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Abstract: To overcome the limitations of both the conversion method based on the standard 

deviation and the decision flexibility in existing neutrosophic multi-valued decision-making models, 

this study aims to propose various new techniques including a conversion method, Aczel-Alsina 

aggregation operations, and a multi-attribute group decision making (MAGDM) model in the case 

of neutrosophic multi-valued sets (MVNSs). First, we propose a conversion method to convert 

neutrosophic multi-valued elements (MVNEs) into neutrosophic entropy elements (NEEs) based on 

the mean and normalized Shannon/probability entropy of truth, falsity, and indeterminacy 

sequences. Second, the score and accuracy functions of NEEs are defined for the ranking of NEEs. 

Third, the Aczel-Alsina t-norm and t-conorm operations of NEEs and the NEE Aczel-Alsina 

weighted arithmetic averaging (NEEAAWAA) and NEE Aczel-Alsina weighted geometric 

averaging (NEEAAWGA) operators are presented to reach the advantage of flexible operations by 

an adjustable parameter. Fourth, we propose a MAGDM model in light of the NEEAAWAA and 

NEEAAWGA operators and the score and accuracy functions in the case of NMVSs to solve flexible 

MAGDM problems with an adjustable parameter subject to decision makers’ preference. Finally, an 

illustrative example is given to verify the impact of different parameter values on the decision 

results of the proposed MAGDM model. Compared with existing techniques, the new techniques 

not only overcome the defects of existing techniques but also be broader and more versatile than 

existing techniques when dealing with MAGDM problems in the case of NMVSs. 

Keywords: neutrosophic multi-valued set; neutrosophic entropy element; Aczel-Alsina aggregation 

operator; group decision making 

 

 

1. Introduction 

In indeterminate and inconsistent situations, multi-valued neutrosophic sets (MVNSs) or 

neutrosophic hesitant fuzzy sets (NHFSs) can be depicted by the multi-valued sequences of the truth, 

falsity, and indeterminacy membership degrees, which were the extension of neutrosophic sets [1]. 

Then, relation operations, aggregation algorithms, and measure methods of MVNSs/NHFSs are 

critical research topics and play important roles in the fuzzy decision-making issues. Therefore, 

MVNSs/NHFSs have been used in medical diagnosis, decision making, engineering experiments, 

measurements, etc. Under the environment of NHFSs, some aggregation operators of single and 



Neutrosophic Sets and Systems, Vol. 57, 2023     2  

 

 

Weiming Li, Jun Ye, Ezgi Türkarslan, MAGDM Model Using the Aczel-Alsina Aggregation Operators of Neutrosophic 
Entropy Elements in the Case of Neutrosophic Multi-Valued Sets 

interval valued NHFSs were presented and utilized in multi-attribute decision making (MADM) 

problems [2-4]. Then, MADM models based on the extended grey relation analysis [5] and the TOPSIS 

method [6] were introduced in the setting of NHFSs. Under the environment of MVNSs, some 

aggregation operators of MVNSs were proposed for multi-valued neutrosophic MADM problems [7, 

8]. The Dice similarity measure of single-valued neutrosophic multisets (SVNMs) was introduced 

and used for medical diagnosis [9]. Furthermore, the correlation coefficient of dynamic SVNMs was 

presented for MADM problems [10]. The TODIM methods were introduced for MADM problems 

with MVNSs [11, 12]. However, there are the operational difficulty and complexity between different 

sequence lengths/cardinalities in multi-valued/hesitant sequences. To solve these issues, Fan et al. 

[13] introduced a conversion method from SVNMs to single-valued neutrosophic sets (SVNSs) by the 

average aggregation values of truth, indeterminacy, and falsity sequences, and then proposed the 

cosine similarity measure of SVNSs for MADM problems in the case of SVNMs. But this conversion 

method in [13] may result in some loss/distortion of information. To solve this problem, Ye et al. [14] 

further proposed a reasonable conversion method of neutrosophic multi-valued sets (NMVSs) 

(including MVNSs, NHFSs, and SVNMs) in light of the average values and consistency degrees 

(complement of standard deviation) of truth, indeterminacy, and falsity sequences to realize the 

reasonable information expression and operations of consistency neutrosophic sets/elements 

(CNS/CNEs), and then developed a multi-attribute group decision making (MAGDM) method using 

correlation coefficients of CNSs in the case of NMVSs. Then, the conversion method based on the 

average value and standard deviation [14] is only suitable for normal distribution, which indicates 

its limitation. Moreover, the existing MAGDM method based on two correlation coefficients of CNSs 

[14] lacks decision flexibility in the case of NMVSs. Therefore, it is difficult to satisfy the preference 

of decision makers and/or application needs. Under a probabilistic MVNS environment, Liu and 

Cheng [15] proposed a three-phase MAGDM method based on the multi-attributive border 

approximation area comparison (MABAC) method. Since the probability method needs a large 

number of evaluation values to reasonably give their probabilistic values in MAGDM problems, it is 

difficult to apply it in actual MAGDM problems. According to the theory of probability and statistics, 

it is seen that the probability value yielded from a few of the evaluation values (small-scale sample 

data) is unreasonable and may cause the probability distortion. Moreover, the three-phase MAGDM 

method also lacks its flexible decision-making feature in the setting of probabilistic MVNSs. 

Recently, many researchers have proposed various Aczel-Alsina aggregation operators and their 

decision-making approaches in various fuzzy circumstances because the operations based on the 

Aczel-Alsina t-norm and t-conorm [16, 17] reflect the advantage of changeability by an adjustable 

parameter. For example, Fu et al. [18] proposed the Aczel-Alsina aggregation operators of entropy 

fuzzy elements and their MAGDM model for renal cancer surgery options in the case of fuzzy multi-

sets. Yong et al. [19] introduced the Aczel-Alsina aggregation operators of simplified neutrosophic 

elements and their MADM approach. Senapati [20] proposed the Aczel-Alsina average aggregation 

operators of fuzzy picture elements and their MADM approach. Hussain et al. [21] presented the 

Aczel-Alsina aggregation operators of T-spherical fuzzy elements and their decision-making 

problems. Then, Senapati et al. [22-24] developed the Aczel-Alsina aggregation operators of (interval‐

valued) intuitionistic fuzzy elements and their MADM approach. Senapati et al. [25] introduced 

hesitant fuzzy aggregation operators and applied them to the assessment of cyclone disasters. 

However, these Aczel-Alsina aggregation operators cannot deal with the aggregation operations and 

MAGDM issues of NMVSs. 

To solve the aforementioned limitations/deflects of the existing methods in the case of NMVSs, 

the purposes of this research are: (1) to propose a conversion method from a neutrosophic multi-

valued element (NMVE) to a neutrosophic entropy element (NEE) in light of the average values and 

Shannon/probability entropy of truth, falsity, and indeterminacy sequences, (2) to define score and 

accuracy functions of NEE and ranking laws of NEEs, (3) to propose the Aczel-Alsina t-norm and t-

conorm operations of NEEs and the NEE Aczel-Alsina weighted arithmetic averaging 

(NEEAAWAA) and NEE Aczel-Alsina weighted geometric averaging (NEEAAWGA) operators, and 
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(4) to develop a MAGDM method by the proposed NEEAAWAA and NEEAAWGA operators and 

score and accuracy functions to be effectively used for flexible decision-making issues with the 

information of NMVSs.  

In order to verify the impact of different parameter values on the decision results of the proposed 

MAGDM model, an illustrative example indicates the efficiency and rationality of the proposed 

MAGDM model. Then, comparative analysis shows that our new techniques not only overcome the 

defects of the existing techniques, but also are broader and more versatile than the existing techniques 

when dealing with MAGDM problems in the setting of NMVSs.  

However, the conversion method, the NEEAAWAA and NEEAAWGA operators, and the 

MAGDM model proposed in this research show new contributions and outstanding advantages of 

these new techniques. 

The remainder of this paper contains the following sections. Section 2 proposes a conversion 

method from NMVE to NEE in terms of the mean and Shannon entropy of the truth, indeterminacy 

and falsity sequences in NMVEs, and then defines score and accuracy functions of NEE, ranking laws 

of NEEs, and the Aczel-Alsina t-norm and t-conorm operations of NEEs. Section 3 presents the 

NEEAAWAA and NEEAAWGA operators and their properties. In Section 4, a MAGDM model is 

established by the NEEAAWAA and NEEAAWGA operators and the score and accuracy functions 

of NEEs in the NMVS setting. Section 5 introduces an illustrative example and comparison with 

existing techniques to show the efficiency and rationality of the new techniques. The last section 

contains conclusions and further work. 

2. NEEs Based on the Mean and Normalized Shannon Entropy in the Case of NMVSs 

In the setting of NMVSs, this section first presents a NEE concept by a conversion method based 

on the Shannon entropy and average values of truth, falsity and indeterminacy sequences, and then 

defines the score and accuracy functions and ranking laws of NEEs and the Aczel-Alsina t-norm and 

t-conorm operations of NEEs. 

Definition 1 [14]. Set Y = {yk| k = 1, 2, …, m} as a finite universe set. A NMVS M on Y is defined as 

 , ( ), ( ), ( ) |k T k I k F k kM y M y M y M y y Y  , 

where MT(yk), MI(yk) and MF(yk) are the truth, indeterminacy, and falsity sequences with the same 

and/or different fuzzy values, which are denoted by 1 2( ) ( ( ), ( ),..., ( ))kr

T k T k T k T kM y y y y   , 

1 2( ) ( ( ), ( ),..., ( ))kr

I k I k I k I kM y y y y    and 
1 2( ) ( ( ), ( ),..., ( ))kr

F k F k F k F kM y y y y    for yk  Y, 

along with the length of their sequence rk and 0 sup ( ) sup ( ) sup ( ) 3T k I k F kM y M y M y     (k 

= 1, 2, …, m). 

For convenience, the kth element , ( ), ( ), ( )k T k I k F ky M y M y M y  in M is denoted as the NMVE 

1 2 1 2 1 2, , ( , ,..., ), ( , ,..., ), ( , ,..., )k k kr r r

k Tk Ik Fk Tk Tk Tk Ik Ik Ik Fk Fk FkMs M M M            in decreasing 

sequences. 

First, the concept of the Shannon/probability entropy [26] is introduced below. 

Set  = {1, 2, …, n} as a probability distribution on a set of random variables. Then, the 

Shannon entropy of the probability distribution  is expressed as 

1

( ) ln( )
n

j j

j

P   


  .                                (1) 

where j  [0, 1] and 
1

1
n

jj



 . 

If all values of j (j = 1, 2, …, n) are the same, then the entropy P() reaches the maximum value, 

which means perfect consistency of j. Generally, there is an approximately linear relationship 

between entropy and standard deviation: the larger the standard deviation, the smaller the entropy. 
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In the following, we present the definition of NEE by a conversion method in light of the 

normalized Shannon entropy and average values of truth, falsity, and indeterminacy sequences in 

NMVE. 

Definition 2. Set 1 2 1 2 1 2, , ( , ,..., ), ( , ,..., ), ( , ,..., )k k kr r r

k Tk Ik Fk Tk Tk Tk Ik Ik Ik Fk Fk FkMs M M M            as the 

kth NMVE. Then, its NEE is represented as follows: 

( , ),( , ),( , )Ek Tk Tk Ik Ik Fk FkN e e e   , 

where Tk, Ik, Fk  [0, 1] are the average values of the truth, indeterminacy, and falsity sequences 

and eTk, eIk, eFk  [0, 1] are the normalized entropy values of the truth, indeterminacy, and falsity 

sequences, which are yielded by the following formulae: 

(1) 
1

1 kr
j

Tk Tk

jkr
 



   and 
1

1 1

1
ln

ln

k

k k

r j j

Tk Tk
Tk r r

j j jk
Tk Tk

j j

e
r

 

 

 

 
 
  
 
 
 


 

; 

(2) 
1

1 kr
j

Ik Ik

jkr
 



   and 
1

1 1

1
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k

k k

r j j

Ik Ik
Ik r r

j j jk
Ik Ik

j j
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(3) 
1

1 kr
j

Fk Fk
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1
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k

k k

r j j

Fk Fk
Fk r r

j j jk
Fk Fk

j j

e
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. 

Remark 1. Since the entropy of rk components cannot exceed lnrk (rk > 1), the defined normalized 

Shannon entropy measures satisfy eTk, eIk, eFk  [0, 1], and also there exist the following results: 

1
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r j

Tk

r
j j

Tk

j










, 
1

1

1
k

k

r j

Ik

r
j j

Ik

j










, 
1

1

1
k

k

r j

Fk

r
j j

Fk

j










, 

which can satisfy the Shannon entropy conditions. When all components in a multi-valued sequence 

are the same value, the normalized Shannon entropy is equal to one (the maximum value). 

Example 1. Let Ms = <(0.8, 0.7, 0.5), (0.3, 0.2, 0.1), (0.2, 0.2, 0.2)> be NMVE. Using the formulae (1)-(3) 

in Definition 2, we obtain the following NEE: 

NE = <(0.6667, 0.9835), (0.2, 0.9206), (0.2, 1)>. 

Then, we can give the definition of some relations of NEEs below. 

Definition 3. Set NE1 = <(T1, eT1), (I1, eI1), (F1, eF1)> and NE2 = <(T2, eT2), (I2, eI2), (F2, eF2)> as two NEEs. 

Then, their relations are defined as follows: 

(1) NE1  NE2  T1  T2, eT1  eT2, I2  I1, eI2  eI1, F2  F1, and eF2  eF1; 

(2) NE1 = NE2  NE1  NE2 and NE2  NE1; 

(3) 
1 2 1 2 1 2 1 2 1 2 1 2 1 2( , ),( , ),( , )E E T T T T I I I I F F F FN N e e e e e e            ; 

(4) 
1 2 1 2 1 2 1 2 1 2 1 2 1 2( , ),( , ),( , )E E T T T T I I I I F F F FN N e e e e e e            ; 
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(5)      1 1 1 1 1 1 1( ) , , 1 ,1 , ,c

E F F I I T TN e e e      (Complement of NE1). 

To sort NEEs, we define the score and accuracy functions and ranking laws of NEEs below. 

Definition 4. Let NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> for k = 1, 2 be two NEEs. Then, the score and 

accuracy functions of NEEs are defined as follows: 

( ) (2 ) / 3Ek Tk Tk Ik Ik Fk FkR N e e e          for ( ) [0,1]EkR N  ,        (2) 

( )Ek Tk Tk Fk FkQ N e e      for ( ) [ 1,1]EkQ N   .                 (3) 

Thus, the two NEEs NE1 and NE2 are ranked by the following laws: 

(1) If R(NE1) > R(NE2), then NE1 > NE2; 

(2) If R(NE1) = R(NE2) and Q(NE1) > Q(NE2), then NE1 > NE2; 

(3) If R(NE1) = R(NE2) and Q(NE1) = Q(NE2), then NE1 = NE2 

Example 2. There are two NEEs NE1 = <(0.6333, 0.6376), (0.1333, 0.6534), (0.3, 0.6783)> and NE2 = 

<(0.4667, 0.6464), (0.2, 0.6338), (0.2333, 0.7346)>. By Eq. (2), the score values and ranking of the two 

NEEs are given as follows: 

R(NE1) = (2+0.63330.6376  0.13330.6534  0.30.6783)/3 = 0.7044, 

R(NE2) = (2+0.46670.6464  0.20.6338  0.23330.7346)/3 = 0.6678. 

Since R(NE1) > R(NE2), the ranking of both is NE1 > NE2. 

Regarding the t-norm and t-conorm operations, Aczel and Alsina [16] and Alsina et al. [17] 

defined the Aczel-Alsina t-norms ( , )G c d : [0, 1]2  [0,1] and the Aczel-Alsina t-conorms 

( , )H c d : [0, 1]2  [0,1] for all c, d  [0, 1] and   0 as follows: 

(a) The Aczel-Alsina t-norms are defined as 

1/(( ln ) ( ln )

( , ), 0

( , ) min( , ),

, otherwise

D

c d

G c d if

G c d c d if

e
  







   

 


  



)

. 

(b) The Aczel-Alsina t-conorms are defined as 

1/(( ln(1 )) ( ln(1 ))

( , ), 0

( , ) max( , ),

1 , otherwise

D

c d

H c d if

H c d c d if

e
  







     

 


  



）

, 

where GD(c, d) and HD(c, d) are the drastic t-norm and the drastic t-conorm, respectively, which are 

denoted as 

, if 1

( , ) , if 1

0, otherwise

D

c d

G c d d c




 



 and 

, if 1

( , ) , if 1

1, otherwise

D

c d

H c d d c




 



. 

Since the operations based on the Aczel-Alsina t-norm and t-conorm [16, 17] reflect the 

advantage of changeability by an adjustable parameter , we can give the definition of the Aczel-

Alsina t-norm and t-conorm operations of NEEs. 

Definition 5. Let NE1 = <(T1, eT1), (I1, eI1), (F1, eF1)> and NE2 = <(T2, eT2), (I2, eI2), (F2, eF2)> be two 

NEEs,   1, and  > 0. Then, their operations are defined below: 
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(1) 

 

 

 

1/ 1/
1 2 1 2

1/ 1/
1 2 1 2

1/ 1/
1 2 1 2

(( ln(1 )) ( ln(1 )) ) (( ln(1 )) ( ln(1 )) )

(( ln ) ( ln ) ) (( ln ) ( ln ) )

1 2

(( ln ) ( ln ) ) (( ln ) ( ln ) )

1 ,1 ,

= , ,

,

T T T T

I I I I

F F F F

e e

e e

E E

e e

e e

N N e e

e e

     

     

     

 

 

 

           

       

       

 

 ; 

(2) 

 

 

1/ 1/
1 2 1 2

1/ 1/
1 2 1 2

1/
1 2 1

(( ln ) ( ln ) ) (( ln ) ( ln ) )

(( ln(1 )) ( ln(1 )) ) (( ln(1 )) ( ln(1 )) )

1 2

(( ln(1 )) ( ln(1 )) ) (( ln(1 )) ( ln(1

, ,

= 1 ,1 ,

1 ,1

T T T T

I I I I

F F F

e e

e e

E E

e e

e e

N N e e

e e

     

     

   

 

 

 

       

           

           

  

  
1/

2 )) )F
 

; 

(3) 
 

   

1/ 1/
1 1

1/ 1/ 1/ 1/
1 1 1 1

( ( ln(1 )) ) ( ( ln(1 )) )

1
( ( ln( )) ) ( ( ln ) ) ( ( ln ) ) ( ( ln ) )

1 ,1 ,
=

, , ,

T T

I I F F

e

E
e e

e e
N

e e e e

   

       

  

     


     

       

 
; 

(4) 

 

 

 

1/ 1/
1 1

1/ 1/
1 1

1/ 1/
1 1

( ( ln ) ) ( ( ln ) )

( ( ln(1 )) ) ( ( ln(1 )) )

1

( ( ln(1 )) ) ( ( ln(1 )) )

, ,

( ) = 1 ,1 ,

1 ,1

T T

I I

F F

e

e

E

e

e e

N e e

e e

   

   

   

  

  

  

   

     

     

 

 

. 

Example 3. Let NE1 = <(0.6333, 0.6376), (0.1333, 0.6534), (0.3, 0.6783> and NE2 = <(0.4667, 0.6464), (0.2, 

0.6338), (0.2333, 0.7346)> be two NEEs,  = 3, and  = 0.6. Using the operations (1)-(4) in Definition 5, 

we obtain the following operational results: 

(1) 

 

 

3 3 1/3 3 3 1/3

3 3 1/3 3 3 1/3

3 3 1/3

(( ln(1 0.6333)) ( ln(1 0.4667)) ) (( ln(1 0.6376)) ( ln(1 0.6464)) )

(( ln 0.1333) ( ln 0.2) ) (( ln 0.6534) ( ln 0.6338) )

1 2

(( ln 0.3) ( ln 0.2333) ) (( ln 0.6783

1 ,1 ,

= , ,

,

E E

e e

N N e e

e e

           

       

     

 



 
3 3 1/3) ( ln 0.7346) )

(0.6603, 0.7260), (0.0991, 0.5735), (0.1845, 0.6411)

 



; 

(2) 

 

 

3 3 1/3 3 3 1/3

3 3 1/3 3 3 1/3

3 3 1/3

(( ln 0.6333) ( ln 0.4667) ) (( ln 0.6376) ( ln 0.6464) )

(( ln(1 0.1333)) ( ln(1 0.2)) ) (( ln(1 0.6534)) ( ln(1 0.6338)) )

1 2

(( ln(1 0.3)) ( ln(1 0.2333)) )

, ,

= 1 ,1 ,

1 ,1

E E

e e

N N e e

e e

       

           

     

  

  
3 3 1/3(( ln(1 0.6783)) ( ln(1 0.7346)) )

(0.4434, 0.5721), (0.2143, 0.7278), (0.3299, 0.7898)

     



; 

(3) 

 

   

3 1/3 3 1/3

3 1/3 3 1/3 3 1/3 3 1/3

(0.6( ln(1 0.6333)) ) (0.6( ln(1 0.6376)) )

1
(0.6( ln 0.1333) ) (0.6( ln 0.6534) ) (0.6( ln 0.3) ) (0.6( ln 0.6783) )

1 ,1 ,
0.6 =

, , ,

(0.5709, 0.5752), (0.1827, 0.6984), (0.3622, 0

E

e e
N

e e e e

     

       

 

 .7208)

; 
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(4) 

 

 

 

3 1/3 3 1/3

3 1/3 3 1/3

3 1/3 3 1/3

(0.6( ln 0.6333) ) (0.6( ln 0.6376) )

0.6 (0.6( ln(1 0.1333)) ) (0.6( ln(1 0.6534)) )

1

(0.6( ln(1 0.3)) ) (0.6( ln(1 0.6783)) )

, ,

( ) = 1 ,1 ,

1 ,1

(0.6803, 0.6841), (0.1137, 0.590

E

e e

N e e

e e

   

     

     

 

 

 9), (0.2598, 0.6158)

. 

3. Aczel-Alsina Aggregation Operators of NEEs 

3.1 NEEAAWAA Operator 

This part proposes the NEEAAWAA operator according to the operations in Definition 5. 

Definition 6. Set NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> (k = 1, 2, …, m) as a group of NEEs with the weight 

vector of NEk  = (1, 2, …, m) for k  [0, 1] and 
1

1
m

kk



 . Then, the definition of a NEEAAWAA 

operator is given by the following form: 

1 2
1

( , ,..., )
m

E E Em k Ek
k

NEEAAWAA N N N N


  .                   (4) 

Thus, the NEEAAWAA operator has the following theorem. 

Theorem 1. Set NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> (k = 1, 2, …, m) as a group of NEEs with the weight 

vector of NEk  = (1, 2, …, m) for k  [0, 1] and 
1

1
m

kk



 . Then, the collected value of the 

NEEAAWAA operator is till NEE, which is given by the formula: 

1/ 1/

1 1

1/ 1/

1 1

( ln(1 )) ( ln(1 ))

( ln ) ( ln )

1 2
1

( ln

1 ,1 ,

( , ,..., ) , ,

m m

k Tk k Tk

k k

m m

k Ik k Ik

k k

k Fk

e

em

E E Em k Ek
k

e e

NEEAAWAA N N N N e e

e

 

 

 

 

  

  

 



 

 

   
        
   
   

   
      
   
   



 

 
  

 
 
 
 

 
  

  
 
 
 

1/ 1/

1 1

) ( ln )

,

m s

k Fk

k k

e

e

 

 
 

   
    
   
   

 
  

 
 
 

. (5) 

Proof. Theorem 1 is proved by mathematical induction below. 

(1) Let k = 2. According to Definition 5 and Eq. (4), the operational results are given as 
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1/ 1/ 1/

1 1 1 1 2 2 2

1/ 1/

1 1 1 1

1/ 1/

1 1 1 1

1 2 1 1 2 2

( ln(1 )) ( ln(1 )) ( ln(1 )) ( ln(1

( ln ) ( ln )

( ln ) ( ln )

( , )

1 ,1 , 1 ,1

, ,

,

T T T T

I I

F F

E E E E

e e

e

e

NEEAAWAA N N N N

e e e e

e e

e e

  
  

 
 

 
 

     

  

  

 

           

   

   

 

 
    

 

 
  

 

 
 
 

 

   

   

1/

2

1/ 1/

2 2 2 2

1/ 1/

2 2 2 2

1/ 1/
2 2

1 1

2

1

))

( ln ) ( ln )

( ln ) ( ln )

( ln(1 )) ( ln(1 ))

( ln )

,

, ,

,

1 ,1 ,

I I

F F

k Tk k Tk

k k

k Ik

k

e

e

e

e e

e e

e e

e




 
 

 
 

 

 



  

  

  

 

 



   

   

   
        
   
   

 
 

 

 
 
 

 
 
 

 
 
 

 
  

 
 
 
 




1/ 1/
2

1

1/ 1/
2 2

1 1

( ln )

( ln ) ( ln )

, , .

,

k Ik

k

k Fk k Fk

k k

e

e

e

e e

 



 

 



  



 

 
   
  

 

   
      
   
   

 
 

 
 
 

 
  

 
 
 

 (6) 

(2) Assume Eq. (5) for k = s exists. Then, there exists the following result: 

1/ 1/

1 1

1/ 1/

1 1

( ln(1 )) ( ln(1 ))

( ln ) ( ln )

1 2
1

( ln

1 ,1 ,

( , ,..., ) , ,

s s

k Tk k Tk

k k

s s

k Ik k Ik

k k

k F

e

es

E E Es k Ek
k

e e

NEEAAWAA N Nz N N e e

e

 

 

 

 

  

  

 



 

 

   
        
   
   

   
      
   
   



 

 
  

 
 
 
 

 
  

  
 
 
 

1/ 1/

1 1

) ( ln )

,

s s

k k Fk

k k

e

e

 

 
 

   
    
   
   

 
  

 
 
 

. (7) 

(3) Let k = s+1. By Eqs. (6) and (7), there is the following result: 
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1/ 1/

1 1

1/ 1/

1 1

1

1 2 1
1

( ln(1 )) ( ln(1 ))

( ln ) ( ln )

( l

( , ,..., , )

1 ,1 ,

, ,

s s

k Tk k Tk

k k

s s

k Ik k Ik

k k

k

s

s s k Ek
k

e

e

NEEAAWAA N N N N N

e e

e e

e

 

 

 

 

  

  





 

 






   
        
   
   

   
      
   
   

 

 

 
  

 
 
 
 

 
  


 
 
 

   

   

 

1/ 1/

1 1 1 1

1/ 1/

1 1 1 1

1/

1 1 11/ 1/

1 1

( ln(1 )) ( ln(1 ))

( ln ) ( ln )

( ln ) (

n ) ( ln )

1 ,1 ,

, ,

,

,

m Tm m Tm

m Im m Im

m Fm m
s s

Fk k Fk

k k

e

e

e

e e

e e

e e

e

 
 

 
 




 

 

  

  

  

 

   

   

  

 

     

   

   

   
    
   
   

 
  

 

 
  

 

 
  

 
 
 

 
1/

1

1/ 1/
s+1 s+1

1 1

1/ 1/
s+1 s+1

1 1

s+1

1

ln )

( ln(1 )) ( ln(1 ))

( ln ) ( ln )

( ln )

1 ,1 ,

, ,

Fm

k Tk k Tk

k k

k Ik k Ik

k k

k Fk

k

e

e

e

e e

e e

e




 

 

 

 



  

  

 



 

 



   
        
   
   

   
      
   
   


 

 
 
 

 
  

 
 
 
 

 
  


 
 
 


1/ 1/

s+1

1

( ln )

.

,
k Fk

k

e

e

 




  
    
   
   

 
 

 
 
 

 

Based on the above (1)-(3), Eq. (5) can hold for any k.  

Moreover, the NEEAAWAA operator of Eq. (5) implies the following properties. 

Theorem 2. The NEEAAWAA operator contains the properties (P1)-(P4): 

(P1) Idempotency: Set NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> (k = 1, 2, …, m) as a group of NEEs. If NEk = NE 

(k = 1, 2, …, m), there is NEEAAWAA(NE1, NE2, …, NEm) = NE. 

(P2) Commutativity: Assume that a group of NEEs 1 2 , ...( , )' ' '

E E EmN N N,  is any permutation of (NE1, 

NE2, …, NEm). Then,  1 2 1 2, ...( ),  =   ' ' '

E E Em EE mENEEAAWAA N N N NEEAAWAA N ,N , ,N,  can exist. 

(P3) Boundedness: If the maximum and minimum NEEs are specified as follows: 

     max max( ),max( ) , min( ),min( ) , min( ),min( )E Tk Tk Ik Ik Fk Fk
k k k kk k

N e e e   , 

     min min( ),min( ) , max( ),max( ) , max( ),max( )E Tk Tk Ik Ik Fk Fk
k k k k k k

N e e e   , 

then NEmin ≤ NEEAAWAA(NE1, NE2, …, NEm) ≤ NEmax can exist. 

(P4) Monotonicity: If 
*

Ek EkN N  (k = 1, 2, …, m), there is NEEAAWAA(NE1, NE2, …, NEm) ≤ 

NEEAAWAA(
* * *

1 2, ,...,E E EmN N N ). 

Proof. (P1) If NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> = NE (k = 1, 2, …, m), by Eq. (4) we yield the result: 
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1/ 1/

1 1

1/ 1/

1 1

1 2
1

( ln(1 )) ( ln(1 ))

( ln ) ( ln )

( ln
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k Tk k Tk
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k Ik k Ik
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k Fk
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E E Em k Ek
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e

e

NEEAAWAA N N N N

e e

e e

e

 

 

 

 

  

  

 



 

 



   
        
   
   

   
      
   
   

 

 

 
  

 
 
 
 

 
  


 
 
 

1/ 1/

1 1

1/ 1/

1 1

1/ 1/

1 1

( ln(1 )) ( ln(1 ))

( ln ) ( ln )

) ( ln )

1 ,1 ,

,
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k T k T
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m m

k I k I

k k
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k Fk

k k

e

e

e

e e

e e

e

 

 

 

 

 

 

  

  



 

 

 

   
        
   
   

   
      
   
   

   
    
   
   

 
  

 
 
 
 


 






 
  

 
 
 

   

   

   

1/ 1/

1 1

1/ 1/

1/ 1/

1/ 1/

( ln ) ( ln )

( ln(1 )) ( ln(1 ))

ln(1 )

( ln ) ( ln )

( ln ) ( ln )

,

,

1 ,1 ,
1

, ,

,

m m

k F k F

k k

T T

T

I I

F F

e

e

e

e

e e

e e
e

e e

e e

 

 

 
 

 
 

 
 

  









 

   
      
   
   

     



   

   





 


 
  

 
 
 

 
  

  

 
  

 

 
 
 

 

 

 

ln(1 )

ln ln

ln ln

,1 ,

, , ( , ), ( , ), ( , ) .

,

T

I I

F F

e

e

T T I I F F E

e

e

e e e e e N

e e





  




 

 

(P2) The property (P2) is straightforward. 

(P3) Since the inequalities min ( ) max ( )Tk Tk Tk
k k

    , min ( ) max ( )Tk Tk Tk
k k

e e e  , 

min ( )  max ( )Ik Ik Ik
k k

    , min ( )  max ( )Ik Ik Ik
k k

e e e  , min ( )  max ( )Fk Fk Fk
k k

    , and 

min ( )  max ( )Fk Fk Fk
k k

e e e   exist based on the maximum and minimum NEEs, there are the 

following inequalities: 

1 1 1

1 1 1

( ln(1 min( ))) ( ln(1 )) ( ln(1 max( )))

1 1 1

/ / /
m s m

k Tk k Tk k Tk
k k

k k ke e e

  

       
  

     
             
     
     
  

     , 

1 1 1

1 1 1

( ln(1 min( ))) ( ln(1 )) ( ln(1 max( )))

1 1 1

/ / /
m m m

k Tk k Tk k Tk
k k

k k k

e e e

e e e

  

    
  

     
             
     
     
  

     , 

1 1 1

1 1 1

( ln(max( ))) ( ln ) ( ln(min ( )))

/ / /
m m m

k Ik k Ik k Ik
kk

k k ke e e

  

       
  

     
          
     
     
  

  , 

1 1 1

1 1 1

( ln(max( ))) ( ln ) ( ln(min ( )))

/ / /
m m m

k Ik k Ik k Ik
kk

k k k

e e e

e e e

  

    
  

     
          
     
     
  

  , 

1 1 1

1 1 1

( ln(max( ))) ( ) ( ln(min ( )))

/ / /
m m m

k Fk k Fk k Fk
kk

k k k

ln

e e e

  

       
  

     
          
     
     
  

  , 

1 1 1

1 1 1

( ln(max( ))) ( ) ( ln(min ( )))

/ / /
m m m

k Fk k Fk k Fk
kk

k k k

e lne e

e e e

  

    
  

     
          
     
     
  

  . 

Regarding the property (P1) and the score value of Eq. (2), we can obtain NEmin ≤ 
1

m

k Ek
k

N

  ≤ 

NEmax, then there is NEmin ≤ NEEAAWAA(NE1, NE2, …, NEm) ≤ NEmax.  

(P4) When 
*

Ek EkN N  (k = 1, 2, …, m), there exists 
*

1 1

m m

k Ek k Ek
k k

N N 
 
   . Thus, 

NEEAAWAA(NE1, NE2, …, NEm) ≤ NEEAAWAA(
* * *

1 2, ,...,E E EmN N N ) can exist.  

Especially when  = 1, the NEEAAWAA operator of Eq. (5) is reduced to the NEE weighted 

arithmetic averaging (NEEWAA) operator: 
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3.2 NEEAAWGA Operator 

This part presents the NEEAAWGA operator according to the operations in Definition 5. 

Definition 7. Set NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> (k = 1, 2, …, m) as a group of NEEs with the weight 

vector of NEk  = (1, 2, …, m) for k [0, 1] and 
1

1
m

kk



 . Thus, a NEEAAWGA operator is defined 

as 

1 2
1

( , ,..., ) ( ) k

m

E E Em Ek
k

NEEAAWGA N N N N



  .                 (9) 

Then, the NEEAAWGA operator shows the following theorem. 

Theorem 3. Set NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> (k = 1, 2, …, m) as a group of NEEs with the weight 

vector of NEk  = (1, 2, …, m) for k [0, 1] and 
1

1
m

kk



 . Then, the collected value of the 

NEEAAWGA operator is also NEE, which is obtained by the following formula: 

1/ 1/
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. (10) 

By the similar proof way of Theorem 1, we can easily verify Theorem 3, which is omitted. 

Similarly, the NEEAAWGA operator also contains some properties. 

Theorem 4. The NEEAAWGA operator includes these properties (P1)-(P4): 

(P1) Idempotency: Set NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> (k = 1, 2, …, m) as a group of NEEs. When NEk 

= NE (k = 1, 2, …, m), NEEAAWGA(NE1, NE2, …, NEm) = NE exists. 

(P2) Commutativity: Assume that a group of NEEs 1 2 , ...( , )' ' '

E E EmN N N,  is any permutation of (NE1, 

NE2, …, NEm). Then,  1 2 1 2, ...( ),  =   ' ' '

E E Em EE mENEEAAWGA N N N NEEAAWGA N ,N , ,N,  can exist. 

(P3) Boundedness: If the maximum and minimum NEEs are specified below: 

     max max( ),max( ) , min( ),min( ) , min( ),min( )E Tk Tk Ik Ik Fk Fk
k k k kk k

N e e e   ,  

     min min( ),min( ) , max( ),max( ) , max( ),max( )E Tk Tk Ik Ik Fk Fk
k k k k k k

N e e e   , 

then NEmin ≤ NEEAAWGA(NE1, NE2, …, NEm) ≤ NEmax can hold. 

(P4) Monotonicity: Set 
*

Ek EkN N  (k = 1, 2, …, m). Then, NEEAAWGA(NE1, NE2, …, NEm) ≤ 

NEEAAWGA(
* * *

1 2, ,...,E E EmN N N ) exists. 

By the similar proof method of Theorem 2, we can easily verify Theorem 4, which is not repeated 

here. 
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Especially when  = 1, the NEEAAWGA operator is reduced to the NEE weighted geometric 

averaging (NEEWGA) operator: 
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1

1 1 1 1
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.    (11) 

4. MAGDM Model Based on the NEEAAWAA and NEEAAWGA Operators and the Score and 

Accuracy Functions 

In this section, a MAGDM model is established by the proposed NEEAAWAA and 

NEEAAWGA operators and score and accuracy functions to solve MAGDM problems in the NMVS 

setting. 

Regarding a MAGDM problem, a set of s alternatives L = {L1, L2, …, Ls} is preliminarily provided 

and satisfactorily evaluated by a set of m attributes B = {b1, b2, …, bm}. Then, the importance of various 

attributes bk (k = 1, 2, …, m) is assigned by a weight vector  = (1, 2, …, m) with k  [0, 1] and 

1
1

m

kk



 . The satisfactory evaluation values of each alternative Li (i = 1, 2, …, s) over each 

attribute bk (k = 1, 2, …, m) are assigned by a group of experts/decision makers, then the evaluated 

truth, indeterminacy, and falsity sequences are denoted as the NMVE 
1 2 1 2 1 2, , ( , ,..., ), ( , ,..., ), ( , ,..., )k k kr r r

ik Tik Iik Fik Tik Tik Tik Iik Iik Iik Fik Fik FikMs M M M            for 

0 sup sup sup 3Tik Iik FikM M M     and 
j

Tik , 
j

Iik ,
j

Fik  [0, 1] (j = 1, 2, …, rk; i = 1, 2, …, s; k = 

1, 2, …, m). Then, the evaluated NMVEs are represented as the decision matrix of NMVEs MD = 

(Msik)sm. 

Regarding this MAGDM problem, we give the decision steps below. 

Step 1: By the formulae (1)-(3) in Definition 2, all NMVEs in the decision matrix MD are 

conversed into the NEEs NEik = <(Tik, eTik), (Iik, eIik), (Fik, eFik)> for Tik, Iik, Fik  [0, 1] and eTik, eIik, eFik  

[0, 1] (i = 1, 2, …, s; k = 1, 2, …, m), which are constructed as the decision matrix of NEEs ND = (NEik)sm. 

Step 2: Using one of Eq. (5) and Eq. (10), the aggregated NEE NEi (i = 1, 2, …, s) for Li is given by 

one of two formulae: 

1/ 1/
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Step 3: The score values of R(NEi) (the accuracy values of Q(NEi) subject to necessary) (i = 1, 2, …, 

s) are obtained by Eq. (2) (Eq. (3)).  

Step 4: All alternatives are sorted based on the ranking laws and the best one is chosen. 

Step 5: End. 

5. Illustrative Example and Comparison with Existing Techniques 

5.1 Example on the Performance Assessment of Service Robots  

Service robotics contain many application fields, such as industrial service robots, home service 

robots, and medical service robots. They are improving our daily lives in various ways. Then, most 

of them have unique designs and different degrees of automation (from full teleoperation to fully 

autonomous operation) to affect the quality of our work and lives. However, the performance 

evaluation of the service robots is an important issue for users. To indicate the applicability of the 

developed MAGDM model under the environment of NMVSs, this subsection applies the developed 

MAGDM model to the performance assessment of service robots. 

Suppose that there are four kinds of service robots/alternatives, which are denoted as their set L 

= {L1, L2, L3, L4}. Then, they must satisfy the requirements of the four performance indices/attributes: 

mobility (b1), dexterity (b2), working ability (b3), and communication and control capability (b4). The 

weight vector of the four attributes is given as  = (0.25, 0.24, 0.26, 0.25) by experts/decision makers. 

The assessment of four types of service robots over the four attributes is performed by three 

experts/decision makers, where their evaluation values are assigned by the NMVEs 
1 2 1 2 1 2, , ( , ,..., ), ( , ,..., ), ( , ,..., )k k kr r r

ik Tik Iik Fik Tik Tik Tik Iik Iik Iik Fik Fik FikMs M M M            (consisting of the 

truth, indeterminacy, and falsity sequences) for 0 sup sup sup 3Tik Iik FikM M M     and 
j

Tik , 

j

Iik ,
j

Fik  [0, 1] (j = 1, 2, 3; i, k = 1, 2, 3, 4; rk = 3). Thus, all assessed NMVEs can be expressed as the 

following decision matrix of NMVEs MD = (Msik)44: 

1

2

3

4

(0.8,0.7,0.7), (0.8,0.7,0.6), (0.7,0.7,0.6), (0.7,0.7,0.7),

(0.3,0.2,0.1), (0.3,0.1,0.1), (0.3,0.3,0.3), (0.3,0.1,0.1),

(0.2,0.2,0.1) (0.4,0.3,0.2) (0.3,0.2,0.2) (0.3,0.3,0.3)

(0.7,0.7,0.6

D

M

M
M

M

M

 
 
  
 
 
 

), (0.7,0.7,0.7), (0.8,0.8,0.7), (0.8,0.8,0.8),

(0.2,0.2,0.1), (0.3,0.3,0.2), (0.1,0.1,0.1), (0.2,0.1,0.1),

(0.2,0.2,0.1) (0.3,0.1,0.1) (0.3,0.2,0.2) (0.4,0.3,0.3)

(0.8,0.7,0.6), (0.7,0.

(0.3,0.3,0.2),

(0.3,0.2,0.2)

7,0.6), (0.8,0.7,0.7), (0.8,0.8,0.7),

(0.2,0.1,0.1), (0.1,0.1,0.1), (0.2,0.1,0.1),

(0.3,0.3,0.1) (0.2,0.1,0.1) (0.4,0.4,0.3)

(0.8,0.8,0.6), (0.9,0.8,0.8), (0

(0.2,0.2,0.1), (0.1,0.1,0.1),

(0.3,0.2,0.2) (0.3,0.2,0.1)

.8,0.7,0.7), (0.7,0.7,0.7),

(0.4,0.4,0.2), (0.2,0.1,0.1),

(0.5,0.3,0.3) (0.2,0.2,0.1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 
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In the MAGDM example, the proposed MAGDM model is given by the following decision 

process. 

First, using the formulae (1)-(3) in Definition 2 for the decision matrix MD = (Msik)44, we obtain 

the NEE decision matrix ND: 

(0.7333, 0.9981), (0.2000, 0.9206), (0.1667, 0.9602) (0.7000, 0.9938), (0.1667, 0.8650), (0.3000, 0.9656)

(0.6667, 0.9977), (0.1667, 0.9602), (0.1667, 0.9602) (0.7000, 1.0000), (0.2667, 0.9851), (0.16
DN 

67, 0.8650)

(0.7000, 0.9938), (0.2667, 0.9851), (0.2333, 0.9821) (0.6667, 0.9977), (0.1333, 0.9464), (0.2333, 0.9141)

(0.7333, 0.9922), (0.1667, 0.9602), (0.2333, 0.9414) (0.8333, 0.9986), (0.1000, 1.0000), (0.2000, 0.9206)

(0.6667, 0.9977), (0.3000, 1.0000), (0.2333, 0.9821) (0.7000, 1.0000), (0.1667, 0.8650), (0.3000, 1.0000)

(0.7667, 0.9983), (0.1000, 1.0000), (0.2333, 0.9821) (0.8000, 1.0000), 








(0.1333, 0.9464), (0.3333, 0.9461)

(0.7333, 0.9981), (0.1000, 1.0000), (0.1333, 0.9464) (0.7667, 0.9983), (0.1333, 0.9464), (0.3667, 0.9922)

(0.7333, 0.9981), (0.3333, 0.9602), (0.3667, 0.9713) (0.7000, 1.0000), (0.1333, 0.9464), (0.1667, 0.9602)








. 

Then using one of Eqs. (12) and (13), the aggregated NEEs NEi (i = 1, 2, …, s) are calculated 

corresponding to various values of , and then score values of NEi (i = 1, 2, …, s) for Li and ranking 

orders of the four alternatives are given by Eq. (2) and the ranking laws, which are shown in Tables 

1 and 2. 

Table 1. Decision results based on Eq. (12) and Eq. (2) 

 Score value Ranking The best one 

1 0.7594, 0.7953, 0.7863, 0.7909 L2 > L4 > L3 > L1 L2 

3 0.7673, 0.8067, 0.7981, 0.8038 L2 > L4 > L3 > L1 L2 

5 0.7730, 0.8148, 0.8066, 0.8133 L2 > L4 > L3 > L1 L2 

7 0.7777, 0.8209, 0.8130, 0.8206 L2 > L4 > L3 > L1 L2 

9 0.7815, 0.8255, 0.8178, 0.8264 L4 > L2 > L3 > L1 L4 

11 0.7846, 0.8290, 0.8217, 0.8309 L4 > L2 > L3 > L1 L4 

Table 2. Decision results based on Eq. (13) and Eq. (2) 

 Score value Ranking The best one 

1 0.7448, 0.7820, 0.7717, 0.7728 L2 > L4 > L3 > L1 L2 

3 0.7340, 0.7617, 0.7496, 0.7446 L2 > L3 > L4 > L1 L2 

5 0.7250, 0.7455, 0.7326, 0.7247 L2 > L3 > L4 > L1 L2 

7 0.7183, 0.7341, 0.7212, 0.7123 L2 > L3 > L1 > L4 L2 

9 0.7135, 0.7262, 0.7134, 0.7043 L2 > L1 > L3 > L4 L2 

11 0.7100, 0.7207, 0.7079, 0.6988 L2 > L1 > L3 > L4 L2 

 

According to the decision results in Tables 1 and 2, the ranking orders produced by Eq. (12) and 

Eq. (13) show their difference, then the best alternative L2 is the same by taking  = 1, 3. Moreover, in 

the proposed MAGDM model, using different values of  and different aggregation operators can 

affect the ranking orders of alternatives and show its decision flexibility, then the change of the 

parameter  is sensitive to the ranking impact of alternatives. However, the best alternative of the 

example is L2 or L4 depending on a preference selection of decision makers. 

5.2 Comparison with existing techniques in the setting of NMVSs 
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In this part, we compare our new techniques with existing techniques [14] in the setting of 

NMVSs.  

On the one hand, the characteristic comparison between our new techniques and the existing 

techniques is indicated in Table 3. 

Table 3. Characteristic comparison between our new techniques and the existing techniques 

Method 
Evaluation 

information 
Conversion form 

Decision-making 

model with an 

adjustable parameter 

Using 

condition 

Existing 

techniques [14] 
NMVS/NMVE 

CNE based on the 

mean and 

consistency degree 

(complement of 

standard deviation) 

No 
Normal 

distribution 

Our new 

techniques 
NMVS/NMVE 

NEE based on the 

mean and Shannon 

entropy 

Yes No limitation 

 

Regarding the comparative results of Table 3, our new techniques are often broader and more 

versatile than the existing techniques when dealing with MAGDM problems in the setting of NMVSs. 

On the other hand, we can apply the existing MAGDM model using two consistency 

neutrosophic correlation coefficients [14] to the above example. By the existing MAGDM model using 

two consistency neutrosophic correlation coefficients, we give all decision results, which are shown 

in Table 4. 

Table 4. Decision results of the existing MAGDM model using two correlation coefficients 

Existing decision-making model Ranking The best one 

Correlation coefficient 1 [14] L2 > L3 > L4 > L1 L2 

Correlation coefficient 2 [14] L1 > L3 > L4 > L2 L1 

 

Although there is the same ranking order between the existing MAGDM model using the 

correlation coefficient 1 [14] and our proposed MAGDM model using the NEEAAWGA operator for 

 = 3, 5, the existing MAGDM model lacks its decision flexibility. Furthermore, in the existing 

MAGDM model, the conversion technique based on the mean and standard deviation only is suitable 

for the normal distribution of multi-valued sequences in NMVEs. Therefore, our proposed model can 

not only overcome the limitation and insufficiency of the existing model [14], but also show its 

outstanding advantage of diversified decision results to satisfy the preference order of decision 

makers in actual applications. However, our new conversion method and decision-making model are 

superior to the existing ones in the setting of NMVSs. 

6. Conclusions 

To overcome the shortcomings of existing MAGDM method under the environment of NMVSs, 

this study proposed a NEE concept based on the normalized Shannon extropy and average values of 

the truth, falsity, and indeterminacy sequences in NMVSs to overcome the limitation of the existing 

conversion method based on the mean and standard deviation of the truth, falsity, and indeterminacy 

sequences. Then, the proposed ranking laws based on the score and accuracy functions of NEEs and 
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the proposed Aczel-Alsina t-norm and t-conorm operations and NEEAAWAA and NEEAAWGA 

operators provided important mathematical tools for solving flexible decision-making issues in the 

case of NMVSs. The developed MAGDM model can effectively carry out flexible decision-making 

issues with the information of NMVSs, where various parameter values can affect ranking orders of 

alternatives to satisfy decision makers’ preference requirements. Finally, an illustrative example was 

given to verify the efficiency and rationality of the developed MAGDM model. Compared with the 

existing techniques, our proposed techniques are broader and more versatile than the existing 

techniques when dealing with MAGDM problems in the case of NMVSs. However, in this study, the 

proposed information expression, operations, and aggregation operators of NEEs and the established 

MAGDM method show the highlighting advantages of these new techniques. 

Regarding these new techniques, we have many future researches to be performed in various 

areas, such as image processing, medical diagnosis, and information fusion. Meanwhile, the 

proposed Aczel-Alsina t-norm and t-conorm operations and aggregation operators of NEEs are also 

extended to cubic neutrosophic sets, refined neutrosophic sets, consistency neutrosophic sets, 

neutrosophic rough sets, etc. Then, they can be applied in engineering management, slope 

risk/stability evaluation, as well as clustering analysis, information retrieval, data mining, and so on 

in the case of NMVSs. 
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Abstract: First of all, on the basis of complete lattice, the concept of neutrosophic pseudo-t-norm 

(NPT) is given. Definitions and examples of representable neutrosophic pseudo-t-norms (RNPTs) 

are given, while unrepresentable neutrosophic pseudo-t-norms (UNPTs) is also given. Secondly, 

De Morgan neutrosophic triples (DMNTs) consists of three operators: NPTs, neutrosophic negators 

(NNs) and neutrosophic pseudo-s-norms (NPSs), where NPTs and NPSs are dual about NNs. 

Again, we study the neutrosophic residual implications (NRIs) of NPTs, as well as their underlying 

properties. Finally, we give a method to get NPTs from neutrosophic implications (NIs) and 

construct non-commutative residuated lattices (NCRLs) based on NRIs and NPTs.  

Keywords: Neutrosophic set; Neutrosophic pseudo-t-norm; Neutrosophic residual implication; 

Non-commutative residuated lattices 

 

 

1. Introduction 

From the perspective of philosophy, Smarandache introduced neutrosophic sets (NSs). NSs is a 

expansion of fuzzy sets (FSs), and has universality [1]. Although NSs has expanded the expression of 

uncertain information, there are many inconveniences in practical application. From a scientific 

standpoint, so as to solve more practical problems, single valued neutrosophic sets (SVNSs) was put 

forward by Wang [2]. Some multi-attribute decision problems are solved by applying SVNSs. 

“SVNSs” is simply denoted as “NSs” in this article. 

The t-norms, s-norms, negators, pseudo-t-norms, pseudo-s-norms and implications operators 

are fundamental tools in FS theory. Pseudo-t-norm and pseudo-s-norm was proposed in [3], 

followed by their residual implication were put forward by Wang in [4]. Pseudo-t-norm has many 

applications, such as resolution of finite fuzzy relation equations, linear optimization problems of 

mixed fuzzy relation inequalities and so on [5-10].  

NSs has a lot of important neutrosophic logical operators, such as: NPTs, NPSs, NNs, NIs, 

NRIs and so on. In past few years, Smarandache [11] introduced n-conorm and n-norm in 

neutrosophic logic. Zhang et al. [12] introduced a new type of relation of inclusion for NSs. A new 

kind of residuated lattice obtained through neutrosophic t-norms and its derived NRIs was 

introduced by Hu and Zhang [13]. On the basis of neutrosophic t-norms, fuzzy reasoning triple I 

method was studied by Luo et al. [14]. Therefore, it is very meaningful to study the NRIs of NPTs. 
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The basic framework of this paper: Section 2 presents the basics knowledge that will be useful 

for writing this paper. We defined NPTs, NPSs, NNs and so on in Section 3. Moreover, we also 

provide some useful typical examples and theorems. In Section 4, the definitions of NRIs generated 

from NPTs are obtained, and their basic properties are discussed in depth. In addition, this paper 

provides a new method to generate NPTs from NIs, and at the same time prove that system (D*; 1, 

1, , , ⇝ , 0D*, 1D*) is a NCRL. Section 5 concludes the whole content of this paper. 

2. Preliminaries  

Definition 2.1 ([3]) A mapping PT: [0, 1]2[0, 1] be a pseudo-t-norm iff, m, n, r[0, 1]: 

(PT1) PT(m, PT(n, r)) = PT(n, PT(m, r));  

(PT2) if m  n, then PT(m, r)  PT(n, r), PT(r, m)  PT(r, n); 

(PT3) PT(1, m) = m, PT(m, 1) = m. 

Definition 2.2 ([3]) A mapping PS: [0, 1][0, 1][0, 1] be a pseudo-s-norm iff, m, n, r[0, 1]: 

(PS1) PS(m, PS(n, r)) = PS(n, PS(m, r));  

(PS2) if m  n, then PS(m, r)  PS(n, r), PS(r, m)  PS(r, n); 

(PS3) PS(0, m) = m, PS(m, 0) = m. 

Definition 2.3 ([15]) An intuitionistic fuzzy set (IFS) W in nonempty set M is depicted through 

two mappings: μW(m) and νW(m): M[0, 1]. W is expressed as, when mM, 

 {( ( ) ( )) | }W WW m m m m M  , , , 

satisfy 0 ≤ μW(m)+νW(m) ≤ 1, where μW(m) is affiliation function, νW(m) is non-affiliation function. 

Definition 2.4 ([2]) Let the set M be nonempty. A SVNS W in M is depicted through TW(m), 

IW(m), and FW(m), all of which are functions defined on [0, 1]. Then, W is expressed as, when mM, 

{ ( ) ( ) ( ) | }W W WW m T m I m F m m M , , , , 

satisfy 0 ≤ TW(m)+IW(m)+FW(m) ≤ 3, where TW(m) is the function of truth-affiliation, IW(m) is the 

function of indeterminacy- affiliation, and FW(m) is the function of falsity- affiliation. 

Proposition 2.5 ([13]) The first type of inclusion relationship is discussed in this article. 

Definition 2.6 ([1,17,18]) Let the set M be nonempty. Give two NSs W, N in M, where W={⟨m, 

TW(m), IW(m), FW(m)⟩|mM}, N ={⟨m, TN(m), IN(m), FN(m)⟩| mM}. The algebraic operations of the first 

type of inclusion relation was given as shown below, mM, 

(1) W 1 N  TW(m) ≤ TN(m), IW(m) ≥ IN(m), FW(m) ≥ FN(m); 

(2) W ∪1 N = {⟨m, max(TW(m), TN(m)),min(IW(m), IN(m)),min(FW(m), FN(m))⟩|mM}; 

(3) W ∩1 N = {⟨m, min(TW(m), TN(m)),max(IW(m), IN(m)),max(FW(m), FN(m))⟩|mM}; 

(4) Wc = {⟨m, IW(m), 1- FW(m), TW(m)⟩|mM}. 

Proposition 2.7 ([13]) We consider that set D* defined by, 

*

1 2 3 1 2 3{ ( ) | [0 1]}D m m m m m m m  , , , , , . 

m, nD*, the order relation we define 1 on D* is shown below: 

m 1 n  m1 ≤ n1, m2 ≥ n2, m3 ≥ n3. 

Proposition 2.8 ([13]) (D*; 1) is a partially ordered set. 
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Proposition 2.9 ([13]) m, nD*, m 1 n is called maximum lower bound of m, n, and expressed 

as inf(m, n); m 1 n is called minimum upper bound of m, n, and expressed as sup(m, n). In other 

word, (D*; 1) is a lattice. 

The content of definition of operators 1 and 1 refers to proposition 2 in [13]. 

Proposition 2.10 ([13]) (D*; 1) is a complete lattice. 

The maximun of D* is indicated as 1D* = (1,0,0), the minimun of D* is indicated as 0D* = (0,1,1). 

Definition 2.11 ([16]) A pseudo-t-norm PT: LLL on (L; L) be undecreasing and associative 

mapping that meets PT(1L, m) = m = PT(m, 1L), which mL. A pseudo-s-norm PS: L2L on (L; L) be 

associative and undecreasing mapping that meets PS(0L, m) = m = PS(m, 0L), m L. 

Definition 2.12 ([13]) For every mD*, we define a complement of m as follows: 

mc = (m3, 1-m2, m1). 

Proposition 2.13 ([13]) The system (D*; 1, 1, c, 0D*, 1D*) is a De Morgan algebra.  

3. NPTs On (D*; 1) 

Definition 3.1 A binary function PT: D*D*D* is called NPT, m, n, u, v, rD*, if PT satisfies: 

(NPT1) PT(m, PT (n, r)) = PT(n, PT (m, r)); 

(NPT2) PT(m, n) 1 PT (u, v) and PT(n, m) 1 PT(v, u), where m 1 u, n 1 v;  

(NPT3) PT(1D*, m) = m, PT(m, 1D*) = m.

Definition 3.2 A binary function PS: D*D*D* is called NPS, m, n, u, v, rD*, if PS satisfies: 

(NPS1) PS(m, PS (n, r)) = PS(n, PS(m, r)); 

(NPS2) PS(m, n) 1 PS(u, v) and PS(n, m) 1 PS(v, u), where m 1 u, n 1 v;  

(NPS3) PS(0D*, m) = m, PS(m, 0D*) = m. 

Example 3.3 ([3,19]) Table 1 below gives part pseudo-t-norms, and its derived residual 

implications. 

Table 1. Eaxmple of part pseudo-t-norms 

Pseudo-t-norms Residual implications 

1 1

1

1 1

0     if  [0 ] [0 ]
( )

min( ) otherwise

where 0 1

m a n b
PT m n

m n

a b

 
 


  

, , , ,
,

, ,

.

 

1 1

1 1

1 1

1 1

max( ) if  ,

( ) if  ,

1 if  

if  

( ) if  

1 if  

L

R

a n m b m n

I m n n m b m n

m n

b m a m n

I m n n m a m n

m n

 


  
 

 


  
 

, ,

, ,

.

, ,

, , ,

.

 

2

min( )  if  sin( ) 1
2

( )

0      if  sin( ) 1
2

m n m n

PT m n

m n


 

 
  



, ,

,

.

 

2

2

1 if  

( ) 2
max{ arcsin(1 )}if  

1 if  

( )
max{ 1 sin( )}     if  

2

L

R

m n

I m n
n m m n

m n

I m n
n m m n
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, .
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2 3

3 2 3

min( )     if  1
( )

0         if  1

m n m n
PT m n

m n

  
 

 

, ,
,

.
 

3 3

3 3 2

1      if  
( )

max{ 1 }    if  

1      if  
( )

max{ 1 }    if  

L

R

m n
I m n

n m m n

m n
I m n

n m m n


 

 


 

 

,
,

, .

,
,

, .
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( )

0         if  1

m n m n
PT m n

m n
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,

.
  

4

4 2

1      if  
( )

max{ 1 }     if  

1      if  
( )

max{ (1 ) }    if  
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R

m n
I m n

n m m n

m n
I m n

n m m n
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Example 3.4 Table 2 below gives part pseudo-s-norms, and its derived residual co-implications. 

Table 2. Example of part pseudo-s-norms  

Pseudo-s-norms Residual co-implications 

1 1

1

1 1

1 if  
( )

max( ) otherwise

where 0< 1

m a n b
PS m n

m n

a b

 
 


 

, ,
,

, ,

.

  

1 1

1 1

1 1

1 1

if  ,

( ) if  ,

0 if  

min( ) if  

( ) if  

0 if  

L

R

a m b m n

J m n n m b m n

m n

a n m a m n

J m n n m a m n

m n
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Example 3.5 Suppose that PTi (i=1,2,3,4) are pseudo-t-norms as shown in Example 3.3 and PSi 

(i=1,2,3,4) are pseudo-s-norms as shown in Example 3.4. Then, the binary function PTi (i=1,2,3,4,5,6) 

defined on D* are NPTs as follows: 

(1) 
1 1 1 1 1 2 2 1 3 3
( , ) ( ( , ), ( , ), ( , ));m n PT m n PS m n PS m n=PT   
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(2) 
2 2 1 1 2 2 2 2 3 3
( , ) ( ( , ), ( , ), ( , ));m n PT m n PS m n PS m n=PT  

(3) 
3 3 1 1 3 2 2 3 3 3
( , ) ( ( , ), ( , ), ( , ));m n PT m n PS m n PS m n=PT  

(4) 
4 4 1 1 4 2 2 4 3 3
( , ) ( ( , ), ( , ), ( , ));m n PT m n PS m n PS m n=PT  

(5) 
5 1 1 1 2 2 2 3 3 3
( , ) ( ( , ), ( , ), ( , ));m n PT m n PS m n PS m n=PT  

(6) 
6 1 1 1 3 2 2 3 3 3
( , ) ( ( , ), ( , ), ( , )).m n PT m n PS m n PS m n=PT  

Example 3.6 Suppose that PTi (i=1,2,3,4) are pseudo-t-norms as shown in Example 3.3 and PSi 

(i=1,2,3,4) are pseudo-s-norms as shown in Example 3.4. Then, the binary function PSi (i=1,2,3,4,5,6) 

defined on D* are NPSs as follows: 

(1) 
1 1 1 1 1 2 2 1 3 3
( , ) ( ( , ), ( , ), ( , ));m n PS m n PT m n PT m n=PS   

(2) 
2 2 1 1 2 2 2 2 3 3
( , ) ( ( , ), ( , ), ( , ));m n PS m n PT m n PT m n=PS  

(3) 
3 3 1 1 3 2 2 3 3 3
( , ) ( ( , ), ( , ), ( , ));m n PS m n PT m n PT m n=PS  

(4) 
4 4 1 1 4 2 2 4 3 3
( , ) ( ( , ), ( , ), ( , ));m n PS m n PT m n PT m n=PS  

(5) 
5 1 1 1 2 2 2 3 3 3
( , ) ( ( , ), ( , ), ( , ));m n PS m n PT m n PT m n=PS  

(6) 
6 1 1 1 3 2 2 3 3 3
( , ) ( ( , ), ( , ), ( , )).m n PS m n PT m n PT m n=PS  

Theorem 3.7 Give a binary function PT: D*D*D*, two pseudo-s-norms PSi (i=1,2) and a 

pseudo-t-norm PT. Then, m, nD*, 

1 1 1 2 2 2 3 3
( , ) ( ( , ), ( , ), ( , ))m n PT m n PS m n PS m n=PT  

is a NPT. 

Proof. m, u, n, v, rD*, have following: 

(NPT1) According to item (PT1) of Definition 2.1 and item (PS1) of Definition 2.2, it is obvious 

that PT(m, PT(n, r)) = PT(m, (PT(n1, r1), PS1(n2, r2), PS2(n3, r3))) = (PT(m1, PT(n1, r1)), PS1(m2, PS1(n2, r2)), 

PS2(m3, PS2(n3, r 3))) = (PT(n1, PT(m1, r1)), PS1(n2, PS1(m2, r2)), PS2(n3, PS2(m3, r3))) = PT(n, PT(m, r)); 

(NPT2) If m 1 u, n 1 v, then PT(m1, n1) ≤ PT(u1, v1), PS1(m2, n2) ≥ PS1(u2, v2), PS2(m3, n3) ≥ PS2(u3, 

v3). Therefore, PT(m, n) 1 PT(u, v). Likewise, we can also get PT(n, m) 1 PT(v, u). 

(NPT3) PT(m, 1D*) = (PT(m1, 1), PS1(m2, 0), PS2(m3, 0)) = (m1, m2, m3) = m. Similarly, PT(1D*, m) = m. 

Thus, PT(m, n) is a NPT. 

Theorem 3.8 Give a binary function PS: D*D*D*, two pseudo-t-norms PTi (i=1,2) and a 

pseudo-s-norm PS. Then, 

1 1 1 2 2 2 3 3( , ) ( ( , ), ( , ), ( , ))m n PS m n PT m n PT m n=PS  

is a NPS, for arbitrary m, nD*. 

Theorem 3.7 provieds a idea for constructing NPT on D* with pseudo-s-norm and 

pseudo-t-norm. However, the reverse is not able to find two pseudo-s-norms PSi (i=1,2) and a 

pseudo-t-norm PT to make PT = (PT, PS1, PS2).  

In order to make a clear distinction between the two types of NPTs, so put forward a concept of 

RNPT. 

Definition 3.9 If m, nD*, there exists two pseudo-s-norms PSi (i=1,2) and a pseudo-t-norm PT 

such that PT holds with respect to the following equation:  

1 1 1 2 2 2 3 3( , ) ( ( , ), ( , ), ( , )).m n PT m n PS m n PS m n=PT  

Then PT is said to be representable. 
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Definition 3.10 If m, nD*, there exists pseudo-s-norm PS and pseudo-t-norm PT such that PT 

holds with respect to the following equation: 

1 1 2 2 3 3( , ) ( ( , ), ( , ), ( , )).m n PT m n PS m n PS m n=PT  

Then PT is said to be standard representable. 

These NPTs given in Example 3.5 are representable. 

Definition 3.11 If m, nD*, there exists two pseudo-t-norms PTi (i=1,2) and a pseudo-s-norm 

PS such that PS holds with respect to the following equation:  

1 1 1 2 2 2 3 3( , ) ( ( , ), ( , ), ( , )).m n PS m n PT m n PT m n=PS  

Then PS is said to be representable. 

Definition 3.12 If m, nD*, there exists pseudo-s-norm PS and pseudo-t-norm PT such that PS 

holds with respect to the following equation: 

1 1 2 2 3 3( , ) ( ( , ), ( , ), ( , )).m n PS m n PT m n PT m n=PS  

Then PS is said to be standard representable. 

These NPSs given in Example 3.6 are representable. 

Propositions 3.13 and 3.14 below demonstrate a approach to construct new RNPTs (RNPSs) 

with intuitionistic fuzzy t-norms (IFTs) and intuitionistic fuzzy s-norms (IFSs). 

Proposition 3.13 x = (x1, x3)L, y = (y1, y3)L, T(x, y) = (t(x1, y1), s2(x3, y3)) is a representable IFT, 

which t and s2 are t-norm and s-norm, respectively. If m, nD*, there is a pseudo-s-norm ps1 that 

makes 0 ≤ t(m1, n1)+ps1(m2, n2)+s2(m3, n3) ≤ 3 true, then PT(m, n) = (t(m1, n1), ps1(m2, n2), s2(m3, n3)) is a 

RNPT. 

Proposition 3.14 x = (x1, x3)L, y = (y1, y3)L, S(x, y) = (s(x1, y1), t2(x3, y3)) is a representable IFS, 

where s and t2 are s-norm and t-norm, respectively. If m, n D*, there is a pseudo-t-norm pt1 that 

makes 0 ≤ s(m1, n1)+pt1(m2, n2)+t2(m3, n3) ≤ 3 true, then PS(m, n) = (s(m1, n1), pt1(m2, n2), t2(m3, n3)) is a 

RNPS. 

Example 3.15 ([20]) Table 3 below gives part t-norms, and its derived residual implications. 

Table 3. Example of the part t-norms  

t-norms Residual implications 

( ) min( )MT m n m n, ,  
1 if  

( )
if 

GD

m n
I m n

n m n


 



,
,

.
 

( )PT m n m n ,  

1 if  

( )
if 

GG

m n

I m n n
m n

m




 




,

,
.

 

( ) max( 1 0)LKT m n m n  , ,  ( ) min(1 1 )LKI m n m n  , ,   

Example 3.16 ([20]) Table 4 below gives part s-norms, and its derived residual co-implications. 

Table 4. Example of the part s-norms 

s-norms Residual co-implications 
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( ) max( )MS m n m n, ,   
0 if  

( )
if 

GD

m n
J m n

n m n


 



,
,

.
  

( )PS m n m n m n   ,   

0 if  

( )
if 

1

GG

m n

J m n n m
m n

m




 
 

,

,
.

 

( ) min( )LKS m n m n , ,1  ( ) max(0 )LKJ m n n m , ,   

Example 3.17 Let PSi (i=1,2,4) are pseudo-s-norms as shown in Example 3.4, TM, TP, TLK are 

t-norms as shown in Example 3.15, and SM, SP, SLK are s-norms as shown in Example 3.16. Then, the 

binary function PTi (i=7,8,9) constructed by IFTs defined on D* are RNPTs as follows: 

(1) 7 1 1 4 2 2 3 3( , ) ( ( , ), ( , ), ( , ));M LKm n T m n PS m n S m n=PT  

(2) 8 1 1 2 2 2 3 3( , ) ( ( , ), ( , ), ( , ));P Mm n T m n PS m n S m n=PT  

(3) 9 1 1 1 2 2 3 3( , ) ( ( , ), ( , ), ( , )).LK Pm n T m n PS m n S m n=PT  

Example 3.18 Let PTi (i=1,2,4) are pseudo-t-norms as shown in Example 3.3, TM, TP, TLK are 

t-norms as shown in Example 3.15, and SM, SP, SLK are s-norms as shown in Example 3.16. Then, the 

binary function PSi (i=7,8,9) constructed by IFSs defined on D* are RNPSs as follows:  

(1) 7 1 1 4 2 2 3 3( , ) ( ( , ), ( , ), ( , ));M LKm n S m n PT m n T m n=PS  

(2) 8 1 1 2 2 2 3 3( , ) ( ( , ), ( , ), ( , ));P Mm n S m n PT m n T m n=PS  

(3) 9 1 1 1 2 2 3 3( , ) ( ( , ), ( , ), ( , )).LK Pm n S m n PT m n T m n=PS  

Definition 3.19 ([13]) A mapping N: D*D* be known as NN if satisfies, m, nD*:  

(NN1) m 1 n iff N(m)1 N(n); 

(NN2) N(1D*) = 0D*; 

(NN3) N(0D*) = 1D*. 

If N(N(m)) = m holds with mD*, then N is said to be involutive NN. 

The function NS: D*D* defined by, (m1, m2, m3)D*, 

NS(m1, m2, m3) = (m3, 1-m2, m1) 

is a involutive NN, which is also called standard NN. Meanwhile, N(m) = (m2, 1-m3, m1), N(m) = (m2, 

m1, m1), N(m) = (m2, 1-m2, m1) are NNs. 

Definition 3.20 Assume that PT is a NPT, N is a NN and PS is a NPS. m, nD*, if the triple 

(PT, N, PS) satisfied the following conditions: 

N(PS(m, n)) = PT(N(m), N(n)). 

N(PT(m, n)) = PS(N(m), N(n)); 

Then, we call the triple (PT, N, PS) is a DMNT. 

Theorem 3.21 Suppose N is involutive. If exists a NPS PS, then such that PT be defined as 

PT(m, n) = N (PS(N(m), N(n))) 

is NPT. Besides, (PT, N, PS) is a DMNT.  

Proof. According to known condition, there are as follows, m, u, n, v, rD*: 

(NPT1)According to item (NPS1) of Definition 3.2, naturally there is PT(m, PT(n, r)) = PT(m, 

N(PS(N(n), N(r)))) = N(PS(N(m), N(N(PS(N(n), N(r)))))) = N(PS(N(m), PS(N(n), N(r)))) = N(PS(N(n), 

PS(N(m), N(r)))) = PT(n, PT(m, r)). 
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(NPT2) If m 1 u, n 1 v, so N(m) 1 N(u), N(n) 1 N(v). From (NPS2) of Definition 3.2 and (NN1) 

of Definition 3.19, we get PS(N(m), N(n)) 1 PS(N(u), N(v)) and PS(N(n), N(m)) 1 PS(N(v), N(u)). 

Thus, N(PS(N(m), N(n))) 1 N(PS(N(u), N(v))) and N(PS(N(n), N(m))) 1 N(PS(N(v), N(u))), that is, 

PT(m, n) 1 PT(u, v) and PT(n, m) 1 PT(v, u). 

(NPT3) PT(1D*, m) = N(PS(N(1D*), N(m))) = N(PS(0D*, N(m))) = N(N(m)) = m. Similarly, PT (m, 1D*) 

= m. 

Therefore, the statement that PT is NPT is proved. 

Besides, (PT, N, PS) is a DMNT. 

Theorem 3.22 Assume N is involutive. If exists a NPT PT, then such that PS be defined as 

PS(m, n) = N(PT(N(m), N(n))) 

being NPS. Moreover, (PT, N, PS) is a DMNT.  

Example 3.23 A few NPTs and NPSs are dual about NS. 

(1) PT1(m, n) = (PT1(m1, n1), PS1(m2, n2), PS1(m3, n3)), PS1(m, n) = (PS1(m1, n1), PT1(m2, n2), PT1(m3, 

n3)). 

    Indeed, PT1(NS(m), NS(n)) = PT1((m3, 1-m2, m1), (n3, 1-n2, n1)) = (PT1(m3, n3), PS1(1-m2, 1-n2), PS1(m1, 

n1)), then NS(PT1(NS(m), NS(n))) = (PS1(m1, n1), 1-PS1(1-m2, 1-n2), PT1(m3, n3)) = (PS1(m1, n1), PT1(m2, n2), 

PT1(m3, n3)) = PS1(m, n).  

(2) PT3(m, n) = (PT3(m1, n1), PS3(m2, n2), PS3(m3, n3)), PS3(m, n) = (PS3(m1, n1), PT3(m2, n2), PT3(m3, 

n3)). 

The theorem about UNPT is given next: 

Theorem 3.24 Let PT: D*D*D* being a function. m, nD*, 

*

*

1 1 1 1 3 3

1

( ) 1

(min(2 ) max(1 2 1 ) max( )) otherwise.

D

D

m n

m n n m

m n m n m n




 
  

,

, ,

, , , , ,

PT  

is a UNPT. 

Proof. First, we show that PT is a NPT, m, u, n, v, rD*. 

(NPT1) If m = 1D* or n = 1D*, then PT satisfies the associative law. If m ≠ 1D*, n ≠ 1D*, PT(m, PT(n, 

r)) = (min(2m1, min(2n1, r1)), max(1-2m1, 1-min(2n1, r1)), max(m3, max(n3, r3))) = (min(2m1, 2n1, r1), 

max(1-2m1, 1-2n1, 1-r1,), max(m3, n3, r3)) = (min(2n1, min(2m1, r1)), max(1-2n1, 1-min(2m1, r1)), max(n3, 

max(m3, r3))) = PT(n, PT(m, r)). 

(NPT2) If m = 1D* or n = 1D*, we can prove PT is undecreasing in each variable. If m ≠ 1D*, n ≠ 1D*, 

at the same time satisfy m 1 u, n 1 v, and m1  u1, n1  v1, m3  u3, n3  v3. Thus, min(2m1, n1)  min(2u1, 

v1), max(1-2m1, 1-n1)  max(1-2u1, 1-v1), max(m3, n3)  max(u3, v3). That is, PT(m, n) 1 PT(u, v). 

Likewise, we can also have PT(n, m) 1 PT(v, u).  

(NPT3) PT(m, 1D*) = m, PT(1D*, m) = m. Therefore, PT is a NPT. 

Second, assume NPT PT is representable, m = (m1, m2, m3)D*, n = (n1, n2, n3)D*, there are a 

pseudo-t-norm PT and two pseudo-s-norms PSi (i=1,2) such that PT(m, n) = (PT(m1, n1), PS1(m2, n2), 

PS2(m3, n3)). Let m = (0.2, 0.5, 0.4), u = (0.4, 0.3, 0.2), n = (0.5, 0.7, 0.6). From PT(m, n) = (0.4, 0.6, 0.6) 

and PT(u, n) = (0.5, 0.5, 0.6), we get PS1(m2, n2) = 0.6 and PS1(u2, n2) = 0.5, so PS1(m2, n2) ≠ PS1(u2, n2). 

Thus PS1(m, n) is not independent from m1, that is to say PT is UNPT. 

Moreover, m, nD*, the dual of NPT PT about standard NN NS is NPS PS, which be defined 

as: 
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*

*

1 1 3 3 3 3

0

( ) 0

(max( ) min(2 ) min(2 )) otherwise.

D

D

m n

m n n m

m n m n m n




 



,

, ,

, , , , ,

PS  

Then, PS is unrepresentable. 

Remark 3.25 On the one hand, suppose PT and NS are UNPT and standard NN on D*, 

respectively. The dual of PT about NS is PS. Then, we have that PS is UNPS. On the other hand, let N 

be involutive NN, the dual NPT about N of UNPS is unrepresentable.  

4. NRI Induced by NPT on D* 

Definition 4.1 ([13]) A NI is a mapping I: D*D*D*, m, u, n, vD*, if it satisfies: 

(NI1) m 1 u  I(m, n) 1 I(u, n); 

(NI2) n 1 v  I(m, n) 1 I(m, v); 

(NI3) I(1D*, 1D*) = I(0D*, 0D*) = 1D*;  

(NI4) I(1D*, 0D*) = 0D*. 

Since NPT without commutativity, we can define left and right NRIs which satisfy the residual 

property induced by NPT. 

Definition 4.2 Let PT be a NPT. Define two functions I(L), I(R): D*D*D*, 

I(L)(m, n) = sup{k | kD*, PT(k, m) 1 n}; 

I(R)(m, n) = sup{k | kD*, PT(m, k) 1 n}. 

Then, I(L) (I(R)) is called left NRI (right NRI) induced by PT. 

We note that the two NRIs induced by PT as IPT(L), IPT(R). 

Besides, Let PT be a NPT, then m, n, kD*, PT satisfies the residual criteria iff, 

PT(k, m) 1 n iff k 1 IPT(L)(m, n); 

PT(m, k) 1 n iff k 1 IPT(R)(m, n). 

Likewise, the concept of neutrosophic co-implications (NCIs) and related knowledge are also 

given as follows: 

Definition 4.3 ([13]) A NCI is a binary function J: (D*)2D*, m, u, n, vD*, if it satisfies: 

(NJ1) m 1 u  J(m, n) 1 J(u, n); 

(NJ2) n 1 v  J(m, n) 1 J(m, v); 

(NJ3) J(0D*, 0D*) = J(1D*, 1D*) =0D*; 

(NJ4) J(0D*, 1D*) = 1D*. 

Analogously, we can also define left and right neutrosophic residual co-implications (NRCIs) 

which satisfie the residual property induced by NPS. 

Definition 4.4 Suppose that PS is a NPS. Define two functions J(L), J(R): D*D*D*, 

J(L)(m, n) = inf{k | kD*, PS(k, m) 1 n}; 

J(R)(m, n) = inf{k | kD*, PS(m, k) 1 n}. 

Then, J(L) (J(R)) is called left NRCI (right NRCI) induced by PS. 

We remark that two NRCIs induced by PS as JPS(L), JPS(R). 

Let PS be a NPS, then m, n, kD*, PS satisfies the residual criteria iff  
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PS(k, m) 1 n iff k 1 JPS(L)(m, n); 

PS(m, k) 1 n iff k 1 JPS(R)(m, n). 

Through learning above definitions, we give the NRIs (NRCIs) of NPTs (NPSs) discussed in 

Section 3 as follows: 

Example 4.5 Suppose that IiL (i=1,2,3,4) and IiR (i=1,2,3,4) are left and right residual implications 

induced by pseudo-t-norms PTi (i=1,2,3,4) as shown in Example 3.3; JiL (i=1,2,3,4) and JiR (i=1,2,3,4) are 

left and right residual co-implications induced by pseudo-s-norms PSi (i=1,2,3,4) as shown in 

Example 3.4. Then, the binary functions IPT(i)(L) (i=1,2,3,4,5,6) and IPT(i)(R) (i=1,2,3,4,5,6) induced by 

RNPTs PTi (i=1,2,3,4,5,6) of Example 3.5 defined on D* are left and right NRIs as follows: 

(1) ( )
1 1 1 1 2 2 1 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n I m n J m n J m n=
1PT

I ; 

   ( )
1 1 1 1 2 2 1 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n I m n J m n J m n=
1PT

I ; 

(2) ( )
2 1 1 2 2 2 2 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n I m n J m n J m n=
2PT

I ; 

   ( )
2 1 1 2 2 2 2 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n I m n J m n J m n=
2PT

I ; 

(3) ( )
3 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n I m n J m n J m n=
3PT

I ; 

   ( )
3 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n I m n J m n J m n=
3PT

I ; 

(4) ( )
4 1 1 4 2 2 4 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n I m n J m n J m n=
4PT

I ; 

   ( )
4 1 1 4 2 2 4 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n I m n J m n J m n=
4PT

I ; 

(5) ( )
1 1 1 2 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n I m n J m n J m n=
5PT

I ; 

   ( )
1 1 1 2 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n I m n J m n J m n=
5PT

I ; 

(6) ( )
1 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n I m n J m n J m n=
6PT

I ; 

   ( )
1 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n I m n J m n J m n=
6PT

I . 

