-making Approach for Sustainability Evaluation of Bioenergy Production 

Technologies: A Case Study. Journal of Cleaner Production, 290, 125805. 

46. Abdel-Basset, M., Gamal, A., Chakrabortty, R. K., & Ryan, M. J. (2021). Evaluation Approach for 

Sustainable Renewable Energy Systems Under Uncertain Environment: A Case study. Renewable Energy. 

168, 1073-1095. 

 

 

Received: Nov 7, 2021.  Accepted: Feb 3, 2022 

https://doi.org/10.1016/j.compind.2018.12.017
https://doi.org/10.1016/j.compind.2019.02.013


                                    Neutrosophic Sets and Systems, Vol. 48, 2022 
University of New Mexico  

K. Hemabala, and B. Srinivasa Kumar, Anti Neutrosophic multi fuzzy ideals of  near ring 

Anti Neutrosophic multi fuzzy ideals of  near ring 

K. Hemabala 1,* and B. Srinivasa Kumar 2 

1. Research Scholar, Mathematics department, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur- 522502, 
Andhra Pradesh, India. 

hemaram.magi@gmail.com 
2. Assoc. Prof., Mathematics department, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur- 522502, 

Andhra Pradesh, India 
sk_bhavirisetty@kluniversity.in 

*   Correspondence:  sk_bhavirisetty@kluniversity.in 

Abstract: The theory of anti neutrosophic multi fuzzy ideals of  near ring is dispensed in this work 
and various algebraic properties such as intersection, union of anti neutrosophic multi fuzzy ideals 
of  near ring are examined. Further we examined the direct anti product of anti neutrsophic multi 
fuzzy ideals of  near ring and also we proved the homorphic images and pre images of anti 
neutrosophic multi fuzy ideals of  near ring. 
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1. Introduction 

In 1965, Zadeh[25] proposed the notion of fuzzy set. Later A.Rosenfeld[16] developed fuzzy groups. 
The numerous authors like Bh.Satyanarayana[3,4,5] proposed the concept of fuzzy  near ring. The 
authors S. Ragamai, Y. Bhargavi, T. Eswarlal[19] developed theory of fuzzy and L fuzzy ideals of  
near ring. Later the properties of near ring in multi fuzzy sets were extended by K. Hemabala and 
Srinivasa kumar[13]. After the theory of fuzzy sets, Florentin Smarandache[7,8] established as a new 
field of philosophy which is a neutrosophic theory, in 1995.The main base of neutrosophic logic is 
neutrosophy that includes indeterminacy. It is an agumentation of fuzzy set and intuitionstic fuzzy 
set. In neutrosophic logic each proposition is estimated by three components T,I,F. The neutrosophic 
set theory have seen great triumph in several fields such as image processing ,medical diagnosis, 
robotic, decision making problem and so on. I. Arockiarani[3] extended the theory of neutrosophic 
fuzzy set. A.Solairaju and S.Thiruveni[2] verified the algebraic properties of fuzzy neutrosophic set 
in near rings. In fuzzy neutrosophic set, the three components T,I,F can take single values between 0 
and 1. There is some ambiguity irrespective of the distance to the element is. The neutrosophic fuzzy 
set theory on its own is not sufficient to study real world problems. F. Smarandache[9] developed 
notion of neutrosophic multi sets, an extension of neutrosophic set, in 2016. Authors like Vakkas 
Ulucay and Memet sahin[23] verified the concepts of neutrosophic multi fuzzy set in groups and 
verified the group properties. We carry the neutrosophic multi fuzzy notion in  near ring and 
hence some properties of algebra are verified. 

2. Preliminaries: 

Basic definitions of fuzzy set, multi fuzzy set, neutrosophic set and neutrosophic multi set,  near 

ring are presenting in this section. Fuzzy set can take a single value between [0,1] 

2.1 Definition:  

Let be a non empty set  and  be a fuzzy set over  is defined by[25] 
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 = { / } where  [0,1]. 

2.2 Definition:  

Let  be a non empty set  and  be a multi fuzzy set over  is defined as[20,21] 

={< , , , ,… >: } where : [0,1] for all n  {1,2,…i} and 

 

2.3 Definition: 

Let  be a non empty set then neutrosophic fuzzy set [7] in  is defined as 

={ , , >:  and , , [0,1]}  

Where is the truth membership function,  is the indeterminancy membership function 

and  falsity membership function and 0 + +  1. 

2.4 Definition:  

Let  be a non empty set. A neutrosophic multi fuzzy set  on   can be defined as follows 

={ ,( ,.. ),( ,( ,….. >: } 

Where ,.. : [0,1] 

[0,1] 

,….. [0,1] 

0  1   for n=1 to i 

( )) , ( )) , ( ,….. are the 

sequences of truth membership values, indeterminacy membership values and falsity membership 

values. In addition i is called the dimension of neutrosophic multi fuzzy set  denoted by d( . 

The sequence of truth membership values are arranged in decreasing order, but the corresponding 

indeterminacy membership and falsity membership values may not be in any order. 
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2.5 Definition: 

Let  and  neutrosophic multi fuzzy sets 

where ={( ,.. ,( ),( ,….. } and 

={( ,.. ,( ),( ,….. } then we have 

the following relations and operations 

1) iff  , , and n= 1 toi. 

2) iff  , , and n= 1 to i. 

3) = { , max ( ), min( ),min( )} and n= 1 to i. 

{ , min ( ), max ( ),max ( )} and n= 1 to i. 

 

2.6 Definition: 

A non empty set  with the binary operations ‘+’(addition) and ‘.’(multiplication) is called a near 

ring[3] if the following conditions hold: 

1) (  is a group 

2) (  is a semigroup 

3) (  =   for all  

To be precise, it is called right near ring .Since it satisfies the right distributive law. But the  word 

near ring is intended to mean  right near ring. We use  instead of  

A  near ring  is a triple ( ,+, ) where  

1) ( ,+) is a group 

2) is a non empty set of binary operations on  such that , ( ,+, ) is a near ring. 

3) ) =  for all and , . 
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3. Anti Neutrosophic multi fuzzy set of  near ring  

In this section, we introduce the definition of anti neutrosophic multi fuzzy sets of  near ring. We 

proved that union of two anti neutrosophic multi fuzzy ideals of is an anti neutrosophic 

multi fuzzy ideal. We also prove that the intersection of two anti neutrosophic multi fuzzy ideals of 

is also an anti neutrosophic multi fuzzy ideal. 

 

3.1    Definition: 

A neutrosophic multi fuzzy set  

= ={( ,.. ,( ),( ,….. } in a  near ring 

 is called anti neutrosophic multi fuzzy sub  near ring of  if 

1) max(  , ) , 

min(  , ), 

), n= 1 to i. 

2) max( , ) , 

min(  , ),  

), n= 1 to i. 

 

3.2    Definition: 

Let   be a  near ring. An anti neutrosophic multi fuzzy set in a  near ring  is called 

anti neutrosophic multi fuzzy left(resp. right) ideal of  if for all     , , , 

n=1,2,…i 

1)    max(  , ) , 

min(  , ), 
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) 

 

2)          ,  

                  ,  

                 ,  

 

3)          ,  

                  ,  

                  ,  

[resp. right 

  

         ,  

     ] 

is called a anti neutrosophic multi fuzzy ideal of  if  both left and right anti neutrosophic 

multi fuzzy ideal of . 

3.1 Theorem:  

Let anti neutrosophic multi fuzzy left ideal of . Then  is a anti neutrosophic 

multi fuzzy left ideal of . 

Proof: 

Let anti neutrosophic multi fuzzy left ideal of . 

Let , ,  

1)  = max{  , } 
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     max{{max( , ) ,max( , } 

    max{{ max ( , ) , max ( , } 

    max(  , ) 

 

    min{  , } 

      min{{ min ( , ) , min ( , } 

     min {{ min ( , ) , min( , } 

     min (  , ) 

 

    = min{  , } 

     min{{ min ( , ) , min ( , } 

     min {{ min ( , ) , min ( , } 

     min (  , ) 

2)    = max{  , } 

              max{ , } 

              

               = min{  , } 

              min{ , } 

                                  

 

              = min{  , } 
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             min{ , } 

                                 

3.   

                   = max{ , } 

                    max{ , } 

                    

            

                   = min{  , } 

                    min{ , } 

                    

 

           

                  = min{  , } 

                   min{ , } 

                   

 is a anti neutrosophic multi fuzzy left ideal of . 

 

3.2 Theorem:  

Let anti neutrosophic multi fuzzy right ideal of then  is a anti neutrosophic 

multi fuzzy right ideal of . 

Proof: 

Let  neutrosophic multi fuzzy right ideal of . 
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Let , ,  

1. = max{  , } 

max{{max( , ) ,max( , } 

max{{ max ( , ) , max ( , } 

max(  , ) 

 

 min{  , } 

   min{{ min ( , ) , min ( , } 

   min {{ min ( , ) , min( , } 

   min (  , ) 

 

= min{  , } 

 min{{ min ( , ) , min ( , } 

 min {{ min ( , ) , min ( , } 

 min (  , ) 

2.    = max{  , } 

          max{ , } 

          

          = min{  , } 

         min{ , } 
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         = min{  , } 

        min{ , } 

                            

3.     =  max{  , } 

              max{ , } 

              

           = min{  , } 

             min{ , } 

             

          =  min{  , } 

            min{ , } 

            

is a anti neutrosophic multi fuzzy right ideal of . 

3.3 Theorem: 

Let anti neutrosophic multi fuzzy ideal of then  is a anti neutrosophic multi 

fuzzy ideal of . 

Proof: It is clear. 

 

3.4 Theorem:  

Let anti neutrosophic multi fuzzy left ideal of and then  is a anti neutrosophic 

multi fuzzy left ideal of . 

Proof: 



Neutrosophic Sets and Systems, Vol. 48, 2022     75  

 

 
 
K. Hemabala, and B. Srinivasa Kumar, Anti Neutrosophic multi fuzzy ideals of  near ring 

Let  neutrosophic multi fuzzy left ideal of . 

Let , ,  

1.   = min{  , } 

     min{{max( , ) ,max( , } 

max{{ min ( , ) , min ( , } 

max(  , ) 

 

         max{  , } 

   max{{ min ( , ) , min ( , } 

   min {{ max ( , ) , max( , } 

  min (  , ) 

 

 = max{  , } 

   max{{ min ( , ) , min ( , } 

   min {{ max ( , ) , max ( , } 

   min (  , ) 

2.       = min{  , } 

             min{ , } 

             

            = max{  , } 

           max{ , } 



Neutrosophic Sets and Systems, Vol. 48, 2022     76  

 

 
 
K. Hemabala, and B. Srinivasa Kumar, Anti Neutrosophic multi fuzzy ideals of  near ring 

                               

           = max{  , } 

          max{ , } 

                              

 

 

 

3.  

                = min{ , } 

                min{ , } 

                

         

               = max{  , } 

               max{ , } 

               

        

               = max{  , } 

               max{ , } 

               

is a anti neutrosophic multi fuzzy left ideal of . 

 

3.5 Theorem: 
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Let  and  anti neutrosophic multi fuzzy right ideal of then is a anti neutrosophic 

multi fuzzy right ideal of . 

 

Proof: 

Let  and  neutrosophic multi fuzzy right ideal of . 

Let Let , ,  

1. = min{  , } 

      min{{max( , ) ,max( , } 

     max{{ min ( , ) , min ( , } 

     max(  , ) 

    max{  , } 

      max{{ min ( , ) , min ( , } 

      min {{ max ( , ) , max( , } 

      min (  , ) 

      = max{  , } 

       max{{ min ( , ) , min ( , } 

       min {{ max ( , ) , max ( , } 

      min (  , ) 

2.   = min{  , } 

             min{ , } 
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              = max{  , } 

             max{ , } 

                                 

             = max{  , } 

            max{ , } 

                                

 

3.      =  min{  , } 

                   min{ , } 

                   

 

          = max{  , } 

                    max{ , } 

                    

        = max{  , } 

                   max{ , } 

                   

is a anti neutrosophic multi fuzzy right ideal of . 

3.6 Theorem: 

Let  and  anti neutrosophic multi fuzzy ideal of then is also a anti  neutrosophic 

multi fuzzy ideal of . 
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Proof: It is clear. 

 

4. Anti Product of anti neutrosophic multi fuzzy ideals 

 

In this section we define anti product of anti neutrosophic multi fuzzy  near ring M. We proved 

that anti product of anti neutrosophic multi fuzzy ideals of M is a anti neutrosophic multi fuzzy 

ideal of M. 

 

 

4.1 Definition: 

Let  and  are two anti neutrosophic multi fuzzy ideals of  near rings  and  resp. Then 

the anti product of anti neutrosophic multi fuzzy subset of  near ring is defined by  

 such that  

 

 

             

    

4.2 Theorem: 

Let  and  anti neutrosophic multi fuzzy left ideal of  near rings  and then is also 

a anti neutrosophic multi fuzzy left ideal of . 

Proof: 

Let  and  be anti neutrosophic fuzzy left ideals of  respectively 

Let ( , ),( , ),( ) ∈  

1.   (( , ) − ( , )) =  (  − ,  − ) 

                            =  (  (  − ),  (  − )) 
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                             {  (  ( ),  ( ))],  [  ( ),  ( ))} 

                             {  [  ( ),  ( )],  [  ( ),  ( ))} 

                             (  ( , ),  ( , )) 

 

 (( , ) − ( , )) =  (  − ,  − ) 

                          =  (  (  − ),  (  − )) 

                           {  (  ( ),  ( ))],  [  ( ),  ( ))} 

                            {  [ ( ),  ( )],  [  ( ),  ( ))} 

                            (  ( , ),  ( , )) 

 (( , ) − ( , )) =  (  − ,  − ) 

                          =  (  (  − ),  (  − )) 

                            {  (  ( ),  ( ))],  [  ( ),  ( ))} 

                            {  [  ( ),  ( )],  [  ( ),  ( ))} 

                            (  ( , ),  ( , )) 

2.   =  

                                      = ( (  

                           { , } 

                           

        =  

                           min{ , } 
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       =  

                          min{ , } 

                                              

 

3.   

                                   = ) 

                 = ma { , } 

                 ma { , } 

                 

     

                            = ) 

                = min{  , } 

                 min{ , } 

                 

      

                           = ) 

               = min{  , } 

               min{ , } 

               

  is also a anti  neutrosophic multi fuzzy left ideal of . 

4.3  Theorem: 
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Let  and  anti neutrosophic multi fuzzy right ideal of  near rings  and then is 

also a anti  neutrosophic multi fuzzy right ideal of . 

Proof: 

Let  and  be anti neutrosophic fuzzy right ideals of  respectively 

Let ( , ),( , ),( ) ∈  

1.   (( , ) − ( , )) =  (  − ,  − ) 

                               =  (  (  − ),  (  − )) 

                                   {  (  ( ),  ( ))],  [  ( ),  ( ))} 

                                   {  [  ( ),  ( )],  [  ( ),  ( ))} 

                                   (  ( , ),  ( , )) 

 

      (( , ) − ( , )) =  (  − ,  − ) 

                               =  (  (  − ),  (  − )) 

                                 {  (  ( ),  ( ))],  [  ( ),  ( ))} 

                                 {  [ ( ),  ( )],  [  ( ),  ( ))} 

                                 (  ( , ),  ( , )) 

      (( , ) − ( , )) =  (  − ,  − ) 

                               =  (  (  − ),  (  − )) 

                                 {  (  ( ),  ( ))],  [  ( ),  ( ))} 

                                 {  [  ( ),  ( )],  [  ( ),  ( ))} 

                                 (  ( , ),  ( , )) 
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2.    =  

                                         = ( (  

                             { , } 

                             

         =  

                            min{ , } 

                                                 

      =  

 min{ , }                                                                                                                                                                 

 

3.      =  , } 

                           max{ , } 

                           

            =  , } 

                           min{ , } 

                           

            =  , } 

                          min{ , } 
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  is also a anti  neutrosophic multi fuzzy right ideal of . 

 

4.4 Theorem: 

Let  and  anti neutrosophic multi fuzzy ideal of  near rings  and then is also a 

anti  neutrosophic multi fuzzy ideal of . 

Proof: It is clear                         

5. Conclusion 

 

To conclude, the notion of neutrosophic multi fuzzy gamma near-ring, neutrosophic multi fuzzy 

ideals of gamma near-rings have been discussed. The proof for the theorem that states “Union and 

Intersectionof two neutrosophic multi fuzzy ideals of gamma near-ring is also a Neutrosophic multi 

fuzzy ideal of gamma near-ring” has been provided. 
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Abstract:  This paper is to introduce a two-warehouse system for trapezoidal bipolar 

neutrosophic disparate expeditious worsen items with power demand pattern is dealt. 

Inventory worsens in the both storehouses disparate fixed amount. Demand is considered three 

different models (a) increasing demand (b) decreasing demand (c) linear demand. The model 

effectiveness in identifying the optimal order time that minimized overall costs is improved by 

the trapezoidal bipolar Neutrosophic number representation of the parameters. The Worsen in 

self-warehouse at earliest but in other scenario rented warehouse mostly we have more 

provision and potentiality provides for better growth in inventory. Finally, the model is 

executed using the trapezoidal bipolar neutrosophic number with numerical examples. 

Affectability analysis of the minimize solution of a total cost is effective to various types of the 

model is provide the output are furnished in detail. 

Keywords: Inventory, Tropezoidal Bipolar Neutrosophic number,  Two Ware-House, Power 

demand, Shortages, worsen,  shortage, logarithmic demand. 

_____________________________________________________________________________________ 

1. INTRODUCTION 

 

In inventory models of EOQ is consequence considered request  of product is linear 

regrettably. This may not be attainable in a few circumstances. It’ll be best to considered that the 

demand changes with time. Knowledge on stock demonstrate with power demand pattern is 

vital since it permit to germane uncover with the behaviours and evolution of the stock.  

Consumers want just-finished food items, so demand for baked or ready-made goods 

such as cakes, cookies, candy and streamed food is increased level at the start of the scheduling 

period (m > 1). Fresh meat, fish, fruits, vegetables, yoghurts, and other foods may all experience 

this form of demand. Since deals are decreased when the arrange of rot approaches. Request for 

unused things with a solid specialized parameter is expanded at the begin of the cycle than at 

the end. Mobile phones, smart phones, and computers, for example, are in higher demand as 

they first come out on the market because of the creativity and new implementation they 

provide. 

Other items, on other hand, have higher demand during end of the inventory period 

(m< 1). Condition arises when a commodity becomes unavailable, such as gasoline or diesel oil. 

Flour, coffee, gasoline, milk, water, and sugar are examples of essential household products that 

fall into this category. Increases in demand happen when the amount of inventory on sale starts 

to deplete due to daily needs. Other sources request for theatres tickets, cinemas, musical events, 

sporting events, and other events, it’s often positive by closing accounting year, or when it’s 

time to revel it.  
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Adaraniwon et al. [1] discussed the EOQ model was researched for deferred corruption and 

missed deals. Request rate, reliable pace of rot, and fractional overabundance pace of request 

amount, just as absolute stock expense per unit time, are completely expressed. A. K. Bhunia et 

al.[2]  manages a solitary declining thing stock model with two separate stockrooms with 

various conservation offices. D. Nagarajan et al.[13] developed  Dombi Interval Valued Neutrosophic 

Graph and its Role in Traffic Control Management. J. Kavikumar & D. Nagarajan [16] deal with  

Neutrosophic General Finite Automata. S. Broumi et al. [21] Analyzing Age Group and Time of the Day 

Using Interval Valued Neutrosophic Sets. Abdel-Basset et al. [18] manages a Bipolar Neutrosophic 

Multi Criteria    Decision Making Framework for Professional Selection. 

S. Agrawal et al. talked about slope type interest, with the capacity to go about as a 

solitary stockroom stock framework or two distribution center stock frameworks relying upon 

the model boundaries. Chakraborty & Sankar [7]  by allowing  The Pentagonal Fuzzy Number: 

Its Different Representations, Properties, Ranking, Defuzzification and Application in Game 

Problems. Chakraborty & Broumi [8] introduced Some properties of Pentagonal Neutrosophic 

Numbers and its Applications in Transportation Problem Environment. Ganesan et al.[15] 

developed by An integrated new threshold FCMs Markov chain based forecasting model for 

analyzing the power of stock trading trend.  J. Sicilia, et al. [17] examined Stock is deterministic, 

differs as per time in each solicitation period, and follows a force request design. Chakraborty & 

Mondal by including Different linear and non-linear form of Trapezoidal Neutrosophic 

Numbers, De-Neutrosophication Techniques and its Application in time cost optimization 

technique, sequencing problem. Chakraborty Mondal, S. Broumi deal with De-

Neutrosophication technique of pentagonal neutrosophic number and application in minimal 

spanning tree. S. Broumi & D. Nagarajan introduced by Implementation of Neutrosophic 

Function Memberships Using MATLAB Program.D.Nagarajan et al[31] explained the 

nutrosophic multiple regression. S.Broumi et al [32] presented A new distance measure for 

trapezoidal fuzzy neutrosophic numbers based on the centroid. 

R. B. Krishnaraj et al. [20] introduced the two-boundary Weibull circulation decay 

deterministic stock model for power request designs without deficiencies. S. Te Jung, et al. [26] 

determined an EOQ model for things Weibull dispersed corruption, deficiencies and force 

request design. 

S. Pradhan, , et al.[25]  presented the impact of swelling on the force request design was 

explored, with two boundaries of the Weibull appropriation for crumbling being thought of, just 

as a confined pay approach with dynamic trade credit. S.Gomathy et al.[27] by introducing  

Plithogenic sets and their application in decision making.  Muhammad Saqlain & Smarandache 

[28]  show that with Octagonal Neutrosophic Number: Its Different Representations, Properties, 

Graphs and De-Neutrosophication. Saqlain  et al. consider Linear and Non-Linear Octagonal 

Neutrosophic Numbers: Its Representation, α-Cut and Applications. N. Rajeswari, et al. solved 

the overabundance pace of neglected interest is thought to be a diminishing outstanding 

capacity of holding up time in the investigation. Evaluated mean portrayal, marked distance, 

and centroid strategies are utilized to defuzzify the all-out cost.  
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2. ASSUMPTIONS AND NOTATIONS 

(i)  𝐷(𝑡) =
ε𝑡

1
𝑚−1

𝑚𝑇
1
𝑚

    where ε is positive constant, 0 <m< 1  ,  T is the planning horizon. 

(ii) Shortages are permitted.  

(iii) The lead time is negligible.  

(iv) Worsen  rate of RW (휃) disparate  than the decay rate of OW (∅) 

(v) The inventory system deals with single item only. 

(vi) The cost of holding at RW is less than the holding cost at OW (𝐼𝐶𝐻0
> 𝐼𝐶𝐻 𝑟

).  

(vii) The OW is restricted number W units, while the RW is infinite number. For business 

purposes, RW products are consumed first, followed by OW items. 

 

The accompanying documentations are utilized all through the paper: 

ℑ𝑟(𝑡)      : Stock volume in RW at time t , t≥0. 

ℑ0(𝑡)   : Stock volume in OW at time t, t≥0. 

S(t)         : Scarcity Stock volume at time t, t≥0 

A  : Ordering cost per order per year. 

T  : Cycle of length. 

𝑡1   : Time of the Stock level it vanish in RW 

𝑡2            : Time of the Stock level it vanish in OW 

𝐼𝐶𝐻0
        : Holding cost per unit for OW       𝐼𝐶𝐻0

> 𝐼𝐶𝐻𝑟
 

𝐼𝐶𝐻𝑟
  : Holding cost per unit for RW   

ℋ𝑟           : Inventory holding cost per unit of RW  

ℋ0    :  Inventory holding cost per unit of OW 

S  : Inventory Shortage cost per cycle. 

𝐼𝐶𝑆   :Shortagecost per unit .  

𝐼𝐶𝑑   : Worsen cost per unit. 

ε  : Demand index during the constant cycle time T 

m   : Demand index  

Z   : Stock level Higher at the beginning of the cycle. 

W  : Warehouse capacity of OW. 

Q   : Total order Quantity per cycle. 

TC (𝑡1, T) : Optimum total cost per unit. 

 

3. MATHEMATICAL FORMULATION 

Definition :3.1 

Fuzzy set:  A set s  �̂�, defined as   �̂� = {(𝐴, ∅�̂�) ∶   𝐴 ∈ 𝑆    ∅�̂�(𝐴) ∈ [0,1]}   and usually denoted by 

the pair as (𝐴, ∅�̂�(𝐴)), 𝐴 ∈ 𝑆    and    ∅�̂�(𝐴) ∈ [0,1] then  �̂� is said to be a fuzzy set. 

Definition 3.2  Neutrosophic set: [ 5 ]  A set �̂� is identified as a neutrosophic set if  �̂� =

{〈𝑝; 𝛼 �̂� (𝑝), 𝛽 �̂�(𝑝), 𝛾 �̂�(𝑝)  ]〉  ⋮ x ∈ P, P = universal set} , where 𝛼 �̂� (𝑝) ∶ P → [0, 1] signifes the scale 

of confidence   𝛽 𝑛𝑒𝑢𝐵𝑖𝑇̂ (𝑝) (p) ∶ P → [0, 1] signifies the scale of hesitation and 𝛾 �̂�(𝑝) ∶ P → [0, 1] 

signifes the scale of falseness. Where, 𝛼 �̂� (𝑝), 𝛽 �̂�(𝑝), 𝑎𝑛𝑑 𝛾 �̂�(𝑝)   satisfies the relation: 
0 ≤ 𝛼 �̂� (𝑝) + 𝛽 �̂�(𝑝), + 𝛾 �̂�(𝑝) ≤ 3 

Definition :3.3  Single-Valued Neutrosophic..Set: $Chakraborty$ [ 4] 

A set of Neutrosphic is 𝑁�̃�  in the?definition 3.1. is claimed to be a single-Valued 

neutrosophic set (𝑆𝑉𝑇𝑟𝑁𝑠̃   ) if 𝑥 may be single-valued independent variable. 𝑆𝑉𝑇𝑟𝑁𝑠̃  = {〈𝑥; 

[𝜌𝑆𝑉𝑇𝑟𝑁𝑠̃  (𝑥), 𝜎𝑆𝑉𝑇𝑟𝑁𝑠̃ (𝑥), τ𝑆𝑉𝑇𝑟𝑁𝑠̃ (𝑥)]〉⋮ 𝑥∈𝑋}, where 𝜌𝑆𝑉𝑇𝑟𝑁𝑠̃  (𝑥), 𝜎𝑆𝑉𝑇𝑟𝑁𝑠̃ (𝑥), τ𝑆𝑉𝑇𝑟𝑁𝑠̃ (𝑥) provided the 

method of accuracy, dubiety and falsehood-memberships function0respectively. 
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Definition :3.4  (.Tropezoidal&Single Valued Neutrosophic Number&) 

Neutrosophic number with tropezoidal Single Valued (Ω̃) is defined a Ω̃ =< 

(r1, r2, r3, r4: Υ), (u1, u2, u3, u4: 𝜆), (q1, q2, q3, q4: 휂)   >  , 𝑤ℎ𝑒𝑟𝑒𝜇, 𝜗, 휁∈ [0,1]. The real/membership function 

 𝜌Ω̃: R → [0, Υ], the dubiety/membership function    𝜎Ω̃: R → [𝜆, 1] and the falsehood/membership function 

τΩ̃:  : R+→//[휂, 1] are characterized as follows: 

        𝜋Ω̃  =      {

ϑΩ̃𝑙(𝑥),          𝑟1  ≤  𝑥 <  𝑟2

Υ,              𝑟2  ≤  𝑥 <  𝑟3

ϑΩ̃𝑟(𝑥) ,       𝑟3 <  𝑥 ≤   𝑟4

0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 >.

 

θΩ̃  =      {

εΩ̃𝑙(𝑥),        𝑢1  ≤  𝑥 < 𝑢2

𝜆,               𝑢2  ≤  𝑥 < 𝑢3

εΩ̃𝑟(𝑥) ,     𝑢3 <  𝑥 ≤ 𝑢4

1,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 >.

 

 η Ω̃  =      {

ℓΩ̃𝑙(𝑥),        𝑞1  ≤  𝑥 < 𝑞2

휂,              𝑞2  ≤  𝑥 < 𝑞3

ℓΩ̃𝑟 (𝑥) ,     𝑞3 <  𝑥 ≤  𝑞4

1,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 >.

 

 

Definition :3.5 Bipolar neutrosophic set: A set �̂� is identified as a neutrosophic set if  𝑇𝑛𝑒𝑢𝐵𝑖
̂ =

{〈𝑝; 𝛼 𝑇𝑛𝑒𝑢𝐵𝑖̂  (𝑝), 𝛽 𝑇𝑛𝑒𝑢𝐵𝑖̂ (𝑝), 𝛾 𝑇𝑛𝑒𝑢𝐵𝑖̂ (𝑝)  ]〉  ⋮ x ∈ P, P = universal set} , where 𝛼 𝑇𝑛𝑒𝑢𝐵𝑖̂
+(𝑝) ∶ P → [0, 

1], 𝛼 𝑇𝑛𝑒𝑢𝐵𝑖̂  −(𝑝) ∶ P → [-1, 0],  signifies the scale of confidence 𝛽 𝑇𝑛𝑒𝑢𝐵𝑖̂  +(𝑝) ∶ P → [0, 1], 𝛽 𝑇𝑛𝑒𝑢𝐵𝑖̂
−(𝑝) ∶ P → [-1, 0] 

signifies the scale of hesitation 𝛾 𝑇𝑛𝑒𝑢𝐵𝑖̂
+(𝑝) ∶ P → [0, 1], 𝛾 𝑇𝑛𝑒𝑢𝐵𝑖̂

−(𝑝) ∶ P → [-1, 0],signifies the scale of falseness. 

Where, 𝛼 𝑇𝑛𝑒𝑢𝐵𝑖̂  (𝑝), 𝛽𝑇𝑛𝑒𝑢𝐵𝑖̂ (𝑝), 𝑎𝑛𝑑 𝛾 𝑇𝑛𝑒𝑢𝐵𝑖̂ (𝑝)   satisfies the relation: 

−0 ≤ 𝛼 𝑇𝑛𝑒𝑢𝐵𝑖̂  (𝑝), 𝛽𝑇𝑛𝑒𝑢𝐵𝑖̂ (𝑝), 𝑎𝑛𝑑 𝛾 𝑇𝑛𝑒𝑢𝐵𝑖̂ (𝑝)  ≤  3 +  

 

  Definition :3.6 De- Bipolar neutrosophication of Tropezoidal. Neutrosophic0 number:     

This..system, the expulsion region procedure executed to assess the de-neutrosophication worth of  

tropezoidal single esteemed neutrosophic number is  

𝑇𝑛𝑒𝑢𝐵𝑖
̂  =<  (r1, r2, r3, r4: Υ), (u1, u2, u3, u4: 𝜆), (q1, q2, q3 , q4: 휂)  > , de-neutrosophic form 𝑆̃̃ is provided  as  

𝑇𝐷𝑛𝑒𝑢𝐵𝑖
̂ = (

 𝑟1+ 𝑟2+ 𝑟3+r4+𝑢1+ 𝑢2+ 𝑢3+u4+ 𝑞1+ 𝑞2+ 𝑞3+q4

6
) 

 

The inventory model is created in the following manner: At the start of each period, Z units of goods 

arrived in the stock system. The W units are kept in OW, while the rest are kept in RW. The items in OW are 

devoured solely after the products in RW have been burned-through. The stock level is diminishing in the 

RW during the time span [𝑜, 𝑡1], because of the request rate and disintegration. 

The stock model is advanced as follows: Z units of object arrived inventory model at the start of each 

period. W units are kept in OW and the rest is put absent in RW. The things of OW are eaten up exclusively 

after burning-through the items kept in RW. In the RW, during the time span [𝑜, 𝑡1], stock level is 

diminishing because of the interest rate and disintegration and the stock level is lessening to zero at 𝑡1.  The 

stock W diminishes during [𝑜, 𝑡1], because of decay just, while during [ 𝑡1, 𝑡2], the stock is exhausted because 

of both interest and crumbling. The Stock level is dropping to zero at  𝑡2.  Worsen rate of RW (휃)  is disparate 

than the worsen rate of OW (∅).The holding cost at RW is less than the holding cost at OW (𝐼𝐶𝐻0
> 𝐼𝐶𝐻 𝑟

).  

Finally, a shortfall happens due to demand during the time span [ 𝑡1, 𝑇]. 

 

Case (i) System with increasing demand    𝟎 < 𝑚 < 1 

The total request during the span is ε units. When  0 < 𝑚 < 1, a larger portion of request at end of inventory 

cycle. 

 

Here the Stock level at RW reduce due to increasing demand rate and constant worsen rate in the interval 

( 0, 𝑡1) and reaches zero at 𝑡1. 
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Hence, the Stock level in RW for    𝑡 𝜖 (0, 𝑡1)   fulfil the differential equations 

𝑑ℑ𝑟(𝑡)

𝑑𝑡
 =  −

ε𝑡
1
𝑚−1

𝑚𝑇
1
𝑚

− 휃 ℑ𝑟(𝑡)            0 ≤ 𝑡 ≤ 𝑡1                                                              (1)      

Stock level at OW diminishes, because of weakening over the span (0, 𝑡1), and because of expanding 

request rate and consistent decay rate over the stretch (𝑡1, 𝑡2) and arrives at zero at 𝑡2. In this manner it 

fulfils the differential conditions 
𝑑ℑ0(𝑡)

𝑑𝑡
= −∅ℑ0(𝑡)                               0 ≤ 𝑡 ≤ 𝑡1                                                              (2)                                            

𝑑ℑ0(𝑡)

𝑑𝑡
= −

ε𝑡
1
𝑚−1

𝑚𝑇
1
𝑚

− ∅ℑ0(𝑡)                𝑡1 ≤ 𝑡 ≤ 𝑡2                                                            (3)   

The range  of pending shortages over ( 𝑡2, 𝑇) satisfies the derivative            

𝑑𝑆(𝑡)

𝑑𝑡
=  − 

ε 𝑡
1
𝑚−1

𝑚𝑇
1
𝑚

                                 𝑡2 ≤ 𝑡 ≤ 𝑇                                                               (4)        

 

The actions of the stock system during the entire span [0, T] is shown 

in Figures 1 

 
Solving the above differential equations with the boundary conditions 
ℑ𝑟(𝑡1) = 0,                          0 ≤ 𝑡 ≤ 𝑡1    
ℑ𝑜(0) = 𝑊,                        0 ≤ 𝑡 ≤ 𝑡1  
ℑ0(𝑡2) = 0 ,                         𝑡1 ≤ 𝑡 ≤ 𝑡2  
𝑆(𝑡2) = 0,                          𝑡2 ≤ 𝑡 ≤ 𝑇  

The solutions to Equations (1)-(4) are 

ℑ𝑟(𝑡) =
ε

𝑇
1
𝑚

 {{𝑡1

1

𝑚 − 𝑡
1

𝑚} −
𝑚 𝜃

𝑚+1
 {𝑡1

1

𝑚
+1  − 𝑡 

1

𝑚
+1}  }          0 ≤ 𝑡 ≤ 𝑡1                           (5)          

 ℑ0(𝑡) = 𝑊 − ∅𝑡                                                             0 ≤ 𝑡 ≤ 𝑡1                                       (6)         

ℑ0(𝑡) =
ε

𝑇
1
𝑚

 {{𝑡2

1

𝑚 − 𝑡
1

𝑚} −
𝑚∅

𝑚+1
{𝑡2

1

𝑚
+1  − 𝑡 

1

𝑚
+1}  }         𝑡1 ≤ 𝑡 ≤ 𝑡2                          (7)       

𝑆(𝑡) =
  ε

𝑇
1
𝑚

 {𝑡2

1

𝑚 − 𝑡
1

𝑚}                                                   𝑡2 ≤ 𝑡 ≤ 𝑇                                 (8)                        

 

Applying the boundary condition   ℑ𝑟(0) = 𝑍 − 𝑊   the value of  Z is  

 𝑍 = 𝑊 +
ε

𝑇
1
𝑚

 {1 −
𝑚 𝜃 𝑡1

𝑚+1
 } {𝑡1

1

𝑚}                                                                                                                              (9)   

The maximum shortage inventory, S(T) is obtained  from equation  (8) 

Q= Z - S(T) 
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Finally, from equation (9)  we have 

𝑄 = 𝑊 +
ε

𝑇
1
𝑚

 {1 −
𝑚 ∅ 𝑡1

𝑚+1
 } {𝑡1

1

𝑚}  −  
  ε

𝑇
1
𝑚

 {𝑡2

1

𝑚 − 𝑇
1

𝑚}                                                                                          (10)  

Total similar inventory cost per span consists of the following cost parameters: 

1. The invoice cost is  A 

2. The holding cost of inventory in RW is resulting 

           ℋ𝑟 = 𝐼𝐶𝐻𝑟
{∫ ℑ𝑟(𝑡) 𝑑𝑡

𝑡1

0
 } 

          ℋ𝑟 =
𝐼𝐶𝐻𝑟 ε

𝑇
1
𝑚

{   {(
1

𝑚+1
) 𝑡1

1

𝑚
+1} −  {(

𝜃𝑚

(2𝑚+1)
) 𝑡1

1

𝑚
+2}}                                                                               (11)              

                           

3. The  holding cost of inventory in OW is resulting 

           ℋ0 = 𝐼𝐶𝐻0
{∫ ℑ0(𝑡) 𝑑𝑡

𝑡2

0
 } 

  ℋ0 = 𝐼𝐶𝐻0
{𝑊 𝑡1 − ∅

𝑡1
2

2
}  +

𝐼𝐶𝐻0ε

𝑇
1
𝑚

{   {(
1

𝑚+1
) 𝑡2

1

𝑚
+1} − {(

 ∅𝑚

(2𝑚+1)
) 𝑡2

1

𝑚
+2}} −

𝐼𝐶𝐻0 ε

𝑇
1
𝑚

{   {𝑡1  𝑡2

1

𝑚 −

{(
𝑚

𝑚+1
) 𝑡1

1

𝑚
+1} }   − (

 ∅𝑚

(𝑚+1)
) {𝑡1  𝑡2

1

𝑚
+1 − {(

𝑚

(2𝑚+1)
) 𝑡1

1

𝑚
+2}}}                                                (12)                 

4. The shortage cost per cycle  is  

                      𝑆 =  𝐼𝐶𝑠 {∫
  ε

𝑇
1
𝑚

 {𝑡2

1

𝑚 − 𝑡
1

𝑚}     𝑑𝑡
𝑇

𝑡2
 }  

     𝑆 =  𝐼𝐶𝑠
  IC

𝑇
1
𝑚

 {𝑡2

1

𝑚𝑇 − (
𝑚

𝑚+1
) 𝑇

1

𝑚
+1 − (

1

𝑚+1
) 𝑡2

1

𝑚
+1}                                                                        (13)              

5. The cost  of worsen products  in RW and OW during  (𝟎, 𝒕𝟐) are 

  𝐷 = 𝐼𝐶𝑑{휃 ∫ ℑ𝑟(𝑡) 𝑑𝑡
𝑡1

0
 +  ∅ ∫ ℑ0(𝑡) 𝑑𝑡

𝑡2

0
}            

D=  
𝐼𝐶𝑑  ε 𝜃

𝑇
1
𝑚

{   {(
1

𝑚+1
) 𝑡1

1

𝑚
+1} −  {(

𝜃𝑚

(2𝑚+1)
) 𝑡1

1

𝑚
+2}} + 𝐼𝐶𝑑 ∅ {𝑊 𝑡1 − ∅

𝑡1
2

2
}  +      

𝐼𝐶𝑑  ε ∅

𝑇
1
𝑚

{   {(
1

𝑚+1
) 𝑡2

1

𝑚
+1} −  {(

 ∅𝑚

(2𝑚+1)
) 𝑡2

1

𝑚
+2}} −

𝐼𝐶𝑑 ε 

𝑇
1
𝑚

{   {𝑡1  𝑡2

1

𝑚 − {(
𝑚

𝑚+1
) 𝑡1

1

𝑚
+1} } − (

 ∅𝑚

(𝑚+1)
) {𝑡1  𝑡2

1

𝑚
+1 −

{(
𝑚

(2𝑚+1)
) 𝑡1

1

𝑚
+2}}}                                                                                                                                       (14)            

           

  Finally, the Total inventory cost per unit time is resulting 

  TC (t2)=  
1

𝑇
  (Invoice cost + Holding cost +Shortage cost +Worsen cost ) 

TC (t2) =
1

𝑇
{( 𝐴 ) +

(𝐼𝐶𝐻𝑟
+ 𝐼𝐶𝑑 휃) ε

𝑇
1
𝑚

{   {(
1

𝑚 + 1
) 𝑡1

1
𝑚

+1} −  {(
휃𝑚

(2𝑚 + 1)
) 𝑡1

1
𝑚

+2}}    

+ (𝐼𝐶𝐻0
+𝐼𝐶𝑑  ∅) {𝑊 𝑡1 − ∅

𝑡1
2

2
}  

+
(𝐼𝐶𝐻0

+𝐼𝐶𝑑  ∅)ε

𝑇
1
𝑚

{   {(
1

𝑚 + 1
) 𝑡2

1
𝑚

+1} − {(
 ∅𝑚

(2𝑚 + 1)
) 𝑡2

1
𝑚

+2}}

−
(𝐼𝐶𝐻0

+𝐼𝐶𝑑  ∅)ε

𝑇
1
𝑚

{   {𝑡1  𝑡2

1
𝑚 − {(

𝑚

𝑚 + 1
) 𝑡1

1
𝑚

+1} }

− (
 ∅𝑚

(𝑚 + 1)
) {𝑡1  𝑡2

1
𝑚

+1 − {(
𝑚

(2𝑚 + 1)
) 𝑡1

1
𝑚

+2}}}

+
  𝐼𝐶𝑠

𝑇
1
𝑚

 {𝑡2

1
𝑚𝑇 − (

𝑚

𝑚 + 1
) 𝑇

1
𝑚

+1 − (
1

𝑚 + 1
) 𝑡2

1
𝑚

+1}}                                                (15) 
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Numerical examples 

We represent the proposed model for certain mathematical models as given below. 

Example 1  [Case(i)  increasing  demand  0<m<1] 

W=100,  A=50, 휀=100,  휃 = 0.02  ,∅ = 0.03 , 𝐼𝐶𝐻𝑟
= $ 3/𝑢𝑛𝑖𝑡/ 𝑦𝑒𝑎𝑟, 𝐼𝐶𝐻 0

= 5, 𝐼𝐶𝑠 = 12, 𝐼𝐶𝑑 =

10, m=0.5 ,   𝑡1= 0.8,  T=1 in appropriate units. The result is obtained as follows   𝑡2 = 1.15337, 

  TC(t2
∗) =  618.872           𝑄 = 130.462  𝑢𝑛𝑖𝑡𝑠. 

Example 2  [Case(ii)  decreasing demand  m>1] 

As like the same Example 1 with   m= 1, 

 𝑡2 = 1.1487,   TC(t2
∗) =  593.214       𝑄 = 164.147  𝑢𝑛𝑖𝑡𝑠  

Example 3  [Case(iii) Linear demand  m=1]  

As like the same Example 1 with   m= 2, 

The result obtained is as follows like    𝑡1 = 0.8 𝑚𝑜𝑛𝑡ℎ𝑠, 𝑇 = 1 𝑦𝑒𝑎𝑟𝑠,  

 𝑡2 = 1.14419 ,   TC(t2
∗) =  572.59           𝑄 = 175.254  𝑢𝑛𝑖𝑡 

Solution procedure 

 

We came to know that the nonlinear equations. Here, we use MATHEMATICA 9.0 tool find the 

optimum solution  of  𝑡1
∗     and    T ∗   using equation (15)  

D(t1
∗, T∗)  =   

∂2TC (t1,T)

∂t1
2

∂2TC (t1,T)

∂T2 − [
∂2TC (t1,T)

∂t1 ∂T
]

2

 > 0 we recommended “D-test" for optimizing 

functions of two variables  𝑡1 and  T such that  

   

∂TC (t1,T)

∂T
=   {(− 

A

T2) − {1 +
1

m
}   

(ICHr+θICd) IC

T
1
m+2

{   {(
1

m+1
) t1

1

m
+1} +  {(

2θm

(m+1)(m+2)
) t1

1

m
+2}} +

                      (ICH0
+ ∅ ICd)W {t1 − ∅

t1
2

2
} (− 

1

T2) − {1 +
1

m
}  

(ICH0+∅ ICd) IC

T
1
m+2

{   {(
1

m+1
) t2

1

m
+1} +

                         {(
2θm

(m+1)(m+2)
) t2

1

m
+2}} + ICs

  IC

T
1
m+1

 {−
1

m
t2

1

m} −

{
1

m
  

ICs  IC

T
1
m+2

  t2

1

m
+1}     }                                                                                                           ( 16)     

 

 
∂TC (t1,T)

∂t1
==

(ICHr+θICd) IC

T
1
m+1

{   {(
1

m
) t1

1

m} +  {(
2θ(2m+1)

(m+1)(m+2)
) t1

1

m
+1}} + (

1

T
) (ICH

0
+ ∅ ICd)W{1 −

∅ t1}                       (17)  
∂TC (t1,T)

∂t1
= 0     and       

∂TC (t1,T)

∂T
= 0  

 

If    
∂2TC (t1

∗,T ∗)

∂t1
2 > 0  then TC (t1

∗, T ∗) is  minimum Value 

 

Case (ii) Model with decreasing demand     (   𝒎 > 1 ) 

The total requires during the time period  is IC units. At the point when m > 1, a larger part of 

request happens at the start of the time span. 
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Case (iii) Model with Linear demand   𝐦 = 𝟏    

The total requires during the time span is IC units. When m = 1, the request follows a uniform system. 

 
 

TĈ 𝑇𝑛𝑒𝑢𝐵𝑖̂  (t2) =
1

𝑇
{( 𝐴 ) +

(𝐼�̂�𝐻𝑟+𝐼𝐶𝑑 ̂𝜃) ε
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The effects of trapezoidal bipolar neutrosophic numbers: 

 

Here, deteriotion cost  𝐼𝐶�̂�, holding cost in owned warehouse  𝐼�̂�𝐻𝑜, holding cost in rented warehouse 

 𝐼�̂�𝐻𝑟 have been considerede.as trapezoidal bipolar neutrosophic fuzzy set. Thus, the parameters of 

bipolar  neutrosophic numbers are: 

 

𝐼𝐶�̂� < (2.25, 2.72, 3.26, 4.82); (1.76,2.88, 3.14, 4.37), (1.44, 2.76, 3.38, 4.02) > 
𝐼�̂�𝐻𝑜 = < (2.29, 3.26, 5.02, 6.82); (2.06, 3.39, 4.92, 5.65), (3.85, 4.48, 6.34, 8.10 ) > 

𝐼�̂�𝐻𝑟 = < (3.11, 4.15, 5.81, 6.80); (1.57, 2.73, 3.42, 4.04), (0.04, 1.26, 2.35, 3.22) > 

We can generate outcomes into neutrosophic numbers based on the result of trapezoidal bipolar 

neutrosophic number and its membership functions as the De-neutrosophication technology 

develops. 

𝑇𝐷𝑛𝑒𝑢𝐵𝑖
̂ = (

 𝑟1 +  𝑟2 +  𝑟3 + r4 + 𝑢1 +  𝑢2 +  𝑢3 + u4 +  𝑞1 +  𝑞2 +  𝑞3 + q4

6
) 

 

Numerical examples 

We represent the proposed model for certain mathematical models as given below. 

Example 1  [Case(i)  increasing  demand  0<m<1] 

W=100,  A=50, 휀=100,  휃 = 0.02  ,∅ = 0.03 , 𝐼�̂�𝐻𝑟 = $ 6.75/𝑢𝑛𝑖𝑡/ 𝑦𝑒𝑎𝑟, 𝐼�̂�𝐻0 = 9.36 , 𝐼𝐶�̂� =

6.13, 𝐼𝐶𝑠 = 12 , m=0.5 , 𝑡1= 0.7,  T=1 year  in right units. The results extracted as follows  

 𝑡2 = 1.078,  TC(t2
∗) =  510.572           𝑄 = 163.90 𝑢𝑛𝑖𝑡𝑠. 

 

Example 2  [Case(ii)  decreasing demand  m>1] 

As like the same Example 1 with   m= 2, 

The results were obtained as follows    𝑡1 = 0.8 𝑚𝑜𝑛𝑡ℎ𝑠, 𝑇 = 1 𝑦𝑒𝑎𝑟𝑠,  𝑡2 = 1.624, 

  TC(t2
∗) =  564.854      𝑄 = 148.152  𝑢𝑛𝑖𝑡𝑠  

 

Example 3  [Case(iii) Linear demand  m=1] 

As like the same Example 1 with   m= 1, 

The results were obtained as follows       𝑡1 = 0.8  𝑦𝑒𝑎𝑟𝑠, 𝑇 = 1  𝑦𝑒𝑎𝑟𝑠,  𝑡2 = 1.14419, 

  TC(t2
∗) =  546.21           𝑄 = 150.724  𝑢𝑛𝑖𝑡𝑠   
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Table 1  

Impacts of changes within the different sort of the show. 

 𝜶* 

      

    

𝜷* 

            

 

𝜸* 
 

𝒕𝟏        T      TĈ 𝑇𝑛𝑒𝑢𝐵𝑖̂  (t2)       Z        Q 

     W 120 +20 0.3476 0.5034 474.505 167.569 219.89 

 

110 +10 0.3758 0.515 454.438 163.114 209.867 

 

100 0 0.3815 0.5326 417.787 151.178 199.87 

 

90 -10 0.3951 0.5464 388.933 142.149 189.862 

 

80 -20 0.3987 0.5558 322.461 126.996 179.872 

휀 120 +20 0.3976 0.4798 532.097 183.68 219.776 

 

110 +10 0.394 0.4743 515.487 175.707 209.801 

 

100 0 0.3926 0.4696 501.177 169.712 199.817 

 

90 -10 0.3728 0.4687 408.982 156.797 189.858 

 

80 -20 0.3416 0.4642 398.818 148.627 189.789 

   A 60 +20 0.3939 0.6308 271.028 138.891 199.898 

 

55 +10 0.3726 0.6203 267.199 135.992 199.91 

 

50 0 0.3349 0.6146 255.416 129.626 199.934 

 

45 -10 0.3108 0.6041 251.385 126.415 199.945 

 

40 -20 0.3024 0.5968 247.617 125.623 199.948 

    M 0.6 +20 0.394 0.652 251.134 143.065 199.872 

 

0.55 +10 0.3905 0.6442 250.102 140.135 199.888 

 

0.5 0 0.3666 0.6311 248.016 133.661 199.918 

 

0.45 -10 0.3448 0.6254 239.399 126.572 199.943 

 

0.4 -20 0.3321 0.5901 238.567 121.624 199.959 

𝑡2 0.48 +20 0.3684 0.5295 456.028 148.288 199.881 

 

0.44 +10 0.3726 0.5353 397.648 148.329 199.88 

 

0.4 0 0.3805 0.5396 341.843 149.568 199.874 

 

0.36 -10 0.3847 0.5451 283.619 149.679 199.872 

 

0.32 -20 0.3872 0.5516 228.066 149.686 199.871 

𝐼�̂�𝐻𝑟
 2.4 +20 0.348 0.5651 310.475 137.835 199.912 

 

2.2 +10 0.3549 0.5754 299.415 137.953 199.91 

 

2 0 0.3682 0.5911 285.082 138.706 199.905 

 

1.8 -10 0.3839 0.6142 264.511 138.968 199.9 

 

1.6 -20 0.3917 0.622 256.041 139.554 199.896 

𝐼�̂�𝐻0
 4.8 +20 0.3965 0.5866 340.075 145.567 199.871 

 

4.4 +10 0.3924 0.5696 335.495 147.335 199.872 

 

4 0 0.384 0.5442 333.16 149.663 199.873 

 

3.6 -10 0.3757 0.5313 327.115 149.873 199.875 

 

3.2 -20 0.3628 0.5126 319.867 149.972 199.879 

𝐼𝐶𝑠 14.4 +20 0.3784 0.5359 338.189 149.732 199.874 

 

13.2 +10 0.3734 0.52 357.968 151.435 199.872 

 

12 0 0.3687 0.5053 375.68 153.11 199.869 

 

10.8 -10 0.3624 0.4913 391.145 154.279 199.868 

 

9.6 -20 0.3568 0.47 415.109 157.494 199.863 

𝐼�̂�𝑑 12 +20 0.2886 0.4986 348.947 133.439 199.936 

 

11 +10 0.3024 0.5108 346.59 134.977 199.929 

 

10 0 0.3176 0.5281 331.785 136.092 199.923 

 

9 -10 0.3262 0.5308 329.747 137.684 199.918 

 

8 -20 0.3428 0.5381 325.654 140.491 199.907 

휃 0.024 +20 0.3985 0.6005 289.962 143.898 199.86 

 

0.022 +10 0.3956 0.5984 290.647 143.578 199.873 

 

0.02 0 0.3867 0.5953 299.51 142.494 199.903 

 

0.018 -10 0.3756 0.58 301.548 141.842 199.905 

 

0.016 -20 0.3734 0.5684 302.033 141.594 199.917 

∅ 0.036 +20 0.3213 0.5659 291.871 130.792 199.934 

 

0.033 +10 0.327 0.5765 293.236 132.103 199.93 

 

0.03 0 0.3327 0.5796 296.559 133.685 199.925 

 

0.027 -10 0.3789 0.5826 298.656 142.19 199.893 

 

0.024 -20 0.3998 0.5859 300.648 146.439 199.876 
 

        

Note:      𝜶*=   Parameters,   𝜷*=Values,   𝜸*=%Changes 
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To understand the impact of different  parameters, on the optimal cost given by the considered strategy. 

Affectability result is executed by changing (increasing and decreasing) 10 %   in every parameter. The 

effect of the parameters is detailed below. 

         

 

As the  result of the above table ,         

         

(i) Increases in the value of the parameter W then  𝑡1, 𝑇 𝑖𝑠  𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑎𝑛𝑑 TĈ 𝑇𝑛𝑒𝑢𝐵𝑖̂  (t2), 𝑍  , 𝑄 

is increased. 

(ii) Increases in the value of the parameter 𝛿 then  𝑡1, 𝑇 , TĈ 𝑇𝑛𝑒𝑢𝐵𝑖̂  (t2) , 𝑍  , 𝑄 is increased. 

(iii) Increases in the values of either of the parameters A, m then  𝑡1, 𝑇 , TĈ 𝑇𝑛𝑒𝑢𝐵𝑖̂  (t2) ,

𝑍  𝑖𝑠  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑎𝑛𝑑   𝑄 is decreased. 

(iv) Increases in the values of either of the parameters𝐼𝐶𝐻𝑟
, 𝐼�̂�𝑑 ,  𝑡2 then  𝑡1, 𝑇 , 𝑍   is decreased 

and    𝑄 , TĈ 𝑇𝑛𝑒𝑢𝐵𝑖̂  (t2)  is increased. 

(v) Increases in the values of the parameter  𝐼�̂�𝐻0
 then  𝑡1, 𝑇 , TĈ 𝑇𝑛𝑒𝑢𝐵𝑖̂  (t2) is increased and  

𝑄 , 𝑍 is decreased. 

(vi) Increases in the values of the parameter  𝐼𝐶𝑠 then  𝑡1, 𝑇 , 𝑄   is decreased and 

TĈ 𝑇𝑛𝑒𝑢𝐵𝑖̂  (t2)  , 𝑍 is increased.  

(vii) Increases in the values of the parameter  휃 then  𝑡1, 𝑇 , 𝑍     is increased and TĈ 𝑇𝑛𝑒𝑢𝐵𝑖̂  (t2) ,

𝑄  is  decreased 

(viii) Increases in the values of the parameter  ∅ then  𝑡1, 𝑇 , TĈ 𝑇𝑛𝑒𝑢𝐵𝑖̂  (t2)  , 𝑍   is decreased 𝑎𝑛𝑑   𝑄 

is increased. 
        

Changing the parameter values and different total cost of power  

 demand pattern 
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CONCLUSON 

 

              In this article, two-warehouse system for trapezoidal bipolar neutrosophic disparate expeditious 

worsen items with power demand pattern. Because of the various preservation conditions, OW and RW 

have trapezoidal bipolar neutrosophic parameters holding costs and exacerbate costs. The impact of 

demand pattern index optimal policy is dependent on whether the request sample index is lower than, 

equal to, or more than 1.0, according to our findings. Furthermore, when the request sample index is 

0<m<1, a similar structure emerges. However, when m = 1, a different structure emerges. However, 

when m > 1, The proposed demonstrate joins some practical highlights that are probably going to be 

associated for certain sorts of stock. Likewise, this model can be embraced in the stock control of retail 

business like food ventures, convenient garments  household goods, car accessories, electronic items etc. 

increases quantity and decreases the cost of total amount.  In future this paper can be extended in the 

Nero fuzzy environment and can be elongate the EPQ model is considering variable worsen with index 

of power demand and shortages not allow. 
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Abstract. This paper is dedicated to studying the stages that Telafer University has gone through 

at using E-learning. The challenges of converting traditional learning (i.e. classical learning with 

realistic student attendance in their teaching programs) to E-learning over google classrooms. The 

efforts to maintain the quality teaching and their outcomes were a very ambiguous experiment that 

led the authors after more than two years for spreading the Covid-19 Pandemic to evaluate the 

University's performance using the most modern mathematical tools in uncertainty systems that 

called the Neutrosophic theory and logic. Finally, the flexibility of the neutrosophic mathematical 

methods has been applied to analyze the recorded issued data of E-learning in the University. 

Keywords:  E-Learning in Telafer University, Neutrosophic Theory, Neutrosophic Logic, 

Neutrosophic Soft Sets, Comparison Matrix. 

_________________________________________________________________________ 

1. Introduction 

Telafer University has been established since 2014, exactly after four months of establishing 

Telafer university, civilians suffered from forced immigration because of the ISIS occupation. this led 

to the infrastructures of the university have vanished. However, now we do all administrative issues 

and teaching tasks in alternative buildings despite challenges and bad situations.  

mailto:dr.abdaziz@uotelafer.edu.iq
https://orcid.org/0000-0002-0968-5611
https://orcid.org/0000-0002-0968-5611
mailto:ahmed.ahhu@gmail.com
https://orcid.org/0000-0001-6153-9964
mailto:dr.huda-ismael@uotelafer.edu.iq


Neutrosophic Sets and Systems, Vol. 48, 2022     101  

 

 
A. A. Aziz, H. E. Khalid, A. K. Essa “ Telafer University’s Experiment in E-learning as Vague Neutrosophic 
Experiment’’  

At the beginning of quarantine in Iraq (i.e. Feb. 28, 2020) Telafer University represented by 

all academic staff, and their employees were eager to provide a private electronic platform for all 

facilities of the university, since the spread of the COVID-19 pandemic, the providing of private 

virtual platform was an urgent requirement to reconvert the traditional teaching to remote e-learning 

for enabling the teachers and students to communicate smoothly. However, the console of Telafer 

University's platform has been administrated by the team of engineering that they enable to provide 

almost all supporting programs for both teachers and students to avoid any lacking in the teaching 

procedures, as well as the private domain for the university has the extension (@uotelafer.edu.iq) to 

use the Google Workspace. The committee of e-learning in Telafer University has equipped e-mails 

accounts within the domain of the university to all students and the university's members, as well as, 

they uploaded all lecturers (either synchronous or non-synchronous lectures) for the academic staff 

to the google classrooms, the university e-learning council guided the examinations committees in 

the scientific departments by follow up the google classrooms to present help for the teachers and 

students at holding the examinations and any other logistic help for them. 

The neutrosophic theory, neutrosophic probability, neutrosophic sets, neutrosophic 

mathematical programming and neutrosophic logic have firstly originated by the polymath Florentin 

Smarandache, the mathematical professor in New Mexico University at 1995 by his first publications 

[1- 4], the main notion that neutrosophic theory stands on is that every problem can be formulated 

by three functions, truth function, indeterminacy function and its falsity function, this broad insight 

gives the neutrosophic theory the flexibility and wide ability to analyses the data giving problems 

solving in new modern mathematics, the following example regarded as a good demo for the readers 

to understand how the neutrosophic logic and theory can view and solve the problems. 

The example that firstly stated in [5], Let’s consider the population of a country 𝐶1. Most people in 

this country have only the citizenship of the country, therefore they belong 100% to 𝐶1. But there are 

people that have double citizenships, of countries 𝐶1 𝑎𝑛𝑑 𝐶2. Those people belong 50% to 𝐶1, and 

50% to 𝐶2. While citizens with triple citizenships of countries 𝐶1, 𝐶2, and 𝐶3 belong only 33.33% to 

each country. Of course, considering various criteria these percentages may differ. Also, there are 

countries with autonomous zones, whose citizens in these zones may not entirely consider 
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themselves as belonging to those countries. But there is another category of people that have been 

stripped from their 𝐶1 citizenship for political reasons and they have other citizenship, while still 

living (temporarily) in 𝐶1 . They are called paria, and they do not belong to 𝐶1 (not having 

citizenship), but still belong to 𝐶1 (because they still living in 𝐶1). They form the indeterminate part 

of neutrosophic population of country 𝐶1.  

 This paper has been arranged to recognized the performance of the scientific departments in the 

colleges of Telafer University in Iraq versus to its efforts in e-learning and how these departments 

implementation the new methods of remote teaching, where the section 2 has been dedicated to the 

basic mathematical notions which represents the basic tools for the next section, while section 3 

represents the core of the article containing a case study using collected data for three studying 

courses during the spread of COVID-19 pandemic    

2. Mathematical Preliminaries 

In this section, the authors will focus on recalling the essential mathematical tools that should be used 

in the upcoming section to make a fairly estimation to evaluate the performance of the e-learning at 

Telafer University, it is worthy to know the notions of the neutrosophic soft sets where the soft set 

theory was firstly introduced by D. Molodtsov at 1999 [7], while the neutrosophic soft set was set up 

by P. K. Maji at 2013 [8], also there are some other definitions as follows: 

2.1 Definition [6] 

A neutrosophic set 𝐴 on the universe of discourse 𝑋 is defined as 𝐴 = {<  𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >

, 𝑥 ∈ 𝑋} , where 𝑇, 𝐼, 𝐹: 𝑋 →] 0− , 1+[ and 0− ≤ 𝑇𝐴(𝑥), +𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3+. 

From philosophical point of view, the neutrosophic set takes the value from real standard or non-

standard subsets of ] 0− , 1+[. But in real life application in scientific and engineering problems it is 

difficult to use neutrosophic set with value from real non-standard subset of ] 0− , 1+[. Hence we 

consider the neutrosophic set which takes the value from the subset of [0,1]. 

2.2 Definition [7] Let 𝑈 be an initial universe set and 𝐸 be a set of parameters. Let  𝑃(𝑈) denotes 

the power set of 𝑈. Consider a nonempty set 𝐴, 𝐴 ⊂ 𝐸. A pair (𝐹, 𝐴) is called a soft set over 𝑈, where 

𝐹 is a mapping given by 𝐹: 𝐴 → 𝑃(𝑈). 
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2.3 Definition [8] 

Let 𝑈  be an initial universe set and 𝐸  be a set of parameters. Consider 𝐴 ⊂ 𝐸 . Let  𝑃(𝑈) 

denotes the set of neutrosophic sets of  𝑈. The collection (𝐹, 𝐴) is termed to be the soft neutrosophic 

set over 𝑈, where 𝐹 is a mapping given by 𝐹: 𝐴 → 𝑃(𝑈). 

The following definitions have been adapted to consider the upcoming case study section in 

which the best scientific department in Telafer University who can apply the strategical of e-learning 

in their classes to get the best performance in the studying pedagogy. In this paper we have six 

numbers of parameters out of five numbers of studying fields (i.e. Mathematics, Arabic Language, 

General Nursing, Field Crops, Animal Production). We still have the assumptions that the parameters 

are 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑎𝑛𝑑 𝑑6, while the scientific departments are 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑎𝑛𝑑 𝑢5. 

2.4 Definition [8] 

A comparison matrix is a matrix whose rows labelled by the object names 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6 and 

the columns are labelled by the parameters 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5. The entries 𝑐𝑖𝑗  are calculated by 𝑐𝑖𝑗 =

𝑎 + 𝑏 − 𝑐 , where ′𝑎′  is the integer calculated as ‘ how many times 𝑇𝑑𝑖
(𝑢𝑗)  exceeds or equal to 

𝑇𝑑𝑘
(𝑢𝑗)’, for 𝑑𝑖 ≠ 𝑑𝑘 , ∀ 𝑑𝑘 ∈ 𝑈, ‘b’ is the integer calculated as ‘ how many times 𝐼𝑑𝑖

(𝑢𝑗) exceeds or 

equal to 𝐼𝑑𝑘
(𝑢𝑗)’ for 𝑑𝑖 ≠ 𝑑𝑘 , ∀ 𝑑𝑘 ∈ 𝑈 and ‘c’ is the integer calculated as ‘ how many times 𝐹𝑑𝑖

(𝑢𝑗) 

exceeds or equal to 𝐹𝑑𝑘
(𝑢𝑗)’, for 𝑑𝑖 ≠ 𝑑𝑘 , ∀ 𝑑𝑘 ∈ 𝑈. 

2.5 Definition [8] 

The score of an object 𝑑𝑖 is 𝑆𝑖 and is calculated as 𝑆𝑖 = ∑ 𝑐𝑖𝑗𝑗 , then the most appropriated or best 

selection of an object 𝑢𝑗 which own to the maximum value of 𝑆𝑖. 

 

3. Algorithm 

The following algorithm will be the basic road map for the upcoming case study in section 4,  

Step-1- Consider the logical parameters 𝐷 = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6}. 

Step-2- Consider the department names 𝑢 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}. 

Step-3- Compute all 𝑇𝑑1
, … , 𝑇𝑑6

, 𝐼𝑑1
, … , 𝐼𝑑1

, 𝐹𝑑1
, … , 𝐹𝑑6

 for all departments 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, the result of 

this computation step are 30 elements of the kind (𝑇𝑑𝑗
(𝑢𝑖), 𝐼𝑑𝑗

(𝑢𝑖), 𝐹𝑑𝑗
(𝑢𝑖)). 
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Step -4- For each column j=1,2,3,4,5,6 compute how many times that the 𝑻𝒅𝒌
≥ 𝑻𝒅𝒋  ∀ 𝒌 ≠ 𝒋  (𝟏) , 

consider ′′ 𝑎 ′′ is the times for the satisfaction of condition (1). 

Step -5- For each column j=1,2,3,4,5,6 compute how many times that the 𝑰𝒅𝒌
≥ 𝑰𝒅𝒋   ∀ 𝒌 ≠ 𝒋    (𝟐), 

consider ′′ 𝑏 ′′ is the times for the satisfaction of condition (2). 

Step -6- For each column j=1,2,3,4,5,6 compute how many times that the 𝑭𝒅𝒌
≥ 𝑭𝒅𝒋  ∀ 𝒌 ≠ 𝒋   (𝟑) , 

consider ′′ 𝑐 ′′ is the times for the satisfaction of condition (3). 

Step-7- Compute ′′ 𝑎 + 𝑏 − 𝑐 ′′ that have been considered for all departments of the table 2. 

Step- 8- The score of the performance for each department is the summation of the corresponding 

row in table (2). The results of these summations labeled in table (3). 

Step -9- Reorder the best performance to the poor performance depending upon the scores of these 

departments from maximum score to the minimum score. 

Step -10- End 

4. Case Study to Evaluate the Performance of Telafer University in E-learning 

This section has been originated to summarize the performance of the e-learning in five scientific 

departments (math dept., Arabic language dept., general nursing dept., animal production dept., and 

fields crops dept.) belonging to three colleges (College of Basic Education, College of Nursing, and 

College of Agriculture) in Telafer University during the spread of COVID-19 pandemic and its 

several mutations through the time period from Feb. 28, 2020, to present, where the coronavirus 

actually entered to Iraq since Feb. 2020, and the quarantine processes were applied which led the 

Iraqi universities to adopt the e-learning. 

 

4.1 Example 

Let 𝑈 be the set of five Scientific Departments in three colleges of Telafer University as follow: 

𝑢 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5} where  

𝑢1 represents the department of general nursing. 

𝑢2 represents the department of Arabic language. 

𝑢3 represents the mathematical dept. 
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𝑢4 represents the animal’s production dept. 

𝑢5 represents the field crops dept. 

Let 𝐷 = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6}  be the set of parameters, where each parameter is a neutrosophic 

sentence involving neutrosophic words defining as follow: 

𝑑1= The percentage of the internet speed for the districts of the students' resident and it was ranged 

between (zero to 2.69 Mbps) depending upon the information that available in the website 

(https://www.cable.co.uk/broadband/speed/worldwide-speed-league/ )  

𝑑2 = The percentage of the students’ attendance in the whole e-lectures through the studying course. 

𝑑3  = Designing the e-lectures and harmonising them with principles of pedagogy and set up 

interactive courses. 

𝑑4= The percentage of the syllabus coverage through the whole course by the lecturers. 

𝑑5 = The procedure that taken to reduce cheating during the performance of students’ electronic 

examinations. 

𝑑6 = Percentage of student satisfaction by launching questionnaires to measure the students’ 

understanding for the e-lectures. 

Table 1: This table demonstrates the performance of all scientific departments in e-learning using 

neutrosophic soft sets. 

 

 

 

 

https://www.cable.co.uk/broadband/speed/worldwide-speed-league/
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Table 2: This table demonstrates the comparison matrix in the neutrosophic soft sets (𝑢, 𝐷) 

𝐷 

𝑢 

𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 

𝑢1 5 5 4 7 5 1 

𝑢2 1 2 2 0 4 3 

𝑢3 4 4 4 1 5 0 

𝑢4 -1 -2 0 2 -4 0 

𝑢5 1 2 -1 0 0 4 

 

Table 3: The score of performance in each department 𝑢𝑖 , where the values are the summation of 

each row for the above comparison matrix: 

𝑈 sum 

𝑢1 27 

𝑢2 12 

𝑢3 18 

𝑢4 -5 

𝑢5 6 

 

These values illustrate that the best performance in the e-learning issue was for the general nursing 

department which has 27 degrees, while in the second level was for the mathematical department, in 

the third grid was the department of the Arabic language. It is worthy to note that the department of 

animals’ production which is one of agriculture college departments should review the strategy of 

teaching and trying to improve it.   
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4 Conclusion 

This paper comes as an urgent need due to the ongoing global quarantine situation in the COVID-

19 pandemic. where Telafer University's procedures in converting traditional learning to e-learning 

faced many challenges in different trends as qualifying the teaching staff, students and providing an 

electronic learning platform for the university, also edification in spreading the ethics of the e-

learning, all these reasons led the authors to use the most modern mathematical logic that named 

Neutrosophic Theory to analyses the data which has been collected during the period Feb. 2020 to 

present, this article gave analysis, good feedback and deep insight to evaluate the experiment of e-

learning in Telafer University. 
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Abstract:. Let 𝐺 = (U, V) be a Single valued Neutrosophic graph. A subset 𝑆 ∈  𝑈(𝐺) is a said to be 

score equitable set if the score value of any two nodes in S differ by at most one. That is,  

|𝑠(𝑢)– 𝑠(𝑣)| ≤ 1, 𝑢, 𝑣 ∊ 𝑆. If e is an edge with end vertices u and v and score of u is greater than or 

equal to score of v then we say u strongly dominates v. If every vertex of V − S is strongly 

influenced by some vertex of S then S is called strong score set of G. The minimum cardinality of a 

strong dominating set is called the strong score number of G. The equitable integrity of Single 

valued Neutrosophic graph G which is defined as E𝐼(𝐺) = 𝑚𝑖𝑛{|𝑆| + 𝑚(𝐺 − 𝑆 ): 𝑆 is a score 

equitable set in 𝐺}, where 𝑚(𝐺 − 𝑆) denotes the order of the largest component in 𝐺 − 𝑆. The strong  

integrity of Single valued Neutrosophic graph G which is defined as S𝐼(𝐺) = 𝑚𝑖𝑛{|𝑆| + 𝑚(𝐺 − 𝑆 ): 

𝑆 is a strong  score set in 𝐺}. In this paper, we study the concepts of equitable integrity and strong 

equitable integrity in different classes of regular Neutrosophic graphs and discussed the upper and 

lower bounds. 

  

Keywords:  Score equitable sets, Strong Score Equitable Sets, Equitable integrity, Strong Equitable 

integrity 

 

1. Introduction 

Real-life problems in any communication network, social network, supply chain network and 

brain network analysis can be modelled as a graph.  The objects and the relations between objects 

are represented by the vertices and edges of the graph. In many real life problems, loss of 

information, a lack of evidence, imperfect statistical data and insufficient information can be 

converted by using classical set theory, which was presented by Cantor. Any vertex or edge in the 

classical graphs is having two possibilities, is either in the graph or it is not in the graph. Therefore, 

uncertain optimization problems cannot be modelled as a classical graph. An extended version of 

the classical sets is the fuzzy sets, where the objects have varying membership degrees.   It gives 

different membership degrees between zero and one to its objects. The membership describes 

membership in vaguely-defined sets but not the same as probability. Zadeh [1] introduced the 

degree of membership/truth (T) in 1965 and defined the fuzzy set. The concept of fuzziness in graph 

theory was described by Kaufmann [2] using the fuzzy relation. Rosenfeld [3] introduced some 

mailto:s.broumi@flbenmsik.ma
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concepts such as bridges, cycles, paths, trees, and the connectedness of the fuzzy graph and 

described some of the properties of the fuzzy graph. Samanta and Pal [4] and Rashmanlou and Pal 

[5] presented the concept of the irregular and regular fuzzy graph. They also described some 

applications of those graphs.  

Intuitionistic fuzzy sets( IFS) considers not only the membership grade (degree), but also 

independent membership grade and non-membership grade for any entity, and the only 

requirement is that the sum of non-membership and membership degree values be no greater than 

one. The idea of the intuitionistic fuzzy set (IFS) as a modified version of the classical fuzzy set was 

introduced by Atanassov [6–8]. The idea of the IFS relation and the intuitionistic fuzzy graphs (IFG) 

and discussed many theorems, proofs, and proprieties were presented by Shannon and Atanassov 

[9]. Parvathi et al. [10–12] presented many different operations such as the join, union, and product 

of two IFGs. Some products such as strong, direct, and lexicographic products for two IFGs were 

presented by Rashmanlou et. al. [13].  In real-word problems, uncertainties due to inconsistent and 

indeterminate information about a problem cannot be represented properly by the fuzzy graph or 

IFG. To overcome this situation, a new concept introduced which is called the neutrosophic sets.  

Smarandache [15] introduced the degree of indeterminacy/neutrality (I) as independent 

component in 1995 and defined the neutrosophic set on three components (T, I, F)=(Truth, 

Indeterminacy, Falsity).  Neutrosophic sets are identified by three functions called truth-

membership (T), indeterminacy-membership (I) and falsity-membership (F) whose values are real 

standard or non-standard subset of unit interval ]−0, 1+[. Single-valued neutrosophic set (SVNS) 

which takes the value from the subset of [0, 1] and is an instance of neutrosophic set and can be 

used expediently to deal with real-world problems, especially in decision support.  The 

neutrosophic set can work with uncertain, indeterminate, vague, and inconsistent information of 

any uncertain real-life problem. The neutrosophic graph can efficiently model the inconsistent 

information about any real-life problem. Recently, many researchers have more actively worked on 

neutrosophic graph theory; for instance, Ye [15], Yang et al. [16], Naz et al. [17], Broumi [18-19], and 

Akram [20–23].  

Section 2 briefly introduces the concepts and operations of NSs, SVNSs, and INSs. In 

Section 3, define a new set of vulnerability parameters based score functions and discussed some 

basic bounds. Then in Section 4, two examples are presented to illustrate the proposed parameters 

and its applications. Finally, Section 6 concludes the paper. 

2. Preliminaries 

In this section, we provide the basic concepts and definitions in neutrosophic sets and graphs 

and different types of neutrosophic sets and graphs. In 1999, Smarandache, F. introduced the 

following definition for Neutrosophic sets [NS] 

. 

2.1.  Definition [14] 

A Neutrosophic set A in X is defined by its “truth membership function” (𝑇𝐴), an 

“indeterminacy-membership function” (𝐼𝐴(𝑥)), and a “falsity membership function” (FA(x)) where 

all are the subset of ]-0, 1+[ such that  -0 ≤ sup 𝑇𝐴(𝑥) +  𝑠𝑢𝑝 𝐼𝐴(𝑥) +  𝑠𝑢𝑝 𝐹𝐴(𝑥) ≤  3+  for all 𝑥 ∈  𝑋. 
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2.2. Definition [40] 

A NS A in X is defined as   𝐴 =  { <  𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) > |𝑥 ∈  𝑋}, and is called as SNS 

where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈  [0, 1]. SNS is also denoted by  

𝐴 =  { < 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >}𝑜𝑟 𝐴 = < 𝑎, 𝑏, 𝑐 >. 

2.3. Definition  [41] 

An INS A in X is defined as 

𝐴 =  { < [𝑖𝑛𝑓 𝑇𝐴 (𝑥), 𝑠𝑢𝑝 𝑇𝐴(𝑥)], [𝑖𝑛𝑓 𝐼𝐴(𝑥), 𝑠𝑢𝑝 𝐼𝐴(𝑥)], [𝑖𝑛𝑓 𝐹𝐴(𝑥), 𝑠𝑢𝑝 𝐹𝐴(𝑥)] > |𝑥 ∈  𝑋}, 

Where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈  [0, 1] and 0 ≤  𝑠𝑢𝑝 𝑇𝐴(𝑥)  +  𝑠𝑢𝑝 𝐼𝐴(𝑥)  +  𝑠𝑢𝑝 𝐹𝐴(𝑥)  ≤  3, 𝑥 ∈  𝑋. An INS 

is also denoted by 𝐴 = <  [𝑎𝐿, 𝑎𝑈], [𝑏𝐿, 𝑏𝑈], [𝑐𝐿, 𝑐𝑈] >. 

3. Rank & Score Functions 

Ranking of uncertainty numbers is an important issue in fuzzy set theory.  Then numerical 

values are represented in uncertain nature termed as fuzzy numbers, a comparison of these 

numerical values is not easy. There are various methods have been introduced in literature to rank 

fuzzy numbers.  An intuitionistic fuzzy number (IFN) is a generalization of fuzzy numbers. Many 

ranking methods for ordering of IFNs have been introduced in the literature. IFNs are treated as 

two families of metrics and developed a ranking method for IFNs by Grzegorzewski [42,43]. A 

ranking method to order triangular intuitionistic fuzzy numbers (TIFNs) proposed Mitchell [46] by 

accepting a statistical viewpoint and interpreting each IFN as ensemble of ordinary fuzzy numbers. 

Ranking of TIFN on the basis of value index to ambiguity index is proposed by Li [45] and solved a 

multi attribute decision-making problem.  

A ranking function based on score function was proposed and the same used to solve 

intuitionistic fuzzy linear programming (IFLP), in which the data parameters are TIFNs. In the past, 

Nayagam et al. [47] introduced TIFNs and proposed a method to rank them. He has also [48] 

defined new intuitionistic fuzzy scoring method for the intuitionistic fuzzy number. Wang et al. in 

[49] proposed Intuitionistic trapezoidal fuzzy weighted arithmetic averaging operator and 

weighted geometric averaging operator.  

The expected values, score function, and the accuracy function of intuitionistic trapezoidal 

fuzzy numbers are also defined. By comparing the score function and the accuracy function values 

of integrated fuzzy numbers, a ranking of the whole alternative set was attained. A ranking 

technique for TIFN using a,b-cut, score function and accuracy function was introduced by 

Nagoorgani et al. [51], is validated by applying the concept to solve the intuitionistic fuzzy variable 

linear programming problem. K. Arun Prakash et al. [52] introduced the method of ranking 

trapezoidal intuitionistic fuzzy numbers with centroid index uses the geometric center of a 

trapezoidal intuitionistic fuzzy number.  

Decision making problems are one of the most widely used tools in any real time problems. In 

this process, several steps involve reaching the final destination and some of them may be vague in 

nature. The decision makers are facing several difficulties to make a decision within a reasonable 

time by using uncertain, imprecise, and vague information.  

Researchers give more attention to the fuzzy set (FS) theory and corresponding extensions 

such as intuitionistic fuzzy set (IFS) theory, interval-valued IFS (IVIFS), Neutrosophic set (NS), etc. 
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for handling these situations. IFSs and IVIFSs have been widely applied by the various researchers 

in different decision-making problems. An aggregation operator for handling the different 

preferences of the decision makers towards the alternatives under IFS environment proposed by 

some of the authors proposed. Garg [26-30] presented a generalized score function for ranking the 

IVIFSs. Garg presented some series of geometric aggregation operator under an intuitionistic 

multiplicative set environment. He also presented [33] an accuracy function for interval-valued 

Pythagorean fuzzy sets. Garg studied a novel correlation coefficient between the Pythagorean fuzzy 

sets. 

3.1. Definition  [36] 

Consider SNS A = < a, b, c > then in order to rank the NS, score functions [35] have been 

defined as 

𝐾(𝐴) =
1 + 𝑎 − 2𝑏 − 𝑐

2
 ;  𝐾(𝐴)  ∈  [0, 1] 

𝐼(𝐴)  =  𝑎 −  2𝑏 −  𝑐 ;  𝐼(𝐴)  ∈  [−3, 1].  

These score functions I(A) and K(A) are unable to give the best alternative under some special 

cases. So, a new score function for ranking NS and INS by overcoming the shortcoming of the 

above functions has been proposed by Nancy & Harish Garg [36]. 

3.2. Definition[36] 

Let A = < a, b, c > be a SNS, a score function N(·), based on the “truth-membership degree” (a), 

“indeterminacy-membership degree” (b), and “falsity membership degree” (c) which is defined as 

𝑁(𝐴) =
1 + ( 𝑎 − 2𝑏 − 𝑐)( 2 − 𝑎 − 𝑐)

2

Clearly, if in some cases SNS has 𝑎 +  𝑐 =  1 then 𝑁(𝐴) reduces to K(A). Based on it, a 

prioritized comparison method for any two SNSs 𝐴1 and 𝐴2 is defined as 

(i) if 𝐾(𝐴1)  <  𝐾(𝐴2) then 𝐴1 ≺  𝐴2, 

(ii) if 𝐾(𝐴1)  =  𝐾(𝐴2) then 

 if 𝑁(𝐴1)  <  𝑁(𝐴2) then 𝐴1  ≺  𝐴2

 if 𝑁(𝐴1)  >  𝑁(𝐴2) then 𝐴1  ≻  𝐴2

 if 𝑁(𝐴1)  =  𝑁(𝐴2) then 𝐴1  ∼  𝐴2 

3.3. Definition[36] 

Let G = (U,V) be a SVNG, where U is a single-valued neutrosophic vertex set of G and V is called 

single-valued neutrosophic edge set of G, such that  𝑈 = {𝑇𝑈(𝑥), 𝐼𝑈(𝑥), 𝐹𝑈(𝑥)  ∶ 𝑥 ∈ 𝑋}  is a SVN. The 

score function of SVNG is computed using the value of truth membership 𝑇𝑈(𝑥), indeterminacy 

membership 𝐼𝑈(𝑥) and falsity membership 𝐹𝑈(𝑥) and is defined by 

𝑆(𝑢) =
1 + 𝑝𝑞

2
          … … … (1) 

Where 𝑝 = 𝑇𝑈(𝑥) − 2𝐼𝑈(𝑥) − 𝐹𝑈(𝑥)  and 𝑞 = 2 − 𝑇𝑈(𝑥) − 𝐹𝑈(𝑥) 



Neutrosophic Sets and Systems, Vol. 48, 2022     113  

R.V. Jaikumar, R. Sundareswaran, G. Balaraman, P K Kishore Kumar and Said Broumi, Vulnerability Parameters in 
Neutrosophic Graphs 

3.4. Observations 

Case 1: if 𝐵 = (1,0,0) then 𝑆(𝐵) = 1 

Case 2: if 𝐵 = (0,0,1) then 𝑆(𝐵) = 0 

Case 3: if 𝐵 = (0,1,0) then 𝑆(𝐵) = −1.5 

Case 4: if 𝐵 = (1,1,0) then 𝑆(𝐵) = 0 

Case 5: if 𝐵 = (0,1,1) then 𝑆(𝐵) = −1 

Case 6: if 𝐵 = (1,0,1) then 𝑆(𝐵) = 0.5 

Case 7: if 𝐵 = (0,0,0) then 𝑆(𝐵) = 0.5 

Case 8: if 𝐵 = (1,1,1) then 𝑆(𝐵) = 0.5 

Therefore the bounds are sharp  −1.5 ≤ 𝑆(𝐵) ≤ 1 

3.5. Definition [19,40] 

A single-valued neutrosophic (SVNG) graph on a nonempty set X is a pair G = (U,V), where U is 

single-valued neutrosophic set in X and V is single-valued Neutrosophic relation on X such that 

𝑇𝑉(𝑥, 𝑦) ≤ min{𝑇𝑈(𝑥), 𝑇𝑈(𝑦)}, 

𝐼𝑉(𝑥, 𝑦) ≤ min{𝐼𝑈(𝑥), 𝐼𝑈(𝑦)},

𝐹𝑉(𝑥, 𝑦) ≤ max{𝐹𝑈(𝑥), 𝐹𝑈(𝑦)}, 

For all 𝑥, 𝑦 ∈ 𝑋 . U is said to be single-valued neutrosophic vertex set of G and V is called single-

valued neutrosophic edge set of G, respectively. 

3.6. Definition  

The order and the size of a SVNG G are denoted by O(G) and S(G), respectively and are defined by 

𝑂(𝐺) = (∑ 𝑇𝑈(𝑥)

𝑥∈𝑋

, ∑ 𝐼𝑈(𝑥)

𝑥∈𝑋

, ∑ 𝐹𝑈(𝑥)

𝑥∈𝑋

), 

𝑆(𝐺) = ( ∑ 𝑇𝑉(𝑥, 𝑦)

𝑥𝑦∈𝑉

, ∑ 𝐼𝑉(𝑥, 𝑦)

𝑥𝑦∈𝑉

, ∑ 𝐹𝑉(𝑥, 𝑦)

𝑥𝑦∈𝑉

), 

3.7. Definition 

The degree and the total degree of a vertex x of a SVNG G are defined by  

𝑑𝐺(𝑥) = (∑ 𝑇𝑉(𝑥, 𝑦)

𝑥≠𝑦

, ∑ 𝐼𝑉(𝑥, 𝑦)

𝑥≠𝑦

, ∑ 𝐹𝑉(𝑥, 𝑦)

𝑥≠𝑦

) , 

   and 

𝑇𝑑𝐺(𝑥) = (∑ 𝑇𝑉(𝑥, 𝑦) + 𝑇𝑈(𝑥)

𝑥≠𝑦

, ∑ 𝐼𝑉(𝑥, 𝑦) + 𝐼𝑈(𝑥)

𝑥≠𝑦

, ∑ 𝐹𝑉(𝑥, 𝑦)

𝑥≠𝑦

+ 𝐹𝑈(𝑥)), 

For 𝑥𝑦 ∈ 𝑉 and 𝑥 ∈ 𝑋, is denoted by 𝑑𝐺(𝑥) = (𝑑𝑇(𝑥), 𝑑𝐼(𝑥), 𝑑𝐹(𝑥)) and 𝑇𝑑𝐺(𝑥) =

(𝑇𝑑𝑇(𝑥), 𝑇𝑑𝐼(𝑥), 𝑇𝑑𝐹(𝑥)), respectively. 

3.8. Definition 
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The maximum degree of a SVNG G is defined as ∆(𝐺) = (∆𝑇(𝐺), ∆𝐼(𝐺), ∆𝐹(𝐺)), where  

∆𝑇(𝐺) = max{𝑑𝑇(𝑥): 𝑥 ∈ 𝑋} 

∆𝐼(𝐺) = max{𝑑𝐼(𝑥): 𝑥 ∈ 𝑋}

∆𝐹(𝐺) = max{𝑑𝐹(𝑥): 𝑥 ∈ 𝑋} 

3.9. Definition 

The minimum degree of a SVNG G is defined as 𝛿(𝐺) = (𝛿𝑇(𝐺), 𝛿𝐼(𝐺), 𝛿𝐹(𝐺)), where 

𝛿𝑇(𝐺) = min{𝑑𝑇(𝑥): 𝑥 ∈ 𝑋} 

𝛿𝐼(𝐺) = min{𝑑𝐼(𝑥): 𝑥 ∈ 𝑋}

𝛿𝐹(𝐺) = min{𝑑𝐹(𝑥): 𝑥 ∈ 𝑋} 

3.10. Definition 

A SVNG G is called a regular if each vertex has same degree, (i.e.)  

𝑑𝐺(𝑥) = (𝑚1, 𝑚2, 𝑚3), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋 

Example: 

Fig. 1. Regular SVNG 

Vertices T I F p q S(u) 

S1 0.3 0.8 0.4 -1.7 1.3 -0.605 

S2 0.1 0.8 0.9 -2.4 1 -0.7 

S3 0.3 0.6 0.4 -1.3 1.3 -0.345 

S4 0.1 0.9 0.5 -2.2 1.4 -1.04 

Table: 1 Score value of regular SVNG 

3.11. Definition  

Let 𝐺 =  (𝑈, 𝑉) be an SVNG. G is said to be a strong SVNG if: 

𝑇𝑉(𝑥, 𝑦)  =  min (𝑇𝑈(𝑥) , 𝑇𝑈 (𝑦)) 

𝐼𝑉(𝑥, 𝑦)  =  min (𝐼𝑈 (𝑥) , 𝐼𝑈 (𝑦)) 

                         𝐹𝑉(𝑥, 𝑦) =  max (𝐹𝑈 (𝑥), 𝐹𝑈 (𝑦)), ∀(𝑥, 𝑦) ∈  𝐸 

Example: 



Neutrosophic Sets and Systems, Vol. 48, 2022     115  

R.V. Jaikumar, R. Sundareswaran, G. Balaraman, P K Kishore Kumar and Said Broumi, Vulnerability Parameters in 
Neutrosophic Graphs 

                                                                 

Fig. 2. Strong SVNG 

Vertices T I F p q S(u) 

u 0.3 0.4 0.5 -1 1.2 -0.1 

v 0.4 0.5 0.3 -0.9 1.3 -0.085 

x 0.5 0.4 0.5 -0.8 1 0.1 

w 0.7 0.4 0.5 -0.6 0.8 0.26 

Table: 2 Score value of Strong SVNG 

3.12. Definition 

A SVNG G = (U, V) is called complete if the following conditions are satisfied: 

𝑇𝑉(𝑥, 𝑦) = min{𝑇𝑈(𝑥), 𝑇𝑈(𝑦)} 

𝐼𝑉(𝑥, 𝑦) = min{𝐼𝑈(𝑥), 𝐼𝑈(𝑦)} 

                         𝐹𝑉(𝑥, 𝑦) = max{𝐹𝑈(𝑥), 𝐹𝑈(𝑦)}, ∀(𝑥, 𝑦) ∈  𝐸 

Example: 

Fig. 3. Complete SVNG 

Vertices T I F p q S(u) 

a 0.4 0.3 0.6 -0.8 1 0.1 

b 0.2 0.4 0.5 -1.1 1.3 -0.215 

c 0.1 0.4 0.7 -1.4 1.2 -0.34 

d 0.2 0.2 0.4 -0.6 1.4 0.08 

Table: 3 Score value of Complete SVNG 

3.13. Definition 
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A SVNG G = (U, V) is called complete bipartite neutrosophic graph if the vertex set V can be divided 

into two nonempty sets, such that for every v1 , v2 ∈  𝑉1 𝑜𝑟 𝑉2 and for every u∈  𝑉1 𝑎𝑛𝑑 𝑣 ∈ 𝑉2 

Fig. 4. Complete bipartite SVNG 

Vertices T I F p q S(u) 

a 0.2 0.3 0.6 -1 1.2 -0.1 

b 0.2 0.3 0.6 -1 1.2 -0.1 

c 0.2 0.3 0.6 -1 1.2 -0.1 

d 0.2 0.3 0.6 -1 1.2 -0.1 

e 0.2 0.3 0.6 -1 1.2 -0.1 

Table: 4 Score value of complete bipartite SVNG 

4. Score Equitable Integrity and Strong Score Equitable Integrity of  SVNG 

4.1   Definition 

Let 𝐺 = (U, V) be a Single valued Neutrosophic graph. A subset 𝑆 ∈  𝑈(𝐺) is a said to be score 

equitable set if the score value of any two nodes in S differ by at most one.  (i.e.) |𝑠(𝑢)– 𝑠(𝑣)| ≤

1, 𝑢, 𝑣 ∊ 𝑆. If e is an edge with end vertices u and v and score of u is greater than or equal to score of 

v then we say u strongly dominates v. If every vertex of V − S is strongly influenced by some vertex 

of S then S is called strong score set of G. The minimum cardinality of a strong dominating set is 

called the strong score number of G.  

4.2 Definition 

The equitable integrity of Single valued Neutrosophic graph G which is defined as E𝐼(𝐺) =

𝑚𝑖𝑛{|𝑆| + 𝑚(𝐺 − 𝑆 ): 𝑆 is a score equitable set in 𝐺}, where 𝑚(𝐺 − 𝑆) denotes the order of the largest 

component in 𝐺 − 𝑆.  

4.3 Definition 

The strong integrity of Single valued Neutrosophic graph G which is defined as S𝐼(𝐺) =

𝑚𝑖𝑛{|𝑆| + 𝑚(𝐺 − 𝑆 ): 𝑆 is a strong score set in 𝐺}, where 𝑚(𝐺 − 𝑆) denotes the order of the largest 

component in 𝐺 − 𝑆. 

4.4 Example 

Consider the SVNG in Figure 5.  
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Fig. 5. Example of SVNG and its Score value 

Using Eq. 1 we can compute score value of all the nodes. Figure 1.(b) shows the score value of each 

node. The score equitable sets are 𝑆1 = {𝑢1, 𝑢3}, 𝑆2 = {𝑢1, 𝑢4}, 𝑆3 = {𝑢2, 𝑢5}, 𝑆4 = {𝑢3, 𝑢4}, 𝑆5 =

{𝑢1, 𝑢3, 𝑢4} and score equitable integrity is calculated by   

𝐸𝐼(𝐺) = 𝑚𝑖𝑛{[2 + 3 = 5], [2 + 3 = 5], [2 + 2 = 4], [2 + 3 = 5], [3 + 2 = 5]} = 4.  From this the score 

equitable integrity value is 4 and corresponding set is 𝑆3 = {𝑢2, 𝑢5}.  The strong score equitable set is 

𝑆3 = {𝑢2, 𝑢5} and also strong equitable integrity is 4. 

4.5 Theorem:  

     Let G be SVNG then 

(i) 𝐸𝐼(𝐺) = n  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐺 ≅ 𝐾𝑛  

(ii) 𝑆𝐼(𝐺) = n  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐺 ≅ 𝐾𝑛  

 

Proposition: Every score equitable integrity and strong score equitable integrity of complete SVNG 

is equal to score equitable integrity and strong score equitable integrity of regular SVNG. 

5. Case Study  

5.1 Detection of a Safe Root for an Airline Journey 

We consider a neutrosophic set of five countries: Germany, China, USA, Brazil and Mexico. 

Suppose we want to travel between these countries through an airline journey. The airline 

companies aim to facilitate their passengers with high quality of services. Air traffic controllers 

have to make sure that company planes must arrive and depart at right time. This task is possible 

by planning efficient routes for the planes. A neutrosophic graph of airline network among these 

five countries is shown in Fig.6 in which vertices and edges represent the countries and flights, 

respectively.  
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Fig.6. Neutrosophic Graph of Airline Network among these five Countries 

Table: 5 Score value of Airline Network 

The truth-membership degree of each vertex indicates the strength of that country’s airline 

system. The indeterminacy-membership degree of each vertex demonstrates how much the system 

is uncertain. The falsity-membership degree of each vertex tells the flaws of that system. The truth-

membership degree of each edge interprets that how much the flight is safe. The indeterminacy-

membership degree of each edge shows the uncertain situations during a flight such as weather 

conditions, mechanical error and sabotage. The falsity-membership degree of each edge indicates 

the flaws of that flight. For example, the edge between Germany and China indicates that the flight 

chosen for this travel is 80% safe, 10% depending on uncertain systems and 20% unsafe.  

The truth-membership degree, the indeterminacy-membership degree and the falsity-

membership degree of each edge are calculated by using the following relations. 

𝑇𝑉(𝑥, 𝑦) ≤ min{𝑇𝑈(𝑥), 𝑇𝑈(𝑦)},

𝐼𝑉(𝑥, 𝑦) ≤ min{𝐼𝑈(𝑥), 𝐼𝑈(𝑦)},

𝐹𝑉(𝑥, 𝑦) ≤ max{𝐹𝑈(𝑥), 𝐹𝑈(𝑦)}, 

Sometimes due to weather conditions, technical issues a passenger missed his direct flight between 

two particular countries. So, if he has to go somewhere urgently, then he has to choose indirect 

route as there are indirect routes between these countries. 

Using Eq. 1 we can compute score value of all the nodes.  Table 5. shows the score value of 

each node.  We observe that all the sets are score and strong score equitable sets, and by 

computation the equitable integrity is,  EI(G) = min{|S| + m(G − S )} = 4, where S = {China, USA} 

The strong score equitable set is S ={China, USA} and  strong score equitable integrity is SI(G) =

min{|S| + m(G − S )} = 4. 

6. Conclusion 

In this paper, Score Equitable Integrity and Strong Score Equitable Integrity of SVNG is 

introduced as a new vulnerability parameter in Neutrosophic graphs and some fundamental results 

in some standard graphs are established. Also the application on airline systems related to EI and SI 

parameters are dealt with real time scenario pertaining to the safety measures of flights connecting 
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any two countries. We will focus on the study of EI and SI regular strong SVNG, dm regular SVNG 

tdm regular SVNG, soft graphs and so on.   
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1. Introduction 

As an expansion of Fuzzy sets given in 1965 by Zadeh [1] and Intuitionistic Fuzzy sets given in 1983 
by Atanassav [2], the Neutrosophic sets (NSs) have been shown and explained by Smarandache. A 
(NS) is depicted by a truth value (membershis), an indeterminacy value and a falsity value 
(non-membershis). Salama and Alblowi [3] introduced the new concept of neutrosophic topological 
space (NTS) in 2012, which had been investigated recently. In 2018, Parimala M et al. explain the 
concept of Neutrosophic homeomorphism and Neutrosophic αψ homeomorphism in (NTS) [4]. In 
2020, the notions of Ngpr homeomorphism and Nigpr homeomorphism in (NTS) are introduced and 
studied [5]. There are some sets in topological spaces their expansion in non-classical are studied, like 
soft sets [6-13], fuzzy sets [14-19], permutation sets [20-26], neutrosophic sets [27-30] nano 
sets [31,32] and others [33,34]. Here, we will use the conception of neutrosophic to study our  
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expansion in non-classical. The neutrosophic closure and neutrosophic interior of any (NS)   in 

(NTS) are defined as  and 

, respectively. The neutrosophic class of neutrosophic gp-open 

(resp. neutrosophic δgp-closed, neutrosophic open, closed, neutrosophic regular closed, neutrosophic 
regular open,  neutrosophic δ-preopen, neutrosophic δ-semiopen, neutrosophic preopen, 

neutrosophic semiopen, neutrosophic -open and neutrosophic -open) sets of  containing 

a point s   is denoted by NδGPO( ,s) (resp. NδGPC( ,s), NO( ,s), NC( ,s), NRC( ,s), 

NRO( ,s), NδPO( ,s), NδSO( ,s), PO( ,s), SO( ,s) O( ,s) and  O( ,s)). That 

means if A is neutrosophic q-open (q-closed) set in neutrosophic topological space , where q is 

any property for the neutrosophic set A and s A for some s  , then it is denoted by NqO( ,s) 

(NqC( ,s)).  In this paper, We're looking into a new kind of neutrosophic continuity, it is known as 

neutrosophic almost continuity functions, which is stronger than the conception of 

neutrosophic almost gpr-continuous functions. Also, some characteristics of neutrosophic almost 

continuity functions are explained and discussed. 

2. Preliminaries  

Basic definitions and notations can be found here, which are used in this section are referred from the 
references [3,35-37]. 
 
Definition 2.1:  

Assume . A neutrosophic set (NS)  is defined as 

 where  is the degree of membership,  is 

the degree of indeterminacy and  is the degree of non-membership,  to . Let 

 be the second (NS), then 

 

and  
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. Also,  if and only if ,  and 

. The complement of  is  

Definition 2.2: We say  is a neutrosophic topological space (NTS) if and only if   is a 

collection of (NSs) in  and it such that: 

(1) , where  and   = . 

(2)  for any , 

(3)  for any arbitrary family . Also, any is called neutrosophic open 

set (NOS) and we say neutrosophic closed set (NCS) for its complement.  

Definition 2.3. Let be (NS) in (NTS) . We say  is neutrosophic pre-closed (NP-C) (resp. 

neutrosophic regular-closed (NR-C), neutrosophic semi-closed (NS-C), neutrosophic  -closed (N  

-C)) if  (resp. , and 

). 

Definition 2.4. Let be (NS) in (NTS) . We say  is neutrosophic -closed ( -C), if 

 where   ≠  and                    

Definition 2.5. Let be (NS) in (NTS) . We say  is neutrosophic -preclosed (N -C) 

(resp. neutrosophic -closed (N , neutrosophic  -semiclosed (N S-C) and neutrosophic 

-closed (N -C)) if   (resp. ,  

 and  

Definition 2.6. Let be (NS) in (NTS) . We say  is; 

(i) neutrosophic  -closed ( -C) (resp. neutrosophic  -closed ( -C) and 

neutrosophic  -closed (N  -C)) if N   whenever  and  is neutrosophic  
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-open (N  -O) (resp. neutrosophic regular open (NR-O) and neutrosophic open (NO)) in , 

where  

(ii) neutrosophic  -closed (N  -C) if   whenever  and  is (N  -O)  

in , where . 

