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Abstract: To realize the all-around assessment of teaching quality in the context of engineering 

education accreditation, this study proposes a single-valued neutrosophic information entropy and 

a novel assessment method of teaching effectiveness. In this proposed assessment model, an 

optimization model is structured based on the minimum information entropy value of single-valued 

neutrosophic sets (SvNSs). In this study, the primary innovation is that by using the structured 

model, the attribute weights are extracted from the given deterministic information. The main work 

of this study is summarized as follows. Firstly, aiming at the engineering certification problem, this 

study proposes an improved single-value neutrosophic information entropy formula to enhance the 

effectiveness of the engineering certification results. Secondly, this paper establishes an 

optimization model based on the minimum information entropy value and provides a method for 

assigning weight values. Thirdly, this study proposes an improved evaluation method for teaching 

effect, which provides a novel idea for engineering certification. Thereafter, a case study is presented 

to demonstrate the effectiveness and practicality of the proposed model. 

Keywords: single-valued neutrosophic set; single-valued neutrosophic information entropy; 

engineering education certification; student clustering 

 

 

1. Introduction 

Engineering accreditation serves as a globally recognized system for ensuring the quality of 

engineering education, and is essential for achieving international recognition of both engineering 

education and qualifications. The central aspect of engineering certification is to ensure that 

engineering graduates meet industry-recognized standards [1]. In 2016, China formally joined the 

Washington Agreement, introduced advanced results-oriented education concepts, and promoted 

the certification of undergraduate engineering education [2]. However, the current evaluation of 

teaching quality is mainly the evaluation of course achievement degrees, which predominantly test 

the student’s mastery of the course content. The evaluation method is single and subjective, and the 

evaluation of graduation requirement achievement is not comprehensive. In addition, assessment 
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methods to be met for graduation requirements have some problems, such as difficulty in quantifying 

graduation requirements and unscientific assessment methods. Therefore, aiming at the fuzzy and 

uncertain information in the teaching evaluation process, this paper gives an improved information 

entropy function based on the theory of neutrosophic sets. Three evaluation indexes are used to 

comprehensively assess the teaching effectiveness, which provides a novel method for university 

engineering accreditation. 

The accreditation of engineering education programs began in the 1930s as a form of professional 

certification, and has become the most influential certification system in the world. To evaluate 

whether students have met the graduation requirements, scholars typically use the 12 graduation 

requirements outlined in the Washington Accord as a benchmark. Khan et al. [3] took the civil 

engineering major of King Saudi University as an example. They mapped the students' learning 

achievements one by one and established a mapping table of learning achievements and curriculum 

achievements. Jiao et al. [4] established 12 graduation requirements according to the training 

objectives of surveying and mapping engineering professionals in their colleges and universities and 

decomposed each graduation requirement into lots of evaluation indicators. One approach used in 

their study was to calculate the achievement degree of graduation requirements as the minimum 

value among all the evaluation values of the indicators. Qu and Fan [5] constructed an evaluation 

index system based on the network analytic hierarchy process from four aspects: teaching links, 

teacher quality, teaching resources, and teaching preparation. 

Smarandache proposed the concept of neutrosophic sets in 1998 [6]. Neutrosophic sets consist 

of truth-membership degrees, indeterminacy-membership degrees, and falsity-membership degrees, 

which can more clearly express uncertain and inconsistent information. After that, neutrosophic sets 

have received the extensive attention and research of scholars. Ye [7] developed the notion of 

simplified neutrosophic sets, and provided their set relationships and rules for operations. Then, 

single-valued neutrosophic sets (SvNSs) are also widely used in group decision-making problems 

involving multiple attributes. Ye et al. [8] put forward the distance formula of SvNSs and gave a novel 

approach for multi-attribute decision-making based on SvNSs. Aydogdu [9] gave the measurement 

formula of entropy and similarity. Many scholars also combined the neutrosophic set with a variety 

of traditional multiple criteria decision-making methods. Peng et al. [10] introduced new operations 

for simplified neutrosophic numbers and devised a comparison approach based on the existing 

research on intuitionistic fuzzy numbers, and then applied them to the medical field. Peng et al. [11] 

proposed a novel approach to tackle multi-criteria group decision-making problems where weight 

information is unknown, and evaluation values are expressed as probability multi-valued 

neutrosophic numbers. They successfully applied this method to solve the vendor selection problem. 

Ye [12] introduced a novel method for measuring the vector similarity between simplified 

neutrosophic sets and implemented it in the domain of investment and risk management. 

In dealing with process on uncertain information, information measurement is a very important 

content, which has attracted the extensive attention of scholars. Tan et al. [13] introduced the notion 

of hesitant fuzzy index entropy, which enabled the construction of a multi-attribute decision-making 

model based on an entropy weight method. Wei et al. [14] introduced a new model for hesitant fuzzy 

entropy that is based on the mean and variance of hesitation fuzzy elements. Hu et al. [15] proposed 

an alternative hesitation fuzzy entropy model that is derived from the perspective of hesitation fuzzy 

similarity. Xu et al. [16] proposed several measurement formulae for fuzzy entropy and cross entropy 

of hesitation fuzzy sets. Liang et al. [17] constructed a model for multi-attribute decision-making that 

utilized the scoring function and minimum relative entropy principle. In the field of fuzzy decision-

making, Vlachos and Sergiadis [18] presented a discrimination information method for intuitionistic 

fuzzy sets and introduced the concept of cross entropy. Liu et al. [19] proposed three novel formulae 

for probability hesitation fuzzy entropy and provided axiomatic definitions for these measures. They 

applied these measures to solve multi-attribute decision-making problems. 
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To introduce the work efficiently, the following sections of this study are organized as follows. 

Section 2 provides a review of concepts related to SvNSs and introduces an improved single-valued 

neutrosophic information entropy function. Section 3 presents an evaluation model based on single-

valued neutrosophic information entropy and explains how the evaluation mechanism is optimized. 

Section 4 verifies the feasibility of the presented model through an example. Section 5 summarizes 

the full text. The specific research framework is shown in Figure 1. 

 

Research 
Tools

Calculate the number of single valued neutrosophic sets for 
different samples with different attributesStep 1

Determining index weights using the improved Information 
entropy functionStep 2

Calculate the score function of wisdom number in different 
sample singletonsStep 3

K-means cluster analysis was used to determine the different 
rank ranges of the samplesStep 4

Complete a comprehensive assessment of the student based on 
different score functions of the sampleStep 5

Information 
entropy 
function

K-means 
clustering 
analysis

single valued 
neutrosophic 

sets

Score 
function

Research 
Tools

Effective implementation of all-round assessment of teaching quality in the context of engineering education 
accreditation and new engineering disciplines

Research 
Objectives

Single and subjective engineering evaluation method, difficult to quantify evaluation indexes and insufficient 
scientific evaluation methods

Research 
Questions

Model 
Constr
uction

 
Figure 1. Research framework 

2. Preliminary Knowledge  

In this section, the preliminary concepts on SvNSs and single-valued neutrosophic information 

entropy are introduced.  

2.1. Concepts on SvNSs 

Definition 1. If X is a universe set and x is any one element in X, then the SvNS A in X is expressed 

as 𝐴 = {< 𝑥,1(𝑥),  2(𝑥),  3(𝑥) > |𝑥 ∈ 𝑋} [20], where 1(𝑥),  2(𝑥),  3(𝑥)[0, 1] are the truth-

membership degree, the indeterminacy-membership degree, and the falsity-membership degree, 

respectively. Then, the element < 𝑥,1(𝑥),  2(𝑥),  3(𝑥) > in A is simply denoted as the single-

valued neutrosophic number (SvNN) 𝑎 =< 𝛼1, 𝛼2, 𝛼3 >. 

Definition 2. If 𝑎1 =< 𝛼1
1, 𝛼2

1, 𝛼3
1 >  and 𝑎2 =< 𝛼1

2, 𝛼2
2, 𝛼3

2 >  are two SvNNs, then there are the 

following algorithms [21]:  

(1)      1 2 1 2 1 2
1 2 1 1 2 2 3 3= max , ,min , ,min ,a a       ; 

(2)      1 2 1 2 1 2
1 2 1 1 2 2 3 3= min , ,max , ,max ,a a       ; 

(3) 
1 2 1 2 1 2 1 2

1 2 1 1 1 1 2 2 3 3= , , ,a a           ; 

(4) 
1 2 1 2 1 2 1 2 1 2

1 2 1 1 2 2 2 2 3 3 3 3= , , ,a a               ; 

(5)  1 1 1
1 1 2 3= 1 1 ,( ) , ( ) , 0a


        ; 
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(6)    1 1 1
1 1 2 3= ( ) ,1 1 ,1 1 , 0a

 
         ; 

(7) The complement of 1a  is 
1 1 1

1 3 2 1,1 ,ca     . 

2.2 Single-Valued Neutrosophic Information Entropy 

Definition 3. Inspired by the classical hesitant fuzzy entropy function [22] , this study proposes the 

information entropy function of the SvNN. Let 𝑎 =< 𝛼1, 𝛼2, 𝛼3 > be SvNN. According to the 

trigonometric functions, the information entropy function of the SvNN a is represented as 

   

3

1
1

+1 +1
2 sin 2 cos 2

4 4
1

3 2 2

c c

t t t t

t

E a

   
 



  
 
  
 




-

（ ）  .     (1) 

Definition 4. Let 𝑎 =< 𝛼1, 𝛼2, 𝛼3 >  be SvNN, then the single-valued neutrosophic information 

entropy function 𝐸1(𝑎) satisfies the following properties: 

(E1) When 𝛼𝑡 ∈ [0, 0.5] for 𝑡 = 1, 2, 3, the function E1(a) is a monotonic increasing function. When 

𝛼𝑡 ∈ [0.5, 1] for 𝑡 = 1, 2, 3, the function E1(a) is a monotonic decreasing function. 

(E2) When 𝑎 =< 𝛼1, 𝛼2, 𝛼3 > = < 0.5, 0.5, 0.5 >, the function E1(a) has the maximum value. 

(E3) E1(a) = 0 iff 𝑎 is a crisp set. 

(E4) E1(a) = E1(ac). 

Proof: 

First, the following functions are constructed:  

   2 sin 2 cos 2 , 1,2 .
4 4

x x
f x x 

 
    
 

               (2) 

Then  

 
 '( ) cos sin , 1,2 .

4 42 2

df x x x
f x x

dx


 

 
    

 
               (3) 

 
2 2

''

2

( )
( ) sin cos , 1,2 .

4 48 2

d f x x x
f x x

dx


 

  
    

 
              (4) 

Here 𝑥 = |𝑎𝑡 − (𝑎𝑡)𝑐| + 1 for t = 1, 2, 3. When 𝑥 ∈ [1, 2], 𝑓′(𝑥) is always less than or equal to 0, 

then 𝑓(𝑥)  is a monotone decreasing function. Therefore, if 𝑥 = 1 , |𝑎𝑡 − (𝑎𝑡)𝑐| = 0, and 𝑎𝑡 = 0.5,

𝑓(𝑥)  takes the maximum value 𝑓𝑚𝑎𝑥(𝑥) =2−√2  and 𝐸1(𝑎) = 1.  If and only if 𝑥 = 2 and |𝑎𝑡 −

(𝑎𝑡)𝑐| = 1 , it is clear that 𝑎𝑡  = 0 or  1. Then 𝑓(𝑥)  takes the minimum value 𝑓𝑚𝑖𝑛(𝑥) = 0,  i.e, 

𝐸1(𝑎) =0. When the 𝛼𝑡 ∈ [0, 0.5] for 𝑡 = 1, 2, 3, the function E1(a) is a monotonic increasing function. 

When the 𝛼𝑡 ∈ [0.5, 1]  for 𝑡 = 1, 2, 3,  the function 𝐸(𝑎)  is a monotonic decreasing function. 

Therefore, (E1) is obtained. 

When 𝑥 = 1  and 𝑎 = 𝑎𝑐 = < 0.5, 0.5, 0.5 > , there is |𝑎𝑡 − (𝑎𝑡)𝑐| = 0 (𝑡 = 1, 2, 3) . Then, the 

information entropy E1(a) has the maximum value. Therefore, (E2) is obtained. 

When 𝑎 is a crisp set, i.e., |𝑎𝑡 − (𝑎𝑡)𝑐| = 0 (𝑡 = 1, 2, 3) and 𝑥 = 2. It implies that either a = <1, 

0, 0> and 𝑎𝑐 =< 0, 1, 1 >  or 𝑎 = < 0, 0, 1 >  and 𝑎𝑐 = < 1, 1, 0 > , then the information entropy 

value 𝐸1(𝑎) = 0. Obviously, it also gets |𝑎𝑡 − (𝑎𝑡)c| = |(𝑎𝑡)c − 𝑎𝑡| and E1(a) = E1(ac). Therefore, (E3) 

and (E4) are obtained. 
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3. Model Construction  

To improve the evaluation mechanism of colleges and universities, this study proposes three 

evaluation indicators to achieve a comprehensive evaluation of students. In the process of evaluation, 

the graduation requirements of different majors are divided into several indicators, and curriculum 

objectives are set for the indicators of graduation requirements. Each curriculum objective 

corresponds to different graduation indicators. Teachers set exam questions for different graduation 

indicators and course objectives. For the sake of clarity, we use an evaluation sample as an illustration 

of the above correspondence. The corresponding relationship of the sample evaluation bases is 

shown in Table 1.  

In this study, the comprehensive evaluation of college students is regarded as a multi-attribute 

evaluation problem, and all the students in the class are regarded as the evaluation set 𝑋 =

{𝑥1, 𝑥2, ⋯ , 𝑥𝑚}. Then, 𝐶 = {𝑐1, 𝑐2, ⋯ , 𝑐𝑛} is denoted as an attribute indicator set. Through the three 

main attribute indicators, we evaluate the comprehensive quality of students, including the overall 

fulfillment level of the graduation requirements 𝑐1, the achievement degree of curriculum objectives 

𝑐2 and the overall achievement degree 𝑐3. Therefore, the attribute indicator set is denoted as 𝐶 =

{𝑐1, 𝑐2, 𝑐3}, and then the weight vector of the attribute indicator set is specified as 𝜔𝑗 = {𝜔1, 𝜔2 , 𝜔3}, 

where 0 ≤ 𝜔𝑗 ≤ 1, and ∑ 𝜔𝑗 = 13
𝑗=1 . The school evaluates each student according to the SvNN, the 

SvNNs of different students form the SvNN decision matrix 𝐷 = (𝑎𝑖𝑗)𝑚×𝑛 . Since the attribute 

indicators in this evaluation problem are all benefit-based attributes and have no cost-based 

attributes, it is unnecessary to normalize the matrix 𝐷. The evaluation process of the teaching effect 

is as follows. 

Step 1: Calculate the SvNN of different samples. 𝑂𝑖(𝑖 = 1, 2, . . . , 𝑘) is denoted as the original 

score, 𝐺𝑖 is denoted as the achievement degree of each assessment basis, and 𝐺𝑖  is named the total 

achievement degree of the curriculum graduation requirement index.  𝑅𝑖 is denoted as the 

assessment result, 𝑊𝑖 is denoted as the index weight of the corresponding graduation requirements, 

𝐴𝑖  is named the average score of each major question, and 𝑙 is denoted as the index point of the 

graduation requirements. 𝑀𝑖 is denoted as the sub-item weight of the curriculum objectives. Thus, 

𝑅𝑖 = 𝑊𝑖 ∙ 𝐴𝑗. Then, the truth-membership degrees of 𝑐1 and 𝑐2 are defined as 

1

1
1 1
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The assessment results of this study are divided into final exam scores and usual performance. 

The weight of the final exam scores is 70%, while the weight of the usual performance is 30%. The 

average score of the usual performance is recorded as 𝐴𝑖. Then, the truth-membership degree of 𝑐3 

is recorded as 
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The falsity-membership degrees of 𝑐1, 𝑐2 and 𝑐3 are defined as  
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The indeterminacy-membership degrees of 𝑐1, 𝑐2 and 𝑐3 are defined as 
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Therefore, the corresponding SvNNs of different students are obtained. 

 

Table 1. Corresponding relationship of sample evaluation bases 

Course 

objective 

Indicator of graduation 

requirements 
Assessment basis 

Index point of 

graduation 

requirements  

Weight Basis Score 

Examination 

result : Usual 

result 

Achievement 

degree of the 

assessment basis 

Course 

objective 1 

1-4 100% First question 10 

40% : 60% 

0.71 

8-3 40% Third question 28 0.86 

Course 

objective 2 

4-3 50% Second question 10 0.5 

5-1 40% Third question 28 0.86 

Course 

objective 3 

4-1 50% Second question 10 0.5 

11-1 20% Third question 14 0.86 

 

Step 2: Determine the index weight. To enhance the rationality of the evaluation process, each 

index weight is determined by calculating neutrosophic entropy. To maximize the reliance of the 

evaluation process on the available information, the objective function is established by determining 

the indicator weight. It uses the minimum entropy value of neutrosophic information to ensure that 

the evaluation process relies on the most determinate information possibility. The number of 

evaluation objects is 𝑚 . The information entropy function 𝐸(𝑐𝑗), 𝑗 = {1, 2, 3}  of each attribute is 

defined as 

1
1

1
( ) ( ), 1,2,3,

m

j ij

i

E c E a j
m 

 
                         (14) 

where 𝑎𝑖𝑗  is defined as the SvNN of the j-th indicator on the i-th assessment object and 𝐸1(𝑎𝑖𝑗) is 

the information entropy function of the SvNN 𝑎𝑖𝑗 . 

To reduce the influence of uncertain information on the evaluation outcomes, we establish an 

optimization model with the goal function J of minimizing the entropy value. According to Eq. (1), 

the optimization model is defined as 
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The optimization model is solved by the Lagrange multiplier method, and then the weight of 

each attribute is obtained finally. 

Step 3: Calculate the score function of the SvNN [23]. The score function of the SvNN 

𝑎𝑖𝑗 =< 𝛼1
𝑖𝑗

, 𝛼2
𝑖𝑗

, 𝛼3
𝑖𝑗

> is denoted as 𝑆(𝑎𝑖𝑗) for 𝑆(𝑎𝑖𝑗)  ∈ [0,100] and defined as follows: 

1 2 1 2
1 2 3 1 2 3

1 2 1 2

( ) 50 2 sgn( ) .
ij ij ij ij

ij ij ij ij ij ij

ij ij ij ij ij
S a

   
     

   

    
        

    
    

(16) 

For convenience, set 𝛼1
𝑖𝑗－𝛼2

𝑖𝑗 + (𝛼1
𝑖𝑗－𝛼2

𝑖𝑗
)𝛼3

𝑖𝑗 /(𝛼1
𝑖𝑗

+ 𝛼2
𝑖𝑗 ) = 𝑥 . Then, the score function is 

defined as 

( ) 50 2 sgn( )ijS x x   , 

where sgn(𝑥) is a symbolic function, which is defined as 

 
1, 0 

sgn
0, 0

x
x

x


 


. 

According to Eq. (16), the comprehensive ability evaluation matrix 𝑅 of students is indicated 

by  

       

       

       

11 12 13 1

21 22 23 2

31 32 33 3

...

...

...

T

m

m

m

S a S a S a S a

R S a S a S a S a

S a S a S a S a

 
 

  
 
 

. 

Then, the evaluation result vector 𝐷 is defined as 

 1 2 3= , , , , .j mD R d d d d  
                        (17) 

Step 4: Determine the value range of the evaluation grade. To determine the levels of different 

evaluation indicators, this study employs clustering analysis to sample data. In this situation, 

students are divided into five grades according to different indicators. The evaluation grades are set 

as 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. The five grades correspond to five evaluations: excellent, good, fair, poor, 

and very poor. Then, the K-means clustering analysis method [24] is adopted in this study, and the 

specific calculation method is given as follows. 

First, five sample data are randomly selected as the initial cluster center 𝑘𝑖(𝑖 = 1, 2, 3, 4, 5) in the 

evaluation matrix. Each element in the evaluation matrix is recorded as 𝑡𝑚. The distance 𝑑𝑖 from the 

element tm in row 𝑚 to the cluster center ki is marked as 

       
2 2 2

1 1 2 2 3 3, = .i m i m i m i m id t k t k t k t s                   (18) 

Once the distance between each sample and each cluster center is calculated, allocate each 

sample to the nearest cluster center category. After all samples are allocated, recalculate the positions 

of the five cluster centers. The calculation formula of cluster centers is defined as 
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  ,                                  (19) 

where 𝑘𝑖  is named the new cluster center, 𝑑𝑖  is named the the distance from the sample in the 

cluster center to the cluster center, and the number of samples belonging to the cluster center is 

denoted as N. Once the new cluster center is obtained, the distance between each sample and the new 

cluster center is calculated again. The process of recalculating the new cluster center and the distance 

is repeated until the cluster centers no longer change significantly or reach a predetermined 

convergence criterion. The final position of the cluster center is the critical point of the evaluation 

grade.  

Step 5: The Euclidean distance between each sample point and the five cluster centers is 

calculated by using Equation (16). The cluster center with the smallest distance from the sample point 

is the cluster of the category to which the sample belongs. Based on the aforementioned five steps, 

the neutrosophic assessment of engineering certification teaching effect is realized. 

4. Case Analysis 

This section presents an example to demonstrate the model described above. We select 10 

students as the evaluation set 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥10}. Three evaluation indicators are selected as the 

attribute indicator set 𝐶 = {𝑐1, 𝑐2, 𝑐3}. Score registration form is shown in Table 2. The evaluation 

process is addressed as follows. 

Step 1: Calculate SvNNs of different samples. According to Eqs. (5)-(7), we obtain the truth-

membership values of α1
c1, α1

c2 , and α1
c3. According to Eqs. (8)-(10), we get the falsity-membership 

values of α3
c1 , α3

c2 ,  and α3
c3 . According to Eqs. (11)-(13), we obtain that the indeterminacy-

membership value of α2
c1, α2

c2 , and α2
c3. The course achievement rating scale is shown in Table 3. 

Then, the neutrosophic set matrix 𝐴 of 10 samples is 

0.773 0.057 0.601 0.778,0.164,0.483 0.847 0.081 0.642

<0.776 0.063 0.596> 0.775,0.160,0.485 0.857 0.089 0.642

0.807 0.096 0.583 0.808,0.172,0.507 0.887 0.129 0.627

0.816 0.107 0.580 0.819,0

A

     

   

     

  



， ， ， ，

， ， ， ，

， ， ， ，

， ， .177,0.513 0.900 0.152 0.623

0.867 0.186 0.553 0.875,0.209,0.541 0.947 0.229 0.597

0.879 0.207 0.547 0.882,0.212,0.546 0.959 0.250 0.593

0.880 0.204 0.550 0.884,0.217,0.544 0.961 0.254 0.030

  

     

     

    

， ，

， ， ， ，

， ， ， ，

， ， ， ，

0.883 0.210 0.546 0.884,0.212,0.548 0.973 0.270 0.592

0.890,0.223,0.545 0.893,0.220,0.551 0.992 0.301 0.588

0.880,0.217,0.540 0.882,0.212,0.546 0.990 0.291 0.593

 
 
 
 
 
 
 
 
 
 
 
     
     

      

， ， ， ，

， ，

， ，






. 

Step 2: The information entropy functions are calculated according to Eqs. (1) and (14). We get 

E(c1) = 0.688, E(c2) = 0.701, and E(c3) = 0.572. When the calculation results are substituted into the Eq. 

(15), the index weight results are obtained as follows: 

 0.2764,0.2593,0.4643
T

  . 

Step 3: According to Eq. (16), we obtain that the score function values of SvNNs, and then the 

evaluation matrix R is obtained as follows: 

78.56 78.09 76.49 75.98 72.06 71.08 71.38 70.78 70.48 70.33

= 68.15 68.34 69.46 69.74 70.65 70.87 70.59 70.99 70.92 70.85

80.50 80.29 78.29 77.17 73.57 72.69 72.51 72.03 70.89 73.57

T

R

 
 
 
  

. 
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According to Eq. (17), the evaluation result vector 𝐷 is obtained as follows: 

 75.76,76.58,75.50,74.91,72.40,71.77,71.69,71.41,71.97 .
T

D R   
 

Step 4: Determine the value range of the evaluation grade. Students are divided into five grades 

according to different indicator values. The set of evaluation grades is represented as 𝑉 =

{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. The five grades 𝑣1, 𝑣2, … , 𝑣5 correspond to five evaluations: excellent, good, general, 

poor, and very poor. In order to better present the clustering effect, 300 SvNNs are selected for 

clustering analysis. The clustering results are shown in Figures 2, 3, 4. By iterating through Eq. (18) 

and Eq. (19), sample clustering is achieved. The clustering result of SvNFNs is shown in Table 4, and 

then the final evaluation results are shown in Figure 5. 

Step 5: Eq. (16) is used to calculate the score of cluster center points, and then the results are 

given as follows: 

1 2 3 4 5
67.91, 69.28, 69.51, 72.3, and 72.69.v v v v vS S S S S      

 

  

Figure 2. Clustering results of the attribute c1        Figure 3. Clustering results of the attribute c2  

  

Figure 4. Clustering results of the attribute c3          Figure 5. Comparison of the sample results 

 

We calculate the distance between the score function of each sample point and the score function 

of each cluster center point based on Eq. (18). The shortest distance value is used as the category 

determination criterion so as to achieve clustering and evaluation of different samples. The maximum 

score function value of randomly selected sample points is 72.69. The larger the sample point value, 

the closer to the maximum value. The evaluation results indicate that the samples 1, 2, 3, 4 belong to 



Neutrosophic Sets and Systems, Vol. 55, 2023  10  

 

 

Jingyuan Li, Fangwei Zhang, Jun Ye, Yuanhong Liu, Jianbiao Hu, A Neutrosophic Evaluation Method of Engineering 

Certification Teaching Effect Based on Improved Entropy Optimization Model and Its Application in Student Clustering 
 

the grade 𝑣1, the samples 5, 6, 7, 8, 10 belong to the grade 𝑣2, and the sample 9 belongs to the grade 

𝑣3. Finally, the comprehensive evaluation of students is completed. 

 

Table 2. Score registration form 

Sample 1 2 3 4 5 6 7 8 9 10 

Course 

objective 1 

Question1  5.672 5.698 6.703 6.749 6.823 6.697 7.031 7.092 5.642 5.643 

Question2 5.667 5.693 6.078 6.234 6.476 6.897 6.903 7.112 6.345 6.345 

Course 

objective 2 

Question 3 5.612 5.758 5.972 6.284 6.172 6.223 6.012 5.685 5.712 5.63 

Question 4 6.742 6.983 6.982 6.832 7.932 7.842 7.844 7.761 7.851 7.851 

Course 

objective 3 

Question 3 5.923 5.783 6.234 6.756 6.823 6.881 7.516 7.722 7.541 7.341 

Question 1 9.629 9.742 9.923 9.472 9.827 10.639 11.923 10.963 11.685 11.477 

Course 

objective 4 

Question 2 8.645 8.923 8.912 9.042 9.142 9.972 9.662 10.294 10.354 10.354 

Question 5 5.424 4.623 4.816 4.923 5.823 5.743 5.623 5.256 5.864 5.625 

Course 

objective 5 

Question 4 12.735 13.803 12.995 13.823 14.886 12.953 13.843 14.263 14.852 14.867 

Question 5 11.983 11.472 12.727 12.043 13.862 14.512 11.482 12.345 14.872 14.532 

Peacetime performance 97.832 97.992 98.872 98.982 99.123 99.623 99.113 99.276 97.872 97.525 

 

Table 3. Course achievement rating scale 

Basis 

Score 

(percentage 

system) 

Score 

(original) 

Assessm

ent 

result 

(original 

score) 

Achievement 

degree of 

each 

assessment 

basis 

Sub-item 

weight of 

course 

objectives 

Achieveme

nt of 

course 

objectives 

by item 

Sub-item 

weight of 

index points 

required by 

course 

graduation 

Question 1 5.6 8 6.375 0.8 50% 
0.797 

33% 

Question 2 5.6 8 6.375 0.8 50% 33% 

Question 3 5.6 8 5.906 0.74 50% 
0.836 

33% 

Question 4 5.6 8 7.462 0.93 50% 50% 

Question 3 5.6 8 6.852 0.86 40% 
0.869 

50% 

Question 1 8.4 12 10.528 0.88 60% 40% 

Question 2 8.4 12 9.53 0.79 66.70% 
0.828 

40% 

Question 5 4.2 6 5.372 0.9 33.30% 20% 

Question 4 10.5 15 13.902 0.93 50% 
0.896 

50% 

Question 5 10.5 15 12.983 0.87 50% 50% 

 

Table 4. Student clustering results 

Attribute Iteration Membership degree 
Level 

A 

Level 

B 

Level 

C 

Leve

l D 

Level 

E 

c1 10 

Truth-membership degree 0.734 0.799 0.852 0.755 0.868 

Indeterminacy-membership degree 0.193 0.188 0.196 0.189 0.189 

Falsity-membership degree 0.495 0.486 0.557 0.567 0.479 

c2 15 

Truth-membership degree 0.791 0.768 0.855 0.725 0.866 

Indeterminacy-membership degree 0.188 0.19 0.197 0.191 0.189 

Falsity-membership degree 0.483 0.57 0.553 0.51 0.478 

c3 10 

Truth-membership degree 0.843 0.941 0.937 0.95 0.846 

Indeterminacy-membership degree 0.134 0.113 0.186 0.266 0.248 

Falsity-membership degree 0.612 0.614 0.61 0.611 0.61 

 

5. Conclusions  

According to the introduced case, the primary contributions of this study are as follows. 
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Firstly, three indicators of students' performance were obtained as the achievement of 

graduation requirements, the achievement of course objectives, and the achievement of grades. By 

using the three indicators, a kind of comprehensive assessment method for teaching effectiveness 

was proposed in SvNN setting.  

Secondly, we proposed an improved single-valued neutrosophic information entropy function 

and an optimization model for determining the weights of the three indicators. However, the weights 

of the three indicators depend entirely on the objective information given, without any subjective 

information. 

Thirdly, we proposed an improved evaluation method for teaching effect, which realized the 

comprehensive evaluation and cluster of students. This approach offered a novel idea for engineering 

certification. 

The proposed effect of this study is that students can adjust their learning programs according 

to their achievement of graduation requirements and promote their overall development. Based on 

the achievement of the indicators, teaching managers can assess the rationality of the training 

program and the pedagogical effectiveness of the course so as to further improve the student training 

system. At present, there are some limitations to this study. The selection of the initial cluster center 

can affect the clustering results during the clustering process. Therefore, in future research, the 

clustering method for students needs to be further improved. 
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Abstract  

Face-on-Face interaction constitutes an integral part of the classroom atmosphere as it provides 
teachers with an opportunity to understand their students intimately. Hence, this study deals with 
attribute based double bounded rough neutrosophic set driven random forests using Gini Impurity 
based split to arrive at a decision regarding the teaching-learning efficiency. A mathematical model 
is constructed using double bounded rough neutrosophic set which is utilised to evaluate the 
expression of the students with the help of a real-time data by capturing the images of the students 
against different subjects. The decisions made are then used to fit a random forest model to 
establish inferences regarding the teaching-learning efficiency for different subjects. The 
constructed model is then validated using newly added test objects. 
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1. Introduction  

“Actions speak louder than words” 

The notion that facial expressions make-up the roads leading to several significant observations, 
both psychological and physical trace back to the pioneer of facial expression detection, Paul 
Ekman [1]. Ekman, a contemporary psychologist is known well to have established the concept of 
facial expressions as a universal phenomenon. In 1973, he along with Tomkins [2], Gellhorn [3], 
Izard [4] popularised the facial feedback theory [5] put forward by James [6], almost a century 
back before the theory revolutionised psychology.  

The idea was further shaped and bettered by Buck [7] to pave the stepping stones towards 
providing much serious considerations towards facial expression detection models. The facial 
feedback theory suggests that an individual’s experience of emotions is often influenced by 
feedback from their facial movements. With increasing developments in the study of the facial 
feedback hypothesis, researchers suggest that observations play a pivotal role in contributing 
towards target affective judgements and expression manipulation [8]. Hence, it can be said that the 
excitement behind face recognition and expression analysis has successfully initiated a crossover 
between facial feedback theory in psychology and expression recognition [11,12,13,14]. 

Drawing on these conclusions, the authors have utilised the same concepts to construct a model 
that’d help derive decisions from the observations a student makes while listening to a subject and 

making judgements to manipulate their expressions and evaluate the purity of each decision made. 
The proposed model would be an extension of the attribute based double-bounded rough 
neutrosophic set [9] system for decision making wherein a random forest [10] is utilised to 
establish the purity/count of every attribute against the subject for which the image was taken. 

1. Double Bounded Rough Neutrosophic Set Driven Random Forest in Deriving Inferences 

In this section, a mathematical model is developed by combining the Double Bounded Rough 
Neutrosophic Set Theory [9] and random forest techniques to arrive at the conclusion and draw 
inferences from the decisions made for the objects present in the approximation space. 

 

 

1.1. The Double Bounded Rough Neutrosophic Set For an N-information System 

Throughout this section, there is consideration of a covering-based N-information system 
given by 𝐼 = (𝑈, 𝐴, 𝐹, 𝑁) where 𝑈 defines the universe and is a non-empty finite set of 
objects. 𝐴 signifies the non-empty finite set of fuzzy attributes defined by the mapping 

𝜇a: 𝑈 → [0,1] ∀𝑎 ∈ 𝐴 

while 𝐹 is a function defined by the mapping 𝐹: 𝐴 → 𝜌(𝑈) ∀ 𝑎 ∈ 𝐴 such that 𝐹(𝑎) ⊆
𝑈 would contain those elements of 𝑈 that possess the attribute 𝑎 with the assumption that 
𝑈 𝐹(𝑎) = 𝑈, 𝑎 ∈ 𝐴. 
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Equation 2.1.1: For every 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑋, the evaluation of 𝐹 is carried out by the 
equation given by 

𝛼i=  
(∑ (𝑤(𝑎𝑗)∗𝜇𝑝(𝑥𝑖))𝑛

𝑖=1

∑ 𝑤(𝑘
𝑗=1 𝑎𝑗)

 

𝐹(𝑎) = {𝑥 ∈ 𝑋|𝛼i ≤  𝛿} 

Here, 𝑛 denotes the number of elements in 𝑈, 𝑘 denotes the number of attributes in the 
universe, 𝑤(𝑎j) signifies the weights assigned to the attributes that lies in the range [0,1], 
𝜇(𝑝𝑖) denotes the mean of the feature points that describe the dataset, and 𝛿 signifies the 
threshold to group the attributes by making the choice of an appropriate interval spacing. 

Algorithm 2.1.1: Consider a set 𝑋 defined by 𝑋 ⊆ 𝑈. For any 𝑥 ∈ 𝑋, the neighbourhood 
function 𝑁(𝑥) could be defined by 𝑈 𝑁(𝑥) and is computed using the shortest distance by 
computing the mean algorithm [9] given by 

1. Let 𝑠 denote the object chosen and 𝑆 be the set of all objects in U 

2. This object is identified by the value it possesses against every parameter 𝑃𝑖 that can 
be represented by 𝑡. 

3. Taking the absolute difference between the 𝑡 for every 𝑠 against the mean of every 
parameter 𝑃𝑖 will be represented by 𝑏.  

4. The absolute difference between the 𝑡′ for every 𝑠′ ∈ 𝑆 against the mean of every 
parameter 𝑃𝑖 will be represented by 𝑐. 

5. Whenever the absolute difference between 𝑏 and 𝑐 is greater than a threshold, the count 
variable for every object would be incremented for every iteration.  

6. The objects in 𝑠′ whose count is greater than a chosen threshold given by 𝛿′ would be 
declared as the neighbours of the chosen object 𝑠  

Both the functions 𝐹 and 𝑁 would be constructed from the scenario or systems under 
consideration with expert knowledge and interference. Sometimes, the neighbourhood 
function could also be devised using any relation that has been observed while studying 
the data in hand amongst the elements of 𝑈. 

For any set 𝑃′ given by P’ ⊆ 𝐴 and fuzzy membership function 𝜇𝑎, a double bounded 
rough set that has three distinct elements in the set namely the lower approximation, the 
right upper approximation and the left upper approximation can be constructed. Here, the 
lower approximation set would be composed of the elements in 𝑃′ that have an 𝐼-
relationship defined with both 𝑥 and 𝑦 while the right and the left upper approximations 
would deal with the elements in P that have an 𝐼-relationship with either 𝑥 or 𝑦 [19]. 

The subset 𝑋 of 𝑈 defines the double bounded rough set 𝐷𝑅𝑆(𝑎~𝑋) as the collection of 
the lower approximation 𝐷𝑅_(𝑎~𝑋), right upper approximation 𝐷𝑅−(𝑎~𝑋) and left 
upper approximation  −𝐷𝑅 (𝑎~𝑋) of 𝑋 with respect to the attribute 𝑎. Here, the lower, left 
upper, and right upper approximations are defined by 

𝐷𝑅_(𝑎~𝑋) = 𝑁(𝐹(𝑎) ∩ 𝑁(𝑥)) 
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 −𝐷𝑅(𝑎~𝑋) = 𝑁(𝑋) ∪ (𝑁(𝐹(𝑎)) ∩ 𝑁(𝑋)) 

𝐷𝑅−(𝑎~𝑋) = 𝑁(𝐹(𝑎)) ∪ (𝑁(𝐹(𝑎)) ∩ 𝑁(𝑋)) 

Conclusively, the double bounded rough set 𝐷𝑅𝑆(𝑎~𝑋) is given by  

𝐷𝑅𝑆(𝑎~𝑋) = (𝐷𝑅_(𝑎~𝑋),  −𝐷𝑅 (𝑎~𝑋), 𝐷𝑅−(𝑎~𝑋))  

The double bounded rough set provides the definite, possible, plausible, unascertainable 
elements of 𝑋 that possess the attribute 𝑎. It must be noted that for every 𝑎 ∈
𝐴, 𝐷𝑅𝑆(𝑎~𝑋) can be achieved.  

For the set 𝑃′, assuming ∀ 𝑝 ∈ 𝑃′, define a fuzzy set 𝜇𝑃 given by the mapping 𝜇𝑃: 𝑈 →
[0,1] that provides the degree of membership of a parameter on the elements of 𝑈. 
Developing on the knowledge of indeterminacy, one can define a neutrosophic set for 
every double bounded rough set by  

𝐷𝑅 = {𝐷𝑅𝑆(𝑎~𝑋)| 𝑋 ⊆ 𝑈, 𝑎 ∈ 𝐴} 

𝐷𝑅_ = {𝐷𝑅_(𝑎~𝑋| ⊆ 𝑈, 𝑎 ∈ 𝐴} 

𝐷𝑅− = {𝐷𝑅−(𝑎~𝑋| ⊆ 𝑈, 𝑎 ∈ 𝐴} 

 −𝐷𝑅 = { −𝐷𝑅(𝑎~𝑋| ⊆ 𝑈, 𝑎 ∈ 𝐴} 

With the definitions of the DBRS established, a fuzzy set 𝜇∞: 𝐷𝑅_ → [0,1]  can be defined 
for the lower approximation, right upper approximation, and left upper approximation as 

𝜇_(𝐷𝑅(𝑎~𝑋)) = max{min(𝜇p(𝑥))}  𝑥 ∈ 𝐷𝑅_(𝑎~𝑋) 

𝜇−(𝐷𝑅(𝑎~𝑋)) = max{min(𝜇p(𝑥))}  𝑥 ∈ 𝐷𝑅−(𝑎~𝑋) 

 −𝜇(𝐷𝑅(𝑎~𝑋)) = max{min(𝜇p(𝑥))}  𝑥 ∈  −𝐷𝑅(𝑎~𝑋) 

Definition 2.1.1: To construct a double bounded rough neutrosophic set, one needs to 
handle the three fundamental functions that define any neutrosophic set namely the truth 
membership, the indeterminacy and the non-membership which are almost always 
independently related.  

A neutrosophic set takes the form  

𝑁 = {(𝑥, 𝛼𝑁(𝑥), 𝛽𝑁(𝑥), 𝛾𝑁(𝑥)|𝑥 ∈ 𝑋} 

where 𝛼𝑁, 𝛽𝑁 𝑎𝑛𝑑 𝛾𝑁 represent the three membership functions identified by the 
mapping  𝑋 →]0 − ,1 + [ which possess a sum that falls in the range defined by →]0−≤
𝛼𝑁(𝑥) + 𝛽𝑁(𝑥) + 𝛾𝑁(𝑥) ≤ 3 + [. 

A neutrosophic fuzzy set defined in the 𝑁 information space over the relation �̅�: 𝐷𝑅 →
[0,1] 𝑋 [0,1] 𝑋 [0,1]  can be given by 
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�̅�(𝐷𝑅𝑆(𝑎~𝑋)) = (𝜇_(𝐷𝑅(𝑎~𝑋)), 𝜇−(𝐷𝑅(𝑎~𝑋)), −𝜇(𝐷𝑅(𝑎~𝑋))) 

Hence, the double bounded rough neutrosophic set  �̅�(𝐷𝑅𝑆(𝑎~𝑋)) in an 𝑁-information 
system identified by 𝐼 = (𝑈, 𝐴, 𝐹, 𝑁) can be utilised to evaluate any attribute 𝑎 ∈ 𝐴 
defined for any dataset with no requirement of a training dataset to fit the model for 
validation and testing and can be given by 

Equation 2.1.2: 

𝑉(𝑎) = 2(𝑚𝑎𝑥 ((
𝑇𝑎 + 𝐼𝑎

2
) , (

1 + 𝐼𝑎 − 𝐹𝑎

2
)) − 𝑚𝑖𝑛 ((

𝑇𝑎 + 𝐼𝑎

2
) , (

1 + 𝐼𝑎 − 𝐹𝑎

2
))) 

      where   𝑇𝑎 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠   𝜇_(𝐷𝑅(𝑎~𝑋)) 

                                𝐼𝑎 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑠  𝜇−(𝐷𝑅(𝑎~𝑋)) 

                               𝐹𝑎 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 −𝜇(𝐷𝑅(𝑎~𝑋)))  

Here, 𝑉(𝑎) is computed for every 𝑎 ∈ 𝐴 and the values of all the attributes for a single 
object constitute a list given by 𝑉. The final decision corresponding to the object would be 
the maximum of all the elements present in 𝑉 given by: 

𝑉 = [𝑉(𝑎1), 𝑉(𝑎2), … , 𝑉(𝑎𝑘)] 

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑥) = max(𝑉) ∀𝑥 ∈ 𝑋 

Here, 𝑉 is a fuzzy set obtained using the attribute based double bounded rough 
neutrosophic set method defined by the function 𝜇v : 𝑉 → [0,1].   

In a similar fashion, the decision is evaluated for every object in the universe 𝑈 and the 
collection of decisions are defined by the set 𝐷 given by 

𝐷 = {max(𝑣1) , max(𝑣2) , … , max(𝑣𝑛)} 

which is then appended to a relational universe 𝑈′ that has the same number of objects as 
in 𝑈 and shares a link with the set 𝑈 that was utilised to compute the attribute values. The 
relational universe 𝑈′ would then be fit into a random forest for evaluating newly added 
objects and draw inferences 

1.2.Attribute Driven Random Forest in an N-Information System 
 
In this section, a random forest is constructed for the 𝑁-information system defined by 
𝐼′ = (𝑈  , 𝐴′). Here, 𝐴′ denotes the set of attributes that would describe the decisions made 
using the double bounded rough neutrosophic set model to generate inferences regarding 
the decisions made and evaluate a new object being added to the information system. 
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Moving forward, the set of unique decisions from the set of decisions 𝐷 that was 
constructed using the double bounded neutrosophic set model would constitute the set 𝑆 
that defines the state any element 𝑥 ∈ 𝑋 is in at any given time 𝑡 where 𝑋  ⊆ 𝑈.     

𝑆 = {𝑆1, 𝑆2, … , 𝑆m} 

where 𝑚 denotes the number of unique decisions in 𝐷.  
 
The objective of this section is to predict the state of each object and evaluate any new 
object added in the given 𝑁-information system using Random Forest Technique [18]. 
The construction of the individual decision trees that would be bagged and aggregated 
would be performed using Gini Impurity Indexing.  
 
Equation 2.2.1: For any 𝑎′ ∈ 𝐴′ and 𝑠 ∈ 𝑆, the Gini Impurity is given by the expression 

 

𝐺(𝑎′′i ) = ∑ ((𝑛𝑛
𝑗=1 j/𝑛) ∗ (1 − 𝑃(𝑎′′i|𝑠)2);  𝑖 = 1,2, … , 𝑘 

 
where 𝑛 denotes the number of elements in 𝑈.  
 
Here, 𝑃(𝑎i|𝑠) denotes the probability of the number of objects in 𝑈 possessing the attribute 
𝑎′i with respect to the decision 𝑑. The root nodes and subsequent nodes with the best split 
would then be given by: 

𝐺bestSplit = min(𝐺(𝑓1), 𝐺(𝑓2), … , 𝐺(𝑓𝑙)) 

 
With respect to the information system, the process to identify the best node from the set 
of attributes in 𝑈 by estimating the best split using Gini impurity indexing takes the form: 
 
def gini_impurity (val): 
      n = val.sum() 
      p_sum = 0 
      for key in val.keys(): 
          p_sum = p_sum  +  (val[key] / n ) * (val[key] / n )  
          gini = 1 - p_sum 
return gini 
 
Finally, the leaf node present at the maximum depth of the tree would contain the number 
of states an attribute 𝑎′ is in.  
 
In a similar fashion, several decision trees may be constructed which are then bagged i.e., 
bootstrapped and aggregated to give rise to a random forest. This attribute based 
neutrosophic rough set driven random forest model can now be utilised to validate the 
decision of any newly added object in the relational universe 𝑈′.  
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2. Application of The ADBRS Driven Random Forest Model to Draw Inferences Regarding 

the Teaching-Learning Efficiency Using Student Expressions 

Objective: To implement the attribute based double bounded rough neutrosophic set driven 
random forest model to analyse the facial expressions of students while in class with reference 
to different subjects and infer the efficiency of the teaching-learning process by evaluating the 
various expressions displayed by the object against the different subjects for which the images 
were taken and validate the decision for a newly added object.  

Data: The paper utilises real-time data for analysis by capturing the photographs of students 
while in class against four subject periods. There were 100 images in the dataset chosen with 
explicit age variation present between the different images chosen so as to increase the 
diversity in establishing the efficiency of the teaching learning process. 

Facial Key Points: An online face detector and key point marker titled makesense.ai [20] was 
employed to evaluate the feature points for determining the attributes. Since the dataset is 
relatively smaller when compared against a dataset with 1000 entries, but large enough to 
train, validate, test, and make satisfactory predictions, manual marking of the 15 essential 
facial key points was employed.  

The fifteen feature points were marked on the pivotal points of the face. These fifteen features 
were divided into their respective x and y coordinates to get 30 parameter values and would 
constitute the parameter set P.  

 

fig1: A sample to indicate how the facial points were chosen 

The fifteen facial feature points thus constructed are as follows:  

Table1: Facial Feature Points 

Point Co-ordinates Parameters 

0 (left_eye_center_x, left_eye_center_y) (P1,P2) 

1 (right_eye_center_x, right_eye_center_y) (P3,P4) 
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2 (right_eye_inner_corner_x, 
right_eye_inner_corner_y) 

(P5,P6) 

3 (right_eye_outer_corner_x,right_eye_outer_corner_y (P7,P8) 

4 (left_eye_inner_corner_x, left_eye_inner_corner_y) (P9,P10) 

5 (left_eye_outer_corner_x, left_eye_outer_corner_y) (P11,P12) 

6 (right_eyebrow_inner_x, right_eyebrow_inner_y) (P13,P14) 

7 (right_eyebrow_outer_x,right_eyebrow_outer_y) (P15,P16) 

8 (left_eyebrow_inner_x, left_eyebrow_inner_y) (P17,P18) 

9 (left_eyebrow_outer_x, left_eyebrow_outer_y) (P19,P20) 

10 (nose_tip_x,nose_tip_y) (P21,P22) 

11 (mouth_left_corner_x, mouth_left_corner_y) (P23,P24) 

12 (mouth_right_corner_x, mouth_right_corner_y) (P25,P26) 

13 (mouth_center_top_lip_x, mouth_center_top_lip_y) (P27,P28) 

14 (mouth_center_bottomlip_x, 
mouth_center_bottomlip_y) 

(P29,P30) 

 

The diversity of the dataset with respect to the ages of the individuals chosen could be 
presented through the following chart  

 

fig2: Age of the students vs. count: Linear and Bar Graph Representation 

Throughout this section, there is consideration of a covering based 𝑁-information system 𝐼 
defined by 𝐼 = (𝑈, 𝐴, 𝐹, 𝑁) where 𝑈 describes the universe and is a collection of the 100 
images in the dataset given by  
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𝑈 = {0,1, … , 100} 

𝐴 is the collection of the attributes given by  

𝐴 = {𝐶, 𝐵, 𝐸, 𝑆, 𝑈} 

where:  C denotes concentrating 

B denotes bored 

E denotes excited 

S denotes sleepy 

U denotes uncertainty 

The fuzzy set for 𝐴, 𝐴fuzzy is given by:  

{(concentrating, μconcentrating), (bored, μbored), (excited, μexcited), (sleepy, μsleepy

), (uncertainty, μuncertainty)} 

𝐴fuzzy= {(𝐶, 0.45), (𝐵, 0.22), (𝐸, 0.36), (𝑆, 0.54), (𝑈, 0.53)} 

Where: 

𝜇concentrating = w(concentrating) = 0.45  

𝜇bored = w(bored) = 0.22  

         𝜇excited = w(excited) = 0.36 

         𝜇sleepy = w(sleepy) = 0.54 

        𝜇uncertainty = w(uncertainty) = 0.53  

𝐹 is a function defined by the mapping 𝐹: 𝐴 → 𝜌(𝑈) ∀ 𝑎 ∈ 𝐴 such that 𝐹(𝑎) ⊆ 𝑈 would 
contain those elements of 𝑈 that possess the attribute 𝑎 with the assumption that 𝑈 𝐹(𝑎) =
𝑈, 𝑎 ∈ 𝐴. To estimate 𝐹(𝑎), the mean of each of the objects were evaluated following which 
the individual means were multiplied against the individual weights of the attributes. 

The sum of the product of the object-mean and attribute weights were divided against the sum 
of the attribute weights. The result was compared against the threshold which is the median 
of the dataset chosen. To give an idea regarding the process followed in equation 2.1.1, an 
example has been provided with respect to the first object in the dataset.  

Table2: Computation of F using 𝜶𝒊 for the first attribute 
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𝝁p(𝒙1) 𝝁p(𝒙1) 

* 

w(a1) 

𝝁p(𝒙1)  

* 

w(a2) 

𝝁p(𝒙1)  

* 

w(a3) 

𝝁p(𝒙1) 

* 

w(a4) 

𝝁p(𝒙1) 

* 

w(a1) 

∑(𝑤(

𝑘

𝑗=1

(𝑎𝑗))

∗ 𝜇𝑝(𝑥1))) 

∑ 𝑤(

𝑘

𝑗=1

𝑎𝑗) 

𝜶𝒊 

158.82 71.475 34.94333 57.18 85.77 84.18167 333.5397 2.1 155.23 

 

Similarly, the object-mean and attribute weight product was computed and its ratio against the 
sum of the attribute weights was compared against the threshold. The threshold for 𝛼𝑖 has 
been chosen to be the median of the dataset by dividing it into appropriate partitions according 
to the attribute weights.  

With these definitions, the categorisation of the 100 images in the dataset has been done into 
the five attributes chosen namely C(concentrating), B(bored), S(sleepy), E(excited), and 
U(uncertainty).  

Table3: F(a) vs A 

 

𝑁 

denotes the neighbourhood function and is more than often defined by the mapping 𝑁: 𝑈 →
𝜌(𝑈) which associates every 𝑥 ∈ 𝑈 to a subset 𝑁(𝑥) and would contain the neighbours of the 
object 𝑥. 

The neighbours of 𝑥 are then evaluated using the algorithm 2.1.1. The value of the threshold 
to declare an 𝑥𝑚 as a neighbour of 𝑥𝑛 has been calculated through thorough experimentation 
and has been decided upon as 25. The neighbours of  𝑥𝑛 are defined by 𝑁(𝑥) which is a subset 
of the universal set 𝑈.  

a F(a) 

C [0, 2, 3, 6, 13, 14, 15, 16, 17, 18, 20, 27, 39, 42, 43, 45, 46, 47, 48, 50, 
54, 56, 57, 58, 59, 60, 62, 64, 67, 68, 70, 73, 75, 77, 80, 82, 89, 92, 96, 

98, 99] 

B [7, 9] 

E [10, 11, 12, 23, 25, 38, 65, 72, 74, 78, 84, 87, 88] 

S [4, 5, 8, 26, 29, 30, 31, 32, 33, 35, 49, 51, 52, 53, 61, 63, 69, 76, 79, 81, 
83, 85, 86, 90, 91, 93, 94, 95, 97] 

U [1, 19, 21, 22, 24, 28, 34, 36, 37, 40, 41, 44, 55, 66, 71] 
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Depending on the system under study, the value of the threshold can suitably vary. To give an 
idea about the computation followed, there is consideration of the first ten images in the 
dataset. 

Table4: Neighbours of xn 

Object (xi) N(xi) 

x0 [0, 1, 6, 13, 14, 15, 16, 17, 18, 20, 27, 32, 42, 43, 48, 52, 54, 56, 
57, 59, 61, 62, 63, 64, 67, 68, 69, 70, 73, 75, 93, 94, 98, 99] 

x1 [0, 1, 2, 3, 5, 6, 14, 15, 16, 17, 18, 20, 21, 22, 24, 27, 28, 32, 35, 
42, 43, 48, 49, 50, 51, 52, 56, 57, 59, 60, 61, 62, 64, 66, 68, 69, 
70, 71, 77, 93, 94, 95, 97, 98, 99] 

x2 [1, 2, 6, 14, 15, 16, 17, 18, 27, 42, 43, 48, 54, 56, 57, 58, 59, 60, 
63, 64, 67, 68, 70, 75, 77, 85, 86, 90, 91, 95 

x3 [1, 3, 10, 11, 12, 14, 16, 18, 21, 22, 24, 27, 28, 32, 35, 48, 49, 51, 
52, 53, 56, 57, 61, 62, 64, 69, 70, 72, 93, 94, 97, 99] 

x4 [4, 53, 96] 

x5 [1, 5, 10, 11, 12, 19, 21, 22, 24, 28, 32, 33, 35, 36, 40, 44, 46, 49, 
50, 51, 53, 60, 66, 71, 72, 77, 80, 82, 93, 94, 97, 99] 

x6 [0, 1, 2, 6, 13, 14, 15, 16, 17, 18, 20, 27, 42, 43, 48, 52, 54, 56, 
57, 58, 59, 60, 61, 62, 63, 64, 67, 68, 69, 70, 73, 75, 77, 85, 86, 
90, 91, 93, 95, 98] 

x7 [7] 

x8 [8, 15, 17, 21, 22, 24, 28, 31, 45, 48, 56, 57, 60, 63, 77, 99] 

x9 [9, 38, 65] 

x10 [3, 5, 10, 11, 12, 19, 21, 22, 24, 28, 32, 33, 35, 49, 51, 53, 71, 72, 
93, 94, 97] 

 

Next, there is construction of the double bounded neutrosophic rough set to estimate the 
decisions for every 𝑥 ∈ 𝑈. As the computation of 100 images may crowd the region here, an 
image is chosen to give an illustration of the procedure.  
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figure3: Image Considered For Evaluation 

The index of the image chosen is 20. The neighbours of the chosen image, 𝑁(20) are given 
by  

{0, 1, 6, 13, 14, 15, 16, 17, 18, 20, 27, 32, 35, 42, 43, 48, 51, 52, 

 54, 56, 57, 59, 61, 62, 64, 67, 68, 69, 70, 73,75, 93, 94, 98, 99} 

After construction of the double bounded rough set using the equations given in section 3.1, 
the neutrosophic values of the image chosen are computed using the equation 2.1.2. 

𝑉(𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑛𝑔) = 0.525 

𝑉(𝑏𝑜𝑟𝑒𝑑) = 0.54 

𝑉(𝑠𝑙𝑒𝑒𝑝𝑦) = 0.525 

𝑉(𝑒𝑥𝑐𝑖𝑡𝑒𝑑) = 0.459 

𝑉(𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦) = 0.495 

Hence, the expression detected in the face is given by 

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(20) = max (𝑉(𝑐𝑜𝑛𝑐𝑒𝑡𝑟𝑎𝑡𝑖𝑛𝑔), 𝑉(𝑏𝑜𝑟𝑒𝑑), 𝑉(𝑠𝑙𝑒𝑒𝑝𝑦), 𝑉(𝑒𝑥𝑐𝑖𝑡𝑒𝑑), 𝑉(𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦)) 

Therefore, the expression detected is bored. 

In a similar fashion, the expressions are detected for all the images in the dataset and the 
decisions made are appended to the dataset containing the scores for the subject IDs and image 
IDs for which the images were captured. This dataset, also known as the relational dataset, 
was taken from Kaggle [21].  

By utilising the subject IDs, essential parameters like gender and age of the student, and the 
decisions made using attribute based DBRS, the following data frame was constructed.  
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Table5: Constructed data frame for the first ten entries 

StudentId SubjectId Gender Age Marks SubjectExpression 

0 A Female 16 72 excited 

1 A Male 16 69 excited 

2 B Female 16 72 excited 

3 C Female 16 74 bored 

4 D Female 16 97 attentive 

5 A Female 21 90 bored 

6 A Female 21 47 excited 

7 B Female 21 95 attentive 

8 A Female 21 76 uncertain 

9 A Male 16 71 attentive 

 

The Gini Index was computed for the attributes 𝑎′ ∈ 𝐴′ given by the list [‘SubjectId’, 

‘Gender’, ‘Age’, ‘Marks’] against the individual student expression that was evaluated using 

the formula 𝑉(𝑎) and by computing the formula 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑥) = min (𝑉) ∀𝑥 ∈ 𝑋 using the 
equation 2.2.1. 

The Gini values to estimate the root node that were obtained are as follows: 

𝐺𝑖𝑛𝑖 𝑓𝑜𝑟 𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝐼𝑑 = 0.759 

𝐺𝑖𝑛𝑖 𝑓𝑜𝑟 𝐺𝑒𝑛𝑑𝑒𝑟 = 0.745 

𝐺𝑖𝑛𝑖 𝑓𝑜𝑟 𝐴𝑔𝑒 = 0.709 

𝐺𝑖𝑛𝑖 𝑓𝑜𝑟 𝑀𝑎𝑟𝑘𝑠 = 0.341 

Even though the Gini for the feature ‘Marks’ is minimum, the choice was made to construct 

a random forest using individual decision trees with the root as the feature ‘Age’ which has 

the next minimum in the list. The reason for dropping the feature ‘Marks’ and proceeding to 
construct a decision tree with the other feature lay in the lack of distinction the 
corresponding feature provided. Constructing a decision tree with a feature that has minimal 
distinction might not be the suitable solution in a system where we seek to use as many 
minimum decision trees as possible to draw the inferences.  

So, the root of the decision tree chosen would be the feature ‘Age’ with an impurity index of 
0.709 and a maximum entropy of 0.291.  The evaluation of the subsequent nodes was 
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performed in reference to the root node against the decision made. In the next depth, division 
was carried out with the Gini for Gender as 0.542 and for SubjectID as 0.531. In this 
fashion, several decision trees were aggregated and boosted i.e., bagged to give rise to a 
random forest. The tree in the forest with the most likely interference was chosen for three 
cases: The overall dataset, the 16-18 age group, and the 20-21 age group.  

The results and inferences drawn from the construction of the ADBRS driven random forest 
are presented in detail in Section 4 with an illustration of applying a new object to validate 
its decision utilising the model constructed.  

The greatest advantage of the model proposed comes down to its ability to make decisions 
without any prior knowledge of the decisions with respect to the object involved and to 
validate a newly added observation using the already existing model without the need to 
handle the photographs of the newly added object against the existing DBRNS. 

3. Results 

3.1. Data was taken from the images and the expressions of the students against different 

subject durations for which the photos were taken were computed 

Table6-1: Images and The Corresponding decisions made 

Image Values 

evaluated 

Maximum 

Value 

Expression 

Detected 

 

 

𝑉(𝐴) = 0.525 

𝑉(𝐵) = 0.525 

𝑉(𝐸) = 0.540 

𝑉(𝑆) = 0.459 

𝑉(𝐶) = 0.495 

 

 

 

𝑉(𝐸) 

 

 

 

The person is 
excited to be 
in class 

 

 

𝑉(𝐴) = 0.525 

𝑉(𝐵) = 0.525 

𝑉(𝐸) = 0.495 

𝑉(𝑆) = 0.540 

𝑉(𝐶) = 0.459 

 

 

 

𝑉(𝑆) 

 

 

 

The person is 
feeling sleepy 

in class 
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𝑉(𝐴) = 0.679 

𝑉(𝐵) = 0.555 

𝑉(𝐸) = 0.545 

𝑉(𝑆) = 0.540 

𝑉(𝐶) = 0.525 

 

 

 

𝑉(𝐴) 

 

 

 

The person is 
attentive in 
class 

 

 

𝑉(𝐴) = 0.525 

𝑉(𝐵) = 0.615 

𝑉(𝐸) = 0.495 

𝑉(𝑆) = 0.585 

𝑉(𝐶) = 0.525 

 

 

 

𝑉(𝐵) 

 

 

 

The person is 
bored in the 
class 

 

 

𝑉(𝐴) = 0.540 

𝑉(𝐵) = 0.492 

𝑉(𝐸) = 0.540 

𝑉(𝑆) = 0.525 

𝑉(𝐶) = 0.615 

 

 

 

𝑉(𝐶) 

 

 

The person is 
uncertain of 
the things 
being taught 
in the class 

 

Due to the relatively larger size of the dataset, few images have been utilised in the table 
illustrated above to give an idea about the process executed 

3.2. Construction of the individual decision trees to be bagged to draw inferences 

regarding the teaching-learning process efficiency.  

Gini Index Impurity based split was employed to construct the individual decision trees 
that constitute the random forest. The visualization of the individual decision tree has been 
done by considering the following three cases. 

Case 1: Individual decision tree for the dataset as a whole 
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fig4-1: Individual Decision Tree From The Random Forest: Without Age 

Distinction 

 

fig4-2: Distribution of the various expressions observed across the dataset against the 

subject for which the expressions were computed. 
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There is construction of individual decision tree for the dataset as a whole without age 
distinction and the inferences can be visualized using the following tree from the random 
forest which has been evaluated to be the most likely estimation. 

Inference: Across the age groups, subject A has the highest excitement levels. Subject B 
and C have comparable excitement levels and almost equal number of students who fell 
asleep in class hours. Hence, it can be concurred that special measures from the teacher’s 

side can improve the reception for both the subjects mentioned. Subject D indicates high 
boredom levels and it can be concluded that either the subject is too dry or the learning 
process isn’t efficient. 

Case 2: Individual Decision Tree for the age group 16-18 

 

fig5-3: Individual Decision Tree from the Random Forest for the age group 16-18 
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fig5-2: Distribution of the various expressions observed for the age group [16-18] 

against the subject for which the expressions were computed. 

Inference: For High Schoolers, Subjects A and D seem to have the highest count of people 
who were either bored or uncertain. Hence, it can be concurred that either the subject is 
too dry or the teaching-learning flow was inefficient. Subjects B and C, on the other, have 
higher counts of people who are attentive or bored and excited or sleepy respectively. This 
could mean that if the teacher looks into the matter, they can try and engage more people 
to like the subject.  

Case 3: Individual Decision Tree for the age group 20-21 
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fig6-1: Individual Decision Tree from the Random Forest for the age group 20-21 

 

 

 

 

fig6-2: Distribution of the various expressions observed for the age group [20-21] 

against the subject for which the expressions were computed. 
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Inferences: For University Sophomores, Subjects A and C have a minimum distribution 
with respect to the uncertainty, boredom, and sleepy faces of the student. This means that 
the teaching-learning process is efficient. Subjects B and D, on the other, have equal 
distributions of boredom, excitement, and sleepiness with respect to the student. This 
could mean that if the teacher looks into the matter, they can improve the engageability 
and interactivity of the classroom atmosphere.  

Case 4: Evaluation of a new object using the ADBNS-driven-random forest model 

Let there be addition of a new object 𝑎 given by [2,1,17,76]. The list 𝑎 is encoded, meaning 
the first index indicates that the subjectID is B (as there are four subject IDs, A, B, C and 
D, encoding them would give values of 0,1,2,3,4), the second indicates that the person is 
male (as there is presence of two sexes, male and female, encoding would give values of 
1 and 0), the third indicates that the new object’s age is 17 and the fourth index indicates 

that the person has scored 76 marks in subject B 

Decision Evaluated: The person is uncertain about the subject studied. 

Inference: The person has scored higher marks, but hasn’t had an excellent grasp of the 

subject due to his expressions of uncertainty during that period. There is a need to establish 
better learning efficiency for the student mentioned. 

4. Applications 

The model constructed is extremely advantageous in the sense that it doesn’t require prior 

information with respect to the decisions made for the dataset. With existing features, 
ADBRNS can help determine the decision and the decisions made can be utilised to both 
evaluate the impurity and draw inferences as well as fit into a classifier for training any similar 
models for future use. 

Combined with frequency estimation algorithms like Apriori, FP Growth, and ECLAT, the 
model can help teachers and schools make early estimates on students who suffer from 
attention deficiency, belong to the spectrum, or display signs of ADHD and provide them with 
the adequate help they need.  

The constructed model may also be used to approximately narrow down convicts who are 
guilty of committing a crime by simply utilising their mugshots, thereby saving the task of 
having to investigate a bigger crowd.  

5. Results 

The facial expressions of various students were detected using attribute based double-bounded 
rough neutrosophic set method. The decisions made were used against the scores of every 
student to evaluate the decision impurity and draw inferences regarding the teaching-learning 
efficiency.  
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Abstract: A neutrosophic number (NN) is a useful mathematical tool in indeterminacy theory. As 

the mixed form of an intuitionistic fuzzy set and NN, an orthopair neutrosophic number (ONN) can 

express the true indeterminate degree and the false indeterminate degree. In view of generalized 

ordered weighted operators, this article presents two generalized ordered weighted operators of 

ONNs, including an orthopair neutrosophic number generalized ordered weighted average 

(ONNGOWA) operator and an orthopair neutrosophic number generalized ordered weighted 

geometric (ONNGOWG) operator, and their characteristics. A multi-attribute decision-making 

(MADM) model is established by the weighted operation of the ONNGOWA and ONNGOWG 

operators. Finally, an example on the selection problem of electric vehicle design schemes is given 

to reflect the effectivity of the proposed MADM model in the scenario of ONNs. 

Keywords: orthopair neutrosophic number; generalized ordered weighted operator; multi-attribute 

decision-making 

 

 

1. Introduction 

In practical applications, it is difficult for decision makers to provide accurate evaluation values 

for complex decision-making problems in uncertain and incomplete circumstances. In this case, 

Zadeh presented the concept of fuzzy sets (FSs) [1]. On the basis of an extension of FS, Atanassov 

added a new parameter named a non-membership degree and defined an intuitionistic fuzzy set (IFS) 

[2]. Then, some scholars [3, 4] developed some intuitionistic fuzzy decision-making methods. Since 

various aggregation operators reveal important mathematical tools in multi-attribute decision-

making (MADM) process, various aggregation operators of intuitionistic fuzzy numbers (IFNs) were 

proposed by many scholars. For example, Xu and Cai [5] and Xu and Yager [6] proposed intuitionistic 

fuzzy weighted aggregation operators, and then some researchers introduced the generalized 

aggregation operator of IFNs [7], the generalized geometric aggregation operator of IFNs [8], the 

induced generalized aggregation operators of IFNs [9], the power average operators of trapezoidal 

IFNs [10], and the Heronian aggregation operators of IFNs [11]. However, IFS/IFN cannot reasonably 
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represent uncertain problems with uncertain membership and non-membership degrees. To express 

uncertain information, Smarandache proposed the concept of a neutrosophic number (NN) [12-14]. 

It is denoted by N = g + hI for I  [I, I+], where g is the determinate part and hI is the indeterminate 

part. Since NNs are very suitable for dealing with real problems with indeterminacy I  [I, I+], they 

were currently used in production planning problems [15], fault diagnosis [16], medicine assessment 

[17], prediction of traffic volume [18]. Recently, Ye et al. [19] defined the concept of an orthopair 

neutrosophic number (ONN) as a mixed form of IFN and NN, which can represent the hybrid 

information of true and false indeterminate degrees, and then proposed the score and accuracy 

functions of ONN and the ONN weighted arithmetic and geometric averaging (ONNWAA and 

ONNWGA) operators for MADM.  

With the complexity of the social and economic environment, it is difficult for a single decision-

maker to consider all aspects of a MADM problem and to give a reasonable decision result. 

Accordingly, multiple decision makers are needed to provide decision information together and to 

construct a group decision-making result. Then, the aggregation algorithm of group decision 

information is very critical in group decision-making problems. Since the generalized ordered 

weighted averaging (GOWA) aggregation operators [20] consider not only the importance of 

parameters but also the importance of parameter positions, they reveal better aggregation algorithms 

in information aggregations. However, the GOWA operators have not been investigated for 

aggregating ONN information. On the basis of an extension of the GOWA operators, this article 

proposes the GOWA and generalized ordered weighted geometric (GOWG) operators of ONNs and 

a MADM model using the weighted operation of the GOWA and GOWG operators of ONNs. 

The rest of the article consists of the following parts. The second part describes the related 

notions of ONNs, including the definition of ONN, the related operations of ONNs, as well as the 

score and accurate functions of ONNs and their sorting rules. The third part proposes an ONN 

generalized ordered weighted averaging (ONNGOWA) operator and an ONN generalized ordered 

weighted geometric (ONNGOWG) operator and indicates the characteristics of idempotency, 

boundedness, and monotonicity. The fourth part establishes a MADM model through the weighted 

operation of the ONNGOWA and ONNGOWG operators and addresses its decision steps. The fifth 

part applies the established MADM model to the choice problem of manufacturing schemes. The 

sixth part compares the established MADM model with the MADM model proposed in the previous 

literature [19]. The seventh part summarizes the conclusions and future research. 

2. Preliminaries of ONNs 

This section introduces the relevant notions of ONNs presented by Ye et al. [19]. 

Definition 1 [19]. Each ONN nj (j = 1, 2, ..., m) is given by 

nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI>,                         (1) 

where ej + fjI ⊆  [0, 1] and gj + hjI ⊆  [0, 1] for I  [I, I+] are the true indeterminate degree and the 

false indeterminate degree, such that the condition 0 ≤ supAj(I) + supBj(I) ≤ 1. 

Definition 2 [19]. Let n1 = <A1(I), B1(I)> = <e1 + f1I, g1 + h1I> and n2 = <A2(I), B2(I)> = <e2 + f2I, g2 + h2I> for I 

 [I, I+] be two ONNs. Then the operation rules of ONNs are presented as follows: 

(1) n1 ⊇ n2 ⟺ A1(I) ⊇ A2(I) and B1(I) ⊆  B2(I); 

(2) n1 = n2 ⟺ n1 ⊆  n2 and n1 ⊇ n2; 

(3) (n1)c = <B1(I), A1(I)> (Complement of n1); 

(4) n1 ⊕ n2 = 

 

 

1 2 1 2

1 2 1 2

1 2 1 2

[ i nf ( ) i nf ( ) i nf ( ) i nf ( ) ,

sup ( ) sup ( ) sup ( ) sup ( ) ] ,

[ i nf ( ) i nf ( ) , sup ( ) sup ( ) ]

A I A I A I A I

A I A I A I A I

B I B I B I B I

; 
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(5) n1  n2 =  

 

1 2 1 2

1 2 1 2

1 2 1 2

[ i nf ( ) i nf ( ) , sup ( ) sup ( ) ] ,

[ i nf ( ) i nf ( ) i nf ( ) i nf ( ) ,

sup ( ) sup ( ) sup ( ) sup ( ) ]

A I A I A I A I

B I B I B I B I

B I B I B I B I

; 

(6) αn1 = <[(1 − (1 − infA1(I))α, 1 − (1 − supA1(I))α], [(infB1(I))α, (supB1(I))α]> for α > 0; 

(7) (n1)α = <[(infA1(I))α, (supA1(I))α], [(1 − (1 − infB1(I))α, 1 − (1 − supB1(I))α]> for α > 0. 

To rank ONNs nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2) with I  [I, I+], the accuracy function of 

ONN is given as [19] 

T(nj) = {infA1(I) + infB1(I) + supA1(I) + supB1(I)}/2  

= {[2ej + fj(I + I+)] + [2gj + hj(I + I+)]}/2, for T(nj)  [0, 1].                   (2) 

The score function of ONN is given as [19] 

S(nj) = {infA1(I) − infB1(I) + supA1(I) − supB1(I)}/2  

= {[2ej + fj(I + I+)] − [2gj + hj(I + I+)]}/2, for S(nj)  [1, 1].                   (3) 

The ranking rules are described as follows [19]: 

(1) If S(n1) > S(n2), then n1 > n2; 

(2) If S(n1) = S(n2) and T(n1) > T(n2), then n1 > n2; 

(3) If S(n1) = S(n2) and T(n1) = T(n2), then n1 = n2. 

3. Two Generalized Ordered Weighted Aggregation Operators of ONNs 

This section proposes the ONNGOWA and ONNGOWG operators through the operation rules 

in Definition 2. 

3.1. ONNGOWA Operator 

The ONNGOWA operator for a group of ONNs can be derived from the operation rules in 

Definition 2. 

Definition 3. Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs. Thus, the 

ONNGOWA operator is defined below: 

ONNGOWA(n1, n2, ..., nm) = 






 
 




1

1

m

j j
j

v n ,                             (4) 

where vj (j = 1, 2, ..., m) is the weight of nj for 0 ≤ vj ≤ 1 and 



1

1
m

j
j

v . 

Theorem 1. Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs. Thus, the value 

of the ONNGOWA operator is still ONN, which is obtained by the following formula: 

ONNGOWA(n1, n2, ..., nm) = 






 
 




1

1

m

j j
j

v n  

   

   

  

  

 

 

 

 

 
                              


 

                                  

 

 

1 1

1 1

1 1

1 1

1 1 , 1 1 ,

1 1 1 1 ,1 1 1 1

j j

j j

v vm m

j j j j
j j

v vm m

j j j j
j j

e f I e f I

g h I g h I

, (5) 

where vj (j = 1, 2, ..., m) is the weight of nj for 0 ≤ vj ≤ 1 and 



1

1
m

j
j

v . 

Proof:  
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According to the relevant operation rules in Definition 2, Eq. (5) can be verified below. 

   

   

 



 

 

 

                              


                                  

1 1 , 1 1 ,

1 1 1 1 ,1 1 1 1

j j

j j

v v

j j j j

j j
v v

j j j j

e f I e f I

v n

g h I g h I

. (6) 

Then, we get the following equation: 

   

   

 



 

 

 


 

 

                              


                                  

 



 

1 1

1

1 1

1 1 , 1 1 ,

1 1 1 1 ,1 1 1 1

j j

j j

v vm m

j j j j
m j j

j j
v vm mj

j j j j
j j

e f I e f I

v n

g h I g h I

. (7) 

We can further get the result: 






 
 




1

1

m

j j
j

v n  

   

   

  

  

 

 

 

 

 
                              

 
                                  

 

 

1 1

1 1

1 1

1 1

1 1 , 1 1 ,

1 1 1 1 ,1 1 1 1

j j

j j

v vm m

j j j j
j j

v vm m

j j j j
j j

e f I e f I

g h I g h I

. (8) 

So, the proof of the ONNGOWA operator is completed. 

Theorem 2. The ONNGOWA operator expressed by Eq. (5) has the following properties: 

(a) Idempotency: Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs. If nj = n 

(j = 1, 2, …, m), then ONNGOWA(n1, n2, ..., nm) = n. 

(b) Boundedness: Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs, and then 

let the maximum and minimum ONNs be the following values: 

       max max ,max , min ,minj j j j j j j j
j jj j

n e f I e f I g h I g h I          
     

, 

       min min ,min , max ,maxj j j j j j j j
j j j j

n e f I e f I g h I g h I         
      

.  (9) 

Thus, the inequality nmin ≤ ONNGOWA(n1, n2, ..., nm) ≤ nmax exists. 

(c) Monotonicity: Let nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> and nj∗ = <Aj*(I), Bj*(I)> (j = 1, 2, ..., m) be two 

groups of ONNs. If nj ≤ nj∗, then there is the inequality ONNGOWA(n1, n2, ..., nm) ≤ 

ONNGOWA(n1∗, n2∗, ..., nm∗). 

Proof: 

(a) When nj = n (j = 1, 2, ..., m), the result of Eq. (5) is obtained below: 

ONNGOWA(n1, n2, ..., nm) = 






 
 




1

1

m

j j
j

v n
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1 1

1 1

1 1

1 1

1 1 , 1 1 ,

1 1 1 1 ,1 1 1 1

m mv vj j

j j
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j j

e f I e f I
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1 1
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1 1 , 1 1 ,
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e f I e f I
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1 1
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1 1 , 1 1 ,

1 1 1 1 ,1 1 1 1
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1 1

1 1
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1 1 ,1 1

e f I e f I

g hI g hI
 

   

   

 

 

  
 

 
  
 

, ,

,

e f I e f I
n

g hI g hI
.                                                (10) 

(b) Since nmax and nmin are the maximum and minimum ONNs, there is nmin ≤ nj ≤ nmax. Hence, the 

inequality 
 mi n1

m

jj
v n ≤

 1

m

j jj
v n ≤

 max1

m

jj
v n  is established. According to the property (a), 

there exists nmin ≤
 1

m

j jj
v n ≤ nmax, i.e., nmin ≤ ONNGOWA(n1, n2, ..., nm) ≤ nmax. 

(c) If nj ≤ nj*, then the inequality 
 1

m

j jj
v n ≤

 *

1

m

j jj
v n  is established, i.e., the inequality 

ONNGOWA(n1, n2, ..., nm) ≤ ONNGOWA(n1*, n2*, ..., nm*) holds. 

Thus, we complete the proof of Theorem 2. 
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3.2. ONNGOWG Operator 

The ONNGOWG operator for a group of ONNs can be derived from the operation rules in 

Definition 2. 

Definition 4. Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs. Thus, the 

ONNGOWG operator is defined below: 

ONNGOWG(n1, n2, ..., nm) = 






 
 




1

1

j

m
v

j
j

n ,

                        

(11) 

where vj (j = 1, 2, ..., m) is the weight of nj for 0 ≤ vj ≤ 1 and 



1

m

j
j

v = 1. 

Theorem 3. Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs. Thus, the value 

of the ONNGOWG operator is still ONN, which is obtained by the following formula: 

ONNGOWG(n1, n2, ..., nm) = 






 
 




1

1

j

m
v

j
j

n

 

   

   

  

  

 

 

 

 

 
                                  


 
                              

 

 

1 1

1 1

1 1

1 1

1 1 1 1 ,1 1 1 1 ,

1 1 , 1 1

j j

j j

v vm m

j j j j
j j

v vm m

j j j j
j j

e f I e f I

g h I g h I

, (12) 

where vj (j = 1, 2, …, m) is the weight of nj for 0 ≤ vj ≤ 1 and 



1

m

j
j

v =1. 

The verification process of Eq. (12) is similar to that of Theorem 1, so it is omitted. 

Theorem 4. The ONNGOWG operator of Eq. (12) has the following properties: 

(a) Idempotency: Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs. If nj = n 

(j = 1, 2, ..., m), then ONNGOWG(n1, n2, ..., nm) = n. 

(b) Boundedness: Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs, and then 

let the maximum and minimum ONNs: 

        max max ,max , min ,minj j j j j j j j
j jj j

n e f I e f I g h I g h I   
 
     
 
 

, 

        min min ,min , max ,maxj j j j j j j j
j j j j

n e f I e f I g h I g h I   
 
     
 
 

.  (13) 

Thus, nmin ≤ ONNGOWG(n1, n2, ..., nm) ≤ nmax. 

(c) Monotonicity: Let nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> and nj∗ = <Aj*(I), Bj*(I)> (j = 1, 2, ..., m) be two 

groups of ONNs. If nj ≤ nj∗, then ONNGOWG(n1, n2, ..., nm) ≤ ONNGOWG(n1∗, n2∗, ..., nm∗). 

4. MADM Model Based on the ONNGOWA and ONNGOWG Operators 

In this section, a MADM model are established based on the weighted operation of the 

ONNGOWA and ONNGOWG operators to perform MADM problems with ONNs. 

For a MADM problem, D = {D1, D2, ..., Dq} represents a set of q alternatives and then F = {f1, f2, ..., 

fm} represents a set of m attributes. The importance of each attribute fj (j = 1, 2, ..., m) is determined by 
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the weight vj. Experts/decision makers evaluate the satisfactory levels of each alternative Di (i = 1, 2, 

..., q) relative to the attributes fj (j = 1, 2, ..., m) through true and falsity indeterminate degrees, which 

are expressed as the ONNs nij = <Aij(I), Bij(I)> = <eij + fijI, gij + hijI> for Aij(I), Bij(I)  [0, 1], I  [I, I+], 

and 0 ≤ supAij(I) + supBij(I) ≤ 1. Thus, the decision matrix of ONNs can be expressed as N = (nij)q×m. 

Therefore, the MADM model according to the weighted operation of the ONNGOWA and 

ONNGOWG operators is established through the following steps: 

Step 1: Based on Eqs. (5) and (12), the aggregated ONNs n1i and n2i are obtained by the following 

equations: 

n1i = ONNGOWA(ni1, ni2, ..., nim) = 






 
 




1

1

m

j i j
j

v n  

   

   

  

  

 

 

 

 

 
                              


 

                                  

 

 

1 1

1 1

1 1

1 1

1 1 , 1 1 ,
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v vm m
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j j

v vm m

i j i j i j i j
j j

e f I e f I

g h I g h I

,

 

(14) 

n2i = ONNGOWG(ni1, ni2, ..., nim) = 






 
 




1

1

j

m
v

i j
j

n  

   

   

  

  

 

 

 

 

 
                                  


 
                              

 

 

1 1

1 1
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v vm m
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e f I e f I

g h I g h I

.

    

(15) 

Step 2: The weighted operation of the ONNGOWA and ONNGOWG operators with the weights 

ψ1 and ψ2 =1 − ψ1 for ψ1 ∈ [0, 1] is obtained by the following equation: 

       
1 1 2 2 1 1 1 2

(1 )
i i i i i

H n n n n
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1 1 1 1

1 1 1 1
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1 2 1
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1
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i nf (

1 1 i nf ( ) 1 i nf ( ) , 1 1 sup ( ) 1 sup ( ) ,

( ) ) i nf ( ( ) ) , sup( ( ) ) sup( ( ) )

i i i i

i i i i

A I A I I I

B I I B I I

A A
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. (16)

 

Step 3: The values of S(Hi) and T(Hi) (i = 1, 2, ..., q) are obtained by Eqs. (2) and (3). 

Step 4: The alternatives are sorted according to the sorting rules and the best one is chosen. 

Step 5: End. 
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5. Illustrative Example 

In this section, the MADM model based on the weighted operation of the ONNGOWA and 

ONNGOWG operators is applied to the selection of electric vehicle design schemes. 

A manufacturing company needs to choose the best design scheme of electric vehicles, the 

technique department preliminarily provides four design schemes of electric vehicles as a set of 

alternatives D = {D1, D2, D3, D4}. Each alternative is satisfactorily assessed by the three attributes: 

charging rate (f1), driving range (f2), and manufacturing cost (f3). The weight vector of the three 

attributes is specified by v = (0.36, 0.3, 0.34). Therefore, experts/decision makers evaluate the four 

alternatives that satisfy these attributes by ONNs nij = <Aij(I), Bij(I)> = <eij + fijI, gij + hijI> (i = 1, 2, 3, 4 

and j= 1, 2, 3) for Aij(I), Bij(I)  [0, 1], I  [I, I+], and 0 ≤ supAij(I) + supBij(I) ≤ 1. Thus, the ONN decision 

matrix is listed in Table 1. 

 

Table 1. The decision matrix of ONNs. 

 f1 f2 f3 

D1 <0.5 + 0.2I, 0.1 + 0.1I> <0.6 + 0.1I, 0.1 + 0.1I> <0.5 + 0.1I, 0.1 + 0.2I> 

D2 <0.6 + 0.1I, 0.1 + 0.1I> <0.6 + 0.2I, 0.1 + 0.1I> <0.6 + 0.1I, 0.1 + 0.1I> 

D3 <0.6 + 0.1I, 0.1 + 0.1I> <0.6 + 0.1I, 0.1 + 0.2I> <0.5 + 0.2I, 0.1 + 0.2I> 

D4 <0.5 + 0.2I, 0.1 + 0.1I> <0.6 + 0.2I, 0.1 + 0.1I> <0.7 + 0.1I, 0.1 + 0.1I> 

 

Regarding the MADM problem in an ONN environment, the MADM steps are given below. 

Step 1: Using Eqs. (14) and (15) with δ = 0.5 and I  [I, I+] = [0, 0.3], the aggregated ONNs n1i 

and n2i (i = 1, 2, 3, 4) are obtained below: 

   
   
      
   
    

11

12

13

14

<0. 5318 + 0. 5724 , 0. 1000 + 0. 1395 >

<0. 6000 + 0. 6392 , 0. 1000 + 0. 1300 >

<0. 5679 + 0. 6073 , 0. 1000 + 0. 1485 >

<0. 6053 + 0. 6540 , 0. 1000 + 0. 1300 >

n I I

n I I

n I I

I In

,

 

   
   
      
   
    

21

22

23

24

<0. 5288 + 0. 5700 , 0. 1000 + 0. 1401 >

<0. 6000 + 0. 6389 , 0. 1000 + 0. 1300 >

<0. 5647 + 0. 6057 , 0. 1000 + 0. 1491 >

<0. 5948 + 0. 6461 , 0. 1000 + 0. 1300 >

n I I

n I I

n I I

I In

.

 

Step 2: By Eq. (16) for ψ1 = 0.5 and I  [I, I+] = [0, 0.3], the values of Hi are given below: 

H1 = <0.5303 + 0.7017I, 0.1000 + 0.1419I>, H2 = <0.6000 + 0.7917I, 0.1000 + 0.1390I>, 

H3 = <0.5663 + 0.7483I, 0.1000 + 0.1446I>, and H4 = <0.6001 + 0.7952I, 0.1000 + 0.1390I>. 

Step 3: Using Eq. (3), the values of S(Hi) for the alternatives Di (i = 1, 2, 3, 4) are given as follows: 

S(H1) = 0.495, S(H2) = 0.5763, S(H3) = 0.535, and S(H4) = 0.5781. 

Step 4: Since S(H4) > S(H2) > S(H3) > S(H1), the sorting order of the four alternatives is D4 > D2 > 

D3 > D1, then the best one is D4. 

In order to reflect the influence of δ and ψ1 on the decision results of the proposed MADM 

model, the corresponding ranking results are shown in Table 2. 

In view of the ranking results shown in Table 2, different parameter values of δ and different 

weight values of ψ1 can influence the ranking order of the four alternatives, which reveals the 

flexibility of the decision results. 
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Table 2. Values of S(Hi) and ranking orders corresponding to δ = 0.3, 0.7, 1 and ψ1 = 0, 0.1, 0.3, 0.5, 0.7, 1. 

δ ψ1 [I, I+] S(H1), S(H2), S(H3), S(H4) Ranking order The best one 

δ = 0.3 

 

ψ1 = 0.0 [0, 0.3] 0.4935, 0.5763, 0.5335, 0.5733 D2 > D4 > D3 > D1 D2 

ψ1 = 0.1 [0, 0.3] 0.4939, 0.5763, 0.5338, 0.5744 D2 > D4 > D3 > D1 D2 

ψ1 = 0.3 [0, 0.3] 0.4944, 0.5763, 0.5344, 0.5764 D4 > D2 > D3 > D1 D4 

ψ1 = 0.5 [0, 0.3] 0.4950, 0.5763, 0.5350, 0.5783 D4 > D2 > D3 > D1 D4 

ψ1 = 0.7 [0, 0.3] 0.4956, 0.5763, 0.5356, 0.5803 D4 > D2 > D3 > D1 D4 

ψ1 = 1.0 [0, 0.3] 0.4965, 0.5764, 0.5365, 0.5832 D4 > D2 > D3 > D1 D4 

δ = 0.7 

ψ1 = 0.0 [0, 0.3] 0.4929, 0.5763, 0.5328, 0.5711 D2 > D4 > D3 > D1 D2 

ψ1 = 0.1 [0, 0.3] 0.4933, 0.5763, 0.5333, 0.5725 D2 > D4 > D3 > D1 D2 

ψ1 = 0.3 [0, 0.3] 0.4941, 0.5763, 0.5340, 0.5752 D2 > D4 > D3 > D1 D2 

ψ1 = 0.5 [0, 0.3] 0.4949, 0.5763, 0.5349, 0.5779 D4 > D2 > D3 > D1 D4 

ψ1 = 0.7 [0, 0.3] 0.4958, 0.5763, 0.5357, 0.5806 D4 > D2 > D3 > D1 D4 

ψ1 = 1.0 [0, 0.3] 0.4969, 0.5764, 0.5369, 0.5846 D4 > D2 > D3 > D1 D4 

δ = 1 

ψ1 = 0.0 [0, 0.3] 0.4924, 0.5763, 0.5323, 0.5691 D2 > D4 > D3 > D1 D2 

ψ1 = 0.1 [0, 0.3] 0.4929, 0.5763, 0.5328, 0.5709 D2 > D4 > D3 > D1 D2 

ψ1 = 0.3 [0, 0.3] 0.4939, 0.5763, 0.5338, 0.5743 D2 > D4 > D3 > D1 D2 

ψ1 = 0.5 [0, 0.3] 0.4949, 0.5763, 0.5348, 0.5775 D4 > D2 > D3 > D1 D4 

ψ1 = 0.7 [0, 0.3] 0.4959, 0.5764, 0.5358, 0.5808 D4 > D2 > D3 > D1 D4 

ψ1 = 1.0 [0, 0.3] 0.4974, 0.5764, 0.5374, 0.5856 D4 > D2 > D3 > D1 D4 

6. Comparative Analysis 

To prove the effectiveness of the proposed model, the proposed MADM model based on the 

weighted operation of the ONNGOWA and ONNGOWG operators is compared with the MADM 

model proposed in [19]. The decision results of the existing MADM model for the above example are 

summarized in Table 3. 

Table 3. The best one and ranking order corresponding to the existing MADM model [19]. 

Aggregation 

operator 
Aggregated value Score value Ranking order 

The best 

one 

ONNWGA 

operator for I = 

[0, 0.3] [19] 

0.5281, 0.6989, 0.1000, 0.1448 

0.6342, 0.8363, 0.1000, 0.1390 

0.5639, 0.7480, 0.1000, 0.1453 

0.6323, 0.8344, 0.1000, 0.1390 

S(Hi) = 

(0.4924, 0.5763, 

0.5323, 0.5691) 

D2 > D4 > D3 > D1 D2 

ONNWAA 

operator for I = 

[0, 0.3] [19] 

0.5324, 0.6274, 0.1000, 0.1911 

0.6000, 0.6928, 0.1000, 0.1700 

0.5685, 0.6601, 0.1000, 0.2120 

0.6373, 0.7506, 0.1000, 0.1700 

S(pj, I) = 

(0.4974, 0.5764, 

0.5374, 0.5857) 

D4 > D2 > D3 > D1 D4 

 

Regarding the decision results in Tables 2 and 3, the ranking results of the design schemes and 

the best one based on the proposed MADM model with δ = 1, ψ1 = 0, 1, and I = [0, 0.3] are the same as 

those based on the existing MADM model [19] because the ONNWAA and ONNWGA operators [19] 
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are the special cases of the ONNGOWA and ONNGOWG operators with δ = 1 and ψ1 = 0, 1. However, 

the proposed MADM model contains the advantage of flexible decision making, while the existing 

MADM model [19] lacks flexibility in the decision process. Therefore, the proposed MADM model 

reveals the obvious superiority over the existing MADM model [19] in an ONN circumstance. 

7. Conclusions 

In this paper, we presented the ONNGOWA and ONNGOWG operators based on the concepts 

of ONNs and the GOWA operators to reach more flexible aggregation operations than the existing 

ONNWAA and ONNWGA operators [19]. Then, the proposed MADM model based on the weighted 

operation of the ONNGOWA and ONNGOWG operators was established to solve flexible MAGM 

problems in an uncertain circumstance. However, the application of the proposed MADM model in 

an illustrative example demonstrated its effectivity, and then the comparative results reflected that 

the proposed MADM model revealed the advantage of flexible decision making in an ONN 

circumstance. 

However, there are still many aggregation operators of ONNs for MADM to need further 

research and to apply them in practical areas, including supplier selection, fault diagnosis, medical 

diagnosis, etc. 
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Abstract  
It is well known that the unpredictable speech production brought on by stress from the task at hand has 

a significant negative impact on the performance of speech processing algorithms. Speech therapy 

benefits from being able to detect stress in speech. Speech processing performance suffers noticeably 

when perceptually produced stress causes variations in speech production. Using the acoustic speech 

signal to objectively characterize speaker stress is one method for assessing production variances brought 

on by stress. Real-world complexity and ambiguity make it difficult for decision-makers to express their 

conclusions with clarity in their speech. In particular, the Neutrosophic speech algorithm is used to encode 

the language variables because they cannot be computed directly. Neutrosophic sets are used to manage 

indeterminacy in a practical situation. Existing algorithms are used except for stress on Neutrosophic 

speech recognition. The creation of algorithms that calculate, categorize, or differentiate between 

different stress circumstances. Understanding stress and developing strategies to combat its effects on 

speech recognition and human-computer interaction system are the goals of this recognition. 

mailto:broumisaid78@gmail.com
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1.Introduction 

In order to produce speech, a series of intricately synchronised articulator movements, respiratory system 

airflow, and timing of the vocal system physiology are all required. While the posture of the articulator 

changes to create speech, not all utterances made by a speaker will be identical in every way. This is due 

to the fact that the subject is frequently experiencing some sort of emotional stress, which will affect the 

utterance and cause an error in the articulator motions. Listeners can handle or interpret these subtle 

variations in human communications much better than the automatic human-machine interface. The 

features of stress, and its effects on human speech production, perception, and automatic speed systems, 

are still not fully understood. Speech is therefore a complex signal that contains information about the 

speaker. The speaker's intent, language history, features of their accent and dialect, and additional 

paralinguistic information. Stress can cause a change in speech output that can large and will consequently 

affect how well speech processing apps function [1],[2]. Numerous research has examined how stress 

affects speech production variability[3],[4], and [5]. Moreover, a stress-based expansion of multi-style 

training Additionally, token generation has improved anxious speech recognition [6]. Then, five stress-

sensitive targeted feature sets are chosen. 

stress situations such as the cockpit of an Apache helicopter, anger, clarity, the Lombard effect, loudness, 

etc. features that are frequently employed Include the cepstral characteristic for speaker identification 

[7]. When doing cepstral analysis, speaker recognition software often ignores the excitation source data 

that appears as a high-time component of the cestrum[8]. The Mel-Frequency Cepstral Coefficient, a 

phonetic characteristic, was retrieved from the voice signals, and the stress was identified using a neural 

network that was programmed into the system using Python[9]. serve as a resource for decision-makers 

in many real-world scenarios and application domains, particularly from a technical standpoint, for both 

academic and business experts[10]. In the research described in this paper, stress during applicant 

screening interviews is identified via voice analysis. The mean energy, mean intensity, and Mel-Frequency 

Cepstral Coefficients are employed as classification features in machine learning to identify stress in 

speech[11]. This study uses an EEG signal to suggest a stress classification system. 35 individuals' EEG 

signals were analyzed after being collected using a commercially available 4-electrode Muse EEG headgear 
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with four EEG sensors [12]. In this study, it is expected that risk factors would, both cross-sectionally and 

longitudinally, predict mental health issues after controlling for sociodemographic traits and intent to 

become pregnant[13]. This investigation uses brain signals to look at how stress levels are affected by 

English and Urdu language music tracks[14]. This project looks into methods for sensing stress that is used 

to identify hardware[15]. The high-level features are combined into one unified representation using a 

proposed model-level fusion technique, which classifies the stress states into baseline, stress, and 

amusement[16]. The heart rate was measured and classified into three categories of positive, negative, 

and neutral emotions using the Geneva affective picture database. The support vector machine is a 

machine learning technique that has been built to predict the mental stress situation from the measured 

heart rate[17]. The development of a model for measuring stress levels makes use of several sensors, 

including those that measure body temperature, blood pressure (BP), heart rate, and CO2 

concentration[18]. Studies show that combining IoT and AI with deep learning (DL) technology makes it 

possible to take preventative measures. Recognise stress well before its effects on human health become 

apparent[19]. In order to assess teaching effectiveness, enhance education, and limit risks from human 

errors that could occur as a result of workers' stressful circumstances, stress detection is crucial in both 

education and industry [20]. has good classification performance in this study and is able to gauge the 

stress levels of kids with accuracy. The growth of students' mental health has a strong foundation thanks 

to the precise measurement of stress, which also has important practical ramifications[21]. This research 

explores the concept of the intervention effect of physical activity on college students using an integrated 

evaluation-based algorithm. College students are used as an example of stress groups. The findings 

indicate that regular physical activity can significantly reduce college students' stress levels[22]. This study 

employs Neutrosophic logicto provide a valid ranking of hospital construction assets based on their 

changeable criticality and to lessen the subjectivity pertaining to expert-driven judgements[23]. This 

document compiles all research on machine learning mapping. 

methods from the sharp number space to the neutrosophic environment. We also talk about 

contributions and combining single-valued neutrosophic numbers with machine learning methods 

Modeling faulty information using (SVNs)[24]. In this paper, a brand-new paradigm for incorporating 

neutrosophy into deep learning models is given. To further comprehend the feelings, we quantified them 

using three membership functions as opposed to simply predicting a single class as the outcome. The two 
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components of our suggested model are feature extraction and feature categorization[25]. The proposed 

framework would be an appropriate progression in the future by eliminating ineffective qualities through 

feature selection [26]. Stress is a psychological condition that results from an alleged threat or work 

demand and is accompanied by a variety of feelings. Finding linguistic cues of stress could be one of the 

verbal signs of stress. verbal indicators of stress are perceived by the listener, markers range in visibility 

from very visible to invisible. Consciously and unconsciously, these signals are watched continuously [27]. 

Speech recognition is the ability of a system to recognise the words and phrases of the speech and convert 

them to readable or written format. Speech recognition is typically carried out through processes 

including call routing, speech-to-text conversion, voice dialling, voice audibility, and language modelling. 

Although there are numerous techniques and algorithms for voice recognition, none of them is handling 

all factors including word length, speaker independence, a wide vocabulary, comprehension of speech, 

time complexity, noisy surroundings, and conversational speech. Neutrosophic can be integrated to 

analyse the acoustic signal of an unknown speaker and the decision-making process when indeterminacy 

occurs, respectively, to solve these issues. 

2. Preliminaries 
 
 A neutrosophic set �̃�𝑁 in 𝒰 (Universe of discourse) is catogorized as functions of a truth 
membership 𝑇�̃�𝑁

(ℊ), an indeterminacy membership  𝐼𝒜𝑁
(ℊ) and a falsity membership 

𝐹𝒜𝑁
(ℊ)and is given by 

�̃� = {ℊ, 〈𝑇�̃�𝑁
(ℊ),  𝐼𝒜𝑁

(ℊ), 𝐹�̃�𝑁
(ℊ)〉 | ℊ ∈ 𝒰}. 

Here 𝑇�̃�𝑁
(ℊ),  𝐼𝒜𝑁

(ℊ), 𝐹�̃�𝑁
(ℊ) ∈ [0,1] and the relation 0 ≤ sup 𝑇𝒜𝑁

(ℊ) ≤ sup 𝐼𝒜𝑁
(ℊ) ≤

sup 𝐹𝒜𝑁
(ℊ) ≤ 3 holds for all ℊ ∈ 𝒰. 

Definition 2.1[27,28 and 29] 

Let 𝑋 be the universal set, then Neutrosophic set is defined as 𝑆 = {(𝑇𝑆(𝑥), 𝐼𝑆(𝑥), 𝐹𝑆(𝑥)), 𝑥 ∈ 𝑋} where 
𝑇𝑆(𝑥), 𝐼𝑆(𝑥), 𝐹𝑆(𝑥) ∈ [0,1] and 0 ≤ 𝑇𝑆(𝑥) + 𝐼𝑆(𝑥) + 𝐹𝑆(𝑥) ≤ 3. 

3.Database 

The assessments carried out in this study are based on information previously gathered for speech 

analysis in noise and stress analysis and algorithm formulation. Because the task at hand entails mapping 

audio single value Neutrosophic sets(SVNS) to text SVNS for comparison, a dataset that included audio 

translation was necessary. LibriSpeech dataset was chosen as a result. The following two folders were 

utilised for the project demonstration: Dev-clean (337 MB) and Train-clean-100 (6.3 GB). 
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4.Methodology 

4.1 Audio 

converting.flac audio files to.wav 

The dataset could be downloaded in FLAC format. These files had to be converted into.wav format in 

order to be processed further and have features extracted. 

4.2 Features Extraction and Preprocessing 

The python feature extraction script was then run on the audio files, extracting 193 features for each 

audio file. As a result, the npy files X dev.npy (2703 x 193) and X train.npy were created (28539 x 193). 

Then, sklearn was used to normalise these files. 

4.3 Text 

Using VADER, analyse the sentiment of translated text. 

For each input sentence, the sentiment analysis programme VADER delivers a score for the 

truth,indeterminacy and falsity. Each audio file's text translation was examined using VADER, and SVNS 

were produced. 

 

5. Speech recognition in to text conversion 

5.1 Algorithm:1 

Step 1: Import library 
Step 2:Import speech recognition 
Step 3:Initialize recognizer class 
Step 4; Reading Microphone source 
Step 5: Convert audio to text 
Step 6: Adjust for ambient noise. 
Step 7: Recognize the error 
Step 8:Type the text. 

5.2 Programme for Speech to Text  

r = sr.Recognizer() 
    print("Talk") 
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    r.adjust_for_ambient_noise(source, duration=0.2) 
    audio_text = r.listen(source) 
    print("Time over, thanks") 
       print("Text: "+r.recognize_google(audio_text)) 
         print("Sorry, I did not get that") 
Once the programe is over, then run the programe. The out put is  
Talk 
Speak through microphone then it will showing. In this experiment speech word is “very good” 
Time over, thanks 
The output in the screen is  
Text: very good 
 
6. Neutrosophic speech stress analysis 
6.1 Algorithm:2 

Step 1: Import SentimentIntensityAnalyzer class  
Step 2: Function to print sentiments 
Step 3: Score for sentiment speech 

Step 4: Which contains Truth, Falsity, Indeterminacy, and compound scores. 
 
Step 5: Decide sentiment as Truth, Falsity and Indeterminacy se. 
Step 6: Print the value of the compound score 
Step 7: Print overall the stress statement is truth ,falsity or indeterminacy. 
 
6.2 Programme for text to stress analysis by Neutrosophic speech algorithm 

def sentiment_scores(sentence): 
 
sid_obj = SentimentIntensityAnalyzer() 
C = sid_obj.polarity_scores(sentence) 
print 
("Overall sentiment dictionary is : ", C) 
Print 
("sentence was rated as ", C['falsity']*100, "% Negative") 
Print 
("sentence was rated as ", C['indeterminacy']*100, "% Neutral") 
Print 
("sentence was rated as ", C['Truth']*100, "% Positive") 
Print 
("Sentence Overall Rated As", end = " ") 
 
The  following sentence "Very Good.",”Not bad”,”Bad”, "happy birth day." 
 "god bless you.","beautiful." 

In this algorithm 2 , include the output of the algorithm 1 statements. Once run the programme.  
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6.3 The output of the programme 
 
1st statement is Very Good the output of the programme is  
{'Falsity': 0.0, 'Indeterminacy': 0.238, 'Truth': 0.762} 
 0.0 % Falsity, 23.799999999999997 % Indeterminacy, 76.2 % Truth and  the speech is not 
under strees  
2nd Statement : Not bad 
 {'Falsity': 0.0, 'Indeterminacy': 0.26, 'Truth': 0.74} 
 0.0 % Falsity, 26.0 % Indeterminacy, 74.0 % Truth and the speech is not under stress. 
3rd Statement :Bad 
 {'Falsity': 1.0, 'indeterminacy': 0.0, 'Truth': 0.0} 
100.0 % Falsity, 0.0 % Indeterminacy, 0.0 Truth and the speech is under stress. 
 
4th  statement :Happy Birthday 
 {'Falsity': 0.0, 'Indeterminacy': 0.351, 'Truth': 0.649} 
0.0 %  Falsity, 35.099999999999994 %Indeterminacy, 64.9 % Truth and the speech is  not under 
stress. 
 
5th Statement : god bless you 
 {'Falsity': 0.0, 'Indeterminacy': 0.169, 'Truth': 0.831} 
 0.0 % Falsity,16.900000000000002 Indeterminacy, 83.1  Truth and the speech is  not under 
stress. 
6th  Statement : beautiful 
 {‘Falsity': 0.0, 'Indeterminacy': 0.0, 'truth': 1.0} 
 0.0  Falsity, 0.0 % Indeterminacy, 100.0 % Truth the speech is  not under stress. 
 
7th Statement :Please help me 
  {'Falsity': 0.0, 'Indeterminacy': 0.167, 'Truth': 0.833} 
 0.0 % Falsity,16.7 % Indeterminacy, 83.3 % Truth and the speech is  not under stress. 
 
8th Statement :hate 
 {'Falsity': 1.0, 'Indeterminacy': 0.0, 'Truth': 0.0} 
100.0 % Falsity,0.0 % Indeterminacy, 0.0 % Truth and the speech is under stress. 
 
9th Statement :Great 
{'Falsity': 0.0, 'Indeterminacy': 0.0, 'Truth': 1.0} 
0.0 % Falsity, 0.0 % Indeterminacy,100.0 % Truth and the speech is  not under stress. 
Fig:1 Stress Analysis using Neutrosophic speech recognition 
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Fig:1 reveal that the percentage of the speech shows the truth, indeterminacy and falsity 
value .That means the probability of the stress in the speech. The probability value is give the 
statement is the speech is under stress or not.  
 
 
 
 
 
 
Fig:2 Overall rated for Speech 
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 Fig :2 shows that the speech is  under stress or not under stress. From the analysis of the speech 
verygood,  notbad, happy birthday, god bless you, beautiful and great is positive speech text. Bad 
and hate is negative speech . 
 
Conclusion 
 
The requirement to accurately analyse, model, encode, identify, and categorise speech under stress 

will become increasingly important as speech and language technology develops. The condition 

of the speaker can be useful information for human-machine and dialogue systems that use voice 

interaction. This information can be utilised to create speaker and speech recognition technologies, 

leading to the development of systems that function better in actual multi-tasking 

environments.The difficulty, though, lies in finding a framework that can effectively analyse and 

model such speech technologies. The issue of better stress classification utilising targeted speech 

features has been taken into consideration in this work. categorization of stress The estimation of 

a probability vector that represents the level of speaker stress is proposed using neurosophic 

algorithms. Machine learning has demonstrated context-sensitive stress classification. The output 

stress probability vector can also be used to quantify combinations of speaker stress, such as speech 

that is both fast and loud. It is claimed that a stress mixture model could be helpful for tasks like 

sorting emergency phone messages or enhancing the efficiency of traditional speech processing 

systems. In conclusion, it has been demonstrated that stress classification utilising focused features 

in Neutrosophic speech recognition algorithm is effective for estimating the level of speaker stress 

and for providing helpful information for enhancing the performance of a voice recognition 

algorithm. 
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Abstract: Decision-making is a complex issue, especially for attributes being more than one and 

further bifurcated. Correlation analysis plays an important role in decision-making problems. For 

neutrosophic hypersoft sets (NHSSs), they have bifurcated sub-attributes so that we cannot compare 

the attributive values. Thus, Correlation Coefficient (CC) should be a good tool for decision-making 

in NHSSs. Moreover, in decision-making problems, most of the times opinion of more than one expert 

is involved. For dealing this, m-polar values can be better used. The basic purpose of this paper is to 

propose the concept of CC and Weighted CC (WCC) for m-polar NHSSs with some aggregation 

operators, theorems, and propositions. Algorithms, based on CC and WCC are also been proposed 

to solve decision-making problems. Two case studies have been solved by applying the proposed 

algorithms. The results obtained are compared with existing approaches. The experiment and 

comparison results reveal the validity and superiority of the proposed methods. They are more 

accurate and precise. In the future, the proposed methods can be applied to case studies, in which 

attributes are more than one and further bifurcated along with more than one decision-maker. They 

can be extended for several existing approaches, like TOPSIS, VIKOR, AHP, and many others. 

 

Keywords: Aggregation operators, Correlation Coefficient (CC); Multi-Criteria Decision-Making 

(MCDM); Neutrosophic Hypersoft Sets (NHSSs); Weighted Correlation Coefficients (WCC). 
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1. Introduction 

Fuzzy Set (FS) theory with the concept of membership was proposed by Zadeh [1]. Nowadays, 

this theory is at its boom that a gadget used for the ease in our life or even the luxury we feel can be 

based on the FS theory. The FS had been extended to the new types of set structures.  For more 

accuracy, falsity value is considered, and so the FS was extended to an Intuitionistic FS (IFS) by 

Atanassov [2] that has membership and non-membership values. A generalization of IFS was given 

by Yager and Abbasov [3] as Pythagorean FS (PFS). These FS, IFS and PFS had various applications, 

such as [4-6]. 
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For an extension of FS, IFS and PFS for dealing a scientific gadget with truth membership, falsity 

membership, and indeterminacy membership, Smarandache [7] proposed a new concept of 

Neutrosophic Set (NS). The NS added an indeterminacy membership and then extended IFS to truth 

membership, indeterminacy membership, and falsity membership with a triple (T, I, F) component 

of memberships. This concept is important because indeterminacy exists extraordinarily in 

application systems. The NS with (T, I, F) memberships was used by a Decision-Maker (DM) and 

applied to Multi-Criteria Decision-Making (MCDM) problems. More extensions of NS can refer 

Awang et al. [8]. 

On the other hand, Molodtsov [9] first proposed Soft Set (SS) in 1999 in which the SS is a mapping 

from attributes to the power set of a universal set. The SS can be used for handling issues of indefinite 

circumstances with a parameterized family of the power set of the universal set.  Afterwards, Ali et 

al. [10] and Cagman and Enginoglu [11] offered new operations and applications of soft sets in a 

decision making. By combining NS with soft set, Maji [12] proposed Neutrosophic Soft Set (NSS). By 

extending SS so that it is usable in the cases when attributes are more bi-furcated, Smarandache [13] 

came up with a new set structure known as HyperSoft Set (HSS). Basically, HSS is a mapping from 

the product of attributes which are further bi-furcated to the power set of universal set. To deal with 

truthiness, indeterminacy, and falsity, NHSS was considered in Saqlain et al. [14] where they also 

applied NHSS to TOPSIS using accuracy function. Saqlain et al. [15] gave similarity measures for 

NHSSs and Jafar et al. [16] proposed trigonometric similarity measures for NHSSs with application 

to renewable energy source selection. 

 On the other hand, the importance of bipolarity cannot be ignored in various real-life problems. 

Bipolarity can give positive and negative information for an object. Zhang [17] first considered a 

bipolar FS (BFS) for handling fuzziness with bipolarity. The BFS assigns each alternative to a positive 

membership degree and a negative membership degree between 0 and 1. Alghamdi et al. [18] applied 

BFS in multi-criteria decision-making and Zhang [19] applied BFS to quantum intelligence 

machinery. Furthermore, Akram et al. [20] considered m-polar FS and used it in decision making 

where the m-polar FS is an extension of BFS. 

The joint connection between two variables may be used to analyze the interdependence of two 

or more variables. The correlation analysis can be used as a connection measure which is important 

in statistics and engineering. The correlation coefficient (CC) between random variables is generally 

used in correlation analysis. The CC for IFSs was first presented by Gerstenkorn and J. Mafiko [21], 

and then Bustince and Burillo [22] presented CC for the interval-valued IFSs. Ye [23] proposed CC 

for the single-valued NS (SVNS) along with an algorithm to solve decision-making problems. Samad 

et al. [24] considered the CC for NHSSs and applied it to the selection of an effective hand sanitizer 

to reduce covid-19 effects. Saqlain [25] proposed interval-valued, m-polar and m-polar interval-

valued neutrosophic hypersoft set, Irfan et al. [26] later developed the similarity measures of m-polar 

NHSSs (m-p-NHSSs). However, there is no any CC method for m-p-NHSSs. In this paper, we propose 

the generalized CC for m-p-NHSSs. Thus, we fill the research gap of the CC methods for m-p-NHSSs. 

We then use the proposed CC to create the algorithms to solve multi-criteria decision-making 

(MCDM) problems under the m-p-NHSSs environment. In future, this can be used to create a high 

machine IQ and hybrid intelligent system by combining the m-polar hypersoft set with other soft 
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computing techniques like bipolar fuzzy, Pythagorean set, and other hybrid structures. These 

techniques can be used in image processing, expert systems, and cognitive maps. 

The remainder of the paper is organized as follows. In Section 2, some basic definitions are 

reviewed to understand the rest of the article i.e. SSs, NSs, NSSs, HSSs, NHSSs, and m-p-NSSs. In 

Section 3, we establish the generalized CC for m-p-NSSs, and then some examples and their desirable 

properties will be also considered in detail. We next develop an algorithm based on the generalized 

CC for m-p-NHSSs to solve decision-making problems in Section 4. In Section 5, by using these 

algorithms, we will solve the decision-making problem (case studies) to the m-p-NHSSs 

environment. In Section 6, results, discussion, and comparison will be discussed. Finally, the 

conclusion along with future directions will be presented in the last section. 

 

2. Preliminary Section 

In this section, we review essential concepts: Soft Sets (SSs), Neutrosophic Sets (NSs), Neutrosophic 

Soft Sets (NSSs), Hypersoft set (HSS), Neutrosophic Hypersoft Set (NHSSs), and m-polar NHSSs (m-

p-NHSSs).  

Definition 2.1 [9]. Assume 𝔼 is a set of parameters, and 𝕌 is a universe set. Suppose the power set of 

𝕌 is denoted by P(𝕌), and 𝔸⊆ 𝔼. A Soft Set (SS) over 𝕌 is a pair (ζ, 𝔸) where ζ: 𝔸 →  ℙ(𝕌 ) is the 

mapping of the given set 𝔸. To put it another way, the SS (ζ, 𝔸) over 𝕌 is said to be parameterized 

subset of 𝕌. For 𝔸 and ζ(𝓮), the SS of e-approximate or e-elements might be considered (ζ, 𝔸), and so 

(ζ, 𝔸) can be given as; 

(ζ, 𝔸) = {ζ(𝓮) ∈ ℙ(𝕌): 𝓮 ∈ 𝔼, ζ(𝓮) = ∅ if 𝓮 ≠ 𝔸} 

 

Definition 2.2 [12]. Assume that 𝕌 is a universe set and a collection of attributes that apply to 𝕌 is 

the set of attributes. Suppose that P(𝕌) represents the collection of Neutrosophic values of 𝕌. A pair 

(ζ, 𝔸) is said to be a Neutrosophic SS (NSS) over 𝕌 where  ζ  is a mapping with ζ: 𝔸 → ℙ (𝕌). 

 

Definition 2.3 [13]. Suppose that the universe set and its power set are given as 𝕌 and ℙ(𝕌), 

respectively. Let 𝓚 = 𝓚𝟏,𝓚𝟐, … ,𝓚𝒏 for n ≥ 1 where 𝓚𝒊 specifies the collection of attributes and 

sub-attributes that are included in them with 𝓚𝒊 ∩𝓚𝒋 = ∅, i ≠ j for i, jϵ{1,2,3…n}. Let 𝓚𝟏 ×𝓚𝟐 ×

…×𝓚𝒏=𝔸. Then, a pair (ζ ,𝓚𝟏 ×𝓚𝟐 × …×𝓚𝒏) is called a hypersoft set (HSS) over 𝕌 defined as ζ: 

𝓚𝟏 ×𝓚𝟐 ×…×𝓚𝒏=𝔸 →  ℙ(𝕌). It is also described as (ζ, 𝔸)= {(𝑎, ζ𝔸(𝑎)): 𝑎 ∈  𝔸, ζ𝔸(𝑎) ∈ ℙ(U)}. 

 

Definition 2.4 [14]. Suppose 𝕌 and P(𝕌) are a universal set and power set, respectively. Assumed the 

well define attributes are 𝕃1, 𝕃2, . . . , 𝕃𝑚 with corresponding attributive values 𝕝1, 𝕝2, . . . , 𝕝𝑚𝑓𝑜𝑟 𝑚 ≥

1 such that 𝕃𝑗 ∩ 𝕃𝑘 = ∅ 𝑓𝑜𝑟 𝑗 ≠ 𝑘 𝑎𝑛𝑑 𝑗, 𝑘 ∈ {1,2,… ,𝑚} and the relation is 𝕃1 × 𝕃2 ×…× 𝕃𝑚 =

𝛿 . The pair of (ζ, 𝛿) is known as a Neutrosophic HSS (NHSS) over 𝕌 with  ζ: 𝕃1 × 𝕃2 ×. . .× 𝕃𝑚 →

 P( 𝕌)  and ζ(𝕃1 × 𝕃2 ×. . .× 𝕃𝑚) = {< 𝑥, 𝑇(ζ(𝛿)), I(ζ(𝛿)), F(ζ(𝛿)) >, x ∈ 𝕌 } , where T is the 

truthiness, I is the indeterminacy, and F is the falsity membership value with T, I, F: 𝕌 → [0,1] and 

also 0 ≤ 𝑇(ζ(𝛿))+I(ζ(𝛿))+F(ζ(𝛿)) ≤ 3 . 
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Definition 2.5 [15]. Let 𝕌 be a universe set and let P(𝕌) be the power set of 𝕌. Let  𝔼 be a set of 

attributes and consider 𝔸 ⊆ 𝔼. The pair (𝜁 , 𝔸) is called multi-valued NHSS (MVNHSS) over 𝕌 

where ζ  is a mapping with  ζ ∶  𝔸 →ℙ(𝕌) and (𝜁 , 𝔸)= {
〈𝕋𝑥(𝜁(𝔸)),𝕀𝑦(𝜁(𝔸)),𝐹𝑧(𝜁(𝔸))〉

𝒰
, 𝒰 ∈  U},  where 

𝕋𝑥(𝜁(𝔸)) ⊆ [0, 1]  , 𝕀𝑦(𝜁(𝔸)) ⊆ [0, 1] and 𝐹𝑧(𝜁(𝔸)) ⊆ [0, 1]  are the multi-valued numbers and 

they are given as 

𝕋𝑥(𝜁(𝔸)) = 𝕋1(𝜁(𝔸)),𝕋2(𝜁(𝔸)),…, 𝕋𝑥(𝜁(𝔸)) 

𝕀𝑦(𝜁(𝔸)) = 𝕀1(𝜁(𝔸)),𝕀2(𝜁(𝔸)),…,𝕀𝑦(𝜁(𝔸)) 

𝐹𝑧((𝔸)) = 𝐹1(𝜁(𝔸)),𝐹2(𝜁(𝔸)),…, 𝐹𝑧(𝜁(𝔸)) 

𝕋(𝜁(𝔸)),𝕀(𝜁(𝔸)), and F(𝜁(𝔸)) represent the truthiness, indeterminacy and falsity of 𝒰 to  𝔸, 

respectively. 

Definition 2.6 [25]. Let 𝕌 = {𝓊1, 𝓊2 , … ,𝓊𝑛  } be a universe set and ℙ(𝕌) be the power set of 𝕌. Let 

𝕃1, 𝕃2, … , 𝕃b for b≥1 be b well-defined attributes whose corresponding attribute values are 𝕃1
1,𝕃2

2,…, 

𝕃𝑏
𝑛 , respectively, and their  relation is 𝕃1

𝑎  × 𝕃2
𝑏  × …× 𝕃𝑏

𝑧  where 𝑎,𝑏,𝑐,…,𝑧 = 1,2,…,𝑛. Then, the 

pair (ζ , 𝕃1
𝑎  × 𝕃2

𝑏  × …× 𝕃𝑏
𝑧) is called to be a m-polar PHSS (m-p-NHSS) over 𝕌 where ζ is a 

mapping with  𝜁: 𝕃1
𝑎  × 𝕃2

𝑏  × …× 𝕃𝑏
𝑧 → ℙ(𝕌) ;  ζ(𝕃1

𝑎  × 𝕃2
𝑏  ×  …× 𝕃𝑏

𝑧) = {<

𝓊,𝕋𝑙
𝑖(𝓊), 𝕀𝑙

𝑗(𝓊), F𝑙
𝑘(𝓊) >:𝓊 ∈  𝕌; ℓ ∈ 𝕃1

𝑎  × 𝕃2
𝑏  ×  …× 𝕃𝑏

𝑧  where i, j, k = 1,2, … , n}  and 0  ≤

∑ 𝕋𝑙
𝑖(𝓊)

𝑝
𝑖=1 ≤ 1 , 0  ≤ ∑ 𝕀𝑙

𝑗(𝓊) ≤ 1 
𝑞
𝑗=1 , 0  ≤ ∑ ζ𝑙

𝑘(𝓊) ≤ 1 𝑟
𝑘=1 , where  𝕋𝑙

𝑖(𝓊)  ⊆  [0, 1], 𝕀𝑙
𝑗(𝓊) ⊆

[0, 1], and ζ𝑙
𝑘(𝓊)  ⊆  [0, 1] are the numbers with 0 ≤ ∑ 𝕋𝑙

𝑖(𝓊)
𝑝
𝑖=1  + ∑ 𝕀𝑙

𝑗(𝓊) 
𝑞
𝑗=1 + ∑ F𝑙

𝑘(𝓊) ≤ 3 𝑟
𝑘=1 . 

For convenience, we assume that 

𝕋𝑙
𝑖(𝓊) = 𝕋𝑙1

1 (𝓊),𝕋𝑙2
2 (𝓊),𝕋𝑙3

3 (𝓊),… , 𝕋𝑙𝑝
𝑝 (𝓊) 

𝕀𝑙
𝑗(𝓊) = 𝕀𝑙1

1 (u), 𝕀𝑙2
2 (u), 𝕀𝑙3

3 (u), … , 𝕀𝑙𝑞
𝑞 (u) 

𝐹𝑙
𝑘(𝓊) = F𝑙1

1 (𝓊), F𝑙2
2 (𝓊), F𝑙3

3 (𝓊),… , F𝑙𝑟
𝑟 (𝓊) 

3. Calculations 

In this section, we propose informational energies, generalized CC and aggregation operators for 

m-polar NHSSs (m-p-NHSSs). 

Definition 3.1. Informational energies for m-p-NHSSs 

Let (℘, �⃛�) 𝒂𝒏𝒅 ((𝑸, �⃛�)) be two m-p-NHSSs with 

(℘, �⃛�) = {(𝒗𝒊, 𝝉℘(�̌�𝒌)(𝒗𝒊)
𝒊, 𝕴℘(�̌�𝒌)(𝒗𝒊)

𝒋, 𝕲℘(�̌�𝒌)
(𝒗𝒊)

𝒌) |𝒗𝒊 ∈ 𝒖} 

(𝑸, �⃛�) = {(𝒗𝒊, 𝝉𝓠(�̌�𝒌)(𝒗𝒊)
𝒊, 𝕴𝓠(�̌�𝒌)(𝒗𝒊)

𝒋, 𝕲𝓠(�̌�𝒌)
(𝒗𝒊)

𝒌) |𝒗𝒊 ∈ 𝒖}. 

Then, their informational energies are defined as 

𝝇𝒎−𝒑−𝑵𝑯𝑺𝑺(℘, �⃛�) = ∑𝒌=𝟏
𝒎 ∑𝒊=𝟏

𝒏 (∑𝒊=𝟏
𝒑
 (𝝉℘(�̌�𝒌)𝒊

𝒊  (𝒗𝒊))
𝟐

 +  ∑𝒋=𝟏
𝒒
 (𝕴

℘(�̌�𝒌)𝒋

𝒋
 (𝒗𝒊))

𝟐

+

∑𝒌=𝟏
𝒓  (𝕲℘(�̌�𝒌)𝒌

𝒌  (𝒗𝒊))
𝟐

)             (3.1) 
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 𝝇𝒎−𝒑−𝑵𝑯𝑺𝑺(𝑸, �⃛�) = ∑𝒌=𝟏
𝒎 ∑𝒊=𝟏

𝒏 (∑𝒊=𝟏
𝒑
 (𝝉𝑸(�̌�𝒌)𝒊

𝒊  (𝒗𝒊))
𝟐

+  ∑𝒋=𝟏
𝒒
 (𝕴

𝑸(�̌�𝒌)𝒋

𝒋
 (𝒗𝒊))

𝟐

+

∑𝒌=𝟏
𝒓  (𝕲𝑸(�̌�𝒌)𝒌

𝒌  (𝒗𝒊))
𝟐

)              (3.2) 

Definition 3.2. Covariance for two m-p-NHSSs 

 Let (℘, �⃛�) 𝒂𝒏𝒅 ((𝑸, �⃛�)) be two m-p-NHSSs with 

(℘, �⃛�) = {(𝒗𝒊, 𝝉℘(�̌�𝒌)(𝒗𝒊)
𝒊, 𝕴℘(�̌�𝒌)(𝒗𝒊)

𝒋, 𝕲℘(�̌�𝒌)
(𝒗𝒊)

𝒌) |𝒗𝒊 ∈ 𝒖} 

(𝑸, �⃛�) = {(𝒗𝒊, 𝝉𝓠(�̌�𝒌)(𝒗𝒊)
𝒊, 𝕴𝓠(�̌�𝒌)(𝒗𝒊)

𝒋, 𝕲𝓠(�̌�𝒌)
(𝒗𝒊)

𝒌) |𝒗𝒊 ∈ 𝒖}. 

Then, the covariance between (℘, �⃛�) 𝒂𝒏𝒅 ((𝑸, �⃛�)) is defined as 

𝑪𝒎−𝒑−𝑵𝑯𝑺𝑺 ((℘, �⃛�), (𝑸, �⃛�)) = ∑𝒌=𝟏
𝒎 ∑𝒊=𝟏

𝒏 (∑𝒊=𝟏
𝒑
 (𝝉℘(�̌�𝒌)𝒊

𝒊  (𝒗𝒊) ∗ 𝕴𝑸(�̌�𝒌)𝒋
𝒋

 (𝒗𝒊)) + ∑𝒋=𝟏
𝒒
 (𝕴

℘(�̌�𝒌)𝒋

𝒋
 (𝒗𝒊) ∗

𝕴
𝑸(�̌�𝒌)𝒋

𝒋
 (𝒗𝒊)) + ∑𝒌=𝟏

𝒓 (𝕲℘(�̌�𝒌)𝒌
𝒌  (𝒗𝒊) ∗  𝕲𝑸(�̌�𝒌)𝒌

𝒌  (𝒗𝒊)))                     (3.3) 

Definition 3.3. Correlation coefficient for two m-p-NHSSs 

Let (℘, �⃛�) 𝐚𝐧𝐝 ((𝑸, �⃛�)) be two m-p-NHSSs with 

(℘, �⃛�) = {(𝐯𝐢, 𝛕℘(�̌�𝐤)(𝐯𝐢)
𝐢,𝕴℘(�̌�𝐤)(𝐯𝐢)

𝐣, 𝕲℘(�̌�𝐤)
(𝐯𝐢)

𝐤) |𝐯𝐢 ∈ 𝐮} 

(𝐐, �⃛�) = {(𝐯𝐢, 𝛕𝓠(�̌�𝐤)(𝐯𝐢)
𝐢,𝕴𝓠(�̌�𝐤)(𝐯𝐢)

𝐣, 𝕲𝓠(�̌�𝐤)
(𝐯𝐢)

𝐤) |𝐯𝐢 ∈ 𝐮}. Then, CC between them is defined as 

𝜹𝒎−𝒑−𝑵𝑯𝑺𝑺((℘,𝑨 ⃛ ), (𝑸,𝑩 ⃛ )) =        
𝒄𝒎−𝒑−𝑵𝑯𝑺𝑺 ((℘,𝑨⃛),(𝓠,𝑩⃛))

√𝝇𝒎−𝒑−𝑵𝑯𝑺𝑺((℘,�⃛�)∗√𝝇𝒎−𝒑−𝑵𝑯𝑺𝑺((𝓠,�⃛�) 
    (𝟑. 𝟒)        

Example 3.4. Let 𝑼 = {𝒔𝟏, 𝒔𝟐, 𝒔𝟑, 𝒔𝟒 , 𝒔𝟓}  be the set of nominated schools and consider the set of 

attributes with 𝑬 = {𝒕𝒆𝒂𝒄𝒉𝒊𝒏𝒈 𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅, 𝒐𝒓𝒈𝒂𝒏𝒊𝒛𝒂𝒕𝒊𝒐𝒏, 𝒐𝒏𝒈𝒐𝒊𝒏𝒈 𝒆𝒗𝒂𝒍𝒖𝒂𝒕𝒊𝒐𝒏,𝒈𝒐𝒂𝒍𝒔} Let𝑨 ⊆

𝑬with 𝑨 = {𝑨𝟏, 𝑨𝟐, 𝑨𝟑, 𝑨𝟒} such that 𝑨𝟏 = 𝐓𝐞𝐚𝐜𝐡𝐢𝐧𝐠 𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝,      𝑨𝟐 = 𝐎𝐫𝐠𝐚𝐧𝐢𝐳𝐚𝐭𝐢𝐨𝐧,     

 𝑨𝟑 = 𝒐𝒏𝒈𝒐𝒊𝒏𝒈   𝒆𝒗𝒂𝒍𝒖𝒂𝒕𝒊𝒐𝒏,𝑨𝟒 =  𝐠𝐨𝐚𝐥𝐬. These attributes are further bifurcated as A1a → A1 → 

teaching standard → (High, mediocre, low); A2b → A2 → organization → (good, average, poor); A3c 

→ A3 → ongoing evaluation → (yes, no); A4d → A4 → Goals → (effective, committed, up to date). 

Define a mapping with 𝐅(high, average, yes, effective)= {𝒔𝟏 , 𝒔𝟓}. Then, (℘, �⃛�) = 

{
 
 

 
 

(

 
 

𝒔𝟏 < 𝑨𝟏
𝒂{(𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟐), (𝟎. 𝟑, 𝟎. 𝟐, 𝟎. 𝟒), (𝟎. 𝟏, 𝟎. 𝟑, 𝟎. 𝟓)}, 𝑨𝟐

𝒃{(𝟎. 𝟓, 𝟎. 𝟒, 𝟎. 𝟐), (𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟓), (𝟎. 𝟏, 𝟎. 𝟒, 𝟎. 𝟓)},

𝑨𝟑
𝒄{(𝟎. 𝟔, 𝟎. 𝟐, 𝟎. 𝟏), (𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟐), (𝟎. 𝟏, 𝟎. 𝟑, 𝟎. 𝟒)}, 𝑨𝟒

𝒅{(𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟏), (𝟎. 𝟒, 𝟎. 𝟏, 𝟎. 𝟐), (𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟒)} >

𝒔𝟓 < 𝑨𝟏
𝒂{(𝟎. 𝟑, 𝟎. 𝟐, 𝟎. 𝟒), (𝟎. 𝟒, 𝟎. 𝟐, 𝟎. 𝟑), (𝟎. 𝟏, 𝟎. 𝟑, 𝟎. 𝟐)}, 𝑨𝟐

𝒃{(𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟐), (𝟎. 𝟒, 𝟎. 𝟏, 𝟎. 𝟓), (𝟎. 𝟏, 𝟎. 𝟑, 𝟎. 𝟓)},

𝑨𝟑
𝒄{(𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟏), (𝟎. 𝟑, 𝟎. 𝟏, 𝟎. 𝟐), (𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟒)}, 𝑨𝟒

𝒅{(𝟎. 𝟑, 𝟎. 𝟐, 𝟎. 𝟏), (𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟐), (𝟎. 𝟏, 𝟎. 𝟑, 𝟎. 𝟒)} > )

 
 

}
 
 

 
 

 

Also,𝑩 ⊆ 𝑬,  𝑩 = {𝑩𝟏, 𝑩𝟐, 𝑩𝟑, 𝑩𝟒}. Further, bi-furcated attributes of “B” are B1a → B1 → teaching 

standard → (High, mediocre, low); B2b → B2 → organization → (good, average, poor); B3c → B3 → 

ongoing evaluation → (yes, no); B4d → B4 → Goals → (effective, committed, up-to-date). Consider 

another mapping 𝐆 (high, good, yes, up-to-date)= {s2, s3}. Then, we have  

(𝑸, �⃛�) =  
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{
 
 

 
 

(

 
 

𝒔𝟐 < 𝑩𝟏
𝒂{(𝟎. 𝟓, 𝟎. 𝟑, 𝟎. 𝟐), (𝟎. 𝟒, 𝟎. 𝟐, 𝟎. 𝟏), (𝟎. 𝟏, 𝟎. 𝟑, 𝟎. 𝟒)},𝑩𝟐

𝒃{(𝟎. 𝟓, 𝟎. 𝟑, 𝟎. 𝟐), (𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟐), (𝟎. 𝟏, 𝟎. 𝟑, 𝟎. 𝟓)},

𝑩𝟑
𝒄{(𝟎. 𝟔, 𝟎. 𝟏, 𝟎. 𝟐), (𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟏), (𝟎. 𝟏, 𝟎. 𝟑, 𝟎. 𝟐)}, 𝑩𝟒

𝒅{(𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟏), (𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟏), (𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟓)} >

𝒔𝟑 < 𝑩𝟏
𝒂{(𝟎. 𝟒, 𝟎. 𝟐, 𝟎. 𝟑), (𝟎. 𝟒, 𝟎. 𝟐, 𝟎. 𝟑), (𝟎. 𝟏, 𝟎. 𝟑, 𝟎. 𝟒)},𝑩𝟐

𝒃{(𝟎. 𝟒, 𝟎. 𝟏, 𝟎. 𝟐), (𝟎. 𝟒, 𝟎. 𝟏, 𝟎. 𝟑), (𝟎. 𝟏, 𝟎. 𝟑, 𝟎. 𝟒)},

𝑩𝟑
𝒄{(𝟎. 𝟔, 𝟎. 𝟐, 𝟎. 𝟏), (𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟐), (𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟓)}, 𝑩𝟒

𝒅{(𝟎. 𝟑, 𝟎. 𝟐, 𝟎. 𝟒), (𝟎. 𝟒, 𝟎. 𝟏, 𝟎. 𝟐), (𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟒)} > )

 
 

}
 
 

 
 

 

Thus, we have 𝜹𝒎−𝒑−𝑵𝑯𝑺𝑺(℘, �⃛�) = 7.26; 𝜹𝒎−𝒑−𝑵𝑯𝑺𝑺(𝑸, �⃛�) = 6.78, and 𝜹𝒎−𝒑−𝑵𝑯𝑺𝑺 ((℘, �⃛�)(𝑸, �⃛�)) =
𝟔.𝟓𝟒

√𝟕.𝟐𝟔∗√𝟔.𝟕𝟖
= 𝟎. 𝟗𝟑 ∈ [𝟎, 𝟏].It shows that (℘, �⃛�) and (𝑸, �⃛�) have a good positive relation. 

Proposition 3.5. Let   (℘, �⃛�) = {(𝒗𝒊, 𝝉℘(�̌�𝒌)(𝒗𝒊)
𝒊, 𝕴℘(�̌�𝒌)(𝒗𝒊)

𝒋, 𝕲℘(�̌�𝒌)
(𝒗𝒊)

𝒌) |𝒗𝒊 ∈ 𝒖} and (𝑸, �⃛�) =

{(𝒗𝒊, 𝝉𝓠(�̌�𝒌)(𝒗𝒊)
𝒊,𝕴𝓠(�̌�𝒌)(𝒗𝒊)

𝒋, 𝕲𝓠(�̌�𝒌)
(𝒗𝒊)

𝒌) |𝒗𝒊 ∈ 𝒖} be two m-p-NHSSs and let 

𝓒𝒎−𝒑−𝑵𝑯𝑺𝑺((℘,⩜⃛), (𝓠, �⃛�)) be a CC between them. It satisfies the following properties: 

1.   𝓒𝒎−𝒑−𝑵𝑯𝑺𝑺(℘, �⃛�), (℘, �⃛�) = 𝝇𝒎−𝒑−𝑵𝑯𝑺𝑺(℘, �⃛�). 

2.  𝓒𝒎−𝒑−𝑵𝑯𝑺𝑺(𝑸, �⃛�), (𝑸, �⃛�) = 𝝇𝒎−𝒑−𝑵𝑯𝑺𝑺(𝑸, �⃛�)). 

Theorem 3.6. Let   (℘, �⃛�) = {(𝒗𝒊, 𝑻℘(𝒅 𝒌)(𝒗𝒊)
𝒊, 𝑰℘(𝒅 𝒌)(𝒗𝒊)

𝒋, 𝑪℘(𝒅 𝒌)(𝒗𝒊)
𝒌) ⎸𝒗𝒊 ∈  𝑼} and   

(𝐐, �⃛�) = {(𝐯𝐢, 𝐓𝐐(𝐝 𝐤)(𝐯𝐢)
𝐢, 𝐈𝐐(𝐝 𝐤)(𝐯𝐢)

𝐣, 𝐂𝐐(𝐝 𝐤)(𝐯𝐢)
𝐤) ⎸𝐯𝐢 ∈  𝐔} be two m-p-NHSSs, then CC between 

them satisfies the following properties: 

0 ≤ 𝜹𝒎−𝒑−𝑵𝑯𝑺𝑺 ((℘, �⃛�), (𝑸, �⃛�)) ≤ 1 

𝜹𝒎−𝒑−𝑵𝑯𝑺𝑺 ((℘, �⃛�), (𝑸, �⃛�)) = 𝜹𝒎−𝒑−𝑵𝑯𝑺𝑺 ((℘, �⃛�), (𝑸, �⃛�))  

   iff   ((℘, �⃛�) = (𝑸, �⃛�)). 

If   𝑻℘(𝒅 𝒌)(𝒗𝒊)
𝒊 = 𝑻𝑸(𝒅 𝒌)(𝒗𝒊)

𝒊,  𝑰℘(𝒅 𝒌)(𝒗𝒊)
𝒋= 𝑰𝑸(𝒅 𝒌)(𝒗𝒊)

𝒋, and 

 𝑪℘(𝒅 𝒌)(𝒗𝒊)
𝒌 = 𝑪𝑸(𝒅 𝒌)(𝒗𝒊)

𝒌, then 𝜹𝒎−𝒑−𝑵𝑯𝑺𝑺((℘, �⃛�), (𝑸, �⃛�)) = 1. 

Whenever experts regulate distinctive weights for every alternative, the choice might be dissimilar. 

So, it is precisely to plot the weights for experts preceding assembling a decision. Assume the 

weights of experts can be expressed as Ω = {Ω𝟏, Ω𝟐, Ω𝟑, … ,Ω𝒎}
𝑻, where Ω𝒌 > 0, ∑ Ω𝒌

𝒎
𝒌=𝟏 = 𝟏. 

Similarly, assume that the weights for sub-attributes are as follows γ = {𝜸𝟏, 𝜸𝟐, 𝜸𝟑, … , 𝜸𝒏}
𝑻 , where 

𝜸𝒊 > 0, ∑ 𝜸𝒊
𝒏
𝒊=𝟏 = 𝟏. 

Definition 3.7. Weighted CC for two m-p-NHSSs 

Let (℘, �⃛�) = {(𝒗𝒊, 𝑻℘(𝒅 𝒌)(𝒗𝒊)
𝒊, 𝑰℘(𝒅 𝒌)(𝒗𝒊)

𝒋, 𝑪℘(𝒅 𝒌)(𝒗𝒊)
𝒌) ⎸𝒗𝒊 ∈  𝑼} and (𝑸,𝑩⃛) = 

{(𝒗𝒊, 𝑻𝑸(𝒅 𝒌)(𝒗𝒊)
𝒊, 𝑰𝑸(𝒅 𝒌)(𝒗𝒊)

𝒋, 𝑪𝑸(𝒅 𝒌)(𝒗𝒊)
𝒌) ⎸𝒗𝒊 ∈  𝑼} be two m-p-NHSSs, then, a weighted CC (WCC) 

among them is expressed as 𝜹𝒎−𝒑−𝒘𝑵𝑯𝑺𝑺((℘, �⃛�), (𝑸, �⃛�)) and defined as follows: 

𝜹𝒎−𝒑−𝒘𝑵𝑯𝑺𝑺((℘, �⃛�), (𝑸, �⃛�)) =   
𝑪𝒎−𝒑−𝒘𝑵𝑯𝑺𝑺((℘,⩜⃛),(𝑸,𝑩⃛)) 

√Ϛ𝒎−𝒑−𝒘𝑵𝑯𝑺𝑺(℘,⩜⃛)∗ √Ϛ𝒎−𝒑−𝒘𝑵𝑯𝑺𝑺(𝑸,𝑩⃛)
 (𝟑. 𝟓)                      i.e.  
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𝜹𝒎−𝒑−𝒘𝑵𝑯𝑺𝑺 ((℘, �⃛�), (𝑸, �⃛�)) =

∑ Ω𝒌

(

 
 
 

(

  
 

(

 
 

∑ (∑ √𝜸𝒊
𝒏
𝒊=𝟏 𝓣

℘(�̌�𝒌)𝒊
𝒊 (𝒗𝒊)∗∑ √𝜸𝒊

𝒏
𝒊=𝟏 ∑ 𝜸𝒊

𝒏
𝒊=𝟏 𝓣

𝓠(�̌�𝒌)𝒊
𝒊 (𝒗𝒊))

𝒑
𝒊=𝟏 +

 ∑ (∑ √𝜸𝒊
𝒏
𝒊=𝟏 𝓘

℘(�̌�𝒌)𝒋

𝒋 (𝒗𝒊)∗∑ √𝜸𝒊
𝒏
𝒊=𝟏  𝓘

𝓠(�̌�𝒌)𝒋

𝒋 (𝒗𝒊))
𝒒
𝒋=𝟏 +∑ (∑ √𝜸𝒊

𝒏
𝒊=𝟏  𝕮

℘(�̌�𝒌)𝒌
𝒌 (𝒗𝒊)∗∑ √𝜸𝒊

𝒏
𝒊=𝟏  𝕮

𝓠(�̌�𝒌)𝒌
𝒌 (𝒗𝒊))

𝒓
𝒌=𝟏

)

 
 

)

  
 

)

 
 
 

𝒎
𝒌=𝟏

√∑ Ω𝒌((∑ (∑ 𝜸𝒊
𝒏
𝒊=𝟏 𝓣

℘(�̌�𝒌)𝒊
𝒊 (𝒗𝒊))

𝟐
𝒑
𝒊=𝟏 +∑ ( ∑ 𝜸𝒊

𝒏
𝒊=𝟏 𝓘

℘(�̌�𝒌)𝒋

𝒋 (𝒗𝒊))

𝟐
𝒒
𝒋=𝟏 +∑ (∑ 𝜸𝒊

𝒏
𝒊=𝟏 𝕮

℘(�̌�𝒌)𝒌
𝒌 (𝒗𝒊))

𝟐
𝒓
𝒌=𝟏 ))𝒎

𝒌=𝟏  

√∑ Ω𝒌((∑ (∑ 𝜸𝒊
𝒏
𝒊=𝟏 𝓣

𝓠(�̌�𝒌)𝒊
𝒊 (𝒗𝒊))

𝟐
𝒑
𝒊=𝟏 +∑ (∑ 𝜸𝒊

𝒏
𝒊=𝟏 𝓘

𝓠(�̌�𝒌)𝒋

𝒋 (𝒗𝒊))

𝟐
𝒒
𝒋=𝟏 +∑ (∑ 𝜸𝒊

𝒏
𝒊=𝟏 𝕮

℘(�̌�𝒌)𝒌
𝒌 (𝒗𝒊))

𝟐
𝒓
𝒌=𝟏 ))𝒎

𝒌=𝟏

  

Theorem 3.8. Let (℘, �⃛�) = {(𝒗𝒊, 𝝉℘(�̌�𝒌)(𝒗𝒊)
𝒊, 𝕴℘(�̌�𝒌)(𝒗𝒊)

𝒋, 𝕲℘(�̌�𝒌)
(𝒗𝒊)

𝒌) |𝒗𝒊 ∈ 𝒖}  and  

 (𝑸, �⃛�) = {(𝒗𝒊, 𝝉𝓠(�̌�𝒌)(𝒗𝒊)
𝒊, 𝕴𝓠(�̌�𝒌)(𝒗𝒊)

𝒋, 𝕲𝓠(�̌�𝒌)
(𝒗𝒊)

𝒌) |𝒗𝒊 ∈ 𝒖} be two m-p-NHSSs, then WCC between 

them satisfies the following properties: 

0 ≤  𝜹𝒎−𝒑−𝒘𝑵𝑯𝑺𝑺((℘,⩜ ⃛)(𝑸,𝑩⃛))  ≤ 𝟏 

𝜹𝒎−𝒑−𝒘𝑵𝑯𝑺𝑺 ((℘, �⃛�)(𝑸, �⃛�)) =  𝜹𝒎−𝒑−𝒘𝑵𝑯𝑺𝑺((𝑸, �⃛�), (℘, �⃛�)) 𝒊𝒇𝒇 (℘, �⃛�) = (𝑸, �⃛�) 

𝑻℘(𝒅 𝒌)(𝒗𝒊)
𝒊 = 𝑻𝑸(𝒅 𝒌)(𝒗𝒊) , 𝑰℘(𝒅 𝒌)(𝒗𝒊)

𝒋= 𝑰𝑸(𝒅 𝒌)(𝒗𝒊)
𝒋 and 𝑪℘(𝒅 𝒌)(𝒗𝒊)

𝒌 = 𝑪𝑸(𝒅 𝒌)(𝒗𝒊)
𝒌 

then 𝜹𝒎−𝒑−𝒘𝑵𝑯𝑺𝑺 ((℘, �⃛�), (𝑸, �⃛�)) = 𝟏 

Proposition 3.9. Let (℘, �⃛�) = {(𝒗𝒊, 𝝉℘(�̌�𝒌)(𝒗𝒊)
𝒊, 𝕴℘(�̌�𝒌)(𝒗𝒊)

𝒋, 𝕲℘(�̌�𝒌)
(𝒗𝒊)

𝒌) |𝒗𝒊 ∈ 𝒖}  

 Consider 𝑱𝒅𝒌 = 〈𝑻𝑭(𝒅 𝒊𝒋)
𝒊, 𝑰𝑭(𝒅𝒊𝒋)

𝒋, 𝑪𝑭(𝒅𝒊𝒋)
𝒌〉 , 𝑱𝒅𝟏𝟏 = 〈𝑻𝑭(𝒅 𝟏𝟏)

𝒊, 𝑰𝑭(𝒅𝟏𝟏)
𝒋, 𝑪𝑭(𝒅𝟏𝟏)

𝒌〉  and 𝑱𝒅𝟏𝟐 =

 〈𝑻𝑭(𝒅 𝟏𝟏)
𝒊, 𝑰𝑭(𝒅𝟏𝟐)

𝒋, 𝑪𝑭(𝒅𝟏𝟐)
𝒌〉 as three m-p-NHSSs  and 𝜶 be a positive real number, by algebraic 

norms, then 

𝑱𝒅 𝟏𝟏
𝒊⊕ 𝑱�̌�𝟏𝟐

𝒊 = ⟨𝑻𝑭(𝒅 𝟏𝟏)
𝒊 + 𝑻𝑭(𝒅 𝟏𝟐)

𝒊 − 𝑻𝑭(𝒅 𝟏𝟏)
𝒊𝑻𝑭(𝒅 𝟏𝟐)

𝒊, 𝑱𝑭(𝒅 𝟏𝟏)
𝒋𝑱𝑭(𝒅 𝟏𝟐)

𝒋, 𝑪𝑭(𝒅 𝟏𝟏)
𝒌𝑪𝑭(𝒅 𝟏𝟐)

𝒌⟩ 

𝑱𝒅 𝟏𝟏
𝒊⊗ 𝑱�̌�𝟏𝟐

𝒊 = ⟨𝑻𝑭(𝒅 𝟏𝟏)
𝒊𝑻𝑭(𝒅 𝟏𝟐)

𝒊, 𝑱𝑭(𝒅 𝟏𝟏)
𝒋 + 𝑱𝑭(𝒅 𝟏𝟐)

𝒋 − 𝑱𝑭(𝒅 𝟏𝟏)
𝒋𝑱𝑭(𝒅 𝟏𝟐)

𝒋, 𝑪𝑭(𝒅 𝟏𝟏)
𝒌 + 𝑪𝑭(𝒅 𝟏𝟐)

𝒌 −

𝑪𝑭(𝒅 𝟏𝟏)
𝒌𝑪𝑭(𝒅 𝟏𝟐)

𝒌⟩  

𝜶𝑱𝒅𝒌 = ⟨𝟏 − (𝟏 − 𝑻𝒅 𝒌
𝒊)
𝜶
, 𝑱𝒅 𝒌

𝒋𝜶, 𝑪𝒅 𝒌
𝒌𝜶⟩  

𝑱 𝒅𝒌
𝒊𝜶 = ⟨, 𝟏 − (𝟏 − 𝑱𝒅 𝒌

𝒋)
𝜶
, 𝟏 − (𝟏 − 𝑪𝒅 𝒌

𝒌)
𝜶
⟩ 

Definition 3.10. Aggregate operator for m-p-NHSSs 

Let  (℘, �⃛�) = {(𝒗𝒊, 𝝉℘(�̌�𝒌)(𝒗𝒊)
𝒊, 𝕴℘(�̌�𝒌)(𝒗𝒊)

𝒋, 𝕲℘(�̌�𝒌)
(𝒗𝒊)

𝒌) |𝒗𝒊 ∈ 𝒖}  and  𝑱𝒅𝒌 =

 〈𝑻𝑭(𝒅 𝒊𝒋)
𝒊, 𝑰𝑭(𝒅𝒊𝒋)

𝒋, 𝑪𝑭(𝒅𝒊𝒋)
𝒌〉 be an m-p-NHSS. Ω𝒊 and 𝜸𝒋 are weight vector for expert’s and sub-

attributes of the considered attributes correspondingly along with specified circumstances Ω𝒊 > 0, 
∑ Ω𝒊
𝒏
𝒊=𝟏  = 1, 𝜸𝒋 > 0, ∑ 𝜸𝒋

𝒎
 𝒋=𝟏  = 1. Then m-p-NHSS aggregate operator is defined as 𝐦−𝐏𝐍𝐇𝐒𝐖𝐀 ∶
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 ∆𝒏 →  ∆  where  (𝕵�̌�𝟏𝟏 , 𝕵�̌�𝟏𝟐 , … ,𝕵�̌�𝒏𝒎) =⊕ 𝒋=𝟏
𝒎 𝛄𝒋 (⊕𝒊=𝟏

𝒏 Ω𝒊𝕵�̌�𝒊𝒋  ) =  ⟨𝟏 − ∏ (∏ (𝟏−𝒏
𝒊=𝟏

𝒎
𝒋=𝟏

𝓣�̌�𝒊𝒋
𝒊)
Ω𝒊
)
𝛄𝒋

,∏ (∏ (𝓙�̌�𝒊𝒋
𝒋)
Ω𝒊

𝒏
𝒊=𝟏 )

𝛄𝒋
𝒎
𝒋=𝟏 , ∏ (∏ (𝕮�̌�𝒊𝒋

𝒌)
Ω𝒊

𝒏
𝒊=𝟏 )

𝛄𝒋
𝒎
𝒋=𝟏 ⟩           (3.6)  

4. Proposed Algorithms 

In this section, we develop the algorithm based on Correlation Coefficient (CC) and Weighted 

Correlation Coefficient (WCC) under m-PNHSs and utilize the proposed approach for decision 

making in real life problems.  

Algorithm 4.1.  

The proposed algorithm 4.1, can be used solve MCDM problems based on CC of m-PNHSs and 

shown in Figure 1.  

Step 1: Select Hypersoft sets (℘,⩜⃛)  and (𝑸, �⃛�) 

Step 2: Construction of m-PNHSs by assigning m-PNHSN to each sub-attribute and solve them to 

get SVNHSs. 

Step 3: Find the informational energies of the selected m-PNHSs using the formula; 

Ϛ𝒎−𝑷𝑵𝑯𝑺𝒔(℘, �⃛�) = 

∑ ∑ (∑ (𝓣
℘(�̌�𝒌)𝒊
𝒊 (𝒗𝒊))

𝟐
𝒑
𝒊=𝟏 +∑ ( 𝓘

℘(�̌�𝒌)𝒋

𝒋 (𝒗𝒊))

𝟐
𝒒
𝒋=𝟏 +∑ (𝕮

℘(�̌�𝒌)𝒌
𝒌 (𝒗𝒊))

𝟐
𝒓
𝒌=𝟏 )𝒏

𝒊=𝟏
𝒎
𝒌=𝟏   

Step 4: Calculate the correlation between the selected m-PNHS sets  (℘,⩜⃛)  and (𝑸, �⃛�) by using 

the formula; 

𝓒𝒎−𝑷𝑵𝑯𝑺𝒔 (℘, �⃛�), (𝑸, �⃛�) = 

 ∑∑(∑(𝓣
℘(�̌�𝒌)𝒊
𝒊 (𝒗𝒊) ∗ 𝓣𝓠(�̌�𝒌)𝒊

𝒊 (𝒗𝒊))

𝒑

𝒊=𝟏

+ ∑(𝓘
℘(�̌�𝒌)𝒋

𝒋 (𝒗𝒊) ∗ 𝓘𝓠(�̌�𝒌)𝒋
𝒋 (𝒗𝒊))

𝒒

𝒋=𝟏

𝒏

𝒊=𝟏

𝒎

𝒌=𝟏

+∑(𝕮
℘(�̌�𝒌)𝒌
𝒌 (𝒗𝒊) ∗ 𝕮𝓠(�̌�𝒌)𝒌

𝒌 (𝒗𝒊))

𝒓

𝒌=𝟏

) 

Step 5: Calculate correlation coefficients of the selected m-PNHS sets  (℘, �⃛�)  and (℘, �⃛�) by using 

the formula; 

𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(℘, �⃛�), (𝑸, �⃛�) = 
𝓒𝐦−𝐏𝐍𝐇𝐒𝐬((℘,�⃛�),(𝑸,�⃛�)) 

√Ϛ𝐦−𝐏𝐍𝐇𝐒𝐬(℘,�⃛�)∗ √Ϛ𝐦−𝐏𝐍𝐇𝐒𝐬(𝐐,�⃛�)
 

Step 6: Arrange the alternatives in descending order of the CC values. 

Step 7: Rank the alternatives from largest to smallest CC values. 
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Figure 1. Algorithm based on Correlation Coefficient form-PNHSs 

Algorithm 4.2.  

The proposed algorithm 4.2, can be used solve MCDM problems based on WCC of m-PNHSs and 

shown in Figure 2. 

Step 1: Construction of Hypersoft set and sub-attribute parameters. 

Step 2: Assigning m-PNHSNs to the selected sets. 

Step 3: Find the weighted informational energies for m-PNHSs using the formula; 

𝝇𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(℘,⩜⃛) =∑ Ω𝒌((∑ (∑ 𝜸𝒊
𝒏
𝒊=𝟏 𝓣

℘(�̌�𝒌)𝒊
𝒊 (𝒗𝒊))

𝟐
𝒑
𝒊=𝟏 +𝒎

𝒌=𝟏

                            ∑ ( ∑ 𝜸𝒊
𝒏
𝒊=𝟏 𝓘

℘(�̌�𝒌)𝒋

𝒋 (𝒗𝒊))

𝟐
𝒒
𝒋=𝟏 +∑ (∑ 𝜸𝒊

𝒏
𝒊=𝟏 𝕮

℘(�̌�𝒌)𝒌
𝒌 (𝒗𝒊))

𝟐
𝒓
𝒌=𝟏 )) 

Step 4. Calculate the Weighted Correlation between two m-PNHSs by using the formula; 

𝓒𝒎−𝑷𝑾𝑵𝑯𝑺𝒔((℘,⩜⃛), (𝑸, �⃛�))  =  
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∑Ω𝒌

(

 
 
((∑(∑√𝜸𝒊

𝒏

𝒊=𝟏

𝓣
℘(�̌�𝒌)𝒊
𝒊 (𝒗𝒊) ∗∑√𝜸𝒊

𝒏

𝒊=𝟏

∑𝜸𝒊

𝒏

𝒊=𝟏

𝓣
𝓠(�̌�𝒌)𝒊
𝒊 (𝒗𝒊))

𝒑

𝒊=𝟏

𝒎

𝒌=𝟏

+ ∑(∑√𝜸𝒊

𝒏

𝒊=𝟏

𝓘
℘(�̌�𝒌)𝒋

𝒋 (𝒗𝒊) ∗∑√𝜸𝒊

𝒏

𝒊=𝟏

 𝓘
𝓠(�̌�𝒌)𝒋

𝒋 (𝒗𝒊))

𝒒

𝒋=𝟏

+∑(∑√𝜸𝒊

𝒏

𝒊=𝟏

 𝕮
℘(�̌�𝒌)𝒌
𝒌 (𝒗𝒊) ∗∑√𝜸𝒊

𝒏

𝒊=𝟏

 𝕮
𝓠(�̌�𝒌)𝒌
𝒌 (𝒗𝒊))

𝒓

𝒌=𝟏

))

)

 
 

 

Step 5: Calculate the WCC between two m-PNHSs by using the formula; 

𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝒔((℘,⩜⃛), (𝑸, �⃛�))= 
𝓒𝒎−𝑷𝑾𝑵𝑯𝑺𝒔((℘,⩜⃛),(𝐐,�⃛�)) 

√Ϛ𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝑸,⩜⃛)∗ √Ϛ𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝑸,�⃛�)
 

Step 6: Arrange the alternative in descending order of WCC and rank the alternative from highest 

to the lowest. 

5.  Experiment   

Lahore Garrison University (LGU) wanted to hire a teacher in Mathematics department, let ℙ =

 {ℙ𝟏, ℙ𝟐, ℙ𝟑, ℙ𝟒} be a set of candidates (alternatives) who has been shortlisted for the interview. The 

Interview committee consists of four decision-makers (DM), 𝓓 = {𝝈𝟏 , 𝝈𝟐, 𝝈𝟑, 𝝈𝟒}. The committee will 

decide the criteria (attributes) to fill up the said post which are 𝓛 = {𝓵𝟏 = 𝑬𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆, 𝓵𝟐 =

𝑫𝒆𝒂𝒍𝒊𝒏𝒈 𝒔𝒌𝒊𝒍𝒍𝒔, 𝓵𝟑 = 𝑸𝒖𝒂𝒍𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏}  be the set of attributes and their corresponding sub-

attributes are given by;  

𝓵𝟏 = 𝑬𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆 = {𝓪𝟏𝟏 = 𝒍𝒆𝒔𝒔 𝒕𝒉𝒂𝒏 𝟐𝟎,𝓪𝟏𝟐 = 𝒎𝒐𝒓𝒆 𝒕𝒉𝒂𝒏 𝟐𝟎 } 
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Figure 2. Algorithm based on Weighted Correlation Coefficient for m-PNHSs 

𝓵𝟐 = 𝑫𝒆𝒂𝒍𝒊𝒏𝒈 𝒔𝒌𝒊𝒍𝒍𝒔 = {
𝓪𝟐𝟏 = 𝑮𝒐𝒐𝒅 𝑪𝒐𝒎𝒎𝒖𝒏𝒊𝒄𝒂𝒕𝒊𝒐𝒏 𝒔𝒌𝒊𝒍𝒍𝒔,
 𝓪𝟐𝟐 = 𝑮𝒐𝒐𝒅 𝑻𝒆𝒂𝒄𝒉𝒊𝒏𝒈 𝒔𝒌𝒊𝒍𝒍𝒔,

𝓪𝟐𝟑 = 𝑪𝒆𝒓𝒕𝒊𝒇𝒊𝒆𝒅 𝒔𝒌𝒊𝒍𝒍𝒔 
},  

𝓵𝟑 = 𝑸𝒖𝒂𝒍𝒊𝒇𝒂𝒊𝒄𝒂𝒕𝒊𝒐𝒏 =  {𝓪𝟑𝟏 = 𝑴.𝑷𝒉𝒊𝒍. , 𝓪𝟑𝟐 = 𝑷𝒉𝑫.𝓪𝟑𝟑 = 𝑷𝒐𝒔𝒕 𝑫𝒐𝒄𝒕𝒐𝒓𝒂𝒕𝒆} 

Solved example using Algorithm 4.1  

Assume case study formulated above. The DM will assign values in term of m-PNHS numbers, 

based on their knowledge and expertise to each candidate.  

Step 1: Define a mapping, and select Hypersoft set. 

𝑭: 𝓵𝟏 × 𝓵𝟐 × 𝓵𝟑 = 𝓛
′ → 𝑷(ℶ) = ℙ𝟏, ℙ𝟐 

Step 2: Assigning values to the selected Hypersoft set in term of m-polar Neutrosophic number by 

considering m=3 as presented in Table 1-10. 

Table 1. Neutrosophic m-polar values for alternative ℵ 

ℵ δ1 δ2 δ3 δ4 
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ǎ1 (<0.2,0.1,0.2>,<0.1,0.2,

0.1>, 

<0.3,0.2,0.1>) 

(<0.2,0.2,0.2>,<0.1,0.0,

0.2>, 

<0.2,0.3,0.1>) 

(<0.2,0.1,0.1>,<0.2,0.2,

0.2>, 

<0.2,0.3,0.1>) 

(<0.1,0.2,0.0>,<0.3,0.2,

0.2>, 

<0.1,0.1,0.1>) 

ǎ2 (<0.1,0.0,0.2>,<0.4,0.2,

0.1 

,<0.1,0.2,0.0>) 

(<0.3,0.4,0.0>,<0.2,0.0,

0.1>,<0.2,0.1,0.3>) 

(<0.2,0.1,0.1>,<0.1,0.3,

0.1>,<0.1,0.2,0.2>) 

(<0.1,0.2,0.1>,<0.2,0.1,

0.2>,<0.0,0.3,0.4>) 

ǎ3 (<0.3,0.1,0.2>,<0.1,0.0,

0.2>,<0.2,0.1,0.1>) 

(<0.2,0.1,0.1>,<0.1,0.0,

0.3>,<0.2,0.1,0.2>) 

(<0.1,0.2,0.3>,<0.1,0.2,

0.0>,<0.1,0.3,0.0>) 

(<0.1,0.2,0.1>,<0.2,0.1,

0.2>,<0.2,0.1,0.3>) 

ǎ4 (<0.1,0.2,0.1>,<0.2,0.1,

0.2>,<0.3,0.1,0.2>) 

(<0.2,0.4,0.2>,<0.1,0.0,

0.1>,<0.2,0.1,0.2>) 

(<0.2,0.1,0.2>,<0.1,0.1,

0.1>,<0.2,0.2,0.2>) 

(<0.2,0.3,0.2>,<0.0,0.2,

0.0>,<0.2,0.2,0.2>) 

ǎ5 (<0.1,0.0,0.2>,<0.3,0.0,

0.1>,<0.3,0.1,0.1>) 

(<0.2,0.2,0.2>,<0.2,0.1,

0.2>,<0.2,0.1,0.1>) 

(<0.2,0.2,0.0>,<0.3,0.2,

0.0>,<0.3,0.2,0.2>) 

(<0.2,0.2,0.2>,<0.1,0.1,

0.1>,<0.1,0.2,0.1>) 

ǎ6 (<0.2,0.2,0.2>,<0.1,0.1,

0.1>,<0.2,0.1,0.1>) 

(<0.2,0.1,0.2>,<0.1,0.3,

0.1>,<0.1,0.2,0.0>) 

(<0.2,0.2,0.1>,<0.4,0.0,

0.1>,<0.2,0.0,0.1>) 

(<0.1,0.0,0.1>,<0.3,0.1,

0.4>,<0.2,0.1,0.1>) 

ǎ7 (<0.3,0.1,0.3>,<0.2,0.0,

0.1>,<0.2,0.1,0.1>) 

(<0.1,0.0,0.1>,<0.4,0.1,

0.3>,<0.2,0.1,0.1>) 

(<0.2,0.0,0.2>,<0.3,0.3,

0.2>,<0.0,0.2,0.0>) 

(<0.2,0.0,0.2>,<0.2,0.1,

0.1>,<0.2,0.1,0.2>) 

ǎ8 (<0.2,0.1,0.2>,<0.2,0.4,

0.2>,<0.1,0.0,0.1>) 

(<0.1,0.3,0.3>,<0.0,0.2,

0.0>,<0.2,0.1,0.3>) 

(<0.0,0.1,0.1>,<0.3,0.3,

0.2>,<0.1,0.2,0.1>) 

(<0.1,0.2,0.3>,<0.2,0.0,

0.1>,<0.2,0.2,0.2>) 

Table 2. Neutrosophic m-polar values for alternative ℙ𝟏 

ℙ1 𝛿1 𝛿2 𝛿3 𝛿4 

�̌�1 (<0.2,0.1,0.1>,<0.2,0.1,

0.2>,<0.2,0.1,0.1>) 

(<0.1,0.2,0.1>,<0.2,0.1,

0.2>,<0.3,0.1,0.3>) 

(<0.1,0.2,0.3>,<0.0,0.1,

0.2>,<0.3,0.1,0.1>) 

(<0.2,0.2,0.1>,<0.1,0.1,

0.2>,<0.4,0.1,0.2>) 

�̌�2 (<0.1,0.2,0.1>,<0.2,0.1,

0.2>,<0.3,0.1,0.1>) 

(<0.2,0.2,0.3>,<0.0,0.1,

0.1>,<0.1,0.1,0.0>) 

(<0.3,0.2,0.2>,<0.0,0.1,

0.1>,<0.1,0.1,0.2>) 

(<0.1,0.2,0.1>,<0.1,0.1,

0.2>,<0.2,0.1,0.2>) 

�̌�3 (<0.2,0.2,0.2>,<0.0,0.1,

0.2>,<0.1,0.1,0.0>) 

(<0.1,0.2,0.2>,<0.2,0.1,

0.2>,<0.1,0.1,0.0>) 

(<0.3,0.2,0.3>,<0.0,0.1,

0.1>,<0.1,0.1,0.2>) 

(<0.1,0.2,0.1>,<0.2,0.4,

0.2>,<0.0,0.1,0.1>) 

�̌�4 (<0.1,0.2,0.1>,<0.2,0.1,

0.3>,<0.0,0.1,0.1>) 

(<0.2,0.2,0.3>,<0.1,0.1,

0.0>,<0.1,0.1,0.2>) 

(<0.1,0.2,0.0>,<0.2,0.1,

0.2>,<0.2,0.1,0.2>) 

(<0.4,0.2,0.1>,<0.0,0.1,

0.1>,<0.1,0.1,0.0>) 
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�̌�5 (<0.1,0.1,0.1>,<0.2,0.3,

0.2>,<0.0,0.1,0.2>) 

(<0.3,0.2,0.3>,<0.1,0.1,

0.0>,<0.2,0.1,0.2>) 

(<0.1,0.2,0.1>,<0.1,0.1,

0.2>,<0.1,0.1,0.0>) 

(<0.1,0.2,0.3>,<0.1,0.1,

0.1>,<0.3,0.0,0.2>) 

�̌�6 (<0.2,0.2,0.1>,<0.2,0.1,

0.2>,<0.1,0.0,0.2>) 

(<0.1,0.2,0.1>,<0.2,0.4,

0.2>,<0.0,0.1,0.1>) 

(<0.1,0.2,0.2>,<0.2,0.1,

0.1>,<0.2,0.1,0.2>) 

(<0.1,0.2,0.1>,<0.2,0.1,

0.2>,<0.3,0.1,0.2>) 

�̌�7 (<0.4,0.2,0.1>,<0.0,0.1,

0.1>,<0.2,0.1,0.0>) 

(<0.1,0.2,0.1>,<0.2,0.1,

0.2>,<0.3,0.1,0.2>) 

(<0.1,0.2,0.2>,<0.1,0.1,

0.2>,<0.3,0.1,0.2>) 

(<0.1,0.2,0.3>,<0.2,0.1,

0.0>,<0.3,0.1,0.1>) 

�̌�8 (<0.3,0.2,0.1>,<0.0,0.1,

0.2>,<0.2,0.1,0.2>) 

(<0.1,0.2,0.1>,<0.2,0.1,

0.2>,<0.2,0.1,0.1>) 

(<0.1,0.2,0.3>,<0.0,0.1,

0.2>,<0.3,0.0,0.2>) 

(<0.1,0.2,0.0>,<0.2,0.1,

0.2>,<0.2,0.1,0.2>) 

Table 3. Neutrosophic m-polar values for alternative ℙ𝟐 

ℙ2 𝛿1 𝛿2 𝛿3 𝛿4 

�̌�1 (<0.2,0.1,0.1>,<0.2,0.2,

0.2>,<0.5,0.1,0.1>) 

<0.2,0.2,0.1>,<0.3,0.1,0.1

>, <0.0,0.1,0.1>) 

<0.0,0.1,0.3>,<0.4,0.1

,0.1>,<0.2,0.1,0.1>) 

<0.1,0.2,0.1>,<0.2,0.1,0.2>,

<0.3,0.3,0.2>) 

�̌�2 (<0.1,0.2,0.1>,<0.2,0.2,

0.2>,<0.3,0.1,0.1>) 

<0.2,0.2,0.3>,<0.1,0.1,0.1

>, <0.2,0.1,0.1>) 

<0.1,0.2,0.1>,<0.2,0.1

,0.1>,<0.3,0.1,0.1>) 

<0.2,0.2,0.1>,<0.3,0.0,0.2>,

<0.3,0.3,0.1>) 

�̌�3 (<0.2,0.0,0.0>,<0.3,0.4,

0.1>,<0.1,0.1,0.3>) 

<0.0,0.2,0.1>,<0.5,0.1,0.1

>, <0.3,0.2,0.1>) 

<0.1,0.2,0.2>,<0.2,0.2

,0.1>,<0.0,0.1,0.1>) 

<0.1,0.1,0.0>,<0.3,0.1,0.1>,

<0.3,0.2,0.1>) 

�̌�4 (<0.1,0.2,0.2>,<0.2,0.0,

0.3>,<0.0,0.1,0.1>) 

<0.1,0.2,0.1>,<0.3,0.1,0.1

>, <0.3,0.2,0.1>) 

<0.1,0.0,0.1>,<0.2,0.1

,0.2>,<0.2,0.3,0.1>) 

<0.2,0.2,0.0>,<0.2,0.1,0.1>,

<0.0,0.1,0.1>) 

�̌�5 (<0.1,0.1,0.1>,<0.2,0.3,

0.1>,<0.2,0.1,0.2>) 

<0.1,0.2,0.1>,<0.2,0.1,0.1

>, <0.0,0.1,0.1>) 

<0.2,0.2,0.1>,<0.3,0.1

,0.1>,<0.3,0.3,0.1>) 

<0.2,0.0,0.3>,<0.3,0.1,0.1>,

<0.0,0.1,0.1>) 

�̌�6 (<0.1,0.0,0.1>,<0.2,0.4,

0.2>,<0.1,0.2,0.2>) 

<0.0,0.1,0.1>,<0.3,0.1,0.1

>, <0.3,0.2,0.1>) 

<0.2,0.1,0.2>,<0.2,0.2

,0.1>,<0.3,0.2,0.2>) 

<0.1,0.0,0.1>,<0.3,0.1,0.1>,

<0.3,0.2,0.1>) 

�̌�7 (<0.4,0.2,0.2>,<0.0,0.1,

0.1>,<0.2,0.1,0.0>) 

<0.2,0.2,0.0>,<0.3,0.1,0.1

>, <0.3,0.2,0.1>) 

<0.1,0.1,0.0>,<0.3,0.1

,0.1>,<0.3,0.2,0.1>) 

<0.2,0.2,0.1>,<0.2,0.2,0.1>,

<0.0,0.1,0.1>) 

�̌�8 (<0.0,0.2,0.1>,<0.4,0.1,

0.2>,<0.2,0.1,0.2>) 

<0.2,0.1,0.1>,<0.1,0.3,0.1

>, <0.3,0.1,0.2>) 

<0.2,0.2,0.3>,<0.0,0.1

,0.1>,<0.2,0.1,0.1>) 

<0.0,0.1,0.1>,<0.3,0.1,0.1>,

<0.3,0.2,0.1>) 

Table 4. Neutrosophic m-polar values for alternative ℙ𝟑 

ℙ3 𝛿1 𝛿2 𝛿3 𝛿4 
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�̌�1 <0.2,0.2,0.3>,<0.0,0.1,0

.1>,<0.3,0.1,0.1>) 

<0.3,0.2,0.2>,<0.2,0.2,0

.0>,<0.1,0.1,0.1>) 

<0.2,0.0,0.0>,<0.2,0.0,0

.2>,<0.3,0.1,0.1>) 

<0.3,0.4,0.1>,<0.2,0.0,0

.2>,<0.0,0.1,0.1>) 

�̌�2 <0.2,0.4,0.2>,<0.1,0.1,0

.0>,<0.1,0.1,0.1>) 

<0.2,0.2,0.3>,<0.2,0.1,0

.2>,<0.1,0.1,0.1>) 

<0.2,0.2,0.3>,<0.1,0.1,0

.1>,<0.4,0.2,0.1>) 

<0.5,0.1,0.1>,<0.1,0.0,0

.1>,<0.3,0.1,0.1>) 

�̌�3 <0.2,0.3,0.2>,<0.2,0.1,0

.2>,<0.1,0.1,0.0>) 

<0.2,0.2,0.2>,<0.0,0.2,0

.2>,<0.0,0.1,0.1>) 

<0.2,0.2,0.2>,<0.2,0.0,0

.1>,<0.0,0.1,0.1>) 

<0.1,0.0,0.1>,<0.2,0.1,0

.2>,<0.4,0.1,0.1>) 

�̌�4 <0.3,0.3,0.2>,<0.1,0.0,0

.1>,<0.3,0.1,0.1>) 

<0.1,0.4,0.3>,<0.2,0.2,0

.1>,<0.1,0.1,0.1>) 

<0.2,0.2,0.1>,<0.2,0.1,0

.2>,<0.4,0.2,0.1>) 

<0.2,0.3,0.1>,<0.1,0.1,0

.2>,<0.0,0.1,0.1>) 

�̌�5 <0.2,0.2,0.3>,<0.0,0.1,0

.1>,<015,0.0,0.1>) 

<0.2,0.0,0.0>,<0.1,0.2,0

.2>,<0.4,0.1,0.1>) 

<0.5,0.2,0.1>,<0.0,0.2,0

.0>,<0.0,0.1,0.1>) 

<0.1,0.1,0.1>,<0.1,0.1,0

.2>,<0.2,0.2,0.1>) 

�̌�6 <0.4,0.2,0.2>,<0.1,0.0,0

.1>,<0.2,0.1,0.1>) 

<0.1,0.,20.1>,<0.3,0.1,0

.1>,<0.2,0.2,0.2>) 

<0.2,0.4,0.2>,<0.0,0.0,0

.2>,<0.2,0.1,0.1>) 

<0.1,0.1,0.1>,<0.3,0.2,0

.2>,<0.3,0.2,0.0>) 

�̌�7 <0.1,0.1,0.1>,<0.2,0.3,0

.2>,<0.3,0.1,0.1>) 

<0.2,0.1,0.3>,<0.1,0.1,0

.1>,<0.1,0.0,0.1>) 

<0.1,0.1,0.0>,<0.1,0.3,0

.1>,<0.4,0.1,0.1>) 

<0.1,0.6,0.1>,<0.0,0.0,0

.2>,<0.2,0.2,0.1>) 

�̌�8 <0.2,0.4,0.2>,<0.0,0.1,0

.1>,<0.1,0.1,0.1>) 

<0.2,0.2,0.2>,<0.1,0.2,0

.0>,<0.0,0.1,0.1>) 

<0.2,0.5,0.1>,<0.0,0.1,0

.1>,<0.1,0.1,0.1>) 

<0.2,0.3,0.1>,<0.1,0.1,0

.1>,<0.0,0.1,0.1>) 

Table 5. Neutrosophic m-polar values for alternative ℙ𝟒 

ℙ4 𝛿1 𝛿2 𝛿3 𝛿4 

�̌�1 <0.1,0.1,0.3>,<0.2,0.1,0

.1>,<0.0,0.1,0.1>) 

<0.1,0.2,0.2>,<0.5,0.1,0

.1>,<0.2,0.1,0.1>) 

<0.2,0.2,0.0>,<0.2,0.1,0

.1>,<0.3,0.1,0.1>) 

<0.1,0.0,0.1>,<0.3,0.1,0

.1>,<0.3,0.2,0.1>) 

�̌�2 <0.2,0.2,0.2>,<0.1,0.0,0

.1>,<0.3,0.1,0.3>) 

<0.2,0.2,0.3>,<0.3,0.1,0

.1>,<0.3,0.1,0.1>) 

<0.2,0.2,0.2>,<0.1,0.1,0

.1>,<0.3,0.1,0.1>) 

<0.2,0.2,0.3>,<0.2,0.1,0

.1>,<0.1,0.1,0.1>) 

�̌�3 <0.2,0.2,0.3>,<0.2,0.1,0

.1>,<0.1,0.1,0.1>) 

<0.2,0.2,0.4>,<0.0,0.1,0

.1>,<0.1,0.1,0.1>) 

<0.2,0.0,0.3>,<0.3,0.1,0

.1>,<0.0,0.1,0.1>) 

<0.2,0.2,0.1>,<0.2,0.2,0

.1>,<0.1,0.1,0.1>) 

�̌�4 <0.3,0.2,0.3>,<0.2,0.1,0

.1>,<0.3,0.1,0.1>) 

<0.2,0.2,0.0>,<0.1,0.1,0

.1>,<0.3,0.1,0.1>) 

<0.2,0.2,0.1>,<0.4,0.1,0

.1>,<0.3,0.3,0.1>) 

<0.2,0.2,0.2>,<0.3,0.1,0

.1>,<0.2,0.1,0.1>) 

�̌�5 <0.2,0.2,0.3>,<0.2,0.1,0

.1>,<0.2,0.1,0.1>) 

<0.1,0.1,0.3>,<0.1,0.1,0

.1>,<0.3,0.1,0.1>) 

<0.2,0.2,0.3>,<0.0,0.1,0

.1>,<0.3,0.1,0.1>) 

<0.2,0.2,0.4>,<0.2,0.1,0

.1>,<0.1,0.1,0.1>) 
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�̌�6 <0.2,0.2,0.2>,<0.3,0.1,0

.1>,<0.2,0.1,0.1>) 

<0.1,0.2,0.1>,<0.1,0.1,0

.1>,<0.4,0.1,0.1>) 

<0.2,0.2,0.2>,<0.3,0.1,0

.1>,<0.0,0.1,0.1>) 

<0.2,0.2,0.2>,<0.1,0.1,0

.1>,<0.0,0.1,0.1>) 

�̌�7 <0.1,0.2,0.0>,<0.5,0.1,0

.1>,<0.2,0.1,0.1>) 

<0.2,0.4,0.2>,<0.4,0.1,0

.1>,<0.1,0.1,0.1>) 

<0.2,0.2,0.3>,<0.0,0.1,0

.1>,<0.3,0.1,0.1>) 

<0.2,0.2,0.3>,<0.3,0.1,0

.1>,<0.2,0.1,0.1>) 

�̌�8 <0.2,0.2,0.3>,<0.2,0.1,0

.1>,<0.3,0.1,0.1>) 

<0.2,0.1,0.3>,<0.1,0.1,0

.1>,<0.0,0.1,0.1>) 

<0.2,0.2,0.1>,<0.1,0.1,0

.1>,<0.3,0.2,0.1>) 

<0.2,0.2,0.0>,<0.2,0.1,0

.1>,<0.3,0.1,0.1>) 

Table 6. Neutrosophic values for alternative ℵ 

ℵ �̌�1 �̌�2 �̌�3 �̌�4 �̌�5 �̌�6 �̌�7 �̌�8 

𝛿1 (𝟎. 𝟓, 𝟎. 𝟒, 𝟎. 𝟔) (𝟎. 𝟑, 𝟎. 𝟕, 𝟎. 𝟑) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟒) (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟓) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟒) (𝟎. 𝟕, 𝟎. 𝟑, 𝟎. 𝟒) (𝟎. 𝟓, 𝟎. 𝟖, 𝟎. 𝟐) 

𝛿2 (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟔) (𝟎. 𝟕, 𝟎. 𝟑, 𝟎. 𝟔) (𝟎. 𝟒, 𝟎. 𝟒, 𝟎. 𝟓) (𝟎. 𝟖, 𝟎. 𝟐, 𝟎. 𝟓) (𝟎. 𝟔, 𝟎. 𝟓, 𝟎. 𝟓) (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟑) (𝟎. 𝟐, 𝟎. 𝟖, 𝟎. 𝟒) (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟔) 

𝛿3  (𝟎. 𝟒, 𝟎. 𝟔, 𝟎. 𝟔) (𝟎. 𝟒, 𝟎. 𝟒, 𝟎. 𝟓) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟒) (𝟎. 𝟓, 𝟎. 𝟑, 𝟎. 𝟔) (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟕) (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟑) (𝟎. 𝟒, 𝟎. 𝟖, 𝟎. 𝟐) (𝟎. 𝟐, 𝟎. 𝟖, 𝟎. 𝟑) 

𝛿4 (𝟎. 𝟑, 𝟎. 𝟕, 𝟎. 𝟑) (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟕) (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟔) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟒) (𝟎. 𝟐, 𝟎. 𝟖, 𝟎. 𝟒) (𝟎. 𝟒, 𝟎. 𝟒, 𝟎. 𝟓) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟔) 

Table 7. Neutrosophic values for alternative ℙ𝟏 

ℙ1 �̌�1 �̌�2 �̌�3 �̌�4 �̌�5 �̌�6 �̌�7 �̌�8 

𝛿1 (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟒) (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟓) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟐) (𝟎. 𝟒, 𝟎. 𝟔, 𝟎. 𝟐) (𝟎. 𝟑, 𝟎. 𝟕, 𝟎. 𝟑) (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟑) (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟑) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟓) 

𝛿2 (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟕) (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟐) (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟐) (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟒) (𝟎. 𝟖, 𝟎. 𝟐, 𝟎. 𝟓) (𝟎. 𝟒, 𝟎. 𝟖, 𝟎. 𝟐) (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟒) 

𝛿3  (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟓) (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟒) (𝟎. 𝟖, 𝟎. 𝟐, 𝟎. 𝟒) (𝟎. 𝟑, 𝟎. 𝟓, 𝟎. 𝟓) (𝟎. 𝟒, 𝟎. 𝟒, 𝟎. 𝟐) (𝟎. 𝟓, 𝟎. 𝟒, 𝟎. 𝟓) (𝟎. 𝟓, 𝟎. 𝟒, 𝟎. 𝟔) (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟔) 

𝛿4 (𝟎. 𝟓, 𝟎. 𝟒, 𝟎. 𝟕) (𝟎. 𝟒, 𝟎. 𝟒, 𝟎. 𝟓) (𝟎. 𝟒, 𝟎. 𝟖, 𝟎. 𝟐) (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟐) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟓) (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟓) (𝟎. 𝟑, 𝟎. 𝟓, 𝟎. 𝟓) 

Table 8. Neutrosophic values for alternative ℙ𝟐 

ℙ2 �̌�1 �̌�2 �̌�3 �̌�4 �̌�5 �̌�6 �̌�7 �̌�8 

𝛿1 (𝟎. 𝟒, 𝟎. 𝟔, 𝟎. 𝟓) (𝟎. 𝟑, 𝟎. 𝟔, 𝟎. 𝟓) (𝟎. 𝟐, 𝟎. 𝟖, 𝟎. 𝟓) (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟐) (𝟎. 𝟑, 𝟎. 𝟔, 𝟎. 𝟓) (𝟎. 𝟐, 𝟎. 𝟖, 𝟎. 𝟓) (𝟎. 𝟖, 𝟎. 𝟐, 𝟎. 𝟑) (𝟎. 𝟑, 𝟎. 𝟕, 𝟎. 𝟓) 

𝛿2 (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟐) (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟒) (𝟎. 𝟑, 𝟎. 𝟕, 𝟎. 𝟔) (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟒, 𝟎. 𝟒, 𝟎. 𝟐) (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟔) 

𝛿3  (𝟎. 𝟒, 𝟎. 𝟔, 𝟎. 𝟒) (𝟎. 𝟒, 𝟎. 𝟒, 𝟎. 𝟓) (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟐) (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟕) (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟕) (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟒) 
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𝛿4 (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟖) (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟕) (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟒, 𝟎. 𝟒, 𝟎. 𝟐) (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟐) (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟐) (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟔) 

Table 9. Neutrosophic values for alternative ℙ𝟑 

ℙ3 �̌�1 �̌�2 �̌�3 �̌�4 �̌�5 �̌�6 �̌�7 �̌�8 

𝛿1 (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟓) (𝟎. 𝟖, 𝟎. 𝟐, 𝟎. 𝟑) (𝟎. 𝟕, 𝟎. 𝟓, 𝟎. 𝟐) (𝟎. 𝟖, 𝟎. 𝟐, 𝟎. 𝟓) (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟐) (𝟎. 𝟖, 𝟎. 𝟐, 𝟎. 𝟒) (𝟎. 𝟑, 𝟎. 𝟕, 𝟎. 𝟓) (𝟎. 𝟖, 𝟎. 𝟐, 𝟎. 𝟑) 

𝛿2 (𝟎. 𝟕, 𝟎. 𝟒, 𝟎. 𝟑) (𝟎. 𝟕, 𝟎. 𝟓, 𝟎. 𝟑) (𝟎. 𝟔, 𝟎. 𝟒, 𝟎. 𝟐) (𝟎. 𝟖, 𝟎. 𝟓, 𝟎. 𝟑) (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟐) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟐) 

𝛿3  (𝟎. 𝟒, 𝟎. 𝟒, 𝟎. 𝟓) (𝟎. 𝟕, 𝟎. 𝟑, 𝟎. 𝟕) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟐) (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟕) (𝟎. 𝟖, 𝟎. 𝟐, 𝟎. 𝟐) (𝟎. 𝟖, 𝟎. 𝟐, 𝟎. 𝟒) (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟖, 𝟎. 𝟐, 𝟎. 𝟑) 

𝛿4 (𝟎. 𝟖, 𝟎. 𝟒, 𝟎. 𝟐) (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟓) (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟔, 𝟎. 𝟒, 𝟎. 𝟐) (𝟎. 𝟒, 𝟎. 𝟒, 𝟎. 𝟓) (𝟎. 𝟑, 𝟎. 𝟕, 𝟎. 𝟓) (𝟎. 𝟖, 𝟎. 𝟐, 𝟎. 𝟓) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟐) 

Table 10. Neutrosophic values for alternative ℙ𝟒 

ℙ4 �̌�1 �̌�2 �̌�3 �̌�4 �̌�5 �̌�6 �̌�7 �̌�8 

𝛿1 (𝟎. 𝟓, 𝟎. 𝟒, 𝟎. 𝟐) (𝟎. 𝟔, 𝟎. 𝟐, 𝟎. 𝟕) (𝟎. 𝟕, 𝟎. 𝟒, 𝟎. 𝟑) (𝟎. 𝟖, 𝟎. 𝟒, 𝟎. 𝟓) (𝟎. 𝟕, 𝟎. 𝟒, 𝟎. 𝟒) (𝟎. 𝟔, 𝟎. 𝟓, 𝟎. 𝟒) (𝟎. 𝟑, 𝟎. 𝟕, 𝟎. 𝟒) (𝟎. 𝟕, 𝟎. 𝟒, 𝟎. 𝟓) 

𝛿2 (𝟎. 𝟓, 𝟎. 𝟕, 𝟎. 𝟒) (𝟎. 𝟕, 𝟎. 𝟓, 𝟎. 𝟒) (𝟎. 𝟖, 𝟎. 𝟐, 𝟎. 𝟑) (𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟓) (𝟎. 𝟓, 𝟎. 𝟑, 𝟎. 𝟓) (𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟔) (𝟎. 𝟖, 𝟎. 𝟔, 𝟎. 𝟑) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟐) 

𝛿3 (𝟎. 𝟒, 𝟎. 𝟒, 𝟎. 𝟓) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟓) (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟐) (𝟎. 𝟓, 𝟎. 𝟔, 𝟎. 𝟕) (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟓) (𝟎. 𝟔, 𝟎. 𝟓, 𝟎. 𝟐) (𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟓) (𝟎. 𝟓, 𝟎. 𝟑, 𝟎. 𝟔) 

𝛿4 (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟔) (𝟎. 𝟕, 𝟎. 𝟒, 𝟎. 𝟑) (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟑) (𝟎. 𝟔, 𝟎. 𝟓, 𝟎. 𝟒) (𝟎. 𝟖, 𝟎. 𝟒, 𝟎. 𝟑) (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟐) (𝟎. 𝟕, 𝟎. 𝟓, 𝟎. 𝟒) (𝟎. 𝟒, 𝟎. 𝟒, 𝟎. 𝟓) 

Step 3: Find informational energies of ℵ 𝒂𝒏𝒅 ℙ𝟐 using the formula; 

Ϛ𝒎−𝑷𝑵𝑯𝑺𝒔(℘, �⃛�) = ∑ ∑ (∑ (𝓣
℘(�̌�𝒌)𝒊
𝒊 (𝒗𝒊))

𝟐
𝒑
𝒊=𝟏 +∑ ( 𝓘

℘(�̌�𝒌)𝒋

𝒋 (𝒗𝒊))

𝟐
𝒒
𝒋=𝟏 +∑ (𝕮

℘(�̌�𝒌)𝒌
𝒌 (𝒗𝒊))

𝟐
𝒓
𝒌=𝟏 )𝒏

𝒊=𝟏
𝒎
𝒌=𝟏   

and we get,  

Ϛ𝒎−𝑷𝑵𝑯𝑺𝒔(ℵ) = 23.7 

Ϛ𝒎−𝑷𝑵𝑯𝑺𝒔(ℙ
𝟏) = 21.8 

Step 4: Now we’ll calculate correlation by using the formula; 

𝓒𝒎−𝑷𝑵𝑯𝑺𝒔((℘, �⃛�), (𝓠, �⃛�)) =  

∑ ∑ (∑ (𝓣
℘(�̌�𝒌)𝒊
𝒊 (𝒗𝒊) ∗ 𝓣𝓠(�̌�𝒌)𝒊

𝒊 (𝒗𝒊))
𝒑
𝒊=𝟏 + ∑ (𝓘

℘(�̌�𝒌)𝒋

𝒋 (𝒗𝒊) ∗ 𝓘𝓠(�̌�𝒌)𝒋
𝒋 (𝒗𝒊))

𝒒
𝒋=𝟏 +∑ (𝕮

℘(�̌�𝒌)𝒌
𝒌 (𝒗𝒊) ∗

𝒓
𝒌=𝟏

𝒏
𝒊=𝟏

𝒎
𝒌=𝟏

𝕮
𝓠(�̌�𝒌)𝒌
𝒌 (𝒗𝒊)))  
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      = 𝓒𝒎−𝑷𝑵𝑯𝑺𝒔((ℵ,ℙ
𝟏) = 19.95 

Step 5: Now we’ll find CC by using the formula; 

𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(ℵ,ℙ
𝟏) =  

𝓒𝒎−𝑷𝑵𝑯𝑺𝒔((ℵ,ℙ
𝟏) 

√Ϛ𝒎−𝑷𝑵𝑯𝑺𝒔(ℵ)∗ √Ϛ𝒎−𝑷𝑵𝑯𝑺𝒔(ℙ
𝟏)

= 
 𝟏𝟗.𝟗𝟓

√𝟐𝟑.𝟕∗ √𝟐𝟏.𝟖
= 𝟎. 𝟖𝟕𝟕 

Repeating the step 3, and step 4 to calculate CC of the given candidates; 

𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(ℵ,ℙ
𝟏) = 𝟎. 𝟖𝟕𝟕,  

𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(ℵ,ℙ
𝟐) = 𝟎. 𝟖𝟖𝟓,  

𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(ℵ,ℙ
𝟑) = 𝟎. 𝟕𝟕𝟒, 

𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(ℵ,ℙ
𝟒) = 𝟎. 𝟖𝟖𝟎, 

Step 6:  Arrange the CC values in descending order, 

𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(ℵ,ℙ
𝟐) = 𝟎. 𝟖𝟖𝟓 > 𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(ℵ,ℙ

𝟒) = 𝟎. 𝟖𝟖𝟎 > 𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(ℵ, ℙ
𝟏) = 𝟎. 𝟖𝟕𝟕 > 

𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(ℵ,ℙ
𝟑) = 𝟎. 𝟕𝟕𝟒  

Step 7:  Rank the alternatives from largest to smallest CC and informational energy values, from 

above results,  𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(ℵ,ℙ
𝟐) = 𝟎. 𝟖𝟖𝟓 has highest CC. Therefore, the position of Mathematics 

teacher at LGU can be filled by hiring ℙ𝟐 alternative.  