Example 4.6 Suppose that IiL (i=1,2,3,4) and IiR (i=1,2,3,4) are left and right residual implications 

induced by pseudo-t-norms PTi (i=1,2,3,4) as shown in Example 3.3; JiL (i=1,2,3,4) and JiR (i=1,2,3,4) are 

left and right residual co-implications induced by pseudo-s-norms PSi (i=1,2,3,4) as shown in 

Example 3.4. Then, the binary functions JPS(i)(L) (i=1,2,3,4,5,6) and JPS(i)(R) (i=1,2,3,4,5,6) induced by 

RNPSs PSi (i=1,2,3,4,5,6) of Example 3.6 defined on D* are left and right NRCIs as follows: 

(1) ( )
1 1 1 1 2 2 1 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n J m n I m n I m n=
1PS

J ; 

   ( )
1 1 1 1 2 2 1 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n J m n I m n I m n=
1PS

J ; 

(2) ( )
2 1 1 2 2 2 2 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n J m n I m n I m n=
2PS

J ; 

   ( )
2 1 1 2 2 2 2 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n J m n I m n I m n=
2PS

J ; 

(3) ( )
3 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n J m n I m n I m n=
3PS

J ; 

   ( )
3 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n J m n I m n I m n=
3PS

J ; 

(4) ( )
4 1 1 4 2 2 4 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n J m n I m n I m n=
4PS

J ; 

   ( )
4 1 1 4 2 2 4 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n J m n I m n I m n=
4PS

J ; 

(5) ( )
1 1 1 2 2 2 3 3 3

( , ) ( ( , ), , ), ( , ))L
L L L

m n J m n I m n I m n=
5PS

J ; 

   ( )
1 1 1 2 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n J m n I m n I m n=
5PS

J ; 

(6) ( )
1 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n J m n I m n I m n=
6PS

J ; 

   ( )
1 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n J m n I m n I m n=
6PS

J . 
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Because NPS PS are dual operator of NPT PT about NS, so the NRIs induced by NPT and the 

NRCIs induced by NPS are dual. For Examples 3.5 and 3.6 given above, If PS and PT are dual, then 

the NRCIs JPS derived by PS is the dual operator of the NRIs IPT induced by PT. 

The following we will show an important theorem which proves sufficient conditions that the 

residual operator derived by a NPT is always a NI. 

Theorem 4.7 Assume PT be a NPT on D*. Then, m, nD*, 

IPT(L)(m, n) = sup{k | kD*, PT(k, m) ≤1 n}; 

IPT(R)(m, n) = sup{k | kD*, PT(m, k) ≤1 n}. 

are NIs. 

Proof. First give the proof that IPT (L) is a NI, m, u, n, vD*: 

We get IPT(L)(m, 1D*) = sup{k | kD*, PT(k, m) 1 1D*} = 1D* by Definition 4.2. Thus IPT (L)(1D*, 1D*) = 

1D*. From (NPT2) in Definition 3.1, we get IPT(L)(1D*, 0D*) = sup{k | kD*, PT(k, 1D*) 1 0D*} = 0D*. 

IPT(L)(0D*, 0D*) = sup{k | kD*, PT(k, 0D*) 1 0D*} = 1D*.  

If m 1 u. By (NPT2) in Definition 3.1, {k | kD*, PT(k, m) 1 n} 1 {k | kD*, PT(k, u) 1 n}, then 

sup{k | kD*, PT(k, m) 1 n} 1 sup{k | kD*, PT(k, u) 1 n}. Thus, IPT(L)(m, n) 1 IPT(L)(u, n).  

If n 1 v. Since the undecreasingness of PT, we have {k | kD*, PT(k, m) 1 n} 1 {k | kD*, PT(k, 

m) 1 v }, then sup{k | kD*, PT(k, m) 1 n} 1 sup{k | kD*, PT(k, m) 1 v}. Thus, IPT (L)(m, n) 1 IPT(L)(m, 

v).  

To sum up, IPT(L) is a NI. Likewise, IPT(R) is a NI can also be proved. 

Some relevant properties of NRI are given below. 

Theorem 4.8 Suppose that PT be a NPT on D*, IPT(L), IPT(R) are NRIs. Then, m, n, rD*, 

(1) IPT(L)(0D*, n) = 1D*; 

(2) IPT(L)(m, 1D*) = 1D*; 

(3) IPT(L)(m, m) = 1D*; 

(4) IPT(L)(1D*, n) = n; 

(5) IPT(L)(m, n) 1 n; 

(6) IPT(L)(m, n) = 1D* iff m 1 n; 

(7) IPT(L)(PT(m, n), PT(m, r)) 1 IPT(L)(n, r); 

(8) m 1 IPT(L)(n, PT(m, n)). 

Similarly, IPT(R) also satisfies the properties (1)-(7) in Theorem 4.8. However, it should be noted 

that NI induced by NPT, because pseudo-t-norm removes commutativity, leads to the difference in 

property (8) in the corresponding Theorem 4.8 of IPT(R), as shown below: 

(8) m 1 IPT(R)(n, PT(n, m)). 

Proof. The proofs of (1)-(4) are straightforward to obtain by Definition 4.2, so the proof is 

ignored. 

(5) From (NI1) in Definition 4.1, we get that IPT(L)(m, n) 1 IPT(L)(1D*, n) = n. 

(6) () if IPT(L)(m, n) = 1D*, then PT(1D*, m) 1 n. Thus, m 1 n. () since m 1 n, PT(1D*, m) 1 n. 

Thus, IPT(L)(m, n) 1 1D*, that is IPT(L)(m, n) = 1D*. 

(7) IPT(L)(PT(m, n), PT(m, r)) = sup{k | kD*, PT(k, PT(m, n)) 1 PT(m, r)} = sup{k | kD*, PT(m, 

PT(k, n)) 1 PT(m, r)} 1 sup{k | kD*, PT(k, n) 1 r} = IPT(L)(n, r). 

(8) Since PT(m, n) 1 PT(m, n), so we get m 1 IPT(L)(n, PT(m, n)). 

The proof which IPT(R) satisfies the properties (1)-(8) is similar to the proof of IPT(L).  

In the same way, we give two theorems about NPS on D*. 
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Theorem 4.9 Let PS be a NPS on D*. Then, m, nD*, 

JPS(L)(m, n) = inf{k | kD*, PS(k, m) 1 n}; 

JPS(R)(m, n) = inf{k | kD*, PS(m, k) 1 n}. 

are NCIs.  

Proof. According to the Definition 4.4, we can use the proof of Theorem 4.7 method to prove it. 

Theorem 4.10 Let PS is a NPS on D*, JPS(L), JPS(R) are NRCIs. Then, m, n, rD*, 

(1) JPS(L)(1D*, n) = 0D*; 

(2) JPS(L)(m, 0D*) = 0D*; 

(3) JPS(L)(m, m) = 0D*; 

(4) JPS(L)(0D*, n) = n; 

(5) JPS(L)(m, n) 1 n; 

(6) JPS(L)(m, n) = 0D* iff m 1 n; 

(7) JPS(L)(PS(m, n), PS(m, r)) 1 JPS(L)(n, r); 

(8) m 1 JPS(L)(n, PS(m, n)). 

Similarly, JPS(R) also satisfies the properties (1)-(7) in Theorem 4.10. However, it should be noted 

that NCI induced by NPS, because pseudo-s-norm removes commutativity, leads to the difference in 

property (8) in the corresponding Theorem 4.10 of JPS(R), as shown below: 

(8) m 1 JPS(R) (n, PS (n, m)). 

Definition 4.11 Let I(L), I(R): D*D*D* are NIs. m, nD*, the induced operators PTI
(L), PTI

(R) 

by I(L), I(R) are defined as follows: 

PTI
(L)(m, n) = inf{k | kD*, m 1 I(L)(n, k)}; 

PTI
(R)(m, n) = inf{k | kD*, n 1 I(R)(m, k)}. 

Theorem 4.12 Let I(L), I(R) are NIs on D*. m, n, rD*, if I(L), I(R) satisfies below conditions: 

(a) r 1 I(L)(n, m) iff n 1 I(R)(r, m); 

(b) I(L)(m, I(L)(n, r)) = I(L)(n, I(L)(m, r)); I(R)(m, I(R)(n, r)) = I(R)(n, I(R)(m, r)); 

(c) I(L)(m, n) = 1D* iff m 1 n; I(R) (m, n) = 1D* iff m 1 n; 

(d) I(L)(1D*, m) = m; I(R)(1D*, m) = m. 

Then, the induced operators PTI
(L), PTI

(R) by I(L), I(R) in Definition 4.11 are NPTs. 

Proof. m, u, n, v D*, there are below: 

(NPT1) From (a) and (b), PTI
(L)(m, PTI

(L)(n, r)) = inf{k | kD*, m 1 I(L)(PTI
(L)(n, r), k)} = inf{k | 

kD*, PTI
(L)(n, r) 1 I(R)(m, k)} = inf{k | kD*, r 1 I(R)(n, I(R)(m, k))} = inf{k | kD*, r 1 I(R)(m, I(R)(n, k))} = 

inf{k | kD*, PTI
(L)(m, r) 1 I(R)(n, k)} = inf{k | kD*, n 1 I(L)(PTI

(L)(m, r), k)} = PTI
(L)(n, PTI

(L)(m, r)).  

(NPT2) If m 1 u, n 1 v. So I(L)(v, k) 1 I(L)(n, k) for kD*. k0{k | kD*, u 1 I(L)(v, k)}, it can be 

concluded that u 1 I(L)(v, k0). Since m 1 u, and I(L)(v, k0) 1 I(L)(n, k0), m 1 I(L)(n, k0), namely k0{k | 

kD*, m 1 I(L)(n, k)}. Thus, {k | kD*, u 1 I(L)(v, k)} 1 {k | kD*, m 1 I(L)(n, k)}. Hence, inf{k | kD*, m 

1 I(L)(n, k)} 1 inf{k | kD*, u 1 I(L)(v, k)}, that is, PTI
(L)(m, n) 1 PTI

(L)(u, v). Likewise, we can prove that 

PTI
(L)(n, m) 1 PTI

(L)(v, u). 

(NPT3) PTI
(L)(1D*, m) = inf{k | kD*, 1D* 1 I(L)(m, k)} = inf{k | kD*, I(L)(m, k) = 1D*} = inf{k | kD*, m 

1 k} = m; PTI
(L) (m, 1D*) = inf{k | kD*, m 1 I(L)(1D*, k)} = inf{k | kD*, m 1 k} = m. 

Therefore PTI
(L) is a NPT, and in the same way, we can also show that PTI

(R) is a NPT. 

Theorem 4.13 If PT is a NPT on D*, so there is PT = PTI
(L) = PTI

(R). 
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Proof. m, nD*, from Definitions 4.2 and 4.11, we get PTI
(L) (m, n) = inf{k | kD*, m 1 I(L) (n, 

k)} = inf{k | kD*, PT(m, n) 1 k } = PT(m, n) and PTI
(R)(m, n) = inf{k | kD*, n 1 I(R)(m, k)} = inf{k | 

kD*, PT(m, n) 1 k } = PT(m, n). Thus, PT = PTI
(L) = PTI

(R). 

Definition 4.14 ([21]) An algebraic system S=(S; , , , , ⇝ , 0, 1) is said to be a NCRL, m, n, 

rS, if S satisfies: 

(1) (S; , , 0, 1) be a bounded lattice on S, its corresponding order is , 0 is minimal element 

and 1 is maximal element of S; 

(2) (S; , 1) be non-commutative monoid and its neutral element is 1; 

(3) mn  r  m  nr  n  m⇝ r. 

Sections 3 and 4 focus on NPTs and their NRIs. Next, a NCRL is established, which is 

constructed from three neutrosophic logic operators. 

Theorem 4.15 Suppose (D*; 1, 1, c, 0D*, 1D*) is a system and PT is a NPT on D*. m, nD*, 

define the following three equations: 

mn = PT(m, n); mn = IPT(L)(m, n); m⇝n = IPT(R)(m, n). 

Then, (D*; 1, 1, , , ⇝ , 0D*, 1D*) is NCRL. 

Proof. First, by Proposition 2.9, we get that (D*; 1, 1, 0D*, 1D*) be a bounded lattice on D*. 

Second, the fact that (D*; , 1D*) is non-commutative monoid is proved. (1) m1D* = inf{k | 

kD*, m 1 I(L)(1D*, k)} = inf{k | kD*, m 1 k} = m and 1D*m = inf{k | kD*, 1D* 1 I(L)(m, k)} = inf{k | 

kD*, I(L)(m, k) = 1D*} = inf{k | kD*, m 1 k} = m, i.e. mD*, the equation 1D*m = m1D* = m is true. 

(2) Theorem 4.13 proves that PTI
(L) = PT is a NPT. Thus, PT does not satisfy the commutative law. (3) 

From (NPT1) of Definition 3.1,  satisfies the associative law. 

Finally, m, n, kD*, we prove the below equivalence relation 

mn 1 k  m  nk  n  m⇝ k 

holds. On the one hand, by what we know about , there are mn = inf{k | kD*, m 1 I(L)(n, k)}, 

mn 1 k. Thus, there are n  m⇝ k and m  nk. On the other hand, by what we know about , we 

get nk = sup{t | tD*, PT(t, n) 1 k}. Since m  nk, therefore mn 1 k. Likewise, there are n  m⇝

kmn 1 k. 

Thus, (D*; 1, 1, , , ⇝ , 0D*, 1D*) is NCRL. 

5. Conclusions  

Neutrosophic logic is an important part of NS theory. Common neutrosophic logic operators 

are: NPTs, NPSs NIs, NNs and so on. On the basis of complete lattice (D*; 1), We define NPTs and 

NPSs. In addition, DMNTs are defined, describing that NPT and NPS are dual with regard to the 

standard NN. Then, on the basis of complete lattice (D*; 1), the concepts of NRI and NRCI is given, 

and we present a theorem which states that residual operators derived by NPTs must be NIs, and 

further study their fundamental properties. Finally, we provide a method to get NPT from NI and 

construct NCRLs. In the future, we will investigate neutrosophic inference methods and 

neutrosophic pseudo overlap functions based on some new results [22-36], and further study their 

fundamental properties. 
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Abstract  

Multicriteria group decision-making scenarios with a large number of criteria values may be challenging for experts 

to control. This is a result of the specialists' need to consider an excessive amount of data. They find it difficult to 

make the optimal decision since the possibilities overwhelm them. We propose a novel multicriteria group decision-

making method that methodically eliminates the initial set of criterion values in order to address this issue. One of the 

most promising emerging technologies currently in development is an additive manufacturing (AM), which includes 

3D printing. It has been hypothesized that 3D printing technology could eventually replace the conventional 

production machinery that is commonly used in the industrial sector. Making conclusions through accurate figures is 

difficult for decision-makers due to the complexity and ambiguity of reality. Neutrosophic ensembles are used to 

tackle uncertainty and indeterminacy in a practical environment. By concentrating on ranking the smaller set of 

criterion values, the proposed method enables the experts to carry out the group decision-making process. As a result, 

a relaxed decision-making environment is created, allowing the experts to handle a reasonable amount of information 
while still making decisions. To demonstrate the decision process of a 3D printer, we combine a single valued 

Neutrosophic with hybrid score and accuracy function, the single valued Neutrosophic number ranking approach, and 

the single valued Neutrosophic score and accuracy function. To determine the best attributes, the score function was 

used to rank the total values of each possibility. Concrete examples have been given to support the suggested solution 

to the multi-attribute decision-making problem (MADM). 

Keywords: 3D printer, Neutrosophic Logic; Multicriteria decision making, knowledge  based system, Decision 

support system. 

 

1.Introduction: 

Numerous fields are affected by Decision Making (DM) difficulties. Assessment of the proof in DM cases often 

depends on many factors rather than one. It’s also becoming more difficult for decision-makers to evaluate all relevant 

aspects of a problem as the intricacy of the technical environment rises. Therefore, complex decision problems are 
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often tackled by experts who pool their knowledge and experience. There are a variety of approaches that have been 

developed to handle these complex Multi Criteria Decision making (MCDM) problems. [17] The field of additive 

manufacturing (AM), which includes 3D printing, is often regarded as the most promising of the developing 

technologies currently under development. It has been suggested that 3D printing technology could eventually take 

the place of conventional production equipment widely used in the industrial industry. There are seven main categories 

of 3D printing technology. Regarding 3D printing, each method is entirely distinct from the others (i.e., operation, 
material usage, and no wastage) [44]. A product's final cost includes every cost incurred during production. The most 

crucial  step is to think about the machine’s characteristics and cost before production begins. Furthermore, the price 

of the American-made object will be determined by the total production expenses. The pricing of the product could 

then be reduced by selecting an AMM with desirable characteristics at an affordable price [7]. Therefore, the purpose 

of this study is to use one of the multi-criteria decision-making (MCDM) tools—the analytical hierarchy process—to 

address a decision-making issue raised by the AMM selection (AHP). The MSME begins selecting an FDM machine 

for its structural and doll product by requesting price quotes from several AM manufacturers. Extruder type, and 

machine weight should all be taken into account while selecting the optimum machinery for the project. AHP relies 

on criteria developed in collaboration with those making the calls. AHP requires decision-makers to answer the 

common Saaty’s scale criterion questions to produce the pair-wise matrix [67]. 

AM has the ability to produce materials with the most intricate geometric features while using little bulk and waste. 

AM is a compelling material-saving solution with its low material costs and independent characteristics that allow for 

control of process parameter customization. In recent years, 3D printing, also known as additive manufacturing, has 

garnered interest from every primary industry. The conventional industrial production system is in crisis, and AM is 

the root of the problem (CM) [23]. “Compared to traditional manufacturing methods, additive manufacturing is 

superior at creating geometrically rigid material structures [81]. As an added benefit as seen in CM, AM excels at 

bypassing the need for an integrated assembly in favor of a more straightforward, layer-by-layer approach to material 

preparation.  The high prototype production cost, the increased production rates, the high prices of the product itself, 

and the difficulty of performing real-time operational tests are all reasons that make AM challenging to implement” 
stated by [47]. Although AM prototypes are more expensive than CM ones, they provide significant benefits in terms 

of reduced production time [33]. 

Over the past few decades, the Neutrosophic has evolved alongside its ecosystem. Multiple subjects benefit from using 

a Neutrosophic environment, including logic, statistics, algebra, neural networks, etc. Given the inherent uncertainty 

in most real-world decision-making scenarios, philosophers’ sets provide a promising solution. Uncertainty is inherent 

in situations that occur in the real world, and environmental factors often contribute significantly to it. [49]. The 

outcomes of neutron star environments are applied to a new facet of traffic management. When it comes to managing 

traffic, neutrality plays a crucial role. The data is indeterminate, and the issues of membership and non-membership 
are addressed. 

The potential for sustainability is enhanced by the fact that 3D printing is a novel manufacturing method with far-

reaching environmental impacts across the entire product life cycle. Additive manufacturing constructs items layer by 

layer rather than chopping away from a greater volume, drastically lowering resource requirements and production 

waste. Traditional manufacturing generates waste because raw materials must undergo subtractive procedures to be 

transformed into finished goods [46]. Due to the additive nature of 3D printing, no waste is generated. With most 3D 

printing technologies, the only waste is the support structures created with the product and then taken out after 

manufacturing. 

Further, 3D printing helps cut down on defective product waste [34]. Due to this improvement in resource efficiency, 

less energy is needed to produce or transport materials. According to [21], 3D printing might drastically cut down on 

or even eliminate production waste, but the technique has to be validated before it can be widely utilized. 

3D printing reduces manufacturing energy requirements by eliminating intermediaries and speeding up production. 

These energy-efficient production methods also reduce carbon dioxide emissions. The carbon footprint of shipping 

may also be reduced thanks to 3D printing [55]. The carbon footprint associated with production and transportation 

of these goods can be reduced. Suppose 3D printing technologies are adopted on a large scale. In that case, production 

speeds are increased, and additional printable materials are made accessible, [35] argues the industry’s net CO2 
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emissions and energy usage might be reduced. Additionally, they warn that the sustainability gains from 3D printing 

might be nullified by a “rebound effect” if the production volume is raised because of the technology’s enhanced 

efficiency. 

A pool of molten metal receives metal powder, which is then deposited as new metal by laser melting. This process is 

repeated until the pool of molten metal tank is full. Fused deposition modeling [27] involves heating a filament of 

thermoplastic polymer and then extruding it onto a surface. Despite the fact that the materials employed in this method 

are more easily recyclable, this method is still preferred.  

 These pillars have not received the attention they deserve since it was believed that they were superfluous [24]. 

Although this is a difficulty, there is a solution described in [20] that involves crushing the supports and then extruding 

them into a filament using the new material. This is a technique that may be used to solve the problem. The acrylonitrile 
butadiene styrene (ABS) plastic, on the other hand, deteriorates under the effect of heat generated by the FDM printer. 

Research is being carried out on new polymers with the hope of improving their potential for recycling [22]. which is 

also an area for development [16]. The material choice might influence the sustainability of 3D printing. 

Laser metal deposition and other processes involving the melting metal powders offer the environmental benefits 

when reusing the material but are also very energy intensive. Although FDM techniques offer a reduced energy 

footprint, they have the additional drawback of increased emissions [59]. “Toluene, ethylbenzene, and formaldehyde 

are all recognized carcinogens”, and [45] discovered that “FDM with ABS plastic generated substantial amounts of 

these chemicals. Although  [26] demonstrated that “VOCs are released during 3D printing procedures using PLA, 
these emissions were minimized when PLA was used instead of ABS, yielding substantially less particulate matter 

and no VOCs”. In both the best and worst-case scenarios for printing, the amount of volatile organic compounds is 

far below occupational exposure levels, posing no threat to human health.  

EcoPrinting, suggested by [69], is a 3D printing procedure that uses waste polymers as a source material and has a 

negligible environmental impact. An integrated solar battery charging system and other low-power components help 

the EcoPrinting system significantly reduce energy consumption [15]. To help the people of the Solomon Islands, this 

technique has been used to print pipe couplers and plumbing seals as part of a humanitarian assistance project [14]. 
ABS plastics were employed in the EcoPrinting process applied to plastic from vehicle parts and technological debris 

collected from a Solomon Islands landfill and local companies [43]. The Tolerances for  filaments produced from 

recycled material are equivalent to those of filaments sold commercially [1]. By functioning without an electricity 

connection and utilizing collected ABS plastic waste as the printing feedstock, the EcoPrinting system has successfully 

demonstrated the potential improvements in 3D printing. 

Unlike the CM mode, AM mode allows for a more targeted counter design. [2] studied the topic of choosing 

individualized procedures in healthcare. This work enhanced a strategy for selecting functions in AM’s fabrication of 

novel materials and replacement components [3]. A practical method for reducing the likelihood of AMM failure is 
to systematically evaluate which AMM is the most effective. It’ll boost AMM’s productivity. Art critics [13] examined 

additive manufacturing, which decreases waste by utilizing fewer powder particles to create end products, and how 

the absence of process selection tools is a wasted economic opportunity. 

AM stocks are beginning to register as part of the third wave of manufacturing by creating industry-spanning prototype 

jewels. [6] demonstrated the AM sectors manufacturing benefits in terms of lead time and time to market by comparing 

several fast prototype methods. Unlike traditional manufacturing methods, AM does not require the use of tools 

throughout the creation process, as noted by [37]. The result of this is mass manufacturing. How to choose the RP 

processes is in detail by [63], who use a modified matrix technique and graph theory to explain their findings. [78] 
detailed a comparison of genetic models for determining the optimal procedure in fast prototyping in terms of build 

cost, build duration, and surface roughness. According to the findings of [12], the rule-based expectation system will 

address the issues with AM’s process selection that have been posed in the business and academic communities. 

Research on RP methods follows a topic-specific methodology that takes into consideration criteria such as strength 

of building materials, accuracy, prototypes, cost, elongation, and build time [11]. A product’s roughness, precision, 

speed, price, and mechanical qualities were quantitatively investigated [10]. Furthermore, studies have investigated 

how AMMs use marginally fewer raw resources. [80] found that, when it comes to orthodontists’ applications and 

multimodal 3D face recognition, 3D printing offers the most outstanding accuracy and lowest material waste.Studies 
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by [79] and [77] have shown  that the structure of AMMs affects their mechanical characteristics and is crucial for 

maintaining  these qualities stable. Newer multiple-choice problems with numerous criteria and solutions may be 

solved with the help of the MCDM method. Using prior studies’ literature, the following are the advantages and 

applications of MCDM.  

3D printing as part of a more significant educational effort to produce pre-scanned bones for use in teaching anatomy” 

[3] and [4].  

Researchers at “Australia’s Monash University” have invented a revolutionary technique for 3D printing cadaveric 

orbital separation incisions in ophthalmology and optometry teaching and training [25]. 3D printing is expected to 

significantly improve students' educational experience in STEM fields. In reviewing the efforts of the  “European 

Federation of Chemical Engineers” Working Party on Education’s efforts over the previous decade, Gillet[56] 200 
highlights three crucial aspects of chemical engineering education: curriculum creation, individual growth, and 

ongoing education. Middle and high school teachers were the target audience for [64] a three-day 3D printing 

workshop, which included online educational and visual resources. They demonstrated the potential of open-source 

3D printing technology to enhance learning by encouraging active students’ participation in all subjects. Loy [60] 

showed how 3D printing can combine eLearning and making to revolutionize how product design is taught in the 

classroom. In their research, [76] shows how a conceive-design-implement-operate framework may balance 

pedagogical theory, technology training, and classroom instruction. However, in 2013, an MIT research team led by 

[18] launched 4D printing, which has aided in developing intelligent materials. Fourth-dimensional printing (4D 

printing) is a development of 3D printing in which time is included as a fourth dimension. Depending on the stimuli 

(such as heat, ultraviolet light, or water), the printed form may change over time, making it a dynamic structure with 

malleable features and functions [74],[75]. Although this development has expanded the application of digital 
manufacturing’s application, it still needs expertise in several fields (such as mathematics, mechatronics, mechanical 

engineering, and chemical engineering). New intelligent engineering materials have been exhibited and studied 

recently, including temperature- and pH-controlling smart valves, adaptive pipes, sensors, and soft robotics [50].  

I3Mote is only one example of open-source software that has been made available to facilitate the creation of products 

based on integrated hardware and software. Industry 4.0, derived from the notion of a “smart factory,” is an umbrella 

term for the IoT built on cyber-physical systems (CPS) that integrate virtual and real-world settings [43],[42],[41]. 

 “Advanced robotics, additive manufacturing, augmented reality, simulation, horizontal and vertical integration, the 

industrial internet, the cloud, cybersecurity, and big data and analytics” are the nine pillars upon which Industry 4.0 

rests [48]. Germany’s “Industry 4.0” program, launched in 2011, aims to digitalize the manufacturing process [51]. 

This program is responsible for coining the phrase “Industry 4.0” and developing the architectural reference model 

that underlies the concept. 

Regarding consolidation and integration of the high-tech industries and guaranteeing the country’s technical 
leadership, Industry 4.0 in Germany is based on the High Tech 2020 Strategy. Singapore’s “Smart Nation Program,” 

Japan’s “Industrial Value Chain Initiative,” China’s “Made in China 2025,” and the United States’ own “Smart 

Manufacturing” all outline similarly ambitious goals [73] and [72]. Most of Malaysia’s industrial industries are either 

highly mechanized or involved in mass production. To raise awareness of and contribute to the development of  a 

comprehensive national strategy for Industry 4.0, the government has held discussions with a wide range of 

stakeholders and implemented several public outreach initiatives [5]. 

Optimizing part geometries, for instance, is crucial in the design phase because it can affect the environmental impact 

[52]. In some other cases, though, the decision-maker doesn’t consider them. 

seeing widespread usage in fast prototyping [53] and [54]. Others share some features of one 3D printing technology 

because they share similar underlying principles. In contrast, other features are distinct because they reflect the 

technology’s regulations and lead to distinctive differences in the characteristics of the printed parts.  

Among these procedures. AM technique that uses a liquid bonding agent dropped over powder particles to hold them 

together. By repositioning the print head and carefully depositing the bonding agent, a BJ printed component is created 

[57]. When printing with expensive materials, the ability to print without anchoring the powder on a build plate is a 
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significant time and cost saver. Manufacturing ceramic components is a typical use case for BJ. Recent research [58] 

demonstrates that BJ-printed components have enhanced bulk density, making them ideal for metallic foam 

frameworks and approaching completely dense stainless-steel parts. One of the benefits of BJ’s is the high resolution 

that makes it possible to apply finishes with a lot of detail. 

Direct Energy Deposition (DED) “processes use focused energy to melt materials directly as they are added to the 

workpiece in a layer-by-layer fashion. A laser, electron beam, or arc lights are often used as the focused energy source, 

while the raw materials take the shape of a wire or powder [61],[62] and [65]. DED printing requires a greater quantity 

of materials than other methods. DED-printed components can better resist fatigue” [66]. New studies reveal that the 

particle capture efficiency of DED varies with the working distance and may improve with an increasing material in 

the surface temperature [68]. 

Melt extrusion (ME) is like the conventional plastic extrusion method; both involve the melting of the material being 

shaped. A typical ME method is fused deposition modeling (FDM), where a nozzle deposits the material in a soft and 

semi-liquid condition onto a building platform, a little bit at a time, to create an 3D object. However, ME can create 

more intricate components than the extrusion method while having a slower manufacturing rate. ME often has the 

lowest price tag among AM technologies, which helps explain why it is the most widely used 3D printing option. The 

print speed, process parameters, and thermal activities of the FDM method have all been improved, and much work 

has been put into developing new materials [70],[71] and [40]. 

Additive manufacturing (AM) techniques that use a bed of powdered input material that falls under the umbrella term 
of powder bed fusion (PBF) [38]. By spreading a small layer of powdery material and then fusing it at particular 

points, the 3D object is printed. Possible sources of energy include a laser, electron beam, or infrared light. Post-

processing steps, such as blowing away debris or lifting the printed product off the platform, are commonplace in 

print-on-demand fabrication (PBF). Their distinct microstructures cause bulk anisotropy of the PBF components; 

however, recent research suggests that it may be reduced by using a broad beam. 

A vat is used to perform the VP technique, during which the liquid-photosensitive resin is polymerized. When the 

resin is exposed to a laser or an arc light source, a solid three-dimensional component could be produced as a result 
of a chemical reaction. There are many different kinds of VP, but some examples are stereolithography, the digital 

light process, and the continuous liquid interface product [39] and [36]. Stereolithography is one example. New 

research suggests that the “bottom-up” and “top-down” print methods may provide different results [8] and [9] for 

components that have certain geometries, including those with parts with a length/diameter ratio that is greater than 

2. One of the first steps in developing a useful cost model is determining the extent to which the model will be used. 

Several broad AM processes that include supplementary AM process phases have been reported in the literature. At 

this point in the process, the raw ingredients are additionally assembled [19]. Powdered materials may require sieving 

or mixing, and “material formulation” may be required for liquid materials in order to get depositable materials. Raw 

materials may also need to be placed into cartridges or containers and stored in a method that prevents them from 

degrading for a sufficient amount of time, but this will depend on the specifics of the process and the machine’s design 

[28],[29] and [30]. 

Setting up the AM machine and its control system is a prerequisite before the construction begins. There are the AM 

systems, the energy exposure devices, the climate control system, and the control computers to configure. Once this 

process is complete, the appropriate control proper control parameters may be adjusted [31]. The method for matter 

deposition or energy delivery varies between AM techniques [32]. 

A relationship function called FuzzySet(FS) was used to tackle the majority of the uncertainty problems that exist in 
the actual world, and it was thoroughly explained.[11] uses to expand upon the intuitionistic fuzzy set (IFS) notion 

discussed above. Instead, a number of approaches to tackling the uncertainty problem have been developed, such as 

generalised orthopairfuzzy sets [18] N-valued interval Neutrosophic [31] generalised interval-valued triangular IFS, 

JY. Neutrosophic multicriteria is a method of decision-making that integrates various criteria or elements, occasionally 

with scant or unclear data, to reach a result [82]. With the use of a mathematical model created using a double bounded 

rough Neutrosophic set, the expression of the students is evaluated using real-time data gathered by photographing 

them in relation to various subjects [83]. The suggested study mentions the principal medical areas that NIP can 

provide for image segmentation from DICOM pictures. It has been found to be a superior method due to the way it 
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handles ambiguous information [84]. Understanding stress and creating strategies to lessen its effects on voice 

recognition and human-computer interaction systems are the goals of this research [85]. In this article, we present a 

method for calculating a system's expected costs under various conditions. The uncertainty in the various model 

parameters are managed using the trapezoidal bipolar Neutrosophic numbers [86]. In this paper, complex group 

decision-making scenarios are addressed using the dynamic programming method, where the preference data is 

represented by linguistic variables [87]. The method's advantage is that it can be used without a lower membership 
function for falsehood, which results in a sizable reduction in calculation time [88]. In an effort to address the traffic 

problem, this study made an effort to provide a general overview of each approach. Numerous academics that are now 

studying traffic flow, traffic accident diagnostics, and its hybridization are expected to benefit from the proposed study 

[89]. This work reveals that neurosophic multiple regression is the most useful model for uncertainty, as opposed to 

conventional regression models [90], [91], and [92]. To achieve the lowest inspection cost possible, we will compose 

the issue language appropriately for such a case in this study before building the appropriate mathematical model [93]. 

This framework takes into account the components of Industry 5.0. The most important related elements and strategies 

can be found by first reviewing the relevant experts and body of published research [94]. Reducing HCWT through 

appropriate treatment is vital for the region's economic and environmental wellbeing.  In order to address single-

valued neutrosophic group decision-making issues with a shortage of weight data, this research develops a novel 

multi-criteria decision-making technique [95]. 

 

2.Neutrosophic sets  

Assume that X = x1, x2,..., xm (m ≥2) is the set of decision-makers or experts, y= y1, y2,..., yq (q≥ 2) is the collection 

of criteria, and A=A1,..., An (n ≥ 2) is the set of logistics centres. 

The weights of the decision-makers are completely unknown in the group decision-making problem, but the weights 
of the criteria are only partially understood. These weights have never been assigned before.We create a method 

based on the hybrid score-accuracy function using linguistic variables to address the MCDM problem with 

uncertain weights in a single-valued Neutrosophic environment. The suggested method's steps for resolving 

MCGDM are listed below. 

Definition 2.1(F. Smarandache  2005) 

Let 𝑋 be the universal set, then Neutrosophic set is defined as 𝑆 = {(𝑇𝑆(𝑥), 𝐼𝑆(𝑥), 𝐹𝑆(𝑥)), 𝑥 ∈ 𝑋} where 

𝑇𝑆(𝑥), 𝐼𝑆(𝑥), 𝐹𝑆(𝑥) ∈ [0,1] and 0 ≤ 𝑇𝑆(𝑥) + 𝐼𝑆(𝑥) + 𝐹𝑆(𝑥) ≤ 3. 

 

Definition 2.2( H. Wang 2010) 

Let 𝑋 be the universal set, then SVNS is defined as �̇� = {(𝑇�̇�(𝑥), 𝐼�̇�(𝑥), 𝐹�̇�(𝑥)), 𝑥 ∈ 𝑋} where 𝑇�̇�(𝑥), 𝐼�̇�(𝑥), 𝐹�̇�(𝑥) ∈

[0,1] and 0 ≤ 𝑇�̇�(𝑥) + 𝐼�̇�(𝑥) + 𝐹�̇�(𝑥) ≤ 3. 

Definition 2.3 (H. Wang 2005) 

Let 𝑋 be the universal set, then IVNS is defined as �̇� = {((𝑇�̇�
𝑈(𝑥), 𝑇�̇�

𝐿(𝑥)) , (𝐼�̇�
𝑈(𝑥), 𝐼�̇�

𝐿(𝑥)) , (𝐹�̇�
𝑈(𝑥), 𝐹�̇�

𝐿(𝑥))) , 𝑥 ∈ 𝑋} 

where 𝑇�̇�(𝑥) = (𝑇�̇�
𝑈(𝑥), 𝑇�̇�

𝐿(𝑥)) ∈ [0,1], (𝐼�̇�
𝑈(𝑥), 𝐼�̇�

𝐿(𝑥)) ∈ [0,1], (𝐹�̇�
𝑈(𝑥), 𝐹�̇�

𝐿(𝑥)) ∈ [0,1] and 0 ≤ 𝑇�̇�
𝑈(𝑥) + 𝐼�̇�

𝑈(𝑥) +

𝐹�̇�
𝑈(𝑥) ≤ 3. 
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Algorithm 

1.Creating the choice matrix. 

2.Evaluate the hybrid score accuracy matrix. 

3.Calculate the average matrix in step three. 

 4.Calculating the weights. 

5.Calculate the average accuracy matrix. 

6.find the weight model for criterion  

 7.compare the options  

 8.Finish in end step 

3. Score accuracy functions using the Multi criteria decision making(MCDM) technique in a single-valued 

Neutrosophic environment 

Based on the five factors, including precision (C1), speed (C2), price (C3), surface roughness (C4), and friendly use 

(C5). The weights of the decision-makers are completely unknown in the group decision-making problem, but the 

weights of the criteria are only partially understood. These weights have never been assigned before. We create a 

method based on the hybrid score-accuracy function using linguistic variables to address the MCDM problem with 

uncertain weights in a single-valued Neutrosophic environment. The following is a list of the stages for resolving 

MCGDM using the suggested method. Assume that the best 3D printing requires an optimization 3D printer. Three 

3D printers are available: P1, P2, and P3. To choose the most relevant criterion based on five criteria (C1,C2,C3,C4 

and C5), Four decision-makers or specialists (D1, D2, and D3) have been assembled into a committee. 

Thus, linguistic factors are used by the three decision-makers. Conversion of linguistic variables and Single value is 

shown in Table 1.in table 2,3 and 4 is linguistic phrase presented. 

Table 1 linguistic scale and corresponding single value Neutrosophic  

Linguistic variable Single value Neutrosophic 

Very poor (VP) (.01 .98  .98) 

Poor  (P) (.15  .75  .85) 

Good(G) (.65  .45   . 35) 

Very good (VG) (.95   .05   .05) 

 

Table 2 linguistic phrase for D1 

 C1 C2 C3 C4 C5 

P1 G G P G VG 

P2 VG VP G G P 

P3 G P G P G 
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Table 3 linguistic phrase for D2 

 C1 C2 C3 C4 C5 

P1 VG G G G P 

P2 G VG P G G 

P3 G VG VP G P 

Table 4  linguistic phrase for D3 

 C1 C2 C3 C4 C5 

P1 G G VG P G 

P2 VG G G G P 

P3 G VG G P G 

Decision matrix for corresponding linguistic phrase 

𝐷𝑚1 = [

(.65
(.95
(.65

. 45

. 05

. 45

. 35)

. 05)

. 35)
   

(.65
(.01
(.15

. 45

. 98

. 85

. 35)

. 98)

. 85)
  

(.15
(.65
(.65

. 75

. 45

. 45

. 85)

. 35)

. 35)
  

(.65
(.65
(.15

. 45

. 45

. 75

. 35)

. 35)

. 85)
  

(.95
(.15
(.65

. 05

. 75

. 45

. 05)

. 85)

. 35)
] 

𝐷𝑚2 = [

(.95
(.65
(.65

. 05

. 45

. 45

. 05)

. 35)

. 35)
   

(.65
(.95
(.95

. 45

. 05

. 05

. 35)

. 05)

. 05)
  

(.65
(.15
(.01

. 45

. 75

. 98

. 35)

. 85)

. 98)
  

(.65
(.65
(.65

. 45

. 45

. 45

. 35)

. 35)

. 35)
  

(.15
(.65
(.15

. 75

. 45

. 75

. 85)

. 35)

. 85)
] 

𝐷𝑚3 = [

(.65
(.95
(.65

. 45

. 05

. 45

. 35)

. 05)

. 45)
   

(.65
(.65
(.95

. 45

. 45

. 05

. 35)

. 35)

. 05)
  

(.95
(.65
(.65

. 05

. 45

. 45

. 05)

. 35)

. 35)
  

(.15
(.65
(.15

. 75

. 45

. 75

. 85)

. 35)

. 85)
  

(.65
(.65
(.15

. 35

. 45

. 75

. 45)

. 35)

. 85)
] 

 

Now, we choose the best 3D printing option using the mentioned method. We choose = 0.5 to illustrate the 

computation process. 

Equation can be used to extract the hybrid score-accuracy matrix from the decision matrix. 

The existing method  Surapati Pramanik(2016)       

𝐴𝑖𝑗
𝑠 =

1

2
𝛼(1 + 𝑇𝑖𝑗

𝑠 − 𝐹𝑖𝑗
𝑠 ) +

1

3
(1 − 𝛼)(2 + 𝑇𝑖𝑗

𝑠 − 𝐼𝑖𝑗
𝑠 − 𝐹𝑖𝑗

𝑠 ) (1) 

Proposed model 

𝐴𝑖𝑗
𝑠 =

1

6
𝛼(𝑇𝑖𝑗

𝑠 + 2𝐼𝑖𝑗
𝑠 − 1) +

1

3
(2 + 𝑇𝑖𝑗

𝑠 − 𝐼𝑖𝑗
𝑠 )                                                                   (2) 

Using the above equation to find the hybrid score matrix for existing and proposed methods 
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hybrid score matrix existing methods 

𝐻𝑦𝑏𝑟𝑖𝑑 𝑆𝑐𝑜𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 1 = [
. 633 . 633 . 167
. 95 . 016 . 633

. 633 . 167 . 633
    

. 633 . 95

. 633 . 167

. 167 . 633
] 

𝐻𝑦𝑏𝑟𝑖𝑑 𝑆𝑐𝑜𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 2 = [
. 95 . 633 . 633

. 633 . 95 . 167

. 633 . 95 . 016
    

. 633 . 167

. 633 . 633

. 633 . 167
] 

𝐻𝑦𝑏𝑟𝑖𝑑 𝑆𝑐𝑜𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 3 = [
. 633 . 633 . 95
. 95 . 633 . 633

. 633 . 95 . 633
    

. 883 . 742

. 633 . 167

. 167 . 633
] 

hybrid score matrix proposed methods 

𝐻𝑦𝑏𝑟𝑖𝑑 𝑆𝑐𝑜𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 1 = [
. 813 . 633 . 688
. 971 . 609 . 279
. 813 . 779 . 504

    
. 813 . 779
. 424 . 938
. 488 . 821

] 

𝐻𝑦𝑏𝑟𝑖𝑑 𝑆𝑐𝑜𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 2 = [
. 971 . 396 . 563
. 813 . 513 . 871
. 813 . 513 . 871

    
. 813 . 613
. 971 . 563
. 971 . 609

] 

𝐻𝑦𝑏𝑟𝑖𝑑 𝑆𝑐𝑜𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 3 = [
. 813 . 613 . 688
. 971 . 396 . 563
. 813 . 513 . 513

    
. 813 . 513
. 813 . 613
. 971 . 396

] 

 

 

Average matrix 

𝐻𝑖𝑗
# =

1

𝑛
∑ 𝐻𝑖𝑗

𝑥

𝑚

𝑥=1

 

The average matrix existing methods 

𝐻𝑖𝑗
# =[

. 738 . 633 . 583

. 844 . 533 . 477

. 633 . 688 . 428
    

. 717 . 635

. 633 . 322

. 322 . 478
] 

The average matrix proposed methods 

𝐻𝑖𝑗
# =[

. 865 . 540 . 646

. 918 . 506 . 571

. 813 . 601 . 748
    

. 813 . 635

. 736 . 704

. 809 . 609
] 

 

3.1 CORRELATION COEFFICIENT BETWEEN 𝐻𝑖𝑗
#   AND 𝐻𝑖𝑗

𝑥  

𝑐𝑥 = ∑
∑ 𝐻𝑖𝑗

𝑥 𝐻𝑖𝑗
∗𝑛

𝑗=𝑖

√∑ (𝐻𝑖𝑗
𝑥 )

2
𝑛
𝑗=1

1

√∑ (𝐻𝑖𝑗
∗ )

2
𝑛
𝑗=1

𝑚
𝑖=1                                                                                   (3) 
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correlation coefficient of existing methods 

H1*𝐻𝑖𝑗
#   =[

. 468 . 401 . 097

. 802 . 008 . 302

. 401 . 011 . 271
    

. 454 . 588

. 401 . 053

. 053 . 302
] 

H2*𝐻𝑖𝑗
#   =[

. 702 . 401 . 369

. 534 . 506 . 079

. 401 . 654 . 006
    

. 454 . 103

. 401 . 204

. 204 . 079
] 

H3*𝐻𝑖𝑗
#   =[

. 467 . 401 . 554

. 802 . 337 . 302

. 401 . 654 . 271
    

. 633 . 459

. 401 . 053

. 053 . 302
] 

correlation coefficient of proposed methods 

H1*𝐻𝑖𝑗
#   =[

. 703 . 330 . 444

. 891 . 308 . 159

. 660 . 469 . 377
    

. 660 . 494

. 312 . 661

. 394 . 499
] 

 

H2*𝐻𝑖𝑗
#   =[

. 840 . 214 . 363

. 745 . 259 . 497

. 660 . 308 . 652
    

. 660 . 389

. 714 . 396

. 786 . 370
] 

 

H3*𝐻𝑖𝑗
#   =[

. 703 . 331 . 444

. 891 . 200 . 321

. 660 . 308 . 652
    

. 660 . 325

. 597 . 431

. 786 . 240
] 

 

Table 5 proposed and existing values  

 Proposed values Existing value 

∑ ℎ𝑖𝑗
1 ℎ𝑖𝑗

∗

𝜌

𝑗=𝑖

 

2.632679398 

 

2.184668 

√∑(ℎ𝑖𝑗
1 )

2

𝜌

𝑗=1

 

2.612882 

 

2.134 

√∑(ℎ𝑖𝑗
∗ )

2

𝜌

𝑗=1

 

2.46342 1.478062 
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∑ ℎ𝑖𝑗
2 ℎ𝑖𝑗

∗

𝜌

𝑗=𝑖

 

2.331893056 

 1.730445 

√∑(ℎ𝑖𝑗
2 )

2

𝜌

𝑗=1

 

2.466105 

 

1.733 

√∑(ℎ𝑖𝑗
∗ )

2

𝜌

𝑗=1

 

 

2.441935 

 
 

1.315464 

∑ ℎ𝑖𝑗
3 ℎ𝑖𝑗

∗

𝜌

𝑗=𝑖

 

1.390534 

2.777134 

√∑(ℎ𝑖𝑗
3 )

2

𝜌

𝑗=1

 

2.777134 

1.259 

√∑(ℎ𝑖𝑗
∗ )

2

𝜌

𝑗=1

 

2.647297 

1.179209 

 

 

𝐶1 =
2.184668

12.134 𝑥1.478062
+

1.730445

1.1.733 𝑋 1.315464
+

31.390534

1.259 𝑋 1.179209
= 3.7385 

 

C2=3.8986,C3=4.260 

Table 6  proposed and existing C value 

 proposed Existing 

C1 2.942516 

 

3.7385 

C2 2.908786 

 

3.8986 

C3 2.980633 4.260 
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Table 6 present the C value of the both methods 

3.2 Decision maker’s weights determination 

𝜗𝑥 =
𝐶1

∑ 𝐶𝑥
𝑛
𝑥=1

, 0 ≤ 𝜗𝑥 ≤ 1 𝑓𝑜𝑟 𝑥 = 1,2,3, . . . , 𝑚 

𝜗1 = 0.314, 𝜗2 = 0.3276, 𝜗3 = 0.3581 

Table  7  proposed and existing Decision makers weights determination 

 Proposed Existing 

𝜗1 0.333168 

 

0.314 

𝜗2 0.329349 

 

0.3276 

𝜗3 0.337484 

 

0.3581 

 

 present the weight determination 

4. Calculate hybrid score accuracy matrix 

                In order to aggregate the hybrid score-accuracy values of the various decision makers' choices, the equation 
∑ 𝐻𝑖𝑗 𝜗1used. and the following can be written as the overall hybrid score-accuracy matrix. 

Hybrid score accuracy with ∑ 𝐻𝑖𝑗 𝜗1 existing 

∑ 𝐻𝑖𝑗 𝜗1 = [
. 199 . 199 . 523
. 298 . 004 . 199
. 199 . 523 . 199

    
. 199 . 298
. 199 . 052
. 052 . 199

] 

∑ 𝐻𝑖𝑗 𝜗2 = [
. 311 . 207 . 207
. 207 . 311 . 054
. 207 . 311 . 005

    
. 207 . 054
. 207 . 207
. 207 . 054

] 

∑ 𝐻𝑖𝑗 𝜗3 = [
. 226 . 226 . 340
. 340 . 226 . 226
. 226 . 340 . 059

    
. 316 . 265
. 226 . 059
. 059 . 227

] 
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Hybrid score accuracy with ∑ 𝐻𝑖𝑗 𝜗1 proposed 

∑ 𝐻𝑖𝑗 𝜗1 = [
. 270 . 204 . 229
. 323 . 203 . 093
. 270 . 259 . 167

    
. 270 . 259
. 141 . 312
. 162 . 273

] 

 

∑ 𝐻𝑖𝑗 𝜗2 = [
. 319 . 130 . 185
. 267 . 168 . 286
. 267 . 168 . 286

    
. 267 . 201
. 319 . 185
. 319 . 200

] 

∑ 𝐻𝑖𝑗 𝜗3 = [
. 274 . 206 . 232
. 327 . 133 . 189
. 274 . 172 . 293

    
. 274 . 172
. 274 . 206
. 327 . 133

] 

Sum of the hybrid score accuracy matrix existing method 

𝑆𝑢𝑚 𝑜𝑓 ℎ𝑦𝑏𝑟𝑖𝑑 𝑠𝑐𝑜𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 = [
. 737 . 633 . 600
. 846 . 543 . 480
. 633 . 703 . 430

    
. 722 . 618
. 633 . 319
. 319 . 480

] 

hybrid score accuracy in proposed methods 

 

𝑆𝑢𝑚 𝑜𝑓 ℎ𝑦𝑏𝑟𝑖𝑑 𝑠𝑐𝑜𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 = [
. 864 . 541 . 646
. 918 . 505 . 569
. 813 . 601 . 748

    
. 812 . 634
. 735 . 704
. 809 . 607

] 

4.1 Weight model for criteria 

Assume that the information about criteria weights is incompletely known given as follows: weight vectors, 

Using the linear programming model Weighted criterion model 

Assume that the following criteria weights information is incompletely known: weight matrices, 

the linear programming paradigm 

model 𝑀𝑎𝑥 𝜔 =
1

𝑛
∑ 𝜔𝑗𝐻𝑖𝑗

𝑚
𝑗=1 , we obtain the weight vector of the criteria as 𝜔 =[0.3  0.6  0.25  0.2  0.15]. 

We calculate the over all hybrid score-accuracy values  

∅(𝑚𝑖), 𝑖 = 1,2,3,in table 34 and 35  weighted criterion methods in exixting and proposed values 

𝑤𝑒𝑖𝑔ℎ𝑡 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 = [
. 221 . 380 . 150
. 254 . 325 . 120
. 190 . 422 . 108

    
. 144 . 092
. 126 . 047
. 063 . 072

] 

 

𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑  𝑚𝑜𝑑𝑒𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 = [
. 259 . 324 . 161
. 275 . 303 . 142
. 243 . 360 . 187

    
. 162 . 095
. 147 . 105
. 161 . 091

] 
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∅(𝑚1) = 0.9558, ∅(𝑚2) = 0.8772, ∅(𝑚3) = 0.8562 

Table: 8 weight model criteria value 

 Proposed Existing 

∅(𝑚1) 1.003304 

 

0.9558 

∅(𝑚2) 0.973961 

 

.8772 

∅(𝑚3) 1.044839 

 

0.8562 

 

 

 

Table: 9 comparisons on Proposed and existing 

        

  

Proposed model ∅(𝑚1) > ∅(𝑚2) > ∅(𝑚3) 

Existing model ∅(𝑚1) > ∅(𝑚2) > ∅(𝑚3) 

 

Fig 1 and fig 2 shows the pictorial representation of the values. 

 

Fig 1 Existing method 
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Fig 2 Proposed methods 

 

5. Advantages and Limitation on  various sets. 

The table 10 below illustrates how different types of sets can manage different conditions or significant scenarios in 

relation to practical problems, as well as how they can't. 

Table 10 limitation and drawback on various sets 

Various Set 

Types 

Advantages Limitations 

Crisp sets can make an accurate determination 

without hesitating 

unable to fully express the ambiguous 

information 

Fuzzy sets can explain the ambiguous information Uncertain Information cannot be described 

with a non-membership degree. 

Interval valued 

fuzzy sets  

able to cope with interval data rather than 

exact data 

Uncertain Information cannot be handled 

at the non-membership level. 

Intuitionistic 

fuzzy sets 

can simultaneously represent the 

uncertain information using degrees of 

membership (MS) and non-membership 

(NMS) 

Cannot describe the sum of more than one 

MS and NMS degree. 
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Interval valued 

Intuitionistic 

fuzzy sets  

ability to work with interval data Cannot depict the sum of the MS and NMS 

degrees as greater than 1 

Vague sets can simultaneously explain ambiguous 

information with MS and NMS grades. 

Cannot describe a degree sum of more than 

one in MS and NMS. 

Pythagorean 

fuzzy sets 

It provides sufficient room to discuss the 

total of MS and NMS degrees that is 

larger than 1. 

cannot describe anything greater than the 

square of the MS and NMS degrees. 

Interval valued 

Pythagorean 

fuzzy sets  

dealing with interval data undefined square sum of MS and NMS 

degrees higher than 1 

Neutrosophic 

Sets 

able to deal with data uncertainty and 

thoroughly acquire the optimum solution. 

incapable of handling interval data 

Interval valued 

Neutrosophic 

sets  

able to handle the interval data's 

indeterminacy and produce the optimal 

solution. 

unable to handle weight information that is 

incomplete 

 

6. Conclusion 

In this paper, the score function is  used to evaluate the concept of a single valued Neutrosophic set used with the best 

3D printers. Using the use of SVNS, a potential application has been addressed. This will not only be helpful on its 

own, but will also assist motivated researchers in resolving other uncertainty-related problems through comparative 

techniques. Based on actual decision-making challenges, the following paper illustrates a novel method for solving 

Neutrosophic fuzzy sets with the contraction value. This process has proven to be quite practical in many real-world 

situations where goal-oriented decision-making is required. In this paper, we model the problem of choosing the best 

3D printer using the score and accuracy function, hybrid score-accuracy function of SVNNs, and linguistic variables 

in a single-valued Neutrosophic environment, where the weight of the decision makers is completely unknown and 

the weights of criteria are only partially known. From the analysis the proposed method is best for decision making. 

Future the work is extended to Plithogenic sets. 
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Abstract: 

This paper investigates the concept of Single-Valued Pentapartitioned Neutrosophic  Hyperbolic 

Tangent Similarity Measure (SVPNHTSM) and Single-Valued Pentapartitioned Neutrosophic 

Weighted Hyperbolic Tangent Similarity Measure (SVPNWHTSM) under the Single-Valued 

Pentapartitioned Neutrosophic Set (SVPNS) environment. SVPNHTSM and SVPNHTCSM also 

produce some interesting results relating to similarities between the two SVPNSs. In an SVPNS 

environment, SVPNHTSM is also used to bring the development of the Multi-Attribute 

Decision-Making (MADM) strategy. To determine the most affected factor of the environment 

affected by COVID-19, the novel SVPNHTSM is used. Results obtained from this study show that 

the incremental rate of water pollution is the major effect of COVID-19 on our environment. Finally, 

validation of the obtained results is done using comparative studies and sensitivity analysis. 

 

Keywords: Fuzzy set, neutrosophic set, single-valued neutrosophic set, single-valued 

pentapartitioned neutrosophic set, multi-attribute decision-making, hyperbolic tangent similarity 

measure, COVID-19 

________________________________________________________________________________________ 

1. Introduction 

COVID-19 is a respiratory illness caused by the novel Coronavirus SARS-CoV-2. It was first 

identified in December 2019 in Wuhan, China, and has since spread globally, leading to the ongoing 

COVID-19 pandemic [24]. The disease has affected millions of people and caused significant 

morbidity and mortality worldwide. Here, we present a literature review on COVID-19, focusing on 

the epidemiology, clinical features, and management of the disease.COVID-19 has affected people of 

all ages and backgrounds, but certain populations have been at higher risk of severe disease and 
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death. Older adults, those with underlying health conditions such as diabetes, cardiovascular 

disease, and respiratory disease, and those with weakened immune systems are more likely to 

experience severe illness and complications. The virus is primarily transmitted through respiratory 

droplets when an infected person coughs, sneezes, or talks. It can also be transmitted by touching 

contaminated surfaces and then touching one's mouth, nose, or eyes. The incubation period for the 

virus is typically between 2 and 14 days, with an average of 5 days [44, 45]. 

The clinical features of COVID-19 vary widely, with some people experiencing mild symptoms or no 

symptoms at all, while others develop severe respiratory illness and other complications. The most 

common symptoms of COVID-19 include fever, cough, and shortness of breath. Other symptoms 

can include fatigue, muscle or body aches, headache, loss of taste or smell, sore throat, congestion, 

and diarrhea. Severe cases can lead to pneumonia, acute respiratory distress syndrome (ARDS), and 

multiple organ failure [44]. Management of COVID-19 depends on the severity of the illness and the 

individual patient's risk factors. Mild cases may not require hospitalization and can be managed 

with supportive care, such as rest, hydration, and fever-relieving medications. More severe cases 

may require hospitalization, oxygen therapy, and other supportive treatments. In some cases, 

antiviral medications such as Remdesivir and monoclonal antibodies may be used to reduce the 

severity of the illness. Vaccination is also a valuable tool in the management of COVID-19, as it can 

prevent infection and reduce the severity of illness in those who do become infected [16]. COVID-19 

continues to be a significant public health threat, with ongoing research aimed at improving our 

understanding of the disease and developing more effective treatments and preventive measures. 

Early detection, isolation, and contact tracing remain significant strategies for controlling the spread 

of the virus, along with vaccination and public health measures such as social distancing, 

mask-wearing, and hand hygiene [2]. 

Multi-criteria decision analysis (MCDA) refers to a decision-making technique that involves 

evaluating and comparing alternatives based on multiple criteria or factors. This approach has been 

widely used in the context of COVID-19 to help decision-makers make informed choices regarding 

various aspects of the pandemic. Here are some examples of how MCDA has been applied in 

relation to COVID-19:One of the most pressing issues related to COVID-19 is the prioritization of 

vaccines, given the limited supply. MCDA can help decision-makers weigh various factors, such as 

the risk of severe illness or death, the risk of transmission, and the potential impact on essential 

workers or vulnerable populations, to determine which groups should receive priority access to the 

vaccine. For example, the World Health Organization (WHO) used an MCDA approach to develop 

its framework for vaccine allocation and prioritization, which took into account criteria such as the 

epidemiology of the disease, the impact on health systems, and ethical and social considerations [45]. 

Another significant decision related to COVID-19 is selecting which containment measures to 

implement in order to slow the spread of the virus. MCDA can be used to evaluate the effectiveness 

of different interventions, such as social distancing, mask mandates, or travel restrictions, based on 

various criteria, such as their impact on public health, the economy, and social well-being. 
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MCDA can also be used to assess the risk levels associated with different activities or settings, such 

as schools, workplaces, or public gatherings. By considering factors such as the number of people 

involved, the duration of the activity, the degree of ventilation, and the prevalence of the virus in the 

community, decision-makers can determine which activities pose the greatest risk and which 

measures should be implemented to mitigate that risk. For example, researchers in the United 

Kingdom used MCDA to evaluate the risk of COVID-19 transmission in different sports and 

physical activities [6]. Overall, MCDA is an effective tool for decision-makers who must weigh 

multiple criteria and factors when making decisions related to COVID-19. By considering a range of 

factors and evaluating alternative options, decision-makers can make more informed choices and 

prioritize interventions that are most likely to have a positive impact on public health and 

well-being. 

Alamoodi et al. [1] presented a systematic review of Multi-Criteria Decision Making (MCDM) 

strategies employed in medical case studies of COVID-19.   As research progresses, researchers 

are very interested in developing new MCDM/MCGDM techniques that use several types 

of sets and operators [14, 18-23]in various uncertain environments.  

Mallick and Pramanik [26] developed the Pentapartitioned Neutrosophic Set (PNS) [26] in 

2020 using the Neutrosophic Set (SVNS) [43] and multi-valued neutrosophic logic [41] to 

cope with uncertainty comprehensively by decomposing the indeterminacy Membership 

Function (MF) into three independent ingredients, namely, contradiction MF, ignorance 

MF, as well as unknown MF. Pramanik [36] developed interval PNS. Details studies of 

SVNSs and their applications and extensions can be found in the studies [3-4, 18-23, 30-35, 

37, 42]. In 2021, Das et al. [7] rendered the Q-ideals of Q-algebra in PNS settings. Das and 

Tripathy [12] discussed topological space in PNS environments. Das et al. [9] presented 

probability distributions in PNS settings. So, PNSs are getting more attention in conducting 

research. 

 Das et al. [11] extended the tangent Similarity Measure (SM)[27, 28, 38] to the SVPNS 

environment. Das et al. [10] developed the MADM strategy under the SVPNS environment 

using Grey Relational Analysis (GRA). Cosine SM-based MCDM strategy [25] was 

presented for identifying the environmental risk factor due to COVID-19 under the SVPNS 

environment. Saha et al. [39] introduced the Dice SM-based MADM strategy under the 

SVPNS setting. Das et al. [8] developed the single-valued bipolar PNS and presented its 

application to the MADM problem. 

 

Research gap:  

 Single Valued Pentapartitioned Neutrosophic Hyperbolic Tangent SM (SVPNHTSM) has 

not been reported in the literature.   

 There is no literature on an MADM strategy based on SVPNHTSM. 

 

Motivation:  
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To fill the research chasm, we initiate to examine SVPNHTSM and Single Valued Pentapartitioned 

Neutrosophic Weighted Hyperbolic Tangent Similarity Measure (SVPNWHTSM) and present a few 

theorems and propositions on SVPNHTSM and SVPNWHTSM in the SVPNS environments. An 

innovative MADM strategy that is based on SVPNHTM under the SVPNS environment is developed 

in this paper.  

Contributions of the paper are as follows:  

1. This paper establishes the properties of the SVPNWHTSM and SVPNWHTSM.  

2. This paper develops a novel MADM strategy using the proposed SVPNWHTSM to 

determine the most significant risk factors in the environment. Based on the proposed 

strategy, a range of alternatives are created and the ranking order is determined. 

3.   The novel MADM method's findings are compared to those of other existing strategies. 

The proposed strategy reveals that under the SVPNS environment, COVID-19 negatively 

impacts Water Pollution more than other alternatives. 

The structure of the remaining paper is shown in Table 1. 

 

Table 1. Structure of the paper 

 

Name of the section  Content  

Section 2  recalls some definitions of relevant terms.  

Section 3  presents SVPNHTSM and SVPNWHTSM and some of their basic 

properties. 

Section 4  develops SVPNHTSM based MADM strategy under SVPNS environment. 

Section 5  presents of application of the developed MADM Strategy for selecting the 

poignant environmental risk factor at the time of the coronavirus.  

Section 6  presents a comparative study.  

Section 7  describes the sensitivity analysis.  

Section 8 Presents the advantage and disadvantage of the study 

Section 9  Presents the conclusions of the paper.  

2. A list of relevant terms with definition  

An overview of some of the results and definitions is presented here. 

Let V be the sphere of discourse. An SVPNS [26] is presented as follows: 

{( , ( ), ( ), ( ), ( ), ( )) : }G G G G GG a b c d e    
         . 

Here, ( ), ( ), ( ), ( )G G G Ga b c d       , and ( )Ge   are the truth, contradiction, ignorance, unknown and 

false MFs such that ( ),Ga   ( ),Gb   ( ),Gc   ( ),Gd   and ( ) [0,1]Ge   , for each   . So,

0 ( ) ( ) ( ) ( ) ( ) 1G G G G Ga b c d e              , for each   . 
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Norms for the null SVPNS (0PNN) and the absolute SVPNS (1PNN) [26] for a fixed set   are presented 

as follows: 

 (a)  ,1 ,1,1 0,0,0( ) :PNN    , 

(b)  ,0 ,0,0 1,1,1( ) :PNN    . 

Let {( , ( ), ( ), ( ), ( ), ( )) : }H H H H HH a b c d e    
         and

{( , ( ), ( ), ( ), ( ), ( )) : }G G G G GG a b c d e    
         be any two SVPNSs  [26] over V. Then, 

(a) H G  if and only if ( ) ( )H Ga a   , ( ) ( )H Gb b   , ( ) ( )H Gc c   , ( ) ( )H Gd d   , 

( ) ( )H Ge e   , for all   . 

 (b) {( , ( ), ( ),1 ( ), ( ), ( )) : }c

G G G G GG e d c b a    
          ; 

(c) H G   

=            ,max ( ), ( ) ,max ( ), ( ) ,min ( ), ( ) ,min ( ), ( ) ,min ( ), ( ) :H G H G H G H G H Ga a b b c c d d e e                       

(d) 

           ,min ( ), ( ) ,min ( ), ( ) ,max ( ), ( ) ,max ( ), ( ) ,max ( ), ( ) :
H H H H HG G G G G

H G

a a b b c c d d e e
        

 

            

Consider  H   = {(r’, 0.21, 0.37, 0.67, 0.14, 0.34), (s’, 0.41, 0.25, 0.48, 0.61, 0.11)} and G  = {(r’, 0.31, 

0.48, 0.71, 0.24, 0.44), (s’, 0.49, 0.36, 0.50, 0.72, 0.25)} be two SVPNSs over a set of discourses V = 

{r’, s’}.     

Then, 

(i) H G  ; 

(ii) 
CH  = {(r’, 0.79, 0.63, 0.33, 0.0.86, 0.66), (s’, 0.59, 0.75, 0.52, 0.39, 0.89)} and CG = {(r’, 0.69, 0.52, 

0.29, 0.76, 0.56), (s’, 0.51, 0.64, 0.50, 0.28, .0.75)}; 

(iii) H G  = {(r’, 0.31, 0.48, 0.71, 0.24, 0.44), (s’, 0.49, 0.36, 0.50, 0.72, 0.25)}; 

(iv) H G  = {(r’, 0.21, 0.37, 0.67, 0.14, 0.34), (s’, 0.41, 0.25, 0.48, 0.61, 0.11)}. 

3. SVPNHTSM and SVPNWHTSM and some of their basic properties 

SVPNHTSM and SVPNWHTSM are here presented. Various interesting consequences have been 

drawn up under the SVPNS environment. 

Definition 3.1 Suppose {( , ( ), ( ), ( ), ( ), ( )) : }H H H H HH a b c d e    
         and  

{( , ( ), ( ), ( ), ( ), ( )) : }G G G G GG a b c d e    
         are two SVPNSs within the set V. Now, the 

SVPNHTSM between H   and G  is defined as: 
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SVPNHTSMP ( , )H G  

1
tanh ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (1)H G H G H G H G H Ga a b b c c d d e e

n
         

           
         

 

Theorem 3.2 The following properties hold, if SVPNHTSMP ( , )H G   is the SVPNHTSM between the 

SVPNSs H  and G :     

 (a) SVPNHTSM0 P ( , ) 1;H G    

(b) SVPNHTSM SVPNHTSMP ( , ) P ( , );H G G H     

(c) SVPNHTSMP ( , ) 0.H G H G       

Proof:(a) Since the hyperbolic tangent function is monotonic increasing function in the number 

line,   therefore, it also belongs to the interval[ 1,1]. Hence,  SVPNHTSM0 P ( , ) 1.H G    

(b) SVPNHTSMP ( , )H G   

=
( ) ( ) ( ) ( ) ( ) ( )1

tanh
( ) ( ) ( ) ( )

H G H G H G

H G H G

a a b b c c

n d d e e

     


   

      
 

    


     

   
 

=
( ) ( ) ( ) ( ) ( ) ( )1

tanh
( ) ( ) ( ) ( )

G H G H G H

G H G H

a a b b c c

n d d e e

     


   

      
 

    


     

   
= SVPNHTSMP ( , )G H   

Therefore, SVPNHTSM SVPNHTSMP ( , ) P ( , )H G G H     

(c)  Assume that H   and Gare any two SVPNSs over   such that .H G   

Since, H G   

( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), for each .

( ) ( ) 0, ( ) ( ) 0, ( ) ( ) 0, ( ) ( ) 0,

( ) ( ) 0, for each .

H G H G H G H G H G

H G H G H G H G

H G

a a b b c c d d e e

a a b b c c d d

e e

         

       

 

      

        

  

          

       

  

 

Hence 
SVPNHTSM

1
P ( , ) tanh(0) 0.H G

n 
     

Conversely, suppose that SVPNHTSMP ( , ) 0.H G    

( ) ( ) 0, ( ) ( ) 0, ( ) ( ) 0, ( ) ( ) 0,H G H G H G H Ga a b b c c d d                      

( ) ( ) 0,H Ge e    for each .  . 
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( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )and ( ) ( ),H G H G H G H G H Ga a b b c c d d e                         

Hence .H G   

Theorem 3.3 If H  , G  and Z  are any  three SVPNSs over a fixed set V such as ,H G Z   

then  

SVPNHTSM SVPNHTSM SVPNHTSM SVPNHTSMP ( , ) P ( , )and P ( , ) P ( , )H G H Z G Z H Z         . 

Proof. Let H  , G  and Z  be any three SVPNSs over a fixed set V such as v ,H G Z    .So,  

( ) ( )H Ga a   , ( ) ( ),H Gb b   ( ) ( ),H Gc c   ( ) ( ),H Gd d   ( ) ( )H Ge e   ,  

( ) ( )G Za a   , ( ) ( ),G Zb b   ( ) ( ),G Zc c   ( ) ( ),G Zd d   ( ) ( )G Ze e   ,

for each .  . 

Therefore ( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ,H G H Z H G H Za a a a b b b b                     

( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) for each .

H G H Z H G H Z

H G H Z

c c c c d d d d

e e e e

       

   

     

   

       

    
 

Therefore 

SVPNHTSM

SVPNHTSM

P ( , )

1
tanh ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
tanh ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

P ( ,

H G H G H G H G H G

H Z H Z H Z H Z H G

H G

a a b b c c d d e e
n

b a a b b c c d d e e
n

H

         

         

 

            

             











         

         

SVPNHTSM SVPNHTSM

)

Thus P ( , ) P ( , ).

Moreover,

Z

H G H Z



   

( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ,G Z H Z G Z H Za a a a b b b b                     

( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ,G Z H Z G Z H Zc c c c d d d d                     

( ) ( ) ( ) ( ) for all .G Z H Ze e e e           . 

Therefore, 
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SVPNHTSMP ( , )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
tanh

( ) ( )

G Z G Z G Z G Z

G Z

G Z

a a b b c c d d

n e e

       


 

 

        
  

   


       

 

      

SVPNHTSM

SVPNHTSM SVPNHTSM

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
tanh

( ) ( )

P ( , )

Hence P ( , ) P ( , ).

H Z H Z H Z H Z

b U

H Z

a a b b c c d d

n e e

H Z

G Z H Z

       


 

        
  

   

 

   


       

 

              

 Definition 3.4                                                                            

Consider two SVPNSs {( , ( ), ( ), ( ), ( ), ( )) : }H H H H HH               
     and 

{( , ( ), ( ), ( ), ( ), ( )) : }                   
     within a universe of discourse V, the 

SVPNWHTSM between H   and  is defined by: 

SVPNWHTSMP ( , )H   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
tanh

( ) ( )

H H H H

f

H
n

       


 

         
  

   


   




             


   
  (2) 

where 1.e



   

  The following sub sequent effects are derived in view of the above theorem:     

Proposition 3.5 Assume that SVPNWHTSMP ( , )H   is the SVPNWHTSM of similarities between the 

SVPNSs H  and  .Then, 

(a) SVPNWHTSM0 P ( , ) 1;H     

(b) SVPNWHTSM SVPNWHTSMP ( , ) P ( , );H H      

(c) SVPNWHTSMP ( , ) 0.H H        

Proposition 3.6 If  ,H G   and Z   over the hippodrome of discourse V so ,H G      

SVPNWHTSM SVPNWHTSM SVPNWHTSM SVPNWHTSMP ( , ) P ( , )and P ( , ) P ( , ).H G R G H            

4. MADM Strategy Based on SVPNHTSM in an SVPNS Environment 

This section focuses on creating the MADM approach through the employment of the SVPNHTSMs 

in SVPNS situations. Consider an MADM problem in which 1 2{ ' , ' ,....., ' }pV V V V  and 
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1 2{ , ,.....,B }pB B B    represent the collection of feasible alternatives and attributes.  In terms of 

Pentapartitioned neutrosophic numbers, the Decision-Maker (DM) provides all estimation details 

for all alternatives. Then, construct a decision matrix by applying the decision maker's entire 

evaluation details. In the next section, a new MADM strategy  ( see figure 1) is developed. 

Phase 1: The decision matrix's construction 

The estimation details are combined to create the decision matrix. 

,{( , ( ' , ), ( ' , ), ( ' ), ( ' , ), ( ' , ) : }
iV j ij i j ij i j ij i j ij i j ij i j jP B V B V B V B V B V B B B              of the DM for 

each alternative ' ( 1(1) )iV i p  based on the attribute ( 1(1) ),jB j q  where 

   ,( ' ), ( ' ,B ), ( ' , ), ( ' , ), ( ' , ) ' ,ij i j ij i j ij i j ij i j ij i j i jV B V V B V B V B V B           (say) 

( 1(1) and =1(1) )i p j q indicates the metrics used to evaluate alternative ' ( 1(1) )iV i p with respect 

to attribute ( 1(1) ).jB j q   
 

Decision matrix is delineated below: 

DMA 
1B  2B  

 
qB  

1'V   1 1, V B   1 2, V B  
  1, qV B  

2
V   2 1, V B   2 2, V B  

  2 , qV B  

   .  


pV   1, pV B   2, pV B  

  , p qV B  

 

Phase -2: Determining attribute weights 

Verifying the weights for each of the attributes is an important part of the MADM strategy. It is 

possible for DM to use compromise functions to compute the weights for each characteristic when 

the details of the weights are unknown. 

The compromise function of j  for each 
iV is interpreted as follows: 

 
1

3 ( ' , ) ( ' , ) ( ' , ) ( ' , ) ( ' , ) / 5
p

j ij i j ij i j ij i j ij i j ij i j

i

V B V B V B V B V B


                    (3) 
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Then the weight of the j-the characteristic is obtained by 

1

(4)
j

j q

j

j






 


 

Here, 
1

1.
q

j

j




   

Phase -3: Evaluation of a Positive Ideal Alternative (PIA) 

 This step involves constructing the PIA for all attributes by using the maximum operator. 

In the following, PIA is represented by the letter I and is defined as: 

 1 2, ,...., ,qI                (5) 

where max{ ( ' , ) : 1(1) },max{ ( ' , ) : 1(1) },min{ ( ' , ) : 1(1) },j ij i j ij i j ij i jV B i p V B i p V B i p           (6)
 

Phase -4: Compute the Accumulated Measure Value (AMV) 

Let SVPNHTSM for each of the alternatives be aggregated using the AMV. Here, ( )AMV iP V denotes 

AMV and  ( )AMV iP V is defined by 

 
1

( ) . ( , ), ,
q

AMF i j SVPNHTSM i j j

j

P V P V B


               (7) 

where    , ( , ), ( , ), ( , ), ( , ), ( , ) .            i j ij i j ij i j ij i j ij i j ij i jV B V B V B V B V B V B     

Phase -5: Analyze the alternatives and rank them  

Using a descending order of AMVs, the ranking order is determined. The highest value of AMV 

corresponds the best option. 
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Figure 1. Flowchart of the proposed MADM strategy 

5. MADM Strategy Implementation for Identifying the Most Serious Environmental Risk Factors 

During the COVID-19 Pandemic 

The whole human race is in danger of extinction in the present scenario of the COVID-19 pandemic. 

As more than 6,34,000 people have died till now because of the virus thus it is very much clear that 

the virus will have a great effect on our lifestyle as well as the biological condition of mother earth  

[5].All the technological and scientific developments are proved meaningless in front of the 

SARS-COV2. The virus has affected every country (i.e., 213) present on earth in a drastic manner. 

Most of the countries have taken massive screening measures and establishing public policies to 

fight the pandemic e.g., China has strictly taken the policy of self-quarantine, Britain has taken the 

method of herd immunity, India has taken the method of massive lockdown, etc. But still, the 

policies are not enough to meet the challenges presented by the virus. In the present scenario, the 

whole world is stuck in such a situation where economic and technical growth is too much affected. 

No doubt the virus has affected our environment in a very good manner as the CO2 and NO2 

emission has been drastically decreased due to the less usage of vehicles and as a result the 

temperature of earth has also decreased. Due to the halt of industries the air pollution as well as the 

noise pollution also came under control[5].  

But still, there are also some bad impacts of the virus are there on the environment especially on the 

soil, water, and air sectors. e.g., the number of medical wastes coming from the hospitals has 

increased by at least 5 times which is quite difficult to recycle. However, a crucial topic of concern 

remains to be the proper waste management & recycling as recycling is considered to be an 

Decision making problem: Goals 

Selection of parameters 

LEVEL I: Attributes 

LEVEL II: Alternatives 

Methodology of decision making 

Formulating the decision matrix 

Determining the attribute weights 

Evaluating PIA 

Fining the rank among all the options 

Ranking the alternatives 
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efficacious way to obviate pollution & minimize energy wastage, using natural resources 

sustainably. Considering the present situation USA have put a halt in some recycling centers for 

minimizing the risk of escalation of the corona virus there. 

Moreover, the production of organic and inorganic wastes effects the environment in a very wide 

manner e.g., deforestation, soil erosion, air as well as water pollution are frequently spotted. 

Additional to that due to the quarantine process the usage of inorganic plastic material has increased 

[40] . 

Thus, the major goal of the task is to determine the most important option that has the least impact 

on the environmental criteria using the MADM technique. The alternatives are wisely selected based 

on various disaster management department’s reports & are again established by the experts. So, 

generation of inorganic waste ( 1 ),organic waste ( 2 ) and medical waste   ( 3 ) are considered as 

attributes in the present study. Since all the attributes have impact on deforestation ( 1 ),water 

pollution ( 2 ), air pollution ( 3 ), and soil erosion ( 4 ), so in the present study these factors are 

considered as the feasible alternatives. The Figure 2 shows the decision hierarchy for the present 

problem.   

 

 

Figure 2. Hierarchical structure of the considered problem 

 

Prepare the decision matrix in Table-2 using data pertaining to all possibilities offered by the DM. 

The PIA (I) for the decision matrix in Table-3 can be calculated using equation (3). 

 

 

Table 2. Decision Matrix 

 

 
A 1  A 2  A 3  

1  
(.0.75, .0.5, .0.3, 0.2, 0.6) (0.9, 0.7, 0.3, 0.1, 0.4) (0.75, 0.54, 0.23, 0.4, 0.13) 

2  
(0.9, 0.8, 0.3, 0.2, 0.3) (0.9, 0.4, 0.45, 0.2, 0.3) (0.65, 0.45, 0.28, 0.3, 0.23) 

3  
(0.8, 0.7, 0.3, 0.3, 0.4) (0.8, 0.5, 0.3, 0.1, 0.2) (0.86, 0.54, 0.4, 0.23, 0.12) 

Most Negative Factor Selection 

Generation of Organic Waste 

 

Generation of Inorganic Waste Medical Waste 

Deforestation Soil Erosion 

n 

Air Pollution Water Pollution 
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4  
(0.8, 0.7, 0.5, 0.1, 0.2) (0.9, 0.6, 0.3, 0.1, 0.3) (0.76, 0.67, 0.34, 0.32, 0.5) 

 

Table 3. Positive Ideal Solution 

 

 
A 1  A 2  A 3  

I  (.0.9, .0.8, .0.3, .0.1, .0.2) (0.9, 0.7, 0.3, 0.1, 0.2) (0.86, 0.67, 0.23, 0.23, 0.12) 

 

Using equations (4) and (5), the weights of the attributes are determined as: 

1 0.335 , 2 0.341  , 3 0.323  .  

Using equation (2),  the SVPNHTSM of similarity between the PIS and the decision components 

belonging to the decision matrix  are obtained as:  

1 8( , 0.1) 4793SVPNHTSMP I , 2 6( , 0.1) 5665SVPNHTSMP I , 3 5( , 0.1) 2457SVPNHTSMP I
 

4 5( , 0.1) 3409SVPNHTSMP I .
 