The neutrosophic open sets are the complements of the previously described neutrosophic closed sets. 
 

Definition 2.7. Assume and  are (NTSs) and  is a neutrosophic map (NM). We say 

 is; 

(i) Neutrosophic  -map (NR-M) (resp. neutrosophic  -continuous (N  -CO), neutrosophic 

almost continuous (NA-CO), neutrosophic almost  -continuous (NAP-CO), neutrosophic almost 

 -continuous (NA  -CO), neutrosophic almost  -continuous (NA  -CO) and neutrosophic 

almost  -continuous (NA  -CO) if  of any (NR-O) set  of  is (NR-O) set (resp. 

(N  -O), (NO), (NP-O), (N  -O), (N  -O) and (N  -O)) set in , 

(ii) Neutrosophic  -continuous (N  -CO) if  of any (NO) set  of  is 

neutrosophic  -open (N  -O) in , 

(iii) Neutrosophic almost contra continuous (NAC-CO) (resp. neutrosophic almost contra  

-continuous (NACsup-CO) and neutrosophic contr  -map (NCR-M)) if   of any (NR-C) 

set  of  is  (NO) (resp.  -O) and (NR-O)) in , 

(iv) Neutrosophic almost perfectly-continuous (NAperf-CO) if the inverse image of any (NR-C) set 

 of  is neutrosophic clopen in , 

(v) Neutrosophic almost contra  -continuous (NAC  -CO) (resp. neutrosophic contra  

-continuous (NC GP-CO)  and neutrosophic  -irresolute (N  -IR), if  of any 

(NR-O) (resp. (NO) and (N  -C)) set  of  is (N  -C) in . 
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Definition 2.8. Let  be a  (NTS),  

 and   

. We say  is; 

(i) Neutrosophic preregular -space (Npr-reg- -S) if  

(ii) Neutrosophic  -space (N -S) if  

(iii) Neutrosophic -space (N -S) if N  , 

(iv) Neutrosophic extremely disconnected (NED) if the closure of any (NO) subset of  is (NO), 

(v) Neutrosophic submaximal space (N-submax-S) if any (NP-O) set is (NO), 

(vi) Neutrosophic strongly irresolvable (N-si) if any neutrosophic open subspace of  is 

irresolvable, 

(vii) Neutrosophic nearly compact space (N-NCom-S) if any (NR-O) cover of  has a finite 

subcover, 

(viii) Neutrosophic -space (N- -S) if for each    two points in , there exist 

(NR-O) sets  and  such that ,  and , , 

(ix) Neutrosophic -space (N- -S) if for each    in , there exist (NR-O) sets 

 and  such that , and , 

(x) Neutrosophic -space (N -S) if for each , there exist 

 such that , and , , 

(xi) Neutrosophic Hausdorff space (NH-S) (resp., Neutrosophic -Hausdorff, space (N -H-S)) 

if for each   in , there exist ,   (resp., ,   ) such that 

, and  

(xii) Neutrosophic  -additive space (N-  -add-S) if  is closed under arbitrary 

intersections. 
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Definition 2.9. Let  be a (NTS) and   . We say  is Neutrosophic  -closed relative 

(NN-Cl-R) to  if any cover of  by (NR-O) sets of  has a finite subcover. 

Theorem 2.10. (i)If   and  are (N -O) subsets of a (N-submax-S) , then  is 

(N -O) in . 

(ii) Let  be a (N-  -add-S). Then is (N -C) if and only if N , 

where N . 

Definition 2.11. Assume  is a (NTS). We say  is a neutrosophic locally indiscrete space (N-li-S) 

if  where  and  

. 

Lemma 2.12. Let  be a (NTS) and   . Then these terms are true: 

(i)  if and only if . 

(ii)  if and only if ≠   for any (N  -O) set  containing . 

Remark: 2.13: For any (NS)   in (NTS)  we consider that: 

(1) , 

(2)  

(3)  

 

3.  Neutrosophic Almost  -Continuous Functions. 

Definition 3.1. Let  be a (NM). We say  is neutrosophic almost  -continuous 

(NA  -CO) if  for each (NR-C) set of . 

Example 3.2. Define the neutrosophic sets , , ,  and , ,  as follows: 

=  
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=  

=  

=  

And 
 

=  

=  

=  

=  

Now, let t={ , , ,  and  h={ , ,  then (X,t) and (Y,h) are 

(NTSs), where  X = {a,b,c,d} = Y . Define  by 

. We consider that   is neutrosophic almost  

-continuous. 

Theorem 3.3. Let  be (NM). Then  is (NA  -CO) if and only if   of any 

(NR-O) set  of Y is (N  -O) in X. 

Proof: since the complement for any (NO) is (NC) and by Definition (3.1). Then the theorem is held. 
 

Example 3.4. Define the neutrosophic sets , , ,  and , ,  as follows: 

 

=  

=  

=  

=  

And 
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=  

=  

=  

=  

 

Now, let t={ , , ,  and  h={ , ,  then (X,t) and (Y,h) are 

(NTSs), where  X = {a,b,c,d} = Y. Define  by . 

Then we consider that  is (NA  -CO). Also,  is (N  -O) in  for any (NR-O) set 

 of  . 

Remark 3.4. Let  be a (NM). Then by Definitions (2.7) and (3.1), we consider diagram (1) 

as follows: 
 

 

Theorem 3.5. If  is (NA  -CO) and  is (N-li-S), then  is (N  -CO). 

Proof. Let  be (NO) set in , then  is (NR-O) in . Since  is (NA  -CO), then  is 

(N  -O) in . Hence  is (N  -CO)      

 

Theorem 3.6. Let  be a (N-li-S), then these terms are 

equivalent: 

 
Diagram (1): The relationships among some classes of neutrosophic continuous  
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(i) is (N  -CO), 

(ii)  is (NA  -CO), 

(iii)  is (NA  -CO). 

Proof. Follows from the Definitions (2.11), (2.7) and (3.1). 
Remark 3.7. It is clear from the definitions in section 2, we consider that all of the theorems 
[(3.8)-(3.13)] are held. 

Theorem 3.8. (i) If is (NA  -CO) with  as (NED), then it is (NA  -CO). 

(ii) If is (NA  -CO) with  as (N-si). Then it is (NA  -CO). 

Theorem 3.9. All of these terms are equivalent: 

(i)  is (NAperf-CO), 

(ii)  is (NAC-CO) and (NAP-CO), 

(iii)  is (NAC-CO) and (NA  -CO), 

(iv)  is (NACsup-CO) and (NA  -CO), 

(v)  is (NCR-M) and (NA  -CO), 

(vi)  is (NCR-M) and (NAP-CO), 

(vii)  is (NACsup-CO) and (NAP-CO). 

Theorem 3.10. Let  be a(N -S). Then all of these terms are equivalent: 

(i)  is (NAP-CO), 

(ii)  is (NA  -CO), 

(iii)  is (NA  -CO). 

Theorem 3.11. Let  be a (Npr-reg- -S). Then All of these terms are equivalent: 

(i)  is (NAP-CO), 

(ii)  is (NA  -CO), 
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(iii)  is (NA  -CO), 

(iv)  is (NA  -CO). 

Theorem 3.12. Let  be a -space. Then these terms are equivalent: 

(i)  is (NA-CO); 

(ii)  is (NA  -CO), 

(iii)  is (NA  -CO), 

(iv)  is (NA  - CO), 

(v)  is (NA  - CO). 

Theorem 3.13. The following are equivalent: 

(i)  is (NA  -CO) and  is (N  -add-S), 

(ii) for each  and each open set  containing  there exists (N  -O) set  

containing  such that  N  

Theorem 3.14. All of these terms are equivalent: 

(i)  is (NA  -CO) and  is (N  -add-S), 

(ii) For each  and each  there exists  N  such that 

 

(iii) For each  and each ,there exists N  such that 

; 

(iv) For each  and each  there exists N  such that 

 

(v) For each  and each  there exists  such that 
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Proof. (i)  (ii): Let and  be (NO) set of  containing . By (i) and Theorem 3.13, 

there exists  N  such that . Since  is preopen, then 

by Lemma 2.12(i), . 

(ii)  (iii): Let  and . Then . By (ii), there exists 

 such that . Since  is (NP-O), then by Lemma 2.12 (i), 

. 

(iii)  (iv): Let  and  then there exists   such 

that   . Since  , by (iii), there exists 

 such that  . 

(iv)  (i): Let  and . Then    

By (iv), there exists  such that  Hence  is 

(NA  -CO). 

(iv)  (v): Obvious. 

Remark 3.15. If  is a (N  -add-S), then   is (N  -C) (resp. (N  -O)) if and only 

if N  (resp. N )., 

where  and 

 

Theorem 3.16. All of these terms are equivalent: 

(i)  is (NA  -CO) and is (N  -add-S), 

(ii)  for each ; 

(iii) N  for each ; 

(iv)  for each  
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(v)  for each  

Proof. (i)  (ii) Suppose that  such that . Observe that 

 and  and so  

 . By (i) and Definition 2.8 (xii), we have  and 

. Hence N  , and it follows that 

. Since this is true for any (N  -C) set  containing , we have 

. 

(ii)  (iii) Let , then . By (ii), 

 N  N . So that 

N   

(iii)  (iv) Let  Then by (iii), N   

.In consequence, N   and hence by remark ( 3.15), 

 N . 

(iv)  (v): Clear. 

(v)  (i): Let  Then . By (v),  N . Hence by 

Theorem 3.3,  is (NA  -CO). 

Theorem 3.17. All of these terms are equivalent: 

(i)  is almost  -continuous and is (N  -add-S), 

(ii) For any , ; 

(iii) For any , ; 

(iv) For any , N ; 

(v) For any , ; 
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(vi) For any , ; 

(vii) For any , N ; 

(viii) For any ),  

Proof. (i)  (ii): Let .Since N  Then by (i), 

. The converse is similar. 

(i)  (iii) It is similar to (i)  (ii). 

(i)  (iv): Let , then N  so by (i),   . 

Since  which implies   

(iv)  (v) and (vi)  (vii):Obvious 

(v)  (vi): It follows from the fact that N  

(vii)  (i): It follows from the fact that N  

(i)  (viii): Let . Since N , then by (i), 

  and hence  

. Conversely, let . Since , 

    , in consequence, 

N  and by remark (3.15), .  

Theorem 3.18. The following are equivalent: 

(i)  is (NA  -CO) and  is (N  -add-S), 

(ii) For any (N -O) set  of ,  is (N  -C) in , 

(iii) For any (N S-O) subset  of ,  is (N  -C) in ; 

(iv) For any (N P-O) subset  of ,  is (N  -O)in ; 

(v) For any (NO) subset  of ,  is (N  -O) in ; 
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(vi) For any (NC) subset  of ,  is (N  -C) in . 

Proof. (i)  (ii): Let  . Then by remark (2.13), N . By (i), 

. 

(ii)  (iii): Obvious since N . 

(iii)  (iv): Let ,then N ). By (iii), 

 which implies  . 

(iv)  (v): Obvious since N . 

(v)  (vi):Clear 

(vi)  (i): Let N . Then  and hence  By (vi), 

    . Thus 

. 

Theorem 3.19. If  is (NA  -CO) injective function and  is (N- -S), then  is 

(N -S). 

Proof. Let  be (N- -S) and , with . Then there exist (NR-O) subsets , 

 in  such that  , ,  and . Since  is (NA  -CO), 

 and  N  satisfy ,  ,  and 

. Hence  is (N -S). 

Theorem 3.20. If  is (NA  -CO) injective function and  is(N- , then  

is . 

Proof. The proof is the same way of Theorem (3.20). 

Theorem 3.21. If  are (NA  -CO) with  as (N-submax-S)  and (N  -add-S) 

and  is (NH-S), then the set  is  -closed in . 
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Proof.  Let  and . Then . Since  (NH-S),  

there exist (NO) sets  and  of  satisfy  ,  and , hence 

N . Since  and  are (NA  -CO), there exist 

 satisfy   and . 

Now, put , then  and 

. Thus, we get  and hence 

 then  Since  is (N  -add-S), is (N  -C) in . 

Definition 3.22. A space  is called neutrosophic  -compact (N  -Com) if any cover of  

by  -open sets has a finite subcover. 

Definition 3.23. Let  be (NS) in (NTS) . We say  is neutrosophic  -compact relative  

(N  -Com-R) to  if any cover of  by (N  -O) sets of  has a finite subcover. 

Theorem 3.24. If  is (NA  -CO) and  is (N  -Com-R) to , then  is 

(NN-Cl-R) to . 

Proof. Let  be any cover of  by (NR-O) sets of  . Then  is 

a cover of  by (N  -O) sets of . Hence there exists a finite subset  of  such that 

. Therefore, we obtain . This shows that  

is (NN-Cl-R) to  . 

Corollary 3.25. If  is (NA  -CO) surjection and  is (N  -Com) and (N  

-add-S), then  is (N-NCom-S). 

Lemma 3.26. Let  be (N  -Com). If  is (N  -C), then  is (N  -Com-R) to . 
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Proof. Let  be a cover of  by (N  -O) sets of . Note that  is (N  

-O) and that the (NS)   is a cover of  by (N  -O) sets. Since  is 

(N  -Com), there exists a finite  subset of   such that the (NS)  

is a cover of  by (N  -O) sets in . Hence  is a finite cover of  by (N  

-O) sets in .       

Theorem 3.27 If the graph function  of , defined by  

for each  is (NA  -CO) Then  is (NA  -CO) 

Proof. Let , then . As  is (NA -CO), 

 )(1 f . 

Theorem 3.28. Let  be (NTSs) and  be graph neutrosophic function of 

, defined by  for each . If  is a (N-submax-S) and (N  

-add-S), then g is (NA  -CO) if and only if  is (NA  -CO). 

Proof. We only prove the sufficiency. Let  and . Then there exist (NR-O) 

sets  and  in  and , respectively such that . If  is (NA  -CO), so there 

exists a (N  -O) set in  satisfies  and . Put .Then  is 

(N  -O) and . Thus  is (NA  -CO). 

Definition 3.29. A graph of a neutrosophic function  

is said to be neutrosophic strongly  -closed (N-Str-  -C) if for each , there 

exist  and  satisfy . 

Lemma 3.30. For a graph  of a neutrosophic function , the following properties are 

equivalent: 

(i)  is (N-Str-  -C)  in ; 
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(ii)For each , there exist  and  N  such that 

. 

Theorem 3.31. Let  have a (N-Str-  -C) graph  . If  is injective, then  is 

(N -S). 

Proof. Let  with .Then  as  is injective so that 

. Thus there exist  and  such that 

. Then  implies  and it follows that  is 

(N -S). 

Theorem 3.32.  

(i) If  is (NA  -CO) and is (N  -M), then is (NA  

-CO). 

(ii) If  is (N  -CO) and  is (NA-CO), then  is (NA  

-CO). 

(iii) If  is (N  -IR) and  is (NA  -CO), then  is 

(NA  -CO). 

Proof. (i) Let . Then  since g is (N  -M). The (NA  -CO) of 

f implies  . Hence  is (NA  -CO).  

The proofs of (ii) and (iii) are similar to (i). 

Theorem 3.33. If  is a pre  -open surjection and  is a function such that 

 is (NA  -CO), then g is (NA  -CO). 

 

Proof. Let  and  such that . Let . Then there 

exists  such that such that . Since  is pre  -open in , we 

have that  is (NA  -CO) at . 
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Conclusion  

In this paper, some new notions of neurosophic delta generated pre-continuous functions in 
neutrosophic topological spaces are given and discussed, which is a very interesting topic in nature. It 
will open up many avenues for the researchers work neutrosophic topological spaces, we can in future 
work extend and study these our notions for this paper in soft setting form.     
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Abstract:  Neutrosophic set (NS) theory has a diverse nature in dealing with impreciseness of real 

life events and has a wider range of applications in logic, algebra, topology, operation research, 

pattern recognition, artificial intelligence, neural networks and several other fields.In this paper, we 

combine single valued neutrosophic with we use the score and accuracy function and hybrid score 

accuracy function of single- valued neutrosophic number and ranking method for single- valued 

neutrosophic numbers to model logistics center location problem . The combined values of each 

alternative have been ordered with the help of score function to find the best attributes. Finally, an 

illustrative example has been provided to validate the proposed approach for multi attribute 

decision making problem. 

 

Keywords: Neutrosophic Logic; decision making ; Interval Valued Neutrosophic Set.   

 

 

1. Introduction 

The concept of fuzzy sets (FS) was introduced by L.Zaheh(1965), where each element had degree of 

membership. Since the fuzzy sets and fuzzy logic have been applied in many real life problems in 

uncertain and ambiguous environment. The traditional fuzzy sets is characterized by the 

membership value and the grade of membership value. the concept of interval valued fuzzy sets was 

proposed  by Turksen(1986) to capture the uncertain of grade of membership value. Neither the 

fuzzy sets nor the interval valued fuzzy sets is appropriate for such a situation. A tool which 
represents the partnership or relationship function is called a Fuzzy Set (FS) and handles the 
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real world problems in which generally some type of uncertainty exists. This concept was 
generalized by Atanassov to intuitionistic fuzzy set (IFS) which is determined in terms of 
membership (MS) and non-membership (NMS) functions, the characteristic functions of the 
set. Intuitionistic fuzzy sets (IFS) introduced by Atanassov(1986) as a generalization of FS, where 

besides the degree of membership 𝜇𝐴(𝑥)𝜖[0,1] for each element xϵX to a set A there was considered 

a degree of non-membership𝜗𝐴(𝑥)𝜖[0,1], such that∀x ∈ X, μA(x)  + ϑA(x) ≤ 1 the neutrosophic set 

(NS) was introduced by F.Smarandache who introduced the degree of indeterminacy(I) as 

independent component in 1998. In this paper, we combine single valued neutrosophic with we use 

the score and accuracy function and hybrid score accuracy function of single- valued neutrosophic 

number and ranking method for single- valued neutrosophic numbers to model logistics center 

location problem The combined values of each alternative have been ordered with the help of score 

function to find the best attributes. Finally, an an illustrative example has been provided to validate 

the proposed approach for multi attribute decision making problem. 

Multi-criteria decision-making (MCDM) is a common offshoot of decision-making science. 

There are a huge number of MCDM techniques which assist individuals in constructing and solving 

decision problems that concern multiple criteria. Each technique has its own physiognomies and no 

single one is the best. The proper MCDM technique should be designated consistent with the 

problem structure. It is recognized that without integrating preference information, no unique 

optimal solution to an MCDM problem can be acquired. Regardless of the chosen MCDM technique 

for the problem we are dealing with, the significant phase is to achieve the decision factor weights. 

Either the subjective or objective method can regulate the criteria weights in MCDM techniques. 

  

2. Review of Literature   

 

The author in, [1] analyzed Spatially explicit seasonal forecasting using fuzzy spatiotemporal 

clustering of long-term daily rainfall and temperature data. And the authors of, [2] analyzed 

Ambient Atmospheric Temperature Prediction Using Fuzzy  Knowledge –Rule Base for Inland 

Cities in India. [3]  Analysis a new Approach and Applications, International Journal of Research in 

Computer and Communication Technology. [4] examined Project Schedule Uncertainty Analysis 

Using Fuzzy Logic, Project Management Institute. [5] Analyzed the Power Flow Analysis Using 

Fuzzy Logic [6] proposed Types of Neutrosophic Graphs and neutrosophic Algebraic Structures  

together with their Applications in Technology. [7] proposed a new approach for Single Valued 

Neutrosophic Graphs. [8] Proposed a method for On Bipolar Single Valued Neutrosophic  

[1] Graph. [9] Proposed various types of Interval Valued Neutrosophic Graphs.[10] proposed 

Isolated Single Valued Neutrosophic  Graphs [11] examined bipolar single valued neutrosophic 

graphs. [12] Proposed Single-Valued Neutrosophic Minimum Spanning Tree and Its Clustering 

Method. [13] proposed Fuzzy based approach for weather advisory system. [14] provided Weather 

Forecasting using Fuzzy Neural Network (FNN) and Hierarchy Particle Swarm Optimization 
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Algorithm (HPSO). [15] proposed Spanning Tree  Problem with Neutrosophic Edge Weigh. [16] A 

new algorithm for finding minimum spanning trees with undirected neutrosophic graphs. [17] The 

role of single valued neutrosophic sets and rough sets in smart city: imperfect and incomplete 

information systems. [18] Review on Neutrosophic Set and Its Development. [19] proposed 

Long-Term Weather Elements Prediction in Jordan using Adaptive Neuro-Fuzzy Inference System 

(ANFIS) with GIS Techniques  [20] Neutrosophic Sets: An Overview . [21] proposed a new A new 

perspective ontraffic control management using triangular interval type-2 fuzzy 

sets and interval neutrosophic sets. [22] analyzed Minimum Spanning Tree  Problem with 

Single-Valued Trapezoidal Neutrosophic Number  [23] Single Valued Neutrosophic Graphs:  

Degree. [24]  Concept of a application of Dijkstra algorithm for solving  interval valued 

neutrosophic shortest path problem. [25]  Analysed Minimum Spanning Tree in Trapezoidal Fuzzy 

Neutrosophic Environment. [26] proposed a methodology Shortest Path problem by minimal 

spanning tree algorithm using bipolar neutrosophic numbers.  [27] A new concept of matrix 

algorithm for MST in undirected interval valued neutrosophic graph.[28] Analysis about the  

Logistics Center Location Selection approach Based on Neutrosophic Multi-Criteria Decision 

Making 

    

3.  Preliminaries 

 3.1 Neutrosophic set 

Neutrosophy is a branch of philosophy identified by Florentin Smarandache in 1980. 

Definition 1: 

Assume that X be an universe o discourse.then a neutrosophic sets N can be dehined as follows; 

N = {< x: TN(x), IN(x), FN(x) >∕ x∈ X}     (1) 

Here the functions T, I, F define respectively the membership degree, indeterminacy degree and the 

non-membership degree of the element x∈ X to the set N. the three functions T, I and F satisfy the 

following the conditions: 

 

T, I, F:X →]0−, 1+[  

0− ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+          (2) 

For two neutrosophic sets  

M = {< x: TM(x), IM(x), FM(x) >∕ x∈ X} and N = {< x: TN(x), IN(x), FN(x) >∕ x ∈ X}  the two 

relations are defined as follows: 

M ⊆N if and only if TM(x) ≤ TN(x), IM(x) ≥ IN(x), FM(x) ≥ FN(x) 

M =N if and only if TM(x) = TN(x), IM(x) = IN(x), FM(x) = FN(x) 

Definition 2: 

Complement of neutrosophic sets: 

 For any set M = {< x: TM(x), IM(x), FM(x) >∕ x∈ X} ,then  
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M′ = {< x: FM(x), 1 − IM(x), TM(x) >∕ x∈ X}     (3) 

Definition 3: 

 Single valued neutrosophic number (SVNN) 

Let X be a universe of discourse with generic element in X denoted by x. A SVNS M in X is 

characterized by a truth-membership function TM(x), a indeterminacy-membership function IM(x) 

and a falsity-membership function FM(x). Then, a SVNS M can be written as follows: 

 M = {< x: TM(x), IM(x), FM(x) >∕  x ∈ X}  where TM(x), IM(x), FM(x) ∈ [0,1]  for each point x in X. 

Since no restriction is imposed in the sum of t M (p), i M (p) and f M (p), 

 it satisfies 0− ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+ . For a SVNS M in  the triple <

TM(x), IM(x), FM(x) > is called single valued neutrosophic number (SVNN). 

 

4. MCGDM method based on hybrid – score accuracy functions under single valued 

neutrosophic environment 

  

Assume that B = {B1, …, Bn }(n ≥ 2) be the set of logistics centers, K = {K1, K2, ..., Kq } (q≥2) be the 

set of criteria and E = {E1, E2, ..., Em} (m ≥ 2) be the set of decision makers or experts. 

The weights of the decision makers and criteria are not previously assigned, where the 

information about the weights of the decision- makers is completely unknown and information 

about the weights of the criteria is incompletely known in the group decision making problem. In 

such a case, we develop a method based on the hybrid score – accuracy function for MCDM problem 

with unknown weights under single-valued neutrosophic environment using linguistic variables. 

The steps for solving MCGDM by proposed approach have been presented below is discussed  

Algorithm 

Step 1: 

Formation of the decision matrix 

Step 2: 

Calculate hybrid score accuracy matrix 

Step 3: 

Calculate the average matrix  

Step 4: 

Determination of decision maker’s weights 

Step 5: 

Calculate collective hybrid score accuracy matrix 

Step 6: 

Weight model for criteria 

Step 7: 

Ranking of alternatives 

Step 8: 

End 
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5. Methodology: 

 

The following illustration is suppose that a state government wants to construct tan eco-tourism 

park for the development of state tourism and especially for the mental refreshment of children. 

After initial screening three potential spots namely spot-1 (P1 ), spot-2 (P2 ), spot-3 (P3 ). A team of 

three decision makers namely D1,D2,D3 has been constructed a neutrosophic sets for selecting the 

most suitable spot with respect to the following attributes: 

 

Ecology (C1) 

Cost (C2) 

Technical facility (C3) 

Transport (C4) 

Risk factors (C5) 

 

Assume that a new modern logistic center is required in a town. There are three spot P1 , P2 ,P3 . A 

committee of four decision makers or experts namely, D1 , D2 , D3 has been formed to select the most 

appropriate location on the basis of five criteria adopted from the study [6] namely, 

C1,C2,C3,C4,C5.Thus the three decision makers use linguistic variables to rate the alternatives with 

respect to the criterion and construct the decision matrices as follows: 

Step 1: 

 

Formation of the decision matrix 

 

 

D1 C1 C2 C3 C4 C5 

P1 (0.7,0.4,0.4) (0.7,0.4,0.3) (0.8,0.1,0.1) (0.7,0.2,0.1) (0.6,0.5,0.5) 

P2 (0.4,0.3,0.6) (0.5,0.2,0.5) (0.6,0.2,0.2) (0.7,0.3,0.3) (0.4,0.3,0.4) 

P3 (0.4,0.2,0.3) (0.8,0.1,0.3) (0.5,0.4,0.4) (0.5,0.2,0.2) (0.7,0.3,0.2) 

 

D2 C1 C2 C3 C4 C5 

P1 (0.5,0.2,0.3) (0.7,,0.4,0.4) (0.8,0.2,0.2) (0.5,0.2,0.2) (0.5,0.5,0.4) 

P2 (0.5,0.4,0.4) (0.5,0.2,0.4) (0.5,0.3,0.3) (0.8,0.3,0.3) (0.4,0.1,0.4) 

P3 (0.4,0.2,0.5) (0.8,0.2,0.2) (0.5,0.3,0.3) (0.7,0.2,0.2) (0.7,0.4,0.2) 

 

 

D3 C1 C2 C3 C4 C5 

P1 (0.7,0.4,0.3) (0.8,0.2,0.1) (0.6,0.3,0.3) (0.7,0.2,0.5) (0.5,0.6,0.5) 

P2 (0.6,0.2,0.3) (0.5,0.1,0.3) (0.7,0.4,0.4) (0.5,0.3,0.4) (0.3,0.4,0.4) 
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P3 (0.6,0.2,0.3) (0.6,0.4,0.2) (0.5,0.3,0.3) (0.7,0.4,0.2) (0.5,0.6,0.4) 

 

Step 2: 

 

Calculate hybrid score accuracy matrix  

 

Now we use the above method for single valued neutrophic group decision making to choice 

appropriate location. We take α= 0.5 for demonstrating the computing procedure 

 

Calculate hybrid score – accuracy matrix 

 

Hybrid score- accuracy matrix can be obtained from above decision matrix using equation  

 ℎ𝑖𝑗
𝑠 =

1

2
𝛼(1 + 𝑡𝑖𝑗

𝑠 − 𝑓𝑖𝑗
𝑠) +

1

3
(1 − 𝛼)(2 + 𝑡𝑖𝑗

𝑠 − 𝑖𝑖𝑗
𝑠 − 𝑓𝑖𝑗

𝑠) 

are given below respectively. 

HYBRID SCORE MATRIX FOR D1 

 

H1 

    C1 C2 C3  C4 C5 

P1 0.6417 0.6833 0.8583 0.8000 0.5417 

P2 0.4500 0.5500 0.7167 0.7000 0.5333 

P3 0.5917 0.7750 0.5583 0.6750 0.7417 

 

HYBRID SCORE MATRIX FOR D2 

H2 

C1   C2 C3         C4 C5 

P1 0.6333 0.6417 0.8000 0.6750 0.5417 

P2 0.5583 0.5917 0.6167 0.7417 0.5667 

P3 0.5083 0.8000 0.6167 0.7583 0.7250 

HYBRID SCORE MATRIX FOR D3 

H3 

C1    C2    C3   C4         C5 

P1 0.6833 0.8417 0.6583 0.6333 0.4833 

P2 0.6750 0.6500 0.6417 0.5750 0.4750 

P3 0.6750 0.6833 0.6167 0.7250 0.5250 

 

Step 3: 
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Calculate the average matrix . Form the above hybrid score-accuracy matrix by using equation ℎ𝑖𝑗
∗ =

1

𝑚
∑ (ℎ𝑖𝑗

𝑠 )𝑚
𝑠=1  .  

We form the average matrix H* 

The average matrix 

H* 0.6528 0.7222 0.7722 0.7028 0.5222 

     0.5611 0.5972 0.6583 0.6722 0.5250 

     0.5917 0.7528 0.5972 0.7194 0.6639 

 The collective correlation co-efficient between Hs and H* express follows by equation 

 

Ωs = ∑
∑ hij

s hij
∗ρ

j=i

√∑ (hij
s )

2ρ
j=1

n

i=1

1

√∑ (hij
∗ )

2ρ
j=1

 

Here s={1,2,3} 

To find Ω1 ,  

 

H1 x H* 

 

∑ hij
1 hij

∗

ρ

j=i

 
√∑(hij

1 )
2

ρ

j=1

 √∑(hij
∗ )

2

ρ

j=1

 

0.4189 0.4935 0.6628 0.5622 0.2829 

0.2525 0.3285 0.4718 0.4706 0.2800 

0.3501 0.5834 0.3334 0.4856 0.4924 

 

2.4203 

1.8033 

2.2449 

 

1.5965 

1.3391 

1.5060 

 

1.5201 

1.3537 

1.4939 

 

 

𝛺1 =
2.4203

1.5965 × 1.5201
+

1.8033

1.3391 × 1.3537
+

2.2449

1.3391 × 1.4939
= 0.4278 

 

𝛺2 = 2.9937 
 

𝛺3 = 2.9781 
 

Step – 4 

Determination decision maker’s weights 

𝛾𝑠 =
𝛺𝑠

∑ 𝛺𝑠
𝑚
𝑠=1

, 0 ≤ 𝛾𝑠 ≤ 1 𝑓𝑜𝑟 𝑠 = 1,2,3, . . . , 𝑚 

From the equation we determine the weight of the four decision makers as follows :- 

𝛺1 + 𝛺2 + 𝛺3 = 6.3996 
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𝛾1 =
𝛺1

𝛺1+𝛺2+𝛺3
=

0.4278

6.3996
= 0.0669 

𝛾2 = 0.4678 

𝛾3 = 0.4654 

 

Step 5: 

Calculate collective hybrid score – accuracy matrix 

 

Hence the hybrid score-accuracy values of the different decision makers choice are aggregated by 

equation ℋ = (hij)n × p = ∑ γshij
sm

s=1 and the collective hybrid score-accuracy matrix can be 

formulated as follows: 

 

 

γ
1

× H1  0.0327 0.0349 0.0438 0.0408 0.0276 

0.0230 0.0281 0.0366 0.0357 0.0272 

0.0302 0.0395 0.0285 0.0344 0.0378 

 

 

γ
2

× H2 0.3008 0.3048 0.3800  0.3206 0.2573 

0.2652 0.2810 0.2929 0.3523 0.2692 

0.2415 0.3800 0.2929 0.3602 0.3444 

 

 

γ
3

× H30.3239 0.3990 0.312   0.3002 0.2291 

0.3200 0.3081 0.3042 0.2726 0.2252 

0.3200 0.3239 0.2923 0.3437 0.2489 

 

 

By adding all the above 

 

ℋ = 0.657 0.739 0.736 0.662 0.514 

 0.608 0.617 0.634 0.661 0.522 

 0.592 0.743 0.614 0.738 0.631 

Step 6 

Weight model for criteria 

Assume that the information about criteria weights is incompletely known given as follows: weight 

vectors, 
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Using the linear programming model Max ω =
1

n
∑ ωjhij

ρ
j=1 , we obtain the weight vector of the 

criteria as 𝜔 =[0.1, 0.1, 0.25, 0.2, 0.15]. 

Step 7 

Ranking of alternatives 

 

Using equation  ψ(Pi) = ∑ ωihijρ
j=1  we calculate the over all hybrid score-accuracy values 

ψ(Pi) (i = 1, 2, 3): 

ψ(P1)=0.533 

ψ(P2)=0.491 

ψ(P3)=0.529 

Based on the above values of  ψ(Pi) (i = 1, 2, 3, ) the ranking order of the locations are as 

follows: 

P1> P3> P2  

Therefore the location P1 is the best location. 

  

6. Conclusions 

In this paper, the concept of single valued Neutrosophic set used with location problem tested with 

the help of score function. A possible application has been tackled through the usage of SVNS which 

will not only prove useful by itself but will help out keen researchers to solve other problems of 

uncertainties through similar procedures. The following paper demonstrated a new solution 

procedure to solve neutrosophic fuzzy sets with the contraction value based on real life decision 

making problems. This procedure proves quite feasible in many real life scenarios where else of 

decision making is the goal in mind. 
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Abstract: In this paper, an attempt has been made to introduce a new similarity measure namely 

single-valued pentapartitioned neutrosophic dice similarity measure (SVPNDSM) under the 

single-valued pentapartitioned neutrosophic set (SVPNS) environment, and to formulate several 

interesting results on SVPNDSM and SVPNWDSM. In this present work, the SVPNDSM under the 

SVPNS framework is combined with a multi-attribute decision making (MADM) strategy. This 

proposed method is used to select suitable metal oxide nano-additive for biodiesel blends on the 

basis of environmental aspects. The effects of nano-additives on engine emissions have been 

reported here from six different literatures. The SVPNDSM applied under the SVPNS environment 

enables the selection of the best nano-additive among relevant literatures. Alternative L4 comes out 

as the best from the proposed method. The proposed MADM method is shown to be well suited to 

this problem after it has been compared with two existing methods. 

Keywords: Neutrosophic Set; Indeterminacy; SVPNS; Dice Similarity. 

 

1. Introduction: The notion of fuzzy set (FS) theory was grounded by Zadeh [49] to deal with the 

events having uncertainty, where every element has membership value between 0 and 1. Later on, 

Atanassov [2] introduced the concept of intuitionistic fuzzy set (IFS) by generalizing the notion of FS 

in the year 1986, where every element has membership and non-membership values. Till now many 
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researchers around the globe have applied the concept of FS and IFS in the area of theoretical and 

practical research. 

We come across many situations involving indeterminacy, incompleteness which cannot be 

easily determined by the degrees of membership and non-membership. Keeping in mind, 

Smarandache [40] introduced the notion of neutrosophic set (NS) on generalizing the idea of FS and 

IFS to deal with the events having indeterminacy. In an NS, every element has three independent 

memberships values namely truth, indeterminacy and false membership values respectively, those 

lie between 0 and 1 each. In the recent past, many researcher around the globe used the concept of 

NS and their extensions for theoretical research [4-6, 8-11, 14, 24, 42, etc.]. Degree of indeterminacy 

membership of a mathematical expression plays an important role in every MADM problem of this 

real world. Afterwards, Wang et al. [45] introduced the notion of single-valued neutrosophic set 

(SVNS) in 2010, which is a subclass of NS. The notion of SVNS is more useful to deal with the 

situation involving incomplete and indeterminate information. Till now, many researcher have 

applied SVNS and their extensions in different branches of real-world such as fault diagnosis [46, 

47], medical diagnosis [35, 36], decision-making problems [3, 7, 12-13, 15, 17-23, 25-28, 32-34, 43, 48], 

etc.  

Recently, Mallick and Pramanik [24] investigated the notion of single-valued pentapartitioned 

neutrosophic set (SVPNS) by splitting the degree of indeterminacy membership into three 

independent components namely contradiction membership, ignorance membership and unknown 

membership. Das et al. [6] presented the notion of pentapartitioned neutrosophic Q-ideals of 

Q-algebra in 2021. Das et al. [13] proposed a MADM strategy based on the tangent similarity 

measure of SVPNS. Later on, Das et al. [12] established a MADM strategy based on grey relational 

analysis under the SVPNS environment. A MADM strategy based on cosine similarity measure of 

SVPNSs was established by Majumder et al. [23] to identify the most significant risk factor of 

COVID-19 in economy. 

In this article, a new similarity measure called SVPNDSM is proposed used to select suitable 

metal oxide nano-additive for biodiesel blends on the basis of environmental aspects under the 

SVPNS environment and generate several interesting results. In addition, a MADM technique is 

established based on SVPNDSM within the SVPNS environment. 

Research Gap: In the literature review, no study is found relating to SVPNDSM based MADM 

strategy in SVPNS. 

Motivation: To explore the unexplored MADM strategy in SVPNS environment, a new MADM 

strategy under SVPNS environment based on SVPNDSM between SVPNSs is presented in this 

present work. 

The rest of this paper has been split into the following sections: 
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Section-2 presents several basic definitions and operations on SVPNSs those are very useful for 

developing the main results of this paper. In section-3, Single-Valued Pentapartitioned 

Neutrosophic Dice Similarity Measure and Single-Valued Pentapartitioned Neutrosophic Weighted 

Dice Similarity Measure under the SVPNS environment is proposed. Further, we formulate some 

interesting results on SVPNDSM and SVPNWDSM. A MADM strategy using SVPNWDSM under 

the SVPNS environment is discussed in section-4. In section-5 the proposed MADM strategy is 

applied to a real world problem. Finally, in section 6, a comparative study has been conducted to 

validate the results obtained from the proposed method. In section-7, wrap up the work presented 

in this article. 

List of abbreviations are shown in below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Basic Preliminaries: 

    In this section some basic definitions and results are described. 

 Definition 2.1.[24] Suppose that X be a fixed set. Then R, an SVPNS over X is defined as follows: 

  R = {(, R(), R(), R(), R(), R()) : X}, 

where R, R, R, R, R: X[0, 1] represents the truth, contradiction, ignorance, unknown and 

falsity membership functions respectively such that 0 R() + R() + R() + R() + R()  5, for all 

∈X. 

Remark 2.1.[24] Suppose that R = {(, R(), R(), R(), R(), R()) : X} be an SVPNS over X. 

Then, for any X, (R(), R(), R(), R(), R()) is called an single-valued pentapartitioned 

neutrosophic number (SVPNN) over X. 

List of abbreviations 

Full Form Short Form 

Fuzzy Set FS 

Intuitionistic Fuzzy Set IFS 

Neutrosophic Set NS 

Single Valued Neutrosophic Set SVNS 

Single Valued Pentapartitioned 

Neutrosophic Set 

SVPNS 

Multi-Attribute Decision Making MADM 

Single Valued Pentapartitioned 

Neutrosophic Dice Similarity Measure 

SVPNDSM 

Single Valued Pentapartitioned 

Neutrosophic Weighted Dice 

Similarity Measure 

SVPNWDSM 

Positive Ideal Solution PIS 
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Definition 2.2.[24] Suppose that W={(, W(), W(), W(), W(), W()) : X} and M={(, M(), 

M(), M(), M(), M()) : X} be two SVPNSs over X. Then, 

i. WM W()M(), W()M(), W()M(), W()M(), W()M(), for all X; 

ii. Wc={(, W(), W(), 1-W(), W(), W()) : X} and Mc={(, M(), M(), 1-M(), M(), 

M()) : X}; 

iii. WM={(, max {W(), M()}, max {W(), M()}, min {W(), M()}, min {W(), M()}, 

min {W(), M()}) : X}; 

iv. WM={(, min {W(), M()}, min {W(), M()}, max {W(), M()}, max {W(), M()}, 

max {W(), M()}) : X}. 

Definition 2.3.[24] The absolute SVPNS (1X) and null SVPNS (0X) over a fixed set X are defined by: 

i. 1X= {(, 1, 1, 0, 0, 0) : X}; 

ii. 0X= {(, 0, 0, 1, 1, 1) : X}. 

Clearly, 0X  R  1X, for any SVPNS R over X. 

 

3. Single-Valued Pentapartitioned Neutrosophic Dice Similarity Measure: 

This section introduces the notion of Single-Valued Pentapartitioned Neutrosophic Dice 

Similarity Measure and Single-Valued Pentapartitioned Neutrosophic Weighted Dice Similarity 

Measure, and formulates several interesting results on them under the SVPNS environment. 

Definition 3.1. Assume that W = {(, W(), W(), W(), W(), W()) : U} and M = {(, M(), 

M(), M(), M(), M()) : U} be two SVPNSs over a fixed set U. Then, the SVPNDSM between 

W and M is defined by: 

DSVPNDSM(W, M) 

=
1

𝑛
∑

2[W().M()+W().M()+W().M()+W().M()+W().M()]

[(W())
2

+(W())
2

+(W())
2

+(W())
2

+(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2]
U (1) 

Example 3.1. Let W={(a,0.6,0.3,0.1,0.2,0.1), (b,0.9,0.1,0.0,0.1,0.2)} and M={(a,1.0,0.0,0.1,0.1, 0.2), 

(b,0.8,0.0,0.0,0.1,0.0)}be two SVPNSs over U={a, b}. Then, SVPNDSM (W, M) = 0.8942758967. 

Theorem 3.1. Suppose that DSVPNDSM (W, M) be the SVPNDSM between the SVPNSs W and M. Then, 

(i) 0 ≤ DSVPNDSM (W, M) ≤ 1; 

(ii) DSVPNDSM (W, M) = DSVPNDSM (M, W); 

(iii) W = M DSVPNDSM (W, M) = 1. 

Proof. (i) Let DSVPNDSM (W, M) be the SVPNDSM between W and M. 

Therefore, DSVPNDSM (W, M)  

= 
1

𝑛
∑

2[W().M()+W().M()+W().M()+W().M()+W().M()]

[(W())
2

+(W())
2

+(W())
2

+(W())
2

+(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2]
U . 

It is known that, 0 W()  1, 0 M()  1, 0 W()  1, 0 M()  1, 0 W()  1, 0 M()  1, 0 

W()  1, 0 M()  1, 0 W()  1 and 0 M()  1, for each U. 
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 0  W().M()  1, 0  W().M()  1, 0  W().M()  1, 0 W().M()  1, 0 

W().M() 1, 0 (W())
2
 1, 0 (W())

2
 1, 0 (W())

2
 1, 0 (W())

2
 1, 0 (W())2 1, 

for each U. 

 0 (W())
2

+ (W())
2

+ (W())
2

+ (W())
2

+ (W())2 + (M())
2

+ (M())
2

+ (M())
2

 + 

(M())
2

+ (M())2 10, 0 W().M()  + W().M()  + W().M()  + W().M()  + 

W().M()5, for each U. 

0  
2[W().M()+W().M()+W().M()+W().M()+W().M()]

[(W())
2

+(W())
2

+(W())
2

+(W())
2

+(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2]
 1, U. 

0  ∑
2[W().M()+W().M()+W().M()+W().M()+W().M()]

[(W())
2

+(W())
2

+(W())
2

+(W())
2

+(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2]
U n. 

 0 
1

n
∑

2[W().M()+W().M()+W().M()+W().M()+W().M()]

[(W())
2

+(W())
2

+(W())
2

+(W())
2

+(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2]
U  1 

0  DSVPNDSM (W, M)  1. 

Therefore, 0  DSVPNDSM (W, M)  1. 

(ii) We have, DSVPNDSM (W, M)  

= 
1

n
∑

2[W().M()+W().M()+W().M()+W().M()+W().M()]

[(W())
2

+(W())
2

+(W())
2

+(W())
2

+(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2]
U  

= 
1

n
∑

2[M().W()+M().W()+M().W()+M().W()+M().W()]

[(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2+(W())
2

+(W())
2

+(W())
2

+(W())
2

]
U  

= DSVPNDSM (M, W) 

Therefore, DSVPNDSM (W, M) = DSVPNDSM (M, W). 

(iii) Suppose that W and M be two SVPNSs over a fixed set U such that W = M. Let DSVPNDSM (W, M) 

be the SVPNDSM between the SVPNSs W and M. 

Now, W = M 

W()=M(), W()=M(), W()=M(), W()=M() and W()=M(), for each U. 

 W().M() = (W())
2

, W().M() = (W())
2

, W().M() = (W())
2

, 

W().M()=(W())
2
 andW().M()=(W())

2
, for each U. 

 2[W().M() + W().M() + W().M() + W().M() + W().M()] = [(W())
2

+

(W())
2

+ (W())
2

+ (W())
2

+ (W())2 + (M())
2

+ (M())
2

+ (M())
2

+ (M())
2

+

(M())2], for each U. 


2[M().W()+M().W()+M().W()+M().W()+M().W()]

[(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2+(W())
2

+(W())
2

+(W())
2

+(W())
2

]
 =1, U. 

∑
2[M().W()+M().W()+M().W()+M().W()+M().W()]

[(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2+(W())
2

+(W())
2

+(W())
2

+(W())
2

]
U  = n. 


1

n
∑

2[M().W()+M().W()+M().W()+M().W()+M().W()]

[(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2+(W())
2

+(W())
2

+(W())
2

+(W())
2

]
U  = 1. 

 DSVPNDSM (M, W) = 1. 
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Definition 3.2. Assume that W = {(, W(), W(), W(), W(), W()) : U} and M = {(, M(), 

M(), M(), M(), M()) : U} be two SVPNSs over a fixed set U. Then, the SVPNWDSM 

between two SVPNSs W and M is defined by: 

DSVPNWDSM (W, M) 

= ∑ w .
2[W().M()+W().M()+W().M()+W().M()+W().M()]

[(W())
2

+(W())
2

+(W())
2

+(W())
2

+(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2]
U (2) 

Example 3.2. Consider the SVPNSs W and M on U given in Example 3.1. Assume that w1=0.6, w2= 

0.4 be the corresponding weights of the SVPNSs W and M respectively. Then, SVPNWDSM (W, M) = 

0.8810258129. 

Theorem 3.2. Suppose that DSVPNWDSM (W, M) be the SVPNWDSM between the SVPNSs W and M. 

Then, the following holds: 

(i) 0 ≤ DSVPNWDSM (W, M) ≤ 1; 

(ii) DSVPNWDSM (W, M) = DSVPNWDSM (M, W); 

(iii) W = M  DSVPNWDSM (W, M) = 1. 

Proof. (i) Suppose that DSVPNWDSM (W, M) be the SVPNWDSM between the SVPNSs W and M, where 

DSVPNWDSM (W, M)  

= ∑ w.
2[W().M()+W().M()+W().M()+W().M()+W().M()]

[(W())
2

+(W())
2

+(W())
2

+(W())
2

+(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2]
U . 

It is known that, 

0  W()  1, 0 M()  1, 0  W()  1, 0  M()  1, 0  W()  1, 0  M()  1, 0  W()  1, 0 

 M()  1, 0  W()  1 and 0  M()  1, for each U. 

 0  W().M()  1, 0  W().M()  1, 0  W().M()  1, 0  W().M()  1, 0  

W().M()  1, 0  (W())
2
  1, 0  (W())

2
  1, 0  (W())

2
  1, 0  (W())

2
  1, 0  

(W())2  1, for each U. 

 0 (W())
2

+ (W())
2

+ (W())
2

+ (W())
2

+ (W())2 + (M())
2

+ (M())
2

+ (M())
2

+ 

(M())
2

+ (M())2 10, and 0 W().M() + W().M() + W().M() + W().M() + 

W().M()5, for each U. 

 0 
2[W().M()+W().M()+W().M()+W().M()+W().M()]

[(W())
2

+(W())
2

+(W())
2

+(W())
2

+(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2]
 1, U 

0∑ w.
2[W().M()+W().M()+W().M()+W().M()+W().M()]

[(W())
2

+(W())
2

+(W())
2

+(W())
2

+(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2]
U 1 

 0  DSVPNWDSM (W, M)  1 

Therefore, we have 0  DSVPNWDSM (W, M)  1. 

(ii) We have, DSVPNWDSM (W, M) 

= ∑ w.
2[W().M()+W().M()+W().M()+W().M()+W().M()]

[(W())
2

+(W())
2

+(W())
2

+(W())
2

+(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2]
U  
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= ∑ w.
2[M().W()+M().W()+M().W()+M().W()+M().W()]

[(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2+(W())
2

+(W())
2

+(W())
2

+(W())
2

]
U  

= DSVPNWDSM (M, W) 

Therefore, DSVPNWDSM (W, M) = DSVPNWDSM (M, W). 

(iii) Suppose that W and M be two SVPNSs over a fixed set U such that W = M. Assume that 

DSVPNWDSM (W, M) be the SVPNWDSM between W and M. 

Now, W = M 

 W()=M(), W()=M(), W()=M(), W()=M() and W()=M(), for each U.  

 W().M()  = (W())
2

, W().M() =(W())
2

, W().M() =(W())
2

, W().M()  = 

(W())
2
, W().M() = (W())

2
, for each U. 

 2[W().M() + W().M() + W().M() + W().M() + W().M()] = [(W())
2

+

(W())
2

+ (W())
2

+ (W())
2

+ (W())2 + (M())
2

+ (M())
2

+ (M())
2

+ (M())
2

+

(M())2], for each U. 


2[M().W()+M().W()+M().W()+M().W()+M().W()]

[(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2+(W())
2

+(W())
2

+(W())
2

+(W())
2

]
 = 1, U 

∑ w.
2[M().W()+M().W()+M().W()+M().W()+M().W()]

[(W())2+(M())
2

+(M())
2

+(M())
2

+(M())
2

+(M())2+(W())
2

+(W())
2

+(W())
2

+(W())
2

]
U  = 1 

 DSVPNWDSM (M, W) = 1 

Therefore, W = M  DSVPNWDSM (W, M) = 1. 

 

4. MADM-Strategy Based on SVPNWDSM under SVPNS Environment: 

The main focus of this section is to propose a MADM-strategy using the SVPNWDSM between two 

SVPNSs under the SVPNS environment. Figure-1 represents the proposed MADM-strategy. 

Let us consider a MADM-problem, where L = {L1, L2, …....,Lp} is a set of possible alternatives and 

A = {A1, A2, ..., Aq} is the family of attributes. Then, the decision maker can give their evaluation 

information for each alternative Li(i = 1, 2,..., p)against the attribute Aj (j = 1, 2,..., q) by using SVPNS. 

Then, the proposed MADM-strategy is designed in the following steps: 

Step-1: Decision Matrix Formation using SVPNS. 

Suppose, the decision maker gives their evaluation information by using the SVPNS ELi
= {(Aj, 

ij (Li, Aj ), ij (Li, Aj ), ij (Li, Aj ), ij (Li, Aj ), ij (Li, Aj )): AjA} for each alternative Li against the 

corresponding attributes Aj(j = 1, 2, ..., q), where (ij(Li,Aj), ij(Li,Aj), ij(Li,Aj), ij(Li,Aj), ij(Li,Aj)) 

= (Li,Aj)(i = 1, 2, ..., p and j = 1, 2, ..., q) is an SVPNN. By using all these evaluation information, a 

decision matrix (DM) is billed as follows. 

The decision matrix can be expressed as follows: 

DM A1 A2 ….... …..... Aq 
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Step-2: Selection of the Positive Ideal Solution for the Decision Matrix. 

The Positive Ideal Solution (PIS) for the decision matrix is defined as follows: 

𝐿+ = [(1
+,1

+,1
+,1

+,1
+), (2

+,2
+,2

+,2
+,2

+), ………., (𝑚
+ ,𝑚

+ ,𝑚
+ ,𝑚

+ ,𝑚
+ )],                    (3) 

where 𝑗
+= max {𝑖𝑗(Li, Aj): i=1, 2, 3, ….., n}, 𝑗

+= max {𝑖𝑗(Li, Aj): i=1, 2, 3, ….., n},𝑗
+= min {𝑖𝑗(Li, Aj): 

i=1, 2, 3, ….., n}, 𝑗
+= min {𝑖𝑗(Li, Aj): i=1, 2, 3, ….., n} and 𝑗

+= min {𝑖𝑗(Li, Aj): i=1, 2, 3, ….., n}. 

 

Step-3: Calculation of Attribute’s Weight. 

In any MADM problem, the decision maker can use the compromise function as tools for the 

calculation of the weight of each attribute those are completely unknown. 

The compromise function is defined as follows: 

j=∑ 
p
i=1 (3 + ij(Li, Aj) + ij(Li, Aj) - ij(Li, Aj) - ij(Li, Aj) - ij(Li, Aj)) / 5.                        (4) 

Then, the weight of the j-th attribute is defined by wj= 
j

∑ j
q
j=1

                                     (5) 

Here, ∑ wj
q
j=1  = 1. 

 

Step-4: Determination of the SVPNWDSM between PIS and 𝐄𝐋𝐢
 (i = 1, 2,..., p). 

In this step, the SVPNWDSM between the decision elements from the decision matrix and the PIS 

is calculated by using eq. (2). 

 

Step-5: Ranking Order of the Alternatives. 

Finally, the ranking order of alternatives is determined based on the ascending order of 

SVPNWDSM between the PIS and the decision elements from the decision matrix. The alternative 

associated with the highest SVPNWDSM value is the most suitable alternatives. 

 

 

 

 

 

L1 (L1, A1) 

 

(L1, A1) ........ ….... (L1, Aq) 

L2 (L2, A1) (L2, A2) …… …..... (L2, Aq) 

…… …….. …….. ……. ……. ……… 

Lp (Lp, A1) (Lp, A2) ……….. ……… (Lp, Aq) 
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Figure-1: Proposed MADM-Strategy 
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5. Application of the Proposed MADM Strategy in the Selection of Suitable Metal Oxide 

Nano-Additive for Biodiesel Blend on Environmental Aspect under the SVPNS Environment: 

The search for a potential alternative fuel has flourished due to the global demand for fossil fuels 

and environmental problems. Among all alternative fuels, biodiesel has become more popular in 

many nations. But main problem with biodiesel have their low calorific value and low heat value, 

which result low engine performance. In different research studies, nano-additives have been 

proposed for improving the performance and emission characteristics of biodiesel. Metal oxide 

nano-additives are basically used frequently for the improvement of combustion quality. 

The proposed research work focused on the selection of suitable metal oxide nano-additive for 

biodiesel blend on environmental aspect under the SVPNS environment. 

For the current research work five attributes namely (i) CO emission, (ii) HC emission (iii) SO2 

emission, (iv) NOx emission and (v) Smoke emission, and six alternatives namely (i) GO, (ii) SiO2.,(iii) 

CuO, (iv) Al2O3, (v) Fe2O3 and (vi) TiO2 are chosen from different literature [1, 16, 31, 39, 41, 44]. Best 

alternative among them was chosen with the proposed MADM strategy under the SVPNS 

environment.  

In addition of TiO2 nano-particles the values of CO, HC and smoke opacity emission reduced, 

while emission of CO2 and NO are increased. This happen due to the intensified combustion process 

as compared to Bio diesel blends without TiO2 [31]. CuO nano-particles shows good impact in 

reduction of CO, HC and smoke emission though in addition of CuO nano-additive CO2 emission 

increase while NOx emission increase slightly [39]. A comparative study was done by Tomar and 

Kumar [41] between Al2O3 and Fe2O3. Reduction of all kind emission was observed with both 

nano-additives though Fe2O3 is slightly more effective in reduction of CO emission but in the case of 

SO2 and NOx emission reduction, Al2O3 is more effective. Effect of GO was studied by Hoseini et al. 

[16]. In addition of GO, the emission of HC and CO decrease with a penalty of increased NOx 

emission. The effect of Al2O3 nano-particles was studied separately and it was observed that all the 

emission i.e., HC, CO, smoke and NOx emission reduced significantly at different loading condition. 

Ağbuluta et al. [1] have done a comparative study among three nano-particles metallic oxide namely 

Al2O3, TiO2 and SiO2. In [1], the authors reported, emission of CO, HC and NOx were reduced in the 

presence of three nano-additives with blend though the highest reduction of CO emission observed 

with Al2O3 nano-particles and highest NOx emission with TiO2 nano-particles. Table-1 represents the 

list of nano-Particles added to biodiesel and their corresponding engine emissions.  

 

Table-1: List of nano-particles added to biodiesel and their corresponding engine emissions 

Nano- 

particles 

& Dosage 

Operating 

Condition 

CO HC NOx CO2 Smoke 
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TiO2 0.01% by 

mass [31] 

1000 rpm,  

1500 rpm, 

2000rpm,  

2500 rpm,  

3000 rpm 

B20+TiO2 

reduce the 

25.56% CO 

emission 

compared 

to Diesel 

B20+TiO2  

reduce HC 

emission 

around 34.12% 

at 3000 rpm 

TiO2 

dramatically 

increasing the 

in  cylinder 

pressure and 

temperature 

since the rising 

of NO 

emission 

-- Average 

reduction

25.07% 

CuO, 25, 50, 

and 75 

ppm[39] 

Different 

load 

condition 

Reduced Reduced Increase 

slightly 

Increase Reduced 

Fe2O3,Al2O3, 

30;60;90 

ppm[41] 

1800 rpm 

and at 50% 

load 

condition 

Reduced  Reduced(up to 

24%Reduction 

found with 

Al2O3) 

 10-15% 

lower at 

300 ppm 

GO,  

30;60;90 ppm 

[16] 

2100 rpm 

and different 

load 

condition 

Reduced Reduced Increase Increase  

Al2O3, 

25;50 ppm [44] 

1500 rpm 

and different 

load 

condition 

Reduced  

(Maximum 

Reduction 

found with 

50 ppm 

Al2O3) 

Reduced  

(Maximum 

Reduction 

found with 50 

ppm Al2O3) 

Reduced  

(Maximum 

Reduction 

found with 50 

ppm Al2O3) 

Reduced 

(Maximu

m 

Reductio

n found 

with 50 

ppm 

Al2O3) 

Reduced 

(Maximu

m 

Reductio

n found 

with 50 

ppm 

Al2O3) 

Al2O3;TiO2,Si

O2ppm [1] 

2000 rpm 

and different 

load 

condition 

Reduced 

(Maximum 

Reduction 

found with  

Al2O3) 

Reduced 

(Maximum 

Reduction 

found with 

Al2O3) 

Increase 

(Maximum 

increment 

found with 

TiO2) 
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Figure-2: Decision Hierarchy of the Current MADM Problem 

 

Figure-2 represents decision hierarchy of the current MADM problem and steps involve in the 

current MADM problem is presented as follows: 

By using the evaluation information for all alternatives given by the decision makers, prepare the 

decision matrix in Table-2. 

Table-2: Decision Matrix 

 

Now, by using the eq. (3), the PIS (𝐿+) is formed for the decision matrix in Table-3. 

 A1 A2 A3 A4 A5 

L1 (1.0,0.2,0.2,0.0,0.0) (0.8,0.1,0.1,0.1,0.1) (0.9,0.0,0.2,0.1,0.1) (1.0,0.0,0.2,0.1,0.1) (0.9,0.0,0.0,0.0,0.1) 

L2 (1.0,0.1,0.2,0.1,0.2) (0.9,0.1,0.2,0.2,0.1) (0.8,0.1,0.0,0.0,0.1) (0.9,0.0,0.0,0.1,0.1) (0.9,0.1,0.0,0.2,0.0) 

L3 (1.0,0.1,0.0,0.0,0.1) (0.9,0.0,0.1,0.1,0.2) (0.9,0.1,0.1,0.1,0.1) (0.8,0.1,0.2,0.1,0.1) (1.0,0.2,0.0,0.0,0.1) 

L4 (0.9,0.2,0.1,0.1,0.0) (1.0,0.1,0.0,0.0,0.1) (0.9,0.1,0.1,0.1,0.1) (1.0,0.1,0.0,0.0,0.1) (0.8,0.1,0.1,0.2,0.1) 

L5 (1.0,0.2,0.1,0.1,0.1) (0.8,0.1,0.0,0.0,0.1) (0.7,0.2,0.0,0.1,0.1) (0.8,0.1,0.0,0.0,0.1) (1.0,0.1,0.0,0.0,0.1) 

L6 (0.8,0.1,0.1,0.2,0.1) (1.0,0.0,0.1,0.2,0.1) (0.9,0.0,0.2,0.1,0.1) (0.8,0.1,0.1,0.2,0.1) (1.0,0.1,0.0,0.0,0.1) 

Selection of Suitable Metal Oxide Nano-Additive 

Attributes 
 

CO emission 

 
HC emission 

 
SO2 emission 

 
NOx emission 

 
Smoke emission 

 

GO 

SiO2 

CuO 

Al2O3 

Fe2O3 

TiO2 

Alternative 
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Table-3: Positive Ideal Solution 

 

Weights of the attributes are determined by using the eq. (4) & eq. (5). The weights of the attribute 

are w1 =0.2042819, w2 =0.1962533, w3 =0.1953613, w4 =0.1971454, w5 =0.2069581. 

By using the eq. (2), obtained SVPNWDSM of similarities between the PIS and the decision 

elements from the decision matrix as follows: 

DSVPNWDSM (L1, L+) =0.966693; 

DSVPNWDSM (L2, L+) = 0.968999; 

DSVPNWDSM (L3, L+) = 0.978151; 

DSVPNWDSM (L4, L+) = 0.980355; 

DSVPNWDSM (L5, L+) = 0.978792; 

DSVPNWDSM (L6, L+) = 0.95907. 

The ascending order of the SVPNWDSM between the PIS and the decision elements from the 

decision matrix is as follows: 

DSVPNWDSM (L6, L+) <DSVPNWDSM (L1, L+) <DSVPNWDSM (L2, L+) <DSVPNWDSM (L3, L+) <DSVPNWDSM (L5, L+) 

<DSVPNWDSM (L4, L+). 

Hence, the alternative L4 i.e., Al2O3 is the most suitable metal oxide nano-additive for the biodiesel 

blend on environmental aspect under the SVPNS environment. 

 

6. Comparative Study:   

To verify the proposed result based on the SVPNWDSM, an investigation has been conducted for 

the purpose of comparison with the existing MADM techniques [13, 23].  

From the comparative table (see Table-4) it is observed that the existing methods support the 

same performance as per the proposed method for best attribute. According to the Table-4 it is clear 

that the weighted values of all attribute are much closed for two existing methods. In case of 

proposed technique the weighted values of all attribute is not closed compare to existing tool, it 

helps to take better decision for considering attributes. So the proposed method is more effective 

compare to considering MADM methods. 

 

Table-4: Comparative Study 

 A1 A2 A3 A4 A5 

L+ (1.0,0.2,0.0,0.0,0.0) (1.0,0.1,0.0,0.0,0.1) (0.9,0.2,0.0,0.0,0.1) (1.0,0.1,0.0,0.0,0.1) (1.0,0.2,0.0,0.0,0.0) 

Methods L1 L2 L3 L4 L5 L6 Ranking Order 

MADM Strategy Based on 

Tangent Similarity Measure 

under SVPNS Environment [13] 0.
97

62
92

 

0.
97

86
64

 

0.
98

14
09

 

0.
98

50
21

 

0.
98

24
82

 

0.
97

53
05

 L6< L1< L2< L3< L5< L4 
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From the above comparison Table-4, it is clear that L4 is the most appropriate alternative in all the 

MADM strategies. 

 

7. Conclusions: 

In this article, a novel MADM is proposed for selecting suitable nano-additives for biodiesel to 

enhance performance and emissions characteristics of internal combustion engines. Using this 

method, a ranking among the alternatives is generated. The ranking order L6< L1< L2< L3< L5< L4 is 

derived by the proposed method. It is obvious from the ranking order generated by the new method 

that alternative L4 is the best among all alternatives. A comparison of the results obtained by the new 

MADM method is performed using different existing methods. Based on all methods, alternative L4 

is the best, and therefore, it is concluded that the proposed method is well suited for solving such a 

problem. 

In a future study, the nano-additive selected from this present work will be applied to biodiesel 

in different concentrations and its performance and emission characteristics will be examined 

experimentally. Further, it is hoped that, the proposed MADM-strategy can also be used to deal with 

the other real life problems such as Data Mining [30], Medical Diagnosis [35-36], Fault Diagnosis 

[46-47], and decision-making problems such as Tender Selection [7], Electronic Goods Selection [12], 

Plot Selection [13], Weaver Selection [15], Brick Selection [25, 29], Logistic Center Location Selection 

[32-33], Teacher Selection [37], etc. 
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Abstract: In recent years, cloud computing has emerged as a revolutionary technology that offers several 

benefits to businesses; nevertheless, like any other technology, it comes with significant risks. Firms can 

gain a competitive advantage by investing in cloud computing while simultaneously exploring new 

opportunities and leveraging their existing knowledge and capabilities. Cloud computing dangers, on the 

other hand, may limit these capabilities. We have shown that prospective cloud computing risks have a 

considerable impact on organizations’ performance in two key areas of explorative and exploitative 

innovation using the ambidexterity theoretical lens. To achieve these goals, the Neutrosophic 

VlseKriterijumska Optimizcija I Kaompromisno Resenje in Serbian (VIKOR) and multi-attributive border 

approximation area comparison (MABAC) techniques were used, in which the Neutrosophic approach aids 

experts in expressing their opinions using linguistic variables, and the VIKOR and MABAC techniques 

rank cloud computing risks based on ambidexterity criteria. There are eight criteria and ten alternatives are 

used in this study. 

Keywords: Cloud Computing; Risks; Neutrosophic; Uncertainty; VIKOR; MABAC 

1. Introduction 

Firms have placed a greater emphasis on public computing infrastructure in recent years [1]. Based on 

cloud computing, it is estimated that organizations have experienced a $3.3 trillion shift in their computer 

performance [2]. Cloud computing is a computing model that involves the deployment of enormous data 



Neutrosophic Sets and Systems, Vol. 48, 2022                                                                                                                              173 
_____________________________________________________________________________________ 

____________________________________________________________________________________ 
Mahmoud Ismail, Naif El-Rashidy and Nabil Moustafa An Intelligent Model to Rank Risks of Cloud Computing based on Firm’s 
Ambidexterity Performance under Neutrosophic Environment 

centers with efficient processor equipment [3]. By implementing cloud computing technologies, businesses 

can reap numerous benefits, including reduced investment costs [4]. Cloud computing has also improved 

the firm's agility by providing flexibility and on-demand services  [5-6]. Cloud computing has been cited 

as a good example of how to improve your business [7]. Though cloud computing is gaining a lot of traction 

in many industries, it, like any other technology, comes with significant hazards [8]. The most significant 

hazards of cloud computing implementation, according to past research, are "authentication," "data 

security, and privacy." [9-11] “confidentiality,” “integrity,” “availability” [12], “accountability,” and 

“accessibility” [13]. Because risks can have direct and indirect negative effects on service quality, it's critical 

to have a thorough awareness of them, especially for a newly created technology [10]. Cloud computing 

plays an important role in strong company innovation since it provides a huge number of innovation 

opportunities, such as novel computing capabilities and solutions [14]. Though, cloud computing systems' 

innovative performance is affected by unpredictability and risk issues. 

Exploration and exploitation are two methods for obtaining innovative results. The former relates to 

gathering information and benefiting from new opportunities by investigating new possibilities; the latter, 

on the other hand, focuses on producing value by taking into account current prospects [15]. Businesses 

that use both exploration and exploitation at the same time might profit from ambidexterity performance 

in this way [16]. To put it another way, while exploitation focuses on increasing business productivity and 

efficiency by deploying current knowledge, exploration focuses on getting innovative and recent 

technologies and resources by producing and acquiring new knowledge [17-18]. Exploration and 

exploitation innovations rely heavily on information technology, which may lead to the development of 

new goods and services for new consumers as well as the extension of existing products and services for 

existing customers. As a consequence, businesses may achieve long-term success in a changing 

environment [19].  

Exploitation competency may be gained by conserving and leveraging current innovative skills, 

processes, and knowledge, whereas exploration competency can be gained through recreating knowledge 

and abilities [20]. The capacity of a company to explore and exploit new opportunities while reacting 

quickly to market changes results in ambidextrous success [21]. Ambidexterity characteristics help cloud 

computing corporations to be flexible in an unpredictable market, suggesting that businesses can gain a 

competitive edge by leveraging dynamic skills. In moderately dynamic markets, exploration capabilities 

such as deploying routines and codified knowledge are expected; however, in high-velocity markets, 

exploration capabilities should be strengthened [22]. Because risks influence how businesses spend their 
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dualities (exploration and exploitation) [23]. To ensure that cloud computing systems work well, 

researchers focused on limiting the influence of risk factors [24]. For example, the cloud computing 

environment's cyber security risk results in poor service level performance [25]. Another research found 

that IT infrastructure improves ambidexterity performance and helps firms function more efficiently [26], 

[27]. Firms' flexibility, agility, cost-effectiveness, and scalability may all benefit from cloud computing, 

according to it is cited. Furthermore, it can be beneficial in facilitating the rapid introduction of startups to 

the market, although cloud computing risks might have a detrimental impact on a firm's performance [28]. 

According to another research, organizations place a high value on data kept in cloud computing 

infrastructures, which are vulnerable to a variety of dangers. As a result, if such risks materialize, 

corporations will encounter major problems in carrying out their exploratory and exploitative performance 

[29]. Furthermore, successful cloud computing adoption may have a favorable impact on a company's 

performance since it merges internal IT skills, human, and physical resources to operate and improve 

operations [2]. When security concerns are taken into account, cloud computing encourages inventive 

performance, particularly when it comes to bringing new goods and services to market [30]. Indeed, cloud 

computing may lead to inter-organizational innovation that makes use of external knowledge, skills, and 

production facilities while also maximizing internal knowledge and production capabilities. Various cloud 

computing concerns, including as economic risks, service availability risks, and data security risks, might 

be overlooked. It will be steered toward a low adoption rate [31]. It is reasonable to assume that if cloud 

computing infrastructure is exposed to hazards, this will have a negative influence on business 

performance. 

As a result, the primary purpose of this study is to identify cloud computing risks, followed by a gap 

analysis of the influence of risks on company performance using organizational ambidexterity theory. As 

a result, the given theory is used to answer the following research question: what are the top cloud 

computing risks? To answer the study's main issue, we first assemble previously researched cloud 

computing risk indicators, then rank them using neutrosophic VIKOR and MABAC approaches based on 

ambidexterity measurements (Exploration and Exploitation). In various fields, neutrosophic VIKOR and 

MABAC have been effectively employed to solve neutrosophic multi-criteria decision-making problems 

[32-39]. However, it has never been used to mitigate the hazards associated with cloud computing. This 

research makes several contributions. For starters, cloud computing risk concerns have been discovered 

from a much broader perspective. Second, selected risk variables are prioritized using ambidexterity 
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measures using the neutrosophic VIKOR and MABAC approaches, which is the first research of cloud 

computing risk factors. 

Section 2 provides the related works of cloud computing risks. Section 3 shows the methodology of 

this paper. Section 4 shows the case study and application of methodology. Section 5 refers to the 

conclusion of this paper.  

2. Related Works 

Table 1. show the previous research on the risks of cloud computing.  

Table 1. Prior study on cloud computing risk ranking 

Reference  Prioritizing cloud computing risks 

Dutta et al .[40] Cloud computing dangers were found in this study, and the ten most significant 

ones were chosen by creating a risk score based on three factors: chance, effect, 

and frequency. 

Elzamly et al. [41] Based on Delphi research, the study identified and prioritized important 

security concerns in cloud computing for financial firms. 

Boutkhoum et al. [42] In this study, a fuzzy AHP-PROMETHEE is employed to determine the best 

appropriate cloud computing for large data. 

Boutkhoum et al. [43] The authors employed the AHP-TOPSIS approach to assessing cloud 

computing services to better manage big data in this study. 

Amini et al. [44] To rank cloud computing hazards, fuzzy logic was used in this study. The 

severity and likelihood criteria were used for assessment. 

Henriques de 

Gusma˜o et al [45] 

The authors of this work examine cyber security threats using fault tree analysis 

and fuzzy decision theory. 

Patel and Alabisi [46] Cloud computing threats were classified in this study into many categories. 

Customers, service providers, and the government are all taken into account 

when identifying hazards. 

Krishnaveni and 

Prabakaran [47] 

Researchers used machine learning classifier methods to classify cloud 

computing network intrusion and assaults in this study. SVM, Naive Bayes, and 

Logistic regression algorithms were used, and the approaches were assessed 

based on accuracy and reaction time. 



Neutrosophic Sets and Systems, Vol. 48, 2022                                                                                                                              176 
_____________________________________________________________________________________ 

____________________________________________________________________________________ 
Mahmoud Ismail, Naif El-Rashidy and Nabil Moustafa An Intelligent Model to Rank Risks of Cloud Computing based on Firm’s 
Ambidexterity Performance under Neutrosophic Environment 

Swathy Akshaya and 

Padmavathi [48] 

A taxonomy of cloud computing dangers has been presented in this work. The 

service delivery paradigms "software as a service," "platform as a service," and 

"infrastructure as a service" were used to create the categorization. 

Jouini et al. [49] Security threats associated with cloud computing infrastructures were 

categorized in this study, and new information security metrics were provided 

based on quantitative analysis. 

Sheehan et al. [50] The cyber security risk of cloud computing has been categorized in this study. 

In addition, proactive and reactive obstacles to minimizing such hazards have 

been identified. To assess cyber security risk, likelihood and severity/impact 

criteria have been implemented, which aid in quantifying those risks. 

Mohammad Taghi 

Taghavifard & 

Setareh Majidian [51] 

This study used the Fuzzy VIKOR Technique to identify cloud computing risks 

based on a firm's ambidexterity performance. 

This study In this study, we used the neutrosophic sets hybrid with the MCDM methods 

like neutrosophic VIKOR and MABAC to compute the weights of criteria and 

rank of risks (alternatives).  

 

3. Methodology  

In this section, we provide some definitions in neutrosophic sets and we introduce the neutrosophic VIKOR 

and MABAC methods.  we use 𝑃𝑎 = {1,2, … . , 𝑎} and 𝑃𝑏 = {1,2, … . , 𝑏} as an index set for 𝑎 ∈ ℕ 𝑎𝑛𝑑 𝑏 ∈ ℕ, 

respectively. 

3.1 Definitions 

Definition 1: [52] Make X become a universe. The definition of a neutrosophic set Y over X is:  

𝑌 = {< 𝑉, (𝑇𝑌(𝑉), 𝐼𝑌(𝑉), 𝐹𝑌(𝑉)) >:𝑉 ∈ 𝑋}. 

where 𝑇𝑌(𝑉), 𝐼𝑌(𝑉),, and  𝐹𝑌(𝑉) are the truth-membership, indeterminacy-membership, and falsity 

membership functions, respectively. They are described as follows: 

𝑇𝑌: 𝑋 ⟶]  0− , 1+[, 𝐼𝑌: 𝑋 ⟶]  0− , 1+[, 𝐹𝑌: 𝑋 ⟶]  0− , 1+[ 

Such that 0− ≤ 𝑇𝑌(𝑉) + 𝐼𝑌(𝑉) + 𝐹𝑌(𝑉)  ≤ 3+. 
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Definition 2: [52] Assume X be a universe. A single-valued neutrosophic set (SVN-set) over X is a 

neutrosophic set over X, but the truth-membership function, indeterminacy membership function, and 

falsity-membership function are respectively described as:  

𝑇𝑌: 𝑋 ⟶ [0,1],   𝐼𝑌: 𝑋 ⟶ [0,1], 𝐹𝑌: 𝑋 ⟶ [0,1] 

Such that 0 ≤  𝑇𝑌(𝑉) + 𝐼𝑌(𝑉) + 𝐹𝑌(𝑉)  ≤ 3 

Definition 3: [52] Assume ℎ𝑘, 𝑔𝑘, 𝑗𝑘 ∈ [0,1] be any real numbers,  𝑛𝑤, 𝑚𝑤 , 𝑜𝑤 , 𝑞𝑤 ∈ ℝ and ,  𝑛𝑤 ≤ 𝑚𝑤 ≤ 𝑜𝑤 ≤

 𝑞𝑤  (𝑤 = 1,2,3) Then a single valued neutrosophic number (SVNN) 

�̂� = 〈((𝑛1, 𝑚1, 𝑜1, 𝑞1), ℎ𝑘  ) , ((𝑛2, 𝑚2, 𝑜2, 𝑞2), 𝑔𝑘  ) , ((𝑛3, 𝑚3, 𝑜3, 𝑞3), 𝑗𝑘  )〉 

is a special neutrosophic set on the set of real numbers ℝ,  whose truth-membership function 𝑏𝑘, 

indeterminacy membership function 𝑐𝑘 and falsity-membership function  𝑑𝑘 are respectively described as:  

𝑏𝑘: ℝ ⟶ [0, ℎ𝑘  ], 𝑏𝑘(𝑉) =  

{
 

 
𝑓𝑏
1(𝑉),         𝑛1 ≤  𝑉 < 𝑚1

ℎ𝑘 ,               𝑚1 ≤  𝑉 < 𝑜1
𝑓𝑏
𝑒(𝑉),         𝑜1 ≤  𝑉 < 𝑞1
0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑐𝑘: ℝ ⟶ [𝑔𝑘, 1 ], 𝑐𝑘(𝑉) =  

{
 

 
𝑓𝑐
1(𝑉),         𝑛2 ≤  𝑉 < 𝑚2

𝑔𝑘 ,               𝑚2 ≤  𝑉 < 𝑜2
𝑓𝑐
𝑒(𝑉),         𝑜2 ≤  𝑉 < 𝑞2
1,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑑𝑘: ℝ ⟶ [𝑗𝑘, 1 ], 𝑑𝑘(𝑉) =  

{
 

 
𝑓𝑑
1(𝑉),         𝑛3 ≤  𝑉 < 𝑚3

𝑗𝑘 ,               𝑚3 ≤  𝑉 < 𝑜3
𝑓𝑑
𝑒(𝑉),         𝑜3 ≤  𝑉 < 𝑞3
1,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where the functions 𝑓𝑏
1: [𝑛1, 𝑚1 ] ⟶ [0, ℎ𝑘 ] , 𝑓𝑐

𝑒: [𝑜2, 𝑞2 ] ⟶ [𝑔𝑘, 1 ], 𝑓𝑑
𝑒: [𝑜3, 𝑞3 ] ⟶ [𝑗𝑘 , 1 ] are continuous 

and non-decreasing , and satisfy the conditions: 𝑓𝑏
1(𝑛1) = 0, 𝑓𝑏

1(𝑚1) = ℎ𝑘, 𝑓𝑐
𝑒(𝑜2) = 𝑔𝑘, 𝑓𝑐

𝑒(𝑞2) =

1, 𝑓𝑑
𝑒(𝑜3) = 𝑗𝑘, 𝑓𝑑

𝑒(𝑞3) = 1 functions 𝑓𝑏
𝑒: [𝑜1, 𝑞1 ] ⟶ [0, ℎ𝑘 ] , 𝑓𝑐

1: [𝑛2, 𝑚2 ] ⟶ [𝑔𝑘, 1 ], 𝑓𝑑
1: [𝑛3, 𝑚3 ] ⟶ [𝑗𝑘, 1 ] are 

continuous and nodecreasing , and satisfy the conditions: 𝑓𝑏
𝑒(𝑜1) = ℎ𝑘, 𝑓𝑏

𝑟(𝑞1) = 0, 𝑓𝑐
1(𝑛2) = 1, 𝑓𝑐

1(𝑚2) =

𝑔𝑘, 𝑓𝑑
1(𝑛3) = 1, 𝑓𝑑

1(𝑚3) = 𝑗𝑘. [𝑚1, 𝑜1 ], 𝑛1 𝑎𝑛𝑑 𝑞1 For the truth-membership function, the mean interval and 

the lower and higher limits of the general neutrosophic number 𝑘, respectively. [𝑚2, 𝑜2 ], 𝑛2 𝑎𝑛𝑑 𝑞2 For the 

indeterminacy-membership function, the mean interval, and the lower and higher limits of the general 

neutrosophic number 𝑘, respectively. [𝑚3, 𝑜3 ], 𝑛3 𝑎𝑛𝑑 𝑞3 For the falsity-membership function, the mean 

interval, and the lower and higher limits of the general neutrosophic number 𝑘, respectively. The maximum 
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truth-membership degree, minimum indeterminacy-membership degree, and minimum falsity-

membership degree are ℎ𝑘, 𝑔𝑘, and 𝑗𝑘, respectively.  

Definition 4: [53] Assume 𝑘 = 〈(𝑛1, 𝑚1, 𝑜1, 𝑞1); ℎ𝑘, 𝑔𝑘, 𝑗𝑘〉, 𝑘𝑘 = 〈(𝑛2, 𝑚2, 𝑜2, 𝑞2); ℎ𝑘𝑘 , 𝑔𝑘𝑘 , 𝑗𝑘𝑘〉 be two SVNNs 

and a constant 𝑠 ≠ 0 be  any real number then: 

𝑘 + 𝑘𝑘 = 〈(𝑛1 + 𝑛2, 𝑚1 +𝑚2 , 𝑜1 + 𝑜2 , 𝑞1 + 𝑞2); ℎ𝑘  ∧ ℎ𝑘𝑘 , 𝑔𝑘  ∨ 𝑔𝑘𝑘 , 𝑗𝑘  ∨ 𝑗𝑘𝑘〉 

𝑘 𝑘𝑘 = {

〈(𝑛1𝑛2, 𝑚1𝑚2 , 𝑜1𝑜2 , 𝑞1𝑞2); ℎ𝑘  ∧ ℎ𝑘𝑘 , 𝑔𝑘  ∨ 𝑔𝑘𝑘 , 𝑗𝑘  ∨ 𝑗𝑘𝑘〉  (𝑞1 > 0, 𝑞2 > 0)

〈(𝑛1𝑞2, 𝑚1𝑜2 , 𝑜1𝑚2 , 𝑞1𝑛2); ℎ𝑘  ∧ ℎ𝑘𝑘 , 𝑔𝑘  ∨ 𝑔𝑘𝑘 , 𝑗𝑘  ∨ 𝑗𝑘𝑘〉  (𝑞1 < 0, 𝑞2 > 0)

〈(𝑞1𝑞2, 𝑜1𝑜2 , 𝑚1𝑚2 , 𝑛1𝑛2); ℎ𝑘  ∧ ℎ𝑘𝑘 , 𝑔𝑘  ∨ 𝑔𝑘𝑘 , 𝑗𝑘  ∨ 𝑗𝑘𝑘〉  (𝑞1 < 0, 𝑞2 > 0)

 

𝑠𝑘 = {
〈(𝑠𝑛1, 𝑠𝑚1 , 𝑠𝑜1 , 𝑠𝑞1); ℎ𝑘  , 𝑔𝑘  , 𝑗𝑘 〉  (𝑠 > 0)

〈(𝑠𝑞1, 𝑠𝑜1 , 𝑠𝑚1 , 𝑠𝑛1); ℎ𝑘  , 𝑔𝑘  , 𝑗𝑘 〉  (𝑠 < 0)
 

Definition 5:  Assume 𝑘 = 〈(𝑛1, 𝑚1, 𝑜1 , ); ℎ𝑘 , 𝑔𝑘, 𝑗𝑘〉, 𝑘𝑘 = 〈(𝑛2, 𝑚2, 𝑜2, ); ℎ𝑘𝑘 , 𝑔𝑘𝑘 , 𝑗𝑘𝑘〉 be two SVNNs and a 

constant 𝑠 ≠ 0 be  any real number then: 

𝑘 + 𝑘𝑘 = 〈(𝑛1 + 𝑛2, 𝑚1 +𝑚2 , 𝑜1 + 𝑜2 ); ℎ𝑘  ∧ ℎ𝑘𝑘, 𝑔𝑘  ∨ 𝑔𝑘𝑘 , 𝑗𝑘  ∨ 𝑗𝑘𝑘〉 

𝑘 𝑘𝑘 = {

〈(𝑛1𝑛2, 𝑚1𝑚2 , 𝑜1𝑜2 ); ℎ𝑘  ∧ ℎ𝑘𝑘, 𝑔𝑘  ∨ 𝑔𝑘𝑘 , 𝑗𝑘  ∨ 𝑗𝑘𝑘〉  (𝑜1 > 0, 𝑜2 > 0)

〈(𝑛1𝑜2, 𝑚1𝑚2 , 𝑜1𝑛2 ); ℎ𝑘  ∧ ℎ𝑘𝑘, 𝑔𝑘  ∨ 𝑔𝑘𝑘 , 𝑗𝑘  ∨ 𝑗𝑘𝑘〉  (𝑜1 < 0, 𝑜2 > 0)

〈( 𝑜1𝑜2 , 𝑚1𝑚2 , 𝑛1𝑛2); ℎ𝑘  ∧ ℎ𝑘𝑘 , 𝑔𝑘  ∨ 𝑔𝑘𝑘, 𝑗𝑘  ∨ 𝑗𝑘𝑘〉  (𝑜1 < 0, 𝑜2 > 0)

 

𝑠𝑘 = {
〈(𝑠𝑛1, 𝑠𝑚1 , 𝑠𝑜1 ); ℎ𝑘  , 𝑔𝑘  , 𝑗𝑘 〉  (𝑠 > 0)

〈(𝑠𝑞1, 𝑠𝑜1 , 𝑠𝑚1 ); ℎ𝑘  , 𝑔𝑘 , 𝑗𝑘 〉  (𝑠 < 0)
 

Definition 6: A single valued trapezoidal neutrosophic number 𝑘 = 〈(𝑛,𝑚, 𝑜, 𝑞); ℎ𝑘, 𝑔𝑘 , 𝑗𝑘〉 

is a special neutrosophic set on the set of real numbers ℝ,  whose truth-membership function, 

indeterminacy membership function and falsity-membership function are respectively described as:  

 𝑏𝑘(𝑉) =  

{
 

 
(𝑣 − 𝑛)ℎ𝑘/(𝑚 − 𝑛),         𝑛 ≤  𝑉 < 𝑚

ℎ𝑘,                                          𝑚 ≤  𝑉 < 𝑜

(𝑞 − 𝑣)ℎ𝑘/(𝑞 − 𝑜),         𝑜 ≤  𝑉 < 𝑞

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑐𝑘(𝑉) =  

{
 
 

 
 (𝑚 − 𝑣 + 𝑐𝑘(𝑣 − 𝑛))/(𝑚 − 𝑛),         𝑛 ≤  𝑉 < 𝑚

𝑐𝑘 ,                                                               𝑚 ≤  𝑉 < 𝑜

(𝑣 − 𝑜 + 𝑐𝑘(𝑞 − 𝑣))/(𝑞 − 𝑜),         𝑜 ≤  𝑉 < 𝑞

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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 𝑑𝑘(𝑉) =  

{
 
 

 
 (𝑚 − 𝑣 + 𝑑𝑘(𝑉)(𝑣 − 𝑛))/(𝑚 − 𝑛),         𝑛 ≤  𝑉 < 𝑚

𝑐𝑘,                                                               𝑚 ≤  𝑉 < 𝑜

(𝑣 − 𝑜 + 𝑑𝑘(𝑉)(𝑞 − 𝑣))/(𝑞 − 𝑜),         𝑜 ≤  𝑉 < 𝑞

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

respectively. 

Definition 7: A single valued trapezoidal neutrosophic number 𝑘 = 〈(𝑛,𝑚, 𝑜); ℎ𝑘 , 𝑔𝑘, 𝑗𝑘〉 

is a special neutrosophic set on the set of real numbers ℝ,  whose truth-membership function, 

indeterminacy membership function and falsity-membership function are respectively described as:  

 𝑏𝑘(𝑉) =  {

(𝑣 − 𝑛)ℎ𝑘/(𝑚 − 𝑛),         𝑛 ≤  𝑉 < 𝑚

(𝑜 − 𝑣)ℎ𝑘/(𝑜 − 𝑚),         𝑚 ≤  𝑉 ≤ 𝑜

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑐𝑘(𝑉) =  {

(𝑚 − 𝑣 + 𝑐𝑘(𝑣 − 𝑛))/(𝑚 − 𝑛),         𝑛 ≤  𝑉 < 𝑚

((𝑚 − 𝑜)𝑐𝑘(𝑜 −𝑚))/(𝑜 − 𝑚),         𝑚 ≤  𝑉 ≤ 𝑜

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 𝑑𝑘(𝑉) =  {

(𝑚 − 𝑣 + 𝑑𝑘(𝑉)(𝑣 − 𝑛))/(𝑚 − 𝑛),         𝑛 ≤  𝑉 < 𝑚

((𝑣 −𝑚)𝑑𝑘(𝑉)(𝑜 − 𝑣))/(𝑜 − 𝑚),         𝑚 ≤  𝑉 ≤ 𝑜

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

respectively. 

 

 

3.2 Phases of the proposed model for Cloud Computing 

In this subsection, we provide two phases 

Phase I: The Neutrosophic VIKOR Procedure 

Stage 1: Form a committee of experts to decide on the aim, alternatives, and criteria. 

Stage 2: Draw and create the language scales that will be used to characterize experts, as well as the 

alternatives. 

Stage 3: Collect the opinions of the experts on each component. 

Stage 4: Covert opinions of experts to the SVNNs 
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Stage 5: Compute the score function, by converting the three values of SVNNs into a one value by 

𝑆(𝑉) =  
2 + 𝑇(𝑉) − 𝐼(𝑉) − 𝐹(𝑉)

3
 

Stage 6: Compute the weights of criteria by the average method as: 

𝑊𝑎 = 
𝑆1(𝑉) + 𝑆2(𝑉) +⋯ . 𝑆𝑎(𝑉))

𝑎
 

Where a refers to number of criteria.  

Stage 7: Construct an evaluation matrix by opinions of experts then average these opinions to obtain one 

decision matrix   

𝑉 = (
𝑉11 ⋯ 𝑉1𝑎
⋮ ⋱ ⋮
𝑉𝑏1 ⋯ 𝑉𝑏𝑎

) 

Stage 8: Compute the best and worst solution 

𝐿𝑎
+ = max𝑉𝑏𝑎 for positive criteria 

𝐿𝑎
− = min 𝑉𝑏𝑎 for negative criteria 

Stage 9: Compute the 𝑍𝑎 , 𝑈𝑎 values: 

𝑍𝑎 =∑ 𝑊𝑎 ∗
𝐿𝑎

+ − 𝑉𝑏𝑎

𝐿𝑎
+ − 𝐿𝑎

−

𝑎

𝑏=1
 

𝑈𝑎 = max
𝑏
(𝑊𝑎 ∗

𝐿𝑎
+ − 𝑉𝑏𝑎

𝐿𝑎
+ − 𝐿𝑎

−) 

Stage 10: Compute the value of 𝑅𝑎 as:  

𝑅𝑎 = 𝑑 (

𝑍𝑎 −min 𝑍𝑎
𝑏

max𝑍𝑎
𝑏

−min 𝑍𝑎
𝑏

) + (1 − 𝑑)(
𝑈𝑎 −min𝑈

𝑏

max𝑈𝑎
𝑏

−min𝑈𝑎
𝑏

) 

 Where d =0.5 

Stage 11: Rank alternatives according to ascending order of the previous step  

Phase II: The Neutrosophic MABAC Procedure 
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Stage A: Use the previous steps to obtain the opinions of experts then convert them into a single value by 

a score function, then aggregate these opinions into one matrix.   

Stage B: Normalize the decision matrix as: 

𝑵𝒃𝒂 =
𝑉𝑏𝑎−𝐿𝑎

−

𝐿𝑎
+−𝐿𝑎

− for positive criteria  

𝑁𝑏𝑎 =
𝑉𝑏𝑎−𝐿𝑎

+

𝐿𝑎
−−𝐿𝑎

+ for cost criteria  

Stage C: Compute the weighted normalized decision matrix as: 

𝑊𝑁𝑏𝑎 = 𝑊𝑎 +𝑊𝑎 ∗ 𝑁𝑏𝑎 

Stage D: Compute the border approximation area as: 

𝐵𝑜𝑟𝑏𝑎 = (∏𝑊𝑁𝑏𝑎

𝑏

𝑎=1

)1/𝑏 

Stage E: Compute the distance from the 𝐵𝑜𝑟𝑏𝑎  

𝐷𝐼𝑆𝑏𝑎 = 𝑊𝑁𝑏𝑎−𝐵𝑜𝑟𝑏𝑎 

 Stage F: The alternatives are ranked based on the descending value of the previous step. 

Fig 1. The eight criteria used in this study 

4. Case Study: Results and Analysis 

SearchControl

Discovery Autonomy

Variance 
ReductionCertainty

Efficiency Innovation
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Based on the literature, cloud computing risks have been highlighted in this study. The case study is 

made in a firm in Egypt, which is a new cloud computing company. Experts are a group of three people. 

Experts will evaluate eight criteria and ten alternatives. The criteria and alternatives in Fig 1 and Fig 2. 

Then replace their opinions with the scale of SVNNs as in [54]. Then apply the steps of neutrosophic VIKOR 

and MABAC methods to obtain the weights of criteria and rank of alternatives. 

Phase I: Obtaining the weights of criteria by applying the score function to obtain one value then applying 

the average method. The weights of the criteria are presented in Table 2.  

Table 2. The weights of criteria. 

Criteria 𝐶𝑂𝑀1 𝐶𝑂𝑀2 𝐶𝑂𝑀3 𝐶𝑂𝑀4 𝐶𝑂𝑀5 𝐶𝑂𝑀6 𝐶𝑂𝑀7 𝐶𝑂𝑀8 

Weights 
0.1744 0.0817 0.0817 0.0604 0.1744 0.1744 0.1921 0.0604 

 

Phase II: Rank alternatives by the VIKOR and MABAC. Let experts evaluate the decision matrix, then apply 

the score function to obtain one value, then aggregate three decision matrix into one matrix, Table 3 show 

the aggregated decision matrix. All criteria are positive. Then apply steps of the neutrosophic VIKOR 

method to obtain the values of 𝑍𝑎, 𝑈𝑎 , 𝑅𝑎, then rank alternatives. Data security and privacy is the highest 

rank and Business continuity is the lowest rank by the VIKOR method. Table 4 show the values of  𝑍𝑎, 𝑈𝑎, 𝑅𝑎 

and rank of alternatives. Fig. 3 shows the rank of alternatives. 

Table 3. The aggregated decision matrix. 

Criteria/Alternatives 𝐶𝑂𝑀1 𝐶𝑂𝑀2 𝐶𝑂𝑀3 𝐶𝑂𝑀4 𝐶𝑂𝑀5 𝐶𝑂𝑀6 𝐶𝑂𝑀7 𝐶𝑂𝑀8 

𝑅𝐶𝑂𝑀1 0.6999 0.8445 0.8722 0.6666 0.8722 0.8612 0.8445 0.8722 

𝑅𝐶𝑂𝑀2 0.2830 0.8167 0.9000 0.9000 0.6999 0.6388 0.3830 0.4609 

𝑅𝐶𝑂𝑀3 0.8722 0.6943 0.8445 0.5276 0.5220 0.8445 0.6666 0.5220 

𝑅𝐶𝑂𝑀4 0.4609 0.6666 0.6721 0.6388 0.3163 0.5553 0.9000 0.8445 

𝑅𝐶𝑂𝑀5 0.4942 0.8167 0.3497 0.6721 0.5943 0.2830 0.8167 0.8167 

𝑅𝐶𝑂𝑀6 0.2830 0.4887 0.8167 0.8722 0.5220 0.4277 0.9000 0.4887 

𝑅𝐶𝑂𝑀7 0.8167 0.5220 0.8722 0.6999 0.4887 0.5220 0.5610 0.8722 

𝑅𝐶𝑂𝑀8 0.6943 0.4609 0.7277 0.8167 0.5666 0.5220 0.5220 0.3887 

𝑅𝐶𝑂𝑀9 0.5000 0.6943 0.8445 0.8722 0.6943 0.9000 0.4766 0.9000 

𝑅𝐶𝑂𝑀10 0.4887 0.6333 0.5276 0.7277 0.6666 0.7277 0.8445 0.6943 

 

Table 4. The values of 𝑍𝑎 , 𝑈𝑎, 𝑅𝑎 and rank of alternatives. 

Criteria/Alternatives 𝑍𝑎 𝑈𝑎 𝑅𝑎 𝑅𝑎𝑛𝑘 

𝑅𝐶𝑂𝑀1 0.127915 0.051025 0 1 

𝑅𝐶𝑂𝑀2 0.552401 0.192184 0.972253 10 

𝑅𝐶𝑂𝑀3 0.357762 0.109915 0.464308 2 
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𝑅𝐶𝑂𝑀4 0.514447 0.174461 0.86725 7 

𝑅𝐶𝑂𝑀5 0.539084 0.174461 0.894659 8 

𝑅𝐶𝑂𝑀6 0.559294 0.174461 0.917143 9 

𝑅𝐶𝑂𝑀7 0.478351 0.126017 0.655498 5 

𝑅𝐶𝑂𝑀8 0.577341 0.140514 0.816979 6 

𝑅𝐶𝑂𝑀9 0.368216 0.157403 0.644143 4 

𝑅𝐶𝑂𝑀10 0.400119 0.113567 0.524365 3 

 

Then apply the neutrosophic MABAC method. Start with the Table 3. Then normalize the decision 

matrix and obtain the weighted normalized decision matrix, then obtain the border approximation area to 

attain the distance from the border approximation area in Table5, then obtain the total distance and rank 

alternatives according to the descending value of total distance in Table 6. According to Table 6 Data 

security and privacy is the highest rank and Provider lock-in is the lowest rank alternative. Fig. 4 shows 

the rank of alternatives. 

 

 

Table 5. The distance from the border approximation area. 

Criteria/Alternatives 𝐶𝑂𝑀1 𝐶𝑂𝑀2 𝐶𝑂𝑀3 𝐶𝑂𝑀4 𝐶𝑂𝑀5 𝐶𝑂𝑀6 𝐶𝑂𝑀7 𝐶𝑂𝑀8 

𝑅𝐶𝑂𝑀1 -0.801 -0.859 -0.875 -0.912 -0.752 -0.767 -0.755 -0.878 

𝑅𝐶𝑂𝑀2 -0.924 -0.865 -0.871 -0.874 -0.806 -0.830 -0.926 -0.927 

𝑅𝐶𝑂𝑀3 -0.750 -0.891 -0.879 -0.934 -0.862 -0.772 -0.821 -0.919 

𝑅𝐶𝑂𝑀4 -0.872 -0.897 -0.905 -0.916 -0.927 -0.854 -0.734 -0.881 

𝑅𝐶𝑂𝑀5 -0.862 -0.865 -0.953 -0.911 -0.839 -0.931 -0.765 -0.884 

𝑅𝐶𝑂𝑀6 -0.924 -0.935 -0.883 -0.878 -0.862 -0.890 -0.734 -0.923 

𝑅𝐶𝑂𝑀7 -0.766 -0.928 -0.875 -0.906 -0.872 -0.863 -0.860 -0.878 

𝑅𝐶𝑂𝑀8 -0.802 -0.941 -0.896 -0.887 -0.848 -0.863 -0.875 -0.935 

𝑅𝐶𝑂𝑀9 -0.860 -0.891 -0.879 -0.878 -0.808 -0.756 -0.892 -0.875 

𝑅𝐶𝑂𝑀10 -0.863 -0.904 -0.926 -0.902 -0.817 -0.805 -0.755 -0.899 

 

Table 6. The values of 𝑍𝑎 , 𝑈𝑎, 𝑅𝑎 and rank of alternatives. 

Criteria/Alternatives 𝑇𝑜𝑡𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑅𝑎𝑛𝑘 

𝑅𝐶𝑂𝑀1 0.127915 1 

𝑅𝐶𝑂𝑀2 0.552401 8 

𝑅𝐶𝑂𝑀3 0.357762 2 

𝑅𝐶𝑂𝑀4 0.514447 6 

𝑅𝐶𝑂𝑀5 0.539084 7 

𝑅𝐶𝑂𝑀6 0.559294 9 

𝑅𝐶𝑂𝑀7 0.478351 5 

𝑅𝐶𝑂𝑀8 0.577341 10 
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𝑅𝐶𝑂𝑀9 0.368216 3 

𝑅𝐶𝑂𝑀10 0.400119 4 

 

Fig 2. The ten alternatives are used in this study. 

 

Fig 3. The rank of alternatives by the VIKOR method 
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Fig 4. The rank of alternatives by the VIKOR method 

 

5. Sensitivity Analysis 

In this section, we would change the weights of criteria to show the robust of the model. When we 

change the weights of criteria, the rank of alternatives will change. In this section, we used five cases 

changes of weights of criteria. We applied these cases in the neutrosophic VIKOR and MABAC model and 

show the rank of alternatives. Table 7. Show the five cases.  In the neutrosophic VIKOR method, case 1,2,4,5 

is agreed in highest rank (𝑅𝐶𝑂𝑀1), but in case 3 the height rank is 𝑅𝐶𝑂𝑀3. In the neutrosophic MABAC, all 

cases agreed (𝑅𝐶𝑂𝑀1) is the highest rank. Table 8. Show the rank of alternatives after changing in weights 

of criteria.  