Real Application for Water quantity evaluation (Problem formulation)  

Water that is safe to drink is a basic requirement for good health. Water supply organizations place 

a high priority on quantity-related issues while paying little attention to drinking water quality 

concerns. We must supply safe drinking water (not necessarily excellent tasting) as well as appetizing 

food (pleasing to drink). The following four criteria are used to characterize the quality of drinking 

water: Physical, chemical, microbiological, and radiological. Due to water quality and quantity 

difficulties in Pakistan, access to clean drinking water is one of the country's public health concerns. 

A large percentage of the country's drinking water (almost 70%) originates from underground 

aquifers. Toxic metals such as arsenic, iron, and mercury have been found in some places due to 

bacterial contamination. Fluorides are a serious danger to the country's water quality. Microbial 

pollution of drinking water has been identified as a major source of sickness and mortality among 

Pakistanis, particularly youngsters, who are particularly sensitive. Water contamination is estimated 

to be the cause of 30% of all diseases and 40% of all fatalities in the country. Unfortunately, the 

drinking water quality issue in the country receives little attention, and most people consume water 

without understanding if it is safe or hazardous for them. The drinking water standards in Pakistan 

were evaluated by the ministry of health, the Government of Pakistan, and the World Health 

Organization (WHO). Pakistan adheres to WHO drinking water quality norms and standards (Pak-

EPA-2008, And the Gazette of Pakistan 2010) and the data is listed in Table 11. 

Table 11. Comparison of National and International water quality standards 

Parameters Pakistan standards (mg/L) WHO standards (mg/L) 
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Color ≤ 𝟏𝟓 TCU ≤ 𝟏𝟓 TCU 

Odor 𝐫𝐞𝐬𝐢𝐧𝐨𝐮𝐬 / 𝐟𝐫𝐚𝐠𝐫𝐚𝐧𝐭 𝐫𝐞𝐬𝐢𝐧𝐨𝐮𝐬 / 𝐟𝐫𝐚𝐠𝐫𝐚𝐧𝐭 

Turbidity 5 NTU 5 NTU 

pH 6.5-8.5 6.5-8.5 

Chloride 250 250 

Fluoride ≤ 𝟏.𝟓 1.5 

Lead ≤ 𝟎. 𝟎𝟓 0.01 

Manganese ≤ 𝟎.𝟓 0.5 

Zinc 5.0 3 

Arsenic 0.05 0.01 

Magnesium ≤ 𝟏𝟎𝟎 30 

Calcium ≤ 𝟏𝟎𝟎 60-120 

Sulfate < 250 ≤ 𝟐𝟓𝟎 

Sodium 100 ≤ 𝟐𝟎𝟎 

Iron 0.3 0.3 

Consider U = {𝑺𝟏, 𝑺𝟐, 𝑺𝟑} are there samples of water, we’ve to check which sample of water is safe 

for drinking purposes according to world health organization standards and we have taken a WHO 

standard parameter and represented with 𝝎 ideal water (safe to drink). Consider the parameters 

describe above in Table 11. P = {℘𝟏 = Color, ℘𝟐 = Turbidity, ℘𝟑 = pH, ℘𝟒 = odour, ℘𝟓 =

 Chloride, ℘𝟔 = 𝑭𝒍𝒖𝒓𝒐𝒊𝒅𝒆 , ℘𝟕 = Magnesium, ℘𝟖 = Calcium, ℘𝟗 = Sulphate, ℘𝟏𝟎 = Sodium, 

℘𝟏𝟏 = Iron, ℘𝟏𝟐 =  Arsenic, ℘𝟏𝟑 =Manganese ,  ℘𝟏𝟒 =  Lead, ℘𝟏𝟓 =Zinc}. These attributes are 

further divided as: 

℘𝟏 = Color → {𝒂𝟏𝟏 ≤ 𝟏𝟓 TCU, 𝒂𝟏𝟏 ≥ 𝟏𝟓 𝑻𝑪𝑼} 

℘𝟐 = Turbidity → {𝒂𝟐𝟏 ≤ 𝟓 𝐍𝐓𝐔 , 𝒂𝟐𝟐 >  𝟓𝑵𝑻𝑼} 

℘𝟑 = pH → { 𝟔. 𝟓 ≤ 𝒂𝟑𝟏 ≤ 𝟖.𝟓 , 𝒂𝟑𝟐 = 𝒐𝒕𝒉𝒆𝒓} 
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℘𝟒 = Odour → {𝒂𝟒𝟏 = 𝐫𝐞𝐬𝐢𝐧𝐨𝐮𝐬 , 𝒂𝟒𝟐 =  𝐟𝐫𝐚𝐠𝐫𝐚𝐧𝐭} 

℘𝟓 = Chloride→ {𝒂𝟓𝟏 =  𝟐𝟓𝟎𝐦𝐠/𝐋,  𝒂𝟓𝟐 >  𝟐𝟓𝟎 𝐦𝐠/ 𝐋} 

℘𝟔 =Fluoride→ {𝒂𝟔𝟏 ≤ 𝟏. 𝟓
𝒎𝒈

𝑳
, 𝒂𝟔𝟐 > 𝟏.𝟓 𝒎𝒈/𝑳} 

℘𝟕 = Magnesium → {𝒂𝟕𝟏 ≤
𝟏𝟎𝟎𝒎𝒈

𝑳
, 𝒂𝟕𝟐 >  𝟏𝟎𝟎  𝒎𝒈/𝑳} 

℘𝟖 = Calcium → {𝒂𝟖𝟏 ≤
𝟏𝟎𝟎𝒎𝒈

𝑳
, 𝒂𝟖𝟐 >  𝟏𝟎𝟎 𝒎𝒈/𝑳} 

℘𝟗 = Sulfate → {𝒂𝟗𝟏 ≤
𝟐𝟓𝟎𝒎𝒈

𝑳
, 𝒂𝟗𝟐 >  𝟐𝟓𝟎 𝒎𝒈/𝑳} 

℘𝟏𝟎 =  Sodium→ {𝒂𝟏𝟎 =
𝟏𝟎𝟎𝒎𝒈

𝑳
, 𝒂𝟏𝟎,𝟐 > 𝟏𝟎𝟎𝒎𝒈/𝑳} 

℘𝟏𝟏 = Iron → {𝒂𝟏𝟏,𝟏 =
𝟎.𝟑𝒎𝒈

𝑳
, 𝒂𝟏𝟏,𝟐 > 𝟎. 𝟑𝒎𝒈/𝑳} 

℘𝟏𝟐 = Arsenic → {𝒂𝟏𝟐,𝟏 <
𝟎.𝟎𝟓𝒎𝒈

𝑳
, 𝒂𝟏𝟐,𝟐 >  𝟎. 𝟎𝟓𝒎𝒈/𝑳} 

℘𝟏𝟑 = Manganese → {𝒂𝟏𝟑,𝟏 ≤
𝟏𝟎𝟎𝒎𝒈

𝑳
, 𝒂𝟏𝟑,𝟐 >  𝟏𝟎𝟎𝒎𝒈/𝑳} 

℘𝟏𝟒 = Lead → {𝒂𝟏𝟒,𝟏 <
𝟎.𝟎𝟓𝒎𝒈

𝑳
, 𝒂𝟏𝟒,𝟐 > 𝟎.𝟎𝟓𝒎𝒈/𝑳} 

℘𝟏𝟓 = Zinc {𝒂𝟏𝟓,𝟏 <
𝟓𝒎𝒈

𝑳
, 𝒂𝟏𝟓,𝟐 >  𝟓𝒎𝒈/𝑳} 

The ideal water 𝝎 = 𝑭(𝐂𝐨𝐥𝐨𝐫 ≤  𝟏𝟓𝐓𝐂𝐔,𝐓𝐮𝐫𝐛𝐢𝐝𝐢𝐭𝐲 =   𝟓 𝐍𝐓𝐔 , 𝐏𝐇 =  𝟔. 𝟓 − 𝟖. 𝟓,𝐎𝐝𝐨𝐮𝐫 =

𝐀𝐜𝐜𝐞𝐩𝐭𝐚𝐛𝐥𝐞,𝐂𝐡𝐥𝐨𝐫𝐢𝐝𝐞 =   𝟐𝟓𝟎𝐦𝐠/𝐋, 𝐅𝐥𝐮𝐨𝐫𝐢𝐝𝐞  ≤ 𝟏. 𝟓
𝒎𝒈

𝑳
,𝐌𝐚𝐠𝐧𝐞𝐬𝐢𝐮𝐦 ≤

𝟏𝟎𝟎𝒎𝒈

𝑳
 , 𝐂𝐚𝐥𝐜𝐢𝐮𝐦 ≤

𝟏𝟎𝟎𝒎𝒈

𝑳
, 𝐒𝐮𝐥𝐟𝐚𝐭𝐞  ≤

𝟐𝟓𝟎𝒎𝒈

𝑳
 , 𝑺𝒐𝒅𝒊𝒖𝒎 =

𝟏𝟎𝟎𝒎𝒈

𝑳
, 𝐈𝐫𝐨𝐧 =

𝟎.𝟑𝒎𝒈

𝑳
, 𝐀𝐫𝐬𝐞𝐧𝐢𝐜 <

𝟎.𝟎𝟓𝒎𝒈

𝑳
,𝐌𝐚𝐧𝐠𝐚𝐧𝐞𝐬𝐞 ≤

𝟏𝟎𝟎𝒎𝒈

𝑳
, 𝐋𝐞𝐚𝐝 <

𝟎.𝟎𝟓𝒎𝒈

𝑳
, 𝐙𝐢𝐧𝐜 <  𝟓𝒎𝒈/𝑳)                      (a)                                                                                                           

And  𝑫𝓜 = {𝑫𝓜𝟏  , 𝑫𝓜𝟐 } and 𝛀 = { 𝛀𝟏 =   𝟎. 𝟔 ,  𝛀𝟏 =   𝟎. 𝟒 } 
𝑻 be the set of decision 

makers and their weights respectively. 

Solved Example using Algorithm 4.2 

Step 1: Define a mapping, and select Hypersoft set; 

𝑭: ℘𝟏 × ℘𝟐 ×℘𝟑 ×… . .× ℘𝟏𝟓 = 𝜸
′ → 𝑷(ℵ) = 𝑺𝟏, 𝑺𝟐, 𝑺𝟑 

compute the Weighted Correlation Coefficient (WCC) between  𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝑺(𝝎, 𝑺𝟏) , 

𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝝎,𝑺𝟐) , 𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝝎, 𝑺𝟑), to check that whether taken sample of water has positive 

correlation with the safe water 𝝎, or not, if yes then it means the sample of water which is taken is 

safe to use for drinking purposes if the value of correlation coefficient is less than 0.50 then it means 

that water requires treatment before use, check the Truthiness, Indeterminacy and falsity values  of 

sample regarding each attribute, those attributes which has unbalance ratio according to National 

standard for safe water (𝝎 ). Now, 1st we’ll find   𝜹𝒎−𝑷𝑵𝑯𝑺𝒔(𝝎, 𝑺𝟏)  i.e. (Correlation coefficient 

between 𝝎(safe water) and 𝑺𝟏(Sample 1). Let {𝝎}, and  {𝑺𝟏} be the two sets having sub-attributes, 
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Step 2: We construct m-PNHSs in the form of m-PNHSNs by assigning Neutrosophic values to the 

selected alternatives of Hypersoft set i.e. 𝑺𝟏, 𝑺𝟐, 𝑺𝟑. Also, DM will assign m=3 neutrosophic values 

to the ideal water i.e. 𝝎 and shown in Table 12-15. Their simplified Neutrosophic form is shown in 

Table 16-19. 

Table 12. Neutrosophic m-polar values for alternative 𝝎 

𝜔 𝐷ℳ1  𝐷ℳ2  

𝐶𝑜𝑙𝑜𝑟 ≤ 15TCU (<0.2,0.4,0.3>,<0.02,0.01,0.02>,<0.03,0.0

1,0.01>) 

(<0.20,0.40,0.25>,<0.10,0.5,0.0>,<0.0,0.1,

0.0>) 

𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 

=   5 𝑁𝑇𝑈 

(<0.2,0.4,0.2>,<0.1,0.0,0.0>,<0.0,0.0,0.1>

) 

(<0.2,0.4,0.1>,<0.1,0.1,0.0>,<0.0,0.0,0.1>) 

𝑝𝐻 =  6.5 − 8.5 (<0.3,0.3,0.3>,<0.02,0.01,0.02>,<0.02,0.0

2,0.01) 

(<0.20,0.40,0.25>,<0.1,0.,0.0>,<0.03,0.02,

0.0>) 

Odor = 𝑟𝑒𝑠𝑖𝑛𝑜𝑢𝑠 (<0.25,0.25,0.35>,<0.1,0.0,0.0>,<0.03,0.0

1,0.01>) 

(<0.2,0.4,0.2>,<0.1,0.0,0.0>,<<0.0,0.1,0.0>

) 

𝐶ℎ𝑙𝑜𝑟𝑖𝑑𝑒 

=   250 𝑚𝑔/ 𝐿 

(<0.2,0.4,0.2>,<0.1,0.0,0.0>,<<0.03,0.01,

0.01>) 

(<0.20,0.40,0.25>,<0.1,0.0,0.0>,<0.01,0.01

,0.03>) 

Fluoride ≤ 1.5mg/L (<0.2,0.4,0.2>,<0.1,0.0,0.0>,<<0.0,0.1,0.0

>) 

(<0.2,0.4,0.1>,<0.1,0.0,0.0>,<0.1,0.1,0.0>) 

𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚 

≤ 100𝑚𝑔/𝐿 

(<0.2,0.4,0.2>,<0.03,0.01,0.01>,<0.0,0.1,

0.0>) 

(<0.2,0.4,0.2>,<0.1,0.0,0.0>,<0.0,0.1,0.0>) 

Calcium ≤ 100 

mg/L 

(<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.1,0.1,0.0>

) 

(<0.2,0.4,0.2>,<0.1,0.0,0.0>,<0.0,0.1,0.0>) 

𝑆𝑢𝑙𝑓𝑎𝑡𝑒 ≤ 250𝑚𝑔

/𝐿 

(<0.2,0.4,0.2>,<0.03,0.01,0.01>,<0.0,0.1,

0.0>) 

(<0.2,0.4,0.2>,<0.1,0.0,0.0>,<0.0,0.1,0.0>) 

𝑆𝑜𝑑𝑖𝑢𝑚 =  100𝑚𝑔

/𝐿 

(<0.0,0.4,0.2>,<0.0,0.1,0.1>,<0.0,0.1,0.1>

) 

(<0.2,0.4,0.0>,<0.1,0.0,0.0>,<0.2,0.1,0.0>) 

𝐼𝑟𝑜𝑛 =  0.3𝑚𝑔/𝐿 (<0.2,0.4,0.1>,<0.1,0.1,0.0>,<0.0,0.1,0.0>

) 

(<0.2,0.4,0.1>,<0.1,0.1,0.0>,<0.0,0.1,0.0>) 

𝐴𝑟𝑠𝑒𝑛𝑖𝑐 <  0.05𝑚𝑔

/𝐿 

(<0.2,0.4,0.1>,<0.1,0.1,0.0>,<0.0,0.1,0.0>

) 

(<0.2,0.4,0.1>,<0.1,0.0,0.0>,<0.1,0.1,0.0>) 
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Manganese ≤ 

100mg/L 

(<0.20,0.40,0.15>,<0.0,0.1,0.0>,<0.0,0.10

,0.05>) 

(<0.2,0.3,0.2>,<0.0,0.1,0.0>,<0.0,0.1,0.0>) 

𝐿𝑒𝑎𝑑 <  0.05𝑚𝑔/𝐿 (<0.2,0.4,0.1>,<0.1,0.1,0.0>,<0.1,0.1,0.0>

) 

(<0.20,0.40,0.05>,<0.1,0.1,0.0>,<0.0,0.10,

0.05>) 

𝑍𝑖𝑛𝑐 <  5𝑚𝑔/𝐿 (<0.20,0.40,0.15>,<0.1,0.1,0.0>,<0.0,0.1,

0.0>) 

(<0.2,0.4,0.1>,<0.1,0.0,0.0>,<<0.0,0.1,0.0>

) 

Table 13. Neutrosophic m-polar values for alternative 𝑺𝟏 

𝑆1 𝐷ℳ1  𝐷ℳ2  

𝐶𝑜𝑙𝑜𝑟 ≤15TCU (<0.2,0.4,0.3>,<0.02,0.01,0.02>,<0.03,0.01,0.01>) (<0.20,0.40,0.25>,<0.0,0.10,0.05>,<0.1,0.0,0.0>) 

Turbidity 

≥5NTU 

(<0.2,0.1,0.3>,<0.0,0.1,0.0>,<0.0,0.1,0.1>) (<0.20,0.40,0.05>,<0.0,0.10,0.05>,<0.1,0.0,0.0>) 

𝑝𝐻 

=  6.5 − 8.5 

(<0.2,0.4,0.3>,<0.02,0.01,0.02>,<0.03,0.01,0.01>) (<0.20,0.40,0.25>,<0.0,0.1,0.0>,<0.0,0.0,0.05>) 

Odor = 

𝑓𝑟𝑎𝑔𝑟𝑎𝑛𝑡 

(<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.1,0.0,0.1>) (<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.1,0.0,0.0>) 

𝐶ℎ𝑙𝑜𝑟𝑖𝑑𝑒

>  250 𝑚𝑔

/ 𝐿 

(<0.2,0.3,0.1>,<0.0,0.1,0.0>,<0.1,0.0,0.1>) (<0.2,0.3,0.1>,<0.0,0.1,0.0>,<0.2,0.0,0.1>) 

Fluoride > 

1.5mg/L 

(<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.1,0.0,0.1>) (<0.20,0.40,0.15>,<0.0,0.1,0.0>,<0.1,0.0,0.1>) 

𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚

>  100𝑚𝑔/𝐿 

(<0.20,0.40,0.05>,<0.0,0.1,0.0>,<0.1,0.0,0.1>) (<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.0,0.0,0.1>) 

Calcium > 100 

mg/L 

(<0.2,0.3,0.1>,<0.1,0.1,0.0>,<0.1,0.0,0.1>) (<0.2,0.3,0.1>,<0.05,0.10,0.0>,<0.1,0.0,0.1>) 

𝑆𝑢𝑙𝑓𝑎𝑡𝑒 

≤  250𝑚𝑔/𝐿 

(<0.2,0.4,0.2>,<0.01,0.02,0.02>,<0.0,0.0,0.1>) (<0.2,0.4,0.2>,<0.0,0.1,0.0>,<0.1,0.0,0.1>) 

𝑆𝑜𝑑𝑖𝑢𝑚 

=  100𝑚𝑔/𝐿 

(<0.2,0.3,0.1>,<0.0,0.1,0.1>,<0.1,0.0,0.1>) (<0.2,0.3,0.1>,<0.0,0.1,0.0>,<0.1,0.1,0.1>) 
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𝐼𝑟𝑜𝑛 

=  0.3𝑚𝑔/𝐿 

(<0.2,0.4,0.1>,<0.1,0.1,0.0>,<0.0,0.0,0.1>) (<0.2,0.4,0.1>,<0.0,0.1,0.1>,<0.1,0.0,0.0>) 

𝐴𝑟𝑠𝑒𝑛𝑖𝑐

<  0.05𝑚𝑔/𝐿 

(<0.2,0.4,0.1>,<0.1,0.1,0.0>,<0.0,0.0,0.1>) (<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.1,0.0,0.1>) 

Manganese ≤ 

100mg/L 

(<0.20,0.40,0.15>,<0.0,0.1,0.0>,<0.10,0.0,0.05>) (<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.1,0.0,0.0>) 

𝐿𝑒𝑎𝑑

<  0.05𝑚𝑔/𝐿 

(<0.2,0.3,0.1>,<0.1,0.1,0.0>,<0.1,0.0,0.1>) (<0.20,0.40,0.05>,<0.0,0.1,0.0>,<0.1,0.0,0.0>) 

𝑍𝑖𝑛𝑐

<  5𝑚𝑔/𝐿 

(<0.20,0.40,0.15>,<0.1,0.1,0.0>,<0.0,0.0,0.1>) (<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.0,0.0,0.1>) 

Table 14. Neutrosophic m-polar values for alternative 𝑺𝟐 

𝑆2 𝐷ℳ1  𝐷ℳ2  

𝐶𝑜𝑙𝑜𝑟 >15TCU (<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.0,0.0,0.1>) (<0.25,0.25,0.25>,<0.05,0.05,0.05>,<0.0,0.0

,0.1>) 

𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 >  5 𝑁𝑇𝑈 (<0.20,0.40,0.05>,<0.0,0.1,0.0>,<0.0,0.0,0.1

>) 

(<0.25,0.25,0.15>,<0.1,0.1,0.0>,<0.0,0.0,0.1

>) 

𝑝𝐻 =  6.5 − 8.5 (<0.2,0.4,0.3>,<0.02,0.01,0.02>,<0.02,0.01,

0.02>) 

(<0.35,0.35,0.15>,<0.0,0.1,0.0>,<0.02,0.02,

0.01>) 

Odor = fragrant (<0.20,0.40,0.15>,<0.0,0.1,0.0>,<0.01,0.02,

0.02>) 

(<0.25,0.25,0.25>,<0.0,0.1,0.0>,<0.0,0.0,0.1

>) 

𝐶ℎ𝑙𝑜𝑟𝑖𝑑𝑒 >   250 𝑚𝑔

/ 𝐿 

(<0.20,0.20,0.25>,<0.05,0.05,0.05>,<0.0,0.1

,0.1>) 

(<0.25,0.25,0.15>,<0.0,0.1,0.0>,<0.1,0.0,0.1

>) 

Fluoride >1.5mg/L (<0.30,0.30,0.15>,<0.0,0.1,0.0>,<0.0,0.0,0.1

>) 

(<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.05,0.05,0.05

>) 

𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚 

≤ 100𝑚𝑔/𝐿 

(<0.3,0.3,0.2>,<0.02,0.02,0.01>,<0.0,0.0,0.1

>) 

(<0.2,0.4,0.2>,<0.0,0.1,0.0>,<0.0,0.0,0.1>) 

Calcium ≤ 100 mg/L (<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.0,0.1,0.1>) (<0.2,0.4,0.2>,<0.0,0.1,0.0>,<0.0,0.0,0.1>) 

𝑆𝑢𝑙𝑓𝑎𝑡𝑒 >  250𝑚𝑔/𝐿 (<0.2,0.2,0.2>,<0.0,0.1,0.1>,<0.1,0.0,0.1>) (<0.2,0.2,0.2>,<0.0,0.1,0.0>,<0.1,0.1,0.1>) 
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𝑆𝑜𝑑𝑖𝑢𝑚 > 100𝑚𝑔/𝐿 (<0.15,0.15,0.25>,<0.1,0.1,0.0>,<0.0,0.2,0.1

>) 

(<0.2,0.2,0.2>,<0.0,0.1,0.0>,<0.1,0.1,0.1>) 

𝐼𝑟𝑜𝑛 >  0.3𝑚𝑔/𝐿 (<0.2,0.2,0.2>,<0.1,0.1,0.0>,<0.0,0.0,0.1>) (<0.25,0.25,0.15>,<0.1,0.1,0.0>,<0.0,0.0,0.1

>) 

𝐴𝑟𝑠𝑒𝑛𝑖𝑐 <  0.05𝑚𝑔/𝐿 (<0.2,0.4,0.1>,<0.1,0.1,0.0>,<0.0,0.0,0.1>) (<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.0,0.1,0.1>) 

Manganese ≤ 

100mg/L 

(<0.25,0.25,0.25>,<0.0,0.1,0.0>,<0.05,0.05,

0.05>) 

(<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.0,0.0,0.1>) 

𝐿𝑒𝑎𝑑 <  0.05𝑚𝑔/𝐿 (<0.2,0.2,0.2>,<0.1,0.1,0.0>,<0.1,0.0,0.1>) (<0.25,0.25,0.15>,<0.1,0.1,0.0>,<0.05,0.05,

0.05>) 

𝑍𝑖𝑛𝑐 <  5𝑚𝑔/𝐿 (<0.25,0.25,0.25>,<0.1,0.1,0.0>,<0.0,0.0,0.1

>) 

(<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.0,0.0,0.1>) 

Table 15. Neutrosophic m-polar values for alternative 𝑺𝟑 

𝑆3 𝐷ℳ1  𝐷ℳ2  

𝐶𝑜𝑙𝑜𝑟 ≤ to 15TCU (<0.3,0.3,0.3>,<0.02,0.01,0.02>,<0.01,0.03,

0.01>) 

(<0.20,0.40,0.25>,<0.05,0.10,0.0>,<0.1,0.0,

0.0>) 

𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 

=   5 𝑁𝑇𝑈 

(<0.2,0.4,0.2>,<0.0,0.1,0.0>,<0.0,0.0,0.1>) (<0.2,0.4,0.1>,<0.0,0.1,0.1>,<0.1,0.0,0.0>) 

𝑝𝐻 =  6.5 − 8.5 (<0.2,0.4,0.3>,<0.02,0.01,0.02>,<0.01,0.02,

0.02>) 

(<0.20,0.40,0.25>,<0.0,0.1,0.0>,<0.01,0.02,

0.02>) 

Odor =resinous (<0.20,0.40,0.25>,<0.0,0.1,0.0>,<0.02,0.01,

0.02>) 

(<0.2,0.4,0.2>,<0.0,0.1,0.0>,<0.1,0.0,0.0>) 

𝐶ℎ𝑙𝑜𝑟𝑖𝑑𝑒 >  250 𝑚𝑔

/ 𝐿 

(<0.20,0.40,0.15>,<0.0,0.1,0.0>,<0.01,0.0,0.

01>) 

(<0.20,0.40,0.15>,<0.0,0.1,0.0>,<0.10,0.10,

0.05>) 

Fluoride ≤1.5mg/L (<0.2,0.4,0.2>,<0.0,0.1,0.0>,<0.1,0.0,0.0>) (<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.1,0.0,0.1>) 

𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚

>  100𝑚𝑔/𝐿 

(<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.1,0.0,0.0>) (<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.1,0.0,0.1>) 

Calcium >100 mg/L (<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.1,0.0,0.1>) (<0.20,0.40,0.25>,<0.0,0.1,0.0>,<0.10,0.05,

0.0>) 
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𝑆𝑢𝑙𝑓𝑎𝑡𝑒 ≤ 250𝑚𝑔/𝐿 (<0.2,0.4,0.2>,<0.02,0.01,0.02>,<0.0,0.0,0.1

>) 

(<0.2,0.4,0.2>,<0.0,0.1,0.0>,<0.0,0.0,0.1>) 

𝑆𝑜𝑑𝑖𝑢𝑚 > 100𝑚𝑔/𝐿 (<0.20,0.30,0.05>,<0.0,0.1,0.1>,<0.1,0.0,0.0

>) 

(<0.2,0.3,0.1>,<0.0,0.1,0.0>,<0.1,0.0,0.1>) 

𝐼𝑟𝑜𝑛 =  0.3𝑚𝑔/𝐿 (<0.2,0.4,0.1>,<0.0,0.1,0.1>,<0.0,0.0,0.1>) (<0.2,0.4,0.1>,<0.0,0.1,0.1>,<0.1,0.0,0.0>) 

𝐴𝑟𝑠𝑒𝑛𝑖𝑐 <  0.05𝑚𝑔/𝐿 (<0.2,0.4,0.1>,<0.0,0.1,0.1>,<0.1,0.0,0.0>) (<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.1,0.0,0.1>) 

Manganese ≤100mg/L (<0.20,0.40,0.15>,<0.0,0.1,0.0>,<0.10,0.0,0.

05>) 

(<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.1,0.0,0.0>) 

𝐿𝑒𝑎𝑑 <  0.05𝑚𝑔/𝐿 (<0.2,0.3,0.1>,<0.1,0.1,0.0>,<0.1,0.0,0.1>) (<0.20,0.40,0.05>,<0.1,0.1,0.0>,<0.10,0.05,

0.>) 

𝑍𝑖𝑛𝑐 >  5𝑚𝑔/𝐿 (<0.2,0.4,0.1>,<0.0,0.1,0.1>,<0.10,0.0,0.05>

) 

(<0.2,0.4,0.1>,<0.0,0.1,0.0>,<0.2,0.1,0.2>) 

Table 16. Neutrosophic values for alternative 𝝎 

𝜔 𝐷ℳ1  𝐷ℳ2  

𝐶𝑜𝑙𝑜𝑟 ≤ 15TCU (0.9,0.05,0.05) (0.85,0.15,0.1) 

𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 =   5 𝑁𝑇𝑈 (0.8,0.1,0.1) (0.7,0.2,0.1) 

𝑝𝐻 =  6.5 − 8.5 (0.9,0.05,0.05) (0.85,0.1,0.05) 

Odor = 𝑟𝑒𝑠𝑖𝑛𝑜𝑢𝑠 (0.85,0.1,0.05) (0.8,0.1,0.1) 

𝐶ℎ𝑙𝑜𝑟𝑖𝑑𝑒 =   250 𝑚𝑔/ 𝐿 (0.8,0.1,0.05) (0.85,0.1,0.05) 

Fluoride ≤ 1.5mg/L (0.8,0.1,0.1) (0.7,0.1,0.2) 

𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚 ≤ 100𝑚𝑔/𝐿 (0.8,0.05,0.1) (0.8,0.1,0.1) 

Calcium ≤ 100 mg/L (0.7,0.1,0.2) (0.8,0.1,0.1) 

𝑆𝑢𝑙𝑓𝑎𝑡𝑒 ≤ 250𝑚𝑔/𝐿 (0.8,0.05,0.1) (0.8,0.1,0.1) 

𝑆𝑜𝑑𝑖𝑢𝑚 =  100𝑚𝑔/𝐿 (0.6,0.2,0.2) (0.6,0.1,0.3) 
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𝐼𝑟𝑜𝑛 =  0.3𝑚𝑔/𝐿 (0.7,0.2,0.1) (0.7,0.2,0.1) 

𝐴𝑟𝑠𝑒𝑛𝑖𝑐 <  0.05𝑚𝑔/𝐿 (0.7,0.2,0.1) (0.7,0.1,0.2) 

Manganese ≤ 100mg/L (0.75,0.1,0.15) (0.7,0.1,0.1) 

𝐿𝑒𝑎𝑑 <  0.05𝑚𝑔/𝐿 (0.6,0.2,0.2) (0.65,0.2,0.15) 

𝑍𝑖𝑛𝑐 <  5𝑚𝑔/𝐿 (0.75,0.2,0.1) (0.7,0.1,0.1) 

Table 17. Neutrosophic values for alternative 𝑺𝟏 

𝑆1 𝐷ℳ1  𝐷ℳ2  

𝐶𝑜𝑙𝑜𝑟 ≤15TCU (0.9,0.05,0.05) (0.85,0.15,0.1) 

Turbidity ≥5NTU (0.6,0.1,0.2) (0.65,0.15,0.1) 

𝑝𝐻 =  6.5 − 8.5 (0.9,0.05,0.05) (0.85,0.1,0.05) 

Odor = 𝑓𝑟𝑎𝑔𝑟𝑎𝑛𝑡 (0.7,0.1,0.2) (0.7,0.1,0.1) 

𝐶ℎ𝑙𝑜𝑟𝑖𝑑𝑒 >  250 𝑚𝑔/ 𝐿 (0.6,0.1,0.2) (0.6,0.1,0.3) 

Fluoride > 1.5mg/L (0.7,0.1,0.1) (0.65,0.1,0.2) 

𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚 >  100𝑚𝑔/𝐿 (0.65,0.1,0.2) (0.7,0.1,0.1) 

Calcium > 100 mg/L (0.6,0.2,0.2) (0.6,0.15,0.2) 

𝑆𝑢𝑙𝑓𝑎𝑡𝑒 ≤  250𝑚𝑔/𝐿 (0.8,0.05,0.1) (0.8,0.1,0.1) 

𝑆𝑜𝑑𝑖𝑢𝑚 =  100𝑚𝑔/𝐿 (0.6,0.2,0.2) (0.6,0.1,0.3) 

𝐼𝑟𝑜𝑛 =  0.3𝑚𝑔/𝐿 (0.7,0.2,0.1) (0.7,0.2,0.1) 

𝐴𝑟𝑠𝑒𝑛𝑖𝑐 <  0.05𝑚𝑔/𝐿 (0.7,0.2,0.1) (0.7,0.1,0.2) 

Manganese ≤ 100mg/L (0.75,0.1,0.15) (0.7,0.1,0.1) 

𝐿𝑒𝑎𝑑 <  0.05𝑚𝑔/𝐿 (0.6,0.2,0.2) (0.65,0.2,0.15) 
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𝑍𝑖𝑛𝑐 <  5𝑚𝑔/𝐿 (0.75,0.2,0.1) (0.7,0.1,0.1) 

Table 18. Neutrosophic values for alternative 𝑺𝟐 

𝑆2 𝐷ℳ1  𝐷ℳ2  

𝐶𝑜𝑙𝑜𝑟 >15TCU (0.7,0.1,0.1) (0.75,0.15,0.1) 

𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 >  5 𝑁𝑇𝑈 (0.65,0.1,0.1) (0.65,0.2,0.1) 

𝑝𝐻 =  6.5 − 8.5 (0.9,0.05,0.05) (0.85,0.1,0.05) 

Odor = fragrant (0.75,0.1,0.05) (0.75,0.1,0.1) 

𝐶ℎ𝑙𝑜𝑟𝑖𝑑𝑒 >   250 𝑚𝑔/ 𝐿 (0.65,0.15,0.2) (0.65,0.1,0.2) 

Fluoride >1.5mg/L (0.75,0.1,0.1) (0.7,0.1,0.15) 

𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚 ≤ 100𝑚𝑔/𝐿 (0.8,0.05,0.1) (0.8,0.1,0.1) 

Calcium ≤ 100 mg/L (0.7,0.1,0.2) (0.8,0.1,0.1) 

𝑆𝑢𝑙𝑓𝑎𝑡𝑒 >  250𝑚𝑔/𝐿 (0.6,0.2,0.2) (0.6,0.1,0.3) 

𝑆𝑜𝑑𝑖𝑢𝑚 > 100𝑚𝑔/𝐿 (0.55,0.2,0.3) (0.6,0.1,0.3) 

𝐼𝑟𝑜𝑛 >  0.3𝑚𝑔/𝐿 (0.6,0.2,0.1) (0.65,0.2,0.1) 

𝐴𝑟𝑠𝑒𝑛𝑖𝑐 <  0.05𝑚𝑔/𝐿 (0.7,0.2,0.1) (0.7,0.1,0.2) 

Manganese ≤ 100mg/L (0.75,0.1,0.15) (0.7,0.1,0.1) 

𝐿𝑒𝑎𝑑 <  0.05𝑚𝑔/𝐿 (0.6,0.2,0.2) (0.65,0.2,0.15) 

𝑍𝑖𝑛𝑐 <  5𝑚𝑔/𝐿 (0.75,0.2,0.1) (0.7,0.1,0.1) 

Table 19. Neutrosophic values for alternative 𝑺𝟑 

𝑆3 𝐷ℳ1  𝐷ℳ2  

𝐶𝑜𝑙𝑜𝑟 ≤  15TCU (0.9,0.05,0.05) (0.85,0.15,0.1) 
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𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 =   5 𝑁𝑇𝑈 (0.8,0.1,0.1) (0.7,0.2,0.1) 

𝑝𝐻 =  6.5 − 8.5 (0.9,0.05,0.05) (0.85,0.1,0.05) 

Odor =resinous (0.85,0.1,0.05) (0.8,0.1,0.1) 

𝐶ℎ𝑙𝑜𝑟𝑖𝑑𝑒 >  250 𝑚𝑔/ 𝐿 (0.65,0.1,0.02) (0.65,0.1,0.25) 

Fluoride ≤1.5mg/L (0.8,0.1,0.1) (0.7,0.1,0.2) 

𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚 >  100𝑚𝑔/𝐿 (0.7,0.1,0.1) (0.7,0.1,0.2) 

Calcium >100 mg/L (0.7,0.1,0.2) (0.75,0.1,0.15) 

𝑆𝑢𝑙𝑓𝑎𝑡𝑒 ≤ 250𝑚𝑔/𝐿 (0.8,0.05,0.1) (0.8,0.1,0.1) 

𝑆𝑜𝑑𝑖𝑢𝑚 > 100𝑚𝑔/𝐿 (0.55,0.2,0.1) (0.6,0.1,0.2) 

𝐼𝑟𝑜𝑛 =  0.3𝑚𝑔/𝐿 (0.7,0.2,0.1) (0.7,0.2,0.1) 

𝐴𝑟𝑠𝑒𝑛𝑖𝑐 <  0.05𝑚𝑔/𝐿 (0.7,0.2,0.1) (0.7,0.1,0.2) 

Manganese ≤100mg/L (0.75,0.1,0.15) (0.7,0.1,0.1) 

𝐿𝑒𝑎𝑑 <  0.05𝑚𝑔/𝐿 (0.6,0.2,0.2) (0.65,0.2,0.15) 

𝑍𝑖𝑛𝑐 >  5𝑚𝑔/𝐿 (0.7,0.2,0.15) (0.7,0.1,0.15) 

Step 3: Find informational energies of m-PNHSs using the formula: 

  𝝇𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(℘,⩜⃛)   =   

∑Ω𝒌

(

 
 
(∑(∑𝜸𝒊
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𝒊=𝟏
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𝒊=𝟏
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𝒏
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𝓘
℘(�̌�𝒌)𝒋

𝒋 (𝒗𝒊))

𝟐𝒒

𝒋=𝟏
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𝒏
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𝕮
℘(�̌�𝒌)𝒌
𝒌 (𝒗𝒊))

𝟐
𝒓

𝒌=𝟏

)

)

 
 

𝒎

𝒌=𝟏

 

we’ll find the weighted informational energies for 𝛚 consider,  

𝑫𝓜= {𝑫𝓜𝟏  , 𝑫𝓜𝟐 } be the set of decision makers {𝛀𝟏 = 𝟎.𝟔 ,𝛀𝟐 = 𝟎. 𝟒}
𝑻, who assign 

weights to the sub-attributes. i.e. 𝜸 = {𝜸𝟏 = 𝟎.𝟎𝟔, 𝜸𝟐 = 𝟎. 𝟎𝟔𝟓, 𝜸𝟑 = 𝟎.𝟎𝟔𝟓, 𝜸𝟒 = 𝟎.𝟎𝟔, 𝜸𝟓 =

𝟎.𝟎𝟓, 𝜸𝟔 = 𝟎. 𝟎𝟓, 𝜸𝟕 = 𝟎.𝟎𝟔, 𝜸𝟔 = 𝟎.𝟎𝟔, 𝜸𝟖 = 𝟎. 𝟎𝟓, 𝜸𝟗 = 𝟎.𝟎𝟓, 𝜸𝟏𝟎 = 𝟎. 𝟎𝟔𝟓, 𝜸𝟏𝟏 = 𝟎. 𝟎𝟔, 𝜸𝟏𝟐 =

𝟎.𝟎𝟔, 𝜸𝟏𝟑 = 𝟎.𝟎𝟔, 𝜸𝟏𝟒 = 𝟎.𝟎𝟔𝟓, 𝜸𝟏𝟓 = 𝟎. 𝟎𝟔} 

The overall sum of the attributives values of the selected samples are listed below; 
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Ϛ𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝛚) = 0.5473655 

Ϛ𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝐒𝟏)= 0.48561235 

Step 4: Now we’ll calculate correlation by using the formula: 

𝓒𝒎−𝑷𝑾𝑵𝑯𝑺𝒔((℘,⩜⃛), (𝓠, �⃛�)) =   

∑Ω𝒌
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𝓒𝒎−𝑷𝑾𝑵𝑯𝑺𝒔 (𝝎 , 𝑺𝟏) = 0.50206 

Step 5: Calculate the WCC between two m-PNHSs by using the formula; 

𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝒔((℘,⩜⃛), (𝓠, �⃛�))) = 
𝓒𝒎−𝑷𝑾𝑵𝑯𝑺𝒔((℘,⩜⃛),(𝓠,�⃛�)) 

√Ϛ𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(℘,⩜⃛)∗ √Ϛ𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝓠,�⃛�)
 

𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝝎 , 𝑺𝟏) =  
𝟎. 𝟓𝟎𝟐𝟎𝟔 

√𝟎.𝟓𝟒𝟕𝟑𝟔𝟓 ∗ √ 𝟎. 𝟒𝟖𝟓𝟔𝟏𝟐𝟑𝟓
 

𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝝎 , 𝑺𝟏) = 0.9743 

repeating the algorithm for sample 𝑺𝟐 𝒂𝒏𝒅 𝑺𝟑 , we get; 

𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝝎 , 𝑺𝟐) = 0.8645 

𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝝎 , 𝑺𝟑) = 0.9571 

Step 6: Arrange alternatives in descending order of values obtained in step 5. 

𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝝎 , 𝑺𝟏) > 𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝝎 , 𝑺𝟑) > 𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝝎 , 𝑺𝟐) 

Which means that 𝑺𝟏 is the best choice. The sample 𝑺𝟐  and 𝑺𝟑  are also safe for drinking 

purposes, since the value of their weighted correlation coefficient is positive and above 0.50. 

Note: We can also use the above method to analyze the ranking of mineral water, for optimal choice 

(e.g. Aquafina, Nestle, Gourmet etc.), list their parameters, find the Weighted correlation coefficient 

by computing each alternative with the safe drinking mineral water according to national standard 

(as taken 𝝎) in the above case study. Analyze the ranking of each alternative, maximum value of 

weighted correlation coefficient would decide the best choice. 

Result Discussion 
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Molodtsov's SS theory was highly beneficial in solving decision-making issues, but it only deals with 

attributes of alternatives about characteristics, thus direct comparison of two sets of variables was 

easy. If these attributes are further bi-furcated (Hypersoft set structure) and DM wants to analyze the 

comparison between two sets then it can be done with the help of correlation coefficients, in this 

regard [25] introduces the idea of correlation coefficient of NHSS. The decision-making in SVNHSS 

is limited to a single expert/decision-maker, there is a possibility that we will not arrive at the optimal 

solution. To cope with multi-valued numbers, Saqlain et. al. [15] present the idea of m-polar NHSS, 

since if there is more than one expert/decision-maker, decision making becomes more accurate, 

unlike SVNHSS. We solve two case studies using the proposed techniques: the first was based on the 

selection of a suitable mathematics teacher, and the second was based on the determination of 

drinking water quality. Using the proposed technique, decision-making becomes more accurate 

because more than one expert is involved, and each expert assign truthiness, indeterminacy, and 

falsity values based on his/her knowledge and expertise. 

The first case study was the selection of mathematics instructor at LGU. The Algorithm 1, of m-

PNHSs was used to address this decision-making dilemma. Attributes/parameters provided by the 

university administration were tabulated in a column, and each attribute/parameter was valued by 

multiple experts based on each candidate's academic and interview reliability. Finally, we computed 

overall performance value of each candidate using the proposed/developed CC of m-PNHSs. The 

calculated results are, 𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(ℵ,ℙ
𝟐) = 𝟎. 𝟖𝟖𝟓   > 𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(ℵ,ℙ

𝟒) = 𝟎. 𝟖𝟖𝟎   > 

𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(ℵ,ℙ
𝟏)=0.877 > 𝜹𝐦−𝐏𝐍𝐇𝐒𝐬(ℵ,ℙ

𝟑)=0.774 which shows that ℙ𝟐is the most suitable alternative, 

therefore ℙ𝟐 is the best alternative for the position of mathematics teacher at LGU. 

The second case study included determining the quality of drinking water using the WCC of m-

PNHSS. Different water quality experts have assigned Truthiness, indeterminacy, and falsity values 

to various parameters (e.g. color, odor, turbidity, pH, Sodium, Magnesium, Iron, Chloride, Fluoride, 

Lead, Manganese, Calcium, Iron, Zinc, Arsenic, and so on) to achieve an ideal/safe drinking water 

while keeping in mind the National and International water quality standards. Samples of drinking 

water were analyzed by several water quality experts and they have assigned different values of 

Truthiness, Indeterminacy, and Falsity for each present parameter in the given sample of water. 

Finally, we used the WCC m-PNHSS to compare the results provided by experts for the given sample 

to the values provided by experts for an ideal/safe drinking water. The WCC of the m-PNHSS 

determines whether or not the water sample is safe to consume. If the WCC value is closer to 1 or 100 

percent, it is safe to drink; if it is less than 0.50 or 50 percent, it is dangerous for drinking and requires 

treatment before being used for drinking. The results we obtain after applying the WCC proposed 

technique are; 𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝝎 , 𝑺𝟏) = 𝟎. 𝟗𝟕𝟒𝟑  >  𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝝎 , 𝑺𝟑) = 𝟎. 𝟗𝟓𝟕𝟏  > 

𝜹𝒎−𝑷𝑾𝑵𝑯𝑺𝒔(𝝎 , 𝑺𝟐) = 𝟎. 𝟖𝟔𝟒𝟓 shows that all the samples are safe for the drinking and their ranking 

as well. The presented approaches can be used to pick the best mineral water in the future. Because 

some local businesses offer mineral water, but it is conceivable that it is unsafe to drink, we may use 

the presented approach to determine which mineral water is the best and safest to consume. 

The Advantages / Limitations of the proposed result 

The fuzzy soft set theory is not particularly efficient in selecting the ideal object of a decision-making 

issue that possesses some attributes which are further divided, however m-polar neutrosophic 

hypersoft set theory can be employed. The advantages of the proposed theory are; 

1. This new method's specialty is that it may answer any MADM problem including a big 

number of decision-makers very quickly along with a simple computing approach. 

2. The proposed operators are consistent and accurate when compared to existing approaches 

for MADM problems in a neutrosophic context, demonstrating their applicability. 
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3. The suggested method analyses the interrelationships of qualities in practical application; 

while existing approaches cannot. 

6. Conclusions 

The correlation coefficient (CC) and weighted correlation coefficient (WCC) of the m-polar 

neutrosophic hypersoft set (m-PNHSs) are established in this article, as well as some basic properties 

of the developed correlation coefficient (CC) and weighted correlation coefficient (WCC) under m-

PNHSs. The algorithm using CC and WCC are developed to solve MCDM problems. Finally, two 

case studies have been addressed. We gain greater accuracy in decision making using CC and WCC 

of m-PNHSs (proposed approach), especially in selecting the best alternative because of numerous 

experts' viewpoints. Unlike the linguistic method, when a single person makes the decision and the 

alternative is chosen solely on the basis of that person's knowledge and experience. The proposed 

concept may be used to handle decision-making difficulties in the education system, the medical 

field, engineering, and economics, and among other fields.  
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Abstract        

Coronavirus remains an important public health issue both nationally and globally, so all 

healthcare professionals including nurses should have a good knowledge and attitudes for educating 

their patients about Coronavirus and provide appropriate referral and support mechanisms to 

minimize the complication of disease [1]. COVID-19 is an emerging, rapidly changing global health 

challenge affecting all sectors [2, 3]. The Health Care Workers (i.e. HCWs) are not only at the forefront 

of the fight against this highly infectious disease but are also directly or indirectly affected by it and 

the likelihood of acquiring this disease is higher among HCWs compared to the general population 

[4]. Therefore, it is importance that HCWs across the world have adequate knowledge and good 

attitudes about all aspects of the disease from clinical manifestation, diagnosis, proposed treatment 

and established prevention strategies.     

In this manuscript, a descriptive design study was conducted from 1st April to June   2021. The 

study samples consisting of 90 nurses were purposively selected in three hospitals (Al-Khansa 

Teaching Hospital, Ibn Sina Teaching Hospital, and Telafer General Hospital) in Mosul city  

The objectives of this study are to assess the knowledge and attitudes of nurses about the Covid19 

using the multi attribute decision making technique where the data have been adapted and 

reconstructed to be as triangular single-valued neutrosophic numbers (TSVNN) and tackled these 

(TSVNN) into the neutrosophic structured element (NSE).   

It is well known that the neutrosophic theory has flexible tools to analyze data utilized in dozens 

of fields of science such as but not limited to medicine, engineering, economics, healthcare, 

physics...etc. In this manuscript, the authors were very felicitous to choose an uncertain mathematical 

environment named neutrosophic theory to use it as a strong method in decision making technique 

to measure the performance of the nurses and their attitude in three Iraqi hospitals during a specific 

period of time where Covid19 has spread and was in its peak. 

The decision-making with multi-attribute criteria containing truth membership, indeterminate 

membership, and falsity membership is regarded as the core of the neutrosophic decisions. The 
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neutrosophic theory used to handle uncertain, vague, incomplete, and inconsistent data or 

information which already exist in our daily life. 

Keywords: Triangular Single-Valued Neutrosophic Number (TSVNN); Neutrosophic 

Structured Element; Knowledge; Attitude; Attribute; Covid-19; Nurses’ attitude; Mosul City; Health 

Care Workers (HCWs).  

1. Introduction 

A descriptive design study was conducted from 1st April to June   2021. The study samples 

consisting of 90 nurses were purposively selected in three hospitals (Al-Khansa Teaching Hospital, 

Ibn Sina Teaching Hospital, and Telafer General Hospital) in Mosul city in Iraq, using a structured 

questionnaire, it was done using interviews and purposive sampling technique.  

The modern mathematical procedure has been used to make a fair decision about the question: 

which one of the nurses’ staff that exists in the above three Iraqi hospitals will be the best in their 

attitude serving the patients of corona pandemic? In this manuscript, the neutrosophic structured 

element presented by S. A. Edalatpanah [5] was the best procedure to handle the data, therefore, the 

following concepts and definitions are the mathematical tools that used in this paper: 

1.1 Definition:  

Consider the single-valued neutrosophic set (SVNS) of 𝐴 = {𝑥, 𝑇𝐴𝑁 (𝑥), 𝐼𝐴𝑁 (𝑥), 𝐹𝐴𝑁 (𝑥) ∣ 𝑥 ∈ 𝑋}, 

where 𝑇𝐴𝑁 = (𝑎1, 𝑎2, 𝑎3), , 𝐼𝐴𝑁 (𝑥) = (𝑏1, 𝑏2, 𝑏3), 𝑎𝑛𝑑 𝐹𝐴𝑁(𝑥) = (𝑐1, 𝑐2, 𝑐3), mathematically and for 

𝑇𝐴𝑁 (𝑥), 𝐼𝐴𝑁 (𝑥), 𝐹𝐴𝑁(𝑥), it is easy to obtain three monotone bounded functions 𝑓, 𝑔, ℎ: [−1,1] → [0,1]. 

Such that 𝑇𝐴𝑁 (𝑥) = 𝑓𝐴(𝑥), 𝐼𝐴𝑁 (𝑥) = 𝑔𝐴(𝑥), 𝐹𝐴𝑁(𝑥) = ℎ𝐴(𝑥). 

We call that  

𝑓𝐴(𝑥) = {
(𝑎2 − 𝑎1)𝑥 + 𝑎2;           −1 ≤ 𝑥 ≤ 0,

(𝑎3 − 𝑎2)𝑥 + 𝑎2;              0 ≤ 𝑥 ≤ 1,
0;                         𝑜𝑡ℎ𝑒𝑟𝑠,

 

𝑔𝐴(𝑥) = {
(𝑏2 − 𝑏1)𝑥 + 𝑏2;          −1 ≤ 𝑥 ≤ 0,

(𝑏3 − 𝑏2)𝑥 + 𝑏2;              0 ≤ 𝑥 ≤ 1,
  0;                         𝑜𝑡ℎ𝑒𝑟𝑠,

 

ℎ𝐴(𝑥) = {
(𝑎2 − 𝑎1)𝑥 + 𝑎2;          −1 ≤ 𝑥 ≤ 0,

(𝑎3 − 𝑎2)𝑥 + 𝑎2;              0 ≤ 𝑥 ≤ 1,
   0;                          𝑜𝑡ℎ𝑒𝑟𝑠,

 

are the neutrosophic structured elements (NSEs). Also, 〈𝑓𝐴(𝑥), 𝑔𝐴(𝑥), ℎ𝐴(𝑥)〉 is the neutrosophic 

structured elements number (NSEN), and 𝐴 = {𝑥, 𝑓𝐴(𝑥), 𝑔𝐴(𝑥), ℎ𝐴(𝑥) ∣ 𝑥 ∈ 𝑋}  is the neutrosophic 

structured elements set (NSES). 

1.2 Example: 

Consider two TSVNNs as follow: 

𝐴 = 〈(0.5,0.6,0.7), (0.1,0.2,0.3), (0.3,0.4,0.5)〉, 

𝐵 = 〈(0.4,0.5,0.6), (0.2,0.3,0.4), (0.5,0.6,0.7)〉, 
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Converts the above triangular single-valued neutrosophic numbers into neutrosophic structured 

element numbers, fro −1 ≤ 𝑥 ≤ 1, as follow: 

𝐴 = 〈(0.1𝑥 + 0.6), (0.1𝑥 + 0.2), (0.1𝑥 + 0.4)〉 

𝐵 = 〈(0.1𝑥 + 0.5), (0.1𝑥 + 0.3), (0.1𝑥 + 0.6)〉. 

 

1.3 Definition 

Let 𝐴 = 〈𝑓𝐴(𝑥), 𝑔𝐴(𝑥), ℎ𝐴(𝑥)〉, be an NSE number, then we call 

𝑆(𝐴) =
1

9
∫ 𝐸(𝑥)(2 +

1

−1

𝑓𝐴(𝑥) − 𝑔𝐴(𝑥) − ℎ𝐴(𝑥)) 𝑑𝑥

=
1

9
∫ (1 − 𝑥)(2 +

0

−1

𝑓𝐴(𝑥) − 𝑔𝐴(𝑥) − ℎ𝐴(𝑥)) 𝑑𝑥 +
1

9
∫ (1 + 𝑥)(2 +

1

0

𝑓𝐴(𝑥) − 𝑔𝐴(𝑥)

− ℎ𝐴(𝑥)) 𝑑𝑥 

And 

𝐴𝐶(𝐴) =
1

9
∫ 𝐸(𝑥)(2 +

1

−1

𝑓𝐴(𝑥) − 𝑔𝐴(𝑥) + ℎ𝐴(𝑥)) 𝑑𝑥

=
1

9
∫ (1 − 𝑥)(2 +

0

−1

𝑓𝐴(𝑥) − 𝑔𝐴(𝑥) + ℎ𝐴(𝑥)) 𝑑𝑥 +
1

9
∫ (1 + 𝑥)(2 +

1

0

𝑓𝐴(𝑥) − 𝑔𝐴(𝑥)

+ ℎ𝐴(𝑥)) 𝑑𝑥 

As the score and the accuracy functions of 𝐴, respectively. 

1.4 Example: 

Let 𝐹 = 〈(0.1𝑥 + 0.6), (0.1𝑥 + 0.2), (0.1𝑥 + 0.4)〉 be an neutrosophic structured element number, 

then, 

𝑆(𝐹) =
1

9
[(∫ (1 − 𝑥)(−

𝑥

10
+

50

25
)𝑑𝑥

0

−1

) + (∫ (1 + 𝑥)(−
𝑥

10
+

50

25
)𝑑𝑥

1

0

)] =
50

75
 

𝐴𝐶(𝐹) =
1

9
[(∫ (1 − 𝑥)(

𝑥

10
+

70

25
)𝑑𝑥

0

−1

) + (∫ (1 + 𝑥)(
𝑥

10
+

70

25
)𝑑𝑥

1

0

)] =
70

75
 

1.5 Definition 

Let 𝑃 𝑎𝑛𝑑 𝑄 be two NSE numbers, then 

If 𝑆(𝑃) < 𝑆(𝑄), then 𝑃 is smaller than 𝑄, denoted by 𝑃 < 𝑄. 

If 𝑆(𝑃) = 𝑆(𝑄),then 𝑃 = 𝑄. 

If 𝐴𝐶(𝑃) < 𝐴𝐶(𝑄), then 𝑃 is smaller than 𝑄, denoted by 𝑃 < 𝑄. 

If 𝐴𝐶(𝑃) = 𝐴𝐶(𝑄), then 𝑃 and 𝑄 are the same, denoted by 𝑃 = 𝑄. 

1.6 Example 

Consider the following two NSE numbers 𝐴 = 〈(0.1𝑥 + 0.6), (0.1𝑥 + 0.2), (0.1𝑥 + 0.4)〉 , 𝐵 =

〈(0.1𝑥 + 0.5), (0.1𝑥 + 0.3), (0.1𝑥 + 0.6)〉. Since 𝑆(𝐴) =
50

75
 𝑎𝑛𝑑 𝑆(𝐵) =

40

75
, then 𝐵 is smaller than 𝐴, 

and therefore 𝐴 > 𝐵. 

 

 



Neutrosophic Sets and Systems, Vol. 55, 2023 93  

 

 

Ihsan H. Zainel , Huda E. Khalid  , MADM for Assessment the Nurses Knowledge and their Attitudes During Spread 

Covid19 in Mosul City with the Perspective of Neutrosophic Environment 
 

1.7 Theorem  

Let 𝐴𝑗 = 〈𝑓𝐴𝑗
(𝑥), 𝑔𝐴𝑗

(𝑥), ℎ𝐴𝑗
(𝑥)〉 (𝑗 = 1,2, … , 𝑛) be NSE set. The aggregated result for the NSE 

weighted arithmetic average operator is as follows: 

𝐹𝜔(𝐴1, … , 𝐴𝑛) = 〈1 − ∏ (1 − 𝑓𝐴𝑗
(𝑥))

𝜔𝑗
𝑛

𝑗=1

, ∏ (𝑔𝐴𝑗
(𝑥))

𝜔𝑗
𝑛

𝑖=1

, ∏(ℎ𝐴𝑗
(𝑥))𝜔𝑗

𝑛

𝑖=1

〉 

Where 𝑊 = (𝜔1 , 𝜔2 , … , 𝜔𝑛) is the weight vector of 𝐴𝑗, 𝜔𝑗 ∈ [0,1] and ∑ 𝜔𝑗
𝑛
𝑗=1 = 1. 

1.8 Algorithm 

Step 1: Convert the TSVNNs into the related NSE numbers. 

Step 2: Calculate the weighted arithmetic average values 𝐹𝜔(𝐴1, … , 𝐴𝑛). 

Step 3: Calculate the score degree of all alternatives. 

Step 4: Give the ranking order of the alternatives from the definition (1.6), and choose the best 

alternative(s). 

Step 5: End.   

 

1.9 Results Analysis Traditionally  

The tables of information illustrates that the majority of nurses (i.e. fifty-five percentage) were 

from the age group (31-40) years, also the majority of nurses (i.e. sixty-two percent) were males more 

than half number, concerning the level of education majority of nurses (i.e. forty percent) were 

graduate from Institute, majority of nurses (i.e. fifty-three percent) they were had contracted COVID-

19, majority of nurses (i.e. forty-two percent) they were had experience more than eleven years.  

 

1.10 Data Analysis in Two Ways Traditionally and Neutrosophically 

After a deep insight on the concluded results of the upcoming sections of this article, we will 

conclude from this study that the nurses have relatively good knowledge, but had a poor attitude 

about Covid-19. 

From the neutrosophic theory perspective, it is important to conclude that the multi-attribute 

decision making using neutrosophic structured elements that presented in the sub-sections (1.1 to 

1.8) was very powerful technique to compare the performance of the nurses’ staff in three Iraqi 

hospitals using questionnaire that contains ten statements determine ten attitudes of nurses towards 

COVID-19 that have been summarized in table 4 as:  

1- Put facemask on known or suspected patients. 

2- Place known or suspected patients in adequately ventilated single rooms. 

3- All health staff members wear protective clothing. 

4- Avoid moving and transporting patients out of their area unless necessary. 

5- Frequently clean hands by using alcohol-based hand rub or soap and water. 

6- Routinely clean and disinfect surfaces in contact with known or suspected patients. 

7- Clean and disinfect environmental surfaces. 
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8- Practice social distancing. 

9- In a hospital do you prefer having more attendants with the patient? 

10- Do You want to continue working with COVID-19 patients? 

This paper contains two directions in analyzing data, the traditional classical analysis with their 

results recorded in tables (1-4), their conclusions, and recommendations are mentioned too. The 

second direction of analysis was the neutrosophic technique focused on a table (4) by using a decision 

matrix of dimension 3x10, (i.e. three alternatives/ hospitals with ten attitudes), and using MATLAB 

version R2020b (9. 9. 0. 1467703) to execute the required score function and necessary integrations. 

 

2. Manuscript’s Roadmap:  

The newest member of the coronavirus family (2019-nCoV) has been recently identified as resulting 

in acute and severe respiratory syndrome in humans [6]. The first infected patient who had clinical 

manifestations such as fever, cough, and dyspnea [7] was reported on 12 December 2019 in Wuhan, 

China [6]. Since then, 2019-nCoV has spread rapidly to other countries via different ways such as 

airline travelling and now, COVID-19 is the world’s pandemic problem [8]. Low pathogenicity and 

high transmissibility [9] are the two unique features of this new virus that distinguish it from other 

members of the coronavirus family such as SARS-COV and MERS-COV; this subsequently makes it 

difficult to control so that after passing more than three months of identifying the first infected 

human, the rate of infection and mortality is still high and COVID-19 has become a great public health 

concern in the world. No antiviral agents have been recommended so far [10] and prevention is the 

best way to limit the infection. 

It seems that the current widespread outbreak has been partly associated with a delay in diagnosis 

and poor infection control procedures [11]. As transmission within hospitals and protection of 

healthcare workers are important steps in the epidemic, understanding or having enough 

information regarding sources, clinical manifestations, transmission routes, and prevention ways 

among healthcare workers can play roles for this gal assessment. Since nurses are in close contact 

with infected people, they are the main part of the infection transmission chain and their knowledge 

of 2019-nCoV prevention and protection procedures can help prevent the transmission chain. Iraq is 

one of the most epidemic countries for COVID-19 and there is no information regarding the 

awareness and attitude of Iraqi nurses about this infectious disease. 

Coronavirus disease 2019 (COVID-19) is defined as an illness caused by a novel coronavirus, now 

called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2; formerly called 2019-nCoV). 

COVID-19 is an emerging respiratory infection that was first discovered in December 2019, in Wuhan 

city, Hubei Province, China [12]. SARS-CoV-2 belongs to the larger family of ribonucleic acid (RNA) 

viruses, leading to infections, from the common cold to more serious diseases, such as Middle East 

Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV) [13]. The 
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main symptoms of COVID-19 have been identified as fever, dry cough, fatigue, myalgia, shortness 

of breath, and dyspnea [14, 15]. 

COVID-19 is characterized by rapid transmission and can occur by close contact with an infected 

person [16,17]. The details of the disease are evolving. As such, this may not be the only way the 

transmission is occurring. COVID-19 has spread widely and rapidly, from Wuhan city to other parts 

of the world, threatening the lives of many people [18]. By the end of January 2020, the World Health 

Organization (WHO) announced a public health emergency of international concern and called for 

the collaborative effort of all countries, to prevent its rapid spread. Later, the WHO declared COVID-

19 a “global pandemic” [19].  

2.1 Aim: 

Traditional aim: 

Assessment of the Knowledge, and Attitudes of Covid19 among Nurses in Mosul City / Iraq. 

Smart Aim: 

By focusing on the table (4) and trying to use multi-attribute decision-making in neutrosophic 

environment to choose the best hospital (i.e. alternative) for the hospitalization. 

2.2 Objectives: 

The objectives of the study are to assess the knowledge and attitudes of nurses in both ways, 

by traditional mathematical tools, and by new powerful algorithm used multi-attribute decision 

making in neutrosophic environment to choose the most appropriate alternative between three 

hospitals in Mosul province.   

 

2.3 Hypothesis: 

The first hypothesis is that nurses do not have sufficient knowledge and attitudes related to 

Covid19.  

The second hypothesis is that data collection, and analysis traditionally leads to the loss of many facts 

that should be highlighted using modern mathematical methods. 

 

2.4 Methodology:   

The methodology of this study is tracing the following directions: 

 2.4.1 Research Design and Study Setting:   

This descriptive design study was conducted from 1st April to June   2021. The study samples 

consisting of 90 nurses who were purposively selected from three hospitals (Al-Khansa Teaching 

Hospital, Ibn Sina Teaching Hospital, and Telafer General Hospital) in Mosul city. 

2.4.2 Sample Size: 

The sample of the study consisted of 90 nurses who were purposively chosen from three 

hospitals (Al-Khansa Teaching Hospital, Ibn Sina Teaching Hospital, and Telafer General Hospital) 

in Mosul city. 
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2.4.3 The Selection Criteria of The samples: 

All nurses who work in the three hospitals (Al-Khansa Teaching Hospital, Ibn Sina Teaching 

Hospital, and Telafer General Hospital). 

 

 2.4.4 Exclusion Criteria: 

Nurses who were refusing to participate in the study   

2.4.5 The Questionnaire is of Three Parts:  

Part A -Demographic variables such as (Age, Gender, Marital status, Infected with covid19, Level of 

education, and Years of experience). 

Part B -Knowledge regarding covid19, the knowledge assessment consists of fifteen questions related 

to the definition of coronavirus, symptoms, and signs of coronavirus, methods to prevent the 

transmission of coronavirus, risk factors for coronavirus, and treatment of coronavirus.  

Part C -Attitudes concerning covid19, the attitudes assessment consists of ten questions/ statements 

related to protective measures against coronavirus, the position of patients with coronavirus, the 

practice of social distancing, and the opinion of nurses for working with coronavirus patients. 

Each of the above parts (A, B, C) is partitioned into three hospitals (Al-Khansa H., Ibn Sina H., Telafer 

H.). It is worth mentioning that part C (i.e. table 4) divided the responses of the nurses concerning 

the ten attitudes into (strongly agree, agree, no idea, disagree, and strongly disagree) these scopes 

gave the authors the ability to use the triangular single valued neutrosophic numbers and 

neutrosophic structured elements. 

 

2.4.6 Traditional Scoring Key for Knowledge and Attitude    

Percentage interpretation for knowledge 

1 to 5 -<50% - Poor knowledge 

6 to 10 -50-77% - Fair knowledge  

11 to 15 -77-100% - Good knowledge  

The validity of the tool was obtained from the experts, and recommendations given by the experts 

were included and complement the tool before data collection. 

 

2.4.7 Smart Scoring Function for Attitude    

Note that the smart scoring function has been mentioned in subsections (1.1 to 1.8), and it will be 

applied in the forthcoming sections. 

 

2.4.8 Procedure of Data Collection: 

Before the actual collection of data, formal administrative approval was obtained to conduct the 

study from the concerned authorities in the three hospitals (Al-Khansa Teaching Hospital, Ibn Sina 

Teaching Hospital, and Telafer General Hospital) / in Mosul / Iraq. The period of the data collection 

was from 1st April to June 2021. Before collecting the data, permission and agreement were taken 



Neutrosophic Sets and Systems, Vol. 55, 2023 97  

 

 

Ihsan H. Zainel , Huda E. Khalid  , MADM for Assessment the Nurses Knowledge and their Attitudes During Spread 

Covid19 in Mosul City with the Perspective of Neutrosophic Environment 
 

from the participants, and the time spent to complete each form was approximately 15-20 minutes. A 

pilot study was done on 20 nurses, using the same setting and questionnaire to evaluate the 

achievable of the study that was reexamined to remove doubts and clear up the questions. Its content 

validity was evaluated by experts. 

 

2.4.9 Traditional Data Analysis: 

Data gathered from 90 nurses were arranged, and tabulated in the master sheet. Demographic 

variables such as (Age, Gender, Marital status, Infected with covid19, Level of education, Years of 

experience), knowledge and attitude questions. The data were analyzed descriptively using SPSS 

software version 21, like frequency, and percentage. 

 

2.4.10 Traditional Results: 

Table (1) refers to the Socio-demographic characteristics the majority of nurses (55%) were from 

the age group (31-40) years, and also shows that the rate of males to females represents (62 %:37%) of 

the samples respectively, and the high percentage of nurses (80%) are married, about concerning the 

level of education, the majority of the nurses (40%) were graduate from Institute while regarding an 

infected the covid19 the majority of nurses (53%) are infected the covid19. Finally, about the years of 

experience, the majority of nurses (42%) had an experience of more than eleven years.  

 

Table (1) The Socio-demographic of the nurses: 

Variables  Range or Status percentage No. of nurses Khansa 

H.  

Ibn- Sina 

H. 

Telafer H. 

Age group 20 - 30 year 27.77 25 10 8 7 

31- 40 year 55.55 50 15 15 20 

41 years & over 16.66 15 5 7 3 

Gender Male 62.22 56 20 18 18 

Female 37.77 34 10 12 12 

Marital status Single  20 18 4 6 8 

Married  80 72 26 24 22 

were you ever 

infected from 

COVID-19 ? 

Yes 53.33 48 15 16 17 

No 46.66 42 15 14 13 
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Level of 

education 

High school 

Nursing  

22.22 20 5 6 9 

Nursing 

diploma  

40,11 37 8 8 7 

Bachelor  27.77 25 12 13 14 

M.SE 8.88 8 5 3 0 

PhD  0 0 0 0 0 

Years of 

experience  

1-5 years  8.88 8 3 3 2 

6-10 years  15.55 14 5 4 5 

11-15 42.22 38 14 13 11 

16 Years &over 33.33 30 8 10 12 

 

Table 2, clarified that (52%) of the samples had good knowledge, while only one-a third of the samples 

(i.e. 31%) recorded good attitudes. 

Table 2: percentage of the knowledge and attitudes of the participants 

 Participants (%) (n=90) 

Poor Fair Good 

Knowledge 20 (22%) 23 (25%) 47 (52%) 

Attitude 14 (15%) 48 (53%) 28 (31%) 

 

Nurses' knowledge of covid19 is presented in Table (3).  Most of the nurses’ samples were have good 

knowledge of the Coronavirus that Corona is a viral infection and the main clinical symptoms of 

Corona are fever, cough, sore throat, shortness of breath, muscle pain/fatigue, loss of sense of smell 

and taste and also the way to prevent infection of Coronavirus. Also, avoiding going to crowded 

places such as train stations and avoiding using public transportation, represent (100%), as well as, 

the knowledge of symptoms and signs of Coronavirus are loss of appetite, nausea, cramping, and 

diarrhea representing (73.33%,76.66%) respectively. While regarding the knowledge about the 

statement “Corona disease can be dangerous”, Coronavirus is transmitted by direct contact and 

through respiratory droplets from an injured person, and isolation and treating infected people with 

the Coronavirus is one of the effective ways to limit the spread Virus which represent (96%). The 

question related to washing hands with soap and water and using masks prevents disease 
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transmission, and also that the elderly and patients suffering from chronic diseases are more likely 

to suffer from severe infection and death is represented (83.33%).  But knowledge about People who 

have been in touch with a person infected with the Coronavirus should be put in suitable place 

quarantine.  In general, under observation for 14 days represent (76.66%). While the percentage of 

knowing about Antibiotics used to treat Corona is (51%).  Finally, the knowledge regarding the fact 

that Children and young people do not need to take preventive measures to infection with 

Coronavirus represents (20%).    

 

 

                     Table 3: Knowledge of nurses about covid19 

   No Yes  

Questions about aid Kha

nsa 

H. 

Ibn-

Sina 

H. 

Te

laf

er 

H. 

% Total 

number of 

responding 

nurses out 

of 90 

K

ha

ns

a 

H. 

Ibn-

Sina 

H. 

Tel

afe

r 

H. 

% Total number 

of 

responding 

nurses out of 

90 

0 0 0 0 0 30 30 30 100 90 Corona is a viral infection 

0 0 0 0 0 30 30 30 100 90 The main clinical 

symptoms of coronavirus 

are fever, cough, sore 

throat, shortness of 

breath, and muscle pain / 

fatigue 

10 10 4 26

.6

6 

24 20 20 26 73.

33 

66 Symptoms and signs of 

Coronavirus include loss 

of appetite, nausea, and 

cramping 

0 0 0 0 0 30 30 30 100 90 One of the symptoms and 

signs of Coronavirus is a 

loss of the sense of smell 

or taste 

7 5 9 23

.3

3 

21 23 25 21 76.

66 

69 One of the symptoms and 

signs of Corona virus is 

diarrhea 

15 14 15 48

.8

8 

44 15 16 15 51.

11 

46 Antibiotics are used to 

treat corona 
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4 5 6  

 

15 26 25 24 83.

33 

75 Washing hands with soap 

and water and using 

masks prevents 

transmission of the 

disease 

4 9 5 20 18 26 21 25 80 72 Health workers are more 

susceptible to disease 

1 0 2 3.

33 

3 29 30 28 96.

66 

87 Corona disease can be 

dangerous 

3 5 7 16

.6

6 

15 27 25 23 83.

33 

75 The elderly and patients 

with chronic diseases are 

at greater risk of severe 

infection and death 

2 1 0 3.

33 

3 28 29 30 96.

66 

87 Coronavirus is 

transmitted by direct 

contact and through 

respiratory droplets from 

injured person. 

8 6 7 23

.3

3 

21 22 24 23 76.

66 

69 People who have been in 

contact with a person 

infected with the 

Coronavirus should be 

put them in suitable place 

quarantine.  In general, 

under observation for 14 

days. 

0 0 0 0 0 30 30 30 100 90 To prevent infection with 

the Coronavirus, 

individuals should avoid 

going to crowded places 

such as train stations and 

use public transportation. 

21 25 26 80 72 9 5 4 20 18 Children and young 

people do not need to 

take the preventive 

measures in order to 

infection with 

Coronavirus 
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1 1 2 4.

44 

4 29 29 28 96.

55 

86 The isolation and treating 

infected people  with the 

Coronavirus, effective 

ways to limit the spread 

Virus. 

Table (4) revealed the key role in understanding nurses' attitudes toward COVID-19, it is clearly table 

(4) has been partitioned into five copies depending on the nurses’ opinions which are: (strongly agree, 

agree, No- idea, disagree, strongly disagree),  and their answers on the ten questions. 

By using traditionally analysis, the reader will find most nurses had good attitudes about putting 

facemasks on known or suspected patients represent (88%), and only (8%) of nurses agree with the 

place known or suspected patients in adequately ventilated single rooms, and (44%) didn’t have any 

idea about all health staff members wear protective clothing, But only (21%) said they avoid moving 

and transporting patients out of their area unless necessary, and (66%) they said should frequently 

clean hands by using alcohol-based hand rub or soap and water, But only (21%) said they routinely 

clean and disinfect surfaces in contact with known or suspected patients, About (65%) of nurses 

agreed on the cleaning and disinfecting environmental surfaces,  But only (18%) of them didn’t agree 

with practice social distancing, and (44%) agree with prefer having more attendants with the patient 

in the hospital, Finally, Only (3%)  they said want to continue taking care of corona patients. 

Table 4: Attitudes of Nurses towards COVID-19: The Strongly Agree Part of the Table 

Attitudes questions of COVID-19 Strongly agree    

Total number of 

responding nurses 

out of 90 

% Khansa H. Ibn-Sina H. Telafer H. 

Put facemask on known or suspected patients  70 77 35 20 15 

Place known or suspected patients in 

adequately ventilated single rooms  

2 2 1 1 0 

All health staff members wear protective 

clothing  

8 8 3 4 1 

Avoid moving and transporting patients out of 

their area unless necessary 

6 6 2 2 2 

Frequently clean hands by using alcohol-based 

hand rub or soap and water 

14 15 4 7 3 

Routinely clean and disinfect surfaces in 

contact with known or suspected patients  

4 4 2 1 1 

Clean and disinfect environmental surfaces  16 17 6 5 5 

Practice social distancing  18 20 6 6 6 

In a hospital do you prefer having more 

attendants with the patient? 

30 33 15 10 5 
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 You want to continue work with COVID 19 

patients? 

1 1 0 1 0 

 

 

 

Table 4: Attitudes of Nurses towards COVID-19: The Agree Part of the Table 

Attitudes questions of COVID-19 Agree    

Total number 

of responding 

nurses out of 90 

% Khansa H. Ibn-Sina H. Telafer H. 

Put facemask on known or suspected patients  10 11 3 4 3 

Place known or suspected patients in adequately 

ventilated single rooms  

6 6 3 2 1 

All health staff members wear protective clothing  18 20 10 3 5 

Avoid moving and transporting patients out of 

their area unless necessary 

14 15 3 4 7 

Frequently clean hands by using alcohol-based 

hand rub or soap and water 

46 51 10 20 16 

Routinely clean and disinfect surfaces in contact 

with known or suspected patients  

16 17 6 5 5 

Clean and disinfect environmental surfaces  48 53 18 14 16 

Practice social distancing  30 33 9 11 10 

In a hospital do you prefer having more 

attendants with the patient? 

10 11 4 2 4 

 You want to continue work with COVID 19 

patients? 

2 2 1 0 1 

Table 4: Attitudes of Nurses towards COVID-19: The No-idea Part of the Table 

Attitudes questions of COVID-19 No-idea 

Total number 

of responding 

nurses out of 

90 

% Khansa H. Ibn-Sina H. Telafer H. 

Put facemask on known or suspected patients  10 11 3 3 4 

 Place known or suspected patients in adequately 

ventilated single rooms  

24 26 7 9 8 

All health staff members wear protective clothing  36 40 9 16 11 

Avoid moving and transporting patients out of 

their area unless necessary 

40 44 18 6 16 
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Frequently clean hands by using alcohol-based 

hand rub or soap and water 

25 27 6 14 5 

Routinely clean and disinfect surfaces in contact 

with known or suspected patients  

24 26 13 6 5 

Clean and disinfect environmental surfaces  16 17 4 6 6 

Practice social distancing  25 27 6 5 14 

In a hospital do you prefer having more 

attendants with the patient? 

40 44 9 19 12 

You want to continue work with COVID 19 

patients? 

12 13 5 3 4 

 

Table 4: Attitudes of Nurses towards COVID-19: The Disagree Part of the Table 

Attitudes questions of COVID-19 Disagree 

Total number of 

responding 

nurses out of 90 

% Khansa H. Ibn-Sina H. Telafer H. 

Put facemask on known or suspected patients  0 0 0 0 0 

Place known or suspected patients in adequately 

ventilated single rooms  

50 55 19 16 15 

All health staff members wear protective clothing  14 15 4 4 6 

Avoid moving and transporting patients out of 

their area unless necessary 

20 22 7 6 7 

Frequently clean hands by using alcohol-based 

hand rub or soap and water 

3 3 1 1 1 

Routinely clean and disinfect surfaces in contact 

with known or suspected patients  

30 33 11 9 10 

Clean and disinfect environmental surfaces  4 4 1 2 1 

Practice social distancing  10 11 2 4 4 

In a hospital do you prefer having more 

attendants with the patient? 

6 6 3 2 1 

You want to continue work with COVID 19 

patients? 

49 54 15 19 15 

 

Table 4: Attitudes of Nurses towards COVID-19: The Strongly Disagree Part of the Table 

Attitudes questions of COVID-19 Strongly Disagree 

Total number 

of responding 

% Khansa H. Ibn-Sina H. Telafer H. 
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nurses out of 

90 

Put facemask on known or suspected patients  0 0 0 0 0 

 Place known or suspected patients in adequately 

ventilated single rooms  

8 8 2 3 3 

All health staff members wear protective clothing  10 11 4 2 4 

 Avoid moving and transporting patients out of 

their area unless necessary 

10 11 3 3 4 

Frequently clean hands by using alcohol-based 

hand rub or soap and water 

2 2 0 1 1 

 Routinely clean and disinfect surfaces in contact 

with known or suspected patients  

16 17 7 4 5 

Clean and disinfect environmental surfaces  6 6 2 2 2 

Practice social distancing  7 7 2 3 2 

In a hospital do you prefer having more 

attendants with the patient? 

4 4 1 1 2 

 You want to continue work with COVID 19 

patients? 

26 28 9 9 8 

 

 

3. Smart Results of Table 4 to Assess the Nurses' Attitude Using Multi Attribute 

Decision-Making in Neutrosophic Environment. 

Neutrosophic logic was first innovated by the American Scientist Florentin Smarandache, he put 

the triple (truth membership function, indeterminate membership function, and falsity membership 

function) regarded as the big revolution in mathematics. This new vision for problems, ideas, and 

concepts is more general than the uncertainty fuzzy logic presented by L. Zadeh in 1965 [20], also it 

is a generalization of the uncertainty intuitionistic fuzzy logic presented by K. Atanasove in 1982 [21] 

by adding a third part of data which is inconsistent or incompleteness or indeterminate since 1995 till 

now thousands of articles, books, applications have been issued, demonstrating that the dominant 

field of knowledge is the neutrosophic knowledge. Huda E. Khalid with Florentin Smarandache [22] 

have established Neutrosophic International Association (NSIA) and put the internal instructions for 

this association, also they invite all neutrosophic researchers around the globe to join with NSIA by 

adopting new branches in their countries, the website http://neutrosophicassociation.org/ is the main 

site that collects the branches of NSIA, since 2014 there are many papers and books containing new 

mathematical concepts in neutrosophic optimization, neutrosophic algebra, neutrosophic topological 

spaces were published by Huda E. Khalid et al [22-27]. 

http://neutrosophicassociation.org/
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As mentioned in the previous sub-sections (1.1. to 1.8 sections), the authors used the concept of 

triangular single-valued neutrosophic numbers with the notion of the neutrosophic structured 

element to conclude the best alternatives (in table 4, there are three alternatives for patients to be 

treated are Al-Khansa Hospital, Ibn-Sina Hospital, Telafer Hospital), also there are ten questions or 

statements that regarded as the attributes of the nurses' staffs in these hospitals, and should notice 

table (4) revealed the key role in understanding nurses' attitudes toward COVID-19, it is clearly table 

(4) has been partitioned into five copies depending on the nurses’ opinions which are: (strongly agree, 

agree, No- idea, disagree, strongly disagree). 

The followings Matlab commands are used to conclude the results, our Matlab version was R2020b 

(9. 9. 0. 1467703). 

 

3.1 Matlab Program and Results for Al-Khansa Hospital: 

>> syms x; 

>> y=1-((0.391*x+0.537)^0.1)*((0.9375-0.03125*x)^0.1)*((0.78333-0.11667*x)^0.1)*((0.924242-

0.015148*x)^0.1)*((0.667-0.138*x)^0.1)*((0.8975-0.05126*x)^0.1)*((0.6129-0.1931*x)^0.1)*((0.7-

0.06*x)^0.1)*((0.703125+0.171875*x)^0.1)*((0.98333-0.01667*x)^0.1)  

y = 

1 - (15/16 - x/32)^(1/10)*(7/10 - (3*x)/50)^(1/10)*((11*x)/64 + 45/64)^(1/10)*(667/1000 - 

(69*x)/500)^(1/10)*((391*x)/1000 + 537/1000)^(1/10)*(6129/10000 - (1931*x)/10000)^(1/10)*(359/400 - 

(2563*x)/50000)^(1/10)*(78333/100000 - (11667*x)/100000)^(1/10)*(98333/100000 - 

(1667*x)/100000)^(1/10)*(2081207963400081/2251799813685248 - 

(8732227475892259*x)/576460752303423488)^(1/10) 

 >> m=((0.1222*x+0.0366)^0.1)*((0.015625*x+0.109375)^0.1)*((0.15-

0.01667*x)^0.1)*((0.27273)^0.1)*((0.04766*x+0.1429)^0.1)*((0.1667-

0.0128*x)^0.1)*((0.03222*x+0.6452)^0.1)*((0.12)^0.1)*((0.046875*x+0.140625)^0.1)*((0.05*x+0.08333)^0.1

) 

m =  

(1801030128282753805662705420673*(x/64 + 7/64)^(1/10)*((3*x)/64 + 9/64)^(1/10)*((611*x)/5000 + 

183/5000)^(1/10)*(1667/10000 - (8*x)/625)^(1/10)*((1611*x)/50000 + 1613/2500)^(1/10)*((2383*x)/50000 

+ 1429/10000)^(1/10)*(3/20 - (1667*x)/100000)^(1/10)*(x/20 + 

8333/100000)^(1/10))/2535301200456458802993406410752 

 >> r=(1-x)*(2+y-m) 

 r = 

(x - 1)*((1801030128282753805662705420673*(x/64 + 7/64)^(1/10)*((3*x)/64 + 9/64)^(1/10)*((611*x)/5000 

+ 183/5000)^(1/10)*(1667/10000 - (8*x)/625)^(1/10)*((1611*x)/50000 + 

1613/2500)^(1/10)*((2383*x)/50000 + 1429/10000)^(1/10)*(3/20 - (1667*x)/100000)^(1/10)*(x/20 + 

8333/100000)^(1/10))/2535301200456458802993406410752 + (15/16 - x/32)^(1/10)*(7/10 - 

(3*x)/50)^(1/10)*((11*x)/64 + 45/64)^(1/10)*(667/1000 - (69*x)/500)^(1/10)*((391*x)/1000 + 
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537/1000)^(1/10)*(6129/10000 - (1931*x)/10000)^(1/10)*(359/400 - 

(2563*x)/50000)^(1/10)*(78333/100000 - (11667*x)/100000)^(1/10)*(98333/100000 - 

(1667*x)/100000)^(1/10)*(2081207963400081/2251799813685248 - 

(8732227475892259*x)/576460752303423488)^(1/10) - 3) 

>> t=(1+x)*(2+y-m) 

 t = 

 -(x + 1)*((1801030128282753805662705420673*(x/64 + 7/64)^(1/10)*((3*x)/64 + 

9/64)^(1/10)*((611*x)/5000 + 183/5000)^(1/10)*(1667/10000 - (8*x)/625)^(1/10)*((1611*x)/50000 + 

1613/2500)^(1/10)*((2383*x)/50000 + 1429/10000)^(1/10)*(3/20 - (1667*x)/100000)^(1/10)*(x/20 + 

8333/100000)^(1/10))/2535301200456458802993406410752 + (15/16 - x/32)^(1/10)*(7/10 - 

(3*x)/50)^(1/10)*((11*x)/64 + 45/64)^(1/10)*(667/1000 - (69*x)/500)^(1/10)*((391*x)/1000 + 

537/1000)^(1/10)*(6129/10000 - (1931*x)/10000)^(1/10)*(359/400 - 

(2563*x)/50000)^(1/10)*(78333/100000 - (11667*x)/100000)^(1/10)*(98333/100000 - 

(1667*x)/100000)^(1/10)*(2081207963400081/2251799813685248 - 

(8732227475892259*x)/576460752303423488)^(1/10) - 3) 

>> Fvpaint1 = vpaintegral(r,x,[-1 0])  

 Fvpaint1 =3.20536  

 >> Fvpaint2 = vpaintegral(t,x,[0 1]) 

 

Fvpaint2 =3.11594 

 >> scorefunction=(1/9)*( Fvpaint1+ Fvpaint2) 

 scorefunction =0.70236616698101494068081270446176  

 

 

3.2 Matlab Program and Results for Ibn-Sina Hospital: 

>> syms x; 

>> y=1-((1-(-0.296341*x+0.444))^0.1)*((1-(0.048387+0.016137*x))^0.1)*((1-(0.121-0.0169*x))^0.1)*((1-

(0.143+0.04776*x))^0.1)*((1-(0.31395+0.15116*x))^0.1)*((1-(0.12+0.08*x))^0.1)*((1-

(0.33871+0.1129*x))^0.1)*((1-(0.2931+0.086203*x))^0.1)*((1-(0.17647-0.11765*x))^0.1)*((1-(0.015625-

0.015625*x))^0.1) 

y = 

 1 - (22/25 - (2*x)/25)^(1/10)*(x/64 + 63/64)^(1/10)*((169*x)/10000 + 879/1000)^(1/10)*(857/1000 - 

(597*x)/12500)^(1/10)*(13721/20000 - (3779*x)/25000)^(1/10)*(66129/100000 - 

(1129*x)/10000)^(1/10)*((2353*x)/20000 + 82353/100000)^(1/10)*(7069/10000 - 

(3105790389425751*x)/36028797018963968)^(1/10)*((5338404868698401*x)/18014398509481984 + 

139/250)^(1/10)*(68570943235214717/72057594037927936 - 

(1162793394990043*x)/72057594037927936)^(1/10) 
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>> m=((0.037037 

*x+0.0740741)^0.1)*((0.00161*x+0.19516)^0.1)*((0.2758+0.06891*x)^0.1)*((0.094741*x+0.14236)^0.1)*((0.

093023*x+0.16279)^0.1)*((-0.1*x+0.26)^0.1)*((0.003224*x+0.06774)^0.1)*((-0.086204*x+0.08621)^0.1)*((-

0.01472 *x+0.2794)^0.1)*((0.015625*x+0.046875)^0.1) 

 m =  

((7434037861704949*x)/2305843009213693952 + 3387/50000)^(1/10)*(13/50 - x/10)^(1/10)*(x/64 + 

3/64)^(1/10)*(1397/5000 - (46*x)/3125)^(1/10)*((6891*x)/100000 + 1379/5000)^(1/10)*((161*x)/100000 + 

4879/25000)^(1/10)*((6826808516747331*x)/72057594037927936 + 

3559/25000)^(1/10)*((2668797110382737*x)/72057594037927936 + 

2668800713262439/36028797018963968)^(1/10)*((3351506785095085*x)/36028797018963968 + 

16279/100000)^(1/10)*(8621/100000 - (1552913209111385*x)/18014398509481984)^(1/10) 

 >> r=(1-x)*(2+y-m) 

 r = 

(x - 1)*((22/25 - (2*x)/25)^(1/10)*(x/64 + 63/64)^(1/10)*((169*x)/10000 + 879/1000)^(1/10)*(857/1000 - 

(597*x)/12500)^(1/10)*(13721/20000 - (3779*x)/25000)^(1/10)*(66129/100000 - 

(1129*x)/10000)^(1/10)*((2353*x)/20000 + 82353/100000)^(1/10)*(7069/10000 - 

(3105790389425751*x)/36028797018963968)^(1/10)*((5338404868698401*x)/18014398509481984 + 

139/250)^(1/10)*(68570943235214717/72057594037927936 - 

(1162793394990043*x)/72057594037927936)^(1/10) + ((7434037861704949*x)/2305843009213693952 + 

3387/50000)^(1/10)*(13/50 - x/10)^(1/10)*(x/64 + 3/64)^(1/10)*(1397/5000 - 

(46*x)/3125)^(1/10)*((6891*x)/100000 + 1379/5000)^(1/10)*((161*x)/100000 + 

4879/25000)^(1/10)*((6826808516747331*x)/72057594037927936 + 

3559/25000)^(1/10)*((2668797110382737*x)/72057594037927936 + 

2668800713262439/36028797018963968)^(1/10)*((3351506785095085*x)/36028797018963968 + 

16279/100000)^(1/10)*(8621/100000 - (1552913209111385*x)/18014398509481984)^(1/10) - 3) 

>> t=(1+x)*(2+y-m) 

t = 

 -(x + 1)*((22/25 - (2*x)/25)^(1/10)*(x/64 + 63/64)^(1/10)*((169*x)/10000 + 879/1000)^(1/10)*(857/1000 - 

(597*x)/12500)^(1/10)*(13721/20000 - (3779*x)/25000)^(1/10)*(66129/100000 - 

(1129*x)/10000)^(1/10)*((2353*x)/20000 + 82353/100000)^(1/10)*(7069/10000 - 

(3105790389425751*x)/36028797018963968)^(1/10)*((5338404868698401*x)/18014398509481984 + 

139/250)^(1/10)*(68570943235214717/72057594037927936 - 

(1162793394990043*x)/72057594037927936)^(1/10) + ((7434037861704949*x)/2305843009213693952 + 

3387/50000)^(1/10)*(13/50 - x/10)^(1/10)*(x/64 + 3/64)^(1/10)*(1397/5000 - 

(46*x)/3125)^(1/10)*((6891*x)/100000 + 1379/5000)^(1/10)*((161*x)/100000 + 

4879/25000)^(1/10)*((6826808516747331*x)/72057594037927936 + 

3559/25000)^(1/10)*((2668797110382737*x)/72057594037927936 + 
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2668800713262439/36028797018963968)^(1/10)*((3351506785095085*x)/36028797018963968 + 

16279/100000)^(1/10)*(8621/100000 - (1552913209111385*x)/18014398509481984)^(1/10) - 3) 

>> Fvpaint1= vpaintegral(r,x,[-1 0])  

Fvpaint1 =3.15183 

>> Fvpaint2 = vpaintegral(t,x,[0 1]) 

Fvpaint2 = 3.1303 

>> scorefunction=(1/9)*( Fvpaint1+ Fvpaint2) 

 scorefunction = 0.69801434253081771214022310800829 

 

3.3  Matlab Program and Results for Telafer Hospital: 

>> syms x; 

>> y=1-((1-(-0.27272*x+0.4091))^0.1)*((1-(0.185185+0.185185*x))^0.1)*((1-(0.111+0.0736*x))^0.1)*((1-

(0.125+0.06944*x))^0.1)*((1-(0.3654+0.25*x))^0.1)*((1-(0.1154+0.082938*x))^0.1)*((1-

(0.35+0.1833*x))^0.1)*((1-(0.222+0.0553*x))^0.1)*((1-(-0.02083*x+0.1875))^0.1)*((1-

(0.01786*x+0.01786))^0.1) 

 y = 

 1 - (14678402121503563/18014398509481984 - 

(3335996387978421*x)/18014398509481984)^(1/10)*(889/1000 - (46*x)/625)^(1/10)*(7/8 - 

(217*x)/3125)^(1/10)*(3173/5000 - x/4)^(1/10)*(389/500 - (553*x)/10000)^(1/10)*(13/20 - 

(1833*x)/10000)^(1/10)*((3409*x)/12500 + 5909/10000)^(1/10)*((2083*x)/100000 + 

13/16)^(1/10)*(49107/50000 - (893*x)/50000)^(1/10)*(4423/5000 - 

(5976312734317667*x)/72057594037927936)^(1/10) 

>> m=((-0.09091091*x+0.09091091)^0.1)*((-

0.047285*x+0.1379)^0.1)*((0.018515*x+0.2037)^0.1)*((0.222)^0.1)*((0.01925*x+0.09615)^0.1)*((-

0.05765*x+0.0962)^0.1)*((0.06667*x+0.1)^0.1)*((0.08344*x+0.19444)^0.1)*((-

0.125*x+0.25)^0.1)*((0.07143*x+0.07143)^0.1) 

 m = 

(3874316284374853*(6550821446398603/72057594037927936 - 

(6550821446398603*x)/72057594037927936)^(1/10)*(1/4 - x/8)^(1/10)*((77*x)/4000 + 

1923/20000)^(1/10)*(481/5000 - (1153*x)/20000)^(1/10)*((1043*x)/12500 + 

4861/25000)^(1/10)*((6667*x)/100000 + 1/10)^(1/10)*((7143*x)/100000 + 

7143/100000)^(1/10)*(1379/10000 - 

(6814486668166845*x)/144115188075855872)^(1/10)*((5336585414448943*x)/288230376151711744 + 

2037/10000)^(1/10))/4503599627370496 

 >> r=(1-x)*(2+y-m) 

 r = 

(x - 1)*((3874316284374853*(6550821446398603/72057594037927936 - 

(6550821446398603*x)/72057594037927936)^(1/10)*(1/4 - x/8)^(1/10)*((77*x)/4000 + 
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1923/20000)^(1/10)*(481/5000 - (1153*x)/20000)^(1/10)*((1043*x)/12500 + 

4861/25000)^(1/10)*((6667*x)/100000 + 1/10)^(1/10)*((7143*x)/100000 + 

7143/100000)^(1/10)*(1379/10000 - 

(6814486668166845*x)/144115188075855872)^(1/10)*((5336585414448943*x)/288230376151711744 + 

2037/10000)^(1/10))/4503599627370496 + (14678402121503563/18014398509481984 - 

(3335996387978421*x)/18014398509481984)^(1/10)*(889/1000 - (46*x)/625)^(1/10)*(7/8 - 

(217*x)/3125)^(1/10)*(3173/5000 - x/4)^(1/10)*(389/500 - (553*x)/10000)^(1/10)*(13/20 - 

(1833*x)/10000)^(1/10)*((3409*x)/12500 + 5909/10000)^(1/10)*((2083*x)/100000 + 

13/16)^(1/10)*(49107/50000 - (893*x)/50000)^(1/10)*(4423/5000 - 

(5976312734317667*x)/72057594037927936)^(1/10) - 3) 

>> t=(1+x)*(2+y-m) 

t = 

-(x + 1)*((3874316284374853*(6550821446398603/72057594037927936 - 

(6550821446398603*x)/72057594037927936)^(1/10)*(1/4 - x/8)^(1/10)*((77*x)/4000 + 

1923/20000)^(1/10)*(481/5000 - (1153*x)/20000)^(1/10)*((1043*x)/12500 + 

4861/25000)^(1/10)*((6667*x)/100000 + 1/10)^(1/10)*((7143*x)/100000 + 

7143/100000)^(1/10)*(1379/10000 - 

(6814486668166845*x)/144115188075855872)^(1/10)*((5336585414448943*x)/288230376151711744 + 

2037/10000)^(1/10))/4503599627370496 + (14678402121503563/18014398509481984 - 

(3335996387978421*x)/18014398509481984)^(1/10)*(889/1000 - (46*x)/625)^(1/10)*(7/8 - 

(217*x)/3125)^(1/10)*(3173/5000 - x/4)^(1/10)*(389/500 - (553*x)/10000)^(1/10)*(13/20 - 

(1833*x)/10000)^(1/10)*((3409*x)/12500 + 5909/10000)^(1/10)*((2083*x)/100000 + 

13/16)^(1/10)*(49107/50000 - (893*x)/50000)^(1/10)*(4423/5000 - 

(5976312734317667*x)/72057594037927936)^(1/10) - 3) 

 >> Fvpaint1= vpaintegral(r,x,[-1 0])  

Fvpaint1 = 3.10822 

>> Fvpaint2 = vpaintegral(t,x,[0 1]) 

Fvpaint2 =3.20678 

 >> scorefunction=(1/9)*( Fvpaint1+ Fvpaint2) 

 scorefunction = 

0.70166648434761336943715153640571 

From the definition (1.3), the all score degrees of the above alternatives are: 

0.70236616698101494068081270446176 is the score degree of Al-Khansa hospital. 

0.69801434253081771214022310800829 is the score degree of Ibn Sina hospital. 

0.70166648434761336943715153640571 is the score degree of Telafer hospital. 

Consequently, the ranking order of the above three alternatives are 

Al-Khansa hospital > Telafer hospital > Ibn Sina hospital. 
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So the best hospital was Al-Khansa hospital, while Telafer hospital ranked as second hospital, the 

final hospital was Ibn Sina hospital. 

 

4. Discussion:  

In the current study, the participants were the nurses who were directly involved with 

COVID-19 patients. We assessed their knowledge, and attitude to protect them and prevent 

the further spread of the infection. It is reported that nurses are more prone to infection due 

to close contact with the patients [28]. In this study, the data of 90 participants were 

analyzed.  

The main finding of the present study showed in table (1) the majority of nurses (55%) were 

from the age group (31-40) years, this is in agreement with Gaudencia C. et al 2020 were 

showed the majority of nurses (21%) were from the age group (≥40) years, also shows that 

the total number of males were 62 % and females were 37%. Usually in other studies, a higher 

female-to-male ratio has been observed see ref. [29] but contrary to other studies in our study 

we found a higher number of males. This is because of the reason that in Iraq country males 

are usually the bread earner and they have no other option, on the other hand, many female 

nurses have quit their jobs and resigned due to the family burden and the wrong view of some 

families towards the nursing profession [30], also from our study the table (1) showed a high 

percentage of nurses (80%) are married, About concerning the level of education, the 

majority of the nurses (40%) were graduate from Institute, this is disagreement with 

Gaudencia C, et al 2020  where it showed the majority of nurses (55%) were they had a 

bachelors.   

While regarding an infected the covid19 the result showed the majority of nurses (53%) 

are infected the covid19. Finally, in terms of experience years, the majority of nurses (42%) 

had an experience of more than eleven years this is in agreement with [31] Yaling Peng, et 

al 2020 most of the nurses who participated had more than 8 years of experience. 

 Since the outbreak in epicenter Wuhan in December 2019, COVID-19 has rapidly 

become a threat to global public health and led to substantial socioeconomic damages in the 

whole world. Vigorous measurements have been enforcedly implemented including the 

lockdown of Wuhan and community quarantine by Chinese central and local governments 

since the outbreak to mitigate the disease effectively. In addition, public health education has 

been recognized as an effective measure to prevent and control public health emergencies for 

public preparedness against such situations. It will lead the public to acquire appropriate 

knowledge, mitigate panic and seek a positive attitude, and comply with aligned and desired 

practices. All these KAP elements have been considered crucial to ensure effective 

prevention and control of the pandemic [32].   

Also, the main finding of these studies showed that the majority of the nurses had good 

knowledge (52%), while the majority of the nurses had fair attitudes (53%). these results 

agree with other findings that suggest people tend to express negative emotions, such as 
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anxiety and panic, during a pandemic that could affect their attitude [33] Nevertheless, our 

results show that the participants' high knowledge of COVID-19 translates into good and safe 

practices, during the COVID-19 pandemic, which suggests that the practices of Iraq residents 

are very cautious. Almost 100% of respondents refrained from attending social events, 100% 

avoided crowded places, and 96 % said the coronavirus is transmitted by direct contact and 

through respiratory droplets from an injured person these are positive things about preventing 

the spread of the disease. and 83% of Respondents said using personal protective measures 

such as Washing hands with soap and water and using masks prevents transmission of the 

disease, as a result of Iraqi health authorities providing education and outreach materials, to 

increase public understating of the disease and influence behavioral change. 

 Nurses' knowledge of covid19 is presented in Table (3). Most of the nurses’ samples 

were good knowledge of the Coronavirus that Corona is a viral infection and the main clinical 

symptoms of Corona are fever, cough, sore throat, shortness of breath, muscle pain/fatigue, 

loss of sense of smell and taste and also the way to prevent infection of Coronavirus, is avoid 

going to crowded places such as train stations and avoid using public transportation, these 

criteria represented (100%), also the knowledge of symptoms and signs of Coronavirus are 

loss of appetite, nausea, and cramping, and diarrhea which represents (73.33%,76.66%) 

respectively. This finding is consistent with other studies that have shown satisfactory levels 

of knowledge, among the Iraqi population, for epidemics, such as MERS [34, 35]. In our 

study, the high rate of correct answers to knowledge-related questions among participants 

was not surprising. This may be due to the characteristics of the sample, as 40% had a diploma 

of Nursing degree. It may also be due to the distribution of the questionnaire, amid the 

COVID-19 outbreak. In that particular period, people may have gained awareness and 

knowledge about the disease and its transmission, via television, news and social media, to 

protect themselves and their families. The positive association found between knowledge, 

educational background and age, supports our claim. Also, this study agrees with [36], and 

with Mohammed K. Al-Hanawi et al 2020 [25], who indicated that most of the participants 

in the study (98%) were aware of the clinical symptoms, and 96% knew that there is no 

clinically approved treatment for COVID-19 as of the date of this manuscript. Viral infections 

have been documented to be highly contagious among people nearby [37]. However, 

approximately half of the respondents were unaware that SARS-CoV-2 could spread from 

person to person nearby. also in the same study, they found (44%) of the population had little 

knowledge of when and whom to wear masks to prevent infection. According to the WHO 

and the CDC, faces mask should only be worn by those who are sick or caring for people 

suspected of having COVID-19 [37,38]. These findings highlight the need to continue to 

encourage and emphasize maintaining social distancing, as a means of preventing the spread 

of the virus. 

This manuscript indicates that ignorance about the Corona disease can be dangerous, 

Coronavirus is transmitted by direct contact and through respiratory droplets from the injured 

person, and the isolation and treating infected people with the Coronavirus, effective ways to 

https://www.frontiersin.org/people/u/950895
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limit the spread Virus reaches to represent (96%). The question related to washing hands with 

soap and water and using masks prevents disease transmission, and also that the elderly and 

patients suffering from chronic diseases are more likely to suffer from severe infection and 

death is represented (83.33%). But knowledge about People who have been in contact with 

a person infected with the Coronavirus should be put in suitable place quarantine. In general, 

under observation for 14 days represent (76.66%). While the knowledge about Antibiotics is 

used to treat corona (51%). Finally, the knowledge regarding the fact that Children and young 

people do not need to take preventive measures to infection with Coronavirus represents 

(20%). It is important to note that there has been plenty of efforts at all levels by the 

government, including public awareness campaigns. The Iraqi Ministry of Health (MOH) has 

conducted an intensive awareness campaign, communicated via its website, television and 

various social media. The MOH has produced a guide to COVID-19, to provide residents 

with facts and precautionary messages in more than 10 languages. The MOH also works with 

the public and the media, especially via social media platforms. These early actions on 

engaging the public in prevention and control measures, as well as efforts to combat rumours 

and misinformation, have been greatly expanded. This unique experience has helped the Arab 

and international governments in taking prompt response and precautionary measures against 

COVID-19 to control its spread [39]. 

 Table (4) revealed the key to understanding nurses' attitudes toward COVID-19, most nurses 

had good attitudes about the put facemask on known or suspected patients represent (88%), 

This study agrees with Mohammed K. Al-Hanawi et al 2020 [35], where they indicated that 

most of the participants showed a positive and optimistic attitude toward COVID-19. 

Approximately 94% concur that the virus can be successfully controlled, and 97% are 

convinced that the government will control the pandemic. Positive attitudes and high 

confidence in the control of COVID-19 can be explained by the government's unprecedented 

actions and prompt response in taking stringent control and precautionary measures against 

COVID-19, to safeguard citizens and ensure their well-being. These measures include the 

lockdown, and the suspension of all domestic and international flights, prayer at mosques, 

schools and universities, and the national curfew imposed on citizens. This finding is 

consistent with a recent study conducted in China, where the majority of participants were 

convinced that the disease is curable and that their country will combat the disease [40].  

Also, in Table (4) there were two kinds of analysis, the classical analysis shows that only 

(8%) of nurses agree to the place known or suspected patients in adequately ventilated single 

rooms, and (44% ) didn’t have any idea about all health staff members wear protective 

clothing, But only (21%) said the avoid moving and transporting patients out of their area 

unless necessary, and (66%) they said should frequently clean hands by using alcohol-based 

hand rub or soap and water, But only (21%) said the routinely clean and disinfect surfaces in 

contact with known or suspected patients these results consistent with Blendon RJ. et al 2004, 

that suggests people tend to express negative emotions, such as anxiety and panic, during a 

pandemic could affect their attitude [41], the new modern analysis that specified to measure 
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the performance of nurses’ staffs in three Iraqi hospitals, in this technique the authors used 

triangular single-valued neutrosophic numbers and neutrosophic structured elements in 

multi-attribute decision making to decide which of the hospital is the best hospital in its 

nurses’ staff, it is clearly table (4) has been partitioned into five copies depending on the 

nurses’ opinion which are: (strongly agree, agree, No- idea, disagree, strongly disagree), and 

their answers on the ten questions.  

When asking more questions concerning attitudes, about (65%) of nurses agreed on 

cleaning and disinfecting environmental surfaces, But only (18%) of them didn’t agree with 

the practice of social distancing, and (44%) agree with prefer having more attendants with 

the patient in the hospital, Finally, Only (3%) they said want to continue working with corona 

patients. Patients with poor knowledge were more likely to have poor practice. This finding 

is consistent with a study in China. [42] This might be due to the reason that knowledge is 

the main modifier of positive attitudes toward COVID-19 preventive practices and these 

activities are practised after having awareness and knowledge of the activities to be 

performed. Knowledge of COVID-19 decreases the risk of infection by improving patient 

practices [42]. 

 

 

5. Conclusion and Recommendation:  

  The majority of nurses fifty-five percentage were from the age group (31-40) years, also the 

majority of nurses (sixty-two percent) were males more than half number, concerning the  

level of education majority of  

nurses (forty percentage) were graduates from Institute, the majority of nurses fifty-three percent 

they were had contracted COVID-19, majority of nurses forty-two percent they were had experience 

of more than eleven years, we can be concluded from this study that the nurses have relatively good 

knowledge, but had a poor attitude about the COVID-19. 

According to the traditional results, the study recommended holding seminars, lectures and 

educational conferences in hospitals about the Coronavirus to improve the nurses’ knowledge, 

especially in hospitals where there are cases of Coronavirus, because the nurses will be in direct 

contact with patients suffering from the pandemic. also raising awareness about the spread of disease 

by including Covid19 education in schools and colleges curricula is highly needed to prevent the 

transmission of the disease. While the results gained from section (3) that used intelligent 

neutrosophic technique illustrate that the attributes of nurses’ staffs in Al-Khansa hospital were 

preferable for patients to be as healthcare staff, the second best hospital was Telafer hospital, the 

third-ranked order went for Ibn-Sina hospital.  
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Abstract: The JRC data collected from a rock mass joint surface difficultly obtain enough large-scale 

JRC sample data, but small-scale JRC sample data, which usually contain indeterminate and 

incomplete information due to the limitation of the measurement environment, measurement 

technology, and other factors. In this case, the existing representation and analysis methods of the 

JRC sample data almost all lack the measures of confidence levels in the sample data analysis. In 

this paper, we propose the concept and expression method of confidence neutrosophic number 

cubic values (CNNCVs), and then establish CNNCVs of joint roughness coefficient (JRC) (JRC-

CNNCVs) from the limited/small-scale JRC sample data subject to the normal distribution and 

confidence level of the JRC sample data to analyze the scale effect and anisotropy of JRC values. In 

the analysis process, the JRC-CNNCVs are first conversed from the JRC sample data (multi-valued 

sets) in view of their distribution characteristics and confidence level. Next, JRC-CNNCVs are 

applied to analyze the scale effect and anisotropy of the JRC values by an actual case, and then the 

effectiveness and rationality of the proposed expression and analysis method using JRC-CNNCVs 

are proved by the actual case in a JRC multi-valued environment. From a perspective of probabilistic 

estimation, the established expression and analysis method makes the JRC expression and analysis 

more reasonable and reliable under the condition of small-scale sample data. 

Keywords: confidence neutrosophic number; confidence neutrosophic number cubic value; joint 

roughness coefficient; scale effect; anisotropy 

 

 

1. Introduction 

Joint roughness coefficient (JRC) was first proposed by Barton [1] and estimated through 

experience. Then, JRC is a key index that affects the shear strength of the rock joint. To make the JRC 

value more reasonable and accurate, researchers have proposed many calculation and expression 

methods of the JRC value, such as statistical parameter methods [2, 3], straight edge methods [4–7], 

fractal dimension methods [8–11], etc. However, the indeterminate and incomplete information 

contained in the JRC values is not considered in the above studies. Due to the irregularity of the rock 

mass joint surface, the JRC values at different positions on the same joint are different, which also 

means that the JRC values imply some uncertainty. Numerous studies have shown that the JRC 

values reflect their scale effect [12–15] and decrease with increasing sample scale. Another obvious 

characteristic of the JRC values is anisotropy [16–19], that is, the JRC values in different measurement 

directions of the same rock mass joint is different. Both of these characteristics reflect incomplete and 
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indeterminate information contained in the JRC values. Furthermore, some studies [20, 21] have 

shown that sampling bias is also an important factor causing the indeterminacy of JRC values. 

As an important branch of neutrosophic theory, a neutrosophic number (NN) was first proposed 

by Smarandache [22–24] from the perspective of the symbol. Then, Ye [25–27] gave the calculation 

rules of NNs from the perspective of the numerical value and generalized their application in 

practical problems. Subsequently, related theories of NN have been applied to the decision 

making/evaluation of investment projects, manufacturing schemes, software testing, goal 

programming, air quality, etc. [28–33]. NN can generally be expressed as E(I) = v + ηI, where v is the 

determinate part and ηI is the indeterminate part, the indeterminacy I  [IL, IU], and v, η  R (all real 

numbers). According to an indeterminate range of I  [IL, IU], NN can represent all values in an 

interval. Therefore, it is very suitable for the expression of the JRC value because NN can express 

incomplete and indeterminate information flexibly and conveniently. Yong et al. [34] applied NN to 

the expression of the JRC value and utilized the NN function to analyze the anisotropy and scale 

effect of the JRC values. Although this research effectively considers the uncertainty in the JRC values, 

this method requires the use of a fitting function, where may loss some useful information in the 

fitting process. To avoid this defect, some scholars combined the theory of neutrosophic statistics 

with NN to express the JRC values by JRC-NNs [35–37]. Furthermore, Chen et al. [38] combined 

neutrosophic probability with NN and proposed neutrosophic interval probability (NIP) and 

neutrosophic interval statistical number (NISN) to express JRC values. Although this method makes 

the JRC-NN/interval value confident to a certain degree, this method still lacks some probabilistic 

estimation since the confidence level/interval of the neutrosophic probabilities (PT, PI, PF) is not 

considered in NIP. It is difficult to ensure the probabilistic credibility of the JRC values within the 

NIP obtained from the limited JRC sample data. Then, Zhang and Ye [39] presented (fuzzy) 

confidence neutrosophic number cubic sets (CNNCSs) in a fuzzy multi-valued setting and used them 

for group decision-making problems with fuzzy multi-valued sets. Motivated by the notion of the 

fuzzy CNNCS, this paper introduces a confidence NN cubic value (CNNCV) in light of the 

probability distribution and confidence level of multi-valued sets. Then, considering the probability 

distribution and confidence level of the JRC values in the actual environment of small-scale JRC 

sample data, we convert the JRC multi-valued sets obtained from the rock mass in Changshan County 

(Zhejiang Province, China) into JRC-CNNCVs as the mixed representation form of the JRC confidence 

intervals and the JRC average values. The proposed expression method of JRC-CNNCVs can ensure 

that the JRC values fall within confidence neutrosophic numbers (CNNs) (confidence intervals with 

some confidence level of (1)%) from a probabilistic point of view and reveal the magnitude of the 

JRC mean. Finally, the scale effect and anisotropy of the JRC values are analyzed by JRC-CNNCVs to 

verify the validity and rationality of the proposed expression and analysis method in the actual 

environment of the limited/small-scale JRC sample data. Under the condition of small-scale JRC 

sample data, the expression and analysis method proposed in this study reflects the obvious 

advantage, as it is more suitable for engineering applications. 

The rest of this paper is organized as follows. Section 2 gives the definition of CNNCV in view 

of the fuzzy CNNCS. Section 3 converts the actual measured JRC multi-valued sets into JRC-CNNCVs 

in terms of the normal distribution and confidence level of the JRC values, and then analyzes the scale 

effect and anisotropy of the JRC values by JRC-CNNCVs. Finally, conclusions and further research 

are given in Section 4. 

2. CNNCVs  

In this section, we give the definition of CNNCV in terms of the normal distribution of a multi-

valued set and the confidence level of (1)% for a level  as an extension of the fuzzy CNNCS. 

First, we introduce the notions of NN [22–24], NN probability [40], and CNN [39, 40]. The NN 

E(I) = v + ηI consists of two parts, including the determinate part ω and the indeterminate part ηI 

subject to the indeterminacy I  [IL, IU] and v, η  R. Obviously, NN (changeable interval number for 



Neutrosophic Sets and Systems, Vol. 55, 2023     120  

 

 

Zhenhan Zhang, Jun Ye, Expression and Analysis of Scale Effect and Anisotropy of Joint Roughness Coefficient Values 
Using Confidence Neutrosophic Number Cubic Values 

I  [IL, IU]) can conveniently express both the determinate information and the indeterminate 

information contained in the indeterminate situation by E(I) = [v + ηIL, v + ηIU]. Especially when 

considering E(I) as the value of a random variable t in [v + ηIL, v + ηIU] with the distribution function 

p(t) (e.g., normal distribution function), the definition of NN probability is introduced as follows [40]: 

( )( ) ( )
L U

Uv I
L

p dt
v I

tP t p v t vI I 


  




    .                    (1) 

The larger the NN probability for the variable t, the larger the range of indeterminacy I, that is, 

the larger the indeterminate interval. 

Assuming that there is a multi-valued set X = {x1, x2, …, xn} and xi (i = 1, 2, …, n) in X obeys the 

normal distribution, then the average value v and the standard deviation k of the data in X are given 

as follows: 

1
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n
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.                             (3) 

Thus, the multi-valued set X with a confidence level of (1−)% can be converted into the CNNCV 

EX(I) by the following equation: 
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where the indeterminate range of I is [IL, IU] = [t/2, t/2] and t/2 is the critical value that is adopted 

from [39, 40] in view of confidence levels of (1−)% (commonly take t/2 = 1.645, 1.96, 2.576 for the 

confidence levels of 90%, 95% and 99% [40]). 

Example 1. There is a multi-valued set B = {6.32, 1.56, 2.39, 18.35, 10.32, 2.33, 5.77, 3.98, 8.82, 16.32, 

9.35, 15.98, 5.58, 11.90, 10.06, 9.33, 5.52, 12.48, 4.46, 10.28} with the normal distribution. Then, the 

conversing process from the multi-valued set B to the CNNCV EB is shown below. 

First, the mean and standard deviation of the multi-valued set B can be calculated by Eqs. (2) 

and (3): 

(i) 
201 1
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Using Eq. (4) with the most common confidence level of 95% and the critical value t/2 = 1.96 [40], 

the CNNCV EB corresponding to B can be obtained below: 
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where the indeterminate range of I is [IL, IU] = [t/2, t/2] = [1.96, 1.96]. 

From this example, we get the CNNCV EB = <[6.45, 10.67], 8.56>, which is composed of the 

CNN/confidence interval [6.45, 10.67] and the mean 8.56 of B at the confidence level of 95%. Then, we 

can see that converting the multi-valued set into CNNCV can ensure that 95% probability of the data 

in B will fall within the CNN/confidence interval [6.45, 10.67], and then 5% probability of the data in 

B will be outside the CNN/confidence interval [6.45, 10.67], while the mean 8.56 of B reveals the 

magnitude of the data. Therefore, this conversion approach reflects the advantages of rationality and 

credibility from the perspective of probabilistic estimation under the condition of small-scale sample 

data. 
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3. JRC-CNNCV expression and analysis approach for JRC values  

The shear strength of the rock joint surface is recognized as a key parameter in the stability 

evaluation of engineering rock mass, then JRC is the most important factor affecting the shear 

strength of the rock mass joint. In practical engineering, the JRC values usually contain a lot of 

indeterminate and incomplete information, and the measurement of the JRC values is also often 

limited by the rock joint surface. Therefore, CNNCVs are very suitable for expressing the 

limited/small-scale JRC sample data. 

In this section, we first express the JRC values collected from the rock mass in Changshan County 

(Zhejiang Province, China) [38] by CNNCVs to give JRC-CNNCVs (including the JRC confidence 

intervals and the average values). To do so, we introduce the measured data of 240 JRC sample data 

under 10 sample sizes in 24 measurement directions, and the number of sample data in each multi-

valued set is 35. During the measurement process, the measurement directions are divided into 24 

directions from 0° to 345° at 15° intervals, and the sample scales are divided into 10 sizes from 10 cm 

to 100 cm at 10 cm intervals [38]. Then using Eqs. (2) and (3), we calculated the mean v and the 

standard deviation k of each JRC multi-valued set, which are shown in Table 1. 

Many existing studies [41–44] have noted that the distribution of JRC values approximates the 

normal distribution or left-biased normal distribution after statistical analysis of the JRC values of 

large-scale sample data. Therefore, in this study, we regard the distribution of the JRC values related 

to the limited sample data as the normal distribution. In view of the mean and standard deviation of 

the JRC values, the JRC values (multi-valued sets) are converted into the JRC-CNNCVs at the 

confidence level of 95% by Eqs. (2)-(4). 

Taking the JRC values with the measurement direction of 0° and the sample size of 10 cm as an 

example, the JRC values are converted into JRC-CNNCV by the following calculation process. 

First, it can be seen from Table 1 that the average value v of the JRC values corresponding to the 

10 cm sample size in the 0° measurement direction is 10.5861 and the standard deviation k is 2.3026 

subject to the 35sample data. 

Then using Eq. (4) with the confidence level of 95% and I = [IL, IU] = [1.96, 1.96], we can get the 

following JRC-CNNCV: 

[ ( ), ( )], , , ,/2 /2
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By the similar calculation way, JRC-CNNCVs of EJRC corresponding to the JRC values in other 

measurement directions and sample sizes are shown in Table 2. 

Table 1. The mean v and the standard deviation k of JRC values obtained from 24 different 

directions under 10 different sample sizes 

Direction (°) Size (cm) v k Direction (°) Size (cm) v k 

0 

10 10.5861 2.3026 

180 

10 9.8462 2.1651 

20 9.6833 1.7374 20 9.9489 1.8742 

30 9.3136 1.5113 30 8.7877 1.7512 

40 9.0054 1.7304 40 8.6400 1.6939 

50 8.8621 1.6416 50 8.3278 1.6074 

60 8.8322 1.6281 60 8.1673 1.6464 

70 8.6922 1.6222 70 7.9951 1.5076 

80 8.6070 1.5109 80 7.9080 1.3551 

90 8.5757 1.3621 90 7.8390 1.2001 

100 8.4684 1.2872 100 7.8343 1.0682 

15 10 10.7113 2.2212 195 10 9.7585 2.2466 
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20 9.9985 1.7591 20 9.2766 1.7717 

30 9.3839 1.6341 30 8.7089 1.7003 

40 9.3013 1.2955 40 8.8393 1.4742 

15 

50 9.2764 1.3036 

195 

50 8.5611 1.5763 

60 9.0033 1.3283 60 8.1420 1.5784 

70 8.8430 1.1862 70 7.9523 1.2771 

80 8.5922 0.9463 80 7.6661 0.9830 

90 8.3672 0.7829 90 7.4662 0.8110 

100 8.1451 0.6422 100 7.3181 0.7462 

30 

10 10.5447 2.3948 

210 

10 9.6262 2.0233 

20 9.9596 2.0498 20 8.9812 1.5484 

30 9.6129 1.6851 30 8.6833 1.6439 

40 9.1511 1.4519 40 8.3000 1.5812 

50 9.1326 1.4305 50 8.2374 1.5650 

60 8.6311 1.0111 60 7.4231 1.2693 

70 8.7700 1.2245 70 7.7831 1.3201 

80 8.5761 1.0826 80 7.5425 1.1640 

90 8.3001 1.0984 90 7.2541 1.1126 

100 8.1092 1.0718 100 7.0531 0.9608 

45 

10 9.8744 2.3957 

225 

10 8.9373 1.9976 

20 9.2311 1.7149 20 8.2956 1.4442 

30 9.0481 1.6650 30 8.1636 1.4963 

40 8.5387 1.1588 40 7.7412 1.2010 

50 8.3741 1.4496 50 7.7188 1.4714 

60 8.6547 1.3639 60 7.4770 1.1934 

70 8.3362 1.2340 70 7.3487 1.2298 

80 8.0820 1.3067 80 7.1410 1.2905 

90 7.8533 1.2252 90 6.8703 1.2240 

100 7.5786 1.1344 100 6.6791 1.1621 

60 

10 9.0755 2.5092 

240 

10 7.8881 1.8668 

20 8.4351 2.0025 20 7.3432 1.4171 

30 7.9250 1.8385 30 6.8544 1.1838 

40 7.8246 1.9041 40 6.7833 1.2208 

50 7.2272 1.1859 50 6.3559 0.8483 

60 8.2981 1.8042 60 6.8582 1.1309 

70 7.3770 1.6112 70 6.3833 1.0642 

80 7.1431 1.4132 80 6.1620 1.0109 

90 6.8791 1.2334 90 5.9195 0.8986 

100 6.7181 0.9677 100 6.6900 0.7379 

75 

10 7.9356 2.1883 

255 

10 7.2477 1.9553 

20 7.4933 1.7968 20 6.9045 1.4087 

30 6.8131 1.4339 30 6.3656 1.2917 

40 6.3361 1.0453 40 6.1451 1.0536 

50 6.5859 1.1926 50 6.0632 0.9883 

60 6.5293 1.3320 60 6.1090 1.1380 

70 6.2540 1.1064 70 5.9224 0.9629 

80 6.0981 0.8921 80 5.7226 0.8309 

90 5.9603 0.7467 90 5.7850 0.8648 

100 5.8373 0.5905 100 5.4003 0.5677 

90 
10 7.0272 2.4874 

270 
10 6.8523 2.1377 

20 6.7210 1.8694 20 6.3523 1.6560 
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30 6.3784 1.4929 30 6.0337 1.3998 

40 6.0293 1.1912 40 5.9224 1.3886 

50 6.1884 1.2206 50 5.8177 1.1995 

60 6.1190 1.2062 60 6.0111 1.3044 

70 5.9641 1.1177 70 5.8833 1.2923 

80 5.8982 0.9680 80 5.7481 1.2242 

90 5.8332 0.9337 90 5.8310 0.9231 

100 5.8276 0.8405 100 5.5914 0.9523 

105 

10 7.8275 2.4935 

285 

10 7.0764 1.5386 

20 7.2524 1.7772 20 6.5345 1.1169 

30 6.7179 1.2794 30 6.1413 0.9798 

40 6.3534 1.0062 40 5.8853 1.0007 

50 6.5030 1.2474 50 5.7866 0.9245 

60 6.4911 1.5241 60 6.1012 1.3789 

70 6.1771 1.3392 70 5.8737 1.2926 

80 5.9972 1.1066 80 5.6500 1.1515 

90 5.9050 1.0024 90 5.4772 1.0424 

105 100 5.8414 0.8529 285 100 5.3685 0.9571 

120 

10 9.1127 2.4071 

300 

10 8.5022 1.7660 

20 8.5513 1.9175 20 7.8511 1.3717 

30 8.2402 1.5978 30 7.5667 1.2339 

40 7.9977 1.4306 40 7.3211 1.0433 

50 7.3614 1.0404 50 6.9833 1.1301 

60 7.8541 1.2019 60 7.1079 0.9066 

70 7.2572 1.0793 70 6.8333 0.9414 

80 7.0704 0.9557 80 6.6517 0.8883 

90 6.8619 0.8278 90 6.4512 0.8484 

100 6.6964 0.7785 100 6.3154 0.8254 

135 

10 9.3165 2.0524 

315 

10 10.1736 2.5002 

20 8.5978 1.5624 20 9.4947 2.1335 

30 8.1356 1.3338 30 8.9945 1.7520 

40 7.8496 1.0122 40 8.6100 1.5135 

50 7.4142 1.0034 50 8.1522 1.4301 

60 7.6961 1.3057 60 8.7262 1.5348 

70 7.3952 1.1764 70 8.3963 1.6146 

80 7.0922 1.1639 80 7.6686 1.3967 

90 6.9227 1.0501 90 7.4693 1.1613 

100 6.7641 0.9207 100 7.3590 1.1010 

150 

10 10.5180 2.5185 

330 

10 9.8695 2.3056 

20 9.5954 1.9277 20 9.0412 1.6325 

30 8.9545 1.7049 30 8.3925 1.6217 

40 8.9364 1.4774 40 8.3692 1.3418 

50 8.4334 1.2041 50 7.9014 1.2522 

60 8.8462 1.6082 60 8.0931 1.3041 

70 8.2161 1.3588 70 7.9430 1.1421 

80 8.0202 1.1037 80 7.6601 1.0313 

90 7.6638 1.0257 90 7.3525 1.0324 

100 7.4492 0.9130 100 7.1028 0.9392 

165 

10 10.6543 2.2913 

345 

10 9.7433 2.0098 

20 9.9955 1.6818 20 9.2146 1.6491 

30 9.5722 1.5881 30 8.8033 1.1898 
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40 8.9070 1.6206 40 8.5143 1.2073 

50 8.6527 1.5085 50 7.8935 1.1648 

60 8.6762 1.6154 60 7.8888 1.0518 

70 8.4030 1.3793 70 7.7577 1.0386 

80 8.1164 1.2253 80 7.4773 0.9410 

90 7.9124 1.1049 90 7.1833 0.8261 

100 7.7224 0.9357 100 7.0093 0.7396 

Table 2. JRC-CNNCVs of EJRC in 24 different directions under 10 different sample sizes 

Direction 

(°) 

Size 

(cm) 
EJRC 

Direction 

(°) 

Size 

(cm) 
EJRC 

0 

10 <[9.8233, 11.3490], 10.5861> 

180 

10 <[9.1289, 10.5635], 9.8462> 

20 <[9.1077, 10.2589], 9.6833> 20 <[9.3279, 10.5698], 9.9489> 

30 <[8.8129, 9.8143], 9.3136> 30 <[8.2076, 9.3679], 8.7877> 

40 <[8.3183, 9.4060], 9.0054> 40 <[8.0788, 9.2012], 8.6400> 

50 <[8.4322, 9.5787], 8.8621> 50 <[7.7952, 8.8603], 8.3278> 

60 <[8.2928, 9.3715], 8.8322> 60 <[7.6219, 8.7128], 8.1673> 

70 <[8.1547, 9.2296], 8.6922> 70 <[7.4956, 8.4945], 7.9951> 

80 <[8.1064, 9.1075], 8.6070> 80 <[7.4591, 8.3570], 7.9080> 

90 <[8.1244, 9.0270], 8.5757> 90 <[7.4414, 8.2366], 7.8390> 

100 <[8.0419, 8.8948], 8.4684> 100 <[7.4804, 8.1882], 7.8343> 

15 

10 <[9.9754, 11.4472], 10.7113> 

195 

10 <[9.0142, 10.5028], 9.7585> 

20 <[9.4157, 10.5813], 9.9985> 20 <[8.6896, 9.8636], 9.2766> 

30 <[8.8425, 9.9253], 9.3839> 30 <[8.1456, 9.2722], 8.7089> 

40 <[8.8721, 9.7305], 9.3013> 40 <[8.3509, 9.3277], 8.8393> 

50 <[8.8445, 9.7083], 9.2764> 50 <[8.0389, 9.0834], 8.5611> 

60 <[8.5633, 9.4434], 9.0033> 60 <[7.6191, 8.6649], 8.1420> 

70 <[8.4500, 9.2360], 8.8430> 70 <[7.5291, 8.3754], 7.9523> 

80 <[8.2787, 8.9057], 8.5922> 80 <[7.3405, 7.9918], 7.6661> 

90 <[8.1078, 8.6266], 8.3672> 90 <[7.1975, 7.7349], 7.4662> 

100 <[7.9324, 8.3579], 8.1451> 100 <[7.0709, 7.5653], 7.3181> 

30 

10 <[9.7513, 11.3380], 10.5447> 

210 

10 <[8.9559, 10.2965], 9.6262> 

20 <[9.2805, 10.6387], 9.9596> 20 <[8.4682, 9.4941], 8.9812> 

30 <[9.0547, 10.1712], 9.6129> 30 <[8.1387, 9.2280], 8.6833> 

40 <[8.6701, 9.6321], 9.1511> 40 <[7.7762, 8.8239], 8.3000> 

50 <[8.6587, 9.6066], 9.1326> 50 <[7.7189, 8.7559], 8.2374> 

60 <[8.2961, 8.9661], 8.6311> 60 <[7.0026, 7.8436], 7.4231> 

70 <[8.3644, 9.1757], 8.7700> 70 <[7.3457, 8.2204], 7.7831> 

80 <[8.2175, 8.9348], 8.5761> 80 <[7.1569, 7.9281], 7.5425> 

90 <[7.9362, 8.6640], 8.3001> 90 <[6.8855, 7.6227], 7.2541> 

100 <[7.7541, 8.4643], 8.1092> 100 <[6.7348, 7.3714], 7.0531> 

45 

10 <[9.0807, 10.6681], 9.8744> 

225 

10 <[8.2755, 9.5991], 8.9373> 

20 <[8.6630, 9.7993], 9.2311> 20 <[7.8172, 8.7741], 8.2956> 

30 <[8.4965, 9.5997], 9.0481> 30 <[7.6679, 8.6594], 8.1636> 

40 <[8.1548, 8.9227], 8.5387> 40 <[7.3433, 8.1391], 7.7412> 

50 <[7.8939, 8.8544], 8.3741> 50 <[7.2313, 8.2063], 7.7188> 

60 <[8.2028, 9.1065], 8.6547> 60 <[7.0817, 7.8724], 7.4770> 

70 <[7.9274, 8.7450], 8.3362> 70 <[6.9412, 7.7561], 7.3487> 

80 <[7.6491, 8.5149], 8.0820> 80 <[6.7135, 7.5686], 7.1410> 

90 <[7.4474, 8.2592], 7.8533> 90 <[6.4648, 7.2758], 6.8703> 
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100 <[7.2028, 7.9544], 7.5786> 100 <[6.2941, 7.0641], 6.6791> 

60 

10 <[8.2442, 9.9068], 9.0755> 

240 

10 <[7.2697, 8.5066], 7.8881> 

20 <[7.7717, 9.0986], 8.4351> 20 <[6.8737, 7.8127], 7.3432> 

30 <[7.3159, 8.5341], 7.9250> 30 <[6.4622, 7.2466], 6.8544> 

40 <[7.1938, 8.4554], 7.8246> 40 <[6.3789, 7.1878], 6.7833> 

50 <[6.8343, 7.6200], 7.2272> 50 <[6.0748, 6.6369], 6.3559> 

60 <[7.7004, 8.8958], 8.2981> 60 <[6.4835, 7.2329], 6.8582> 

70 <[6.8432, 7.9108], 7.3770> 70 <[6.0308, 6.7359], 6.3833> 

80 <[6.6749, 7.6113], 7.1431> 80 <[5.8271, 6.4969], 6.1620> 

90 <[6.4704, 7.2877], 6.8791> 90 <[5.6218, 6.2172], 5.9195> 

100 <[6.3975, 7.0386], 6.7181> 100 <[6.4456, 6.9345], 6.6900> 

75 

10 <[7.2106, 8.6605], 7.9356> 

255 

10 <[6.5999, 7.8954], 7.2477> 

20 <[6.8980, 8.0885], 7.4933> 20 <[6.4378, 7.3712], 6.9045> 

30 <[6.3381, 7.2882], 6.8131> 30 <[5.9376, 6.7935], 6.3656> 

40 <[5.9898, 6.6824], 6.3361> 40 <[5.7960, 6.4941], 6.1451> 

50 <[6.1908, 6.9810], 6.5859> 50 <[5.7358, 6.3907], 6.0632> 

60 <[6.0880, 6.9706], 6.5293> 60 <[5.7320, 6.4861], 6.1090> 

70 <[5.8875, 6.6206], 6.2540> 70 <[5.6034, 6.2414], 5.9224> 

80 <[5.8025, 6.3937], 6.0981> 80 <[5.4474, 5.9979], 5.7226> 

90 <[5.7129,6.2077], 5.9603> 90 <[5.4985, 6.0715], 5.7850> 

100 <[5.6417, 6.0330], 5.8373> 100 <[5.2122, 5.5884], 5.4003> 

90 

10 <[6.2031, 7.8512], 7.0272> 

270 

10 <[6.1440, 7.5605], 6.8523> 

20 <[6.1017, 7.3404], 6.7210> 20 <[5.8037, 6.9009], 6.3523> 

30 <[5.8838, 6.8730], 6.3784> 30 <[5.5699, 6.4974], 6.0337> 

40 <[5.6347, 6.4239], 6.0293> 40 <[5.4623, 6.3824], 5.9224> 

50 <[5.7840, 6.5928], 6.1884> 50 <[5.4203, 6.2151], 5.8177> 

60 <[5.7194, 6.5186], 6.1190> 60 <[5.5790, 6.4433], 6.0111> 

70 <[5.5938, 6.3344], 5.9641> 70 <[5.4552, 6.3115], 5.8833> 

80 <[5.5775, 6.2189], 5.8982> 80 <[5.3425, 6.1537], 5.7481> 

90 <[5.5238, 6.1425], 5.8332> 90 <[5.5252, 6.1369], 5.8310> 

100 <[5.5491, 6.1060], 5.8276> 100 <[5.2759, 5.9069], 5.5914> 

105 

10 <[7.0014, 8.6536], 7.8275> 

285 

10 <[6.5667, 7.5862], 7.0764> 

20 <[6.6636, 7.8411], 7.2524> 20 <[6.1644, 6.9045], 6.5345> 

30 <[6.2941, 7.1418], 6.7179> 30 <[5.8166, 6.4659], 6.1413> 

40 <[6.0200, 6.6867], 6.3534> 40 <[5.5538, 6.2169], 5.8853> 

50 <[6.0897, 6.9163], 6.5030> 50 <[5.4803, 6.0929], 5.7866> 

60 <[5.9862, 6.9960], 6.4911> 60 <[5.6444, 6.5580], 6.1012> 

70 <[5.7334, 6.6208], 6.1771> 70 <[5.4454, 6.3019], 5.8737> 

80 <[5.6306, 6.3638], 5.9972> 80 <[5.2685, 6.0315], 5.6500> 

90 <[5.5729, 6.2371], 5.9050> 90 <[5.1318, 5.8225], 5.4772> 

100 <[5.5588, 6.1239], 5.8414> 100 <[5.0514, 5.6855], 5.3685> 

120 

10 <[8.3152, 9.9102], 9.1127> 

300 

10 <[7.9171, 9.0873], 8.5022> 

20 <[7.9160, 9.1865], 8.5513> 20 <[7.3966, 8.3055], 7.8511> 

30 <[7.7108, 8.7695], 8.2402> 30 <[7.1579, 7.9755], 7.5667> 

40 <[7.5238, 8.4717], 7.9977> 40 <[6.9754, 7.6667], 7.3211> 

50 <[7.0167, 7.7061], 7.3614> 50 <[6.6089, 7.3577], 6.9833> 

120 

60 <[7.4559, 8.2523], 7.8541> 

300 

60 <[6.8075, 7.4082], 7.1079> 

70 <[6.8996, 7.6148], 7.2572> 70 <[6.5214, 7.1451], 6.8333> 

80 <[6.7538, 7.3871], 7.0704> 80 <[6.3574, 6.9460], 6.6517> 

90 <[6.5877, 7.1362], 6.8619> 90 <[6.1701, 6.7323], 6.4512> 

100 <[6.4384, 6.9543], 6.6964> 100 <[6.0419, 6.5889], 6.3154> 
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135 

10 <[8.6366, 9.9965], 9.3165> 

315 

10 <[9.3453, 11.0019], 10.1736> 

20 <[8.0802, 9.1154], 8.5978> 20 <[8.7879, 10.2015], 9.4947> 

30 <[7.6937, 8.5775], 8.1356> 30 <[8.4140, 9.5749], 8.9945> 

40 <[7.5142, 8.1849], 7.8496> 40 <[8.1086, 9.1114], 8.6100> 

50 <[7.0817, 7.7466], 7.4142> 50 <[7.6784, 8.6260], 8.1522> 

60 <[7.2635, 8.1286], 7.6961> 60 <[8.2178, 9.2347], 8.7262> 

70 <[7.0055, 7.7850], 7.3952> 70 <[7.8614, 8.9312], 8.3963> 

80 <[6.7065, 7.4778], 7.0922> 80 <[7.2059, 8.1313], 7.6686> 

90 <[6.5748, 7.2706], 6.9227> 90 <[7.0846, 7.8541], 7.4693> 

100 <[6.4591, 7.0692], 6.7641> 100 <[6.9943, 7.7238], 7.3590> 

150 

10 <[9.6836, 11.3523], 10.5180> 

330 

10 <[9.1057, 10.6334], 9.8695> 

20 <[8.9568, 10.2341], 9.5954> 20 <[8.5003, 9.5820], 9.0412> 

30 <[8.3896, 9.5193], 8.9545> 30 <[7.8552, 8.9297], 8.3925> 

40 <[8.4469, 9.4258], 8.9364> 40 <[7.9246, 8.8137], 8.3692> 

50 <[8.0344, 8.8323], 8.4334> 50 <[7.4865, 8.3162], 7.9014> 

60 <[8.3134, 9.3790], 8.8462> 60 <[7.6610, 8.5251], 8.0931> 

70 <[7.7660, 8.6663], 8.2161> 70 <[7.5647, 8.3214], 7.9430> 

80 <[7.6545, 8.3858], 8.0202> 80 <[7.3184, 8.0018], 7.6601> 

90 <[7.3240, 8.0036], 7.6638> 90 <[7.0105, 7.6946], 7.3525> 

100 <[7.1468, 7.7517], 7.4492> 100 <[6.7917, 7.4140], 7.1028> 

165 

10 <[9.8952, 11.4134], 10.6543> 

345 

10 <[9.0775, 10.4091], 9.7433> 

20 <[9.4383, 10.5527], 9.9955> 20 <[8.6683, 9.7610], 9.2146> 

30 <[9.0461, 10.0983], 9.5722> 30 <[8.4091, 9.1975], 8.8033> 

40 <[8.3701, 9.4439], 8.9070> 40 <[8.1143, 8.9143], 8.5143> 

50 <[8.1530, 9.1525], 8.6527> 50 <[7.5076, 8.2794], 7.8935> 

60 <[8.1410, 9.2114], 8.6762> 60 <[7.5403, 8.2372], 7.8888> 

70 <[7.9461, 8.8600], 8.4030> 70 <[7.4136, 8.1018], 7.7577> 

80 <[7.7104, 8.5223], 8.1164> 80 <[7.1656, 7.7891], 7.4773> 

90 <[7.5463, 8.2784], 7.9124> 90 <[6.9096, 7.4570], 7.1833> 

100 <[7.4124, 8.0324], 7.7224> 100 <[6.7643, 7.2544], 7.0093> 

 

As shown in Table 2, JRC-CNNCV reflects the mixed information of the confidence interval and 

the mean of the JRC values at the confidence level of 95%, which is different from the traditional 

expression methods of JRC-NNs. Furthermore, JRC-CNNCV reveals that 95% probability of the JRC 

data will fall within CNNs corresponding the confidence level of 95% and the mean magnitude of 

the JRC data. In this case, the confidence level can effectively guarantee the rationality and credibility 

of EJRC from a probabilistic point of view. From a perspective of probabilistic estimation, the JRC-

CNNCVs of EJRC in Table 2 can contain 95% probability of the actual JRC values, but cannot contain 

5% probability of them based on the probability estimation of the JRC values corresponding to 

different measurement directions and sample sizes. 

To analyze the scale effect and anisotropy of the JRC values by the expression method of JRC-

CNNCVs, we give Figures 1-3 and their analysis in detail. 
Figure 1 shows the EJRC values at different sizes in the measurement directions of 0°, 90°, 180°, 

and 270° from Table 2 and the average values of the corresponding JRC values in Table 1. As shown 

in Figure 1, the upper and lower bounds of JRC-CNNs and the JRC average values in the same 

measurement direction show a decreasing trend with the increase of the sample size, which is in line 

with the scale effect of the JRC values. At the same time, we can find that the standard deviation of 

the JRC values corresponding to each measurement direction generally shows a decreasing trend 

with the increase of the sample size. In Figure 2, taking the measurement direction of 15° as an 

example, the confidence intervals in EJRC shrink with the increase of the sample size in the same 

direction, and then the JRC-CNNs and the JRC average values decrease with the increase of the 
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sample size. This case also means that the uncertainty about the JRC values is diminishing with the 

increase of the sample size. In addition, we select the confidence intervals and the average values in 

EJRC in the measurement directions from 0° to 345° under the sample sizes of 10 cm, 40 cm, 70 cm, and 

100 cm to draw polar plots in Figure 3. As shown in Figure 3, the interval values of [EL, EU] and the 

average values of v in different measurement directions under the same size are different, which 

reflect the anisotropy of the JRC values. Meanwhile, with increasing sample size, the upper and lower 

bounds of CNNs in different measurement directions under the same size are also close to each other, 

and the interval ranges of CNNs and the average values in EJRC are decreasing, which indicates the 

scale effect of the anisotropy of the JRC values. The above conclusions show that the JRC values 

expressed by JRC-CNNCVs can also reflect indeterminate and incomplete information contained in 

the anisotropy of the JRC values. Therefore, it is obvious that the expression and analysis method 

using JRC-CNNCVs proposed in this study can effectively reveal the scale effect and anisotropy of 

the JRC values, then the proposed method is obviously superior to the existing methods regarding 

their rationality and credibility in the application scenarios of small-scale sample data. 

 

 
(a) 

 
(b) 

 
 
 

 

 
(c) 

 
(d) 

 

Figure 1. (a) EJRC (JRC-CNNCVs) corresponding to JRC values at different sizes in the 0° direction; (b) 

EJRC (JRC-CNNCVs) corresponding to the JRC values at different sizes in the 90° direction; (c) EJRC 

(JRC-CNNCVs) corresponding to the JRC values at different sizes in the 180° direction; (d) EJRC (JRC-

CNNCVs) corresponding to the JRC values at different sizes in the 270° direction. 
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Figure 2. EJRC (JRC-CNNCVs) corresponding to the JRC values of different sizes in the 15° direction 
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Figure 3. (a) EJRC (JRC-CNNCVs) corresponding to the JRC values of different measurement directions 

under 10 cm sample size; (b) EJRC (JRC-CNNCVs) corresponding to the JRC values of different 

measurement directions under 40 cm sample size; (c) EJRC (JRC-CNNCVs) corresponding to the JRC 

values of different measurement directions under 70 cm sample size; (d) EJRC (JRC-CNNCVs) 

corresponding to the JRC values of different measurement directions under 100 cm sample size 

4. Conclusions 

Since it is difficult to usually obtain enough large-scale JRC sample data from rock mass joint 

surfaces due to the limitation of the measurement environment, measurement technology, and other 

factors, there exists some indeterminate and incomplete information in small-scale JRC sample data. 

In this case, the existing representation and analysis methods of JRC sample data almost all lack the 

measures of confidence levels in sample data analysis. Then, the JRC-CNNCV expression obtained 

from the limited/small-scale JRC sample data can effectively solve the above problems and ensure 

that the JRC values can fall within CNN with a certain confidence level. Unlike classical statistics 

which takes the JRC values as crisp values, JRC-CNNCV transformed from the JRC values is 

composed of the confidence interval and the average value, so the uncertainty and incompleteness 

contained in the JRC values can be fully reflected by the probabilistic estimation within a confidence 

interval. As the extension and improvement of the existing JRC-NN expression methods for JRC 

values, the JRC-CNNCV expression method can effectively ensure the reliability of the small-scale 

sample data so as to lessen the loss of useful information and simplify the analysis process. In 

addition, through the expression and analysis method using JRC-CNNCVs for the JRC values of an 

actual case, this study also revealed the scale effect and anisotropy of the JRC values so as to further 

verify the effectiveness and convenience of the proposed expression and analysis method. It is clear 

that the proposed expression and analysis method can further enhance the credibility of the analysis 

results on the JRC characteristics (the scale effect and anisotropy of the JRC values) from a 

probabilistic point of view. In the future, CNNCVs combined with other analysis methods will 

present more in-depth analysis of the scale effect and anisotropy of the JRC values, and the CNNCV 

expression and analysis method will be further extended to engineering or experiment data 

processing. 
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Abstract: Recent Supply Chain Management Systems (SCMS) that is based on newer technologies 

are intelligent enough to lower costs, improve product quality, and speed up the decision-making 

process in the manufacturing operation. The reduction of overall environmental impact, is a goal of 

the Green Supply Chain Management (GSCM) systems. It is achieved by integrating 

environmentally friendly processes into SCMS. The main and most crucial role in achieving the goal 

of sustainable development is played by the GSCM practices. It is proved that, the adoption of IoT 

technology into the GSCM systems can increase its performance and productivity. The goal of this 

paper is to examine the Critical Success Factors (CSFs) for the efficient adoption of IoT and green 

solutions throughout the supply chain for the manufacturing sector. As a result of pressure from 

the government and increased customer awareness of environmental issues, manufacturers are 

currently focusing on GSCM that is enabled by IoT gadgets. The selection and prioritization of IoT-

enabled GSCM success variables is performed, in this paper, using bipolar neutrosophic-DEMATEL 

approach. 

Keywords: Green Supply Chains, IoT, Critical Success Factors, DEMATEL Bipolar-Neutrosophic. 

 

 

1. Introduction 

Currently, because of the increased awareness of sustainability and environmental protection, 

Green Supply Chain Management (GSCM) has gained a lot of popularity [1]. Industries are required 

to consider eco-friendly strategies to improve the environment and their green reputation [2]. In this 

context, organizations around the world have implemented more dependable techniques to 

encourage sustainable and green management at all levels of their supply chain as a result of changes 

in rules, legislation, lifestyle, and notably customer tastes in society [3]. The major goals of GSCM are 

to minimize or eliminate the environmental harms caused by supply chain operations in order to 

accomplish sustainable development goals [4]. Design, buying, production, storage, and logistics 

processes should thus be restructured by businesses as a result of GSCM efforts [5]. Reverse logistics 

is also a crucial component of GSCM for recovering value from discarded goods and materials or 

properly recycling them [6]. The use of GSCM has several advantages for businesses and 

communities. The environmental performance of GSCM is increased while waste production is 

minimized. Companies will be guided by GSCM to increase their eco-proficiency. Companies can 

stay up and increase their level of commercial performance since GCSM leads to the enhancement of 
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activities in the economic and environmental fields [4]. The implementation of Internet of Things 

(IoT) technology in the GSCM parts can be viewed to add an intelligence and sustainability assets to 

GSCM systems [7]. In this context, researchers and students have offered numerous definitions for 

GSCM. For instance, Hervani et al [8], explicitly used GSCM to integrate sustainable design, efficient 

material handling, green product procurement, environmentally conscious supplier cooperation, and 

waste management. However, according to Jayant and Tiwari [9], GCSM is a novel idea for 

determining the right course for developing products that are compliant with environmental laws 

and pre-established standards, and businesses require it as a tactic to collaborate on environmental 

challenges. 

According to statistical data, GSCM can control 80% of environmental consequences by using 

ecologically friendly approaches [10]. Therefore, it is an important issue to identify and analyze the 

Critical Success Factors (CSFs) for the good implementation of the IoT-Enabled GSCM. It is the 

primary objective of this investigation to analyze the CSFs of GSCM. As a result, the organizations 

focus only on these critical factors not all the factors included in the implementation process. As the 

more you focus on smaller number of factors the more you can give your best in all of them. We will 

help this organizations by using the opinions of three experienced experts to build an integrated 

strategy of the decision-making trial and evaluation laboratory (DEMATEL) and Bipolar-

Neutrosophic sets (BNSs) to remove the vagueness of those opinions by using a wider scale to 

identify critical success factors by grouping them into cause and effect groups [11], [12]. DEMATEL 

is a method used to develop and analyze a structural model of relationships and interdependences 

between success factors into a matrices or digraphs [13]–[16]. It will assist the decision-makers in 

determining the success factors of greater influence, which will be the critical success factors, by 

dividing these factor to cause and effect based on their values and their importance. 

The following goals are the main emphasis of the research paper: 

1. Identifying the critical success factors (CSFs) for modern GSCM systems to provide 

competitive advantages to organizations.  

2. This work also aims at clarifying contextual relationships between the CSFs and prioritizing 

these CSFs using an integration of DAMTEL and the BNS methods according the opinions 

of three experts. 

3. Considering the modern information technological (IT) paradigms such as IoT [17], [18], Big 

Data [19], [20], and Big Data Analytics (BDA) [21]–[23] that are now becoming a critical parts 

for implementing an intelligent and more productive GSCM systems. 

The majority of publications in the literature used the fuzzy set, which has limitations because it only 

considers the membership function and ignores the non-membership function and indeterminacy 

function [24], [25].Utilizing Smarandache's Neutrosophic sets (NSs), a generalization of intuitionistic 

fuzzy sets, we were able to overcome this flaw. The focus of NS is on the membership and non-

membership functions, and it does take the indeterminacy function into account. This strategy can 

deal with incomplete knowledge in the actual world because it is a generalization [26].    

The following sections are organized as follows: Section 2 discusses the literature review of IoT-

enabled GSCM supply chain and its CSFs .Section 3 introduces the basic concepts for the research. 

Section 4 presents the research methodology which is the integration of bipolar neutrosophic sets and 

the DEMATEL method. We also introduce Application of BNS-DEMATEL approach for analyzing 
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the CSFs of the IoT-enabled GSCM in section 4. Section 5 discusses the outcomes of the research. In 

section 6 we conclude the research. 

 

2. Literature review 

In academic and professional communities, GSCM is gaining popularity. It is a relatively new 

idea that's gaining popularity with suppliers and producers centered on improving green processes, 

reducing waste through reverse logistics, raising the caliber of products across their entire life cycles, 

and reducing harmful environmental activities [27]. In this section we will focus on the key aspects 

examined in the related works of experimental GSCM implementation, one of the sustainability's 

branches [28], to determine the most important elements for its successful implementation. 

Traditional SCM methods, on the other hand, can have a negative influence on the environment and 

act as a source of pollution [29]. Examples include the production, distribution, and waste of raw 

materials. Therefore, it is crucial to incorporate green practices like green manufacturing, green 

packaging, and reverse logistics into overall SCM activities in order to safeguard the environment 

[30]. To preserve the environment against unwelcome activities, many nations seek to set 

environmental standards and regulations for the industry. In order to achieve sustainable 

environmental, economic, and social development, these standards mandate that enterprises use 

green and environmentally friendly practices throughout all SCM activities [31]. As a result, 

numerous researchers have demonstrated in their work how important it is to adopt GSCM in a way 

that also considers the organization's environment. 

2.1 Utilization of MCDM tools in the GSCM implementation 

Researchers' interest in employing causal analysis in their studies has grown over the past few 

years. The primary explanation is that problems arise for a variety of reasons. In order to identify the 

relative relevance of the components, decision-makers must adopt a technique known as the Multi-

Criteria Decision Making (MCDM) approach when evaluating such an issue [10]. MCDM is subfield 

of operations research methodologies where the multifaceted decision-making problem can be 

reduced to a smaller problem [32]. The MCDM considerably helps to organise and prioritise the 

decision-making challenges. It also supports decision-makers in analyzing, choosing, and ranking 

options based on the assessment of numerous decision problem criteria [33]. There is a need for an 

efficient technique to assess the various aspects that function as GSCM components. Consequently, 

the MCDM approaches remain the best choice. The evaluation of green SCM decision problems 

makes extensive use of the MCDM approaches, including the DEMATEL method, Analytical 

Hierarchy Process (AHP) , Analytic Hierarchy Process (ANP), Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS), Linear Programming, and Fuzzy Programming [1]. This study 

use an integrated approach of the DEMATEL method and BNSs to identify the CSFs for the near 

optimal implementation of the GSCM systems. 

2.2 Proposed CSFs for the successful GSCM implementation 

For the purpose of implementing IoT-Enabled GSCM practices, this study identifies numerous 

significant key factors. These green indications are thought of as a supplementary tools for SCM 

operations. The purpose of this study was to determine the key CSFS from the standpoint of the 

practices applied by green supply chain enabled by IoT technology using a thorough set of literature 

reviews. A thorough assessment of the literature led to the identification of the twenty CSFs under 

two key dimensions. The two main dimensions are: green enablers which include the green drivers 

for implementing the GSCM. The second dimension is the IoT enablers which include the main 

drivers for enabling the implantation of IoT in the GSCM system. The full description of the CSFs is 

presented in table 1. It has been determined that the adoption of green SCM methods frequently uses 

MCDM approaches. These strategies are thought to be crucial for resolving difficult decision-making 
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issues. This study focus on prioritizing the CSFs for implementing the IoT-enabled GSCM 

successfully using an integrated approach of the DEMATEL method and BNSs to remove the 

vagueness of those opinions by using a wider scale to identify critical success factors by grouping 

them into cause and effect groups. 

Table 1: Proposed CSFs for the Successful implementation of IoT-Enabled GSCM 

Code CSF DESCRIPTION  Source 

A Green enablers   
F1 Influence from investors 

and stakeholders 

Investors or stakeholders have an interest in the 

company. Additionally, they are entitled to collect 

profits that the business publishes. 

[34], [35] 

F2 Waste management Wastes are substances that are not primary 

products and that the producer wants to dispose 

of because they are no longer needed for the 

producer's own purposes of production, 

transformation, or consumption. 

[25], [36] 

F3 Environmental 

regulations 

Organizations are required to abide by 

environmental regulations set forth by the 

government (such as hazardous and poisonous 

regulations), and penalties are always a possibility 

if they do not. 

[37]–[40] 

F4 Global competitive 

advantage 

Sustainable business practises give organisations 

a considerable competitive advantage over those 

that don't, which ultimately helps the 

organization's bottom line. Global 

competitiveness is a major force behind an 

organization's adoption of sustainable practices. 

[41], [42] 

F5 Management of toxic/ 

harmful/ hazardous 

materials and waste and 

pollution preventative 

measures 

Sustainable business practices help organizations 

control their toxic waste production, which has a 

negative impact on both the environment and 

people, as well as their consumption of hazardous 

materials. 

[43]–[45] 

F6 Green packaging and 

transportation 

The rising CO2 gas emissions during the 1990s 

have put the environment at risk due to freight 

transportation, which is why green transportation 

was started. Green packaging is characterized as 

being constructed entirely of natural plants and 

being environmentally friendly. It is safe for the 

environment, human health, and the welfare of 

cattle. 

[46]–[48] 

F7 Top management 

commitment 

It occurs when individuals holding top rank 

positions directly contribute to a specific and 

critically important area of a business. 

[49]–[51] 

F8 Greening competition 

pressures 

Competitive advantages associated with going 

green, better brand perception, and financial gains 

will all benefit competitors who have 

environmental management systems. 

[52] 

F9 power negotiations along 

the supply chain 

Requirements, advantages, and restrictions that 

the market imposes on the participants of a 

negotiation. 

[53], [54] 

F10 Green marketing Companies can promote their goods based on 

their "green" reputation, giving them a 

competitive edge in the global marketing arena. 

Additionally, because these businesses are 

[55] 
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adhering to environmental regulations, new 

markets are now available to them. 

F11 Standards and 

regulations (ISO 14000) 

Certifications encourage businesses to improve 

their quality while using a green strategy. 

Environmentally friendly operations between 

suppliers and customers need the use of ISO 

14000. 

[56], [57] 

F12 Reverse logistics It addresses the activities involved in product 

reuse. The reverse logistics also includes actions 

for refurbishing and remanufacturing. 

[58] 

F13 creation of highly 

qualified and competent 

human labor 

SCM thought leaders advise businesses to take a 

more proactive approach to developing SCM 

people with the skills and industry-specific 

competences required to manage supply chain 

processes that are becoming more complicated 

and strategically significant. This will help in the 

management of the green processes. 

[59] 

F14 green practices, policies, 

and infrastructure 

Companies must make considerable changes to 

their management policies, operations, 

infrastructure, and products to successfully 

implement supply chain greening, frequently by 

adopting new business models. 

[60], [61] 

F15 Collaboration with 

suppliers 

Although this CSF doesn't act as a direct main 

driver, it should be underlined that supply chain 

collaboration and integration can more effectively 

advance sustainability. Incorporating the 

thoughts and suggestions provided by suppliers 

can be quite beneficial. 

[62], [63] 

F16 Recycling and lifecycle 

management 

Establish a set of standards for the collection, 

handling, and recovery of used electronics and 

electrical equipment, and hold producers 

financially accountable for these actions. 

[64] 

B IoT enablers   
 

F17 Radio Frequency 

Identification (RFID) and 

Global positioning 

system (GPS) 

The smart GSCM systems enabled the real-time 

location of people and resources both indoors and 

outside thanks to RFID and GPS technologies. 

They made it possible to manage stock updates, 

transportation, and item tracking. 

[7], [65] 

F18 Cloud computing and 

IoT applications 

Through the use of the Internet, cloud computing 

reduces uncertainty for decision-makers by 

offering services like infrastructure, platform, and 

software. It enables decision-makers in GSCM 

systems of any business to make decisions at the 

appropriate time, location, product, and quantity. 

It host the IoT applications the enable the 

management and tracking of the GSCM entities. 

[18], [66]–[69] 

F19 Sensor technologies and 

sensor network 

Sensor and sensors network allow for the real-

time data collection and transmission in the IoT-

Enabled GSCM systems.   

[70]–[72] 

F20 Big Data and Big Data 

Analytics (BDA) tools 

As a result of large amounts of data collected by 

the IoT sensors, Big data technologies must be 

adopted in the GSCM system for managing such 

volumes of data. BDA tools allow for the real-time 

analysis of the collected big data to provide GSCM 

decision makers with accurate and timely data.  

[21], [23], [73] 
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3. Preliminaries 

To fully describe our suggested strategy, this section is broken down into three subsections. We 

shall first give a brief overview of the neutrosophic sets. The DEMATEL approach will then be 

demonstrated. Finally, we will present the DEMATEL approach that we have proposed using BNS. 

3.1 Neutrosophic Sets 

In this part, the notion of a neutrosophic set is discussed, along with some of its operations, 

including the scoring, accuracy, and certainty functions that are used to compare BNSs. BNSs are 

successor to the neutrosophic sets, fuzzy sets, intuitionistic fuzzy sets, and bipolar fuzzy sets. The 

fuzzy set was utilised in a bulk of articles in the literature, but it has drawbacks because it only takes 

the membership function into account while ignoring the function of non-membership and the 

function of indeterminacy. We overcame this drawback by using the concept of Neutrosophic sets 

(NSs). The function of indeterminacy is considered, although the both of membership and non-

membership methods are the main emphasis of NS [74], [75]. As a generalization, this method can 

deal with information gaps in the real world.  

Definition 1. Let S be a points’ space. And s∈S. A neutrosophic set N in S is described by the following 

three functions: 
1. The indeterminacy-membership function 𝐼𝑁(𝑠). 

2. The truth-membership function 𝑇𝑁(𝑠). 

3. The falsity-membership function 𝐹𝑁(𝑠). 

𝑇𝑁(𝑠),  𝐼𝑁(𝑠) , and 𝐹𝑁(𝑠)  are actual nonstandard or standard subsets of (𝑠): 𝑆 →] − 0,1 + [ and 

𝐹𝑁(𝑠): 𝑆 →] − 0,1 + [. Where the sum of 𝑇𝑁 (s), 𝐼𝑁 (s) and 𝐹𝑁(s), so 0− ≤ sup (s) + sup s + sup s ≤3+ is 

not limited. 

Definition 2 [12]: A BNS N in ƹ is characterised as an item with the form N={<s, 𝑇𝑝(𝑠), 𝐼𝑝(𝑠), 𝐹𝑝(𝑠), 

𝑇𝑛(𝑠), 𝐼𝑛(𝑠), 𝐹𝑛(𝑠)>: s  ƹ}, where 𝑇𝑝, 𝐼𝑝 , 𝐹𝑝 : ƹ[1, 0] and 𝑇𝑛 , 𝐼𝑛 , 𝐹𝑛 : ƹ [-1, 0] . The positive 

membership degree 𝑇𝑝(𝑠), 𝐼𝑝(𝑠), 𝐹𝑝(𝑠) of an item  ƹpointing to a BNS N and the negative membership 

degree 𝑇𝑛(𝑥), 𝐼𝑛(𝑥), 𝐹𝑛(𝑥) of an item ƹ identifies a counter-property that is implicit and comparable 

to a BNS A , Assume that Ã=< 𝑇𝑝 , 𝐼𝑝 ,  𝐹𝑝, 𝑇𝑛 ,  𝐼𝑛 , 𝐹𝑛 > be a Bipolar Neutrosophic Number 

(BNN).following that, the score function S (Ã), accuracy function a (Ã), and certainty function c (Ã) 

of a BNN are described as in the following relations: 

S (Ã) = 
1

6
 *[𝑇𝑝 + 1 − 𝐼𝑝 +1−  𝐹𝑝 + 1 + 𝑇𝑛 − 𝐼𝑛 − 𝐹𝑛]                                     (1) 

a (Ã) = 𝑇𝑝 −  𝐹𝑝 +  𝑇𝑛 − 𝐹𝑛                                                           (2) 

c (Ã)  = 𝑇𝑝 −  𝐹𝑛                                                                    (3) 

3.2 DEMATEL  

The DEMATEL approach was developed to assess and depict the nature and intensity of the 

direct and indirect relationships between complex real-world aspects in a study system [76]. 

DEMATEL is a method for group decision-making that involves gathering ideas and determining the 

relationship between causes and effects in complex problems [77]. The DEMATEL method helps to 
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uncover the optimal answer in solving problems involving complex systems by assessing the overall 

relationships between the structural parts of a study system and grouping elements into cause and 

effect groups [13], [78].  It is constructed upon the foundation of graph theory [2]. 

 

 

 

 

4. Proposed BNS-DEMATEL approach for analyzing the CSFs of the IoT-enabled GSCM 

In this part we will integrate the DEMATEL method with BNS neutrosophic set to overcome the 

vagueness in the expert’s opinions which will be used in DEMATEL matrices. The steps involved in 

the suggested approach are shown in Figure 1. 
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Figure 1: Steps of the Neutrosophic DEMATEL approach 

 

 
Step 1: Identify the CSFs for the IoT-enabled GSCM 

It is the first step in our model to discover the CSFs for implementing the green supply chain 

that is enabled by IoT gadgets. By surveying the literature, we have identified twenty CSFs for 

implementing the IoT-enabled GSCM. The identified factors are shown in table 1. We classified the 

E++ False 

True 

Start 

Identify the CSFs related to our problem 

through literature review 

Identify experts in the IoT-enabled GSCM and 

select the most experienced N experts 

Get the CSFs linguistic Relationship matrix of 

the E expert 

Calculate the Average Direct Relationship Matrix 

(ADRM) by integrating the selected N experts’ matrices  

Obtain the total relationship 

Normalize the ADRM 

Get the R and C by calculating the 

summation of TRM rows and columns 

Build the cause and effect diagram 

by using the R+C and R-C. 

E≤N 

Convert each linguistic expression in the matrix to 

corresponding bipolar neutrosophic value 

Obtain the crisp score for each 

bipolar neutrosophic value 

End 
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identified CSFs into two groups. The first group is the critical factors for the green manufacturing. 

Where the second group include the factor required for enabling the GSCM by the IoT gadgets.              

Step 2: Identify experts in the IoT-enabled GSCM and select the most experienced N experts:                                              

We searched for experts having experience in Green supply chain management operations and 

IoT technology. After filtering the experts, we have selected the most experienced three experts in the 

fields of IoT and GSCM. The metadata about the selected experts is provided in table 2. We then 

provide our experts with a full description about the selected CSFs. Afterwards, we initiate our 

request of linguistic Relationship matrix from each expert. 

Table 2: Experts' metadata 

expert Experience (years) expertise occupation profession Gender 

E1 13 Very good Industry GSCM Male 

E2 10 Good Industry IOT-GSCM Male 

E3 9 Medium Industry IOT-GSCM Male 

Step 3: Get the CSFs linguistic Relationship matrix of each expert 

Here, we make a pairwise comparison matrix between CSFs based on each expert’s opinion 

using the linguistic expressions shown in figure 2. Table 3 show the linguistic relationship matrix for 

expert 1. 

 

Figure 2: Linguistic expressions 

Step4: Convert each linguistic expression in the linguistic Relationship matrix into corresponding 

bipolar neutrosophic value 

Now, we will replace the linguistic expressions into its corresponding bipolar neutrosophic 

values according to table 4. 

Step 5: Obtain the crisp score for each bipolar neutrosophic value 

We firstly calculate the crisp score related to each bipolar neutrosophic value according to eq. 

(1). Table 5 show the calculated crisp scores for the linguistic expressions used in this study. In table 

6 and table 7, we present crisp score matrix of expert 1. 
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Step 6: Calculate the Average Direct Relationship Matrix (ADRM) by integrating the selected N 

experts’ matrices  

In this step we will integrate the three collected matrices of the three experts into one matrix that 

is called average direct relationship matrix which represent an average of the observations collected 

from the chosen experts. Each value in the ADRM matrix is estimated according to the following 

equation: 

𝐴𝐷𝑅𝑀𝑖,𝑗 =
∑ 𝑉𝑖,𝑗

𝐸𝑁
𝐸=1

𝑁
                                                                      (4) 

Where 𝐴𝑖,𝑗 is the ADRM value at row i and column j, it denote the degree to which the factor 

i affects the factor j, 𝑉𝑖,𝑗
𝐸   is the value of the crisp matrix at row i and column j for expert E, 

N is the number of experts. Table 8 and 9 show the ADRM of the three experts. 

Step 7: Normalize the ADRM                                                                   

In this step we will normalize the initial direct relationship matrix using the following equations.                      

𝑆 = 𝑀𝑎𝑥{ max
1≤𝑖≤𝑁

∑ 𝐴𝐷𝑅𝑀𝑖,𝑗
𝑁
𝑗=1 , 𝑚𝑎𝑥

1≤𝑗≤𝑁
∑ 𝐴𝐷𝑅𝑀𝑖,𝑗

𝑁
𝑖=1 }                                            

(5) 

𝑁𝐴𝐷𝑅𝑀 =
𝐴𝐷𝑅𝑀

𝑆
                                                                       (6)                                                                           

Table 10 and 11 show the normalized ADRM.                                                                                                                                                                                          

Step 8: Obtain the total relationship matrix 

Her, we obtain the total relationship Matrix using the following equation                                                                                

𝑇𝑅𝑀 = 𝑁𝐴𝐷𝑅𝑀 ∗ (𝐼 − 𝑁𝐴𝐷𝑅𝑀)−1                                                       (7)                   

Where I is the identity matrix. Table 12 and 13 show the normalized ADRM.                                                                                                                                                                                          

Step 9: Get the Ri and Cj by calculating the summation of TRM rows and columns 

we will calculate Calculate R+C (which indicates the degree of importance), R-C(which divide 

the CSFs into cause or effect groups, if  the result is positive then it's in cause group (which  has 

significant effect on the overall goal an need more attention) and  if  the result is negative then it's 

in effect group(which is  affected by other factors easily but it's doesn't mean it is not important as 

every factor has his own influence on other factors as we if it has high important (high R+ C )  and 

negative (R-C) such as F7 we can consider it as cause group ) and  by using the following equations   

𝐶 = ∑ 𝑇𝑅𝑀𝑖,𝑗
𝑁
𝑗=1                                                                           

(8)                                    

𝑅 = ∑ 𝑇𝑅𝑀𝑖,𝑗
𝑁
𝑖=1                                                                      (9)                                                                   

Table 14 show the summation of TRM rows and columns.         
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Step 10: Build the cause and effect diagram by using R+C and R-C 

     In this step we will build the diagram based on the result in the previous step we will use the 

values of R𝑖 + C𝑗   as the horizontal axes and use the values of R𝑖 − C𝑗   as the vertical axes and 

CSFs with positive values (above the x-axes) it's in cause group and CSFs with negative values (below 

the x-axes)) it's in effect group. Figure 2 show the casual diagram   

Table 3: Linguistic relationship matrix for expert 1 

 

Table 4: Linguistic expressions with its corresponding bipolar neutrosophic value. 

 

 

 

 

 

Linguistic Expression Bipolar Neutrosophic value 

EH (1.00,0.00,0.10,-0.10,-0.90,-1.00) 

VH (0.85,0.15,0.20,-0.20,-0.70,-0.90) 

H (0.75,0.20,0.25,-0.25,-0.60,-0.50) 

M (0.50,0.50,0.50,-0.50,-0.50,-0.50) 

L (0.30,0.40,0.60,-0.30,-0.20,-0.10) 

VL (0.25,0.70,0.80,-0.55,-0.15,-0.30) 

EL (0.15,0.90,0.80,-0.65,-0.10,-0.10) 

NO (0.00,1.00,1.00,-1.00,0.00,0.00) 
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Table 5: Crisp scores for the Study linguistic expressions 

Table 6: Part 1 of the crisp score matrix of expert 1 

Code F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

F1 
0 0.5000 0.6917 0.5000 0.5000 0.6917 0.5000 0.3833 0.6917 0.8167 

F2 
0.6917 0 0.9500 0.6917 0.5000 0.8167 0.6917 0.5000 0.2750 0.2750 

F3 
0.8167 0.8167 0 0.8167 0.6917 0.9500 0.6917 0.5000 0.6917 0.6917 

F4 
0.5000 0.9500 0.6917 0 0.3833 0.5000 0.6917 0.3833 0.2750 0.6917 

F5 
0.6917 0.6917 0.5000 0.6917 0 0.5000 0.6917 0.6917 0.6917 0.5000 

F6 
0.9500 0.5000 0.8167 0.6917 0.6917 0 0.3833 0.6917 0.6917 0.5000 

F7 
0.8167 0.6917 0.5000 0.5000 0.5000 0.6917 0 0.8167 0.8167 0.8167 

F8 
0.3833 0.5000 0.5000 0.5000 0.6917 0.5000 0.6917 0 0.5000 0.9500 

F9 
0.5000 0.2750 0.5000 0.6917 0.6917 0.3833 0.5000 0.6917 0 0.6917 

F10 
0.6917 0.6917 0.5000 0.8167 0.5000 0.2750 0.8167 0.3833 0.6917 0 

F11 
0.9500 0.6917 0.8167 0.5000 0.8167 0.9500 0.6917 0.8167 0.8167 0.5000 

F12 
0.6917 0.8167 0.5000 0.5000 0.2750 0.8167 0.8167 0.2750 0.5000 0.5000 

F13 
0.5000 0.6917 0.6917 0.6917 0.6917 0.6917 0.8167 0.5000 0.2750 0.5000 

F14 
0.5000 0.5000 0.6917 0.9500 0.3833 0.3833 0.2750 0.9500 0.3833 0.9500 

F15 
0.6917 0.3833 0.5000 0.3833 0.6917 0.5000 0.1667 0.3833 0.5000 0.6917 

Bipolar Neutrosophic Number Scale Crisp score 

(1.00,0.00,0.10,-0.10,-0.90,-1.00) 0.9500 

(0.85,0.15,0.20,-0.20,-0.70,-0.90) 0.8167 

(0.75,0.20,0.25,-0.25,-0.60,-0.50) 0.6917 

(0.50,0.50,0.50,-0.50,-0.50,-0.50) 0.5000 

(0.30,0.40,0.60,-0.30,-0.20,-0.10) 0.3833 

(0.25,0.70,0.80,-0.55,-0.15,-0.30) 0.2750 

(0.15,0.90,0.80,-0.65,-0.10,-0.10) 0.1667 

(0.00,1.00,1.00,-1.00,0.00,0.00) 0.0000 
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F16 
0.5000 0.5000 0.8167 0.6917 0.5000 0.3833 0.6917 0.2750 0.8167 0.5000 

F17 
0.9500 0.6917 0.5000 0.8167 0.5000 0.5000 0.8167 0.8167 0.5000 0.9500 

F18 
0.8167 0.6917 0.5000 0.8167 0.6917 0.6917 0.6917 0.8167 0.6917 0.9500 

F19 
0.6917 0.6917 0.5000 0.8167 0.5000 0.6917 0.8167 0.8167 0.5000 0.9500 

F20 
0.8167 0.9500 0.6917 0.8167 0.6917 0.8167 0.9500 0.9500 0.8167 0.9500 

 

Table 7: Part 2 of the crisp score matrix of expert 1 

Code 
F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

F1 0.6917 0.8167 0.3833 0.1667 0.6917 0.9500 0.8167 0.8167 0.8167 0.8167 

F2 0.5000 0.9500 0.8167 0.6917 0.5000 0.3833 0.2750 0.3833 0.1667 0.3833 

F3 0.5000 0.5000 0.2750 0.6917 0.8167 0.6917 0.6917 0.6917 0.6917 0.6917 

F4 0.8167 0.5000 0.6917 0.3833 0.6917 0.8167 0.6917 0.6917 0.6917 0.6917 

F5 0.3833 0.6917 0.8167 0.5000 0.9500 0.8167 0.6917 0.8167 0.5000 0.9500 

F6 0.6917 0.3833 0.9500 0.6917 0.6917 0.6917 0.9500 0.6917 0.5000 0.9500 

F7 0.9500 0.8167 0.8167 0.8167 0.5000 0.6917 0.8167 0.8167 0.8167 0.9500 

F8 0.5000 0.5000 0.6917 0.6917 0.3833 0.5000 0.9500 0.9500 0.9500 0.9500 

F9 0.8167 0.6917 0.5000 0.5000 0.6917 0.2750 0.6917 0.6917 0.6917 0.8167 

F10 0.5000 0.5000 0.6917 0.6917 0.5000 0.3833 0.9500 0.9500 0.9500 0.9500 

F11 0 0.5000 0.5000 0.2750 0.9500 0.8167 0.2750 0.5000 0.3833 0.5000 

F12 0.3833 0 0.5000 0.6917 0.2750 0.6917 0.9500 0.8167 0.9500 0.9500 

F13 0.5000 0.6917 0 0.8167 0.3833 0.1667 0.5000 0.5000 0.5000 0.5000 

F14 0.5000 0.8167 0.5000 0 0.9500 0.5000 0.8167 0.6917 0.8167 0.8167 

F15 0.8167 0.6917 0.5000 0.3833 0 0.2750 0.8167 0.6917 0.6917 0.8167 

F16 0.2750 0.2750 0.6917 0.3833 0.8167 0 0.8167 0.5000 0.8167 0.6917 

F17 0.5000 0.9500 0.5000 0.6917 0.6917 0.9500 0 0.9500 0.9500 0.8167 

F18 0.5000 0.8167 0.5000 0.6917 0.6917 0.6917 0.6917 0 0.9500 0.9500 

F19 0.5000 0.9500 0.5000 0.6917 0.6917 0.6917 0.9500 0.9500 0 0.5000 

F20 0.6917 0.9500 0.5000 0.6917 0.9500 0.6917 0.6917 0.9500 0.5000 0 
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Table 8: Part 1 of the average direct relationship matrix 

Code 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

F1 0.0000 0.5000 0.6917 0.5000 0.5000 0.6917 0.5000 0.3833 0.6917 0.8167 

F2 0.6917 0.0000 0.9500 0.6917 0.5000 0.8167 0.6917 0.5000 0.2750 0.2750 

F3 0.8167 0.8167 0.0000 0.8167 0.6917 0.9500 0.6917 0.5000 0.6917 0.6917 

F4 0.5000 0.9500 0.6917 0.0000 0.3833 0.5000 0.6917 0.3833 0.2750 0.6917 

F5 0.6917 0.6917 0.5000 0.6917 0.0000 0.5000 0.6917 0.6917 0.6917 0.5000 

F6 0.9500 0.5000 0.8167 0.6917 0.6917 0.0000 0.3833 0.6917 0.6917 0.5000 

F7 0.8167 0.6917 0.5000 0.5000 0.5000 0.6917 0.0000 0.8167 0.8167 0.8167 

F8 0.3833 0.5000 0.5000 0.5000 0.6917 0.5000 0.6917 0.0000 0.5000 0.9500 

F9 0.5000 0.2750 0.5000 0.6917 0.6917 0.3833 0.5000 0.6917 0.0000 0.6917 

F10 0.6917 0.6917 0.5000 0.8167 0.5000 0.2750 0.8167 0.3833 0.6917 0.0000 

F11 0.9500 0.6917 0.8167 0.5000 0.8167 0.9500 0.6917 0.8167 0.8167 0.5000 

F12 0.6917 0.8167 0.5000 0.5000 0.2750 0.8167 0.8167 0.2750 0.5000 0.5000 

F13 0.5000 0.6917 0.6917 0.6917 0.6917 0.6917 0.8167 0.5000 0.2750 0.5000 

F14 0.5000 0.5000 0.6917 0.9500 0.3833 0.3833 0.2750 0.9500 0.3833 0.9500 

F15 0.6917 0.3833 0.5000 0.3833 0.6917 0.5000 0.1667 0.3833 0.5000 0.6917 

F16 0.5000 0.5000 0.8167 0.6917 0.5000 0.3833 0.6917 0.2750 0.8167 0.5000 

F17 0.9500 0.6917 0.5000 0.8611 0.5000 0.5000 0.8167 0.8167 0.5000 0.8000 

F18 0.8167 0.6917 0.5000 0.8167 0.6917 0.6917 0.6917 0.8167 0.6917 0.9500 

F19 0.6917 0.6917 0.5000 0.8167 0.5000 0.6917 0.8167 0.8167 0.5000 0.8000 

F20 0.8611 0.9500 0.6917 0.8167 0.6917 0.8167 0.9500 0.9500 0.8167 0.9500 

 

Table 9: Part 2 of the average direct relationship matrix 

Code 
F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

F1 0.6917 0.8167 0.3833 0.1667 0.6917 0.9500 0.8167 0.8167 0.8167 0.8611 

F2 0.5000 0.9500 0.8167 0.6917 0.5000 0.3833 0.2750 0.3833 0.1667 0.3833 

F3 0.5000 0.5000 0.2750 0.6917 0.8167 0.6917 0.6917 0.6917 0.6917 0.6917 

F4 0.8167 0.5000 0.6917 0.3833 0.6917 0.8167 0.6917 0.6917 0.6917 0.6917 
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F5 0.3833 0.6917 0.8167 0.5000 0.9500 0.8167 0.6917 0.8167 0.5000 0.9500 

F6 0.6917 0.3833 0.9500 0.6917 0.6917 0.6917 0.9500 0.6917 0.5000 0.9500 

F7 0.9500 0.8167 0.8167 0.8167 0.5000 0.6917 0.8167 0.8167 0.8167 0.9500 

F8 0.5000 0.5000 0.6917 0.6917 0.3833 0.5000 0.9500 0.9500 0.9500 0.9500 

F9 0.8167 0.6917 0.5000 0.5000 0.6917 0.2750 0.6917 0.6917 0.6917 0.8167 

F10 0.5000 0.5000 0.6917 0.6917 0.5000 0.3833 0.9500 0.9500 0.9500 0.9500 

F11 0.0000 0.5000 0.5000 0.2750 0.9500 0.8167 0.2750 0.5000 0.3833 0.5000 

F12 0.3833 0.0000 0.5000 0.6917 0.2750 0.6917 0.9500 0.8167 0.9500 0.9500 

F13 0.5000 0.6917 0.0000 0.8167 0.3833 0.1667 0.5000 0.5000 0.4611 0.5000 

F14 0.5000 0.8167 0.5000 0.0000 0.9500 0.5000 0.7111 0.6917 0.8167 0.8167 

F15 0.8167 0.6917 0.5000 0.3833 0.0000 0.2750 0.8167 0.6917 0.6917 0.8611 

F16 0.2750 0.2750 0.6917 0.3833 0.8167 0.0000 0.8167 0.5000 0.8167 0.6917 

F17 0.5000 0.9500 0.5000 0.6917 0.6917 0.9500 0.0000 0.9500 0.9500 0.8167 

F18 0.5000 0.8167 0.5000 0.6917 0.6917 0.6917 0.6917 0.0000 0.8000 0.9500 

F19 0.5000 0.9500 0.5000 0.6917 0.6917 0.6917 0.9500 0.9500 0.0000 0.5000 

F20 0.6917 0.9500 0.5000 0.6917 0.9500 0.6917 0.6917 0.9500 0.5000 0.0000 

 

Table 10: Part 1 of the normalization matrix  

Code F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

F1 
0.0000 0.0331 0.0458 0.0331 0.0331 0.0458 0.0331 0.0254 0.0458 0.0540 

F2 
0.0458 0.0000 0.0629 0.0458 0.0331 0.0540 0.0458 0.0331 0.0182 0.0182 

F3 
0.0540 0.0540 0.0000 0.0540 0.0458 0.0629 0.0458 0.0331 0.0458 0.0458 

F4 
0.0331 0.0629 0.0458 0.0000 0.0254 0.0331 0.0458 0.0254 0.0182 0.0458 

F5 
0.0458 0.0458 0.0331 0.0458 0.0000 0.0331 0.0458 0.0458 0.0458 0.0331 

F6 
0.0629 0.0331 0.0540 0.0458 0.0458 0.0000 0.0254 0.0458 0.0458 0.0331 

F7 
0.0540 0.0458 0.0331 0.0331 0.0331 0.0458 0.0000 0.0540 0.0540 0.0540 

F8 
0.0254 0.0331 0.0331 0.0331 0.0458 0.0331 0.0458 0.0000 0.0331 0.0629 

F9 
0.0331 0.0182 0.0331 0.0458 0.0458 0.0254 0.0331 0.0458 0.0000 0.0458 
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F10 
0.0458 0.0458 0.0331 0.0540 0.0331 0.0182 0.0540 0.0254 0.0458 0.0000 

F11 
0.0629 0.0458 0.0540 0.0331 0.0540 0.0629 0.0458 0.0540 0.0540 0.0331 

F12 
0.0458 0.0540 0.0331 0.0331 0.0182 0.0540 0.0540 0.0182 0.0331 0.0331 

F13 
0.0331 0.0458 0.0458 0.0458 0.0458 0.0458 0.0540 0.0331 0.0182 0.0331 

F14 
0.0331 0.0331 0.0458 0.0629 0.0254 0.0254 0.0182 0.0629 0.0254 0.0629 

F15 
0.0458 0.0254 0.0331 0.0254 0.0458 0.0331 0.0110 0.0254 0.0331 0.0458 

F16 
0.0331 0.0331 0.0540 0.0458 0.0331 0.0254 0.0458 0.0182 0.0540 0.0331 

F17 
0.0629 0.0458 0.0331 0.0570 0.0331 0.0331 0.0540 0.0540 0.0331 0.0529 

F18 
0.0540 0.0458 0.0331 0.0540 0.0458 0.0458 0.0458 0.0540 0.0458 0.0629 

F19 
0.0458 0.0458 0.0331 0.0540 0.0331 0.0458 0.0540 0.0540 0.0331 0.0529 

F20 
0.0570 0.0629 0.0458 0.0540 0.0458 0.0540 0.0629 0.0629 0.0540 0.0629 

 

Table 11: Part 2 of the normalization matrix  

Code 
F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

F1 0.0458 0.0540 0.0254 0.0110 0.0458 0.0629 0.0540 0.0540 0.0540 0.0570 

F2 0.0331 0.0629 0.0540 0.0458 0.0331 0.0254 0.0182 0.0254 0.0110 0.0254 

F3 0.0331 0.0331 0.0182 0.0458 0.0540 0.0458 0.0458 0.0458 0.0458 0.0458 

F4 0.0540 0.0331 0.0458 0.0254 0.0458 0.0540 0.0458 0.0458 0.0458 0.0458 

F5 0.0254 0.0458 0.0540 0.0331 0.0629 0.0540 0.0458 0.0540 0.0331 0.0629 

F6 0.0458 0.0254 0.0629 0.0458 0.0458 0.0458 0.0629 0.0458 0.0331 0.0629 

F7 0.0629 0.0540 0.0540 0.0540 0.0331 0.0458 0.0540 0.0540 0.0540 0.0629 

F8 0.0331 0.0331 0.0458 0.0458 0.0254 0.0331 0.0629 0.0629 0.0629 0.0629 

F9 0.0540 0.0458 0.0331 0.0331 0.0458 0.0182 0.0458 0.0458 0.0458 0.0540 

F10 0.0331 0.0331 0.0458 0.0458 0.0331 0.0254 0.0629 0.0629 0.0629 0.0629 

F11 0.0000 0.0331 0.0331 0.0182 0.0629 0.0540 0.0182 0.0331 0.0254 0.0331 

F12 0.0254 0.0000 0.0331 0.0458 0.0182 0.0458 0.0629 0.0540 0.0629 0.0629 
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F13 0.0331 0.0458 0.0000 0.0540 0.0254 0.0110 0.0331 0.0331 0.0305 0.0331 

F14 0.0331 0.0540 0.0331 0.0000 0.0629 0.0331 0.0471 0.0458 0.0540 0.0540 

F15 0.0540 0.0458 0.0331 0.0254 0.0000 0.0182 0.0540 0.0458 0.0458 0.0570 

F16 0.0182 0.0182 0.0458 0.0254 0.0540 0.0000 0.0540 0.0331 0.0540 0.0458 

F17 0.0331 0.0629 0.0331 0.0458 0.0458 0.0629 0.0000 0.0629 0.0629 0.0540 

F18 0.0331 0.0540 0.0331 0.0458 0.0458 0.0458 0.0458 0.0000 0.0529 0.0629 

F19 0.0331 0.0629 0.0331 0.0458 0.0458 0.0458 0.0629 0.0629 0.0000 0.0331 

F20 0.0458 0.0629 0.0331 0.0458 0.0629 0.0458 0.0458 0.0629 0.0331 0.0000 

    

Table 12: Part 1 of the total relationship matrix  

Code F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

F1 
0.2061 0.2233 0.2266 0.2324 0.2010 0.2266 0.2264 0.2053 0.2185 0.2548 

F2 
0.2170 0.1619 0.2151 0.2123 0.1743 0.2071 0.2064 0.1837 0.1641 0.1894 

F3 
0.2658 0.2503 0.1915 0.2606 0.2198 0.2496 0.2446 0.2209 0.2250 0.2564 

F4 
0.2274 0.2414 0.2184 0.1900 0.1852 0.2063 0.2279 0.1961 0.1828 0.2361 

F5 
0.2544 0.2402 0.2204 0.2495 0.1738 0.2198 0.2428 0.2295 0.2220 0.2420 

F6 
0.2767 0.2343 0.2457 0.2563 0.2233 0.1934 0.2298 0.2357 0.2274 0.2485 

F7 
0.2856 0.2617 0.2413 0.2610 0.2250 0.2524 0.2214 0.2589 0.2496 0.2844 

F8 
0.2323 0.2257 0.2159 0.2356 0.2140 0.2158 0.2404 0.1843 0.2071 0.2664 

F9 
0.2219 0.1955 0.2004 0.2287 0.2001 0.1938 0.2114 0.2118 0.1605 0.2330 

F10 
0.2524 0.2388 0.2176 0.2558 0.2031 0.2040 0.2489 0.2102 0.2194 0.2083 

F11 
0.2609 0.2301 0.2318 0.2275 0.2184 0.2391 0.2324 0.2279 0.2229 0.2314 

F12 
0.2452 0.2386 0.2115 0.2290 0.1825 0.2304 0.2411 0.1965 0.2017 0.2318 

F13 
0.2097 0.2098 0.2023 0.2171 0.1892 0.2024 0.2184 0.1890 0.1674 0.2080 

F14 
0.2353 0.2226 0.2249 0.2586 0.1922 0.2058 0.2110 0.2385 0.1962 0.2630 
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F15 
0.2238 0.1921 0.1914 0.1999 0.1915 0.1920 0.1812 0.1834 0.1838 0.2217 

F16 
0.2147 0.2022 0.2140 0.2226 0.1825 0.1872 0.2160 0.1795 0.2056 0.2139 

F17 
0.2897 0.2590 0.2378 0.2793 0.2210 0.2372 0.2695 0.2543 0.2272 0.2805 

F18 
0.2780 0.2554 0.2345 0.2731 0.2301 0.2452 0.2582 0.2515 0.2357 0.2856 

F19 
0.2635 0.2486 0.2278 0.2659 0.2120 0.2389 0.2587 0.2449 0.2174 0.2692 

F20 
0.3023 0.2903 0.2653 0.2931 0.2480 0.2722 0.2930 0.2778 0.2614 0.3061 

 

Table 13: Part 2 of the total relationship matrix  

Code 
F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

F1 0.2152 0.2538 0.1994 0.1852 0.2416 0.2430 0.2676 0.2699 0.2561 0.2817 

F2 0.1773 0.2299 0.1994 0.1909 0.1983 0.1794 0.2003 0.2082 0.1838 0.2174 

F3 0.2121 0.2438 0.2015 0.2246 0.2584 0.2351 0.2692 0.2715 0.2568 0.2818 

F4 0.2142 0.2245 0.2099 0.1899 0.2312 0.2247 0.2471 0.2497 0.2365 0.2583 

F5 0.2020 0.2529 0.2315 0.2110 0.2625 0.2387 0.2657 0.2758 0.2424 0.2939 

F6 0.2257 0.2399 0.2440 0.2272 0.2541 0.2376 0.2872 0.2748 0.2482 0.3002 

F7 0.2554 0.2833 0.2508 0.2500 0.2576 0.2523 0.2973 0.3007 0.2847 0.3190 

F8 0.2048 0.2380 0.2203 0.2207 0.2245 0.2166 0.2774 0.2809 0.2663 0.2893 

F9 0.2105 0.2316 0.1932 0.1925 0.2267 0.1877 0.2432 0.2465 0.2331 0.2622 

F10 0.2072 0.2404 0.2209 0.2210 0.2330 0.2111 0.2780 0.2818 0.2672 0.2901 

F11 0.1696 0.2299 0.2047 0.1879 0.2539 0.2306 0.2307 0.2459 0.2250 0.2565 

F12 0.1928 0.1998 0.2031 0.2147 0.2116 0.2234 0.2704 0.2649 0.2591 0.2814 

F13 0.1808 0.2195 0.1518 0.2026 0.1955 0.1701 0.2182 0.2206 0.2058 0.2291 

F14 0.2024 0.2527 0.2051 0.1728 0.2552 0.2133 0.2602 0.2616 0.2556 0.2776 

F15 0.2009 0.2214 0.1837 0.1761 0.1731 0.1787 0.2393 0.2349 0.2218 0.2527 

F16 0.1721 0.1997 0.1990 0.1799 0.2278 0.1622 0.2434 0.2266 0.2333 0.2459 

F17 0.2251 0.2880 0.2288 0.2392 0.2654 0.2657 0.2437 0.3056 0.2907 0.3078 
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F18 0.2224 0.2761 0.2260 0.2362 0.2622 0.2462 0.2834 0.2425 0.2772 0.3119 

F19 0.2160 0.2769 0.2199 0.2305 0.2544 0.2401 0.2914 0.2938 0.2205 0.2770 

F20 0.2523 0.3047 0.2444 0.2541 0.2978 0.2647 0.3052 0.3236 0.2801 0.2766 

 

Table 14: Summation of TRM rows and columns 

Code 

 
R C R+C R-C 

F1 
4.6345 4.9626 9.5971 -0.3281 

F2 
3.9161 4.6217 8.5378 -0.7056 

F3 
4.8394 4.4342 9.2736 0.4052 

F4 
4.3978 4.8484 9.2462 -0.4506 

F5 
4.7707 4.0868 8.8575 0.6839 

F6 
4.9099 4.4193 9.3292 0.4907 

F7 
5.2925 4.6792 9.9717 0.6133 

F8 
4.6761 4.3798 9.0558 0.2963 

F9 
4.2840 4.1954 8.4794 0.0885 

F10 
4.7089 4.9304 9.6393 -0.2216 

F11 
4.5571 4.1589 8.7159 0.3982 

F12 
4.5296 4.9068 9.4364 -0.3772 

F13 
4.0072 4.2374 8.2446 -0.2302 

F14 
4.6044 4.2068 8.8112 0.3976 

F15 
4.0431 4.7850 8.8281 -0.7419 

F16 
4.1280 4.4211 8.5492 -0.2931 

F17 
5.2154 5.2186 10.4340 -0.0032 

F18 
5.1313 5.2797 10.4110 -0.1483 
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F19 
4.9675 4.9441 9.9116 0.0234 

F20 
5.6130 5.5102 11.1232 0.1027 

 

 
Figure 2: Causal diagram 

 

5. Results and Discussions 

This study aims to identify and rank the key elements in GSCM systems that are enabled by the 

Internet of Things. We have chosen 20 CSFs from the literature review that we felt were pertinent to 

our issue. Following the identification of these 20 CSFs, the Neutrosophic DEMATEL method—

regarded as an effective MCDM tool—was used to organize them into cause- and effect-related 

categories. It has the capacity to convert the intricate relationships between the requirements of real-

world problems into an easily understandable, structured model. The outcome drawn by using the 

suggested model to analyze data gathered from the chosen experts. 