SVPNWDSM ascends between the PIS and the decision elements from the DM in the following 

order: 

3 4 1 2( , ) ( , ) ( , ) ( , )  SVPNHTSM SVPNHTSM SVPNHTSM SVPNHTSMP I P I P I P I     

Water pollution is more impacted by COVID-19 under the SVPNS environment. Figure 3 illustrates 

numerical results with graphical representations. 

 

Impact on 
deforestation 

26%

Water pollution
28%

Air pollution 
22%

Soil erosion 
24%

Developed  MADM Strategy
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Figure 3. Result of MADM Strategy 

6. Comparative study 

Comparing the existing strategies with the proposed strategy (see Table 4), it can be seen that they  

obtain  water pollution as the best  alternative. Table-4 shows that the weighted values for all 

attributes are significantly closer to the two existing techniques. The weighted values of the  

similarity measures  in the proposed strategy are not closed like the existing strategies, which 

enables a better decision for considering attributes. Compared to MADM strategies, this form of 

weighting supports a better decision. An illustration of a comparative study is shown in Figure 4. 

 

Table 4-. Comparison among the existing strategies and the developed strategy 

Methods 
1  2  3  4  

Order of Preference 

MADM strategy based on 

cosine similarity measure [25] 

0.672339 0.67277 0.66963 0.670349 
3 4 1 2       

MADM strategy Weighted 

Dice SM  [39] 

0.206911 0.208836 0.208706 0.199668 
4 3 1 2       

Developed  MADM Strategy 0.147938 0.156656 0.124575 0.134095 
3 4 1 2       

 

Figure-4: Result of Comparative study 

7. Analyzing Sensitivity  

To validate the predictions, this step aims to confirm the significance of the alternative as estimated 

using the developed MADM strategy. A change in the secondary criteria’s magnitude can determine 

the sensitivity of the MADM strategy. Some vital alternatives remain unchanged. Therefore, if the 

rank changes, the strategy is understood to be under radar of sensitivity, and conversely. Hamby 

[17] proposed this type of sensitivity analysis and it is known as rank relative sensitivity analysis. 

In studies, estimation is done by sensitivity analysis where a numerical model is required to validate 

the estimated output. Table 5 denotes the output obtained by sensitivity analysis. As per the results 

0.672339

0.67277

0.66963

0.670349

0.206911

0.208836

0.208706

0.199668

0.147938

0.156656

0.124575

0.134095
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obtained, ‘water pollution’ is found to have a Swing^2 value of 30.80% whereas ‘deforestation’ was 

found to have a Swing^2 value of 27.20 %. Thus, the ‘water pollution’ is considered as the most 

sensitive parameter. The less sensitive parameter is obtained as ‘Soil erosion’ which has Swing^2 

value heaving 19.50 %. It suggests water pollution’s being the most sensitive factor which gets 

followed by the bad effect of the corona virus in accordance with the weights gained by 

SVPNHTSM. Figure 5 illustrates the result of the sensitivity analysis. 

Table 5- Result of sensitivity analysis 

 Corresponding Input 

Value 

Output Value  Percent 

Input 

Variable 

Low 

Output 

Base 

Case 

High 

Output 

Low Base High Swing Swing^2 

water 

pollution 

0 0.5 1 0.20303 0.281358 0.359686 0.156656 30.8% 

Deforestatio

n 

0 0.5 1 0.207663 0.281358 0.355053 0.14739 27.2% 

Air pollution 0 0.5 1 0.214310

5 

0.281358 0.348405

5 

0.134095 22.5% 

Soil erosion 0 0.5 1 0.219070

5 

0.281358 0.343645

5 

0.124575 19.5% 
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Figure-5: Result of sensitivity analysis 

8. Advantage and Disadvantage of the study 

Advantages: An MADM strategy based on SVPNHTSM has a four-time greater gradient of tanh 

than a sigmoid-based strategy. By using the tanh activation function, the gradient during training 

will be higher and the weights will be updated more frequently. Uncertainty has been 

comprehensively dealt with using SVPNSs as SVPNSs deal with degrees of contradiction, ignorance 

and unknown which are more realistic in decision making situation. 

Disadvantages: SVPNSs have more components than fuzzy sets and IFSs. Therefore, more times are  

required to solve the mathematical model involving SVPNSs. 

9. Conclusions 

This paper develops a new MADM strategy to determine the most significant risk factor in the 

environment. Based on the proposed strategy, we create a range of alternatives, and obtain ranking 

order.  The novel MADM method's findings are compared to those of other existing 

approaches. Under the SVPNS environment, it is evident that COVID-19 negatively impacts Water 

Pollution more than other alternatives. A major weakness of the study is that it doesn’t ensure that, 

as the number of parameters increase, the most significant parameters remain ranked in the same 

order. In this study, there is no scenario analysis, which is another drawback.  It is possible to 

extend the newly defined SVPNHTSM and SVPNWHTSM  operators to other uncertain 

environments to address uncertainties in decision-making. In addition to clay-brick selection [29], air 

surveillance, and multiple target tracking [13],watershed hydrological system [15], the approach 

suggested here could be used to address other MCDM problems as well. 
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Abstract: 

Structural optimization in construction has attracted significant attention to sustainable 

development. In reality, structural model is associated with different imprecise parameters. Several 

factors influence the uncertain framework for optimization structural models. To tackle such 

structural difficulties, an effective design and optimization configuration is required. In this 

proposed work, we have created a solution procedure to solve multi objective problems under 

neutrosophic-hesitant fuzzy (NHF) environment in context of structural design. The suggested 

procedure is based on the NHF decision-making set that assigns a set of potential values for each 

objective function’s membership, non-membership, and indeterminacy degrees in a NHF 

environment. The efficiency, applicability, and utility of the proposed technique are presented here 

by using a three-bar truss design model.  

Keywords- Multi objective structural problem; Hesitant fuzzy optimization; Neotrosophic-hesitant 

fuzzy optimization; Pareto optimal solution; Indeterminacy hesitant membership function 

1. Introduction 

When it comes to tackling optimization challenges, optimization techniques have a big impact 

in real life. When dealing with real-life situations with various problems, various sorts of 

mathematical models exist. As a result, the mathematical models are formed with single or multi 

objective function/functions along with a branch of constraints. In multi-objective optimization 

problem (MOOP), objective functions are conflicting in nature. The objective functions of this 

mathematical models are maximization type or minimization type or mixed type. In this type of 

problems, it is very difficult to identify the suitable feasible solutions. That is why, decision maker 

(DM) prefers a compromise programming (CP) approach that currently meets each goal function is 

available. As a result, the idea of CP approach has a significant impact on the global optimality 

criterion. A large amount of research has been presented in the past era on the topic of MOOP. In 

MOOP, the difficult task as a DM is to discover an appropriate compromised solution set from a set 

of possible Pareto-optimal solutions.  

Due to local and global optimal, multi-objective nonlinear programming problem (MONLPP) is 

a complex problem as compare to linear multi-objective programming problem. Professor Zadeh 

pioneered [2] the new idea of fuzzy set (FS) to address the uncertainty in 1965 and Professor 

Zimmermann [4] proposed a fuzzy programming technique (FPT) for several objective 

mathematical problem based on fuzzy set. The FPT was only concerned with the degree of 

mailto:samir.dey@jisuniversity.ac.in
mailto:samir.dey@jisuniversity.ac.in
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acceptance, but it may be required to address the function of rejection in order to obtain more 

practical outcomes.  

The FS (fuzzy set) theory was used in structural model as well. A new concept was 

implemented a sequence of optimal solution (OS) for structure with fuzzy constraints based on 

alpha-cut method by Wang et al. [3]. Rao [5] discussed a four–bar generating mechanism with a 

fuzzy goal function and fuzzy constraints. Yeh et al. [6] created structural optimization using 

imprecise parameters. Xu [7] solved a nonlinear structural model using fuzzy two-phase method. 

Shih et al. [8,9] suggested a novel approach to discover a unique solution using alpha-cut 

approaches of the 1 and 2 types to the structural model in fuzzy environment farther they had 

developed another alternative approach based on alpha-cut method to obtain the OS of a nonlinear 

structural problem. Dey et al. [10] addressed multi-objective structural design issues using 

generalized fuzzy programming. Also, a computational algorithm was developed by Dey et al. [11] 

for a structural model with three bar using basic triangular norm in fuzzy environment. The 

extension of ordinary fuzzy set (FS) or hesitant fuzzy set (HFS) was introduced by Torra et al. [12]. It 

provided an opportunity to allow more feasible values of an element to a set. The potential values of 

an element in HFS is a subinterval of [0,1]. Many research scholars have recently investigated HFSs 

and used them in different domains of research. In 2016, a computational programming technique 

based on HFS was developed by G.L. Xu, et al. [13] for hybrid MCGDM model. In the same domain 

another paper was published in 2017 by S.-P. Wan [14] based on hesitant fuzzy programming 

method. L. Dymova, [15] created a user-friendly computer application using a fuzzy MCDM 

technique. Farther, they [16] had applied this fuzzy MCDM technique in a rolled-steel heat treatment 

metallurgical plant in 2021. But in structural design optimization, hesitant fuzzy set is likewise not 

extensively utilized.   

In 1986 [17], intuitionistic fuzzy set (IFS) was developed by Prof. Atanassov. IFS is an advanced 

version of FS. In FS, the membership degree is only consideration whereas in IFS, both the level of 

membership and non-membership are considered with the condition that the sum both membership 

values is not greater than one. P. P. Angelov [18] used the optimization for the first time in a 

widespread intuitionist fuzzy environment in 1997. B. Singh et al. [19] proposed an intuitionistic 

fuzzy optimization technique based on structural model. M. Sarkar et al. [20] proposed a new 

computational algorithm based on triangular-norm and triangular-conorm in intuitionistic fuzzy 

environment to solve a welded beam design issue. Kabiraj et al. [21] gave the utility of fuzzy logic 

has been used in linear programming in 2019. In 2019, S.F.Zhang, et al. [22] proposed GRA based 

IFMCGDM method for personnel selection. Kizilaslan et al. [23] proposed intuitionistic fuzzy 

function approaches utilizing ordinary least square estimation rather than ridge regression in 2019. 

Ahmadini and Ahmad [24] proposed intuitionistic fuzzy goal programming with preference 

relations to address a multi-objective problem in 2021. A. Ebrahimnejad, [25] introduced a novel 

approach to solve data envelopment analysis (DEA) models characterized by intuitionistic fuzzy 

data. Recently, many researchers have worked with intuitionistic hesitant fuzzy (IHF) sets and 

implemented them to many domains. S.K Bharati [26] in 2018 introduced hesitant fuzzy algorithm to 

solve multi objective linear optimization problem (MOLOP).K.B. Shailendra, [27] introduced IHF 

algorithm for MOOP in 2021. But in structural design optimization, IHF set is likewise not 

extensively utilized.  The concept of neutrosophic theory was revealed to address the importance of 

indeterminacy in real life. In generalized FS and IFS were discussed about membership and 

non-membership function only but there is no information about the indeterminacy. New concept of 

neutrosophic theory was presented in front of researcher by Prof. Smarandache in 1995 [28], which is 

a dialectics extension. The neutrosophic set (NS) can manage both uncertain and partial information, 

whereas IFSs can only manage partial information. The word neutrosophic is derived from two 

words: neutron (neutral in French) and Sophia (skill or wisdom in Greek). The NS is described by 
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using three functions namely belonging (truth) function, belonging to a certain point 

(indeterminacy) function, and not belonging (falsity) function. The Neutrosophical Programming 

Approach (NPA), based on NS, was implemented, and is now widely utilized in real-world 

applications. M. Sarkar et al. [35] applied neutrosophic fuzzy numbers in the area of structural 

design and application. Abdel-Basset et al. [1] offered a new technique for solving a completely 

neutral linear programming problem (LPP) that applies to production planning. In 2018, Ye et al. 

[29] suggested an effective technique for addressing the issue of non-linear programming of the 

neutrosophic number in neutrosophic numerical environments. An approach for solving MONLPPs 

in IFS was introduced by Rani et al. [39]. The develop method has been was compared with other 

existing methods that are already includes. Zhou and Xu [30] developed a novel portfolio selection 

and investment technique at risk in a widespread and faltering environment. All the sets mentioned 

above have their limits with respect to the presence of each component in the set. A new 

optimization technique based on a single-valued neutrosophic hesitant fuzzy set (SVNHFS) was 

proposed by Ahmad et al. [31]. This set includes the concept of truth hesitancy degrees, falsity 

hesitant degrees as well as indeterminacy hesitant degrees for various objective functions. The 

neutrosophic set of indeterminacy concepts examines potential future lines of research in the field of 

real-life application. Many researchers have contributed to the field of neutrosophic optimization 

techniques and real-world applications, including [36, 38]. In 2020, F. Ahmad, et al. [37] were 

developed a computational approach based on modified neutrosophic fuzzy set (NFS) to optimize a 

supply chain decision making problem.  According to Giri et al. [40], TOPSIS for MADM has been 

extended through the use of single valued neutrosophic fuzzy sets (SVNFS). B. Tanuwijaya et al [41] 

developed fuzzy time series (FTS) model based on SVNFSs in 2020. In 2021, F. Ahmad [42] proposed 

interactive NPA based on Type-2 fuzzy in domain supplier selection problem. In order to tackle a PP 

issue, Khan et al. [43] studied the IVTN value and employed NS and IFS approach. S. Gupta et al [44] 

introduced Dash diet model and optimized the calorie consumption and minimized diet cost under 

neutrosophic goal programming (NGP). The multi objective NGP was used to solve the diet model, 

satisfy daily nutrient needs, and compared various approaches.   

A wide range of methods have been used in the literature in order to solve the uncertainty in 

structural design problems, such as fuzzy, intuitionistic fuzzy and neutrosophic fuzzy 

optimization. But combination with HFS and NFS is very rare in literature survey in context of 

structural design. 

This research is prompted by NHF emerging as a novel field of study with the capacity to attract the 

individuals responsible for making decisions. The subsequent are the impacts of the study: 

 It serves as a supplementary addition to the existing literature on MOSOP. 

 A case study is presented in which solution processes for MOSOP methodologies are 

documented. 

 In this work, a novel technique based on NHF under various membership functions has 

been used. 

 The method is contrasted with HFS and IHFS, and the findings indicate that the proposed study 

is effective.  

 The proposed neutrosophic hesitant fuzzy programming approaches (NHFPAs) utilizing 

the neutrosophic fuzzy decision set is quite simple and easy. 

 

 The synopsis of rest of the manuscript is highlighted below: Section 2: we have highlighted the 

multi-objective structural optimization model (MOSOM). In section 3, we give some basic concepts 

about FS, IFS, SVNS, HFS, and SVNHFS. Section 4 proposes a computational algorithm to solve a 
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MOOP using neutrosophic hesitant fuzzy optimization technique (NHFOT). Section 5 outlines the 

approach for resolving the multi-objective structural model using NHFOT. An illustrative example 

is studies in section 6 which reflects the applicability and validity of the proposed method 

effectively. Finally, section 7 highlights the concluding remarks and finding based on the present 

work.  

2. Mathematical Form of Multi-Objective Structural Optimization Problem (MOSOP) 

In structural model, the basic parameters of a bar truss structure system (such as Young's 

modulus, material density, maximum permissible stress, and so on) are established, and the 

objective is to find the cross section area of the bar truss so that we can find the lightest weight of the 

structure and smallest node displacement under loading condition. 

The MOSOP is formulated as follows:  

                                      

 

 

 

 min max

s.t [ ]

,

Minimize W A

Minimize A

A

A A A



 



           (1) 

where n number design variables  1 2, ,.....,
T

nA A A A are considered. The design parameters are the 

cross-sectional area of the truss bar, the total structural weight is  
1

n

i i ii
W A A L


 , the deflection of 

loaded joint is  A , length of bar=
iL , cross section area=

iA , and the thi  group bars density=
i , 

respectively. Under different conditions, the stress constraint=  A and maximum allowable stress 

of the group bars=   , cross section area (minimum)=
minA  and cross section area (maximum) 

=
maxA respectively. 

3. Preliminaries 

Definition 1. [32] (Neutrosophic Set (NS)) Assume, U  be the universe discourse such that x U . A  

NS A  in U is characterized by the membership functions as, truth   
A

Tf x  , indeterminacy 

 
A

If x and a falsity  
A

Ff x and is denoted by the following form: 

                      A A A
{ , , , : }A x Tf x If x Ff x x U    

Where the subsets   
A

Tf x ,  
A

If x and  
A

Ff x are truth, indeterminacy and falsity membership 

function lies in ]0 ,1 [   ,also given as,      
A A A

: , : ,  :Tf x U If x U and Ff x U    .There is 

no restriction on the sum of  
A

Tf x ,  
A

If x and  
A

Ff x ,so we have, 

                           -

A A A
0 sup sup 3Tf x If x Ff x        

Definition 2. [32] Let U  be a universe set. A single valued neutrosophic set (SVNS) A  over U is 

given by       A A A
{ , , , : }A x Tf x If x Ff x x U     

Where  
A

Tf x ,  
A

If x  and  
A

Ff x  lies in [0,1] and      
A A A

0  3Tf x If x Ff x     for every x U . 
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Definition 3. [33] (Hesitant Fuzzy Set (HFS) Torra et al. [12], created a new tool called HFSs and 

which allow the acceptance degree to the set of various possible values. The HFS is as follows: 

Let U  be a universe set, then a HFS on U  is expressed as  { , | }j j jY
Y x h x x U    , where 

 jY
h x is set of possible degree of acceptance of the element jx U  in [0,1] .Also, we call  Y jh x , a 

hesitant fuzzy element. 

Definition 4. [34] (SVNHFS) Let's say there's a fixed set U ; an SVNHFS on U is represented 

as:       { , , , : }
Y Y Y Y

S x Tf x If x Ff x x U   where set of possible values of  
Y

Tf x ,  
Y

If x and 

 
Y

Ff x are lies in [0,1] ,indicating the possible truth, indeterminacy hesitant degree of acceptance 

and the falsehood hesitant degree of rejection of the element x U  to the set Y
S  accordingly with 

the conditions 0 , , 1     and 0 , , 3      , where  
Y

Tf x  ,  
Y

If x  ,  
Y

Ff x   

with    
max{ }

Y
C Tf x

Tf x U


  


  ,     max{ }

Y
If xY

If x U


  


  ,     max{ }

Y
Ff xY

Ff x U


  


   for all 

x U . 

For ease, the three-tuple      { , , }
Y Y Y Y

S Tf x If x Ff x  is known as a single-valued neutrosophic 

hesitant fuzzy element (SVNHFE) or triple hesitant fuzzy element. 

According to Definition 6, the SVNHFS has three types of membership functions: truth   
A

Tf x  , 

indeterminacy  
A

If x and a falsity  
A

Ff x membership function, resulting in a more dependable 

structure and providing flexible options to allocate values for every element in the field, and may 

handle three types of uncertainty at the same time. As a result, FSs, IFSs, SVNFSs, and HFSs can be 

considered as specific instances of SVNHFSs.([33] 

 

Figure 1: Dialogistic coverage of classical set to SVNHFS. 

Definition 5. [34] Let there be two SVNHFSs, 
1Y

S  and 
2Y

S in a universal setU . Then the union of 

1Y
S  and 

2Y
S is described as: 
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Definition 6. [34] Let there be two SVNHFSs, 
1Y

S  and 
2Y

S in a universal set U . Then the 

intersection of 
1Y

S  and 
2Y

S is described as: 
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1 2 1 2

: min max ,

: max min ,

: max min

Y Y Y Y Y Y

Y Y Y Y Y Y Y Y

Y Y Y Y Y Y

Tf Tf Tf Tf Tf Tf

S S If If If If If If

Ff Ff Ff Ff Ff Ff

    
 
 

      
 
    
 

         (3) 

Definition 7. Assume that there is a set of feasible solution   of MOSOP (1). Then a point *x  

taken into consideration to be a Pareto optimal solution of (1) iff there is no such point x such 

that 
*( ) ( )k kO x O x k  as well as 

*( ) ( )k kO x O x for as a minimum k . 

Definition 8. A point *x   is called a weak Pareto OS of (1) iff there is not a point x such 

that  
*( ) ( )k kO x O x  k . 

4. Proposed Algorithm 

4.1 To Solve MONLPPs using NHFPA 

One may take a MONLPP with k  objectives.  

             1 2. , ,.........
T

kMin O x O x O x O x                  (4)  

Subject to  

  | , 1n
ij jx U x g x or or b j to m N        and

i i iL x U   1 , l .i to n N natura no   

Zimmermann [4] demonstrated that the MOOP can be resolved using fuzzy programming techniques.  

The MONLPP is solved using the procedures listed below. 

Step 1: The MONLPP (4) may be solved as a single objective nonlinear programming problem 

(SONLPP) by focusing on one objective at a time and overlooking the other objective goals which are 

called ideal solutions. 

Step 2: The result achieved in step 1, the pay-off matrix may be created by identifying the 

corresponding listed values for every goal in the following manner: 

 



Neutrosophic Sets and Systems, Vol. 57, 2023 82  

 

 

Sanjoy Biswas, Samir Dey; ; Neutrosophic Hesitant Fuzzy Technique and Its Application Structural Design 

 

 

 

 

 

In this case, the ideal solutions are 1 2,, ..........., kx x x of the objective functions  1O x ,  2O x ,…..,  kO x  

accordingly.  

Step-3: In each column the highest possible value 
kU  denotes upper tolerance, or upper bound, for 

the thk  objective function  kO x , where       1 2max , ,......, kk k k kU O x O x O x    and the 

minimum value of each column 
kL  gives lower tolerance or lower limit for the thk  goal 

function  kO x , where       1 2min , ,......, Kk k k kL O x O x O x  for 1,2,....,k K . 

                                    ,T T

k k k kU U L L    for truth membership   

                    ,I T I T

k k k k kL U s U U    for indeterminacy membership  

                         ,F T F T

k k k k kU U L L t    for falsity membership  

Where  0 k k ks U L    and  0 k k kt U L    are specific real numbers in  0,1 . 

Step-4: Under a NHF environment, we can now define the various hesitant membership functions as 

linear, exponential, and hyperbolic. Each of them is specified for the membership functions truth, 

uncertainty, and falsehood, which appears to be more accurate. 

4.1.1. Linear-type hesitant membership functions approach (LTHMFA) 

 The linear type truth membership ( ( ))iL

k kTf O x , indeterminacy membership ( ( ))iL

k kIf O x  and a 

falsehood membership ( ( ))iL

k kFf O x  functions under NHF context can be described as below 

For truth hesitant fuzzy membership functions: 

  

 

   

   
 

 

1

k

1

k

1                                      if 

( )
    if 

0                                      if  

L

T

k

t tT

k k T T

k k k k kt t
T T

k k

T

k

O x L

U O x
Tf O x L O x U

U L

O x U



 


      
   




 

     

     

     

     

1 1 1
1

2 2 2 2

1 2

* * *

1 2

* * *

1 2

* * *

1 2

                     ...      

...

...
      

... ... ... ... ...

...k

k k k

k

k

k

k

O x O x O x

O x O x O xx

x O x O x O x

x
O x O x O x
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t tT

k k T T

k k k k kt t
T T
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k

O x L

U O x
Tf O x L O x U
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……… 

  

 

   

   
 

 

k
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1                                      if 

( )
    if 

0                                      if  

Ln

T

k

t tT

k k T T

k k n k k kt t
T T

k k

T

k

O x L

U O x
Tf O x L O x U

U L

O x U



 


      
   




 

For indeterminacy hesitant fuzzy membership functions: 

  

 

   

   
 

 

1

k

1

k

1                                      if 

( )
    if 

0                                      if  

L

I

k

t tI

k k I I

k k k k kt t
I I

k k
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k

O x L

U O x
If O x L O x U

U L

O x U



 


      
   




 

  

 

   

   
 

 

2

k
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k

1                                      if 

( )
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0                                      if  

L
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k

t tI

k k I I

k k k k kt t
I I

k k

I

k

O x L

U O x
If O x L O x U

U L

O x U



 


      
   




 

… 

  

 

   

   
 

 

k

k

1                                      if 

( )
    if 

0                                      if  

Ln

I

k

t tI

k k I I

k k n k k kt t
I I

k k

I

k

O x L

U O x
If O x L O x U

U L

O x U



 


      
   




 

For Falsehood hesitant fuzzy membership functions 

 
   

   
1

1

0                                    if ( )

( )
( )     if ( )

1                                    if  ( )

L

F

k k

t tF

k k F F

k k k k kt t
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2

2

0                                    if ( )

( )
( )     if ( )

1                                    if  ( )

L

F

k k

t tF

k k F F

k k k k kt t
F F

k k

F

k k

O x L

U O x
Ff O x L O x U

U L

O x U



 


      
   




 

…. 

 
   

   

0                                    if ( )

( )
( )     if ( )

1                                    if  ( )

Ln

F

k k

t tF

k k F F

k k n k k kt t
F F

k k

F

k k

O x L

U O x
Ff O x L O x U

U L

O x U



 


      
   




 

The following is a mathematical explanation of objective functions. 

                                

k=1,2,..,K

k=1,2,..,K

k=1,2,..,K

Max  min ( ( ))

Max  min ( ( ))

Min  max ( ( ))

i

i

i

L

k k

L

k k

L

k k

Tf O x

If O x

Ff O x

            (5) 

( 1, 2,....., )i n , subject to all constraints of (4).   

Assume that      ,L Li i

k k i k k iTf O x If O x    and    ( 1,2,....., )Li

k k iFf O x i n  , for all k  

Where the parameter 0t  . Utilizing additional variables ,i i   and
i , the following problem (5) 

can be transformed to the problem (6)  

LTNHMFA   axM  i i i

i i i

  
 

  
 
    

Subject to   

  
   

   

   

   

   

   
1 1 2 2

( ) ( ) ( )
 ;  ,..,  

t t tt t tT T T

k k k k k k

n nt t t t t t
T T T T T T

k k k k k k

U O x U O x U O x

U L U L U L
     
       
       
       
     

, 

   

   

   

   

   

   
1 1 2 2

( ) ( ) ( )
, ,...,

t t tt t tI I I

k k k k k k

n nt t t t t t
I I I I I I

k k k k k k

U O x U O x U O x

U L U L U L
     
       
       
       
     

, 

   

   

   

   

   

   
1 1 2 2

( ) ( ) ( )
, ,...,

t t tt t tF F F

k k k k k k

n nt t t t t t
F F F F F F

k k k k k k

U O x U O x U O x

U L U L U L
     
       
       
       
     

    …(6) 
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, ,0 3i i i i i i i            ,  , , 0,1i i i     and  , , 0,1i i i    , for all  1i to n N   

 All the constraints of (4). 

Theorem 1:  There is only one OS  * * * *, , ,x     of problem (6) (LTNHMFA) which is likewise an 

efficient solution of (4) where  * * * *

1 2, ,......., n    ,  * * * *

1 2, ,......., n    and  * * * *

1 2, ,......., n    . 

Proof: Suppose that  * * * *, , ,x     be the only OS of problem (6) which is an inefficient to solving 

the problem (4). Then there exist different feasible alternative  *x x x    of the problem (4), so 

that    *

k kO x O x k ,    *

k kO x O x  for at least onek . 

We have 
   

   

   

   

*( ) ( )
t t t tT T

k k k k

t t t t
T T T T

k k k k

U O x U O x

U L U L

 


 
 k and 

   

   

   

   

*( ) ( )
t t t tT T

k k k k

t t t t
T T T T

k k k k

U O x U O x

U L U L

 


 
 for at 

least one k . 

Hence,
   

   

   

   

*( ) ( )
t t t tT T

k k k k

t t t tk kT T T T

k k k k

U O x U O x
Max Max

U L U L

    
   
    
   

,

   

   

   

   

*( ) ( )
t t t tT T

k k k k

t t t tk kT T T T

k k k k

U O x U O x
Max Max

U L U L

    
   
    
   

 for at least one k  

Similarly, 
   

   

   

   

*( ) ( )
t t t tI I

k k k k

t t t tk kI I I I

k k k k

U O x U O x
Max Max

U L U L

    
   
    
   

 and 

   

   

   

   

*( ) ( )
t t t tI I

k k k k

t t t tk kI I I I

k k k k

U O x U O x
Max Max

U L U L

    
   
    
   

 

Again, 

   

   

   

   

*( ) ( )
t t t tF F

k k k k

t t t tk kF F F F

k k k k

U O x U O x
Min Min

U L U L

    
   
    
   

,
   

   

   

   

*( ) ( )
t t t tF F

k k k k

t t t tk kF F F F

k k k k

U O x U O x
Min Min

U L U L

    
   
    
   

 

for at least one k  

Now, assume that 
   

   

*

*
( )

t t
T

k k

t tk T T

k k

U O x
Max

U L


 
 
 
 

and
   

   

( )
t tT

k k

t tk T T

k k

U O x
Max

U L
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*

*
( )

t t
I

k k

t tk I I

k k

U O x
Max

U L


 
 
 
 

, 
   

   

( )
t tI

k k

t tk I I

k k

U O x
Max

U L


 
  
 
 

, 
   

   

*

*
( )

t t
F

k k

t tk F F

k k

U O x
Min

U L


 
 
 
 

and 



Neutrosophic Sets and Systems, Vol. 57, 2023 86  

 

 

Sanjoy Biswas, Samir Dey; ; Neutrosophic Hesitant Fuzzy Technique and Its Application Structural Design 

 

   

   

( )
t tF

k k

t tk F F

k k

U O x
Min

U L


 
  
 
 

. Then * ( )   , * ( )    and * ( )     which gives 

   * * *            that implies the solution is not optimal which contradicts that 

 * * * *, , ,x    is a unique OS of (6). As a result, it is a successful problem-solving strategy (6). Thus, 

the proof is finished. 

4.1.2. Exponential-type hesitant membership functions approach (ETHMFA) 

The truth membership function of exponential type ( ( ))iE

k kT O x , indeterminacy membership of 

exponential type ( ( ))iE

k kI O x  and a falsehood membership of exponential type ( ( ))iE

k kF O x  functions 

under NHF context can be can be described as follows 

For truth hesitant fuzzy membership functions: 
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t tT

k k T T

k k k k kt t
T T

k k

O x L

U O x
Tf O x L O x U

U L
 



                  

 k                    if  T

kO x U
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 k                    if  T
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… 
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k k T T

k k n k k kt t
T T

k k

O x L

U O x
Tf O x L O x U

U L
 



                  

 k                    if  T

kO x U








 

 

For indeterminacy hesitant fuzzy membership functions: 
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For Falsity hesitant fuzzy membership functions 
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Where   is the measure of ambiguity degree or shape parameter which designated by the DM. 

Assume that      ,E Ei i

k k i k k iT O x I O x    and     ( 1 )Ei

k k iF O x i to n N   , for all k  

Where the parameter 0t  . Utilizing additional variables ,i i   and
i , the given problem (5) can 

be converted to (7). 
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ETNHMFA   Max  i i i

i i i
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     (7) 

, ,0 3i i i i i i i            ,  , , 0,1i i i     and  , , 0,1i i i    , for all  1i to n N   

 All the constraints of (4). 

Theorem 2:  There is only one OS  * * * *, , ,x     of problem (7) (ETNHMFA) which is likewise an 

efficient solution for (4) where  * * * *

1 2, ,......., n    ,  * * * *

1 2, ,......., n    and  * * * *

1 2, ,......., n    . 

Proof: Suppose that  * * * *, , ,x     be the only OS of (7) which is an inefficient to solving the 

problem (4). Then there exist different feasible alternative  *x x x    of the problem (4), so that 

   *

k kO x O x   k  and    *

k kO x O x  for at least onek . 

Therefore, 
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 for at least onek . 
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Hence,
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Similarly, 
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. 

Then * ( )   , * ( )    and * ( )     which gives    * * *            that implies 

the solution is not optimal which contradicts that  * * * *, , ,x    is a unique OS of (7). As a result, it is 

a successful problem-solving strategy (7). Thus, the proof is finished. 

4.1.3. Hyperbolic-type hesitant membership functions approach (HTHMFA) 

The truth membership function of hyperbolic type ( ( ))iH

k kT O x , indeterminacy membership of 

hyperbolic ( ( ))iH

k kI O x  and a falsity membership of hyperbolic ( ( ))iH

k kF O x  functions under NHF 

context can be can be described as follows 

For truth hesitant fuzzy membership functions: 
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For indeterminacy hesitant fuzzy membership functions: 
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k k k k k k k

O x L

U L
If O x O x L O x U 



             
     

 k                                              if  I

kO x U








 

 

.... 

  

 

   
   

k1                                                                          if 

1 1
tanh ( )     if 

2 2 2

0                             

Hn

I

k

t t
I I

k k t I I

k k n k k k k k

O x L

U L
If O x O x L O x U 



             
     

 k                                              if  I

kO x U








 

 

For Falsity hesitant fuzzy membership functions 
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1

1

0                                                                           if ( )

1 1
( ) tanh ( )     if ( )

2 2 2

1                      

H

F

k k

t t
F F

k kt F F

k k k k k k k

O x L

U L
Ff O x O x L O x U 



             
     

                                                      if  ( ) F

k kO x U








 

 

   
   

2

2

0                                                                           if ( )

1 1
( ) tanh ( )     if ( )

2 2 2

1                      

H

F

k k

t t
F F

k kt F F

k k k k k k k

O x L

U L
Ff O x O x L O x U 



             
     

                                                      if  ( ) F

k kO x U








 

 

…. 

   
   

0                                                                           if ( )

1 1
( ) tanh ( )     if ( )

2 2 2

1                      

Hn

F

k k

t t
F F

k kt F F

k k n k k k k k

O x L

U L
Ff O x O x L O x U 



             
     

                                                      if  ( ) F

k kO x U








 

 

where 
6

k

k kU L
 


 is the measure of ambiguity degree or shape parameter which designated by 

the DM. Assume that      ,H Hi i

k k i k k iT O x I O x    and     ( 1 )Hi

k k iF O x i to n N   , for all k  

Where the parameter 0t  . Utilizing additional variables ,i i   and
i , the given problem (5) can 

be converted to the problem (8) 

HTNHMFA   Max  i i i

i i i

  
 

  
 
    

Subject to  

   
 

   
 

   
 

1 1 2 2

1

1 1 1 1
tanh ( )  ; tanh ( )  

2 2 2 2 2 2

1 1 1 1
,.., tanh ( )  , t

2 2 2 2 2

t t t t
T T T T

k k k kt t

k k k k

t t
T T

k k t

n k k n

U L U L
O x O x

U L
O x

     

   

                                                

                 

   
  1anh ( ) ,

2

t t
I I

k k t

k k

U L
O x  

               

   
 

   
 2 2

1 1 1 1
tanh ( ) ,..., tanh ( )

2 2 2 2 2 2

t t t t
I I I I

k k k kt t

k k n k k n

U L U L
O x O x     
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1 1 2 2

1 1 1 1
tanh ( ) , tanh ( ) ,

2 2 2 2 2 2

t t t t
F F F F

k k k kt t

k k k k

U L U L
O x O x     

                                                

 

 
   1 1

..., tanh ( )
2 2 2

t t
F F

k kt

n k k n

U L
O x  

                

, ,0 3i i i i i i i            ,

 , , 0,1i i i     and   , , 0,1i i i    , for all  1i to n N             (8) 

6
k

k kU L
 


 . All the constraints of (4). 

Theorem 3:  There is only one OS  * * * *, , ,x     of problem (8) (HTNHMFA) which is likewise an 

efficient solution for the issue (4) where  * * * *

1 2, ,......., n    ,  * * * *

1 2, ,......., n    and 

 * * * *

1 2, ,......., n    . 

Proof: Suppose that  * * * *, , ,x     be the only OS of (8) which is an inefficient to solving the 

problem (4). Then there exist different feasible alternative  *x x x    of (4), so that 

   *

k kO x O x    k  and    *

k kO x O x  for at least onek . 

Therefore, 
   

 
   

 *1 1 1 1
tanh ( ) tanh ( )

2 2 2 2 2 2

t t t t
T T T T

tk k k k t

k k k k

U L U L
O x O x 

                    
   
         

   

k and 
   

 
   

 *1 1 1 1
tanh ( ) tanh ( )

2 2 2 2 2 2

t t t t
T T T T

tk k k k t

k k k k

U L U L
O x O x 

                    
   
         

 for at 

least one k . 

Hence,

   
 

   
 *1 1 1 1

tanh ( ) tanh ( )
2 2 2 2 2 2

t t t t
T T T T

tk k k k t

k k k k
k k

U L U L
Max O x Max O x 

                                               

, 

   
 

   
 *1 1 1 1

tanh ( ) tanh ( )
2 2 2 2 2 2

t t t t
T T T T

tk k k k t

k k k k
k k

U L U L
Max O x Max O x 

                                               

 for 

at least one k  

Similarly, 

   
 

   
 *1 1 1 1

tanh ( ) tanh ( )
2 2 2 2 2 2

t t t t
I I I I

tk k k k t

k k k k
k k

U L U L
Max O x Max O x 

                                               

 and 
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 *1 1 1 1

tanh ( ) tanh ( )
2 2 2 2 2 2

t t t t
I I I I

tk k k k t

k k k k
k k

U L U L
Max O x Max O x 

                                               

 for 

at least one k .  

Again

 
   

 
   

*1 1 1 1
tanh ( ) tanh ( )

2 2 2 2 2 2

t t t t
F F F F

t k k k kt

k k k k
k k

U L U L
Min O x Min O x 

                                               

, 

 
   

 
   

*1 1 1 1
tanh ( ) tanh ( )

2 2 2 2 2 2

t t t t
F F F F

t k k k kt

k k k k
k k

U L U L
Min O x Min O x 

                                               

 for 

at least one k  

Now, assume that  

   
 * *1 1

tanh ( )
2 2 2

t t
T T

tk k

k k

U L
O x 

                

and

   
 

1 1
tanh ( )

2 2 2

t t
T T

k k t

k k
k

U L
Max O x 

                 

, 

   
 * *1 1

tanh ( )
2 2 2

t t
I I

tk k

k k
k

U L
Max O x 

                

, 

   
 

1 1
tanh ( )

2 2 2

t t
I I

k k t

k k
k

U L
Max O x 

                 

, 

   
 * 1 1

tanh ( )
2 2 2

t t
I I

k k t

k k
k

U L
Max O x 

                

and 

 
   1 1

tanh ( )
2 2 2

t t
F F

k kt

k k
k

U L
Min O x 

                 

. 

Then * ( )   , * ( )    and * ( )     which gives    * * *            that implies 

the solution is not optimal which contradicts that  * * * *, , ,x    is a unique OS of (8). As a result, it is 

a successful problem-solving strategy (8). Thus, the proof is finished. 

A numerical example is given in Appendix A.  

5.1. Solution procedure for MOSOP using NHFPA. 

Step 1. The MOSOP (1) may be solved as a single objective by focusing on one objective at a time 

subject to the constraints given. Determine the values of the decision variables (DVs) and goal 

functions. 
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Step 2. Calculate the values of the remaining objectives based on the values of these DVs. 

Step 3. For the remaining objective functions, repeat Steps 1 and 2. 

Step 4: Then, according to step 3, the pay-off matrix may be shown as follows: 

   

   

   

1 1
1

2 2 2

W A A

W A AA

A W A A







 
 
 
 

 

Step 5: The upper and lower bounds are      1 2

1 max ,U W A W A  ,     1 2

1 min ,L W A W A  for 

weight function  W A ,where    1 1,W A L U  and the upper and lower limits of objective are 

    1 2

2 max ,U A A   ,     1 2

2 min ,L A A  for deflection function  A ,where    2 2,A L U   

are identified. 

Step 6: Now the NHFPA for MOSOP with linear (or exponential or hyperbolic) accuracy, 

uncertainty, and falsehood neutrosophic membership functions yield equivalent MONLPP as. 

               

     

     

     

 min ;  min ;

 min ,  min ;

 max ;  max 

i i

k k

i i

k k

i i

k k

Max T W A Max T A

Max I W A Max I A

Min F W A Min F A







 

 

 

               (9) 

    0Subject to [ ]A    min max, , , , ; 1,2,...,i i i iA A A L H E i n     and ,i i ix L U    1i to n N  . 

Now, by utilizing the arithmetic aggregation operator, the equation (9) can be expressed in the 

subsequent manner: 

1 2 1 2 1 2..... ..... .....n n nMax
n n n

        


        
    

Subject to  

                          

        

        

        

        

        

     

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

, ,.....,

, ,.....,

, ,.....,

, ,.....,

, ,.....,

, ,.....

n

k k k

n

k k

n

k k k

n

k k k

n

k k

k k

n

k n

n

n

k n

T W A T W A T W A

I W A I W A I W A

F W A F W A F W A

T A T A T A

I A I A I A

F A F A

  

  

  

     

     

   

 

 

 

 

 

 

  

  

  

  

  

    , n

k nF A 


      (10) 

  0Subject to [ ]A    min max, , , , ; 1,2,...,i i i iA A A L H E i n     and ,i i ix L U    1i to n N  . 

 0,  , , 0,1 ; 3, , , .n n n n n n n n n nA n                   
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Step 8: An appropriate mathematical programming algorithm can easily solve the above non-linear 

programming problem (10). 

5.2. Numerical solution of a three-bar truss MOSOP  

A well-known planar truss framework of three bars is depicted in Figure 2 in order to decrease 

the mass of the structure  1 2,W A A  and decrease the vertical bending at loading point  1 2,A A  

of a statically loaded three-bar planar truss under stress  1 2,i A A  limitations on each of the truss 

elements 1,2,3i  . 

 

Figure 2.  Design of the three-bar planar truss 

In the following way, the MOSOP may be expressed: 

                       

   

 
 

 
 

 

 

1 2 1 2

1 2

1 2

1 2

1 1 2 12
1 2 1

2 1 2 2

1 2

2
3 1 2 32

1 2 1

min max

, 2 2 ,

,
2

2
, ,

2 2

, ,
2

, ,
2 2

, , 1,2.

T

T

C

i i i

Minimize W A A L A A

PL
Minimize A A

Y A A

P A A
subject to A A

A A A

P
A A

A A

PA
A A

A A A

A A A i





 

 

 

 





  
 

  
 

  
 

  
 

       ..(11) 

where, applied load= P ; material density=  , L   Length of each bar, T
i 

 
=maximum tensile 

stress limit for 1, 2i  . 3
C 

 
=maximum compressive stress limit, Y = Young’s modulus, 1A = 

cross sections of bar 1 and bar 3 and 2A = cross section of bar 2. 

The input information for MOSOP (11) are as follows: 
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P (applied force) = 20 KN,  ( material density )= 100 3/KN m , L  (bar length) = 1 m ,  T ( 

maximum tensile stress limit for bars 1 and 3 )= 20 2/KN m ,  C (maximum limit of compressive 

stress for bar 2)= 15 2/KN m , Y (Young’s modulus)= 82 10 2/KN m , range of bar cross section 
4 2 4 2

1 20.1 10 , 5 10m A A m     . 

Solution: The tabulated values obtained in payoff matrix according to step 2 is as follows: 

   1 2 1 2

1

2

, ,

2.638958 14.64102

19.14214 1.656854

W A A A A

A

A



 
 
 

 

Here,  19.12412T
U UW W  , 2.638958T

L LW W  , 14.64102T
U U   , 1.656854T

L L   , 

119.12412I
LW s  , 19.12412I T

U UW W  , 214.64102 , 14.64102I I T
L U Us      ,

119.12412, 2.638958F T F
U U LW W W t    , 214.64102, 1.656854U LU t         

where,  1 1, 19.12412 2.638958s t   and  2 2, 14.64102 1.656854s t   . 

Using the Linear type hesitant membership functions approach (LTHMFA) (6) the problem (11) 

equivalent to the following (12) 

                           
3 3 3

1 1 1

1

3
i i i

i i i

Maximize    
  

 
   

 
            (12) 

Subject to   

        

        

        

t

1 2 1

t

1 2 2

t

1 2 3

2 2 19.14214 2.63896 / 0.98 19.14214

2 2 19.14214 2.63896 / 0.99 19.14214

2 2 19.14214 2.63896 19.14214

t t t

t t t

t t t

A A

A A

A A







   

   

   

 

     

     

     

t

1 2 1 1

t

1 2 1 2

t

1 2 1 3

2 2 / 0.98 19.14214

2 2 / 0.99 19.14214

2 2 19.14214

t t

t t

t t

A A s

A A s

A A s







  

  

  

 

            

            

            

t

1 2 1 1 1

t

1 2 1 1 2

t

1 2 1 1 3

2 2 2.63896 19.14214 2.63896 / 0.98

2 2 2.63896 19.14214 2.63896 / 0.99

2 2 2.63896 19.14214 2.63896

t t t t t

t t t t t

t t t t t

A A t t

A A t t

A A t t
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t

1 2 1

t

1 2 2

t

1 2 3

20 / 2 14.64102 1.65685 / 0.98 14.64102

20 / 2 14.64102 1.65685 / 0.99 14.64102

20 / 2 14.64102 1.65685 14.64102

t
t t

t
t t

t
t t

A A

A A

A A







   

   

   

 

      

      

      

t

1 2 2 1

t

1 2 2 2

t

1 2 2 3

20 / 2 / 0.98 14.64102

20 / 2 / 0.99 14.64102

20 / 2 14.64102

t
t

t
t

t
t

A A s

A A s

A A s







  

  

  

 

             

             

             

t t

1 2 2 2 1

t t

1 2 2 2 2

t t

1 2 2 2 3

20 / 2 1.65685 - 14.64102 1.65685 - / 0.98

20 / 2 1.65685 - 14.64102 1.65685 - / 0.99

20 / 2 1.65685 - 14.64102 1.65685 -

t
t t t

t
t t t

t
t t t

A A t t

A A t t

A A t t







   

   

   

 

    , , 3i i i i i i i           ,  , , 0,1i i i     for 1,2,3i  and all the constraints of (11). 

Using the Exponential type hesitant membership functions approach (ETHMFA) (7) the problem 

(11) equivalent to the following (13) 

                           
3 3 3

1 1 1

1

3
i i i

i i i

Maximize    
  

 
   

 
            (13)  

                    Subject to   

        

        

          

t1

1 2

t2
1 2

t

1 2 3

2 2 19.14214 2.63896 ln 1 / 19.14214
0.98

2 2 19.14214 2.63896 ln 1 / 19.14214
0.99

2 2 19.14214 2.63896 ln 1 / 19.14214

t t t

t t t

t t t

A A

A A

A A







 

 
     

 

 
     

 

    

 

     

     

       

t1

1 2 1

t2
1 2 1

t

1 2 1 3

2 2 ln 1 / 19.14214
0.98

2 2 ln 1 / 19.14214
0.99

2 2 ln 1 / 19.14214

t t

t t

t t

A A s

A A s

A A s
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t 1

1 2 1 1

t 2

1 2 1 1

t

1 2 1 1 3

2 2 2.63896 19.14214 2.63896 ln 1 /
0.98

2 2 2.63896 19.14214 2.63896 ln 1 /
0.99

2 2 2.63896 19.14214 2.63896 ln 1 /

t t t t t

t t t t t

t t t t t

A A t t

A A t t

A A t t







 

  
         

  

  
         

  

       

 

         

         

           

t1

1 2

t2

1 2

t

1 2 3

20 / 2 14.64102 1.65685 ln 1 / 14.64102
0.98

20 / 2 14.64102 1.65685 ln 1 / 14.64102
0.99

20 / 2 14.64102 1.65685 ln 1 / 14.64102

t
t t

t
t t

t
t t

A A

A A

A A







 

 
     

 

 
     

 

    

 

      

      

        

t1

1 2 1

t2

1 2 1

t

1 2 1 3

20 / 2 ln 1 / 14.64102
0.98

20 / 2 ln 1 / 14.64102
0.99

20 / 2 ln 1 / 14.64102

t
t

t
t

t
t

A A s

A A s

A A s







 

 
    

 

 
    

 

   

 

             

             

                

t t 1

1 2 2 2

t t 2

1 2 2 2

t t

1 2 2 2 3

20 / 2 1.65685 - 14.64102 1.65685 - ln 1 /
0.98

20 / 2 1.65685 - 14.64102 1.65685 - ln 1 /
0.98

20 / 2 1.65685 - 14.64102 1.65685 - ln 1 /

t
t t t

t
t t t

t
t t t

A A t t

A A t t

A A t t







 

  
       

  

  
       

  

     

 

, , 3i i i i i i i           ,  , , 0,1i i i     for  1i to n N  and all the constraints of (11). 

Using the Hyperbolic type hesitant membership functions approach (HTHMFA) (8) the problem (11) 

equivalent to the following (14) 

                           
3 3 3

1 1 1

1

3
i i i

i i i

Maximize    
  

 
   

 
            (14)  

                    Subject to   

   

 
    1 1

1 2

2
2 2 tanh 1 19.14214 2.63896

0.98 2

t t tW A

W A
A A


   

     
 

 

   

 
    

     
 

    

1 2

1 2

1

1 2 3

2
2 2 tanh 1 19.14214 2.63896

0.99 2

2 2 tanh 2 1 19.14214 2.63896
2

t t tW A

W A

t t tW A

W A

A A

A A





 





 
     

 

    

 



Neutrosophic Sets and Systems, Vol. 57, 2023 99  

 

 

Sanjoy Biswas, Samir Dey; ; Neutrosophic Hesitant Fuzzy Technique and Its Application Structural Design 

 

   

 
  

   

 
  

     
 

  

1 1

1 2 1

1 2

1 2 1

1

1 2 3 1

2
2 2 tanh 1 2 19.14214 ( )

0.98 2

2
2 2 tanh 1 2 19.14214 ( )

0.99 2

2 2 tanh 2 1 2 19.14214 ( )
2

t tW A t

W A

t tW A t

W A

t tW A t

W A

A A s

A A s

A A s








 







 
      

 

 
      

 

     

 

   

 
      

   

 
      

     
 

      

1 1

1 2 1

1 2

1 2 1

1

1 2 3 1

2
2 2 tanh 1 19.14214 2.63896

0.98 2

2
2 2 tanh 1 19.14214 2.63896

0.99 2

2 2 tanh 2 1 19.14214 2.63896
2

t t t tW A

W A

t t t tW A

W A

t t t tW A

W A

A A t

A A t

A A t








 







 
      

 

 
      

 

     

 

    

 
    

    

 
    

      
 

    

t1 1

1 2

t1 2

1 2

t1

1 2 3

2
20 / 2 tanh 1 14.64102 1.65685

0.98 2

2
20 / 2 tanh 1 14.64102 1.65685

0.99 2

20 / 2 tanh 2 1 14.64102 1.65685
2

t
tA

A

t
tA

A

t
tA

A

A A

A A

A A




















 







 
     

 

 
     

 

    

 

    

 
    

    

 
    

      
 

    

t1 1

1 2 2

t1 2

1 2 2

t1

1 2 3 2

2
20 / 2 tanh 1 2 14.64102 s

0.98 2

2
20 / 2 tanh 1 2 14.64102 s

0.99 2

20 / 2 tanh 2 1 2 14.64102 s
2

t
tA

A

t
tA

A

t
tA

A

A A

A A

A A




















 







 
      

 

 
      

 

     

 

    

 
      

    

 
      

      
 

      

1 1

1 2 2

1 2

1 2 2

1

1 2 3 2

2
20 / 2 tanh 1 14.64102 1.65685

0.98 2

2
20 / 2 tanh 1 14.64102 1.65685

0.99 2

20 / 2 tanh 2 1 14.64102 1.65685
2

t
t t tA

A

t
t t tA

A

t
t t tA

A

A A t

A A t

A A t




















 







 
      

 

 
      

 

     

 

Where  
( )

6

19.14214 2.638958
W A 


 and  

( )

6

14.64102 1.656854
A 


 

, , 3i i i i i i i           ,  , , 0,1i i i     for  1i to n N  and all the constraints of (11). 

On solving the neutrosophic hesitant optimization model (12), (13) and (14) the solution outcomes are 

outlined in Table 2 and Table 3. 
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Table 1. Input data for MOSOP (11)  

P ( )KN  

(Applied 

load) 

3( / )KN m  

(Material 

density) 

L 

(Length) 
  2( / )T KN m

(maximum 

limit of 

tensile 

stress) 

 C
2( / )KN m  

(maximum 

limit of 

compressive 

stress) 

Y
2( / )KN m  

(Young’s 

modulus) 

 min 4 210iA m
 

and 

 max 4 210iA m
 

(Cross 

section of 

bars) 

 

20  

 

100  

 

1  

 

20  

 

15  

 
82 10  

min

1

max

1

min

2

max

2

0.1

5

0.1

5

A

A

A

A









 

A Comparative result of MOSOP (11) on basis of different membership function is given in table 2. 

Table 2: A comparative optimal results on structural weight and deflection for t=2 

 

Membership 

functions 

Methods 4 2

1 10A m  
4 2

2 10A m  
2

1 2( , )10W A A KN  
7

1 2( , )10A A m 
 

Linear Type FO [10] 0.5995887 3.789761 5.485654 3.356200 

IFO [45] 0.5766526 3.694181 5.325201 3.447673 

NFO 0.581611 3.462786 5.140011 3.628012 

Proposed 

NHFT 
0.5932745 3.391146 5.069180 3.711209 

Exponential 

Type 

FO 0.5985788 3.779858 5.472895 3.364678 

IFO 0.5765578 3.678758 5.309510 3.460728 

NFO 0.5965065 3.437476 5.124651 3.664459 

Proposed 

NHFT 
0.5934251 3.399846 5.078306 3.702652 

Hyperbolic 

Type 

FO 0.8535467 5.000000 7.414195 2.523782 

IFO 0.8354725 5.000000 7.363073 2.529551 

NFO 0.7994567 5.000000 7.261205 2.541127 

Proposed 

NHFT 
0.7934604 5.000000 7.244245 2.543064 

FO: Fuzzy Optimization; IFO: Intuitionistic Fuzzy Optimization; NFO: Neutrosophic fuzzy optimization 

A comparative analysis for MOSOP based on several techniques using different membership 

functions as linear, exponential, hyperbolic types are shown in the Table 2. For all membership 

functions, it is obvious that the objective values are much superior to other current methods. 

Furthermore, the proposed NHFT performance measurements for different membership functions 
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may be represented as Hyperbolic>Exponential>Linear. (9.787309 > 8.947535 > 8.780389(sum of 

weight and deflection)). However, the maximum acceptance degree of our suggested NHFT 

approach is better attained, demonstrating its superiority over other existing methods. 

Table 3: Result comparison with minimizing the indeterminacy membership and maximizing the 

indeterminacy membership under proposed method at t=2 

 Membership 

functions 

4 2

1 10A m  
4 2

2 10A m  
2

1 2( , )10W A A KN  
7

1 2( , )10A A m 
 

Maximize 

indeterminacy 

membership 

Linear 0.5932745 3.391146 5.069180 3.711209 

Exponential 0.5934251 3.399846 5.078306 3.702652 

Hyperbolic 0.7934604 5.000000 7.244245 2.543064 

Minimize 

indeterminacy 

membership 

Linear 0.5925640 3.350599 5.026623 3.751623 

Exponential 0.5927716 3.362361 5.038972 3.739808 

Hyperbolic 0.7942572 5.000000 7.246499 2.542807 

The comparison of proposed method under maximize and minimize indeterminacy 

membership function are displayed in the Table 3. From the above table, it is evident that the 

objective values under maximizing the indeterminacy membership are quite better than minimizing 

the indeterminacy membership under proposed method. However, our suggested approach's 

highest attainment of acceptance level is more effectively reached and demonstrates its superiority 

over reducing uncertainty membership level. 

Table 4: Optimal results of different acceptance tolerance on Structural Weight and Deflection for t=2 

Acceptance 

tolerance 

Membership 

functions 

4 2

1 10A m  
4 2

2 10A m  
2

1 2( , )10W A A KN

 

7

1 2( , )10A A m 
 

s1=0.96, 

s2=0.98, 

t1=0.78, 

t2=0.86 

Linear 0.5932745 3.391145 5.069179 3.711208 

Exponential 0.5928106 3.364578 5.041298 3.737591 

Hyperbolic 0.7943072 5.000000 7.246640 2.542790 

s1=0.95, 

s2=0.98, 

t1=0.88, 

t2=0.86 

Linear 0.5929295 3.371356 5.048413 3.730824 

Exponential 0.5929295 3.371356 5.048414 3.730824 

Hyperbolic 0.7934604 5.000000 7.244245 2.543064 

5.3 Sensitivity Analysis 

A comparative study for MOSOP based on various acceptance tolerances was conducted using 

the suggested NHFP approach using linear, exponential, and hyperbolic membership functions. The 

compromise solution based on various membership functions is presented in Table 2. This result is 

showing sensitivity in Table 4 with different tolerances. It also shows that the neutrosophic 

optimization technique with exponential membership functions gives the lightest structural weight 

and the hyperbolic membership functions gives the least deflection at loading point. 
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6. Conclusion and Future Research Scope  

We developed a MOSOM in a NHF fuzzy environment in this article. A computational 

algorithm for solving multi-objective structural models using neutrosophic hesitant fuzzy 

optimization has been developed. We have discussed a comparative study to identify the best 

optimal result using different membership functions. A three-bar truss numerical example, it shows 

that exponential membership function gives lightest structural weight whereas hyperbolic 

membership function gives least deflection in loading point. This method is simple and easy to use.  

Our proposed approach might be used in the following fields of research: 

 Our proposed method may be used in linear optimization problems with hesitantly and 

uncertainty. 

 It may use in real life decision making of multi objective transportations and assignment 

problems with interval values. 

 It can be expanded to handle issues involving multi objective fractional programming. 

 For better decision making, it might be applied in game theory as well as goal 

programming problem with uncertainty and hesitation. 

 It may be implemented in multi objective stochastic linear programming problem. 

Our suggested computational technique can be further enhanced for the agricultural, industrial and 

health management as well, and it may be successfully applied in the variety of field like aircraft 

control system development, chemical engineering where in multiple objectives with multiple 

objectives, supply chain management, and industrial neural network architecture. 

Acknowledgements: The author would like to express gratitude to the anonymous reviewers for their 

insightful remarks and recommendations, which significantly enhanced the presentation of this article. 

Conflict of interest: There is no conflict of interest among authors. 

Appendix A 

Experimental Study 

To demonstrate the effectiveness and validity of the suggested approach, we illustrate the numerical 

instance of formulating a MONLPP as presented below: 

           
1M :    Minimize  1 2

1 1 2( )f x x x   

                    Minimize  2 3

2 1 2( ) 2f x x x   

                     s.t 
1 2 1 21, , 0x x x x   . 

By solving each objective function separately as stated in (
1M ), we obtain the subsequent optimal 

solution, lower and upper limit for each objective. 1 2(0.333,0.667), (0.4,0.6)X X  along with 

1 1 26.75, 6.94, 57.87L U L   and 
2 60.75U  . 

Linear type membership functions 

For
1f : The membership functions of first objective as.  
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2f : The membership functions of second objective as. (Linear type) 
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Which is transformed into an equivalent MONLPP with linear type as: 

1 2 3 1 2 3 1 2 3
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3 3 3
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Exponential type membership functions 
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Which is transformed into an equivalent MONLPP with exponential type as: 
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Which is reduced to equivalent MONLPP with hyperbolic type as: 
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At t = 2, the OS of the MONLPP using the suggested NHFPA under various membership functions 

are as given below: 
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Abstract –We develop the concept of range symmetric Neutrosophic Fuzzy Matrix and Kernel 

symmetric Neutrosophic Fuzzy Matrix analogous to that of an EP –matrix in the complex field. First 

we present equivalent characterizations of a range symmetric matrix and then derive equivalent 

conditions for a Neutrosophic Fuzzy Matrix to be kernel symmetric matrix and study the relation 

between range symmetric and kernel symmetric Neutrosophic Fuzzy Matrices. The idea of Kernel 

and k-Kernel Symmetric (k-KS) Neutrosophic Fuzzy Matrices (NFM) are introduced with an 

example. We present some basic results of kernel symmetric matrices. We show that k-symmetric 

implies k-Kernel symmetric but the converse need not be true.  The equivalent relations between 

kernel symmetric, k-kernel symmetric and Moore-Penrose inverse of NFM are explained with 

numerical results. 

Keywords: Range symmetric, Kernel symmetric, k-Kernel Symmetric, Moore-penrose inverse 

 

 

1. Introduction 

The concept of fuzzy set was introduced by Zadeh [1] in 1965. The traditional fuzzy sets are 

characterized by the membership value or the grade of membership value. Some- times it may be 

very difficult to assign the membership value for fuzzy sets. An intuitionistic fuzzy set introduced 

by Atanassov [2] is appropriate for such a situation. The intuitionistic fuzzy sets can only handle the 

incomplete information considering both the truth membership (or simply membership) and 

falsity-membership(or nonmembership)values. It does not handle the indeterminate and 

inconsistent information which exists in belief system. Smarandache [3] introduced the concept of 

neutrosophic set which is a mathematical tool for handling problems involving imprecise, 

indeterminacy and inconsistent data. 

For a fuzzy matrix P, if P+ exists, then it coincide with PT, Kim and Roush [4] have studied 

Generalized fuzzy matrices.  A Fuzzy matrix P is range symmetric if R[P] = R[PT]  implies and 

kernel symmetric N(P)=N(PT). It is well known that for complex matrices, the concept of range 

mailto:anandhkumarmm@mail.com
mailto:punithavarman78@gmail.com
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symmetric and kernel symmetric is identical. For Neutrosophic Fuzzy matrix ( ) ,nP IF is range 

symmetric R[P] = R[PT] implies N(P) = N(PT) but the converse need not be true. Meenakshi [5] 

introduced the notion of fuzzy matrix. Let k-be a fixed product of disjoint transpositions in Sn = 1, 

2,...,n and K be the associated permutation matrix. Hill and Waters [6] have introduced on k-real and 

k-hermitian matrices. Baskett and Katz [7] have studied theorems on products of EPr matrices. 

Schwerdtfeger [8] has studied the notion of introduction to Linear Algebra and the Theory of 

matrices. Meenakshi and Jayashri [9] have studied k-Kernel Symmetric Matrices. Riyaz Ahmad 

Padder and Murugadas [10-12] introduced on idempotent intuitionistic fuzzy Matrices of T-type, 

reduction of a nilpotent intuitionistic fuzzy matrix using implication operator and determinant 

theory for intuitionistic fuzzy matrices. Atanassov has studied [13] generalized index matrices. 

Meenakshi and Krishnamoorthy introduced on k-EP matrices. Ben and Greville [14] developed the 

concept of range symmetric fuzzy matrix and kernel symmetric fuzzy matrix analogues to that of an 

EP matrix in the complex field. Sumathi, Arockiarani [15] have discussed new operations on fuzzy 

neutrosophic soft matrices. Sumathi, Arockiarani , Jency,[16] have studied Fuzzy neutrosophic soft 

opological spaces. Abdel-Monem, Nabeeh and Abouhawwash [17] have studied An Integrated 

Neutrosophic Regional Management Ranking Method for Agricultural Water Management. Ahmed 

Abdelhafeez , Hoda Mohamed, Nariman Khalil [18] have discussed Rank and Analysis Several 

Solutions of Healthcare Waste to Achieve Cost Effectiveness and Sustainability Using Neutrosophic 

MCDM Model. Manas Karak, Animesh Mahata, Mahendra Rong, Supriya Mukherjee, Sankar Prasad 

Mondal, Said Broumi, Banamali Roy [19] have introduced A Solution Technique of Transportation 

Problem in Neutrosophic Environment. Meenakshi and Krishnamoorthy [20] have discussed on 

κ-EP matrices.  

As mentioned in the above introduction section, Meenakshi introduced the concept of  Range 

symmetric and Meenakshi and Jayashri developed the notion of kernel symmetric in fuzzy matrix. 

Here, we have applied the concept of range symmetric and kernel symmetric in Neutrosophic fuzzy 

matrix (NFM). Both this concept plays a significant role in hybrid fuzzy structure and we have 

applied the same in NFM and studied some of the results in detail. First we present equivalent 

characterizations of a range and kernel symmetric matrix and then, derive equivalent conditions for 

an Neutrosophic fuzzy matrix to be kernel symmetric Neutrosophic fuzzy matrix and study the 

relation between range symmetric and kernel symmetric Neutrosophic fuzzy matrices. Equivalent 

condition for varies g-inverses of a kernel symmetric matrix to be kernel symmetric are determined.  

2. PRELIMINARIES AND NOTATIONS 

PRELIMINARIES 

Let the function be defined  as κ(x)=(xk[1], xk[2], xk[3],…, xk[n])∈ Fn×1 for x = x1, x2,...,xn ∈ F[1×n], where K is 

involuntary, the following conditions are satisfied. The associated permutation matrix, where K is a 

permutation matrix, KKT = KTK= In then KT = K. 

(P1) K = KT , K2 = I  and κ(x) = Kx for all P ∈ (IF)n, 

(P2) N(P) = N(PK) = N(KP) 

        (P3) (P )K KP    and ( )KP P  K exists, if P
 exists . 

        (P4) PT is a g-inverse of P iff P
 exist 
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Notations: For NFM of P ∈ (NF)n,  

PT  : Transpose of P, R(P) : Row space of P, C(P) : Column space of P,N(P) : Null Space of P , P : 

Moore-Penrose inverse of P , (NF)n: Square Neutrosophic Fuzzy Matrix. F [1×n]: The matrix one row 

n columns. F [n×1]:  

 

3. DEFINITIONS AND THEOREMS 

Definition: 1 Let P be a NFM, if R [P] = R [PT] then P is called as range symmetric. 

Example: 1 Let us consider NFM 

(0.2,0.5,0.7) (0,0,0) (0.6,0.4,0.2)

(0,0,0) (0,0,0) (0,0,0) ,

0.6,0.4,0.2 (0,0,0) 0.3,0.5,0.7

P

 
 


 
       

The following matrices are not range symmetric 

 

 

(1,1,0) (1,1,0) (0,0,0) (1,1,0) (0,0,0) (0,0,0)

(0,0,0) (1,1,0) (1,1,0) , (1,1,0) (1,1,0) (0,0,0)

(0,0,0) (0,0,0) (1,1,0) (0,0,0) (1,1,0) (1,1,0)

TP P

   
   

 
   
            

   (1,1,0) (1,1,0) (0,0,0) (P) , (1,1,0) (1,1,0) (0,0,0) (P )TR R 

   (0,0,0) (1,1,0) (1,1,0) (P) , (0,0,0) (1,1,0) (1,1,0) (P )TR R 

   (0,0,0) (0,0,0) (1,1,0) (P) , (0,0,0) (0,0,0) (1,1,0) (P )TR R 

  

Definition : 2  Let P ∈ Fn be a Neutrosophic fuzzy matrix , if  N(P) = N(PT) then P is called  kernel 

symmetric NFM where N(P)= {x/xP =  (0,0,0)  and x ∈ F1×n}, 

Example: 2 Let us consider NFM 

(0.4,0.5,0.6) (0,0,0) (0.6,0.4,0.8)

(0,0,0) (0,0,0) (0,0,0) ,

(0.4,0.5,0.7) (0,0,0) (0.4,0.3,0.6)

P

 
 


 
  

 

(P) (P ) (0,0,0)TN N 

 Definition 3. Unit Neutrosophic fuzzy matrix (UNFM)   

If (NF)n is said to be UNFM if 𝑎𝑖𝑖 = (1,1,0) and 𝑎𝑖𝑗 = (0,1,1)  𝑖 ≠ 𝑗, for all 𝑖 = 𝑗. It is denoted by I.   

Example: 3 Let us consider NFM, 

(1,1,0) (0,1,1) (0,1,1)

(0,1,1) (1,1,0) (0,1,1)

(0,1,1) (0,1,1) (1,1,0)

I

 
 


 
  

 

Definition 4. Symmetric Neutrosophic fuzzy matrix   

(P) (P )TR R
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 If (NF)n is said to be symmetric Neutrosophic fuzzy matrix if 𝑎𝑖𝑗 = 𝑎𝑗i  

Example: 4 Let us consider NFM 

(0.3,0.5,0.8) (0,0,0) (0.5,0.3,0.1)

(0,0,0) (0,0,0) (0,0,0) ,

0.5,0.3,0.1 (0,0,0) 0.3,0.5,0.7

P

 
 


 
       

Definition 5. Permutation neutrosophic fuzzy matrix (PNFM) 

 Every row single (1,1,0) with (0,0,1) ‘s everywhere else is called PNFM. 

Example: 5 Let us consider NFPM, 

(0,0,1) (0,0,1) (1,1,0)

(0,0,1) (1,1,0) (0,0,1)

(1,1,0) (0,0,1) (0,0,1)

K

 
 


 
  

 

Definition 6 (Null neutrosophic fuzzy matrix) Neutrosophic fuzzy matrix is said to be Null if all its 

entries are zero, i.e., all elements are (0,0,0).   

Example: 6 Let us consider NFM 

(0,0,0) (0,0,0) (0,0,0)

(0,0,0) (0,0,0) (0,0,0) ,

(0,0,0) (0,0,0) (0,0,0)

P

 
 


 
  

 

Note:1 For  Neutrosophic fuzzy matrix  P ∈ Fn with det P > <0,0,0>,  has non- zero rows and 

non-columns, hereafter N(P) = <0,0,0> = N(PT). Furthermore, a symmetric matrix P = PT, that is N(P)= 

N(PT). 

Theorem:1 For P,Q∈(NF)n and K be a Neutrosophic fuzzy permutation  matrix , N(P) = N(Q) ⇔ 

N(KPKT) = N(KQKT) 

Proof:  Let ( )Tw N KPK  

( ) (0,0,0)Tw KPK   

(0,0,0) whereTzK z wKP    

( )Tz N K   

Since,det det (0,0,0)TK K                                           (By Note:1) 

Therefore, ( ) (0,0,0)TN K      

Hence, (0,0,0)z   
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(0,0,0)wKP   

(P) (Q)wK N N    

(0,0,0)TwKQK   

( )Tw N KQK   

( ) ( )T TN KPK N KQK  

Similarly, ( ) ( )T TN KQK N KPK  

Therefore, N (KPKT) = N (KQKT) 

Conversely, if N (KPKT) = N (KQKT), then by the above proof,  

N (P) = N (KT (KPKT) K) 

     = N (KT (KQKT) K)    

N (P) = N(Q). 

Example: 5 Let us consider NFM 

(0,0,0.5) (0,0,0) (0.3,0,0) (0.3,0.4,0.2) (0,0,0) (0.4,0.2,0.6)

(0,0,0) (0,0,0) (0,0,0) ,Q (0,0,0) (0,0,0) (0, 0,0) ,

(0.7,0,0) (0,0,0) (0.3,0.2,0) (0.5,0.3,0.4) (0,0,0) (0.5,0.3,0.6)

P

   
   

 
   
      

 

(0,0,1) (0,0,1) (1,1,0)

(0,0,1) (1,1,0) (0,0,1)

(1,1,0) (0,0,1) (0,0,1)

K

 
 


 
    

Theorem: 2 For Neutrosophic P ∈ (NF) n, the following statements are equivalent 

(i) N(P) = N(PT) 

(ii) N (KPKT) = N (KPT KT) for some permutation NFM K. 

(iii) Neutrosophic fuzzy permutation matrices K such that 
(0,0,0)

(0,0,0) (0,0,0)

T
D

KPK
 

  
 

  

with det D > (0,0,0)  

Proof: (i) iff (ii).This equivalence follows from the theorem (1) 

 (i) iff (iii): Let N(P) = N(PT)  
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If det P > (0,0,0)   then P has no zero row and columns, 

Hence (iii) holds by taking K = I and D = P itself. 

Suppose det P = (0, 0, 0) then N (P) = N (PT) then N (P) = N (PT) (0,0,0)   

For x (0,0,0) , ( )x N P  equivalent to each non-zero co efficient xi of x, the fuzzy sums 

(0,0,0)i ikx a   and (0,0,0)i kix a   for all k.  

As a result, P's ith column and ith row are both filled with zeros. 

Now, by appropriately permuting the rows and columns, 

All of the zero rows and zero columns can be shifted to the bottom and right, respectively. 

Therefore, P is of the form 
(0,0,0)

(0,0,0) (0,0,0)

T
D

KPK
 

  
   

Where D - square matrix, D has non- zero rows and non-zero columns. 

Therefore, det D > (0,0,0) 

Thus (iii) holds 

 (iii) implies (ii) : If det P > (0,0,0)  by remark ,D is kernel symmetric,  

0,0,0

0,0,0 0,0,0

D   
 
      is also kernel symmetric (ii) holds.  

Example : 6 Let us Consider NFM ,  

(0,0,0.5) (0,0,0) (0.3,0,0)

(0,0,0) (0,0,0) (0,0,0) ,

(0.7,0,0) (0,0,0) (0.3,0.2,0)

P

 
 


 
  

(1,1,0) (0,0,1) (0,0,1)

(0,0,1) (0,0,1) (1,1,0)

(0,0,1) (1,1,0) (0,0,1)

K

 
 


 
    

(0,0,0.5) (0,0,0) (0.3,0,0) (1,1,0) (0,0,1) (0,0,1) (0,1,0.5) (0.3,1,0) (0,1,0)

(0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,1) (1,1,0) (0,1,0) (0,1,0)

(0.7,0,0) (0,0,0) (0.3,0.2,0) (0,0,1) (1,1,0) (0,0,1)

TPK

   
   

 
   
      

(0,1,0)

(0.7,1,0) (0.3,1,0) (0,1,0)

 
 
 
  

(1,1,0) (0,0,1) (0,0,1) (0,1,0.5) (0.3,1,0) (0,1,0) (0,0,0.5) (0.3,0,0) (0,0,0)

(0,0,1) (0,0,1) (1,1,0) (0,1,0) (0,1,0) (0,1,0) (0.7,0,0) (0.3,0

(0,0,1) (1,1,0) (0,0,1) (0.7,1,0) (0.3,1,0) (0,1,0)

TKPK

   
   

 
   
      

,0) (0,0,0)

(0,0,0) (0,0,0) (0,0,0)

 
 
 
  

det(P) (0,0,0), (P) (P ) (0,0,0)TN N  
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(0,0,0) 0,0,0.5 0.3,0,0
, Where

(0,0,0) (0,0,0) 0.7,0,0 0.3,0,0

T
D

KPK D
      

    
      

 , determined of D > 

(0,0,0) 

Theorem:3 For P∈(NF)n is kernel symmetric Neutrosophic fuzzy matrix and K being a permutation 

matrix if and only if N(KPKT) = N(K PT KT) 

Proof:  Let ( )Tx N KPK  

( ) (0,0,0)Tx KAK   

(0,0,0) whereTyK y xKP    

( )Ty N K   

Since,det det (0,0,0)TK K   

Therefore, ( ) (0,0,0)TN K   

Hence, (0,0,0)y   

(0,0,0)xKP   

(P) (P )TxK N N    

(0,0,0)T TxKA K   

 ( )T Tx N K P K   

( ) ( )T T TN KPK N KP K  

Similarly, ( ) ( )T T TN KP K N KPK  

Therefore, N(KPKT) = N(KPT KT) 

Conversely, if N(KPKT) = N(K PT KT),  then by the above proof ,  

N(P) = N(KT(KPKT)K) 

     =  N(KT(K PT KT)K)    

N(P) = N(PT). 
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Example:7 Let us consider NFM

 

(0,0.2,0.5) (0,0,0) (0.3,0.4,0) (0,0,1) (0,0,1) (1,1,0)

(0,0,0) (0,0,0) (0,0,0) , (0,0,1) (1,1,0) (0,0,1)

(0.7,0.2,0) (0,0,0) (0.3,0.2,0) (1,1,0) (0,0,1) (0,0,1)

P K

   
   

 
   
        

Theorem: 4 For P∈(NF)n,  is kernel symmetric Neutrosophic fuzzy matrix, then N(PPT) = N(P) = 

N(PTP) 

Proof: Let, (P)x N   

 xP = (0,0,0)  

 xPPT = (0,0,0)  

 ( )Tx N PP  

 (P) (PP )TN N   

 
Similarly, (PP ) (P)TN N  

Therefore, N (P) = N (PPT) 

Similarly, (P) (P P)TN N  

Therefore, N (PPT) = N (P) = N (PTP) 

Example:8  Let us consider NFM 

(0.4,0.5,0) (0,0,0) (0.6,0.4,0.2)

(0,0,0) (0,0,0) (0,0,0) ,

(0.4,0.5,0.3) (0,0,0) (0.4,0.3,0.5)

P

 
 


 
  

 

Theorem: 5 Let P, Q be the NFM and K NFPM, R (P) = R (Q) ⇔ R (KPKT) = R (KQKT) 

Proof: Let R (P) = R (Q) 

Then, R (PKT) = R (P) KT     

                       = R (P) KT     

              = R (PKT) 

Let  ( )Tz R KPK  

( ) for someT nz w KPK w V   
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,Tz rPK r wK   

    T Tz R PK R Q K   

for someT nz uQK u V   

 T Tz uK KQK  

for someT nz vKQK v V   

( )Tz R KQK  

Therefore, ( ) ( )T TR KPK R KQK  

Similarly, ( ) ( )T TR KQK R KPK  

Therefore, R(KPKT) = R(KQKT) 

Conversely, Let R(KPKT) = R(KQKT) . Then by above proof 

(P) [ ( ) ]T TR R K KPK K  

[ ( ) ]T TR K KQK K  

(Q)R  

(P) (Q)R R
 

Example:9 Let us consider NFM 

(0.2,0.5,0.4) (0,0,0) (0.7,0.2,0.6) (0.7,0.2,0.6) (0,0,0) (0.3,0.2,0.4)

(0,0,0) (0,0,0) (0,0,0) ,Q (0,0,0) (0,0,0) (0,0,0)

(0.7,0.2,0.6) (0,0,0) (0.3,0.2,0.4) (0.2,0.5,0.4) (0,0,0) (0.7,0.2,0.6)

P

   
   

 
   
      

(1,1,0) (0,0,1) (0,0,1)

(0,0,1) (1,1,0) (0,0,1)

(0,0,1) (0,0,1) (1,1,0)

K

 
 


 
    

R(P) = R(Q) ⇔ R(KPKT) = R(KQKT) 

Theorem:6 For P∈(NF)n be the NFM and K NFPM, R(P) = R(PT) ⇔ R(KPKT) = R(K PT KT) 
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Example: 10 

(0.4,0.5,0.6) (0,0,0) (0.3,0.5,0.6) (1,1,0) (0,0,1) (0,0,1)

(0,0,0) (0,0,0) (0,0,0) , (0,0,1) (1,1,0) (0,0,1)

(0.3,0.5,0.6) (0,0,0) (0.3,0.2,0.4) (0,0,1) (0,0,1) (1,1,0)

P K

   
   

 
   
        

Theorem:7 Let P,Q be the Neutrosophic fuzzy matrix and K being a permutation matrix, C(P) = C(Q) 

⇔ C(KPKT) = C(KQKT) 

Example:11 Let us consider NFM 

 

(0.2,0.5,0.6) (0,0,0) (0.7,0.2,0.8) (0.7,0.2,0.8) (0,0,0) (0.2,0.5,0.6)

(0,0,0) (0,0,0) (0,0,0) ,Q (0,0,0) (0,0,0) (0,0,0)

(0.7,0.2,0.4) (0,0,0) (0.3,0.2,0.5) (0.3,0.2,0.5) (0,0,0) (0.7,0.2,0.4)

P

   
   

 
   
        

C(P)= C(Q) ⇔ C(KPKT) = C(KQKT) 

              k-KERNEL SYMMETRIC NFM   

Definition: 3 Let P be a NFM .If P belongs to (NF)n is called k-Kernel symmetric Neutrosophic fuzzy 

if N(P) = N(KPTK) 

Note:2 Let P is k-Symmetric NFM  implies it is k-kernel symmetric NFM, for P = K(PT)K 

spontaneously implies N(P) = N(KPT K) .Example 12. shows that the if and only if need not be true.  