Table 7. Five case changes of weights 

 𝐂𝐎𝐌𝟏 𝐂𝐎𝐌𝟐 𝐂𝐎𝐌𝟑 𝐂𝐎𝐌𝟒 𝐂𝐎𝐌𝟓 𝐂𝐎𝐌𝟔 𝐂𝐎𝐌𝟕 𝐂𝐎𝐌𝟖 

Case 1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

Case 2 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.5 0.0714 

Case 3 0.5 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 

Case 4 0.0714 0.0714 0.0714 0.0714 0.5 0.0714 0.0714 0.0714 

Case 5 0.0714 0.0714 0.0714 0.0714 0.0714 0.5 0.0714 0.0714 
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Table 8. Rank of alternatives based on five cases 

VIKOR 

Case1 

VIKOR 

Case 2 

VIKOR 

Case 3 

VIKOR 

Case 4 

VIKOR 

Case 5 MABA

C Case1 

MABA

C 

Case 2 

MABA

C 

Case 3 

MABA

C 

Case 4 

MABA

C 

Case 5 

𝑅𝐶𝑂𝑀1 𝑅𝐶𝑂𝑀1 𝑅𝐶𝑂𝑀3 𝑅𝐶𝑂𝑀1 𝑅𝐶𝑂𝑀1 𝑅𝐶𝑂𝑀1 𝑅𝐶𝑂𝑀1 𝑅𝐶𝑂𝑀1 𝑅𝐶𝑂𝑀1 𝑅𝐶𝑂𝑀1 

𝑅𝐶𝑂𝑀10 𝑅𝐶𝑂𝑀10 𝑅𝐶𝑂𝑀7 𝑅𝐶𝑂𝑀9 𝑅𝐶𝑂𝑀9 𝑅𝐶𝑂𝑀9 𝑅𝐶𝑂𝑀4 𝑅𝐶𝑂𝑀3 𝑅𝐶𝑂𝑀9 𝑅𝐶𝑂𝑀9 
𝑅𝐶𝑂𝑀9 𝑅𝐶𝑂𝑀4 𝑅𝐶𝑂𝑀1 𝑅𝐶𝑂𝑀2 𝑅𝐶𝑂𝑀3 𝑅𝐶𝑂𝑀3 𝑅𝐶𝑂𝑀10 𝑅𝐶𝑂𝑀7 𝑅𝐶𝑂𝑀2 𝑅𝐶𝑂𝑀3 
𝑅𝐶𝑂𝑀7 𝑅𝐶𝑂𝑀6 𝑅𝐶𝑂𝑀8 𝑅𝐶𝑂𝑀10 𝑅𝐶𝑂𝑀10 𝑅𝐶𝑂𝑀10 𝑅𝐶𝑂𝑀6 𝑅𝐶𝑂𝑀9 𝑅𝐶𝑂𝑀10 𝑅𝐶𝑂𝑀10 
𝑅𝐶𝑂𝑀3 𝑅𝐶𝑂𝑀5 𝑅𝐶𝑂𝑀9 𝑅𝐶𝑂𝑀5 𝑅𝐶𝑂𝑀2 𝑅𝐶𝑂𝑀7 𝑅𝐶𝑂𝑀5 𝑅𝐶𝑂𝑀8 𝑅𝐶𝑂𝑀5 𝑅𝐶𝑂𝑀2 
𝑅𝐶𝑂𝑀2 𝑅𝐶𝑂𝑀3 𝑅𝐶𝑂𝑀10 𝑅𝐶𝑂𝑀3 𝑅𝐶𝑂𝑀4 𝑅𝐶𝑂𝑀2 𝑅𝐶𝑂𝑀3 𝑅𝐶𝑂𝑀10 𝑅𝐶𝑂𝑀3 𝑅𝐶𝑂𝑀7 
𝑅𝐶𝑂𝑀4 𝑅𝐶𝑂𝑀7 𝑅𝐶𝑂𝑀5 𝑅𝐶𝑂𝑀8 𝑅𝐶𝑂𝑀7 𝑅𝐶𝑂𝑀4 𝑅𝐶𝑂𝑀9 𝑅𝐶𝑂𝑀5 𝑅𝐶𝑂𝑀7 𝑅𝐶𝑂𝑀4 
𝑅𝐶𝑂𝑀5 𝑅𝐶𝑂𝑀9 𝑅𝐶𝑂𝑀4 𝑅𝐶𝑂𝑀6 𝑅𝐶𝑂𝑀8 𝑅𝐶𝑂𝑀5 𝑅𝐶𝑂𝑀7 𝑅𝐶𝑂𝑀4 𝑅𝐶𝑂𝑀8 𝑅𝐶𝑂𝑀8 
𝑅𝐶𝑂𝑀6 𝑅𝐶𝑂𝑀8 𝑅𝐶𝑂𝑀2 𝑅𝐶𝑂𝑀7 𝑅𝐶𝑂𝑀6 𝑅𝐶𝑂𝑀6 𝑅𝐶𝑂𝑀8 𝑅𝐶𝑂𝑀2 𝑅𝐶𝑂𝑀6 𝑅𝐶𝑂𝑀6 
𝑅𝐶𝑂𝑀8 𝑅𝐶𝑂𝑀2 𝑅𝐶𝑂𝑀6 𝑅𝐶𝑂𝑀4 𝑅𝐶𝑂𝑀5 𝑅𝐶𝑂𝑀8 𝑅𝐶𝑂𝑀2 𝑅𝐶𝑂𝑀6 𝑅𝐶𝑂𝑀4 𝑅𝐶𝑂𝑀5 

 

6. Comparative Analysis 

In this section, we made a comparison with the neutrosophic TOPSIS method to show the robust of this 

model. We use this data to apply with the TOPSIS method. After applying this comparison, we found 

that the heights rank is constant in two method. Table 9. Show the comparison between VIKOR, MABAC 

and TOPSIS methods.  

Table 9. Rank of alternatives based on comparative analysis. 

MABAC  TOPSIS VIKOR 

𝑅𝐶𝑂𝑀1 𝑅𝐶𝑂𝑀1 𝑅𝐶𝑂𝑀1 

𝑅𝐶𝑂𝑀3 𝑅𝐶𝑂𝑀3 𝑅𝐶𝑂𝑀3 
𝑅𝐶𝑂𝑀9 𝑅𝐶𝑂𝑀10 𝑅𝐶𝑂𝑀10 
𝑅𝐶𝑂𝑀10 𝑅𝐶𝑂𝑀9 𝑅𝐶𝑂𝑀9 
𝑅𝐶𝑂𝑀7 𝑅𝐶𝑂𝑀7 𝑅𝐶𝑂𝑀7 
𝑅𝐶𝑂𝑀4 𝑅𝐶𝑂𝑀8 𝑅𝐶𝑂𝑀8 
𝑅𝐶𝑂𝑀5 𝑅𝐶𝑂𝑀4 𝑅𝐶𝑂𝑀4 
𝑅𝐶𝑂𝑀2 𝑅𝐶𝑂𝑀5 𝑅𝐶𝑂𝑀5 
𝑅𝐶𝑂𝑀6 𝑅𝐶𝑂𝑀2 𝑅𝐶𝑂𝑀6 
𝑅𝐶𝑂𝑀8 𝑅𝐶𝑂𝑀6 𝑅𝐶𝑂𝑀2 

  

7. Managerial Implications 

Cloud computing surround many risks. That effect on market, companies, good and other. So, these 

risks should be identified and ranked.  The hybrid model introduced by this study to identify and rank 

alternatives. The hybrid model contains the VIKOR and MABAC methods. This study provides the rank 

of risks of cloud computing.  
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8. Conclusions and Future work 

Risks associated with cloud computing might limit a company's exploration efforts, such as entering a 

new market, generating new goods and services, locating new clients, and absorbing new information. 

Furthermore, cloud computing hazards might obstruct a company's exploitation operations, which include 

competing in the present market with current customers, current goods, and current expertise. In this 

study, we used eight criteria and ten alternatives. The SVN is used to obtain the rank of alternatives. The 

neutrosophic set is hybrid with the VIKOR and MABAC methods to obtain the weights of criteria and rank 

of risks. In future work, we suggest this model be used with other problems like energy selection and others 

and can use other MCDM methods such as TOPSIS, AHP, and others.  
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Abstract: This study contributes a novel fuzzy and neutrosophic entropy-based procedure to 

identify the most contaminated sampling spot and to assess the impact of heavy metals 

concentration, before and after the amalgamation of pharmaceutical effluents treated in common 

effluent treatment plant. in river water samples. It is observed that the concentration of heavy 

metals, which were within permissible limits before amalgamation, dwindled gradually after 

amalgamation, owing to the decrease in fuzzy and neutrosophic entropy values. To identify the 

most contaminated sampling spot, responsible for heavy metal contamination, the proposed 

trigonometric fuzzy and single valued neutrosophic entropy measures are fascinated for assigning 

weights to each monitored heavy metal concentration reading with respect to four sampling spots 

and thereafter coupled with the relative sub-indices of each heavy metal to construct fuzzy and 

neutrosophic entropy weighted heavy metal contamination indices (FHCI and NHCI). The 

maximum (or minimum) FHCI and NHCI score among each sampling spot is designated to the 

“most contaminated” or “least contaminated” sampling spot accordingly. The proposed 

entropy-based contamination indices are superior in providing a better insight in classifying the 

desired contaminated sampling spot in comparison with the existing Deluca-Termini fuzzy entropy- 

based contamination index which may indicate uncertainty in the quality analysis of heavy metal 

contamination in river water samples. 

Keywords: Neutrosophic Entropy, Deluca-Termini Entropy, Pharmaceutical Effluents, Heavy 

Metals Contamination. 

1. Introduction 

Heavy metals contamination in river water is a serious problem, not only in India, but also all over 

the world. The possible reasons behind this could be the increasing human population and excessive 

use of fertilizers in agriculture that causes pollution of fresh water resources with diverse and 

detrimental contaminants leading to the spread of water borne diseases. Contamination of water 

resources, available for domestic and drinking purposes with heavy metals and harmful bacteria, 

leads to health problems which, of course, may be life threatening. Waste water could be full of 

significant amounts of toxic heavy metals, that might not only pollute the soil, but also carries 
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deleterious effects on food quality after entering in to the food chain. All of the above issues reinforce 

the necessity of establishing an efficient methodology which can assess the impact of heavy metal 

concentration and enhance the quality analysis of heavy metal contamination in river water. Our 

main endeavor is to establish a novel entropy based heavy metal contamination evaluation 

methodology, the aftermaths of which can be utilized to control the spread of water borne deceases, 

reduce the risk of water and soil pollution, increase the ecological and aesthetical qualities of lakes 

and rivers, etc. The Baddi-Barotiwala region, better known as the industrial and commercial district 

of Himachal Pradesh, India, forms a part of the Shivalik’s and lies in the lap of outer Himalayas. It 

has become an industrial hub due to huge investments in Baddi, Barotiwala, Nalagarh and 

Parwanoo districts. The Sarsa River-a tributary of the Sutlej River of district Baddi (Himachal 

Pradesh, India)- has turned out to be a grave for aquatic life due to uncontrolled industrial growth of 

the area and alleged discharge of toxic effluents from pharmaceutical industries. Likewise, flora, 

fauna and the surrounding environment are adversely affected by the harmful chemicals released 

from pharmaceutical industries and from the improperly treated effluents from waste water 

treatment plants (WWTPs). Besides industrial pollution, drug pollution is a major contributor in 

killing of fish, amphibians and amphibian path morphology. The ongoing research has shown that 

continuing exposure of compound pharmaceutical effluents to rivulet biota may result in severe and 

persistent problems, behavioral issues, buildup in tissues, effect on reproductive system, impact on 

cell propagation & multiplication. Severely elevated chloride concentrations in the water bodies are 

unfavorable for aquatic life and can amplify metal toxicity and another bioactive composites. High 

levels of nitrogen and phosphorus appearing from sewage, animal wastes, fertilizer and agriculture 

may affect rivulet biota. Excess of phosphates cause stepped up eutrophication as they overfertilize 

the aquatic plants; choke the waterways due to excessive algal growth and other wild plants. In 

warm weather, fast growth of algae and floating aquatic weeds is stimulated by the nutrients 

resulting into deterioration of water quality. All these suffocated activities decline the ecological and 

aesthetic qualities of lakes, rivers etc. A systematic analysis of the river Nile in Egypt was computed 

to assess the water suitability for aquatic life and domestic purposes. Studies have shown that 

applications of electrochemical technologies like Electro-coagulation & electro-floatation, in 

wastewater treatment are very effective in recuperating toxic heavy metals from wastewater. These 

techniques perform better than the conventional techniques being used in removing colloidal 

particles as well as other organic pollutants. Electro-oxidation is also being used in treatment of 

wastewater by combining it with other contamination techniques.  

Recently, Alam et al. [1] deployed pollution indices and geographical accumulation index approach 

for evaluating heavy metal contamination in water resources of an open landfill area. The heavy 

metal accumulation in the samples was observed to be slightly higher than the standard one, 

indicating a danger to the humanity and environment. Vardhan et al. [2] discussed an environment 

friendly adsorption analysis approach for removing the toxicity among heavy metals available in the 
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aquatic system for the purpose of avoiding illness of human beings. Khangembam and 

Kshetrimayum [3] utilized some statistical measures including scatter diagrams, trilinear and Gibbs 

plots for evaluating the water quality index of ground water samples and indicated the unsuitability 

of ground water for drinking purposes because of the excessive availability of highly toxic heavy 

metals. Yang et al. [4] employed Information entropy and cloud model theory for assessing the 

complexity of heavy metal pollution in agriculture soils of mining zones. Huu et al. [5] investigated 

geo chemical and distribution factors to assess the contamination status of heavy metals in estuarine 

system, which indicated an increase of arsenic metal in the samples. Hussain et al. [6] experimented 

the heavy metal contamination through the analytical hierarchy process and validated that, among 

all heavy metals available in the river water samples of Godavari; the concentration of Zn was 

highest and of Cd was lowest. Sabbir et al. [7] calculated the concentration of arsenic, chromium, 

lead, mercury and cadmium available in freshwater fish muscles and sediments of the Rupsha river 

and evaluated the suitability of River water. Alidadi et al. [8] calculated the carcinogenic and 

non-carcinogenic risks of arsenic for adults and kids based on the LCR (life time cancer risk) factor, 

hazard index and hazard quotient by chemically analyzing and testing of toxicity of arsenic in water 

resources of north-east regions of Iran.  

Recently, Singh et al. [9] determined some entropy weighted heavy metal contamination indices 

(EHCI) of various sampling spots of the Brahmaputra River by quantifying Shannon’s probabilistic 

entropy and evaluated the impact of heavy metal contamination. Basset et al. [10] developed an 

aggregation operator based on neutrosophic numbers of type 2 and selected the best banking 

facilities. The authors also modified the existing TOPSIS method under neutrosophic environment 

and selected the best corporation importing supplier. In another work, Basset et al. [11] integrated 

the enduring ANP and VIKOR method by taking into consideration the triangular neutrosophic 

numbers and demonstrated a case study of selecting the best supplier for importing. Furthermore, 

Basset et al. [12] suggested a novel robust ranking procedure by integrating trapezoidal 

neutrosophic numbers with GSCM approach, intended to predict the environmental and economical 

practices to be implemented in industry. Also, Basset et al. [13] presented a hybrid model that could 

combine EDAS, DEMATEC and neutrosophic numbers for the purpose of classifying the most 

sustainable bioenergy technique under ambiguous and inconsistent situations. In addition, Basset et 

al. [14] utilized a hybrid approach by combining TOPSIS and VIKOR methods for classifying the 

most sustainable RESs under neutrosophic treatments.  

1.1 Motivation 

To represent the macroscopic state of heavy metal concentration in river water and to construct 

entropy weighted heavy metal contamination indices (EHCI) by deploying Shannon’s entropy, there 

may occur a problematic situation because this fascinating entropy is facing a major drawback 

because of its assumption 0log0=0. Due to this fancy assumption, Shannon’s entropy is facing 
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intrinsic conflicts and hence indicating lack of macroscopic view in the quality analysis of 

concentration and contamination of heavy metals in river water samples. Zadeh’s [15] fuzzy set 

theory has become an indispensable tool for reflecting the complexity of heavy metal contamination. 

A fuzzy entropy measure can represent the macroscopic state of heavy metal concentration in a 

broader way. Dubois and Prade [16] established many variants of fuzzy sets, one of which is related 

to the grade or membership degree of the underlying fuzzy set. Thereafter, many equivalents of 

fuzzy sets have been developed and utilized for dealing with assessment problems of heavy metal 

contamination in river water samples. A neutrosophic set (NS), which is hinged on three variants- 

truth, indeterminacy and falsity membership degrees of a fuzzy set, can represent the macroscopic 

state of heavy metal contamination in an efficient way. Smarandache’s neutrosophic set theory [17] 

can play a vital role in classifying the most contaminated sampling spots with respect to each heavy 

metal concentration in river water samples. Motivated by Zadeh’s fuzzy set theory and 

Smarandache’s neutrosophic set theory, an effort has been accomplished in this path way by 

construct trigonometric fuzzy and single valued neutrosophic entropy weighted heavy metal 

contamination indices. The desired goal is achieved by establishing a superior contamination 

evaluation methodology and its applicability which can provide a better insight in classifying the 

most contaminated sampling spot with respect to each heavy metal concentration in river water 

samples.  

1.2 Novelties 

The identification of the most contaminated sampling spot through the proposed methodology can 

help in reducing the risk of water and soil pollution. The following points have been addresses by 

the proposed research work. 

 To construct a novel trigonometric fuzzy entropy measure. 

 To construct a novel symmetric trigonometric fuzzy cross entropy (TFE) measure. 

 To establish a novel trigonometric single valued neutrosophic entropy (TNE) measure. 

 To assess the concentration of heavy metals in river water samples though the 

proposed TFE and TNE measures. 

 To construct fuzzy and single valued neutrosophic entropy weighted heavy metal 

contamination indices (FHCI and NHCI). 

 To identify the most contaminated sampling spot through the proposed FHCI and 

NHCI.  

The major contributions delivered in this study can be summarized as follows.  

 Because of the fancy assumption 0log0=0 deliberated to Shannon’s probabilistic entropy as it 

may represent macroscopic view of contamination in a narrow way, our TFE measure has 

been found efficient in assessing the accurate impact of heavy metal concentration and thus 

representing the macroscopic view of heavy metal concentration in a broader way. 
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  Because of the limitation deliberated to Deluca and Termini’s entropy measure as it may 

return meaningless results in certain mathematical treatments, especially, when the grade or 

degree of membership conceived by its membership function is zero or unity, our TFE 

measure can perform well under fuzzy environment and provide consistent and specified 

results in certain mathematical treatments. 

 To expand the applicability of Smarandache’s neutrosophic set theory [17] and to enhance 

the quality analysis of heavy metal contamination under neutrosophic environment, our 

TNE measure has been found capable in reckoning the most contaminated sampling spot 

with respect to each heavy metal concentration in river water samples. 

 The findings of the proposed study can be utilized for controlling the spread of water borne 

deceases, reducing the risk of water and soil pollution, increasing the ecological and 

aesthetical qualities of lakes and rivers, etc. The rest of the proposed research work is 

organized as follows:  

Section 2 introduces in brief the basic concepts of Information theory required for understanding 

the proposed heavy metal contamination evaluation methodology. Sections 3-4 are dedicated for 

the establishment of novel trigonometric fuzzy entropy and single valued neutrosophic entropy 

measures consecutively. Section 5 is devoted to assess the impact of heavy metal concentration 

through the experimental investigations and proposed trigonometric fuzzy entropy measure (TFE) 

and single valued neutrosophic entropy (TNE) measure consecutively. Section 6 introduces a novel 

entropy-based heavy metal contamination evaluation methodology by means of fuzzy and single 

valued neutrosophic entropy weighted heavy metal contamination indices (FHCI and NHCI). 

Section 7 validates the effectiveness of the proposed methodology by identifying the most 

contaminated sampling spot responsible for heavy metal contamination with respect to each heavy 

metal concentration in river water samples. Section 8 finally summarizes the concrete conclusions of 

this study.   

2. Preliminaries: 

This section deals with the introduction of basic prerequisites required for 

understanding the propounded study. 

Def. 2.1Fuzzy Set (FS) [18] A fuzzy set w
FSA U in  a finite discourse of universe  1 2, ,..., nU x x x

is an object of the form:  , ,|( )w iF i iS A
wA x µ x x U    where  ( ) : 0,1w iA

Uµ x  represents true  

membership function and satisfy (0 ) 1w iA
µ x  Further, the complement  w

FSC A of w
FSA U is an 

object of the form defined by     ,1 ( ) .|w
w
FS i i iA

µ xA x UC x   
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Def. 2.2 Fuzzy Entropy Measure [18] Suppose  S U represents the collection of all fuzzy sets  in 

 1 2, ,..., nU x x x and  , ( |)w i iA
w
FS i µA x x x U    be any fuzzy set  quantified by its truth 

membership functions  ( ) : 0,1w iA
Uµ x  satisfying ( ) .0 1w iA

µ x  Then a function 

   : set of positive realsET S U R is called as fuzzy entropy measure if  

 ( ) 0w w
E FS FSi T A A U   with equality if ( ) 0w iA

µ x  or 1  w
E FS(ii) T A does not change whenever 

( )w iA
µ x is replaced by 1 ( )w iA

µ x  w
E FS(iii) T A is a concave function of ( )w iA

µ x  w
E FS(iv) T A possesses its 

maximum value which arises when  
1( ) .
2w iA

µ x 

Def.2.3Symmetric Fuzzy Cross Entropy Measure [19] Let  , ( |)w i iA
w
FS i µA x x x U    and 

 , ( |)w i iB
w
FS i µB x x x U    are  any two fuzzy sets in  1 2, ,..., nU x x x quantified by their truth 

membership functions  ( ), ( ) : 0,1w wi iA A
x µ x Uµ  satisfying 0 ( ), ( ) 1.w wi iA B

µ x µ x  Then a function 

     : set of positive realsCET S U S U R  is called as symmetric fuzzy  cross entropy or 

discrimination information measure between two fuzzy sets w
FSA and w

FSB if 

     , 0 ,w w w w
CE FS FS FS FSi T A B A B S U   with equality if .w w

FS FSA B      , ,w w w w
CE FS FS CE FS FSii T A B T B A and 

   ,w w
CE FS FSiii T A B does not change whenever ( ), ( )w wi iA B

µ x µ x are replaced by  their counterparts 

1 ( ),1 ( )w wi iA B
µ x µ x  . 

Def. 2.4 Single Valued Neutrosophic Set (SVNS) [17]. A SVNS w
FSA U is defined as  

 , ( ), ( ), ( ) |w w wi i i iA Ai A
w
SVA x x Ufµ ix x x   where  ( ), ( ), ( ) : 0,1w w wi i iA A A

i fµ x x x U  satisfy 

0 ( ), ( ), ( ) 3w w wi i iA A A
µ x x xi f  and respectively called as   truth, indeterminacy and falsity 

membership functions. Further, the complement  w
SVC A of w

SVA U is defined as 

   , ( ),1 ( ), ( |)w w wi i i iA A
w
SV i A

C A x f ix x µ x x U    . 



Neutrosophic Sets and Systems, Vol. 48, 2022     197  

Simerjit Kaur, C. P. Gandhi and Nidhi Singal, Neutrosophic Entropy Based Heavy Metal Contamination Indices for 
Impact Assessment of Sarsa River Water Quality Within County of District Baddi, India 

Def. 2.5 Single Valued Neutrosophic Entropy Measure [17] Let  R U be a well-defined collection of 

all single valued neutrosophic sets  w
FSA U ,then a function  

NR : R U R is called as single 

valued neutrosophic entropy measure if  

   ( ) w w
N SV SVi R A 0 A R U   with equality if either ( ) 1, ( ) 0, ( ) 0w w wi i iA A A

µ x x xi f   or 

( ) 0, ( ) 0, ( ) 1w w wi i iA A A
µ x x xi f       ( ) w w

N SV N SVii R C A = R A  w
N SV(iii)R A exhibits its concavity 

property for each ( ), ( ), ( )w w wi i iA A A
i fµ x x x  w

N SV(iv)R A possesses its maximum value which   arises 

when each 1( ) ( ) ( ) .
2w w wi i iA A A

iµ x x xf  

Def. 2.6 Symmetric Single Valued Neutrosophic Cross Entropy Measure [17]

A function    
CER : R U × R U R is called as symmetric single valued neutrosophic cross entropy 

measure between two SVNSs  
w
SVA   and 

w
SVB if  

   ( ) w w w w
CE SV SV SV SVi R A ,B 0 A ,B R U   with equality if and only if .w w

SV SVA B

   ( ) w w w w
CE SV SV CE SV SVii R A ,B = R B ,A         ( ) .w w w w w w

CE SV SV CE SV SV SV SViii R C A ,C B = R A ,B A ,B R U 

3. A Novel Trigonometric Fuzzy Entropy Measure 

We shall, here, develop a novel trigonometric fuzzy entropy (TFE) measure (Theorems. 3.1) 

followed by trigonometric symmetric fuzzy cross entropy (FCE) measure hinged on two fuzzy sets 

(Theorems. 3.2), the outcomes of which will be utilized to establish the proposed single valued 

neutrosophic entropy (TNE) measure. 

Theorem.3.1 Let  , ( |)w i iA
w
FS i µA x x x U   be any fuzzy set in U with cardinality .n

Then, w
F FSH (A ) is an authentic trigonometric fuzzy entropy measure [Def. 2.2] defined as  

   
22

1

2 2 2 ( ) 1 ( ) ( ) 1 ( ) 2 2 2tan tan
5 5

2w w w wi i i iA A A A
n

w
F FS

i
H

µ x µ x µ
(

x µ x
A )



  
        

        
   

  

   … (1) 

with minimum zero and maximum as
2 2 2 1tan tan .

5 2
n

    
         

Here, the generic entity ' 'ix represents the 
thi macroscopic level of heavy metal    

contamination and w
F FSH (A ) indicates the fuzzy entropy of heavy metal contamination   

indicated by the fuzzy set .w
FSA

Proof In view of [Def. 2.2],  
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(i)
 

   0 ( ) 0,1w
w w
F FS iA

H A µ x  
  

with equality if ( ) 0 or1w iA
µ x  for each 1,2,..., .i n

(ii) 
w

F FSH (A ) remains unchanged whenever ( )w iA
µ x is replaced by 1 ( ).w iA

µ x

(iii) Concavity: The fact that  w
F FSH A is concave in nature can be seen from its three-dimensional 

rotational plot (Fig. 1). Also, the finite series of positive terms in (1) can be partially differentiated 

with respect to each ( )w iA
µ x because of its uniform and absolute convergence. Mathematica 

(software from Wolfram) yields 
 
 

   
2

0 0,1 ,w

w
i2 A

i

w
F

A

F SH A
µ x

µ x


   which also justifies the concavity of 

 w
F FSH A with respect to each ( ).w iA

µ x

(iv)With the aid of concavity property of  w
F FSH A with respect to ( ).w iA

µ x , there exists its 

maximum value which arises when   

   

 

   2

2

22

2

1 2 ( )

( )2 1 ( ) 2 2 2 ( ) 1 ( ) ( ) 1 ( )1 sec 0
2 4 ( )( ) 5 5

(

2

) 1 ( )

w

w w w w w w

ww

w w

iA

i iA A i i i iA A A A

ii AA

i i

w
F

A

FS

A

µ x

µ x µ x µ x µ x µ x µ x
µ xµ

H

x

µ x µ

A

x

 
 

            
   

 
  
 

which yields 
1( ) .
2w iA

µ x  In view of (1),   

   
 

1
2

2 2 2 1Max. tan tan
5 2w iA

w w
F FS F FS x

H A H A n
 

    
           

… (2) 
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Fig.1 Concavity property exhibited by TFE measure  w
F FSH A with respect to ( )w iA

µ x

Theorem.3.2 Let  , ( |)w i iA
w
FS i µA x x x U   and  , ( |)w i iB

w
FS i µB x x x U   be any two 

fuzzy sets with same cardinality .n Show that  w w
CE FS FSH A ,B is a valid trigonometric 

symmetric fuzzy cross entropy measure (Def. 2.3) between two fuzzy sets  
w
FSA   and 

w
FSB defined by  

 

    
       

   

    
           

   

22

110 tan 4 tan
42

1 1
6 tan

6

w w w w

w w

w w

w w w w

w w

w w

2 2
i i i iA B A B

i iA B
i iA B

i i i iA B A B

w w
CE FS FS

i iA B
i iA B

µ x µ x 2µ x µ x
µ x + µ x

µ x + µ x

µ x  1 µ x µ x  1 µ x
µ x  

H A ,B

2 2 +2 +

 
2 2 +2 +

µ x  
µ x µ x  

+



  
    
  

 
   

      
    

   
   

1

n

i












                                                                                             … (3) 

Here,  w w
CE FS FSH A ,B indicates the amount of true membership degree of symmetric 

discrimination of the fuzzy set w
FSA against .w

FSB

Proof. It is easy to verify that         ,w w w w
CE FS FS CE FS FSi H C A ,C B = H A B  and 

   ,w w w w
CE FS FS CE FS FSH A ,B H B A   .w w

FS FSA ,B S U  To establish the non-negativity of  w w
CE FS FSH A ,B , 

we first divert to develop the following Lemma 3.1.

Lemma 3.1 Define  

   

2
( ) ( )( ) ( )

( ), ( ) ( ), ( ) ,
2 2

w ww w

w w w w

i ii i A BA B
i i i iA A1 B1 B

µ x µ xµ x µ x
µ x µ x µA x µ xN

 
  
 

,

 
2 2( ) ( )

( ), ( ) .
2

w w

w w
i i

i1
A B

iA B

µ x µ x
µ x xS µ


 Then there exist the inequalities: 1 1 1S A N  with equality 

if and only if   ( ) ( ) ( ), ( ) 0,1 1,2,...,w w w wi i i iA B A B
µ x µ x µ x µ nx i   

Proof. In view of our notations,  

 
2 2

2
1

2 2
2

1

( ) ( ) ( ) ( ) ( ) ( )
0

2 2 2
w w w w w wi i i i i iA B A B A B

µ x µ x µ x µ x µ x µ
S A

x
i

     
       

   

2 2
1 1 1 1S A S A   

                                                                                           … (4) 
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2 22
2 2 2 2

1 1 1 1 1 1

( ) ( ) ( ) ( )( ) ( )
0

2 2 2
w w w ww w i i i ii i A B A BA B

µ x µ x µ x µ xµ
ii A N N

µ
A A N

x x      
            

     

                                                                                          … (5) 

Combining the resulting inequalities (4) and (5) to obtain 1 1 1S A N  with equality if and only if 

 ( ) ( ) ( ), ( ) 0,1 .w w w wi i i iA B A B
µ x µ x µ x µ x  

Thus, in view of Lemma 3.1, the resulting inequality 1 1 1S A N  can be re-scheduled to give 

   1 1( ), ( ) ( ), ( )w w w wi i i iA B A B
µ x µ x µ xS N µ x

2
2 2 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

2 2 4 2
w w w ww w w wi i i ii i i iA B A BA B A B

µ x µ x µ x µ xµ x µ x µ x µ x  
    
 

2 2 ( ) ( )( ) ( ) ( ) ( )
1 1

2 2 4
w ww w w wi ii i i iA BA B A B

µ x µ xµ x µ x µ x µ x 
    

2 22 2 2 ( ) ( ) ( ) ( ) 1
( ) ( ) 2

2

4
w w w w

w w

i i i iA B A B

i iA B

µ x µ x µ x µ x

µ x µ x

  
 


                                         … (6) 

Employing the monotonicity property of tangent function over [0,1] , the inequality (6) yields 

   
2 22 2 2 ( ) ( ) ( ) ( ) 1( ) ( ) tan ( ) ( ) tan

(

2
4 4

) ( ) 24
w w w w

w w w w

w w

i i i iA B A B
i i i iA B A B

i iA B

µ x µ x µ x µ x
µ x µ x µ x µ x

µ x µ x
 



                  

                                                                                             

… (7) 

Replacement of ( ), ( )w wi iA B
µ x µ x with    ( ) ,1 1 ( )w wi iA B

µ x µ x into (7) yields 

 

        2 2

( ) ( )
1( ) ( ) tan2 2 2 ( ) ( ) ( ) ( )

6

61 1 2
2t

1 1

6
an

( ) ( )

w w

w ww w w w

w w

i iA B

i iA Bi i i iA B A B

i iA B

µ x µ x

µ x µ xµ x µ x µ x µ x

µ x µ x

  
 

            



    

    

                                                                                             

… (8) 

Simply adding the inequalities (7) & (8) and taking the sum over 1i  to i n to obtain 

   , 0 ( ), ( ) 0,1w wi iA
w w

CE F BS FS µ x µH A B x    with equality if  ( ) ( ) ( ), ( ) 0,1 .w w w wi i i iA B A B
µ x µ x µ x µ x  

We next divert to discuss the situation under which out TFE measure  ,w w
CE FS FSH A B

admits its 

extreme values as shown in the following Theorem. 3.3.

Theorem3.3 Let w
FSA and w

FSB be any two fuzzy sets with same cardinality .n then there 

exists the inequality:  
2 2 2 10 10 tan tan .

5 2
w w

CE FS FSH A ,B n
    

           

Proof. In view of Def. 2.1, the resulting Theorem 3.2 yields                   
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10Max. 10w w
F FS F FSH (A ) H (A )                                 … (9)  

Since    0w
F FSH A  (Theorem. 3.1), therefore, the resulting expression (9) yields 

      1=Max. 0
10

w w w w
F FS F FS CE FS FSH A H A H A ,C A                                    …. (10) 

   2 2 2 10 10 tan tan
5 2

w w
CE FS FSH A ,C A n

    
                                           

… (11) 

Inequality (11) suggests that   w w
CE FS FSH A ,C A is finite. Hence, it is easy to establish 

that  w w
CE FS FSH A ,B is also finite and satisfy  

2 2 2 10 10 tan tan
5 2

w w
CE FS FSH A ,B n

    
           

for 

a fixed .n This implies that  
2 2 2 1Max. 10 tan tan

5 2
w w

CE FS FSH A ,B n
    

          

and this value 

completely depends only on the cardinality ofU . The fact that,  w w
CE FS FSH A ,B affirms its 

minimum value zero can be seen from its three-dimensional plot as shown in Fig.2 (a). 

Furthermore, the three-dimensional plots represented in Fig. 2(b) depicts that  w w
CE FS FSH A ,B

increases whenever  w w
FS FSA B increases, attains its maximum value as 

2 2 2 110 tan tan
5 2

n
    

         

at the points (1, 0) and (0, 1) and minimum value zero whenever 

.w w
FS FSA = B
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The findings of resulting Theorems 3.1 & 3.2 will be utilized to establish one more important 

Theorem 4.1, the outcomes of which will play an eminent role in understanding the 

macroscopic state of heavy metal pollution as follows. 

4. A Trigonometric Single Valued Neutrosophic Cross Entropy Measure 

We shall now, equally will, extend the newly discovered trigonometric symmetric fuzzy 

cross entropy measure (Theorem 3.2) hinged on two fuzzy sets to this measure hinged on 

two single-valued neutrosophic sets.             

Def.4.1 Let w
SVA U and w

SVB U be any two single valued neutrosophic sets given by 

   , ( ), ( ), ( ) ; , ( ), ( ), ( )| .|w w w w w wi i i i i i i iA A A B B B
w w
SV i SV iA x i f Bµ x x x x U µ x x xi f x Ux      The amount 

of true membership degree between two fuzzy sets w
FSA and w

FSB , represented by 

 w w
CE FS FSH A ,B , is established in Theorem 3.2. Similarly, the amount of indeterminacy degree 

between two fuzzy sets w
FSA and w

FSB can be represented by  i w w
CE FS FSH A ,B and is defined as  

                                                    (a) 
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                                   (b) 

Fig.2 Minimum value of symmetric fuzzy cross entropy measure  w w
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                                                                                            … (12)  

Furthermore, the amount of falsity membership degree between two fuzzy sets w
FSA and w

FSB

can be represented by  f w w
CE FS FSH A ,B and is defined as  
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                                                                                            … (13) 

Hence, the proclaimed single valued neutrosophic cross entropy measure hinged on two single- 

valued neutrosophic sets (SVNSs) w
SVA and w

SVB can be obtained by simply adding the resulting 

equations (3), (12) and (13). Thus,  

   SV SV
w w w w

SV CE FS FSR A ,B H A ,B (Eq.3)  i w w
CE FS FSH A ,B (Eq.12)  i w w

CE FS FSH A ,B (Eq.13)           … (14)  
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Here,  SV SV
w w

SVR A ,B satisfies all the conditions (i), (ii) and (iii) of Def. 2.6 and hence a valid single 

valued neutrosophic entropy measure hinged on two single-valued neutrosophic sets SV
wA and SV .wB    

Theorem 4.1 Let 

   , ( ), ( ), ( ) ; , ( ), ( ), ( )| |w w w w w w
w w
SV i i i i i i i iA A A B Bi SV i B

µ x x x x U µ x x x xA x i f B x f Ui      be any two 

single-valued neutrosophic sets with same cardinality .n There exist the inequality 

 SV SV SV
2 2 2 10 30 tan tan .

5 2
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Proof. In view of equations (3), (12) and (13) and replacement of SV
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The resulting mathematical expression (16) is the desired single valued neutrosophic 
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entropy measure since it satisfies all the necessary conditions (i), (ii) and (iii) as laid down 

in Def. 2.6.  

Since  N SVR 0wA  (in view of Fig.3) for each  SV ,wA R U the resulting inequality (15) 

yields  

      N SV N SV SV SV SV
1R Max.R R , 0

10
w w w wA A A C A  

                
         … (17) 

  SV SV SV
2 2 2 10 30 tan tan

5 2
w wR A ,C A n

    
            

… (18)
 

Fig.3 Three -dimensional contour plot for non-negativity of  N SVR wA

Discussion The resulting inequality (18) justifies that   SV SV SV
w wR A ,C A   is a finite quantity. 

Following the similar pattern as deploying to obtain (18), it is reasonable to establish that   

 SV SV SV
2 2 2 10 30 tan tan ,

5 2
w wR A ,B n

    
           

where n is a fixed natural number. Thus, 

 SV SV SV
2 2 2 1Max. 30 tan tan

5 2
w wR A ,B n

    
          

and this value completely depends on the 

cardinality of .U

The overhead discussion has put us in a conclusive position to deploy the newly discovered 

trigonometric fuzzy entropy (TFE) and single valued neutrosophic entropy (TNE) measures, 
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represented by (1) and (14), to assess the impact of heavy metal concentration in river water as 

follows. 

5. Impact Assessment of Heavy Metal  

The underlying research work is initiated by collecting Sarsa River water samples, before and after 

the amalgamation of pharmaceutical effluents (PE) treated in common effluent treatment plant 

(CETP). To reckon the quality of river water for drinking purposes, we have done a lot of 

experimenatation investigations, data comparsion and  expressed the concentration of  each  

heavy metal in terms of /g mL (Fig. 4(a-b)). In this study, the impact of concentration of heavy 

metals like cadmium (Cd), manganese (Mn), cobalt (Co), lead (Pb), copper (Cu), zinc (Zn) and iron 

(Fe), have been done through experimental investigations as well as the proposed TFE and TNE 

measures. 

5.1 Assessment of Heavy Metal Concentration Based on Experimental Observations: The 

following observations were made before and after amalgamating pharmaceutical effluents (PE) 

treated in common effluent treatment plant (CETP) into river water samples. 

(a) Cadmium. Before amalgamation, the  concentration of cadmium, depcited in Fig. 4(a), was 

0.002  1 ,S followed by 0.001  2 3 4, ,S S S with an average concentration of 0.00125 / .g mL .After 

amalgamation, no cadmium was  detected in the recorded observations as can be seen in Fig. 4 (b). 

(b) Manganese.Spatial variations were observed in the  concentration of manganese, before and 

after amalgamation, as depicited in Fig. 4(a, b). Before amalgamation, the concentration of Mn was 

0.01  1 ,S 0.005  2 ,S 0.002  3 ,S and 0.001  4S with an average concentration of 0.0045 / .g mL

After introducing pharmaceutical effluents into river water samples,  Mn was  found to be absent. 

(c)  Cobalt. The cobalt’s concentration varied spatially in Sarsa river water samples, taken before 

and after  amalgamation,  as shown in Fig. 4(a, b). The concentration of cobalt   decreased 

from 0.225 to 0.143 ( 1S ), 0.214 to 0.0107  2S , 0.18 to 0.1  3S and 0.147 to 0.1  4S respectively 

and it was within permissible limits. 

(d) Lead. The water of Sarsa river recorded lead concentration of 0.36 before amalgamation and it 

decreased to 0.19  1S after amalgamation, as indicated by Fig.4(a, b). Similarly, the treatment was 

effective in reducing lead concentration from 0.28 to 0.158  2S , 0.04 to 0.02  3S and 0.01 to 

0.005  4S respectively.  
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(a) 

                   

   (b) 

Fig 4. Heavy metal concentration of (a) Cd, (b) Mn, (c) Co, (d) Pb, (e) Cu, (f) Zn and (g) Fe in Sarsa  

      river water samples 

(e) Copper. The results depcited by Fig. 4 (a, b) indicate  that before amalgamation of 

pharmaceutical effluents into river water samples, the concentration of Cu was 0.027  1S which 

reduced to 0.016  1S after amalgamation. The concentration further decreased from 0.018 to nil 

 2S , 0.008 to nil (  3S ) and 0.004 to nil  4S respectively. Dilution of the effluents with river 

water could be the factor responsible for complete copper removal in the river water. 

(f) Zinc. The results of Fig. 4(a, b) clearly indicate that before and after amalgamation, the 

concentration  of zinc decreased from 0.002 to 0.001  1S , from 0.001 to nil  2 3,S S and no zinc 

was detected in 4S before and after amalgamation. 
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(g)  Iron. While comparing the concentration of iron (Fe) represented by Fig. 4(a, b), it was found 

that, before and after amalgamation, the concentration of Fe decreased from 0.195 to 0.012  1S , 

0.155 to 0.01 2S , 0.104 to nil  3S and 0.09 to nil  4S consecutively. 

The overhead discussion concludes that the concentration of heavy metals in Sarsa river water 

samples, which were within the permissible limits before amalgamation, dwindled gradually after 

the amalgamation of pharmaceutical effluents into river water samples (Fig.4a, 4b). The 

effectiveness of the proposed TFE and TNE measures can be confirmed only if these entropy 

measures can be proven capable in justifying the similar ressutls as obtained through experimental 

investigations.  

5.2Assessment of Heavy Metal Concentration Based on TFE and TNE Measures 

To evaluate the impact of heavy metals concentration in river water samples through our proposed 

trigonometric fuzzy and single valued neutrosophic entropy measures, we have represented each 

heavy metal by the set  1 2 3 4 5 6 7, , , , , ,B B B B B B B B where 1B = Cadmium (Cd), 2B = Manganese 

(Mn), 3B = Cobalt (Co), 4B =Lead (Pb), 5B  Copper (Cu), 6B  Zinc (Zn) and 7B  Iron (Fe) 

consecutively. After doing a lot of data comparison and experimental investigations, we have, 

equally well, extracted the lower (minimum) and upper (maximum) bounds for each monitored 

heavy metal concentration reading. Let 1( )w
KB

µ x and 1( )w
KB

U x respectively be the lower and upper 

bounds extracted from thK heavy metal concentration. In this study, we have constructed the 

concentration intervals ( ), ( )w w
K KB B

µ x U x 
 

, before and after amalgamation, for each heavy metal 

concentration represented by ( 1,2,3,4,5,6,7)KB K  and the results are displayed in Table. 1(a). 

Let ( ) 1 ( )w w
K KB B

x U xf   , ( ) 1 ( ) ( )w w w
K K KB B B

x x xi f U   denote the amount of fuzziness based on the 

falsity and indeterminacy membership degree of thK heavy metal concentration. If we restrict the 

value(s) of ( )w
KB

i x to 0 0001 if it is less than or equal to zero, then the set KB can be extended into 

the forms of single valued neutrosophic set (SVNS) represented by      , ,w w w
K K KB B B

x xi f x 
 

and the 

results are displayed in Table. 1(b). Let  F KH B and  N KR B denote the trigonometric fuzzy 

entropy and single valued neutrosophic entropy measures value of thK heavy metal concentration. 
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Taking 1i    and replacing ( )w iA
µ x with   w

KB
x into the (1), Then,  ( 1,2,3,4,5,6,7)F KH B K  , 

after modification, takes the form as shown in (17). The results are displayed in Table 1(a). Thus,  

   
2

22 2 2 ( ) 1 ( ) ( ) 1 ( )1 2 2 2tan tan tan tan
4 5 5

2w w w w
K K K KB B

K

B

F

B
H (

µ x µ x µ x µ
B )

x
  

        
                 

                                                                                          …(19) 

Similarly,  N KR B ;  1,2,...,7K  can also be modified by taking  1i  and replacing  

     1 11 ,, ww wA A A
xxix f with       , ,w w w

K K KB B B
xx x f  into the resulting equation (16). The results 

are displayed in Table 1(b). Thus,   
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(20) 

The trigonometric fuzzy entropy (TFE) measure values F KH (B ) as well as single valued 

neutrosophic entropy (TNE) measure values  N KR B for each heavy metal KB can be evaluated 

employing equations (17) and (18). A comparative analysis of the results depicted in Table. 1)a) and 

Table. 1(b) reveal that, before amalgamation, the heavy metal concentration was found to be more 

macroscopic (owing to high TFE and TNE values as shown in Fig. 5) which became less macroscopic 

after amalgamation (owing to low TFE and TNE values as shown in Fig. 5). In other words, the 

concentration of each heavy metal, which was within the permissible limits before amalgamation, 

dwindled gradually (owing to negative change in TFE and TNE values) after amalgamating 

pharmaceutical effluents into River water samples.  

Table 1(a). Concentration intervals and TFE values of each KB before and after amalgamation of 

pharmaceutical effluents  
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Heavy

Metal 

Concentration 

Interval Before 

Amalgamation 

Concentration 

Interval After 

Amalgamation 

TFE Value   

Before 

Amalgamation 

TFE Value 

After 

Amalgamation 

Change 

in TFE 

Values 

Cadmium [0.001,0.002] [0.000,0.000] 0.0073 0.0000 -0.0073 

Manganese [0.001,0.010] [0.000,0.000] 0.0073 0.0000 -0.0073 

Cobalt [0.147,0.225] [0.100,0.143] 0.1000 0.0825 -0.0174 

Lead [0.010,0.360] [0.005,0.190] 0.0073 0.0000 -0.0073 

Copper [0.004,0.027] [0.000,0.016] 0.0073 0.0168 0.0095 

Zinc [0.000,0.002] [0.000,0.001] 0.0000 0.0000 0.0000 

Iron [0.090,0.195] [0.000,0.012] 0.0073 0.0000 -0.0073 

Table 1(b). Conversion of concentration intervals into the forms of SVNSs TNE values of each 

KB before and after amalgamation of pharmaceutical effluents  

Heavy 

Metal 

SVNSs Before 

Amalgamation 

SVNSs After 

Amalgamation   

TNE Values 

Before 

Amalgamation 

TNE Values 

After 

Amalgamation 

Change 

in TNE 

Values  

Cadmium [0.0010,0.0010,0.9980] [0.0010,0.0001,0.9999] 0.0249 0.0045 -0.0204 

Manganese [0.0010,0.0090,0.9900]  [0.0010,0.0001,0.9999] 0.0546 0.0045 -0.0500 

Cobalt [0.1470,0.0780,0.7750] [0.1000,0.0430,0.8570]  0.2953 0.2347 -0.0606 

Lead [0.0010,0.3590,0.6400]  [0.0050,0.1850,0.8100]  0.3334 0.2541 -0.0793 

Copper [0.0010,0.0017,0.9973] [0.0000,0.0160,0.9840]  0.0290 0.0628 0.0338 

Zinc [0.0000,0.0020,0.9980]  [0.0000,0.0010,0.9990]  0.0208 0.0146 0.0063 

Iron [0.0010,0.1940,0.8050]  [0.0000,0.0120,0.9880]  0.2508 0.0537 -0.1971 

Discussion After amalgamation, the concentration of cadmium and manganese was found to be 

negligible (Fig.4). The possible reasons for absence of these heavy metals in river water samples 

could be the use of physico-chemical processes-adsorption, membrane filtration, electro dialysis 

etc., which further diluted the river water after amalgamation and made heavy metal presence 

almost negligible in the river.  
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Fig.5 TFE and TNE values of each heavy metal concentration before and after amalgamat-

ing         pharmaceutical effluents into river water samples 

The similar observations were experienced from the experimental investigations. Hence, 

the effectiveness and validity of our proposed TFE and TNE measures have been justified.  

We next switch to establish the proclaimed heavy metal contamination evaluation methodology, 

intended to identify the most contaminated sampling spot responsible for heavy metal 

contamination in Sarsa river water. 

6. Heavy Metal Contamination Evaluation Methodology  

To reckon the most contaminated sampling spot by the proposed methodology, we proceed 

as follows. 

Step: -1 Collection of River Water Samples  

The water samples were collected from Sarsa river by covering a stretch of 20 km from four 

sampling spots1 2 3 4, , &S S S S , before and after the amalgamation of CETP treated pharmaceutical effluents (PE) 

into river water samples. The samples were stored in high-grade polythene bottles of one-liter 

capacity. Representative water sample from selected sites was collected and transported to the 

laboratory for experimentation investigations by keeping in mind that the comparative 

concentrations of all related components were same in all the samples. All precautions were taken to 

avoid any significant alteration in sample composition before experiments were performed. 

Analytical studies were carried out by the methods of American Public Health Association [20].

Step: -2 Normalization of Monitored Heavy Metal Concentration  

Suppose the number of parameters (heavy metals) to be studied is denoted by " ".n Let the number 

of sampling spots under study is denoted by " ".m Let jil denotes the monitored concentration 

reading of thj heavy metal at thi sampling spot. To ensure the quality of various quantity grades, 
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it becomes essential, before fuzzification, to normalize each monitored heavy metal concentration 

reading. Let jip denotes the normalization concentration function for the concentration of thj

heavy metal at thi sampling spot. Then   

Min.
; 1,2,3,4..., ; 1,2,3,4..., .

Max. Min.
ji ji

ji
ji ji

l l
p j n i m

l l


  


             … (21) 

Step: 3 Determination of Fuzzy and Neutrosophic Entropy Weights 

After the introduction of fuzzy sets theory by Zadeh [15], Information theory started receiving 

recognition from different quarters. In the existing literature, many fuzzy entropy measures have 

been investigated and characterized by researchers, but with some demerits and limitations. De 

Luca and Termini [19] suggested the first non-additive measure of fuzzy entropy: 

         
1

1( ) log 1 log 1
log

n

A j A j A j A j
j

H A x x x x
m

   


     
                             … (22) 

where  , ( |)i A i iµ xA x x U    is the corresponding fuzzy set satisfying  ( ) : 0,1A j Xµ x  and 

" "m is any fixed natural number. The fuzzy entropy measure (22) has been found capable for 

analyzing the macroscopic view of heavy metal pollution in river water samples. Unfortunately, the 

entropy measure (22) is facing a major drawback as it is unknowingly based on the fancy 

assumption 0 0 0log  and hence indicates less macroscopic view of heavy metal contamination. 

To represent macroscopic view of heavy metal contamination in a broader way and to meet the 

exigency, we have successfully deployed our proposed TFE and TNE measures to construct fuzzy 

and single valued neutrosophic entropy weights for various sampling spot with respect to each 

heavy metal concentration as follows.   

Let jiT denotes the amount of fuzziness based on true membership degree of 
thj heavy metal 

concentration at thi sampling spot. Then,  

1

; 1,2,..., , 1,2,..,ji
ji n

ji
j

p
T j n i m

p


  


                        … (23) 

(a) The weights (0)
jiw for 

thj heavy metal concentration at thi sampling spot employing Deluca and 

Termini (22) can be evaluated as follows. Let " "m be the number of sampling spots, then 

(0)
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(0)

1

1
, whereji

ji n

ji
j

E
w

E






                                    … (24) 

   (0)

1

1 log 1 log 1
log

n

ji ji ji ji ji
j

E T T T T
m 

     
                                              … (25)  



Neutrosophic Sets and Systems, Vol. 48, 2022     213  

Simerjit Kaur, C. P. Gandhi and Nidhi Singal, Neutrosophic Entropy Based Heavy Metal Contamination Indices for 
Impact Assessment of Sarsa River Water Quality Within County of District Baddi, India 

(b) The weights (1)
jiw for 

thj heavy metal concentration at thi sampling spot employing the proposed 

trigonometric fuzzy entropy (TFE) measure (1) can be evaluated as follows: Let " "m be the number 

of sampling spots, then 

(1)
(1)

(1)

1

1
, whereji

ji n

ji
j

E
w

E






                               … (26) 
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             … (27)  

(c)The weights (2)
jiw for 

thj heavy metal concentration at thi sampling spot employing the proposed 

single valued neutrosophic entropy (TNE) measure (16) can be evaluated as follows. 

Let 1ji jiF T  and 1ji ji jiI T F   denote the amount of fuzziness based on the indeterminacy 

and falsity membership degree of 
thj heavy metal concentration at thi sampling spot. Here, the 

values of jiI are restricted to 0 001 if it is less than or equal to zero and " "m is the number of 

sampling spots. Then,  
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Step: -4 Calculations of Relative Sub-Indices  

The quality of river water parameters (heavy metals) can be well described by means of two types of 

sub-indices-absolute and relative-which are being used by the eminent researchers. Since absolute 

(or relative) sub-indexing approaches are fully independent (or dependent) on water quality 

standards, the relative sub-indexing approach has been empowered in this study. Let jiQ  Relative 
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sub-index, jiS  Maximum permissible concentration limit and jil  Monitored concentration 

reading of the 
thj heavy metal at thi sampling spot respectively. Then, the relative sub-indices of 

each heavy metal with respect to various sampling spots are assigned as  

100; 1,2,3,4... , 1,2,3,4.., .ji
ji

ji

l
Q j n i m

S
      … (30)  

Step: -5 Constructions of FHCI and NHCI  

The enduring Deluca and Termini entropy ([19], proposed trigonometric fuzzy entropy weighted 

and single valued neutrosophic entropy weighted heavy metal contamination indices (EHCI, FHCI 

and NHCI), before and after the amalgamation of pharmaceutical effluents into river water samples, 

can be constructed as follows: 

(0)

1
EHCI at SamplingSpot =

n
th

ji ji
j

i w Q


                                                        … (31) 

(1)

1
FHCI at SamplingSpot =

n
th

ji ji
j

i w Q


                                 … (32) 

(2)

1
NHCI at SamplingSpot =

n
th

ji ji
j

i w Q


                                … (33) 

Step: -6 Identifying the Most Contaminated Sampling Spot  

The maximum(or minimum) EHCI, FHCI or NHCI score among each sampling spot is designated to  

the“most (or least) contaminated sampling spot” accordingly. 

We finally deploy the proclaimed fuzzy entropy weighted heavy metal contamination index (EHCI) 

and single valued neutrosophic entropy weighted heavy metal contamination index (NHCI) to 

identify the most contaminated sampling spot responsible for heavy metal contamination in Sarsa

river water. 

7. Application of TFE and TNE Based Heavy Metal Contamination Evaluation Methodology  

To reckon the most contaminated sampling spot, responsible for heavy metal contamination in Sarsa

river water, we have computed the enduring Deluca and Termini entropy [19], proposed 

trigonometric fuzzy entropy and single valued neutrosophic entropy weighted heavy metal 

contamination indices (FHCI, EHCI and NHCI) through the proposed methodology as explained in 

Section. 6 and the results are displayed in Tables.2-4(a, b).   

7.1 Identification of Most Contaminated Sampling Spot Through EHCI 

The Deluca and Termini fuzzy entropy weighted heavy metal contamination index (EHCI) at each 

sampling spot 1 2 3 4, , ,S S S S , before and after the amalgamation of pharmaceutical effluents into river 

water samples, is computed by deploying (31) and the results are depicted in Table.2(a, b). The 

monitored concentration reading of each heavy metal is expressed in terms of /mg L . In this study, 

the number of parameters (heavy metals) is seven  7n  and the number of sampling spots is 

four  4m  . The normalization concentration function  1,2,...,7; 1,2,3,4jip j i  for each heavy 
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metal at various sampling spots and the results are depicted in Table.2(a, b). As per W.H.O. [20], the 

maximum permissible limits  1,2,..7, 1,2,3,4jiS j i  of each heavy metal at various sampling spots 

are considered as 0.005(Cd), 0.1(Mn), 2(Co), 0.05(Pb),  1(Cu),  5(Zn),  0.1(Fe)( / ).mg L

Observations. The results depicted in Table 2(a, b) and Fig. 5 indicate that the trend of EHCI scores 

reduced gradually, from 0.3623 to0.1673  1S , from  0.2816 to0.1559 ( 2S ), from  0.1067 to 0.0440 

 3S and from 0.0766  to 0.0468  4S consecutively. 

7.2 Identification of Most Contaminated Sampling Spot Through FHCI    

The trigonometric fuzzy entropy weighted heavy metal contamination index (EHCI) at each 

sampling spot 1 2 3 4, , ,S S S S , before and after the amalgamation of pharmaceutical effluents into river 

water samples, is computed by deploying (32) and the results are depicted in Table.3(a, b).  

Observations. The results depicted in Table 3(a, b) and Fig. 5 reveal that the proposed EHCI 

exhibited the similar trend as returned by Deluca and Termini entropy weighted heavy metal 

contamination index (FHCI). The FHCI scores at each sampling spot 1 2 3 4, , ,S S S S reduced 

gradually, from 1.6865 to0.8343  1S , from 1.3276 to0.8237  2S , from 0.4186 to 0.1895  3S and 

from 0.3064 to 0.1266  4S consecutively. 

7.3 Identification of Most Contaminated Sampling Spot Through NHCI             

The single valued neutrosophic entropy weighted heavy metal contamination index (NHCI) at each 

sampling spot 1 2 3 4, , ,S S S S , before and after the amalgamation of pharmaceutical effluents into river 

water samples, is computed by deploying (33) and the results are depicted in Table.4(a, b). 

Observations The results depicted in Table 4(a, b) and Fig. 5  reveal that NHCI scores at each 

sampling spot 1 2 3 4, , ,S S S S reduced gradually, from 0.7093 to 0.3216  1S , from 0.5575 to 

0.3031  2S , from 0.1841 to 0.0673  3S and from 0.1342 to 0.0481  4S consecutively. 

Results and Discussions The accumulated trend of  EHCI, FHCI and NHCI scores depcited by 

Table. 2-4(a, b) and Fig 6 leads to wind-up the conclusion that, before amalgamation, the EHCI, 

FHCI and NHCI scores, which were on higher side, dwindled gradually after amalgamation.  In 

other words, before amalgamation, the quality of river water was imperfect” or “unfavourable”  
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but after amalgamation, resulted into  “ impeccable” and “ favourable” (still not suitable for 

drinking purposes and could be owed to dilution of the river water). In view of and Fig 6, the 

sampling spot 1S was found to be most contaminated owing to its maximum EHCI (before 

amalgamation: 0.3623, after amalgamation: 0.1673) scores, FHCI (before amalgamation: 1.6865, after 

amalgamation: 0.8343) scores and NHCI (before amalgamation: 0.7093, after amalgamation: 0.3216) 

scores. 

Fig.6 Trend of EHCI, FHCI and NHCI at four sampling spots before andafter amalgamating 

pharmaceutical effluents      

Table 2(a): Calculation of EHCI scores employing Deluca and Termini entropy [19]            

before amalgamation  

Heavy 

Metals 

Construction 

Function 

Fuzziness 

Values 

Entropy 

Values 

Assigned 

Weights 

Relative 

Sub-Indices 

EHCI 

Score 

Sampling Spot 1 

Cd 0.0050 0.0024 0.0123 0.6629 0.0400 

Mn 0.0250 0.0122 0.0475 0.6393 0.0100 

Co 0.5625 0.2741 0.4236 0.3868 0.0113 

Pb 0.9000 0.4385 0.4945 0.3392 0.7200 0.3623 

Cu 0.0675 0.0329 0.1043 0.6011 0.0027 

Zn 0.0050 0.0024 0.0123 0.6629 0.0000 

Fe 0.4875 0.2375 0.3954 0.4057 0.1950 

Sampling Spot 2 

Cd 0.0003 0.0015 0.0080 0.6767 0.0200 

Mn 0.0017 0.0074 0.0316 0.6606 0.0050 
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Co 0.0713 0.3175 0.4508 0.3746 0.0107 

Pb 0.0933 0.4154 0.4896 0.3482 0.5600 0.2816 

Cu 0.0060 0.0267 0.0888 0.6216 0.0018 

Zn 0.0003 0.0015 0.0080 0.6767 0.0000 

Fe 0.0517 0.2300 0.3890 0.4168 0.1550 

Sampling Spot 3 

Cd 0.0005 0.0030 0.0146 0.7329 0.0200 

Mn 0.0010 0.0060 0.0263 0.7242 0.0020 

Co 0.0900 0.5357 0.4982 0.3733 0.0090 

Pb 0.0200 0.1190 0.2633 0.5479 0.0800 0.1067 

Cu 0.0040 0.0238 0.0812 0.6834 0.0008 

Zn 0.0005 0.0030 0.0146 0.7329 0.0000 

Fe 0.0520 0.3095 0.4463 0.4118 0.1040 

Sample Spot 4 

Cd 0.0100 0.0040 0.0186 0.8346 0.0200 

Mn 0.0100 0.0040 0.0186 0.8346 0.0010 

Co 1.4700 0.5810 0.4905 0.4333 0.0074 

Pb 0.1000 0.0395 0.1201 0.7483 0.0200 0.0766 

Cu 0.0400 0.0158 0.0586 0.8006 0.0004 

Zn 0.0000 0.0000 0.0000* 0.8504* 0.0000 

Fe 0.9000 0.3557 0.4695 0.4511 0.0900 

*At 4S , the entropy value 0.8504 of Zinc is based on the assumption: 0 log0 0. 

Table 2(b): Calculation of EHCI scores employing Deluca and Termini [19] entropy             

after amalgamation 

Heavy 

Metals 

Monitored 

Values 

Fuzziness 

Values 

Entropy 

Values 

Assigned 

Weights 

Relative 

Sub-Indices 

EHCI 

Score 

Sampling Spot 1 

Cd 0.0000 0.0000 0.0000* 0.8114* 0.0000 

Mn 0.0000 0.0000 0.0000* 0.8114* 0.0000 

Co 0.7150 0.3950 0.4840 0.4187 0.0072 

Pb 0.9500 0.5249 0.4991 0.4064 0.3800 0.1673 

Cu 0.0800 0.0442 0.1306 0.7054 0.0016 

Zn 0.0050 0.0028 0.0137 0.8003 0.0000 

Fe 0.0600 0.0331 0.1050 0.7262 0.0120 

Sampling Spot 2 

Cd 0.0000 0.0000 0.0000* 0.9060* 0.0000 

Mn 0.0000 0.0000 0.0000* 0.9060* 0.0000 

Co 0.5350 0.3877 0.4816 0.4697 0.0054 
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Pb 0.7900 0.5725 0.4924 0.4599 0.3160 0.1559 

Cu 0.0000 0.0000 0.0000 0.9060* 0.0000 

Zn 0.0000 0.0036 0.0173 0.8904 0.0000 

Fe 0.0500 0.0362 0.1124 0.8042 0.0100 

Sampling Spot 3 

Cd 0.0000 0.0000 0.0000* 1.4476* 0.0000 

Mn 0.0000 0.0000 0.0000* 1.4476* 0.0000 

Co 1.0000 0.8264 0.3329 0.9657 0.0050 

Pb 0.2000 0.1653 0.3234 0.9794 0.0400 0.0440 

Cu 0.0000 0.0000 0.0000* 1.4476* 0.0000 

Zn 0.0000 0.0083 0.0345 1.3976 0.0000 

Fe 0.0000 0.0000 0.0000* 1.4476* 0.0000 

Sampling Spot 4 

Cd 0.0000 0.0000 0.0000* 3.6206* 0.0000 

Mn 0.0000 0.0000 0.0000* 3.6206* 0.0000 

Co 1.0000 0.9524 0.1381 3.1206 0.0050 

Pb 0.0500 0.0476 0.1381 3.1206 0.0100 0.0468 

Cu 0.0000 0.0000 0.0000* 3.6206* 0.0000 

Zn 0.0000 0.0000 0.0000* 3.6206* 0.0000 

Fe 0.0000 0.0000 0.0000* 3.6206* 0.0000 

* Values are based on the assumption: 0 log0 0  during calculation of 
(0).jE

Heavy 

Metals 

Construction 

Function 

Fuzziness 

Values 

Entropy 

Values   

Assigned 

Weights  

Relative 

Sub-Indices 

FHCI 

Score 

Sampling Spot 1 

1.6865 

Cd 0.0050 0.0024 0.0115 1.9734 0.0400 

Mn 0.0250 0.0122 0.0269 1.9427 0.0100 

Co 0.5625 0.2741 0.1313 1.7342 0.0113 

Pb 0.9000 0.4385 0.1496 1.6978 0.7200 

Cu 0.0675 0.0329 0.0459 1.9048 0.0027 

Zn 0.0050 0.0024 0.0115 1.9734 0.0000 

Fe 0.4875 0.2375 0.1242 1.7485 0.1950 

Sampling Spot 2 

Cd 0.0003 0.0015 0.0089 2.0284 0.0200 

Mn 0.0017 0.0074 0.0207 2.0043 0.0050 
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Table 3(a): Calculation of FHCI scores employing the proposed trigonometric fuzzy            

entropy (TFE) measure before amalgamation 

  Table 3(b): Calculation of FHCI score employing the proposed trigonometric fuzzy                 

entropy (TFE) measure after amalgamation 

Heavy 

Metals 

Construction 

Function 

Fuzziness 

Values 

Entropy 

Values 

Assigned 

Weights 

Relative 

Sub-Indices 

FHCI 

Score 

Sampling Spot 1 

Cd 0.0000 0.0000 0.0000 2.4408 0.0400 

0.8343 

Mn 0.0000 0.0000 0.0000 2.4408 0.0100 

Co 0.7150 0.3950 0.1468 2.0824 0.0113 

Pb 0.9500 0.5249 0.1507 2.0729 0.7200 

Cu 0.0800 0.0442 0.0537 2.3096 0.0027 

Zn 0.0050 0.0028 0.0123 2.4108 0.0000 

Fe 0.0600 0.0331 0.0461 2.3284 0.1950 

Sampling Spot 2 

Cd 0.0000 0.0000 0.0000 2.7956 0.0200 

Co 0.0713 0.3175 0.1383 1.7636 0.0107 

1.3276 Pb 0.0933 0.4154 0.1483 1.7432 0.5600 

Cu 0.0060 0.0267 0.0410 1.9627 0.0018 

Zn 0.0003 0.0015 0.0089 2.0284 0.0000 

Fe 0.0517 0.2300 0.1225 1.7959 0.1550 

Sampling Spot 3 

Cd 0.0005 0.0030 0.0128 2.1447 0.0200 

0.4186 

Mn 0.0010 0.0060 0.0184 2.1325 0.0020 

Co 0.0900 0.5357 0.1505 1.8455 0.0090 

Pb 0.0200 0.1190 0.0902 1.9766 0.0800 

Cu 0.0040 0.0238 0.0386 2.0887 0.0008 

Zn 0.0005 0.0030 0.0128 2.1447 0.0000 

Fe 0.0520 0.3095 0.1371 1.8746 0.1040 

Sampling Spot 4 

Cd 0.0100 0.0040 0.0148 2.4452 0.0200 

0.3064 

Mn 0.0100 0.0040 0.0148 2.4452 0.0010 

Co 1.4700 0.5810 0.1485 2.1134 0.0074 

Pb 0.1000 0.0395 0.0506 2.3564 0.0200 

Cu 0.0400 0.0158 0.0309 2.4052 0.0004 

Zn 0.0000 0.0000 0.0000 2.4820 0.0000 

Fe 0.9000 0.3557 0.1431 2.1268 0.0900 
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Mn 0.0000 0.0000 0.0000 2.7956 0.0050 

0.8237 

Co 0.5350 0.3877 0.1462 2.3869 0.0107 

Pb 0.7900 0.5725 0.1490 2.3791 0.5600 

Cu 0.0000 0.0000 0.0000 2.7956 0.0018 

Zn 0.0000 0.0036 0.0142 2.7560 0.0000 

Fe 0.0500 0.0362 0.0483 2.6606 0.1550 

Sampling Spot 3 

Cd 0.0000 0.0000 0.0000 4.2409 0.0200 

0.1895 

Mn 0.0000 0.0000 0.0000 4.2409 0.0020 

Co 1.0000 0.8264 0.1082 3.7821 0.0090 

Pb 0.2000 0.1653 0.1057 3.7925 0.0800 

Cu 0.0000 0.0000 0.0000 4.2409 0.0008 

Zn 0.0000 0.0083 0.0219 4.1480 0.0000 

Fe 0.0000 0.0000 0.0000 4.2409 0.1040 

Sampling Spot 4 

Cd 0.0000 0.0000 0.0000 8.9366 0.0200 

0.1266 

Mn 0.0000 0.0000 0.0000 8.9366 0.0010 

Co 1.0000 0.9524 0.0559 8.4368 0.0074 

Pb 0.0500 0.0476 0.0559 8.4368 0.0200 

Cu 0.0000 0.0000 0.0000 8.9366 0.0004 

Zn 0.0000 0.0000 0.0000 8.9366 0.0000 

Fe 0.0000 0.0000 0.0000 8.9366 0.0900 

Table 4(a) calculation of NHCI score employing the proposed single valued                 

neutrosophic entropy (TNE) measure before amalgamation 

Heavy 

Metals 

Construction 

Function 

Fuzziness 

Values 

Entropy 

Values   

Assigned 

Weights  

Relative 

Sub-Indices 

NHCI 

Score 

Sampling Spot 1 

Cd 0.0050 0.0024 0.0230 0.9753 0.0400 

0.7093 

Mn 0.0250 0.0122 0.0538 0.9446 0.0100 

Co 0.5625 0.2741 0.2627 0.7361 0.0113 

Pb 0.9000 0.4385 0.2991 0.6997 0.7200 

Cu 0.0675 0.0329 0.0917 0.9067 0.0027 

Zn 0.0050 0.0024 0.0230 0.9753 0.0000 

Fe 0.4875 0.2375 0.2483 0.7504 0.1950 

Sampling Spot 2 

Cd 0.0003 0.0015 0.0178 1.0051 0.0200 
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Mn 0.0017 0.0074 0.0414 0.9810 0.0050 

0.5575 

Co 0.0713 0.3175 0.2766 0.7403 0.0107 

Pb 0.0933 0.4154 0.2966 0.7198 0.5600 

Cu 0.0060 0.0267 0.0820 0.9394 0.0018 

Zn 0.0003 0.0015 0.0178 1.0051 0.0000 

Fe 0.0517 0.2300 0.2450 0.7726 0.1550 

Sampling Spot 3 

Cd 0.0005 0.0030 0.0256 1.0583 0.0200 

0.1841 

Mn 0.0010 0.0060 0.0368 1.0462 0.0020 

Co 0.0900 0.5357 0.3010 0.7592 0.0090 

Pb 0.0200 0.1190 0.1803 0.8903 0.0800 

Cu 0.0040 0.0238 0.0771 1.0024 0.0008 

Zn 0.0005 0.0030 0.0256 1.0583 0.0000 

Fe 0.0520 0.3095 0.2743 0.7882 0.1040 

Sampling Spot 4 

Cd 0.0100 0.0040 0.0297 1.2043 0.0200 

0.1342 

Mn 0.0100 0.0040 0.0297 1.2043 0.0010 

Co 1.4700 0.5810 0.2970 0.8725 0.0074 

Pb 0.1000 0.0395 0.1012 1.1155 0.0200 

Cu 0.0400 0.0158 0.0619 1.1643 0.0004 

Zn 0.0000 0.0000 0.0000 1.2412 0.0000 

Fe 0.9000 0.3557 0.2862 0.8859 0.0900 

Table4(b): Calculation of NHCI score employing the proposed single valued neutrosophic  

Heavy 

Metals 

Construction 

Function 

Fuzziness 

Values 

Entropy 

Values   

Assigned 

Weights  

Relative 

Sub-Indices 

NHCI 

Score 

Sampling Spot 1 

Cd 0.0000 0.0000 0.0073 1.1407 0.0400 

Mn 0.0000 0.0000 0.0073 1.1407 0.0100 

Co 0.7150 0.3950 0.3009 0.8033 0.0113 

Pb 0.9500 0.5249 0.3088 0.7943 0.7200 0.3216 

Cu 0.0800 0.0442 0.1148 1.0172 0.0027 

Zn 0.0050 0.0028 0.0319 1.1124 0.0000 

Fe 0.0600 0.0331 0.0994 1.0348 0.1950 
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entropy (TNE) measure after amalgamation 

It is informative to note that while  calculating EHCI score, as depcited in Table.2 (a, b), the values 

(0) (0)
1 2,E E at sampling spots 1 2 3 4, , ,S S S S ; (0)

5E at 2 3 4, ,S S S ; (0)
5E at 3 4,S S and (0)

7E at 4S are based on 

the fancy assumption 0 log0 0.  This indicates major conflicts and lack of macroscopic view in 

the quality analysis of heavy metal contamination in river water samples. However, our 

trigonometric fuzzy entropy (TFE) and single valued neutrosophic entropy (TNE) measures have 

been proven capable for providing a superior contamination evaluation methodology. 
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CONCLUSIONS 

Sampling Spot 2 

Cd 0.0000 0.0000 0.0073 1.2955 0.0200 

Mn 0.0000 0.0000 0.0073 1.2955 0.0050 

Co 0.5350 0.3877 0.2997 0.9138 0.0107 

Pb 0.7900 0.5725 0.3053 0.9066 0.5600 0.3031 

Cu 0.0000 0.0000 0.0073 1.2955 0.0018 

Zn 0.0000 0.0036 0.0356 1.2585 0.0000 

Fe 0.0500 0.0362 0.1039 1.1694 0.1550 

Sampling Spot 3 

Cd 0.0000 0.0000 0.0073 1.9000 0.0200 

Mn 0.0000 0.0000 0.0073 1.9000 0.0020 

Co 1.0000 0.8264 0.2236 1.4859 0.0090 

Pb 0.2000 0.1653 0.2187 1.4952 0.0800 0.0673 

Cu 0.0000 0.0000 0.0073 1.9000 0.0008 

Zn 0.0000 0.0083 0.0511 1.8162 0.0000 

Fe 0.0000 0.0000 0.0073 1.9000 0.1040 

Sampling Spot 4 

Cd 0.0000 0.0000 0.0073 3.6152 0.0200 

Mn 0.0000 0.0000 0.0073 3.6152 0.0010 

Co 1.0000 0.9524 0.1191 3.2078 0.0074 

Pb 0.0500 0.0476 0.1191 3.2078 0.0200 0.0481 

Cu 0.0000 0.0000 0.0073 3.6152 0.0004 

Zn 0.0000 0.0000 0.0073 3.6152 0.0000 

Fe 0.0000 0.0000 0.0073 3.6152 0.0900 
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To assess the impact of concentration of heavy metals (cadmium, manganese, cobalt, lead, copper, 

zinc and iron) and to identify the most contaminated sampling spot responsible for heavy metal 

contamination in river water samples, a novel trigonometric fuzzy entropy as well as single valued 

neutrosophic entropy measures are established and thereafter deployed to construct fuzzy and 

neutrosophic entropy weighted heavy metal contamination indices (FHCI and NHCI). The novelty 

of our contaminated sampling spot identification methodology lies in the fact that our heavy metal 

contamination indices are superior and capable in classifying the most contaminated sampling spot, 

whereas the existing Deluca-Termini fuzzy entropy weighted heavy metal contamination index 

(EHCI) exhibits assumption-based results which can affect the identification accuracy of the selected 

contaminated sampling spot with respect to each heavy metal concentration in river water samples. 

It is concluded that 

 The concentration of each heavy metal, which was within the permissible limits before 

amalgamation, dwindled gradually (owing to negative change in TFE and TNE values), 

after amalgamating pharmaceutical effluents into the river water samples. 

 The concentration of cadmium and manganese is found to be negligible. The possible 

reasons could be the use of physico-chemical processes which further diluted the river 

water after amalgamation. 

 The sampling spot 1S was found to be the most contaminated, owing to its maximum 

EHCI (before amalgamation: 0.3623, after amalgamation: 0.1673) score, FHCI (before 

amalgamation: 1.6865, after amalgamation: 0.8343) score and NHCI (before amalgamation: 

0.7093, after amalgamation: 0.3216) scores. 

Moreover, the findings of the underlying study can be utilized for controlling the spread of water 

borne deceases, reducing the risk of water and soil pollution, increasing the ecological and 

aesthetical qualities of lakes and rivers, etc.  
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Abstract: Hypersoft set(HSS) is one of the recent topics developed by Smarandache in 2018 to be presented by 
replacing the single attribute function, used in soft set(SS), with a multi attribute function i.e a function can be 
further bifurcated using HSS. So, HSS provides more options to the decision-makers than SS to make precise 
and valid decisions. Also, the interval-valued intuitionistic fuzzy set (IVIFS) is developed to counter a kind of 
uncertain complex decision-making problem where the membership and non-membership values of a certain 
element are not precise. Basically, the IVIFS is the generalization of a fuzzy set(FS), interval-valued fuzzy 
set(IVFS), and intuitionistic fuzzy set(IFS). Therefore, the mixture of HSS and IVIFS will surely give a new 
field of study for the decision-makers to enhance their critical thinking ability to make a conclusive decisions. 
The main aim of the paper is to present the notion of interval-valued intuitionistic fuzzy hypersoft sets 
(IVIFHSSs) and study some fundamental operations on them which are worthy in critical decision making. The 
IVIFHSSs can be viewed as a hybrid structure that can be formed by combining interval-valued intuitionistic 
fuzzy sets (IVIFSs) and hypersoft sets (HSSs). On the idea of IVIFHSSs and their kinds, different operators 
such as complement, union, intersection, OR, AND etc have been introduced, and by using these operators we 
can encounter real-life-based problems that contain incomplete and parameterized information or data. A new 
algorithm based on IVIFHSSs has been initiated. Finally, a numerical example is employed to check the 
reliability and validity of the algorithm. In the future, we use the proposed concept practically in medical 
diagnosis, personality selection, weather forecasting, data clustering, parameter reduction, decision making, etc. 
Keywords: Interval-valued intuitionistic fuzzy set; Hypersoft set; Interval-valued intuitionistic hypersoft set; 
Decision making. 
 

1. Introduction 

In most real-life problems, there is an existence of a considerable amount of ambiguity and it is due to the 
uncertainty involved in the information. That is uncertainty arises when the information is not precise and 
accurate. The classical mathematical tools can’t measure such kinds of data. So, there is a serious need to 
introduce a powerful tool that is capable to measure uncertainty without any fail. Finally, the invention of the 
fuzzy set(FS) by Zadeh[1] in 1965 helped us to deal with uncertainty in a structured manner. In FS, each 

element of the universe has a membership degree    0,1A x  . After the introduction of FS, it has been 
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developed rapidly and it has an extensive application in various fields of knowledge. Some of the recent works 
and applications associated with FS are discussed in the literature given in [2-5]. The FS theory captures the 
attention of the researchers over the decades and they are motivated a lot which gives rise to other mathematical 
tools namely rough set[6], fuzzy logic[7], vague set[8], etc. We know that hesitancy is an integral part of human 
thinking and FS theory does not measure hesitancy due to its inbuilt difficulties. Such difficulties were removed 
with the creation of an intuitionistic fuzzy set( IFS) by Atanassov[9]. The IFS is formed by adding a 
non-membership degree to the FS in such a manner that the sum of the membership and the non-membership 
degree can’t exceed one. Decision-making is a scientific approach to select the best alternative among the set of 
attributes and the approach of the decision-making process by the decision-makers depends upon the nature of 
the fuzzy environment. This leads to the introduction of the interval-valued fuzzy set(IVFS)[10], 
interval-valued intuitionistic fuzzy set(IVIFS)[11], hesitant fuzzy set(HFS)[12], picture fuzzy set(PFS)[13], 
Pythagorean fuzzy set(PFS)[14], etc. 
 
To work under fuzzy environment, there is always a challenge to construct membership function and there exist 
some issues in real-world that can’t be solved with an aid of membership function because recently we are 
encountered the kind of data that are parametric and there is an inadequacy in FSs and their variants to 
parameterize data. To overcome such difficulties, in 1999, Molodtsov[15] introduced the soft set(SS) theory. 
There is a lot of instances in a real-life situation where SS theory proved to be more functional than FS theory to 
describe uncertain parametric information without any effort. The SS theory removes the difficulty of 
constructing membership function in each event. So, we claim that SS is a more functional general framework 
than FS to model uncertainty without assigning membership function. Later on, Maji et al.[16] presented 
several assertions on SS, Cagman et al.[17] used SS in decision-making, Ali et al.[18] introduced some new 
operations on SS etc. An amalgamation of two or more concepts provides more information to the 
decision-makers to make their decisions more vulnerable. Because of this, some new hybrid structures such as 
fuzzy soft sets (FSSs), intuitionistic fuzzy soft sets(IFSSs),interval-valued fuzzy soft 
sets(IVFSSs), interval-valued intuitionistic fuzzy soft sets(IVIFSSs),etc. are introduced. Some of the works 
related to these are the following: Agarwal et al.[19] introduced generalized IFSSs and their applications in 
decision-making, FSS theory and its application given in[20], Cagman et al.[21] applied IFSS in 
decision-making, Chetia et al.[22] presented an application based on IVFSS, Jiang et al.[23] discussed IVIFSSs 
and their related properties, entropy on IFSSs and IVFSSs are proposed in [24], Ma et al.[25] introduced the 
parameter reduction of IVFSSs and its related algorithms, Majumder et al.[26] presented generalized FSSs, 
Maji et al.[27] initiated more on IFSSs, algorithms for IVFSSs in emergency decision-making shown in [28], a 
complete model for evaluation system based on IVFSS given in [29], Roy et al.[30] introduced an FSS theoretic 
approach to decision-making problems, Tripathy et al.[31] given a new approach to IVFSSs and its application 
in decision-making, Yang et al.[32] studied combination of IVFS and SS, a novel approach to IVIFSS is 
initiated by Zhang et al. in [33]. 
 
In 2018, Smarandache[34] has extended SS to the hypersoft set(HSS) and pilthogenic hypersoft set(PHSS). The 

HSS is introduced by transforming the single attribute function F to a multi attribute 

function 1 2 ....... nF F F   , where each attribute has some preference values such 
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that ,i jF F for i j   . However, HSS provides more options to the decision-makers than SS to make 

their decisions more constructive and meaningful. Some recent works based on HSSs are given in [35-40]. In 
HSS, the belongingness of an element is denoted by 1 and non- belongingness is denoted by 0 i.e. values are 
crisp. To deal with uncertainty under the hypersoft environment, a fuzzy hypersoft set (FHSS)[41,42] is 
introduced, and to handle hesitancy under the hypersoft environment, an intuitionistic fuzzy hypersoft 
set(IFHSS)[43] is introduced. Some more recent works based on HSSs are given in [44-51]. 
 
In 2010, Jiang et al.[23] introduced IVIFSSs and their properties and in 2021, Yolcu et al.[43] introduced 
IFHSS. In IVIFSS, there is only one attribute function, but there is some urgency to solve certain types of 
problems where there is more than one attribute or an attribute is further bifurcated. To address such issues there 
is a demand to introduce IVIFHSSs. On the other hand, in IFHSS, the membership and non-membership values 
are precise, but in real-life decision-making problems, we find the existence of the environment where the 
membership and non-membership degrees are uncertain i.e they are subjective. This situation also IVIFHSSs 
solve the purpose which cannot be handled by IFHSS. Therefore, there are two aspects of introducing IVIFHSS 
in the proposed study. Moreover, the following diagrammatic illustration will give an insight into the proposed 
study: 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1 Diagrammatic representation of the soft set and its generalization for the proposed study 
 
There is no research work yet to be done on IVIFHSS. This gives us the motivation to present the paper.  
The rest of the paper is organized as follows: 

     Soft Set 

Hypersoft Set 

Intuitionistic Fuzzy 
Hypersoft Set 

Interval-Valued 
Fuzzy Hypersoft set 

Fuzzy 
Hypersoft Set 

Interval-Valued Intuitionistic 
Fuzzy Hypersoft Set 
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Section 2 provides an overview of the earlier research works that are useful for the present study. In section 3, 
we establish the IVIFHSSs and obtain some properties and important results on them. In section 4, an algorithm 
is being constructed for multi-criteria decision-making problems using the notion of membership score 
function, non-membership score function, and the total score function under the IVIFHSS environment. 
Conclusion and future work are added in section 5. 
2. Literature Review 
 
In this section, we give some basic definitions and results that are useful for the rest of the paper. 
 

Definition 2.1 [11] An interval-valued intuitionistic fuzzy set(IVIFS)   over the universe of discourse  is 

an object of the form     , , :H Hx x x x X   where, H ,   : 0,1H X Int  , where 

  0,1Int stands for the set of all close subintervals of  0,1 satisfying the following condition: 

     , sup sup 1H Hx X x x     . Further,  H x and  H x can be written as 

     ,l u
H H Hx x x      and      ,l u

H H Hx x x      . The class of all IVIFS is denoted 

by ( )IVIFS X . 

Definition 2.2 [15] Let U be an initial universe and E be a set of parameters. Also,  P U denotes the power 

set of U and A E . Then the pair  ,F A where  :F A P U is called the soft set overU .  A SS is a 

parameterized family of subsets over the universeU . 
 
Definition 2.3 [23] Let U be the universe of discourse and E be the set of parameters and ( )IVIFS U denote 

the set of all IVIFSs over U . Also, let A E . Then the pair  ,F A is called an IVIFSS over 

U where : ( )F A IVIFS U . 

Example 2.3.1 Let  1 2 3 4 5, , , ,U c c c c c be a set of cars under consideration and 

 1 2 3 4 5 6, , , exp , ,E e size e color e fuel efficiency e ensive e style e comfortable       be 

a set of parameters and  1 2 3 6, , ,A e e e e E  . Under the advice of a decision-maker, Mr. X wants to 

purchase a car. The IVIFSS is denoted by  ,F A which describes the “attractiveness of the cars” to the 

decision-maker. Then, the tabular representation of  ,F A is given in Table 1. 

 



Neutrosophic Sets and Systems, Vol. 48, 2022     230  

 

 
Somen Debnath, Interval-Valued Intuitionistic Hypersoft Sets and Their Algorithmic Approach in 

Multi-criteria Decision Making 
 
 

 ,F A  1c  2c  3c  4c  5c  

1e     0.4,0.6 , 0.2,0.3     0.5,0.6 , 0.1,0.2     0.3,0.5 , 0.2,0.5     0.3,0.4 , 0.4,0.5     0.2,0.4 , 0.3,0.5  

2e     0.5,0.6 , 0.2,0.3     0.2,0.3 , 0.3,0.5     0.4,0.5 , 0.3,0.4     0.6,0.7 , 0.1,0.2     0.1,0.3 , 0.6,0.7  

3e     0.2,0.3 , 0.4,0.5     0.2,0.3 , 0.4,0.5     0.1,0.3 , 0.5,0.6     0.3,0.6 , 0.3,0.4     0.5,0.6 , 0.3,0.4  

6e     0.4,0.5 , 0.3,0.4     0.2,0.4 , 0.3,0.5     0.7,0.8 , 0.1,0.2     0.5,0.7 , 0.1,0.2     0.4,0.5 , 0.2,0.3  

 

                              Table1. Tabular representation of IVIFSS  ,F A
 

 
The above representation is very useful for storage such big data in a computer as it consumes less memory and 
it is handy for numerical calculation which solves the purpose of the decision maker to make a precise decision. 
 

Definition 2.4 [34, 39] Let S denotes the set of the universe and  P S is the power set of S . Let 

1 2, ,...., ne e e be n distinct attributes, where 1n  , whose corresponding attribute values are respectively the 

sets 1 2, ,...., nE E E  with ,i jE E i j   and ,i j N . Then the hypersoft set(HSS) is denoted by 

 1 2, .... nE E E    where 1 2: .... ( )nE E E P S     . For simplicity, we represent the HSS by 

 , E where 1 2 .... nE E E E    . Thus, in HSS, the attribute function can be further split until it is not 

suitable for the decision-maker in a certain environment. Therefore, HSS qualitatively enhanced the 
decision-making process. 
 

Example 2.4.1 Let  1 2 3 4, , ,S     be a set of journals and the set of attributes are 1E =citation style, 

2E =indexing and abstracting, 3E =article processing charge(APC), 4E = impact factor(IF) and their 

respective attribute values are given by: 
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1E =citation style=   1 2 3 4( ), , var ( ), ( )APA e MLA e Har d e Bibtex e , 2E =indexing and 

abstracting=   5 6 7 8( ), , ( ), ( )SCI e Scopus e Web of Science e Taylor and Francis e , 3E =article 

processing charge= 9( )Nil e , 4E = impact factor=     10 11 12( ), ,high e low e medium e . 

Let , 1,2,3,4i iA E where i   and suppose  1 1 4,A e e ,  2 5 6 7, ,A e e e ,  3 9A e and 

 3 10 12,A e e . Then the HSS  1 2 3 4, A A A A    defined as 

 1 2 3 4, A A A A    =

           

           

           

   

1 5 9 10 1 3 1 5 9 12 1 2 1 6 9 10 1 3 4

1 6 9 12 2 4 1 7 9 10 1 2 1 7 9 12 3 4

4 5 9 10 1 3 4 4 5 9 12 2 4 4 6 9 10 1 2 3

4 6 9 12 3 4

, , , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , , , ,

, , , , , ,

e e e e e e e e e e e e

e e e e e e e e e e e e

e e e e e e e e e e e e

e e e e e

      

     

       

         4 7 9 10 2 3 4 7 9 12 3 4, , , , , , , , , , ,e e e e e e e   

 
 
  
 
 
 
  

 

Therefore, the HSS  1 2 3 4, A A A A    is not a normal set, it is a multiple parameterized family of sets 

over S . It is a new scientific approach of representing bifurcated parametric representation and it’s a very 
useful model that provides sufficient information to the decision-maker to make their decisions elegantly. It is a 
more powerful and sophisticated tool than SS to deal with a wide range of problems related to various fields. 
 

Definition 2.5 [41, 42] Let SF be the set of all fuzzy subsets of the universe set S and let 

1 2 .... nE E E   be the set of parameters where ,i jE E i j   ,and ,i j N . For 

every 1 2 .... nE E E     , the pair  1 2, ...... nE E E    is called the fuzzy hypersoft set(FHSS) over 

S , where 1 2: .... S
nE E E F     and the FHSS defined as 

 
    

1 2 1 2, ...... , : ...... ,n n
xE E E E E E and x S

x


 



  
            

 
   

where

   x





denotes the membership value such that      0,1x





 . 

Example 2.5.1 If we take the same sets of attributes proposed in example 2.4.1, then the representation of 

FHSS  1 2 3 4, A A A A    in the following form: 
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 1 2 3 4, A A A A    =

     

     

3 31 1 2 1 4
1 5 9 10 1 5 9 12 1 6 9 10

32 4 1 2 4
1 6 9 12 1 7 9 10 1 7 9 12

4 5 9

, , , , , , , , , , , , , , , , , , ,
0.4 0.6 0.5 0.8 0.6 0.7 0.8

, , , , , , , , , , , , , , , , , ,
0.2 0.4 0.8 0.3 0.3 0.4

, ,

e e e e e e e e e e e e

e e e e e e e e e e e e

e e e

     

    

    
     

    

    
     
     

     

     

3 31 4 2 4 1 2
10 4 5 9 12 4 6 9 10

3 3 34 2 4
4 6 9 12 4 7 9 10 4 7 9 12

, , , , , , , , , , , , , , , , , ,
0.4 0.3 0.6 0.8 0.9 0.3 0.5 0.6

, , , , , , , , , , , , , , , , ,
0.5 0.6 0.4 0.5 0.4 0.8

e e e e e e e e e

e e e e e e e e e e e e

      

    









    
          


     
     
     












 
 



By FHSS we represent the multi-parameterized family of uncertain data. 
 

Definition 2.6 [43] Let SIF be the set of all intuitionistic fuzzy subsets of the universe set S and let 

1 2 .... nE E E   be the set of parameters where ,i jE E i j   ,and ,i j N . For 

every 1 2 .... nE E E     , the pair  1 2, ...... nE E E    is called the intuitionistic fuzzy hypersoft 

set(IFHSS) over S , where 1 2: .... S
nE E E IF     and the FHSS defined as, 

 
       

1 2 1 2, ...... , : ......
,

n n
xE E E E E E and x S

x x
 

 
 
 

  
            

    

,wh

ere    x





and    x





respectively denotes the membership and the non-membership values where 

         , 0,1x x
 

 
 

  such that        0 1x x
 

 
 

   . The hesitancy is determined 

by            1x x x
  

 
  

    . 

Example 2.6.1 Revisiting example 2.4.1, we address the IFHSS  1 2 3 4, A A A A    in the following 

manner: 
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 1 2 3 4, A A A A    =

   

   

 

31 1 2, , , , , , , , , , , ,5 51 9 10 1 9 120.3, 0.6 0.2, 0.5 0.4, 0.6 0.4, 0.5

31 4 2 4, , , , , , , , , , , , ,1 6 9 10 1 6 9 120.2, 0.3 0.4, 0.5 0.6, 0.2 0.2, 0.4 0.4, 0.7

1 2, , , , ,71 9 10 0.7, 0.2 0.1, 0.4

e e e e e e e e

e e e e e e e e

e e e e

  

   

 

   
   
   

   
   
   


  

   

   

3 4, , , , , , ,71 9 12 0.3, 0.7 0.4, 0.5

31 4 2 4, , , , , , , , , , , , ,5 54 9 10 4 9 120.4, 0.5 0.8, 0.1 0.6, 0.4 0.2, 0.3 0.5, 0.4

3 31 2, , , , , , , , , , ,4 6 9 10 4 6 9 120.4, 0.5 0.4, 0.8 0.2, 0.8 0.1,

e e e e

e e e e e e e e

e e e e e e e e

 

   

  

  
  

   

   
   
   

 
 
 

   

4, ,
0.5 0.6, 0.3

3 32 4, , , , , , , , , , ,7 74 9 10 4 9 120.2, 0.7 0.5, 0.4 0.5, 0.3 0.6, 0.3
e e e e e e e e



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
 

    
    
    

 

 
By IFHSS, we represent the multi-parameterized family of hesitant data. 
 
3. Interval-Valued Intuitionistic Fuzzy Hypersoft Sets (IVIFHSSs)  
 
In this section, first, we give the basic definition of IVIFHSS and its associated sets with real-life-based 
examples. Then, we defined different operators such as union, intersection, complement, OR, AND,etc on 
IVIFHSSs and investigated their properties. 

Definition 3.1 Let X be the universal set and XIVIF denote the collection of all interval-valued intuitionistic 

fuzzy (IVIF) subsets of X. Again, let 1 2, ,...., nC C C for 1n  be n  well-defined attributes, whose 

corresponding preferences are denoted by the sets 1 2, ,...., nP P P with ,i jP P i j   and ,i j N . Let 

iP be non-empty subsets of iC for each i N . Then the IVIFHSS is denoted as the pair 

 1 2, .... nY P P P   where 1 2: .... X
nY P P P IVIF    and defined as  

 
       

1 2 1 2 1 2.... , : , .... ....
,

n n n

Y Y

xY P P P x X P P P C C C
x x

 

 
 

 
 

             
 
 

, where 
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           ,l u
Y Y Yx x x
  

   
 

, and            ,l u
Y Y Yx x x
  

   
 

are the membership and 

non-membership intervals such that    0 u
Y x


      1u
Y x


  and  Y 
 ,

    : 0,1Y X D


  . 

Here   0,1D denotes the set of all closed subintervals of  0,1 . 

For simplification, we write the symbol  for 1 2 .... nC C C   ,  for 1 2 .... nP P P   and  for any 

element of the set . 

Thus,  1 2, .... nY P P P   represent a multi-parameterized family whose universe of discourse is XIVIF . 

Example 3.1.1 Let  1 2 3, ,X x x x be the set of cars under consideration and the sets of attribute are  

    1 1 2 3( ), ,C Quality good c very good c excellent c  ,

 2 4Re ( )C liability satisfactory c  ,

     3 5 6 7 8 4 9 10red( ),black , ( ), ( ) , ( ),C Color c c blue c yellow c C Fuel Efficiency economical c high c   

Suppose, iP and iQ are subsets of  1,2,3,4iC i  such that 

       1 2 3 2 4 3 5 7 4 9, , , , ,P c c P c P c c P c    , and        1 3 2 4 3 5 6 4 9, , , ,Q c Q c Q c c Q c     

Then the IVIFHSSs with respect to iP and iQ  denoted as  1,Y  , and  2,Z  respectively and defined in 

the following: 
 

 

 
       

 
       

 
       

 

1

31, , , , , ,52 4 9 0.3, 0.4 , 0.5, 0.6 0.5, 0.7 , 0.1, 0.2

1 2, , , , ,72 4 9 0.4, 0.6 , 0.3, 0.4 0.7, 0.8 , 0.1, 0.2

32, , , , , ,53 4 9 0.45, 0.55 , 0.23, 0.35 0.35, 0.55 , 0.25, 0.4

1, , , ,72 4 9 0

,

xx
c c c c

x x
c c c c

xx
c c c c

x
c c c c

Y

  
 
  

  
 
  

 
  
 
  

       
2,

.6, 0.8 , 0.1, 0.2 0.3, 0.5 , 0.25, 0.45

x
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2
3

2

6

3, , , , , ,54 9 0.6, 0.7 , 0.1, 0.3 0.35, 0.45 , 0.45, 0.5

1 2, , , , ,2 4 9 0.2, 0.3 , 0.3, 0.4 0.6, 0.7 , 0.1, 0.2

Z,

xx
c c c c

x x
c c c c

   
  
    

   
   
  
    

 

 
Note: By adding HSS with IVIFS, a new structure called IVIFHSS is introduced and it is viable to increase the 
features of selecting an object which a decision-maker could not imagine with an aid of multi-attribute function. 
Every IVIFHSS is IVIFSS and in IVIFHSS, when the lower and upper membership and lower and upper 
non-membership coincide then IVIFHSS is reduced to IFHSS. However, the IVIFHSS is preferable for the 
environment where there is no precise membership and non-membership value i.e vagueness involved in 
assigning the membership and non-membership values. For example, suppose if we want to describe the 
attractiveness of a house by IVIFHSS, then by membership interval, we can measure its minimum attractiveness 
and maximum attractiveness, on the other hand, the non-membership interval tells the minimum 
non-attractiveness and maximum non-attractiveness. So, IVIFHSS is more functional than IFHSS to represent 
parameterized hesitant information.  
 

Definition 3.2 An IVIFHSS  ,Y  over X is said to be null IVIFHSS if for all x X and , 

     0,0Y x


  and       1,1Y x


   and it is denoted by  ,Y 
 . 

On the other hand,  ,Y  over X is called a universal IVIFHSS if for 

all x X and      1,1Y x


  and      0,0Y x


  and it is denoted by  ,Y 
 . 

 

Definition 3.3 Let X be the set of universe and  1,Y  and  2,Z  be two IVIFHSSs over X . Then, we 

say that  1,Y  is an IVIFHS subset of  2,Z   if  

(i) 1 2    

(ii) For any 1  ,    Y Z  and it is denoted by and denoted by    1 2, ,Y Z   . 

That is, for all x X and 1  , 

               ,l l u u
Y Z Y Zx x x x
   

     ,and                ,l l u u
Y Z Y Zx x x x
   

     . 
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Definition 3.4 Let X be the set of universe and  1,Y  and  2,Z  be two IVIFHSSs over X . Then, we 

say that  1,Y  is said to be equal to  2,Z  if  1,Y  is an IVIFHS subset of  2,Z  and conversely 

and it is denoted by    1 2, ,Y Z   . 

Otherwise,  1,Y  and  2,Z  are said to be equal if for all x X ,and  ,  

               l l
Y Z Y Zx x x x
   

      ,and        u u
Y Zx x
 

   

And                l l
Y Z Y Zx x x x
   

      and        u u
Y Zx x
 

   

 

Theorem 3.5 Let X be an initial universe and  1,Y  ,  2,W  and  3,Z  be three IVIHSSs over 

X and 1 2 3, ,     . Then 

(i)    1 ,, YY


   

(ii) 
 

 
, 1,

Y
Y


    

(iii)  1,Y    2,W  ,and  2,W    3,Z    1,Y    3,Z  . 

Proof: All proofs are straightforward. 
 

Definition 3.6 The Complement of IVIFHSS  ,Y  over X is denoted by  , cY  and defined as 

   , ,c cY Y   , where :c XY IVIF and the set-theoretic presentation is given by 

 

 
               

, , : ,
, , ,

c

l u l u
Y Y Y Y

xY x X
x x x x

   

 
   

  
                 

 

 

Theorem 3.7 Let  ,Y  be any IVIFHSS over the initial universe X . Then 

(i)     , ,
ccY Y    

(ii)    , ,
c
Y Y 
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(iii)    , ,
c
Y Y 

    

Proof: Proofs are obvious. 

Definition 3.8 If  1,Y  and  2Z, be two IVIFHSSs over a common universe X , then 

“  1,Y  AND  2Z, ” is denoted by  1,Y    2Z, and is defined by 

 1,Y      2 1 2Z, ,W    , where         1 2, , ,W Y Z          such a way 

that, 

  
                 

                 
  1 2

inf , , inf , ,
, : , ,

sup , ,sup ,

l l u u
Y Z Y Z

l l u u
Y Z Y Z

x x x x
W x x X

x x x x

   

   

   
   

   

  
  

     
  
  

 

Definition 3.9 If  1,Y  and  2Z, be two IVIFHSSs over a common universe X , then 

“  1,Y  OR  2Z, ” is denoted by  1,Y    2Z, and is defined by 

 1,Y      2 1 2Z, ,W    , where         1 2, , ,W Y Z          such a way 

that, 

  
                 

                 
  1 2

sup , ,sup , ,
, : , ,

inf , , inf ,

l l u u
Y Z Y Z

l l u u
Y Z Y Z

x x x x
W x x X

x x x x

   

   

   
   

   

  
  

     
  
  

 

Theorem 3.10 Let  1,Y  ,  2Z, and  3,W  be three IVIFHSSs over X , then we have the following: 

(i)        1 2 1 2, Z, , Z,

c

c cY Y
 
       
 
 

 

(ii)        1 2 1 2, Z, , Z,

c

c cY Y
 
       
 
 

 

(iii)            1 2 3 1 2 3, , , , , ,Y Z W Y Z W   
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(iv)            1 2 3 1 2 3, , , , , ,Y Z W Y Z W   
             

   
 

Proof: (i)    1 2, Z,Y    =  1 2,W    

Then,    1 2, Z,

c

Y
 
   
 
 

=     1 2 1 2, ,c cW W       

Similarly,    1 1, ,c cY Y   and    2 2, ,c cZ Z    

Then,    1 2, Z,c cY    =  1,cY         2 1 2 1 2, , ,cZ H H        where 

  1 2, , x X       . Then we have, 

   
 

 
 

    
 

 
  , sup , ,sup ,c c c c

l l u u
H Y Z Y Z

x x x x x
     

    
     

 
  

 

   
 

 
 

    
 

 
  , inf , ,inf ,c c c c

l l u u
H Y Z Y Z

x x x x x
     

    
     

 
  

 

Now,          , ,c
Y YY x x x
 

    ,          , ,c
Z ZZ x x x

 
    . 