5.1 Ranking of the CSFs 

The ranking was carried out based on R+C values presented in table 13. It is clear that the Big 

Data and BDA tools (F20) was the most critical factor with the highest importance value of 11.1232, 

while creation of highly qualified and competent human labor (F13) with of value of 8.2446 is the 

least influent CSF of the 20 selected ones. The influence degree for all CSFs included in the calculation 

are presented in Table 14. We recommend that the organizations should concentrate on these crucial 

CSFs, and once IoT-enabled GSCM implementation has reached the appropriate level, the 

implementation procedure will be adjusted. The degree of implementation will now be raised 

through a continual improvement process, with the least important CSFs being attended to in 

accordance with their importance. For more clarification of the results, Figure 3 visualizes the 

importance ranking of the CSFs. 

5.2 Cause/effect grouping of the CSFs  
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According to the R-C values, the CSFs were classified into cause and effect groups (Table 15). 

Ten CSFs (F20, F7, F19, F6, F3, F8, F5, F14, F11, and F9) were recognized to be in the cause group and 

rest ten CSFs (F17, F18, F10, F1, F12, F4, F15, F16, F2, and F13) were recognized to be in the effect 

group. This analysis showed that F5 is the most influencing CSF, which has the greatest R-C value of 

0.6839, while the most influenced CSF is discovered to be F15, which has the lowest R-C value of 

minus 0.7419. 

 

5.3 CSFs Interactions  

Due to the case scenario's consideration of 20 CSFs, it was challenging to depict all CSF 

interactions on an Impact Relationship Map (IRM). In order to see how each CSF interacts with other 

CSFs (both influencing and being impacted), the IRM for each CSF has been constructed based on the 

threshold ( ▽) that is calculated using the following expression: 

▽=
∑ ∑ 𝑇𝑅𝑀𝑖,𝑗

𝑁
𝑗=1

𝑁
𝑖=1

𝑁∗𝑁
                                                                      (10)                                                                                                            

Despite the fact that IRMs have been created for all CSFs, only the IRM for the F16 AMB is 

displayed in Figure 4 as an example. Each CSF influences and is influenced by a variety of other CSFs. 

Table 16 shows the full interactions among all CSFs. 

Table 15: CSFs importance ranking with related cause/effect grouping 

CSF Code R𝒊 + C𝒋 
Importance 

rank 
R𝒊 − C𝒋 Cause Effect 

Big Data and Big Data 

Analytics (BDA) tools 
F20 11.1232 1 

 

0.1027 

 

  

RFID and GPS F17 10.4340 2 
-0.0032 

 
  

Cloud computing and IoT 

applications 
F18 10.4110 3 

-0.1483 

 
  

Top management commitment F7 9.9717 4 
0.6133 

 
  

Sensor technologies and 

sensor network 
F19 9.9116 5 

0.0234 

 
  

Green marketing F10 9.6393 6 
-0.2216 

 
  

Influence from investors and 

stakeholders 
F1 9.5971 7 

-0.3281 

 
  

Reverse logistics F12 9.4364 8 
-0.3772 

 
  

Green packaging and 

transportation 
F6 9.3292 9 

0.4907 

 
  

Environmental regulations F3 9.2736 10 0.4052   
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Global competitive advantage F4 9.2462 11 
-0.4506 

 
  

Greening competition 

pressures 
F8 9.0558 12 

0.2963 

 
  

Management of toxic/ harmful/ 

hazardous materials and 

waste and pollution 

preventative measures 

F5 8.8575 13 
0.6839 

 
  

Collaboration with suppliers F15 8.8281 14 
-0.7419 

 
  

green practices, policies, and 

infrastructure 
F14 8.8112 15 

0.3976 

 
  

Standards and regulations 

(ISO 14000) 
F11 8.7159 16 

0.3982 

 
  

Recycling and lifecycle 

management 
F16 8.5492 17 

-0.2931 

 
  

Waste management F2 8.5378 18 
-0.7056 

 
  

power negotiations along the 

supply chain 
F9 8.4794 19 

0.0885 

 
  

creation of highly qualified and 

competent human labor 
F13 8.2446 20 

-0.2302 

 
  

 

 

Figure 3: CSFs importance ranking 
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Table 16: CSFs interactions 

 

 

 

Figure 4: F16 interactions with other CSFs 

6. Conclusion  

Poor strategic planning, ineffective management, and poor information management all 

contribute to weak core competencies and poor information awareness in the manufacturing 

F16

F1
F3

F5
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operation. It is evident that by concentrating more on the root causes of an issue and efficiently 

manage the effects can enhance system performance and productivity. The similar theory was used 

in IoT-enabled GSCM environments using neutrosophic DEMATEL method to prioritize the CSFs 

responsible for the company's performance. Green supply chain management has been viewed as a 

key component of firms' efforts to improve their performance. As a result, the focus of this study was 

to investigate the crucial success criteria needed for the management of green supply chains that are 

enabled by IoT technology. A survey of the literature led to the discovery of 20 CSFs categorized into 

two groups: green enablers and IoT enablers. After applying the neutrosophic DEMATEL approach, 

we identified the relative importance of each factor, the Cause/effect grouping, and the how each CSF 

influence/influenced by other CSFs. Finally, we recommended that the organizations should 

concentrate on selected CSFs, and once IoT-enabled GSCM implementation has reached the 

appropriate level, the implementation procedure will be adjusted. The degree of implementation will 

now be raised through a continual improvement process, with the least important CSFs being 

attended to in accordance with their importance. 
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Abstract: In this paper, a new tangent and cotangent similarity measures between two 

Pentapartitioned Neutrosophic Pythagorean [PNP] sets with truth membership, falsity membership, 

ignorance and contradiction membership as dependent Neutrosophic component is proposed and its 

properties are investigated. The unknown membership alone will be considered as independent 

Neutrosophic components. Also, the weighted similarity measures are also studied with a decision 

making problem. 

Keywords: PNP set, Tangent similarity measure, cotangent similarity measure. 

 

 
1. Introduction 

 

Traditionally, the teaching and learning method uses several exercises fixing, sending and 

evaluating ideas and information about a subject. Learning is that the method of getting relative 

permanent changes in understanding, attitude, knowledge, information, capability and skill through 

expertise. A modification are often set or involuntary, to raised or worse learning. The training 

method is an enclosed cognitive event. To assist this teaching and learning method, it is necessary 

the utilization of a laptoop tool ready to stimulate these changes. Also, it is necessary that it will 

operate as validation and serving tool to the college students. 
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The COVID-19 pandemic has caused important disruption with in the domain of education, that is 

considered as essential determinant for economic progress of any country. Even developed countries 

are waging a battle against COVID-19 for minimizing the impact on their economy because of 

prolonged lockdown. Education sector isn’t an exception, and method of educational delivery has 

been grossly affected. There has been unforeseen and impetuous transition from real classroom to 

on-line and virtual teaching methodology across the world. There’s an enormous question on the 

sustainability of online mode of teaching post-pandemic and its percussions on world education 

market. Impact of lockdown on the teaching—learning method has been studied in present paper 

with the objective to assess the quality of online classes and challenges associated with them. The 

paper proposes about the benefits of social media  in virtual education among College Students 

In order to deal with uncertainties, the thought of fuzzy sets and fuzzy set operations was 

introduced by Zadeh [17]. The speculation of fuzzy topological space was studied and developed by 

C.L. Chang [3]. The paper of Chang sealed the approach for the subsequent growth of the 

various fuzzy topological ideas. Since then a lot of attention has been paid to generalize the 

fundamental ideas of general topology in fuzzy setting and therefore a contemporary theory of fuzzy 

topology has been developed. Atanassov and plenty of researchers [1] worked on intuitionistic fuzzy 

sets within the literature. Florentine Smarandache [15] introduced the idea of Neutrosophic set in 

1995 that provides the information of neutral thought by introducing the new issue referred to 

as uncertainty within the set. Thus neutrosophic set was framed and it includes the parts of truth 

membership function(T), indeterminacy membership function(I), and falsity membership 

function(F) severally. Neutrosophic sets deals with non normal interval of ]−0 1+[. Pentapartitioned 

neutrosophic set and its properties were introduced by Rama Malik and Surpati Pramanik [14]. In 

this case, indeterminacy is divided into three components: contradiction, ignorance, and an unknown 

membership function. The concept of Pentapartitioned neutrosophic pythagorean sets was initiated 

by R. Radha and A. Stanis Arul Mary[9]. 

Similarity measure is an important topic in the current fuzzy, Pythagorean , Neutrosophic and 

different hybrid environments. Recently, the improved correlation coefficients of Pentapartitioned 

Neutrosophic Pythagorean sets and Quadripartitioned Neutrosophic Pythagorean sets was 

introduced by R. Radha and A. Stanis Arul Mary. Pranamik and Mondal [5,6]has also proposed 

weighted similarity measures based on tangent function and cotangent function and its application 

on medical diagnosis. In this paper, the weighted similarity measures of Tangent and Cotangent 

functions has been applied to PNP sets in virtual education during Covid Pandemic. 

 

2. Preliminaries 
 

2.1 Definition [15] 

Let X be a universe. A Neutrosophic set A on X can be defined as follows: 

𝐴 = {< 𝑥, 𝑇𝐴 (𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >: 𝑥 ∈ 𝑋} 

Where 𝑇𝐴 , 𝐼𝐴, 𝐹𝐴: 𝑈 → [0,1] 𝑎𝑛𝑑 0 ≤ 𝑇𝐴 (𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴 (𝑥) ≤ 3 
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2.2 Definition [9] 

Let X be a universe. A Pentapartitioned neutrosophic pythagorean [PNP] set A with T, F, C and U as 

dependent neutrosophic components and I as independent component for A on X is an object of the 

form 

𝐴 = {< 𝑥, 𝑇𝐴, 𝐶𝐴, 𝐼𝐴, 𝑈𝐴 , 𝐹𝐴 >: 𝑥 ∈ 𝑋} 

Where 𝑇𝐴 + 𝐹𝐴 ≤ 1, 𝐶𝐴 + 𝑈𝐴 ≤ 1 𝑎𝑛𝑑 

(𝑇𝐴 )2 + (𝐶𝐴)2 + (𝐼𝐴)2 + (𝑈𝐴 )2 + (𝐹𝐴 )2 ≤ 3 

Here, 𝑇𝐴(𝑥) is the truth membership, 𝐶𝐴(𝑥) is contradiction membership, 𝑈𝐴 (𝑥) is ignorance 

membership, 𝐹𝐴(𝑥) is the false membership and IA (𝑥) is an unknown membership. 

 
2.3 Definition [14] 

Let P be a non-empty set. A Pentapartitioned neutrosophic set A over P characterizes each element p 

in P a truth -membership function 𝑇𝐴 , a contradiction membership function 𝐶𝐴 , an ignorance 

membership function 𝐺𝐴, unknown membership function 𝑈𝐴 and a false membership function 𝐹𝐴 , 

such that for each p in P 

 
2.4 Definition [9] 

𝑇𝐴 + 𝐶𝐴 + 𝐺𝐴 + 𝑈𝐴 + 𝐹𝐴 ≤ 5 

The complement of a pentapartitioned neutrosophic pythagorean set A on R Denoted by AC or A* 

and is defined as 

AC = {< 𝑥, 𝐹𝐴(𝑥), 𝑈𝐴 (𝑥), 1 − 𝐺𝐴(𝑥), 𝐶𝐴(𝑥), 𝑇𝐴 (𝑥) > ∶ 𝑥 ∈ 𝑋} 

 
2.5 Definition [9] 

Let A = < 𝑥, 𝑇𝐴 (𝑥), 𝐶𝐴(𝑥), 𝐺𝐴(𝑥), 𝑈𝐴(𝑥), 𝐹𝐴 (𝑥) > and 

B = < 𝑥, 𝑇𝐵 (𝑥), 𝐶𝐵(𝑥), 𝐺𝐵(𝑥), 𝑈𝐵(𝑥), 𝐹 𝐵(𝑥) > are pentapartitioned neutrosophic pythagorean sets. 

Then 

A 𝖴 B = < 𝑥, 𝑚𝑎𝑥(𝑇𝐴 (𝑥), 𝑇𝐵 (𝑥)), 𝑚𝑎𝑥(𝐶𝐴(𝑥), 𝐶𝐵(𝑥)), min(𝐺𝐴(𝑥), 𝐺 𝐵(𝑥)), 

min(𝑈𝐴(𝑥), 𝑈 𝐵(𝑥)), min(𝐹𝐴(𝑥), 𝐹𝐵 (𝑥)), > 

A ∩ B = < 𝑥, 𝑚𝑖𝑛(𝑇𝐴(𝑥), 𝑇𝐵 (𝑥)), 𝑚𝑖𝑛(𝐶𝐴(𝑥), 𝐶𝐵(𝑥)), max(𝐺𝐴(𝑥), 𝐺 𝐵(𝑥)) 

, 𝑚𝑎𝑥(𝑈𝐴(𝑥), 𝑈𝐵(𝑥)), 𝑚𝑎𝑥(𝐹𝐴(𝑥), 𝐹 𝐵(𝑥)) > 

2.6 Definition[9] 

A PNP topology on a nonempty set R is a family of a PNP sets in R satisfying the following axioms 

1) 0,1∈ 𝑟 

2)   𝑅1 ∩ 𝑅2 ∈ 𝑟 for any 𝑅1, 𝑅2 ∈ 𝑟 

3)   ⋃ 𝑅𝑖 ∈ 𝑟 for any 𝑅𝑖: 𝑖 ∈ 𝐼 ⊆ 𝑟 

The complement R* of PNP open set (PNPOS, in short) in PNP topological space [PNPTS] (R,𝑟), is 

called a PNP closed set [PNPCS]. 
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3. Tangent and Cotangent Similarity Measures of PNP Sets 

 

3.1 Definition 
 

Let P = {(r, B1𝑃(𝑟), B2𝑃(𝑟), B3𝑃(𝑟), B4𝑃(𝑟), B5𝑃(𝑟)): 𝑟 ∈ 𝑅} and 

Q = {(r, B1𝑄(𝑟), B2𝑄(𝑟), B3𝑄(𝑟), B4𝑄(𝑟), B5𝑄)(𝑟): 𝑟 ∈ 𝑅} be two Pentapartitioned Neutrosophic 

Pythagorean numbers with B1 and B5, B2 and B4 as dependent Neutrosophic components. Now 

tangent similarity function which measures the similarity between two vectors based only on the 

direction, ignoring the impact of the distance between them can be presented as follows 

𝑇 (𝑃, 𝑄) = 
1 

∑𝑛 [1 − tan( 
𝜋 

[|𝐵12 (𝑟 ) − 𝐵12 (𝑟 )|+|𝐵22 (𝑟 ) − 𝐵22 (𝑟 )| + |𝐵32 (𝑟 ) − 𝐵32 (𝑟 )| + 
  

𝑃𝑁𝑃 𝑛     𝑖=1 20 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 
 

|𝐵42 (𝑟 ) − 𝐵42 (𝑟 )| + |𝐵52 − 𝐵52 |(𝑟 )])] 
 

3.2 Theorem 

𝑃     𝑖 𝑄     𝑖 𝑃 𝑄 𝑖 

The defined tangent similarity measure 𝑇𝑃𝑁𝑃 (𝑃, 𝑄) between PNP set P and Q satisfies the following 

properties 

1. 0 ≤ 𝑇𝑃𝑁𝑃 (𝑃, 𝑄) ≤ 1 ; 

2. 𝑇𝑃𝑁𝑃 (𝑃, 𝑄) = 1 iff P = Q; 

3. 𝑇𝑃𝑁𝑃 (𝑃, 𝑄) = 𝑇𝑃𝑁𝑃 (𝑄, 𝑃); 

4. If T is a PNP set in R and P ⊆ 𝑄 ⊆ 𝑇 then 

𝑇𝑃𝑁𝑃 (𝑃, 𝑇) ≤ 𝑇𝑃𝑁𝑃 (𝑃, 𝑄) and 𝑇𝑃𝑁𝑃 (𝑃, 𝑇) ≤ 𝑇𝑃𝑁𝑃 (𝑄, 𝑇). 

Proof 

1) As the truth membership, contradiction membership, ignorance membership, falsity membership 

and the unknown membership function of the PNP sets and the value of the tangent function also is 

within [0,1]. 

Hence 0≤ 𝑇𝑃𝑁𝑃 (𝑃, 𝑄) ≤ 1. 

2) For any two PNP sets P and Q if P = Q, this implies B 1𝑃(𝑟𝑖) = B1𝑄(𝑟𝑖), B2𝑃(𝑟𝑖) = B2𝑄(𝑟𝑖), 

B3𝑃(𝑟𝑖) = B3𝑄(𝑟𝑖), B4𝑃(𝑟𝑖) = B4𝑄(𝑟𝑖) and B5𝑃(𝑟𝑖) = B5𝑄(𝑟𝑖). 
Hence |𝐵12 (𝑟 ) − 𝐵12 (𝑟 )| = 0, |𝐵22 (𝑟 ) − 𝐵22 (𝑟 )| = 0, |𝐵32 (𝑟 ) − 𝐵32 (𝑟 )| = 0, 

𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 

|𝐵42 (𝑟 ) − 𝐵42 (𝑟 )| = 0 and |𝐵52 (𝑟 ) − 𝐵52 (𝑟 )|. 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 

Thus 𝑇𝑃𝑁𝑃 (𝑃, 𝑄) = 1. 
Conversely, if   𝑇𝑃𝑁𝑃 (𝑃, 𝑄) = 1 ,   then |𝐵12 (𝑟 ) − 𝐵12 (𝑟 )| = 0, |𝐵22 (𝑟 ) − 𝐵22 (𝑟 )| = 0, |𝐵32 (𝑟 ) − 

𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 

𝐵32 (𝑟𝑖)| = 0 , |𝐵42 (𝑟 ) − 𝐵42 (𝑟 )| = 0 and |𝐵52 (𝑟 ) − 𝐵52 (𝑟 )| since tan(0) = 0. So we can write 
𝑄 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 

B 1𝑃(𝑟𝑖) = B1𝑄(𝑟𝑖 ), B 2𝑃(𝑟𝑖) = B2𝑄(𝑟𝑖) , B 3𝑃(𝑟𝑖) = B3𝑄(𝑟𝑖 ) , B 4𝑃(𝑟𝑖) = B4𝑄(𝑟𝑖) and B 5𝑃(𝑟𝑖) = 

B5𝑄(𝑟𝑖). 

Hence P = Q. 

3) The Proof is obvious 

4) If P ⊆ 𝑄 ⊆ 𝑇 then B1𝑃(𝑟𝑖) ≤ B1𝑄(𝑟𝑖) ≤ B1𝑇(𝑟𝑖), B2𝑃(𝑟𝑖) ≤ B2𝑄(𝑟𝑖) ≤ B2𝑇(𝑟𝑖), 

B3𝑃(𝑟𝑖) ≤ B3𝑄(𝑟𝑖) ≤ B3𝑇(𝑟𝑖), B4𝑃(𝑟𝑖) ≤ B4𝑄(𝑟𝑖) ≤ B4𝑇(𝑟𝑖) and B5𝑃(𝑟𝑖) ≤ B5𝑄(𝑟𝑖) ≤ B5𝑇(𝑟𝑖). 
|𝐵12 (𝑟 ) − 𝐵12 (𝑟 )| ≤ |𝐵12 (𝑟 ) − 𝐵12 (𝑟 )|, 

𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵12 (𝑟𝑖) − 𝐵12 (𝑟 )| ≤ |𝐵12 (𝑟 ) − 𝐵12 (𝑟 )|, 
𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 
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𝑖=1 

𝑖=1 

 

|𝐵22 (𝑟 ) − 𝐵22 (𝑟 )| ≤ |𝐵22 (𝑟 ) − 𝐵22 (𝑟 )|, 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵22 (𝑟𝑖) − 𝐵22 (𝑟 )| ≤ |𝐵22 (𝑟 ) − 𝐵22 (𝑟 )|, 
𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵32 (𝑟 ) − 𝐵32 (𝑟 )| ≤ |𝐵32 (𝑟 ) − 𝐵32 (𝑟 )|, 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵32 (𝑟𝑖) − 𝐵32 (𝑟 )| ≤ |𝐵32 (𝑟 ) − 𝐵32 (𝑟 )|, 
𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵42 (𝑟 ) − 𝐵42 (𝑟 )| ≤ |𝐵42 (𝑟 ) − 𝐵42 (𝑟 )|, 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵42 (𝑟𝑖) − 𝐵42 (𝑟 )| ≤ |𝐵42 (𝑟 ) − 𝐵42 (𝑟 )|, 
𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵52 (𝑟 ) − 𝐵52 (𝑟 )| ≤ |𝐵52 (𝑟 ) − 𝐵52 (𝑟 )|, 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵52 (𝑟𝑖) − 𝐵52 (𝑟 )| ≤ |𝐵52 (𝑟 ) − 𝐵52 (𝑟 )|. 
 

Thus, 

𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 

𝑇𝑃𝑁𝑃 (𝑃, 𝑇) ≤ 𝑇𝑃𝑁𝑃 (𝑃, 𝑄) and 𝑇𝑃𝑁𝑃 (𝑃, 𝑇) ≤ 𝑇𝑃𝑁𝑃 (𝑄, 𝑇) 

Since tangent function is increasing in the interval [0, 

 

 
𝜋]. 
4 

 

3.3 Definition 
 

Let P = {(r, B1𝑃(𝑟), B2𝑃(𝑟), B3𝑃(𝑟), B4𝑃(𝑟), B5𝑃(𝑟)): 𝑟 ∈ 𝑅} and 

Q = {(r, B1𝑄(𝑟), B2𝑄(𝑟), B3𝑄(𝑟), B4𝑄(𝑟), B5𝑄)(𝑟): 𝑟 ∈ 𝑅} be two Pentapartitioned Neutrosophic 

Pythagorean numbers with B1 and B5, B2 and B4 as dependent Neutrosophic components. Now 

weighted tangent similarity function which measures the similarity between two vectors based 

only on the direction, ignoring the impact of the distance between them can be presented as follows 
𝑇 (𝑃, 𝑄) = ∑𝑛 𝑤 [1 − tan(

 𝜋 
[|𝐵12 (𝑟 ) − 𝐵12 (𝑟 )|+|𝐵22 (𝑟 ) − 𝐵22 (𝑟 )| + |𝐵32 (𝑟 ) − 𝐵32 (𝑟 )| + 

𝑊𝑃𝑁𝑃 𝑖=1 𝑖 20 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 

|𝐵42 (𝑟 ) − 𝐵42 (𝑟 )| + |𝐵52 − 𝐵52 |(𝑟 )])] 
𝑃     𝑖 𝑄     𝑖 𝑃 𝑄 𝑖 

Where 𝑤𝑖 ∈ [0,1], 𝑖 = 0,1,2 … 𝑛 are the weights and ∑𝑛 𝑤𝑖 = 1. If we take 

 

1 

𝑤𝑖 = 
𝑛 

, 𝑖 = 
 

0,1,2 … , 𝑛, then 𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) = 𝑇𝑃𝑁𝑃 (𝑃, 𝑄). 

 
3.4 Theorem 

The defined weighted tangent similarity measure 𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) between PNP set P and Q satisfies the 

following properties 

1) 0 ≤ 𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) ≤ 1 ; 

2) 𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) = 1 iff P = Q; 

3) 𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) = 𝑇𝑊𝑃𝑁𝑃 (𝑄, 𝑃); 

4) If T is a PNP set in R and P ⊆ 𝑄 ⊆ 𝑇 then 

𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑇) ≤ 𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) and 𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑇) ≤ 𝑇𝑊𝑃𝑁𝑃 (𝑄, 𝑇). 

Proof 

1) As the truth membership, contradiction membership, ignorance membership, falsity membership 

and the unknown membership function of the PNP sets and the value of the tangent function also is 

within [0,1] and Where 𝑤𝑖   ∈ [0,1], 𝑖 = 0,1,2 … 𝑛 are the weights and ∑𝑛 𝑤𝑖 = 1. 

Hence 0≤ 𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) ≤ 1. 
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2) For any two PNP sets P and Q if P = Q, this implies B1𝑃(𝑟𝑖) = B1𝑄(𝑟𝑖), B2𝑃(𝑟𝑖) = B2𝑄(𝑟𝑖), 

B3𝑃(𝑟𝑖) = B3𝑄(𝑟𝑖), B4𝑃(𝑟𝑖) = B4𝑄(𝑟𝑖) and B5𝑃(𝑟𝑖) = B5𝑄(𝑟𝑖). 
Hence |𝐵12 (𝑟 ) − 𝐵12 (𝑟 )| = 0, |𝐵22 (𝑟 ) − 𝐵22 (𝑟 )| = 0, |𝐵32 (𝑟 ) − 𝐵32 (𝑟 )| = 0, 

𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 

|𝐵42 (𝑟 ) − 𝐵42 (𝑟 )| = 0 and |𝐵52 (𝑟 ) − 𝐵52 (𝑟 )|. 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 

Thus 𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) = 1. 
Conversely, if 𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) = 1 ,   then |𝐵12 (𝑟 ) − 𝐵12 (𝑟 )| = 0, |𝐵22 (𝑟 ) − 𝐵22 (𝑟 )| = 0, |𝐵32 (𝑟 ) − 

𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 

𝐵32 (𝑟𝑖)| = 0 , |𝐵42 (𝑟 ) − 𝐵42 (𝑟 )| = 0 and |𝐵52 (𝑟 ) − 𝐵52 (𝑟 )| since tan(0) = 0. So we can write 
𝑄 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 

B 1𝑃(𝑟𝑖) = B1𝑄(𝑟𝑖 ), B 2𝑃(𝑟𝑖) = B2𝑄(𝑟𝑖) , B 3𝑃(𝑟𝑖) = B3𝑄(𝑟𝑖 ) , B 4𝑃(𝑟𝑖) = B4𝑄(𝑟𝑖) and B 5𝑃(𝑟𝑖) = 

B5𝑄(𝑟𝑖). 

Hence P = Q. 

3) The Proof is obvious 

4) If P ⊆ 𝑄 ⊆ 𝑇 then B1𝑃(𝑟𝑖) ≤ B1𝑄(𝑟𝑖) ≤ B1𝑇(𝑟𝑖), B2𝑃(𝑟𝑖) ≤ B2𝑄(𝑟𝑖) ≤ B2𝑇(𝑟𝑖), 

B 3𝑃(𝑟𝑖) ≤ B3𝑄(𝑟𝑖) ≤ B3𝑇(𝑟𝑖), B4𝑃(𝑟𝑖) ≤ B4𝑄(𝑟𝑖) ≤ B4𝑇(𝑟𝑖) and B5𝑃(𝑟𝑖) ≤ B5𝑄(𝑟𝑖) ≤ B5𝑇(𝑟𝑖) and 
𝑛 
𝑖=1 𝑤𝑖 = 1.  

|𝐵12 (𝑟 ) − 𝐵12 (𝑟 )| ≤ |𝐵12 (𝑟 ) − 𝐵12 (𝑟 )|, 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵12 (𝑟𝑖) − 𝐵12 (𝑟 )| ≤ |𝐵12 (𝑟 ) − 𝐵12 (𝑟 )|, 
𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵22 (𝑟 ) − 𝐵22 (𝑟 )| ≤ |𝐵22 (𝑟 ) − 𝐵22 (𝑟 )|, 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵22 (𝑟𝑖) − 𝐵22 (𝑟 )| ≤ |𝐵22 (𝑟 ) − 𝐵22 (𝑟 )|, 
𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵32 (𝑟 ) − 𝐵32 (𝑟 )| ≤ |𝐵32 (𝑟 ) − 𝐵32 (𝑟 )|, 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵32 (𝑟𝑖) − 𝐵32 (𝑟 )| ≤ |𝐵32 (𝑟 ) − 𝐵32 (𝑟 )|, 
𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵42 (𝑟 ) − 𝐵42 (𝑟 )| ≤ |𝐵42 (𝑟 ) − 𝐵42 (𝑟 )|, 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵42 (𝑟𝑖) − 𝐵42 (𝑟 )| ≤ |𝐵42 (𝑟 ) − 𝐵42 (𝑟 )|, 
𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵52 (𝑟 ) − 𝐵52 (𝑟 )| ≤ |𝐵52 (𝑟 ) − 𝐵52 (𝑟 )|, 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵52 (𝑟𝑖) − 𝐵52 (𝑟 )| ≤ |𝐵52 (𝑟 ) − 𝐵52 (𝑟 )|. 
 

Thus, 

𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 

𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑇) ≤ 𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) and 𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑇) ≤ 𝑇𝑊𝑃𝑁𝑃 (𝑄, 𝑇) 
𝜋 

Since tangent function is increasing in the interval [0, ]. 
4 

 

3.5 Definition 
 

Assume that P = {(r, B1𝑃(𝑟), B2𝑃(𝑟), B3𝑃(𝑟), B4𝑃(𝑟), B5𝑃(𝑟)): 𝑟 ∈ 𝑅} and 

Q = {(r, B1𝑄(𝑟), B2𝑄(𝑟), B3𝑄(𝑟), B4𝑄(𝑟), B5𝑄)(𝑟): 𝑟 ∈ 𝑅} are two Pentapartitioned Neutrosophic 

Pythagorean numbers with B1 and B5, B2 and B4 as dependent Neutrosophic components. A 

cotangent similarity measure between two PNP sets P and Q is proposed as follows 

𝐶𝑂𝑇 (𝑃, 𝑄) = 
1 

∑𝑛 [cot( 
𝜋 

[5 + |𝐵12 (𝑟 ) − 𝐵12 (𝑟 )|+|𝐵22 (𝑟 ) − 𝐵22 (𝑟 )| + |𝐵32 (𝑟 ) − 𝐵32 (𝑟 )| + 
  

𝑃𝑁𝑃 𝑛     𝑖=1 20 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 
 

|𝐵42 (𝑟 ) − 𝐵42 (𝑟 )| + |𝐵52 − 𝐵52 |(𝑟 )])] 
𝑃     𝑖 𝑄     𝑖 𝑃 𝑄 𝑖 

 

3.6 Theorem 

The cotangent similarity measure 𝐶𝑂𝑇𝑃𝑁𝑃 (𝑃, 𝑄) between PNP set P and Q also satisfies the following 

properties 

∑ 
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𝑖=1 

𝑖=1 

 

1) 0 ≤ 𝐶𝑂𝑇𝑃𝑁𝑃 (𝑃, 𝑄) ≤ 1 ; 

2) 𝐶𝑂𝑇𝑃𝑁𝑃 (𝑃, 𝑄) = 1 iff P = Q; 

3) 𝐶𝑂𝑇𝑃𝑁𝑃 (𝑃, 𝑄) = 𝐶𝑂𝑇𝑃𝑁𝑃 (𝑄, 𝑃); 

4) If T is a PNP set in R and P ⊆ 𝑄 ⊆ 𝑇 then 

𝐶𝑂𝑇𝑃𝑁𝑃 (𝑃, 𝑇) ≤ 𝐶𝑂𝑇𝑃𝑁𝑃 (𝑃, 𝑄) and CO𝑇𝑃𝑁𝑃 (𝑃, 𝑇) ≤ 𝐶𝑂𝑇𝑃𝑁𝑃 (𝑄, 𝑇). 

 

3.7 Definition 
 

Assume that P = {(r, B1𝑃(𝑟), B2𝑃(𝑟), B3𝑃(𝑟), B4𝑃(𝑟), B5𝑃(𝑟)): 𝑟 ∈ 𝑅} and 

Q = {(r, B1𝑄(𝑟), B2𝑄(𝑟), B3𝑄(𝑟), B4𝑄(𝑟), B5𝑄)(𝑟): 𝑟 ∈ 𝑅} are two Pentapartitioned Neutrosophic 

Pythagorean numbers with B1 and B5, B2 and B4 as dependent Neutrosophic components. A 

weighted cotangent similarity measure between two PNP sets P and Q is proposed as follows 
𝐶𝑂𝑇  𝜋  (𝑃, 𝑄) = ∑𝑛 𝑤 [cot(   [5 + |𝐵12 (𝑟 ) − 𝐵12 (𝑟 )|+|𝐵22 (𝑟 ) − 𝐵22 (𝑟 )| + |𝐵32 (𝑟 ) − 𝐵32 (𝑟 )| + 

𝑊𝑃𝑁𝑃 𝑖=1 𝑖 20 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 

|𝐵42 (𝑟 ) − 𝐵42 (𝑟 )| + |𝐵52 − 𝐵52 |(𝑟 )])] 
𝑃     𝑖 𝑄     𝑖 𝑃 𝑄 𝑖 

Where 𝑤𝑖 ∈ [0,1], 𝑖 = 0,1,2 … 𝑛 are the weights and ∑𝑛 𝑤𝑖 = 1. If we take 

 

1 

𝑤𝑖 = 
𝑛 

, 𝑖 = 
 

0,1,2 … , 𝑛, then 𝐶𝑂𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) = 𝐶𝑂𝑇𝑃𝑁𝑃 (𝑃, 𝑄). 

 
3.8 Theorem 

The weighted cotangent similarity measure 𝐶𝑂𝑇𝑃𝑁𝑃 (𝑃, 𝑄) between PNP set P and Q also satisfies the 

following properties 

1) 0 ≤ 𝐶𝑂𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) ≤ 1 ; 

2) 𝐶𝑂𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) = 1 iff P = Q; 

3) 𝐶𝑂𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) = 𝐶𝑂𝑇𝑊𝑃𝑁𝑃 (𝑄, 𝑃); 

4) If T is a PNP set in R and P ⊆ 𝑄 ⊆ 𝑇 then 

𝐶𝑂𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑇) ≤ 𝐶𝑂𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) and CO𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑇) ≤ 𝐶𝑂𝑇𝑊𝑃𝑁𝑃 (𝑄, 𝑇). 

Proof 

1) As the truth membership, contradiction membership, ignorance membership, falsity membership 

and the unknown membership function of the PNP sets and the value of the tangent function also is 

within [0,1] and ∑𝑛   𝑤𝑖 = 1. 

Hence 0≤ 𝐶𝑂𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) ≤ 1. 

2) For any two PNP sets P and Q if P = Q, this implies B 1𝑃(𝑟𝑖) = B1𝑄(𝑟𝑖), B2𝑃(𝑟𝑖) = B2𝑄(𝑟𝑖), 

B3𝑃(𝑟𝑖) = B3𝑄(𝑟𝑖), B4𝑃(𝑟𝑖) = B4𝑄(𝑟𝑖) and B5𝑃(𝑟𝑖) = B5𝑄(𝑟𝑖). 
Hence |𝐵12 (𝑟 ) − 𝐵12 (𝑟 )| = 0, |𝐵22 (𝑟 ) − 𝐵22 (𝑟 )| = 0, |𝐵32 (𝑟 ) − 𝐵32 (𝑟 )| = 0, 

𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 

|𝐵42 (𝑟 ) − 𝐵42 (𝑟 )| = 0 and |𝐵52 (𝑟 ) − 𝐵52 (𝑟 )|. 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 

Thus 𝐶𝑂𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) = 1. 
Conversely, if 𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) = 1 ,   then |𝐵12 (𝑟 ) − 𝐵12 (𝑟 )| = 0, |𝐵22 (𝑟 ) − 𝐵22 (𝑟 )| = 0, |𝐵32 (𝑟 ) − 

𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 

𝐵32 (𝑟𝑖)| = 0 , |𝐵42 (𝑟 ) − 𝐵42 (𝑟 )| = 0 and |𝐵52 (𝑟 ) − 𝐵52 (𝑟 )| since tan(0) = 0. So we can write 
𝑄 𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑄     𝑖 
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𝑖=1 

 

B 1𝑃(𝑟𝑖) = B1𝑄(𝑟𝑖 ), B 2𝑃(𝑟𝑖) = B2𝑄(𝑟𝑖) , B 3𝑃(𝑟𝑖) = B3𝑄(𝑟𝑖 ) , B 4𝑃(𝑟𝑖) = B4𝑄(𝑟𝑖) and B 5𝑃(𝑟𝑖) = 

B5𝑄(𝑟𝑖). 

Hence P = Q. 

3) The Proof is obvious 

4) If P ⊆ 𝑄 ⊆ 𝑇 then B1𝑃(𝑟𝑖) ≤ B1𝑄(𝑟𝑖) ≤ B1𝑇(𝑟𝑖), B2𝑃(𝑟𝑖) ≤ B2𝑄(𝑟𝑖) ≤ B2𝑇(𝑟𝑖), 

B 3𝑃(𝑟𝑖) ≥ B3𝑄(𝑟𝑖 ) ≥ B3𝑇(𝑟𝑖) , B 4𝑃(𝑟𝑖) ≥ B4𝑄(𝑟𝑖) ≥ B4𝑇(𝑟𝑖) and B 5𝑃(𝑟𝑖) ≥ B5𝑄(𝑟𝑖) ≥ B5𝑇(𝑟𝑖) and 
𝑛 
𝑖=1 𝑤𝑖 = 1.  

|𝐵12 (𝑟 ) − 𝐵12 (𝑟 )| ≤ |𝐵12 (𝑟 ) − 𝐵12 (𝑟 )|, 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵12 (𝑟𝑖) − 𝐵12 (𝑟 )| ≤ |𝐵12 (𝑟 ) − 𝐵12 (𝑟 )|, 
𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵22 (𝑟 ) − 𝐵22 (𝑟 )| ≤ |𝐵22 (𝑟 ) − 𝐵22 (𝑟 )|, 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵22 (𝑟𝑖) − 𝐵22 (𝑟 )| ≤ |𝐵22 (𝑟 ) − 𝐵22 (𝑟 )|, 
𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵32 (𝑟 ) − 𝐵32 (𝑟 )| ≤ |𝐵32 (𝑟 ) − 𝐵32 (𝑟 )|, 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵32 (𝑟𝑖) − 𝐵32 (𝑟 )| ≤ |𝐵32 (𝑟 ) − 𝐵32 (𝑟 )|, 
𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵42 (𝑟 ) − 𝐵42 (𝑟 )| ≤ |𝐵42 (𝑟 ) − 𝐵42 (𝑟 )|, 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵42 (𝑟𝑖) − 𝐵42 (𝑟 )| ≤ |𝐵42 (𝑟 ) − 𝐵42 (𝑟 )|, 
𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵52 (𝑟 ) − 𝐵52 (𝑟 )| ≤ |𝐵52 (𝑟 ) − 𝐵52 (𝑟 )|, 
𝑃     𝑖 𝑄     𝑖 𝑃     𝑖 𝑇     𝑖 

|𝐵52 (𝑟𝑖) − 𝐵52 (𝑟 )| ≤ |𝐵52 (𝑟 ) − 𝐵52 (𝑟 )|. 
𝑄 𝑇     𝑖 𝑃     𝑖 𝑇     𝑖 

 

The cotangent function is decreasing function within the interval [0, 
 
𝜋]. 
4 

Hence ∑𝑛   𝑤𝑖 = 1. 

Hence, we can write 

CO𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑇) ≤ 𝐶𝑂𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) and 𝐶𝑂𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑇) ≤ 𝐶𝑂𝑇𝑊𝑃𝑁𝑃 (𝑄, 𝑇) 

 
4. Decision Making Based on Tangent and Cotangent Similarity Measures 

 

Let 𝐴1, 𝐴2, … 𝐴𝑚 be a discrete set of candidates, 𝐶1, 𝐶2, . . 𝐶𝑛 be the set of criteria for each candidate and 

𝐷1, 𝐷2, … . , 𝐷𝑘 are the alternatives of each candidate. The decision -maker provides the ranking of 

alternatives with respect to each candidate. The ranking presents the performance of candidates 

𝐴𝑖(𝑖 = 1,2, … 𝑚) against the criteria 𝐶𝑗 (𝑗 = 1,2 … , 𝑛).The values associated with the alternatives for 

MADM problem can be presented in the following decision matrix( see Tab 1 and Tab 2). The relation 

between candidates and attributes are given in Tab 1. The relation between attributes and alternatives 

are given in the Tab 2. 

 
Table 1 : The relation between candidates and attributes 

 

𝑅1 𝐶1 𝐶2 … 𝐶𝑛 

𝐴1 𝑎11 𝑎12 … 𝑎1𝑛 

𝐴2 𝑎21 𝑎13 … 𝑎2𝑛 

… … … … … 

∑ 
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𝐴𝑚 𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛 

 

 

 

 

 

 

 
 

Table 2 : The relation between attributes and alternatives 

 

𝑅2 𝐷1 𝐷2 … 𝐷𝑘 

𝐶1 𝑐11 𝑐12 … 𝑐1𝑘 

𝐶2 𝑐21 𝑐22 … 𝑐2𝑘 

… … … … … 

𝐶𝑛 𝑐𝑛1 𝑐𝑛2 … 𝑐𝑛𝑘 

 

 
 

Here 𝑎𝑖𝑗 and 𝑐𝑖𝑗 are all Pentapartitioned Neutrosophic Pythagorean Fuzzy numbers. 

The steps corresponding to Pentapartitioned Neutrosophic Pythagorean number based on tangent 

and cotangent functions are presented following steps. 

 
Step 1: Determination of the relation between candidates and attributes 

The relation between candidate 𝐴𝑖(𝑖 = 1,2, … 𝑚) and the attribute 𝐶𝑗 (𝑗 = 1,2 … 𝑛) is presented in 

Table 3. 

 
Table 3 : The relation between candidates and attributes in terms of PNP sets 

 

𝑅1 𝐶1 𝐶2 … 𝐶𝑛 

𝐴1 (𝑏111,𝑏211, 𝑏311, 𝑏411, 𝑏511) (𝑏112,𝑏212, 𝑏312, 𝑏412, 𝑏512) … (𝑏11𝑛,𝑏21𝑛, 𝑏31𝑛, 𝑏41𝑛, 𝑏51𝑛) 

𝐴2 (𝑏121,𝑏221, 𝑏321, 𝑏421, 𝑏521) (𝑏122,𝑏222, 𝑏322, 𝑏422, 𝑏522) … (𝑏12𝑛,𝑏22𝑛, 𝑏32𝑛, 𝑏42𝑛, 𝑏52𝑛) 

… … … … … 

𝐴𝑚 (𝑏1𝑚1, 

𝑏2𝑚1, 𝑏3𝑚1, 𝑏4𝑚1, 𝑏5𝑚1) 

(𝑏1𝑚2, 

𝑏2𝑚2, 𝑏3𝑚2, 𝑏4𝑚2, 𝑏5𝑚2) 

… (𝑏1𝑚𝑛, 

𝑏2𝑚𝑛 , 𝑏3𝑚𝑛 , 𝑏4𝑚𝑛 , 𝑏5𝑚𝑛 ) 

 
Table 4 : The relation between attributes and alternatives in terms of PNP sets 

 

𝑅2 𝐷1 𝐷2 … 𝐷𝑘 

𝐶1 (𝑐111,𝑐𝑏211, 𝑐311, 𝑐411, 𝑐511) (𝑐112,𝑐212, 𝑐312, 𝑐412, 𝑐512) … (𝑐11𝑘,𝑐21𝑘, 𝑐31𝑘, 𝑐41𝑘, 𝑐51𝑘) 

𝐶2 (𝑏121,𝑏221, 𝑏321, 𝑏421, 𝑏521) (𝑐122,𝑐222, 𝑐322, 𝑐422, 𝑐522) … (𝑐12𝑘,𝑐22𝑘, 𝑐32𝑘, 𝑐42𝑘, 𝑐52𝑘) 

… … … … … 
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𝐶𝑛 (𝑐1𝑛1,𝑐2𝑛1, 𝑐3𝑛1, 𝑐4𝑛1, 𝑐5𝑛1) (𝑐1𝑛2,𝑐2𝑛2, 𝑐3𝑛2, 𝑐4𝑛2, 𝑐5𝑛2) … (𝑐1𝑛𝑘,𝑐2𝑛𝑘, 𝑐3𝑛𝑘, 𝑐4𝑛𝑘, 𝑐5𝑛𝑘) 

 
Step 3: Determination of the relation between attributes and alternatives 

Determine the similarity measure between the Tab 3 and Tab 4 using 𝑇𝑃𝑁𝑃 (𝑃, 𝑄)   𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄) , 

𝐶𝑂𝑇𝑃𝑁𝑃 (𝑃, 𝑄) and 𝐶𝑂𝑇𝑊𝑃𝑁𝑃 (𝑃, 𝑄). 

Step 4: Ranking the alternatives 

Ranking the alternatives is prepared based on the descending order of the similarity measures. 

Highest value reflects the best alternative. 

Step 5: End 

5. Example 

Higher education institutions have faced various challenges in adapting online education to control 

the pandemic spread of COVID. The present work aims to apply similaty measures between social 

media and its benefits of students.Let D ={ R1, R2 ,R3} be a set of College student respondents , E = { 

YouTube, Facebook, WhatsApp, Blog} be Social medias and H ={ Communication Tool, Online 

Learning, Connecting with experts, Global exposure} be its benefits.The solution strategy is to 

determine the student regarding the relation between student respondents and its benefits in virtual 

education (see Tab 5) and the relation between socal media and its benefits in Table 6 . Further we 

have calculated Tangent and Cotangent similarity measures can be calculated in Table 7 and 8. Also 

the weighted similarity measures of the tangent and cotangent functions of PNP sets be calculated in 

Table 9 and 10. 

 
Table 5 : (P1) The relation between respondents and benefits in Virtual Education 

 
P1 Online Learning Communication Tool Connecting with Experts Global Exposure 

R1 (0.7,0.2,0.8,0.3,0.3) (0.1,0.2,0.9,0.3,0.7) (0.4,0.2,0.2,0.3,0.6) (0.2,0.2,0.7,0.3,0.8) 

R2 (0.3,0.2,0.1,0.3,0.5) (0.6,0.2,0.8,0.3,0.4) (0.6,0.2,0.1,0.3,0.4) (0.2,0.2,0.9,0.3,0.7) 

R3 (0.1,0.2,0.8,0.3,0.5) (0.6,0.2,0.8,0.3,0.4) (0.6,0.2,0.1,0.3,0.4) (0.7,0.2,0.7,0.3,0.3) 

 
Table 6: (P2) The relation between Social Media and its benefits 

 
P2 WhatsApp YouTube Facebook Blog 

Online Learning (0.4,0.2,0.6.0.3,0.1) (0.1,0.2,0.5,0.3.0.5) (0.2,0.2,0.5,0.3,0.4) (0.2,0.4,0.6,0.7,0.3) 

Communication 

Tool 

(0.7,0.2,0.9,0.3,0.3) (0.5,0.2,0.9,0.3,0.5) (0.7,0.2,0.1,0.3,0.2) (0.3,0.5,0.8,0.1,0.2) 

Connecting with 

Experts 

(0.1,0.2,0.5,0.3,0.7) (0.8,0.2.0.1,0.3,0.2) (0.6,0.2,0.8,0.3,0.4) (0.4,0.6,0.2,0.1,0.1) 
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Global Exposure (0.6,0.2,0.3,0.3,0.4) (0.5,0.2,0.2,0.3,0.5) (0.6,0.2,0.9,0.3,0.4) (0.1,0.2,0.3,0.5,0.3) 

 

 

 

 

 

Table 7: The Tangent Similarity Measure between P1 and P2 

 
Tangent 

Similarity 

Measure 

WhatsApp YouTube Facebook Blog 

R1 0.9467 0.9430 0.9148 0.9463 

R2 0.9583 0.9792 0.9603 0.9350 

R3 0.9595 0.9791 0.9504 0.9430 

 
Table 8: The Weighted Tangent Similarity Measure between P1 and P2 

 
Weighted 

Tangent 

Similarity 

Measure 

WhatsApp YouTube Facebook Blog 

R1 0.9444 0.9409 0.919 0.9308 

R2 0.9547 0.977 0.9597 0.9319 

R3 0.9635 0.9771 0.9565 0.9416 

 
Table 9: The Cotangent Similarity Measure between P1 and P2 

 
Cotangent 

Similarity 

Measure 

WhatsApp YouTube Facebook Blog 

R1 0.8995 0.8927 0.8504 0.8706 

R2 0.9583 0.9599 0.9195 0.8788 

R3 0.9244 0.9488 0.9092 0.8927 

 
Table 10: The Weighted Cotangent Similarity Measure between P1 and P2 

 
Weighted 

Cotangent 

WhatsApp YouTube Facebook Blog 
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Similarity 

Measure 

    

R1 0.8957 0.889 0.8587 0.871 

R2 0.9547 0.9561 0.9185 0.8732 

R3 0.9308 0.9425 0.9207 0.8904 

 
The highest similarity measures reflects the benefits of Social Media among College Students. 

Therefore Student R2 and R3 gains knowledge more from YouTube and R1 from WhatsApp. 

6. Conclusion 

In this paper, we have proposed tangent and cotangent similarity measures for Pentapartitioned 

Neutrosophic Pythagorean set with dependent Neutrosophic components and proved some of its 

basic properties. Furthermore, we have also investigated about the weighted similarity measures in 

Decision Making and illustrated with an example. In future, we can study about the improved 

similarity measure for the above set and can be used in Medical Diagnosis, Data mining. Clustering 

Analysis etc. 
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Abstract: The building of excavations is an extremely dangerous job that incorporates a variety of different 

variables. It is possible to significantly lower the likelihood of an accident occurring by first accurately 

identifying high-risk variables and then taking appropriate preventative steps. Single-valued neutrosophic 

verbal sets (SVNVS) can effectively represent qualitative and vague information when used in the 

identification process for high-risk variables of excavation systems. In addition, the identification of high-

risk elements associated with an excavation system is a multi-criteria decision-making (MCDM) issue. This 

issue may be resolved by using the multi-attribute border approximation area comparison (MABAC) 

technique. The MABAC method operates on the presumption that criteria are compensating. However, the 

identification process for high-risk variables of excavation systems may include characteristics that are not 

compensatory. Under conditions of single-valued neutrosophic sets, a MABAC approach is developed. The 

weights of the criterion are calculated using this approach, which uses the mean-squared deviation weight 

method. In addition to that, an illustrated example is carried out to demonstrate the process that is involved 

in the MABAC approach. 

.   

Keywords: Neutrosophic Sets; MCDM; MABAC; Mean Squared Deviation weight; SVNSs; Excavation 

System. 

 

 

1. Introduction  

 

Accidents are more likely to occur during the construction of the excavation if possible high-risk elements 

are not recognized and mitigated on time. One way to think of the excavation is as a sophisticated 

construction network for subterranean engineering[1], [2]. Due to the highly disguised nature of the 

construction process, the processing of construction information connected to excavation construction 

presents the managers of the project with a particularly difficult problem when compared to the processing 

of construction information linked to other civil engineering projects[3], [4]. In addition, in geotechnical 
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engineering, the experiences of specialists and engineers are essential, and they may give helpful references 

for engineering projects at various phases. This is because excavation construction is fraught with a great 

deal of uncertainty and fuzziness[5], [6]. 

To acquire correct risk levels, it is necessary to conduct an excavation risk assessment. The multivariable 

and nonlinear connection that exists among the variables and risk levels is the source of the majority of the 

challenges that are associated with this procedure[7], [8]. In the most recent decades, a large number of 

scholars have developed a variety of approaches to anticipate or evaluate the dangers associated with deep 

excavation. These methods include the fuzzy set theory as well as machine learning techniques like artificial 

neural networks (ANNs). 

Smarandache offered the neutrosophic set for the first time from a philosophical standpoint at the 

beginning[9]. A neutrosophic set may be summed up using three degrees: the degree of truth membership, 

the degree of indeterminacy membership, and the degree of falsity membership. It generalizes the idea of 

classic sets, fuzzy sets, interval-valued fuzzy sets, vague sets, intuitionistic fuzzy sets, interval-valued 

intuitionistic fuzzy sets, tautological sets, and vague intuitionistic fuzzy sets[10]–[12]. From a scientific 

standpoint, it is necessary to specify the neutrosophic set as well as the set-theoretic procedures. If this is 

not the case, then it will be difficult to use in actual scenarios[13], [14]. In light of this, Wang et al. came up 

with the idea of a single-valued neutrosophic set (SVNS), and they also presented the set-theoretic 

operators and several features associated with SVNSs[15], [16]. 

A novel approach has been developed, and it's called the MABAC technique. It demonstrates the basis of 

decision-making by using a clear calculation approach, a systematic process, and good logic in its 

operation. Peng and Yang utilized the MABAC to the R&D project choice technique to rate the projects and 

achieve the one they sought. This was accomplished by integrating the benefits of Pythagorean fuzzy sets 

with the MABAC[17], [18]. MABAC is a technique that was suggested by Xue et al. for the selection of 

materials to be used in interval-valued intuitionistic fuzzy environments. However, to the best of our 

knowledge, the investigation of the MADM issue using the MABAC approach has not been published in 

the current body of scholarly literature[19]–[21]. As a result, using the MABAC approach in MADM to rank 

the alternatives and come up with the best one while working in a single-valued neutrosophic system is an 

exciting study area[22]–[24]. 

The main contribution in this paper is organized as follows: 

I. The identification of the risks in the excavation systems is evaluated under the single-valued 

neutrosophic sets. 

II. This kind of this problem has not been applied under a neutrosophic environment in previous 

research. 

III. The excavation criteria are computed by the mean squared deviation. 

IV. The MABAC method is extended by the single-valued neutrosophic sets to rank the risks in the 

excavation system.  

V. A real case study is conducted in this paper in Egypt.  

VI. This research uses the cost and profit criteria and the single-valued neutrosophic operations in the 

normalization process. 
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The organization of the structure of this work is described below. In Section 2, the MABAC approach is 

constructed such that it may solve the issue of identifying dangers in excavation systems. In Section 3, we 

look at an example that illustrates how the excavation system in Egypt worked. The last section of the paper 

is called Section 4. 

 

2. The MABAC Method 

In this section, a MABAC approach for evaluating excavation systems is presented. The MABAC 

approach is broken down into two distinct stages. Obtaining the weight vector of variables is the primary 

objective of the initial phase[15]. During the second step, the discrepancies between the excavation system 

and the appropriate border approximation region are determined and the options are ranked. Fig. 1 is a 

diagram that illustrates the framework of the MABAC approach. The remainder of this section will go into 

further depth about its specifics[25], [26]. 

 

Fig 1. The framework of the MABAC method. 

 

Table 1. The MABAC variables. 

Symbols Description 

M Number of alternatives 

n Number of criteria 
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EXCSA (EXCSA1, EXCSA2, EXCSA3… . EXCSAm ) Alternatives 

EXCSC (EXCSC1, EXCSC2, EXCSC3… .EXCSCn ) Criteria 

𝐷𝑀1,𝐷𝑀2,𝐷𝑀3 Decision Makers  

𝑤 = (𝑤1 , 𝑤2. 𝑤3 , …𝑤𝑒)
𝑇    Weight Vector 

e Experts 

𝐷𝑀𝑔(𝑔 = 1,2,3,…… 𝑒) Decision Makers 

𝑟 = 1,2,3… . .𝑚 Alternatives 

𝑗 = 1,2,3,… . 𝑛 Criteria 

 

Obtained the decision matrix as: 

𝐻𝑔 =

(

 
 
𝐻11
𝑔

𝐻21
𝑔

𝐻12
𝑔

𝐻22
𝑔 ⋯

𝐻1𝑛
𝑔

𝐻2𝑛
𝑔

⋮ ⋱ ⋮
𝐻𝑚1
𝑔

𝐻𝑚2
𝑔

⋯ 𝐻𝑚𝑛
𝑔

)

 
 

,  

Where 𝐻𝑟𝑗
𝑔
= (𝑆𝑟𝑗

𝑔
, 𝑇𝑟𝑗
𝑔
, 𝐼𝑟𝑗
𝑔
, 𝐹𝑟𝑗

𝑔) is a single-valued neutrosophic verbal number (SVNVN) of 𝐸𝑋𝐶𝑆𝐴𝑟 against 

EXCSCj donated by experts 𝐷𝑀𝑔(𝑔 = 1,2,3,……𝑒)  

Phase 1: Compute the weight vector of factors.  

At this point in the process, the weight vector of the factors is acquired. A mean-squared deviation weight 

approach is used to estimate the relative importance of each criterion. The following is an explanation of 

the particulars of this phase. 

Step 1:  Compute the normalization decision matrix. 

In this step, if the criterion is cost then the criterion should be normalized. The profit criteria are not 

normalized.  

𝑁𝑜𝑟𝑟𝑗
𝑔
= {

𝑛𝑒𝑔(𝐻𝑟𝑗
𝑔 )  𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝐻𝑟𝑗
𝑔
   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                                           (1) 

Step 2: Combined the normalization of the decision matrix. 

There are many decision-makers and experts, so the normalized decision matrices should be combined into 

one matrix.  The combined normalized decision matrix obtained by 𝐶𝑜𝑚 = (𝐶𝑜𝑚𝑟𝑗)𝑚×𝑛
 

Step 3: Compute the mean value.  

In the future phases, a mean-squared deviation weight approach will be established. The mean value of all 

the different alternatives is used in this technique to evaluate every criterion. At this stage, the mean value 

of all the alternatives concerning the criteria is determined. 

The mean value donated as 𝑀(𝐶𝑜𝑚𝑗) 
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Step 4: Compute the mean squatted deviation values (𝜗) 

The mean squared deviation can be computed as: 

𝜗(𝐶𝑜𝑚𝑗) = √∑ (𝑑(𝐶𝑜𝑚𝑟𝑗 −𝑀(𝐶𝑜𝑚𝑗)))
2𝑚

𝑟=1                                                                                                            (2) 

Step 5: Compute the weight vector of all factors. 

The weights of factors can be computed as: 

𝑤𝑗 =
𝜗𝑗

∑ 𝜗𝑗
𝑛
𝑗=1

                                                                                                                                                                   (3) 

Phase 2: Rank the alternatives by the MABAC method. 

 

Step 6: Compute the weight decision matrix.  

The weight decision matrix can be computed by multiplying the weight vector of each criterion by the 

aggregated normalized decision matrix as: 

 

𝑊𝐷 (𝑤𝑑𝑟𝑗) = 𝑤𝑗 ∗ 𝐶𝑜𝑚𝑟𝑗                                                                                                                                                     (4) 

Step 7: Compute the border approximation area.  

The border approximation area can be computed by the MABAC method and donated as 𝐵 = (𝑏𝑗)𝑛×1
 

𝑏𝑗 = (∏ 𝑤𝑑𝑟𝑗
𝑚
𝑟=1 )

1

𝑚                                                                                                                                                      (5) 

Step 8: Compute the distance between the weighted normalized decision matrix and the border 

approximation area. 

The distance between 𝑏𝑗 and 𝑤𝑑𝑟𝑗  can be computed as: 

𝑇 = (𝑡𝑟𝑗)𝑚×𝑛
= {

𝑡(𝐶𝑜𝑚𝑟𝑗 , 𝑏𝑗)  𝑖𝑓 𝐶𝑜𝑚𝑟𝑗 > 𝑏_𝑗

−𝑡(𝐶𝑜𝑚𝑟𝑗 , 𝑏𝑗)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                                        (6) 

Step 9: Rank the alternatives. 

The alternatives are ranked according to: 

𝐹𝑟 = ∑ 𝑡𝑟𝑗
𝑛
𝑗=1                                                                                                                                                                    (7) 
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Fig 2. The hierarchy tree of criteria and alternatives. 

 

3. Results 

In this part, the MABAC approach is used to evaluate the excavation system. This section's primary 

objective is to explain how the MABAC should be used. 

The building activity of excavation has a greater danger. Because the building of the excavation involves a 

variety of different aspects. An investigation into the building of an excavation in Zhuhai, China, is used 

as the case study. Excavation construction carried out in a risk-free way is an extremely important aspect 

of the construction unit. 

Archaeology one hundred years ago was quite different from what it is now. Petrie used enormous teams 

of Egyptian excavators; nevertheless, their efforts were not acknowledged for the work that they did 

throughout the excavations that took place on a grander scale and at a quicker speed. 

Archaeologists utilize a wide variety of techniques that allow for more exact documentation than ever 

before, which has resulted in digs that are more specific and concentrated than ever before. Archaeologists 

in Egypt oversee their digs, and there has been an increase in the number of efforts made to engage local 

populations in Egypt via various outreach programs. The project will make in Saqqara, Egypt. The Saqqara 

site is part of a sprawling necropolis at Egypt's ancient capital of Memphis that includes the famed Giza 

Pyramids as well as smaller pyramids at Abu Sir, Dahshur, and Abu Ruwaysh. The ruins of Memphis were 

designated a UNESCO World Heritage site in the 1970s. 

It is necessary to establish both criteria and risk variables. For this research, five highly knowledgeable 

specialists in expert systems have been asked to carry out an excavation risk assessment. Fig 2. Shows the 

hierarchy tree between criteria and alternatives (risks). There are three experts to evaluate the criteria and 

alternatives. The weights vector of experts is (1/3,1/3,1/3). 
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In this portion, it was mentioned that SVNVN may be used to characterize assessments. Every specialist 

evaluates every risk concerning every factor. The verbal aspects are taken into consideration. For instance, 

the first decision-makers compared EXCSA1to EXCSC1 based on its verbal value. In addition, we have asked 

every supervisor to give the following data: (1) The extent to which the individual thinks that the evaluation 

is accurate. (2) The extent to which the individual believes that the evaluation is inaccurate. (3) The extent 

to which he does not have complete confidence in the evaluation. An SVNN can show all three of these 

different types of information. Let experts evaluate the criteria and alternatives to build the decision matrix. 

Table 2 shows the decision matrix by the e1. 

Table 2. The decision matrix of e1 by the SVNVNs. 

 EXCSC1 EXCSC2 EXCSC3 EXCSC4 EXCSC5 EXCSC6 EXCSC7 

EXCSA1 0.9,0.1,0.1 0.3,0.8,0.2 0.1,0.8,0.6 0.1,0.8,0.6 0.4,0.6,0.2 0.9,0.1,0.1 0.9,0.1,0.1 

EXCSA2 0.7,0.5,0.1 0.6,0.5,0.1 0.9,0.1,0.1 0.7,0.5,0.1 0.4,0.6,0.2 0.8,0.1,0.1 0.4,0.6,0.2 

EXCSA3 0.1,0.8,0.6 0.2,0.8,0.4 0.4,0.6,0.2 0.8,0.1,0.1 0.9,0.1,0.1 0.7,0.5,0.1 0.1,0.8,0.6 

EXCSA4 0.6,0.5,0.1 0.9,0.1,0.1 0.3,0.8,0.2 0.7,0.5,0.1 0.2,0.8,0.4 0.4,0.6,0.2 0.6,0.5,0.1 

EXCSA5 0.4,0.6,0.2 0.8,0.1,0.1 0.3,0.8,0.2 0.4,0.6,0.2 0.1,0.8,0.6 0.2,0.8,0.4 0.8,0.1,0.1 

EXCSA6 0.1,0.8,0.6 0.2,0.8,0.4 0.9,0.1,0.1 0.8,0.1,0.1 0.3,0.8,0.2 0.4,0.6,0.2 0.9,0.1,0.1 

EXCSA7 0.7,0.5,0.1 0.6,0.5,0.1 0.4,0.6,0.2 0.7,0.5,0.1 0.9,0.1,0.1 0.7,0.5,0.1 0.3,0.8,0.2 

EXCSA8 0.4,0.6,0.2 0.9,0.1,0.1 0.3,0.8,0.2 0.8,0.1,0.1 0.3,0.8,0.2 0.8,0.1,0.1 0.1,0.8,0.6 

EXCSA9 0.1,0.8,0.6 0.8,0.1,0.1 0.7,0.5,0.1 0.9,0.1,0.1 0.3,0.8,0.2 0.4,0.6,0.2 0.6,0.5,0.1 

EXCSA10 0.9,0.1,0.1 0.6,0.5,0.1 0.4,0.6,0.2 0.1,0.8,0.6 0.7,0.5,0.1 0.6,0.5,0.1 0.9,0.1,0.1 

 

Phase 1: Compute the weights vector of each criterion.  

Step 1:  Compute the normalization decision matrix. 

In this step, we specify the cost and profit criteria to make a normalization matrix on the cost criteria only. 

Cost criterion is a cost criterion and others are profit criteria. The normalization decision matrix is shown 

in Table 3.  

Table 3. The normalized decision matrix of e2 (𝑁𝑜𝑟2). 

 EXCSC1 EXCSC2 EXCSC3 EXCSC4 EXCSC5 EXCSC6 EXCSC7 

EXCSA1 0.1,0.5,0.6 0.3,0.8,0.2 0.1,0.8,0.6 0.1,0.8,0.6 0.4,0.6,0.2 0.9,0.1,0.1 0.2,0.8,0.4 

EXCSA2 0.4,0.2,0.2 0.6,0.5,0.1 0.9,0.1,0.1 0.7,0.5,0.1 0.2,0.8,0.4 0.8,0.1,0.1 0.4,0.6,0.2 

EXCSA3 0.6,0.2,0.1 0.2,0.8,0.4 0.4,0.6,0.2 0.2,0.8,0.4 0.9,0.1,0.1 0.6,0.5,0.1 0.1,0.8,0.6 

EXCSA4 0.1,0.5,0.6 0.6,0.5,0.1 0.3,0.8,0.2 0.7,0.5,0.1 0.2,0.8,0.4 0.4,0.6,0.2 0.6,0.5,0.1 
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EXCSA5 0.1,0.5,0.6 0.8,0.1,0.1 0.3,0.8,0.2 0.6,0.5,0.1 0.1,0.8,0.6 0.2,0.8,0.4 0.8,0.1,0.1 

EXCSA6 0.4,0.2,0.2 0.2,0.8,0.4 0.2,0.8,0.4 0.8,0.1,0.1 0.3,0.8,0.2 0.6,0.5,0.1 0.2,0.8,0.4 

EXCSA7 0.1,0.5,0.7 0.6,0.5,0.1 0.6,0.5,0.1 0.7,0.5,0.1 0.9,0.1,0.1 0.6,0.5,0.1 0.3,0.8,0.2 

EXCSA8 0.1,0.5,0.6 0.2,0.8,0.4 0.3,0.8,0.2 0.8,0.1,0.1 0.2,0.8,0.4 0.8,0.1,0.1 0.6,0.5,0.1 

EXCSA9 0.6,0.2,0.1 0.8,0.1,0.1 0.6,0.5,0.1 0.9,0.1,0.1 0.3,0.8,0.2 0.4,0.6,0.2 0.2,0.8,0.4 

EXCSA10 0.1,0.5,0.6 0.6,0.5,0.1 0.6,0.5,0.1 0.1,0.8,0.6 0.7,0.5,0.1 0.6,0.5,0.1 0.6,0.5,0.1 

 

Step 2: Combined the normalization of the decision matrix. 

This step shows the combined decision matrix table 4 shows the integrated decision matrix. 

 

Table 4. The integration decision matrix. 

 EXCSC1 EXCSC2 EXCSC3 EXCSC4 EXCSC5 EXCSC6 EXCSC7 

EXCSA1 0.1,0.5,0.6 0.3,0.8,0.2 0.1,0.8,0.6 0.1,0.8,0.6 0.4,0.6,0.2 0.9,0.1,0.1 0.2,0.8,0.4 

EXCSA2 0.4,0.2,0.2 0.6,0.5,0.1 0.9,0.1,0.1 0.7,0.5,0.1 0.2,0.8,0.4 0.8,0.1,0.1 0.4,0.6,0.2 

EXCSA3 0.6,0.2,0.1 0.2,0.8,0.4 0.4,0.6,0.2 0.2,0.8,0.4 0.9,0.1,0.1 0.6,0.5,0.1 0.1,0.8,0.6 

EXCSA4 0.1,0.5,0.6 0.6,0.5,0.1 0.3,0.8,0.2 0.7,0.5,0.1 0.2,0.8,0.4 0.4,0.6,0.2 0.6,0.5,0.1 

EXCSA5 0.1,0.5,0.6 0.8,0.1,0.1 0.3,0.8,0.2 0.6,0.5,0.1 0.1,0.8,0.6 0.2,0.8,0.4 0.8,0.1,0.1 

EXCSA6 0.4,0.2,0.2 0.2,0.8,0.4 0.2,0.8,0.4 0.8,0.1,0.1 0.3,0.8,0.2 0.6,0.5,0.1 0.2,0.8,0.4 

EXCSA7 0.1,0.5,0.7 0.6,0.5,0.1 0.6,0.5,0.1 0.7,0.5,0.1 0.9,0.1,0.1 0.6,0.5,0.1 0.3,0.8,0.2 

EXCSA8 0.1,0.5,0.6 0.2,0.8,0.4 0.3,0.8,0.2 0.8,0.1,0.1 0.2,0.8,0.4 0.8,0.1,0.1 0.6,0.5,0.1 

EXCSA9 0.6,0.2,0.1 0.8,0.1,0.1 0.6,0.5,0.1 0.9,0.1,0.1 0.3,0.8,0.2 0.4,0.6,0.2 0.2,0.8,0.4 

EXCSA10 0.1,0.5,0.6 0.6,0.5,0.1 0.6,0.5,0.1 0.1,0.8,0.6 0.7,0.5,0.1 0.6,0.5,0.1 0.6,0.5,0.1 

 

Step 3: Compute the mean value.  

The values of the mean can be computed in this step. 

Step 4: Compute the mean squatted deviation values (𝜗) 

The mean squared error of each alternative against criteria computed by using Eq. (2). The results are 

shown in Table 5.  

Table 5. The mean values mean squared deviation values to each criterion and the weight of the criteria. 
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 Mean values Mean squared deviation 𝑊𝑒𝑖𝑔ℎ𝑡 

EXCSC1 0.464444 4.436222 0.139157 

EXCSC2 0.608889 4.436222 0.144117 

EXCSC3 0.565556 4.436222 0.146621 

EXCSC4 0.635556 4.436222 0.14046 

EXCSC5 0.515556 4.436222 0.143866 

EXCSC6 0.665556 4.436222 0.143415 

EXCSC7 0.553333 4.436222 0.142363 

Sum 
4.008889 4.436222 

1 

 

Step 5: Compute the weight vector of all factors. 

The weights of the criteria can be computed using Eq. (2). The last column in Table 5 shows the weights of 

the criteria. The sum of all criteria is 1 as shown in the last row in Table 5.  

Phase 2: Rank the alternatives by the MABAC method. 

 

Step 6: Compute the weight decision matrix.  

The weighted decision matrix can be computed by using Eq. (4). Table 6 shows the values of multiplying 

the weights of criteria by the normalization matrix.  

 

Table 6. The weighted decision matrix. 

 EXCSC1 EXCSC2 EXCSC3 EXCSC4 EXCSC5 EXCSC6 EXCSC7 

EXCSA1 0.018554325
502179,0.08
3494464759
8056,0.0881
3304613535

04 

0.043234984
7217352,0.1
1529329259
1294,0.0288
2332314782

35 

0.029324249
8622452,0.1
0752224949
4899,0.0684
2324967857

2 

0.014045985
0723839,0.1
1236788057
9071,0.0842
7591043430

34 

0.057546460
9527626,0.0
8631969142
91439,0.028
7732304763

813 

0.129073786
505034,0.01
4341531833
8927,0.0143
4153183389

27 

0.071181686
1193207,0.0
7118168611
93207,0.033
2181201890

163 

EXCSA2 0.032470069
6288133,0.0
5102439513
09923,0.060
3015578820

819 

0.086469969
4434704,0.0
7205830786
95587,0.014
4116615739

117 

0.131959124
380103,0.01
4662124931
1226,0.0146
6212493112

26 

0.098321895
5066874,0.0
7022992536
19195,0.014
0459850723

839 

0.047955384
1273022,0.0
9591076825
46043,0.038
3643073018

417 

0.114732254
671142,0.01
4341531833
8927,0.0143
4153183389

27 

0.056945348
8954566,0.0
8541802334
31849,0.028
4726744477

283 

EXCSA3 0.064940139
2576266,0.0

0.028823323
1478235,0.1

0.058648499
7244903,0.0

0.065547930
3377916,0.0

0.105501845
080065,0.03

0.095610212
2259513,0.0

0.014236337
2238641,0.1
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3710865100
43581,0.027
8314882532

685 

1529329259
1294,0.0576
4664629564

69 

8797274958
67355,0.029
3242498622

452 

7022992536
19195,0.032
7739651688

958 

8364307301
8417,0.0191
8215365092

09 

7170765916
94635,0.014
3415318338

927 

1389069779
0913,0.0854
1802334318

49 

EXCSA4 0.013915744
1266343,0.0
6957872063
31714,0.083
4944647598

056 

0.091273856
6347743,0.0
5764664629
56469,0.019
2155487652

156 

0.048873749
7704086,0.1
0752224949
4899,0.0293
2424986224

52 

0.098321895
5066874,0.0
7022992536
19195,0.014
0459850723

839 

0.038364307
3018417,0.1
0550184508
0065,0.0479
5538412730

22 

0.057366127
3355708,0.0
8604919100
33562,0.028
6830636677

854 

0.075927131
8606088,0.0
7592713186
06088,0.018
9817829651

522 

EXCSA5 0.023192906
8777238,0.0
6030155788
20819,0.064
9401392576

266 

0.096077743
8260782,0.0
3843109753
04313,0.019
2155487652

156 

0.043986374
7933677,0.1
1729699944
8981,0.0293
2424986224

52 

0.065547930
3377916,0.0
7959391541
01755,0.023
4099751206

399 

0.014386615
2381907,0.1
1509292190
5525,0.0863
1969142914

39 

0.028683063
6677854,0.1
1473225467
1142,0.0573
6612733557

08 

0.113890697
790913,0.01
4236337223
8641,0.0142
3633722386

41 

EXCSA6 0.074217302
0087161,0.0
2783148825
32685,0.018
5543255021

79 

0.038431097
5304313,0.1
0568551820
8686,0.0480
3887191303

91 

0.097747499
5408172,0.0
4887374977
04086,0.029
3242498622

452 

0.112367880
579071,0.01
4045985072
3839,0.0140
4598507238

39 

0.043159845
714572,0.11
5092921905
525,0.02877
3230476381

3 

0.066927148
5581659,0.0
8126868039
20586,0.023
9025530564

878 

0.071181686
1193207,0.0
7118168611
93207,0.033
2181201890

163 

EXCSA7 0.018554325
502179,0.06
4940139257
6266,0.0834
9446475980

56 

0.086469969
4434704,0.0
7205830786
95587,0.014
4116615739

117 

0.068423249
678572,0.08
3085374609
6946,0.0244
3687488520

43 

0.098321895
5066874,0.0
7022992536
19195,0.014
0459850723

839 

0.105501845
080065,0.03
8364307301
8417,0.0191
8215365092

09 

0.095610212
2259513,0.0
7170765916
94635,0.014
3415318338

927 

0.047454457
4128805,0.1
0439980630
8337,0.0284
7267444772

83 

EXCSA8 0.023192906
8777238,0.0
6030155788
20819,0.064
9401392576

266 

0.096077743
8260782,0.0
4803887191
30391,0.028
8233231478

235 

0.043986374
7933677,0.1
1729699944
8981,0.0293
2424986224

52 

0.112367880
579071,0.01
4045985072
3839,0.0140
4598507238

39 

0.038364307
3018417,0.1
1509292190
5525,0.0383
6430730184

17 

0.114732254
671142,0.01
4341531833
8927,0.0143
4153183389

27 

0.037963565
9303044,0.0
9965436056
7049,0.0616
9079463674

46 

EXCSA9 0.064940139
2576266,0.0
3710865100
43581,0.027
8314882532

685 

0.096077743
8260782,0.0
3843109753
04313,0.019
2155487652

156 

0.097747499
5408172,0.0
7331062465
56129,0.014
6621249311

226 

0.126413865
651455,0.01
4045985072
3839,0.0140
4598507238

39 

0.043159845
714572,0.11
5092921905
525,0.02877
3230476381

3 

0.057366127
3355708,0.0
8604919100
33562,0.028
6830636677

854 

0.066436240
3780327,0.0
8541802334
31849,0.028
4726744477

283 

EXCSA10 0.051024395
1309923,0.1
0668737163
7529,0.1113
2595301307

4 

0.086469969
4434704,0.0
7205830786
95587,0.014
4116615739

117 

0.068423249
678572,0.08
3085374609
6946,0.0244
3687488520

43 

0.014045985
0723839,0.1
1236788057
9071,0.0842
7591043430

34 

0.100706306
667335,0.07
1933076190
9533,0.0143
8661523819

07 

0.086049191
0033562,0.0
7170765916
94635,0.014
3415318338

927 

0.090163469
0844729,0.0
5694534889
54566,0.018
9817829651

522 
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Step 7: Compute the border approximation area.  

The border approximation area can be computed by using Eq. (5).  

Step 8: Compute the distance between the weighted normalized decision matrix and the border 

approximation area. 

The distance between the weighted decision matrix and border approximation area can be determined by 

using Eq. (6).  The results are shown in Table 7.  

 

Table 7. The distance between the weighted decision matrix and border approximation area. 

 EXCSC1 EXCSC2 EXCSC3 EXCSC4 EXCSC5 EXCSC6 EXCSC7 

EXCSA1 0.047025 0.026686 0.041417 0.074759 0.007341 0.011038 0.018116 

EXCSA2 0.000639 0.012274 -0.00257 0.046667 0.016932 -0.0033 0.01337 

EXCSA3 -0.01328 0.041097 0.012093 0.032621 -0.00225 0.034941 0.056079 

EXCSA4 0.023832 0.00747 0.021868 0.046667 0.026523 0.02538 0.01337 

EXCSA5 0.005278 -0.00694 0.026755 0.032621 0.050501 0.054063 -0.0151 

EXCSA6 -0.02255 0.03149 0.012093 0.004529 0.021728 0.02538 0.018116 

EXCSA7 0.023832 0.012274 0.012093 0.046667 -0.00225 0.034941 0.022861 

EXCSA8 0.005278 0.012274 0.026755 0.004529 0.026523 -0.0033 0.041843 

EXCSA9 -0.01328 -0.00694 0.021868 0.018575 0.021728 0.02538 0.022861 

EXCSA10 0.125881 0.012274 0.012093 0.074759 0.021728 0.02538 0.008625 

 

Step 9: Rank the alternatives. 

The sum of each row can be computed using Eq. (7). Then rank the alternatives according to the lowest 

value of the sum. Table 8 shows the rank of alternatives.  

 

Table 8. The rank of alternatives. 

 Sum of distance  Rank 

EXCSA1 0.226382 9 

EXCSA2 0.08401 1 

EXCSA3 0.161305 7 



Neutrosophic Sets and Systems, Vol. 55, 2023                                                                                                                            184

     

 
Ahmed Abdel-Monem and Ahmed Abdelhafeez, Neutrosophic Hybrid MCDM Framework to Evaluate the Risks of Excavation 
System  

 

EXCSA4 0.16511 8 

EXCSA5 0.147174 5 

EXCSA6 0.090781 3 

EXCSA7 0.150418 6 

EXCSA8 0.113899 4 

EXCSA9 0.090193 2 

EXCSA10 0.280739 10 

 

4. Conclusion  

 

In engineering practice, a built decision structure for risk analysis of an excavation system provides a useful 

guide for project supervisors to recognize high-risk aspects. This helps project supervisors to take 

appropriate measures in time to minimize the occurrence likelihood of risk accidents in the initial building 

phase of excavation. The method that has been proposed may be used in any other engineering project that 

calls for the judgments of DMs and the information tracked of variables. Additionally, the proposed 

framework is adaptable for use in the MCDM process. The last point is that the approach associated with 

MCDM modeling may be transformed into computer software, which can minimize the amount of time 

and effort required to gather and analyze the views from a variety of specialists. 

A technique for a neutrosophic excavating system has been devised mainly for this work. SVNVNs are 

used inside the excavation system approach to display qualitative and ambiguous information. MABAC 

has been upgraded so that it can manage SVNVNs. In addition to this, the excavation system approach 

presents the central concept of MABAC and considers the non-compensation of requirements. In addition, 

to acquire criterion weights, the mean-squared deviation weight technique using SVNVNs has been 

devised. From the MABAC method and neutrosophic sets, alternative 2 is the best, and alternative 10 is the 

worst.  
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Abstract: Multiple attribute decision-making (MADM) models are accepted as powerful tools for 

evaluating alternatives when the decision-analysts should consider more than one attribute while 

reaching a decision. The decision-makers who are consulted need a scale for expressing their 

judgments, experiences, or opinions. The fuzzy logic and its contemporary versions can supply 

different kinds of scales to allow the decision-makers to state their ideas. A recent version is totally 

dependent-neutrosophic (picture fuzzy) sets which include independently assignable elements: 

positive, neutral, negative, and refusal membership degrees. In this study, we aim to contribute to 

the literature of the totally dependent-neutrosophic sets by (i) proposing three new subsethood 

measures dedicatedly developed for totally dependent-neutrosophic sets for the first time in the 

literature and (ii) showing their applicability in a decision-making case study including a novel 

totally dependent-neutrosophic version of EDAS (Evaluation Based on Distance from Average 

Solution) method which is extended differently from the existing ones. To validate the proposed 

method, a comparative analysis with the existing totally dependent-neutrosophic MADM methods 

is provided. As a result, the proposed Subsethood Measure-based Totally Dependent-Neutrosophic 

Version of EDAS (SM-TDN-EDAS) method involving fewer steps than others gave similar rankings. 

Keywords: Totally dependent-neutrosophic sets, subsethood measure, EDAS, multiple criteria 

evaluation, fuzzy numbers. 

 

 

1. Introduction 

In multiple attribute decision-making (MADM) problems in which the decision analysts do not 

have enough or proper cardinal data such as cost of investment, sales profit, market share at a certain 

time, etc., the linguistic terms are used by the decision-makers while expressing their preferences, 

opinions, or feelings. Linguistic terms are often defined in different fuzzy environments. Zadeh [1] 

initiated the concept of fuzzy sets as a symbolization and representation tool for quantifying human 

judgments. In the traditional definition of fuzzy sets, there is just membership degree (µA) which 

takes a value between 0 and 1. In general, the membership degree is a measure of the optimism or 

agreement level of judgment. Thus, it has a positive meaning.  

For decades, various scholars have defined several fuzzy sets for smoothing the symbolization 

of the vagueness and ambiguity which are hidden in the human subconscious. Atanassov [2] initiated 

the concept of intuitionistic fuzzy sets (IFS) and add a new element into set definition: non-

mailto:aaydogdu@msu.edu.tr
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membership degree (vA). This novel item puts a level of resilience into the representation of 

judgments since the decision-maker can state his/her pessimistic view or disagreement level. So, non-

membership degree exposes a negative meaning. Accordingly, Atanassov [2] also introduced a new 

measure regarding hesitancy which has a neutral meaning: 𝜋𝐴 = 1 − 𝜇𝐴 − 𝜐𝐴. Therefore, IFS can cope 

with three dimensions of judgments (membership, non-membership, and hesitancy). In real life, we 

can represent these degrees with yes, no, and abstain. However, the hesitancy degree in IFSs depends 

on the others so that the decision-maker cannot independently assign any value for that. 

After the development of IFS, some other extensions such as Pythagorean fuzzy sets [3], q-Rung 

orthopair fuzzy sets [4], neutrosophic sets [5], spherical fuzzy sets [6], etc. have been introduced. 

From a different perspective, Cuong and Kreinovich [7] defined picture fuzzy sets as the 

generalization of fuzzy sets and IFSs. However, Smarandache, for the first time, renamed it by 

“totally dependent-neutrosophic set (TDNS)” [8]. In this paper, we use “totally dependent-

neutrosophic set (TDNS)” instead of “picture fuzzy set (PFS)”.  

A TDNS is characterized by three independently assignable degrees expressing the positive 

membership, the neutral membership (which is equivalent to hesitancy degree), and the negative 

membership (which means non-membership). The sole constraint regarding these three degrees is 

that their sum must not exceed 1. The remaining part is called refusal degree and it represents the 

decision maker's choice of refusing to share his/her preference.  

For illustration, Cuong [9] gives the voting process as an example of TDNS for clarifying the 

elements defined: the voters may be divided into four groups of those who: vote for the candidate, 

abstain, vote against the candidate, and refusal of the voting, i.e., casting a veto. Garg [10] gives 

another example. When a decision analyst consults a certain decision-maker regarding a certain topic, 

then he/she may state that 0.3 is the possibility that statement is true, 0.4 is the possibility that 

statement is false and 0.2 is the possibility that he/she is not sure of it. This issue cannot be handled 

by fuzzy sets or IFSs. This declaration of preference can be well-defined by TDNS as (𝜇, 𝜂, 𝑣) =

(0.3, 0.2,0.4) where 𝜇 is the positive membership degree, 𝜂 is the neutral membership degree, and 

𝑣 is the negative membership degree. As seen, their sum is 0.9 and the remaining part is called refusal 

degree which is equal to (1-0.9=) 0.1. Formally, the refusal degree is defined as 𝜋 = 1 − 𝜇 − 𝜂 − 𝑣. 

More formal definitions and operations are explained in Section 2. As seen from the examples, TDNS 

has greater representation power than IFS, neutrosophic sets, or other extensions since it exposes an 

additional fourth component, namely refusal degree. TDNS is the only fuzzy set definition that can 

address this issue. 

The subsethood measure (or inclusion measure) indicates the degrees of quantitative extensions 

of the qualitative set inclusion relation. In classical set theory, since either a crisp set 𝐴 is a subset of 

a crisp set 𝐵 or vice versa, subsethood measure should be two-valued: 0 and 1. Fuzzy subsethood 

measures determine the degree to which a fuzzy set contains another fuzzy set within the range of 

[0, 1]. This notion fuzzifies classical fuzzy set containment which is a crisp property: a fuzzy set B 

contains a fuzzy set A if 𝜇𝐴 ≤ 𝜇𝐵 . Kosko [11] argues that if this inequality holds for all but just a few 

elements, one can still consider A to be a subset of B to some degree. Many researchers such as Kosko 

[11], Sanchez [12], and Young [13] define several axioms for developing subsethood measures. As 

seen from Section 2, even though there are attempts to stating subsethood measures for various fuzzy 

sets, there is no proposition for TDNS. As the first contribution of this study to the existing literature, 

we have developed subsethood measures for TDNS and we proved that they satisfy the required 

axiomatic properties.  

To show our measures’ applicability in real-life MADM problem-solving issues, we have 

integrated the concept of subsethood measure in a well-known MADM method, namely EDAS 

(Evaluation Based on Distance from Average Solution). EDAS method was firstly presented by 

Keshavarz Ghorabaee et al. [14] for searching the distances between each alternative and average 
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solution. EDAS is very similar to TOPSIS and VIKOR, but they take the distances between each 

alternative and positive/negative ideal alternatives as a decision criterion: the best alternative among 

the set of alternatives should be as distant as possible from the negative ideal alternative and as close 

as possible to the positive ideal one [15]. EDAS cancels the phase of obtaining the ideal solutions 

which might be complex by considering the distance between each alternative and average solution 

that can be easily found from the current data in the problem.  

For enriching the representation power of EDAS, some extensions including TDNS have been 

proposed in the literature. For example, Zhang et al. [16] developed a TDNS-based EDAS with newly 

defined operations and illustrated its application in green supplier selection while Liang et al. [17] 

integrated TDNS-based EDAS and ELECTRE methods for cleaner production evaluation in gold 

mines. Similarly, Li et al. [18] defined totally dependent-neutrosophic (picture fuzzy) ordered 

weighted interaction averaging operator and totally dependent-neutrosophic (picture fuzzy) hybrid 

ordered weighted interaction averaging operator and used them in TDNS-based EDAS. Ping et al. 

[19] combined TDNS-based EDAS with quality function deployment and showed its application in 

an illustrative example. Tirmikcioglu Cinar [20] applied TDNS-based EDAS method for team leader 

selection for an audit firm. To the best of our knowledge, the literature does not have any integration 

of subsethood measures and EDAS until now. This study’s second contribution is this integration 

proposition to ease the mathematical operations of EDAS/TDNS-based EDAS and smooth the 

complexity.  

As a summarization, it can be stated that this study proposes some subsethood measures for 

TDNS for the first time in the literature and their usability is shown in a novel TDNS extension of 

EDAS. The rest of the paper is organized as follows. Section 2 gives the preliminaries of TDNS and 

its operations, and the extensive literature survey’s results on subsethood measure definitions for 

various fuzzy set environments. In Section 3, the definitions of three novel subsethood measures are 

detailed and it is proven that the proposed measures satisfy the required properties. In Section 4, 

novel subsethood measure-based totally dependent-neutrosophic (picture fuzzy) extension of EDAS 

(SM-TDN-EDAS) is explained step-by-step. To demonstrate the new extension’s usability, the results 

of a case study are shared in Section 5. Section 6 concludes the study with the findings and further 

research potential. 

2. Preliminaries  

In this chapter, the details of TDNS and operations defined on it are given. Then, the results of 

an extensive literature survey on subsethood measures for various fuzzy sets are stated. 

2.1. Totally dependent-neutrosophic set 

Cuong and Kreinovich [7] presented TDNS theory which is a generalization of Zadeh’s fuzzy set 

theory and Atanassov’s IFS theory and gave basic operations on TDNSs. A TDNS is defined with the 

help of the degree of positive membership, the degree of neutral membership, the degree of negative 

membership, and the degree of refusal membership mappings such that the sum of these components 

is equal to 1. Essentially, fundamental structures of TDNS have enough application to carry out 

situations requiring opinions of humans, which is comprising answer types such as yes, no, abstain, 

and refusal. 

 

Definition 1. [9,21] Let 𝑋 be a universal set. Then a TDNS 𝐴 on 𝑋 is defined as follows: 

𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜂𝐴(𝑥), 𝜈𝐴(𝑥)) | 𝑥 ∈ 𝑋} (1) 
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where 𝜇𝐴, 𝜂𝐴, 𝜈𝐴 are mapping from 𝑋 to [0,1]. For all 𝑥 ∈ 𝑋,  𝜇𝐴(𝑥) is called positive membership 

degree of 𝑥 ∈ 𝐴 , 𝜂𝐴(𝑥)  is called neutral membership degree of 𝑥 ∈ 𝐴  and 𝜈𝐴(𝑥)  is negative 

membership degree of 𝑥 ∈ 𝐴. Also, 𝜇𝐴, 𝜂𝐴, 𝜈𝐴 satisfy the following condition: 

0 ≤ 𝜇𝐴(𝑥) + 𝜂𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1,∀𝑥 ∈ 𝑋   (2) 

and 𝜋(𝑥) = 1 − 𝜇𝐴(𝑥) − 𝜂𝐴(𝑥) − 𝜈𝐴(𝑥) is called refusal membership degree of 𝑥 in 𝐴. 

We denote by 𝑇𝐷𝑁𝑆(𝑋)  the collection of TDNSs on 𝑋 . Cuong [9] defined the subsethood, 

equality, union, intersection, and complement for every two TDNSs 𝐴 and 𝐵 as follow: 

1. 𝐴 ⊆ 𝐵 if ∀𝑥 ∈ 𝑋, 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥), 𝜂𝐴(𝑥) ≤ 𝜂𝐵(𝑥),  𝜈𝐴(𝑥) ≥ 𝜈𝐵(𝑥); 

2. 𝐴 = 𝐵 iff 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴; 

3. 𝐴 ∪ 𝐵 = {〈𝑥,max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) ,min(𝜂𝐴(𝑥), 𝜂𝐵(𝑥)) , min(𝜈𝐴(𝑥), 𝜈𝐵(𝑥))〉| 𝑥 ∈ 𝑋}  

4. 𝐴 ∩ 𝐵 = {〈𝑥,min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) , min(𝜂𝐴(𝑥), 𝜂𝐵(𝑥)) , max(𝜈𝐴(𝑥), 𝜈𝐵(𝑥))〉| 𝑥 ∈ 𝑋} 

5. 𝐴𝑐 = {〈𝑥, 𝜈𝐴(𝑥), 𝜂𝐴(𝑥), 𝜇𝐴(𝑥)〉| 𝑥 ∈ 𝑋}. 

For all 𝐴,𝐵 ∈ 𝑇𝐷𝑁𝑆(𝑋), Cuong [9] presented normalized Hamming distance measure by extending 

distance measure for IFS. 

𝑑1(𝐴,𝐵) = [
1

𝑛
∑((𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖))

2
+ (𝜂𝐴(𝑥𝑖) − 𝜂𝐵(𝑥𝑖))

2
+ (𝜈𝐴(𝑥𝑖) − 𝜈𝐵(𝑥𝑖))

2)

𝑛

𝑖=1

]

1
2

 (3) 

for all 𝐴,𝐵 ∈ 𝑇𝐷𝑁𝑆(𝑋), Van Dinh et al. [22] introduced some distance measures for TDNSs as follow: 

𝑑2(𝐴,𝐵) =
1

𝑛
∑(max{|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|, |𝜂𝐴(𝑥𝑖) − 𝜂𝐵(𝑥𝑖)|, |𝜈𝐴(𝑥𝑖) − 𝜈𝐵(𝑥𝑖)|})

𝑛

𝑖=1

, (4) 

𝑑3(𝐴,𝐵) = [∑(max{(𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖))
2
, (𝜂𝐴(𝑥𝑖) − 𝜂𝐵(𝑥𝑖))

2
, (𝜈𝐴(𝑥𝑖) − 𝜈𝐵(𝑥𝑖))

2})

𝑛

𝑖=1

]

1
2

. (5) 

2.2. Subsethood measures for different fuzzy environments 

The subsethood measure (also called inclusion measure or degree) indicates the degrees of 

quantitative extensions of the qualitative set inclusion relation. In classical set theory, since either a crisp 

set A is a subset of a crisp set B or vice versa, subsethood measure should be two-valued. Fuzzy 

subsethood measures determine the degree to which a fuzzy set contains another between 0 and 1. 

Many researchers have studied different subsethood measures for fuzzy sets, IFS, and neutrosophic 

sets.  

Sinha and Dougherty [23] presented the axiomatic structure of subsethood measure for fuzzy sets. 

Young [13] introduced different axioms of the definition of subsethood measure for fuzzy sets from 

axioms of Sinha and Dougherty [23]. Fan et al. [24] and Guoshun and Yunsheng [25] defined new 

different subsethood measures for fuzzy sets. Bustince et al. [26] defined strong S-subsethood measures 

for interval-valued fuzzy sets (IVFS). Vlachos and Sergiadis [27] and Takáč [28,29] presented different 

subsethood measures for IVFS. Rickard et al. [30] introduced subsethood measure for Type-2 fuzzy sets 

and generalized Type-n fuzzy sets.  

Liu and Xiong [31] proposed the definition of subsethood measure for IFS. Cornelis and Kerre [32] 

introduced a different framework of subsethood measure for IFSs by considering the subsethood 

degree to be in the unit square [0,1]2. Grzegorzewski and Mrowka [33] presented subsethood measure 

for IFSs based on the Hamming distance measure. Zhang et al. [34] defined subsethood measure for 

IFSs and IVFSs. Xie et al. [35] gave a new axiomatic definition and some inclusion measures for IFSs. 

Zhang et al. [36] introduced another new axiomatic definition and presented inclusion measure for IFSs.  
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Şahin and Küçük [37] proposed subsethood measure for single-valued neutrosophic sets (SVNSs) 

while Şahin and Karabacak [38] presented a subsethood measure for interval-valued neutrosophic sets 

(IVNS). Ji and Zhang [39] introduced a subsethood measure for IVNSs based on the Hausdorff distance 

measure. Zhang and Wang [40] proposed an inclusion measure for hesitant fuzzy sets (HFSs). Finally, 

Aydoğdu [41] introduced the very first subsethood measure for TDNSs (PFSs) as a conference 

proceeding for the first time in the literature.  

3. Novel subsethood measures for TDNS  

This In this section, we propose axioms of the definition of subsethood measure for TDNSs and 

some new subsethood measures for TDNSs based on the distance measures of TDNSs. To establish 

the subsethood degree to which A belongs to B, we use the distance between TDNSs A and A ∩ B. 

d1, d2, and d3 distance measures are given in Eqs. (3-5) in Chapter 2.1. 

Definition 2. Let 𝑋 be a universe of discourse. A mapping 𝑆:𝑇𝐷𝑁𝑆(𝑋) × 𝑇𝐷𝑁𝑆(𝑋) → [0,1] is 

called subsethood measure if it satisfies the following properties. For all 𝐴,𝐵, 𝐶 ∈ 𝑇𝐷𝑁𝑆(𝑋), 

1. 𝑆(𝐴,𝐵) = 1 iff 𝐴 ⊆ 𝐵, 

2. 𝑆(𝐴, 𝐴𝑐) = 1 ⇔ 𝜇𝐴(𝑥) ≤ 𝜈𝐴(𝑥), 

3. 𝑆(𝐴,𝐵) = 0 if 𝐴 = 〈𝑥, 1,0,0〉 and 𝐵 = 〈𝑥, 0,0,1〉, 

4. If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝑆(𝐶, 𝐴) ≤ 𝑆(𝐵,𝐴) and 𝑆(𝐶, 𝐴) ≤ 𝑆(𝐶,𝐵). 

The following theorem gives the subsethood measures based on distance measures. 

Theorem: Let 𝑋 be a universe of discourse. For 𝐴,𝐵 ∈ 𝑇𝐷𝑁𝑆(𝑋), the mappings 

𝑆1(𝐴,𝐵) = 1 −
1

√2
𝑑1(𝐴, 𝐴 ∩ 𝐵) (6) 

𝑆2(𝐴, 𝐵) = 1 − 𝑑2(𝐴, 𝐴 ∩ 𝐵) (7) 

𝑆3(𝐴,𝐵) = 1 −
1

√𝑛
𝑑3(𝐴, 𝐴 ∩ 𝐵) (8) 

are subsethood measures for TDNSs. 

Proof: In order that 𝑆𝑖(𝐴,𝐵) (𝑖 = 1,2,3) to be described as a subsethood measure for TDNSs, it 

must satisfy the properties of Definition 2. For simplicity, we only prove that 𝑆1(𝐴,𝐵) satisfies these 

properties. 𝑆2(𝐴,𝐵) and 𝑆3(𝐴,𝐵) may also be shown in the same fashion. 

Let 𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜂𝐴(𝑥), 𝜈𝐴(𝑥)) | 𝑥 ∈ 𝑋}  and 𝐵 = {(𝑥, 𝜇𝐵(𝑥), 𝜂𝐵(𝑥), 𝜈𝐵(𝑥)) | 𝑥 ∈ 𝑋}  be two 

TDNSs. Since 𝐴𝑐 = {(𝑥, 𝜈𝐴(𝑥), 𝜂𝐴(𝑥), 𝜇𝐴(𝑥)) | 𝑥 ∈ 𝑋} , we have 𝐴 ∩ 𝐴𝑐 = {(𝑥,min(𝜇𝐴(𝑥), 𝜇𝐴𝑐(𝑥) =

𝜈𝐴(𝑥)) , min(𝜂𝐴(𝑥), 𝜂𝐴𝑐(𝑥) = 𝜂𝐴(𝑥)) , max(𝜈𝐴(𝑥), 𝜈𝐴𝑐(𝑥) = 𝜇𝐴(𝑥))) | 𝑥 ∈ 𝑋}. 

1. Let  𝐴 ⊆ 𝐵, then 𝐴 ∩ 𝐵 = {(𝑥, 𝜇𝐴(𝑥), 𝜂𝐴(𝑥), 𝜈𝐴(𝑥)) | 𝑥 ∈ 𝑋}. 

𝑆1(𝐴,𝐵) = 1 −
1

√2
𝑑1(𝐴, 𝐴 ∩ 𝐵) 

= 1−
1

√2
[
1

𝑛
∑((𝜇𝐴(𝑥𝑖) − 𝜇𝐴∩𝐵(𝑥𝑖))

2
+ (𝜂𝐴(𝑥𝑖) − 𝜂𝐴∩𝐵(𝑥𝑖))

2
+ (𝜈𝐴(𝑥𝑖) − 𝜈𝐴∩𝐵(𝑥𝑖))

2
)

𝑛

𝑖=1

]

1
2

 

= 1. 
Conversely, suppose that 𝑆1(𝐴,𝐵) = 1, then 𝑑1(𝐴, 𝐴 ∩ 𝐵) = 0. So 𝜇𝐴(𝑥) = 𝜇𝐴∩𝐵(𝑥), 𝜂𝐴(𝑥) = 𝜂𝐴∩𝐵(𝑥) 

and 𝜈𝐴(𝑥) = 𝜈𝐴∩𝐵(𝑥). Because of the definition of intersection and inclusion of TDNSs, TDNS 𝐴 is a 

subset of TDNS 𝐵. 

2. If  𝜇𝐴(𝑥) ≤ 𝜈𝐴(𝑥), then  

𝐴 ∩ 𝐴𝑐 = {(𝑥,min(𝜇𝐴(𝑥), 𝜈𝐴(𝑥)) , min(𝜂𝐴(𝑥), 𝜂𝐴(𝑥)) , max(𝜈𝐴(𝑥), 𝜇𝐴(𝑥))) | 𝑥 ∈ 𝑋} 

= {(𝑥, 𝜇𝐴(𝑥), 𝜂𝐴(𝑥), 𝜈𝐴(𝑥))} . 

Thus, 
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𝑆1(𝐴, 𝐴
𝑐) = 1 −

1

√2
𝑑1(𝐴, 𝐴 ∩ 𝐴

𝑐) 

= 1 −
1

√2
[
1

𝑛
∑((𝜇𝐴(𝑥𝑖) − 𝜇𝐴∩𝐴𝑐(𝑥𝑖))

2
+ (𝜂𝐴(𝑥𝑖) − 𝜂𝐴∩𝐴𝑐(𝑥𝑖))

2
+ (𝜈𝐴(𝑥𝑖) − 𝜈𝐴∩𝐴𝑐(𝑥𝑖))

2
)

𝑛

𝑖=1

]

1
2

 

= 1 −
1

√2
[
1

𝑛
∑((𝜇𝐴(𝑥𝑖) − 𝜇𝐴(𝑥𝑖))

2
+ (𝜂𝐴(𝑥𝑖) − 𝜂𝐴(𝑥𝑖))

2
+ (𝜈𝐴(𝑥𝑖) − 𝜈𝐴(𝑥𝑖))

2
)

𝑛

𝑖=1

]

1
2

= 1 

3. For 𝐴 = {〈𝑥, 1,0,0〉} and 𝐵 = {〈𝑥, 0,0,1〉}, we have 𝐴 ∩ 𝐵 = {〈𝑥, 0,0,1〉}. Hence 

𝑆1(𝐴,𝐵) = 1 −
1

√2
𝑑1(𝐴, 𝐴 ∩ 𝐵) 

= 1−
1

√2
[
1

𝑛
∑((1 − 0)2 + (0 − 0)2 + (0 − 1)2)

𝑛

𝑖=1

]

1
2

 

= 0 
4. To prove that 𝑆1(𝐶, 𝐴) ≤ 𝑆1(𝐵, 𝐴), it suffices to show 𝑑1(𝐶, 𝐶 ∩ 𝐴) ≥ 𝑑1(𝐵,𝐵 ∩ 𝐴). Since 𝐴 ⊆

𝐵 ⊆ 𝐶, 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥) ≤ 𝜇𝐶(𝑥), 𝜂𝐴(𝑥) ≤ 𝜂𝐵(𝑥) ≤ 𝜂𝐶(𝑥) and 𝜈𝐴(𝑥) ≥ 𝜈𝐵(𝑥) ≥ 𝜈𝐶(𝑥). We get 

𝑑1(𝐶, 𝐶 ∩ 𝐴) = [
1

𝑛
∑((𝜇𝐶(𝑥𝑖) − 𝜇𝐶∩𝐴(𝑥𝑖))

2
+ (𝜂𝐶(𝑥𝑖) − 𝜂𝐶∩𝐴(𝑥𝑖))

2
+ (𝜈𝐶(𝑥𝑖) − 𝜈𝐶∩𝐴(𝑥𝑖))

2
)

𝑛

𝑖=1

]

1
2

 

= [
1

𝑛
∑((𝜇𝐶(𝑥𝑖) − 𝜇𝐴(𝑥𝑖))

2
+ (𝜂𝐶(𝑥𝑖) − 𝜂𝐴(𝑥𝑖))

2
+ (𝜈𝐶(𝑥𝑖) − 𝜈𝐴(𝑥𝑖))

2
)

𝑛

𝑖=1

]

1
2

 

≥ [
1

𝑛
∑((𝜇𝐵(𝑥𝑖) − 𝜇𝐴(𝑥𝑖))

2
+ (𝜂𝐵(𝑥𝑖) − 𝜂𝐴(𝑥𝑖))

2
+ (𝜈𝐵(𝑥𝑖) − 𝜈𝐴(𝑥𝑖))

2
)

𝑛

𝑖=1

]

1
2

 

= [
1

𝑛
∑((𝜇𝐵(𝑥𝑖) − 𝜇𝐵∩𝐴(𝑥𝑖))

2
+ (𝜂𝐵(𝑥𝑖) − 𝜂𝐵∩𝐴(𝑥𝑖))

2
+ (𝜈𝐵(𝑥𝑖) − 𝜈𝐵∩𝐴(𝑥𝑖))

2
)

𝑛

𝑖=1

]

1
2

 

= 𝑑1(𝐵,𝐵 ∩ 𝐴). 
Similarly, it can be shown that 𝑆(𝐶, 𝐴) ≤ 𝑆(𝐶, 𝐵). 

  

4. Subsethood measure-based totally dependent-neutrosophic set extension of EDAS (SM-TDN-

EDAS) 

EDAS is a distance-based MADM method like TOPSIS and VIKOR. The distances between each 

alternative and positive/negative ideal alternatives are computed and operationalized by the 

mentioned methods and then these distance measures are accepted as a criterion for reaching a 

decision about the rankings of alternatives. They include steps that are dedicated to obtaining or 

generating a positive and a negative ideal solution. In EDAS these probably complex and confusing 

steps are eliminated because the distance between alternative and the average solution is considered. 

Therefore, decision-analyst does not need to generate positive/negative ideal solutions but to 

compute the average performance scores of each attribute. Traditional EDAS uses two distinct 

measures: positive distance from average (PDA) and negative distance from average (NDA). 

Naturally, the decision reached should be based on higher positive distance and lower negative 

distance.  

TDNS is one of the recent fuzzy concepts that can be used in MADM analysis in representing 

human judgments, opinions, or expertise. After a brief literature review, studies extending various 

MADM approaches into TDNS environment are exemplified and summarized in Table A1. In the 
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first column, the studies are given while the second column shows the study’s methodology which 

includes extension(s) of the MADM approach(es) under TDNS and the third column depicts the 

application of the study. As seen from the table, VIKOR (VlseKriterijumska Optimizacija I 

Kompromisno Resenje), EDAS, and TOPSIS (Technique for Order of Preference by Similarity to Ideal 

Solution) extensions have the majority. There are also TDNS extensions of ARAS, TODIM, MABAC, 

MULTIMOORA, and PROMETHEE II in a few studies. Also, it is found that there is no proposition 

integrating subsethood measure and EDAS under any kind of fuzzy sets as well as TDNSs. 

This study has extended EDAS method under the totally dependent-neutrosophic (picture 

fuzzy) environment in a different manner from existing extensions that are summarized in Table A1 

as a contribution to the literature. In this novelty, we propose to use the subsethood measures as 

decision criteria rather than PDA and NDA. Indeed, our basic aim is to show the applicability of 

subsethood measures in a MADM problem-solving methodology under TDNS environment. 

Additionally, it is seen that the EDAS method’s mathematical part is smoothed since the calculation 

complexity is reduced by replacing the idea of measuring distances to the average solution with 

calculating subsethood degree to the average solution in which includes just one operation. Also, 

TDNS may provide a higher independence possibility to the decision-makers since it is allowed to 

express independent degrees for positive, negative, and hesitancy preferences. The refusal degrees 

can also be calculated as a fourth element. 

In this novel extension, there are 5 steps explained below. 

Step 1. Decision-makers (e=1,…,k) are asked to express their judgments about alternatives’ 

(i=1,…,m) performances with respect to attributes (j=1,…,n). So, after collecting data from decision-

makers, there will be k decision matrices (𝑋1, 𝑋2, … , 𝑋𝑘) in hand. The judgments are aggregated via 

an aggregation operator defined for TDNS. In this step, the decision-makers can be weighted 

according to their expertise (𝜔𝑒). 〈𝜇𝑖𝑗
𝑒 , 𝜂𝑖𝑗

𝑒 , 𝑣𝑖𝑗
𝑒 〉 depicts the linguistic evaluation of eth decision-maker 

and 〈𝜇𝑖𝑗 , 𝜂𝑖𝑗 , 𝑣𝑖𝑗 〉  represents the aggregated performance evaluation. For obtaining aggregated 

decision matrix (Eq. 10), the totally dependent-neutrosophic (picture fuzzy) weighted averaging 

(TDNWA) operator (Eq. 9) defined by Zhang et al. [16] is utilized. 

𝑋𝑎𝑔𝑔 = 𝑃𝐹𝑊𝐴𝜔(𝑋
1, 𝑋2, … , 𝑋𝑘) =⊕𝑒=1

𝑘 𝜔𝑒𝑋
𝑒 = 〈𝜇𝑖𝑗 , 𝜂𝑖𝑗 , 𝑣𝑖𝑗〉 

= {1 −∏(1− 𝜇𝑖𝑗
𝑒 )

𝜔𝑒

𝑘

𝑒=1

 ,∏ (𝜂𝑖𝑗
𝑒 )

𝜔𝑒
𝑘

𝑒=1
,∏ (𝑣𝑖𝑗

𝑒 )
𝜔𝑒

𝑘

𝑒=1
} 

(9) 

𝑋𝑎𝑔𝑔 = [
〈𝜇11, 𝜂11, 𝑣11〉 ⋯ 〈𝜇1𝑛 , 𝜂1𝑛 , 𝑣1𝑛〉

⋮ ⋱ ⋮
〈𝜇𝑚1, 𝜂𝑚1, 𝑣𝑚1〉 ⋯ 〈𝜇𝑚𝑛 , 𝜂𝑚𝑛 , 𝑣𝑚𝑛〉

] (10) 

Step 2. The attributes included in any decision problem can be cost or benefit type. In order to 

convert any cost attribute to a benefit one, the positive and negative membership degrees should be 

replaced while the neutral membership degree keeps its value. This is called normalization.  

After normalization, the weights of attributes representing the importance and significance of 

the attribute should be considered. There are 4 possibilities: (i) When the weights are already known 

as prior information, they can be used directly; (ii) When the decision-makers’ preferences are 

important for the decision problem in hand, their expertise can be consulted and the subjective 

weights may be calculated via different approaches such as Analytic Hierarchy Process (AHP) or 

Analytic Network Process (ANP), etc.; (iii) When the subjectivity is not desired with the purpose of 

eliminating manipulation risk that may be originated from the decision-makers or when there is not 

enough time for data collection, the objective weights can be computed from the current data by 

referring to the methods such as entropy-based approaches or maximizing standard deviation 

method; (iv) If required, a mixture of objective and subjective methods can be used.  
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Independent from the methodology used, the weighted normalized decision matrix is obtained 

via Eq. (11) where 𝑤𝑗 represents the weight of attribute j. For this weighting process, we utilized the 

weighting formula proposed by Jovcic et al. [42]. 

〈𝜇𝑖𝑗
𝑤 , 𝜂𝑖𝑗

𝑤 , 𝑣𝑖𝑗
𝑤〉 = 𝑤𝑗 ∗ 〈𝜇𝑖𝑗 , 𝜂𝑖𝑗 , 𝑣𝑖𝑗〉 = 〈1 − (1 − 𝜇𝑖𝑗)

𝑤𝑗 , 𝜂
𝑖𝑗

𝑤𝑗 , (𝜂𝑖𝑗 + 𝑣𝑖𝑗)
𝑤𝑗 − (𝜂𝑖𝑗)

𝑤𝑗〉 (11) 

Step 3. The basic distinctive feature of EDAS is the consideration of average scores rather than 

positive or negative ideals. In this step, the TDN average scores of each attribute will be obtained. For 

this purpose, all the weighted aggregated performance scores depicted in columns are averaged. 

Firstly, the addition operation is used iteratively as given in Eq. (12). 

〈𝜇1𝑗
𝑤 , 𝜂1𝑗

𝑤 , 𝑣1𝑗
𝑤 〉 + 〈𝜇2𝑗

𝑤 , 𝜂2𝑗
𝑤 , 𝑣2𝑗

𝑤 〉 = 〈1 − (1 − 𝜇1𝑗
𝑤 )(1− 𝜇2𝑗

𝑤 ), 𝜂1𝑗
𝑤 𝜂2𝑗

𝑤 , (𝜂1𝑗
𝑤 + 𝑣𝑖𝑗

𝑤)(𝜂2𝑗
𝑤 + 𝑣2𝑗

𝑤 ) − 𝜂1𝑗
𝑤 𝜂2𝑗

𝑤 〉 (12) 

The sum of the overall TDN numbers is represented by 〈𝜇𝑖𝑗
𝑠𝑢𝑚 , 𝜂𝑖𝑗

𝑠𝑢𝑚 , 𝑣𝑖𝑗
𝑠𝑢𝑚〉 for each attribute j. Then, 

multiplication by a scalar (𝜆 = 1/𝑚 > 0) operation is used (Eq. 13). The mathematical operations are 

defined by Jovcic et al [42]. 

𝐴�̃� = 〈𝜇𝑗
𝐴𝑉 , 𝜂𝑗

𝐴𝑉 , 𝑣𝑗
𝐴𝑉〉 =

1

𝑚
∗ 〈𝜇𝑖𝑗

𝑠𝑢𝑚 , 𝜂𝑖𝑗
𝑠𝑢𝑚 , 𝑣𝑖𝑗

𝑠𝑢𝑚〉 

= 〈1 − (1 − 𝜇𝑖𝑗
𝑠𝑢𝑚)

1
𝑚 , (𝜂𝑖𝑗

𝑠𝑢𝑚)
1
𝑚 , (𝜂𝑖𝑗

𝑠𝑢𝑚 + 𝑣𝑖𝑗
𝑠𝑢𝑚)

1
𝑚 − (𝜂𝑖𝑗

𝑠𝑢𝑚)
1
𝑚〉 

(13) 

Step 4. Rather than measuring the negative and positive distances from the average solution, this 

study proposes the usage of subsethood degrees. In this step, each alternative’s subsethood degree 

to the average solution will be measured. For this purpose, one of the subsethood measures proposed 

in this study can be used alternately. They are rewritten with the appropriate notions in Eqs. (14-16). 

Suppose �̃�𝑖 = 〈𝜇𝑖𝑗
𝑤 , 𝜂𝑖𝑗

𝑤 , 𝑣𝑖𝑗
𝑤〉 shows the TDN evaluation scores of alternative i and 𝐴�̃� = 〈𝜇𝑗

𝐴𝑉 , 𝜂𝑗
𝐴𝑉 , 𝑣𝑗

𝐴𝑉〉 

represents the average solution, 

𝑆1(�̃�𝑖 , 𝐴�̃�) = 1 −
1

√2
𝑑1(�̃�𝑖 , �̃�𝑖 ∩ 𝐴�̃�) (14) 

𝑆2(�̃�𝑖 , 𝐴�̃�) = 1 − 𝑑2(�̃�𝑖 , �̃�𝑖 ∩ 𝐴�̃�) (15) 

𝑆3(�̃�𝑖 , 𝐴�̃�) = 1 −
1

√𝑛
𝑑3(�̃�𝑖 , �̃�𝑖 ∩ 𝐴�̃�) (16) 

where 

𝑑1(�̃�𝑖 , �̃�𝑖 ∩ 𝐴�̃�) =

[
 
 
 
 
1

𝑛
∑

(

 
 
(𝜇𝑖𝑗

𝑤 −min(𝜇𝑖𝑗
𝑤 , 𝜇𝑗

𝐴𝑉))
2

+(𝜂𝑖𝑗
𝑤 −min(𝜂𝑖𝑗

𝑤 , 𝜂𝑗
𝐴𝑉))

2

+(𝑣𝑖𝑗
𝑤 −max(𝑣𝑖𝑗

𝑤 , 𝑣𝑗
𝐴𝑉))

2

)

 
 

𝑛

𝑖=1

]
 
 
 
 

1
2

 (17) 

𝑑2(�̃�𝑖 , �̃�𝑖 ∩ 𝐴�̃�) =
1

𝑛
∑(max{

|𝜇𝑖𝑗
𝑤 −min(𝜇𝑖𝑗

𝑤 , 𝜇𝑗
𝐴𝑉)|,

|𝜂𝑖𝑗
𝑤 −min(𝜂𝑖𝑗

𝑤 , 𝜂𝑗
𝐴𝑉)|,

|𝑣𝑖𝑗
𝑤 −max(𝑣𝑖𝑗

𝑤 , 𝑣𝑗
𝐴𝑉)|

})

𝑛

𝑖=1

 (18) 

𝑑3(�̃�𝑖 , �̃�𝑖 ∩ 𝐴�̃�) =

[
 
 
 
 

∑

(

 
 
max

{
 
 

 
 (𝜇𝑖𝑗

𝑤 −min(𝜇𝑖𝑗
𝑤 , 𝜇𝑗

𝐴𝑉))
2
,

(𝜂𝑖𝑗
𝑤 −min(𝜂𝑖𝑗

𝑤 , 𝜂𝑗
𝐴𝑉))

2
,

(𝑣𝑖𝑗
𝑤 −max(𝑣𝑖𝑗

𝑤 , 𝑣𝑗
𝐴𝑉))

2

}
 
 

 
 

)

 
 

𝑛

𝑖=1

]
 
 
 
 

1
2

 (19) 

Step 5. The decision-makers expect that the best alternative should have the lowest possibility of 

being a subset of the average solution since the average solution does not represent the ideal solution 

but a mean one. So, it is required that the subsethood measure between the best alternative and the 

average solution should be the lowest one. Thus, the alternatives are ranked in ascending order of 

their subsethood measures against average solution and it is decided that the alternative with the 

minimum subsethood measure is the best one. 
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5. A hypothetical application  

In this study, we have aimed to develop a novel TDNS version of EDAS with the integration of 

subsethood degree instead of distances between alternatives and average solution. We have also tried 

to keep the computations totally dependent-neutrosophic (picture fuzzy) until the very end of the 

steps. The proposed SM-TDN-EDAS is here applied in a real case. This case is taken from Jovcic, et 

al. [42]. They used a TDNS version of ARAS (Additive Ratio Assessment) method to the freight 

distribution concept selection problem for a tire manufacturing company in the Czech Republic. They 

considered 5 experts’ evaluations on 3 alternatives with respect to 23 sub-criteria under four main 

criteria. In order to show the applicability of our method proposition of SM-TDN-EDAS, we chose 

the environmental main criterion which includes 5 sub-criteria, namely air pollution, noise pollution, 

the effect on public health, energy consumption, and vehicle utilization. The alternatives are freight 

distribution by own transport fleet, freight distribution by the 3PL provider, and freight distribution 

by combining own transport fleet and 3PL services. They collected the data from experts and found 

the aggregated decision matrix of Xagg as given in Table 1. Here we have the aggregated decision 

matrix so that we did not apply TDNWA operator just for this case. 

Table 1. Aggregated decision matrix (𝑋𝑎𝑔𝑔) 

 C1 C2 C3 C4 C5 

A1 0.2 0.4 0.2 0.4 0.2 0.2 0 0.6 0.2 0.8 0.2 0 0 0.2 0.8 

A2 0.4 0.4 0 0.2 0.4 0.2 0.2 0.4 0 0 0.2 0.8 0.8 0.2 0 

A3 0.4 0.4 0 0.2 0.6 0.2 0.2 0.4 0.2 0 0.4 0.6 0.4 0.4 0.2 

 

The weights of attributes (𝑤𝑗) are provided as 0.2593, 0.0963, 0.1333, 0.1407, 0.3704. There is no 

need for normalization since all the attributes have benefit features. The weighted matrix is found by 

operating Eq. (11) and is given in Table 2. For illustration purposes, the weighting of the first 

alternatives’ scores concerning the first criterion is given as follows: 

     〈𝜇11
𝑤 , 𝜂11

𝑤 , 𝑣11
𝑤 〉 = 0.2593 ∗ 〈0.2,0.4,0.2〉 =  

            〈1 − (1 − 0.2)0.2593, 0.40.2593, (0.4 + 0.2)0.2593 − 0.40.2593〉 = 〈0.0562,0.7885,0.0874〉  
Referring to Eqs. (12-13), the average solution’s performance scores with respect to each attribute 

are obtained. To illustrate, the average solution’s performance score for attribute 1 is given: 

 〈𝜇11
𝑤 , 𝜂11

𝑤 , 𝑣11
𝑤 〉 + 〈𝜇21

𝑤 , 𝜂21
𝑤 , 𝑣21

𝑤 〉 = 〈0.0562,0.7885,0.0874〉 + 〈0.1241,0.7885,0〉 =  
〈1 − (1 − 0.0562)(1 − 0.1241), 0.7885 ∗ 0.7885, (0.7885 + 0.0874)(0.7885 + 0) − 0.7885 ∗

0.7885〉 = 〈0.1733,0.6218,0.0689〉.   

 〈0.1733,0.6218,0.0689〉 + 〈𝜇31
𝑤 , 𝜂31

𝑤 , 𝑣31
𝑤 〉 = 〈0.1733,0.6218,0.0689〉 + 〈0.1241,0.7885,0〉 = 〈1 −

(1 − 0.1733)(1 − 0.1241), 0.6218 ∗ 0.7885, (0.6218 + 0.0689)(0.7885 + 0) − 0.6218 ∗

0.7885〉 = 〈0.2759,0.4903,0.0544〉.   

 〈𝜇1
𝐴𝑉 , 𝜂1

𝐴𝑉 , 𝑣1
𝐴𝑉〉 =

1

3
∗ 〈0.2759,0.4903,0.0544〉 = 〈1 − (1 − 0.2759)

1

3, (0.4903)
1

3, (0.4903 +

0.0544)
1

3 − (0.4903)
1

3〉 = 〈0.1020,0.7885,0.0281〉.                  

All the TDN values of the average solution are shown in the last row of Table 2. In the next 

phase, the subsethood measures of each alternative to the average solution are calculated. Eq. (14-16) 

defines three novel subsethood measures and we use all of them for comparison purposes. To 

illustrate, the first subsethood measure (Eq. 14) between �̃�1 and 𝐴�̃� is: 
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𝑑1(�̃�1, �̃�1 ∩ 𝐴�̃�) = [
1

5
((0.0562 − min(0.0562,0.1020))2 + (0.7885 −min(0.7885,0.7885))2 +

(0.0874 − max(0.0874,0.0281))2 +⋯+ (0 − min(0,0.2303))2 + (0.5509 −min(0.5509,0.6002))2 +

(0.4491 − max(0.4491,0.1695))2)]

1

2
= 0.0762. 

𝑆1(�̃�𝑖 , 𝐴�̃�) = 1 −
1

√2
𝑑1(�̃�𝑖 , �̃�𝑖 ∩ 𝐴�̃�) = 1 −

1

√2
∗ 0.0762 = 0.9461. 

Table 3 shows all the solutions including alternatives’ distance values (please see Eqs.17-19) and 

subsethood measures for three different definitions (please see Eqs.14-16). In the last step, the 

alternatives are ranked in ascending order of subsethood measures: S1, S2, and S3. For each measure, 

similar rankings of alternatives are obtained as seen from the columns of Ranking in Table 3. For S1: 

𝐴2 ≻ 𝐴1 ≻ 𝐴3 ; for S2 and S3: 𝐴2 ≻ 𝐴3 ≻ 𝐴1  which is the same ranking obtained by the original 

methodology. The results of other applications specified by Jovcic et al. [42] are summarized in Table 

4 and it is seen that all these methods have given similar rankings. For each ranking, the most 

convenient alternative is found as A2. The rankings of the other alternatives are slightly different in 

the various applications. For instance, in the original application, there are so many consecutive steps 

while our proposition of SM-TDN-EDAS includes just 5 steps. Our method’s contribution to 

complexity reduction is obvious. 

6. Conclusion and future work 

Subsethood (inclusion) measures are very important components of fuzzy sets like entropy, 

distance, or similarity measures. In the literature, there are many subsethood measures developed 

for fuzzy sets, IFSs, and neutrosophic sets but there is no proposition for TDNSs. TDNS is generally 

accepted by the MADM field as one of the important fuzzy environments because it gives an 

extensive representation opportunity to the decision-maker. TDNS is defined by four elements, 

namely positive, negative, neutral, and refusal membership degrees and the first three elements can 

be independently assignable. The only rule is that the sum of these four elements should be equal to 

1. In order to exploit this feature in the applications of MADM,  

 for the first time in the literature, three subsethood measures were developed for TDNSs and 

it is proven that these definitions satisfy the required axiomatic properties;  

Table 2. Weighted aggregated decision matrix (𝑤𝑗 ∗ 𝑋
𝑎𝑔𝑔) 

 C1 C2 

A1 0.0562 0.7885 0.0874 0.0480 0.8564 0.0591 

A2 0.1241 0.7885 0.0000 0.0213 0.9155 0.0365 

A3 0.1241 0.7885 0.0000 0.0213 0.9520 0.0267 

𝐴�̃� 0.1020 0.7885 0.0281 0.0303 0.9071 0.0413 

 C3 C4 

A1 0.0000 0.9342 0.0365 0.2026 0.7974 0.0000 

A2 0.0293 0.8850 0.0000 0.0000 0.7974 0.2026 

A3 0.0293 0.8850 0.0492 0.0000 0.8790 0.1210 

𝐴�̃� 0.0196 0.9011 0.0282 0.0727 0.8237 0.1036 

 C5  

A1 0.0000 0.5509 0.4491    

A2 0.4491 0.5509 0.0000    
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A3 0.1724 0.7122 0.1154    

𝐴�̃� 0.2303 0.6002 0.1695    

Table 3. Results 

 d1 S1 

R
an

k
in

g
 d2 S2 

R
an

k
in

g
 d3 S3 

R
an

k
in

g
 

Ranking by 

Jovcic et al. 

[42] 

A1 0.0762 0.9461 2 0.0361 0.9639 3 0.1352 0.9395 3 3 

A2 0.1256 0.9112 1 0.0567 0.9433 1 0.2225 0.9005 1 1 

A3 0.0665 0.9529 3 0.0500 0.9500 2 0.1361 0.9392 2 2 

 

Table 4. Comparison of different TDNS (PFS)-based MADM methods [42] 

Method Ranking of Alternatives 

TDNS TOPSIS [43] 𝐴2 ≻ 𝐴3 ≻ 𝐴1 

TDNS EDAS [16] 𝐴2 ≻ 𝐴3 ≻ 𝐴1 

TDNS MABAC [44] 𝐴2 ≻ 𝐴3 ≻ 𝐴1 

TDNS VIKOR [45] 𝐴2 ≻ 𝐴3 ≻ 𝐴1 

TDNS Fuzzy TODIM [46] 𝐴2 ≻ 𝐴1 ≻ 𝐴3 

 

EDAS, a well-known MADM approach is extended into TDNS in a different manner from the existing 

state-of-the-art propositions, i.e., the traditional and extended versions have focused on the distance 

between each alternative and average solution while the proposed version called SM-TDN-EDAS 

considered the subsethood degree of each alternative to the average solution as a decision criterion. 

So, the number of mathematical operations is significantly reduced in this new version; 

To validate the novel SM-TDN-EDAS method, an application is conducted, and the resulting 

rankings are compared with different applications’ rankings. It is found that the existing methods 

and current study give similar rankings. So, it is clear that the proposition is robust. 

The study also needs some improvements. Rather than enforcing the decision-makers to allocate 

directly positive, neutral, and negative membership degrees, a further study may work on providing 

appropriate linguistic terms which have TDN number correspondences so that the data collection 

process is eased and becomes more practical. Also, novel aggregation operators, entropy measures, 

similarity, and distance measures as well as division and subtraction operators can be defined for the 

concept of TDNS. 
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Table A1. Literature overview of MADM approaches under TDNS (PFS) 

Paper MADM Methods Used Application 

Zhang. et al. [16] TDN(PF)-EDAS for selection 
A numerical example for green 

supplier selection 

Liang, et al. [17] 

Extended SWARA for subjective criteria weights;  

Mean-squared deviation model for objective criteria 

weights;  

TDN(PF)-EDAS for establishing difference matrix;  

ELECTRE III for ranking orders;  

Extended MABAC, EDAS for comparison 

Evaluating the cleaner 

production performance for  

gold mines in China 

Li, et al. [18] 
Maximizing deviation method for criteria weights;  

TDN(PF)-EDAS for evaluation 

A numerical example of 

selecting an optimal emergency 

alternative 

Ping, et al. [19] 

TOPSIS & Maximum Entropy Theory for Expert 

Weighting; 

TDN(PF)-EDAS for evaluation;  

HF-VIKOR, cloud model GRA for comparison 

A numerical example of 

characteristic prioritization in 

quality function deployment 

Jovcic, et al. [42] 

TDN(PF)-ARAS for selection; TDN(PF)-TOPSIS, 

TDN(PF)-EDAS, TDN(PF)-TODIM,  

TDN(PF)-VIKOR, TDN(PF)-MABAC, TDN(PF)-

GRA for comparison 

Freight distribution concept 

selection problem for a tire 

manufacturing company in the 

Czech Republic 

Torun and 

Gördebil  

[43] 

Fuzzy TOPSIS, IF-TOPSIS, and TDN(PF)-TOPSIS 

for comparison 

Citizens’ satisfaction level from 

public services in Turkey 

Wang, et al. [44] 

Modified maximizing deviation method for criteria 

weighting;  

prospect theory-based TDN(PF)-MABAC for 

evaluation;  

TDN(PF)-MABAC, TDN(PF)-VIKOR for 

comparison 

Risk ranking of energy 

performance contracting project 

in Shanghai, China 

Wang, et al. [45] 

TDN(PF)-entropy-based objective weighting of 

attributes;  

TDN(PF)-normalized projection-based VIKOR for 

evaluation; 

Risk evaluation of construction 

projects in China 

Wei [46] TDN(PF)-TODIM for evaluation 

A numerical example of 

evaluation of emerging 

technology commercialization 

Meksavang, et al. 

[47] 

TDN(PF)-VIKOR for evaluation; fuzzy TOPSIS, IF-

VIKOR, 

IF-GRA for comparison 

A numerical example of 

sustainable supplier selection  

case in the beef supply chain 

Si, et al. [48] 
TDN(PF)-VIKOR & TDN(PF)-TOPSIS for 

evaluation 

Ranking of tiger reserve national 

parks in India 

Sindhu, et al. [49] 
Linear programming for criteria weighting;  

TDN(PF)-TOPSIS for evaluation 

A numerical example of human 

resource management 
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Zeng, et al. [50] TDN(PF)-TOPSIS for evaluation 

A numerical example of 

selecting Enterprise Resource  

Planning System 

Arya and Kumar 

[51] 

TDN(PF)-entropy-based TDN(PF)-VIKOR and 

TDN(PF)-TODIM for evaluation 

Numerical examples based on 

election forecast 

through opinion polls 

Joshi [52] 

TDN(PF)-entropy-based TDN(PF)-VIKOR for 

evaluation;  

TOPSIS, VIKOR for comparison 

Numerical examples based on 

election forecast 

through opinion polls 

Joshi [53] 

R-Norm information measure-based TDN(PF)-

VIKOR for evaluation; 

TDN(PF)-TODIM for comparison 

A numerical example of 

election; 

A numerical example of 

investment alternative 

evaluation 

Lin, et al. [54] 

TDN(PF)-entropy based criteria weighting; 

TDN(PF)-MULTIMOORA for evaluation; 

TDN(PF)-TODIM for comparison 

Site selection of car-sharing 

station in Beijing, China 

Tian, et al. [55] 

Improved AHP for criteria weighting; TDN(PF)-

PROMETHEE II for evaluation; TDN(PF)-VIKOR 

for comparison 

Tourism environmental impact 

assessment in Hubei,  

China 

Tian and Peng 

[56] 

Improved ANP for criteria weighting; TDN(PF)-

TODIM for evaluation 

Personalized tourism attraction 

evaluation 

Gül and Aydoğdu 

[57] 

TDN(PF)-CODAS for evaluation; CODAS, spherical 

fuzzy CODAS, and spherical fuzzy TOPSIS for 

comparison 

Selecting the best green supplier 

in Turkey 

Simic, et al. [58] 

CODAS, TOPSIS, EDAS, TODIM, VIKOR, MABAC, 

Cross-entropy, Projection, Grey relational 

projection, and Grey relational analysis under 

TDN(PF) environment 

Locating a new vehicle 

shredding facility in the 

Republic of Serbia 
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Abstract  

This article introduces the notion of duplex elements of the finite rings and corresponding neutrosophic 

rings. The authors establish duplex ring ( )Dup R and neutrosophic duplex ring   Dup R I  by way of various 

illustrations. The tables of different duplicities are constructed to reveal the comparison between rings 

 nDup Z ,   nDup Dup Z and    nDup Dup Dup Z  for the cyclic ring
nZ . The proposed duplicity 

structures have several algebraic systems with dissimilar consequences. Author’s characterize finite rings with 

R R  is different from the duplex ring  Dup R . However, this characterization supports that

 R R Dup R   for some well known rings, namely zero rings and finite fields.  

Keywords: Multiplicative function, Duplex form; Duplex ring, neutrosophic duplex element, neutrosophic 

duplex ring  

 

1. Introduction 

In the most general sense, elementary number theory deals with and manages the results and properties 

of different sets of numbers. In this paper, we will examine and discuss some significant sets of numbers in
nZ

, called duplexity. We will briefly present the notion of duplexity of
nZ  and enumerate how many number of 

duplex elements are there in
nZ . For the integer x , the element form x x  is called a duplex form of x . The 

most important problem in the elementary theory of integers is to determine the possible forms of duplexes 

among the integers. For instance, it is clear to see that any duplex form must be of form 2k , or 2 2k   in Z , 

because every even integer is a multiple of 2 . This illustration specifies that the ring of integers Z  satisfies the 

conditions: 2x x x  , 2 3x x x   and so on, but 2Z Z Z  , 2 3Z Z Z   and so on, where the operation 

addition ‘ ’defined on Z . In general, a duplex form x x  exists in the ring Z  of integers. Now, we shall 

study the enumeration of duplex elements in the finite commutative ring
nZ , and which are finitely many duplex 

forms x x  in
nZ , where the operation addition ‘ ’ defined on

nZ . 

First, we can generally describe a ring R  is an algebraic structure  , ,R    as an additive abelian group 

with a multiplicative binary operation such that the structure  , ,R    is associative and fulfils distributive 

axioms  a b c ab ac    and  b c a ba ca   . A ring R is finite commutative if R    and ab ba  

for all a , b  in R , see [1]. An element u  in a commutative ring with unity 1  is called a unit if there exists an 

element x  in R  such that 1xu ux  , and specifically x is called a multiplicative inverse of u , and vice versa. 

mailto:chalapathi.tekuri@gmail.com
mailto:kumarnaidu.kolla@gmail.com
mailto:harish225babu@gmail.com
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All the elements in R  which are not multiplicative inverse elements are said to be zero divisors. Note that set 

of units and zero divisors of R  are usually denoted by R  and  Z R , respectively, and R can be partitioned by 

the disjoint sets  Z R  and R . For any subring R of, the set /R S  denotes the quotient ring. Now our attention 

is shifted to focus on the ring 
nZ which is isomorphic to the quotient ring /Z nZ , which are the main tools in 

this paper for various values of 1n   . For a , n Z  with 0n  , we represent the congruence class of 

modulo n by the notion   na , and the ring
nZ is the set   :na a Z , or equivalently         0 , 1 , 2 ,..., 1n . 

But there is a one-to-one correspondence between the complete residue systems         0 , 1 , 2 ,..., 1n and

 0,1,2,..., 1n  , and thus
nZ can be written simply as  0,1,2,..., 1nZ n  for complete residue systems modulo

n [2]. It is worth clarifying that the ring  0,1,2,..., 1nZ n   is a commutative ring with unity 1under addition 

and multiplication modulo n . We are happy to say that the ring
nZ has countably many applications in various 

fields such as algebraic number theory, algebraic coding theory, Cryptography, algebraic circuit theory, 

Antenna theory and algebraic design theory [3-8]. Further, the problem of enumeration of various types of 

elements in 
nZ  up to countably finite has received considerable attention in recent years; see for examples [9-

14]. 

Now starts the basic notions, definitions and results of classical rings. 

Let R be a finite commutative ring with nonzero identity and R be the set of group units of R . Given 

a finite commutative ring R , the ring  : ,R R r r r R r R     is known as duplex form of R . However, the 

problem of characterizing finite commutative rings up to isomorphism has established considerable attention in 

recent years [see 15 and 16] initiating from the research works of Eldridge [17]. In this chapter, authors 

characterize finite commutative rings in terms of their duplexes. First, write the notion  Char R to denote a 

positive integer n such that 0na  for every a in R , where ...na a a a    ( n copies). Recall that the ring 

nZ is a finite commutative ring with nonzero unity1under addition and multiplication modulo n . Also, the 

number of the form a ib , a ,
nb Z , is called Gaussian integer, and the set of Gaussian integers represented 

by  nZ i , and defined as    2: , , 1n nZ i a bi a b Z i     . Further, note that
nZ n and   2

nZ i n . 

Neutrosophic Duplex elements are the solutions of some specific neutrosophic equation, and which 

are main mathematical tools for studying additive elements and their additive reciprocals of an object and their 

mutual symmetries, which are logically related to neutrosophic systems and their automorphisms. The 

characterizations of the duplex elements of any finite commutative ring have not been done in general theory 

of neutrosophic mathematics. But in recent years, the interplay between additive self inverses and group units 

of a classical ring and its corresponding neutrosophic ring was studied by Chalapathi and co-authors [18-20]. 

 Now reconsider some notations, preliminaries and results of neutrosophic ring theory. 

 Let 0 ,1 and I be three distinct components of any neutrosophic logical system with 20 0 , 21 1 and
2I I . Then the component I is called the indeterminate of a system with some specific algebraic axioms:

0 0I  , 1I I , 2I I I  , and 1I  does not exists under usual neutrosophic addition and neutrosophic 

Multiplication defined on the required system. The component I is a concrete mathematical tool to deal with 

inconsistent, incomplete and indeterminate information which exist in the real world systems. A nonempty set
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N  together with I is denoted by ( )N I and defined as  2( ) : , ,N I a bI a b N I I    , which is called 

neutrosophic set. Neutrosophic is an innovative research field of philosophy with the composition of 

indeterminacy founded by Smarandache to develop and deal indeterminacy of a system in nature and science 

[21]. In addition, the neutrosophic set and their interactions play an important role in classical and modern 

algebra, and generate a specific theory in modern mathematics called neutrosophic algebraic theory, and it 

contains many algebraic structures, like neutrosophic groups, neutrosophic rings, neutrosophic Boolean rings, 

neutrosophic zero rings and neutrosophic field [22-25 ].First, classical rings and their useful results are standard 

and follow those from [26]. Next, the other neutrosophic concepts and further terminology with corresponding 

notions will be explained in detail as follows. For any finite commutative ring R ,  the nonempty neutrosophic 

set  2( ) : , ,R I a bI a b R I I    is called a Neutrosophic ring generated by R and I under the following 

neutrosophic binary operations: 

 ( ) ( ) ( ) ( )a bI c dI a c b d I       , ( )( ) ( ) ( )a bI c dI ac ad bc bd I      . 

Particularly, 0 0 0I  , 1 1 0I  , 0 1I I  are main components of the neutrosophic ring ( )R I with

( )R I R RI R I      . Note that, if R is finite, and then R denotes the number of elements in R , 

consequently that
2

( )R I R . 

The contributions of this manuscript are three folds. 

First, we propose the use of modular arithmetic to determine the duplex elements for the finite ring
nZ . The 

number of duplex elements  D n over
nZ is distributed in

m nZ Z . Thus, the enumeration of this procedure is 

suitable for enumerating the number of duplex elements in
m nZ Z . Second, we thoroughly characterize finite 

rings over their duplicities. We provide necessary constructive conditions on various finite rings and weights to 

achieve their related consequences. Third and finally, we establish systematic procedure to construct 

neutrosophic duplex rings over given classical rings. We prove that neutrosophic duplex rings generated by our 

basic neutrosophic rule ( )R I R RI R I      exhibit a specific structure, and maintain the basic neutrosophic 

properties of ( )R I . 

 

2. Enumeration of Duplex Elements in
nZ   

As the heading suggests, the present section has as its goal is another simple contribution of
nZ , called 

duplex of
nZ . For those who consider the theory of integers and basic number theory. The intrinsic beauty of 

the duplex of
nZ  has a strange fascination for modern mathematicians. Generally speaking, the duplex of 

nZ  

deals with the characterization of
nZ  with 2n n nZ Z Z  , or 2n n nZ Z Z  . 

This section enumerates all duplex elements which are in
nZ , and also demonstrate a number-theoretic 

connection between the finite number of positive integers and duplex elements in
nZ . Also, this section 

generates the function  D n  which is a multiplicative function but not complete. Additionally, prove that

 
 2,

n

n
D Z

n
  and  

  2, 2,
m n

mn
D Z Z

m n
  . 

Before moving on to the other important concepts and results of the duplex of
nZ , let us define duplex 

elements of
nZ  with different illustrations. 

First, we prove that  D n  is a multiplicative function but not complete with an illustration.  
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Definition 2.1. 

An element 𝑎 in 
nZ  is called a duplex element in 

nZ  if and only if the equation x x a    has a solution 

in
nZ .  

The set of all duplex elements in   𝑍𝑛   is denoted by 𝐷(𝑍𝑛), and 𝐷(𝑛) denotes the number of 

duplex elements in  𝑍𝑛 with 𝐷(𝑛) ≠ 0, since 𝑥 + 𝑥 = 0 is solvable in  𝑍𝑛. The function 𝐷(𝑛) is called 

the duplex function of 𝑛. 

For any 𝑛 > 1, we have 𝐷(𝑍2𝑛) ≠ 𝑍2𝑛 but 𝐷(𝑍2𝑛−1) = 𝑍2𝑛−1. This means that the units of  𝑍2𝑛 

are not the duplex elements in  𝑍2𝑛 . For example 𝐷(8) = 4 since the equations 𝑥 + 𝑥 = 0,  𝑥 + 𝑥 = 2, 

𝑥 + 𝑥 = 4 and 𝑥 + 𝑥 = 6 have an individual solution in  𝑍8 , but 𝑥 + 𝑥 = 1, 𝑥 + 𝑥 = 3, 𝑥 + 𝑥 = 5 and 

𝑥 + 𝑥 = 7 do not have a solution in  𝑍8 .  

The following table illustrates the number of duplex elements in  𝑍1 ,  𝑍2 ,  𝑍3 ,...,   𝑍10  , 

respectively. 

𝑛 1 2 3 4 5 6 7 8 9 10 

𝐷(𝑛) 1 1 3 2 5 3 7 4 9 5  

 

 For any positive integers 𝑚 and 𝑛, the notation 𝑔𝑐𝑑(𝑚, 𝑛), or (𝑚, 𝑛) denotes the greatest common divisor 

of 𝑚  and 𝑛  . Particularly, 𝑔𝑐𝑑(𝑚, 𝑛) = 1  if and only if 𝑚  and 𝑛  are called relatively prime. 

Suppose 𝑔𝑐𝑑(𝑚, 𝑛) = 1. Then the function 𝑓: 𝑁 → ℝ is called a Number-Theoretic function, and it is called 

multiplicative if 𝑓(𝑚𝑛) = 𝑓(𝑚)𝑓(𝑛) . Naturally, many number-theoretic functions exist in the theory of 

numbers [2], and which are completely characterized by its value of  𝑛 when 𝑛 ≥ 1. Now we show that the 

duplex function 𝐷(𝑛) is a multiplicative function. 

 

Theorem 2.2. Let 𝑔𝑐𝑑(𝑚, 𝑛) = 1. Then the number theoretic relation is 𝐷(𝑚𝑛) = 𝐷(𝑚)𝐷(𝑛). 

Proof: First of all we adopt the notation:  𝐷(𝑚𝑛) is the number of duplex elements in 𝑍𝑚𝑛 and 𝐷(𝑚)𝐷(𝑛) 

is the number of duplex elements in 𝑍𝑚 × 𝑍𝑛. Because 𝑔𝑐𝑑(𝑚, 𝑛) = 1, the ring 𝑍𝑚𝑛 is isomorphic to the ring 

𝑍𝑚 × 𝑍𝑛  by the ring isomorphism ψ: 𝑍𝑚𝑛 → 𝑍𝑚 × 𝑍𝑛  related by 𝜓(𝑡) = (𝑡 𝑚𝑜𝑑 𝑚, 𝑡 𝑚𝑜𝑑 𝑛 )  for 

every element 𝑡 in 𝑍𝑚𝑛 (see [1]). 

First, we prove that 𝐷(𝑚𝑛) ≤ 𝐷(𝑚)𝐷(𝑛). For this let 𝑎 be a duplex element in 𝑍𝑚𝑛 , then the 

equation 𝑥 + 𝑥 = 𝑎 is solvable in 𝑍𝑚𝑛. Consequently, there is an element 𝑏 in 𝑍𝑚𝑛 such that 𝑏 + 𝑏 = 𝑎 is 

solvable in 𝑍𝑚𝑛.  Since 𝜓 is an injective map from 𝑍𝑚𝑛 onto 𝑍𝑚 × 𝑍𝑛, so there exists an element (𝑥, 𝑦) in 

𝑍𝑚 × 𝑍𝑛 such that 𝜓(𝑏) = (𝑥, 𝑦). Therefore,  

 𝜓(𝑎) = 𝜓(𝑏 + 𝑏) = 𝜓(𝑏) + 𝜓(𝑏)= (𝑥, 𝑦) + (𝑥, 𝑦) = (𝑥 + 𝑥, 𝑦 + 𝑦) 

 is solvable in 𝑍𝑚 × 𝑍𝑛 . This implies that 𝜓(𝑎) is also a duplex element in 𝑍𝑚 × 𝑍𝑛 . Hence, 𝐷(𝑚𝑛) ≤

𝐷(𝑚)𝐷(𝑛). On the other hand, we can show that 𝐷(𝑚𝑛) ≥ 𝐷(𝑚)𝐷(𝑛). Suppose 𝑐 is a duplex element in 𝑍𝑚 

and 𝑑 is a duplex element in  𝑍𝑛. Then there exists 𝑢 in 𝑍𝑚 and  𝑣 in  𝑍𝑛 such that 

 (𝑢 + 𝑢, 𝑣 + 𝑣) = (𝑐, 𝑑) in 𝑍𝑚 × 𝑍𝑛.  

So, we have 

 𝜓−1[(𝑐, 𝑑)] = 𝜓−1[(𝑢 + 𝑢, 𝑣 + 𝑣)] = 𝜓−1[(𝑢, 𝑣) + (𝑢, 𝑣)]= 𝜓−1[(𝑢, 𝑣)] + 𝜓−1[(𝑢, 𝑣)] is solvable in 

𝑍𝑚𝑛. This implies that the element 𝜓−1[(𝑐, 𝑑)] is also a duplex element in 𝑍𝑚𝑛. This shows that 𝐷(𝑚𝑛) ≥
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𝐷(𝑚)𝐷(𝑛) . Combination of inequalities 𝐷(𝑚𝑛) ≤ 𝐷(𝑚)𝐷(𝑛)  and 𝐷(𝑚𝑛) ≥ 𝐷(𝑚)𝐷(𝑛)  yields that the 

equality 𝐷(𝑚𝑛) = 𝐷(𝑚)𝐷(𝑛), and this shows that 𝐷(𝑛) is a number-theoretic multiplicative function.  

 

Now we continue our study by verifying other generalizations of duplex function. This requires the 

following:  

Example 2.3. Consider 𝑚 = 2, 𝑛 = 4 , we find that 𝐷(2) = 1, 𝐷(4) = 2  and 𝐷(8) = 4  with 𝐷(8) ≠

𝐷(2)𝐷(4). 

Corollary 2.4. Prove that  𝐷(1) = 1. 

Proof: Because of  0 + 0 = 0, the element 0 is a duplex element in 𝑍𝑛. So there exists an 𝑛 such that 𝐷(𝑛) ≠

0. But by the Theorem [2.2], 

  𝐷(𝑛) = 𝐷(𝑛1) = 𝐷(𝑛)𝐷(1).  

Being 𝐷(𝑛) non-zero, 𝐷(𝑛) may be cancelled from both sides of the above equation to give 𝐷(1) = 1. ∎ 

The following theorem plays an important role in studying the duplexity of the ring 𝑍𝑛. 

Theorem 2.5. For every 𝑛 ≥ 1, the units of 𝑍2𝑛 are not the duplex elements in 𝑍2𝑛. 

Proof: Suppose 𝑢 ∈ 𝑍2𝑛
×  be a duplex element in 𝑍2𝑛. Then there exists an element 𝑥 in 𝑍2𝑛 such that 𝑥 +

𝑥 = 𝑢 is solvable in 𝑍2𝑛 . By the basic celebrations of 𝑍2𝑛, the number 2𝑛 divides the element 𝑥 + 𝑥 − 𝑢. 

So, there exists 𝑞 in 𝑍 such that 𝑥 + 𝑥 − 𝑢 = 2𝑛𝑞. But 𝑢𝜖𝑍2𝑛
×  implies that 𝑔𝑐𝑑(𝑢, 2𝑛) = 1, and it implies 

that 𝑔𝑐𝑑(𝑥 + 𝑥 − 2𝑛𝑞, 2𝑛) = 1, which is not true because 𝑔𝑐𝑑(𝑥 + 𝑥 − 2𝑛𝑞, 2𝑛) > 1 for every 𝑥 in 𝑍2𝑛. 

Hence every unit in 𝑍2𝑛 is not a duplex element in 𝑍2𝑛. Particularly, 𝐷(𝑍2𝑛
× ) = ∅. ∎ 

Our next goal is to establish a formula for enumerating the number of duplex elements in 𝑍𝑛. Once 

this is established, enumerating formulas in a simple form for the different values of 𝑛 will complete our 

enumerating procedure. We start with the trivial observation that the duplex element in 𝑍1 is 0, so that 𝐷(1) =

1 because 𝑥 + 𝑥 = 0 is solvable in 𝑍1. We are now ready to prove that 𝐷(2𝑛) = 2𝑛−1, where 𝑛 ≥ 2. Because 

𝑥 + 𝑥 = 2𝑥(𝑚𝑜𝑑 2𝑛) for all 𝑥 in 𝑍2𝑛, it follows that the duplex element in 𝑍2𝑛 is a multiple of 2 under 

multiplication modulo 2𝑛 , but the total number of multiples of 2 in 𝑍2𝑛 , is  2𝑛−1  since 2𝑛 + 2𝑛 ≡

0(𝑚𝑜𝑑 2𝑛)  and thus 𝐷(2𝑛) = 2𝑛−1. 

Further, we start with the simple observation that for every 𝑥 in 𝑍𝑝𝑛 , where 𝑝 > 2 is a prime. This 

concludes that every element in 𝑍𝑝𝑛  is a duplex element in 𝑍𝑝𝑛 , and thus  𝐷(𝑝𝑛) = 𝑝𝑛 . Finally, we aim to 

establish a formula for enumeration number of duplex elements in 𝑍𝑛 whenever 𝑛 ≥ 1. For every 𝑥 in 𝑍𝑛, 

we have 

  (2, 𝑛)𝑥 = (2𝑥, 𝑛𝑥) = 𝑎(2𝑥) + 𝑏(𝑛𝑥) for some 𝑎 and 𝑏 in 𝑍𝑛 

               = 2𝑎𝑥 in 𝑍𝑛= 𝑎𝑥 + 𝑎𝑥 in 𝑍𝑛. 

This observation shows that 𝑥 is a duplex element in 𝑍𝑛 if and only if (2, 𝑛)𝑥 is also a duplex element in 𝑍𝑛. 

As we explored duplex elements in 𝑍𝑛 we were led to specify how many there are. We found the 

answer in the following way. 

Theorem 2.6. The number of duplex elements in 𝑍𝑛 is 𝐷(𝑛) =
𝑛

(2,𝑛)
. 

Proof: Suppose there is an element 𝑥 in 𝑍𝑛 such that the duplex form 𝑥 + 𝑥 can be written as 𝑥 + 𝑥 = 𝑛𝑞 +

(2, 𝑛)𝑟 in 𝑍. By the Bezout’s Theorem (ref.[2]), 

    𝑥 + 𝑥 = 𝑛𝑞 + (2𝑥 + 𝑛𝑦)𝑟  for some 𝑥, 𝑦 in 𝑍. 

              = 𝑛𝑞 + 2𝑥𝑟 + 𝑛𝑦𝑟 = 𝑛(𝑞 + 𝑦𝑟) + 2𝑥𝑟. 
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Now 𝑥 + 𝑥 < 𝑛, so 𝑥 + 𝑥 = 2𝑥𝑟 is a duplex in 𝑍𝑛. Conversely, suppose that there is an element 𝑦 in 𝑍𝑛 

such that 𝑦 + 𝑦 = 𝑚𝑛 + (2, 𝑛)𝑠 in 𝑍. Then the number  (2, 𝑛) divides 𝑦. Thus there is an element 𝑡 such 

that 𝑦 = (2, 𝑛)𝑡, and hence an element  (2, 𝑛)𝑡 is a duplex element in 𝑍𝑛. Therefore the number of duplex 

elements in  𝑍𝑛 is 

 𝐷(𝑛) =
|𝑍𝑛|

(2,𝑛)
=

𝑛

(2,𝑛)
∙ ∎ 

The following example demonstrates the preceding theorem. 

 

Example 2.7. Because (2, 𝑛) = 1 𝑜𝑟 2, the number of duplex elements in 𝑍9 is 9 and the number of duplex 

elements in 𝑍10 is 5. 

Our next aim is to enumerate the number of duplex elements in the ring 𝑍𝑚 × 𝑍𝑛 for every positive 

integer 𝑚  and  𝑛 . We recall that 𝑍𝑚 × 𝑍𝑛 ≅ 𝑍𝑚𝑛  if and only if (𝑚, 𝑛) = 1 . This relation explores 

that 𝐷(𝑚𝑛) = 𝐷(𝑚)𝐷(𝑛). Further, if (𝑚, 𝑛) ≠ 1, then by the Theorem [2.2], the number of duplex elements 

in 𝑍𝑚 × 𝑍𝑛 is  

 𝐷(𝑚)𝐷(𝑛) =
𝑚

(2,𝑚)
⋅

𝑛

(2,𝑛)
=

𝑚𝑛

(2,𝑚)(2,𝑛)
⋅ 

However, we observe that 

  𝐷(𝑍𝑚 × 𝑍𝑛) = 𝐷(𝑍𝑚) × 𝐷(𝑍𝑛) ≠ 𝐷(𝑍𝑚𝑛) whenever(𝑚, 𝑛) ≠ 1. 

Subsequently,  𝐷(𝑚)𝐷(𝑛) =
𝑚𝑛

(2,𝑚)(2,𝑛)
 is not equal to 𝐷(𝑚𝑛) =

𝑚𝑛

(2,𝑚𝑛)
. For instance, 𝐷(2) =

2

(2,2)
= 1 , 

𝐷(4) =
4

(2,4)
= 2, 𝐷(8) =

8

(2,8)
= 4 but 𝐷(2 ⋅ 4) ≠ 𝐷(2)𝐷(4). 

Theorem 2.8. Let 𝑚, 𝑛 ∈ 𝑁.  Then  𝐷(𝑍𝑚 × 𝑍𝑛) = 𝐷(𝑍𝑚) × 𝐷(𝑍𝑛).  Particularly, we have  |𝐷(𝑍𝑚 ×

𝑍𝑛)| =
𝑚𝑛

(2,𝑚)(2,𝑛)
. 

Proof: Because of Definition [2.1], the duplex of 𝑍𝑚 × 𝑍𝑛 is defined as 

𝐷(𝑍𝑚 × 𝑍𝑛) = {(𝑎, 𝑏)𝜖 𝑍𝑚 × 𝑍𝑛 ∶ (𝑥, y) + (𝑥, y) = (a, b) is solvable in  𝑍𝑚 × 𝑍𝑛} 

  = {(𝑎, 𝑏)𝜖 𝑍𝑚 × 𝑍𝑛 ∶ (𝑥 + 𝑥, y + y) = (a, b) is solvable in  𝑍𝑚 × 𝑍𝑛} 

 = {(𝑎, 𝑏)𝜖 𝑍𝑚 ∶ 𝑥 + 𝑥 = 𝑎 is solvable in  𝑍𝑚} × {(𝑎, 𝑏)𝜖 𝑍𝑛 ∶ 𝑦 + 𝑦 = 𝑏 is solvable in  𝑍𝑛} 

 =  𝐷(𝑍𝑚) × 𝐷(𝑍𝑛). 

This result has summarized the cardinality of 𝐷(𝑍𝑚) × 𝐷(𝑍𝑛). So, we have 

 |𝐷(𝑍𝑚 × 𝑍𝑛)| = |𝐷(𝑍𝑚) × 𝐷(𝑍𝑛)| = |𝐷(𝑍𝑚)||𝐷(𝑍𝑛)| =
𝑚

(2,𝑚)
⋅

𝑛

(2,𝑛)
=

𝑚𝑛

(2,𝑚)(2,𝑛)
⋅ 

 

3. Duplicity of finite Rings 

A ring R is cyclic if the structure  ,R  is a cyclic group, where the additive operation  is defined over 

the ring R . In [27], the author Buck introduced a special ring structure, called cyclic ring. This algebraic 

structure establishes various results and it explore different algebraic concepts. Generally, every cyclic ring is 

commutative but it is a ring with unity or without unity. For instance, 
9Z is a cyclic ring with unity but

 0 0,3,6R  is also a cyclic ring without unity under addition and multiplication modulo 9 . Further, if R is a 

cyclic ring then obviously the Cartesian product ring R R  is not a cyclic ring. For instance, 
9 9Z Z is not a 
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cyclic ring, in view of the fact that the structure  9 9 ,Z Z  is not a cyclic group under addition modulo 9 . 

Throughout the paper, authors consider the ring
nZ as a cyclic ring of order n . 

 Recall that the element x x is called duplex form an element in
nZ under addition and multiplication 

defined over
nZ . Under this duplex form, we explore the following connections over

nZ : 2x x x  ,

3x x x x   and so on, but 2n n nZ Z Z  , 3n n n nZ Z Z Z   ,and so on, where the addition‘ ’defined over 

the ring nZ . Now summarize these concepts in the following definitions. 

Definition 3.1. An element a in a ring R is called duplex element in R  if the equation x x a   has a solution 

in R . 

For instance, the element 0 is a duplex element in every ring R , since 0x x  is solvable in R . 

Definition 3.2. The duplex ring of a ring R is denoted by  Dup R and defined as 

     : is solvable inDup R a x x a R   . 

For instance, the following short table illustrates the duplex rings of the rings
1Z ,

2Z ,…,
10Z . 

R  1Z  
2Z  

3Z  
4Z  

5Z  
6Z  

7Z  
8Z  

9Z  
10Z  

 Dup R  
1Z   0  

3Z   0,2  
5Z   0,2,4  

7Z   0, 2, 4,6  
9Z   0,2,4,6,8  

 

With this information available, it is an easy task to prove the following result. 

Theorem 3.3. The duplicity of R is a subring of R . 

Proof. Let a and b be any two elements in  Dup R . Then there exists x and y in R such that a x x  and

b y y  . It is clear that 

 ( ) (y y) ( ) ( )a b x x x y x y         , ( )(y y) ( ) ( )ab x x xy xy xy xy xy xy xy xy           , 

which shows that a b and ab are both elements in ( )Dup R , and thus ( )Dup R is a subring of R . ∎ 

 With the support of the preceding theorem, let us define duplex of duplex. 

Definition 3.4. The duplex of duplex of a ring R is denoted by  ( )Dup Dup R and defined as 

     ( ) ( ) : is solvable in ( )Dup Dup R d Dup R x x d Dup R    . 

Similarly, define   ( )Dup Dup Dup R as follows. 

         ( ) ( ) : is solvable in ( )Dup Dup Dup R y Dup Dup R x x y Dup Dup R    . 

These notions lead directly to the following tabular information. 

 

R  1Z  
2Z  3Z  

4Z  5Z  
6Z  7Z  

8Z  
9Z  

10Z  

 Dup R  
1Z   0  

3Z   0,2  
5Z   0,2,4  

7Z   0, 2, 4,6  
9Z   0,2,4,6,8  

  Dup Dup R  1Z   0  
3Z   0  

5Z   0,2,4  
7Z   0,4  

9Z   0,2,4,6,8  

   Dup Dup Dup R  1Z   0  
3Z   0  

5Z   0,2,4  
7Z   0  9Z   0,2,4,6,8  

 

 In vision of the preceding table, authors conclude the following. 

1.   ( )n nDup Dup Dup Z Z n  is odd. 
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2.     ( )n nDup Dup Dup Z Dup Z n  is a perfect square. 

3.     ( ) 0 2k

nDup Dup Dup Z n   for some positive integer k . 

Under this information, the following theorem provides the structure of duplex ring of the ring
nZ . 

Theorem 3.5. For any positive integer n , there exists duplex ring ( )nDup Z  of the ring
nZ such that

 ( ) 2,n nDup Z n Z , where  2,n is the greatest common divisor of the numbers 2 and n . 

Proof. It is well known that 2n n nZ Z Z  but the duplex equation x x a  is solvable in the ring
nZ for every 

positive integer n . So, the calculations 

   
 

2
( ) 2,

2,
n nDup Z n Z

n

 
   

 
 2, nn Z  

conform that the first set inclusion  ( ) 2,n nDup Z n Z is true. Before proving another way of this result, 

consider Bezout’s Theorem [2], the number  2,n can be written as  2, 2n x ny  for some integers x and y . 

Applying this Bezout’s result, 

    2, 2n nn Z x ny Z   2 nxZ , since  0 modny n  

  nx x Z   nDup Z . 

Two set inclusions  ( ) 2,n nDup Z n Z and    2, n nn Z Dup Z finalize that the duplicity of the ring
nZ as

 ( ) 2,n nDup Z n Z .∎ 

 As an immediate application of preceding theorem, authors deduce the following results. 

Corollary 3.6. ( )n nDup Z Z if and only if n is odd. 

Proof. Noting that  2, 1n  if and only if n is odd, so may write  ( ) 2,n nDup Z n Z 1 n nZ Z  .∎ 

 In the same way, the relation  ( ) 2,n nDup Z n Z yields the following corollary, and it is another basic fact 

regarding the order of the duplex ring ( )nDup Z . 

Corollary 3.7. Let n N . Then the cardinality of the duplex ring ( )nDup Z is
 

( )
2,

n

n
Dup Z

n
 . 

Proof.  It is clear from the Theorem [section2], and additionally there is a one to one correspondence 

 
 2,

n
a a a

n
 for every element a in

nZ .∎ 

Theorem 3.8. Let ,m n N . Then    (Z ) 2, 2,m n m nDup Z m n Z Z   . 

Proof. By the Theorem [3.5], we have  ( ) 2,m mDup Z m Z and  ( ) 2,n nDup Z n Z . So, it is clear from the 

calculations        (Z ) (Z ) ( ) 2, 2, 2, 2,m n m n m n m nDup Z Dup Dup Z m Z n Z m n Z Z       .∎ 

 There is an attractive illustration of the finite fields. First, notice that
2 2( )Dup Z Z . For any odd prime, it 

is well known that ( )p pDup Z Z . Particularly, if  3 mod 4p   then  pZ i is a field of Gaussian integers and

    p pDup Z i Z i . Even if R is not a field then there exists R such that  Dup R R . For instance, p pZ Z
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is not a field but  p p p pDup Z Z Z Z   . Further, there is another attractive ring R with  Dup R R , those 

types of rings are called zero rings and it is denoted by 0R R . Now, we show that  0 0Dup R R . 

Theorem 3.9. The duplex ring of any zero rings is itself a zero ring. 

Proof. The theorem is certainly true for 0 1R  , because 0 1R  if and only if  0 0R  . Thus we may hereafter 

restrict our attention to nontrivial zero ring  0 0R  . Let 0 1R  . Then we have to prove that  0 0Dup R R . 

By virtue of the first theorem of this section,  0 0Dup R R .we makes a start by showing that  0 0R Dup R

. For a proof by contradiction, assume that  0 0R Dup RÚ . Then the element a is in 0R  and the equation

a x x  is not solvable in 0R . Accordingly, x x a  for some x is in 0R . Squaring on both sides of x x a 

, it gives  
2 2 2 2 2 2 2 0 0x x a x x x x a         , it is not true in 0R , and thus our assumption is not 

true. Hence,
 

 0 0R Dup R . So, we finish that  0 0Dup R R . 

 

4.Duplicity of Neutrosophic Rings 

In this section, we establish duplex rings and their corresponding neutrosophic duplex rings. On the 

other hand, first we prove some results of this duplicity and which are useful for subsequent results as well as 

for the next concepts. 

 Now, this study is going to define duplicity of R and ( )R I , and study their properties with different 

illustrations. We notice that 2R R R  , 3R R R R   , and so on. 

 

Definition 4.1. Let R be a finite commutative ring. Then the structure ( )Dup R is called duplex ring, and it is 

defined as  ( ) : issolvableinDup R a x x a R   . 

For any ring R , there is a neutrosophic duplex ring ( ( ))Dup R I of the neutrosophic ring ( )R I , and it is defined 

as  ( ( )) : issolvablein ( )Dup R I R I      , where a Ib   and c Id   are neutrosophic elements 

in ( )R I . 

For example,  2(Z ( )) 0 0Dup I I  ,
5 5(Z ( )) Z ( )Dup I I  but 

5 5(Z ( , )) Z ( , )Dup i I i I  where  
5Z ( )i  is the 

ring of Gaussian integers and
5Z ( , )i I is the neutrosophic ring of Gaussian integers. 

 The following is a basic result to the preceding analysis of duplicity. 

 

Theorem 4.2. The duplicity of ( )R I is a neutrosophic subring of ( )R I . 

Proof. By the Theorem [3.3], ( )Dup R  is a subring of R . Further, we have ( )R I R RI  , and therefore, 

( (I)) ( ) ( )Dup R Dup R Dup R I  . This relation explore that ( ( ))Dup R I is generated by ( )Dup R and I , and 

hence ( ( ))Dup R I is a neutrosophic subring of ( )R I .∎ 
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Corollary 4.3. The duplicity of ( )R I is a neutrosophic ideal of ( )R I . 

Proof. It is clear from the observation that ( )Dup R is an ideal R , and thus ( ( ))Dup R I is a neutrosophic ideal of

( )R I .∎ 

 The following examples are interesting illustrations of the preceding results. Here note that

 2( ( )) 0 0Dup Z I I  . 

Example 4.4. For any odd prime p , the neutrosophic duplex ring of ( )pZ I is again ( )pZ I , that is

( ( )) ( )p pDup Z I Z I . 

Example 4.5.  4( ( )) 0,2,2 ,2 2Dup Z I I I  ,  9 9( ( ))Dup Z I Z I . 

In this illustration we observed a connection of duplicity of rings and some fundamental concepts of rings. 

Under this observation, the following theorem provides a necessary and sufficient condition for the 

characteristic and duplicity of rings. 

Theorem 4.6. Let  ( )Char R I be the characteristic of ( )R I with  ( ) 0R I  . Then,  ( (I)) 0Dup R  if and only 

if  ( ) 2Char R I  . 

Proof. It is well known that 1R  if and only if ( ) 4R I  . So, we have  0R  if and only if  ( ) 0R I  , and 

additionally  Char R  ( )Char R I . Thus we finish that 

 ( (I)) 0Dup R   ( ) ( ) 0Dup R Dup R I    ( ) 0Dup R  0r r   is solvable in the ring R  

  2 0r  for every r in R   2Char R  .∎ 

The following example explores this theorem.  

Example 4.7.    2 0Dup Z  ;     2 0Dup Z I  ,     2 0Dup Z i  ;     2 , 0Dup Z i I  ,     

    2 0Dup Z x  ;     2 , 0Dup Z x I  , where  2Z i and  2Z x are both rings of Gaussian integers and 

polynomials under addition and multiplication modulo 2 , respectively. 

 The following theorem plays a significant role in characterizing finite neutrosophic rings and neutrosophic 

fields in terms of their corresponding duplicity of systems. Given a finite field F , there exists a neutrosophic 

field ( )F I with ( )F I F FI  . For instance, 
2 ( )Z I ,

3( )Z I ,
5 ( )Z I are all finite neutrosophic fields. Make a note 

of that ( ) ( ) 2 ( )F I F I F I  . 

Theorem 4.8. For any finite field F , the system ( ) ( )F I F I is also equal to itself the neutrosophic field ( )F I , 

where ( ) ( )F I F I is defined as  ( ) ( ) : ( ), ( )F I F I F I F I        . 

Proof. Because the element 0x  in F F , we have 0x x  , which is in F . This implies that F F F  . To 

go the other way, let us suppose that F F F  . Then, x F implies that x F F  . So, there is an element a

in F such that x a a  . It is not true for any finite field F , because the structure  ,F  is an abelian group and 

the equation x a a  is solvable in  ,F  . Thus our point of view F F F  is also true. Hence, F F F 

. Suppose that F has the duplex form. We end up with the computations 

( ) ( )F I F I ( ) ( )F FI F FI    ( ) ( )F F IF FI    ( ) ( ) IF F F F    F FI   F I ,where

IF FI .∎ 

Corollary 4.9.  Dup F F and  ( ) ( )Dup F I F I whenever   2Char F  . 

Proof. It is simply proved from Theorem [above] and Theorem [above].
 
∎ 
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 The following is an example to the preceding analysis of the duplex of F and ( )F I . 

Example 4.10. 
2 2 2Z Z Z  but  2 2Dup Z Z . However,    2 0Dup Z  . 

              2 2 2Z I Z I Z I  but     2 2Dup Z I Z I . However,     2 0 0Dup Z I I  . 

With these results among our tools, we know that the necessary information to now carry out a proof 

of the fact that duplicity of a zero ring is again itself zero ring. For more information about zero rings, redder 

refer [24, 27].  A ring  0 0 , ,R R   is called a zero ring if 0ab  for every a and b in 0R . Every finite zero 

rings is commutative, and also zero ring is a ring without unity. For instance, the ring 0R  0,5,10,15,20 is a 

finite commutative ring without unity under addition and multiplication modulo 25 . Additionally, the authors 

Chalapathi and Madhavi introduced and studied the extended structure of zero rings, called, neutrosophic zero 

rings [24]. For any zero ring 0R , there exists corresponding neutrosophic zero ring  0R I , which is also 

commutative and without unity. 

Theorem 4.11. Let 0R be a finite zero ring. Then,      0 0 0R I R I R I  . 

Proof. The theorem is certainly true for  0 0R  , because  0 0R  if and only if    0 0R I  . Thus we may 

here after restrict our attention to nontrivial zero ring  0 0R  . Suppose 0 1R  be the positive integer such that

 0 4R I  . Then, first of all we prove that 0 0 0R R R  for any finite zero ring 0R . By virtue of addition of 

two rings,  0 0 0:R R a a a R    . The crux of our argument is that 0 0R R is a subring of 0R , and this fact 

fallows that 0 0 0R R R  . For a proof by a contradiction, assume that 0 0 0R R R  .For some a in 0R , there 

exists 0x R such that x a a  . Now squaring on both sides of x a a  , we calculate 

       
22x a a   

2
0 a a   , since 2 0x   2 2 0a a a a      

0a a   , since 2 0a   

a a  . 

This means that every element in a finite zero ring 0R has not mutually additive inverse. This violates the basic 

condition of the zero rings [24], that means that every nonzero element in nontrivial zero ring has mutually 

additive inverse, giving us our contradiction. Thus, we have 0 0 0R R R  , and hence 0 0 0R R R  . Finally, 

the theorem follows the following calculations. 

        0 0 0 0 0 0R I R I R R I R R I        0 0 0 0R R R I R I       0 0 0 0R R R R I      

   0 0 0R R I R I   .∎
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Remark 4.12. From Theorem [4.11],      0 0 0R I R I R I  but       0 0 0R I R I Dup R I  . This 

explores that the neutrosophic equation    is solvable in  0R I for every neutrosophic elements and

 in  0R I . 

Corollary 4.13. For any zero rings 0R , we have     0 0Dup R I R I . 

Proof. It is full fill from the following calculations. 

          0 0 0 0 0 0Dup R I Dup R Dup R I R R I R I     . 

5. Conclusions   

In this paper,  we have determined and counted all duplex elements in the finite cyclic ring
nZ . We have 

established that there is a number theoretic connection between the duplex function  D n and elements in
nZ , 

and also prove that  
 2,

n
D n

n
 . More importantly, we have shown that  

  2, 2,
m n

mn
D Z Z

m n
  . We have 

also discussed duplicity of finite rings and neutrosophic rings. A short discussion about how this duplex ring 

could be applied to the neutrosophic rings. 
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Abstract  

The Industrial Internet of Things (IIoT) was developed based on the technology and applications of the 

Internet of Things (IoT) in an industrial environment. As it is a sub-set of the IoT, it requires higher levels 

of safety and security. While increased productivity, better management and high operational efficiency 

are its main goals, they involve managing many risks, such as conflicting criteria and uncertain 

information, that need to be assessed and ranked.  Therefore, in this paper, the Multi-criteria Decision-

making (MCDM) method is used to deal with these criteria and a neutrosophic environment to overcome 

the uncertainty. Also, the Analytical Hierarchical Process (AHP) and Technique for Order of Preference 

by Similarity to Ideal Solution (TOPSIS) approaches are proposed. The former is used to obtain the 

weights of the criteria and the latter to rank the management of risk in the IIOT system. Numerical 

examples are provided and a sensitivity analysis conducted to test the reliability of this model.  

 

Keywords: IIoT; IoT; neutrosophic sets; AHP; TOPSIS, risks; SVNSs   

__________________________________________________________________ 

1. Introduction 

 The novelthe IoT that appeared in recent years is based on the development of wireless 

technologies. In 1998, its concept was introduced by Kevin Ashton for objects or connected to the 

internet. It has many advantages in applications such as transportation, healthcare and smart homes as 

well as industry for reducing costs while effectively controlling operations. The concept of the IIoT was 

introduced based on the innovations and benefits of the IoT in industry. The large amounts of data 

collected and analyzed by IIoT in industry are used to enhance the performances of industrial systems , 

provide many services and reduce operational costs [1].      

 There are several terms for the IIOT, such as Industry 4.0, smart manufacturing and the IoT in 

industry. The main reason for the IIoT is its use of advanced technologies and applications, including 

deep learning, machine learning, cloud computing and 5G, for optimizing industrial processes. In 2011, 

the German government introduced the term Industry 4.0. Its main goal is to collect and analyze the data 

and information of any product and enhance the efficiency of its manufacture.  

mailto:abSalamai@jazanu.edu.sa
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The IIoT is a sub-set of the IoT which requires more safety and security. It will enable Industry 5.0 

to reduce the gap between humans and machines. By 2025, 70 billion devices will be connected to it and, 

in 2023, its share in the global market will be USD14.2 trillion. 

 
The IIoT plays a vital role in many fields and companies, such as providers of healthcare, producers 

of agriculture and manufacturers, to increase their performances, efficiency and productivity through 

smart management; for example, hospitals can overcome their limitations by using IIoT technologies to 

connect medical devices. Although the IIoT helps workers to improve efficiency and safety[2], it has 

many risks which, as they threaten industrial processes and affect the performances of systems, should 

be ranked in terms of their significance.  

 
The problem of ranking these risks includes uncertainty and vague information. Although a fuzzy 

set is used to solve the uncertainty, it cannot deal with the value of indeterminacy [3]. To overcome this 

problem, a neutrosophic set is introduced. It handles both uncertainty and vague information by 

representing the indeterminacy value.[4] A single-valued neutrosophic set (SVNS) includes the three 

values of truth, indeterminacy and falsity (T,I,F). It is a sub-set of a neutrosophic set and represents data 

using single-valued neutrosophic numbers (SVNNs)[5].  

  
 As ranking the risks of the IIoT involves different, multiple and conflicting factors, the concept 

of the Multi-criteria Decision-making (MCDM) method, which solves complex decision-making 

problems, is used[6]. In this study, the Analytical Hierarchical Process (AHP) and Technique for Order 

of Preference by Similarity to Ideal Solution (TOPSIS) approaches are employed. The former is used to 

calculate the weights of the criteria and is a common MCDM method. It depends on a pair-wise 

comparison of the criteria and alternatives. It helps decision-makers select the best solution and decision 

given vague and imprecise information. It has been applied to solve  medical, engineering, manufacturing 

and educational problems and is easy to use [7]. In this paper, the TOPSIS method is used to rank the 

risks in the IIoT. It performs mathematical calculations to compute the best alternatives and is a common 

MCDM method [8].  

 
The main contributions of this work are as follows. 

I. It describes the benefits and risks of the IIoT and ranks these risks to help enterprises, 

companies, etc.  consider them.  

II. It uses different units of criteria and alternatives to assess these risks. 

III. It employs the MCDM methods AHP and TOPSIS. 

IV. It introduces SVNSs to overcome the vagueness and uncertainty of information in the IIoT. 
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The remainder of this paper is organized as follows: related work is presented in section 2; a hybrid 

model in section 3; a numerical example in section 4; a sensitivity analysis in section 5; and, finally, 

conclusions and suggested future work in section 6.  

 
2. Related Work 

 In this section, a literature review of the IIoT and our model are provided, with the concept of 

the IIoT and cyber physical systems (CPS) presented in [9, 10]. The IIoT is used in many fields, such as 

healthcare and agriculture, and many companies. It aids farmers in computing their agricultural variables,  

such as water and nutrients in the soil as well as the fertilizers used to increase productivity [11, 12]. 

Many companies, such as Microsoft [13] and the Climate Group encourage agricultural pursuits [14]. 

Sisinni et al. described the IIoT’s challenges, such as energy efficiency, real-time cohabitation and 

interoperability, privacy and security, as well as its opportunities and directions [2]. . Sadeghi et al. 

considered privacy and security as its main challenges [15]. They concluded that cyber-attacks are very 

critical as they cause physical damage and threats to humans. Boyes et al. proposed a framework for 

analyzing security and sensitivity threats [16]. Younan et al. discussed the IIoT’s issues and 

recommended technologies for them IIoT [17].        

  
As the challenges and risks of the IIoT include a great deal of vague and uncertain information, a 

fuzzy sets have been used. ElHamdi et al. discussed an agricultural framework using fuzzy sets to 

compute the best locations for sensors on a shop floor [18]. Collotta et al. used a fuzzy model to enhance 

power management in smart homes [19]. However, as these sets have several limitations, such as not 

considering indeterminacy values, neutrosophics ones were used to overcome this uncertainty by taking 

these values into account. Abdel-Basset et al. used neutrosophic sets to solve the problem of the IoT’s 

transition difficulties [20] which no previous research had considered. Therefore, in this study, SVNSs 

are proposed to overcome uncertainty of the risks of the IIoT.  

  
As the risks of the IIoT have many different and conflicting criteria and factors, MCDM approaches 

have been used to overcome this problem [21]. Grida et al. used a MCDM framework to assess the 

performance of the IoT in a supply chain [22]. Durão et al. used the AHP, which is a common MCDM 

method for computing the weights of the criteria [23], for the selection process in the IoT [24]. Zhang et 

al. used the fuzzy AHP method to assess system security in the IoT [25], with another MCDM method, 

TOPSIS, used to rank the alternatives. Wang and et al. used the fuzzy AHP and TOPSIS methods to 

design a framework for assessing security in the IoT [26]. Tariq et al. adopted the TOPSIS method to 

determine the challenges in the medical field using the IoT [27]. Also, Çalık employed it to select green 

suppliers in the IoT [28].        
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From the review of the literature, it is clear that no study proposed using SVNSs with the AHP and 

TOPSIS methods to rank risks in the IIoT.  

 

 
3. Hybrid Model 

 In this paper, a hybrid model with SVNSs and MCDM with AHP and TOPSIS methods is 

proposed. The AHP one is used to calculate the weights of the criteria and the TOPSIS one to rank the 

risks of the IIoT. The first stage in this hybrid model is using the SVNSs to overcome uncertain 

information. The research framework is shown in Fig. 1.  

3.1. Single-valued Neutrosophic Sets (SVNSs) 

 A SVNS is a sub-set of a neutrosophic set. It deals with the three values of truth, indeterminancy 

and falsity (T,I,F). It has the function of scoring accuracy and certainty, and handles vague and 

inconsistent information well. 

 

 

Fig. 1. Research framework 

 
 
 
 
3.2. AHP Method 

The AHP method is used to calculate the weights of the criteria. Its steps are illustrated in Fig. 2 and 

executed as follows [29].  

Step 1. Build a pair-wise comparison decision matrix among the criteria using the opinions of experts 

and decision-makers as 

Collect 

criteria 

and 
alternatives

Use SVNSs with 
AHP and TOPSIS 

methods, and 
perform sensitivity 

analysis

Rank risks in IIoT
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AP = [
A11

P  ⋯ A1d
P  

⋮ ⋱ ⋮
Ac1

P  ⋯ Acd
P  

]      (1)                                                                           

where P refers to the decision-makers, c the number of criteria and d the number of alternatives. 

 

 

Fig. 2. Steps in AHP method 

Step 2. Obtain the crisp values by converting the opinions of the decision-makers to SVNNs according 

to the values in Table 1. Then, convert these numbers to crisp values to obtain one instead of three values 

using the score function  

F(Ars
P ) =  

2+ Trs
P  − Irs

P − Frs
P

3
      (2)                                                                                        

 where Trs
P  , Irs

P ,  Frs
P  refer to the truth, indeterminacy and falsity values of the SVNNs’ 𝑐 = 1,2, … 𝑟, 𝑑 =

1,2,3, … 𝑠. 

Table 1. Scales of SVNSs 
Linguistic Variable SVNNs 

Very Corrupt <0.30,0.7,0.75> 
Corrupt <0.40,0.6,0.65> 
Equal <0.6,0.5,0.6> 

Honest <0.85,0.35,0.35> 
Very Honest <0.95,0.2,0.3> 

 

 

Step 3. Combine the pair-wise matrices of the criteria in one matrix using  

Build pair-
wise 

comparison 
matrix
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𝐴𝑟𝑠 =
∑ 𝐴𝑟𝑠

𝑃
𝑃=1

𝑃
       (3)                                                                                                      

Step 4. Build a combined pair-wise decision matrix as 

A = [
A11 ⋯ A1s

⋮ ⋱ ⋮
Ar1 ⋯ Ars

]      (4)                                                                                                    

Step 5. Compute a normalized pair-wise comparison matrix using the combined pair-wise comparison 

matrix as 

Zr
c =

Ar

∑ Ar
c
r=1

;r = 1,2,3, … … . c     (5)      

                                

Step 6. Compute the row average (weights of the criteria) after building the normalized pair-wise 

comparison matrix as  

wr =
∑ (Zrs)d

s=1

s
; r = 1,2,3, … … . c; s = 1,2,3, … d;   (6) 

Step 7. Use the consistency ratio  

 to check the consistency of the opinions of the decision-makers by 

𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
        (7) 

 

𝐶𝐼 =  
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
       (8) 

 where RI refers to a random index, CI the consistency index and n the number of criteria.  