Example: 12 Let us Consider NFM 

(0,0,0.5) (0,0,0.4) (0.3,0.4,0.5) (0,0,1) (0,0,1) (1,1,0)

(0.5,0.4,0.6) (0.1,0.4,0.6) (0,0,0.4) , (0,0,1) (1,1,0) (0,0,1)

(0.4,0.5,0.3) (0.3,0.4,0.5) (0,0,0.3) (1,1,0) (0,0,1) (0,0,1)

P K

   
   

 
   
      

 

(0,0,0.3) (0,0,0.4) (0.3,0.4,0.5)

(0.3,0,0.5) (0.1,0,0.6) (0,0.4,0.4)

(0.4,0,0.3) (0.5,0,0.6) (0,0.4,0.5)

TKP K

 
 


 
  

 

Therefore, P   KPT K    

But, N (P) = N(KPT K) = (0,0,0)  

Theorem: 8 For Neutrosophic fuzzy matrix P∈ (NF) n, the given statements are equivalent: 

(i) N(P) = N(KPTK) 

(ii) N(KP) = N((KP)T)       

(iii)  N(PK) = N((PK)T)  

(iv)  N(PT) = N(KP),  
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(v) N(P) = N((PK)T ) 

(vi) P+ is k-KSNFM 

(vii) N(P) = N(P+K) 

(viii) K P+P = PP+K 

(ix) P+PK = KPP+ 

Proof:  (i) implies (ii) 

  N(P) = N(KPTK) 

   N(KP) = N(PTK)              (By P2) ( K2 =I ) 

  N(KP) = N((KP)T)            (Because , (KP)T =PTKT= PTK) 

  KP is Kernel symmetric, 

Therefore, (ii) holds  

 (i) Implies (iii) 

 N(P) = N(KPTK) 

 N(PK) = N(KPT)              (By P2) ( K2 = I ) 

 N(PK) = N((PK)T)                 (Because , (PK)T =KTPT=KPT) 

PK is Kernel symmetric, 

Therefore, (iii) holds  

(ii) Implies (iv) 

 N(KP) = N(KP)T =N(PTK) 

  N(KP) = N(PT)                      (By P2) 

Therefore, (iv) holds  

(iii) Implies (v) 

  N(PK) = N((PK)T)               

 N(P) = N((PK)T)                  (By P2)    

(ii) Implies (vi) 

 N(KP) = N(KP)T 

 N(KP) = N(PTK)                   (By P2) 
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 N(KP) = N(P+K)                Since N(KP+K) = N(P+K) 

 N(KP) = N(P+)     

P+ is k-Kernel symmetric IFM 

(i) implies (vii) 

 N(P) = N(KPTK) 

 N(P) = N(KPTK) = N(PTK) 

 N(P) = N(KP)T                             

 N(P) = N(P+K)                               (By P2) 

(i) Implies (viii) 

PK is Kernel symmetric NFM  

  (PK)(PK)+ = (PK)+(PK) 

  (PK)(KP+) = (KP+)(PK) 

 PP+ = KP+PK 

 PP+K = KP+P 

Thus equivalence of (iii) and (viii) is proved. 

(viii)   (ix): Since, by the property (P1),K2=I, this uniformity follows by pre- and post multiplying 

by K. 

 KP+P = PP+ K  

 K2 P+ AK = KPP+ K2 

 P+ PK = KPP+ . 

4. CONCLUSION

 
Here some Theorem is described regarding the properties of kernel and range symmetric 

Neutrosophic Fuzzy Matrices. We introduced the concept of Kernel and k-Kernel Symmetric 

Neutrosophic Fuzzy Matrices with suitable examples. In addition, we have investigated some 

results of 𝜅 − kernel symmetric Neutrosophic Fuzzy Matrices with examples. In future, we shall 

prove some related properties of g-inverse of k-Kernel Symmetric NFM.  

 



Neutrosophic Sets and Systems, Vol. 57, 2023     126  

 

 
 

M.Anandhkumar, G.Punithavalli, T.Soupramanien, Said Broumi, Generalized Symmetric Neutrosophic Fuzzy Matrices 

REFERENCES 

[1]Zadeh L.A., Fuzzy Sets, Information and control.,(1965),,8, pp. 338-353. 

https://doi.org/10.1016/S0019-9958(65)90241-X. 

[2] Atanassov K., , Intuitionistic Fuzzy Sets, Fuzzy Sets and System. (1983), 20, pp. 87- 96. 

https://doi.org/10.1016/S0165-0114(86)80034-3. 

[3] Smarandache,F, Neutrosophic set, a generalization of the intuitionistic fuzzy set. Int J Pure Appl Math.; 

.,(2005),.24(3):287–297. https://arxiv.org/ftp/arxiv/papers/1911/1911.07333.pdf. 

[4].Kim K. H., Roush, F.W., Generalized fuzzy matrices, Fuzzy Sets and Systems. (1980), 4(3), pp. 293–315. 

https://doi.org/10.1016/0165-0114(80)90016-0. 

[5] Meenakshi A.R., Fuzzy Matrix Theory and Applications, MJP publishers,( 2008),, Chennai, India. 

https://books.google.co.in/books?id=4aacDwAAQBAJ&printsec=copyright&redir_esc=y#v=onepage&q&f=false 

[6.]Hill R. D., Waters S. R., On κ-real and κ-Hermitian matrices, Linear Algebra and its Applications. (1992), 169, 

pp. 17–29. https://doi.org/10.1016/0024-3795(92)90167-9. 

[7].Baskett T. S., Katz I.J., Theorems on products of EPr matrices, Linear Algebra and its Applications. (1969), 2, 

pp. 87–103. https://doi.org/10.1016/0024-3795(69)90009-3. 

[8] Schwerdtfeger H., Introduction to Linear Algebra and the Theory of Matrices, Noordhoff, Groningen, The 

Netherlands, (1962), 4(3), pp.193–215. https://doi.org/10.1007/978-3-030-52811-9. 

[9] Meenakshi A.R., Jayashri,D., k-Kernel Symmetric Matrices,  International Journal of Mathematics and 

Mathematical Sciences. (2009), 2009, pp. 8. DOI:10.1155/2009/926217. 

[10] Riyaz Ahmad Padder., Murugadas, P., On Idempotent Intuitionistic Fuzzy Matrices of T-type, International 

Journal of Fuzzy  Logic and Intelligent Systems. (2016),, 16(3), pp . 181-187. 

http://dx.doi.org/10.5391/IJFIS.2016.16.3.181. 

[11] Riyaz Ahmad Padder., Murugadas, P., Reduction of a nilpotent intuitionistic fuzzy Matrix using implication 

operator,Application of Applied Mathematics., (2016),  11(2), pp. 614 – 631. 

https://digitalcommons.pvamu.edu/aam/vol11/iss2/8. 

[12].Riyaz Ahmad Padder., Murugadas,P., Determinant theory for intuitionistic fuzzy 

matrices, Afrika Matematika. (2019), 30, pp. 943-955. https://doi.org/10.1007/s13370-019-00692-1. 

https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/0165-0114(80)90016-0
https://books.google.co.in/books?id=4aacDwAAQBAJ&printsec=copyright&redir_esc=y#v=onepage&q&f=false
https://doi.org/10.1016/0024-3795(92)90167-9
https://doi.org/10.1016/0024-3795(69)90009-3
http://dx.doi.org/10.1155/2009/926217
https://link.springer.com/journal/13370
https://doi.org/10.1007/s13370-019-00692-1


Neutrosophic Sets and Systems, Vol. 57, 2023     127  

 

 
 

M.Anandhkumar, G.Punithavalli, T.Soupramanien, Said Broumi, Generalized Symmetric Neutrosophic Fuzzy Matrices 

[13] Atanassov K., Generalized index matrices, Comptes Rendus de L’academie Bulgaredes Sciences,(1987),., 40(11), 

pp. 15-18. https://www.degruyter.com/database/IBZ/entry/ibz.ID286360191/html. 

[14] Ben Isral A., Greville, T.N.E., Generalized Inverse  Theory and Application, (1974) ,John Willey, New York. 

https://doi.org/10.1007/b97366. 

[15] Sumathi IR., Arockiarani I., New operations on fuzzy neutrosophic soft matrices. Int J Innov Res Stud(2014) 

.;3(3), pp.110–124. DOI: 10.47852/bonviewJCCE19522514205514. 

[16] Sumathi IR Arockiarani I, ,Jency M., Fuzzy neutrosophic soft Topological spaces. IJMA,(2013),4(10): 

225–238. http://www.ijma.info/index.php/ijma/article/view/2424. 

[17] Abdel-Monem , A., A.Nabeeh , N., & Abouhawwash, M. An Integrated Neutrosophic Regional 

Management Ranking Method for Agricultural Water Management. Neutrosophic Systems with Applications, 

vol.1, (2023): pp. 22–28.  

[18] Ahmed Abdelhafeez , Hoda K.Mohamed, Nariman A.Khalil, Rank and Analysis Several Solutions of 

Healthcare Waste to Achieve Cost Effectiveness and Sustainability Using Neutrosophic MCDM Model, 

Neutrosophic Systems with Applications, vol.2, (2023): pp. 25–37.  

[19] Manas Karak, Animesh Mahata, Mahendra Rong, Supriya Mukherjee, Sankar Prasad Mondal, Said Broumi, 

Banamali Roy, A Solution Technique of Transportation Problem in Neutrosophic Environment, Neutrosophic 

Systems with Applications, vol.3, (2023): pp. 17–34.  

[20] Meenakshi A. R., Krishnamoorthy, S., On κ-EP matrices, Linear Algebra and its Applications., (1998),  269, 

pp. 219–232. https://doi.org/10.1016/S0024-3795(97)00066-9. 

[21] R. Sophia Porchelvi1 , V. Jayapriya2, Determinant of a Fuzzy Neutrosophic Matrix, International Journal of 

Scientific Engineering and Research (IJSER) ISSN (Online): 2347-3878 Impact Factor (2018): 5.426 

,https://www.ijser.in/archives/v7i5/IJSER18806.pdf 

 

Received: April 30, 2023.  Accepted: Aug 18, 2023 

https://www.degruyter.com/database/IBZ/entry/ibz.ID286360191/html
https://doi.org/10.1007/b97366
http://www.ijma.info/index.php/ijma/article/view/2424
https://doi.org/10.1016/S0024-3795(97)00066-9


 
                                    Neutrosophic Sets and Systems, Vol. 57, 2023 

University of New Mexico  
 
 
 

 

AlAita and Talebi, Augmented Latin Square Designs for Imprecise Data 

 

 

 

Augmented Latin Square Designs for Imprecise Data 

Abdulrahman AlAita1 and Hooshang Talebi1,*  
1Department of Statistics, University of Isfahan, Isfahan, Iran 

*Corresponding author(s). E-mail(s): h-talebi@sci.ui.ac.ir; abdulrahman.aita33@sci.ui.ac.ir;  

 
Abstract: This paper addresses a novel approach for analyzing augmented Latin square design with 

uncertain observations, the so-called neutrosophic augmented Latin square design (NALSD). The 

contribution of our work lies in estimating the effects of rows, columns, control and new treatments, as 

well as formulating their sums of squares. Moreover, by determining the neutrosophic hypotheses and 

decision rule, the 𝐹𝑁-statistic in NANOVA table is given. The performance of the proposed design is 

evaluated using a numerical example and simulation study. In light of the results observed, it can find that 

the NALSD performs better than the classic augmented Latin square design (ALSD) in the presence of 

uncertainty. 

Keywords: Augmented Latin square design, neutrosophic statistics, imprecise data, neutrosophic 

ANOVA.  

 

1. Introduction 

In the field of experimental design, the Latin square is one of the most common designs to control 

systematic error by two-way blocking. In this design, each treatment occurs once, and only once, in each 

row and column. Thus, the number of treatments, rows, and columns are all equal. In this context, Fisher 

[1] was the first to apply Latin Square designs. Many studies have been published on this design; however, 

several problems arose when using large samples, such as many genotypes in the early stages of plant 

breeding. Researchers have devised an appropriate solution to this problem using augmented designs. The 

augmented design is appropriate since it incorporates many additional entries for various treatments. This 

design aims to compare new genotypes against standard treatments, known as checks. The first research 

on augmented design as a blocking design was conducted by Federer [2]. There have been several classes 

of augmented designs, including the augmented randomized complete block and augmented Latin squares 

[3, 4], augmented Lattice squares [5], and augmented row-column designs with a small number of checks 

[6]. A review of augmented designs has been given by Federer and Crossa [7]. In a newer study, an 

augmented design without replicating all treatments was discussed by Burgueño, et al. [8]. More about the 

augmented designs can be viewed in [9-15]. None of the above-mentioned researches is applicable if there 

is uncertainty in data set regarding to collected unreliable observation. 

Recently, neutrosophic logic has been extensively studied by Smarandache [16]. Smarandache [17] 

developed the idea of basic neutrosophic statistics (NS) as an extension of classical basic statistics and 

suggested that these statistics can be used effectively in uncertain situations. The difference between fuzzy 

statistics, neutrosophic statistics, and classical statistics were explained by Aslam [18]. The concept of 

neutrosophic ANOVA was introduced by Aslam [19].  Neutrosophic analysis of covariance has been 

applied to completely randomized designs as well as randomized complete block designs and split-plot 

designs by AlAita and Aslam [20]. AlAita, et al. [21] provided a discussion on the application of 

neutrosophic statistical analysis in split-plot designs. AlAita and Talebi [22] furnished exact neutrosophic 

file:///C:/Users/BLUE/Desktop/Neutrosophic%20Parameters%20Estimation%20and%20Testing%20in%20Augmented%20Randomized%20Complete%20Block%20Design/h-talebi@sci.ui.ac.ir
mailto:abdulrahman.aita33@sci.ui.ac.ir
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analysis of missing value in augmented randomized complete block design. Aslam and Albassam [23] 

proposed post hoc multiple comparison tests under NS. Salama, et al. [24] suggested neutrosophic 

correlation and simple linear regression. Nagarajan, et al. [25] discussed the analysis of neutrosophic 

multiple regression. Numerous neutrosophic statistical studies have been discussed in [26-33]. 

Based on our knowledge no research on augmented Latin square designs is in indeterminate environments. 

This study aims to solve problems associated with studies and experiments that use imprecise and 

uncertain data in augmented Latin square designs. Also, we developed our proposed design under NS to 

provide additional information on the indeterminacy measure that classic statistics cannot provide.  

2. Neutrosophic Basic Definitions 

This section provides some basic concepts about neutrosophic statistics that will be useful throughout of 

this paper. Throughout this paper, suppose that 𝑋𝑁 ∈ [𝑋𝐿 , 𝑋𝑈] is a neutrosophic random variable (NRV) 

that follows the neutrosophic normal distribution (NND). 

Definition 1: Consider the neutrosophic random variable (NRV) 𝑋𝑁 =  𝑋𝐿 +  𝑋𝑈𝐼𝑁, the neutrosophic 

population mean and variance can be found as follows: 

𝜇𝑁 ∈ [
∑ 𝑋𝐿𝑖

𝑁
𝑖=1

𝑁
,

∑ 𝑋𝑈𝑖
𝑁
𝑖=1

𝑁
] ;  𝜇𝑁 ∈ [𝜇𝐿 , 𝜇𝑈  ] and 𝜎𝑁

2 ∈ [
∑ (𝑋𝐿𝑖−𝜇𝐿)2𝑁

𝑖=1

𝑁
,

∑ (𝑋𝑈𝑖−𝜇𝑈)2𝑁
𝑖=1

𝑁
] ;  𝜎𝑁

2 ∈ [𝜎𝐿
2, 𝜎𝑈

2], 

where 𝑋𝐿 and 𝑋𝑈𝐼𝑁 are determinate and indeterminate parts, respectively, and 𝐼𝑁 ∈ [𝐼𝐿 , 𝐼𝑈] is the measure 

of uncertainty. 

Definition 2: Suppose 𝑛 be a neutrosophic random sample selected from a population of size 𝑁 having 

indeterminate observations. The estimated neutrosophic sample mean �̅�𝑁 and the variance 𝑠𝑁
2 , are 

expressed by 

�̅�𝑁 ∈ [
∑ 𝑥𝐿𝑖

𝑛
𝑖=1

𝑛
,

∑ 𝑥𝑈𝑖
𝑛
𝑖=1

𝑛
] ;  �̅�𝑁 ∈ [�̅�𝐿 , �̅�𝑈  ] and 𝑠𝑁

2 ∈ [
∑ (𝑥𝐿𝑖−�̅�𝐿)2𝑛

𝑖=1

𝑛−1
,

∑ (𝑥𝑈𝑖−�̅�𝑈)2𝑛
𝑖=1

𝑛−1
] ; 𝑠𝑁

2 ∈ [𝑠𝐿
2, 𝑠𝑈

2 ]. 

3. Neutrosophic Augmented Latin Square Design (NALSD) 

3.1. Neutrosophic Model and Notations 

Consider a 𝑏 × 𝑏 Latin square, the neutrosophic statistical model for a NALSD can be formulated as follows: 

𝑦𝑁ℎ𝑖𝑗𝑘𝑔 = 𝜇𝑁 + 𝛼𝑁𝑖 + 𝛽𝑁𝑗 + 𝜏𝑁𝑞𝑘 + 𝜏𝑁𝑙𝑖𝑗𝑔  + 휀𝑁ℎ𝑖𝑗𝑘𝑔 , {

𝑖 = 1,2, … , 𝑏
𝑗 = 1,2, … , 𝑏
𝑘 = 1,2, … , 𝑏

𝑔 = 1,2, … , 𝑛(𝑙𝑖𝑗)

                                    (1) 

The neutrosophic form of 𝑦𝑁ℎ𝑖𝑗𝑘𝑔 can be expressed as 

𝑦𝑁ℎ𝑖𝑗𝑘𝑔 = 𝑦𝐿ℎ𝑖𝑗𝑘𝑔 + 𝑦𝑈ℎ𝑖𝑗𝑘𝑔𝐼𝑁; 𝐼𝑁 ∈ [𝐼𝐿 , 𝐼𝑈], 

where ℎ = 𝑙 𝑜𝑟 𝑞 stands for the neutrosophic effects associated with new treatments or checks, respectively, 

𝜇𝑁 is a neutrosophic overall mean, 𝛼𝑁𝑖 is the neutrosophic effect of the 𝑖th row, 𝛽𝑁𝑗  is the neutrosophic effect 

of the 𝑗th column, 𝜏𝑁𝑞𝑘  is the neutrosophic effect of the 𝑘th check, 𝜏𝑁𝑙𝑖𝑗𝑔 is the neutrosophic effect of the 𝑔th 

new treatment in 𝑖th row and 𝑗th column, and 휀𝑁ℎ𝑖𝑗𝑘𝑔 is the neutrosophic random error assumed to have 

mean zero and variance 𝜎𝑁
2. We denote v = ∑ ∑ 𝑛(𝑙𝑖𝑗)

𝑏
𝑗=1

𝑏
𝑖=1  for the number of new treatments, 𝑐 for the 

number of check treatments, 𝑎 for the number of rows, and 𝑏 for the number of columns; therefore, 𝑒 = v +

𝑏 is the total number of new and check treatments and the total number of all plots in the blocks (rows and 

columns) is 𝑛; i.e., 𝑛 = v + 𝑏2. Throughout the paper in the context of neutrosophic ANOVA, the 𝑆𝑆𝑁𝑇 , 𝑆𝑆𝑁𝑅, 

𝑆𝑆𝑁𝐶 , 𝑆𝑆𝑁𝑇𝑟, and 𝑆𝑆𝑁𝐸  stand for the neutrosophic sum of squares (NSS) total, row, column, treatment, and 

error, respectively and the subscript N denotes the neutrosophic context. 
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3.2. Estimation of Neutrosophic Parameters 

To estimate the neutrosophic model parameters in a NALSD, first, the least squares normal equations (NE) 

are obtained and given below. 

𝜇𝑁: (v + 𝑏2)�̂�𝑁 + (𝑏 − 1) ∑ �̂�𝑁𝑞𝑘 + ∑ ∑ 𝑛(𝑙𝑖𝑗)
𝑏
𝑗=1 �̂�𝑁𝑖 + ∑ ∑ 𝑛(𝑙𝑖𝑗)

𝑏
𝑖=1 �̂�𝑁𝑗

𝑏
𝑗=1 = 𝑦𝑁....

𝑏
𝑖=1

𝑏
𝑘=1 , 

𝛼𝑁𝑖: (𝑏 + ∑ 𝑛(𝑙𝑖𝑗)
𝑏
𝑗=1 )(�̂�𝑁 + �̂�𝑁𝑖) + ∑ �̂�𝑁𝑞𝑘

𝑏
𝑘=1 + ∑ ∑ �̂�𝑁𝑙𝑖𝑗𝑔 + ∑ 𝑛(𝑙𝑖𝑗)�̂�𝑁𝑗

𝑏
𝑗=1 = 𝑦𝑁.𝑖..

𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑗=1 , 

𝛽𝑁𝑗 : (𝑏 + ∑ 𝑛(𝑙𝑖𝑗)
𝑏
𝑖=1 )(�̂�𝑁 + �̂�𝑁𝑗) + ∑ �̂�𝑁𝑞𝑘

𝑏
𝑘=1 + ∑ ∑ �̂�𝑁𝑙𝑖𝑗𝑔 + ∑ 𝑛(𝑙𝑖𝑗)�̂�𝑁𝑖

𝑏
𝑖=1 = 𝑦𝑁..𝑗.

𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑖=1 , 

𝜏𝑁𝑞𝑘 : 𝑏(�̂�𝑁 + �̂�𝑁𝑞𝑘) = 𝑦𝑁𝑞..𝑘, 

𝜏𝑁𝑙𝑖𝑗𝑔: �̂�𝑁 + �̂�𝑁𝑖 + �̂�𝑁𝑗 + �̂�𝑁𝑙𝑖𝑗𝑔 = 𝑦𝑁𝑙𝑖𝑗𝑔. 

By solving the above NE using the constraints ∑ �̂�𝑁𝑖 = 0𝑏
𝑖=1 , ∑ �̂�𝑁𝑗 = 0𝑏

𝑗=1 , and ∑ �̂�𝑁𝑞𝑘 +𝑏
𝑘=1

∑ ∑ ∑ �̂�𝑁𝑙𝑖𝑗𝑔

𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑗=1

𝑏
𝑖=1 = 0, the estimates of the neutrosophic parameters of the model (1) are  

�̂�𝑁 =
1

(v+𝑏)
(𝑦𝑁…. − (𝑏 − 1) ∑ �̅�𝑁𝑞..𝑘

𝑏
𝑘=1 ) =

1

(v+𝑏)
(𝑦𝑁…. − (𝑏 − 1)𝑚𝑁); �̂�𝑁 ∈ [�̂�𝐿 , �̂�𝑈], 

�̂�𝑁𝑖 =
1

𝑏
(𝑦𝑁𝑞𝑖.. − ∑ �̅�𝑁𝑞..𝑘

𝑏
𝑘=1 ) =

1

𝑏
(𝑦𝑁𝑞𝑖.. − 𝑚𝑁); �̂�𝑁𝑖 ∈ [�̂�𝐿𝑖 , �̂�𝑈𝑖], 

�̂�𝑁𝑗 =
1

𝑏
(𝑦𝑁𝑞.𝑗. − ∑ �̅�𝑁𝑞..𝑘

𝑏
𝑘=1 ) =

1

𝑏
(𝑦𝑁𝑞.𝑗. − 𝑚𝑁); �̂�𝑁𝑗 ∈ [�̂�𝐿𝑗 , �̂�𝑈𝑗], 

�̂�𝑁𝑞𝑘 =
𝑦𝑁𝑞..𝑘

𝑏
− �̂�𝑁; �̂�𝑁𝑞𝑘 ∈ [�̂�𝐿𝑞𝑘 , �̂�𝑈𝑞𝑘], 

�̂�𝑁𝑙𝑖𝑗𝑔 = 𝑦𝑁𝑙𝑖𝑗𝑔 − �̂�𝑁𝑖 − �̂�𝑁𝑗 − �̂�𝑁; �̂�𝑁𝑙𝑖𝑗𝑔 ∈ [�̂�𝐿𝑙𝑖𝑗𝑔 , �̂�𝑈𝑙𝑖𝑗𝑔], 

where 𝑖, 𝑗, 𝑘 = 1,2, . . . , 𝑏, 𝑔 = 1,2, . . . , 𝑛(𝑙𝑖𝑗) and 𝑚𝑁 = ∑ �̅�𝑁𝑞𝑖..
𝑏
𝑖=1 = ∑ �̅�𝑁𝑞.𝑗.

𝑏
𝑗=1 = ∑ �̅�𝑁𝑞..𝑘

𝑏
𝑘=1 . 

In the same manner, the estimation of the parameters in corresponding neutrosophic treatment-reduced, 

row-reduced, and column-reduced models can be obtained.  

3.3. Neutrosophic Testing of Parameters 

Under the normality assumption of the data, it can use the ANAVO method to test neutrosophic 

parameters in NALSD. Therefore, we need to formulate the 𝑆𝑆𝑁𝑇  and neutrosophic adjusted (adj) and 

unadjusted (unadj) sums of squares for rows, columns, treatments (new and check), and the NSS for error. 

Following, the calculated sums of squares are given. 

𝑆𝑆𝑁𝑇 = ∑ ∑ ∑ 𝑦𝑁𝑞𝑖𝑗𝑘
2𝑏

𝑘=1 +𝑏
𝑗=1

𝑏
𝑖=1 ∑ ∑ ∑ 𝑦𝑁𝑙𝑖𝑗𝑔

2𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑗=1 −

𝑦𝑁….
2

𝑛

𝑏
𝑖=1 ; 𝑆𝑆𝑁𝑇 ∈ [𝑆𝑆𝐿𝑇 , 𝑆𝑆𝑈𝑇], 

𝑆𝑆𝑁𝑅(unadj) = ∑
𝑦𝑁.𝑖..

2

𝑏+𝑛(𝑙𝑖𝑗)
−

𝑦𝑁….
2

𝑛

𝑏
𝑖=1 ; 𝑆𝑆𝑁𝑅(unadj) ∈ [𝑆𝑆𝐿𝑅(unadj), 𝑆𝑆𝑈𝑅(unadj)], 

𝑆𝑆𝑁𝐶(unadj) = ∑
𝑦𝑁..𝑗.

2

𝑏+𝑛(𝑙𝑖𝑗)
−

𝑦𝑁….
2

𝑛

𝑏
𝑗=1 ; 𝑆𝑆𝑁𝐶(unadj) ∈ [𝑆𝑆𝐿𝐶(unadj), 𝑆𝑆𝑈𝐶(unadj)], 

𝑆𝑆𝑁𝑇𝑟(unadj) =
1

𝑏
∑ 𝑦𝑁𝑞..𝑘

2 + ∑ ∑ ∑ 𝑦𝑁𝑙𝑖𝑗𝑔
2𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑗=1 −

𝑦𝑁….
2

𝑛

𝑏
𝑖=1

𝑏
𝑘=1 ; 𝑆𝑆𝑁𝑇𝑟(unadj) ∈ [𝑆𝑆𝐿𝑇𝑟(unadj), 𝑆𝑆𝑈𝑇𝑟(unadj)], 

𝑆𝑆𝑁𝑅(adj.) =
1

𝑏
[∑ (𝑦𝑁𝑞𝑖.. − 𝑚𝑁)𝑏

𝑖=1 𝑦𝑁.𝑖.. − ∑ ∑ ∑ (𝑦𝑁𝑞𝑖.. − 𝑚𝑁)𝑦𝑁𝑙𝑖𝑗𝑔

𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑗=1

𝑏
𝑖=1 ]; 𝑆𝑆𝑁𝑅(adj)[𝑆𝑆𝐿𝑅(adj), 𝑆𝑆𝑈𝑅(adj)], 

𝑆𝑆𝑁𝐶(adj.) =
1

𝑏
[∑ (𝑦𝑁𝑞.𝑗. − 𝑚𝑁)𝑏

𝑗=1 𝑦𝑁..𝑗. − ∑ ∑ ∑ (𝑦𝑁𝑞.𝑗. − 𝑚𝑁)𝑦𝑁𝑙𝑖𝑗𝑔

𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑖=1

𝑏
𝑗=1 ]; 𝑆𝑆𝑁𝐶(adj)[𝑆𝑆𝐿𝐶(adj) , 𝑆𝑆𝑈𝐶(adj)], 

𝑆𝑆𝑁𝑇𝑟(adj)=
1

𝑏
(∑ 𝑦𝑁𝑞𝑖..

2 + ∑ 𝑦𝑁𝑞.𝑗.
2𝑏

𝑗=1 + ∑ 𝑦𝑁𝑞..𝑘
2𝑏

𝑘=1
𝑏
𝑖=1 ) −

(∑ 𝑦𝑁.𝑖..
2 +∑ 𝑦𝑁..𝑗.

2𝑏
𝑗=1

𝑏
𝑖=1 )

(𝑏+v)
+ ∑ ∑ ∑ 𝑦𝑁𝑙𝑖𝑗𝑔

2𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑗=1

𝑏
𝑖=1 − 2𝑚𝑁

2 +

𝑦𝑁....
2

𝑛
;  𝑆𝑆𝑁𝑇𝑟(adj) ∈ [𝑆𝑆𝐿𝑇𝑟(adj), 𝑆𝑆𝑈𝑇𝑟(adj)], 

𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘 =
1

𝑏
∑ 𝑦𝑁𝑞..𝑘

2 −
𝑦𝑁𝑞...

2

𝑏2
𝑏
𝑘=1 ; 𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘 ∈ [𝑆𝑆𝐿𝐶ℎ𝑒𝑐𝑘 , 𝑆𝑆𝑈𝐶ℎ𝑒𝑐𝑘], 

𝑆𝑆𝑁𝑛𝑒𝑤 = ∑ ∑ ∑ 𝑦𝑁𝑙𝑖𝑗𝑔
2𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑗=1 −

𝑦𝑁𝑙...
2

v

𝑏
𝑖=1 ; 𝑆𝑆𝑁𝑛𝑒𝑤 ∈ [𝑆𝑆𝐿𝑛𝑒𝑤 , 𝑆𝑆𝑈𝑛𝑒𝑤], 

𝑆𝑆𝑁new and new × ch = 𝑆𝑆𝑁𝑇𝑟(adj) − 𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘; 𝑆𝑆𝑁new and new × ch ∈ [𝑆𝑆𝐿new and new × ch, 𝑆𝑆𝑈new and new × ch], 

𝑆𝑆𝑁new × check = 𝑆𝑆𝑁𝑇𝑟(unadj) − 𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘 − 𝑆𝑆𝑁𝑛𝑒𝑤 ; 𝑆𝑆𝑁new × check ∈ [𝑆𝑆𝐿new × check, 𝑆𝑆𝑈new × check], and 

𝑆𝑆𝑁𝐸 = 𝑆𝑆𝑁𝑇 − 𝑆𝑆𝑁𝑇𝑟(adj) − 𝑆𝑆𝑁𝑅(unadj) − 𝑆𝑆𝑁𝐶(unadj). 
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Neutrosophic mean squares for all source of variations are obtained in the ranges of the form [𝑀𝑆𝐿(.), 𝑀𝑆𝑈(.)]. 

Based on the calculated MSEs, the neutrosophic test statistics 𝐹𝑁 are: 

𝐹𝑁𝑇𝑟(adj) =
𝑀𝑆𝑁𝑇𝑟(adj)

𝑀𝑆𝑁𝐸
; 𝐹𝑁𝑇𝑟(adj) ∈ [𝐹𝐿𝑇𝑟(adj), 𝐹𝑈𝑇𝑟(adj)],  

𝐹𝑁𝑅(adj) =
𝑀𝑆𝑁𝑅(adj)

𝑀𝑆𝑁𝐸
; 𝐹𝑁𝑅(adj) ∈ [𝐹𝐿𝑅(adj), 𝐹𝑈𝑅(adj)],  

𝐹𝑁𝐶(adj) =
𝑀𝑆𝑁𝐶(adj)

𝑀𝑆𝑁𝐸
; 𝐹𝑁𝐶(adj) ∈ [𝐹𝐿𝐶(adj), 𝐹𝑈𝐶(adj)],  

𝐹𝑁𝐶ℎ𝑒𝑐𝑘 =
𝑀𝑆𝑁𝐶ℎ𝑒𝑐𝑘

𝑀𝑆𝑁𝐸
; 𝐹𝑁𝐶ℎ𝑒𝑐𝑘 ∈ [𝐹𝐿𝐶ℎ𝑒𝑐𝑘 , 𝐹𝑈𝐶ℎ𝑒𝑐𝑘],  

𝐹𝑁𝑛𝑒𝑤 =
𝑀𝑆𝑁𝑛𝑒𝑤

𝑀𝑆𝑁𝐸
; 𝐹𝑁𝑛𝑒𝑤 ∈ [𝐹𝐿𝑛𝑒𝑤 , 𝐹𝑈𝑛𝑒𝑤],  

𝐹𝑁new and new × ch =
𝑀𝑆𝑁new and new × ch

𝑀𝑆𝑁𝐸
; 𝐹𝑁new and new × ch ∈ [𝐹𝐿new and new × ch, 𝐹𝑈new and new × ch], and 

𝐹𝑁new × check =
𝑀𝑆𝑁new × check

𝑀𝑆𝑁𝐸
; 𝐹𝑁new × check ∈ [𝐹𝐿new × check, 𝐹𝑈new × check]. 

The neutrosophic form of 𝐹𝑁 is 𝐹𝑁 = 𝐹𝐿 + 𝐹𝑈𝐼𝐹𝑁
; 𝐼𝐹𝑁

∈ [𝐼𝐹𝐿
, 𝐼𝐹𝑈

], where 𝐹𝐿 and 𝐹𝑈𝐼𝐹𝑁
 are determinate and 

indeterminate parts of each proposed test. This test reduces to a test under classic statistics if 𝐼𝐹𝑁
 = 0. 

3.4. Neutrosophic Hypotheses and Decision Rules 

In order to test the rows, columns, checks, and new treatments, the null and alternative hypotheses are as 

follows, respectively: 

𝐻𝑁0: 𝛼𝑁𝑖 = 0  v𝑠  𝐻𝑁1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛼𝑁𝑖 ≠ 0, 𝑖 = 1. 2. , , , . 𝑏, 

𝐻𝑁0: 𝛽𝑁𝑗 = 0  v𝑠  𝐻𝑁1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽𝑁𝑗 ≠ 0, 𝑗 = 1. 2. , , , . 𝑏, 

𝐻𝑁0: 𝜏𝑁𝑞𝑘 = 0  v𝑠  𝐻𝑁1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝜏𝑁𝑞𝑘 ≠ 0, 𝑘 = 1. 2. , , , . 𝑏, 

𝐻𝑁0: 𝜏𝑁𝑙𝑖𝑗𝑔 = 0  v𝑠  𝐻𝑁1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝜏𝑁𝑙𝑖𝑗𝑔 ≠ 0, 𝑔 = 1. 2. , , , . 𝑛(𝑙𝑖𝑗). 

The null hypothesis does not reject if 𝑚𝑖𝑛{𝑝𝑁 − 𝑣𝑎𝑙𝑢𝑒} > 𝛼, where 𝛼 is a level of significance. Meanwhile, 

we reject the null hypothesis if 𝑚𝑎𝑥{𝑝𝑁 − 𝑣𝑎𝑙𝑢𝑒} ≤ 𝛼. 

All the above testing process are summarized in the NANOVA Tables 1 and 2 for the NALSD under NS. 

Table 1 NANOVA Table (A) for NALSD 

Sources of variation Ndf NSS NMS 𝑭𝑵-value 

Rows (unadj) 𝑏 − 1 𝑆𝑆𝑁𝐵(unadj) 
𝑆𝑆𝑁𝑅(unadj)

𝑏 − 1
  

Columns (unadj) 𝑏 − 1 𝑆𝑆𝑁𝐵(unadj) 
𝑆𝑆𝑁𝐶(unadj)

𝑏 − 1
  

Treatments (adj) 𝑏 + v − 1 𝑆𝑆𝑁𝑇𝑟(adj) 
𝑆𝑆𝑁𝑇𝑟(adj)

𝑏 + v − 1
 

𝑀𝑆𝑁𝑇𝑟(adj)

𝑀𝑆𝑁𝐸

 

    Checks 𝑏 − 1 𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘 
𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘

𝑏 − 1
 

𝑀𝑆𝑁𝐶ℎ𝑒𝑐𝑘

𝑀𝑆𝑁𝐸

 

    New and New × Check v 𝑆𝑆𝑁new and new × ch 
𝑆𝑆𝑁new and new × ch

v
 

𝑀𝑆𝑁new and new × ch

𝑀𝑆𝑁𝐸

 

Error (𝑏 − 1)(𝑏 − 2) 𝑆𝑆𝑁𝐸  
𝑆𝑆𝑁𝐸

(𝑏 − 1)(𝑏 − 2)
  

Total 𝑛 − 1 𝑆𝑆𝑁𝑇    

Table 2 NANOVA Table (B) for NALSD 

Sources of variation Ndf NSS NMS 𝑭𝑵-value 
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Rows (adj) 𝑏 − 1 𝑆𝑆𝑁𝐵(adj) 
𝑆𝑆𝑁𝑅(adj)

𝑏 − 1
 

𝑀𝑆𝑁𝑅(adj)

𝑀𝑆𝑁𝐸

 

Columns (adj) 𝑏 − 1 𝑆𝑆𝑁𝐵(adj) 
𝑆𝑆𝑁𝐶(adj)

𝑏 − 1
 

𝑀𝑆𝑁𝐶(adj)

𝑀𝑆𝑁𝐸

 

Treatments (unadj) 𝑐 + v − 1 𝑆𝑆𝑁𝑇𝑟(unadj) 
𝑆𝑆𝑁𝑇𝑟(unadj)

𝑐 + v − 1
  

    Checks 𝑐 − 1 𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘 
𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘

𝑐 − 1
 

𝑀𝑆𝑁𝐶ℎ𝑒𝑐𝑘

𝑀𝑆𝑁𝐸

 

    New treatments v − 1 𝑆𝑆𝑁𝑛𝑒𝑤 
𝑆𝑆𝑁𝑛𝑒𝑤

v − 1
 

𝑀𝑆𝑁𝑛𝑒𝑤

𝑀𝑆𝑁𝐸

 

    New × Check 1 𝑆𝑆𝑁new × check 
𝑆𝑆𝑁new × check

1
 

𝑀𝑆𝑁new × check

𝑀𝑆𝑁𝐸

 

Error (𝑏 − 1)(𝑏 − 2) 𝑆𝑆𝑁𝐸  
𝑆𝑆𝑁𝐸

(𝑏 − 1)(𝑏 − 2)
  

Total 𝑛 − 1 𝑆𝑆𝑁𝑇    

4. Numerical Examples and Simulation 

In this section, the performance of the proposed design is numerically assessed by an example and a 

simulation study. For assessing the efficiency of the proposed methods, the proposed tests 𝐹𝑁 ∈ [𝐹𝐿 , 𝐹𝑈] of 

the proposed design under NS are calculated and compared with the existing tests under classic statistics.  

4.1. Numerical Example 

In this example, we have generated neutrosophic data for NALSD. Five neutrosophic check treatments 

named A, B, C, D and E, and 50 neutrosophic new treatments, denoted by 1,2, . . . ,50, are arranged in an 

augmented Latin square with 5 rows and 5 columns. The neutrosophic data are given in Table 5.  

Using the computational software R, we can obtain neutrosophic data randomly for this example by 

running the following code 

 

y_L<-rnorm(75,40,10) 

z<-length(y_L) 

I<-rnorm(75,3,0.5) 

y_U<-c() 

for(i in 1:z){ 

 y_U[i]<-y_L[i]+I[i]} 

We applied the proposed method to calculate 𝐹𝑁-tests, where 𝐹𝑁 ∈ [𝐹𝐿, 𝐹𝑈]. The corresponding NANOVA 

results for the NALSD are presented in Tables 3 and 4. 

4.2. Simulation Study 

This section evaluates the quality of the proposed F test for NALSD using simulated data from the Monte 

Carlo (MC) procedure for the proposed model (1). In this study, MC simulations have been performed 

10,000 times. The data have been generated using neutrosophic normal standard distribution. Furthermore, 

the neutrosophic variances have been assumed to be homogeneous, and the NALSDs are balanced. Also, 

to simulate type I error, the significance levels of 0.05 and 0.01 have been chosen as the initial values. 

Moreover, it has been assumed that the treatments all have zero mean under the null hypothesis. It has  

Table 3 ANOVA Table (A) for the NALSD 
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Sources of variation Ndf NSS NMS 𝐹𝑁 Neutrosophic form 𝐹𝑁 𝑝𝑁-value 

Rows (unadj) 4 [373.906, 409.200] [93.476, 102.300]    

Columns (unadj) 4 [355.476, 347.226] [88.869, 86.806]    

Treatments (adj) 54 [6312.786, 6486.414] [116.903, 120.119] [1.054,1.062] 1.054 +  1.062𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0, 0.007] [0.493, 0.486] 

    Checks 4 [163.869, 181.964] [40.967, 45.491] [0.369,0.402] 0.369 +  0.402𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0, 0.082] [0.826, 0.804] 

    New and New × Check 50 [6148.917, 6304.450] [122.978, 126.089] [1.109,1.115] 1.109 +  1.115𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0, 0.005] [0.449, 0.444] 

Error 12 [1331.077, 1357.583] [110.923, 113.132]    

Total 74 [8373.244, 8600.422]     

Table 4 ANOVA Table (B) for the NALSD 

Sources of variation Ndf NSS NMS 𝐹𝑁 Neutrosophic form 𝐹𝑁 𝑝𝑁-value 

Rows (adj) 4 [591.937, 613.179] [147.984, 153.295] [1.334,1.355] 1.334 + 1.355𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0, 0.015] [0.313, 0.306] 

Columns (adj) 4 [193.643, 198.487] [48.411, 49.622] [0.436,0.439] 0.436 + 0.439𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0, 0.007] [0.780, 0.778] 

Treatments (unadj) 54 [6256.587, 6431.174] [115.863, 119.096]    

    Checks 4 [163.869, 181.964] [40.967, 45.491] [0.369,0.402] 0.369 +  0.402𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0, 0.082] [0.826, 0.804] 

    New treatments 49 [6085.317, 6239.574] [124.190, 127.338] [1.120,1.126] 1.120 +  1.126𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0, 0.005] [0.440, 0.436] 

    New × Check 1 [7.401, 9.637] [7.401, 9.637] [0.067,0.085] 0.067 +  0.085𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0,0.212] [0.801, 0.775] 

Error 12 [1331.077, 1357.583] [110.923, 113.132]    

Total 74 [8373.244, 8600.422]     

been compared the significance levels and power of the test for the proposed test with the existing test 

under classic statistics.  

To calculate the neutrosophic empirical Type I error rate and the test power for an MC experiment; the 

following steps need to be completed: 

MC simulation for computing 𝜶𝐄𝐦𝐩𝐢𝐫𝐢𝐜𝐚𝐥 

Step 1: We generate the random sample 𝑥𝑁1
(𝑖)

, 𝑥𝑁2
(𝑖)

, . . . , 𝑥𝑁𝑛
(𝑖)

 from the neutrosophic normal standard 

distribution under 𝐻𝑁0, 𝑖 = 1,2, … ,10000. 

Step 2: We compute the 𝐹𝑁𝑖-test under 𝐻𝑁0. 

Step 3: We record the results by recording 𝐼𝑁𝑖 = 1 when the 𝐻𝑁0 is rejected, and 𝐼𝑁𝑖 = 0 otherwise. 

Step 4: We compute the ratio 
1

10000
∑ 𝐼𝑁𝑖

10000
𝑖=1  and take it as 𝛼Empirical. 

 

MC simulation for computing 𝑷𝒐𝒘𝒆𝒓𝑬𝒎𝒑𝒊𝒓𝒊𝒄𝒂𝒍 

Step 1: We generate the random sample 𝑥𝑁1
(𝑖)

, 𝑥𝑁2
(𝑖)

, . . . , 𝑥𝑁𝑛
(𝑖)

 from the neutrosophic normal standard 

distribution under 𝐻𝑁1, 𝑖 = 1,2, … ,10000. For instance, (𝜇𝑁1, 𝜇𝑁2, 𝜇𝑁3, 𝜇𝑁4) = (1,2,3,4). 

Step 2: We compute the 𝐹𝑁𝑖-test under 𝐻𝑁1. 

Step 3: We record the results by recording 𝐼𝑁𝑖 = 1 when the 𝐻𝑁1 is rejected, and 𝐼𝑁𝑖 = 0 otherwise. 

Step 4: We compute the ratio 
1

10000
∑ 𝐼𝑁𝑖

10000
𝑖=1  and take it as 𝑃𝑜𝑤𝑒𝑟𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 . 
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Table 5 Data for NALSD 

Row 
Column 

1 2 3 4 5 

1 

C 19 37 44 8 A 25 B 35 E 2 26 10 D 24 

[41.82, 
44.92] 

[39.79, 
43.76] 

[36.57, 
39.68] 

[25.12, 
28.5] 

[28.33, 
31.23] 

[46.65, 
50.38] 

[37.95, 
41.12] 

[35.98, 
38.8] 

[44.6, 
47.91] 

[35.84, 
38.27]  

[42.52, 
45.4] 

[33.44, 
36.42] 

[32.99, 
36.1] 

[31.88, 
34.88] 

[26.79, 
29.21] 

2 
46 12 E 39 C 4 A 16 11 27 D 28 5 45 B 

[36.41, 
39.49] 

[47.62, 
50.68] 

[32.62, 
36.32] 

[28.09, 
31.2] 

[55.38, 
58.39] 

[44.2, 
47.73] 

[38.73, 
42.47] 

[60.19, 
63.64] 

[41.38, 
44.3] 

[38.9, 
41.03] [38, 41.06] 

[36.38, 
39.33] 

[45.34, 
48.56] 

[33.31, 
36.51] 

[31.93, 
34.42] 

3 
34 D 21 15 1 E C 42 36 7 B 32 20 38 A 

[39.22, 
41.81] [36, 38.08] 

[32.41, 
36.03] 

[39.74, 
42.45] 

[20.84, 
23.21] [30, 32.73] 

[36.74, 
39.25] 

[29.98, 
33.29] 

[39.55, 
42.18] 

[39.95, 
42.29] 

[20.34, 
22.76] 

[38.65, 
40.58] 

[36.98, 
40.51] 

[49.72, 
52.26] 

[46.27, 
50.09] 

4 
17 B 6 D 13 31 E 30 9 22 A 41 C 49 33 

[47.01, 
49.78] 

[49.68, 
52.08] 

[11.91, 
14.94] 

[34.69, 
37.77] 

[53.81, 
57.21] 

[52.44, 
56.24] 

[22.18, 
24.44] 

[40.75, 
43.62] 

[36.94, 
39.56] 

[38.69, 
41.36] 

[29.62, 
33.42] 

[51.11, 
54.6] 

[17.42, 
20.22] 

[33.59, 
36.65] 

[27.33, 
30.05] 

5 

A 23 43 18 48 B 47 D 29 3 50 C 40 E 14 

[33.52, 
36.34] 

[19.12, 
22.91] [36.9, 39.8] 

[11.39, 
14.4] 

[63.66, 
66.76] 

[44.54, 
47.56] 

[43.05, 
45.73] 

[48.56, 
51.31] 

[43.98, 
47.66] 

[49.46, 
52.71] 

[56.28, 
60.34] 

[52.67, 
55.82] 

[17.73, 
19.86] 

[45.29, 
48.38] 

[43.91, 
47.75] 

 
Table 6 Simulation results for NALSD with parameters (𝑏 = 4, v = 32, 𝑛 = 48) for Check treatment means (𝜇𝑁1, 𝜇𝑁2, 𝜇𝑁3, 𝜇𝑁4) and different values of new 

treatments (𝜇𝑁𝑖 = 0, 𝜇𝑁𝑗 = 0, 𝜇𝑁𝑘 = 1, 𝜇𝑁𝑙 = 2), 𝑖 = 1, . . . ,10, 𝑗 = 11, … , 20, 𝑘 = 21, . . . ,30, 𝑙 = 31, … , 40. 

Test 𝛼 
Mean 
𝛼Empirical 

Mean 𝑃𝑜𝑤𝑒𝑟𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙    
𝛿1 = (0,1,1,2) 𝛿2 = (1,2,2,3) 𝛿3 = (1,1,3,3) 𝛿4 = (0,1,2,3) 𝛿5 = (0,1,3,4) 𝛿6 = (0,3,4,4) 𝛿7 = (0,3,4,5) 𝛿8 = (0,2,4,6) 

NALSD 
0.01 [0.0088, 0.0093] [0.0412,0.0420] [0.0688, 0.0734] [0.0840, 0.0905] [0.1072, 0.1188] [0.1314, 0.1502] [0.2130, 0.2366] [0.2821, 0.3144] [0.3514, 0.3940] 

0.05 [0.0476, 0.0477] [0.1647, 0.1800] [0.2463, 0.2732] [0.2977, 0.3203] [0.3495, 0.3857] [0.4202, 0.4550] [0.5702, 0.6135] [0.6696, 0.7036] [0.7493, 0.7884] 

 
Table 7 Simulation results for NALSD with parameters (𝑏 = 5, v = 50, 𝑛 = 75) for Check treatment means (𝜇𝑁1, 𝜇𝑁2, 𝜇𝑁3, 𝜇𝑁4, 𝜇𝑁5) and different values of 

new treatments (𝜇𝑁𝑖 = 0, 𝜇𝑁𝑗 = 0, 𝜇𝑁𝑘 = 1, 𝜇𝑁𝑙 = 1, 𝜇𝑁𝑢 = 2),𝑖 = 1, . . . ,10, 𝑗 = 11, … , 20, 𝑘 = 21, . . . ,30, 𝑙 = 31, … , 40, 𝑢 = 41, … ,50. 

Test 𝜶 
Mean 
𝛼Empirical 

Mean 𝑃𝑜𝑤𝑒𝑟𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙   

𝛿1 = (0,0,1,1,1) 𝛿2 = (0,1,1,2,2) 𝛿3 = (0,1,2,2,2) 𝛿4 = (1,1,2,2,3) 𝛿5 = (2,2,3,3,3) 𝛿6 = (2,3,3,3,4) 𝛿7 = (0,1,3,4,4) 𝛿8 = (0,2,4,5,6) 

NALSD 
0.01 [0.0094,0.0099] [0.0581,0.0683] [0.0820,0.0980] [0.0980, 0.1207] [0.1159, 0.1442] [0.2317, 0.2865] [0.3651, 0.4467] [0.4485, 0.5319] [0.8435, 0.9010] 

0.05 [0.0485,0.0494] [0.2006, 0.2314] [0.2668, 0.3080] [0.2975, 0.3495] [0.3616, 0.4112] [0.5460, 0.6190] [0.7164, 0.7826] [0.7885, 0.8474] [0.9845, 0.9945] 
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Figure 1 Power curves of the new and existing tests for NALSD with parameters (𝑏 = 4, v = 32, 𝑛 = 48) 

 
Figure 2 Power curves of the new and existing tests for NALSD with parameters (𝑏 = 5, v = 50, 𝑛 = 75) 

The power of the test for the treatment effects through the NAN was calculated for neutrosophic data. The 

results are given in Tables 6 and 7 for NALSD with (𝑏 = 4, v = 32, 𝑛 = 48) and (𝑏 = 5, v = 50, 𝑛 = 75), for 

different sets of neutrosophic check means, (𝜇𝑁1, 𝜇𝑁2, 𝜇𝑁3, 𝜇𝑁4) and (𝜇𝑁1, 𝜇𝑁2, 𝜇𝑁3, 𝜇𝑁4, 𝜇𝑁5). The power of 

the test for the proposed and existing approaches’ performance in Tables 6 and 7 is displayed in Figures 1 

and 2.  

Without loss of generality, the powers were plotted in ascending order. Evidently, the power of the test for 

the indeterminate part is higher than the power for the determinate part; so, the proposed approach 

performs better than the existing one in testing the treatment effects.  
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5. Comparative Study 

As mentioned earlier, the proposed design is a generalization of the augmented Latin square design under 

classical statistics. The proposed 𝐹𝑁-test for NALSD reduces to the existing 𝐹-test for ALSD when all 

observations in the data are exact, determined and certain. Throughout this section, the proposed 𝐹𝑁-test 

is compared to the existing F-test in terms of the measure of indeterminacy, accuracy, flexibility, and 

information. For the purpose of comparison, the neutrosophic form of the 𝐹𝑁-test for the proposed design 

of the effects of treatments can be expressed as follows:  
1.054 +  1.062𝐼𝐹𝑁

; 𝐼𝐹𝑁
∈ [0, 0.007] 

Note that the neutrosophic form can be reduced to a statistic under classical statistics when 𝐼𝐹𝑁
= 0; So, the 

first part of the neutrosophic form 1.054 describes the value of the test statistic under classical statistics. 

The second part 1.062𝐼𝐹𝑁
 illustrates the indeterminate portion of the neutrosophic form. Additionally, this 

test has a measure of indeterminacy of 0.007. According to the proposed test, the values of the 𝐹𝑁-test, 𝐹𝑁 ∈

[𝐹𝐿 , 𝐹𝑈] are flexible and lie in the indeterminate interval that is 𝐹𝑁 ∈ [1.054,1.062]. Based on the proposed 

test, it is expected that 𝐹𝑁 ∈ [𝐹𝐿 , 𝐹𝑈] may range from 1.054 to 1.062 under an uncertain environment. This 

range distinguishes the proposed test from the existing test under classical statistics, which is based on the 

determined value, which does not appropriate under uncertain conditions. Additionally, this test provides 

additional information about the testing approach when indeterminacy is present; namely, it provides 

additional information about the testing procedure which is the measure of indeterminacy. To illustrate 

the numerical example, for testing 𝐻𝑁0 (means of treatment are equal), the probability that it will be 

accepted is 0.95, the probability that it will be rejected when true is 0.05, and the probability of uncertainty 

about it is 0.007.  

Moreover, Tables 6 and 7 provide a comparative evaluation of the relative effectiveness of the proposed 

test in terms of the 𝛼Empirical and 𝑃𝑜𝑤𝑒𝑟𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 . The results indicate that the 𝛼Empirical of the proposed test 

is close to 0.05 under NS. In addition, Figures 1 and 2 indicate that the curves of the power of the test for 

the indeterminate part are higher than those for the determinate part. This emphasizes that the 

indeterminate part plays an important role in uncertain environments. According to the results of the 

study, the proposed test for NALSD under NS is more informative, accuracy, and flexible than the test for 

ALSD under classical statistics. 

 

6. Conclusion  

This article introduces neutrosophic augmented Latin square design as a generalization to the existing 

augmented Latin square design. In this context, the statistical model and a NANOVA approach have been 

presented for the proposed design to deal with neutrosophic hypotheses and the decision rule about the 

treatment effects in the design. Besides, the performance of the proposed design has been evaluated using 

a numerical example and a simulation study. According to the results, the proposed design led to more 

accuracy in analyzing practical problems in uncertainty. It is conjectured that, based on the proposed 

design, many new investigations will be carried out in the future. Moreover, in practical experiments using 

the proposed design with uncertain data will be analyzed more precisely. 
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Abstract  

 
In this study, a Neutrosophic technique and arithmetic ranking operations are employed to group decision-

making problems with many qualities. The outcome is contrasted with the current approach. When compared to the 

current method, the proposed method is much more manageable and useful for solving group decision making 

problems involving several qualities. All of the information provided by the decision makers (DMs) in the 

Neutrosophic Multi-Attribute Group Decision Making (NMAGDM) problems.  

Keywords: Neutrosophic possibility mean, Neutrosophic operator. 

1.Introduction  

 

Employed the TOPSIS method's expansion [1]. [2] and [3] created a method for choosing configuration items 

by using the software development. The aforesaid problem (FMAGDM), the aggregating function known as fuzzy 

weighted minkowski distance is utilised, as it was first developed by [4]. [6] employed a maximising deviation 

approach to tackle the aforesaid problem (FMAGDM) in a linguistic context. [7] approach of analysis is ad hoc. [8] 

have presented a computational coordination approach to resolve the above method (FMAGDM). [9] demonstrate 

how the multi-granularity linguistic method (FMAGDM) is employed to tackle the aforementioned issue. [10] 

Different distance values have been measured using non-homogeneous information, and a new method (FMAGDM) 

has been created to overcome the aforesaid problem. The above methods, however, all rely on type-1 fuzzy sets. 

[11] was the first to suggest that type-1 fuzzy sets may be extended to type-2 fuzzy sets. In [12] introduction, it is 

said that type-2 fuzzy sets were able to resolve more uncertainty than type-1 fuzzy sets by using type-1 fuzzy sets' 

clear membership values. [13] and utilised in many practical applications is presented in [14],[15] and [16]. This is 

due to the complexity of employing type-2 fuzzy sets. [17] work, a brand-new approach known as the FMAGDM—

a linguistic weighted average method—is applied to interval type-2 fuzzy sets in order to tackle the aforementioned 

issue. According to [18] the FMAGDM is resolved utilising the ranking approach and arithmetic operations in 

interval type-2 fuzzy sets. [19] the TOPSIS approach is also employed to solve the FMAGDM using interval type-2 

mailto:Kanchana.anbazhagan@gmail.com
mailto:broumisaid78@gmail.com
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fuzzy sets. Even if the attribute weights are only partially known, [20] explanation of how the interval type-2 fuzzy 

set is utilised to characterise the attribute values is comprehensive. [21] presented a ranking approach that is used in 

an interval type-2 fuzzy set to resolve the FMAGDM method. [22],[23] and [24] developed a novel approach to 

solve the FMAGDM utilising a trapezoidal interval type-2 fuzzy set. [25] explanation of the possibility degree 

approach utilised to solve the FMAGDM problem. In our daily life the multiple criteria decision making problem 

achieved a vital role and it was elaborately researched by many scholars [26],[27] and [28] were used gained and 

lost dominance score method [29] and [30]. But the information they were given was incomplete while using the 

fuzzy set and it is necessary to investigate further to solve the group decision making problem well. The highlights 

of the paper is  by improving the possibility degree, a better solution has been given compare to the existing method 

and the accuracy of the rank is increased in the proposed method compare to the existing method. Neutrosophic 

multicriteria is a decision-making technique that combines a number of criteria or elements, sometimes with sparse 

or ambiguous information, in order to arrive at a conclusion [31]. The expression of the students is assessed using 

real-time data obtained by taking pictures of the students in relation to various themes using a mathematical model 

built using a double bounded rough neutrosophic set [32]. The primary medical domains that NIP can produce for 

image segmentation from DICOM photos are mentioned in the suggested study. It has been discovered to be a better 

approach because of how it manages unclear information [33]. With the exception of placing more emphasis on 

Neutrosophic voice recognition, existing methods are utilised.  the development of formulas that compute, classify, 

or distinguish between various stress conditions. The objectives of this research are to comprehend stress and 

develop methods to mitigate its impacts on voice recognition and human-computer interaction systems [34]. In this 

article, we offer an approach for estimating a system's anticipated expenses under various circumstances. The 

trapezoidal bipolar neutrosophic numbers are used to manage the uncertainties that are present in the various model 

parameters [35]. The dynamic programming method is used in this article to address complex group decision-

making scenarios where the preference data is represented by linguistic variables. The complexity and ambiguity of 

reality make it challenging for decision-makers to draw judgements using precise data [36]. The advantage of the 

method is that it may be handled without a lower membership function for falsehood, which allows for significant 

calculation time savings [37]. In order to address the traffic issue, this paper attempted to give a general summary of 

each method. The suggested study is anticipated to be beneficial to numerous researchers studying traffic flow, 

traffic accident diagnostics, and its hybridization in the future [38]. This study demonstrates that, in contrast to 

standard regression models, neurosophic multiple regression is the most effective model for uncertainty [39]. The 

triangular interval type-2 fuzzy soft weighted arithmetic operator (TIT2FSWA) with the requisite mathematical 

features has been proposed in this research. Additionally, the proposed methodology has been applied to a decision-

making problem for profit analysis [40]. For the purpose of demonstrating the originality of the suggested graphical 

representation, the proposed distance measure and several trapezoidal fuzzy neutrosophic number forms have been 

given out [41]. In this study, we will write the issue text suitably for such a situation before building the suitable 

mathematical model to achieve the lowest inspection cost possible [42]. The elements of Industry 5.0 are considered 
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in this framework. By first examining the pertinent experts and body of published research, it is possible to discover 

the most crucial associated aspects and tactics [43]. For the region's economic and environmental wellbeing, it is 

crucial to reduce HCWT through suitable treatment.  This research develops a novel multi-criteria decision-making 

strategy to address single-valued neutrosophic group decision-making problems with lacking weight data. [44]. 

2. Preliminary: 

Definition 2.1: 

The upper and lower trapezoidal Neutrosophic set is defined as 

(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = ((𝑇𝑁1
𝑈 , 𝐼𝑁1

𝑈 , 𝐹𝑁1
𝑈), (𝑇𝑁1

𝐿 , 𝐼𝑁1
𝐿 , 𝐹𝑁1

𝐿))

= (((𝑇𝑎11
𝑈 , 𝐼𝑎11

𝑈 , 𝐹𝑎11
𝑈 ), (𝑇𝑎12

𝑈 , 𝐼𝑎12
𝑈 , 𝐹𝑎12

𝑈 ), (𝑇𝑎13
𝑈 , 𝐼𝑎13

𝑈 , 𝐹𝑎13
𝑈 ), (𝑇𝑎14

𝑈 , 𝐼𝑎14
𝑈 , 𝐹𝑎14

𝑈 ), (𝑇ℎ1
𝑈 , 𝐼ℎ1

𝑈 , 𝐹ℎ1
𝑈)), 

((𝑇𝑎11
𝐿 , 𝐼𝑎11

𝐿 , 𝐹𝑎11
𝐿 ), (𝑇𝑎12

𝐿 , 𝐼𝑎12
𝐿 , 𝐹𝑎12

𝐿 ), (𝑇𝑎13
𝐿 , 𝐼𝑎13

𝐿 , 𝐹𝑎13
𝐿 ), (𝑇𝑎14

𝐿 , 𝐼𝑎14
𝐿 , 𝐹𝑎14

𝐿 ), (𝑇ℎ1
𝐿 , 𝐼ℎ1

𝐿 , 𝐹ℎ1
𝐿))) 

(1) 

Definition 2.2: 

The upper and lower triangular Neutrosophic  set is defined as 

(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = ((𝑇𝑁1
𝑈 , 𝐼𝑁1

𝑈 , 𝐹𝑁1
𝑈), (𝑇𝑁1

𝐿 , 𝐼𝑁1
𝐿 , 𝐹𝑁1

𝐿))

= (((𝑇𝑎11
𝑈 , 𝐼𝑎11

𝑈 , 𝐹𝑎11
𝑈 ), (𝑇𝑎12

𝑈 , 𝐼𝑎12
𝑈 , 𝐹𝑎12

𝑈 ), (𝑇𝑎12
𝑈 , 𝐼𝑎12

𝑈 , 𝐹𝑎12
𝑈 ), (𝑇𝑎13

𝑈 , 𝐼𝑎13
𝑈 , 𝐹𝑎13

𝑈 ), (𝑇ℎ1
𝑈 , 𝐼ℎ1

𝑈 , 𝐹ℎ1
𝑈)), 

((𝑇𝑎11
𝐿 , 𝐼𝑎11

𝐿 , 𝐹𝑎11
𝐿 ), (𝑇𝑎12

𝐿 , 𝐼𝑎12
𝐿 , 𝐹𝑎12

𝐿 ), (𝑇𝑎12
𝐿 , 𝐼𝑎12

𝐿 , 𝐹𝑎12
𝐿 ), (𝑇𝑎13

𝐿 , 𝐼𝑎13
𝐿 , 𝐹𝑎13

𝐿 ), (𝑇ℎ1
𝐿 , 𝐼ℎ1

𝐿 , 𝐹ℎ1
𝐿))) 

(2) 

Definition 2.3: 

The additive operation of two upper and lower trapezoidal Neutrosophic  set is defined as 

(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1)⨁(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2)

= ((𝑇𝑁1
𝑈 , 𝐼𝑁1

𝑈 , 𝐹𝑁1
𝑈), (𝑇𝑁1

𝐿 , 𝐼𝑁1
𝐿 , 𝐹𝑁1

𝐿))⨁((𝑇𝑁2
𝑈 , 𝐼𝑁2

𝑈 , 𝐹𝑁2
𝑈), (𝑇𝑁2

𝐿 , 𝐼𝑁2
𝐿 , 𝐹𝑁2

𝐿))

= (((𝑇𝑎11
𝑈 , 𝐼𝑎11

𝑈 , 𝐹𝑎11
𝑈 ), (𝑇𝑎12

𝑈 , 𝐼𝑎12
𝑈 , 𝐹𝑎12

𝑈 ), (𝑇𝑎13
𝑈 , 𝐼𝑎13

𝑈 , 𝐹𝑎13
𝑈 ), (𝑇𝑎14

𝑈 , 𝐼𝑎14
𝑈 , 𝐹𝑎14

𝑈 ), (𝑇ℎ1
𝑈 , 𝐼ℎ1

𝑈 , 𝐹ℎ1
𝑈)), 

((𝑇𝑎11
𝐿 , 𝐼𝑎11

𝐿 , 𝐹𝑎11
𝐿 ), (𝑇𝑎12

𝐿 , 𝐼𝑎12
𝐿 , 𝐹𝑎12

𝐿 ), (𝑇𝑎13
𝐿 , 𝐼𝑎13

𝐿 , 𝐹𝑎13
𝐿 ), (𝑇𝑎14

𝐿 , 𝐼𝑎14
𝐿 , 𝐹𝑎14

𝐿 ), (𝑇ℎ1
𝐿 , 𝐼ℎ1

𝐿 , 𝐹ℎ1
𝐿)))

⊕ (((𝑇𝑎21
𝑈 , 𝐼𝑎21

𝑈 , 𝐹𝑎21
𝑈 ), (𝑇𝑎22

𝑈 , 𝐼𝑎22
𝑈 , 𝐹𝑎22

𝑈 ), (𝑇𝑎23
𝑈 , 𝐼𝑎23

𝑈 , 𝐹𝑎23
𝑈 ), (𝑇𝑎24

𝑈 , 𝐼𝑎24
𝑈 , 𝐹𝑎24

𝑈 ), (𝑇ℎ2
𝑈 , 𝐼ℎ2

𝑈 , 𝐹ℎ2
𝑈)), 
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((𝑇𝑎21
𝐿 , 𝐼𝑎21

𝐿 , 𝐹𝑎21
𝐿 ), (𝑇𝑎22

𝐿 , 𝐼𝑎22
𝐿 , 𝐹𝑎22

𝐿 ), (𝑇𝑎23
𝐿 , 𝐼𝑎23

𝐿 , 𝐹𝑎23
𝐿 ), (𝑇𝑎24

𝐿 , 𝐼𝑎24
𝐿 , 𝐹𝑎24

𝐿 ), (𝑇ℎ2
𝐿 , 𝐼ℎ2

𝐿 , 𝐹ℎ2
𝐿))) 

= ((((𝑇𝑎11
𝑈 − 𝑇𝑎21

𝑈 + 𝑇𝑎11
𝑈 ∗ 𝑇𝑎21

𝑈 ), (𝐼𝑎11
𝑈 ∗ 𝐼𝑎21

𝑈 ), (𝐹𝑎11
𝑈

∗ 𝐹𝑎21
𝑈 )), ((𝑇𝑎12

𝑈 − 𝑇𝑎22
𝑈 + 𝑇𝑎12

𝑈 ∗ 𝑇𝑎22
𝑈 ), (𝐼𝑎12

𝑈 ∗ 𝐼𝑎22
𝑈 ), (𝐹𝑎12

𝑈

∗ 𝐹𝑎22
𝑈 )), ((𝑇𝑎13

𝑈 − 𝑇𝑎23
𝑈 + 𝑇𝑎13

𝑈 ∗ 𝑇𝑎23
𝑈 ), (𝐼𝑎13

𝑈 ∗ 𝐼𝑎23
𝑈 ), (𝐹𝑎13

𝑈

∗ 𝐹𝑎23
𝑈 )), ((𝑇𝑎14

𝑈 − 𝑇𝑎24
𝑈 + 𝑇𝑎14

𝑈 ∗ 𝑇𝑎24
𝑈 ), (𝐼𝑎14

𝑈 ∗ 𝐼𝑎24
𝑈 ), (𝐹𝑎14

𝑈

∗ 𝐹𝑎24
𝑈 )), ((𝑇ℎ1

𝑈 − 𝑇ℎ2
𝑈 + 𝑇ℎ1

𝑈 ∗ 𝑇ℎ2
𝑈), (𝐼ℎ1

𝑈 ∗ 𝐼ℎ2
𝑈), (𝐹ℎ1

𝑈

∗ 𝐹ℎ2
𝑈))) , (((𝑇𝑎11

𝐿 − 𝑇𝑎21
𝐿 + 𝑇𝑎11

𝐿 ∗ 𝑇𝑎21
𝐿 ), (𝐼𝑎11

𝐿 ∗ 𝐼𝑎21
𝐿 ), (𝐹𝑎11

𝐿

∗ 𝐹𝑎21
𝐿 )), ((𝑇𝑎12

𝐿 − 𝑇𝑎22
𝐿 + 𝑇𝑎12

𝐿 ∗ 𝑇𝑎22
𝐿 ), (𝐼𝑎12

𝐿 ∗ 𝐼𝑎22
𝐿 ), (𝐹𝑎12

𝐿

∗ 𝐹𝑎22
𝐿 )), ((𝑇𝑎13

𝐿 − 𝑇𝑎23
𝐿 + 𝑇𝑎13

𝐿 ∗ 𝑇𝑎23
𝐿 ), (𝐼𝑎13

𝐿 ∗ 𝐼𝑎23
𝐿 ), (𝐹𝑎13

𝐿

∗ 𝐹𝑎23
𝐿 )), ((𝑇𝑎14

𝐿 − 𝑇𝑎24
𝐿 + 𝑇𝑎14

𝐿 ∗ 𝑇𝑎24
𝐿 ), (𝐼𝑎14

𝐿 ∗ 𝐼𝑎24
𝐿 ), (𝐹𝑎14

𝐿

∗ 𝐹𝑎24
𝐿 )), ((𝑇ℎ1

𝐿 − 𝑇ℎ2
𝐿 + 𝑇ℎ1

𝐿 ∗ 𝑇ℎ2
𝐿), (𝐼ℎ1

𝐿 ∗ 𝐼ℎ2
𝐿), (𝐹ℎ1

𝐿 ∗ 𝐹ℎ2
𝐿)))) 

(3)  

 

 

Definition 2.4: 

The multiplicative operation of two upper and lower trapezoidal Neutrosophic set is defined as 

(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1)⊗ (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2)

= ((𝑇𝑁1
𝑈 , 𝐼𝑁1

𝑈 , 𝐹𝑁1
𝑈), (𝑇𝑁1

𝐿 , 𝐼𝑁1
𝐿 , 𝐹𝑁1

𝐿))⊗ ((𝑇𝑁2
𝑈 , 𝐼𝑁2

𝑈 , 𝐹𝑁2
𝑈), (𝑇𝑁2

𝐿 , 𝐼𝑁2
𝐿 , 𝐹𝑁2

𝐿))

= (((𝑇𝑎11
𝑈 , 𝐼𝑎11

𝑈 , 𝐹𝑎11
𝑈 ), (𝑇𝑎12

𝑈 , 𝐼𝑎12
𝑈 , 𝐹𝑎12

𝑈 ), (𝑇𝑎13
𝑈 , 𝐼𝑎13

𝑈 , 𝐹𝑎13
𝑈 ), (𝑇𝑎14

𝑈 , 𝐼𝑎14
𝑈 , 𝐹𝑎14

𝑈 ), (𝑇ℎ1
𝑈 , 𝐼ℎ1

𝑈 , 𝐹ℎ1
𝑈)), 

((𝑇𝑎11
𝐿 , 𝐼𝑎11

𝐿 , 𝐹𝑎11
𝐿 ), (𝑇𝑎12

𝐿 , 𝐼𝑎12
𝐿 , 𝐹𝑎12

𝐿 ), (𝑇𝑎13
𝐿 , 𝐼𝑎13

𝐿 , 𝐹𝑎13
𝐿 ), (𝑇𝑎14

𝐿 , 𝐼𝑎14
𝐿 , 𝐹𝑎14

𝐿 ), (𝑇ℎ1
𝐿 , 𝐼ℎ1

𝐿 , 𝐹ℎ1
𝐿)))

⊗ (((𝑇𝑎21
𝑈 , 𝐼𝑎21

𝑈 , 𝐹𝑎21
𝑈 ), (𝑇𝑎22

𝑈 , 𝐼𝑎22
𝑈 , 𝐹𝑎22

𝑈 ), (𝑇𝑎23
𝑈 , 𝐼𝑎23

𝑈 , 𝐹𝑎23
𝑈 ), (𝑇𝑎24

𝑈 , 𝐼𝑎24
𝑈 , 𝐹𝑎24

𝑈 ), (𝑇ℎ2
𝑈 , 𝐼ℎ2

𝑈 , 𝐹ℎ2
𝑈)), 

((𝑇𝑎21
𝐿 , 𝐼𝑎21

𝐿 , 𝐹𝑎21
𝐿 ), (𝑇𝑎22

𝐿 , 𝐼𝑎22
𝐿 , 𝐹𝑎22

𝐿 ), (𝑇𝑎23
𝐿 , 𝐼𝑎23

𝐿 , 𝐹𝑎23
𝐿 ), (𝑇𝑎24

𝐿 , 𝐼𝑎24
𝐿 , 𝐹𝑎24

𝐿 ), (𝑇ℎ2
𝐿 , 𝐼ℎ2

𝐿 , 𝐹ℎ2
𝐿))) 

= ((((𝑇𝑎11
𝑈 ∗ 𝑇𝑎21

𝑈 ), (𝐼𝑎11
𝑈 ∗ 𝐼𝑎21

𝑈 ), (𝐹𝑎11
𝑈 ∗ 𝐹𝑎21

𝑈 )), ((𝑇𝑎12
𝑈 ∗ 𝑇𝑎22

𝑈 ), (𝐼𝑎12
𝑈 ∗ 𝐼𝑎22

𝑈 ), (𝐹𝑎12
𝑈 ∗ 𝐹𝑎22

𝑈 )), ((𝑇𝑎13
𝑈 ∗

𝑇𝑎23
𝑈 ), (𝐼𝑎13

𝑈 ∗ 𝐼𝑎23
𝑈 ), (𝐹𝑎13

𝑈 ∗ 𝐹𝑎23
𝑈 )), ((𝑇𝑎14

𝑈 ∗ 𝑇𝑎24
𝑈 ), (𝐼𝑎14

𝑈 ∗ 𝐼𝑎24
𝑈 ), (𝐹𝑎14

𝑈 ∗ 𝐹𝑎24
𝑈 )), ((𝑇ℎ1

𝑈 ∗ 𝑇ℎ2
𝑈), (𝐼ℎ1

𝑈 ∗

𝐼ℎ2
𝑈), (𝐹ℎ1

𝑈 ∗ 𝐹ℎ2
𝑈))) , (((𝑇𝑎11

𝐿 ∗ 𝑇𝑎21
𝐿 ), (𝐼𝑎11

𝐿 ∗ 𝐼𝑎21
𝐿 ), (𝐹𝑎11

𝐿 ∗ 𝐹𝑎21
𝐿 )), ((𝑇𝑎12

𝐿 ∗ 𝑇𝑎22
𝐿 ), (𝐼𝑎12

𝐿 ∗ 𝐼𝑎22
𝐿 ), (𝐹𝑎12

𝐿 ∗
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𝐹𝑎22
𝐿 )), ((𝑇𝑎13

𝐿 ∗ 𝑇𝑎23
𝐿 ), (𝐼𝑎13

𝐿 ∗ 𝐼𝑎23
𝐿 ), (𝐹𝑎13

𝐿 ∗ 𝐹𝑎23
𝐿 )), ((𝑇𝑎14

𝐿 ∗ 𝑇𝑎24
𝐿 ), (𝐼𝑎14

𝐿 ∗ 𝐼𝑎24
𝐿 ), (𝐹𝑎14

𝐿 ∗ 𝐹𝑎24
𝐿 )), ((𝑇ℎ1

𝐿 ∗

𝑇ℎ2
𝐿), (𝐼ℎ1

𝐿 ∗ 𝐼ℎ2
𝐿), (𝐹ℎ1

𝐿 ∗ 𝐹ℎ2
𝐿))))                                                                                       (4) 

Definition 2.5: 

The arithmetic operation of upper and lower trapezoidal Neutrosophic set is defined as 

𝑘(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = 𝑘((𝑇𝑁1
𝑈 , 𝐼𝑁1

𝑈 , 𝐹𝑁1
𝑈), (𝑇𝑁1

𝐿 , 𝐼𝑁1
𝐿 , 𝐹𝑁1

𝐿))

=

(

 
 
(
((𝑇𝑎11

𝑈 )𝑘 , (𝐼𝑎11
𝑈 )𝑘 , (𝐹𝑎11

𝑈 )𝑘), ((𝑇𝑎12
𝑈 )𝑘 , (𝐼𝑎12

𝑈 )𝑘 , (𝐹𝑎12
𝑈 )𝑘), ((𝑇𝑎13

𝑈 )𝑘 , (𝐼𝑎13
𝑈 )𝑘 , (𝐹𝑎13

𝑈 )𝑘),

((𝑇𝑎14
𝑈 )𝑘 , (𝐼𝑎14

𝑈 )𝑘 , (𝐹𝑎14
𝑈 )𝑘), ((𝑇ℎ1

𝑈)𝑘 , (𝐼ℎ1
𝑈)𝑘 , (𝐹ℎ1

𝑈)𝑘)
) ,

(
((𝑇𝑎11

𝐿 )𝑘 , (𝐼𝑎11
𝐿 )𝑘 , (𝐹𝑎11

𝐿 )𝑘), ((𝑇𝑎12
𝐿 )𝑘 , (𝐼𝑎12

𝐿 )𝑘 , (𝐹𝑎12
𝐿 )𝑘), ((𝑇𝑎13

𝐿 )𝑘 , (𝐼𝑎13
𝐿 )𝑘 , (𝐹𝑎13

𝐿 )𝑘),

((𝑇𝑎14
𝐿 )𝑘 , (𝐼𝑎14

𝐿 )𝑘 , (𝐹𝑎14
𝐿 )𝑘), ((𝑇ℎ1

𝐿)𝑘 , (𝐼ℎ1
𝐿)𝑘, (𝐹ℎ1

𝐿)𝑘)
) ,
)

 
 

 

(5) 

Definition 2.6: 

The  score function for Neutrosophic triangular set is given by 

�̇�∗(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) =
1

2
(1 + 𝑇𝐴(𝑥) − 2 ∗ 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥))                                                   (6)    

Definition 2.7: 

The proposed score function for Neutrosophic trapezoidal set is given by 

�̇̈�∗(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) =
1

2
(1 + 𝑛 ∗ 𝑇𝐴(𝑥) − 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥))                                                                  (7)   

Where 𝑛 represents number of terms in the matrices. 

If a single value Neutrosophic   number is (𝑇𝑁, 𝐼𝑁, 𝐹𝑁) = ((𝑇𝑁𝑈 , 𝐼𝑁𝑈 , 𝐹𝑁𝑈), (𝑇𝑁𝐿 , 𝐼𝑁𝐿 , 𝐹𝑁𝐿)), 

where(𝑇𝑁𝑈 , 𝐼𝑁𝑈 , 𝐹𝑁𝑈) is the upper Neutrosophic  member function and (𝑇𝑁𝐿 , 𝐼𝑁𝐿 , 𝐹𝑁𝐿) is the lower 

Neutrosophic  member function having the level set as (𝑇𝑁𝛼
𝑈 , 𝐼𝑁𝛼

𝑈 , 𝐹𝑁𝛼
𝑈) =

[(𝑇𝑁1
𝑈(𝛼), 𝐼𝑁1

𝑈(𝛼), 𝐹𝑁1
𝑈(𝛼)), (𝑇𝑁2

𝑈(𝛼), 𝐼𝑁2
𝑈(𝛼), 𝐹𝑁2

𝑈(𝛼))], 𝛼 ∈ [(0,0,0), (𝑇ℎ𝑈 , 𝐼ℎ𝑈 , 𝐹ℎ𝑈)] and 

(𝑇𝑁𝛽
𝐿 , 𝐼𝑁𝛽

𝐿 , 𝐹𝑁𝛽
𝐿) = [(𝑇𝑁1

𝐿(𝛽), 𝐼𝑁1
𝐿(𝛽), 𝐹𝑁1

𝐿(𝛽)), (𝑇𝑁2
𝐿(𝛽), 𝐼𝑁2

𝐿(𝛽), 𝐹𝑁2
𝐿(𝛽))], 𝛼 ∈ [(0,0,0), (𝑇ℎ𝐿 , 𝐼ℎ𝐿 , 𝐹ℎ𝐿)] 

where (𝑇ℎ𝑈 , 𝐼ℎ𝑈 , 𝐹ℎ𝑈) is the highest membership Neutrosophic  function of 𝑁𝑈 and (𝑇ℎ𝐿 , 𝐼ℎ𝐿 , 𝐹ℎ𝐿) is the lower 

membership Neutrosophic  function of 𝑁𝐿 . 
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Definition 2.8: 

The lower Neutrosophic  possibility mean for 𝑁 = (𝑁𝑈 , 𝑁𝐿) is given by 

(𝑇�̃�∗(𝑁), 𝐼�̃�∗(𝑁), 𝐹�̃�∗(𝑁)) = (∫ (𝑇𝑁1
𝑈(𝛼))

𝛼
𝑑𝛼 + ∫ (𝑇𝑁1

𝐿(𝛽))
𝛽
𝑑𝛽

𝑇ℎ𝐿

0
, ∫ (𝐼𝑁1

𝑈(𝛼))
𝛼
𝑑𝛼 +

𝐼ℎ𝑈

0

𝑇ℎ𝑈

0

∫ (𝐼𝑁1
𝐿(𝛽))

𝛽
𝑑𝛽

𝐼ℎ𝐿

0
, ∫ (𝐹𝑁1

𝑈(𝛼))
𝛼
𝑑𝛼 + ∫ (𝐹𝑁1

𝐿(𝛽))
𝛽
𝑑𝛽

𝐹ℎ𝐿

0

𝐹ℎ𝑈

0
)                                                                            (8) 

Where (𝑇�̃�∗(𝑁), 𝐼�̃�∗(𝑁),𝐹�̃�∗(𝑁)) is the arithmetic mean of members of the Neutrosophic  membership 

function.  