Then, 

 
     

 
     ,c c

l l l l
Y ZY Z

x x x x
  

   
 

  ,
 

     
 

     ,c c
u u u u

Y ZY Z
x x x x

  
   

 
   

Therefore, we have the following, 

                     , sup , ,sup ,l l u u
H Y Z Y Zx x x x x

     
    

 
 
 

 

                     , inf , ,sup ,l l u u
H Y Z Y Zx x x x x

     
    

 
 
 

 

We have,    1 2,      . Since,     1 2 1 2, ,c cW W      , then we can write 

         , ,, , ,c
W WW x x x

   
      .  

Thus, 
 

     ,,c WW
x x

  
 

 
 and 

 
     ,,c WW
x x

  
 

 
 . 

Since,      1 2 1 2, , ,Y Z W      , then 
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,

, , inf , ,

sup , ,sup ,

l l u u
Y Z Y Z

l l u u
Y Z Y Z

Inf x x x x
W x

x x x x

   

 

   

   

   

 
 


 
 

 

Thus,    ,H x
 

 =
                 , , inf ,l l u u

Y Z Y ZInf x x x x
   

    
 

and  

   ,H x
 

 =
                 sup , ,sup ,l l u u

Y Z Y Zx x x x
   

    
 

 

So, we can say that operators cW and H are same. 

Therefore,        1 2 1 2, Z, , Z,

c

c cY Y
 
       
 
 

 

Proofs of (ii) to (iv) are left as an exercise for the readers. 
 
 

Definition 3.11 Let X be the universe of discourse and 1 2,    . Let  1,Y  and  2Z, be two 

IVIFHSSs over X . Then the union(relative) of  1,Y  and  2Z, is denoted by 

 1,Y      2 3Z, ,W   where 3 1 2    and defined as follows: 

   
   

   

 
 

 
    

 
 
  

1 2

2 1

1 2

,

,

sup , ,sup , , ,
Y Z Y Z

Y

W Z

l l u u

x if

x x if

x x x x if x X
   



 

 

  

    


 


  

    
  

 

   
   

   

 
 

 
    

 
 
  

1 2

2 1

1 2

,

,

inf , , inf , , ,
Y Z Y Z

Y

W Z

l l u u

x if

x x if

x x x x if x X
   



 

 

  

    


 


  

    
  

 

 

Definition 3.12 Let X be the universe of discourse and 1 2,    . Let  1,Y  and  2Z, be two 

IVIFHSSs over X . Then the intersection of  1,Y  and  2Z, is denoted by 

 1,Y      2 3Z, ,W   where 3 1 2    and defined as follows: 
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1 2

2 1

1 2

,

,

inf , , inf , , ,
Y Z Y Z

Y

W Z

l l u u

x if

x x if

x x x x if x X
   



 

 

  

    


 


  

    
  

 

   
   

   

 
 

 
    

 
 
  

1 2

2 1

1 2

,

,

sup , ,sup , , ,
Y Z Y Z

Y

W Z

l l u u

x if

x x if

x x x x if x X
   



 

 

  

    


 


  

    
  

 

 

Theorem 3.13 Let X be the set of the universe and 1 2 3, ,     .  Let  1,Y  ,  2Z, and 

 3,W  be three IVIFHSSs over X , then we have the following properties 

(i)      1 1 1, , ,Y Y Y      

(ii) 
     1 1, , ,Y Y Y


      

(iii)      1 , ,, Y YY
 

     

(iv)        1 2 2 1, , , ,Y Z Z Y        

(v)            1 2 3 1 2 3, , , , , ,Y Z W Y Z W   
             

   
 

Proof: Proofs are obvious. 

Theorem 3.14 Let X be the set of the universe and 1 2 3, ,     .  Let  1,Y  ,  2Z, and  3,W  be 

three IVIFHSSs over X , then we have the following properties 

(i)      1 1 1, , ,Y Y Y      

(ii) 
     1, ,,Y YY

 
     

(iii)      1 1,, ,YY Y


     

(iv)        1 2 2 1, , , ,Y Z Z Y        
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(v)            1 2 3 1 2 3, , , , , ,Y Z W Y Z W   
             

   
 

(vi)              1 2 3 1 2 1 3, , , , , , ,Y Z W Y Z Y W     
                 

     
 

(vii)              1 2 3 1 2 1 3, , , , , , ,Y Z W Y Z Y W     
                 

     
 

Proof: All are straightforward. 

Definition 3.15 Let X be the universal set, 1 2,    and  1,Y  ,  2Z, be two IVIFHSSs over X . 

Then, the difference between  1,Y  and  2Z, is denoted by 

 1,Y     2 3Z, ,W   where  1,Y    2Z, c
 =    2 3Z, ,W   . 

 

Theorem 3.16 Let X be the universal set, 1 2,    and  1,Y  and  2Z,  be two IVIFHSSs 

over X . Then we have the following properties: 

(i)        1 2 1 2, Z, , Z,
c

c cY Y 
       

 
 

(ii)        1 2 1 2, Z, , Z,
c

c cY Y 
       

 
 

Proof: (1) Let    1 2, Z,Y    =  3,W  , where 3 = 1 2  and for all 3 , we have the 

following  
 
 
 

   
   

   

 
 

 
    

 
 
  

1 2

2 1

1 2

,

,

sup , ,sup , , ,
Y Z Y Z

Y

W Z

l l u u

x if

x x if

x x x x if x X
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1 2

2 1

1 2

,

,

inf , , inf , , ,
Y Z Y Z

Y

W Z

l l u u

x if

x x if

x x x x if x X
   



 

 

  

    


 


  

    
  

 

 

Now,    1 2, Z,
c

Y 
   

 
=    3 3, ,c cW W   , where 

         , ,c
W WW x x x

 
    for all x X and  3 1 2 1 2       . 

Then we have, 
 

   
   

   

 
 

 
    

 
 
  

1 2

2 1

1 2

,

,

inf , , inf , , ,
Y Z Y Z

Y

c
W Z

l l u u

x if

x x if

x x x x if x X
   



 

 

  

    




 


  

    
  

 

 

   
   

   

 
 

 
    

 
 
  

1 2

2 1

1 2

,

,

sup , , inf , , ,
Y Z Y Z

Y

c
W Z

l l u u

x if

x x if

x x x x if x X
   



 

 

  

    




 


  

    
  

 

Since,    1 1, ,c cY Y   and    2 2, ,c cZ Z   then  

   1 2, Z,c cY    =  1,cY      2 4, ,cZ H   (say), where 4 3 1 2      and 

for all 4  , 
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1 2

2 1

1 2

,

,

inf , , inf , , ,

c

c

c c c cY Z Y Z

Y

H Z

l l u u

x if

x x if

x x x x if x X
   



 

 

  

    
   



 


   



   

     
  

 
 

   

   

 
 

 
    

 
 
  

1 2

2 1

1 2

,

,

inf , , inf , , ,
Y Z Y Z

Y

Z

l l u u

x if

x if

x x x x if x X
   





 

 

    


 


  

    
  

 

 
 

   
 

 

 
 

 
 

 
  

 
 

 
  

1 2

2 1

1 2

,

,

sup , , inf , , ,

c

c

c c c cY Z Y Z

Y

H Z

l l u u

x if

x x if

x x x x if x X
   



 

 

  

    
   



 


   



   

     
  

 

   

   

 
 

 
    

 
 
  

1 2

2 1

1 2

,

,

sup , ,sup , , ,
Y Z Y Z

Y

Z

l l u u

x if

x if

x x x x if x X
   





 

 

    


 


  

    
  

 

 

Therefore, cW and H are the same operators. Thus,        1 2 1 2, Z, , Z,
c

c cY Y 
       

 
. 

(ii) Similar to that of (i) 
 
4. An Algorithmic Approach for Multi-criteria Decision Making Based on IVIFHSSs 
A variety of real-based decision-making problems in different fields such as engineering, social science, 
economics, weather forecasting, risk management, medical science, etc. contains imprecise fuzzy data and it is 
due to diverse types of uncertainties present in the system. Day to day the problem becomes more and more 
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complicated. There is a requirement to introduce another new tool that can handle a large amount of imprecision 
involved in a system. The introduction of IVIFHSSs is capable enough to encounter such problems. So, we 
present an algorithm to handle fuzzy decision-making problems based on IVIFHSSs, which is very much 
helpful for the decision-makers to obtain the optimal choice. Firstly, we give some definitions that are related to 
the proposed algorithm in the following: 
 

Definition 4.1 Let  ,Y  be an IVIFHSS over the set of the universe 

 1 2, ,...., nX x x x where 1 2 ...... nE E E     . For any  , 

           ,l u
i i iY Y Yx x x

  
   

 
denotes the degree of membership of an element ix via  Y  . 

Then the score of membership degree of ix for each  is denoted and defined as 

 
 

 
 

 
    

 
 
  1Y Y Y Y Y

nM l u l u
i i i k kk

S x x x x x
    

   


    
    

 

Definition 4.2 Let  ,Y  be an IVIFHSS over the set of the universe 

 1 2, ,...., nX x x x where 1 2 ...... mE E E     . For any j  , 

           ,
j j j

l u
i i iY Y Y

x x x
  

   
  

denotes the degree of non-membership of an element 

ix via jY 
 
 
 
 

. Then the score of non-membership degree of ix for each j is denoted and defined as 

 
 

 
 

 
 

 
 

 
 1Y Y Y Y Yj j j j j

nN l u l u
i i i k kk

S x x x x x
    

   


                
  

 

Definition 4.3 Let  ,Y  be an IVIFHSS over the set of the universe 

 1 2, ,...., nX x x x where 1 2 ...... nE E E     . For any j  , the score of the membership and 

non-membership degree of each ix denoted by 
 
 

Y j

M
iS x



and 
 
 

Y j

N
iS x



respectively. Then the total score of 

ix is denoted by 
 
 

Y j
iT x



and is defined as 

 

    
 
 

Y j
iT x



=
 
 

Y j

M
iS x



+
 
 

Y j

N
iS x
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 The steps of the algorithms, based on these definitions are discussed below: 
___________________________________________________________________________________ 
Algorithm: 
____________________________________________________________________________________ 

Step1: Input an IVIFHSS  ,Y  over X  

Step2: Compute the score of membership degrees 
 
 

Y j

M
iS x



and the score of non-membership 

degrees
 
 

Y j

N
iS x



 for every . 

Step3: Compute the total score
 
 

Y j
iT x



. 

Step4: Obtain  , for which T =
 
 max

i Y j
x X iT x




 
 
 

. Thus, x X  is the optimal choice for the 

decision-maker. 
________________________________________________________________________________________ 
Example 4.4 Considering example 3.1.1, we have 
Step1:   

 

 
       

 
       

 
       

 

1

31, , , , , ,52 4 9 0.3, 0.4 , 0.5, 0.6 0.5, 0.7 , 0.1, 0.2

1 2, , , , ,72 4 9 0.4, 0.6 , 0.3, 0.4 0.7, 0.8 , 0.1, 0.2

32, , , , , ,53 4 9 0.45, 0.55 , 0.23, 0.35 0.35, 0.55 , 0.25, 0.4

1, , , ,72 4 9 0

,

xx
c c c c

x x
c c c c

xx
c c c c

x
c c c c

Y

  
 
  

  
 
  

 
  
 
  

       
2,

.6, 0.8 , 0.1, 0.2 0.3, 0.5 , 0.25, 0.45

x

 
 
 
 
 
 
 
 
 
 
 
 

   
  
     

  Step2:   
                    

               

 

1 0.3 0.4 0.5 0.7 0.4 0.6 0.7 0.8 0.6 0.8 0.3 0.5

0.5 0.5 0.6 0.4
j

M
Y

S x


                     

     

  

               

 

2 0.7 0.8 0.4 0.6 0.45 0.55 0.35 0.55 0.3 0.5 0.6 0.8

0.5 0.1 0.6 0.0
j

M
Y

S x


                     

   

           

 

3 0.5 0.7 0.3 0.4 0.35 0.55 0.45 0.55

0.5 0.1 0.4
j

M
Y

S x
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1 0.5 0.6 0.1 0.2 0.3 0.4 0.1 0.2 0.1 0.2 0.25 0.45

0.8 0.4 0.4 0.8
j

N
Y

S x


                      

     

                

 

2 0.1 0.2 0.3 0.4 0.23 0.35 0.25 0.4 0.25 0.45 0.1 0.2

0.4 0.07 0.4 0.07
j

N
Y

S x


                      

     

            

 

3 0.1 0.2 0.5 0.6 0.25 0.4 0.23 0.35

0.8 0.07 0.73
j

N
Y

S x


              

    
 

  Step3:                       

 
 

 
 

 
 1 2 31.2, 0.07, 1.13

Y Y Yj j j
T x T x T x

  

     

 Step4:   

   T =Max  1.2,0.07,1.13 =1.13 

Thus, 3x is the optimal choice for the decision-maker. If there is a tie, then we reassess all the attributes and 

repeat all the steps.  
 
5. Conclusion and Future Scope 
In this work, a new mathematical model called IVIFHSSs has been introduced. The IVIFHSSs are the 
extensions of IVIFSSs, HSSs, FHSSs, IFHSSs etc. We also studied some basic operations such as union, 
intersection, complement, difference, AND, OR on them. Further, some properties of IVIFHSSs are 
investigated. We present an algorithm based on IVIFHSSs to solve real-world problems. In the end, to check the 
feasibility of the proposed algorithm a numerical example is employed.  
For future direction, there is a scope to introduce parameterized reduction method, TOPSIS method, Similarity 
measures, weight operators, entropy method, cluster analysis method,etc. on IVIFHSSs to solve vivid types of 
decision making problems. 
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Abstract. The overarching structures like intuitionistic fuzzy sets, Pythagorean fuzzy sets, m-polar fuzzy sets,

and neutrosophic fuzzy sets etc. have their own inadequacies and impediments. These models are unable

to do work because of their impediments in many real life situations. To overcome these deficiencies, in this

paper, we introduce a set entitled Pythagorean m-polar fuzzy neutrosophic set (PmFNS), as a hybrid model of

Pythagorean fuzzy set, m-polar fuzzy set and single-valued neutrosophic set. We define some notions related to

PmFNS with the help of illustrations. We also present some concept of Pythagorean m-polar fuzzy neutrosophic

topology alongside its leading characteristics. We render two applications of PmFNS of scarcity of water and

uplifting economy ruined due to COVID-19 using TOPSIS.

Keywords: Pythagorean m-polar fuzzy neutrosophic set; Pythagorean m-polar fuzzy neutrosophic topology;

TOPSIS; COVID-19

—————————————————————————————————————————-

1. Introduction

The methods usually working in classical mathematics are not generally advantageous for the

reason that uncertainties and unclearness being there, to tackle real world difficulties. There

are numerous methods to handle such circumstances. Unfortunately, all these models have

their own restrictions and drawbacks. In 1965, the thought of fuzzy sets as an augmentation
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of the conventional crisp set was inaugurated by Zadeh [18], to overcome these deficiencies,

by associating the membership function µA : X → [0, 1]. Hence, in this new outline, we face

the problems relating to topology, the study on them form the subjects of fuzzy topology. In

1968, Chang explained fuzzy topology, as a branch merging ordered structure with topological

structure, on fuzzy set. Pao-Ming and Ying-Ming [10] defined the formation of neighborhood

of fuzzy-point. In 1983, Atanassov [2, 3] provided the idea of intuitionistic fuzzy sets (IFSs).

Later, intuitionistic fuzzy topological spaces via intuitionistic fuzzy sets were obtained by

Çoker et al. [5]. Lee and Lee [7] gave the outlook of intuitionistic fuzzy points accompanied

by the notion of intuitionistic fuzzy neighborhoods. They discovered the characteristics of

continuous, open and closed maps in the intuitionistic fuzzy topological spaces. In 2013,

Yager [15]- [17] presented Pythagorean fuzzy sets as an expansion of intuitionistic fuzzy sets

with a wider scope of applications and presented Pythagorean membership grades with their

practical implementations to the multi-criteria decision making (MCDM). Olgun et al. [9]

introduced the idea of Pythagorean fuzzy topological space.

In 2005, the model of neutrosophic sets, which is the broad view of intuitionistic fuzzy sets, for

handling with difficulties involving exaggeration, indeterminacy and irregularity was explored

by Smarandache [13]. The notion of fuzzy neutrosophic sets was presented by Arockiarani et

al. [1]. Recently, Jansi and Mohana [6] coined the notion of pairwise Pythagorean neutrosophic

bitopological spaces treating truth and falsity membership functions as dependent neutrosophic

components. Neutrosophic set was protracted to Plithogenic set [14] by Smarandache, which

is a collection whose each element is regarded as by many attribute values and every attribute

value has either a fuzzy, intuitionistic fuzzy or neutrosophic degree of appurtenance to the set.

Chen et al. [4] expanded the view of bipolar fuzzy sets to m-polar fuzzy sets and provided some

of its practical implementations in day-to-day situations. In 2019, Naeem et al. [8] explored

the notions of Pythagorean m-polar fuzzy sets (PmFSs) along with some of their foremost

features. They also gave an application of PmFSs in decision making difficulty of selection of

most suitable manner of the advertisement using the conventional tool TOPSIS (Technique

based on Order Preference by Similarity to Ideal Solution). Later, Riaz et al. [11] extended

the notion to corresponding soft sets.

The main aspiration behind this article is to study some features of Pythagorean m-polar

fuzzy neutrosophic sets and construct topology on it. There appear several circumstances

where data contains multi-polar facts and figures. Pythagorean m-polar fuzzy neutrosophic

sets (PmFNSs) is one of the utmost suitable tools for managing such conditions. It can be

used to illustrate the ambiguous facts further satisfactorily and exactly. It has been used in

many areas for example in aggregation operators, information measures, and decision making.

Because of such an evolution, we present an outline on Pythagorean m-polar fuzzy neutrosophic
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sets with goal of offering a clear outlook on the different tools, concepts and trends related to

their extensions. The rest of the paper is systemized as: Elementary notions are dealt with in

Section 2. Section 3 presents some notions of Pythagorean m-polar fuzzy neutrosophic sets.

The topological structure on our proposed model along with its prime attributes is presented

in Section 4. Two applications of decision making are rendered in Section 5.

2. Preliminaries

Definition 2.1. [18] A collection of orderly pairs (ℏ, TF (ℏ)), ℏ being an element of the

underlying universe X and TF (the affiliation, association or membership function) is a well-

defined map, that drives members of X to [0, 1], is entitled as a fuzzy set (FS) F over X. In

other words

T (ℏ) =











1, if ℏ ∈ F

0, if ℏ /∈ F

]0, 1[, if ℏ is partially in F

Definition 2.2. [2, 3] An intuitionistic fuzzy set (IFS) G in X is an object having the form

G = {〈ℏ, T (ℏ), F (ℏ)〉 : ℏ ∈ X}

where the membership function T (ℏ) : X → [0, 1] and the non-membership function F (ℏ) :

X → [0, 1] for every x ∈ X obey the constraint

0 ≤ T (ℏ) + F (ℏ) ≤ 1.

Definition 2.3. [15,16] A Pythagorean fuzzy set, shortened as PFS, is a collection defined by

P =
{

< ℏ, TP (ℏ), FP (ℏ) >: ℏ ∈ X
}

where TP and FP are mappings from a set X to [0, 1] obeying the restriction 0 ≤ T 2
P (ℏ) +

F 2
P (ℏ) ≤ 1, representing correspondingly the affiliation and dissociation grades of ℏ ∈ X to P .

The ordered pair p = (Tp, Fp) is accredited as Pythagorean fuzzy number (PFN). The quantity

`(ℏ) =
√

1 − {T 2(ℏ) + F 2(ℏ)} is famous as the hesitation margin.

Definition 2.4. [12, 13] A neutrosophic set N on the underlying set X is defined as

N = {< ℏ, TN(ℏ), IN(ℏ), FN(ℏ) >: ℏ ∈ X}

where T, I, F : X 7→]−0, 1+[ accompanied by the constraint −0 ≤ TN(ℏ) + IN(ℏ) +FN(ℏ) ≤ 3+.

Here TN(ℏ), IN(ℏ) and FN(ℏ) are the degrees of membership, indeterminacy and falsity (non-

membership) of members of the given set, respectively. T , I and F are acknowledged as the

neutrosophic components.
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Definition 2.5. [1] A fuzzy neutrosophic set (fn-set) over X is delineated as

A = {< ℏ, TA(ℏ), IA(ℏ), FA(ℏ) >: ℏ ∈ X}

where T, I, F : X 7→ [0, 1] in such a way that 0 ≤ TA(ℏ) + IA(ℏ) + FA(ℏ) ≤ 3.

Definition 2.6. [8] Suppose that m ∈ N. A Pythagorean m-polar fuzzy set (PmFS) P

over X is regarded as by the mappings T
(i)
P : X 7→ [0, 1] (the membership functions) and

F
(i)
P : X 7→ [0, 1] (the non-membership functions) with the limitation that

0 ≤
(

T
(i)
P (ℏ)

)2
+
(

F
(i)
P (ℏ)

)2
≤ 1

for integral values of i ranging from 1 to m.

A PmFS may be articulated as

P =
{

〈

ℏ,
(

(

T
(1)
P (ℏ), F

(1)
P (ℏ)

)

, · · · ,
(

T
(m)
P (ℏ), F

(m)
P (ℏ)

)

)

〉

: ℏ ∈ X
}

or more conveniently as

P =

{

ℏ
(

(

T
(1)
P

(ℏ), F (1)
P

(ℏ)
)

, · · · ,
(

T
(m)
P

(ℏ), F (m)
P

(ℏ)
)

) : ℏ ∈ X

}

=

{

ℏ
(

(

T
(i)
P

(ℏ), F (i)
P

(ℏ)
)

) : ℏ ∈ X; i = 1, 2, · · · ,m

}

The tabular materialization of P is

P

ℏ1
(

T
(1)
P

(ℏ1), F
(1)
P

(ℏ1)
)

· · ·
(

T
(m)
P

(ℏ1), F
(m)
P

(ℏ1)
)

ℏ2
(

T
(1)
P

(ℏ2), F
(1)
P

(ℏ2)
)

· · ·
(

T
(m)
P

(ℏ2), F
(m)
P

(ℏ2)
)

...
...

. . .
...

ℏk
(

T
(1)
P

(ℏk), F
(1)
P

(ℏk)
)

· · ·
(

T
(m)
P

(ℏk), F
(m)
P

(ℏk)
)

and in matrix format as

P =















(

T
(1)
P

(ℏ1), F
(1)
P

(ℏ1)
)

· · ·
(

T
(m)
P

(ℏ1), F
(m)
P

(ℏ1)
)

(

T
(1)
P

(ℏ2), F
(1)
P

(ℏ2)
)

· · ·
(

T
(m)
P

(ℏ2), F
(m)
P

(ℏ2)
)

...
. . .

...
(

T
(1)
P

(ℏk), F
(1)
P

(ℏk)
)

· · ·
(

T
(m)
P

(ℏk), F
(m)
P

(ℏk)
)















This matrix of order k ×m is reckoned as PmF-matrix.

Definition 2.7. Let X 6= φ be a crisp set. A family τ of subsets of X is called a topology on

X if

(i) φ and X itself belong to τ .

(ii) The union of any number of members of τ is again in τ .

(iii) The intersection of any finite number of members of τ belong to τ .

If τ is a topology on X, then (X, τ) is known as a topological space.
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Example 2.8. Let X = {s, f}, then τ1 = {φ,X}, τ2 = {φ, {s},X}, τ3 = {φ, {f},X} and

τ4 = {φ, {s}, {f},X} are topologies on X.

Likewise, if τ is the union of all open intervals in the set R of reals, then τ is a topology (called

real topology) on R. R with this topology is called the real line.

3. Pythagorean m-Polar Fuzzy Neutrosophic Sets

In this section, we introduce the notion of Pythagorean m-polar fuzzy neutrosophic set along

with its prime characteristics and illustrations.

Definition 3.1. A Pythagorean m-polar fuzzy neutrosophic set (PmFNS) ℑ over a basic set

X is marked by three mappings T
(i)
ℑ : X → [0, 1]m, I

(i)
ℑ : X → [0, 1]m and F

(i)
ℑ : X → [0, 1]m,

where m is a natural number, ∀i = 1, 2, · · · ,m, with the limitation that

0 ≤
(

T
(i)
ℑ (ℏ)

)2
+
(

I
(i)
ℑ (ℏ)

)2
+
(

F
(i)
ℑ (ℏ)

)2
≤ 2

for all ℏ ∈ X.

A PmFNS may be expressed as

ℑ =
{

(ℏ,
(

(T
(1)
ℑ (ℏ), I

(1)
ℑ (ℏ), F

(1)
ℑ (ℏ)), · · · , (T

(m)
ℑ (ℏ), I

(m)
ℑ (ℏ), F

(m)
ℑ (ℏ))

)

: ℏ ∈ X
}

=

{

ℏ

(T
(1)
ℑ (ℏ), I

(1)
ℑ (ℏ), F

(1)
ℑ (ℏ)), · · · , (T

(m)
ℑ (ℏ), I

(m)
ℑ (ℏ), F

(m)
ℑ (ℏ))

: ℏ ∈ X

}

=

{

ℏ

(T
(i)
ℑ (ℏ), I

(i)
ℑ (ℏ), F

(i)
ℑ (ℏ))

: ℏ ∈ X, i = 1, 2, · · · ,m

}

If cardinality of X is l, then tabular structure of ℑ is as in Table 1:

Table 1. Tabular representation of PmFNS ℑ

ℑ

ℏ1
(

T
(1)
ℑ

(ℏ1), I
(1)
ℑ

(ℏ1), F
(1)
ℑ

(ℏ1)
) (

T
(2)
ℑ

(ℏ1), I
(2)
ℑ

(ℏ1), F
(2)
ℑ

(ℏ1)
)

· · ·
(

T
(m)
ℑ

(ℏ1), I
(m)
ℑ

(ℏ1), F
(m)
ℑ

(ℏ1)
)

ℏ2
(

T
(1)
ℑ

(ℏ2), I
(1)
ℑ

(ℏ2), F
(1)
ℑ

(ℏ2)
) (

T
(2)
ℑ

(ℏ2), I
(2)
ℑ

(ℏ2), F
(2)
ℑ

(ℏ2)
)

· · ·
(

T
(m)
ℑ

(ℏ2), I
(m)
ℑ

(ℏ2), F
(m)
ℑ

(ℏ2)
)

...
...

...
. . .

...

ℏl
(

T
(1)
ℑ

(ℏl), I
(1)
ℑ

(ℏl), F
(1)
ℑ

(ℏl)
) (

T
(2)
ℑ

(ℏl), I
(2)
ℑ

(ℏl), F
(2)
ℑ

(ℏl)
)

· · ·
(

T
(m)
ℑ

(ℏl), I
(m)
ℑ

(ℏl), F
(m)
ℑ

(ℏl)
)

The corresponding matrix format is

ℑ =











(

T
(1)
ℑ

(ℏ1), I
(1)
ℑ

(ℏ1), F
(1)
ℑ

(ℏ1)
) (

T
(2)
ℑ

(ℏ1), I
(2)
ℑ

(ℏ1), F
(2)
ℑ

(ℏ1)
)

· · ·
(

T
(m)
ℑ

(ℏ1), I
(m)
ℑ

(ℏ1), F
(m)
ℑ

(ℏ1)
)

(

T
(1)
ℑ

(ℏ2), I
(1)
ℑ

(ℏ2), F
(1)
ℑ

(ℏ2)
) (

T
(2)
ℑ

(ℏ2), I
(2)
ℑ

(ℏ2), F
(2)
ℑ

(ℏ2)
)

· · ·
(

T
(m)
ℑ

(ℏ2), I
(m)
ℑ

(ℏ2), F
(m)
ℑ

(ℏ2)
)

...
...

. . .
...

(

T
(1)
ℑ

(ℏl), I
(1)
ℑ

(ℏl), F
(1)
ℑ

(ℏl)
) (

T
(2)
ℑ

(ℏl), I
(2)
ℑ

(ℏl), F
(2)
ℑ

(ℏl)
)

· · ·
(

T
(m)
ℑ

(ℏl), I
(m)
ℑ

(ℏl), F
(m)
ℑ

(ℏl)
)











This l ×m matrix is known as PmFN matrix. The assortment of each PmFNS characterized

over universe would be designated by PmFNS(X).
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Example 3.2. If X={e, f} be a crisp set, then

ℑ =
{ e

(0.57, 0.52, 0.91), (0.09, 0.37, 0.47), (0.00, 0.49, 0.81)
,

f

(0.79, 0.33, 0.67), (1.00, 0.00, 0.07), (0.77, 0.99, 1.00)

}

is a P3FNS defined over X. The tabular form of this set is as in Table 2:

Table 2. Tabular representation of P3FNS ℑ

ℑ

e (0.57, 0.52, 0.91) (0.09, 0.37, 0.47) (0.00, 0.49, 0.81)

f (0.79, 0.33, 0.67) (1.00, 0.00, 0.07) (0.77, 0.39, 1.00)

The matrix form of this set is

ℑ =

(

(0.57, 0.52, 0.91) (0.09, 0.37, 0.47) (0.00, 0.49, 0.81)

(0.79, 0.33, 0.67) (1.00, 0.00, 0.07) (0.77, 0.39, 1.00)

)

Definition 3.3. Let ℑ1 and ℑ2 be PmFNSs over X. ℑ1 is acknowledged as a subset of ℑ2,

written as ℑ1 ⊆ ℑ2, ∀ℑ ∈ X and each values of i ranging from 1 to m, if

1) T
(i)
ℑ1

(ℏ) ≤ T
(i)
ℑ2

(ℏ),

2) I
(i)
ℑ1

(ℏ) ≥ I
(i)
ℑ2

(ℏ),

3) F
(i)
ℑ1

(ℏ) ≥ F
(i)
ℑ2

(ℏ).

ℑ1 and ℑ2 are said to be equal if ℑ1 ⊆ ℑ2 ⊆ ℑ1 and is written as ℑ1 = ℑ2.

Example 3.4. Let

ℑ1 =







(0.41, 0.29, 1.00) (0.71, 0.09, 0.88) (0.49, 0.23, 0.00)

(0.39, 0.76, 0.97) (0.00, 1.00, 0.66) (0.01, 0.59, 0.77)

(0.5, 0.02, 0.03) (0.04, 0.43, 0.61) (0.82, 0.03, 0.2)







and

ℑ2 =







(0.58, 0.06, 0.00) (0.89, 0.04, 0.19) (1.00, 0.21, 0.00)

(0.92, 0.04, 0.11) (0.17, 0.00, 0.29) (1.00, 0.33, 0.23)

(0.73, 0.02, 0.01) (0.64, 0.22, 0.03) (0.91, 0.01, 0.06)







be PmFNSs over some set X, then ℑ1 ⊆ ℑ2.

Definition 3.5. A PmFNS ℑ over X is known as null PmFNS if T
(i)
ℑ (ℏ) = 0 , I

(i)
ℑ (ℏ) = 1 and

F
(i)
ℑ (ℏ) = 1, ∀ℏ ∈ X and all acceptable values of i. It is designated by Φ.
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Thus,

Φ =















(0, 1, 1) (0, 1, 1) · · · (0, 1, 1)

(0, 1, 1) (0, 1, 1) · · · (0, 1, 1)
...

...
. . .

...

(0, 1, 1) (0, 1, 1) · · · (0, 1, 1)















.

Definition 3.6. A PmFNS ℑ over X is called an absolute PmFNS if T
(i)
ℑ (ℏ) = 1, I

(i)
ℑ (ℏ) = 0,

and F
(i)
ℑ (ℏ) = 0, ∀ℏ ∈ X. It is denoted by χ̆.

Thus,

χ̆ =















(1, 0, 0) (1, 0, 0) · · · (1, 0, 0)

(1, 0, 0) (1, 0, 0) · · · (1, 0, 0)
...

...
. . .

...

(1, 0, 0) (1, 0, 0) · · · (1, 0, 0)















.

Definition 3.7. The complement of a PmFNS

ℑ =

{

ℏ

(T
(i)
ℑ (ℏ), I

(i)
ℑ (ℏ), F

(i)
ℑ (ℏ))

: ℏ ∈ X, i = 1, · · · ,m

}

over X is defined as

ℑc =

{

ℏ

(F
(i)
ℑ (ℏ), 1 − I

(i)
ℑ (ℏ), T

(i)
ℑ (ℏ))

: ℏ ∈ X, i = 1, · · · ,m

}

.

Example 3.8. The complement of the PmFNS ℑ given in example 3.2 is

ℑc =

(

(0.91, 0.48, 0.57) (0.47, 0.63, 0.09) (0.81, 0.51, 0.00)

(0.67, 0.67, 0.79) (0.07, 1.00, 1.00) (1.00, 0.01, 0.77)

)

.

Remark 3.9. It may be observed from the entry at (2, 2) position of the matrix given in

Example 3.8 that 0.072 + 1.002 + 1.002 � 2. Thus, we may infer that the complement of a

PmFNS is not always a PmFNS. Further, the complement of a PmFNS will be a PmFNS

iff the sum of squares of the three neutrosophic components does not exceed 2I(i) + 1 i.e.

(T (i))2 + (I(i))2 + (F (i))2 ≤ 2I(i) + 1.

Definition 3.10. The union of any PmFNSs ℑ1 and ℑ2 expressed over the same universe X

is represented as

ℑ1∪Mℑ2 =
{ ℏ

(max(T
(i)
ℑ1(ℏ), T

(i)
ℑ2 (ℏ)),min(I

(i)
ℑ1(ℏ), I

(i)
ℑ2(ℏ)),min(F

(i)
ℑ1(ℏ), F

(i)
ℑ2 (ℏ))

: ℏ ∈ X, i = 1, · · · ,m
}

Definition 3.11. The intersection of any PmFNSs ℑ1 and ℑ2 expressed over the same universe

X is represented as

ℑ1∩Mℑ2 =
{ ℏ

(min(T
(i)
ℑ1 (ℏ), T

(i)
ℑ2 (ℏ)),max(I

(i)
ℑ1(ℏ), I

(i)
ℑ2(ℏ),max(F

(i)
ℑ1 (ℏ), F

(i)
ℑ2 (ℏ))

: ℏ ∈ X, i = 1, · · · ,m
}
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Example 3.12. If

ℑ1 =







(0.57, 0.61, 0.19) (0.74, 0.61, 0.00) (0.00, 0.55, 0.22)

(0.11, 0.88, 1.00) (0.49, 0.99, 0.10) (0.92, 0.67, 0.80)

(0.00, 0.36, 0.29) (0.70, 0.20, 1.00) (1.00, 0.00, 0.46)







and

ℑ2 =







(1.00, 0.59, 0.32) (0.50, 0.72, 1.00) (0.33, 1.00, 0.70)

(0.78, 0.09, 0.50) (0.00, 0.66, 0.11) (0.54, 0.61, 0.00)

(0.60, 0.00, 0.85) (0.28, 0.43, 0.90) (0.83, 0.40, 0.14)







are two PmFNSs defined over the same universe of discourse X, then

ℑ1 ∪M ℑ2 =







(1.00, 0.59, 0.19) (0.74, 0.61, 0.00) (0.33, 0.55, 0.22)

(0.78, 0.09, 0.50) (0.49, 0.66, 0.10) (0.92, 0.61, 0.00)

(0.60, 0.00, 0.29) (0.70, 0.20, 0.90) (1.00, 0.00, 0.14)







and

ℑ1 ∩M ℑ2 =







(0.57, 0.61, 0.32) (0.50, 0.72, 1.00) (0.00, 1.00, 0.70)

(0.11, 0.88, 1.00) (0.00, 0.99, 0.11) (0.54, 0.67, 0.80)

(0.00, 0.36, 0.85) (0.28, 0.43, 1.00) (0.83, 0.40, 0.46)







Proposition 3.13. If ℑ,ℑ1,ℑ2,ℑ3 are PmFNSs over X, then

(1) Φ ∪M ℑ = ℑ

(2) Φ ∩M ℑ = Φ

(3) χ̆ ∪M ℑ = χ̆

(4) χ̆ ∩M ℑ = ℑ

(5) ℑ ∪M ℑ = ℑ

(6) ℑ ∩M ℑ = ℑ

(7) ℑ1 ∪M ℑ2 = ℑ2 ∪M ℑ1

(8) ℑ1 ∩M ℑ2 = ℑ2 ∩M ℑ1

(9) ℑ1 ∪M (ℑ2 ∪M ℑ3) = (ℑ1 ∪M ℑ2) ∪M ℑ3

(10) ℑ1 ∩M (ℑ2 ∩M ℑ3) = (ℑ1 ∩M ℑ2) ∩M ℑ3

(11) ℑ1 ∪M (ℑ2 ∩M ℑ3) = (ℑ1 ∪M ℑ2) ∩M (ℑ1 ∪M ℑ3)

(12) ℑ1 ∩M (ℑ2 ∪M ℑ3) = (ℑ1 ∩M ℑ2) ∪M (ℑ1 ∩M ℑ3)

Proof. Here, we prove only (11). We may assume, without losing the generality, that

max(T
(i)
ℑ1

(ℏ), T
(i)
ℑ2

(ℏ)) = T
(i)
ℑ1

(ℏ), max(I
(i)
ℑ1

(ℏ), I
(i)
ℑ2

(ℏ)) = I
(i)
ℑ1

(ℏ) and max(F
(i)
ℑ1

(ℏ), F
(i)
ℑ2

(ℏ)) =
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F
(i)
ℑ1

(ℏ). Then, ∀ℏ ∈ X and i = 1, 2, · · · ,m.

ℑ2 ∩M ℑ3 =
{ ℏ
(

min(T
(i)
ℑ2

(ℏ), T
(i)
ℑ3

(ℏ)),max(I
(i)
ℑ2

(ℏ), I
(i)
ℑ3

(ℏ)),max(F
(i)
ℑ2

(ℏ), F
(i)
ℑ3

(ℏ))
)

}

=
{ ℏ
(

T
(i)
ℑ2

(ℏ), I
(i)
ℑ2

(ℏ), F
(i)
ℑ2

(ℏ)
)

}

∴ ℑ1 ∪M (ℑ2 ∩M ℑ3) =
{ ℏ
(

T
(i)
ℑ1

(ℏ), I
(i)
ℑ1

(ℏ), F
(i)
ℑ1

(ℏ)
)

}

∪M

{ ℏ
(

T
(i)
ℑ2

(ℏ), I
(i)
ℑ2

(ℏ), F
(i)
ℑ2

(ℏ)
)

}

=
{ ℏ
(

max(T
(i)
ℑ1

(ℏ), T
(i)
ℑ2

(ℏ)),min(I
(i)
ℑ1

(ℏ), I
(i)
ℑ2

(ℏ)),min(F
(i)
ℑ1

(ℏ), F
(i)
ℑ2

(ℏ))
)

}

=
{ ℏ
(

T
(i)
ℑ1

(ℏ), I
(i)
ℑ1

(ℏ), F
(i)
ℑ1

(ℏ)
)

}

and

ℑ1 ∪M ℑ2 =
{ ℏ
(

max(T
(i)
ℑ1

(ℏ), T
(i)
ℑ2

(ℏ)),min(I
(i)
ℑ1

(ℏ), I
(i)
ℑ2

(ℏ)),min(F
(i)
ℑ1

(ℏ), F
(i)
ℑ2

(ℏ)
)

}

=
{ ℏ

(T
(i)
ℑ1

(ℏ), I
(i)
ℑ1

(ℏ), F
(i)
ℑ1

(ℏ))

}

ℑ1 ∪M ℑ3 =
{ ℏ
(

max(T
(i)
ℑ1

(ℏ), T
(i)
ℑ3

(ℏ)),min(I
(i)
ℑ1

(ℏ), I
(i)
ℑ3

(ℏ)),min(F
(i)
ℑ1

(ℏ), F
(i)
ℑ3

(ℏ))
)

}

=
{ ℏ

(T
(i)
ℑ3

(ℏ), I
(i)
ℑ3

(ℏ), F
(i)
ℑ3

(ℏ))

}

∴ (ℑ1 ∪M ℑ2) ∩M (ℑ1 ∪M ℑ3) =
{ ℏ
(

min(T
(i)
ℑ1

(ℏ), T
(i)
ℑ3

(ℏ)),max(I
(i)
ℑ1

(ℏ), I
(i)
ℑ3

(ℏ)),max(F
(i)
ℑ1

(ℏ), F
(i)
ℑ3

(ℏ))
)

}

=
{ ℏ

(T
(i)
ℑ1

(ℏ), I
(i)
ℑ1

(ℏ), F
(i)
ℑ1

(ℏ))

}

0.1cm

Corollary 3.14. (1) Φ ∪M χ̆ = χ̆

(2) Φ ∩M χ̆ = Φ

Proposition 3.15. If ℑ1 and ℑ2 are PmFNSs over X, then

(1) ℑ1 ∩M ℑ2 ⊆ ℑ1 ⊆ ℑ1 ∪M ℑ2

(2) ℑ1 ∩M ℑ2 ⊆ ℑ2 ⊆ ℑ1 ∪M ℑ2

Proof. The results are easy consequences of properties of max and min. 0.1cm

Proposition 3.16. Let ℑ1, ℑ2 be PmFNSs over universe set X, then De Morgan laws hold

i.e.
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(1) (ℑ1 ∪M ℑ2)
c = ℑc

1 ∩M ℑc
2.

(2) (ℑ1 ∩M ℑ2)
c = ℑc

1 ∪M ℑc
2.

Proof. : Here, we demonstrate only (1). The verification of (2) perhaps provided in the same

way. We may assume, without losing the generality, that max(T
(i)
ℑ1

(ℏ), T
(i)
ℑ2

(ℏ)) = T
(i)
ℑ1

(ℏ),

max(I
(i)
ℑ1

(ℏ), I
(i)
ℑ2

(ℏ)) = I
(i)
ℑ1

(ℏ) and max(F
(i)
ℑ1

(ℏ), F
(i)
ℑ2

(ℏ)) = F
(i)
ℑ1

(ℏ). Then, ∀ ℏ ∈ X and i =

1, 2, · · · ,m.

(ℑ1 ∪M ℑ2)
c =

{ ℏ

(max(T
(i)
ℑ1

(ℏ), T
(i)
ℑ2

(ℏ)),min(I
(i)
ℑ1

(ℏ), I
(i)
ℑ2

(ℏ)),min(F
(i)
ℑ1

(ℏ), F
(i)
ℑ2

(ℏ)))

}c

=
{ ℏ

(T
(i)
ℑ1

(ℏ), I
(i)
ℑ1

(ℏ), F
(i)
ℑ1

(ℏ))

}c

=
{ ℏ

(F
(i)
ℑ1

(ℏ), 1 − I
(i)
ℑ1

(ℏ), T
(i)
ℑ1

(ℏ))

}

and

ℑc
1 ∩M ℑc

2 =
{ ℏ

(T
(i)
ℑ1

(ℏ), I
(i)
ℑ1

(ℏ), F
(i)
ℑ1

(ℏ))

}c
∩M

{ ℏ

(T
(i)
ℑ2

(ℏ), I
(i)
ℑ2

(ℏ), F
(i)
ℑ2

(ℏ))

}c

=
{ ℏ

(F
(i)
ℑ1

(ℏ), 1 − I
(i)
ℑ2

(ℏ), T
(i)
ℑ1

(ℏ))

}

∩M

{ ℏ

(F
(i)
ℑ2

(ℏ), 1 − I
(i)
ℑ2

(ℏ), T
(i)
ℑ2

(ℏ))

}

=
{ ℏ

(min(F
(i)
ℑ1

(ℏ), F
(i)
ℑ2

(ℏ)), 1 − min(I
(i)
ℑ1

(ℏ), I
(i)
ℑ2

(ℏ)),max(T
(i)
ℑ1

(ℏ), T
(i)
ℑ2

(ℏ))

}

=
{ ℏ

(F
(i)
ℑ1

(ℏ), 1 − I
(i)
ℑ1

(ℏ), T
(i)
ℑ1

(ℏ))

}

0.1cm

Remark 3.17. Let ℑ is a PmFNS over universe set X. Then

(1) ℑ ∪M ℑc 6= χ̆

(2) ℑ ∩M ℑc 6= Φ

Proposition 3.18. (1) Φc = χ̆

(2) χ̆c = Φ

(3) (ℑc)c = ℑ

Proof. Straight forward. 0.1cm

Definition 3.19. The difference of two PmFNS ℑ1 and ℑ2 expressed over the same universe

X is represented as

ℑ1 \ ℑ2 =
{

ℏ
(min(T

(i)
ℑ1 (ℏ),F

(i)
ℑ2 (ℏ)),min(I

(i)
ℑ1(ℏ),I

(i)
ℑ2(ℏ)),max(F

(i)
ℑ1 (ℏ),T

(i)
ℑ2 (ℏ))

: ℏ ∈ X, i = 1, 2, · · · ,m
}
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Example 3.20. For ℑ1 and ℑ2 given in Example 3.12, we have

ℑ1 \ ℑ2 =







(0.32, 0.59, 1.00) (0.74, 0.61, 0.50) (0.00, 0.55, 0.33)

(0.11, 0.09, 1.00) (0.11, 0.66, 0.10) (0.00, 0.61, 0.80)

(0.00, 0.00, 0.60) (0.70, 0.20, 1.00) (0.14, 0.00, 0.83)







Definition 3.21. The symmetric difference of two PmFNSs ℑ1 and ℑ2 is set of elements

which are either in ℑ1 or in ℑ2 but not in both i.e.

ℑ1△ℑ2 = (ℑ1 \ ℑ2) ∪M (ℑ2 \ ℑ1)

Example 3.22. Let

ℑ1 =







(0.57, 0.61, 0.19) (0.74, 0.61, 0.00) (0.00, 0.55, 0.22)

(0.11, 0.88, 1.00) (0.49, 0.99, 0.10) (0.92, 0.67, 0.80)

(0.00, 0.36, 0.29) (0.70, 0.20, 1.00) (1.00, 0.00, 0.46)







and

ℑ2 =







(1.00, 0.59, 0.32) (0.50, 0.72, 1.00) (0.33, 1.00, 0.70)

(0.78, 0.09, 0.50) (0.00, 0.66, 0.11) (0.54, 0.61, 0.00)

(0.60, 0.00, 0.85) (0.28, 0.43, 0.90) (0.83, 0.40, 0.14)







so that

ℑ1 \ ℑ2 =







(0.32, 0.59, 1.00) (0.74, 0.61, 0.50) (0.00, 0.55, 0.33)

(0.11, 0.09, 1.00) (0.11, 0.66, 0.10) (0.00, 0.61, 0.80)

(0.00, 0.00, 0.60) (0.70, 0.20, 1.00) (0.14, 0.00, 0.83)







and

ℑ2 \ ℑ1 =







(0.19, 0.59, 0.57) (0.00, 0.61, 1.00) (0.22, 0.55, 0.70)

(0.78, 0.09, 0.50) (0.00, 0.66, 0.49) (0.54, 0.61, 0.92)

(0.29, 0.00, 0.85) (0.28, 0.20, 0.90) (0.46, 0.00, 1.00)







∴ (ℑ1 \ ℑ2) ∪M (ℑ2 \ ℑ1) =







(0.32, 0.59, 0.57) (0.74, 0.61, 0.50) (0.22, 0.55, 0.33)

(0.78, 0.09, 0.91) (0.11, 0.66, 0.10) (0.54, 0.61, 0.80)

(0.29, 0.00, 0.60) (0.70, 0.20, 0.90) (0.46, 0.00, 0.83)







= ℑ1△ℑ2

Definition 3.23. The sum of two PmFNSs ℑ1 and ℑ2 chosen from same universe X is

represented as

ℑ1 ⊕ℑ2 =
{ ℏ
(

√

(T
(i)
ℑ1

(ℏ))2 + (T
(i)
ℑ2

(ℏ))2 − (T
(i)
ℑ1

(ℏ)T
(i)
ℑ2

(ℏ))2, I
(i)
ℑ1

(ℏ)I
(i)
ℑ2

(ℏ), F
(i)
ℑ1

(ℏ)F
(i)
ℑ2

(ℏ)
)

}

where ℏ ∈ X and i runs from 1 to m.
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Example 3.24. For ℑ1 and ℑ2 given in Example 3.12, we have

ℑ1 ⊕ℑ2 =







(1.00, 0.36, 0.06) (0.81, 0.44, 0.00) (0.33, 0.55, 0.15)

(0.78, 0.08, 0.50) (0.49, 0.65, 0.01) (0.94, 0.41, 0.00)

(0.60, 0.00, 0.25) (0.73, 0.09, 0.90) (1.00, 0.00, 0.06)







Definition 3.25. The product of two PmFNSs ℑ1 & ℑ2 take off the same universe X is

explained as

ℑ1 ⊗ℑ2 =
{ ℏ

(T
(i)
ℑ1

(ℏ)T
(i)
ℑ2

(ℏ), I
(i)
ℑ1

(ℏ)I
(i)
ℑ2

(ℏ),
√

(F
(i)
ℑ1

(ℏ))2 + (F
(i)
ℑ2

(ℏ))2 − (F
(i)
ℑ1

(ℏ)Fℑ2(ℏ))2)

}

for ℏ ∈ X and i runs from 1 to m.

Example 3.26. For ℑ1 and ℑ2 given in Example 3.12, we have

ℑ1 ⊗ℑ2 =







(0.57, 0.36, 0.37) (0.37, 0.44, 1.00) (0.00, 0.55, 0.72)

(0.09, 0.08, 1.00) (0.00, 0.65, 0.15) (0.49, 0.41, 0.8)

(0.00, 0.00, 0.86) (0.19, 0.09, 1.00) (0.83, 0.00, 0.48)







Definition 3.27. If ℑ1 = ℑ2 in Definition 3.25, then we express ℑ1 ⊗ℑ1 by ℑ2
1. Thus,

ℑ2 =
{ ℏ
(

(T
(i)
ℑ (ℏ))2, (I

(i)
ℑ (ℏ))2,

√

2(F
(i)
ℑ (ℏ))2 − (F

(i)
ℑ (ℏ))4

)

: ℏ ∈ X; i = 1, 2, · · · ,m
}

=
{ ℏ
(

(T
(i)
ℑ (ℏ))2, (I

(i)
ℑ (ℏ))2,

√

1 − (1 − ((F
(i)
ℑ (ℏ))2)2)

)

: ℏ ∈ X; i = 1, 2, · · · ,m
}

The set ℑ2 is called as concentration of ℑ, written as con(ℑ). If k ∈ [0,∞), in general, then

ℑk =
{ ℏ
(

(T
(i)
ℑ (ℏ))k, (I

(i)
ℑ (ℏ))k,

√

1 − (1 − ((F
(i)
ℑ (ℏ))2)k)

)

: ℏ ∈ X; i = 1, 2, · · · ,m
}

The set

ℑ1/2 =
{ ℏ

(

√

T
(i)
ℑ (ℏ),

√

I
(i)
ℑ (ℏ),

√

1 −
√

(1 − (F
(i)
ℑ (ℏ))2)

)

: ℏ ∈ X; i = 1, 2, · · · ,m
}

is called as dilation of ℑ, denoted as dil(ℑ).

Example 3.28. For PmFNS ℑ1 given in Example 3.12, we have

con(ℑ) =







(0.32, 0.37, 0.27) (0.55, 0.37, 0.00) (0.00, 0.30, 0.31)

(0.01, 0.77, 1.00) (0.24, 0.98, 0.14) (0.85, 0.45, 0.93)

(0.00, 0.13, 0.40) (0.49, 0.04, 1.00) (1.00, 0.00, 0.62)







and

dil(ℑ) =







(0.75, 0.78, 0.13) (0.86, 0.78, 0.00) (0.00, 0.74, 0.16)

(0.33, 0.94, 1.00) (0.70, 0.99, 0.07) (0.96, 0.67, 0.63)

(0.00, 0.60, 0.21) (0.84, 0.45, 1.00) (1.00, 0.00, 0.33)
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Definition 3.29. The Cartesian product of two PmFNSs ℑ1 and ℑ2 over X is characterized

as

ℑ1 ×ℑ2 =
{ (ℏ1, ℏ2)
(

T
(i)
ℑ1

(ℏ)T
(i)
ℑ2

(ℏ), I
(i)
ℑ1

(ℏ)I
(i)
ℑ2

(ℏ), F
(i)
ℑ1

(ℏ)F
(i)
ℑ2

(ℏ)
)

: ℏ1, ℏ2 ∈ X; i = 1, 2, · · · ,m
}

Example 3.30. For ℑ1 and ℑ2 given in Example 3.12, we have

ℑ1 ×ℑ2 =







































(0.57, 0.36, 0.06) (0.37, 0.44, 0.00) (0.00, 0.55, 0.15)

(0.44, 0.05, 0.10) (0.00, 0.40, 0.00) (0.00, 0.34, 0.00)

(0.34, 0.00, 0.16) (0.21, 0.26, 0.00) (0.00, 0.22, 0.03)

(0.11, 0.52, 0.32) (0.25, 0.71, 0.10) (0.30, 0.67, 0.56)

(0.09, 0.08, 0.50) (0.00, 0.65, 0.01) (0.50, 0.41, 0.00)

(0.07, 0.00, 0.85) (0.14, 0.43, 0.09) (0.76, 0.27, 0.11)

(0.00, 0.21, 0.09) (0.35, 0.14, 1.00) (0.33, 0.00, 0.32)

(0.00, 0.03, 0.15) (0.00, 0.13, 0.11) (0.54, 0.00, 0.00)

(0.00, 0.00, 0.25) (0.20, 0.09, 0.90) (0.83, 0.00, 0.06)







































3.1. Superiority of the proposed work

The superiority of our suggested work is exhibited in Table 3, which is self explanatory. The

same applies for the corresponding topology.

Table 3. Concise comparison of PmFNS set with some prevailing structures

Set Membership Indeterminacy Non-membership Multiple

function function membership function

Fuzzy set [18] X × × ×

Intuitionistic fuzzy set [2] X × X ×

Pythagorean fuzzy set [15, 16] X × X ×

m-polar fuzzy set [4] X × × X

Pythagorean m-polar fuzzy set [8] X × X X

PmFNS (proposed) X X X X

4. Pythagorean m-polar fuzzy neutrosophic topology

In this section, we present Pythagorean m-polar fuzzy neutrosophic topology on Pythagorean

m-polar fuzzy neutrosophic set and elongate numerous characteristics of crisp topology towards

Pythagorean m-polar fuzzy neutrosophic topology. Separation axioms in PmFNSs are also

discussed.

Definition 4.1. Let PmFNS(X
¯

) be the collection of all PmFN-subsets of the absolute PmFNS

X
¯A. For S

¯
, T

¯
⊆ A

¯
, a subcollection ג

¯pn
of PmFNS(X

¯
) is known as Pythagorean m-polar fuzzy

neutrosophic topology (PmFNT) on X
¯

if the following needs are satisfied:

(i) ∅
¯
, X

¯A ∈
¯
ג
¯pn

,
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(ii) S , T ∈
¯
ג
¯pn

then S ∩
¯
T ∈

¯
ג
¯pn

,

(iii) i ∈
¯
ג
¯pn

, ∀i ∈
¯

I
¯
, then ∪

¯ i∈I
¯
i ∈

¯
ג
¯pn

.

The doublet (X
¯
, ג

¯pn
) or simply ג

¯pn
, where X

¯
is a non-empty PmFNS and ג

¯pn
is a Pythagorean

m-polar fuzzy neutrosophic topology on X
¯

, is known as Pythagorean m-polar fuzzy neutrosophic

topological space (PmFNTS).

Example 4.2. Let X
¯

= {ℏ1, ℏ2} be a universal P3FNS with S
¯

and T
¯

be as shown in table 4

and table 5 below:

Table 4. P3FNS S
¯

S
¯
ℏ1 (0.401, 0.210, 0.216) (0.221, 0.100, 0.363) (0.632, 0.029, 0.216)

ℏ2 (0.626, 0.111, 0.162) (0.432, 0.000, 0.163) (0.221, 0.012, 0.108)

Table 5. P3FNS T
¯

T
¯
ℏ1 (0.126, 0.621, 0.623) (0.063, 0.920, 0.706) (0.276, 0.636, 0.591)

ℏ2 (0.168, 0.702, 0.668) (0.165, 0.761, 0.726) (0.149, 0.712, 0.561)

Then ג
¯pn5

= {∅
¯
,S
¯
,T
¯
,X

¯A} is a P3FNT on X
¯

.

Definition 4.3. The members of ג
¯pn

are called Pythagorean m-polar fuzzy neutrosophic open

sets (PmFN-open sets). The complements of Pythagorean m-polar fuzzy neutrosophic open

sets are called Pythagorean m-polar fuzzy neutrosophic closed sets (PmFN-closed sets) and

PmFN-open set as well as PmFN-closed set is called Pythagorean m-polar fuzzy neutrosophic

clopen sets (PmFN-clopen sets).

Example 4.4. For the P3FNTS ג
¯pn5

given in Example 4.2, we have ∅
¯
,S
¯
,T
¯
,X

¯A are P3FN-

open sets because they are members of ג
¯pn5

, (X
¯A)c = ∅

¯
∈
¯
ג
¯pn

is a P3FN-closed set and ∅
¯
,X
¯A

are P3FN−clopen sets as ∅
¯
c = X

¯A − ∅
¯

= X
¯A and X

¯
c
A = X

¯A − X
¯A = ∅

¯

Example 4.5. Consider the P3FNSs X
¯
,S
¯

and T
¯

given in Example 4.2 and

Table 6. P3FNS U
¯

U
¯
ℏ1 (0.221, 0.561, 0.524) (0.172, 0.603, 0.367) (0.307, 0.633, 0.336)

ℏ2 (0.267, 0.623, 0.201) (0.380, 0.529, 0.419) (0.162, 0.560, 0.333)
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We have,

ג
¯pn1

= {∅
¯
,X

¯A}

ג
¯pn2

= {∅
¯
,S
¯
,X

¯A}

ג
¯pn3

= {∅
¯
,T

¯
,X

¯A}

ג
¯pn4

= {∅
¯
,U

¯
,X

¯A}

ג
¯pn5

= {∅
¯
,S
¯
,T
¯
,X

¯A}

ג
¯pn6

= {∅
¯
,T

¯
,U

¯
,X

¯A}

ג
¯pn7

= {∅
¯
,S
¯
,U

¯
,X

¯A}

ג
¯pn8

= {∅
¯
,S
¯
,T
¯
,U

¯
,X

¯A}

are Pythagorean 3-polar fuzzy neutrosophic topologies over X
¯

. Here, both ∅
¯

& X
¯A are P3FN-

open set as well as P3FN-closed set so it is a P3FN-clopen set.

Definition 4.6. Let (X
¯
, ג
¯pn1

) and (X
¯
, ג
¯pn2

) be two PmFNTSs on X
¯

. ג
¯pn2

is contained in ג
¯pn1

i.e ג
¯pn2

⊆ ג
¯pn1

if κ
¯
∈
¯

ג
¯pn1

for every κ
¯
∈
¯

ג
¯pn2

. In such case, ג
¯pn2

is known as Pythagorean

m−polar fuzzy neutrosophic coarser or weaker (PmFN-coaser/weaker) than ג
¯pn1

and ג
¯pn1

is

called Pythagorean m−polar fuzzy neutrosophic finer or stronger PmFN-finer/stronger than

ג
¯pn2

. ג
¯pn1

and ג
¯pn2

in such a case are known as comparable. In Example 4.5, ג
¯pn2

is PmFN-

coarser than ג
¯pn5

and ג
¯pn5

is PmFN-stronger than ג
¯pn2

. Hence ג
¯pn2

and ג
¯pn5

are comparable.

Definition 4.7. The PmFNT ג
¯pn(indiscrete)

= {∅
¯
,X

¯A} is known as indiscrete Pythagorean

m-polar fuzzy neutrosophic topology (indiscrete-PmFNT) & ג
¯pn(discrete)

= P
¯

(X
¯A) (power set of

X
¯A) is known as discrete Pythagorean m-polar fuzzy neutrosophic topology (discrete-PmFNT)

over X
¯

.

Remark 4.8. On X
¯

, the smallest PmFNT is ג
¯pn(indiscrete)

whereas the largest PmFNT is

ג
¯pn(discrete)

.

Definition 4.9. Suppose that (X
¯
, ג
¯pnX

) be a PmFNTS. A few Y
¯
⊆ X

¯
and PmFN-open sets

are S
¯
⋆
n = S

¯n∩¯
Y
¯A of PmFNT ג

¯pnY
on Y

¯
where S

¯n are PmFN-open sets of ג
¯pnX

& Y
¯A is absolute

PmFNS on Y
¯

then ג
¯pnY

is reserved as the Pythagorean m-polar fuzzy neutrosophic subspace

(PmFN-subspace) of ג
¯pnX

. It can be written as:

ג
¯pnY

= {S
¯
⋆
n : S

¯
⋆
n = S

¯n∩¯
Y
¯A,S¯n∈¯

ג
¯pnX

}

Example 4.10. Let ג
¯pnX

= {∅
¯
,S
¯
,T
¯
,X

¯A}, then ג
¯pnX

is a P3FNT on X
¯

. P3FNS on Y
¯

= {S
¯
} ⊆

X
¯

is
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Table 7. P3FNS Y
¯A

Y
¯A

ℏ1 (1.000, 0.000, 0.000) (1.000, 0.000, 0.000) (1.000, 0.000, 0.000)

Since

Y
¯A ∩

¯
∅
¯

= ∅
¯

Y
¯A ∩

¯
S
¯

= S
¯

Y
¯A ∩

¯
T
¯

= T
¯

Y
¯A ∩

¯
X
¯A = Y

¯A

So, ג
¯pnY

= {∅
¯
,S
¯
,T

¯
,Y

¯A} is a Pythagorean 3-polar fuzzy neutrosophic subtopology (P3FN-

subtopology) of ג
¯pnX

(i.e ג
¯pnY

⊆ ג
¯pnX

).

Remark 4.11. (1) A PmFN-subtopology i.e. ג
¯pnZ

of a PmFN-subtopology ג
¯pnY

of a

PmFNTS ג
¯pnX

is also a PmFN-subtopology of ג
¯pnX

.

(2) Every PmFN-subspace of a discrete-PmFNTS is always discrete-PmFNTS. Similarly, every

PmFN-subspace of indiscrete-PmFNTS ia also an indiscrete-PmFNTS.

Definition 4.12. Let (X
¯
, ג
¯pn

) be a PmFNTS and V
¯

⊆ PmFNS(X
¯

). The Pythagorean m-

polar fuzzy neutrosophic interior (PmFN-interior) V.̄ of V
¯

is PmFNS which is the union of all

PmFNS-open subsets (i.e that are contained in V
¯

) of X
¯

.

Example 4.13. If

Table 8. P3FNS V
¯

V
¯
ℏ1 (0.233, 0.449, 0.496) (0.276, 0.507, 0.365) (0.332, 0.501, 0.312)

ℏ2 (0.314, 0.416, 0.308) (0.389, 0.501, 0.402) (0.267, 0.517, 0.223)

and ג
¯pn8

= {∅
¯
, S

¯
, T

¯
, U

¯
, X

¯A}, then V.̄ = T
¯
∪
¯

U
¯

= U
¯

or

Table 9. P3FN-interior V.̄

V.̄

ℏ1 (0.221, 0.561, 0.524) (0.172, 0.603, 0.367) (0.307, 0.633, 0.336)

ℏ2 (0.267, 0.623, 0.401) (0.380, 0.529, 0.419) (0.162, 0.560, 0.333)
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Definition 4.14. Let (X
¯

, ג
¯pn

) be a PmFNTS and V
¯

⊆ PmFN(X
¯

). Then the Pythagorean

m-polar fuzzy neutrosophic closure (PmFN-closure) V̇
¯

of V
¯

is the PmFNS which is intersection

of all PmFN-closed supersets (i.e that contain V
¯

) of V
¯

.

Example 4.15. Let ג
¯pn8

= {∅
¯
,S
¯
,T

¯
,U

¯
,X

¯A}, then first of all we’ve to find ∅
¯
c,S

¯
c,T

¯
c,U

¯
c,

X
¯
c
A.

∅
¯
c = X

¯A,S¯
c = S

¯1,T¯
c = T

¯1,U¯
c = U

¯ 1,X¯
c
A = ∅

¯
where

Table 10. P3FNS S
¯
c/S

¯1

S
¯
c=S

¯1

ℏ1 (0.216, 0.790, 0.401) (0.363, 0.900, 0.221) (0.216, 0.971, 0.632)

ℏ2 (0.162, 0.889, 0.626) (0.163, 1.000, 0.432) (0.108, 0.988, 0.221)

Table 11. P3FNS T
¯
c/T

¯1

T
¯
c=T

¯1

ℏ1 (0.623, 0.379, 0.126) (0.706, 0.080, 0.063) (0.591, 0.364, 0.276)

ℏ2 (0.368, 0.298, 0.368) (0.726, 0.239, 0.165) (0.561, 0.288, 0.149)

and

Table 12. P3FNS U
¯
c/U

¯ 1

U
¯
c=U

¯ 1

ℏ1 (0.524, 0.439, 0.221) (0.367, 0.397, 0.172) (0.336, 0.367, 0.307)

ℏ2 (0.401, 0.377, 0.267) (0.419, 0.471, 0.380) (0.333, 0.440, 0.162)

As X
¯A is the only P3FN-closed supersets of V

¯
i.e V

¯
is contained only in X

¯A. Thus, V̇
¯

= X
¯A

Remark 4.16. Largest PmFN-open subset of V
¯

is V.̄ whereas the smallest PmFN-closed

superset of V
¯

is V̇
¯

.

Definition 4.17. Let (X
¯
, ג
¯pn

) be a PmFNTS and V
¯

⊆ PmFN(X
¯

). Then the Pythagorean

m-polar fuzzy neutrosophic frontier or boundary (PmFN-frontier/boundary) F ⋄(V
¯

) of V
¯

is

defined as:

F ⋄(V
¯

) = V̇
¯
∩
¯

V̇
¯

c

Example 4.18. For the P3FNS V
¯

given in Example 4.13, we have
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Table 13. P3FNS V
¯
c

V
¯
c

ℏ1 (0.496, 0.551, 0.233) (0.365, 0.493, 0.276) (0.312, 0.499, 0.332)

ℏ2 (0.308, 0.584, 0.314) (0.402, 0.499, 0.389) (0.223, 0.483, 0.267)

V̇
¯

= ∅
¯
c∩
¯

T
¯
c∩
¯

U
¯
c = U

¯
c

V̇
¯

= X
¯
∩
¯

T
¯1∩¯

U
¯1 = U

¯ 1

⇒ F ⋄(V
¯

) = X
¯
∩
¯

U
¯ 1 = U

¯ 1

Definition 4.19. Let (X
¯
, ג
¯pn

) be a PmFNTS and V
¯

⊆ PmFN(X
¯

). Then the Pythagorean

m-polar fuzzy neutrosophic exterior (PmFN-exterior) E⋄(V
¯

) of V
¯

is defined as:

E⋄(V
¯

) = V.̄
c

From Example 4.5 and 4.15, we get V.̄
c = S

¯
c∪
¯
∅
¯

= S
¯
c = S

¯1

Example 4.20. For the P3FNSs S
¯
,T
¯
,U

¯
,V

¯
given in Examples 4.5,4.13, and

Table 14. P3FNS W
¯

W
¯
ℏ1 (0.721, 0.110, 0.116) (0.662, 0.100, 0.265) (0.621, 0.010, 0.116)

ℏ2 (0.765, 0.011, 0.062) (0.571, 0.000, 0.006) (0.795, 0.002, 0.008)

(i) V.̄ ⊆ V
¯
⊆ V̇

¯
(See Table 8 and Table 9) and as we know

Table 15. P3FNS X
¯

X
¯
ℏ1 (1.000, 0.000, 0.000) (1.000, 0.000, 0.000) (1.000, 0.000, 0.000)

ℏ2 (1.000, 0.000, 0.000) (1.000, 0.000, 0.000) (1.000, 0.000, 0.000)

(ii) V.̄.
= V.̄

V.̄.
= T

¯
∪
¯

U
¯

= U
¯

V.̄ = U
¯

From above equations we get, V.̄.
= V.̄

(iii) ˙̇V
¯

= V̇
¯˙̇V

¯
= X

¯
and V̇

¯
= X

¯
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(iv) X.̄.
= X

¯
X.̄.

= S
¯
∪
¯

T
¯
∪
¯

U
¯
∪
¯

X
¯

= X
¯

(v) ∅̇
¯

= ∅
¯

As ∅
¯

is superset of itself only.

(vi) V
¯
⊆ W

¯
⇒ V.̄ ⊆ W.̄ and V̇

¯
⊆ Ẇ

¯
We know that, V.̄ = U

¯
and W.̄ = S

¯
∪
¯

T
¯
∪
¯

U
¯

= S
¯
⇒ V.̄ ⊆ W.̄ (∵ U

¯
⊆ S

¯
)

Now, V̇
¯

= X
¯

also Ẇ
¯

= X
¯
⇒ V̇

¯
⊆ Ẇ

¯
(∵ X

¯
⊆ X

¯
)

(vii) (V∩
¯

W)
.̄

= V.̄ ∩¯
W.̄

Table 16. P3FNS V
¯
∩
¯

W
¯

V
¯
∩
¯

W
¯

ℏ1 (0.233, 0.449, 0.496) (0.276, 0.507, 0.365) (0.332, 0.501, 0.312)

ℏ2 (0.314, 0.416, 0.308) (0.389, 0.501, 0.402) (0.267, 0.517, 0.223)

(V∩
¯

W)
.̄

= T
¯
∪
¯

U
¯

= U
¯

and V.̄ ∩¯
W.̄ = S

¯
∩
¯

U
¯

= U
¯

From above equations, we get the result, (V∩
¯

W)
.̄

= V.̄ ∩¯
W.̄

Proposition 4.21. Let (X
¯
, ג
¯ pn) be a PmFNTS and Q

¯
⊆ X

¯
, then

(i) (Q
.̄

)c = Q̇
¯

c

(ii) (Q̇
¯

)c = Q
.̄
c

Proof. (i) Q
¯

=

{

ℏ1
(T (i)(ℏ1),I(i)(ℏ1),F (i)(ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m

}

Let PmFN-open sets contained in Q
¯

be indexed by the collection
{

ℏ1

(T
(i)
j (ℏ1), I

(i)
j (ℏ1), F

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

.

By definition,

Q
.̄

=

{

ℏ1

(max T
(i)
j (ℏ1),min I

(i)
j (ℏ1),min F

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

and

(Q
.̄
)c =

{

ℏ1

(min F
(i)
j (ℏ1), 1 − min I

(i)
j (ℏ1),max T

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

∵ Q
¯

c =

{

ℏ1
(F (i)(ℏ1), 1 − I(i)(ℏ1), T (i)(ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m

}

Also, T
(i)
j (ℏ1) ≤ T (i)(ℏ1), 1 − (I

(i)
j (ℏ1)) ≥ 1 − (I(i)(ℏ1)), F

(i)
j (ℏ1) ≥ F (i)(ℏ1),∀ values of

i & j ∈
¯

J
¯
, so it develops that
{

ℏ1

(F
(i)
j (ℏ1), 1 − I

(i)
j (ℏ1), T

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}
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is the entire of PmFN-closed sets contained contained Q
¯

c i.e.

Q̇
¯

c
=

{

ℏ1

(min F
(i)
j (ℏ1), 1 − (min I

(i)
j (ℏ1)),max T

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

which completes the proof.

(ii) Q
¯

=

{

ℏ1
(T (i)(ℏ1),I(i)(ℏ1),F (i)(ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m

}

Let PmFN-closed supersets of Q
¯

be indexed by the collection
{

ℏ1

(T
(i)
j (ℏ1), I

(i)
j (ℏ1), F

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

By definition,

Q̇
¯

=

{

ℏ1

(min T
(i)
j (ℏ1),max I

(i)
j (ℏ1),max F

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

and

(Q̇
¯

)c =

{

ℏ1

(max F
(i)
j (ℏ1), 1 − (max I

(i)
j (ℏ1)),min T

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

Now,

∵ Q
¯

c =

{

ℏ1
(F (i)(ℏ1), 1 − I(i)(ℏ1), T (i)(ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m

}

and T
(i)
j (ℏ1) ≤ T (i)(ℏ1), 1− (I

(i)
j (ℏ1)) ≥ 1− (I(i)(ℏ1)), F

(i)
j (ℏ1) ≥ F (i)(ℏ1),∀ values of i

and j∈
¯

J
¯

so it follows that

Q
.̄
c =

{

ℏ1

(max F
(i)
j (ℏ1), 1 − (max I

(i)
j (ℏ1)),min T

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

which completes the proof.

0.1cm

Proposition 4.22.

(i) Q
.̄
6= Q

¯
− Q̇
¯

c

(ii) E⋄(Q
¯

)c = Q
.̄

(iii) E⋄(Q
¯

) = Q
.̄
c

(iv) E⋄(Q
¯

)∪
¯
F ⋄(Q

¯
)∪
¯
Q
.̄
6= X

¯ A

(v) F ⋄(Q
¯

) = F ⋄(Q
¯

c)

(vi) Q
.̄
∩
¯
F ⋄(Q

¯
) 6= ∅

¯
(vii) Q̇

¯
6= Q

¯
∪
¯
F ⋄(Q

¯
)

(viii) Q̇
¯

6= Q
.̄
∪
¯
F ⋄(Q

¯
)

Proof. Follows directly from definition. 0.1cm
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Proposition 4.23. Let (X
¯
, ג
¯ pn) be a PmFNTS and Q

¯
⊆ X

¯
, then F ⋄(Q

¯
)=F ⋄(Q

¯

c)

Proof. By definition; F ⋄(Q
¯

) = Q̇
¯
∩
¯

Q̇
¯

c
= Q̇

¯

c
∩
¯

Q̇
¯

= Q̇
¯

c
∩
¯

(Q̇
¯

c
)c = F ⋄(Q

¯

c) 0.1cm

Remark 4.24. The intersection of two or more PmFNTSs is always a PmFNTS but it is not

necessary that their union is also a PmFNTS.

Example 4.25. Let X
¯

= {ℏ1, ℏ2} be a universal non-empty P3FNS and let

Table 17. P3FNS O
¯ 1

O
¯ 1

ℏ1 (0.211, 0.301, 0.451) (0.251, 0.321, 0.420) (0.021, 0.567, 0.481)

ℏ2 (0.100, 0.500, 0.256) (0.257, 0.421, 0.000) (0.424, 0.567, 0.291)

Table 18. P3FNS O
¯ 2

O
¯ 2

ℏ1 (0.312, 0.217, 0.111) (0.171, 0.367, 0.582) (0.361, 0.272, 0.391)

ℏ2 (0.111, 0.421, 0.156) (0.167, 0.568, 0.721) (0.321, 0.666, 0.382)

be P3FNSs over X
¯

, then ג
¯pno1

= {∅
¯
,O

¯ 1,X¯A} and ג
¯pno2

= {∅
¯
,O

¯ 2,X¯A} are two P3FNTs over X
¯

.

However, ג
¯pno1

∪
¯
ג
¯pno2

= {∅
¯
,O

¯ 1,O¯ 2,X¯A} fails to be P3FNT on X
¯

and intersection of P3FNT

over X
¯

, ג
¯pno1

∩
¯
ג
¯pno2

= {∅
¯
,X

¯A} is also a P3FNT.

Theorem 4.26. Let (X
¯
, ג
¯ pn) be a PmFNTS then the following conditions are satisfied:

(1) ∅
¯
, X
¯ A are PmFN−open sets.

(2) Union of any number of PmFN−open sets is PmFN−open set.

(3) Intersection of any number of PmFN−closed sets is PmFN−closed set.

(4) The intersection of any two PmFN−open sets (and hence of any finite number of

PmFN−open sets) is PmFN−open set.

(5) The union of any two PmFN−closed sets (and hence of any finite number of

PmFN−closed sets) is PmFN−closed set.

(6) ∅
¯
, X
¯ A are PmFN−closed set.

Proof. (1) The proof is obvious.

(2) Let {< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >: ℏ ∈

¯
X
¯
} be a collection of PmFN-open sets.

Also, Y̧ =
⋃

ℏ ∈
¯

X
¯

{< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >}
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Let ℏ†∈
¯

Y̧ implies that ℏ†∈
¯
{< ℏ, (k

¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >} for some ℏ ∈

¯
X
¯

and

B̧(y
¯
, r
¯
) ⊆ {< ℏ, (k

¯
(i)
1 (ℏ), Ï

¯

(i)

1 (ℏ),̥
¯

(i)
1 (ℏ)) >} ⊆

⋃

ℏ ∈
¯

X
¯

{< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)

1 (ℏ),̥
¯

(i)
1 (ℏ)) >} = Y̧

⇒ Y̧ is PmFN-open set.

(3) Let {< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >: ℏ ∈

¯
X
¯
} be any number of PmFN-closed sets.

We shall show that
⋂

ℏ ∈
¯

X
¯

{< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >}, is PmFN-closed set, by

proving that its complement is PmFN-open set.

By De Morgan’s law,

[
⋂

ℏ ∈
¯

X
¯

{< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)

1 (ℏ),̥
¯

(i)
1 (ℏ)) >}]c =

⋃

ℏ ∈
¯

X
¯

{< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)

1 (ℏ),̥
¯

(i)
1 (ℏ)) >}c

Since each < ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) > is PmFN-closed set, each {< ℏ, (k

¯
(i)
1 (ℏ),

Ï
¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >}c is a PmFN-open set ( by definition of PmFN-closed set).

So,
⋃

ℏ ∈
¯

X
¯

{< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >}c is PmFN-open set.

Hence
⋂

ℏ∈
¯

X
¯

{< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >} is PmFN-closed set.

(4) and (5) may be established in the similar way.

(6) The complement of X
¯A is the PmFN-open set ∅

¯
and the complement of ∅

¯
is the PmFN-

open set X
¯A. So, X

¯A and ∅
¯

are PmFN-closed sets.

0.1cm

Definition 4.27. Let (X
¯
, ג
¯pn

) be a PmFNTS and let ℏ be a PmFN-point of X
¯

. ℵ† ⊆ X
¯

is

called a neighborhood of ℏ iff there exists a PmFN-open set  L† s.t. ℏ∈
¯

 L† and  L†∈
¯
ℵ† (or, for

short, ℏ ∈
¯

 L† ⊆ ℵ†). In other words, ℵ† is a neighborhood of ℏ, iff it contains some PmFN-open

set to which ℏ belongs.

Example 4.28. Let X = {e
¯
, f
¯
, g
¯
} be a universal P3FNS and ג

¯pn
= {∅

¯
,D1,D2,XA} where,

Table 19. P3FNS D1

D1

e
¯

(0.672, 0.421, 0.221) (0.567, 0.420, 0.111) (0.242, 0.121, 0.199)

f
¯

(0.211, 0.467, 0.520) (0.562, 0.721, 0.221) (0.444, 0.333, 0.111)

g
¯

(0.167, 0.437, 0.561) (0.466, 0.167, 0.321) (0.252, 0.467, 0.490)

and,
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Table 20. P3FNS D2

D2

f
¯

(0.115, 0.226, 0.421) (0.462, 0.621, 0.221) (0.555, 0.222, 0.001)

g
¯

(0.267, 0.337, 0.461) (0.366, 0.017, 0.421) (0.452, 0.376, 0.241)

XA is the only P3FN−open set of

Table 21. P3FNS ℏ∗1

ℏ∗1

e
¯

(1.000, 0.000, 0.000) (1.000, 0.000, 0.000) (1.000, 0.000, 0.000)

So, XA is the only neighborhood of ℏ∗1.

The P3FN−point

Table 22. P3FNS ℏ∗2

ℏ∗2

f
¯

(0.111, 0.562, 0.621) (0.461, 0.921, 0.178) (0.321, 0.642, 0.316)

has three neighborhoods, namely, D1,D2 and XA.

Similarly, the P3FN−point

Table 23. P3FNS ℏ∗3

ℏ∗3

e
¯

(0.462, 0.562, 0.398) (0.367, 0.572, 0.192) (0.120, 0.499, 0.400)

has two neighborhoods D1 and XA.

Remark 4.29. In an indiscrete−PmFNTS, each PmFN-point has a single neighborhood which

is the ground PmFNS itself.

The following example illustrate the PmFN-point that a neighborhood of a PmFN-point may

not be PmFN-open set.

Example 4.30. Let X = {e
¯
, f
¯
, g
¯
} be an universal non-empty P3FNS and ג

¯pn
= {∅

¯
,D4,XA}

where,
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Table 24. P3FNS D4

D4

f
¯

(0.315, 0.226, 0.421) (0.162, 0.621, 0.221) (0.555, 0.222, 0.001)

g
¯

(0.267, 0.337, 0.461) (0.366, 0.017, 0.421) (0.452, 0.376, 0.241)

clearly the P3FNS

Table 25. P3FNS D3

D3

e
¯

(0.672, 0.421, 0.221) (0.567, 0.420, 0.111) (0.242, 0.121, 0.199)

f
¯

(1.000, 0.000, 0.000) (0.715, 0.421, 0.226) (1.000, 0.000, 0.000)

g
¯

(0.452, 0.421, 0.324) (1.000, 0.210, 0.000) (0.667, 0.210, 0.140)

is a neighborhood of D4, but it is not P3FN-open set because it is not an element of ג
¯pn

.

The following theorem enables us to recognize PmFN-open sets by knowing all the neigh-

borhoods of a point and conversely. Thus, knowledge about PmFN-open sets enables us to

determine the neighborhood of a point and conversely.

Theorem 4.31. If (X
¯
, ג
¯ pn) is a PmFNTS, then a PmFN-subset A of X

¯
is PmFN-open set,

iff A is a neighborhood of each of its PmFN-points.

Proof. Assume that A is PmFN-open set. We shall show that A is a neighborhood of each of

its PmFN-points. Let κ
¯

be any PmFN-point of A, then A itself can play the role of the PmFN-

open set, whose existence qualifies A to be a neighborhood of κ
¯

. Symbolically, κ
¯
∈
¯
A ⊆ A where

A is PmFN-open set. It follows that A is neighborhood of each of its PmFN-points.

Conversely, if A is a neighborhood of every PmFN-point belonging to it, then for each κ
¯
∈
¯
A

there exists a PmFN-open set χ such that κ
¯
∈
¯
χ ⊆ A. Then

A = ∪
¯
{< ℏ, (k

¯
(i)
A1(ℏ), Ï

¯

(i)
A1(ℏ),̥

¯

(i)
A1(ℏ)) >: ℏ ∈

¯
A}

⊆ ∪
¯
{< ℏ, (k

¯
(i)
A2(ℏ), Ï

¯

(i)
A2(ℏ),̥

¯

(i)
A2(ℏ)) >: ℏ ∈

¯
A} ⊆ A

The simultaneous validity of

A ⊆ ∪
¯
{< ℏ, (k

¯
(i)
A2(ℏ), Ï

¯

(i)
A2(ℏ),̥

¯

(i)
A2(ℏ)) >: ℏ ∈

¯
A}

and

∪
¯
{< ℏ, (k

¯
(i)
A2(ℏ), Ï

¯

(i)
A2(ℏ),̥

¯

(i)
A2(ℏ)) >: ℏ∈

¯
A} ⊆ A

⇒ A = ∪
¯
{< ℏ, (k

¯
(i)
A2(ℏ), Ï

¯

(i)
A2(ℏ),̥

¯

(i)
A2(ℏ)) >: ℏ ∈

¯
A}
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Since the union of PmFN-open sets is also PmFN-open set, it follows that A is PmFN-open

set. 0.1cm

The most important properties of neighborhoods in a PmFNTS are established in the following:

Definition 4.32. Let κ
¯

be a PmFN-point in a PmFNTS (X
¯
, ג
¯pn

). Then the set of all neigh-

borhoods of κ
¯

is called the neighborhood system of the PmFN-point κ
¯

and is denoted by

ℵ†(κ
¯

).

Definition 4.33. Let (X
¯
, ג
¯pn

) be a PmFNTS and A is a PmFN−subset of X
¯

. A point

κ
¯
∈
¯

X
¯

is known as Pythagorean m-polar fuzzy neutrosophic limit point (PmFN-limit point) or

Pythagorean m-polar fuzzy neutrosophic cluster point or Pythagorean m−polar fuzzy neutro-

sophic accumulation point A if every PmFN-open set,containing κ
¯

contains a PmFN-point of

A different from κ
¯

.

Example 4.34. Let (X
¯
, ג
¯pn

) is a P3FNTS, X = {e
¯
, f
¯
, g
¯
} be an universal non-empty P3FNS

and

Table 26. P3FNS C

C

e
¯

(0.000, 1.000, 1.000) (0.000, 1.000, 1.000) (0.000, 1.000, 1.000)

f
¯

(0.511, 0.062, 0.211) (0.312, 0.270, 0.137) (0.921, 0.266, 0.152)

g
¯

(0.232, 0.101, 0.431) (0.466, 0.352, 0.121) (0.368, 0.572, 0.400)

Table 27. P3FNS ℏ∗4

ℏ∗4

e
¯

(0.417, 0.312, 0.356) (0.312, 0.270, 0.137) (0.012, 0.374, 0.436)

f
¯

(0.412, 0.117, 0.362) (0.333, 0.672, 0.491) (0.068, 0.772, 0.221)

and,

Table 28. P3FNS ℏ∗5

ℏ∗5

e
¯

(0.324, 0.467, 0.576) (0.247, 0.657, 0.421) (0.001, 0.476, 0.891)

then,
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Table 29. P3FNS ℏ∗4 − ℏ∗5

ℏ∗4 − ℏ∗5

e
¯

(0.417, 0.312, 0.356) (0.312, 0.270, 0.247) (0.012, 0.374, 0.436)

f
¯

(0.000, 0.117, 1.000) (0.000, 0.672, 1.000) (0.000, 0.772, 1.000)

Table 30. P3FNS (ℏ∗4 − ℏ∗5) ∩
¯
C

(ℏ∗4 − ℏ∗5) ∩
¯
C

e
¯

(0.000, 1.000, 1.000) (0.000, 1.000, 1.000) (0.000, 1.000, 1.000)

f
¯

(0.000, 0.117, 1.000) (0.000, 0.672, 1.000) (0.000, 0.772, 1.000)

As (ℏ∗4 − ℏ∗5) ∩
¯
C 6= ∅

¯
. So, ℏ∗5 is the P3FN-limit point of C.

Definition 4.35. Let (X
¯
, ג
¯pn

) be a PmFNTS then Pythagorean m-polar fuzzy neutrosophic

basis (PmFN-basis) B
¯
⊚ ⊆ ג

¯pn
for ג

¯pn
if for each U

¯
∈
¯
ג
¯pn

,∃
¯
∈
¯
B
¯

such that U
¯

= ∪
¯̄

.

4.1. Separation Axioms in Pythagorean m-Polar Fuzzy Neutrosophic Sets

Definition 4.36. A PmFNTS (X
¯
, ג
¯pn

) is known as a Pythagorean m-polar fuzzy neutrosophic

T0 space (PmFNT0S) if for every pair of distinct PmFN-points ð1,ð2∃ at any rate 1 PmFN-

open set ð
¯

including precisely one of the PmNF-points.

Example 4.37. Each discrete PmFNTS is a PmFNT0S for ∃ a PmFN-open set {ð1} that

clearly contains ð1 but not ð2.

Remark 4.38. Each PmFN-subspace of a PmFNT0S is PmFNT0S means property of being

a PmFNT0S of any PmFNTS (X
¯
, ג
¯pn

) is innate.

Definition 4.39. A PmFNTS (X
¯
, ג
¯pn

) is Pythagorean m-polar fuzzy neutrosophic T1 space

(PmFNT1S), Pythagorean m-polar fuzzy Tychonoff space or Pythagorean m-polar fuzzy acces-

sible space if for any two unique PmFN-points ð1,ð2 of (X
¯
, ג
¯pn

),∃ two PmFN-open sets ð
¯

and

Υ s.t. ð1∈
¯
ð
¯
,ð2 /∈

¯
ð
¯

and ð2∈
¯

Υ,ð1 /∈
¯

Υ.

Example 4.40. Every discrete PmFNTS is a PmFNT1S if ð1 and ð2 are two distinct PmFN-

points then there are PmFN-open points {ð1} and {ð2} in (X
¯
, ג
¯pn

) s.t. ð1∈
¯
{ð1} whereas

ð2 /∈
¯
{ð1}.

Theorem 4.41. The following assertions about a PmFNTS (X
¯
, ג
¯ pn) are equivalent:

(1) (X
¯
, ג
¯ pn) is a PmFNT1S.
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(2) Every PmFN singleton subset of X
¯

is PmFN-closed.

(3) Every PmFN-subset ð
¯

of X
¯

is the intersection of all its PmFN-open supersets.

Proof. The proof is obvious. 0.1cm

Remark 4.42. Every subspace of a PmFNT1S is PmFNT1S means property of being a

PmFNT1S of any PmFNTS (X
¯
, ג
¯pn

) is innate.

Definition 4.43. A PmFNTS (X
¯
, ג
¯pn

) is called a Pythagorean m-polar fuzzy neutrosophic T2

space (PmFNT2S), Pythagorean m-polar fuzzy neutrosophic Hausdorff space or Pythagorean

m-polar fuzzy neutrosophic separated space if for any two unique PmFN-points ð1 & ð2 of

(X
¯
, ג
¯pn

),∃ two PmFN-open sets ð
¯

& Υ in such a way ð1∈
¯
ð
¯
,ð2∈

¯
Υ and ð

¯
∩
¯

Υ = ∅.

Example 4.44. Consider the discrete PmFNTS (X
¯
, ג
¯pn

). If ð1 and ð2 are two distinct PmFN-

points in X
¯

, then clearly {ð1} and {ð2} are disjoint PmFN-open sets such that ð1∈
¯
{ð1} and

ð2∈
¯
{ð2}. Thus, (X

¯
, ג

¯pn
) is a PmFN2⊳גS.

Theorem 4.45. A PmFNTS (X
¯
, ג
¯ pn) is a PmFNT2S iff for any two distinct PmFN-points ð1

and ð2, there are PmFN-closed sets ð
¯

and Υ such that ð1∈
¯
ð
¯
,ð2 /∈

¯
ð
¯
,ð1 /∈

¯
Υ,ð2∈

¯
Υ and ð

¯
∪
¯

Υ =

X
¯ A.

Proof. Assume that (X
¯
, ג
¯pn

) is a PmFNT2S and let ð1 and ð2 be two distinct PmFN-

points of (X
¯
, ג
¯pn

). Then, by definition, there must exists two PmFN-open sets ð
¯

and Υ

such that ð1∈
¯
ð
¯
,ð2 /∈

¯
ð
¯

and ð1 /∈
¯

Υ,ð2∈
¯

Υ and ð
¯

∩
¯

Υ = ∅
¯
. But then, ð

¯
c ∪

¯
Υc = X

¯A and

ð1 /∈
¯
ð
¯
c,ð2∈

¯
ð
¯
c,ð1∈

¯
Υc,ð2 /∈

¯
Υc.

Conversely, assume that for any two distinct PmFN-points ð1,ð2∈
¯

(X
¯
, ג
¯pn

), there are PmFN-

closed sets ð
¯

and Υ such that ð1∈
¯
ð
¯
,ð2 /∈

¯
ð
¯
,ð1 /∈

¯
Υ,ð2∈

¯
Υ and ð

¯
∪
¯

Υ = X
¯A. Then ð

¯
c and Υc are

PmFN-open sets such that ð1 /∈
¯
ð
¯
c,ð2∈

¯
ð
¯
c,ð1∈

¯
Υc,ð2 /∈

¯
Υc and ð

¯
c ∩

¯
Υc = X

¯A
c = ∅

¯
. So, (X

¯
, ג
¯pn

)

is a PmFNT2S. 0.1cm

Remark 4.46. Each PmFN-subspace of a PmFNT2S is also a PmFNT2S means property of

being a PmFNT2S of any PmFNTS (X
¯
, ג
¯pn

) is innate.

Definition 4.47. A PmFNTS (X
¯
, ג
¯pn

) is called a Pythagorean m-polar fuzzy neutrosophic

regular space (PmFN-regular space) if unspecified PmFN-closed set ð
¯

& any PmFN-point

ð1 /∈
¯
ð
¯

and here PmFN-open sets Υ & Υ
¯
∗ such that ð1 ∈ Υ,ð

¯
⊆ Υ

¯
∗ and Υ∩

¯
Υ
¯
∗ = ∅

¯
.

Definition 4.48. A PmFNTS (X
¯
, ג
¯pn

) is called Pythagorean m-polar fuzzy neutrosophic T3

space (PmFNT3S) if it is a PmFN regular T1 space.
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Definition 4.49. A PmFNTS (X
¯
, ג
¯pn

) is called Pythagorean m-polar fuzzy neutrosophic nor-

mal space if unspecified two PmFN-closed disjoint subsets ð
¯

& Υ of (X
¯
, ג
¯pn

) and here PmFN-

open sets Υ
¯
∗ and Υ

¯
• such that ð

¯
⊆ Υ

¯
∗,Υ ⊆ Υ

¯
• and Υ

¯
∗∩
¯

Υ
¯
• = ∅

¯
. A PmFN-normal T1 space is

called a Pythagorean m-polar fuzzy neutrosophic T4 space (PmFNT4S).

Remark 4.50. We have the following chain for different PmFNTSs studied above:

Te ⊇ Te+1

for 0 ≤ e ≤ 3. The reverse chain, however, may not hold. The forthcoming Example 4.51

supports our claim.

Example 4.51. Let (X
¯
, ג
¯pn

) be a PmFNTS, where X
¯

= {ℏ1, ℏ2}, ג
¯pn

= {∅
¯
,B
¯
,X

¯A}. Then

Table 31. P3FNS B
¯

B
¯
ℏ1 (0.000, 0.423, 0.801) (0.167, 0.210, 0.562) (0.472, 0.421, 0.301)

ℏ2 (0.162, 0.423, 0.004) (0.000, 0.409, 0.210) (0.100, 0.432, 0.720)

is a P3FNT0S but it is not a P3FNT1S.

Theorem 4.52. Each PmFNT4S is a PmFN regular means each PmFN normal T1 space is

PmFN regular.

Proof. Let (X
¯
, ג
¯pn

) be a PmFNT4S. Let ð1 be a PmFN-point in X
¯

. Then, by Theorem 4.41,

{ð1} is a closed PmFNS in (X
¯
, ג
¯pn

). Suppose that ð
¯

be a PmFN-closed set not contain-

ing ð1. Since (X
¯
, ג
¯pn

) is PmFN normal, there are PmFN-open set namely Υ,Υ
¯
∗ such that

{ð1} ⊆ Υ,ð
¯
⊆ Υ

¯
∗ and Υ∩

¯
Υ
¯
∗ = ∅

¯
. But then, {ð1}∈

¯
Υ,ð

¯
⊆ Υ

¯
∗ and Υ∩

¯
Υ
¯
∗∅
¯
. So, (X

¯
, ג
¯pn

) is a

Pythagorean m-polar fuzzy neutrosophic regular topological space. 0.1cm

5. Intelligent Decision Making using PmFNS TOPSIS

In this section, we present an application of PmFNS in decision making.

Case Study:

A desert is a desolate region of land with hardly any rainfall and, as a result, unhealthy living

conditions for flora and fauna. The absence of habitat reveals the ground’s vulnerable surface

to geomorphic activities. Around 33% of the world’s land surface is sandy or semi-arid. The

piece of land that attains fewer than 25 cm of rainfall per annum is considered a desert. Deserts

are part of a broader class of regions named dry lands. Pakistan has five significant deserts
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comprising Cholistan, Katpana, Thar, Thal and Kharan deserts.

Figure 1. Deserts of Pakistan

About 85% of the Thar desert, also called the Great Indian Desert, is situated inside India,

with the excess 15% in Pakistan. It covers around 170,000 km2, and the leftover 30,000 km2

of the desert is inside Pakistan. Thar desert is the world’s seventeenth biggest desert, and

the world’s ninth biggest subtropical desert. During different periods of predominant breeze

is the dry northeast storm. May and June are the most sweltering a long time of the year,

with mercury ascending to 500 C. In January, considered to be the coldest month there, the

average minimum temperature drops down to 100 C, and frost is frequent. Dust storms and

dust-raising winds, often blow with a speed of 140 to 150 km per hour, are frequent in the

months of May and June. The amount of annual rainfall in the desert is generally low, ranging

from about less in the west to about 20 inches (500 mm) in the east or 4 inches (100 mm),

mostly decreasing from July to September.

The desert of Kharan is situated in Balochistan. It makes a nature limit among Pakistan, Iran

and Afghanistan. It is situated in Kharan region. The Kharan desert is a sandiest desert in

Pakistan. It is particular from the remainder of the province’s landscape because of its sandy

nature and all the more even ter. The desert was utilized for atomic testing by the Pakistan

military, making it the most renowned of the five deserts. In altitude these central deserts
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slope from about 1,000 m in the north to about 250 m on in the southwest. Maximum, average

and minimum temperatures of kharan desert are 420 C, 380 C and 260 C respectively. Average

annual rainfall throughout these deserts is well under 100 mm. The desert includes areas of

inland drainage and dry lakes.

The Cold Desert, otherwise called the Katpana Desert or Biama Nakpo, is a high-elevation

desert situated close Skardu, northern Gilgit-Baltistan area of Pakistan controlled Jammu and

Kashmir. The desert contains costs of huge sand rises that are once in a while shrouded in

snow during winter. Situated at an elevation of 2,226 m (7,303 feet) above ocean level, the

Katpana Desert is one of the most noteworthy deserts in the world. The desert actually ex-

tends from the Khaplu Valley to Nubra in Ladakh, yet the biggest desert area is found in

Skardu and Shigar Valley. The part most visited is situated close Skardu Airport. Temper-

atures range from a maximum of 270 C and a minimum (in October) 80 C which can drop

further to beneath −170 C in December and January. The temperature infrequently drops as

low as −250 C.

The Thal Desert is situated in Bhakkar area of Pakistan between the Indus and Jhelum rivers.

A huge canal-building venture is in progress to flood the land. Water system will make a large

portion of the desert appropriate for cultivating. In the north of the Thal Desert there are salt

reaches, in the east the Jhelum and Chenab streams and toward the west the Indus waterway.

The maximum temperature is 340 C and minimum temperature is 250 C in Thal desert. The

average annual temperature for Thal is 290 C. It is dry for 207 days a year with an average

humidity of 36%. The average annual rainfall varies from 385 mm in the north-east to 170

mm in the south. Approximately three-fourth of annual rainfall is received during monsoon.

Cholistan Desert is locally known as Rohi. It abuts the Thar Desert, stretching out over to

Sindh and into India. Cholistan desert hosts an yearly Jeep rally, known as Cholistan Desert

Jeep Rally which is the greatest engine game in Pakistan. Cholistan’s atmosphere is described

as a bone-dry and semi-dry Tropical desert, with exceptionally low yearly dampness. The

mean temperature in Cholistan is 28.330 C, with most smoking month being July with a mean

temperature of 38.50 C. Summer temperatures can outperform 460 C and now and then as-

cents more than 500 C during times of dry season. Winter temperatures infrequently dip to

00 C. Normal precipitation in Cholistan is up to 180mm, with July and August being the

wettest months, despite the fact that dry seasons are normal. Water is gathered occasionally

in an arrangement of normal pools called Toba, or man made pools called Kund. Earth water

is found at a profundity of 30-40 meters, yet is commonly bitter, and unacceptable for most

plant development.
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Figure 2. Temperature of Deserts of Pakistan

These deserts contains an extremely dry part, the Marusthali area in the west, and a semi

desert locale in the east with less sand hills and somewhat more precipitation. For the most

vital problem and the main hinderance, in the way of progress. Government considers that

issue of lack of water in desert has to solve as early as possible.

The basic need-water, has greatly affected the lives of residents of desert. It can be said that

water has not only changed their social life style but also economy has affected badly. Inade-

quate sanitary conditions have invited many diseases which can be said epidemic like cholera,

typhoid etc. These disaster ruin the human race as well as their cattle.

Cultivation also wiped away due to scarcity of water. Indirectly water is the primary source

of food also people face the horrible face of famine. Specially children, represent the reflection

of poor humanity. Their body, without any health, you may say their skeletons cry for help

or for water.

Scarcity of water has also a deep impact on the psyche of residents of desert. Their temper-

ament, attitudes and behaviors indirectly affected by this vital problem. Tolerance, courtesy,

desire, for progress, achievements, dreams and all ways leading to bright future are cover in

mist. They cannot see or even have the eagerness for better living style. Their struggle only

moves around the availability of water. So it is the need of the time that all the possible steps

should be taken at all levels for the sake of humanity.

A city named Nagarparkar in Thar is consist upon 1 lac population people use under ground

clean and clear water for the necessities of life but it is very hard to get it in summer.