 

 

3.3. TOPSIS Method 

 This method is used to rank the risks in the IIoT. Its steps are shown in Fig. 3 and described as 

follows [29]. 
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Fig. 3. Steps in TOPSIS method 

 

Step 8. Build a decision matrix of the criteria and alternatives using Eqs. (1), (2), (3) and (4).  

Step 9. Construct a normalized decision matrix  as 

 

Yrs  =
 Ars

√∑ Ars
2c

r=1
2

 r = 1,2,3, … … , c and s = 1,2,3 … … , d  (9) 

Step 10. Calculate the weighted normalized decision matrix by multiplying the normalized decision 

matrix by the weights of the criteria as 

Xrs =  Yrs ∗  Ws       (10) 

Step 11. Compute the negative and positive areas for the positive and negative criteria, respectively, by 

𝐸𝑑
+ = {

max(Xrs)  𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

min(Xrs)  𝑓𝑜𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎
            Positive area (11) 

𝐸𝑑
− = {

min(Xrs)  𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

max(Xrs)  𝑓𝑜𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎
            Negative area (12) 

 

Step 12. Calculate the Euclidean distance between the positive and negative areas for the positive and 

negative criteria, respectively, as 

 

Ir
+ =  √∑ (Xrs − Es

+)2d
s=1                   for positive criteria  (13) 

Ir
− =  √∑ (Xrs − Es

−)2d
s=1                   for negative criteria  (14) 
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Step 13. Compute the closeness coefficient using Eq. (15) and then rank the alternatives in descending 

order of Hr as 

Hr =
Ir
−

Ir
++ Ir

−        (15) 

 

 

 

4. Results obtained from Hybrid Model 

The first step in building the hierarchy tree is to determine the goal for this study (ranking the risks 

in the IIoT) and collect the criteria and alternatives, that is, four main criteria, fourteen sub-criteria and 

four alternatives, as shown in Fig. 4. The alternatives are A1 - catastrophic risk, A2 –cyber-attack risk, A3 

- environmental risk and A4 - infrastructure Risk, with all the criteria positive.  
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Fig. 4. Goal, criteria and alternatives for this research 

 

Three decision-makers with expertise in the IIoT are proposed. The first has a PhD degree in the 

IIoT and the others Master’s degrees in that field. Beginning with the SVNNs in Table 1, their opinions 

regarding building the pair-wise comparison matrix using Eq. (1) are obtained. Then, the score function 

is applied to convert their linguistic terms into values which are converted into three numbers (T,I,F) to 

obtain one value using Eq. (2). The values of the three pair-wise comparison matrices are then combined 

in one matrix using Eqs. (3) and(4), and shown in Table 2 for the main criteria and Tables 3.1, 3.2, 3.3, 

3.4 for the sub-criteria.   

 

 

 

 

Table 2. Combined pair-wise comparison matrix for main criteria 
Criteria C1 C2 C3 C4 

C1 0.5 0.49443 0.60557 0.8167 
C2 2.20438 0.5 0.7167 0.75003 
C3 1.79983 1.39528 0.5 0.75003 
C4 1.22444 1.33834 1.33834 0.5 

 

Table 3.1. Combined pair-wise comparison matrix for sub-criteria C1 

Criteria C11 C12 

C11 0.5 0.6389 
C12 1.742882 0.5 

 

Table 3.2. Combined pair-wise comparison matrix for sub-criteria C2 
Criteria C21 C22 C23 

C21 0.5 0.527767 0.7167 
C22 2.147428 0.5 0.672233 
C23 1.395284 1.685934 0.5 

 

Table 3.3. Combined pair-wise comparison matrix for sub-criteria C3 
Criteria C31 C32 C33 C34 C35 C36 

C31 0.5 0.6389 0.6389 0.605567 0.672233 0.605567 
C32 1.742882 0.5 0.605567 0.750033 0.6389 0.6389 
C33 1.742882 1.79983 0.5 0.672247 0.750033 0.6389 
C34 1.79983 1.338336 1.685843 0.5 0.672233 0.750033 
C35 1.685934 1.742882 1.338336 1.685934 0.5 0.527767 
C36 1.79983 1.742882 1.742882 1.338336 2.147428 0.5 

 

 

Table 3.4. Combined pair-wise comparison matrix for sub-criteria C4 
Criteria C41 C42 C43 
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C41 0.5 0.783367 0.527767 
C42 1.281388 0.5 0.6389 
C43 2.147428 1.742882 0.5 

  
 

After building the combined pair-wise comparison matrices, the AHP method is applied to obtain 

the weights of the criteria. Firstly, Eq. (5) is used to normalize the pair-wise comparison matrix in Table 

4 and then the weights of the criteria are computed by Eq. (6). In Table 5. the weights of the main and 

sub-criteria as well as their local and global weights are shown. The results indicate that the C4 (hacking 

and privacy) has the highest weight with a value of 0.2934 and C1 (denial of service attack) the lowest 

with a value of 0.1754. In Fig. 5, the weights of the main criteria are illustrated. C43 (malicious actor) has 

the highest weight of the sub-criteria and C11 (unaware of owner) the lowest. Then, the consistency ratio 

is checked to test whether the opinions of the experts are consistent using Eqs. (7) and (8); if it is less 

than 0.1, they are consistent.  

 

Table 4. Normalized pair-wise comparison matrix for main criteria using AHP method 
Criteria C1 C2 C3 C4 

C1 0.087281 0.132625 0.191598 0.289942 
C2 0.384799 0.134118 0.226761 0.266275 
C3 0.314181 0.374266 0.158198 0.266275 
C4 0.21374 0.358991 0.423443 0.177508 

 

 

 

Table 5. Weights of main and sub-criteria 
Criteria Weights of main criteria Criteria Local Weights Global Weights 

C1 
0.175362 

 
C11 0.392 0.068757 
C12 0.608 0.106643 

C2 0.252988 
C21 0.233 0.058926 
C22 0.357 0.090285 
C23 0.41 0.103689 

C3 
0.27823 

 

C31 0.106 0.0295 
C32 0.129 0.035901 
C33 0.155 0.043137 
C34 0.174 0.048424 
C35 0.192 0.053434 
C36 0.244 0.067905 

C4 0.293421 
C41 0.21 0.061614 
C42 0.338 0.099169 
C43 0.452 0.132617 
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Fig. 5. Weights 

of main criteria 

 
 
 In applying the TOPSIS method to rank the alternatives, the first step is to build a decision 

matrix of the criteria and alternatives using Eqs. (1) (2), (3) and (4) (Table 6). Then, the decision matrix 

is normalized using Eq. (9) (Table 7) and, using Eq. (10), the weighted normalized decision matrix is 

computed by multiplying the values of the normalized decision matrix by the weights of the criteria 

(Table 8). As Eqs. (11) and (12) are applied to obtain the positive and negative ideal solutions for the 

positive and negative criteria, respectively, while all the criteria are positive. The distance from each 

alternative is computed using Eqs. (13) and (14) for the positive and negative criteria, respectively, and 

the closeness coefficient using Eq. (15) (Table 9). Finally, the alternatives are ranked  in the descending 

order of the values of the closeness coefficient. Of the risks, the A2 cyber-attack is the highest and the A1 

catastrophic the lowest. Table 9 shows the ranks of the alternatives and Fig. 6 those of the risks obtained 

from the TOPSIS method. 

 

 

 

 

Table 6. Combined decision matrixof criteria and alternatives 
Criteria\alt
ernatives 

C11 C12 C21 C22 C23 C31 C32 C33 C34 C35 C36 C41 C42 C43 

A1 
0.674

98 
0.516

65 
0.358

33 
0.674

98 
0.674

98 
0.516

65 
0.674

98 
0.674

98 
0.441

65 
0.358

33 
0.674

98 
0.674

98 
0.358

33 
0.75
83 

A2 
0.795

8 
0.758

3 
0.487

48 
0.674

98 
0.758

3 
0.516

65 
0.645

8 
0.758

3 
0.35 0.545

83 
0.758

3 
0.387

5 
0.487

48 
0.59
9975 

Weights of Main Criteria

C1 C2 C3 C4
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A3 
0.562

48 
0.433

33 
0.5 0.516

65 
0.637

48 
0.712

48 
0.683

3 
0.524

98 
0.404

15 
0.758

3 
0.524

98 
0.758

3 
0.645

8 
0.72
08 

A4 
0.329

15 
0.758

3 
0.795

8 
0.404

15 
0.758

3 
0.674

98 
0.387

5 
0.441

65 
0.629

15 
0.795

8 
0.516

65 
0.329

15 
0.795

8 
0.43
3325 

 

Table 7. Normalized decision matrix using TOPSIS method 
Criteria\alt
ernatives 

C11 C12 C21 C22 C23 C31 C32 C33 C34 C35 C36 C41 C42 C43 

A1 
0.548
632 

0.407
845 

0.320
582 

0.582
775 

0.475
854 

0.422
256 

0.553
016 

0.550
883 

0.471
68 

0.280
263 

0.538
151 

0.594
488 

0.301
083 

0.59
1715 

A2 
0.646
841 

0.598
604 

0.436
128 

0.582
775 

0.534
597 

0.422
256 

0.529
113 

0.618
889 

0.373
798 

0.426
916 

0.604
586 

0.341
293 

0.409
602 

0.46
8171 

A3 
0.457

19 
0.342
068 

0.447
334 

0.446
077 

0.449
416 

0.582
303 

0.559
837 

0.428
46 

0.431
63 

0.593
103 

0.418
558 

0.667
877 

0.542
635 

0.56
2453 

A4 
0.267
539 

0.598
604 

0.711
977 

0.348
944 

0.534
597 

0.551
655 

0.317
484 

0.360
454 

0.671
929 

0.622
434 

0.411
92 

0.289
901 

0.668
672 

0.33
8131 

 

Table 8. Weighted normalized decision matrix using TOPSIS method 
Criteria\alt
ernatives 

C11 C12 C21 C22 C23 C31 C32 C33 C34 C35 C36 C41 C42 C43 

A1 
0.037
722 

0.043
494 

0.018
891 

0.052
616 

0.049
341 

0.012
456 

0.019
854 

0.023
763 

0.022
841 

0.014
975 

0.036
543 

0.036
629 

0.029
858 

0.07
8471 

A2 
0.044
475 

0.063
837 

0.025
699 

0.052
616 

0.055
432 

0.012
456 

0.018
996 

0.026
697 

0.018
101 

0.022
812 

0.041
055 

0.021
028 

0.040
62 

0.06
2087 

A3 
0.031
435 

0.036
479 

0.026
359 

0.040
274 

0.046
6 

0.017
178 

0.020
099 

0.018
482 

0.020
901 

0.031
692 

0.028
422 

0.041
151 

0.053
813 

0.07
4590 

A4 
0.018
395 

0.063
837 

0.041
954 

0.031
505 

0.055
432 

0.016
274 

0.011
398 

0.015
549 

0.032
538 

0.033
259 

0.027
972 

0.017
862 

0.066
312 

0.04
4841 

 

Table 9. Closeness coefficient and ranks of alternatives 
Alternative Closeness Coefficient Rank 

A1 0.487915 A2 

A2 0.547426 A3 

A3 0.541891 A4 

A4 0.50286 A1 
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Fig. 6. Ranks of risks in IIoT using TOPSIS method 

5. Sensitivity Analysis 

  
When the weights of the criteria change, so do the ranks of the risks. In this sensitivity analysis, 

five scenarios of changing weights are considered. In the first, all the weights of the criteria are equal 

and, in the second, that of the first criterion is 0.5 while the others are equal and so on. However, in all 

the scenarios, the sum of the weights of the criteria must equal 1, as shown in Table 10. When the weights 

of the main criteria are changed, so are those of the sub-criteria, as shown in Table 11.           

 

Table 10. Five scenarios with different weights of main criteria 
Scenario\Criterion C1 C2 C3 C4 

Scenario 1 0.25 0.25 0.25 0.25 
Scenario 2 0.5 0.1667 0.1667 0.1667 
Scenario 3 0.1667 0.5 0.1667 0.1667 
Scenario 4 0.1667 0.1667 0.5 0.1667 
Scenario 5 0.1667 0.1667 0.1667 0.5 

 
  

Table 11. Sub-criteria for five scenarios with different weights of main criteria 
Sub-criterion\weight Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

C11 0.098 0.196 0.065346 0.065346 0.065346 
C12 0.152 0.304 0.101354 0.101354 0.101354 
C21 0.05825 0.038841 0.1165 0.038841 0.038841 
C22 0.08925 0.059512 0.1785 0.059512 0.059512 
C23 0.1025 0.068347 0.205 0.068347 0.068347 
C31 0.0265 0.01767 0.01767 0.053 0.01767 
C32 0.03225 0.021504 0.021504 0.0645 0.021504 
C33 0.03875 0.025839 0.025839 0.0775 0.025839 
C34 0.0435 0.029006 0.029006 0.087 0.029006 
C35 0.048 0.032006 0.032006 0.096 0.032006 
C36 0.061 0.040675 0.040675 0.122 0.040675 
C41 0.0525 0.035007 0.035007 0.035007 0.105 

0

1

2

3

4

5

A1 A2 A3 A4

Ranks of Risks in IIoT

Rank of Risks in IIoT



Neutrosophic Sets and Systems, Vol. 55, 2023                                                                                                                  229  
_____________________________________________________________________ 
 

_____________________________________________________________________ 
Abdullah Ali Salamai, An Integrated Model for Ranking Risk Management in Industrial Internet of Things (IIoT) 
system 

 
 

C42 0.0845 0.056345 0.056345 0.056345 0.169 
C43 0.113 0.075348 0.075348 0.075348 0.226 

 
 

In the next step, the risks are ranked using the TOPSIS method for the different scenarios. In 

scenarios 1, 2 and 3, A2 has the highest rank and A3 the lowest. In scenario 4, A2 has the highest rank 

and A1 the lowest while, in scenario 5, A3 has the highest rank and A2 the lowest. The ranks of the risks 

for the five scenarios are presented in Table 12 and those in the IIoT in Fig. 7.  

 

Table 12. Ranks of risks for five scenarios 
Alternative Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

A1 A2 A2 A2 A2 A3 
A2 A4 A4 A4 A4 A1 
A3 A1 A1 A1 A3 A4 
A4 A3 A3 A3 A1 A2 

 
 

 
Fig. 7. Ranks of risks in IIoT for five scenarios 

 
 

6. Conclusions  

In this research, SVNSs using MCDM methods rank the risks in the IIoT and the importance of the 

role the IIoT plays in increasing a system’s productivity, efficiency and performance by using the 

proposed hybrid model. This model includes the AHP and TOPSIS methods, with the former ranking the 

weights of the criteria and the latter the weights of the criteria. The neutrosophic environment overcomes 

0

0.5

1

1.5

2
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3

3.5

4

A1 A2 A3 A4

Ranks of Risks in IIoT under Five Scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5



Neutrosophic Sets and Systems, Vol. 55, 2023                                                                                                                  230  
_____________________________________________________________________ 
 

_____________________________________________________________________ 
Abdullah Ali Salamai, An Integrated Model for Ranking Risk Management in Industrial Internet of Things (IIoT) 
system 

 
 

the vague and uncertain information by considering the indeterminacy value. Four main criteria, fourteen 

sub-criteria, four alternatives and three decision-makers are adopted in this study.     

  
 Future work on this topic will apply other MCDM methods, such as VIKOR, to build a fuzzy 

model and compare it with the neutrosophic one.  
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Abstract 

 Pentapartitioned neutrosophic set is a powerful mathematical tool, which is the extension of 

neutrosophic set and n-valued neutrosophic refined logic for better designing and modeling real-life 

problems. A generalization of the notion of pentapartitioned neutrosophic set is introduced. The 

new notion is called Interval Pentapartitioned Neutrosophic set (IPNS). Pentapartitioned 

neutrosophic set is developed  by combining the pentapartitioned neutrosophic set and interval 

neutrosophic set. We define  several set theoretic operations of IPNSs, namely, inclusion, 

complement, intersection. We also establish various properties of set-theoretic operators. 

 Keywords: Neutrosophic set, Single valued neutrosophic set, Interval neutrosophic set, 

Pentapartitioned neutrosophic set, Interval pentapartitioned neutrosophic set 

 

 

1. Introduction 

Smarandache [1] developed the Neutrosophic Set (NS) by extending fuzzy set [2] and intuitionistic 

fuzzy set [3] by introducing the degrees of indeterminacy and rejection (falsity or non-membership) 

as independent components. Wang et al. [4] defined Interval NS ( INS) as a subclass of NS by 

considering that the truth membership degree, indeterminacy membership degree and falsity 

membership degree are independent and  assume values from the subunitary interval of [0, 1].  In 

2010, Wang et al. [5]  defined the Single Valued NS (SVNS) by restricting the degrees of 

membership, indeterminacy and falsity in [0, 1]. In 2013, Smarandache [6] presented n- valued 

neutrosophic refined logic.   

Chatterjee et al. [7] defined Quadripartitioned SVNS (QSVNS) that involves degrees of truth, falsity, 

unknown and contradiction membership based on four valued logics [6].  

Mallick and Pramanik [8] developed the theory of Pentapartitioned NS (PNS) by diving 

indeterminacy into three independent components, namely contradiction, ignorance, unknown. In 

this paper, we start the investigation of generalization of the notion-the Interval Pentapartitioned 

Neutrosophic Set (IPNS).We also establish some basic properties of the proposed set. The proposed 

structure is generalization of existing theories of INS and PNS. 

The organization of the paper is as follows: Section 2 presents some preliminary results. Section 

3 introduces the concept of IPNS and set-theoretic operations over IPNS. Section 4 concludes the 

paper by stating the future scope of research. 
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2. Preliminary 

Definition 2.1. Let a set W be fixed.   An NS [1] D over W is defined as: 

   D D DD {w (T (w), I w ,F w ) : w W}  where D D DT , I ,F :W ] 0,1 [   and 

     D D D0 T w I w F w 3     . 

Definition 2.2  Let a set W be fixed. An SVNS D over W is defined as: 

   D D DD {w (T (w), I w ,F w ) : w W}  where D D DT ,I ,F :W [0,1]  and 

     D D D0 T w I w F w 3    . 

Definition 2.3. Let a set W be fixed. An INS D over W is defined as: 

D D DT (w), I (w),F (w)) : w W}D {(w,(   

where for each wW, D D DT (w), I (w),F (w) [0,1] are the degrees of membership functions of truth, 

indeterminacy, and falsity and 

D D D D D D D D D

D D D

T (w) inf T (w),supT (w)], I (w) [inf I (w),sup I (w)]),F (w) [inf F (w),sup F (w)]and

0 supT (w) sup I (w) sup F (w) 3.

[  

   
  

D can be expressed as: 

  D D D D D Dinf T (w),supT (w)],[inf I (w),supI (w)]),[inf F (w),supF (w)]) : w W}D {w,([   

   

3. The Basic Theory of IPNSs 

 

Definition 3.1.  IPNS  

 

Suppose that W be a fixed set. Then D, an IPNS over W is denoted as follows: 

D = {(w, TD(w), CD(w), GD(w), UD(w), FD(w)): wW}, where for each point wW, TD(w), CD(w), 

GD(w) UD,(w) FD(w)  [0, 1] are the degrees of membership functions of truth, contradiction, 

ignorance, unknown, and falsity and  TD(w) = [inf TD(w, sup TD(w)] , CD(w) = [inf CD(w), sup CD(w)] 

, GD(w) = [inf GD(w), sup GD(w)],   UD,(w) = [inf UD(w), sup UD(w)],  FD(w) = [inf FD(w), sup FD(w)]  

 [0, 1] and  0 sup TD(w) + sup CD(w) + sup GD(w) + sup UD(w) + sup FD(w) 5. 

 

An IPNS in R1 is illustrated in Figure 1. 

 

Example 3.1.  Assume that W = [w1, w2, w3], where w1, w2, and w3 denote respectively 

capability, trustworthiness, and price. The values of w1, w2, and w3 are in [0, 1]. They are 

obtained from the questionnaire of some domain experts, their option could be degree of 

truth (good), degree of contradiction, degree of ignorance, degree of unknown,  and 

degree of false (poor). D1 is an IPNS of W defined by 
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D1 = {[0.4, 0.7], [0.1, 0.2], [0.1, 0.2], [0.2, 0.3], [0.2, 0.4]}/w1 + {[0.5, 0.8], [0.2, 0.3], [0.1, 0.2], 

[0.15, 0.25], [0.2, 0.3]}/w2+ [0.6, 0.8], [01, 0.2], [0.2, 0.3], [0.15, 0.25], [0.1, 0.2]}/ w3 

D2 is an IPNS of W defined by 

D2 = {[0.5, 0.9], [0.15, 0.25], [0.15, 0.25], [0.2, 0.3], [0:2, 0:3]}/w1 + {[0.5, 0.8], [0.25, 0.3], [0.1, 

0.2], [0.15, 0.25], [0.1; 0.3]}/w2+ [0.4, 0.7]; [01; 0.2], [0.2; 0.3], [0.15, 0.25], [0.15; 0.2]}/ w3 

 

Figure 1: Illustration of an IPNS in R1 

 

Definition 3.2  An IPNS is said to be empty (null) denoted by 0̂ if and only if its 

truth-membership, contradiction membership, ignorance membership, unknown membership and 

falsity membership function values are respectively defined as follows:  

inf TD(w)= sup TD(w) = 0, inf CD(w)= sup CD(w) = 0, inf GD(w)= sup GD(w)= 1, inf UD(w) = sup UD(w)= 

1, inf FD(w)= sup FD(w) = 1 , 

0̂ {[0,0],[0,0],[1,1],[1,1],[1,1]}  

Definition 3.3  An IPNS is said to be unity  denoted by 1̂  if and only if its truth-membership, 

contradiction membership, ignorance membership, unknown membership and falsity membership 

function values are respectively defined as follows:  

inf TD(w)= sup TD(w) = 1, inf CD(w)= sup CD(w) = 1, inf GD(w)= sup GD(w)= 0, inf UD(w) = sup UD(w)= 

0, inf FD(w)= sup FD(w) = 0 , 

1̂ {[1,1],[1,1],[0,0],[0,0],[0,0]}  
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Also, we have 0 0,0,1,1,1 1 1,1,0,0,0 and for pentapartitioned neutrosophic set 

Definition 3.4. (Containment ) Assume that 1D  and 2D be any two IPNS over W, 1D  is said to be 

contained in 2D , denoted by 1 2D D if and only if  

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

D D D D

D D D D

D D D D

D D D D

D D D D

inf T (w) inf T (w),supT (w) supT (w),
inf C (w) inf C (w),supC (w) supC (w),
inf G (w) inf G (w),supG (w) supG (w),
inf U (w) inf U (w),sup U (w) sup U (w),
inf F (w) inf F (w),sup F (w) sup F (w),

 

 

 

 

 

 

for any w W .  

Definition 3.5.  Ay two  IPNSs  D1  and D2 are equal if and only if 1 2D D and 1 2D D  

Definition 3.6. (Complement)  Let D D D D DD {(w,T (w),C (w),G (w),U (w),F (w)) : w W}  be an  

IPNS. The complement of D is denoted by D  and defined as:   

D D D D

D D

D D

D D D D

D D D D D D

D D D D

T (w) F (w), C (w) U (w),

inf G (w) 1 supG (w),

supG (w) 1 inf G (w),

U (w) C (w),F (w) T (w)

D {(w,[inf F (w),sup F (w)],[inf U (w),sup U (w)],[1 sup G (w),1 inf G (w)],

[inf C (w),supC (w)], [inf T (w),supT (

 





 

 

 

 

 

   

w)]) : w W}

 

Example 3.2 .  Consider an IPNS D of the form: 

D = {[0.4, 0.75], [0.1, 0.25], [0.1, 0.2], [0.2, 0.3], [0.2, 0.4]}/w1 + {[0.5, 0.8], [0.2, 0.3], [0.1, 0.2], 

[0.15, 0.25], [0.2, 0.35]}/w2+ [0.75, 0.85], [0.15, 0.25], [0.2, 0.35], [0.15, 0.25], [0.1, 0.25]}/ w3 

Then, complement of D is obtained as: 

D == {[0.2, 0.4] , [0.2, 0.3], [0.8, 0.9], [0.1, 0.25], [0.4, 0.75]}/w1 + {[0.2, 0.35], [0.15, 0.25], [0.8, 

0.9], [0.2, 0.3], [0.5, 0.8]}/w2+ [0.1, 0.25], [0.15, 0.25], [0.65, 0.8], [0.15, 0.25], [0.75, 0.85]}/ w3 

 

Definition 3.7.( Intersection)  

The intersection of any two IPNSs D1  and D2 is an IPNS D3 , written as D3 = D1D2, such that  

 



3 3 3 3 3 3 3 3

3 3

1 2 1 2

1 2

D D D D D D D D

D D

D D D D

D D

{(w,[inf T (w),supT (w)],[inf C (w),supC (w)],[inf G (w),supG (w)],[inf U (w),supU w)],
[inf F (w),supF (w)]) : w W}.

{(w,[min(inf T (w),inf T (w)),min(supT (w),supT (w))],
[min(inf C (w),inf C (w



1 2

1 2 1 2

1 2 1 2

1 2 1 2

D D

D D D D

D D D D

D D D D

)),min(supC (w),supC (w))],
[max(inf G (w),inf G (w)),max(supG (w),supG (w))],
[max(inf U (w),inf U (w))],max(suf U (w),suf U (w))],
[max(inf F (w),inf F (w)),max(supF (w),supF (w))]) : w W}

 

Example 3.3. Let D1  and D2 be the IPNSs defined in Example 3.1. 

Then, 1 2 D D {[0.4, 0.7], [0.1, 0.2], [0.15, 0.25], [0.2, 0.3], [0.2, 0.4]}/w1 + {[0.5, 0.8], [0.2, 0.3], 

[0.1, 0.2], [0.15, 0.25], [0.2, 0.3]}/w2+ [0.6, 0.8], [0.1, 0.2], [0.2, 0.3], [0.15, 0.25], [0.15, 0.2]}/ w3 

 

Definition 3.8. (Union)  The union of any two IPNSs 1D  and 2D  is denoted by an IPNS D3 , 

written as 3 1 2D D D   and is defined by 
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3 3 3 3

3 3 3 3 3 3

1 2 1 2

1 2

D D D D

D D D D D D

D D D D

D D

inf T (w),supT (w)],[inf C (w),supC (w)],

[inf G (w),supG (w)),[inf U (w),sup U (w)],[inf F (w),sup F ]) : w W}.

{(w,[max(inf T (w),inf T (w)),max(supT (w),supT (w))],

[max(inf C (w),inf C (w)),

{(w,[





1 2

1 2 1 2

1 2 1 2

1 2 1 2

D D

D D D D

D D D D

D D D D

max(supC (w),supC (w))],

[min(inf G (w),inf G (w)),min(supG (w),supG (w))],

[min(inf U (w),inf U (w)),min(sup U (w),sup U (w))],

[min(inf F (w),inf F (w)),min(sup F (w),sup F (w))]) : w W}.

 

Example 3. 4. Let 1D  and 2D be the IPNSs in example 3.1. Then  

1 2 D D {[0.5, 0.9], [0.15, 0.25], [0.1, 0.2], [0.2, 0.3], [0.2, 0.3]}/w1 + {[0.5, 0.8], [0.25, 0.3], [0.1, 

0.2], [0.15, 0.25], [0.1, 0.3]}/w2+ [0.4, 0.7], [0.1, 0.2], [0.2, 0.3], [0.15, 0.25], [0.1, 0.2]}/ w3 

 

Theorem 3.1 For any  two IPNSs 1D  and  2D : 

 

 

Proof: (a): 

Assume that 1D  and 2D be any two IPNSs over W defined by  

i i i i 2 i i i i 2D D D D Di D D D Di D iT (w),C (w),G (w),U (w),F (w))]) : w W},i 1,2,and T (w),C (w),G (w),U (w),F (w))] [0,1]D {(w,   

 We have,  

1 2 1 2

1 2 1 2

1 2 1 2

1 2

D D D D

D D D D

D D D

2

D

D D

1 max(inf T (w),inf T (w)),max(supT (w),supT (w))],

[max(inf C (w),inf C (w)),max(supC (w),supC (w))],

[min(inf G (w),inf G (w)),min(supG (w),supG (w))],

[min(inf U (w),inf U (w)),min(sup U

D D {(w,[ 

1 2

1 2 1 2

2 1 2 1 2 1 2 1

2

D D

D D D D

D D D D D D D D

D

(w),sup U (w))],

[min(inf F (w),inf F (w)),min(sup F (w),sup F (w))]) : w W}

max(inf T (w),inf T (w)), max(supT (w),supT (w))],[max(inf C (w),inf C (w)),max(supC (w),sup C (w))],

[min(inf G (w),in

{w,[





1 2 1 2 1

2 1 2 1 2 1

D D D D D

D D D D D D

2 1

f G (w)),min(supG (w),supG (w))],[min(inf U (w),inf U (w)),

min(sup U (w),sup U (w))],[min(inf F (w),inf F (w)),min(sup F (w),sup F (w))] : w W}

D D



 

 

b) 1 2 2 1  D D D D  

D D D D

D D D D

D D D D

D D

min(inf T (w),inf T (w)),min(supT (w),supT (w))],
[min(inf C (w),inf C (w)),min(supC (w),supC (w))],
[max(inf G (w),inf G (w)),max(supG (w),supG (w))],
[max(inf U (w),inf U (w)),max(sup U

D D {(w,[ 
1 2 1 2

1 2 1 2

1 2 1 2

1 2

1 2

D D

D D D D

D D D D

D D D D

D

(w),sup U (w))],
[max(inf F (w),inf F (w)),max(sup F (w),sup F (w))]) : w W}.

min(inf T (w),inf T (w)),min(supT (w),supT (w))],
[min(inf C (w),inf C (w)),min(supC (w),supC (w))],
[max(inf G (w),

{(w,[


1 2

1 2 1 2

2 1 2 1

2 1 2 1

2 D D D

D D D D

D D D D

inf G (w)),max(supG (w),supG (w))],
[max(inf U (w),inf U (w)),max(sup U (w),sup U (w))],
[max(inf F (w),inf F (w)),max(sup F (w),sup F (w))]) : w W}

D D
.









1 2 1

2 1 2 1

2 1 2 1

2 1

 

Theorem 3. 2.  For any three IPNSs, 1 2 3D ,D ,and D : 

1 2 2 1

1 2 2 1

( )

( )

a D D D D

b D D D D

  

  



Neutrosophic Sets and Systems, Vol. 55, 2023     237  

 

__________________________________________________________________________________________________ 

Surapati Pramanik, Interval pentapartitioned neutrosophic sets  

1 2 3 1 2 3

1 2 3 1 2 3

( ) ( ) ( )

( ) ( ) ( )

a D D D D D D

b D D D D D D

    

    
 

Proof (a): Assume that 1D , 2D  and 3D be any three IPNSs over W defined by  

i i i i i

i i i i i

D D D D D

D D D D D

i T (w),C (w),G (w), U (w),F (w))]) : w W},i 1,2,3,and

T (w),C (w),G (w), U (w),F (w))] [0,1], i 1,2,3.

D {(w,  







 

1 2 1 2

1 2 1 2

1 2 1 2 1 2

D D D D

D D D D

D D D D D D

1 2 3( max(inf T (w),inf T (w)),max(sup T (w),sup T (w))],

[max(inf C (w),inf C (w)),max(supC (w),sup C (w))],

[min(inf G (w),inf G (w)),min(supG (w),supG (w))],[min(inf U (w),inf U (w)),

mi

D D ) D ) {(w,[  

1 2 1 2 1 2

3 3 3 3 3 3

1 2 3

D D D D D D

D D D D D D

D D D

n(sup U (w),sup U (w))],[min(inf F (w),inf F (w)),min(sup F (w),sup F (w))]) : w W}

{w ([inf G (w),supG (w)),[inf U (w),sup U (w)],[inf F (w),sup F ]) : w W}

{(w,[max(inf T (w),inf T (w),inf T (w)),max(su

 





1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2

D D D

D D D D D D

D D D D D D

D D

pT (w),sup T (w),sup T (w))],

[max(inf C (w),inf C (w),inf C (w)),max(sup C (w),supC (w),sup C (w))],

[min(inf G (w),inf G (w),inf G (w)),min(supG (w),sup G (w),sup G (w))],

[(inf U (w),inf U (w),inf U
3 1 2 3

1 2 3 1 2 3

D D D D

D D D D D D

(w)),min(sup U (w),sup U (w),sup U (w))],

[(inf F (w),inf F (w),inf F (w)),min(sup F (w),sup F (w),sup F (w))]) : w W}

 

1 1 1 1

1 1 1 1 1 1

2 3 2 3

2 3

D D D D

D D D D D D

D D D D

D D

inf T (w),supT (w)],[inf C (w),supC (w)]),

[inf G (w),supG (w)),[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W}

max(inf T (w),inf T (w)),max(supT (w),supT (w))],

[max(inf C (w),inf C (

{w,([

{(w,[



 

2 3

2 3 2 3

2 3 2 3

2 3 2 3

D D

D D D D

D D D D

D D D D

1 2

w)),max(supC (w),supC (w))],

[min(inf G (w),inf G (w)),min(supG (w),supG (w))],

[min(inf U (w),inf U (w)),min(sup U (w),sup U (w))],

[min(inf F (w),inf F (w)),min(sup F (w),sup F (w))]) : w W}

D (D D



   3 )

 

Proof. (b): 

1 1 1 1

1 1 1 1 1 1

2 3 2 3

2

D D D D

D D D D D D

D D D D

D

1 2 3

inf T (w),supT (w)],[inf C (w),supC (w)]),

[inf G (w),supG (w)),[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W}

min(inf T (w),inf T (w)),min(supT (w),supT (w))],

[min(inf C (

D (D D )

{w,([

{(w,[

 







3 2 3

2 3 2 3

2 3 2 3

2 3 2 3

D D D

D D D D

D D D D

D D D D

w),inf C (w)),min(supC (w),supC (w))],

[max(inf G (w),inf G (w)),max(supG (w),supG (w))],

[max(inf U (w),inf U (w)),max(sup U (w),sup U (w))],

[max(inf F (w),inf F (w)),max(sup F (w),sup F (w))]) : w W }.
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1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1

D D D D D D

D D D D D D

D D D D

min(inf T ,inf T (w),inf T (w)),min(supT (w),supT (w),supT (w))],

[min(inf C (w),inf C (w),inf C (w)),min(supC (w),supC (w),supC (w))],

[max(inf G (w),inf G (w),inf G (w)),max(supG (w),supG

{(w,[

2 3

1 2 3 2 3

1 2 3 1 2 3

1 2

D D

D D D D1 D D

D D D D D D

D D

(w),supG (w))],

[max(inf U inf U (w),inf U (w)),max(sup U ,sup U (w),sup U (w))],

[max(inf F (w),inf F (w),inf F (w)),max(sup F (w)],sup F (w),sup F (w))]) : w W}

min(inf T (w),inf T (w)),min(supT{(w,[





1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2

D D

D D D D

D D D D

D D D D

D D

(w),supT (w))],

[min(inf C (w),inf C (w)),min(supC (w),supC (w))],

[max(inf G (w),inf G (w)),max(supG (w),supG (w))],

[max(inf U (w),inf U (w)),max(sup U (w),sup U (w))],

[max(inf F (w),inf F (w)),
1 2

3 3 3 3 3 3

D D

D D D D

3

D D

1 2

max(sup F (w),sup F (w))]) : w W}

{w ([inf G (w),supG (w)),[inf U (w),sup U (w)],[inf F (w),sup F ]) : w W}

(D D ) D

 

 





 

Theorem 3.3. For any two IPNSs, 1 2D ,andD : 

(a) ( )  D D D D1 1 2 1  

(b) ( )  D D D D1 1 2 1  

Proof .(a): 

D D D D

D D D D D D

D D D D

D

inf T (w),supT (w)],[inf C (w),supC (w)]),
[inf G (w),supG (w)),[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W}

min(inf T (w),inf T (w)),min(supT (w),supT (w))],
[min(inf C (

D (D D )
{w,([

{(w,[

  





1 1 1 1

1 1 1 1 1 1

1 2 1 2

1

1 1 2

D D D

D D D D

D D D D

D D D D

w),inf C (w)),min(supC (w),supC (w))],
[max(inf G (w),inf G (w)),max(supG (w),supG (w))],
[max(inf U (w),inf U (w)),max(sup U (w),sup U (w))],
[max(inf F (w),inf F (w)),max(sup F (w),sup F (w))]) : w W

2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

D D D D D D

D D D D D D

D D

}.

inf T (w),min(inf T (w),inf T (w)),max(supT (w), min(supT (w),supT (w))],
inf C (w),min(inf C (w),inf C (w)),max((supC (w), min(supC (w),supC (w))]),

[[min(inf (G (w),max(inf G (w),

{w,([max(
[max(



1 1 2 1 1 2

1 1 2 1 1 2

1 1 D D D D

D D D D D D

D D D D D

inf G (w))), min(supG (w),max(supG (w),supG (w))],
[min(inf (U (w),max(inf U (w),inf U (w))), min(sup U (w),max(sup U (w),sup U (w))],
[min(inf (F (w),max(inf F (w),inf F (w))), min(sup F (w),max(sup F

2 1 1 2

1 1 2 1 1 2

1 1 2 1 1 D

D D D D

D D D D D D

(w),sup F (w))]) : w W}

inf T (w),supT (w)],[inf C (w),supC (w)]),
[inf G (w),supG (w)),[inf U (w),sup U (w)],[inf F (w),sup F (w)]) :
{w,(

w W}
D

[









2

1 1 1 1

1 1 1 1 1 1

1

 

Proof (b):  



Neutrosophic Sets and Systems, Vol. 55, 2023     239  

 

__________________________________________________________________________________________________ 

Surapati Pramanik, Interval pentapartitioned neutrosophic sets  

D D D D

D D D D D D

D D D D

D

inf T (w),supT (w)],[inf C (w),supC (w)]),

[inf G (w),supG (w)),[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w }

max(inf T (w),inf T (w)),max(supT (w),supT (w))],

[max(inf C (w

D (D D )

{w,([

{(w,[

 



 

1 1 1 1

1 1 1 1 1 1

1 2 1 2

1

1 1 2

D D D

D D D D

D D D D

D D D D

), inf C (w)),max(supC (w),supC (w))],

[min(inf G (w),inf G (w)),min(supG (w),supG (w))],

[min(inf U (w),inf U (w)),min(sup U (w),sup U (w))],

[min(inf F (w),inf F (w)),min(sup F (w),sup F (w))]) : w W}

2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

D D D D D D

D D D D D D

D D

inf T (w),max(inf T (w),inf T (w))),min ((supT (w),max(supT (w),supT (w))],

[min ((inf C (w),max(inf C (w),inf C (w))),min((supC (w),max(supC (w),supC (w))],

[max((inf G (w),min(inf G (w),

{w,[min ((
1 1 2 1 1 2

1 1 2 1 1 2

1 1 D D D D

D D D D D D

D D D D

inf G (w))),max((supG (w)),min(supG (w),supG (w))],

[max((inf U (w),min(inf U (w),inf U (w))),max ((sup U (w),min(sup U (w),sup U (w))],

[max((inf F (w),min(inf F (w),inf F (w))),max ((sup F (w),min(su

2 1 1 2

1 1 2 1 1 2

1 1 2 1 D D

D D D D

D D D D D D

p F (w),sup F (w))]) : w W}

inf T (w),supT (w)],[inf C (w),supC (w)]),

[inf G (w),supG (w)),[inf U (w),sup U (w)],[inf F (w),sup F (w)])

{w,(

: w }

D

[









1 2

1 1 1 1

1 1 1 1 1 1

1  

Theorem 3.4.  For any IPNS D1: 

 1 1 1

1 1 1

(a)D D D

(b) D D D

 

 
 

Proof. (a): 

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

D D D D D D

D D D D D D

D D D D

1 1 inf T (w),supT (w)],[inf C (w),supC (w)]),[inf G (w),supG (w)),

[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W} { inf T (w),supT (w)],

[inf C (w),supC (w)]),[inf G (w),supG (w)),[i

D D {w,([

w,([ 

 

1 1

1 1

D D

D D

nf U (w),sup U (w)],

[inf F (w),sup F (w)]) : w W}

 

1 1 1 1

1 1 1 1

1 1 1 1 1 1

D D D D

D D D D

D D D D D D

{ inf T (w),inf T (w)),max(supT (w),supT (w))],

[max(inf C (w), (inf C (w))),max(supT (w),supC (w)]),

[min(inf G (w),supG (w)),[min(inf U (w),inf U (w)), (min(sup U (w), (suf U (w))],

[min(inf F

w,([max(

1 1 1 1

1 1 1 1 1 1

1 1 1 1

D D D D

D D D D D D

D D D D

1

(w),inf F (w)),min(sup F (w),sup F (w))]) : w W}

inf T (w),supT (w)],[inf C (w),supC (w)]),[inf G (w),supG (w)),

[inf U (w),sup U (w)],[inf F (w),sup

,

F (w)]

{

) : w W

w (

}

D

[









  

Proof. (b):  

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

D D D D D D

D D D D D D

D D D D

1 1 inf T (w),supT (w)],[inf C (w),supC (w)]),[inf G (w),supG (w)),

[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W} { inf T (w),supT (w)],

[inf C (w),supC (w)]),[inf G (w),supG (w)),[i

D D {w,([

w,([ 

 

1 1

1 1

D D

D D

nf U (w),sup U (w)],

[inf F (w),sup F (w)]) : w W}
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1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

D D D D

D D D D

D D D D

D D D

min(inf T (w),inf T (w)),min(supT (w),supT (w))],

[min(inf C (w),inf C (w)),min(supC (w),supC (w))],

[max(inf G (w),inf G (w)),max(supG (w),supG (w))],

[max(inf U (w),inf U (w)),max(sup U (w)

{(w,[

1

1 1 1 1

D

D D D D

,sup U (w))],

[max(inf F (w),inf F (w)),max(sup F (w),sup F (w))]) : w W} 

1 1 1 1 1 1

1 1 1 1

D D D D D D

D D D D

1

inf T (w),supT (w)],[inf C (w),supC (w)]),[inf G (w),supG (w)),

[inf U (w),sup U (w)],[in

{w,([

f F (w),sup F (w)]) : w W}

D







 

Theorem 3.5 For any IPNS 1D ,  

 1

1

ˆ ˆ(a)D 0 0

ˆ ˆ(b)D 1 1

 

 
 

Proof. (a): 

1 1 1 1 1 1 1 1

1 1

1 1

D D D D D D D

1

D

D D

D D

inf T (w),supT (w)],[inf C (w),supC (w)]),[inf G (w),supG (w)),[inf U (w),sup U (w)],

[inf F (w),sup F (w)]) : w W}

min(inf T (w),0),min(supT (w),0)],

[

ˆD 0

{w,([

{[0,0],[0,0],[1,1],[1,1],[1,1]}

{(w,[









1 1

1 1

1 1

1 1

D D

D D

D D

D D

min(inf C (w),0),min(supC (w),0)],

[max(inf G (w),1),max(supG (w),1)],

[max(inf U (w),1),max(sup U (w),1)],

[max(inf F (w),1),max(sup F (w),1]) : w W}

0,0)], 0,0)],[1,1],[1,1],[1,1]), w W}

0̂

{(w,[ [



 



 

Proof. (b): 

1 1 1 1

1 1 1 1 1 1

D D D D

D D D D D D

1

inf T (w),supT (w)],[inf C (w),supC (w)]),

[inf G (w),supG (w)),[in }f U (w),sup U (w)],[inf F (w),sup F (w)

D 1̂

{w,([

{[1,1],[1,1],[0,0],[0,0],[0,: 0W ]]) w }





 

 

1 1

1 1

1 1

1 1

1 1

D D

D D

D D

D D

D D

max(inf T (w),1),max(sup T (w),1))],

[max(inf C (w),1),ma

1

x(sup C (w),1)],

[min(inf G (w),0),min(sup G (w),0)],

[min(inf U (w),0),min(sup U (w),0)],

[min F

{(w,[

(inf F (w),0)),min(sup (w),0)]) : w W

(

}

{w [1,





 ],[1,1],[0,0],[0,0],[0,0]) : w W}

1̂





  

Theorem 3.6 For any IPNS 1D ,  

 1 1

1 1

ˆ(a)D 0 D

ˆ(b)D 1 D

 

 
 

Proof. (a): 
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1 1 1 1

1 1 1 1 1 1

1 1

D D D D

D D D D D D

D D

1

inf T (w),supT (w)],[inf C (w),supC (w)]),

[inf G (w),supG (w)),[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W}

max(inf T (w),0),max(supT (w),0))]

ˆD 0

{w,([

{[0,0],[0,0],[1,1],[1,1],[1,1]}

{(w,[











1 1

1 1

1 1

1 1

1 1 1 1

D D

D D

D D

D D

D D D D

,

[max(inf C (w),0),max(supC (w),0)],

[min(inf G (w),1),min(supG (w),1)],

[min(inf U (w),1),min(sup U (w),1)],

[min(inf F (w),1)),min(sup F (w),1)]) : w W}

inf T (w

[

w, ),supT (w)],[inf C (w),supC (([ w)]),



1 1 1 1 1 1D D D D

1

D Dinf G (w),supG (w)),[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W}

D



1 1 1 1 1 1

1 1 1 1

1 1

D D D D D D

D

1

D D D

D D

inf T (w),supT (w)],[inf C (w),supC (w)]),[inf G (w),supG (w)),

[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W}

min(inf T (w),1),min(supT (w),1)],[mi

ˆD 1

{w,([

{[1,1,[1,1,[0,0],[0,0],[0,0]}

{(w,[









1 1

1 1 1 1

1 1

1 1 1 1

D D

D D D D

D D

D D D D

n(inf C (w),1),min(supC (w),1)],

[max(inf G (w),0),max(supG (w),0)],[max(inf U (w),0),max(sup U (w),0)],

[max(inf F (w),1),max(sup F (w),1]) : w W}

inf T (w),supT (w)],[inf C (w),supC (w)]),[inf{w,([

 


1 1

1 1 1 1

D D

D D D D

1

G (w),supG (w)),

[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W}

D





 

Theorem 3.7 For any IPNS 1D , 1 1( )  D D  

1 1 1 1 1 1

1 1 1 1

D D D D D D

D D D D

1 inf T (w),supT (w)],[inf C (w),supC (w)]),[inf G (w),supG (w)),

[inf U (w),sup U (w)],[inf F (w),supF (w)]) : w W}

Assume that D {w,([


 

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1

D D D D D D

D D D D

D D D D D

1

1

[inf F (w),sup F (w)], [inf U (w),sup U (w)], (w),1 inf G (w)],

[inf C (w),supC (w)]), inf T (w),supT (w)],: w W}

inf T (w),supT (w)],[inf C (w),supC (w)]),[inf G (w),supG

D {w,( [1 supG

[

(D ) {w,([

  

 




1

1 1 1 1

D

D D D D

1

(w)),

[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W}

D





 

Theorem 3.8.  For any two IPNSs, 1D  and 2D : 

1 2 1 2

1 2 1 2

(a)(D D ) D D

(b)(D D ) D D

   

   
 

Proof. (a):  

To prove the theorem 3.8, we need some propositions: 

i.  If P anda ,   then  

 : .aP y y ax for some x P     
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Proposition 1. ,If a  0  

             
then supaP a sup P, inf aP a inf P,
if a , then
supaP a inf P, Inf aP a supP.

 


 
0  

In particular, sup( ) inf , ( ) .P P Inf P sup P       

Proposition 2. If P and Q are nonempty set, then 

sup( P + Q) = sup P+ sup Q, inf (P + Q) = inf P + inf Q    

sup( P - Q) = sup P - inf Q, inf (P - Q) = inf P + inf Q    

 Now,  

1 2 1 2

1 2 1 2

1 2 1 2

1 2

D D D D

D D D D

D D D

2

D

D D

1 max(inf T (w),inf T (w)),max(supT (w),supT (w))],

[max(inf C (w),inf C (w)),max(supC (w),supC (w))],

[min(inf G (w),inf G (w)),min(supG (w),supG (w))],

[min(inf U (w),inf U (w)),min(sup U

D D {(w,[ 

1 2

1 2 1 2

D D

D D D D

(w),sup U (w))],

[min(inf F (w),inf F (w)),min(sup F (w),sup F (w))]) : w W}

 

1 2 1 2

1 2 1 2

1 2 1 2

1

D D D D

D D D D

D

2

D D D

D

1 [min(inf F (w),inf F (w)),min(sup F (w),sup F (w))],

[min(inf U (w),inf U (w)),min(sup U (w),sup U (w))],

[1 sup(min(supG (w),supG (w)),1 inf((min(inf G (w),inf G (w))],

[max(inf C (w),inf

(D D ) {(w, 

 

2 1 2

1 2 1 2

D D D

D D D D

C (w)),max(supC (w),supC (w))],

max(inf T (w),inf T (w)),max(supT (w),supT (w))]) : w W} (1)[ 

 

1 1 1 1

1 1 1 1

1 1 2 2

2 2 2

D D D D

D D D D

D D D D

D D D

1 2 [inf F (w),sup F (w)], [inf U (w),sup U (w)],

(w),1 inf G (w)],[inf C (w),sup C (w)]),

inf T (w),supT (w)]) : w W} [inf F (w),sup F (w)],

[inf U (w),sup U (w)], (w),1 inf G

D D {(w,

[1 suf G

[ {w,(

[1 supG

  







 


2

2 2 2 2

1 2 1 2

1 2 1 2

1 2

D

D D D D

D D D D

D D D D

D D

(w)],

[inf C (w),supC (w)]), inf T (w),supT (w)]) : w W}

inf F (w),minf F (w),min (sup F (w),sup F (w)],

[min(inf U (w),inf U (w)),min(sup U (w),sup U (w))],

[max(inf ( (w)), inf( (

[

{(w,[min(

1 supG 1 supG 





1 2

1 2 1 2

1 2 1 2

D D

D D D D

D D D D

w))), max(sup(1 inf G (w)),sup(1 inf G (w)))],

[max(inf C (w),inf C (w)),max(supC (w),supC (w))],

max(inf T (w),inf T (w)),max(supT (w),supT (w))]) : w W} (2)[

 



 

Now, the theorem 3.8. (a) will be proved,  if we can prove that 

1 2D D1 sup(min(supG (w),supG (w))) = 
1 2D Dmax(inf ( (w)) )1 supG 1 supG,inf( (w))    

1 2D D1 inf(min(inf G (w),inf G (w))) = 
1 2

max(sup(1 inf ( )),sup(1 inf ( )))D DG w G w     

Now, assume that  

1 1

2 1

D 1 D 1

D 2 D 2

inf G (w) c ,sur G (w) d

inf G (w) c ,sur G (w) d
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1 2D D

1 2

1 1 2

2 1 2

1 1 2

2 1 2

1 sup(min(suf G (w),suf G (w)))

1 sup(min(d ,d ))

1 supd , if d d

1 supd ,if d d

1 d , if d d
(3)

1 d ,if d d



 

 
 

 

 
 

 

 

1 2D D

1 2

1 2

1 2

1 1 2

2 1 2

max(inf ( (w)), inf( (w)))

max(inf(1 d ), inf(1 d ))

max(1 sup d ,1 sup d )) by proposition 2.

max(1 d ,1 d ))

1 d , if d d
(4)

1 sup G 1 su

d1 ,i

p

f d d

G

  

  

  

 
 

 

 

 

Therefore, from (3) and (4), we have 

 
1 2

[1 sup(min( ( ), ( ))D Dsuf G w suf G w = 
1 2D Dmax(inf ( (w)) )1 supG 1 supG,inf( (w))   (5) 

Now, 

 

 

 

 

 

 

 

1 2D D

1 2

1 2

1 1 2

2 1 2

1 1 2

2 1 2

max(sup(1 inf G (w)),sup(1 inf G (w)))

max(sup(1 c ),sup(1 c ))

max(1 inf c ,1 inf c )

1 inf c ,if c c

1 infc ,if c c

1 c ,if c c
(7)

1 c ,if c c

 

  

  

 
 

 

 
 

 

 

 

Therefore,  from  (6) and (7) , we have   

1 2D D1 inf((min(inf G (w),inf G (w)) =
1 2D Dmax(sup(1 inf G (w)),sup(1 inf G (w)))     (8)  

Therefore from (1), (2),  (5) and (8), we prove that   

1 2 1 2(D D ) D D    .  

 

Proof. (b): 

1 2D D

1 2

1 1 2

2 1 2

1 1 2

2 1 2

1 inf(min(inf G (w),inf G (w)))

1 inf(min(c ,c ))

1 inf c ,if c c

1 infc ,if c c

1 c ,if c c
(6)

1 c ,if c c
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1 2 1 2

1 2 1 2

1 2 1 2

1 2

D D D D

D D D D

D D

1

D D

D D

2 min(inf T (w),inf T (w)),min(supT (w),supT (w))],

[min(inf C (w),inf C (w)),min(supC (w),supC (w))],

[max(inf G (w),inf G (w)),max(sup G (w),supG (w))],

[max(inf U (w),inf U (w)),max(s

(D D ) {(w,[ 

1 2

1 2 1 2

1 2 1 2

1 2 1 2

D D

D D D D

D D D D

D D D D

up U (w),sup U (w))],

[max(inf F (w),inf F (w)),max(sup F (w),sup F (w))]) : w W}

[max(inf F (w),inf F (w)),max(sup F (w),sup F (w))]),

[max(inf U (w),inf U (w)),max(sup U (w),sup U (w))],

[1 sup(max(

{(w,






1 2 1 2

1 2 1 2

1 2 1 2

D D D D

D D D D

D D D D

sup G (w),supG (w)),1 inf max(inf U (w),inf U (w))],

[min(inf C (w),inf C (w)),min(supC (w),supC (w))],

min(inf T (w),inf T (w)), )[ min(supT (w),supT (w))]) : w W} (9





 

Now 1 2D D  =

1 1 1 1 1 1 1 1

1 1 2 2 2 2

2 2

D D D D D D D D

D D D D D D

D D

[inf F (w),sup F (w)], [inf U (w),sup U (w)], (w),1 inf G (w)],[inf C (w),supC (w)]),

inf T (w),supT (w)]) : w W} [inf F (w),sup F (w)], [inf U (w),sup U (w)],

(w),1 inf G (w)],[

{w,( [1 supG

[ {w,(

[1 supG

 



 

2 2 2 2

1 2 1 2

1 2 1 2

1 2

D D D D

D D D D

D D D D

D D D

inf C (w),supC (w)]), inf T (w),supT (w)]) : w W}

inf F (w),inf F (w)),max(sup F (w)],sup F (w)],

inf U (w),inf U (w)),max(sup U (w)],sup U (

[

w)],

[min

[

{w, max(

[max(

n1 suf G 1 G(( (w), (w)),mf ins ((u 1 i f G





 
1 2

1 2 1 2

D

D D D D

(w),1 inf G (w))],

[ min((inf C (w),inf C (w)),min((supC (w),supC (w))]) : w W} (10)





 

To prove the theorem 3.8. (b), we are to prove  

 

1 2 1 2D D D D1 sup(max(suf G (w),supG (w))) min( (w), )1 supG 1 su (pG w)        

1 2D D1 inf max(inf U (w),inf U (w)) =
1 2D Dmin(1 inf G (w),1 inf G (w))  . 

Now 









1 2D D

1 2

1 1 2

2 1 2

1 1 2

2 1 2

1 sup(max(supG (w),supG (w))

1 sup(max(d ,d )

1 supd ,if d d

1 supd ,if d d

1 d ,if d d
(11)

1 d ,if d d



 

 
 

 

 
 

 

 

1 2D D

1 2

1 1 2

2 1 2

(w), (w))

min(1 d ,1 d )

1 d ,if d d
(12)

min((1 supG 1 supG

1 d ,ifd d

  

 
 

 

 



 

Therefore from (11) and (12), we have   

1 2 1 2D D D D1 sup(max(supG (w),supG (w))) min( (w), )1 supG 1 su (pG w)      (13) 

Now 
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1 2D D

1 2

1 1 2

2 1 2

1 1 2

2 1 2

1 inf max(inf U (w),inf U (w))

1 inf (max(c ,c ))

1 inf c ,if c c

1 inf c ,if c c

1 c ,if c c
(14)

1 c ,if c c



 

 
 

 

 
 

 

 

 

1 2D D

1 2

1 1 2

2 1 2

min((1 inf G (w),1 inf G (w))

min((1 c ,1 c )

1 c ,if c c
(15)

1 c ,if c c

 

  

 
 

 

 

 

Therefore, from (14) and (15), we have   

1 2
1 inf max(inf ( ), inf ( )) D DU w U w

1 2
min(1 inf ( ),1 inf ( )) D DG w G w  (16)  

Therefore,  from (9), (10,), (13) and (16),  

1 2 1 2( )D D D D    .  

Theorem 3.9.  For any two IPNSs D1, D2, 

      1 2 2 1D D D D .     

Proof. 

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1

1 2

D D D D

D D D D

D D D D

D D D D

D D D

D D
inf T (w) inf T (w),supT (w) supT (w),
inf C (w) inf C (w),supC (w) supC (w),
inf G (w) inf G (w),supG (w) supG (w),
inf U (w) inf U (w),sup U (w) sup U (w),
inf F (w) inf F (w),sup F (w) sup F

 
 

 

 

 

 
2D (w),



 

2 1 2 1

2 2 2 1

2 1 2 1

2 1 2 1

D D D D

D D D D

D D D D

D D D D

2 1

inf F (w) inf F (w),sup F (w) sup F (w),
inf U (w) inf U (w),sup U (w) sup U (w),
1 supG (w) 1 supG (w),1 inf G (w) 1 supG (w),
inf T inf T , supT (w) supT (w)

D D

 

 

     

 



 

 

Note1: We establish the following properties of IPNSs:  

1. Commutativity 

2. Associativity 

3. Idempotency 

4. Absorption 

5. De Morgan’s laws 

6. Involution 

Note 2.  IPNS may also be called as Interval Pentapartitioned Single Valued Neutrosophic Set 

(IPSVNS). 
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4. Conclusion 

In this paper, we develop the notion of IPNS by combing the concept of PNS and INS.  We define 

the notion of inclusion, complement, intersection, union of IPNSs. We prove some of the properties 

of IPNSs, namely, commutativity, associativity, idempotency, absorption, De Morgan’s laws and 

involution. In the future, we shall develop the logic system based on the truth-value based IPNSs 

and utilize the theory to deal with practical applications in the areas such as information fusion, 

bioinformatics, military intelligence, web intelligence, etc. 
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Abstract: The single-valued neutrosophic (SVNS) set is a beneficial and significant tool to deal with 

uncertainty with the neutrality of truth. This article introduces a non-conventional asymmetric 

measure of comparison in the single-valued neutrosophic framework. Such a measure is applied to 

the problems where the conventional symmetric measures of comparison do not produce valid 

computational results and require a directed closeness or discrimination between two abstractions 

represented by neutrosophic sets. We prove some properties of the proposed neutrosophic 

comparison measure and empirically justify its utilization in a problem of strategic decision-making, 

pattern recognition and medical diagnosis. The assessment of the performance of the proposed 

measure using “Degree of Confidence” shows the advantage of the proposed measure. 

Keywords: Single-valued neutrosophic set (SVNS); asymmetric measure; inaccuracy measure; 

pattern recognition. 

 

1. Introduction 

Many problems concerning decision-making, identification of patterns, machine learning, computer 

vision, data analytics, etc., predominantly utilize some measure of comparisons. Several studies are 

available regarding comparison measures in various uncertain and vague settings. The prevalently 

investigated comparison measures in uncertain environments are divergence, distance, dissimilarity, 

and similarity measures.  One common characteristic of divergence measures, distance measures, 

dissimilarity measures, and similarity measures in fuzzy and non-standard fuzzy settings is that 

these are symmetric. But, in specific comparisons, the symmetric comparison is not suitable. For 

instance, “P is like Q” may be preferred over “Q is like P” or vice-versa. Such situations need an 

asymmetric or directed comparison measure. This study proposes an asymmetric measure of 

comparison for single-valued neutrosophic sets. 

However, in an uncertain environment due to randomness, an asymmetric measure of comparison 

of two probability distributions was proposed by Kullback-Leibler [1-2]. These measures found vital 

application in communication theory and economics. Kerridge inaccuracy is a non-parametric 

generalization of Shannon’s entropy [3]. Kerridge [4] termed it an ‘inaccuracy measure’ for measuring 

the inaccuracy between two probability distributions. Moreover, numerous probabilistic information 

measures were put forward during the second half of the twentieth century.  

In 1965, Zadeh [5] coined a new form of uncertainty due to vagueness or linguistic imprecision and 

developed fuzzy theory.  As Shannon’s entropy [3] quantifies the uncertainty due to randomness, 

mailto:surender.singh@smvdu.ac.in
mailto:20dmt001@smvdu.ac.in
mailto:surender.singh@smvdu.ac.in
mailto:surender1976@gmail.com
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De-Luca and Termini [6] introduced fuzzy entropy to quantify the uncertainty due to vagueness. This 

pioneered fuzzy entropy is structurally similar to that of Shannon’s entropy [3] but practically 

different. Various extensions of fuzzy theory and information measures in these frameworks have 

been developed in the last three decades.  

Smarandache [7] developed a more advanced notion, “Neutrosophy,” to more comprehensively 

model the vagary of information. The neutrosophic theory reconciles certain pitfalls of the fuzzy 

approach and its extensions. Wang et al. [8] proposed a single-valued neutrosophic set as a subclass 

of a neutrosophic set. In SVNs, the data information is indicated with 3-tuple, i.e., degree of 

membership, degree of indeterminacy, and degree of non-membership. Hence, the information 

evaluation in terms of neutrosophic sets seems more suitable for studies concerning decision-making, 

pattern recognition, clustering analysis, etc. A single-valued neutrosophic set allows us to choose 

truth membership, false membership, and indeterminacy in an unrestrictive manner in contrast to 

other fuzzy extensions. 

Several neutrosophic information measures have been proposed, such as entropy, similarity, 

distance, and divergence measures over the years. Some prominent researches are due to Chai et al. 

[9], Wang [10], Biswas, et al. [11], Wu et al. [12], Aydogdu [13], Bourmi and Smarandache [14], Bourmi 

and Smarandache [15], Khan et al., [16], Majumdar and Samanta [17], Ye [18-19], Ye and Fu [20], 

Chakraborty et al. [21], Chakraborty et al. [22], Haque et al. [23], Haque et al. [24], and Chakraborty et 

al. [25], Bonissone [26], Eshragh and Mamdani [27], etc.  References [28-30] also report the work on 

developing new similarity/distance measures for fuzzy and SVNSs.  

 

Motivation and contribution 

Recent trends notice that all the existing measures of comparison (distance/similarity/divergence) in 

the neutrosophic framework are symmetric. But there are practical circumstances where the 

asymmetric comparison is more suitable. For example, we consider the following two sentences: 

I. Saddam Hussain was like Hitler. 

II. Hitler was like Saddam Hussain. 

Off course, sentence-I would be the apparent preference for the comparison, probably due to the 

genocide instinct of the latter. In such a situation, one concept is the target, another is the base, and 

the main focus is the target. In sentence-I and -II, Saddam Hussain is the target, and Hitler is the base.  

       Further, a problem of medical diagnosis, where the symptoms of the patient are compared 

with symptoms of certain diseases (as established by medical experts), also seems to be better dealt 

with using asymmetric comparison measures. In such a problem, the patient's symptoms in single-

valued neutrosophic representation (P) must be treated as a target, and the pre-assigned symptoms 

of the disease (Q) may be treated as a base. The direction of comparison in this problem must be Q→P 

instead of P→Q. Such asymmetric comparisons are unavoidable in any discipline and can essentially 

need to be investigated using some asymmetric measures of comparison. In view of these facts, 

natural question arise what is the concept of asymmetric measure of comparison? How to construct 

an asymmetric measure of comparison in neutrosophic environment? Does such a comparison 

measure practically valid and effective? Moreover, to best of our knowledge there is no asymmetric 
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measure of information in the literature concerning neutrosophic information theory. Here-

mentioned facts and research gap in neutrosophic information theory motivated us to consider this 

study. 

The novel contribution of this article is as follows.  

• We introduce a novel concept of asymmetric comparison measure for SVNSs and term it a 

“Single-Valued Neutrosophic Inaccuracy Measure.”  

• We prove some algebraic properties of the proposed comparison measure for SVNSs.  

• We also deduce a performance index “Degree of Confidence” to examine the performance of 

various neutrosophic comparison measures in the classification problems 

• We also discuss applications of the proposed measure in pattern recognition and medical 

diagnosis problem. 

The remaining paper is structured as follows. Section 2 presents preliminaries. Section 3 introduces 

inaccuracy measures/asymmetric measure of comparison between SVNSs. In section 4, we discuss 

some properties of the proposed measure.  Section 5 presents an application of the proposed 

inaccuracy measure. Section 6 includes the comparative study. Finally, Section 7 concludes the article.  

 

2. Preliminaries  

 

This section considers some notions related to single-valued neutrosophic sets and inaccuracy 

measures. 

 

Definition 2.1[3]. Let 𝑌 =   (𝑦1, 𝑦2, 𝑦3,…,𝑦𝑛) be a random variable associated with an experiment. Let 

𝑃 =  (𝑝1, 𝑝2, 𝑝3,…𝑝𝑛) be the probability distribution of random variable Y. Shannon’s entropy measure 

is given by 

𝐻(𝑃) =  − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖
𝑛
𝑖=1 . 

 

 

Definition 2.2[1][2].  Let 𝑌 =   (𝑦1 , 𝑦2, 𝑦3,…,𝑦𝑛) be a random variable associated with an experiment. 

Let 𝑃 =  (𝑝1, 𝑝2, 𝑝3,…𝑝𝑛)   and 𝑄 =  (𝑞1, 𝑞2, 𝑞3,…𝑞𝑛)  be two probability distributions. Then the 

divergence measure between P and Q is given by 

 

𝐷 (𝑃, 𝑄) =  ∑ 𝑝𝑖𝑙𝑜𝑔2

𝑝𝑖

𝑞𝑖

𝑛

𝑖=1

 . 

Definition 2.3[4]. Let 𝑃 =  (𝑝1, 𝑝2, 𝑝3,…𝑝𝑛)  and 𝑄 =  (𝑞1, 𝑞2, 𝑞3,…𝑞𝑛) be two probability distributions. 

Then inaccuracy of distribution Q with respect to distribution P is given by  

 

𝐼(𝑃, 𝑄) =  − ∑ 𝑝𝑖 𝑙𝑜𝑔2 𝑞𝑖
𝑛
𝑖=1 . 

 

A particular case of a neutrosophic set is a single-valued neutrosophic set which was proposed by 

Wang et al. [8] 

 

Definition 2.5[8]. Let 𝑦𝑖 be a generic element of the universal set Y. A truth-membership function 

characterizes a single-valued neutrosophic set  𝜌𝐴(𝑦𝑖), indeterminacy-membership function   𝜃𝐴(𝑦𝑖) 

and falsity-membership function𝛿𝐴(𝑦𝑖).  Also, for each  𝑦𝑖 ∈ 𝑌, 𝜌𝐴(𝑦𝑖), 𝜃𝐴(𝑦𝑖), 𝛿𝐴(𝑦𝑖)  ∈ [0, 1]  with 

condition 𝜌𝐴(𝑦𝑖) + 𝜃𝐴(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)  ∈ [0, 3]. 

In other words, a single-valued neutrosophic set A can be denoted by a triplet, i.e.,  
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𝐴 =  {〈𝜌𝐴(𝑦𝑖), 𝜃𝐴(𝑦𝑖), 𝛿𝐴(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 } 

Notation: SVNS (Y) denotes the set of all neutrosophic elements in Y. 

Some of the basic and useful operations on SVNS are defined as follows: 

Definition 2.6[8].Let 𝐴 =  {〈𝜌𝐴(𝑦𝑖), 𝜃𝐴(𝑦𝑖), 𝛿𝐴(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 }  and  

𝐵 =  {〈𝜌𝐵(𝑦𝑖), 𝜃𝐵(𝑦𝑖), 𝛿𝐵(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 }. 

 be two SVNSs, then the union of A and B is defined as  

𝐴 ∪ 𝐵 = {< 𝑚𝑎𝑥. (𝜌𝐴(𝑦𝑖), 𝜌𝐵(𝑦𝑖)), 𝑚𝑖𝑛. (𝜃𝐴(𝑦𝑖), 𝜃𝐵(𝑦𝑖)), 𝑚𝑖𝑛. (𝛿𝐴(𝑦𝑖), 𝛿𝐵(𝑦𝑖))> | 𝑦𝑖 ∈ 𝑌 }. 

 

Definition 2.7 [8] For two SVNSs, A and B, the intersection of A and B is  

𝐴 ∩ 𝐵 = {< 𝑚𝑖𝑛. (𝜌𝐴(𝑦𝑖), 𝜌𝐵(𝑦𝑖)), 𝑚𝑎𝑥. (𝜃𝐴(𝑦𝑖), 𝜃𝐵(𝑦𝑖)), 𝑚𝑎𝑥. (𝛿𝐴(𝑦𝑖), 𝛿𝐵(𝑦𝑖)) > | 𝑦𝑖 ∈ 𝑌}. 

 

Definition 2.8[8]. Let 𝐴 =  {〈𝜌𝐴(𝑦𝑖), 𝜃𝐴(𝑦𝑖), 𝛿𝐴(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 } be an SVNs. Then the complement of A is 

defined as  

𝐴𝑐 = {< 1 − 𝜌𝐴(𝑦𝑖), 1 − 𝜃𝐴(𝑦𝑖), 1 −  𝛿𝐴(𝑦𝑖) > | 𝑦𝑖 ∈ 𝑌}. 

 

Definition 2.9[8]. Let 𝐴 =  {〈𝜌𝐴(𝑦𝑖), 𝜃𝐴(𝑦𝑖), 𝛿𝐴(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 } and  𝐵 =  {〈𝜌𝐵(𝑦𝑖), 𝜃𝐵(𝑦𝑖), 𝛿𝐵(𝑦𝑖)〉| 𝑦𝑖 ∈

𝑌}   be two SVNSs, then  𝐴 ⊆ 𝐵 if  

𝜌𝐴(𝑦𝑖) ≤ 𝜌𝐵(𝑦𝑖), 𝜃𝐴(𝑦𝑖) ≥ 𝜃𝐵(𝑦𝑖),  𝛿𝐴(𝑦𝑖) ≥ 𝛿𝐵(𝑦𝑖),   ∀  𝑦 𝑖 ∈ 𝑌. 

Hatzimichailidis [31] introduced the notion of Degree of confidence (DoC) in intuitionistic fuzzy 

environment. The definition of DoC in neutrosophic settings is as follows. 

Definition 2.10. Let 𝑃𝑖     be an unknown pattern classified to some pattern from the class 𝑃𝑗 .   Degree 

of confidence of neutrosophic comparison measure M estimates the confidence level that comparison 

measure in classifying a pattern 𝑃𝑖   to the pattern 𝑃𝑘 (belongs to a class of patterns) and it can be 

computed as 

𝐷𝑂𝐶 = ∑ |𝑀(𝑃𝑖 , 𝑃𝑘)  − 𝑀(𝑃𝑖 , 𝑃𝑗)|

𝑛

𝑗=1 𝑗≠𝑘

. 

The greater the degree of confidence (DOC) for a comparison measure, the more confident the 

classification result of the measure is. 

 

3. Inaccuracy Measure of a Single-Valued Neutrosophic Set 

 

In this section, we propose an inaccuracy measure of single-valued neutrosophic sets and discuss 

their properties. Verma and Sharma [32] presented an inaccuracy measure of fuzzy sets as follows: 

𝐼 (𝐴, 𝐵) =  −
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + (1 − 𝜌𝐴(𝑦𝑖))log  (1 − 𝜌𝐵(𝑦𝑖))] .                                      (1)

𝑛

𝑖=1

 

where 𝜌𝐴 and 𝜌𝐵 are the membership functions associated with fuzzy sets A and B. 

We can write  
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𝐼 (𝐴, 𝐵) =  −
1

𝑛
∑ 𝑆(𝑥, 𝑦).                                                                                                                           (2)

𝑛

𝑖=1

 

where, 𝑆 (𝑥, 𝑦) =  −𝑥𝑙𝑜𝑔𝑦 − (1 − 𝑥)log (1 − 𝑦)  is called Karridge’s inaccuracy function for two 

events. 

Since in a single-valued neutrosophic set, the non-membership and indeterminacy are independent 

of the membership function; therefore, the inaccuracy function utilized in equation (2) can be 

modified as  

𝑆 (𝑥, 𝑦) =  −𝑥1𝑙𝑜𝑔𝑦1 − 𝑥2𝑙𝑜𝑔𝑦2 − 𝑥3𝑙𝑜𝑔𝑦3,                                                                                       (3) 

where  𝑥𝑖  , 𝑦𝑖   ∈ [0, 1] , 𝑖 = 1, 2, 3. 

Consequently, the inaccuracy measure for two single-valued neutrosophic sets                      

 𝐴 =  {〈𝜌𝐴(𝑦𝑖), 𝜃𝐴(𝑦𝑖), 𝛿𝐴(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 }  and    𝐵 =  {〈𝜌𝐵(𝑦𝑖), 𝜃𝐵(𝑦𝑖), 𝛿𝐵(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 } , is defined as 

follows: 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) =  −
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)].              (4)

𝑛

𝑖=1

 

   with convention 0. log 0 = 0. 

Next, we prove some properties of the proposed inaccuracy measure of SVNSs. 

Theorem 3.1. Let 𝐴, 𝐵, 𝐶 ∈ 𝑆𝑉𝑁𝑆(𝑌) , the proposed inaccuracy measure satisfies the following 

properties: 

a) 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) = 0  if and only if either 𝜌𝐴(𝑦𝑖) =  𝜌𝐵(𝑦𝑖) = 0, 𝜃𝐴(𝑦𝑖) =  𝜃𝐵(𝑦𝑖) = 0, 𝛿𝐴(𝑦𝑖) =

 𝛿𝐵(𝑦𝑖) = 0 or 𝜌𝐴(𝑦𝑖) =  𝜌𝐵(𝑦𝑖) = 1, 𝜃𝐴(𝑦𝑖) =  𝜃𝐵(𝑦𝑖) = 1, 𝛿𝐴(𝑦𝑖) =  𝛿𝐵(𝑦𝑖) = 1 𝑤ℎ𝑒𝑟𝑒  𝑖 =

1, 2, 3, … , 𝑛 ;  ∀𝐴, 𝐵, 𝐶 ∈ 𝑆𝑉𝑁𝑆(𝑌). 

b) 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∪ 𝐶) +  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∩ 𝐶) =  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) +  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶)   ∀𝐴, 𝐵, 𝐶 ∈ 𝑆𝑉𝑁𝑆(𝑌). 

c) 𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐶) +  𝐼𝑆𝑉𝑁𝑆(𝐴 ∩ 𝐵, 𝐶) = ( 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶) +  𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐶);  ∀𝐴, 𝐵, 𝐶 ∈ 𝑆𝑉𝑁𝑆(𝑌). 

d) 𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) + 𝐼𝑆𝑉𝑁𝑆(𝐴 ∩ 𝐵, 𝐴 ∪ 𝐵) = 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) + 𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐴);  ∀𝐴, 𝐵 ∈ 𝑆𝑉𝑁𝑆(𝑌). 

 

Proof. a) 

Let 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) = 0, then, from Eq. (4), we have 

−
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]   = 0,    

𝑛

𝑖=1

 

[𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]   = 0  ∀ 𝑖 = 1, 2, 3, … , 𝑛.   

The above relation holds, if and only if 

 𝜌𝐴(𝑦𝑖) =  𝜌𝐵(𝑦𝑖) = 0, 𝜃𝐴(𝑦𝑖) =  𝜃𝐵(𝑦𝑖) = 0, 𝛿𝐴(𝑦𝑖) =  𝛿𝐵(𝑦𝑖) = 0  

or 𝜌𝐴(𝑦𝑖) =  𝜌𝐵(𝑦𝑖) = 1, 𝜃𝐴(𝑦𝑖) =  𝜃𝐵(𝑦𝑖) = 1, 𝛿𝐴(𝑦𝑖) =  𝛿𝐵(𝑦𝑖) = 1 ∀ 𝑖 = 1, 2, 3, … , 𝑛 . 

Conversely, 

Suppose, 𝜌𝐴(𝑦𝑖) =  𝜌𝐵(𝑦𝑖) = 0, 𝜃𝐴(𝑦𝑖) =  𝜃𝐵(𝑦𝑖) = 0, 𝛿𝐴(𝑦𝑖) =  𝛿𝐵(𝑦𝑖) = 0  

or 𝜌𝐴(𝑦𝑖) =  𝜌𝐵(𝑦𝑖) = 1, 𝜃𝐴(𝑦𝑖) =  𝜃𝐵(𝑦𝑖) = 1, 𝛿𝐴(𝑦𝑖) =  𝛿𝐵(𝑦𝑖) = 1 ∀ 𝑖 = 1, 2, 3, … , 𝑛. 

i.e., [𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]   = 0 

or,  
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−
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]   = 0   

𝑛

𝑖=1

 

Which implies that 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) = 0. □ 

 

Proof. b) 

For this, we divide the universal set Y into two disjoint subsets, i.e., 

𝑌1 = {𝜌𝐴(𝑦𝑖) ≥ 𝜌𝐵(𝑦𝑖) ≥ 𝜌𝐶(𝑦𝑖);  𝜃𝐴(𝑦𝑖) ≤ 𝜃𝐵(𝑦𝑖) ≤ 𝜃𝐶(𝑦𝑖);  𝛿𝐴(𝑦𝑖) ≤ 𝛿𝐵(𝑦𝑖) ≤ 𝛿𝐶(𝑦𝑖)| 𝑦𝑖 ∈ 𝑌}         (5)     

𝑌2 = {𝜌𝐴(𝑦𝑖) ≤ 𝜌𝐵(𝑦𝑖) ≤ 𝜌𝐶(𝑦𝑖);  𝜃𝐴(𝑦𝑖) ≥ 𝜃𝐵(𝑦𝑖) ≥ 𝜃𝐶(𝑦𝑖);  𝛿𝐴(𝑦𝑖) ≥ 𝛿𝐵(𝑦𝑖) ≥ 𝛿𝐶(𝑦𝑖)| 𝑦𝑖 ∈ 𝑌}         (6) 

Then by taking L.H.S, we have 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∪ 𝐶) = −
1

𝑛
∑ [𝜌𝐴(𝑦𝑖)log (𝜌𝐵∪𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵∪𝐶(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵∪𝐶(𝑦𝑖)]𝑌1

+  

(−
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵∪𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵∪𝐶(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵∪𝐶(𝑦𝑖)]

𝑌2

) 

Now using (5) and (6), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∪ 𝐶) = −
1

𝑛
∑ [𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]𝑌1

−

 
1

𝑛
∑ [𝜌𝐴(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]𝑌2

.  

Which implies that 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∪ 𝐶) =  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵)+𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶).                                                                                                    (7) 

Now by taking,  

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∩ 𝐶) = −
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵∩𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵∩𝐶(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵∩𝐶(𝑦𝑖)]

𝑌1

 

−
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵∩𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵∩𝐶(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵∩𝐶(𝑦𝑖)]

𝑌2

 

Now using (5) and (6), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∩ 𝐶) = −
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]

𝑌1

 

−
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]

𝑌2

 

which implies that 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∩ 𝐶) =  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵)+𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶)                                                                                                  (8) 

 

Adding (7) and (8), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∪ 𝐶) + 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∩ 𝐶) ≤ (𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) + 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶)). □ 

 

Proof. c)   

By taking L.H.S, we have 



253 

 

 

Surender Singh and Sonam Sharma, An Asymmetric Measure of Comparison of Neutrosophic Sets 

 

𝐼𝑆𝑉𝑁𝑆( 𝐴 ∪ 𝐵, 𝐶) = −
1

𝑛
∑ [𝜌𝐴∪𝐵(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴∪𝐵(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) + 𝛿𝐴∪𝐵(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]𝑌1

+  

(−
1

𝑛
∑ [𝜌𝐴∪𝐵(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴∪𝐵(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐴∪𝐵(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]𝑌2

). 

Now using (5) and (6), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐶) = −
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐵(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐵(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]

𝑌1

 

−
1

𝑛
∑ [𝜌𝐵(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]𝑌2

. 

which implies that 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐶) =  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶)+𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐶).                                                                                                  (9) 

Again, by taking L.H.S, we have 

 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∩  𝐵, 𝐶) = −
1

𝑛
∑[𝜌𝐴∩𝐵(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴∩𝐵(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐴∩𝐵(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]

𝑌1

−
1

𝑛
∑[𝜌𝐴∩𝐵(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴∩𝐵(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐴∩𝐵(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]

𝑌2

. 

Now using (5) and (6), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∩ 𝐵, 𝐶) = −
1

𝑛
∑ [𝜌𝐵(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]𝑌1

  

−
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐵(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐵(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)].

𝑌2

 

Which implies that 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∩  𝐵, 𝐶) =  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶)+𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐶).                                                                                                       (10) 

 

Adding (9) and (10), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∪ 𝐶) + 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∩ 𝐶) ≤ (𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶) + 𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐶)).  □ 

 

Proof. d) 

By taking two disjoint subsets of universal set Y, i.e., 

   𝑌1 = {𝜌𝐴(𝑦𝑖) ≥ 𝜌𝐵(𝑦𝑖);  𝜃𝐴(𝑦𝑖) ≤ 𝜃𝐵(𝑦𝑖);  𝛿𝐴(𝑦𝑖) ≤ 𝛿𝐵(𝑦𝑖)| 𝑦𝑖 ∈ 𝑌},                                                         (11)     

𝑌2 = {𝜌𝐴(𝑦𝑖) ≤ 𝜌𝐵(𝑦𝑖);  𝜃𝐴(𝑦𝑖) ≥ 𝜃𝐵(𝑦𝑖);  𝛿𝐴(𝑦𝑖) ≥ 𝛿𝐵(𝑦𝑖)| 𝑦𝑖 ∈ 𝑌}.                                                          (12) 

By using equations (5), (6) and by taking L.H.S, we have 

𝐼𝑆𝑉𝑁𝑆( 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵)

= −
1

𝑛
∑[𝜌𝐴∪𝐵(𝑦𝑖)log (𝜌𝐴∩𝐵(𝑦𝑖)) + 𝜃𝐴∪𝐵(𝑦𝑖)log 𝜃𝐴∩𝐵(𝑦𝑖) +  𝛿𝐴∪𝐵(𝑦𝑖)log 𝛿𝐴∩𝐵(𝑦𝑖)]

𝑌1

−
1

𝑛
∑[𝜌𝐴∪𝐵(𝑦𝑖)log (𝜌𝐴∩𝐵(𝑦𝑖)) + 𝜃𝐴∪𝐵(𝑦𝑖)log 𝜃𝐴∩𝐵(𝑦𝑖) +  𝛿𝐴∪𝐵(𝑦𝑖)log 𝛿𝐴∩𝐵(𝑦𝑖)].

𝑌2

 

                   

Now using (5) and (6), we get 
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 𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) = −
1

𝑛
∑ [𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐵(𝑦𝑖)log 𝜃𝐴(𝑦𝑖) +  𝛿𝐵(𝑦𝑖)log 𝛿𝐴(𝑦𝑖)]𝑌1

 

                        −
1

𝑛
∑ [𝜌𝐵(𝑦𝑖)log (𝜌𝐴(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]𝑌2

.  

Which implies that 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵)

= −
1

𝑛
∑ [𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]

𝑌1∪𝑌2

−
1

𝑛
∑ [𝜌𝐵(𝑦𝑖)log (𝜌𝐴(𝑦𝑖)) + 𝜃𝐵(𝑦𝑖)log 𝜃𝐴(𝑦𝑖) +  𝛿𝐵(𝑦𝑖)log 𝛿𝐴(𝑦𝑖)]

𝑌1∪𝑌2

. 

or 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) =  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵)+𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐴).                                                                                                   (13) 

Now,  

𝐼𝑆𝑉𝑁𝑆(𝐴 ∩  𝐵, 𝐴 ∪ 𝐵)

=  −
1

𝑛
∑[𝜌𝐴∩𝐵(𝑦𝑖)log (𝜌𝐴∪𝐵(𝑦𝑖)) + 𝜃𝐴∩𝐵(𝑦𝑖)log 𝜃𝐴∪𝐵(𝑦𝑖) +  𝛿𝐴∩𝐵(𝑦𝑖)log 𝛿𝐴∪𝐵(𝑦𝑖)]

𝑌1

−
1

𝑛
∑[𝜌𝐴∩𝐵(𝑦𝑖)log (𝜌𝐴∪𝐵(𝑦𝑖)) + 𝜃𝐴∩𝐵(𝑦𝑖)log 𝜃𝐴∪𝐵(𝑦𝑖) +  𝛿𝐴∩𝐵(𝑦𝑖)log 𝛿𝐴∪𝐵(𝑦𝑖)]

𝑌2

. 

Now using (5) and (6), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∩ 𝐵, 𝐴 ∪ 𝐵)

= −
1

𝑛
∑[𝜌𝐵(𝑦𝑖)log (𝜌𝐴(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]

𝑌1

−
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐵(𝑦𝑖)log 𝜃𝐴(𝑦𝑖) + 𝛿𝐵(𝑦𝑖)log 𝛿𝐴(𝑦𝑖)]

𝑌2

. 

               

Which implies that 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵)

= −
1

𝑛
∑ [𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]

𝑌1∪𝑌2

−
1

𝑛
∑ [𝜌𝐵(𝑦𝑖)log (𝜌𝐴(𝑦𝑖)) + 𝜃𝐵(𝑦𝑖)log 𝜃𝐴(𝑦𝑖) +  𝛿𝐵(𝑦𝑖)log 𝛿𝐴(𝑦𝑖)]

𝑌1∪𝑌2

. 

or 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∩  𝐵, 𝐴 ∪ 𝐵) ≤  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵)+𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐴)                                                                                      (14) 

 

Adding (13) and (14), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) + 𝐼𝑆𝑉𝑁𝑆(𝐴 ∩ 𝐵, 𝐴 ∪ 𝐵) ≤ (𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) + 𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐴)).□ 

 

In the next section, we investigate the application of the proposed inaccuracy measure. 
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4. Applications 

In this section, we empirically illustrate the practical application of our proposed asymmetric 

measure of comparison in strategic decision-making and medical diagnosis.  

4.1 Application to strategic decision-making 

  Let us consider a very pertinent corporate problem in which corporation Y wants to launch one of 

its five products using five strategies. Let the set of products be 𝑃 =  {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5}, and the set of 

strategies be 𝑆 =  {𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5}. Table 1 represents the weights of strategies of corporation Y in 

terms of memberships   𝜌𝑦(𝑍𝑖), indeterminacy  𝜃𝑦(𝑍𝑖) and non-membership value 𝛿𝑦(𝑍𝑖)   where 

𝑖 = 1, 2, 3, 4, 5. The weights have been assigned to these strategies because of their feasibility based 

on certain factors.  

 

Table 1. Weights of strategies of the corporation as Single-Valued neutrosophic number 

(𝜌𝑦(𝑍1), 𝜃𝑦(𝑍1), 𝛿𝑦(𝑍1)) (𝜌𝑦(𝑍2), 𝜃𝑦(𝑍2), 𝛿𝑦(𝑍2)) (𝜌𝑦(𝑍3), 𝜃𝑦(𝑍3), 𝛿𝑦(𝑍3)) (𝜌𝑦(𝑍4), 𝜃𝑦(𝑍4), 𝛿𝑦(𝑍4)) (𝜌𝑦(𝑍5), 𝜃𝑦(𝑍5), 𝛿𝑦(𝑍5)) 

(0.8, 0.2, 0.3) (0.4, 0.4, 0.2) (0.5, 0.4, 0.2) (0.6, 0.2, 0.1) (0.7, 0.5, 0.3) 

 

It may be noted that (𝜌𝑦(𝑍𝑖), 𝜃𝑦(𝑍𝑖), 𝛿𝑦(𝑍𝑖))  indicates the degree of importance, degree of 

inconclusiveness, and degree of the unimportance of strategy 𝑍𝑖  to the corporation in its 

implementation. 

Table 2. represent the degree of importance, degree of inconclusiveness, and degree of the 

unimportance of products  (𝜌𝐶𝑗
(𝑍𝑖), 𝜃𝐶𝑗

(𝑍𝑖), 𝛿𝐶𝑗
(𝑍𝑖))  concerning the strategy  𝑍𝑖 , where 𝑗 =

1, 2, 3, 4, 5. 

Table 2. Weights of strategies implementation for product launch as Single-Valued neutrosophic 

number 

 (𝜌𝐶1
(𝑍1), 𝜃𝐶1

(𝑍1), 𝛿𝐶1
(𝑍1)) (𝜌𝐶2

(𝑍2), 𝜃𝐶2
(𝑍2), 𝛿𝐶2

(𝑍2)) (𝜌𝐶3
(𝑍3), 𝜃𝐶3

(𝑍3), 𝛿𝐶3
(𝑍3)) (𝜌𝐶4

(𝑍4), 𝜃𝐶4
(𝑍4), 𝛿𝐶4

(𝑍4)) (𝜌𝐶5
(𝑍5), 𝜃𝐶5

(𝑍5), 𝛿𝐶5
(𝑍5)) 

𝐶1 (0.5, 0.4, 0.4) (0.6, 0.3,0.2) (0.5, 0.2, 0.1) (0.6, 0.2, 0.8) (0.9, 0.2, 0.1) 

𝐶2 (0.9, 0.3, 0.2) (0.8, 0.7, 0.3) (0.6, 0.3, 0.2) (0.3, 0.4, 0.5) (0.4, 0.2, 0.2) 

𝐶3 (0.6, 0.5, 0.2) (0.7, 0.6, 0.5) (0.5, 0.3, 0.3) (0.2, 0.5, 0.6) (0.5, 0.4, 0.3) 

𝐶4 (0.9, 0.2, 0.1) (0.8, 0.8, 0.7) (0.4, 0.3, 0.2) (0.8, 0.5, 0.4) (0.3, 0.4, 0.5) 

𝐶5 (0.7, 0.7, 0.6) (0.1, 0.5, 0.2) (0.4, 0.3, 0.7) (0.6, 0.3, 0.2) (0.5, 0.4, 0.2) 

 

In an objective of the corporation to launch a suitable product because of the suitability of the five 

strategies, with the minimum risk (inaccuracy in our case), we use Eq. (4) to compute inaccuracy 

measures 𝐼𝑆𝑉𝑁𝑆(𝑌, 𝐶𝑖),  𝑖 = 1, 2, 3, 4, 5 using the data of Table 1 and Table 2. 

Table 3. Inaccuracy measures between products and strategies 

𝑰𝑺𝑽𝑵𝑺(𝒀, 𝑪𝟏) 𝑰𝑺𝑽𝑵𝑺(𝒀, 𝑪𝟐) 𝑰𝑺𝑽𝑵𝑺(𝒀, 𝑪𝟑) 𝑰𝑺𝑽𝑵𝑺(𝒀, 𝑪𝟒) 𝑰𝑺𝑽𝑵𝑺(𝒀, 𝑪𝟓) 

     1.6421         1.5129       1.4554         1.2930       1.4933 

According to the inaccuracy measures presented in Table 3, the product 𝐶4  will be more suitable for 

launch because of the available strategies. 
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4.2 Application to Medical Diagnosis 

First, we state the problem of medical diagnosis and present it in the framework of a neutrosophic 

environment. 

Medical diagnosis: The process of identifying an actual disease of a patient based on their symptoms 

is termed a medical diagnosis.  

Substantial uncertainties occur in most diagnostic decisions and can be handled using fuzzy 

methodologies. In medical science, several diseases have many symptoms in common. Therefore, 

identifying the appropriate illness from which a patient is suffering is difficult for physicians/experts. 

Let 𝐷 =  {𝐷1 , 𝐷2, 𝐷3 … . 𝐷𝑛}  be the set of diseases with several common symptoms and S =

 {𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑛} be the set of symptoms of the patient under investigation. In this scenario, S is an 

SVNS and 𝐷1, 𝐷2, 𝐷3 … . 𝐷𝑛  are also SVNSs. We compare each of 𝐷𝑖  with S. The patient is diagnosed 

with a disease  𝐷𝑖  with which S is maximum directed closeness.  

The flowchart of the process is shown in the figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1: Flowchart of Medical Diagnosis using Inaccuracy Measure 

 

Compute the inaccuracy values 𝐼 (𝑆, 𝐷𝑖), 𝑖 = 1, 2, … , 𝑛. 

Input 

S = Symptoms of a patient 

D = {𝐷1, 𝐷2, … , 𝐷𝑛} = Symptoms of 

diseases 𝐷𝑖 

            Output 

Patient is diagnosed with disease 𝐷𝑖
∗ 

Identify 𝑖∗ = 𝐴𝑟𝑔. min
𝑖

𝐼 (𝑆, 𝐷𝑖)  
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We consider the following numerical example to illustrate the procedure. 

We present a numerical example to check the impact of the proposed inaccuracy measure. 

Numerical Example: We consider a set of three diseases,                                          

𝐷 =  {(𝐷1, 𝑣𝑖𝑟𝑎𝑙 𝑓𝑒𝑣𝑒𝑟) (𝐷2, 𝑚𝑎𝑙𝑎𝑟𝑖𝑎) (𝐷3, 𝑡𝑦𝑝ℎ𝑜𝑖𝑑)} , each of which has three common symptoms 

given in set 𝑅 = {(𝑟1, 𝑓𝑒𝑣𝑒𝑟), (𝑟2, ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒) (𝑟3, 𝑐𝑜𝑢𝑔ℎ)}. 

An expert team of doctors in the form of SVNSs assesses the characteristic information of the given 

diseases. The indicative information of symptoms and diagnosis for patients represented in the form 

of SVNSs as shown in Table 4: 

Table 4. Characteristics information of the diseases described in the form of SVNSs 

     𝑟1           𝑟2     𝑟3 

𝐷1 (0.3, 0.2, 0.5) (0.1, 0.3, 0.7) (0.4, 0.3, 0.3) 

𝐷2 (0.2, 0.2. 0.6) (0.1, 0.1, 0.8) (0.2, 0.3, 0.6) 

𝐷3 (0.2, 0.1, 0.7) (0.6, 0.3, 0.1) (0.3, 0.4, 0.3) 

  

The set 𝑃1  represents the symptoms of the patient under investigation as an SVNS.   

𝑃1 =  {(𝑟1, (0.1, 0.2, 0.7))(𝑟2, (0.8, 0.2, 0.3))(𝑟3, (0.2, 0.4, 0.4))}. 

Our task is to evaluate the closeness of  𝑃1  with  𝐷𝑖  using various SVN comparison measures. 

  To check the effectiveness of the proposed inaccuracy measure, we consider the following 

similarity/ distance measures for SVNSs. 

𝑆1 = 1- 
1

𝑛
 ∑ 𝑚𝑎𝑥. {|𝜌𝐴(𝑦𝑖) − 𝜌𝐵(𝑦𝑖)|, |𝜃𝐴(𝑦𝑖) −  𝜃𝐵(𝑦𝑖)|, |𝛿𝐴(𝑦𝑖) −  𝛿𝐵(𝑦𝑖)|}𝑛

𝑖=1 . 

(Bourmi and Smarandache [33]) 

𝑆2 =  
∑ {𝑚𝑖𝑛.(𝜌𝐴(𝑦𝑖),𝜌𝐵(𝑦𝑖))+ 𝑚𝑖𝑛.(𝜃𝐴(𝑦𝑖),𝜃𝐵(𝑦𝑖))+ 𝑚𝑖𝑛.(𝛿𝐴(𝑦𝑖),𝛿𝐵(𝑦𝑖))}𝑛

𝑖=1

∑ {𝑚𝑎𝑥.(𝜌𝐴(𝑦𝑖),𝜌𝐵(𝑦𝑖))+ 𝑚𝑎𝑥.(𝜃(𝑦𝑖),𝜃𝐵(𝑦𝑖))+ 𝑚𝑎𝑥.(𝛿𝐴(𝑦𝑖),𝛿𝐵(𝑦𝑖))}𝑛
𝑖=1

.          (Majumdar and Samanta [17]) 

𝑆3 =  
1

3𝑛
 ∑ [

𝑚𝑖𝑛.(𝜌𝐴(𝑦𝑖),𝜌𝐵(𝑦𝑖))

𝑚𝑎𝑥.(𝜌𝐴(𝑦𝑖),𝜌𝐵(𝑦𝑖))
+  

𝑚𝑖𝑛.(𝜃𝐴(𝑦𝑖),𝛿𝐵(𝑦𝑖))

𝑚𝑎𝑥.(𝛿𝐴(𝑦𝑖),𝛿𝐵(𝑦𝑖))
+

𝑚𝑖𝑛.(𝛿𝐴(𝑦𝑖),𝛿𝐵(𝑦𝑖))

𝑚𝑎𝑥.(𝛿𝐴(𝑦𝑖),𝛿𝐵(𝑦𝑖))
]𝑛

𝑖=1 .        (Ye and Zhang [34]) 

𝑆4 =  
1

𝑛
 ∑ [1 −   

|𝜌𝐴(𝑦𝑖)− 𝜌𝐵(𝑦𝑖)|+|𝜃𝐴(𝑦𝑖)− 𝜃𝐵(𝑦𝑖)|+|𝛿𝐴(𝑦𝑖)− 𝛿𝐵(𝑦𝑖)|

3
]𝑛

𝑖=1 .                 (Ali Aydogdu [13]) 

𝑆5 = 1 − 
1

3𝑛
 ∑ |(𝜌𝐴

2(𝑦𝑖) − 𝜌𝐵
2(𝑦𝑖)) − (𝜃𝐴

2(𝑦𝑖) − 𝜃𝐵
2(𝑦𝑖)) − (𝛿𝐴

2(𝑦𝑖) − 𝛿𝐵
2(𝑦𝑖))| .𝑦∈𝑛  (Chai et al. [9]) 

𝑆6 =  
1

𝑛
 ∑

2(𝜌𝐴(𝑦𝑖).𝜌𝐵(𝑦𝑖)+𝜃𝐴(𝑦𝑖).𝜃𝐴(𝑦𝑖)+𝛿𝐴(𝑦𝑖).𝛿𝐴(𝑦𝑖))

(𝜌𝐴
2(𝑦𝑖)+𝜃𝐴

2(𝑦𝑖)+𝛿𝐴
2

(𝑦𝑖))+(𝜌𝐵
2(𝑦𝑖)+𝜃𝐵

2(𝑦𝑖)+𝛿𝐵
2

(𝑦𝑖))

𝑛
𝑖=1 .                          (Ye [35]) 

𝐷𝑀1 = 1 −   
1

𝑛
 ∑ [1 −  

|𝜌𝐴(𝑦𝑖)− 𝜌𝐵(𝑦𝑖)|+|𝜃𝐴(𝑦𝑖)− 𝜃𝐵(𝑦𝑖)|+|𝛿𝐴(𝑦𝑖)− 𝛿𝐵(𝑦𝑖)|

3
]𝑛

𝑖=1 .                

(Ali Aydogdu [13]) 

𝐷𝑀2 =  
1

3𝑛
 ∑ |(𝜌𝐴

2(𝑦𝑖) − 𝜌𝐵
2(𝑦𝑖)) − (𝜃𝐴

2(𝑦𝑖) − 𝜃𝐵
2(𝑦𝑖)) − (𝛿𝐴

2(𝑦𝑖) − 𝛿𝐵
2(𝑦𝑖))| .𝑦∈𝑛     (Chai et al. [9]) 

𝐷𝑀3 =  
1

𝑛
 ∑ (|𝜌𝐴

2(𝑦𝑖) − 𝜌𝐵
2(𝑦𝑖)|⋁|𝜃𝐴

2(𝑦𝑖) − 𝜃𝐵
2(𝑦𝑖)|⋁|𝛿𝐴

2(𝑦𝑖) − 𝛿𝐵
2(𝑦𝑖)|)𝑦∈𝑛 .          (Chai et al. [9]) 
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Now, compute the similarity/distance measure between patient 𝑃1  and diagnosis D. Similarly, we 

compute the proposed inaccuracy measure between the patient and the diagnosis. Table 5 shows the 

result obtained by calculating the different existing and proposed inaccuracy measures. 

 

Table 5: The similarity /distance measures between the symptoms of a patient 𝑃1and diagnosis 𝐷𝑖 

 𝐷1 𝐷2  𝐷3 Ranking 

𝑆1(𝑃1 , 𝐷𝑖) 0.5867 0.68 0.8734 𝐷3 >  𝐷2 > 𝐷1 

𝑆2(𝑃1 , 𝐷𝑖) 0.5238 0.5609 0.75 𝐷3 >  𝐷2 > 𝐷1 

𝑆3(𝑃1 , 𝐷𝑖) 0.0582 0.0623 0.25 𝐷3 >  𝐷2 > 𝐷1 

𝑆4(𝑃1 , 𝐷𝑖) 0.3108 0.3108 0.33 𝐷3 >  𝐷2 > 𝐷1 

𝑆5(𝑃1 , 𝐷𝑖) 0.8556 0.8389 0.9523 𝐷3 >  𝐷1 > 𝐷2 

𝑆6(𝑃1 , 𝐷𝑖) 0.7806 0.7987 0.9598 𝐷3 >  𝐷2 > 𝐷1 

𝐷𝑀1(𝑃1 , 𝐷𝑖) 0.6892 0.6892 0.67 𝐷3 >  𝐷2 > 𝐷1 

𝐷𝑀3(𝑃1 , 𝐷𝑖) 0.1444 0.1611 0.0477 𝐷3 >  𝐷1 > 𝐷2 

𝐷𝑀4(𝑃1 , 𝐷𝑖) 0.33 0.32 0.1266 𝐷3 >  𝐷2 > 𝐷1 

𝐼(𝐷𝑖  , 𝑃1) 1.7949 1.5818 1.314 𝐷3 >  𝐷2 > 𝐷1 

𝐼(𝑃1 , 𝐷𝑖) 2.0504 2.0283 1.5870 𝐷3 >  𝐷2 > 𝐷1 

 

Analysis: From the Table 5, we observe that all the comparison measures diagnosing the patient P1  

for Typhoid. Our proposed asymmetric comparison measure from both directions 𝐷𝑖  →  𝑃1 and 

 𝑃1  →  𝐷𝑖  also resulting the same diagnosis (refer last two rows of the Table 5). Thus, we conclude 

that our proposed measure is consistent with existing models. The proposed model is more effective 

from the following observations. 

In the figure 2, the directed comparison 𝐼(𝐷𝑖  , 𝑃1) shows the greater discriminating capability within 

the diseases. Thus, the proposed asymmetric measure is sensitive to the direction of comparison from 

the view point of the discriminating power. In the considered numerical problem, the diagnostic 

result due to both directed comparisons (𝐼(𝐷𝑖  , 𝑃1) and 𝐼( 𝑃1, 𝐷𝑖)) remains same but discriminating 

power is different. 
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Figure 2: Graphical representation of computed values of closeness due to various measures in 

Table 5 

From the above graph, we see that the diagnosis of patient 𝑃1 is typhoid. It shows that the proposed 

inaccuracy measure is feasible and effective. 

In the next section, we compare some existing divergence measures, similarity measures, and the 

proposed inaccuracy measure.  

 

5. Comparative Study 

To check the superiority of the proposed inaccuracy measure, we consider the numerical example 

obtained from Thao and Smarandache [36]. 

Let us suppose, for universal set 𝑈 =  {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑚}, there are n patterns in the form of 

neutrosophic set  {𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛}. Suppose that we have an unknown sample B. Our goal is to 

classify sample B into which pattern 𝐴𝑖 . 

For this, we have to calculate the proposed inaccuracy measure, existing divergence measures, and 

similarity measures of unknown sample B with each pattern 𝐴𝑖(𝑛 = 1, 2, 3, … 𝑛). 

Assume 𝐴1= {(𝑢1,0.7,0.7,0.2), (𝑢2,0.7,0.8,0.4), (𝑢3,0.6,0.8,0.2)}.  

𝐴2= {(𝑢1,0.5,0.7,0.3), (𝑢2,0.7,0.7,0.5), (𝑢3,0.8,0.6,0.1)}.  

𝐴3={(𝑢1,0.9,0.5,0.1), (𝑢2,0.7,0.6,0.4), (𝑢3,0.8,0.5,0.2)}.  

Unknown Sample 

 B = {(𝑢1,0.7,0.8,0.4), (𝑢2,0.8,0.5,0.3), (𝑢3,0.5,0.8,0.5)}. 

 For the comparative study, we consider all measures listed in section 4 along with the following 

existing divergence measures and similarity measures: 

𝑆7 =  
1

𝑛
 ∑ {

(𝜌𝐴
2(𝑦𝑖)∧𝜌𝐵

2(𝑦𝑖))

(𝜌𝐴
2(𝑦𝑖)∨𝜌𝐵

2(𝑦𝑖))
+  

((1−𝜃𝐴
2(𝑦𝑖))∧(1−𝜃𝐵

2(𝑦𝑖))

((1−𝜃𝐴
2(𝑦𝑖))∨(1−𝜃𝐵

2(𝑦𝑖))
+

((1−𝛿𝐴
2(𝑦𝑖))∧(1−𝛿𝐵

2(𝑦𝑖))

((1−𝛿𝐴
2(𝑦𝑖))∨(1−𝛿𝐵

2(𝑦𝑖))
}𝑛

𝑖=1 .         (Chai et al. [9]) 

𝐷𝑀4(𝐴, 𝐵) =  
1

𝑛
∑ [𝐷𝑇

𝑖(𝐴, 𝐵) +  𝐷𝐼
𝑖(𝐴, 𝐵) + 𝐷𝐹

𝑖(𝐴, 𝐵)]𝑛
𝑖=1 .                (Thao and Smarandache [36]) 

where, 𝐷𝑀𝑇
𝑖(𝐴, 𝐵) =  𝜌𝐴(𝑦𝑖) ln

2𝜌𝐴(𝑦𝑖)

𝜌𝐴(𝑦𝑖)+𝜌𝐵(𝑦𝑖)
+  𝜌𝐵(𝑦𝑖) ln

2𝜌𝐵(𝑦𝑖)

𝜌𝐴(𝑦𝑖)+𝜌𝐵(𝑦𝑖)
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𝐷𝑀𝐼
𝑖(𝐴, 𝐵) =  𝜃𝐴(𝑦𝑖) ln

2𝜃𝐴(𝑦𝑖)

𝜃𝐴(𝑦𝑖) + 𝜃𝐵(𝑦𝑖)
+ 𝜃𝐵(𝑦𝑖) ln

2𝜃𝐵(𝑦𝑖)

𝜃𝐴(𝑦𝑖) + 𝜃𝐵(𝑦𝑖)
 

𝐷𝐹
𝑖(𝐴, 𝐵) =  𝛿𝐴(𝑦𝑖) ln

2𝛿𝐴(𝑦𝑖)

𝛿𝐴(𝑦𝑖) + 𝛿𝐵(𝑦𝑖)
+  𝛿𝐵(𝑦𝑖) ln

2𝛿𝐵(𝑦𝑖)

𝛿𝐴(𝑦𝑖) + 𝛿𝐵(𝑦𝑖)
 

𝐷𝑀𝑗(𝐴, 𝐵) = 

∑ 2𝛼 [
(√𝜌𝐴(𝑦𝑖) −  √𝜌𝐵(𝑦𝑖))

2(𝛼+1)

(𝜌𝐴(𝑦𝑖) + 𝜌𝐵(𝑦𝑖))𝛼
+  

(√1 − 𝜌𝐴(𝑦𝑖) −  √1 − 𝜌𝐵(𝑦𝑖))
2(𝛼+1)

(2 − 𝜌𝐴(𝑦𝑖) + 𝜌𝐵(𝑦𝑖))𝛼
]

𝑛

𝑖=1

+                   

∑ 2𝛼 [
(√𝜃𝐴(𝑦𝑖)− √𝜃𝐵(𝑦𝑖))

2(𝛼+1)

(𝜃𝐴(𝑦𝑖)+𝜃𝐵(𝑦𝑖))
𝛼 +  

(√1−𝜃𝐴(𝑦𝑖)− √1−𝜃𝐵(𝑦𝑖))
2(𝛼+1)

(2−𝜃𝐴(𝑦𝑖)+𝜃𝐵(𝑦𝑖))
𝛼 ]𝑛

𝑖=1 +

 ∑ 2𝛼 [
(√𝛿𝐴(𝑦𝑖)− √𝛿𝐵(𝑦𝑖))

2(𝛼+1)

(𝛿𝐴(𝑦𝑖)+𝛿𝐵(𝑦𝑖))
𝛼 + 

(√1−𝛿𝐴(𝑦𝑖)− √1−𝛿𝐵(𝑦𝑖))
2(𝛼+1)

(2−𝛿𝐴(𝑦𝑖)+𝛿𝐵(𝑦𝑖))
𝛼 ]𝑛

𝑖=1 ; 𝑗 = 5,6.  (Guleria et al. [37]) 

 

The result obtained by calculating the proposed inaccuracy measure, existing divergence measure, 

and similarity measure of unknown sample B with each pattern 𝐴𝑖 is shown in Table 7. 

Table 7. Result of the Existing Similarity Measure and Proposed Divergence Measure, along with 

the Degree of Confidence 

 (𝑨𝟏, 𝑩) (𝑨𝟐, 𝑩) (𝑨𝟑, 𝑩) DOC 

𝑺𝟏 0.7333 0.7333 0.7666 0.0666 

𝑺𝟐 0.7762 0.7036 0.6745 0.1743 

𝑺𝟑 0.7620 0.6781 0.64 0.2059 

𝑺𝟒 0.8666 0.7996 0.7776 0.156 

𝑺𝟓 0.9933 0.9622 0.9555 0.0689 

𝑺𝟔 0.9844 0.9319 0.9203 0.1166 

           S7 0.8021 0.7063 0.6993 0.1986 

𝑫𝟏 0.1333 0.2004 0.2224 0.1562 

𝑫𝟐 0.0067 0.0378 0.0445 0.0689 

𝑫𝟑 0.25 0.29 0.2966 0.0866 

𝑫𝑴𝟒 0.1537 0.2674 0.2951 0.25513 

𝑫𝑴𝟓(𝒘𝒉𝒆𝒏 𝜶 = 𝟏) 0.0352 0.1090 0.1161 0.1547 

𝑫𝑴𝟔(𝒘𝒉𝒆𝒏 𝜶 = 𝟒) 0.0001 0.0103 0.0032 0.0133 

𝑰𝑺𝑽𝑵𝑺(𝑩𝒊, 𝑨) 1.4854 1.7288 1.8444 0.6024 

𝑰𝑺𝑽𝑵𝑺(𝑨𝒊, 𝑩)) 1.2092 1.2554 1.1457 0.1732 
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Figure 3: Graphical representation of degree of confidence of various comparison measures 

Analysis: The highest value of similarity, the lowest value of divergence/inaccuracy, and the degree 

of confidence of the existing similarity, divergence measure, and the proposed inaccuracy measure 

are in bold in Table 7. The computed values of the comparison measures indicate that unknown 

sample B belongs to the pattern   𝐴1 . Only S1 shows a different result. Our proposed inaccuracy 

measure's highest value of DOC, when the direction of comparison is 𝐵𝑖 →  𝐴 . This justifies its 

effectiveness over other comparison measures, as illustrated graphically in the figure 3. 

6. Conclusion 

In this work, we have proposed an inaccuracy measure for SVNSs, to find directed discrimination 

between two SVNSs and studied some of their mathematical properties. The illustrative 

numerical problem in a corporate crisis of product launch has shown the applicability of the 

proposed measure. In addition, the advantage of the proposed measure has been justified by 

using a performance index DOC and in a medical diagnosis problem. The proposed asymmetric 

comparison measure may be impactful to the various studies in data science, machine learning 

and computer vision requiring a directed comparative analysis. The limitation of this article is 

that all the investigations have been done using hypothetical data. In future, we plan to 

investigate the applications of the suggested asymmetric comparison metrics in cluster analysis, 

multiple attribute decision-making, and medical diagnosis using real data sets. However, 

applying the proposed measures to actual data sets needs an efficient method of converting the 

crisp data to single valued neutrosohic data set without potential loss of information. Thus, 

formulating a suitable data conversion process because of the given scenario is also a problem 

for future investigations. Some recent studies [21-25] investigate the applicability of neutrosophic 
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methods in various disciplines like decision-making, pattern recognition, inventory 

management, pollution in megacities, etc. We also plan to explore the relevance of the proposed 

approach to these disciplines. 

Acknowledgements Authors are highly thankful to the Editor-in-Chief, Associate Editor to value 

this work and, anonymous reviewers for their constructive and insightful comments for the 

improvement of the paper. 
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Abstract: Numerous decision science processes involves the divergence measure is the most suitable 

information measure for dealing with the vagueness and impreciseness of the factors affecting the 

decision-making models. In this manuscript, a new kind of Hellinger information measure for a 

single-valued neutrosophic hypersoft set along with some important results have been presented 

and studied in detail. Also, we have presented the implementation of the proposed information 

measure to deal with the symptomatic detection of COVID-19 with a numerical illustration. In view 

of the existing methods related to divergence measures, some comparative results and remarks 

along with some important advantages have also been presented. 

Keywords: Single-Valued Neutrosophic Hypersoft Set; Hellinger divergence measure; 

Decision-making; COVID-19. 

 

1. Introduction 

The notion of fuzzy set theory [1], which have been devised in the recent decade by the efforts of the 

various eminent researchers working in this area. Subsequently, the idea of a “multi-criteria 

decision-making (MCDM)” problem gives a wider range and serves as one of the delightful options in 

the area of uncertainty and decision sciences. Atanassov [2] devised the notion of an intuitionistic 

fuzzy set in order to deal with the uncertainty components of indeterminacy/hesitation margin in the 

inexact/incomplete information which is in the grades of membership and the grades of 

non-membership degree. In order to cover the incomplete, ambiguous and contradictory information, 

the concept of the environment of “neutrosophic set” [3] was devised by Samarandache. The 

neutrosophic set mainly captures the three components of uncertainty, i.e., “degrees of truth, 

indeterminacy and falsity” which covers a greater span of information and which is applicable in 

various decision sciences problems [4-8]. 

In order to utilize the notion of neutrosophic setup in various problems of decision-making are very 

difficult. To overcome this issue, Wang et al. [9] came up with the notion of “single-valued 

neutrosophic set (SVNSS)” which properly covers all the three uncertainty components and manages 

the contradictory information. Due to the limitations of the information that humans get or perceive 

from their environment; all features of the objects portrayed by the SVNSS are perfectly acceptable for 

dealing with the uncertainties. The notion of a SVNSS has been expanding swiftly because of its 

broader area of hypothetical distinction [10-14]. Molodtsov [15] came up with the parametrized idea 

of “soft set theory” which covers the “parameterization” of the criterions with their respective 
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sub-criterions. Soft sets are of great importance in many problems of decision-making, game theory 

and artificial intelligence. The idea of a soft set has been further generalized by Maji [16] with the 

incorporation of a neutrosophic soft set. Then, Samrandache [17] introduces the novel concept of a 

hypersoft set with the inclusion of sub-attributes of the respective attributes. However, when there are 

several sub-attributes the theory of hypersoft sets cannot handle such situations. For overcoming such 

limitations, the idea of neutrosophic hypersoft sets (NHSS) was devised with the coutsey of Saqlain et 

al. [18-21].            

In literature, numerous researchers have thoroughly examined the different types of “similarity 

measures, divergence measures, distance measures, and entropy measures” for various types of fuzzy 

sets and their extensions because of their practical utility in the many fields of engineering and 

sciences. The notion of directed divergence measure was first presented by Bhandari and Pal [22] 

which is the modified version of the information measures as stated by Kullback and Leibler [23]. The 

“divergence measure” based on exponential measures has been presented by Fan and Xie [24]. Ghosh 

et al. [25] presented divergence nature of fuzzy measures in the recognition problem of automation. 

Also, some “divergence measures for intuitionistic fuzzy sets” were given by Shang and Jiang [26]. 

Hung and Yang [27] introduced the set of axioms for the divergence measures of intuitionistic fuzzy 

sets by utilizing the Hausdorff metric. Next, Montes et al. [28] developed some major relations 

between the distance, divergence and dissimilarity measures.  

From the above discussions, the degree of indeterminacy and hesitancy is missing from the 

intuitionistic fuzzy sets which restrict the various experts for assessing the uncertainities.  In order to 

deal with these kind of shortcomings, the surroundings of “neutrosophic sets” is more effective in the 

various applications of sciences and engineering. Broumi and Smarandache [29] presented the 

different types of “information measures” for neutrosophic environment. The similarity kind of 

information measures for SVNSS by utilizing the distance measures have been proposed by 

Majumdar and Samanta [30]. Further, similarity measures for interval neutrosophic sets have been 

given by Ye [31]. Also, Ye [32] studied the trigonometric similarity measures for single-valued 

neutrosophic sets and apply them to multi-criteria decision-making problems. The relationships 

between the different types of information measures with their trigonometric axiomatic definitions 

have been given by Wu et al. [33]. Also, Thao and Smarandache [34] established a novel divergence 

measure for neutrosophic sets to solve the problems related to medical and recognition problems. 

Also, different types of information measures concerning the various extensions of fuzzy sets and 

fuzzy soft set are already existing in the literature [35-38].  

However, there are some “distance and similarity measures” related to neutrosophic hypersoft sets 

utilized in the TOPSIS technique to compute the MCDM problems given by Saqlain et al. [39]. Also, 

“trigonometric similarity measures for neutrosophic hypersoft sets” to solve the renewable energy 

source selection problem given by Jafar et al. [40]. In addition to these, various other researchers 

[41-45] have proposed different types of similarity measures and utilized them in various types of 

pattern recognition problems and other decision-making problems. In the literature, there is 

similarity/distance measures for both “neutrosophic and single-valued neutrosophic hypersoft sets 

(SVNHSS)” but there are no divergence measures for SVNHSSs available. Here, based on the 

generalized “Hellinger” fuzzy divergence information measure for fuzzy environment given by 

Ohlan et al. [46], we have presented a novel kind of Hellinger divergence measure for the SVNHSS to 

moderate the research gap in this area.  

The remaining of the manuscript is being organized as. Section 2 involves some fundamental notions 

related to SVNHSSs and some basic operations which are already existing in the literature. In Section 
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3, we present some set-theoretic operations on SVNHSSs and a novel notion of the Hellinger 

divergence measure for two SVNHSSs. Also, we establish the validity of the proposed Hellinger 

divergence measure under the standard axioms. Various important properties related to the Hellinger 

divergence measure have been studied and discussed in Section 4. Further, by utilizing the proposed 

divergence measure, the methodology for the symptomatic detection of COVID-19 has been 

presented in Section 5. An associated numerical example for illustrating the proposed methodology 

has been solved and presented in Section 6. In Section 7, a brief discussion of results and the proposed 

algorithmic technique containing some important points on comparative advantages, importance and 

shortcomings have been presented. In the end, the paper has been concluded in Section 8 with some 

possible scope for future work. 

2. Preliminaries and Fundamental Notions 

In this section, some of the fundamental notions in context with the extensions of the 

neutrosophic set and information measures are presented. 

 

Definition 1. [47] “Let 𝑋 be the universal set and 𝑃(𝑋) be the power set of 𝑋. Consider 𝑘1, 𝑘2, … , 𝑘𝑛 for 

n ≥ 1 be n well-defined attributes whose corresponding attribute values are respectively the sets 𝐾1, 𝐾2, … , 𝐾𝑛 

with 𝐾𝑖 ∩ 𝐾𝑗 = ∅,  for 𝑖 ≠ 𝑗  and 𝑖, 𝑗 ∈ {1,2, . . , 𝑛},  then the pair (𝔑, 𝐾1 × 𝐾2 × …× 𝐾𝑛)  is said to be 

Hypersoft set over the set 𝑋, where 𝔑 ∶ 𝐾1 × 𝐾2 × … × 𝐾𝑛 → 𝑃(𝑋).” 

 

Definition 2. [47] “Let 𝑋 be the universal set and 𝑃(𝑋) be the power set of 𝑋. Consider 𝑘1, 𝑘2, … , 𝑘𝑛 for n≥

1 be n well-defined attributes whose corresponding attribute values are respectively the sets 𝐾1, 𝐾2, … ,𝐾𝑛 with 

𝐾𝑖 ∩ 𝐾𝑗 = ∅,  for 𝑖 ≠ 𝑗  and 𝑖, 𝑗 ∈ {1,2, . . , 𝑛}  and their relation 𝐾1 × 𝐾2 × … × 𝐾𝑛 = Γ , then the pair 

(𝔑, Γ) is said to be Neutrosophic Hypersoft set (NHSS) over 𝑋, where, 𝔑 ∶ 𝐾1 × 𝐾2 × … × 𝐾𝑛 → 𝑃(𝑋) 

and𝔑(𝐾1 × 𝐾2 × …× 𝐾𝑛) =  {⟨𝑥, 𝑇(𝔑(Γ)), 𝐼(𝔑(Γ)), 𝐹(𝔑(Γ))⟩, 𝑥 𝜖 𝑋}  ; where T is the degree of 

truthness, I is the degree of indeterminacy and F is the degree of falsity such that T, I, F : V → (0− , 1+)  and 

satisfies the constraint 0− ≤ 𝑇(𝔑(Γ)) +  𝐼(𝔑(Γ)) + 𝐹(𝔑(Γ) ≤ 3+. 

While dealing with applications of science and engineering, it becomes very difficult to handle situations under a 

neutrosophic environment.  In order to deal with such situations notion of Single-Valued Neutrosophic  

HyperSoft sets(𝑆𝑉𝑁𝐻𝑆𝑆) is very useful and applicable. ” 

 

Definition 3. [48] “Let 𝑋 be the universal set and 𝑃(𝑋) be the power set of 𝑋. Consider 𝑘1, 𝑘2, … , 𝑘𝑛 for n≥

1 be n well-defined attributes whose corresponding attribute values are respectively the sets 𝐾1, 𝐾2, … ,𝐾𝑛 with 

𝐾𝑖 ∩ 𝐾𝑗 = ∅,  for 𝑖 ≠ 𝑗  and 𝑖, 𝑗 ∈ {1,2, . . , 𝑛}  and their relation 𝐾1 × 𝐾2 × … × 𝐾𝑛 = Γ , then the pair 

(𝔑, Γ) is said to be a Single-Valued  Neutrosophic Hypersoft set (𝑆𝑉𝑁𝐻𝑆𝑆) over 𝑋, where, 𝔑 ∶ 𝐾1 × 𝐾2 ×

…× 𝐾𝑛 → 𝑃(𝑋) and𝔑(𝐾1 × 𝐾2 × … × 𝐾𝑛) =  {⟨𝑥, 𝑇(𝔑(Γ)), 𝐼(𝔑(Γ)), 𝐹(𝔑(Γ))⟩, 𝑥 𝜖 𝑋} ; where T 

is the degree of truthness, I is the degree of indeterminacy and F is the degree of falsity such that T, I, F : V → [0,

1]  and satisfies the constraint 0 ≤ 𝑇(𝔑(Γ)) +  𝐼(𝔑(Γ)) + 𝐹(𝔑(Γ) ≤ 3. ” 

 

Definition 4. [49] “Consider 𝐴 and 𝐵 be two single-valued neutrosophic sets, then the axiomatic definition of 

divergence measure are as follows: 

i. 𝕀(𝐴,𝐵) =  𝕀(𝐵, 𝐴); 

ii. 𝕀(𝐴,𝐵) ≥ 0 and 𝕀(𝐴,𝐵) = 0 iff 𝐴 = 𝐵. 
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iii. 𝕀(𝐴 ∩ 𝐵, 𝐵 ∩ 𝐴 ) ≤  𝕀(𝐴,𝐵) ∀ 𝐵 ∈ 𝑆𝑉𝑁𝑆(𝑋). 

iv. 𝕀(𝐴 ∪ 𝐵, 𝐵 ∪ 𝐴 ) ≤  𝕀(𝐴,𝐵) ∀ 𝐵 ∈ 𝑆𝑉𝑁𝑆(𝑋). ” 

3. Binary Operations and Hellinger Divergence Measure of Neutrosophic Hypersoft Sets  

In this section, we first propose some binary operations on 𝑺𝑽𝑵𝑯𝑺𝑺𝒔. We shall denote the collection 

of 𝑺𝑽𝑵𝑯𝑺𝑺 on 𝑿 by 𝑺𝑽𝑵𝑯𝑺𝑺(𝑿). Now, for any two 𝑺𝑽𝑵𝑯𝑺𝑺𝒔 𝑨,𝑩 ∈ 𝑺𝑽𝑵𝑯𝑺𝑺(𝑿), analogous to 

the operations given for the single-valued neutrosophic sets, we define some basic operations as 

follows: 

• “Union of 𝐴 and 𝐵”: 𝐴 ∪ 𝐵 = {𝑥, 𝑇𝐴∪𝐵(𝔑(Γ)), 𝐼𝐴∪𝐵(𝔑(Γ)), 𝐹𝐴∪𝐵(𝔑(Γ))| 𝑥 ∈ 𝑋 } 

where, 

𝑇𝐴∪𝐵(𝔑(Γ))(𝑥) = 𝑚𝑎𝑥{𝑇𝐴(𝔑(Γ))(𝑥), 𝑇𝐵(𝔑(Γ))(𝑥)} ,   𝐼𝐴∪𝐵(𝔑(Γ))(𝑥) = 𝑚𝑖𝑛{𝐼𝐴(𝔑(Γ))(𝑥),

𝐼𝐵(𝔑(Γ))(𝑥)}    

 

 and 𝐹𝐴∪𝐵(𝔑(Γ))(𝑥) = 𝑚𝑖𝑛{𝐹𝐴(𝔑(Γ))(𝑥), 𝐹𝐵(𝔑(Γ))(𝑥)} ∀ 𝑥 ∈ 𝑋. 

 

• “Intersection of 𝐴 and 𝐵”: 𝐴 ∩ 𝐵 = {𝑥, 𝑇𝐴∩𝐵(𝔑(Γ)), 𝐼𝐴∩𝐵(𝔑(Γ)), 𝐹𝐴∩𝐵(𝔑(Γ))| 𝑥 ∈ 𝑋 } 

where, 

𝑇𝐴∩𝐵(𝔑(Γ))(𝑥) = 𝑚𝑖𝑛{𝑇𝐴(𝔑(Γ))(𝑥), 𝑇𝐵(𝔑(Γ))(𝑥)} ,   𝐼𝐴∩𝐵(𝔑(Γ))(𝑥) = 𝑚𝑎𝑥{𝐼𝐴(𝔑(Γ))(𝑥),

𝐼𝐵(𝔑(Γ))(𝑥)}    

 

 and 𝐹𝐴∩𝐵(𝔑(Γ))(𝑥) = 𝑚𝑎𝑥{𝐹𝐴(𝔑(Γ))(𝑥), 𝐹𝐵(𝔑(Γ))(𝑥)} ∀ 𝑥 ∈ 𝑋. 

 

•Containment: 𝐴 ⊆ 𝐵 if and only if  

                                      𝑇𝐴(𝔑(Γ))(𝑥) ≤ 𝑇𝐵(𝔑(Γ))(𝑥),  𝐼𝐴(𝔑(Γ))(𝑥) ≥

𝐼𝐵(𝔑(Γ))(𝑥),  𝐹𝐴(𝔑(Γ))(𝑥) ≥ 𝐹𝐵(𝔑(Γ))(𝑥) ∀ 𝑥 ∈ 𝑋. 

• “Complement: The complement of a neutrosophic hypersoft set 𝐴 , denoted by �̅�,” defined by 

 

𝑇�̅�(𝔑(Γ))(𝑥) = 1 − 𝑇𝐴(𝔑(Γ))(𝑥), 𝐼�̅�(𝔑(Γ))(𝑥) = 1 − 𝐼𝐴(𝔑(Γ))(𝑥), 𝐹�̅�(𝔑(Γ))(𝑥) = 1 − 𝐹𝐴(𝔑(Γ))(𝑥)  

“ 

 

Next, we introduce a novel Hellinger divergence measure for any two 𝑆𝑉𝑁𝐻𝑆𝑆 with some of its 

important properties. For any two fuzzy sets, 𝐴 and 𝐵 Ohlan et al. [44] presented the generalized 

form of divergence measure given by Hellinger as follows:   

 

𝑑𝛾(𝐴, 𝐵) = ∑(
(√𝜇𝐴(𝑥𝑖) − √𝜇𝐵(𝑥𝑖))

2(𝛾+1)

√𝜇𝐴(𝑥𝑖)𝜇𝐵(𝑥𝑖)
+

(√𝜇𝐴𝑐(𝑥𝑖) − √𝜇𝐵𝑐(𝑥𝑖))
2(𝛾+1)

√𝜇𝐴𝑐(𝑥𝑖)𝜇𝐵𝑐(𝑥𝑖)
) ,

𝑛

𝑖=1

𝛾 ∈  ℕ.     (1) 

Now, on similar lines to the above-presented divergence measure given by (1), we introduce the 

following parameterized divergence measure for single valued neutrosophic hypersoft set: 
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𝕀𝛾(𝐴,𝐵) = ∑2𝛾

[
 
 
 
 (√𝑇𝐴(𝔑(Γ))(𝑥𝑖)− √𝑇𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)+𝑇𝐵(𝔑(Γ))(𝑥𝑖))

𝛾

𝑛

𝑖=1

+

(√1 − 𝑇𝐴(𝔑(Γ))(𝑥𝑖) − √1 − 𝑇𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2 − 𝑇𝐴(𝔑(Γ))(𝑥𝑖)−𝑇𝐵(𝔑(Γ))(𝑥𝑖))

𝛾

]
 
 
 
 

    

              + ∑ 2𝛾 [
(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√𝐼𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)+𝐼𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑖=1

(√1−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−𝐼𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 ]    

+∑ 2𝛾 [
(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√𝐹𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)+𝐹𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−𝐹𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 ] ,𝑛
𝑖=1 𝛾 ∈  ℕ. (2)                                 

Further, to check the validation of the proposed parameterized divergence measure for SVNHSSs, we 

propose the following theorem as follows:             

Theorem 1. The proposed divergence measure 𝕀𝛾(𝐴,𝐵) given by (2) is a reliable divergence measure for 

two 𝑆𝑉𝑁𝐻𝑆𝑆𝑠.  

Proof:  In order to check the validation of the proposed divergence measure, we need to check  

whether (2) satisfies the axioms of the divergence measures given in Section 2. 

i. Since (2) holds symmetry for 𝐴 and 𝐵, therefore it is clear that 𝕀(𝐴,𝐵) =  𝕀(𝐵, 𝐴). 

ii. Also, we observe that 𝕀(𝐴,𝐵) = 0 iff 

 𝑇𝐴(𝔑(Γ))(𝑥) = 𝑇𝐵(𝔑(Γ))(𝑥),  𝐼𝐴(𝔑(Γ))(𝑥) = 𝐼𝐵(𝔑(Γ))(𝑥),  𝐹𝐴(𝔑(Γ))(𝑥) = 𝐹𝐵(𝔑(Γ))(𝑥)  ∀ 𝑥 ∈

𝑋 . 

 

Now, it remains shown that 𝕀(𝐴, 𝐵) ≥ 0. In order to prove the non-negativity, first we need to prove 

the convexity of 𝕀𝛾 . Since, 𝕀𝛾(𝐴,𝐵)  is of Csiszar’s 𝑔 -divergence type with generating mapping 

𝑔𝛾: (0, ∞) → ℝ+, defined by , 

𝑔𝛾(𝑠) =
2𝛾(√𝑠 − 1)2(𝛾+1)

(𝑠 + 1)𝛾
 ;  𝑔𝛾(1) = 0.                               (3) 

Further, differentiate (3) with respect to 𝑠 two times we get, 

 

𝑔𝛾
,, (𝑠) = (

2𝛾

2
)
(2𝑠 + 2𝛾√𝑠 + 2𝛾𝑠

3

2 + 4𝛾𝑠 + 𝑠2 + 1) (𝛾 + 1)(√𝑠 − 1)2𝛾

(𝑠 + 1)𝛾+2𝑠3/2
. 
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Since, 𝛾 ∈  ℕ  and 𝑠 ∈ (0,∞) , therefore, 𝑔𝛾
,, (𝑠) ≥ 0  which shows the convexity of 𝑔𝛾

,, (𝑠).  Hence, 

𝕀(𝐴, 𝐵) ≥ 0. 

iii. In order to prove this part, we divide the collection 𝑋 into two disjoint subsets 𝑋1  and 𝑋2 

defined as 

 

𝑋1 = {𝑥𝑖 ∈ 𝑋| 𝑇𝐴(𝔑(Γ))(𝑥) ≥ 𝑇𝐵(𝔑(Γ))(𝑥) ≥ 𝑇𝐶(𝔑(Γ))(𝑥),  𝐼𝐴(𝔑(Γ))(𝑥) ≤ 𝐼𝐵(𝔑(Γ))(𝑥)

≤ 𝐼𝐶(𝔑(Γ))(𝑥),  𝐹𝐴(𝔑(Γ))(𝑥) ≤ 𝐹𝐵(𝔑(Γ))(𝑥) ≤ 𝐹𝐶(𝔑(Γ))(𝑥)}; (4) 

        and  

             

𝑋2 = {𝑥𝑖 ∈ 𝑋| 𝑇𝐴(𝔑(Γ))(𝑥) ≥ 𝑇𝐵(𝔑(Γ))(𝑥) ≥ 𝑇𝐶(𝔑(Γ))(𝑥),  𝐼𝐴(𝔑(Γ))(𝑥) ≤ 𝐼𝐵(𝔑(Γ))(𝑥)

≤ 𝐼𝐶(𝔑(Γ))(𝑥),  𝐹𝐴(𝔑(Γ))(𝑥) ≤ 𝐹𝐵(𝔑(Γ))(𝑥) ≤ 𝐹𝐶(𝔑(Γ))(𝑥)}.  (5) 

 

Now, by making use of the definition of neutrosophic sets and (2) in association with (4) and (5), 

the components of 𝑋1 will vanish and the components of 𝑋2 will only remain on the left-hand side. 

Hence, the left side will remain with only one term and the right side remain with two terms. The 

detailed steps of calculation can be shown easily. Therefore, axiom iii is satisfied.  

 

iv. The proof of this axiom can be done by the union operation accordingly as the proof of the 

axiom of iii. Therefore, 𝕀𝛾(𝐴,𝐵) is a validated divergence measure between the single-valued 

neutrosophic hypersoft sets 𝐴 and 𝐵. 

 

4. Properties of Novel Parameterized Neutrosophic Hypersoft Divergence Measure 

In this section, we give some of the important properties of the proposed divergence measure in a 

single-valued neutrosophic environment. 

Theorem 2. . For any 𝐴, 𝐵 and 𝐶 ∈  𝑆𝑉𝑁𝐻𝑆𝑆(𝑋), the parametric divergence information measure (2) holds 

the below mentioned fundamental properties:  

1. "𝕀𝛾(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) = 𝕀𝛾(𝐴, 𝐵) 

2. 𝕀𝛾(𝐴 ∪ 𝐵, 𝐴) + 𝕀𝛾(𝐴 ∩ 𝐵, 𝐴) = 𝕀𝛾(𝐴, 𝐵) 

3. 𝕀𝛾(𝐴 ∪ 𝐵, 𝐶) + 𝕀𝛾(𝐴 ∩ 𝐵, 𝐶) = 𝕀𝛾(𝐴, 𝐶) + 𝕀𝛾(𝐵, 𝐶) 

4. 𝕀𝛾(𝐴, 𝐴 ∪ 𝐵) = 𝕀𝛾(𝐵, 𝐴 ∩ 𝐵) 

5. 𝕀𝛾(𝐴, 𝐴 ∩ 𝐵) = 𝕀𝛾(𝐵, 𝐴 ∪ 𝐵). "  

 Proof: In order to prove the above-stated properties, we divide the set 𝑋 between two disjoint 

subsets 𝑋1  & 𝑋2 defined as 

 

𝑋1 = {𝑥𝑖 ∈ 𝑋| 𝑇𝐴(𝔑(Γ))(𝑥) ≥ 𝑇𝐵(𝔑(Γ))(𝑥) ≥ 𝑇𝐶(𝔑(Γ))(𝑥),  𝐼𝐴(𝔑(Γ))(𝑥) ≤ 𝐼𝐵(𝔑(Γ))(𝑥)

≤ 𝐼𝐶(𝔑(Γ))(𝑥),  𝐹𝐴(𝔑(Γ))(𝑥) ≤ 𝐹𝐵(𝔑(Γ))(𝑥)

≤ 𝐹𝐶(𝔑(Γ))(𝑥)};                      (6) 
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and 

𝑋2 = {𝑥𝑖 ∈ 𝑋| 𝑇𝐴(𝔑(Γ))(𝑥) ≥ 𝑇𝐵(𝔑(Γ))(𝑥) ≥ 𝑇𝐶(𝔑(Γ))(𝑥),  𝐼𝐴(𝔑(Γ))(𝑥) ≤ 𝐼𝐵(𝔑(Γ))(𝑥)

≤ 𝐼𝐶(𝔑(Γ))(𝑥),  𝐹𝐴(𝔑(Γ))(𝑥) ≤ 𝐹𝐵(𝔑(Γ))(𝑥)

≤ 𝐹𝐶(𝔑(Γ))(𝑥)}.                     (7) 

1. 𝕀𝛾(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) 

                  =  ∑ 2𝛾 [
(√𝑇𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−√𝑇𝐴∩𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)+𝑇𝐴∩𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑖=1

(√1−𝑇𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐴∩𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−𝑇𝐴∩𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 ]    

      + ∑ 2𝛾 [
(√𝐼𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−√𝐼𝐴∩𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)+𝐼𝐴∩𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑖=1

(√1−𝐼𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐴∩𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−𝐼𝐴∩𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 ]    

    + ∑ 2𝛾 [
(√𝐹𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−√𝐹𝐴∩𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)+𝐹𝐴∩𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑖=1

(√1−𝐹𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐴∩𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−𝐹𝐴∩𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 ]   

Now, by making use of Equations (6) and (7), we have 

 𝕀𝛾(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) =  ∑ 2𝛾 [
(√𝑇𝐵(𝔑(Γ))(𝑥𝑖)−√𝑇𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐵(𝔑(Γ))(𝑥𝑖)+𝑇𝐴(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑥𝑖∈𝑋1

                                  
(√1−𝑇𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐵(𝔑(Γ))(𝑥𝑖)−𝑇𝐴(𝔑(Γ))(𝑥𝑖))

𝛾 ]    
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      +∑ 2𝛾 [
(√𝐼𝐵(𝔑(Γ))(𝑥𝑖)−√𝐼𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐵(𝔑(Γ))(𝑥𝑖)+𝐼𝐴(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝐼𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐵(𝔑(Γ))(𝑥𝑖)−𝐼𝐴(𝔑(Γ))(𝑥𝑖))

𝛾 ]   𝑛
𝑥𝑖∈𝑋1

 

    +∑ 2𝛾 [
(√𝐹𝐵(𝔑(Γ))(𝑥𝑖)−√𝐹𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐵(𝔑(Γ))(𝑥𝑖)+𝐹𝐴(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝐹𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐵(𝔑(Γ))(𝑥𝑖)−𝐹𝐴(𝔑(Γ))(𝑥𝑖))

𝛾 ]  𝑛
𝑥𝑖∈𝑋1

 

    +∑ 2𝛾 [
(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√𝑇𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)+𝑇𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−𝑇𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 ]   𝑛
𝑥𝑖∈𝑋2

 

      +∑ 2𝛾 [
(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√𝐼𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)+𝐼𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−𝐼𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 ]   𝑛
𝑥𝑖∈𝑋2

 

    +∑ 2𝛾 [
(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√𝐹𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)+𝐹𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−𝐹𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 ]  𝑛
𝑥𝑖∈𝑋2

 

                           = 𝕀𝛾(𝐴, 𝐵). 

 

2. Proof of this can be done on similar lines as of 1. 

                                             

3.  𝕀𝛾(𝐴 ∪ 𝐵, 𝐶) + 𝕀𝛾(𝐴 ∩ 𝐵, 𝐶) 

                        = " ∑ 2𝛾 [
(√𝑇𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−√𝑇𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)+𝑇𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑖=1

(√1−𝑇𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−𝑇𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]    

      +∑ 2𝛾 [
(√𝑇𝐴∩𝐵(𝔑(Γ))(𝑥𝑖)−√𝑇𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐴∩𝐵(𝔑(Γ))(𝑥𝑖)+𝑇𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝑇𝐴∩𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐴∩𝐵(𝔑(Γ))(𝑥𝑖)−𝑇𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]   𝑛
𝑖=1  

      +∑ 2𝛾 [
(√𝐼𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−√𝐼𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)+𝐼𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝐼𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−𝐼𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]   𝑛
𝑖=1  
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      +∑ 2𝛾 [
(√𝐼𝐴∩𝐵(𝔑(Γ))(𝑥𝑖)−√𝐼𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐴∩𝐵(𝔑(Γ))(𝑥𝑖)+𝐼𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝐼𝐴∩𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐴∩𝐵(𝔑(Γ))(𝑥𝑖)−𝐼𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]   𝑛
𝑖=1  

      +∑ 2𝛾 [
(√𝐹𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−√𝐹𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)+𝐹𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝐹𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐴∪𝐵(𝔑(Γ))(𝑥𝑖)−𝐹𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]   𝑛
𝑖=1  

      + ∑ 2𝛾 [
(√𝐹𝐴∩𝐵(𝔑(Γ))(𝑥𝑖)−√𝐹𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐴∩𝐵(𝔑(Γ))(𝑥𝑖)+𝐹𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑖=1

(√1−𝐹𝐴∩𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐴∩𝐵(𝔑(Γ))(𝑥𝑖)−𝐹𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]    

                   =  ∑ 2𝛾 [
(√𝑇𝐵(𝔑(Γ))(𝑥𝑖)−√𝑇𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐵(𝔑(Γ))(𝑥𝑖)+𝑇𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑥𝑖∈𝑋1

(√1−𝑇𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐵(𝔑(Γ))(𝑥𝑖)−𝑇𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]    

        +  ∑ 2𝛾 [
(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√𝑇𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)+𝑇𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑥𝑖∈𝑋2

(√1−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−𝑇𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]    

        +  ∑ 2𝛾 [
(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√𝑇𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)+𝑇𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑥𝑖∈𝑋1

(√1−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−𝑇𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]    
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        + ∑ 2𝛾 [
(√𝑇𝐵(𝔑(Γ))(𝑥𝑖)−√𝑇𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐵(𝔑(Γ))(𝑥𝑖)+𝑇𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑥𝑖∈𝑋2

(√1−𝑇𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐵(𝔑(Γ))(𝑥𝑖)−𝑇𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]    

      +∑ 2𝛾 [
(√𝐼𝐵(𝔑(Γ))(𝑥𝑖)−√𝐼𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐵(𝔑(Γ))(𝑥𝑖)+𝐼𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝐼𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐵(𝔑(Γ))(𝑥𝑖)−𝐼𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]   𝑛
𝑥𝑖∈𝑋1

 

        + ∑ 2𝛾 [
(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√𝐼𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)+𝐼𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−𝐼𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]   𝑛
𝑥𝑖∈𝑋2

 

        +  ∑ 2𝛾 [
(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√𝐼𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)+𝐼𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑥𝑖∈𝑋1

(√1−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−𝐼𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]    

        + ∑ 2𝛾 [
(√𝐼𝐵(𝔑(Γ))(𝑥𝑖)−√𝐼𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐵(𝔑(Γ))(𝑥𝑖)+𝐼𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝐼𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐵(𝔑(Γ))(𝑥𝑖)−𝐼𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]   𝑛
𝑥𝑖∈𝑋2

 

      +∑ 2𝛾 [
(√𝐹𝐵(𝔑(Γ))(𝑥𝑖)−√𝐹𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐵(𝔑(Γ))(𝑥𝑖)+𝐹𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝐹𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐵(𝔑(Γ))(𝑥𝑖)−𝐹𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]   𝑛
𝑥𝑖∈𝑋1

 

        +  ∑ 2𝛾 [
(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√𝐹𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)+𝐹𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑥𝑖∈𝑋2

(√1−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−𝐹𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]    
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        +  ∑ 2𝛾 [
(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√𝐹𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)+𝐹𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑥𝑖∈𝑋1

(√1−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−𝐹𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]    

        + ∑ 2𝛾 [
(√𝐹𝐵(𝔑(Γ))(𝑥𝑖)−√𝐹𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐵(𝔑(Γ))(𝑥𝑖)+𝐹𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑥𝑖∈𝑋2

(√1−𝐹𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐶(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐵(𝔑(Γ))(𝑥𝑖)−𝐹𝐶(𝔑(Γ))(𝑥𝑖))

𝛾 ]    

                              = 𝕀𝛾(𝐴, 𝐶) + 𝕀𝛾(𝐵, 𝐶). "   

4. 𝕀γ(A,A ∪ B)      

= "∑ 2𝛾 [
(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√𝑇𝐴∪𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)+𝑇𝐴∪𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑖=1

(√1−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐴∪𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−𝑇𝐴∪𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 ]       

    + ∑ 2𝛾 [
(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√𝐼𝐴∪𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)+𝐼𝐴∪𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑖=1

(√1−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐴∪𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−𝐼𝐴∪𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 ]     
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   + ∑ 2𝛾 [
(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√𝐹𝐴∪𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)+𝐹𝐴∪𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑖=1

(√1−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐴∪𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−𝐹𝐴∪𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 ]    

                      =  ∑ 2𝛾 [
(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√𝑇𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)+𝑇𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 +𝑛
𝑥𝑖∈𝑋1

(√1−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−𝑇𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 ]    

       +∑ 2𝛾 [
(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√𝐼𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)+𝐼𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−𝐼𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 ]   𝑛
𝑥𝑖∈𝑋1

 

       +∑ 2𝛾 [
(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√𝐹𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)+𝐹𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 +
(√1−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−𝐹𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 ]   𝑛
𝑥𝑖∈𝑋1

 

                      = 𝕀𝛾(𝐵, 𝐴 ∩ 𝐵). " 

5. Proof of this can be done on similar lines.     

Theorem 3.  For any 𝐴 and 𝐵 ∈  𝑆𝑉𝑁𝐻𝑆𝑆(𝑋), the parametric divergence information measure (2) holds the 

below mentioned properties:  

1. "𝕀𝛾(�̅� , �̅�) = 𝕀𝛾(𝐴, 𝐵) 

2. 𝕀𝛾(𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅, 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅) = 𝕀𝛾(�̅� ∩ �̅�, �̅� ∪ �̅�) = 𝕀𝛾(𝐴, 𝐵) 

3. 𝕀𝛾(𝐴, �̅�) = 𝕀𝛾(�̅�, 𝐵) 

4. 𝕀𝛾(𝐴, �̅�) + 𝕀𝛾(�̅� , �̅�) = 𝕀𝛾(𝐴, 𝐵) + 𝕀𝛾(�̅�, 𝐵)" 

Proof : 

1. Proof of (1) can easily be done with the definition of 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 and the required 

results hold. 

2. Proof of (2) can be done by making use of (6) and (7) as: 

  𝕀𝛾(𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅, 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅) =            

∑ 2𝛾
(√1−𝑇𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐵(𝔑(Γ))(𝑥𝑖)−𝑇𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

+ ∑ 2𝛾
(√𝑇𝐵(𝔑(Γ))(𝑥𝑖)−√𝑇𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐵(𝔑(Γ))(𝑥𝑖)+𝑇𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1
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+∑ 2𝛾
(√1−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−𝑇𝐵(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋2

+ ∑ 2𝛾
(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√𝑇𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)+𝑇𝐵(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋2

 

+∑ 2𝛾
(√1−𝐼𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐵(𝔑(Γ))(𝑥𝑖)−𝐼𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

+ ∑ 2𝛾
(√𝐼𝐵(𝔑(Γ))(𝑥𝑖)−√𝐼𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐵(𝔑(Γ))(𝑥𝑖)+𝐼𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

  

+∑ 2𝛾
(√1−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−𝐼𝐵(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋2

+ ∑ 2𝛾
(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√𝐼𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)+𝐼𝐵(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋2

 

+∑ 2𝛾
(√1−𝐹𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐵(𝔑(Γ))(𝑥𝑖)−𝐹𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

+ ∑ 2𝛾
(√𝐹𝐵(𝔑(Γ))(𝑥𝑖)−√𝐹𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐵(𝔑(Γ))(𝑥𝑖)+𝐹𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

  

+∑ 2𝛾
(√1−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−𝐹𝐵(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋2

+ ∑ 2𝛾
(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√𝐹𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)+𝐹𝐵(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋2

 

                                = 𝕀𝛾(𝐴, 𝐵). 

Now, 𝕀𝛾(�̅� ∩ �̅�, �̅� ∪ �̅�) = 

∑ 2𝛾
(√1−𝑇𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐵(𝔑(Γ))(𝑥𝑖)−𝑇𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

+ "∑ 2𝛾
(√𝑇𝐵(𝔑(Γ))(𝑥𝑖)−√𝑇𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐵(𝔑(Γ))(𝑥𝑖)+𝑇𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

  

+∑ 2𝛾
(√1−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−𝑇𝐵(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋2

+ ∑ 2𝛾
(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√𝑇𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)+𝑇𝐵(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋2

 

+∑ 2𝛾
(√1−𝐼𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐵(𝔑(Γ))(𝑥𝑖)−𝐼𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

+ ∑ 2𝛾
(√𝐼𝐵(𝔑(Γ))(𝑥𝑖)−√𝐼𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐵(𝔑(Γ))(𝑥𝑖)+𝐼𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

  

+∑ 2𝛾
(√1−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−𝐼𝐵(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋2

+ ∑ 2𝛾
(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√𝐼𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)+𝐼𝐵(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋2
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+∑ 2𝛾
(√1−𝐹𝐵(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐵(𝔑(Γ))(𝑥𝑖)−𝐹𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

+ ∑ 2𝛾
(√𝐹𝐵(𝔑(Γ))(𝑥𝑖)−√𝐹𝐴(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐵(𝔑(Γ))(𝑥𝑖)+𝐹𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

  

+∑ 2𝛾
(√1−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−𝐹𝐵(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋2

+ ∑ 2𝛾
(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√𝐹𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)+𝐹𝐵(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋2

" 

                                = 𝕀𝛾(𝐴, 𝐵). 

 

Therefore, 𝕀𝛾(𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅, 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅) = 𝕀𝛾(�̅� ∩ �̅�, �̅� ∪ �̅�) = 𝕀𝛾(𝐴, 𝐵). 

 

3. 𝕀𝛾(𝐴, �̅�)  

=∑ 2𝛾
(√𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝑇𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝑇𝐵(𝔑(Γ))(𝑥𝑖)−𝑇𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

+ ∑ 2𝛾
(√1−𝑇𝐴(𝔑(Γ))(𝑥𝑖)−√𝑇𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√1−𝑇𝐴(𝔑(Γ))(𝑥𝑖)+𝑇𝐵(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

 

+"∑ 2𝛾
(√𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐼𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐼𝐵(𝔑(Γ))(𝑥𝑖)−𝐼𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

+ ∑ 2𝛾
(√1−𝐼𝐴(𝔑(Γ))(𝑥𝑖)−√𝐼𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√1−𝐼𝐴(𝔑(Γ))(𝑥𝑖)+𝐼𝐵(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

 

+∑ 2𝛾
(√𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√1−𝐹𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√2−𝐹𝐵(𝔑(Γ))(𝑥𝑖)−𝐹𝐴(𝔑(Γ))(𝑥𝑖))

𝛾
𝑛
𝑥𝑖∈𝑋1

+ ∑ 2𝛾
(√1−𝐹𝐴(𝔑(Γ))(𝑥𝑖)−√𝐹𝐵(𝔑(Γ))(𝑥𝑖))

2(𝛾+1)

(√1−𝐹𝐴(𝔑(Γ))(𝑥𝑖)+𝐹𝐵(𝔑(Γ))(𝑥𝑖))

𝛾 "𝑛
𝑥𝑖∈𝑋1

 

                                                                   =

𝕀𝛾(�̅�, 𝐵). 

 

4. Proof of (4) can be done by making use of (1) and (3), which satisfies 𝕀𝛾(𝐴, �̅�) +

𝕀𝛾(�̅� , �̅�) = 𝕀𝛾(𝐴, 𝐵) + 𝕀𝛾(�̅�, 𝐵).  

                                                                                          

5. Utilization of the Proposed Parameterized Divergence Measure in the MCDM Problem. 

In this section, we propose a methodology for the MCDM based on proposed parameterized 

divergence measures of 𝑆𝑉𝑁𝐻𝑆𝑆𝑠. The steps of the proposed methodology have been explained with 

the help of Figure 1 in an abstract way.  Consider the set of 𝑚 alternatives {𝑌1, 𝑌2, … , 𝑌𝑛}  and 𝑛 

attributes 𝑘1, 𝑘2, … , 𝑘𝑛  and “whose corresponding attribute values are respectively the sets 

𝐾1, 𝐾2, … , 𝐾𝑛 with 𝐾𝑖 ∩ 𝐾𝑗 = ∅, for 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ {1,2, . . , 𝑛}.” The set of all possible 𝑆𝑉𝑁𝐻𝑆𝑆𝑠 are 

given by (𝔑, Γ), where Γ = 𝐾1 × 𝐾2 × …× 𝐾𝑛. The aim of an expert is to choose the best suitable 

alternative out of the available alternatives which satisfy the 𝑛 attribute values. The opinions of all 

the experts have been considered in terms of a matrix representation H = [hij]m×n
 called 
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single-valued neutrosophic hypersoft matrix where hij = (T(𝔑(Γ))
ij
, I(𝔑(Γ))

ij
, F(𝔑(Γ))ij) . The 

necessary steps involved in the algorithm of the proposed methodology are outlined as follows: 

 

Figure 1: Algorithmic Steps of the proposed Methodology 

Step 1: In the first step, construct the single-valued neutrosophic hypersoft decision matrix based on 

available information. 

Step 2: In this step, remove the heterogeneity in the attributes (if any) and convert it into a 

homogeneous type of attribute. Majorly, there are two types of attributes i.e. cost type and benefit 

type, we convert the cost type attributes into benefit type. For this, the expert matrix H = [hij]m×n
 is 

converted into a new expert matrix H′ = [h′
ij]m×n

 where h′
ij is given by  

h′
ij = (T(𝔑(Γ))

ij
, I(𝔑(Γ))

ij
, F(𝔑(Γ))ij) = {

hij ;  for benefit criteria

hij
c ;  for cost criteria.

 

Step 3: In this step, compute the values of the proposed divergence measure of the alternatives 𝑌𝑖
′𝑠 

with respect to the sub-attributes individually. 

Step 4: In this step, the ordering of alternatives can be done with the least value of the proposed 

divergence measure. 

 

6. Use of Proposed Divergence Measures in Symptomatic Detection of COVID-19. 

In this section, we shall make use of above-stated methodology for the symptomatic detection of 

COVID-19 on the basis of divergence measures for 𝑆𝑉𝑁𝐻𝑆𝑆𝑠.  Consider a set of four patients 

{𝑌1, 𝑌2, 𝑌3, 𝑌4 }  in a hospital having symptoms of COVID-19. Suppose there are three stages of 

characterization of the symptoms as 𝑠𝑒𝑣𝑒𝑟𝑒(𝑥1), 𝑚𝑖𝑙𝑑(𝑥2)  and 𝑛𝑜(𝑥3) . The universal set 𝑋 =

{𝑥1, 𝑥2, 𝑥3}.  Let 𝐾 = {𝐾1 = 𝑠𝑒𝑛𝑠𝑒 𝑜𝑓 𝑡𝑎𝑠𝑡𝑒,  𝐾2 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝐾3 = 𝑐ℎ𝑒𝑠𝑡 𝑝𝑎𝑖𝑛, 𝐾4 = 𝑓𝑙𝑢 }  be 

the set of symptoms that are further classified into sub-attributes: 

 𝐾1 = “𝑠𝑒𝑛𝑠𝑒 𝑜𝑓 𝑡𝑎𝑠𝑡𝑒 = {𝑛𝑜 𝑡𝑎𝑠𝑡𝑒, 𝑐𝑎𝑛 𝑡𝑎𝑠𝑡𝑒}”  

 𝐾2 = “𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = {97.5 − 98.5, 98.6 − 99.5,99.6 − 101.5,101.6 − 102.5}”  

 𝐾3 = “𝑐ℎ𝑒𝑠𝑡 𝑝𝑎𝑖𝑛 = {𝑠ℎ𝑜𝑟𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑏𝑟𝑒𝑎𝑡ℎ, 𝑛𝑜 𝑝𝑎𝑖𝑛, 𝑛𝑜𝑟𝑚𝑎𝑙 𝑝𝑎𝑖𝑛 𝑎𝑛𝑔𝑖𝑛𝑎}”  

 𝐾4 = “𝑓𝑙𝑢 = {𝑠𝑜𝑟𝑒 𝑡ℎ𝑟𝑜𝑎𝑡, 𝑐𝑜𝑢𝑔ℎ, 𝑠𝑡𝑟𝑒𝑝 𝑡ℎ𝑟𝑜𝑎𝑡}”  

Now, let us define a relation 𝔑 ∶ 𝐾1 × 𝐾2 × …× 𝐾𝑛 → 𝑃(𝑋) defined as, 

𝔑 (𝐾1 × 𝐾2 × …× 𝐾𝑛) = {𝜉 = 𝑠ℎ𝑜𝑟𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑏𝑟𝑒𝑎𝑡ℎ, 𝜁 = 101.3, 𝜚 = 𝑠𝑜𝑟𝑒 𝑡ℎ𝑟𝑜𝑎𝑡, 𝜍 = 𝑛𝑜 𝑡𝑎𝑠𝑡𝑒} is 

the most prominent sample of the patient for the confirmation of COVID-19.  

 

Step1: Let (𝔑, Γ) be a 𝑆𝑉𝑁𝐻𝑆𝑆(𝑋) for COVID-19 prepared with the help of medical experts as given 

in Table 1. 

Table 1. 𝑆𝑉𝑁𝐻𝑆𝑆(𝔑, Γ) for COVID-19 

(𝔑, Γ) 𝐾1 𝐾2 𝐾3 𝐾4 

𝑥1 𝜉(0.4,0.2,0.3) 𝜁(0.3,0.4,0.3) 𝜚(0.7,0.1,0.2) 𝜍(0.4,0.2,0.3) 
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𝑥2 𝜉(0.5,0.1,0.3) 𝜁(0.1,0.8,0.1) 𝜚(0.4,0.3,0.2) 𝜍(0.5,0.2,0.3) 

𝑥3 𝜉(0.3,0.5,0.1) 𝜁(0.1,0.2,0.7) 𝜚(0.1,0.6,0.2) 𝜍(0.5,0.4,0.1) 

 

Next, the 𝑆𝑉𝑁𝐻𝑆𝑆𝑠 for the patients under consideration are given in Table 2-Table 5. 

Table 2. 𝑆𝑉𝑁𝐻𝑆𝑆(𝔑, Γ) for the patient 𝑌1  

(𝔑, Γ) 𝐾1 𝐾2 𝐾3 𝐾4 

𝑥1 𝜉(0.5,0.2,0.3) 𝜁(0.8,0.1,0.0) 𝜚(0.2,0.7,0.1) 𝜍(0.9,0.1,0.0) 

𝑥2 𝜉(0.3,0.1,0.5) 𝜁(0.2,0.8,0.0) 𝜚(0.5,0.2,0.2) 𝜍(0.6,0.1,0.2) 

𝑥3 𝜉(0.4,0.5,0.1) 𝜁(0.7,0.2,0.0) 𝜚(0.3,0.6,0.1) 𝜍(0.4,0.5,0.1) 

Table 3. 𝑆𝑉𝑁𝐻𝑆𝑆(𝔑, Γ) for the patient 𝑌2  

(𝔑, Γ) 𝐾1 𝐾2 𝐾3 𝐾4 

𝑥1 𝜉(0.2,0.6,0.2) 𝜁(0.2,0.5,0.3) 𝜚(0.6,0.1,0.2) 𝜍(0.7,0.2,0.1) 

𝑥2 𝜉(0.3,0.4,0.3) 𝜁(0.2,0.6,0.2) 𝜚(0.4,0.3,0.2) 𝜍(0.5,0.2,0.3) 

𝑥3 𝜉(0.8,0.1,0.1) 𝜁(0.1,0.2,0.7) 𝜚(0.1,0.6,0.2) 𝜍(0.8,0.1,0.1) 

 

Table 4. 𝑆𝑉𝑁𝐻𝑆𝑆(𝔑, Γ) for the patient 𝑌3  

(𝔑, Γ) 𝐾1 𝐾2 𝐾3 𝐾4 

𝑥1 𝜉(0.3,0.4,0.3) 𝜁(0.2,0.6,0.1) 𝜚(0.3,0.6,0.0) 𝜍(0.4,0.2,0.3) 

𝑥2 𝜉(0.5,0.1,0.3) 𝜁(0.1,0.8,0.1) 𝜚(0.4,0.3,0.2) 𝜍(0.5,0.2,0.3) 

𝑥3 𝜉(0.5,0.5,0.0) 𝜁(0.2,0.0,0.8) 𝜚(0.4,0.5,0.1) 𝜍(0.4,0.4,0.1) 

 

Table 5. 𝑆𝑉𝑁𝐻𝑆𝑆(𝔑, Γ) for the patient 𝑌4  

(𝔑, Γ) 𝐾1 𝐾2 𝐾3 𝐾4 

𝑥1 𝜉(0.9,0.0,0.1) 𝜁(0.2,0.6,0.1) 𝜚(0.6,0.1,0.2) 𝜍(0.5,0.2,0.2) 

𝑥2 𝜉(0.3,0.5,0.2) 𝜁(0.4,0.0,0.6) 𝜚(0.2,0.3,0.5) 𝜍(0.7,0.2,0.1) 

𝑥3 𝜉(0.4,0.3,0.3) 𝜁(0.4,0.2,0.4) 𝜚(0.3,0.6,0.1) 𝜍(0.0,0.1,0.9) 

 

Step 2: Since all the attributes are of benefit type, so there is no need for normalization of attributes. 

Step 3: In this step, we shall make use of the proposed divergence measure to compute the values of 

the divergence measure for different patients. Now, by applying the proposed divergence 

measure (1), we get 𝕀𝛾(𝔑, 𝑌1) = 0.3457 for the patient 𝑌1 , 𝕀𝛾(𝔑, 𝑌2) = 0.6243 for the patient 𝑌2 , 

𝕀𝛾(𝔑, 𝑌3) = 0.4892 for the patient 𝑌3 and 𝕀𝛾(𝔑, 𝑌4) = 0.8657 for the patient 𝑌4. 

Step 4: Now, the minimum value of the divergence measure is 0.3457 which is for the patient 𝑌1, 

hence out of all four patients, 𝑌1 is suffering from COVID-19 on the basis of symptomatic detection. 

 

7. Discussion on Results and Methodology  

In this section, we briefly present a discussion of the proposed methodology and the obtained results 

by mentioning some remarks on comparative advantages, importance and limitations. The important 

discussion points on the notions of neutrosophic hypersoft set and its Hellinger divergence measure 

are as follows: 

 The computed value of the divergence measure is more deterministic as compared with other 

obtained values.  
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 The utilization of a neutrosophic hypersoft set and its measure have a superiority to dealing 

incorporating a broader notion of applicability in uncertain situations of a direct parameter 

and sub-parameterization due to the hypersoft feature.  

 The hypersoft sets which are already existing in the literature – “intuitionistic fuzzy hypersoft 

set, Pythagorean fuzzy Hypersoft set, and Neutrosophic hypersoft set” due to the rejection 

and abstain components being excluded, each have their own shortcomings. 

 The methodology implementing the proposed Hellinger divergence measure be effectively 

and consistently applied to different group strategic MCDM issues as well as in a broader 

framework. 

The following characteristic comparison table (Table 1) represents the added-on advantages of the 

proposed methodology over the existing ones: 

Table 1: Characteristic Comparison Table 

Authors Divergence Measures Truthiness Indeterminacy Falsity Sub-Attributes 

Ohlan et al. [46] “Fuzzy Sets”     

Kadian et al. [50] “Intuitionistic Fuzzy 

Sets” 

    

Montes et al.[51] “Picture Fuzzy Sets”     

Proposed “Single-valued 

Neutrosophic 

Hypersoft Sets” 

    

 

8. Conclusions & Scope for Future Work 

The Hellinger divergence measure for 𝑆𝑉𝑁𝐻𝑆𝑆𝑠 has been successfully presented along with some 

important deliberations and properties. In literature, the Hellinger divergence measure for 𝑆𝑉𝑁𝐻𝑆𝑆𝑠 

is novel and utilized to propose a new methodology for the symptomatic detection of COVID-19. The 

necessary steps of the proposed methodology have been illustrated successfully. The obtained results 

based on the proposed methodology are found to be efficient and consistent. In the future, the utility 

distribution can further be incorporated in the Hellinger divergence measure to propose a `useful’ 

Hellinger divergence measure for 𝑆𝑉𝑁𝐻𝑆𝑆𝑠,  and eventually, the total ambiguity and hybrid 

ambiguity can be discussed with due applications. Also, the notion of expert sets can be appended 

with the proposed Hellinger divergence measure. 
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Abstract: Fuzzy sets are a major oversimplification and extension of classical sets. Fuzzy sets have become a 

recognized research topic in many fields. This paper proposes a new type of set theory is neutrosophic set. As 

a novel study field, new hybrid sets created from neutrosophic sets are gaining prominence. The neutrosophic 

set is used to describe indeterminacy and uncertainty in any information. The neutrosophic set extension has 

been explored by many researchers. Here we introduce properties of Neutrosophic Fuzzy (NF) ideals in         

Γ Rings. Some new neutrosophic operations are explored. 

Keywords: Γ Rings; Fuzzy set; Neutrosophic fuzzy set; Neutrosophic fuzzy ideal;                  
Neutrosophic  Γ − endomorphism. 
 

1. Introduction 

In 1965, Zadeh proposed the fuzzy set as a method to deal with imprecise data [21]. Many 

applications have been found for fuzzy sets in various fields of research, these include intuitionistic fuzzy sets, 

picture fuzzy sets, orthopair fuzzy sets, and neutrosophic sets. Also, various algebraic structures have been 

discussed in fuzzy versions by many researchers. One of the algebraic structures is the gamma ring. In 1964 

Nobusawa [9] first proposed the gamma ring concept. This is rather common when compared to a ring. 

Barnes [3] weakened the requirements of Nobusawa's gamma ring. As a continuation of his research, 

researchers are interested in gamma rings with apartness [6,7,10]. Gamma ring structure is used to investigate 

the number of Generalizations that are identical to the corresponding parts of Kyuno's ring theory [8]. 

Uddin[19] generalized the results of gamma endomorphism in gamma rings. Ardakani [2] discussed 

derivations of prime and semi-prime gamma rings. Atanassov created Intuitionistic fuzzy set to address the 

issue of non-determinacy brought on by a single membership function in the fuzzy set. The intuitionistic 

fuzzy set is highly helpful in that it offers a flexible model to explain the uncertainty and ambiguity inherent 

in decision-making. In 2010 Palaniappan et.al [11, 12, 13] proposed the intuitionistic fuzzy ideals and 

intuitionistic fuzzy prime ideals in Γ-Rings. Neutrosophic logic was introduced by Florentin Smarandache in 

1995. Neutrosophic set is a generalization of the intuitionistic fuzzy set discussed by Smarandache[17]. 

Neutrosophic set is a set where each element of the universe has a degree of truth, indeterminacy, and falsity 

respectively, and which lies between 0 and 1. There are several applications in various fields. Salama [15] 

states the characteristic function of a Neutrosophic set. In 2010 Wang introduced the single-valued 

Neutrosophic sets [20]. Many authors exhibited NF ideals [5,14,16,18]. Agboola primarily focused on 

neutrosophic canonical hypergroups and neutrosophic  hyperrings [1]. Chalapathi stated about neutrosophic 

rings [4]. During this paper, we introduced the notion of NF ideals in the gamma ring structure. 
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2. Prerequisites: 

The required definitions are incorporated in this section. 

Definition 2.1: [9] Consider (𝑁, Γ) is an abelian group where 𝑁 = {𝑝, 𝑞, 𝑟}
 
and Γ = {𝛼, 𝛽, 𝛾 … . } and for all 

𝑝, 𝑞, 𝑟 𝜖 𝑁
 
and 𝛼, 𝛽𝜖Γ, 

(1) 𝑝𝛼𝑞 𝜖 𝑁 

(2) (𝑝 + 𝑞)𝛼 𝑟 = 𝑝𝛼 𝑟 + 𝑞𝛼 𝑟, 𝑝(𝛼 + 𝛽)𝑞 = 𝑝𝛼𝑞 + 𝑝𝛽𝑞, 𝑝𝛼(𝑞 + 𝑟) = 𝑝𝛼𝑞 + 𝑝𝛼𝑟, 

(3) (𝑝𝛼𝑞)𝛽 𝑟 = 𝑝𝛼(𝑞𝛽𝑟). Then N is a  Ring. 

Later the improved by Barnes [3] 
(1′) 𝑝𝛼𝑞 𝜖 𝑁  𝛼𝑝𝛽𝜖Γ, 

(2′) (𝑝 + 𝑞)𝛼 𝑟 = 𝑝𝛼 𝑟 + 𝑞𝛼 𝑟, 𝑝(𝛼 + 𝛽)𝑞 = 𝑝𝛼𝑞 + 𝑝𝛽𝑞, 𝑝𝛼(𝑞 + 𝑟) = 𝑝𝛼𝑞 + 𝑝𝛼𝑟, 

(3′) (𝑝𝛼𝑞)𝛽 𝑟 = 𝑝(𝛼𝑞𝛽)𝑟 = 𝑝𝛼(𝑞𝛽𝑟), 

(4′) 𝑝𝛼𝑞 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝, 𝑞𝜖𝑁 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝛼 = 0 

 

Definition 2.2: [16] A fuzzy set 𝜑 in a Γ Ring N is called fuzzy ideal of N if x, y 𝜖 R 

(𝑖) 𝜑(𝑥 − 𝑦) ≥ min{𝜑(𝑥), 𝜑(𝑦)} 

(ii) 𝜑(𝑥𝛼𝑦) ≥ max{𝜑(𝑥), 𝜑(𝑦)} 

 

Definition 2.3: [18] A NF set 𝒜 on the universe of discourse X characterized by a truth membership function 

𝒰𝒜 (x), a indeterminacy function 𝒱𝒜 (x) and a falsity membership function𝒲𝒜(𝑥) is defined as 𝒜= {<x, 𝒰𝒜 

(x),  𝒱𝒜 (x), 𝒲𝒜(𝑥) >: 𝑥𝜖𝑋}, 

Where 𝒰𝒜,𝒱𝒜,𝒲𝒜 : X→ [0,1] and  0≤ 𝒰𝒜 (x)+ 𝒱𝒜 (x)+ 𝒲𝒜(𝑥) ≤3 

 

Definition 2.4: [20] Let X be a non-void set and let 𝒜 =<𝒰𝒜 ,  𝒱𝒜 , 𝒲𝒜 > and ℬ =< 𝒰ℬ ,  𝒱ℬ , 𝒲ℬ > be two 

NS sets in X. Then 

Complement: 𝒞(𝒜) 

               𝒰𝓒(𝓐)(x) = 1 − 𝒰𝒜(x), 𝒱𝓒(𝓐)(x) = 1 − 𝒱𝒜(x)  , 𝒲𝓒(𝓐)(x) = 1 − 𝒲𝒜(x). 

Containment: 𝒜 ⊆ ℬ 

         inf 𝒰𝒜(x)≤ inf 𝒰ℬ(x), sup𝒰𝒜(x) ≤  sup 𝒰ℬ(x),  inf  𝒲𝒜(x) ≥inf  𝒲ℬ(x), sup 𝒲𝒜(x) ≥ sup  𝒲ℬ(x), 

Union:  𝒞 = 𝒜 ∪ ℬ 

               𝒰𝓒(x) = 𝒰𝒜(x) + 𝒰ℬ(x)- 𝒰𝒜(x) ∗ 𝒰ℬ(x), 𝒱𝓒(x) = 𝒱𝒜(x) + 𝒱ℬ(x)- 𝒱𝒜(x) ∗ 𝒱ℬ(x), 

𝒲𝓒(x)= 𝒲𝒜(x) + 𝒲ℬ(x)- 𝒲𝒜(x) ∗ 𝒲ℬ(x), 

Intersection:  𝒞 = 𝒜⋂ ℬ 

              𝒰𝓒(x) = 𝒰𝒜(x) ∗ 𝒰ℬ(x), 𝒱𝓒(x) = 𝒱𝒜(x) ∗ 𝒱ℬ(x), 𝒲𝓒(x) = 𝒲𝒜(x) ∗ 𝒲ℬ(x) for all x in X. 

 

Definition 2.5:  A function 𝜃: 𝐺1 → 𝐺2  where  𝐺1  and 𝐺2   are Γ Rings is said to be a Γ -homomorphism if 

𝜃(𝑝 + 𝑞) = 𝜃(𝑝) + 𝜃(𝑞), 𝜃(𝑝𝛼𝑞) = 𝜃(𝑝)𝛼𝜃(𝑞) for all  𝑝, 𝑞, 𝜖 𝑁, 𝛼𝜖Γ. 

 

Definition 2.6:  A function  𝜃: 𝐺1 → 𝐺2  Where 𝜃 is a Γ -homomorphism and 𝐺1  and 𝐺2 are
 
Γ Rings is said to 

be a  endomorphism if 𝐺2 ⊆ 𝐺1 . 

 

3. NF ideals of  𝚪 Ring: 

Definition 3.1: Let N be a Γ Ring. A NF set 𝒜 in N is said to be NF ideal of N if  
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(i)𝒰𝒜(𝑝 − 𝑞) ≥ {𝒰𝒜(𝑝) ∧ 𝒰𝒜(𝑞)},  𝒱𝒜(𝑝 − 𝑞) ≤ {𝒱𝒜(𝑝) ∨ 𝒱𝒜(𝑞)}, and 

𝒲𝒜(𝑝 − 𝑞) ≤ {𝒲𝒜(𝑝) ∨ 𝒲𝒜(𝑞)} 

(ii)𝒰𝒜(𝑝𝛼𝑞) ≥ 𝒰𝒜(𝑞)[𝑟𝑒𝑠𝑝. 𝒰𝒜(𝑝𝛼𝑞) ≥ 𝒰𝒜(𝑝)],  𝒱𝒜(𝑝𝛼𝑞) ≤ 𝒱𝒜(𝑞)[𝑟𝑒𝑠𝑝. 𝒱𝒜(𝑝𝛼𝑞) ≤  𝒱𝒜(𝑝)], and 

𝒲𝒜(𝑝𝛼𝑞) ≤ 𝒲𝒜(𝑞)[𝑟𝑒𝑠𝑝. 𝒲𝒜(𝑝𝛼𝑞) ≤ 𝒲𝒜(𝑝)] for all p, q 𝜖 𝑁, 𝛼 𝜖 . 

 

Example 3.2: Let N = {0, 1, 2, 3} and 𝛼 = {0, 1, 2, 3} and define N and 𝛼 as follows 

  

 

 

 

   

 

𝒰𝒜(x) = {
0.7    𝑖𝑓 𝑥 = 0
0.8 𝑖𝑓 𝑥 = 1

0.8 𝑖𝑓 𝑥 = 2,3
,  𝒱𝒜(x) = {

0.9 𝑖𝑓 𝑥 = 0
0.7 𝑖𝑓 𝑥 = 1

0.6 𝑖𝑓 𝑥 = 2,3
,  𝒲𝒜(x) = {

0.8 𝑖𝑓 𝑥 = 0
0.5 𝑖𝑓 𝑥 = 1

0.3 𝑖𝑓 𝑥 = 2,3
 

Clearly N is a NF ideal of N. 

 

Definition 3.3: Consider NF ideal 𝜑 =< 𝒰𝜑 , 𝒱𝜑 , 𝒲𝜑 > of a ℾ Ring N is normal if 𝒰𝜑(0) = 1, 𝒱𝜑(0) = 0, 

and 𝒲𝜑(0) = 0. 

 

Theorem 3.4: Let 𝜑 =< 𝒰𝜑 , 𝒱𝜑 , 𝒲𝜑 > be a NF ideal of a ℾ Ring N and let  𝒰𝜑
+(𝑝) = 𝒰𝜑(𝑝) + 1 −

𝒰𝜑(0), 𝒱𝜑
+(𝑃) = 𝒱𝜑(𝑥) − 𝒱𝜑(0)  and  𝒲𝜑

+(𝑝) = 𝒲𝜑(𝑝) − 𝒲𝜑(0).  If   𝒰𝜑
+(𝑝) + 𝒱𝜑

+(𝑃) + 𝒲𝜑
+(𝑝) ≤ 3 for 

all p∈ 𝑁, then  𝜑+ =< 𝒰𝜑
+ , 𝒱𝜑

+, 𝒲𝜑
+ > is a normal NF ideal of N. 

Proof: First of all, let us note that  𝒰𝜑
+(0) = 1, 𝒱𝜑

+(0) = 0 and 𝒲𝜑
+(0) = 0  and 𝒰𝜑

+ , 𝒱𝜑
+, 𝒲𝜑

+ ∈ [0,1] for 

every p∈ 𝑁  so 𝜑+ =< 𝒰𝜑
+ , 𝒱𝜑

+, 𝒲𝜑
+ > is a normal NF set. To prove  𝜑+ is a NF ideal. Let p, 𝑞 ∈ 𝑁  and 𝛼 ∈

Γ then 

𝒰𝜑
+(𝑝 − 𝑞) = 𝒰𝜑(𝑝 − 𝑞) + 1 − 𝒰𝜑(0) 

            ≥ {𝒰𝜑(𝑝) ∧ 𝒰𝜑(𝑞)} + 1 − 𝒰𝜑(0) 

            ={𝒰𝜑(𝑝) + 1 − 𝒰𝜑(0)} ∧ {𝒰𝜑(𝑞) + 1 − 𝒰𝜑(0)} 

            = 𝒰𝜑
+(𝑝) ∧ 𝒰𝜑

+(𝑞) 

 𝒱𝜑
+(𝑝 − 𝑞) = 𝒱𝜑(𝑝 − 𝑞) − 𝒱𝜑(0) 

            ≤ {𝒱𝜑(𝑝) ∨ 𝒱𝜑(𝑞)} − 𝒱𝜑(0) 

            ={𝒱𝜑(𝑝) − 𝒱𝜑(0)} ∨ {𝒱𝜑(𝑞) − 𝒱𝜑(0)} 

            =  𝒱𝜑
+(𝑝)  ∨ 𝒱𝜑

+(𝑞) 

𝒲𝜑
+(𝑝 − 𝑞) = 𝒲𝜑(𝑝 − 𝑞) − 𝒲𝜑(0) 

               ≤ {𝒲𝜑(𝑝) ∨ 𝒲𝜑(𝑞)} − 𝒲𝜑(0) 

              ={𝒲𝜑(𝑝) − 𝒲𝜑(0)} ∨ {𝒲𝜑(𝑞) − 𝒲𝜑(0)} 

             = 𝒲𝜑
+(𝑝)  ∨ 𝒲𝜑

+(𝑞)  and 

𝒰𝜑
+(𝑝α𝑞) = 𝒰𝜑(𝑝α𝑞) + 1 − 𝒰𝜑(0) 

          ≥ 𝒰𝜑(𝑞) + 1 − 𝒰𝜑(0) =  𝒰𝜑
+(𝑞) 

 𝒰𝜑
+(𝑝α𝑞) ≥ 𝒰𝜑

+(𝑞) 

𝒱𝜑
+(𝑝α𝑞) = 𝒱𝜑(𝑝α𝑞) − 𝒱𝜑(0) 

- 0 1 2 3 
 0      0 1 2 3 
1 1 1 3 2 
2 2 3 3 2 
3 3 2 2 2 

𝛼 0 1 2 3 
0 0 1 2 3 
1 1 1 3 2 
2 2 3 3 2 
3 3 2 2 2 
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          ≤ 𝒱𝜑(𝑞) − 𝒱𝜑(0)=𝒱𝜑
+(𝑞) 

𝒱𝜑
+(𝑝α𝑞) ≤ 𝒱𝜑

+(𝑞) 

𝒲𝜑
+(𝑝α𝑞) = 𝒲𝜑(𝑝α𝑞) − 𝒲𝜑(0) 

           ≤ 𝒲𝜑(𝑞) − 𝒲𝜑(0) = 𝒲𝜑
+(𝑞) 

𝒲𝜑
+(𝑝α𝑞) ≤ 𝒲𝜑

+(𝑞) 

Hence 𝜑+ is a NF ideal of a Γ Ring N. 

 

Definition 3.5: Let 𝑋 =< 𝒰𝑋 , 𝒱𝑋 , 𝒲𝑋 >  and 𝑌 =< 𝒰𝑌 , 𝒱𝑌 , 𝒲𝑌 > be two NF subsets of a  Ring N. Then 

the Neutrosophic sum of X and Y is 𝑋⨁𝑌 =< 𝒰𝑋⨁𝑌 , 𝒱𝑋⨁𝑌 , 𝒲𝑋⨁𝑌 > 
 
in N given by  

 
 

𝒰𝑋⨁𝑌(𝑃) = {
⋁ {𝒰𝑋(𝑞) Ù 𝒰𝑌(𝑟)}    𝑖𝑓 𝑝 = 𝑞 + 𝑟

𝑝=𝑞+𝑟

,

 0                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒱𝑋⨁𝑌(𝑃) = {
⋀ {𝒱𝑋(𝑞) Ú 𝒱𝑋(𝑟)}    𝑖𝑓 𝑝 = 𝑞 + 𝑟

𝑝=𝑞+𝑟

,

  1                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒲𝑋⨁𝑌(𝑃) = { 
⋀ {𝒲𝑋(𝑞) Ú 𝒲𝑌(𝑟)}    𝑖𝑓 𝑝 = 𝑞 + 𝑟,

𝑝=𝑞+𝑟

1                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Theorem 3.6: If 𝑋 =< 𝒰𝑋 , 𝒱𝑋 , 𝒲𝑋 >  and 𝑌 =< 𝒰𝑌 , 𝒱𝑌 , 𝒲𝑌 > be two NF subsets of a  Ring N then the  

Neutrosophic sum 𝑋⨁𝑌 =< 𝒰𝑋⨁𝑌 , 𝒱𝑋⨁𝑌 , 𝒲𝑋⨁𝑌 > is a NF ideal of    Ring. 
Proof: For any p, 𝑞 ∈ 𝑁 , 𝑤𝑒 ℎ𝑎𝑣𝑒 

𝒰𝑋⨁𝑌(𝑝)Ù𝒰𝑋⨁𝑌(𝑞)   = Ú {𝒰𝑋(𝑥) Ù  𝒰𝑌(𝑦): 𝑝 = 𝑥 + 𝑦} Ù Ú {𝒰𝑋(𝑐)Ù 𝒰𝑌(𝑑): 𝑞 = 𝑐 + 𝑑} 

                                      = Ú {(𝒰𝑋(𝑥)Ù𝒰𝑌(𝑦))Ù(𝒰𝑋(𝑐)Ù𝒰𝑌(𝑑)): 𝑝 = 𝑥 + 𝑦, 𝑞 = 𝑐 + 𝑑} 
                                       = Ú{(𝒰𝑋(𝑥)Ù𝒰𝑌(𝑦))Ù(𝒰𝑋(−𝑐)Ù𝒰𝑌(−𝑑)): 𝑝 = 𝑥 + 𝑦, 𝑞 = −𝑐 − 𝑑} 

                                       =Ú {(𝒰𝑋(𝑥)Ù𝒰𝑋(−𝑐))Ù(𝒰𝑌(𝑦)Ù𝒰𝑌(−𝑑)): 𝑝 = 𝑥 + 𝑦, 𝑞 = −𝑐 − 𝑑} 

                                       ≤Ú {(𝒰𝑋(𝑥 − 𝑐)Ù𝒰𝑌(𝑦 − 𝑑)): 𝑝 − 𝑞 = {(𝑥 − 𝑐) + (𝑦 − 𝑑)} 
                                      = 𝒰𝑋⨁𝑌(𝑝 − 𝑞) 

𝒰𝑋⨁𝑌(𝑝)Ù𝒰𝑋⨁𝑌(𝑞) ≤ 𝒰𝑋⨁𝑌(𝑝 − 𝑞) 

𝒱𝑋⨁𝑌(𝑝)Ú𝒱𝑋⨁𝑌(𝑞)= Ù  {𝒱𝑋(𝑥) Ú 𝒱𝑌(𝑦): 𝑝 = 𝑥 + 𝑦}ÚÙ{𝒱𝑋(𝑐)Ú𝒱𝑌(𝑑): 𝑞 = 𝑐 + 𝑑} 

                              = Ù  {(𝒱𝑋(𝑥) Ú𝒱𝑌(𝑦))Ú(𝒱𝑋(𝑐)Ú𝒱𝑌(𝑑)): 𝑝 = 𝑥 + 𝑦, 𝑞 = 𝑐 + 𝑑} 

                              = Ù  {(𝒱𝑋(𝑥)Ú𝒱𝑌(𝑦))Ú(𝒱𝑋(−𝑐)Ú𝒱𝑌(−𝑑)): 𝑝 = 𝑥 + 𝑦, 𝑞 = −𝑐 − 𝑑} 

                              = Ù  {(𝒱𝑋(𝑥)Ú𝒱𝑋 (−𝑐))Ú(𝒱𝑌(𝑦)Ú𝒱𝑌(−𝑑)): 𝑝 = 𝑥 + 𝑦, 𝑞 = −𝑐 − 𝑑} 

                              ≥  Ù{(𝒱𝑋(𝑥 − 𝑐)Ú𝒱𝑌(𝑦 − 𝑑)): 𝑝 − 𝑞 = (𝑥 − 𝑐) + (𝑦 − 𝑑)} 

                              =𝒱𝑋⨁𝑌(𝑝 − 𝑞) 

𝒱𝑋⨁𝑌(𝑝)Ú𝒱𝑋⨁𝑌(𝑞)  ≥ 𝒱𝑋⨁𝑌(𝑝 − 𝑞) 
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𝒲𝑋⨁𝑌(𝑝)Ú𝒲𝑋⨁𝑌(𝑞)= Ù{𝒲𝑋(𝑥)Ú𝒲𝑌(𝑦): 𝑝 = 𝑥 + 𝑦}ÚÙ {𝒲𝑋(𝑐)Ú𝒲𝑌(𝑑): 𝑞 = 𝑐 + 𝑑} 

                                  = Ù {(𝒲𝑋(𝑥)Ú𝒲(𝑦))Ú(𝒲𝑋(𝑐)Ú𝒲(𝑑)): 𝑝 = 𝑥 + 𝑦, 𝑞 = 𝑐 + 𝑑} 

                                  = Ù{(𝒲𝑋(𝑥)Ú𝒲𝑌(𝑦))Ú(𝒲𝑋(−𝑐)Ú𝒲𝑌(−𝑑)): 𝑝 = 𝑥 + 𝑦, 𝑞 = −𝑐 − 𝑑} 

                                  = Ù(𝒲𝑋(𝑥)Ú𝒲𝑋(−𝑐))Ú(𝒲𝑌(𝑦)Ú𝒲𝑌(−𝑑)): 𝑝 = 𝑥 + 𝑦, 𝑞 = −𝑐 − 𝑑} 

                                  ≥  Ù{(𝒲𝑋(𝑥 − 𝑐)Ú𝒲𝑌(𝑌 − 𝑑)): 𝑝 − 𝑞 = {(𝑥 − 𝑐) + (𝑦 − 𝑑)} 

                                  = 𝒲𝑋⨁𝑌(𝑝 − 𝑞) 

𝒲𝑋⨁𝑌(𝑝)Ú𝒲𝑋⨁𝑌(𝑞)  ≥ 𝒲𝑋⨁𝑌(𝑝 − 𝑞) 

𝒰𝑋⨁𝑌(𝑝) =Ú {𝒰𝑋(𝑥)Ù𝒰𝑌(𝑦): 𝑝 = 𝑥 + 𝑦}  

               ≤Ú{𝒰𝑋(𝑥𝛼𝑞)Ù𝒰𝑌(𝑌𝛼𝑞): 𝑝𝛼𝑞 = 𝑥𝛼𝑞 + 𝑌𝛼𝑞} 

               =Ú {𝒰𝑋(𝑈)Ù𝒰𝑌(𝑉): 𝑝𝛼𝑞 = 𝑈 + 𝑉} 

              = 𝒰𝑋⨁𝑌(𝑝𝛼𝑞) 

𝒰𝑋⨁𝑌(𝑝𝛼𝑞) ≥ 𝒰𝑋⨁𝑌(𝑝) 

𝒱𝑋⨁𝑌(𝑝) =Ù {𝒱𝑋(𝑥)Ú𝒱𝑌(𝑦): 𝑝 = 𝑥 + 𝑦}  

                ≥Ù{𝒱𝑋(𝑥𝛼𝑞)Ú𝒱𝑌(𝑌𝛼𝑞): 𝑝𝛼𝑞 = 𝑥𝛼𝑞 + 𝑌𝛼𝑞} 

               =Ù {𝒱𝑋(𝑈)Ú𝒱𝑌(𝑉): 𝑝𝛼𝑞 = 𝑈 + 𝑉}=𝒱𝑋⨁𝑌(𝑝𝛼𝑞) 

𝒱𝑋⨁𝑌(𝑝𝛼𝑞) ≤ 𝒱𝑋⨁𝑌(𝑝) 

𝒲(𝑝) =Ù{𝒲𝑋 (𝑥)Ú𝒲(𝑦): 𝑝 = 𝑥 + 𝑦}  

            ≥Ù{𝒲𝑋 (𝑥𝛼𝑞)Ú𝒲𝑌(𝑌𝛼𝑞): 𝑝𝛼𝑞 = 𝑥𝛼𝑞 + 𝑌𝛼𝑞} 

            = Ù {𝒲𝑋(𝑈)Ú𝒲𝑌(𝑉): 𝑝𝛼𝑞 = 𝑈 + 𝑉} =𝒲𝑋⨁𝑌(𝑝𝛼𝑞) 

𝒲𝑋⨁𝑌(𝑝𝛼𝑞) ≤ 𝒲𝑋⨁𝑌(𝑝) 

We conclude that  𝑋⨁𝑌 is a NF ideal of N. 