Definition 2.9: 

The upper Neutrosophic  possibility mean for (𝑇𝑁, 𝐼𝑁, 𝐹𝑁) = ((𝑇𝑁𝑈 , 𝐼𝑁𝑈 , 𝐹𝑁𝑈), (𝑇𝑁𝐿 , 𝐼𝑁𝐿 , 𝐹𝑁𝐿)) is given 

by 

(𝑇�̃�∗(𝑁), 𝐼�̃�∗(𝑁), 𝐹�̃�∗(𝑁)) = (∫ (𝑇𝑁2
𝑈(𝛼))

𝛼
𝑑𝛼 + ∫ (𝑇𝑁2

𝐿(𝛽))
𝛽
𝑑𝛽

𝑇ℎ𝐿

0
, ∫ (𝐼𝑁2

𝑈(𝛼))
𝛼
𝑑𝛼 +

𝐼ℎ𝑈

0

𝑇ℎ𝑈

0

∫ (𝐼𝑁2
𝐿(𝛽))

𝛽
𝑑𝛽

𝐼ℎ𝐿

0
, ∫ (𝐹𝑁2

𝑈(𝛼))
𝛼
𝑑𝛼 + ∫ (𝐹𝑁2

𝐿(𝛽))
𝛽
𝑑𝛽

𝐹ℎ𝐿

0

𝐹ℎ𝑈

0
)                                                                         (9) 

Where (𝑇�̃�∗(𝑁), 𝐼�̃�∗(𝑁), 𝐹�̃�∗(𝑁)) is the arithmetic mean of members of the Neutrosophic  membership 

function. 

Definition 2.100: 

The closed bounded interval of Neutrosophic  lower and upper mean value is given by the notation  

(𝑇�̃�(𝑁), 𝐼�̃�(𝑁), 𝐹�̃�(𝑁)) = [(𝑇�̃�∗(𝑁), 𝐼�̃�∗(𝑁), 𝐹�̃�∗(𝑁)) , (𝑇�̃�
∗(𝑁), 𝐼�̃�∗(𝑁), 𝐹�̃�∗(𝑁))]. 

Definition 2.11: 

Similarly, the Neutrosophic  mean value of (𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) and (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) is given by 

(𝑇�̃�(𝑁1), 𝐼�̃�(𝑁1), 𝐹�̃�(𝑁1)) = [(𝑇�̃�∗(𝑁1), 𝐼�̃�∗(𝑁1), 𝐹�̃�∗(𝑁1)) , (𝑇�̃�
∗(𝑁1), 𝐼�̃�

∗(𝑁1), 𝐹�̃�
∗(𝑁1))] and 

(𝑇�̃�(𝑁2), 𝐼�̃�(𝑁2), 𝐹�̃�(𝑁2)) = [(𝑇�̃�∗(𝑁2), 𝐼�̃�∗(𝑁2), 𝐹�̃�∗(𝑁2)) , (𝑇�̃�
∗(𝑁2), 𝐼�̃�

∗(𝑁2), 𝐹�̃�
∗(𝑁2))] 

Definition 2.12: 

The possibility Neutrosophic  degree is given as  
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(𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁2))

=

(

 
 
𝑚𝑖𝑛 {max (

𝑇�̃�∗(𝑁1) − 𝑇�̃�∗(𝑁2)

𝑇�̃�∗(𝑁1) − 𝑇�̃�∗(𝑁1) + 𝑇�̃�
∗(𝑁2) − 𝑇�̃�∗(𝑁2)

, 0) , 1} ,𝑚𝑖𝑛 {max (
𝐼�̃�∗(𝑁1) − 𝐼�̃�∗(𝑁2)

𝐼�̃�∗(𝑁1) − 𝐼�̃�∗(𝑁1) + 𝐼�̃�
∗(𝑁2) − 𝐼�̃�∗(𝑁2)

, 0) , 1} ,

𝑚𝑖𝑛 {max (
𝐹�̃�∗(𝑁1) − 𝐹�̃�∗(𝑁2)

𝐹�̃�∗(𝑁1) − 𝐹�̃�∗(𝑁1) + 𝐹�̃�
∗(𝑁2) − 𝐹�̃�∗(𝑁2)

, 0) , 1}
)

 
 

 

                                                                                                                                                                                    (10) 

Definition 2.13: 

The possibility Neutrosophic degree(𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) has to satisfy the 

following property 

(0,0,0) ≤ (𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) ≤ (1,1,1) and (0,0,0) ≤ (𝑝(𝑇𝑁2 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁2 ≽

𝐼𝑁1), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) ≤ (1,1,1) 

If(𝑇�̃�∗(𝑁1), 𝐼�̃�∗(𝑁1), 𝐹�̃�∗(𝑁1)) = (𝑇�̃�∗(𝑁2), 𝐼�̃�∗(𝑁2),𝐹�̃�∗(𝑁2)) and (𝑇�̃�∗(𝑁1), 𝐼�̃�
∗(𝑁1),𝐹�̃�

∗(𝑁1)) =

(𝑇�̃�∗(𝑁2), 𝐼�̃�
∗(𝑁2),𝐹�̃�

∗(𝑁2)), then (𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) = (0.5,0.5,0.5) 

For a Neutrosophic  member (𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1), (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2), (𝑇𝑁3, 𝐼𝑁3, 𝐹𝑁3), If (𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽

𝐼𝑁2), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (0.5,0.5,0.5) and (𝑝(𝑇𝑁2 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁3)) = (0.5,0.5,0.5) then 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁3)) = (0.5,0.5,0.5). 

For a Neutrosophic  member (𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1), (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2), (𝑇𝑁3, 𝐼𝑁3, 𝐹𝑁3), If (𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽

𝐼𝑁2), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (0.5,0.5,0.5) and (𝑝(𝑇𝑁2 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁3)) = (0.5,0.5,0.5) then 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) + (𝑝(𝑇𝑁2 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁3)) =

2(𝑝(𝑇𝑁1 ≽ 𝑇𝑁3),𝑝(𝐼𝑁1 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁3)). 

Definition 2.14: 

For the Neutrosophic  trapezoidal number (𝑇𝑁, 𝐼𝑁, 𝐹𝑁) = ((𝑇𝑁𝑈 , 𝐼𝑁𝑈 , 𝐹𝑁𝑈), (𝑇𝑁𝐿 , 𝐼𝑁𝐿 , 𝐹𝑁𝐿)) =

(((𝑇𝑎1
𝑈 , 𝐼𝑎1

𝑈 , 𝐹𝑎1
𝑈), (𝑇𝑎2

𝑈 , 𝐼𝑎2
𝑈 , 𝐹𝑎2

𝑈), (𝑇𝑎3
𝑈 , 𝐼𝑎3

𝑈 , 𝐹𝑎3
𝑈), (𝑇𝑎4

𝑈 , 𝐼𝑎4
𝑈 , 𝐹𝑎4

𝑈), (𝑇ℎ𝑈 , 𝐼ℎ𝑈 , 𝐹ℎ𝑈)), 

((𝑇𝑎1
𝐿 , 𝐼𝑎1

𝐿 , 𝐹𝑎1
𝐿), (𝑇𝑎2

𝐿 , 𝐼𝑎2
𝐿 , 𝐹𝑎2

𝐿), (𝑇𝑎3
𝐿 , 𝐼𝑎3

𝐿 , 𝐹𝑎3
𝐿), (𝑇𝑎4

𝐿 , 𝐼𝑎4
𝐿 , 𝐹𝑎4

𝐿), (𝑇ℎ𝐿 , 𝐼ℎ𝐿 , 𝐹ℎ𝐿))), the lower Neutrosophic  

possibility mean is calculated by, 
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(𝑇�̃�∗(𝑁), 𝐼�̃�∗(𝑁), 𝐹�̃�∗(𝑁)) =

(

 
 
 
 
 
∫ (𝑇𝑎1

𝑈 +
𝑇𝑎2

𝑈 − 𝑇𝑎1
𝑈

𝑇ℎ𝑈
)

𝛼

𝑑𝛼 +∫ (𝑇𝑎1
𝐿 +

𝑇𝑎2
𝐿 − 𝑇𝑎1

𝐿

𝑇ℎ𝐿
)

𝛽

𝑑𝛽
𝑇ℎ𝐿

0

,
𝑇ℎ𝑈

0

∫ (𝐼𝑎1
𝑈 +

𝐼𝑎2
𝑈 − 𝐼𝑎1

𝑈

𝐼ℎ𝑈
)

𝛼

𝑑𝛼 +∫ (𝐼𝑎1
𝐿 +

𝐼𝑎2
𝐿 − 𝐼𝑎1

𝐿

𝐼ℎ𝐿
)

𝛽

𝑑𝛽
𝐼ℎ𝐿

0

,
𝐼ℎ𝑈

0

∫ (𝐹𝑎1
𝑈 +

𝐹𝑎2
𝑈 − 𝐹𝑎1

𝑈

𝐹ℎ𝑈
)

𝛼

𝑑𝛼 +∫ (𝐹𝑎1
𝐿 +

𝐹𝑎2
𝐿 − 𝐹𝑎1

𝐿

𝐹ℎ𝐿
)

𝛽

𝑑𝛽
𝐹ℎ𝐿

0

,
𝐹ℎ𝑈

0 )

 
 
 
 
 

 

           (11) 

= ((
1

6
(𝑇𝑎1

𝑈 + 2𝑇𝑎2
𝑈)𝑇ℎ𝑈

2 +
1

6
(𝑇𝑎1

𝐿 + 2𝑇𝑎2
𝐿)𝑇ℎ𝐿

2) , (
1

6
(𝐼𝑎1

𝑈 + 2𝐼𝑎2
𝑈)𝐼ℎ𝑈

2 +
1

6
(𝐼𝑎1

𝐿 + 2𝐼𝑎2
𝐿)𝐼ℎ𝐿

2) , (
1

6
(𝐹𝑎1

𝑈 +

2𝐹𝑎2
𝑈)𝐹ℎ𝑈

2 +
1

6
(𝐹𝑎1

𝐿 + 2𝐹𝑎2
𝐿)𝐹ℎ𝐿

2))(12) 

Definition 2.15: 

For the Neutrosophic  trapezoidal number (𝑇𝑁, 𝐼𝑁, 𝐹𝑁) = ((𝑇𝑁𝑈 , 𝐼𝑁𝑈 , 𝐹𝑁𝑈), (𝑇𝑁𝐿 , 𝐼𝑁𝐿 , 𝐹𝑁𝐿)) =

(((𝑇𝑎1
𝑈 , 𝐼𝑎1

𝑈 , 𝐹𝑎1
𝑈), (𝑇𝑎2

𝑈 , 𝐼𝑎2
𝑈 , 𝐹𝑎2

𝑈), (𝑇𝑎3
𝑈 , 𝐼𝑎3

𝑈 , 𝐹𝑎3
𝑈), (𝑇𝑎4

𝑈 , 𝐼𝑎4
𝑈 , 𝐹𝑎4

𝑈), (𝑇ℎ𝑈 , 𝐼ℎ𝑈 , 𝐹ℎ𝑈)), 

((𝑇𝑎1
𝐿 , 𝐼𝑎1

𝐿 , 𝐹𝑎1
𝐿), (𝑇𝑎2

𝐿 , 𝐼𝑎2
𝐿 , 𝐹𝑎2

𝐿), (𝑇𝑎3
𝐿 , 𝐼𝑎3

𝐿 , 𝐹𝑎3
𝐿), (𝑇𝑎4

𝐿 , 𝐼𝑎4
𝐿 , 𝐹𝑎4

𝐿), (𝑇ℎ𝐿 , 𝐼ℎ𝐿 , 𝐹ℎ𝐿))), the upper Neutrosophic  

possibility mean is calculated by, 

(𝑇�̃�∗(𝑁), 𝐼�̃�∗(𝑁),𝐹�̃�∗(𝑁)) =

(

 
 
 
 
 
∫ (𝑇𝑎4

𝑈 +
𝑇𝑎3

𝑈 − 𝑇𝑎4
𝑈

𝑇ℎ𝑈
)

𝛼

𝑑𝛼 + ∫ (𝑇𝑎4
𝐿 +

𝑇𝑎3
𝐿 − 𝑇𝑎4

𝐿

𝑇ℎ𝐿
)

𝛽

𝑑𝛽
𝑇ℎ𝐿

0

,
𝑇ℎ𝑈

0

∫ (𝐼𝑎4
𝑈 +

𝐼𝑎3
𝑈 − 𝐼𝑎4

𝑈

𝐼ℎ𝑈
)

𝛼

𝑑𝛼 + ∫ (𝐼𝑎4
𝐿 +

𝐼𝑎3
𝐿 − 𝐼𝑎4

𝐿

𝐼ℎ𝐿
)

𝛽

𝑑𝛽
𝐼ℎ𝐿

0

,
𝐼ℎ𝑈

0

∫ (𝐹𝑎4
𝑈 +

𝐹𝑎3
𝑈 − 𝐹𝑎4

𝑈

𝐹ℎ𝑈
)

𝛼

𝑑𝛼 + ∫ (𝐹𝑎4
𝐿 +

𝐹𝑎3
𝐿 − 𝐹𝑎4

𝐿

𝐹ℎ𝐿
)

𝛽

𝑑𝛽
𝐹ℎ𝐿

0

,
𝐹ℎ𝑈

0 )

 
 
 
 
 

 

            (13)    

= ((
1

6
(𝑇𝑎4

𝑈 + 2𝑇𝑎3
𝑈)𝑇ℎ𝑈

2 +
1

6
(𝑇𝑎4

𝐿 + 2𝑇𝑎3
𝐿)𝑇ℎ𝐿

2) , (
1

6
(𝐼𝑎4

𝑈 + 2𝐼𝑎3
𝑈)𝐼ℎ𝑈

2 +
1

6
(𝐼𝑎4

𝐿 + 2𝐼𝑎3
𝐿)𝐼ℎ𝐿

2) , (
1

6
(𝐹𝑎4

𝑈 +

2𝐹𝑎3
𝑈)𝐹ℎ𝑈

2 +
1

6
(𝐹𝑎4

𝐿 + 2𝐹𝑎3
𝐿)𝐹ℎ𝐿

2))                               (14) 

Definition 2.16: 

The neutrosopic preference matrix (𝑇𝑃, 𝐼𝑃, 𝐹𝑃) is given as  
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(𝑇𝑃, 𝐼𝑃, 𝐹𝑃)

=

(

 
 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) (𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) … (𝑝(𝑇𝑁1 ≽ 𝑇𝑁𝑛), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁𝑛), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁𝑛))

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) (𝑝(𝑇𝑁2 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁2)) … (𝑝(𝑇𝑁1 ≽ 𝑇𝑁𝑛), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁𝑛), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁𝑛))

⋮
(𝑝(𝑇𝑁𝑛 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁𝑛 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁𝑛 ≽ 𝐹𝑁1))

⋮
(𝑝(𝑇𝑁𝑛 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁𝑛 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁𝑛 ≽ 𝐹𝑁2))

⋮                                                                                         ⋮
… (𝑝(𝑇𝑁𝑛 ≽ 𝑇𝑁𝑛), 𝑝(𝐼𝑁𝑛 ≽ 𝐼𝑁𝑛), 𝑝(𝐹𝑁𝑛 ≽ 𝐹𝑁𝑛)))

 
 

 

                                         (15) 

Definition 2.17: 

The Neutrosophic  ranking valueℛ(𝑇𝑁, 𝐼𝑁, 𝐹𝑁)  is given by 

ℛ(𝑇𝑁, 𝐼𝑁, 𝐹𝑁) = (
1

𝑛(𝑛−1)
(⊕𝑘=1

𝑛 𝑝(𝑇𝑁1 ≽ 𝑇𝑁𝑘) +
𝑛

2
− 1) ,

1

𝑛(𝑛−1)
(⊕𝑘=1

𝑛 𝑝(𝐼𝑁1 ≽ 𝐼𝑁𝑘) +
𝑛

2
−

1) ,
1

𝑛(𝑛−1)
(⊕𝑘=1

𝑛 𝑝(𝐹𝑁1 ≽ 𝐹𝑁𝑘) +
𝑛

2
− 1))                                                                

 (16)     

Step 1: Consider the problem in (27), and convert it into Neutrosophic  trapezoidal number as 

𝑁1 = (
((0.7,0.2,0.1)(1.4,0.4,0.2)(2.8,0.8,0.4)(4.9,1.4,0.7)(0.7,0.2,0.1)),

((1.05,0.3,0.15)(2.1,0.6,0.3)(2.1,0.6,0.3)(4.9,1.4,0.7)(0.56,0.16,0.08))
) and  

𝑁2 = (
((1.05,0.3,0.15)(2.1,0.6,0.3)(4.2,1.2,0.6)(4.2,1.2,0.6)(0.7,0.2,0.1))

, ((1.05,0.3,0.15)(2.31,0.66,0.33)(3.15,0.9,0.45)(3.5,1,0.5)(0.56,0.16,0.08))
) 

Step 2:  

Figure 1 represents the graphical representation of Neutrosophic  trapezoidal number. 
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Figure 1: Neutrosophic Trapezoidal and triangular numbers 

Step 3: For the above Neutrosophic member, the upper and lower possibility Neutrosophic  mean value is 

given as 

Case 1: 

For 𝑁1&𝑁2, 

The closed bounded interval of Neutrosophic  lower and upper mean value is given by  

(𝑇�̃�(𝑁1), 𝐼�̃�(𝑁1),𝐹�̃�(𝑁1)) = [(𝑇�̃�∗(𝑁1), 𝐼�̃�∗(𝑁1), 𝐹�̃�∗(𝑁1)) , (𝑇�̃�
∗(𝑁1), 𝐼�̃�

∗(𝑁1), 𝐹�̃�
∗(𝑁1))] 

= [(−2.74,0.01,0.01), (0.78,0.01,0)] 

(𝑇�̃�(𝑁2), 𝐼�̃�(𝑁2), 𝐹�̃�(𝑁2)) = [(𝑇�̃�∗(𝑁2), 𝐼�̃�∗(𝑁2), 𝐹�̃�∗(𝑁2)) , (𝑇�̃�
∗(𝑁2), 𝐼�̃�

∗(𝑁2),𝐹�̃�
∗(𝑁2))] 

= [(−5.39,0.02,0.01), (0.94,0.01,0)] 

Case 2: 

For 𝑁1&𝑁1 

The closed bounded interval of Neutrosophic  lower and upper mean value is given by  

0

1

2

3

4

5

6

1 2 3 4 5

Neutrosophic Trapezoidal and triangular numbers

TN1

IN1

FN1

TN2

IN2

FN2
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(𝑇�̃�(𝑁1), 𝐼�̃�(𝑁1),𝐹�̃�(𝑁1)) = [(𝑇�̃�∗(𝑁1), 𝐼�̃�∗(𝑁1), 𝐹�̃�∗(𝑁1)) , (𝑇�̃�
∗(𝑁1), 𝐼�̃�

∗(𝑁1), 𝐹�̃�
∗(𝑁1))] 

= [(−2.74,0.01,0.01), (0.78,0.01,0)] 

(𝑇�̃�(𝑁1), 𝐼�̃�(𝑁1),𝐹�̃�(𝑁1)) = [(𝑇�̃�∗(𝑁1), 𝐼�̃�∗(𝑁1), 𝐹�̃�∗(𝑁1)) , (𝑇�̃�
∗(𝑁1), 𝐼�̃�

∗(𝑁1), 𝐹�̃�
∗(𝑁1))] 

= [(−2.74,0.01,0.01), (0.78,0.01,0)] 

Case 3: 

For 𝑁2&𝑁2 

The closed bounded interval of Neutrosophic lower and upper mean value is given by  

(𝑇�̃�(𝑁2), 𝐼�̃�(𝑁2), 𝐹�̃�(𝑁2)) = [(𝑇�̃�∗(𝑁2), 𝐼�̃�∗(𝑁2), 𝐹�̃�∗(𝑁2)) , (𝑇�̃�
∗(𝑁2), 𝐼�̃�

∗(𝑁2),𝐹�̃�
∗(𝑁2))] 

= [(−5.39,0.02,0.01), (0.94,0.01,0)] 

(𝑇�̃�(𝑁2), 𝐼�̃�(𝑁2), 𝐹�̃�(𝑁2)) = [(𝑇�̃�∗(𝑁2), 𝐼�̃�∗(𝑁2), 𝐹�̃�∗(𝑁2)) , (𝑇�̃�
∗(𝑁2), 𝐼�̃�

∗(𝑁2),𝐹�̃�
∗(𝑁2))] 

= [(−5.39,0.02,0.01), (0.94,0.01,0)] 

Case 4 

For 𝑁2&𝑁1 

The closed bounded interval of Neutrosophic lower and upper mean value is given by  

(𝑇�̃�(𝑁2), 𝐼�̃�(𝑁2), 𝐹�̃�(𝑁2)) = [(𝑇�̃�∗(𝑁2), 𝐼�̃�∗(𝑁2), 𝐹�̃�∗(𝑁2)) , (𝑇�̃�
∗(𝑁2), 𝐼�̃�

∗(𝑁2),𝐹�̃�
∗(𝑁2))] 

= [(−5.39,0.02,0.01), (0.94,0.01,0)] 

(𝑇�̃�(𝑁1), 𝐼�̃�(𝑁1),𝐹�̃�(𝑁1)) = [(𝑇�̃�∗(𝑁1), 𝐼�̃�∗(𝑁1), 𝐹�̃�∗(𝑁1)) , (𝑇�̃�
∗(𝑁1), 𝐼�̃�

∗(𝑁1), 𝐹�̃�
∗(𝑁1))] 

= [(−2.74,0.01,0.01), (0.78,0.01,0)] 

Step 4: 

For the above cases, the Neutrosophic possibility degree is given by 
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For case 1, (𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (0.38,0.35,0.36) 

For case 2, (𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) = (0.5,0.5,0.5) 

For case 3, (𝑝(𝑇𝑁2 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁2),𝑝(𝐹𝑁2 ≽ 𝐹𝑁2)) = (0.5,0.5,0.5) 

For case 4, (𝑝(𝑇𝑁2 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) = (0.63,0.66,0.65) 

Step 5:  

The Neutrosophic preference matrix is given by 

(𝑇𝑃, 𝐼𝑃, 𝐹𝑃) = [
(0.5,0.5,0.5) (0.38,0.35,0.36)

(0.63,0.66,0.65) (0.5,0.5,0.5)
] 

Step 6: 

The Neutrosophic ranking value is given as 

ℛ(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = (0.25,0.42,0.42) and ℛ(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) = (0.91,0.58,0.57) 

Step 7:  

The rank of the alternatives ℛ(𝑁1) = 0.9938 and  ℛ(𝑁2) = 2.3027 

Step 8: 

The rank is given in descending order 

ℛ(𝑁2) > 𝑅(𝑁1) 

Step 9: 

The above result is compared with thirteen sets of trapezoidal and triangular Neutrosophic number in (20) is 

discussed in the next section. 

4. Comparison result of trapezoidal and triangular Neutrosophic number: 

A trapezoidal Neutrosophic member becomes the triangular Neutrosophic number, when the middle value is 

equal. Here we are taking the example of thirteen different sets in (20) to compare the result with the proposed 

method. Algorithm for this is same as the previous section but only in step 6, the scorefunction for deneutrosophic 
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the triangular Neutrosophic is different. We use (6) for triangular Neutrosophic member.Also we give the graphical 

representation of each set also. 

Table 1 represents the Neutrosophic member of thirteen set 

S.No Set Neutrosophic values 

1 I 𝑁1 = ((0.245,0.07,0.035)(0.28,0.08,0.04)(0.28,0.08,0.04)(0.7,0.2,0.1)(0.7,0.2,0.1)) 

𝑁2 = ((0.105,0.03,0.015)(0.49,0.14,0.07)(0.49,0.14,0.07)(0.56,0.16,0.08)(0.7,0.2,0.1)) 

2 II 𝑁1 = ((0,0,0)(0.07,0.02,0.01)(0.35,0.1,0.05)(0.7,0.2,0.1)(0.7,0.2,0.1)) 

 𝑁2 = ((0.05,0.42,0.12)(0.06,0.42,0.12)(0.06,0.49,0.14)(0.07,0.7,0.2)(0.1,0.7,0.2)) 

3 III 𝑁1 = ((0,0,0)(0.07,0.02,0.01)(0.35,0.1,0.05)(0.7,0.2,0.1)(0.7,0.2,0.1)) 

𝑁2 = ((0.42,0.12,0.06)(0.49,0.14,0.07)(0.49,0.14,0.07)(0.56,0.16,0.08)(0.7,0.2,0.1)) 

4 IV 𝑁1 = ((0.28,0.08,0.04)(0.63,0.18,0.09)(0.63,0.18,0.09)(0.7,0.2,0.1)(0.7,0.2,0.1)) 

𝑁2 = ((0.28,0.08,0.04)(0.49,0.14,0.07)(0.49,0.14,0.07)(0.7,0.2,0.1)(0.7,0.2,0.1)) 

𝑁3 = ((0.28,0.08,0.04)(0.35,0.1,0.05)(0.35,0.1,0.05)(0.7,0.2,0.1)(0.7,0.2,0.1)) 

5 V 𝑁1 = ((0.35,0.1,0.05)(0.49,0.14,0.07)(0.49,0.14,0.07)(0.63,0.18,0.09)(0.7,0.2,0.1)) 

𝑁2 = ((0.21,0.06,0.03)(0.49,0.14,0.07)(0.49,0.14,0.07)(0.63,0.18,0.09)(0.7,0.2,0.1)) 

𝑁3 = ((0.21,0.06,0.03)(0.28,0.08,0.04)(0.49,0.14,0.07)(0.63,0.18,0.09)(0.7,0.2,0.1)) 

6 VI 𝑁1 = ((0.21,0.06,0.03)(0.35,0.1,0.05)(0.56,0.16,0.08)(0.63,0.18,0.09)(0.7,0.2,0.1)) 

𝑁2 = ((0.21,0.06,0.03)(0.35,0.1,0.05)(0.35,0.1,0.05)(0.63,0.18,0.09)(0.7,0.2,0.1)) 

𝑁3 = ((0.21,0.06,0.03)(0.35,0.1,0.05)(0.35,0.1,0.05)(0.49,0.14,0.07)(0.7,0.2,0.1)) 

7 VII 𝑁1 = ((0.14,0.04,0.02)(0.35,0.1,0.05)(0.35,0.1,0.05)(0.56,0.16,0.08)(0.7,0.2,0.1)) 

𝑁2 = ((0.28,0.08,0.04)(0.35,0.1,0.05)(0.35,0.1,0.05)(0.42,0.12,0.06)(0.7,0.2,0.1)) 
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8 VIII 𝑁1 = ((0,0,0)(0.28,0.08,0.04)(0.42,0.12,0.06)(0.56,0.16,0.08)(0.7,0.2,0.1)) 

𝑁2 = ((0.14,0.04,0.02)(0.35,0.1,0.05)(0.35,0.1,0.05)(0.63,0.18,0.09)(0.7,0.2,0.1)) 

𝑁3 = ((0.14,0.04,0.02)(0.42,0.12,0.06)(0.49,0.14,0.07)(0.56,0.16,0.08)(0.7,0.2,0.1)) 

9 IX 𝑁1 = ((0,0,0)(0.14,0.04,0.02)(0.14,0.04,0.02)(0.28,0.08,0.04)(0.7,0.2,0.1)) 

𝑁2 = ((0.42,0.12,0.06)(0.56,0.16,0.08)(0.56,0.16,0.08)(0.7,0.2,0.1)(0.7,0.2,0.1)) 

10 X 𝑁1 = ((0.28,0.08,0.04)(0.42,0.12,0.06)(0.42,0.12,0.06)(0.56,0.16,0.08)(0.7,0.2,0.1)) 

𝑁2 = ((1.26,0.36,0.18)(1.33,0.38,0.19)(1.33,0.38,0.19)(1.4,0.4,0.2)(0.7,0.2,0.1)) 

11 XI 𝑁1 = ((0,0,0)(0.14,0.04,0.02)(0.14,0.04,0.02)(0.28,0.08,0.04)(0.7,0.2,0.1)) 

𝑁2 = ((0.42,0.12,0.06)(0.56,0.16,0.08)(0.56,0.16,0.08)(0.7,0.2,0.1)(0.7,0.2,0.1)) 

12 XII 𝑁1 = ((0.14,0.04,0.02)(0.42,0.12,0.06)(0.42,0.12,0.06)(0.7,0.2,0.1)(0.7,0.2,0.1)) 

𝑁2 = ((0.14,0.04,0.02)(0.42,0.12,0.06)(0.42,0.12,0.06)(0.7,0.2,0.1)(0.14,0.04,0.02)) 

13 XIII 𝑁1 = ((0.42,0.12,0.06)(0.7,0.2,0.1)(0.7,0.2,0.1)(0.7,0.2,0.1)(0.7,0.2,0.1)) 

𝑁2 = ((0.56,0.16,0.08)(0.7,0.2,0.1)(0.7,0.2,0.1)(0.7,0.2,0.1)(0.14,0.04,0.02)) 

Table 1: Neutrosophic member of thirteen set 

The Neutrosophic possibility degree of thirteen set is given in below table 2 

S.No Set Neutrosophic possibility degree 

1 I (p(TN1 ≽ TN2),p(IN1 ≽ IN2),p(FN1 ≽ FN2)) = (0,0,0.94) 

(p(TN1 ≽ TN1), p(IN1 ≽ IN1), p(FN1 ≽ FN1)) = (1,1,1) 

(p(TN2 ≽ TN2), p(IN2 ≽ IN2), p(FN2 ≽ FN2)) = (1,1,1) 

(p(TN2 ≽ TN1), p(IN2 ≽ IN1), p(FN2 ≽ FN1)) = (0.77,0,0.98) 
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2 II (𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2),𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (0,0.72,0.95) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) = (1,1,1) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁2)) = (1,1,1) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁1),𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) = (0.67,0,0.98) 

3 III (𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2),𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (0,1.29,0.95) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) = (1,1,1) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁2)) = (1,1,1) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁1),𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) = (0.78,0,0.99) 

4 IV (𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (1,0,1) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) = (1,1,1) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁3)) = (1,0,1) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁2)) = (1,1,1) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁1),𝑝(𝐼𝑁2 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) = (0.2,0,0.95) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁3)) = (1,0,1) 

(𝑝(𝑇𝑁3 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁3 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁3 ≽ 𝐹𝑁2)) = (0,0,0.92) 

(𝑝(𝑇𝑁3 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁3 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁3 ≽ 𝐹𝑁1)) = (0,0,0.91) 

(𝑝(𝑇𝑁3 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁3 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁3 ≽ 𝐹𝑁3)) = (1,1,1) 

5 V (𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) = (1,1,1) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (1,0,1) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁3)) = (1,0,1) 
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(𝑝(𝑇𝑁2 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) = (1,0,1) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁2)) = (1,1,1) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁3)) = (1,0,1) 

(𝑝(𝑇𝑁3 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁3 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁3 ≽ 𝐹𝑁1)) = (0,0,0.96) 

(𝑝(𝑇𝑁3 ≽ 𝑇𝑁2),𝑝(𝐼𝑁3 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁3 ≽ 𝐹𝑁2)) = (0.25,0,0.96) 

(𝑝(𝑇𝑁3 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁3 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁3 ≽ 𝐹𝑁3)) = (1,1,1) 

6 VI (𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) = (1,1,1) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (1,0,1) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁3)) = (1,0,1) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁1),𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) = (0,0,0.9) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁2)) = (1,1,1) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁3)) = (1,0,1) 

(𝑝(𝑇𝑁3 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁3 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁3 ≽ 𝐹𝑁1)) = (0,0,0.84) 

(𝑝(𝑇𝑁3 ≽ 𝑇𝑁2),𝑝(𝐼𝑁3 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁3 ≽ 𝐹𝑁2)) =  (0.5,0,0.94) 

(𝑝(𝑇𝑁3 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁3 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁3 ≽ 𝐹𝑁3)) = (1,1,1) 

7 VII (𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) = (1,1,1) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (1,0,1 ) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁1),𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) = (0.34,0,0.96) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁2)) = (1,1,1) 

8 VIII (𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) = (1,1,1) 
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(𝑝(𝑇𝑁1 ≽ 𝑇𝑁2),𝑝(𝐼𝑁1 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (0.5,0,0.98) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁3),𝑝(𝐹𝑁1 ≽ 𝐹𝑁3)) = (0.25,0,0.97) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁1),𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) = (0.75,0,0.99) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁2)) = (1,1,1) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁3),𝑝(𝐼𝑁2 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁3)) = (0.25,0,0.95) 

(𝑝(𝑇𝑁3 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁3 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁3 ≽ 𝐹𝑁1)) = (1,0,1) 

(𝑝(𝑇𝑁3 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁3 ≽ 𝐼𝑁2),𝑝(𝐹𝑁3 ≽ 𝐹𝑁2)) =  (0.84,0,0.99) 

(𝑝(𝑇𝑁3 ≽ 𝑇𝑁3), 𝑝(𝐼𝑁3 ≽ 𝐼𝑁3), 𝑝(𝐹𝑁3 ≽ 𝐹𝑁3)) = (1,1,1) 

9 IX (𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) = (1,1,1) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2),𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (0,0.39,0.89) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) = (1,0,1) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁2)) = (1,1,1) 

10 X (𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) = (1,1,1) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2),𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (0,1.63,0.88) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) = (1,0,1) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁2)) = (1,1,1) 

11 XI (𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) = (1,1,1) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2),𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (0,0.39,0.89) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) = (1,0,1) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁2)) = (1,1,1) 
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12 XII (𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) = (1,1,1) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2),𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (1,0,1)) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁1),𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) = (0,0.15,0.72) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁2)) = (1,1,1) 

13 XIII (𝑝(𝑇𝑁1 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁1), 𝑝(𝐹𝑁1 ≽ 𝐹𝑁1)) = (1,1,1) 

(𝑝(𝑇𝑁1 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁1 ≽ 𝐼𝑁2),𝑝(𝐹𝑁1 ≽ 𝐹𝑁2)) = (1,0,1)) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁1), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁1),𝑝(𝐹𝑁2 ≽ 𝐹𝑁1)) = (0,0.15,0.75) 

(𝑝(𝑇𝑁2 ≽ 𝑇𝑁2), 𝑝(𝐼𝑁2 ≽ 𝐼𝑁2), 𝑝(𝐹𝑁2 ≽ 𝐹𝑁2)) = (1,1,1) 

Table 2: Neutrosophic possibility degree of thirteen set 

Table 3 represents the Neutrosophic preference matrix of 13 sets 

S.No Set Neutrosophic preference matrix 

1 I 
(𝑇𝑃, 𝐼𝑃, 𝐹𝑃) = (

(1,1,1) (0,0,0.94)

(0.77,0,0.98) (1,1,1)
) 

2 II 
(𝑇𝑃, 𝐼𝑃, 𝐹𝑃) = (

(1,1,1) (0,0.72,0.95)
(0.67,0,0.98) (1,1,1)

) 

3 III 
(𝑇𝑃, 𝐼𝑃, 𝐹𝑃) = (

(1,1,1) (0,1.29,0.95)
(0.78,0,0.99) (1,1,1)

) 

4 IV 

(𝑇𝑃, 𝐼𝑃, 𝐹𝑃) = (

(1,1,1) (1,0,1) (1,0,1)
(0.2,0,0.95) (1,1,1) (1,0,1)
(0,0,0.91) (0,0,0.92) (1,1,1)

) 

5 V 

(𝑇𝑃, 𝐼𝑃, 𝐹𝑃) = (

(1,1,1) (1,0,1) (1,0,1)
(1,0,1) (1,1,1) (1,0,1)
(0,0,0.96) (0.25,0,0.96) (1,1,1)

) 

6 VI 

(𝑇𝑃, 𝐼𝑃, 𝐹𝑃) = (

(1,1,1) (1,0,1) (1,0,1)
(0,0,0.9) (1,1,1) (1,0,1)
(0,0,0.84) (0.5,0,0.94) (1,1,1)

) 
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   7 VII 
(𝑇𝑃, 𝐼𝑃, 𝐹𝑃) = (

(1,1,1) (1,0,1)
(0.34,0,0.96) (1,1,1)

) 

8 VIII 

(𝑇𝑃, 𝐼𝑃, 𝐹𝑃) = (

(1,1,1) (0.5,0,0.98) (0.25,0,0.97)
(0.75,0,0.99) (1,1,1) (0.25,0,0.95)
(1,0,1) (0.84,0,0.99) (1,1,1)

) 

9 IX 
(𝑇𝑃, 𝐼𝑃, 𝐹𝑃) = (

(1,1,1) (0,0.39,0.89)
(1,0,1) (1,1,1)

) 

10 X 
(𝑇𝑃, 𝐼𝑃, 𝐹𝑃) = (

(1,1,1) (0,1.63,0.88)
(1,0,1) (1,1,1)

) 

11 XI 
(𝑇𝑃, 𝐼𝑃, 𝐹𝑃) = (

(1,1,1) (0,0.39,0.89)
(1,0,1) (1,1,1)

) 

12 XII 
(𝑇𝑃, 𝐼𝑃, 𝐹𝑃) = (

(1,1,1) 1,0,1)
(0,0.15,0.72) (1,1,1)

) 

13 XIII 
(𝑇𝑃, 𝐼𝑃, 𝐹𝑃) = (

(1,1,1) 1,0,1)
(0,0.15,0.75) (1,1,1)

) 

Table 4: Neutrosophic preference matrix of thirteen set 

Table 4: represents the Neutrosophic ranking value of thirteen sets 

S.No Set Neutrosophic ranking value 

1 I ℛ(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = (1,0,0.97),ℛ(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) = (1,0,0.99) 

2 II ℛ(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = (1,0.85,0.98),ℛ(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) = (1,0,0.99) 

3 III ℛ(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = (1,1.14,0.97),ℛ(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) = (1,0,1) 

4 IV ℛ(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = (1,0,1),ℛ(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) = (1,0,0.99),ℛ(𝑇𝑁3, 𝐼𝑁3, 𝐹𝑁3) = (1,0,0.96) 

5 V ℛ(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = (1,0,1),ℛ(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) = (1,0,1),ℛ(𝑇𝑁3, 𝐼𝑁3, 𝐹𝑁3) = (1,0,0.98) 

6 VI ℛ(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = (1,0,1),ℛ(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) = (1,0,1),ℛ(𝑇𝑁3, 𝐼𝑁3, 𝐹𝑁3) = (1,0,0.98) 

   7 VII ℛ(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = (1,0,1),ℛ(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) = (1,0,0.98) 

8 VIII ℛ(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = (1,0,0.98),ℛ(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) = (1,0,0.98),ℛ(𝑇𝑁3, 𝐼𝑁3, 𝐹𝑁3) = (1,0,1) 
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9 IX ℛ(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = (1,0.63,0.94),ℛ(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) = (1,0,1) 

10 X ℛ(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = (1,1.28,0.94),ℛ(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) = (1,0,1) 

11 XI ℛ(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = (1,0.63,0.94),ℛ(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) = (1,0,1) 

12 XII ℛ(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = (1,0,1),ℛ(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) = (1,0.38,0.85) 

13 III ℛ(𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1) = (1,0,1),ℛ(𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2) = (1,0.38,0.87) 

Table 5: Neutrosophic  ranking value of thirteen sets 

Table 6  represents the rank of the alternatives of thirteen sets 

The rank of the alternatives ℛ(𝑁1) = 0.9938 and  ℛ(𝑁2) = 2.3027 

S.No Set rank of the alternatives 

1 I ℛ(𝑁1) = 1.484 , ℛ(𝑁2) = 1.495 

2 II ℛ(𝑁1) = 0.642 , ℛ(𝑁2) = 1.494 

3 III ℛ(𝑁1) = 0.351 , ℛ(𝑁2) = 1.497 

4 IV ℛ(𝑁1) = 1.5 , ℛ(𝑁2) = 1.494, ℛ(𝑁3) = 1.478 

5 V ℛ(𝑁1) = 1.5 , ℛ(𝑁2) = 1.5,ℛ(𝑁3) = 1.489 

6 VI ℛ(𝑁1) = 1.5 , ℛ(𝑁2) = 1.486,ℛ(𝑁3) = 1.470 

   7 VII ℛ(𝑁1) = 1.5 , ℛ(𝑁2) = 1.5 

8 VIII ℛ(𝑁1) = 1.49 , ℛ(𝑁2) = 1.49,ℛ(𝑁3) = 1.5 

9 IX ℛ(𝑁1) = 0.8 , ℛ(𝑁2) = 1.5 

10 X ℛ(𝑁1) = 0.2, ℛ(𝑁2) = 1.5 

11 XI ℛ(𝑁1) = 0.8 , ℛ(𝑁2) = 1.5 

12 XII ℛ(𝑁1) = 1.5 , ℛ(𝑁2) = 1 
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13 XIII ℛ(𝑁1) = 1.5 , ℛ(𝑁2) = 1.1 

Table 6: Rank of the alternatives of thirteen sets 

Table 7 represents the comparison results with the previous methods 

S.No Set Alternatives Kerre 

(30) 

Lee 

(31) 

Uni 

form 

Lee 

(31) 

Propo 

rtional 

Bass 

(32) 

Chang 

(33) 

𝛼 = 0.1, 

𝛽 = 0.9 

Chang 

(33) 

𝛼 = 0.5, 

𝛽 = 0.5 

Chan 

(20) 

The 

Proposed 

Method 

1 I ℛ(𝑁1),  

ℛ(𝑁2) 

0.96 

0.89 

0.58 

0.55 

0.54 

0.59 

0.84 

1 

0.417 

0.462 

0.519 

0.544 

0.52 

0.48 

1.484 , 

1.495 

2 II ℛ(𝑁1),  

ℛ(𝑁2) 

0.51 

0.89 

0.41 

0.60 

0.38 

0.60 

0.82 

1 

0.158 

0.554 

0.45 

0.55 

0.4 

0.6 

0.642 , 

1.494 

3 III ℛ(𝑁1),  

ℛ(𝑁2) 

0.42 

0.95 

0.41 

0.70 

0.38 

0.70 

0.66 

1 

0.158 

0.644 

0.45 

0.6 

0.36 

0.64 

0.351 ,  

1.497 

4 IV ℛ(𝑁1) , 

ℛ(𝑁2), 

ℛ(𝑁3) 

1 

0.86 

0.76 

0.77 

0.70 

0.63 

0.80 

0.70 

0.60 

1 

0.74 

0.6 

0.878 

0.788 

0.698 

0.65 

0.6 

0.55 

0.39 

0.33 

0.28 

1.5 ,  

1.494, 

1.478 

5 V ℛ(𝑁1) , 

ℛ(𝑁2), 

ℛ(𝑁3) 

1 

0.91 

0.75 

0.70 

0.63 

0.58 

0.70 

0.65 

0.57 

1 

1 

1 

0.752 

0.743 

0.73 

0.6 

0.575 

0.538 

0.4 

0.32 

0.28 

1.5 ,  

1.5, 

1.489 

6 VI ℛ(𝑁1) , 

ℛ(𝑁2), 

ℛ(𝑁3) 

1 

0.85 

0.75 

0.62 

0.57 

0.50 

0.63 

0.55 

0.50 

1 

1 

1 

0.775 

0.653 

0.572 

0.563 

0.525 

0.5 

0.39 

0.34 

0.27 

1.5 ,  

1.486, 

1.470 

   7 VII ℛ(𝑁1),  

ℛ(𝑁2) 

0.91 

0.91 

0.50 

0.50 

0.50 

0.50 

1 

1 

0.608 

0.536 

0.5 

0.5 

0.5 

0.5 

1.5 ,  

1.5 

8 VIII ℛ(𝑁1) , 

ℛ(𝑁2), 

ℛ(𝑁3) 

0.76 

0.92 

0.96 

0.44 

0.53 

0.56 

0.46 

0.53 

0.58 

1 

0.88 

1 

0.635 

0.649 

0.694 

0.475 

0.513 

0.538 

0.28 

0.35 

0.37 

1.49 , 

1.49, 

1.5 
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9 IX ℛ(𝑁1), 

ℛ(𝑁2) 

0.64 

1 

0.20 

0.80 

0.20 

0.80 

0 

0.8 

0.158 

0.688 

0.35 

0.6 

0.28 

0.72 

0.8 ,  

1.5 

10 X ℛ(𝑁1), 

ℛ(𝑁2) 

0.78 

1 

0.60 

0.90 

0.60 

0.90 

0 

0.2 

0.518 

0.784 

0.55 

0.5 

0.49 

0.51 

0.2,  

1.5 

11 XI ℛ(𝑁1), 

ℛ(𝑁2) 

0.89 

0.88 

0.20 

0.80 

0.20 

0.80 

0 

0.2 

0.118 

0.698 

0.15 

0.65 

0.25 

0.75 

0.8 ,  

1.5 

12 XII ℛ(𝑁1), 

ℛ(𝑁2) 

0.72 

0.97 

0.60 

0.60 

0.60 

0.60 

0.2 

0.2 

0.446 

0.406 

0.55 

0.35 

0.63 

0.37 

1.5 ,  

1 

13 XIII ℛ(𝑁1), 

ℛ(𝑁2) 

0.82 

1 

0.87 

0.95 

0.90 

0.95 

0.2 

0.2 

0.932 

0.901 

0.7 

0.525 

0.63 

0.37 

1.5 ,  

1.1 

Table 7: comparison results with the previous methods 

From the above table7, the proposed method is comparatively better than the previous methods because it is 

giving the accurate result then the previous methods. 

5. Conclusion: 

 

Neutrosophic environments are more suited to portray the decision-makers uncertainty, indeterminacy, and 

ambiguity than trapezoidal and triangular ones. In comparison to the current way, the proposed method will provide 

the decision maker with the optimal attribute with greater accuracy. To demonstrate the NMAGDM process of the 

proposed technique, we additionally provide numerical examples. The result shows that the offered strategy 

provides us with a workable way to address NMAGDM problems based on trapezoidal and triangular Neutrosophic  

settings. Future research will involve using the suggested methods to address various other plithogenic environment-

related decision-making problems. 
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Abstract: It may be difficult for researchers to memorize or remember the trigonometric ratios of any 

neutrosophic angle, and this is what prompted us to activate the role of the neutrosophic complex 

numbers for that. In this paper we presented neutrosophic Euler’s formulas and neutrosophic De 

Moivre's formula. Also, we benefited from that by finding the trigonometric ratios of the multiples 

of neutrosophic angle in terms of the trigonometric ratios of the neutrosophic angle (�̈� + �̈�𝐼) and 

convert trigonometric ratios from formula 𝑠𝑖𝑛𝑛(�̈� + �̈�𝐼), or formula 𝑐𝑜𝑠𝑚(�̈� + �̈�𝐼), into a linear 

expression for the multiples of the neutrosophic angle (�̈� + �̈�𝐼), which made it easier for us to find 

integrals of the neutrosophic trigonometric functions by other methods. 

 
Keywords: neutrosophic Euler’s formulas, neutrosophic complex numbers, neutrosophic De 

Moivre's formula. 

1. Introduction 

           As Smarandache proposed the Neutrosophic Logic as an alternative to the existing logics 

to represent a mathematical model of uncertainty, vagueness, ambiguity, imprecision, undefined, 

unknown, incompleteness, inconsistency, redundancy, and contradiction. Smarandache introduced 

the concept of neutrosophy as a new school of philosophy [4][8]. He presented the definition of the 

standard form of neutrosophic real number and conditions for the division of two neutrosophic real 

numbers to exist [3][5], studying the concept of the Neutrosophic probability [11][6], the 

Neutrosophic statistics [5], and professor Smarandache entered the concept of preliminary calculus 

of the differential and integral calculus, where he introduced for the first time the notions of 

neutrosophic mereo-limit, mereo-continuity, mereoderivative, and mereo-integral [1][8]. Y.Alhasan 

presented the definition of the concept of neutrosophic complex numbers and its properties including 

the conjugate of neutrosophic complex number, division of neutrosophic complex numbers, the 

inverted neutrosophic complex number and the absolute value of a neutrosophic complex number 

and Theories related to the conjugate of neutrosophic complex numbers, the product of a 

neutrosophic complex number by its conjugate equals the absolute value of number and he studied 

the general exponential form of a neutrosophic complex number [2-4]. Madeleine Al- Taha presented 

mailto:i.abdulah@psau.edu.sa
mailto:is.ali@psau.edu.sa
mailto:y.alhasan@psau.edu.sa


Neutrosophic Sets and Systems, Vol. 57, 2023     166  

 

 

Yaser Ahmad Alhasan, Iqbal Ahmed Musa and Isra Abdalhleem Hassan Ali, Applications of neutrosophic complex numbers 
in triangles 

results on single valued neutrosophic (weak) polygroups [10]. An algebraic approach to neutrosophic 

euclidean geometry is presented [7].  

            Complex numbers play a significant role in daily life because they make it much easier 

to perform mathematical operations and give us a way to solve equations for which there are no real-

number-group solutions. The electrical engineering field makes extensive use of complex numbers 

to calculate electric voltage and measure alternating current. 

           Paper is divided into four pieces. provides an introduction in the first portion, which 

includes a review of neutrosophic science. A few definitions of a neutrosophic complex number are 

covered in the second section. The third section defined neutrosophic Euler’s formulas, neutrosophic 

De Moivre's formula and discuses applications of neutrosophic complex numbers in triangles. The 

paper's conclusion is provided in the fourth section. 

2. Preliminaries 

2.1 The general Trigonometric form of a neutrosophic complex number [4] 

Definition 1 

The following formula:      

𝑧 = r (cos(𝜃 + 𝜗𝐼) + 𝑠𝑖𝑛 (𝜃 + 𝜗𝐼) 𝑖) 

    is called the general trigonometric form of a neutrosophic complex number 

 

Definition 2 [7] 

 

Let 𝑓: 𝑅(𝐼)  →  𝑅(𝐼);  𝑓 = 𝑓(𝑋)  and 𝑋 = 𝑥 + 𝑦𝐼 ∈ 𝑅(𝐼)  the f is called a neutrosophic real 

function with one neutrosophic variable. a neutrosophic real function 𝑓(𝑋) written as follows:  

 

𝑓(𝑋) = 𝑓(𝑥 + 𝑦𝐼) = 𝑓(𝑥) + 𝐼[𝑓(𝑥 + 𝑦) − 𝑓(𝑥)] 

3. Neutrosophic Euler’s formulas 

Let:   

𝑒𝑖(�̈�+�̈�𝐼) = 𝑐𝑜𝑠(�̈� + �̈�𝐼) + 𝑖 𝑠𝑖𝑛 (�̈� + �̈�𝐼) 

 

𝑒−𝑖(�̈�+�̈�𝐼) = 𝑐𝑜𝑠(�̈� + �̈�𝐼) − 𝑖 𝑠𝑖𝑛 (�̈� + �̈�𝐼) 

by additional:   

𝑐𝑜𝑠(�̈� + �̈�𝐼) =
𝑒𝑖(�̈�+�̈�𝐼) + 𝑒−𝑖(�̈�+�̈�𝐼)

2
 

by subtraction: 

𝑠𝑖𝑛 (�̈� + �̈�𝐼) =
𝑒𝑖(�̈�+�̈�𝐼) − 𝑒−𝑖(�̈�+�̈�𝐼)

2𝑖
 

 

They are neutrosophic Euler’s formulas. 

3.1 Neutrosophic De Moivre's formula 

𝑧 = �́�𝑒𝑖(�̈�+�̈�𝐼) 

 

z𝑛 = (�́�𝑒𝑖(�̈�+�̈�𝐼))
𝑛

 

 

�́�𝑛𝑒𝑖(𝑛�̈�+𝑛�̈�𝐼) = �́�𝑛  𝑐𝑜𝑠(𝑛�̈� + 𝑛�̈�𝐼) + 𝑖 �́�𝑛  𝑠𝑖𝑛(𝑛�̈� + 𝑛�̈�𝐼)    ; 𝑛 ∈ ℤ 
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= �́�𝑛  [𝑐𝑜𝑠(𝑛�̈�) + 𝐼 (𝑐𝑜𝑠(𝑛�̈� + 𝑛�̈�) − 𝑐𝑜𝑠(𝑛�̈�))] + 𝑖 �́�𝑛  [𝑠𝑖𝑛(𝑛�̈�) + 𝐼 (𝑠𝑖𝑛(𝑛�̈� + 𝑛�̈�) − 𝑠𝑖𝑛(𝑛�̈�))] 

 

Example1 

 

(1 + (
√2

2
− 1) 𝐼 + (

√2

2
 𝐼) 𝑖)

24

= (𝑒𝑖(
𝜋
4

𝐼)
)

24

= 𝑐𝑜𝑠24 (
𝜋

4
𝐼) + 𝑖 𝑠𝑖𝑛24 (

𝜋

4
𝐼) 

 

                                                                                      

= 𝑐𝑜𝑠(6𝜋𝐼) + 𝑖 𝑠𝑖𝑛(6𝜋𝐼) 
 

   = 𝑐𝑜𝑠(0) + 𝐼[cos(0 + (6𝜋)) − cos(0)] + 𝑖 (sin(0) + 𝐼[𝑠𝑖𝑛(0 + 6𝜋) − sin(0)]) 

 

= 1 + 0𝐼 + 0𝑖 = 1 
Theorem1 

 

Let (�̈� + �̈�𝐼) neutrosophic real number, then the solution of the equation:  

 

𝑒𝑖(�̈�+�̈�𝐼) = 𝑒𝑖(�̈�+�̈�𝐼) 
by unknown (�̈� + �̈�𝐼), is: 

{�̈� + �̈�𝐼 + 2𝜋𝑘   ; 𝑘 ∈ Ζ} 

Proof: 

multiply: 

𝑒𝑖(�̈�+�̈�𝐼) = 𝑒𝑖(�̈�+�̈�𝐼) 

by: 

𝑒−𝑖(�̈�+�̈�𝐼) ≠ 1 

we find: 

𝑒𝑖(�̈�+�̈�𝐼)𝑒−𝑖(�̈�+�̈�𝐼) = 1 
 

𝑒𝑖(�̈�−�̈�+(�̈�−�̈�)𝐼) = 1 
 

𝑐𝑜𝑠(�̈� − �̈� + (�̈� − �̈�)𝐼) + 𝑖 𝑠𝑖𝑛(�̈� − �̈� + (�̈� − �̈�)𝐼) = 1 

then: 

𝑐𝑜𝑠(�̈� − �̈� + (�̈� − �̈�)𝐼) = 1        𝑎𝑛𝑑         𝑠𝑖𝑛(�̈� − �̈� + (�̈� − �̈�)𝐼) = 0 

 

hence: 

�̈� + �̈�𝐼 = �̈� + �̈�𝐼 + 2𝜋𝑘   ; 𝑘 ∈ Ζ 

3.2. Applications of neutrosophic complex numbers in triangles 

3.2.1 Finding the trigonometric ratios of the multiples of neutrosophic angle in terms of the 

trigonometric ratios of the angle neutrosophic (�̈� + �̈�𝑰) 

The trigonometric ratios of angle neutrosophic 𝟐(�̈� + �̈�𝐼) in terms of the trigonometric ratios of 

angle (�̈� + �̈�𝐼): 

 

 by using De Moivre's formula: 

 

(𝑐𝑜𝑠(�̈� + �̈�𝐼) + 𝑖 sin (�̈� + �̈�𝐼))
2

= cos 2(�̈� + �̈�𝐼) + 𝑖 𝑠𝑖𝑛 2(�̈� + �̈�𝐼) 

 

𝑐𝑜𝑠2(�̈� + �̈�𝐼) − 𝑠𝑖𝑛2 (�̈� + �̈�𝐼) + 2𝑖 𝑐𝑜𝑠(�̈� + �̈�𝐼) 𝑠𝑖𝑛 (�̈� + �̈�𝐼) = 𝑐𝑜𝑠 2(�̈� + �̈�𝐼) + 𝑖 𝑠𝑖𝑛 2(�̈� + �̈�𝐼) 
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by equating the two real parts of both sides of the equality: 

 

𝑐𝑜𝑠 2(�̈� + �̈�𝐼) = 𝑐𝑜𝑠2(�̈� + �̈�𝐼) − 𝑠𝑖𝑛2 (�̈� + �̈�𝐼) 

 

by equating the two imaginary parts on both sides of the equality: 

 

𝑠𝑖𝑛 2(�̈� + �̈�𝐼) = 2 𝑐𝑜𝑠(�̈� + �̈�𝐼) 𝑠𝑖𝑛 (�̈� + �̈�𝐼) 

where: 

𝑐𝑜𝑠(�̈� + �̈�𝐼) = 𝑐𝑜𝑠(�̈�) + 𝐼 (𝑐𝑜𝑠(�̈� + �̈�) − 𝑐𝑜𝑠(�̈�)) 

 

𝑠𝑖𝑛(�̈� + �̈�𝐼) = 𝑠𝑖𝑛(�̈�) + 𝐼 (𝑠𝑖𝑛(�̈� + �̈�) − 𝑠𝑖𝑛(�̈�)) 

 

to find 𝑡𝑎𝑛 2(�̈� + �̈�𝐼): 

 

𝑡𝑎𝑛 2(�̈� + �̈�𝐼) =
𝑠𝑖𝑛 2(�̈� + �̈�𝐼)

𝑐𝑜𝑠 2(�̈� + �̈�𝐼)
 

 

=
2 𝑐𝑜𝑠(�̈� + �̈�𝐼) sin (�̈� + �̈�𝐼)

𝑐𝑜𝑠2(�̈� + �̈�𝐼) − 𝑠𝑖𝑛2(�̈� + �̈�𝐼)
 

 

=

2 𝑐𝑜𝑠(�̈� + �̈�𝐼) sin (�̈� + �̈�𝐼)

𝑐𝑜𝑠2(�̈� + �̈�𝐼)

𝑐𝑜𝑠2(�̈� + �̈�𝐼) − 𝑠𝑖𝑛2(�̈� + �̈�𝐼)

𝑐𝑜𝑠2(�̈� + �̈�𝐼)

 

 

⟹               𝑡𝑎𝑛 2(�̈� + �̈�𝐼) =
2 𝑡𝑎𝑛(�̈� + �̈�𝐼)

1 − 𝑡𝑎𝑛(�̈� + �̈�𝐼)
 

where: 

𝑡𝑎𝑛(�̈� + �̈�𝐼) = 𝑡𝑎𝑛(�̈�) + 𝐼 (𝑡𝑎𝑛(�̈� + �̈�) − 𝑡𝑎𝑛(�̈�)) 

 

Example2 

 

Write the trigonometric ratios of angle neutrosophic 4(�̈� + �̈�𝐼) in terms of the trigonometric ratios of 

angle (�̈� + �̈�𝐼). 

 

by using De Moivre's formula: 

 

(𝑐𝑜𝑠(�̈� + �̈�𝐼) + 𝑖 𝑠𝑖𝑛(�̈� + �̈�𝐼))
4

= 𝑐𝑜𝑠 4(�̈� + �̈�𝐼) + 𝑖 𝑠𝑖𝑛 4(�̈� + �̈�𝐼) 

 

𝑐𝑜𝑠4(�̈� + �̈�𝐼) + 4𝑖 𝑐𝑜𝑠3(�̈� + �̈�𝐼) 𝑠𝑖𝑛(�̈� + �̈�𝐼) + 6𝑖2 𝑐𝑜𝑠2(�̈� + �̈�𝐼) 𝑠𝑖𝑛2(�̈� + �̈�𝐼)

+ 4𝑖3 𝑐𝑜𝑠(�̈� + �̈�𝐼) 𝑠𝑖𝑛3(�̈� + �̈�𝐼) + 𝑖4𝑠𝑖𝑛4 (�̈� + �̈�𝐼) = 𝑐𝑜𝑠 4(�̈� + �̈�𝐼) + 𝑖 𝑠𝑖𝑛 4(�̈� + �̈�𝐼) 

 

𝑐𝑜𝑠4(�̈� + �̈�𝐼) + 4𝑖 𝑐𝑜𝑠3(�̈� + �̈�𝐼) 𝑠𝑖𝑛(�̈� + �̈�𝐼) − 6 𝑐𝑜𝑠2(�̈� + �̈�𝐼) 𝑠𝑖𝑛2(�̈� + �̈�𝐼)

− 4𝑖 𝑐𝑜𝑠(�̈� + �̈�𝐼) 𝑠𝑖𝑛3(�̈� + �̈�𝐼) + 𝑠𝑖𝑛4 (�̈� + �̈�𝐼) = 𝑐𝑜𝑠 4(�̈� + �̈�𝐼) + 𝑖 𝑠𝑖𝑛 4(�̈� + �̈�𝐼) 

 

[𝑐𝑜𝑠4(�̈� + �̈�𝐼) − 6 𝑐𝑜𝑠2(�̈� + �̈�𝐼) 𝑠𝑖𝑛2(�̈� + �̈�𝐼) + 𝑠𝑖𝑛4 (�̈� + �̈�𝐼)]

+ 𝑖[4 𝑐𝑜𝑠3(�̈� + �̈�𝐼) 𝑠𝑖𝑛(�̈� + �̈�𝐼) − 4 𝑐𝑜𝑠(�̈� + �̈�𝐼) 𝑠𝑖𝑛3(�̈� + �̈�𝐼)]

= 𝑐𝑜𝑠 4(�̈� + �̈�𝐼) + 𝑖 𝑠𝑖𝑛 4(�̈� + �̈�𝐼) 
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by equating the two real parts of both sides of the equality: 

 

𝑐𝑜𝑠 4(�̈� + �̈�𝐼) = 𝑐𝑜𝑠4(�̈� + �̈�𝐼) − 6 𝑐𝑜𝑠2(�̈� + �̈�𝐼) 𝑠𝑖𝑛2(�̈� + �̈�𝐼) + 𝑠𝑖𝑛4 (�̈� + �̈�𝐼) 

 

by equating the two imaginary parts on both sides of the equality: 

 

𝑠𝑖𝑛 4(�̈� + �̈�𝐼) = 4 𝑐𝑜𝑠3(�̈� + �̈�𝐼) 𝑠𝑖𝑛(�̈� + �̈�𝐼) − 4 𝑐𝑜𝑠(�̈� + �̈�𝐼) 𝑠𝑖𝑛3(�̈� + �̈�𝐼) 

where: 

𝑐𝑜𝑠(�̈� + �̈�𝐼) = 𝑐𝑜𝑠(�̈�) + 𝐼 (𝑐𝑜𝑠(�̈� + �̈�) − 𝑐𝑜𝑠(�̈�)) 

 

𝑠𝑖𝑛(�̈� + �̈�𝐼) = 𝑠𝑖𝑛(�̈�) + 𝐼 (𝑠𝑖𝑛(�̈� + �̈�) − 𝑠𝑖𝑛(�̈�)) 

 

to find 𝑡𝑎𝑛 4(�̈� + �̈�𝐼): 

 

𝑡𝑎𝑛 4(�̈� + �̈�𝐼) =
𝑠𝑖𝑛 4(�̈� + �̈�𝐼)

𝑐𝑜𝑠 4(�̈� + �̈�𝐼)
 

 

=
4 𝑐𝑜𝑠3(�̈� + �̈�𝐼) 𝑠𝑖𝑛(�̈� + �̈�𝐼) − 4 𝑐𝑜𝑠(�̈� + �̈�𝐼) 𝑠𝑖𝑛3(�̈� + �̈�𝐼)

𝑐𝑜𝑠4(�̈� + �̈�𝐼) − 6 𝑐𝑜𝑠2(�̈� + �̈�𝐼) 𝑠𝑖𝑛2(�̈� + �̈�𝐼) + 𝑠𝑖𝑛4 (�̈� + �̈�𝐼)
 

 

=

4 𝑐𝑜𝑠3(�̈� + �̈�𝐼) 𝑠𝑖𝑛(�̈� + �̈�𝐼) − 4 𝑐𝑜𝑠(�̈� + �̈�𝐼) 𝑠𝑖𝑛3(�̈� + �̈�𝐼)

𝑐𝑜𝑠4(�̈� + �̈�𝐼)

𝑐𝑜𝑠4(�̈� + �̈�𝐼) − 6 𝑐𝑜𝑠2(�̈� + �̈�𝐼) 𝑠𝑖𝑛2(�̈� + �̈�𝐼) + 𝑠𝑖𝑛4 (�̈� + �̈�𝐼)

𝑐𝑜𝑠4(�̈� + �̈�𝐼)

 

 

⟹               𝑡𝑎𝑛 4(�̈� + �̈�𝐼) =
4 𝑡𝑎𝑛(�̈� + �̈�𝐼) − 4 𝑡𝑎𝑛3(�̈� + �̈�𝐼)

1 − 6𝑡𝑎𝑛2(�̈� + �̈�𝐼) + 𝑡𝑎𝑛4(�̈� + �̈�𝐼)
 

where: 

𝑡𝑎𝑛(�̈� + �̈�𝐼) = 𝑡𝑎𝑛(�̈�) + 𝐼 (𝑡𝑎𝑛(�̈� + �̈�) − 𝑡𝑎𝑛(�̈�)) 

3.2.2 Convert trigonometric ratios from Formula 𝒔𝒊𝒏𝒏(�̈� + �̈�𝑰), or Formula 𝒄𝒐𝒔𝒎(�̈� + �̈�𝑰) , into a 

linear expression for the multiples of the neutrosophic angle (�̈� + �̈�𝑰) 

Example3 

 

Write 𝑐𝑜𝑠3(�̈� + �̈�𝐼)  in the form of the sum of the trigonometric ratios of the multiples of the 

neutrosophic angle (�̈� + �̈�𝐼) 

 

by using neutrosophic Euler’s formulas: 

 

𝑐𝑜𝑠3(�̈� + �̈�𝐼) = (
𝑒𝑖(�̈�+�̈�𝐼) + 𝑒−𝑖(�̈�+�̈�𝐼)

2
)

3

 

 

=
1

8
(𝑒3𝑖(�̈�+�̈�𝐼) + 3𝑒2𝑖(�̈�+�̈�𝐼)𝑒−𝑖(�̈�+�̈�𝐼) + 3𝑒𝑖(�̈�+�̈�𝐼)𝑒−2𝑖(�̈�+�̈�𝐼) + 𝑒−3𝑖(�̈�+�̈�𝐼)) 

 

=
1

8
[(𝑒3𝑖(�̈�+�̈�𝐼) + 𝑒−3𝑖(�̈�+�̈�𝐼)) + 3(𝑒𝑖(�̈�+�̈�𝐼) + 𝑒−𝑖(�̈�+�̈�𝐼))] 
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by using neutrosophic Euler’s formulas to return to the trigonometric ratios: 

 

𝑐𝑜𝑠3(�̈� + �̈�𝐼) =
1

8
[2𝑐𝑜𝑠3(�̈� + �̈�𝐼) + 6𝑐𝑜𝑠(�̈� + �̈�𝐼)] 

 

=
1

4
𝑐𝑜𝑠3(�̈� + �̈�𝐼) +

3

4
𝑐𝑜𝑠(�̈� + �̈�𝐼) 

 

=
1

4
[𝑐𝑜𝑠(3�̈�) + 𝐼 (𝑐𝑜𝑠(3�̈� + 3�̈�) − 𝑐𝑜𝑠(3�̈�))] +

3

4
[𝑐𝑜𝑠(�̈�) + 𝐼 (𝑐𝑜𝑠(�̈� + �̈�) − 𝑐𝑜𝑠(�̈�))] 

 

Example4 

 

Write 𝑠𝑖𝑛6(�̈� + �̈�𝐼)  in the form of the sum of the trigonometric ratios of the multiples of the 

neutrosophic angle (�̈� + �̈�𝐼), then find based on what you find: 

 

∫ 𝑠𝑖𝑛6(�̈� + �̈�𝐼) 𝑑(�̈� + �̈�𝐼) 

Solution: 

 

by using neutrosophic Euler’s formulas: 

 

𝑠𝑖𝑛6(�̈� + �̈�𝐼) = (
𝑒𝑖(�̈�+�̈�𝐼) − 𝑒−𝑖(�̈�+�̈�𝐼)

2𝑖
)

6

 

 

=
−1

64
(𝑒𝑖(�̈�+�̈�𝐼) − 𝑒−𝑖(�̈�+�̈�𝐼))

6
 

 

=
−1

64
(𝑒6𝑖(�̈�+�̈�𝐼) + 6𝑒5𝑖(�̈�+�̈�𝐼)𝑒−𝑖(�̈�+�̈�𝐼) + 15𝑒4𝑖(�̈�+�̈�𝐼)𝑒−2𝑖(�̈�+�̈�𝐼) − 20𝑒3𝑖(�̈�+�̈�𝐼)𝑒−3𝑖(�̈�+�̈�𝐼)

+ 15𝑒2𝑖(�̈�+�̈�𝐼)𝑒−4𝑖(�̈�+�̈�𝐼) − 6𝑒𝑖(�̈�+�̈�𝐼)𝑒−5𝑖(�̈�+�̈�𝐼)𝑒−6𝑖(�̈�+�̈�𝐼)) 

 

=
−1

64
[(𝑒6𝑖(�̈�+�̈�𝐼) + 𝑒−6𝑖(�̈�+�̈�𝐼)) − 6(𝑒4𝑖(�̈�+�̈�𝐼) + 𝑒4𝑖(�̈�+�̈�𝐼)) + 15(𝑒2𝑖(�̈�+�̈�𝐼) + 𝑒−2𝑖(�̈�+�̈�𝐼)) − 20] 

 

by using neutrosophic Euler’s formulas to return to the trigonometric ratios: 

 

𝑐𝑜𝑠3(�̈� + �̈�𝐼) =
−1

64
[2𝑐𝑜𝑠6(�̈� + �̈�𝐼) − 12 𝑐𝑜𝑠 4(�̈� + �̈�𝐼) + 30 𝑐𝑜𝑠 2(�̈� + �̈�𝐼) − 20] 

⟹        𝑐𝑜𝑠3(�̈� + �̈�𝐼) =
−1

32
[𝑐𝑜𝑠6(�̈� + �̈�𝐼) − 6 𝑐𝑜𝑠 4(�̈� + �̈�𝐼) + 15 𝑐𝑜𝑠 2(�̈� + �̈�𝐼) − 10] 

 

=
−1

32
([𝑐𝑜𝑠(6�̈�) + 𝐼 (𝑐𝑜𝑠(6�̈� + 6�̈�) − 𝑐𝑜𝑠(6�̈�))] + 6 [𝑐𝑜𝑠(4�̈�) + 𝐼 (𝑐𝑜𝑠(4�̈� + 4�̈�) − 𝑐𝑜𝑠(4�̈�))]

+ 15 [𝑐𝑜𝑠(2�̈�) + 𝐼 (𝑐𝑜𝑠(2�̈� + 2�̈�) − 𝑐𝑜𝑠(2�̈�))] − 10) 

 

 

to find: 

∫ 𝑠𝑖𝑛6(�̈� + �̈�𝐼) 𝑑(�̈� + �̈�𝐼)

= ∫
−1

32
[𝑐𝑜𝑠6(�̈� + �̈�𝐼) − 6 𝑐𝑜𝑠 4(�̈� + �̈�𝐼) + 15 𝑐𝑜𝑠 2(�̈� + �̈�𝐼) − 10] 𝑑(�̈� + �̈�𝐼) 
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=
−1

32
[
1

6
𝑠𝑖𝑛 6(�̈� + �̈�𝐼) −

3

2
𝑠𝑖𝑛 4(�̈� + �̈�𝐼) +

15

2
𝑠𝑖𝑛 2(�̈� + �̈�𝐼) − 10(�̈� + �̈�𝐼)] + 𝑎 + 𝑏𝐼 

 

=
−1

32
(

1

6
[𝑠𝑖𝑛(6�̈�) + 𝐼 (𝑠𝑖𝑛(6�̈� + 6�̈�) − 𝑠𝑖𝑛(6�̈�))] −

3

2
[𝑠𝑖𝑛(4�̈�) + 𝐼 (𝑠𝑖𝑛(4�̈� + 4�̈�) − 𝑠𝑖𝑛(4�̈�))]

+
15

2
[𝑠𝑖𝑛(2�̈�) + 𝐼 (𝑠𝑖𝑛(2�̈� + 2�̈�) − 𝑠𝑖𝑛(2�̈�))] −10(�̈� + �̈�𝐼)) + 𝑎 + 𝑏𝐼 

 

 

4. Conclusions   

The importance of this paper comes from the fact that we were able to find the formula of 

neutrosophic Euler’s formulas and neutrosophic De Moivre's formula according to an accurate 

scientific method, which facilitated finding applications of neutrosophic complex numbers in 

triangles, and access to easy ways to calculate trigonometric integrals. One of the research most 

important on neutrosophic complex numbers is this paper. 
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Abstract: Aggregation operators are crucial in the process of multicriteria decision-making (MCDM) 

problems, as their main goal is to aggregate a collection of input to a single number. Analytic 

Hierarchy Process (AHP) has been used to solve a variety of MCDM situations in which crisp 

numbers are used to define linguistic assessment. The Interval-Valued Neutrosophic (IVN) number 

can consider the indeterminacy, fuzziness, and uncertainty in the real-world problem. A new 

combination of Interval Neutrosophic Weighted Averaging (INWA) aggregation operators into the 

AHP method is proposed in this study. The proposed combination method is applied to a case of 

factors affecting floods. In recent years, flood is one of the frequent natural disasters impacting 

Penang, one of the states that is famous for its tourism industry. Hence, an improved decision model 

is used to rank the factors of flash floods in Penang Malaysia.  based on the INWA aggregated matrix 

implemented into the AHP approach is presented. The ranking order is determined after assessing 

the obtained data, with the highest score being the most important factor (rephrase ayat ni). 

Government and authorities can use the findings to establish early preparations and prevention 

strategies to deal with the flash floods problem.  

Keywords: decision-making; fuzzy set theory; neutrosophic set theory; interval neutrosophic set 

theory; averaging operator  

  

 

1.  Introduction  

Multi-criteria decision-making involves multiple decision makers and multiple deciding criteria. 

The issue is the use of a crisp number scale to describe the decision makers’ opinions does not cater 

the fuzziness and indeterminacy during the evaluation process in real-world problems. To address 

flaws in real-number applications, fuzzy set theory was introduced by Lotfi Zadeh in 1965. A fuzzy 

set is a crisp set with a membership function that can take any value between 0 and 1. Several 

extensions of fuzzy set theories such as interval-valued fuzzy set, intuitionistic fuzzy set, 
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neutrosophic set, and many more have been applied in various case studies. The neutrosophic set 

(NS) appears to be more reasonable and acceptable compared to these FSs [1]. Besides, the concept of 

neutrosophic sets introduced by Smarandache [2] is interesting and useful in modeling several real-

life problems. The truth membership function, the indeterminacy membership function, and the 

falsity membership function, all of which are entirely independent, are related to the neutrosophic 

set theory (NS), which is a generalization of the intuitionistic fuzzy set (IFS) theory. This form clearly 

and successfully deals with not only missing information but also indeterminate and inconsistent 

information [3]. Hence, neutrosophic sets (NS) can help in dealing with the uncertainty that exists in 

real-world circumstances.  

Wang et al. [4] established the concept of Interval-Valued Neutrosophic Sets theory (IVNS), 

which is a subset of neutrosophic sets [5]. This concept is characterized by a membership function, a 

non-membership function, and an indeterminacy function, whose values are intervals rather than 

real numbers. IVNS is considered a valuable and practical tool for dealing with indeterminate and 

inconsistent information in the real world since it is more powerful than NS in dealing with 

vagueness and uncertainty. In multi-criteria decision-making problems, multiple decision-makers 

must be aggregated using the appropriate aggregation operators.   

Aggregation operators are an interesting area of research that plays an important role in group 

decision-making analysis. The traditional aggregation operators are usually based on the arithmetic 

and geometric mean approaches, often known as algebraic sum and algebraic product. The issue is 

the averaging method assumes a similar weight for all decision makers. In the real world, different 

weights may be assigned to different evaluations by multiple decision-makers [6]. Hence, Aczel and 

Saaty [7] proposed a weighted geometric (WG) mean aggregation operator for the synthesis of ratio 

judgments in the AHP method while Dong and Dong [8] later proposed a weighted arithmetic (WA) 

aggregation operator with a fuzzy set as its quantifier. In the neutrosophic environment, several 

neutrosophic aggregation operators were suggested, such as Interval Neutrosophic Weighted 

Averaging (INWA) and Interval Neutrosophic Weighted Geometric (INWG) [9]. In this study, the 

implementation of the INWA aggregation operator into the Multi-Criteria Decision-Making (MCDM) 

method is introduced.  

Decision-making is a process of selecting the best alternatives based on certain criteria. MCDM 

also known as Multi-Criteria Decision Analysis (MCDA) is a method or process of decision-making 

involving multiple criteria that need to be considered to choose the best option between them. This 

method has been used in many fields such as engineering [10], management science [11], education 

[12], investment problem [13], and medical science [14]. There are many methods available to solve 

MCDM problems such as the Analytic Hierarchy Process (AHP), Technique for Order of Preference 

by Similarities to Ideal Solution (TOPSIS) [15,16], Preference Ranking Organization Method for 

Enrichment of Evaluations (PROMETHEE) [17], and Decision-Making Trial and Evaluation 

Laboratory (DEMATEL) [18]. Amongst these MCDM methods, AHP is a more flexible and realistic 

method to use because it produces a simple way to find the relationships between criteria and 

alternatives [19]. The AHP method was proposed by Saaty [20] as an easily justified, discriminating, 
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and intentional MCDM technique. AHP has the ability to detangle a difficult problem by breaking it 

down into smaller parts with the hierarchical structure approach. Recently, most of the AHP methods 

have been extended based on fuzzy set and neutrosophic set theories. The application of the AHP 

method also has been diversified. In this study, the proposed AHP method with INWA operator is 

used to solve the flash floods problem in Penang.  

Flash floods are the most terrifying natural disasters that can occur with little or no warning. A 

flash flood is a rapid-developing, short-duration flood that occurs within a few hours of the triggering 

event. Perhaps, flash floods are the most frequent disasters that happened and caused the greatest 

damage to the world. Flash floods occurred because of natural factors and human factors. Based on 

the literature review, eight factors are taken into consideration, which are rain intensity, rain 

duration, poor drainage system, dam and levee failure, urbanization, slow-moving thunderstorm, 

soil erosion, and land use pattern [21-29]. Five decision makers are invited to answer the 

questionnaire by pairwise comparison between factors. The findings of this study will be beneficial 

to the Drainage Irrigation Department (DID) or even the society as a source of reference that can be 

used to identify the most important factor in flash floods occurs. Hence, this research is important to 

help the Drainage Irrigation Department (DID), the in-charge agency of natural disasters in Penang, 

and the society recognized the most important factors that caused flash floods happened more 

accurately so that they are better prepared to deal with flash floods in the future. Section 2 goes over 

some preliminary concepts. Section 3 describes details the AHP's research methodology with the 

INWA operator. Section 4 discusses the proposed method's application to the problem of flash floods, 

and Section 5 concludes with remarks.  

2.  Preliminaries  

In this section, we review some basic concepts related to INVS which will be used in the rest of the 

paper.  