In summary the level of underground water decreases at the lowest level and to get water be-

comes impossible by hand pump. For the last many years no proper planning has been made

to provide water. In city water is brought far from areas. In this age of dearness to getting
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water is difficult. The fare of a cane is 20 to 25 rupees. The people are compelled to drink

that kind of water which is jot acceptable to the animals of Lahore. Animals and human drink

water from the same place there is no distinguish of camel, goat and the king of all races.

It is a hot issue, so a commission has established in which all the concerning problem experts

were included. This commission visited the desert and collected all eye bared witness.

First of all they prepare a report in which they point out the problems facing towards water

supply.

Poor decision making: The commission strongly condemned that decision making policies

are not harmonized to the circumstances.

Economically costs: In Thar with boring a place of water is served 8 to 9 villages approxi-

mately water is available to 7 km distance. Government do not take solid steps only visits are

arranged and due to lack of budgets, no attention is given for this reason people are deprived

of water. It has also observed that which projects had passes in past they were very costly.

Government could not afford them.

Environmental and social problem: Desert environment needs something special which

can appropriate to its hottest environment and social settlement.

Encouragement of local persons: A reason which is also very important is that people

do not have much facilities that they can bore or drill the land and can make it easily to get

water because they are illiterate and cannot drive correct solution by correct strategy. It is

also necessary to take help from the local persons and encouraged them to solve this problem

with the help of government.

Figure 3. Environmental and social problem

For all these issues, they suggested some positive and skilled opinions.
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(i) Government should take solid decisions. And the motto of these decisions should be

welfare and progress because if the start is good then the end will be best.

(ii) Those projects should be of low cost and much beneficial.

(iii) It should be keep in mind that the trust of local persons is very necessary for their

welfare because the negativity of being ignore has been kept its place in their minds.

(iv) Government should start small projects as they would be called tribal units or tribal

beneficiary projects.

Figure 4. Lack of water

We clarify the procedure bit by bit as follows:

Algorithm:

Stage 1: Firstly analyze the issue to see that what we have and actually what we have need to

do: Suppose that R = {σi : i = 1, 2, · · · , n} is the finite aggregate of alternatives under

consideration and G = {gj : j = 1, 2, · · · ,m} is the family of captains. So the (i, j)th

entry of the PmFNS matrix represents weight given by jth Captains to ith options.
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Stage 2: Develop weighted parameter matrix P as

P = [wij ]n×m =

























w11 w12 · · · w1m

w21 w22 · · · w2m

...
...

. . .
...

wi1 wi2 · · · wim

...
...

. . .
...

wn1 wn2 · · · wnm

























where wij is the fuzzy weight given by the Captains gj to the options σi by thinking

about the phonetic entitle are given (for example) in Table 32.

Table 32. Phonetic terms for benefits of projects

Phonetic Terms Fuzzy Weights

Not fruitful (NF) [0.00, 0.25]

Fruitful (F) (0.25, 0.50]

More or less fruitful (MF) (0.50, 0.75]

Extremely fruitful (EF) (0.75, 1.00]

Stage 3: Develop normalized weighted matrix

N = [ŵij ]n×m =

























ŵ11 ŵ12 · · · ŵ1m

ŵ21 ŵ22 · · · ŵ2m

...
...

. . .
...

ŵi1 ŵi2 · · · ŵim

...
...

. . .
...

ŵn1 ŵn2 · · · ŵnm

























where ŵij =
wij

√

∑n
i=1 w

2
ij

and obtaining the weighted vector W = (wj : j = 1, 2, · · · ,m),

where wj =
∑n

i=1 ŵij

n
∑m

k=1 ŵik

Step 4: Develop PmFNS decision matrix Gi = [ςijk]n×m, where ςijk = (τ ijk, υ
i
jk, ω

i
jk). Then

obtain the mean proportional matrix

X = n
√

G1G2 · · ·Gn = [ς̇jk]n×m =

[(

n

√

√

√

√

n
∏

i=1

τ ijk,
n

√

√

√

√

n
∏

i=1

υijk,
n

√

√

√

√

n
∏

i=1

ωi
jk

)]

n×m

Stage 5: Compute weighted PmFNS decision matrix Y = [ς̈jk]n×m, where ς̈jk = wk × ς̇jk =

(τjk, υjk, ωjk).
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Stage 6: Get PmFNSV-PIS (PmFNS- valued positive ideal solution) and PmFNSV-NIS

(PmFNS- valued negative ideal solution), by using

PmFNS − PIS = {ς̈+1 , ς̈+2 , · · · , ς̈+m}

= {(max
k

τjk,min
k

υjk,min
k

ωjk) : k = 1, 2, · · · ,m}

= {(τ+k , υ+k , ω
+
k ) : k = 1, 2, · · · ,m}

and

PmFNS −NIS = {ς̈−1 , ς̈−2 , · · · , ς̈−m}

= {(min
k

τjk,max
k

υjk,max
k

ωjk) : k = 1, 2, · · · ,m}

= {(τ−k , υ−k , ω
−
k ) : k = 1, 2, · · · ,m}

respectively.

Stage 7: Find PmFNS-Euclidean separations of every other option from PmFNS-PIS and

PmFNS-NIS respectively, by making use of

g+j =

√

√

√

√

m
∑

k=1

(τjk − τ+k )2 + (υjk − υ+k )2 + (ωjk − ω+
k )2

g−j =

√

√

√

√

m
∑

k=1

(τjk − τ−k )2 + (υjk − υ−k )2 + (ωjk − ω−
k )2

for j = 1, 2, · · · , n.

Step 8: Compute the relative closeness using

C∗
j =

g−j

g+j + g−j

Stage 9: So as to get the inclination request of the other options, rank the options in descending

(or ascending) order.

The procedural steps of above Algorithm are portrayed in Figure 5:
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Figure 5. Flow chart of Algorithm

Example 5.1. Assume that experts wishes to determine the most vital problems and the

main hinderance facing by desert. The experts establish a committee of four members.

Stage 1: Analyze the problem: Assume that R = {σi : i = 1, 2, · · · , 4} is the set of choices viable

and G = {gj : j = 1, 2, 3, 4} is the family of experts, where

σ1 = Poor decision making,

σ2 = Economic costs,

σ3 = Environmental and social problem, and

σ4 = Encouragement of local persons.
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Stage 2: The weighted parameter matrix, by selecting phonetic terms from Table 32, is

P = [wij ]4×4

=













F NF MF EF

NF F EF MF

MF NF F EF

EF MF NF F













=













0.50 0.25 0.75 1.00

0.25 0.50 1.00 0.75

0.75 0.25 0.50 1.00

1.00 0.75 0.25 0.50













Where wij is the weight given by the decision maker gj to the choices σi.

Stage 3: The normalized weighted matrix is

N = [ŵij ]4×4

=













0.37 0.26 0.55 0.60

0.18 0.52 0.73 0.45

0.55 0.26 0.37 0.60

0.73 0.77 0.18 0.30













and thus the weight vector is

W = (0.25, 0.24, 0.25, 0.26)

Stage 4: Suppose that the four experts give the following PmFNS matrix in which the (i, j)th

elements shows the PFN (τ, υ, ω), where choices are showed by row-wise and the PFN

assigned by experts are showed by column-wise.

G1 =













(0.61, 0.22, 0.39) (0.73, 0.52, 0.11) (0.66, 0.42, 0.33) (0.36, 0.15, 0.49)

(0.38, 0.17, 0.50) (0.48, 0.29, 0.30) (0.61, 0.00, 0.18) (0.46, 0.24, 0.17)

(0.54, 0.29, 0.32) (0.46, 0.35, 0.45) (0.24, 0.18, 0.59) (0.78, 0.55, 0.12)

(0.08, 0.37, 0.88) (1.00, 0.00, 0.00) (0.34, 0.63, 0.35) (0.69, 0.13, 0.04)













G2 =













(0.52, 0.19, 0.22) (0.39, 0.52, 0.35) (0.43, 0.61, 0.50) (0.66, 0.57, 0.14)

(0.43, 0.54, 0.29) (0.48, 0.25, 0.40) (0.76, 0.10, 0.22) (0.45, 0.53, 0.41)

(0.24, 0.26, 0.30) (0.37, 0.06, 0.19) (0.00, 0.48, 0.71) (0.33, 0.41, 0.28)

(0.36, 0.17, 0.29) (0.62, 0.28, 0.00) (0.05, 0.18, 0.77) (0.23, 0.64, 0.59)













G3 =













(0.54, 0.58, 0.38) (1.00, 0.00, 0.00) (0.52, 0.44, 0.39) (0.23, 0.10, 0.11)

(0.30, 0.59, 0.20) (0.52, 0.22, 0.33) (0.13, 0.14, 0.04) (0.51, 0.06, 0.44)

(0.41, 0.28, 0.51) (0.29, 0.64, 0.39) (0.78, 0.02, 0.16) (0.31, 0.13, 0.64)

(0.57, 0.55, 0.37) (0.36, 0.88, 0.14) (0.40, 0.00, 0.53) (0.05, 0.27, 0.77)













A. Siraj, T. Fatima, D. Afzal, K. Naeem and F.Karaaslan, PmFN Topology with Applications

Neutrosophic Sets and Systems, Vol. 48, 2022



    288

G4 =













(0.37, 0.55, 0.30) (0.43, 0.58, 0.19) (0.35, 0.28, 0.44) (0.59, 0.56, 0.17)

(0.35, 0.73, 0.12) (0.41, 0.27, 0.39) (0.67, 0.37, 0.21) (0.64, 0.16, 0.20)

(0.00, 0.28, 0.72) (0.58, 0.06, 0.41) (0.40, 0.51, 0.31) (0.35, 0.10, 0.57)

(0.47, 0.40, 0.26) (0.44, 0.51, 0.38) (0.44, 0.64, 0.26) (0.28, 0.31, 0.60)













Thus, the mean proportional matrix X is

X = [ς̇jk]4×4

=













(0.50, 0.34, 0.31) (0.59, 0.00, 0.00) (0.48, 0.42, 0.41) (0.42, 0.26, 0.19)

(0.36, 0.45, 0.24) (0.47, 0.26, 0.35) (0.45, 0.00, 0.14) (0.51, 0.19, 0.28)

(0.00, 0.28, 0.43) (0.41, 0.17, 0.34) (0.00, 0.17, 0.38) (0.41, 0.23, 0.33)

(0.30, 0.34, 0.40) (0.56, 0.00, 0.00) (0.23, 0.00, 0.44) (0.22, 0.29, 0.32)













where ς̈jk = wk × ς̇jk

Stage 5: The weighted PmFN matrix is

Y = [ς̈jk]4×4

=













(0.13, 0.09, 0.08) (0.14, 0.00, 0.00) (0.12, 0.11, 0.10) (0.11, 0.07, 0.05)

(0.09, 0.11, 0.06) (0.11, 0.06, 0.08) (0.11, 0.00, 0.04) (0.13, 0.05, 0.07)

(0.00, 0.07, 0.11) (0.10, 0.04, 0.08) (0.00, 0.04, 0.10) (0.11, 0.06, 0.09)

(0.08, 0.09, 0.10) (0.13, 0.00, 0.00) (0.06, 0.00, 0.11) (0.06, 0.08, 0.08)













Stage 6: Thus, PmFNS-PIS and PmFNS-NIS, are respectively

PmFNSV-PIS = {ς̈+1 , · · · , ς̈+4 }

= {(0.13, 0.07, 0.06), (0.14, 0.00, 0.00), (0.12, 0.00, 0.04), (0.13, 0.05, 0.05)}

and

PmFNSV-NIS = {ς̈−1 , · · · , ς̈−4 }

= {(0.00, 0.11, 0.11), (0.10, 0.06, 0.08), (0.00, 0.11, 0.11), (0.06, 0.08, 0.09)}

Stage 7 and 8: The Euclidean separation of every issue from PmFNS-PIS and PmFNS-NIS and cor-

responding relative coefficients of closeness are given in Table 33:

Table 33. Separation and coefficient of closeness of each issue

Issue (ς̈i) g+i g−i C∗
i

ς̈1 0.13 0.22 0.63

ς̈2 0.12 0.78 0.87

ς̈3 0.23 0.10 0.30

ς̈4 0.14 0.18 0.56
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Stage 9: Thus, the preference ranking of the issues is

ς̈2 ≻ ς̈1 ≻ ς̈4 ≻ ς̈3

This ranking is portrayed in Figure 6:

Figure 6. Ranking of alternatives

Hence, in view of above ranking, it may be concluded that poor decision making is the core

issue.

6. Conclusion

We reviewed fuzzy set theory along with its tabular illustration and examples briefly. We

established the axiomatic definitions of Pythagorean m-polar fuzzy neutrosophic set. We pre-

sented some fundamental properties of Pythagorean m-polar fuzzy neutrosophic topological

space (PmFNTS) by numerous characteristics of crisp topology on the way to the PmFNTS.

We defined Pythagorean m-polar fuzzy separation axioms. T0, T1, T2, T3 and T4 spaces are

modified in the aspects of PmFNS.

We presented example of decision making from real world situations based on TOPSIS ac-

companied by case study. We presented algorithm and flowcharts of method for comfort. We

also showed 3D bar chart with application to make the contrast between different alternatives

effectively.

These above mentioned concepts can be used in several real world difficulties such as in econom-

ics, business, robotics, medical sciences, water management, electoral systems, transportation

problems and much more. We hope that this paper will gives new ideas to the researchers to

promote research work in this field.

The notions presented in this article may be extended to define other sorts of topological

structures like nano topology and pentapartitioned topology etc.
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Abstract: Operations on neutrosophic numbers generalize operations on crisp numbers. In this 
way, the neutrosophic approach quantifies data ambiguity and enables the generalization of the 
existing statistical model. This study presents an extension of the conventional exponential 
distribution in a neutrosophic context. Neutrosophic generalization is restricted to characterize the 
properties of the neutrosophic exponential distribution (NED); however, related results can   
to other stochastic models for handling the situations involving uncertainties or vagueness in 
processing data. All essential features of the proposed NED, such as neutrosophic moments, 
neutrosophic distribution function, and other related quantities, are explored. The mathematical 
results in this work lay the groundwork for using the exponential distribution to produce drivers 
for other generalized models. The neutrosophic logic of the proposed model is illustrated with 
examples. The estimation technique for treating the imprecision in the unknown parameter is 
established. The performance of the estimator neutrosophic estimator has been evaluated through 
Monte Carlo simulation. Simulation findings reveal that a larger sample size provides reliable 
estimation results. 

Keywords: Neutrosophic probability; neutrosophic distribution; exponential model; estimation 

Probability distributions are now an essential part of every scientific research. Several real-
world random events are described by these probability models [1]. A basic statistical probability 
model is commonly applicable to problems encountered by researchers. One of the most common 
continuous distributions is the exponential distribution [2]. The exponential model is considerably 
connected with the Poisson distribution [3]. It is commonly utilized as a model to measure the time 
between events occurrence. Some examples of its application include measuring the time associated 
with obtaining a faulty component on an assembling line in an engineering framework, predicting 
the risk of a portfolio of financial assets on next default and calculating radioactive decay in physics 
[4]. It is also used to estimate the probability of a certain number of defaults occurring during a 
particular time period [5]. The exponential distribution is an adequate failure model for describing 
the failure patterns of many components and devices with constant hazard rates in reliability 
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analysis [6]. In hydrology, the exponential distribution is frequently used to examine extreme 
values of yearly or monthly maximum river flow and total rainfall [7]. A DNA strand length 
between mutations or the distance between roads fatalities are examples of situations where 
exponential variables may also be used to describe the likelihood of events occurring at a constant 
rate per unit distance [8-9].  

In this study, a novel generalization of the NED has been described with the primary goal of 
incorporating vague information about the study variables. The exponential distribution is 
considered a neutrosophic version because it is a versatile model that can reflect a wide range of 
distribution forms. This extension provides a broader and clear analysis of the studied variables 
under consideration. The neutrosophic extension of the exponential model paves the path for 
working with other classical probability models established for the precisely described datasets. 
This study presents the NED in a way that the conventional logic of the exponential model cannot 
handle the many applied data problems. This generalization is based on the notion of neutrosophy 
presented by Smarandache [10]. The analysis of false or true statements, but indeterminate, neutral, 
inconsistent, or something in between, is oriented by Neutrosophic logic [11]. Every area has its 
neutrosophic component, namely the indeterminacy part, on the mathematical side. Smarandache 
made the first effort to use the neutrosophic approach in statistics, precalculus, and calculus to cope 
with imprecision in study variables [12]. As a result, neutrosophic statistics have given rise to 
research topics that deal with the effect of indeterminacy in statistical modeling. Some recent 
literature has recently made the first step toward describing the neutrosophic principle of statistical 
modeling [13-16]. Neutrosophic measures probability and descriptive statistical are discussed in 
[17]. Neutrosophic decision-making applications in quality control seem to be very efficient [18]. 
Alhabib et al. first looked at the neutrosophic algebraic structures of probability distributions [19]. 
Some recent work on neutrosophical probabability distributions can be seen in [20-23]. 
Nevertheless, works focusing on neutrosophic statistics have always relied on the applications side 
of the neutrosophic logic, and algebraic structures of probability distributions have rarely been 
addressed. 

The work is structured as follows: The NED and algebraic framework of the neutrosophic 
numbers are given in section 2. Mathematical properties of the proposed NED are provided in 
section 3. Section 4 demonstrates some examples of the NED. The estimation approach for the 
imprecise parameter of NED is established in section 5. A simulation study for demonstrating the 
performance of the NML estimator is carried out in section 6.  A real application of the proposed 
model is given in section 7. Lastly, section 8 summarizes the research findings. 

2. Preliminaries  

All essential features of the proposed NED, such as moments, shape coefficients, and the 
moment generating function, are based on the algebraic framework of the neutrosophic numbers. Let 
M = (tm , im , fm )  and N = (tn , in , fn )  are two single-valued neutrosophic numbers with 
tm , tn , im , in , fm , fn ∈ [0,1] , 0 ≤ tm , im , fm ≤ 3  and 0 ≤ tn , in , fn ≤ 3  then the following operation are 
commonly employed in the framework of the neutrosophic algebra [16]: 
M⨁N = (tm + tn − tm tn , im in + fm  fn )        (1) 
M ⊗ N = (tm tn , im +in − tn , fm + fn − fm  fn  )       (2) 
ωM = (1 − (1 − tm )ω , tm

ω , fm
ω);         (3) 

Mω = (tm
ω − 1 − (1 − im )ω , 1 − (1 − fm )ω),      (4) 

where the scalar ω > 0, 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔 ∈ 𝑅𝑅. 
Equations (1), (2), (3) and (4) represent neutrosophic summation, neutrosophic multiplication, scalar 
multiplication and neutrosophic power respectively. Likewise, the single-valued neutrosophic 
operations can be extended to neutrosophic sets. 
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Definition 2.1 Neutrosophic data extends the classic data that contain some imprecise, vague or 
indeterminacy in some or all values. In general terms, it can be represented as: 
x = constant + I,  
where I ∈ [u, l]; for example, 7 + I where I ∈ [3, 3.5].  
Definition 2.2 The neutrosophic random variable W, which equals the distance between successive 
events in a Poisson process, follows the NED model with the following neutrosophic density 
function (PDFN ). 
φN (w) = θN exp(−wθN );  w > 0, and  z > 0,      (5) 
where θN ∈ {θl , θu } . Figure 1 shows the form of the distribution with neutrosophic parameter 
θN = {0.25,0.50}, {1.00,1.50} and {2.00, 2.50} if the data are believed to be NED. 

 
 

 
Figure 1 Neutrosophic density graph of the NED 
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Figure 1 shows the neutrosophic area because of the indeterminate value of the failure rate parameter 

θN . It is clearly demonstrated from Figure 1 that parameter settings may be changed to create a variety 

of neutrosophic exponential curves. 

3. Some useful functions of the proposed NED 

In this section, some widely used properties of the NED can be established in the form of the 
following theorems: 
Theorem 1. Show that rth moment of the NED is Γ(r+1)

θN
r  

Proof By definition the rth moment of the NED can define as:  

μrN
′ = � wrθN exp(−wθN )dw

∞

0
 

        = � wr
∞

0
[θlexp(−wθl), θu exp(−wθu )]dw 

        = �∫ wrθlexp(−wθl)dw∞
0 ,   ∫ wrθu exp(−wθu )dw∞

0 �      (6) 
By substituting y = wθN , we get from (6) 

� wrθlexp(−wθl)dw
∞

0
=  

 Γ(r + 1)
θl

r  

� wrθlexp(−wθl)dw
∞

0
=   
Γ(r + 1)
θu

r  

Thus (6) provides  

= �
 Γ(r + 1)
θl

r ,
Γ(r + 1)
θu

r    � 

Hence, 
μrn
′ =   Γ(r+1)

θN
r             where r = 1, 2, 3,        (7) 

Thus first four raw moments can be derived as: 
μ1N
′ = 1

θN
, μ2N
′ = 1

2θN
2 , μ3N

′ = 1
6θN

3  and μ4N
′ = 1

24θN
4  

Theorem 2. The distribution function ΦN (w) of the NED is 1 − exp(−wθN ). 
Proof The result of the distribution function is obtained by solving the following expression: 

ΦN (w) = � φN (w)dw
w

0

 

              = 1 − exp(−wθN )         (8) 
Sketch of the CDF function of the proposed NED with neutrosophic parameter 𝜃𝜃𝑁𝑁 = {1.5, 2} is displayed in 

Figure 2. 
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Figure 2 CDF curve of the NED with θN = {1.5, 2} 

Theorem 3. The median of the NED is �ln(2)
θ l

, ln(2)
θu

�. 

Proof Neutrosophic median (MN) is the solution of the following expression: 

� ΦN(w)dw

MN

0

= �
1
2

,
1
2
� 

�∫ Φl(w)dw,   ∫ Φu (w)dMN
0

MN
0 � = �1

2
, 1

2
�        (9) 

where Φl(w) = 1 − exp(wθu ) and Φu (w) = 1 − exp(wθu ). 

Analytical simplification of (9) implies: 

MNθl = ln(2) 

MNθu = ln(2) 

Implying thereby MN = �ln(2)
θu

, ln(2)
θ l
�. 

Theorem 4. First quantile (QIN ) and the third quantile (Q3N) of the NED are �
ln(4

3)

θu
,

ln(4
3)

θ l
� and 

�ln(4)
θu

, ln(4)
θ l
� respectively. 

Proof The  QIN  and Q3N  by definition are corresponded to solutions such as:  
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� ΦN (w)dw

QIN

0

= �
1
4

,
1
4
� 

� ΦN (w)dw

Q3N

0

= �
3
4

,
3
4
� 

Therefore following theorem 3, we can write: 

QIN = �ln(4)
θu

, ln(4)
θ l
� and Q3N = �

ln(4
3)

θu
,

ln(4
3)

θ l
�. 

Theorem 5 The mean of the NED is  1
θN

 

Proof The neutrosophic mean of the NED is determined as: 

μN = �ωN (w)dw
∞

0

 

= �[ωl(w),ωu (w)]dw
∞

0

  

= �� exp(−wθl)dw, � exp(−wθu )dw
∞

0

∞

0

� 

= �
1
θu

,
1
θl

  � 

= 1
θN

. `          (10) 

Theorem 6. The variance of the NED is 1
θ2N

  

Proof  By definition variance is 

σN
2(W) = E(W2) − (μN )2         (11) 

where σN
2(W) stands for neutrosophic variance 
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Now  E(W2) = ∫ w2φN(w)dw∞
0          (12) 

Since φN (w) = −ωN (w)́  

It follows:  

E(W2) =
2
θN

�ωN (w)dw
∞

0

 

             =
2
θN

�[ωl(w),ωu (w)]dw
∞

0

 

           =
2
θN

�� exp(−wθl)dw, � exp(−wθu )dw
∞

0

∞

0

� 

          =
2
θN

�
1
θu

,
1
θl

  � 

         = �
2
θ2

u
,

2
θ2

l
  � 

Thus (11) yields 

σN
2(W) = � 2

θ2u
, 2
θ2l

  � − �� 1
θu

, 1
θ l

  ��
2
       (13) 

Simplifying (13) provides 

σN
2(W) = � 1

θ2u
, 1
θ2l

  �          (14) 

Likewise, the other properties of the NED can be established in a neutrosophic environment. Some 

applications of the proposed model are presented to understand the initial concepts derived for the 

NED. 

4. Illustrative Examples 

In this section the notion of the NED has been described with a series of examples in the area 

of applied statistics. 
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Example1 Hits to certain website follow a Poisson process with an average of {2,4} hits per hour in 

a day. Let the time between two hits is denoted by the random variable W. Find the probability that 

waiting time is less than an hour. 

Solution Poisson distribution is connected with the exponential distribution. The waiting time 

between Poisson events occurring follows the exponential distribution. 

Using theorem 2 we can write: 

P(W < 1) = ΦN(1) 

= 1 − exp(−w{2,4}) 

= {0.86, 0.98} 

Thus chance to hit the website less than an hour is {86, 98}%. 

Example 2 Failure mechanism of the alternators used in automobiles follows the NED for an 

average lifespan of [8, 12] years. Mr. Adnan buys a six years old car with a functioning alternator to 

keep it for eight years. Determine the probability of the alternator failing during his possession. 

Solution Let W denote the neutrosophic random variable that follows NED. 

Given that μN = � 1
θu

, 1
θ l

  � = [8, 12] years 

This implies [θl , θu ] = [0.083, 0.125] 

Now the required probability: 

P[W < 8] = ΦN (8)  

= [0.079, 0.117] 

Thus the chance that the alternator fails during his ownership is approximated by [8, 12]%. 

Example 3 Let an electrical device has a certain component whose failure time (in months) is 

determined by the random variable W that is nicely modelled by the NED with average time to 

failure equal to {5, 6}. What is the probability that the component would  still be functional after 4 

months? 

Solution Using (1) we can write: 
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P(W > 6) = �{5, 6}exp(−w{5, 6})dw
∞

4

 

= 1 −�{5, 6}exp(−w{5, 6})dw
4

0

 

Using the result given in the theorem 2 we can write: 

= 1 − ΦN (4) 

= {0.48, 0.55} 

5. Sample Estimation 

The method for estimating the parameter of the NED namely neutrosophic maximum 

likelihood estimation (NML) estimation has been introduced. Let we haves n sample {Xi , i = 1,2, . . n} 

values are taken from the NED. The question is, which value of the neutrosophic parameter should 

be used for the observed sample?. This value can be determined by the likelihood function of the 

neutrosophic model. As neutrosophy exist in the parameter of the NED, therefore NML function of 

the NED is given by: 

ϖN (w, θN ) = nlogθN − θN ∑ wi
n
i         (15) 

The NML estimates namely θ�L  and θ�U  can be obtained by solving the following expression: 

=
δϖN (w, θN )

δθN
 

Using the neutrosophic calculus [12], yielded 

= �δϖL (w,θ l )
δθu

, δϖU (w,θu )
δθ l

�         (16) 

where ϖL(w, θl) = nlogθl − θL ∑ wi
n
i  and ϖN (w, θu ) = nlogθu − θu ∑ wi

n
i  

Simplification of (15) provides: 

δϖN (w,θN )
δθN

= � n
θ l
− ∑ wi

n
i , n

θu
− ∑ wi

n
i �       (17) 

Setting (17) equating to [0, 0] provides: 
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θ� l = n
∑ wi

n
i

 and θ�u = n
∑ wi

n
i

 

Thus 

θ�N = �θ� l , θ�u� = n
∑ wi

n
i

 which is a single crisp value and coincides with the classical MLE.  

However, if imprecision in the observed data (z�) is considered then NML of the neutrosophic 

parameter would be modified as: 

θ�N = �θ� l , θ�u� = �n
A

, n
B
�          (18) 

where 

A = minw� = sum ofthe minmum values of the neutrosophic  dataset  

B = maxw� = sum of the maximum values of the neutrosophic dataset 

6 Simulation Analysis 

In this part, the performance of the NML estimator has been assessed in terms of the 
neutrosophic average biased (𝐴𝐴𝐴𝐴𝑁𝑁) and neutrosophic root mean square error (𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁) as defined 
below [21]: 

𝐴𝐴𝐴𝐴𝑁𝑁 =
∑ �𝜃𝜃�𝑁𝑁𝑁𝑁 − 𝜃𝜃𝑁𝑁�𝑁𝑁
𝑁𝑁=1

𝑁𝑁
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁 = �∑ �𝜃𝜃�𝑁𝑁𝑁𝑁 − 𝜃𝜃𝑁𝑁�
2𝑁𝑁

𝑁𝑁=1

𝑁𝑁
 

A Monte Carlo simulation is run in R software with various sample sizes and fixed value of the 
neutrosophic parameter 𝜃𝜃𝑁𝑁 = [0.5, 1.5]. An imprecise dataset is generated using the NED with 
𝜃𝜃𝑁𝑁 = [0.5, 1.5] and simulation analysis is replicated for a total of 𝑁𝑁 = 10000 times with sample 
sizes of  𝑎𝑎 = 5, 15, 30, and 60, respectively. The performance measures of the NML estimator are 
then computed and given in Table 1. 
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Performance of NML estimate of the NED for simulated neutrosophic data 

𝑨𝑨𝑨𝑨𝑵𝑵 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑵𝑵

5 [0.124, 0.373] [0.384, 1.143] 

15 [0.035, 0.106] [0.152, 0.457] 

30 [0.017, 0.051] [0.098, 0.296] 

60 [0.008, 0.025] [0.067, 0.201] 

150 [0.003, 0.009] [0.041, 0.125] 

300 [0.002, 0.005] [0.029, 0.087] 

It can be seen from the results, as the sample size 𝑎𝑎 goes up, the biases 𝐴𝐴𝐴𝐴𝑁𝑁and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁 decrease. 
Thus, the study concluded that the NML estimator provides reliable estimation with a larger 
sample size. 

7 Real Application 

In this section, real data has been used to illustrate the application of the proposed model. The data 
used for analysis is taken from the source [24]. Data contains the lifetime failures (in hours) of air 
conditioning instrument used in 720-Boeing planes. To check the adequacy of exponential model, 
an informal procedure of some necessary graphs have been used. The graphical diagnostic of the 
exponential model along with other candidate models to failure time data is displayed in Figure 3. 
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Figure 3 Model fitting to failure time data using the candidate exponential family models 

Figure 1 emphasizes the adequacy of the exponential distribution on life failures data. Theoretical 
lines in these necessary graphs from the exponential are shown with colored lines. Theoretical fits 
show the appropriateness of the exponential model among the predefined set of candidate 
probability models for the observed variable. Figure 1 describes that the exponential good fits the 
data at both tails and center of the empirical distribution.  It has been assumed that all data values 
are not précised defined, and some values involve uncertainties and are given in the form of 
intervals. These uncertain observations are intentionally created according to the methodology 
defined in [25]. The indeterminate failure times data is given in Table 2. 
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Table 2 The lifetime failures of air conditioning instrument used in 720-Boeing planes 

The conventional exponential model cannot be used to analyze such data, as shown in Table 2. The 
values in Table 2 are provided in intervals because indeterminacies or exact values failure times are 
not recorded perfectly. On the contrary, the proposed exponential distribution can easily analyze 
such data. A descriptive summary of the failure times data rooted in the proposed model is shown 
in Table 3. 

Table 3 Descriptive summary of failure times data using the proposed model 

Descriptive Summary 

Estimated Rate parameter [0.011, 0.012] 

Estimated Mean [82, 84] 

Estimated Variance [6888, 7051] 

The estimated values for rate, mean, and variance are in intervals due to indeterminacies in the 
observed data. Thus, the proposed model analyzes data more efficiently than the conventional 
model. 

8 Conclusions 

A new generalization of the classical exponential model, namely NED, has been presented in 
this work. The notion of neutrosophic theory has been utilized in order to quantify ambiguity in the 
absence of accurate distribution theory for analyzing data. The mathematical form of the proposed 
NED in a neutrosophic environment is thoroughly presented. The analytical expressions for the key 

Failure times (in hours) 

[89.40, 90.80] [ 9.90, 10.02] [59.12, 60.66] [185.71, 186.66] [ 60.80, 61.95] 

[48.25, 49.21] [13.05, 14.71] [23.17, 24.45] [55.36,  56.80] [19.44,  20.25] 

[78.29, 79.10] [ 83.91, 84.18] [ 43.33,  44.11] [58.43,  59.11] [28.28, 29.24] 

[117.22, 118.90] [24.12, 25.00] [155.83,  156.07] [309.10,  310.47] [75.511, 76.43] 

[ 25.51,  26.19] [ 43.99,  44.70] [22.82, 23.96] [ 61.87, 62.64] [129.82, 130.38] 

[207.23, 208.68] [ 69.28, 70.63] [100.07, 101.48] [207.97, 208.16]  
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properties of the proposed model, including neutrosophic moments, neutrosophic distribution 
function, and other related quantities, are derived. Some applicability examples of the NED mainly 
for the processing indeterminacies in data have been provided. An estimation approach of the 
maximum likelihood to estimate the parameter of the NED for dealing with imprecise data values is 
developed. To validate the performance of the neutrosophic estimator, a simulation study has been 
carried out. The simulation results demonstrate that indeterminate sample data with a larger size 
may be used to accurately estimate the unknown parameter of the proposed model. 
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Abstract. In 1998, Smarandache introduced the new theory - Neutrosophic sets. In order to achieve the

best results in a current situation, policy makers must contend with uncertainty and unpredictability. The

neutrosophic definition aids in the investigation of ambiguous or indeterminate values. Here, we have the

amalgamated the theory of Single Valued Neutrosophic Vertex Coloring and r-dynamic coloring to introduce

a new thought Single Valued Neutrosophic R-dynamic Vertex Coloring (SVNRVC) and have shown example.

Further we have determined the Single Valued Neutrosophic R-dynamic chromatic number χv
R(G) for some

graphs.

Keywords: Single Valued Neutrosophic Graph; Single Valued Neutrosophic Vertex Coloring; Single Valued

Neutrosophic R-dynamic Vertex Coloring.

—————————————————————————————————————————-

1. Introduction

Graph Theory dates back to the year 1736 when the famous Mathematician Leonard Euler

solved the Problem of Seven Bridges of Konigsberg. Graphs are mathematical structures

made up of a set of vertices connected by edges. Many complex real-world problems can be

successfully analysed using graphs as mathematical models. It can be used in a variety of fields

such as chemical and physical sciences, networks, maps, sudoku, operations research, and so

on. Graph coloring is a sub-discipline with graph theory. The famous Four Color Problem,

posed by graduate student Francis Guthrie in 1852, inspired the problem of graph coloring. Is

it possible to color the countries on the map with four or fewer colors so that any two countries

sharing a border are colored differently? It was later on demonstrated by Appel and Haken in
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1976. Graph coloring is the process of assigning colors to the elements of graph while keeping

some constraints in mind.

Zadeh [26] proposed the theory of fuzzy sets way back in 1965, and ten years hence A.

Rosenfeld [21] developed further work on fuzzy graph theory. Munoz et al. [24] first proposed

the fuzzy chromatic number in 2004, and C. Eslahchi et al. [13] expanded it further in 2006.

The idea of fuzzy total coloring was first suggested by S. Lavanya and R. Sattanathan [15] in

2009. In 2012 Arindam Dey and Anita Pal discussed fuzzy vetex coloring using α-cut of fuzzy

graphs in [6]. In a research paper published in 2014, the strong chromatic number of such

graphs was addressed by Anjaly Kishore, M.S.Sunitha [4].

Intuitionistic fuzzy sets are used to deal with data on membership and non-membership

values. In 1986, Kassimir T. Atanassov [5] proposed the theory of intuitionistic fuzzy sets, and

in 1999, he proposed the notion of intuitionistic fuzzy graphs. In 2015, Ismail and Rifayathali

[14] examined intuitionistic fuzzy graph coloring using (α, β) cuts, while Rifayathali et al. [17] in

2017 and 2018 published articles on intuitionistic fuzzy and strong intuitionistic fuzzy coloring.

The membership and non-membership principles are inadequate to determine the outcome

of all real-time scenarios. Where the vagueness or indeterminacy qualities of a decision need to

be weighed, intuitionistic fuzzy logic is inadequate to provide a solution. As a consequence of

this condition, F. Smarandache devised a solution: ”Neutrosophic logic.” Neutrosophic logic

is important in a number of real-world problems, including law, business, medicine, finance,

information technology and so on. Thus in 1998 Smarandache [22] introduced the thought

of Neutrosophic sets which is a generalized version of intuitionistic fuzzy set which includes

three types of values: truth, indeterminacy and false membership values. In 2010, Wang et

al. [25] investigated single valued neutrosophic sets. Dhavaseelan et al. [12] put forward and

discussed the Strong Neutrosophic graphs in 2015, and Akram and Shahzadi [1–3] introduced

and discussed the Single Valued Neutrosophic definition in 2016. Broumi et al. [7–11] built on

their previous work in the areas of single-valued neutrosophic graphs. In their paper published

in 2018, Dhavaseelan et al. [12] addressed single valued co-neutrosophic graphs. In 2018, Sinha

et al. [23] widened the scope of the single-valued work for signed digraphs.

In the research articles [18, 19] published in 2019 Rohini et al. introduced the thought of

single valued neutrosophic vertex, edge and total coloring of SVNG with examples. Further

in [20] Rohini et al. have extended their work on single valued neutrosophic vertex coloring

and put forward the new idea of single valued neutrosophic irregular vertex coloring.

The idea of r-dynamic coloring was put forward by Bruce Montgomery in [16]. The r-

dynamic coloring of a graph is a proper coloring of the graph such that for each vertex u, the

neighbors of the vertex u receives min{r, d(v)} different colors. Here we have integrated the

thought of single valued neutrosophic vertex coloring and r-dynamic coloring to introduce the
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new idea of Single Valued Neutrosophic R-dynamic Vertex Coloring and have shown example.

Further we have determined the Single Valued Neutrosophic R-dynamic chromatic number

χv
R(G) for some graphs.

2. Preliminaries

Definition 2.1. [22] Assume S be a collection of points(objects). A neutrosophic set X

in S is represented by truth membership function tX(s), an indeterminacy function iX(s)

and a falsity membership (non-membership) function fX(s). tX(s), iX(s) and fX(s) are real

standard or non-standard subsets of ]0−, 1+[ which means tX(s) : S →]0−, 1+[, iX(s) : S →
]0−, 1+[ and fX(s) : S →]0−, 1+[. Also 0− ≤ tX(s) + iX(s) + fX(s) ≤ 3+.

Definition 2.2. [2] A Single Valued Neutrosophic Graph (SNVG) G = (P,Q) is a

pair where P : N → [0, 1] is a single valued neutrosophic set on N and Q : N ×N → [0, 1] is a

single valued neutrosophic relation on N with the following properties:

tQ(uv) ≤ min{tP (u), tP (v)}
iQ(uv) ≤ min{iP (u), iP (v)}
fQ(uv) ≤ max{fP (u), fP (v)}
for all u, v ∈ N . The sets P and Q are said to be single valued neutrosophic vertex set and

edge set of G respectively. The single valued neutrosophic relation Q is symmetric if it satisfies

tQ(uv) = tQ(vu), iQ(uv) = iQ(vu) and fQ(uv) = fQ(vu) for all u, v ∈ N .

Definition 2.3. [3] An SVNG G = (P,Q) is called a complete neutrosophic graph

(CSVNG) if it complies criteria below:

tQ(uv) = min{tP (u), tP (v)}
iQ(uv) = min{iP (u), iP (v)}
fQ(uv) = max{fP (u), fP (v)}
for all u, v ∈ P .

Definition 2.4. [3] The complement of a SVNG G = (P,Q) is a SNVG G′ = (P ′, Q′) where

i)P ′ = P

ii)t′P (u) = tP (u), i′P (u) = iP (u) and f ′P (u) = fP (u)

iii)t′Q(uv) = {
min{tP (u), tP (v)} if tQ(uv) = 0

min{tP (u), tP (v)} − tQ(uv) if tQ(uv) > 0

iv)i′Q(uv) =

{
min{iP (u), iP (v)} if iQ(uv) = 0

min{iP (u), iP (v)} − iQ(uv) if iQ(uv) > 0

v)f ′Q(uv) =

{
max{fP (u), fP (v)} if fQ(uv) = 0

max{fP (u), fP (v)} − fQ(uv) if fQ(uv) > 0
for all u, v ∈ P.
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Definition 2.5. [3] An SVNG G = (P,Q) is said to be a strong neutrosophic graph

(SSVNG) if it complies criteria:

tQ(uv) = min{tP (u), tP (v)}
iQ(uv) = min{iP (u), iP (v)}
fQ(uv) = max{fP (u), fP (v)}
for all (u, v) ∈ Q.

Definition 2.6. [18] The collection Γ = {γ1, γ2, · · · , γk} of SVN fuzzy sets is termed as k-

Single Valued Neutrosophic Vertex Coloring(SVNVC) of a SVNG G = (P,Q) if the

following criteria hold:

1. ∨γj(u)= P, ∀u ∈ P
2. γj ∧ γh = 0

3. For each incident vertices of the edge uv of G, min{γj(tP (u)), γj(tP (v))} = 0,

min{γj(iP (u)), γj(iP (v))} = 0 and max{γj(fP (u)), γj(fP (v))} = 1, (1 ≤ j ≤ k).

This is indicated as χv(G) and is termed as the SVN chromatic number of the SVNG G.

Example: Consider the following SVNG G1 = (P,Q) with SVN vertex set P =

{v1, v2, v3, v4} and SVN edge Q = {vjvk|jk = 12, 13, 14, 23, 25, 34} with

(tP (vj), iP (vj), fP (vj)) =


(0.2, 0.3, 0.7) j = 1

(0.7, 0.2, 0.8) j = 2

(0.6, 0.5, 0.9) j = 3

(0.5, 0.4, 0.6) j = 4

Figure 1. G1

(tQ(vjvk), iQ(vjvk), fQ(vjvk)) =


(0.2, 0.2, 0.7) jk = 12, 13, 14

(0.6, 0.2, 0.9) jk = 23

(0.5, 0.4, 0.6) jk = 34
Figure 1 depicts the SVNG G1.

Let Γ = {γ1, γ2, γ3} be collection of SVN fuzzy sets determined on P as below:
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γ1(vj) =

{
(0.2, 0.3, 0.7) for j = 1

(0, 0, 1) for otherwise

γ2(vj) =


(0.7, 0.2, 0.8) for j = 2

(0.5, 0.4, 0.6) for j = 4

(0, 0, 1) for otherwise

γ3(vj) =

{
(0.6, 0.5, 0.9) for j = 3

(0, 0, 1) for otherwise

Hence the family Γ = {γ1, γ2, γ3} assures the criteria of SVNVC of the graph G. Any collection

with points less than three points will not fulfill our definition. Hence χv(G1) = 3.

Definition 2.7. [20] The collectiom Γ = {γ1, γ2, · · · , γk} of SVN fuzzy sets is called a k-

Single Valued Neutrosophic Irregular Vertex Coloring (SVNIVC) of a SVNG G =

(P,Q) if the following criteria hold:

1. ∨ γj (u) = P, ∀u ∈ P
2.γj ∧ γh = 0

3. For each incident vertices of edge uv of G, min{γj(tP (u)), γj(tP (v))} = 0, min{γj(iP (u)),

γj(iP (v))} = 0 and max{γj(fP (u)), γj(fP (v))} = 1, (1 ≤ j ≤ k).

4. All the vertices have different color codes.

This is depicted as χv
ir (G) and is termed as the SVNI chromatic number of the SVNG G.

Definition 2.8. [8] Path Pn in a single valued neutrosophic graph G = (P,Q) is an ar

rangement of distinct vertices v1, v2, · · · , vn which complies the criteria tQ(vj−1, vj) > 0,

iQ(vj−1, vj) > 0 and fQ(vj−1, vj) > 0 for 2 ≤ j ≤ n.

Definition 2.9. [8] A cycle Cn in a single valued neutrosophic graph G = (P,Q) is a

sequence of distinct vertices v1, v2, · · · , vn, v1 which satisfies the condition tQ(vi−1, vi) > 0,

iQ(vi−1, vi) > 0 and fQ(vi−1, vi) > 0 for 2 ≤ i ≤ n together with tQ(vn, v1) > 0, iQ(vn, v1) > 0

and fQ(vn, v1) > 0.

3. Single Valued Neutrosophic R-dynamic Vertex Coloring

Definition 3.1. A family Γ = {γ1, γ2, · · · , γk} of SVN fuzzy sets is termed as k-Single

Valued Neutrosophic R-dynamic Vertex Coloring (SVNRVC) of a SVNG G = (P,Q)

if the following criteria hold:

1. ∨ γj (u) = P, ∀u ∈ P
2.γj ∧ γh = 0

3. For each incident vertices of edge uv of G, min{γj(tP (u)), γj(tP (v))} = 0, min{γj(iP (u)),

γj(iP (v))} = 0 and max{γj(fP (u)), γj(fP (v))} = 1, (1 ≤ j ≤ k).

4. Every vertex u with m number of incident edges, the corresponding incident vertices of the

vertex u receives atleast min{R,m} different members(colors) from the set Γ.
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Here, 1 ≤ R ≤M where M represents the maximum number of incident edges of the vertices

of SVNG G.

The least value of k is the SVNRVC of SVNG G is denoted as χv
R(G), is called the Single

Valued Neutrosophic R-dynamic chromatic number.

Example: Examine SVNG G2 = (P,Q) with SVN vertex set and edge set P =

{v1, v2, · · · , v5} and Q = {vjvk|jk = 12, 13, 14, 23, 25, 34, 35, 45} respectively:

(tP (vj), iP (vj), fP (vj)) =


(0.4, 0.2, 0.7) j = 1

(0.6, 0.3, 0.4) j = 2, 3

(0.3, 0.1, 0.6) j = 4

(0.7, 0.4, 0.3) j = 5

(tQ(vjvk), iQ(vjvk), fQ(vjvk)) =


(0.4, 0.2, 0.6) jk = 12, 13

(0.3, 0.1, 0.6) jk = 14, 34, 45

(0.6, 0.3, 0.4) jk = 23, 25, 35
Figure 2 depicts the SVNG G2.

Here M = 4 so 1 ≤ R ≤ 4

Figure 2. G2

For 1 ≤ R ≤ 2 let Γ = {γ1, γ2, γ3} denote collection of SVN fuzzy sets determined on P as

below:

γ1(vj) =


(0.4, 0.2, 0.7) for j = 1

(0.7, 0.4, 0.8) for j = 5

(0, 0, 1) for otherwise
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γ2(vj) =


(0.6, 0.3, 0.4) for j = 2

(0.3, 0.1, 0.6) for j = 4

(0, 0, 1) for otherwise

γ3(vj) =

{
(0.6, 0.3, 0.4) for j = 3

(0, 0, 1) for otherwise

Hence the family Γ = {γ1, γ2, γ3} assures criteria of SVNRVC of the graph G. Any collec-

tion with points lesser than three points will not fulfill our definition. Hence χv
R(G2) = 3 for

1 ≤ R ≤ 2.

For 3 ≤ R ≤ 4 let Γ = {γ1, γ2, γ3, γ4, γ5} be collection of SVN fuzzy sets determined on P.

γ1(vj) =

{
(0.4, 0.2, 0.7) for j = 1

(0, 0, 1) for otherwise

γ2(vj) =

{
(0.6, 0.3, 0.4) for j = 2

(0, 0, 1) for otherwise

γ3(vj) =

{
(0.6, 0.3, 0.4) for j = 3

(0, 0, 1) for otherwise

γ4(vj) =

{
(0.3, 0.1, 0.6) for j = 4

(0, 0, 1) for otherwise

γ5(vj) =

{
(0.7, 0.4, 0.3) for j = 5

(0, 0, 1) for otherwise

Hence the family Γ = {γ1, γ2, γ3, γ4, γ5} assures criteria of SVNRVC of the graph G. Any collec-

tion with points lesser than below five points will not fulfill our definition. Hence χv
R(G2) = 5

for 3 ≤ R ≤ 4. Hence χv
R(G) =

{
3 for 1 ≤ R ≤ 2

4 for 3 ≤ R ≤ 4

Remark 3.2. For any SVNG G we have χv(G) ≤ χv
R(G).

Theorem 3.3. Let n ≥ 3, Pn be a path graph then χv
R(Pn) =

{
2 for R = 1

3 for R = 2

Proof:

For the path graph Pn, 1 ≤ R ≤ 2.

Let Γ = {γ1, γ2} be collection of fuzzy sets determined on vertices V (Pn) = {u1, u2, · · · , un}
for R = 1 as follows:

γ1(uk) =

{
(tP (uk), iP (uk), fP (uk)) for k is odd

(0, 0, 1) for otherwise

γ2(uk) =

{
(tP (uk), iP (uk), fP (uk)) for k is even

(0, 0, 1) for otherwise

Thus the family Γ = {γ1, γ2} assures the conditions of SVNRVC of Pn. Any families with less

than two points did not meet our criteria of the definition.

Thus χv
1(Pn) = 2.

When R = 2, let Γ = {γ1, γ2, γ3} be collection of fuzzy sets determined on vertices V (Pn):
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γ1(uk) =

{
(tP (uk), iP (uk), fP (uk)) for k ≡ 1(mod 3)

(0, 0, 1) for otherwise

γ2(uk) =

{
(tP (uk), iP (uk), fP (uk)) for k ≡ 2(mod 3)

(0, 0, 1) for otherwise

γ3(uk) =

{
(tP (uk), iP (uk), fP (uk)) for k ≡ 0(mod 3)

(0, 0, 1) for otherwise

Thus the family Γ = {γ1, γ2, γ3} assures the conditions of SVNRVC of Pn. Any families with

less than three points did not meet our criteria of the definition.

Thus χv
2(Pn) = 3.

Hence χv
R(Pn) =

{
2 for R = 1

3 for R = 2

Theorem 3.4. Let k ≥ 3, Ck be a cycle then χv
R(Ck) =



2 for R = 1 and k is even

3 for R = 1 and k is odd

5 for R = 2 and k = 5

3 for R = 2 and k = 3m

4 for R = 2 and otherwise

Proof:

For a cycle Ck, 1 ≤ R ≤ 2.

Let Γ = {γ1, γ2} be collection of fuzzy sets determined on vertices V (Ck) = {c1, c2, · · · , ck}
for R = 1 and k is even as follows:

γ1(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j is odd

(0, 0, 1) for otherwise

γ2(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j is even

(0, 0, 1) for otherwise

Thus the family Γ = {γ1, γ2} assures the conditions of SVNRVC of Ck. Any families with less

than two points did not meet our criteria of the definition.

Thus χv
1(Ck) = 2 when k is even.

Let Γ = {γ1, γ2, γ3} be collection of fuzzy sets determined on vertices V (Ck) for R = 1 and k

is odd:

γ1(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j ≡ 1(mod 2) but j 6= k

(0, 0, 1) for otherwise

γ2(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j ≡ 0(mod 2)

(0, 0, 1) for otherwise

γ3(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j = k

(0, 0, 1) for otherwise

Thus the family Γ = {γ1, γ2, γ3} assures the conditions of SVNRVC of Ck. Any families with

less than three points did not meet our criteria of the definition.

Thus χv
1(Ck) = 3 when k is odd.

Aparna V, Mohanapriya N, Said Broumi, Single Valued Neutrosophic R-dynamic Vertex
Coloring of Graphs

Neutrosophic Sets and Systems, Vol. 48, 2022                                                                               313



For R = 2 and n = 5, let Γ = {γ1, γ2, γ3, γ4, γ5} be a family of fuzzy sets determined on

vertices V (C5):

γ1(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j = 1

(0, 0, 1) for otherwise

γ2(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j = 2

(0, 0, 1) for otherwise

γ3(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j = 3

(0, 0, 1) for otherwise

γ4(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j = 4

(0, 0, 1) for otherwise

γ5(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j = 5

(0, 0, 1) for otherwise

Thus the family Γ = {γ1, γ2, γ3, γ4, γ5} assures the conditions of SVNRVC of C5. Any families

with less than five points did not meet our criteria of the definition.

Thus χv
2(C5) = 3.

For R = 2 and k = 3m,m = 1, 2, · · · let Γ = {γ1, γ2, γ3} be a family of fuzzy sets determined

on vertices:

γ1(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j ≡ 1(mod 3)

(0, 0, 1) for otherwise

γ2(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j ≡ 2(mod 3)

(0, 0, 1) for otherwise

γ3(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j ≡ 0(mod 3)

(0, 0, 1) for otherwise

Thus the family Γ = {γ1, γ2, γ3} assures the conditions of SVNRVC of Cn. Any families with

less than three points did not meet our criteria of the definition.

Thus χv
1(Ck) = 3 when k = 3m.

For R = 2 and otherwise let Γ = {γ1, γ2, γ3, γ4} be a family of fuzzy sets determined on vertices

as follows:

When k = 3m+ 1,m = 1, 2, · · · .

γ1(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j ≡ 1(mod 3) but j 6= k

(0, 0, 1) for otherwise

γ2(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j ≡ 2(mod 3)

(0, 0, 1) for otherwise

γ3(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j ≡ 0(mod 3)

(0, 0, 1) for otherwise

γ4(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j = k

(0, 0, 1) for otherwise
When k = 3m+ 2,m = 1, 2, · · ·
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γ1(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j ≡ 1(mod 3) and j = k − 2

(0, 0, 1) for otherwise

γ2(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j ≡ 2(mod 3) and j = k − 3

(0, 0, 1) for otherwise

γ3(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j ≡ 0(mod 3) and j = k

(0, 0, 1) for otherwise

γ4(cj) =

{
(tP (cj), iP (cj), fP (cj)) for j = k − 1, k − 4

(0, 0, 1) for otherwise

Thus the family Γ = {γ1, γ2, γ3, γ4} assures the conditions of SVNRVC of Cn. Any families

with less than four points did not meet our criteria of the definition.

Thus χv
2(Ck) = 4 when otherwise.

Hence χv
R(Ck) =



2 for R = 1 and k is even

3 for R = 1 and k is odd

5 for R = 2 and k = 5

3 for R = 2 and k = 3m

4 for R = 2 and otherwise

Theorem 3.5. For the CSVNG with n vertices, χv
R(Kn) = n.

Proof:

For the CSVNG M = n − 1 and hence 1 ≤ R ≤ n − 1. One can notice that all vertices are

incident to one another. Let Γ = {γ1, γ2, · · · , γn} be a family of fuzzy sets determined on

vertices such that each set contains exactly one vertex with value tP (w), iP (w), fP (w) > 0 and

all the other vertices have the value (0, 0, 1). By this the criteria of SVNRVC will be assured

and hence χv
R(Kn) = n.

4. Conclusion

We have the amalgamated the theory of Single Valued Neutrosophic Vertex Coloring and

r-dynamic coloring to build a new thought Single Valued Neutrosophic R-dynamic Vertex

Coloring (SVNRVC). We have defined the new coloring and provided examples. Further we

have looked onto Single Valued Neutrosophic R-dynamic Chromatic Number of certain graphs.
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Abstract: In this paper is to introduce trapezoidal neutrosophic deal with logarithmic 

demand model with shortage of deteriorating items. Order of enact customers can be 

place by the vendor depending on the stock accessibility. Logarithmic demand is 

related to several products, in this paper developed with the shortage of items at the 

beginning. Finally, valuable example is given to extract the optimum value and obtain 

effective valuable results. 

Keywords: Inventory, Tropezoidal Neutrosophic number, deterioration, shortage, logarithmic 

demand. 
_____________________________________________________________________________________ 

1. INTRODUCTION 

Initial stage of LPG Gas business starts with the Shortage against the booking and offers. 

With the incorporation of dual objects that is logarithmic demand and business starts with 

shortage. Many products of daily used in demand but LPG is the crucial. This will boost up 

retailers order in positive mode. Some products are huge need for people, like Milk, Oil, flour, 

beverages whose scarcity loss the customer’s trust and received design.5This scenario stimulates 

retailer to order intemperate quantity of items, despite of deterioration. So any uncertainty 

situation of decaying or due to deterioration is not negligible. The purpose is denied due to 

damage or spoiled items. Deterioration helps in managing several items due to virtue of modern 

advanced storage technics Deterioration factor is incorporated in this proposed model. For on-

going successful business Inventory model demonstrate the real time problem. 

Chakraborty et al. [3] focus on pentagonal neutrosophic numbers and their distinct 

properties. Smarandache [20] By considering the non-standard analysis, they implemented a 

neutrosophic set and a neutrosophic logic. Also, neutrosophic model of inventory without 

shortages is provides by Mullai et al. [14]. Chakraborty et al. [4] various types of triangular 

neutrosophic numbers, de-neutrosophication models and their applications have been clarified. 

Adaraniwon et al. [2], ignited the concept of An inventory model for delayed degradation of 

power demand goods, taking into account shortages and missed sales. 

             Burwell et al unraveled the issue emerging in trade by giving discounts and displayed 

financial qunatity size demonstrates with demand price dependent. Shin et al [18] discussed an 

optimal strategy or salable price and volume under vendor credit. Shula et al developed 
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a three-factor order rate for new released product deteriorate couples of methods supported 

stable required rates and once launching  the item in consumer use, it creates stable need. 

 
  Wen et al recommended a energetic estimating arrangement for offering a given 

commodities of indistinguishable biodegradable items over a restricted time skyline on the 

online. The deal closes either once the full stock oversubscribed out, or once released the 

launching date. Target of the vendor is to find a ultimate valuation reach that optimize to 

complete anticipated incomes.  

 
Lin (2006) [13] the EOQ model designed reflects how the pattern of demand which is value, 

cash discount depends on market demand and product availability. They mention EOQ system 

that takes under consideration selling price relay directly on inflation and continuance. 

Occurrence and singularity of the optimum answer is unsolved during this article. 

 

Karaaslan [7] formulated and analytically solved in multi-guidelines, Gaussian sole-rate 

neutrosophic numbers and their implementation. Smarandache [20] argued that Neutrosophic, 

probability of neutrosophic number, logic and set, unifying space of logic. Murugappan [15] 

mentioned the inventory model of neutrosophic variable, unit priced  neutrosophic. 

 

 

 

2. ASSUMPTIONS AND NOTATION

Assume that the shortages accumulated till time t1 up to level I1(t1) and order placed to 

the corporate seller  at time t1 , therefore uncovered demand consummated and inventory meets 

up to level I2(t1). The inventory level I2(t1) is comfortable to meet the demand until time T. The 

optimal time 𝑡1  are going to be resolve. I1(t1) and I2(t1), that  optimize the overall inventory 

price. Inventory depletion is shown in Fig 1. 

 

Figure: 1  
 
The following symbols are used throughout this paper: 

    

D/(t) : Demand(rate is     D(t) = 𝛼 log(𝛽t) , where  𝛼 > 1 𝑎𝑛𝑑  𝛽 > 1 are positive real values

. 
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𝐼1(𝑡) : Stock level at time  t, 0 <𝑡  <𝑡1 

𝐼2(𝑡) : Stock level at time t, 𝑡1<𝑡  <𝑇 

Q      : Total order Quantity per cycle

 ∅     :   Rate of deterioration 0 < ∅<1 

 C1  :   Holding cost per .unit time,  

C2    :   Deterioration cost, 

C3  : Shortage cost per .unit time,  

C1̃  :   Holding cost per .unit time,  

 C2̃   :   Deterioration cost, 

C3̃  : Shortage cost per .unit time,  

T     : Span time, 

 t1
∗  ∶  Optimal..time for accumulating shortage, 

 
 𝑇𝐹( 𝑡1) : Optimal..mean inventory price, 

𝐻𝐶    : Total..holding price, 

DC   : Total deterioration cost. 
 

𝑆𝑐      : Total shortage units in the system, 

 

3. MATHEMATICAL MODEL 

 

3.1 Definition: .Neutrosophic..Set:..Smarandache[20]  

 A collection of 𝑁�̃� in the universal..discourse 𝑋, A symbolic notation by0𝑥, it is said to be 

neutrosophic..set if 𝑁�̃�  = {〈𝑥;[ρ 𝑁�̃� (𝑥), σ𝑁�̃� (𝑥), 𝜏𝑁�̃� (𝑥)]〉⋮𝑥∈𝑋}, where  𝜌𝑁�̃�  (𝑥): 𝑋 → [0,1] is called  

the real/membership..function, which addresses the level of confirmtion, σ𝑁�̃� (𝑥):++𝑋 → [0,1] is 

called the dubiety..membership, which denotes the degree of vagueness, and    𝜏𝑁�̃� (𝑥):+=𝑋 → 

[0,1] is called the ..falsehood  membership, which demonstrates the level of scepticism on the 

decision taken by the decision maker 𝜌𝑆𝑉𝑇𝑟𝑁𝑠̃ (𝑥), 𝜎𝑆𝑉𝑇𝑟𝑁𝑠̃ (𝑥), τ𝑆𝑉𝑇𝑟𝑁𝑠̃ (𝑥) The accompanying 

relationship reveals:  0 ≤ 𝜌𝑆𝑉𝑇𝑟𝑁𝑠̃ (𝑥) + 𝜎𝑆𝑉𝑇𝑟𝑁𝑠̃ (𝑥) +τ𝑆𝑉𝑇𝑟𝑁𝑠̃ (𝑥) ≤23  

 

3.2 Definition:..Single-Valued Neutrosophic..Set: $Chakraborty$ [ 3] 

A set of Neutrosphic is 𝑁�̃�  in the?definition 3.1. is claimed to be a single-Valued 

neutrosophic set (𝑆𝑉𝑇𝑟𝑁𝑠̃   ) if 𝑥 may be single-valued independent variable. 𝑆𝑉𝑇𝑟𝑁𝑠̃  = {〈𝑥; 

[𝜌𝑆𝑉𝑇𝑟𝑁𝑠̃  (𝑥), 𝜎𝑆𝑉𝑇𝑟𝑁𝑠̃ (𝑥), τ𝑆𝑉𝑇𝑟𝑁𝑠̃ (𝑥)]〉⋮ 𝑥∈𝑋}, where 𝜌𝑆𝑉𝑇𝑟𝑁𝑠̃  (𝑥), 𝜎𝑆𝑉𝑇𝑟𝑁𝑠̃ (𝑥), τ𝑆𝑉𝑇𝑟𝑁𝑠̃ (𝑥) provided the 

method of accuracy, dubiety and falsehood-memberships function0respectively. 

 

Definition8 3.2.1:” (Neutro-normal.)” 

 If there exist three variable  𝜑0, 𝜒0&   𝜓0 , for which 𝜌𝑆𝑉𝑇𝑟𝑁𝑠̃  (𝜑0) = 1, 𝜌𝑆𝑉𝑇𝑟𝑁𝑠̃  (𝜒0) = 1 

&τ𝑆𝑉𝑇𝑟𝑁𝑠̃  (𝜓0) = 1, then the 𝑆𝑉𝑇𝑟𝑁𝑠̃  is called neutro-normal.  
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Definition8 3.2.2: “(Neutro-convex.)” 

𝑆𝑉𝑇𝑟𝑁𝑠̃  is called Neutro-convex, which provides  that 𝑆𝑉𝑇𝑟𝑁𝑠̃   is a.member of a.real value by 

satisfying the accompanying  conditions: 

 i.   𝜌𝑆𝑉𝑇𝑟𝑁𝑠̃ 〈ϑ 𝜑1=+ (1 − ϑ)𝜑2〉 ≥  𝑚𝑖𝑛〈  𝜌𝑆𝑉𝑇𝑟𝑁𝑠̃  (𝜑1),    𝜌𝑆𝑉𝑇𝑟𝑁𝑠̃  (𝜑2)〉 

 ii.  𝜎𝑆𝑉𝑇𝑟𝑁𝑠̃ 〈ϑ𝜑 + (+1 − ϑ)𝜑2〉 ≤  𝑚𝑎𝑥〈𝜎𝑆𝑉𝑇𝑟𝑁𝑠̃  (𝜑1), 𝜎𝑆𝑉𝑇𝑟𝑁𝑠̃  (𝜑2)〉 

iii.  τ𝑆𝑉𝑇𝑟𝑁𝑠̃ (〈ϑ𝜑1  + (1 − ϑ)𝜑2〉 ≤ 𝑚𝑎𝑥〈τ𝑆𝑉𝑇𝑟𝑁𝑠̃ ( (𝜑1),τ𝑆𝑉𝑇𝑟𝑁𝑠̃ ( (𝜑2)〉 

where 𝜑1& ∈ℝ 𝑎𝑛d ϑ∈ [0, 1] 

 

Definition 3.3.1  (.Tropezoidal&Single Valued Neutrosophic Number&) 

Neutrosophic number with tropezoidal Single Valued (Ω̃) is defined a Ω̃ =< 

(r1, r2, r3, r4: Υ), (u1, u2, u3, u4: 𝜆), (q1, q2, q3, q4: 𝜂)   >  , 𝑤ℎ𝑒𝑟𝑒𝜇, 𝜗, 𝜁∈ [0,1]. The real/membership 

function  𝜌Ω̃: R → [0, Υ], the dubiety/membership function    𝜎Ω̃: R → [𝜆, 1] and the 

falsehood/membership function τΩ̃:  : R+→//[𝜂, 1] are characterized as follows: 

 

        𝜋Ω̃  =      {

ϑΩ̃𝑙(𝑥),          𝑟1  ≤  𝑥 <  𝑟2

Υ,              𝑟2  ≤  𝑥 <  𝑟3

ϑΩ̃𝑟(𝑥) ,       𝑟3 <  𝑥 ≤   𝑟4

0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 >.

 

θΩ̃  =      {

εΩ̃𝑙(𝑥),        𝑢1  ≤  𝑥 < 𝑢2

𝜆,               𝑢2  ≤  𝑥 < 𝑢3

εΩ̃𝑟(𝑥) ,     𝑢3 <  𝑥 ≤ 𝑢4

1,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 >.

 

 η Ω̃  =      {

ℓΩ̃𝑙(𝑥),        𝑞1  ≤  𝑥 < 𝑞2

𝜂,              𝑞2  ≤  𝑥 < 𝑞3

ℓΩ̃𝑟 (𝑥) ,     𝑞3 <  𝑥 ≤  𝑞4

1,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 >.

 

 

3.4  De-neutrosophication&of Tropezoidal%single. Valued. Neutrosophic0 number:     

This..system, the expulsion region procedure executed to assess the de-neutrosophication 

worth of  tropezoidal single esteemed neutrosophic number is  

Ω̃  =<  (r1, r2, r3, r4: Υ), (u1, u2, u3, u4: 𝜆), (q1, q2, q3 , q4: 𝜂)  > , de-neutrosophic form 𝑆̃̃ is provided  

as  𝑇𝑟𝑛𝑒𝑢𝐷Ω̃ = (
 𝑟1+ 𝑟2+ 𝑟3+r4+𝑢1+ 𝑢2+ 𝑢3+u4+ 𝑞1+ 𝑞2+ 𝑞3+q4

12
) 

 

 
𝑑𝐼1(𝑡)

𝑑𝑡
= − 𝛼 log(𝛽t)           0 ≤  𝑡 ≤  𝑡 1       𝐼1(0) = 0                                                               (1) 

 
𝑑𝐼2(𝑡)

𝑑𝑡
+ ∅ 𝐼2(𝑡) = − 𝛼 log(𝛽t)            𝑡 1 ≤  𝑡 ≤ 𝑇                                                                     (2) 

Boundary values  for above two differential equations are    𝐼1(0) = 0 , 𝐼2(T) = 0 

On solving equation (1), we get 

𝐼1(𝑡) = A − ∫ 𝛼 log(𝛽𝑡) 𝑑𝑡
𝑡

0

   𝑤𝑖𝑡ℎ    𝐼1(0) = 0  

𝐼1(𝑡) = 𝛼𝑡  𝛼𝑡 log(𝛽𝑡) 

 

                                       (3)
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           On solving equation (2), we get            

             𝐼2(𝑡)𝑒∅𝑡 = B − ∫ 𝛼 𝑒∅𝑡  log(𝛽𝑡) 𝑑𝑡
𝑡

0
   𝑤𝑖𝑡ℎ    𝐼2(𝑇) = 0                                                                             (                                      (4)

Applying   boundary condition  𝐼2(𝑇) = 0   , in the above equation, we get 

 

             𝐼2(𝑡) = 𝛼 (𝑇 +
∅𝑇2

2
) log(𝛽𝑇) − 𝛼∅𝑇𝑡log(𝛽𝑇) − 𝛼tlog(𝛽𝑡) − 𝛼(𝑇 − 𝑡) + 𝛼∅(𝑇𝑡 −

𝑇2

4
−

3𝑡2

4
)    (5)                                                                                    

 

 

 

 

 Ordering cost 𝑂𝑐= A

Deteriorated cost ( Dc ) in time  [t1,T ] is 

𝐷𝑐 = 𝐶1 {𝐼1(𝑡) − ∫ 𝛼 log(𝛽𝑡) 𝑑𝑡
𝑇

 𝑡 1
   }  

= 𝐶1 {𝛼 (𝑇 +
∅𝑇2

2
) log(𝛽𝑇) − 𝛼∅𝑇 𝑡 1log(𝛽𝑇) − 𝛼T log(𝛽𝑇) + 𝛼∅ (𝑇 𝑡1 −

𝑇2

4
−

3 𝑡1
2

4
)}              (6)                                                                                  

 

          Holding cost HC , over time  [t1 ,T ]  

             𝐻𝑐 = 𝐶2 ∫ 𝐼2(𝑡) 𝑑𝑡
𝑇

 𝑡1
    

      𝐻𝑐= 𝐶2{(T −   𝑡1) ( 𝛼 (𝑇 +
∅𝑇2

2
) log(𝛽𝑇) − 𝑎𝑇) −  𝛼∅

(𝑇3−𝑇  𝑡1
2)

2
log(𝛽𝑇) − 𝛼

𝑇2

2
log(𝛽𝑇) +

𝛼 𝑡1
2

2
log(𝛽 𝑡1) +

3𝛼

4
(𝑇2 −  𝑡1

2) +
∅ 𝛼

4
( 𝑡1

3 +  𝑡1𝑇2 − 2𝑇 𝑡1
2)                  (7)                                                                                    

             

     Shortage cost    𝑆𝑐  over [0 , t1 ] will be 

 𝑆𝑐 = 𝐶3 ∫ 𝐼1(𝑡) 𝑑𝑡
 𝑡1

0
    

 𝑆𝑐 = 𝐶3{ 
3𝛼 𝑡1

2

4
 −

𝛼 𝑡1
2

2
log(𝛽 𝑡1)}                   (8)                                                                                     

Quantity remembering deficiency in trading will be Q 

 
              𝑄 =  𝐼1 (𝑡1 ) +  𝐼2 (𝑡1 )  

 

               = 2𝛼𝑡1 + 𝛼 (𝑇 +
∅𝑇2

2
) log(𝛽𝑇) − 𝛼∅𝑇𝑡1 log(𝛽𝑇) − 2𝛼𝑡1 log(𝛽𝑡1 ) − 𝛼𝑇 + 𝛼∅(𝑇𝑡1 −

𝑇2

4
−

3𝑡1
2

4
)  

                              (9)                                                                                     
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Total average inventory cost will be 

𝑇𝐹( 𝑡1) = [
𝐴 + 𝐻𝑐 + 𝐷𝑐 + 𝑆𝑐

𝑇
] 

𝑇𝐹( 𝑡1) =
1

𝑇
 {𝐴 + 𝐶1 {𝛼 (𝑇 +

∅𝑇2

2
) log(𝛽𝑇) − 𝛼∅𝑇 𝑡 1log(𝛽𝑇) − 𝛼T log(𝛽𝑇) + 𝛼∅ (𝑇 𝑡1 −

𝑇2

4
−

3 𝑡1
2

4
)} +

𝐶2 {(T −  𝑡1) ( 𝛼 (𝑇 +
∅𝑇2

2
) log(𝛽𝑇) − 𝑎𝑇) −  𝛼∅

(𝑇3−𝑇  𝑡1
2)

2
log(𝛽𝑇) − 𝛼

𝑇2

2
log(𝛽𝑇) +

𝛼 𝑡1
2

2
log(𝛽 𝑡1) +

3𝛼

4
(𝑇2 −

 𝑡1
2) +

∅ 𝛼

4
( 𝑡1

3 +  𝑡1𝑇2 − 2𝑇 𝑡1
2)} + 𝐶3 { 

3𝛼 𝑡1
2

4
 −

𝛼 𝑡1
2

2
log(𝛽 𝑡1)}  }                                                         (10) 

4. NUMERICAL EXAMPLEsa   

 

To=encapsulate this system, consider that various parameters./are 𝛼 = 20 units, 𝛽 = 

0.2, c1 = 1.4 per/ unit, c2 = 2 per/ unit, C3 = 2 per/ unit,∅= 0.01 and T = 14 days .           we 

get output parameters: t1 = 4.675 days, optimal quantity Q = 183 units, total inventory cost 

TF(𝑡1) = 282

 

5. Effect of Parameter Neutrosophication in the proposed inventory model 

𝑇𝐹𝑁�̂�( 𝑡1) =
1

𝑇
 {𝐴 + 𝒞1̃ {𝛼 (𝑇 +

∅𝑇2

2
) log(𝛽𝑇) − 𝛼∅ 𝑇 𝑡 1log(𝛽𝑇) − 𝛼T log(𝛽𝑇) + 𝛼∅ (𝑇 𝑡1 −

𝑇2

4
−

3 𝑡1
2

4
)} +

�̃�2 {(T −   𝑡1) ( 𝛼 (𝑇 +
∅𝑇2

2
) log(𝛽𝑇) − 𝑎𝑇) −  𝛼∅

(𝑇3−𝑇  𝑡1
2)

2
log(𝛽𝑇) − 𝛼

𝑇2

2
log(𝛽𝑇) +

𝛼 𝑡1
2

2
log(𝛽 𝑡1) +

3𝛼

4
(𝑇2 −  𝑡1

2) +
∅ 𝛼

4
( 𝑡1

3 +  𝑡1𝑇2 − 2𝑇 𝑡1
2)} + 𝒞3̃{ 

3𝛼 𝑡1
2

4
 −

𝛼 𝑡1
2

2
log(𝛽 𝑡1)}   }                                       (11) 

 

Here, holding cost 𝒞1̃, deteriotion cost  𝒞2 ̃and shortagedcost  𝒞3 ̃ have been considerede.as tropezoidal 

neutrosophic fuzzy set. Thus, the parameters of neutrosophic numbers are: 
     
 𝑇ℎ𝑒𝑛, 𝒞1̃ = =<  (1.5 ,2,2.5,3,3.5), (1,1.5,2,2.5,3), (2,2.5,3,3.5,4), 0.8,0.5,0.5 >,  
𝒞2 ̃  =<   (0.5,1.5,2.5,3.5), ( 0.3,1.3,2.2,3.2), ( 0.7,1.7,2.2,3.8)|0.8;  0.5;  0.5)  >, 𝑎𝑛𝑑  
𝒞3 ̃  =< (0.4,1.3,2.8,3.8), ( 0.6,1.5,2.5,3.5), ( 0.8,1.7,2.7,3.7)|0.8;  0.5;  0.5)  >  

 

   
 

Figure 2 
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6. SENSITIVEnANALYSIS 

       In this segment, investigate however the enter parameters change significantly the resultant parameters. 

The amendment in one parameter and maintain different parameters invariant. The bottom information area 

unit got consequently to the computative example. 

Table 1. Analysis of different parameter resulted. 
 

Changes  of 
Parameter 

 
b 

 
a 

 

𝒞1̃ 

 

𝒞2̃ 

 

𝒞3̃ 

 

∅ 

 
T 

 
 𝑡1 

 

𝑇𝐹𝑁�̂� 

 
Q 

 
 
 
 
 

T 

0.2 20 3.125 1.95 2.1 0.01 10 5.016 167.56 101 

0.2 20 3.125 1.95 2.1 0.01 11 4.875 166.11 110 

0.2 20 3.125 1.95 2.1 0.01 12 4.463 174.47 128 

0.2 20 3.125 1.95 2.1 0.01 13 3.858 195.58 143 

0.2 20 3.125 1.95 2.1 0.01 14 2.984 228.43 149 

 
 

∅ 

0.2 20 3.125 1.95 2.1 0.01 14 3.35 326.99 152 

0.2 20 3.125 1.95 2.1 0.0125 14 4.591 339.96 163 

0.2 20 3.125 1.95 2.1 0.015 14 4.576 350.26 163 

0.2 20 3.125 1.95 2.1 0.0175 14 4.562 354.55 163 

0.2 20 3.125 1.95 2.1 0.02 14 4.548 367.85 163 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝒞1̃  

 
 
 
 

0.2 20 3.125 1.95 2.1 0.01 14 4.423 260.32 137 

0.2 20 3.125 1.95 2.3 0.01 14 4.855 383.29 154 

0.2 20 3.125 1.95 2.5 0.01 14 4.934 393.59 157 

0.2 20 3.125 1.95 2.7 0.01 14 5.157 438.88 159 

0.2 20 3.125 1.95 2.9 0.01 14 5.248 454.18 162 
 
 
 
 

 
 

𝒞2̃  

0.2 20 3.125 3 2.1 0.01 14 3.215 277.68 152 

0.2 20 3.125 5 2.1 0.01 14 4.111 296.61 161 

0.2 20 3.125 6 2.1 0.01 14 4.309 308.94 162 

0.2 20 3.125 7 2.1 0.01 14 4.445 322.02 163 

0.2 20 3.125 9 2.1 0.01 14 4.62 349.36 163 
 
 
 
 

𝒞3̃  

0.2 20 0.8 2 2 0.01 14 3.49 206.58 155 

0.2 20 0.9 2 2 0.01 14 3.246 217.26 152 

0.2 20 1.2 2 2 0.01 14 2.998 252.45 139 

0.2 20 1.4 2 2 0.01 14 3.457 278.96 125 

0.2 20 1.5 2 2 0.01 14 3.02 293.58 113 
 

𝑎 
0.2 25 3.125 1.95 2.1 0.01 14 3.457 306.82 163 

0.2 30 3.125 1.95 2.1 0.01 14 3.455 334.69 201 

0.2 35 3.125 1.95 2.1 0.01 14 3.454 362.56 239 

0.2 40 3.125 1.95 2.1 0.01 14 3.453 390.43 278 
 

0.2 45 3.125 1.95 2.1 0.01 14 3.450 398.24 283 
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Figure 3         Figure 4 

 
 

Figure 5       Figure 6
. 

 

 

7. OBSERVATIONS  

 

1) Table 1 provides the behavior of total price with the variation in cycle time ( T). From this 

table it is ascertained that because the worth of cycle time T increases, the total price  of this 

model will increase. 

2) Table 1 provides the variation in demand parameter (𝑎 ),it’s ascertained that increment in 

demand rate  (𝑎), total price of this model will increase. 

3) Observe the behavior of total cost with the variation in deterioration rate (∅), and it’s 

ascertained that with the increment in decay rate (∅), the total price  of the supply chain will  

upwards.  

4) The variation in parameter (𝒞1̃) and it is ascertained that an increment in (𝒞1̃) results an 

increment in total cost.  

5) The variation in holding price (𝒞2̃)   is ascertained that the increment in(𝒞2̃), increase the total 

price= of the logistics network. 

6) The variation in shortage  cost (𝒞3̃)   is ascertained that the increment in(𝒞3̃), increase the total 

price .of  the logistics network.  
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8.  CONCLUSION 

In this paper developed EOQ and total annual inventory cost in the crisp sense as well as 

neutrosophic sense. Shortage cost, holding cost, deterioration price are taken as trapezoidal 

neutrosophic set. This model discussed results and minimizing the entire  inventory price. The 

expense for the demand is considered for progress of this model. Therefore this model is very 

successful in all situations. This model and demand pattern is applicable for patterned products, 

cosmetic products and backed items. The numerical example and sensitivity analysis is bestowed 

let’s say this model and its important options. This model contains a more scope of extension with 

fractal method. 
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Abstract: In this paper, we define the notion of Q-neutrosophic normal soft groups and discuss several related struc-
tural characteristics and properties. Additionally, we discuss the relation between Q-neutrosophic normal soft groups
and normal soft groups. Furthermore, we define the concept of Q-neutrosophic soft cosets and discuss several relevant
attributes.
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1 Introduction
Fuzzy sets were established by Zadeh [1] as a tool to deal with uncertain data. The idea of neutrosophic
fuzzy sets, an extension of fuzzy sets, was introduced by Smarandache [2, 3] to handle indeterminate and
uncertain situations. As another way to deal with uncertain information, Molodtsov [4] introduced the concept
of soft sets. Various researchers around the world have extended fuzzy sets and soft sets in different directions
in order to make them more appropriate to handle different types of information. However, in some cases
the description of objects by fuzzy soft sets in terms of one dimensional membership function only is not
adequate. This motivates Adam and Hassan [5–8] to define the Q-fuzzy soft sets and matrix as a way to deal
with situations with a set of parameters and two-dimensional data. Q-neutrosophic soft sets (Q-NSSs) [9]
were introduced as a new model that deals with two-dimensional uncertain data. It is a model that generalizes
neutrosophic and Q-fuzzy sets simultaneously. Q-NSSs were further investigated and their basic operations
and relations were discussed in [9, 10].

Different hybrid models of fuzzy sets and soft sets were utilized in different branches of mathematics,
including algebra [11–13]. Bera and Mahapatra [14,15] introduced neutrosophic soft groups and neutrosophic
normal soft groups. This motivates Solairaju and Nagarajan [16] to introduce the new structure of Q-fuzzy
groups which combine the concepts of Q-fuzzy sets and groups. Recently, Q-fuzzy sets were utilized to
different algebraic structures, for example, Q-fuzzy normal subgroups [17], anti-Q-fuzzy normal subgroups
[18]. Furthermore, Sarala and Suganya [19] utilized Q-fuzzy soft sets to establish Q-fuzzy soft rings.

In a particular view on the utilization of Q-NSSs to algebraic structures, Abu Qamar and Hassan [20]
applied Q-NSS to group theory by introducing Q-neutrosophic soft groups, they examined numerous properties
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and basic attributes. Additionally, they characterized the thought of Q-level soft sets of a Q-neutrosophic soft
set, which is a bridge between Q-neutrosophic soft groups and soft groups. Furthermore, rings and fields were
studied under Q-neutrosophic soft settings in [21, 22].

In this paper, we provide a wider discussion on Q-NSGs, by defining the notions of Q-neutrosophic normal
soft groups (Q-NNSGs) and Q-neutrosophic soft cosets. Also, we discuss the relation between Q-neutrosophic
normal soft groups and normal soft groups. Further, we discuss several related structural characteristics and
properties.

2 Preliminaries

In this section, we recall some basic definitions related to the work in this study.

Definition 2.1 ( [9]). Let X be a universal set, Q be a nonempty set and A ⊆ E be a set of parameters. Let
µlQNS(X) be the set of all multi Q-NSs on X with dimension l = 1. A pair (ΓQ, A) is called a Q-NSS over
X , where ΓQ : A→ µlQNS(X) is a mapping, such that ΓQ(e) = φ if e /∈ A.

Definition 2.2 ( [10]). The union of two Q-neutrosophic soft sets (ΓQ, A) and (ΨQ, B) is the Q-neutrosophic
soft set (ΛQ, C) written as (ΓQ, A)∪(ΨQ, B) = (ΛQ, C), where C = A∪B and for all c ∈ C, (x, q) ∈ X×Q,
the truth-membership, indeterminacy-membership and falsity-membership of (ΛQ, C) are as follows:

TΛQ(c)(x, q) =


TΓQ(c)(x, q) if c ∈ A−B,
TΨQ(c)(x, q) if c ∈ B − A,
max{TΛQ(c)(x, q), TΨQ(c)(x, q)} if c ∈ A ∩B,

IΛQ(c)(x, q) =


IΓQ(c)(x, q) if c ∈ A−B,
IΨQ(c)(x, q) if c ∈ B − A,
min{IΓQ(c)(x, q), IΨQ(c)(x, q)} if c ∈ A ∩B,

FΛQ(c)(x, q) =


FΓQ(c)(x, q) if c ∈ A−B,
FΨQ(c)(x, q) if c ∈ B − A,
min{FΓQ(c)(x, q), FΨQ(c)(x, q)} if c ∈ A ∩B.

Definition 2.3 ( [10]). The intersection of two Q-neutrosophic soft sets (ΓQ, A) and (ΨQ, B) is the Q-neutrosophic
soft set (ΛQ, C) written as (ΓQ, A) ∩ (ΨQ, B) = (ΛQ, C), where C = A ∩ B and for all c ∈ C and
(x, q) ∈ X × Q the truth-membership, indeterminacy-membership and falsity-membership of (ΛQ, C) are
as follows:

TΛQ(c)(x, q) = min{TΓQ(c)(x, q), TΨQ(c)(x, q)},
IΛQ(c)(x, q) = max{IΓQ(c)(x, q), IΨQ(c)(x, q)},
FΛQ(c)(x, q) = max{FΓQ(c)(x, q), FΨQ(c)(x, q)}.
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Definition 2.4. [22] Let G be a group and (ΓQ, A) be a Q-NSS over a group G. Then (ΓQ, A) is called a
Q-neutrosophic soft group over G if for all x, y ∈ G and e ∈ A it satisfies:

1. TΓQ(e)(xy, q) ≥ min
{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
, IΓQ(e)(xy, q) ≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
and

FΓQ(e)(xy, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

2. TΓQ(e)(x
−1, q) ≥ TΓQ(e)(x, q), IΓQ(e)(x

−1, q) ≤ IΓQ(e)(x, q) and FΓQ(e)(x
−1, q) ≤ FΓQ(e)(x, q).

3 Q-Neutrosophic Normal Soft Groups
In this section, we introduce the Q-NNSG and discuss several relevant structural properties.

Definition 3.1. A Q-NSG (ΓQ, A) over the group G is called a Q-NNSG over G if ΓQ(e) is a Q-neutrosophic
normal subgroup of G for each e ∈ A i.e., for x ∈ ΓQ(e), y ∈ G, q ∈ Q

TΓQ(e)(yxy
−1, q) ≥ TΓQ(e)(x, q),

IΓQ(e)(yxy
−1, q) ≤ IΓQ(e)(x, q),

FΓQ(e)(yxy
−1, q) ≤ FΓQ(e)(x, q).

Definition 3.2. A Q-NSG (ΓQ, A) over the group G is called abelian Q-NSG if ∀x, y ∈ G, q ∈ Q, e ∈ A the
following hold

TΓQ(e)(xy, q) = TΓQ(e)(yx, q),

IΓQ(e)(xy, q) = IΓQ(e)(yx, q),

FΓQ(e)(xy, q) = FΓQ(e)(yx, q).

Example 3.3. LetG = (Z,+) be a group and A=N be the parametric set. Define a Q-NSG (ΓQ, A) as follows:
For q ∈ Q, x ∈ Z,m ∈ N

TΓQ(m)(x, q) =

{
0 if x is odd
2
3

if x is even,

IΓQ(m)(x, q) =

{
1
n

if x is odd
0 if x is even,

FΓQ(m)(x, q) =

{
1− 3

n
if x is odd

0 if x is even.

It is clear that (ΓQ,N) is a Q-NNSG over G.

Proposition 3.4. Let (ΓQ, A) be a Q-NNSG over a group G. Then, ∀x, y ∈ G, q ∈ Q and e ∈ A,

1. TΓQ(e)(yxy
−1, q) = TΓQ(e)(x, q), IΓQ(e)(yxy

−1, q) = IΓQ(e)(x, q), FΓQ(e)(yxy
−1, q) = FΓQ(e)(x, q).

2. (ΓQ, A) is an abelian Q-NSG over G.
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Proof. 1.

TΓQ(e)(x, q) = TΓQ(e)

(
(y−1y)x(y−1y), q

)
= TΓQ(e)

(
y−1(yxy−1)y, q

)
= TΓQ(e)

(
y−1(yxy−1)(y−1)−1, q

)
≥ TΓQ(e)

(
yxy−1, q

)
.

Now, from Definition 3.1 TΓQ(e)(yxy
−1, q) = TΓQ(e)(x, q).

In a similar manner we can show that IΓQ(e)(yxy
−1, q) = IΓQ(e)(x, q) and FΓQ(e)(yxy

−1, q) = FΓQ(e)(x, q).

2. TΓQ(e)(x, q) = TΓQ(e)(yxy
−1, q), this implies TΓQ(e)(xy, q) = TΓQ(e)(yxyy

−1, q) = TΓQ(e)(yx, q). Simi-
larly, we can show that IΓQ(e)(xy, q) = IΓQ(e)(yx, q) and FΓQ(e)(xy, q) = FΓQ(e)(yx, q). Hence, (ΓQ, A) is an
abelian Q-NSG over G.

Theorem 3.5. Let (ΓQ, A) and (ΨQ, B) be two Q-NNSG over a group G. Then, (ΓQ, A) ∩ (ΨQ, B) is also a
Q-NNSG over G.

Proof. Let (ΛQ, C) = (ΓQ, A) ∩ (ΨQ, B). Then, for x, y ∈ G, q ∈ Q, e ∈ C

TΛQ(e)(yxy
−1, q) = min

{
TΓQ(e)(yxy

−1, q), TΨQ(e)(yxy
−1, q)

}
≥ min

{
TΓQ(e)(x, q), TΨQ(e)(x, q)

}
= TΛQ(e)(x, q),

IΛQ(e)(yxy
−1, q) = max

{
IΓQ(e)(yxy

−1, q), IΨQ(e)(yxy
−1, q)

}
≤ max

{
IΓQ(e)(x, q), IΨQ(e)(x, q)

}
= IΛQ(e)(x, q).

Similarly, we can show that FΛQ(e)(yxy
−1, q) ≤ FΛQ(e)(x, q). This completes the proof.

Remark 3.6. The union of two Q-NNSGs is not a Q-NNSG since the union is not a Q-NSG.

The next example illustrates the above remark.

Example 3.7. let G = (Z,+) and E = 2Z. Define the two Q-neutrosophic soft groups (ΓQ, E) and (ΨQ, E)
over G as the following:
For x,m ∈ Z, q ∈ Q
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TΓQ(2m)(x, q) =

{
0.50 if x = 4tm,∃t ∈ Z,
0 otherwise,

IΓQ(2m)(x, q) =

{
0 if x = 4tm,∃t ∈ Z,
0.25 otherwise,

FΓQ(2m)(x, q) =

{
0 if x = 4tm,∃t ∈ Z,
0.10 otherwise,

and

TΨQ(2m)(x, q) =

{
0.67 if x = 6tm,∃t ∈ Z,
0 otherwise,

IΨQ(2m)(x, q) =

{
0 if x = 6tm,∃t ∈ Z,
0.20 otherwise,

FΨQ(2m)(x, q) =

{
0 if x = 6tm,∃t ∈ Z,
0.17 otherwise.

Let (ΓQ, A) ∪ (ΨQ, B) = (ΛQ, E). For m = 3, x = 12, y = 18 we have

TΛQ(6)(12.18−1, q) = TΛQ(6)(−6, q) = max
{
TΓQ(6)(−6, q), TΨQ(6)(−6, q)

}
= max{0, 0} = 0

and

min
{
TΛQ(6)(12, q), TΛQ(6)(18, q)

}
= min

{
max

{
TΓQ(6)(12, q), TΨQ(6)(12, q)

}
,max

{
TΓQ(6)(18, q), TΨQ(6)(18, q)

}}
= min

{
max

{
0.50, 0

}
,max

{
0, 0.67

}}
= min

{
0.50, 0.67

}
= 0.50.

Hence, TΛQ(6)(12.18−1, q) = 0 < min
{
TΛQ(6)(12, q), TΛQ(6)(18, q)

}
= 0.50; i.e. (ΛQ, E) = (ΓQ, A) ∪

(ΨQ, B) is not a Q-neutrosophic soft group.

Theorem 3.8. Let (ΓQ, A) be a Q-NSS over G. Then, (ΓQ, A) is a Q-NNSG over G if and only if for all
α, β, γ ∈ [0, 1], the Q-level soft set (ΓQ, A)(α,β,γ) 6= φ is a normal soft group over G.

Proof. We only need to prove the normality. For x ∈ (ΓQ, A)(α,β,γ), y ∈ G and q ∈ Q, we have

TΓQ(e)(yxy
−1, q) = TΓQ(e)(yy

−1x, q) = TΓQ(e)(x, q) ≥ α,

IΓQ(e)(yxy
−1, q) = IΓQ(e)(yy

−1x, q) = IΓQ(e)(x, q) ≤ β,

FΓQ(e)(yxy
−1, q) = FΓQ(e)(yy

−1x, q) = FΓQ(e)(x, q) ≤ γ.
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It follows that yxy−1 ∈ (ΓQ, A)(α,β,γ), i.e. (ΓQ, A)(α,β,γ) is a Q-NNSG of G.
Conversely, assume that (ΓQ, A) is not a Q-NNSG over G. Then, there exists e ∈ A such that ΓQ(e) is not

a Q-NN subgroup of G. Then, there exists x1, y1 ∈ G and q ∈ Q such that

TΓQ(e)(x1y1, q) < TΓQ(e)(y1x1, q) or TΓQ(e)(x1y1, q) > TΓQ(e)(y1x1, q) or

IΓQ(e)(x1y1, q) < IΓQ(e)(y1x1, q) or IΓQ(e)(x1y1, q) > IΓQ(e)(y1x1, q) or

FΓQ(e)(x1y1, q) < FΓQ(e)(y1x1, q) or FΓQ(e)(x1y1, q) > FΓQ(e)(y1x1, q).

In case TΓQ(e)(x1y1, q) < TΓQ(e)(y1x1, q), there exists α ∈ [0, 1] such that TΓQ(e)(x1y1, q) < α < TΓQ(e)(y1x1, q).
It follows that x1y1 /∈ ΓQ(e)(α,β,γ)

, but for IΓQ(e)(x1y1, q) < β and FΓQ(e)(x1y1, q) < γ, x1y1 /∈ ΓQ(e)(α,β,γ)
this

contradicts with the fact that (ΓQ, A)(α,β,γ) is a normal soft group over G. In the other cases the proof can be
obtained in a similar way.

Theorem 3.9. Let (ΓQ, A) be a Q-NNSG over G. Let

(ΓQ, A)|é =
{
x ∈ G : TΓQ(e)(x, q) = TΓQ(e)(é, q),IΓQ(e)(x, q) = IΓQ(e)(é, q),

FΓQ(e)(x, q) = FΓQ(e)(é, q), e ∈ A
}
,

where é is the unit element of G. Then, (ΓQ, A)|é is a normal soft group over G.

Proof. For each e ∈ A and x, y ∈ (ΓQ, A)|é, q ∈ Q, we have

TΓQ(e)(xy
−1, q) ≥ min

{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
= min

{
TΓQ(e)(é, q), TΓQ(e)(é, q)

}
= TΓQ(e)(é, q),

IΓQ(e)(xy
−1, q) ≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
= max

{
IΓQ(e)(é, q), IΓQ(e)(é, q)

}
= IΓQ(e)(é, q).

Similarly, we can show FΓQ(e)(xy
−1, q) ≤ FΓQ(e)(é, q). Always, TΓQ(e)(é, q) ≥ TΓQ(e)(xy

−1, q), IΓQ(e)(é, q) ≤
IΓQ(e)(xy

−1, q) andFΓQ(e)(é, q) ≤ FΓQ(e)(xy
−1, q). Therefore, TΓQ(e)(xy

−1, q) = TΓQ(e)(é, q), IΓQ(e)(xy
−1, q) =

IΓQ(e)(é, q), FΓQ(e)(xy
−1, q) = FΓQ(e)(é, q) and xy−1 ∈ (ΓQ, A)|é.

Next, let x ∈ (ΓQ, A)|é and y ∈ G. Then,

TΓQ(e)(yxy
−1, q) = TΓQ(e)(x, q) = TΓQ(e)(é, q),

IΓQ(e)(yxy
−1, q) = IΓQ(e)(x, q) = IΓQ(e)(é, q),

FΓQ(e)(yxy
−1, q) = FΓQ(e)(x, q) = FΓQ(e)(é, q).

Therefore, yxy−1 ∈ (ΓQ, A)|é. Hence, (ΓQ, A)|é is a normal soft group over G.
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4 Q-Neutrosophic Soft Cosets
In this section, we present the Q-neutrosophic soft cosets with some related properties.

Definition 4.1. Let (ΓQ, A) be a Q-NSG over G and g ∈ G be a fixed element. Then, the set g(ΓQ, A) ={
gΓQ(e) : e ∈ A

}
is called a left Q-neutrosophic soft coset of (ΓQ, A), where

gΓQ(e) =
{〈

(x, q), TgΓQ(e)(x, q), IgΓQ(e)(x, q), FgΓQ(e)(x, q)
〉

: x ∈ G, q ∈ Q
}

=
{〈

(x, q), TΓQ(e)(g
−1x, q), IΓQ(e)(g

−1x, q), FΓQ(e)(g
−1x, q)

〉
: x ∈ G, q ∈ Q

}
.

The right Q-neutrosophic soft coset of (ΓQ, A) in G is (ΓQ, A)g =
{

ΓQ(e)g : e ∈ A
}

, where

ΓQ(e)g =
{〈

(x, q), TΓQ(e)(xg
−1, q), IΓQ(e)(xg

−1, q), FΓQ(e)(xg
−1, q)

〉
: x ∈ G, q ∈ Q

}
.

Example 4.2. Let G be a classical group. Then, (ΓQ, A) =
{

ΓQ(e) : e ∈ A
}

, where

ΓQ(e) =
{〈

(x, q), TΓQ(e)(x, q), IΓQ(e)(x, q), FΓQ(e)(x, q)
〉

: x ∈ G, q ∈ Q
}

with TΓQ(e)(x, q) = TΓQ(e)(é, q), IΓQ(e)(x, q) = IΓQ(e)(é, q) and FΓQ(e)(x, q) = FΓQ(e)(é, q); (é being the
identity element in G ) is a Q-NNSG of G. In that case, we can get a neutrosophic soft coset.

Proposition 4.3. (ΓQ, A) is called a Q-NNSG overG if and only if the left and right Q-neutrosophic soft cosets
are equal.

Proof. Suppose that (ΓQ, A) is a Q-NNSG over G. Then,

gΓQ(e) =
{〈

(x, q), TgΓQ(e)(x, q), IgΓQ(e)(x, q), FgΓQ(e)(x, q)
〉

: x ∈ G, q ∈ Q
}

=
{〈

(x, q), TΓQ(e)(g
−1x, q), IΓQ(e)(g

−1x, q), FΓQ(e)(g
−1x, q)

〉
: x ∈ G, q ∈ Q

}
=
{〈

(x, q), TΓQ(e)(xg
−1, q), IΓQ(e)(xg

−1, q), FΓQ(e)(xg
−1, q)

〉
: x ∈ G, q ∈ Q

}
=
{〈

(x, q), TΓQ(e)g(x, q), IΓQ(e)g(x, q), FΓQ(e)g(x, q)
〉

: x ∈ G, q ∈ Q
}

= ΓQ(e)g.

Thus, g(ΓQ, A) = {gΓQ(e) : e ∈ A} = {ΓQ(e)g : e ∈ A} = (ΓQ, A)g.
Next, suppose that g(ΓQ, A) = (ΓQ, A)g.

Then,

TgΓQ(e)(x, q) = TΓQ(e)g(x, q), IgΓQ(e)(x, q) = IΓQ(e)g(x, q) and FgΓQ(e)(x, q) = FΓQ(e)g(x, q).

This implies,

TΓQ(e)(g
−1x, q) = TΓQ(e)(xg

−1, q), IΓQ(e)(g
−1x, q) = IΓQ(e)(xg

−1, q) and FΓQ(e)(g
−1x, q) = FΓQ(e)(xg

−1, q).
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Thus,

TΓQ(e)(xg
−1, q) = TΓQ(e)(g

−1x, q), IΓQ(e)(xg
−1, q) = IΓQ(e)(g

−1x, q) and FΓQ(e)(xg
−1, q) = FΓQ(e)(g

−1x, q),

which implies

TΓQ(e)(gxg
−1, q) = TΓQ(e)(x, q), IΓQ(e)(gxg

−1, q) = IΓQ(e)(x, q), FΓQ(e)(gxg
−1, q) = FΓQ(e)(x, q).

Thus, (ΓQ, A) is a Q-NNSG over G.
Therefore, if (ΓQ, A) is a Q-NNSG over G then the left and right Q-neutrosophic soft cosets coincide. In this
case, we call it Q-neutrosophic soft cosets instead of left or right Q-neutrosophic soft cosets separately.

Theorem 4.4. Let (ΓQ, A) be a Q-NNSG over the group G and the set ς be the collection of all distinct
Q-neutrosophic soft cosets of (ΓQ, A) in G. Then, ς is a group in classical sense under the operation of
composition: g1(ΓQ, A)y(ΓQ, A) = (g1y)(ΓQ, A),∀g1, g2 ∈ G.

Proof. First we show that the operation is well defined in the sense that if g1(ΓQ, A) = ǵ1(ΓQ, A) and
g2(ΓQ, A) = ǵ2(ΓQ, A), then g1(ΓQ, A)g2(ΓQ, A) = (ǵ1ǵ2)(ΓQ, A) for g1, g2, ǵ1, ǵ2 ∈ G.
Now, g1(ΓQ, A) = ǵ1(ΓQ, A) implies g−1

1 ǵ1 = ΓQ(e1), e1 ∈ A and g2(ΓQ, A) = ǵ2(ΓQ, A) implies g−1
2 ǵ2 =

ΓQ(e2), e2 ∈ A.
We show, (g1g2)(ΓQ, A) = (ǵ1ǵ2)(ΓQ, A) i.e., (g1g2)−1(ǵ1ǵ2) ∈ G. Now,

(g1g2)−1(ǵ1ǵ2) = g−1
2 g−1

1 ǵ1ǵ2

= g−1
2 ΓQ(e1)ǵ2

= g−1
2 g2ΓQ(e1)

= ΓQ(e2)ΓQ(e1)

= ΓQ(e3) ∈ (ΓQ, A), e3 ∈ A.