 

Definition 3.7: Suppose that 𝑋 =< 𝒰𝑋 , 𝒱𝑋 , 𝒲𝑋 >  and 𝑌 =< 𝒰𝑌 , 𝒱𝑌 , 𝒲𝑌 > be two NF subsets of a  Ring 

N. Then 𝑋 ∘ 𝑌 =< 𝒰𝑋∘𝑌 , 𝒱𝑋∘𝑌 , 𝒲𝑋∘𝑌 > 
 
in N given by   

𝒰 𝑋∘𝑌(𝑝) = ⋁ { ⋀ {𝒰𝑋(𝑥𝑖)Ù𝒰𝑌(𝑦𝑖)}: 𝑝 =

k

1
 𝑥𝑖𝛼𝑦𝑖 , 𝑥𝑖𝑦𝑖𝜖𝑁, 𝛼𝜖Γ, 𝑘𝜖𝑍+,

1≤𝑖≤𝑘

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                 

 

𝒱𝑋∘𝑌(𝑝) = ⋀ { ⋁ {𝒱𝑋 (𝑥𝑖)Ú𝒱𝑌(𝑦𝑖)}: 𝑝 =

k

1
 𝑥𝑖𝛼𝑦𝑖 , 𝑥𝑖𝑦𝑖𝜖𝑁, 𝛼𝜖Γ, 𝑘𝜖𝑍+

1≤𝑖≤𝑘

    1                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 

𝒲𝑋∘𝑌(𝑝) = ⋀ { ⋁ {𝒲𝑋 (𝑥𝑖)Ú𝒲𝑌(𝑦𝑖)}: 𝑝 =

k

1
 𝑥𝑖𝛼𝑦𝑖 , 𝑥𝑖𝑦𝑖𝜖𝑁, 𝛼𝜖Γ, 𝑘𝜖𝑍+

1≤𝑖≤𝑘

    1                                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 

 

Theorem 3.8: If =< 𝒰𝑋 , 𝒱𝑋 , 𝒲𝑋 >  and 𝑌 =< 𝒰𝑌 , 𝒱𝑌 , 𝒲𝑌 > be two NF subsets of a  Ring N then the 

composition 𝑋 ∘ 𝑌 =< 𝒰𝑋∘𝑌 , 𝒱𝑋∘𝑌 , 𝒲𝑋∘𝑌 > is a NF ideal of N. 

Proof: For any  𝑝, 𝑞 ∈ 𝑁 we have  
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𝒰𝑋∘𝑌(𝑝 − 𝑞) =Ú{⋀ 𝒰𝑋(𝑢𝑖)Ù𝒰𝑌(𝑣𝑖): 𝑝 − 𝑞1≤𝑖≤𝑘 =

k

1
 𝑢𝑖𝛼𝑣𝑖 , 𝑢𝑖 , 𝑣𝑖𝜖𝑁, 𝛼𝜖Γ, 𝑘𝜖𝑍+}     ≥

Ú{(⋀ 𝒰𝑋(𝑥𝑖)Ù1≤𝑖≤𝑚 𝒰𝑌(𝑦𝑖))Ù(⋀ 𝒰𝑋(−𝑐𝑖)Ù1≤𝑖≤𝑛 𝒰𝑌(𝑑𝑖)) 

                      : 𝑝 =

m

1
 𝑥𝑖𝛼𝑦𝑖 , −𝑞 =

n

1
 − 𝑐𝑖𝛼𝑑𝑖 , 𝑥𝑖 , 𝑦, −𝑐𝑖 , 𝑑𝑖𝜖𝑁, 𝛼𝜖Γ 𝑎𝑛𝑑 𝑚. 𝑛𝜖𝑍+} 

 

=Ú{( ⋀ 𝒰𝑋(𝑥𝑖)Ù
1≤𝑖≤𝑚

𝒰𝑌(𝑦𝑖))Ù( ⋀ 𝒰𝑋(−𝑐𝑖)Ù
1≤𝑖≤𝑛

𝒰𝑌(𝑑𝑖)) 

: 𝑝 =

m

1
 𝑥𝑖𝛼𝑦𝑖 , 𝑞 =

n

1
 𝑐𝑖𝛼𝑑𝑖 , 𝑥𝑖 , 𝑦, −𝑐𝑖 , 𝑑𝑖𝜖𝑁, 𝛼𝜖Γ 𝑎𝑛𝑑 𝑚. 𝑛𝜖𝑍+} 

=Ú{ ⋀ 𝒰𝑋(𝑥𝑖)Ù
1≤𝑖≤𝑚

𝒰𝑌(𝑦𝑖): 𝑝 =

m

1
 𝑥𝑖𝛼𝑦𝑖𝑥𝑖 , 𝑦𝑖𝜖𝑁, 𝛼𝜖Γ 𝑎𝑛𝑑 𝑚𝜖𝑍+}Ù 

     Ú { ⋀ 𝒰𝑋(𝑐𝑖)Ù
1≤𝑖≤𝑚

𝒰𝑌(𝑑𝑖): 𝑞 =
n

1
 𝑐𝑖𝛼𝑑𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑐𝑖 , 𝑑𝑖𝜖𝑁, 𝛼𝜖Γ 𝑎𝑛𝑑 𝑛𝜖𝑍+} 

 

𝒰𝑋∘𝑌(𝑝 − 𝑞) ≥ 𝒰𝑋∘𝑌(𝑝)Ù𝒰𝑋∘𝑌(𝑞) 

𝒱𝑋∘𝑌(𝑝 − 𝑞) =Ù{ ⋁ 𝒱𝑋 (𝑢𝑖)Ú𝒱𝑌(𝑣𝑖) ∶ 𝑝 − 𝑞 =

k

1
 𝑢𝑖𝛼𝑣𝑖 , 𝑢𝑖 , 𝑣𝑖𝜖𝑁, 𝛼𝜖Γ, 𝑘𝜖𝑍+}

1≤𝑖≤𝑘

 

 

≤Ù{( ⋁ {(𝒱𝑋(𝑥𝑖)Ú𝒱𝑌(𝑦𝑖))Ú(
1≤𝑖≤𝑘

⋁ (𝒱𝑋 (−𝑐𝑖)Ú𝒱𝑌(𝑑𝑖))
1≤𝑖≤𝑛

 

     : 𝑝 =

m

1
 𝑥𝑖𝛼𝑦𝑖, -q =

n

1


 
ciαdi, 𝑥𝑖 , 𝑦𝑖,ci ,diN,  and m, n 𝑍+} 

 

=Ù{( ⋁ {(𝒱𝑋(𝑥𝑖)Ú𝒱𝑌(𝑦𝑖))Ú(
1≤𝑖≤𝑘

⋁ (𝒱𝑋 (𝑐𝑖)Ú𝒱𝑌(𝑑𝑖))
1≤𝑖≤𝑛

 

 

              : 𝑝 =

m

1
 𝑥𝑖𝛼𝑦𝑖,, q =

n

1
 ciαdi, 𝑥𝑖 , 𝑦𝑖,ci ,diN,  and m, n 𝑍+} 

=Ù{ ⋁ {(𝒱𝑋(𝑥𝑖)Ú𝒱𝑌(𝑦𝑖))}: 𝑝 =

m

1
 𝑥𝑖𝛼𝑦𝑖 , 𝑥𝑖 , 𝑦𝑖 , ci , diN, and m 𝑍+}ÚÙ

1≤𝑖≤𝑘

 

 

{ ⋁ {𝒱𝑋(𝑐𝑖)Ú𝒱𝑦(𝑑𝑖)}: q =

n

1
 ciαdi, ci , di and m, n 𝑍+}.

1≤𝑖≤𝑚

 

 

 =𝒱𝑋∘𝑌(𝑝)Ú𝒱𝑋∘𝑌(𝑞) 
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𝒱𝑋∘𝑌(𝑝 − 𝑞) ≤ 𝒱𝑋∘𝑌(𝑝)Ú𝒱𝑋∘𝑌(𝑞) 

𝒲𝑋∘𝑌(𝑝 − 𝑞) =Ù{ ⋁ 𝒲𝑋 (𝑢𝑖)Ú𝒲𝑌(𝑣𝑖) ∶ 𝑝 − 𝑞 =
k

1
 𝑢𝑖𝛼𝑣𝑖 , 𝑢𝑖 , 𝑣𝑖𝜖𝑁, 𝛼𝜖Γ, 𝑘𝜖𝑍+}

1≤𝑖≤𝑘

 

 

≤Ù{ ⋁ {(𝒲𝑋(𝑥𝑖)Ú𝒲𝑌(𝑦𝑖))Ú(
1≤𝑖≤𝑘

⋁ (𝒲𝑋 (−𝑐𝑖)Ú𝒲𝑌(𝑑𝑖))
1≤𝑖≤𝑛

 

 

                 : 𝑝 =

m

1
 𝑥𝑖𝛼𝑦𝑖, -q =

n

1


 
ciαdi, 𝑥𝑖 , 𝑦𝑖,ci ,di N,   and m, n 𝑍+} 

 

=Ù{ ⋁ {(𝒲𝑋(𝑥𝑖)Ú𝒲𝑌(𝑦𝑖))}Ú( ⋁ (𝒲𝑋 (𝑐𝑖)Ú𝒲𝑌(𝑑𝑖))
1≤𝑖≤𝑛1≤𝑖≤𝑘

) 

 

             : 𝑝 =

m

1
 𝑥𝑖𝛼𝑦𝑖, q =

n

1
 ciαdi, 𝑥𝑖 , 𝑦𝑖,ci ,di and m, n 𝑍+} 

=Ù{ ⋁ {(𝒲𝑋(𝑥𝑖)Ú𝒲𝑌(𝑦𝑖))}: p =  

m

1
 𝑥𝑖𝛼𝑦𝑖 , 𝑥𝑖 , 𝑦𝑖  , ci , di N, and m, n 𝑍+}ÚÙ

1≤𝑖≤𝑘

 

{ ⋁ {𝒲𝑋(𝑐𝑖)Ú𝒲𝑦(𝑑𝑖)}: q =

n

1
 ciαdi, 𝑥𝑖 , 𝑦𝑖 , ci , diN, and m, n 𝑍+}.

1≤𝑖≤𝑚

 

=𝒲𝑋∘𝑌(𝑝)Ú𝒲𝑋∘𝑌(𝑞)  

𝒲𝑋∘𝑌(𝑝 − 𝑞) ≤ 𝒲𝑋∘𝑌(𝑝)Ú𝒲𝑋∘𝑌(𝑞) 

𝒰𝑋∘𝑌(𝑝) =Ú{( ⋀ 𝒰𝑋(𝑥𝑖)Ù
1≤𝑖≤𝑚

𝒰𝑌(𝑦𝑖)) : 𝑝 =

m

1
 𝑥𝑖𝛼𝑦𝑖𝑥𝑖 , 𝑦𝑖𝜖𝑁, 𝛼𝜖Γ 𝑎𝑛𝑑 𝑚𝜖𝑍+} 

≤Ú{( ⋀ 𝒰𝑋(𝑥𝑖)Ù
1≤𝑖≤𝑚

𝒰𝑌(𝑦𝑖𝛼𝑞)) : 𝑝𝛼𝑞 =

m

1
 𝑥𝑖𝛼(𝑦𝑖𝛼𝑞)𝑥𝑖 , 𝑦𝑖𝛼𝑞𝜖𝑁, 𝛼𝜖Γ 𝑎𝑛𝑑 𝑚𝜖𝑍+} 

=Ú{(⋀ 𝒰(𝑢𝑖)Ù1≤𝑖≤𝑚 𝒰𝑌(𝑣𝑖)) : 𝑝𝛼𝑞 =

m

1
 𝑢𝑖𝛼𝑣𝑖 , 𝑢𝑖 , 𝑣𝑖𝜖𝑁, 𝛼𝜖Γ 𝑎𝑛𝑑 𝑚𝜖𝑍+} = 𝒰𝑋∘𝑌(𝑝𝛼𝑞) . 

𝒰𝑋∘𝑌(𝑝) ≤ 𝒰𝑋∘𝑌(𝑝𝛼𝑞) and similiarly we get 𝒰𝑋∘𝑌(𝑞) ≤ 𝒰𝑋∘𝑌(𝑝𝛼𝑞) 

𝒱𝑋∘𝑌(𝑝) =Ù{ ⋁ {𝒱𝑋 (𝑥𝑖)Ú𝒱𝑌(𝑦𝑖)}: 𝑝 =
m

1
 𝑥𝑖𝛼𝑦𝑖 , 𝑥𝑖 , 𝑦𝑖𝜖𝑁, 𝛼𝜖Γ, 𝑘𝜖𝑍+}

1≤𝑖≤𝑚

 

≥Ù{ ⋁ {(𝒱𝑋(𝑥𝑖)Ú𝒱𝑌(𝑦𝑖𝛼𝑞 ))}:
1≤𝑖≤𝑚

 𝑝𝛼𝑞 =
m

1
 𝑥𝑖𝛼(𝑦𝑖𝛼𝑞)𝑥𝑖 , 𝑦𝑖𝛼𝑞𝜖𝑁, 𝛼𝜖Γ 𝑎𝑛𝑑 𝑚𝜖𝑍+} 

=Ù{ ⋁ {(𝒱𝑋(𝑢𝑖)Ú𝒱𝑌(𝑣𝑖))}

1≤𝑖≤𝑚

  

                               ∶ 𝑝𝛼𝑞 =
m

1
 𝑢𝑖𝛼𝑣𝑖 ,  𝑢𝑖 , 𝑣𝑖𝜖𝑀, 𝛼𝜖Γ 𝑎𝑛𝑑 𝑚𝜖𝑍+} =𝒱𝑋∘𝑌(𝑝q) 
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𝒱𝑋∘𝑌(𝑝) ≥ 𝒱𝑋∘𝑌(𝑝𝛼𝑞)  and similiarly we get      𝒱𝑋∘𝑌(𝑞) ≥ 𝒱𝑋∘𝑌(𝑝𝛼𝑞) 

𝒲𝑋∘𝑌(𝑝) =Ù{ ⋁ {𝒲𝑋 (𝑥𝑖)Ú𝒲𝑌(𝑦𝑖)}: 𝑝 =
m

1
 𝑥𝑖𝛼𝑦𝑖 , 𝑥𝑖 , 𝑦𝑖𝜖𝑁, 𝛼𝜖Γ, 𝑘𝜖𝑍+}

1≤𝑖≤𝑚

 

≥Ù{ ⋁ {(𝒲𝑋(𝑥𝑖)Ú𝒲𝑌(𝑦𝑖𝛼𝑞))}:
1≤𝑖≤𝑚

 𝑝𝛼𝑞 =
m

1
 𝑥𝑖𝛼(𝑦𝑖𝛼𝑞)𝑥𝑖 , 𝑦𝑖𝛼𝑞𝜖𝑁, 𝛼𝜖Γ 𝑎𝑛𝑑 𝑚𝜖𝑍+} 

=  Ù{ ⋁ {(𝒲𝑋(𝑢𝑖)Ú𝒲𝑌(𝑣𝑖))}:
1≤𝑖≤𝑚

  

                         ∶ 𝑝𝛼𝑞 =
m

1
 𝑢𝑖𝛼𝑣𝑖 ,  𝑢𝑖 , 𝑣𝑖𝜖𝑁, 𝛼𝜖Γ 𝑎𝑛𝑑 𝑚𝜖𝑍+}=𝒲𝑋∘𝑌(𝑝q) 

𝒲𝑋∘𝑌(𝑝) ≥ 𝒲𝑋∘𝑌(𝑝𝛼𝑞) and similiarly we get  𝒲𝑋∘𝑌(𝑝) ≥ 𝒲𝑋∘𝑌(𝑝𝛼𝑞) 

Therefore 𝑋 ∘ 𝑌 is a NF ideal of N. 

 

Definition 3.9: If { 𝜑𝑖} 𝑖𝜖𝑗 be an arbitrary family of NF set in X, where  𝜑𝑖 = 〈⋀𝒰𝜂𝑖
,∨ 𝒱𝜂𝑖

,∨ 𝒲𝜂𝑖
, 〉 for each  

𝑖 ∈ 𝐽. The 

(𝑖)⋂𝜑𝑖 = 〈⋀𝒰𝜂𝑖
,∨ 𝒱𝜂𝑖

,∨ 𝒲𝜂𝑖
〉    (𝑖𝑖)⋃𝜑𝑖 = 〈∨ 𝒰𝜂𝑖

,∧ 𝒱𝜂𝑖
,∧ 𝒲𝜂𝑖

〉 

 

Theorem 3.10: 𝐼𝑓  { 𝜑𝑖} 𝑖𝜖𝑗 be an arbitrary family of NF set in N, then ⋃𝜑𝑖 = 〈∨ 𝒰𝜑𝑖
,∧ 𝒱𝜑𝑖

,∧ 𝒲𝜑𝑖
〉 is a NF  

ideal of N. 

Proof: Let  𝑝, 𝑞 ∈ 𝑁 and  𝛼𝜖 Γ then  

 (⋃ 𝒰𝜑𝑖𝑖∈𝐽 ) (p - q) = ⋁ 𝒰𝜑𝑖
(𝑝 − 𝑞)𝑖∈𝐽  

                              ≥ ⋁ (𝑖∈𝐽 𝒰𝜑𝑖
(𝑝)⋀𝒰𝜑𝑖

(𝑞))= ⋁ (𝑖∈𝐽 𝒰𝜑𝑖
(𝑝)) ∧ ⋁ (𝑖∈𝐽 𝒰𝜑𝑖

(𝑞)) 

               =(⋃ 𝒰𝜑𝑖𝑖∈𝐽 )(𝑝) ⋀(⋃ 𝒰𝜑𝑖𝑖∈𝐽 )(𝑞)  

(⋃ 𝒱𝜑𝑖𝑖∈𝐽 ) (p - q) = ⋀ 𝒱𝜑𝑖
(𝑝 − 𝑞)𝑖∈𝐽  

            ≤ ⋀ (𝒱𝜑𝑖
(𝑝) ∨ 𝒱𝜑𝑖

(𝑞))𝑖∈𝐽 =(⋀ 𝒱𝜑𝑖𝑖∈𝐽 )(𝑝)  ∨ (⋀ 𝒱𝜑𝑖𝑖∈𝐽 )(𝑞)  

             =(⋃ 𝒱𝜑𝑖𝑖∈𝐽 )(𝑝)  ∨ (⋃ 𝒱𝜑𝑖𝑖∈𝐽 )(𝑞)  

(⋃ 𝒲𝜑𝑖𝑖∈𝐽 ) (p - q) = ⋀ 𝒲𝜑𝑖
(𝑝 − 𝑞)𝑖∈𝐽  

               ≤ ⋀ (𝒲𝜑𝑖
(𝑝) ∨ 𝒲𝜑𝑖

(𝑞))𝑖∈𝐽 =(⋀ 𝒲𝜑𝑖𝑖∈𝐽 )(𝑝)  ∨ (⋀ 𝒲𝜑𝑖𝑖∈𝐽 )(𝑞)  

               =(⋃ 𝒲𝜑𝑖𝑖∈𝐽 )(𝑝)  ∨ (⋃ 𝒲𝜑𝑖𝑖∈𝐽 )(𝑞)  

Also (⋃ 𝒰𝜑𝑖𝑖∈𝐽 ) (p α q) = ⋁ 𝒰𝜑𝑖
(𝑝α𝑞) ≥ ⋁ 𝒰𝜑𝑖

(𝑞)𝑖∈𝐽𝑖∈𝐽 =(⋃ 𝒰𝜑𝑖𝑖∈𝐽 )(𝑞) 

(⋃ 𝒱𝜑𝑖𝑖∈𝐽 ) (p α q) = ⋀ 𝒱𝜑𝑖
(𝑝 α𝑞)𝑖∈𝐽 ≤ ⋀ 𝒱𝜑𝑖𝑖∈𝐽 (q)= (⋃ 𝒱𝜑𝑖𝑖∈𝐽 )(𝑞) 

(⋃ 𝒲𝜑𝑖𝑖∈𝐽 ) (p α q) = ⋀ 𝒲𝜑𝑖
(𝑝 α𝑞)𝑖∈𝐽 ≤ ⋀ 𝒲𝜑𝑖𝑖∈𝐽 (q)= (⋃ 𝒲𝜑𝑖𝑖∈𝐽 )(𝑞) 

Similiarly for right ideals 

(⋃ 𝒰𝜑𝑖𝑖∈𝐽  ) (p α q) = ⋁ 𝒰𝜑𝑖
(𝑝α𝑞) ≥ ⋁ 𝒰𝜑𝑖

(𝑝)𝑖∈𝐽𝑖∈𝐽 =(⋃ 𝒰𝜑𝑖𝑖∈𝐽 )(𝑝) 

(⋃ 𝒱𝜑𝑖𝑖∈𝐽 ) (p α q) = ⋀ 𝒱𝜑𝑖
(𝑝 α𝑞)𝑖∈𝐽 ≤ ⋀ 𝒱𝜑𝑖𝑖∈𝐽 (p)= (⋃ 𝒱𝜑𝑖𝑖∈𝐽 )(𝑝) 

(⋃ 𝒲𝜑𝑖𝑖∈𝐽 ) (p α q) = ⋀ 𝒲𝜑𝑖
(𝑝 α𝑞)𝑖∈𝐽 ≤ ⋀ 𝒲𝜑𝑖𝑖∈𝐽 (p)= (⋃ 𝒲𝜑𝑖𝑖∈𝐽 )(𝑝) 

Hence⋃ 𝜑𝑖𝑖∈𝐽  is a NF ideal of N. 

 

Definition 3.11: Let 𝑋 =< 𝒰𝑋 , 𝒱𝑋 , 𝒲𝑋 >  and 𝑌 =< 𝒰𝑌 , 𝒱𝑌 , 𝒲𝑌 > be two NF subsets of a  Ring N then the 

product of of X and Y is 𝑋Γ𝑌 =< 𝒰𝑋Γ𝑌 , 𝒱𝑋Γ𝑌 , 𝒲𝑋Γ𝑌 > 
 
in N given by   
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𝒰𝑋Γ𝑌(𝑃) = {
⋁ {𝒰𝑋(𝑞)Ù𝒰𝑌(𝑟)}    𝑖𝑓 𝑝 = 𝑞𝛼𝑟

𝑝=𝑞𝛼𝑟

0                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒱𝑋Γ𝑌(𝑃) = {
⋀ {𝒱𝑋 (𝑞)Ú𝒱𝑌(𝑟)}

𝑝=𝑞𝛼𝑟

     𝑖𝑓 𝑝 = 𝑞𝛼𝑟

1                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒲𝑋Γ𝑌(𝑃) = {
⋀ {𝒲𝑋(𝑞)Ú𝒲𝑌(𝑟)}

𝑝=𝑞𝛼𝑟

     𝑖𝑓 𝑝 = 𝑞𝛼𝑟

1                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Theorem 3.12: Assume that 𝑋 =< 𝒰𝑋 , 𝒱𝑋 , 𝒲𝑋 >  and 𝑌 =< 𝒰𝑌 , 𝒱𝑌 , 𝒲𝑌 > be NF subsets of a  Ring N 

then 𝑋 ∩ 𝑌 is a NF left (resp. right) ideal of N. If X is a NF left ideal and Y is a NF right ideal                     

then 𝑋Γ𝑌 ⊆ 𝑋 ∩ 𝑌 

Proof: Suppose X and Y are Neutrosophic contained in M and let 𝑝, 𝑞 ∈ 𝑁, 𝛼 ∈ Γ. 

𝒰𝑋⋂𝑌(𝑝 − 𝑞) = 𝒰𝑋⋂𝑌(𝑝) ∧ 𝒰𝑋⋂𝑌(𝑞) 

             ≥ [{𝒰𝑋(𝑝) ∧ 𝒰𝑋(q)} { 𝒰𝑌(𝑝) ∧ 𝒰𝑌(𝑞)}] 

              = [𝒰𝑋(𝑝) ∧ 𝒰𝑌(𝑝)] ∧ [𝒰𝑋(q) ∧ 𝒰𝑌(𝑞)] 

              = 𝒰𝑋⋂𝑌(𝑝)  ∧ 𝒰𝑋⋂𝑌(𝑞) 

𝒱𝑋⋂𝑌(𝑝 − 𝑞) = 𝒱𝑋⋂𝑌(𝑝) ∨ 𝒱𝑋⋂𝑌(𝑞) 

             ≤ [{𝒱𝑋(𝑝) ∨ 𝒱𝑋(q)} { 𝒱(𝑝) ∨ 𝒱𝑌(𝑞)}] 

              = [𝒱𝑋(𝑝) ∨ 𝒱𝑌(𝑝)] ∧ [𝒱𝑋(q)∨ 𝒱𝑌(𝑞)] 

              = 𝒱𝑋⋂𝑌(𝑝)  ∨ 𝒱𝑋⋂𝑌(𝑞) 

𝒲𝑋⋂𝑌(𝑝 − 𝑞) = 𝒲𝑋⋂𝑌(𝑝) ∨ 𝒲𝑋⋂𝑌(𝑞) 

              ≤ [{𝒲𝑋(𝑝) ∨ 𝒲𝑋(q)} { 𝒲(𝑝) ∨ 𝒲𝑌(𝑞)}] 

               = [𝒲𝑋(𝑝) ∨ 𝒲𝑌(𝑝)] ∧ [𝒲𝑋(q)∨ 𝒲𝑌(𝑞)] 

               = 𝒲𝑋⋂𝑌(𝑝)  ∨ 𝒲𝑋⋂𝑌(𝑞) 

𝒰𝑋(𝑝𝛼𝑞)  ≥ 𝒰𝑋(q), 𝒱𝑋(𝑝𝛼𝑞)  ≤ 𝒱𝑋(q), and 𝒲𝑋(𝑝𝛼𝑞)  ≤ 𝒲𝑋(q), 

𝒰𝑌(𝑝𝛼𝑞)  ≥ 𝒰𝑌(q), 𝒱𝑌(𝑝𝛼𝑞)  ≤ 𝒱𝑌(q), and 𝒲𝑌(𝑝𝛼𝑞)  ≤ 𝒲𝑌(q), 

Clearly X and Y are NF ideal of N, we have, 

Now, 

𝒰𝑋⋂𝑌(𝑝𝛼𝑞)= 𝒰𝑋(𝑝𝛼𝑞) ∧ 𝒰𝑌(𝑝𝛼𝑞) 

            ≥ 𝒰𝑋(q) ∧ 𝒰𝑌(q) =𝒰𝑋⋂𝑌(q)  

𝒱𝑋⋂𝑌(𝑝𝛼𝑞)= 𝒱𝑋(𝑝𝛼𝑞) ∨ 𝒱𝑌(𝑝𝛼𝑞 

            ≤ 𝒱𝑋(q) ∨ 𝒱𝑌(q) =𝒱𝑋⋂𝑌(𝑝𝛼𝑞) 

 𝒲𝑋⋂𝑌(𝑝𝛼𝑞)= 𝒲𝑋(𝑝𝛼𝑞) ∨ 𝒲𝑌(𝑝𝛼𝑞) 

            ≤ 𝒲𝑋(q) ∨ 𝒲𝑌(q) =𝒲𝑋⋂𝑌(q)  

Therefore 𝑋⋂𝑌  is a NF ideal of N. 

To Prove 𝒰𝑋Γ𝑌(p) =0 and 𝒱𝑋Γ𝑌(p)=1, 𝒲𝑋Γ𝑌(p)=1. 

Suppose 𝑋Γ𝑌(p) ≠ (0,1) 

The definition of 𝑋Γ𝑌, 

𝒰𝑋(𝑝) =  𝒰𝑋(𝑞𝛼𝑟) ≥  𝒰𝑋(𝑞) ,𝒱𝑋(𝑝) =  𝒱𝑋(𝑞𝛼𝑟) ≤ 𝒱𝑋(𝑞)and 𝒲𝑋(𝑝) =  𝒲𝑋(𝑞𝛼𝑟) ≤ 𝒲𝑋(𝑞) 

𝒰𝑌(𝑝) =  𝒰𝑌(𝑞𝛼𝑟) ≥  𝒰𝑌(𝑞) ,𝒱𝑌(𝑝) =  𝒱𝑌(𝑞𝛼𝑟) ≤ 𝒱𝑌(𝑞)and 𝒲𝑌(𝑝) =  𝒲𝑌(𝑞𝛼𝑟) ≤ 𝒲𝑌(𝑞) 
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Since X is a NF right ideal and Y is a NF left ideal of N, we have 

𝒰𝑋(𝑝) =  𝒰𝑋(𝑞𝛼𝑟) ≥  𝒰𝑋(𝑞) ,𝒱𝑋(𝑝) =  𝒱𝑋(𝑞𝛼𝑟) ≤ 𝒱𝑋(𝑞)and 𝒲𝑋(𝑝) =  𝒲𝑋(𝑞𝛼𝑟) ≤ 𝒲𝑋(𝑞) 

𝒰𝑌(𝑝) =  𝒰𝑌(𝑞𝛼𝑟) ≥  𝒰𝑌(𝑟) ,𝒱𝑌(𝑝) =  𝒱𝑌(𝑞𝛼𝑟) ≤ 𝒱𝑌(𝑟)and 𝒲𝑌(𝑝) =  𝒲𝑌(𝑞𝛼𝑟) ≤ 𝒲𝑌(𝑟) 

By the Definition of 𝑋Γ𝑌 

𝒰𝑋Γ𝑌(𝑝) = ⋁ {𝒰X(q)Ù𝒰Y(r)} ≤
p=qαr

𝒰X(𝑝)Ù𝒰Y(𝑝) = 𝒰X⋂𝑌(𝑝),  

𝒱 𝑋Γ𝑌(𝑝) = ⋀ {𝒱𝑋(𝑞)Ú𝒱𝑌(𝑟)} ≥
𝑝=𝑞𝛼𝑟

{𝒱𝑋(𝑞)Ú𝒱𝑌(𝑟)} = 𝒱X⋂𝑌(𝑝) 

𝒲 𝑋Γ𝑌(𝑝) = ⋀ {𝒲𝑋 (𝑞)Ú𝒲𝑌(𝑟)} ≥
𝑝=𝑞𝛼𝑟

{𝒲𝑋(𝑞)Ú𝒲𝑌(𝑟)} = 𝒲X⋂𝑌(𝑝) 

Consequently, 𝑋Γ𝑌 ⊆ 𝑋 ∩ 𝑌 

 

Corollary 3.13: If 𝑋 =< 𝒰𝑋 , 𝒱𝑋 , 𝒲𝑋 >  and 𝑌 =< 𝒰𝑌 , 𝒱𝑌 , 𝒲𝑌 > be two neutrosophic fuzzy subsets of a      

 Ring N, then X ∪ 𝑌  is a NF ideal of N. 

 

Definition 3.14: A   Ring N is regular if there exists 𝑝 ∈ 𝑁, ∀ 𝑥 ∈ 𝑁 and 𝛼, 𝛽 ∈ Γ  then x=x𝛼𝑝𝛽𝑥 

 

Result 3.15: A  Ring N is said to be regular  ⟺ 𝑖𝑓 𝐼Γ𝐽 = 𝐼⋂𝐽  for each right ideal I and for each left ideal J 

of N. 

 

Theorem 3.16: A  Ring N is regular if for each NF right ideal X and for each NF left ideal Y of N, 𝑋Γ𝑌 =

𝑋 ∩ 𝑌. 

Proof. Suppose that N is regular. 

By theorem 3.12, 𝑋Γ𝑌 ⊆ 𝑋 ∩ 𝑌 

Therefore, it is sufficient to prove 𝑋 ∩ 𝑌 ⊆ 𝑋Γ𝑌 

Let x∈ 𝑁, 𝛼, 𝛽 ∈ Γ 

By definition, there exists 
 
 p∈ 𝑁 such that x = x𝛼𝑝𝛽𝑥 

𝒰𝑋(𝑥) = 𝒰𝑋(x𝛼𝑝𝛽𝑥) ≥ 𝒰𝑋(x𝛼𝑝) ≥ 𝒰𝑋(𝑥), 𝒱𝑋(𝑥) = 𝒱𝑋(x𝛼𝑝𝛽𝑥) ≤ 𝒱𝑋(x𝛼𝑝) ≤ 𝒱𝑋 (𝑥). 

𝒲𝑋 (𝑥) = 𝒲𝑋 (x𝛼𝑝𝛽𝑥) ≤ 𝒲𝑋(x𝛼𝑝) ≤ 𝒲𝑋 (𝑥). 

So, 𝒰𝑋(x𝛼𝑝) ≥ 𝒰𝑋(𝑥), 𝒱𝑋 (x𝛼𝑝) ≤ 𝒱𝑋(𝑥) 𝑎𝑛𝑑 𝒲𝑋(x𝛼𝑝) ≤ 𝒲𝑋 (𝑥). 

Furthermore,  

𝒰𝑋Γ𝑌(𝑥) = ⋁ {𝒰𝑋(x𝛼𝑝)Ù𝒰𝑌(𝑥)} ≥
x=x𝛼𝑝𝛽𝑥

{𝒰X(𝑥)Ù𝒰Y(𝑥)} = 𝒰X⋂𝑌(𝑥), 

𝒱𝑋Γ𝑌(𝑥) = ⋀ {𝒱𝑋(x𝛼𝑝)Ú𝒱(𝑥)} ≤ {
x=x𝛼𝑝𝛽𝑥

𝒱X(𝑥)Ú𝒱Y(𝑥)} = 𝒱X⋂𝑌(𝑥), 

𝒲𝑋Γ𝑌(𝑥) = ⋀ {𝒲𝑋(x𝛼𝑝) Ú𝒲(𝑥)} ≤
x=x𝛼𝑝𝛽𝑥

{𝒲X(𝑥)Ú𝒲Y(𝑥)} = 𝒲X⋂𝑌(𝑥), 

Thus X⋂𝑌 ⊆ 𝑋Γ𝑌. Hence 𝑋Γ𝑌 = X⋂𝑌. 

 

Definition 3.17: An ideal 𝜑 of the  Ring N is said to be prime if for any ideals X and Y of N, 

𝑋Γ𝑌 ⊆ 𝜑 ⟹ 𝑋 ⊆ 𝜑 or 𝑌 ⊆ 𝜑.      
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Definition 3.18: Let  𝜑 be a NF ideal of a Γ Ring N. Then 𝜑 is said to be prime if 𝜑 is not a constant mapping 

and for any neutrosophic X, Y of a Γ Ring N, 𝑋Γ𝑌 ⊆ 𝜑 implies 𝑋 ⊆ 𝜑  or 𝑌 ⊆ 𝜑.      

Theorem 3.19: Let 𝒥 be an ideal of a Γ Ring N. ∋ 𝒥 ≠ 𝑁 Then 𝒥 is a prime ideal of N iff (𝒰𝜒𝒥
, 𝒱𝜒𝒥

, 𝒲𝜒𝒥
) 

is a NF prime ideal of N. 

Proof:   Suppose 𝒥 is a prime ideal of N. and let
 
𝜑 = (𝒰𝜒𝒥

, 𝒱𝜒𝒥
, 𝒲𝜒𝒥

). Since  𝒥 ≠ 𝑁. 𝜑 is not a 

constant mapping on N.
 
Let X and Y be two NF ideal of N such that 𝑋Γ𝑌 ⊆ 𝜑 and 𝑋 ⊄ 𝜑 or 𝑌 ⊄ 𝜑, then 

∃ 𝑝, 𝑞 ∈ 𝑁such that 

 𝒰𝑋(𝑝) > 𝒰𝜑(𝑝) = 𝒰𝜒𝒥
(𝑝), 𝒱𝑋(𝑝) < 𝒱𝜑(𝑝) = 𝒱�̅�𝒥

(𝑝) and 𝒲𝑋(𝑝) < 𝒲𝜑(𝑝) = 𝒲�̅�𝒥
(𝑝),  

𝒰𝑌(𝑝) > 𝒰𝜑(𝑝) = 𝒰𝜒𝒥
(𝑝), 𝒱𝑌(𝑝) < 𝒱𝜑(𝑝) = 𝒱�̅�𝒥

(𝑝) and  𝒲𝑌(𝑝) < 𝒲𝜑(𝑝) = 𝒲�̅�𝒥
(𝑝) 

Thus 𝒰𝑋(𝑝) ≠ 0, 𝒱𝑋(𝑝) ≠ 1 , 𝒲𝑋 (𝑝) ≠ 1 𝑎𝑛𝑑  𝒰𝑌(𝑞) ≠ 0, 𝒱𝑌(𝑞) ≠ 1, 𝒲𝑌 . But 𝒰𝜒𝒥
(𝑝) = 0, 𝒱𝜒𝒥

(𝑝) =

0 𝑎𝑛𝑑  𝒲𝜒𝒥
(𝑝) = 0, so 𝑝 ∉  𝒥, 𝑞 ∉  𝒥. 𝑆𝑖𝑛𝑐𝑒 𝒥 is a prime ideal of N, by the Theorem 5[3] there exists r ∈ 𝑁 

and 𝛼, 𝛽 ∈ Γ. such that 𝑝𝛼𝑟𝛽𝑞 ∉  𝒥. Let c= 𝑝𝛼𝑟𝛽𝑞 then 𝒰𝜒𝒥
(𝑐) = 0, 𝒱�̅�𝒥

(𝑐)𝑎𝑛𝑑 𝒲�̅�𝒥
(𝑐)=1.Thus 𝑋Γ𝑌(𝑐) =

(0,1). But 𝒰𝑋Γ𝑌(𝑐) = ⋁ [𝑐=𝑚𝛾𝑛  𝒰𝑋(𝑚) ∧ 𝒰𝑌(𝑛)] ≥ 𝒰𝑋(𝑝𝛼𝑟) ∧ 𝒰𝑌(𝑞)] (since c=p𝛼𝑟𝛽𝑞)  ≥ 𝒰𝑋(𝑝) ∧

𝒰𝑌(𝑞) > 0. (since 𝒰𝑋(𝑝) ≠ 0 𝑎𝑛𝑑 𝒰𝑌  (𝑝) ≠ 0 ) 

𝒱𝑋Γ𝑌(𝑐) =    ⋀ [𝒱𝑋(𝑚)⋁𝒱𝑌(𝑛)]𝑐=𝑚𝛾𝑛 ≤ [𝒱𝑋(𝑝𝛼𝑟)⋁𝒱𝑌(𝑞)] ≤ 𝒱𝑋 (𝑝)⋁𝒱𝑋(𝑞)<1  

(since 𝒱𝑋(𝑝) ≠ 1 𝑎𝑛𝑑  𝒱𝑌(𝑝) ≠ 1 ). 

𝒲𝑋Γ𝑌(𝑐) = ⋀ [𝒲𝑋(𝑚)⋁𝒲𝑌(𝑛)]
𝑐=𝑚𝛾𝑛

 ≤ [𝒲𝑋(𝑝𝛼𝑟)⋁𝒲𝑌(𝑞)] ≤ 𝒲𝑋(𝑝) ⋁𝒲𝑋(𝑞) < 1 

(since 𝒲𝑋 (𝑝) ≠ 1 𝑎𝑛𝑑  𝒲(𝑝) ≠ 1. )Then Xℾ𝐵(𝑐) ≠ (0,1).  This contradicts the result. Then for any two NF 

ideals Xand Y 𝑋Γ𝑌 ⊆ 𝜑. implies 𝐴 ⊆ 𝜑  or 𝐵 ⊆ 𝜑. Hence 𝜑  is a NF ideals of N.  

)( Suppose 𝜑 = (𝒰𝜒𝒥
, 𝒱𝜒𝒥

, 𝒲𝜒𝒥
) is a NF prime ideal of N. Since  𝜑 is not a constant mapping on N, 𝜑 ≠

𝑁. Let 𝑋, 𝑌 be two ideals of N such that 𝑋Γ𝑌 ⊆ 𝒥  and let 𝑋 = (𝒰𝜒𝑋
, 𝒱𝜒𝑋

, 𝒲𝜒𝑋
) and 𝑌 = (𝒰𝜒𝑌

, 𝒱𝜒𝑌
, 𝒲𝜒𝑌

) 

be two fuzzy ideals of N. Consider the product   𝑋Γ𝑌. let 𝑝 ∈ 𝑁 if  𝑋Γ𝑌(𝑝) = (0,1) then 𝑋Γ𝑌 ⊆ 𝒰. Suppose 

𝑋Γ𝑌 ≠ (0,1) then 𝒰𝑋Γ𝑌(𝑝) = ⋁ [𝑝=𝑞𝛾𝑟  𝒰𝜒𝑋
(𝑞) ∧ 𝒰𝜒𝑌

(𝑟)]  ≠ 0, 𝒱𝑋Γ𝑌(𝑝) = ⋀ [𝒱𝜒𝑋
(𝑞) ∨ 𝒱𝜒𝑌

(𝑟)]  ≠ 1𝑝=𝑞𝛾𝑟 } 

and 𝒲𝑋Γ𝑌(𝑝) = ⋀ [𝒲𝜒𝑋
(𝑞) ∨ 𝒲𝜒𝑌

(𝑟)] ≠ 1𝑝=𝑞𝛾𝑟 .There exist 𝑞, 𝑟 ∈ 𝑁. with p=q𝛼𝑟 such that 𝒰𝜒𝑋
(𝑞) ≠

0.𝒱𝜒𝑋
(𝑞) ≠ 1𝑎𝑛𝑑 𝒲𝜒𝑋

(𝑞) ≠ 1, 𝒰𝑌(𝑟) ≠ 0, 𝒱𝜒𝑌
(𝑟) ≠ 1. 𝒲𝜒𝑌

(𝑟) ≠ 1. So  𝒰𝜒𝑥
(𝑞) = 1,  𝒱𝜒𝑥

(𝑞) =

0, 𝒲𝜒𝑌
(𝑞) = 0 and 𝒰𝜒𝑌

(𝑟) = 1,  𝒱𝜒𝑌
(𝑟) = 0, 𝒲𝜒𝑌

(𝑟) = 0. This implies 𝑞 ∈ 𝑋 𝑎𝑛𝑑 𝑟 ∈ 𝑌. Thus p=q𝛼𝑟 ∈

𝑋Γ𝑌 ⊆ 𝒥 ,  So 𝒰𝜒𝒥
(𝑝) = 1, 𝒱�̅�𝒥

(𝑝) = 0 𝑎𝑛𝑑 𝒲�̅�𝒥
(𝑝)=0. It follows that  𝑋Γ𝑌(𝑝) ⊆ 𝜑 .Since  𝜑  is a NF 

ideal of N, either X ⊆ 𝜑  or Y ⊆ 𝜑. Thus either X ⊆  𝜑 or Y ⊆  𝜑. Hence 𝒥 is a prime ideal of N. 

 

Definition 3.20: (Neutrosophic Γ endomorphism) Mapping 𝜃: 𝑁 → 𝑁 of the  Ring N into itself is called a 

neutrosophic -endomorphism of N. If for 𝑝, 𝑞 ∈ 𝑁,  𝛼𝜖 Γ then  

(𝑖)𝒰(𝑝 + 𝑞)𝜃 = 𝒰(𝑝𝜃) + 𝒰(𝑞𝜃), 𝒱(𝑝 + 𝑞)𝜃 = 𝒱(𝑝𝜃) + 𝒱(𝑞𝜃) 𝑎𝑛𝑑 

 𝒲(𝑝 + 𝑞)𝜃 = 𝒲(𝑝𝜃) + 𝒲(𝑞𝜃)….. (1) 

(𝑖𝑖)𝒰(𝑝𝛼𝑞)𝜃 = 𝒰(𝑝𝜃𝛼𝑞𝜃), 𝒱(𝑝𝛼𝑞)𝜃 = 𝒱(𝑝𝜃𝛼𝑞𝜃) 𝑎𝑛𝑑  

 𝒲(𝑝𝛼𝑞)𝜃 = 𝒲(𝑝𝜃𝛼𝑞𝜃)……………(2) 
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Let ∆ represent the group of Γ -endomorphism of the Γ Ring N.

 

The multiplication and addition on the set as 

∆ follows, If  𝑥, 𝑦 ∈ ∆ then 

𝒰(𝑝(𝑥𝛼𝑦)) = 𝒰((𝑝𝑥)𝛼𝑦) 𝑝 ∈ 𝑁, 𝛼𝜖 Γ, 𝒱(𝑝(𝑥𝛼𝑦)) = 𝒱((𝑝𝑥)𝛼𝑦) 𝑝 ∈ 𝑁, 𝛼𝜖 Γ and  

𝒲(𝑝(𝑥𝛼𝑦)) = 𝒲((𝑝𝑥)𝛼𝑦) 𝑝 ∈ 𝑁,  𝛼𝜖 Γ … … … … . (3) 

𝒰(𝑝(𝑥 + 𝑦)) = 𝒰(𝑝𝑥) + 𝒰(𝑝𝑦)) 𝑝 ∈ 𝑁,  𝒱(𝑝(𝑥 + 𝑦)) = 𝒱(𝑝𝑥) + 𝒱(𝑝𝑦)𝑝 ∈ 𝑁 

𝒲(𝑝(𝑥 + 𝑦)) = 𝒲(𝑝𝑥) + 𝒲(𝑝𝑦)𝑝 ∈ 𝑁 … . . … (4) 

 

Theorem 3.21:  If ∆ be the group of all neutrosophic Γ -endomorphism of a Γ Ring N. Then ∆ is a 

 Γ -endomorphism of a Γ Ring with unity with respect to usual operations. 

Proof: Given ∆ be the set of all Neutrosophic Γ -endomorphism of a Γ -ring M.  

To Prove ∆ is a Γ Ring with Unity and Let 𝑥, 𝑦, 𝑧 ∈ ∆, 𝛼𝜖 Γ, p 𝜖 𝑁,  

(𝑖) 𝒰(𝑥 ((a + b) α c ) = 𝒰((𝑥(𝑎 + 𝑏)𝛼𝑐)) 

                  = 𝒰((𝑥𝑎 + 𝑥𝑏)𝛼𝑐) 

                  = 𝒰((𝑥𝑎)𝛼𝑐 + (𝑥𝑏)𝛼𝑐) 

                  =𝒰(𝑥(𝑎𝛼𝑐) + 𝑥(𝑏𝛼𝑐)) 

                  = 𝒰(𝑥(𝑎𝛼𝑐 + 𝑏𝛼𝑐)) 

Hence 𝒰((𝑎 + 𝑏)𝛼𝑐) =  𝒰(𝑎𝛼𝑐 + 𝑏𝛼𝑐) 

𝒱(𝑥((a+b) α c ) = 𝒱((𝑥(𝑎 + 𝑏)𝛼𝑐)) 

                  = 𝒱((𝑥𝑎 + 𝑥𝑏)𝛼𝑐) 

                  = 𝒱((𝑥𝑎)𝛼𝑐 + (𝑥𝑏)𝛼𝑐) 

                  =𝒱(𝑥(𝑎𝛼𝑐) + 𝑥(𝑏𝛼𝑐)) 

                  = 𝒱(𝑥(𝑎𝛼𝑐 + 𝑏𝛼𝑐)) 

Hence 𝒱((𝑎 + 𝑏)𝛼𝑐)) =  𝒱(𝑎𝛼𝑐 + 𝑏𝛼𝑐) 

𝒲(𝑥((a+b) α c ) = 𝒲((𝑥(𝑎 + 𝑏)𝛼𝑐)) 

                  = 𝒲((𝑥𝑎 + 𝑥𝑏)𝛼𝑐) 

                  = 𝒲((𝑥𝑎)𝛼𝑐 + (𝑥𝑏)𝛼𝑐) 

                  =𝒲(𝑥(𝑎𝛼𝑐) + 𝑥(𝑏𝛼𝑐)) 

                  = 𝒲(𝑥(𝑎𝛼𝑐 + 𝑏𝛼𝑐) 

Hence 𝒲((𝑎 + 𝑏)𝛼𝑐)) =  𝒲(𝑎𝛼𝑐 + 𝑏𝛼𝑐) 

Now 𝒰(𝑥 (a(𝛼+𝛽)c )= 𝒰((𝑥𝑎)(𝛼 + 𝛽)c a,c∈△, 𝛼, 𝛽 ∈ Γ, x 𝜖 𝑁 

                     = 𝒰((𝑥𝑎)𝛼c + (𝑥𝑎)𝛽𝑐) 

                     = 𝒰(𝑥(𝑎𝛼c +𝑎𝛽𝑐)) 

𝒰((a(𝛼+𝛽)c )= 𝒰(𝑎𝛼c +𝑎𝛽𝑐) 

𝒱(𝑥 (a(𝛼+𝛽)c )= 𝒱((𝑥𝑎)(𝛼 + 𝛽)c a,c∈△, 𝛼, 𝛽 ∈ Γ, x 𝜖 𝑁 

                     = 𝒱((𝑥𝑎)𝛼c + (𝑥𝑎)𝛽𝑐) 

                     = 𝒱(𝑥(𝑎𝛼c +𝑎𝛽𝑐)) 

𝒱((a(𝛼+𝛽)c )= 𝒱(𝑎𝛼c +𝑎𝛽𝑐) 

𝒲(𝑥 (a(𝛼+𝛽)c )= 𝒲((𝑥𝑎)(𝛼 + 𝛽)c a,c∈△, 𝛼, 𝛽 ∈ Γ, x 𝜖 𝑁 

                     = 𝒲((𝑥𝑎)𝛼c + (𝑥𝑎)𝛽𝑐) 

                     = 𝒲(𝑥(𝑎𝛼c +𝑎𝛽𝑐)) 

𝒲((a(𝛼+𝛽)c )= 𝒲((𝑎𝛼c +𝑎𝛽𝑐)) 

Again, 
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𝒰 (x (a𝛼(b+c)))= 𝒰((𝑥𝑎)𝛼(𝑏 + 𝑐))  a,b,c∈△, 𝛼 ∈ Γ, x 𝜖 𝑁 

                  = 𝒰((𝑥𝑎)𝛼𝑏) + 𝒰((𝑥𝑎)𝛼𝑐) 

                  = 𝒰(𝑥(𝑎𝛼𝑏) + (𝑥(𝑎𝛼𝑐)) 

                  = 𝒰(𝑥(𝑎𝛼𝑐 + 𝑏𝛼𝑐)) 

Hence 𝒰(a𝛼(b + c)) =  𝒰((𝑎𝛼𝑏 + 𝑎𝛼𝑐)) 

𝒱  (x (a𝛼(b+c)))= 𝒱 ((𝑥𝑎)𝛼(𝑏 + 𝑐))  a,b,c∈△, 𝛼 ∈ Γ, x 𝜖 𝑁 

                  = 𝒱 ((𝑥𝑎)𝛼𝑏) + 𝒱 ((𝑥𝑎)𝛼𝑐) 

                  = 𝒱 (𝑥(𝑎𝛼𝑏) + (𝑥(𝑎𝛼𝑐)) 

                  = 𝒱 (𝑥(𝑎𝛼𝑐 + 𝑏𝛼𝑐)) 

Hence 𝒱 (a𝛼(b + c)) =  𝒱 ((𝑎𝛼𝑏 + 𝑎𝛼𝑐)) 

 𝒲(x (a𝛼(b+c)))= 𝒲((𝑥𝑎)𝛼(𝑏 + 𝑐))  a,b,c∈△, 𝛼 ∈ Γ, x 𝜖 𝑁 

                  = 𝒲((𝑥𝑎)𝛼𝑏) + 𝒰((𝑥𝑎)𝛼𝑐) 

                  = 𝒲(𝑥(𝑎𝛼𝑏) + (𝑥(𝑎𝛼𝑐)) 

                  = 𝒲(𝑥(𝑎𝛼𝑐 + 𝑏𝛼𝑐)) 

Hence 𝒲(a𝛼(b + c)) = 𝒲((𝑎𝛼𝑏 + 𝑎𝛼𝑐)) 

(𝑖𝑖)𝒰 ((x(a𝛼b)𝛽c))= 𝒰((𝑥(𝑎𝛼𝑏))𝛽c),  a,b,c∈△, 𝛼, 𝛽 ∈ Γ, x 𝜖 𝑁 

                  = 𝒰(((𝑥𝑎)𝛼𝑏)𝛽c) 

                  = 𝒰((𝑥𝑎)𝛼(𝑏𝛽c)) 

                  = 𝒰(𝑥(𝑎𝛼(𝑏𝛽c))) 

                  = 𝒰(𝑥(𝑎𝛼(𝑏𝛽c))) 

 Hence 𝒰((a𝛼b)𝛽c)= 𝒰(𝑎𝛼(𝑏𝛽c)) 

𝒱 (x((a𝛼b)𝛽c)))= 𝒱((𝑥(𝑎𝛼𝑏))𝛽c),  a,b,c∈△, 𝛼, 𝛽 ∈ Γ, x 𝜖 𝑁 

                  = 𝒱(((𝑥𝑎)𝛼𝑏)𝛽c) 

                  = 𝒱((𝑥𝑎)𝛼(𝑏𝛽c)) 

                  = 𝒱(𝑥(𝑎𝛼(𝑏𝛽c))) 

                  = 𝒱(𝑥(𝑎𝛼(𝑏𝛽c)) 

Hence𝒱((a𝛼b)𝛽c)= 𝒱(𝑎𝛼(𝑏𝛽c)) 

𝒲((x(a𝛼b)𝛽c))) = 𝒲((𝑥(𝑎𝛼𝑏))𝛽c),  a,b,c ∈ △, 𝛼, 𝛽 ∈ Γ, x 𝜖 𝑁 

                 = 𝒲(((𝑥𝑎)𝛼𝑏)𝛽c) 

                 = 𝒲(𝑥𝑎)𝛼(𝑏𝛽c)) 

                 = 𝒲(𝑥(𝑎𝛼(𝑏𝛽c))) 

                 = 𝒲(𝑥(𝑎𝛼(𝑏𝛽c)) 

Hence 𝒲((a𝛼b)𝛽c)= 𝒲(𝑎𝛼(𝑏𝛽c)) 

(iii) For all a∈△ then there exists unity element 1∈△ such that 

𝒰(x(1𝛼a)) = 𝒰(((x1)𝛼)a) = 𝒰(𝑥𝑎), 𝛼 ∈ Γ, x 𝜖 𝑁, 𝒱(x(1𝛼a)) = 𝒱(((x1)𝛼)a) = 𝒱(𝑥𝑎), 𝛼 ∈ Γ, x 𝜖 𝑁, 

And 𝒲(x(1𝛼a)) = 𝒲(((x1)𝛼)a) = 𝒲(𝑥𝑎), 𝛼 ∈ Γ, x 𝜖 𝑁, 

And 𝒰(x(a𝛼1))= 𝒰((xa)𝛼)1) = xa, 𝒱(x(a𝛼1))= 𝒱((xa)𝛼)1) = xa, and  

𝒲(x(a𝛼1)) = 𝒲((xa)𝛼)1) = xa 

Hence 𝒰(a𝛼1) = 𝒰(1𝛼a) = a, 𝒱(a𝛼1)= 𝒱(1𝛼a) = a, and 𝒲(a𝛼1)= 𝒲(1𝛼a) = a. 

Thus △ satisfies all the conditions of Γ Ring. Hence △ is a Γ Ring with unity. 
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Theorem 3.22:   Let ∆ be the set of all neutrosophic  Γ endomorphism of the Γ Ring N. If 𝑥𝜖∆ then 𝑥 has 

(Multiplicative inverse) in ∆ if and only if 𝑥 is one to one function. 

Proof: Assume ∆ be the set of all neutrosophic Γ -endomorphism of a Γ -ring M. If 𝑥𝜖∆ then x has an inverse 

in ∆.  To prove x is one to one function. Let x has an inverse y in ∆.  xαy = yαx = 1, αϵΓ. 

 Then for each pϵN . we get 

 𝒰((𝑝𝑦)𝛼𝑥) = 𝒰(𝑝(𝑦𝛼𝑥)) = 𝒰(𝑝), 𝒱((𝑝𝑦)𝛼𝑥) = 𝒱(𝑝(𝑦𝛼𝑥)) = 𝒱(𝑝) and  

𝒲((𝑝𝑦)𝛼𝑥) = 𝒲(𝑝(𝑦𝛼𝑥)) = 𝒲(𝑝) Clearly x is onto. 

Furthermore 𝑝1, 𝑝2𝜖𝑁  such that  

𝒰(𝑝1𝑥) = 𝒰(𝑝2𝑥), 𝒱(𝑝1𝑥) = 𝒱(𝑝2𝑥), and 𝒲(𝑝1𝑥) = 𝒲(𝑝2𝑥),  

𝒰(𝑝1) = 𝒰(𝑝1. 1) = 𝒰(𝑝1(𝑥𝛼𝑦)) = 𝒰((𝑝1. 𝑥)𝛼𝑦) = 𝒰((𝑝2. 𝑥)𝛼𝑦) = 𝒰(𝑝2(𝑥𝛼𝑦)) = 𝒰(𝑝2. 1) = 𝒰(𝑝2)  

𝒱(𝑝1) = 𝒱(𝑝1. 1) = 𝒱(𝑝1(𝑥𝛼𝑦)) = 𝒱((𝑝1. 𝑥)𝛼𝑦) = 𝒱((𝑝2. 𝑥)𝛼𝑦) = 𝒱(𝑝2(𝑥𝛼𝑦)) = 𝒱(𝑝2. 1) = 𝒱(𝑝2).  

𝒲(𝑝1) = 𝒲(𝑝1. 1) = 𝒲(𝑝1(𝑥𝛼𝑦)) = 𝒲((𝑝1. 𝑥)𝛼𝑦) = 𝒲((𝑝2. 𝑥)𝛼𝑦) = 𝒲(𝑝2(𝑥𝛼𝑦)) = 𝒲(𝑝2).  

Therefore x is one to one mapping.  

Conversely, Let us assume that the Γ -endomorphism x is one to one mapping of N onto N. So that each 

element of N is of the form 𝑝𝑥, 𝑝𝜖𝑁. We define a mapping y of N into N as follows  

𝒰 (((𝑝𝑥)𝛼)𝑦) = 𝒰(𝑝), 𝑝𝜖𝑁, 𝛼𝜖Γ. If 𝑝, 𝑞𝜖𝑁 then  

𝒰 (((𝑝𝑥 + 𝑞𝑥)𝛼)𝑦)=𝒰((((𝑝 + 𝑞)𝑥)𝛼)𝑦)=𝒰(𝑝 + 𝑞)= 𝒰(((𝑝𝑥)𝛼)𝑦) + 𝒰((𝑞𝑥)𝛼)𝑦) = 

𝒰(((𝑝𝑥𝛼𝑞𝑥)𝛼)𝑦) = 𝒰(((𝑝𝛼𝑞)𝑥𝛼)𝑦) = 𝒰(𝑝𝛼𝑞) = 𝒰((𝑝𝑥)𝛼)𝑦𝑥((𝑞𝑥)𝛼)𝑦)  

𝒱 (((𝑝𝑥)𝛼)𝑦) = 𝒱(𝑝), 𝑝𝜖𝑁, 𝛼𝜖Γ. If 𝑝, 𝑞𝜖𝑁 then  

𝒱 (((𝑝𝑥 + 𝑞𝑥)𝛼)𝑦)=𝒱((((𝑝 + 𝑞)𝑥)𝛼)𝑦)=𝒱((𝑝 + 𝑞)=𝒱(((𝑝𝑥)𝛼)𝑦 + 𝒱((𝑞𝑥)𝛼)𝑦)= 

𝒱(((𝑝𝑥𝛼𝑞𝑥)𝛼)𝑦) = 𝒱(((𝑝𝛼𝑞)𝑥𝛼)𝑦) = 𝒱(𝑝𝛼𝑞) = 𝒱((𝑝𝑥)𝛼)𝑦𝑥((𝑞𝑥)𝛼)𝑦) 

𝒲 (((𝑝𝑥)𝛼)𝑦) = 𝒲(𝑝), 𝑝𝜖𝑁, 𝛼𝜖Γ. If 𝑝, 𝑞𝜖𝑁 then  

𝒲 (((𝑝𝑥 + 𝑞𝑥)𝛼)𝑦)=𝒲((((𝑝 + 𝑞)𝑥)𝛼)𝑦)=𝒲((𝑝 + 𝑞)=𝒲(((𝑝𝑥)𝛼)𝑦 + 𝒲((𝑞𝑥)𝛼)𝑦)= 

𝒲(((𝑝𝑥𝛼𝑞𝑥)𝛼)𝑦) = 𝒲(((𝑝𝛼𝑞)𝑥𝛼)𝑦) = 𝒲(𝑝𝛼𝑞) = 𝒲((𝑝𝑥)𝛼)𝑦𝑥((𝑞𝑥)𝛼)𝑦) 

We see that y is a neutrosophic Γ endomorphism of N. Furthermore 

𝒰((𝑝𝑥)𝛼𝑦) = 𝒰(𝑝(𝑥𝛼𝑦)) = 𝒰(𝑝) For every p in N and hence  𝑥𝛼𝑦 = 1  finally 𝑝𝜖𝑁, 𝒰(((𝑝𝑥)𝛼)(𝑦𝛼𝑥)) =

𝒰 ((𝑝(𝑥𝛼𝑦))𝛼𝑥) = 𝒰(𝑝(1)𝛼𝑥) = 𝒰(𝑝(1𝛼𝑥)) = 𝒰(𝑝𝑥),  𝒱((𝑝𝑥)𝛼𝑦) = 𝒱(𝑝(𝑥𝛼𝑦) = 𝒱(𝑝) For every p in 

N and hence  𝑥𝛼𝑦 = 1  finally 𝑝𝜖𝑁, 𝒱(((𝑝𝑥)𝛼)(𝑦𝛼𝑥)) = 𝒱 ((𝑝(𝑥𝛼𝑦))𝛼𝑥) = 𝒱(𝑝(1)𝛼𝑥) = 𝒱(𝑝(1𝛼𝑥)) =

𝒱(𝑝𝑥),  and 𝒲((𝑝𝑥)𝛼𝑦) = 𝒲(𝑝(𝑥𝛼𝑦) = 𝒲(𝑝) For every p in N and hence  𝑥𝛼𝑦 = 1  finally 𝑝𝜖𝑁,

𝒲(((𝑝𝑥)𝛼)(𝑦𝛼𝑥)) = 𝒲 ((𝑝(𝑥𝛼𝑦))𝛼𝑥) = 𝒲(𝑝(1)𝛼𝑥) = 𝒲(𝑝(1𝛼𝑥)) = 𝒲(𝑝𝑥),. That is equivalent to the 

statement that 𝒰(𝑞(𝑦𝛼𝑥)) = 𝒰(𝑞), 𝒱(𝑞(𝑦𝛼𝑥)) = 𝒱(𝑞) and 𝒲(𝑞(𝑦𝛼𝑥)) = 𝒲(𝑞).  For every 𝑞 𝜖𝑁.  Hence 

𝑦𝛼𝑥 = 1 and y is the inverse of x in ∆.  
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4. Conclusions  

In recent years, many algebraic structures have been considered neutrosophic structures. Using 

neutrosophic environments, we analyzed gamma rings. NF prime ideals are introduced in this article, along 

with their basic algebraic properties. In addition, some new neutrosophic operations are discussed. 
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Abstract: In real-life structures, indeterminacy is always present. Neuosophic sets theory is a well-

known mathematical tool for dealing with indeterminacy. Smarandache proposed the neutrosophic 

set approach. Neutrosophic sets deal with vague data. In this study, we introduced and 

investigated several types of 𝜌 −algebra ideals, which we called neutrosophic 𝜌 −subalgebra, 

complete neutrosophic 𝜌 −subalgebra, neutrosophic 𝜌 −ideal, complete neutrosophic 𝜌 −ideal, 

neutrosophic �̅� −ideal, and complete neutrosophic �̅� −ideal, respectively. We also proposed some 

hypotheses to explain some of the relationships between these ideal types. 

 
Keywords: Neutrosophic 𝜌 −subalgebra; neutrosophic 𝜌 −ideal; neutrosophic �̅� −ideal. 

 

 

 

1. Introduction 

Many different problems in our lives, such as engineering and medical sciences, necessitate 

uncertainty. Non-classical sets, like fuzzy sets ([19,]-[24]), soft sets ([25]-[31]), and permutation sets 

([32]-[37]) are used to solve some problems in decision making. Smarandache [2] investigates 

neutrosophic sets as a method for dealing with issues involving unreliable, indeterminate, and 

persistent data. Imai & Iseki [6] introduce the concepts of 𝐵𝐶𝐾 −algebra and 𝐵𝐶𝐼 −algebra. The 

𝑑 −algebra was then introduced by Negger & Kim [9] as a generalization of 𝐵𝐶𝐾 −algebra. In 

𝑑 −algebra, Negger et al. [8] discussed the ideal theory. In 1965, Zadeh proposed the concept of a 

fuzzy set [12]. Following that, Atanassov introduced the intuitionistic fuzzy set [1], which is a 

natural generalization of fuzzy set. Jun et al. [7] later applied the intuitionistic fuzzy set concept to 

𝑑 −algebra. Hasan [4] developed the concept of an intuitionistic fuzzy 𝑑 −ideal of 𝑑 −algebra in 

2017. After that, Hasan [5] in 2020 introduced the concept of intuitionistic fuzzy 𝑑 −filter. 

Smarandache [3] proposed the concept of a neutrosophic set. Next, some basic properties of this 

notion are studied ([13]-[18]). Also, Smarandache and  Rezaei studied the neutrosophic triplet of BI-
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algebras[38]. In 2021, some notions of neutrosophic ideals in BCK-algebras are discussed [39].The 

𝜌 −algebra was first introduced by Khalil and Abud Alradha[10]. In this paper, we define 

neutrosophic 𝜌 −subalgebra, complete neutrosophic 𝜌 −subalgebra, neutrosophic 𝜌 −ideal, full 

neutrosophic 𝜌 −ideal, neutrosophic 𝜌 −ideal, neutrosophic �̅� −ideal, and complete neutrosophic 

�̅� −ideal of 𝜌 −algebra, and investigate the relationship between these types. 

 

2. Preliminaries and Some Results. 

Here, we will recall basic ideas and results that are necessary in this research. 

Definition 2.1.[10] A  𝜌-algebra is a non-empty set ℧ with a constant 0 and a binary operation “∳ ” 

satisfying the following axioms: 

(1) 𝛼 ∳ 𝛼 = 0 , 

(2) 0 ∳ 𝛼 =0,   

(3) 𝛼 ∳ 𝛽 = 0 = 𝛽 ∳  𝛼 imply that 𝛼 = 𝛽 , 

(4) For all  𝛼 ≠  𝛽 ∈ ℧ − {0} imply that 𝛼 ∳  𝛽 = 𝛽 ∳ 𝛼 ≠  0. 

Definition 2.2. [10] A non-empty subset Υ of a 𝜌-algebra (℧, ∳ , 0) is called  𝜌- subalgebra of ℧ if 𝛼 

∳ 𝛽 ∈ Υ for any 𝛼, 𝛽 ∈ Υ. 

Definition 2.3.[10] A non- empty subset Υ of a 𝜌-algebra ℧ is called an 𝜌- ideal of ℧ if satisfies: 

(1) 𝛼, 𝛽 ∈ Υ ⟹ 𝛼∳ 𝛽 ∈ Υ, 

(2) 𝛼∳ 𝛽 ∈ Υ & 𝛽 ∈ Υ ⟹ 𝛼 ∈ Υ .  

Remark 2.4[10]. If 𝛶 is any a 𝜌- Ideal, then it is easy to show that 𝛶 is 𝜌- subalgebra. However, the 

convers maybe not true. 

Definition2.5.[10] A non- empty subset Υ of a 𝜌-algebra ℧ is called an �̅�- ideal of ℧ if satisfies: 

(1) 0 ∈ Υ, 

(2) 𝛼 ∈ Υ & 𝛽 ∈ ℧ ⟹ 𝛼∳ 𝛽 ∈ Υ . 

Proposition 2.6. [10] Let ∅ ≠ Υ ⊆ ℧ where ℧ is 𝜌-algebra. Then  Υ is a  𝜌- subalgebra of ℧ if it is  �̅�- 

Ideal. 

Definition 2.7. [2] A Neutrosophic set 𝒩 (briefly, NS) over the universal ℧ is defined by  

𝒩 ={≺ 𝛼, 𝒩𝑇(𝛼), 𝒩𝐼(𝛼), 𝒩𝐹(𝛼) ≻∣ 𝛼 ∈ ℧}, where  NT(α), NI(α), NF(α): ℧ ⟶ [0,1] are maps, 

with 𝒩𝑇(𝛼), 𝒩𝐼(𝛼) and 𝒩𝐹(𝛼) are real numbers and their values represent the degree of 

membership, indeterminate and non- membership of 𝛼 to 𝒩 respectively. 

Definition 2.8 . [2] A complement neutrosophic set 𝒩𝑐 over the universal ℧ is defined by  

𝒩𝑐 = 1 − 𝒩 = 1 −{≺ 𝛼, 𝒩𝑇(𝛼), 𝒩𝐼(𝛼), 𝒩𝐹(𝛼) ≻∣ 𝛼 ∈ ℧} = 

{ ≺ 𝛼, 1 − 𝒩𝑇(𝛼), 1 − 𝒩𝐼(𝛼), 1 − 𝒩𝐹(𝛼) ≻∣∣ 𝛼 ∈ ℧ } = { ≺ 𝛼, 𝒩𝑇𝑐(𝛼), 𝒩𝐼𝑐(𝛼), 𝒩𝐹𝑐(𝛼) ≻∣∣ 𝛼 ∈ ℧ }. 

Definition 2.9. [2] Let 𝒩 be (NS) over the universal ℧  and 𝑡 ∈ [0,1]  then the set 𝒩𝑡 = { 𝛼 ∈

℧|𝒩𝑇(𝛼) ≥ t , 𝒩𝐼(𝛼) ≤ t , 𝒩𝐹(𝛼) ≥ t} is called neutrosophic set t-cut, (briefly, NS-t-cut) . 

Definition 2.10. [2]  Let (℧,∗ ,0) be a 𝜌-algebra and 𝒩 ={≺ 𝛼, 𝒩𝑇(𝛼), 𝒩𝐼(𝛼), 𝒩𝐹(𝛼) ≻∣ 𝛼 ∈ ℧}  be a 

neutrosophic set (NS) of ℧. We say 𝒩 is a neutrosophic 𝜌 -constant of ℧ if all the maps 𝒩𝑇 , 𝒩𝐼 , 𝒩𝐹 : 

℧ → [0,1] are constant maps. 
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3. Neutrosophic 𝝆 – Subalgebra and Complete Neutrosophic 𝝆 – Subalgebra: 

 Definition 3.1.A (NS) 𝒩 in ℧ is called a neutrosophic 𝜌 −subalgebra (briefly, NS −𝜌 − 𝑆𝐴) of ℧ if 

such that: 

(i) 𝒩𝑇(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)}, 

(ii) 𝒩𝐼(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)}, 

(iii) 𝒩𝐹(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐹(𝛼),𝒩𝐹(𝛽)}, for any 𝛼, 𝛽 ∈ ℧. 

Example 3.2. Assume ℧ = {0,1,2,3} is a set and ∳  is defined by  table (1). So, we get (℧, ∳  ,0) is a 𝜌-

algebra, We define a (NS) 𝒩 in ℧ as follows: 

𝒩𝑇 =( 0      1      2      3
0.5   0.4    0.4   0.4 

), 𝒩𝐼 =( 0      1      2      3
0.2  0.3    0.3   0.3 

) , 𝒩𝐹 = (
0      1      2      3

0.3   0.2    0.2   0.2 
) 

Hence, 𝒩 is (NS −𝜌 − 𝑆𝐴). 

∳  0 1 2 3 

0 0 0 0 0 

1 1 0 1 2 

2 2 1 0 2 

3 3 2 2 0 

Table (1)  , 𝒩 is (NS −𝜌 − 𝑆𝐴) 

Lemma 3.3. Let  𝒩 be (NS −𝜌 − 𝑆𝐴) of ℧ then: 

(i) 𝒩𝑇(0 ) ≥ 𝒩𝑇(𝛼), (ii) 𝒩𝐼 (0 ) ≤ 𝒩𝐼(𝛼), (iii) 𝒩𝐹 (0) ≥ 𝒩𝐹(𝛼), for any 𝛼 ∈ ℧. 

Proof: Let 𝒩 be (NS −𝜌 − 𝑆𝐴)  then 

(i) 𝒩𝑇(0 ) = 𝒩𝑇(𝛼 ∳ 𝛼 ) ≥ 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛼)}= 𝒩𝑇(𝛼). 

(ii) 𝒩𝐼(0 )= 𝒩𝐼(𝛼 ∳ 𝛼 ) ≤ 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛼)}= 𝒩𝐼(𝛼). 

(iii) 𝒩𝐹(0) = 𝒩𝐹(𝛼 ∳ 𝛼 ) ≥ 𝑚𝑖𝑛{𝒩𝐹(𝛼),𝒩𝐹(𝛼)}= 𝒩𝐹  (𝛼). 

Lemma 3.4. Let  𝒩 be (NS −𝜌 − 𝑆𝐴) of ℧ then: 

(i) 𝒩𝑇𝑐(𝛼 ) ≥ 𝒩𝑇𝑐(0), (ii) 𝒩𝐼𝑐 (𝛼 ) ≤ 𝒩𝐼𝑐(0), (iii) 𝒩𝐹𝑐 (𝛼) ≥ 𝒩𝐹𝑐(0),for any 𝛼 ∈ ℧. 

Proof: Let 𝒩 be (NS −𝜌 − 𝑆𝐴) , then from lemma (3.3) we obtain: 𝒩𝑇(0 ) ≥ 𝒩𝑇(𝛼), 𝒩𝐼 (0 ) ≤ 𝒩𝐼(𝛼), 𝒩𝐹 

(0) ≥ 𝒩𝐹(𝛼), for any 𝛼 ∈ ℧. Since, 𝒩𝑐 = 1 − 𝒩 , thus 

𝒩𝑇𝑐(𝛼 )= 1 − 𝒩𝑇(𝛼) ≥ 1 − 𝒩𝑇(0 ) =𝒩𝑇𝑐(0), 

𝒩𝐼𝑐 (𝛼 ) = 1 − 𝒩𝐼(𝛼) ≤ 1 − 𝒩𝐼 (0 )  = 𝒩𝐼𝑐(0),  

𝒩𝐹𝑐 (𝛼) = 1 − 𝒩𝐹(𝛼) ≥ 1 − 𝒩𝐹(0 )= 𝒩𝐹𝑐(0), This completes proof. 

Proposition 3.5: Let 𝒩 be (NS) of 𝜌 − algebra (℧, ∳  ,0), then 𝒩 is (NS − 𝜌 − 𝑆𝐴) if  

it is 𝒩 ={≺ 𝛼, 𝒩𝑇(𝛼) = 𝒩𝑇(0), 𝒩𝐼(𝛼) = 𝒩𝐼(0), 𝒩𝐹(𝛼) = 𝒩𝐹(0) ≻∣ 𝛼 ∈ ℧}.  
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Proof: Let 𝒩 be (NS )  and 𝒩𝑇(𝛼) = 𝒩𝑇(0), 𝒩𝐼(𝛼) = 𝒩𝐼(0), 𝒩𝐹(𝛼) = 𝒩𝐹(0), for any  𝛼∈ 𝒩. Now, Let 

 𝛼, 𝛽 ∈ ℧, then 𝒩𝑇(𝛼 ∳ 𝛽 ) = 𝒩𝑇(0)= 𝑚𝑖𝑛{𝒩𝑇(0),  𝒩𝑇(0)}= 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)},  thus 𝒩𝑇(𝛼 ∳ 𝛽 ) 

≥ 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)}, 𝒩𝐼(𝛼 ∳ 𝛽 ) =𝒩𝐼(0) =  𝑚𝑎𝑥{𝒩𝐼(0), 𝒩𝐼(0)}=  𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)},  

thus 𝒩𝐼(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)},   

𝒩𝐹(𝛼 ∳ 𝛽 ) =𝒩𝐹(0)= 𝑚𝑖𝑛{𝒩𝐹(0),𝒩𝐹(0)}= 𝑚𝑖𝑛{𝒩𝐹(𝛼),𝒩𝐹(𝛽)},  thus 𝒩𝐹(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐹(𝛼),𝒩𝐹(𝛽)}. 

Hence  𝒩 is (NS − 𝜌 − 𝑆𝐴). 

Proposition 3.6. Let 𝒩 be (NS) of 𝜌 − algebra (℧, ∳  ,0),then 𝒩𝑐 is(NS − 𝜌 − 𝑆𝐴).  

If 𝒩 = { ≺ 𝛼, 𝒩𝑇𝑐(𝛼) = 𝒩𝑇𝑐(0), 𝒩𝐼𝑐(𝛼) = 𝒩𝐼𝑐(0), 𝒩𝐹𝑐(0) = 𝒩𝐹𝑐(0) ≻∣∣ 𝛼 ∈ ℧ } 

Proof: Let 𝒩𝑐 = { ≺ 𝛼, 𝒩𝑇𝑐(𝛼) = 𝒩𝑇𝑐(0), 𝒩𝐼𝑐(𝛼) = 𝒩𝐼𝑐(0), 𝒩𝐹𝑐(0) = 𝒩𝐹𝑐(0) ≻∣∣ 𝛼 ∈ ℧ } and let 𝛼, 𝛽 

∈ ℧, then 𝒩𝑇𝑐(𝛼 ∳ 𝛽 ) = 𝒩𝑇𝑐(0) =  𝑚𝑖𝑛{𝒩𝑇𝑐(0), 𝒩𝑇𝑐(0)} = 𝑚𝑖𝑛{𝒩𝑇𝑐(𝛼), 𝒩𝑇𝑐(𝛽)}, thus  𝒩𝑇𝑐(𝛼 ∳ 𝛽 ) 

≥ 𝑚𝑖𝑛{𝒩𝑇𝑐(𝛼), 𝒩𝑇𝑐(𝛽)}, 𝒩𝐼𝑐(𝛼 ∳ 𝛽 ) = 𝒩𝐼𝑐(0) =  𝑚𝑎𝑥{𝒩𝐼𝑐(0), 𝒩𝐼𝑐(0)} = 𝑚𝑎𝑥{𝒩𝐼𝑐(𝛼), 𝒩𝐼𝑐(𝛽)}, thus 

𝒩𝐼𝑐(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝐼𝑐(𝛼), 𝒩𝐼𝑐(𝛽)}, 𝒩𝐹𝑐(𝛼 ∳ 𝛽 ) = 𝒩𝐹𝑐(0) =  𝑚𝑖𝑛{𝒩𝐹𝑐(0),𝒩𝐹𝑐(0)} = 

𝑚𝑖𝑛{𝒩𝐹𝑐(𝛼),𝒩𝐹𝑐(𝛽)}, thus  𝒩𝐹𝑐(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐹𝑐(𝛼),𝒩𝐹𝑐(𝛽)}. Hence  𝒩𝑐  is (NS − 𝜌 − 𝑆𝐴). 

Definition 3.7. Let 𝒩 be (NS) of 𝜌 − algebra (℧, ∳ ,0), then 𝐾(𝒩) = {𝛼 ∈ ℧|𝒩𝑇(𝛼) = NT(0), NI(α) =

NI(0) and  NF(α) = NF(0)} is a subset of ℧ and it is called neutrosophic 𝜌 −kernel of 𝒩 over ℧. 

Example 3.8.Let ℧ = { 𝑎, 𝑏, 𝑐, 𝑑 } and define ∱ on the set  ℧  as table (2). Then (℧, ∳ , 𝑎) is a 𝜌-algebra, 

we define a (NS) 𝒩 in ℧ as follows: 

𝒩T =( 𝑎     𝑏        𝑐       𝑑
0.1     0.2    0.5    0.1 

), 𝒩I =( 𝑎      𝑏      𝑐      𝑑
0.1   0.3     0.4   0.1 

), 

𝒩I =( 𝑎      𝑏      𝑐      𝑑
0.1     0.3    0.5   0.1 

) , 𝐾(𝒩) = {𝑎, 𝑑}. 

∳  𝑎 𝑏 𝑐  𝑑 

𝒂 𝑎 𝑎 𝑎 𝑎 

𝒃 𝑏 𝑎 𝑏 𝑑  

𝒄  𝑐  𝑏 𝑎 𝑑  

𝒅 𝑑 𝑑  𝑑  𝑎 

Table (2) , 𝐾(𝒩) = {𝑎, 𝑑}   

Proposition 3.9. If 𝒩 is (NS − 𝜌 − 𝑆𝐴) of (℧, ∳  ,0),  then  𝐾(𝒩𝑐) is a (𝜌 − 𝑆𝐴).  

Proof:  Let 𝛼 , 𝛽 ∈ 𝐾(𝒩𝑐). Then; 𝒩𝑇𝑐(𝛼) = 𝒩𝑇𝑐(𝛽) = 𝒩𝑇𝑐(0), 𝒩𝐼𝑐(𝛼) = 𝒩𝐼𝑐(𝛽) =

𝒩𝐼𝑐(0) and  𝒩𝐹𝑐(𝛼) = 𝒩𝐹𝑐(𝛽) = 𝒩𝐹𝑐(0).  

Also 𝒩𝑇𝑐(𝛼 ∳ 𝛽 ) = 1 − 𝒩𝑇(𝛼 ∳ 𝛽 ) ≤ 1 − 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)}  

[since 𝒩𝑇(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)}]. 

= 𝑚𝑎𝑥{1 − 𝒩𝑇(𝛼), 1 − 𝒩𝑇(𝛽)} 

                                                                     = 𝑚𝑎𝑥{𝒩𝑇𝑐(𝛼), 𝒩𝑇𝑐(𝛽)} 

   = 𝑚𝑎𝑥{𝒩𝑇𝑐(0), 𝒩𝑇𝑐(0)}= 𝒩𝑇𝑐(0), 

𝒩𝐼𝑐(𝛼 ∳ 𝛽 ) = 1−𝒩𝐼(𝛼 ∳ 𝛽 ) ≥  1 − 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)}[since 𝒩𝐼(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)}]. 
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                                                             = 𝑚𝑖𝑛{1 − 𝒩𝐼(𝛼), 1 − 𝒩𝐼(𝛽)} 

                                                      = 𝑚𝑖𝑛 {𝒩𝐼𝑐(𝛼), 𝒩𝐼𝑐(𝛽)} 

                                                     = 𝑚𝑖𝑛{𝒩𝐼𝑐(0), 𝒩𝐼𝑐(0)}= 𝒩𝐼𝑐(0), 

𝒩𝐹𝑐(𝛼 ∳ 𝛽 ) = 1 − 𝒩𝐹(𝛼 ∳ 𝛽 ) ≤ 1 − 𝑚𝑖𝑛{𝒩𝐹(𝛼),𝒩𝐹(𝛽)} 

[since 𝒩𝐹(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐹(𝛼),𝒩𝐹(𝛽)}]. 

        = 𝑚𝑎𝑥{1 − 𝒩𝐹(𝛼),1 − 𝒩𝐹(𝛽 

                                                                        = 𝑚𝑎𝑥{𝒩𝐹𝑐(𝛼),𝒩𝐹𝑐(𝛽)} 

          = 𝑚𝑎𝑥{𝒩𝐹𝑐(0),𝒩𝐹𝑐(0)}= 𝒩𝐹𝑐(0), 

and from lemma (3.4), W obtain: 

 𝒩𝑇𝑐(𝛼 ∳ 𝛽  ) ≥ 𝒩𝑇𝑐(0), 𝒩𝐼𝑐 (𝛼 ∳ 𝛽 ) ≤ 𝒩𝐼𝑐(0), 𝒩𝐹𝑐 (𝛼 ∳ 𝛽 ) ≥𝒩𝐹𝑐 (0 )   

thus 𝒩𝑇𝑐(𝛼 ∳ 𝛽 ) =𝒩𝑇𝑐(0), 𝒩𝐼𝑐(𝛼 ∳ 𝛽 ) =𝒩𝐼𝑐(0), 𝒩𝐹𝑐(𝛼 ∳ 𝛽 )= 𝒩𝐹𝑐(0),  

this implies 𝛼∳ 𝛽 ∈ 𝐾(𝒩𝑐) , hence 𝐾(𝒩𝑐) is 𝜌 −subalgebra. 

 

Proposition 3.10. Let 𝒩  be  (NS − 𝜌 − 𝑆𝐴)  then 𝒩𝑡 is 𝜌 −subalgebra. 

Proof: Assume that 𝒩 is (NS − 𝜌 − 𝑆𝐴)  and 𝛼, 𝛽 ∈ 𝒩𝑡, then 

(𝒩𝑇(𝛼) ≥ t , 𝒩𝐼(𝛼) ≤ t , 𝒩𝐹(𝛼) ≥ t) and (𝒩𝑇(𝛽) ≥ t , 𝒩𝐼(𝛽) ≤ t , 𝒩𝐹(𝛽) ≥ t). Also, 𝒩𝑇(𝛼 ∳ 𝛽 ) ≥ 

𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)} ≥ 𝑡, 𝒩𝐼(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)} ≤ 𝑡, 𝒩𝐹(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐹(𝛼),𝒩𝐹(𝛽)} ≥ 𝑡, this 

implies 𝛼 ∳ 𝛽 ∈ 𝒩𝑡 , hence 𝒩𝑡 subalgebra. 

 

Proposition 3.11. Let (℧,∳ ,0) be a 𝜌-algebra and 𝒩 be a (NS) of ℧. Then 𝒩 is (NS − 𝜌 − 𝑆𝐴)if it is 

neutrosophic 𝜌 −constant. 

 Proof: Assume that 𝒩 is constant. Then for all 𝛼 ∈ ℧, 𝒩𝑇(𝛼) = 𝒩𝑇(0), 𝒩𝐼(𝛼) = 𝒩𝐼(0) and 𝒩𝐹(𝛼) =

𝒩𝐹(0), and so 𝒩𝑇(0)≥𝒩𝑇(𝛼), 𝒩𝐼(0)≤ 𝒩𝐼(𝛼)and 𝒩𝐹(0)≥ 𝒩𝐹(𝛼). Next, for all 𝛼, 𝛽 ∈ ℧, 𝒩𝑇(𝛼 ∳ 𝛽 )= 

𝒩𝑇(0) =  𝑚𝑖𝑛{𝒩𝑇(0), 𝒩𝑇(0)} ≥ 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)}, 𝒩𝐼(𝛼 ∳ 𝛽 )= 𝒩𝐼(0 )= 𝑚𝑎𝑥{𝒩𝐼(0), 𝒩𝐼(0)} ≤ 

𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)}, 𝒩𝐹(𝛼 ∳ 𝛽 )= 𝒩𝐹(0 )= 𝑚𝑖𝑛{𝒩𝐹(0),𝒩𝐹(0)} ≥ 𝑚𝑖𝑛{𝒩𝐹(𝛼),𝒩𝐹(𝛽)}, hence 𝒩 is (NS − 𝜌 −

𝑆𝐴). 

 

Proposition 3.12. Let 𝒩 be  (NS − 𝜌 − 𝑆𝐴).  Then 0 ∈ 𝒩𝑡, if 𝒩𝑡 ≠ ∅. 

Proof: Assume that 𝒩 is (NS − 𝜌 − 𝑆𝐴)  and 𝒩𝑡 ≠ ∅ then there is at least 𝛼 ∈ 𝒩𝑡, also 

 from Lemma (3.3) and Definition (2.9) we obtain, 𝒩𝑇(0 ) ≥ 𝒩𝑇(𝛼) ≥ t, 𝒩𝐼 (0 ) ≤ 𝒩𝐼(𝛼) ≤ t, 𝒩𝐹 (0) ≥ 

𝒩𝐹(𝛼) ≥ t, this means 0 ∈ 𝒩𝑡. 

 

Corollary 3.13. If 𝒩 neutrosophic 𝜌 -constant then 𝒩𝑡 is 𝜌 −subalgebra. 

Proof: From proposition (3.11) and proposition (3.10).   

 

Definition 3.14. Let 𝒩 be (NS) in ℧  then it is called a complete neutrosophic 𝜌 −subalgebra 

(briefly, CNS −𝜌 − 𝑆𝐴) of ℧ if it satisfies the following conditions: 

(i) 𝒩𝑇(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)}, 

(ii) 𝒩𝐼(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)}, 

(iii) 𝒩𝐹(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝐹(𝛼),𝒩𝐹(𝛽)}, for any 𝛼, 𝛽 ∈ ℧. 
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Example 3.15 .Assume ℧ = {0,1,2,3} is a set and ∳  is defined by table (3). So, we get (℧, ∳  ,0) is a 𝜌-

algebra, we define a (NS) 𝒩 in ℧ as follows: 

𝒩𝑇 =( 0      1      2 
0.1   0.3    0.3 

), 𝒩𝐼 =( 0      1      2  
0.6  0.3    0.3 

) , 𝒩𝐹 = (
0      1        2  

0.2   0.4    0.4 
) 

Hence, 𝒩 is (NS −𝜌 − 𝑆𝐴). 

∳  0 1 2 

0 0 0 0 

1 1 0 1 

2 2 1 0 

Table (3) , 𝒩 is (NS −𝜌 − 𝑆𝐴) 

Lemma 3.16. Let  𝒩 be (CNS −𝜌 − 𝑆𝐴) of ℧ then: 

(i) 𝒩𝑇(0 ) ≤ 𝒩𝑇(𝛼), (ii) 𝒩𝐼 (0 ) ≥ 𝒩𝐼(𝛼), (iii) 𝒩𝐹 (0) ≤ 𝒩𝐹(𝛼), for any 𝛼 ∈ ℧. 

Proof: Let 𝒩 be (CNS −𝜌 − 𝑆𝐴)  then, 

(i) 𝒩𝑇(0 ) = 𝒩𝑇(𝛼 ∳ 𝛼 ) ≤ 𝑚𝑎𝑥{𝒩𝑇(𝛼), 𝒩𝑇(𝛼)}= 𝒩𝑇(𝛼). 

(ii) 𝒩𝐼(0 )= 𝒩𝐼(𝛼 ∳ 𝛼 ) ≥ 𝑚𝑖𝑛{𝒩𝐼(𝛼), 𝒩𝐼(𝛼)}= 𝒩𝐼(𝛼). 

(iii) 𝒩𝐹(0) = 𝒩𝐹(𝛼 ∳ 𝛼 ) ≤ 𝑚𝑎𝑥{𝒩𝐹(𝛼),𝒩𝐹(𝛼)}= 𝒩𝐹  (𝛼).This completes proof. 

Proposition 3.17. If 𝒩 is a (CNS −𝜌 − 𝑆𝐴), then 𝐾(𝒩) is 𝜌 − subalgebra. 

Proof: Let 𝛼 , 𝛽 ∈  𝐾(𝒩), then 𝒩𝑇(𝛼) = 𝒩𝑇(𝛽) = 𝒩𝑇(0), 𝒩𝐼(𝛼) = NI(β) = NI(0) and 

𝒩𝐹(𝛼) = 𝒩𝐹(𝛽) = 𝒩𝐹(0).  Also, 𝒩𝑇 (𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)}= 𝑚𝑎𝑥{𝒩𝑇(0), 𝒩𝑇(0)}= 𝒩𝑇(0), 𝒩𝐼(𝛼 

∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)}= 𝑚𝑖𝑛{𝒩𝐼(0), 𝒩𝐼(0)}= 𝒩𝐼(0), 𝒩𝐹(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝐹(𝛼),𝒩𝐹(𝛽)}= 

𝑚𝑎𝑥{𝒩𝐹(0),𝒩𝐹(0)}= 𝒩𝐹(0), and from lemma (3.16) 𝒩𝑇(0 ) ≤ 𝒩𝑇(𝛼 ∳ 𝛽 ), 𝒩𝐼 (0 ) ≥ 𝒩𝐼(𝛼 ∳ 𝛽 ), 𝒩𝐹 (0) ≤ 

𝒩𝐹(𝛼 ∳ 𝛽 ), thus 𝒩𝑇(𝛼 ∳ 𝛽 ) = 𝒩𝑇(0), 𝒩𝐼(𝛼 ∳ 𝛽 ) =𝒩𝐼(0) , 𝒩𝐹(𝛼 ∳ 𝛽 )= 𝒩𝐹(0), and 𝛼 ∳ 𝛽 ∈  𝐾(𝒩)  

hence 𝐾(𝒩) is 𝜌 − subalgebra. 

Proposition 3.18. Let 𝒩  be (NS) then  𝒩 is (NS − 𝜌 − 𝑆𝐴)  if and only if 𝒩𝑐 is (CNS − 𝜌 − 𝑆𝐴). 

Proof: Let 𝒩 be (NS − 𝜌 − 𝑆𝐴) then 𝒩𝑇(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)}, 𝒩𝐼(𝛼 ∳ 𝛽)  ≤ 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)}, 

𝒩𝐹(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐹(𝛼), 𝒩𝐹(𝛽)}, for any 𝛼, 𝛽 ∈ ℧ .  

Now,  𝒩𝑇𝑐(𝛼 ∳ 𝛽 )= 1 − 𝒩𝑇(𝛼 ∳ 𝛽 ) ≤ 1 − 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)} 

  = 𝑚𝑎𝑥{1 − 𝒩𝑇(𝛼), 1 − 𝒩𝑇(𝛽)} 

                                                                      = 𝑚𝑎𝑥{𝒩𝑇𝑐(𝛼), 𝒩𝑇𝑐(𝛽)}, 

𝒩𝐼𝑐(𝛼 ∳ 𝛽 )=1 − 𝒩𝐼(𝛼 ∳ 𝛽 ) ≥ 1 − 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)} = 𝑚𝑖𝑛{1 − 𝒩𝐼(𝛼), 1 − 𝒩𝐼(𝛽)} 

                                                         = 𝑚𝑖𝑛{𝒩𝐼𝑐(𝛼), 𝒩𝐼𝑐(𝛽)}, 

𝒩𝐹𝑐(𝛼 ∳ 𝛽 )=1 − 𝒩𝐹(𝛼 ∳ 𝛽 ) ≤ 1 − 𝑚𝑖𝑛{𝒩𝐹(𝛼), 𝒩𝐹(𝛽)} 

                                                  = 𝑚𝑎𝑥{1 − 𝒩𝐹(𝛼), 1 − 𝒩𝐹(𝛽)} 

                                                        = 𝑚𝑎𝑥{𝒩𝐹𝑐(𝛼), 𝒩𝐹𝑐(𝛽)}, 

Hence 𝒩𝑐 is (CNS − 𝜌 − 𝑆𝐴). 
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Conversely: Let 𝒩𝑐  be (CNS − 𝜌 − 𝑆𝐴) then 𝒩𝑇𝑐(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝑇𝑐(𝛼), 𝒩𝑇𝑐(𝛽)}, 𝒩𝐼𝑐(𝛼 ∳ 𝛽 ) ≥ 

𝑚𝑖𝑛{𝒩𝐼𝑐(𝛼), 𝒩𝐼𝑐(𝛽)}, 𝒩𝐹𝑐(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝐹𝑐(𝛼),𝒩𝐹𝑐(𝛽)}, for any 𝛼, 𝛽 ∈ ℧.  

Now, 𝒩𝑇(𝛼 ∳ 𝛽 ) = 1 − 𝒩𝑇𝑐(𝛼 ∳ 𝛽 ) ≥1 − 𝑚𝑎𝑥{𝒩𝑇𝑐(𝛼), 𝒩𝑇𝑐(𝛽)}  

 = 𝑚𝑖𝑛{1 − 𝒩𝑇𝑐(𝛼), 1 − 𝒩𝑇𝑐(𝛽)} 

                                                                   = 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)}, 

𝒩𝐼(𝛼 ∳ 𝛽 ) = 1 − 𝒩𝐼𝑐(𝛼 ∳ 𝛽 ) ≤ 1 − 𝑚𝑖𝑛{𝒩𝐼𝑐(𝛼), 𝒩𝐼𝑐(𝛽)} 

                                                     = 𝑚𝑎𝑥{1 − 𝒩𝐼𝑐(𝛼), 1 − 𝒩𝐼𝑐(𝛽)} 

                                                    = 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)} 

𝒩𝐹(𝛼 ∳ 𝛽 )= 1 − 𝒩𝐹𝑐(𝛼 ∳ 𝛽 )  ≥ 1 − 𝑚𝑎𝑥{𝒩𝐹𝑐(𝛼),𝒩𝐹𝑐(𝛽)} 

                                                    = 𝑚𝑖𝑛{1 − 𝒩𝐹𝑐(𝛼),1 − 𝒩𝐹𝑐(𝛽)} 

                                                   = 𝑚𝑖𝑛{𝒩𝐹(𝛼), 𝒩𝐹(𝛽)}, Hence 𝒩  is  (NS − 𝜌 − 𝑆𝐴). 

Corollary 3.19.  

1- Let 𝒩𝑐   be is (CNS − 𝜌 − 𝑆𝐴)  then 𝒩𝑡 is 𝜌 − subalgebra. 

2- Let 𝒩 be a neutrosophic 𝜌 -constant then 𝒩𝑡 is 𝜌 − subalgebra. 

Proof (1): From Proposition (3.18) and Proposition (3.10). 

Proof (2): From Proposition (3.11) and Proposition (3.10). 

 

4. Neutrosophic 𝝆 -Ideal and Complete Neutrosophic 𝝆 -Ideal: 

Definition 4.1. Assume (℧,∳ , 0) is a 𝜌-algebra and 𝒩 is (NS) of ℧. We say 𝒩 is a neutrosophic 𝜌 -

ideal of ℧ (briefly, NS −𝜌 − 𝐼) )if such that: 

(i) 𝒩𝑇(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝑇 (𝛼), 𝒩𝑇 (𝛽)}, 

(ii) 𝒩𝐼 (𝛼 ∳ 𝛽) ≤ 𝑚𝑎𝑥 {𝒩𝐼(𝛼),𝒩𝐼(𝛽)}, 

(iii) 𝒩𝐹(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐹(𝛼), 𝒩𝐹(𝛽)}, 

(iv) 𝒩𝑇(𝛼) ≥ 𝑚𝑖𝑛{𝒩𝑇( 𝛼 ∳ 𝛽), 𝒩𝑇 (𝛽)},  

(v) 𝒩𝐼(𝛼) ≤ 𝑚𝑎𝑥{𝒩𝐼( 𝛼 ∳ 𝛽), 𝒩𝐼(𝛽)}, 

(vi) 𝒩𝐹(𝛼) ≥ 𝑚𝑖𝑛{𝒩𝐹( 𝛼 ∳ 𝛽), 𝒩𝐹(𝛽)}, for any 𝛼, 𝛽 ∈ ℧. 

Example 4.2. Let ℧ = { 𝛼 , 𝛾 , 𝛽, 𝛿 } be a set with the following table (4), it is clear that (℧, ∳ , 𝛼) is a 𝜌-

algebra, We define a (NS) 𝒩 in ℧ as follows: 

𝒩𝑇 =(
𝛼      𝛽      𝛾      𝛿

0.8   0.7    0.7   0.7 
), 𝒩𝐼 =(

𝛼      𝛽        𝛾      𝛿
0.4     0.6    0.6   0.6 

) , 𝒩𝐹 = (
𝛼      𝛽         𝛾      𝛿

0.6    0.5    0.5   0.5 
) 

Hence, 𝒩 is ( NS −𝜌 − 𝐼). 

 

 

 

 

 

∱  𝜶 𝜷 𝜸 𝜹  

𝛼 𝛼 𝛼 𝛼 𝛼  

𝛽 𝛽 𝛼 𝛽 𝛾  

𝛾 𝛾 𝛽 𝛼 𝛾  

𝛿 𝛿 𝛾 𝛾 𝛼  
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Table (4):  𝒩 is (NS −𝜌 − 𝐼). 

Lemma 4.3: Every (NS −𝜌 − 𝐼)is (NS −𝜌 − 𝑆𝐴). 

Proof: Let 𝒩 be (NS −𝜌 − 𝐼). Then from Definition (4.1)-[(i),(ii),(iii)], we get 𝒩 is (NS −𝜌 − 𝑆𝐴). 

Corollary 4.4. 

1- Let 𝒩 be (NS −𝜌 − 𝐼) then  𝒩𝑡 is 𝜌 −subalgebra. 

2-Let 𝒩 be (NS −𝜌 − 𝐼) then 𝒩𝑐is (CNS −𝜌 − 𝑆𝐴). 

Proof 1: From Lemma (4.3) and Proposition (3.10). 

Proof 2: From Lemma (4.3) and Proposition (3.18). 

Lemma 4.5. Let  𝒩 be (NS −𝜌 − 𝐼) of ℧. Then; 

(i) 𝒩𝑇(0 ) ≥ 𝒩𝑇(𝛼), (ii) 𝒩𝐼 (0 ) ≤ 𝒩𝐼(𝛼), (iii) 𝒩𝐹 (0) ≥ 𝒩𝐹(𝛼),for any 𝛼 ∈ ℧. 

Proposition 4.6. If 𝒩 is (NS −𝜌 − 𝐼), then 𝐾(𝒩) is 𝜌 − ideal.  

  

Proof: Let 𝒩 be (NS − 𝜌 − 𝐼)  and  let 𝛼 , 𝛽 ∈  𝐾(𝒩), then 𝒩𝑇(𝛼) = 𝒩𝑇(𝛽) = 𝒩𝑇(0), 𝒩𝐼(𝛼) = 𝒩𝐼(𝛽) =

𝒩𝐼(0) and  𝒩𝐹(𝛼) = 𝒩𝐹(𝛽) = 𝒩𝐹(0).  Also, 𝒩𝑇(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)} = 𝑚𝑖𝑛{𝒩𝑇(0), 𝒩𝑇(0)}= 

𝒩𝑇(0), 

𝒩𝐼(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)} = 𝑚𝑎𝑥{𝒩𝐼(0), 𝒩𝐼(0)}= 𝒩𝐼(0), 

𝒩𝐹(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐹(𝛼),𝒩𝐹(𝛽)} = 𝑚𝑖𝑛{𝒩𝐹(0),𝒩𝐹(0)}= 𝒩𝐹(0), and from lemma (4.5) we obtain  𝒩𝑇(0 ) ≥ 

𝒩𝑇(𝛼 ∳ 𝛽 ), 𝒩𝐼 (0 ) ≤ 𝒩𝐼(𝛼 ∳ 𝛽 ), 𝒩𝐹 (0) ≥ 𝒩𝐹(𝛼 ∳ 𝛽 ). Hence,  𝛼 ∳ 𝛽 ∈ 𝐾(𝒩). Now, assume 

that, 𝛼∳ 𝛽 ∈ 𝐾(𝒩) &  𝛽 ∈ 𝐾(𝒩)  then  𝒩𝑇(𝛼 ∳ 𝛽 ) = 𝒩𝑇(0), 𝒩𝐼(𝛼 ∳ 𝛽 ) = 𝒩𝐼(0) , 𝒩𝐹(𝛼 ∳ 𝛽 )= 𝒩𝐹 (0), 

and 𝒩𝑇(𝛽 ) =𝒩𝑇(0), 𝒩𝐼(𝛽)= 𝒩𝐼(0), 𝒩𝐹(𝛽 )= 𝒩𝐹 (0), thus 𝒩𝑇(𝛼) ≥ 𝑚𝑖𝑛{𝒩𝑇( 𝛼 ∳ 𝛽), 𝒩𝑇 (𝛽)}= 𝒩𝑇(0), 

𝒩𝐼(𝛼) ≤ 𝑚𝑎𝑥{𝒩𝐼( 𝛼 ∳ 𝛽), 𝒩𝐼(𝛽)} = 𝒩𝐼(0),  𝒩𝐹(𝛼) ≥ 𝑚𝑖𝑛{𝒩𝐹( 𝛼 ∳ 𝛽), 𝒩𝐹(𝛽)}= 𝒩𝐹 (0), and from lemma 

(4.5) We obtain 𝒩𝑇(0 ) = 𝒩𝑇(𝛼), 𝒩𝐼 (0 ) = 𝒩𝐼(𝛼), 𝒩𝐹 (0) = 𝒩𝐹(𝛼), thus 𝛼 ∈ 𝐾(𝒩), hence 𝐾(𝒩)  is 𝜌 −

ideal. 

Proposition 4.7. If 𝒩 is (NS −𝜌 − 𝐼), then 𝐾(𝒩𝑐) is 𝜌 − ideal. 

Proof: Let 𝒩 be (NS − 𝜌 − 𝐼)  and let 𝛼 , 𝛽 ∈ 𝐾(𝒩𝑐), then  

𝒩𝑇𝑐(𝛼) = 𝒩𝑇𝑐(𝛽) = 𝒩𝑇𝑐(0), 𝒩𝐼𝑐(𝛼) = 𝒩𝐼𝑐(𝛽) = 𝒩𝐼𝑐(0) and  𝒩𝐹𝑐(𝛼) = 𝒩𝐹𝑐(𝛽) = 𝒩𝐹𝑐(0).  

Also, 𝒩𝑇𝑐(𝛼 ∳ 𝛽 ) = 1 − 𝒩𝑇(𝛼 ∳ 𝛽 ) ≤ 1 − 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)} 

= 𝑚𝑎𝑥{1 − 𝒩𝑇(𝛼), 1 − 𝒩𝑇(𝛽)} 

                                                                     = 𝑚𝑎𝑥{𝒩𝑇𝑐(𝛼), 𝒩𝑇𝑐(𝛽)} 

    = 𝑚𝑎𝑥{𝒩𝑇𝑐(0), 𝒩𝑇𝑐(0)}= 𝒩𝑇𝑐(0), 

𝒩𝐼𝑐(𝛼 ∳ 𝛽 ) = 1−𝒩𝐼(𝛼 ∳ 𝛽 ) ≥  1 − 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)} 

                                                        = 𝑚𝑖𝑛{1 − 𝒩𝐼(𝛼), 1 − 𝒩𝐼(𝛽)} 

                                                 = 𝑚𝑖𝑛 {𝒩𝐼𝑐(𝛼), 𝒩𝐼𝑐(𝛽)} 

                                                  = 𝑚𝑖𝑛{𝒩𝐼𝑐(0), 𝒩𝐼𝑐(0)}= 𝒩𝐼𝑐(0), 

𝒩𝐹𝑐(𝛼 ∳ 𝛽 ) = 1 − 𝒩𝐹(𝛼 ∳ 𝛽 ) ≤ 1 − 𝑚𝑖𝑛{𝒩𝐹(𝛼),𝒩𝐹(𝛽)} 

= 𝑚𝑎𝑥{1 − 𝒩𝐹(𝛼),1 − 𝒩𝐹(𝛽)} 

= 𝑚𝑎𝑥{𝒩𝐹𝑐(𝛼),𝒩𝐹𝑐(𝛼)}= 𝒩𝐹𝑐(0)} 

= 𝑚𝑎𝑥{𝒩𝐹𝑐(0),𝒩𝐹𝑐(0)}= 𝒩𝐹𝑐(0)}, 

and from lemma (3.4),we obtain 

 𝒩𝑇𝑐(𝛼 ∳ 𝛽  ) ≥ 𝒩𝑇𝑐(0), 𝒩𝐼𝑐 (𝛼 ∳ 𝛽 ) ≤ 𝒩𝐼𝑐(0), 𝒩𝐹𝑐 (𝛼 ∳ 𝛽 ) ≥𝒩𝐹𝑐 (0 )   
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thus 𝒩𝑇𝑐(𝛼 ∳ 𝛽 ) =𝒩𝑇𝑐(0), 𝒩𝐼𝑐(𝛼 ∳ 𝛽 ) =𝒩𝐼𝑐(0), 𝒩𝐹𝑐(𝛼 ∳ 𝛽 )= 𝒩𝐹𝑐(0),  

this implies 𝛼∳ 𝛽 ∈ 𝐾(𝒩𝑐). Now, let 𝛼∳ 𝛽, 𝛽 ∈ 𝐾(𝒩𝑐), then 𝒩𝑇𝑐(𝛼 ∳ 𝛽) = 𝒩𝑇𝑐(0), 𝒩𝐼𝑐(𝛼 ∳ 𝛽) = 

𝒩𝐼𝑐(0), 𝒩𝐹𝑐(𝛼 ∳ 𝛽) = 𝒩𝐹𝑐(0).  

And 𝒩𝑇𝑐(𝛽) = 𝒩𝑇𝑐(0), 𝒩𝐼𝑐(𝛽) = 𝒩𝐼𝑐(0), 𝒩𝐹𝑐(𝛽) = 𝒩𝐹𝑐(0). Since 𝒩  is (NS −𝜌 − 𝐼)  then, 

 𝒩𝑇𝑐(𝛼 ) = 1 − 𝒩𝑇(𝛼 ) ≤ 1 − 𝑚𝑖𝑛{𝒩𝑇(𝛼 ∳ 𝛽 ), 𝒩𝑇(𝛽)} 

                                             = 𝑚𝑎𝑥{1 − 𝒩𝑇(𝛼 ∳ 𝛽), 1 − 𝒩𝑇(𝛽)} 

                                             = 𝑚𝑎𝑥{𝒩𝑇𝑐(𝛼 ∳ 𝛽), 𝒩𝑇𝑐(𝛽)} 

                                        = 𝑚𝑎𝑥{𝒩𝑇𝑐(0), 𝒩𝑇𝑐(0)}= 𝒩𝑇𝑐(0), 

𝒩𝐼𝑐(𝛼 ) = 1−𝒩𝐼(𝛼) ≥  1 − 𝑚𝑎𝑥{𝒩𝐼(𝛼 ∳ 𝛽), 𝒩𝐼(𝛽)} 

                                 = 𝑚𝑖𝑛{1 − 𝒩𝐼(𝛼 ∳ 𝛽), 1 − 𝒩𝐼(𝛽)}                         

                                  = 𝑚𝑖𝑛 {𝒩𝐼𝑐(𝛼 ∳ 𝛽), 𝒩𝐼𝑐(𝛽)} 

                                 = 𝑚𝑖𝑛{𝒩𝐼𝑐(0), 𝒩𝐼𝑐(0)}= 𝒩𝐼𝑐(0), 

𝒩𝐹𝑐(𝛼) = 1 − 𝒩𝐹(𝛼) ≤ 1 − 𝑚𝑖𝑛{𝒩𝐹(𝛼 ∳ 𝛽),𝒩𝐹(𝛽)} 

                                   = 𝑚𝑎𝑥{1 − 𝒩𝐹(𝛼 ∳ 𝛽 ),1 − 𝒩𝐹(𝛽)} 

                                  = 𝑚𝑎𝑥{𝒩𝐹𝑐(𝛼 ∳ 𝛽 ),𝒩𝐹𝑐(𝛼)}= 𝒩𝐹𝑐(0)} 

                                   = 𝑚𝑎𝑥{𝒩𝐹𝑐(0),𝒩𝐹𝑐(0)}= 𝒩𝐹𝑐(0), 

and from lemma (3.4),we obtain 

 𝒩𝑇𝑐(𝛼) ≥ 𝒩𝑇𝑐(0), 𝒩𝐼𝑐 (𝛼 ) ≤ 𝒩𝐼𝑐(0), 𝒩𝐹𝑐 (𝛼) ≥𝒩𝐹𝑐 (0 )   

thus 𝒩𝑇𝑐(𝛼) =𝒩𝑇𝑐(0), 𝒩𝐼𝑐(𝛼) =𝒩𝐼𝑐(0), 𝒩𝐹𝑐(𝛼)= 𝒩𝐹𝑐(0),  

this implies 𝛼 ∈ 𝐾(𝒩𝑐), hence 𝐾(𝒩𝑐)is 𝜌 − ideal. 

 

Proposition 4.8. If 𝒩 is (NS − 𝜌 − 𝐼), then 𝒩𝑡 is 𝜌 −ideal. 

Proof: Assume that 𝒩 is (NS − 𝜌 − 𝐼)  and 𝛼, 𝛽 ∈ 𝒩𝑡, then 𝒩𝑇(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)} ≥ 𝑡, 𝒩𝐼(𝛼 

∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)} ≤ 𝑡, 𝒩𝐹(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐹(𝛼),𝒩𝐹(𝛽)} ≥ 𝑡, this implies 𝛼 ∳ 𝛽 ∈ 𝒩𝑡. Now, 

assume that 𝛼∳ 𝛽 ∈ 𝒩𝑡  & 𝛽 ∈ 𝒩𝑡 , and [since 𝒩 is (NS − 𝜌 − 𝐼)]. We obtain 𝒩𝑇(𝛼) ≥ 𝑚𝑖𝑛{𝒩𝑇( 𝛼 ∳ 𝛽), 

𝒩𝑇 (𝛽)} ≥ 𝑡, 𝒩𝐼(𝛼) ≤ 𝑚𝑎𝑥{𝒩𝐼( 𝛼 ∳ 𝛽), 𝒩𝐼(𝛽) ≤ 𝑡, 𝒩𝐹(𝛼) ≥ 𝑚𝑖𝑛{𝒩𝐹( 𝛼 ∳ 𝛽), 𝒩𝐹(𝛽)} ≥ 𝑡, thus 𝛼 ∈ 𝒩𝑡 , 

hence 𝒩𝑡 is 𝜌 −ideal. 

 

Definition4.9. Assume (℧,∳ , 0) is a 𝜌-algebra and 𝒩 is (NS) of ℧. We say 𝒩 is a complete 

neutrosophic 𝜌 -ideal of ℧ (briefly, CNS−𝜌 − 𝐼) if such that: 

(i) 𝒩𝑇(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝑇 (𝛼), 𝒩𝑇 (𝛽)}, 

(ii) 𝒩𝐼 (𝛼 ∳ 𝛽) ≥ 𝑚𝑖𝑛 {𝒩𝐼(𝛼),𝒩𝐼(𝛽)}, 

(iii) 𝒩𝐹(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝐹(𝛼), 𝒩𝐹(𝛽)}, 

(iv) 𝒩𝑇(𝛼) ≤ 𝑚𝑎𝑥{𝒩𝑇( 𝛼 ∳ 𝛽), 𝒩𝑇 (𝛽)}, 

(v) 𝒩𝐼(𝛼) ≥ 𝑚𝑖𝑛{𝒩𝐼( 𝛼 ∳ 𝛽), 𝒩𝐼(𝛽)}, 

(vi) 𝒩𝐹(𝛼) ≤ 𝑚𝑎𝑥{𝒩𝐹( 𝛼 ∳ 𝛽), 𝒩𝐹(𝛽)}, for any 𝛼, 𝛽 ∈ ℧. 

 

Example 4.10.Let ℧ = { 0 , 1 ,2,3,4 } be a set with the following table (5), it is clear that (℧, ∳ , 0) is a 𝜌-

algebra, We define a (NS) 𝒩 in ℧ as follows: 
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𝒩𝑇 =( 0    1        2        3       4
  0.4   0.5    0.5    0.5    0.5    

), 𝒩𝐼  =( 0    1        2        3       4
  0.7  0.3    0.3    0.3    0.3    

), and 

 

𝒩𝐹 =(
0    1        2        3       4

  0.2   0.4    0.4    0.4   0.4    
). Hence, 𝒩 is (CNS −𝜌 − 𝐼). 

 

 

 

 

 

 

                            

Table (5):  𝒩 is (CNS −𝜌 − 𝐼). 

Proposition 4.11: Let 𝒩 be NS then  𝒩 is (NS − 𝜌 − 𝐼)  if and only if 𝒩𝑐 is (CNS − 𝜌 − 𝐼). 

Proof: Let 𝒩 be (NS − 𝜌 − 𝐼) ,From proof proposition (3.18) we obtain 𝒩𝑇𝑐(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝑇𝑐 (𝛼), 

𝒩𝑇𝑐 (𝛽)}, 𝒩𝐼𝑐(𝛼 ∳ 𝛽) ≥ 𝑚𝑖𝑛 {𝒩𝐼𝑐(𝛼), 𝒩𝐼𝑐(𝛽)}, 𝒩𝐹𝑐(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥 {𝒩𝐹𝑐(𝛼), 𝒩𝐹𝑐(𝛽)}.  

Now, 𝒩𝑇𝑐(𝛼) = 1 − 𝒩𝑇(𝛼) ≤ 1 − 𝑚𝑖𝑛{𝒩𝑇(𝛼 ∳ 𝛽), 𝒩𝑇(𝛽)} 

                                    = 𝑚𝑎𝑥{1 − 𝒩𝑇(𝛼 ∳ 𝛽), 1 − 𝒩𝑇(𝛽)} 

                                    = 𝑚𝑎𝑥{𝒩𝑇𝑐(𝛼 ∳ 𝛽), 𝒩𝑇𝑐(𝛽)}, 

𝒩𝐼𝑐(𝛼) = 1 − 𝒩𝐼(𝛼) ≥ 1 − 𝑚𝑎𝑥{𝒩𝐼(𝛼 ∳ 𝛽), 𝒩𝐼(𝛽)} 

                                  = 𝑚𝑖𝑛{1 − 𝒩𝐼(𝛼), 1 − 𝒩𝐼(𝛽)} 

                                  = 𝑚𝑖𝑛{𝒩𝐼𝑐(𝛼 ∳ 𝛽), 𝒩𝐼𝑐(𝛽)}, 

𝒩𝐹𝑐(𝛼 )= 1 − 𝒩𝐹(𝛼 ) ≤ 1 − 𝑚𝑖𝑛{𝒩𝐹(𝛼 ∳ 𝛽), 𝒩𝐹(𝛽)} 

                                    = 𝑚𝑎𝑥{1 − 𝒩𝐹(𝛼 ∳ 𝛽), 1 − 𝒩𝐹(𝛽)} 

                                      = 𝑚𝑎𝑥{𝒩𝐹𝑐(𝛼 ∳ 𝛽), 𝒩𝐹𝑐(𝛽)}.  

Hence 𝒩𝑐 is (CNS − 𝜌 − 𝐼). 

Conversely: Let 𝒩𝑐  be   (CNS − 𝜌 − 𝐼) then from proof proposition, (3.18) we obtain, 

𝒩𝑇(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝑇 (𝛼), 𝒩𝑇 (𝛽)}, 𝒩𝐼 (𝛼 ∳ 𝛽) ≤ 𝑚𝑎𝑥 {𝒩𝐼(𝛼),𝒩𝐼(𝛽)}, 𝒩𝐹(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐹(𝛼), 𝒩𝐹(𝛽)}. 

Now, 𝒩𝑇(𝛼 ) = 1 − 𝒩𝑇𝑐(𝛼 ) ≥ 1 − 𝑚𝑎𝑥{𝒩𝑇𝑐(𝛼 ∳ 𝛽 ), 𝒩𝐹𝑐(𝛽} 

                                                       = 𝑚𝑖𝑛{1 − 𝒩𝑇𝑐(𝛼 ∳ 𝛽 ), 1 − 𝒩𝑇𝑐(𝛽)} 

                                                        = 𝑚𝑖𝑛{𝒩𝑇(𝛼 ∳ 𝛽 ), 𝒩𝑇(𝛽)}, 

𝒩𝐼(𝛼) = 1 − 𝒩𝑇𝑐(𝛼 ) ≤ 1 − 𝑚𝑖𝑛{𝒩𝐼𝑐(𝛼 ∳ 𝛽 ), 𝒩𝐼𝑐(𝛽)} 

                                       = 𝑚𝑎𝑥{1 − 𝒩𝐼𝑐(𝛼 ∳ 𝛽 ), 1 − 𝒩𝐼𝑐(𝛽)} 

                                     = 𝑚𝑎𝑥{𝒩𝐼(𝛼 ∳ 𝛽 ), 𝒩𝐼(𝛽)} 

𝒩𝐹(𝛼)= 1 − 𝒩𝐹𝑐(𝛼)  ≥ 1 − 𝑚𝑎𝑥{𝒩𝐹𝑐(𝛼 ∳ 𝛽 ),𝒩𝐹𝑐(𝛽)} 

                                   = 𝑚𝑖𝑛{1 − 𝒩𝐹𝑐(𝛼 ∳ 𝛽 ),1 − 𝒩𝐹𝑐(𝛽)} 

∱  𝟎 𝟏 𝟐 𝟑 4 

𝟎 0 0 0 0 0 

𝟏 1 0 1 2 4 

𝟐 2 1 0 2 2 

𝟑 

4 

3 

4 

2 

4 

2 

2 

0 

3 

3 

0 
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                                   = 𝑚𝑖𝑛{𝒩𝐹(𝛼 ∳ 𝛽 ), 𝒩𝐹(𝛽)}. 

 Hence 𝒩  is  (NS − 𝜌 − 𝐼) 

Corollary 4.12: If 𝒩𝑐 is (CNS − 𝜌 − 𝐼). Then; 

1- 𝒩𝑡 is 𝜌 −subalgebra, 

2- 𝒩𝑐 is (CNS − 𝜌 − 𝑆𝐴),  

3- 𝒩𝑡 is 𝜌 −ideal. 

Proof 1: From proposition (4.11) and corollary (4.4)-1. 

Proof 2: From proposition (4.11) and corollary (4.4)-2. 

Proof 3: From Proposition (4.11) and Proposition (4.8). 

 

5. Neutrosophic �̅� -Ideal and Complete Neutrosophic �̅� -Ideal 

Definition 5.1. Assume (℧,∳ , 0) is a 𝜌-algebra and 𝒩 is (NS) of ℧. We say 𝒩 is a neutrosophic �̅� -

ideal of ℧ (briefly, NS − �̅� − 𝐼) if such that: 

(i) 𝒩𝑇(0) ≥ 𝒩𝑇(𝛼), 

(ii) 𝒩𝐼(0) ≤ 𝒩𝐼(𝛼),  

(iii) 𝒩𝐹(0) ≥ 𝒩𝐹(𝛼), 

(iv) 𝒩𝑇(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝑇 (𝛼), 𝒩𝑇(𝛽)}, 

(v) 𝒩𝐼(𝛼 ∳ 𝛽) ≤ 𝑚𝑎𝑥{𝒩𝐼(𝛼),𝒩𝐼(𝛽)}, 

(vi) 𝒩𝐹(𝛼 ∳ 𝛽) ≥ 𝑚𝑖𝑛{𝒩𝐹(𝛼),𝒩𝐹(𝛽)}, for any 𝛼, 𝛽 ∈ ℧. 

Example 5.2. Let ℧ = { 𝑥 , 𝑦 , 𝑧, 𝑤 } be a set with the following table(6), it is clear that (℧, ∳  , 𝑥) is a 𝜌-

algebra. We define a (NS) 𝒩 in ℧ as follows: 

𝒩𝑇 =(
𝑥      𝑦      𝑧      𝑤

0.6   0.4    0.4   0.4 
), 𝒩𝐼 =(

𝑥      𝑦        𝑧      𝑤
0.1     0.2    0.2   0.2 

) , 𝒩𝐹 = (
𝑥      𝑦         𝑧      𝑤

0.2    0.1    0.1   0.1 
). 

Hence, 𝒩 is (NS −�̅� − 𝐼).                 

 

 

 

                                           

Table (6):  𝒩 is (NS −�̅� − 𝐼). 

 

Lemma 5.3. If 𝒩 is (NS − �̅� − 𝐼), then 𝒩 is (NS − 𝜌 − 𝑆𝐴).  

Corollary 5.4. Let 𝒩 be (NS − �̅� − 𝐼). Then; 

1- 𝒩𝑡 is 𝜌 −subalgebra, 

2- 𝒩𝑐is (CNS −𝜌 − 𝑆). 

Proof (1): From lemma (5.3) and proposition (3.10). 

Proof (2): From lemma (5.3) and proposition (3.18).                                               

 

∱  𝒙 𝒚 𝒛 𝒘  

𝑥 𝑥 𝑥 𝑥 𝑥  

𝑦 𝑦 𝑥 𝑧 𝑤  

𝑧 𝑧 𝑧 𝑥 𝑧  

𝑤 𝑤 𝑤 𝑧 𝑥  
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Proposition 5.5. If 𝒩 is (NS − �̅� − 𝐼), then 𝒩𝑡 is �̅� −ideal. 

Proof: Assume that 𝒩 is (NS − �̅� − 𝐼)  and 𝛼, 𝛽 ∈ 𝒩𝑡, then 𝒩𝑇(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)} ≥ 𝑡, 𝒩𝐼(𝛼 

∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)} ≤ 𝑡, 𝒩𝐹(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐹(𝛼),𝒩𝐹(𝛽)} ≥ 𝑡, this implies 𝛼 ∳ 𝛽 ∈ 𝒩𝑡. Since 

[𝒩 is (NS − �̅� − 𝐼)], and 𝒩 ={≺ 𝛼, 𝒩𝑇(𝛼) ≥ t , 𝒩𝐼(𝛼) ≤ t , 𝒩𝐹(𝛼) ≥ t ≻∣ 𝛼 ∈ ℧}. We obtain 𝒩𝑇(0) ≥ 𝒩𝑇( 

𝛼) ≥ t, 𝒩𝐼(0) ≤ 𝒩𝐼(𝛼) ≤ 𝑡, 𝒩𝐹(0) ≥ 𝒩𝐹(𝛼) ≥ t, thus 0 ∈ 𝒩𝑡  , hence 𝒩𝑡 is �̅� −ideal. 

 

Definition5.6. Assume (℧,∳ , 0) is a 𝜌-algebra and 𝒩 is (NS) of ℧. We say 𝒩 is a complete 

neutrosophic �̅� -ideal of ℧ (briefly, CNS − �̅� − 𝐼). If such that: 

(i)𝒩𝑇(0)≤𝒩𝑇(𝛼), 

(ii) 𝒩𝐼(0) ≥ 𝒩𝐼(𝛼),   

(iii) 𝒩𝐹(0) ≤ 𝒩𝐹(𝛼), 

(iv) 𝒩𝑇(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝑇 (𝛼), 𝒩𝑇(𝛽)},   

(v) 𝒩𝐼(𝛼 ∳ 𝛽) ≥ 𝑚𝑖𝑛{𝒩𝐼(𝛼),𝒩𝐼(𝛽)}, 

(vi) 𝒩𝐹(𝛼 ∳ 𝛽) ≤ 𝑚𝑎𝑥{𝒩𝐹(𝛼),𝒩𝐹(𝛽)},for any 𝛼, 𝛽 ∈ ℧. 

 

Example 5.7. Let ℧ = { 0 ,1 ,2,3 } be a set with the following table(7), it is clear that (℧, ∳  , 0) is a 𝜌-

algebra. We define a (NS) 𝒩 in ℧ as follows: 

𝒩𝑇 =( 0      1      2      3
0.4   0.5    0.5   0.5 

), 𝒩𝐼 =( 0      1        2      3
0.3     0.2    0.2   0.2 

) , 𝒩𝐹 = (
0      1        2      3

0.1    0.2    0.2   0.2 
). 

Hence, 𝒩 is (CNS −�̅� − 𝐼).                 

 

 

        

   

 

 

Table (7):  𝒩 is (CNS −�̅� − 𝐼). 

Lemma 5.8.  If 𝒩 is (CNS − �̅� − 𝐼), then 𝒩 is (CNS − 𝜌 − 𝑆𝐴).  

Proposition 5.9: Let 𝒩 be (CNS −�̅� − 𝐼), then 𝐾(𝒩) is 𝜌 − subalgebra. 

Proof: Assume  α , β ∈  K(N), then NT(α) = NT(β) = NT(0), NI(α) = NI(β) = NI(0)  and  NF(α) =

NF(β) = NF(0).  Also, NT(α ∳ β) ≤ max{NT(α), NT(β)} = max {NT(0), 

𝒩𝑇(0)}= 𝒩𝑇(0), 𝒩𝐼(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)}= 𝑚𝑖𝑛{𝒩𝐼(0), 𝒩𝐼(0)}= 𝒩𝐼(0), 𝒩𝐹(𝛼 ∳ 𝛽 ) ≤ 

𝑚𝑎𝑥{𝒩𝐹(𝛼),𝒩𝐹(𝛽)}= 𝑚𝑎𝑥{𝒩𝐹(0),𝒩𝐹(0)}= 𝒩𝐹(0), and 𝒩𝑇(0 ) ≤ 𝒩𝑇(𝛼 ∳ 𝛽 ), 𝒩𝐼 (0 ) ≥ 𝒩𝐼(𝛼 ∳ 𝛽), 𝒩𝐹 (0) ≤ 

𝒩𝐹(𝛼 ∳ 𝛽), thus 𝒩𝑇(𝛼 ∳ 𝛽)= 𝒩𝑇(0), 𝒩𝐼(𝛼 ∳ 𝛽) =𝒩𝐼(0), 𝒩𝐹(𝛼 ∳ 𝛽 )= 𝒩𝐹(0), and 𝛼 ∳ 𝛽 ∈ 𝐾(𝒩) hence 

𝐾(𝒩) is 𝜌 −subalgebra. 

Proposition 5.10. Let 𝒩 be (NS) then 𝒩 is (NS − �̅� − 𝐼) if and only if 𝒩𝑐 is (CNS − �̅� − 𝐼). 

Proof: Let 𝒩  be  (NS − �̅� − 𝐼), we obtain  𝒩𝑇(0) ≥ 𝒩𝑇(𝛼), 𝒩𝐼(0) ≤ 𝒩𝐼(𝛼),  𝒩𝐹(0) ≥ 𝒩𝐹(𝛼), thus 𝒩𝑇𝑐(𝛼) 

= 1 − 𝒩𝑇(𝛼 ) ≥ 1 − 𝒩𝑇(0) = 𝒩𝑇𝑐(0 ),  𝒩𝐼𝑐(𝛼 )= 1 − 𝒩𝐼(𝛼 ) ≤ 1 − 𝒩𝐼(0) = 𝒩𝐼𝑐(0),  𝒩𝐹𝑐(𝛼 ) = 1 − 𝒩𝐹(𝛼 ) ≥ 

1 − 𝒩𝐹(0) = 𝒩𝐹𝑐(0).  

∱  𝟎 𝟏 𝟐 𝟑  

𝟎 0 0 0 0  

𝟏 1 0 2 3  

 𝟐  2  2    0 2  

 𝟑      3 3 2 0  
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Now,   𝒩𝑇𝑐(𝛼 ∳ 𝛽 )= 1 − 𝒩𝑇(𝛼 ∳ 𝛽 ) ≤ 1 − 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)} 

    = 𝑚𝑎𝑥{1 − 𝒩𝑇(𝛼), 1 − 𝒩𝑇(𝛽)} 

                                                                = 𝑚𝑎𝑥{𝒩𝑇𝑐(𝛼), 𝒩𝑇𝑐(𝛽)}, 

𝒩𝐼𝑐(𝛼 ∳ 𝛽) = 1 − 𝒩𝐼(𝛼 ∳ 𝛽 ) ≥ 1 − 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)}  

                                                     = 𝑚𝑖𝑛{1 − 𝒩𝐼(𝛼), 1 − 𝒩𝐼(𝛽)} = 𝑚𝑖𝑛{𝒩𝐼𝑐(𝛼), 𝒩𝐼𝑐(𝛽)}, 

 𝒩𝐹𝑐(𝛼 ∳ 𝛽 )= 1 − 𝒩𝐹(𝛼 ∳ 𝛽 ) ≤ 1 − 𝑚𝑖𝑛{𝒩𝐹(𝛼), 𝒩𝐹(𝛽)}   

                                                        = 𝑚𝑎𝑥{1 − 𝒩𝐹(𝛼), 1 − 𝒩𝐹(𝛽)} = 𝑚𝑎𝑥{𝒩𝐹𝑐(𝛼), 𝒩𝐹𝑐(𝛽)}, 

Hence 𝒩𝑐 is (CNS − �̅� − 𝐼). 

Conversely: Let 𝒩𝑐 be (CNS − �̅� − 𝐼), then 𝒩𝑇𝑐(0)≤𝒩𝑇𝑐(𝛼), 𝒩𝐼𝑐(0) ≥ 𝒩𝐼𝑐(𝛼),𝒩𝐹𝑐(0) ≤ 𝒩𝐹𝑐(𝛼), 𝒩𝑇(0) 

= 1 − 𝒩𝑇𝑐(0 ) ≥1 − 𝒩𝑇𝑐(𝛼) = 𝒩𝑇(𝛼 ),  

𝒩𝐼(0) =  1 − 𝒩𝐼𝑐(0) ≤ 1 − 𝒩𝐼𝑐(𝛼) = 𝒩𝐼(𝛼),                                                   

𝒩𝐹(0 )= 1 − 𝒩𝐹𝑐(0 )  ≥ 1 − 𝒩𝐹𝑐(𝛼) = 𝒩𝐹(𝛼),  

and from the following 

𝒩𝑇𝑐(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝑇𝑐(𝛼), 𝒩𝑇𝑐(𝛽)}, 𝒩𝐼𝑐(𝛼 ∳ 𝛽 ) ≥ 𝑚𝑖𝑛{𝒩𝐼𝑐(𝛼), 𝒩𝐼𝑐(𝛽)}, 

𝒩𝐹𝑐(𝛼 ∳ 𝛽 ) ≤ 𝑚𝑎𝑥{𝒩𝐹𝑐(𝛼), 𝒩𝐹𝑐(𝛽)}, for any 𝛼, 𝛽 ∈ ℧, 

We obtain, 

𝒩𝑇(𝛼 ∳ 𝛽 ) = 1 − 𝒩𝑇𝑐(𝛼 ∳ 𝛽 ) ≥1 − 𝑚𝑎𝑥{𝒩𝑇𝑐(𝛼), 𝒩𝑇𝑐(𝛽)}  

                                                    = 𝑚𝑖𝑛{1 − 𝒩𝑇𝑐(𝛼), 1 − 𝒩𝑇𝑐(𝛽)} = 𝑚𝑖𝑛{𝒩𝑇(𝛼), 𝒩𝑇(𝛽)}, 

𝒩𝐼(𝛼 ∳ 𝛽 ) = 1 − 𝒩𝐼𝑐(𝛼 ∳ 𝛽 ) ≤ 1 − 𝑚𝑖𝑛{𝒩𝐼𝑐(𝛼), 𝒩𝐼𝑐(𝛽)} 

                                                    = 𝑚𝑎𝑥{1 − 𝒩𝐼𝑐(𝛼), 1 − 𝒩𝐼𝑐(𝛽)}= 𝑚𝑎𝑥{𝒩𝐼(𝛼), 𝒩𝐼(𝛽)} 

𝒩𝐹(𝛼 ∳ 𝛽 )= 1 − 𝒩𝐹𝑐(𝛼 ∳ 𝛽 )  ≥ 1 − 𝑚𝑎𝑥{𝒩𝐹𝑐(𝛼),𝒩𝐹𝑐(𝛽)} 

                                                        = 𝑚𝑖𝑛{1 − 𝒩𝐹𝑐(𝛼),1 − 𝒩𝐹𝑐(𝛽)}= 𝑚𝑖𝑛{𝒩𝐹(𝛼), 𝒩𝐹(𝛽)}. 

Hence 𝒩  is  (NS − �̅� − 𝐼). 

Corollary 5.11. If 𝒩𝑐 is (CNS − �̅� − 𝐼). Then; 

1- 𝒩𝑡 is 𝜌 −subalgebra, 

2- 𝒩𝑐 is (CNS − 𝜌 − 𝑆𝐴),   

3- 𝒩𝑡 is �̅� −ideal. 

Proof 1: From proposition (5.10) and corollary (5.4)-1. 

Proof 2: From Proposition (5.10) and Corollary (5.4)-2. 

Proof 3: From Proposition (5.10) and Proposition (5.5). 

6. Conclusion  

We presented and examined several kinds of 𝜌 −algebra ideals in this research, which we called 

neutrosophic 𝜌 −subalgebra, complete neutrosophic 𝜌 −subalgebra, neutrosophic 𝜌 −ideal, 

complete neutrosophic 𝜌 −ideal, neutrosophic 𝜌 −ideal, neutrosophic 𝜌 −ideal, neutrosophic 

�̅� −ideal, and complete neutrosophic �̅� −ideal, respectively. We also suggested some theories try to 

explain some of these ideal type relationships. In future work, we will use soft set theory to study 

our notions and results in neutrosophic soft sets. 
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Abstract. In n-Valued refined logic truth value T can be split into many types of truths: T1, T2, ..., Tp and

I into many types of indeterminacies: I1, I2, ..., Ir and F into many types of falsities: F1, F2, ..., Fs, where p, r

and s are integers greater than 1, and p+ r+ s = n. Importance of n-valued refined logic and sets appeared in

different applications specially in medical diagnosis. In this paper we post a condition on neutrosophic n-valued

refined sets to make them functional to be applied in different mathematical branches. We define and study

n-valued refined topological spaces. We defined neutrosophic n-valued refined α-open, β-open, pre-open and

semi-open sets and studied their properties. We constructed different counter examples to clarify the relations

between these different types of neutrosophic n-valued refined generalized open sets.

Keywords: n-valued refined topology; refined logic; refined sets; n-valued refined α-open; semi-open sets;

n-valued refined generalized open sets.)

————————————————————————————————————————

1. Introduction

Neutrosophic sets are, first, introduced in 2005 by [26,27] as a generalization of intuitionistic

fuzzy sets [13], where any element x ∈ X we have three degrees; the degree of membership(T),

indeterminacy(I), and non-membership(F). Neurosophic vague sets are introduced in 2015 by

[30]. Neutrosophic vague topological spaces introduced in [21] we are many different notations

are introduced and studied such as neurosophic vague continuity and compactness.

Neutrosophic topologies are defined and studied by Smarandache [27], Lupianez [19,20] and

Salama [?]. Open and closed neutrosophic sets, interior, exterior, closure and boundary of

neutrosophic sets can be found in [29].

Neutrosophic sets applied to generalize many notaions about soft topology and applications

[18], [23], [16], generalized open and closed sets [31] , fixed point theorems [18] , graph theory

Murad Arar, Neutrosophic n-Valued Refined Sets and Topology

Neutrosophic Sets and Systems, Vol. 55, 2023



[17]and rough topology and applications [22]. Neutrosophy has many applications especially

in decision making, for more details about new trends of neutrosophic applications one can

consult [1]- [7].

Generalized topology and continuity introduced in 2002 in [?] which is a generalization of

topological spaces and has different properties than general topology, see for example [8], [11]

and [12]. Neutrosophic generalized sets and topologies are introduced and studies by Murad

M. Arar in 2020 see [9] and [10]. In n-valued refined logic truth value T can be split into

many types of truths: T1, T2, ..., Tp and I into many types of indeterminacies: I1, I2, ..., Ir and

F into many types of falsities: F1, F2, ..., Fs, where p, r and s are integers greater than 1, and

p + r + s = n see [28]. Importance of n-valued refined logic and sets appeared in different

applications specially in medial diagnosis see [25] and [14], where a strong assumption is

assumed to make them functional; that is p = r = s.

Definition 1.1. [26]: We say that the set A is neutrosophic on X if

A = {⟨x, µA(x), σA(x), νA(x)⟩;x ∈ X}; µ, σ, ν : X →]−0, 1+[ and −0 ≤ µ(x)+σ(x)+ν(x) ≤ 3+.

The class of all neutrosophic sets on the universe X will be denoted by N (X). The basic

neutrosophic operations (inclusion, union, and intersection) where first introduced by [24].

Definition 1.2 (Neutrosophic sets operations). Let A,Aα, B ∈ N (X) such that α ∈ ∆. Then

we define the neutrsophic:

(1) (Inclusion): A ⊑ B If µA(x) ≤ µB(x), σA(x) ≥ σB(x) and νA(x) ≥ νB(x).

(2) (Equality): A = B ⇔ A ⊑ B and B ⊑ A.

(3) (Intersection) ⊓
α∈∆

Aα(x) = {⟨x, ∧
α∈∆

µAα(x), ∨
α∈∆

σAα(x), ∨
α∈∆

νAα(x)⟩;x ∈ X}.
(4) (Union) ⊔

α∈∆
Aα(x) = {⟨x, ∨

α∈∆
µAα(x), ∧

α∈∆
σAα(x), ∧

α∈∆
νAα(x)⟩;x ∈ X}.

(5) (Complement) Ac = {⟨x, νA(x), 1− σA(x), µA(x)⟩;x ∈ X}
(6) (Universal set) 1X = {⟨x, 1, 0, 0⟩;x ∈ X}; called the neutrosophic universal set.

(7) (Empty set) 0X = {⟨x, 0, 1, 1⟩;x ∈ X}; called the neutrosophic empty set.

Proposition 1.3. [24] For A,Aα ∈ N (X) for every α ∈ ∆ we have:

(1) A ⊓ ( ⊔
α∈∆

Aα) = ⊔
α∈∆

(A ⊓Aα).

(2) A ⊔ ( ⊓
α∈∆

Aα) = ⊓
α∈∆

(A ⊔Aα).

Definition 1.4. [24] [Neutrosophic Topology ] τ ⊆ N (X) is called a neutrosophic topology for

X if

(1) 0X , 1X ∈ τ .

(2) If Aα ∈ τ for every α ∈ ∆, then ⊔
α∈∆

Aα ∈ τ ,

(3) For every A,B ∈ τ , we have A ⊓B ∈ τ .
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The ordered pair (X, τ) will be said a neutrosophic space over X. The elements of τ will be

called neutrosophic open sets. For any A ∈ N (X), If Ac ∈ τ , then we say A is neutrosophic

closed.

2. Neutrosophic n-valued refined sets and topology

In neutrosophic n-valued refined logic (see [28]) the membership degree refined (split) into r

values µ1, µ2, ..., µr, the indetermancy refined into s values σ1, σ2, ..., σs and the nonmebership

refined into t values ν1, ν2, ..., νt such that n = r + s+ t and

−0 ≤
r∑

i=1

µi +

s∑
i=1

σi +

t∑
i=1

νi ≤ n+

Some authors assumes that r = s = t see for example [14]. Actually, there is no guarntee

that the membership, intedermancy and nonmembership degrees refined or split into the same

number of values, and we will not get a functional system of Neutrosophic n-valued refined

sets if no more restrictions are assumed on r, s and t. This accurse when we define the basic

set operations on the neutrosophic n-valued refined sets, especially when we try to define the

neutrosophic n-valued refined complement of a given neutrosophic n-valued refined set; where

r plays the role of t and vice versa. We will be back to this discussion after stating some

definitions and theorems.

Definition 2.1. [26]: A is called a neutrosophic n-valued refined set on a universe X

if A = {⟨x, µ1
A(x), µ

2
A(x), ..., µ

r
A(x);σ

1
A(x), σ

2
A(x), ..., σ

s
A(x); ν

1
A(x), ν

2
A(x), ..., ν

t
A(x)⟩;x ∈ X};

µi
A, σ

j
A, ν

k
A : X →]−0, 1+[ for every i = 1, ..., r, j = 1, ..., s, k = 1, ..., t such that r + s + t = n

and

−0 ≤
r∑

i=1

µi
A(x) +

s∑
j=1

σj
A +

t∑
k=1

νkA ≤ n+.

The class of all neutrosophic n-valued refined sets on the universe X will be denoted by

Rn(X).

The following is the definition of the basic operations (inclusion, union, intersection and com-

plement) on neutrosophic n-valued refined sets.

Definition 2.2. [Neutrosophic n-valued refined sets operations] Let A,Aα, B ∈ Rn(X) such

that α ∈ ∆. Then we define the neutrsophic n-valued refined:

(1) (Inclusion): A ⊑R B If µi
A(x) ≤ µi

B(x), σ
j
A(x) ≥ σj

B(x) and νkA(x) ≥ νkB(x) for every

i = 1, ..., r, j = 1, ..., s, k = 1, ..., t.

(2) (Equality): A = B ⇔ A ⊑R B and B ⊑R A.

(3) (Intersection) ⊓
α∈∆R

Aα(x) = {⟨x, ∧
α∈∆

µ1
Aα

(x), ..., ∧
α∈∆

µr
Aα

(x); ∨
α∈∆

σ1
A(x), ..., ∨

α∈∆
σs
A(x);

∨
α∈∆

ν1A(x), ..., ∨
α∈∆

νtA(x)⟩;x ∈ X}.
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(4) (Union) ⊔
α∈∆R

Aα(x) = {⟨x, ∨
α∈∆

µ1
Aα

(x), ..., ∨
α∈∆

µr
Aα

(x); ∧
α∈∆

σ1
A(x), ..., ∧

α∈∆
σs
A(x);

∧
α∈∆

ν1A(x), ..., ∧
α∈∆

νtA(x)⟩;x ∈ X}.

(5) (Complement) Ac = {⟨x, ν1A(x), ..., νtA(x); 1−σ1
A(x), ..., 1−σs

A(x);µ
1
A(x), ..., µ

r
A(x)⟩;x ∈

X}
(6) (Universal set) 1X = {⟨x, 1, ..., 1; 0, ..., 0; 0, ..., 0⟩;x ∈ X}; called the neutrosophic n-

valued refined universal set.

(7) (Empty set) 0X = {⟨x, 0, ..., 0; 1, ..., 1; 1, ..., 1⟩;x ∈ X}; called the neutrosophic n-valued

refined empty set.

Theorem 2.3. Let Aα, A,B ∈ Rn(X) such that α ∈ ∆. Then we have

(1) If A ⊑R B ⊑R C, then A ⊑R C.

(2) If A ⊑R B, then Bc ⊑R Ac.

(3) ( ⊔
α∈∆R

Aα) ⊓R A = ⊔
α∈∆R

(Aα ⊓R A)

(4) ( ⊓
α∈∆R

Aα) ⊔R A = ⊓
α∈∆R

(Aα ⊔R A)

[Demorgan’s Laws]

(5) (A ⊔R B)c = Ac ⊓R Bc

(6) (A ⊓R B)c = Ac ⊔R Bc

Proof. (1) and (2) are Straight forward! (3) and (4) can be proved using the following two

propositions:

− (∨aα
α∈∆

) ∧ b = ∨
α∈∆

(aα ∧ b)

− ( ∧
α∈∆

aα) ∨ b = ∧
α∈∆

(aα ∨ b)

Now, we prove (3) and (4) can be proved by duality:

(A ⊔R B)c = ({⟨x, µ1
A(x) ∨ µ1

B(x), ..., µ
r
A(x) ∨ µr

B(x);σ
1
A(x) ∧ σ1

B(x), ..., σ
s
A(x) ∧ σs

B(x); ν
1
A(x) ∧

ν1B(x), ..., ν
t
A(x) ∧ νtA(x)⟩;x ∈ X})c

= {⟨x, ν1A(x) ∧ ν1B(x), ..., ν
t
A(x) ∧ νtA(x); 1 − (σ1

A(x) ∧ σ1
B(x)), ..., 1 − (σs

A(x) ∧ σs
B(x));µ

1
A(x) ∨

µ1
B(x), ..., µ

r
A(x) ∨ µr

B(x)⟩;x ∈ X}
= {⟨x, ν1A(x) ∧ ν1B(x), ..., ν

t
A(x) ∧ νtA(x); (1 − σ1

A(x)) ∨ (1 − σ1
B(x)), ..., (1 − σs

A(x)) ∨ (1 −
σs
B(x));µ

1
A(x) ∨ µ1

B(x), ..., µ
r
A(x) ∨ µr

B(x)⟩;x ∈ X}
= {⟨x, ν1A(x), ..., νtA(x); 1− σ1

A(x), ..., 1− σs
A(x);µ

1
A(x), ..., µ

r
A(x)⟩;x ∈ X} ⊓R

{⟨x, ν1B(x), ..., νtA(x); 1− σ1
B(x), ..., 1− σs

B(x);µ
1
B(x), ..., µ

r
B(x)⟩;x ∈ X} = Ac ⊓R Bc

So, as the above theorem shows, the system defined in Definition 2.2 is rich to a certain

extent, but it still needs to be stronger to deal with some situations: for example A ⊓R Ac

is not well-defined if r ̸= t. The concept True (membership) and False (nonmembership)

are related, it is reasonable to discuss them in any world simultaneously, so we can assume

r = t, and this is what F. Smarandache did in [28] when he discussed the relative (absolute)
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truth and falsity simultaneously. The condition r = s = t mentioned in [14] is very strong and

will not add any value to us, actually it implies that n is divisible by 3, since n = r + s + t,

so it does not include some worlds, for example a world of seven and five-valued logic which

discussed in [28]. On the other hand if we, only, assume r = t, then n can be any value since

we have not assumed any condition on s and worlds of any n-valued logic will be included.

Definition 2.4. : Let A be a neutrosophic n-valued refined set on a universe X. If r = s, then

we call A a homogeneous neutrosophic n-valued refined set. n will be called the dimension of

A, and r, s will be called the sub-dimensions of A. The class of all homogeneous neutrosophic

n-valued refined sets on the universe X with sub-dimensions r, s will be denoted by R(n,r,s)(X).

The following is obvious:

Proposition 2.5. Let A,B ∈ R(n,r,s)(X). Then

(1) A ⊓R B ∈ R(n,r,s)(X).

(2) A ⊔R B ∈ R(n,r,s)(X).

(3) Ac ∈ R(n,r,s)(X).

Example 2.6. Let X = {a, b} , and let A,B ∈ R(5,2,1)(X) such that

A = {⟨a, 0.2, 0.1; 0.7; 0.1, 0.4⟩, ⟨b, 0.5, 0.3; 0.2; 0.9, 0.5⟩} and

B = {⟨a, 0.4, 0.01; 0.3; 0.4, 0.3⟩, ⟨b, 0.4, 0.2; 0.1; 0.7, 0.7⟩}. Then we have:

A ⊓R B = {⟨a, 0.2, 0.01; 0.7; 0.4, 0.4⟩, ⟨b, 0.4, 0.2; 0.2; 0.9, 0.7⟩} ∈ R(5,2,1)

A ⊔R B = {⟨a, 0.4, 0.1; 0.3; 0.1, 0.3⟩, ⟨b, 0.5, 0.3; 0.1; 0.7, 0.5⟩} ∈ R(5,2,1)

Ac = {⟨a, 0.1, 0.4; 0.3; 0.2, 0.1⟩, ⟨b, 0.9, 0.5; 0.8; 0.5, 0.3⟩} ∈ R(5,2,1)

Definition 2.7 (Neutrosophic n-valued Refined Topology). τ ⊂ R(n,r,s)(X) is called a neutro-

sophic n-valued refined topology on X if

(1) 0X , 1X ∈ τ .

(2) For every A,B ∈ τ , we have A ⊓R B ∈ τ .

(3) If Aα ∈ τ for every α ∈ ∆, then ⊔R
α∈∆

Aα ∈ τ ,

Elements of τ are called neutrosophic n-valued refined open sets. A ∈ R(n,r,s)(X) is said

neutrosophic n-valued refined closed set if Ac ∈ τ .

The class of all neutrosophic n-valued refined topologies on X with sub-dimensions r, s will be

denoted by TOP(n,r,s)(X).

Definition 2.8. Let τ ⊆ R(n,r,s)(X) be a neutrosophic n-valued refined topology on X and

let A ∈ R(n,r,s)(X). Then:

(1) The neutrosophic n-valued refined interior of A is defined to be

IntR(A) = ⊔R{O ∈ τ ;O ⊑R A} .
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(2) The neutrosophic n-valued refined closure of A is defined to be

ClR(A) = ⊓R{C ∈ R(n,r,s)(X);Cc ∈ τ and A ⊑R C}

Example 2.9. Let X = {a, b} , and let τ = {0X , 1X , A,B,C,D} ⊂ R(5,2,1)(X) where

A = {⟨a, 0.2, 0.1; 0.7; 0.1, 0.4⟩, ⟨b, 0.5, 0.3; 0.2; 0.9, 0.5⟩},
B = {⟨a, 0.4, 0.01; 0.3; 0.4, 0.3⟩, ⟨b, 0.4, 0.2; 0.1; 0.7, 0.7⟩},
C = {⟨a, 0.2, 0.01; 0.7; 0.4, 0.4⟩, ⟨b, 0.4, 0.2; 0.2; 0.9, 0.7⟩}
D = {⟨a, 0.4, 0.1; 0.3; 0.1, 0.3⟩, ⟨b, 0.5, 0.3; 0.1; 0.7, 0.5⟩}
Then τ is a Neutrosophic 5-valued refined topology on X. All closed set are:

0X , 1X , Ac, Bc, Cc, Dc where

Ac = {⟨a, 0.1, 0.4; 0.3; 0.2, 0.1⟩, ⟨b, 0.9, 0.5; 0.8; 0.5, 0.3⟩}
Bc = {⟨a, 0.4, 0.3; 0.7; 0.4, 0.01⟩, ⟨b, 0.7, 0.7; 0.9; 0.4, 0.2⟩},
Cc = {⟨a, 0.4, 0.4; 0.3; 0.2, 0.01⟩, ⟨b, 0.9, 0.7; 0.8; 0.4, 0.2⟩}
Dc = {⟨a, 0.1, 0.3; 0.7; 0.4, 0.1⟩, ⟨b, 0.7, 0.5; 0.9; 0.5, 0.3⟩}
Let K = {⟨a, 0.43, 0.09; 0.2; 0.1, 0.2⟩, ⟨b, 0.5, 0.25; 0.1; 0.5, 0.6⟩}. Then the open sets in τ con-

tained in K are only 0X , B,C, so that IntR(K) = 0X ⊔R B ⊔R C = B. Now; we consider the

set Kc = {⟨a, 0.1, 0.2; 0.8; 0.43, 0.09⟩, ⟨b, 0.5, 0.6; 0.9; 0.5, 0.25⟩} and compute ClR(K
c); the only

closed sets containing Kc are 1X ,Bc and Cc, so that ClR(K
c) = 1X ⊓RBc⊓RCc = Bc. Which

means ClR(K
c) = Bc and so (ClR(K

c))c = B = IntR(K); that is IntR(K) = (ClR(K
c))c and

this leads us to the following theorem:

Theorem 2.10. Let (X, τ) be an n-valued refined topological space with sub-dimensions r, s

and let A ∈ R(n,r,s)(X). Then we have:

(1) IntR(A) = (ClR(A
c))c

(2) ClR(K) = (IntR(K
c))c

Proof. Since ∨ and ∧ has duality, we will, only, proof part (1).

Let A = {⟨x, µ1
A(x), ..., µ

r
A(x);σ

1
A(x), ..., σ

s
A(x); ν

1
A(x), ..., ν

r
A(x)⟩;x ∈ X}. Then

Ac = {⟨x, ν1A(x), ..., νrA(x); 1− σ1
A(x), ..., 1− σs

A(x);µ
1
A(x), ..., µ

r
A(x)⟩;x ∈ X}, so

ClR(A
c) = ⊓R{C ∈ R(n,r,s)(X);Cc ∈ τ and Ac ⊑R C}. We apply Demorgan’s Laws in

Theorem 2.3 to get: (ClR(A
c))c = ⊔R{Cc ∈ R(n,r,s)(X);Cc ∈ τ and Cc ⊑R A} = ⊔R{O ∈

R(n,r,s)(X);O ∈ τ and O ⊑R A} = IntR(A).

Theorem 2.11. Let (X, τ) be an n-valued refined topological space with sub-dimensions r, s

and let A,B ∈ R(n,r,s)(X). Then we have:

(1) IntR(A) ⊑R A.

(2) If A is a neutrosophic n-valued refined open set, then IntR(A) = A.
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(3) IntR(IntR(A)) = IntR(A).

(4) If A ⊑R B, then IntR(A) ⊑R IntR(B).

(5) IntR(A ⊓R B) = IntR(A) ⊓R IntR(B)

(6) IntR(A ⊔R B) ⊒R IntR(A) ⊔R IntR(B)

(7) IntR(⊔R
α∈∆

Aα) ⊒R ⊔R
α∈∆

IntR(Aα)

(8) A ⊑R ClR(A).

(9) If A is a neutrosophic n-valued refined closed set, then ClR(A) = A.

(10) ClR(ClR(A)) = ClR(A).

(11) If A ⊑R B, then IntR(A) ⊑R IntR(B).

(12) ClR(A ⊔R B) = ClR(A) ⊔R ClR(B)

(13) ClR(A ⊓R B) ⊑R ClR(A) ⊓R ClR(B)

(14) ClR(⊔R
α∈∆

Aα) ⊒R ⊔R
α∈∆

ClR(Aα)

Proof. (1) Let O ∈ τ such that O ⊑R A. Then for every x ∈ X we have µi
O(x) ≤ µi

A(x)

for every i = 1, .., r, σi
O(x) ≥ σi

A(x) for every i = 1, .., s and νiO(x) ≥ νiA(x) for

every i = 1, .., r, which implies that
∨

O∈τ,O⊑RA

µi
O(x) ≤ µi

A(x) for every i = 1, .., r,∧
O∈τ,O⊑RA

σi
O(x) ≥ σi

O(x) for every i = 1, .., s and
∧

O∈τ,O⊑A

νiO(x) ≥ νiA(x) for every

i = 1, .., r; that is IntR(A) ⊑ A.

(2) Since A is open, then, from the definition of IntR(A), we have A ⊑R IntR(A), and

from part (1) we have the converse, and we done.

(3) Since IntR(A) is a neutrosophic n-valued refined open set, we have (from part (2))

IntR(IntR(A)) = IntR(A).

(4) Let O be a neutrosophic n-valued refined open set such that O ⊑R A. Then since

A ⊑R B, we have O ⊑R B, that is IntR(A) ⊑R IntR(B)

(5) From part (4) we have IntR(A ⊓R B) ⊑R IntR(A) ⊓R IntR(B). On the other hand,

IntR(A) ⊓R IntR(B) is a neutrosophic n-valued refined open set contained in A and

B, so that IntR(A) ⊓R IntR(B) ⊑R IntR(A ⊓R B), and we done.

(6) Since IntR(A) ⊑R A and IntR(B) ⊑R B, we have IntR(A) ⊔R IntR(B) is a

neutrosophic n-valued refined open set contained in A ⊔R B, which implies that

IntR(A) ⊔R IntR(B) ⊑R IntR(A ⊔R B).

(7) Since Aα ⊑R ⊔R
α∈∆

Aα for every α ∈ ∆, IntR(Aα) ⊑R IntR(⊔R
α∈∆

Aα) for every α ∈ ∆,

that is ⊔R
α∈∆

IntR(Aα) ⊑R IntR(⊔R
α∈∆

Aα).

The remaining 5 parts can be proved by duality.

Equality in parts (7) and (13) of Theorem 2.11 does not hold.
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Example 2.12. Consider the neutrosophic 5-valued refined topological space (X, τ)

defined in Example 2.9 and let K = {⟨a, 0, 1; 0; 1, 1⟩, ⟨b, 1, 1; 0; 0, 1⟩}, and L =

{⟨a, 1, 0; 1; 0, 0⟩, ⟨b, 0, 0; 1; 1, 0⟩}. Then K ⊔R L = {⟨a, 1, 1; 0; 0, 0⟩, ⟨b, 1, 1; 0; 0, 0⟩} = 1X .

So we have IntR(K ⊔R L) = 1X , and since K and L contains no neutrosophic n-

valued refined open set except 0X we have IntR(K) = IntR(L) = 0X , which means

IntR(K) ⊔R IntR(L) = 0X , hence equality in parts (7) and (8) of Theorem 2.11 does

not hold. For part (13) let K = {⟨a, 0.1, 0.4; 0.6; 0.5, 0.1⟩, ⟨b, 0.7, 0.5; 0.9; 0.5, 0.3⟩}, L =

{⟨a, 0.1, 0.3; 0.7; 0.3, 0.1⟩, ⟨b, 0.7, 0.5; 0.9; 0.5, 0.3⟩}. Then
K ⊓R L = {⟨a, 0.1, 0.3; 0.7; 0.5, 0.1⟩, ⟨b, 0.7, 0.5; 0.9; 0.5, 0.3⟩}. The only neutrosophic 5-valued

Refined closed sets containing K are: 1X , Ac and Cc, so that we have ClR(K) = 1X ⊓R Ac ⊓R

Cc = Ac. Again the only neutrosophic 5-valued Refined closed sets containing L are:1X , Ac and

Cc, so that we have ClR(L) = 1X ⊓RAc⊓RCc = Ac, and ClR(K)⊓RClR(L) = Ac⊓RAc = Ac,

on the other hand the only neutrosophic 5-valued Refined closed sets containing K ⊓R L are:

1X , Ac, Bc and Dc, so that we have ClR(K ⊓R L) = 1X ⊓R Ac ⊓R Bc ⊓R Dc = Dc. Note that

Dc is a proper subset of Ac, so equality in Theorem 2.11 part (13) does not hold.

Question 2.13. Is there a neutrosophic n-valued refined topological space (X, τ) shows that

equality in part (14) of Theorem 2.11 does not hold.

Definition 2.14 (Neutrosophic n-valued refined pre-open and pre-closed sets). Let τ ∈
TOP(n,r,s)(X) and A ∈ R(n,r,s)(X). Then A is said to be:

(1) A neutrosophic n-valued refined semi-open set, if A ⊑R ClR(IntR(A)). The comple-

ment of a neutrosophic n-valued refined semi-open set is called a neutrosophic n-valued

refined semi-closed set.

(2) A neutrosophic n-valued refined pre-open set, if A ⊑R IntR(ClR(A)). The complement

of a neutrosophic n-valued refined pre-open set is called a neutrosophic n-valued refined

pre-closed set.

(3) A neutrosophic n-valued refined α-open set, if A ⊑R IntR(ClR(IntR(A))). The com-

plement of a neutrosophic n-valued refined α-open set is called a neutrosophic n-valued

refined α-closed set.

(4) A neutrosophic n-valued refined β-open set, if A ⊑R ClR(IntR(ClR(A))). The comple-

ment of a neutrosophic n-valued refined β-open set is called a neutrosophic n-valued

refined β-closed set.

Theorem 2.15. Let τ ∈ TOP(n,r,s)(X) and A ∈ R(n,r,s)(X). Then:

(1) Every Neutrosophic n-valued refined open (closed) set, is neutrosophic n-valued refined

α-open (closed) set.
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(2) Every Neutrosophic n-valued refined α-open (α-closed) set, is neutrosophic n-valued

refined pre-open (pre-closed) set and neutrosophic n-valued refined semi-open (semi-

closed) set.

(3) Every Neutrosophic n-valued refined pre-open (pre-closed) or semi-open (semi-closed)

set, is a neutrosophic n-valued refined β-open (β-closed) set.

Proof. (1) Let A be a Neutrosophic n-valued refined open set. Then, from Theorem 2.11

part (2) and (8), we have IntR(A) = A and A ⊑R ClR(A). So IntR(ClR(intR(A))) ⊒R

IntR(ClR(A)) ⊒R IntR(A) = A. That is A is a neutrosophic n-valued refined α-open

set. Now, suppose that A is a Neutrosophic n-valued refined closed set. Then Ac is

a Neutrosophic n-valued refined open set, which implies Ac is a neutrosophic n-valued

refined α-open set, and so A is a is a neutrosophic n-valued refined α-closed set.

(2) Obvious! we only use Theorem 2.11 part (1).

(3) Obvious! we only use Theorem 2.11 part (8) .

None of the above implications reverse. The following is an example of a neutrosophic 5-

valued refined α-open set which is not open, and another example of a neutrosophic 5-valued

refined pre-open (so it is β-open) set which is neither semi-open nor α-open.

Example 2.16. Consider τ = {0X , 1X , A,B,C,D} in Example 2.9 and let

H = {⟨a, 0.5, 0.1; 0.3; 0.1, 0.3⟩, ⟨b, 0.5, 0.3; 0.1; 0.7, 0.5⟩}.
Then the neutrosophic 5-valued refined open sets contained in H are 0X , A,B,C,D; so we

have IntR(H) = 0X ⊔R A ⊔R B ⊔R C ⊔R D = D, and since the only neutrosophic 5-

valued refined close set containing D is 1X , we have ClR(IntR(H)) = 1X , which implies

IntR(ClR(intR(H))) = 1X , hence A ⊑R IntR(ClR(intR(A))) and H is a neutrosophic 5-

valued refined α-open set but not a neutrosophic 5-valued refined open set.

Consider, again, the set K = {⟨a, 0.1, 0.4; 0.6; 0.1, 0.3⟩, ⟨b, 0.9, 0.2; 0.4; 0.1, 0.5⟩}. Since µ1
K(a) <

µ1
O(a) for every O ∈ τ − {0X}, we have the only Neutrosophic 5-valued refined open

set contained in K is 0X and IntR(K) = 0X , which implies ClR(IntR(K)) = 0X and

IntR(ClR(IntR(K))) = 0X , so K is not a neutrosophic 5-valued refined semi-open nor α-open

set; on the other hand, µ1
K(b) > µ1

D(b) for every neutrosophic 5-valued refined closed set D in τ

except for 1X , that means ClR(K) = 1X and intR(ClR(A)) = 1X , hence K ⊑R IntR(ClR(A))

and K is a neutrosophic 5-valued refined pre-open set but not α-open. Since every neutro-

sophic 5-valued refined pre-open set is a neutrosophic 5-valued refined β-open set, K is, also,

and example of a neutrosophic 5-valued refined β-open set which is not neutrosophic 5-valued

refined semi-open.

Murad Arar, Neutrosophic n-Valued Refined Sets and Topologies

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               324



Here we give an example of a a neutrosophic 5-valued refined semi-open (so it is β-open)

set which is neither pre-open nor α-open.

Example 2.17. Let X = {a} , and let τ = {0X , 1X , A,B} ⊂ R(5,2,1)(X) where

A = {⟨a, 0.2, 0.1; 0.7; 0.3, 0.4⟩}, B = {⟨a, 0.3, 0.2; 0.5; 0.2, 0.3⟩}. Since A ⊓R B = A and

A ⊔R B = B, τ is a neutrosophic 5-valued refined topology on X. The 5-valued refined

closed sets in (X, τ) are: 0X , 1X , Ac, Bc where

Ac = {⟨a, 0.3, 0.4; 0.3; 0.2, 0.1⟩} and Bc = {⟨a, 0.2, 0.3; 0.5; 0.3, 0.2⟩}. Consider the neutro-

sophic 5-valued refined set L = {⟨a, 0.2, 0.2; 0.5; 0.3, 0.3⟩}. Then the only neutrosophic 5-

valued refined open sets contained in K are 0X , A, so that IntR(L) = 0X ⊔R A = A. To find

ClR(IntR(L)) we note that the neutrosophic 5-valued refined closed sets containing IntR(L)

are 1X , Ac, Bc, so ClR(IntR(L)) = 1x ⊓R Ac ⊓R Bc = Bc, and since L ⊑R Bc, L is a neu-

trosophic 5-valued refined semi-open sets. Now, we will show that L is not α-open. First

note that the neutrosophic 5-valued refined open sets contained in ClR(IntR(K)) = Bc are

0X and A, so we have IntR(ClR(IntR(L))) = A, and since L is not contained in A, L is not a

neutrosophic α-open set.

We will show L is not a neutrosophic 5-valued refined pre-open set. The only neutrosophic

5-valued refined closed sets containing L are 1X , Ac and Bc, so ClR(L) = 1X⊓RA
c⊓RB

c = Bc,

and since the neutrosophic 5-valued refined open sets contained in Bc are 0X and A, we have

IntR(ClR(L)) = A which not containing L, that is L is not a neutrosophic 5-valued refined

pre-open set. So L is, also, an example of a neutrosophic 5-valued refined semi-open set which

is not pre-open. And since every neutrosophic 5-valued refined semi-open set is β-open set,

K is an example of a neutrosophic 5-valued refined β-open set which is not pre-open.

Finally we will give an example of a a neutrosophic 5-valued refined β-open set which is

neither pre-open nor semi-open.

Example 2.18. Let (X, τ) as in Example 2.17 and consider the neutrosophic 5-valued refined

set M = {⟨a, 0.2, 0.1; 0.9; 0.3, 0.5⟩}. Then the only neutrosophic 5-valued refined open sets in

τ contained in K is 0X , so IntR(M) = 0X , which implies ClR(IntR(M)) = 0X , and since

M is not contained in 0X , we have M is not neutrosophic 5-valued refined semi-open set; on

the other hand the neutrosophic 5-valued refined closed sets containing M are 1X , Ac and Bc,

so that ClR(M) = Bc, and since the only neutrosophic 5-valued refined open sets contained

in Bc are 0X and A we have IntR(ClR(M)) = A. Since IntR(ClR(M)) = A and A does

not contain M , we have M is not a neutrosophic 5-valued refined pre-open set. Now, to

find ClR(IntR(ClR(M))) we note that the only neutrosophic 5-valued refined closed sets in τ
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Figure 1. Relations between differen types of generalized neutrosophic n-

valued refined open sets.

containing A are 1X , Ac and Bc, so ClR(IntR(ClR(M))) = Bc which contains M , so M is a

neutrosophic 5-valued refined β-open set but not semi-open nor pre-open.

The following diagram shows the relations between different types of generalized neutro-

sophic n-valued refined sets:

Theorem 2.19. Let τ ∈ TOP(n,r,s)(X) and K ∈ R(n,r,s)(X). Then

(1) If there is a neutrosophic n-valued refined open set U such that K ⊑R U ⊑R ClR(K),

then K is a neutrosophic n-valued refined pre-open set.

(2) If there is a neutrosophic n-valued refined open set U such that U ⊑R K ⊑R ClR(U),

then K is a neutrosophic n-valued refined semi-open set.

Proof. (1) K ⊑R U ⊑R IntR(ClR(U)) ⊑R IntR(ClR(ClR(K))) = IntR(ClR(K)).

(2) Since ClR(IntR(U)) = ClR(U) we have

ClR(IntR(K)) ⊒R ClR(IntR(U)) = ClR(U) ⊒R K).
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Theorem 2.20. Let τ ∈ TOP(n,r,s)(X) and K ∈ R(n,r,s)(X). Then the union of any collection

of neutrosophic n-valued refined α-open, β-open, pre-open or semi-open sets is a neutrosophic

n-valued refined α-open, β-open, pre-open or semi-open set respectively.

Proof. We will prove it for neutrosophic n-valued refined β-open sets, and the remaining parts

can be proved in the same manner. Let Aγ be a neutrosophic n-valued refined β-open set for

every γ ∈ ∆. Then Aγ ⊑R ClR(intR(ClR(Aγ))) for every γ ∈ ∆. Then from parts (7) and

(14) of Theorem 2.11 we have:

ClR(intR(ClR(⊔R
γ∈∆

Aγ))) ⊒R ClR(intR(⊔R
γ∈∆

ClR(Aγ))) ⊒R ClR(⊔R
γ∈∆

intR(ClR(Aγ))) ⊒R

⊔R
γ∈∆

ClR(intR(ClR(Aγ))) ⊒R ⊔R
γ∈∆

Aγ
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Abstract: The pandemic situation created by COVID’19 is ridiculous. It has made even the blood relations hide
themselves from the infected person. The whole world was stunned by this situation. This is because of the uncertainty
in the way in which this disease is spread. As an advancement of this disease, a few other variants like delta, omicron
etc. also got spread. It is essential to find a solution to this situation . The variants Omicron and Delta are taken into
consideration here. Though both the vibrant colours look alike, the symptoms and prevention methods changes for
each of these vibrants. This work aims to make a study of the parameters responsible for these variants. As a result
of this study, the parameters involved in the spread of these diseases are identified, and the prevention parameters are
concluded. The major benefit of this comparatively study is to identify the parameters that are inconclusive, applying
the concepts of fuzzy cognitive maps and neutrosophic cognitive maps is applied to bring out the result.

Keywords: Fuzzy set, Fuzzy graph, Neutrosophic Cognitive Map, Fuzzy Cognitive Map.

1 Introduction
A new viral infection, COVID-19 (Coronavirus Disease 2019), emerged in early 2020 and attracted widespread
attention. The virus spread around the world at a very high speed, and many studies have been carried out.
Examining different epidemic patterns of COVID-19 based on official data.

Nowadays, the development of the Corona virus forms a lot of variants, such as beta, gamma, delta, and
omicron, etc.,. In the Corona variants, especially the Delta variant causes, the more deaths among the popu-
lation which have different symptoms when compared with the initial form of Corona. Recently, the Corona
variant, Omicron spreads all over the world and has a different symptoms, prevention methods etc.,. In the
medical field, the experts have a different opinions on the diseases with respect to prevention, symptoms,
causes etc., even though the vaccinated people are getting affected, which leads to fear among the population.

The applications of FCM and NCM in the medical field are with respect to the knowledge base, and data
base of patient, diagnosis which is to recognise symptoms and signs, the other method of diagnosing gallstones
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is through ultrasound and radiation, knowledge acquisition and to find the the possibility of problems with
indeterminate cases in which fuzzy logic plays an important role. In that it played a great role in the invention
of the Doctor Moon.

Al-Subhi et al. have suggested a decision-making model in project management. In this process, FCM
and NCM technique in bringing out the decision on effective implementation of projects, Bertolini, M. has
used a FCM algorithm in finding the important factors that affects human reliability. A food-processing An
industrial plants have been considered for this decision-making algorithm. Jantzen, J. et al. dedicated their
work in the process industry. Fuzzy controllers have been applied in identifying the predictive control in the
cement industry. Kalaichelvi. A. and Gomathy, L. have studied the problems faced by girl students who got
married during the period of study using NCM. The study is based on the responses received from the graduate
students of Coimbatore city.

-Khatua, D. et al. have presented fuzzy dynamical system-based granular differentiability in identifying
an optimal control model for COVID-19. The fuzzy SEIAHRD model described by them proposes a disease
control procedure for the disease specified. Martin, N. et al. have developed a methodology that helps to
risk factors of Lifestyle Diseases. Decagonal Linguistic Neutrosophic Fuzzy cognitive map is applied in the
analysis. Mary. M.F.J. et al. aim to identify the factors affecting the quality of the training of elementary
education teachers in Tamil Nadu. Various factors like techno-pedagogic skills, the students’ academic skills,
teaching competencies, etc. are analyzed applying FCM and NCM. Montazemi, A.R. et al. utilised cognitive
maps in the design and development of intelligent information systems. Causal mapping is used to investigate
the cognition of decision-makers. Papageorgiou. E.I. et al introduced the concept reduction approach in
decision making and management. FCM is applied in modelling solid waste management systems.

Pramanik, S et al made an analysis of the problems faced by the construction workers with the help of NCM.
The analysis has been performed with the list of issues given by the workers of West Bengal. Raich.V.V., et
al performed their study by pointing out the qualities of an effective teacher. Fuzzy relational maps the con-
cept of the Teacher Quality Index has been put in a place to bring the results. Ramalingam, S. et al. made
an mathematical analysis of COVID-19 based on the symptoms of the disease. FCM and NCM concepts are
applied in finding out the conclusion. Schuh. C introduced fuzzy set theory in medical sciences on three con-
crete medical fuzzy applications. Stylios, C.D. et al. discussed knowledge sharing, modelling methodology,
knowledge-based reasoning with the help of FCM. Their study has provided effective results in identifying
the knowledge-based methodologies. Vasantha, et al. in performed a search in in order to overcome the hin-
drance posed by complicated nature of psychological or social data. The search is based on imaginative play
in children, applying the concepts of NCM. Visalakshi, V. et al. performed a survey on women to identify their
entrepreneurial mindset. Combined Effective Time Dependent Data Matrix, and Average Time Dependent
Data Matrix concepts applied in extracting the suggestions on pointing out the factors that affect entrepreneur-
ship. William, M.A. et al. analysed the risk factors on women getting affected by breast cancer, making use of
the NCM and FCM.

Kumaravel,S.K. et al. and Murugesan, R. et al. discussed the effectiveness of online classes considering
the opinion of faculty and students during the COVID pandemic. The fuzzy models, like combined effective
time-dependent matrix (CETD), average time-dependent data matrix (ATD), and refined time-dependent data
matrix (RTD) are applied in their work using the fuzzy matrix theory. Devi, R.N. and Muthumari, G. have
expressed a view on the properties of distance measure in P-F graph and applied Neutrosophic overset in real
life scenarios for a decision making problem. They also introduced neutrosophic over topologized dominance
graphs in their work. Recently, they have discussed various types of energy in Nover Top Graphs.

In this paper, a comparative study is made on different parameters related to omicron and delta such as
travelling history, Prevention measures for the disease, Blood pressure, Cancer patient, Loss of taste and smell,
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Brain fog, etc. The parameters are analysed by taking any one as ON state by the concept of FCM. Simulta-
neously, those parameters are analysed through the NCM, as like FCM, by considering the same state as ON
state. The aim of this paper is to analyze the COVID through comparison between FCM and NCM among the
COVID variant parameters.

2 Parameters of omicron & delta virus

In order to analyse the parameters of The Omicron and Delta viruses, data were collected from the medical
experts. Based on their opinions the following factors were identified and collected .

• C1-Travelling history

• C2-Prevention measures for the disease

• C3-Maintain social distance, Wearing mask and Continuous hand wash

• C4-Fever, cough and difficulty breathing

• C5-Brain fog

• C6- the possibility of delta variant

• C7-Blood pressure, Cancer patient, diabetes, older age who violate precautions

• C8-High risk of getting omicron and delta variant

• C9- the possibility of omicron

• C10-Loss of taste and smell

• C11-No symptoms

• C12-Spread more easily

3 Fuzzy cognitive map

The experts opinions were collected and based on their opinion, they formed a graph by mapping between the
parameters. In which, based on the fuzzy cognitive map concept, weight age was assigned by the casual rela-
tion between the nodes. i.e., the edge weight was assigned as 1 (positive causality between the nodes), if the
relationship between the nodes had a majority of respondents, but at the same time the majority of respondents
was uncertain then it is denoted by 0. The corresponding fuzzy cognitive maps for the parameters are given
below in figure 1
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Figure 1: Fuzzy Cognitive Maps on COVID VARIANTS

3.1 Matrix Representation of FCM
The matrix representation of the fuzzy cognitive map is designed based on the connectives between the nodes,
which are the possibilities among the parameters. The entries of the matrix are noted as either 0 or 1. The
number 0 denoted an unconnected node, and 1 represented the connection between the nodes. The adjacent
matrix of figure 1 is given below.

E =

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12



C1 0 0 0 0 0 1 0 0 1 0 0 0
C2 0 0 1 0 0 0 0 0 0 0 0 0
C3 0 1 0 0 0 0 0 0 0 0 0 0
C4 0 0 0 0 0 1 0 0 1 0 0 0
C5 0 0 0 0 0 0 0 1 0 0 0 0
C6 0 0 0 1 0 0 0 0 0 1 0 1
C7 0 0 0 0 0 0 0 1 0 0 0 0
C8 1 0 0 0 1 0 1 0 0 0 1 0
C9 0 0 0 1 0 0 0 0 0 1 0 0
C10 0 0 0 0 0 1 0 0 1 0 0 0
C11 0 0 0 0 0 0 0 0 1 0 0 0
C12 0 0 0 0 0 1 0 0 0 0 0 0

3.2 Iteration Process of FCM
Case-1: the possibility of delta variant - ON state

Let us consider the C6 parameter as ON state. i.e., the possibility of delta variant for the iteration process.

A Comparative Study of Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps on Covid Variants

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                                                         332



The initial matrix required for the process is taken as below, which has the entries as 0 for the OFF state and
1 for ON state.

A1 =
[
0 0 0 0 0 1 0 0 0 0 0 0 ]

A1 ∗ E =
[
0 0 0 1 0 0 0 0 0 1 0 1 ]

→
[
0 0 0 1 0 1 0 0 0 1 0 1 ]

= A2

A2 ∗ E =
[
0 0 0 1 0 3 0 0 2 1 0 1 ]

→
[
0 0 0 1 0 1 0 0 1 1 0 1 ]

= A3

A3 ∗ E =
[
0 0 0 2 0 3 0 0 2 2 0 1 ]

→
[
0 0 0 1 0 1 0 0 1 1 0 1 ]

= A4

∴ A3 = A4

The last two iterations’ values are obtained as the same, so that the iteration process may stop and it shows
that when the C6 parameter is taken as ON state then the parameters C4, C9, C10, and C12 are obtained as ON
state. It concludes that the parameters fever, cough, difficulty breathing, loss of taste, and smell are the risk
factor for the parameter C6, i.e., the the possibility of a delta variant as well as for omicron variant. In general,
delta variant’s spread more easily and faster. Its symptoms are loss of smell and taste, and which might cause
omicron.

Case-2:High risk of getting omicron and delta variant- ON state
Let us take the C8 parameter as ON state. i.e., high risk of getting Omicron and Delta for the iteration

process. The initial matrix required for the process is taken as below, which have the entries as 0 for the OFF
state and 1 for ON state.

A1 =
[
0 0 0 0 0 0 0 1 0 0 0 0 ]

A1 ∗ E =
[
1 0 0 0 1 0 1 0 0 0 1 0 ]

→
[
1 0 0 0 1 0 1 1 0 0 1 0 ]

= A2

A2 ∗ E =
[
1 0 0 0 1 1 1 1 1 0 1 0 ]

→
[
1 0 0 0 1 1 1 1 1 0 1 0 ]

= A3

A3 ∗ E =
[
1 0 0 2 1 1 1 1 1 2 1 1 ]

→
[
1 0 0 1 1 1 1 1 1 1 1 1 ]

= A4
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A4 ∗ E =
[
1 0 0 1 1 4 0 0 3 2 1 1 ]

→
[
1 0 0 1 1 1 1 1 1 1 1 1 ]

= A5

∴ A4 = A5

The last two iteration values are obtained as the same, so that the iteration process may stop, and it shows
that when the C8 parameter is taken as ON state then the parameters C2 and C3 are obtained as ON states.
It concludes that the parameters Loss of taste and smell, No symptoms, spreads more easily are the factors
related to the parameter C8. Also, the persons who are violating C2 and C3 parameters, then it causes a the
possibility of omicron and delta. Those parameters are treated as important factors to prevent from the COVID
Variants. .

Case-3: Prevention measures for the disease -ON state
For the iteration process, the parameter C2 is considered in the ON state. i.e., prevention measures of the

diseases. The initial matrix required for the process is taken as below, which has the entries as 0 for the OFF
state and 1 for ON state.

A1 =
[
0 1 0 0 0 0 0 0 0 0 0 0 ]

A1 ∗ E =
[
0 1 0 0 0 0 0 0 0 0 0 0 ]

→
[
0 1 1 0 0 0 0 0 0 0 0 0 ]

= A2

A2 ∗ E =
[
0 1 1 0 0 0 0 0 0 0 0 0 ]

→
[
0 1 1 0 0 0 0 0 0 0 0 0 ]

= A3

∴ A2 = A3

The iteration process may be stopped when the current and previous iteration seems as same. The above
iteration process shows that when the C2 parameter is taken as ON state then expect the parameters C3 are
obtained as OFF state. It concludes that the parameter travelling history is more related to the parameter C2,
so that avoiding travelling from one place to another via public transport or independently is one of the main
prevention measures from the effects of COVID variants.

Case-4: the possibility of having Omicron Virus- ON state
For the iteration process, the parameter C9 i.e., the possibility of having Omicron Virus is considered as

ON state and the rest of the parameters are taken as OFF state which is denotes as initial matrix A1. The
initial matrix required for the process is taken as below, which has the entries of 0 for the OFF state and 1 for
the ON state.

A1 =
[
0 0 0 0 0 0 0 0 1 0 0 0 ]
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A1 ∗ E =
[
0 0 0 1 0 0 0 0 0 1 0 0 ]

→
[
0 0 0 1 0 0 0 0 1 1 0 0 ]

= A2

A2 ∗ E =
[
0 0 0 1 0 2 0 0 2 1 0 0 ]

→
[
0 0 0 1 0 1 0 0 1 1 0 0 ]

= A3

A3 ∗ E =
[
0 0 0 2 0 2 0 0 2 2 0 1 ]

→
[
0 0 0 1 0 1 0 0 1 1 0 1 ]

= A4

A4 ∗ E =
[
0 0 0 2 0 3 0 0 2 2 0 1 ]

→
[
0 0 0 1 0 1 0 0 1 1 0 1 ]

= A5

∴ A4 = A5

The above iteration process shows that when the C9 parameter is taken as ON state then the parameters
C4, C6, C10, and C12 are obtained as ON states. It concludes that the possibility of the Omicron virus having
major symptoms such as loss of taste and smell, Cough, fever, difficulty breathing, etc., leads to the spread
pf Omicron virus more easily. So that based on the clarity of factors, one can prevent themselves from diseases.

Case-5: Spread more easily -ON state
Let us take the C12 parameter, i.e., spread more easily as ON state. For the iteration process and rest of the
parameters are taken as OFF state which denotes initial matrix A1.The initial matrix required for the process
is taken as below, which has the entries as 0 for the OFF state and 1 for ON state.

A1 =
[
0 0 0 0 0 0 0 0 0 0 0 1 ]

A1 ∗ E =
[
0 0 0 0 0 1 0 0 0 0 0 0 ]

→
[
0 0 0 0 0 1 0 0 0 0 0 1 ]

= A2

A2 ∗ E =
[
0 0 0 1 0 1 0 0 0 1 0 1 ]

→
[
0 0 0 1 0 1 0 0 0 1 0 1 ]

= A3
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A3 ∗ E =
[
0 0 0 1 0 3 0 0 2 1 0 1 ]

→
[
0 0 0 1 0 1 0 0 1 1 0 1 ]

= A4

A4 ∗ E =
[
0 0 0 2 0 3 0 0 2 2 0 1 ]

→
[
0 0 0 1 0 1 0 0 1 1 0 1 ]

= A5

∴ A4 = A5

The above iteration process shows that when the C12 parameter is taken as ON state then the parameters
C4, C6, C9, and C10 are obtained as ON state. It concludes that the parameter C4,is the main factor of
possibility of omicron delta also those factors spread the CORONA variants more easily from one person to
another and it causes loss of smell and taste.

4 Neutrosophic cognitive map

The experts opinions were collected, and based on their opinions, a graph was formed by mapping between
the parameters. In which, based on the Neutrosophic cognitive map concept, weight age was assigned by the
casual relation between the nodes. i.e., the edge weight was assigned as 1 (positive causality between the
nodes), if the relationship between the nodes had majority of respondents, at the same time the respondents
which are uncertain or indeterminate then it is denoted by I . The number zero is assigned, when there is no
relationship between the parameters based on experts opinion. In the neutrosophic graph, for the indeterminate
case the edges between the nodes is drawn by the dotted lines. The corresponding neutrosophic cognitive maps
for the parameters is given below in figure 2

Figure 2: Neutrosophic Cognitive Maps on COVID VARIANTS
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4.1 Matrix representation of NCM

The matrix representation of the neutrosophic cognitive map is designed based on the connectives between
the nodes, which are possibilities among the parameters. In addition to the FCM concept, here one more case
is occur, when there is an inconclusive possibility of relationship between the parameters which is denoted as
indeterminate I case. The entries of the matrix are noted as 0 or 1 or I . The number 0 denotes for unconnected,
1 represents the connection between the nodes and I noted for the indeterminate case between the nodes which
is connected by the dotted lines. The adjacent matrix of figure 2 is given below.

E =

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12



C1 0 0 0 0 0 I 0 1 I 0 0 0
C2 0 0 1 0 0 0 0 0 0 0 0 0
C3 0 1 0 0 0 0 0 0 0 0 0 0
C4 0 0 0 0 0 1 0 0 1 0 I 0
C5 0 0 0 0 0 0 0 0 I 0 0 0
C6 I 0 0 1 0 0 I 0 0 0 0 1
C7 0 0 0 0 0 0 0 1 0 0 0 0
C8 1 0 0 0 0 0 1 0 0 I 0 0
C9 I 0 0 1 1 0 I 0 0 0 0 0

C10 0 0 0 0 0 I 0 0 I 0 0 0
C11 0 0 0 0 0 I 0 0 I 0 0 0
C12 0 0 0 0 0 1 0 0 0 0 0 0

4.2 Iteration Process of NCM

Case-1: the possibility of delta variant -ON state
Let us consider the C6 parameter as being in the ON state. i.e., the possibility of a delta variant for the iteration
process. The initial matrix required for the process is taken as below, which has the entries as 0 for the OFF
state and 1 for ON state. While comparing with the FCM iteration process, here in the each step of iteration I
may observe based on choosing of parameter as ON or OFF state.

B1 =
[
0 0 0 0 0 1 0 0 0 0 0 0 ]

B1 ∗ E =
[
I 0 0 1 0 0 I 0 0 0 0 1 ]

→
[
I 0 0 1 0 1 I 0 0 0 0 1 ]

= B2

B2 ∗ E =
[
I 0 0 1 0 I2 + 1 I 2I I2 + 1 0 I 1 ]

→
[
I 0 0 1 0 1 I I 1 0 I 1 ]

= B3

B3 ∗ E =
[
3I 0 0 2 1 2I2 + 1 3I 2I 2I2 + 1 I2 I 1 ]

→
[
I 0 0 1 1 1 I I 1 I I 1 ]
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= B4

B4 ∗ E =
[
3I 0 0 2 1 3I2 + 1 3I 2I 3I2 = I + 1 I2 I 1 ]

→
[
I 0 0 1 1 1 I I 1 I I 1 ]

= B5

∴ B4 = B5

The last two iterations values are obtained as the same, so that the iteration process may be stopped and
it shows that when the C6 parameter is taken as ON state then the parameters C4, C5, C6, C9, and C12 are
obtained as ON state and the states C1, C7, C8, C10, and C11 are obtained as I . It concludes that the param-
eters spread easily, the patient with the symptoms of fever,cough, breathing problem, but it may be cause of
omicron if the person have the symptom of brain fog except prevention.

Case-2: High risk of getting omicron and delta - ON state
Let us take the C8 parameter as ON state. i.e., high risk of getting Omicron and Delta for the iteration

process. The initial matrix required for the process is taken as below, which has the entries as 0 for the OFF
state and 1 for ON state.

B1 =
[
0 0 0 0 0 0 0 1 0 0 0 0 ]

B1 ∗ E =
[
1 0 0 0 0 0 1 0 0 I 0 0 ]

→
[
1 0 0 0 0 0 1 1 0 I 0 0 ]

= B2

B2 ∗ E =
[
1 0 0 0 0 I + I2 1 2 I + I2 I 0 0 ]

→
[
1 0 0 0 0 I 1 1 I I 0 0 ]

= B3

B3 ∗ E =
[
1 + I 0 0 I I 2I + I2 1 + I 3 2I + I2 I 0 0 ]

→
[
1 0 0 I I I 1 1 I I 0 0 ]

= B4

B4 ∗ E =
[
1 + I 0 0 I I 3I + I2 1 + I 3 3I + 2I2 I I2 0 ]

→
[
1 0 0 I I I 1 1 I I I 0 ]

= B5

B5 ∗ E =
[
1 + I 0 0 I I 4I + I2 1 + I 3 3I + 2I2 I I2 0 ]

→
[
1 0 0 I I I 1 1 I I I 0 ]

= B6

∴ B5 = B6

The iteration process may be stopped when the current and previous iterations seem as the same. The above
iteration process shows that when the C7 parameter is taken as ON state then expect the parameters C2, C3,
and C12 to be obtained as ON state, and the rest of parameters shows as I or ON state. It concludes that the
parameter C7 i.e., persons with blood pressure, cancer, diabetes, and the person who travelled from one country
to another country have a high risk factor for the diseases. Also, a few of the parameters are indeterminate
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cases.