 

Definition 1: [4] Interval-Valued Neutrosophic (IVN) Sets  

Let X be a universe of discourse and Int [0,1] be the set of all closed subsets of [0,1]. Then an interval 

neutrosophic set is defined as: 

 

 , ( ), ( ), ( ) :A A AA x u x p x v x x X                                                           (1) 

 

where    : 0,1 , : 0,1A Au X Int p X Int   and  : 0,1Av X Int   with 

0 sup ( ) sup sup 3U U U

A A Au x p v     for all. The interval ( ), ( )A Au x p x  and ( )Av x denote the truth-

membership degree, the indeterminacy-membership degree and the falsity-membership of x to A 

respectively. 

 

For convenience, if let ( ) ( ), ( ) , ( ) ( ), ( )L U L U

A A A A A Au x u x u x p x p x p x         , and 

( ) ( ), ( )L U

A A Av x v x v x     ,then  , ( ), ( ) , ( ), ( ) , ( ), ( ) :L U L U L U

A A A A A AA x u x u x p x p x v x v x x X             
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with the condition,  0 sup ( ) sup sup 3U U U

A A Au x p v     for all x X  . Here, we only consider the 

sub-unitary interval of [0,1]. Therefore, an interval neutrosophic set is clearly a neutrosophic set [3].  

Table 1 shows the IVN scales.  

   

Table 1: Linguistic IVN Scales [3]  

Linguistic Variables  IVN  

Equal Importance (EI)  <[0.5,0.5],[0.5,0.5],[0.5,0.5]>  

Equal Importance Complement (EIC)  <[0.5,0.5],[0.5,0.5],[0.5,0.5]>  

Weakly More Importance (WMI)  <[0.5,0.6],[0.35,0.45],[0.4,0.5]>  

Weakly More Importance Complement (WMIC)  <[0.4,0.5],[0.35,0.45],[0.5,0.6]>  

Moderate Importance (MI)  <[0.55,0.65],[0.3,0.4],[0.35,0.45]>  

Moderate Importance Complement (MIC)  <[0.35,0.45],[0.3,0.4],[0.55,0.65]>  

Moderately More Importance (MMI)  <[0.6,0.7],[0.25,0.35],[0.3,0.4]>  

Moderately More Importance Complement (MMIC)  <[0.3,0.4],[0.25,0.35],[0.6,0.7]>  

Strong Importance (SI)  <[0.65,0.75],[0.2,0.3],[0.25,0.35]>  

Strong Importance Complement (SIC)  <[0.25,0.35],[0.2,0.3],[0.65,0.75]>  

Strongly More Importance (SMI)  <[0.7,0.8],[0.15,0.25],[0.2,0.3]>  

Strongly More Importance Complement (SMIC)  <[0.2,0.3],[0.15,0.25],[0.7,0.8]>  

Very Strong Importance (VSI)  <[0.75,0.85],[0.1,0.2],[0.15,0.25]>  

Very Strong Importance Complement (VSIC)  <[0.15,0.25],[0.1,0.2],[0.75,0.85]>  

Very Strongly More Importance (VSMI)  <[0.8,0.9],[0.05,0.1],[0.1,0.2]>  

Very Strongly More Importance Complement  

(VSMIC)  
<[0.1,0.2],[0.05,0.1],[0.8,0.9]>  

Extreme Importance (EI)  <[0.9,0.95],[0,0.05],[0.05,0.15]>  

Extreme Importance Complement (EIC)  <[0.05,0.1],[0,0.05],[0.85,0.95]>  

Extremely High Importance (EHI)  <[0.95,1],[0,0],[0,0.1]>  

Extremely High Importance Complement (EHIC)  <[0,0.05],[0,0],[0.9,1]>  

Absolutely More Importance (AMI)  <[1,1],[0,0],[0,0]>  

Absolutely More Importance Complement (AMIC)  <[0,0],[0,0],[1,1]>  

  

Definition 2: [30] Interval Neutrosophic Weighted Average (INWA) Operator  

Let  1 2, ,..., nA A A A   be a collection of Interval Neutrosophic Set (INS), where 

, , , , ,L U L U L U
j j j j j j jA T T I I F F              ( 1, 2,..., )j n   in interval neutrosophic number and if 
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 1 2 1 21 2, ,..., ( ... )n nW nINWA A A A w A w A w A     , then INWA is called an interval 

neutrosophic weighted averaging (INWA) operator of dimension n, where  1 2, ,...,
T

nw w w w  is 

the weight vector of ( 1,2,..., )jA j n , weight  0,1jw   and 
1

1
n

j

j

w


 . 

   

3.  Methodology  

3.1  Research Framework  

The research framework of this study presents the workflow to determine the most important 

factor of flash floods as shown in Figure 1.   
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Figure 1: Research Framework  

3.2 Phase 1: Data Collection  

Data collection is the systematic process of acquiring and measuring information on variables of 

interest in order to answer research questions, test hypotheses, and evaluate outcomes. A survey was 

conducted to analyse the factor of flash floods that occurred in Penang. The questionnaires were given 

to five decision-makers at the Department of Irrigation and Drainage Seberang Perai Utara Pulau 

Pinang, who are experts in determining which factor is the most important. The decision-makers are 

required to give opinions on the evaluation of pair-wise comparison for factors. The data obtained is 

called primary data. The questionnaires contained two sections which are Section A and Section B. 
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Section A is about demographic profiles such as gender, position, and years of working experience 

while in Section B, decision-makers have to evaluate the pair-wise comparison between all the factors 

by using the linguistic scale. The decision makers’ pair-wise comparisons are converted into the 

Interval-Valued Neutrosophic scale as in Step 3.2.  

  

3.3 Phase 2: Data Evaluation – IVN-AHP Method   

The AHP method is based on the logic of structuring a problem in hierarchies and then 

evaluating the components in the hierarchy through pairwise comparisons. Although AHP is a 

popular solution for MCDM problems, it does not always reflect human thought. Unlike traditional 

AHP, IVN-AHP can effectively integrate human cognition into decision-making by expressing 

uncertainty using three variables (T, I, and F). The weights of the factors affecting flash floods are 

calculated in this study using the IVN-AHP methodology. The steps of IVN-AHP are given below 

[3]:  

Step 1: Identify the factors of the decision-making problem based on the literature.  

Step 2: Decompose the complex problem into a hierarchical structure.  

Step 3: Employs pair-wise comparison of the factors using a linguistic scale.  

Step 3.1: Transform to crisp scale and calculate the Consistency Ratio.  

 

i) Develop a pair-wise comparison matrix based on the decision-maker preference using a crisp  

number for each factor. 

11

1

1

 

1 1

n

ij

n

n

Sc
S

c
s

 
 
 

  
 
 
              

               (2) 

ii) The resulting weights were estimated using Row Geometric Mean Method (RGMM) as 

proposed by Saaty (1980). 
1

1

i

j

i

ij
j

C C



 
 
                                                         (3) 

iii) Calculate the weight of each criterion 
1

1

1

1

1

i

j

i
i

j

i

ij
j

i

ij
j

S

w

S







 
 
 

 
  
                       

             (4) 

iv) Find the eigenvector and using the equation as follows:  

 

Sw S w                         
               (5) 

max 


Sw

n w
                              

              (6) 

where, 



Neutrosophic Sets and Systems, Vol. 57, 2023      180  

 

  

Noor Azzah Awang, Nurul Izzati Md Isa, Hazwani Hashim and Lazim Abdullah, AHP Approach using Interval Neutrosophic 

Weighted Averaging (INWA) Operator for Ranking Flash Floods Contributing Factors 

  

S : comparison matrix,  

𝑤 : eigenvector of the matrix S,  

𝑛 : number of criteria,  

max  : largest eigenvalue. 

v) Calculate the consistency index (𝐶𝐼) 

max

1

n
CI

n

 


                  
            (7) 

iv) To calculate the consistency ratio (𝐶𝑅 ≤ 0.1), divide the consistency index (𝐶𝐼) with random 

index (𝑅𝐼). We assume that the data obtained is consistent if CR for crisp number consistent. 

The random index (𝑅I) value is selected based on the sample size of 𝑛 matrix as shown in 

Table 2. 

CI
CR

RI


                
           (8) 

 

Table 2: Random Inconsistency Index (RI) for n = 1,2,...,12 [20] 

n  1  2  3  4  5  6  7  8  9  10  11  12  

RI  0  0  0.58  0.90  1.12  1.24  1.32  1.41  1.45  1.49  1.51  1.58  

  

Step 3.2: Transform the pair-wise comparison based on linguistic scale to Interval Valued 

Neutrosophic Set scale introduced by Wang et al. [4] and evaluate the pair-wise comparison of the 

factors.   

  

Step 4: Aggregation Process  

In this phase, to aggregate all decision-makers’ opinions, the INWA operator is employed to 

get the weight of decision-maker.   

  

Step 4.1: Weight of Decision Maker  

i. Develop a pair-wise comparison matrix based on the decision-maker position using 

an Interval-Valued Neutrosophic (IVN) Set.  

ii.  

11 11 11 11 11 11 1 1 1 1 1 1
1

2 21 21 21 21 21 21

1 1 1 1 1 1

, , , , , , , , , ,

, , , , ,

, , , , , , ,

L U L U L U L U L U L U

n n n n n n

L U L U L U

L U L U L U L U
n

n n n n n n nn nn nn

T T I I F F T T I I F FDM

DM T T I I F F
P

DM T T I I F F T T I

                      

          

              

(9)

, , ,L U L U

nn nn nnI F F

 
 
 
 
 
 

        

 

ii. Converting the neutrosophic reference relations into their corresponding crisp preference 

relations by deneutrosophicated method.  
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L U L U L U

kj kj kj kj kj kjU U

kj kj

T x T x I x I x F x F x
D x I x F x  (10) 

iii. Calculate the weight of matrix P by aggregating using the Row Geometric Mean Method 

(RGMM). 
1

1

i i

j ij

j

DM DM
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iv. Calculate the weight of each decision maker. 
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Step 4.2: Aggregate with the pair-wise comparison obtained in Step 3.2 using INWA operator.  
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Step 5:  Ranking Process  

In this phase, the weight obtained will be used to rank the factor of flash floods. Then, the highest 

the weight will be the most critical factor.  

  

Step 5.1: The constructed pair-wise comparison obtained from the aggregated using INWA is 

used.  

Step 5.2: The importance weights, 
ijN  of the factors are normalized to make them comparable data 

and thus to rate and rank factors.  

1 1 1 1 1 1

, , , , , ; 1,2,...,

L U L U L U

kj kj kj kj kj kj
ij n n n n n n

U U U U U U

kj kj kj kj kj kj

k k k k k k

T T I I F F
N j n

T T I I F F
     

     
     
      
     
          
     

        (14) 
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Step 5.3: The arithmetic mean of each row is calculated to obtain the neutrosophic importance weight, 

jW  vector of the factors by Equation (15).  

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1, , , , ,

L U L U L Un n n n n n
j j j j j j

n n n n n n
U U U U U Uk k k k k k

kj kj kj kj kj kj

k k k k k k
j

T T I I F F

T T I I F F

W
n n n n n n

     

     

     
     
     
     

      
     
     
     
     

     
           (15) 

  

  

Step 5.4: All the above steps are repeated for each factor.   

Step 5.5: In order to obtain the crisp weights of the factors, the deneutrosophication 

formula in Equation (10) is used. Step 5.6: Rank the weight accordingly.  

  

3.4 Phase 3: Comparison Analysis  

The aggregation operator changes to INWG operator as Equation (16) follows then Step 5.1 until 

Step 5.6 repeated:  
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                       (16) 

 

  

Then compare the weight of each factor and the ranking based on different aggregation operator.  

4.  Application  

4.1 Weight of decision-maker  

 The weight of the decision-maker is important in aggregating the pairwise comparison based on 

decision makers’ opinions. In this study, the weight of decision-makers is calculated by using AHP 

method in interval neutrosophic environment. During the comparison phase, the decision-makers’ 

weight is compared based on their positions. The decision-maker with higher position has more 

experience in handling the flash floods. Table 3 shows the comparison between the position of each 

decision maker in linguistic term.  

  

Table 3: Pair-wise Judgement for Decision Makers’ Weight in Linguistic Term  

Decision 

Maker 

DM1 DM2 DM3 DM4 DM5 
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DM1 EI MI SI VSI EHI 

DM2 MIC EI MI SI VSI 

DM3 SIC MIC EI MI SI 

DM4 VSIC SIC MIC EI MI 

DM5 EHIC VSIC SIC MIC EI 

  

Then, the pair-wise comparison in linguistic term is converted into interval neutrosophic 

numbers by the conversion scale of IVNs (refer Table 1). Then, the pair-wise judgement of decision-

makers’ weight is calculated by using deneutrosophication formula to obtain crisp pair-wise 

comparison. Table 4 shows the result after deneutrosophication formula applied. The example of 

calculation for DM1 as follows:  

 

 1

0.5 0.5 0.5 0.5 0.5 0.5
( 1) 0.5 (1 0.5) 0.5

2 2 2
DMD DM

         
          

      
 

  

Table 4 Result of Deneutrosophication Calculation  

Decision Maker  DM 1  DM 2  DM 3  DM 4  DM 5  

DM 1  0.5  0.64  0.73  0.82  0.93  

DM 2  0.45  0.5  0.64  0.73  0.82  

DM 3  0.35  0.45  0.5  0.64  0.73  

DM 4  0.25  0.35  0.45  0.5  0.64  

DM 5  0.03  0.25  0.35  0.45  0.50  

  

Then, Row Geometric Mean (RGM) formula is used to calculate weight vector as shown in Table 5. The 

example of calculation for row 1 as follows:  

 
1

51 0.5 0.64 0.73 0.82 0.93 0.71DM        

 

Table 5: Result of Weight Vector  

Decision Maker  Weight Vector  

DM 1  0.71  

DM 2  0.61  

DM 3  0.52  

DM 4  0.42  

DM 5  0.22  

Total  2.47  

  

Finally, the weight of each decision makers obtained as shown in Table 6. The example calculation as 

shown below:  
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   1

0.71
0.29

2.47
DMW    

  

Table 6: Weight of each DM  

Position  Decision Maker  Weight, W  

District engineer  DM 1  0.29  

Senior assistant engineer  DM 2  0.25  

Assistant engineer  DM 3  0.21  

Administrative engineer  DM 4  0.17  

Officer  DM 5  0.09  

  Total  1.00  

  

4.2. Implementation of IVN-AHP based on INWA Operator  

  

The decision makers’ opinion gathered in pair-wise comparison. Then, the consistency ratio was 

check for each decision-makers’ opinion and all decision-makers’ opinions are consistent since the 

consistency ratio for each decision-maker’s opinion is less than 0.10. For example, Table 7 shows the 

pair-wise comparison based on DM’s 1 opinion in linguistic term.  

  

Table 7: Pair-wise Comparison based on DM’s 1 Opinion in Linguistic Term.  

  C1  C2  C3  C4  C5  C6  C7  C8  

C1  EI  SI  EI  WI  SIC  EI  MP  MI  

C2  SIC  EI  WIC  EI  MIC  MIC  WI  WI  

C3  EI  WI  EI  MI  EI  EI  SI  WI  

C4  WIC  EI  MIC  EI  MIC  MIC  WI  WIC  

C5  SI  MI  EI  MI  EI  EI  MI  WI  

C6  EI  MI  EI  MI  EI  EI  VSI  SI  

C7  MPC  WIC  SIC  WIC  MIC  VSIC  EI  SIC  

C8  MIC  WIC  WIC  WI  WIC  SIC  SI  EI  

   

Table 7 shows example of pair-wise comparison based on opinion from decision maker 1 in term 

of interval neutrosophic scale. Then, all the five decision makers’ opinion is aggregated using INWA 

operator and the results are shown in Table 8. The following calculation is demonstrated for cell C11 

by using INWA aggregation operator:  
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0.29 0.25 0.21 0.17 0.09

0.29 0.25 0.21 0.17 0.09

1 2 3 4 5

0.29 0.25 0.21 0.17 0.09 0.29 0.25 0.21 0.17

1 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 ,

1 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5, , , ,

0.5 0.5 0.5 0.5 0.5 ,0.5 0.5 0.5 0.5

W
INWA DM DM DM DM DM

         

         

       

 

0.09

0.29 0.25 0.21 0.17 0.09 0.29 0.25 0.21 0.17 0.09

1 2 3 4 5

0.5

0.5 0.5 0.5 0.5 0.5 ,0.5 0.5 0.5 0.5 0.5

, , , , 0.5,0.5,0.5,0.5,0.5,0.5
W

INWA DM DM DM DM DM

 
 
 
 
 
 
 

        

   

 

  

Table 8: INWA Aggregated Matrix  

  C1 C2 

TL TU IL IU FL FU TL TU IL IU FL FU 

C1 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.6633 0.7552 0.1932 0.2921 0.2448 0.3367 

C2 0.2889 0.3571 0.1932 0.2921 0.6429 0.7111 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

C3 0.5129 0.5423 0.4406 0.4731 0.4577 0.4871 0.6311 0.7292 0.2117 0.3006 0.2708 0.3689 

C4 0.2886 0.3894 0.2209 0.3251 0.6106 0.7114 0.4664 0.4881 0.4406 0.4731 0.5119 0.5336 

C5 0.5702 0.6528 0.3031 0.3893 0.3472 0.4298 0.6013 0.7111 0.2267 0.3222 0.2889 0.3987 

C6 0.5239 0.5765 0.3941 0.4506 0.4235 0.4761 0.6114 0.7139 0.2336 0.3376 0.2861 0.3886 

C7 0.2691 0.3692 0.2174 0.3178 0.6308 0.7309 0.4365 0.4876 0.3959 0.4581 0.5124 0.5635 

C8 0.3817 0.4818 0.3304 0.4306 0.5182 0.6183 0.4489 0.5494 0.3500 0.4500 0.4506 0.5111 

  C3  C4 

TL TU IL IU FL FU TL TU IL IU FL FU 

C1 0.4664 0.4881 0.4406 0.4731 0.5119 0.5336 0.6237 0.7266 0.2209 0.3251 0.2734 0.3763 

C2 0.3260 0.4014 0.2117 0.3006 0.5986 0.6740 0.5129 0.5423 0.4406 0.4731 0.4577 0.4871 

C3 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5599 0.6602 0.2895 0.3900 0.3398 0.4401 

C4 0.3417 0.4418 0.2895 0.3900 0.5582 0.6583 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

C5 0.5239 0.5765 0.3941 0.4506 0.4235 0.4761 0.6328 0.7376 0.2079 0.3152 0.2624 0.3672 

C6 0.5494 0.6271 0.3314 0.4126 0.3729 0.4506 0.6382 0.7404 0.2076 0.3109 0.2596 0.3618 

C7 0.1972 0.2974 0.1388 0.2417 0.7026 0.8028 0.3875 0.4876 0.3364 0.4366 0.5124 0.6125 

C8 0.3647 0.4648 0.3135 0.4137 0.5352 0.6353 0.5129 0.6130 0.3369 0.4371 0.3870 0.4871 

  C5  C6 

TL TU IL IU FL FU TL TU IL IU FL FU 

C1 0.3654 0.4365 0.3031 0.3893 0.5635 0.6346 0.4350 0.4773 0.3941 0.4506 0.5227 0.5650 

C2 0.3224 0.4234 0.2267 0.3222 0.5766 0.6776 0.2975 0.3979 0.2336 0.3376 0.6021 0.7025 

C3 0.4350 0.4773 0.3941 0.4506 0.5227 0.5650 0.3881 0.4557 0.3314 0.4126 0.5443 0.6119 

C4 0.2825 0.3832 0.2079 0.3152 0.6168 0.7175 0.2707 0.3712 0.2076 0.3109 0.6288 0.7293 

C5 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

C6 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

C7 0.2487 0.3492 0.1814 0.2862 0.6508 0.7513 0.1732 0.2733 0.1203 0.2215 0.7267 0.8268 

C8 0.3606 0.4607 0.3085 0.4089 0.5393 0.6394 0.2821 0.3825 0.2250 0.3264 0.6175 0.7179 

 C7  C8 

TL TU IL IU FL FU TL TU IL IU FL FU 

C1 0.6320 0.7323 0.2174 0.3178 0.2677 0.3680 0.5194 0.6195 0.3304 0.4306 0.3805 0.4806 

C2 0.5133 0.5720 0.3959 0.4581 0.4280 0.4867 0.4557 0.5562 0.3500 0.4500 0.4438 0.5443 

C3 0.7076 0.8093 0.1388 0.2417 0.1907 0.2924 0.5362 0.6364 0.3135 0.4137 0.3636 0.4638 

C4 0.5133 0.6135 0.3364 0.4366 0.3865 0.4867 0.3880 0.4881 0.3369 0.4371 0.5119 0.6120 

C5 0.6626 0.7657 0.1814 0.2862 0.2343 0.3374 0.5410 0.6413 0.3085 0.4089 0.3587 0.4590 

C6 0.7283 0.8289 0.1203 0.2215 0.1711 0.2717 0.6232 0.7242 0.2250 0.3264 0.2758 0.3768 

C7 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.3589 0.4344 0.2972 0.3859 0.5656 0.6411 

C8 0.5719 0.6576 0.2972 0.3859 0.3424 0.4281 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

 

Table 9 shows the sum of each column. The example of calculation for sum of column 1 as shown 

below.    
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1,
0.5000 0.2889 0.5129 0.2886 0.5702 0.5239 0.2691 0.3817 3.3354LC T

Total           

 

Table 9: Sum of each column  

                      C1                      C2 

TL TU IL IU FL FU TL TU IL IU FL FU 

C1      0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.6633 0.7552 0.1932 0.2921 0.2448 0.3367 

C2 0.2889 0.3571 0.1932 0.2921 0.6429 0.7111 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

C3 0.5129 0.5423 0.4406 0.4731 0.4577 0.4871 0.6311 0.7292 0.2117 0.3006 0.2708 0.3689 

C4 0.2886 0.3894 0.2209 0.3251 0.6106 0.7114 0.4664 0.4881 0.4406 0.4731 0.5119 0.5336 

C5 0.5702 0.6528 0.3031 0.3893 0.3472 0.4298 0.6013 0.7111 0.2267 0.3222 0.2889 0.3987 

C6 0.5239 0.5765 0.3941 0.4506 0.4235 0.4761 0.6114 0.7139 0.2336 0.3376 0.2861 0.3886 

C7 0.2691 0.3692 0.2174 0.3178 0.6308 0.7309 0.4365 0.4876 0.3959 0.4581 0.5124 0.5635 

C8 0.3817 0.4818 0.3304 0.4306 0.5182 0.6183 0.4489 0.5494 0.3500 0.4500 0.4506 0.5511 

Total 3.3354 3.8691 2.5997 3.1787 4.1309 4.6646 4.3588 4.9345 2.5517 3.1336 3.0655 3.6412 

                       C3                       C4 

TL TU IL IU FL FU TL TU IL IU FL FU 

C1 0.4664 0.4881 0.4406 0.4731 0.5119 0.5336 0.6237 0.7266 0.2209 0.3251 0.2734 0.3763 

C2 0.3260 0.4014 0.2117 0.3006 0.5986 0.6740 0.5129 0.5423 0.4406 0.4731 0.4577 0.4871 

C3 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5599 0.6602 0.2895 0.3900 0.3398 0.4401 

C4 0.3417 0.4418 0.2895 0.3900 0.5582 0.6583 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

C5 0.5239 0.5765 0.3941 0.4506 0.4235 0.4761 0.6328 0.7376 0.2079 0.3152 0.2624 0.3672 

C6 0.5494 0.6271 0.3314 0.4126 0.3729 0.4506 0.6382 0.7404 0.2076 0.3109 0.2596 0.3618 

C7 0.1972 0.2974 0.1388 0.2417 0.7026 0.8028 0.3875 0.4876 0.3364 0.4366 0.5124 0.6125 

C8 0.3647 0.4648 0.3135 0.4137 0.5352 0.6353 0.5129 0.6130 0.3369 0.4371 0.3870 0.4871 

Total 3.2694 3.7971 2.6196 3.1823 4.2029 4.7306 4.3679 5.0077 2.5397 3.1880 2.9923 3.6321 

                       C5                        C6 

TL TU IL IU FL FU TL TU IL IU FL FU 

C1 0.3654 0.4365 0.3031 0.3893 0.5635 0.6346 0.4350 0.4773 0.3941 0.4506 0.5227 0.5650 

C2 0.3224 0.4234 0.2267 0.3222 0.5766 0.6776 0.2975 0.3979 0.2336 0.3376 0.6021 0.7025 

C3 0.4350 0.4773 0.3941 0.4506 0.5227 0.5650 0.3881 0.4557 0.3314 0.4126 0.5443 0.6119 

C4 0.2825 0.3832 0.2079 0.3152 0.6168 0.7175 0.2707 0.3712 0.2076 0.3109 0.6288 0.7293 

C5 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

C6 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

C7 0.2487 0.3492 0.1814 0.2862 0.6508 0.7513 0.1732 0.2733 0.1203 0.2215 0.7267 0.8268 

C8 0.3606 0.4607 0.3085 0.4089 0.5393 0.6394 0.2821 0.3825 0.2250 0.3264 0.6175 0.7179 

Total 3.0145 3.5304 2.6218 3.1724 4.4696 4.9855 2.8467 3.3579 2.5122 3.0595 4.6421 5.1533 

                        C7                       C8 

TL TU IL IU FL FU TL TU IL IU FL FU 

C1 0.6320 0.7323 0.2174 0.3178 0.2677 0.3680 0.5194 0.6195 0.3304 0.4306 0.3805 0.4806 

C2 0.5133 0.5720 0.3959 0.4581 0.4280 0.4867 0.4557 0.5562 0.3500 0.4500 0.4438 0.5443 

C3 0.7076 0.8093 0.1388 0.2417 0.1907 0.2924 0.5362 0.6364 0.3135 0.4137 0.3636 0.4638 

C4 0.5133 0.6135 0.3364 0.4366 0.3865 0.4867 0.3880 0.4881 0.3369 0.4371 0.5119 0.6120 

C5 0.6626 0.7657 0.1814 0.2862 0.2343 0.3374 0.5410 0.6413 0.3085 0.4089 0.3587 0.4590 

C6 0.7283 0.8289 0.1203 0.2215 0.1711 0.2717 0.6232 0.7242 0.2250 0.3264 0.2758 0.3768 

C7 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.3589 0.4344 0.2972 0.3859 0.5656 0.6411 

C8 0.5719 0.6576 0.2972 0.3859 0.3424 0.4281 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Total 4.8291 5.4793 2.1876 2.8478 2.5207 3.1709 3.9223 4.6000 2.6615 3.3526 3.4000 4.0777 

 

 

Table 10 shows the normalized weight of each factor. As an example, the calculation for Factor 1 (C1) 

shown as followed:   

     

11

11

0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
, , , , ,

3.8691 3.8691 3.1787 3.1787 4.6646 4.6646

0.1292,0.1292 , 0.1573,0.1573 , 0.1072,0.1072

N

N
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Table 10: Normalized Weight  

                        C1                        C2 

TL TU IL IU FL FU TL TU IL IU FL FU 

C1 0.1292 0.1292 0.1573 0.1573 0.1072 0.1072 0.1344 0.1531 0.0616 0.0932 0.0672 0.0925 

C2 0.0747 0.0923 0.0608 0.0919 0.1378 0.1525 0.1013 0.1013 0.1596 0.1596 0.1373 0.1373 

C3 0.1326 0.1402 0.1386 0.1488 0.0981 0.1044 0.1279 0.1478 0.0676 0.0959 0.0744 0.1013 

C4 0.0746 0.1006 0.0695 0.1023 0.1309 0.1525 0.0945 0.0989 0.1406 0.1510 0.1406 0.1465 

C5 0.1474 0.1687 0.0954 0.1225 0.0744 0.0921 0.1219 0.1441 0.0724 0.1028 0.0793 0.1095 

C6 0.1354 0.1490 0.1240 0.1418 0.0908 0.1021 0.1239 0.1447 0.0746 0.1077 0.0786 0.1067 

C7 0.0696 0.0954 0.0684 0.1000 0.1352 0.1567 0.0885 0.0988 0.1263 0.1462 0.1407 0.1548 

C8 0.0987 0.1245 0.1039 0.1355 0.1111 0.1325 0.0910 0.1113 0.1117 0.1436 0.1238 0.1514 

                        C3                        C4 

TL TU IL IU FL FU TL TU IL IU FL FU 

C1 0.1228 0.1285 0.1384 0.1487 0.1082 0.1128 0.1245 0.1451 0.0693 0.1020 0.0753 0.1036 

C2 0.0859 0.1057 0.0665 0.0944 0.1265 0.1425 0.1024 0.1083 0.1382 0.1484 0.1260 0.1341 

C3 0.1317 0.1317 0.1571 0.1571 0.1057 0.1057 0.1118 0.1318 0.0908 0.1223 0.0935 0.1212 

C4 0.0900 0.1164 0.0910 0.1225 0.1180 0.1391 0.0998 0.0998 0.1568 0.1568 0.1377 0.1377 

C5 0.1380 0.1518 0.1238 0.1416 0.0895 0.1006 0.1264 0.1473 0.0652 0.0989 0.0723 0.1011 

C6 0.1447 0.1651 0.1041 0.1296 0.0788 0.0953 0.1274 0.1479 0.0651 0.0975 0.0715 0.0996 

C7 0.0519 0.0783 0.0436 0.0760 0.1485 0.1697 0.0774 0.0974 0.1055 0.1369 0.1411 0.1686 

C8 0.0961 0.1224 0.0985 0.1300 0.1131 0.1343 0.1024 0.1224 0.1057 0.1371 0.1065 0.1341 

                        C5                        C6 

TL TU IL IU FL FU TL TU IL IU FL FU 

C1 0.1035 0.1236 0.0956 0.1227 0.1130 0.1273 0.1295 0.1421 0.1288 0.1473 0.1014 0.1096 

C2 0.0913 0.1199 0.0715 0.1016 0.1157 0.1359 0.0886 0.1185 0.0764 0.1103 0.1168 0.1363 

C3 0.1232 0.1352 0.1242 0.1421 0.1048 0.1133 0.1156 0.1357 0.1083 0.1348 0.1056 0.1187 

C4 0.0800 0.1086 0.0655 0.0994 0.1237 0.1439 0.0806 0.1105 0.0679 0.1016 0.1220 0.1415 

C5 0.1416 0.1416 0.1576 0.1576 0.1003 0.1003 0.1489 0.1489 0.1634 0.1634 0.0970 0.0970 

C6 0.1416 0.1416 0.1576 0.1576 0.1003 0.1003 0.1489 0.1489 0.1634 0.1634 0.0970 0.0970 

C7 0.0704 0.0989 0.0572 0.0902 0.1305 0.1507 0.0516 0.0814 0.0393 0.0724 0.1410 0.1604 

C8 0.1021 0.1305 0.0973 0.1289 0.1082 0.1283 0.0840 0.1139 0.0735 0.1067 0.1198 0.1393 

                        C7                        C8 

TL TU IL IU FL FU TL TU IL IU FL FU 

C1 0.1154 0.1337 0.0764 0.1116 0.0844 0.1160 0.1129 0.1347 0.0985 0.1284 0.0933 0.1179 

C2 0.0937 0.1044 0.1390 0.1609 0.1350 0.1535 0.0991 0.1209 0.1044 0.1342 0.1088 0.1335 

C3 0.1291 0.1477 0.0487 0.0849 0.0601 0.0922 0.1166 0.1383 0.0935 0.1234 0.0892 0.1137 

C4 0.0937 0.1120 0.1181 0.1533 0.1219 0.1535 0.0843 0.1061 0.1005 0.1304 0.1255 0.1501 

C5 0.1209 0.1397 0.0637 0.1005 0.0739 0.1064 0.1176 0.1394 0.0920 0.1220 0.0880 0.1126 

C6 0.1329 0.1513 0.0423 0.0778 0.0539 0.0857 0.1355 0.1574 0.0671 0.0974 0.0676 0.0924 

C7 0.0913 0.0913 0.1756 0.1756 0.1577 0.1577 0.0780 0.0944 0.0886 0.1151 0.1387 0.1572 

C8 0.1044 0.1200 0.1044 0.1355 0.1080 0.1350 0.1087 0.1087 0.1491 0.1491 0.1226 0.1226 

  

Table 11 shows the neutrosophic weight of each factor. As an example, the calculation neutrosophic 

weight for Factor 1 (C1) shown as followed:  
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1

0.1292 0.1344 0.1228 0.1245 0.1035 0.1295 0.1154 0.1129
,

8

0.1292 0.1531 0.1285 0.1451 0.1236 0.1421 0.1337 0.1347
,

8

0.1573 0.0616 0.1384 0.0693 0.0956 0.1288 0.0764 0.0985
,

8

0.1573 0.0932 0.1487 0.102
W

      

      

      


  

1

0 0.1227 0.1473 0.1116 0.1284
,

8

0.1072 0.0672 0.1082 0.0753 0.1130 0.1014 0.0844 0.0933
,

8

0.1072 0.0925 0.1128 0.1036 0.1273 0.1096 0.1160 0.1179

8

0.1215,0.1363,0.103W

 
 
 
 
 
 
 
 
    
 
 
       
 
 

       
  

  2,0.1264,0.0938,0.1109
 

 

 

 

Table 11: Neutrosophic Weight  

 Weight 

TL TU IL IU FL FU 

C1 0.1215 0.1363 0.1032 0.1264 0.0938 0.1109 

C2 0.0921 0.1089 0.1020 0.1252 0.1255 0.1407 

C3 0.1236 0.1386 0.1036 0.1262 0.0914 0.1088 

C4 0.0872 0.1066 0.1012 0.1272 0.1275 0.1456 

C5 0.1328 0.1477 0.1042 0.1262 0.0843 0.1025 

C6 0.1363 0.1507 0.0998 0.1216 0.0798 0.0974 

C7 0.0723 0.0920 0.0881 0.1140 0.1417 0.1595 

C8 0.0984 0.1192 0.1055 0.1333 0.1141 0.1347 

 

The deneutrosophication formula was used to obtain crisp weight for each factor shown in Table 12.  

The example of calculation for Factor 1 (C1) shown below:  

0.1215 0.1363 0.1032 0.1264 0.0938 0.1109
( 1) (0.1264) (1 0.1109) 0.1498

2 2 2
D C

         
          

         
  

Table 12: Ranking of Flash Floods’ Factors  

Factor  Weight  Rank  

C1  Poor Drainage System  0.1498  4  

C2  Dam and Levee Failure  0.0971  6  

C3  Urbanization  0.1535  3  

C4  Land Use Pattern  0.0929  7  

C5  Rain Intensity  0.1681  2  

C6  Rain Duration  0.1717  1  
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C7  Slow Moving Thunderstorm  0.0581  8  

C8  Soil Erosion  0.1185  5  

  

4.3    Comparative Analysis  

In this study, the comparative analysis of different aggregation operators which are interval 

neutrosophic weighted average (INWA), interval neutrosophic geometric average (INWG), interval 

neutrosophic average (INA), and interval neutrosophic geometric (ING) operators are presented for 

solving the flash floods problem. Linguistic terms are used to facilitate comparisons between subject 

factors because decision-makers are more familiar with using linguistic terms than providing exact 

crisp evaluations. Figures 2 and 3 show the ranking results using INWA and INWG respectively.  

  

  
Figure 2: Weight of factors based on INWA   

  

  
Figure 3: Weight of factors based on INWG   

According to Figure 2, the results obtained by using the INWA operator show that the rain 

duration has the greatest weight (0.1717). This means that the duration of rain was the most important 
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factor in causing flash floods in Penang. While slow-moving thunderstorms have the lowest weight 

(0.0581), they are the least important cause of flash floods in Penang. Surprisingly, when the ranking 

results of flash flood factors using the INWG operator are compared, the highest priority remains the 

same, which is the rain duration with a weightage of 0.1716. This proves that the rain duration is the 

most important factor in causing flash floods. Furthermore, we compare with the INA and ING, 

where the weights of decision makers are assumed to be the same. Besides that, we also compare the 

ranking of factors with the INA and ING where the weights of decision makers are assumed to be 

the same, which is (0.2,0.2,0.2,0.2,0.2)T

DMw  . For both INA and ING operators, the obtained 

results show that the rain duration factor is the most important factor in causing the flash flood. 

Figures 4 and 5 show a bar chart of the obtained factor ranking order using INA and ING.  

 

Figure 4: Weight of factors based on INA  

  

 

Figure 5: Weight of factors based on ING  
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The result of the comparative analysis of INWA, INWG, INA, and ING based on different 

weights and equal weights of each decision-maker are summarized in Table 12. Using INWA and 

INWG with different weights of decision-makers, the ranking of factors of flash floods in Penang has 

been determined. It can be noted that the weight of each decision-maker should be measured 

according to some characteristics such as their positions, working experience, and knowledge about 

that particular case study. This is an important point to emphasize that the weight of each decision-

maker should be measured based on the characteristics mentioned so that the results obtained are 

more accurate and reliable.  

The aggregation operator is also important, particularly in decision-making problems, because 

it provides a high-level view of data prior to analysis. One of the most effective and simple methods 

for decision-making problems is to use aggregation functions. The obtained ranking of factors is 

completely consistent when employing the IVN-AHP method with INWA operator and any other 

aggregation operators such as INWG, INA and ING operators. This validates the proposed method’s 

applicability in solving decision making problems. In addition, the INWA operator is suitable to 

apply in this case study since it is easy to explore and understand. Therefore, the INWA aggregation 

operator is recommended to use in this study.   

  

Table 12: Summary Table for Comparative Analysis  

Criteria 
Different Weight Same Weight  

Rank INWA INWG INA ING 

C1 Poor Drainage System 0.1498 0.1489 0.1519 0.1511 4 

C2 Dam and Levee Failure 0.0971 0.0954 0.0910 0.0893 6 

C3 Urbanization 0.1535 0.1530 0.1534 0.1529 3 

C4 Land Use Pattern 0.0929 0.0925 0.0884 0.0878 7 

C5 Rain Intensity 0.1681 0.1676 0.1716 0.1712 2 

C6 Rain Duration 0.1717 0.1716 0.1749 0.1748 1 

C7 Slow Moving Thunderstorm 0.0581 0.0581 0.0577 0.0577 8 

C8 Soil Erosion 0.1185 0.1186 0.1212 0.1211 5 

 

5.  Conclusion  

As a conclusion, the interval neutrosophic AHP method based on the INWA operator has been 

proposed in this study to determine the most important factor of flash floods in Penang. Eight factors 

of the flash flood are considered in this study which are the rain intensity, rain duration, poor 

drainage system, dam and levee failure, urbanization, slow-moving thunderstorm, soil erosion, and 

land use pattern. By using the AHP method with the INWA operator, the following ranking order of 

factors is established: rain duration, rain intensity, urbanization, poor drainage system, soil erosion, 

dam and levee failure, land use pattern and slow-moving thunderstorms. The obtained results are 

consistent when evaluated with various aggregation operators such as INA, ING, and INWG.  
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The recommendation for future research is to consider the other factors of flash floods, as there 

are numerous factors that can be used, whether from a literature review or an expert's perspective. 

The other factors can provide additional information regarding the flash flood factor in Penang. In 

addition, future researchers can use this study as a reference to determine the factors contributing to 

flash floods in other states. Besides, as a further extension of this research, the implemented IVN-

AHP method based on the INWA aggregation operator can be used for different types of case studies 

that involve the decision-making problem such as determining the ranking’s factor of road accidents, 

analyzing the IT project prioritization for oil and gas company, and measuring patients’ priorities. 

Plus, this research also can be extended by implementing another aggregation operator in the IVN-

AHP method such as Interval Neutrosophic Ordered Weighted Averaging (INOWA), Interval 

Neutrosophic Ordered Weighted Geometric (INOWG), and Interval Neutrosophic  

Prioritized Ordered Weighted Averaging (INPOWA) in the future.  
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Abstract: In this present study, we have analyzed the solution of system of first 

order simultaneous differential equations with initial condition as a neutrosophic 

environment. Here, we consider the initial values as Trapezoidal Neutrosophic 

Numbers (𝑇𝑟𝑎𝑝𝑁𝑛𝑢𝑚𝑏𝑒𝑟). The solution procedure of the system of first order ODE 

is developed using 𝑇𝑟𝑎𝑝𝑁𝑛𝑢𝑚𝑏𝑒𝑟 and (𝛼, 𝛽, 𝛾)𝑐𝑢𝑡 of a 𝑇𝑁𝑛𝑢𝑚𝑏𝑒𝑟 . Furthermore, a 

numerical example is illustrated to validate the efficiency and feasibility of the 

proposed neutrosophic method, and the solutions are compared with the crisp values. 

The numerical solutions  𝑥1(𝑡, 𝛼), 𝑥2(𝑡, 𝛼), 𝑥1
′(𝑡, 𝛽), 𝑥2

′ (𝑡, 𝛽),  𝑥1
′′(𝑡, 𝛾), 𝑥2

′′(𝑡, 𝛾), 𝑦1(𝑡, 𝛼),

𝑦2(𝑡, 𝛼), 𝑦1
′(𝑡, 𝛽), 𝑦2

′ (𝑦, 𝛽), 𝑦1
′′(𝑡, 𝛾) 𝑎𝑛𝑑 𝑦2

′′(𝑡, 𝛾)  for the different values of 𝛼, 𝛽 and 𝛾 

at 𝑡 = 0.5 are examined via tables and graphs. The numerical solutions delight the 

conditions of strong solution.  

 

Keywords:  Difference equation; 𝑇𝑟𝑎𝑝𝑁𝑛𝑢𝑚𝑏𝑒𝑟 ; (𝛼, 𝛽, 𝛾)𝑐𝑢𝑡  𝑜𝑓 𝑎 𝑇𝑟𝑎𝑝𝑁𝑛𝑢𝑚𝑏𝑒𝑟 

 

1. Introduction 

The concept of Neutrosophic set (𝑁𝑠𝑒𝑡) was introduced by Smarandache [1]. 𝑁𝑠𝑒𝑡 is 

a wide-ranging context of the 𝐶𝑠𝑒𝑡, 𝐹𝑠𝑒𝑡 [2], 𝐼𝐹𝑠𝑒𝑡 [3-6], and the 𝐼𝑉𝐹𝑠𝑒𝑡 [7-10], 

respectively. 𝑁𝑠𝑒𝑡 is used to characterize the uncertainty and indeterminacy in any 

multicriteria decision making problems. 𝑁𝑠𝑒𝑡 is a proposition of three different 

components namely, 𝑇𝑣𝑎𝑙𝑢𝑒 , 𝐼𝑣𝑎𝑙𝑢𝑒,𝑎𝑛𝑑 𝐹𝑣𝑎𝑙𝑢𝑒 , and the grade of these membership 

values are defined within −]0,1[+.  Researchers in different field of Engineers 

have applied 𝑁𝑠𝑒𝑡 on various applications. The multifaceted factors of 𝑁𝑙𝑜𝑔𝑖𝑐 , 

𝑆𝑉𝑁𝑛𝑢𝑚𝑏𝑒𝑟, 𝑇𝑟𝑖𝑁𝑛𝑢𝑚𝑏𝑒𝑟 , and 𝑇𝑟𝑎𝑝𝑁𝑛𝑢𝑚𝑏𝑒𝑟 have been applied in the differential 

equations are analyzed in [11-15]. The system of first order simultaneous 

differential equations (SFOSDE) with an initial condition plays an important role in 

various field of science and engineering like fluid mechanics, thermodynamics, 

heat and electromagnetism, rate of chemical reaction, bacteria/ plants and 

organisms growth rates, and population/economic growth rates, etc. Almost all the 

modern scientific analysis associates differential equations. There are many ways 

mailto:shanmugapriyam@ssn.edu.in
mailto:s.broumi@flbenmsik.ma
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to solve SFOSD. Mondal et al [16] solving the system of differential equation and 

its application with intuitionistic fuzzy environment. Sadeghi et al. [17] discussed 

the necessary and sufficient condition for the existence of solution of fuzzy 

differential equations. Keshavarz et al. [18] investigated the application of 

differential equations in Newton’s law of cooling, distribution of a drug in the 

human body and harmonic oscillator problem using fuzzy logic. Karpagappriya et 

al. [19] examined the solution of fuzzy initial value problems using cubic spline 

function. Several other researchers [21–23] have also discussed the significance of 

Neutrosophic in Agricultural Water Management, Healthcare Waste to Achieve 

Cost Effectiveness and Transportation Problem. 

In the above literature studies, researchers explored several numerical/analytical 

solutions of differential equations. In almost all cases authors find the solutions of 

fuzzy differential equations using fuzzy environments. However, no attempt has 

been made to find the solutions of System of Differential Equation with Initial 

Condition as trapezoidal Neutrosophic number. The purpose of the present study 

is to investigate the Neutrosophic solutions of first order system of differential 

equations. The efficiency and feasibility of the present approach is illustrated by 

numerical examples and the results are for better perceptive of our investigation. 

 

2. Preliminary  

 

Definition 2.1. 𝑵𝒔𝒆𝒕: [24] Let 𝑋 be a universe set. A 𝑁𝑠𝑒𝑡 𝐴�̃� on 𝑋 is defined as 𝐴�̃� =

{〈𝑥, 𝑇𝐴�̃�(𝑥), 𝐼𝐴�̃�(𝑥),𝐹𝐴�̃�(𝑥)〉: 𝑥 ∈ 𝑋}, where 𝑇𝐴�̃�(𝑥): 𝑋 →
−]0,1[+ is said to be the 

𝑇𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝, which represents the degree of confidence, 𝐼𝐴�̃�(𝑥): 𝑋 →
−]0,1[+is said to 

be the 𝐼𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 , which represents the degree of uncertainty, and 

𝐹𝐴�̃�(𝑥): 𝑋 →
−]0,1[+ is said to be the 𝐹𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝, which represents the degree of 

skepticism, respectively of the element 𝑥 ∈ 𝑋 in 𝐴�̃� , such that −0 ≤ 𝑇𝐴�̃�(𝑥) +

𝐼𝐴�̃�(𝑥) + 𝐹𝐴�̃�(𝑥) ≤ 3+. 

 

Definition 2.2. 𝑺𝑽𝑵𝒔𝒆𝒕 [24] A 𝑁𝑠𝑒𝑡 𝐴�̃� on 𝑋 (Definition 2.1) is said to be 𝑆𝑉𝑁𝑠𝑒𝑡 

(𝑆𝐴�̃�) if 𝑥 is a single-valued independent variable. 𝑆𝐴�̃� =

{〈𝑥, 𝑇𝑆𝐴�̃�(𝑥), 𝐼𝑆𝐴�̃�(𝑥), 𝐹𝑆𝐴�̃�(𝑥)〉: 𝑥 ∈ 𝑋}, where 𝑇𝑆𝐴�̃�(𝑥), 𝐼𝑆𝐴�̃�(𝑥), 𝐹𝑆𝐴�̃�(𝑥):𝑋  →−]0,1[+ 

represents the concept of 𝑇𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝, 𝐼𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 , 𝐹𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 , functions, 

respectively of the element 𝑥 ∈ 𝑋 in 𝑆𝐴�̃�  , such that −0 ≤ 𝑇𝑆𝐴�̃�(𝑥) + 𝐼𝑆𝐴�̃�(𝑥) +

𝐹𝑆𝐴�̃�(𝑥) ≤ 3
+. 

 

Definition 2.3. (𝜶, 𝜷, 𝜸)𝒄𝒖𝒕: [24] The  (𝛼, 𝛽, 𝛾)𝑐𝑢𝑡 𝑁𝑠𝑒𝑡 is 𝐴�̃� defined as 𝐴�̃�(𝛼,𝛽,𝛾) =

{〈𝑇𝐴�̃�(𝑥), 𝐼𝐴�̃�(𝑥), 𝐹𝐴�̃�(𝑥)〉: 𝑥 ∈ 𝑋, 𝑇𝐴�̃�(𝑥) ≥ 𝛼, 𝐼𝐴�̃�(𝑥) ≤ 𝛽, 𝐹𝐴�̃�(𝑥) ≤ 𝛾}, where 𝛼, 𝛽, 𝛾 ∈

[0,1], such that α + β + γ ≤ 3. 
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Definition 2.4.  𝑵𝒏𝒖𝒎𝒃𝒆𝒓 : [24] A 𝑁𝑠𝑒𝑡 𝐴�̃� over the real numbers set ℝ is a 

neutrosophic number if it satisfies the following conditions: 

i. 𝐴�̃� is normal: ∃𝑥0 ∈ ℝ such that  𝑇𝐴�̃�(𝑥0) = 1.  ( 𝐼𝐴�̃�(𝑥0) =  𝐹𝐴�̃�(𝑥0) = 0). 

ii. 𝐴�̃� is convex for the truth function 𝑇𝐴�̃�(𝑥).  

(𝑖𝑒) 𝑇𝐴�̃�(𝜇𝑥1 + (1 − 𝜇)𝑥2) ≥ min (𝑇𝐴�̃�(𝑥1), 𝑇𝐴�̃�(𝑥2)), for all 𝑥1, 𝑥2 ∈ ℝ 𝑎𝑛𝑑 𝜇 ∈

[0,1].  

iii. 𝐴�̃� is concave set for the falsity, indeterministic functions namely, 𝐹𝐴�̃�(𝑥) 

and 𝐼𝐴�̃�(𝑥). 

(𝑖𝑒) 𝐼𝐴�̃�(𝜇𝑥1 + (1 − 𝜇)𝑥2) ≥ max (𝐼𝐴�̃�(𝑥1), 𝐼𝐴�̃�(𝑥2)) and 𝐹𝐴�̃�(𝜇𝑥1 +

(1 − 𝜇)𝑥2) ≥ max (𝐹𝐴�̃�(𝑥1), 𝐹𝐴�̃�(𝑥2)), for all 𝑥1, 𝑥2 ∈ ℝ 𝑎𝑛𝑑 𝜇 ∈ [0,1].  

 

Definition 2.5.  𝑻𝒓𝒂𝒑𝑵𝒏𝒖𝒎𝒃𝒆𝒓: [25] A subset of 𝑁𝑛𝑢𝑚𝑏𝑒𝑟 , 𝑇𝑟𝑎𝑝𝑁𝑛𝑢𝑚𝑏𝑒𝑟 , 𝐴�̃� in 

ℝ with the following 𝑇𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 , 𝐼𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 , 𝑎𝑛𝑑 𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is defined as 

𝑇𝐴�̃�(𝑥) =

{
 
 

 
 (

𝑥 − 𝑎1
𝑎2 − 𝑎1

) 𝑢𝐴�̃�  𝑓𝑜𝑟 𝑎1 ≤ 𝑥 ≤ 𝑎2  

       𝑢𝐴�̃�             𝑓𝑜𝑟 𝑎2 ≤ 𝑥 ≤ 𝑎3 

(
𝑎4 − 𝑥

𝑎4 − 𝑎3
) 𝑢𝐴�̃�  𝑓𝑜𝑟𝑎3 ≤ 𝑥 ≤ 𝑎4  

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  

𝐼𝐴�̃�(𝑥) =

{
 
 

 
 (

𝑎2−𝑥

𝑎2−𝑎1
)𝑣𝐴�̃�  𝑓𝑜𝑟 𝑎1 ≤ 𝑥 ≤ 𝑎2  

       𝑣𝐴�̃�              𝑓𝑜𝑟 𝑎2 ≤ 𝑥 ≤ 𝑎3 

(
𝑎4−𝑥

𝑎4−𝑎3
)𝑣𝐴�̃�  𝑓𝑜𝑟𝑎3 ≤ 𝑥 ≤ 𝑎4  

1            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                         (1) 

𝐹𝐴�̃�(𝑥) =

{
 
 

 
 (

𝑎2 − 𝑥

𝑎2 − 𝑎1
)𝑤𝐴�̃�  𝑓𝑜𝑟 𝑎1 ≤ 𝑥 ≤ 𝑎2  

       𝑤𝐴�̃�              𝑓𝑜𝑟 𝑎2 ≤ 𝑥 ≤ 𝑎3     

(
𝑎4 − 𝑥

𝑎4 − 𝑎3
) 𝑤𝐴�̃�  𝑓𝑜𝑟𝑎3 ≤ 𝑥 ≤ 𝑎4  

1            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where −0 ≤ 𝑇𝐴�̃�(𝑥) + 𝐼𝐴�̃�(𝑥) + 𝐹𝐴�̃�(𝑥) ≤ 3
+, 𝑥 ∈ 𝐴�̃�. 

 

Definition 2.6. (𝜶,𝜷, 𝜸)𝒄𝒖𝒕 𝒐𝒇 𝒂 𝑻𝒓𝒂𝒑𝑵𝒏𝒖𝒎𝒃𝒆𝒓: The (𝛼, 𝛽, 𝛾)𝑐𝑢𝑡 𝑜𝑓 𝑎 𝑇𝑟𝑎𝑝𝑁𝑛𝑢𝑚𝑏𝑒𝑟 

𝐴�̃� = 〈(𝑎1, 𝑎2, 𝑎3, 𝑎4); 𝑢𝐴�̃� , 𝑣𝐴�̃� , 𝑤𝐴�̃�〉 is defined as follows: 

(𝐴�̃�)𝛼,𝛽,𝛾 = [𝑇𝐴𝑁1̃(𝛼),𝑇𝐴𝑁2̃(𝛼); 𝐼𝐴𝑁1̃(𝛽), 𝐼𝐴𝑁2̃(𝛽); 𝐹𝐴𝑁1̃  (𝛾), 𝐹𝐴𝑁2̃(𝛾)], where 

𝑇𝐴𝑁1̃(𝛼) = [𝑎1 + 𝛼(𝑎2 − 𝑎1)]𝑢𝐴�̃�, 𝑇𝐴𝑁2̃(𝛼) = [𝑎4 − 𝛼(𝑎4 − 𝑎3)]𝑢𝐴�̃� 
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𝐼𝐴𝑁1̃(𝛽) = [𝑎2 − 𝛽(𝑎2 − 𝑎1)]𝑣𝐴�̃� , 𝐼𝐴𝑁2̃(𝛽) = [𝑎3 + 𝛽(𝑎4 − 𝑎3)]𝑣𝐴�̃�                (2)           

𝐹𝐴𝑁1̃  (𝛾) = [𝑎2 − 𝛾(𝑎2 − 𝑎1)]𝑤𝐴�̃� , 𝐹𝐴𝑁2̃  (𝛾) = [𝑎3 + 𝛾(𝑎4 − 𝑎3)]𝑤𝐴�̃� 

 

here 0 < 𝛼 ≤ 1, 0 < 𝛽 ≤ 1, 0 < 𝛾 ≤ 1 𝑎𝑛𝑑 −0 < 𝛼 + 𝛽 + 𝛾 ≤ 3+. 

 

Definition 2.7. 𝑺𝒕𝒓𝒐𝒏𝒈𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏: Let the solution of the neutrosophic differential 

equations be 𝑥(𝑡) and 𝑦(𝑡), and its  (𝛼, 𝛽, 𝛾)𝑐𝑢𝑡   be [𝑥(𝑡, 𝛼, 𝛽, 𝛾)] =

[𝑥1(𝑡, 𝛼), 𝑥2(𝑡, 𝛼), 𝑥1
′(𝑡, 𝛽), 𝑥2

′ (𝑡, 𝛽), 𝑥1
′′(𝑡, 𝛾), 𝑥2

′′(𝑡, 𝛾)] and [𝑦(𝑡, 𝛼, 𝛽, 𝛾)] =

[𝑦1(𝑡, 𝛼), 𝑦2(𝑡, 𝛼), 𝑦1
′(𝑡, 𝛽), 𝑦2

′(𝑡, 𝛽), 𝑦1
′′(𝑡, 𝛾), 𝑦2

′′(𝑡, 𝛾)].  

The solution is a strong solution if,  

i. 
𝑑𝑥1(𝑡,𝛼)

𝑑𝛼
> 0,

𝑑𝑥2(𝑡,𝛼)

𝑑𝛼
< 0 𝑎𝑛𝑑 

𝑑𝑦1(𝑡,𝛼)

𝑑𝛼
> 0,

𝑑𝑦2(𝑡,𝛼)

𝑑𝛼
< 0∀𝛼 ∈ [0,1], 𝑥1(𝑡, 1) ≤

𝑥2(𝑡, 1) 𝑎𝑛𝑑 𝑦1(𝑡, 1) ≤ 𝑦2(𝑡, 1). 

ii. 
𝑑𝑥1

′ (𝑡,𝛽)

𝑑𝛼
< 0,

𝑑𝑥2
′ (𝑡,𝛽)

𝑑𝛼
> 0 𝑎𝑛𝑑 

𝑑𝑦1
′(𝑡,𝛽)

𝑑𝛼
< 0,

𝑑𝑦2
′(𝑡,𝛽)

𝑑𝛼
> 0∀𝛽 ∈ [0,1], 𝑥1

′(𝑡, 0) ≤

𝑥2
′ (𝑡, 0) 𝑎𝑛𝑑 𝑦1

′(𝑡, 0) ≤ 𝑦2
′(𝑡, 0).                                                  (3) 

iii. 
𝑑𝑥1

′′(𝑡,𝛾)

𝑑𝛼
< 0,

𝑑𝑥2
′′(𝑡,𝛾)

𝑑𝛼
> 0 𝑎𝑛𝑑 

𝑑𝑦1
′′(𝑡,𝛾)

𝑑𝛼
< 0,

𝑑𝑦2
′′(𝑡,𝛾)

𝑑𝛼
> 0∀𝛾 ∈ [0,1], 𝑥1

′′(𝑡, 0) ≤

𝑥2
′′(𝑡, 0) 𝑎𝑛𝑑 𝑦1

′′(𝑡, 0) ≤ 𝑦2
′′(𝑡, 0). 

 

3. Solution of Neutrosophic boundary value problem  

 

In this section, we discuss the solution of first-order ODE with a neutrosophic 

initial value conditions.  

 

3.1 Solution of System of First-Order ODE using 𝑻𝒓𝒂𝒑𝑵𝒏𝒖𝒎𝒃𝒆𝒓 

Let us consider the system of first order differential equation 

 
𝑑𝑥

𝑑𝑡
= 𝑘1𝑦                                                                                                                                             (4)  

and 

 
𝑑𝑦

𝑑𝑡
= 𝑘2𝑥                                                                                                                                              (5) 

with boundary condition 𝑥(𝑡0) = �̃� and 𝑦(𝑡0) = �̃� where �̃� =

〈(𝑎1, 𝑎2, 𝑎3, 𝑎4); 𝑢𝐴�̃� , 𝑣𝐴�̃� , 𝑤𝐴�̃�〉 and �̃� = 〈(𝑏1, 𝑏2, 𝑏3, 𝑏4); 𝑢𝐴�̃�, 𝑣𝐴�̃� , 𝑤𝐴�̃�〉 are 

𝑇𝑟𝑎𝑝𝑁𝑛𝑢𝑚𝑏𝑒𝑟. 

Case (𝒊) when 𝑘1𝑎𝑛𝑑 𝑘2 are positive constant (𝑖𝑒)𝑘1, 𝑘2 > 0 

The (𝛼, 𝛽, 𝛾)-cut of Eq. (4)& (5) are 

𝑑

𝑑𝑡
[𝑥1(𝑡, 𝛼), 𝑥2(𝑡, 𝛼); 𝑥1

′(𝑡, 𝛽), 𝑥2
′ (𝑡, 𝛽); 𝑥1

′′(𝑡, 𝛾), 𝑥2
′′(𝑡, 𝛾)]

= 𝑘1[𝑦1(𝑡, 𝛼), 𝑦2(𝑡, 𝛼); 𝑦1
′(𝑡, 𝛽), 𝑦2

′(𝑡, 𝛽); 𝑦1
′′(𝑡, 𝛾), 𝑦2

′′(𝑡, 𝛾)]                                                    (6) 
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𝑑

𝑑𝑡
[𝑦1(𝑡, 𝛼), 𝑦2(𝑡, 𝛼); 𝑦1

′(𝑡, 𝛽), 𝑦2
′(𝑡, 𝛽); 𝑦1

′′(𝑡, 𝛾), 𝑦2
′′(𝑡, 𝛾)]

= 𝑘2[𝑥1(𝑡, 𝛼), 𝑥2(𝑡, 𝛼); 𝑥1
′(𝑡, 𝛽), 𝑥2

′ (𝑡, 𝛽); 𝑥1
′′(𝑡, 𝛾), 𝑥2

′′(𝑡, 𝛾)]                                                     (7) 

with the initial condition 
𝑥(𝑡0; 𝛼, 𝛽, 𝛾) = 〈[𝑎1 + 𝛼(𝑎2 − 𝑎1)]𝑢𝐴�̃� , [𝑎4 − 𝛼(𝑎4 − 𝑎3)]𝑢𝐴�̃�;  [𝑎2 − 𝛽(𝑎2 − 𝑎1)]𝑣𝐴�̃� , [𝑎3

+ 𝛽(𝑎4 − 𝑎3)]𝑣𝐴�̃�; [𝑎2 − 𝛾(𝑎2 − 𝑎1)]𝑤𝐴�̃� , [𝑎3 + 𝛾(𝑎4 − 𝑎3)]𝑤𝐴�̃�〉                      (8) 

and 

𝑦(𝑡0; 𝛼, 𝛽, 𝛾) = 〈[𝑏1 + 𝛼(𝑏2 − 𝑏1)]𝑢𝐴�̃� , [𝑏4 − 𝛼(𝑏4 − 𝑏3)]𝑢𝐴�̃�;  [𝑏2 − 𝛽(𝑏2 − 𝑏1)]𝑣𝐴�̃� , [𝑏3

+ 𝛽(𝑏4 − 𝑏3)]𝑣𝐴�̃�; [𝑏2 − 𝛾(𝑏2 − 𝑏1)]𝑤𝐴�̃� , [𝑏3 + 𝛾(𝑏4 − 𝑏3)]𝑤𝐴�̃�〉                        (9) 

From (6) we get 

𝑑𝑥1(𝑡, 𝛼)

𝑑𝑡
= 𝑘1𝑦1(𝑡, 𝛼);

𝑑𝑥2(𝑡, 𝛼)

𝑑𝑡
= 𝑘1𝑦2(𝑡, 𝛼)

𝑑𝑥1
′ (𝑡, 𝛽) 

𝑑𝑡
= 𝑘1𝑦1

′(𝑡, 𝛽);
𝑑𝑥2

′ (𝑡, 𝛽) 

𝑑𝑡
= 𝑘1𝑦2

′ (𝑡, 𝛽)

𝑑𝑥1
′′(𝑡, 𝛾) 

𝑑𝑡
= 𝑘1𝑦1

′′(𝑡, 𝛾);
𝑑𝑥2

′′(𝑡, 𝛾) 

𝑑𝑡
= 𝑘1𝑦2

′′(𝑡, 𝛾)}
 
 

 
 

                                                                                (10) 

From (7) we get 

𝑑𝑦1(𝑡, 𝛼)

𝑑𝑡
= 𝑘2𝑥1(𝑡, 𝛼);

𝑑𝑦2(𝑡, 𝛼)

𝑑𝑡
= 𝑘2𝑥2(𝑡, 𝛼)

𝑑𝑦1
′(𝑡, 𝛽) 

𝑑𝑡
= 𝑘2𝑥1

′(𝑡, 𝛽);
𝑑𝑦2

′(𝑡, 𝛽) 

𝑑𝑡
= 𝑘2𝑥2

′ (𝑡, 𝛽) 

𝑑𝑦1
′′(𝑡, 𝛾) 

𝑑𝑡
= 𝑘2𝑦1

′′(𝑡, 𝛾);
𝑑𝑦2

′′(𝑡, 𝛾) 

𝑑𝑡
= 𝑘2𝑥2

′′(𝑡, 𝛾)}
 
 

 
 

                                                             (11) 

 

with initial conditions 

𝑥1(𝑡0, 𝛼) = [𝑎1 + 𝛼(𝑎2 − 𝑎1)]𝑢𝐴�̃�; 𝑥2(𝑡0, 𝛼) = [𝑎4 − 𝛼(𝑎4 − 𝑎3)]𝑢𝐴�̃�
𝑥1
′(𝑡0, 𝛽) = [𝑎2 − 𝛽(𝑎2 − 𝑎1)]𝑣𝐴�̃�; 𝑥2

′ (𝑡0, 𝛽) = [𝑎3 + 𝛽(𝑎4 − 𝑎3)]𝑣𝐴�̃�
𝑥1
′′(𝑡0, 𝛾) = [𝑎2 − 𝛾(𝑎2 − 𝑎1)]𝑤𝐴�̃�;  𝑥2

′′(𝑡0, 𝛾) = [𝑎3 + 𝛾(𝑎4 − 𝑎3)]𝑤𝐴�̃�

}                     (12)    

and 

𝑦1(𝑡0, 𝛼) = [𝑏1 + 𝛼(𝑏2 − 𝑏1)]𝑢𝐴�̃�; 𝑦2(𝑡0, 𝛼) = [𝑏4 − 𝛼(𝑏4 − 𝑏3)]𝑢𝐴�̃�
𝑦1
′(𝑡0, 𝛽) = [𝑏2 − 𝛽(𝑏2 − 𝑏1)]𝑣𝐴�̃�; 𝑦2

′(𝑡0, 𝛽) = [𝑏3 + 𝛽(𝑏4 − 𝑏3)]𝑣𝐴�̃�
𝑦1
′′(𝑡0, 𝛾) = [𝑏2 − 𝛾(𝑏2 − 𝑏1)]𝑤𝐴�̃�;  𝑏2

′′(𝑡0, 𝛾) = [𝑏3 + 𝛾(𝑏4 − 𝑏3)]𝑤𝐴�̃�

}                      (13) 

From Eqs. (10) and (11) we have  

 
𝑑2𝑥1(𝑡,𝛼)

𝑑𝑡2
= 𝑘1𝑘2𝑥1(𝑡, 𝛼)                                                                                                                 (14) 

The solution of Eq.(14) is  

𝑥1(𝑡, 𝛼) = 𝐴𝑒
√𝑘1𝑘2𝑡 + 𝐵𝑒−√𝑘1𝑘2𝑡                                                                                               (15) 

substituting Eq.(15) in Eq.(11) , we get  
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𝐴𝑒√𝑘1𝑘2𝑡 − 𝐵𝑒−√𝑘1𝑘2𝑡 = √
𝑘1
𝑘2
𝑦1(𝑡, 𝛼)                                                                                      (16) 

Using initial condition, we get 

𝐴𝑒√𝑘1𝑘2𝑡 + 𝐵𝑒−√𝑘1𝑘2𝑡 = [𝑎1 + 𝛼(𝑎2 − 𝑎1)]𝑢𝐴�̃�  

and 𝐴𝑒√𝑘1𝑘2𝑡 − 𝐵𝑒−√𝑘1𝑘2𝑡 = √
𝑘1

𝑘2
[𝑏1 + 𝛼(𝑏2 − 𝑏1)]𝑢𝐴�̃� 

Therefore,  

𝐴 =
1

2
{[𝑎1 + 𝛼(𝑎2 − 𝑎1)]𝑢𝐴�̃� + √

𝑘1
𝑘2
[𝑏1 + 𝛼(𝑏2 − 𝑏1)]𝑢𝐴�̃�} 𝑒

−√𝑘1𝑘2𝑡0

𝐵 =
1

2
{[𝑎1 + 𝛼(𝑎2 − 𝑎1)]𝑢𝐴�̃� −√

𝑘1
𝑘2
[𝑏1 + 𝛼(𝑏2 − 𝑏1)]𝑢𝐴�̃�} 𝑒

√𝑘1𝑘2𝑡0

}
  
 

  
 

                          (17) 

substituting Eq.(17) in Eqs.(12) and (13), we get 

𝑥1(𝑡, 𝛼) =
1

2
{[𝑎1 + 𝛼(𝑎2 − 𝑎1)]𝑢𝐴�̃� +√

𝑘1
𝑘2
[𝑏1 + 𝛼(𝑏2 − 𝑏1)]𝑢𝐴�̃�} 𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
{[𝑎1 + 𝛼(𝑎2 − 𝑎1)]𝑢𝐴�̃� − √

𝑘1
𝑘2
[𝑏1 + 𝛼(𝑏2 − 𝑏1)]𝑢𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)     (18) 

𝑦1(𝑡, 𝛼) =
1

2
√
𝑘2
𝑘1
{[𝑎1 + 𝛼(𝑎2 − 𝑎1)]𝑢𝐴�̃� + √

𝑘1
𝑘2
[𝑏1 + 𝛼(𝑏2 − 𝑏1)]𝑢𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

−
1

2
√
𝑘2
𝑘1
{[𝑎1 + 𝛼(𝑎2 − 𝑎1)]𝑢𝐴�̃� −√

𝑘1
𝑘2
[𝑏1+ 𝛼(𝑏2 − 𝑏1)]𝑢𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0) (19) 

similarly, 

𝑥2(𝑡, 𝛼) =
1

2
{[𝑎4 − 𝛼(𝑎4 − 𝑎3)]𝑢𝐴�̃� +√

𝑘1
𝑘2
[𝑏4 − 𝛼(𝑏4 − 𝑏3)]𝑢𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
{[𝑎4 − 𝛼(𝑎4 − 𝑎3)]𝑢𝐴�̃� − √

𝑘1
𝑘2
[𝑏4 − 𝛼(𝑏4 − 𝑏3)]𝑢𝐴�̃�} 𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(20) 

𝑦2(𝑡, 𝛼) =
1

2
√
𝑘2
𝑘1
{[𝑎4 − 𝛼(𝑎4 − 𝑎3)]𝑢𝐴�̃� +√

𝑘1
𝑘2
[𝑏4− 𝛼(𝑏4 − 𝑏3)]𝑢𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

−
1

2
√
𝑘2
𝑘1
{[𝑎4 − 𝛼(𝑎4 − 𝑎3)]𝑢𝐴�̃� −√

𝑘1
𝑘2
[𝑏4 − 𝛼(𝑏4 − 𝑏3)]𝑢𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(21) 
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𝑥1
′ (𝑡, 𝛽) =

1

2
{[𝑎2 − 𝛽(𝑎2 − 𝑎1)]𝑣𝐴�̃� + √

𝑘1
𝑘2
[𝑏2 − 𝛽(𝑏2 − 𝑏1)]𝑣𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
{[𝑎2 − 𝛽(𝑎2 − 𝑎1)]𝑣𝐴�̃� − √

𝑘1
𝑘2
[𝑏2 − 𝛽(𝑏2 − 𝑏1)]𝑣𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(22) 

𝑦1
′(𝑡, 𝛽) =

1

2
√
𝑘2
𝑘1
{[𝑎2 − 𝛽(𝑎2 − 𝑎1)]𝑣𝐴�̃� +√

𝑘1
𝑘2
[𝑏2 − 𝛽(𝑏2 − 𝑏1)]𝑣𝐴�̃�} 𝑒

√𝑘1𝑘2(𝑡−𝑡0)

−
1

2
√
𝑘2
𝑘1
{[𝑎2 − 𝛽(𝑎2 − 𝑎1)]𝑣𝐴�̃� − √

𝑘1
𝑘2
[𝑏2 − 𝛽(𝑏2 − 𝑏1)]𝑣𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(23) 

𝑥2
′ (𝑡, 𝛽) =

1

2
{[𝑎3 + 𝛽(𝑎4 − 𝑎3)]𝑣𝐴�̃� + √

𝑘1
𝑘2
[𝑏3 + 𝛽(𝑏4 − 𝑏3)]𝑣𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
{[𝑎3 + 𝛽(𝑎4 − 𝑎3)]𝑣𝐴�̃� − √

𝑘1
𝑘2
[𝑏3 + 𝛽(𝑏4 − 𝑏3)]𝑣𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(24) 

𝑦2
′ (𝑡, 𝛽) =

1

2
√
𝑘2
𝑘1
{[𝑎3 + 𝛽(𝑎4 − 𝑎3)]𝑣𝐴�̃� + √

𝑘1
𝑘2
[𝑏3 + 𝛽(𝑏4 − 𝑏3)]𝑣𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

−
1

2
√
𝑘2
𝑘1
{[𝑎3 + 𝛽(𝑎4 − 𝑎3)]𝑣𝐴�̃� −√

𝑘1
𝑘2
[𝑏3 + 𝛽(𝑏4 − 𝑏3)]𝑣𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(25) 

𝑥1
′′(𝑡, 𝛾) =

1

2
{[𝑎2 − 𝛾(𝑎2 − 𝑎1)]𝑤𝐴�̃� +√

𝑘1
𝑘2
[𝑏2 − 𝛾(𝑏2 − 𝑏1)]𝑤𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
{[𝑎2 − 𝛾(𝑎2 − 𝑎1)]𝑤𝐴�̃� − √

𝑘1
𝑘2
[𝑏2 − 𝛾(𝑏2 − 𝑏1)]𝑤𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(26) 

𝑦1
′′(𝑡, 𝛾) =

1

2
√
𝑘2
𝑘1
{[𝑎2 − 𝛾(𝑎2 − 𝑎1)]𝑤𝐴�̃� +√

𝑘1
𝑘2
[𝑏2 − 𝛾(𝑏2 − 𝑏1)]𝑤𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

−
1

2
√
𝑘2
𝑘1
{[𝑎2 − 𝛾(𝑎2 − 𝑎1)]𝑤𝐴�̃� − √

𝑘1
𝑘2
[𝑏2 − 𝛾(𝑏2 − 𝑏1)]𝑤𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(27) 

𝑥2
′′(𝑡, 𝛾) =

1

2
{[𝑎3 + 𝛾(𝑎4 − 𝑎3)]𝑤𝐴�̃� +√

𝑘1
𝑘2
[𝑏3 + 𝛾(𝑏4 − 𝑏3)]𝑤𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
{[𝑎3 + 𝛾(𝑎4 − 𝑎3)]𝑤𝐴�̃� − √

𝑘1
𝑘2
[𝑏3 + 𝛾(𝑏4 − 𝑏3)]𝑤𝐴�̃�} 𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(28) 
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𝑦2
′′(𝑡, 𝛾) =

1

2
√
𝑘2
𝑘1
{[𝑎3 + 𝛾(𝑎4 − 𝑎3)]𝑤𝐴�̃� +√

𝑘1
𝑘2
[𝑏3 + 𝛾(𝑏4 − 𝑏3)]𝑤𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

−
1

2
√
𝑘2
𝑘1
{[𝑎3 + 𝛾(𝑎4 − 𝑎3)]𝑤𝐴�̃� − √

𝑘1
𝑘2
[𝑏3 + 𝛾(𝑏4 − 𝑏3)]𝑤𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(29) 

 

Case (𝒊𝒊) when 𝑘1𝑎𝑛𝑑 𝑘2 are negative constants (𝑖𝑒)𝑘1, 𝑘2 < 0 

The general solution of the system of solutions are as follows: 

𝑥1(𝑡, 𝛼) =
1

2
{[𝑎1 + 𝛼(𝑎2 − 𝑎1)]𝑢𝐴�̃� −√

𝑘1
𝑘2
[𝑏1 + 𝛼(𝑏2 − 𝑏1)]𝑢𝐴�̃�} 𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
{[𝑎1 + 𝛼(𝑎2 − 𝑎1)]𝑢𝐴�̃� + √

𝑘1
𝑘2
[𝑏1 + 𝛼(𝑏2 − 𝑏1)]𝑢𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(30) 

𝑦2(𝑡, 𝛼) = −
1

2
√
𝑘2
𝑘1
{[𝑎1 + 𝛼(𝑎2 − 𝑎1)]𝑢𝐴�̃� − √

𝑘1
𝑘2
[𝑏1 + 𝛼(𝑏2 − 𝑏1)]𝑢𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
√
𝑘2
𝑘1
{[𝑎1 + 𝛼(𝑎2 − 𝑎1)]𝑢𝐴�̃� + √

𝑘1
𝑘2
[𝑏1 + 𝛼(𝑏2 − 𝑏1)]𝑢𝐴�̃�} 𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(31) 

𝑥2(𝑡, 𝛼) =
1

2
{[𝑎4 − 𝛼(𝑎4 − 𝑎3)]𝑢𝐴�̃� −√

𝑘1
𝑘2
[𝑏4 − 𝛼(𝑏4 − 𝑏3)]𝑢𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
{[𝑎4 − 𝛼(𝑎4 − 𝑎3)]𝑢𝐴�̃� + √

𝑘1
𝑘2
[𝑏4 − 𝛼(𝑏4 − 𝑏3)]𝑢𝐴�̃�} 𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(32) 

𝑦1(𝑡, 𝛼) = −
1

2
√
𝑘2
𝑘1
{[𝑎4 − 𝛼(𝑎4 − 𝑎3)]𝑢𝐴�̃� − √

𝑘1
𝑘2
[𝑏4 − 𝛼(𝑏4 − 𝑏3)]𝑢𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
√
𝑘2
𝑘1
{[𝑎4 − 𝛼(𝑎4 − 𝑎3)]𝑢𝐴�̃� +√

𝑘1
𝑘2
[𝑏4 − 𝛼(𝑏4 − 𝑏3)]𝑢𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(33) 

𝑥1
′ (𝑡, 𝛽) =

1

2
{[𝑎2 − 𝛽(𝑎2 − 𝑎1)]𝑣𝐴�̃� − √

𝑘1
𝑘2
[𝑏2 − 𝛽(𝑏2 − 𝑏1)]𝑣𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
{[𝑎2 − 𝛽(𝑎2 − 𝑎1)]𝑣𝐴�̃� + √

𝑘1
𝑘2
[𝑏2 − 𝛽(𝑏2 − 𝑏1)]𝑣𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(34) 
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𝑦2
′ (𝑡, 𝛽) = −

1

2
√
𝑘2
𝑘1
{[𝑎2 − 𝛽(𝑎2 − 𝑎1)]𝑣𝐴�̃� −√

𝑘1
𝑘2
[𝑏2 − 𝛽(𝑏2 − 𝑏1)]𝑣𝐴�̃�} 𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
√
𝑘2
𝑘1
{[𝑎2 − 𝛽(𝑎2 − 𝑎1)]𝑣𝐴�̃� + √

𝑘1
𝑘2
[𝑏2 − 𝛽(𝑏2 − 𝑏1)]𝑣𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(35) 

𝑥2
′ (𝑡, 𝛽) =

1

2
{[𝑎3 + 𝛽(𝑎4 − 𝑎3)]𝑣𝐴�̃� − √

𝑘1
𝑘2
[𝑏3 + 𝛽(𝑏4 − 𝑏3)]𝑣𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
{[𝑎3 + 𝛽(𝑎4 − 𝑎3)]𝑣𝐴�̃� + √

𝑘1
𝑘2
[𝑏3 + 𝛽(𝑏4 − 𝑏3)]𝑣𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(36) 

𝑦1
′(𝑡, 𝛽) = −

1

2
√
𝑘2
𝑘1
{[𝑎3 + 𝛽(𝑎4 − 𝑎3)]𝑣𝐴�̃� −√

𝑘1
𝑘2
[𝑏3 + 𝛽(𝑏4 − 𝑏3)]𝑣𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
√
𝑘2
𝑘1
{[𝑎3 + 𝛽(𝑎4 − 𝑎3)]𝑣𝐴�̃� +√

𝑘1
𝑘2
[𝑏3 + 𝛽(𝑏4 − 𝑏3)]𝑣𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(37) 

𝑥1
′′(𝑡, 𝛾) =

1

2
{[𝑎2 − 𝛾(𝑎2 − 𝑎1)]𝑤𝐴�̃� −√

𝑘1
𝑘2
[𝑏2 − 𝛾(𝑏2 − 𝑏1)]𝑤𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
{[𝑎2 − 𝛾(𝑎2 − 𝑎1)]𝑤𝐴�̃� + √

𝑘1
𝑘2
[𝑏2 − 𝛾(𝑏2 − 𝑏1)]𝑤𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(38) 

𝑦2
′′(𝑡, 𝛾) = −

1

2
√
𝑘2
𝑘1
{[𝑎2 − 𝛾(𝑎2 − 𝑎1)]𝑤𝐴�̃� −√

𝑘1
𝑘2
[𝑏2 − 𝛾(𝑏2 − 𝑏1)]𝑤𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
√
𝑘2
𝑘1
{[𝑎2 − 𝛾(𝑎2 − 𝑎1)]𝑤𝐴�̃� + √

𝑘1
𝑘2
[𝑏2 − 𝛾(𝑏2 − 𝑏1)]𝑤𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(39) 

𝑥2
′′(𝑡, 𝛾) =

1

2
{[𝑎3 + 𝛾(𝑎4 − 𝑎3)]𝑤𝐴�̃� −√

𝑘1
𝑘2
[𝑏3 + 𝛾(𝑏4 − 𝑏3)]𝑤𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
{[𝑎3 + 𝛾(𝑎4 − 𝑎3)]𝑤𝐴�̃� + √

𝑘1
𝑘2
[𝑏3 + 𝛾(𝑏4 − 𝑏3)]𝑤𝐴�̃�} 𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(40) 

𝑦1
′′(𝑡, 𝛾) = −

1

2
√
𝑘2
𝑘1
{[𝑎3 + 𝛾(𝑎4 − 𝑎3)]𝑤𝐴�̃� −√

𝑘1
𝑘2
[𝑏3 + 𝛾(𝑏4 − 𝑏3)]𝑤𝐴�̃�}𝑒

√𝑘1𝑘2(𝑡−𝑡0)

+
1

2
√
𝑘2
𝑘1
{[𝑎3 + 𝛾(𝑎4 − 𝑎3)]𝑤𝐴�̃� + √

𝑘1
𝑘2
[𝑏3 + 𝛾(𝑏4 − 𝑏3)]𝑤𝐴�̃�}𝑒

−√𝑘1𝑘2(𝑡−𝑡0)(41) 
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3.2 Numerical Example: 

Consider a system of differential equation  
𝑑𝑥

𝑑𝑡
= 4𝑦 and 

𝑑𝑦

𝑑𝑡
= 5𝑥 with initial 

conditions  𝑥(𝑡0) = �̃� = 〈(3, 4, 5,6); 0.7, 0.6, 0.4〉 and 𝑦(𝑡0) = �̃� =

〈(5, 6, 7, 8); 0.5, 0.3, 0.2〉. 