Hence, the operation is well defined. Now,
1. the closure axiom is clearly satisfied.
2. g1(ΓQ, A)[g2(ΓQ, A)g3(ΓQ, A)] = g1(ΓQ, A)(g2g3)(ΓQ, A) = g1(g2g3)(ΓQ, A) and
[g1(ΓQ, A)g2(ΓQ, A)]g3(ΓQ, A) = (g1g2)g3(ΓQ, A) = (g1g2)g3(ΓQ, A) for g1, g2, g3 ∈ G. Now, g1(g2g3) =
(g1g2)g3, since G is a group.
3. é(ΓQ, A)g1(ΓQ, A) = (ég1)(ΓQ, A) = g1(ΓQ, A) and g1(ΓQ, A)é(ΓQ, A) = (g1é)(ΓQ, A) = g1(ΓQ, A) for
é being the unity in G.
4. g−1

1 (ΓQ, A)g1(ΓQ, A) = (g−1
1 g1)(ΓQ, A) = é(ΓQ, A) = (ΓQ, A) and

g1(ΓQ, A)g−1
1 (ΓQ, A) = (g1g

−1
1 )(ΓQ, A) = é(ΓQ, A) = (ΓQ, A).

Thus, ς is a group. This group is a called the quotient group ofG by (ΓQ, A) and is denoted byG/(ΓQ, A).

Theorem 4.5. Let (ΓQ, A) be a Q-NNSG over G. Then, there exists a natural homomorphism ϕ : G →
G/(ΓQ, A) defined by ϕ(g) = g(ΓQ, A),∀g ∈ G in the classical sense.

Proof. Let ϕ : G→ G/(ΓQ, A) be given by ϕ(g) = gΓQ(e),∀e ∈ A. We show that ϕ is a homomorphism i.e.
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ϕ(g1g2) = ϕ(g1)ϕ(g2),∀g1, g2 ∈ G, i.e., (g1g2)ΓQ(e) = g1ΓQ(e)g2ΓQ(e). Now, for x ∈ G, q ∈ Q

(g1ΓQ(e))(x, q) =
〈
Tg1ΓQ(e)(x, q), Ig1ΓQ(e)(x, q), Fg1ΓQ(e)(x, q)

〉
=
〈
TΓQ(e)(g

−1
1 x, q), IΓQ(e)(g

−1
1 x, q), FΓQ(e)(g

−1
1 x, q)

〉
,

(g2ΓQ(e))(x, q) =
〈
Tg2ΓQ(e)(x, q), Ig2ΓQ(e)(x, q), Fg2ΓQ(e)(x, q)

〉
=
〈
TΓQ(e)(g

−1
2 x, q), IΓQ(e)(g

−1
2 x, q), FΓQ(e)(g

−1
2 x, q)

〉
,

(g1g2ΓQ(e))(x, q) =
〈
TΓQ(e)((g1g2)−1x, q), IΓQ(e)((g1g2)−1x, q), FΓQ(e)((g1g2)−1x, q)

〉
.

Then,

[(g1ΓQ(e))(g2ΓQ(e))](x, q) =
〈

min
{
Tg1ΓQ(e)(x, q), Tg2ΓQ(e)(x, q)

}
,

max
{
Ig1ΓQ(e)(x, q), Ig2ΓQ(e)(x, q)

}
,

max
{
Fg1ΓQ(e)(x, q), Fg2ΓQ(e)(x, q)

}〉
=
〈

min
{
TΓQ(e)((g

−1
1 x, q), TΓQ(e)((g

−1
2 x, q)

}
,

max
{
IΓQ(e)((g

−1
1 x, q), IΓQ(e)((g

−1
2 x, q)

}
,

max
{
FΓQ(e)((g

−1
1 x, q), FΓQ(e)((g

−1
2 x, q)

}〉
Further,

TΓQ(e)((g1g2)−1x, q) = TΓQ(e)(g
−1
2 g−1

1 x, q)

= TΓQ(e)(g
−1
2 g−1

1 xg−1
2 g2, q)

= TΓQ(e)(g
−1
1 xg2, q)

≥ min
{
TΓQ(e)(g1x, q), TΓQ(e)(g2x, q)

}
.

Hence, TΓQ(e)((g1g2)−1x, q) = min
{
TΓQ(e)((g

−1
1 x, q), TΓQ(e)((g

−1
2 x, q)

}
, similarly, IΓQ(e)((g1g2)−1x, q) =

max
{
IΓQ(e)((g

−1
1 x, q), IΓQ(e)((g

−1
2 x, q)

}
andFΓQ(e)((g1g2)−1x, q) = max

{
FΓQ(e)((g

−1
1 x, q), FΓQ(e)((g

−1
2 x, q)

}
.

This shows that, [(g1ΓQ(e))(g2ΓQ(e))](x, q) = [(g1g2)ΓQ(e)](x, q) which implies, ϕ(g1g2) = ϕ(g1)ϕ(g2).

5 Conclusion

We have introduced the notions of Q-neutrosophic normal soft groups and Q-neutrosophic soft cosets. We
have discussed several related structural characteristics and properties. For future research, we can extend
these topics to hyperalgebra. Also, these topics may be discussed using t-norm and s-norm. We intend to fur-
ther explore the applications of the algebraic structure to different extensions of fuzzy sets in order to provide
a significant addition to existing theories for handling uncertainties, especially in the area of soft sets [23–25].
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1. Introduction

Neutrosophy was defined by Smarandache in 2013 for the first time [15]. After that, this

topic became very popular in the scientific world, and many studies have been done in this

area to date. Salama and Alblowi developed topological structure on neutrosophic sets in

2012 [14]. The concept of neutrosophic bitopological space was defined in 2019 by Ozturk

and Alkan [13]. Then in 2020, neutrosophic interior, closure and boundary were defined in

neutrosophic bitopological spaces by Mwchahary and Bhimraj [12]. Some generalized open

sets were defined in neutrosophic bitopological spaces [5,6]. In 2013, neutrosophic soft set was

defined by Maji [10]. The concept of neutrosophic soft topological space was defined in 2017

by Bera and Nirmal [2]. Neutrosophic soft bitopological space was defined in [4].

In this study some generalized open sets are defined in neutrosophic soft bitopological spaces.

2. Preliminiaries

[1] Let X be a space of points. A neutrosophic set (NS) A in X is characterized by a falsity-

membership function F , a indeterminacy-membership function I and a truth-membership
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function T where F, I, T : X → [0, 1], 0 ≤ T (x)+ I(x)+F (x) ≤ 3 . The set of all neutrosophic

set in X is denoted by NX .

Definition 2.1. [14] Let B,D ∈ NX . Then

(1) Subset: D ⊂ B if TD(z) ≤ TB(z), ID(z) ≤ IB(z), FD(z) ≥ FB(z) for all z ∈ X .

(2) Equality: D = B if D ⊂ B and B ⊂ D .

(3) Intersection:

D ∩B = {< z,min{TD(z), TB(z)},max{ID(z), IB(z)},max{FD(z), FB(z)} >: z ∈ X}

(4) Union:

D ∪B = {< z,max{TD(z), TB(z)},min{ID(x), IB(x)},min{FD(z), FB(z)} >: z ∈ X}

The intersection and the union of a collection of NSs {Di} ∈ I are defined by:⋂
i∈I

Di = {< z, inf{Ti(z)}, sup{IDi(z)}, sup{FDi(z)} >: z ∈ X}

⋃
i∈I

Di = {< z, sup{TDi(z)}, inf{IDi(z)}, inf{FDi(z)} >: z ∈ X}

(5) The neutrosophic set defined as TD(z) = 1, ID(z) = 1 and FD(z) = 0 for all z ∈ X is

called the universal NS denoted by 1X . Also the neutrosophic set defined as TD(z) =

0, ID(z) = 0 and FD(z) = 1 for all z ∈ X is called the empty NS denoted by 0X .

(6) Difference: D/B = {< z, TD(z)− TB(z), ID(z)− IB(z), FD(z)− FB(z) >: z ∈ X}
(7) Complement: Dc = 1X/D

Clearly, the complements of 1X and 0X are defined:

(1X)c = 1X/1X = {< z, 0, 1, 1 >: z ∈ X} = 0X

(0X)c = 1X/0X = {< z, 1, 0, 0 >: z ∈ X} = 1X

Proposition 2.2. Let D1, D2, D3, D4 ∈ N(X). Then the followings hold:

(1) D1 ∩D3 ⊂ D2 ∩D4 and D1 ∪D3 ⊂ D2 ∪D4 if D1 ⊂ D2 and D3 ⊂ D4

(2) (Dc
1)
c = D1 and D1 ⊂ D2 if Dc

2 ⊂ Dc
1

(3) (D1 ∩D2)
c = Dc

1 ∪Dc
2 and (D1 ∪D2)

c = Dc
1 ∩Dc

2

Definition 2.3. Let Γn ⊂ N(Y ). Then Γn is named a neutrosophic topology (NT) on Y if

the following conditions hold;

(1) 0X and 1X are belong to Γn.

(2) Union of any number of NSs in Γn is again belong to Γn.

(3) Intersection of any two NSs in Γn is belong to Γn.

Then the pair (Y,Γn) is named neutrosophic topology on Y .
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2.1. Neutrosophic Soft Sets

Definition 2.4. Let U be an initial universe set and E be a set of parameters. Then the

pair (H,E) is called as neutrosophic soft set (NSS) over U , where H is a mapping from E to

N(U).

The set of all NSS over U is denoted by NSS(U,E). A neutrosophic set (H,E) can be

written as: (H,E) = {(e, {< x, TH(x), IH(x), FH(x) >: x ∈ X}) : e ∈ E}.

Definition 2.5. Let X be an initial universe set and E be a set of parameters. Then the

neutrosophic soft set xe(α,β,γ) defined as

xe(α,β,γ)(e
′)(y) =

(α, β, γ) if e = e′ and y = y′

(0, 0, 1) if e 6= e′ and y 6= y′

for all x ∈ X, 0 < α, β, γ ≤ 1, e ∈ E , is called a neutrosophic soft point.

Definition 2.6. [2] Let (H,E), (G,E) ∈ NSS(U,E). Then for all x ∈ U

(1) Subset: (H,E) ⊂ (G,E) if TH(e)(x) ≤ TG(e)(x), IH(e)(x) ≤ IG(e)(x) and FH(e)(x) ≥
FG(e)(x) for all e ∈ E .

(2) Equality: (H,E) = (G,E) if (H,E) ⊂ (G,E) and (G,E) ⊂ (H,E) .

(3) Intersection:

(H,E)∩(G,E) = {(e, {< x,min{TH(e)(x), TG(e)(x)},max{IH(e)(x), IG(e)(x)},max{FH(e)(x), FG(e)(x)} >} : e ∈ E}.

(4) Union:

(H,E)∪(G,E) = {(e, {< x,max{TH(e)(x), TG(e)(x)},min{IH(e)(x), IG(e)(x)},min{FH(e)(x), FG(e)(x)} >} : e ∈ E}.

The intersection and the union of a collection of {(Hi, E)} ⊂ NSS(U,E) are defined

by:⋂
i∈I

(Hi, E) =
{(
e, {< x, inf{THi(e)

(x)}, sup{IHi(e)(x)}, sup{FHi(e)(x)} >}
)

: e ∈ E
}

⋃
i∈I

(Hi, E) =
{(
e, {< x, sup{THi(e)

(x)}, inf{IHi(e)
(x)}, inf{FHi(e)

(x)} >}
)

: e ∈ E
}

(5) The NSS defined as TH(e)(x) = 1, IH(e)(x) = 0 and FH(e)(x) = 0 , for all e ∈ E

and x ∈ U is called the universal NSS denoted by 1(U,E) . Also the neutrosophic set

defined as TH(e)(x) = 0 IH(e)(x) = 1 and FH(e)(x) = 1 for all e ∈ E and x ∈ U is called

the empty NSS denoted by 0(U ;E) .

(6) Complement:

(H,E)c = 1(X,E)/(H,E) = {(e, {< x,FH(e)(x), 1− IH(e)(x), TH(e)(x) >} : e ∈ E}
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Clearly, the complements of 1(X,E) and 0(X,E) are defined:

(1(X,E))
c = 1(X,E)/1(X,E) = {(e, {< x, 0, 1, 1 >} : e ∈ E} = 0(X,E)

(0(X,E))
c = 1(X,E)/0(X,E) = {(e, {< x, 1, 0, 0 >} : e ∈ E} = 1(X,E)

Definition 2.7. [1] Let τ ⊂ NSS(Y,E) . Then τ is called as a neutrosophic soft topology

on Y if the following conditions hold:

NST1) 0(Y,E), 1(Y,E) ∈ τ
NST2) Union of any number of NSSs in τ is belong to τ .

NST3) Intersection of finite number of NSSs in τ is belong to τ .

Then (Y,E, τ) is called as neutrosophic soft topological space. Any element of τ is called as

τ -neutrosophic soft open (τ -NSO) set. A NSS is called as τ -neutrosophic soft closed (τ -NSC)

if the complement of the set is τ -NSO. The set of all neutrosophic soft closed sets is denoted

by (τ)c.

Definition 2.8. [1] Let (Y,E, τ) be a neutrosophic soft topological space and (M,E) ∈
NSS(Y,E). Then the intersection of all τ -NSC sets containing (M,E) is called as closure of

(M,E) and denoted by clτ (M,E), i.e. clτ (M,E) =
⋂
{(N,E) ∈ (τ)c : (M,E) ⊂ (N,E)}

Theorem 2.9. [1] Let (Y,E, τ) be a neutrosophic soft topological space and (M,E), (N,E) ∈
NSS(Y,E). Then

cl1) (M,E) ⊂ clτ (M,E)

cl2) (M,E) ⊂ (N,E) then clτ (M,E) ⊂ clτ (N,E)

cl3) clτ ((M,E) ∩ (N,E)) ⊂ clτ (M,E) ∩ clτ (N,E)

cl4) clτ ((M,E) ∪ (N,E)) = clτ (M,E) ∪ clτ (N,E)

Definition 2.10. Let τ ⊂ NSS(Y,E). Then τ is called as a neutrosophic soft supra topology

on Y if it satisfies just NST1) and NST2).

Definition 2.11. Let (Y,E, τ) be a neutrosophic soft topological space and (M,E) ∈
NSS(Y,E). Then the union of all τ -NSO sets subset of (M,E) is called as interior of (M,E)

and denoted by intτ (M,E), i.e. intτ (M,E) =
⋃
{(N,E) ∈ τ : (N,E) ⊂ (M,E)}

Theorem 2.12. [1] Let (Y,E, τ) be a neutrosophic soft topological space and (M,E), (N,E) ∈
NSS(Y,E). Then

int1) intτ (M,E) ⊂ (M,E)

int2) (M,E) ⊂ (N,E) then intτ (M,E) ⊂ intτ (N,E)

int3) intτ ((M,E) ∩ (N,E)) = intτ (M,E) ∩ intτ (N,E)

int4) intτ (M,E) ∪ intτ (N,E) ⊂ intτ ((M,E) ∪ (N,E))
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3. Neutrosophic Soft Bitopological Space

Definition 3.1. If (Y, τ1, E) and (Y, τ2, E) are two neutrosophic soft topological space, then

(Y,E, τ1, τ2) is named as neutrosophic soft bitopological space. The sets belong to τi are called

as neutrosophic soft τi-open set for i = 1, 2.

Definition 3.2. An operator C : NSS(X,E) → NSS(X,E) is called a neutrosophic

soft supra closure operator if it satisfies the following conditions for all (N,E), (M,E) ∈
NSS(X,E),

C1) C(0(X,E)) = 0(X,E)

C2) (N,E) ⊂ C(N,E)

C3) C(N,E) ∪ C(M,E) ⊂ C(N ∪M)

C4) C(C(N,E)) = C(N,E).

Theorem 3.3. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space. Then, the operator

cl12 : NSS(X,E) → NSS(X,E) defined as cl12(N,E) = clτ1(N,E) ∩ clτ1(N,E) is a neutro-

sophic soft supra closure operator on (X,E) and induces the supra neutrosophic soft topology

τ12 = {(M,E) ∈ NSS(X,E) : cl12 ((M,E)c) = (M,E)c}.

Proof. First let prove that cl12 is a neutrosophic soft supra closure operator.

C1) cl12(0(X,E)) = clτ1(0(X,E)) ∩ clτ2(0(X,E)) = 0(X,E) ∩ 0(X,E) = 0(X,E)

C2) (N,E) ⊂ clτ1(N,E) and (N,E) ⊂ clτ2(N,E). Then (N,E) ⊂ clτ1(N,E)∩clτ2(N,E) =

cl12(N,E).

C3)

cl12(N,E) ∪ cl12(M,E) = [clτ1(N,E) ∩ clτ2(N,E)] ∪ [clτ1(M,E) ∩ clτ2(M,E)]

= clτ1 [(N,E) ∪ (M,E)] ∩ [clτ2(N,E) ∪ clτ1(M,E)]

∩ [clτ1(N,E) ∪ clτ2(M,E)] ∩ clτ2 [(N,E) ∪ (M,E)]

⊂ clτ1 [(N,E) ∪ (M,E)] ∩ clτ2 [(N,E) ∪ (M,E)]

= cl12 [(N,E) ∪ (M,E)] .

C4) From C3, cl12(N,E) ⊂ cl12(cl12(N,E)). Also

cl12(cl12(N,E)) = cl12(clτ1(N,E) ∩ clτ2(N,E))

= clτ1((clτ1(N,E) ∩ clτ2(N,E)) ∩ clτ2((clτ1(N,E) ∩ clτ2(N,E))

⊂ clτ1((clτ1(N,E)) ∩ clτ1(clτ2(N,E)) ∩ clτ2(clτ1(N,E)) ∩ clτ2(clτ2(N,E))

⊂ clτ1(N,E) ∩ clτ2(N,E) = cl12(N,E).

Therefore cl12(N,E) = cl12(cl12(N,E)).
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Now let prove that τ12 is a neutrosophic soft supra topology.

NST1) Since cl12
(
(1(X,E))

c
)

= cl12(0(X,E)) = 0(X,E), then 0(X,E) ∈ τ12. Also cl12
(
(0(X,E))

c
)

=

cl12(1(X,E)) ⊂ 1(X,E) and from (C2), 1(X,E) ⊂ cl12(1(X,E)). Therefore 0(X,E) ∈ τ12.
NST2) Let (Ni, E) ∈ τ12. Then cl12 ((Ni, E)c) = (Ni, E)c.

cl12

(⋃
i∈I

(Ni, E)

)c
= clτ1

(⋃
i∈I

(Ni, E)

)c
∩ clτ2

(⋃
i∈I

(Ni, E)

)c

= clτ1

(⋂
i∈I

(Ni, E)c

)
∩ clτ2

(⋂
i∈I

(Ni, E)c

)

⊂
⋂
i∈I

(clτ1(Ni, E)c) ∩
⋂
i∈I

(clτ2(Ni, E)c)

=
⋂
i∈I

(clτ1(Ni, E)c ∩ clτ2(Ni, E)c)

=
⋂
i∈I

(cl12(Ni, E)c) =
⋂
i∈I

(Ni, E)c =

(⋃
i∈I

(Ni, E)

)c
.

Also from (C2),
(⋃

i∈I(Ni, E)
)c ⊂ cl12 (⋃i∈I(Ni, E)

)c
. Therefore cl12

(⋃
i∈I(Ni, E)

)c
=(⋃

i∈I(Ni, E)
)c

, then
⋃
i∈I(Ni, E) ∈ τ12.

Consequently τ12 is a neutrosophic soft supra topology on (X,E).

Theorem 3.4. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space and (N,E) ∈
NSS(X,E). Then (N,E) ∈ τ12 if and only if there exists a τ1-NSC set (N1, E) and τ2-NSC

set (N2, E) such that (N,E) = (N1, E) ∩ (N2, E).

Proof. If we take (N1, E) = clτ1(N,E) and (N2, E) = clτ2(N,E), then proof is clear.

Theorem 3.5. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space and

(M,E), (N,E) ∈ NSS(X,E). Then

1) if (M,E) ⊂ (N,E) then cl12(M,E) ⊂ cl12(N,E).

2) cl12 ((M,E) ∩ (N,E)) ⊂ cl12(M,E) ∩ cl12(N,E).

Proof. For any (M,E), (N,E) ∈ NSS(X,E),

1) Let (M,E) ⊂ (N,E). Then clτ1(M,E) ⊂ clτ1(N,E) and clτ2(M,E) ⊂ clτ2(N,E).

Therefore clτ1(M,E) ∩ clτ2(M,E) ⊂ clτ1(N,E) ∩ clτ2(N,E). So cl12(M,E) ⊂
cl12(N,E).

2) (M,E) ∩ (N,E) ⊂ (M,E) and (M,E) ∩ (N,E) ⊂ (N,E). Then from (1),

cl12((M,E)∩ (N,E)) ⊂ cl12(M,E) and cl12((M,E)∩ (N,E)) ⊂ cl12(N,E). Therefore

cl12 ((M,E) ∩ (N,E)) ⊂ cl12(M,E) ∩ cl12(N,E).
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.

Remark 3.6. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space. Then cl12(M,E)∩
cl12(N,E) 6= cl12 ((M,E) ∩ (N,E)), in general.

Example 3.7. Let the neutrosophic soft bitopological space (X,U, τ1, τ2) be defined as

X = {x1, x2, x3}, U = {e1, e2}, τ1 = {0(X,U), 1(X,U), (A,U), (B,U), (C,U), (D,U)}, τ2 =

{0(X,U), 1(X,U), (D,U), (F,U), (G,U), (H,U)} where the tabular representations of NSSs are

as follows:

(A,U) =

X e1 e2

x1 < 0.2, 0.3, 0.8 > < 0.9, 0.1, 0.3 >

x2 < 0.1, 0.5, 0.4 > < 0.4, 0.4, 0.4 >

x3 < 0.8, 0.1, 0.5 > < 0.2, 0.8, 0.1 >

(B,U) =

X e1 e2

x1 < 0.1, 0.3, 0.8 > < 0.3, 0.1, 0.7 >

x2 < 0.1, 0.1, 0.4 > < 0.1, 0.2, 0.5 >

x3 < 0.3, 0.1, 0.5 > < 0.2, 0.1, 0.3 >

(C,U) =

X e1 e2

x1 < 0.2, 0.3, 0.4 > < 0.9, 0.1, 0.3 >

x2 < 0.2, 0.1, 0.3 > < 0.4, 0.2, 0.4 >

x3 < 0.8, 0.1, 0.5 > < 0.6, 0.1, 0.1 >

(D,U) =

X e1 e2

x1 < 0.1, 0.3, 0.4 > < 0.3, 0.2, 0.7 >

x2 < 0.2, 0.1, 0.3 > < 0.1, 0.2, 0.5 >

x3 < 0.3, 0.7, 0.8 > < 0.6, 0.1, 0.3 >

(F,U) =

X e1 e2

x1 < 0.7, 0.1, 0.1 > < 0.2, 0.5, 0.5 >

x2 < 0.9, 0.5, 0.3 > < 0.3, 0.8, 0.1 >

x3 < 0.1, 0.8, 0.1 > < 0.8, 0.2, 0.7 >
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(G,U) =

X e1 e2

x1 < 0.1, 0.1, 0.4 > < 0.2, 0.2, 0.7 >

x2 < 0.2, 0.1, 0.3 > < 0.1, 0.2, 0.5 >

x3 < 0.1, 0.7, 0.8 > < 0.6, 0.1, 0.7 >

(H,U) =

X e1 e2

x1 < 0.7, 0.1, 0.1 > < 0.3, 0.2, 0.5 >

x2 < 0.9, 0.1, 0.3 > < 0.3, 0.2, 0.1 >

x3 < 0.3, 0.7, 0.1 > < 0.8, 0.1, 0.3 >

Let two NSSs (X1, U) and (X2, U) are defined as

(X1, U) =

X e1 e2

x1 < 0.8, 0.5, 0.1 > < 0.7, 0.1, 0.3 >

x2 < 0.5, 0.9, 0.1 > < 0.8, 0.1, 0.1 >

x3 < 0.5, 0.8, 0.2 > < 0.5, 0.9, 0.2 >

(X2, U) =

X e1 e2

x1 < 0.9, 0.7, 0.1 > < 0.9, 0.9, 0.1 >

x2 < 0.4, 0.5, 0.1 > < 0.5, 0.8, 0.1 >

x3 < 0.7, 0.9, 0.3 > < 0.3, 0.9, 0.1 >

Then cl12((X1, U) ∩ (X2, U)) = (B,U)c and cl12(X1, U) = cl12(X2, U) = 1(X,U). So

cl12(X1, U) ∩ cl12(X2, U) 6⊂ cl12((X1, U) ∩ (X2, U))

Definition 3.8. An operator I : NSS(X,E)→ NSS(X,E) is called a neutrosophic soft supra

interior operator if it satisfies the following conditions for all (N,E), (M,E) ∈ NSS(X,E),

I1) I(0(X,E)) = 0(X,E)

I2) I(N,E) ⊂ (N,E)

I3) I(N,E) ∩ I(M,E) ⊂ I(N ∩M)

I4) I(I(N,E)) = I(N,E).

Theorem 3.9. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space. Then, the operator

int12 : NSS(X,E) → NSS(X,E) defined as int12(N,E) = intτ1(N,E) ∪ intτ1(N,E) is a

neutrosophic soft supra interior operator on (X,E) and induces the supra neutrosophic soft

topology τ12 = {(M,E) ∈ NSS(X,E) : int12(M,E) = (M,E)}.
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Proof. First let prove that int12 is a neutrosophic soft supra interior operator.

I1) int12(0(X,E)) = intτ1(0(X,E)) ∪ intτ2(0(X,E)) = 0(X,E) ∪ 0(X,E) = 0(X,E)

I2) intτ1(N,E) ⊂ (N,E) and intτ2(N,E) ⊂ (N,E). Then intτ1(N,E) ∪ intτ2(N,E) ⊂
(N,E). Therefore intτ12(N,E) ⊂ (N,E)

I3)

int12(N,E) ∩ int12(M,E) = [intτ1(N,E) ∪ intτ2(N,E)] ∩ [intτ1(M,E) ∪ intτ2(M,E)]

= intτ1 [(N,E) ∩ (M,E)] ∪ [intτ2(N,E) ∩ intτ1(M,E)]

∪ [intτ1(N,E) ∩ intτ2(M,E)] ∪ intτ2 [(N,E) ∩ (M,E)]

= intτ12 [(N,E) ∩ (M,E)] ∪ [intτ2(N,E) ∩ intτ1(M,E)]

∪ [intτ1(N,E) ∩ intτ2(M,E)]

⊂ int12 [(N,E) ∩ (M,E)] .

I4) From (I3), int12(int12(N,E)) ⊂ int12(N,E). Also

int12(N,E) = intτ1(N,E) ∪ intτ2(N,E))

= intτ1(intτ1(N,E)) ∪ intτ2(intτ2(N,E))

⊂ intτ1(intτ1(N,E)) ∪ intτ1(intτ2(N,E)) ∪ intτ2(intτ1(N,E)) ∪ intτ2(intτ2(N,E))

⊂ intτ1(intτ1(N,E)) ∪ intτ2(N,E)) ∪ intτ2(intτ1(N,E)) ∪ intτ2(N,E))

= intτ1(int12(N,E)) ∪ intτ2(int12(N,E))

= int12(int12(N,E)).

Therefore int12(N,E) = int12(int12(N,E)).

Now let prove that τ12 is a neutrosophic soft supra topology.

NST1) From (I1), int12(0(X,E)) = 0(X,E), then 0(X,E) ∈ τ12. Also int12((1(X,E))) =

intτ1(1(X,E)) ∪ intτ2(1(X,E)) = 1(X,E). Therefore 1(X,E) ∈ τ12.
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NST2) Let (Ni, E) ∈ τ12. Then int12((Ni, E)) = (Ni, E).⋃
i∈I

(Ni, E) =
⋃
i∈I

int12(Ni, E)

=
⋃
i∈I

(int1(Ni, E) ∪ int2(Ni, E))

=

(⋃
i∈I

int1(Ni, E)

)
∪

(⋃
i∈I

int2(Ni, E)

)

⊂ int1

(⋃
i∈I

(Ni, E)

)
∪ int2

(⋃
i∈I

(Ni, E)

)

= int12

(⋃
i∈I

(Ni, E)

)
.

Also from (I2),

int12

(⋃
i∈I

(Ni, E)

)
⊂

(⋃
i∈I

(Ni, E)

)
.

Therefore int12
(⋃

i∈I(Ni, E)
)

=
(⋃

i∈I(Ni, E)
)
, then

⋃
i∈I(Ni, E) ∈ τ12.

Consequently τ12 is a neutrosophic soft supra topology on (X,E).

Theorem 3.10. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space and (N,E) ∈
NSS(X,E). Then (N,E) ∈ τ12 if and only if there exists a τ1-NSO set (N1, E) and τ2-NSO

set (N2, E) such that (N,E) = (N1, E) ∪ (N2, E).

Proof. If we take (N1, E) = intτ1(N,E) and (N2, E) = intτ2(N,E), then proof is clear.

Theorem 3.11. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space and

(M,E), (N,E) ∈ NSS(X,E). Then

1) if (M,E) ⊂ (N,E) then int12(M,E) ⊂ int12(N,E).

2) int12(M,E) ∪ int12(N,E) ⊂ int12 ((M,E) ∪ (N,E)).

Proof. For any (M,E), (N,E) ∈ NSS(X,E),

1) Let (M,E) ⊂ (N,E). Then intτ1(M,E) ⊂ intτ1(N,E) and intτ2(M,E) ⊂ intτ2(N,E).

Therefore intτ1(M,E) ∩ intτ2(M,E) ⊂ intτ1(N,E) ∩ intτ2(N,E). So int12(M,E) ⊂
int12(N,E).

2) (M,E) ⊂ (M,E) ∪ (N,E) and (N,E) ⊂ (M,E) ∪ (N,E). Then from (1), int12(M,E) ⊂
int12 ((M,E) ∪ (N,E)) and int12(N,E) ⊂ int12 ((M,E) ∪ (N,E)) . Therefore int12(M,E) ∪
int12(N,E) ⊂ int12 ((M,E) ∪ (N,E)).

Sibel Demiralp, Hasan Dadas, Generalized Open Sets in Neutrosophic Soft Bitopological
Spaces

Neutrosophic Sets and Systems, Vol. 48, 2022                                                                              348



Remark 3.12. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space. Then

int12(M,E) ∪ int12(N,E) 6= int12 ((M,E) ∪ (N,E)), in general.

Proposition 3.13. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space and (N,E) ∈
NSS(X,E). Then

1) τ1, τ2 ⊂ τ12
2) cl12(N,E) = (int12(N,E)c)c

3) int12(N,E) = (cl12(N,E)c)c

Proof. 1) Let (N,E) ∈ τ1. Then (N,E) = intτ1(N,E). Therefore

int12(N,E) = intτ1(N,E) ∪ intτ2(N,E) = (N,E)

So τ1 ⊂ τ12. Similar for τ2 ⊂ τ12.
2)

cl12(N,E) = clτ1(N,E) ∩ clτ2(N,E) =

⋂
j∈I

(F 1
j , E)

 ∩
⋂
j∈J

(F 2
j , E)


=

⋃
j∈I

(F 1
j , E)c

c ∩
⋃
j∈J

(F 2
j , E)c

c

=

⋃
j∈I

(F 1
j , E)c

 ∪
⋃
j∈J

(F 2
j , E)c

c
= [intτ1(N,E)c ∪ intτ2(N,E)c]c = (int12(N,E)c)c

where (N,E) ⊂ (F ij , E), (F ij , E)c ∈ τi for all j ∈ I, J and i = 1, 2.

3)

int12(N,E) = intτ1(N,E) ∪ intτ2(N,E) =

⋃
j∈I

(U1
j , E)

 ∪
⋃
j∈J

(U2
j , E)


=

⋂
j∈I

(U1
j , E)c

c ∪
⋂
j∈J

(U2
j , E)c

c

=

⋂
j∈I

(U1
j , E)c

 ∩
⋂
j∈J

(U2
j , E)c

c
= [clτ1(N,E)c ∩ clτ2(N,E)c]c = (cl12(N,E)c)c

where (U ij , E) ⊂ (N,E), (U ij , E) ∈ τi for all j ∈ I, J and i = 1, 2.

.
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4. Some Generalized Open Sets in Neutrosophic Soft Bitopological Spaces

Throughout this section, i, j = 1, 2 and i 6= j.

Definition 4.1. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space and (N,E) ∈
NSS(X,E). Then (N,E) is called as

1) ij− neutrosophic soft preopen (ij −NSPO) if (N,E) ⊂ intτi
(
clτj (N,E)

)
2) ij− neutrosophic soft semi-open (ij −NSSO) if (N,E) ⊂ clτj (intτi(N,E))

3) ij− neutrosophic soft b-open (ij − NSbO) if (N,E) ⊂ clτi
(
intτj (N,E)

)
∪

intτj (clτi(N,E)).

4) ij− neutrosophic soft β-open (ij −NSβO) if (N,E) ⊂ clτj
(
intτi(clτj (N,E))

)
.

Example 4.2. Let the neutrosophic soft bitopological space (X,U, τ1, τ2) be defined as

X = {x1, x2, x3}, U = {e1, e2}, τ1 = {0(X,U), 1(X,U), (A,U), (B,U), (C,U), (D,U)}, τ2 =

{0(X,U), 1(X,U), (E,U), (F,U), (G,U), (H,U)} where the tabular representations of NSSs are

as follows:

(A,U) =

X e1 e2

x1 < 0.2, 0.1, 0.9 > < 0.6, 0.1, 0.7 >

x2 < 0.1, 0.8, 0.4 > < 0.1, 0.1, 0.8 >

x3 < 0.3, 0.4, 0.8 > < 0.5, 0.1, 0.4 >

(B,U) =

X e1 e2

x1 < 0.1, 0.3, 0.4 > < 0.2, 0.7, 0.8 >

x2 < 0.2, 0.1, 0.5 > < 0.5, 0.6, 0.7 >

x3 < 0.3, 0.3, 0.7 > < 0.1, 0.8, 0.8 >

(C,U) =

X e1 e2

x1 < 0.2, 0.1, 0.4 > < 0.6, 0.1, 0.7 >

x2 < 0.2, 0.1, 0.4 > < 0.5, 0.1, 0.7 >

x3 < 0.3, 0.3, 0.7 > < 0.5, 0.1, 0.4 >

(D,U) =

X e1 e2

x1 < 0.1, 0.3, 0.9 > < 0.2, 0.7, 0.8 >

x2 < 0.1, 0.8, 0.5 > < 0.1, 0.6, 0.8 >

x3 < 0.3, 0.4, 0.8 > < 0.1, 0.8, 0.8 >
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(E,U) =

X e1 e2

x1 < 0.2, 0.6, 0.3 > < 0.1, 0.1, 0.9 >

x2 < 0.3, 0.7, 0.4 > < 0.3, 0.4, 0.6 >

x3 < 0.3, 0.5, 0.8 > < 0.6, 0.1, 0.8 >

(F,U) =

X e1 e2

x1 < 0.1, 0.1, 0.8 > < 0.1, 0.8, 0.9 >

x2 < 0.3, 0.2, 0.5 > < 0.3, 0.5, 0.7 >

x3 < 0.7, 0.5, 0.6 > < 0.1, 0.7, 0.7 >

(G,U) =

X e1 e2

x1 < 0.2, 0.1, 0.3 > < 0.1, 0.1, 0.9 >

x2 < 0.3, 0.2, 0.4 > < 0.3, 0.4, 0.6 >

x3 < 0.7, 0.5, 0.6 > < 0.6, 0.1, 0.7 >

(H,U) =

X e1 e2

x1 < 0.1, 0.6, 0.8 > < 0.1, 0.8, 0.9 >

x2 < 0.3, 0.7, 0.5 > < 0.3, 0.5, 0.7 >

x3 < 0.3, 0.5, 0.8 > < 0.1, 0.7, 0.8 >

Let an NSSs (W,U) is defined as

(W,U) =

X e1 e2

x1 < 0.3, 0.7, 0.2 > < 0.8, 0.2, 0.3 >

x2 < 0.4, 0.8, 0.3 > < 0.6, 0.4, 0.6 >

x3 < 0.5, 0.5, 0.7 > < 0.7, 0.2, 0.3 >

Then intτ1(W,U) = (A,U), intτ2(W,U) = (E,U).

(W,U) ⊂ clτ2(A,U) =

X e1 e2

x1 < 0.8, 0.9, 0.1 > < 0.9, 0.2, 0.1 >

x2 < 0.5, 0.8, 0.3 > < 0.7, 0.5, 0.3 >

x3 < 0.6, 0.5, 0.7 > < 0.7, 0.3, 0.1 >

Then (W,U) is a 12−NSSO set.
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(W,U) ⊂ clτ1(E,U) =

X e1 e2

x1 < 0.4, 0.7, 0.1 > < 0.8, 0.3, 0.2 >

x2 < 0.5, 0.9, 0.2 > < 0.7, 0.4, 0.5 >

x3 < 0.7, 0.7, 0.3 > < 0.8, 0.2, 0.1 >

Then (W,U) is also a 21−NSSO set.

clτ1(W,U) =

X e1 e2

x1 < 0.4, 0.9, 0.2 > < 0.7, 0.9, 0.6 >

x2 < 0.4, 0.9, 0.2 > < 0.7, 0.9, 0.5 >

x3 < 0.7, 0.7, 0.3 > < 0.4, 0.9, 0.5 >

clτ1(W,U) =

X e1 e2

x1 < 0.4, 0.9, 0.2 > < 0.7, 0.9, 0.6 >

x2 < 0.4, 0.9, 0.2 > < 0.7, 0.9, 0.5 >

x3 < 0.7, 0.7, 0.3 > < 0.4, 0.9, 0.5 >

Definition 4.3. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space and (N,E) ∈
NSS(X,E). Then (N,E) is called as

1) ij− neutrosophic soft preclosed (ij −NSPC) if (N,E)c is a ij −NSPO set. Equiva-

lently (N,E) is called as ij −NSPC if (N,E) ⊃ clτi
(
intτj (N,E)

)
2) ij− neutrosophic soft semi-closed (ij −NSSC) if (N,E)c is a ij −NSSO set. Equiv-

alently (N,E) is called as ij −NSSC if (N,E) ⊃ intτj (clτi(N,E))

3) ij− neutrosophic soft b-closed (ij −NSbC) (N,E)c is a ij −NSbC set. Equivalently

(N,E) is called as ij −NSbC if (N,E) ⊃ intτi
(
clτj (N,E)

)
∩ clτj (intτi(N,E)).

4) ij− neutrosophic soft β-closed (ij−NSβC) (N,E)c is a ij−NSβO set. Equivalently

(N,E) is called as ij −NSβC if (N,E) ⊃ intτj
(
clτi(intτj (N,E))

)
.

Theorem 4.4. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space and (N,E) ∈
NSS(X,E). If (N,E) ∈ τ cj and ij −NSPO then (N,E) is a ij −NSSO set.

Proof. Let (N,E) ∈ τ cj and ij − NSPO. Then (N,E) = clτj (N,E) and (N,E) ⊂
intτi

(
clτj (N,E)

)
. Therefore (N,E) ⊂ intτi (N,E) ⊂ clτj (intτi (N,E)) .

Theorem 4.5. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space and (N,E) ∈
NSS(X,E). If (N,E) ∈ τ cj and ij −NSPO then (N,E) is a ij −NSSO set.
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Proof. Let (N,E) be ij −NSPO. Then (N,E) ⊂ intτi
(
clτj (N,E)

)
. Since (N,E) ∈ τ cj , then

(N,E) = clτj (N,E). Therefore (N,E) ⊂ intτi (N,E) ⊂ clτj (intτi (N,E)) .

Theorem 4.6. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space and

(N,E), (M,E) ∈ NSS(X,E). If (N,E) is ij − NSPO and (M,E) ∈ τ1 ∩ τ2 then

(N,E) ∪ (M,E) is ij −NSPO.

Proof. Let (N,E) is ij −NSPO and (M,E) ∈ τ1 ∩ τ2. Then (N,E) ⊂ intτi
(
clτj (N,E)

)
and

intτi(M,E) = (M,E). So

(N,E) ∪ (M,E) ⊂ intτi
(
clτj (N,E)

)
∪ intτi(M,E)

⊂ intτi
(
clτj (N,E) ∪ (M,E)

)
⊂ intτi

(
clτj (N,E) ∪ clτj (M,E)

)
= intτi

(
clτj ((N,E) ∪ (M,E))

)
.

Therefore (N,E) ∪ (M,E) is ij −NSPO.

Theorem 4.7. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space. Then

1) Every ij −NSPO set is ji−NSbO.

2) Every ij −NSSO set is ji−NSbO.

3) Every ij −NSSO set is ij −NSβO.

Proof.

1) Let (N,E) ∈ NSS(X,E) be ij − NSPO set. Then (N,E) ⊂ intτi
(
clτj (N,E)

)
⊂

clτj (intτi(N,E)) ∪ intτi
(
clτj (N,E)

)
.

2) Let (N,E) be a ij − NSSO set. Then (N,E) ⊂ clτj (intτi(N,E)) ⊂ clτj (intτi(N,E)) ∪
intτi

(
clτj (N,E)

)
.

3) Let (N,E) be a ij −NSSO set. Then since (N,E) ⊂ clτj (N,E),

(N,E) ⊂ clτj (intτi(N,E)) ⊂ clτj
(
intτi(clτj (N,E))

)
.

Theorem 4.8. Let (X,E, τ1, τ2) be a neutrosophic soft bitopological space. Then

1) Union of any ij −NSPO set is ij −NSPO.

2) Union of any ij −NSSO set is ij −NSSO.

3) Union of any ij −NSbO set is ij −NSbO.

4) Union of any ij −NSβO set is ij −NSβO.

5) Intersection of any ij −NSPC set is ij −NSPC.

6) Intersection of any ij −NSSO set is ij −NSSO.
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7) Intersection of any ij −NSbO set is ij −NSbC.

8) Intersection of any ij −NSβO set is ij −NSβC.

Proof.

1) Let (Nk, E) be ij −NSPO set in (X,E, τ1, τ2) for all k ∈ I. Then

⋃
k∈I

(Nk, E) ⊂
⋃
k∈I

intτi
(
clτj (Nk, E)

)
⊂ intτi

(⋃
k∈I

(
clτj (Nk, E)

))
= intτi

(
clτj

(⋃
k∈I

(Nk, E)

))

2) Let (Nk, E) be ij −NSSO set in (X,E, τ1, τ2) for all k ∈ I. Then

⋃
k∈I

(Nk, E) ⊂
⋃
k∈I

clτj (intτi(Nk, E)) = clτj

(⋃
k∈I

(intτi(Nk, E))

)
⊂ clτj

(
intτi

(⋃
k∈I

(Nk, E)

))

3) Let (Nk, E) be ij −NSbO set in (X,E, τ1, τ2) for all k ∈ I. Then⋃
k∈I

(Nk, E) ⊂
⋃
k∈I

(
clτi
(
intτj (Nk, E)

)
∪ intτj (clτi(Nk, E))

)
=

(⋃
k∈I

clτi
(
intτj (Nk, E)

))
∪

(⋃
k∈I

intτj (clτi(Nk, E))

)

⊂ clτi

(
intτj

(⋃
k∈I

(Nk, E)

))
∪ intτj

(
clτi

(⋃
k∈I

(Nk, E)

))

4) Let (Nk, E) be ij −NSβO set in (X,E, τ1, τ2) for all k ∈ I. Then

⋃
k∈I

(Nk, E) ⊂
⋃
k∈I

clτj
(
intτi(clτj (Nk, E))

)
= clτj

(⋃
k∈I

intτi(clτj (Nk, E))

)
⊂ clτj

(
intτi(clτj

(⋃
k∈I

(Nk, E))

))
The rest of the theorem can be proved easily by taking the complement of 1-4.

5. Conclusion

In this paper, we defined neutrosophic soft supra closure operator in a neutrosphic soft

bitopological space and investigated some properties of it. Then we obtained a neutrosophic

soft topology with this closure operator. Also we defined neutrosophic soft supra interior

operator and obtained a neutrosophic soft topology with this interior operator. In the section

4, we defined some new generalized open sets in neutrosophic soft bitopological spaces such as

ij− neutrosophic soft preopen, ij− neutrosophic soft semi-open, ij− neutrosophic soft b-open,

ij− neutrosophic soft β-open set. We examined the relationships between these newly defined

open sets.
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Abstract. In this article some Dombi operations on Quadripartitioned single valued neutrosophic (QSVN) set

are studied. Later on some QSVN weighted Dombi operators i.e. QSVNWDA and QSVNWDG operators are

introduced and their properties are studied. Finally a vaccine distribution technique is solved with the help of

QSVNWDA operator and QSVNWDG operator.

Keywords:QSVN set; Dombi operation, QSVN weighted Dombi arithmetic (QSVNWDA) operator; QSVN

weighted Dombi geometric (QSVNWDG) operator; MADM.

—————————————————————————————————————————-

1. Introduction

To deal with the inconsistent and uncertain data in a more powerful way, Smarandache

introduced Neutrosophic set (NS) theory [2]. Gradually many developments on NS structure

have been made by a couple of researchers and applied it to different branches of science [3–12].

An extension of SVN set i.e. QSVN set was further restudied in [13]. Based on QSVN set

R.Chatterjee et. al introduced the idea of QNN number in 2009 [16]. On contrary Dombi [1]

presented the operations of Dombi T -norms (DT) and T -conorms (DTC) in 1982. Both norms

has a huge operational flexibility as a parameter. Many researchers extended the idea of

Dombi norms to IFS [15], NS [14] theories and applied to different MADM problems [17–21].

In this paper we have applied Dombi norms on QNN . Vaccine distribution in India will

be a very difficult task for Government of India in the upcoming years. To overcome this

difficulty we have defined a model method of vaccine distribution under QSVN environment

using different aggregation operator. In Section 2 we have discussed some preliminary theories
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which will be used throughout the rest of the article. We have defined some order relations

on QNN in Section 3. In Section 4 QSVNWDA and QSVNWDG operators are defined and

their properties are studied. A MADM problem is solved on the basis of QSVNWDA and

QSVNWDG operators in Section 5. Section 6 winds up the article.

2. Some basics

Definition 2.1. [13] A QSVN set A over a set X 6= φ characterizes each element x in X

by a truth-membership function At, a contradiction membership function Ac, an ignorance-

membership function Au and a falsity membership function Af s.t. for each x ∈ X,

At(x), Ac(x), Au(x), Af (x) ∈ [0, 1] and 0 ≤ At(x) +Ac(x) +Au(x) +Af (x) ≤ 4.

Definition 2.2. [16] An element β = 〈βt, βc, βu, βf 〉 ∈ [0, 1]4 is said to be a QNN number.

We express the collection of QNN numbers as QNN .

Definition 2.3. [16] Consider µ, ν, ω ∈ QNN and i, j, k ∈ N. Then the following basic

operations hold on QNN :

(i) µ
⊕
ν = 〈µt + νt − µtνt, µc + νc − µcνc, µuνu, µfνf 〉,

(ii) µ
⊙
ν = 〈µtνt, µcνc, µu + νu − µuνu, µf + νf − µfνf 〉,

(iii) (µ)k = 〈(µt)k, (µc)k, 1− (1− µu)k, 1− (1− µf )k〉,
(iv) kµ = 〈1− (1− µt)k, 1− (1− µc)k, (µu)k, (µf )k〉,

Both the above operations are commutative and associative on QNN .

2.1. DT and DTC

Definition 2.4. [1] Suppose r, s ∈ R. Then DT (D(r, s)) and DTC (D(r, s)) between r and

s are defined respectively as below:

D(r, s) =
1

1 + {(1−rr )% + (1−ss )%}
1
%

D(r, s) =
1

1 + {( r
1−r )% + ( s

1−s)
%}

1
%

,

where % ≥ 1 and (p, q) ∈ [0, 1]× [0, 1].

3. Order relations on QNN

In this section we will first define some order relations of QNN based on newly introduced

score functions and accuracy functions on QNN .
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Definition 3.1. The score function S(β) : QNN → R of β = 〈βt, βc, βu, βf 〉 ∈ QNN is

defined as

S(β) =
2 + βt + βc − βu − βf

4

The corresponding accuracy functions Hi : QNN → R, i = 1, 2, 3 are defined as follows:

H1(β) = (βt + βc)− (βu + βf )

H2(β) =
βt − βc

2

H3(β) =
βu − βf

2
.

Remark 3.2. Now for any β ∈ QNN , it follows that

(i) 0 ≤ S(β) ≤ 1.

(ii) −2 ≤ H1(β) ≤ 2.

(iii) −0.5 ≤ H2(β) ≤ 0.5.

(iv) −0.5 ≤ H3(β) ≤ 0.5.

Definition 3.3. Suppose β, γ ∈ QNN . We define the order relation between any two β, γ ∈
QNN as follows:

(i) If S(β) < S(γ), then β ≤ γ.

(ii) If S(β) = S(γ), then

(a) H1(β) < H1(γ)⇒ β ≤ γ else if

(b) H1(β) = H1(γ) with H2(β) < H2(γ)⇒ β ≤ γ else if

(c) H1(β) = H1(γ), H2(β) = H2(γ) with H3(β) < H3(γ)⇒ β ≤ γ else if

(d) H1(β) = H1(γ), H2(β) = H2(γ) and H3(β) = H3(γ)⇒ β = γ.

Here β ≤ γ denotes β proceeds γ.

3.1. Some QSVN Dombi operations

In this section we have discussed some QSVN Dombi operations [22].

Definition 3.4. Suppose α = 〈m1, n1, p1, q1〉 ∈ QNN and β = 〈m2, n2, p2, q1〉 ∈ QNN , % ≥ 1

and k > 0. Then the DT and DTC operations on QNN are defined as below:

(i)

α
⊕
β=

〈
1− 1

1+

(
(
m1

1−m1
)%+(

m2
1−m2

)%
) 1
%

,1− 1

1+

(
(
n1

1−n1
)%+(

n2
1−n2

)%
) 1
%

,1− 1

1+

(
(
1−p1
p1

)%+(
1−p2
p2

)%
) 1
%

,1− 1

1+

(
(
1−q1
q1

)%+(
1−q2
q2

)%
) 1
%

〉
(ii)

α
⊙
β=

〈
1− 1

1+

(
(
1−m1
m1

)%+(
1−m2
m2

)%
) 1
%

,1− 1

1+

(
(
1−n1
n1

)%+(
1−n2
n2

)%
) 1
%

,1− 1

1+

(
(
p1

1−p1
)%+(

p2
1−p2

)%
) 1
%

,1− 1

1+

(
(
q1

1−q1
)%+(

q2
1−q2

)%
) 1
%

〉
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(iii) kα=

〈
1− 1

1+

(
k(

m1
1−m1

)%
) 1
%

,1− 1

1+

(
k(

n1
1−n1

)%
) 1
%

,1− 1

1+

(
k(

1−p1
p1

)%
) 1
%

,1− 1

1+

(
k(

1−q1
q1

)%
) 1
%

〉
,

(iv) αk=

〈
1− 1

1+

(
k(

1−m1
m1

)%
) 1
%

,1− 1

1+

(
k(

1−n1
n1

)%
) 1
%

,1− 1

1+

(
k(

p1
1−p1

)%
) 1
%

,1− 1

1+

(
k(

q1
1−q1

)%
) 1
%

〉
.

4. Dombi weighted aggregation operators on QNN

Definition 4.1. Let βj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l) be a collection on QNN . A QSVN

weighted Dombi arithmetic (QSVNWDA) operator of dimension l is a function f : QNN l →
QNN defined by:

f(β1, β2, . . . , βl) =

l⊕
j=1

ωjβj

where ω = (ω1, ω2, . . . , ωl)
T is the weight vector, ωj is attached with βj , j = 1, 2, . . . , l with

0 ≤ ωj ≤ 1 and
l∑

j=1
ωj = 1.

Theorem 4.2. Suppose βj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l) be a collection on QNN along

weight vector ω. Then

f(β1, β2, . . . , βl) =
l⊕

j=1
ωjβj

=

〈
1− 1

1+

 l∑
j=1

ωj

(
mj

1−mj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
nj

1−nj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−pj
pj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−qj
qj

)%
1
%

〉
.

Proof. Here ω1 ∈ ω and β1 ∈ QNN . Now we have ω1β1 =〈
1− 1

1+

{(
m1

1−m1

)%} 1
%

,1− 1

1+

{(
n1

1−n1

)%} 1
%

,1− 1

1+

{(
1−p1
p1

)%} 1
%

,1− 1

1+

{(
1−q1
q1

)%} 1
%

〉
. Hence the above equation

trivially holds for l = 1. In a parallel way ω2 ∈ ω and β2 ∈ QNN and we have ω2β2 =〈
1− 1

1+
{(

m2
1−m2

)%} 1
%
, 1− 1

1+
{(

n2
1−n2

)%} 1
%
, 1− 1

1+
{(

1−p2
p2

)%} 1
%
, 1− 1

1+
{(

1−q2
q2

)%} 1
%

〉
.

Therefore

f(β1, β2) = ω1β1
⊕
ω2β2

=

〈
1− 1

1+

 2∑
j=1

ωj

(
mj

1−mj

)%
1
%

,1− 1

1+

 2∑
j=1

ωj

(
nj

1−nj

)%
1
%

,1− 1

1+

 2∑
j=1

ωj

(
1−pj
pj

)%
1
%

,1− 1

1+

 2∑
j=1

ωj

(
1−qj
qj

)%
1
%

〉
.

Hence the equation is valid for l = 1, 2. We assume that the equation is valid for l = s i.e.

f(β1, β2, . . . , βs) =
s⊕
j=1

ωjβj

=

〈
1− 1

1+

 s∑
j=1

ωj

(
mj

1−mj

)%
1
%

,1− 1

1+

 s∑
j=1

ωj

(
nj

1−nj

)%
1
%

,1− 1

1+

 s∑
j=1

ωj

(
1−pj
pj

)%
1
%

,1− 1

1+

 s∑
j=1

ωj

(
1−qj
qj

)%
1
%

〉
.
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Finally for l = s+ 1, one can easily see that

f(β1, β2, . . . , βs) =
s⊕
j=1

ωjβj
⊕
ωs+1βs+1

=

〈
1− 1

1+

 s∑
j=1

ωj

(
mj

1−mj

)%
1
%

,1− 1

1+

 s∑
j=1

ωj

(
nj

1−nj

)%
1
%

,1− 1

1+

 s∑
j=1

ωj

(
1−pj
pj

)%
1
%

,1− 1

1+

 s∑
j=1

ωj

(
1−qj
qj

)%
1
%

〉
⊕
ωs+1βs+1

=

〈
1− 1

1+

s+1∑
j=1

ωj

(
mj

1−mj

)%
1
%

,1− 1

1+

s+1∑
j=1

ωj

(
nj

1−nj

)%
1
%

,1− 1

1+

s+1∑
j=1

ωj

(
1−pj
pj

)%
1
%

,1− 1

1+

s+1∑
j=1

ωj

(
1−qj
qj

)%
1
%

〉
.

Thus in general the equation

f(β1, β2, . . . , βl) =
l⊕

j=1
ωjβj

=

〈
1− 1

1+

 l∑
j=1

ωj

(
mj

1−mj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
nj

1−nj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−pj
pj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−qj
qj

)%
1
%

〉
.

holds ∀l ∈ N.

Theorem 4.3. The QSVNWDA operator f satisfies the following properties:

(i) Consistency: f(β1, β2, . . . , βl) ∈ QNN .

(ii) Idempotency: f(β, l times . . . , β) = β.

(iii) Commutativity: f(β1, β2, . . . , βl) = f(βl, βl−1, . . . , β1).

(iv) f(βπ(1), βπ(2), . . . , βπ(l)) = f(β1, β2, . . . , βl) where π is a permutation on {1, 2, . . . , l}.

Proof. The proof of consistency and commutativity properties of QSVNWDA operator is quite

easy. We now proceed to prove the part (ii). Since
l∑

j=1
ωj = 1, thus

f(β, l times . . . , β) =
l⊕

j=1
ωjβj = (

l∑
j=1

ωj)β = β.

Finally considerπ as a permutation on {1, 2, . . . , l}. Now due to additive commutativity in

QNN

f(βπ(1), βπ(2), . . . , βπ(l)) =
l⊕

j=1

ω(βπ(j))βπ(j) =
l⊕

j=1

ω(βj)βj = f(β1, β2, . . . , βl).

Hence we are done.

Theorem 4.4. Consider βj = 〈mj , nj , pj , qj〉, j = 1, 2, . . . , l and γj = 〈m̃j , ñj , p̃j , q̃j〉, j =

1, 2, . . . , l) are two collections on QNN such that mj ≤ m̃j , nj ≤ ñj , pj ≥ p̃j , qj ≥ q̃j∀j. Then

f(β1, β2, . . . , βl) ≤ f(γ1, γ2, . . . , γl).
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Proof. Here,

f(β1, β2, . . . , βl) =
l⊕

j=1
ωjβj

=

〈
1− 1

1+

 l∑
j=1

ωj

(
mj

1−mj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
nj

1−nj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−pj
pj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−qj
qj

)%
1
%

〉
.

f(γ1, γ2, . . . , γl) =
l⊕

j=1
ωjγj

=

〈
1− 1

1+

 l∑
j=1

ωj

(
m̃j

1−m̃j

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
ñj

1−ñj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−p̃j
p̃j

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−q̃j
q̃j

)%
1
%

〉
.

Firstly we suppose that mj < m̃j , nj < ñj , pj > p̃j , qj > q̃j∀j ∈ {1, . . . , l}. Then

1−mj > 1− m̃j∀j ∈ {1, . . . , l}

⇒
l∑

j=1
ωj

(
mj

1−mj

)
<

l∑
j=1

ωj

(
m̃j

1−m̃j

)

⇒ 1 +

{
l∑

j=1
ωj

(
mj

1−mj

)%} 1
%

< 1 +

{
l∑

j=1
ωj

(
m̃j

1−m̃j

)%} 1
%

⇒ 1

1+

{
l∑

j=1
ωj

(
mj

1−mj

)%} 1
%
> 1

1+

{
l∑

j=1
ωj

(
m̃j

1−m̃j

)%} 1
%

⇒ 1− 1

1+

{
l∑

j=1
ωj

(
mj

1−mj

)%} 1
%
< 1− 1

1+

{
l∑

j=1
ωj

(
m̃j

1−m̃j

)%} 1
%
.

In a similar way we have

1− 1

1 +

{
l∑

j=1
ωj

(
nj

1−nj

)%} 1
%

< 1− 1

1 +

{
l∑

j=1
ωj

(
ñj

1−ñj

)%} 1
%

.

Conversely we can easily see that

1− 1

1 +

{
l∑

j=1
ωj

(
1−pj
pj

)%} 1
%

> 1− 1

1 +

{
l∑

j=1
ωj

(
1−p̃j
p̃j

)%} 1
%

.

1− 1

1 +

{
l∑

j=1
ωj

(
1−qj
qj

)%} 1
%

> 1− 1

1 +

{
l∑

j=1
ωj

(
1−q̃j
q̃j

)%} 1
%

.

Combining all the above we get

S(f(β1, β2, . . . , βl)) < S(f(γ1, γ2, . . . , γl)).

K. Sinha, P. Majumdar, S. Broumi Vaccine distribution technique under QSVN environment

Neutrosophic Sets and Systems, Vol. 48, 2022                                                                               361



Hence f(β1, β2, . . . , βl) < f(γ1, γ2, . . . , γl). Now if mj = m̃j , nj = ñj , pj = p̃j , qj =

q̃j ∀j ∈ {1, . . . , l}. Then all the equalities as well as the score functions become equal i.e.

S(f(β1, β2, . . . , βl)) = S(f(γ1, γ2, . . . , γl)). Finally f(β1, β2, . . . , βl) ≤ f(γ1, γ2, . . . , γl).

Theorem 4.5. Consider a collection of βj = 〈mj , nj , pj , qj〉, j = 1, 2, . . . , l in QNN . Then

β ≤ f(β1, β2, . . . , βl) ≤ β,where

β = 〈min
j

(mj),min
j

(nj),min
j

(pj),min
j

(qj)〉 = 〈mj , nj , pj , qj〉 and

β = 〈max
j

(mj),max
j

(nj),max
j

(pj),max
j

(qj)〉 = 〈mj , nj , pj , qj〉.

Proof. From Definition of QNN we have ∀j = {1, 2, . . . , l},

mj ≤ mj , nj ≤ nj , pj ≥ pj , qj ≥ qj and

mj ≤ mj , nj ≤ nj , pj ≥ pj , qj ≥ qj and

Then

f(β, l times, β) ≤ f(β1, β2, . . . , βl) ≤ f(β, l times, β), i.e

β ≤ f(β1, β2, . . . , βl) ≤ β.

Definition 4.6. Suppose βj = 〈mj , nj , pj , qj〉, (j = 1, 2, . . . , l) be a collection on QNN . Then

from Definition 4.1 a QSVNWDA operator f of dimension l can be written as follows

f(β1, β2, . . . , βl) =
l⊕

j=1

ωjβj

Now if ωj = 1
l ∀ j ∈ {1, 2, . . . , l} then

f(β1, β2, . . . , βl) =
1

l

l⊕
j=1

βj .

In that case f(β1, β2, . . . , βl) is called average QSVNWDA operator i.e.QSVNWADA operator

of βj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l).

Definition 4.7. Let βj = 〈mj , nj , pj , qj〉, j = 1, 2, . . . , l) be a collection on QNN . A quadri-

partioned single valued neutrosophic weighted Dombi geometric (QSVNWDG) operator of

dimension l is a function g : QNN l → QNN defined by:

g(β1, β2, . . . , βl) =

l⊙
j=1

β
ωj
j
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where ω = (ω1, ω2, . . . , ωl)
T is the weight vector, ωj is attached with βj , j = 1, 2, . . . , l with

0 ≤ ωj ≤ 1 and
l∑

j=1
ωj = 1.

Theorem 4.8. Suppose βj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l) be a collection on QNN along

weight vector ω. Then

g(β1, β2, . . . , βl) =
l⊕

j=1
β
ωj
j

=

〈
1− 1

1+

 l∑
j=1

ωj

(
1−mj
mj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−nj
nj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
pj

1−pj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
qj

1−qj

)%
1
%

〉
.

Proof. We have omitted it due to similarity with Theorem 4.2.

Theorem 4.9. The QSVNWDG operator g satisfies properties as defined below:

(i) Consistency: g(β1, β2, . . . , βl) ∈ QNN .

(ii) Idempotency: g(β, l times . . . , β) = β.

(iii) Commutativity: g(β1, β2, . . . , βl) = g(βl, βl−1, . . . , β1).

(iv) g(βπ(1), βπ(2), . . . , βπ(l)) = g(β1, β2, . . . , βl) where π is a permutation on {1, 2, . . . , l}.

Proof. We have omitted it due to similarity with Theorem 4.3.

Theorem 4.10. Consider βj = 〈mj , nj , pj , qj〉, j = 1, 2, . . . , l) and γj = 〈m̃j , ñj , p̃j , q̃j〉 (j =

1, 2, . . . , l) are two collections on QNN such that mj ≤ m̃j , nj ≤ ñj , pj ≥ p̃j , qj ≥ q̃j∀j. Then

g(β1, β2, . . . , βl) ≤ g(γ1, γ2, . . . , γl).

Proof. Here the proof is similar with Theorem 4.4, hence we have omitted it.

Theorem 4.11. Consider a collection of βj = 〈mj , nj , pj , qj〉, j = 1, 2, . . . , l in QNN . Then

β ≤ g(β1, β2, . . . , βl) ≤ β,where

β = 〈min
j

(mj),min
j

(nj),min
j

(pj),min
j

(qj)〉 = 〈mj , nj , pj , qj〉 and

β = 〈max
j

(mj),max
j

(nj),max
j

(pj),max
j

(qj)〉 = 〈mj , nj , pj , qj〉.

Proof. Again proof is not done due to its similarity with Theorem 4.5.

Definition 4.12. Suppose βj = 〈mj , nj , pj , qj〉, j = 1, 2, . . . , l) be a collection on QNN . Then

from Definition 4.7 a QSVNWDG operator g of dimension l can be written as follows

g(β1, β2, . . . , βl) =

l⊙
j=1

β
ωj
j
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Now if ωj = 1
l ∀ j ∈ {1, 2, . . . , l} then

g(β1, β2, . . . , βl) = (

l⊙
j=1

βj)
1
l .

In that case g(β1, β2, . . . , βl) is called average QSVNWDG operator i.e.QSVNWADG operator

of βj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l).

5. An application in MADM of QSVNWDA and QSVNWDG operator

Without an application in real life it is very tough to realize the utility of any operator. A

reader can not get any interest if the operators cannot be used properly in MADM technique.

For this reason we proposed a model with the help of QSVNWDA and QSVNWDG operator.

Suppose Govt. of India want to distribute the Covid-19 vaccine in a smooth manner so that

every Indian will get the vaccine. Now Govt of India has 4 vaccine vi, i = 1, 2, 3, 4 in hand

where v1: the co-vaxin from Bharat Bio-tech, v2: Sputnik-V from Russia, v3: Astrazeneca

vaccine from Oxford university, v4: Pfizer vaccine from USA with equal storage. However

there are four attributes Cj , j =, 2, 3, 4 which are to be considered for choosing a particular

vaccine from the above list i.e. (C1) : the cost of the vaccine, (C2) : the effectiveness of a

vaccine in human body, (C3): the rate of production of a vaccine (C4): the risk factor of a

particular vaccine. In order to get a suitable vaccine Vi after consideration of all attributes Cj

we have represented these MADM problems in the form of a decision making matrix D(vij)

on QNN as following:

D(vij) =


〈0.4, 0.5, 0.2, 0.6〉 〈0.5, 0.5, 0.8, 0.1〉 〈0.2, 0.6, 0.3, 0.2〉 〈0.6, 0.5, 0.6, 0.7〉
〈0.4, 0.2, 0.7, 0.6〉 〈0.8, 0.5, 0.3, 0.4〉 〈0.4, 0.1, 0.1, 0.1〉 〈0.6, 0.6, 0.5, 0.5〉
〈0.4, 0.4, 0.4, 0.5〉 〈0.3, 0.6, 0.1, 0.4〉 〈0.9, 0.2, 0.7, 0.3〉 〈0.4, 0.2, 0.1, 0.1〉
〈0.1, 0.1, 0.6, 0.3〉 〈0.5, 0.3, 0.4, 0.2〉 〈0.4, 0.8, 0.3, 0.2〉 〈0.4, 0.5, 0.1, 0.5〉

 .
Here we consider the weight vector as (0.25, 0.25, 0.25, 0.25) since every vaccine has equal stock.

Case-I: We now consider the QSVNWDA operator to face the MADM problem. In that

case we consider % = 1 and derive the collection of QSVNs say vi to find suitable vaccine

among Vi(i = 1, 2, 3, 4) by the help of Definition 4.1 as follows:

v1 = 〈0.460, 0.529, 0.644, 0.779〉

v2 = 〈0.630, 0.417, 0.761, 0.753〉

v3 = 〈0.319, 0.400, 0.833, 0.775〉

v1 = 〈0.164, 0.341, 0.192, 0.538〉.

Based on the Definition 3.1 we have:

S(v1) = 0.392, S(v2) = 0.384, S(v3) = 0.3801, S(v4) = 0.3624.
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Hence the priority order of vaccine is v1 > v2 > v3 > v4. .

Case-II: Now We consider the QSVNWDG operator to face our problem. We again consider

% = 1 and derive the collective QSVNs vi with the help of Definition 4.7 as follows:

v1 = 〈0.5102, 0.4782, 0.607, 0.512〉

v2 = 〈0.657, 0.785, 0.492, 0.4503〉

v3 = 〈0.576, 0.718, 0.446, 0.355〉

v1 = 〈0.739, 0.758, 0.403, 0.628〉.

Again based on the Definition 3.1 we get:

S(v1) = 0.935, S(v2) = 0.625, S(v3) = 0.6231, S(v4) = 0.616.

Therefore the priority order of vaccine is v4 < v3 < v2 < v1. To find the more effect of the

quantity % in the QSVNWDA and QSVNWDG operator we take the value of % in an increasing

order starting from 0.2 to 1 with an increment 0.2. Our results are given in the following tables:

Table of QSVNWDA operator

% S(v1), S(v2), S(v3), S(v4) Order of priority

0.2 0.627, 0.606, 0.598, 0.377

0.4 0.635, 0.621, 0.612, 0.396

0.6 0.676, 0.648, 0.639, 0.404 v4 < v3 < v2 < v1

0.8 0.695, 0.664, 0.652, 0.418

1.0 0.692, 0.678, 0.664, 0.444

Table of QSVNWDG operator

% S(v4), S(v3), S(v2), S(v1) Order of priority

0.2 0.429, 0.492, 0.541, 0.568

0.4 0.417, 0.476, 0.525, 0.549

0.6 0.411, 0.449, 0.484, 0.502 v4 < v3 < v2 < v1

0.8 0.426, 0.442, 0.474, 0.491

1.0 0.394, 0.410, 0.439, 0.462

In both of the above cases we have seen that in respect of the values of %, the order of priority

of the vaccines remains always same for an individual operator. Thus the MADM of finding

suitable vaccine using the QSVNWDA operator as well as QSVNWDG operator gives us a

flexibility of choosing the value of %. Thus the Govt of India will choose the vaccine v1 in

topmost priority.The above procedure help our Govt to choose a multi-solution based on the

current situation at that time.
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6. Conclusion

In this article two aggregation operators i.e. QSVNWDA and QSVNWDG operator based on

Dombi operations onQNN sets are introduced. We have studied the properties of QSVNWDA

and QSVNWDG operators. Finally we have solved a MADM problems using QSVNWDA and

QSVNWDG operators. In solving MADM problems we have utilized the score functions of

QNN to finding the order of priority of different parameters. Also we have seen that different

large values of % may effect the score functions. In future we will develop more advanced type

of QSVNWDA operator and QSVNWDG operator on QNN and will apply them to real life

MADM problems.
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Abstract. We introduce the notion of neutrosophic subbisemiring(shortly NSBS), level sets of NSBS and

neutrosophic normal subbisemiring(NNSBS) of a bisemiring. The concept of neutrosophic subbisemiring is a

new generalization of fuzzy subbisemiring over bisemiring. We interact the theory for (α, β) NSBS and NNSBS

over bisemiring. Let A be the neutrosophic subset in S, we show that ˜̟ = (̟T
A, ̟

I
A, ̟

F
A) is an NSBS of S

if and only if all non empty level set ˜̟ (t,s) is a subbisemiring of S for t, s ∈ [0, 1]. Let A be the NSBS of a

bisemiring S and V be the strongest neutrosophic relation of S, we observe that A is an NSBS of S if and only

if V is an NSBS of S × S. Let A1, A2, ..., An be the family of NSBSs of S1, S2, ..., Sn respectively. We show

that A1 × A2 × ...× An is an NSBS of S1 × S2 × ...× Sn. The homomorphic image of NSBS is an NSBS. The

homomorphic preimage of NSBS is an NSBS. Examples are provided to illustrate our results.

Keywords: Neutrosophic subbisemiring; Neutrosophic bisemiring; Homomorphism; Normal.

—————————————————————————————————————————-

1. Introduction

The study of semirings was opened by the Dedekind in interaction with ideals of commu-

tative rings. In 1934, semiring was studied by Vandever. It was basically the generalization

of rings and distributive lattices. In 1950, However the developments of the theory in semir-

ings had been taking place. The classic article of 1965, Zadeh proposed fuzzy set theory [15].

According to this definition a fuzzy set is a function described by a membership value . It

takes degrees in real unit interval. But, later it has been seen that this definition is inadequate

by considering not only the degree of membership but also the degree of non-membership.

Neutrosophic set is a generalization of the fuzzy set and intuitionistic fuzzy set, where the

truth-membership, indeterminacy-membership, and falsity-membership are represented inde-

pendently. Atanassov [4] described a set that is called an intuitionistic fuzzy set to handle

mentioned ambiguity. Since this set has some problems in applications, Smarandache [14] in-

troduced neutrosophy to deal with the problems that involves indeterminate and inconsistent

information. Arulmozhi interact the theory for various algebraic structures such semirings
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and ternary semirings [2, 3]. A semiring (S,+, ·) is a non-empty set in which (S,+) and (S, ·)

are semigroups such that “ · ” is distributive over “ + ” [6]. In 1993, J. Ahsan, K. Saifullah,

and F. Khan [1] introduced the notion of fuzzy semirings. In 2001, M.K Sen and S. Ghosh

were introduced in bisemirings. A bisemiring (S,+, ◦,×) is an algebraic structure in which

(S,+, ◦) and (S, ◦,×) are semirings in which (S,+), (S, ◦) and (S,×) are semigroups such that

(i) x◦(y+z) = (x◦y)+(x◦z), (ii) (y+z)◦x = (y◦x)+(z ◦x) (iii) x×(y◦z) = (x×y)◦(x×z)

and (iv) (y◦z)×x = (y×x)◦(z×x), ∀ x, y, z ∈ S [13]. A non-empty subset A of a bisemiring

(S,+, ◦,×) is a subbisemiring if and only if x+y ∈ A, x◦y ∈ A and x×y ∈ A for all x, y ∈ A [5].

Palanikumar et al. discussed various ideal structure of subbisemiring theory [7]- [12].

2. Preliminaries

Definition 2.1. [14] A neutrosophic set A in a universe U is an object having the form

A =
{〈

x,̟T
A(x), ̟

I
A(x), ̟

F
A(x)

〉

: x ∈ X
}

, where ̟T
A(x), ̟

I
A(x), ̟

F
A(x) : X → [0, 1] repre-

sents the truth-membership function , the indeterminacy membership function and the falsity-

membership function respectively. For simplicity the symbol
〈

̟T
A, ̟

I
A, ̟

F
A

〉

is used for the

neutrosophic set A =
{〈

x,̟T
A(x), ̟

I
A(x), ̟

F
A(x)

〉

: x ∈ X
}

.

Definition 2.2. [14] Let A = {x,̟T
A(x), ̟

I
A(x), ̟

F
A(x)} and B = {x,̟T

B(x), ̟
I
B(x), ̟

F
B(x)}

be the two neutrosophic set of a set X. Then

(i) A ∩B =
{(

x,min{̟T
A(x), ̟

T
B(x)},min{̟I

A(x), ̟
I
B(x)},max{̟F

A(x), ̟
F
B(x)}

)∣

∣

∣x ∈ X
}

.

(ii) A ∪B =
{(

x,max{̟T
A(x), ̟

T
B(x)},max{̟I

A(x), ̟
I
B(x)},min{̟F

A(x), ̟
F
B(x)}

)∣

∣

∣
x ∈ X

}

.

Definition 2.3. [14] For any neutrosophic set A = {x,̟T
A(x), ̟

I
A(x), ̟

F
A(x)} of a set X, we

defined a (α, β)-cut of as the crisp subset {x ∈ X|̟T
A(x) ≥ α,̟I

A(x) ≥ α,̟F
A(x) ≤ β} of X.

Definition 2.4. [14] Let A and B be be two neutrosophic subsets of S. The

Cartesian product of A and B denoted by A × B is defined as A × B =

{̟T
A×B(x, y), ̟

I
A×B(x, y), ̟

F
A×B(x, y)| for all x, y ∈ S}, where



















̟T
A×B(x, y) = min{̟T

A(x), ̟
T
B(y)}

̟I
A×B(x, y) =

̟I
A(x)+̟I

B(y)
2

̟F
A×B(x, y) = max{̟F

A(x), ̟
F
B(y)}



















.

Definition 2.5. [8] A fuzzy subset A of a bisemiring (S, ⋄1, ⋄2, ⋄3) is said to be a fuzzy

subbisemiring of S if














̟A(x ⋄1 y) ≥ min{̟A(x), ̟A(y)}

̟A(x ⋄2 y) ≥ min{̟A(x), ̟A(y)}

̟A(x ⋄3 y) ≥ min{̟A(x), ̟A(y)}















for all x, y ∈ S.
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Definition 2.6. [8] A fuzzy subset A of a bisemiring (S, ⋄1, ⋄2, ⋄3) is said to be a fuzzy normal

subbisemiring of S if it satisfies the following conditions:














̟A(x ⋄1 y) = ̟A(y ⋄1 x)

̟A(x ⋄2 y) = ̟A(y ⋄2 x)

̟A(x ⋄3 y) = ̟A(y ⋄3 x)















for all x, y ∈ S.

Definition 2.7. [5] Let (S,+, ·,×) and (T,⊞, ◦,⊗) be two bisemirings. A function φ : S → T

is said to be a homomorphism if it satisfies the following conditions:














φ(x+ y) = φ(x)⊞ φ(y)

φ(x · y) = φ(x) ◦ φ(y)

φ(x× y) = φ(x)⊗ φ(y)















for all x, y ∈ S.

3. Neutrosophic Subbisemiring

In what follows, let S denote a bisemiring unless otherwise stated. Here NSBS stands for

neutrosophic subbisemiring.

Definition 3.1. A neutrosophic subset A of S is said to be an NSBS of S if it satisfies the

following conditions:















̟T
A(x ⋄1 y) ≥ min{̟T

A(x), ̟
T
A(y)}

̟T
A(x ⋄2 y) ≥ min{̟T

A(x), ̟
T
A(y)}

̟T
A(x ⋄3 y) ≥ min{̟T

A(x), ̟
T
A(y)}





























































̟I
A(x ⋄1 y) ≥

̟I
A(x)+̟I

A(y)
2

OR

̟I
A(x ⋄2 y) ≥

̟I
A(x)+̟I

A(y)
2

OR

̟I
A(x ⋄3 y) ≥

̟I
A(x)+̟I

A(y)
2





























































̟F
A(x ⋄1 y) ≤ max{̟F

A(x), ̟
F
A(y)}

̟F
A(x ⋄2 y) ≤ max{̟F

A(x), ̟
F
A(y)}

̟F
A(x ⋄3 y) ≤ max{̟F

A(x), ̟
F
A(y)}















for all x, y ∈ S.

Example 3.2. Let S = {n1, n2, n3, n4} be the bisemiring with the following Cayley table:

⋄1 n1 n2 n3 n4

n1 n1 n1 n1 n1

n2 n1 n2 n1 n2

n3 n1 n1 n3 n3

n4 n1 n2 n3 n4

⋄2 n1 n2 n3 n4

n1 n1 n2 n3 n4

n2 n2 n2 n4 n4

n3 n3 n4 n3 n4

n4 n4 n4 n4 n4

⋄3 n1 n2 n3 n4

n1 n1 n1 n1 n1

n2 n1 n2 n3 n4

n3 n4 n4 n4 n4

n4 n4 n4 n4 n4
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n = n1 n = n2 n = n3 n = n4

̟T
A(n) 0.7 0.6 0.3 0.5

̟I
A(n) 0.4 0.3 0.1 0.2

̟F
A(n) 0.5 0.6 0.9 0.8

Clearly, A is an NSBS of S.

Theorem 3.3. The intersection of a family of NSBSs of S is an NSBS of S.

Proof. Let {Vi : i ∈ I} be a family of NSBSs of S and A =
⋂

i∈I

Vi.

Let x and y in S. Then

̟T
A(x ⋄1 y) = inf

i∈I
̟T

Vi
(x ⋄1 y)

≥ inf
i∈I

min{̟T
Vi
(x), ̟T

Vi
(y)}

= min
{

inf
i∈I

̟T
Vi
(x), inf

i∈I
̟T

Vi
(y)

}

= min{̟T
A(x), ̟

T
A(y)}.

Similarly, ̟T
A(x ⋄2 y) ≥ min{̟T

A(x), ̟
T
A(y)}, ̟

T
A(x ⋄3 y) ≥ min{̟T

A(x), ̟
T
A(y)}. Now,

̟I
A(x ⋄1 y) = inf

i∈I
̟I

Vi
(x ⋄1 y)

≥ inf
i∈I

̟I
Vi
(x) +̟I

Vi
(y)

2

=
inf
i∈I

̟I
Vi
(x) + inf

i∈I
̟I

Vi
(y)

2

=
̟I

A(x) +̟I
A(y)

2
.

Similarly, ̟I
A(x ⋄2 y) ≥

̟I
A(x)+̟I

A(y)
2 and ̟I

A(x ⋄3 y) ≥
̟I

A(x)+̟I
A(y)

2 . Now,

̟F
A(x ⋄1 y) = sup

i∈I
̟F

Vi
(x ⋄1 y)

≤ sup
i∈I

max{̟F
Vi
(x), ̟F

Vi
(y)}

= max
{

sup
i∈I

̟F
Vi
(x), sup

i∈I
̟F

Vi
(y)

}

= max{̟F
A(x), ̟

F
A(y)}.

Similarly, ̟F
A(x ⋄2 y) ≤ max{̟F

A(x), ̟
F
A(y)}, ̟

F
A(x ⋄3 y) ≤ max{̟F

A(x), ̟
F
A(y)}. Hence A is

an NSBS of S.

Theorem 3.4. If A and B are any two NSBSs of S1 and S2 respectively, then A× B is an

NSBS of S1 × S2.
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Proof. Let A and B be two NSBSs of S1 and S2 respectively. Let x1, x2 ∈ S1 and

y1, y2 ∈ S2. Then (x1, y1) and (x2, y2) are in S1 × S2. Now

̟T
A×B[(x1, y1) ⋄1 (x2, y2)] = ̟T

A×B(x1 ⋄1 x2, y1 ⋄1 y2)

= min{̟T
A(x1 ⋄1 x2), ̟

T
B(y1 ⋄1 y2)}

≥ min{min{̟T
A(x1), ̟

T
A(x2)},min{̟T

B(y1), ̟
T
B(y2)}}

= min{min{̟T
A(x1), ̟

T
B(y1)},min{̟T

A(x2), ̟
T
B(y2)}}

= min{̟T
A×B(x1, y1), ̟

T
A×B(x2, y2)}.

Also ̟T
A×B[(x1, y1) ⋄2 (x2, y2)] ≥ min{̟T

A×B(x1, y1), ̟
T
A×B(x2, y2)},

̟T
A×B[(x1, y1) ⋄3 (x2, y2)] ≥ min{̟T

A×B(x1, y1), ̟
T
A×B(x2, y2)}. Now,

̟I
A×B[(x1, y1) ⋄1 (x2, y2)] = ̟I

A×B(x1 ⋄1 x2, y1 ⋄1 y2)

=
̟I

A(x1 ⋄1 x2) +̟I
B(y1 ⋄1 y2)

2

≥
1

2

[

̟I
A(x1) +̟I

A(x2)

2
+

̟I
B(y1) +̟I

B(y2)

2

]

=
1

2

[

̟I
A(x1) +̟I

B(y1)

2
+

̟I
A(x2) +̟I

B(y2)

2

]

=
1

2

[

̟I
A×B(x1, y1) +̟I

A×B(x2, y2)
]

.

Also ̟I
A×B[(x1, y1) ⋄2 (x2, y2)] ≥

1
2

[

̟I
A×B(x1, y1) +̟I

A×B(x2, y2)
]

and

̟I
A×B[(x1, y1) ⋄3 (x2, y2)] ≥

1
2

[

̟I
A×B(x1, y1) +̟I

A×B(x2, y2)
]

. Now,

̟F
A×B[(x1, y1) ⋄1 (x2, y2)] = ̟F

A×B(x1 ⋄1 x2, y1 ⋄1 y2)

= max{̟F
A(x1 ⋄1 x2), ̟

F
B(y1 ⋄1 y2)}

≤ max{max{̟F
A(x1), ̟

F
A(x2)},max{̟F

B(y1), ̟
F
B(y2)}}

= max{max{̟F
A(x1), ̟

F
B(y1)},max{̟F

A(x2), ̟
F
B(y2)}}

= max{̟F
A×B(x1, y1), ̟

F
A×B(x2, y2)}.

Also ̟F
A×B[(x1, y1) ⋄2 (x2, y2)] ≤ max{̟F

A×B(x1, y1), ̟
F
A×B(x2, y2)},

̟F
A×B[(x1, y1) ⋄3 (x2, y2)] ≤ max{̟F

A×B(x1, y1), ̟
F
A×B(x2, y2)}. Hence A×B is an NSBS of S.

Corollary 3.5. If A1, A2, ..., An are the family of NSBSs of S1, S2, ..., Sn respectively, then

A1 ×A2 × ...×An is an NSBS of S1 × S2 × ...× Sn.
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Definition 3.6. Let A be a neutrosophic subset in S, the strongest neutrosophic relation on

S, that is a neutrosophic relation on A is V given by


















̟T
V (x, y) = min{̟T

A(x), ̟
T
A(y)}

̟I
V (x, y) =

̟I
A(x)+̟I

A(y)
2

̟F
V (x, y) = max{̟F

A(x), ̟
F
A(y)}



















.

Theorem 3.7. Let A be the NSBS of S and V be the strongest neutrosophic relation of S.

Then A is an NSBS of S if and only if V is an NSBS of S× S.

Proof. Let A be the NSBS of S and V be the strongest neutrosophic relation of S. Then

for any x = (x1, x2) and y = (y1, y2) are in S× S. We have

̟T
V (x ⋄1 y) = ̟T

V [((x1, x2) ⋄1 (y1, y2)]

= ̟T
V (x1 ⋄1 y1, x2 ⋄1 y2)

= min{̟T
A(x1 ⋄1 y1), ̟

T
A(x2 ⋄1 y2)}

≥ min{min{̟T
A(x1), ̟

T
A(y1)},min{̟T

A(x2), ̟
T
A(y2)}}

= min{min{̟T
A(x1), ̟

T
A(x2)},min{̟T

A(y1), ̟
T
A(y2)}}

= min{̟T
V (x1, x2), ̟

T
V (y1, y2)}

= min{̟T
V (x), ̟

T
V (y)}.

Also, ̟T
V (x ⋄2 y) ≥ min{̟T

V (x), ̟
T
V (y)}, ̟

T
V (x ⋄3 y) ≥ min{̟T

V (x), ̟
T
V (y)}.

Now,

̟I
V (x ⋄1 y) = ̟I

V [((x1, x2) ⋄1 (y1, y2)]

= ̟I
V (x1 ⋄1 y1, x2 ⋄1 y2)

=
̟I

A(x1 ⋄1 y1) +̟I
A(x2 ⋄1 y2)

2

≥
1

2

[

̟I
A(x1) +̟I

A(y1)

2
+

̟I
A(x2) +̟I

A(y2)

2

]

=
1

2

[

̟I
A(x1) +̟I

A(x2)

2
+

̟I
A(y1) +̟I

A(y2)

2

]

=
̟I

V (x1, x2) +̟I
V (y1, y2)

2

=
̟I

V (x) +̟I
V (y)

2
.

Also, ̟I
V (x ⋄2 y) ≥

̟I
V (x)+̟I

V (y)
2 and ̟I

V (x ⋄3 y) ≥
̟I

V (x)+̟I
V (y)

2 .

Similarly, ̟F
V (x ⋄1 y) ≤ max{̟F

V (x), ̟
F
V (y)}, ̟

F
V (x ⋄2 y) ≤ max{̟F

V (x), ̟
F
V (y)} and

̟F
V (x ⋄3 y) ≤ max{̟F

V (x), ̟
F
V (y)}. Hence V is an NSBS of S× S.
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Conversely assume that V is an NSBS of S× S, then for any x = (x1, x2) and y = (y1, y2)

are in S× S. We have

min{̟T
A(x1 ⋄1 y1), ̟

T
A(x2 ⋄1 y2)} = ̟T

V (x1 ⋄1 y1, x2 ⋄1 y2)

= ̟T
V [(x1, x2) ⋄1 (y1, y2)]

= ̟T
V (x ⋄1 y)

≥ min{̟T
V (x), ̟

T
V (y)}

= min{̟T
V (x1, x2)}, ̟

T
V (y1, y2)}

= min{min{̟T
A(x1), ̟

T
A(x2)},min{̟T

A(y1), ̟
T
A(y2)}}.

If ̟T
A(x1 ⋄1 y1) ≤ ̟T

A(x2 ⋄1 y2), then ̟T
A(x1) ≤ ̟T

A(x2) and ̟T
A(y1) ≤ ̟T

A(y2). We get

̟T
A(x1 ⋄1 y1) ≥ min{̟T

A(x1), ̟
T
A(y1)} for all x1, y1 ∈ S, and

min{̟T
A(x1 ⋄2 y1), ̟

T
A(x2 ⋄2 y2)} ≥ min{min{̟T

A(x1), ̟
T
A(x2)},min{̟T

A(y1), ̟
T
A(y2)}}

If ̟T
A(x1 ⋄2 y1) ≤ ̟T

A(x2 ⋄2 y2), then ̟T
A(x1 ⋄2 y1) ≥ min{̟T

A(x1), ̟
T
A(y1)}.

min{̟T
A(x1 ⋄3 y1), ̟

T
A(x2 ⋄3 y2)} ≥ min{min{̟T

A(x1), ̟
T
A(x2)},min{̟T

A(y1), ̟
T
A(y2)}}.

If ̟T
A(x1 ⋄3 y1) ≤ ̟T

A(x2 ⋄3 y2), then ̟T
A(x1 ⋄3 y1) ≥ min{̟T

A(x1), ̟
T
A(y1)}.

Now,

1

2

[

̟I
A(x1 ⋄1 y1) +̟I

A(x2 ⋄1 y2)
]

= ̟I
V (x1 ⋄1 y1, x2 ⋄1 y2)

= ̟I
V [(x1, x2) ⋄1 (y1, y2)]

= ̟I
V (x ⋄1 y)

≥
̟I

V (x) +̟I
V (y)

2

=
̟I

V (x1, x2) +̟I
V (y1, y2)

2

=
1

2

[

̟I
A(x1) +̟I

A(x2)

2
+

̟I
A(y1) +̟I

A(y2)

2

]

.

If ̟I
A(x1 ⋄1 y1) ≤ ̟I

A(x2 ⋄1 y2), then ̟I
A(x1) ≤ ̟I

A(x2) and ̟I
A(y1) ≤ ̟I

A(y2).

We get, ̟I
A(x1 ⋄1 y1) ≥

̟I
A(x1)+̟I

A(y1)
2 .

Similarly, ̟I
A(x1 ⋄2 y1) ≥

̟I
A(x1)+̟I

A(y1)
2 and ̟I

A(x1 ⋄3 y1) ≥
̟I

A(x1)+̟I
A(y1)

2 .

Similarly to prove that

max{̟F
A(x1 ⋄1 y1), ̟

F
A(x2 ⋄1 y2)} ≤ max{max{̟F

A(x1), ̟
F
A(x2)},max{̟F

A(y1), ̟
F
A(y2)}}.

If ̟F
A(x1 ⋄1 y1) ≥ ̟F

A(x2 ⋄1 y2), then ̟F
A(x1) ≥ ̟F

A(x2) and ̟F
A(y1) ≥ ̟F

A(y2).

We get, ̟F
A(x1 ⋄1 y1) ≤ max{̟F

A(x1), ̟
F
A(y1)}.

max{̟F
A(x1 ⋄2 y1), ̟

F
A(x2 ⋄2 y2)} ≤ max{max{̟F

A(x1), ̟
F
A(x2)},max{̟F

A(y1), ̟
F
A(y2)}}.

If ̟F
A(x1 ⋄2 y1) ≥ ̟F

A(x2 ⋄2 y2), then ̟F
A(x1 ⋄2 y1) ≤ max{̟F

A(x1), ̟
F
A(y1)}.

max{̟F
A(x1 ⋄3 y1), ̟

F
A(x2 ⋄3 y2)} ≤ max{max{̟F

A(x1), ̟
F
A(x2)},max{̟F

A(y1), ̟
F
A(y2)}}
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If ̟F
A(x1 ⋄3 y1) ≥ ̟F

A(x2 ⋄3 y2), then ̟F
A(x1 ⋄3 y1) ≤ max{̟F

A(x1), ̟
F
A(y1)}.

Hence A is an NSBS of S.

Theorem 3.8. Let A be a neutrosophic subset in S. Then ˜̟ = (̟T
A, ̟

I
A, ̟

F
A) is an NSBS of

S if and only if all non empty level set ˜̟ (t,s) is a subbisemiring of S for t, s ∈ [0, 1].

Proof. Assume that ˜̟ is an NSBS of S. For each t, s ∈ [0, 1] and a1, a2 ∈ ˜̟ (t,s). We have

̟T
A(a1) ≥ t,̟T

A(a2) ≥ t and ̟I
A(a1) ≥ t,̟I

A(a2) ≥ t and ̟F
A(a1) ≤ s,̟F

A(a2) ≤ s. Now,

̟T
A(a1 ⋄1 a2) ≥ min{̟T

A(a1), ̟
T
A(a2)} ≥ t and ̟I

A(a1 ⋄1 a2) ≥
̟I

A(a1)+̟I
A(a2)

2 ≥ t+t
2 = t and

̟F
A(a1 ⋄1 a2) ≤ max{̟F

A(a1), ̟
F
A(a2)} ≤ s. This implies that a1 ⋄1 a2 ∈ ˜̟ (t,s). Similarly,

a1 ⋄2 a2 ∈ ˜̟ (t,s) and a1 ⋄3 a2 ∈ ˜̟ (t,s). Therefore ˜̟ (t,s) is a subbisemiring of S for each

t, s ∈ [0, 1].

Conversely, assume that ˜̟ (t,s) is a subbisemiring of S for each t, s ∈ [0, 1]. Suppose if there

exist a1, a2 ∈ S such that ̟T
A(a1 ⋄1 a2) < min{̟T

A(a1), ̟
T
A(a2)}, ̟

I
A(a1 ⋄1 a2) <

̟I
A(a1)+̟I

A(a2)
2

and ̟F
A(a1 ⋄1 a2) > max{̟F

A(a1), ̟
F
A(a2)}. Select t, s ∈ [0, 1] such that ̟T

A(a1 ⋄1 a2) <

t ≤ min{̟T
A(a1), ̟

T
A(a2)} and ̟I

A(a1 ⋄1 a2) < t ≤
̟I

A(a1)+̟I
A(a2)

2 and ̟F
A(a1 ⋄1 a2) > s ≥

max{̟F
A(a1), ̟

F
A(a2)}. Then a1, a2 ∈ ˜̟ (t,s), but a1 ⋄1 a2 /∈ ˜̟ (t,s). This contradicts to that

˜̟ (t,s) is a subbisemiring of S. Hence ̟T
A(a1 ⋄1 a2) ≥ min{̟T

A(a1), ̟
T
A(a2)}, ̟I

A(a1 ⋄1 a2) ≥
̟I

A(a1)+̟I
A(a2)

2 and ̟F
A(a1 ⋄1 a2) ≤ max{̟F

A(a1), ̟
F
A(a2)}. Similarly, ⋄2 and ⋄3 cases. Hence

˜̟ = (̟T
A, ̟

I
A, ̟

F
A) is an NSBS of S.

Definition 3.9. Let A be any NSBS of S and a ∈ S. Then the pseudo neutrosophic coset

(aA)p is defined by















((a̟T
A)

p)(x) = p(a)̟T
A(x)

((a̟I
A)

p)(x) = p(a)̟I
A(x)

((a̟F
A)

p)(x) = p(a)̟F
A(x)















for every x ∈ S and for some p ∈ P .

Theorem 3.10. Let A be any NSBS of S, then the pseudo neutrosophic coset (aA)p is an

NSBS of S, for every a ∈ S.

Proof. Let A be any NSBS of S and for every x, y ∈ S. Now, ((a̟T
A)

p)(x ⋄1

y) = p(a) ̟T
A(x ⋄1 y) ≥ p(a) min{̟T

A(x), ̟
T
A(y)} = min{p(a) ̟T

A(x), p(a) ̟
T
A(y)} =

min{((a̟T
A)

p)(x), ((a̟T
A)

p)(y)}. Thus, ((a̟T
A)

p)(x ⋄1 y) ≥ min{((a̟T
A)

p)(x), ((a̟T
A)

p)(y)}.

Now, ((a̟I
A)

p)(x ⋄1 y) = p(a) ̟I
A(x ⋄1 y) ≥ p(a)

[

̟I
A(x)+̟I

A(y)
2

]

=
p(a) ̟I

A(x)+p(a) ̟I
A(y)

2 =

((a̟I
A)p)(x)+((a̟I

A)p)(y)
2 . Thus, ((a̟I

A)
p)(x ⋄1 y) ≥

((a̟I
A)p)(x)+((a̟I

A)p)(y)
2 . Now, ((a̟F

A)
p)(x ⋄1

y) = p(a) ̟F
A(x ⋄1 y) ≤ p(a) max{̟F

A(x), ̟
F
A(y)} = max{p(a) ̟F

A(x), p(a) ̟
F
A(y)} =
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max{((a̟F
A)

p)(x), ((a̟F
A)

p)(y)}. Thus, ((a̟F
A)

p)(x ⋄1 y) ≤ max{((a̟F
A)

p)(x), ((a̟F
A)

p)(y)}.

Similarly, ⋄2 and ⋄3 cases. Hence (aA)p is an NSBS of S.

Definition 3.11. Let (S1,⊞1,⊞2,⊞3) and (S2,⊡1,⊡2,⊡3) be any two bisemirings. Let ∆ :

S1 → S2 be any function and A be any NSBS in S1, V be any NSBS in ∆(S1) = S2. If

̟A = [̟T
A, ̟

I
A, ̟

F
A ] is a neutrosophic set in S1, then ̟V is a neutrosophic set in S2, defined

by

̟T
V (y) =







sup̟T
A(x) if x ∈ ∆−1y

0 otherwise
̟I

V (y) =







sup̟I
A(x) if x ∈ ∆−1y

0 otherwise

̟F
V (y) =







inf̟F
A(x) if x ∈ ∆−1y

1 otherwise

for all x ∈ S1 and y ∈ S2 is called the image of ̟A under ∆.

Similarly, If̟V = [̟T
V , ̟

I
V , ̟

F
V ] is a neutrosophic set in S2, then neutrosophic set̟A = ∆◦̟V

in S1 [ie, the neutrosophic set defined by ̟A(x) = ̟V (∆(x))] is called the preimage of ̟V

under ∆.

Theorem 3.12. Let (S1,⊞1,⊞2,⊞3) and (S2,⊡1,⊡2,⊡3) be any two bisemirings. The homo-

morphic image of NSBS of S1 is an NSBS of S2.

Proof. Let ∆ : S1 → S2 be any homomorphism. Then ∆(x⊞1 y) = ∆(x)⊡1 ∆(y),∆(x⊞2

y) = ∆(x) ⊡2 ∆(y) and ∆(x ⊞3 y) = ∆(x) ⊡3 ∆(y) for all x, y ∈ S1. Let V = ∆(A), A is

any NSBS of S1. Let ∆(x),∆(y) ∈ S2. Let x ∈ ∆−1(∆(x)) and y ∈ ∆−1(∆(y)) be such that

̟T
A(x) = sup

z∈∆−1(∆(x))

̟T
A(z) and ̟T

A(y) = sup
z∈∆−1(∆(y))

̟T
A(z). Now,

̟T
V (∆(x)⊡1 ∆(y)) = sup

z
′
∈∆−1(∆(x)⊡1∆(y))

̟T
A(z

′

)

= sup
z′∈∆−1(∆(x⊞1y)

̟T
A(z

′

)

= ̟T
A(x⊞1 y)

≥ min{̟T
A(x), ̟

T
A(y)}

= min{̟T
V ∆(x), ̟T

V ∆(y)}.

Thus, ̟T
V (∆(x)⊡1 ∆(y)) ≥ min{̟T

V ∆(x), ̟T
V ∆(y)}.

Similarly, ̟T
V (∆(x)⊡2 ∆(y)) ≥ min{̟T

V ∆(x), ̟T
V ∆(y)} and

̟T
V (∆(x)⊡3 ∆(y)) ≥ min{̟T

V ∆(x), ̟T
V ∆(y)}.

Let x ∈ ∆−1(∆(x)) and y ∈ ∆−1(∆(y)) be such that ̟I
A(x) = sup

z∈∆−1(∆(x))

̟I
A(z) and

M.Palanikumar, K.Arulmozhi, (α, β) Neutrosophic Subbisemiring of Bisemiring

Neutrosophic Sets and Systems, Vol. 48, 2022 



377

̟I
A(y) = sup

z∈∆−1(∆(y))

̟I
A(z). Now,

̟I
V (∆(x)⊡1 ∆(y)) = sup

z
′
∈∆−1(∆(x)⊡1∆(y))

̟I
A(z

′

)

= sup
z
′
∈∆−1(∆(x⊞1y)

̟I
A(z

′

)

= ̟I
A(x⊞1 y)

≥
̟I

A(x) +̟I
A(y)

2

=
̟I

V ∆(x) +̟I
V ∆(y)

2
.

Thus, ̟I
V (∆(x)⊡1 ∆(y)) ≥

̟I
V ∆(x)+̟I

V ∆(y)
2 .

Similarly, ̟I
V (∆(x)⊡2 ∆(y)) ≥

̟I
V ∆(x)+̟I

V ∆(y)
2 and ̟I

V (∆(x)⊡3 ∆(y)) ≥
̟I

V ∆(x)+̟I
V ∆(y)

2 .

Let ∆(x),∆(y) ∈ S2. Let x ∈ ∆−1(∆(x)) and y ∈ ∆−1(∆(y)) be such that

̟F
A(x) = inf

z∈∆−1(∆(x))
̟F

A(z) and ̟F
A(y) = inf

z∈∆−1(∆(y))
̟F

A(z). Now,

̟F
V (∆(x)⊡1 ∆(y)) = inf

z
′
∈∆−1(∆(x)⊡1∆(y))

̟F
A(z

′

)

= inf
z
′
∈∆−1(∆(x⊞1y)

̟F
A(z

′

)

= ̟F
A(x⊞1 y)

≤ max{̟F
A(x), ̟

F
A(y)}

= max{̟F
V ∆(x), ̟F

V ∆(y)}.

Thus, ̟F
V (∆(x)⊡1 ∆(y)) ≤ max{̟F

V ∆(x), ̟F
V ∆(y)}.

Similarly, ̟F
V (∆(x)⊡2 ∆(y)) ≤ max{̟F

V ∆(x), ̟F
V ∆(y)} and

̟F
V (∆(x)⊡3 ∆(y)) ≤ max{̟F

V ∆(x), ̟F
V ∆(y)}. Hence V is an NSBS of S2.