Case-3: Prevention measures of the diseases - ON state
For the iteration process, the parameter C2 i.e., prevention measures for the diseases is considered as ON

state. The initial matrix required for the process is taken as below, which has the entries as 0 for the OFF state
and 1 for ON state. While comparing with the FCM iteration process, here in each step of iteration I may
occur based on the choice of parameter as ON or OFF state.

B1 =
[
0 1 0 0 0 0 0 0 0 0 0 0 ]

B1 ∗ E =
[
0 0 1 0 0 0 0 0 0 0 0 0 ]

→
[
0 1 1 0 0 0 0 0 0 0 0 0 ]

= B2

B2 ∗ E =
[
0 1 1 0 0 0 0 0 0 0 0 0 ]

→
[
0 1 1 0 0 0 0 0 0 0 0 0 ]

= B3

∴ B2 = B3

The iteration process may be stopped when the current and previous iterations seem as the same. The above
iteration process shows that when the C2 parameter is taken as ON state, then expect the parameters C3 to be
obtained as OFF state. It concludes that maintaining social distance and usuage of hand sanitizer and wearing
mask are the prevention measures for the COVID variants.

Case-4: the possibility of Omicron - ON state.
For the iteration process, the parameter C9 i.e., the possibility of Omicron is considered as ON state. The
initial matrix required for the process is shown below.

B1 =
[
0 0 0 0 0 0 0 0 1 0 0 0 ]

B1 ∗ E =
[
I 0 0 1 1 0 I 0 0 0 0 0 ]

→
[
I 0 0 1 1 0 I 0 1 0 0 0 ]

= B2

B2 ∗ E =
[
I 0 0 1 1 I2 + 1 I 2I I2 + I + 1 0 I 0 ]

→
[
I 0 0 1 1 1 I I 1 0 I 0 ]

= B3

B3 ∗ E =
[
3I 0 0 2 1 2I2 + 1 3I 2I I2 + 2I + 1 I2 I 1 ]

→
[
I 0 0 1 1 1 I I 1 I I 1 ]

= B4

B4 ∗ E =
[
3I 0 0 2 1 3I2 + 2 3I 2I I2 + 3I + 1 I2 I 1 ]
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→
[
I 0 0 1 1 1 I I 1 I I 1 ]

= B5

∴ B4 = B5

The iteration process may be stopped when the current and previous iterations seem as the same. The above
iteration process shows that the person affected by omicron has brain fog and common symptoms like fever,
cough, and breathing problems. It also spread easily from one infected person to another. It may cause delta
variant because the symptoms are more similar. The parameter C1, i.e., travelling history, seems to be as
indeterminate case.
Case-5: Spread more easily - ON state

For the iteration process, the parameter C12 i.e., spread more easily, is considered as ON state. The initial
matrix required for the process is shown below.

B1 =
[
0 0 0 0 0 0 0 0 0 0 0 1 ]

B1 ∗ E =
[
0 0 0 0 0 1 0 0 0 0 0 0 ]

→
[
0 0 0 0 0 1 0 0 0 0 0 1 ]

= B2

B2 ∗ E =
[
I 0 0 1 0 1 I 0 0 0 0 1 ]

→
[
I 0 0 1 0 1 I 0 0 0 0 1 ]

= B3

B3 ∗ E =
[
I 0 0 1 0 I2 + 2 I 2I I2 + 1 0 I 1 ]

→
[
I 0 0 1 0 1 I I 1 0 I 1 ]

= B4

B4 ∗ E =
[
3I 0 0 2 1 I2 + 3 2I 2I 2I2 + 1 I2 I 1 ]

→
[
I 0 0 1 1 1 I I 1 I I 1 ]

= B5

∴ B5 = B6

The above iteration process shows that when the C12 parameter is taken as ON state then expect that the pa-
rameters C2 and C3 are obtained as ON or I state. It means that Omicron and Delta variants are spread more
easily and faster, when the persons affected by fever, brain fog, cough, and difficulty breathing.
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5 Comparison and discussion

Table 1: Comparison Results of FCM and NCM on COVID Variants

On

State

FCM

Iteration

NCM

Iteration

Comparison

Remarks

C6 A3 = A4;
[0 0 0 1 0 1 0 0 1 1 0 1]

B4 = B5;
[I 0 0 1 1 1 I I 1 I I 1]

Changes in Parameters

C8 A4 = A5;
[1 0 0 1 1 1 1 1 1 1 1 1]

B5 = B6;
[1 0 0 I I I 1 1 I I I 0]

Changes in Parameters

C2 A2 = A3;
[0 1 1 0 0 0 0 0 0 0 0 0]

B2 = B3;
[0 1 1 0 0 0 0 0 0 0 0 0]

No Changes

C9 A4 = A5;
[0 0 0 1 0 1 0 0 1 1 0 1]

B4 = B5;
[I 0 0 1 1 1 I I 1 I I 1]

Changes in Parameters

C12 A4 = A5;
[0 0 0 1 0 1 0 0 1 1 0 1]

B5 = B6;
[I 0 0 1 1 1 I I 1 I I 1]

Changes in Parameters

The parameters related to the COVID variants such as Omicron and Delta are considered as C1, C2, C3, · · · ,
C12. The FCM and NCM among the parameters are designed based on the experts opinions. The adjacent
matrix of fuzzy cognitive maps and neutrosophic cognitive maps is evaluated and it is used for the iteration
process. The comparison is made between the FCM and NCM, by considering any one state as ON state
commonly.From which we have obtained the following results.

First we are taking 6th parameter as on state (i.e.,) Using the possibility of delta variant (C6) as on state,In
our comparison of FCM and NCM we are getting that it spreads more easily and the symptoms are fever,
cough, difficulty breathing, but it may be the the possibility of getting omicron with brain fog.In next case, we
are analyzing the high risk factors of diseases, the result shows that persons with blood pressure, cancer patient,
diabetes, older age who are violating C3.Prevention measures include maintaining social distance,wearing
mask, often wash our hand. The possibility of omicron FCM shows that one of the important symptoms of
omicron is brain fog in off state but while we are analysing by the NCM method, brain fog in on state.while
we are taking C12 in state of on, In FCM it shows some less parameter in on state but in NCM there are some
indeterminate state like depending on our travelling history and also this diseases spreads more easily for the
persons in the 7th parameter.
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1. Introduction

Khan et al. [5] and Im et al. [4] both established the notion of an intuitionistic fuzzy matrix

(IFM) to broaden the idea of Thomason’s [11] fuzzy matrix. Every element in an IFM is

represented by
〈
µaij , νaij

〉
along with µaij , νaij ∈ [0, 1] and also 0 ≤ µaij + νaij ≤ 1. As
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the introduction of IFM, a limited number of analysts have made major contributions to

the advancement of the IFM hypothesis [3, 7, 8]. In such a situation, IFM fails to produce a

reasonable solution. In order to deal with this situation, we invented the notion of Pythagorean

fuzzy matrices (PyFM) by assigning membership degrees such as ζaij and non-membership

degrees such as ζaij , with the requirement that 0 ≤ ζ2aij + δ2aij ≤ 1.

The design of picture fuzzy matrices (PFM) by Dogra and Pal cite1 is well-known, however

decision makers are limited in assigning values because to the conditions on ηaij , ζaij , and

δaij . In [9], certain algebraic procedures on Picture fuzzy matrices are defined, as well as their

desired features. Occasionally, the total of their membership degrees is more than 1. In such a

case, PFM fails to produce a plausible result. To illustrate this dilemma, we’ll use an example

that is both provisional and contradictory to membership degrees. 0.2, 0.6 and 0.6, respec-

tively, are the choices. This is satisfying in the circumstance where their total is more than

1, and PFM fails to handle such data. In order to deal with such situations, the authors [10]

developed a new structure of Spherical fuzzy matrices (SFMs), which increase the degree mem-

berships ηaij , ζaij and δaij to a size that is somewhat larger than image fuzzy matrices. In

SFM, the degree memberships are fulfilling the follows: 0 ≤ ζ2aij + η2aij + δ2aij ≤ 1 (n ≥ 1).

Matrixes have a vital role in science and technology, as we all know. However, in some

cases, the conventional matrix theory fails to answer problems with uncertainties that arise

in an uncertain environment. In [6], fuzzy and neutrosophic relational maps were presented.

Square Neutrosophic Fuzzy Matrices with elements of a + Ib type, where a and b are fuzzy

numbers from [0, 1], are characterized by Dhar, Broumi, and Smarandache [2].

In this work, we extend the ideas of Spherical Neutrosophic matrices to n-Hyper Spherical

Neutrosophic matrix by assigning neutral membership degree say ηaij together with positive

and negative participation measures say ζaij and δaij with condition that 0 ≤ ζnaij +ηnaij +δnaij ≤
3 (n ≥ 1).

The following is structure of this work. In Section 2, n-Hyper Spherical Neutrosophic

matrices are characterized, as well as their algebraic operations and desired features. In Section

3, we define and study the algebraic characteristics of a new operation(@) on n-Hyper Spherical

Neutrosophic matrices. The results are relevant in Section 4, n-Hyper Spherical Neutrosophic

matrix and algebraic structure on this matrix. In Section 5, where we compose the paper’s

conclusion.

Definition 1.1. A Pythagorean fuzzy matrix (PFM) of order m× n is characterized as S =(〈
ζaij , δaij

〉)
where ζaij ∈ [0, 1] and δaij ∈ [0, 1] whether the membership and non-membership

values of the ijth element in S fulfilling the requirement
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0 ≤ ζnaij + δnaij ≤ 1, ∀ i, j.

Definition 1.2. [9] A Picture fuzzy matrix (PFM) S with the formula, S =
(〈
ζaij , ηaij , δaij

〉)
and non-negative real integers ζaij , ηaij , δaij ∈ [0, 1] fulfilling the requirement

0 ≤ ζaij + ηaij + δaij ≤ 1, ∀ i, j,

where ζaij ∈ [0, 1], ηaij ∈ [0, 1] and δaij ∈ [0, 1] represent the degree of membership, degree of

neutral membership, and degree of non-membership respectively.

Definition 1.3. [10] A Spherical fuzzy matrix S with the formula, S =
(〈
ζaij , ηaij , δaij

〉)
of

a non-negative real integers ζaij , ηaij , δaij ∈ [0, 1] fulfilling the requirement

0 ≤ ζ2aij + η2aij + δ2aij ≤ 1, ∀ i, j,

where ζaij ∈ [0, 1], ηaij ∈ [0, 1] and δaij ∈ [0, 1] represent the degree of membership, the degree

of non-membership.

2. n-Hyper Spherical Neutrosophic matrices and their basic operations

The n-HyperSpherical Neutrosophic matrix and its algebraic operations are characterized

in this section and also demonstrated De Morgan’s rules over complement, commutativity,

Idempotency, absorption law, distributivity, and associativity.

Now we’ll describe Algebraic operations of n-HyperSpherical Neutrosophic matrices by lim-

iting the measure of negative membership, neutral membership, and positive membership while

retaining their total in the range [0, n
√

3].

In [5, 6, 9, 10], we employ some basic notations to arrive at our main findings.

Definition 2.1. A n-Hyper Spherical Neutrosophic matrix (n-HSNM) M of the form, M =(〈
ζaij , ηaij , δaij

〉)
of a non negative real numbers ζaij , ηaij , δaij ∈ [0, 1] fulfilling the requirement

0 ≤ ζnaij + ηnaij + δnaij ≤ 3, ∀ i, j,

where ζaij ∈ [0, 1], ηaij ∈ [0, 1], and δaij ∈ [0, 1] represent the degree of membership, the degree

of neutral membership, and the degree of non-membership.

The n-HyperSpherical Fuzzy matrix (n-HSFM) is a specific instance of the Neutrosophic

matrix (NFM). Because, ζaij , ηaij , and δaij ∈ [0, 1] imply that one also has ζnaij , η
n
aij , and

δnaij ∈ [0, 1] for n ≥ 1, they are neutrosophic components and each n-HSFS is a NM. The

reciprocal, however, is false because if at least one component has a value of 1 and at least one of

the other two components has a value of > 0, as in the case of ζaij = 1 and ηaij > 0, δaij ∈ [0, 1],

then ζnaij +ηnaij +δnaij > 1 for (n ≥ 1). The number of triplets ζ, η, δ that are NFM components,

but not n-HSFM components, is infinite.
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When the neutrosophic components ζaij = 0.9, ηaij = 0.4, δaij = 0.5, for some given

ijth element are used, they are not considered to be spherical fuzzy matrix components since

(0.9)2 + (0.4)2 + (0.5)2 = 1.22 > 1. For ζaij , ηaij and δaij ∈ [0, 1], there exist infinitely many

values whose sum of squares is strictly bigger than 1, hence they are neutrosophic components

rather than spherical fuzzy matrix components.

Let Nm×n represents the collection of all the n-Hyper Spherical Neutrosophic matrices.

Definition 2.2. The n-Hyper Spherical Neutrosophic matrices S and T are of the form,

S =
(〈
ζaij , ηaij , δaij

〉)
and T =

(〈
ζbij , ηbij , δbij

〉)
. Then

• S < T iff ∀i, j, ζaij ≤ ζbij , ηaij ≤ ηbij or ηaij ≥ ηbij , δaij ≥ δbij .
• SC =

(〈
δaij , ηaij , ζaij

〉)
.

• S ∧ T =
(〈

min
(
ζaij , ζbij

)
,min

(
ηaij , ηbij

)
,max

(
δaij , δbij

)〉)
.

• S ∨ T =
(〈

max
(
ζaij , ζbij

)
,min

(
ηaij , ηbij

)
,min

(
δaij , δbij

)〉)
.

• S ⊗ T =

(〈
ζaijζbij , n

√
ηnaij + ηnbij − η

n
aijη

n
bij
, n

√
δnaij + δnbij − δ

n
aijδ

n
bij

〉)
.

• S ⊕ T =

(〈
n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij
, ηaijηbij , δaijδbij

〉)
.

Definition 2.3. The scalar multiplication operation over n-HSNM S and is characterized by

nS =
(〈

n

√
1− [1− ζnaij ]n, [ηaij ]

n, [δaij ]
n
〉)

.

Definition 2.4. The exponentiation operation over n-HSNM S and is characterized by

Sn =
(〈

[ζaij ]
n, n

√
1− [1− ηnaij ]n, n

√
1− [1− δnaij ]n

〉)
.

Let Nm×n represents the collection of all the n-Hyper Spherical Neutrosophic matrices.

The algebraic product and algebraic sum of n-HSNMs’ are connected by the embracing

theorem.

Theorem 2.5. For S, T ∈ Nm×n, then S ⊗ T ≤ S ⊕ T .

Proof. Let

S ⊕ T =
(〈

n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij
, ηaijηbij , δaijδbij

〉)
and

S ⊗ T =
(〈
ζaijζbij , n

√
ηnaij + ηnbij − η

n
aijη

n
bij
, n

√
δnaij + δnbij − δ

n
aijδ

n
bij

〉)
.

Assume that,

ζaijζbij ≤ n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij

(i.e)ζaijζbij − n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij
≥ 0

(i.e)ζnaij (1− ζ
n
bij

) + ζnbij (1− ζ
n
aij ) ≥ 0
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which is true as 0 ≤ ζnaij ≤ 1 and 0 ≤ ζnbij ≤ 1 and

ηaijηbij ≤ n

√
ηnaij + ηnbij − η

n
aijη

n
bij

(i.e)ηaijηbij − n

√
ηnaij + ηnbij − η

n
aijη

n
bij
≥ 0

(i.e)ηnaij (1− η
n
bij

) + ηnbij (1− η
n
aij ) ≥ 0

which is true as 0 ≤ ηnaij ≤ 1 and 0 ≤ ηnbij ≤ 1, and

δaijδbij ≤ n

√
δnaij + δnbij − δ

n
aijδ

n
bij

(i.e)δaijδbij − n

√
δnaij + δnbij − δ

n
aijδ

n
bij
≥ 0

(i.e)δnaij (1− δ
n
bij

) + δnbij (1− δ
n
aij ) ≥ 0,

which is true as

0 ≤ δnaij ≤ 1

and

0 ≤ δnbij ≤ 1.

Hence, S ⊗ T ≤ S ⊕ T .

Theorem 2.6. For any n-Hyper Spherical Neutrosophic matrix p, then

(i) S ⊕ S ≥ S.
(ii) S ⊗ S ≤ S.

Proof. (i) Let

S ⊕ S =
(〈
ζaij , ηaij , δaij

〉)
⊕
(〈
ζaij , ηaij , δaij

〉)
S ⊕ S =

(〈
n

√
2ζaij − (ζaij )

n, (ηaij )
n, (δaij )

n
〉)

n

√
2ζaij − (ζaij )

n = n

√
ζaij + ζaij (1− ζaij ) ≥ ζaij , ∀ i, j

and

(ηaij )
n ≤ ηaij , ∀ i, j

(δaij )
n ≤ δaij , ∀ i, j.

Thus, S ⊕ S ≥ S. Similarly, we can also demonstrate that (ii) S ⊗ S ≤ S.

Theorem 2.7. For S, T , U ∈ Nm×n, then

(i) S ⊕ T = T ⊕ S.
(ii) S ⊗ T = T ⊗ S.

(iii) (S ⊕ T )⊕ U = S ⊕ (T ⊕ U).
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(iv) (S ⊗ T )⊗ U = S ⊗ (T ⊗ U).

Proof. (i) Let

S ⊕ T =
(〈

n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij
, ηaijηbij , δaijδbij

〉)
=

(〈
n

√
ζnbij + ζnaij − ζ

n
bij
ζnaij , ηbijηaij , δbijδaij

〉)
= T ⊕ S.

(ii) Let

S ⊗ T =
(〈
ζaijζbij , n

√
ηnaij + ηnbij − η

n
aijη

n
bij
, n

√
δnaij + δnbij − δ

n
aijδ

n
bij

〉)
=

(〈
ζbijζaij , n

√
ηnbij + ηnaij − η

n
bij
ηnaij ,

n

√
δnbij + δnaij − δ

n
bij
δnaij

〉)
= T ⊗ S.

(iii) Let

(S ⊕ T )⊕ U =
(〈(

n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij
, ηaijηbij , δaijδbij

)
⊕
(
ζcij , ηcij , δcij

)〉)
=

[
n

√(
n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij

)n
+ ζncij −

(
n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij

)n
ζncij ,

ηaijηbijηcij , δaijδbijδcij

]
=

[
n

√
ζnaij + ζnbij + ζncij − ζnaijζ

n
bij
ζncij − ζnaijζncij − ζ

n
bij
ζncij + ζnaijζ

n
bij
ζncij ,

ηaijηbijηcij , δaijδbijδcij

]
=

[
n

√
ζnaij + ζnbij + ζncij − ζnaijζ

n
bij
− ζnaijζncij − ζ

n
bij
ζncij + ζnaijζ

n
bij
ζncij ,

ηaijηbijηcij , δaijδbijδcij

]
.

Let us assume that

S ⊕ (T ⊕ U) =
[

n

√
ζnaij +

(
n

√
ζnbij + ζncij − ζ

n
bij
ζncij

)n
− ζnaij

(
n

√
ζnbij + ζncij − ζ

n
bij
ζncij

)n
,

ηaijηbijηcij , δaijδbijδcij

]
=

[
n

√
ζnaij + ζnbij + ζncij − ζnaijζ

n
bij
− ζnaijζncij − ζ

n
bij
ζncij + ζnaijζ

n
bij
ζncij ,

ηaijηbijηcij , δaijδbijδcij

]
.

Thus, (S ⊕T )⊕U = S ⊕ (T ⊕U). Similarly, we can also demonstrate that (iv) (S ⊗T )⊗U =

S ⊗ (T ⊗ U).

Theorem 2.8. For S, T ∈ Nm×n, then

(i) S ⊕ (S ⊗ T ) ≥ S.
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(ii) S ⊗ (S ⊕ T ) ≤ S.

Proof. (i) Let

S ⊕ (S ⊗ T ) =
(〈
ζaij , ηaij , δaij

〉)
⊕
(〈
ζaijζbij , n

√
ηnaij + ηnbij − η

n
aijη

n
bij
, n

√
δnaij + δnbij − δ

n
aijδ

n
bij

〉)
=

[
n

√
ζnaij + ζnaijζ

n
bij
− ζnaij [ζnaijζ

n
bij

], ηaij [ n

√
ηnaij + ηnbij − η

n
aijη

n
bij

],

δaij [ n

√
δnaij + δnbij − δ

n
aijδ

n
bij

]
]

=
[

n

√
ζnaij + ζnaijζ

n
bij

[1− ζnaij ], ηaij
(

n

√
1− [1− ηnaij ][1− η

n
bij

]
)
,

δaij

(
n

√
1− [1− δnaij ][1− δ

n
bij

]
) ]

≥ S.

Hence S ⊕ (S ⊗ T ) ≥ S. Similarly, we can also demonstrate that (ii)S ⊗ (S ⊕ T ) ≤ S.

The theorem that follows is self-evident.

Theorem 2.9. For S, T ∈ Nm×n, then

(i) S ∨ T = T ∨ S.
(ii) S ∧ T = T ∧ S.

Theorem 2.10. For S, T , U ∈ Nm×n, then

(i) S ⊕ (T ∨ U) = (S ⊕ T ) ∨ (S ⊕ U).

(ii) S ⊗ (T ∨ U) = (S ⊗ T ) ∨ (S ⊗ U).

(iii) S ⊕ (T ∧ U) = (S ⊕ T ) ∧ (S ⊕ U).

(iv) S ⊗ (T ∧ U) = (S ⊗ T ) ∧ (S ⊗ U).

Proof. We’ll start by proving (i) and(ii)− (iv) may be demonstrated similarly.

(i) Let

S ⊕ (T ∨ U) =
[

n

√
ζnaij + max

(
ζnbij , ζ

n
cij

)
− ζnaij .max

(
ζnbij , ζ

n
cij

)
,

ηaij .max
(
ηbij , ηcij

)
, δaij .max

(
δbij , δcij

) ]
=

[
n

√
max

(
ζnaij + ζnbij , ζa

n
ij

+ ζncij

)
−max

(
ζnaijζ

n
bij
, ζnaijζ

n
cij

)
,

min
(
ηaijηbij , ηaijηcij

)
,min

(
δaijδbij , δaijδcij

) ]
=

[
n

√
max

(
ζnaij + ζnbij − ζ

n
aijζ

n
bij
, ζnaij + ζncij − ζnaijζncij

)
,

min
(
ηaijηbij , ηaijηcij

)
,min

(
δaijδbij , δaijδcij

) ]
= (S ⊕ T ) ∨ (S ⊕ U).
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Theorem 2.11. For S, T ∈ Nm×n, then

(i) (S ∧ T )⊕ (S ∨ T ) = S ⊕ T .
(ii) (S ∧ T )⊗ (S ∨ T ) = S ⊗ T .

(iii) (S ⊕ T ) ∧ (S ⊗ T ) = S ⊗ T .
(iv) (S ⊕ T ) ∨ (S ⊗ T ) = S ⊕ T .

Proof. We’ll start by demonstrating (i), and (ii)− (iv) may be demonstrated similarly.

(i) Let

(S ∧ T )⊕ (S ∨ T ) =

[
n

√
min

(
ζnaij , ζ

n
bij

)
+ max

(
ζnaij , ζ

n
bij

)
−min

(
ζnaij , ζ

n
bij

)
.max

(
ζnaij , ζ

n
bij

)
,

max
(
ηaij , ηbij

)
.min

(
ηaij , ηbij

)
, max

(
δaij , δbij

)
.min

(
δaij , δbij

) ]
=

(〈
n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij
, ηaijηbij , δaijδbij

〉)
= S ⊕ T .

The operator complement obeys De Morgan’s principles in the following theorems for the

operation ⊕,⊗,∨,∧.

Theorem 2.12. For S, T ∈ Nm×n, then

(i) (S ⊕ T )C = SC ⊗ T C .

(ii) (S ⊗ T )C = SC ⊕ T C .

(iii) (S ⊕ T )C ≤ SC ⊕ T C .

(iv) (S ⊗ T )C ≥ SC ⊗ T C .

Proof. We’ll show that (iii), (iv), and (i), (ii) are simple.

(iii) Let

(S ⊕ T )C =
(〈
δaijδbij , n

√
ηnaij + ηnbij − η

n
aijη

n
bij
, n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij

〉)
SC ⊕ T C =

(〈
n

√
δnaij + δnbij − δ

n
aijδ

n
bij
, ηaijηbij , ζaijζbij

〉)
.

Since

δaijδbij ≤ n

√
δnaij + δnbij − δ

n
aijδ

n
bij

n

√
ηnaij + ηnbij − η

n
aijη

n
bij
≥ ηaijηbij

n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij
≥ ζaijζbij .
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Hence (S ⊕ T )C ≤ SC ⊕ T C .

(iv) Let

(S ⊗ T )C =
(〈

n

√
δnaij + δnbij − δ

n
aijδ

n
bij
, ηaijηbij , ζaijζbij

〉)
SC ⊗ T C =

(〈
δaijδbij , n

√
ηnaij + ηnbij − η

n
aijη

n
bij
, n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij

〉)
.

Since

n

√
δnaij + δnbij − δ

n
aijδ

n
bij
≥ δaijδbij

ηaijηbij ≤ n

√
ηnaij + ηnbij − η

n
aijη

n
bij

ζaijζbij ≤ n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij
.

Hence (S ⊗ T )C ≥ SC ⊗ T C .

Theorem 2.13. For S, T ∈ Nm×n, then

(i) (SC)C = S.
(ii) (S ∨ T )C = SC ∧ T C .

(iii) (S ∧ T )C = SC ∨ T C .

Proof. We’ll prove only (ii), (i) is self-evident.

S ∨ T =
(〈

max
(
ζaij , ζbij

)
,min

(
ηaij , ηbij

)
,min

(
δaij , δbij

)〉)
(S ∨ T )C =

(〈
min

(
δaij , δbij

)
,min

(
ηaij , ηbij

)
,max

(
ζaij , ζbij

)〉)
⇒ SC =

(〈
δaij , ηaij , ζaij

〉)
T C =

(〈
δbij , ηbij , ζbij

〉)
⇒ SC ∧ T C =

(〈
min

(
δaij , δbij

)
,min

(
ηaij , ηbij

)
,max

(
ζaij , ζbij

)〉)
.

Hence (S ∨T )C = SC ∧T C . Similarly, we can also demonstrate that (iii)(S ∧T )C = SC ∨T C .

We’ll show the algebraic characteristics of n-Hyper Spherical Neutrosophic matrices under

scalar multiplication and exponentiation using the definitions 1.1, 1.2 and 1.3.

Theorem 2.14. If S, T ∈ Nm×n, then n > 0,

(i) n(S ⊕ T ) = nS ⊕ nT , n > 0.

(ii) n1S ⊕ n2S = (n1 + n2)S, n1, n2 > 0.

(iii) (S ⊗ T )n = Sn ⊗ T n, n > 0.

(iv) Sn1 ⊗ Sn2 = S(n1+n2), n1, n2 > 0.
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Proof. According to the concept, for the two n-HSNMs S and T , and n, n1, n2 > 0,

we have

(i) Let

n(S ⊕ T ) = n
(〈

n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij
, ηaijηbij , δaijδbij

〉)
=

(〈
n

√
1− [1− ζnaij ]n[1− ζnaij ]n, [ηaijηbij ]

n, [δaijδbij ]
n
〉)

=
(〈

n

√
1− [1− ζnaij + ζnbij − ζ

n
aijζ

n
bij

]n, [ηaijηbij ]
n, [δaijδbij ]

n
〉)

nS ⊕ nT =
(〈(

n

√
1− [1− ζnaij ]n, [ηaij ]

n, [δaij ]
n
)
⊕
(

n

√
1− [1− ζnbij ]

n, [ηbij ]
n, [δbij ]

n
)〉)

=
(〈

n

√
1− [1− ζnaij ]n[1− ζnbij ]

n, [ηaijηbij ]
n, [δaijδbij ]

n
〉)

=
(〈

n

√
1− [1− ζnaij + ζnbij − ζ

n
aijζ

n
bij

]n, [ηaijηbij ]
n, [δaijδbij ]

n
〉)

= n(S ⊕ T ).

(ii)Let

n1S ⊕ n2T =
(〈(

n

√
1− [1− ζnaij ]n1 , [ηaij ]

n1 , [δaij ]
n1

)
⊕
(

n

√
1− [1− ζnaij ]n2 , [ηaij ]

n2 , [δaij ]
n2

)〉)
=

(〈
n

√
1− [1− ζnaij ]n1+n2 , [ηaij ]

n1+n2 , [δaij ]
n1+n2

〉)
= (n1 + n2)S.

(iii) Let

(S ⊗ T )n =
[ (
ζaijζbij

)n
, n

√
1− [1− ηnaij + ηnbij − η

n
aijη

n
bij

]n, n

√
1− [1− δnaij + δnbij − δ

n
aijδ

n
bij

]n
]

=
[ (
ζaijζbij

)n
, n

√
1− [1− ηnaij ]n[1− ηnbij ]

n, 1− [1− δnaij ]n[1− δnbij ]
n
]

Sn ⊗ T n =
[ (
ζaijζbij

)n
, n

√
1− [1− ηnaij ]n + 1− [1− ηnbij ]

n −
(

1− [1− ηnaij ]n
)(

1− [1− ηnbij ]
n
)

n

√
1− [1− δnaij ]n + 1− [1− δnbij ]

n −
(

1− [1− δnaij ]n
)(

1− [1− δnbij ]
n
)]

=
(〈(

ζaijζbij
)n
, n

√
1− [1− ηnaij ]n[1− ηnbij ]

n, n

√
1− [1− δnaij ]n[1− δnbij ]

n
〉)

= (P ⊗Q)n.

(iv) Let

Sn1 ⊗ Sn2 =
[ (
ζaij
)n1+n2 , n

√
1− [1− ηnaij ]n1 + 1− [1− ηnaij ]n2 −

(
1− [1− ηnaij ]n1

)(
1− [1− ηnaij ]n−2

)
,

n

√
1− [1− δnaij ]n1 + 1− [1− δnaij ]n−2 −

(
1− [1− δnaij ]n1

)(
1− [1− δnaij ]n2

)]
=

(〈(
ζaij
)n1+n2 , n

√
1− [1− ηnaij ]n1+n2 , n

√
1− [1− δnaij ]n1+n2

〉)
= S(n1+n2).
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Hence proved.

Theorem 2.15. Suppose S, T ∈ Nm×n, then n > 0,

(i) nS ≤ nT .
(ii) Sn ≤ T n.

Proof. (i) Let S ≤ T . Then, we have

ζaij ≤ ζbij ηaij ≥ ηbij and δaij ≥ δbij ∀ i, j.

Now,

n

√
1− [1− ζnaij ]n ≤ n

√
1− [1− ζnbij ]

n[
ηaij
]n ≥

[
ηbij
]n[

δaij
]n ≥

[
δbij
]n ∀ i, j.

(ii) Also,

[ζaij ]
n ≥ [ζbij ]

n

n

√
1− [1− ηnaij ]n ≤ n

√
1− [1− ηnbij ]

n

n

√
1− [1− δnaij ]n ≤ n

√
1− [1− δnbij ]

n ∀ i, j.

Similarly, we can prove the following theorems.

Theorem 2.16. For S, T ∈ Nm×n, then n > 0,

(i) n(S ∧ T ) = nS ∧ nT .
(ii) n(S ∨ T ) = nS ∨ nT .

Theorem 2.17. Suppose S, T ∈ Nm×n, then n > 0,

(i) (S ∧ T )n = Sn ∧ T n.

(ii) (S ∨ T )n = Sn ∨ T n.

Theorem 2.18. Suppose S, T ∈ Nm×n, then n > 0,

(S ⊕ T )n 6= Sn ⊕ T n.

Proof. Let

(S ⊕ T )n =
[ (

n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij

)n
, n

√
1− [1− ηnaijη

n
bij

]n, n

√
1− [1− δnaijδ

n
bij

]n
]

Sn ⊕ T n =
[

n

√
[ζnaij ]

n + [ζnbij ]
n − [ζnaij ]

n[ζnbij ]
n,
(

n

√
1− [1− ηnaij ]n

)n
.
(

n

√
1− [1− ηnbij ]

n
)n
,(

n

√
1− [1− δnaij ]n

)n
.
(

n

√
1− [1− δnaij ]n

)n ]
.
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Hence (S ⊕ T )n 6= Sn ⊕ T n.

3. New operation (@) on n-HyperSpherical Neutrosophic matrices

In this part, we describe and show the algebraic properties of a new operation(@) on n-

HyperSpherical Neutrosophic matrices. We also go through the Disstributivity rules in the

situation when the ⊕,⊗,∨ and ∧ operations are combined.

Definition 3.1. A n-HyperSpherical Neutrosophic matrices S and T are of the form, S =(〈
ζaij , ηaij , δaij

〉)
and T =

(〈
ζbij , ηbij , δbij

〉)
. Then

S@T =

(〈
n

√
ζnaij + ζnbij

2
,

n

√
ηnaij + ηnbij

2
,

n

√
δnaij + δnbij

2

〉)
.

Remark 3.2. Obviously, for every two n-HyperSpherical Neutrosophic matrices S and T ,

then S@T is a n-HyperSpherical Neutrosophic matrix.

Simple illustration given: For S@T ,

0 ≤
ζaij + ζbij

2
+
ηaij + ηbij

2
+
δaij + δbij

2

≤
ζaij + ηaij + δaij

2
+
ζbij + ηbij + δbij

2

≤ 1

2
+

1

2
= 1.

Theorem 3.3. For any n-HyperSpherical Neutrosophic matrix S, then S@S = S.

Proof. Let

S@S =

〈 n

√
ζnaij + ζnaij

2
,

n

√
ηnaij + ηnaij

2
,

n

√
δnaij + δnaij

2

〉
=

〈 n

√
ζnaij + ζnaij

2

n

,

 n

√
ηnaij + ηnaij

2

n

,

 n

√
δnaij + δnaij

2

n〉
=

(〈
2ζnaij

2
,
2ηnaij

2
,
2δnaij

2

〉)
=

(〈
ζaij , ηaij , δaij

〉)
.

Since ζnaij ≤ ζaij , η
n
aij ≤ ηaij , δ

n
aij ≤ δaij

S@S = S.

Remark 3.4. If v, w ∈ [0, 1], then vw ≤ v+w
2 , v+w

2 ≤ v + w − vw.

Theorem 3.5. Suppose S, T ∈ Nm×n, then
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(i) (S ⊕ T ) ∨ (S@T ) = S ⊕ T .
(ii) (S ⊗ T ) ∧ (S@T ) = S ⊗ T .

(iii) (S ⊕ T ) ∧ (S@T ) = S@T .
(iv) (S ⊗ T ) ∨ (S@T ) = S@T .

Proof. We’ll show that (i) and (iii), as well as (ii) and (iv), may be demonstrated in the similar

manner. (i) Let

(S ⊕ T ) ∨ (S@T ) =

[
max

 n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij
,

n

√
ζnaij + ζnbij

2

 ,min

ηaijηbij , n

√
ηnaij + ηnbij

2

 ,

min

δaijδbij , n

√
δnaij + δnbij

2

]

=
(〈

n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij
, ηaijηbij , δaijδbij

〉)
= S ⊕ T .

(iii) Let

(S ⊕ T ) ∧ (S@T ) =

[
min

 n

√
ζnaij + ζnbij − ζ

n
aijζ

n
bij
,

n

√
ζnaij + ζnbij

2

 ,max

ηaijηbij , n

√
ηnaij + ηnbij

2

 ,

max

δaijδbij , n

√
δnaij + δnbij

2

]

=

〈 n

√
ζnaij + ζnbij

2
,

n

√
ηnaij + ηnbij

2
,

n

√
δnaij + δnbij

2

〉
= S@T .

Hence proved.

Remark 3.6. Under the n-Hyper Spherical Neutrosophic matrix operations of algebraic sum

and algebraic product, the n-Hyper Spherical Neutrosophic matrix forms a semi-lattice, as-

sociativity, commutativity, and idempotency. When ⊕,⊗ and ∧,∨,@ are combined, the dis-

tributive law also holds.

4. Applications

The results are relevant to the development of n-Hyper Spherical Neutrosophic semi-lattice

structure, n-Hyper Spherical Neutrosophic matrix, and algebraic structure on this matrix.
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5. Conclusion

n-Hyper Spherical Neutrosophic matrices and their algebraic operations are characterized

in this study. Then various qualities are demonstrated, including associativity, idempotency,

distributivity, commutativity, absorption law, and De Morgan’s laws over complement. Lastly,

we established a new operation(@) on n-Hyper Spherical Neutrosophic matrices and studied

distributive laws in the situation of combining the operations of ⊕,⊗,∧, and ∨. This find-

ing can be used to the n-Hyper Spherical Neutrosophic matrix theory in the future. The

conclusions of this work will be useful in the creation of the n-Hyper Spherical Neutrosophic

semilattice and its algebraic property. The applicability of the suggested aggregating operators

of n-HSNMs in risk analysis, decision making and many other fuzzy environments will need

to be studied in the future.
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Abstract. A neutrosophic set (NS) is a novel computing technique that accesses uncertain information by using

three memberships. The main goal of this study is to come up with a novel approach called the ”possibility

neutrosophic soft expert set” (PNSE-set), which is based on the idea that each element of the universe of

discourse has a certain level of possibility. Based on this new approach, the set-theoretical operations on PNSE-

set (i.e complement, subset, equality, union, intersection, DeMorgans laws, AND-product, and OR-product

operations) are introduced, along with illustrative examples and relevant laws. A generalized algorithm is

proposed and applied to decision-making problems. Meanwhile, a similarity measure of two PNSE-sets is

offered, and it’s tested in real-life applications involving medical diagnosis applications. Finally, this work is

supported by a comparative analysis of three recent methods.

Keywords: neutrosophic set; similarity measure; decision making; possibility neutrosophic soft expert sets.

—————————————————————————————————————————-

1. Introduction

With the rapid development that our world is witnessing in all areas of our daily life, we face

several practical problems that include uncertain, inconsistent, and incomplete information,

and this requires a new and effective mathematical tools to deal with problems. Smarandache

managed to overcome the weaknesses that appeared in both [3] and [4] by establishing an idea

of a neutrosophic set (NS). An NS is considered a more comprehensive mathematical tool for

human thinking, as it covers the aspects of right and wrong and the indeterminacy between

them through its mathematical structure, which contains three functions, namely T (u) true
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function, I(u) indeterminacy function, and F (u) falsity function, such that image of all of

them belong ]−0,+1[

However, NS and its extensions [5], [6] have their own intrinsic difficulties and weaknesses in

precisely expressing their preferences. To overcome this drawback, Molodtsov [7] established a

new parameterization tool named soft set (SS). After Molodtsov, a lot of researchers combined

the SS with the NS and its extension; for instance,Maji [8] introduced a neutrosophic soft set

(NSS), which can be considered a new track of thinking that opens the horizons for researchers

in engineering, computer science, and others.Peng [9] proposed similarity measures on neu-

trosophic soft sets to measure level soft sets based on some algorithms. Broumi [10] tested

the notions of relation between NS-sets in decision-making applications. Some techniques of

MAGDM and MADM tested on neutrosophic environment by [11]- [13]. Naeem et al. [14]- [17]

discussed fuzzy, soft, and m-polar neutrosophic environments with decision-making. Al-Sharqi

et al. [18]- [22] merged all of NS and SS into a complex environment and applied it in some

real-life applications. In addition, researchers have applied these mathematical tools in various

fields [23]- [32]. Alkhazaleh pointed out all these theories have their own shortcomings. One of

these shortcomings is the soft set’s inability to absorb users’ opinions (experts) simultaneously.

To overcome these difficulties, Alkhazaleh et al. [33] created a new technique for modelling

uncertainty called a ”soft expert set” (SES) based on the merged concept of a ”soft set” with

an expert system. This approach has now been applied in many fields, such as intelligent

systems, game theory, measurement theory, cybernetics, probability theory, and so on. Re-

search on SES is progressing rapidly up to now. This concept has been studied and combined

with fuzzy set theory and its extensions by researchers. Alkhazaleh et al. were the first to

introduce the model fuzzy-ESSs [34] and neutrosophic-SESs [35]. Alhazaymeh and Hassan

merged a soft expert set with a vague set and gave some new hybrid notions [36].Ihsan et

al. [37] have developed m-polar fuzzy SESs with the same properties. Hassan et al. [38], [39]

demonstrated the properties of the Q-NSE-set. Pramanik et al. [40]compiend SNS and SES

and they proposed the idea SNSES. Subsequently, more general properties and applications

of soft expert set theory have been investigated by Hassan and others, for instance, see [41]-

[44]. From a scientific point of view, an element’s probability degree will significantly influence

modelling some applications under multiple attribute decision-making problems. Therefore,

several researchers studied this idea in fuzzy set theory and its extinctions. For instance,

Alkhazaleh et al. [45]first established the possibility setting on fuzzy soft sets and defined

similarity measures for two possibility fuzzy soft sets. Alhazaymeh and Hassan then presented

the concepts of possibility vague soft set [46] and possibility interval-valued vague soft set [47].

Al-Quran and Hassan [48] proposed the possibility neutrosophic vague soft set and employed

it in medical diagnosis applications. Karaaslan [49] suggested the theory of possibility of NSSs

Faisal Al-Sharqi, Yousef Al-Qudah, Naif Alotaibi, Decision-making techniques based on
similarity measures of possibility neutrosophic soft expert sets

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               359



as an extension of [50] and illustrated its application in decision-making. Selvachandran and

Salleh [51] established the idea of possibility intuitionistic fuzzy-SESs by a develops the struc-

tures in [45]- [47]. But there are some limitations in [49]- [51]. In the first one can only be

used by one user, while more than one user can use the second, but it lacks an important tool,

which is the indefiniteness found in NS. To overcome these limitations, we will organize in

this work a new hybrid concept called possibility neutrosophic soft expert sets (PNSE-sets) by

assigning a possibility degree to each approximate member of an NSE-set. This model keeps

the advantages of the SESs by allowing users to understand the experts’ opinions without the

requirement for further operations. Also, Similarity measures [52], [53] are layered extensively

in the fuzzy environment . Therefore, based on this model, we define the measure of similarity

between two PNSE-sets and show how this measure can be used in medical diagnosis.

This article is divided into eight parts, which are as follows: we review some important def-

initions and properties in Section 2. The general framework of the proposed concept, some

properties, and numerical examples in Section 3.. Then, in section 4, we present basic op-

erations on the PNSE-set together with some propositions and numerical examples. Some

applications in decision-making are solved by PNSE-setting in Section 5. In Section 6, we

define the similarity measure between two PNSE-sets and show the importance of this mea-

sure by one application in medical diagnosis. Finally, Section 7 contains a brief comparison

between PNSE-set and some other methods to show the reader the importance of this work.

In addition, conclusions of this work showed in Section 8.

2. Preliminaries

In this part, we give the most important definitions and properties of [1, 7] a that will be

used in later parts of this work.

Definition 2.1. Neutrosophic Set (N-set) [1, 2] An N-set N̈ is characterized by N̈ ={〈
v, ṪN̈(v), İN̈(v), ḞN̈(v),∀v ∈ V

〉}
such that ṪN̈(v), İN̈(v), ḞN̈(v) : V→ [0, 1] are real-valued

truth-membership, indeterminacy-membership, and non-membership, respectively

Definition 2.2. (Properties of N-set) [1,2] If N̈ and M̈ are two N-sets on V then for v ∈ V,

we have:

(i) N̈⊆M̈ if ṪN̈ (v) ≤ ṪM̈ (v) , İN̈ (v) ≥ İM̈ (v) and ḞN̈ (v) ≥ ḞM̈ (v) for all v ∈ V.

(ii) N̈c =
{〈
v, ṪN̈c(v), İN̈c(v), ḞN̈c(v)

〉}
=
{〈
v, ḞN̈(v), 1− İN̈(v), ṪN̈(v)

〉}
.

(iii) If N̈ ∪ (∩) M̈ = D̈ and defined as follows

D̈ =
{〈
v, ṪD̈(v),˙D̈(v), ḞD̈(v)

〉}
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where

ṪD̈(v) = max (min)
[
ṪN̈(v), ṪM̈(v)

]
,

İD̈(v) = min (max)
[
İN̈(v), ÏM̈(v)

]
,

ḞD̈(v) = min (max)
[
FN̈(v),FM̈(v)

]
.

Definition 2.3. Soft Set (SS) [7] A pair
(
F̃,E

)
is a SS on fixed set V, where F̃ : E→ P (V)

such that A is a subset of attributes set E.

3. Possibility Neutrosophic Soft Expert Sets(PNSE-set)

In the current section, we will establish the main definition of possibility neutrosophic soft

expert sets (PNSE-sets) and the elementary properties of PNSE-sets are conceptualized with

some numerical examples.

Definition 3.1. The pair(Fµ,Z)is called the possibility neutrosophic soft expert set (PNSE-

set) over a nonempty soft universe (V,Z) if

Fµ : A→ NV × IV

defined by

Fµ (zi) = {F (zi) (vn) , µ (zi) (vn)}

with

F (zi) (vn) = 〈ρ (zi) (vn) , η (zi) (vn) , ψ (zi) (vn)〉 ∀zi ∈ P ⊆ Z, vn ∈ V.

Where,

(1) For V = {v1, v2, v3, ..., vn}be a non-empty initial universe, P = {p1, p2, p3, ..., pj}be

a parameters set, M = {m1,m2,m3, ...,mk}be a set of experts, Q =

{1 = agree, 0 = disagree}be a set of opinions, and Z = {P×M×Q} .

(2) = : Z → NVand µ : Z → IV,NV and IV indicates the collection of all neutrosophic

and fuzzy subset of V respectively.

(3) F (z) (vn) is the degree of neutrosophic membership of v ∈ V in F(z),

i.e(ρ (z) (vn) , η (z) (vn) , ψ (z) (vn)) denotes to three neutrosophic memberships recep-

tively.

(4) µ (z) (vn) is a degree of possibility membership of v ∈ V in F(z).

so Fµ (zi) can be written as below:{(
v1

F (z)(v1)
, µ (z) (v1)

)
,
(

v2
F (z)(v2)

, µ (z) (v2)
)
,
(

v3
F (z)(v3)

, µ (z) (v3)
)
...,

(
vn

F (z)(vn)
, µ (z) (vn)

)}
for i = 1, 2, 3, ..., n

Remark 3.2.
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1. If we have P ⊆ Z it is also possible to write a PNSE-set as (Fµ,P) and to essay way the

PNSE-set can be write as Fµ.

2. Here in this work, we suppose that the set of opinions consists of only two values (i,e agree

and disagree), but it is possible to include other options that match the nature of the problem.

Example 3.3. Let V = {v1, v2, v3}be the universal set of elements, let P = {p1, p2}be a

parameters set, whee p1 =cheap, p2 =beautiful and let M = {m1,m2} be a set containing two

experts. Assume that Fµ : A→ NV × IV is a function represented as follows:

Fµ (p1,m1, 1)

=
{(

v1
〈0.5,0.3,0.1〉 , 0.2

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)
,
(

v3
〈0.6,0.1,0.6〉 , 0.5

)}
Fµ (p2,m1, 1)

=
{(

v1
〈0.6,0.3,0〉 , 0.5

)
,
(

v2
〈0.1,0.3,0.9〉 , 0.7

)
,
(

v3
〈0.9,0.4,0.2〉 , 0.6

)}
Fµ (p1,m2, 1)

=
{(

v1
〈0.3,0.4,0.6〉 , 0.1

)
,
(

v2
〈0.4,0.5,0.3〉 , 0.5

)
,
(

v3
〈0.2,0.4,0.4〉 , 0.8

)}
Fµ (p2,m2, 1)

=
{(

v1
〈0.1,0.1,0.4〉 , 0.3

)
,
(

v2
〈0.6,0.2,0.4〉 , 0.8

)
,
(

v3
〈0.3,0.2,0.5〉 , 0.6

)}
Fµ (p1,m1, 0)

=
{(

v1
〈0.2,0.8,0.3〉 , 0.5

)
,
(

v2
〈0.3,0.4,0.2〉 , 0.5

)
,
(

v3
〈0.3,0.2,0.6〉 , 0.8

)}
Fµ (p2,m1, 0)

=
{(

v1
〈0.4,0.9,2〉 , 0.9

)
,
(

v2
〈0.4,0.3,0.2〉 , 0.7

)
,
(

v3
〈0.3,0.4,0.7〉 , 0.2

)}
Fµ (p1,m2, 0)

=
{(

v1
〈0.4,0.3,0,3〉 , 0.4

)
,
(

v2
〈0.2,0.6,0.6〉 , 0.7

)
,
(

v3
〈0.7,0.3,0.5〉 , 0.5

)}
Fµ (p2,m2, 0)

=
{(

v1
〈0.2,0.4,0.8〉 , 0.3

)
,
(

v2
〈0.5,0.5,0.2〉 , 0.9

)
,
(

v3
〈0.1,0.1,0.7〉 , 0.1

)}
Now, we can present PNSE-set (Fµ,Z) as be formed of the following aggregate of approxi-

mations:

(Fµ,Z) ={
(p1,m1, 1) =

{(
v1

〈0.5,0.3,0.1〉 , 0.2
)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)
,
(

v2
〈0.6,0.1,0.6〉 , 0.5

)}
,

(p2,m1, 1) =
{(

v1
〈0.6,0.3,0〉 , 0.5

)
,
(

v2
〈0.1,0.3,0.9〉 , 0.7

)
,
(

v3
〈0.9,0.4,0.2〉 , 0.6

)}
,

(p1,m2, 1) =
{(

v1
〈0.3,0.4,0.6〉 , 0.1

)
,
(

v2
〈0.4,0.5,0.3〉 , 0.5

)
,
(

v3
〈0.2,0.4,0.4〉 , 0.8

)}
,

(p2,m2, 1) =
{(

v1
〈0.1,0.1,0.4〉 , 0.3

)
,
(

v2
〈0.6,0.2,0.4〉 , 0.8

)
,
(

v3
〈0.3,0.2,0.5〉 , 0.6

)}
,

(p1,m1, 0) =
{(

v1
〈0.2,0.8,0.3〉 , 0.5

)
,
(

v2
〈0.3,0.4,0.2〉 , 0.5

)
,
(

v3
〈0.3,0.2,0.6〉 , 0.8

)}
,
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(p2,m1, 0) =
{(

v1
〈0.4,0.9,0.2〉 , 0.9

)
,
(

v2
〈0.4,0.3,0.2〉 , 0.7

)
,
(

v3
〈0.3,0.4,0.7〉 , 0.2

)}
,

(p1,m2, 0) =
{(

v1
〈0.4,0.3,0.3〉 , 0.4

)
,
(

v2
〈0.2,0.6,0.6〉 , 0.7

)
,
(

v3
〈0.7,0.3,0.5〉 , 0.5

)}
,

(p2,m2, 0) =
{(

v1
〈0.2,0.4,0.8〉 , 0.3

)
,
(

v2
〈0.5,0.5,0.2〉 , 0.9

)
,
(

v3
〈0.1,0.1,0.7〉 , 0.1

)}}
Then we say that (Fµ,Z) is a is said to be possibility neutrosophic soft expert set (PNSE-set)

over soft universe (V,Z)

Definition 3.4. For two PNSE-sets (Fµ, A) and (Gϕ, B) over (V,Z).Then (Fµ, A) is said to

be be a PNSE-subset of (Gϕ, B) if A ⊆ B, and ∀z ∈ A ⊆ Z the next conditions are fulfilled:

1. µ (z) is fuzzy subset of ϕ (z).

2. Fµ (z) is neutrosophic subset of Gϕ (z).

And we denoted this relation as (Fµ, A)⊆ (Gϕ, B).In this issue, (Gϕ, B) is named a PNSE-

superset of (Fµ, A).

Definition 3.5. If (Fµ, A) and (Gϕ, B) be two PNSE-sets over (V,Z).Then (Fµ, A) is equal

to (Gϕ, B) if ∀z ∈ A ⊆ Z the next conditions are fulfilled:

1. µ (z) is equal of ϕ (z).

2. Fµ (z) is equal of Gϕ (z).

And we denoted this relation as (Fµ, A) = (Gϕ, B).In this words, (Gϕ, B) is equal of (Fµ, A)

if (Gϕ, B) is PNSE-subset of (Fµ, A) and (Fµ, A) is PNSE-subset of (Gϕ, B).

Definition 3.6. A PNSE-set (Fµ, A) is named null-PNSE-set, indicated by
(

Φ̈µ, A
)

and given

as follows

Φ̈µ (zi) = {F (zi) (vn) , µ (zi) (vn)}, ∀zi ∈ A ⊆ Z

where F (zi) (vn) =〈0, 1, 1〉 such that ∀zi ∈ A ⊆ Z, v ∈ V we have ρ (zi) (vn) = 0,η (zi) (vn) =

1,ψ (zi) (vn) = 1 and µ (zi) (vn) = 0 .

Definition 3.7. A PNSE-set (Fµ, A) is named to be absolute-PNSE-set, indicate by

(Fµ, A)Abso and given as follows

Fµ (zi) = {F (zi) (vn) , µ (zi) (vn)}, ∀zi ∈ A ⊆ Z

where F (zi) (vn) =〈1, 0, 0〉 such that ∀zi ∈ A ⊆ Z, v ∈ V we have ρ (zi) (vn) = 1,η (zi) (vn) =

0,ψ (zi) (vn) = 0 and µ (zi) (vn) = 1 .

Definition 3.8. Let (Fµ, A) be a PNSE-set over (V,Z) . Then an agree-PNSE-set over non-

empty universal V denoted (Fµ, A)1 is a PNSE-subset of (V,Z) and its given as follows:

Fµ (zi)1 = {F (zi) (vn) , µ (zi) (vn)}, ∀zi ∈ A ⊆ Z = P×M× 1.
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Definition 3.9. Let (Fµ, A) be a PNSE-set over (V,Z) . Then a disagree-PNSE-set over

non-empty universal V denoted (Fµ, A)0 is a PNSE-subset of (V,Z) and its given as follows:

Fµ (zi)0 = {F (zi) (vn) , µ (zi) (vn)}, ∀zi ∈ A ⊆ Z = P×M× 0.

4. Fundamental set theoretic operations of PNSE-set

In the next part, we offer some fundamental mathematical operations on PNSE-set, namely

complement on one set of PNSE-set, union, and intersection on two or more sets of PNSE-set,

followed by AND, OR operations on two or more sets of PNSE-set. Finally, we offer some

properties related to these operations with suitable examples.

Definition 4.1. Let
(
Fµ, Ȧ

)
be a PNSE-set over fixed set (soft universe) (V,Z). Then the

complement of a PNSE-set
(
Fµ, Ȧ

)
indicated by

(
Fµ, Ȧ

)c
is given as follows:(

Fµ, Ȧ
)c

=Fcµ (zi) = {c̈(F (z) (vn)), ċ(µ (z) (vn))}

where c̈ indicates a neutrosophic complement and ċ indicates a fuzzy complement.

Example 4.2. Take the part given in Example 3.3 where,

Fµ (p1,m1, 1)

=
{(

v1
〈0.5,0.3,0.1〉 , 0.2

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)
,
(

v3
〈0.6,0.1,0.6〉 , 0.8

)}
Now, by employing the neutrosophic complement and fuzzy complement, we get the comple-

ment of the part that is given by Fcµ (p1,m1, 1)

=
{(

v1
〈0.1,0.7,0.5〉 , 0.8

)
,
(

v2
〈0.7,0.8,0.4〉 , 0.7

)
,
(

v3
〈0.6,0.9,0.6〉 , 0.2

)}

Proposition 4.3. Let
(
Fµ, Ȧ

)
be a PNSE-set over fixed set (V,Z).Then the following property

applies: ((
Fµ, Ȧ

)c)c
=
(
Fµ, Ȧ

)
Proof. Assume that

(
Fµ, Ȧ

)
be a PNSE-set over fixed set (V,Z) and defined as

(
Fµ, Ȧ

)
=

Fµ(zi) = (F (zi) , µ (zi)).

Now, let
(
Fµ, Ȧ

)c
=
(
Gϕ, Ḃ

)
.

Then based on definition 4.1
(
Gµ, Ḃ

)
= Gϕ(zi) = (G (zi) , ϕ (zi)).Such that G (zi) = c̈(F (zi))

and ϕ(zi) = ċ(µ(zi)). Thus it leads us to(
Gµ, Ḃ

)c
= Gc

ϕ(zi) = (c̈(G (zi)), ċ(ϕ (zi))) =(c̈(c̈(F (zi))), ċ(ċ(µ (zi)))) = (F (zi) , µ (zi)) =(
Fµ, Ȧ

)
.

Thus
((

Fµ, Ȧ
)c)c

= (Gϕ, B)c =
(
Fµ, Ȧ

)
. Hence we get

((
Fµ, Ȧ

)c)c
=
(
Fµ, Ȧ

)
.
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Definition 4.4. If
(
Fµ, Ȧ

)
and

(
Gϕ, Ḃ

)
two PNSE-sets on fixed set (soft universe)

(V,Z). Then the union operation of these sets is also PNSE-set
(
HΨ , Ċ

)
and denoted by(

HΨ , Ċ
)

=
(
Fµ, Ȧ

)
= ∪̈ (Gϕ, B). Where Ċ = Ȧ ∪ Ḃ and

Ψ(zi) = max(µ(zi), ϕ(zi)), ∀zi ∈ Ċ ⊆ Z = {P×M×Q} .
H(zi) = F(zi)∪̈G(zi), ∀zi ∈ Ċ ⊆ Z = {P×M×Q} .

where

H(zi) =


F(zi) ,ifzi ∈ Ȧ− Ḃ
G(zi) ,ifzi ∈ Ḃ − Ȧ
max(F(zi),G(zi)) ,ifzi ∈ Ȧ ∩ Ḃ

Proposition 4.5. Let
(
Fµ, Ȧ

)
,
(
Gϕ, Ḃ

)
and

(
HΨ , Ċ

)
be any three optional PNSE-sets over

(V,Z).Then the following results are achieved:

(i).
(
Fµ, Ȧ

)
∪̈
(
Gϕ, Ḃ

)
=
(
Gϕ, Ḃ

)
∪̈
(
Fµ, Ȧ

)
.(Aommutative Condition)

(ii)
(
Fµ, Ȧ

)
∪̈
((

Gϕ, Ḃ
)
∪̈
(
HΨ , Ċ

))
=
((

Fµ, Ȧ
)
∪̈
(
Gϕ, Ḃ

))
∪̈
(
HΨ , Ċ

)
.(Associative Condi-

tion)

Proof. Assume that
(
Fµ, Ȧ

)
∪̈
(
Gϕ, Ḃ

)
=
(
HΨ , Ċ

)
.Then based on Definition 4.4, ∀zi ∈ Ċ ⊆

Z = {P×M×Q} . we have (
HΨ , Ċ

)
= HΨ (zi) = (H(zi), Ψ(zi))

where H(zi) = F(zi)∪̈G(zi) and Ψ(zi) = max(µ(zi), ϕ(zi)). So,H(zi) = F(zi)∪̈G(zi) =

G(zi)∪̈F(zi) and Ψ(zi) = max(µ(zi), ϕ(zi)) = max(ϕ(zi), µ(zi)). we have the union of these

sets is commutative by Definition 4.4.

Therefore,
(
HΨ , Ċ

)
=
(
Gϕ, Ḃ

)
∪̈
(
Fϕ, Ȧ

)
.

Then we get the union of two PNSE-sets is commutative, such that
(
Fµ, Ȧ

)
∪̈
(
Gϕ, Ḃ

)
=
(
Gϕ, Ḃ

)
∪̈
(
Fµ, Ȧ

)
.

(ii) The proof of this part is equivalent to (i) and is therefore overlooked.

Definition 4.6. If
(
Fµ, Ȧ

)
and

(
Gϕ, Ḃ

)
two PNSE-sets on fixed set (soft universe) (V,Z).

Then the intersection operation of these sets is also PNSE-set
(
HΨ , Ċ

)
and denoted by(

HΨ , Ċ
)

=
(
Fµ, Ȧ

)
= ∩̈

(
Gϕ, Ḃ

)
. Where Ċ = Ȧ ∪ Ḃ and

Ψ(zi) = min(µ(zi), ϕ(zi)), ∀zi ∈ Ċ ⊆ Z = {P×M×Q} .
H(zi) = F(zi)∩̈G(zi), ∀zi ∈ Ċ ⊆ Z = {P×M×Q} .

where
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H(zi) =


F(zi) ,ifzi ∈ Ȧ− dotB
G(zi) ,ifzi ∈ Ḃ − Ȧ
min(F(zi),G(zi)) ,ifzi ∈ Ȧ ∩ Ḃ

Proposition 4.7. Let
(
Fµ, Ȧ

)
,
(
Gϕ, Ḃ

)
and

(
HΨ , Ȧ

)
be any three optional PNSE-sets over

(V,Z).Then the following results are achieved:

(i).
(
Fµ, Ȧ

)
∩̈(Gϕ, B) =

(
Gϕ, Ḃ

)
∩̈
(
Fµ, Ḃ

)
.(Aommutative Condition)

(ii)
(
Fµ, Ȧ

)
∩̈
((

Gϕ, Ḃ
)
∩̈
(
HΨ , Ċ

))
=
((

Fµ, Ȧ
)
∩̈
(
Gϕ, Ḃ

))
∩̈
(
HΨ , Ċ

)
.(Associative Condi-

tion)

Proof. The proof of these two parts (i, ii) is equivalent to (i, ii) in proposition 4. 5 and are

and are overlooked.

Proposition 4.8. Let
(
Fµ, Ȧ

)
,
(
Gϕ, Ḃ

)
and

(
HΨ , Ċ

)
be any three optional PNSE-sets over

(V,Z).Then the following results are satisfying:

(i).
(
Fµ, Ȧ

)
∪̈
((

Gϕ, Ḃ
)
∩̈
(
HΨ , Ċ

))
=
((

Fµ, Ȧ
)
∪̈
(
Gϕ, Ḃ

))
∩̈
(

(Fµ, A) ∪̈
(
HΨ , Ċ

))
(ii).

(
Fµ, Ȧ

)
∩̈
((

Gϕ, Ḃ
)
∪̈
(
HΨ , Ċ

))
=
((

Fµ, Ȧ
)
∩̈
(
Gϕ, Ḃ

))
∪̈
((

Fµ, Ȧ
)
∩̈
(
HΨ , Ċ

))
Proof. The proof of these propositions clear dependency Definitions 4.4 and 4.6 and is therefore

overlooked.

Proposition 4.9. Let
(
Fµ, Ȧ

)
and

(
Gϕ, Ȧ

)
be any two optional PNSE-sets over (V,Z).Then

De Morgans laws satisfying:

(i).
((

Fµ, Ȧ
)
∪̈
(
Gϕ, Ȧ

))c
=
((

Fµ, Ȧ
)c
∩̈
(
Gϕ, Ȧ

)c)
.

(ii).
((

Fµ, Ȧ
)
∩̈
(
Gϕ, Ȧ

))c
=
((

Fµ, Ȧ
)c
∪̈
(
Gϕ, Ȧ

)c)
.

Proof. (i) Assume that
(
Fµ, Ȧ

)
and

(
Gϕ, Ȧ

)
be any two optional PNSE-sets over (V,Z)

defined as following:(
FΨ , Ȧ

)
= Fµ(zi) = (F(zi), µ(zi)), ∀zi ∈ Ċ ⊆ Z = {P×M×Q} .(

Gϕ, Ḃ
)

= Gϕ(zi) = (G(zi), ϕ(zi)), ∀zi ∈ Ċ ⊆ Z = {P×M×Q} .

Now, since the commutative and associative properties are fulfilled with PNSE-set, it follows

that(
Fµ, Ȧ

)c
∪̈
(
Gϕ, Ḃ

)c
= (F (zi) , µ (zi))

c∪̈(G (zi) , ϕ (zi))
c

= (c̈ (F (zi)) , ċ (µ (zi))) ∪̈ (c̈ (G (zi)) , ċ (ϕ (zi)))

= (c̈ (F (zi)) , ∪̈c̈ (G (zi))) max (ċ (µ (zi)) , ċ (ϕ (zi)))
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= (c̈ (F (zi) ∩̈G (zi))) , ċ (min (µ (zi) , ϕ (zi)))

=
((

Fµ, Ȧ
)
∩̈
(
Gϕ, Ḃ

))c
.

(ii) (ii)The proof of the(ii) is comparable to the proof of the (i) and therefore overlooked.

Definition 4.10. Let
(
Fµ, Ȧ

)
and

(
Gϕ, Ḃ

)
be any two optional PNSE-sets over (V,Z).Then(

Fµ, Ȧ
)
AND

(
Gϕ, Ḃ

)
indicated by

(
Fµ, Ȧ

)
∧̈
(
Gϕ, Ḃ

)
is a PNSE-set and defined as:(

Fµ, Ȧ
)
∧̈
(
Gϕ, Ḃ

)
=
(
HΨ , Ȧ× Ḃ

)
where

(
HΨ , Ȧ× Ḃ

)
= (H(zi, zj), Ψ(zi, zj)), such that H(zi, zj) = F(zi)∩̈G(zj) and Ψ(zi, zj) =

min(µ(zi), ϕ(zj)), ∀(zi, zj) ∈ A × Ḃ ⊆ Z = {P×M×Q} and∩̈ depicts the basic intersection

operation.

Definition 4.11. Let
(
Fµ, Ȧ

)
and

(
Gϕ, Ḃ

)
be any two optional PNSE-sets over (V,Z).Then(

Fµ, Ȧ
)
OR

(
Gϕ, Ḃ

)
indicated by

(
Fµ, Ȧ

)
∨̈
(
Gϕ, Ḃ

)
is a PNSE-set and defined as:(

Fµ, Ȧ
)
∨̈
(
Gϕ, Ḃ

)
=
(
HΨ , Ȧ× Ḃ

)
where

(
HΨ , Ȧ× Ḃ

)
= (H(zi, zj), Ψ(zi, zj)), such that H(zi, zj) = F(zi)∪̈G(zj) and Ψ(zi, zj) =

max(µ(zi), ϕ(zj)), ∀(zi, zj) ∈ Ȧ× Ḃ ⊆ Z = {P×M×Q} and∪̈ depicts the basic union.

Proposition 4.12. Let
(
Fµ, Ȧ

)
and

(
Gϕ, Ḃ

)
be any two optional PNSE-sets over (V,Z).Then

De Morgans laws satisfying:

(i).
((

Fµ, Ȧ
)
∨̈
(
Gϕ, Ḃ

))c
=
((

Fµ, Ȧ
)c
∧̈
(
Gϕ, Ḃ

)c)
.

(ii).
((

Fµ, Ȧ
)
∧̈
(
Gϕ, Ḃ

))c
=
((

Fµ, Ȧ
)c
∨̈ (Gϕ, B)c

)
.

Proof. (i) Assume that
(
Fµ, Ȧ

)
and

(
Gϕ, Ḃ

)
be any two optional PNSE-sets over (V,Z)

defined as following:(
FΨ , Ȧ

)
= Fµ(zi) = (F(zi), µ(zi)), ∀zi ∈ Ċ ⊆ Z = {P×M×Q} .(

Gϕ, Ḃ
)

= Gϕ(zi) = (G(zi), ϕ(zi)), ∀zi ∈ Ċ ⊆ Z = {P×M×Q} .

Now, since the commutative and associative properties are fulfilled with PNSE-set, it follows

that(
Fµ, Ȧ

)c
∨̈
(
Gϕ, Ḃ

)c
= (F (zi) , µ (zi))

c∨̈(G (zi) , ϕ (zi))
c

= (c̈ (F (zi)) , ċ (µ (zi))) ∨̈ (c̈ (G (zi)) , ċ (ϕ (zi)))

= (c̈ (F (zi)) , ∨̈c̈ (G (zi))) max (ċ (µ (zi)) , ċ (ϕ (zi)))

= (c̈ (F (zi) ∧̈G (zi))) , ċ (min (µ (zi) , ϕ (zi)))

=
((

Fµ, Ȧ
)
∧̈
(
Gϕ, Ḃ

))c
.
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(ii)The proof of the second part is similar to the proof of the first part therefore omitted.

Proposition 4.13. Let (Fµ, A), (Gϕ, B) and (HΨ , C) be any three optional PNSE-sets over

(V,Z).Then the following results are achieved:

(i). (Fµ, A)∨̈ ((Gϕ, B) ∨̈ (HΨ , C)) =((Fµ, A) ∨̈ (Gϕ, B))∨̈(HΨ , C).

(ii). (Fµ, A)∧̈ ((Gϕ, B) ∧̈ (HΨ , C)) =((Fµ, A) ∧̈ (Gϕ, B))∧̈(HΨ , C).

(iii). (Fµ, A)∨̈ ((Gϕ, B) ∧̈ (HΨ , C)) =((Fµ, A) ∨̈ (Gϕ, B))∧̈ ((Fµ, A) ∨̈ (HΨ , C)).

(iV). (Fµ, A)∧̈ ((Gϕ, B) ∨̈ (HΨ , C)) =((Fµ, A) ∧̈ (Gϕ, B))∨̈ ((Fµ, A) ∧̈ (HΨ , C)).

Proof. The proof of these propositions are clear by Definitions 4.10 and 4.11 and therefore

omitted.

Remark 4.14. Due A×B 6= B×A, therefore AND operation and OR operation don’t satisfy

commutative law.

Example 4.15. Let (Fµ, A) and (Gϕ, B) be any two optional PNSE-sets over (V,Z) and let

A = {(p1,m1, 1) , (p2,m2, 1)},B = {(p2,m2, 1) , (p1,m1, 0)}. Then the PNSE-set defined as

bellow:

(Fµ, A) ={
(p1,m1, 1) =

{(
v1

〈0.5,0.3,0.1〉 , 0.2
)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)
,
(

v3
〈0.6,0.1,0.6〉 , 0.5

)}
,

(p2,m2, 1) =
{(

v1
〈0.6,0.3,0〉 , 0.5

)
,
(

v2
〈0.5,0.3,0.8〉 , 0.4

)
,
(

v3
〈0.1,0.5,0.2〉 , 0.9

)}}
and

(Gµ, B) ={
(p2,m2, 1) =

{(
v1

〈0.3,0.4,0〉 , 0.7
)
,
(

v2
〈0.3,0.7,0.2〉 , 0.4

)
,
(

v3
〈0.1,0.4,0.8〉 , 0.6

)}
,

(p1,m1, 0) =
{(

v1
〈0.3,0.7,0.5〉 , 0.8

)
,
(

v2
〈0.6,0.3,0.2〉 , 0.7

)
,
(

v3
〈0.3,0.4,0.8〉 , 1

)}}
Then,

(Fµ, A) ∪̈ (Gµ, B) ={
(p1,m1, 1) =

{(
v1

〈0.5,0.3,0.1〉 , 0.2
)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)
,
(

v3
〈0.6,0.1,0.6〉 , 0.5

)}
,

(p2,m2, 1) =
{(

v1
〈0.6,0.3,0〉 , 0.7

)
,
(

v2
〈0.5,0.3,0.2〉 , 0.4

)
,
(

v3
〈0.1,0.4,0.2〉 , 0.9

)}
,

(p1,m1, 0) =
{(

v1
〈0.3,0.7,0.5〉 , 0.8

)
,
(

v2
〈0.6,0.3,0.2〉 , 0.7

)
,
(

v3
〈0.3,0.4,0.8〉 , 1

)}}
.

(Fµ, A) ∩̈ (Gµ, B) ={
(p1,m1, 1) =

{(
v1

〈0.5,0.3,0.1〉 , 0.2
)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)
,
(

v3
〈0.6,0.1,0.6〉 , 0.5

)}
,

(p2,m2, 1) =
{(

v1
〈0.3,0.4,0〉 , 0.5

)
,
(

v2
〈0.3,0.7,0.8〉 , 0.4

)
,
(

v3
〈0.1,0.5,0.8〉 , 0.6

)}
,

(p1,m1, 0) =
{(

v1
〈0.3,0.7,0.5〉 , 0.8

)
,
(

v2
〈0.6,0.3,0.2〉 , 0.7

)
,
(

v3
〈0.3,0.4,0.8〉 , 1

)}}
.

(Fµ, A) ∨̈ (Gµ, B) = (HΨ , C = A×B) =
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{
(p1,m1, 1) , (p1,m2, 1) =

{(
v1

〈0.5,0.3,0.1〉 , 0.7
)
,
(

v2
〈0.4,0.2,0.7〉 , 0.4

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.6

)}
,

(p1,m1, 1) , (p1,m1, 0) =
{(

v1
〈0.5,0.3,0.1〉 , 0.8

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.7

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.1

)}
,

(p2,m2, 1) , (p2,m2, 1) =
{(

v1
〈0.5,0.3,0.1〉 , 0.7

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.4

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.9

)}
,

(p2,m2, 1) , (p1,m1, 0) =
{(

v1
〈0.5,0.3,0.1〉 , 0.8

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.7

)
,
(

v2
〈0.4,0.2,0.7〉 , 1

)}}
and

(Fµ, A) ∧̈ (Gµ, B) = (HΨ , C = A×B) ={
(p1,m1, 1) , (p1,m2, 1) =

{(
v1

〈0.5,0.3,0.1〉 , 0.2
)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)}
,

(p1,m1, 1) , (p1,m1, 0) =
{(

v1
〈0.5,0.3,0.1〉 , 0.2

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)}
,

(p2,m2, 1) , (p2,m2, 1) =
{(

v1
〈0.5,0.3,0.1〉 , 0.2

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)}
,

(p2,m2, 1) , (p1,m1, 0) =
{(

v1
〈0.5,0.3,0.1〉 , 0.2

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)}}

5. Decision-Making Application on PNSE-sets

In this part, we introduce a new generalized algorithm to show the efficiency of the proposed

model to help the decision maker (user) make the right decision from available alternatives

based on hypothetical data, as in the following example.

Example 5.1. Suppose Mr. Xu wants to choose a primary school for his daughter out of three

schools available in the universe, V = {v1, v2, v3}. Mr. Xu asked for the opinion of three of his

friends (experts) and could represent his friends (experts) by the set M = {m1,m2,m3} and

the opines set Q = {1 = agree, 0 = disagree} describes the opinions set of Mr. Xu friends.

Mr. Xu friends consider a set of attributes P = {p1, p2, p3} where the attributes represent

the characteristics that depend on selecting the suitable school namely, p1 = teachingquality,

p2 = cost, and p3 = environment, respectively. According to the evaluation of experts, the

PNSE-set (Fµ,Z = P) is obtained.

(Fµ,P) ={
(p1,m1, 1) =

{(
v1

〈0.5,0.3,0.1〉 , 0.2
)
,
(

v2
〈0.4,0.2,0.7〉 , 0.3

)
,
(

v2
〈0.6,0.1,0.6〉 , 0.5

)}
,

(p2,m1, 1) =
{(

v1
〈0.6,0.3,0〉 , 0.5

)
,
(

v2
〈0.1,0.3,0.9〉 , 0.3

)
,
(

v3
〈0.9,0.4,0.2〉 , 0.6

)}
,

(p3,m1, 1) =
{(

v1
〈0.4,0.1,0.2〉 , 0.3

)
,
(

v2
〈0,0.1,0.7〉 , 0.5

)
,
(

v3
〈0.7,0.2,0.4〉 , 0.5

)}
,

(p1,m2, 1) =
{(

v1
〈0.3,0.4,0.6〉 , 0.1

)
,
(

v2
〈0.4,0.5,0.3〉 , 0.5

)
,
(

v3
〈0.2,0.4,0.4〉 , 0.8

)}
,
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(p2,m2, 1) =
{(

v1
〈0.3,0.3,0.6〉 , 0.6

)
,
(

v2
〈0.8,0.4,0.6〉 , 0.9

)
,
(

v3
〈0.5,0.5,0.7〉 , 0.8

)}
,

(p3,m2, 1) =
{(

v1
〈0.6,0.3,0〉 , 0.5

)
,
(

v2
〈0.1,0.3,0.9〉 , 0.7

)
,
(

v3
〈0.9,0.4,0.2〉 , 0.6

)}
,

(p1,m3, 1) =
{(

v1
〈0.3,0.4,0.6〉 , 0.1

)
,
(

v2
〈0.4,0.5,0.3〉 , 0.5

)
,
(

v3
〈0.2,0.4,0.4〉 , 0.8

)}
,

(p2,m3, 1) =
{(

v1
〈0.1,0.1,0.4〉 , 0.3

)
,
(

v2
〈0.6,0.2,0.4〉 , 0.8

)
,
(

v3
〈0.3,0.2,0.5〉 , 0.6

)}
,

(p3,m3, 1) =
{(

v1
〈0.5,0.4,0.7〉 , 0.2

)
,
(

v2
〈0.3,0.5,0.6〉 , 0.5

)
,
(

v3
〈0,0.3,0.6〉 , 0.7

)}
,

(p1,m1, 0) =
{(

v1
〈0.2,0.8,0.3〉 , 0.5

)
,
(

v2
〈0.3,0.4,0.2〉 , 0.5

)
,
(

v3
〈0.3,0.2,0.6〉 , 0.8

)}
,

(p2,m1, 0) =
{(

v1
〈0.4,0.9,0.2〉 , 0.9

)
,
(

v2
〈0.4,0.3,0.2〉 , 0.7

)
,
(

v3
〈0.3,0.4,0.7〉 , 0.2

)}
,

(p3,m1, 0) =
{(

v1
〈0.6,0.4,0.1〉 , 0.6

)
,
(

v2
〈0.5,0.4,0.3〉 , 0.8

)
,
(

v3
〈0.4,0.6,0.5〉 , 0.6

)}
,

(p1,m2, 0) =
{(

v1
〈0.4,0.3,0.3〉 , 0.7

)
,
(

v2
〈0.2,0.6,0.6〉 , 0.3

)
,
(

v3
〈0.7,0.3,0.5〉 , 0.9

)}
,

(p2,m2, 0) =
{(

v1
〈0.7,0.5,0.4〉 , 0.7

)
,
(

v2
〈0.4,0.3,0.7〉 , 0.8

)
,
(

v3
〈0.1,0.3,0.6〉 , 0.4

)}
,

(p3,m2, 0) =
{(

v1
〈0.5,0.3,0.6〉 , 0.5

)
,
(

v2
〈0.1,0.5,0.8〉 , 0.4

)
,
(

v3
〈0.5,0.3,0.7〉 , 0.8

)}
,

(p1,m3, 0) =
{(

v1
〈0.2,0.5,0.6〉 , 0.5

)
,
(

v2
〈0.6,0.9,0.5〉 , 0.2

)
,
(

v3
〈0.4,0,0.7〉 , 0.8

)}
,

(p2,m3, 0) =
{(

v1
〈0.5,0.4,0.2〉 , 0.6

)
,
(

v2
〈0.3,0.7,0.3〉 , 0.4

)
,
(

v3
〈0.8,0.3,0.6〉 , 0.3

)}
,

(p3,m3, 0) =
{(

v1
〈0.2,0.4,0.8〉 , 0.3

)
,
(

v2
〈0.5,0.5,0.2〉 , 0.9

)
,
(

v3
〈0.1,0.1,0.7〉 , 0.1

)}}

Next, by using the proposed algorithm given below together with the PNSE-set model

(Fµ,P) , we will solve the problem noted at the beginning of this part to help Mr. Xu choose

the appropriate school. The generalised algorithm is shown below.

Algorithm 1

Step 1: Build a PNSE-set model (Fµ,P) depending on opinion of Experts.

Step 2: Find the values of ρ (z) (vn) − η (z) (vn) + ψ (z) (vn) ∀vn ∈ V., where

Faisal Al-Sharqi, Yousef Al-Qudah, Naif Alotaibi, Decision-making techniques based on
similarity measures of possibility neutrosophic soft expert sets

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               370



ρ (z) (vn) , η (z) (vn) and ψ (z) (vn) are the three neutrosophic membership functions(truth, in-

determinacy and falsehood) ∀v ∈ V, respectively and µ (z) (vn) indicated to possibility grade

of v ∈ V.

Step 3: For both agree-PNSES and disagree-PNSES values, take the greatest numerical de-

gree.

Step 4: Calculate values of the score Ri = Mi−Ni, where Mi,Ni are degree for agree-PNSES

and disagree-PNSES ∀vi ∈ V

Step 5: Choose the value of the highest score in Zi = maxvi∈V {Ri}.Then the decision is to

choose an alternative vi as the optimal or most suitable solution to the problem.

Now, from Table 1, we get the values ρ (z) (vn) − η (z) (vn) + ψ (z) (vn) ∀vn ∈ V. It is

to be noted that the first column and second column in Table 1 symbolize the values of

ρ (z) (vn)− η (z) (vn) + ψ (z) (vn) and the degree of PNSE-set for all vn ∈ V respectively.

Tables 2 and 3 present the highest numerical degree for the elements in the agree-PNSE-set

and disagree-PNSE-set, respectively.

The values of Mi and Ni are gaven in Table 4 and represent numerical grades for both the

agree-PNSE-set and disagree-PNSE-set, respectively.

Then Di = maxvi∈V {Ri} = {R3}. Therefore, based on the opinions of experts, the appropri-

ate school is v3.

Figure 1: Representation of algorithm 1.

Remark 5.2. If we have more than one alternative with the highest Ri grade, then any of

those alternatives can be selected as the best solution to the problem.
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Table 1. Values of ρ (z) (vn)− η (z) (vn) + ψ (z) (vn) ∀vn ∈ V.

Vn v1 v2 v3

(p1,m1, 1) 0.3,0.2 0.9,0.3 -0.1,0.5

(p2,m1, 1) 0.3,0.5 0.7,0.3 0.7,0.6

(p3,m1, 1) 0.5,0.3 0.6,0.5 0.9,0.5

(p1,m2, 1) 0.5,0.1 0.2,0.5 0.2,0.8

(p2,m2, 1) 0.6,0.6 -0.2,0.9 0.7,0.8

(p3,m2, 1) 0.3,0.5 0.7,0.7 0.7,0.6

(p1,m3, 1) 0.5,0.1 0.2,0.5 0.2,0.8

(p2,m3, 1) 0.4,0.3 0,0.8 0.6,0.6

(p3,m3, 1) 0.8,0.2 0.4,0.5 0.3,0.7

(p1,m1, 0) -0.3,0.5 0.1,0.5 0.7,0.8

(p2,m1, 0) -0.3,0.9 0.1,0.7 0.6,0.2

(p3,m1, 0) 0.1,0.6 0.4,0.8 0.3,0.6

(p1,m2, 0) 0.4,0.7 0.2,0.3 -0.1,0.9

(p2,m2, 0) 0.6,0.7 0.8,0.8 0.4,0.4

(p3,m2, 0) 0.8,0.5 0.4,0.4 0.9,0.8

(p1,m3, 0) 0.3,0.5 0.2,0.2 0.1,0.4

(p2,m3, 0) 0.3,0.6 0.7,0.4 0.2,0.3

(p3,m3, 0) 0.6,0.3 0.2,0.9 0.3,0.1

Table 2. Numerical grade for agree-PNSES.

Vn Highest numerical grade Degree of possibility

(p1,m1) v2 0.9 0.3

(p2,m1) v3 0.7 0.6

(p3,m1) v3 0.9 0.5

(p1,m2) v1 0.5 0.1

(p2,m2) v3 0.7 0.8

(p3,m2) v2 0.7 0.7

(p1,m3) v1 0.5 0.1

(p2,m3) v3 0.6 0.6

(p3,m3) v1 0.8 0.2

Score(v1)=0.26 Score(v2)=0.76 Score(v3)=1.79

6. Similarity Measure on PNSE-Sets

Similarity measures are considered essential tools in fuzzy set theory and its extensions,

where numerous researchers have extensively studied it and employed it in many areas of our

daily life, such as medical diagnosis, decision making, pattern recognition, and so forth. In
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Table 3. Numerical grade for disagree-PNSES.

Vn Highest numerical grade Degree of possibility

(p1,m1) v3 0.7 0.8

(p2,m1) v3 0.6 0.2

(p3,m1) v2 0.4 0.8

(p1,m2) v1 0.4 0.7

(p2,m2) v2 0.8 0.8

(p3,m2) v3 0.9 0.2

(p1,m3) v3 0.1 0.4

(p2,m3) v2 0.7 0.4

(p3,m3) v1 0.6 0.3

Score(v1)=0.46 Score(v2)=1.24 Score(v3)=1.44

Table 4. The score of Ri = Mi −Ni

Mi Ni Ri

Score(v1)=0.26 Score(v1)=0.46 -0.2

Score(v2)= 0.76 Score(v2)=1.24 -0.48

Score(v3)=1.79 Score(v3)=1.44 0.35

this part, we illustrate the similarity measure between two PNSE-sets and use a medical diag-

nosis example to demonstrate the importance of the proposed similarity measures in solving

real-world problems.

Definition 6.1. Let Fµ and Gϕ be two PNSE-sets over (V,Z). Similarity measure between

Fµ and Gϕ indicated by Ŝ (Fµ,Gϕ) is defined as follows:

Ŝ (Fµ,Gϕ) = M̈ (F (z) ,G (z))× M̈ (µ (z) , ϕ (z)) ,

such that

M̈ (F (z) ,G (z)) = maxM̈i (F (z) ,G (z)),

M̈ (µ (z) , ϕ (z)) = maxM̈i (µ (z) , ϕ (z)),

where

M̈i (F (z) ,G (z)) = 1− 1√
n

√
n∑
i=1

(
φ̇F(zi) (vj)− φ̇G(zi) (vj)

)2
,

such that and,

φ̇Fµ(z) (vj) =
ρFµ(zi)

(vj)+ηFµ(zi)
(vj)+ψFµ(zi)

(vj)

3 , φ̇Gµ(z) (vj) =
ρGµ(zi)

(vj)+ηGµ(zi)
(vj)+ψGµ(zi)

(vj)

3 .
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M̈ (µ (zi) , ϕ (zi)) = 1−

n∑
j=1
|µj(zi)−ϕj(zi)|

n∑
j=1
|µj(zi)+ϕj(zi)|

Definition 6.2. Let Fµ and Gϕ be two PNSE-sets over (V,Z).We say that Fµ and Gϕ are

signicantly similar if Ŝ (Fµ,Gϕ) ≥ 1
2 .

Proposition 6.3. Let Fµ, Gϕ and Hλ be three PNSE-sets over (V,Z).Then the following re-

sults are achieved:

(i). Ŝ (Fµ,Gϕ) = Ŝ (Gµ,Fϕ).

(ii). 0 ≤ Ŝ (Fµ,Gϕ) ≤ 1.

(iii).If Fµ = Gϕ then Ŝ (Fµ,Gϕ) = 1.

(iv).Fµ ⊆ Gϕ ⊆ Hλ then Ŝ (Fµ,Gϕ) ≤ Ŝ (Gϕ,Hλ) .

(v).If Fµ ∩Gϕ = Φ⇔ Ŝ (Fµ,Gϕ) = 0.

Proof. The proof of these propositions are clear by Definitions 6.1 and therefore omitted.

6.1. Application in Medical Diagnosis based on Similarity Measure of PNSE-set

In this subsection, we crete an algorithm works to measure similarity ratio of two PNSE-sets.

This proposed algorithm employ to estimate whether a sick person has dengue fever based on

the accompanying symptoms. To run this algorithm, we created two models of PNSE-sets de-

pends on the assistance of physicians (experts) such that the first PNSE-set represent illness

stat and the second PNSE-set represent the ill person state. Based on similarity degree, if it

is ≥ 0.5, then the ill person may have dengue fever.

Algorithm 2

Step 1: Create a PNSE-set Fµ for the disease (dengue fever), based on assistance of physicians

(experts).

Step 2: Build PNSE-set Gϕ for the patient person describes the severity of the symptoms

experienced by the sick person by helping a medical expert person.

Step 3: Calculate similarity measure between a PNSE-set Fµ for illness and a PNSE-set Gϕ

for the patient person, and if the similarity ratio is ≥ 0.5, then the person might have dengue

fever. Meanwhile, if the similarity ratio is ≺ 0.5, the person might not have dengue fever.

Now, to test this proposed algorithm, we present an applied example to ascertain whether

a person has dengue fever or not.

Faisal Al-Sharqi, Yousef Al-Qudah, Naif Alotaibi, Decision-making techniques based on
similarity measures of possibility neutrosophic soft expert sets

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               374



Figure 2: Representation of algorithm 2.

Example 6.4. Consider our universal set include only two alternatives, Yes and No, that is,

V = {v1 = Y es, v2 = No} and attributes set that includes a set of symptoms P = {p1, p2, p3}
where p1 =body temperature, p2 =cough with chest congestion, and p3 =headache.

Now, we apply our proposed algorithm.

Step 1: Create the model PNSE-set Fµ for dengue fever by the assistance of two physicians

(experts), can be expressed with M = {m1,m2} while the set Q = {1 = agree, 0 = disagree}
describes the set of opinions of two physicians (experts). :

Fµ ={
(p1,m1, 1) =

{(
v1
〈1,0,0〉 , 1

)
,
(

v2
〈0,1,1〉 , 1

)}
, (p2,m1, 1) =

{(
v1
〈1,0,0〉 , 1

)
,
(

v2
〈0,1,1〉 , 1

)}
,

(p3,m1, 1) =
{(

v1
〈1,0,0〉 , 1

)
,
(

v2
〈0,1,1〉 , 1

)}
, (p1,m2, 1) =

{(
v1
〈1,0,0〉 , 1

)
,
(

v2
〈0,1,1〉 , 1

)}
,

(p2,m2, 1) =
{(

v1
〈1,0,0〉 , 1

)
,
(

v2
〈0,1,1〉 , 1

)}
, (p3,m2, 1) =

{(
v1
〈1,0,0〉 , 1

)
,
(

v2
〈0,1,1〉 , 1

)}
,

(p1,m1, 0) =
{(

v1
〈1,0,0〉 , 1

)
,
(

v2
〈0,1,1〉 , 1

)}
, (p2,m1, 0) =

{(
v1
〈1,0,0〉 , 1

)
,
(

v2
〈0,1,1〉 , 1

)}
,

(p3,m1, 0) =
{(

v1
〈1,0,0〉 , 1

)
,
(

v2
〈0,1,1〉 , 1

)}
, (p1,m2, 0) =

{(
v1
〈1,0,0〉 , 1

)
,
(

v2
〈0,1,1〉 , 1

)}
,

(p2,m2, 0) =
{(

v1
〈1,0,0〉 , 1

)
,
(

v2
〈0,1,1〉 , 1

)}
, (p3,m2, 0) =

{(
v1
〈1,0,0〉 , 1

)
,
(

v2
〈0,1,1〉 , 1

)}}
Step 2: Create a model of PNSE-set Gϕ for sick person X as following:

Gϕ={
(p1,m1, 1) =

{(
v1

〈0.5,0.3,0.1〉 , 0.2
)
,
(

v2
〈0.6,0.1,0.6〉 , 0.5

)}
,

(p2,m1, 1) =
{(

v1
〈0.6,0.3,0〉 , 0.5

)
,
(

v3
〈0.9,0.4,0.2〉 , 0.6

)}
,

(p3,m1, 1) =
{(

v1
〈0.3,0.4,0.6〉 , 0.1

)
,
(

v3
〈0.2,0.4,0.4〉 , 0.8

)}
,
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(p1,m2, 1) =
{(

v1
〈0.1,0.1,0.4〉 , 0.3

)
,
(

v3
〈0.3,0.2,0.5〉 , 0.6

)}
,

(p2,m2, 1) =
{(

v1
〈0.2,0.8,0.3〉 , 0.5

)
,
(

v3
〈0.3,0.2,0.6〉 , 0.8

)}
,

(p3,m2, 1) =
{(

v1
〈0.4,0.9,0.2〉 , 0.9

)
,
(

v3
〈0.3,0.4,0.7〉 , 0.2

)}
,

(p1,m1, 0) =
{(

v1
〈0.4,0.3,0.3〉 , 0.4

)
,
(

v3
〈0.7,0.3,0.5〉 , 0.5

)}
,

(p2,m1, 0) =
{(

v1
〈0.8,0.1,0.3〉 , 0.1

)
,
(

v3
〈0.2,0.1,0.5〉 , 0.7

)}
,

(p3,m1, 0) =
{(

v1
〈0.3,0.4,0.3〉 , 0.4

)
,
(

v3
〈0.9,0.3,0.5〉 , 0.9

)}
,

(p1,m2, 0) =
{(

v1
〈0.4,0.3,0.3〉 , 0.6

)
,
(

v3
〈0.7,0.3,0.5〉 , 0.6

)}
,

(p2,m2, 0) =
{(

v1
〈0.5,0.5,0.7〉 , 0.4

)
,
(

v3
〈0.8,0.4,0.5〉 , 0.5

)}
,

(p3,m2, 0) =
{(

v1
〈0.2,0.4,0.8〉 , 0.3

)
,
(

v3
〈0.1,0.1,0.7〉 , 0.1

)}}

Step 3: Calculate similarity between Fϕ and Gϕ according to Definition 6.1 given above.

Then,

M̈ (µ (z1 = (p1,m1, 1)) , ϕ (z1 = (p1,m1, 1))) = 1−

2∑
j=1
|µ1(z1)−ϕ1(z1)|

2∑
j=1
|µ1(z1)+ϕ1(z1)|

=1− |1−0.2|+|1−0.5||1+0.2|+|1+0.5| = 0.52

Similarly we get, M̈ (µ (z2) , ϕ (z2)) = 0.71, M̈ (µ (z3) , ϕ (z3)) = 0.62, M̈ (µ (z4) , ϕ (z4)) =

0.62, M̈ (µ (z5) , ϕ (z5)) = 0.62, M̈ (µ (z6) , ϕ (z6)) = 0.79, M̈ (µ (z7) , ϕ (z7)) = 0.62,

M̈ (µ (z8) , ϕ (z8)) = 0.62, M̈ (µ (z9) , ϕ (z9)) = 0.58, M̈ (µ (z10) , ϕ (z10)) = 0.85,

M̈ (µ (z11) , ϕ (z11)) = 0.75, M̈ (µ (z12) , ϕ (z12)) = 0.34,then

M̈ (µ (z) , ϕ (z)) = maxM̈i (µ (z) , ϕ (z)),

M̈1 (F (z1) ,G (z1)) = 1− 1√
n

√
n∑
i=1

(
φ̇F(z1) (vj)− φ̇G(z1) (vj)

)2
,

= 1− 1√
2

√
(1− 0.3)2 + (1− 0.43)2 = 0.36

Similarly, we get the rest of the values in Table 5
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Table 5. Valudes of M̈1 (F (zi) ,G (zi)) and M̈ (µ (zi) , ϕ (zi))

M̈1 (F (zi) ,G (zi)) Degree M̈ (µ (zi) , ϕ (zi)) Degree

M̈1 (F (z1) ,G (z1)) 0.36 M̈ (µ (z2) , ϕ (z2)) 0.52

M̈1 (F (z2) ,G (z2)) 0.39 M̈ (µ (z2) , ϕ (z2)) 0.71

M̈1 (F (z3) ,G (z3)) 0.38 M̈ (µ (z3) , ϕ (z3)) 0.62

M̈1 (F (z4) ,G (z4)) 0.26 M̈ (µ (z4) , ϕ (z4)) 0.62

M̈1 (F (z5) ,G (z5)) 0.40 M̈ (µ (z5) , ϕ (z5)) 0.62

M̈1 (F (z6) ,G (z6)) 0.48 M̈ (µ (z6) , ϕ (z6)) 0.79

M̈1 (F (z7) ,G (z7)) 0.41 M̈ (µ (z7) , ϕ (z7)) 0.62

M̈1 (F (z8) ,G (z8)) 0.41 M̈ (µ (z8) , ϕ (z8)) 0.62

M̈1 (F (z9) ,G (z9)) 0.48 M̈ (µ (z9) , ϕ (z9)) 0.58

M̈1 (F (z10) ,G (z10)) 0.56 M̈ (µ (z10) , ϕ (z10)) 0.85

M̈1 (F (z11) ,G (z11)) 0.49 M̈ (µ (z11) , ϕ (z11)) 0.75

M̈1 (F (z12) ,G (z12)) 0.64 M̈ (µ (z12) , ϕ (z12)) 0.34

M̈ (F (z) ,G (z)) = 0.64 M̈ (µ (z) , ϕ (z)) = 0.85.

Figure 3: Statistical chart.

Then, the similarity measure between a PNSE-set Fµ for illness and a PNSE-set Gϕ for the

patient person:

Ŝ (Fµ,Gϕ) = 0.64× 0.85 = 0.54 ( The patient has dengue fever).
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From Table 5, we give the following statistical chart (Figure 3), which shows the differing

opinions of experts (physicians) about the condition of patients based on the strength of

symptoms. Where we will point to M̈1 (F (zi) ,G (zi)) by symbol D1 and M̈ (µ (zi) , ϕ (zi)) by

symbol D2.

7. Comparison with Some Methods in Literature

In the literature section, we mentioned that there are many contributions discussed based

on fuzzy-like, intuitionistic fuzzy-like and neutrosophic-like. As a result, in this section, we

will compare our proposed PNSE-set to other existing models that aim to find the relationship

between the degree of probability and the fuzzy environment. First of all, the PNSE-set

is an extension of PIFSE-set and PFSESet. With three neutrosopic membership functions,

the PNSE-set can deal with alternatives and attributes in an alternatives set V and a set of

attributes E in greater detail, whereas the PIFSE-set appears to have some weaknesses in

dealing with alternatives and attributes that exist in an alternatives set V and an attributes

set E. It can only get a handle on the uncertainty issues considering both the membership

and non-membership values, whereas PNSE-set can get a handle on these issues as well as the

issues containing indeterminacy and inconsistent data. These tools makes it more flexible and

practical than the PIFSE-set. On the other hand, it is worthwhile to note that the PNSE-

set was created to overcome one of the main shortcomings of the PNS-set so that it is more

advantageous to deal with expert set opinions about alternatives and attributes that exist in

an alternatives set V and a attributes set E.

To further clarify the usefulness and difference of our concept with other methods, we present

Figure 4, which contains some basic criteria to back up this comparison.

Where the symbols (TM,FM,IM,PT,DOP,and ES) indicate to true membership, false mem-

bership, indeterminate membership, Parameterization tools, Degree of Possibility, and Expert

set respectively. Finally, based on all that has been mentioned above, it can be said that our

proposed concept is a generalization of all the concepts mentioned above.
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Figure 4: Comparison with current models under suitable criteria.

8. Conclusion

In this work, in the first part, the possibility neutrosophic soft expert set (PNSE-set) is

developed in order to fix some weaknesses in [49]- [51]. Some properties and some fundamental

set-theory were set up on PNSE-set. Also, using this method, we proposed an algorithm to

solve the assumed problem in the decision-making problem. In the second part, we succeeded

in applying similarity measures to this method by computing the similarity ratio between

PNSE-sets. Then, these measures are applied to medical diagnosis to discover if the patient

has dengue fever or not. In addition, a comparison between the existing methods and the

PNSE-set was given. Finally, for further work on these topics, We recommend developing

these tools by integrating them with some other mathematical structures, such as the hypersoft

set [54]- [56], algebraic structures, topological structures, and other ideas [57]- [63].

References

1. Smarandache, F. Neutrosophy: Neutrosophic probability, set and logic; American Research Press: Re-

hoboth, IL, USA, 1998.

2. Smarandache, F. Neutrosophic set, a generalisation of the intuitionistic fuzzy sets. International Journal of

Pure and Applied Mathematics, 2005, 24, 287-297.

3. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338-353.

4. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, no. 1, pp. 8796, 1986.

Faisal Al-Sharqi, Yousef Al-Qudah, Naif Alotaibi, Decision-making techniques based on
similarity measures of possibility neutrosophic soft expert sets

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               379



5. H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman. Single valued neutrosophic sets. Multi-space

and Multi-structure, 4 (2010), 410-413.

6. Zhang, H. Y., Wang, J. Q., and Chen, X. H. (2014). Interval neutrosophic sets and their application in

multicriteria decision making problems. The Scientific World Journal, 2014.

7. Molodtsov, D. Soft set theory-first results. Computers & Mathematics with Applications 1999, 37, 19-31.

8. Maji, P.K. Neutrosophic soft set. Ann. Fuzzy Math. Inform. 2013, 5, 157168.

9. Peng, X., and Liu, C. (2017). Algorithms for neutrosophic soft decision making based on EDAS, new

similarity measure and level soft set. Journal of Intelligent and Fuzzy Systems, 32(1), 955-968.

10. Deli, I., and Broumi, S. (2015). Neutrosophic soft relations and some properties. Annals of fuzzy mathe-

matics and informatics, 9(1), 169-182.

11. Jana, C., and Pal, M. (2019). A robust single-valued neutrosophic soft aggregation operators in multi-criteria

decision making. Symmetry, 11(1), 110.

12. Sharma, S., and Singh, S. (2022). A Complementary Dual of Single-Valued Neutrosophic Entropy with

Application to MAGDM. Mathematics, 10(20), 3726.

13. Singh, S., Sharma, S., and Lalotra, S. (2020). Generalized correlation coefficients of intuitionistic fuzzy

sets with application to MAGDM and clustering analysis. International Journal of Fuzzy Systems, 22(5),

1582-1595.

14. Naeem, K., Riaz, M., and Afzal, D. (2020). Fuzzy neutrosophic soft σ-algebra and fuzzy neutrosophic soft

measure with applications. Journal of Intelligent and Fuzzy Systems, 39(1), 277-287.

15. Siraj, A., Fatima, T., Afzal, D., Naeem, K., and Karaaslan, F. (2022). Pythagorean m-polar fuzzy neutro-

sophic topology with applications. Neutrosophic Sets and Systems, 48(1), 16.

16. Naeem, K.; Riaz, M. Pythagorean fuzzy soft sets-based MADM. In Pythagorean Fuzzy Sets: Theory and

Applications; Garg, H., Ed.; Springer Nature: Singapore, 2021.

17. Naeem, K., Divvaz, B. Information measures for MADM under m-polar neutrosophic environment. Granul.

Comput. (2022). https://doi.org/10.1007/s41066-022-00340-3

18. Al-Sharqi, F.; Al-Quran, A.; Ahmad, A. G.; Broumi, S. Interval-valued complex neutrosophic soft set and

its applications in decision-making. Neutrosophic Sets and Systems, 2021, 40, 149-168.

19. Al-Sharqi, F.; Ahmad, A. G.; Al-Quran, A. Interval-Valued Neutrosophic Soft Expert Set from Real Space

to Complex Space. CMES-Computer Modeling in Engineering and Sciences, 2022, 132(1), 267-293.

20. Al-Sharqi, F.; Ahmad, A. G.; Al-Quran, A. Interval complex neutrosophic soft relations and their applica-

tion in decision-making. Journal of Intelligent and Fuzzy Systems, 2022, 43(1), 745-771.

21. Al-Sharqi, F.; Ahmad, A. G.; Al-Quran, A. Fuzzy parameterized-interval complex neutrosophic soft sets

and their applications under uncertainty. Journal of Intelligent and Fuzzy Systems, 2023, 44(1), 1453-1477.

22. Al-Sharqi, F.; Ahmad, A. G.; Al-Quran, A. Mapping on Interval Complex Neutrosophic Soft Sets. Interna-

tional Journal of Neutrosophic Science, 2022, 19(4), 77-85.

23. Ali, M., Son, L. H., Deli, I., and Tien, N. D. (2017). Bipolar neutrosophic soft sets and applications in

decision making. Journal of Intelligent and Fuzzy Systems, 33(6), 4077-4087.

24. Riaz, M., Almalki, Y., Batool, S., and Tanveer, S. (2022). Topological Structure of Single-Valued Neutro-

sophic Hesitant Fuzzy Sets and Data Analysis for Uncertain Supply Chains. Symmetry, 14(7), 1382.

25. Arshad, M., Saeed, M., and Rahman, A. U. (2022). A Novel Intelligent Multi-Attributes Decision-Making

Approach Based on Generalized Neutrosophic Vague Hybrid Computing. Neutrosophic Sets and Systems,

50(1), 32.

26. Zulqarnain, R. M., Iampan, A., Siddique, I., and ElWahed Khalifa, H. A. (2022). Cosine and Set-Theoretic

Similarity Measures for Generalized Multi-Polar Neutrosophic Soft Set with Their Application in Decision

Making. Neutrosophic Sets and Systems, 50(1), 8.

Faisal Al-Sharqi, Yousef Al-Qudah, Naif Alotaibi, Decision-making techniques based on
similarity measures of possibility neutrosophic soft expert sets

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               380



27. Shil, B., Das, R., Granados, C., Das, S., and Chowdhury, B. D. (2022). Hyperbolic Cosine Similarity

Measure Based MADM-Strategy under the SVNS Environment. Neutrosophic Sets and Systems, 50(1), 24.

28. Saad H. Zail , Majid Mohammed Abed , Faisal AL-Sharqi, Neutrosophic BCK-algebra and Ω-BCK-algebra.

International Journal of Neutrosophic Science, 2022, 19(3),8-15.

29. Dat, L. Q.; Thong, N. T.; Ali, M.; Smarandache, F.; Abdel-Basset, M.; Long, H. V. Linguistic approaches

to interval complex neutrosophic sets in decision making. IEEE access 2019, 7, 38902-38917.

30. Al-Quran, A.; Alkhazaleh, S. Relations between the complex neutrosophic sets with their applications in

decision making. Axioms 2018, 7(3), 64.

31. Al-Qudah, Y.; Hassan, N. Complex multi-fuzzy soft set: Its entropy and similarity measure. IEEE Access

2018, 6, 65002-65017.

32. Al-Qudah, Y., and Hassan, N. (2018). Complex multi-fuzzy relation for decision making using uncertain

periodic data. International Journal of Engineering and Technology, 7(4), 2437-2445.

33. Alkhazaleh, S., and Salleh, A. R. (2011). Soft Expert Sets. Adv. Decis. Sci., 2011, 757868-1.

34. Alkhazaleh, S., and Salleh, A. R. (2014). Fuzzy soft expert set and its application. Applied Mathematics,

2014.

35. Sahin, M., Alkhazaleh, S., and Ulucay, V. (2015). Neutrosophic soft expert sets. Applied mathematics, 6(1),

116.

36. Alhazaymeh, K., and Hassan, N. (2014). Mapping on generalized vague soft expert set. International Journal

of Pure and Applied Mathematics, 93(3), 369-376.

37. Ihsan, M., Rahman, A. U., Saeed, M., and Khalifa, H. A. E. W. (2021). Convexity-cum-concavity on fuzzy

soft expert set with certain properties. International Journal of Fuzzy Logic and Intelligent Systems, 21(3),

233-242.

38. Hassan, N., Uluay, V., and ahin, M. (2018). Q-neutrosophic soft expert set and its application in decision

making. International Journal of Fuzzy System Applications (IJFSA), 7(4), 37-61.

39. Abu Qamar, M., and Hassan, N. (2018). Generalized Q-neutrosophic soft expert set for decision under

uncertainty. Symmetry, 10(11), 621.

40. Pramanik, S., Dey, P. P., and Giri, B. C. (2015). TOPSIS for single valued neutrosophic soft expert set

based multi-attribute decision making problems. Neutrosophic Sets and Systems, 10, 88-95.

41. Abed, M. M.; Hassan, N.; Al-Sharqi, F. On Neutrosophic Multiplication Module. Neutrosophic Sets and

Systems, 2022, 47, 198-208.

42. Al-Qudah, Y.; Hassan, M.; Hassan, N. Fuzzy parameterized complex multi-fuzzy soft expert set theory and

its application in decision-making. Symmetry 2019, 11(3), 358.

43. Al-Quran, A., Hassan, N. The complex neutrosophic soft expert set and its application in decision making.

J.Intell. Fuzzy. Syst. 2018, 34, 569582.

44. Al-Quran, A.; Alkhazaleh, S.; Abdullah, L. Complex Bipolar-Valued Neutrosophic Soft Set and its Decision

Making Method. Neutrosophic Sets and Systems 2021, 47, 105-116.

45. Alkhazaleh, S., Salleh, A. R., and Hassan, N. (2011). Possibility fuzzy soft set. Advances in Decision

Sciences, 2011.

46. Alhazaymeh, K., and Hassan, N. (2012). Possibility vague soft set and its application in decision making.

International Journal of Pure and Applied Mathematics, 77(4), 549-563.

47. Alhazaymeh, K., and Hassan, N. (2013). Possibility interval-valued vague soft set. Applied Mathematical

Sciences, 7(140), 6989-6994.

48. Al-Quran, A., and Hassan, N. (2021). Possibility Neutrosophic Vague Soft Set for Medical Diagnosis Decision

under Uncertainty. Thai Journal of Mathematics, 19(4), 1425-1438.

49. Karaaslan, F. (2017). Possibility neutrosophic soft sets and PNS-decision making method. Applied Soft

Computing, 54, 403-414.

Faisal Al-Sharqi, Yousef Al-Qudah, Naif Alotaibi, Decision-making techniques based on
similarity measures of possibility neutrosophic soft expert sets

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               381



50. Bashir, M., Salleh, A. R., and Alkhazaleh, S. (2012). Possibility intuitionistic fuzzy soft set. Advances in

Decision Sciences, 2012.

51. Selvachandran, G., and Salleh, A. R. (2015). Possibility intuitionistic fuzzy soft expert set theory and its

application in decision making. International Journal of Mathematics and Mathematical Sciences, 2015.

52. Riaz, M., Naeem, K., & Afzal, D. (2020). A similarity measure under pythagorean fuzzy soft environment

with applications. Computational and Applied Mathematics, 39(4), 1-17.

53. Al-Sharqi, F.; Ahmad, A. G.; Al-Quran, A. Similarity Measures on Interval-Complex Neutrosophic Soft

Sets with Applications to Decision Making and Medical Diagnosis under Uncertainty. Neutrosophic Sets

and Systems, 2022, 51, 495-515.

54. Smarandache, F. Extension of Soft Set to HyperSoft Set, and then to Plithogenic Hypersoft Set, Neutro-

sophic Sets and Systems, vol. 22, 2018, pp. 168-170.

55. Ihsan, M., Rahman, A. U., and Saeed, M. (2021). Hypersoft expert set with application in decision making

for recruitment process. Neutrosophic Sets and Systems, 42(1), 12.

56. Rahman, A. U., Saeed, M., Khalifa, H. A. E. W., and Afifi, W. A. (2022). Decision making algorithmic tech-

niques based on aggregation operations and similarity measures of possibility intuitionistic fuzzy hypersoft

sets. AIMS Math, 7(3), 3866-3895.

57. Al-Sharqi, F. G.; Abed, M. M.; Mhassin, A. A. On Polish Groups and their Applications. Journal of

Engineering and Applied Sciences, 2018, 13(18), 7533-7536.

58. Abed, M. M.; Al-Sharqi, F.; Zail, S. H. A Certain Conditions on Some Rings Give P.P. Ring. Journal of

Physics: Conference Series, 2021, 1818(1), 012068.

59. Abed, M. M.; Al-Sharqi, F. G. Classical Artinian module and related topics. Journal of Physics: Conference

Series, 2018, 1003(1), 012065.

60. Abed, M. M.; Al-Sharqi, F. G.; Mhassin, A. A. Study fractional ideals over some domains. AIP Conference

Proceedings, 2019, 2138, 030001.

61. Abed, M. M.; Al-Jumaili, A. F.; Al-sharqi, F. G. Some mathematical structures in a topological group.

Journal of Algebra and Applied Mathematics, 2018, 16(2), 99-117.

62. Abed, M. M. A new view of closed-CS-module. Italian Journal of Pure and Applied Mathematics, 2020, 43,

65-72.

63. Al-Jumaili, A. F.; Abed, M.M.; Al-Sharqi, F. Other new types of Mappings with Strongly Closed Graphs

in Topological spaces via e-θ and δ− β− θ-open sets. Journal of Physics: Conference Series, 2019, 1234(1),

012101.

Faisal Al-Sharqi, Yousef Al-Qudah, Naif Alotaibi, Decision-making techniques based on
similarity measures of possibility neutrosophic soft expert sets

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               382

Received: August 20, 2022.  Accepted: January 01, 2023



University of New Mexico

A Total Order on Single Valued and Interval Valued

Neutrosophic Triplets

V Lakshmana Gomathi Nayagam1 and Bharanidharan R2,∗

Department of Mathematics, National Institute of Technology

Tiruchirappalli-620015, INDIA
1 velulakshmanan@nitt.edu
2 bharanidharan895@gmail.com
∗Corresponding Author

Abstract. L.A.Zadeh (1965) proposed the concept of fuzzy subsets, which was later expanded to include

intuitionistic fuzzy subsets by K.Atanassov (1983). We have come across several generalisations of sets since

the birth of fuzzy sets theory, one of which is Florentine Smarandache [15] introduced the neutrosophic sets as a

major category. Many real-life decision-making problems have been studied in [10], [13], [16]. In multi-criteria

decision making (MCDM) situations [1], [2], [6], the ordering of neutrosophic triplets (T; I; F) is crucial. In

this study, we define and analyse new membership, non-membership, and average score functions on single-

valued neutrosophic triplets (T; I; F). We create a technique for ordering single valued neutrosophic triplets

(SVNT) using these three functions, with the goal of achieving a total ordering on neutrosophic triplets. The

total ordering on IVNT is then provided by extending these score functions and ranking mechanism to interval

valued neutrosophic triplets (IVNT). A comparison is also made between the suggested method and the present

ranking method in the literature.

1. Introduction

Our daily life is filled with uncertain situations that require us to make the best decisions

possible given the volatility. Despite this, L.A.Zadeh established the concept of fuzzy sets [18]

in 1965 to handle such ambiguity. This idea of fuzzy sets, which claims that available data is

not necessarily an accurate value but always contains the hand of uncertainty, was reluctantly

acknowledged at the time and that analyzing this uncertainty or vagueness might bring a

tremendous revolution in the future with real-life MCDM problems. Later, a great progress

has been made in the research of fuzzy set generalisations resulting in numerous forms of fuzzy

sets such as intuitionistic fuzzy sets, neutrosophic sets, picture fuzzy sets, bi-polar fuzzy sets,
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and so on [3], [4], [5], [15], [20]. These different versions of fuzzy sets were widely used in a

variety of real-world problems.

More specifically, theory of neutrosophic sets is one of the most growing research areas

due to its needfulness in various real life situations like Medical diagnosis [27], Supply chain

management [25]. Neutrosophic sets are later expanded to many other research areas like

Graph theory [28], Optimization [29], Goal Programming [23]. The MCDM is a rising topic of

research due to its importance in most real-world challenges [12], [14], [17], [19]. Some MCDM

problems have been studied in real-world scenarios using neutrosophic sets. To solve such

MCDM problems, we need total ordering on neutrosophic triplets. For each fuzzy MCDM

problem, there are several techniques of total ordering on fuzzy numbers available in the

literature [7], [8], [9], [11]. Furthermore, the decision maker selects the total ordering strategy

that best suits his needs. The total order does not have to be unique in fuzzy MCDM.

Various kinds of MCDM and MADM problems have been studied based on neutrosophic sets

in literature [21], [22], [26], [30].

Florentine Smarandache [16] defined three score functions on single-valued neutrosophic

triplets based on which a total ordering on single-valued neutrosophic triplets has been pro-

posed and the proposed score functions have been extended to interval valued neutrosophic

triplets. But the proposed ordering methods in the literature give total ordering only on Single

valued neutrosophic triplets but only neutrosophically total ordering / a partial ordering on

Interval valued neutrosophic triplets. There is no total ordering method exists in the literature.

To overcome this research gap, we construct a new total ordering on neutrosophic triplets in

this study which can be extended to a total ordering method on Interval valued neutrosophic

triplets, which contributes a lot to IVNT based MCDM problems.

In section 2, we define some key terms that will help us to comprehend the rest of the

work. The proposed ranking method’s motivation is presented in section 3. In sections 4

and 5, we introduce new scoring functions and suggest a complete total ordering technique

for single-valued neutrosophic triplets based on those functions (T, I, F ). The scoring func-

tions and ranking approach in sections 4 and 5 are generalised to interval valued neutrosophic

triplets in sections 7 and 8. In section 9, we detail our ranking method’s algorithm as well as

its comparison to other ranking method in literature. To achieve this we have considered an

MCDM problem from [21]. In [21] the Similarity measure based MCDM ranking method have

been studied, we inherits the method and modified the given data to our SVNT based MCDM

data to compute the ranking throughwhich we compare our method with existing methods.

In this section 9 the limitations of existing methods and advantages of our proposed method

are discussed.
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2. Preliminaries

This section contains all of the necessary definitions to move deeper into the concept of total

ordering on neutrosophic triplets.

Definition 2.1. [16] Let M = {(T, I, F ),where T, I, F ∈ [0, 1], 0 ≤ T + I + F ≤ 3} be the

set of single valued neutrosophic triplet (SVNT) numbers. Let N = (T, I, F ) ∈M be a SVNT

number, where T denotes grade of membership ; I denotes indeterminacy grade ; F denotes

grade of non-membership .

Definition 2.2. [16] A SVNT score s :M→ [0, 1] is given by

s(T, I, F ) =
T + (1− I) + (1− F )

3
.

A SVNT accuracy score a :M→ [−1, 1] is given by

a(T, I, F ) = T − F.

A SVNT certainty score c :M→ [0, 1] is given by

c(T, I, F ) = T.

With the foregoing functions, Smarandache created a total ordering in SVNT [16].

3. Motivation

Let us use the ranking method of [16] for following three neutrosophic triplets n1 =

(1, 0, 0) where t = 1, i = 0, f = 0 ; n2 = (0, 1, 0) where t = 0, i = 1, f = 0 and

n3 = (0, 0, 1) where t = 0, i = 0, f = 1.

It is natural to assume that the ranking order is n1 > n2 > n3. We normally put full mem-

bership first and full non-membership last, since n1, n2 and n3 signify absolute membership,

hesitant (which is somewhat of membership and somewhat of non-membership), and absolute

non-membership, respectively.

But, according to the ranking method of [16], we get s(1, 0, 0) = 1, s(0, 1, 0) = 1
3 , s(0, 0, 1) =

1
3 . Therefore, we get R(n1) > R(n2) = R(n3). So, we go to next step to find ordering between

n2 and n3. Since a(0, 1, 0) = 0, a(0, 0, 1) = −1, R(n2) > R(n3). Finally, we get the ranking

R(n1) > R(n2) > R(n3). In this case, when we intuitively discovered the ranking order, we

are unable to rank them using the score function (step 1) alone in the present technique and

must rely on the accuracy function (step 2).

We intended to rank these types of triplets using the score function alone, rather than

having to move on to the next function. The score function was defined in [16] by summing

all the positive quantities (T, (1 − I), and (1 − F )) of the triplet (T, I, F ), with 1 − I and

1−F representing positive triplet quantities. However, various portions of non-indeterminacy
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((1 − I)T ) and ((1 − I)F ) should be recognised. Positive and negative amounts of (T, I, F )

may be represented as 1−I, which is based on positive and negative quantities of neutrosophic

information. As a result, we created a new membership score function by combining member-

ship (T ) and positive membership quantity from indeterminacy ((1 − I)T ), then subtracting

negative membership (F ), indeterminacy (I), and positive non-membership quantity from in-

determinacy ((1 − I)F ). The proposed new score functions are based on this basic idea and

reasoning.

4. Membership, Non-membership and Average score functions on SVNT

Let M = {(T, I, F ),where T, I, F ∈ [0, 1], 0 ≤ T + I + F ≤ 3}. where T , I, F are single

valued. Based on the motivation given in the last paragraph, the following score functions are

defined.

Definition 4.1. A SVNT membership score S+ :M→ [0, 1] is given by

S+(T, I, F ) =
2 + T + (1− I)T − F − I − (1− I)F

4
=

2 + (T − F )(2− I)− I
4

.

Definition 4.2. A SVNT non-membership score S− :M→ [0, 1] is given by

S−(T, I, F ) =
2 + F + (1− I)F − T − I − (1− I)T

4
=

2 + (F − T )(2− I)− I
4

.

Definition 4.3. A SVNT average score C :M→ [0, 1] is given by

C(T, I, F ) =
T + F

2

Definition 4.4. A SVNT indeterminacy score H :M→ [0, 12 ] given by

H(T, I, F ) =
I

2

Remark 4.5. We note that 0 ≤ S+ + S− ≤ 1 because of S+ + S− = 1− I
2(which is ≤ 1).

Remark 4.6. We note that S+ + S− + H = 1, which shows the sum of all membership,

non-membership and indeterminacy scores equals to 1.

From the above remark, we note that S+ and S− form membership and non-membership

functions of IFS with indeterminacy H. So, any neutrosophic set A can be viewed as intu-

itionistic fuzzy set IF (A) = (S+(A), S−(A)).

Remark 4.7. When there is no indeterminacy (i.e I=0), we get S+ + S− = 1, which is the

fuzzy form of neutrosophic triplets.

Remark 4.8. As we mentioned in earlier, let us try to rank the following three triplets n1 =

(1, 0, 0), n2 = (0, 1, 0) and n3 = (0, 0, 1) When we use membership score, we get S+(1, 0, 0) = 1,

S+(0, 1, 0) = 1
4 and S+(0, 0, 1) = 0. Thus, we got the ranking as R(n1) > R(n2) > R(n3). As

we mentioned in section 3, we have ranked these triplets by using score function itself.
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Remark 4.9. We note that we can rank these triplets by using non-membership score as fol-

lows S−(1, 0, 0) = 0, S−(0, 1, 0) = 1
4 and S−(0, 0, 1) = 1 which gives us R(1, 0, 0) > R(0, 1, 0) >

R(0, 0, 1). Thus, again we get R(n1) > R(n2) > R(n3) by using non-membership score only.

5. A total order on SVNT

In this section, we present a new ranking technique for SVNT that preserves total ordering.

5.1. New Ranking Algorithm for SVNT

Let A = (a, b, c) and B = (d, e, f) be two SVNT ofM, where T (A) = a, I(A) = b, F (A) = c;

T (B) = d, I(B) = e, F (B) = f and a, b, c, d, e, f ∈ [0, 1].

Step 1: Apply proposed new neutrosophic membership score function S+.

(1) If S+(a, b, c) > S+(d, e, f) (S+(a, b, c) < S+(d, e, f)), then (a, b, c) > (d, e, f) ((a, b, c) <

(d, e, f)).

(2) Suppose S+(a, b, c) = S+(d, e, f), go to step 2.

Step 2: Apply proposed new neutrosophic non-membership score function S−.

(1) If S−(a, b, c) > S−(d, e, f) (S−(a, b, c) < S−(d, e, f)), then (a, b, c) < (d, e, f) ((a, b, c) >

(d, e, f)).

(2) Suppose S−(a, b, c) = S−(d, e, f), go to step 3.

Step 3: Apply proposed new neutrosophic average function C.

(1) If C(a, b, c) > C(d, e, f) (C(a, b, c) < C(d, e, f)), then (a, b, c) > (d, e, f) ((a, b, c) <

(d, e, f)).

(2) Suppose C(a, b, c) = C(d, e, f), then conclude that (a, b, c) ≡ (d, e, f).

Theorem 5.1. A total order on M is formed by the single-valued neutrosophic membership,

non-membership, and average score functions.

Proof. Let n1 = (t1, i1, f1) and n2 = (t2, i2, f2) be two SVNT ofM. We show that for any two

SVNT n1 and n2 in M, either n1 < n2 or n1 > n2 or n1 = n2. First we apply membership

score function S+. Suppose S+ (n1) > S+ (n2)( or S+(n1) < S+(n2)), then we have n1 >

n2( or n1 < n2), which is done. When S+ (n1) = S+ (n2), we have to go to step 2. So, Suppose
2+(t1−f1)(2−i1)−i1

4 = 2+(t2−f2)(2−i2)−i2
4 , equivalently, if (t1−f1)(2−i1)−i1 = (t2−f2)(2−i2)−i2,

we apply step 2 using non-membership score. Hence, if S− (n1) > S− (n2) (S− (n1) < S−

(n2)), then n1 < n2(n1 > n2), which is done. When S− (n1) = S− (n2), equivalently, if

(f1 − t1)(2 − i1) − i1 = (f2 − t2)(2 − i2) − i2, we have to go to step 3 using average score

function. Hence, suppose C (n1) > C (n2) ( or C (n1) < C (n2)), then we have n1 > n2 (

or n1 < n2), which is done. When C (n1) = C (n2), we have t1 + f1 = t2 + f2. At this stage,
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we have triplets n1 and n2 satisfying following system of 3 equations.

(t1 − f1)(2− i1)− i1 = (t2 − f2)(2− i2)− i2 (1)

(f1 − t1)(2− i1)− i1 = (f2 − t2)(2− i2)− i2 (2)

t1 + f1 = t2 + f2 (3)

Now, we solve this system of equations. By adding equations 1 and 2, we get i1 = i2 which

makes equation 1 into

t1 − f1 = t2 − f2

now, by adding the above equation with equation 3, we get f1 = f2 and t1 = t2 .

Thus, we get

(t1, i1, f1) = (t2, i2, f2).

As a result, we infer that any two SVNT are either bigger than the other or identical. As a

result, we have established a total ordering on M.

The following statement’s proofs are direct applications of definitions, hence proofs are

omitted.

Proposition 5.2. Let n1 = (t1, i1, f1) and n2 = (t1, i2, f1)

(1) If i1 > i2, then R(n1) < R(n2).

(2) If i1 < i2, then R(n1) > R(n2).

Proposition 5.3. Let n1 = (t1, i1, f1) and n2 = (t1, i1, f2)

(1) If f1 > f2, then R(n1) < R(n2).

(2) If f1 < f2, then R(n1) > R(n2).

Proposition 5.4. Let n1 = (t1, i1, f1) and n2 = (t2, i1, f1)

(1) If t1 > t2, then R(n1) > R(n2).

(2) If t1 < t2, then R(n1) < R(n2).

Remark 5.5. Let n1 = (t, 0, f) and n2 = (t, 1, f) in which n1 and n2 have same membership

and non-membership grades with n1 has no indeterminacy and n2 has full indeterminacy.

Then R(n1) > R(n2) which favors our intuition.

Remark 5.6. Let n1 = (t1, i1, f1) and n2 = (t2, i1, f2) i.e., indeterminacy of n1 = indetermi-

nacy of n2. If S+(n1) > S+(n2), then S−(n1) < S−(n2) which is more logical.
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6. Equivalence of proposed method over existing ranking method

In this section, we examine the new approach’s equivalency to the existing ranking algorithm

[16].

Remark 6.1. Our proposed Algorithm and Florentin Smarandache [16] Algorithm for ranking

Neutrosophic Triplets are same when the triplets have same indeterminacy value.

Proof. Let n1 = (t1, i1, f1) and n2 = (t2, i1, f2) be two SVNT of M, where n1 and n2 have

same indeterminacy value i1. In [16], if s(n1) > s(n2), then (n1) > (n2).

Now, s(n1) > s(n2) ⇔ 2+t1−f1−i1
3 > 2+t2−f2−i1

3 ⇔ t1 − f1 > t2 − f2 ⇔ 2+(t1−f1)(2−i1)−i1
4 >

2+(t2−f2)(2−i1)−i1
4 ⇔ S+(n1) > S+(n2). Similarly, s(n1) < s(n2)⇔ S+(n1) < S+(n2). Further,

s(n1) = s(n2)⇔ S+(n1) = S(n2).

Hence, ranking by membership score function by s in [16] is same as ranking by proposed

neutrosophic membership score S+.

By similar argument, we have a(n1) > a(n2) ⇔ S−(n1) < S−(n2) and a(n1) = a(n2) ⇔
S−(n1) = S−(n2). Hence, ranking by membership score function by a in [16] is same as

ranking by proposed neutrosophic membership score S−.

Now, we prove that c(n1) > c(n2) ⇔ C(n1) > C(n2), c(n1) < c(n2) ⇔ C(n1) < C(n2) and

c(n1) = c(n2) ⇔ C(n1) = C(n2) if s(n1) = s(n2) and a(n1) = a(n2) (and hence S+(n1) =

S+(n2), S
−(n1) = S−(n2). If s(n1) = s(n2) and a(n1) = a(n2), then t1 − f1 = t2 − f2. Now,

c(n1) > c(n2)⇔ t1 > t2 ⇔ f1 > f2 using t1−f1 = t2−f2)⇔ t1+f1
2 > t2+f2

2 ⇔ C(n1) > C(n2).

Similarly, c(n1) < c(n2) ⇔ C(n1) < C(n2). Further, c(n1) = c(n2) ⇔ C(n1) = C(n2) if

s(n1) = s(n2) and a(n1) = a(n2) (and hence S+(n1) = S+(n2), S
−(n1) = S−(n2)). As a

result, if triplets share the same indeterminacy, ranking by membership score function in [16]

is the same as ranking by proposed neutrosophic membership score function.

The proof of the following remarks are immediate applications of definitions, hence they are

omitted.

Remark 6.2. Let n1 = (t1, i1, f1) and n2 = (t2, i2, f2) be two SVNT. When (t1−f1) > (t2−f2)
and i1 < i2, our suggested Algorithm for ranking Neutrosophic Triplets (T, I, F ) and Florentin

Smarandache’s [16] Algorithm for ranking Neutrosophic Triplets are the same.

Remark 6.3. Our proposed Algorithm and Florentin Smarandache [16] Algorithm for ranking

of SVNT (T, I, F ) are ranking in a same manner when the difference between membership and

non-membership values (T − F ) of triplets (T, I, F ) have same value.
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7. Membership, Non-Membership and Average score functions on IVNT

The algorithm for ranking SVNT is expanded to IVNT in this section. We begin by dis-

cussing score functions for neutrosophic triplets with interval values.

Definition 7.1. Let Mint = {(T, I, F ),where T, I, F are closed subsets of [0, 1]} be the set

of IVNT. Let N = (T, I, F ) ∈ Mint be a IVNT number. Here TL = inf T and TU = sup T ;

IL = inf I and IU = sup I; FL = inf F and FU = sup F ; where TL, TU , IL, IU , FL, FU ∈
[0, 1] with TL < TU , IL < IU , FL < FU . Then neutrosophic triplet N is of the form

([TL, TU ], [IL, IU ], [FL, FU ])

Definition 7.2. If two intervals [a, b] and [c, d] have same midpoint, then they are said to be

neutrosophically equal and are indicated as [a, b] =N [c, d].

Definition 7.3. An IVNT membership score function S+ :Mint → [0, 1] is defined by

S+(T, I, F ) =
8 + (TL + TU − FL − FU )(4− IL − IU )− 2(IL + IU )

12
.

Definition 7.4. An IVNT non-membership score function S− :Mint → [0, 1] is defined by

S−(T, I, F ) =
8 + (FL + FU − TL − TU )(4− IL − IU )− 2(IL + IU )

12
.

Definition 7.5. An IVNT average score function C :Mint → [0, 1] is defined by

C(T, I, F ) =
TL + TU + FL + FU

4
.

We now provide a new technique for ranking neutrosophic triplets with interval values.

8. A total order on IVNT

In this section, we introduce score functions through which a new algorithm for total ordering

on interval valued neutrosophic triplets is aimed.

8.1. Ranking algorithm on IVNT

Let A = ([TL
1 , T

U
1 ], [IL1 , I

U
1 ], [FL

1 , F
U
1 ]) and B = ([TL

2 , T
U
2 ], [IL2 , I

U
2 ], [FL

2 , F
U
2 ]) be two interval

valued neutrosophic triplets of Mint. Now, by applying the following algorithm, we can rank

any two numbers as either one is bigger than other or both are neutrosophically equal.

Step 1: Apply our New Neutrosophic Membership score function S+.

(1) If S+(A) > S+(B) (S+(A) < S+(B)), then R(A) > R(B) (R(A) < R(B)).

(2) Suppose S+(A) = S+(B), we go to step 2.

Step 2: Apply our New Neutrosophic non-membership score function S−.

(1) If S−(A) > S−(B) (S−(A) < S−(B)), then R(A) < R(B) (R(A) > R(B)).

(2) Suppose S−(A) = S−(B), we go to step 3.
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Step 3: Apply our New Neutrosophic Average function C.

(1) If C(A) > C(B) (C(A) < C(B)), then R(A) > R(B)(R(A) < R(B)).

(2) Suppose C(A) = C(B), then conclude that ([TL
1 , T

U
1 ], [IL1 , I

U
1 ], [FL

1 , F
U
1 ]) =N

([TL
2 , T

U
2 ], [IL2 , I

U
2 ], [FL

2 , F
U
2 ]). So A and B are neutrosophically equal.

Theorem 8.1. We prove that the interval valued neutrosophic membership, interval valued

neutrosophic non-membership and average score functions together form a neutrosophically to-

tal ordering on M, that is either they are greater(lesser) than other numbers or neutrosophically

equal.

Proof. Now, we prove for any two interval valued neutrosophic triplets

([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) and ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]),

either ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) > ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ])

or ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) < ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ])

or ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) =N ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]).

Let([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) and ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) be two interval valued neutro-

sophic triplets. First, we apply membership score function S+.

If S+ ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) > S+ ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), then ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ])

> ([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) which is done.

If S+ ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) < S+ ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), then ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ])

< ([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) which is also done.

But, when we get the equality

S+([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) = S+([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]),

we have,

8 + (tL1 + tU1 − fL1 − fU1 )(4− iL1 − iU1 )− 2(iL1 + iU1 )

12
=

8 + (tL2 + tU2 − fL2 − fU2 )(4− iL2 − iU2 )− 2(iL2 + iU2 )

12

⇔

(tL1 + tU1 − fL1 − fU1 )(4− iL1 − iU1 )− 2(iL1 + iU1 ) = (tL2 + tU2 − fL2 − fU2 )(4− iL2 − iU2 )− 2(iL2 + iU2 ).

(4)

So, next we go for non-membership score function S−.

If S− ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) > S− ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), then ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ])

< ([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) which is done. If S− ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) < S−

([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), then ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) > ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) which

is also done.
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But, when we get the equality

S−([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) = S−([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]),

we have,

8 + (fL1 + fU1 − tL1 − tU1 )(4− iL1 − iU1 )− 2(iL1 + iU1 )

12
=

8 + (fL2 + fU2 − tL2 − tU2 )(4− iL2 − iU2 )− 2(iL2 + iU2 )

12

⇔

(fL1 + fU1 − tL1 − tU1 )(4− iL1 − iU1 )− 2(iL1 + iU1 ) = (fL2 + fU2 − tL2 − tU2 )(4− iL2 − iU2 )− 2(iL2 + iU2 ).

(5)

So, we next go for average score function. If C ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) > C

([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), then ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) > ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) which

is done.

If C ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) < C ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), then ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ])

< ([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) which is also done.

But, when we get the equality C ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) = C ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), we

have

tL1 + tU1 + fL1 + fU1 = tL2 + tU2 + fL2 + fU2 . (6)

If these triplets would have not ranked till now, then we have triplets ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ])

and ([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) satisfying following system of 3 equations (from the equations

4, 5 and 6).
(tL1 + tU1 − fL1 − fU1 )(4− iL1 − iU1 )− 2(iL1 + iU1 ) = (tL2 + tU2 − fL2 − fU2 )(4− iL2 − iU2 )− 2(iL2 + iU2 )

(fL1 + fU1 − tL1 − tU1 )(4− iL1 − iU1 )− 2(iL1 + iU1 ) = (fL2 + fU2 − tL2 − tU2 )(4− iL2 − iU2 )− 2(iL2 + iU2 )

tL1 + tU1 + fL1 + fU1 = tL2 + tU2 + fL2 + fU2

By adding equations 4 and 5, we get iL1 + iU1 = iL2 + iU2 which makes equation 4 into

tL1 + tU1 − fL1 − fU1 = tL2 + tU2 − fL2 − fU2 .

Now, by adding the above equation with equation 6, we get tL1 + tU1 = tL2 + tU2 and hence we

get fL1 + fU1 = fL2 + fU2 .

Thus, the system of 3 equations become
tL1 + tU1 = tL2 + tU2

iL1 + iU1 = iL2 + iU2

fL1 + fU1 = fL2 + fU2
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=⇒ 
tL1 +tU1

2 =
tL2 +tU2

2

iL1 +iU1
2 =

iL2 +iU2
2

fL
1 +fU

1
2 =

fL
2 +fU

2
2

Hence intervals [tL1 , t
U
1 ] and [tL2 , t

U
2 ], [iL1 , i

U
1 ] and [iL2 , i

U
2 ], [fL1 , f

U
1 ] and [fL2 , f

U
2 ] are neutrosoph-

ically equal.

Therefore

([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) =N ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]).

We can therefore conclude that for any interval-valued neutrosophic triplets, one is larger than

the other or both are neutrosophically equal..

Note: We did not extract the total ordering between interval valued neutrosophic

triplets using our ranking algorithm. Take A = ([0.2, 0.8], [0.1, 0.3], [0.2, 0.4]) and B =

([0.4, 0.6], [0, 0.4], [0.1, 0.5]) as examples. We find A and B are neutrosophically equal using

the preceding procedure, but they are not the same interval valued neutrosophic triplets. As a

result, we will add furthermore three score functions along with membership, non-membership,

and average score functions, to produce total ordering on neutrosophic interval valued num-

bers.

8.2. Total ordering on IVNT

As we mentioned, we derive three new score functions through which the total ordering on

interval valued neutrosophic triplets is achieved.

Definition 8.2. An IVNT positive range score function S′+ :Mint → [0, 1] is defined by

S′+(T, I, F ) =
8 + (TU − TL − FU + FL)(4− IU + IL)− 2(IU − IL)

12
.

Definition 8.3. An IVNT negative range score function S′− :Mint → [0, 1] is defined by

S′−(T, I, F ) =
8 + (FU − FL − TU + TL)(4− IU + IL)− 2(IU − IL)

12
.

Definition 8.4. An IVNT average range score function C ′ :Mint → [0, 1] is defined by

C ′(T, I, F ) =
TU − TL + FU − FL

4
.

Now, we introduce new algorithm for total ordering the interval valued neutrosophic triplets.
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8.3. Total ordering algorithm on IVNT

Let A = ([TL
1 , T

U
1 ], [IL1 , I

U
1 ], [FL

1 , F
U
1 ]) and B = ([TL

2 , T
U
2 ], [IL2 , I

U
2 ], [FL

2 , F
U
2 ]) be two interval

valued neutrosophic triplets of Mint. Now, by applying the following algorithm, we derive a

total ordering.

Step 1: Apply our interval valued neutrosophic membership score function S+.

(1) If S+(A) > S+(B) (S+(A) < S+(B)), then R(A) > R(B) (R(A) < R(B)).

(2) Suppose S+(A) = S+(B), we go to step 2.

Step 2: Apply our interval valued neutrosophic non-membership score function S−.

(1) If S−(A) > S−(B) (S−(A) < S−(B)), then R(A) < R(B) (R(A) > R(B)).

(2) Suppose S−(A) = S−(B), we go to step 3.

Step 3: Apply our interval valued neutrosophic average function C.

(1) If C(A) > C(B) (C(A) < C(B)), then R(A) > R(B) (R(A) < R(B)).

(2) Suppose C(A) = C(B), then we go to step 4.

Step 4: Apply our interval valued neutrosophic positive range score function S′+.

(1) If S′+(A) > S′+ (B) (S′+(A) < S′+(B)), then R(A) > R(B) (R(A) < R(B)).

(2) Suppose S′+(A) = S′+(B), we go to step 5.

Step 5: Apply our interval valued neutrosophic negative range score function S′−.

(1) If S′−(A) > S′−(B) (S′−(A) < S′−(B)), then R(A) < R(B) (R(A) > R(B)).

(2) Suppose S′−(A) = S′−(B), we go to step 6.

Step 6: Apply our interval valued neutrosophic average range score function C ′.

(1) If C ′(A) > C ′(B) (C ′(A) < C ′(B)), then R(A) > R(B) (R(A) < R(B)).

(2) Suppose C ′(A) = C ′(B), then we can conclude that A = B.

Theorem 8.5. We prove that given algorithm preserves total ordering on interval valued

neutrosophic triplets

Proof. We prove for any two interval valued neutrosophic triplets ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ])

and ([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), either ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) > ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) or

([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) < ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) or ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) and

([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) are same.

Let ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) and ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) be two interval valued neutro-

sophic triplets. By applying step 1, step 2 and step 3, if we would get either R(A) > R(B)

or R(A) < R(B), then we are done. Suppose, we get S+([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ])) =

S+([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), S−([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ])) = S−([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ])

and C([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ])) = C([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), then we have tL1 +tU1 = tL2 +tU2 ,
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iL1 + iU1 = iL2 + iU2 and fL1 + fU1 = fL2 + fU2 by 8.1. Now we go to step 4.

Further we apply interval valued neutrosophic positive range score function S′+. If

S′+ ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) > S′+ ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), then ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ])

> ([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) which is done. If S′+ ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) < S′+

([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), then ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) < ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) which

is also done.

But, when we get the equality

S′+([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) = S′+([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]),

we have,

8 + (tU1 − tL1 − fU1 + fL1 )(4− iU1 + iL1 )− 2(iU1 − iL1 )

12
=

8 + (tU2 − tL2 − fU2 + fL2 )(4− iU2 + iL2 )− 2(iU2 − iL2 )

12

⇔

(tU1 − tL1 − fU1 + fL1 )(4− iU1 + iL1 )− 2(iU1 − iL1 ) = (tU2 − tL2 − fU2 + fL2 )(4− iU2 − iL2 )− 2(iU2 − iL2 ).

(7)

So, next, we go for interval valued neutrosophic negative range score function S′−. If

S′− ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) > S′− ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), then ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ])

< ([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) which is done. If S′− ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) < S′−

([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), then ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) > ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) which

is also done.

But, when we get the equality

S′−([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) = S′−([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]),

we have,

8 + (fU1 − fL1 − tU1 + tL1 )(4− iU1 + iL1 )− 2(iU1 − iL1 )

12
=

8 + (fU2 − fL2 − tU2 + tL2 )(4− iU2 + iL2 )− 2(iU2 − iL2 )

12

⇔

(fU1 − fL1 − tU1 + tL1 )(4− iU1 + iL1 )− 2(iU1 − iL1 ) = (fU2 − fL2 − tU2 + tL2 )(4− iU2 + iL2 )− 2(iU2 − iL2 ).

(8)

So we next go for average range score function. If C ′ ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ])

> C ′ ([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), then ([tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) > ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ])

which is done. If C ′ ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) < C ′ ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), then
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([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) < ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) which is also done. But, when we get

the equality C ′ ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) = C ′ ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]), we have

tU1 − tL1 + fU1 − fL1 = tU2 − tL2 + fU2 − fL2 . (9)

If these triplets would have not ranked till now, then we have triplets ([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ])

and ([tL2 , t
U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]) satisfying following system of 6 equations (From the equations

4, 5, 6, 7, 8 and 9)

(tL1 + tU1 − fL1 − fU1 )(4− iL1 − iU1 )− 2(iL1 + iU1 ) = (tL2 + tU2 − fL2 − fU2 )(4− iL2 − iU2 )− 2(iL2 + iU2 )

(fL1 + fU1 − tL1 − tU1 )(4− iL1 − iU1 )− 2(iL1 + iU1 ) = (fL2 + fU2 − tL2 − tU2 )(4− iL2 − iU2 )− 2(iL2 + iU2 )

tL1 + tU1 + fL1 + fU1 = tL2 + tU2 + fL2 + fU2

(tU1 − tL1 − fU1 + fL1 )(4− iU1 + iL1 )− 2(iU1 − iL1 ) = (tU2 − tL2 − fU2 + fL2 )(4− iU2 − iL2 )− 2(iU2 − iL2 )

(fU1 − fL1 − tU1 + tL1 )(4− iU1 + iL1 )− 2(iU1 − iL1 ) = (fU2 − fL2 − tU2 + tL2 )(4− iU2 + iL2 )− 2(iU2 − iL2 )

tU1 − tL1 + fU1 − fL1 = tU2 − tL2 + fU2 − fL2

Now we solve these system of equations. By adding equations 7 and 8, we get iU1 − iL1 =

iU2 − iL2 , which makes equation 7 into

tU1 − tL1 − fU1 + fL1 = tU2 − tL2 − fU2 + fL2 .

Now, by adding the above equation with equation 9, we get tU1 −tL1 = tU2 −tL2 and by substituting

in the above equation, we get fU1 − fL1 = fU2 − fL2 .

Thus the system of 6 equations become

tL1 + tU1 = tL2 + tU2

iL1 + iU1 = iL2 + iU2

fL1 + fU1 = fL2 + fU2

iU1 − iL1 = iU2 − iL2
tU1 − tL1 = tU2 − tL2
fU1 − fL1 = fU2 − fL2

By solving the above system of equations, we get tL1 = tL2 ; tU1 = tU2 ; iL1 = iL2 ; iU1 = iU2 ; fL1 =

fL2 ; fU1 = fU2 . Therefore

([tL1 , t
U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]) = ([tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]).

We can therefore conclude that for any interval-valued neutrosophic triplet, either one is larger

than the other or both are equal. Alternatively, we have demonstrated that our technique

achieves total ordering on neutrosophic triplets with interval values.
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Table 1. Assessment of companies corresponding to the criteria. [21]

Risk Availability

of raw ma-

terial

Availability

of labor

Market de-

mand

Production

quantity

Automobile

company(I1)

(0.7,0.4,0.3) (0.27,0.4,0.7) (0.5,0.1,0.2) (0.5,0.9,0.4) (0.1,0.3,0.8)

Food

company(I2)

(0.5,0.8,0.2) (0.15,0.36,0.78)(0.9,0,0.2) (0.6,0.96,0.45) (0.3,0.5,0.75)

Electronics

company(I3)

(0.9,0.1,0.1) (0.3,0.6,0.9) (0.25,0.4,0.5) (0.72,0.85,0.3) (0.3,0.45,0.87)

Oil company

(I4)

(0.8,0.6,0.3) (0.1,0.8,0.2) (1,0.5,0) (0.57,0.8,0.35) (0.1,0.8,0.6)

Parmacutical

company(I5)

(0.65,0.2,0.8) (0.2,0.45,0.65) (0.7,0.4,0.6) (0.4,0.7,0.6) (0.7,0.2,0.3)

9. Results and Discussions

9.1. Comparative study with existing methods

In this section, we consider the same Neutrosophic set based MCDM problem given in [21].

The total ordering methods given in [16], [21] and our proposed method are applied for this

MCDM problem. Then, we analyze and compare the ranking order obtained according to each

method.

MCDM Problem [21]: Consider an investor who wants to invest into a business. The

investor has initially chosen five companies from which one is chosen based on a number of

variables which include risk (c1), raw material availability (c2), labor availability (c3), market

demand (c4), and production quantity (c5). Let us denote those five businesses as automobile

company (I1), food manufacturing (I2), electronic manufacturing (I3), oil (I4), and pharma-

ceutical (I5). Table 1 shows the single-valued neutrosophic fuzzy values of each company with

respect to each criterion. Since SVNT are denoted as (µ, T, I, F ) in [21] and we denote SVNT

as (T, I, F ), the table given in [21] and the similarity measure method used in [21] have been

modified accordingly by applying µ = 1,

When we use first similarity method based ordering method for SVNT in [21], we get

S1(a
∗, I1) = 0.82, S1(a

∗, I2) = 0.80, S1(a
∗, I3) = 0.80, S1(a

∗, I4) = 0.81, S1(a
∗, I5) = 0.82 which

gives a ranking I5 = I1 > I4 > I2 = I3, that leads to a state that not able to make a concrete

decision.

When we use second similarity method based ordering method for SVNT in [21], we get

S1(a
∗, I1) = 0.71, S1(a

∗, I2) = 0.70, S1(a
∗, I3) = 0.67, S1(a

∗, I4) = 0.69, S1(a
∗, I5) = 0.71 which

gives a ranking I5 = I1 > I2 > I4 > I3, that again leads to a same problem.
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Table 2. Score values of companies corresponding to the criteria. [16]

Risk Availability

of raw ma-

terial

Availability

of labor

Market de-

mand

Production

quantity

Automobile

company(I1)

0.66 0.39 0.73 0.4 0.33

Food

company(I2)

0.5 0.34 0.9 0.4 0.35

Electronics

company(I3)

0.9 0.27 0.45 0.52 0.33

Oil company

(I4)

0.63 0.37 0.83 0.47 0.23

Parmacutical

company(I5)

0.55 0.37 0.56 0.37 0.73

Table 3. Score values(S+) of companies corresponding to the criteria.

Risk Availability

of raw ma-

terial

Availability

of labor

Market de-

mand

Production

quantity

Automobile

company(I1)

0.55 0.28 0.63 0.24 0.24

Food

company(I2)

0.32 0.24 0.86 0.25 0.25

Electronics

company(I3)

0.86 0.19 0.43 0.37 0.46

Oil company

(I4)

0.51 0.14 0.75 0.32 0.11

Parmacutical

company(I5)

0.44 0.25 0.46 0.25 0.64

Now we are going to compute this problem by method in [16] .

From table 2, the aggregated score values for I1 = 0.50, I2 = 0.50, I3 = 0.49, I4 = 0.51, I5 =

0.51. Hence, I5 = I4 > I1 = I2 > I3. To differentiate I5 and I4, we go for accuracy scores

of I5 = 0.14, I4 = −0.186, which gives I5 > I4. Similarly accuracy score of I1 = −0.06, I2 =

−0.034, which gives I2 > I1. Now we get an ordering I5 > I4 > I2 > I1 > I3.

Now we compute the same problem by the proposed total ordering method.

From Table 3, we get scores of I1 = 0.39, I2 = 0.38, I3 = 0.46, I4 = 0.36, I5 = 0.41. Therefore

the ranking order will be as I3 > I5 > I1 > I2 > I4.

By the above results, we came to know that the existing method in [21] may not be helpful in
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some MCDM situations and the existing method [16] and our proposed method give ranking

order which may not be coincide. From the above discussions, we can conclude that our

proposed method and total ordering method in [16] are better than the existing similarity

based ranking method [21]. Now, in the next subsection, we are analyzing the limitations of

existing total ordering [16] and advantages of our proposed total ordering method.

9.2. Limitations of existing method and advantage of our proposed method

Let us compare existing method [16] and proposed method with an basic example as follows.

Consider two neutrosophic triplets A = (0.9, 0.5, 0.3) and B = (0.8, 0.6, 0.1). By Smarandache

method [16], we have s(A) = 0.7 and s(B) = 0.7. Thus, we get s(A) = s(B). So, we go to

next score a(A) = 0.6 and a(B) = 0.7 so we get A < B. But, in proposed method, we have

S+(A) = 0.65 and S+(B) = 0.595. Thus, we get A > B. Here our ranking is different from

existing ranking and we can find ranking in less steps compared to existing method. Consider

A = (0.5, 0.3, 0.2) and B = (0, 0, 0), by Smarandache method [16], we have s(A) = 0.667 and

s(B) = 0.667. Thus, we get s(A) = s(B). So, we go to next score a(A) = 0.3 and a(B) = 0 and

therefore we get A > B. But, in proposed method, we have S+(A) = 0.54 and S+(B) = 0.5.

Thus we get A > B. Now proposed ranking is same from existing ranking and we can find

ranking in less steps compared to existing method.

Consider A = (0.5, 0.2, 0.3) and B = (0.4, 0.2, 0.2). By Smarandache method [16], we have

s(A) = 0.667 and s(B) = 0.667. Thus we get s(A) = s(B). So, we go to next score a(A) = 0.2

and a(B) = 0.2 and therefore we get a(A) = a(B). Since still we are unable to rank A and B,

so we are going to next score c(A) = 0.5 and c(B) = 0.4. so we get A > B.

But, in proposed method, we have S+(A) = 0.54 and S+(B) = 0.54, Thus we get S+(A) =

S+(B). So, we go to next score S−(A) = 0.36 and S−(B) = 0.36. We go for next score

C(A) = 0.4 and C(B) = 0.3 . Thus, we get A > B, in this example both the method needs all

three score functions and both ranking were same. These are some of examples to understand

that both the ranking method may need not to be similar for single valued neutrosophic triplets.

Consider the example given in the previous section. Let A = ([0.2, 0.8], [0.1, 0.3], [0.2, 0.4])

and B = ([0.4, 0.6], [0, 0.4], [0.1, 0.5]). By using the existing algorithm, we get A and B are

neutrosophically equal. But when we apply our method, we get S′+(A) = 0.76, S′+(B) =

0.536. Hence, we get R(A) > R(B). This is one of the example that the existing method

failed to rank as it will conclude both of them were neutrosophically equal, but our method

rank them in a better way.

Our proposed ranking method involves not only membership, non-membership and inde-

terminacy values alone, it also consider the part of membership and non-membership value

which lying inside the hesitance value. So the formation of our score functions were different
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from existing score functions, which results there are some difference in the ranking between

our method and existing method. Proposed method will be very useful and easy to rank

within step 1 itself in many cases, whereas in existing method we may need to go for fur-

ther steps. Further, in interval valued neutrosophic ranking method, the existing method

gives only neutrosophically total ordering, but our method gives total ordering and as well as

neutrosophically total ordering.

10. Conclusion and future scope

The proposed ranking approach takes into account not only membership, non-membership,

and indeterminacy values, but also the portion of membership and non-membership value that

is contained within the hesitance value. As a result, the development of our score functions

differed from that of current score functions resulting in some differences in ranking between our

approach and that of existing methods. In many circumstances, the proposed method will be

very beneficial and straightforward to rank within step 1, whereas the old method may require

additional stages. Furthermore, the existing interval valued neutrosophic ranking approach

delivers neutrosophically total ordering only, but our method gives both total ordering and

neutrosophically total ordering. Thus a new algorithm for total ordering both single and

interval valued neutrosophic triplets has been derived which will be a beneficial tool for decision

makers in MCDM problems.

In this paper, a ranking approach for IVNT is developed as a generalisation of ranking

approach for SVNT. By comparing our proposed work with the existing work, we have come

to a conclusion that our proposed method involves less steps compared to previous method

in some stages. Further, proposed method gives a reliable ordering on alternatives of the

MCDM problems due its total ordering nature compared to other methods. In near future,

total ordering to triangular and trapezoidal neutrosophic numbers will be studied and hence

this opens a new study in the field of neutrosophic sets.
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Abstract. By using neutrosophic m-alpha closed sets in neutrosophic topological spaces, we introduce the space

known as neutrosophic t-alpha space in this paper. We also introduce the mappings referred as neutrosophic

m-alpha continuous functions, homeomorphisms, and connectedness, and we research the characterizations and
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—————————————————————————————————————————-

1. Introduction

L. A. Zadeh [14] first put forward the idea of fuzzy sets in 1965, C. L. Chang [5] created fuzzy

topological spaces in 1968, built around the idea of fuzzy sets, In 1986 [2] K. Atanassov de-

rived the intuitionistic fuzzy sets, In 1997 [6] D.Coker have introduced the intuitionistic fuzzy

topological spaces, F. Smarandache [9] proposed A unified field approach in neutrosophic logic

in 1999 and analyzed some of its characteristics, F. Smarandache [10] started researching neu-

trosophy and neutrosophic logic in 2002. A. A. Salama and S. A. Alblowi [8] examined the

neutrosophic set and neutrosophic topological spaces in 2012 and mentioned some of their

findings. Broumi Said and Florentin Smarandache [4] proposed the intuitionistic neutrosophic

soft set concept and derived some results in 2013. Smarandache, Florentin, Said Broumi,

Mamoni Dhar, and Pinaki Majumdar [11] brought new intuitionistic fuzzy soft set results and

derived some results in 2014. Wadel Faris Al-omeri and Florentin Smarandache [13] suggested

a new neutrosophic sets using neutrosophic topological spaces in Wadel Faris Al-omeri and
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Florentin Smarandache’s article.

In 2017 [1] I.Arokiarani, R.Dhavaseelan, S. Jafari and M.Parimala have derived some new

notions and functions in neutrosophic topological spaces, In 2021 [3] P. Basker, Broumi Said

have introduced Nψ#0
α and Nψ#1

α -spaces in neutrosophic topological spaces, In 2021 [7] D.

Nagarajan, S. Broumi, F. Smarandache, and J. Kavikumar derived the analysis of neutro-

sophic multiple regression and have given some properties, In 2021 [12] A. Vadivel1, C. John

Sundar derived the neutrosophic δ-open maps and neutrosophic δ-closed maps

The abbreviations NS and NTS refer to the neutrosophic set and neutrosophic toplogical

spaces, respectively, throughout this study.

2. Preliminaries

We should review and analyze definitions before we begin our study.

Definition 2.1. A NS, A in a NTS is referred to as a neutrosophic set, Nα-open set (NαOS),

if A is a subset of Nint(Ncl(Nint(A))). The complement of NαOS is called NαCS.

Definition 2.2. (a) Assume N is an NTS and n ∈ N . N1 is a subset of N is called as

Nα-nbhd of n ∃ Nα-open set N2 such that n ∈ N2 ⊂ N1.

The collection of all Nα-nbhd of n ∈ N is called Nα-neighbourhood system at n and shall be

denoted by NBHNα(n).

(b) Let N be a NTS and N1 be a subset of N , A subset N2 of N is supposed to be Nα-

nbhd of N1 ∃ Nα-open set M such that N1 ∈M ⊆ N2.

(c) Let N1 be a subset of N . A point n1 ∈ N1 is supposed to be Nα-interior point of

N1, if N1 is an NBHNα(n1). The entirety of everything Nα-interior points of N1 is referred

to as an Nα-interior of N1 and is denoted by NBHNα(n1).

(d) Nα-interior of N1 is the union of all NαOS ⊂ N1 and it is denoted by INTNα(N1).

INTNα(N1) =
⋃
{M : M is NαOS, M ⊆ N1}.

(e) Nα-closure of N1 is the intersection of all NαCS ⊃ N1 and it is denoted by CLNα(N1).

CLNα(N1) =
⋂
{M : M is a Nα-closed set and N1 ⊆M}.

(f)
⋂

of all Nα-open subsets of (N, τN ) containing N1 is called the Nα-kernel of N1 (briefly,

nkNα# (N1)). nk
Nα
# (N1) = ∩{M ∈ Nα(N, τN ) : N1 ⊆M}.

P.Basker and Broumi Said, On Neutrosophic Homeomorphisms via Neutrosophic Functions

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               404



(g) Let n ∈ N1. Then Nα-kernel of n is meant to refer to as nkNα# ({n}) = ∩{M ∈ Nα(N, τN ) :

n ∈M}. CLNα(N1) =
⋂
{M : N1 ⊂M ∈ Nα(N, τN )}.

3. On tNα# -space via NαOS

Definition 3.1. L is NS in a NTS, NαM#CS if Nint(Ncl(L)) is a subset of Q, only when

L is a ⊂ of Q and Q is NαOS. The opponent of NαM#CS is called an NαM#OS.

Example 3.2. Here N = {n1, n2, n3} with τN = {0N , 1N , O1, O2} where

O1 =
〈
( 7
10 ,

7
10 ,

5
10), ( 3

10 ,
8
10 , 1), (1, 8

10 ,
6
10)
〉
,

O2 =
〈
( 2
10 ,

5
10 ,

9
10), ( 3

10 ,
7
10 , 1), ( 7

10 ,
6
10 , 1)

〉
,

O3 =
〈
( 3
10 ,

3
10 ,

5
10), ( 7

10 ,
2
10 , 0), (0, 2

10 ,
4
10)
〉
,

O4 =
〈
( 8
10 ,

5
10 ,

1
10), ( 7

10 ,
3
10 , 0), ( 3

10 ,
4
10 , 0)

〉
,

O5 =
〈
( 4
10 ,

5
10 , 1), ( 2

10 ,
3
10 , 1), ( 5

10 ,
3
10 , 1)

〉
. Here the sets O3, O4 and O5 are the NαM#CS.

Definition 3.3. A NTS is neutrosophic in nature which is tNα# -space if every NαM#CS is

CS.

Theorem 3.4. For a TS that is neutrosophic (N, τN ) The criteria listed below are equivalent.

(a) (N, τN ) is tNα# -space.

(b) Every singleton {n1} is either NαCS (or) NclNopen.

Proof. (a) ⇒ (b) Let n1 ∈ N . Suppose {n1} is not an NαCS of (N, τN ). Then N − {n1}
is not an NαOS. Thus N − {n1} is an NαCS of (N, τN ). Since (N, τN ) is a tNα# -space,

N − {n1} is a NαCS of (N, τN ), i.e., {n1} is NαOS of (N, τN ).

(b) ⇒ (a) Let N1 be an NαM#CS of (N, τN ). Let n1 ∈ Nint(Ncl(N1)) by (b), {n1} is

either NαCS (or) NclNopen.

Case(i): Let {n1} be an NαCS. If we take the presumption that n1 /∈ N1, we would now

have n1 ∈ Nint(Ncl(N1))−N1 which isn’t possible. Hence n1 ∈ N1.

Case(ii): Let {n1} be a NclNopen. Since n1 ∈ Nint(Ncl(N1)), then {n1}
⋂
N1 6= φN . This

demonstrates that n1 ∈ N1. As a result, in both circumstances, we have Nint(Ncl(A)) ⊆ N1.
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Trivially N1 ⊆ Nint(Ncl(N1)). Therefore N1 = Nint(Ncl(N1)) (or) equivalently N1 is

NclNopen. Hence (N, τN ) is a tNα# -space.

Definition 3.5. A function D : (N I , τ iN ) −→ (N II , τ iiN ) is called

(a) an NαM#-continuous if D−1(Y ) is NαM#CS in (N I , τ iN ) for every closed set Y of

(N II , τ iiN ).

(b) an NαM#-irresolute if D−1(Y ) is NαM#CS in (N I , τ iN ) for every NαM#CS Y of

(N II , τ iiN ).

Example 3.6. Let N = {n1, n2, n3} with τN = {0N , 1N , η#1 , η
#
2 , η

#
3 , η

#
4 } and δN =

{0N , 1N , η∗1, η∗2, η∗3, η∗4} where

η#1 =
〈
( 4
10 ,

4
10 ,

6
10), ( 5

10 ,
4
10 ,

6
10), ( 5

10 ,
8
10 ,

7
10)
〉
,

η#2 =
〈
( 5
10 ,

7
10 ,

7
10), ( 6

10 ,
5
10 ,

5
10), ( 5

10 ,
5
10 ,

4
10)
〉
,

η#3 =
〈
( 5
10 ,

7
10 ,

7
10), ( 5

10 ,
5
10 ,

5
10), ( 5

10 ,
5
10 ,

4
10)
〉
,

η#4 =
〈
( 4
10 ,

4
10 ,

3
10), ( 6

10 ,
5
10 ,

5
10), ( 5

10 ,
7
10 ,

7
10)
〉
,

η∗1 =
〈
( 5
10 ,

7
10 ,

6
10), ( 4

10 ,
5
10 ,

4
10), ( 5

10 ,
5
10 ,

6
10)
〉
,

η∗2 =
〈
( 5
10 ,

5
10 ,

5
10), ( 4

10 ,
4
10 ,

3
10), ( 5

10 ,
7
10 ,

6
10)
〉
,

η∗3 =
〈
( 5
10 ,

5
10 ,

5
10), ( 4

10 ,
5
10 ,

4
10), ( 5

10 ,
7
10 ,

6
10)
〉
,

η∗4 =
〈
( 5
10 ,

7
10 ,

6
10), ( 4

10 ,
4
10 ,

3
10), ( 5

10 ,
5
10 ,

6
10)
〉
. Thus, (N, τN ) and (N, δN ) are Nutrosophic

Topologies. Define Λ : (N, τN ) −→ (N, δN ) as Λ(n1) = n1, Λ(n2) = n3, Λ(n3) = n2.

Then Λ is NαM#-continuous, since Λ−1(L#) is NαM#CS in (N, τN ) for every closed set L#

of (N, δN ) where L# =
〈
( 3
10 ,

5
10 ,

5
10), ( 4

10 ,
4
10 ,

4
10), ( 5

10 ,
5
10 ,

6
10)
〉
.

Proposition 3.7. If D : (N I , τ iN ) −→ (N II , τ iiN ) be an NαM#-continuous function and

(N I , τ iN ) be a tNα# -space, D is continuous.

Proof. Assume Y to be closed in (N II , τ iiN ). As such D is an NαM#-continuous function,

D−1(Y ) is an NαM#CS in (N I , τ iN ). Since (N I , τ iN ) is a tNα# -space, D−1(Y ) is closed set in

(N I , τ iN ). Hence D is continuous.

Remark 3.8. Let D : (N I , τ iN ) −→ (N II , τ iiN ) be a mapping and (N I , τ iN ) be a tNα# -space,

then D is continuous if one of the following conditions is satisfied.
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(a) f is NαM#-continuous.

(b) f is NαM#-irresolute.

Theorem 3.9. A map D : (N I , τ iN ) −→ (N II , τ iiN ) is an NαM#-continuous function ⇐⇒
every open set’s inverted image in (N II , τ iiN ) are the NαM#OS in the (N I , τ iN ).

Proof. Necessity : Assume D : (N I , τ iN ) −→ (N II , τ iiN ) be an NαM#-continuous function

and Z be a collection that is open in (N II , τ iiN ), N II − Z is closed (N II , τ iiN ). As such D is

an NαM#-continuous function, f−1(N II − Z) = N I − D−1(Z) is an NαM#CS in (N I , τ iN )

and hence D−1(Z) is an NαM#OS in (N I , τ iN ).

Sufficiency : Assume that D−1(Y ) is an NαM#OS in (N I , τ iN ) for each open set N II in

(N II , τ iiN ). Assume Y is a closed set in (N II , τ iiN ), N II −Y is a set that is open in (N II , τ iiN ).

By assumption, D−1(N II − Y ) = N I −D−1(Y ) is an NαM#OS in (N I , τ iN ), which implies

that D−1(Y ) is an NαM#CS in (N I , τ iN ). Hence D is an NαM#-continuous.

Proposition 3.10. Let D1 : (N I , τ iN ) −→ (N II , τ iiN ) be any topological space that is neutro-

sophic (N II , τ iiN ) is a tNα# -space. If D1 : (N I , τ iN ) −→ (N II , τ iiN ) and D2 : (N II , τ iiN ) −→
(N III , τ iiiN ) are NαM#-continuous functions, then their composition D2 ◦D1 : (N I , τ iN ) −→
(N III , τ iiiN ) is an NαM#-continuous.

Proof. Assume Y is a closed set in (N III , τ iiiN ). As such D2 : (N II , τ iiN ) −→ (N III , τ iiiN ) is

an NαM#-continuous function, D−1
2 (Y ) is an NαM#CS in (N II , τ iiN ). Since (N II , τ iiN ) is a

tNα# -space, D−1
2 (Y ) is a closed set in (N II , τ iiN ). Since D1 : (N I , τ iN ) −→ (N II , τ iiN ) is an

NαM#-continuous function, D−1
1 (D−1

2 (Y )) = (D2 ◦ D1)
−1(Y ) is an NαM#CS in (N I , τ iN ).

Hence D2 ◦D1 : (N I , τ iN ) −→ (N III , τ iiiN ) is an NαM#-continuous function.

Definition 3.11. A map D : (N I , τ iN ) −→ (N II , τ iiN ) is said to be

(p) NαM#-closed map if D(Y ) is NαM#-closed in (N II , τ iiN ) for every NCS Y of (N I , τ iN ).
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(q) NαM#-open map if D(Y ) is NαM#-open in (N II , τ iiN ) for every NOS Y of (N I , τ iN ).

Theorem 3.12. Let D1 : (N I , τ iN ) −→ (N II , τ iiN ) and D2 : (N II , τ iiN ) −→ (N III , τ iiiN ) be

two mappings and (N II , τ iiN ) be a tNα# -space, then

(a) D2 ◦D1 is NαM#-continuous, if D1 and D2 are NαM#-continuous.

(b) D2 ◦D1 is NαM#-closed, if D1 and D2 are NαM#-closed.

Proof. (a) Let Y be a NCS of (N III , τ iiiN ), then D−1
2 (Y ) is NαM#-closed set in (N II , τ iiN ).

Since (N II , τ iiN ) is a tNα# -space, then D−1
2 (Y ) is a NCS in (N II , τ iiN ). But D1 is NαM#-

continuous, then (D2 ◦ D1)
−1(Y ) = D−1

1 (D−1
2 (Y )) is NαM#-closed in (N I , τ iN ) this implies

that (D2 ◦D1) is NαM#-continuous mappings.

(b) The proof is similar.

Remark 3.13. Let D : (N I , τ iN ) −→ (N II , τ iiN ) be a mapping from a tNα# -space (N I , τ iN )

into a space (N II , τ iiN ), then

(p) D1 is continuous mapping if, D1 is NαM#-continuous.

(q) D1 is closed mapping if, D1 is NαM#-closed.

Theorem 3.14. Let D : (N I , τ iN ) −→ (N II , τ iiN ) is surjective closed and NαM#-irresolute,

then (N II , τ iiN ) tNα# -space if (N I , τ iN ) is also tNα# -space.

Proof. Let Y be an NαM#-closed subset of (N II , τ iiN ). Then D−1
1 (Y ) is NαM#-closed set in

(N I , τ iN ). Since, (N I , τ iN ) is a tNα# -space, then D−1
1 (Y ) is closed set in (N I , τ iN ). Hence, Y

is closed set in (N II , τ iiN ) and so, (N II , τ iiN ) is tNα# -space.

Proposition 3.15. If D1 : (N I , τ iN ) −→ (N II , τ iiN ) is NαM#-closed, D2 : (N II , τ iiN ) −→
(N III , τ iiiN ) is an NαM#-closed, and (N II , τ iiN ) is a tNα# -space, then their composition
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D2 ◦D1 : (N I , τ iN ) −→ (N III , τ iiiN ) is NαM#-closed.

Proof. Let N1 be a NCS of (N I , τ iN ). Then by assumption D1(N1) is NαM#-closed in

(N II , τ iiN ). Since (N II , τ iiN ) is a tNα# -space, D1(N1) is NCS in (N II , τ iiN ) and again by

assumption D2(D1(N1)) is NαM#-closed in (N III , τ iiiN ). i.e., (D2 ◦D1)(N1) is NαM#-closed

in (N III , τ iiiN ) and so D2 ◦D1 is NαM#-closed.

Proposition 3.16. For any bijection D : (N I , τ iN ) −→ (N II , τ iiN ) the following statements

are equivalent:

(p) D−1 : (N II , τ iiN ) −→ (N I , τ iN ) is NαM#-continuous.

(q) D is NαM#-open map.

(r) D is NαM#-closed map.

Proof. (p) =⇒ (q) Let U be a NOS of (N I , τ iN ). By assumption, (D−1)−1(U) = D(U) is

NαM#-open in (N II , τ iiN ) and so D is NαM#-open.

(q) =⇒ (r) Let F be a NCS of (N I , τ iN ). Then F c is NOS in (N I , τ iN ). By assumption,

D(F c) is NαM#-open in (N II , τ iiN ). That is D(F c) = (D(F ))c is NαM#-open in (N II , τ iiN )

and therefore D(F ) is NαM#-closed in (N II , τ iiN ). Hence D is NαM#-closed.

(r) =⇒ (p) Let F be a NCS of (N I , τ iN ). By assumption, D(F ) is NαM#-closed in (N II , τ iiN ).

But D(F ) = (D−1)−1(F ) and therefore D−1 is NαM#-continuous.

4. On NαM#-homeomorphisms

Definition 4.1. A function D : (N I , τ iN ) −→ (N II , τ iiN ) is supposed to be an NαM#-

homeomorphism [(hmpm(N, τN ))
Nα

M# ] if both D and D−1 are NαM#-irresolute.

P.Basker and Broumi Said, On Neutrosophic Homeomorphisms via Neutrosophic Functions

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               409



We are using the entire family of all NαM#-homeomorphisms of a NTS (N I , τ iN ) onto itself

by NαM#-H(N, τN ).

Example 4.2. Let MN1
= {α, β}, MN2

= {γ, δ}, O#
1 =

〈
( 2
10 ,

6
10 ,

3
10), ( 3

10 ,
6
10 ,

4
10), ( 3

10 ,
7
10 ,

4
10)
〉
,

O#
2 =

〈
( 4
10 ,

6
10 ,

5
10), ( 5

10 ,
6
10 ,

6
10), ( 5

10 ,
7
10 ,

6
10)
〉
. Then τE1 = {0E , 1E , O#

1 } and τE2 =

{0E , 1E , O#
2 } are neutrosophic topologies on MN1

and MN2
respectively. Define a bijective

mapping FNf# = (MN1
, τE1) −→ (MN2

, τE2) by FNf#(α) = γ and FNf#(β) = δ. Then

FNf# is a NαM#-irresolute F−1
Nf#

is also a NαM#-irresolute. Therefore the bijection function

FNf# is a (hmpm(N, τN ))
Nα

M# .

Proposition 4.3. Let D1 : (N I , τ iN ) −→ (N II , τ iiN ) and D2 : (N II , τ iiN ) −→ (N III , τ iiiN ) are

(hmpm(N, τN ))
Nα

M# , then their composition

D2 ◦D1 : (N I , τ iN ) −→ (N III , τ iiiN ) is also (hmpm(N, τN ))
Nα

M# .

Proof. Let J be an NαM#OS in (N III , τ iiiN ). Since D2 is NαM#-irresolute, D−1
2 (J) is

NαM#OS in (N II , τ iiN ). Since D1 is NαM#-irresolute, D−1
1 (D−1

2 (Y )) = (D2 ◦ D1)
−1(Y )

is NαM#OS in (N I , τ iN ). Therefore D2 ◦D1 is NαM#-irresolute.

Also for an NαM#OS, G in (N I , τ iN ), we have (D2◦D1)(G) = D2(D1(G)) = D2(W ), where

W = D1(G). By hypothesis, D1(G) is NαM#OS in (N II , τ iiN ) and so again by hypothesis,

D2(D1(G)) is an NαM#OS in (N III , τ iiiN ). That is (D2◦D1)(G) is an NαM#OS in (N III , τ iiiN )

and therefore (D2 ◦D1)
−1 is NαM#-irresolute. Also D2 ◦D1 is a bijection. Hence D2 ◦D1 is

(hmpm(N, τN ))
Nα

M# .

Theorem 4.4. The set NαM#-H(N, τN ) is a subset of the map composition.

Proof. Establish a binary operation ∗ : NαM#-H(N, τN ) × NαM#-H(N, τN ) −→ NαM#-

H(N, τN ) by D1 ∗D2 = D2 ◦D1 for all D1, D2 ∈ NαM#-H(N, τN ) and circ is the standard

map composition operation. D2 ◦D1 ∈ NαM#-H(N, τN ).

We notice that maps are made up of associative elements, and the identity map is no

exception I : (N, τN ) −→ (N, τN ) belonging to NαM#-H(N, τN ) identity element as a

distinguishing feature. If D1 ∈ NαM#-H(N, τN ), then D−1
1 ∈ NαM#-H(N, τN ) such that

D1◦D−1
1 = D−1

1 ◦D1 = I. As a result, there is an inverse for each element of NαM#-H(N, τN ).
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Consequently NαM#-H(N, τN ), ◦) is a network of under the operation on map composition.

Proposition 4.5. Let J : (N I , τ iN ) −→ (N II , τ iiN ) be an NαM#-homeomorphism, J causes

the group to become isomorphic NαM#-H(N I , τ iN ) onto NαM#-H(N II , τ iiN ).

Proof. Making use of the map J , We construct a map ΨJ : NαM#-H(N I , τ iN ) −→ NαM#-

H(N II , τ iiN ) by ΨJ(F ) = J ◦ F ◦ J−1 for every F ∈ NαM#-H(N I , τ iN ). Then ΨJ is a

bijection. Further, for all h1, h2 ∈ NαM#-H(N I , τ iN ), ΨJ(F1 ◦ F2) = J ◦ (F1 ◦ F2) ◦ J−1 =

(J ◦ F1 ◦ J−1) ◦ (J ◦ F2 ◦ J−1) = ΨJ(F1) ◦ΨJ(F2).

Therefore, ΨJ It is an isomorphism caused by a homeomorphism by J .

5. On NαM#-connectedness

Definition 5.1. A NTS(N, τN ) is noted to be NαM#-connected if N can’t be characterized

as a non-empty union of two distinct elements NαM#OS. A subset of N is NαM#-connected

if any of this NαM#-connected as a subspace.

Theorem 5.2. For a NTS(N, τN ), the following are better compared.

(a) (N, τN ) is NαM#-connected.

(b) (N, τN ) and φN seem to be the only subsets of (N, τN ) both of which are NαM#-open and

NαM#-closed.

(c) Each NαM#-continuous map of (N I , τ iN ) into a discrete space (N II , τ iiN ) the map is

constant if there are at least two points.

Proof. (a) =⇒ (b): Suppose (N I , τ iN ) is NαM#-connected. Let S be both a valid subset

NαM#OS and NαM#CS in (N I , τ iN ). Its complement N/S is also NαM#-open and NαM#-

closed. N = S ∪ (N/S), a non-empty union that is disjointed NαM#-open sets that are

incompatible (a). Therefore S = φ or N .
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(b) =⇒ (a): Suppose that N = I1 ∪ I2 where I1 and I2 are disjoint non-empty NαM#-

open subsets of (N I , τ iN ). Then I1 is both NαM#-open and NαM#-closed. By assumption

I1 = φ or N . Therefore N is NαM#-connected.

(b) =⇒ (c): Let D : (N I , τ iN ) −→ (N II , τ iiN ) be an NαM#-continuous map. Then (N I , τ iN )

is covered by NαM#-open and NαM#-closed covering
{
D−1(nii) : nii ∈ Nii

}
. By assumption

D−1(nii) = φN or N for each nii ∈ Nii. If D−1(nii) = φ for all nii ∈ Nii, then D a map that

isn’t a map. Then ∃ a point nii ∈ Nii such that D−1(nii) 6= φN and hence D−1(nii) = N .

This shows that D is a constant map.

(c) =⇒ (b): Let S be both NαM#-open and NαM#-closed in N . Suppose S 6= φ. Let

D : (N I , τ iN ) −→ (N II , τ iiN ) be an NαM#-continuous map defined by D(S) = nii and

D(Sc) = {ω} for a few key reasons nii and ω in (N II , τ iiN ). By assumption D is a constant

map. Therefore we have S = N .

Theorem 5.3. Every NαM#-Space that is linked is connected.

Proof. Let (N I , τ iN ) be NαM#-linked(connected). Suppose N is not connected. There is then

a suitable non-empty subset. B of (N I , τ iN ) which has both an open and a closed sets in

(N I , τ iN ). Since every closed set is NαM#-closed, B is a proper non empty subset of (N I , τ iN )

as well as NαM#OS and NαM#CS in (N I , τ iN ), (N I , τ iN ) is not NαM#-connected. This

proves the theorem.

Theorem 5.4. If J : (N I , τ iN ) −→ (N II , τ iiN ) is an NαM#-continuous and N is NαM#-

connected, then (N II , τ iiN ) is linked.

Proof. Presume that (N II , τ iiN ) is not linked. Let N ii = V1 ∪ V2 where V1 and V2 are disjoint

non-empty OS in (N II , τ iiN ). As such J is NαM#-continuous and onto, N = J−1(V1)∪J−1(V2)

where J−1(V1) and J−1(V2) are disjoint non-empty NαM#-open sets in (N I , τ iN ).

This is diametrically opposed to the fact that (N I , τ iN ) is NαM#-connected. Furthermore

N ii is connected.
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Theorem 5.5. If J : (N I , τ iN ) −→ (N II , τ iiN ) is an NαM#-irresolute and (N I , τ iN ) is NαM#-

connected, then (N II , τ iiN ) is NαM#-connected.

Proof. Suppose that (N II , τ iiN ) is not NαM#-connected. Let N ii = V1 ∪ V2 where V1 and V2

are disjoint non-empty NαM#-open sets in (N II , τ iiN ). Since J is NαM#-irresolute and onto,

N = j−1(V1) ∪ j−1(V2) where J−1(V1) and J−1(V2) are disjoint non-empty NαM#-open sets

in (N I , τ iN ).

This contradicts the fact that (N I , τ iN ) is NαM#-connected. Hence (N II , τ iiN ) is NαM#-

connected.

Theorem 5.6. Suppose that (N I , τ iN ) is tNα# -space then (N I , τ iN ) is connected ⇐⇒ NαM#-

connected.

Proof. Suppose that (N I , τ iN ) is connected. Then (N I , τ iN ) disjoint union of two non-empty

proper subsets of the set cannot be expressed in (N I , τ iN ). Suppose (N I , τ iN ) is not a NαM#-

connected space. Let V1 and V2 be any two NαM#-open subsets of (N I , τ iN ) such that

N ii = V1 ∪ V2, where V1 ∩ V2 = φN and V1 ⊂ N , V2 ⊂ N Since (N I , τ iN ) is tNα# -space and V1,

V2 are NαM#-open. V1, V2 are open subsets of (N I , τ iN ), which contradicts that (N I , τ iN ) is

connected. Therefore (N I , τ iN ) is NαM#-connected.

Conversely, every open set is NαM#-open. Therefore every NαM#-connected space is con-

nected.

Theorem 5.7. If the NαM#-open sets Z1 and Z2 form a separation of (N I , τ iN ) and if

(N II , τ iiN ) is NαM#-connected subspace of (N I , τ iN ), then (N II , τ iiN ) lies entirely within Z1

or Z2.

Proof. Since Z1 and Z2 are both NαM#-open in (N I , τ iN ), the sets Z1 ∩N ii and Z2 ∩N ii are

NαM#-open in (N II , τ iiN ). These two sets are incompatible, thus their union is impossible is

(N II , τ iiN ). They would represent a separation if they were both non-empty (N II , τ iiN ).
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Therefore, one of them is empty. Hence (N II , τ iiN ) must lie entirely in Z1 or in Z2.

6. Conclusion

The notions of NαM#CS in neutrosophic topological spaces have been discussed in this re-

search study. We have also introduced the neutrosophic tNα# -space in this paper. The mappings

known as neutrosophic NαM#-continuous functions, NαM#-irresolute functions, homeomor-

phisms and connectedness have also been introduced and investigate their characterizations

and distinguishing features.
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Abstract. The aim of present paper is to introduce the concept of neutrosophic 2−norm space ( briefly abbre-

viated as N−2−NS) and study statistical summability in these spaces. We construct examples to demonstrate

that statistical convergence is stronger method than usual convergence. Finally, we define statistically Cauchy

sequence, statistical completeness and obtain the Cauchy convergence criteria.
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—————————————————————————————————————————-

1. Introduction

Summability method is primarily concerned with the assignment of a limit in some gen-

eralized form to those sequences which do not converge in the usual sense. Over the years,

many summability methods have been developed. One among these is developed by Henry

Fast[6] and Schoenberg [20] independently by use of the natural density δ of subsets of N and

called it as statistical convergence. For any set K ⊆ N, the natural density of K is denoted by

δ(K) and is defined by limn
1
n |{k ≤ n : k ∈ K}| provided the limit exists. Using δ, statistical

convergent can be defined as follows.

“A sequence x = (xk) of numbers is said to be statistical convergent to L if for each ϵ > 0

lim
n→∞

1

n

∣∣∣∣{k ≤ n : |xk − L| ≥ ϵ}
∣∣∣∣ = 0;

or equivalently δ
(
{k ≤ n : |xk − L| ≥ ϵ}

)
= 0. In this case, we write S − limk xk = L”. Over

the years, statistical convergence and related concepts have been further explored by numerous

authors in different directions. For some interesting works on statistical convergence in this

concern, we refer [5], [8], [11]-[13], and [19].
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Apart from this, fuzzy sets were introduced by Zadeh [22] in 1965 as a generalization of

crisp sets and turned out to be a very effective tool to deal with those situations which can

not be fit in the framework of classical sets. These sets have wide applications in many ar-

eas of science and technology, especially in control engineering, artifical intelegence, robotics

and many more to achieve better solutions. During development phase of fuzzy sets, many

interesting generalizations of these sets have been appeared in the literature. For instance:

intuitionistic fuzzy sets [1], vague fuzzy sets [4], interval-valued fuzzy sets [21], neutrosophic

sets [15], etc. These sets have been further used to define some new kind of spaces such as

fuzzy normed spaces [7], intuitionistic fuzzy metric spaces [17], intuitionistic fuzzy 2-normed

spaces [16], intuitionistic fuzzy topological spaces [18] and neutrosophic normed spaces ([2],

[3]). Recently, these spaces have been explored from sequence spaces point of view and linked

with summability theory. Many summability method such as statistical convergence, ideal

convergence, and lacunary statistical convergence have been developed. For an extensive view

in this direction, we refer to the reader [10], [12]-[14]. In present work, we define a generalized

neutrosophic normed space which we call neutrosophic 2−norm space and introduce the con-

vergence structure in these spaces. Later, we define statistical convergence, statistical Cauchy

sequences in a neutrosophic 2−norm space and develop some of their properties.

2. Prelimanaries

This section record a few definitions and outcomes that will be required in present study.

Through out this work, R+ will denote the open interval (0,∞) and N, the set of positive

integers.

Definition 2.1 [11] Let I = [0, 1]. A function ◦ : I × I → I is said to be a t−norm for all

f, g, h, i ∈ I we have:

(i) f ◦ g = g ◦ f ;
(ii)f ◦ (g ◦ h) = (f ◦ g) ◦ h;
(iii) ◦ is continuous;

(iv) f ◦ 1 = f for every f ∈ [0, 1] and

(v) f ◦ g ≤ h ◦ i whenever f ≤ h and g ≤ i.

Definition 2.2 [11] Let I = [0, 1]. A function ⋄ : I × I → I is said to be a continuous

triangular conorm or t−conorm for all f, g, h, i ∈ I we have:

(i) f ⋄ g = g ⋄ f ;
(ii)f ⋄ (g ⋄ h) = (f ⋄ g) ◦ h;
(iii) ⋄ is continuous;
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(iv) f ⋄ 0 = f for every f ∈ [0, 1]

(v) f ⋄ g ≤ h ⋄ i whenever f ≤ h and g ≤ i.

Kirişci and Şimşek [13] recently defined NNS as follows.

Definition 2.3 [13] Let F is a vector space, N = {⟨ϑ,H(ϑ), I(ϑ),J (ϑ)⟩ : ϑ ∈ F} be a normed

space in which N : F ×R+ → [0, 1] and ◦, ⋄ respectively are t−norm and t−conorm. The four

touple V = (F,N, ◦, ⋄ ) is called a neutrosophic normed spaces (NNS) briefly it for every

p, q ∈ F , ρ µ > 0 and for every ς ̸= 0 we have

(i) 0 ≤ H (p, ρ) ≤ 1, 0 ≤ I (p, ρ) ≤ 1, 0 ≤ J (p, ρ) ≤ 1 for every ρ∈ R+ ;

(ii) H (p, ρ) + I (p, ρ) + J (p, ρ) ≤ 3 for ρ∈ R+ ;

(iii) H (p, ρ) = 1 (for ρ > 0) iff p = 0;

(iv) H (ςp, ρ) = H
(
p, ρ

|ς|

)
;

(v) H (p, µ) ◦ H (q, ρ) ≤ H (p+ q, µ+ ρ);

(vi) H (p, .) is a non-decreasing function that runs continuously;

(vii) limρ→∞H (p, ρ) = 1;

(viii) I (p, ρ) = 0 (forρ > 0) iff p = 0;

(ix) I (ςp, ρ) = I
(
p, ρ

|ς|

)
;

(x) I (p, µ) ⋄ I (q, ρ) ≥ I (p+ q, ρ+ µ);

(xi) I (p, .) is a non-decreasing function that runs continuously;

(xii) limλ→∞ I (p, ρ) = 0;

(xiii) J (p, ρ) = 0 (for ρ > 0) iff p = 0;

(xiv) J (ςp, ρ) = J
(
p, ρ

|ς|

)
;

(xv) J (p, µ) ⋄ J (q, ρ) ≥ J (p+ q, ρ+ µ);

(xvi) J (p, .) is a non-decreasing function that runs continuously;

(xvii) limλ→∞ J (p, ρ) = 0;

(xviii) If ρ ≤ 0, then H (p, ρ) = 0, I (p, ρ) = 1 and J (p, ρ) = 1.

We call N (H, I,J ) the neutrosophic norm.

We next give the notions of statistical convergence and statistical Cauchy sequences in

neutrosophic norm spaces as introduced in [13].

Definition 2.4 [13] Let V be a NNS. Choose 0 < ϵ < 1 and ρ > 0. A sequence (vk)

in V is said to be statistical convergent if ∃ v0 ∈ F s.t. limn
1
n |{k ≤ n : H(vk − v0, ρ) ≤

1− ε or I(vk − v0, ρ) ≥ ε and J (vk − v0, ρ) ≥ ε}| = 0; or equivalently, the set’s natural density

A(ε, ρ) = {k ≤ n : H(vk − v0; ρ) ≤ 1− ε or I(vk − v0; ρ) ≥ ε and J (vk − v0, ρ) ≥ ε} is zero,

i.e., δ (A (ε, ρ)) = 0. we can write it as S(N)− limk→∞ vk = v0.
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Definition 2.5 [13] Let V be a NNS. Choose 0 < ϵ < 1 and ρ > 0. A sequence (vk)

in V is said to be statistical Cauchy if ∃ p ∈ N s.t. limn
1
n |{k ≤ n : H(vk − vp, ρ) ≤

1− ε or I(vk − vp, ρ) ≥ ε and J (vk − vp, ρ) ≥ ε}| = 0; or equivalently, the natural density of

the set A(ε, ρ) = {k ≤ n : H(vk − vp, ρ) ≤ 1− ε or I(vk − vp, ρ) ≥ ε and J (vk − vp, ρ) ≥ ε}
is zero, i.e., δ (A (ε, ρ)) = 0.

We now turn towards the paper [9] and would like to quote the idea of two norm.

Definition 2.6 [9] Let V be a d−dimensional real vector space, where 2 ≤ d < ∞. A 2−norm

on V is a function ∥., .∥ : V × V → R fulfilling the below listed requirements:

For all p, q ∈ V , and scalar α, we have

(i) ||p, q|| = 0 iff p and q are linearly dependent;

(ii) ||p, q|| = ||p, q||;
(iii)||αp, q|| = |α|||p, q|| and
(iv) ||p, q + r|| ≤ ||p, q||+ ||p, r||.
The pair (V, ||., .||) is known as 2−normed space in this case.