 

Solution: 

The solution is given by the equations 

 

𝑥1(𝑡, 𝛼) =
1

2
{[3 + 𝛼]0.7 + √

4

5
[5 + 𝛼]0.5} 𝑒√20𝑡 +

1

2
{[3 + 𝛼]0.7 − √

4

5
[5 + 𝛼]0.5} 𝑒−√20𝑡 

𝑦1(𝑡, 𝛼) =
1

2
√
4

5
{[3 + 𝛼]0.7 + √

4

5
[5 + 𝛼]0.5} 𝑒√20𝑡 −

1

2
{[3 + 𝛼]0.7 − √

4

5
[5 + 𝛼]0.5} 𝑒−√20𝑡  

𝑥2(𝑡, 𝛼) =
1

2
{[6 − 𝛼]0.7 + √

4

5
[8 − 𝛼]0.5} 𝑒√20𝑡 +

1

2
{[6 − 𝛼]0.7 − √

4

5
[8 − 𝛼]0.5} 𝑒−√20𝑡 

𝑦2(𝑡, 𝛼) =
1

2
√
4

5
{[6 − 𝛼]0.7 + √

4

5
[8 − 𝛼]0.5} 𝑒√20𝑡 −

1

2
{[6 − 𝛼]0.7 − √

4

5
[8 − 𝛼]0.5} 𝑒−√20𝑡  

𝑥1
′ (𝑡, 𝛽) =

1

2
{[4 − 𝛽]0.6 + √

4

5
[6 − 𝛽]0.3} 𝑒√20𝑡 +

1

2
{[4 − 𝛽]0.6 − √

4

5
[6 − 𝛽]0.3} 𝑒−√20𝑡  

𝑦1
′(𝑡, 𝛽) =

1

2
√
4

5
{[4 − 𝛽]0.6 + √

4

5
[6 − 𝛽]0.3} 𝑒√20𝑡 −

1

2
{[4 − 𝛽]0.6 − √

4

5
[6 − 𝛽]0.3} 𝑒−√20𝑡 

𝑥2
′ (𝑡, 𝛽) =

1

2
{[5 + 𝛽]0.6 + √

4

5
[7 + 𝛽]0.3} 𝑒√20𝑡 +

1

2
{[5 + 𝛽]0.6 − √

4

5
[7 + 𝛽]0.3} 𝑒−√20𝑡  

𝑦2
′ (𝑡, 𝛽) =

1

2
√
4

5
{[5 + 𝛽]0.6 + √

4

5
[7 + 𝛽]0.3} 𝑒√20𝑡 −

1

2
{[5 + 𝛽]0.6 − √

4

5
[7 + 𝛽]0.3} 𝑒−√20𝑡 

𝑥1
′′(𝑡, 𝛾) =

1

2
{[4 − 𝛾]0.4 + √

4

5
[6 − 𝛾]0.2} 𝑒√20𝑡 +

1

2
{[4 − 𝛾]0.4 − √

4

5
[6 − 𝛾]0.3} 𝑒−√20𝑡  

𝑦1
′′(𝑡, 𝛾) =

1

2
√
4

5
{[4 − 𝛾]0.4 + √

4

5
[6 − 𝛾]0.3} 𝑒√20𝑡 −

1

2
{[4 − 𝛾]0.4 − √

4

5
[6 − 𝛾]0.3} 𝑒−√20𝑡  

and 



Neutrosophic Sets and Systems, Vol. 57, 2023 204  

 

 

M. Shanmugapriya, R. Sundareswaran, S Said Broumi, Solution and Analysis of System of Differential Equation with 
Initial Condition as 𝑇𝑟𝑎𝑝𝑁𝑛𝑢𝑚𝑏𝑒𝑟 

𝑥2
′′(𝑡, 𝛾) =

1

2
{[5 + 𝛾]0.4 + √

4

5
[7 + 𝛾]0.2} 𝑒√20𝑡 +

1

2
{[5 + 𝛾]0.4 − √

4

5
[7 + 𝛾]0.3} 𝑒−√20𝑡  

𝑦2
′′(𝑡, 𝛾) =

1

2
√
4

5
{[5 + 𝛾]0.4 + √

4

5
[7 − 𝛾]0.3} 𝑒√20𝑡 −

1

2
{[5 + 𝛾]0.4 − √

4

5
[7 + 𝛾]0.3} 𝑒−√20𝑡  

Table 1. 𝑻𝒓𝒂𝒑𝑵𝒏𝒖𝒎𝒃𝒆𝒓solution of 𝒙(𝒕,  𝜶,𝜷, 𝜸) at 𝒕 = 𝟎. 𝟓 

𝜶 𝒙𝟏(𝒕, 𝜶) 𝒙𝟐(𝒕, 𝜶) 𝜷 𝒙𝟏
′ (𝒕, 𝜷) 𝒙𝟐

′ (𝒕, 𝜷) 𝜸 𝒙𝟏
′′(𝒕, 𝜸) 𝒙𝟐

′′(𝒕, 𝜸) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

52.45255 

53.80454 

55.15653 

56.50853 

57.86052 

59.21251 

60.5645 

61.91649 

63.26848 

64.62047 

90.30831 

88.95632 

87.60432 

86.25233 

84.90034 

83.54835 

82.19369 

80.84437 

79.49238 

78.14039 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

46.23416 

45.21083 

44.18751 

43.16419 

42.14086 

41.11754 

40.09421 

39.07089 

38.04756 

37.02424 

58.51406 

59.53738 

60.56071 

61.58403 

62.60736 

63.63068 

64.654 

65.67733 

66.70065 

67.72398 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

30.82277 

30.14056 

29.45834 

28.77612 

28.09391 

27.41169 

26.72947 

26.04726 

25.36504 

24.68282 

39.00937 

39.69159 

40.3738 

41.05602 

41.73824 

42.42045 

43.10267 

43.78489 

44.4671 

45.14932 

 

Table 2. 𝑻𝒓𝒂𝒑𝑵𝒏𝒖𝒎𝒃𝒆𝒓 solution of 𝒚(𝒕,  𝜶,𝜷, 𝜸) at 𝒕 = 𝟎. 𝟓 

𝜶 𝒚𝟏(𝒕, 𝜶) 𝒚𝟐(𝒕, 𝜶) 𝜷 𝒚𝟏
′ (𝒕, 𝜷) 𝒚𝟐

′ (𝒕, 𝜷) 𝜸 𝒚𝟏
′′(𝒕, 𝜸) 𝒚𝟐

′′(𝒕, 𝜸) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

46.91499 

48.12425 

49.3335 

50.54276 

51.75202 

52.96128 

54.17054 

55.37979 

56.58905 

57.79831 

80.7742 

79.56495 

78.35569 

77.14643 

75.93717 

74.72792 

73.51866 

72.3094 

71.10014 

69.89089 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

41.35309 

40.4378 

39.52251 

38.60722 

37.69193 

36.77664 

35.86135 

34.94606 

34.03077 

33.11548 

52.33656 

53.25185 

54.16714 

55.08243 

55.99772 

56.91301 

57.8283 

58.74359 

59.65888 

60.57417 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

33.13125 

32.42677 

31.7223 

31.01783 

30.31335 

29.60888 

28.90441 

28.19994 

27.49546 

26.79099 

41.01924 

41.15803 

41.29683 

41.43562 

41.57441 

41.71321 

41.852 

41.99079 

42.12959 

42.26838 
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Fig. 1. 𝒙𝟏(𝜶, 𝒕) for increasing values of t Fig. 2. 𝒚𝟏(𝜶, 𝒕) for increasing values of t   

Fig. 3. 𝒙𝟐(𝜶, 𝒕) for increasing values of t Fig. 4. 𝒚𝟐(𝜶, 𝒕) for increasing values of t 
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3.3  Results and Discussion 

 

The system of first-order simultaneous differential equations (SFOSDE) with initial 

conditions is a powerful tool used in various scientific and engineering disciplines 

to model and analyze dynamic systems. These equations capture relationships 

between different variables and how they change over time, providing insights 

into the behavior of complex systems.  SFOSDEs are used to describe the flow of 

fluids in various scenarios, like incompressible or compressible flows, turbulence, 

and boundary layer analysis. These equations can model the heat transfer, energy 

exchange, and temperature changes in systems governed by the laws of 

thermodynamics. SFOSDEs can be employed to model reaction rates, 

concentrations, and reaction pathways. Differential equations help in 

understanding growth rates, interactions between different species, population 

dynamics, and the spread of diseases in biological and ecological systems. 

Uncertainty is a common aspect in various scientific and engineering applications, 

and it's important to consider it when modeling real-world systems. In 

mathematical modeling, uncertainty can be dealt with in various ways, depending 

on the specific context and the type of uncertainty being considered. Solving 

SFOSDEs with neutrosophic inputs would involve extending traditional solution 

methods to handle neutrosophic values. This might involve developing new 

numerical techniques or analytical approaches that can accommodate the three 

aspects of membership in neutrosophic sets. 

 

The solutions of a system of differential equation  
𝑑𝑥

𝑑𝑡
= 4𝑦 and 

𝑑𝑦

𝑑𝑡
= 5𝑥 with initial 

conditions  𝑥(𝑡0) = �̃� = 〈(3, 4, 5,6); 0.7, 0.6, 0.4〉 and 𝑦(𝑡0) = �̃� =

Fig. 5. Solution of 𝒙(𝒕,  𝜶,𝜷, 𝜸) at 𝒕 = 𝟎. 𝟓   Fig. 6. Solution of 𝒚(𝒕,  𝜶,𝜷, 𝜸) at 𝒕 = 𝟎. 𝟓   
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〈(5, 6, 7, 8); 0.5, 0.3, 0.2〉 for various 𝑡 and 0 < 𝛼, 𝛽, 𝛾 ≤ 1 are depicted in Tables 1 

and 2 Figures 1-4. It is observed that, the increasing   values of 𝛼, 𝛽, 𝛾 increase 

𝑥1(𝛼, 𝑡), 𝑦1(𝛼, 𝑡) and decrease 𝑥2(𝛼, 𝑡), 𝑦2(𝛼, 𝑡)  where as 𝑥1
′(𝛼, 𝑡), 𝑦1

′(𝛼, 𝑡)and 

𝑥1
′′(𝛼, 𝑡), 𝑦1

′′(𝛼, 𝑡) are diminishing functions and  𝑥2
′ (𝛼, 𝑡), 𝑦2

′(𝛼, 𝑡)and 𝑥2
′′(𝛼, 𝑡), 

𝑦2
′′(𝛼, 𝑡) are escalation functions. Therefore, the numerical example of system of 

differential equation satisfies the conditions of the 𝑆𝑡𝑟𝑜𝑛𝑔𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  of a neutrosophic 

difference equation. Hence the obtained solution is a strong solution. In addition, 

the graphs for different values for 𝑇𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝  (𝑇𝐴�̃�(𝑥)),  𝐼𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 (𝐼𝐴�̃�(𝑥)), and 

𝐹𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝  (𝐹𝐴�̃�(𝑥)) functions with (𝛼, 𝛽, 𝛾)𝑐𝑢𝑡 at time 𝑡 = 0 are displayed in 

Figures 5 and 6. As the 𝛼𝑐𝑢𝑡 value enhances and 𝛽𝑐𝑢𝑡 , 𝛾𝑐𝑢𝑡 values diminishes the 

solutions of 𝑥(𝑡,  𝛼, 𝛽, 𝛾) and 𝑦(𝑡,  𝛼, 𝛽, 𝛾) which approaches to the exact solution.  

 

 

Conclusion 

 

A technique for approximating the solution of system of first order simultaneous 

differential equations with initial condition as a neutrosophic environment is 

presented in this proposed work. We used the initial conditions as trapezoidal 

neutrosophic numbers. Furthermore, numerical examples are illustrated for better 

understanding of solving SFOSD utilizing 𝑇𝑟𝑎𝑝𝑁𝑛𝑢𝑚𝑏𝑒𝑟 via MATLAB software. 

The simulation results are shown in Tables and Figures. From these it is noticed 

that the new technique using neutrosophic are effective and more flexible to 

estimate the solutions of SFOSD. This technique is used to develop the solution of 

highly nonlinear coupled ordinary differential equations in the field of 

Computational Fluid Mechanics. 

 

 

Future Work: 

In future, one can extend this technique to solve higher-order linear and nonlinear 

neutrosophic initial value problems. Also, we will focus on higher-order nonlinear 

coupled partial differential equations and their applications in neutrosophic 

environments. 

Table 3. Notations 

𝐶𝑠𝑒𝑡 Classical set 
𝐹𝑠𝑒𝑡 Fuzzy Set 

𝐼𝐹𝑠𝑒𝑡 Intuitionistic Fuzzy Set 

𝐼𝑉𝐹𝑠𝑒𝑡 Interval Valued Fuzzy Set 

𝑁𝑠𝑒𝑡 Neutrosophic set 

𝑁𝑙𝑜𝑔𝑖𝑐 Neutrosophic logic 
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𝑆𝑉𝑁𝑠𝑒𝑡 Single Values Neutrosophic set 

𝑆𝑉𝑁𝑛𝑢𝑚𝑏𝑒𝑟 Single Values Neutrosophic number 

𝑇𝑟𝑖𝑁𝑛𝑢𝑚𝑏𝑒𝑟 Triangular Neutrosophic number 

𝑇𝑟𝑎𝑝𝑁𝑛𝑢𝑚𝑏𝑒𝑟 Trapezoidal Neutrosophic number 

𝑇𝑣𝑎𝑙𝑢𝑒 , 𝐼𝑣𝑎𝑙𝑢𝑒,𝑎𝑛𝑑 𝐹𝑣𝑎𝑙𝑢𝑒  membership, indeterminacy, and non-

membership values 

𝑇𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 , 𝐼𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 , 𝐹𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝  truth, indeterminacy, and falsity 

membership 

𝑇𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 , 𝐼𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑎𝑛𝑑 𝐹𝑓𝑢𝑛𝑐𝑡𝑢𝑖𝑜𝑛 truth, indeterminacy, and falsity function 

(𝛼, 𝛽, 𝛾)𝑐𝑢𝑡   (𝛼, 𝛽, 𝛾) − 𝑐𝑢𝑡 

(𝛼, 𝛽, 𝛾)𝑐𝑢𝑡  𝑜𝑓 𝑎 𝑇𝑟𝑎𝑝𝑁𝑛𝑢𝑚𝑏𝑒𝑟 (𝛼, 𝛽, 𝛾) − 𝑐𝑢𝑡 of a Trapezoidal 

Neutrosophic number 
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Abstract: 

Operations research methods focus on formulating decision models, models that approximate the 

real work environment to mathematical models, and their optimal solution helps the decision 

maker to make optimal decisions that guarantee the greatest profit or the lowest cost. These models 

were built based on the data collected on the practical issue under study, and these data are classic 

values, specific values that are correct and accurate during the period in which these data are 

collected, which means that they remain ideal if the surrounding conditions remain the same as 

those in which they were collected. Data, and since the aim of this study is to make ideal decisions 

and to develop future plans through which we achieve the greatest profit or the least cost, It was 

necessary to search for a study that fits all the conditions in which the work environment passes in 

the present and the future. If we take data, neural values, indeterminate values - uncertain - leave 

nothing to chance, and take into account all conditions from worst to best. In this paper, we will 

present a complementary study to what we have done in previous research, the purpose of which 

was to reformulate some operational research methods using neutrosophic data. We will 

reformulate the assignment problem and one of the methods for its solution, which is the Hungarian 

method, using neutrosophic concepts, and we will explain the difference between using classical 

and neutrosophic data through examples. 

Key words: 

  The optimal assignment problem - The Neutrosophic optimal assignment problem - The 

Hungarian method for solving assignment problems - linear models - Neutrosophic logic. 

Introduction: 

Assignment issues are a special case of linear programming issues that are concerned with the 

optimal assignment  of various economic, productive and human resources for the various works 

to be accomplished, and we encounter them frequently in practical life in educational institutions 

- hospitals - construction projects…..etc. In order to obtain an optimal assignment that achieves 

the greatest profit and the least loss in all conditions that the work environment can pass through, 

mailto:maissam.jdid66@damascusuniversity.edu.sy
mailto:smarand@unm.edu
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it was necessary to reformulate the issue of optimal assignment  and one of the ways to solve it 

using the concepts of the science  neutrosophic , the science that has proven its ability to provide 

ideal and appropriate solutions in all circumstances. And in many areas, as shown in research and 

studies presented by researchers interested in scientific development [1-15].Since the optimal 

assignment  model is one of the important models in the field of operations research, where we 

have a machines or people, and we need to assignment  them  to do the required work, and the 

number of works is equal to the number of machines or people. We need an optimal assignment 

for each machine so that it performs only one work and achieves the greatest profit or the lowest 

cost depending on the nature of the issue. This issue was studied using classical data by building 

the mathematical models, when we solving it, we get the desired. In this research, we will 

reformulate the issue using neutrosophic data that takes into account all changes that may occur in 

the work environment by taking costs or profit neutrosophic values, meaning that the cost (or 

return profit) of assignment  the machine or person 𝑖  to perform work  𝑗   is  𝑁𝑐𝑖𝑗 ∈ 𝑐𝑖𝑗  ± 𝜀𝑖𝑗 

where 𝜀𝑖𝑗 is the indeterminacy and 𝜀𝑖𝑗 ∈ [𝜆ij1, 𝜆ij2 ] , it is any neighborhood  to the value  𝑐𝑖𝑗   that 

we get while collecting data on the problem then the cost (or profit) matrix  becomes 𝑁𝐶𝑖𝑗 =

[𝑐𝑖𝑗  ± 𝜀𝑖𝑗]. 

Discussion:  

Assignment issues are considered a special case of linear programming issues and are concerned 

with the optimal assignment of various economic, human and productive resources for the different 

work to be accomplished, based on what we have presented in the research Mysterious 

Neutrosophic Linear Models  [16] and the classical formulation contained in the two references 

[17,18]. In this research, we will reformulate the problem of optimal assignment and the Hungarian 

method that is used to solve these problems using the concepts of neutrosophic science, that is, we 

will take the costs or profit from the neutrosophic values, so that the cost of doing  job 𝑗 by the 

machine or the person  𝑖 is  𝑁𝑐𝑖𝑗 ∈ 𝑐𝑖𝑗  ± 𝜀𝑖𝑗, where  𝜀𝑖𝑗  is indeterminacy and 𝜀𝑖𝑗 ∈ [𝜆ij1, 𝜆ij2 ], 

which is any  neighborhood of the value 𝑐𝑖𝑗   which we get it while collecting the data and then the 

cost matrix becomes equal to 𝑁𝐶𝑖𝑗 = [𝑐𝑖𝑗  ± 𝜀𝑖𝑗] and the problem text is as follows: 

Standard assignment issues: 

In these issues, the number of machines or people equals the number of works, which we will 

address in this research. 
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Text of the minimum cost type neutrosophic normative assignment problem: 

 

If we have 𝒏 machines, we denote them by 𝑀1 , 𝑀2 , … … , 𝑀𝑛 and we have a set of works consisting 

of 𝒏 different work we denote them by  𝑁1 , 𝑁2 , … … , 𝑁𝑛 we want to designate the machines to do 

these jobs, cost of doing any work 𝑗  on the device 𝑖, it is 𝑁𝑐𝑖𝑗 ∈ 𝑐𝑖𝑗  ± 𝜀𝑖𝑗. Assuming that any 

machine can do only one job, it is required to find the optimal assignment so that the cost is as 

small as possible. 

Formulation of the mathematical model: 

To formulate the linear mathematical model, we assume: 

 

𝒙𝒊𝒋= {
𝟏     𝒊𝒇 𝒋𝒐𝒃 𝒋 𝒘𝒂𝒔 𝒈𝒊𝒗𝒆𝒏 𝒕𝒐 𝒎𝒂𝒄𝒉𝒊𝒏𝒆 𝒊                  

𝟎                   𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                                               
 

 

Then write the target function as follows: 

 

𝑍 = ∑ ∑ (𝑐𝑖𝑗  ± 𝜀𝑖𝑗)𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1
 

Conditions for machines: 

Since each machine accepts only one action, we find: 

 

∑ 𝒙𝒊𝒋 = 𝟏      ; 𝒊 = 𝟏, 𝟐, … . . , 𝒏
𝒏

𝒋=𝟏
 

Business terms: 

Since each work is assigned to only one machine, we find: 

∑ 𝒙𝒊𝒋 = 𝟏      ; 𝒋 = 𝟏, 𝟐, … … , 𝒏
𝒏

𝒊=𝟏
 

Accordingly, the neutrosophic mathematical model is written as follows:  
Find the minimum value: 

𝒁 = ∑ ∑ (𝑐𝑖𝑗  ± 𝜀𝑖𝑗)𝒙𝒊𝒋

𝒏

𝒋=𝟏

𝒏

𝒊=𝟏
 

Machine terms: 

∑ 𝒙𝒊𝒋 = 𝟏      ; 𝒊 = 𝟏, 𝟐, … … , 𝒏
𝒏

𝒋=𝟏
 

Business terms: 

∑ 𝒙𝒊𝒋 = 𝟏      ; 𝒋 = 𝟏, 𝟐, … … , 𝒏
𝒏

𝒊=𝟏
 

Example 1: (The data are classic values). 

Formulation of the mathematical model for the problem of standard assignment of minimum cost: 
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We want to find the optimal assignment for four jobs on four machines. The cost of assignment  is 

given in the following table: 

 

 

 

 

𝑵𝟒 𝑵𝟑    𝑵𝟐 𝑵𝟏 Business 

The machines 

𝟕 𝟖 𝟗 𝟏𝟎 𝑴𝟏 

𝟔 𝟓 𝟒 𝟑 𝑴𝟐 

𝟐 𝟏 𝟏 𝟐 𝑴𝟑 

𝟔 𝟓 𝟑 𝟒 𝑴𝟒 
Table No. (1) Table of Distribution cost table and classic values 

 
To formulate the linear mathematical model: 

 We impose: 

𝒙𝒊𝒋 = { 
𝟏     𝒊𝒇 𝒋𝒐𝒃 𝒋 𝒘𝒂𝒔 𝒈𝒊𝒗𝒆𝒏 𝒕𝒐 𝒎𝒂𝒄𝒉𝒊𝒏𝒆 𝒊                                                  

𝟎                   𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                                    ;  𝒊, 𝒋 = 𝟏, 𝟐, 𝟑, 𝟒             
      

                 
 

Using the problem data, we get the following objective function: 
 

𝑍 = 10𝑥11 + 9𝑥12 + 8𝑥13 + 7𝑥14 + 3𝑥21 + 4𝑥22 + 5𝑥23 + 6𝑥24 + 2𝑥31 + 𝑥32 + 𝑥33 + 2𝑥34 + 4𝑥41

+ 3𝑥42 + 5𝑥43 + 6𝑥44 

Machine terms: 

𝒙𝟏𝟏 + 𝒙𝟏𝟐 + 𝒙𝟏𝟑 + 𝒙𝟏𝟒 = 𝟏 

𝒙𝟐𝟏 + 𝒙𝟐𝟐 + 𝒙𝟐𝟑 + 𝒙𝟐𝟒 = 𝟏 

𝒙𝟑𝟏 + 𝒙𝟑𝟐 + 𝒙𝟑𝟑 + 𝒙𝟑𝟒 = 𝟏 

𝒙𝟒𝟏 + 𝒙𝟒𝟐 + 𝒙𝟒𝟑 + 𝒙𝟒𝟒 = 𝟏 

Business terms: 

𝒙𝟏𝟏 + 𝒙𝟐𝟏 + 𝒙𝟑𝟏 + 𝒙𝟒𝟏 = 𝟏 

𝒙𝟏𝟐 + 𝒙𝟐𝟐 + 𝒙𝟑𝟐 + 𝒙𝟒𝟐 = 𝟏 

𝒙𝟏𝟑 + 𝒙𝟐𝟑 + 𝒙𝟑𝟑 + 𝒙𝟒𝟑 = 𝟏 

𝒙𝟏𝟒 + +𝒙𝟐𝟒 + 𝒙𝟑𝟒 + 𝒙𝟒𝟒 = 𝟏 

 

Therefore, the mathematical model is written as follows: 

Find the minimum value of the function: 

 

𝑍 = 10𝑥11 + 9𝑥12 + 8𝑥13 + 7𝑥14 + 3𝑥21 + 4𝑥22 + 5𝑥23 + 6𝑥24 + 2𝑥31 + 𝑥32 + 𝑥33 + 2𝑥34 + 4𝑥41

+ 3𝑥42 + 5𝑥43 + 6𝑥44 

Within the conditions: 

𝒙𝟏𝟏 + 𝒙𝟏𝟐 + 𝒙𝟏𝟑 + 𝒙𝟏𝟒 = 𝟏 
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𝒙𝟐𝟏 + 𝒙𝟐𝟐 + 𝒙𝟐𝟑 + 𝒙𝟐𝟒 = 𝟏 

𝒙𝟑𝟏 + 𝒙𝟑𝟐 + 𝒙𝟑𝟑 + 𝒙𝟑𝟒 = 𝟏 

𝒙𝟏𝟏 + 𝒙𝟐𝟏 + 𝒙𝟑𝟏 + 𝒙𝟒𝟏 = 𝟏 

𝒙𝟏𝟐 + 𝒙𝟐𝟐 + 𝒙𝟑𝟐 + 𝒙𝟒𝟐 = 𝟏 

𝒙𝟏𝟑 + 𝒙𝟐𝟑 + 𝒙𝟑𝟑 + 𝒙𝟒𝟑 = 𝟏 

𝒙𝟏𝟒 + +𝒙𝟐𝟒 + 𝒙𝟑𝟒 + 𝒙𝟒𝟒 = 𝟏 

Where 𝒙𝒊𝒋   it is either equal to zero or one. 

In the previous model, there is some indeterminacy in the assignment process, as we do not know which 

machine will perform a certain work. In addition to that, we will also use neutrosophic data. We will take 

the cost of neutrosophic values, i.e. the cost of assignment machine  𝑖 to perform work  𝑗 is 𝑁𝑐𝑖𝑗 ∈ 𝑐𝑖𝑗  ±

𝜀𝑖𝑗 , where  𝜀𝑖𝑗  is the indeterminacy and 𝜀𝑖𝑗 ∈ [𝜆ij1, 𝜆ij2 ], which is any neighborhood  to the value 𝑐𝑖𝑗   

then the cost matrix becomes 𝑁𝐶𝑖𝑗 = [𝑐𝑖𝑗  ± 𝜀𝑖𝑗]. 

Example 2: (Cost is neutrosophic values): 

We want to find the optimal assignment for four jobs on four machines. The cost of assignment is given in 

the following table: 

𝑵𝟒 𝑵𝟑    𝑵𝟐 𝑵𝟏 Business 

The machines 

𝟕 + 𝜀14 𝟖 + 𝜀13 𝟗 + 𝜀12 𝟏𝟎 + 𝜀11 𝑴𝟏 

𝟔 + 𝜀24     𝟓 + 𝜀23 𝟒 + 𝜀22 𝟑 + 𝜀21 𝑴𝟐 

𝟐 + 𝜀34 𝟏 + 𝜀33 𝟏 + 𝜀32 𝟐 + 𝜀31 𝑴𝟑 

𝟔 + 𝜀44 𝟓 + 𝜀43 𝟑 + 𝜀42 𝟒 + 𝜀41 𝑴𝟒 

Table No. (2) Table of allocation cost of neutrosophic values 

Where 𝜀𝑖𝑗  is the limitation on the costs of assignment and it can be any neighborhood of the values 

contained in Table No. (1)  

To formulate the linear mathematical model we assume: 

𝒙𝒊𝒋 = {
𝟏     𝒊𝒇 𝒋𝒐𝒃 𝒋 𝒘𝒂𝒔 𝒈𝒊𝒗𝒆𝒏 𝒕𝒐 𝒎𝒂𝒄𝒉𝒊𝒏𝒆 𝒊                  

𝟎                 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                                                  
; 𝒊, 𝒋 = 𝟏, 𝟐, 𝟑, 𝟒 

Using the problem data, we get the following objective function: 

 

𝑍 ∈ {(𝟏𝟎 + 𝜀11)𝑥11 + (𝟗 + 𝜀12)𝑥12 + (𝟖 + 𝜀13)𝑥13 + (𝟕 + 𝜀14)𝑥14 + (𝟑 + 𝜀21)𝑥21 + (𝟒 + 𝜀22)𝑥22

+ (  𝟓 + 𝜀23)𝑥23 + (𝟔 + 𝜀24)𝑥24 + (𝟐 + 𝜀31)𝑥31 + (𝟏 + 𝜀32)𝑥32 + (𝟏 + 𝜀33)𝑥33 + (𝟐
+ 𝜀34)𝑥34 + (𝟒 + 𝜀41)𝑥41 + (𝟑 + 𝜀42)𝑥42 + (𝟓 + 𝜀43)𝑥43 + (𝟔 + 𝜀44)𝑥44} 

Machine terms: 

𝒙𝟏𝟏 + 𝒙𝟏𝟐 + 𝒙𝟏𝟑 + 𝒙𝟏𝟒 = 𝟏 

𝒙𝟐𝟏 + 𝒙𝟐𝟐 + 𝒙𝟐𝟑 + 𝒙𝟐𝟒 = 𝟏 

𝒙𝟑𝟏 + 𝒙𝟑𝟐 + 𝒙𝟑𝟑 + 𝒙𝟑𝟒 = 𝟏 

𝒙𝟒𝟏 + 𝒙𝟒𝟐 + 𝒙𝟒𝟑 + 𝒙𝟒𝟒 = 𝟏 

Business terms: 

𝒙𝟏𝟏 + 𝒙𝟐𝟏 + 𝒙𝟑𝟏 + 𝒙𝟒𝟏 = 𝟏 
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𝒙𝟏𝟐 + 𝒙𝟐𝟐 + 𝒙𝟑𝟐 + 𝒙𝟒𝟐 = 𝟏 

𝒙𝟏𝟑 + 𝒙𝟐𝟑 + 𝒙𝟑𝟑 + 𝒙𝟒𝟑 = 𝟏 

𝒙𝟏𝟒 + +𝒙𝟐𝟒 + 𝒙𝟑𝟒 + 𝒙𝟒𝟒 = 𝟏 

 

Therefore, the mathematical model is written as follows: 

Find the minimum value of the function: 

 

𝑍 ∈ {(𝟏𝟎 + 𝜀11)𝑥11 + (𝟗 + 𝜀12)𝑥12 + (𝟖 + 𝜀13)𝑥13 + (𝟕 + 𝜀14)𝑥14 + (𝟑 + 𝜀21)𝑥21 + (𝟒 + 𝜀22)𝑥22

+ (  𝟓 + 𝜀23)𝑥23 + (𝟔 + 𝜀24)𝑥24 + (𝟐 + 𝜀31)𝑥31 + (𝟏 + 𝜀32)𝑥32 + (𝟏 + 𝜀33)𝑥33 + (𝟐
+ 𝜀34)𝑥34 + (𝟒 + 𝜀41)𝑥41 + (𝟑 + 𝜀42)𝑥42 + (𝟓 + 𝜀43)𝑥43 + (𝟔 + 𝜀44)𝑥44} 

Within the conditions: 

𝒙𝟏𝟏 + 𝒙𝟏𝟐 + 𝒙𝟏𝟑 + 𝒙𝟏𝟒 = 𝟏 

𝒙𝟐𝟏 + 𝒙𝟐𝟐 + 𝒙𝟐𝟑 + 𝒙𝟐𝟒 = 𝟏 

𝒙𝟑𝟏 + 𝒙𝟑𝟐 + 𝒙𝟑𝟑 + 𝒙𝟑𝟒 = 𝟏 

𝒙𝟒𝟏 + 𝒙𝟒𝟐 + 𝒙𝟒𝟑 + 𝒙𝟒𝟒 = 𝟏 

𝒙𝟏𝟏 + 𝒙𝟐𝟏 + 𝒙𝟑𝟏 + 𝒙𝟒𝟏 = 𝟏 

𝒙𝟏𝟐 + 𝒙𝟐𝟐 + 𝒙𝟑𝟐 + 𝒙𝟒𝟐 = 𝟏 

𝒙𝟏𝟑 + 𝒙𝟐𝟑 + 𝒙𝟑𝟑 + 𝒙𝟒𝟑 = 𝟏 

𝒙𝟏𝟒 + +𝒙𝟐𝟒 + 𝒙𝟑𝟒 + 𝒙𝟒𝟒 = 𝟏 
 

Where 𝒙𝒊𝒋   it is either equal to zero or one. 

Since the number of works is equal to the number of machines, the issue is a standard assignment issue, 

and the optimal solution can be obtained using several methods, including the Hungarian method in this 
research. 

  This method was named after the scientist who created it, a mathematician D.Konig. Its principle depends 

on finding the total opportunity-cost matrix, references [16, 17]. 

Explanation of the method based on what was stated in the reference [18]: 

This method is  based on a mathematical property discovered by the scientist D.Konig, 

  If the cost is non-negative values, then subtracting or adding a fixed number of elements of any row or 

any column in the standard allocation cost matrix does not affect the optimal assignment, and specifically 

does not affect the optimal values 𝒙𝒊𝒋 . 

The algorithm begins by identifying the smallest element in each row, and subtracting it from all the 

elements of the row , or by selecting the smallest element in each column and subtracting it from all the 

elements of that column, we get a new cost matrix that includes at least one element equal to zero in each 

row or column. We do the assignment process using cells with a cost equal to zero. If possible, we have 

obtained the optimal allocation. For this assignment, the cost elements (𝒄𝒊𝒋) are non-negative, so the 

minimum value of the objective function cannot be ∑ ∑ 𝒄𝒊𝒋
𝒏
𝒋=𝟏

𝒏
𝒊=𝟏 𝒙𝒊𝒋 is less than zero. 

We will use the above to find the optimal assignment for the problem in Example 2 based on the 

following information: 

Taking the indeterminacy  𝜺𝑖𝑗 = 𝜺 ∈ [0 , 5], the problem becomes: 

Example 3: 

We want to find the optimal assignment for four jobs on four machines. The cost of assignment is  given 

in the following table: 
 

𝑵𝟒 𝑵𝟑    𝑵𝟐 𝑵𝟏 Business 

The machines 
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[𝟕 , 𝟏𝟐] [𝟖 , 𝟏𝟑] [𝟗 , 𝟏𝟒] [𝟏𝟎, 𝟏𝟓] 𝑴𝟏 

[𝟔 , 𝟏𝟏] [𝟓 , 𝟏𝟎] [𝟒 , 𝟗] [𝟑 , 𝟖] 𝑴𝟐 

[𝟐 , 𝟕] [𝟏, 𝟔] [𝟏, 𝟔] [𝟐 , 𝟕] 𝑴𝟑 

[𝟔 , 𝟏𝟏] [𝟓 , 𝟏𝟎] [𝟑 , 𝟖] [𝟒 , 𝟗] 𝑴𝟒 
Table No. (3) Table of Example data 

 

To formulate the linear mathematical model: 

We assume: 

 

𝒙𝒊𝒋 = {
𝟏     𝒊𝒇 𝒋𝒐𝒃 𝒋 𝒘𝒂𝒔 𝒈𝒊𝒗𝒆𝒏 𝒕𝒐 𝒎𝒂𝒄𝒉𝒊𝒏𝒆 𝒊                  

𝟎                       𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                                               
; 𝒊, 𝒋 = 𝟏, 𝟐, 𝟑, 𝟒 

 

Using the problem data, we get the following objective function: 
 

𝑍 ∈ {[𝟏𝟎, 𝟏𝟓]𝑥11 + [𝟗 , 𝟏𝟒]𝑥12 + [𝟖 , 𝟏𝟑]𝑥13 + [𝟕 , 𝟏𝟐]𝑥14 + [𝟑 , 𝟖]𝑥21 + [𝟒 , 𝟗]𝑥22 + [𝟓 , 𝟏𝟎]𝑥23

+ [𝟔 , 𝟏𝟏]𝑥24 + [𝟐 , 𝟕]𝑥31 + [𝟏 , 𝟔]𝑥32 + [𝟏 , 𝟔]𝑥33 + [𝟐 , 𝟕]𝑥34 + [𝟒 , 𝟗]𝑥41 + [𝟑 , 𝟖]𝑥42

+ [𝟓 , 𝟏𝟎]𝑥43 + [𝟔 , 𝟏𝟏]𝑥44} 

Machine terms: 

𝒙𝟏𝟏 + 𝒙𝟏𝟐 + 𝒙𝟏𝟑 + 𝒙𝟏𝟒 = 𝟏 

𝒙𝟐𝟏 + 𝒙𝟐𝟐 + 𝒙𝟐𝟑 + 𝒙𝟐𝟒 = 𝟏 

𝒙𝟑𝟏 + 𝒙𝟑𝟐 + 𝒙𝟑𝟑 + 𝒙𝟑𝟒 = 𝟏 

𝒙𝟒𝟏 + 𝒙𝟒𝟐 + 𝒙𝟒𝟑 + 𝒙𝟒𝟒 = 𝟏 

Business terms: 

𝒙𝟏𝟏 + 𝒙𝟐𝟏 + 𝒙𝟑𝟏 + 𝒙𝟒𝟏 = 𝟏 

𝒙𝟏𝟐 + 𝒙𝟐𝟐 + 𝒙𝟑𝟐 + 𝒙𝟒𝟐 = 𝟏 

𝒙𝟏𝟑 + 𝒙𝟐𝟑 + 𝒙𝟑𝟑 + 𝒙𝟒𝟑 = 𝟏 

𝒙𝟏𝟒 + +𝒙𝟐𝟒 + 𝒙𝟑𝟒 + 𝒙𝟒𝟒 = 𝟏 
 

Therefore, the mathematical model is  written as follows: 

Find the minimum value of the function: 

 

𝑍 ∈ {[𝟏𝟎, 𝟏𝟓]𝑥11 + [𝟗 , 𝟏𝟒]𝑥12 + [𝟖 , 𝟏𝟑]𝑥13 + [𝟕 , 𝟏𝟐]𝑥14 + [𝟑 , 𝟖]𝑥21 + [𝟒 , 𝟗]𝑥22 + [𝟓 , 𝟏𝟎]𝑥23

+ [𝟔 , 𝟏𝟏]𝑥24 + [𝟐 , 𝟕]𝑥31 + [𝟏 , 𝟔]𝑥32 + [𝟏 , 𝟔]𝑥33 + [𝟐 , 𝟕]𝑥34 + [𝟒 , 𝟗]𝑥41 + [𝟑 , 𝟖]𝑥42

+ [𝟓 , 𝟏𝟎]𝑥43 + [𝟔 , 𝟏𝟏]𝑥44} 
Within the conditions: 

𝒙𝟏𝟏 + 𝒙𝟏𝟐 + 𝒙𝟏𝟑 + 𝒙𝟏𝟒 = 𝟏 

𝒙𝟐𝟏 + 𝒙𝟐𝟐 + 𝒙𝟐𝟑 + 𝒙𝟐𝟒 = 𝟏 

𝒙𝟑𝟏 + 𝒙𝟑𝟐 + 𝒙𝟑𝟑 + 𝒙𝟑𝟒 = 𝟏 

𝒙𝟒𝟏 + 𝒙𝟒𝟐 + 𝒙𝟒𝟑 + 𝒙𝟒𝟒 = 𝟏 

𝒙𝟏𝟏 + 𝒙𝟐𝟏 + 𝒙𝟑𝟏 + 𝒙𝟒𝟏 = 𝟏 

𝒙𝟏𝟐 + 𝒙𝟐𝟐 + 𝒙𝟑𝟐 + 𝒙𝟒𝟐 = 𝟏 

𝒙𝟏𝟑 + 𝒙𝟐𝟑 + 𝒙𝟑𝟑 + 𝒙𝟒𝟑 = 𝟏 

𝒙𝟏𝟒 + +𝒙𝟐𝟒 + 𝒙𝟑𝟒 + 𝒙𝟒𝟒 = 𝟏 

 

Where 𝒙𝒊𝒋   it is either equal to zero or one. 
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Solution using the Hungarian method: 

From the table Number 3 we find the following: 

 

𝑵𝟒 𝑵𝟑    𝑵𝟐 𝑵𝟏 Business 

The machines 

[𝟕 , 𝟏𝟐] [𝟖 , 𝟏𝟑] [𝟗 , 𝟏𝟒] [𝟏𝟎, 𝟏𝟓] 𝑴𝟏 

[𝟔 , 𝟏𝟏] [𝟓 , 𝟏𝟎] [𝟒 , 𝟗] [𝟑 , 𝟖] 𝑴𝟐 

[𝟐 , 𝟕] [𝟏, 𝟔] [𝟏, 𝟔] [𝟐 , 𝟕] 𝑴𝟑 

[𝟔 , 𝟏𝟏] [𝟓 , 𝟏𝟎] [𝟑 , 𝟖] [𝟒 , 𝟗] 𝑴𝟒 

 
To form the opportunity cost matrix for the rows, we do the following: 

We form the opportunity cost matrix for the rows as follows: 

In the first row, the lowest cost is [𝟕 , 𝟏𝟐]  we subtract it from all the elements of the first row. 

In the second row, the lowest cost is[𝟑 , 𝟖], we subtract from all elements of the second row. 

In the third row, the lowest cost is[𝟏, 𝟔] , we subtract it from all elements of the third row. 

In the fourth row, the lowest cost is[𝟑 , 𝟖], we subtract from all elements of the fourth row. 

We get the opportunity cost matrix for the following rows: 

𝑵𝟒 𝑵𝟑    𝑵𝟐 𝑵𝟏 Business 

The machines 

𝟎 𝟏 𝟐 𝟑 𝑴𝟏 

𝟑 𝟐 𝟏 𝟎 𝑴𝟐 

𝟏 𝟎 𝟎 𝟏 𝑴𝟑 

𝟑 𝟐 𝟎 𝟏 𝑴𝟒 

Table No. (4) Table of Total opportunity cost matrix table 

 

We try to make the assignment using cells with cost equal to zero we find: 

Dedicate the machine 𝑀1 to get the job 𝑁4done. 

Dedicate the machine 𝑀2 to get the job 𝑁1done. 

Dedicate the machine 𝑀3 to get the job 𝑁3 done. 

Dedicate the machine 𝑀4 to get the job 𝑁2 done. 

Thus, we have obtained the optimal assignment and the minimum cost: 

 

𝒁 ∈ {[𝟏𝟎, 𝟏𝟓] × 𝟎 + [𝟗 , 𝟏𝟒] × 𝟎 + [𝟖 , 𝟏𝟑] × 𝟎 + [𝟕 , 𝟏𝟐] × 𝟏 + [𝟑 , 𝟖] × 𝟏 + [𝟒 , 𝟗] × 𝟎 + [𝟓 , 𝟏𝟎] × 𝟎
+ [𝟔 , 𝟏𝟏] × 𝟎 + [𝟐 , 𝟕] × 𝟎 + [𝟏, 𝟔] × 𝟎 + [𝟏 , 𝟔] × 𝟏 + [𝟐 , 𝟕] × 𝟎 + [𝟒 , 𝟗] × 𝟎
+ [𝟑 , 𝟖] × 𝟏 + [𝟓 , 𝟏𝟎] × 𝟎 + [𝟔 , 𝟏𝟏] × 𝟎} 

𝒁 ∈ [𝟕 , 𝟏𝟐] + [𝟑 , 𝟖] + [𝟏 , 𝟔] + [𝟑 , 𝟖] = [𝟏𝟒 , 𝟑𝟒] 
That is, the optimal allocation is: 

Dedicate the machine 𝑀1 to get the job 𝑁4 done. 

Dedicate the machine 𝑀2to get the job 𝑁1done. 

Dedicate the machine 𝑀3 to get the job 𝑁3 done. 
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Dedicate the machine 𝑀4 to get the job 𝑁2 done. 

The cost:     

𝑍 ∈ [14 , 34]. 

The Hungarian method is  summarized based on what was stated in the reference [17]: 

1- We determine the smallest element in each row and subtract it from the rest of the elements of that row. 

 Thus, we get a new matrix that is the opportunity cost matrix for the rows. 

2- We determine the smallest element in each column of the opportunity cost matrix for the rows and  

Subtract it from the elements of that column.  Thus, we get the total opportunity cost matrix. 

3- We draw as few horizontal and vertical straight lines as possible to pass through all zero elements of 

the total opportunity cost matrix. 

4- If the number of the straight lines drawn passing through the zero elements is equal to the number of 

rows (columns). Then we say that we have reached the optimal assignment. 

5- If the number of straight lines passing through the zero elements is less than the number of rows  

(Columns).Then we move on to the next step. 

6- We choose the lesser element from the elements that no straight line passed through and subtract it 

from all the elements that no straight line.  Then we add it to all the elements that lie at the intersection 

of two lines. The elements that the straight lines passed through remain the same without any change. 

       We get a new matrix that we call it the modified total opportunity cost matrix. 

7- We draw vertical and horizontal straight lines passing through all the zero elements in the modified 

total opportunity cost matrix.  If the number of straight lines drawn passing through the zero elements 

is equal to the number of rows (columns). Then we have reached the optimal assignment solution. 

8- If the number of the lines is not equal to the number of rows (columns). We go back to step (1), we  

Repeat the previous steps until reaching the optimal assignment that makes the total opportunity cost 

equal to zero. 

Example 4: 

We have three machines 𝑀1 , 𝑀2, 𝑀3 and three  works 𝑁1, 𝑁2, 𝑁3 and each work is done completely using 

any of the three machines and in return each machine can perform any of the three works as well. What  is 

required is to allocate these mechanisms to the existing works so that we get the optimal assignment , i.e. 

the assignment that gives us here the minimum total cost, bearing in mind that the costs of completing these 

works vary according to the different mechanisms implemented for these works, and this cost is related to 

the performance of each work and is shown in the following table: 

 

𝑵𝟑    𝑵𝟐 𝑵𝟏 Business 

The machines 

[𝟑𝟎, 𝟑𝟑] [𝟐𝟕, 𝟑𝟎] [𝟐𝟎, 𝟐𝟑] 𝑴𝟏 
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[𝟏𝟔, 𝟏𝟗] [𝟏𝟖, 𝟐𝟏] [𝟏𝟎, 𝟏𝟑] 𝑴𝟐 

[𝟏𝟐, 𝟏𝟓] [𝟏𝟔, 𝟏𝟗] [𝟏𝟒, 𝟏𝟕] 𝑴𝟑 

Table No. (5) Table of allocation cost neutrosophic values example data 

Mathematical model: 

Find the minimum value of the function: 

𝑍 ∈ {[𝟐𝟎, 𝟐𝟑]𝑥11 + [𝟐𝟕, 𝟑𝟎]𝑥12 + [𝟑𝟎, 𝟑𝟑]𝑥13 + [𝟏𝟎, 𝟏𝟑]𝑥21 + [𝟏𝟖, 𝟐𝟏]𝑥22 + [𝟏𝟔, 𝟏𝟗]𝑥23

+ [𝟏𝟒, 𝟏𝟕]𝑥31 + [𝟏𝟔, 𝟏𝟗]𝑥32 + [𝟏𝟐, 𝟏𝟓]𝑥33} 

Within the conditions: 

𝒙𝟏𝟏 + 𝒙𝟏𝟐 + 𝒙𝟏𝟑 = 𝟏 

𝒙𝟐𝟏 + 𝒙𝟐𝟐 + 𝒙𝟐𝟑 = 𝟏 

𝒙𝟑𝟏 + 𝒙𝟑𝟐 + 𝒙𝟑𝟑 = 𝟏 

𝒙𝟏𝟏 + 𝒙𝟐𝟏 + 𝒙𝟑𝟏 = 𝟏 

𝒙𝟏𝟐 + 𝒙𝟐𝟐 + 𝒙𝟑𝟐 = 𝟏 

𝒙𝟏𝟑 + 𝒙𝟐𝟑 + 𝒙𝟑𝟑 = 𝟏 

Where 𝒙𝒊𝒋 it is either equal to zero or one. 

Finding the optimal assignment using the Hungarian method: 

We take Table No. (5) 

𝑵𝟑    𝑵𝟐 𝑵𝟏 Business 

The machines 

[𝟑𝟎, 𝟑𝟑] [𝟐𝟕, 𝟑𝟎] [𝟐𝟎, 𝟐𝟑] 𝑴𝟏 

[𝟏𝟔, 𝟏𝟗] [𝟏𝟖, 𝟐𝟏] [𝟏𝟎, 𝟏𝟑] 𝑴𝟐 

[𝟏𝟐, 𝟏𝟓] [𝟏𝟔, 𝟏𝟗] [𝟏𝟒, 𝟏𝟕] 𝑴𝟑 

1.  

In the first row, the lowest cost is [𝟐𝟎, 𝟐𝟑], which we subtract from all the elements of the first row. 

In the second row, the least cost is [𝟏𝟎, 𝟏𝟑] and we subtract it from all the elements of the second row. 

In the third row, the lowest cost is [𝟏𝟐, 𝟏𝟓], which we subtract from all the elements of the third row. 

We get the opportunity cost table for the following rows: 

 

𝑵𝟑    𝑵𝟐 𝑵𝟏 Business 

The machines 

𝟏𝟎 𝟕 𝟎 𝑴𝟏 

𝟔 𝟖 𝟎 𝑴𝟐 

𝟎 𝟒 𝟐 𝑴𝟑 

Table No. (6) Table of opportunity cost matrix for lines 

2.  

In the first column, the lowest cost is 𝟎 we subtract it from all the items in the first column. 

In the second column, the lowest cost is 𝟒 we subtract it from all the items in the second column. 
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In the third column, the lowest cost is 𝟒 we subtract it from all the items in the third column. 

We get the table: 

 

𝑵𝟑    𝑵𝟐 𝑵𝟏 Business 

The machines 

𝟏𝟎 𝟑 𝟎 𝑴𝟏 

𝟔 𝟒 𝟎 𝑴𝟐 

𝟎 𝟎 𝟐 𝑴𝟑 

Table No. (7) Table of total opportunity cost matrix 

3. We draw as few horizontal and vertical straight lines as possible to pass through all zero elements 

of the total opportunity cost matrix. 

4. If the number of straight lines drawn passing through the zero elements is equal to the number of 

rows (columns), then we say that we have reached the optimal assignment. 

5. If the number of straight lines passing through the zero elements is less than the number of rows or 

columns, then we move on to the third step. 

 

𝑵𝟑    𝑵𝟐 𝑵𝟏 Business 

 The machines 

𝟏𝟎 𝟑 𝟎 𝑴𝟏 

𝟔 𝟒 𝟎 𝑴𝟐 

𝟎 𝟎 𝟐 𝑴𝟑 

Table No. (7) Total Opportunity Cost Matrix 
     We Note that the number of lines is less than the number of rows (columns). So we go to (6). 

6.    
a. We choose the lowest element through which no straight line has passed. Smallest element is 

(3). 

b. We subtract it from the rest of the elements through which none of the lines drawn are  passed. 

c.  We add it to all the elements at the intersection of two straight lines drawn. 

d.  Elements through which straight lines pass remain unchanged. 

e.  We draw vertical and horizontal straight lines passing through all zero elements of the adjusted 

total opportunity cost matrix, and we get: 

𝑵𝟑    𝑵𝟐 𝑵𝟏 Business 

The machines  

𝟕 𝟎 𝟎 𝑴𝟏 

𝟑 𝟏 𝟎 𝑴𝟐 

𝟎 𝟎 𝟓 𝑴𝟑 

Table No. (8) Modified Total Opportunity Cost Matrix 
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7. If the number of drawn lines is equal to the number of rows (columns), then we have reached 

the optimal assignment. 

From Table No. (8), we note that the number of drawn lines is equal to the number of rows, 

meaning that we have obtained the optimal assignment, which is as follows: 

In the third column, we have zero only in the cell that is 𝑴𝟑𝑵𝟑, so the third machine is used 

to perform the third work. 𝑴𝟑 → 𝑵𝟑 

We delete the third row and the third column, we get the following table: 

 

 

   𝑵𝟐 𝑵𝟏 Business 

The machines 

𝟎 𝟎 𝑴𝟏 

𝟏 𝟎 𝑴𝟐 
 

In the same way. The first machine is used to perform the second work,  𝑴𝟏 → 𝑵𝟐 . 

  The second machine used to perform the first work, 𝑴𝟐 → 𝑵𝟏. 

The minimum total cost is: 

 

𝑍 ∈ {[𝟐𝟎, 𝟐𝟑] × 0 + [𝟐𝟕, 𝟑𝟎] × 1 + [𝟑𝟎, 𝟑𝟑] × 0 + [𝟏𝟎, 𝟏𝟑] × 1 + [𝟏𝟖, 𝟐𝟏] × 0
+ [𝟏𝟔, 𝟏𝟗] × 0 + [𝟏𝟒, 𝟏𝟕] × 0 + [𝟏𝟔, 𝟏𝟗] × 0 + [𝟏𝟐, 𝟏𝟓]  × 1} 

𝑍 ∈ [𝟐𝟕, 𝟑𝟎] + [𝟏𝟎, 𝟏𝟑] + [𝟏𝟐, 𝟏𝟓] = [𝟒𝟗, 𝟓𝟖] 
 

That is, the optimal assignment is: 

Machine 𝑴𝟏  is  assigned to do    𝑵𝟐work. 

Machine 𝑴𝟐 is assigned to perform 𝑵𝟏work. 

Machine 𝑴𝟑 is  assigned to perform 𝑵𝟑work.  

The cost:  

𝑍 ∈ [𝟒𝟗 , 𝟓𝟖] 
 

Important notes:  

When we study the issues of optimal assignment, we come across the following: 

1. There is two types of assignment issues according to the objective function: 

The first type:  

It is required to obtain a minimum value for the objective function, knowing that the cost of completing any 

work by a machine is a known value, and therefore the total cost is as small as possible.  

The second type:  
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What is required is to obtain a maximum value for the objective function, and here it is known that we have 

the profit accruing from the completion of any work, by a machine, and therefore the total cost is the greatest 

possible. 

 In this type, we transform matter to the first type according to the following steps: 

 

a. Multiply the elements of the cost matrix by the value (-1). 

b. If some elements of the matrix are negative, we add enough positive numbers to the corresponding 

rows and columns so that all elements become non-negative. 

c. Then the issue becomes a matter of   assignment and we want to make the objective function smaller 

and all elements of the cost matrix are non-negative, so we can apply the Hungarian method. 

2. There are two types of customization issues according to the number of businesses and the 

number of machines: 

In this research, we studied the standard assignment issues. It should be noted that there are non-

standard assignment issues. In these issues, the number of works is not equal to the number of 

machines , and here we convert them into standard issues  by adding a fictitious work or a fictitious 

machine and make the cost equal to zero So that the objective function does not change, then we 

build the mathematical model as it is in the standard models. 

 

 

Conclusion and results: 

 Due to the importance of the issue of assignment in our practical life, it received great attention from 

scholars and researchers, as this issue was addressed on the basis that it is a transfer issue, and special 

methods were followed to solve transfer issues to find the optimal assignment ,but we find that many 

references deal with these issues according to the Hungarian method that It was found to be addressed. And 

through our study of these issues, we find that the use of the Hungarian method greatly helps to find the 

optimal assignment with less effort than other methods. On the other hand according to the results obtained 

when using the data Neutrosophic values , in issues of  assignment and in all practical matters that are 

affected by the conditions surrounding the work environment so that decision makers can make appropriate 

decisions for all circumstances that achieve companies and institutions the greatest profit and the lowest 

cost.  
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Abstract: The Laplace distribution, also known as the double exponential distribution, is a continuous 

probability distribution that is often used for modelling the data having heavy tails. In this paper, we 

proposed the Neutrosophic Laplace distribution which is the extension of the classical Laplace 

Distribution. We derived various statistical properties of the Neutrosophic Laplace Distribution such 

as mean, variance, skewness, rth moment, quartiles, and moment-generating function. The 

expressions for the estimation of the parameters are also derived using the maximum likelihood 

function of the distribution. A simulation study has been done to evaluate the performance of 

estimates. An application of the Neutrosophic Laplace Distribution is discussed to study the daily 

return of the NIFTY50 from Indian Stock Market. The analysis shows that the neutrosophic Laplace 

Model is acceptable, effective, and adequate for dealing with uncertainty in an unpredictable context.  

Keywords: Neutrosophic Laplace Distribution, Estimation, Indeterminacy, Financial Data Analysis, 

Simulation, Stock Returns. 

 

1. Introduction 

The continuous random variables have commonly been described and analysed by continuous 

statistical probability models as they provide a framework for understanding the distribution of 

continuous data and making probabilistic predictions. These models have numerous applications in 

the fields such as physics and engineering, quality control and process improvement, environmental 

analysis, financial modeling, market research and consumer behavior, insurance and actuarial science, 

demography and epidemiology and reliability engineering. The Laplace Distribution (LD) has gained 

popularity due to its unique properties and its ability to model various phenomena. The LD arises 

naturally as the distribution of the difference between two independent random variables follows the 

exponential distribution, which makes it useful for modeling the behavior of certain stochastic 

processes. Laplace [1] employed this distribution to model the frequency of an error as an exponential 

function of its magnitude after the sign was ignored. The Laplace model is most well-suited for 

modelling the data with outliers or heavy-tailed behaviour. The comprehensive reference book [2] 

provides a detailed treatment of various continuous distributions, including the Laplace distribution. 

It covers theoretical aspects, properties, and applications. Everitt and Hand [3] explored the mixture 

models including the Laplace mixture model which is a combination of LDs. It covers estimation 

techniques and applications in statistical modelling. Rue et al. [4] discussed the use of the Laplace 

approximation for Bayesian inference in latent Gaussian models. It introduces the Integrated Nested 

Laplace Approximation (INLA) methodology, which has become popular in Bayesian statistics. Ghosh 

and Chaudhuri [5] discussed the Bayesian analysis of regression models with Laplace-distributed 

errors. It discusses the choice of priors, estimation methods and inference in the context of Laplace 

regression models. One of the reasons for the popularity of the Laplace distribution in research is its 

mailto:thakurrahul3394@gmail.com
mailto:sc_malik@rediffmail.com
mailto:mr12568@yahoo.com
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connection to the Laplace transform, which is a mathematical technique used in solving differential 

equations.  

The finance sector plays a vital role in the economy by providing a range of financial services that 

facilitate the efficient allocation of capital, risk management and economic growth. Uncertainty in 

financial data refers to the inherent unpredictability and variability observed in financial markets and 

related economic variables. Fitting uncertain financial data involves developing statistical models or 

techniques to capture the characteristics and patterns present in such data. This process is essential for 

understanding and analysing financial variables that exhibit uncertainty such as stock prices, returns, 

volatility, or option prices. Fuzzy logic, a variant of neutrosophic logic, provides information solely 

about truth and falsity measures. In contrast, neutrosophic logic, an extension of fuzzy logic, also 

accounts for the degree of uncertainty. Neutrosophic statistics employ precise numbers to represent 

data within intervals. Smarandache [6] introduced the concept of neutrosophy to accurately represent 

and model the inherent indeterminacies present in data. It represents a novel domain in philosophy, 

serving as an expansion of fuzzy and intuitionistic fuzzy logics [7-11]. Smarandache [12-15] proposed 

the fundamental principles of neutrosophic sets across multiple domains.  

Neutrosophic statistics offers greater flexibility compared to classical statistics. When both data and 

inference methods are definite, neutrosophic statistics aligns with classical statistics. However, given 

the prevalence of indeterminate data in real life situations, there is a greater demand for neutrosophic 

statistical procedures over classical ones. Numerous researchers have introduced highly valuable 

neutrosophic probability distributions for the analysis of such data sets. Alhasan and Smarandache 

[16] proposed several distributions under indeterminacy including “neutrosophic Rayleigh 

distribution, neutrosophic Weibull distribution, neutrosophic five-parameter Weibull distribution, 

neutrosophic three-parameter Weibull distribution, neutrosophic beta Weibull distribution and 

neutrosophic inverse Weibull distribution”. Aslam [17] introduced the concept of the neutrosophic 

Raleigh distribution and employed it to model wind speed data. In their work, Alhabib et al. [18] 

introduced the concept of neutrosophic Uniform, neutrosophic exponential, and neutrosophic Poisson 

distributions. Khan et al. [19] extended the classical gamma distribution in neutrosophic environment 

and its application in the complex data analysis.  

Albassam et al. [20] discussed the basic properties of the neutrosophic Weibull distribution and its 

application in the analysis of the wind speed data and LED manufacturing process. They utilized that 

the neutrosophic Weibull model is suitable, logical, and efficient when applied within an environment 

characterized by uncertainty. Sherwan et al. [21] extended the beta distribution under neutrosophic 

environment and proved the several properties for legitimate the proposed distribution. Jdid et al. [22] 

developed a mathematical model to minimize the inspection costs and demonstrated the study using 

both classical and neutrosophic values. Sleem et al. [22] described an integrated framework for 

assessing customer factors and product requirements in VR Metaverse design by merging CRITIC 

approach with SVNS. Hezam[23] proposed a strategy for machine tool selection using an innovative 

hybrid MCDM framework under neutrosophic environment.There is a vast body of literature 

encompassing various statistical distributions that can be utilized to model different kinds of data.  

Classical distributions are only applicable when all data observations are exact in nature. However, 

real-world data is often imprecise, uncertain and have lack of exactness. The applications of existing 

classical distributions are not suitable for such cases. By an extensive exploration of the literature, no 

previous research has focused on examining the properties of the Laplace distribution in the context 

of uncertainty. To fill the research gap, in this paper, we introduced and analysed several properties 

of the Laplace distribution under conditions of indeterminacy. The Neutrosophic Laplace Distribution 

(NLD) is an extension of the Laplace Distribution (LD) that incorporates the concept of neutrosophic 

logic. The maximum likelihood estimation method has been used to estimate the parameters. The 

effectiveness of obtained estimators is evaluated through a simulation analysis. An application of the 
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proposed distribution is discussed on the financial data analysis. The neutrosophic Laplace model is 

anticipated to be more effective in modelling stock return data compared to the traditional Laplace 

distribution used in classical statistics. 

2. Neutrosophic Laplace (double exponential) Distribution 

A Neutrosophic continuous random variable 𝑧𝑛 = 𝑧𝑙 + 𝑧𝑢𝑖𝑛 is said to have Neutrosophic Laplace 

Distribution if it follows the following probability density function  

𝑓(𝑧𝑛; 𝜃𝑛, 𝛽𝑛) =

{
1

2𝛽𝑙
𝑒

(−
|𝑧𝑙−𝜃𝑙|

𝛽𝑙
)

+ {
1

2𝛽𝑢
𝑒

(−
|𝑧𝑢−𝜃𝑢|

𝛽𝑢
)
} 𝑖𝑛 , −∞ < 𝑧𝑛 < ∞ ; −∞ < 𝜃𝑛 < ∞ , 𝛽𝑛 > 0

0                                                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (1) 

Here, 𝜃𝑛 =  𝜃𝑙 + 𝜃𝑢𝑖𝑛 is the location parameter, 𝛽𝑛 = 𝛽𝑙 + 𝛽𝑢𝑖𝑛 is the scale parameter where 𝑖𝑛 ∈

(𝑖𝑙 , 𝑖𝑢). The shape of the curve of NLD depends upon the value of 𝛽𝑛 . 

Suppose that 𝑧𝑙 = 𝑧𝑢 = 𝑧𝑛, the pdf can be written as 

𝑓(𝑧𝑛; 𝜃𝑛, 𝛽𝑛) = (
1

2𝛽𝑛
𝑒

(−
|𝑧𝑛−𝜃𝑛|

𝛽𝑛
)
) (1 + 𝑖𝑛)            (2) 

If 𝑖𝑙 = 0,  the NLD will reduce to the classical Laplace distribution. 

 

Figure. 1: The pdf graph representing the distribution of NLD with different level of 

indeterminant scale and shape parameters 

The cumulative distribution function (cdf) is 

𝐹(𝑧𝑛) = {

1

2
𝑒

(
𝑧𝑛−𝜃𝑛

𝛽𝑛
)
(1 + 𝑖𝑛) ,    𝑧𝑛 < 𝜃𝑛

1 −
1

2
𝑒

(−
(𝑧𝑛−𝜃𝑛)

𝛽𝑛
)
(1 + 𝑖𝑛) , 𝑧𝑛 ≥ 𝜃𝑛

             (3) 
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Where 𝜃𝑛 =  𝜃𝑙 + 𝜃𝑢𝑖𝑛 is the location parameter, 𝛽𝑛 = 𝛽𝑙 + 𝛽𝑢𝑖𝑛 is the scale parameter where 𝑖𝑛 ∈

(𝑖𝑙 , 𝑖𝑢). 

 

Fig. 2: The cdf plot representing the distribution of NLD with different level of indeterminant 

scale and shape parameters 

3. Statistical Properties 

Theorem 1: Suppose ‘z’ is a random variable that conforms to the NLD. In that case, the neutrosophic rth 

moment can be expressed as follows: 

𝐸(𝑧𝑛
𝑟) = 𝜇𝑟

′ =
1

2
∑ (𝑟

𝑘
)𝛽𝑛

𝑘𝜃𝑛
𝑟−𝑘𝑟

𝑘=0 {1 + (−1)𝑘}𝑘! (1 + 𝑖𝑛),   ∀ 𝑘 = 0,1,2. . . 𝑟          (4) 

𝑤ℎ𝑒𝑟𝑒 𝜇𝑟
′  is neutrosophic rth moment of NLD.  

Proof: We know that  (𝟓) 

E(zn
r ) =  ∫ zn

r f(zn)dzn
∞

−∞
       

E(zn
r ) =  ∫ zn

r (
1

2βn
e

(−
|zn−θn|

βn
)
) (1 + in)dzn

∞

−∞
  

Putting y =
|zn−θn|

βn
  , we get  

E(zn
r ) =

1

2
∫ (yβn + θn)r(e−|y|)(1 + in)dy 

∞

−∞
  

E(zn
r ) =

1

2
∫ (∑ (r

k
)(yβn)k(θn)r−k

r

k=0
) (e−|y|)(1 + in)dy 

∞

−∞
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We get the following expression after some algebraic simplification. 

E(zn
r ) = μr

′ =
1

2
∑ (r

k
)βn

kθn
r−kr

k=0 {1 + (−1)k}k! (1 + in)          (6) 

 The first four moments of the NLD is given by: 

μ1
′ = E(zn) = θn(1 + in)                (7) 

μ2
′ = E(zn

2) = (θn
2 + 2βn

2 )(1 + in)              (8) 

μ3
′ = E(zn

3) = (θn
3 + 6θnβn

2 )(1 + in)                       

    (9) 

μ4
′ = E(zn

4) = (θn
4 + 12θn

2βn
2 + 24βn

4 )(1 + in)  (10) 

The NLD's mean, variance, skewness, and kurtoses are expressed as: 

Neutrosphic Mean = θn(1 + in)                   (11) 

Neutrosphic Variance = (θn
2 + 2βn

2)(1 + in) − (θn(1 + in))
2
  (12) 

Skewness =
μ3

2

μ2
3 =

μ3
′ −3μ1

′ μ2
′ +2(μ1

′ )3

μ2
′ −μ1

′ 2 = 0    (13) 

Kurtosis =
μ4

μ2
2 = 6        (14) 

Theorem 2: The first, second and third quartile of the NLD is given by 𝑄𝑛1
= 𝜃𝑛 + 𝛽𝑛 . log𝑒 0.5 (1 +

𝑖𝑛)−1    ,    

𝑄𝑛2
= 𝜃𝑛(1 + 𝑖𝑛) ,𝑄𝑛3

= 𝜃𝑛 − 𝛽𝑛 . log𝑒 0.25 (1 + 𝑖𝑛)−1 respectively. 

Proof: We know that,F(Qni
) = P(zn ≤ Qni

) =
i

4
   where i = 1,2,3 

First quartile (Qn1
< θn) is give by  

F(Qn1
) =

1

2
e

(
Qn1−θn

βn
)
(1 + in)  =

1

4
  

e
(

Qn1−θn
βn

)
(1 + in)  =

1

2
  

(
Qn1−θn

βn
) (1 + in)  = loge 0.5  

Qn1
= θn + βn. loge 0.5 (1 + in)−1    (15) 

Second quartile (Qn2
≥ θn) is give by  

F(Qn2
) = 1 −

1

2
e

(−
(Qn2−θn)

βn
)
(1 + in)  =

2

4
  

Qn2
= θn(1 + in)  (16) 

Second quartile (Qn3
≥ θn) is give by  

F(Qn3
) = 1 −

1

2
e

(−
(Qn3−θn)

βn
)
(1 + in)  =

3

4
  

e
(−

(Qn2−θn)

βn
)
(1 + in)  =

1

4
  

(
Qn3−θn

βn
) (1 + in)  = loge 0.25  

Qn3
= θn − βn. loge 0.25 (1 + in)−1      (17) 
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where 𝜃𝑛is the location parameter, 𝛽𝑛 is the scale parameter and 𝑖𝑛 ∈ (𝑖𝑙 , 𝑖𝑢  ) 𝑖𝑠 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑐𝑦. 

Theorem 3: The moment generating function of NLD is 

𝑀𝑧𝑛
(𝑡) =

𝑒𝜃𝑛𝑡

(1−𝛽𝑛
2𝑡2)

     𝑓𝑜𝑟 |𝑡| <
1

𝛽𝑛
  

Where 𝑀𝑧𝑛
(𝑡) = moment generating function 

Proof : We know that  

Mzn
(t) =  ∫ etzn f(zn)dzn

∞

−∞
                     

 (18) 

Mzn
(t) =  ∫ et(zn−θn+θn) (

1

2βn
e

(−
|zn−θn|

βn
)
) (1 + in)dzn

∞

−∞
  

Mzn
(t) =  

etθn

2βn
∫ et(zn−θn) (e

(−
|zn−θn|

βn
)
) (1 + in)dzn

∞

−∞
  

Let (zn − θn) = u  such that zn = du 

Mzn
(t) =  

etθn

2βn
∫ etue

(−
|u|

βn
)
(1 + in)du  

∞

−∞
  

 Mzn
(t) =  

etθn

2βn
∫ e

(t+
1

βn
)u

(1 + in)du + ∫ e
−(t−

1

βn
)u

(1 + in)du  
∞

0

0

−∞
 

Mzn
(t) =  

etθn

2βn
{[

βn

1+t
− 0] + [0 −

βn

1−t
]} (1 + in)  

Mzn
(t) =  

etθn(1+in)

1−βn
2 t2    for |t| <

1

βn
 , 0 ≤ in ≤ 1                      

 (19) 

4. Parameter estimation and simulation 

The maximum likelihood approach can be utilized to measure the parameters of the NLD. The 

likelihood function can be expressed as follows: 

∏ 𝑓(𝑧𝑘𝑛)𝑛
𝑘=1 = ∏ [

1

2𝛽𝑛
𝑒

(−
|𝑧𝑘𝑛−𝜃𝑛|

𝛽𝑛
)

+ {
1

2𝛽𝑛
𝑒

(−
|𝑧𝑘𝑛−𝜃𝑛|

𝛽𝑛
)
} 𝑖𝑛]𝑁

𝑖=1          (20) 

The log likelihood function is given by  

𝐿(𝜃𝑛, 𝛽𝑛 , 𝑖𝑛) = ∏ log [
1

2𝛽𝑛
𝑒

(−
|𝑧𝑘𝑛−𝜃𝑛|

𝛽𝑛
)
] (1 + 𝑖𝑛)𝑁

𝑖=1   

𝐿(𝜃𝑛, 𝛽𝑛 , 𝑖𝑛) = 𝑙𝑜𝑔 ((
1

2𝛽𝑛
)

𝑁

exp (−
∑ |𝑧𝑘𝑛−𝜃𝑛|𝑁

𝑘=1

𝛽𝑛
)) (1 + 𝑖𝑛)𝑁  

𝐿(𝜃𝑛, 𝛽𝑛 , 𝑖𝑛) = −𝑁𝑙𝑜𝑔(2) − 𝑁𝑙𝑜𝑔(𝛽𝑛) −
∑ |𝑧𝑘𝑛−𝜃𝑛|𝑁

𝑘=1

𝛽𝑛
+ 𝑁(1 + 𝑖𝑛)  

By differentiating the 𝐿(𝜃𝑛, 𝛽𝑛 , 𝑖𝑛) w.r.t. the parameters  

We have  

𝜕𝐿

𝜕𝛽𝑛
= −

𝑁

𝛽𝑛
+

∑ |𝑧𝑘𝑛−𝜃𝑛|𝑁
𝑘=1

𝛽𝑛
2                        (21) 

𝜕𝐿

𝜕𝜃𝑛
=

∑ (𝑧𝑘𝑛−𝜃𝑛)𝑁
𝑘=1

𝛽𝑛|𝑧𝑘𝑛−𝜃𝑛|
     (22) 
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The derived MLE of 𝜃𝑛  and 𝛽𝑛 are 𝑧𝑘�̃�  i.e., median of the k neutrosophic observations and 

1

𝑁
∑ |𝑧𝑘𝑛 − 𝜃𝑛|𝑁

𝑘=1  respectively. Here, 𝜃𝑛is the location parameter, 𝛽𝑛 is the scale parameter and 𝑖𝑛 ∈

(𝑖𝑙 , 𝑖𝑢  )  is indeterminacy. 

Now, we presented a simulation analysis to assess the accuracy of the estimates. To conduct the 

simulation, we generate N=10000 random samples from the NLD with varying sizes, namely n = 30, 

50, 100, 200, 300 and 1000.The Table 1 shows the average estimates (AEs) and mean square errors 

(MSEs) of  𝜃�̂� and 𝛽�̂� . R studio software (version 2023.03.1+446) is used to generate the numerical 

findings. 

Table 1. Results obtained from simulating the NLD estimates 

Sample Actual Value Average estimates Mean square Error  

n 𝜽𝒏 𝜷𝒏 𝒊𝒏 𝜽�̂� 𝜷�̂� 𝜽�̂� 𝜷�̂� 

30    0.6392 1.0102 0.0612 0.1844 

50 0.4 0.8 0 0.3733 0.9445 0.0350 0.1336 

100    0.2972 0.8075 0.0259 0.0807 

200    0.3961 0.8056 0.0105 0.0577 

30    0.8319 1.6266 0.1958 0.2970 

50 0.6 1.0 0.2 0.7526 1.0042 0.0732 0.1420 

100    0.7295 1.0023 0.0959 0.1023 

300    0.7100 1.0013 0.0380 0.065 

30    1.4783 1.3674 0.1834 0.1789 

50 1.0 1.0 0.3 1.3877 0.1797 0.1001 0.1668 

100    1.2427 1.0713 0.0809 0.1471 

300    1.1765 1.0652 0.0568 0.0753 

30    6.5462 8.8494 0.6397 1.6157 

50 3.0 5.0 0.5 6.1257 7.9343 0.5596 1.1221 

100    6.1292 7.2815 0.4966 0.7282 

300    4.1914 7.0772 0.2884 0.4086 

1000    3.1789 7.0376 0.1965 0.2873 

The simulation finding in table 1 shows that as sample size increases, the difference between the actual 

and estimated scale and shape parameters decreases i.e. (average bias reduces). It indicates that the 

compatibility between practice and theory improves as the sample size increases and the mean square 

errors of the estimators decreases. The resulting estimators are clearly asymptotically consistent and 

the MLE of the parameters performs worthily and provides asymptotically exact and correct results. 

5. Application and Comparative Analysis  

The Laplace Distribution is commonly used in finance to model asset returns. However, the financial 

data often exhibit indeterminacy and fat tails which means extreme events occur more frequently. The 

Neutrosophic Laplace Distribution’s characteristics of handling indeterminacy and heavy tails in data 

makes it a suitable choice for modelling. Stock returns are influenced by various factors such as 

economic conditions, market sentiment, company-specific news, geopolitical events and investor 
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behaviour which introduce uncertainty into the stock market. We have considered the data of daily 

returns (in %) of NIFTY50 from Indian Stock market. The dataset contains 827 observations i.e. (from 

01-01-2020 to 28-03-2023). However, due to uncertainties and incomplete information, we applied the 

NLD to capture the indeterminacy and ambiguity associated with the returns. We also compared the 

fitness of distribution of the returns using the LD and NLD. The statistical summary of the data is 

given in table 2.  

Table 2. The descriptive statistics of the daily returns of NIFTY50 

Min 1st Q Median Mean 3rd Q MAD Var Skewness Kurtosis Max 

-6.818 -0.571 -0.0068 -0.0795 0.4508 0.718 1.1703 0.725 13.27992 9.306 

The Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) are model selection 

criteria used to compare the goodness of fit and complexity of different statistical models, including 

the Laplace distribution. Both AIC and BIC are calculated based on the likelihood function and the 

number of parameters in the model. The formulas for AIC and BIC are as follows: 

𝐴𝐼𝐶 = −2 ∗ 𝑙𝑜𝑔𝐿 + 2𝑘 

𝐵𝐼𝐶 = −2 ∗ 𝑙𝑜𝑔𝐿 + 𝑘𝑙𝑜𝑔(𝑁) 

Where: 

𝑙𝑜𝑔𝐿: The logarithm of the likelihood functions of the model. 

𝑘: The number of parameters in the model. 

𝑛: The sample size. 

Lower values of AIC and BIC indicate a better balance between model fit and complexity. The model 

with the lower AIC or BIC is generally preferred as it suggests a better trade-off between goodness of 

fit and model complexity. It is important to note that the values of AIC and BIC are not specific to the 

LD but can be applied to compare the models in general. The loglikelihood estimated value along with 

AIC and BIC corresponding to indeterminacy value (𝑖𝑛) is given in table 3. 

Table 3: The MLE, AIC and BIC measure of the daily returns of NIFTY50 

 𝒊𝒏 𝒍𝒐𝒈𝑳 AIC BIC 

LD 0 -1122.67 2249.34 2258.78 

 

 

 

 

 

NLD 

0.1 -1043.85 2091.70 2101.13 

0.2 -971.89 1947.78 1957.22 

0.3 -905.69 1815.39 1824.82 

0.4 -844.41 1692.81 1702.25 

0.5 -787.35 1578.70 1588.14 

0.6 -733.98 1471.95 1481.39 

0.7 -683.84 1371.68 1381.12 

0.8 -636.57 1277.14 1286.58 

0.9 -591.86 1187.71 1197.15 

1 -549.44 1102.87 1112.31 



Neutrosophic Sets and Systems, Vol. 57, 2023     232  

 

 

Rahul Thakur, S.C.Malik and Masum Raj , Neutrosophic Laplace Distribution with Application in Financial Data Analysis 
 

The goodness-of-fit metrics and MLEs for the classical LD and the NLD with varying indeterminacy 

parameter values are shown in table 3. In terms of goodness of fit, the neutrosophic Laplace 

distribution exceeds the standard Laplace distribution. The indeterminacy parameter is found to have 

a considerable impact on fitting quality. The AIC and BIC along with log likelihood values decreases 

as change in the value of indeterminacy parameter. The NLD fits better in the daily return of the 

financial data of NIFTY50 as compare to the classical LD. 

6. Conclusion 

Here, a neutrosophic Laplace distribution has been introduced as a generalization of the classical 

Laplace distribution by considering the interval form of data commonly encountered in real-life 

scenarios. We investigated various properties of the proposed distribution such as rth moment, mean, 

variance, skewness, kurtosis, first four moments, moment generating function and quartiles. The 

maximum likelihood estimation approach is employed to estimate the parameters and the 

performance of these estimators is evaluated via a simulation study. An application of the proposed 

distribution is discussed on the financial data analysis. From the comparative analysis, the 

indeterminacy parameter is found to have a considerable impact on fitting quality. The AIC and BIC 

along with log likelihood values decreases as change in the value of indeterminacy parameter. 