Theorem 3.13. Let (S1,⊞1,⊞2,⊞3) and (S2,⊡1,⊡2,⊡3) be any two bisemirings. The homo-

morphic preimage of NSBS of S2 is an NSBS of S1.

Proof. Let ∆ : S1 → S2 be any homomorphism. Then ∆(x⊞1 y) = ∆(x)⊡1 ∆(y),∆(x⊞2

y) = ∆(x)⊡2 ∆(y) and ∆(x⊞3 y) = ∆(x)⊡3 ∆(y) for all x, y ∈ S1. Let V = ∆(A), where V

is any NSBS of S2. Let x, y ∈ S1. Now, ̟
T
A(x⊞1 y) = ̟T

V (∆(x⊞1 y)) = ̟T
V (∆(x)⊡1 ∆(y)) ≥

min{̟T
V ∆(x), ̟T

V ∆(y)} = min{̟T
A(x), ̟

T
A(y)}. Thus, ̟T

A(x ⊞1 y) ≥ min{̟T
A(x), ̟

T
A(y)}.

Now, ̟I
A(x ⊞1 y) = ̟I

V (∆(x ⊞1 y)) = ̟I
V (∆(x) ⊡1 ∆(y)) ≥

̟I
V ∆(x)+̟I

V ∆(y)
2 =

̟I
A(x)+̟I

A(y)
2 .

Thus, ̟I
A(x⊞1 y) ≥

̟I
A(x)+̟I

A(y)
2 . Now, ̟F

A(x⊞1 y) = ̟F
V (∆(x⊞1 y)) = ̟F

V (∆(x)⊡1∆(y)) ≤

max{̟F
V ∆(x), ̟F

V ∆(y)} = max{̟F
A(x), ̟

F
A(y)}. Thus, ̟F

A(x ⊞1 y) ≤ max{̟F
A(x), ̟

F
A(y)}.

Similarly to prove two other operations, hence A is an NSBS of S1.
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Theorem 3.14. Let (S1,⊞1,⊞2,⊞3) and (S2,⊡1,⊡2,⊡3) be any two bisemirings. If ∆ : S1 →

S2 is a homomorphism, then ∆(A(t,s)) is a level subbisemiring of NSBS V of S2.

Proof. Let ∆ : S1 → S2 be any homomorphism. Then ∆(x⊞1 y) = ∆(x)⊡1 ∆(y),∆(x⊞2

y) = ∆(x) ⊡2 ∆(y) and ∆(x ⊞3 y) = ∆(x) ⊡3 ∆(y) for all x, y ∈ S1. Let V = ∆(A), A is an

NSBS of S1. By Theorem 3.12, V is an NSBS of S2. Let A(t,s) be any level subbisemiring

of A. Suppose that x, y ∈ A(t,s). Then ∆(x ⊞1 y),∆(x ⊞2 y) and ∆(x ⊞3 y) ∈ A(t,s). Now,

̟T
V (∆(x)) = ̟T

A(x) ≥ t,̟T
V (∆(y)) = ̟T

A(y) ≥ t. Thus, ̟T
V (∆(x)⊡1∆(y)) ≥ ̟T

A(x⊞1 y) ≥ t.

Now, ̟I
V (∆(x)) = ̟I

A(x) ≥ t,̟I
V (∆(y)) = ̟I

A(y) ≥ t. Thus, ̟I
V (∆(x)⊡1 ∆(y)) ≥ ̟I

A(x⊞1

y) ≥ t. Now, ̟F
V (∆(x)) = ̟F

A(x) ≤ s,̟F
V (∆(y)) = ̟F

A(y) ≤ s. Thus, ̟F
V (∆(x) ⊡1 ∆(y)) ≤

̟F
A(x⊞1 y) ≤ s, for all ∆(x),∆(y) ∈ S2. Similarly to prove other operations, hence ∆(A(t,s))

is a level subbisemiring of NSBS V of S2.

Theorem 3.15. Let (S1,⊞1,⊞2,⊞3) and (S2,⊡1,⊡2,⊡3) be any two bisemirings. If ∆ : S1 →

S2 is any homomorphism, then A(t,s) is a level subbisemiring of NSBS A of S1.

Proof. Let ∆ : S1 → S2 be any homomorphism. Then ∆(x⊞1 y) = ∆(x)⊡1 ∆(y),∆(x⊞2

y) = ∆(x) ⊡2 ∆(y) and ∆(x ⊞3 y) = ∆(x) ⊡3 ∆(y) for all x, y ∈ S1. Let V = ∆(A), V is an

NSBS of S2. By Theorem 3.13, A is an NSBS of S1. Let ∆(A(t,s)) be a level subbisemiring

of V . Suppose that ∆(x),∆(y) ∈ ∆(A(t,s)). Then ∆(x ⊞1 y),∆(x ⊞2 y) and ∆(x ⊞3 y) ∈

∆(A(t,s)). Now, ̟T
A(x) = ̟T

V (∆(x)) ≥ t,̟T
A(y) = ̟T

V (∆(y)) ≥ t. Thus, ̟T
A(x ⊞1 y) ≥

min{̟T
A(x), ̟

T
A(y)} ≥ t. Now, ̟I

A(x) = ̟I
V (∆(x)) ≥ t,̟I

A(y) = ̟I
V (∆(y)) ≥ t. Thus,

̟I
A(x⊞1 y) ≥

̟I
A(x)+̟I

A(y)
2 ≥ t. Now, ̟F

A(x) = ̟F
V (∆(x)) ≤ s,̟F

A(y) = ̟F
V (∆(y)) ≤ s. Thus,

̟F
A(x ⊞1 y) = ̟F

V (∆(x) ⊡1 ∆(y)) ≤ max{̟F
A(x), ̟

F
A(y)} ≤ s, for all x, y ∈ S1. Similarly to

prove other two operations, hence A(t,s) is a level subbisemiring of NSBS A of S1.

4. (α, β)- neutrosophic Subbisemiring

In this section, we discuss about (α, β)- neutrosophic subbisemiring. In what follows that,

(α, β) ∈ [0, 1] be such that 0 ≤ α < β ≤ 1.

Definition 4.1. Let A be any neutrosophic subset of S is called a (α, β)- NSBS of S if it

satisfies the following conditions:















max{̟T
A(x ⋄1 y), α} ≥ min{̟T

A(x), ̟
T
A(y), β}

max{̟T
A(x ⋄2 y), α} ≥ min{̟T

A(x), ̟
T
A(y), β}

max{̟T
A(x ⋄3 y), α} ≥ min{̟T

A(x), ̟
T
A(y), β}
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max{̟I
A(x ⋄1 y), α} ≥ min

{

̟I
A(x)+̟I

A(y)
2 , β

}

OR

max{̟I
A(x ⋄2 y), α} ≥ min

{

̟I
A(x)+̟I

A(y)
2 , β

}

OR

max{̟I
A(x ⋄3 y), α} ≥ min

{

̟I
A(x)+̟I

A(y)
2 , β

}





























































min{̟F
A(x ⋄1 y), α} ≤ max{̟F

A(x), ̟
F
A(y), β}

min{̟F
A(x ⋄2 y), α} ≤ max{̟F

A(x), ̟
F
A(y), β}

min{̟F
A(x ⋄3 y), α} ≤ max{̟F

A(x), ̟
F
A(y), β}















for all x, y ∈ S.

Example 4.2. By the Example 3.2,

n = n1 n = n2 n = n3 n = n4

̟T
A(n) 0.80 0.75 0.55 0.70

̟I
A(n) 0.75 0.70 0.62 0.65

̟F
A(n) 0.35 0.65 0.80 0.70

Clearly, A is a (0.45, 0.60) NSBS of S.

Theorem 4.3. The intersection of a family of (α, β) NSBSs of S is a (α, β) NSBS of S.

Proof. Let {Vi : i ∈ I} be a family of (α, β) NSBSs of S and A =
⋂

i∈I

Vi.

Let x and y in S. Now,

max{̟T
A(x ⋄1 y), α} = inf

i∈I
max{̟T

Vi
(x ⋄1 y), α}

≥ inf
i∈I

min{̟T
Vi
(x), ̟T

Vi
(y), β}

= min
{

inf
i∈I

̟T
Vi
(x), inf

i∈I
̟T

Vi
(y), β

}

= min{̟T
A(x), ̟

T
A(y), β}.

Similarly, max{̟T
A(x ⋄2 y), α} ≥ min{̟T

A(x), ̟
T
A(y), β} and

max{̟T
A(x ⋄3 y), α} ≥ min{̟T

A(x), ̟
T
A(y), β}. Now,

max{̟I
A(x ⋄1 y), α} = inf

i∈I
max{̟I

Vi
(x ⋄1 y), α}

≥ inf
i∈I

min

{

̟I
Vi
(x) +̟I

Vi
(y)

2
, β

}

= min

{

inf
i∈I

̟I
Vi
(x) + inf

i∈I
̟I

Vi
(y)

2
, β

}

= min

{

̟I
A(x) +̟I

A(y)

2
, β

}

.
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Similarly, max{̟I
A(x ⋄2 y), α} ≥ min

{

̟I
A(x)+̟I

A(y)
2 , β

}

and max{̟I
A(x ⋄3 y), α} ≥

min
{

̟I
A(x)+̟I

A(y)
2 , β

}

. Now,

min{̟F
A(x ⋄1 y), α} = sup

i∈I
min{̟F

Vi
(x ⋄1 y), α}

≤ sup
i∈I

max{̟F
Vi
(x), ̟F

Vi
(y), β}

= max
{

sup
i∈I

̟F
Vi
(x), sup

i∈I
̟F

Vi
(y), β

}

= max{̟F
A(x), ̟

F
A(y), β}.

Similarly, min{̟F
A(x ⋄2 y), α} ≤ max{̟F

A(x), ̟
F
A(y), β} and

min{̟F
A(x ⋄3 y), α} ≤ max{̟F

A(x), ̟
F
A(y), β}. Hence, A is a (α, β) NSBS of S.

Theorem 4.4. If A and B are any two (α, β) NSBSs of S1 and S2 respectively, then A×B

is a (α, β) NSBS of S1 × S2.

Proof. Let A and B be two (α, β) NSBSs of S1 and S2 respectively. Let x1, x2 ∈ S1 and

y1, y2 ∈ S2. Then (x1, y1) and (x2, y2) are in S1 × S2. Now

max
{

̟T
A×B[(x1, y1) ⋄1 (x2, y2)], α

}

= max
{

̟T
A×B(x1 ⋄1 x2, y1 ⋄1 y2), α

}

= min
{

max{̟T
A(x1 ⋄1 x2), α},max{̟T

B(y1 ⋄1 y2), α}
}

≥ min
{

min{̟T
A(x1), ̟

T
A(x2), β},min{̟T

B(y1), ̟
T
B(y2), β}

}

= min
{

{min{̟T
A(x1), ̟

T
B(y1)},min{̟T

A(x2), ̟
T
B(y2)}}, β

}

= min
{

̟T
A×B(x1, y1), ̟

T
A×B(x2, y2), β

}

.

Also, max
{

̟T
A×B[(x1, y1) ⋄2 (x2, y2)], α

}

≥ min
{

̟T
A×B(x1, y1), ̟

T
A×B(x2, y2), β

}

and

max
{

̟T
A×B[(x1, y1) ⋄3 (x2, y2)], α

}

≥ min
{

̟T
A×B(x1, y1), ̟

T
A×B(x2, y2), β

}

.

Now, max
{

̟I
A×B[(x1, y1) ⋄1 (x2, y2)], α

}

= max
{

̟I
A×B(x1 ⋄1 x2, y1 ⋄1 y2), α

}

= min

{

1

2

[

max
{

̟I
A(x1 ⋄1 x2), α

}

+max
{

̟I
B(y1 ⋄1 y2), α

}

]}

≥ min

{

1

2

[

min
{̟I

A(x1) +̟I
A(x2)

2
, β

}

+min
{̟I

B(y1) +̟I
B(y2)

2
, β

}

]}

= min

{

1

2

[

̟I
A(x1) +̟I

B(y1)

2
+

̟I
A(x2) +̟I

B(y2)

2

]

, β

}

= min

{

̟I
A×B(x1, y1) +̟I

A×B(x2, y2)

2
, β

}

.
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Also, max
{

̟I
A×B[(x1, y1) ⋄2 (x2, y2)], α

}

≥ min

{

̟I
A×B(x1,y1)+̟I

A×B(x2,y2)

2 , β

}

and

max
{

̟I
A×B[(x1, y1) ⋄3 (x2, y2)], α

}

≥ min

{

̟I
A×B(x1,y1)+̟I

A×B(x2,y2)

2 , β

}

.

Similarly,

min
{

̟F
A×B[(x1, y1) ⋄1 (x2, y2)], α

}

= min
{

̟F
A×B(x1 ⋄1 x2, y1 ⋄1 y2), α

}

= max
{

min{̟F
A(x1 ⋄1 x2), α},min{̟F

B(y1 ⋄1 y2), α}
}

≤ max
{

max{̟F
A(x1), ̟

F
A(x2), β},max{̟F

B(y1), ̟
F
B(y2), β}

}

= max
{

{max{̟F
A(x1), ̟

F
B(y1)},max{̟F

A(x2), ̟
F
B(y2)}}, β

}

= max
{

̟F
A×B(x1, y1), ̟

F
A×B(x2, y2), β

}

.

Also, min
{

̟F
A×B[(x1, y1) ⋄2 (x2, y2)], α

}

≤ max
{

̟F
A×B(x1, y1), ̟

F
A×B(x2, y2), β

}

,

min
{

̟F
A×B[(x1, y1) ⋄3 (x2, y2)], α

}

≤ max
{

̟F
A×B(x1, y1), ̟

F
A×B(x2, y2), β

}

.

Hence A×B is a (α, β) NSBS of S1 × S2.

Corollary 4.5. If A1, A2, ..., An are the family of (α, β) NSBSs of S1, S2, ..., Sn respectively,

then A1 ×A2 × ...×An is a (α, β) NSBS of S1 × S2 × ...× Sn.

Definition 4.6. Let A be a (α, β) neutrosophic subset in S, the strongest (α, β) neutrosophic

relation on S, that is a (α, β) neutrosophic relation on A is V given by














max{̟T
V (x, y), α} = min{̟T

A(x), ̟
T
A(y), β}

max{̟I
V (x, y), α} = min{̟I

A(x), ̟
I
A(y), β}

min{̟F
V (x, y), α} = max{̟F

A(x), ̟
F
A(y), β}















.

Theorem 4.7. Let A be a (α, β) NSBS of S and V be the strongest (α, β) neutrosophic relation

of S. Then A is a (α, β) NSBS of S if and only if V is a (α, β) NSBS of S× S.

Theorem 4.8. Let (S1,⊞1,⊞2,⊞3) and (S2,⊡1,⊡2,⊡3) be any two bisemirings. The homo-

morphic image of (α, β) NSBS of S1 is a (α, β) NSBS of S2.

Proof. Let ∆ : S1 → S2 be any homomorphism. Then ∆(x⊞1 y) = ∆(x)⊡1 ∆(y),∆(x⊞2

y) = ∆(x)⊡2 ∆(y) and ∆(x⊞3 y) = ∆(x)⊡3 ∆(y) for all x, y ∈ S1. Let V = ∆(A), A is any

(α, β) NSBS of S1. Let ∆(x),∆(y) ∈ S2. Let x ∈ ∆−1(∆(x)) and y ∈ ∆−1(∆(y)) be such that

̟T
A(x) = sup

z∈∆−1(∆(x))

̟T
A(z) and ̟T

A(y) = sup
z∈∆−1(∆(y))

̟T
A(z). Now,

max
[

̟T
V (∆(x)⊡1 ∆(y)) , α

]

= max

[

sup
z
′
∈∆−1(∆(x)⊡1∆(y))

̟T
A(z

′

) , α

]

= max

[

sup
z
′
∈∆−1(∆(x⊞1y)

̟T
A(z

′

) , α

]
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= max
[

̟T
A(x⊞1 y), α

]

≥ min
{

̟T
A(x), ̟

T
A(y), β

}

= min
{

̟T
V ∆(x), ̟T

V ∆(y), β
}

.

Thus, max
[

̟T
V (∆(x)⊡1 ∆(y)) , α

]

≥ min
{

̟T
V ∆(x), ̟T

V ∆(y), β
}

.

Similarly, max
[

̟T
V (∆(x)⊡2 ∆(y)) , α

]

≥ min
{

̟T
V ∆(x), ̟T

V ∆(y), β
}

and

max
[

̟T
V (∆(x)⊡3 ∆(y)) , α

]

≥ min
{

̟T
V ∆(x), ̟T

V ∆(y), β
}

.

Let ∆(x),∆(y) ∈ S2. Let x ∈ ∆−1(∆(x)) and y ∈ ∆−1(∆(y)) be such that ̟I
A(x) =

sup
z∈∆−1(∆(x))

̟I
A(z) and ̟I

A(y) = sup
z∈∆−1(∆(y))

̟I
A(z). Now,

max
[

̟I
V (∆(x)⊡1 ∆(y)) , α

]

= max

[

sup
z
′
∈∆−1(∆(x)⊡1∆(y))

̟I
A(z

′

) , α

]

= max

[

sup
z
′
∈∆−1(∆(x⊞1y)

̟I
A(z

′

) , α

]

= max
[

̟I
A(x⊞1 y), α

]

≥ min
{̟I

A(x) +̟I
A(y)

2
, β

}

= min
{̟I

V ∆(x) +̟I
V ∆(y)

2
, β

}

Thus, max
[

̟I
V (∆(x)⊡1 ∆(y)) , α

]

≥ min
{

̟I
V ∆(x)+̟I

V ∆(y)
2 , β

}

.

Similarly, max
[

̟I
V (∆(x)⊡2 ∆(y)) , α

]

≥ min
{

̟I
V ∆(x)+̟I

V ∆(y)
2 , β

}

and

max
[

̟I
V (∆(x)⊡3 ∆(y)) , α

]

≥ min
{

̟I
V ∆(x)+̟I

V ∆(y)
2 , β

}

.

Let x ∈ ∆−1(∆(x)) and y ∈ ∆−1(∆(y)) be such that ̟F
A(x) = inf

z∈∆−1(∆(x))
̟F

A(z) and

̟F
A(y) = inf

z∈∆−1(∆(y))
̟F

A(z). Now,

min
[

̟F
V (∆(x)⊡1 ∆(y)) , α

]

= min

[

inf
z
′
∈∆−1(∆(x)⊡1∆(y))

̟F
A(z

′

) , α

]

= min

[

inf
z′∈∆−1(∆(x⊞1y)

̟F
A(z

′

) , α

]

= min
[

̟F
A(x⊞1 y), α

]

≤ max
{

̟F
A(x), ̟

F
A(y), β

}

= max
{

̟F
V ∆(x), ̟F

V ∆(y), β
}

.
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Thus, min
[

̟F
V (∆(x)⊡1 ∆(y)) , α

]

≤ max
{

̟F
V ∆(x), ̟F

V ∆(y), β
}

.

Similarly, min
[

̟F
V (∆(x)⊡2 ∆(y)) , α

]

≤ max
{

̟F
V ∆(x), ̟F

V ∆(y), β
}

and

min
[

̟F
V (∆(x)⊡3 ∆(y)) , α

]

≤ max
{

̟F
V ∆(x), ̟F

V ∆(y), β
}

. Hence V is a (α, β) NSBS of S2.

Theorem 4.9. Let (S1,⊞1,⊞2,⊞3) and (S2,⊡1,⊡2,⊡3) be any two bisemirings. The homo-

morphic preimage of (α, β) NSBS of S2 is a (α, β) NSBS of S1.

Proof. Let ∆ : S1 → S2 be any homomrphism. Then ∆(x⊞1y) = ∆(x)⊡1∆(y),∆(x⊞2y) =

∆(x) ⊡2 ∆(y) and ∆(x ⊞3 y) = ∆(x) ⊡3 ∆(y) for all x, y ∈ S1. Let V = ∆(A), where V is

any (α, β) NSBS of S2. Let x, y ∈ S1. Then max{̟T
A(x⊞1 y), α} = max{̟T

V (∆(x⊞1 y)), α} =

max{̟T
V (∆(x) ⊡1 ∆(y)), α} ≥ min{̟T

V ∆(x), ̟T
V ∆(y), β} = min{̟T

A(x), ̟
T
A(y), β}. Thus,

max{̟T
A(x⊞1 y), α} ≥ min{̟T

A(x), ̟
T
A(y), β}. Now, max{̟I

A(x⊞1 y), α} = max{̟I
V (∆(x⊞1

y)), α} = max{̟I
V (∆(x) ⊡1 ∆(y)), α} ≥ min{̟I

V ∆(x), ̟I
V ∆(y), β} = min{̟I

A(x), ̟
I
A(y), β}.

Thus, max{̟I
A(x ⊞1 y), α} ≥ min{̟I

A(x), ̟
I
A(y), β}. Now, min{̟F

A(x ⊞1 y), α} =

min{̟F
V (∆(x ⊞1 y)), α} = min{̟F

V (∆(x) ⊡1 ∆(y)), α} ≤ max{̟F
V ∆(x), ̟F

V ∆(y), β} =

max{̟F
A(x), ̟

F
A(y), β}. Thus, min{̟F

A(x ⊞1 y), α} ≤ max{̟F
A(x), ̟

F
A(y), β}. Similarly to

prove other two operations, hence A is a (α, β) NSBS of S1.

5. (α, β) neutrosophic Normal Subbisemiring

In this section, we interact the theory for (α, β)- neutrosophic normal subbisemiring. Here

NNSBS stands for neutrosophic normal subbisemiring.

Definition 5.1. Let A be any neutrosophic subset of S is said to be a NNSBS of S if it satisfies

the following conditions:















̟T
A(x ⋄1 y) = ̟T

A(y ⋄1 x)

̟T
A(x ⋄2 y) = ̟T

A(y ⋄2 x)

̟T
A(x ⋄3 y) = ̟T

A(y ⋄3 x)





















































̟I
A(x ⋄1 y) = ̟I

A(y ⋄1 x)

OR

̟I
A(x ⋄2 y) = ̟I

A(y ⋄2 x)

OR

̟I
A(x ⋄3 y) = ̟I

A(y ⋄3 x)





















































̟F
A(x ⋄1 y) = ̟F

A(y ⋄1 x)

̟F
A(x ⋄2 y) = ̟F

A(y ⋄2 x)

̟F
A(x ⋄3 y) = ̟F

A(y ⋄3 x)















for all x, y ∈ S.

Theorem 5.2. (i) The intersection of a family of NNSBS s of S is a NNSBSs of S.

(ii) The intersection of a family of (α, β) NNSBS of S is a (α, β) NNSBS s of S.

Proof. Proof follows from Theorem 3.3 and Theorem 4.3.
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Theorem 5.3. (i) If A1, A2, ..., An are the family of NNSBSs of S1, S2, ..., Sn respectively,

then A1 ×A2 × ...×An is a NNSBS of S1 × S2 × ...× Sn.

(ii) If A1, A2, ..., An are the family of (α, β) NNSBSs of S1, S2, ..., Sn respectively, then A1 ×

A2 × ...×An is a (α, β) NNSBS of S1 × S2 × ...× Sn.

Proof. Proof follows from Theorem 3.4 and Theorem 4.4.

Theorem 5.4. (i) Let A be any NNSBS of S and V be the strongest neutrosophic relation of

S. Then A is a NNSBS of S if and only if V is a NNSBS of S× S.

(ii) Let A be any (α, β) NNSBS of S and V be the strongest (α, β) neutrosophic relation of S.

Then A is a (α, β) NNSBS of S if and only if V is a (α, β) NNSBS of S× S.

Proof. Proof follows from Theorem 3.7.

Theorem 5.5. Let (S1,⊞1,⊞2,⊞3) and (S2,⊡1,⊡2,⊡3) be any two bisemirings.

(i) The homomorphic image of any NNSBS of S1 is a NNSBS of S2.

(ii) The homomorphic image of any (α, β) NNSBS of S1 is a (α, β) NNSBS of S2.

Proof. Proof follows from Theorem 3.12 and Theorem 4.8.

Theorem 5.6. Let (S1,⊞1,⊞2,⊞3) and (S2,⊡1,⊡2,⊡3) be any two bisemirings.

(i) The homomorphic preimage of any NNSBS of S2 is a NNSBS of S1.

(ii) The homomorphic preimage of any (α, β) NNSBS of S2 is a (α, β) NNSBS of S1.

Proof. Proof follows from Theorem 3.13 and Theorem 4.9.
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Abstract. In this paper, we extend the concepts of Neutrosophy to Boolean function and define ClassicalBal-

anced, AntiBalanced and NeutroBalanced functions. We consider functions of the form f(x) = Tr(xd), where

the exponent d may be Gold exponent, Kasami exponent, Welch exponent or any arbitrary positive integer. We,

for different values of d, examine nature of these functions with respect to the above stated three categories.
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—————————————————————————————————————————-

1. Introduction

In an algebraic structure, the axioms are valid and the operations are defined everywhere.

We cannot do much mathematics just on sets. We need some sort of algebraic structures for

analysis. In real life situations when we require to combine the elements of a particular domain

in a certain manner, it may happen the combination is not meaningful for certain pairs. It may

be undefined, indeterminate or multivalued. In such situation, we cannot have an algebraic

structure and we are left with no option but to modify the combining operations.

What if we have the theoretical platform to deal with such operation the way they are. This

line of thinking lead to evolution of Neutrosophy. The history of Neutrosophy is dated back

to 1998 when Florentin Smarandache propounde the notion of Neutrosophy in [3]. However,
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the research in this area gained momentum in last couple of years. Some recent works may be

found in [8–11].

Neutrosophic structures have been defined on Algebra [1–7], groups [14–16,20,21] and ring

[12, 13] and their properties have been explored. We define neutrosophic structure on a finite

field. The main reasons of choosing finite fields are:

(1) This direction remains by and large unexplored.

(2) Fields are the richest structure. The finiteness is considered to make it more computer

friendly. When it is not possible to produce a rigorous logic for proving an assertion,

computational tools may be utilised to establish the assertion.

(3) Finite fields are widely used in cryptography. We try to translate the concepts of

Boolean function to the Neutrosophic scenario. This may lead to application of these

function to cryptography.

We define three types of functions viz., ClassicalBalanced, AntiBalanced and NeutroBalanced

functions. The details can be found in the subsequent sections. The paper is structured in the

following manner.

In the next section we discuss preliminaries required to comprehend the paper. In section 3

we introduce three neutrosophic functions as mentioned above. In the fourth section we prove

some results related to the defined function. Finally, in section 5, we conclude the paper.

2. Preliminaries

Definition 2.1. [4]

(i) A classical operation is an operation well defined for all the set’s elements while a

Neutro Operation is an operation partially well defined, partially indeterminate, and

partially outer defined on the given set. An AntiOperation is an operation that is outer

definedfor all the set’s elements.

(ii) A NeutroAlgebra is an algebra that has at least one Neutro Operation or one Neu-

troAxiom ( axiom that is true for some elements, indeterminate for other elements,

and false for other elements), and no AntiOperation or AntiAxiom. An AntiAlgebra

is an algebra endowed with at least one AntiOperation or at least one AntiAxiom.

The study and analysis of cryptographic and combinatorial properties with respect to

Boolean functions has been an important branch of cryptography. Boolean functions play
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a significant role in the construction of components used in symmetric ciphers, and crypto-

graphic properties of such functions are of great interest. Boolean functions used in crypto-

graphic applications provide security of a cipher against different kinds of attacks.

Over the prime field, F2 the n-dimensional vector space can be denoted as Fn
2 . One can

identify this vector space Fn
2 over F2 with the finite field F2n of 2n elements, which is basically

extension of the finite field F2 = {0, 1} using some irreducible polynomial of degree n with

coeffiecients either 0 or 1.

A Boolean function in n variables is an arbitrary function from Fn
2 → F2, where F = {0, 1}

is a Boolean domain and n is a non-negative integer. It is called Boolean in honor of the

British mathematician and philosopher George Boole (1815− 1864).

The vectorial Boolean function is of the form F : Fn
2 → Fm

2 with range of the function

being Fm
2 , where m > 1. It is also called an (n,m)-function. If m = n then it is called as

(n, n)-function. For vectorial Boolean functions we use uppercase letters, whereas Boolean

functions are denoted with lowercase letters.

The finite field F2n of order 2n is also denoted as GF (2n), which is due to French math-

ematician Evariste Galois (1811-1832). Usually, F∗
2n is the denotion used to represent the

collection of all nonzero elements in the field F2n . With respect to multiplication, F∗
2n acts as a

cyclic group with order of the group being 2n− 1. For basic and recent results on finite fields,

permutation polynomials, balanced functions and trace functions we refer [19,22–24,27].

The trace representation is very useful in defining and analyzing various properties of

Boolean functions.

Definition 1. [25] If c is an element of K = GF (qn), its trace relative to the subfield

F = GF (q) is defined as follows:

TrKF (c) = c+ cq + cq
2

+ . . .+ cq
n−1

.

The values of trace functions fall into the prime field F2 is the most important property of

the trace. Since Fn
2 is isomorphic with F2n , trace function can also be viewed as a Boolean

function in n variables. In case of the base field F2, we use the notation Tr for trace.

Consider the finite field GF (9) = (00, 10, 11,−11, 0 − 1,−10,−1 − 1, 1 − 1, 01). Trace is

tabulated as below.

x 00 10 11 -11 0-1 -10 -1-1 1-1 01

Trace(x) 0 1 0 1 1 -1 0 -1 -1
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A Boolean function f is said to be balanced if the output column of its truth table has

same number of zero’s and one’s. As balanced functions would give outputs with the balanced

number of zero and one, which appears more random. Hence, these functions avoid statistical

dependencies between the input and output of the stream cipher, which prevents distinguishing

attacks and statistical analysis [26,27]. From cryptographic point of view, balanced functions

are very important. In case of an unbalanced function, the input and output variables have

considerable dependence on each other, which may cause susceptible cryptanalysis attacks.

In [17–19], one can find the construction of many such power function f : F2n 7→ F2 with

trace representation. Some well known examples of Boolean functions f(x) = Tr(xd), where

d is given by the table 1 are as follows

Table 1. Boolean functions

Exponent “d ” Conditions

Gold function 2i + 1 gcd(i, n) = 1

Kasami function 22i − 2i + 1 gcd(i, n) = 1

Welch function 2t + 3 n = 2t+ 1

The terminology of balancedness always comes with the idea of the measurement of different

conditions. The balanced characteristic of a function is defined with the classification of its co-

domain. Here in the next section, we present three types of balanced Neutrosophic functions.

3. ClassicalBalanced, AntiBalanced and NeutroBalanced functions

Let ψ be a Neutrosophic functions defined on Fn
3 to K, where K is some arbitrary set.

Note that there will be three partitions of the domains say P0, P1, P2 such that ψ is defined

on P0, not defined on P1 and indeterminate on P2. The Neutrosophic function ψ induces a

generalised Boolean function f on Fn
3 → F3 as

f(x) = i when x ∈ Pi.

It can be seen easily, every function f : Fn
3 → F3 induces a neutrosophic function Fn

3 → K.

Thus there are one to one correspondance between Neutrosophic functions Fn
3 → K and the

generalised Boolean function from Fn
3 → F3. We can therefore, identify a Neutrosophic func-

tion from Fn
3 → K by a generalised Boolean function from Fn

3 → F3. With this identification,

we proceed further and define neutrosophic functions.

Note that any f : Fn
3 → F3 can be given as f(x) = Tr(h(x)), where h is a function defined on

Fn
3 . We are now fully equipped to define ClassicalBalanced, AntiBalanced and NeutroBalanced

functions.
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Definition 3.1. A function is said to be ClassicalBalanced function if it takes equal number

of 1’s, 0’s and -1’s.

Example 3.2. Over F35 , the function f(x) = Tr(x9) is a ClassicalBalanced function.

Definition 3.3. A function is said to be AntiBalanced function if number of 1’s, 0’s, and -1’s

are all distinct from each other.

Example 3.4. Over F32 , the function f(x) = Tr(x8) is a AntiBalanced function.

Definition 3.5. A function is said to be NeutroBalanced function if number of 1’s, 0’s, and

-1’s are not same but exactly two of them are equal.

Example 3.6. Over F34 , the function f(x) = Tr(x14) is a NeutroBalanced function.

4. Some Special types of Neutrosophic functions

Composition of two functions is an intrinsic approach in the upcoming results to construct

ClassicalBalanced, AntiBalanced and NeutroBalanced function. Trace of finite field is a com-

mon choice for one of the compositions of two functions. Here in the next two propositions

we present the necessary and sufficient conditions for a composition of two functions to be

ClassicalBalanced, AntiBalanced and NeutroBalanced function.

Proposition 1. Let f : F3n → F3 be a Boolean function and h be any bijection on f : F3n.

Then f is ClasicalBalanced, AntiBalanced or NeutroBalanced if and only if the composition

map fh is ClasicalBalanced, AntiBalanced or NeutroBalanced respectively.

Proof. The proof is obvious.

Proposition 2. The exponential map x → xa, a ∈ Z on F3n is a bijection if and only if

gcd(a, 3n − 1) = 1.

Proof. If map x→ xa, a ∈ Z on F3n is a bijection then the proof is obvious. Now let

gcd(a, 3n − 1) = 1

and x1(6= 0), x2(6= 0) ∈ Fn
3 and g be a generator of non zero elements of Fn

3 . Let if

f(x1) = f(x2),

then

xa1 = xa2,

=⇒ (gu1)a = (gu2)a,

=⇒ (gu1−u2)a = 1,
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=⇒ 3n − 1|(u1 − u2)(a)

or

(u1 − u2)(a) = 0 mod 3n − 1. (1)

Now if gcd(a, 3n − 1) = 1 then,

(u1 − u2) = 0 mod 3n − 1. (2)

Now since, 1 ≤ u1, u2 ≤ 3n − 1 therefore

u1 − u2 ≤ 3n − 1. (3)

From (2) and (3), u1 = u2, which implies that, x1 = x2. Hence the result is proved.

In the next theorem we prove the ClassicalBalanced property of Trace function over finite

field F3n .

Theorem 4.1. A function of the form

f(x) = Tr(x)

is a ClassicalBalanced function over the finite field F3n.

Proof. We have

f(x) = Tr(x) = x+ x3 + x9 + . . .+ x3
n−1

. (4)

This is the absolute trace mapping the elements of F3n to the prime field F3. Therefore,

f−1(F3) = F3n ,

=⇒ f−1(0) ∪ f−1(1) ∪ f−1(2) = F3n ,

=⇒ |f−1(0)|+ |f−1(1)|+ |f−1(2)| = 3n. (5)

Let |f−1(0)| = α1, |f−1(1)| = α2 and |f−1(2)| = α3. Then from (5)

α1 + α2 + α3 = 3n. (6)

Now from (4) we have

α1 = |{x|x+ x3 + x9 + . . .+ x3
n−1

= 0}|, (7)

α2 = |{x|x+ x3 + x9 + . . .+ x3
n−1 − 1 = 0}| (8)

and

α3 = |{x|x+ x3 + x9 + . . .+ x3
n−1 − 2 = 0}|. (9)

All equations (7), (8) and (9) has a polynomial of degree 3n−1. So, each can have at most

3n−1 roots and we conclude that

0 ≤ α1, α2, α3 ≤ 3n−1. (10)
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It is clear that (6) and (10) hold together if and only if α1 = α2 = α3 = 3n−1. Thus our

assertion is proved.

Before start of the proof for next theorem here we prove a lemma.

Lemma 4.2. Let i and n are positive integers, If < n, i >= 1 then < 3n − 1, 2i + 1 >= 1.

Proof. Here n and i are positive integers therefore let p(6= 2, 3) be any prime number such

that p|(3n − 1), then we can write 3n = 1 mod p, which implies that p− 1|n or

n = 0 mod (p− 1). (11)

Now if p|2i + 1, then 2i = −1 mod p which implies that p−1
2 |i, consequently p− 1|2i or

2i = 0 mod (p− 1). (12)

Now combining (11) and (12), we can write < n, 2i >= p − 1. Therefore if < n, i >= 1 then

at max gcd of n and 2i will be 2 but since p 6= 2 or 3, hence there does not exist any prime

p 6= 2 or 3 such that p|(3n − 1) and p|(2i + 1). Hence

< 3n − 1, 2i + 1 >= 1.

Now in the next theorem we present the bijective condition for an exponent function on Fn
3 .

Theorem 4.3. Let f : F3n 7→ F3n be a function defined as f(x) = x2
i+1. If < i, n >= 1 for

any positive integer i, then f is a bijective function.

Proof. The proof follow from the lemma 4.2 and proposition 2.

Corollary 4.4. A function of the form

f(x) = Tr(x2
i+1),

for any positive integer i, is a ClassicalBalanced function with gcd(i, n) = 1 over the finite

field F3n.

Proof. Theorem 4.1 and theorem 4.3 follows the proof of this corollary.

If gcd(i, n) 6= 1, then the functions f(x) = Tr(x2
i+1) cannot be a ClassicalBalanced func-

tions, which we can observe from the following examples.

Example 4.5. Over F34 , the function f(x) = Tr(x2
2+1) is not a ClassicalBalanced function.
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Example 4.6. Over F35 , the function f(x) = Tr(x2
5+1) is not a ClassicalBalanced function.

Some more general results for AntiBalanced and NeutroBalanced functions are presented in

following theorems.

Theorem 4.7. A function of the form

f(x) = Tr(x8a)

is a AntiBalanced function for a ∈ N, gcd(a, 32 − 1) = 1 over the finite field F32.

Proof. Given function f(x) is composition of two functions, Tr(x) = x + x3 and h(x) = xa,

therefore,

f(x) = Tr(x8a) = f1h(x) (13)

where f1(x) = Tr(x8) and h(x) = xa. It is given that gcd(a, 32 − 1) = 1, therefore from

propositions 1 and 2, f is AntiBalanced if and only if f1 is AntiBalanced. We now show that

f1 is AntiBalanced. From the expression of trace and f1,

f1(x) = 0 =⇒ x8 + x24 = 0

Similarly,

f1(x) = 1 =⇒ x8 + x24 − 1 = 0

and

f1(x) = 2 =⇒ x8 + x24 − 2 = 0.

It can be verified computationally or otherwise that the polynomials x8 + x24, x8 + x24 − 1,

x8 + x24 − 2 has 1, 0 and 8 distinct roots in F32 . Hence, f1 is AntiBalanced. This proves our

assertion as well.

Theorem 4.8. A function of the form

f(x) = Tr(x2a)

is a AntiBalanced function for a ∈ N with 2a 6≡ 0( mod 13) over the finite field F33.

Proof. Let

f(x) = Tr(x2a) = f1h(x) (14)

where f1(x) = Tr(x2) and h(x) = xa. Now 2a 6≡ 0( mod 13) implies that gcd(a, 33 − 1) = 1.

Propositions 1 and 2 confirm that f is AntiBalanced if and only if f1 is AntiBalanced. Further

we show that f1 is AntiBalanced. From Trace Tr(x) = x+ x3 + x9 over F33 ,

f1(x) = 0 =⇒ x2 + x6 + x18 = 0.
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Similarly,

f1(x) = 1 =⇒ x2 + x6 + x18 − 1 = 0

and

f1(x) = 2 =⇒ x2 + x6 + x18 − 2 = 0

After computational verification we found that the polynomials x2+x6+x18, x2+x6+x18−1,

x2 + x6 + x18 − 2 has 9,6 and 12 distinct roots in F32 . Hence, f1 is AntiBalanced.

Theorem 4.9. A function of the form

f(x) = Tr(x16a)

is a AntiBalanced function for a ∈ N and 16a 6= 0 mod 80 over the finite field F34.

Proof. Here Tr(x) = x+ x3 + x9 + x27 over F34 and

f(x) = Tr(x16a) = f1h(x) (15)

where f1(x) = Tr(x16) and h(x) = xa, gcd(a, 34 − 1) = 1. In view of propositions 1 and 2, f

is AntiBalanced if and only if f1 is AntiBalanced. We now show that f1 is AntiBalanced.

f1(x) = 0 =⇒ x2 + x6 + x18 = 0

Similarly,

f1(x) = 1 =⇒ x2 + x6 + x18 − 1 = 0

and

f1(x) = 2 =⇒ x2 + x6 + x18 − 2 = 0

It is verified computationally or otherwise that the polynomials x + x3 + x9 + x27, x + x3 +

x9 +x27−1 and x+x3 +x9 +x27−2 has 1,16 and 64 distinct roots in F34 respectively. Hence,

f1 is AntiBalanced. This proves our assertion as well.

Theorem 4.10. A function of the form

f(x) = Tr(x2a)

is a AntiBalanced function for a ∈ N, gcd(a, 35 − 1) = 1 over the finite field F35.

Proof. Trace function in the finite field F35 is a polynomial Tr(x) = x+x3+x9+x27+x81 ∈ F3

where x ∈ F35 . Now given function

f(x) = Tr(x16a) = f1h(x) (16)
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where f1(x) = Tr(x2) and h(x) = xa. From proposition 2, gcd(a, 35 − 1) = 1 implies that h is

a bijectiona. Now we now show that f1 is AntiBalanced.

f1(x) = 0 =⇒ x+ x3 + x9 + x27 + x81 = 0

Similarly,

f1(x) = 1 =⇒ x+ x3 + x9 + x27 + x81 − 1 = 0

and

f1(x) = 2 =⇒ x+ x3 + x9 + x27 + x81 − 2 = 0

We found from computation search that the polynomials x + x3 + x9 + x27 + x81, x + x3 +

x9 + x27 + x81 − 1 and x + x3 + x9 + x27 + x81 − 2 has 81,90 and 72 distinct roots in F35

respectively. Therefore, f1 is AntiBalanced. From proposition 1, f is AntiBalanced if and only

if f1 is AntiBalanced. Hence the theorem is proved.

Theorem 4.11. A function of the form

f(x) = Tr(x2a)

is a NeutroBalanced function for a ∈ N with 2a 6≡ 0( mod 8) over the finite field F32.

Proof. The trace of F32 is Tr(x) = x + x3 ∈ F3 where x ∈ F32 . Given function f(x) can be

written as,

f(x) = Tr(x2a) = f1h(x) (17)

where f1(x) = Tr(x2) and h(x) = xa. Now from the given condition gcd(a, 32 − 1) = 1 and

proposition 2, h is a bijective function. Now We show that f1 is NeutroBalanced. Using Tr(x)

on F32 , we can write

f1(x) = 0 =⇒ x+ x3 = 0

Similarly,

f1(x) = 1 =⇒ x+ x3 − 1 = 0

and

f1(x) = 2 =⇒ x+ x3 − 2 = 0

Count of the roots of above three polynomials can settle the proof of Neutrobalanced property

of f . It can be verified computationally or otherwise that the polynomials x+x3, x+x3−1 and

x+ x3− 2 has 5, 2 and 2 distinct roots in F32 respectively. Hence, f1 is NeutroBalanced. It is

already proved in proposition 1 that f is NeutroBalanced if and only if f1 is NeutroBalanced.

Hence the theorem is proved
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Theorem 4.12. A function of the form

f(x) = Tr(x2a)

is a NeutroBalanced function for a ∈ N with 2a 6≡ 0( mod 16) over the finite field F34.

Proof. Here the trace function, Tr(x), on the extension field F34 is

Tr(x) = x+ x3 + x9 + x27 ∈ F3,

where x ∈ F34 . Now given function

f(x) = Tr(x2a) = f1h(x), (18)

where f1(x) = Tr(x2) and h(x) = xa, gcd(a, 34 − 1) = 1. In view of propositions 1 and 2, f is

NeutroBalanced if and only if f1 is NeutroBalanced. We now show that f1 is NeutroBalanced.

From the expression of Tr(x) on F34 ,

f1(x) = 0 =⇒ x+ x3 + x9 + x27 = 0

Similarly,

f1(x) = 1 =⇒ x+ x3 + x9 + x27 − 1 = 0

and

f1(x) = 2 =⇒ x+ x3 + x9 + x27 − 2 = 0

Now it can be observe from proposition 1 that f is NeutroBalanced if enumeration of roots of

any two polynomials from x+x3 +x9 +x27, x+x3 +x9 +x27− 1 and x+x3 +x9 +x27− 2 are

same. We found computationally that the polynomials x+x3 +x9 +x27, x+x3 +x9 +x27− 1

and x + x3 + x9 + x27 − 2 has 21, 30 and 30 distinct roots in F34 respectively. Hence, f1 is

NeutroBalanced. This proves our assertion as well.

5. Conclusions

In this paper, we have defined ClassicalBalanced, AntiBalanced and NeutroBalanced func-

tions. So far a function over finite field is classified into balanced function and unbalanced

function. With this work it is a new approach to define a class of functions which lie between

these two, which are called as NeutroBalanced functions. NeutroBalanced functions are de-

fined with the logic of neutrosophy. NeutroBalanced functions may lead to a new direction

with its application in point of view.
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Abstract. Bipolar neutrosophic soft sets and their properties were discussed in several articles by many re-

searchers. Soft sets are parametrized sets and bipolar neutrosophic soft sets are the fusion of bipolar neutrosophic

sets and soft sets and there will be a number of decision variables or parameters. In many circumstances, the

significance of each parameter is not equal. So the selection at the end might be unfit to the scenario. In this

paper, we proposed Bipolar neutrosophic graded soft sets and their topological spaces. The proposed method

fills that gap among the selection.
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—————————————————————————————————————————-

1. Introduction

Exact solution not always exist for real life problems. Most of the scenarios interfere with

some unwanted information called uncertainties. Due to uncertainty, one cannot conclude the

problem with exact solution. In such cases, conventional methods are not efficient to deal

with indeterminate. Fortunately, in recent years, there are many concepts were defined to

deal such uncertainties. Neutrosophy is one of the technique which is suitable for problems

with uncertainties. Neutrosophy is the extension of Intiutionistic fuzzy theory (originated

from fuzzy theory). Neutrosophic sets are derived from Neutrosophy which is used in many

decision making problems. Florentin Smarandache [6,8] was introduced this Neutrosophy con-

cept. Neutrosophic set is a set of three memberships namely, Truth, Indeterminacy and False

membership range in the non-standard interval ]−0, 1+[. The non-standard intervals are only
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for theoretical purpose, but we prefer specific solution for real life problems; Single valued

neutrosophic set (SVNS) is the set which is defined by Wang et al. [7] having variables ranges

in the standard interval [0,1] instead of non-standard interval.

Majundar et al. [4,5] proposed some notions on neutrosophic sets and single valued neutro-

sophic sets. Bipolar neutrosophic sets (BNS), extension of neutrosophic sets were defined by

Deli et al. [2] in 2015 and similarity measures of bipolar neutrosophic sets were proposed by

Uluay et al. [3] in 2016. In 2012, A.A.Salama et al. [25] extended fuzzy topology and intiu-

tionistic fuzzy topology to neutrosophic topology. In 2017, Francisco Gal. [23] proposed the

difference between intiutionistic fuzzy topology and neutrosophic topology and proved that

they’re not the same. In 2017, Tuhin Bera et al. [22] extended the neutrosophic topology

concept to neutrosophic soft topology and proposed some of their properties. Syeda Tayyba

et al. [24] proposed a decision making technique using bipolar neutrosophic soft topology. D.

Molodtsov [12] introduced soft set theory in 1999. In 2014, Ridvan Sahin et al. [1] proposed

some notions on neutrosophic soft sets. Ali et al. [11] introduced the concepts of bipolar neu-

trosophic soft sets in 2017. In 2019, Arulpandy P et al. [18] and Taha Yasin Ozturk et al. [21]

proposed the new approaches on bipolar neutrosophic soft sets and some of their similarity

and entropy measurements. Neutrosophic sets are widely used in decision making scenarios.

In 2019, Arulpandy et al. [17] were proposed the representation of grayscale images and reduc-

tion of indeterminacy in bipolar neutrosophic domain which is very useful for image processing

tasks. Also many articles were published in recent years about the applications of neutrsophy

in engineering and medical fields [14–20].

In our study, the novel set and topology namely, Bipolar neutrosophic graded soft set

(BNGS) and Bipolar neutrosophic soft topological space were proposed. This paper was

organized as follows: Section 1 consists introduction and literature survey about the main

topic. Section 2 consists some of the preliminaries required for the main topic. Section 3 deals

with the proposed set namely, Bipolar neutrosophic graded soft sets and their properties with

numerical examples. Section 4 deals with the proposed topology namely, Bipolar neutrosophic

graded soft topological spaces with their properties and some propositions about the proposed

topology. Finally, Section 5 concludes our study with future research goals.

2. Preliminaries

Definition 2.1. [8] Let X be a universal set and x ∈ X. A Neutrosophic set N is defined by

N = {〈x, TN (x), IN (x), FN (x)〉 : x ∈ X}
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where TN (x), IN (x), FN (x) known as truth, indeterminacy and falsify membership values re-

spectively.

Also, TN (x), IN (x), FN (x) : X → ]−0, 1+[ and it satisfies −0 ≤ TN (x) + IN (x) + FN (x) ≤ 3+.

Example 2.2. Let X = {x1, x2, x3} be the universe set consists attributes of machines. Also,

x1, x2 and x3 denotes reliability, performance and cost of a machine, respectively; TN (x), IN (x)

and FN (x) denotes the degree of good service, indeterminacy, degree of poor service respec-

tively. The neutrosophic set N is defined by

N =

{
〈x1, 0.7, 0.2, 0.3〉 , 〈x2, 0.2, 0.4, 0.8〉 , 〈x3, 0.4, 0.4, 0.6〉

}
where −0 ≤ TN (x) + IN (x) + FN (x) ≤ 3+

Definition 2.3. [7] Single valued neutrosophic set is the neutrosophic set with the member-

ship range of standard interval [0,1]. It is very convenient while solving real life problems.

A single valued neutrosophic set N is defined by

N = {〈x, TN (x), IN (x), FN (x)〉 : x ∈ X}

where TN (x), IN (x), FN (x) : X → [0, 1] such that 0 ≤ TN (x) + IN (x) + FN (x) ≤ 3.

Definition 2.4. [9, 12] Let X be a universe set. A Soft set is a pair (f,E) such that

f : E → P (x)

Where P (x) is a power set of X. Soft set is a parameterized family of subsets of the universe

set X.

Example 2.5. Let X = {x1, x2, x3, x4} be a set of computer systems and let E = {e1, e2, e3}
be set of parameters. where e1=Processor, e2=Graphics and e3=Storage.

suppose that

f(e1) = {x2, x3}
f(e2) = {x2, x4}
f(e3) = {x1, x3}.

Then, f(E) = {f(e1), f(e2), f(e3)}.
The set f(E) is a soft set (parameterized family of subsets of X).

Definition 2.6. [10] A neutrosophic soft set (fN , E) over X is defined by the set

(fN , E) =
{
〈e, fN (e)〉 : e ∈ E, fN (e) ∈ NS(X)

}
where fN : E −→ NS(x) such that fN (e) = ϕ if e /∈ A.

Also, since fN (e) is a neutrosophic set over X is defined by

fN (e) =
{〈
x, TfN (e)(x), IfN (e)(x), FfN (e)(x)

〉
: x ∈ X

}
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where TfN (e)(x), IfN (e)(x), FfN (e)(x) represents truth value of x for the parameter e, indeter-

minate value of x for the parameter e and false value of x for the parameter e.

Example 2.7. Let X = {x1, x2, x3, x4} be a set of computer systems under consideration.

Let E = {e1, e2, e3} be set of parameters where e1, e2, e3 represents Processor speed, Graphics

index and Storage capacity, respectively.

Then we define

(fN , E) =
{
〈e1, fN (e1)〉 , 〈e2, fN (e2)〉 , 〈e3, fN (e3)〉

}
Here

fN (e1) =

{
〈x1, 0.1, 0.4, 0.2〉 , 〈x2, 0.3, 0.5, 0.3〉 , 〈x3, 0.9, 0.2, 0.1〉 , 〈x4, 0.4, 0.5, 0.9〉

}

fN (e2) =

{
〈x1, 0.2, 0.3, 0.4〉 , 〈x2, 0.3, 0.5, 0.6〉 , 〈x3, 0.4, 0.1, 0.7〉 , 〈x4, 0.9, 0.5, 0.6〉

}

fN (e3) =

{
〈x1, 0.1, 0.5, 0.8〉 , 〈x2, 0.7, 0.5, 0.3〉 , 〈x3, 0.5, 0.7, 0.2〉 , 〈x4, 0.3, 0.5, 0.2〉

}
So that (fA, E) is a Neutrosophic soft set.

Definition 2.8. [2, 3] Let X be the universe set and ∀x ∈ X. A bipolar neutrosophic set

(BNS) BN is defined by

BN =

{
〈x, T+(x), I+(x), F+(x), T−(x), I−(x), F−(x)〉 : x ∈ X

}
where

positive membership-degrees : T+, I+, F+ : E → [0, 1]

negative membership-degrees : T−, I−, F− : E → [−1, 0]

such that

0 ≤ T+(x) + I+(x) + F+(x) ≤ 3 and −3 ≤ T−(x) + I−(x) + F−(x) ≤ 0.

Example 2.9. Let X = {x1, x2, x3} be the universe set. A bipolar neutrosophic set (BNS) is

defined by

BN =

{
〈x1, 0.1, 0.3, 0.4,−0.5,−0.3,−0.7〉 ,

〈x2, 0.3, 0.5, 0.8,−0.7,−0.2,−0.7〉 ,

〈x3, 0.4, 0.1, 0.7,−0.7,−0.2,−0.9〉
}

where 0 ≤ T+(x) + I+(x) + F+(x) ≤ 3 ; −3 ≤ T−(x) + I−(x) + F−(x) ≤ 0.

Also T+(x), I+(x), F+(x)→ [0, 1] and T−(x), I−(x), F−(x)→ [−1, 0].
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Definition 2.10. [Mumtaz Ali et al. version] [11] Let X be a universe set and E be set of

parameters that are describing the elements of X. A bipolar neutrosophic soft set B in X is

defined as:

B = {(e, {(x, T+(x), I+(x), F+(x), T−(x), I−(x), F−(x) : x ∈ X} : e ∈ E}

where T+, I+, F+ ranges from [0, 1] and T−, I−, F− ranges from [−1, 0]. The positive degrees

T+(x), I+(x), F+(x), denotes the truth, indeterminate and false values of an element in the

BNS set B and the negative degrees T−(x), I−(x), F−(x) denotes the truth, indeterminate and

false values of an element in the BNS set B.

Definition 2.11. [Arulpandy et al. version] [18] Let X be the universe and E be the parameter

set. We define a set A be a subset of E.

A bipolar neutrosophic soft set B over X is defined by

B=(fA, E) =

{〈
e, fA(e)

〉
: e ∈ E, fA(e) ∈ BNS(X)

}
Here

fA(e) =

{〈
x, u+fA(e)(x), v+fA(e)(x), w+

fA(e)(x), u−fA(e)(x), v−fA(e)(x), w−fA(e)(x)
〉

: x ∈ X
}

.

where u+fA(e)(x), v+fA(e)(x), w+
fA(e)(x) denoted positive truth, indeterminate and false-

membership values of x for the parameter e, and similarly u−fA(e)(x), v−fA(e)(x), w−fA(e)(x) de-

noted positive truth, indeterminate and false-membership values of x for the parameter e.

Example 2.12. Let X = {x1, x2, x3, x4} be universe set and let E = {e1, e2, e3} be the pa-

rameter set.

Now, let A = {e1, e2} ⊆ E and B = {e3} ⊆ E be two subsets of E.

Then we define

B1 = (fA, E) = {〈e, fA(e)〉 : e ∈ E, fA(e) ∈ BNS(X)}
B2 = (gB, E) = {〈e, gB(e)〉 : e ∈ E, gB(e) ∈ BNS(X)}

where,

fA(e1) =

{
〈x1, 0.3, 0.5, 0.7,−0.6,−0.5,−0.3〉 , 〈x2, 0.6, 0.2, 0.7,−0.3,−0.4,−0.6〉 ,

〈x3, 0.5, 0.6, 0.3,−0.3,−0.5,−0.3〉 , 〈x4, 0.4, 0.5, 0.2,−0.7,−0.3,−0.4〉
}

fA(e2) =

{
〈x1, 0.5, 0.4, 0.3,−0.5,−0.6,−0.5〉 , 〈x2, 0.6, 0.3, 0.4,−0.2,−0.4,−0.7〉 ,

〈x3, 0.4, 0.5, 0.3,−0.4,−0.5,−0.8〉 , 〈x4, 0.7, 0.3, 0.2,−0.5,−0.6,−0.2〉
}
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gB(e3) =

{
〈x1, 0.7, 0.4, 0.5,−0.5,−0.6,−0.4〉 , 〈x2, 0.5, 0.6, 0.2,−0.3,−0.5,−0.5〉 ,

〈x3, 0.3, 0.4, 0.2,−0.5,−0.5,−0.3〉 , 〈x4, 0.4, 0.5, 0.5,−0.6,−0.4,−0.3〉
}

Then B1 and B2 are the bipolar neutrosophic soft sets. (parameterized bipolar neutrosophic

sets over X).

3. Bipolar neutrosophic graded soft sets

In this section, we have extended the Bipolar neutrosophic soft set (BNSS), namely Bipolar

neutrosophic graded soft sets (BNGS) by categorizing parameters as below.

Definition 3.1. Let X be the universe set and E be the parameter set which consists at least

two parameters. We define the graded set G = {L,M,H} be subsets of the parameter set E

in such a way that low priority, medium priority and high priority parameters respectively .

A bipolar neutrosophic graded soft set BNGS over X is defined by

BNGS=(fG, E) =

{
〈e, fL(e)〉 , 〈e, fM(e)〉 , 〈e, fH(e)〉 : e ∈ E, f(e) ∈ BNS(X)

}
Here

fL(e) =

{〈
x, u+fL(e)(x), v+fL(e)(x), w+

fL(e)
(x), u−fL(e)(x), v−fL(e)(x), w−fL(e)(x)

〉
: x ∈ X

}
fM(e) =

{〈
x, u+fM(e)(x), v+fM(e)(x), w+

fM(e)(x), u−fM(e)(x), v−fM(e)(x), w−fM(e)(x)
〉

: x ∈ X
}

fH(e) =

{〈
x, u+fH(e)(x), v+fH(e)(x), w+

fH(e)(x), u−fH(e)(x), v−fH(e)(x), w−fH(e)(x)
〉

: x ∈ X
}

.

where u+fL(e)(x), v+fL(e)(x), w+
fL(e)

(x) represents positive truth, indeterminate and false values

of x and similarly u−fL(e)(x), v−fL(e)(x), w−fL(e) represents negative truth, indeterminate and false

values of x for the graded parameter e and so on.

Example 3.2. Let X = {x1, x2, x3} be a set variety computers (alternatives) and let

E = {e1, e2, e3, e4, e5} be set of parameters which represents ’Brand’, ’Power consumption’,

’Processor’, ’Price’ and ’Modern look’, respectively.

People may have different opinions about their priorities. For example, we listed the possible

preferences of peoples for the above case.

Old fashioned peoples/ Elders prefers only quality and durability and they won’t bother about

trendy look.

For them, the choices are

L = {Brand, Modern look}, M = {Power consumption} and H = {Processor, Price}
i.e. L = {e1, e5}, M = {e2} and H = {e3, e4}
Modern peoples/ Students prefers good looking and latest technology with affordable price.

For them, the choices are
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L = {Brand, Power consumption}, M = {Price} and H = {Processor, Modern look}
i.e. L = {e1, e2}, M = {e4} and H = {e3, e5}
Professionals/ Office workers prefers quality best in class and they won’t worry about budget.

For them, the choices are

L = {Power consumption, Price}, M = {Brand} and H = {Processor, Modern look}
i.e. L = {e2, e4}, M = {e1} and H = {e3, e5}

Example 3.3. Let X = {x1, x2, x3} be a set of alternatives and E = {e1, e2, e3, e4} be the

parameter set for X. The graded set G be G = {L,M,H}.
In this problem, the graded parameters are L = {e4} ,M = {e1, e2} ,H = {e3}. Here we define

two BNGSs B1 and B2 as follows.

B1=(fG, E) =

{
〈e, fL(e)〉 , 〈e, fM(e)〉 , 〈e, fH(e)〉 : e ∈ E, f(e) ∈ BNS(X)

}
=

{
〈e4, fL(e4)〉 , 〈e1, fM(e1)〉 , 〈e2, fM(e2)〉 〈e3, fH(e3)〉

}
Here,

fL(e4) ={
〈x1, 0.3, 0.5, 0.4,−0.2,−0.5,−0.7〉 , 〈x2, 0.5, 0.4, 0.1,−0.3,−0.5,−0.2〉 , 〈x3, 0.1, 0.7, 0.3,−0.2,−0.4,−0.1〉

}
fM(e1) ={
〈x1, 0.1, 0.3, 0.2,−0.5,−0.2,−0.4〉 , 〈x2, 0.3, 0.7, 0.3,−0.2,−0.7,−0.5〉 , 〈x3, 0.7, 0.2, 0.4,−0.3,−0.4,−0.5〉

}
fM(e2) ={
〈x1, 0.4, 0.3, 0.1,−0.6,−0.7,−0.3〉 , 〈x2, 0.2, 0.5, 0.6,−0.3,−0.4,−0.7〉 , 〈x3, 0.4, 0.1, 0.7,−0.7,−0.1,−0.4〉

}
fH(e3) ={
〈x1, 0.3, 0.5, 0.7,−0.2,−0.1,−0.8〉 , 〈x2, 0.7, 0.2, 0.3,−0.1,−0.5,−0.7〉 , 〈x3, 0.2, 0.1, 0.8,−0.4,−0.5,−0.6〉

}
Also,

B2=(fG, E) =

{
〈e, fL(e)〉 , 〈e, fM(e)〉 , 〈e, fH(e)〉 : e ∈ E, f(e) ∈ BNS(X)

}
=

{
〈e4, fL(e4)〉 , 〈e1, fM(e1)〉 , 〈e2, fM(e2)〉 〈e3, fH(e3)〉

}
Here,

fL(e4) ={
〈x1, 0.2, 0.4, 0.3,−0.3,−0.6,−0.8〉 , 〈x2, 0.6, 0.5, 0.2,−0.2,−0.4,−0.1〉 , 〈x3, 0.2, 0.6, 0.4,−0.1,−0.3,−0.2〉

}
fM(e1) ={
〈x1, 0.2, 0.4, 0.3,−0.4,−0.1,−0.3〉 , 〈x2, 0.4, 0.8, 0.4,−0.3,−0.6,−0.4〉 , 〈x3, 0.6, 0.3, 0.5,−0.2,−0.3,−0.4〉

}
fM(e2) ={
〈x1, 0.3, 0.2, 0.3,−0.5,−0.6,−0.2〉 , 〈x2, 0.3, 0.6, 0.7,−0.2,−0.3,−0.8〉 , 〈x3, 0.5, 0.2, 0.6,−0.6,−0.2,−0.5〉

}
P Arulpandy and M Trinita Pricilla, Bipolar neutrosophic graded soft sets and their
topological spaces

Neutrosophic Sets and Systems, Vol. 48, 2022                                                                               405



fH(e3) ={
〈x1, 0.2, 0.5, 0.6,−0.3,−0.1,−0.7〉 , 〈x2, 0.6, 0.2, 0.7,−0.3,−0.2,−0.4〉 , 〈x3, 0.4, 0.7, 0.8,−0.3,−0.2,−0.5〉

}
3.1. Properties of BNGS

Let {Bi : i = 1, 2...n} be set of all Bipolar neutrosophic graded soft sets defined as below.

Bi =
{
〈e, fLi(e)〉 , 〈e, fMi(e)〉 , 〈e, fHi(e)〉 : e ∈ E, f(e) ∈ BNS

}
.

For any i = 1, 2, L ∪M ∪H = E and L ∩M ∩H = φ

Definition 3.4. Let B1 and B2 be two BNGSs. Then their union B1 ∪ B2 is defined as

B1 ∪ B2 =

{〈
e,∪if (i)L (e)

〉
,
〈
e,∪if (i)M(e)

〉
,
〈
e,∪if (i)H (e)

〉}
.

Here, ⋃
i

f
(i)
L (e) =

{
〈x,max

[
u+fLi

(e)(x)
]
,min

[
v+fLi

(e)(x)
]
,min

[
w+
fLi

(e)(x)
]
,

min
[
u−fLi

(e)(x)
]
,max

[
v−fLi

(e)(x)
]
,max

[
w−fLi

(e)(x)
]
〉
}

⋃
i

f
(i)
M(e) =

{
〈x,max

[
u+MLi

(e)(x)
]
,min

[
v+MLi

(e)(x)
]
,min

[
w+
MLi

(e)(x)
]
,

min
[
u−MLi

(e)(x)
]
,max

[
v−MLi

(e)(x)
]
,max

[
w−MLi

(e)(x)
]
〉
}

⋃
i

f
(i)
H (e) =

{
〈x,max

[
u+HLi

(e)(x)
]
,min

[
v+HLi

(e)(x)
]
,min

[
w+
HLi

(e)(x)
]
,

min
[
u−HLi

(e)(x)
]
,max

[
v−HLi

(e)(x)
]
,max

[
w−HLi

(e)(x)
]
〉
}

Example 3.5. Consider the BNGS sets B1 and B2 defined in Example 3.3. Then their union

is defined by

B1 ∪ B2 =

{〈
e4,∪if (i)L (e4)

〉
,
〈
e1,∪if (i)M(e1)

〉
,
〈
e2,∪if (i)M(e2)

〉
,
〈
e3,∪if (i)H (e3)

〉}
Here

∪if (i)L (e4) ={
〈x1, 0.3, 0.4, 0.3,−0.3,−0.5,−0.7〉 , 〈x2, 0.6, 0.4, 0.1,−0.3,−0.4,−0.1〉 , 〈x3, 0.2, 0.6, 0.3,−0.2,−0.3,−0.1〉

}
∪if (i)M(e1) ={
〈x1, 0.2, 0.3, 0.2,−0.5,−0.1,−0.3〉 , 〈x2, 0.4, 0.7, 0.3,−0.3,−0.6,−0.4〉 , 〈x3, 0.7, 0.2, 0.4,−0.3,−0.3,−0.4〉

}
∪if (i)M(e2) ={
〈x1, 0.4, 0.2, 0.1,−0.6,−0.6,−0.2〉 , 〈x2, 0.3, 0.5, 0.6,−0.3,−0.3,−0.7〉 , 〈x3, 0.5, 0.1, 0.6,−0.7,−0.1,−0.4〉

}
∪if (i)H (e3) ={
〈x1, 0.3, 0.5, 0.6,−0.3,−0.1,−0.7〉 , 〈x2, 0.7, 0.2, 0.3,−0.3,−0.1,−0.7〉 , 〈x3, 0.4, 0.1, 0.8,−0.4,−0.2,−0.5〉

}
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Definition 3.6. Let B1 and B2 be two BNGSs. Then their intersection B1 ∩ B2 is defined as

B1 ∩ B2 =

{〈
e,∩if (i)L (e)

〉
,
〈
e,∩if (i)M(e)

〉
,
〈
e,∩if (i)H (e)

〉}
.

Here, ⋂
i

f
(i)
L (e) =

{
〈x,min

[
u+fLi

(e)(x)
]
,max

[
v+fLi

(e)(x)
]
,max

[
w+
fLi

(e)(x)
]
,

max
[
u−fLi

(e)(x)
]
,min

[
v−fLi

(e)(x)
]
,min

[
w−fLi

(e)(x)
]
〉
}

⋂
i

f
(i)
M(e) =

{
〈x,min

[
u+MLi

(e)(x)
]
,max

[
v+MLi

(e)(x)
]
,max

[
w+
MLi

(e)(x)
]
,

max
[
u−MLi

(e)(x)
]
,min

[
v−MLi

(e)(x)
]
,min

[
w−MLi

(e)(x)
]
〉
}

⋂
i

f
(i)
H (e) =

{
〈x,min

[
u+HLi

(e)(x)
]
,max

[
v+HLi

(e)(x)
]
,max

[
w+
HLi

(e)(x)
]
,

max
[
u−HLi

(e)(x)
]
,min

[
v−HLi

(e)(x)
]
,min

[
w−HLi

(e)(x)
]
〉
}

Example 3.7. Consider the BNGS sets B1 and B2 defined in Example 3.3. Then their inter-

section is defined by

B1 ∩ B2 =

{〈
e4,∩if (i)L (e4)

〉
,
〈
e1,∩if (i)M(e1)

〉
,
〈
e2,∩if (i)M(e2)

〉
,
〈
e3,∩if (i)H (e3)

〉}
Here

∩if (i)L (e4) ={
〈x1, 0.2, 0.5, 0.4,−0.2,−0.6,−0.8〉 , 〈x2, 0.5, 0.5, 0.2,−0.2,−0.5,−0.2〉 , 〈x3, 0.1, 0.7, 0.4,−0.1,−0.4,−0.2〉

}
∩if (i)M(e1) ={
〈x1, 0.1, 0.4, 0.3,−0.4,−0.2,−0.4〉 , 〈x2, 0.3, 0.8, 0.4,−0.2,−0.7,−0.5〉 , 〈x3, 0.6, 0.3, 0.5,−0.2,−0.4,−0.5〉

}
∩if (i)M(e2) ={
〈x1, 0.3, 0.3, 0.3,−0.5,−0.7,−0.3〉 , 〈x2, 0.2, 0.6, 0.7,−0.2,−0.4,−0.8〉 , 〈x3, 0.4, 0.2, 0.7,−0.6,−0.2,−0.5〉

}
∩if (i)H (e3) ={
〈x1, 0.2, 0.5, 0.7,−0.2,−0.3,−0.8〉 , 〈x2, 0.6, 0.2, 0.7,−0.1,−0.5,−0.7〉 , 〈x3, 0.2, 0.7, 0.8,−0.3,−0.5,−0.6〉

}
Remark 3.8. Suppose B1 and B2 are two BNGSs with unequal number of graded parameters

(i.e. the cardinality of L1 and L2 are not equal and so on.).

Let the universal parameter set E = {e1, e2, e3, e4}. We define two BNGSs as follows.

B1 =
{
〈e, fL1(e)〉 , 〈e, fM1(e)〉 , 〈e, fH1(e)〉 : e ∈ E

}
where L1 = {e1} ,M1 = {e2} , H1 = {e3, e4}.
B2 =

{
〈e, fL2(e)〉 , 〈e, fM2(e)〉 , 〈e, fH2(e)〉 : e ∈ E

}
where L2 = {e1, e2} , H2 = {e3, e4}.
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Then their union B1 ∪ B2 is defined as

B1 ∪ B2 =
{
〈e, fL1∪L2(e)〉 , 〈e, fM1∪φ(e)〉 , 〈e, fH1∪H2(e)〉

}
.

Also, the intersection B1 ∩ B2 is defined as

B1 ∩ B2 =
{
〈e, fL1∩L2(e)〉 , 〈e, fM1∩φ(e)〉 , 〈e, fH1∩H2(e)〉

}
.

Definition 3.9. Let B be a BNGS. Then the complement of B is defined as

Bc =
{
〈e, f cL(e)〉 , 〈e, f cM (e)〉 , 〈e, f cH(e)〉

}
.

Here,

f cL(e) =
{
w+
fL

(e), 1− v+fL(e), u+fL(e), w−fL(e),−1− v−fL(e), u−fL(e)
}

f cM (e) =
{
w+
fM

(e), 1− v+fM (e), u+fM (e), w−fM (e),−1− v−fM (e), u−fM (e)
}

f cH(e) =
{
w+
fH

(e), 1− v+fH (e), u+fH (e), w−fH (e),−1− v−fH (e), u−fH (e)
}

Example 3.10. Consider the BNGS set B1 in Example 3.3. Then the complement is defined

by

Bc =
{
〈e, f cL(e4)〉 , 〈e, f cM(e1)〉 , 〈e, f cM(e2)〉 , 〈e, f cH(e3)〉

}
. Here

f cL(e4) ={
〈x1, 0.4, 0.5, 0.3,−0.7,−0.5,−0.2〉 , 〈x2, 0.1, 0.6, 0.5,−0.2,−0.5,−0.3〉 , 〈x3, 0.3, 0.3, 0.1,−0.1,−0.6,−0.2〉

}
f cM(e1) ={
〈x1, 0.2, 0.7, 0.1,−0.4,−0.8,−0.5〉 , 〈x2, 0.3, 0.3, 0.3,−0.5,−0.3,−0.2〉 , 〈x3, 0.4, 0.8, 0.7,−0.5,−0.6,−0.3〉

}
f cM(e2) ={
〈x1, 0.1, 0.7, 0.4,−0.3,−0.3,−0.6〉 , 〈x2, 0.6, 0.5, 0.2,−0.7,−0.6,−0.3〉 , 〈x3, 0.7, 0.9, 0.4,−0.4,−0.9,−0.7〉

}
f cH(e3) ={
〈x1, 0.7, 0.5, 0.3,−0.8,−0.9,−0.2〉 , 〈x2, 0.3, 0.8, 0.7,−0.7,−0.5,−0.1〉 , 〈x3, 0.8, 0.9, 0.2,−0.6,−0.5,−0.4〉

}
Definition 3.11. Let φB be a null BNGS and is defined as

φB =
{
〈ei, fφ(ei)〉 : e ∈ E

}
Here fφ(ei) =

{
〈xi, 0, 1, 1, 0,−1,−1〉 : x ∈ X

}
Definition 3.12. Let 1B be a complete BNGS and is defined as

1B =
{
〈ei, fC(ei)〉 : e ∈ E

}
Here fC(ei) =

{
〈xi, 1, 0, 0,−1, 0, 0〉 : x ∈ X

}
Proposition 3.13. For any BNGS set,

(i). B ∪ φB = B
(ii). B ∪ 1B = 1B

(iii). B ∩ φB = φB
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(iv). B ∩ 1B = B

Proof. By the definition of union and intersection of BNGSs, results are obvious.

Proposition 3.14. For any three BNGS sets B1,B2 and B3, the following relations are hold.

(i). B1 ∪ B2 = B2 ∪ B1

(ii). B1 ∩ B2 = B2 ∩ B1

(iii). B1 ∪ (B2 ∪ B3) = (B1 ∪ B2) ∪ B3

(iv). B1 ∩ (B2 ∩ B3) = (B1 ∩ B2) ∩ B3

Proof. It is obvious.

Proposition 3.15. For any two BNGS sets B1 and B2, the following conditions are

hold.[De’Morgans law]

(i). (B1 ∪ B2)
c = (B1)

c ∩ (B2)
c

(ii). (B1 ∩ B2)
c = (B1)

c ∪ (B2)
c

Proof. It is obvious.

Proposition 3.16. For any three BNGS sets B1,B2 and B3, the following relations are

hold.[Distributive law]

(i). B1 ∩ (B2 ∪ B3) = (B1 ∩ B2) ∪ (B1 ∩ B3)

(ii). B1 ∪ (B2 ∩ B3) = (B1 ∪ B2) ∩ (B1 ∪ B3)

Proof. It is obvious.

4. Bipolar neutrosophic graded soft topological space

Let X be a universal set which consists alternatives and BNGS(x) be the collection of all

BNGSs in X. Then the collection τB containing all BNGSs is called BNGS-topology if it holds

the following conditions.

(1) φB, 1B ∈ τB

(2)
⋃
i∈n Bi ∈ τB for each Bi ∈ τB

(3) Bi ∩ Bj ∈ τB for any Bi,Bj ∈ τB

Then the pair (X, τB) is called BNGS-topological space. The members of τB are called open

BNGSs and their complements are called closed BNGSs.
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Example 4.1. Let X = x1, x2 be set of alternatives and E = e1, e2, e3 be a parameter set. We

define the graded parameter set as G = L = e1,M = e2,H = e3. Now let us define a topology

on (X,E) as follows.

τB =
{
φB, 1B,B1,B2,B3,B4

}
Here φB, 1B are null and complete BNGS respectively. Also,

B1 =

{〈
e1, f

(1)
L (e1)

〉
,
〈
e2, f

(1)
M (e2)

〉
,
〈
e3, f

(1)
H (e3)

〉}
=

{〈
e1, {〈x1, 1, 0, 1,−1, 0, 0〉 , 〈x2, 0.5, 0.2, 0.4,−0.5,−0.4,−0.3〉}

〉
,〈

e2, {〈x1, 0.4, 0.6, 0.3,−0.4,−0.7,−0.2〉 , 〈x2, 0.7, 0.2, 0.1,−0.3,−0.5,−0.7〉}
〉
,〈

e3, {〈x1, 0.5, 0.3, 0.7,−0.2,−0.4,−0.8〉 , 〈x2, 0.4, 0.3, 0.5,−0.1,−0.4,−0.6〉}
〉}

B2 =

{〈
e1, f

(2)
L (e1)

〉
,
〈
e2, f

(2)
M (e2)

〉
,
〈
e3, f

(2)
H (e3)

〉}
=

{〈
e1, {〈x1, 0.3, 0.1, 0.7,−0.5,−0.6,−0.3〉 , 〈x2, 0, 1, 1,−0.7, 0,−1〉}

〉
,〈

e2, {〈x1, 0.2, 0.5, 0.7,−1, 0,−0.2〉 , 〈x2, 0.9, 0.1, 0.3,−0.1,−0.6,−0.3〉}
〉
,〈

e3, {〈x1, 0.3, 0.5, 0.3,−0.2, 0,−0.4〉 , 〈x2, 0.7, 0.4, 0.1,−0.3,−0.5,−0.1〉}
〉}

B3 =

{〈
e1, f

(3)
L (e1)

〉
,
〈
e2, f

(3)
M (e2)

〉
,
〈
e3, f

(3)
H (e3)

〉}
=

{〈
e1, {〈x1, 1, 0, 0.7,−1, 0, 0〉 , 〈x2, 0.5, 0.2, 0.4,−0.7, 0,−0.3〉}

〉
,〈

e2, {〈x1, 0.4, 0.5, 0.3,−1, 0,−0.2〉 , 〈x2, 0.9, 0.1, 0.1,−0.3,−0.5,−0.3〉}
〉
,〈

e3, {〈x1, 0.5, 0.3, 0.3,−0.2, 0,−0.4〉 , 〈x2, 0.7, 0.3, 0.1,−0.3,−0.4,−0.1〉}
〉}

B4 =

{〈
e1, f

(4)
L (e1)

〉
,
〈
e2, f

(4)
M (e2)

〉
,
〈
e3, f

(4)
H (e3)

〉}
=

{〈
e1, {〈x1, 0.3, 0.1, 1,−0.5,−0.6,−0.3〉 , 〈x2, 0, 1, 1,−0.5,−0.4,−1〉}

〉
,〈

e2, {〈x1, 0.2, 0.6, 0.7,−0.4,−0.7,−0.2〉 , 〈x2, 0.7, 0.2, 0.3,−0.1,−0.6,−0.7〉}
〉
,〈

e3, {〈x1, 0.3, 0.5, 0.7,−0.2,−0.4,−0.8〉 , 〈x2, 0.4, 0.4, 0.5,−0.1,−0.5,−0.6〉}
〉}

Here, B1 ∪ B2 = B3,B2 ∪ B3 = B3,B1 ∪ B3 = B3,B3 ∪ B4 = B3 and so on. Also,

B1 ∩ B2 = B4,B2 ∩ B3 = B4,B1 ∩ B3 = B4,B3 ∩ B4 = B4 and so on.

The τB satisfies all three conditions of topology. So τB is a BNGS-topology.

Proposition 4.2. Let (X, τB) be an BNGS. Then the following conditions hold.

• φB and 1B are open BNGSs.
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• Union of any number of open BNGSs is open.

• Intersection of finite number of closed BNGSs is closed.

Definition 4.3. Let (X, τB) and (X, τ′B) be two BNGS in X. Two BNGS’s are said to be

Comparable if τB ⊆ τ′B or τ′B ⊆ τB.

If τB ⊆ τ′B , then τB is courser or weaker than τ′B . In other words, τ′B is stronger or finer than

τB and vice versa.

4.1. Example

Proposition 4.4. Let (X, τB1) and (X, τB2) be two BNGS-topological spaces over (X,E).

Suppose τB1 ∩ τB2 =
{
B : B ∈ P (X)

}
. Then τB1 ∩ τB2 is also a BNGS-topology.

Proof. B1 ∩B2 must satisfy topology conditions in order to be a BNGS-topology.

i). Clearly φB, 1B ∈ τB1 ∩ τB2 .

ii). Let B1, B2 ∈ τB1 ∩ τB2

⇒ B1, B2 ∈ B1andB1, B2 ∈ B2

⇒ B1 ∩B2 ∈ B1andB1 ∩B2 ∈ B2

⇒ B1 ∩B2 ∈ τB1 ∩ τB2

iii). Let {Bi} ∈ τB1 ∩ τB2

⇒ {Bi} ∈ τB1and {Bi} ∈ τB2

⇒ ∪iBi ∈ τB1and ∪i Bi ∈ τB2

⇒ ∪iBi ∈ τB1 ∩ τB2 .

Hence τB1 ∩ τB2 in a BNGS-topology.

Remark 4.5. The union of any two BNGS-topologies may or may not be a topology.

Since it may or may not satisfy the topology conditions.

i). φB, 1B ∈ τB1 ∪ τB2 always holds.

ii). For B1, B2 ∈ τB1 ∪ τB2 , both B1 and B2 may or may not be in both τB1 and τB2 .

Definition 4.6. Let (X, τB) be a BNGS-topological space over (X,E). Let B ∈ BNGS(X,E).

Then the interior of B is defined by

Bo =
⋃
{N : N is a bipolar neutrosophic graded soft open set and N ∈ B}.

i.e. It is the union of all open BNGS open subsets of B.

Proposition 4.7. Let (X, τB) be a BNGS-topological space over (X,E) and B1, B2 ∈
BNGS(X,E). Then

(i). Bo
1 ∈ B1 and Bo

1 is the largest open set.
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(ii). B1 ∈ B2 ⇒ Bo
1 ∈ Bo

2.

(iii). Bo
1 is an open BNGS. i.e. Bo

1 ∈ τB.

(iv). B1 is BNGS soft open set if and only if Bo
1 = B1.

(v). (Bo
1)o = Bo

1.

(vi). (φB1)o = φB and (1B)o = 1B.

(vii). (B1 ∩B2)
o = Bo

1 ∩Bo
2.

(viii). Bo
1 ∪Bo

2 ⊂ (B1 ∪B2)
o.

Proof. (i) Since Bo
1 is the union of all open sets in B1, B

o
1 is the largest open set which

contained in B1.

(ii) Let B1 ∈ B2 ⇒ Bo
1 ⊂ B1 ⊂ B2 ⇒ Bo

1 ⊂ B2and also Bo
2 ⊂ B2.

But Bo
2 is the largest open set in B2. Hence Bo

1 ⊂ Bo
2.

(iii) By definition of BNGS-toppology τB, it is obvious.

(iv) Bo
1 ⊂ B1 and let B1 be bipolar neutrosophic graded soft open set.

B1 ⊂ B1 ⇒ B1 ⊂ ∩{B2 ∈ τB : B2 ⊂ B1} = Bo
1

⇒ B1 ⊂ Bo
1 ⇒ B1 = Bo

1. Conversely, let B1 = Bo
1. Then B1 = Bo

1 ∈ τB ⇒ B1 is open

bipolar neutrosophic graded soft open set.

(v) If B1 is an open BNGS, then Bo
1 = B1. Clearly Bo

1 is an open BNGS. Hence (Bo
1)o = Bo

1.

(vi) Since φB, 1B ∈ τB. So they are open BNGS. Hence it is obvious from (iv).

(vii) B1 ∩B2 ⊂ B1 and B1 ∩B2 ⊂ B2 ⇒ (B1 ∩B2)
o ⊂ Bo

1 and (B1 ∩B2)
o ⊂ Bo

2

⇒ (B1 ∩B2)
o ⊂ Bo

1 ∩Bo
2.

Further, Bo
1 ⊂ B1 and Bo

2 ⊂ B2. Then Bo
1 ∩ Bo

2 ⊂ B1 ∩ B2. But (B1 ∩ B2)
o ⊂ B1 ∩ B2

and it is the largest open set. So Bo
1 ∩Bo

2 ⊂ (B1 ∩B2)
o.

Hence (B1 ∩B2)
o = Bo

1 ∩Bo
2.

(viii) B1 ⊂ B1 ∪B2 and B2 ⊂ B1 ∪B2. ⇒ Bo
1 ⊂ (B1 ∪B2)

oand Bo
1 ⊂ (B1 ∪B2)

o

⇒ Bo
1 ∪Bo

2 ⊂ (B1 ∪B2)
o.

Definition 4.8. Let (X, τB) be a BNGS-topological space over (X,E) and B1 ∈ BNGS(X,E).

Then the closure of B is defined by

B =
⋂{

N : N is bipolar neutrosophic graded soft closed set and N ⊃ B
}

.

i.e. It is the intersection of all bipolar neutrosophic graded soft closed subsets of B.

Proposition 4.9. Let (X, τB) be a BNGS-topological space over (X,E) and B1, B2 ∈
BNGS(X,E). Then

(i). B1 ⊂ B1 and B1 is the smallest closed set.
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(ii). B1 ⊂ B2 ⇒ B1 ⊂ B2.

(iii). B1 is closed BNGS. i.e. B1 ∈ τcB.

(iv). B1 is BNGS closed set if and only if B1 = B1.

(v). B1 = B1.

(vi). φB = φB and 1B = 1B.

(vii). B1 ∪B2 = B1 ∪B2.

(viii). B1 ∪B2 ⊂ B1 ∩B2.

Proof. (i) Since B1 is the intersection of all closed sets in B1, B1 is the smallest closed set

which contains B1.

(ii) Let B1 ⊂ B2. Also B1 ⊂ B1 and B2 ⊂ B2 ⇒ B1 ⊂ B2 ⊂ B2.

But B1 is the smallest set containing B1. So B1 ⊂ B1 ⊂ B2. Hence B1 ⊂ B2.

(iii) By definition of BNGS-toppology τB and B1, it is obvious.

(iv) B1 ⊂ B1 and let B1 be bipolar neutrosophic graded soft closed set. Then B1 ⊂ B1.

B1 =
⋂
{B2 ∈ τcB : B2 ⊃ B1} ⊂ {B1 ∈ τcB : B1 ⊃ B1} = B1

⇒ B1 ⊂ B1

⇒ B1 = B1. Conversely, let B1 = B1. Then (B1)
c ∈ τB ⇒ Bc

1 ∈ τB

⇒ Bc
1 is open ⇒ B1 is closed.

(v) If N is closed BNGS, then N = N . But N is closed by default. Replacing N by B1, we

get B1 = B1.

(vi) Since φB, 1B ∈ τB are both open and closed. So the result is obvious by (iv).

(vii) B1 ⊂ B1 ∪B2 and B2 ⊂ B1 ∪B2 ⇒ B1 ⊂ B1 ∪B2 and B2 ⊂ B1 ∪B2

⇒ B1 ∪B2 ⊂ B1 ∪B2.

Also, B1 ⊂ B1 and B2 ⊂ B2. Then B1 ∪B2 ⊂ B1 ∪B2.

But B1 ∪B2 ⊂ B1 ∪B2 ⊂ B1 ∪B2.

Hence B1 ∪B2 = B1 ∪B2.

(viii) B1 ∩B2 ⊂ B1 and B1 ∩B2 ⊂ B2. ⇒ B1 ∩B2 ⊂ B1and B1 ∩B2 ⊂ B2

⇒ B1 ∩B2 ⊂ B1 ∩B2.

Definition 4.10. Let (X, τB) be a BNGS-topological space over (X,E) and B ∈ BNGS(X,E).

Then the boundary of B is denoted by Bd(B) and is defined by Bd(B) = B ∩Bc.

Proposition 4.11. Let (X, τB) be a BNGS-topological space over (X,E) and B ∈
BNGS(X,E). Then
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(i). Bo ∩Bd(B) = φB.

(ii). B = Bo ∪Bd(B).

(iii). Bd(B) = φB if and only if B is both closed and open.

(iv). Bd(B) = B ∩ (Bo)c.

Proof. (i) Bo ∩Bd(B) = Bo ∩ (B ∩Bc) = Bo ∩ (B ∩ (Bo)c)

= Bo ∩ (Bo)c ∩B = φB ∩B = φB.

(ii) Bo ∪Bd(B) = Bo ∪ (B ∩Bc) = Bo ∪ (B ∩ (Bo)c)

= (Bo ∪B) ∩ (Bo ∪ (Bo)c) = (Bo ∪B) ∩ 1B

= (Bo ∪B) = B. [Since Bo ⊂ B ⊂ B]

(iii) Bd(B) = B ∩Bc = φB

⇒ B ∩ (Bo)c = φB ⇒ B ∩ ((Bo)c)c 6= φB

⇒ B ∩Bo 6= φB ⇒ B ⊂ Bo

⇒ B ⊂ B ⊂ Bo ⇒ B ⊂ Bo.

Also we know that Bo ⊂ B. Hence B = Bo ⇒ B is open.

Further B ⊂ Bo ⊂ B ⇒ B ⊂ B, but we have B ⊂ B
⇒ B = B ⇒ B is closed.

Conversely, if B is both open and closed, then B = Bo and B = B.

Now Bd(B) = B ∩Bc = B ∩ (Bo)c = B ∩Bc = φB.

(iv) Bd(B) = B ∩Bc = B ∩ (Bo)c.

5. Conclusion

Bipolar neutrosophic graded soft sets and some of their properties with real life examples

were proposed in this paper. BNGS is the extension of bipolar neutrosophic soft set by

categorizing parameter set. Further, we proposed bipolar neutrosophic graded soft topological

spaces with their properties and some propositions about the BNGS-topology. In future, we

will try to explore the real life applications and construct the algorithm based the BNGS set

and their topological structure.
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—————————————————————————————————————————-

1. Introduction

In 1965, Zadeh [30] initiated the concept of fuzzy sets which is a generalisation of the clas-

sical notion of a set. The notion of intuitionistic fuzzy set was proposed by Atanassov [4]

whose elements have both membership and non-membership degrees. Biswas [5] introduced

Rosenfeld’s fuzzy subgroups with interval valued membership functions and studied some in-

teresting properties. The idea of β−algebras has been presented by Neggers and Kim [23]

which is a generlization of BCK/BCI−algebras where two operations have been used. Sama-

randache [27] proposed a generlization of intuitionistic fuzzy sets, known as neutrosophic set in

which the distinction between the neutrosophic set and intuitionistic fuzzy set are emphasised.

The notion of cubic sets introduced by Jun et al. [10, 11] and investigated the characteristics

of cubic subgroups. Maji [16] applied the idea of soft set into neutrosophic sets and studied

some compelling results.
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The thought of fuzzy β−subalgebras originated by Ansari et al. [3] and relevant results

have been examined. The attributes on intuitionistic fuzzy β−subalgebras were presented

by Sujatha et al. [28]. Iqbal et al. [9] developed the idea of neutrosophic cubic subalge-

bras and ideals of B-algebras. The concept of neutrosophic cubic sets initiated by Jun et

al. [12], [13], [14] and they have extended notion of neutrosophic subalgebras set to several

types of BCK/BCI−algebras. Moreover, the applications of cubic interval valued intuition-

istic fuzzy sets in BCK/BCI−algebras were provided. Hemavathi et al. [8] expressed the

characteristics on interval valued intuitionistic fuzzy β−subalgebras. Made an approach on

normed linear space using neutrosophic sets by Muralikrishna et al. [20] and examined the

fascinating results.

The notion of BMBJ- neutrosophic aubalgebra in BCK/BCI−algebras presented by Bord-

bar et al. [6] and provided some engrossing results. Ajay et al. [1] discussed about neutrosophic

cubic fuzzy dombi hamy mean operators with application to multi-criteria decision making.

Akbar Razaei et al. [2] initiated the thought of neutrosophic triplet of BI−algebras and rel-

evant results have been studied. Neutrosophic logic theory and applications were developed

by Eman AboEIHamd et al. [7]. Some aspects on cubic fuzzy β−subalgebra of β− algebra

were discussed by Muralikrishna et al. [21]. Mohsin Khalid et al [17], [18], [19] interpreted the

concept of translation and multiplication of neutrosophic cubic set and also introduced the

notion of T −MBJneutrosophic set under M−subalgebra. Moreover, the authors described

the properties of T−neutrosophic cubic set on BF−algebra. Some special characteristics of

neutrosophic vague binary BCK/BCI−algebra were discussed by Remya et al. [26]. Nanthini

et al. [22] initiated the idea of interval valued neutrosophic topological spaces and relevant

results have been examined.Diagnosing psychiatric disorder using neutrosophic soft set and

its application presented deliberately by Veerappan Chinnadurai et al. [29]. Rajab Ali Bor-

sooei et al. [25] intended to develop the polarity of generalized neutrosophic subalgebras in

BCK/BCI−algebras. Johnson Awolola [15] introduced the concept of α−level sets of neu-

trosophic set and investigated few of its associated properties. Prakasam Muralikrishna et

al. [24] applied the concept of β−ideal into MBJ−neutrosophic set and investigated some

engrossing results. With all these inspiration, this paper provides the study of neutrosophic

cubic β−subalgebra. This work is organized into the following sections: Section 1 provides the

introduction and section 2 presents the existing definitions required for this study. Section 3

deals the concept of neutrosophic cubic β−subalgebra, section 4 describes the characteristics

on homomorphism of neutrosophic cubic β−subalgebra and section 5 gives the conclusion and

future scope of the work.
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2. Preliminaries

This section provides the necessary definitions and examples required for the work.

Definition 2.1. A fuzzy set in a universal set X is defined as ζ : X → [0, 1]. For each element

x ∈ X, ζ(x) is called the membership value of x.

Definition 2.2. If ζ1 and ζ2 are fuzzy sets in X, then the union of ζ1 and ζ2, denoted by

ζ1 ∪ ζ2 is defined by, (ζ1 ∪ ζ2)(x) = max{ζ1(x), ζ2(x)} ∀ x ∈ X.

Definition 2.3. If ζ1 and ζ2 are fuzzy sets in X, then the intersection of ζ1 and ζ2, denoted

by ζ1 ∩ ζ2 is defined by, (ζ1 ∩ ζ2)(x) = min{ζ1(x), ζ2(x)} ∀ x ∈ X.

Definition 2.4. Let ζ be a fuzzy set of X. for any δ ∈ [0, 1], the set ζδ = {x ∈ X/ζ(x) ≥ δ}
is called an upper level subset of ζ. The level subset ζδ of a fuzzy set ζ is a crisp subset of the

set X.

Definition 2.5. Let ζ be a fuzzy set of X. For δ ∈ [0, 1], the set ζδ = {x ∈ X : ζ(x) ≤ δ} is

called a lower level subsets of ζ.

Definition 2.6. The supremum property of the fuzzy set ζ for the subset A in X is defined

as ζ(a0) = Sup
a∈A

ζ(a) if there exist a, a0 ∈ A.

Definition 2.7. Let D[0, 1] denote the family of all closed sub intervals of [0, 1]. Con-

sider two elements D1,D2 ∈ D[0, 1]. If D1 = [a1, b1] and D2 = [a2, b2], then

rmax(D1, D2) = [max(a1, a2),max(b1, b2)] which is denoted by D1
∨rD2 and rmin(D1, D2) =

[min(a1, a2),min(b1, b2)] which is denoted by D1
∧rD2.

Thus if Di = [ai, bi] ∈ D[0, 1] for i=1,2,3.... rsupi(Di) = [supi(ai), supi(bi)], i.e.
∨r
i Di =

[
∨
i ai,

∨
i bi]. Similarly rinfi(Di) = [infi(ai), infi(bi)] i.e

∧r
i Di = [

∧
i ai,

∧
i bi]. Now D1 ≥ D2

iff a1 ≥ a2 and b1 ≥ b2. Similarly the relations D1 ≤ D2 and D1 = D2 are defined.

Definition 2.8. An interval valued fuzzy set A defined on X is given by

A={(x, [ζLA(x), ζUA (x)])} ∀ x ∈ X (briefly denoted by A = [ζLA, ζ
U
A ]), where ζLA and ζUA are

two fuzzy sets in X such that ζLA(x) ≤ σUA(x) ∀ x ∈ X. Let ζA(x) = [ζLA(x), ζUA (x)] ∀ x ∈ X
and let D[0, 1] denotes the family of all closed sub intervals of [0, 1]. If ζLA(x) = ζUA (x) = c,

say, where 0 ≤ c ≤ 1, then ζA(x) = [c, c] also for the sake of convenience, to belong to D[0, 1].

Thus ζA(x) ∈ D[0, 1] ∀ x ∈ X, and therefore the interval valued fuzzy set A is given by

A = {(x, ζA(x))} ∀ x ∈ X, where ζA : X → D[0, 1].

Now let us define what is known as refined mimimum(rmin) of two elements in D[0, 1].

Let us define the symbols ” ≥ ” , ” ≤ ”, and ” = ” in case of two elements in D[0, 1].

Consider two elements D1 := [a1, b1] and D2 := [a2, b2] ∈ D[0, 1]. Then rmin(D1, D2) =
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[min{a1, a2},min{b1, b2}]; D1 ≥ D2 if and only if a1 ≥ a2, b1 ≥ b2; Similarly , D1 ≤ D2 and

D1 = D2.

Definition 2.9. An Intuitionistic fuzzy set (IFS) in a nonempty set X is defined by

A= {〈x, ζA(x), ηA(x)〉/x ∈ X} where ζA : X → [0, 1] is a membership function of A and

ηA : X → [0, 1] is a non membership function of A satisfying 0 ≤ ζA(x) + ηA(x) ≤ 1 ∀ x ∈ X.

Definition 2.10. An intuitionistic fuzzy set A is said to have sup-inf property if for any subset

T of X there exists x0 ∈ T such that ζA(x0) = Sup
x∈T

ζA(x) and ηA(x0) = inf
x∈T

ηA(x).

Definition 2.11. A β− algebra is a non-empty set X with a constant 0 and two binary

operations + and − satisfying the following axioms:

(i) x− 0 = x

(ii) (0− x) + x = 0

(iii) (x− y)− z = x− (z + y) ∀ x, y, z ∈ X.

Example 2.12. The following Cayley table shows (X = {0, 1, 2, 3},+,−, 0) is a β−algebra.

Table 1. β-algebra

+ 0 1 2 3

0 0 1 2 3

1 1 3 0 2

2 2 0 3 1

3 3 2 1 0

− 0 1 2 3

0 0 2 1 3

1 1 0 3 2

2 2 3 0 1

3 3 1 2 0

Definition 2.13. A non empty subset A of a β−algebra (X,+,−, 0) is called a β-subalgebra

of X, if

(i) x+ y ∈ A and

(ii) x− y ∈ A ∀ x, y ∈ A.

Definition 2.14. Let X be a non empty set. By a cubic set in X we mean a structure

C = {〈x, ζC(x), ηC(x)〉 : x ∈ X}

in which ζC is an interval valued fuzzy set in X and ηC is a fuzzy set in X.

Definition 2.15. Let A = {〈x, ζA(x), ηA(x)〉 : x ∈ X} and B = {〈x, ζB(x), ηB(x)〉 : x ∈ X}
be two cubic sets on X, then the intersection of A and B denoted by A ∩B is defined by

A ∩B = {〈x, ζA∩B(x), ηA∩B(x)〉} = {〈x, rmin{ζA(x), ζB(x)},max(ηA(x), ηB(x)), 〉 : x ∈ X}.

Definition 2.16. A cubic set C = {〈x, ζC(x), ηC(x)〉 : x ∈ X} is said to have rsup-inf

property if for any subset T of X there exists x0 ∈ T such that ζC(x0) = rsup
x∈T

ζC(x) and

ηC(x0) = inf
x∈T

ηC(x).

P Muralikrishna ,R Vinodkumar , G Palani , Neutrosophic Cubic β−subalgebra

Neutrosophic Sets and Systems, Vol. 48, 2022                                                                                420



Definition 2.17. Let C = {〈x, ζC(x), ηC(x)〉 : x ∈ X} be a cubic set in X. Then the set C

is a cubic fuzzy β− subalgebra if it satisfies the following conditions.

(i) ζC(x+ y) ≥ rmin{ζC(x), ζC(y)} & ζC(x− y) ≥ rmin{ζC(x), ζC(y)}
(ii) ηC(x+ y) ≤ max{ηC(x), ηC(y)} & ηC(x− y) ≤ max{ηC(x), ηC(y)} ∀ x, y ∈ X.

Definition 2.18. A neutrosophic set in X is a structre of the form Ω = {〈x :

ωT (x), ωI(x), ωF (x)〉/x ∈ X}. Where ωT : X → [0, 1] is a truth membership function,

ωI : X → [0, 1] is a indeterminate membership function and ωF : X → [0, 1] is a false

membership function.

Definition 2.19. An interval neutrosophic set in X is a structre of the form ∆ = {〈x :

δT (x), δI(x), δF (x)〉/x ∈ X} where δT , δI , δF are interval valued fuzzy sets in X, which are

called an interval truth membership function, an interval indeterminate membership function

and an interval false membership function respectively.

Definition 2.20. Let X be a non-empty set. A neutrosophic cubic set is a pair C = (∆, ω)

where ∆ = {x : δT (x), δI(x), δF (x)/x ∈ X} is interval valued neutrosophic set Ω = {〈x :

ωT (x),ΩI(x), ωF (x)/x ∈ X〉} is neutrosophic set.For our convenience, the neutrosophic cubic

set will be denoted as C = (δT,I,F , ωT,I,F ) = {〈x, δT,I,F (x), ωT,I,F (x)〉}.