Let V = R2 and for p = (p1, p2) and q = (q1, q2) we define ||p, q|| = |p1q2−p2q1|, then ||p, q||
is a 2− norm on V = R2.

We now proceed with our main results.

3. Neutrosophic-2-norm spaces (N − 2−NS)

This section starts with the following definition of neutrosophic−2−norm spaces.

Definition 3.1 Let F is a vector space, N2 = ({(p, q),H(p, q), I(p, q),J (p, q)} : (p, q) ∈ F×F )

be a 2−norm space s.t. N2 : F × F × R+ → [0, 1]. If ◦, ⋄ respectively denotes t − norm and

t− conorm, then four-tuple V = (F,N2, ◦, ⋄) is known as neutrosophic 2−norm spaces (briefly

N − 2−NS) if for every p, q, w ∈ V , ρ, µ ≥ 0 and ς ̸= 0:

(i) 0 ≤ H(p, q; ρ) ≤ 1, 0 ≤ I(p, q; ρ) ≤ 1 and 0 ≤ J (p, q; ρ) ≤ 1 for every ρ ∈ R+;

(ii) H(p, q; ρ) + I(p, q; ρ) + J (p, q; ρ) ≤ 3;

(iii) H(p, q; ρ) = 1 iff p, q are linearly dependent;

(iv) H(ςp, q; ρ) = H(p, q; ρ
|ς|) for each ς ̸= 0;

(v) H(p, q; ρ) ◦ H(p, w;µ) ≤ H(p, q + w; ρ+ µ);

(vi) H(p, q; .) : (0,∞) → [0, 1] is a non-increasing function that runs continuously;

(vii) lim
ρ→∞

H(p, q; ρ) = 1 ;

(viii) H(p, q; ρ) = H(q, p; ρ)

(ix) I(p, q; ρ) = 0 iff p, q are linearly dependent;
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(x) I(ςp, q; ρ) = I(p, q; ρ
|ς|) for each ς ̸= 0;

(xi) I(p, q; ρ) ⋄ I(p, w;µ) ≥ I(p, q + w; ρ+ µ);

(xii) I(p, q; .) : (0,∞) → [0, 1] is a non-increasing function that runs continuously;

(xiii) lim
ρ→∞

I(p, q; ρ) = 0 ;

(xiv) I(p, q; ρ) = I(q, p; ρ)
(xvi) J (p, q; ρ) = 0 iff p, q are linearly dependent;

(xv)J (ςp, q; ρ) = J (p, q; ρ
|ς|) for each ς ̸= 0;

(xvi) J (p, q; ρ) ⋄ J (p, w;µ) ≥ J (p, q + w; ρ+ µ);

(xvii) J (p, q; .) : (0,∞) → [0, 1] is a non-increasing function that runs continuously;

(xviii) lim
λ→∞

J (p, q; ρ) = 0 ;

(xix) J (p, q; ρ) = J (q, p; ρ)

(xx) if ρ ≤ 0, then H(p, q; ρ) = 0, I(p, q; ρ) = 1, J (p, qρ) = 1.

In this case, we call N2(H, I,J ) a neutrosophic 2−norm on F and is denoted by N2.

Example 3.1 Let (F, ||., .||) be a N − 2 − NS. We define the continuous t − norm and

t− conorm by

p ◦ q = pq and p ⋄ q = p+ q − pq.

For p, q ∈ F , ρ > 0 with ρ > ∥p, q∥, we define

H(p, q; ρ) = ρ
ρ+∥p,q∥ , I(p, q; ρ) =

∥p,q∥
ρ+∥p,q∥ , and J (p, q; ρ) = ∥p,q∥

ρ .

If we take ||p, q|| ≥ ρ, then H(p, q; ρ) = 0, I(p, q; ρ) = 1, J (p, q; ρ) = 1 and (F,N2, ◦, ⋄) is a

N − 2−NS where N2 : F × F ×R+ → [0, 1].

We now define convergence structure and Cauchy sequences in N − 2−NS.

Definition 3.2 Let V be a N−2−NS. Choose 0 < ϵ < 1 and ρ > 0. A sequence (vk) in a V is

said to be convergent if ∃ a positive integer m and v0 ∈ F s.t. H(vk − v0, w; ρ) > 1− ϵ, I(vk −
v0, w; ρ) < ϵ and J (vk − v0, w; ρ) < ϵ for all k ≥ m and w ∈ V which is equivalently to say

limk→∞H(vk−v0, w; ρ) = 1, limk→∞ I (vk − v0, w; ρ) = 0 and limk→∞ J (vk − v0, w; ρ) = 0 .

In this case, we write N2 − limk→∞ vk = v0.

Theorem 3.1 Let V be a N − 2−NS (uk) and (vk) be two sequences in V and α being any

scalar.

(i) If (uk) is convergent w.r.t. N2, then its limit is unique.

(ii) If N2 − limk→∞ uk = u0, then N2 − limk→∞ αuk = αu0.

(iii) If N2− limk→∞ uk = u0 and N2− limk→∞ vk = v0, then N2− limk→∞(uk+vk) = (u0+v0).

Proof. Omitted. □
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Definition 3.3 Let V be a N − 2−NS. Choose 0 < ϵ < 1 and ρ > 0. A sequence (vk) in a V

if ∃ a positive integer m is said to be Cauchy s.t. H(vk − vn, w; ρ) > 1− ϵ, I(vk − vn, w; ρ) <

ϵ and J (vk − vn, w; ρ) < ϵ ∀ k, n ≥ m and ∀ w ∈ V .

Definition 3.4 A N − 2−NS V is said to be complete if and only if each Cauchy sequence

in V is converget in V .

Theorem 3.2 Every convergent sequence in a N − 2−NS, V is Cauchy however converse is

not true.

Proof. Let ϵ > 0 and choose r > 0 s.t. (1 − ϵ) ◦ (1 − ϵ) > 1 − r and ϵ ⋄ ϵ < r. For ρ > 0,

if we take (vk) be any convergent in V with N2 − limk→∞ vk = v0. There is an integer m s.t.

H(vk − v0, w; ρ) > 1 − ϵ, I(vk − v0, w; ρ) < ϵ and J (vk − v0, w; ρ) < ϵ for all k ≥ m and

w ∈ V . Now, for all k, n ≥ m we have H(vk − vn, w; ρ) ≥ H(vk − v0, w;
ρ
2)◦ H(vn − v0, w;

ρ
2)

> (1− ϵ)◦ (1− ϵ) > r. Similarly one can easily get I(vk−vn, w; ρ) < r and J (vk−vn, w; ρ) < r

for every k, n ≥ m. This prove that the (vk) sequence is Cauchy. □

Example 3.2 Let F = {zmn = ( 1
m , 1

n) : m,n ∈ N} ⊆ R2 be a 2−normed space with

∥(m,n)∥ = | 1m − 1
n |. If we define the neutrosophic norm N2 as in Example 3.1 then

V = (F,N2, ◦, ⋄) is a N − 2 − NS. Further, the sequence zmn is Cauchy but not conver-

gent as limk→∞ I (vk − v0, w; ρ) ̸= 0 . □

4. Statistical Convergence in N − 2−NS

This section explore the statistical convergence and its properties in a N − 2−NS.

Definition 4.1 Let V be a N − 2 − NS. Choose 0 < ϵ < 1 and ρ > 0. A sequence (vk) in

V is said to be statistical convergent to v0 provided that limn
1
n |{k ≤ n : H(vk − v0, w; ρ) ≤

1 − ε or I(vk − v0, w; ρ) ≥ ε and J (vk − v0, w; ρ) ≥ ε}| = 0 for every w ∈ V or equivalently,

δ (A (ε, ρ)) = 0. where A(ε, ρ) = {k ≤ n : H(vk − v0, w; ρ) ≤ 1 − ε or I(vk − v0, w; ρ) ≥
ε and J (vk − v0, w; ρ) ≥ ε} and we write S(N2)− limk→∞ vk = v0.

Theorem 4.1 Let V be a N−2−NS and (vk) be any sequence in V . If N2− limk→∞ vk = v0,

then S(N2)− limk→∞ vk = v0.

Proof According to the hypothesis, for every ϵ > 0 and ρ > 0, there is an integer k0 ∈ N s.t.

H(vk − v0, w; ρ) > 1− ϵ and I(vk − v0, w; ρ) < ϵ, J (vk − v0, w; ρ) < ϵ for all k ≥ k0 and every

w ∈ V . This guarantees that the set {k ∈ N : H(vk − v0, w; ρ) ≤ 1− ϵ or I(vk − v0, w; ρ) < ϵ,
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J (vk − v0, w; ρ) < ϵ} has a finite number of terms whose density is zero. This immediately

shows that S(N2)− limk→∞ vk = v0. □

In general, The converse of the theorem is false.

Example 4.1 Let (R, |.|) be the real space with the usual norm. For f, g ∈ [0, 1]. Let the

t − norm and t − conorm are defined by f ◦ g = fg and f ⋄ g = min{f + g, 1}. Choose

p, q ∈ F and ρ > 0 with ρ > ∥p, q∥. If we define H(p, q; ρ) = ρ
ρ+∥p,q∥ , I(p, q; ρ) = ∥p,q∥

ρ+∥p,q∥

and J (p, q; ρ) = ∥p,q∥
ρ , then N2(H, I,J ) is a neutrosophic-2-norm and V = (F,N2, ◦, ⋄) is a

N − 2−NS. Define a sequence (vk) by

vk =

(0, 1), if k = m2, m ∈ N;

(0, 0), otherwise.
(1)

Let, An(ε, ρ) = {k ≤ n : H(vk, w; ρ) ≤ 1 − ε or I(vk, w; ρ) ≥ ε, J (vk, w; ρ) ≥ ε}, then
An(ε, ρ) = {k ≤ n : ρ

ρ+∥p,q∥ ≤ 1 − ε or ||p,q||
ρ+||p,q|| ≥ ε, ||p,q||

ρ ≥ ε} = {k ≤ n : ||p, q|| ≥
ρϵ
1−ϵ or ||p, q|| ≥ ρϵ} = {k ≤ n : vk = (0, 1)} = {k ≤ n : k = m2} and therefore we have

limn
1
n |An(ε, ρ)| = {k ≤ n : k = m2} ≤

√
n
n = 1

n → 0. Thus S(N2)− limk→∞ vk = 0. However,

the sequence (vk) is not usual convergent. □

Lemma 4.1 Let V be a N − 2−NS. Then for every 0 < ϵ < 1, ρ > 0 and for every w ∈ V ,

The statements below are equivalents:

(i) S(N2)− limk→∞ vk = v0;

(ii) δ{k ∈ N : H(vk − v0, w; ρ) ≤ 1 − ϵ} = δ{k ∈ N : I(vk − v0, w; ρ) ≥ ϵ} = δ{k ∈ N :

J (vk − v0, w; ρ) ≥ ϵ} = 0;

(iii) δ{k ∈ N : H(vk − v0, w; ρ) > 1− ϵ and I(vk − v0, w; ρ) < ϵ , J (vk − v0, w; ρ) < ϵ} = 1 ;

(iv) δ{k ∈ N : H(vk − v0, w; ρ) > 1 − ϵ} = δ{k ∈ N : I(vk − v0, w; ρ) < ϵ} = δ{k ∈ N :

J (vk − v0, w; ρ) < ϵ} = 1 and

(v) S(N2)− limk→∞H(vk − v0, w; ρ) = 1 or S(N2)− limk→∞ I(vk − v0, w; ρ) = 0 and S(N2)−
limk→∞ J (vk − v0, w; ρ) = 0.

Proof. Omitted. □

Theorem 4.2 Let V be a N − 2 − NS. For any sequence (vk), if S(N2) − limk→∞ vk exists

then it must be unique.

Proof Assume that S(N2)− limk→∞ vk = v1 and S(N2)− limk→∞ vk = v2. For a given ϵ > 0,

choose l > 0 s.t. (1 − l) ◦ (1 − l) > 1 − ϵ and q ⋄ q < ϵ. For any ρ > 0 and any w ∈ V

The following sets are defined: KH,1(l, ρ) = {k ∈ N : H(vk − v1, w; ρ) ≤ 1 − l}, KH,2(l, ρ) =

{k ∈ N : H(vk − v2, w; ρ) ≤ 1 − l}; KI,1(l, ρ) = {k ∈ N : I(vk − v1, w; ρ) ≥ l}, KI,2(l, ρ) =

{k ∈ N : I(vk − v2, w; ρ) ≥ l}; KJ ,1(l, ρ) = {k ∈ N : Y(vk − v1, w; ρ) ≥ l}, KJ ,2(l, ρ) =
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{k ∈ N : J (vk − v2, w; ρ) ≥ l}. Since S(N2) − limk→∞ vk = v1, so by Lemma 4.1, we have

δ{KH,1(l, ρ)} = δ{KI,1(l, ρ)} = δ{KJ ,1(l, ρ)} = 0. Furthermore, using S(N2) − limk→∞ vk =

v2, we get, δ{KH,2(l, λ)} = δ{KI,2(l, ρ)} = δ{KJ ,2(l, ρ)} = 0. Now let KH, I,J (ϵ, ρ) =

{KH,1(ϵ, ρ) ∪KH,2(ϵ, ρ)} ∩ {KI,1(ϵ, ρ) ∪KI,2(ϵ, ρ)} ∩{KJ ,1(ϵ, ρ) ∪KJ ,2(ϵ, ρ)}. Then observe

that δ({KH,I,J (ϵ, ρ)}) = 0 which implies δ({N/KH,I,J (ϵ, ρ)}) = 1. If k ∈ N/KH,I,J (ϵ, ρ), then

we have the following possibilities.

Case 1 k ∈ N/{KH,1(ϵ, ρ) ∪KH,2(ϵ, ρ)},
Case 2 k ∈ N/{KI,1(ϵ, ρ) ∪KI,2(ϵ, ρ)},
Case 3 k ∈ N/{KJ ,1(ϵ, ρ) ∪KJ ,2(ϵ, ρ)}.
We prove the result only for case 1 as other cases can be obtain similarly. Assume, k ∈

N/{KH,1(ϵ, ρ) ∪ KH,2(ϵ, ρ)}. Then for any w ∈ V we have H(vk − v1, w; ρ) > 1 − l and

H(vk − v2, w; ρ) > 1 − l. Now H(v1 − v2, w; ρ) ≥ H(vk − v1, w, ;
ρ
2) ◦ H(vk − v2, w;

ρ
2) >

(1− l) ◦ (1− l) > 1− ϵ (by choice of q). i.e., H(v1 − v2, w; ρ) > 1− ϵ. Since ϵ > 0 is arbitrary

so we have H(v1 − v2, w; ρ) = 1, and therefore v1 − v2 = 0. This shows that v1 = v2. Similarly

in case 2 and case 3, we obtain I(v1 − v2, w; ρ) < ϵ and J (v1 − v2, w; ρ) < ϵ which gives

I(v1 − v2, w; ρ) = 0 and J (v1 − v2, w; ρ) = 0. The complete proof of the theorem. □

Theorem 4.3 Let V be a N − 2−NS; (uk) and (vk) be two sequences in V and α being any

scalar.

(i) If S(N2)− limk→∞ uk = u0, then S(N2)− limk→∞ αuk = αu0.

(ii) If S(N2)− limk→∞ uk = u0 and S(N2)− limk→∞ vk = v0, then S(N2)− limk→∞(uk+vk) =

(u0 + v0).

Proof. Omitted. □

Theorem 4.4 Let V be aN−2−NS and (vk) be any sequence in V , then S(N2)−limk→∞ vk =

v0 iff an ascending index sequence of natural numbers K = {kn : n ∈ N} exists with δ{K} =

1 and N2 − lim
n→∞

vkn = v0.

Proof Necessity: Assume that S(N2)− limk→∞ vk = v0. For any ρ > 0, j ∈ N and w ∈ V , let,

KN2(j, ρ) = {n ∈ N : H(vn − v0, w; ρ) > 1− 1
j and I(vn − v0, w; ρ) <

1
j , J (vn − v0, w; ρ) <

1
j }.

Then it is clear that KN2(j + 1, ρ) ⊂ KN2(j, ρ). Since S(N2) − limk→∞ vk = v0, so we

have δ{KN2(j, ρ)} = 1. Let m1 be an arbitrary number in KN2(1, ρ). Then, ∃ a number

m2 ∈ KN2(2, ρ), (m2 > m1), such that for all n ≥ m2,
1
n |{k ≤ n : H(vk − v0, w; ρ) > 1− 1

2 and

I(vk − v0, w; ρ) <
1
2 , J (vk − v0, w; ρ) <

1
2}| >

1
2 . Again on the similar lines there is another

number m3 ∈ KN2(3, ρ), (m3 > m2), such that for all n ≥ m3,
1
n |{k ≤ n : H(vk − v0, w; ρ) >

1 − 1
3 and I(vk − v0, w; ρ) < 1

3 , J (vk − v0, w; ρ) < 1
3}| >

2
3 and so on. Thus we can set a
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sequence {mj}j∈N of positive integers satisfying mj ∈ KN2(j, ρ) and for all n ≥ mj(j ∈ N):
1
n |{k ≤ n : H(vk − v0, w; ρ) > 1− 1

j and I(vk − v0, w; ρ) <
1
j , J (vk − v0, w; ρ) <

1
j }| >

j−1
j .

Define K = {n ∈ N : 1 < n < m1} ∪ { ∪
j∈N

{n ∈ KN2(j, ρ) : mj ≤ n < mj+1}}, Then it is

obvious that, for all n satisfying (mj ≤ n < mj +1), we have 1
n |{k ≤ n : k ∈ K}| ≥ 1

n |{k ≤ n :

H(vk−v0, w; ρ) > 1− 1
j and I(vk−v0, w; ρ) <

1
j , J (vk−v0, w; ρ) <

1
j }| >

j−1
j . By taking limit

on both side, we have δ(K) = 1. It remains to prove that the subsequence of the sequence

(vk) over K is N2−convergent to v0. For this, let ϵ > 0 be any number and select a number

j ∈ N with 1
j < ϵ. Moreover, let n ≥ mj as well as n ∈ K Then, according to the definition

of K, ∃ a number l ≥ j s.t, ml ≤ n < ml+1 and n ∈ KN2(j, ρ). Thus, for every ϵ > 0, and

for every w ∈ V we have H(vn − v0, w; ρ) > 1 − 1
j > 1 − ϵ and I(vn − v0, w; ρ) < 1

j < ϵ,

J (vn − v0, w; ρ) <
1
j < ϵ for all n ≥ hw and n ∈ K. This shows that N2 − lim

n∈K
vn = v0.

Sufficiency: In second part, we assume that there is a set K = {kn}n∈N ⊆ N with δ{K} = 1

and N2 − lim
n∈K

vn = v0. We shall show that S(N2) − limk→∞ vk = v0. Let ϵ > 0 and ρ > 0.

Since, N2 − lim
n∈K

vn = v0 so there exist positive integer n0 such that H(vkn − v0, w; ρ) >

1 − ϵ and I(vkn − v0, w; ρ) < ϵ, J (vkn − v0, w; ρ) < ϵ for every kn ≥ kn0 and every w ∈ V .

This implies the containment: TN2(ϵ, ρ) = {n ∈ N : H(vn − v0, w; ρ) ≤ 1 − ϵ and I(vn −
v0, w; ρ) ≥ ϵ, J (vn − v0, w; ρ) ≥ ϵ} ⊆ N− {vn0 , vn0+1, vn0+2, ...}. and therefore δ{TN2(ϵ, ρ)} ≤
δ{N − {vn0 , vn0+1, vn0+2, ...}. As δ{K} = 1, so δ{TN2(ϵ, ρ)} = 0. This shows that S(N2) −
limk→∞ vk = v0 and therefore the complete proof of the Theorem. □

Finally we define statistical Cauchy sequence in N − 2 − NS and obtain the Cauchy con-

vergence criteria in these spaces.

Definition 4.2 Let V be a N − 2−NS, ϵ > 0 and λ > 0. A sequence (vk) in V is said to be

statistical Cauchy if ∃ p ∈ N s.t. limn
1
n |{k ≤ n : H(vk−vp, w; ρ) ≤ 1−ε or I(vk−vp, w; ρ) ≥

ε and J (vk − vp, w; ρ) ≥ ε}| = 0 for every w ∈ V or equivalently, the natural density of the set

A(ε, ρ) = {k ≤ n : H(vk − vp, w; ρ) ≤ 1− ε or I(vk − vp, w; ρ) ≥ ε and J (vk − vp, w; ρ) ≥ ε}
is zero, i.e., δ (A (ε, ρ)) = 0.

Theorem 4.5 Let V be a N − 2 − NS, then every statistical convergent sequence in V is

statistical Cauchy.

Proof Let (vk) be a statistical convergent to v0 and ϵ > 0 be given. Chose µ > 0 s.t.

(1−ϵ)◦(1−ϵ) > 1−µ and ϵ⋄ϵ < µ. For ρ > 0, if we define A(ε, ρ) = {k ≤ n : H(vk−v0, w;
ρ
2) ≤

1 − ε or I(vk − v0, w;
ρ
2) ≥ ε and J (vk − v0, w;

ρ
2) ≥ ε}, then δ(A(ε, ρ)) = 0 and therefore

δ(AC(ε, ρ)) = 1. Let p ∈ Ac(ϵ, ρ) then for any w ∈ V we have H(vp − v0, w;
ρ
2) > 1 − ϵ and

I(vp − v0, w;
ρ
2) < ϵ,J (vp − v0, w;

ρ
2) < ϵ.
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Define B(µ, ρ) = {k ≤ n : H(vk − vp, w; ρ) ≤ 1−µ or I(vk − vp, w; ρ) ≥ µ,J (vk − vp, w; ρ) ≥
µ}. We claim that B(µ, ρ) ⊂ A(ϵ, ρ). Let q ∈ B(µ, ρ). Then we have H(vq − vp, w; ρ) ≤ 1− µ

or I(vq − vp, w; ρ) ≥ µ,J (vq − vp, w; ρ) ≥ µ.

Case (i): Suppose H(vq−vp, w; ρ) ≤ 1−µ, Then we have H(vq−v0, w;
ρ
2) ≤ 1−ϵ and therefore

q ∈ A(ϵ, ρ) (as otherwise, i.e, if H(vq − v0, w;
ρ
2) > 1 − ϵ, then 1 − µ ≥ H(vq − vp, w; ρ) ≥

H(vq − v0, w;
ρ
2) ◦ H(vp − v0, w;

ρ
2) > (1 − ϵ) ◦ (1 − ϵ) > 1 − µ which is not possible). Hence

B(µ, ρ) ⊂ A(ϵ, ρ).

Case (ii): Suppose I(vq−vp, w; ρ) ≥ µ,J (vq−vp, w; ρ) ≥ µ. We first consider I(vq−vp, w; ρ) ≥
µ, then we have I(vq − v0, w;

ρ
2) ≥ ϵ as otherwise, i.e, if I(vq − v0, w;

ρ
2) < ϵ, then µ ≤

I(vq − vp, w; ρ) ≤ I(vq − v0, w;
ρ
2) ⋄ I(vp − v0, w;

ρ
2) < ϵ ⋄ ϵ < µ which is not possible. On the

same lines we have J (vq − v0, w;
ρ
2) ≥ ϵ. Hence B(µ, ρ) ⊂ A(ϵ, ρ) and therefore the Theorem

is proved. □

Definition 4.3 A neutrosophic 2−normed space V is said to be statistically complete if every

statistical Cauchy sequence in V is statistical convergent in V .

Theorem 4.6 Every neutrosophic 2−normed space V is statistically complete.

Proof Let (vk) be statistical Cauchy sequence in V . To prove the Theorem, we have to show

that (vk) is statistical convergent in V . Suppose that (vk) is not statistical convergent. Let

ϵ > 0 and ρ > 0. Then ∃ p ∈ N such that w ∈ V if we take A(ϵ, ρ) = {k ≤ n : H(vk−vp, w; ρ) ≤
1−ϵ or I(vk−vp, w; ρ) ≥ ϵ , J (vk−vp, w; ρ) ≥ ϵ} and B(ϵ, ρ) = {k ≤ n : H(vk−v0, w;

ρ
2) > 1−ϵ

or I(vk − v0, w;
ρ
2) < ϵ , J (vk − v0, w;

ρ
2) < ϵ}, then δ(A(ϵ, ρ)) = δ(B(ϵ, ρ)) = 0 and therefore

we have δ(AC(ϵ, ρ)) = δ(BC(ϵ, ρ)) = 1.

Since H(vk − vp, w; ρ) ≥ 2H(vk − v0, w;
ρ
2) > 1− ϵ and I(vk − vp, w; ρ) ≤ 2I(vk − v0, w;

ρ
2) < ϵ

, J (vk − vp, w; ρ) ≤ 2J (vk − v0, w;
ρ
2) < ϵ if H(vk − v0, w;

ρ
2) >

1−ϵ
2 and I(vk − v0, w;

ρ
2) <

ϵ
2

, J (vk − v0, w;
ρ
2) <

ϵ
2 . We have δ({k ≤ n : H(vk − vp, w; ρ) > 1 − ϵ and I(vk − vp, w; ρ) < ϵ

, J (vk − vp, w; ρ) < ϵ}) = 0. i.e.,δ(AC(ϵ, ρ)) = 0. In this way we obtain a contradiction as

δ(AC(ϵ, ρ)) = 1. Hence, (vk) is statistically convergent w.r.t. 2−norm N2. □

Theorem 4.7 Let V be a N − 2 − NS and (vk) be a sequence in V , then the following

statements are equivalents.

(i) (vk) is a statistically cauchy sequence w.r.t. N2.

(ii) There is a setK = {kn} ⊆ N with δ{K} = 1 and the associated subsequence {vkn}n∈N is

a cauchy sequence w.r.t. N2.
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5. Conclusion

Fuzzy sets and its generalizations have been frequently used in many branches of science,

engineering and technology, especially, in control theory and mathematical modeling of various

systems. In present work, we define a neutrosophic 2−normed space as a generalization of

fuzzy normed space and study a generalized limit in a more general setting. The results and

definitions presented here will provide a new framework to resolve divergence related problems

in these spaces.
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Abstract. In this paper, we introduce the notion of bipolar-valued neutrosophic subbisemiring (BVNSBS),

level sets of BVNSBS, and bipolar valued neutrosophic normal subbisemiring (BVNNSBS) of a bisemiring. The

concept of BVNSBS is a new generalization of subbisemiring over bisemirings. We discussed the theory of (ξ, τ)-

BVNSBS and (ξ, τ)-BVNNSBS over bisemirings and presented several illustrative examples to demonstrate the

sufficiency and validity of the proposed theorems, lemmas, and propositions.
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—————————————————————————————————————————-

1. Introduction

Classical mathematics may not always be the solution for practical situations in econom-

ics, medical sciences, engineering, social sciences, and environmental sciences, which involves

various uncertainties, imprecise and incomplete information. The limitation of classical math-

ematics that is unable to deal with uncertainties and fuzziness motivated the introduction

of mathematical theory such as probability theory, fuzzy set theory [1], rough set theory [2],

vague set theory [3], interval mathematics [4], and soft set theory [5]. However, these theories

were insufficient and have limitations in dealing with uncertainties. Probability theory can

only deal with stochastically stable problems, which may not apply to many problems in the

field of economic, environmental, and social sciences. Interval mathematics takes calculation
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errors into account by constructing an interval estimate for the solution that is useful in many

areas, but it is not appropriately adaptable for problems that arise from unreliable, inade-

quate, and change of information. On the other hand, the fuzzy set theory introduced by

Zadeh [1] is most appropriate for dealing with uncertainties and vagueness. Membership of

an element in a fuzzy set is a single value between the interval, but in real-life problems, the

degree of non-membership may not always be equal to 1 minus the degree of membership as

there may be some degree of hesitation. Works on fuzzy set theory are progressing rapidly

and have resulted in the conception of many hybrid fuzzy models. In 1983, Atanasov [6]

proposed intuitionistic fuzzy sets as a generalization of the notion of fuzzy set, which incor-

porated the degree of hesitation. Later, Zhang [7] introduced bipolar fuzzy sets in which the

membership function is mapped to intervals, thereby allowing it to deal with complex prob-

lems in both positive and negative aspects. Later, Zhang [8] proposed that bipolar fuzzy logic

should combine both fuzziness and polarity by introducing the (Yin) (Yang) bipolar fuzzy sets.

Lee [9] introduced the operation in bipolar-valued fuzzy sets, whereas Lee [10] discovered that

bipolar-valued fuzzy sets can represent the degree of satisfaction to counter property but fail

to express uncertainties in assigning membership degree. These concepts have been widely

applied to handle incomplete information arising from practical situations. However, these

were still unable to address uncertainties such as indeterminate and inconsistent information.

In 1999, Smarandache [11] proposed the neutrosophic theory that deals with ”the origin,

nature, and scope of neutralities, as well as their interactions with different ideational spec-

tra”. The idea of neutrosophic logic is a logic that states that each proposition is estimated

to have a degree of trust, degree of indeterminacy, and degree of falsity. Smarandache [12]

further generalized the theory of intuitionistic fuzzy sets to the neutrosophic model, and in-

troduced the truth, indeterminacy, and falsity components that represent the membership,

indeterminacy, and non-membership values of a neutrosophic set, respectively. In contrast

to intuitionistic fuzzy sets, neutrosophic sets used indeterminacy as a completely indepen-

dent measure of the membership and non-membership information, and thus it can effectively

describe uncertain and inconsistent information and overcome the limitation of the existing

approaches in handling uncertain information.

The original neutrosophic theory was introduced from a philosophical standpoint. Hence, it

may be difficult to be applied in practical problems. Subsequently, Wang et al. [13] generalized

the neutrosophic set from a technical point of view and specified the set-theoretic operators on

an instance of a neutrosophic set, called the single-valued neutrosophic set, which takes values

from the subset of [0, 1], thereby enabling it to be used feasibly for real-world problems. Over

the years, subsequent developments and extensions of the neutrosophic set were proposed. Deli

et al. [14] proposed bipolar neutrosophic sets as an extension of bipolar fuzzy sets [7]. Ye [15]
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introduced the concept of simplified neutrosophic sets. Peng et al. [16] introduced multi-valued

neutrosophic sets that allow the truth, indeterminacy, and falsity membership degrees to have

a set of crisp values between zero and one, respectively. Das et al. [17] introduced the notion

of neutrosophic fuzzy sets by combining fuzzy sets with neutrosophic fuzzy sets to overcome

the difficulties in handling the non-standard interval of neutrosophic components.

On the other hand, the fuzzy set theory had been applied and contributed to the general-

ization of many fundamental concepts in algebra. Extensive research has been done on the

fuzzy algebraic structure of semirings introduced by Vandiver [18], which is a generalization

of a ring by relaxing the conditions on the additive structure requiring just a monoid rather

than a group and have been proven useful for dealing with problems in various areas. The

application of semirings had been studied extensively by Golan [19] and Glazek [20].

Ahsan, Saifullah and Farid Khan [21] initiated the study of fuzzy semirings, while Feng, Jun

and Zhao [22], and Yousafzai et al. [23] studied semigroups and semirings using fuzzy set and

soft sets, respectively. Furthermore, Mockor [24] introduced the notion of a semiring-valued

fuzzy set for special commutative partially pre-ordered semiring and introduced F-transform

and inverse F-transform for these fuzzy-type structures. Other than that, palanikumar et

al. [25–30] studied the algebraic structure of various semirings that constitute a natural gen-

eralization of semirings.

Recently, many studies applied bipolar fuzzy information in various algebraic structures,

for instance, semigroups [31–33] and BCK/BCI-algebras [34–37]. Zararsz et al. [38] discussed

the notion of bipolar fuzzy metric spaces with application. Selvachandran and Salleh [39] in-

troduced vague soft hyperrings and vague soft hyperideals. Jun, Kim and Lee [40] introduced

bipolar fuzzy translation in BCK/BCI-algebra and investigated its properties, whereas Jun and

Park [41] introduced bipolar fuzzy regularity, bipolar fuzzy regular subalgebra, bipolar fuzzy

filter, and bipolar fuzzy closed quasi filter in BCH-algebras. Apart from that, Sen, Ghosh and

Ghosh [42] extended the study of semirings and proposed the concept of bisemiring in 2004.

Later, Hussain [43] defined the congruence relation between bisemiring and bisemiring homo-

morphisms, followed by the factor bisemiring. Hussain et al. [44] further generalized bisemiring

to a new algebraic structure called -semiring and congruence relations on homomorphisms and

n-semirings.

To the best of our knowledge, studies on bisemiring theory using bipolar valued neutro-

sophic sets have not been studied extensively, and further generalization for bisemiring is still

needed for various practical problems. In this paper, we introduce the notion of bipolar valued

neutrosophic subbisemiring (BVNSBS), level sets of BVNSBS, and bipolar valued neutro-

sophic normal subbisemiring (BVNNSBS) of a bisemiring. The concept of BVNSBS is a new

generalization of subbisemiring over bisemirings. We discussed the theory for (ξ, τ)-BVNSBS
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and (ξ, τ)-BVNNSBS over bisemiring theory and presented several illustrative examples. The

rest of the paper is organized as follows: Section 2 outlines the preliminary definitions and

results, Section 3 introduces the notion of BVNSBS, Section 4 discusses the (ξ, τ)-BVNSBS

and Section 5 discusses the (ξ, τ)-BVNNSBS.

2. Preliminaries

Definition 2.1. [9] Let U be the universe set. A bipolar valued fuzzy set ϑ in U is an

object having the form ϑ = {(u, ϑ+(u), ϑ−(u))|u ∈ U}, where ϑ− : U → [−1, 0] and ϑ+ :

U → [0, 1] are mappings. The positive membership degree ϑ+(u) denoted the satisfaction

degree of an element u to the property corresponding to a bipolar valued fuzzy set ϑ =

{〈u, ϑ+(u), ϑ−(u)〉|u ∈ U}, and the negative membership degree ϑ−(u) denotes the satisfaction

degree of u to some implicit counter-property of ϑ = {〈u, ϑ+(u), ϑ−(u)〉|u ∈ U}. If ϑ+(u) 6= 0

and ϑ−(u) = 0, it is the situation that u is regarded as having only positive satisfaction for

ϑ = {〈u, ϑ+(u), ϑ−(u)〉|u ∈ U}. If ϑ+(u) = 0 and ϑ−(u) 6= 0, it is the situation that u does

not satisfy the property of ϑ = {〈u, ϑ+(u), ϑ−(u)〉|u ∈ U} but somewhat satisfies the counter

property of ϑ = {〈u, ϑ+(u), ϑ−(u)〉|u ∈ U}. It is possible for an element u to be ϑ+(u) 6= 0

and ϑ−(u) 6= 0 when the membership function of the property overlaps that of its counter-

property over some portion of the domain. For the sake of simplicity, we shall use the symbol

ϑ = 〈U ;ϑ−, ϑ+〉 for the bipolar valued fuzzy set ϑ = {〈u, ϑ+(u), ϑ−(u)〉|u ∈ U}, and use the

notion of bipolar fuzzy sets instead of the notion of bipolar valued fuzzy sets.

Definition 2.2. [11] A neutrosophic set K in a universe set U is an object having the

structure K =
{〈
m,ϑTK(m), ϑIK(m), ϑFK(m)

〉
|m ∈ U

}
, where ϑTK(m), ϑIK(m), ϑFK(m) : U →

[0, 1] represents the truth-membership function , the indeterminacy membership function and

the falsity-membership function respectively. There is no restriction on the sum of ϑTK , ϑ
I
K , ϑ

F
K

and so 0 ≤ ϑTK + ϑIK + ϑFK ≤ 3.

Definition 2.3. [11] Let K =
{〈
m,ϑTK(m), ϑIK(m), ϑFK(m)

〉
|m ∈ U

}
and L ={〈

m,ϑTL(m), ϑIL(m), ϑFL (m)
〉
|m ∈ U

}
be any two neutrosophic sets of a set U . Then

K ∩ L =
{〈

m,min{ϑTK(m), ϑTL(m)},min{ϑIK(m), ϑIL(m)},max{ϑFK(m), ϑFL (m)}
〉 ∣∣∣m ∈ U},

K ∪ L =
{(
〈m,max{ϑTK(m), ϑTL(m)},max{ϑIK(m), ϑIL(m)},min{ϑFK(m), ϑFL (m)}

〉 ∣∣∣m ∈ U}.

Definition 2.4. [11] For any neutrosophic set K =
{〈
m,ϑTK(m), ϑIK(m), ϑFK(m)

〉
|m ∈ U

}
of

a set U , we defined a (ξ, τ)-cut of as the crisp subset {ϑTK(m) ≥ ξ, ϑIK(m) ≥ ξ, ϑFK(m) ≤ τ |m ∈
U} of U .

Definition 2.5. [11] Let K and L be any two neutrosophic set of U . Then

K × L = {ϑTK×L(m,n), ϑIK×L(m,n), ϑFK×L(m,n)|∀m,n ∈ U}, where ϑTK×L(m,n) =

min{ϑTK(m), ϑTL(n)}, ϑIK×L(m,n) =
ϑI
K(m)+ϑI

L(n)
2 , ϑFK×L(m,n) = max{ϑFK(m), ϑFL (n)}.

M.Palanikumar, K.Arulmozhi, Ganeshsree Selvachandran and Sher Lyn Tan, New approach
to bisemiring theory via the bipolar valued neutrosophic normal sets

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               430



Definition 2.6. [44] A fuzzy subset K of a bisemiring (S,]1,]2,]3) is said to

be a fuzzy subbisemiring of S if ϑK(m ]1 n) ≥ min{ϑK(m), ϑK(n)}, ϑK(m ]2 n) ≥
min{ϑK(m), ϑK(n)}, ϑK(m ]3 n) ≥ min{ϑK(m), ϑK(n)}, for all m,n ∈ S.

Definition 2.7. [44] Let (S1,+, ·,×) and (S2,�, ◦,⊗) be any two bisemirings. A function

φ : S1 → S2 is said to be a homomorphism if φ(m + n) = φ(m) � φ(n), φ(m · n) = φ(m) ◦
φ(n), φ(m× n) = φ(m)⊗ φ(n), for all m,n ∈ S1.

3. Bipolar Valued Neutrosophic Subbisemiring (BVNSBS)

In what follows, let S denote a bisemiring unless otherwise noted. In this section, we com-

munication the concept of bipolar valued neutrosophic subbisemiring, strongest neutrosophic

relation on S. Furthermore, we introduce the arbitrary intersection bipolar valued neutro-

sophic subbisemiring and list some properties.

Definition 3.1. A bipolar valued neutrosophic subset K of S is said to be BVNSBS of S if

it satisfies the following conditions:



ϑT+
K (m ]1 n) ≥ min{ϑT+

K (m), ϑT+
K (n)},

ϑT−K (m ]1 n) ≤ max{ϑT−K (m), ϑT−K (n)}


ϑT+

K (m ]2 n) ≥ min{ϑT+
K (m), ϑT+

K (n)},

ϑT−K (m ]2 n) ≤ max{ϑT−K (m), ϑT−K (n)}


ϑT+

K (m ]3 n) ≥ min{ϑT+
K (m), ϑT+

K (n)},

ϑT−K (m ]3 n) ≤ max{ϑT−K (m), ϑT−K (n)}







ϑI+K (m ]1 n) ≥ ϑI+
K (m)+ϑI+

K (n)

2 ,

ϑI−K (m ]1 n) ≤ ϑI−
K (m)−ϑI−

K (n)

2


ORϑI+K (m ]2 n) ≥ ϑI+

K (m)+ϑI+
K (n)

2 ,

ϑI−K (m ]2 n) ≤ ϑI−
K (m)−ϑI−

K (n)

2


ORϑI+K (m ]3 n) ≥ ϑI+

K (m)+ϑI+
K (n)

2 ,

ϑI−K (m ]3 n) ≤ ϑI−
K (m)−ϑI−

K (n)

2






ϑF+
K (m ]1 n) ≤ max{ϑF+

K (m), ϑF+
K (n)},

ϑF−K (m ]1 n) ≥ min{ϑF−K (m), ϑF−K (n)}


ϑF+

K (m ]2 n) ≤ max{ϑF+
K (m), ϑF+

K (n)},

ϑF−K (m ]2 n) ≥ min{ϑF−K (m), ϑF−K (n)}


ϑF+

K (m ]3 n) ≤ max{ϑF+
K (m), ϑF+

K (n)},

ϑF−K (m ]3 n) ≥ min{ϑF−K (m), ϑF−K (n)}




for all m,n ∈ S.

Example 3.2. Let S = {l1, l2, l3, l4} be the bisemiring with the following Cayley table:
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]1 l1 l2 l3 l4

l1 l1 l1 l1 l1

l2 l1 l2 l1 l2

l3 l1 l1 l3 l3

l4 l1 l2 l3 l4

]2 l1 l2 l3 l4

l1 l1 l2 l3 l4

l2 l2 l2 l4 l4

l3 l3 l4 l3 l4

l4 l4 l4 l4 l4

]3 l1 l2 l3 l4

l1 l1 l1 l1 l1

l2 l1 l2 l3 l4

l3 l4 l4 l4 l4

l4 l4 l4 l4 l4(
ϑ+
K(l), ϑ−K(l)

)
l = l1 l = l2 l = l3 l = l4(

ϑT+
K (l), ϑT−K (l)

)
(0.55,−0.7) (0.35,−0.6) (0.15,−0.3) (0.25,−0.4)(

ϑI+
K (l), ϑI−K (l)

)
(0.65,−0.8) (0.5,−0.5) (0.3,−0.1) (0.4,−0.2)(

ϑF+
K (l), ϑF−K (l)

)
(0.25,−0.15) (0.35,−0.25) (0.65,−0.65) (0.55,−0.45)

Clearly, K is an BVNSBS of S.

Theorem 3.3. The intersection of a family of BV NSBSs of S is a BVNSBS of S.

Proof. Let {Oi|i ∈ I} be a family of BV NSBSs of S and K =
⋂
i∈I
Oi.

Let m and n in S. Now,

ϑT+
K (m ]1 n) = inf

i∈I
ϑT+
Oi

(m ]1 n)

≥ inf
i∈I

min{ϑT+
Oi

(m), ϑT+
Oi

(n)}

= min
{

inf
i∈I

ϑT+
Oi

(m), inf
i∈I

ϑT+
Oi

(n)
}

= min{ϑT+
K (m), ϑT+

K (n)}

ϑT−K (m ]1 n) = sup
i∈I

ϑT−Oi
(m ]1 n)

≤ sup
i∈I

max{ϑT−Oi
(m), ϑT−Oi

(n)}

= max
{

sup
i∈I

ϑT−Oi
(m), sup

i∈I
ϑT−Oi

(n)
}

= max{ϑT−K (m), ϑT−K (n)}.

Now,

ϑI+
K (m ]1 n) = inf

i∈I
ϑI+
Oi

(m ]1 n)

≥ inf
i∈I

ϑI+
Oi

(m) + ϑI+
Oi

(n)

2

=
inf
i∈I

ϑI+
Oi

(m) + inf
i∈I

ϑI+
Oi

(n)

2

=
ϑI+
K (m) + ϑI+

K (n)

2
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ϑI−K (m ]1 n) = sup
i∈I

ϑI−Oi
(m ]1 n)

≤ sup
i∈I

ϑI−Oi
(m) + ϑI−Oi

(n)

2

=

sup
i∈I

ϑI−Oi
(m) + sup

i∈I
ϑI−Oi

(n)

2

=
ϑI−K (m) + ϑI−K (n)

2
.

Now,

ϑF+
K (m ]1 n) = sup

i∈I
ϑF+
Oi

(m ]1 n)

≤ sup
i∈I

max{ϑF+
Oi

(m), ϑF+
Oi

(n)}

= max
{

sup
i∈I

ϑF+
Oi

(m), sup
i∈I

ϑF+
Oi

(n)
}

= max{ϑF+
K (m), ϑF+

K (n)}

ϑF−K (m ]1 n) = inf
i∈I

ϑF−Oi
(m ]1 n)

≥ inf
i∈I

min{ϑF−Oi
(m), ϑF−Oi

(n)}

= min
{

inf
i∈I

ϑF−Oi
(m), inf

i∈I
ϑF−Oi

(n)
}

= min{ϑF−K (m), ϑF−K (n)}.

Similarly, we can prove that other two operations. Hence K is an BVNSBS of S.

Theorem 3.4. If K and L are any two BV NSBSs of S1 and S2 respectively, then K × L is

a BVNSBS of S1 × S2.

Proof. Let K and L be two BV NSBSs of S1 and S2 respectively. Let m1,m2 ∈ S1 and

n1, n2 ∈ S2. Then (m1, n1) and (m2, n2) are in S1 × S2. Now,

ϑT+
K×L[(m1, n1) ]1 (m2, n2)] = ϑT+

K×L(m1 ]1 m2, n1 ]1 n2)

= min{ϑT+
K (m1 ]1 m2), ϑT+

L (n1 ]1 n2)}

≥ min{min{ϑT+
K (m1), ϑT+

K (m2)},min{ϑT+
L (n1), ϑT+

L (n2)}}

= min{min{ϑT+
K (m1), ϑT+

L (n1)},min{ϑT+
K (m2), ϑT+

L (n2)}}

= min{ϑT+
K×L(m1, n1), ϑT+

K×L(m2, n2)}.
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Similarly, ϑT−K×L[(m1, n1) ]1 (m2, n2)] ≤ max{ϑT−K×L(m1, n1), ϑT−K×L(m2, n2)}.
Now,

ϑI+
K×L[(m1, n1) ]1 (m2, n2)] = ϑI+

K×L(m1 ]1 m2, n1 ]1 n2)

=
ϑI+
K (m1 ]1 m2) + ϑI+

L (n1 ]1 n2)

2

≥ 1

2

[
ϑI+
K (m1) + ϑI+

K (m2)

2
+
ϑI+
L (n1) + ϑI+

L (n2)

2

]

=
1

2

[
ϑI+
K (m1) + ϑI+

L (n1)

2
+
ϑI+
K (m2) + ϑI+

L (n2)

2

]

=
1

2

[
ϑI+
K×L(m1, n1) + ϑI+

K×L(m2, n2)
]
.

Similarly, ϑI−K×L[(m1, n1) ]1 (m2, n2)] ≤ 1
2

[
ϑI−K×L(m1, n1) + ϑI−K×L(m2, n2)

]
.

Now,

ϑF+
K×L[(m1, n1) ]1 (m2, n2)] = ϑF+

K×L(m1 ]1 m2, n1 ]1 n2)

= max{ϑF+
K (m1 ]1 m2), ϑF+

L (n1 ]1 n2)}

≤ max{max{ϑF+
K (m1), ϑF+

K (m2)},max{ϑF+
L (n1), ϑF+

L (n2)}}

= max{max{ϑF+
K (m1), ϑF+

L (n1)},max{ϑF+
K (m2), ϑF+

L (n2)}}

= max{ϑF+
K×L(m1, n1), ϑF+

K×L(m2, n2)}.

Similarly, ϑF−K×L[(m1, n1) ]1 (m2, n2)] ≥ min{ϑF−K×L(m1, n1), ϑF−K×L(m2, n2)}.
Similarly, we can prove other two operations. Hence, K × L is an BVNSBS of S.

Corollary 3.5. If K1,K2, ...,Kn are the family of BV NSBSs of S1,S2, ...,Sn respectively,

then K1 ×K2 × ...×Kn is an BVNSBS of S1 × S2 × ...× Sn.

Definition 3.6. Let K be a bipolar valued neutrosophic subset in S, the strongest neutro-

sophic relation on S, that is a bipolar valued neutrosophic relation on K is O such that



ϑT+
O (m,n) = min{ϑT+

K (m), ϑT+
K (n)},

ϑT−O (m,n) = max{ϑT−K (m), ϑT−K (n)}

 ,

ϑI+O (m,n) =
ϑI+
K (m)+ϑI+

K (n)

2 ,

ϑI−O (m,n) =
ϑI−
K (m)+ϑI−

K (n)

2

 ,

ϑF+
O (m,n) = max{ϑF+

K (m), ϑF+
K (n)},

ϑF−O (m,n) = min{ϑF−K (m), ϑF−K (n)}




.

Theorem 3.7. Let K be the BVNSBS of S and O be the strongest bipolar valued neutrosophic

relation of S. Then K is an BVNSBS of S if and only if O is an BVNSBS of S × S.
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Proof. Let K be the BVNSBS of S and O be the strongest bipolar valued neutrosophic

relation of S. Then for any m = (m1,m2) and n = (n1, n2) are in S × S. Now,

ϑT+
O (m ]1 n) = ϑT+

O [((m1,m2) ]1 (n1, n2)]

= ϑT+
O (m1 ]1 n1,m2 ]1 n2)

= min{ϑT+
K (m1 ]1 n1), ϑT+

K (m2 ]1 n2)}

≥ min{min{ϑT+
K (m1), ϑT+

K (n1)},min{ϑT+
K (m2), ϑT+

K (n2)}}

= min{min{ϑT+
K (m1), ϑT+

K (m2)},min{ϑT+
K (n1), ϑT+

K (n2)}}

= min{ϑT+
O (m1,m2), ϑT+

O (n1, n2)}

= min{ϑT+
O (m), ϑT+

O (n)}.

Similarly, ϑT−O (m ]2 n) ≤ max{ϑT−O (m), ϑT−O (n)}.
Now,

ϑI+
O (m ]1 n) = ϑI+

O [((m1,m2) ]1 (n1, n2)]

= ϑI+
O (m1 ]1 n1,m2 ]1 n2)

=
ϑI+
K (m1 ]1 n1) + ϑI+

K (m2 ]1 n2)

2

≥ 1

2

[
ϑI+
K (m1) + ϑI+

K (n1)

2
+
ϑI+
K (m2) + ϑI+

K (n2)

2

]

=
1

2

[
ϑI+
K (m1) + ϑI+

K (m2)

2
+
ϑI+
K (n1) + ϑI+

K (n2)

2

]

=
ϑI+
O (m1,m2) + ϑI+

O (n1, n2)

2

=
ϑI+
O (m) + ϑI+

O (n)

2
.

Similarly, ϑI−O (m ]1 n) ≤ ϑI−
O (m)+ϑI−

O (n)
2 .

Similarly, ϑF+
O (m ]1 n) ≤ max{ϑF+

O (m), ϑF+
O (n)} and ϑF−O (m ]1 n) ≥ min{ϑF−O (m), ϑF−O (n)}.

Similarly to prove other two operations. Hence O is an BVNSBS of S × S.

Conversely assume that O is an BVNSBS of S × S, then for any m = (m1,m2) and

n = (n1, n2) are in S × S. Now,

min{ϑT+
K (m1 ]1 n1), ϑT+

K (m2 ]1 n2)} = ϑT+
O (m1 ]1 n1,m2 ]1 n2)

= ϑT+
O [(m1,m2) ]1 (n1, n2)]

= ϑT+
O (m ]1 n)
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≥ min{ϑT+
O (m), ϑT+

O (n)}

= min{ϑT+
O (m1,m2), ϑT+

O (n1, n2)}

= min{min{ϑT+
K (m1), ϑT+

K (m2)},min{ϑT+
K (n1), ϑT+

K (n2)}}.

If ϑT+
K (m1 ]1 n1) ≤ ϑT+

K (m2 ]1 n2), then ϑT+
K (m1) ≤ ϑT+

K (m2) and ϑT+
K (n1) ≤ ϑT+

K (n2).

We get ϑT+
K (m1 ]1 n1) ≥ min{ϑT+

K (m1), ϑT+
K (n1)}.

max{ϑT−K (m1 ]1 n1), ϑT−K (m2 ]1 n2)} = ϑT−O (m1 ]1 n1,m2 ]1 n2)

= ϑT−O [(m1,m2) ]1 (n1, n2)]

= ϑT−O (m ]1 n)

≤ max{ϑT−O (m), ϑT−O (n)}

= max{ϑT−O (m1,m2), ϑT−O (n1, n2)}

= max{max{ϑT−K (m1), ϑT−K (m2)},max{ϑT−K (n1), ϑT−K (n2)}}.

If ϑT−K (m1 ]1 n1) ≥ ϑT−K (m2 ]1 n2), then ϑT−K (m1) ≥ ϑT−K (m2) and ϑT−K (n1) ≥ ϑT−K (n2).

We get ϑT−K (m1 ]1 n1) ≤ max{ϑT−K (m1), ϑT−K (n1)} for all m1, n1 ∈ S. Now,

1

2

[
ϑI+
K (m1 ]1 n1) + ϑI+

K (m2 ]1 n2)
]

= ϑI+
O (m1 ]1 n1,m2 ]1 n2)

= ϑI+
O [(m1,m2) ]1 (n1, n2)]

= ϑI+
O (m ]1 n)

≥
ϑI+
O (m) + ϑI+

O (n)

2

=
ϑI+
O (m1,m2) + ϑI+

O (n1, n2)

2

=
1

2

[
ϑI+
K (m1) + ϑI+

K (m2)

2
+
ϑI+
K (n1) + ϑI+

K (n2)

2

]
.

If ϑI+
K (m1 ]1 n1) ≤ ϑI+

K (m2 ]1 n2), then ϑI+
K (m1) ≤ ϑI+

K (m2) and ϑI+
K (n1) ≤ ϑI+

K (n2).

We get, ϑI+
K (m1 ]1 n1) ≥ ϑI+

K (m1)+ϑI+
K (n1)

2 .

Similarly, 1
2

[
ϑI−K (m1 ]1 n1) + ϑI−K (m2 ]1 n2)

]
≤ 1

2

[
ϑI−
K (m1)+ϑI−

K (m2)
2 +

ϑI−
K (n1)+ϑI−

K (n2)
2

]
.

If ϑI−K (m1 ]1 n1) ≥ ϑI−K (m2 ]1 n2), then ϑI−K (m1) ≥ ϑI−K (m2) and ϑI−K (n1) ≥ ϑI−K (n2).

We get, ϑI−K (m1 ]1 n1) ≤ ϑI−
K (m1)+ϑI−

K (n1)
2 .

Similarly, max{ϑF+
K (m1 ]1 n1), ϑF+

K (m2 ]1 n2)} ≤ max{max{ϑF+
K (m1), ϑF+

K (m2)},
max{ϑF+

K (n1), ϑF+
K (n2)}}.

If ϑF+
K (m1 ]1 n1) ≥ ϑF+

K (m2 ]1 n2), then ϑF+
K (m1) ≥ ϑF+

K (m2) and ϑF+
K (n1) ≥ ϑF+

K (n2).

We get, ϑF+
K (m1 ]1 n1) ≤ max{ϑF+

K (m1), ϑF+
K (n1)}.

Similarly, min{ϑF−K (m1 ]1 n1), ϑF−K (m2 ]1 n2)} ≥ min{min{ϑF−K (m1), ϑF−K (m2)},
min{ϑF−K (n1), ϑF−K (n2)}}.
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If ϑF−K (m1 ]1 n1) ≤ ϑF−K (m2 ]1 n2), then ϑF−K (m1) ≤ ϑF−K (m2) and ϑF−K (n1) ≤ ϑF−K (n2).

We get, ϑF−K (m1 ]1 n1) ≥ min{ϑF−K (m1), ϑF−K (n1)}.
Similarly to prove other two operations. Hence K is an BVNSBS of S.

Theorem 3.8. Let K be bipolar valued neutrosophic subset in S. Then ϑ ={
(ϑT+

K , ϑT−K ), (ϑI+
K , ϑI−K ), (ϑF+

K , ϑF−K )
}
is an BVNSBS of S if and only if all non empty level

set ϑ(t,s) is a subbisemiring of S for t, s ∈ [−1, 0]× [0, 1].

Proof. Assume that ϑ is an BVNSBS of S. For each t, s ∈ [−1, 0] × [0, 1] and

a1, a2 ∈ ϑ(t,s). We have ϑT+
K (a1) ≥ t, ϑT+

K (a2) ≥ t and ϑI+
K (a1) ≥ t, ϑI+

K (a2) ≥ t and

ϑF+
K (a1) ≤ s, ϑF+

K (a2) ≤ s. Now, ϑT+
K (a1 ]1 a2) ≥ min{ϑT+

K (a1), ϑT+
K (a2)} ≥ t and

ϑI+
K (a1 ]1 a2) ≥ ϑI+

K (a1)+ϑI+
K (a2)

2 ≥ t+t
2 = t and ϑF+

K (a1 ]1 a2) ≤ max{ϑF+
K (a1), ϑF+

K (a2)} ≤ s.

Since, t, s ∈ [−1, 0] × [0, 1], we have ϑT−K (a1) ≤ t, ϑT−K (a2) ≤ t and ϑI−K (a1) ≤ t, ϑI−K (a2) ≤ t

and ϑF−K (a1) ≥ s, ϑF−K (a2) ≥ s. Now, ϑT−K (a1 ]1 a2) ≤ max{ϑT−K (a1), ϑT−K (a2)} ≤ t and

ϑI−K (a1 ]1 a2) ≤ ϑI−
K (a1)+ϑI−

K (a2)
2 ≤ t+t

2 = t and ϑF−K (a1 ]1 a2) ≥ min{ϑF−K (a1), ϑF−K (a2)} ≥ s.

This implies that a1 ]1 a2 ∈ ϑ(t,s). Similarly, to prove other two operations. Hence, ϑ(t,s) is a

subbisemiring of S for each t, s ∈ [−1, 0]× [0, 1].

Conversely, assume that ϑ(t,s) is a subbisemiring of S for each t, s ∈ [−1, 0]× [0, 1]. Suppose

if there exist a1, a2 ∈ S such that ϑT+
K (a1 ]1 a2) < min{ϑT+

K (a1), ϑT+
K (a2)}, ϑI+

K (a1 ]1 a2) <
ϑI+
K (a1)+ϑI+

K (a2)
2 and ϑF+

K (a1 ]1 a2) > max{ϑF+
K (a1), ϑF+

K (a2)}. Select t, s ∈ [0, 1] such that

ϑT+
K (a1 ]1 a2) < t ≤ min{ϑT+

K (a1), ϑT+
K (a2)} and ϑI+

K (a1 ]1 a2) < t ≤ ϑI+
K (a1)+ϑI+

K (a2)
2 and

ϑF+
K (a1 ]1 a2) > s ≥ max{ϑF+

K (a1), ϑF+
K (a2)}. Then a1, a2 ∈ ϑ(t,s), but a1 ]1 a2 /∈ ϑ(t,s).

Suppose if there exist a1, a2 ∈ S such that ϑT−K (a1 ]1 a2) > max{ϑT−K (a1), ϑT−K (a2)},
ϑI−K (a1 ]1 a2) >

ϑI−
K (a1)+ϑI−

K (a2)
2 and ϑF−K (a1 ]1 a2) < min{ϑF−K (a1), ϑF−K (a2)}. Select

t, s ∈ [−1, 0] such that ϑT−K (a1 ]1 a2) > t ≥ max{ϑT−K (a1), ϑT−K (a2)} and ϑI−K (a1 ]1 a2) >

t ≥ ϑI−
K (a1)+ϑI−

K (a2)
2 and ϑF−K (a1 ]1 a2) < s ≤ min{ϑF−K (a1), ϑF−K (a2)}. Then a1, a2 ∈ ϑ(t,s),

but a1 ]1 a2 /∈ ϑ(t,s). This contradicts to that ϑ(t,s) is a subbisemiring of S. Hence ϑT+
K (a1 ]1

a2) ≥ min{ϑT+
K (a1), ϑT+

K (a2)}, ϑT−K (a1 ]1 a2) ≤ max{ϑT−K (a1), ϑT−K (a2)}, ϑI+
K (a1 ]1 a2) ≥

ϑI+
K (a1)+ϑI+

K (a2)
2 , ϑI−K (a1 ]1 a2) ≤ ϑI−

K (a1)+ϑI−
K (a2)

2 and ϑF+
K (a1 ]1 a2) ≤ max{ϑF+

K (a1), ϑF+
K (a2)},

ϑF−K (a1 ]1 a2) ≥ min{ϑF−K (a1), ϑF−K (a2)}. Similarly to prove other two operations such as ]2

and ]3. Hence ϑ̃ =
{

(ϑT+
K , ϑT−K ), (ϑI+

K , ϑI−K ), (ϑF+
K , ϑF−K )

}
is an BVNSBS of S.

Definition 3.9. Let K be any BVNSBS of S and a ∈ S. Then the pseudo bipolar valued

neutrosophic coset (aA)z is defined by

((aϑT+
K )z)(m) = z(a)ϑT+

K (m),

((aϑT−K )z)(m) = z(a)ϑT−K (m)

 ,

((aϑI+K )z)(m) = z(a)ϑI+K (m),

((aϑI−K )z)(m) = z(a)ϑI−K (m)

 ,

((aϑF+
K )z)(m) = z(a)ϑF+

K (m),

((aϑF−K )z)(m) = z(a)ϑF−K (m)




.
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for every m ∈ S and for some z ∈ P , where P is a any non-empty set.

Theorem 3.10. Let K be any BVNSBS of S, then the pseudo bipolar valued neutrosophic

coset (aA)z is an BVNSBS of S, for every a ∈ S.

Proof. Now, ((aϑT+
K )z)(m ]1 n) = z(a) ϑT+

K (m ]1 n) ≥ z(a) min{ϑT+
K (m), ϑT+

K (n)} =

min{z(a) ϑT+
K (m), z(a) ϑT+

K (n)} = min{((aϑT+
K )z)(m), ((aϑT+

K )z)(n)}. Thus, ((aϑT+
K )z)(m ]1

n) ≥ min{((aϑT+
K )z)(m), ((aϑT+

K )z)(n)}. Now, ((aϑI+
K )z)(m ]1 n) = z(a) ϑI+

K (m ]1

n) ≥ z(a)

[
ϑI+
K (m)+ϑI+

K (n)
2

]
=

z(a) ϑI+
K (m)+z(a) ϑI+

K (n)
2 =

((aϑI+
K )z)(m)+((aϑI+

K )z)(n)
2 . Thus,

((aϑI+
K )z)(m ]1 n) ≥ ((aϑI+

K )z)(m)+((aϑI+
K )z)(n)

2 . Now, ((aϑF+
K )z)(m ]1 n) = z(a) ϑF+

K (m ]1 n) ≤
z(a) max{ϑF+

K (m), ϑF+
K (n)} = max{z(a) ϑF+

K (m), z(a) ϑF+
K (n)} = max{((aϑF+

K )z)(m),

((aϑF+
K )z)(n)}. Thus, ((aϑF+

K )z)(m ]1 n) ≤ max{((aϑF+
K )z)(m), ((aϑF+

K )z)(n)}.
Also, ((aϑT−K )z)(m ]1 n) = z(a) ϑT−K (m ]1 n) ≤ z(a) max{ϑT−K (m), ϑT−K (n)} =

max{z(a) ϑT−K (m), z(a) ϑT−K (n)} = max{((aϑT−K )z)(m), ((aϑT−K )z)(n)}.
Thus, ((aϑT−K )z)(m ]1 n) ≤ max{((aϑT−K )z)(m), ((aϑT−K )z)(n)}. Now, ((aϑI−K )z)(m ]1 n) =

z(a) ϑI−K (m ]1 n) ≤ z(a)

[
ϑI−
K (m)+ϑI−

K (n)
2

]
=

z(a) ϑI−
K (m)+z(a) ϑI−

K (n)
2 =

((aϑI−
K )z)(m)+((aϑI−

K )z)(n)
2 .

Thus, ((aϑI−K )z)(m ]1 n) ≤ ((aϑI−
K )z)(m)+((aϑI−

K )z)(n)
2 . Now, ((aϑF−K )z)(m ]1 n) =

z(a) ϑF−K (m ]1 n) ≥ z(a) min{ϑF−K (m), ϑF−K (n)} = min{z(a) ϑF−K (m), z(a) ϑF−K (n)} =

min{((aϑF−K )z)(m), ((aϑF−K )z)(n)}. Thus, ((aϑF−K )z)(m ]1 n) ≥ min{((aϑF−K )z)(m),

((aϑF−K )z)(n)}. Similarly to prove other two operations such as ]2 and ]3. Hence (aA)z is an

BVNSBS of S.

Definition 3.11. Let (S1,∨1,∨2,∨3) and (S2,t1,t2,t3) be any two bisemirings. Let Λ :

S1 → S2 be any function and K be any BVNSBS in S1, O be any BVNSBS in Λ(S1) = S2.

If ϑK =
{

(ϑT+
K , ϑT−K ), (ϑI+

K , ϑI−K ), (ϑF+
K , ϑF−K )

}
is a bipolar valued neutrosophic set in S1, then

ϑO is a bipolar valued neutrosophic set in S2, defined by

ϑT+
O (n) =

supϑT+
K (m) if m ∈ Λ−1(n)

0 otherwise
;ϑT−O (n) =

inf ϑT−K (m) if m ∈ Λ−1(n)

−1 otherwise

ϑI+O (n) =

supϑI+K (m) if m ∈ Λ−1(n)

0 otherwise
;ϑI−O (n) =

inf ϑI−K (m) if m ∈ Λ−1(n)

−1 otherwise

ϑF+
O (n) =

inf ϑF+
K (m) if m ∈ Λ−1(n)

1 otherwise
;ϑF−O (n) =

supϑF−K (m) if m ∈ Λ−1(n)

0 otherwise
.

for all m ∈ S1 and n ∈ S2 is called the image of ϑK under Λ.

If ϑO =
{

(ϑT+
O , ϑT−O ), (ϑI+

O , ϑI−O ), (ϑF+
O , ϑF−O )

}
is a bipolar valued neutrosophic set in S2, then

neutrosophic set ϑK = Λ◦ϑO in S1 [ie, the bipolar valued neutrosophic set defined by ϑK(m) =

ϑO(Λ(m))] is called the preimage of ϑO under Λ.
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Theorem 3.12. Let (S1,∨1,∨2,∨3) and (S2,t1,t2,t3) be any two bisemirings. The homo-

morphic image of BVNSBS of S1 is an BVNSBS of S2.

Proof. Let Λ : S1 → S2 be any homomorphism. Then Λ(m ∨1 n) = Λ(m) t1

Λ(n),Λ(m ∨2 n) = Λ(m) t2 Λ(n) and Λ(m ∨3 n) = Λ(m) t3 Λ(n) for all m,n ∈ S1. Let

O = Λ(K), K is any BVNSBS of S1. Let Λ(m),Λ(n) ∈ S2. Let m ∈ Λ−1(Λ(m)) and

n ∈ Λ−1(Λ(n)) be such that ϑT+
K (m) = sup

z∈Λ−1(Λ(m))

ϑT+
K (z), ϑT+

K (n) = sup
z∈Λ−1(Λ(n))

ϑT+
K (z) and

ϑT−K (m) = inf
z∈Λ−1(Λ(m))

ϑT−K (z), ϑT−K (n) = inf
z∈Λ−1(Λ(n))

ϑT−K (z). Now,

ϑT+
O (Λ(m) t1 Λ(n)) = sup

z′∈Λ−1(Λ(m)t1Λ(n))

ϑT+
K (z

′
)

= sup
z′∈Λ−1(Λ(m∨1n)

ϑT+
K (z

′
)

= ϑT+
K (m ∨1 n)

≥ min{ϑT+
K (m), ϑT+

K (n)}

= min{ϑT+
O Λ(m), ϑT+

O Λ(n)}.

Thus, ϑT+
O (Λ(m) t1 Λ(n)) ≥ min{ϑT+

O Λ(m), ϑT+
O Λ(n)}.

ϑT−O (Λ(m) t1 Λ(n)) = inf
z′∈Λ−1(Λ(m)t1Λ(n))

ϑT−K (z
′
)

= inf
z′∈Λ−1(Λ(m∨1n)

ϑT−K (z
′
)

= ϑT−K (m ∨1 n)

≤ max{ϑT−K (m), ϑT−K (n)}

= max{ϑT−O Λ(m), ϑT−O Λ(n)}.

Thus, ϑT−O (Λ(m) t1 Λ(n)) ≤ max{ϑT−O Λ(m), ϑT−O Λ(n)}.
Let m ∈ Λ−1(Λ(m)) and n ∈ Λ−1(Λ(n)) be such that ϑI+

K (m) = sup
z∈Λ−1(Λ(m))

ϑI+
K (z),

ϑI+
K (n) = sup

z∈Λ−1(Λ(n))

ϑI+
K (z), ϑI−K (m) = inf

z∈Λ−1(Λ(m))
ϑI−K (z), ϑI−K (n) = inf

z∈Λ−1(Λ(n))
ϑI−K (z).

Now,

ϑI+
O (Λ(m) t1 Λ(n)) = sup

z
′∈Λ−1(Λ(m)t1Λ(n))

ϑI+
K (z

′
)

= sup
z′∈Λ−1(Λ(m∨1n)

ϑI+
K (z

′
)

= ϑI+
K (m ∨1 n)

≥
ϑI+
K (m) + ϑI+

K (n)

2

=
ϑI+
O Λ(m) + ϑI+

O Λ(n)

2
.
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Thus, ϑI+
O (Λ(m) t1 Λ(n)) ≥ ϑI+

O Λ(m)+ϑI+
O Λ(n)

2 .

Similarly, ϑI−O (Λ(m) t1 Λ(n)) ≤ ϑI−
O Λ(m)+ϑI−

O Λ(n)
2 .

Let Λ(m),Λ(n) ∈ S2. Let m ∈ Λ−1(Λ(m)) and n ∈ Λ−1(Λ(n)) be such that

ϑF+
K (m) = inf

z∈Λ−1(Λ(m))
ϑF+
K (z), ϑF+

K (n) = inf
z∈Λ−1(Λ(n))

ϑF+
K (z), ϑF−K (m) = sup

z∈Λ−1(Λ(m))

ϑF−K (z)

and ϑF−K (n) = sup
z∈Λ−1(Λ(n))

ϑF−K (z). Now,

ϑF+
O (Λ(m) t1 Λ(n)) = inf

z′∈Λ−1(Λ(m)t1Λ(n))
ϑF+
K (z

′
)

= inf
z′∈Λ−1(Λ(m∨1n)

ϑF+
K (z

′
)

= ϑF+
K (m ∨1 n)

≤ max{ϑF+
K (m), ϑF+

K (n)}

= max{ϑF+
O Λ(m), ϑF+

O Λ(n)}.

Thus, ϑF+
O (Λ(m) t1 Λ(n)) ≤ max{ϑF+

O Λ(m), ϑF+
O Λ(n)}.

Similarly, ϑF−O (Λ(m) t1 Λ(n)) ≥ min{ϑF−O Λ(m), ϑF−O Λ(n)}.
Similarly, to prove other two operations. Hence O is an BVNSBS of S2.

Theorem 3.13. Let (S1,∨1,∨2,∨3) and (S2,t1,t2,t3) be any two bisemirings. The homo-

morphic preimage of BVNSBS of S2 is an BVNSBS of S1.

Proof. Let Λ : S1 → S2 be any homomorphism. Then Λ(m ∨1 n) = Λ(m) t1 Λ(n),Λ(m ∨2

n) = Λ(m) t2 Λ(n) and Λ(m ∨3 n) = Λ(m) t3 Λ(n) for all m,n ∈ S1. Let O = Λ(K),

where O is any BVNSBS of S2. Let m,n ∈ S1. Now, ϑT+
K (m ∨1 n) = ϑT+

O (Λ(m ∨1 n)) =

ϑT+
O (Λ(m) t1 Λ(n)) ≥ min{ϑT+

O Λ(m), ϑT+
O Λ(n)} = min{ϑT+

K (m), ϑT+
K (n)}. Thus, ϑT+

K (m ∨1

n) ≥ min{ϑT+
K (m), ϑT+

K (n)}. Now, ϑI+
K (m ∨1 n) = ϑI+

O (Λ(m ∨1 n)) = ϑI+
O (Λ(m) t1 Λ(n)) ≥

ϑI+
O Λ(m)+ϑI+

O Λ(n)
2 =

ϑI+
K (m)+ϑI+

K (n)
2 . Thus, ϑI+

K (m ∨1 n) ≥ ϑI+
K (m)+ϑI+

K (n)
2 . Now, ϑF+

K (m ∨1 n) =

ϑF+
O (Λ(m∨1n)) = ϑF+

O (Λ(m)t1Λ(n)) ≤ max{ϑF+
O Λ(m), ϑF+

O Λ(n)} = max{ϑF+
K (m), ϑF+

K (n)}.
Thus, ϑF+

K (m ∨1 n) ≤ max{ϑF+
K (m), ϑF+

K (n)}. Also, ϑT−K (m ∨1 n) = ϑT−O (Λ(m ∨1 n)) =

ϑT−O (Λ(m) t1 Λ(n)) ≤ max{ϑT−O Λ(m), ϑT−O Λ(n)} = max{ϑT−K (m), ϑT−K (n)}. Thus, ϑT−K (m ∨1

n) ≤ max{ϑT−K (m), ϑT−K (n)}. We have, ϑI−K (m∨1n) = ϑI−O (Λ(m∨1n)) = ϑI−O (Λ(m)t1 Λ(n)) ≤
ϑI−
O Λ(m)+ϑI−

O Λ(n)
2 =

ϑI−
K (m)+ϑI−

K (n)
2 . Thus, ϑI−K (m ∨1 n) ≤ ϑI−

K (m)+ϑI−
K (n)

2 . Now, ϑF−K (m ∨1 n) =

ϑF−O (Λ(m∨1 n)) = ϑF−O (Λ(m)t1 Λ(n)) ≥ min{ϑF−O Λ(m), ϑF−O Λ(n)} = min{ϑF−K (m), ϑF−K (n)}.
Thus, ϑF−K (m ∨1 n) ≥ min{ϑF−K (m), ϑF−K (n)}. Similarly to prove other two operations, hence

K is an BVNSBS of S1.

Theorem 3.14. Let (S1,∨1,∨2,∨3) and (S2,t1,t2,t3) be any two bisemirings. If Λ : S1 →
S2 is a homomorphism, then Λ(K(t,s)) is a level subbisemiring of BVNSBS O of S2.
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Proof. Let Λ : S1 → S2 be any homomorphism. Then Λ(m ∨1 n) = Λ(m) t1 Λ(n),Λ(m ∨2

n) = Λ(m) t2 Λ(n) and Λ(m ∨3 n) = Λ(m) t3 Λ(n) for all m,n ∈ S1. Let O = Λ(K), K is an

BVNSBS of S1. By Theorem 3.12, O is an BVNSBS of S2. Let K(t,s) be any level subbisemiring

of K. Suppose that m,n ∈ K(t,s). Then Λ(m ∨1 n),Λ(m ∨2 n) and Λ(m ∨3 n) ∈ K(t,s). Now,

ϑT+
O (Λ(m)) = ϑT+

K (m) ≥ t, ϑT+
O (Λ(n)) = ϑT+

K (n) ≥ t. Thus, ϑT+
O (Λ(m) t1 Λ(n)) ≥ ϑT+

K (m ∨1

n) ≥ t. Now, ϑI+
O (Λ(m)) = ϑI+

K (m) ≥ t, ϑI+
O (Λ(n)) = ϑI+

K (n) ≥ t. Thus, ϑI+
O (Λ(m)t1 Λ(n)) ≥

ϑI+
K (m ∨1 n) ≥ t. Now, ϑF+

O (Λ(m)) = ϑF+
K (m) ≤ s, ϑF+

O (Λ(n)) = ϑF+
K (n) ≤ s. Thus,

ϑF+
O (Λ(m) t1 Λ(n)) ≤ ϑF+

K (m ∨1 n) ≤ s, for all Λ(m),Λ(n) ∈ S2. Also, ϑT−O (Λ(m)) =

ϑT−K (m) ≤ t, ϑT−O (Λ(n)) = ϑT−K (n) ≤ t. Thus, ϑT−O (Λ(m) t1 Λ(n)) ≤ ϑT−K (m ∨1 n) ≤ t.

Now, ϑI−O (Λ(m)) = ϑI−K (m) ≤ t, ϑI−O (Λ(n)) = ϑI−K (n) ≤ t. Thus, ϑI−O (Λ(m) t1 Λ(n)) ≤
ϑI−K (m ∨1 n) ≤ t. Now, ϑF−O (Λ(m)) = ϑF−K (m) ≥ s, ϑF−O (Λ(n)) = ϑF−K (n) ≥ s. Thus,

ϑF−O (Λ(m) t1 Λ(n)) ≥ ϑF−K (m ∨1 n) ≥ s, for all Λ(m),Λ(n) ∈ S2. Similarly to prove other

operations, hence Λ(K(t,s)) is a level subbisemiring of BVNSBS O of S2.

Theorem 3.15. Let (S1,∨1,∨2,∨3) and (S2,t1,t2,t3) be any two bisemirings. If Λ : S1 →
S2 is any homomorphism, then K(t,s) is a level subbisemiring of BVNSBS K of S1.

Proof. Let Λ : S1 → S2 be any homomorphism. Then Λ(m ∨1 n) = Λ(m) t1 Λ(n),Λ(m ∨2

n) = Λ(m) t2 Λ(n) and Λ(m ∨3 n) = Λ(m) t3 Λ(n) for all m,n ∈ S1. Let O = Λ(K), O is an

BVNSBS of S2. By Theorem 3.13, K is an BVNSBS of S1. Let Λ(K(t,s)) be a level subbisemir-

ing of O. Suppose that Λ(m),Λ(n) ∈ Λ(K(t,s)). Then Λ(m ∨1 n),Λ(m ∨2 n) and Λ(m ∨3 n) ∈
Λ(K(t,s)). Now, ϑT+

K (m) = ϑT+
O (Λ(m)) ≥ t, ϑT+

K (n) = ϑT+
O (Λ(n)) ≥ t. Thus, ϑT+

K (m ∨1 n) ≥
min{ϑT+

K (m), ϑT+
K (n)} ≥ t. Now, ϑI+

K (m) = ϑI+
O (Λ(m)) ≥ t, ϑI+

K (n) = ϑI+
O (Λ(n)) ≥ t. Thus,

ϑI+
K (m∨1 n) ≥ ϑI+

K (m)+ϑI+
K (n)

2 ≥ t. Now, ϑF+
K (m) = ϑF+

O (Λ(m)) ≤ s, ϑF+
K (n) = ϑF+

O (Λ(n)) ≤ s.
Thus, ϑF+

K (m ∨1 n) = ϑF+
O (Λ(m) t1 Λ(n)) ≤ max{ϑF+

K (m), ϑF+
K (n)} ≤ s, for all m,n ∈ S1.

Also, ϑT−K (m) = ϑT−O (Λ(m)) ≤ t, ϑT−K (n) = ϑT−O (Λ(n)) ≤ t. Thus, ϑT−K (m ∨1 n) ≤
max{ϑT−K (m), ϑT−K (n)} ≤ t. Now, ϑI−K (m) = ϑI−O (Λ(m)) ≤ t, ϑI−K (n) = ϑI−O (Λ(n)) ≤ t. Thus,

ϑI−K (m∨1n) ≤ ϑI−
K (m)+ϑI−

K (n)
2 ≤ t. Now, ϑF−K (m) = ϑF−O (Λ(m)) ≥ s, ϑF−K (n) = ϑF−O (Λ(n)) ≥ s.

Thus, ϑF−K (m ∨1 n) = ϑF−O (Λ(m) t1 Λ(n)) ≥ min{ϑF−K (m), ϑF−K (n)} ≥ s, for all m,n ∈ S1. In

the same way, prove the other two operations, hence K(t,s) is a level subbisemiring of BVNSBS

K of S1.

4. (ξ, τ)–Bipolar Valued Neutrosophic Subbisemiring

In this section, we discuss (ξ, τ)–bipolar valued neutrosophic subbisemiring. In what follows

that, (ξ+, τ+) ∈ [0, 1] and (ξ−, τ−) ∈ [−1, 0] be such that 0 ≤ ξ+ < τ+ ≤ 1 and −1 ≤ τ− <

ξ− ≤ 0, both (ξ, τ) ∈ [0, 1] are arbitrary but fixed.
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Definition 4.1. Let K be any bipolar valued neutrosophic subset of S is called a (ξ, τ)-

BVNSBS of S if it satisfies the following conditions:



max{ϑT+
K (m ]1 n), ξ

+} ≥ min{ϑT+
K (m), ϑT+

K (n), τ+},

min{ϑT−
K (m ]1 n), ξ

−} ≤ max{ϑT−
K (m), ϑT−

K (n), τ−}


max{ϑT+

K (m ]2 n), ξ
+} ≥ min{ϑT+

K (m), ϑT+
K (n), τ+},

min{ϑT−
K (m ]2 n), ξ

−} ≤ max{ϑT−
K (m), ϑT−

K (n), τ−}


max{ϑT+

K (m ]3 n), ξ
+} ≥ min{ϑT+

K (m), ϑT+
K (n), τ+},

min{ϑT−
K (m ]3 n), ξ

−} ≤ max{ϑT−
K (m), ϑT−

K (n), τ−}







max{ϑI+
K (m ]1 n), ξ

+} ≥ min
{

ϑ
I+
K

(m)+ϑ
I+
K

(n)

2 , τ+
}

min{ϑI−
K (m ]1 n), ξ

−} ≤ max
{

ϑ
I−
K

(m)+ϑ
I−
K

(n)

2 , τ−
}


ORmax{ϑI+
K (m ]2 n), ξ

+} ≥ min
{

ϑ
I+
K

(m)+ϑ
I+
K

(n)

2 , τ+
}

min{ϑI−
K (m ]2 n), ξ

−} ≤ max
{

ϑ
I−
K

(m)+ϑ
I−
K

(n)

2 , τ−
}


ORmax{ϑI+
K (m ]3 n), ξ

+} ≥ min
{

ϑ
I+
K

(m)+ϑ
I+
K

(n)

2 , τ+
}

min{ϑI−
K (m ]3 n), ξ

−} ≤ max
{

ϑ
I−
K

(m)+ϑ
I−
K

(n)

2 , τ−
}






min{ϑF+
K (m ]1 n), ξ

+} ≤ max{ϑF+
K (m), ϑF+

K (n), τ+},

max{ϑF−
K (m ]1 n), ξ

−} ≥ min{ϑF−
K (m), ϑF−

K (n), τ−}


min{ϑF+

K (m ]2 n), ξ
+} ≤ max{ϑF+

K (m), ϑF+
K (n), τ+},

max{ϑF−
K (m ]2 n), ξ

−} ≥ min{ϑF−
K (m), ϑF−

K (n), τ−}


min{ϑF+

K (m ]3 n), ξ
+} ≤ max{ϑF+

K (m), ϑF+
K (n), τ+},

max{ϑF−
K (m ]3 n), ξ

−} ≥ min{ϑF−
K (m), ϑF−

K (n), τ−}




for all m,n ∈ S.

Example 4.2. By the Example 3.2,(
ϑ+
K(l), ϑ−K(l)

)
l = l1 l = l2 l = l3 l = l4(

ϑT+
K (l), ϑT−K (l)

)
(0.85,−0.95) (0.8,−0.75) (0.7,−0.55) (0.75,−0.65)(

ϑI+
K (l), ϑI−K (l)

)
(0.95,−0.8) (0.9,−0.7) (0.8,−0.5) (0.85,−0.55)(

ϑF+
K (l), ϑF−K (l)

)
(0.65,−0.25) (0.85,−0.35) (0.95,−0.45) (0.90,−0.40)

Clearly, K is a (0.60, 0.70)-BVNSBS of S.

Theorem 4.3. The intersection of family of (ξ, τ)- BV NSBSs of S is a (ξ, τ)- BVNSBS of

S.

Proof. Let {Oi|i ∈ I} be any family of (ξ, τ)- BV NSBSs of S and K =
⋂
i∈I
Oi.

Let m and n in S. Now,

max{ϑT+
K (m ]1 n), ξ+} = inf

i∈I
max{ϑT+

Oi
(m ]1 n), ξ+}

≥ inf
i∈I

min{ϑT+
Oi

(m), ϑT+
Oi

(n), τ+}

= min
{

inf
i∈I

ϑT+
Oi

(m), inf
i∈I

ϑT+
Oi

(n), τ+
}

= min{ϑT+
K (m), ϑT+

K (n), τ+}
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min{ϑT−K (m ]1 n), ξ−} = sup
i∈I

min{ϑT−Oi
(m ]1 n), ξ−}

≤ sup
i∈I

max{ϑT−Oi
(m), ϑT−Oi

(n), τ−}

= max
{

sup
i∈I

ϑT−Oi
(m), sup

i∈I
ϑT−Oi

(n), τ−
}

= max{ϑT−K (m), ϑT−K (n), τ−}.

Now,

max{ϑI+
K (m ]1 n), ξ+} = inf

i∈I
max{ϑI+

Oi
(m ]1 n), ξ+}

≥ inf
i∈I

min

{
ϑI+
Oi

(m) + ϑI+
Oi

(n)

2
, τ+

}

= min

{
inf
i∈I

ϑI+
Oi

(m) + inf
i∈I

ϑI+
Oi

(n)

2
, τ+

}

= min

{
ϑI+
K (m) + ϑI+

K (n)

2
, τ+

}
.

min{ϑI−K (m ]1 n), ξ−} = sup
i∈I

min{ϑI−Oi
(m ]1 n), ξ−}

≤ sup
i∈I

max

{
ϑI−Oi

(m) + ϑI−Oi
(n)

2
, τ−

}

= max

{sup
i∈I

ϑI−Oi
(m) + sup

i∈I
ϑI−Oi

(n)

2
, τ−

}

= max

{
ϑI−K (m) + ϑI−K (n)

2
, τ−

}
.

Now,

min{ϑF+
K (m ]1 n), ξ+} = sup

i∈I
min{ϑF+

Oi
(m ]1 n), ξ+}

≤ sup
i∈I

max{ϑF+
Oi

(m), ϑF+
Oi

(n), τ+}

= max
{

sup
i∈I

ϑF+
Oi

(m), sup
i∈I

ϑF+
Oi

(n), τ+
}

= max{ϑF+
K (m), ϑF+

K (n), τ+}

max{ϑF−K (m ]1 n), ξ−} = inf
i∈I

max{ϑF−Oi
(m ]1 n), ξ−}

≥ inf
i∈I

min{ϑF−Oi
(m), ϑF−Oi

(n), τ−}

= min
{

inf
i∈I

ϑF−Oi
(m), inf

i∈I
ϑF−Oi

(n), τ−
}

= min{ϑF−K (m), ϑF−K (n), τ−}.

Similarly to prove other operations. Hence, K is a (ξ, τ)- BVNSBS of S.
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Theorem 4.4. If K and L are any two (ξ, τ) − BV NSBSs of S1 and S2 respectively, then

K × L is a (ξ, τ)−BV NSBS of S1 × S2.

Proof. Let K and L be two (ξ, τ)−BV NSBSs of S1 and S2 respectively. Let m1,m2 ∈ S1

and n1, n2 ∈ S2. Then (m1, n1) and (m2, n2) are in S1 × S2. Now

max
{
ϑT+
K×L[(m1, n1) ]1 (m2, n2)], ξ+

}
= max

{
ϑT+
K×L(m1 ]1 m2, n1 ]1 n2), ξ+

}
= min

{
max{ϑT+

K (m1 ]1 m2), ξ+},max{ϑT+
L (n1 ]1 n2), ξ+}

}
≥ min

{
min{ϑT+

K (m1), ϑT+
K (m2), τ+},min{ϑT+

L (n1), ϑT+
L (n2), τ+}

}
= min

{
{min{ϑT+

K (m1), ϑT+
L (n1)},min{ϑT+

K (m2), ϑT+
L (n2)}}, τ+

}
= min

{
ϑT+
K×L(m1, n1), ϑT+

K×L(m2, n2), τ+
}
.

Also, min
{
ϑT−K×L[(m1, n1) ]1 (m2, n2)], ξ−

}
≤ max

{
ϑT−K×L(m1, n1), ϑT−K×L(m2, n2), τ−

}
.

Now, max
{
ϑI+
K×L[(m1, n1) ]1 (m2, n2)], ξ+

}
= max

{
ϑI+
K×L(m1 ]1 m2, n1 ]1 n2), ξ+

}
= min

{
1

2

[
max

{
ϑI+
K (m1 ]1 m2), ξ+

}
+ max

{
ϑI+
L (n1 ]1 n2), ξ+

}]}

≥ min

{
1

2

[
min

{ϑI+
K (m1) + ϑI+

K (m2)

2
, τ+

}
+ min

{ϑI+
L (n1) + ϑI+

L (n2)

2
, τ+

}]}

= min

{
1

2

[
ϑI+
K (m1) + ϑI+

L (n1)

2
+
ϑI+
K (m2) + ϑI+

L (n2)

2

]
, τ+

}

= min

{
ϑI+
K×L(m1, n1) + ϑI+

K×L(m2, n2)

2
, τ+

}
.

Also, min
{
ϑI−K×L[(m1, n1) ]1 (m2, n2)], ξ−

}
≤ max

{
ϑI−
K×L(m1,n1)+ϑI−

K×L(m2,n2)

2 , τ−

}
.

Similarly, min
{
ϑF+
K×L[(m1, n1) ]1 (m2, n2)], ξ+

}
= min

{
ϑF+
K×L(m1 ]1 m2, n1 ]1 n2), ξ+

}
= max

{
min{ϑF+

K (m1 ]1 m2), ξ+},min{ϑF+
L (n1 ]1 n2), ξ+}

}
≤ max

{
max{ϑF+

K (m1), ϑF+
K (m2), τ+},max{ϑF+

L (n1), ϑF+
L (n2), τ+}

}
= max

{
{max{ϑF+

K (m1), ϑF+
L (n1)},max{ϑF+

K (m2), ϑF+
L (n2)}}, τ+

}
= max

{
ϑF+
K×L(m1, n1), ϑF+

K×L(m2, n2), τ+
}
.
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Also, max
{
ϑF−K×L[(m1, n1) ]1 (m2, n2)], ξ−

}
≥ min

{
ϑF−K×L(m1, n1), ϑF−K×L(m2, n2), τ−

}
.

In the same way, prove the other two operations. Hence K×L is a (ξ, τ)- BVNSBS of S1×S2.

Corollary 4.5. If K1,K2, ...,Kn are the family of (ξ, τ)- BV NSBSs of S1,S2, ...,Sn respec-

tively, then K1 ×K2 × ...×Kn is a (ξ, τ)- BVNSBS of S1 × S2 × ...× Sn.

Definition 4.6. Let K be any (ξ, τ)- bipolar valued neutrosophic subset in S, the strongest

(ξ, τ)- bipolar valued neutrosophic relation on S, that is a (ξ, τ)- bipolar valued neutrosophic

relation on K is O such that



max{ϑT+
O (m,n), ξ+} = min{ϑT+

K (m), ϑT+
K (n), τ+},

min{ϑT−O (m,n), ξ−} = max{ϑT−K (m), ϑT−K (n), τ−}


max{ϑI+O (m,n), ξ+} = min{ϑI+K (m), ϑI+K (n), τ+},

min{ϑI−O (m,n), ξ−} = max{ϑI−K (m), ϑI−K (n), τ−}


min{ϑF+

O (m,n), ξ+} = max{ϑF+
K (m), ϑF+

K (n), τ+},

max{ϑF−O (m,n), ξ−} = min{ϑF−K (m), ϑF−K (n), τ−}





.

Theorem 4.7. Let K be any (ξ, τ) − BV NSBS of S and O be the strongest (ξ, τ)- bipolar

valued neutrosophic relation of S. Then K is a (ξ, τ)− BV NSBS of S if and only if O is a

(ξ, τ)−BV NSBS of S × S.

Theorem 4.8. Let (S1,∨1,∨2,∨3) and (S2,t1,t2,t3) be any two bisemirings. The homo-

morphic image of (ξ, τ)−BV NSBS of S1 is a (ξ, τ)−BV NSBS of S2.

Proof. Let Λ : S1 → S2 be any homomorphism. Then Λ(m ∨1 n) = Λ(m) t1

Λ(n),Λ(m ∨2 n) = Λ(m) t2 Λ(n) and Λ(m ∨3 n) = Λ(m) t3 Λ(n) for all m,n ∈ S1. Let

O = Λ(K), K is any (ξ, τ)-BVNSBS of S1. Let Λ(m),Λ(n) ∈ S2. Let m ∈ Λ−1(Λ(m))

and n ∈ Λ−1(Λ(n)) be such that ϑT+
K (m) = sup

z∈Λ−1(Λ(m))

ϑT+
K (z), ϑT+

K (n) = sup
z∈Λ−1(Λ(n))

ϑT+
K (z),

ϑT−K (m) = inf
z∈Λ−1(Λ(m))

ϑT−K (z) and ϑT−K (n) = inf
z∈Λ−1(Λ(n))

ϑT−K (z). Now,

max
[
ϑT+
O (Λ(m) t1 Λ(n)) , ξ+

]
= max

[
sup

z′∈Λ−1(Λ(m)t1Λ(n))

ϑT+
K (z

′
) , ξ+

]

= max

[
sup

z′∈Λ−1(Λ(m∨1n)

ϑT+
K (z

′
) , ξ+

]
= max

[
ϑT+
K (m ∨1 n), ξ+

]
≥ min

{
ϑT+
K (m), ϑT+

K (n), τ+
}

= min
{
ϑT+
O Λ(m), ϑT+

O Λ(n), τ+
}
.
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Similarly, min
[
ϑT−O (Λ(m) t1 Λ(n)) , ξ−

]
≤ max

{
ϑT−O Λ(m), ϑT−O Λ(n), τ−

}
.

Let Λ(m),Λ(n) ∈ S2. Let m ∈ Λ−1(Λ(m)) and n ∈ Λ−1(Λ(n)) be such that ϑI+
K (m) =

sup
z∈Λ−1(Λ(m))

ϑI+
K (z) and ϑI+

K (n) = sup
z∈Λ−1(Λ(n))

ϑI+
K (z), ϑI−K (m) = inf

z∈Λ−1(Λ(m))
ϑI−K (z) and

ϑI−K (n) = inf
z∈Λ−1(Λ(n))

ϑI−K (z). Now,

max
[
ϑI+
O (Λ(m) t1 Λ(n)) , ξ+

]
= max

[
sup

z′∈Λ−1(Λ(m)t1Λ(n))

ϑI+
K (z

′
) , ξ+

]

= max

[
sup

z′∈Λ−1(Λ(m∨1n)

ϑI+
K (z

′
) , ξ+

]
= max

[
ϑI+
K (m ∨1 n), ξ+

]
≥ min

{ϑI+
K (m) + ϑI+

K (n)

2
, τ+

}
= min

{ϑI+
O Λ(m) + ϑI+

O Λ(n)

2
, τ+

}
Similarly, min

[
ϑI−O (Λ(m) t1 Λ(n)) , ξ−

]
≤ max

{
ϑI−
O Λ(m)+ϑI−

O Λ(n)
2 , τ−

}
.

Let m ∈ Λ−1(Λ(m)) and n ∈ Λ−1(Λ(n)) be such that ϑF+
K (m) = inf

z∈Λ−1(Λ(m))
ϑF+
K (z),ϑF+

K (n) =

inf
z∈Λ−1(Λ(n))

ϑF+
K (z), ϑF−K (m) = sup

z∈Λ−1(Λ(m))

ϑF−K (z) and ϑF−K (n) = sup
z∈Λ−1(Λ(n))

ϑF−K (z). Now,

min
[
ϑF+
O (Λ(m) t1 Λ(n)) , ξ+

]
= min

[
inf

z′∈Λ−1(Λ(m)t1Λ(n))
ϑF+
K (z

′
) , ξ+

]

= min

[
inf

z′∈Λ−1(Λ(m∨1n)
ϑF+
K (z

′
) , ξ+

]
= min

[
ϑF+
K (m ∨1 n), ξ+

]
≤ max

{
ϑF+
K (m), ϑF+

K (n), τ+
}

= max
{
ϑF+
O Λ(m), ϑF+

O Λ(n), τ+
}
.

Similarly, max
[
ϑF−O (Λ(m) t1 Λ(n)) , ξ−

]
≥ min

{
ϑF−O Λ(m), ϑF−O Λ(n), τ−

}
. In the same way,

prove the other two operations. Hence O is a (ξ, τ)-BVNSBS of S2.

Theorem 4.9. Let (S1,∨1,∨2,∨3) and (S2,t1,t2,t3) be any two bisemirings. The homo-

morphic preimage of (ξ, τ)-BVNSBS of S2 is a (ξ, τ)-BVNSBS of S1.

Proof. Let Λ : S1 → S2 be any homomrphism. Then Λ(m∨1n) = Λ(m)t1Λ(n),Λ(m∨2n) =

Λ(m) t2 Λ(n) and Λ(m ∨3 n) = Λ(m) t3 Λ(n) for all m,n ∈ S1. Let O = Λ(K),

where O is any (ξ, τ)-BVNSBS of S2. Let m,n ∈ S1. Then max{ϑT+
K (m ∨1 n), ξ+} =

max{ϑT+
O (Λ(m∨1 n)), ξ+} = max{ϑT+

O (Λ(m)t1 Λ(n)), ξ+} ≥ min{ϑT+
O Λ(m), ϑT+

O Λ(n), τ+} =

min{ϑT+
K (m), ϑT+

K (n), τ+}. Thus, max{ϑT+
K (m ∨1 n), ξ+} ≥ min{ϑT+

K (m), ϑT+
K (n), τ+}. Also,

M.Palanikumar, K.Arulmozhi, Ganeshsree Selvachandran and Sher Lyn Tan, New approach
to bisemiring theory via the bipolar valued neutrosophic normal sets

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               446



min{ϑT−K (m ∨1 n), ξ−} = min{ϑT−O (Λ(m ∨1 n)), ξ−} = min{ϑT−O (Λ(m) t1 Λ(n)), ξ−} ≤
max{ϑT−O Λ(m), ϑT−O Λ(n), τ−} = max{ϑT−K (m), ϑT−K (n), τ−}. Thus, min{ϑT−K (m ∨1 n), ξ−} ≤
max{ϑT−K (m), ϑT−K (n), τ−}. Now, max{ϑI+

K (m ∨1 n), ξ+} = max{ϑI+
O (Λ(m ∨1 n)), ξ+} =

max{ϑI+
O (Λ(m) t1 Λ(n)), ξ+} ≥ min{ϑI+

O Λ(m), ϑI+
O Λ(n), τ+} = min{ϑI+

K (m), ϑI+
K (n), τ+}.

Thus, max{ϑI+
K (m ∨1 n), ξ+} ≥ min{ϑI+

K (m), ϑI+
K (n), τ+}. Also, min{ϑI−K (m ∨1 n), ξ−} =

min{ϑI−O (Λ(m ∨1 n)), ξ−} = min{ϑI−O (Λ(m) t1 Λ(n)), ξ−} ≤ max{ϑI−O Λ(m), ϑI−O Λ(n), τ−} =

max{ϑI−K (m), ϑI−K (n), τ−}. Thus, min{ϑI−K (m ∨1 n), ξ−} ≤ max{ϑI−K (m), ϑI−K (n), τ−}. Now,

min{ϑF+
K (m ∨1 n), ξ+} = min{ϑF+

O (Λ(m ∨1 n)), ξ+} = min{ϑF+
O (Λ(m) t1 Λ(n)), ξ+} ≤

max{ϑF+
O Λ(m), ϑF+

O Λ(n), τ+} = max{ϑF+
K (m), ϑF+

K (n), τ+}. Thus, min{ϑF+
K (m ∨1 n), ξ+} ≤

max{ϑF+
K (m), ϑF+

K (n), τ+}. Also, max{ϑF−K (m ∨1 n), ξ−} = max{ϑF−O (Λ(m ∨1 n)), ξ−} =

max{ϑF−O (Λ(m) t1 Λ(n)), ξ−} ≥ min{ϑF−O Λ(m), ϑF−O Λ(n), τ−} = min{ϑF−K (m), ϑF−K (n), τ−}.
Thus, max{ϑF−K (m ∨1 n), ξ−} ≥ min{ϑF−K (m), ϑF−K (n), τ−}. In the same way, prove the other

two operations, hence K is a (ξ, τ)-BVNSBS of S1.

5. (ξ, τ)-Bipolar Valued Neutrosophic Normal Subbisemiring

In this section, we interact the theory for (ξ, τ)-bipolar valued neutrosophic normal sub-

bisemiring. Here BV NNSBS stands for bipolar valued neutrosophic normal subbisemiring.

Definition 5.1. Let K be any bipolar valued neutrosophic subset of S is said to be a

BV NNSBS of S if it satisfies the following conditions:



ϑT+
K (m ]1 n) = ϑT+

K (n ]1 m),

ϑT−K (m ]1 n) = ϑT−K (n ]1 m)


ϑT+

K (m ]2 n) = ϑT+
K (n ]2 m),

ϑT−K (m ]2 n) = ϑT−K (n ]2 m)


ϑT+

K (m ]3 n) = ϑT+
K (n ]3 m),

ϑT−K (m ]3 n) = ϑT−K (n ]3 m)







ϑI+K (m ]1 n) = ϑI+K (n ]1 m),

ϑI−K (m ]1 n) = ϑI−K (n ]1 m)


ORϑI+K (m ]2 n) = ϑI+K (n ]2 m),

ϑI−K (m ]2 n) = ϑI−K (n ]2 m)


ORϑI+K (m ]3 n) = ϑI+K (n ]3 m),

ϑI−K (m ]3 n) = ϑI−K (n ]3 m)





ϑF+
K (m ]1 n) = ϑF+

K (n ]1 m),

ϑF−K (m ]1 n) = ϑF−K (n ]1 m)


ϑF+

K (m ]2 n) = ϑF+
K (n ]2 m),

ϑF−K (m ]2 n) = ϑF−K (n ]2 m)


ϑF+

K (m ]3 n) = ϑF+
K (n ]3 m),

ϑF−K (m ]3 n) = ϑF−K (n ]3 m)




for all m,n ∈ S.
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Theorem 5.2. (a) The intersection of a family of BV NNSBSs of S is a BV NNSBS of S.
(b) The intersection of a family of (ξ, τ)−BV NNSBSs of S is a (ξ, τ)−BV NNSBS of S.

Proof. Proof follows from Theorem 3.3 and Theorem 4.3.

Theorem 5.3. (a) If K1,K2, ...,Kn are the family of BV NNSBSs of S1,S2, ...,Sn respec-

tively, then K1 ×K2 × ...×Kn is a BV NNSBS of S1 × S2 × ...× Sn.
(b) If K1,K2, ...,Kn are the family of (ξ, τ)−BV NNSBSs of S1,S2, ...,Sn respectively, then

K1 ×K2 × ...×Kn is a (ξ, τ)−BV NNSBS of S1 × S2 × ...× Sn.

Proof. Proof follows from Theorem 3.4 and Theorem 4.4.

Theorem 5.4. (a) Let K be any BV NNSBS of S and O be the strongest bipolar valued

neutrosophic relation of S. Then K is a BV NNSBS of S if and only if O is a BV NNSBS

of S × S.
(b) Let K be any (ξ, τ) − BV NNSBS of S and O be the strongest (ξ, τ) bipolar valued

neutrosophic relation of S. Then K is a (ξ, τ) − BV NNSBS of S if and only if O is a

(ξ, τ)−BV NNSBS of S × S.

Proof. Proof follows from Theorem 3.7.

Theorem 5.5. Let (S1,∨1,∨2,∨3) and (S2,t1,t2,t3) be any two bisemirings.

(a) The homomorphic image of any BV NNSBS of S1 is a BV NNSBS of S2.

(b) The homomorphic image of any (ξ, τ) − BV NNSBS of S1 is a (ξ, τ) − BV NNSBS of

S2.

Proof. Proof follows from Theorem 3.12 and Theorem 4.8.

Theorem 5.6. Let (S1,∨1,∨2,∨3) and (S2,t1,t2,t3) be any two bisemirings.

(a) The homomorphic preimage of any BV NNSBS of S2 is a BV NNSBS of S1.

(b) The homomorphic preimage of any (ξ, τ) − BV NNSBS of S2 is a (ξ, τ) − BV NNSBS
of S1.

Proof. Proof follows from Theorem 3.13 and Theorem 4.9.
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1 Introduction
There are many applications of graph theory to a wide variety of subjects which include operation

Research, Physics, chemistry, Economics, Genetics, Engineering, computer Science etc.,In a classical graph
for each vertex or edge there are two possibilities arises that is either in the graph or not in the graph and this
will not classical graph model for uncertain problems. Fuzzy set [14] is a generalized version of the classical
set in which objects have different membership degrees between zero and one. More work has already been
done on fuzzy graphs. Zadeh introduced the degree of membership/Truth(T ) in 1965 and defined the fuzzy set.
Atanassov [2] introduced the degree of non-memebership/Falsehood(F ) in 1983 and defined the intuitionstic
fuzzy set. Smarandache [13,14,15,16,18,19] introduced the degree of Indeterminancy/Neutrality(I) as an inde-
pendent component in 1995 and defined the neutrosophic set on there compenents (T ,I ,F ).Smarandache has
introduced in 2020 the n-SuperHyperGraph, with super-vertices [that are groups of vertices] and hyper-edges
defined on power-set of power-set... that is the most general form of graph as today, and n-HyperAlgebra.A
SuperHyperGraph, is a HyperGraph (where a group of Edges form a HyperEdge) such that a group of vertices
are united all together into a SuperVertex like a group of people (=vertices) that are united all together into an
organization (=SuperVertex) ;and further on the n-SuperHyperGraph where many groups (=SuperVertices) are
united all together to form a group-of-groups (called 2-SuperVertex, or Type-2 SuperVertex ), then a group of
Type-2 SuperVertices forms a Type-3 SuperVertex, . . . , and so on up to Type-n SuperVertex, for any n 1, which
better reflects our reality. Later Narmada Devi[5,6,7,8,9,10] worked on new type of neutrosophic over,off graph
and minimal domination via neutrosophic over graph and neutrosophic over topologized graph. [20,21,23] A
lot of topological indices are available in chemical-graph theory and H. Wiener proposed the first index to esti-
mate the boiling point of alkanes called ‘Wiener index’. Many topological indices exist only in the crisp but it’s
new to the Nover graph environment. The main aim of this paper is to define the topological indices in Nover
graphs.The various topology indices such as Zagreb index, Randic index, Geometric-arithmetic, Hormonic are
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,

discussed them. Neutrosophic over graphs in addition to the degree of accuracy of each membership function,
the degree of its membership is uncertain, as well as its inaccuracy. so in many cases, it may be more logical
to use this model than graphs in real-world problems. Since that neutrosophic over graphs are more efficient
than fuzzy graphs for modelling real problems. In this paper , we try to calculate some Neutrosophic over
topological indices for this type of graphs.

2 Preliminiaries
Definition 2.1. [4] A set D of vertices of G is said to be a topologized domination set D if G is a topologized
graph and every vertex in V − D is adjacent to atleast one vertex of in D .

Definition 2.2. [6,7,9] A Neutrosophic Over set D is defined as
D = (x,< (T (x), I(x), F (x) >), x ∈ X such that there exist some element in D that have atleast one neutro-
sophic component that is > 1 and no element has neutrosophic component that are < 0 and ((T (x), I(x), F (x)) ∈
[0,Ω] where Ω is called Overlimit such that 0 < 1 < Ω.

Definition 2.3. [5,6,7] A Nover graph is a pair G = (A,B) of a crisp graph G ∗ = (V ,E ) where A is
Nvertex over set on V and B is a Nedge over set on E such that TB(xy) ≤ (TA(x) ∧ TA(y)), IB(xy) ≤
(IA(x) ∧ IA(y)), FB(xy) ≥ (FA(x) ∨ FA(y)).

Definition 2.4. [9,10] A topologized graph is a topological space H such that

(i) every singleton is open or closed

(ii) ∀h ∈ H , |ð(h)| ≤ 2, since ð(h) is denoted by the boundary of a point h.

Definition 2.5. [9] A Nover graph G = (A,B) is called NOver Top graph if G ∗ satisfy the following condition

(i) every singleton is open or closed in V .

(ii) ∀f ∈ F , |∂(f)| ≤ 2 where ∂(f) is denoted by the boundary of a point x

Definition 2.6. [9] Let G be a Nover top graph. Let x, y ∈ V . Then x dominate y in G if edge xy is effective
edge TB(xy) = (TA(x) ∧ TA(y)), IB(xy) = (IA(x) ∧ IA(y)), FB(xy) = (FA(x) ∨ FA(y)).
A subset DN of V is called a Nover top dominating set in G if every vertex V /∈ DN there exists u ∈ DN

such that u dominates V .

3 Z1 and Z2 index in Nover top graphs
Definition 3.1. Let G = (A,B) be the Nover top graph with non-empty vertex set. The Z1 index is denoted
by BNov(G ) and defined as

BNov(G ) =
n∑

i=1

(TA(ui), IA(ui), FA(ui))d2(ui),∀ui ∈ V
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Definition 3.2. The Z2 index is denoted by by B∗
Nov(G ) and defined as

B∗
Nov(G ) =

1

2

n∑
i=1

[(TA(ui), IA(ui), FA(ui))d(ui)] [(TA(vj), IA(vj), FA(ui)d(vj)] ,

∀i ̸= j, and (ui, vj) ∈ E

Example 3.1. Consider the Nover top graph G = (A,B) as shown in Figure 1.

a1

(0.4,0.6,1.2)

a2

(0.2,1.5,0.3)

a3

(0.3,0.8,1.1)

(0.2,0.6,1.2)

(0.
2,0

.8,
1.1

)(0.3,0.6,1.1)

Figure 1: A Nover top graph G

Let a1, a2 and a3 denote the vertices and (0.2, 0.6, 1.2), (0.2, 0.8, 1.1), (0.3, 0.6, 1.1) denote the edges which
are labelled fu(0.2, 0.6, 1.2) = (a1, a2), fu(0.2, 0.8, 1.1) = (a2, a3), fu(0.3, 0.6, 1.1) = (a1, a3).

Let X =
{
a1, a2, a3, (0.2, 0.6, 1.2), (0.2, 0.8, 1.1), (0.3, 0.6, 1.1)

}
be a topological space defined by the

topology

τ =
{
∅,X , {a1} , {a2} , {a3} , {a1, a2} , {a1, a3} , {a2, a3}

}
Here for every x ∈ X , {x} is open.

By the definition of Nover top graph, we have |∂(A)| ≤ 2 and ∂(a1) = {a2, a3}, ∂(a2) = {a1, a3},
∂(a3) = {a1, a2} with ∂(ai) = 2. Hence this graph is Nover top graph.

The Z1 index is

d(a1) = (.2 + .3, .6 + .6, 1.2 + 1.1) = (0.5, 1.2, 2.3)

d(a2) = (.2 + .2, .6 + .8, 1.2 + 1.1) = (0.4, 1.4, 2.3)

d(a3) = (.2 + .3, .8 + .6, 1.1 + 1.1) = (0.5, 1.4, 2.2)

Now, we have

d2(a1) = (0.04 + 0.09, 0.36 + 0.36, 1.44 + 1.21) = (0.13, 0.69, 2.65)

d2(a2) = (0.04 + 0.04, 0.36 + 0.64, 1.44 + 1.21) = (0.08, 1, 2.65)

d2(a3) = (0.04 + 0.09, 0.64 + 0.36, 1.21 + 1.21) = (0.13, 1, 1.42)

BNov(G ) =
n∑

i=1

(TA(ui), IA(ui), FA(ui))d2(ui)
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= (.4, .6, 1.2)(0.13, 0.69, 2.65) + (.2, 1.5, 0.3)(0.08, 1, 2.65) + (.3, .8, 1.1)(0.13, 1, 1.42)

= (.052 + 0.414 + 3.18) + (.016 + 1.5 + 0.795) + (0.039 + .8 + 1.562)

= 8.358

Example 3.2. Let G be a same Nover top graph as defined in example 3.1 Then Z2 index is

B∗
Nov(G ) =

1

2
[(0.4, 0.6, 1.2)(0.5, 1.2, 2.3)× (0.2, 1.5, 0.3)(0.4, 1.4, 2.3)+

(0.4, 0.6, 1.2)(0.5, 1.2, 2.3)× (0.3, 0.8, 1.1)(0.5, 1.4, 2.2)+

(0.2, 1.5, 0.3)(0.4, 1.4, 2.3)× (0.3, 0.8, 1.1)(0.5, 1.4, 2.2)]

=
1

2
[(0.2 + 0.72 + 2.76)× (0.08 + 2.1 + 0.69)+

(0.2 + 0.72 + 2.76)× (0.15 + 1.12 + 2.42)+

(0.08 + 2.1 + 0.69)× (0.15 + 1.12 + 2.42)]

=
1

2
[3.68× 2.87 + 3.68× 3.69 + 2.87× 3.69]

=
1

2
[10.5616 + 13.5792 + 10.5903]

=
1

2
[34.7311] = 17.3656

Example 3.3. Consider the Nover top graph G = (A,B) as shown in Fig. 2

a1

(0.2,0.3,1.2)

a2

(0.2,0.3,1.2)

a3

(0.2,0.3,1.2)

a4

(0.2,0.3,1.2)

a5

(0.2,0.3,1.2)

(0.2,0.3,1.2)

(0
.2

,0
.3

,1
.2

) (0.2,0.3,1.2)

(0
.2,

0.3
,1.

2)

(0.2,0.3,1.2)

Figure 2: Storng Nover top graph G

Let a1, a2, a3, a4 and a5 denote the vertices and (0.2, 0.3, 1.2), (0.2, 0.3, 1.2), (0.2, 0.3, 1.2), (0.2, 0.3, 1.2)
and (0.2, 0.3, 1.2) denote the edges which are labelled fu(0.2, 0.3, 1.2) = (a1, a2), fu(0.2, 0.3, 1.2) = (a2, a3),
fu(0.2, 0.3, 1.2) = (a3, a4), fu(0.2, 0.3, 1.2) = (a4, a5), fu(0.2, 0.3, 1.2) = (a1, a5).
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Let X =
{
a1, a2, a3, , a4, a5, (0.2, 0.3, 1.2), (0.2, 0.3, 1.2), (0.2, 0.3, 1.2), (0.2, 0.3, 1.2), (0.2, 0.3, 1.2)

}
be

a topological space defined by the topology

τ =
{
∅,X , {a1}, {a2, a3}, {a4}, {a5}, {a1, a2, a3}, {a1, a4}, {a1, a5}, {a1, a2, a3, a4}, {a1, a2, a3, a5},

{a2, a3, a4}, {a2, a3, a5}, {a2, a3, a4, a5}, {a4, a5}, {a1, a4, a5}, {a1, a2, a4, a5}, {a1, a3, a4, a5}
}

Here for every x ∈ X , {x} is open or closed.
By the definition of Nover top graph, we have |∂(A)| ≤ 2 and ∂(a1) = {a2, a5}, ∂(a2) = {a1, a3},

∂(a3) = {a2, a4}, ∂(a4) = {a3, a5}, ∂(a5) = {a1, a4} with ∂(ai) = 2. Hence this graph is Nover top graph.
The Z1 index is

d(a1) = (0.2 + 0.3, 0.3 + 0.3, 1.2 + 1.2) = (0.4, 0.6, 2.4)

d(a2) = (0.4, 0.6, 2.4)

d(a3) = (0.4, 0.6, 2.4)

d(a4) = (0.4, 0.6, 2.4)

d(a5) = (0.4, 0.6, 2.4)

Now, we have

d2(a1) = (0.04 + 0.04, 0.36 + 0.36, 1.44 + 1.44) = (0.08, 0.72, 2.88)

d2(a2) = (0.08, 0.72, 2.88)

d2(a3) = (0.08, 0.72, 2.88)

d2(a4) = (0.08, 0.72, 2.88)

d2(a5) = (0.08, 0.72, 2.88)

BNov(G ) =
5∑

i=1

(TA(ui), IA(ui), FA(ui))d2(ui)

= (.2, .3, 1.2)(0.08, 0.72, 2.88) + (.2, .3, 1.2)(0.08, 0.72, 2.88)

+ (.2, .3, 1.2)(0.08, 0.72, 2.88) + (.2, .3, 1.2)(0.08, 0.72, 2.88) + (.2, .3, 1.2)(0.08, 0.72, 2.88)

= (.016 + 0.216 + 3.456) + (.016 + 0.216 + 3.456) + (.016 + 0.216 + 3.456)

+ (.016 + 0.216 + 3.456) + (.016 + 0.216 + 3.456)

= 3.688 + 3.688 + 3.688 + 3.688 + 3.688

= 18.44

B∗
Nov(G ) =

1

2
[(.2, .3, 1.2)(0.4, 0.6, 2.4)× (.2, .3, 1.2)(0.4, 0.6, 2.4)

+ (.2, .3, 1.2)(0.4, 0.6, 2.4)× (.2, .3, 1.2)(0.4, 0.6, 2.4)

+ (.2, .3, 1.2)(0.4, 0.6, 2.4)× (.2, .3, 1.2)(0.4, 0.6, 2.4)

+ (.2, .3, 1.2)(0.4, 0.6, 2.4)× (.2, .3, 1.2)(0.4, 0.6, 2.4)
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+ (.2, .3, 1.2)(0.4, 0.6, 2.4)× (.2, .3, 1.2)(0.4, 0.6, 2.4)]

=
1

2
[(0.08 + 0.18 + 2.88)× (0.08 + 0.18 + 2.88)

+ (0.08 + 0.18 + 2.88)× (0.08 + 0.18 + 2.88)

+ (0.08 + 0.18 + 2.88)× (0.08 + 0.18 + 2.88)

+ (0.08 + 0.18 + 2.88)× (0.08 + 0.18 + 2.88)

+ (0.08 + 0.18 + 2.88)× (0.08 + 0.18 + 2.88)

=
1

2
[3.14× 3.14 + 3.14× 3.14 + 3.14× 3.14 + 3.14× 3.14 + 3.14× 3.14]

=
1

2
[9.8596 + 9.8596 + 9.8596 + 9.8596 + 9.8596]

=
1

2
[49.298] = 24.649

Definition 3.3. Let G = (A,B) be an neutrosophic over top graph. G is a regular strong neutrosophic over
top graph if it satisfies the following conditions.

TB(a, b) = min(TA(a), TA(b)), IB(a, b) = min(IA(a), IA(b)), FB(a, b) = max(FA(a), FA(b))

Theorem 3.1. Let G be the regular Nover top graph. Then, we have

BNov(G ) = c2 ×
n∑

i=1

[TA(ui) + IA(ui)] + c21 ×
n∑

i=1

FA(ui), ∀ui ∈ V

where
∑
v ̸=u

TB(v, u) = c,
∑
v ̸=u

IB(v, u) = c,
∑
v ̸=u

FB(v, u) = c1.

Proof:
Given the degree of definition of each vertex

d(v) = (dT (v), dI(v), dF (v))

=


∑

v ∈ V
v ̸= u

TB(v, u),
∑

v ∈ V
v ̸= u

IB(v, u),
∑

v ∈ V
v ̸= u

FB(v, u)


On the other hand, for regular Nover top graphs, we know that∑

v ̸=u

TB(v, u) = c,
∑
v ̸=u

IB(v, u) = c,
∑
v ̸=u

FB(v, u) = c1

Therefore,

d(v) = (dT (v), dI(v), dF (v))

= (c, c, c1)

Now, by embedding the formula in the Z1 index, we will get the desired result. The proof is complete.
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Theorem 3.2. Let G be the regular Nover top graph. Then, we have

B∗
Nov(G ) =

1

2
c2

n∑
i=1

[TA(ui) + IA(ui)][TA(vj) + IA(vj)] +
1

2
c21

n∑
i=1

[FA(ui)FA(vj)],

∀i ̸= j and (ui, vj) ∈ E
where

∑
v ̸=u

TB(u, v) = c,
∑
v ̸=u

IB(u, v) = c,
∑
v ̸=u

FB(u, v) = c1.

Proof: Assume G is regular Nover top graph, using the Z2 index formula for G , we have ∀i ̸= j and (ui, vj) ∈
E .

B∗
Nov(G ) =

1

2

n∑
i=1

[(TA(ui), IA(ui), IA(ui))d(ui)] [(TA(vj), IA(vj), FA(vJ)d(vj)]

=
1

2

∑
[(TA(ui), IA(ui), IA(ui))d(dT (ui), dI(ui), dF (ui)]

[(TA(vj), IA(vj), FA(vJ)d(dT (vj), dI(vj), dF (vj)]

=
1

2

∑
[(TA(ui), IA(ui), IA(ui))(c, c, c1)] [(TA(vj), IA(vj), FA(vJ)(c, c, c1)]

=
1

2

∑
[cTA(ui) + cIA(ui) + c1IA(ui)]× [cTA(vj) + cIA(vj) + c1FA(vj)]

=
1

2

∑
c [TA(ui) + IA(ui)] c1[IA(ui)]c [TA(vj) + IA(vj)] c1[FA(vj)]

=
1

2
c2
∑

[TA(ui) + IA(ui)] [TA(vj) + IA(vj)] +
1

2
c21
∑

[IA(ui)FA(vj)]

The desired result was obtained.
These above two theorems are illustrated the following example.

Example 3.4. Consider the Nover top graph G = (A,B) as shown in Fig

a1(.3,.3,1.2) a2 (.5,1.1,.3)

a3 (.3,.3,1.2)a4(1.1,.3,.8)

(.2,.2,1.2)

(.3,.3,1.2)

(.2,.3,1.2)

(.3,.3,1.2)

Figure 3: Regular Nover top graph

Let a1, a2, a3 and a4 denote the vertices and (.2, .2, 1.2), (.3, .3, 1.2), (.2, .2, 1.2) and (.3, .3, 1.2) denote
the edges which are labelled fu(.2, .2, 1.2) = (a1, a2), fu(.3, .3, 1.2) = (a2, a3), fu(.2, .2, 1.2) = (a3, a4),
fu(.3, .3, 1.2) = (a4, a1).
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Let X =
{
a1, a2, a3, , a4, (.2, .2, 1.2), (.3, .3, 1.2), (.2, .2, 1.2), (.3, .3, 1.2)

}
be a topological space defined

by the topology

τ =
{
∅,X , {a1}, {a2}, {a3}, {a4}, {a1, a2}, {a1, a4}, {a2, a3}, {a2, a4}, {a3, a4}, {a1, a2, a3},

{a1, a2, a4}, {a2, a3, a4}, {a1, a3, a4}
}

Here for every x ∈ X , {x} is open.
By the definition of Nover top graph, we have |∂(A)| ≤ 2 and ∂(a1) = {a2, a4}, ∂(a2) = {a1, a3},

∂(a3) = {a2, a4}, ∂(a4) = {a1, a3} with ∂(ai) = 2. Hence this graph is Nover top graph.
The Z1 index is

d(a1) = (0.5, 0.5, 2.4)

d(a2) = (0.5, 0.5, 2.4)

d(a3) = (0.5, 0.5, 2.4)

d(a4) = (0.5, 0.5, 2.4)

BNov(G ) = c2
n∑

i=1

[TA(ui) + IA(ui)] + c21

n∑
i=1

[IA(ui)]

= (.5)2[(.3 + .3) + (.5 + 1.1) + (.3 + .3) + (1.1 + .3)] + (2.4)2[1.2 + .3 + 1.2 + .8]

= (.5)2[.6 + 1.6 + .6 + 1.4] + (2.4)2[3.5]

= (.5)2 × 4.2 + (2.4)2 × 3.5

= 1.05 + 20.16

= 21.21

The Z2 index is

B∗
Nov(G ) =

1

2
(.5)2[.6× 1.6 + .6× 1.4 + 1.6× .6 + .6× 1.4]+

1

2
(2.4)2[1.2× .3 + 1.2× .8 + .3× 1.2 + 1.2× .8]

=
1

2
(.5)2(3.6) +

1

2
(2.4)2(2.64)

=
1

2
× 0.9 +

1

2
× 15.2064

= 0.45 + 7.6034

= 8.0532

4 H-index and Rd-index in Nover top graphs
Definition 4.1. The H-index of Nover top graph G is defined as

HNov(G ) =
∑ 1

[A(ui) · d(ui)][A(vj) · d(vj)]
, ui, vj ∈ E , i ̸= j
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Definition 4.2. R-index in Nover top graph G is defined as

RdNov(G ) =
1∑

{[A(ui)d(ui)][A(vj)d(vj)]}
1
2

, ui, vj ∈ E , ∀i ̸= j

Example 4.1. For example (3.1), the H-index of Nover top graph G is

HNov(G ) =
1

(.4, .6, 1.2)(.5, 1.2, 2.3) + (.2, 1.5, .3)(.4, 1.4, 2.3)
+

1

(.4, .6, 1.2)(.5, 1.2, 2.3) + (.3, .8, 1.1)(.5, 1.4, 2.2)
+

1

(.2, 1.5, .3)(.4, 1.4, 2.3) + (.3, .8, 1.1)(.5, 1.4, 2.2)

=
1

3.68 + 2.87
+

1

3.68 + 3.69
+

1

2.87 + 3.69

=
1

6.55
+

1

7.37
+

1

6.56
= 0.153 + 0.136 + 0.152

= 0.441

Example 4.2. For example (3.1), the Rd-index of Nover top graph G is

RdNov(G ) =
1√

(.4..6, 1.2)(.5, 1.2, 2.3)× (.2, 1.5, .3)(.4, 1.4, 2.3)
+

1√
(.4..6, 1.2)(.5, 1.2, 2.3)× (.3, .8, 1.1)(.5, 1.4, 2.2)

+

1√
(.2.1.5, .3)(.4, 1.4, 2.3)× (.3, .8, 1.1)(.5, 1.4, 2.2)

=
1√

10.566
+

1√
13.5792

+
1√

10.5903

=
1

3.24986
+

1

3.68499
+

1

3.2543
= 0.0300 + 0.27137 + 0.3073

= 0.6086

Definition 4.3. Let G1 and G2 be any neutrosophic over graphs isomorphism f : G1 → G2 is bijective mapping
f : V1 → V2 which satisfies the following conditions

(a) TA1(x1) = TA2(f(x1)), IA1(x1) = IA2(f(x1)) and FA1(x1) = FA2(f(x1))

(b) TB1(x1, y1) = TB2(f(x1), f(y1)), IB1(x1, y1) = IB2(f(x1), f(y1)) and
FB1(x1, y1) = FB2(f(x1), f(y1)) for all x1 ∈ V1, x1, y1 ∈ E1

Example 4.3.
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a1

(0.4,0.6,1.2)

a2

(0.2,1.5,0.3)

a3

(0.3,0.8,1.1)

a4

(0.3,0.8,1.1)

a5

(0.2,1.5,0.3)

a6

(0.4,0.6,1.2)

(0.2,0.6,1.2) (0.2,0.8,1.1) (0.3,0.8,1.1) (0.2,0.8,1.1) (0.2,0.6,1.2)

G

a1

(0.4,0.6,1.2)

a2

(0.2,1.5,0.3)

a3

(0.3,0.8,1.1)

a4

(0.3,0.8,1.1)

a5

(0.2,1.5,0.3)

a6

(0.4,0.6,1.2)

(0.2,0.6,1.2) (0.2,0.8,1.1) (0.2,0.8,1.1) (0.2,0.6,1.2)

G ′ G ′′

Figure 4: G ′ and G ” are isomorphic graphs

Theorem 4.1. Let G be the connected Nover top T (u, v), I(u, v), F (u, v) graph and (T, I, F ) be the true
membership, indeterminancy membership and falsity membership value of the chosen edge of G such that
removal of (µ, γ, σ) from G splits into two Nover top graphs such that whose vertex set satisfies |VG ′ | < |VG ′′ |
and therefore its disconnected. Then

(i) BNov(G ′) < BNov(G ′′)

(ii) B∗
Nov(G ′) < B∗

Nov(G ′′)

(iii) HNov(G ′) < HNov(G ′′)

(iv) RdNov(G ′) < RdNov(G ′′)

where |VG ′ | < |VG ′′ | denote the cardinality of G ′ & G ′′ respectively.
Proof:

Let G be a connected Nover top graph where splitted into two Nover top graph G ′ and G ′′ by removing the
chosen membership value of the edge in G . We know that G be the Nover top graph and H be the Nover top
sub graph of G such that H = G − u then BNov(G − u) < BNov(G ) and B∗

Nov(G − u) < B∗
Nov(G ).

Therefore, we get, BNov(G ′) < BNov(G ′′) < BNov(G ) which implies that BNov(G ′) < BNov(G ′′).
Hence the theorem proved.
The remaining cases are trivially true by the following above method.

5 GA- index in Nover top graphs
Definition 5.1. The GA-index of Nover top graph G is defined as

GANov(G ) =
2{[A(ui)d(ui)][A(vj)d(vj)]}

1
2

[A(ui)d(vj) + A(vj)d(vj)]
1
2

Theorem 5.1. Let G be a Nover top graph with m edges. Then GANov(G ) ≤ m with equality if and only if
every component of G is regular.
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Example 5.1. We have the previous example (3.1)

GANov(G ) =

2

 (.4, .6, 1.2)(.5, 1.2, 2.3) + (.2, 1.5, .3)(.4, 1.4, 2.3)+
(.4, .6, 1.2)(.5, 1.2, 2.3) + (.3, .8, 1.1)(.5, 1.4, 2.3)+
(.2, 1.5, .3)(.4, 1.4, 2.3) + (.3, .8, 1.1)(.5, 1.4, 2.2)

 1
2

 (.4, .6, 1.2) + (.5, 1.2, 2.3) + (.2, 1.5, .3) + (.4, 1.4, 2.3)+
(.4, .6, 1.2) + (.5, 1.2, 2.3) + (.3, .8, 1.1) + (.5, 1.4, 2.2)+
(.2, 1.5, .3) + (.4, 1.4, 2.3) + (.3, .8, 1.1) + (.5, 1.4, 2.2)

 1
2

=
2[(3.68× 2.87) + (3.68× 3.69) + (2.87× 3.69)]

1
2

[2.2 + 4 + 2 + 4.1 + 2.2 + 4 + 2.2 + 4.1 + 2 + 4.1 + 2.2 + 4.1]
1
2

=
2[10.562 + 13.579 + 10.5903]

1
2

[37.2]
1
2

=
2[34.7313]

1
2

6.099

=
2× 5.8933

6.099
= 1.9325

6 Connectivity Index in Nover top graphs
Definition 6.1. The strength of connectedness between ui and vj is defined as

CONNP (ui, vj) =

(
min

e∈Puivj

TB(e), min
e∈Puivj

IB(e), max
e∈Puivj

FB(e)

)
where Puivj is the path between ui and vj

|CONNP (ui, vj)| = 2

(
min

e∈Puivj

TB(e)

)
−
(

min
e∈Puivj

IB(e)

)
−
(

max
e∈Puivj

FB(e)

)
Then CONNP (ui, vj) = maxp{|CONNP (ui, vj)|}.

Definition 6.2. The Connectivity index (CI) of G is defined by

CINov(G ) =
∑

uivj∈V

A(ui) · A(vj)× CONNG (ui, vj)

Here CONNG (ui, vj) is the strength of connectedness between ui and vj .

Example 6.1. For example (3.1), the strength of connectedness between a1 and a2 from the direct path
p1 = a1a2 is CONNp1(a1, a2) = (0.2, 0.6, 1.2).

From path p2 = a1a3a2

CONNp2(a1, a2) = (min{0.3, 0.2},min{0.6, 0.8},max{1.1, 1.1})
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= (0.2, 0.6, 1.1)

a1 and a3 from the direct path p1 = a1a3 is

CONNp1(a1, a3) = (0.3, 0.6, 1.1)

From path p2 = a1a2a3

CONNp2(a1, a3) = (min{0.2, 0.2},min{0.6, 0.8},max{1.2, 1.1})
= (0.2, 0.6, 1.2)

a2 and a3 from the direct path p1 = a2a3 is

CONNp1(a2, a3) = (0.2, 0.8, 1.1)

From path p2 = a2a1a3

CONNp2(a2, a3) = (min{0.2, 0.3},min{0.6, 0.6},max{1.2, 1.1})
= (0.2, 0.6, 1.2)

Then, we have for a1 and a2

|CONNp1(a1, a2)| = 2× (0.2)− 0.6− 1.2 = −1.4

|CONNp2(a1, a2)| = 2× (0.2)− 0.6− 1.1 = −1.3

For a1 and a3

|CONNp1(a1, a3)| = 2× (0.3)− 0.6− 1.1 = −1.3

|CONNp2(a1, a3)| = 2× (0.2)− 0.6− 1.2 = −1.4

For a2 and a3

|CONNp1(a2, a3)| = 2× (0.2)− 0.8− 1.1 = −1.5

|CONNp2(a2, a3)| = 2× (0.2)− 0.6− 1.2 = −1.4

Since we have

CONNG (a1, a2) = −1.3

CONNG (a1, a3) = −1.3

CONNG (a2, a3) = −1.4

Then CINov(G ) is calculated as follows.

CINov(G ) =
∑

uivj∈V

(TA(ui), IA(ui), FA(ui))(TA(vj), IA(vj), FA(vJ)× CONNG (ui, vj)

= (.4, .6, 1.2)(.2, 1.5, .3)× (−1.3) + (.4, .6, 1.2)(.3, .8, 1.1)× (−1.3)+

(.2, 1.5, .3)(.3, .8, 1.1)× (−1.4)
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= (.08 + .9 + .36)(−1.3) + (.12 + .48 + 1.32)(−1.3) + (.06 + 1.2 + .33)(−1.4)

= (1.34)(−1.3) + (1.92)(−1.3) + (1.59)(−1.4)

= −1.742− 2.496− 2.226

= −6.464

Then CI of G is equal −6.464, which the negative sign indicates the high level of false and indeterminacy
information in the problem.

Theorem 6.1. Let G and G1 be the two Nover top graphs are isomorphic, then the topological indices values
of two Nover top graphs are equal.
Proof: Let G = (VG , AG , BG ) and G1 = (VG1 , AG1 , BG1) be isomorphic Nover top graphs.

Hence there is an identity function

µA : AG (u) → AG1(u
∗) for all u ∈ VG ,∃u∗ ∈ VG1

as well as

µB : BG (u, v) → BG1(u
∗, v∗),

then each vertex of G corresponds to an vertex in G1, with the same membership value and the same edges.

Hence, the Neutrosophic over top graph structure may differ but collection of vertices and edges are same
gives the equal topological indices value.

Theorem 6.2. Let G = (VG, AG, BG) is a Nover top graph and H is the NOver top subgraph of G, such that
H is made by removing edge uv ∈ BG from G. Then, we have CINov(H) < CINov(G ) iff uv is a bridge.

Proof: Now suppose that uv is an edge that has maximum (or) minimum components, so they will have an
effect on CONNG (u, v).

Therefore, by removing edge uv, the value of CONNG (u, v) will decrease, then we have CINov(H) <
CINov(G ).

Since the bridge is called the edge that has its deletion reducing the CONNG (u, v), however, uv is a bridge.

Conversely, given that uv is a bridge. By the definition of bridge we have, for the edge uv, CONNG (u, v) >
CONNG−uv(u, v), so we conclude that, CINov(H) < CINov(G ).

Example 6.2.
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a (.3,.4,1.5)

b

(.5,.2,1.2)

c (.1,1.4,.5)

d (.2,.4,1.3)

G

(.3,.2,1.5)

(.1,.2,1.2)

(.2,.4,1.3)

a1(.3,.4,1.5)

b1(.5,.2,1.2) c1 (.1,1.4,.5)

d1 (.2,.4,1.3)

G1

(.3,.2,1.5)

(.1,.2,1.2)

(.2,.4,1.3)

Figure 5: G and G1 are isomorphic Nover top graphs

7 Illustration

Wiener was introduced two parameters for the specific purpose of correlating the boiling points of members
of the alkane series of molecular structure which satisfied a linear formula tB = aW + bP + c where tB is
the boiling point of a given alkane,W is the wiener number, P is the polarity number and a, b, c are constants.
A topological representing of a molecule structure is called molecule graph which is a collection of points
representing the atoms in the molecule and set of lines representing the covalent bonds. A hydrogen-detected
graph is a molecular graph in which hydrogen atoms are not considered.

Example 7.1. Consider an alkane series butane where molecular and its hydrogen detected graph are given
there.

H C

H

H

C H

H

CH

H

C

H

H

H

Butane Structure

H C

H

H

C

H

H

C

H

H

C

H

H

H

v1 v2 v3 v4

Butane

The path graph P4
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Suppose we can consider hydrogen detected graph P4 as in Nover top graph structure, we can calculate the
Nover top Z1 index for P4. Hence the boiling point of butane in Nover top graph is satisfies linear equation as
tB = aW + bP + c. Since butane is non-polar, b = 0. so,tB = aW + c.If we can take for particular value of
a, b, c and get the boiling point of butane both of them is same.

8 Application
Most of the administration in the society, they depends the supporters than on themself. The application

of dominating set and connecting index of Nover Top graph is expressed as a following example.An office
decide to appoint a head under 8 employees.The employess are assumed to be a,b,c,d,e,f,g,h. In this Nover
Top graph, the employees and strength between them are considered as vertex and edges.The true member-
ship,inderterminancy and false membership is taken as a vertex.The true membership value is based on em-
ployees talent, work experience and salary basis.The inderterminancy membership function are considered as
the persons with ability and skill but do not work in the suitable task.The false membership function is con-
sidred as be the lack of compatibility between educational major and occupation, lack of ability, non-skill and
health issue.

Consider the following graphical structure

a

(1.2,.3,.7)

b

(1.1,.2,.9)

c

(.7,.5,1.2)

d

(1.2,.6,.8)

e

(.5,.3,1.2)

f

(1.2,.3,1.1)

g

(1.2,.5,1.2)

h(1.4,.2,.8)

(1.1,.2,.9)

(.7,.5,1.2)(.7,.5,1.2)

(.5
,.3

,1
.2

)

(.5,.3,1.2)

(1.2,.3,1.2)

(1.2,.2,1.2)

(1
.3

,.2
,.8

)

Let a, b, c, d, e, f, g and h denote the vertices and (1.1, 0.2, 0.9), (0.7, 0.5, 1.2), (0.5, 0.3, 1.2),
(0.5, 0.3, 1.2),(1.2, 0.3, 1.2),(1.2, 0.2, 0.8), and (1.3, 0.2, 0.8) denote the edges and there is a strong relationship
between them.

Let V = {a, b, c, d, e, f, g, h, (1.1, 0.2, 0.9), (0.7, 0.5, 1.2),
(0.5, 0.3, 1.2), (0.5, 0.3, 1.2), (1.2, 0.3, 1.2), (1.2, 0.2, 0.8), (1.3, 0.2, 0.8)} be a topology
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τ = {X, ∅, {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {a, b}, {a, d}{b, c}, {e, f}, {f, g}, {g, h}....
{a, b, c, d}, {a, b, d, f}, {e, f, g, h}, ....{a, b, c, d, e, f, g}, }.

Here for every x ∈ X , {x} is open or closed. By the definition of Nover top graph, we have |∂(A)| ≤ 2
and ∂(a) = (b, h), ∂(b) = (a, c), ∂(c) = (b, d), ∂(d) = (e, c), ∂(e) = (d, f) , ∂(f) = (e, g), ∂(g) = (f, h),
∂(h) = (a, g) with ∂(ai) = 2. Hence this graph is Nover top graph.

TA(a) = min[TB(a, b), TB(a, h)] = min[1.1, 1.1] = 1.1

IA(a) = min[IB(a, b), IB(a, h)] = min[0.2, 0.2] = 0.2

FA(a) = max[FB(a, b), FB(a, h5)] = max[0.9, 0.8] = 0.9

TA(b) = min[TB(b, a), TB(b, c)] = min[1.1, 0.7] = 0.7

IA(b) = min[IB(b, a), IB(b, c)] = min[0.2, 0.5] = 0.2

FA(b) = max[FB(b, a), FB(b, c)] = max[0.9, 1.2] = 1.2

TA(c) = min[TB(c, b), TB(c, d)] = min[0.7, 0.7] = 0.7

IA(c) = min[IB(c, b), IB(c, d)] = min[0.2, 0.5] = 0.2

FA(c) = max[FB(c, b), FB(c, d)] = max[1.3, 1.3] = 1.3

TA(d) = min[TB(d, c), TB(d, e)] = min[0.1, 0.1] = 0.1

IA(d) = min[IB(d, c), TB(d, e)] = min[0.7, 0.7] = 0.7

FA(d) = max[FB(d, c), TB(d, e)] = max[1.2, 1.2] = 1.2

TA(e) = min[TB(e, d), TB(e, f)] = min[0.5, 0.5] = 0.5

IA(e) = min[IB(e, d), IB(e, f)] = min[0.3, 0.3] = 0.3

FA(e) = max[FB(e, d), FB(e, f)] = max[1.2, 1.2] = 1.2

TA(f) = min[TB(f, e), TB(f, g)] = min[0.5, 1.2] = 0.5

IA(f) = min[IB(f, e), IB(f, g)] = min[0.3, 0.3] = 0.3

FA(f) = max[FB(f, e), FB(f, g)] = max[1.3, 1.3] = 1.3

TA(g) = min[TB(g, h), TB(g, f)] = min[1.2, 1.2] = 1.2

IA(g) = min[IB(g, h), IB(g, f)] = min[0.2, 0.3] = 0.2

FA(g) = max[FB(g, h), FB(g, f)] = max[1.2, 1.2] = 1.2

TA(h) = min[TB(h, a), TB(h, g)] = min[1.3, 1.2] = 0.1

IA(h) = min[IB((h, a), IB(h, g)] = min[0.2, 0.2] = 0.2

FA(h) = max[FB((h, a), FB(h, g)] = max[0.8, 1.2] = 1.2

Here a dominates b because

TB(ab) ≤ TA(a) ∧ TA(b), 1.1 ≤ 1.1 ∧ 0.7

IB(ab) ≤ IB(a) ∧ TB(b), 0.2 ≤ 0.2 ∧ 0.2

FB(ab) ≥ FA(a) ∨ TB(b), 0.9 ≥ 0.9 ∨ 0.9

Here b dominates c because

TB(bc) ≤ TA(b) ∧ TA(c), 0.7 ≤ 0.7 ∧ 0.7

IB(bc) ≤ IB(b) ∧ TB(c), 0.2 ≤ 0.2 ∧ 0.2
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FB(bc) ≥ FA(b) ∨ TB(c), 1.2 ≥ 0.9 ∨ 1.2

Here c dominates d because

TB(cd) ≤ TA(c) ∧ TA(d), 0.7 ≤ 0.7 ∧ 0.5

IB(cd) ≤ IB(c) ∧ TB(d), 0.5 ≤ 0.2 ∧ 0.3

FB(cd) ≥ FA(c) ∨ TB(d), 1.2 ≥ 1.2 ∨ 1.2

Here d dominates e because

TB(de) ≤ TA(d) ∧ TA(e), 0.5 ≤ 0.5 ∧ 0.0.5

IB(de) ≤ IB(d) ∧ TB(e), 0.3 ≤ 0.3 ∧ 0.3

FB(de) ≥ FA(d) ∨ TB(e), 1.2 ≥ 1.2 ∨ 1.2

Here e dominates f because

TB(ef) ≤ TA(e) ∧ TA(f), 0.5 ≤ 0.5 ∧ 0.5

IB(ef) ≤ IB(e) ∧ IB(f), 0.3 ≤ 0.3 ∧ 0.3

FB(ef) ≥ FA(e) ∨ FB(f), 1.2 ≥ 1.2 ∨ 1.2

Here f dominates g because

TB(fg) ≤ TA(f) ∧ TA(g), 1.2 ≤ 0.5 ∧ 1.2

IB(fg) ≤ IB(f) ∧ IB(g), 0.3 ≤ 0.3 ∧ 0.2

FB(fg) ≥ FA(f) ∨ FB(g), 1.2 ≥ 1.2 ∨ 1.2

Here g dominates h because

TB(gh) ≤ TA(g) ∧ TA(h), 1.2 ≥ 1.2 ∨ 1.2

IB(gh) ≤ IB(g) ∧ IB(h), 0.2 ≤ 0.2 ∧ 0.2

FB(gh) ≥ FA(g) ∨ FB(h), 1.2 ≥ 1.2 ∨ 1.2

Here h dominates a because

TB(ha) ≤ TA(a) ∧ TA(h), 1.3 ≥ 1.1 ∨ 1.2

IB(ha) ≤ IB(a) ∧ IB(h), 0.2 ≤ 0.2 ∧ 0.2

FB(ha) ≥ FA(a) ∨ FB(h), 0.8 ≥ 0.9 ∨ 1.2

V = {a, b, c, d, e, f, g, h}, DN = {c, e, h} and V −Dn = {a, b, d, f, g}, |DN | = 3.
Now we obtain the connectivity index for all paths

|CONNp1(a, b)| = 2× (1.1)− 0.5− 0.9 = 0.8

|CONNp1(b, c)| = 2× (0.7)− 0.2− 1.2 = 0

|CONNp1(c, d)| = 2× (0.7)− 0.5− 1.2 = −0.3
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|CONNp1(d, e)| = 2× (0.5)− 0.3− 1.2 = −0.5

|CONNp1(e, f)| = 2× (0.5)− 0.3− 1.2 = −0.5

|CONNp1(f, g)| = 2× (1.2)− 0.3− 1.1 = 1

|CONNp1(g, h)| = 2× (1.2)− 0.2− 1.1 = 1.1

|CONNp1(h, a)| = 2× (1.3)− 0.2− 0.8 = 1.6

Also, If needed, we can calculate the connectivity index for indirect relationship for Novertop graph.

Then CINov(G ) we have,

CINov(G ) =
∑

uivj∈V

(TA(ui), IA(ui), FA(ui))(TA(vj), IA(vj), FA(vJ)× CONNG(ui, vj)

= (1.3, 0.3, 0.7)(1.1, 0.2, 0.9)× (0.8) + (1.3, 0.3, 0.2)(1.4, 0.2, 0.8)× (1.6)+

(1.1, 0.2, 0.9)(0.7, 0.5, 1.2)× (−0.3)(0.7, 0.5, 1.2)(1.2, 0.6, 0.8)× (−0.3)+

(1.2, 0.6, 0.8)(0.5, 0.3, 1.2)× (−0.4)(0.5, 0.3, 1.2)(1.2, 0.3, 1.1)× (−0.4)+

(1.2, 0.5, 1.1)(1.4, 0.2, 0.8)× (1)

= (2.12)(0.8) + (2.23)(1.6) + (2.03)(−0.3) + (2.1)(−0.3) + (1.74)(−0.4)+

(2.82)(−0.4) + (2.94)(1)

= 4.478

Then connectivity index of G is equal 4.478, which the positive sign indicates the high level of true information
in the problem.

Hence the employee (h) a relationship is high and good. so ”h” is the most dominating person.so we can
select h is the head of the office.

9 Conclusion
In this paper has focussed an some topological indices for Neutrosophic over topologized graphs by using

strong domination. It is an easy way to calculate the connectivity index.so we use the new method that is
strong domination to find and calculate the connectivity index. The some topological indices for some standard
neutrosophic over topologized graphs such as 2− regular , K2 and K2,2 are given.
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Abstract. The objective of this article is to create a Neutrosophic Generalized Exponential (NGE) distribution

in the presence of uncertainty. It is possible to calculate the mean, variance, moments, and reliability expression

of the NGE distribution. With the help of graphs, the nature of the distribution and the reliability and haz-

ard functions are studied. To determine the NGE distribution’s parameters, a maximum likelihood estimation

technique is used. The performance of estimated parameters is further tested using simulations. Finally, an

actual data set is examined to show how the NGE distribution works. According to a model validity test, the

NGE distribution is superior to the existing neutrosophic distributions that can be found in the literature.

Keywords: Generalized exponential distribution; Neutrosophic; Indeterminacy; Maximum likelihood estima-

tion; Simulation; Reliability.

—————————————————————————————————————————-

1. Introduction

Numerous researchers have started developing various studies based on Neutrosophic statis-

tics in recent years. The original research on neutrosophic statistics was initiated by Smaran-

dache [1]. This new area of research is a generalization of the fuzzy logic environment, and

it is used in an uncertain environment. Due to its ability to administer sets of values in an

interval form, neutrosophic statistics play a crucial role in statistics and other research fields.

For more details about Neutrosophic statistics and its related works, please refer to [2–11].

The neutrosophic theory of probability is indispensable and has practical applications. This

area of study has not received a great deal of attention. Some authors have focused more on the
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neutrosophic statistics approach and its applications in various fields in recent years. For more

information about neutrosophic probability, see [12,13]. Patro and Smarandache [14] presented

the neutrosophic statistical distribution, more problems, and more solutions. Alhabib et al. [9]

studied some neutrosophic probability distributions by generalizing some classical probability

distributions such as the Poisson distribution, exponential distribution, and uniform distribu-

tion to the neutrosophic type. Nayana et al. [15] created a new neutrosophic model using the

DUS-Weibull transformation, while Alhasan and Smarandache [16] studied the neutrosophic

Weibull distribution. Zeina and Hatip [17] developed the neutrosophic random variables. They

studied various statistical properties and examples. Sherwani [18] studied neutrosophic beta

distribution with properties and applications. The other application of neutrosophic statis-

tics in various field like quality control, sampling plans, process capability analysis and social

science indeterminacy environment studied by [19–22]. The neutrosophic theory has many

applications in a variety of fields, such as the neutrosophic treatment of the static model,

the integration of renewable energy using a variety of resources, such as photovoltaic panels

and wind turbines, and COVID-19 and its Omicron mutation. In traditional mathematics,

crispness is the most crucial prerequisite; however, in actual problems, ambiguous data are

present. In order to solve these issues, mathematical concepts based on uncertainty must be

used. Uncertainty modeling is something that many scientists and engineers are interested in

because it helps them define and explain the useful information that is hidden in uncertain

data. Although it is one of the most crucial tools and has practical applications, the neutro-

sophic probability theory has not gotten much attention. It has, however, been the subject of

some studies. More studies have focused in recent years on various areas of neutrosophic statis-

tics, including correlation, regression analysis, test procedures, probability distributions, etc.

The mentioned studies and literature reviews have motivated us to develop a neutrosophic

generalized exponential distribution and its properties.

1.1. Neutrosophic Approach

Neutrosophic statistics is the generalization of classical statistics. We administer with spe-

cific or crumple values in classical statistics, but in neutrosophic statistics, the sample values

are chosen from a population with an uncertain environment. In neutrosophic statistics, the

information can be vague, imprecise, ambiguous, uncertain, incomplete, or even unknown.

Neutrosophic numbers have a standard form based on classical statistics, which is given be-

low.

XN = E + I
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Data is broken down into two parts, E and I, where E is the exact or determined data and I

is the uncertain, inexact, or indeterminate part of the data. It is equivalent to XN ∈ [XL, XU ].

A subscript N is used to distinguish the neutrosophic random variable, for example, XN .

1.2. Generalized Exponential distribution

The generalized exponential (GE) distribution is one of the most widely used and flexible

distributions compared to the exponential, gamma, and Weibull distributions; see [23] for more

details. The GE distribution has more applications in reliability analysis, hydrology, quality

control and medical field etc, please refer [24–30].

If a continuous random variable Xi; i = 1, 2, . . . , n is followed by the generalized exponential

distribution with shape parameter δ and scale parameter υ then its probability density function

(p.d.f.) and cumulative distribution function are respectively given as follows:

f(x) =
δ

υ

(
1− exp{−x

υ
}
)δ−1

exp{−x
υ
}; x > 0, δ > 0, υ > 0, (1)

and

F (x) =
(
1− exp{−x

υ
}
)δ

; x > 0, δ > 0, υ > 0. (2)

2. Neutrosophic Generalized Exponential distribution

Let us assume that XNi ∈ [XL, XU ], i = 1, 2, . . . , nN is neutrosophic random variable fol-

lowing the neutrosophic generalized exponential (NGE) distribution with neutrosophic shape

parameter δN ∈ [δL, δU ] and neutrosophic scale parameter υN ∈ [υL, υU ]. The neutrosophic

probability density function (n.p.d.f.) of NGE distribution is given as follows:

f(xN) =
δN
υN

(
1− exp{−xN

υN

}
)δN−1

exp{−xN

υN

}; xN > 0, δN > 0, υN > 0 (3)

Where XN ∈ [XL, XU ], δN ∈ [δL, δU ], υN ∈ [υL, υU ]. NGE distribution with neutrosophic

shape parameter δN and neutrosophic scale parameter υN is denoted as NGED(δN , υN). NGE

distribution is transformed into a neutrosophic exponential distribution with neutrosophic scale

parameter υN ∈ [υL, υU ] when NGED(1, υN). Figure 1 display the p.d.f. plots for different

parametric values of NGE distribution.

The developed NGE distribution is more flexible on account of the different shapes of the

density function. From Figure 1, The curves of p.d.f. show that the behavior of the curves

exponentially diminishes and starts from the infinite point for δN < 1. For δN = 1, its behavior

exponentially diminishes but starts from a specific point on the y-axis. The density curves

show unimodal behavior for δN > 1.

The cumulative distribution function (c.d.f.) of NGE distribution is

F (xN) =

(
1− exp{−xN

υN

}
)δN

; xN > 0, δN > 0, υN > 0. (4)
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The survival function and hazard function of NGE distribution respectively expressed as

s(xN) = 1−
(
1− exp{−xN

υN

}
)δN

, (5)

and

h(xN) =

δN
υN

(
1− exp{−xN

υN
}
)δN−1

exp{−xN
υN

}

1−
(
1− exp{−xN

υN

)δN
(6)

From Figure 2, it is interesting to note that the NGE distribution has variable shapes.

The survival function and failure rate curves for various neutrosophic parametric values are

presented in Figures 3 and 4. Form Figure 4, the failure rate of NGE distribution is a bathtub

and increasing behavior, which is very important for analyzing data sets in various fields.

3. Statistical Properties

In this section, we reviewed some statistical characteristics of the NGE distribution.

The mean and variance values are respectively expressed as

µN =
1

υN

[ψ (δN + 1)− ψ (1)] , (7)

and

σ2N =
1

υ2N

[
ψ′ (1)− ψ′ (δN + 1)

]
. (8)

The expressions ψ (·) denotes the digamma function while ψ′ (·) denotes a derivative of ψ (·).
For details about classical GED moments, refer to [23]. The qth quantile of NGE distribution

is obtained as follows:

xNq = −υN ln

(
1− q

1
δN
N

)
. (9)

Consequently, the median value is xN(0.5) = −υN ln
(
1− 2

−1
δN

)
.

4. Estimation of parameters

In this section, using the method of maximum likelihood estimation (MLE) the parameters

of NGE distribution are estimated. Let XN1, XN2, . . . , XNn be a neutrosophic random sample

of size n taken from NGE distribution. The log-likelihood equation is given by

l (δN , υN) = ln (L) = n ln (δN)− n ln (υN)−
n∑

i=1

xNi

υN

+ (δN − 1)

n∑
i=1

ln

(
1− exp{−xNi

υN

}
)

(10)
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Figure 1. The p.d.f. plots of NGE distribution

Rao, Norouzirad, and Mazarei; Neutrosophic Generalized Exponential Distribution with Application

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                             475



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

xN

c
.d

.f
.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

xN

c
.d

.f
.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

xN

c
.d

.f
.

υN = 1, δN ∈ [0.5, 0.75] υN = 1, δN ∈ [1.5, 2.0] υN = 1, δN ∈ [2.0.2.5]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

xN

c
.d

.f
.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

xN

c
.d

.f
.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

xN

c
.d

.f
.

υN = 1.5, δN ∈ [0.5, 0.75] υN = 1.5, δN ∈ [1.5, 2.0] υN = 1.5, δN ∈ [2.0.2.5]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

xN

c
.d

.f
.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

xN

c
.d

.f
.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

xN

c
.d

.f
.

υN = 2, δN ∈ [0.5, 0.75] υN = 2, δN ∈ [1.5, 2.0] υN = 2, δN ∈ [2.0.2.5]

Figure 2. The c.d.f. plots of NGE distribution
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Figure 3. The survival function plots of NGE distribution
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Figure 4. The hazard function plots of NGE distribution
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The MLEs of δN and υN are denoted as δ̂N ∈
[
δ̂L, δ̂U

]
and υ̂N ∈ [υ̂L, υ̂U ] respectively, and are

obtained by maximizing the equation (10). Thus δ̂N and υ̂N are the solutions of the following

two derivative equations

∂l (δN , υN)

∂δN
=

n

δN
+

n∑
i=1

ln

(
1− exp{−xNi

υN

}
)

= 0 (11)

and

∂l (δN , υN)

∂υN

=
−n
υN

+

n∑
i=1

xNi

υ2N
− (δN − 1)

υ2N

n∑
i=1

xNi exp{−xNi
υN

}(
1− exp{−xNi

υN
}
) = 0 (12)

or simply,

∂l (δN , υN)

∂υN

= −nυN +
n∑

i=1

xNi − (δN − 1)
n∑

i=1

xNi exp{−xNi
υN

}(
1− exp{−xNi

υN
}
) = 0. (13)

Solving Eq. (11) results in

δ̂N (υN) =
−n

n∑
i=1

ln
(
1− exp{−xNi

υN
}
) . (14)

The estimator ν̂N is calculated by substituting δ̂N value in Eq. (12), which results in an

expression in terms of υN as

−nυN+

n∑
i=1

xNi+
n

n∑
i=1

ln
(
1− exp{−xNi

υN
}
)
 n∑

i=1

xNi exp{−xNi
υN

}(
1− exp{−xNi

υN
}
)
+ n∑

i=1

xNi exp{−xNi
υN

}(
1− exp{−xNi

υN
}
) = 0

(15)

Hence, MLE of υN say υ̂N is an iterative solution of equation (15). After finding υ̂N by iterative

solution, we can substitute in Eq. (14) to get the MLE of δ̂N .

5. Justification of Estimation with Simulation

To study the performance of the proposed NGE distribution model, a simulation study is

carried out. The accomplishment of NGE distribution estimated parameters and their per-

formance are expressed as neutrosophic average estimates (AEs), neutrosophic average biased

(Avg. Biases), and neutrosophic measure square error (MSEs) using simulation investigation.

The simulation results of average Bias and MSE are summarized in Tables 1-4. It is noticed

from the tables that the average Bias and MSE decrease when the size of the sample increases,

as expected. According to Tables 1-4, Bias of shape parameters is negative and the scale

parameter is positive at different values of shape parametric and scale parametric values.
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Table 1. υN = [1, 1], δN = [1, 3]

AEs Avg. Biases MSEs

υ̂N δ̂N υ̂N δ̂N υ̂N υ̂N

30 0.9781 [1.1008,3.4551] -0.0219 [0.1008,0.4551] 0.2137 [0.3258,1.3166]

50 0.9866 [1.0558,3.2537] -0.0133 [0.0558,0.2537] 0.1645 [0.2149,0.8673]

100 0.9929 [1.0267,3.1265] -0.0071 [0.0267,0.1265] 0.1168 [0.1410,0.5542]

200 0.9958 [1.0131,3.0610] -0.0041 [0.0131,0.0610] 0.0825 [0.0948,0.3640]

500 0.9987 [1.0048,3.0231] -0.0012 [0.0048,0.0231] 0.0524 [0.0589,0.2294]

1000 0.9995 [1.0024,3.0112] -0.0005 [0.0024,0.0112] 0.0367 [0.0419,0.1572]

Table 2. υN = [1, 1], δN = [0.5, 0.75]

AEs Avg. Biases MSEs

υ̂N δ̂N υ̂N δ̂N υ̂N δ̂N

30 0.9775 [0.5397,0.8185] -0.0225 [0.0397,0.0685] 0.2761 [0.1363,0.2205]

50 0.9862 [0.5225,0.7888] -0.0138 [0.0225,0.0388] 0.2131 [0.0942,0.1524]

100 0.9925 [0.5108,0.7692] -0.0075 [0.0108,0.0192] 0.1516 [0.0625,0.1008]

200 0.9955 [0.5053,0.7591] -0.0045 [0.0053,0.0091] 0.1071 [0.0424,0.0676]

500 0.9987 [0.5018,0.7538] -0.0012 [0.0018,0.0038] 0.0682 [0.0264,0.0434]

1000 1.0000 [0.5011,0.7514] 0.0000 [0.0011,0.0014] 0.0477 [0.0189,0.0301]

Table 3. υN = [0.5, 0.75], δN = [1, 1]

AEs Avg. Biases MSEs

α̂N δ̂N υ̂N δ̂N υ̂N δ̂N

30 [0.4877,0.7362] 1.1005 [-0.0123,-0.0138] 0.1005 [0.1196,0.1783] 0.3204

50 [0.4928,0.7412] 1.0562 [-0.0072,-0.0088] 0.0562 [0.0927,0.1364] 0.2154

100 [0.497,0.7436] 1.0274 [-0.003,-0.0064] 0.0274 [0.0652,0.0982] 0.1415

200 [0.4981,0.7465] 1.0132 [-0.0019,-0.0035] 0.0132 [0.0461,0.0692] 0.0948

500 [0.4992,0.7495] 1.0051 [-0.0008,-0.0005] 0.0051 [0.0292,0.0443] 0.0598

1000 [0.4997,0.7497] 1.0025 [-0.0003,-0.0003] 0.0025 [0.0205,0.031] 0.0419

6. Application

A realistic attempt of NGE distribution model is studied with help a real data in this

section. The Parameter estimates along with the values of AIC (Akaike’s Information crite-

ria), BIC (Bayesian Information criteria) and KS (Kolmogorov–Smirnov) statistic are provided

for comparision neutrosophic normal distribution (NND), neutrosophic gamma distribution

(NGD), neutrosophic Weibull distribution (NWD), neutrosophic Rayleigh distribution (NRD),
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Table 4. υN = [0.5, 0.75], δN = [1, 3]

AEs Avg. Biases MSEs

α̂N δ̂N υ̂N δ̂N υ̂N δ̂N

30 [0.4877,0.7356] [1.1008,3.4551] [-0.0123,-0.0144] [0.1008,0.4551] [0.1196,0.1411] [0.3258,1.3166]

50 [0.4928,0.7408] [1.0558,3.2537] [-0.0072,-0.0092] [0.0558,0.2537] [0.0927,0.1079] [0.2149,0.8673]

100 [0.497,0.7439] [1.0267,3.1264] [-0.0030,-0.0061] [0.0267,0.1264] [0.0652,0.0776] [0.1410,0.5542]

200 [0.4981,0.7467] [1.0131,3.061] [-0.0019,-0.0033] [0.0131,0.061] [0.0461,0.0546] [0.0948,0.3640]

500 [0.4992,0.7494] [1.0048,3.0231] [-0.0008,-0.0006] [0.0048,0.0231] [0.0292,0.0349] [0.0589,0.2294]

1000 [0.4997,0.7497] [1.0024,3.0112] [-0.0003,-0.0003] [0.0024,0.0112] [0.0205,0.0244] [0.0419,0.1572]

neutrosophic exponential distribution (NED) and neutrosophic generalized exponential dis-

tribution (NGED).

6.1. Example 1

The data set reported in Table 5 attempted is related to remission time in months of 128

cancer patients. The remission times data was originally studied and reported in [31] from

bladder cancer research. Under a neutrosophic environment, the remission periods data set is

used by [32] to model the neutrosophic exponential distribution.

Based on their study remission periods of cancer patients is well fitted to NED. We use the

same data set for the illustration of NGE distribution. Actively, data are the crumple obser-

vations, whereas to demonstrate the model, consider them as ambiguous sample observations

for specified cancer patients. The developed NGE distribution parameters are estimated based

on uncertainties of remission periods of cancer patients. The results in Table 6 shows that

NGED is more effective to investigate the properties of uncertainties of remission periods of

cancer patients neutrosophic data than the NED.

6.2. Example 2

To demonstrate a real example here we considered an rough population compactness of few

villages in rural USA. This data is taken from [33] and they studied for neutrosophic W/S

test based on the data follows to neutrosophic normal distribution. This data consists of the

population of 17 villages in USA and their neutrosophic data, which is reproduced in Table 7

for ready reference. The results in Table 8 also shows that NGED is more suitable to fit the

data than the NED.

7. Conclusions

In this article, a generalization exponential distribution is developed under neutrosophic

statistics environment. Very few researchers have studied probability distributions based on
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Table 5. Remission periods of 128 cancer patients.

Remission times

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.2

2.23 3.52 4.98 6.97 9.02 13.29 0.4 2.26 3.57

5.06 7.09 9.22 13.8 25.74 0.5 2.46 3.64 5.09

[7.26, 8.2] 9.47 14.24 25.82 0.51 2.54 3.7 5.17 7.28

9.74 14.76 [5.3, 7.1] 0.81 2.62 3.82 5.32 7.32 10.06

[12, 14.77] 32.15 2.64 3.88 5.32 7.39 10.34 14.83 34.26

0.9 2.69 4.18 5.34 7.59 10.66 15.96 36.66 1.05

2.69 4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75

4.26 5.41 7.63 [15, 17.2] 46.12 1.26 2.83 4.33 5.49

7.66 11.25 17.14 [75.02, 81] 1.35 2.87 5.62 7.87 11.64

17.36 1.4 3.02 4.34 5.71 7.93 11.79 18.1 1.46

4.4 5.85 8.26 11.98 19.13 1.76 3.25 4.5 6.25

8.37 12.02 [1.5, 3.2] 3.31 4.51 6.54 [7.5, 8.2] 12.03 20.28

2.02 3.36 6.76 12.07 21.73 2.07 3.36 6.93 8.65

12.63 22.69

Table 6. Estimates and Goodness-of-fit statistics for data set 1.

Model Parameter Estimates LogLikelihood AIC BIC KS

NND
µ [9.1196,9.2453] [-478.1315,-482.0838] [960.263,968.1676] [975.6711,983.5758] [0.1899,0.1941]

σ [10.1397,10.4577]

NGD
shape [1.1896,1.1884] [-409.7832,-411.5487] [823.5665,827.0975] [838.9746,842.5056] [0.0757,0.0769]

scale [7.6658,7.7796]

NWD
shape [1.0553,1.0519] [-410.5979,-412.3855] [825.1958,828.7710] [840.6039,844.1791] [0.0716,0.0737]

scale [9.3370,9.4544]

NRD υ [9.6432,9.8702] [-486.1404,-490.4138] [976.2808,984.8275] [991.6890,1000.2360] [0.3544,0.3542]

NED υ [0.1096,0.1081] [-410.9358,-412.6880] [825.8715,829.3760] [841.2796,844.7842] [0.0815,0.0869]

NGED
υ [7.9506,8.0568] [-409.4565,-411.2037] [822.9129,826.4074] [838.3210,841.8155] [0.0752,0.0759]

δ [1.2390,1.2397]

neutrosophic statistics. The mathematical properties of the developed neutrosophic general-

ization exponential distribution are studied. The nature of the distribution is studied through

various neutrosophic parametric combinations. Using the maximum likelihood method the

parameters are estimated. A simulation study is carried out under neutrosophic environment.

The average Bias and MSE decrease as the sample size increases, as expected. Finally, the

application of the proposed NGE distribution is presented through real data sets. A com-

parative study with other distributions is also done based real data sets. Based on real data

examples, we conclude that the NGE distribution furnishes better performance over existing
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Table 7. Neutrosophic population density of some villages in the USA

Villages Population density Villages Population density

Aranza [4.13,4.14] Charapan [5.10,5.12]

Corupo [4.53,4.55] Comachuen [5.25,5.27]

San Lorenzo [4.69,4.70] Pichataro [5.36,5.38]

Cheranatzicurin [4.76,4.78] Quinceo [5.94,5.96]

Nahuatzen [4.77,4.79] Nurio [6.06,6.08]

Pomacuaran [4.96,4.98] Turicuaro [6.19,6.21]

Servina [4.97,4.99] Urapicho [6.30,6.32]

Arantepacua [5.00,5.06] Capacuaro [7.73,7.98]

Cocucho [5.04,5.06]

Table 8. Estimates and Goodness-of-fit statistics for data set 2.

Model Parameter Estimates LogLikelihood AIC BIC KS

NND
µ [5.3400,5.3723] [-21.1554,-21.9577] [46.3107,47.9155] [53.6436,55.2483] [0.2007,0.2024]

σ [0.8398,0.8804]

NGD
shape [40.4254,37.2310] [-20.2481,-20.9136] [44.4962,45.8272] [51.8290,53.1600] [0.1821,0.1816]

scale [0.1320,0.1442]

NWD
shape [5.8980,5.5773] [-23.0417,-23.9417] [50.0834,51.8834] [57.4162,59.2162] [0.2097,0.2115]

scale [5.7143,5.7621]

NRD υ [3.8223,3.8495] [-34.3024,-34.4533] [72.6049,72.9067] [79.9377,80.2395] [0.4457,0.4439]

NED υ [0.1873,0.1861] [-45.47884,-45.5815] [94.9577,95.1630] [102.2905,102.4959] [0.5386,0.5373]

NGED
υ [0.6067,0.6187] [-18.7673,-19.1981] [41.5345,42.3961] [48.8674,49.7290] [0.1443,0.1466]

δ [3630.608,3209.943]

distributions. This article develops a generalized exponential distribution inside a neutro-

sophic statistical framework. The study of probability distributions based on neutrosophic

statistics is quite uncommon. The generated neutrosophic generalization exponential distribu-

tion’s mathematical characteristics are investigated. The distribution’s nature is investigated

using a variety of neutrosophic parametric combinations. The parameters are computed using

the maximum likelihood approach. Simulation research is conducted in a neutrosophic setting.

When expected, as the sample size grows, the average bias and MSE drop. The use of the

suggested NGE distribution is then shown using actual data sets. Based on actual data sets, a

comparison study with different distributions is also conducted. We draw the conclusion that

the NGE distribution offers superior performance over current distributions based on studied

instances.
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Abstract: Slope instability is a common geological hazard in open-pit mines, which may cause huge 

economic losses and casualties. Thus, it is important to cluster and evaluate the stability of slopes 

effectively. This article proposes a hyperbolic sine similarity measure of single-valued neutrosophic 

sets (SVNSs) for a netting clustering method and a slope stability evaluation method to cluster and 

assess the stability of open-pit mine slopes. This study contains the following main content. First, 

we present a hyperbolic sine similarity measure between SVNSs. Second, slope stability impact 

factors are fuzzified into SVNSs by the utilization of true, indeterminate, and false membership 

functions, and then a netting clustering method using the proposed similarity measure is proposed 

to cluster the stability of open-pit mine slopes. Third, we propose a slope stability evaluation method 

based on the proposed similarity measure, where we give the SVNS knowledge of risk 

grades/patterns based on the clustering results of slope stability and then present the similarity 

measure values between the risk grades/patterns and the slope samples to assess that each slope 

sample with the larger measure value belongs to the corresponding slope risk grade. Finally, the 

proposed netting clustering and evaluation methods are applied to the clustering analysis and 

assessment of 20 open-pit mine slope samples to verify the rationality and effectivity of the proposed 

approaches in the scenario of SVNSs. 

Keywords: single-valued neutrosophic set; netting clustering method; similarity measure; open-pit mine 

slope; slope stability assessment. 

 

 

1. Introduction 

Slope instability is a typical geological hazard in open-pit mines, so the disasters and losses 

caused by slope instability cannot be ignored. Thus, it is important to give some reasonable 

classification and evaluation methods for slope stability. Traditional qualitative classification 

methods for the slope stability grades include rock mass strength grading method, geological 

strength index method, slope failure probability grading method, and so on [1]. However, there are 

many factors that will affect the analysis of slope stability. Since the slope impact factors include a lot 

of uncertain and incomplete information, the traditional methods cannot effectively express the 

uncertain and incomplete information. Therefore, some indeterminate classification methods have 

been proposed, such as rainfall-induced landslides using ANN (artificial neural network) and fuzzy 



Neutrosophic Sets and Systems, Vol. 55, 2023     487  

 

 

Yi Ding, Jun Ye, Hyperbolic Sine Similarity Measure of SVNSs for Open-Pit Mine Slope Stability Classification and 
Assessment 

clustering methods [2], K-means and fuzzy c-means clustering algorithms [3], and a neuro-fuzzy 

inference system-based clustering methods [4]. But the existing indeterminate clustering methods 

difficultly express the true, indeterminate, and false information in the evaluation problems of slope 

stability. 

In order to represent indeterminate and inconsistent information in the real world, Smarandache 

first proposed the concept of neutrosophic sets (NSs) [5] as a conceptual extension of fuzzy sets (FSs) 

[6] and (interval-valued) intuitionistic FSs (IFSs/IVFSs) [7, 8]. NS is characterized by a true 

membership function, an indeterminate membership function, and a false membership function 

independently. However, it is difficult to apply NSs in practical engineering fields because the values 

of their membership functions fall in the non-standard interval ]0, 1+[. As the subsets of NSs, Wang 

et al. [9, 10] introduced single-valued and interval-valued NSs (SVNSs and IVNSs) when the values 

of the three membership functions fall in the standard interval [0, 1] to describe indeterminate and 

inconsistent information in practical engineering issues. Recently, some researchers have applied 

SVNSs to the assessment of slope stability. Qin [11] proposed a SVNS adaptive neuro fuzzy inference 

system (SVNS-ANFIS) and applied it to the evaluation of open-pit mine slope stability. Then, Qin 

[12] further proposed a SVNS Gaussian process regression (SVNS-GPR) approach to predict the 

stability of open-pit mine slopes. However, SVNSs have not been applied to the clustering analysis 

of slope stability so far. 

As another subclass of neutrosophic theory, a neutrosophic number (N = a + bI for I  [inf I, sup 

I]) (NNs) [5, 13, 14] consists of a certain part a and an uncertain part bI, which is also called an 

uncertain number. Since similarity measures are one of the important research topics in neutrosophic 

theory, some similarity measures have been proposed and applied in slope stability evaluation 

problems in the environment of NNs [15]. Li et al. [15] proposed a slope stability evaluation approach 

based on the tangent and arctangent similarity measure of NNs. Li et al. [16] developed the vector 

similarity measures of NNs for the assessment of rock slope stability. However, these similarity 

measures lack the information of true, false, and indeterminate membership degrees. They cannot 

deal with indeterminate and inconsistent decision-making/evaluation problems in neutrosophic 

environments. Therefore, some researchers [17-19] presented various similarity measures of 

SVNSs/IVNSs to perform decision-making problems. 

Regarding the current studies, the similarity measures of NNs cannot handle the actual 

clustering and evaluation problems of slope stability with SVNS information because NN cannot 

contain the true, false, indeterminate membership degrees. Then, the SVNS-ANFIS and SVNS-GPR 

methods [11, 12] require large amounts of learning data to train them, leading to complex learning 

operations and difficult update problems. Therefore, they are difficultly applied to actual clustering 

and evaluation problems of slope stability. Ye [15] also proposed a clustering method by the 

similarity measure of SVNSs, but it was not applied to actual clustering analysis and evaluation 

problems of slope stability because it is difficult to obtain true, false, indeterminate membership 

degrees from the data of slope samples. However, similarity metrics for clustering analysis and 

evaluation problems of slope stability have shown obvious superiority over neural networks in terms 

of data requirements, algorithms, and updated applications. Unfortunately, to date, the similarity 

measures of SVNS have not been applied to the clustering analysis and evaluation problems of slope 

stability. How to solve the clustering analysis and evaluation problems of slope stability by the 

similarity measure of SVNSs is a challenging problem in practical applications. Therefore, this paper 

will resolve this issue. 

In this study, we present a hyperbolic sine similarity measure (HSSM) of SVNSs and its netting 

clustering analysis and evaluation methods of slope stability. Then, the proposed methods are 

applied to the clustering analysis and assessment of 20 open-pit mine slope samples. Through the 

comparative analysis with existing related methods, the proposed approaches reveal their rationality 

and effectivity in the clustering and evaluation application of the 20 open-pit mine slope samples in 

the scenario of SVNSs.  
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The remaining structure of this paper is arranged as follows. In section 2, some basic concepts 

of SVNSs are introduced. Section 3 proposes HSSM of SVNSs and netting clustering analysis and 

slope stability evaluation methods using the proposed HSSM. Section 4 applies the proposed 

clustering method to the slope stability clustering analysis of the 20 open-pit mine slope samples, and 

then the proposed evaluation method is applied to the stability evaluation of the 20 slope samples. 

Conclusions and further research are presented in Section 5. 

2. Some Basic Concepts of SVNS 

Smarandache first introduced NSs as the generalization of FSs, IVFSs, and IFSs. Then, Wang et 

al. [10] introduced SVNS as a subclass of NS to be applied in real scientific and engineering 

applications. The definition and operations of SVNSs are introduced below. 

Definition 1 [10]. Let X be a universal set. A SVNS D in X can be denoted as D = {<x, DT(x), DI(x), 

DF(x)>|x  X}, where DT(x), DI(x), DF(x) are the true, indeterminate, and false membership functions 

for any x  X, DT(x), DI(x), DF(x) [0, 1], and 0 ≤ DT(x) + DI(x) + DF(x) ≤ 3. 

Then, the basic element of SVNS d =<x, DT(x), DI(x), DF(x)> is simply denoted as the single-valued 

neutrosophic number (SVNN) d = <DT, DI, DF> for the convenient representation. 

Definition 2 [10]. Set two SVNSs as d1= <DT1, DI1, DF1> and d2 = <DT2, DI2, DF2>, then they follow the 

following operations. 

(1) d1  d2 if and only if DT1 ≤ DT2, DI1 ≥ DI2, DF1 ≥ DF2; 

(2) d1 = d2 if and only if d1  d2 and d2  d1; 

(3) d1c = <DF1, 1 − DI1, DT1> (Complement of d1); 

(4) d1d2 = <DT1DT2, DI1DI2, DF1DF2>; 

(5) d1  d2 = <DT1DT2, DI1DI2, DF1DF2>. 

Definition 3 [20]. Let D1 = {d11, d12, …, d1n} and D2 = {d21, d22, …, d2n} be two SVNSs, where d1i = <DT1i, 

DI1i, DF1i> and d2i = <DT2i, DI2i, DF2i> (i = 1, 2, …, n) are SVNNs. If the weight of d1i and d2i is specified by 

gi  [0, 1] with 
1

1
n

ii
g


 , the weighted generalized distance between D1 and D2 is defined as 

1/
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  for  > 0.       (1) 

Then, the above distance G(D1, D2) satisfies the following properties [20]: 

(A1) 0 ≤ G(D1, D2) ≤ 1; 

(A2) G(D1, D2) = 0 if and only if D1 = D2; 

(A3) G(D1, D2) = G(D2, D1); 

(A4) If D1  D2  D3 for the SVNS D3, then G(D1, D3) ≥ G(D1, D2) and G(D1, D3) ≥ G(D2, D3). 

In view of the complementary relationship between the similarity measure and the distance, the 

weighted generalized distance-based similarity measure of SVNSs is presented as bellows [20]: 
1/
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 . (2) 

Then, the weighted generalized distance-based similarity measure of SVNSs also implies the 

following properties [20]: 

(B1) 0 ≤ S(D1, D2) ≤ 1; 

(B2) S(D1, D2) = 1 if and only if D1 = D2; 

(B3) S(D1, D2) = S(D2, D1); 

(B4) If D1  D2  D3 for the SVNS D3, then S(D1, D2) ≥ S(D1, D3) and S(D2, D3) ≥ S(D1, D3). 

3. Netting Clustering and Slope Stability Evaluation Methods Using HSSM of SVNSs 

3.1. Netting Clustering Method Using HSSM of SVNSs 

Considering the weighted generalized distance of SVNSs, this section further proposes HSSM 

between SVNSs and its netting clustering method for SVNSs. 
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First, we propose HSSM of SVNSs. 

Definition 4. Let D1 = {d11, d12, …, d1n} and D2 = {d21, d22, …, d2n} be two SVNSs, where d1i = <DT1i, DI1i, 

DF1i> and d2i = <DT2i, DI2i, DF2i> (i = 1, 2, …, n) are SVNNs. If the weight of d1i and d2i is specified by gi  

[0, 1] with 
1

1
n

ii
g


 , the weighted HSSM between D1 and D2 is defined by 

1 2 1 2

1/
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1

( , ) 1 sinh{ln(1 2) ( , )}

ln(1 2)
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n
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 for  > 0. (3) 

Then, HSSM also contains the following properties: 

(C1) 0 ≤ H(D1, D2) ≤ 1; 

(C2) H(D1, D2) = 1 if and only if D1 = D2; 

(C3) H(D1, D2) = H(D2, D1); 

(C4) If D1  D2  D3 for the SVNS D3, then H(D1, D2) ≥ H(D1, D3) and H(D2, D3) ≥ H(D1, D3). 

Proof: The properties (C1)-(C3) are obviously true. Therefore, we only prove the property (C4). 

For D1  D2  D3, in view of the above properties of the distance measure G(D1, D2) for SVNSs, 

there are G(D1, D3) ≥ G(D1, D2) and G(D1, D3) ≥ G(D2, D3). Since the sinh(x) for x  [0, 1] is an 

increasing function, based on the compensatory relationship between the distance and the similarity 

measure, there are also H(D1, D2) ≥ H(D1, D3) and H(D2, D3) ≥ H(D1, D3). 

Hence, the proof is completed. 

In light of the proposed HSSM of SVNSs, we introduce a netting clustering method to cluster 

open-pit mine slopes in the environment of SVNSs. 

In a clustering problem of open-pit mine slops, D = {D1, D2, …, Dm} is a set of m slopes and Q = 

{q1, q2, …, qn} is a set of n impact factors (indices) of slope stability. The weight of each impact factor 

qi is gi subject to gi  [0, 1] and 
1

1
n

ii
g


 . 

Using the suitable true, indeterminate, and false membership functions (MFs) (see Table 2), the 

measurement values of the slope stability impact indices for each slope sample are fuzzed as the true, 

indeterminate, and false fuzzy values, which is constructed as the SVNS Dj = {dj1, dj2, … , djn}, where 

dji = <DTji, DIji, DFji> are SVNNs for DTji, DIji, DFji  [0, 1], j =1, 2, …, m, and i = 1, 2, …, n. 

In the clustering problem, the netting clustering method is used to cluster the open-pit mine 

slopes in the environment of SVNSs by the following steps: 

Step 1: Establish the hyperbolic sine similarity matrix H = (hji)m×m (i, j = 1, 2, …, m) through the 

similarity operations of Eq. (3) (usually taking   = 2 as a typical parameter value) subject to hji = 

H(Dj, Di), hjj = 1, and hji = hij. 

Step 2: Use the open-pit mine slope samples for replacing all the diagonal elements of the 

similarity matrix Y. 

Step 3: Construct the -cutting matrices H = (hji
)m×m corresponding to different confidence levels 

of  by the following formula: 

 
0,

   , 1,2,...,
1,

ji

ji

ji

h
h i j m

h







 


.                    (4) 

All “0” is deleted in the -cutting matrixes and “1” is replaced by “*”, and then draw the vertical 

and horizontal lines from “*” to the diagonal elements. The slope samples connected by the same “*” 

are constructed as a type corresponding to the confidence level . Update different confidence levels 

of  from big to small until the slope samples are clustered into the expected types. 

3.2. Slope Stability Evaluation Method 
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In terms of the above clustering results of slope samples with SVNS information, we don't know 

which type belongs to which risk grade/pattern. Therefore, we must give the stability evaluation of 

the slope samples to recognize the corresponding risk patterns/grades of the slope stability. To do so, 

this subsection needs to give a slope stability evaluation method in the setting of SVNSs. 

Based on the slope stability classification knowledge/experience, we can establish the expected 

slope stability patterns/risk grades expressed by their SVNSs Rk = {dk1, dk2, …, dkn} that are composed 

of the SVNNs dki = <DTki, DIki, DFki> for DTki, DIki, DFki  [0, 1] (k = 1, 2, …, p; i = 1, 2, …, n). Suppose that 

there is a set of m slope samples A = {A1, A2, …, Am} to require the risk evaluation of slope stability. 

Then, the slope samples can be represented by the SVNSs Dj = {dj1, dj2, …, djn} (j = 1, 2, …, m) that are 

composed of the SVNNs dji = <DTji, DIji, DFji> for DTji, DIji, DFji  [0, 1] (i = 1, 2, …, n).  

Regarding the risk evaluation issue of slope stability, the similarity measure between each slope 

sample Dj (j = 1, 2, …, m) and each slope stability pattern Rk (k = 1, 2, …, p) is given by the following 

formula: 
1/

1

ln(1 2)
( , ) 1 sinh

3

n

j k i Tji Tki Iji Iki Fji Fki

i

H D R g D D D D D D



  




                  
 for  > 0. (5) 

Based on the HSSM values of Eq. (5), we can utilize  *
1

( , ) Max ( , )j j kk k m
H D R H D R 

 
  to recognize 

that the stability grade of the slope sample Dj belongs to Rk*. 

4. Clustering Analysis and Stability Evaluation of Actual Open-Pit Mine Slopes 

4.1. Clustering Analysis of Actual Cases 

Table 1. Original data of 20 open-pit mine slope samples 

Dj q1 q2 q3 q4 q5 q6 

D1 62.0 47.0 32.0 0.115 43.6 29.1 

D2 40.0 55.0 31.0 0.0321 40.8 28.8 

D3 36.5 55.0 39.0 0.045 43.6 28.7 

D4 35.5 58.0 31.0 0.0273 39.2 28.9 

D5 66.0 57.0 40.0 0.0796 43.0 29.1 

D6 42.0 55.0 30.0 0.0157 37.6 29.1 

D7 43.5 54.0 33.0 0.0291 38.4 29.0 

D8 48.5 60.0 38.0 0.0522 40.5 29.2 

D9 46.5 57.0 40.0 0.0354 40.0 28.8 

D10 23.5 64.0 43.0 0.0285 39.8 29.0 

D11 59.5 71.0 37.0 0.0576 34.7 29.1 

D12 23.5 57.0 34.0 0.0125 31.4 28.9 

D13 25.0 65.0 48.0 0.0218 40.8 29.1 

D14 23.0 65.0 49.0 0.0141 43.7 28.9 

D15 18.0 70.0 41.0 0.0122 35.5 28.8 

D16 15.0 80.0 47.0 0.0074 37.8 29.2 

D17 16.5 70.0 60.0 0.0122 39.7 28.7 

D18 19.0 68.0 51.0 0.0103 37.1 28.9 

D19 17.0 70.0 60.0 0.0079 43.1 29.2 

D20 10.0 70.0 50.0 0.0044 34.7 29.1 
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In Zhejiang Province, China, many open-pit mines have slope instability problems, which will 

lead to a large number of economic losses and casualties. In order to reasonably classify and evaluate 

the slope stability, we collected 20 slope samples from field survey in Zhejiang Province. The slope 

height (q1), slope angle (q2), potential slip plane angle (q3), cohesion (q4), internal friction angle (q5), 

and rock density (q6) are considered as the 6 main impact factors of slope stability. The weight vector 

of the 6 impact factors is specified as g = (0.33, 0.22, 0.12, 0.1, 0.07, 0.16). In addition to the impact 

factors, we also collected the safety factor of each slope as the known knowledge/experience. The 

original data (six impact factors) of the 20 slope samples Dj (j = 1, 2, …, 20) is shown in Table 1. 

Table 2. True, indeterminate, and false MFs for impact factors 

Impact 

factor 

 MF  

DT DI DF 

q1 trapmf[0 0 15 80] trimf[15 30 80] trapmf[15 80 100 100] 

q2 trapmf[0 0 40 80] trimf[40 60 80] trapmf[40 80 100 100] 

q3 trapmf[0 0 20 60] trimf[20 40 60] trapmf[20 60 80 80] 

q4 
trapmf[0.01 0.045 0.060 

0.060] 
trimf[0.01 0.0265 0.045] trapmf[0 0 0.01 0.045] 

q5 trapmf[30 50 60 60] trimf[30 40 50] trapmf[0 0 30 50] 

q6 trimf[28.7 28.7 29.2] trimf[28.8 28.9 29] trapmf[28.7 29.2 29.5 29.5] 

Table 3. SVNSs of 20 open-pit mine slope samples 

Dj q1 q2 q3 q4 q5 q6 

D1 <0.28,0.4,0.723> (0.825,0.35,0.175) (0.7,0.6,0.3) (0,0,0) (0.68,0.64,0.32) (0.2,0,0.8) 

D2 (0.615,0.889,0.385) (0.625,0.75,0.375) (0.725,0.55,0.275) (0.631,0.697,0.369) (0.54,0.92,0.46) (0.8,0,0.2) 

D3 (0.669,0.967,0.331) (0.625,0.75,0.375) (0.525,0.95,0.475) (1,0,0) (0.68,0.64,0.32) (1,0,0) 

D4 (0.685,0.989,0.315) (0.55,0.9,0.45) (0.725,0.55,0.275) (0.494,0.957,0.506) (0.46,0.92,0.54) (0.6,1,0.4) 

D5 (0.215,0.311,0.785) (0.575,0.85,0.425) (0.5,1,0.5) (0,0,0) (0.65,0.7,0.35) (0.2,0,0.8) 

D6 (0.585,0.844,0.415) (0.625,0.75,0.375) (0.75,0.5,0.25) (0.163,0.345,0.837) (0.38,0.76,0.62) (0.2,0,0.8) 

D7 (0.562,0.811,0.438) (0.65,0.7,0.35) (0.675,0.65,0.325) (0.546,0.859,0.454) (0.42,0.84,0.58) (0.4,0,0.6) 

D8 (0.485,0.7,0.515) (0.5,1,0.5) (0.55,0.9,0.45) (1,0,0) (0.525,0.95,0.475) (0,0,1) 

D9 (0.515,0.744,0.485) (0.575,0.85,0.425) (0.5,1,0.5) (0.726,0.52,0.274) (0.5,1,0.5) (0.8,0,0.2) 

D10 (0.869,0.425,0.131) (0.4,0.8,0.6) (0.425,0.85,0.575) (0.529,0.892,0.471) (0.49,0.98,0.51) (0.4,0,0.6) 

D11 (0.315,0.456,0.685) (0.225,0.45,0.775) (0.575,0.85,0.425) (1,0,0) (0.235,0.47,0.765) (0.2,0,0.8) 

D12 (0.869,0.425,0.131) (0.575,0.85,0.425) (0.65,0.7,0.35) (0.071,0.152,0.929) (0.07,0.14,0.93) (0.6,1,0.4) 

D13 (0.846,0.5,0.154) (0.375,0.75,0.625) (0.3,0.6,0.7) (0.337,0.715,0.663) (0.54,0.92,0.46) (0.2,0,0.8) 

D14 (0.877,0.4,0.123) (0.375,0.75,0.625) (0.275,0.55,0.725) (0.117,0.248,0.883) (0.685,0.63,0.315) (0.6,1,0.4) 

D15 (0.954,0.15,0.046) (0.25,0.5,0.75) (0.475,0.95,0.525) (0.063,0.133,0.937) (0.275,0.55,0.725) (0.8,0,0.2) 

D16 (1,0,0) (0,0,1) (0.325,0.65,0.675) (0,0,1) (0.39,0.78,0.61) (0,0,1) 

D17 (0.977,0.075,0.023) (0.25,0.5,0.75) (0,0,1) (0.063,0.133,0.937) (0.485,0.97,0.515) (1,0,0) 

D18 (0.938,0.2,0.062) (0.3,0.6,0.7) (0.225,0.45,0.775) (0.009,0.018,0.991) (0.355,0.71,0.645) (0.6,1,0.4) 

D19 (0.969,0.1,0.031) (0.25,0.5,0.75) (0,0,1) (0,0,1) (0.655,0.69,0.345) (0,0,1) 

D20 (1,0,0) (0.25,0.5,0.75) (0.25,0.5,0.75) (0,0,1) (0.235,0.47,0.765) (0.2,0,0.8) 
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Figure 1. MFs of 6 impact factors 

First, we chose appropriate true, indeterminate, and false MFs to fuzzify each impact factor in 

Table 1 into the form of SVNN. The different MFs for impact factors are shown in Table 2, then Figure 

1 shows the curves of 18 MFs for six impact factors. Thus, the data (six impact factors) of the 20 slope 

samples Dk (k = 1, 2, …, 20) are fuzzified into SVNNs, which are given in Table 3. 