Definition 2.21. Let f be a mapping from X to Y . If C = (δT,I,F , ωT,I,F ) is neutro-

sophic cubic set of X. Then the image of C under f is denoted by f(C) and is defined

as f(C) = {〈x, frsup(δT,I,F ), finf (ωT,I,F )〉/x ∈ X}, where

frsup(δT,I,F )(y) =


rsup

x∈f−1(y)

(δT,I,F )(x) : if f−1(y) 6= φ

[0, 0] : Otherwise

finf (ωT,I,F )(y) =


inf

x∈f−1(y)

(ωT,I,F )(x) : if f−1(y) 6= φ

1 : Otherwise

Definition 2.22. Let f be a mapping from X to Y . If C = (δT,I,F , ωT,I,F )

is neutrosophic cubic set of X. Then the inverse image of C is defined as

f−1(C) = {〈x, frsup(δT,I,F ), finf (ωT,I,F )〉/x ∈ X}, with f−1(δT,I,F (x) = (δT,I,F (f(x)) and

f−1(ωT,I,F (x) = (ωT,I,F (f(x)).

Definition 2.23. For any Ci = (∆i,Ωi),where ∆i = {〈x, δiT (x), δiI(x), δiF (x)〉 : x ∈ X}
and Ωi = {〈x, ωiT (x), ωiI(x), ωiF (x)〉 : x ∈ X} for i ∈ k. P− union, P−intersection &

R−union,R−intersection is defined respectively by

P−union:
⋃
i∈k

Ci =

(⋃
i∈k

∆i,
∨
i∈k

Ωi

)
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P−intersection:
⋂
i∈k

Ci =

(⋂
i∈k

∆i,
∧
i∈k

Ωi

)
R−union:

⋃
i∈k

Ci =

(⋃
i∈k

∆i,
∧
i∈k

Ωi

)
R−intersection:

⋂
i∈k

Ci =

(⋂
i∈k

∆i,
∨
i∈k

Ωi

)
where⋃
i∈k

∆i =

{
〈x;

(⋃
i∈k

δiT

)
(x),

(⋃
i∈k

δiI

)
(x),

(⋃
i∈k

δiF

)
(x)/x ∈ X

}
∨
i∈k

Ωi =

{
〈x;

(∨
i∈k

ωiT

)
(x),

(∨
i∈k

ωiI

)
(x),

(∨
i∈k

ωiF

)
(x)/x ∈ X

}
⋂
i∈k

∆i =

{
〈x;

(⋂
i∈k

δiT

)
(x),

(⋂
i∈k

δiI

)
(x),

(⋂
i∈k

δiF

)
(x)/x ∈ X

}
∧
i∈k

Ωi =

{
〈x;

(∧
i∈k

ωiT

)
(x),

(∧
i∈k

ωiI

)
(x),

(∧
i∈k

ωiF

)
(x)/x ∈ X

}
.

Definition 2.24. Let C be a neutrosophic cubic set of X where C = (δT,I,F , ωT,I,F ). For

[sT1 , sT2 ], [sI1 , sI2 ], [sF1 , sF2 ] ∈ D[0, 1] and tT1 , tT1 , tF1 ∈ [0, 1],

the set U(δT,I,F /[sT1 , sT2 ], [sI1 , sI2 ], [sF1 , sF2 ] = {x ∈ X/δT (x) ≥ [sT1 , sT2 ], δT (x) ≥
[sI1 , sI2 ], δT (x) ≥ [sF1 , sF2 ]} is called upper ([sT1 , sT2 ], [sI1 , sI2 ], [sF1 , sF2 ])-level of C and

L(ωT,I,F /(tT1 , tT1 , tF1)) = {x ∈ X/ωT (x) ≤ tT1 , ωI(x) ≤ tI1 , ωF (x) ≤ tF1 is called lower

(tT1 , tT1 , tF1)-level set of A.

For our convenience, we are introducing the new notion as

U(δT,I,F /[ST,I,F1 , ST,I,F2 ] = {x ∈ X/δT,I,F (x) ≥ [ST,I,F1 , ST,I,F2 ]} is called upper

[sT,I,F1 , sT,I,F2 ]-level set of C and L(ωT,I,F /[tT,I,F1 , tT,I,F2 ] = {x ∈ X/ωT,I,F (x) ≤
[tT,I,F1 , tT,I,F2 ]} is called lower tT,I,F1-level set of C.

3. Neutrosophic Cubic β− Subalgebra

This section introduces the notion of neutrosophic cubic β− subalgebra and discusses some

engrossing results.

Definition 3.1. C = {x,∆(x),Ω(x)/x ∈ X}) be a neutrosophic cubic set in X. Then the

set C is a neutrosophic cubic β−subalgebra if it satisfies the following conditions:

NS1 :

δT (x+ y) ≥ rmin{δT (x), δT (y)} & δT (x− y) ≥ rmin{δT (x), δT (y)}
δI(x+ y) ≥ rmin{δI(x), δI(y)} & δI(x− y) ≥ rmin{δI(x), δI(y)}
δF (x+ y) ≥ rmin{δF (x), δF (y)} & δF (x− y) ≥ rmin{δF (x), δF (y)}
NS2:

ωT (x+ y) ≤ max{ωT (x), ωT (y)} & ωT (x− y) ≤ max{ωT (x), ωT (y)}
ωI(x+ y) ≤ max{ωI(x), ωI(y)} & ωI(x− y) ≤ max{wI(x), ωI(y)}
ωF (x+ y) ≤ max{ωF (x), ωF (y)} & ωF (x− y) ≤ max{ωF (x), ωF (y)}
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For our convenience the neutrosophic cubic set will be denoted as

C = (δT,I,F , ωT,I,F ) = {〈x, δT,I,F (x), ωT,I,F (x)〉} with conditions

(i)δT,I,F (x+ y) ≥ rmin{δT,I,F (x), δT,I,F (y)} & δT,I,F (x− y) ≥ rmin{δT,I,F (x), δT,I,F (y)}
(ii)ωT,I,F (x+ y) ≤ max{ωT,I,F (x), ωT,I,F (y)} & ωT,I,F (x− y) ≤ max{ωT,I,F (x), ωT,I,F (y)}.

Example 3.2. For the β−algebra X in the example 2.6, the Cubic set C = {x,∆(x),Ω(x)/x ∈
X}) on X as follows.

0 1 2 3

δT [0.4,0.6] [0.3,0.7] [0.4,0.6] [0.3,0.7]

δI [0.3,0.5] [0.2,0.4] [0.3,0.5] [0.2,0.4]

δF [0.2,0.3] [0.1,0.2] [0.2,0.3] [0.1,0.2]

0 1 2 3

ωT 0.2 0.4 0.2 0.4

ωI 0.3 0.5 0.3 0.5

ωF 0.4 0.6 0.4 0.6

is a neutrosophic cubic fuzzy β−sub algebra of X.

Proposition 3.3. Let C = {〈x, δT,I,F (x), ωT,I,F (x)〉 : x ∈ X} is a neutrosophic cubic

β−subalgebra of X. Then δT,I,F (0) ≥ δT,I,F (x) and ωT,I,F (0) ≤ ωT,I,F (x) ∀ x ∈ X. Thus

δT,I,F (0) & ωT,I,F (0) are upper bounds and lower bounds of δT,I,F (x) & ωT,I,F (x) respectively.

proof: (1) For every x ∈ X,

δT,I,F (0) = δT,I,F (x− x)

≥ rmin{δT,I,F (x), δT,I,F (x)}

= δT,I,F (x)

∴ δT,I,F (0) ≥ δT,I,F (x) and

ωT,I,F (0) = ωT,I,F (x− x)

≤ max{ωT,I,F (x), ωT,I,F (x)}

= ωT,I,F (x)

∴ ωT,I,F (0) ≤ ωT,I,F (x).

Theorem 3.4. Let C = {〈x, δT,I,F (x), ωT,I,F (x)〉 : x ∈ X} be a neutrosophic cubic

β−subalgebra of X. If there exists a sequence {xn} of X such that limn→∞ δT,I,F (xn) = [1, 1]

and limn→∞ ωT,I,F (xn) = 0. Then δT,I,F (xn) = [1, 1] and ωT,I,F (xn) = 0.

Proof: By using Proposition 3.3, δT,I,F (0) ≥ δT,I,F (x) ∀x ∈ X, then we have δT,I,F (0) ≥
δT,I,F (xn) ∀n ∈ Z+. Consider,[1, 1] ≥ δT,I,F (0) ≥ limn→∞ δT,I,F (xn) = [1, 1] Hence,

δT,I,F (0) = [1, 1]. Moreover using proposition 3.3, ωT,I,F (0) ≤ ωT,I,F (x) ∀x ∈ X, then we

have ωT,I,F (0) ≤ ωT,I,F (xn) ∀n ∈ Z+ Consider,0 ≤ ωT,I,F (0) ≤ limn→∞ ωT,I,F (xn) = 0.

Hence, ωT,I,F (0) = 0.
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Theorem 3.5. The R−intersection of any set of neutrosophic cubic β−subalgebras of X is

also a neutrosophic cubic β−subalgebra of X.

Proof: Let Ci = {〈x, δiT,I,F , ωiT,I,F 〉/x ∈ X} where i ∈ k be a sets of neutrosophic cubic

β−subalgebras of X and x, y ∈ X. Then

(∩δiT,I,F )(x+ y) = rinf δiT,I,F (x+ y)

≥ rinf {rmin{δiT,I,F (x), δiT,I,F (y)}}

= rmin{rinf δiT,I,F (x), rinf δiT,I,F (y)}

= rmin{∩δiT,I,F (x),∩δiT,I,F (y)}

∴ ∩δiT,I,F (x+ y) ≥ rmin{∩δiT,I,F (x),∩δiT,I,F (y)}

Similarly,

δiT,I,F (x− y) ≥ rmin{∩δiT,I,F (x),∩δiT,I,F (y)} and

(∨ωiT,I,F )(x+ y) = sup ωiT,I,F (x+ y)

≤ sup {max{ωiT,I,F (x), ωiT,I,F (y)}}

= max{sup ωiT,I,F (x), sup ωiT,I,F (y)}

= max{∨ωiT,I,F (x),∨ωiT,I,F (y)}

∴ ∨ωiT,I,F (x+ y) ≤ max{∨ωiT,I,F (x),∨ωiT,I,F (y)}

In the same way, ωiT,I,F (x− y) ≤ max{∨δiT,I,F (x),∨ωiT,I,F (y)}. Hence R−intersection of Ci

is a neutrosophic cubic β−subalgebra of X.

Theorem 3.6. The Ci = {〈x, δiT,I,F , ωiT,I,F 〉}/x ∈ X where i ∈ k be a

sets of neutrosophic cubic β−subalgebras of X. If inf{max{ωiT,I,F (x), ωiT,I,F (y) =

max{infωiT,I,F (x), infωiT,I,F (y)}∀x ∈ X. Then the P−intersection of Ci is also a neutro-

sophic cubic β−subalgebra of X.

Proof: Let Ci = {〈x, δiT,I,F , ωiT,I,F 〉/x ∈ X} where i ∈ k be a sets of neutrosophic cubic

β−subalgebras of X and x, y ∈ X. Then

(∩δiT,I,F )(x+ y) = rinf δiT,I,F (x+ y)

≥ rinf {rmin{δiT,I,F (x), δiT,I,F (y)}}

= rmin{rinf δiT,I,F (x), rinf δiT,I,F (y)}

= rmin{∩δiT,I,F (x),∩δiT,I,F (y)}

∴ ∩δiT,I,F (x+ y) ≥ rmin{∩δiT,I,F (x),∩δiT,I,F (y)}
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In the same manner, δiT,I,F (x− y) ≥ rmin{∩δiT,I,F (x),∩δiT,I,F (y)} and

(∧ωiT,I,F )(x+ y) = inf ωiT,I,F (x+ y)

≤ inf {max{ωiT,I,F (x), ωiT,I,F (y)}}

= max{infωiT,I,F (x), inf ωiT,I,F (y)}

= max{∧ωiT,I,F (x),∨ωiT,I,F (y)}

∴ ∧ωiT,I,F (x+ y) ≤ max{∧ωiT,I,F (x),∧ωiT,I,F (y)}

Similarly, ∧ωiT,I,F (x− y) ≤ max{∧ωiT,I,F (x),∧ωiT,I,F (y)}. Hence P−intersection of Ci is a

neutrosophic cubic β−subalgebra of X.

Theorem 3.7. The Ci = {〈x, δiT,I,F , ωiT,I,F 〉}/x ∈ X where i ∈ k be a sets

of neutrosophic cubic β−subalgebras of X. If sup {rmin{δiT,I,F (x), δiT,I,F (y) =

rmin{sup δiT,I,F (x), sup δiT,I,F (y)}∀x ∈ X. Then the P−union of Ci is also a neutrosophic

cubic β−subalgebra of X.

Proof: Let Ci = {〈x, δiT,I,F , ωiT,I,F 〉/x ∈ X} where i ∈ k be a sets of neutrosophic cubic

β−subalgebras of X and x, y ∈ X such that

sup{rmin{δiT,I,F (x), δiT,I,F (y) = rmin{sup δiT,I,F (x), sup δiT,I,F (y)}∀x ∈ X. Then for

x, y ∈ X,

(∪δiT,I,F )(x+ y) = rsup δiT,I,F (x+ y)

≥ rsup {rmin{δiT,I,F (x), δiT,I,F (y)}}

= rmin{rsup δiT,I,F (x), rsup δiT,I,F (y)}

= rmin{∪δiT,I,F (x),∪δiT,I,F (y)}

∴ ∪δiT,I,F (x+ y) ≥ rmin{∪δiT,I,F (x),∪δiT,I,F (y)}

Likewise, ∪δiT,I,F (x− y) ≥ rmin{∪δiT,I,F (x),∪δiT,I,F (y)} and

(∨ωiT,I,F )(x+ y) = sup ωiT,I,F (x+ y)

≤ sup {max{ωiT,I,F (x), ωiT,I,F (y)}}

= max{sup ωiT,I,F (x), sup ωiT,I,F (y)}

= max{∨ωiT,I,F (x),∨ωiT,I,F (y)}

∴ ∨ωiT,I,F (x+ y) ≤ max{∨ωiT,I,F (x),∨ωiT,I,F (y)}

Similarly, ∨ωiT,I,F (x − y) ≤ max{∨ωiT,I,F (x),∨ωiT,I,F (y)}. Hence P−union of Ci is a neu-

trosophic cubic β−subalgebra of X.

Theorem 3.8. The Ci = {〈x, δiT,I,F , ωiT,I,F 〉}/x ∈ X where i ∈ k be a sets

of neutrosophic cubic β−subalgebras of X. If inf {max{ωiT,I,F (x), ωiT,I,F (y)} =

P Muralikrishna ,R Vinodkumar , G Palani , Neutrosophic Cubic β−subalgebra

Neutrosophic Sets and Systems, Vol. 48, 2022                                                                                425



max{inf ωiT,I,F (x), inf ωiT,I,F (y)} & sup {rmin{ωiT,I,F (x), ωiT,I,F (y)} =

rmin{sup ωiT,I,F (x), sup ωiT,I,F (y)}∀x ∈ X. Then the R−union of Ci is also a neutrosophic

cubic β−subalgebra of X.

Proof: Let Ci = {〈x, δiT,I,F , ωiT,I,F 〉/x ∈ X} where i ∈ k be a sets of neutrosophic cubic

β−subalgebras of X such that inf{max{δiT,I,F (x), δiT,I,F (y)} &

sup{rmin{δiT,I,F (x), δiT,I,F (y)} = rmin{sup δiT,I,F (x), sup δiT,I,F (y)}∀x ∈ X. Then for

x, y ∈ X,

(∪δiT,I,F )(x+ y) = rsup δiT,I,F (x+ y)

≥ rsup {rmin{δiT,I,F (x), δiT,I,F (y)}}

= rmin{rsup δiT,I,F (x), rsup δiT,I,F (y)}

= rmin{∪δiT,I,F (x),∪δiT,I,F (y)}

∴ ∪δiT,I,F (x+ y) ≥ rmin{∪δiT,I,F (x),∪δiT,I,F (y)}

In the same way, ∪δiT,I,F (x− y) ≥ rmin{∪δiT,I,F (x),∪δiT,I,F (y)} and

(∧ωiT,I,F )(x+ y) = inf ωiT,I,F (x+ y)

≤ inf {max{ωiT,I,F (x), ωiT,I,F (y)}}

= max{inf ωiT,I,F (x), inf ωiT,I,F (y)}

= max{∧ωiT,I,F (x),∧ωiT,I,F (y)}

∴ ∧ωiT,I,F (x+ y) ≤ max{∧ωiT,I,F (x),∧ωiT,I,F (y)}

Similarly, ∧ωiT,I,F (x − y) ≤ max{∧ωiT,I,F (x),∧ωiT,I,F (y)}. Hence R−union of Ci is a neu-

trosophic cubic β−subalgebra of X.

Theorem 3.9. Neutrosophic cubic set Ci = {∆T,I,F ,ΩT,I,F }of X is a neutrosophic cubic

β−subalgebra of X if and ony if δLT,I,F , δ
U
T,I,F & ωT,I,F are fuzzy subalgebras of X.

Proof: Let δLT,I,F , δ
U
T,I,F & ωT,I,F are fuzzy subalgebras of X and x, y ∈ X.Then

δLT,I,F (x+ y) ≥ min{δLT,I,F (x), δLT,I,F (y)}
δUT,I,F (x+ y) ≥ min{δUT,I,F (x), δUT,I,F (y)} and

ωT,I,F (x+ y) ≤ max{ωT,I,F (x), ωT,I,F (y)}
Now

δT,I,F (x+ y) = [δLT,I,F (x+ y), δUT,I,F (x+ y)]

≥ [min{δLT,I,F (x), δLT,I,F (y)},min{δUT,I,F (x), δUT,I,F (y)}]

≥ rmin{[δLT,I,F (x), δUT,I,F (x)], [δLT,I,F (y), δUT,I,F (y)]}

= rmin{δT,I,F (x), δT,I,F (y)}
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∴ C is neutrosophic cubic β−subalgebra of X.

Conversely, assume that C is neutrosophic cubic β−subalgebra of X. For any x, y ∈ X,

[δLT,I,F (x+ y), δUT,I,F (x+ y)] = δT,I,F (x+ y)

≥ rmin{δT,I,F (x), δT,I,F (y)}

≥ rmin{[δLT,I,F (x), δUT,I,F (x)], [δLT,I,F (y), δUT,I,F (y)]}

Thus, δLT,I,F (x+ y) ≥ min{δLT,I,F (x), δLT,I,F (y)}, δUT,I,F (x+ y) ≥ min{δUT,I,F (x), δUT,I,F (y)} and

ωT,I,F (x+y) ≤ max{ωT,I,F (x), ωT,I,F (y)}. Hence δLT,I,F , δ
U
T,I,F and ωT,I,F are fuzzy subalgebra

of X.

Remark 3.10. The sets denoted by IδT,I,F
and IωT,I,F are also subalgebra of X which are de-

fined as IδT,I,F
= {x ∈ X/δT,I,F (x) = δT,I,F (0)} and IωT,I,F = {x ∈ X/ωT,I,F (x) = ωT,I,F (0)}.

Theorem 3.11. Let C = (δT,I,F , ωT,I,F ) be a neutrosophic cubic β−subalgebra of X. Then

the sets IδT,I,F
and IωT,I,F are also subalgebra of X.

Proof: Let x, y ∈ IδT,I,F
.

Then δT,I,F (x) = δT,I,F (0) = δT,I,F (y). Consider

δT,I,F (x+ y) ≥ rmin{δT,I,F (x), δT,I,F (y)}

≥ rmin{δT,I,F (0), δT,I,F (0)}

= δT,I,F (0)

∴ δT,I,F (x+ y) ≥ δT,I,F (0). By using proposition 3.3, δT,I,F (0) ≥ δT,I,F (x+ y)

Then we have δT,I,F (x+ y) = δT,I,F (0) or equivalently, x+ y ∈ IδT,I,F

Similarly, x− y ∈ IδT,I,F
.

Now, let x, y ∈ IδT,I,F
. Then ωT,I,F (x) = ωT,I,F (0) = ωT,I,F (y).

Consider

ωT,I,F (x+ y) ≤ max{δT,I,F (x), δT,I,F (y)}

= max{ωT,I,F (0), ωT,I,F (0)}

= ωT,I,F (0)

∴ ωT,I,F (x+ y) ≤ ωT,I,F (0). By using proposition 3.3, ωT,I,F (0) ≤ ωT,I,F (x+ y)

Then we have ωT,I,F (x+ y) = ωT,I,F (0) or equivalently, x+ y ∈ IωT,I,F

Similarly,x− y ∈ IωT,I,F . Hence the sets IδT,I,F
and IωT,I,F are β−subalgebras of X.

Theorem 3.12. Let P be a non empty subset of X and C = (δT,I,F , ωT,I,F ) be a neutrosophic

cubic β−subalgebra of X defined by
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δT,I,F (x) =

[φT,I,F1 , φT,I,F1 ] : if x ∈ P

[ψT,I,F1 , ψT,I,F1 ] : Otherwise
ωT,I,F (x) =

ρT,I,F : if x ∈ P

εT,I,F : Otherwise

∀ [φT,I,F1 , φT,I,F2 ], [ψT,I,F1 , ψT,I,F2 ] ∈ D[0, 1] and ρT,I,F , εT,I,F ∈ [0, 1] with [φT,I,F1 , φT,I,F2 ] ≥
[ψT,I,F1 , ψT,I,F2 ] and ρT,I,F ≤ εT,I,F . Then C is a neutrosophic cubic β−subalgebra of X ⇔ P

is a β−subalgebra of X.

Proof: Let C be a neutrosophic cubic β−subalgebra of X.

Let x, y ∈ X such tat x, y ∈ P . Then

δT,I,F (x+ y) ≥ rmin{δT,I,F (x), δT,I,F (y)}

≥ rmin{[φT,I,F1 , φT,I,F2 ], [φT,I,F1 , φT,I,F2 ]}

= [φT,I,F1 , φT,I,F2 ]

and

ωT,I,F (x+ y) ≤ max{ωT,I,F (x), ωT,I,F (y)}

≤ max{ρT,I,F , ρT,I,F }

= ρT,I,F

Therefore x+ y ∈ P . Similarly, we have x− y ∈ P .

Hence P is a β−subalgebra of X.

Conversely, suppose that P is a β−subalgebra of X. Let x, y ∈ X.

Case(i): If x, y ∈ P then x+ y ∈ P & x− y ∈ P
Thus δT,I,F (x+ y) = [φT,I,F1 , φT,I,F2 ] = rmin{δT,I,F (x), δT,I,F (y)}
Similarly, δT,I,F (x− y) = rmin{δT,I,F (x), δT,I,F (y)} and

ωT,I,F (x+ y) = ρT,I,F = max{ωT,I,F (x), ωT,I,F (y)}.
In the same way, ωT,I,F (x− y) = max{ωT,I,F (x), δT,I,F (y)}
Case (ii): if x, y /∈ B,then

δT,I,F (x+ y) = [ψT,I,F1 , ψT,I,F2 ] = rmin{δT,I,F (x), δT,I,F (y)}
Similarly, δT,I,F (x− y) = rmin{δT,I,F (x), δT,I,F (y)} and

ωT,I,F (x+ y) = εT,I,F = max{ωT,I,F (x), ωT,I,F (y)}.
In the same way, ωT,I,F (x− y) = max{ωT,I,F (x), δT,I,F (y)}
Hence C is a neutrosophic cubic β−subalgebra of X.
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Now,

IδT,I,F
= {x ∈ X, δT,I,F (x) = δT,I,F (0)}

= {x ∈ X, δT,I,F (x) = [φT,I,F1 , φT,I,F2 ]}

= P

IωT,I,F = {x ∈ X,ωT,I,F (x) = ωT,I,F (0)}

= {x ∈ X,ωT,I,F (x) = ρT,I,F }

= P.

Theorem 3.13. If C = (δT,I,F , ωT,I,F ) be a neutrosophic cubic β−subalgebra of X then the

upper [sT,I,F1 , sT,I,F2 ]-level and lower tT,I,F1-level set of C are β−subalgebra of X.

proof: Let x, y ∈ U(δT,I,F /[sT,I,F1 , sT,I,F2 ]), then δT,I,F (x) ≥ [sT,I,F1 , sT,I,F2 ] and δT,I,F (y) ≥
[sT,I,F1 , sT,I,F2 ]. It follows that δT,I,F (x+ y) ≥ rmin{δT,I,F (x), δT,I,F (y) ≥ [sT,I,F1 , sT,I,F2 ]

⇒ x+ y ∈ U(δT,I,F /[sT,I,F1 , sT,I,F2 ]). Similarly, x− y ∈ U(δT,I,F /[sT,I,F1 , sT,I,F2 ].

Hence U(δT,I,F /[sT,I,F1 , sT,I,F2 ] is a β−subalgebra of X.

Let x, y ∈ L(ωT,I,F /tT,I,F1) then ωT,I,F (x) ≤ tT,I,F1 and ωT,I,F (y) ≤ tT,I,F1.

It follows that ωT,I,F (x+ y) ≤ max{ωT,I,F (x), ωT,I,F (y) ≤ tT,I,F1}
⇒ x+ y ∈ L(ωT,I,F /tT,I,F1). Similarly, x− y ∈ L(ωT,I,F /tT,I,F1).

Hence L(ωT,I,F /tT,I,F1) is a β−subalgebra of X.

Theorem 3.14. Let C = (δT,I,F , ωT,I,F ) be a neutrosophic cubic set of X, such that

the sets U(δT,I,F /[sT,I,F1 , sT,I,F2 ]) and L(ωT,I,F /tT,I,F1) are β−subalgebra of X for every

[sT,I,F1 , sT,I,F2 ] ∈ D[0, 1] and tT,I,F1 ∈ [0, 1]. Then C = (δT,I,F , ωT,I,F ) is neutrosophic cu-

bic β−subalgebra of X.

proof: Let U(δT,I,F /[sT,I,F1 , sT,I,F2 ]) and L(ωT,I,F /tT,I,F1) are β−subalgebra of X for every

[sT,I,F1 , sT,I,F2 ] ∈ D[0, 1] and tT,I,F1 ∈ [0, 1].

On the contrary, let x0, y0 ∈ X be such that δT,I,F (x0 + y0) < rmin{δT,I,F (x0), δT,I,F (y0)}
LetδT,I,F (x0) = [θ1, θ2], δT,I,F (y0) = [θ3, θ4] and δT,I,F (x0 + y0) = [sT,I,F1 , sT,I,F2 ]. Then

[sT,I,F1 , sT,I,F2 ] < rmin{[θ1, θ2], [θ3, θ4]} = [min{θ1, θ2},min{θ3, θ4}]
So, δT,I,F1 < min{[θ1, θ3]} and δT,I,F2 < min{[θ2, θ4]}
Let us consider,

[γ1, γ2] = (1/2)[δT,I,F (x0 + y0) + rmin{δT,I,F (x0), δT,I,F (y0)}]

= (1/2)[sT,I,F1 , sT,I,F2 ] +min{θ1, θ3},min{θ3, θ4}

= (1/2)(sT,I,F1 +min{θ1, θ3}), (1/2)(sT,I,F1 +min{θ2, θ4})

∴,min{θ1, θ3} > γ1 = (1/2)(sT,I,F1 +min{θ1, θ3}) > sT,I,F1

and ∴,min{θ2, θ4} > γ2 = (1/2)(sT,I,F2 +min{θ2, θ4}) > sT,I,F2
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Hence [min{θ1, θ3},min{θ2, θ4}] > [γ1, γ2] > [sT,I,F1 , sT,I,F2 ],so that x0 + y0 /∈
U(δT,I,F /[sT,I,F1 , sT,I,F2 ]) which is a contradiction. Since δT,I,F (x0) = [θ1, θ2] ≥
[min{θ1, θ3},min{θ2, θ4}] > [γ1, γ2] and δT,I,F (y0) = [θ3, θ4] ≥ [min{θ1, θ3},min{θ2, θ4}] >
[γ1, γ2]. ⇒ x0 + y0 ∈ U(δT,I,F /[sT,I,F1 , sT,I,F2 ]). Thus δT,I,F (x + y) ≥
rmin{δT,I,F (x), δT,I,F (y)} ∀ x, y ∈ X.

Similarly,δT,I,F (x−y) ≥ rmin{δT,I,F (x), δT,I,F (y)} ∀ x, y ∈ X. In the same way, we can prove

ωT,I,F (x+ y) = ωT,I,F (x+ y) ≤ max{ωT,I,F (x), ωT,I,F (y)} ∀ x, y ∈ X.

4. Homomorphism of Neutrosophic Cubic β−subalgebras

In this section, some of the interesting results on homomorphism of neutrosophic cubic

β−subalgebra is being investigated.

Theorem 4.1. Suppose that f : X → Y be a homomorphism from a β−algebra X to Y .

If C = (δT,I,FωT,I,F ) is a neutrosophic cubic β−subalgebra of X, then the image f(C) =

{〈x, frsup(δT,I,F ), finf (ωT,I,F )〉/x ∈ X} of C under f is a neutrosophic cubic β−subalgebra of

Y .

Proof: Let C = (δT,I,F , ωT,I,F ) be a neutrosophic cubic β−subalgebra of X and let y1, y2 ∈ Y.
We know that {x1 + x2/x1 ∈ f−1(y1) & x2 ∈ f−1(y2)} ⊆ {x ∈ X/x ∈ f−1(y1 + y2)}.Now

frsup(δT,I,F )(y1 + y2) = rsup{δT,I,F (x)/x ∈ f−1(y1 + y2)}

= rsup{δT,I,F (x1 + x2)/x1 ∈ f−1(y1) & x2 ∈ f−1(y2)}

≥ rsup{rmin{δT,I,F (x1), δT,I,F (x2)/x1 ∈ f−1(y1) & x2 ∈ f−1(y2)}

= rmin{rsup{δT,I,F (x1)/x1 ∈ f−1(y1), δT,I,F (x2)/x2 ∈ f−1(y2)}

In the same manner, we have

frsup(δT,I,F )(y1 − y2) ≥ rmin{rsup{δT,I,F (x1)/x1 ∈ f−1(y1), δT,I,F (x2)/x2 ∈ f−1(y2)}. Also,

finf (δT,I,F )(y1 + y2) = inf{ωT,I,F (x)/x ∈ f−1(y1 + y2)}

= inf{ωT,I,F (x1 + x2)/x1 ∈ f−1(y1) & x2 ∈ f−1(y2)}

≤ inf{max{ωT,I,F (x1), ωT,I,F (x2)/x1 ∈ f−1(y1) & x2 ∈ f−1(y2)}

= max{inf{ωT,I,F (x1)/x1 ∈ f−1(y1), ωT,I,F (x2)/x2 ∈ f−1(y2)}

In the same way, we have

finf (ωT,I,F )(y1 − y2) ≤ max{inf{ωT,I,F (x1)/x1 ∈ f−1(y1), ωT,I,F (x2)/x2 ∈ f−1(y2)}.

Theorem 4.2. Suppose that f : X → Y be a homomorphism of β−algebra. If C =

(δT,I,F , ωT,I,F ) is a neutrosophic cubic β−subalgebra of Y , then the pre-image f−1(C) =

{〈x, f−1(δT,I,F ), f−1(ωT,I,F )〉/x ∈ X} of C under f is a neutrosophic cubic β−subalgebra

of X.
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proof: Assume that C = (δT,I,FωT,I,F ) is a neutrosophic cubic β−subalgebra of Y and let

x, y ∈ X. Then

f−1(δT,I,F )(x+ y) = δT,I,F (f(x+ y))

= δT,I,F (f(x) + f(y))

≥ rmin{δT,I,F (f(x)), δT,I,F (f(y))}

= rmin{f−1(δT,I,F )(x), f−1(δT,I,F )(y)}

Similarly, f−1(δT,I,F )(x− y) ≥ rmin{f−1(δT,I,F )(x), f−1(δT,I,F )(y)}

f−1(ωT,I,F )(x+ y) = ωT,I,F (f(x+ y))

= ωT,I,F (f(x) + f(y))

≤ max{ωT,I,F (f(x)), ωT,I,F (f(y))}

= max{f−1(ωT,I,F )(x), f−1(ωT,I,F )(y)}

Similarly, f−1(ωT,I,F )(x− y) ≤ rmin{f−1(ωT,I,F )(x), f−1(ωT,I,F )(y)}
∴ f−1(C) = {〈x, f−1(δT,I,F ), f−1(ωT,I,F )〉/x ∈ X} of C under f is a neutrosophic cubic

β−subalgebra of X.
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Abstract. Hypersoft set is an emerging knowledge of study which is projected to address the limitations of

soft set for the entitlement of multi-argument approximate function. This function maps sub-parametric tuples

to power set of universe. It emphasizes the partitioning of each attribute into its respective attribute-valued

set that is missing in existing soft set-like structures. These features make it a completely new mathematical

tool for solving problems dealing with uncertainties. In this study, classical concept of weak structures (W-

structures) is characterized under hypersoft set environment which will provide a conceptual framework for

further characterization of respective topological spaces and other spaces of functional analysis. Some of its

important properties and results are investigated. Moreover, new notions of hypersoft weak axioms W-τ0, W-τ1

and W-τ2 are discussed with illustrative examples.

Keywords: Hypersoft set, Hypersoft W-structure, Hypersoft W-τ0, Hypersoft W-τ1, Hypersoft W-τ2.

—————————————————————————————————————————-

1. Introduction

Molodtsov [1] characterized soft set (SST) as a new parametrization tool to address the

inadequacy of fuzzy-like structures. Later Maji et al. [2] and Pei et al. [3] extended the work and

discussed some of its fundamentals and set-theoretic operations. Shabir et al. [4] applied soft

set theory in topological spaces and introduced new notions of soft set topology, later modified

by Min [5]. Zorlutuna et al [6], Cagman et al. [7], Roy et al. [8] discussed the properties of soft

topology and proposed some modifications. Zakari et al. [9], Min et al. [11] developed a soft

weak structure in support of the generalized soft topology. Al-Saadi et al. [10] investigated

closed sets for soft weak structure. In many real life situations, distinct attributes are further

partitioned in disjoint attribute-valued sets but existing SST is insufficient for dealing with
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such kind of attribute-valued sets. Hypersoft set (HS-set) [13] is developed to make the SST

in line with attribute-valued sets to tackle real life scenarios. HS-set is an extension of SS-

Theory as it transforms the single argument function into a multi-argument function. Certain

elementary properties, aggregation operations, laws, relations and functions of HS-set, are

investigated by [14, 15] for proper understanding and further utilization in different fields.

Saeed et al. [16–21] discussed decision-making applications based on complex multi-fuzzy HS-

set, mapping on Hs-calsses, neutrosophic HS-graphs and neutrosophic HS-mapping to medical

diagnosis and other optimal selections. Rahman et al. [22] developed hybrids of HS-set with

complex fuzzy set, complex intuitionistic fuzzy set and complex neutrosophic set. They [23]

introduced the notions of convex and concave HS-sets with some properties. Decision-making

applications for optimal object selection have been discussed by them under the environments

of parameterization of HS-sets in fuzzy set-like structures, bijective HS-sets and complex fuzzy

hypersoft in [24–27]. Saqlain et al. [28] investigated single and multi-valued neutrosophic HS-

sets and discussed tangent similarity measure of single valued neutrosophic HS-sets. Zulqarnain

et al. [29] characterized generalized aggregate operators on neutrosophic HS-sets and discussed

their essential properties. Ihsan et al. [30,31] employed the concept of HS-sets in expert system

and developed HS expert set and fuzzy HS expert set with application in decision-making.

Kamacı et al. [32] extended this work to n-ary fuzzy expert set and discussed its properties.

Ajay et al. [33] developed the notions of Alpha Open HS-sets and applied them in MCDM.

Musa et al. [34] developed bipolar HS-set and discussed its properties and operations.

1.1. Motivation

In many daily-life decision-making problems, we encounter with some scenarios where each

attribute is required to be further classified into its respective attribute-valued set. In order

to tackle such scenarios, HS-set is projected which employs the cartesian product of disjoint

attribute-valued sets as domain of approximate function ( i.e. multi-argument approximate

function). The existing models [9–12] are insufficient to deal uncertainties with such kind of

approximate function. Therefore, the main aim of this study is to generalize these models by

developing HS-week structures. All the new proposed operations and properties are explained

with the support of illustrated examples.

1.2. Paper Layout

The rest of paper is organized as:

Section 2: reviews some basic definitions to support the main results.

Section 3: characterizes HS W-structures along with their important properties and results.
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Section 4: summarizes the paper with future directions.

2. Preliminaries

In this section, definitions of soft sets , hypersoft sets and soft weak structures are reviewed.

Definition 2.1. [1]

A pair (ψ,R) is called soft set over U , where ψ : R → P(U) and R be a subset of a set of

attributes E.

Definition 2.2. [13]

Suppose b1, b2, ......, bn, for b ≥ 1, be n distinct traits, whose corresponding trait values are

respectively the sets Q1,Q2, .....,Qn, with Qr
⋂
Qs = φ, i 6= j, and r,s ∈ {1, 2, ...., n}. Then

the pair (Ψ,Q1×Q2× .....×Qn), where Ψ : Q1×Q2× .....×Qn → P (U) is called a Hypersoft

Set over U .

Definition 2.3. [12]

sW is collection of (ψ,R) over X . if

(i) φ, X ∈ sW
(ii) (ψa, R1)

⋂
(ψb, R2) in sW ∈ sW.

then sW is weak structure. W-space is denoted by (X , sW, E). Elements of sW are W-open

and (ψ,R) is soft W-closed if (ψ,R)r ∈ sW.

3. Hypersoft W-Structures

In this section, hypersoft W-structures are characterized and some of their important prop-

erties and results are discussed.

Definition 3.1. Hypersoft W-Structure

Suppose P1,P2,P3, ....,Pm be disjoint attribute-valued sets corresponding to m distinct at-

tributes p1, p2, p3, ..., pm respectively and P = P1 × P2 × P3 × .... × Pm. A collection ΩW of

HS-sets defined over U w.r.t P is called HS w-Structure if

(i) ∅HS , U belong to ΩW

(ii) (Ψi,P)
⋂

(Ψj ,P) in ΩW belongs to ΩW ∀ i 6= j

A HS set is said to be HS W-open if it belongs to collection ΩW and if (Ψ,P)r ∈ ΩW then HS

W-closed.

Example 3.2. Suppose U = {u1, u2, u3, u4, u5, u6, u7, u8} and P = {P1,P2,P3,P4} such that

P1 = {p11, p12},P2 = {p21, p22},P3 = {p31, p32}.
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Now P = P1 × P2 × P3

P =


q1 = (p11, p21, p31), q2 = (p11, p21, p32),

q3 = (p11, p22, p31), q4 = (p11, p22, p32),

q5 = (p12, p21, p31), q6 = (p11, p21, p32),

q7 = (p11, p22, p31), q8 = (p11, p22, p32)


and

ΩW = {∅HS ,U , (Ψ1,P), (Ψ2,P), (Ψ3,P)},

(Ψ1,P) =


Ψ1(q1) = {u1, u2, u7, u8}, Ψ1(q2) = {u1, u3, u6, u8},

Ψ1(q4) = {u2, u5, u7, u8}, Ψ1(q6) = {u1, u3, u5, u7},
Ψ1(q7) = {u4, u5, u6, u8}

 ,

(Ψ2,P) =


Ψ2(q1) = {u1, u2, u3, u7}, Ψ2(q3) = {u2, u4, u5, u7},

Ψ2(q4) = {u1, u5, u7, u8}, Ψ2(q7) = {u4, u5, u7, u8},
Ψ2(q8) = {u2, u5, u4, u8}

 ,

(Ψ3,P) =
{

Ψ3(q1) = {u1, u2, u7}, Ψ3(q4) = {u5, u7, u8}, Ψ3(q7) = {u4, u5, u8}
}
.

ΩW is a HS W-structure.

Definition 3.3. Hypersoft W-Interior

The HS W-W-interior of (Ψ,P), denoted by (Ψ,P)◦, is defined as

(Ψ,P)◦ = ∪{(Ψi,P) : (Ψi,P) ⊆ (Ψ,P), (Ψi,P) ∈ ΩW} .

Remark 3.4. If there exists a HS W-open set (Ψ2,P) s.t q ∈ (Ψ2,P) is subset of (Ψ1,P),

then q belongs to (Ψ1,P)◦.

Example 3.5. Considering example 3.2, we have

(Ψ1,P)◦ = {(Ψ3,P)}.

Theorem 3.6. If (Ψ1,P) and (Ψ2,P) belongs to ΩW , then

(i) (Ψ,P)◦ is subset of (Ψ,P)

(ii) If (Ψ1,P) is subset of (Ψ2,P) then (Ψ1,P)◦ is subset of (Ψ2,P)◦

(iii) HS W-interior of intersection of (Ψ1,P) and (Ψ2,P) is equal to intersection of HS

W-interior of (Ψ1,P) and HS W-interior of (Ψ2,P)

(iv) ((Ψ,P)◦)◦ is equal to (Ψ,P)◦

Proof. (i) is obvious.

(ii) Given (Ψ1,P) is subset of (Ψ2,P)

From (i) (Ψ1,P)◦ is subset of (Ψ1,P) and (Ψ2,P)◦ is subset of (Ψ2,P).

implies (Ψ1,P)◦ is subset of (Ψ2,P)

but (Ψ2,P)◦ is subset of (Ψ2,P).
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Hence (Ψ1,P)◦ is subset of (Ψ2,P)◦

(iii) Since intersection of (Ψ1,P) and (Ψ2,P) is subset of (Ψ1,P), Intersection of (Ψ1,P)

and (Ψ2,P) is subset of (Ψ2,P).

from (i) (Ψ,P)◦ is subset of (Ψ,P) implies

HS W-interior of intersection of (Ψ1,P) and (Ψ2,P) is subset of (Ψ1,P)◦ and HS W-interior

of intersection of (Ψ1,P) and (Ψ2,P) is subset of (Ψ2,P)◦.

So HS W-interior of intersection of (Ψ1,P) and (Ψ2,P) is subset of intersection of HS W-

interior of (Ψ1,P) and HS W-interior of (Ψ2,P).

Also intersection of HS W-interior of (Ψ1,P) and HS W-interior of (Ψ2,P) is subset of inter-

section of (Ψ1,P) and (Ψ2,P).

Therefore intersection of HSW-interior of (Ψ1,P) and HSW-interior of (Ψ2,P) is open subset

of intersection of (Ψ1,P) and (Ψ2,P).

Hence intersection of HS W-interior of (Ψ1,P) and HS W-interior of (Ψ2,P) is subset of HS

W-interior of intersection of (Ψ1,P) and (Ψ2,P).

HS W-interior of intersection of (Ψ1,P) and (Ψ2,P) is equal to intersection of HS W-interior

of (Ψ1,P) and HS W-interior of (Ψ2,P).

(iv) From (i), it follows ((Ψ,P)◦)◦ is subset of (Ψ,P)◦. For any HS W-open set (Ψ1,P) s.t

((Ψ1,P) is subset of (Ψ,P)◦,

(Ψ1,P) is equal to (Ψ1,P)◦ is subset of ((Ψ,P)◦)◦, so (Ψ,P)◦⊂̈((Ψ,P)◦)◦ Consequently, we

have

((Ψ,P)◦)◦ is equal to (Ψ,P)◦

Definition 3.7. Hypersoft W-exterior

The HS W-exterior of (Ψ,P), denoted by (Ψ,P)ε, is defined as

(Ψ,P)ε = ((Ψ,P)c)◦

Example 3.8. Consider the sets given in example 3.2, let we have a hypersoft set

(Ψ,P) =


Ψ(q1) = {u1, u2, u7, u8}, Ψ(q2) = {u1, u3, u6, u8},
Ψ(q4) = {u2, u5, u7, u8}, Ψ(q6) = {u1, u3, u5, u7},
Ψ(q7) = {u4, u5, u6, u8}


.

((Ψ,P))c =


Ψ(q1) = {u3, u4, u5, u6}, Ψ(q2) = {u2, u4, u5, u7},
Ψ(q4) = {u1, u3, u4, u6}, Ψ(q6) = {u2, u4, u6, u8},
Ψ(q7) = {u1, u2, u3, u7}


.

(Ψ4,P) =


Ψ4(q1) = {u3, u5, u6}, Ψ4(q2) = {u2, u5, u7},
Ψ4(q4) = {u1, u3, u6}, Ψ4(q6) = {u2, u4, u6},
Ψ4(q7) = {u1, u3, u7}
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.

(Ψ,P)ε = (Ψ4,P)

Definition 3.9. Hypersoft W-boundry

The HSW-boundry of (Ψ,P), denoted by (Ψ,P)b, contains those HS sets which do not belongs

to HS W-interior and HS exterior.

Example 3.10. in example 3.2, we have

(Ψ,P)b = {(Ψ1,P), (Ψ2,P)}

Definition 3.11. Hypersoft W-Closure

HS W-closure of (Ψ,P) is denoted by (Ψ,P)•, is defined as

(Ψ,P)• =
⋂
{(Ψ1,P) : (Ψ,P) ⊆ (Ψ1,P), (Ψ1,P)c ∈ ΩW}

.

Example 3.12. It is clear from example 3.2

(Ψ3,P)• = {(Ψ1,P)}

Theorem 3.13.

If q ∈ (Ψ,P)•, then (Ψi,P)
⋂

(Ψ,P) 6= ∅ ∀ (Ψi,P) ∈ ΩW s.t q ∈ (Ψi,P).

Proof. Suppose q ∈ (Ψ,P)• then there exists (Ψi,P) ∈ ΩW s.t q ∈ (Ψi,P)

and (Ψi,P)
⋂

(Ψ,P) = ∅
this implies (Ψ,P)⊂̈(Ψi,P)c so (Ψ,P)•⊂̈(Ψi,P)c and q /∈ (Ψ,P)•. So it is a contradiction.

Theorem 3.14.

If (Ψ1,P) and (Ψ2,P) are two HS sets then

(i) (Ψ,P) is subset of (Ψ,P)•

(ii) if (Ψ1,P) is subset of (Ψ2,P) then (Ψ1,P)• is subset of (Ψ2,P)•

(iii) (Ψ1,P)• ∪ (Ψ2,P)• = ((Ψ1,P) ∪ (Ψ2,P))•

(iv) ((Ψ,P)•)• = (Ψ,P)•

Proof. (i) is obvious.

(ii) Since (Ψ1,P) is subset of (Ψ2,P)

from (i) (Ψ1,P) is subset of (Ψ1,P)• and (Ψ2,P) is subset of (Ψ2,P)•

then (Ψ1,P) is subset of (Ψ2,P)•

but (Ψ1,P) is subset of (Ψ1,P)• implies (Ψ1,P)• is subset of (Ψ2,P)•

(iii) Since (Ψ1,P) is subset of (Ψ1,P) ∪ (Ψ2,P) , (Ψ2,P) is subset of (Ψ1,P) ∪ (Ψ2,P)
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and (Ψ,P) is subset of (Ψ,P)• then (Ψ1,P)• is subset of ((Ψ1,P) ∪ (Ψ2,P))• and

(Ψ2,P)• is subset of ((Ψ1,P) ∪ (Ψ2,P))•,

(Ψ1,P)• ∪ (Ψ2,P)• is subset of ((Ψ1,P) ∪ (Ψ2,P))•

also (Ψ1,P) ∪ (Ψ2,P))• is subset of (Ψ1,P)• ∪ (Ψ2,P)• Hence

(Ψ1,P)• ∪ (Ψ2,P)• = ((Ψ1,P) ∪ (Ψ2,P))•

(iv) From (i), (Ψ,P) is subset of (Ψ,P)• then (Ψ,P)• is subset of ((Ψ,P)•)•,

((Ψ,P)•)• = (Ψ,P) is subset of (Ψ,P)•, then ((Ψ,P)•)• is subset of (Ψ,P)•

Consequently, we have

((Ψ,P)•)• = (Ψ,P)•

Remark 3.15.

(i) if (Ψ,P) ∈ ΩW then (Ψ,P) = ((Ψ,P))◦

(ii) if (Ψ,P)r ∈ ΩW then (Ψ,P) = ((Ψ,P))•

Definition 3.16. Hypersoft W-τ0

If u1, u2 ∈ U and u1 6= u2, ∃ a HS W-open set (Ψ,P) s.t u1 ∈ (Ψ,P) and u2 /∈ (Ψ,P) or

u1 /∈ (Ψ,P) and u2 ∈ (Ψ,P) then (U ,ΩW ,P) is called W-τ0

Example 3.17. Suppose U = {u1, u2} then ΩW = {∅,U , (Ψ,P)} where

(Ψ,P) = {Ψ1(q1) = {u1}} is W-τ0.

Theorem 3.18.

If U is a relative HS W-τ0 space, then for each u1, u2 ∈ U such that u1 6= u2, we have

(u1,P)• 6= (u2,P)•.

Proof. For every u1, u2 ∈ U and u1 6= u2 ∃ a HS (Ψ,P) ∈ ΩW s.t u1 ∈ (Ψ,P) and u2 ∈ (Ψ,P)c.

Therefore (Ψ,P)c is a HS W-closed set s.t u1 /∈ (Ψ,P)c and u2 ∈ (Ψ,P)c.

Since (u2,P)•⊂̈(Ψ,P)c and u1 /∈ (u2,P)• Thus (u1,P)• 6= (u2,P)•.

Definition 3.19. Hypersoft W-τ1

If for each u1, u2 ∈ U s.t u1 6= u2, ∃ HS W-open sets (Ψ1,P) and (Ψ2,P) s.t u1 ∈ (Ψ1,P) and

u2 /∈ (Ψ1,P) and u1 /∈ (Ψ2,P) and u2 ∈ (Ψ2,P) then HS ΩW space is known as W-τ1 .

Example 3.20. Suppose U = {u1, u2} then ΩW = {∅,U , (Ψ1,P), (Ψ2,P)} where

(Ψ1,P) = {Ψ1(q1) = {u1}} and (Ψ2,P) = {Ψ2(q1) = {u2}} is W-τ1.

Theorem 3.21.

A HS W-space (U ,ΩW ,P) is HS W-τ1 if (u,P) is HS W-closed set for all u ∈ U .
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Proof. suppose u1, u2 ∈ U and u1 6= u2 ∃ HS W-open sets (u1,P)c and (u2,P)c s.t u1 ∈
(u1,P)c, u2 ∈ (u1,P)c and u2 /∈ (u2,P)c , u1 ∈ (u2,P)c, It prove that U is HS W-τ1.

Definition 3.22. Hypersoft W-τ2

W-τ2 if for each u1, u2 ∈ U s.t u1 6= u2, ∃ HS W-open sets (Ψ1,P) and (Ψ2,P) then each

u1 ∈ (Ψ1,P), u2 ∈ (Ψ2,P) and (Ψ1,P)
⋂

(Ψ2,P) = ∅

Example 3.23. Suppose U = {u1, u2} then ΩW = {∅,U , (Ψ1,P), (Ψ2,P)} where

(Ψ1,P) = {Ψ1(q1) = {u1}} and (Ψ2,P) = {Ψ2(q1) = {u2}} is W-τ2.

4. Conclusions

In this study, weak structures are characterized under hypersoft set environment, and some

of its essential properties and results are discussed. Moreover, some separation axioms like

τ0, τ1, and τ2 are introduced with the help of weak structures on hypersoft set. Further study

may include the development of :

(1) HS-compact spaces

(2) HS-connected spaces

(3) HS-normed spaces

(4) HS-Hilbert spaces

(5) HS-inner product spaces

(6) HS-metric spaces

with their applications in decision-making by using certain techniques like TOPSIS, MCDM

etc.
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Abstract. In this article the notion of two quadripartitioned single valued weighted dombi prioritized opera-

tors, namely, quadripartitioned single valued weighted dombi prioritized average (QSVNWDPA) operator and

quadripartitioned single valued weighted dombi prioritized geometric ( QSVNWDPG) operator have been de-

veloped which are based on quadripartitioned single valued neutrosophic (QSVN) sets. Further some important

properties of these two operators are studied. Finally a multi-attribute decision making (MADM) problem has

been solved using QSVNWDPA operator and QSVNWDPG operator.

Keywords:Quadripartitioned single valued neutrosophic set; Aggregation operator; Dombi operator; Priori-

tized operator; QSVN weighted Dombi prioritized average operator; QSVN weighted Dombi prioritized geo-

metric operator; Multi-attributive decision making.

—————————————————————————————————————————-

1. Introduction

Smarandache [3, 13, 20] introduced Neutrosophic set (NS) theory in which each element of

this set is assigned with a truth value (T ), a indeterminacy value (I) and a falsity value (F )

which are independent of each other. Later many authors have introduced several types of

generalizations of NS along with their various types of applications [4–12,14,15]. An extension

of Neutrosophic set, called QSVN set, was further developed in [16] which was motivated by

Belnap’s four valued logic [1]. Here every element in a set have four values associated with it

namely truth value T , a contradiction value C, an ignorance value U and a falsity value F .

Thus QSVN sets are equipped with better tool for solving various types of decision making

problems in comparison with other types of neutrosophic sets. The idea of quadripartitioned
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neutrosophic numbers (QNN number) which are based on QSVN sets are introduced and

studied along with some well known properties of QNN -numbers in [19]. Currently the

application of information aggregation operators in the area of multi-attribute decision making

process has become a popular topic of research. Aggression operator based decision making

methods are preferred than ordinary decision making methods because these operators readily

combines data into one single entity from which one could easily make decisions. Several

researchers have proposed new aggregation operators or have extended known operators to

new settings. On contrary Dombi [2] presented the operations of Dombi T -norms (DT ) and

T -conorms (D̂T ) for fuzzy sets way back in 1982. Both the norms have wide applications as an

operator as they have good advantage of flexibility to tackle the operational parameters. Also

Dombi aggregation operators make the optimal outcomes more accurate and definite when

used properly in any MADM problem. Many researchers extended the idea of Dombi norms

together with Prioritized operator to IFS [18], NS [17, 21] theories and applied to different

MADM problems. In this paper we have applied weighted Dombi Prioritized norms on QNN
and applied them to solve a very relevant MADM problem. The rest of this paper is constructed

as follows: In Section 2 we have discussed some basic theories which will be used throughout

the rest of the article. We have defined some order relations on QNN in Section 3. In the next

section some Dombi operations on QNN are defined. Section 5 introduces the QSVNWDPA

and QSVNWDPG operators and studied their properties. Next a MADM problem is solved

using QSVNWDA and QSVNWDG operators in section 6 along with sensitivity analysis of

these two methods. Then Section 7 concludes the article.

2. Some Basics

For better understanding of this article we need some terminologies from literature of NS

sets.

Definition 2.1. [3] A neutrosophic set (NS) A in Y 6= φ is characterized by a truth-

membership function At, an indeterminacy membership function Ai and a falsity-membership

function Af . Here for each y ∈ Y , At(y), Ai(y) and Af (y) are real non-standard elements of

]0−, 1+[. A can be written as:

A = {(y,At(y), Ai(y), Af (y)) : y ∈ Y,At(y), Ai(y), Af (y) ∈]0−, 1+[}.

Definition 2.2. [16] A QSVN set M over a set Y 6= φ distinguishes each element y in Y by

a truth-value Mt, a contradiction value Mc, an ignorance-value Mu and a falsity value Mf s.t.

for each y ∈ Y , Mt(y),Mc(y),Mu(y),Mf (y) ∈ [0, 1], 0 ≤Mt(y) +Mc(y) +Mu(y) +Mf (y) ≤ 4.

Based on QSVN set Prof. R. Chatterjee et. al. introduced the QSVN numbers together

with some operations in their paper [19] in 2019.
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Definition 2.3. [19] An QSVN element ω = 〈ωt, ωc, ωu, ωf 〉 ∈ [0, 1]4 is said to be a QSVN

number. We represent the set of QSVN numbers as QNN .

Definition 2.4. [19] Consider ς, τ, υ ∈ QNN and k ∈ N. Then the following basic operations

hold on QNN :

(i) ς
⊕
τ = 〈ςt + τt − ςtτt, ςc + τc − ςcτc, ςuτu, ςfτf 〉,

(ii) ς
⊙
τ = 〈ςtτt, ςcτc, ςu + τu − ςuτu, ςf + τf − ςfτf 〉,

(iii) (ς)k = 〈(ςt)k, (ςc)k, 1− (1− ςu)k, 1− (1− ςf )k〉,
(iv) kς = 〈1− (1− ςt)k, 1− (1− ςc)k, (ςu)k, (ςf )k〉,
(v) ς

⊕
τ = τ

⊕
ς,

(vi) (ς
⊕
τ)
⊕
υ = τ

⊕
(ς
⊕
υ),

(vii) ς
⊙
τ = τ

⊙
ς,

(viii) (ς
⊙
τ)
⊙
υ = τ

⊙
(ς
⊙
υ),

2.1. Dombi T -norm and T -conorm

Dombi Operator was introduced by J. Dombi in 1982 in [2]. In 2008 Prof Yager firstly

introduced the Prioritized aggregation operators in [4]. For convenience of the readers of this

article we request you to follow the articles [2] and [4] respectively.

Definition 2.5. [2] Suppose r, s ∈ R. TheDT and D̂T between r and s are defined respectively

as below:

DT (r, s) =
1

1 + {(1−rr )λ + (1−ss )λ}
1
λ

D̂T (r, s) =
1

1 + {( r
1−r )λ + ( s

1−s)
λ}

1
λ

,

λ ≥ 1 and (r, s) ∈ [0, 1]× [0, 1].

3. Order properties in QNN

Now we will discuss some order relations of QNN .

Definition 3.1. The score function of ω = 〈ωt, ωc, ωu, ωf 〉 : QNN → [0, 1] is defined as

S(ω) =
3 + ωt + ωc − ωu − ωf

4
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We now define a few accuracy functions Ai : QNN → [0, 1], i = ∞,∈,3 of ω =

〈ωt, ωc, ωu, ωf 〉 ∈ QNN as follows:

A∞(ω) =
(ωt + ωc)− (ωu + ωf )

2

A∈(ω) =
ωt − ωc

4

A3(ω) =
ωu − ωf

4
.

Remark 3.2. From Definition 3.1, the following properties of score function and accuracy

functions of a QSVN number ω ∈ QNN can be obtained:

(i) 0 ≤ S(ω) ≤ 1.25.

(ii) −1 ≤ A∞(ω) ≤ 1.

(iii) −0.25 ≤ A∈(ω) ≤ 0.25.

(iv) −0.25 ≤ A3(ω) ≤ 0.25.

Definition 3.3. Suppose µ, ν ∈ QNN . We define the order relation between any two µ, ν ∈
QNN as following:

(i) If S(µ) < S(ν), then µ ≤ ν.

(ii) If S(µ) = S(ν), then

(a) A∞(µ) < A∞(ν)⇒ µ ≤ ν else if

(b) A∞(µ) = A∞(ν) with A∈(µ) < A∈(ν)⇒ µ ≤ ν else if

(c) A∞(µ) = A∞(ν),A∈(µ) = A∈(ν) with A3(µ) < A3(ν)⇒ µ ≤ ν else if

(d) A∞(µ) = A∞(ν),A∈(µ) = A∈(ν) and A3(µ) = A3(ν)⇒ µ = ν.

Here µ ≤ ν denotes µ proceeds ν.

4. Some QSVN Dombi operations

Definition 4.1. Let µ = 〈m1, n1, p1, q1〉 ∈ QNN and ν = 〈m2, n2, p2, q1〉 ∈ QNN , λ ≥ 1 and

k > 0. Then the DT and D̂T operations on QNN are defined as below:

(i)

µ
⊕
ν=

〈
1− 1

1+

(
(
m1

1−m1
)λ+(

m2
1−m2

)λ
) 1
λ

,1− 1

1+

(
(
n1

1−n1
)λ+(

n2
1−n2

)λ
) 1
λ

,1− 1

1+

(
(
1−p1
p1

)λ+(
1−p2
p2

)λ
) 1
λ

,1− 1

1+

(
(
1−q1
q1

)λ+(
1−q2
q2

)λ
) 1
λ

〉
(ii)

µ
⊙
ν=

〈
1− 1

1+

(
(
1−m1
m1

)λ+(
1−m2
m2

)λ
) 1
λ

,1− 1

1+

(
(
1−n1
n1

)λ+(
1−n2
n2

)λ
) 1
λ

,1− 1

1+

(
(
p1

1−p1
)λ+(

p2
1−p2

)λ
) 1
λ

,1− 1

1+

(
(
q1

1−q1
)λ+(

q2
1−q2

)λ
) 1
λ

〉

(iii) kµ=

〈
1− 1

1+

(
k(

m1
1−m1

)λ
) 1
λ

,1− 1

1+

(
k(

n1
1−n1

)λ
) 1
λ

,1− 1

1+

(
k(

1−p1
p1

)λ
) 1
λ

,1− 1

1+

(
k(

1−q1
q1

)λ
) 1
λ

〉
,

(iv) µk=

〈
1− 1

1+

(
k(

1−m1
m1

)λ
) 1
λ

,1− 1

1+

(
k(

1−n1
n1

)λ
) 1
λ

,1− 1

1+

(
k(

p1
1−p1

)λ
) 1
λ

,1− 1

1+

(
k(

q1
1−q1

)λ
) 1
λ

〉
.
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5. Dombi prioritized average operators on QNN

Definition 5.1. Let γj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l) be a collection on QNN . A QSVN

Dombi prioritized average (QSVNDPA) operator of dimension l is a function s1 : QNN l →
QNN defined by:

s1(γ1, γ2, . . . , γl) =

l⊕
j=1

 Tjγj
l∑

j=1
Tj



where Tj =
j−1∏
k=1

S(γk) ∀ k, T1 = 1 and S(γj) =
3+mj+nj−pj−qj

4

Theorem 5.2. Suppose γj = 〈mj , nj , pj , qj〉 ∀j ∈ N be a collection on QNN . Then

s1(γ1, γ2, . . . , γl) =
l⊕

j=1

 Tjγj
l∑

j=1
Tj


=

〈
1− 1

1+


l∑

j=1

Tj

(
mj

1−mj

)λ
l∑

j=1
Tj



1
λ

,1− 1

1+


l∑

j=1

Tj

(
nj

1−nj

)λ
l∑

j=1
Tj



1
λ

,1− 1

1+


l∑

j=1

Tj

(
1−pj
pj

)λ
l∑

j=1
Tj



1
λ

,1− 1

1+


l∑

j=1

Tj

(
1−qj
qj

)λ
l∑

j=1
Tj



1
λ

〉
.

Proof. Here γ1 ∈ QNN . Now we have T1γ1
T1

= γ1〈
1− 1

1+

{(
m1

1−m1

)λ} 1
λ

,1− 1

1+

{(
n1

1−n1

)λ} 1
λ

,1− 1

1+

{(
1−p1
p1

)λ} 1
λ

,1− 1

1+

{(
1−q1
q1

)λ} 1
λ

〉
. Hence the above equa-

tion trivially holds for l = 1. In a parallel way for γ2 ∈ QNN , we have T2γ2
T1+T2

=〈
1− 1

1+


T2

(
m2

1−m2

)
T1+T2

λ


1
λ
, 1− 1

1+


T2

(
n2

1−n2

)
T1+T2

λ


1
λ
, 1− 1

1+


T2

(
1−p2
p2

)
T1+T2

λ


1
λ
, 1− 1

1+


T2

(
1−q2
q2

)
T1+T2

λ


1
λ

〉
.

Therefore

s1(γ1, γ2) =
2⊕
j=1

 Tjγj
2∑
j=1

Tj


=

〈
1− 1

1+


2∑
j=1

Tj

(
mj

1−mj

)λ
2∑
j=1

Tj



1
λ

,1− 1

1+


2∑
j=1

Tj

(
nj

1−nj

)λ
2∑
j=1

Tj



1
λ

,1− 1

1+


2∑
j=1

Tj

(
1−pj
pj

)λ
2∑
j=1

Tj



1
λ

,1− 1

1+


2∑
j=1

Tj

(
1−qj
qj

)λ
2∑
j=1

Tj



1
λ

〉
.
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Hence the equation is valid for l = 1, 2. We assume that the equation is valid for l = s i.e.

s1(γ1, γ2, . . . , γs) =
s⊕
j=1

 Tjγj
s∑
j=1

Tj


=

〈
1− 1

1+


s∑
j=1

Tj

(
mj

1−mj

)λ
s∑
j=1

Tj



1
λ

,1− 1

1+


s∑
j=1

Tj

(
nj

1−nj

)λ
s∑
j=1

Tj



1
λ

,1− 1

1+


s∑
j=1

Tj

(
1−pj
pj

)λ
s∑
j=1

Tj



1
λ

,1− 1

1+


s∑
j=1

Tj

(
1−qj
qj

)λ
s∑
j=1

Tj



1
λ

〉
.

Finally for l = s+ 1, one can easily see that

s1(γ1, γ2, . . . , γs) =
s⊕
j=1

 Tjγj
s∑
j=1

Tj

⊕
Ts+1γs+1

s+1∑
j=1

Tj


=

〈
1− 1

1+


s∑
j=1

Tj

(
mj

1−mj

)λ
s∑
j=1

Tj



1
λ

,1− 1

1+


s∑
j=1

Tj

(
nj

1−nj

)λ
s∑
j=1

Tj



1
λ

,1− 1

1+


s∑
j=1

Tj

(
1−pj
pj

)λ
s∑
j=1

Tj



1
λ

,1− 1

1+


s∑
j=1

Tj

(
1−qj
qj

)λ
s∑
j=1

Tj



1
λ

〉
⊕
Ts+1γs+1

s+1∑
j=1

Tj



=

〈
1− 1

1+


s+1∑
j=1

Tj

(
mj

1−mj

)λ
s+1∑
j=1

Tj



1
λ

,1− 1

1+


s+1∑
j=1

Tj

(
nj

1−nj

)λ
s+1∑
j=1

Tj



1
λ

,1− 1

1+


s+1∑
j=1

Tj

(
1−pj
pj

)λ
s+1∑
j=1

Tj



1
λ

,1− 1

1+


s+1∑
j=1

Tj

(
1−qj
qj

)λ
s+1∑
j=1

Tj



1
λ

〉
.

Finally the equation

s1(γ1, γ2, . . . , γs) =
s⊕
j=1

 Tjγj
s∑
j=1

Tj


=

〈
1− 1

1+


s∑
j=1

Tj

(
mj

1−mj

)λ
s∑
j=1

Tj



1
λ

,1− 1

1+


s∑
j=1

Tj

(
nj

1−nj

)λ
s∑
j=1

Tj



1
λ

,1− 1

1+


s∑
j=1

Tj

(
1−pj
pj

)λ
s∑
j=1

Tj



1
λ

,1− 1

1+


s∑
j=1

Tj

(
1−qj
qj

)λ
s∑
j=1

Tj



1
λ

〉
.

holds for all s ∈ N.

Theorem 5.3. The QSVNDPA operator s1 satisfies the following properties:

(i) Consistency: s1(γ1, γ2, . . . , γl) ∈ QNN .

(ii) Idempotency: s1(γ, l times . . . , γ) = γ.

(iii) Commutativity: s1(γ1, γ2, . . . , γl) = s1(γl, γl−1, . . . , γ1).

(iv) s1(γπ(1), γπ(2), . . . , γπ(l)) = s1(γ1, γ2, . . . , γl) where π is a permutation on {1, 2, . . . , l}.

Proof. The basic two properties of QSVNDPA operator i.e. consistency and commutativity

properties are quite easy. We will prove the property (ii) and (iv) respectively. If γj = γ ∀ j
K. Sinha, P. Majumdar, S. Broumi MADM technique using prioritized operator

Neutrosophic Sets and Systems, Vol. 48, 2022                                                                               448



then

s1(γ, l times . . . , γ) =
s⊕
j=1

 Tjγj
s∑
j=1

Tj

 =
s⊕
j=1

 Tj
s∑
j=1

Tj

 γ = γ.

Finally consider π as a permutation on {1, 2, . . . , l}. Now due to additive commutativity in

QNN

s1(γπ(1), γπ(2), . . . , γπ(s)) =
s⊕
j=1

Tπ(j)γπ(j)s∑
j=1

Tπ(j)

 =
s⊕
j=1

 Tjγj
s∑
j=1

Tj

 .

Hence we are done.

Theorem 5.4. Consider γj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l) and δj = 〈m̃j , ñj , p̃j , q̃j〉 (j =

1, 2, . . . , l) are two collections on QNN such that mj ≤ m̃j , nj ≤ ñj , pj ≥ p̃j , qj ≥ q̃j∀j. Then

s1(γ1, γ2, . . . , γl) ≤ s1(δ1, δ2, . . . , δl).

Proof. Here,

s1(γ1, γ2, . . . , γl) =
l⊕

j=1

 Tjγj
l∑

j=1
Tj


=

〈
1− 1

1+


l∑

j=1

Tj

(
mj

1−mj

)λ
l∑

j=1
Tj



1
λ

,1− 1

1+


l∑

j=1

Tj

(
nj

1−nj

)λ
l∑

j=1
Tj



1
λ

,1− 1

1+


l∑

j=1

Tj

(
1−pj
pj

)λ
l∑

j=1
Tj



1
λ

,1− 1

1+


l∑

j=1

Tj

(
1−qj
qj

)λ
l∑

j=1
Tj



1
λ

〉
.

s1(δ1, δ2, . . . , δl) =
l⊕

j=1

 Tjδj
l∑

j=1
Tj


=

〈
1− 1

1+


l∑

j=1

Tj

(
m̃j

1−m̃j

)λ
l∑

j=1
Tj



1
λ

,1− 1

1+


l∑

j=1

Tj

(
ñj

1−ñj

)λ
l∑

j=1
Tj



1
λ

,1− 1

1+


l∑

j=1

Tj

(
1−p̃j
p̃j

)λ
l∑

j=1
Tj



1
λ

,1− 1

1+


l∑

j=1

Tj

(
1−q̃j
q̃j

)λ
l∑

j=1
Tj



1
λ

〉
.

Firstly we consider that mj < m̃j , nj < ñj , pj > p̃j , qj > q̃j∀j ∈ {1, . . . , l}. Then

1−mj > 1− m̃j ∀j ∈ {1, . . . , l}

⇒
(
1−mj
mj

)
>
(
1−m̃j
m̃j

)
⇒ Tj

(
mj

1−mj

)λ
< Tj

(
m̃j

1−m̃j

)λ
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⇒ 1

1+


l∑

j=1

Tj

(
mj

1−mj

)λ
l∑

j=1
Tj


1
λ
> 1

1+


l∑

j=1

Tj

(
m̃j

1−m̃j

)λ
l∑

j=1
Tj


1
λ

⇒ 1− 1

1+


l∑

j=1

Tj

(
mj

1−mj

)λ
l∑

j=1
Tj


1
λ
< 1− 1

1+


l∑

j=1

Tj

(
m̃j

1−m̃j

)λ
l∑

j=1
Tj


1
λ

In a same way we can observe that

⇒ 1

1+


l∑

j=1

Tj

(
nj

1−nj

)λ
l∑

j=1
Tj


1
λ
> 1

1+


l∑

j=1

Tj

(
ñj

1−ñj

)λ
l∑

j=1
Tj


1
λ

⇒ 1

1+


l∑

j=1

Tj

(
1−pj
pj

)λ
l∑

j=1
Tj


1
λ
> 1

1+


l∑

j=1

Tj

(
1−p̃j
p̃j

)λ
l∑

j=1
Tj


1
λ

⇒ 1

1+


l∑

j=1

Tj

(
1−qj
qj

)λ
l∑

j=1
Tj


1
λ
> 1

1+


l∑

j=1

Tj

(
1−q̃j
q̃j

)λ
l∑

j=1
Tj


1
λ

Combining all the above we get s1(γ1, γ2, . . . , γl) < s1(δ1, δ2, . . . , δl). Now if mj = m̃j , nj =

ñj , pj = p̃j , qj = q̃j ∀j ∈ {1, . . . , l}, then all the equalities as well as the score functions become

equal. Finally s1(γ1, γ2, . . . , γl) ≤ s1(δ1, δ2, . . . , δl).

Theorem 5.5. Consider a collection of γj = 〈mj , nj , pj , qj〉, j ∈ N in QNN . Then

γ ≤ s1(γ1, γ2, . . . , γl) ≤ γ,where

γ = 〈min
j

(mj),min
j

(nj),min
j

(pj),min
j

(qj)〉 = 〈mj , nj , pj , qj〉 and

γ = 〈max
j

(mj),max
j

(nj),max
j

(pj),max
j

(qj)〉 = 〈mj , nj , pj , qj〉.

Proof. From Definition of QNN we have ∀j = {1, 2, . . . , l},

mj ≤ mj ≤ mj , nj ≤ nj ≤ nj and

pj ≥ pj ≥ pj , qj ≥ qj ≥ qj .

Then

s(γ, l times, γ) ≤ s(γ1, γ2, . . . , γl) ≤ s(γ, l times, γ), i.e

γ ≤ s(γ1, γ2, . . . , γl) ≤ γ.
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Definition 5.6. Consider the mass associated with γj as Mj > 0 ∀ j = 1, . . . , l, where M =

(M1,M2, . . . ,Ml)
T is the mass vector such that

l∑
j=1

Mj = 1. Then the QSVNWDPA (QSVN

weighted DPA) can be defined as follows:

sM (γ1, γ2, . . . , γl) =
l⊕

j=1

 MjTj
l∑

j=1
MjTj

γj



where Tj =
j−1∏
k=1

S(γk) (k = 1, 2, . . . , l), T1 = 1 and S(γj) =
3+mj+nj−pj−qj

4

Definition 5.7. Suppose γj = 〈mj , nj , pj , qj〉, (j = 1, 2, . . . , l) be a collection on QNN . Then

a QSVNDPA operator s1 of dimension l can be written as follows

s1(γ1, γ2, . . . , γl) =
l⊕

j=1

 Tjγj
l∑

j=1
Tj


Now if Tj = 1

l ∀ j then

s1(γ1, γ2, . . . , γl) =
1

l

l⊕
j=1

γj .

is called average QSVNDPA operator of γj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l).

Definition 5.8. Let γj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l) be a collection on QNN . A QSVN

Dombi prioritized geometric (QSVNDPG) operator of dimension l is a function s2 : QNN l →
QNN defined by:

s2(γ1, γ2, . . . , γl) =
l⊙

j=1

γ

Tj
l∑

j=1
Tj

j

where Tj =
j−1∏
k=1

S(γk) (k = 1, 2, . . . , l), T1 = 1 and S(γj) =
3+mj+nj−pj−qj

4 .

Theorem 5.9. Suppose γj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l) be a collection on QNN . Then

s2(γ1, γ2, . . . , γl) =
l⊙

j=1
γ

Tj
l∑

j=1
Tj

j

=

〈
1− 1

1+


l∑

j=1

Tj

(
1−mj
mj

)λ
l∑

j=1
Tj



1
λ

,1− 1

1+


l∑

j=1

Tj

(
1−nj
nj

)λ
l∑

j=1
Tj



1
λ

,1− 1

1+


l∑

j=1

Tj

(
pj

1−pj

)λ
l∑

j=1
Tj



1
λ

,1− 1

1+


l∑

j=1

Tj

(
qj

1−qj

)λ
l∑

j=1
Tj



1
λ

〉
.
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Proof. The above theorem can be proved using the same proof procedure of Theorem 5.2.

Theorem 5.10. The QSVNDPG operator s2 satisfies properties as defined below:

(i) Consistency: s2(γ1, γ2, . . . , γl) ∈ QNN .

(ii) Idempotency: s2(γ, l times . . . , γ) = γ.

(iii) Commutativity: s2(γ1, γ2, . . . , γl) = s2(γl, γl−1, . . . , γ1).

(iv) s2(γπ(1), γπ(2), . . . , γπ(l)) = s2(γ1, γ2, . . . , γl) where π is a permutation on {1, 2, . . . , l}.

Proof. We have omitted it due to similarity with Theorem 5.3.

Theorem 5.11. Consider γj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l) and γ̃j = 〈m̃j , ñj , p̃j , q̃j〉 (j =

1, 2, . . . , l) are two collections on QNN such that mj ≤ m̃j , nj ≤ ñj , pj ≥ p̃j , qj ≥ q̃j∀j. Then

s2(γ1, γ2, . . . , γl) ≤ s2(γ̃1, γ̃2, . . . , γ̃l).

Proof. Here the proof is similar with Theorem 5.4, hence we have omitted it.

Theorem 5.12. Consider a collection of γj = 〈mj , nj , pj , qj〉, j = 1, 2, . . . , l in QNN . Then

γ ≤ s2(γ1, γ2, . . . , γl) ≤ γ,where

γ = 〈min
j

(mj),min
j

(nj),min
j

(pj),min
j

(qj)〉 = 〈mj , nj , pj , qj〉 and

γ = 〈max
j

(mj),max
j

(nj),max
j

(pj),max
j

(qj)〉 = 〈mj , nj , pj , qj〉.

Proof. Again proof is not done due to its similarity with Theorem 5.5.

Definition 5.13. Suppose γj = 〈mj , nj , pj , qj〉, (j = 1, 2, . . . , l) be a collection on QNN .

Then a QSVNDPG operator s2 of dimension l can be written as follows:

s2(γ1, γ2, . . . , γl) =

l⊙
j=1

γ

Tj
l∑

j=1
Tj

j .

If Tj = 1
l ∀ j ∈ {1, 2, . . . , l} then

s2(γ1, γ2, . . . , γl) = (

l⊙
j=1

γj)
1
l .

is called average QSVNDPG operator of γj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l).
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Definition 5.14. Consider the mass associated with γj as Mj > 0 ∀ j = 1, . . . , l, where

M = (M1,M2, . . . ,Ml)
T is the mass vector such that

l∑
j=1

Mj = 1. Then the QSVNWDPG

(SVN weighted DPG) can be defined as follows:

sM(γ1, γ2, . . . , γl) =

l⊙
j=1

γ

MjTj
l∑

j=1
MjTj

j ,

where Tj =
j−1∏
k=1

S(γk)(k = 1, 2, . . . , l), T1 = 1 and S(γj) =
3+mj+nj−pj−qj

4

6. An application in MADM of QSVNWDPA and QSVNWDPG operator

For smooth understanding of QSVN operators it is better to apply our operators in MADM

problems. Without a real life application any researcher cannot get any interest of studying

this. In this regard we have tried to formulate a real life problem with the help of QSVNWDPA

and QSVNWDPG operator. Suppose Govt of India wants to stop the spread of the second

wave of Covid-19 virus. For this reason Govt of India has 4 ways of lockdown process in their

policy i.e. L1: Complete lockdown , L2: Statewise lockdown, L3: District wise lockdown , L4:

Specific area wise lockdown. However there are four attributes Aj , j =, 2, 3, 4 which are to be

considered for choosing a particular process i.e. (A1) : the economic growth of the country,

(A2) : the migrant workers, (A3): The small industry (A4): The poor people. In order to get

a suitable choice Li after consideration of all attributes Aj we have represented these MADM

problems in the form of a decision making matrix D(lij) on QNN as following:

D(lij) =


〈0.4, 0.6, 0.2, 0.3〉 〈0.4, 0.8, 0.7, 0.9〉 〈0.5, 0.6, 0.4, 0.2〉 〈0.1, 0.5, 0.2, 0.3〉
〈0.7, 0.5, 0.7, 0.6〉 〈0.2, 0.8, 0.3, 0.5〉 〈0.6, 0.6, 0.1, 0.4〉 〈0.3, 0.4, 0.5, 0.1〉
〈0.8, 0.5, 0.4, 0.6〉 〈0.3, 0.6, 0.1, 0.4〉 〈0.2, 0.5, 0.5, 0.3〉 〈0.6, 0.6, 0.2, 0.1〉
〈0, 7, 0.1, 0.6, 0.9〉 〈0.8, 0.3, 0.4, 0.6〉 〈0.5, 0.2, 0.8, 0.6〉 〈0.6, 0.4, 0.4, 0.9〉

 .
Case-I: Firstly we take the help of QSVNWDPA operator to find out a possible way out of

our MADM. Here we take λ = 1,M = (0.4, 0.3, 0.2, 0.1) and derive the collection of QSVNs

say Li to find suitable way out among Li(i = 1, 2, 3, 4) by the help of Definition 5.1 as follows:

s1(L1) = 〈0.473, 0.712, 0.731, 0.673〉

s1(L2) = 〈0.639, 0.682, 0.716, 0.6324〉

s1(L3) = 〈0.702, 0.578, 0.798, 0.654〉

s1(L4) = 〈0.806, 0.406, 0.171, 0.615〉.

Based on the Definition 3.1 the scores are as follows:

S(L1) = 0.69525, S(L2) = 0.74335, S(L3) = 0.70694, S(L4) = 0.8567.
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From above we have the priority order of lockdown process as L4 > L2 > L3 > L1. .

Case-II: Secondly we take the help of QSVNWDPG operator to find out a possible solution

to our problem. Again we take λ = 1,M = (0.4, 0.3, 0.2, 0.1) and derive the collective QSVNs

Li with the help of Definition 5.8 as follows:

s2(L1) = 〈0.616, 0.434, 0.568, 0.769〉

s2(L2) = 〈0.649, 0.518, 0.625, 0.586〉

s2(L3) = 〈0.631, 0.518, 0.461, 0.542〉

s2(L4) = 〈0.676, 0.873, 0.735, 0.919〉.

Based on the Definition 3.1 the scores are as follows:

S(L1) = 0.6779, S(L2) = 0.7378, S(L3) = 0.786, S(L4) = 0.724.

According to obtained scores, the priority order of lockdown process is L3 > L2 > L4 > L1.

6.1. Sensitivity analysis

In this section we have done a sensitivity analysis based on our method. For this purpose

we have change the value of our parameter λ in an increasing manner starting from 0.2 to 1

with an increment 0.2. For both the operators i.e. QSVNWDPA and QSVNWDPG operator

the following results are obtained. Tabular representation in case of QSVNWDPA operator

λ S(L1), S(L2), S(L3), S(L4)

0.2 0.583, 0.643, 0.616, 0.677

0.4 0.549, 0.632, 0.607, 0.658

0.6 0.536, 0.617, 0.594, 0.634

0.8 0.493, 0.536, 0.511, 0.577

1.0 0.462, 0.514, 0.473, 0.543

Result: L4 > L2 > L3 > L1. Tabular representation in case of QSVNWDPG operator:

λ S(L1), S(L2), S(L3), S(L4)

0.2 0.613, 0.649, 0.677, 0.627

0.4 0.553, 0.625, 0.652, 0.586

0.6 0.497, 0.531, 0.568, 0.519

0.8 0.468, 0.511, 0.547, 0.487

1.0 0.421, 0.473, 0.489, 0.445

Result: L3 > L2 > L4 > L1. Considering all the above cases we observed that the priority

order of lockdown process remains unaltered irrespective of the values of λ. According to us

that either specific area wise lockdown or district wise lock down will be the suitable process

against the spread of corona virus second wave in India. But in all the above cases complete
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lockdown will not be proffered. The above procedure help our Government to choose a multi-

solution based on the current situation at that time.

7. Conclusion

Benlap introduced the four valued logic in [1] and applied it in different areas. The QSVN

sets are developed on Benlap’s Model and they are very good in modeling uncertainty because

they can single handedly tackle consistent, inconsistent, vague etc. information. Based on the

QSVN set, QNN is introduced in 2019. In this article two prioritized aggregation operators

i.e. QSVNWDPA and QSVNWDPG operator based on Dombi operations on QNN sets are

studied. These aggregation operators are better than other available aggregation operators

because they have combined effects of neutrosophy, four valued logic and the power of Dombi.

We have also added weights in our operators to add flexibility in them. We have also shown

the applicability of our operators by solving a MADM problem where we have utilized the

score functions of QNN to finding the order of priority of different parameters. In future

one can develop more advanced type of operators on QNN and apply them to solve real life

MADM problems.
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Abstract: The purpose of this paper is to put forward the basics results of complex fuzzy sets (CFSs) 

such as union, intersection, complement, product into complex neutrosophic sets because as the 

CFSs and complex intuitionistics sets does give the erroneous and inconvenient information about 

uncertainty and periodicity and also there are results related to different norms. Moreover we give 

some results about the distance measures of complex neutrosophic sets and define some notions. 

Keywords: CFSs, complex neutrosophic sets, distance measures,  delta-equalities. 
 

 

1. Introduction 

Lotfi A. Zadeh [19] introduced a fuzzy set (FS) in 1965. FS was designed to manipulate ambiguity, 

fuzziness, vagueness, crispness, and uncertainty in different aspects of life.  It has great 

significance in the field of genetic algorithm in chemical industry. 

Krassimir Atanassov [3] generalized the concept of L. A. Zadeh and introduced an intuitionistic 

fuzzy set (IFS) in which instead of the truth function of each element there is also the falsehood 

function. It indicates that statement can be true or false, yes or no, right or wrong, feasible or not. 

De et al., [6] in    use the idea of a fuzzy set for modeling in real life problems, like marketing, 

psychological investigations, and determination of diagnosis [16] etc. IFS has great significance in 

career determination. In IFS the concept of distance measure also introduced but there was a 

problem to deal when both the informations contain uncertainties of yes and no at a time and at a 

time neither yes nor no. Thus F. Smarandache [15] gave the solution of this problem by introducing 

new FS called a neutrosophic fuzzy set (NFS) which is a framework for unification of a FS and an 

IFS or it is a bridge between FS and IFS. Neutrosophy is the philosophys branch, in which we deal 

with the scope, nature, and origin of neutral along with ideational spectra. Neutrosophy has a great 

engineering application like in medicine, military, airspace, cybernetics etc. A neutrosophic set is 

that which contain truth function   , indeterministic function    and falsehood function   . 
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A neutrosophic fuzzy set yields three type of chances like win, lose, draw or accept, reject, pending 

or positive, negative, zero etc. NS is the extension of some FSs like interval valued fuzzy sets 

(IVFSs) [16], conventional FSs [19], paradoxist sets [15] and IFS [3]. Wang et al., [17] gave more 

information about NS by presenting the single valued NS which has a lot of application in 

engineering and social problems and have additional benefit to interpret vagueness, crispness, and 

uncertainty. For more details about neutrosophic sets one can refer [1], [7], [9], [10], [11] and [14]. 

After that Ramot et al., [12] gave the idea of a complex fuzzy set (CFS) for handling problems 

having amplitude term where the complex mapping is used a instead of real valued mapping and 

is defined as 

 ,   

where amplitude term    and phase term    are the real valued function having the 

range   , and the range of    is expanded to a circle of radius 1. In a CFS amplitude 

term conserve the crispness idea together with the phase term which declare the periodicity in a 

CFS. The phase term makes it different from conventional fuzzy set [19], IFSs [3], and cubic set 

because it gives constructive and destructive interference which concludes that a complex fuzzy set 

has wavelike character. G. Zhang et al., [12] defined several important properties in complex fuzzy 

sets like union, intersection, complement, product, some norms like quasi-triangular norm, s-norm, 

t-norm etc. 

After this Alkouri and Saleh [2] extended a CFS into a complex intuitionistic set and it contains 

complex valued truth function together with the complex valued falsehood function. They differ 

the idea of a FS in a way such that an IFS have two phase terms instead of one. F. Smarandache 

introduced a complex neutrosophic set (CNS) which contains truth function , indeterministic 

function  and falsehood function  having the range is extended to unit circle. CNSs contain 

amplitude terms together with the three phase terms and can work with information containing 

uncertainties, crispness and vagueness in periodicity. 

Pappis [pappis] for the first time worked on the concept of proximity measure and approximately 

equal fuzzy set whose work was generalized by Hong and Hwang [hong]. Later on Cai [cai],[4] felt 

that both were using the same concept so he changed that approach and expressed as special 

measure is used for defining  . Two FSs A and B  are called    if 

they are  part away. Zhang et al. [18] used this concept of    for applications 

in signal processing which certify  of CFSs practically. 

We are extending the work of G. Zhang et al., [18] from CFSs into complex neutrosophic sets and 

investigate some useful results. 

 Definition CNS S is defined on a X, distinguished by degree of truth , indeterminate function and falsehood 

function respectively. The truth function, indeterminate function and falsehood function are defined as 

 

 
 

where  represents a FS and  is any real function. Similarly for indeterminacy and falsity 

  &  and   , such that 

 

CNS S is defined to be  
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 Definition  1  A function       is a quasi-triangular norm  T   if 

following holds: 

      

      

      whenever,    

      

   A function       is a triangular norm    if it satisfies previous  

  conditions together with 

      

   A function       is s-norm if it satisfies triangular norm's conditions 

together with 

      

   A function       is t-norm if it satisfies triangular norm's conditions 

together with 

 vii     

 Definition The union for CNSs is defined as: Assume 

 

 

 

be the complex neutrosophic sets on  such that 
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be complex valued truth, indeterminate and falsehood functions respectively, then union of    and    

be represented as 

 

 

where          are defined as 

 

 

 
 

where    represent the max operator and    represent min operator. 

 

 Proposition. The complex neutrosophic union is s-norm. 

 Proof Here we prove only    properties because others are quite easy 

 iii  Let 

 

 

 

 

be the complex neutrosophic sets on    such that 

 

 

 
 

we suppose that 

 

 

 

Thus 

 

 

Similarly 

 

 

 

 

Also 

 



Neutrosophic Sets and Systems, Vol. 48, 2022     461  

 

 
Madad Khan, Saima Anis, Sohail Iqbal, Fatima Shams and Seok-Zun Song, Norms and Delta-Equalities of Complex 
Neutrosophic Sets 

 

 

 

 iv  

Let 

 

 

 

 

be the complex neutrosophic sets on  , such that 

 

 

 
 

Therefore 

 

 

 

 

 

 

 

Following the same procedure we can prove for indeterminacy and falsehood functions. 

 Corollary Let    and 

 

 

Then    Thus 
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 Proof It is trivial. 

 Definition The intersection of CNSs is defined as 

Let 

 

 

 

be CNSs on    such that 

 

 
 

is represented as 

 

 

where          are defined as 

 

 

 
 

where    is a maximum operator &    is a minimum operator. 

 Proposition If    and    are CNSs on   Then    

 Proof For membership function 
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For indeterminacy function 

 

 

 

 
 

Similarly we can prove for falsehood function. 

 Proposition The complex neutrosophic intersection on  X   is t-norm. 

 Proof Here we prove only  iii& iv  properties because others are quite easy 

 iii  Let 

 

 

 

 be the complex neutrosophic sets on  X   such that 

 

 

 
 

Now we suppose 

 

 

 

Thus 

 

 

Similarly 
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Likewise 

 

 

 

 

 iv  Let 

 

 

 

 

be complex neutrosophic sets on  X   such that 
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Following the same procedure we can prove for indeterminacy and falsehood functions. 

 Corollary Let    and 
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 Proof It is trivial. 

 Corollary Let   and 

 

 

 where  I1  and  I2   are arbitrary index sets. Then      . Then  
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 Proof It is trivial. 

 Definition The product of CNSs is defined as 

Let 

 

 

 

be complex valued NSs such that 

 

 
 

is denoted as 

 

 

where          are defined as 

 

 

 

 

 Proposition The complex neutrosophic product on    is t-norm. 

 Proof Here we prove only    properties because others are quite easy 

 iii  Let 

 

 

 

 

be the CNSs on  X   such that 
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Thus 

 

 

Similarly 

 

 

 

Likewise 

 

 

 

 

 iv  Let 

 

 

 

 

be complex neutrosophic sets on  X   such that 

 

 

 

 

We have 
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Following the same procedure we can prove for indeterminacy and falsehood functions. 

 Corollary Let    and  

 

 

Then    Thus 

 

 

 

 

 Proof It is trivial. 

 Definition Let  An   be  N   CNSs on  X      and  

 

 The Cartesian product of  An  , denoted as    defined as 

 

 

 

Similarly 

 

 

 

and 

 

 

 

where    

 Delta-equalities of Complex Neutrosophic Sets 

 Definition The distance of CNS is a function    such that for any    

 

 

 

 

where    is defined as 
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 Definition Let  

 

 

 

be the complex neutrosophic sets on    such that 

 

 

 

be complex valued truth, indeterminate and falsehood functions respectively. Then    and    are said to 

be    if and only if    where    which is denoted by    

 Lemma Let  

 

 

then the following results hold, 

 1     for all    

 2     for all    

 3     for all    

 4     for all    

 5     for all    

 6     for all    

 Proof It is trivial. 

 Lemma  For the complex valued bounded function  f,    g   on a set  X.   We have 
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 Theorem If    and   , then   . 

 Proof  

 

 

 

 

 

Therefore 

 

 

 

 
 

 
 

 

 

 

 

 
 

For membership function 
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therefore 
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therefore 

 

 

 

Thus if  

 

 

We have 

 

 

 ii  Similarly for the case 

 



Neutrosophic Sets and Systems, Vol. 48, 2022     472  

 

 
Madad Khan, Saima Anis, Sohail Iqbal, Fatima Shams and Seok-Zun Song, Norms and Delta-Equalities of Complex 
Neutrosophic Sets 

 

Now if    and    thus 

 

 

 

On same steps we can prove for indeterminacy function and falsehood function, likewise 

 

 
 

 

 

 

 

 

 

 i  Consider the case    and    

 1    ,then    from   , 

therefore 

 

 
 

 2     then    from   , 

therefore 
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Thus if  

 

 

We have 

 
 

 ii  Similarly for the case 

 
 

Now if    and    thus 

 
 

On same steps we can prove for indeterminacy function and falsehood function, likewise 

 

 

 
 

Thus    

 Corollary  

If   then    

 Proof Using lemma mod sup less or equal inf mod, we get 
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 Theorem If    and   , then    

 Proof By use of previous theorem a complement equals del b complement, we have 

 

 

 
 

Thus 
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 Corollary  If    where I is an index set, then    

 Proof From above corollary union alpha equals inf union beta, we have 

 
 

 

 

 
 

Thus 

 

 
 

 Corollary If   where I1 and    are index sets, then 

 

 
 

 Proof By using corollary union alpha equals inf union beta and intersection alpha equals inf 

intersection beta we can easily prove it. 

 Theorem  If    and   , then    

 Proof As    and    so we have 

 



Neutrosophic Sets and Systems, Vol. 48, 2022     477  

 

 
Madad Khan, Saima Anis, Sohail Iqbal, Fatima Shams and Seok-Zun Song, Norms and Delta-Equalities of Complex 
Neutrosophic Sets 

 

 

 

 

 

Therefore 

 
 

 
 

 
 

 
 

 
 

 
 

We have, 

 

 

 



Neutrosophic Sets and Systems, Vol. 48, 2022     478  

 

 
Madad Khan, Saima Anis, Sohail Iqbal, Fatima Shams and Seok-Zun Song, Norms and Delta-Equalities of Complex 
Neutrosophic Sets 

 

 

 
 

 
 



Neutrosophic Sets and Systems, Vol. 48, 2022     479  

 

 
Madad Khan, Saima Anis, Sohail Iqbal, Fatima Shams and Seok-Zun Song, Norms and Delta-Equalities of Complex 
Neutrosophic Sets 

 
 

 

 

 

 

As    so   . 

 Corollary         , where I is an index set, then  

 . 

 Proof It follows from theorem AB equal delta AB. 

 Theorem If       then    

 Proof As   . Therefore  
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Then by lemma mod sup less or equal inf mod 
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 Conclusion We worked on basic operations of CNSs. First we discussed some properties like union, 

intersection, complement, Cartesian product and investigated some results related to norms. Moreover we 

worked on the distance measures which are used to defined   equalities of CNSs. Some results such as 

union, intersection, complement, product on   equality also presented. We hope that the theory 

developed in this paper can be used in computing, data analysis, socio economic problems, medical diagnosis 

and other problems related to Decision Analysis. 
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Abstract: We recall and improve our 2019 and 2020 concepts of n-SuperHyperGraph, Plithogenic n-

SuperHyperGraph, n-Power Set of a Set, and we present some application from the real world. The n-

SuperHyperGraph is the most general form of graph today and it is able to describe the complex 

reality we live in, by using n-SuperVertices (groups of groups of groups etc.) and n-

SuperHyperEdges (edges connecting groups of groups of groups etc.). 

Keywords: n-SuperHyperGraph (n-SHG), n-SHG-vertex, n-SHG-edge, Plithogenic (Crisp, Fuzzy, 

Intuitionistic Fuzzy, Neutrosophic, etc.) n-SuperHyperGraph, n-Power Set of a Set, MultiEdge, 

Loop, Indeterminate Vertex, Null Vertex, Indeterminate Edge, Null Edge, Neutrosophic Directed 

Graph 

1. Definition of the n-SuperHyperGraph

Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑚}, for 1 ≤ 𝑚 ≤ ∞, be a set of vertices, that contains Single Vertices (the 

classical ones), Indeterminate Vertices (unclear, vague, partially known), and Null Vertices (totally 

unknown, empty). 

Let 𝑃(𝑉) pe the power of set 𝑉, that includes the empty set  too. 

Then 𝑃𝑛(𝑉) be the 𝑛-power set of the set 𝑉, defined in a recurent way, i.e.: 

P(V), 𝑃2(𝑉) = 𝑃(𝑃(𝑉)), 𝑃3(𝑉) = 𝑃(𝑃2(𝑉)) = 𝑃 (𝑃(𝑃(𝑉))), …, 

𝑃𝑛(𝑉) = 𝑃(𝑃𝑛−1(𝑉)), for 1 ≤ 𝑛 ≤ ∞, where by definition
0( )

def

P V V . 

Then, the n-SuperHyperGraph (n-SHG) is an ordered pair: 

n-SHG = (𝐺𝑛 , 𝐸𝑛), 

where 𝐺𝑛 ⊆ 𝑃𝑛(𝑉), and 𝐸𝑛 ⊆ 𝑃𝑛(𝑉), for 1 ≤ 𝑛 ≤ ∞.

𝐺𝑛 is the set of vertices, and 𝐸𝑛 is the set of edges. 

The set of vertices 𝐺𝑛 contains the following types of vertices: 

 Singles Vertices (the classical ones);

 Indeterminate Vertices (unclear, vagues, partially unkwnown);

 Null Vertices (totally unknown, empty);

and: 

 SuperVertex (or SubsetVertex), i.e. two ore more (single, indeterminate, or null) vertices

put together as a group (organization).

 n-SuperVertex that is a collection of many vertices such that at least one is a (𝑛 − 1)-

SuperVertex and all other 𝑟-SuperVertices into the collection, if any, have the order 𝑟 ≤

𝑛 − 1.

 The set of edges 𝐸𝑛 contains the following types of edges:

 Singles Edges (the classical ones);
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 Indeterminate Edges (unclear, vagues, partially unkwnown);

 Null Edges (totally unknown, empty);

and: 

 HyperEdge (connecting three or more single vertices);

 SuperEdge (connecting two vertices, at least one of them being a SuperVertex);

 𝑛-SuperEdge (connecting two vertices, at least one being a 𝑛-SuperVertex, and the other

of order 𝑟-SuperVertex, with 𝑟 ≤ 𝑛);

 SuperHyperEdge (connecting three or more vertices, at least one being a SuperVertex);

 𝑛 -SuperHyperEdge (connecting three or more vertices, at least one being a 𝑛 -

SuperVertex, and the other 𝑟-SuperVertices with 𝑟 ≤ 𝑛;

 MultiEdges (two or more edges connecting the same two vertices);

 Loop (and edge that connects an element with itself).

and: 

 Directed Graph (classical one);

 Undirected Grpah (classical one);

 Neutrosophic Directed Graph (partially directed, partially undirected, partially

indeterminate direction).

2. SuperHyperGraph

When n = 1 we call the 1-SuperHyperGraph simply SuperHyperGraph, because only the first 

power set of V is used, P(V).  

3. Examples of 2-SuperHyperGraph, SuperVertex, IndeterminateVertex, SingleEdge,

Indeterminate Edge, HyperEdge, SuperEdge, MultiEdge, 2-SuperHyperEdge [2] 

IE7, 8 is an Indeterminate Edge between single vertices V7 and V8, since the connecting 

curve is dotted; 

IV9 is an Indeterminate Vertex (since the dot is not filled in); 

while ME5,6 is a MultiEdge (double edge in this case) between single vertices V5 and V6. 
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4. Types of n-SuperHyperGraphs

The attributes values degrees of appurtenance of a vertex or an edge to the graph may be:  crisp 

/ fuzzy / intuitionistic fuzzy / picture fuzzy / spherical fuzzy / etc. / neutrosophic / refined 

neutrosophic / degrees with respect to  each n-SHG-vertex and to each n-SHG-edge respectively. 

For example, one has: 

5. Plithogenic n-SuperHyperGraph

We recall the Plithogenic n-SuperHyperGraph. 

A Plithogenic n-SuperHyperGraph (n-PSHG) is a n-SuperHyperGraph whose each n-SHG-vertex 

and each n-SHG-edge are characterized by many distinct attributes values  (a1, a2, …, ap), p ≥ 1. 

Therefore one gets n-SHG-vertex(a1, a2, …, ap) and n-SHG-edge(a1, a2, …, ap). 

6. Plithogenic Fuzzy-n-SHG-vertex (a1(t1), a2(t2), …, ap(tp))

and Fuzzy-n-SHG-edge(a1(t1), a2(t2), …, ap(tp)); 

7. Plithogenic Intuitionistic Fuzzy-n-SHG-vertex (a1(t1, f1), a2(t2, f2), …, ap(tp, fp))

and Intuitionistic Fuzzy-n-SHG-edge(a1(t1, f1), a2(t2, f2), …, ap(tp, fp)); 

8. Plithogenic Neutrosophic-n-SHG-vertex (a1(t1, i1, f1), a2(t2, i2, f2), …, ap(tp, ip, fp))

and Neutrosophic-n-SHG-edge (a1(t1, i1, f1), a2(t2, i2, f2), …, ap(tp, ip, fp)); 

etc. 

Whence in general we get: 

9. The Plithogenic (Crisp / Fuzzy / Intuitionistic Fuzzy / Picture Fuzzy / Spherical Fuzzy / etc. /

Neutrosophic / Refined Neutrosophic) n-SuperHyperGraph 

10. Conclusions

The n-SuperHyperGraph is the most general for of graph today, designed in order to catch our 

complex real world.  

First, the SuperVertex was introduced in 2019, then the SuperHyperGraph constructed on the 

power set P(V), and further on this was extended to the n-SuperHyperGraph built on the n-power 

set of the power set, Pn(V), in order to overcome the complex groups of individuals and the 

sophisticated connections between them. 
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