Then, we use the proposed netting clustering method to classify the 20 slope samples with SVNS 

information. By the clustering analysis based on Eqs. (3) and (4) for  = 2, the similarity matrix is 

obtained and shown in Figure 2, and then the slope samples are classified into 4 types when we 

specify the interval range 0.88899    1, which are shown in Figure 3. Obviously, the set of slope 

samples {D1, D5, D11} is classified into the same type; the set of slope samples {D2, D3, D4, D6, D7, D8, 

D9} is classified into the same type; the set of slope samples {D10, D12, D13, D14} is classified into the 

same type; the set of slope samples {D15, D16, D17, D18, D19, D20} is classified into the same type. 
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Figure 2. The 20×20 similarity matrix H 

 

 

Figure 3. Netting clustering analysis results based on the proposed HSSM 

Although the above 20 slope samples are clustered into the four types of slope stability, we don't 

know which type belongs to which risk grade/pattern. In this case, we must give the stability 

evaluation of the 20 slope samples to recognize the corresponding risk patterns/grades of the slope 

stability. 

4.2. Clustering Analysis of Actual Cases 

According to the above clustering results of the 20 slope samples, there are the four risk 

patterns/grades. Based on the risk knowledge/experience of the open-pit mine slope stability, we can 

establish the slope stability four risk patterns/grades: stability (R1), basic stability (R2), relative 

stability (R3), and instability (R4), which are expressed by SVNNs in Table 4. 

In view of SVNNs in Table 4, we can give the following SVNSs of the four risk patterns/grades: 
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R1 = {d11, d12, d13, d14, d15, d16} = {<0.25, 0.36, 0.75>, <0.81, 0.38, 0.19>, <0.88, 0.25, 0.13>, <0.78, 0.42, 

0.15>, <0.88, 0.25, 0.13>, <0.2, 0, 0.8>}; 

Table 4. Risk patterns of slope stability in the setting of SVNNs 

qi 
R1 R2 R3 R4 

DT1i DI1i DF1i DT2i DI2i DF2i DT3i DI3i DF3i DT4i DI4i DF4i 

q1 0.25 0.36 0.75 0.56 0.81 0.44 0.74 0.83 0.26 0.9 0.34 0.1 

q2 0.81 0.38 0.19 0.59 0.83 0.41 0.38 0.75 0.63 0.13 0.25 0.88 

q3 0.88 0.25 0.13 0.63 0.75 0.38 0.43 0.85 0.58 0.18 0.35 0.83 

q4 0.78 0.42 0.15 0.56 0.84 0.39 0.33 0.7 0.64 0.09 0.2 0.9 

q5 0.88 0.25 0.13 0.63 0.75 0.38 0.38 0.75 0.63 0.13 0.25 0.88 

q6 0.2 0 0.8 0.5 0.5 0.38 0.7 0.5 0.3 0.9 0 0.1 

 

R2 = {d21, d22, d23, d24, d25, d26} = {<0.56, 0.81, 0.44>, <0.59, 0.83, 0.41>, <0.63, 0.75, 0.38>, <0.56, 0.84, 

0.39>, <0.63, 0.75, 0.38>, <0.5, 0.5, 0.38>}; 

R3 = {d31, d32, d33, d34, d35, d36} = {<0.74, 0.83, 0.26>, <0.38, 0.75, 0.63>, <0.43, 0.85, 0.58>, <0.33, 0.7, 

0.64>, <0.38, 0.75, 0.63>, <0.7, 0.5, 0.3>}; 

R4 = { d41, d42, d43, d44, d45, d46} = {<0.9, 0.334, 0.1>, <0.13, 0.25, 0.88>, <0.18, 0.35, 0. 83>, <0.09, 0.2, 0.9>, 

<0.13, 0.25, 0.88>, <0.9, 0, 0.1>}. 

Table 5. Results of the proposed HSSM 

Dj H(Dj, R1) H(Dj, R2) H(Dj, R3) H(Dj, R4) Risk grade 

D1 0.896665 0.703826 0.608403 0.517216 R1 

D2 0.677753 0.891382 0.823401 0.640984 R2 

D3 0.607045 0.812724 0.788762 0.615625 R2 

D4 0.583422 0.869008 0.838668 0.550995 R2 

D5 0.796918 0.734908 0.657685 0.515831 R1 

D6 0.732703 0.851046 0.792102 0.617296 R2 

D7 0.732119 0.916111 0.813484 0.60338 R2 

D8 0.70132 0.793529 0.72165 0.513288 R2 

D9 0.670875 0.87848 0.816791 0.637876 R2 

D10 0.620938 0.787465 0.836347 0.7285 R3 

D11 0.775396 0.696152 0.676804 0.617519 R1 

D12 0.547174 0.758627 0.764204 0.734565 R3 

D13 0.644711 0.759293 0.834798 0.73285 R3 

D14 0.537107 0.731683 0.809379 0.775532 R3 

D15 0.508192 0.640297 0.742197 0.856468 R4 

D16 0.480595 0.496986 0.578814 0.734005 R4 

D17 0.446757 0.560614 0.655778 0.842855 R4 

D18 0.483972 0.646724 0.742483 0.794429 R4 

D19 0.530704 0.551393 0.606451 0.740304 R4 

D20 0.549504 0.570076 0.651012 0.786229 R4 
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Then, the slope stability of the 20 slope samples Dj (j = 1, 2, …, 20) is assessed by Eq. (5) for  = 2, 

and the HSSM values between the slope samples Dj and the slope stability risk patterns Rk (k = 1, 2, 3, 

4) are given in Table 5. The maximum measure value between Dj and Rk reflects the corresponding 

slope stability risk pattern/grade. From the evaluation results, it can be found that the four types of 

the 20 slope samples obtained by the proposed clustering method are consistent with the four risk 

patterns/levels: 

(i) The set of slope samples {D1, D5, D11} is the risk grade R1; 

(ii) The set of slope samples {D2, D3, D4, D6, D7, D8, D9} is the risk grade R2; 

(iii) The set of slope samples {D10, D12, D13, D14} is the risk grade R3; 

(iv) The set of slope samples {D15, D16, D17, D18, D19, D20} is the risk grade R4.  

The above results prove the accuracy and validity of the proposed netting clustering method 

and the proposed evaluation method for the 20 slope samples. 

4.3. Comparative Analysis 

Regarding comparative analysis, we use the weighted generalized distance-based similarity 

measure of Eq. (2) [20] to assess the stability risk grades of the 20 slope samples. All the evaluation 

results are given in Table 6. It is obvious that the risk grade of each slope sample assessed by Eq. (2) 

for  = 2 [20] is the same as that evaluated by the proposed HSSM of SVNSs. Therefore, the slope 

stability evaluation method using the proposed HSSM of SVNSs verifies its effectiveness and 

accuracy in the open-pit mine slope stability evaluation problems. 

Table 6. Evaluation results based on Eq. (2) 

Dj S(Dj, R1) S(Dj, R2) S(Dj, R3) S(Dj, R4) Risk grade 

D1 0.884997 0.671241 0.56761 0.471864 R1 

D2 0.641967 0.87775 0.801116 0.603543 R2 

D3 0.568019 0.792424 0.765862 0.578501 R2 

D4 0.54286 0.852145 0.818222 0.507299 R2 

D5 0.77512 0.706827 0.62318 0.470381 R1 

D6 0.703056 0.833838 0.76785 0.577951 R2 

D7 0.70058 0.905584 0.790263 0.561491 R2 

D8 0.667514 0.771982 0.694343 0.471249 R2 

D9 0.635115 0.863307 0.793656 0.60041 R2 

D10 0.581658 0.761448 0.816313 0.699008 R3 

D11 0.751333 0.662475 0.643164 0.581591 R1 

D12 0.505493 0.732561 0.735527 0.709053 R3 

D13 0.608234 0.730184 0.815707 0.704047 R3 

D14 0.493782 0.700375 0.785899 0.753015 R3 

D15 0.463014 0.602347 0.712527 0.838671 R4 

D16 0.440282 0.455418 0.539813 0.707829 R4 

D17 0.402051 0.519151 0.619739 0.823512 R4 

D18 0.439269 0.609585 0.712951 0.772755 R4 

D19 0.491309 0.510861 0.568517 0.715473 R4 

D20 0.511998 0.528949 0.614943 0.76203 R4 
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5. Conclusions 

The paper proposed HSSM of SVNSs and established its netting clustering analysis and risk 

evaluation methods for open-pit mine slopes in the scenario of SVNSs. Then, the proposed netting 

clustering analysis and risk evaluation methods were used for the clustering analysis and risk 

evaluation of open-pit mine slopes. In the applications of the clustering analysis and risk evaluation 

methods of slope samples, they contain the following techniques. First, appropriate true, 

indeterminate, and false membership functions for the impact factors of slope stability were fuzzified 

into the true, indeterminate, and false fuzzy values, which are constructed as the form of SVNNs. 

Then, the proposed netting clustering method based on the proposed HSSM was used to cluster the 

slope samples. Further, based on the clustering results and risk knowledge of slope stability, we gave 

the corresponding risk patterns/grades to evaluate the risk grades of slope stability by the HSSM 

values between the slope samples and the slope stability patterns in the scenario of SVNSs. Finally, 

the proposed netting clustering analysis and risk evaluation methods were applied to the clustering 

analysis and risk evaluation of 20 slope samples. The comparative results proved the accuracy, 

validity and rationality of the proposed netting clustering analysis and risk evaluation methods.  

The main advantage of this study is that the proposed clustering method and the slope stability 

assessment approach can simply and effectively process the clustering analysis and evaluation 

problems of open-pit mine slopes; while the existing evaluation methods using ANN, ANFIS, and 

SVNANFIS [2, 4, 9] imply the defects of both the complex learning algorithms and the requirement 

of larger-scale sample data. It is obvious that the proposed methods effectively overcome the defects 

of the existing evaluation methods [2, 4, 9] and are more convenient and more reasonable than the 

existing clustering analysis and evaluation methods [1-4]. 

Regarding future research, more slope samples and more impact factors will be considered to 

further verify the accuracy and efficiency of the proposed clustering and evaluation methods. Then, 

new similarity measures and clustering and evaluation methods will be further proposed to make 

their clustering and evaluation methods more effective and reasonable in the setting of SVNSs. 
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Abstract. On the one hand, the most extensively used Hierarchical Clustering techniques are the Hierarchical

Divisive Clustering (HDC) algorithms such as DIANA. Its primary goal is to build the tree of Hierarchical

Agglomerative Clustering (HAC) in reverse order. On the other hand, Neutrosophy is an extension of fuzzy

logic and serves as a model of uncertainty. In addition to the truth (T) and falsity (F) elements of fuzzy

logic, single-valued Neutrosophic sets (SVNs) logic estimates the proportion of indeterminacy (I) for a given

proposition. In this work, we propose a Neutrosophic Logic-based DIANA Clustering algorithm. Indeterminacy

is added to the DIANA hierarchical clustering algorithm using single-valued Neutrosophic sets (SVNs). The

suggested algorithm is named Neutro-DIANA (Neutrosophic DIANA) and is broken down into numerous steps.

The experimental findings show that the suggested technique for dealing with indeterminacy is effective.

Keywords: Hierarchical Divisive Clustering (HDC), DIANA, Neutrosophic, Indeterminacy, Neutro-DIANA.

—————————————————————————————————————————-

1. Introduction

Clustering is a subsection of unsupervised learning, which is one of the four basic subcate-

gories of machine learning techniques. Clustering, as a learning method, is useful in numerous

domains, including market segmentation [1], customer regrouping [2], Big data analysis [3],

image processing [4], and so on. Clustering algorithms are classified into four types [5]: (1)

K-means and K-medoids for partitioning. (2) Density-based approaches such as DBSCAN

and OPTICS. (3) Model-based approaches like SOM and EM. (4) AGNES (AGglomerative

NESting) and DIANA (DIvisive ANAlysis) are hierarchical approaches.

The method of organizing data points inside clusters is known as hierarchical clustering.

Hierarchical clustering may be done in two ways: agglomerative (bottom-up) and divisive (top-

down). In contrast to the Agglomerative method, the Divisive method Hierarchical Clustering

starts with a single cluster that contains all entities, then divides the instances into a hierarchy
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of smaller and smaller clusters until each cluster contains just one entity or a predefined amount

of entities.

Numerous hierarchical clustering techniques that use the divisive approach include

TWINSPAN (Two-Way Indicator Species Analysis), MONA (divisive hierarchical MONothetic

Analysis), and DIANA (DIvisive hierarchical ANAlysis). The most well-known and effective

algorithm is DIANA. It is a polythetic divisive method that works with any matrix of dissimi-

larities. It attempts to combine a collection of data items that are comparable to one another

into a single cluster, while dissimilar data objects are connected with other clusters [6].

The DIANA method creates a hierarchy of sub-clusters starting with a single cluster con-

taining all n items. The greatest diameter cluster is split at each stage until there is just one

element in each cluster. To achieve this, the algorithm looks for the element in the chosen

cluster that differs from other elements on average by the most. The algorithm then reassigns

items that are more closely related to the ”splinter group” than to the ”old group” in succeed-

ing phases once the ”splinter group” has been chosen. Two new clusters are the outcome. The

greatest distance between items in the two sub-clusters determines the distance between the

clusters. The average of all 1−d(i), or d(i), is the diameter of the final group including element

i divided by the diameter of the whole dataset. This is known as the divisive coefficient (DC).

As previously stated, the DIANA algorithm was designed to cope with crisp numbers, and

any data issues should be addressed during the data preparation phase. However, many

real-world situations are imprecise and unclear, and their data contains impurities such as

imprecision, uncertainty, and so on. As an extension of fuzzy logic, Neutrosophic [7], [8]. is

proposed to cope with these information flaws. To achieve this, the Neutrosophic provides

a new parameter termed indeterminacy membership (I) in addition to the two values of the

fuzzy logic, degree of truth-membership (T ) and falsity-membership (F ).

In this study, we develop the Neutrosophic set (SVNs)-based Clustering approach to address

the shortcoming of fuzzy logic (sets, IFSs, and IVIFSs)-based clustering algorithms, which

are unable to capture inconsistent information that corresponds to the real-world data. In

a Neutrosophic setting, each element’s truth, falsity, and indeterminacy (T, F, I) values are

computed to identify whether or not it belongs to any given cluster. Considered to be a

neutrosophic component, e is expressed as e(T, F, I). The input data is initially subjected to a

neutrosophic real problem formulation. This step’s output is sent into the neutrosophic-based

DIANA clustering method.

As you can see from this introduction, we get right into the research issue without debating

the rationale for the method’s selection, the necessity of the hybridization, etc. We would

like to let you know that this study is a successor to a paper we wrote on a cutting-edge

topic called neutrosophic and machine learning [9]. In that paper, we documented all hybrid
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machine learning algorithms that used Single-valued Neutrosophic Sets (SVNs) approaches,

and we subsequently created a taxonomy of Neutrosophic Machine Learning algorithms. In

other words, we have a list of the algorithms that have previously been used, and more details

are provided in [9]. In this paper, we will concentrate on the Neutrosophic-based hierarchical

clustering approach.

The rest of this paper is structured as follows: Section II delves into the background and

preliminaries. The proposed Neutro-DIANA algorithm is explained in detail in Section III,

while the experiments and insightful discussion of the findings are provided in Section VI.

Lastly, Section VI brings this study to a close and proposes some future research areas.

1.1. Related works

The image segmentation technique was enhanced by Qureshi et al. [6] utilizing K-Means

Clustering with Neutrosophic Logic. The technique entails converting an image into a neutro-

sophic collection. The neutrosophic-based k-means approach is used to segment neutrosophic

images, and SVNs are used to quantify the indeterminacy in pixels of an image. To tackle

the ambiguous and inconsistent information that the fuzzy is unable to handle, Vandhana et

al. [10] adopted neutrosophic fuzzy hierarchical clustering. The method is used to analyze

and pinpoint regions where illnesses like dengue fever are influenced by environmental and

climatic factors. As an extension of the hierarchical clustering method, Sahin [11] presented a

single-valued neutrosophic hierarchical clustering technique for clustering SVNSs. The tech-

nique was further expanded to categorize interval neutrosophic data. Ye [12] presented the

single-valued neutrosophic minimum spanning tree (SVNMST) clustering technique as an ex-

tension of the intuitionistic fuzzy minimum spanning tree (IFMST) clustering algorithm. The

approach is based on the generalized distance measure of SVNSs. H2D-FCM is a Fuzzy-based

divisive hierarchical clustering technique introduced by Bordogna and Pasi [13]. It automati-

cally estimates the number of clusters to produce and then divides the node into sub-clusters

using the probabilistic Fuzzy C Means method. In Ding’s study [14], Ding et al. addressed

the most important topic in Hierarchical clustering algorithms: choosing the appropriate next

cluster(s) to divide or merge. They determined that the average similarity approach is the

best for divisive clustering and MinMaxmis the best for agglomerative clustering. In another

study, Ye [15] introduced clustering algorithms for SVNs using distance-based similarity met-

rics in another study (Single-Valued Neutrosophic Sets). To meet the aforementioned goals,

we present a novel Neutrosophic Hierarchical Divisive Clustering algorithm (n-DIANA), based

on a divisive approach.
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2. Background

2.1. Single valued neutrosophic set (SVNS)

Smarandache’s notion of the neutrosophic set [8] is challenging to transfer in a genuine

application and engineering challenge. As a result, Wang et al. [16, 17] established the neu-

trosophic set notions of SVNS (single-valued neutrosophic set) and INS (interval neutrosophic

set). To execute the necessary calculus, various mathematical operations in a neutrosophic

context, such as euclidean distance, average, minimum maximum, and so on, must be defined.

Definition 2.1. Consider X to be a universe discourse and A1 to be a single valued neutro-

sophic set over X. A1 takes the following form:

A1 = {〈x, µA1(x), ωA1(x), νA1(x)〉 : x ∈ X}. (1)

where µA1 : X → [0, 1], ωA1 : X → [0, 1], and νA1 : X → [0, 1], with the constraint

0 ≤ µA1(x) + ωA1(x) + νA(x) ≤ 3, ∀x ∈ X
The values µA1(x), ωA1(x), and νA1(x) represent the degree of truth-membership,

indeterminacy-membership and falsity-membership of x to X respectively.

Definition 2.2. For below, consider tow SVN measurements A1 and A2, where A1 =

{〈x, µA1(x), ωA1(x), νA1(x)〉 : x ∈ X}, A2 = {〈x, µA2(x), ωA2(x), νA2(x)〉 : x ∈ X}
The fundamental arithmetic operations are as follows:

A1 +A2 = {〈x, µA1(x) + µA2(x)− µA1(x)µA2(x), ωA1(x)ωA2(x), νA1(x)νA2(x)〉 : x ∈ X} (2)

λA1 = {〈x, 1− (1− µA1(x))λ, (ωA1(x))λ, (νA1(x))λ〉 : x ∈ X and λ ≥ 0}. (3)

2.2. DIANA (DIvisive ANAlysis)

DIANA [18–20] is a hierarchical clustering strategy that groups items into multiple clusters,

each of which contains elements that are similar to one another. The clustering method DIANA

utilized in this study may be summed up as follows:

• Step 1: At first, DIANA assumes that all n observations are contained within a single

cluster.

• Step 2: Divide the Clusters again and again until each cluster has just one observation.

– Choose the pair of clusters with the greatest dissimilarity in the current cluster,

which is {ζr}, and {ζs}, in which d({ζr}, {ζs}) = max{d(ζi, ζj)0≤i,j≤n}.
– The cluster is divided into (zetas) and (zetar) clusters to generate the following

clusters.

• Step 3: If all clusters are made up of a single element, break; otherwise, continue to

step 2.
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In comparison to Agglomerative Hierarchical Clustering, divisions in the DIANA technique

are based on average distance and cophenetic distance, which are equivalent to average linkage

and full linkage, respectively. The mean distance between the cluster centroid and the other

objects is computed by taking the average of the Euclidean distances between the cluster

centroid and each item.

Consider Θ = {Ai, i = 1 . . . n} as the space of n observations, and ζ as the cluster’s center;

Eq. 4 gives the average distance between ζ and other objects.

Mean(d(ζ,Θ\ζ)) =
1

|Θ\ζ|
∑

∀Ai∈Θ\ζ

d(ζ,Ai) (4)

3. Neutro-DIANA proposed method

Neutrosophic Clustering is based on the Single-valued Neutrosophic sets (SVNs) technique,

in which data points belong to several clusters with membership degrees in the range [0, 1].

Definition . The neutrosophic DIANA algorithm is a clustering algorithm that uses neutro-

sophic logic principles and neutrosophic sets. It uses SVNs-based operations in the calculation

of its clustering algorithm.

3.1. Neutrosophic Set Formation

Assume a dataset comprises a collection of n SVNs denoted Θ, where Θ = {Ai/1 ≤ i ≤ n}
is defined in a universe of discourse X in the SVNs environment, and each object is expressed

as : Let x be a vector in an n-dimensional real space Rn (the fea- ture space) and let C=c1,

c2, ..., cc, be a set of class labels. A neutrosophic classifier is mapping of the type:

ψ : Rn −→ {TC(x), IC(x),FC(x)|x ∈ Rn} (5)

ψ : Rn −→ {TC(x), IC(x),FC(x)|x ∈ Rn} (6)

Let x be a vector in the n-dimensional features space Rn, and C = {c1, c2, · · · , cc} , be a

collection of class labels. A neutrosophic classifier is a sort of mapping:

Ai = {〈xj , µAi(xj), ωAi(xj), νAi(xj)〉 : xj ∈ X}. (7)

We generate the Neutrosophic Distance matrix-nD0 using SVNS similarity and/or dissimi-

larity measurements ((8)), as indicated in the table (1) below.

3.2. The similarity in Neutrosophic environment

Definition 3. Euclidean Neutrosophic distance. In the Neutrosophic environment, the mapping

form of euclidian distance applied to A1 and A2 (two SVNSs) is as follows:
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Table 1. Neutrosophic Distance matrix-nD0

x1 · · · xn

A1 〈µA1(x1), ωA1(x1), νA1(x1)〉 · · · 〈µA1(xn), ωA1(xn), νA1(xn)〉
· · · · · · · · · · · ·
Am 〈µAm(x1), ωAm(x1), νAm(x1)〉 · · · 〈µAm(xn), ωAm(xn), νAm(xn)〉

deucl =

√√√√1

3

n∑
i=1

∑
f=(µ,ω,ν)

(fA1(x)− fA2(x))2 (8)

where µ, ω and ν are Neutrosophic membership functions.

Definition 4. Similarity and/or dissimilarity of SVNSs measurements. The similarity measure

Smes between A1 and A2 based on max and min operators, as described by [21], is defined as

follows :

Smes =
1

3

n∑
i=1

∑
f=(µ,ω,ν) min(fA1(x), fA2(x))∑
f=(µ,ω,ν) max(fA1(x), fA2(x))

(9)

The following is the definition of the dissimilarity measure:

DISmes = 1− Smes (10)

3.3. nDIANA algorithm

Let {Ai//i = 1 . . . n} be a collection of n SVNs nDIANA consists on three main steps.

The nDIANA method starts by treating all n objects as a single cluster levelL(mc = 0) =

Θ object. Using the dissimilarity measures (9), elements Ai are then pairwise compared

among themselves, and then separated into two sub-clusters with sub-levels L(mc+1 = 0), and

L(mc+2 = 0) , respectively, based on the clusters’ furthest (with maximum mean distance)

sub-clusters. The subdividing operation is repeated until all clusters have a single-single item.

That is, each obtained cluster has a size of 1. In each stage, we reapply the treatment on each

sub-cluster recursively, and the distance between the object and the sub-cluster is taken as the

average distance between the object and all components of the sub-cluster.

Step 1 : Calculate the similarity and/or dissimilarity measurements of SVNs using equations

Eq.9 and/or Eq.10, and then create the Neutrosophic Distance matrix-nD0 (Table 1).

Step 2 : Each stage of the divisive algorithm requires a decision on which cluster to split. To

do this, we compute the diameter as indicated in

diam(Q) = maxj∈Q,h∈Qd(Aj , Ah) (11)

A. Elhassouny, Neutrosophic Logic-based DIANA Clustering algorithm

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               503



In a loop, choose just the element Aj with the greatest mean dissimilarity to all other elements

in the same cluster.

d(Ai,Θ\Ai) =
1

|Θ| − 1

∑
j 6=i

d(Ai, Aj) (12)

Θnew = Θold\Ai

Θ̄new = Θ̄,old ∪Ai

d(Ai,Θ\Ai)− d(Ai, Θ̄) =
1

|Θ| − 1

∑
j∈Θ,j 6=i

d(Ai, Aj)−
1

|Θ̄|
∑
h∈Θ̄

d(Ai, Ah) (13)

Θ̄ is the complement of Θ.

Step 3 : If all clusters contain only one observation, the procedure is complete; otherwise, go

to step 2 using the sub-clusters formed in the previous iteration.

4. Results and Discussion

To demonstrate the usefulness of the proposed Neutrosophic DIANA method, an experiment

was conducted on both the simulated and real-world datasets. For the purpose of comparison,

we use the numeric example introduced by Sahin in [11]. In this case, dataset consists on five

objects Ai with 1 ≤ i ≤, universe of discourse is X = {x1, x2, x3, x4, x5, x6, x7, x8}.

Table 2. Neutrosophic Set Formation Example

x1 x2 x3 x4 x5 x6 x7 x8

A1 0.2 0.05 0.5 0.1 0.15 0.8 0.5 0.05 0.3 0.9 0.55 0.0 0.4 0.4 0.35 0.1 0.4 0.9 0.3 0.15 0.5 1.0 0.6 0.0

A2 0.5 0.6 0.4 0.6 0.3 0.15 1.0 0.6 0.0 0.15 0.05 0.65 0.0 0.25 0.8 0.7 0.65 0.15 0.5 0.5 0.5 0.65 0.05 0.2

A3 0.45 0.05 0.35 0.6 0.5 0.3 0.9 0.05 0.0 0.1 0.6 0.8 0.2 0.35 0.70 0.6 0.4 0.2 0.15 0.05 0.8 0.2 0.6 0.65

A4 1.0 0.65 0.0 1.0 0.25 0.0 0.85 0.65 0.1 0.2 0.05 0.8 0.15 0.3 0.85 0.1 0.6 0.7 0.3 0.6 0.7 0.5 0.35 0.7

A5 0.9 0.2 0.0 0.9 0.4 0.0 0.8 0.05 0.1 0.7 0.45 0.2 0.5 0.25 0.15 0.3 0.3 0.65 0.15 0.1 0.75 0.65 0.5 0.8

The nDIANA algorithm begins with all observations as a single cluster, L(mc = 0) =

{Ai/1 ≤ i ≤ 5}, with 5 is the number of observations.

Utilize (Eq. (9), Eq.(10) to calculate the similarity and dissimilarity measures of SVNSs,

and then construct Neutrosophic Distance matrix-nD0 (table 3).

To determine the similarity and dissimilarity measurements of SVNSs, use the equations (

(Eq. (9), Eq.(10)), and then create the Neutrosophic Distance matrix-nD0 (table 3).

Next, use Eq. (12), Eq.(13) to compute the average distance between each element and

every other element.
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Table 3. Distance matrix–nD0

A1 A2 A3 A4 A5 Mean

A1 0.000 0.661 0.563 0.636 0.508 0.474

A2 0.661 0.000 0.438 0.357 0.596 0.410

A3 0.563 0.438 0.000 0.469 0.433 0.381

A4 0.636 0.357 0.469 0.000 0.416 0.376

A5 0.508 0.596 0.433 0.416 0.000 0.390

Select the element with the highest distance mean, in this case (A1), which is 0.474. As a

result, the cluster {A1}’s maximum distance from other data points is 0.474. However, before

deciding to split, we must first determine which elements are closest to each new cluster. To

do this, we must compute the mean distance between each element using the formulasL(mc =

1) = {A1} and L(mc = 2) = {Θ\A1} as given in the table 4.

Table 4. Distance matrix-nD01 of each observation with each cluster

{A1} {A2, A3, A4, A5}
A1 0.000 0.592

A2 0.661 0.348

A3 0.563 0.335

A4 0.636 0.310

A5 0.508 0.361

Thus, the single cluster L(mc = 0) = Θ is split into tow clusters L(mc = 1) = {A1} and

L(mc = 2) = Θ\A1. With a new sub-cluster, L(mc = 2), we carry out the identical processes

once more to get a new distance matrix-nD2 (able 5).

Table 5. Distance matrix – nD02

A2 A3 A4 A5 Mean

A2 0.000 0.438 0.357 0.596 0.348

A3 0.438 0.000 0.469 0.433 0.341

A4 0.357 0.469 0.000 0.416 0.310

A5 0.596 0.433 0.416 0.000 0.361

From table 5 the maximum of mean distances is between A5 and the rest at distance 0.361.

Then, L(mc = 2) = {A2, A3, A4, A5} is split into clusters, L(mc = 3) = {A2, A3, A4}, and

L(mc = 4) = {A5} at a distance 0.361.

To cross check the stability of each gotten cluster L(mc = 3) and L(mc = 4), we examine

the closeness of each element to both obtained cluster (table 6).
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Table 6. Distance matrix-nD02 of each observation with each cluster

{A2, A3, A4} {A5}
A2 0.265 0.596

A3 0.302 0.433

A4 0.275 0.416

A5 0.482 0.000

The sub-cluster L(mc = 3) = {A2, A3, A4} obtained from previous splitting need to be

treated, and its Distance matrix–nD03 (see table 7).

Table 7. Distance matrix–nD03

A2 A3 A4 Mean

A2 0.000 0.438 0.357 0.265

A3 0.438 0.000 0.469 0.302

A4 0.357 0.469 0.000 0.275

The maximum of mean distances is between A3 and the rest of elements at distance 0.302.

Then, the L(mc = 3) = {A2, A3, A4} is split into clusters, L(mc = 5) = {A2, A4}, and

L(mc = 6) = {A3} at a distance 0.302.

Table 8. Distance matrix-nD03 of each observation with each clusters

{A2, A4} {A3}
A2 0.179 0.438

A3 0.454 0.000

A4 0.179 0.469

Finally, because the remain cluster L(mc = 5) = {A2, A4} contains only two elements, it

is divided into L(mc = 7) = {A2} and L(mc = 8) = {A4} at distance 0.357 and creates the

single–single object in all clusters. As a result, the Neutrosophic Divisive Analysis Clustering

(nDIANA) with Neutrosophic computation is terminated.

Here, we outline the specifics of the entire splitting process as implemented by our nDIANA

suggested method.

At the beginning Θ = {Ai/1 ≤ i ≤ 5}, all elements are in the same cluster

{A1, A2, A3, A4, A5}.
The farthest dissimilarity measure is of A1 (Eq.14).

d(A1,Θ\A1) = max{d1≤i≤5(Ai,Θ\Ai)} (14)
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which is 0.474 terminates {A1, A2, A3, A4, A5} is split into tow clusters : {A1}and

{A2, A3, A4, A5}.
The farthest dissimilarity measure in gotten sub-cluster is of A5 (Eq.15).

d(A5,Θ\{A1, A5}) = max{d2≤i≤5(Ai,Θ\{Ai, A1})} (15)

which is 0.361, then {A2, A3, A4, A5} are split into tow clusters : {A2, A3, A4} and {A5}.
The farthest dissimilarity measure in gotten sub-cluster is of A3 (Eq.16).

d(A3,Θ\{A1, A5, A3}) = max{di=2,4(Ai,Θ\{Ai, A1, A5})} (16)

which is 0.302, then {A2, A3, A4} are split into tow clusters : {A2, A4} and {A3}.
There are only two elements left {A2, A4}, the distance between them is 0.357, and in this

case the subdivision is automatic to two clusters which are: {A2} and {A4}.
By the end, put all the results together we get :

first ((A1), A2, A3, A4, A5),

next ((A1), (A2, A3, A4, (A5))),

then ((A1), (((A2, A4), (A3)), (A5))),

finally ((A1), ((((A2), (A4)), (A3)), (A5))).

Each and every machine learning method is designed to tackle learning issues involving crisp

numbers. However, all data sources produce inaccurate, imprecise, and ambiguous data that

has numerous other flaws. A broad framework is provided by the single-valued Neutrosophic

set (SVNs), an extension of the fuzzy logic set, to describe and model uncertain, imperfect, and

imprecise data with missing and mistakes. By using machine learning algorithms designed for

precise numbers, it is possible to build tidy data that is purported to be clean but really goes

through a lot of creation and destruction processes simultaneously. Hence, clustering learning

in a single-valued Neutrosophic environment is another way to capture and manage data noise

and take it into account as an additional source of information. To handle data noise and

take it into account as an extra factor, clustering learning in a single-valued Neutrosophic

environment is a different technique.

5. Conclusion

In conclusion, we obtained the same outcomes when comparing the Agglomerative Hier-

archical Clustering Technique and the DIANA with Neutrosophic findings on the simulated

data set. And from there, we may conclude that (1) the DIANA with Neutrosophic algorithm

can aggregate SVNs on a wide scale, and (2) the uncertainty information acquired by SVNs is

crucial for the accomplishment of some aggregation tasks. We have created a useful approach

for grouping SVNs using divisive hierarchical clustering.
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To reduce data indeterminacy, the hierarchical clustering divisive DIANA method based

on Neutrosophic logic is used. The suggested method’s findings show that it may be utilized

to produce superior outcomes on real-world data. Based on the crisp hierarchical clustering

technique, we suggested a hierarchical single-value neutrosophic algorithm for SVN clustering.
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Abstract: The aim of this article is to concentrate on the notion of closed neutrosophic domination 

(CND) number 𝛾𝑐𝑙 (𝐺) of a neutrosophic graph (NG) with using effective edge, furthermore we gain 

a few outcomes on this notion, the relation between 𝛾𝑐𝑙 (𝐺) and some other notions is acquired, 

eventually the notion of (CND) number of (join neutrosophic graphs) is came in. 
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1. Introduction 

A graph is a nonempty set whose elements are called vertices or points. It also contains a set of 

elements consisting of unordered pairs of vertices; these elements are called edges or lines [1]. There 

are many relations between graph theory and other branches of mathematics such as Topology, 

Algebra, Probability, Fuzzy and Numerical Analysis. In addition, there are relations with other 

sciences such as Engineering, Computer Science, Chemistry, Physics, and Biology[2]. The concept of 

graph domination is one of the topics in graph theory, in which it is used in all the above sciences. 

The first one who initiated this concept is Claude Berge in 1962[3] . 

 Ore [4] is the one who introduced the concepts of domination number and dominating sets. After 

that, this notion started to appear in different kinds and forms. In mathematics, this concept 

appeared in many fields including fuzzy graph, topological indices of graphs, etc. Additionally, 

many new definitions in this concept have been used, depending on putting some conditions on the 

dominating set. The concept of dominance  which introduced by V.T.Chandrasekaran and 

Nagoorgani, and all the concepts of dominant sets, independent set, dominant number, The total 

dominant number in the fuzzy graph was developed by R.Parvathi and G.Thamizhenthi [5]. A. 

Somasundaram introduced dominance in fuzzy graph using effective edges, relying on  fuzzy 

graph concept which introduced by Rosenfeld in 1975, which is consequently built on the basis of 

the fuzzy sets proposed by Zadeh[6] in 1965 as a new mathematical framework for the visualization 

of unreliability phenomena in a real-life situation[7]. 

The use of the intuitionistic fuzzy set also played an important role in the transition from 

mathematics to computer, information science, and communication systems. Use combinatorial 

optimization, physics, and statistical problem solving to see the graphs[8]. In 1998, Florentin 

Smarandache [9]introduced the concept of Neutrosophic set which is a powerful general formal 
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framework that generalizes the concept of fuzzy set and intuitionistic fuzzy set by treating with 

indeterminate membership furthermore of truth and false memberships and then domination in 

neutrosophic graphs was introduced by M.Mullai [10] . The variety of applications for graphs and 

their domination sets are increased by appearing of SVNG since its domain is larger than that of FGs 

and IFGs. SVNGs model the relationships much like any other type of graph. Hence, it is used to 

address a variety of relationship-based issues. Where FGs and IFGs fail, it may mimic issues with 

fluctuating and ambiguous information in the actual world[11]. 

This work aims to introduce the concept of Closed neutrosophic dominating set in neutrosophic 

graphs which possess more properties than the traditional domination set concept and some other 

related concepts was provided. 

2.preliminaries  

Definition 2.1 [12]. Let V be a non-empty set, a fuzzy graph G = (σ, μ) is a couple of functions   

 , 

where  denotes the edge between the vertices furthermore  and  represent the 

fuzzy vertices and fuzzy edges sets on V and E respectively. See figure (1A) 

Definition 2.2 [11]. The form G =(V, E ) is  called an  (IFG)  where 

  ,where  and   : V→ [0,1] such that  is a membership 

grade and is a non-membership respectively of every   

and 0 ≤  (  ) +  ( ) ≤ 1  

  ii.  where   and    are functions and 

 : (  ,  ) ≤   (  )   (  )  ,   (  ,  )   ( )   ( ) 

  and  see figure (1B) 

 

 

 

3. Single Valued Neutrosophic Graph (SVNG)[13]. 

Let  refers to a traditional graph, and G = (A, B) to a (SVNG) On  

Definition 3.1. A single valued neutrosophic graph (SVNG) on vertices set V is 

 a couple  where  and B=(  as follows: 

1.The   ,  ,  :V   [0, 1]  are functions represent (truth, indeterminacy and falsity)  

membership degrees respectively, for all V, (i=1,...,n), and  +    
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2. The functions , , : E V x V  [0, 1], are satisfied the followings: 

  

 and 

 for all ,  V 

where  membership degrees of each edge 

respectively, and 

+  for all  ,  

Where A  is denote the  (SVN) vertex set of  V, and B the (SVN) edge set of  E, respectively. See 

figure 2. 

 

Notes;  

i)  B is symmetric (SVN) relation on A.  

ii) When  =0 for some i and j, then    and   are not adjacent vertices 

otherwise there exists an edge   

iii) If at least one of the conditions in (1) and (2) is not satisfied, then G is not a (SVN) graph 

Definition.3.2.[14]. Let  be a (SVNG). 

1)  the neutrosophic degree  of 𝑥 is  

 

2) For every  is called cardinality of the vertex , 

 

Then    is called vertex cardinality of G, 

 

Similarly,  is known as edge cardinality of G. 

Definition. 3.3.[15]. Let G = (A; B) be a (NG) on V. Then An edge   in G is said to be an 

effective edge, if  

   

 and 

 for  ,  V 

 

Definition. 3.4. [15]: take G = (A, B) as a (NG), then 

1) G is renowned as strong neutrosophic graph if  is an effective edge. 
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2) G is renowned a complete neutrosophic graph if  is an effective 

edge. 

Definition. 3.5. [8]: A non-empty set is called an independent neutrosophic set (INS) if   

 

Definition. 3.6. 𝑁(𝑥) refers to open neighborhood of 𝑥 ∈ 𝑉 (G) is define as  

 𝑖𝑠 an 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑒𝑑𝑔𝑒}and  

 is closed neighborhood of 𝑥.  

Definition .3.7.  𝐴⊆𝑉(G) is called a neutrosophic vertex cover (NVC) of G if for each effective 

Edge  at least one of .  

The minimum neutrosophic cardinality (MNC) of all (MNVC) is called a neutrosophic vertex 

covering number of G which denoted by  

Definition 3.8 [8]: Let be underline graph of a neutrosophic graph G.  The size 𝑚 of  is a set 

of all edges in  and denoted by 𝑚=|𝐸 ( )|.  Similarly, the order 𝑛=|𝑉 ( )|  of is the 

number of vertices in in   .  

Definition 3.9. Let G = (A, B) be NG then the neutrosophic size  and neutrosophic order  of G 

are define as  

   and  = 

(  

 

Definition. 3.10. [16]. Let G = (A, B) be NG then the set   is known as a 

neutrosophic dominating set (NDS) of G if  such that 

 and  

. The (MNC) for all minimum neutrosophic dominating set in G is called the neutrosophic 

domination number (NDN) of G which is denoted by . 

4. Closed neutrosophic domination number (CNDN) in neutrosophic graph.  

Definition. 4.1 Let G be (NG) with a vertex set 𝑉, and  for some 𝑘 , then 𝐷𝑘 is called 

closed neutrosophic dominating (𝐶N𝐷) set of G if the followings satisfied: 

1) 𝐷𝑘,    such that  dominate  and  

2)  If 𝐷𝑘 contains more than two vertices then the two vertices have not been adjacent to the 

third one.  

3) 𝑁[𝐷𝑘]=𝑉(𝐺) 

 

Algorithm for finding closed neutrosophic dominating set 𝐷𝑘 can as follows:  

Let 𝑉={𝑥1,𝑥2,…,𝑥𝑛}, and  

1) Choose 𝑥1∈𝑉(𝐺), assume 𝐷1={𝑥1}, if  then 𝐷1 is said to be closed 

neutrosophic dominating set, otherwise  



Neutrosophic Sets and Systems, Vol. 55, 2023     514  

 

 

Amir Majeed Nabeel Arif, Closed neutrosophic dominating set in neutrosophic graphs 

2) Choose 𝑥2∈𝑉−𝐷1(may 𝑥1𝑎𝑛𝑑 𝑥2 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡) put 𝐷2={𝑥1,𝑥2} if 𝑁[𝐷2]=𝑉(𝐺), then 𝐷2 is 

(CND) set, otherwise,  

3) Choose  ∈𝑉−𝑁[𝐷𝑘−1], 𝑘≥3  such that 𝑁[𝐷𝐾] = 𝑉(𝐺).  

Definition. 4.2. A (CND) set 𝐷𝑘 in a neutrosophic graph 𝐺 is known as minimum closed 

neutrosophic dominating (𝑀𝐶N𝐷) set if the number of 𝐷𝑘 elements less than or equal of number of 

vertices of each of other closed neutrosophic dominating set.  

Definition. 4.3. Let  be a NG The minimum neutrosophic cardinality of all (MCND) sets 

is known as closed neutrosophic domination number (CNDN) and denoted by 𝛾𝑐𝑙(𝐺) were 

 𝛾𝑐𝑙(𝐺)= {(𝑚𝑖𝑛 { , )𝑥∈ , 𝐷𝑘𝑖 𝑖𝑠 𝑀𝐶N𝐷 𝑠𝑡𝑒𝑠}.  

Definition. 4.4. The (MCND) set with minimum neutrosophic cardinality is said to be 𝛾𝑐𝑙−𝑠𝑒𝑡.  

Example. 4.5. Consider the given neutrosophic graph 𝐺, in figure 2.  

We note two (𝑀𝐶N𝐷) sets: 𝐷𝑘1= {A, C, D, H} ={H}∪𝑁(B) and 𝐷𝑘2= {I, J, B, D} = 𝑁(H)∪{B} such that  

𝑁[𝐷𝑘1] =𝑉(𝐺) and 𝑁[𝐷𝑘2] =𝑉(𝐺).  

||𝐷𝑘1||= , ||𝐷𝑘2||=  

The closed neutrosophic domination number 𝛾𝑐𝑙=𝑚𝑖𝑛 {||𝐷𝑘1||, ||𝐷𝑘2||} 

=min { } = 1.1.333 

 

 

Preposition. 4.6. Let G be a neutrosophic graph, then every closed neutrosophic dominating set of 𝐺 

is a neutrosophic dominating set of 𝐺.  

Proof: It is clear a vertex set  in a neutrosophic graph 𝐺 is closed neutrosophic 

dominating set if the following provisions satisfied: 

1) 𝐷𝑘,    such that  dominate   and also if 𝐷𝑘 contains more than two vertices 

then the two vertices have not been adjacent to the third one.  

2) 𝑁[𝐷𝑘]=𝑉(𝐺), it is obviously  𝐷𝑘 dominated by vertex   ,thus 𝐷𝑘 is a neutrosophic 

dominating set of 𝐺.  

Remark. 4.7. 
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i) The converse of proposition 4.6 is not always right, for instance in figure (2) where {B, D, 

H} is a neutrosophic dominating set but not closed neutrosophic dominating set. 

ii)   Let 𝐺 be a neutrosophic graph with (CND) set, then 𝛾N≤𝛾𝑐𝑙 is not always true.  

Preposition. 4.8. Let 𝐺=(A,B) be any (NG) , Where A=( , B=(  and H=(C,D) be any 

maximal spanning tree of G, then every closed neutrosophic dominating set of H, is closed 

neutrosophic dominating set of G and  if 

 in H are non-adjacent in G  

Proof: Let  be closed neutrosophic dominating set of H. Since H is a maximum spanning tree of 

G, we have A=C. thus, the vertices in  are dominated by at least one vertex in , then if  

contains three or  more  vertices, then the third one has not be adjacent to other vertices and 

[ .Therefore  

Example: A graph H in a figure 3) below which is a maximal spanning tree of G, the sets 𝐷1= {A, C, 

D, H} and 𝐷2= {I, J, B, D} are closed neutrosophic domains in H and also in G  

 

Note: If the two vertices A and D were adjacent in the figure 2, the theorem would not be true 

Preposition. 4.9. Let  be a complete neutrosophic graph and  is closed neutrosophic 

dominating set of Then,  has a closed neutrosophic dominating set. 

Proof: Given  then every edge  is an effective edge and each vertex  is 

dominating all others. Thus, a closed neutrosophic dominating set is contains only one vertex then 

any singleton set of   is closed neutrosophic dominating set. consequently  has 

closed neutrosophic dominating set 

Preposition. 4.10. For any neutrosophic graph 𝐺= (A, B), Where , B= ( , 

≤𝛾𝑐𝑙(𝐺)≤more upper bound equality holds if  

(x, y) <  (𝑥)˄  (𝑦), (x, y) <  (𝑥)˄ (x, y) <  (𝑥)  ∀𝑥, 𝑦∈V  

Proof: Straight forward from the definition of a closed neutrosophic dominating set 
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Preposition. 4.11. If G be a neutrosophic graph, every (IND) set of 𝐺 is closed neutrosophic 

dominating set.  

Proof: Assume that   be (IND) set of 𝐺 then it has two probabilities:  

Case1: If  be a singleton, then it is obviously 𝑆𝐾 is closed neutrosophic dominating set.  

Case2: If the vertices in 𝑆𝐾 are more than two and since 

 , for any 

,that’s why  has at least an effective edge e in . Thus 𝑁 [ ] = 𝑉(𝐺) and for 

each    belongs to 𝑉 − 𝑁 [ ].  consequently  is closed neutrosophic dominating set.  

Preposition. 4.12. Let 𝐺= (A, B) be neutrosophic graph without isolated vertex and 

(   then 𝛾𝑐𝑙 (𝐺) ≤ P −  where  is the 

neutrosophic covering number of 𝐺.  

Proof: Let 𝐺= (A, B) be neutrosophic graph with no isolated vertex and  be a neutrosophic 

covering of G, then is independent neutrosophic set of G. Thus,  is closed 

neutrosophic dominating set of G by proposition (4.5). Hence, 𝛾𝑐𝑙 (𝐺) ≤ || || ≤ 𝑃 − .  

Proposition. 4.13. For any neutrosophic graph 𝐺= (A, B),  

 

 

 
Proof: i) Since,  it is trivial the inequality hold. 

Since  

 

i.e.  

then   

             

 
Then,  .then ,  

 

Preposition. 4.14. Let 𝐺 ≅  then 𝛾𝑐𝑙 ( ) = min  ∈ 𝑉(𝐺),i=1,2,…n   

Proof: Let 𝐺≅  be complete (NG), then for each edge in 𝐺 is an effective edge and each vertex in G 

dominates to all others of G. thus, the closed neutrosophic dominating set is contains a single vertex 

say 𝐷𝐾={x}  

such that 𝑁[𝐷𝐾] = 𝑉 (𝐺), and x has minimum neutrosophic value. Hence, the outcome is gained. 

 

Preposition 4.15. Let 𝐺 = (A, B) be a strong neutrosophic star, then 𝛾𝑐𝑙 (𝐺) = , 

where 𝑥 is a root vertex.  

Proof: Let 𝐺 = (A, B) be strong neutrosophic star and 𝑉 (𝐺) =  , since 

all edges of G are effectives and x a dominating  thus, a closed neutrosophic 

dominating set contains only one vertex such that 𝑁[𝑥] = 𝑉(𝐺). Hence, γ𝑐𝑙 (𝐺) 

= . 
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Preposition. 4.16. Let 𝐺 ≅   be complete bipartite (NG) with 𝑛, 𝑚 vertices, then  

𝛾𝑐𝑙 ( ) = 

                                         

                        

Proof:  Assume  ,where  𝑋= {𝑥1, 𝑥2, …, 𝑥𝑛} and 𝑌 = {𝑦1, 𝑦2, …, 

𝑦𝑚}. Then there are couple of cases:  

case 1: If either n=1 or m=1 then the graph is a star and the prove is hold by Preposition 4.9 

case 2: If neither n=1 nor m=1. since for each  dominates to every   and the 

contrariwise is true. Then, a (𝑀𝐶N𝐷) set of  contains pair of vertices.  

Hence, 𝛾𝑐𝑙 (𝐾𝑛, 𝑚) =  

where . The prove complete.  

Preposition. 4.17. Let  be a strong neutrosophic graph G= then  

𝛾𝑐𝑙( =

 

Where taken  

Proof: There are two cases depend on n as follows. 

Case 1. If  , then let j=1, 2…, n, one can 

concluded that each one of the sets   is minimum dominating set and it independent. thus, 

according to proposition (4.5), it is closed neutrosophic dominating set. 

Case 2. If  , and let   be   minimum closed neutrosophic dominating set of  

Then there are two subcases: 

i) If  then  vertex must be not belonged to  then 

 j=1, 2…, n, 

ii) If any two vertices in  are not adjacent, then  

j=1, 2…, n, 

From the above cases the prove is done. 

 

Preposition.  4.18.  Let  be strong neutrosophic wheel with  as a center, then 

 𝛾𝑐𝑙 ( ) =( (𝑥), (𝑥), (𝑥)).  

Proof: Let  be a strong neutrosophic wheel, since all its edges are effective edge then x is 

dominating to 𝑥𝑖, 𝑖 = 1,2, …, 𝑛. Then, the (CND) set 𝐷𝐾 = {𝑥} such that 𝑁[𝐷𝐾] = 𝑉 ( ). 
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 Hence, 𝛾𝑐𝑙 ( ) =  

Preposition 4.19. For any strong neutrosophic graph 𝐺 = (A, B), and  

 𝛾𝑐𝑙 ≤  .  

Proof: Let 𝐷𝐾 be a 𝛾𝑐𝑙 – 𝑠𝑒𝑡 of 𝐺 and 𝑥 be a vertex of 𝐺 such that 𝑑(𝑥) = Δ (𝐺). Then,  

is(𝐶N𝐷) set, thus 

 |𝐷𝐾| ≤ | | = |𝑛 − Δ (𝐺)|, take neutrosophic cardinality to both sides hence,  

𝛾𝑐𝑙 ≤  

5. Closed neutrosophic dominating set in some operation on neutrosophic graphs.  

Definition. 5.1. [14]: Let  and  be any two neutrosophic graphs on 

𝑉1and 𝑉2 respectively 

 then 𝐺1 ∪ 𝐺2 is neutrosophic graph on  𝐺 = 𝐺1 ∪ 𝐺2 = ((A1 ∪ A2), (B1 ∪ B2)) 

where:  

 

(A1∪A2) 

(𝑥)

  

 

(B1 ∪ B2) (𝑥, 𝑦) = 

 

 

Example. 5.2. Consider  and  be any two neutrosophic graphs shown 

in 4 below 
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Proposition. 5.3. Let  and  be any two strong neutrosophic graphs 

then 

 𝛾𝑐𝑙 (𝐺1 ∪ 𝐺2) = 

Where  after changing the (true, indeterminate, false) memberships of   

under the union operation 

Proof: Let 𝐷𝑘1 and 𝐷𝑘2 be a 𝛾𝑐𝑙 − 𝑠𝑒𝑡𝑠 of 𝐺1 and 𝐺2 respectively.  

Case 1. If 𝑉1 ∩ 𝑉2=∅, then 𝐷𝑘1 ∩ 𝐷𝑘2 = ∅. Therefore, 𝐷𝑘 = 𝐷𝑘1 ∪ 𝐷𝑘2 is (𝐶N𝐷) set of 𝐺 = 𝐺1 ∪ 𝐺2. Hence,  

𝛾𝑐𝑙 (𝐺) = 𝛾𝑐𝑙 (𝐺1 ∪ 𝐺2) = ||𝐷𝑘1 ∪ 𝐷𝑘2|| = ||𝐷𝑘1 + 𝐷𝑘2||= 𝛾𝑐𝑙 (𝐺1) + 𝛾𝑐𝑙 (𝐺2).  

Case 2. If 𝑉1 ∩ 𝑉2 ∅, either 𝐷𝑘 = 𝐷𝑘1 ∪ 𝐷 (    or 𝐷𝑘 = 𝐷𝑘2 ∪ 𝐷 (    

Then 𝛾𝑐𝑙 (𝐺1 ∪ 𝐺2)  

Definition. 5.4. Let  and  be any two (NG)s on 𝑉1and 𝑉2 

respectively, the join of 𝐺1 and 𝐺2 is a neutrosophic graph  

𝐺 = 𝐺1 + 𝐺2 = (A1 + A2, B1 + B2) where:  

= 

 

and  

(B1+B2) (𝑥, y) 

=
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where   

 Example 5.5. In figure (5) below. Consider the graphs 𝐺1 = (A1, B1) and 𝐺2 = (A2, B2) be any two 

(NG)s on 𝑉1and 𝑉2 then 𝐺1 + 𝐺2 is given in figure 3.3 

 

Observation. 5.6. Consider 𝐺1 and 𝐺2 be two strong neutrosophic graphs, and 𝐺 = 𝐺1 + 𝐺2. 

if ,For any 𝑥 ∈ 𝑉(𝐺1) and 𝑦 ∈ 𝑉(𝐺2) such that 𝑥 and 𝑦 have minimum neutrosophic 

cardinality values, the set {𝑥, 𝑦} is a closed neutrosophic dominating set in 𝐺1 + 𝐺2.Thus,  

𝛾𝑐𝑙 (𝐺) = 𝛾𝑐𝑙 (𝐺1 + 𝐺2) =  𝑉(𝐺1), 

i=1,2,..   𝑉(𝐺2),j=1,2,..  

 

  

Theorem.  5.7. Let 𝐺1 = ( , ) and 𝐺2 = ( , ) be any two strong neutrosophic graphs on 𝑉1and 

𝑉2 respectively. Then, 𝛾𝑐𝑙 (𝐺) = 𝛾𝑐𝑙 (𝐺1 + 𝐺2) ≤ 𝑚𝑖𝑛 {𝛾𝑐𝑙(𝐺1), 𝛾𝑐𝑙 (𝐺2)}. 
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Proof: Let S1 and S2 be a 𝛾𝑐𝑙 − sets of 𝐺1 and 𝐺2 respectively, by definition of join two neutrosophic 

graphs, we infer that S1 and S2 are (CND)sets of 𝐺. Hence 𝛾𝑐𝑙 (𝐺) = 𝛾𝑐𝑙 (𝐺1 + 𝐺2) ≤ min {|𝑆1|, |𝑆2|} = 

min {𝛾𝑐𝑙 (𝐺1), 𝛾𝑐𝑙 (𝐺2)}.  

Theorem. 5.8.  Let 𝐺 = (A, B) be a strong (NG) on V with , then:  

i)  𝛾𝑐𝑙 (𝐺) =  if and only if 𝐺=  or 𝐺 =  +  𝐻𝑖   for Some  ,and strong 

neutrosophic connected graph 𝐻1, 𝐻2, …, 𝐻𝑘.  

ii) 𝛾𝑐𝑙 (𝐺) = min    if and only if 𝐺=  

iii)  𝛾𝑐𝑙 (𝐺) =   if and only if 𝐺 = ;  

iv) 𝛾𝑐𝑙 (𝐺) =  − min    if and only if 𝐺=  ∪  .  

Proof:  

i) Suppose that 𝐺 =  +  𝐻𝑖 for some k ≥ 1, and strong neutrosophic connected graph  

𝐻1, 𝐻2, …, 𝐻𝑘, select 𝑥 ∈ 𝑉 ( ), since 𝑉 (𝐺) = 𝑁[𝑥]. then 𝛾𝑐𝑙 (𝐺) = .  

Conversely, assume that 𝛾𝑐𝑙 (𝐺) = A(𝑥) and let 𝑥 ∈ 𝑉 (𝐺) such that{𝑥} is a closed neutrosophic 

dominating set of 𝐺. If 𝐺 ≠ ,then 𝑉 (𝐺) − {𝑥} = 𝑁 (𝑥).  

Consequently, 𝐺 =  +  𝐻𝑖 for some k≥ 1and strong connected neutrosophic graph 𝐻1, 𝐻2,…, 

𝐻𝑘. Hence, (i) is satisfied.  

ii)  When n = 2, the (CND)set is a singleton, thus by (i)  

𝛾𝑐𝑙 (𝐺) = A(𝑥) If and only if 𝐺 = . 

iii) If 𝐺 = ;  it is obviously  𝛾𝑐𝑙 (𝐺) = . Suppose that 𝐺 ≠ ;   . If 𝐺 = 

,n=2, then 𝛾𝑐𝑙 (𝐺) =min ≠  . contradiction, suppose that 𝐺 ≠ ,n=2 and let the vertex x 

adjacent the vertex y in 𝐺 construct a closed neutrosophic dominating set { , ,  …,  } in 𝐺 

such that . Then 𝐾 ≤ 𝑛 − 1 vertices, thus 𝛾𝑐𝑙 (𝐺) < , a contradiction. then, (iii) 

is proved.  

v) Now if 𝑛 ≥ 3. Suppose that 𝛾𝑐𝑙 (𝐺) =   −  then (𝐺) ≥ 1.  

assume that  (𝐺) > 1and let 𝑥 ∈ 𝑉 (𝐺) such that  (𝑥) =  (𝐺) construct closed neutrosophic 

dominating set {𝑥1,𝑥2,...,𝑥𝑘} in 𝐺 such that  Then 𝑘 ≤ 𝑛 − 2, then  

𝛾𝑐𝑙 (𝐺) ≠   − , a contradiction. Thus,  (𝐺) = 1 therefore𝐺 =  ⋃  .The converse 

is directly.  

 

6.  Inverse Closed Neutrosophic Domination (ICND) in Neutrosophic Graphs 

In this section, the notion of invers closed neutrosophic domination (ICND)  in neutrosophic 

graph is introduced. some interesting relationships are known between closed neutrosophic 
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domination and inverse closed neutrosophic domination. 

 

Definition. 6.1. Let   be a minimum closed neutrosophic dominating set in G. If   

contains a (CND) set  of G then  is said to be inverse closed neutrosophic dominating 

set according to  An inverse closed neutrosophic domination number  of G which is 

defined as  is minimum inverse closed 

neutrosophic dominating set of G. and minimum invers closed neutrosophic dominating set has 

minimum neutrosophic cardinality is called  

Example. 6.2.  Let G=  as in the figure  

Observation. 6.3. Let  be neutrosophic graph of  vertices. if there is inverse closed 

neutrosophic dominating set in G. then 

i)   where  is 

minimum closed neutrosophic dominating set of G 

ii) Not necessary  

Example 6.4. Consider the following graph   

 

A minimum closed neutrosophic dominating sets are: 

 

 

 
1.1 then  

 
Proposition 6.5. Let G= (A, B) be a strong neutrosophic graph of vertices. then,  

where  is minimum closed 

neutrosophic dominating set of G, if and only if either G=   OR G= for some 

strong neutrosophic graph H. 

Proof: Let be a . 
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Case 1. If G= G=   Then V(G) =2 then of the two vertices belong to  and the other belong to 

 i.e.,   

Case 2. If G= , since G is strong neutrosophic graph then each of the vertices of is 

adjacent with the all vertices of H, then obviously  

 

Conversely Suppose that , i.e. a minimum 

inverse closed neutrosophic dominating set contains exactly one vertex say, , then  a 

minimum closed neutrosophic dominating set  of G has only one vertex ,if  , then 

Hence, G= , for some strong neutrosophic  graph H. see figure 6 

Theorem. 6.6. Let G= (A, B) be a strong neutrosophic graph of vertices. then,  

 if and only if G  strong neutrosophic star 

Proof: Let  be a  and  Let . Then 

that is   effective edge for all , 

we claim that suppose that   

 
 ,  and  i.e. (y,z) 

is effective edge, thus  then  a 

contradiction. Hence G= . Conversely, consider G= it is clear that {x} is 

then therefore,  

Example. 6.7. Consider a strong neutrosophic graph G= in figure 6.2. a minimum closed 

neutrosophic dominating set  and a minimum inverse closed neutrosophic dominating set 

, then (1.2,1.8,2.5) -(0.2,0.3,0.7) = (1,1.5,1.8) 
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Theorem. 6.8. Let  and be any two strong neutrosophic graphs, then a 

minimum inverse closed neutrosophic dominating set  of contains at most two 

vertices 

Proof: Let  and  are minimum closed neutrosophic dominating set of   and 

respectively, we know that a minimum closed neutrosophic dominating set  of join any two 

strong neutrosophic graphs  contains at most couple of vertices. Then, there exist two cases: 

Case 1. If   (contains a single vertex) is closed neutrosophic dominating set of   

If  then has n-1 neighborhood in . Thus, assume that if there are  and  be the sets 

contains all vertices have  neighborhood in  and  respectively  

 and , therefore 

Hence , a minimum inverse closed 

neutrosophic dominating set  contains one vertex .Similarly if    if not, then it is 

clearly contains two vertices. 

Case 2. If (contains two vertices) is minimum closed neutrosophic dominating set of 

If and    Since  is minimum closed neutrosophic 

dominating set of  Then, for any vertex  and  , then 

the set  is minimum closed neutrosophic dominating set of 

  which is inverse closed neutrosophic dominating set of  Hence ,from above cases 

the result is obtained. 

Theorem. 6.9. Let  and be any two strong neutrosophic graphs. If  

, 

then  or   where 

  with minimum neutrosophic value 

proof: Given  two strong neutrosophic graphs. Let  be minimum inverse 

closed neutrosophic dominating set of   then ,a minimum closed neutrosophic dominating 

set  of   also contained one vertex , therefore or  contains one vertex, i.e. 

 or .hence ,the result obtain. 

Remark 6.10. The propositions converse of theorem 6.4 is not true in general. 

Example 6.11. Consider two strong neutrosophic graphs =  and =  note that 

 is rote vertex but a minimum inverse closed neutrosophic 

dominating set of  contains two vertices, i.e.  

Proposition 6.12. Let  be two strong neutrosophic  graphs such that 

 ,  and  ,  

, then  if and only if  one of the following is hold: 

i)  or  

ii)  and  has at least two minimums  

iii) and  has at least two minimums  
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Proof: Assume that (i) holds and ,  are minimum closed 

neutrosophic dominating sets in  respectively ,then  are minimum closed 

neutrosophic dominating set in Since  , thus  

. Now suppose that (ii) hold. Let { }  are 

minimum closed neutrosophic dominating set of  , then   are minimum closed 

neutrosophic dominating set of   

Since  therefore,  is minimum inverse closed neutrosophic 

dominating set of   Hence,   . Similarly, if (iii) holds. 

Conversely, suppose that  be a . i.e., 

 then by proposition 6.4  

 or  

 if then { } is 

minimum closed neutrosophic dominating set of  , since  has only one vertex thus a 

minimum closed neutrosophic dominating set (  of contains one vertex then (i) is done. 

Suppose that  contains at least two vertices, then let 

 be a minimum inverse closed neutrosophic dominating set of  , since 

V(  and  at least two vertices, thus , necessarily  

is a , therefore  has at least two a 

 

 Corollary. 6.13. Let  be any neutrosophic graphs. then 

, x has minimum neutrosophic value if and only if  

 for some strong neutrosophic graphs  satisfying one of 

the following: 

i)  and . 

ii)  and H has at least two . 

iii)   and  has at least two  . 

Proof: Suppose that  , since 

), , where  is minimum closed 

neutrosophic dominating set of   and  

Assume that  suppose , ,.then, there exist two distinct 

vertices  and  of G such that {  and {  are  of G. 

Moreover, (  is effective edge, put   and   Then 

. Furthermore, {  and {  are distinct  in H. Consequently, (ii)holds. 

iv) Similarly, the converse follows immediately from theorem 6.9 



Neutrosophic Sets and Systems, Vol. 55, 2023     526  

 

 

Amir Majeed Nabeel Arif, Closed neutrosophic dominating set in neutrosophic graphs 

Theorem. 6.1.4. Let  and be any two strong neutrosophic graphs. 

Then, a minimum inverse closed neutrosophic dominating set of    contains two vertices. 

 if and only if any of the following is hold: 

(i)  and   vertices, where  and  are minimum closed 

neutrosophic dominating sets of   respectively. 

(ii)  and ,  for some components  of  

Proof: Suppose that a minimum inverse closed neutrosophic dominating set of  contains 

two vertices, i.e.,  Then, a (MCND) set  of   either has one vertex or two 

vertices, then there are couple of cases: 

Case1: If  then it is clear that  and   , where and  are 

minimum closed neutrosophic dominating set of  respectively 

Case 2: If  or  , i.e.   

or  

Suppose that    then , then for some 

component  of . Thus, a minimum invers closed neutrosophic dominating set of  

) Contains two vertices with minimum neutrosophic value, i.e., 

 )=  . Necessarily,  

and a minimum closed neutrosophic dominating of  contains two vertices. This, means that, 

in particular  

               
Conversely, assume the first condition is true then a minimum closed neutrosophic dominating set 

of   contains two vertices say  , . 

 Let , . Then,  is minimum closed 

neutrosophic dominating set of  is minimum inverse closed 

neutrosophic dominating set of  Contains a couple of vertices. 

 

Now if (ii) hold, let  be a closed neutrosophic dominating set of  

then  is closed neutrosophic dominating set in consider 

( =  , by our imposition   
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for some components  thus a minimum closed neutrosophic dominating set of  

 contains at least a pair of vertices say  Now if   and , 

then a minimum closed neutrosophic dominating set of   contains two vertices, 

thus a minimum inverse closed neutrosophic dominating set of   also contain two vertices. 

Hence the prove is done. 

 

Conclusion 

Dominating sets can be used to model many other problems, including many relating to computer 

communication networks, social network theory, land surveying, and other similar issues. 

Determining the domination number for graphs and finding minimum dominating sets could thus 

prove very useful. Therefore, this study focused on the closed dominant sets, which are more in 

control of the network graphs, and theorems related to this concept presented and reinforced with 

necessary examples and graphics. 
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Abstract. The main aim of this study is to introduce the notion of anti-bitopological space and to reintroduce

some basic concepts of topology in this novel framework. We point out that there are at least three possible

and not necessarily equivalent methods of defining openness (and thus, the notion of open set) with respect to

two anti-topologies simultaneously. We choose one of these approaches and concentrate on it. This allows us to

define anti-bitopological interior and closure in some specific manner. Moreover, we prove some initial lemmas

on anti-bitopological boundary. Finally, we study the problem of subspaces.

Keywords: Anti-Bitopological space; anti-topological space; anti-interior; anti-closure; anti-boundary.

—————————————————————————————————————————-

1. Introduction

From the purely historical point of view, it would be fair to mention that the whole concept

of topological space arose from the observation that some very natural structures (like open

intervals on real line or open balls on real plane) can be analyzed in the light of more general

definitions and properties. This allowed mathematicians to introduce and study many basic

topological notions, e.g. interior, closure, density, compactness or connectedness.

Modern times reversed this initial approach (at least to certain extent). Many authors

started to redefine and, in particular, to generalize the very concept of topological space. It

seems that the main idea is to check what happens when some natural assumptions (like closure

of the family under finite intersection or openness of the whole universal set) are dropped. This

led to the development of generalized and supra-topologies (see [5] and [11]), infra-topologies

(known as infi-topologies too; see [3] and [12]), minimal structures ( [15]), weak structures

( [6]) and generalized weak structures ( [1], [7]). The latter are the weakest: they are just
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arbitrary collections of subsets of X. In fact, this concept was introduced already in 1966 by

Kim-Leong Lim in [10].

One should be aware that all these studies are more or less important. They allow us to

recognize which assumptions are necessary to achieve some expected results (and which are

superfluous). In fact, they confront us with some questions from the area of philosophy of

mathematics. For example: what does it really mean that a function is continuous? Should

the interior of a set always be open? Should we always assume that empty set is open?

Finally, should there be any ”authentic” connection between the abstract notion of openness

and ”natural” openness of open interval on real line? Or maybe open sets in various generalized

structures are just some arbitrarily chosen (or distinguished) sets?

Weakening of the initial definition of topological space is not the only possible direction.

Recently, some authors started to investigate anti-topological structures (see [2], [17], [22]

and [23]). These families are characterized by the fact that any finite intersections or any

unions of their elements does not belong to such a family. Moreover, ∅ and X are never open

in this specific sense. Clearly, each element of anti-topological space (that is, each anti-open set

in a given space) is maximal and minimal at the same time. It cannot have proper anti-open

subsets or supersets. However, non-empty intersections of anti-open sets are possible.

As for the bitopological spaces, it seems that their study was started by Kelly in 1963

(see [8]). In 1967 Pervin (see [14]) analyzed the notion of connectedness in this setting.

Later there were many papers on bitopologies and this concept has been reintroduced in some

generalized frameworks. For example, biminimal (see [4]) and biweak structures (see [9]) have

been already studied. Moreover, some authors analyze spaces equipped with three, four, five

or even six topologies.

In this paper we would like to introduce anti-bitopological spaces. We define some basic

notions and we point out several important subtleties. Some of them are not obvious at the

first glance (even if they are not necessarily technically complicated). Finally, we obtain some

kind of general framework which may be used in further research.

In 2019 Smarandache (see [18]) generalized the classical Algebraic Structures to NeutroAlge-

braic Structures (or NeutroAlgebras) whose operations and axioms are partially true, partially

indeterminate, and partially false as extensions of Partial Algebra, and to AntiAlgebraic Struc-

tures (or AntiAlgebras) whose operations and axioms are totally false and on 2020 he continued

to develop them e.g. in [19], [20] and [21].

The NeutroAlgebras and AntiAlgebras are a new field of research, which is inspired from

our real world.
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In classical algebraic structures, all operations are 100 % well-defined, and all axioms are

100 % true, but in real life and in many cases these restrictions are too harsh, since in our

world we have things that only partially verify some operations or some laws.

Using the process of NeutroSophication of a classical algebraic structure we produce a

NeutroAlgebra, while the process of AntiSophication of a classical algebraic structure produces

an AntiAlgebra. NeutroTopology is a particular case of NeutroAlgebra and AntiTopology is

a particular case of the AntiAlgebra.

2. Preliminaries

Let us recall the definition of anti-topological space.

Definition 2.1. [22] Assume that X is a non-empty universe and T be a collection of subsets

of X. We say that (X, T ) is an anti-topological space if and only if the following conditions

are satisfied:

(1) ∅, X /∈ T .

(2) For any n ∈ N, if A1, A2, ..., An ∈ T , then
⋂n

i=1Ai /∈ T . Here we assume that this

intersection is non-trivial, i.e. that the sets in question are not all identical.

(3) For any {Ai}i∈J ̸=∅ such that Ai ∈ T for each i ∈ J , we have
⋃

i∈J Ai /∈ T . We assume

that this union is non-trivial, i.e. that is, the sets not all identical.

The elements of T are called anti-open sets and their complements are anti-closed sets.

The set of all anti-closed sets with respect to a given T is denoted by TCl. We say that T
is anti-closed under finite intersections and arbitrary unions. In fact, one can prove stronger

result:

Lemma 2.2. (see Lemma 2.3 in [22]).

If (X, T ) is an anti-topological space, then it is anti-closed under arbitrary non-trivial in-

tersections.

Moreover, we have:

Theorem 2.3. (compare with Lemma 2.5 and Lemma 2.7 in [22]).

If (X, T ) is an anti-topological space, then TCl is also an anti-topology on X.

We may also define anti-interior and anti-closure.

Definition 2.4. (see Def. 3.1 in [22] and Def. 3.1. and Def. 3.3 in [2]).

Let (X, T ) be an anti-topological space and A ⊆ X. Then we define anti-interior of A and

its anti-closure as:

(1) AntiInt(A) =
⋃
{U ;U ⊆ A and U ∈ T }

J. K. Khaklary, T. Witczak, Introduction to anti-bitopological spaces

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                              531



(2) AntiCl(A) =
⋂
{F ;A ⊆ F and F ∈ TCl}

One can easily prove (again, see [2] and [22, 23]) that AntiInt(A) need not be the biggest

anti-open set contained in A and AntiCl(A) may not be the smallest anti-closed set containing

A. Clearly, the reason is that anti-interior (resp. anti-closure) need not to be anti-open (resp.

anti-closed) at all.

The following two lemmas and remark appearing after them will be important in the next

section.

Lemma 2.5. (see Lemma 8 in [22]).

The intersection of two anti-topologies (established on the same universe X) is an anti-

topological space too.

Lemma 2.6. (see Lemma 9 in [23]). The union of two anti-topologies (on the same universe)

need not to be an anti-topological space.

Remark 2.7. Clearly, the lemma above does not imply that the union of two different anti-

topologies cannot be an anti-topology too. Take for example X = Z+ ∪ Z−. Suppose T1
consists of the finite subsets of Z+ with cardinality 3 (e.g. {2, 5, 7}, {30, 300, 3000}, while T2
consists of the finite subsets of Z− with cardinality 3 (e.g. {−1,−2,−3}). Both these structures

are anti-topologies and their union is an anti-topology too. Another example: X = {a, b, c},
T1 = {{a}, {b}} and T2 = {{c}}.

On the other hand, it is possible that the union of two anti-topologies:

(1) is closed under non-empty intersections. Take X = {a, b, c, d}, T1 =

{{a, b}, {b, c}, {c, d} and T2 = {{b}, {c, }}.
(2) is closed under unions. Take X = {a, b, c, d}, T1 = {{a, b}, {b, c}} and T2 = {{a, b, c}}.
(3) is a neutro-topology. Take neutro-topological space presented in [17] (Example 9).

It is X = {a, b, c, d} with neutro-topology τ = {{a}, {a, b}, {c, d}, {b, c}, ∅}. As-

sume now that we remove empty set from our collection. We stay with τ1 =

{{a}, {a, b}, {c, d}, {b, c}}. This structure can be easily presented as a union of two

anti-topologies, namely T1 = {{a}, {c, d}} and T2 = {{a, b}, {b, c}} (and this decompo-

sition is not necessarily unique).

However, it is clear that X and ∅ never belong to T1 ∪ T2.

Remark 2.8. Anti-topologies can be considered as a special subclass of anti-minimal spaces

which could be defined in the following way: let X be a non-empty universe and M ⊆ P (X).

If ∅, X /∈ M, then we say that M is anti-minimal structure on X.

3. Anti-bitopological spaces: introductory notes

In this section we introduce anti-bitopological spaces.
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Definition 3.1. If X is a non-empty set endowed with two anti-topologies T1 and T2, then
(X, T1, T2) is called an anti-bitopological space.

Remark 3.2. It is always an interesting question: if we have two or more structures (e.g.

topologies, infra-topologies, minimal structures, weak structures, anti-topologies) on X, then

how should we define open sets. We mean those sets which will be considered as open with

respect to the whole structure, that is: ”bi-open” (”tri-open” and in general, n-open). There

are several approaches in the literature. For example:

(1) In case of biweak structures some authors (see [9]) assume that A is open if and only

if Intw1(Intw2(A)) = A, where w1, w2 are weak structures on X and Intw1 , Intw2 are

interior operations relying on these structures. The same approach has been presented

in [4] but in the context of biminimal spaces.

(2) In case of tri-topological spaces Palaniammal defined (in [13]) A as tri-open if and

only if A ∈ τ1 ∩ τ2 ∩ τ3. Hence, in his opinion tri-open set should be open in each of

these three topologies. Alternatively, we could say that A should be open in so-called

induced topology τ1 ∩ τ2 ∩ τ3.

(3) However, Priyadharsini and Parvathi assumed in [16] that A is tri-open if and only if

A ∈ τ1 ∪ τ2 ∪ τ3. Hence, A should be open in at least one topology.

These approaches are not necessarily equivalent. In particular, the first one need not to be

equivalent with the third one. This will be shown in the context of anti-bitopological spaces.

The third approach will be fundamental for us. However, we will introduce a convenient

notation that will allow us to avoid any confusion.

Definition 3.3. If (X, T1, T2) is an anti-bitopological space with A ∈ T1∪T2, then we say that

A is (T1 ∪ T2)-anti-open and its complement is (T1 ∪ T2)-anti-closed.

Now we have the following idea:

Definition 3.4. If (X, T1, T2) is an anti-bitopological space with A ∈ T1∩T2, then we will say

that A is (T1 ∩ T2)-anti-open and its complement is (T1 ∩ T2)-anti-closed.

We define two basic but natural and important notions:

Definition 3.5. If (X, T1, T2) is an anti-bitopological space with A ⊆ X, then the anti-interior

and anti-closure of A (with respect to T1 ∪ T2) are defined as follows:

(1) (T1 ∪ T2)AntiInt(A) =
⋃
{B;B ⊆ A,B ∈ T1 ∪ T2}.

(2) (T1 ∪ T2)AntiCl(A) =
⋂
{C;A ⊆ C,C ∈ (T1 ∪ T2)Cl}.

Clearly, analogous definition can be derived with respect to (T1∩T2)-anti-open (anti-closed)

sets.

However, we shall not use it in this paper.
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Example 3.6. Let X = {1, 2, 3, 4, 5}, T1 = {{3}, {1, 2}, {1, 4}} and T2 = {{2}, {1, 4}, {3, 4}}.
It can be observed that both T1 and T2 are anti-topologies on X. Now, T1 ∪ T2 =

{{2}, {3}, {1, 2}, {1, 4}, {3, 4}}. This is not an anti-topology: note that {2} ∩ {2, 4} = {2} ∈
T1∪T2. However, it is not closed under intersections (note that {1, 2}∩{1, 4} = {1} /∈ (T1∪T2)
nor unions (observe that {1, 2} ∪ {1, 4} = {1, 2, 4} /∈ (T1 ∪ T2).

Now take A = {3, 4}. Clearly, according to our definition this set is (T1 ∪ T2)-anti-open.
However, AntiIntT1(AntiIntT2(A)) = AntiIntT1({3, 4}) = {3} ≠ A. Moreover, A /∈ T1 ∩ T2.

On the other hand, let B = {1, 4, 5}. Now B /∈ T1 ∪ T2 but AntiIntT1(AntiIntT2(B)) =

AntiIntT1({1, 4}) = {1, 4}.
However, C = {1, 4} belongs to T1∪T2 and AntiIntT1(AntiIntT2(C)) = AntiIntT1({1, 4}) =

{1, 4} = C.

The example above suggests that the following definition can be useful:

Definition 3.7. Let (X, T1, T2) be an anti-bitopological space. Then, we say that A ⊆ X is

T1T2-anti-open if and only if AntiIntT1(AntiIntT2(A)) = A.

One can prove the following theorem.

Theorem 3.8. If (X, T1, T2) is an anti-bitopological space and {Ai}i∈J ̸=∅ is a collection of

T1T2-anti-open sets. Then
⋃

i∈J Ai is T1T2-anti-open too.

Proof. (⊆). Let x ∈ AntiIntT1(AntiIntT2(
⋃

i∈J Ai)). It means that there exists some B ∈ T1
such that x ∈ B and B ⊆ AntiIntT2(

⋃
i∈J Ai)). Hence, x ∈ AntiIntT2(

⋃
i∈J Ai). But then

there is some C ∈ T2 such that x ∈ C ⊆
⋃

i∈J Ai. Then x ∈
⋃

i∈J Ai.

(⊇). Let x ∈
⋃

i∈J Ai. Assume that x /∈ AntiIntT1(AntiIntT2(
⋃

i∈J Ai)). Then there is

some k ∈ J such that x ∈ Ak but for any T1-anti-open B ⊆ AntiIntT2(
⋃

i∈J Ai), x /∈ B. But

Ak = AntiIntT1(AntiIntT2(Ak)), so there is some C ∈ T1 such that x ∈ C ⊆ AntiIntT2(Ak).

However, AntiIntT2(Ak) ⊆ AntiIntT2(
⋃

i∈J Ai). Assume the contrary. Then there is some

y ∈ AntiIntT2(Ak) such that y /∈ AntiIntT2(
⋃

i∈J Ai). Hence there is D ∈ T2 such that

y ∈ D ⊆ Ak but for any G ∈ T2 such that G ⊆
⋃

i∈J Ai, y /∈ G. But D ⊆ Ak ⊆
⋃

i∈J Ai. This

is contradiction.

Example 3.6 shows us that (T1 ∪ T2)-anti-open set need not to be T1T2-anti-open. At first

glance, this result is strange. One could say that the very definition of T1T2-anti-open sets

resembles the concept of pseudo-anti-open sets in anti-topological spaces: A is pseudo-anti-

open if and only if AntiInt(A) = A. And we observed in [22] that each anti-open set is

pseudo-anti-open too. However, both anti-open and pseudo-anti-open sets rely on the same

interior. Now the situation is different. This is because (T1 ∪ T2)AntiInt(A) need not to be

identical with AntiIntT1(AntiIntT2(A)). Of course, we can define the following class:
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Definition 3.9. Assume that (X, T1, T2) is an anti-bitopological space. Let A ⊆ X. We say

that A is (T1 ∪ T2)-pseudo-anti-open if and only if A = (T1 ∪ T2)AntiInt(A).

Now the following lemma is clear:

Lemma 3.10. Let (X, T1, T2) be an anti-bitopological space. Every (T1 ∪ T2)-anti-open set is

(T1 ∪ T2)-pseudo-anti-open too.

Remark 3.11. The converse need not to be true. Let us go back to Example 3.6. Now

D = {1, 2, 3} is (T1 ∪ T2)-pseudo-anti-open (its (T1 ∪ T2)-interior is {1, 2} ∪ {3} = D) but it

does not belong to T1∪T2. Besides, note that AntiIntT1(AntiIntT2(D)) = AntiIntT1({2}) = ∅.

The last thing in this section is another one example of anti-bitopological space.

Example 3.12. Let X = R and assume that T1 consists of all those open intervals (a, b) of

the length 1 such that a ≥ 0 (e.g. (0, 1), (2, 3) or (π, π+1)). In fact, b must be a+1. Assume

that T2 consists of all those open intervals (a, b) of the length 1 such that a < 0 (e.g. (−10,−9)

or (−0.50, 0.50). Again, b = a+ 1.

Consider (T1 ∪ T2). This is an anti-topology on X and it consists of all open intervals of

the length exactly 1. Each (T1 ∪ T2)-anti-closed set is a complement of some (a, a+ 1) (where

a ∈ R). Hence, it is of the form (−∞, a]∪[a+1,+∞). Now take A = (0, 1). Each (T1∪T2)-anti-
closed set B such that A ⊆ B is in one of the two forms. First, it can be (−∞, k]∪ [k+1,+∞)

for some k ≤ −1 (e.g. B = (−∞,−2] ∪ [−1,+∞)). Second, it can be (−∞,m] ∪ [m+ 1,+∞)

where m ≥ 1 (e.g. B = (−∞, 3] ∪ [4,+∞)). As for the intersection of the first subfamily,

it is [0,+∞). An intersection of the second subfamily is (−∞, 1]. Hence, we may calculate

an intersection of intersections of these families to find (T1 ∪ T2)AntiCl((0, 1)). This will be

[0,+∞) ∩ (−∞, 1] = [0, 1]. Besides, we see that this last set is not (T1 ∪ T2)-anti-closed. This
will be later generalized in a separate lemma.

4. Further investigation of (T1 ∪ T2)-anti-open sets

In this section we shall investigate some properties of our sets. Moreover, we will introduce

the notion of boundary in anti-bitopological context. Some of the results are more general and

they are true even for arbitrary generalized weak structures.

4.1. About closure and interior

Lemma 4.1. Let (X, T1, T2) be an anti-topological space. Then the following observations are

true:

(1) The union (intersection) of two (T1∪T2)-anti-open sets may not be (T1∪T2)-anti-open.
(2) The union (intersection) of two (T1∪T2)-anti-closed sets may not be (T1∪T2)-anti-open.
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Proof. Proof is simple albeit we shall present two cases. Take the same universe and anti-

topologies as in Example 3.6. Now both {2} and {3} are (T1 ∪ T2)-anti-open but their union,

namely {2, 3} does not belong to T1 ∪ T2. Moreover, their intersection (which is ∅) is beyond
T1 ∪T2. The reader is encouraged to find appropriate (T1 ∪T2)-anti-closed counterexamples.

Lemma 4.2. Let (X, T1, T2) be an anti-bitopological space. Then (T1 ∪ T2)AntiInt(A) ⊆ A.

Proof. Let x ∈ (T1 ∪ T2)AntiInt(A). Then there is some (T1 ∪ T2)-anti-open B ⊆ X such that

x ∈ B ⊆ A. Then x ∈ A.

Remark 4.3. But the converse of the lemma above is not true in general as shown in the

example below: let X = {1, 2, 3, 4}, T1 = {{2}, {1, 3}} and T2 = {{1}, {2, 4}}. Then (X, T1, T2)
is an anti-bitopological space. Let A = {2, 3} and then we have (T1∪T2)AntiInt(A) = {2} ≠ A.

On the other hand, it is always true that if A is (T1 ∪ T2)-anti-open, then (T1 ∪
T2)AntiInt(A) = A.

Lemma 4.4. Let (X, T1, T2) be an anti-bitopological space and A ⊆ X. Then (T1 ∪
T2)AntiInt(A) need not to be the largest (T1 ∪ T2)-anti-open set contained in A and (T1 ∪
T2)AntiCl(A) need not to be the smallest (T1 ∪ T2)-anti-closed set contained in A.

Proof. Let us think about X = {a, b, c, d} with T1 = {{a}, {c}} and T2 = {{b}, {c, d}}. Then,
clearly, T1 and T2 are anti-topologies on X and (X, T1, T2) is an anti-bitopological space. Let

A = {b, c, d}. Then we have (T1 ∪ T2)AntiInt(A) = {c} ∪ {b} ∪ {c, d} = {b, c, d}. But this set
is not (T1 ∪ T2)-anti-open. Now, we see that (T1 ∪ T2)Cl = {{b, c, d}, {a, b, d}, {a, c, d}, {a, b}}.
Take B = {b, d}. Now (T1 ∪ T2)AntiCl(B) = {b, c, d} ∩ {a, b, d} = B. But B is not (T1 ∪ T2)-
anti-closed at all.

Hence, the proposition above.

Lemma 4.5. Let (X, T1, T2) be an anti-bitopological space and A ⊆ B. Then (T1 ∪
T2)AntiInt(A) ⊆ (T1 ∪ T2)AntiInt(B).

Proof. Let x ∈ (T1 ∪ T2)AntiInt(A). Then there is some C ∈ T1 ∪ T2 such that x ∈ C ⊆ A.

But A ⊆ B, hence C ⊆ B. Hence, x ∈ (T1 ∪ T2)AntiInt(A).

Remark 4.6. The converse of the lemma above need not to be true. Take X = N+, T1 =

{{3}, {5}, {7}, {9}, ...} and T2 = {{4}, {6}, {8}, {10}, ...}. Now (T1 ∪ T2) is just a collection

of all singletons of X without {1} and {2}. Take A = {1, 3, 4} and B = {2, 3, 4}. Now

(T1 ∪T2)AntiInt(A) = {3, 4} = (T1 ∪T2)AntiInt(B) (so, in particular, (T1 ∪T2)AntiInt(A) ⊆
(T1 ∪ T2)AntiInt(B)). But A ⊈ B.
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Lemma 4.7. Let (X, T1, T2) be an anti-bitopological space and A,B ⊆ X. Then (T1 ∪
T2)AntiInt(A ∩B) ⊆ (T1 ∪ T2)AntiInt(A) ∩ (T1 ∪ T2)AntiInt(B).

Proof. We see that A ∩ B ⊆ A and A ∩ B ⊆ B. Then (T1 ∪ T2)AntiInt(A ∩ B) ⊆ (T1 ∪
T2)AntiInt(A) and analogously (T1 ∪ T2)AntiInt(A ∩ B) ⊆ (T1 ∪ T2)AntiInt(B). Hence our

lemma is true.

Remark 4.8. As for the converse of the lemma above, it does not need to be true. Take

X = {a, b, c, d}, T1 = {{a}, {b}} and T2 = {{b, c}, {c, d}}. Now let A = {a, b, c, e} and

B = {c, d}. Then (T1 ∪ T2)AntiInt(A) = {a, b, c} and (T1 ∪ T2)AntiInt(B) = {c, d}. Clearly,

the intersection of those (T1 ∪ T2)-anti-interiors is {c}. On the other hand, A ∩ B = {c} but

(T1 ∪ T2)AntiInt({c}) = ∅ and {c} ⊈ ∅.

Lemma 4.9. Let (X, T1, T2) be an anti-bitopological space and A,B ⊆ X. Then (T1 ∪
T2)AntiInt(A) ∪ (T1 ∪ T2)AntiInt(B) ⊆ (T1 ∪ T2)AntiInt(A ∪B).

Proof. We have A ⊆ A∪B, so (T1∪T2)AntiInt(A) ⊆ (T1∪T2)AntiInt(A∪B). Also, B ⊆ A∪B,

so (T1 ∪ T2)AntiInt(B) ⊆ (T1 ∪ T2)AntiInt(A ∪B). Therefore, the conclusion holds.

Lemma 4.10. Let (X, T1, T2) be an anti-bitopological space. Now (T1 ∪ T2)AntiInt((T1 ∪
T2)AntiInt(A)) = (T1 ∪ T2)AntiInt(A).

Proof. (⊆). This is clear in the light of Lemma 4.2.

(⊇). Let x ∈ (T1∪T2)AntiInt(A). Hence there is some B ∈ T1∪T2 such that x ∈ B ⊆ A. But

by the very definition of (T1∪T2)-anti-interior we can say that B ⊆
⋃
{C;C ⊆ A,C ∈ T1∪T2} =

(T1∪T2)AntiInt(A). Hence x ∈
⋃
{D;D ⊆ (T1∪T2)AntiInt(A), D ∈ T1∪T2} (as we could see,

B is an example of such D). But this means that x ∈ (T1 ∪ T2)AntiInt((T1 ∪ T2)AntiInt(A)).

Now we would like to prove some theorems about (T1∪T2)-anti-closure. Some of them seem

to be elementary but they are necessary to establish our general framework.

Lemma 4.11. Let (X, T1, T2) be an anti-bitopological space with A ⊆ X. Then A ⊆ (T1 ∪
T2)AntiCl(A).

Proof. This is clear as a result of the definition of (T1 ∪ T2)-anti-closure.

Lemma 4.12. Assume that (X, T1, T2) is an anti-bitopological space with A ⊆ X. Suppose

that A is (T1 ∪ T2)-anti-closed. Then (T1 ∪ T2)AntiCl(A) = A.
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Proof. (⊇). This is obvious.

(⊆). Let x ∈ (T1 ∪ T2)AntiCl(A). Hence for any (T1 ∪ T2)-anti-closed B such that A ⊆ B,

we have that x ∈ B. In particular, A ⊆ A and A is (T1 ∪ T2)-anti-closed. Hence x ∈ A.

Lemma 4.13. Let (X, T1, T2) is an anti-bitopological space with A,B ⊆ X. Let A ⊆ B. Then

(T1 ∪ T2)AntiCl(A) ⊆ (T1 ∪ T2)AntiCl(B).

Proof. Let x ∈ (T1 ∪ T2)AntiCl(A). Hence for any (T1 ∪ T2)-anti-closed D such that A ⊆ D,

x ∈ D. Assume that there is some E that is (T1 ∪ T2)-anti-closed and B ⊆ E but x /∈ E. But

A ⊆ B ⊆ E. This is contradiction.

Lemma 4.14. Let (X, T1, T2) be an anti-bitopological space. Let A,B ⊆ X. Then (T1 ∪
T2)AntiCl(A) ∪ (T1 ∪ T2)AntiCl(B) ⊆ (T1 ∪ T2)AntiCl(A ∪B).

Proof. We have A ⊆ A∪B and B ⊆ A∪B. Therefore (T1∪T2)AntiCl(A) ⊆ (T1∪T2)AntiCl(A∪
B) and (T1 ∪ T2)AntiCl(B) ⊆ (T1 ∪ T2)AntiCl(A ∪B). Hence our conclusion is clear.

Remark 4.15. Note that the converse is not necessarily true (albeit analogous converse would

be true e.g. in topological spaces). Take X = {a, b, c}, T1 = {{b, c}, {a, c}, {a, b}} and T2 =

{{b, c}}. Now (T1∪T2)Cl = {{a}, {b}, {c}}. TakeA = {a} andB = {b}. Both are identical with

their (T1∪T2)-anti-closures. On the other hand, A∪B = {a, b} and (T1∪T2)AntiCl(A∪B) =⋂
∅ = X ⊈ (T1 ∪ T2)AntiCl(A) ∪ (T1 ∪ T2)AntiCl(B) = {a, b}.

Lemma 4.16. Let (X, T1, T2) be an anti-bitopological space. Then (T1 ∪ T2)AntiCl(A ∩B) ⊆
(T1 ∪ T2)AntiCl(A) ∩ (T1 ∪ T2)AntiCl(B).

Proof. We have A ∩ B ⊆ A and A ∩ B ⊆ B. Therefore, (T1 ∪ T2)AntiCl(A ∩ B) ⊆ (T1 ∪
T2)AntiCl(A) ∩ (T1 ∪ T2)AntiCl(B).

In the next lemma certain relationships between (T1 ∪ T2)-anti-closure and (T1 ∪ T2)-anti-
interior have been proven.

Lemma 4.17. If (X, T1, T2) is an anti-bitopological space with A ⊆ X. Then:

(1) (T1 ∪ T2)AntiInt(A) = ((T1 ∪ T2)AntiCl(Ac))c.

(2) (T1 ∪ T2)AntiCl(Ac) = ((T1 ∪ T2)AntiInt(A))c.

(3) (T1 ∪ T2)AntiCl(A) = ((T1 ∪ T2)AntiInt(Ac))c.

Proof:
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(1) (⊆). Let x ∈ (T1 ∪ T2)AntiInt(A). Then x ∈ A and there is a B ∈ (T2) such that

x ∈ B ⊆ A. Then x /∈ Bc. But Ac ⊆ Bc and Bc ∈ (T1 ∪ T2)Cl. Thus, we can say that

x /∈ (T1 ∪ T2)AntiCl(Ac). Hence, x ∈ ((T1 ∪ T2)AntiCl(Ac))c.

(⊇). Let x ∈ ((T1 ∪ T2)AntiCl(Ac))c. Then, there is some B such that B is (T1 ∪ T2)-
anti-closed, Ac ⊆ B and x /∈ B. But Bc is a (T1 ∪ T2)-anti-open and Bc ⊆ (Ac)c = A.

Moreover, x ∈ Bc, so x ∈ (T1 ∪ T2)AntiInt(A).

(2) The whole thing to do is to take complements of both sides in (1).

(3) The whole thing to do is to take Ac instead of A in (2).

4.2. About boundary

In this section we shall investigate the notion of boundary in our anti-bitopological context.

Definition 4.18. Let (X, T1, T2) be an anti-bitopological space and A ⊆ X. We define (T1 ∪
T2)-anti-boundary of A as the set of these points which belong to the intersection of the

(T1 ∪ T2)-anti-closure of A with the (T1 ∪ T2)-anti-closure of the complement of A.

It means that (T1 ∪ T2)AntiBd(A) = (T1 ∪ T2)AntiCl(A) ∩ (T1 ∪ T2)AntiCl(Ac).

Example 4.19. Let X = {1, 2, 3, 4}, T1 = {{2}, {1, 3}} and T2 = {{1}, {2, 4}}. Then

(X, T1, T2) is an anti-bitopological space. Then all the (T1 ∪ T2)-anti-closed sets are {1, 3, 4},
{2, 4}, {2, 3, 4} and {1, 3}. Let A = {2, 3}. Then Ac = {1, 4}. Now, (T1 ∪ T2)AntiCl(A) =

{2, 3, 4} and (T1 ∪ T2)AntiCl(Ac) = {1, 3, 4}.
Hence, (T1 ∪ T2)AntiBd(A) = {2, 3, 4} ∩ {1, 3, 4} = {3, 4}.

Example 4.20. Recall Example 3.12. Consider the same space and the same A = (0, 1). We

already know that (T1 ∪ T2)AntiCl(A) = [0, 1]. Now think about Ac = (−∞, 0] ∪ [1,+∞).

This set is (T1 ∪ T2)-anti-closed hence it is identical with its own (T1 ∪ T2)-anti-closure. Now

(T1 ∪ T2)AntiBd(A) = [0, 1] ∩ ((−∞, 0] ∪ [1,+∞)) = {0, 1}.
In case of B = (0, 2) we would obtain (T1 ∪ T2)AntiCl(A) = [0, 2], (T1 ∪ T2)AntiCl(Ac) =

(−∞, 0] ∪ [2,+∞) and finally (T1 ∪ T2)AntiBd(A) = {0, 2}.

In the next proposition we have some fundamental properties of the operation introduced

above.

Lemma 4.21. Let (X, T1, T2) be an anti-bitopological space and A ⊆ X. Then the following

results are true:

(1) (T1 ∪ T2)AntiBd(A) = (T1 ∪ T2)AntiCl(A) \ (T1 ∪ T2)AntiInt(A).

(2) (T1 ∪ T2)AntiInt(A) = A \ (T1 ∪ T2)AntiBd(A).

(3) ((T1 ∪ T2)AntiBd(A))c = (T1 ∪ T2)AntiInt(A) ∪ (T1 ∪ T2)AntiInt(Ac).
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(4) (T1 ∪ T2)AntiCl(A) = (T1 ∪ T2)AntiInt(A) ∪ (T1 ∪ T2)AntiBd(A).

Proof:

(1) We may show the following sequence of equivalences: x ∈ (T1 ∪ T2)AntiBd(A) ⇔
x ∈ (T1 ∪ T2)AntiCl(A) ∩ (T1 ∪ T2)AntiCl(Ac) ⇔ x ∈ (T1 ∪ T2)AntiCl(A) and x ∈
(T1 ∪ T2)AntiCl(Ac) ⇔ x ∈ (T1 ∪ T2)AntiCl(A) and x /∈ (T1 ∪ T2)AntiInt(A) ⇔
x ∈ (T1 ∪ T2)AntiCl(A) \ (T1 ∪ T2)AntiInt(A).

(2) We have A \ (T1 ∪ T2)AntiBd(A) = A \ ((T1 ∪ T2)AntiCl(A)∩ (T1 ∪ T2)AntiCl(Ac)) =

A ∩ ((T1 ∪ T2)AntiCl(A) ∩ (T1 ∪ T2)AntiCl(Ac))c = A ∩ (((T1 ∪ T2)AntiCl(A))c ∪
((T1∪T2)AntiCl(Ac))c) = (A∩ (T1∪T2)AntiCl(A))c)∪ (A∩ ((T1∪T2)AntiCl(Ac))c) =

∅ ∪ (A ∩ (T1 ∪ T2)AntiInt(A)) = (T1 ∪ T2)AntiInt(A).

(3) Using Lemma 4.17 we may write:

((T1 ∪ T2)AntiBd(A))c = ((T1 ∪ T2)AntiCl(A) ∩ (T1 ∩ T2)AntiCl(Ac))c = ((T1 ∪
T2)AntiCl(A))c∪((T1∪T2)AntiCl(Ac))c = (T1∪T2)AntiInt(Ac)∪(T1∪T2)AntiInt(A),

as expected.

(4) This can be proved in a similar manner.

Remark 4.22. Note that (T1∪T2)AntiBd(A) need not to be equal with (T1∪T2)AntiCl(A)∩
Ac. This condition is too weak. Let X = {1, 2, 3, 4}, T1 = {{1, 3}, {2, 4}, {5}} and

T2 = {{1}, {2, 4}, {3, 5}}. Consider A = {1, 2, 3}. Then Ac = {4, 5}. As for the (T1 ∪ T2)-
anti-closed sets, these are {2, 4, 5}, {1, 3, 5}, {1, 2, 3, 4}, {2, 3, 4, 5} and {1, 2, 4}. Now,

(T1 ∪ T2)AntiInt(A) = {1, 3}, (T1 ∪ T2)AntiCl(A) = {1, 2, 3, 4} and (T1 ∪ T2)AntiCl(Ac) =

{2, 4, 5} ∩ {2, 3, 4, 5} = {2, 4, 5}. So (T1 ∪ T2)AntiBd(A) = {1, 2, 3, 4} ∩ {2, 4, 5} = {2, 4}. But
this set is different than (T1 ∪ T2)AntiCl(A) ∩Ac = {1, 2, 3, 4} ∩ {4, 5} = {4}.

Moreover, it is clear (in the light of the example above) that (T1 ∪ T2)AntiBd(A) need not

to be equal with ((T1 ∪ T2)AntiCl(A) ∩ Ac) \ (T1 ∪ T2)AntiInt(A). In our case this last set

would be equal to ({1, 2, 3, 4} ∩ {4, 5}) \ {1, 3} = {4}.

The next theorem gives us some additional information about boundary.

Lemma 4.23. Let (X, T1, T2) be an anti-bitopological space and A ⊆ X. Then the following

results hold:

(1) (T1 ∪ T2)AntiBd((T1 ∪ T2)AntiInt(A)) ⊆ (T1 ∪ T2)AntiBd(A).

(2) (T1 ∪ T2)AntiBd((T1 ∪ T2)AntiCl(A)) ⊆ (T1 ∪ T2)AntiBd(A).

Proof:

(1) We have: (T1 ∪ T2)AntiBd((T1 ∪ T2)AntiInt(A)) = (T1 ∪ T2)AntiCl((T1 ∪
T2)AntiInt(A)) ∩ (T1 ∪ T2)AntiCl(((T1 ∪ T2)AntiInt(A))c) = (T1 ∪ T2)AntiCl((T1 ∪
T2)AntiInt(A)) ∩ (T1 ∪ T2)AntiCl(((T1 ∪ T2)AntiCl(Ac)c)c) = (T1 ∪ T2)AntiCl((T1 ∪
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T2)AntiInt(A))∩ (T1 ∪ T2)AntiCl(Ac) ⊆ (T1 ∪ T2)AntiCl(A)∩ (T1 ∪ T2)AntiCl(Ac) =

(T1 ∪ T2)AntiBd(A).

(2) We have: (T1∪T2)AntiBd((T1∪T2)AntiCl(A)) = (T1∪T2)AntiCl((T1∪T2)AntiCl(A))∩
(T1∪T2)AntiCl(((T1∪T2)AntiCl(A))c) = (T1∪T2)AntiCl(A)∩ (T1∪T2)AntiCl(((T1∪
T2)AntiCl(A))c).

However, we know that A ⊆ (T1 ∪ T2)AntiCl(A). Hence ((T1 ∪ T2)AntiCl(A))c ⊆
Ac. Thus (T1 ∪ T2)AntiCl(A) ∩ (T1 ∪ T2)AntiCl(((T1 ∪ T2)AntiCl(A))c) ⊆ (T1 ∪
T2)AntiCl(A) ∩ (T1 ∪ T2)AntiCl(Ac) = (T1 ∪ T2)AntiBd(A).

Remark 4.24. Note that it is not necessarily true that (T1 ∪ T2)AntiBd(A ∪ B) ⊆ (T1 ∪
T2)AntiBd(A) ∪ (T1 ∪ T2)AntiBd(B).

Counterexample: take X = {a, b, c}, T1 = {{b, c}, {c, a}, {a, b}} and T2 = {{b, c}}. Now

(T1∪T2)Cl = {{a}, {b}, {c}}. Take A = {a} and B = {b}. Clearly, (T1∪T2)AntiCl(A) = A and

(T1∪T2)AntiCl(B) = B. Moreover, Ac = {b, c} and Bc = {a, c}. Thus, (T1∪T2)AntiCl(Ac) =⋂
∅ = X and (T1 ∪ T2)AntiCl(Bc) =

⋂
∅ = X.

Then we see that A ∪ B = {a, b} and (T1 ∪ T2)AntiCl({a, b}) =
⋂
∅ = X. Moreover,

(A ∪B)c = {c}.
Now (T1 ∪ T2)AntiBd(A) = {a} ∩X = {a} and (T1 ∪ T2)AntiBd(B) = {b} ∩X = {b}. The

union of these two sets is {a, b}. However, (T1∪T2)AntiBd(A∪B) = X∩(T1∪T2)AntiCl({c}) =
X ∩ {c} = {c}. But {c} ⊈ {a, b}.

However, analogous property is true in topological spaces.

Remark 4.25. Note that it is not true in general that (T1 ∪ T2)AntiBd(A ∩ B) ⊆ (T1 ∪
T2)AntiBd(A) ∪ (T1 ∪ T2)AntiBd(B).

Take the same space as in Remark 4.22. Consider A = {1, 2, 3, 4} and B = {2, 3, 4, 5}.
Calculate A ∩ B = {2, 3, 4}. Then (T1 ∪ T2)AntiCl(A ∩ B) = (T1 ∪ T2)AntiCl({2, 3, 4}) =

{1, 2, 3, 4}∩{2, 3, 4, 5} = {2, 3, 4}. Then (T1∪T2)AntiCl((A∩B)c) = (T1∪T2)AntiCl({1, 5}) =
{1, 3, 5}.

Now (T1 ∪ T2)AntiBd(A ∩B) = {2, 3, 4} ∩ {1, 3, 5} = {3}.
Then we calculate (T1 ∪ T2)AntiCl(A) = {1, 2, 3, 4}, (T1 ∪ T2)AntiCl(Ac) = (T1 ∪

T2)AntiCl({5}) = {2, 4, 5} ∩ {1, 3, 5} ∩ {2, 3, 4, 5} = {5}. Thus (T1 ∪ T2)AntiBd(A) =

{1, 2, 3, 4} ∩ {5} = ∅.
Moreover, (T1∪T2)AntiCl(B) = {2, 3, 4, 5}, (T1∪T2)AntiCl(Bc) = (T1∪T2)AntiCl({1}) =

{1, 3, 5} ∩ {1, 2, 3, 4} ∩ {1, 2, 4} = {1} and thus (T1 ∪ T2)AntiBd(B) = {2, 3, 4, 5} ∩ {1} = ∅.
If so, then (T1 ∪ T2)AntiBd(A) ∪ (T1 ∪ T2)AntiBd(B) = ∅ ∪ ∅ = ∅. But clearly, {3} ⊈ ∅.
However, analogous property is true in topological spaces.
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Theorem 4.26. Let (X, T1, T2) be an anti-topological space and A ⊆ X. Then the following

results have been found:

(1) If A is (T1 ∪ T2)-anti-open, then (T1 ∪ T2)AntiCl(A) \A = (T1 ∪ T2)AntiBd(A).

(2) If A is (T1 ∪ T2)-anti-closed then (T1 ∪ T2)AntiBd(A) ⊆ A.

Proof:

Since A is (T1∪T2)-anti-open, therefore (T1∪T2)AntiInt(A) = A and (T1∪T2)AntiInt(A) =
((T1 ∪ T2)AntiCl(Ac))c. Then:

(1) (T1 ∪ T2)AntiCl(A) \ A = (T1 ∪ T2)AntiCl(A) \ (T1 ∪ T2)AntiInt(A) =

(T1 ∪ T2)AntiCl(A) \ ((T1 ∪ T2)AntiCl(Ac))c = (T1 ∪ T2)AntiCl(A) ∩ (((T1 ∪
T2)AntiCl(Ac))c)c = (T1∪T2)AntiCl(A)∩ (T1∪T2)AntiCl(Ac) = (T1∪T2)AntiBd(A).

(2) If A is (T1 ∪ T2)-anti-closed then (T1 ∪ T2)AntiCl(A) = A. So, (T1 ∪ T2)AntiBd(A) =

(T1 ∪ T2)AntiCl(A) ∩ (T1 ∪ T2)AntiCl(Ac) = A ∩ (T1 ∪ T2)AntiCl(Ac) ⊆ A.

5. Conclusions

Here, we have introduced the basics of anti-bitopological space. The whole study of anti-

topological spaces is still in its seminal form. This applies even more to anti-bitopologies.

Thus, it is important to analyze many standard notions in both these novel frameworks. Some

typical properties of interior, closure or boundary which are true in topological spaces are not

necessarily true in weaker or just different structures. For example, in topological structures

we can prove that Int(A∩B) = Int(A)∩Int(B) but in anti-topologies (and anti-bitopologies)

only left-to-right inclusion (that is, (⊆)) holds. Analogously, in topology we can say that

Cl(A ∪B) = Cl(A) ∪ Cl(B), but in our structures only right-to-left inclusion is true.

In Remark 3.2 we have shown that there at least three possible approaches to the no-

tion of ”bi-anti-open” set. We ourselves focused on the family (T1 ∪ T2) but we pre-

sented some additional remarks on (T1 ∩ T2) and on those sets which satisfy the condition

A = AntiIntT1(AntiIntT2(A)). In general, these three classes are not identical.

Now we would like to investigate other topological notions in anti-bitopological framework.

For example, it would be reasonable to analyze density, nowhere density and connectedness.
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Abstract. For a mathematical model to describe vague (uncertain) problems effectively, it must have the

ability to explain the links between the objects and parameters in the problem in the most precise way. There

is no suitable model that can handle such scenarios in the literature. This deficiency serves as motivation for

this study. In this article, the bipolar hypersoft set (abbreviated, BHSS) is considered since the parameters and

their opposite play a symmetrical role. We present a novel theoretical technique for solving decision-making

problems using BHSS and investigate parameter reductions for these sets. Algorithms for parameter reduction

are provided and explained with examples. The findings demonstrate that our suggested parameter reduction

strategies remove unnecessary parameters and still retain the same decision-making options.

Keywords: bipolar hypersoft set; hypersoft set; soft set; parameter reduction; decision-making; algorithm

—————————————————————————————————————————-

1. Introduction

Many real-world challenges in disciplines such as engineering, environmental sciences, infor-

mation knowledge, medical sciences, and social sciences include varying degrees of uncertainty.

It is well known that this type of uncertainty cannot be represented using conventional ana-

lytical methods. Despite this, they are effectively handled by theories ranging from the fuzzy

set [43] to the intuitionistic fuzzy set [4] and the rough set [28, 29], as well as probability

theory. However, all of these ideas have inherent problems, some of which were pointed out in

Molodtsov (1999). Molodtsov [18, 19] offered a unique theory to address these problems, and
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the central idea of it is known as a soft set. From this starting point, a novel formal method

for modeling uncertainties was created, and because of its adaptability, it has been discussed

in the context of intelligent systems, operations research, information science, the theory of

probability and measurement theory.

The study of decision-making procedures related to soft sets is an additional topic of interest

in this subject. To address problems with decision-making, Maji et al. [17] suggested parameter

reduction of soft sets. Subsequently, the Maji et al [17] approach was criticized by Chen et

al. [10], who also gave a different idea for parameter reduction of soft sets. Ali [1] studied

another point of view on parameter reduction in soft sets. Kong et al. [13] first proposed

the idea of normal parameter reduction of soft sets in [10], which was intended to address

the problem of suboptimal selection. However, the idea is too abstract and the procedure

is difficult to understand and takes a long time. An improved approach is provided in [13],

while Ma et al. [14] studied the normal parameter reduction. Xie [42] investigated parameter

reduction by attribute reduction in information systems. Maharana and Mohanty [15] focused

on the application of parametric reduction of soft set in decision-making problem. Zhan and

Alcantud [44] discussed a variety of parameter reduction techniques based on soft (fuzzy)

set types. Furthermore, they contrasted the algorithms to highlight their various benefits

and drawbacks and provided examples to explain their differences. Using the notion of σ-

algebraic soft sets, Khan et al. [11] have developed a novel approach for the normal parameter

reduction. Applications in decision-making based on soft set and its extensions can be seen

at [2, 3, 5, 6, 12,16,36].

In 2018, Smarandache [37, 38] extended the soft set to the hypersoft set. Then, in [39, 40],

he extended the soft set and hypersoft set to IndetermSoft Set and IndetermHyperSoft Set,

respectively. In addition, he introduced TreeSoft Set [41] as an extension to MultiSoft Set. The

authors in [7, 9, 20, 21,30–35] presented the principles of the hypersoft set and its application.

Recently, Musa and Asaad [22] introduced the notion of BHSS as a combination of hypersoft

set with bipolarity setting and investigated some of its fundamental operations. They also

discussed some topological notions in the frame of bipolar hypersoft setting [8, 23–27].

1.1. Motivation

In many real-world decision-making challenges, we come into situations where each attribute

needs to be further categorized into its appropriate attribute-valued set. In order to deal with

such eventualities, a hypersoft set is projected, using the cartesian product of disjoint attribute-

valued sets as the approximate function’s domain. To handle uncertainties with this form of

approximate function, the current models are insufficient. Therefore, in this paper, the BHSS

is taken into consideration because the parameters and their opposite play a symmetric role.
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1.2. Main Contributions

The following list highlights the study’s main contributions:

(1) Some basic definitions are reviewed from the literature.

(2) Theory of BHSSs is used to present a novel theoretical technique for solving decision-

making problems and investigate parameter reductions for these sets.

(3) Suggested algorithm is then tested by using it to solve a problem from daily life that

involves decision-making.

(4) The scope and future directions of the paper are summarized in order to inspire the

reader to pursue further extensions.

1.3. Paper Layout

Following is the structure for this paper: The second section, before getting into this article,

some background information and ideas are given. In the third section, by utilizing BHSSs, we

suggest a new technique for parameter reduction, which will then be followed by an example.

The last section, section 4, provides the paper’s conclusion and future directions.

2. Preliminaries

This part will show a few results that will be useful in the subsequent section. Let ℜ
represent a finite universe of objects, 2ℜ the power set of ℜ, and Σ = Σ1 × Σ2 × ... × Σn the

set of parameters. Let Λ = Λ1 × Λ2 × ...× Λn and ∆ = ∆1 ×∆2 × ...×∆n with Λi,∆i ⊆ Σi

for each i = 1, 2, ..., n.

Definition 2.1. [22] A triple (g , ĝ ,Σ) is called a BHSS over ℜ, where g and ĝ are mappings

given by g : Σ → 2ℜ and ĝ : ¬Σ → 2ℜ with g (s) ∩ ĝ (¬s) = ϕ for all s ∈ Σ.

In other words, a BHSS (g , ĝ ,Σ) over ℜ provides two parametrized families of subsets of

ℜ, with the consistency requirement g (s) ∩ ĝ (¬s) = ϕ for all s ∈ Σ. From now on, a BHSS

(g , ĝ ,Σ) will be represented as follows:

(g , ĝ ,Σ) = {(s, g (s), ĝ (¬s)) : s ∈ Σ and g (s) ∩ ĝ (¬s) = ϕ}.

Example 2.2. Suppose ℜ = {r1, r2, r3, r4, r5, r6, r7} is the set of seven applicants that

applying for a job in a company. Let, The Director = Σ1 = {s1 =goal-oriented,s2 =

risk-taking,s3 = good under stress }, The Thinker = Σ2 = {s4 = logical,s5 = prepared

}, and The Supporter = Σ3 = {s7 = stabilizing, s8 = cautious } be the set of three

personality types and Σ = Σ1 × Σ2 × Σ3 = {ℓ1 = (s1, s4, s7), ℓ2 = (s1, s4, s8), ℓ3 =

(s1, s5, s7), ℓ4 = (s1, s5, s8), ℓ5 = (s2, s4, s7), ℓ6 = (s2, s4, s8), ℓ7 = (s2, s5, s7), ℓ8 =

(s2, s5, s8), ℓ9 = (s3, s4, s7), ℓ10 = (s3, s4, s8), ℓ11 = (s3, s5, s7), ℓ12 = (s3, s5, s8)}. A BHSS
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(g , ĝ ,Σ) can be defined to describe ”Analysis of Applicants’ Personality” as: (g , ĝ ,Σ) =

{(ℓ1,ℜ, ϕ), (ℓ2, {r2, r3, r4, r6}, {r5, r7}), (ℓ3, ϕ, {r4, r5, r6, r7}), (ℓ4, {r1, r2, r3, r4}, {r5, r6, r7}),
(ℓ5, {r1, r2, r3}, ϕ), (ℓ6, {r1, r4, r6}, {r2, r7}), (ℓ7,ℜ, ϕ), (ℓ8, {r1, r7}, {r2, r6}), (ℓ9, {r1, r6}, {r2, r4}),
(ℓ10, ϕ,ℜ), (ℓ11,ℜ, ϕ ), (ℓ12, ϕ,ℜ)}.

Musa and Asaad [22] represented a BHSS by a binary table to store it in computer memory.

The (i, j)-th entry in table is:

mij =


1 if ri ∈ g (ℓj)
0 if ri ∈ ℜ \ {g (ℓj) ∪ ĝ (¬ℓj)}
−1 if ri ∈ ĝ (¬ℓj)

Table 1 provides a tabular representation of the BHSS (g , ĝ ,Σ) with referring to Example 2.2.

Table 1. Tabular form of (g , ĝ ,Σ)

(g , ĝ ,Σ) ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8 ℓ9 ℓ10 ℓ11 ℓ12

r1 1 0 0 1 1 1 1 1 1 −1 1 −1

r2 1 1 0 1 1 −1 1 −1 −1 −1 1 −1

r3 1 1 0 1 1 0 1 0 0 −1 1 −1

r4 1 1 −1 1 0 1 1 0 −1 −1 1 −1

r5 1 −1 −1 −1 0 0 1 0 0 −1 1 −1

r6 1 1 −1 −1 0 1 1 −1 1 −1 1 −1

r7 1 −1 −1 −1 0 −1 1 1 0 −1 1 −1

Definition 2.3. [22] Let (g1, ĝ1,Λ) and (g2, ĝ2,∆) be two BHSSs. Then

(1) (g1, ĝ1,Λ) is a bipolar hypersoft subset of (g2, ĝ2,∆), denoted by (g1, ĝ1,Λ) ˜̃⊑ (g2, ĝ2,∆),

if Λ ⊆ ∆ and g1(s) ⊆ g2(s), ĝ2(¬s) ⊆ ĝ1(¬s) for all s ∈ Λ.

(2) (g1, ĝ1,Λ) and (g2, ĝ2,∆) are bipolar hypersoft equal, if (g1, ĝ1,Λ) ˜̃⊑ (g2, ĝ2,∆) and

(g2, ĝ2,∆) ˜̃⊑ (g1, ĝ1,Λ).
(3) If g1(s) = ϕ and ĝ1(¬s) = ℜ for all s ∈ Λ, then (g1, ĝ1,Λ) is called a relative null BHSS

and denoted by (ϕ̃, ℜ̃,Λ).
(4) If g1(s) = ℜ and ĝ1(¬s) = ϕ for all s ∈ Λ, then (g1, ĝ1,Λ) is called a relative whole

BHSS and denoted by (ℜ̃, ϕ̃,Λ).
(5) The complement of (g1, ĝ1,Λ) is a BHSS (g1, ĝ1,Λ)c = (g c

1 , ĝ c
1 ,Λ) where g c

1(s) = ĝ1(¬s)
and ĝ c

1(¬s) = g1(s) for all s ∈ Λ.

(6) The union of (g1, ĝ1,Λ) and (g2, ĝ2,∆), denoted by (g1, ĝ1,Λ) ˜̃⊔ (g2, ĝ2,∆), is a BHSS

(g , ĝ ,Γ), where Γ = Λ ∩ ∆ and for all s ∈ Γ: g (s) = g1(s) ∪ g2(s) and ĝ (¬s) =

ĝ1(¬s) ∩ ĝ2(¬s).
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(7) The intersection of (g1, ĝ1,Λ) and (g2, ĝ2,∆), denoted by (g1, ĝ1,Λ) ˜̃⊓ (g2, ĝ2,∆), is

a BHSS (g , ĝ ,Γ), where Γ = Λ ∩ ∆ and for all s ∈ Γ: g (s) = g1(s) ∩ g2(s) and

ĝ (¬s) = ĝ1(¬s) ∪ ĝ2(¬s).

Definition 2.4. [28]

(1) Suppose B is a set of attributes with B ⊆ A. We identify a binary relation IND(B),

known as indiscernibility, with expression IND(B) = {(x, y) ∈ ℜ × ℜ : b(x) =

b(y),∀b ∈ B}. Also, IND(B) = ∩b∈B IND(b).

(2) We call an element b ∈ B dispensable if IND(B) = IND(B − {b}). Otherwise, b is

called indispensable in B.

3. Parameter Reduction and Decision-Making Problem

In this section, we discuss the idea of reduction of parameters and decision-making problem

in case of BHSS. Examples are provided to assist readers comprehend the key findings.

Definition 3.1. Let π : Σ → 2ℜ×ℜ be mapping. Then a hypersoft binary relation over ℜ is

the hypersoft set (π,Σ) over ℜ× ℜ.

In fact, (π,Σ) is a parametrized subsets of binary relations on ℜ, i.e., there is a binary

relation π(s) on ℜ for each parameter s ∈ Σ.

Definition 3.2. If π(s) ̸= ϕ is an equivalence relation over ℜ for all s ∈ Σ. Then a hypersoft

binary relation (π,Σ) over a set ℜ is called a hypersoft equivalence relation over ℜ.

Definition 3.3. The decision value of an object ri ∈ ℜ, denoted by di, is defined as:

di =
∑

j mij

where mij is the (i, j)-th element in the BHSS table. The decision table is constructed by

joining the column of decision parameter d with values di to the table of the BHSS (g , ĝ ,Σ).

Now, we provide a definition for the concept of indiscernibility relations related to a BHSS.

Definition 3.4. Let (g , ĝ ,Σ) be a BHSS over ℜ, then:

(1) If ϕ ̸= g (s) ⊂ ℜ and ϕ ̸= ĝ (¬s) ⊂ ℜ with g (s) ∪ ĝ (¬s) ̸= ℜ, then (g , ĝ ,Σ) divides ℜ
into three classes.

(2) If g (s) = ϕ, ĝ (¬s) ⊂ ℜ or ĝ (¬s) = ϕ, g (s) ⊂ ℜ, then (g , ĝ ,Σ) divides ℜ into two

classes.

(3) If g (s) = ℜ or ĝ (¬s) = ℜ, then it provides the universal equivalence relation ℜ× ℜ.

In any of the foregoing three cases, these classes represent an equivalence relation on ℜ. As
a result, we can note that we have an equivalence relation on ℜ for each parameter s ∈ Σ. If
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we denote this equivalence relation as λ(s) for all s ∈ Σ, then (λ,Σ) is a hypersoft equivalence

relation over ℜ. We write

IND(g , ĝ ,Σ) = ∩s∈Σλ(s).

It is obvious that IND(g , ĝ ,Σ) is an equivalence relation over ℜ. The classes of

IND(g , ĝ ,Σ) are fundamental types of knowledge that are shown by a BHSS over ℜ. We

could also consider that, IND(Σ) = IND(g , ĝ ,Σ).

Definition 3.5. We call a decision table of (g , ĝ ,Σ) consistent if and only if IND(Σ) ⊆
IND(D), where IND(D) is the equivalence relation that divides ℜ into categories with

similar decision values.

Definition 3.6. Suppose that T = (ℜ,Σ,Λ,D) is a consistent decision table of BHSS (g , ĝ ,Σ)
and Tϵ = (ℜ,Σ,Λ−ϵ,Dϵ) is a decision table genrated from T by removing some column ϵ ∈ Λ.

Then ϵ is dispensable in T if

(1) Tϵ is consistent, that is, Λ− ϵ ⇒ Dϵ.

(2) IND(D) = IND(Dϵ).

Otherwise, ϵ is indispensable or core parameter. The set of all core parameters of Λ is denoted

by CORE(Λ).

Now, we suggest the following algorithm based on a BHSS.

Algorithm 1.

(1) Identify the BHSS (g , ĝ ,Σ).
(2) Identify Λ ⊆ Σ as the set of choice parameters.

(3) Input d ∈ D, di =
∑

j mij and place it in the last column of the obtained choice

parameters table.

(4) Place the objects that share the same value for d next to each other to rearrange the

input.

(5) Specify core parameters as defined in Definition 3.6. Remove each dispensable param-

eter individually to get a table having a minimum number of condition parameters

that has the same classification ability for d as the original table.

(6) Find k such that dk = max di. Then rk is the best choice object. Any one of rk’s can

be chosen if k has multiple values.

Below, we illustrate the proposed algorithm according to Example 2.2:

(1) Identify the BHSS (g , ĝ ,Σ) given by Table 1.

(2) Let Λ = {ℓ1, ℓ3, ℓ5, ℓ7, ℓ9, ℓ11} where Λ = Λ1 × Λ2 × Λ3 and Λ1 = {s1, s2, s3}, Λ2 =

{s4, s5}, and Λ3 = {s7}.
(3) Table 2 gives the decision table of BHSS (g , ĝ ,Λ). We observe that
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Table 2. Tabular form of (g , ĝ ,Λ)

(g , ĝ ,Λ) ℓ1 ℓ3 ℓ5 ℓ7 ℓ9 ℓ11 d
r1 1 0 1 1 1 −1 3

r2 1 1 1 −1 −1 −1 0

r3 1 1 1 0 0 −1 2

r4 1 1 0 1 −1 −1 1

r5 1 −1 0 0 0 −1 −1

r6 1 1 0 1 1 −1 3

r7 1 −1 0 −1 0 −1 −2

IND(Λ) = {(r1, r1), (r2, r2), (r3, r3), (r4, r4), (r5, r5), (r6, r6), (r7, r7)}

⊂ {(r1, r1), (r2, r2), (r3, r3), (r4, r4), (r5, r5), (r6, r6), (r7, r7), (r1, r6), (r6, r1)}

= IND(D).

Therefore, the decision table is consistent.

(4) Table 3 is obtained by rearranging Table 2 using the same values for d .

Table 3. Rearrangement of Table 2

(g , ĝ ,Λ) ℓ1 ℓ3 ℓ5 ℓ7 ℓ9 ℓ11 d
r1 1 0 1 1 1 −1 3

r6 1 1 0 1 1 −1 3

r3 1 1 1 0 0 −1 2

r4 1 1 0 1 −1 −1 1

r2 1 1 1 −1 −1 −1 0

r5 1 −1 0 0 0 −1 −1

r7 1 −1 0 −1 0 −1 −2

(5) In order to determine CORE(Λ). First, we remove ℓ1 from Table 3, we obtain Table 4.

We observe that removing ℓ1 has no effect on the classification ability of the decision

parameter d , thus ℓ1 is dispensable in Table 3. Then, if we remove ℓ3 from Table 3,

we are left with Table 5. Due to the removal of ℓ3, d ’s classification is different from

that in Table 3. Eliminating ℓ3 therefore disturbs d ’s ability for classification; as a

result, ℓ3 is a core parameter. Continuing in the same manner we determine set of core

parameters:

CORE(Λ) = {ℓ3, ℓ5, ℓ7, ℓ9} (1)

Hence, we can conclude that the removal of ℓ1 and ℓ11 has no effect on d ’s classification

ability, as seen in Table 3. The same classification is presented in Table 6 with minimum

condition parameters.
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Table 4. Tabular form of (g , ĝ ,Λ) after eliminating ℓ1

(g , ĝ ,Λ) ℓ3 ℓ5 ℓ7 ℓ9 ℓ11 dℓ1

r1 0 1 1 1 −1 2

r6 1 0 1 1 −1 2

r3 1 1 0 0 −1 1

r4 1 0 1 −1 −1 0

r2 1 1 −1 −1 −1 −1

r5 −1 0 0 0 −1 −2

r7 −1 0 −1 0 −1 -3

Table 5. Tabular form of (g , ĝ ,Λ) after eliminating ℓ3

(g , ĝ ,Λ) ℓ1 ℓ5 ℓ7 ℓ9 ℓ11 dℓ3

r1 1 1 1 1 −1 3

r6 1 0 1 1 −1 2

r3 1 1 0 0 −1 1

r4 1 0 1 −1 −1 0

r5 1 1 −1 −1 −1 0

r2 1 0 0 0 −1 −1

r7 1 0 −1 0 −1 −1

Table 6. Tabular form of (g , ĝ ,Λ) after eliminating ℓ1 and ℓ11

(g , ĝ ,Λ) ℓ3 ℓ5 ℓ7 ℓ9 d(ℓ1,ℓ11)

r1 0 1 1 1 3

r6 1 0 1 1 3

r3 1 1 0 0 2

r4 1 0 1 −1 1

r2 1 1 −1 −1 0

r5 −1 0 0 0 −1

r7 −1 0 −1 0 −2

Now, we define weighted table of the BHSS (g , ĝ ,Λ). The reason is that some of the

parameters are less important than others, so they must be prioritized lower. So, we

propose that the column of that parameter have the following entries:

nij =


mij ×ϖj if mij = 1

0 if mij = 0

mij × (1−ϖj) if mij = −1

instead of 0 and 1 and −1 only, where mij are the entries in the table of the BHSS

(g , ĝ ,Λ).
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Definition 3.7. The weighted decision value of ri ∈ ℜ is defined as:

di =
∑

j nij

Next, we present the revised algorithm:

Algorithm 2.

(a) Identify the BHSS (g , ĝ ,Σ).
(b) Identify Λ ⊆ Σ as the set of choice parameters.

(c) Determine the weighted table of the BHSS (g , ĝ ,Λ) based on the chosen weights.

(d) Input d ∈ D, di =
∑

j nij and place it in the last column of the weighted table

Tϖ.

(e) Place the objects that share the same value for d next to each other to rearrange

the input.

(f) Specify core parameters. Remove each dispensable parameter individually to get

a table having a minimum number of condition parameters that has the same

classification ability for d as the original table.

(g) Find k such that dk = max di. Then rk is the optimal choice object. Any one of

rk’s can be chosen if k has multiple values.

Now, the original problem is resolved utilizing the new algorithm. Assume that the

selection committee assigns the following weights to the parameters of Λ, beginning

with the third step:

ℓ3: ϖ3 = 0.8

ℓ5: ϖ5 = 0.5

ℓ7: ϖ7 = 0.9

ℓ9: ϖ9 = 0.9

Table 7 gives the weighted decision table of BHSS (g , ĝ ,Λ). We note that

Table 7. Weighted Decision Table for (g , ĝ ,Λ)

(g , ĝ ,Λ)ϖ ℓ3 ℓ5 ℓ7 ℓ9 d
r1 0 0.5 0.9 0.9 2.3

r2 0.8 0.5 −0.1 −0.1 1.1

r3 0.8 0.5 0 0 1.3

r4 0.8 0 0.9 −0.1 1.6

r5 −0.2 0 0 0 −0.2

r6 0.8 0 0.9 0.9 2.6

r7 −0.2 0 −0.1 0 −0.3
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IND(Λ) = {(r1, r1), (r2, r2), (r3, r3), (r4, r4), (r5, r5), (r6, r6), (r7, r7)}

= IND(D).

Therefore, the decision table is consistent. Table 8 is obtained by rearranging Table 7

based on the descending values for d . We find that

Table 8. Table of weighted BHSS (g , ĝ ,Λ) after rearrangement

(g , ĝ ,Λ)ϖ ℓ3 ℓ5 ℓ7 ℓ9 d
r6 0.8 0 0.9 0.9 2.6

r1 0 0.5 0.9 0.9 2.3

r4 0.8 0 0.9 −0.1 1.6

r3 0.8 0.5 0 0 1.3

r2 0.8 0.5 −0.1 −0.1 1.1

r5 −0.2 0 0 0 −0.2

r7 −0.2 0 −0.1 0 −0.3

CORE(Λ) = Λ. (2)

The values of d indicate that d6 = max di = 2.6 and hence k = 6. Thus r6 is the

best candidate to choose since it is the best choice object. We observe that the change

occurs in the place of r1. In the first case, r1 ranked 1st out of 7, however under the

weighted criterion r1 ranks 2nd overall. Similarly, we can identify the position of each

object based on the weighted criteria.

4. Conclusions and Discussion

BHSS theory is a valuable mathematical model for expressing uncertainty concerns

since it takes into consideration both NOT parameters and parameters sets. In this

study, a novel method to decision-making using BHSS was presented, and a decision-

making problem was solved to show the technique’s validity. Parameter reduction

techniques were created and described through examples. The study demonstrated

that our recommended parameter reduction procedures minimize the unneeded pa-

rameters while keeping the same decision-making choices. The novelty of this work is

that this is the first work that employed BHSS to reduce the parameters in decision-

making problems. Although the proposed work are flexible and reliable as the findings

demonstrated that, this model has limitations regarding some situations that deal with

operators having some degree of indeterminacy of our world. Therefore, the future work

may include the extension of this study (i.e. IndetermSoft Set, IndetermHyperSoft Set,

etc.).
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Abstract. The theory of superhyperalgebras is a new concept in the study of all branches of algebra structures.
In this paper, we introduce a novel concept of (m,n)-superhyper G-algebra and present several results from the
study of certain properties of (m,n)-superhyper G-algebras. The purpose of this paper is the study an extension
of G-algebras to (m,n)-superhyper G-algebras, as a generalization of a logic algebra. The main motivation of
this work was obtained based on an extension of G-algebra to superhyper G-algebra based on the nth-power
set of a set.

Keywords: (m,n)-superhyperoperation, (m,n)-superhyperalgebra, (m,n)-superhyper G-algebra.
—————————————————————————————————————————-

1. Introduction

The concept of superhyperalgebra has been introduced by Smarandache in [12]. Smaran-
dache presented the nth-power set of a set, superhyper operation, superhyper axiom, superhy-
per algebra, their corresponding neutrosophic superhyper operation, neutrosophic superhyper
axiom, and neutrosophic superhyper algebra. In general, in any field of knowledge, he ana-
lyzes to encounter superhyper structures (or more accurately (m,n)-SuperHyperStructures).
He studied related concepts, for example, the concepts of superhyperoperation, superhyper-
axiom, superhyperstructure, superhyperalgebra, superhyperfunction, superhypergroup, super-
hypertopology, superhypergraph, and their corresponding neutrosophic superhyperoperation,
neutrosophic superhyperaxiom, and neutrosophic superhyperalgebra in [10–14] between 2016-
2022. Recently Hamidi et al. investigated some research in this scope such as the spectrum of
superhypergraphs via flows [3], on neutro-d-subalgebras [4], neutro-BCK-algebra [5], on neu-
tro G-subalgebra [7], single-valued neutro hyper BCK-subalgebras [6] and superhyper BCK-
algebra [8]. The superhyperalgebra theory both extends some well-known algebra results and
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introduces new topics. The notion of superhyperalgebra is a natural generalization of the
notion of algebra and the development of its fundamental properties. In 2012, the concept
of G-algebra was introduced by Bandaru and Rafi [2]. They proved that QS-algebras are G-
algebras, but the opposite is not necessarily true. The concept of G-algebra is a generalization
of Q-algebra, which has many applications in algebra. We can read more about G-algebras
in [1, 9]. In this paper, (m,n)-superhyper G-algebras is defined and considered. Examples
of (m,n)-superhyper G-algebras are given and some of their properties are described. The
concept of (m,n)-superhyper G-algebra is a generalization of G-algebra. The purpose of this
paper is the study an extension of G-algebras to (m,n)-superhyper G-algebras, as a generaliza-
tion of a logic algebra. The main motivation of this work was obtained based on an extension
of G-algebra to superhyper G-algebra based on the powerset. In this regard, the notation
of nth-power set of a set, superhyper operation, superhyper axiom play the main role in the
construction of (m,n)-superhyper G-algebras.

2. Preliminaries

In this section, we recall some concepts that need for our work.

Definition 2.1. [2] Let X ̸= ∅ and 0 ∈ X be a constant. Then a universal algebra (X, ∗, 0)
of type (2, 0) is called a G-algebra, if for all x, y ∈ X:
(G-1) x ∗ x = 0,
(G-2) x ∗ (x ∗ y) = y.

Proposition 2.2. [2] If (X, ∗, 0) is a G-algebra. Then, for all x, y ∈ X, the following
conditions hold:
(i) x ∗ 0 = x,
(ii) 0 ∗ (0 ∗ x) = x,
(iii) (x ∗ (x ∗ y))y = 0,
(iv) x ∗ y = 0 impliesx = y,
(v) 0 ∗ x = 0 ∗ y implies x = y.

Theorem 2.3. [2] Let (X, ∗, 0) be a G-algebra. Then the following are equivalent.
(i) (x ∗ y) ∗ z = (x ∗ z) ∗ y for all x, y ∈ X,
(ii) (x ∗ y) ∗ (x ∗ z) = z ∗ y for all x, y ∈ X.

Theorem 2.4. [2]Let (X, ∗, 0) be a G-algebra.
(i) If (x ∗ y) ∗ (0 ∗ y) = x for all x, y ∈ X, then x ∗ z = y ∗ z implies x = y.
(ii) a ∗ x = a ∗ y implies x = y for all a, x, y ∈ X.

Definition 2.5. [14] Let X be a nonempty set. Then (X, ◦∗(m,n)) is called an (m,n)-super
hyperalgebra, where ◦∗(m,n) : X

m → Pn
∗ (X) is called an (m,n)-super hyperoperation, Pn

∗ (X)
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Table 1. G-algebra (X, ∗, 0)

∗ 0 1 2 3 4 5

0 0 2 1 3 4 5

1 1 0 3 2 5 4

2 2 3 0 1 5 4

3 3 2 1 0 4 5

4 4 5 3 2 0 1

5 5 4 2 3 1 0

is the nth-powerset of the set X, ∅ ̸∈ Pn
∗ (X), for any subset A of Pn

∗ (X), we identify {A} with
A, m,n ≥ 1 and Xm = X ×X × . . .×X︸ ︷︷ ︸

m times

.

Let ◦∗(m,n) be an (m,n)-super hyperoperation on X and A1, . . . , Am subsets of X. We define

◦∗(m,n)(A1, . . . , Am) =
⋃

xi∈Ai

◦∗(m,n)(x1, . . . , xm).

3. Superhyper G-Algebras

At the beginning of this section, we construct a G-algebra on every nonempty set. Then we
give an example of G-algebra.

Theorem 3.1. Let X be a nonempty set and 0 ∈ X be a constant. Then there exists ∗ on X

such that (X, ∗, 0) is a G-Algebra.

x ∗ y =

0 x = y

y o.w.

Proof. (G-1) is true because x ∗ x = 0. According to the definition x ∗ y = y, therefore
x ∗ (x ∗ y) = x ∗ y = y, and (G-2) also hold. So (X, ∗, 0) is a G-algebra.

Example 3.2. Let X = {0, 1, 2, 3, 4, 5} which ∗ is defined in Table 1. Then (X, ∗, 0) is a
G-algebra.

Example 3.3. Let X = {0, 1, 2, 3} which ∗ is defined in Table 2. Then (X, ∗, 0) is not a
G-algebra, , since 0 ∗ (0 ∗ 2) = 0 ∗ 0 ̸= 2.

In this section, we introduce the concept of (m,n)-superhyper G-algebra based on the nth-
power set of a set. Also, investigate the properties of this concept.

Definition 3.4. Let X be a nonempty set and 0 ∈ X be a constant. Then (X, ◦∗(m,n), 0) is
called an (m,n)-superhyper G-algebra, if for all x, y ∈ X:
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Table 2

∗ 0 1 2 3

0 0 0 0 3

1 1 0 3 0

2 2 2 0 1

3 3 3 3 0

Table 3. superhyper G-algebra (X, ◦∗(2,1), x)

◦∗(2,1) x y z

x x {x, y} {x, z}
y y x {y, z}
z {x, z} {x, y, z} x

Table 4. superhyper G-algebra (X, ◦∗(2,2), a)

◦∗(2,2) {a} {b}
{a} {{a}, {a, b}}{{a}, {b}, {a, b}}
{b} {a, b} a

(Gsh-1) 0 ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m

),

(Gsh-2) y ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)).

Example 3.5. (i) Let X = {x, y, z} and x be a constant. P∗(X) =

{x, y, z, {x, y, z}, {x, y}, {x, z}, {y, z}}. Then (X, ◦∗(2,1), x) is called a (2, 1)-superhyper G-
algebra as shown in Table 3.

(ii) Let X = {a, b}, a be a constant and
P 2
∗ (X) = {{a}, {b}, {a, b}, {{a}, {a, b}}, {{b}, {a, b}}, {{a}, {b}, {a, b}}}. Then (X, ◦∗(2,2), a) is

called a (2, 2)-superhyper G-algebra as shown in Table 4.

(iii) Let X = {0, 1, 2} and P∗(X) = {0, 1, 2, {0, 1, 2}, {0, 1}, {0, 2}, {1, 2}}. Then
(X, ◦∗(3,1), 0) is called a (3, 1)-superhyper G-algebra as shown in Table 5.

We see that two axioms (Gsh-1) and (Gsh-2) are independent. Let X = {0, 1, 2} be a set
with Table 6 and Table 7. In Table 6, the axiom (Gsh-1) is valid but (Gsh-2) does not, because
1 ̸∈ ◦∗(2, ◦∗(2, 1)), and in Table 7, the axiom (Gsh-2) is valid, but the axiom (Gsh-1) is not,
because 0 ̸∈ ◦∗(1, 1).
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Table 5. superhyper G-algebra (X, ◦∗(3,1), 0)

◦∗(3,1) 0 1 2

(0, 0) 0 1 2

(0, 1) 1 {0, 2} {1, 2}
(0, 2) 2 {1, 2} {0, 1}
(1, 0) 1 {0, 2} {1, 2}
(2, 0) 2 {1, 2} {0, 1}
(1, 1) {0, 2} {0, 1} {0, 1, 2}
(1, 2) {1, 2} {0, 1, 2} {0, 1, 2}
(2, 1) {0, 1, 2} {0, 1, 2} {0, 1, 2}
(2, 2) {0, 1} {0, 1, 2} {0, 2}

Table 6

◦∗(2,1) 0 1 2

0 0 {0, 1, 2} {0, 2}
1 {0, 1} {0, 1, 2} 2

2 {0, 2} {0, 2} 0

Table 7

◦∗(2,1) 0 1 2

0 0 {0, 1} {0, 2}
1 {0, 1} 1 2

2 {0, 2} {0, 1} {0, 1, 2}

The following theore, we construct an (m,n)-superhyper G-algebra on each nonempty set.

Theorem 3.6. Let X be a nonempty set and 0 ∈ X be a constant. Then there exists ◦∗(m,n)

on X such that (X, ◦∗(m,n), 0) is an (m,n)-superhyper G-algebra.

◦∗(x1, x2, . . . , xm) =

{0} ∀i ̸= j; xi = xj

{0, y} o.w.

Proof. (Gsh-1) is true because 0 ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m

). According to the definition y ∈

◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), therefore y ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)) and (Gsh-2) also hold. So,

the proof is complete.
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Proposition 3.7. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. Then for any x ∈ X,
the following conditions hold:
(i) ◦∗(x, x, . . . , x︸ ︷︷ ︸

m−1

, 0) ⊆ ◦∗
(
x, x, . . . , x︸ ︷︷ ︸

m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m

)
)
,

(ii) x ∈ ◦∗
(
0, 0, . . . , 0︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, x)
)
.

Proof. (i) By (Gsh-1), 0 ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m

). Then we get ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, 0) ⊆

◦∗
(
x, x, . . . , x︸ ︷︷ ︸

m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m

)
)
.

(ii) If we put x = 0 and y = x in (Gsh-2), then we get (ii).

Proposition 3.8. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. Then for any x, y ∈ X,
0 ∈ ◦∗

(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)), y, y, . . . , y︸ ︷︷ ︸
m−1

)
.

Proof. According to (Gsh-2), y ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)). Now we have according to

(Gsh-1), 0 ∈ ◦∗(y, y, . . . , y︸ ︷︷ ︸
m

) ⊆ ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)), y, y, . . . , y︸ ︷︷ ︸
m−1

)
and therefore

the proof is complete.

Theorem 3.9. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. If for any x, y, z ∈ X,
◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), z, z, . . . , z︸ ︷︷ ︸
m−1

) = ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, z), y, y, . . . , y︸ ︷︷ ︸
m−1

). Then ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y) ⊆

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
.

Proof. By (Gsh-2), z ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z)). Now we have ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y) ⊆ ◦∗
(
◦∗

(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z)), y, y, . . . , y︸ ︷︷ ︸
m−1

)
. According to the assumption

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z)), y, y, . . . , y︸ ︷︷ ︸
m−1

)
=

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
. Thus it is obtained.

Theorem 3.10. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. If for any x, y, z ∈ X,
◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
= ◦∗(z, z, . . . , z︸ ︷︷ ︸

m−1

, y).

Then ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), z, z, . . . , z︸ ︷︷ ︸
m−1

) = ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, z), y, y, . . . , y︸ ︷︷ ︸
m−1

).
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Proof. By (Gsh-2), z ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z)). Now by the assumption, we have

◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), z, z, . . . , z︸ ︷︷ ︸
m−1

) ⊆

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z)), x, x, . . . , x︸ ︷︷ ︸
m−2

)
=

◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), y, y, . . . , y︸ ︷︷ ︸
m−1

).

Conversely, by (Gsh-2), y ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)). Therefore by the assumption,

◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), y, y, . . . , y︸ ︷︷ ︸
m−1

) ⊆

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, z), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)), x, x, . . . , x︸ ︷︷ ︸
m−2

)
= ◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸

m−1

, y), z, z, . . . , z︸ ︷︷ ︸
m−1

).

Theorem 3.11. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. If for any
x, y, z ∈ X, ◦∗(z, z, . . . , z︸ ︷︷ ︸

m−1

, y) = ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
. Then

◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z) ⊆ ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

)
.

Proof. According to (Gsh-2), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z) ⊆

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

), x, x, . . . , x︸ ︷︷ ︸
m−2

)
. By the

assumption, we have ◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

) = ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y).

Therefore it is obtained.

Theorem 3.12. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. If for any x, y, z ∈ X,
◦∗
(
◦∗(x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

)
= ◦∗(x, x, . . . , x︸ ︷︷ ︸

m−1

, z). Then ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y) ⊆

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
.

Proof. According to (Gsh-2), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z) ⊆

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

), x, x, . . . , x︸ ︷︷ ︸
m−2

)
and by the

assumption, ◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

) = ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z). Therefore

◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

) ⊆
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◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

), x, x, . . . , x︸ ︷︷ ︸
m−2

)
. Thus

◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y) ⊆ ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
.

Definition 3.13. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra and A,B ∈
◦∗(m,n)(x1, . . . , xm). Then A and B are called adjacent.

Proposition 3.14. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. Then for any a, x, y ∈
X, ◦∗(a, a, . . . , a︸ ︷︷ ︸

m−1

, x) = ◦∗(a, a, . . . , a︸ ︷︷ ︸
m−1

, y) implies x and y are adjacent.

Proof. Let a, x, y ∈ X and ◦∗(a, a, . . . , a︸ ︷︷ ︸
m−1

, x) = ◦∗(a, a, . . . , a︸ ︷︷ ︸
m−1

, y). It follows that

◦∗
(
a, a, . . . , a︸ ︷︷ ︸

m−1

, ◦∗(a, a, . . . , a︸ ︷︷ ︸
m−1

, x
)
= ◦∗

(
a, a, . . . , a︸ ︷︷ ︸

m−1

, ◦∗(a, a, . . . , a︸ ︷︷ ︸
m−1

, y
)
. Thus according to (Gsh-2),

x and y are adjacent.

Theorem 3.15. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. Then for any x, y ∈ X,
◦∗(0, 0, . . . , 0︸ ︷︷ ︸

m−1

, x) = ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y) implies x and y are adjacent.

Proof. According to the assumption, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, x) = ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y), So we have

◦∗
(
0, 0, . . . , 0︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, x)
)
= ◦∗

(
0, 0, . . . , 0︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y)
)
. Therefore by Theorem 3.7

(ii), x ∈ ◦∗
(
0, 0, . . . , 0︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, x)
)

and y ∈ ◦∗
(
0, 0, . . . , 0︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y)
)
. By defini-

tion x and y are adjacent.

Theorem 3.16. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. Then for any x, y ∈ X,
x ∈ ◦∗

(
◦∗(x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y), y, y, . . . , y︸ ︷︷ ︸
m−2

)
and ◦∗(x, x, . . . , x︸ ︷︷ ︸

m−1

, z) = ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z),

implies x and y are adjacent.

Proof. If ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z) = ◦∗(y, y, . . . , y︸ ︷︷ ︸
m−1

, z), then

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, z), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
=

◦∗
(
◦∗ (y, y, . . . , y︸ ︷︷ ︸

m−1

, z), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
. By the assumption

x ∈ ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, z), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
and

y ∈ ◦∗
(
◦∗ (y, y, . . . , y︸ ︷︷ ︸

m−1

, z), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
. It follows that x and y are adjacent.
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Definition 3.17. A non-empty subset Y of an (m,n)-superhyper G-algebra X is called an
(m,n)-superhyper G-subalgebra if for all a1, a2, . . . , am ∈ Y , implies ◦∗(m,n)(a1, a2, . . . , am) ∈
Pn
∗ (Y ).

Definition 3.18. Let (X, ◦∗(m,n), 0X) and (X ′, ◦′∗(m,n), 0X′) be (m,n)-superhyper G-algebras.
A mapping ϕ : X −→ X ′ is called a homomorphism if

(i) ϕ(◦∗(x1, x2, . . . , xm)) = ◦′∗(ϕ(x1), ϕ(x2), . . . , ϕ(xm)), for x1, x2, . . . , xm ∈ X.
(ii) 0X′ ∈ ϕ(0X).

The homomorphism ϕ is said to be a monomorphism (resp., an epimorphism) if it is injective
(resp., surjective). If the map ϕ is both injective and surjective then X and X ′ are said to be
isomorphic, written X ∼= X ′. For any homomorphism �ϕ : X −→ X ′, the set {x ∈ X|0X′ ∈
ϕ(x)} is called the kernel of ϕ and is denoted by Kerϕ.

Lemma 3.19. Let ϕ : (X, ◦∗(m,n), 0X) −→ (X ′, ◦′∗(m,n), 0X′) be a homomorphism of (m,n)-
superhyper G-algebras, then we have the following:

(i) Kerϕ is an (m,n)-superhyper G-algebra of X,
(ii) Imϕ = {y ∈ X ′|y = ϕ(x), for some x ∈ X} is an (m,n)-superhyper G-subalgebra of X.

Proof. (i) Since 0X ∈ Kerϕ, then Kerϕ ̸= ∅. Suppose x1, x2, . . . , xm ∈ Kerϕ. So 0X′ ∈
ϕ(xi) for i = 1, . . . ,m. From ϕ(◦∗(x1, x2, . . . , xm)) = ◦′∗(ϕ(x1), ϕ(x2), . . . , ϕ(xm)). Because
0X′ ∈ ◦′∗(ϕ(x1), ϕ(x2), . . . , ϕ(xm)), Implies that 0X′ ∈ ϕ(◦∗(x1, x2, . . . , xm)). It follows that,
◦∗(x1, x2, . . . , xm) ∈ Kerϕ.
(ii) Direct to prove.

Definition 3.20. An (m,n)-superhyper G-algebra (X, ◦∗(m,n), 0) is said to be 0-commutative
if for any x, y ∈ X, ◦∗(x, x, . . . , x︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y)) = ◦∗(y, y, . . . , y︸ ︷︷ ︸
m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, x)).

Theorem 3.21. Let (X, ◦∗(m,n), 0) be an 0-commutative (m,n)-superhyper G-algebra. Then
for any x, y ∈ X, ◦∗(y, y, . . . , y︸ ︷︷ ︸

m−1

, x) ⊆ ◦∗
(
◦∗ (0, 0, . . . , 0︸ ︷︷ ︸

m−1

, x), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

)
.

Proof. Because
X be a 0-commutative, implies that ◦∗

(
◦∗ (0, 0, . . . , 0︸ ︷︷ ︸

m−1

, x), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

)
=

◦∗
(
y, y, . . . , y︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, x))
)
. By Theorem 3.7 (ii), ◦∗(y, y, . . . , y︸ ︷︷ ︸

m−1

, x) ⊆

◦∗
(
y, y, . . . , y︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, x))
)

and the result is obtained.
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Theorem 3.22. Let (X, ◦∗(m,n), 0) be a 0-commutative (m,n)-superhyper G-algebra satisfying
◦∗
(
0, 0, . . . , 0︸ ︷︷ ︸

m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)) = ◦∗(y, y, . . . , y︸ ︷︷ ︸
m−1

, x). Then for any x, y ∈ X,

x ∈ ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

)
)
.

Proof. Because X be a 0-commutative, implies that
◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

)
)
=

◦∗
(
y, y, . . . , y︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y))
)
. By the assumption and (Gsh-2),

x ∈ ◦∗(y, y, . . . , y︸ ︷︷ ︸
m−1

, ◦∗(y, y, . . . , y︸ ︷︷ ︸
m−1

, x)) = ◦∗
(
y, y, . . . , y︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y))
)
. Thus it

is obtained.

4. Conclusions

In this paper, we have introduced the novel concept of (m,n)-superhyper G-algebras based
on a powerset and studied their properties. We have presented some basic results and examples
of this superhyperalgebra. The basis of our work is the extension of G-algebras to superhyper
G-algebras using a powerset. We wish that these results are helpful for further studies in the
theory of superhyperalgebra. For future work, we hope to investigate the idea of neutrosophic
superhyper G-algebras, fuzzy superhyper G-algebras, and soft superhyper G-algebras and
obtain some results in this regard and their applications.
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Abstract: For the classical Geometry, in a geometrical space, all items (concepts, axioms, theorems, 

etc.) are totally (100%) true. But, in the real world, many items are not totally true. The 

NeutroGeometry is a geometrical space that has some items that are only partially true (and partially 

indeterminate, and partially false), and no item that is totally false. The AntiGeometry is a geometrical 

space that has some item that are totally (100%) false. While the Non-Euclidean Geometries 

[hyperbolic and elliptic geometries] resulted from the total negation of only one specific axiom 

(Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom [and in 

general: theorem, concept, idea etc.] and even of more axioms [theorem, concept, idea, etc.] and in 

general from any geometric axiomatic system (Euclid’s five postulates, Hilbert’s 20 axioms, etc.), 

and the NeutroAxiom results from the partial negation of any axiom (or concept, theorem, idea, 

etc.). Clearly, the AntiGeometry is a generalization of Non-Euclidean Geometries. [5] 

Keywords: Non-Euclidean Geometries, Euclidean Geometry, Lobachevski-Bolyai-Gauss Geometry, 

Riemannian Geometry, NeutroManifold, AntiManifold, NeutroAlgebra, AntiAlgebra, 

NeutroGeometry, AntiGeometry, Hybrid (Smarandache) Geometry, NeutroAxiom, AntiAxiom, 

NeutroTheorem, AntiTheorem, Partial Function, NeutroFunction, AntiFunction, NeutroOperation, 

AntiOperation, NeutroAttribute, AntiAttribute, NeutroRelation, AntiRelation, NeutroStructure, 

AntiStructure. 

1. Introduction

This is a review paper on the newly emerging field of NeutroStructures and AntiStructures, 

introduced by Smarandache [1] since 2019 and developed [2, 3, 4] in 2020-2021, inspired from our 

real world since the laws and regulations do not equally apply to all citizens, but in different degrees. 

Let T = true, I = indeterminacy, F = false,  

where T, I, F ∈ [0, 1] and (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}. 

The following neutrosophic triplets occur in our real world: 

2. <Structure(1, 0, 0), NeutroStructure(T, I, F), AntiStructure(0, 0, 1)>

In any theoretical field of knowledge, the classical Structures have all items (concepts, axioms, 

theorems, properties, ideas, relationships, etc.) totally (100%) true.  

But in the real world, most structures have items that are only partially true (and partially 

indeterminate, or partially false) and no item that is totally false (as in NeutroStructure), we call them 

NeutroStructures.  

And structures that have some items that are totally (100%) false, we call them AntiStructures. 

3. <Algebra(1, 0, 0), NeutroAlgebra(T, I, F), AntiAlgebra(0, 0, 1)>

As particular cases, when the structures are algebras or geometries, one gets the above 

neutrosophic triplets.  
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The Classical Algebraic Structures [Algebra] have all operations totally (100%) well-defined, and 

all axioms [theorems, concepts, ideas, etc.] totally (100%) true.  

The NeutroAlgebraic Structures have operations or axioms (and in general: theorems, concepts, 

ideas, etc.) that are not totally (100%) well-defined or respectively totally (100%) true, but only 

partially well-defined or partially true [and none of them is 0% well-defined or respectively 0% true 

as in AntiAlgebraic Structures]. The NeutroAlgebraic Structures are in between Classical Algebraic 

Structures and AntiAlgebraic Structures. 

And the AntiAlgebraic Structures have at least one operation or one axiom that is 0% well-

defined or respectively 0% true. 

4. <Geometry(1, 0, 0), NeutroGeometry(T, I, F), AntiGeometry(0, 0, 1)>

1) A geometric structure whose all axioms (and theorems, propositions, etc.) are totally true is

called a classical Geometric Structure (or Geometry). 

2) A geometric structure that has at least one NeutroOperation or one NeutroAxiom (and no

AntiOperation and no AntiAxiom) is called a NeutroAlgebraic Structure (or NeutroGeometry). 

3) A geometric structure that has at least one AntiOperation or one Anti Axiom is called an

AntiAlgebraic Structure (or AntiGeometry). 

Therefore, a neutrosophic triplet is formed: <Geometry, NeutroGeometry, AntiGeometry>, where 

“Geometry” can be any classical Euclidean, Projective, Affine, Discrete, Differential, etc. geometric 

structure. 

* 

Similarly, for any field of knowledge, the axioms (and theorems, propositions, concepts, ideas 

etc.) are categorized in three groups [1 – 4]: 

5. <Axiom(1, 0, 0), NeutroAxiom(T, I, F), AntiAxiom(0, 0, 1)>

An axiom, defined on a given set, endowed with some operation(s). When we define an axiom 

on a given set, it does not automatically mean that the axiom is true for all set’s elements. We have 

three possibilities again: 

i) The axiom is true for all set’s elements (totally true) [degree of truth T = 1] (as in classical

algebraic structures; this is a classical Axiom). Neutrosophically we write: Axiom(1,0,0).

ii) The axiom if true for some elements [degree of truth T], indeterminate for other elements

[degree of indeterminacy I], and false for other elements [degree of falsehood F], where

(T,I,F) is different from (1,0,0) and from (0,0,1) (this is NeutroAxiom). Neutrosophically we

write NeutroAxiom(T,I,F).

iii) The axiom is false for all set’s elements [degree of falsehood F = 1](this is AntiAxiom).

Neutrosophically we write AntiAxiom(0,0,1).

And, of course, the Axiom may be replaced by Theorem, Property, Concept, etc. 

6. Examples of AntiGeometry

6.1. The Hyperbolic (Non-Euclidean) Geometry [or Lobachevski-Bolyai-Gauss Geometry] 

resulted from the total negation of the axiom called Euclid’s Fifth Postulate [through a point exterior 

to a line only one parallel can be drawn to that line] by the AntiAxiom: through a point exterior to a 

line many parallels can be drawn to that line. 

6.2. The Elliptic (Non-Euclidean) Geometry [or Riemannian Geometry] resulted from the total 

negation of the axiom called Euclid’s Fifth Postulate [through a point exterior to a line only one 

parallel can be drawn to that line] by another AntiAxiom: through a point exterior to a line no parallel 

can be drawn to that line. 
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6.3. The second class of the Hybrid (Smarandache) Geometry (or SG)1 where an axiom is totally 

denied but in multiple different ways in the same geometric space, which combined the Hyperbolic 

and Elliptic Geometries into the same geometric space, by totally denying Euclid’s Fifth Postulate in 

two different ways:  

a) there are lines and points exteriors to them such that through a point exterior to a line many

parallels can be drawn to that line; and 

b) there are other lines and points exteriors to them such that through a point exterior to a line

no parallel can be drawn to that line. 

6.4. New example of AntiGeometry that is not a Non-Euclidean Geometry 

Let us have on a plane (π) all circles of radius r > 0 and centered into the origin (0, 0). 

For example, the below drawn circles (Fig. 1).  

By “point” we understand any classical point, and by “line” we understand the circumference 

of a circle. 

Let’s take any three distinct points on the circumference of the small circle (similarly it will be 

for all other circles).  

Clearly,  the points A, B, C lie on the same line (circumference), and: 

the point B lies between the point A and point C; 

the point C lies between the point B and point A; 

and the point A lies between the point C and point B. 

Therefore, Hilbert’s Postulate B.3 of the Axioms of Betweenness, stated as follows: 

“If A, B and C are three distinct points lying on the same line, then one and only one of the 

points lies between the other two.” 

is totally denied, because for any three distinct points lying on a line one has any point lies between 

the other two. 

Figure 1. New Example of AntiGeometry that is not a Non-Euclidean Geometry. 

1  Linfan Mao, Pseudo-Manifold Geometries with Applications, Cornell University, New York City, USA, 2006. 

Abstract: https://arxiv.org/abs/math/0610307, Full paper: https://arxiv.org/pdf/math/0610307. “A Smarandache 

geometry is a geometry which has at least one Smarandachely denied axiom (1969), i.e., an axiom behaves in at 

least two different ways within the same space, i.e., validated and invalided, or only invalided but in multiple 

distinct ways.” 
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This geometrical model does not represent a Non-Euclidean Geometry because the Euclid’s Fifth 

Postulate is 100% true. Two lines are considered parallel if they do not intersect.  

See the proof below: 

Giving a line (circumference C1 centered in the origin) and a point P1 that does not lie on it, there 

exists  a unique line (circumference C2  centered in the origin) that passes though the point P1 and 

does not intersect C1. 

Figure 2. Euclid’s Fifth Postulate is totally true. 

7. Examples of NeutroGeometry

7.1. The first class of the Hybrid (or Smarandache) Geometry1 where an axiom is partially true 

and partially false in the same geometric space.  

For example, there are two distinct points that determine a single line, and other two distinct 

points that determine no line in the same geometric space. 

Thus, Hilbert’s Postulate I.1. of the Axioms of Incidence, announced as follows: 

“For every point P and every point Q not equal to P, there exists a unique line incident with 

the points P and Q”  

becomes partially true and partially false. 

    571



Neutrosophic Sets and Systems, Vol. 55, 2023

Florentin Smarandache, Real Examples of NeutroGeometry and AntiGeometry 

Figure 3: Example of a NeutroGeometry that is an SG 

Assume the rectangle ABCD is a geometric space, where “point” means any classical point on the 

sides AB and CD or interior to this rectangle, and “line” is any segment of line connecting a point 

from AB with a point of CD and passing through the center O of the rectangle. 

For example, L1L2 is a line since it connects the point L1 lying on AB, and point L2 lying on CD, and 

passes through the center O. Similarly for the line M1M2. 

But N1N2 is not a line, since it does not pass through the center O. 

7.2. Example of NeutroGeometry that is not an SG 

We consider the previous model of the rectangular geometric space ABCD, but adding some 

indeterminacy (I), as in our everyday life, i.e. the dark spot below, which represents some marsh 

area, so M1M2 although it is a line since it passes through the origin O, but it has also some degree 

of indeterminacy when crossing through the indeterminate zone (I). 

While L1L2 is a totally determinate line, M1M2 is partially determinate and partially indeterminate 

(as in neutrosophy). 

        572



Neutrosophic Sets and Systems, Vol. 55, 2023

Florentin Smarandache, Real Examples of NeutroGeometry and AntiGeometry 

Figure 34: Example of a NeutroGeometry that is not an SG 

5. Conclusions

In this paper we presented simple examples of NeutroGeometry, AntiGeometry, SG, and Non-

Euclidean Geometries.. 
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—————————————————————————————————————

1. Introduction and Preliminaries

In this section, we provide brief introduction to the concepts of NeutroAlgebraic

structure and AntiAlgebraic structure. For completeness, basic definitions and results

that will be used later in the paper are provided.

The concept of NeutroAlgebraic Structure was introduced by Smarandache in [16].

In [14], Smarandache introduced NeutroAlgebra as a generalization of Partial Algebra.

Using the methods of NeutroSophication and AntiSophication, Smarandache in [15]

presented and studied NeutroAlgebraic Structures and AntiAlgebraic Structures respec-

tively. Since the presentation of seminal papers [ [16], [14] and [15]] by Smarandache,

many Neutrosophic Researchers have further studied and published papers on NeutroAl-

gebraic and AntiAlgebraic Structures as well as NeutroAlgebraic and AntiAlgebraic
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Hyper Structures. For full details, see [ [1], [2], [3], [4], [5], [6], [7], [9], [10] and [12]].

Kandasamy et.al. in [11] studied NeutroAlgebra of ideals in a ring under the usual sum

and product of ideals. They proved that the set of nontrivial ideals in the ring Z is a

NeutroAlgebra under the usual sum of ideals and not a NeutroAlgebra under the usual

product of ideals. They also proved that the set of nontrivial ideals in the ring Zn is a

NeutroAlgebra under the usual sum and product of ideals. They equally showed that

the set of nontrivial ideals in polynomial rings Z[x], Q[x] and R[x] are NeutroAlgebras

under the usual sum of ideals and not NeutroAlgebras under the product of ideals. They

finally showed that the set of nontrivial ideals under the usual product of ideals in the

polynomial ring Zn[x] is a NeutroAlgebra. The aim of the present paper is to extend

the work done in [11] by studying NeutroAlgebra and AntiAlgebra of ideals in a factor

ring.

Definition 1.1. (a) (i) A ClassicalOperation is an operation that is well defined

for all the set’s elements.

(ii) A NeutroOperation is an operation that is partially well defined, partially

indeterminate, and partially outer defined on the given set.

(iii) An AntiOperation is an operation that is outer defined for all set’s elements.

(b) (i) A ClassicalLaw/Axiom defined on a nonempty set is a law/axiom that is

totally true for all the set’s elements.

(ii) A NeutroLaw/Axiom defined on a nonempty set is a law/axiom that is true

for some set’s elements [degree of truth (T)], indeterminate for other set’s

elements [degree of indeterminacy (I)], or false for the other set’s elements

[degree of falsehood (F)], where T, I, F ∈ [0, 1], with (T, I, F ) = (1, 0, 0) that

represents the ClassicalAxiom/Law, and (T, I, F ) = (0, 0, 1) that represents

the AntiAxiom.

(iii) An AntiLaw/Axiom defined on a nonempty set is a law/axiom that is false

for all the set’s elements.

(c) (i) A PartialOperation on a set is an operation that is well defined for some

elements of the set and undefined for all the other elements of the set.

(ii) A PartialAlgebra is an algebra that has at least one PartialOperation, and

all its other axioms are classical.

Definition 1.2. (a) A NeutroAlgebra is an algebra that has at least one Neutro-

Operation or one NeutroAxiom and no AntiOperation or AntiAxiom.

(b) An AntiAlgebra is an algebra endowed with at least one AntiOperation or at

least one AntiAxiom.
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(c) When a NeutroAlgebra has no NeutroAxiom, then it coincides with the Par-

tialAlgebra.

Theorem 1.3. [14] The NeutroAlgebra is a generalization of PartialAlgebra.

Theorem 1.4. [12] Let U be a nonempty finite or infinite universe of discourse and

let S be a finite or infinite subset of U. If n classical operations (laws and axioms) are

defined on S where n ≥ 1, then there will be (2n − 1) NeutroAlgebras and (3n − 2n)

AntiAlgebras.

Example 1.5. (i) Let X = Z+ and let f : X × X → N be a function defined

∀x, y ∈ X by f(x, y) =
√
xy . Then (X, f) is a PartialAlgebra with respect to

the ClassicalAxiom of commutativity.

(ii) Let X = {1, 2, 3} ⊆ Z4 and let ∗ be a binary operation defined in the Cayley

table below.

∗ 1 2 3

1 1 2 3

2 2 0 2

3 3 2 1

Then (X, ∗) is not a PartialAlgebra since 2 ∗ 2 is outer defined. However, (X, ∗)
is a NeutroAlgebra.

(iii) (N,÷) is not a PartialAlgebra eventhough ÷ is a PartialOperation over N. Ax-
ioms of commutativity and associativity are NeutroAxioms and not ClassicalAx-

ioms.

(iv) (Z,÷) is a NeutroAlgebra.

(v) Let X = Z − {0} and let f : X × X → X be a function defined ∀x, y ∈ X by

f(x, y) = exy. Then (X, f) is an AntiAlgebra.

Definition 1.6. Let I and J be two ideals in a ring R.

(i) The sum of I and J denoted by I + J is defined by

I + J = {x+ y : x ∈ I, y ∈ J} .

(ii) The product of I and J denoted by I × J is defined by

I × J = {xy : x ∈ I, y ∈ J} .

(iii) The intersection of I and J denoted by I ∩ J is defined by

I ∩ J = {x : x ∈ J and x ∈ J} .

Lemma 1.7. If I =< m > and J =< n > are ideals in a ring R, then:
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(i) I + J = ⟨GCD(m,n)⟩.
(ii) IJ =< mn >.

(iii) I ∩ J = ⟨LCM[m,n]⟩.

Theorem 1.8. [11] Let Z be the ring of integers and let J be the collection of all

nontrivial ideals in Z. Then (J,+) is an infinite NeutroAlgebra.

Example 1.9. Let I =< 2 >, J =< 3 >,K =< 4 >,L =< 5 >,M =< 6 >,N =< 7 >

be ideals in Z. If X = {I,K,M} and Y = {J, L,N}, then:
(i) (X,+) is a ClassicalAlgebra,

(ii) (Y,+) is a NeutroAlgebra.

(iii) (X,∩) is a NeutrolAlgebra,

(iv) (Y,∩) is a NeutrolAlgebra,

Definition 1.10. Let N be a NeutroAlgebra and let M be a nonempty subset of N .

M is said to be a NeutrosubAlgebra of N if M is also a NeutroAlgebra under the same

operation(s) inherited from N .

Theorem 1.11. [11] Let Z be the ring of integers. Let J be the collection of nontrivial

ideals in Z generated by singleton element n ∈ Z − {1} and let S be the collection of

ideals in Z generated by the primes p ∈ Z− {1}. Then:
(i) (J,+) is a NeutroAlgebra which is not a PartialAlgebra.

(ii) (J,×) is not a NeutroAlgebra.

(iii) (S,+) is a NeutrosubAlgebra.

(iv) (S,×) is not a NeutrosubAlgebra, in fact, it is an AntiAlgebra.

Theorem 1.12. [11] Let R = Zn be the ring of integers modulo n where n is a composite

such that 6 ≤ n < ∞. Let B be the collection of nontrivial ideals in R. Then:

(i) (B,+) is a NeutroAlgebra which is neither a PartialAlgebra nor an AntiAlgebra.

(ii) (B,×) is a NeutroAlgebra which is neither a PartialAlgebra nor an AntiAlgebra.

Theorem 1.13. [11] Let S = R[x] be a polynomial ring where R = R or Q or Z or Zp

with p a prime. Let B be the collection of all proper ideals in S. Then

(i) (B,+) is a NeutroAlgebra.

(ii) (B,×) is not a NeutroAlgebra.

Theorem 1.14. [11] Let S = Zn[x] be a polynomial ring where n is a composite. Let

B be the collection of all proper ideals in S. Then

(i) (B,+) is a NeutroAlgebra.

(ii) (B,×) is a NeutroAlgebra.
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2. Main Results

In this section, we are going to study NeutroAlgebra and AntiAlgebra of ideals in a

factor ring. If I is an ideal in a ring R and M is the collection of all nontrivial ideals in

the factor ring R/I, we want to find conditions under which (M,⊕), (M,⊗) and (M,∩)
are NeutroAlgebras and AntiAlgebras where ⊕, ⊗ and ∩ are the usual sum, product

and intersection of ideals in R/I.

Theorem 2.1. Let I be an ideal in a ring R. Then each ideal in R/I is of the form

J/I where J is an ideal in R containing I.

Example 2.2. Let R = Z be the ring of integers and let I =< 24 > be an ideal

in Z generated by 24. By Theorem 2.1, M1 =< 2 > /I,M2 =< 4 > /I,M3 =< 6 >

/I,M4 =< 8 > /I are nontrivial ideals in the factor ringR/I. IfM = {M1,M2,M3,M4},
and ⊕ is the binary operation of addition of ideals in M , then we can generate the

following Cayley table:

⊕ M1 M2 M3 M4

M1 M1 M1 M1 M1

M2 M1 M2 M1 M1

M3 M1 M1 M3 M1

M4 M1 M2 M1 M4

It is clear from the table that ⊕ is a ClassicalOperation and therefore, (M,⊕) is a

ClassicalAlgebra and not a NeutroAlgebra.

Theorem 2.3. Let I =< m > be an ideal in R = Z and let J =< n > be an ideal in Z
containing I where m ∈ 2Z with m ≥ 8 and n ∈ 2Z with n ≥ 2. If M is the collection of

all nontrivial ideals in the factor ring R/I of the form J/I and ⊕ is the binary operation

of addition of ideals in M , then:

(i) ⊕ is a ClassicalOperation.

(ii) (M,⊕) is a ClassicalAlgebra and not a NeutroAlgebra.

Proof. (i) Suppose that A,B ∈ M are arbitrary. Then A⊕B is nontrivial and A⊕B ∈ M

∀A,B ∈ M . Hence, ⊕ is a ClassicalOperation.

(ii) Since ⊕ is a ClassicalOperation over M , it follows that (M,⊕) is a ClassicalAlgebra

and not a NeutroAlgebra.

Example 2.4. Let M = {M1,M2,M3,M4} be as defined in Example 2.2. If ⊗ is the

binary operation of multiplication of ideals in M , then we can generate the following
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Cayley table:

⊗ M1 M2 M3 M4

M1 M2 M4 outer defined outer defined

M2 M4 outer defined outer defined outer defined

M3 outer defined outer defined outer defined outer defined

M4 outer defined outer defined outer defined outer defined

It is clear from the table that ⊗ is a NeutroOperation and therefore, (M,⊗) is a Neu-

troAlgebra.

Theorem 2.5. Let I =< m > be an ideal in R = Z and let J =< n > be an ideal in Z
containing I where m ∈ 2Z with m ≥ 8 and n ∈ 2Z with n ≥ 2. If M is the collection of

all nontrivial ideals in the factor ring R/I of the form J/I and ⊗ is the binary operation

of multiplication of ideals in M , then:

(i) ⊗ is a NeutroOperation.

(ii) (M,⊗) is a NeutrolAlgebra.

Proof. (i) Without any loss of generality, there exists at least one duplet (A,A) ∈ M and

at least one duplet (A,B) ∈ M such that A⊗ A ∈ M and A⊗ B ∈ M with the degree

of truth (T) and there exists at least one duplet (C,D) ∈ M such that C⊗D ̸∈ M with

the degree of falsehood (F). Hence, ⊗ is a NeutroOperation.

(ii) Since ⊗ is a NeutroOperation over M , it follows that (M,⊗) is a NeutroAlgebra.

Example 2.6. Let X = {M1,M2} and Y = {M3,M4} be subsets of M where M is the

NeutroAlgebra of Example 2.4. Consider the following Cayley tables:

⊗ M1 M2

M1 outer defined outer defined

M2 outer defined outer defined

⊗ M3 M4

M3 outer defined outer defined

M4 outer defined outer defined

It is clear from the tables that both (X,⊗) and (Y,⊗) are AntisubAlgebras of M .

Remark 2.7. Every NeutroAlgebra (M,⊗) of Theorem 2.5 has at least one Antisub-

Algebra.

Example 2.8. Let M = {M1,M2,M3,M4} be as defined in Example 2.2. If ∩ is the

binary operation of intersection of ideals in M , then we can generate the following
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Cayley table:

∩ M1 M2 M3 M4

M1 M1 M2 M3 M4

M2 M2 M2 outer defined M4

M3 M3 outer defined M3 outer defined

M4 M4 M4 outer defined M4

It is clear from the table that ∩ is a NeutroOperation and therefore, (M,⊗) is a Neu-

troAlgebra.

Theorem 2.9. Let I =< m > be an ideal in R = Z and let J =< n > be an ideal in Z
containing I where m ∈ 2Z with m ≥ 8 and n ∈ 2Z with n ≥ 2. If M is the collection of

all nontrivial ideals in the factor ring R/I of the form J/I and ∩ is the binary operation

of intersection of ideals in M , then:

(i) ∩ is a NeutroOperation.

(ii) (M,∩) is a NeutroAlgebra.

Proof. (i) Let A =< a > /I ∈ M be arbitrary with a ∈ 2Z. Then A ∩ A =

⟨LCM[a, a]⟩ /I =< a > /I ∈ M . This shows that there exists at least a duplet

(A,A) ∈ M with 100% degree of truth (T). Without any loss of generality, there exists

at least a duplet (B,C) ∈ M such that B ∩ C ∈ M with degree of truth (T) and there

exists a duplet (D,E) ∈ M such that D ∩ E ∈ M with degree of falsehood (F ). These

show that ∩ is a NeutroOperation.

(ii) Since ∩ is a NeutroOperation, it follows that (M,∩) is a NeutroAlgebra.

Example 2.10. Let X = {M1,M2} and Y = {M3,M4} be subsets of M where M is

the NeutroAlgebra of Example 2.8. Consider the following Cayley tables:

∩ M1 M2

M1 M1 M2

M2 M2 M2

∩ M3 M4

M3 M3 outer defined

M4 outer defined M4

It is clear from the tables that (X,∩) is a ClassicalsubAlgebra of (M,∩) while (Y,∩) is
a NeutrosubAlgebra of (M,∩).

Remark 2.11. Every NeutroAlgebra (M,∩) of Theorem 2.9 has at least one Classical-

subAlgebra and at least one NeutrosubAlgebra.
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Example 2.12. Let R = Z be the ring of integers and let I =< 1155 > be an

ideal in Z generated by 1155. By Theorem 2.1, M1 =< 3 > /I,M2 =< 5 >

/I,M3 =< 7 > /I,M4 =< 11 > /I are nontrivial ideals in the factor ring R/I. If

M = {M1,M2,M3,M4}, and ⊕ is the binary operation of addition of ideals in M , then

we can generate the following Cayley table:

⊕ M1 M2 M3 M4

M1 M1 outer defined outer defined outer defined

M2 outer defined M2 outer defined outer defined

M3 outer defined outer defined M3 outer defined

M4 outer defined outer defined outer defined M4

It is clear from the table that ⊕ is a NeutroOperation and therefore, (M,⊕) is a Neu-

troAlgebra.

Example 2.13. Let X = {M1,M2} and Y = {M3,M4} be subsets of M where M is

the NeutroAlgebra of Example 2.12. Consider the following Cayley tables:

⊕ M1 M2

M1 M1 outer defined

M2 outer defined M2

⊕ M3 M4

M3 M3 outer defined

M4 outer defined M4

It is clear from the tables that both (X,⊕) and (Y,⊕) are NeutrosubAlgebras of (M,⊕).

Theorem 2.14. Let I =< p > be an ideal in R = Z and let J =< q > be an ideal in

Z containing I where p and q are distinct prime numbers different from 1. If M is the

collection of all nontrivial ideals in the factor ring R/I of the form J/I and ⊕ is the

binary operation of addition of ideals in M , then:

(i) ⊕ is a NeutroOperation.

(ii) (M,⊕) is a NeutrolAlgebra.

Proof. (i) Let A =< a > and B =< b > be arbitrary elements of M with a and b

distinct primes different from 1. Then A⊕ A = ⟨GCD(a, a)⟩ /I =< a > /I ∈ M . Also,

A⊕ B = ⟨GCD(a, b)⟩ /I =< 1 > /I = R/I ̸∈ M . These show that there exists at least

one duplet (A,A) ∈ M such that A ⊕ A ∈ M with the degree of truth (T) and there

exists at least one duplet (A,B) ∈ M such that A⊕B ̸∈ M with the degree of falsehood

(F). Hence, ⊕ is a NeutroOperation.

(ii) Since ⊕ is a NeutroOperation over M , it follows that (M,⊕) is a NeutroAlgebra.
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Remark 2.15. Every NeutroAlgebra (M,⊕) of Theorem 2.14 has at least one Neutro-

subAlgebra.

Example 2.16. Let M = {M1,M2,M3,M4} be as defined in Example 2.12. If ⊗ is the

binary operation of multiplication of ideals in M , then we can generate the following

Cayley table:

⊗ M1 M2 M3 M4

M1 outer defined outer defined outer defined outer defined

M2 outer defined outer defined outer defined outer defined

M3 outer defined outer defined outer defined outer defined

M4 outer defined outer defined outer defined outer defined

It is clear from the table that ⊗ is an AntiOperation and therefore, (M,⊗) is an An-

tiAlgebra.

Theorem 2.17. Let I =< p > be an ideal in R = Z and let J =< q > be an ideal in

Z containing I where p and q are distinct prime numbers different from 1. If M is the

collection of all nontrivial ideals in the factor ring R/I of the form J/I and ⊗ is the

binary operation of multiplication of ideals in M , then:

(i) ⊗ is an AntiOperation.

(ii) (M,⊗) is an AntiAlgebra.

Proof. (i) Let A =< a > and B =< b > be arbitrary elements of M with a and b distinct

primes different from 1. Then A⊗ A =< aa > /I ̸∈ M . This shows that ∀A ∈ M , the

duplet (A,A) ̸∈ M with the degree of falsehood (F). Also, A ⊗ B =< ab > /I ̸∈ M .

This shows that ∀A,B ∈ M , the duplet (A,B) ̸∈ M with the degree of falsehood (F).

Hence, ⊗ is an AntiOperation.

(ii) Since ⊗ is an AntiOperation over M , it follows that (M,⊗) is an AntiAlgebra.

Remark 2.18. All subAlgebras of AntiAlgebra (M,⊗) of Theorem 2.17 are all Anti-

subAlgebras.

Example 2.19. Let M = {M1,M2,M3,M4} be as defined in Example 2.12. If ∩ is

the binary operation of intersection of ideals in M , then we can generate the following
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Cayley table:

∩ M1 M2 M3 M4

M1 M1 outer defined outer defined outer defined

M2 outer defined M2 outer defined outer defined

M3 outer defined outer defined M3 outer defined

M4 outer defined outer defined outer defined M4

It is clear from the table that ∩ is a NeutroOperation and therefore, (M,∩) is a Neu-

troAlgebra.

Theorem 2.20. Let I =< p > be an ideal in R = Z and let J =< q > be an ideal in

Z containing I where p and q are distinct prime numbers different from 1. If M is the

collection of all nontrivial ideals in the factor ring R/I of the form J/I and ∩ is the

binary operation of intersection of ideals in M , then:

(i) ∩ is a NeutroOperation.

(ii) (M,∩) is a NeutroAlgebra.

Proof. (i) Let A =< a > and B =< b > be arbitrary elements of M with a and b

distinct primes different from 1. Then A ∩ A = ⟨LCM[a, a]⟩ /I =< a > /I ∈ M . This

shows that ∀A ∈ M , the duplet (A,A) ∈ M with 100% degree of truth (T). Also,

A ∩B = ⟨LCM[a, b]⟩ /I ̸∈ M . This shows that for A ̸= B, there exists at least a duplet

(A,B) ̸∈ M with the degree of falsehood (F). Hence, ∩ is a NeutroOperation.

(ii) Since ∩ is a NeutroOperation over M , it follows that (M,∩) is a NeutroAlgebra.

Example 2.21. Let R = Z12 be the ring of integers modulo 12 and let I =< 6 > be an

ideal in R generated by 6. By Theorem 2.1, M1 =< 2 > / < 6 >,M2 =< 3 > / < 6 >

are nontrivial ideals in the factor ring R/I. Let M = {M1,M2} and let ⊕, ⊗ and

∩ be the binary operations of addition, multiplication and intersection of ideals in M

respectively. Consider the following Cayley tables:

⊕ M1 M2

M1 M1 outer defined

M2 outer defined M2

⊗ M1 M2

M1 outer defined outer defined

M2 outer defined M2

∩ M1 M2

M1 M1 outer defined

M2 outer defined M2
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It is clear from the tables that ⊕, ⊗ and ∩ are NeutroOperations and thus, (M,⊕),

(M,⊗) and (M,∩) are NeutroAlgebras.

Example 2.22. Let R = Z24 be the ring of integers modulo 24 and let I =< 12 > be

an ideal in R generated by 12. By Theorem 2.1, M1 =< 2 > / < 12 >,M2 =< 3 > / <

12 >,M3 =< 4 > / < 12 >,M4 =< 6 > / < 12 > are nontrivial ideals in the factor

ring R/I. Let M = {M1,M2,M3,M4} and let ⊕, ⊗ and ∩ be the binary operations

of addition, multiplication and intersection of ideals in M respectively. Consider the

following Cayley tables:

⊕ M1 M2 M3 M4

M1 M1 outer defined M1 M1

M2 outer defined M2 outer defined M2

M3 M1 outer defined M3 M1

M4 M1 M2 M1 M4

⊗ M1 M2 M3 M4

M1 M3 M4 outer defined outer defined

M2 M4 outer defined outer defined outer defined

M3 outer defined outer defined outer defined outer defined

M4 outer defined outer defined outer defined outer defined

∩ M1 M2 M3 M4

M1 M1 M4 M3 M4

M2 M4 M2 outer defined M4

M3 M3 outer defined M3 outer defined

M4 M4 M4 outer defined M4

It is clear from the tables that ⊕, ⊗ and ∩ are NeutroOperations and thus, (M,⊕),

(M,⊗) and (M,∩) are NeutroAlgebras.

Theorem 2.23. Let R = Zn be the ring of integers modulo n where n is a composite

such that 12 ≤ n < ∞, let I =< p > be an ideal in R and let J =< q > be an ideal in

R containing I where p, q ̸∈ {0, 1}. If M is the collection of all nontrivial ideals in the

factor ring R/I of the form J/I, and ⊕, ⊗ and ∩ are respectively the binary operations

of addition, multiplication and intersection of ideals in M , then:

(i) (M,⊕) is a NeutroAlgebra.

(ii) (M,⊗) is a NeutroAlgebra.

(iii) (M,∩) is a NeutroAlgebra.
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Proof. Similar to the proofs of Theorems 2.14 and 2.20 and so omitted.

Example 2.24. Let R = Z[x] be the ring of polynomials in Z and let I =< x2+1 > be

an ideal in R generated by x2 + 1. By Theorem 2.1, J =< x3 + x2 + x+ 1 > /I,K =<

x4 + x2 > /I are nontrivial ideals in the factor ring R/I. Let M = {J,K} and let ⊕, ⊗
and ∩ be the binary operations of addition, multiplication and intersection of ideals in

M respectively. Consider the following Cayley tables:

⊕ J K

J J outer defined

K outer defined K

⊗ J K

J inner defined inner defined

K inner defined inner defined

∩ J K

J inner defined inner defined

K inner defined inner defined

It can be seen from the tables that (M,⊕) is a NeutroAlgebra whereas (M,⊗) and

(M,∩) are not NeutroAlgebras but ClassicalAlgebras.

Theorem 2.25. Let I be an ideal in the polynomial ring R = Z[x] or Q[x] or R[x] or
Zp[x] where p is a prime number and let J be an ideal in R containing I. If M is the

collection of all nontrivial ideals in the factor ring R/I of the form J/I and ⊕, ⊗ and

∩ are the binary operations of addition, multiplication and intersection of ideals in M

respectively. then:

(i) (M,⊕) is a NeutroAlgebra.

(ii) (M,⊗) is a ClassicalAlgebra.

(iii) (M,∩) is a ClassicalAlgebra.

Theorem 2.26. Let I be an ideal in the polynomial ring R = Zn[x] where n is a

composite and let J be an ideal in R containing I. If M is the collection of all nontrivial

ideals in the factor ring R/I of the form J/I and ⊕, ⊗ and ∩ are the binary operations

of addition, multiplication and intersection of ideals in M respectively. then:

(i) (M,⊕) is a NeutroAlgebra.

(ii) (M,⊗) is a NeutroAlgebra.

(iii) (M,∩) is a NeutroAlgebra.

Example 2.27. Let R = Z10[x] be the ring of polynomials in Z10 and let I =< x+1 >

be an ideal in R generated by x + 1. By Theorem 2.1, J =< 2x2 − 2) > /I,K =<

5x2 + 5x > /I are nontrivial ideals in the factor ring R/I. Let M = {J,K} and let ⊕,
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⊗ and ∩ be the binary operations of addition, multiplication and intersection of ideals

in M respectively. Consider the following Cayley tables:

⊕ J K

J J outer defined

K outer defined K

⊕ J K

J J outer defined

K outer defined K

⊕ J K

J J outer defined

K outer defined K

It can be seen from the tables that (M,⊕), (M,⊗) and (M,∩) are NeutroAlgebras.

3. Conclusion

In this paper, we have extended the work done by Kandasamy et al. in [11]. If I

is an ideal in a ring R and M is the collection of all nontrivial ideals in the factor

ring R/I, we have provided conditions under which (M,⊕), (M,⊗) and (M,∩) can be

NeutroAlgebras and AntiAlgebras where ⊕, ⊗ and ∩ are the usual sum, product and

intersection of ideals in R/I. Several examples were provided to illustrate the conditions.
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