Therefore, it is concluded that the Neutrosophic Laplace Distribution fits better in the daily return of 

the financial data of NIFTY50 as compared to the classical Laplace Distribution. In future, this work 

could be extended for some other continuous distributions and mixture distributions.  
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Abstract: In this paper we recall the six new types of topologies, and their corresponding 

topological spaces, that we introduced in the last years (2019-20223), such as: NeutroTopology, 

AntiTopology, Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, 

SuperHyperTopology, and Neutrosophic SuperHyperTopology. 

The nth-PowerSets ( )nP H and * ( )nP H , that the SuperHyperTopology and respectively 

Neutrosophic SuperHyperTopology are based on, better describe our real world, since a system H 

(that may be a set, company, institution, country, region, etc.) is organized in sub-systems, which in 

their turn are organized each in sub-sub-systems, and so on. 

Keywords: Classical Topology; Topological Space; NeutroTopology; AntiTopology; Refined 

Neutrosophic Topology; Refined Neutrosophic Crisp Topology; SuperHyperTopology; 

Neutrosophic SuperHyperTopology. 

 

 

1. Introduction 

We recall the classical definition of Topology, then the procedures of NeutroSophication and 

respectively AntiSophication of it, that result in adding in two new types of topologies: 

NeutroTopology and respectively AntiTopology. 

Then we define topology on Refined Neutrosophic Set (2013), Refined Neutrosophic Crisp 

Set [3]. Afterwards, we extend the topology on the framework of SuperHyperAlgebra [6]. 

The corresponding neutrosophic topological spaces are presented. 

This research is an improvement of paper [7]. 

2. Classical Topology 

Let  be a non-empty set, and P( ) the power set of . 
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Let be a family of subsets of . 

Then  is called a Classical Topology on  if it satisfies the following axioms: 

(CT-1)  and  belong to . 

(CT-2) The intersection of any finite number of elements in  is in . 

(CT-3) The union of any finite or infinite number of elements in  is in . 

All three axioms are totally (100%) true (or T = 1, I = 0, F = 0). We simply call them (classical) Axioms. 

Then ( , ) is called a Classical Topological Space on  

3. NeutroSophication of the Topological Axioms  

NeutroSophication of the topological axioms means that the axioms become partially true, partially 

indeterminate, and partially false. They are called NeutroAxioms. 

(NCT-1) Either , or . 

(NCT-2) There exist a finite number of elements in  whose intersection belong to  (degree of 

truth T); and a finite number of elements in  whose intersection is indeterminate (degree of 

indeterminacy I); and a finite number of elements in  whose intersection does not belong to  

(degree of falsehood F); where (T, I, F)   since (1, 0, 0) represents the above 

Classical Topology, while (0, 0, 1) the below AntiTopology. 

(NCT-3) There exist a finite or infinite number of elements in  whose union belongs to  (degree 

of truth T); and a finite or infinite number of elements in  whose union is indeterminate (degree of 

indeterminacy I); and a finite or infinite number of elements in  whose union does not belong to  

(degree of falsehood F); where of course (T, I, F)  . 

4. AntiSophication of the Topological Axioms  

AntiSophication of the topological axioms means to negate (anti) the axioms, the axioms become 

totally (100%) false (or T = 0, I = 0, F = 1). They are called AntiAxioms. 

(ACT-1)  and . 
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(ACT-2) The intersection of any finite number ( ) of elements in  is not in . 

(ACT-3) The union of any finite or infinite number ( ) of elements in  is not in . 

 5. Neutrosophic Triplets related to Topology 

As such, we have a neutrosophic triplet of the form: 

<Axiom(1, 0, 0), NeutroAxiom(T, I, F), AntiAxiom(0, 0, 1)>, 

where (T, I, F)  (1, 0, 0) and (T, I, F)  (0, 0, 1). 

Correspondingly, one has:  

<Topology, NeutroTopology, AntiTopology>. 

Therefore, in general:  

(Classical) Topology is a topology that has all axioms totally true. We simply call them Axioms. 

NeutroTopology is a topology that has at least one NeutroAxiom and the others are all classical Axioms 

[therefore, no AntiAxiom]. 

AntiTopology is a topology that has one or more AntiAxioms, no matter what the others are (classical 

Axioms, or NeutroAxioms). 

 

6. Theorem on the number of Structures/NeutroStructures/AntiStructures 

If a Structure has m axioms, with m ≥ 1, then after NeutroSophication and AntiSophication 

one obtains 3m types of structures, categorized as follows: 

1 Classical Structure  +  (2m – 1) NeutroStructures  +  (3m – 2m) AntiStructures. 

 

7. Consequence on the number of Topologies/NeutroTopologies/AntiTopologies 

As a particular case of the previous theorem, from a Topology which has m = 3 axioms, one 

makes, after NeutrosSophication and AntiSophication, 33 = 27 types of structures, as follows:  1 

classical Topology,  23 – 1 = 7 NeutroTopologies,  and 33 – 22 = 19 AntiTopologies. 

1 Classical Topology + 7 NeutroTopologies + 19 AntiTopologies  

are presented below: 

There is 1 (one) type of Classical Topology, whose axioms are listed below: 

1 Classical Topology 

 
 

8. Definition of NeutroTopology [4, 5]  

It is a topology that has at least one topological axiom which is partially true, partially 

indeterminate, and partially false,  

or (T, I, F), where T = True, I = Indeterminacy, F = False,  

and no topological axiom is totally false,  
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in other words:  ( , , ) {(1,0,0), (0,0,1)}T I F  , where (1, 0, 0) represents the classical Topology, 

while (0, 0, 1) represents the below AntiTopology. 

Therefore, the NeutroTopology is a topology in between the classical Topology and the 

AntiTopology. 

There are 7 types of different NeutroTopologies, whose axioms, for each type, are listed 

below: 

 

7 NeutroTopologies 

, , 

, , 

. 

 

9. Definition of AntiTopology [4, 5] 

It is a topology that has at least one topological axiom that is 100% false (T, I, F) = (0, 0, 1). 

The NeutroTopology and AntiTopology are particular cases of NeutroAlgebra and AntiAlgebra [4] 

and, in general, they all are particular cases of the NeutroStructure and AntiStructure respectively, 

since we consider "Structure" in any field of knowledge [5]. 

There are 19 types of different AntiTopologies, whose axioms, for each type, are listed 

below: 

 

19 AntiTopologies 

, ,  

 

, , , 

, , , 

 

, ,  
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, ,  

 

, , , 

 

 

10. Refined Neutrosophic Set 

Let  be a universe of discourse, and a non-empty subset R of it,  

 

with all , , [0,1],j k lT I F   1 ,1 ,1 ,j p k r l s      and no restriction on their sums 

0 3m m mT I F    , with 1 max{ , , }m p r s  , where p, r, s  0 are fixed integers, and at least 

one of them is  2, in order to ensure the refinement (sub-parts) or multiplicity (multi-parts) – 

depending on the application, of at least one neutrosophic component amongst T (truth), I 

(indeterminacy), F (falsehood); . 

By notation we consider that index zero means the empty-set, i.e. 0 0 0T I F     (or zero), and 

the same for the missing sub-parts (or multi-parts). 

For example, the below (2,3,1)-Refined Neutrosophic Set is identical to a (3,3,3)-Refined 

Neutrosophic Set: 1 2 1 2 3 1 1 2 1 2 3 1( , ; , , ; ) ( , ,0; , , ; ,0,0)T T I I I F T T I I I F , 

where the missing components T3, and F2, F3 were replaced each of them by 0 (zero) 

R is called a (p, r, s)-refined neutrosophic set { or (p, r, s)-RNT }. 

The neutrosophic set has been extended to the Refined Neutrosophic Set (Logic, and 

Probability) by Smarandache [1] in 2013, where there are multiple parts of the neutrosophic 

components, as such T was split into subcomponents T1, T2, ..., Tp, and I into I1, I2, ..., Ir, and F into F1, 

F2, ...,Fs, with p + r + s = n ≥ 2 and integers p, r, s ≥ 0 and at least one of them is ≥ 2 in order to ensure 

the refinement (or multiplicity) of at least one neutrosophic component amongst T, I, and F.   
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Even more: the subcomponents Tj, Ik, and/or Fl can be countable or uncountable infinite subsets of [0, 

1]. 

This definition also includes the Refined Fuzzy Set, when r = s = 0 and p ≥ 2;  

and the definition of the Refined Intuitionistic Fuzzy Set, when r = 0, and either p ≥ 2 and s ≥ 1, or p ≥ 1 

and s ≥ 2. 

All other fuzzy extension sets (Pythagorean Fuzzy Set, Spherical Fuzzy Set, Fermatean Fuzzy Set, 

q-Rung Orthopair Fuzzy Set, etc.) can be refined/multiplicated in a similar way. 

 

11. Definition of Refined Neutrosophic Topology 

Let  be a universe of discourse, and  be the family of all (p, r, s)-refined neutrosophic 

subsets of . 

Let   be a family of (p, r, s)-refined neutrosophic subsets of .  

Then  is called a Refined Neutrosophic Topology (RNT) if it satisfies the axioms: 

(RNT-1)  and  belong to ; 

(RNT-2) The intersection of any finite number of elements in  is in ; 

(RNT-3) The union of any finite or infinite number of elements in  is in . 

Then (  is called a Refined Neutrosophic Topological Space on  

The Refined Neutrosophic Topology is a topology defined on a Refined Neutrosophic Set. 

{Similarly, the Refined Fuzzy Topology is defined on a Refined Fuzzy Set, while the Refined 

Intuitionistic Fuzzy Topology is defined on a Refined Intuitionistic Fuzzy Set, etc. 

And, as a generalization, on any type of fuzzy extension set [such as: Pythagorean Fuzzy Set, 

Spherical Fuzzy Set, Fermatean Fuzzy Set, q-Rung Orthopair Fuzzy Set, etc.] one can define a 

corresponding fuzzy extension topology.}  

12. Neutrosophic Crisp Set 

The Neutrosophic Crisp Set was defined by Salama and Smarandache in 2014 and 2015. 

Let X be a non-empty fixed space. And let D be a Neutrosophic Crisp Set [2], where  

D = <A, B, C>, with A, B, C as subsets of X. 

https://www.sciencedirect.com/science/article/pii/S2193943822000012
https://www.sciencedirect.com/science/article/pii/S2193943822000012
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Depending on the intersections and unions between these three sets A, B, C one gets several: 

Types of Neutrosophic Crisp Sets [2, 3] 

The object having the form D = <A, B, C> is called: 

(a) A neutrosophic crisp set of Type 1 (NCS-Type1) if it satisfies:  

A∩ B = B∩ C = C∩ A = (empty set). 

(b) A neutrosophic crisp set of Type 2 (NCS-Type2) if it satisfies:  

A∩ B = B∩ C = C∩ A =  and A∪ B ∪ C = X. 

(c) A neutrosophic crisp set of Type 3 (NCS-Type3) if it satisfies:  

A∩ B ∩ C =  and A∪ B ∪ C = X. 

Of course, more types of Neutrosophic Crisp Sets may be defined by modifying the intersections and 

unions of the subsets A, B, and C. 

 

 13. Refined Neutrosophic Crisp Set 

 

    The Refined Neutrosophic Crisp Set [3] was introduced by Smarandache in 2019, by 

refining/multiplication of D (and denoting it by RD = Refined D) by refining/multiplication of its sets 

A, B, C into sub-subsets/multi-sets as follows: 

RD = (A1, ..., Ap; B1, ..., Br; C1, ..., Cs), with p, r, s ≥ 1 be positive integers and at least one of them 

be ≥ 2 in order to ensure the refinement/multiplication of at least one component amongs A, B, C, 

where 

1 1 1
, ,

p r s

i j k
i j k

A A B B C C
  

       

and many types of Refined Neutrosophic Crisp Sets may be defined by modifying the intersections 

or unions of the subsets/multisets , , ,1 ,1 ,1i j kA B C i p j r k s      , 

depending on each application. 

 

          14. Definition of Refined Neutrosophic Crisp Topology 

 

Let  be a universe of discourse, and  be the family of all (p, r, s)-refined neutrosophic crisp 

subsets of . 

Let   be a family of (p, r, s)-refined neutrosophic crisp subsets of .  

Then  is called a Refined Neutrosophic Crisp Topology (RNCT) if it satisfies the axioms: 

(RNCT-1)  and  belong to ; 
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(RNCT-2) The intersection of any finite number of elements in  is in ; 

(RNCT-3) The union of any finite or infinite number of elements in  is in . 

Then (  is called a Refined Neutrosophic Crisp Topological Space on  

 

Therefore, the Refined Neutrosophic Crisp Topology is a topology defined on the Refined Neutrosophic 

Crisp Set. 

 

15. SuperHyperOperation 

We recall our 2016 concepts of SuperHyperOperation, SuperHyperAxiom, 

SuperHyperAlgebra, and their corresponding Neutrosophic SuperHyperOperation Neutrosophic 

SuperHyperAxiom and Neutrosophic SuperHyperAlgebra [6]. 

Let  be the nth-powerset of the set H such that none of P(H), P2(H), …, Pn(H) contain the 

empty set . 

Also, let  be the nth-powerset of the set H such that at least one of the P(H), P2(H), …, 

Pn(H) contain the empty set . For any subset A, we identify {A} with A. 

The SuperHyperOperations are operations whose codomain is either  and in this case 

one has classical-type SuperHyperOperations, or  and in this case one has Neutrosophic 

SuperHyperOperations, for integer 2n  . 

 

16. The nth-PowerSet better describe our real world 

 

The nth-PowerSets ( )nP H and * ( )nP H , that the SuperHyperTopology and respectively 

Neutrosophic SuperHyperTopology are based on, better describe our real world, since a system H 

(that may be a set, company, institution, country, region, etc.) is organized in sub-systems, which in 

their turn are organized each in sub-sub-systems, and so on. 

17. SuperHyperAxiom 

A classical-type SuperHyperAxiom or more accurately a (m, n)-SuperHyperAxiom is an axiom 

based on classical-type SuperHyperOperations. 

Similarly, a Neutrosophic SuperHyperAxiom {or Neutrosphic (m, n)-SuperHyperAxiom} is an 

axiom based on Neutrosophic SuperHyperOperations. 

There are: 

 Strong SuperHyperAxioms, when the left-hand side is equal to the right-hand side as in 

non-hyper axioms, 

 and Week SuperHyperAxioms, when the intersection between the left-hand side and 

the right-hand side is non-empty. 

 

18. SuperHyperAlgebra and SuperHyperStructure 

A SuperHyperAlgebra or more accurately (m-n)-SuperHyperAlgebra is an algebra dealing with 

SuperHyperOperations and SuperHyperAxioms. 
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Again, a Neutrosophic SuperHyperAlgebra {or Neutrosphic (m, n)-SuperHyperAlgebra} is an 

algebra dealing with Neutrosophic SuperHyperOperations and Neutrosophic 

SuperHyperOperations. 

In general, we have SuperHyperStructures {or (m-n)-SuperHyperStructures}, and 

corresponding Neutrosophic SuperHyperStructures.  

For example, there are SuperHyperGrupoid, SuperHyperSemigroup, SuperHyperGroup, 

SuperHyperRing, SuperHyperVectorSpace, etc. 

19. Distinction between SuperHyperAlgebra vs. Neutrosophic SuperHyperAlgebra 

i. If none of the power sets , , do not include the empty set  , then one 

has a classical-type SuperHyperAlgebra; 

ii. If at least one power set, , , includes the empty set  , then one has a 

Neutrosophic SuperHyperAlgebra. 

 

20. Definition of SuperHyperTopology (SHT) [6]  

It is a topology designed on the nth-PowerSet of a given non-empty set , that excludes the 

empty-set, denoted as * ( )nP H , built as follows: 

*( )P H is the first powerset of the set H, and the index *  means without the empty-set (Ø); 

2

* * *( ) ( ( ))P H P P H is the second powerset of H (or the powerset of the powerset of H), without the 

empty-sets; and so on,  

the n-th powerset of H, 
1

* * * * * *( ) ( ( )) ( (... ( )...))n n

n

P H P P H P P P H  , where *P  is repeated n time ( n ≥ 2 ), and without the 

empty-sets. 

 

Let consider  a family of subsets of * ( )nP H .  

Then  is called a Neutrosophic SuperHyperTopology on * ( )nP H , if it satisfies the following 

axioms: 

(SHT-1)  and * ( )nP H  belong to SHT . 

(SHT-2) The intersection of any finite number of elements in SHT  is in SHT . 

(SHT-3) The union of any finite or infinite number of elements in SHT is in SHT . 

Then *( ( ), )n

SHTP H   is called a SuperHyperTopological Space on * ( )nP H . 
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21. Definition of Neutrosophic SuperHyperTopology (NSHT) [6]  

It is, similarly, a topology designed on the n-th PowerSet of a given non-empty set H, but includes 

the empty-sets [that represent indeterminacies] too. 

As such, in the above formulas, *( )P H  that excludes the empty-set, is replaced by ( )P H that 

includes the empty-set. 

( )P H  is the first powerset of the set H, including the empty-set (Ø); 

2 ( ) ( ( ))P H P P H is the second powerset of H (or the powerset of the powerset of H), that 

includes the empty-sets; 

and so on, the n-th powerset of H, 
1( ) ( ( )) ( (... ( )...))n n

n

P H P P H P P P H   

where P is repeated n times ( n ≥ 2 ), and includes the empty-sets (Ø). 

 

Let consider  a family of subsets of ( )nP H .  

Then  is called a Neutrosophic SuperHyperTopology on ( )nP H , if it satisfies the following 

axioms: 

(NSHT-1)  and ( )nP H  belong to NSHT . 

(NSHT-2) The intersection of any finite number of elements in NSHT  is in NSHT . 

(NSHT-3) The union of any finite or infinite number of elements in NSHT is in NSHT . 

Then ( ( ), )n

NSHTP H  is called a Neutrosophic SuperHyperTopological Space on ( )nP H . 

22. Conclusion 

These six new types of topologies, and their corresponding topological space, were 

introduced by Smarandache in 2019-2023, but they have not yet been much studied and applied, 

except the NeutroTopologies and AntiTopologies which got some attention from researchers. 
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Abstract. This paper presents an investigation into the mathematical concepts of neutrosophic folding and

neuretraction on neutrosophic manifolds, specifically focusing on their application in hyperspace. Through

the application of specific transformations on a neutrosophic manifold situated in hyperspace, we can obtain

neutrosophic manifolds in lower dimensions. Based on our research, we can accurately establish the connection

between neutrosophic folding and neuretraction on a neutrosophic manifold. Furthermore, we can determine

the relationship between neuretraction and neutrosophic folding.

Keywords: neutrosophic folding; neuretraction; neutrosophic hyperspace; neutrosophic manifold.

—————————————————————————————————————————-

1. Introduction

Neutrosophy is a scientific field that combines neutrality and philosophy. Samaransache

founded various fields in 1980, such as set theory, probability, and logic, with numerous ap-

plications that highlight the deep interaction between mathematics and other scientific dis-

ciplines. [19]. The concept of fuzzy sets was introduced by Zadeh as a novel method for

elucidating intricate concepts by including the concept of membership. Scholars in the fields

of mathematics and computer science developed this theory, which possesses a broad spectrum

of expedient applications [22]. Neutrosophy is basically rooted in the fundamental concepts of

fuzzy set theory (NS) and intuitionistic fuzzy set theory (IFS) [8, 10, 13, 22]. The concept of

neutrosophic sets was introduced by Smarandache with the aim of representing uncertain or

vague information. This is achieved through the utilization of three distinct functions, namely
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truth, indeterminacy, and falsity. Unlike other theories, the function of indeterminacy is inde-

pendent of the functions of truth and falsity [12,18,19]. Smarandache’s (NS) theory expanded

the scope of (IFS), offering novel perspectives on how to effectively manage uncertainty when

making decisions based on personal experience, as stated in reference [20]. The values of the

truth, indeterminacy, and falsity functions are within ]−0, 1+[, making it difficult to apply to

practical problems [17].

Due to this, Wang created the single-valued neutrosophic sets (SV NS), such that the

truth, indeterminacy, and falsity maps are real elements of the [0, 1] space [12, 21]. Further

investigation on a (SV NG) and a neutrosophic topology was debated in [1, 4, 6, 7, 9, 11, 14,

16]. Additional insights on the applications of homotopy theory were provided in [2, 3]. The

paper aims to contribute to the field of mathematics by exploring and providing a deeper

understanding of the neutrosophic transformation in the context of neutrosophic manifold

theory.

2. Preliminaries

Definition 2.1. [19] Assume that W is a finite set of objects, and that (t) stands for a

generic component in W. A (NS) E in W is comprised of three membership functions, a

truth-membership function υE(t), an indeterminacy-membership function ρE(t) and a falsity-

membership function σE(t). Also, υE(t), ρE (t) and σE (t) are the elements of ]−0, 1+[. E can

be represented as

E= {t, (υE(t), ρE(t), σE(t)) : t ∈ W, υE(t), ρE(t), σE(t) ∈ ]−0, 1+[}. Indeed, −0 ≤ υE(t) +

ρE(t) + σE(t) ≤ 3+.

Definition 2.2. [21] Assume that W is a finite set of objects, and that (t) stands for a

generic component in W . A (SV NS) E in W is comprised of three membership functions, a

truth-membership function υE (t), an indeterminacy-membership function ρE (t) and a falsity-

membership function σE (t). Also each, υE (t) , ρE (t) and σE (t) are elements in ]0, 1[. E can

be represented as E= {t, (υE(t), ρE(t), σE(t)) : t ∈ W, υE(t), ρE(t), σE(t) ∈ ]0, 1[}. In this

approach, 0 ≤ υE(t) + ρE(t) + σE(t) ≤ 3. In the interest of clarity and concision, we refer to a

neutrosophic set ⟨υE, ρE, σE⟩ and ⟨υE(t), ρE(t), σE(t)⟩ as ω and ω (t) respectively.

Definition 2.3. [15] A topological space that satisfies the T2 separation axiom and is locally

homeomorphic to an open n-dimensional disk Un is referred to as an n-dimensional manifold.

Definition 2.4. [5] LetX be a topological space and Cbe a subspace ofX, where i : C → X is

the inclusion. if there exists a continuous map r : X → C satisfying the condition r ◦ i = 1|C .
Then, C is referred to a retract of X. The existence of a map r is denoted as a retraction of

X into C.
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Theorem 2.5. [5] The n-dimensional closed disk Ln = {z ∈ Rn : |z| ≤ 1} is a retract of Rn.

Definition 2.6. [15] Consider two topological spaces X1 and X2, and let φ0 and φ1denote

continuous mappings from X1 to X1. The homotopy between φ0 and φ1is established when

a continuous map φ : X1 × I → X2 exists, and satisfying the conditions φ(s, 0) = φ0(s) and

φ(s, 1) = φ1(s) for all s ∈ X1.

3. Neutrosophic manifolds and their transformations

Our study introduces a collection of important concepts that support our paper and enable

us to arrive at significant conclusions.

Definition 3.1. A neutrosophic n-dimensional manifold is characterized as a pair ⟨Mn, ω⟩ in
which, Mn is n -dimensional manifold.

Example 3.2. A neutrosophic Euclidean n-space ⟨Rn, ω⟩ can be regarded as a neutrosophic

n-dimensional manifold. Additionally, a neutrosophic unit n-dimensional sphere ⟨Sn, ω⟩ can
be considered as a neutrosophic n-dimensional manifold.

Definition 3.3. The neutrosophic arc ζ : [0, 1] → R3 is called a simple neutrosophic arc if,

for each zj, zk∈[0, 1], ξ((zj, ωj) ̸=ξ((zk, ωk) whenever (zj , ωj)̸=(zk, ωk).

Now, we will delve into the notion of neutrosophy homotopic and describe two types of it.

Definition 3.4. A neutrosophic homotopy is a collection of neutrosophic maps ht : ⟨M, ω⟩ →
⟨N, ω⟩ , t ∈ [0, 1], in which the associated neutrosophic map Φ : ⟨M, ω⟩ × [0, 1] →
⟨N, ω⟩ given by Φ((x, ω), t) = ht(x, ω), and the two neutrosophic maps h0, h1 : ⟨M, ω⟩ →
⟨N, ω⟩ are called neutrosophy homotopic if there is a neutrosophic homotopy ht that connects

them and is represented by h0 ≈ h1.

Theorem 3.5. Let ξ1 and ξ2 be two neutrosophic arcs. Then, there are two types of neutros-

ophy homotopic arcs.

Proof. The initial category encompasses a pair of neutrosophic arcs, ξ1 and ξ2 with specific

values for ω1 and ω2 namely, ω1=b1 and ω2=b2 for all points of the arcs as shown in Fig.1a.

The second category encompasses a pair of neutrosophic arcs, ξ1 and ξ2 with specific values for

ω1 and ω2, where ξ1 is a neutrosophic arc that has values for ωj in the form of ⟨υj , ρj , σj ⟩ and

ξ2 is a neutrosophic arc that has values for ωk in the form of ⟨υk, ρk, σk ⟩ for which max

ωj−→0 or max ωk−→0 where, ωj , ωk ∈ [0, 1], as shown in Fig.1b.
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(a) Neutrosophy homotopic of type (I) (b) Neutrosophy homotopic of type (II)

Figure 1. neutrosophy homotopic

Definition 3.6. Let ⟨M, ω⟩ be a neutrosophic manifold with a neutrosophic subman-

ifold ⟨C , ω⟩, and let us consider the existence of a continuous neutrosophic map � :

⟨M, ω⟩−→⟨C , ω⟩ for which � (c, ω (c)) = (c ω (c)) , ∀c ∈ C . Then, � is called neuretraction.

Example 3.7.
〈
S1, ω

〉
is neuretraction of

〈
R2 − {0), ω

〉
.

Based on Definition 3.6, we can conclude that any of the following situations qualify as

neuretraction:

Definition 3.8. (a) � (c, ω (c)) = (c, min(υ), min(ρ), min(σ))

(b) � (c, ω (c)) = (c, max(υ), max(ρ), max(σ))

(c) � (c, ω (c)) = (c, ω ∈ (0, 1)). Now, for the rest of our discussion, and for simplicity, we

shall denote the neutrosophic manifold ⟨M, ω⟩ by the symbol M .

To show that isometry exists on both the upper and lower neutrosophic hypermanifolds, we

shall use the potent framework of neutrosophic theory in the concept that follows.

Definition 3.9. A map F : ∪M−→∪M is said to be an isoneutrosophic folding if F (M) =

M and for each member of the upper neutrosophic hypermanifold Mg, there is a Mg lower M

for which ωg = ωg for any corresponding point, i.e., ωg(c) = ωg( c) as shown in Fig.2
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Figure 2. Isoneutrosophic folding

Theorem 3.10. Assuming M is a neutrosophic hyperspace in Rm+1. Then, we conclude that

there are two types of neutrosophication that coincide in M .

(a) For every c ∈ M, ω(c) = ⟨1, 1, 1⟩. Geometrically, parallel neutrosophic manifolds,

which is known as the ”crisp property.”

(b) For each distinct point ct1 , ct2 ∈ M and, ω(ct1) ̸= ω(ct2), there is a chain of homeo-

morphic neutrosophic manifolds connected at a common point.

Proof. (a) In ”a crisp property.” For all yt1 , yt2 ∈ M , we have ω(yt1) = ω(yt2) = ⟨1, 1, 1⟩ also,
all neutrosophic hypermanifolds Ms are parallel, ∀cs ∈ M s, ω(cs) < ⟨1, 1, 1⟩ and ∀c1, c2 ∈
Ms, ω(c1) = ω(c2), Ms = M s or Ms = M s as shown in Fig.3. In this situation, we can define

ω as

ω = ⟨υ, ρ, σ⟩ where

⟨υ, ρ, σ⟩ =

〈{
1

1+l1
if l1 > 0

1
1−l1

if l1 < 0
,

{
1

1+l2
if l2 > 0

1
1−l2

if l2 < 0
,

{
1

1+l3
if l3 > 0

1
1−l3

if l3 < 0

〉
, the list

(li, i = 1, 2, 3) can be represented in Fig.3. Moreover, we have ω = ⟨0, 0, 0⟩ whenever

li −→±∞. However, this illustrates the degree of neutrosophication in the crisp case of M . In

fact, ∀γ there is a neutrosophic strip at γ, specifically ζγ for which ω(c) < ⟨1, 1, 1⟩ whenever
c ∈ ζγ and decreases if li−→±∞.
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Figure 3. parallel hyperspaces and their isoneutrosophic folding

(b) LetM be a neutrosophic hyperspace for which ω(cs) ̸= ω(ct), cs ̸= ct inM , and suppose

that q is a point at which ω(q) = (maxωs, s ∈ N). For all point γ ∈ M , ∃ neutrosophic strip ζγ

such that ω(c1) < ω(c2) < ω(γ), whenever c1, c2 ∈ ζγ . If there is no other common neutrosophic

point than q, then ∃ a point cj ∈ Mj , j = 1, 2, 3. For all horizontal neutrosophic strips, q

has a maximum value (neutrosophic point) in the neutrosophic strip.

The sequence of neuretraction within a neutrosophic hyperspace will be inferred from the

data that follow.

Theorem 3.11. If M is a neutrosophic hyperspace in Rm+1, and � : M−→ C, is a neuretrac-

tion. Then, there exists a sequence ⟨�i : ∪M−→Ci, i = 1, 2, . . .m⟩ of a neuretraction. Also, if

we consider dim (∪M) = dim Ci, then all �i are special types of isoneutrosophic folding.

Proof. Let F be a isoneutrosophic folding of ∪M into ∪M such that F (M) = M ω ( M) =

ω(M). Thus, we conclude F (M) = M as shown in Fig.4. Now for each neuretraction � :

M−→C (in a case of no common point) we obtain the induced neuretractions �i : M−→Ci,
dim Ci = dimM . But if � : M−→p, there are induced neuretractions �i : M i−→ pi and

�i : Mi−→pi. However, these neuretractions are not types of neutrosophic folding, because

dim Ci ̸= dimMi. For example, in Fig.5, ∃ an isoneutrosophic folding, whereas there is no

isneutrosophic folding as a type of neuretraction in � : ∪M−→p, since dim p ̸= dimMi.
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Figure 4. Isoneutrosophic folding on parallel hyperspaces

Figure 5. Neuretraction on hyperspaces with common point

The advanced results in this study reveal multiple occurrences of neuretractions correspond-

ing to a set of neutrosophic manifolds that exhibit homeomorphism to a set of neutrosophic

unit spheres with n dimensions, all of which possess a shared center.

Theorem 3.12. Suppose that M is a neutrosophic manifold of dimension m, which is

homeomorphic to a neutrosophic unit sphere, with ω (yi) = 1 for each yj ∈Sm, else ω =

⟨υ, ρ, σ⟩ where

⟨υ, ρ, σ⟩ =

〈{
l1, 0 < l1 < 1
1
l1
, l1 > 1

,

{
l2, 0 < l2 < 1
1
l2
, l2 > 1

,

{
l3, 0 < l3 < 1
1
l3
, l3 > 1

〉
where, yj ∈

Mohammed Abu-Saleem1,∗, Omar almallah2 and Nizar Kh. Al Ouashouh3, An application of
neutrosophic theory on manifolds and their topological transformations

Neutrosophic Sets and Systems, Vol. 57, 2023                                                                              251



∪Sm
j as a union of m-dimensional neutrosophic spheres with a common center and let

H = {(y, ω) : |y| ≤ 1} be an n-dimensional neutrosophic closed ball. Then, for every neure-

traction of (H − q) onto Sm−1 there are induced neuretractions of Hj − q onto Sm−1
j . More-

over, under the condition F (Sm) =Sm, we get an isoneutrosophic folding F : S m
j −→Sm

j .

Proof. Assume M is a neutrosophic manifold, Sn is a neutrosophic unit sphere, and M is

homeomorphic to Sn as shown in Fig.6. If there is a neutrosophic sphere Sm inside the

neutrosophic system, say Sm
j (Neutrosophication will be reduced, ω = ⟨υ, ρ, σ⟩−→⟨0, 0, 0⟩

if li−→0 and ω = ⟨υ, ρ, σ⟩−→⟨0, 0, 0⟩ if li−→∞ for i = 1, 2, 3. Indeed, for all neutrosophic

points (c, ω = ⟨1, 1, 1⟩) ∃ (a neutrosophic) strip of neutrosophic points (cj , ωj< ⟨1, 1, 1⟩) ∈
S m

j , and
(
cj , ωj< ⟨1, 1, 1⟩

)
∈ Sm

j . However, for the isoneutrosophic folding F : S m
j −→Sm

j ,

in which ωj = ωj there is an induced isoneutrosophic folding F : Hj −→Hj , as well as

neuretractions �j :
(
Hj − q

)
−→S m−1

j and �j :
(
Hj − q

)
−→Sm−1

j .

Figure 6. Neuretraction and neutrosophic folding on a spheres

Theorem 3.13. Suppose that N is a neutrosophic manifold with � : N−→M is a neuretrac-

tion, then the geometric neuretraction �g induces a neuretractions �υ, �ρ, �σ. On the other

hand, the converse is not true.

Proof. Let us consider � : N−→M as a neuretraction, such that

N = ⟨Ng,Nυ, Nρ,Nσ⟩ and M ⊆ N. Now, consider the geometric neuretraction of

�g : Ng−→Mg of Ng into Mg, then we get the induced neuretractions �υ : Nυ−→Mυ, �ρ :

Nρ−→Mρ, �σ : Nσ−→Mσ as shown in Fig.7. On the other hand, consider the neuretractions

�υ : Nυ−→Mυ, �ρ : Nρ−→Mρ, �σ : Nσ−→Mσ as the identity neuretractions for all mem-

bership degrees, which have no impact on the geometric manifold Ng as shown in Fig.8 .

Mohammed Abu-Saleem1,∗, Omar almallah2 and Nizar Kh. Al Ouashouh3, An application of
neutrosophic theory on manifolds and their topological transformations

Neutrosophic Sets and Systems, Vol. 57, 2023                                                                              252



Figure 7. A neuretraction of type (I)

Figure 8. A neuretraction of type (II)

4. Conclusion

The present study aimed to develop a theoretical basis for neuretraction on a neutrosophic

manifold. The neutrosophic folding and neuretraction on a neutrosophic manifold are achieved
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geometrically and topologically. The sequence of neuretractions in a neutrosophic hyperspace

is obtained. The relationship between some types of transformations is deduced. An area that

necessitates additional investigation pertains to the establishment and exploration of a fitting

notion of neutrosophic homotopy groups, in conjunction with a thorough examination of their

consequent neutrosophic homomorphism.
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Abstract. For any lacunary sequence θ = (ks), the aim of the present paper is to define Sθ-convergence, Sθ-

Cauchy and Sθ-completeness via neutrosophic soft norm. We study certain properties of these notions and give

an important characterization of Sθ-convergence in neutrosophic soft normed linear spaces (briefly NSNLS).

We provide examples that shows Sθ-convergence is a more general method of summability in these spaces.

Keywords: Sθ-convergence, Sθ-Cauchy, soft sets, soft normed linear spaces.

—————————————————————————————————————————–

1. Introduction

Statistical convergence was first introduced by Fast [8] and linked with the summability

theory by Schoenberg [10]. Later, The idea is developed by Maddox [9], Fridy [12], Connor[13],

Mursaleen and Edely [18], Šalát [32], Kumar and mursaleen [35] and many others.

Friday and Orhan [11] used lacunary sequences to define a new kind of statistical convergence

as follows. “By a lacunary sequence we mean an increasing integer sequence θ = (ks) with

k0 = 0 and hs = ks − ks−1 → ∞ as s → ∞. The intervals determined by θ will be denoted

by Is = (ks−1, ks] and the ratio ks
ks−1

will be abbreviated as qs. For K ⊆ N, the number

δθ(K) = lim
s→∞

1

hs
|{k ∈ Is : k ∈ K}| is called θ-density of K, provided the limit exists. A

sequence x = (xk) of numbers is said to be lacunary statistically convergent (briefly Sθ-

convergent) to x0 if for every ϵ > 0, lim
s

1
hs
|{k ∈ Is : |xk − x0| ≥ ϵ}| = 0 or equivalently, the

set K(ϵ) has θ-density zero, where K(ϵ) = {k ∈ N : |xk − x0| ≥ ϵ}. In this case, we write

Sθ − lim
k→∞

xk = x0.”Some further interesting works on lacunary statistical convergence can be

found in [4], [19], [25], [34], [36], etc.
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Zadeh [16] proposed the theory of fuzzy sets in 1965 as a more convenient tool for handling

issues that cannot be modelled via crisp set theory. Atanassov [15] observed that fuzzy sets

need more modification to handle problems in a time domain and therefore he introduced the

intuitionistic fuzzy sets. After the introduction of intuitionistic fuzzy sets, a progressive devel-

opment is made in this field. For instance, intuitionistic fuzzy metric spaces were introduced

by Park [14], intuitionistic fuzzy topological spaces by Saadati and Park [26], etc.

The neutrosophic sets were initially introduced by Smarandache[7] as a generalization of

fuzzy sets and intuitionistic fuzzy sets to avoid the complexity arising from uncertainty in

settling many practical challenges in real-world activities. Kirişçi and Şimşek[17] defined neu-

trosophic norm and studied statistical convergence in neutrosophic normed spaces(NNS). For

a broad view in this direction, we recommend to the reader [1], [2], [3], [20], [21], [22], [33].

Many approaches discussed above to minimize the uncertainty have their own drawbacks

due to the inadequacy of the parametrization. In view of this, Molodtsov[6] proposed a new

theory, called soft set theory to reduce the uncertainty during mathematical modelling. These

sets turn out very useful tools in many areas of engineering and medical sciences. For instance:

Maji et al [23] applied the theory of soft sets to decision-making problems. Kong et al.[39]

presented a heuristic algorithm of normal parameter reduction of soft sets. Zou and Xiao[38]

presented a data analysis approach of soft sets under incomplete information. Yuksel et al.[30]

applied soft set theory to diagnose the prostate cancer risk in human beings whereas Çelik and

Yamak[37] applied fuzzy soft set theory for medical diagnosis using fuzzy arithmetic operations.

Maji [24] presented a combined concept of Neutrosophic soft sets in 2013. Recently, Bera

and Mahapatra [31] defined a generalized norm and called it a neutrosophic soft norm. They

also studied some properties of NSNLS and developed fundamental concepts of sequences in

these spaces. In this article, we develop and study the concept of Sθ-convergence in NSNLS.

We also introduce the concepts of Sθ-Cauchy sequence, Sθ-completeness and develop some of

their properties.

2. Preliminaries

This section starts with a brief information on soft sets, soft vector spaces and neutrosophic

soft normed spaces. We begin with the following notations and definitions.

Throughout this work, N will denote the set of positive integers, R the set of reals and R+

the set of positive real numbers.

Definition 2.1 [5] A binary operation ◦ : [0, 1] × [0, 1] → [0, 1] is continuous t-norm if ◦
satisfies the following conditions:

(i) d ◦ e = e ◦ d and d ◦ (e ◦ f) = (d ◦ e) ◦ f.
(ii) ◦ is continuous.
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(iii) d ◦ 1 = 1 ◦ d = d for all d ∈ [0, 1].

(iv) d ◦ e ≤ f ◦ g if d ≤ f, e ≤ g with d, e, f, g ∈ [0, 1].

Definition 2.2 [5] A binary operation ⋄ : [0, 1]× [0, 1] → [0, 1] is continuous t-conorm(s-norm)

if ⋄ satisfies the following conditions:

(i) d ⋄ e = e ⋄ d and d ⋄ (e ⋄ f) = (d ⋄ e) ⋄ f.
(ii) ⋄ is continuous.

(iii) d ⋄ 0 = 0 ⋄ d = for all d ∈ [0, 1].

(iv) d ⋄ e ≤ f ⋄ g if d ≤ f, e ≤ g with d, e, f, g ∈ [0, 1].

For any universe set U and the set E of the parameters, the soft set is defined as follows:

Definition 2.3 [6] A pair (H,E) is called a soft set over U if and only if H is a mapping of

E into the set of all subsets of the set U . i.e., the soft set is a parametrized family of subsets

of the set U .

Moreover, every set H(ϵ), ϵ ∈ E, from this family may be considered as the set of ϵ-elements

of the soft set (H,E), or as the set of ϵ-approximate elements of the set.

Definition 2.4 [6] A soft set (H,E) over U is said to be absolute soft set if for all ϵ ∈ E,

H(ϵ) = U . We will denote it by
∼
U .

Definition 2.5 [27] Let R be the set of real numbers, B(R) be the collection of all non-empty

bounded subsets of R and E taken as a set of parameters. Then a mapping F : E → B(R) is
called a soft real set. If a soft real set is a singleton soft set, then it is called a soft real number

and denoted by
∼
r,

∼
s,

∼
t , etc.

∼
0,

∼
1 are the soft real numbers where

∼
0 (e) = 0,

∼
1 (e) = 1 for all

e ∈ E respectively.

Let R(E) and R+(E) respectively denote the sets of all soft real numbers and all positive

soft real numbers.

Definition 2.6 [28] Let (H,E) be a soft set over U . The set (H,E) is said to be a soft point,

denoted by Hu
e if there is exactly one e ∈ E s.t H(e) = {u} for some u ∈ U and H(e

′
) = ϕ for

all e
′ ∈ E − {e}.

Two soft points Hu
e , H

w
e′

are said to be equal if e = e
′
and u = w. Let ∆∼

U
denotes the set of

all soft points on
∼
U .

In case U is a vector space over R and the parameter set E = R, the soft point is called a

soft vector.

Soft vector spaces are used to define soft norm as follows:

Definition 2.7 [29] Let
∼
U be a absolute soft vector space. Then a mapping ∥ · ∥ :

∼
U→ R+(E)

is said to be a soft norm on
∼
U , if ∥ · ∥ satisfies the following conditions:

(i) ∥ue∥ ≥
∼
0 for all ue ∈

∼
U and ∥ue∥ =

∼
0 ⇔ ue =

∼
θ0 where

∼
θ0 denotes the zero element of

∼
U .

(ii) ∥ ∼
α ue∥ = |∼α|∥ue∥ for all ue ∈

∼
U and for every soft scalar

∼
α.

(iii) ∥ue + ve′∥ ≤ ∥ue∥+ ∥ve′∥ for all ue, ve′ ∈
∼
U .
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(iv) ∥ue · ve′∥ = ∥ue∥ ∥ve′∥,∀ ue, ve′ ∈
∼
U .

The soft vector space
∼
U with a soft norm ∥ · ∥ on

∼
U is said to be a soft normed linear space

and is denoted by (
∼
U, ∥ · ∥).

We now recall the definition of neutrosophic soft normed linear spaces and the convergence

structure in these spaces.

Definition 2.8 [31] Let
∼
U be a soft linear space over the field F and R(E),∆∼

U
denote respec-

tively, the set of all soft real numbers and the set of all soft points on
∼
U . Then a neutrosophic

subset N over ∆∼
U
×R(E) is called a neutrosophic soft norm on

∼
U if for ue, ve′ ∈

∼
U and

∼
α ∈ F

(
∼
α being soft scalar), the following conditions hold.

(i) 0 ≤ GN (ue,
∼
η1), BN (ue,

∼
η1), YN (ue,

∼
η1) ≤ 1, ∀ ∼

η1 ∈ R(E).

(ii) 0 ≤ GN (ue,
∼
η1) +BN (ue,

∼
η1) + YN (ue,

∼
η1) ≤ 3, ∀ ∼

η1 ∈ R(E).

(iii) GN (ue,
∼
η1) = 0 with

∼
η1 ≤

∼
0 .

(iv) GN (ue,
∼
η1) = 1,with

∼
η1 >

∼
0 if and only if ue =

∼
θ, the null soft vector.

(v) GN (
∼
α ue,

∼
η1) = GN

(
ue,

∼
η1

|∼α|

)
,∀ ∼

α (̸=
∼
0),

∼
η1 >

∼
0.

(vi) GN (ue,
∼
η1) ◦GN (ve′ ,

∼
η2) ≤ GN (ue ⊕ ve′ ,

∼
η1 ⊕

∼
η2),∀

∼
η1,

∼
η2 ∈ R(E)

(vii) GN (ue, ·) is continuous non-decreasing function for
∼
η1 >

∼
0 and lim

∼
η1→∞

GN (ue,
∼
η1) = 1.

(viii) BN (ue,
∼
η1) = 1 with

∼
η1 ≤

∼
0 .

(ix) BN (ue,
∼
η1) = 0,with

∼
η1 >

∼
0 if and only if ue =

∼
θ, the null soft vector.

(x) BN (
∼
α ue,

∼
η1) = BN

(
ue,

∼
η1

|∼α|

)
,∀ ∼

α ( ̸=
∼
0),

∼
η1 >

∼
0 .

(xi) BN (ue,
∼
η1) ⋄BN (ve′ ,

∼
η2) ≥ BN (ue ⊕ ve′ ,

∼
η1 ⊕

∼
η2) ∀

∼
η1,

∼
η2 ∈ R(E).

(xii) BN (ue, ·) is continuous non-increasing function for
∼
η1 >

∼
0 and lim

∼
η1→∞

BN (ue,
∼
η1) = 0.

(xiii) YN (ue,
∼
η1) = 0 with

∼
η1 ≤

∼
0 .

(xiv)YN (ue,
∼
η1) = 0,with

∼
η1 >

∼
0 if and only if ue =

∼
θ, the null soft vector.

(xv) YN (
∼
α ue,

∼
η1) = YN

(
ue,

∼
η1

|∼α|

)
,∀ ∼

α ( ̸=
∼
0),

∼
η1 >

∼
0 .

(xvi) YN (ue,
∼
η1) ⋄ YN (ve′ ,

∼
η2) ≥ YN (ue ⊕ ve′ ,

∼
η1 ⊕

∼
η2) ∀

∼
η1,

∼
η2 ∈ R(E).

(xvii) YN (ue, ·) is continuous non-increasing function for
∼
η1 >

∼
0 and lim

∼
η1→∞

BN (ue,
∼
η1) = 0.

In this case, N = (GN , BN , YN ) is called the neutrosophic soft norm and (
∼
U

(F ), GN , BN , YN , ◦, ⋄) is the neutrosophic soft normed linear space (NSNLS briefly).

Let (
∼
U, ∥ · ∥) be a soft normed space. Take the operations ◦ and ⋄ as x ◦ y = xy; x ⋄ y =

x+ y − xy. For
∼
η >

∼
0, define

GN (ue,
∼
η) =


∼
η

∼
η+∥ue∥

if
∼
η > ∥ue∥

0 otherwise
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BN (ue,
∼
η) =


∥ue∥

∼
η+∥ue∥

if
∼
η > ∥ue∥

0 otherwise

YN (ue,
∼
η) =


∥ue∥
∼
η

if
∼
η > ∥ue∥

0 otherwise,

then (
∼
U (F ), GN , BN , YN , ◦, ⋄) is an NSNLS. From now onwards, unless otherwise stated by

∼
V we shall denote the NSNLS (

∼
U (F ), GN , BN , YN , ◦, ⋄).

Definition 2.9 [31] A sequence v = (vkek) of soft points in
∼
V is said to be convergent to a soft

point ve ∈
∼
V if for 0 < ϵ < 1 and

∼
η >

∼
0 ∃ n0 ∈ N s.t GN (vkek ⊖ ve,

∼
η) > 1− ϵ, BN (vkek ⊖ ve,

∼
η

) < ϵ, YN (vkek ⊖ ve,
∼
η) < ϵ. In this case, we write lim

k→∞
vkek = ve.

Definition 2.10 [31] A sequence v = (vkek) of soft points in
∼
V is said to be cauchy sequence if

for 0 < ϵ < 1 and
∼
η >

∼
0 ∃ n0 ∈ N s.t for all k, p ≥ n0 GN (vkek ⊖ vpep ,

∼
η) > 1− ϵ, BN (vkek ⊖ vpep ,

∼
η

) < ϵ, YN (vkek ⊖ vpep ,
∼
η) < ϵ.

3. Lacunary statistical convergence in NSNLS

In this section, we define Sθ-convergence in neutrosophic soft normed linear spaces and

develop some of its properties.

Definition 3.1 A sequence v = (vkek) of soft points in
∼
V is said to be lacunary statistical

convergent or Sθ-convergent to a soft point ve in
∼
V w.r.t neutrosophic soft norm-(GN , BN , YN )

if for each ϵ > 0 and
∼
η >

∼
0,

lim
s→∞

1

hs

∣∣∣∣{k ∈ Is : GN (vkek ⊖ ve,
∼
η) ≤ 1− ϵ or

BN (vkek ⊖ ve,
∼
η) ≥ ϵ, YN (vkek ⊖ ve,

∼
η) ≥ ϵ

}∣∣∣∣ = 0,

i.e., δθ(A) = 0 where

A = {k ∈ N : GN (vkek ⊖ ve,
∼
η) ≤ 1− ϵ or

BN (vkek ⊖ ve,
∼
η) ≥ ϵ, YN (vkek ⊖ ve,

∼
η) ≥ ϵ}.

In this case, we write Sθ(GN , BN , YN )− lim
k→∞

vkek = ve.

Let, Sθ(GN , BN , YN ) denotes the set of all sequences of soft points in
∼
V which are Sθ-convergent

with respect to the neutrosophic soft norm (GN , BN , YN ).

Definition 3.1 together with the property of θ-density, we have the following lemma.

Lemma 3.1 For any sequence v = (vkek) of soft points in
∼
V , the following statements are

equivalent:
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(i) Sθ(GN , BN , YN )− lim
k→∞

vkek = ve;

(ii) δθ{k ∈ N : GN (vkek ⊖ ve,
∼
η) ≤ 1 − ϵ} = δθ{k ∈ N : BN (vkek ⊖ ve,

∼
η) ≥ ϵ} = δθ{k ∈ N :

YN (vkek ⊖ ve,
∼
η) ≥ ϵ} = 0;

(iii) δθ{k ∈ N : GN (vkek ⊖ ve,
∼
η) > 1− ϵ and BN (vkek ⊖ ve,

∼
η) < ϵ, YN (vkek ⊖ ve,

∼
η) < ϵ} = 1;

(iv)δθ{k ∈ N : GN (vkek ⊖ ve,
∼
η) > 1 − ϵ} = δθ{k ∈ N : BN (vkek ⊖ ve,

∼
η) < ϵ} = δθ{k ∈ N :

YN (vkek ⊖ ve,
∼
η) < ϵ} = 1;

(v) Sθ(GN , BN , YN )− lim
k→∞

GN (vkek ⊖ve,
∼
η) = 1 and Sθ(GN , BN , YN )− lim

k→∞
BN (vkek ⊖ve,

∼
η) = 0

, Sθ(GN , BN , YN )− lim
k→∞

YN (vkek ⊖ ve,
∼
η) = 0.

Theorem 3.1 Let θ = (ks) be a lacunary sequence and v = (vkek) be any sequence in
∼
V . If

Sθ(GN , BN , YN )− lim
k→∞

vkek exists, then it is unique.

Proof. Suppose that Sθ(GN , BN , YN )− lim
n→∞

vkek = ve1 and Sθ(GN , BN , YN )− lim
n→∞

vkek = v
′
e2 ,

where ve1 ̸= v
′
e2 . Let ϵ > 0 and

∼
η >

∼
0. Choose ϱ > 0 s.t.

(1− ϱ) ◦ (1− ϱ) > 1− ϵ and ϱ ♢ ϱ < ϵ (1)

Define the following sets:

HGN ,1(ϱ,
∼
η) =

{
k ∈ N : GN

(
vkek ⊖ ve1 ,

∼
η

2

)
≤ 1− ϱ

}
.

HGN ,2(ϱ,
∼
η) =

{
k ∈ N : GN

(
vkek ⊖ v

′
e2 ,

∼
η

2

)
≤ 1− ϱ

}
.

HBN ,1(ϱ,
∼
η) =

{
k ∈ N : BN

(
vkek ⊖ ve1 ,

∼
η

2

)
≥ ϱ

}
.

HBN ,2(ϱ,
∼
η) =

{
k ∈ N : BN

(
vkek ⊖ v

′
e2 ,

∼
η

2

)
≥ ϱ

}
.

HYN ,1(ϱ,
∼
η) =

{
k ∈ N : YN

(
vkek ⊖ ve1 ,

∼
η

2

)
≥ ϱ

}
.

HYN ,2(ϱ,
∼
η) =

{
k ∈ N : YN

(
vkek ⊖ v

′
e2 ,

∼
η

2

)
≥ ϱ

}
.

Since Sθ(GN , BN , YN )− lim
k→∞

vkek = ve1 , then using lemma 3.1, we have

δθ{HGN ,1(ϱ,
∼
η)} = δθ{HBN ,1(ϱ,

∼
η)} = δθ{HYN ,1(ϱ,

∼
η)} = 0 and therefore δθ{HC

GN ,1(ϱ,
∼
η)} =

δθ{HC
BN ,1(ϱ,

∼
η)} = δθ{HC

YN ,1(ϱ,
∼
η)} = 1.

Further, Sθ(GN , BN , YN )− lim
k→∞

vkek = v
′
e2 , so

δθ{HGN ,2(ϱ,
∼
η)} = δθ{HBN ,2(ϱ,

∼
η)} = δθ{HYN ,2(ϱ,

∼
η)} = 0 and therefore δθ{HC

GN ,2(ϱ,
∼
η)} =

δθ{HC
BN ,2(ϱ,

∼
η)} = δθ{HC

YN ,2(ϱ,
∼
η)} = 1 for all

∼
η >

∼
0. Now define

KGN ,BN ,YN
(ϵ,

∼
η) = {HGN ,1(ϱ,

∼
η) ∪HGN ,2(ϱ,

∼
η)}

∩{HBN ,1(ϱ,
∼
η) ∪HBN ,2(ϱ,

∼
η)} ∩ {HYN ,1(ϱ,

∼
η) ∪HYN ,2(ϱ,

∼
η)},
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then δθ{KGN ,BN ,YN
(ϵ,

∼
η)} = 0 and therefore, δθ{KC

GN ,BN ,YN
(ϵ,

∼
η)} = 1. Let m ∈

KC
GN ,BN ,YN

(ϵ,
∼
η), then we have following possibilities.

1. m ∈
{
HGN ,1(ϱ,

∼
η) ∪HGN ,2(ϱ,

∼
η)

}C

; or

2. m ∈
{
HBN ,1(ϱ,

∼
η) ∪HBN ,2(ϱ,

∼
η)

}C

; or

3. m ∈
{
HYN ,1(ϱ,

∼
η) ∪HYN ,2(ϱ,

∼
η)

}C

.

Case 1: Let m ∈
{
HGN ,1(ϱ,

∼
η) ∪HGN ,2(ϱ,

∼
η)

}C

, then m ∈ HC
GN ,1(ϱ,

∼
η) and m ∈ HC

GN ,2(ϱ,
∼
η)

and therefore,

GN

(
vmem ⊖ ve1 ,

∼
η

2

)
> 1− ϱ and GN

(
vmem ⊖ v

′
e2 ,

∼
η

2

)
> 1− ϱ. (2)

Now

GN (ve1 ⊖ v
′
e2 ,

∼
η) = GN

(
vmem ⊖ vmem ⊕ ve1 ⊖ v

′
e2 ,

∼
η

2
⊕

∼
η

2

)
≥ GN

(
vmem ⊖ ve1 ,

∼
η

2

)
◦GN

(
vmem ⊖ v

′
e2 ,

∼
η

2

)
> (1− ϱ) ◦ (1− ϱ) by (2)

> 1− ϵ. by (1)

Since ϵ > 0 is arbitrary, so we have GN (ve1 ⊖ v
′
e2 ,

∼
η) = 1 for all

∼
η >

∼
0, which gives ve1 = v

′
e2 .

Case 2: Let m ∈
{
HBN ,1(ϱ,

∼
η) ∪HBN ,2(ϱ,

∼
η)

}C

, then m ∈ HC
BN ,1(ϱ,

∼
η)) and m ∈ HC

BN ,2(ϱ,
∼
η)

and therefore,

BN

(
vmem ⊖ ve1 ,

∼
η

2

)
< ϱ and BN

(
vmem ⊖ v

′
e2 ,

∼
η

2

)
< ϱ. (3)

Now

BN (ve1 ⊖ v
′
e2 ,

∼
η) = BN

(
vmem ⊖ vmem ⊕ ve1 ⊖ v

′
e2 ,

∼
η

2
⊕

∼
η

2

)
≤ BN

(
vmem ⊖ ve1 ,

∼
η

2

)
⋄BN

(
vmem ⊖ v

′
e2 ,

∼
η

2

)
< ϱ ⋄ ϱ by (3)

< ϵ. by (1)

Since ϵ > 0 is arbitrary, so we have BN (ve1 ⊖ v
′
e2 ,

∼
η) = 0 for all

∼
η >

∼
0 , which gives ve1 = v

′
e2 .

Case 3: Let m ∈
{
HYN ,1(ϱ,

∼
η) ∪ HYN ,2(ϱ,

∼
η)

}C

, then m ∈ HC
YN ,1(ϱ,

∼
η) and m ∈ HC

YN ,2(ϱ,
∼
η)

and therefore,

YN

(
vmem ⊖ ve1 ,

∼
η

2

)
< ϱ and YN

(
vmem ⊖ v

′
e2 ,

∼
η

2

)
< ϱ. (4)
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Now

YN (ve1 ⊖ v
′
e2 ,

∼
η) = YN

(
vmem ⊖ vmem ⊕ ve1 ⊖ v

′
e2 ,

∼
η

2
⊕

∼
η

2

)
≤ YN

(
vmem ⊖ ve1 ,

∼
η

2

)
⋄ YN

(
vmem ⊖ v

′
e2 ,

∼
η

2

)
< ϱ ⋄ ϱ by (4)

< ϵ. by (1)

Since ϵ > 0 is arbitrary, so we have YN (ve1 ⊖ v
′
e2 ,

∼
η) = 0 for all

∼
η >

∼
0 , which gives ve1 = v

′
e2 .

Hence, in all cases we have ve1 = v
′
e2 , i.e., Sθ(GN , BN , YN )-limit of (vkek) is unique.□

Theorem 3.2 Let θ = (ks) be a lacunary sequence and v = (vkek) be any sequence in
∼
V . If

(GN , BN , YN )− lim
k→∞

vkek = ve, then Sθ(GN , BN , YN )− lim
k→∞

vkek = ve.

Proof. Let (GN , BN , YN )− lim
k→∞

vkek = ve. Then for each ϵ > 0 and η > 0, ∃ positive integers

k0 ∈ N s.t GN (vkek ⊖ ve,
∼
η) > 1 − ϵ and BN (vkek ⊖ ve,

∼
η) < ϵ, YN (vkek ⊖ ve,

∼
η) < ϵ ∀ k > k0.

Hence, the set

A =
{
k ∈ N : GN (vkek ⊖ ve,

∼
η) ≤ 1− ϵ or

BN (vkek ⊖ ve,
∼
η) ≥ ϵ, YN (vkek ⊖ ve,

∼
η) ≥ ϵ

}
has finite number of terms. Since every finite subset of N has θ-density zero and hence

δθ
({

k ∈ N : GN (vkek ⊖ ve,
∼
η) ≤ 1− ϵ or

BN (vkek ⊖ ve,
∼
η) ≥ ϵ, YN (vkek ⊖ ve,

∼
η) ≥ ϵ

})
= 0.

Therefore, Sθ(GN , BN , YN )− lim
k→∞

vkek = ve. □

The following example shows that the converse of the above theorem need not be true.

Example 3.1 Let (
∼
R, ∥ · ∥) be a soft normed linear space. For ve in

∼
R and

∼
η >

∼
0, if we define

GN (ve,
∼
η) =

∼
η

∼
η ⊕∥ve∥

, BN (ve,
∼
η) =

∥ve∥
∼
η ⊕∥ve∥

, YN (ve,
∼
η) =

∥ve∥
∼
η

,

x◦y = xy and x⋄y = min{x+y, 1}, then it is easy to see that
∼
V = (

∼
R, GN , BN , YN , ◦, ⋄) ∀ x, y ∈

[0, 1] is a neutrosophic soft normed linear space.

Now define a sequence v = (vkek) in
∼
V by

vkek =


∼
k if ks − [

√
hs] + 1 ≤ k ≤ ks, s ∈ N

∼
0 otherwise.
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Now, for each ϵ > 0 and
∼
η >

∼
0, let

A(ϵ,
∼
η) =

{
k ∈ Is : GN (vkek ,

∼
η) ≤ 1− ϵ or BN (vkek ,

∼
η) ≥ ϵ, YN (vkek ,

∼
η) ≥ ϵ

}
=

{
k ∈ Is :

∼
η

∼
η ⊕∥vkek∥

≤ 1− ϵ or
∥vkek∥

∼
η ⊕∥vkek∥

≥ ϵ,
∥vkek∥

∼
η

≥ ϵ

}

=

{
k ∈ Is : ∥vkek∥ ≥

∼
η ϵ

1− ϵ
or ∥vkek∥ ≥

∼
η ϵ

}
⊆

{
k ∈ Is : v

k
ek

=
∼
k

}
=

{
k ∈ Is : ks − [

√
hs] + 1 ≤ k ≤ ks, s ∈ N

}
and so we get

1

hs
|A(ϵ,

∼
η)| ≤ 1

hs
|{k ∈ Is : ks − [

√
hs] + 1 ≤ k ≤ ks}| ≤

√
hs
hs

.

Taking s → ∞,

lim
s→∞

1
hs
|A(ϵ,

∼
η)| ≤ lim

s→∞

√
hs
hs

= 0, i.e., δθ(A(ϵ,
∼
η)) = 0.

This shows that, v = (vkek) is Sθ(GN , BN , YN )- convergent to
∼
0. But by the structure of the

sequence, v = (vkek) is not convergent to
∼
0 w.r.t (GN , BN , YN ).

Theorem 3.3 Let θ = (ks) be a lacunary sequence and let u = (ukek) and v = (vkek) be any two

sequences in
∼
V s.t Sθ(GN , BN , YN )− lim

k→∞
(ukek) = ue1 and Sθ(GN , BN , YN )− lim

k→∞
(vkek) = ve2 .

Then

(i)Sθ(GN , BN , YN )− lim
k→∞

(ukek ⊕ vkek) = ue1 ⊕ ve2

(ii) Sθ(GN , BN , YN )− lim
k→∞

(
∼
α ukek) =

∼
α ue1 , where

∼
0 ̸= ∼

α ∈ F.

Proof. The proof of the theorem can be obtained as the proof of theorem 3.1, so omitted.□

Theorem 3.4 Let θ = (ks) be a lacunary sequence. A sequence v = (vkek) in
∼
V is

Sθ(GN , BN , YN )-convergent to ve, if and only if ∃ a subset K = {k1, k2, ...} of N s.t

δθ(K) = 1 and (GN , BN , YN )− lim
k∈K
k→∞

vkek = ve.

Proof. First suppose that Sθ(GN , BN , YN )− lim
k→∞

vkek = ve. For
∼
η >

∼
0 and β ∈ N, define the

set

KGN ,BN ,YN
(β,

∼
η) =

{
k ∈ N : GN (vkek ⊖ ve,

∼
η) > 1− 1

β
and

BN (vkek ⊖ ve,
∼
η) <

1

β
, YN (vkek ⊖ ve,

∼
η) <

1

β

}
and

KC
GN ,BN ,YN

(β,
∼
η) =

{
k ∈ N : GN (vkek ⊖ ve,

∼
η) ≤ 1− 1

β
or

BN (vkek ⊖ ve,
∼
η) ≥ 1

β
, YN (vkek ⊖ ve,

∼
η) ≥ 1

β

}
.
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Since Sθ(GN , BN , YN )− lim
k→∞

vkek = ve, it follows that δθ(K
C
GN ,BN ,YN

(β,
∼
η)) = 0. Furthermore,

for
∼
η >

∼
0 and β ∈ N, we observe KGN ,BN ,YN

(β,
∼
η) ⊃ KGN ,BN ,YN

(β + 1,
∼
η) and

δθ(KGN ,BN ,YN
(β,

∼
η)) = 1. (5)

Now, we have to show that, for k ∈ KGN ,BN ,YN
(β,

∼
η), (GN , BN , YN )− lim

k∈K
k→∞

vkek = ve. Suppose for

k ∈ KGN ,BN ,YN
(β,

∼
η), (vkek) is not convergent to ve w.r.t (GN , BN , YN ). Then ∃ some ξ > 0 and

a +ve integer k0 s.t GN (vkek⊖ve,
∼
η) ≤ 1−ξ or BN (vkek⊖ve,

∼
η) ≥ ξ, YN (vkek⊖ve,

∼
η) ≥ ξ ∀ k > k0.

Let GN (vkek ⊖ ve,
∼
η) > 1− ξ and BN (vkek ⊖ ve,

∼
η) < ξ, YN (vkek ⊖ ve,

∼
η) < ξ ∀ k < k0. Then

δθ
(
{k ∈ N : GN (vkek ⊖ ve,

∼
η) > 1− ξ and

BN (vkek ⊖ ve,
∼
η) < ξ, YN (vkek ⊖ ve,

∼
η) < ξ}

)
= 0.

Since ξ > 1
β where β ∈ N, we have δθ(KGN ,BN ,YN

(β,
∼
η)) = 0. In this way we obtained a

contradiction to (5) as δθ(KGN ,BN ,YN
(β,

∼
η)) = 1. Hence, (GN , BN , YN )− lim

k∈K
k→∞

vkek = ve.

Conversely, Suppose that ∃ a subset K = {k1, k2, ..., kj , ...} of N with δθ(K) = 1 and

(GN , BN , YN )− lim
k→∞

vkek = ve over K i.e., (GN , BN , YN )− lim
k∈K
k→∞

vkek = ve. Let ϵ > 0 and
∼
η >

∼
0, ∃

kj0 ∈ N s.t for all kj ≥ kj0 , GN (vkek ⊖ve,
∼
η) > 1−ϵ and BN (vkek ⊖ve,

∼
η) < ϵ, YN (vkek ⊖ve,

∼
η) < ϵ.

So if we consider the set

TGN ,BN ,YN
(ϵ,

∼
η) =

{
k ∈ N : GN (vkek ⊖ ve,

∼
η) ≤ 1− ϵ or

BN (vkek ⊖ ve,
∼
η) ≥ ϵ, YN (vkek ⊖ ve,

∼
η) ≥ ϵ

}
,

then it is easy to see that TGN ,BN ,YN
(ϵ,

∼
η) ⊂ N − {kj0+1, kj0+2, ...}. This immediately im-

plies that δθ
(
TGN ,BN ,YN

(ϵ,
∼
η)
)

≤ δθ(N) − δθ({kj0+1, kj0+2, ...}) = 1 − 1 = 0 and there-

fore δθ
(
TGN ,BN ,YN

(ϵ,
∼
η)
)
= 0 as δθ

(
TGN ,BN ,YN

(ϵ,
∼
η)
)
can not be negative. This shows that

Sθ(GN , BN , YN )− lim
n→∞

vkek = ve. □

4. Lacunary statistical completeness in NSNLS

Definition 4.1 A sequence v = (vkek) of soft points in
∼
V is said to be lacunary statistically

cauchy (or Sθ-Cauchy) w.r.t neutrosophic soft norm (GN , BN , YN ) if for each ϵ > 0 and
∼
η >

∼
0,

∃ p ∈ N s.t

lim
s→∞

1

hs

∣∣∣∣{k ∈ Is : GN (vkek ⊖ vpep ,
∼
η) ≤ 1− ϵ or

BN (vkek ⊖ vpep ,
∼
η) ≥ ϵ, YN (vkek ⊖ vpep ,

∼
η) ≥ ϵ

}∣∣∣∣ = 0,
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or equivalently, the θ-density of the set K is zero, i.e., δθ(K) = 0 where

K = {k ∈ N : GN (vkek ⊖ vpep ,
∼
η) ≤ 1− ϵ or

BN (vkek ⊖ vpep ,
∼
η) ≥ ϵ, YN (vkek ⊖ vpep ,

∼
η) ≥ ϵ}.

Theorem 4.1 Let θ = (ks) be any lacunary sequence. If a sequence v = (vkek) of soft points

in
∼
V is Sθ(GN , BN , YN )-convergent, then it is Sθ(GN , BN , YN ) cauchy.

Proof. Let v = (vkek) be any lacunary statistically convergent sequence with Sθ(GN , BN , YN )−
lim
k→∞

vkek = ve. Let ϵ > 0 and
∼
η >

∼
0. Choose ϱ > 0 s.t (1) is satisfied. Define a set,

M(ϱ,
∼
η) =

{
k ∈ N : GN (vkek ⊖ ve,

∼
η

2
) ≤ 1− ϱ or

BN (vkek ⊖ ve,

∼
η

2
) ≥ ϱ, YN (vkek ⊖ ve,

∼
η

2
) ≥ ϱ

}
,

then

MC(ϱ,
∼
η) =

{
k ∈ N : GN (vkek ⊖ ve,

∼
η

2
) > 1− ϱ and

BN (vkek ⊖ ve,

∼
η

2
) < ϱ, YN (vkek ⊖ ve,

∼
η

2
) < ϱ

}
.

Since Sθ(GN , BN , YN ) − lim
n→∞

vkek = ve, so δθ(M(ϱ,
∼
η)) = 0 and δθ(M

C(ϱ,
∼
η)) = 1. Let

p ∈ MC(ϱ,
∼
η), then

GN

(
vpep ⊖ ve,

∼
η

2

)
> 1− ϱ and BN

(
vpep ⊖ ve,

∼
η

2

)
< ϱ, YN

(
vpep ⊖ ve,

∼
η

2

)
< ϱ. (6)

Now, let T (ϵ,
∼
η) = {k ∈ N : GN (vkek ⊖ vpep ,

∼
η) ≤ 1 − ϵ or BN (vkek ⊖ vpep ,

∼
η) ≥ ϵ, YN (vkek ⊖ vpep ,

∼
η

) ≥ ϵ}, then we have to show that T (ϵ,
∼
η) ⊆ M(ϱ,

∼
η). Let m ∈ T (ϵ,

∼
η), then

GN (vmem ⊖ vpep ,
∼
η) ≤ 1− ϵ or BN (vmem ⊖ vpep ,

∼
η) ≥ ϵ, YN (vmem ⊖ vpep ,

∼
η) ≥ ϵ. (7)

Case 1: If GN (vmem ⊖vpep ,
∼
η) ≤ 1−ϵ, then GN

(
vmem ⊖ve,

∼
η
2

)
≤ 1−ϱ and therefore m ∈ M(ϱ,

∼
η).

As otherwise i.e., if GN

(
vmem ⊖ ve,

∼
η
2

)
> 1− ϱ, then by (1), (6) and (7) we get

1− ϵ ≥ GN (vmem ⊖ vpep ,
∼
η) = GN

(
vmem ⊖ ve ⊕ ve ⊖ vpep ,

∼
η

2
⊕

∼
η

2

)
≥ GN

(
vmem ⊖ ve,

∼
η

2

)
◦GN

(
vpep ⊖ ve,

∼
η

2

)
> (1− ϱ) ◦ (1− ϱ)

> 1− ϵ,
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which is impossible. Thus, T (ϵ,
∼
η) ⊆ M(ϱ,

∼
η).

Case 2: If BN (vmem ⊖ vpep ,
∼
η) ≥ ϵ, then BN

(
vmem ⊖ ve,

∼
η
2

)
≥ ϱ and therefore m ∈ M(ϱ,

∼
η). As

otherwise i.e., if BN

(
vmem ⊖ ve,

∼
η
2

)
< ϱ, then by (1), (6) and (7) we get

ϵ ≤ BN (vmem ⊖ vpep ,
∼
η) = BN

(
vmem ⊖ ve ⊕ ve ⊖ vpep ,

∼
η

2
⊕

∼
η

2

)
≤ BN

(
vmem ⊖ ve,

∼
η

2

)
⋄BN

(
vpep ⊖ ve,

∼
η

2

)
< ϱ ⋄ ϱ

< ϵ,

which is impossible.

Also, If YN (vmem ⊖ vpep ,
∼
η) ≥ ϵ, then YN

(
vmem ⊖ ve,

∼
η
2

)
≥ ϱ and therefore m ∈ M(ϱ,

∼
η). As

otherwise i.e., if YN

(
vmem ⊖ ve,

∼
η
2

)
< ϱ, then by (1), (6) and (7) we get

ϵ ≤ YN (vmem ⊖ vpep ,
∼
η) = YN

(
vmem ⊖ ve ⊕ ve ⊖ vpep ,

∼
η

2
⊕

∼
η

2

)
≤ YN

(
vmem ⊖ ve,

∼
η

2

)
⋄ YN

(
vpep ⊖ ve,

∼
η

2

)
< ϱ ⋄ ϱ

< ϵ,

which is impossible. Thus, T (ϵ,
∼
η) ⊆ M(ϱ,

∼
η).

Hence in all cases, T (ϵ,
∼
η) ⊆ M(ϱ,

∼
η). Since δθ(M(ϱ,

∼
η)) = 0, so δθ(T (ϵ,

∼
η)) = 0, and therefore

v = (vkek) is Sθ(GN , BN , YN ) Cauchy.□

Definition 4.2 A NSNLS
∼
V is said to be Sθ-complete if every Sθ-Cauchy sequence in

∼
V

w.r.t neutrosophic soft norm-(GN , BN , YN ) is Sθ- convergent w.r.t neutrosophic soft norm-

(GN , BN , YN ).

Theorem 4.2 Let θ = (ks) be any lacunary sequence. Then every NSNLS
∼
V is Sθ-complete

but not complete in general.

Proof. Let v = (vkek) be Sθ-Cauchy but not Sθ-convergent w.r.t neutrosophic soft norm-

(GN , BN , YN ). For a given ϵ > 0 and
∼
η >

∼
0. Choose ϱ > 0 s.t (1) is satisfied. Now

GN (vkek ⊖ vpep ,
∼
η) ≥ GN (vkek ⊖ ve,

∼
η) ◦GN (vpep ⊖ ve,

∼
η) > (1− ϱ) ◦ (1− ϱ) > 1− ϵ

BN (vkek ⊖ vpep ,
∼
η) ≤ BN (vkek ⊖ ve,

∼
η) ⋄BN (vpep ⊖ ve,

∼
η) < ϱ ⋄ ϱ < ϵ

YN (vkek ⊖ vpep ,
∼
η) ≤ YN (vkek ⊖ ve,

∼
η) ⋄ YN (vpep ⊖ ve,

∼
η) < ϱ ⋄ ϱ < ϵ.
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Since v = (vkek) is not Sθ-convergent w.r.t neutrosophic soft norm-(GN , BN , YN ). Therefore

δθ(H
C(ϱ,

∼
η)) = 0, where

H(ϱ,
∼
η) = {k ∈ N : Bvkek

⊖vpep
(ϱ) ≤ 1− ϵ}

and so δθ(H(ϱ,
∼
η)) = 1 which is a contradiction, since v = (vkek) was Sθ-cauchy w.r.t neutro-

sophic soft norm-(GN , BN , YN ). So v = (vkek) must be Sθ-convergent w.r.t neutrosophic soft

norm-(GN , BN , YN ). Hence every NSNLS
∼
V is Sθ-complete.

The following example demonstrates that NSNLS is not complete in general:

Example 4.1[26] Let
∼
U= (0, 1] and

GN (v,
∼
η) =

∼
η

∼
η⊕|v|

, BN (v,
∼
η) = |v|

∼
η⊕|v|

, YN (v,
∼
η) = |v|

∼
η

for all v ∈
∼
U . Then

∼
V= (

∼
U

,GN , BN , YN ,min,max) is NSNLS but not complete, since the sequence of soft points
( ∼

1
k

)
is cauchy w.r.t (GN , BN , YN ) but not convergent w.r.t (GN , BN , YN ).

Theorem 4.3 If every Sθ-cauchy sequence of soft points in
∼
V has a Sθ-convergent subsequence

then
∼
V is Sθ-complete.

Proof. Let v = (vkek) be any Sθ-cauchy sequence of soft points in
∼
V which has a Sθ-convergent

subsequence (v
k(j)
ek(j)) i.e., Sθ − lim

j→∞
v
k(j)
ek(j) = ve for some ve in

∼
V . Let ϵ > 0 and

∼
η >

∼
0. Choose

ϱ > 0 s.t (1) is satisfied. Since v = (vkek) is Sθ-cauchy, so ∃ n0 ∈ N s.t ∀ k, p ≥ n0 δθ(A) = 0

where

A =

{
k ∈ N : GN

(
vkek ⊖ vpep ,

∼
η

2

)
≤ 1− ϱ or

BN

(
vkek ⊖ vpep ,

∼
η

2

)
≥ ϱ, YN

(
vkek ⊖ vpep ,

∼
η

2

)
≥ ϱ

}
.

Again since Sθ − lim
j→∞

v
k(j)
ek(j) = ve. So we have δθ(B) = 0, where

B =

{
k(j) ∈ N : GN

(
vk(j)ek(j)

⊖ ve,

∼
η

2

)
≤ 1− ϱ or

BN

(
vk(j)ek(j)

⊖ ve,

∼
η

2

)
≥ ϱ, YN

(
vk(j)ek(j)

⊖ ve,

∼
η

2

)
≥ ϱ

}
.

Now define

D = {k ∈ N : GN (vkek ⊖ ve,
∼
η) ≤ 1− ϵ or

BN (vkek ⊖ ve,
∼
η) ≥ ϵ, YN (vkek ⊖ ve,

∼
η) ≥ ϵ}.

We now show that AC ∩BC ⊆ DC . Let m ∈ AC ∩BC . As m ∈ AC , so

GN

(
vmem ⊖ vpep ,

∼
η

2

)
> 1− ϱ and

BN

(
vmem ⊖ vpep ,

∼
η

2

)
< ϱ, YN

(
vmem ⊖ vpep ,

∼
η

2

)
< ϱ,

(8)
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and since m ∈ BC , so m = k(j0) for j0 ∈ N and

GN

(
vk(j0)ek(j0)

⊖ ve,

∼
η

2

)
> 1− ϱ and

BN

(
vk(j0)ek(j0)

⊖ ve,

∼
η

2

)
< ϱ, YN

(
vk(j0)ek(j0)

⊖ ve,

∼
η

2

)
< ϱ.

(9)

Now

GN (vmem ⊖ ve,
∼
η) = GN

(
vmem ⊖ vk(j0)ek(j0)

⊕ vk(j0)ek(j0)
⊖ ve,

∼
η

2
⊕

∼
η

2

)
≥ GN

(
vmem ⊖ vk(j0)ek(j0)

,

∼
η

2

)
◦GN

(
vk(j0)ek(j0)

⊖ ve,

∼
η

2

)
> (1− ϱ) ◦ (1− ϱ) for p = k(j0)

> 1− ϵ

and

BN (vmem ⊖ ve,
∼
η) = BN

(
vmem ⊖ vk(j0)ek(j0)

⊕ vk(j0)ek(j0)
⊖ ve,

∼
η

2
⊕

∼
η

2

)
≤ BN

(
vmem ⊖ vk(j0)ek(j0)

,

∼
η

2

)
⋄BN

(
vk(j0)ek(j0)

⊖ ve,

∼
η

2

)
< ϱ ⋄ ϱ for p = k(j0)

< ϵ,

YN (vmem ⊖ ve,
∼
η) = YN

(
vmem ⊖ vk(j0)ek(j0)

⊕ vk(j0)ek(j0)
⊖ ve,

∼
η

2
⊕

∼
η

2

)
≤ YN

(
vmem ⊖ vk(j0)ek(j0)

,

∼
η

2

)
⋄ YN

(
vk(j0)ek(j0)

⊖ ve,

∼
η

2

)
< ϱ ⋄ ϱ for p = k(j0)

< ϵ, by (1), (8) and (9)

which implies thatm ∈ DC , so AC∩BC ⊆ DC orD ⊆ A∪B. Therefore, δθ(D) ≤ δθ(A∪B) = 0.

This shows that v = (vkek) is Sθ-convergent and therefore,
∼
V is Sθ-complete.□
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Abstract: Wheat has had a substantial influence on the food security of a number of different nations. 

In addition, governments are grappling with a number of difficulties, such as fast population 

expansion, a lack of available water, growing urbanization, and a restricted amount of wheat 

production in agricultural settings. As a result, the majority of their wheat and wheat products come 

from outside sources. The purpose of this research is to discover the main wheat suppliers and rate 

them according to certain criteria by analyzing the different ways of supplier selection that are 

currently available. The type-2 neutrosophic numbers-Measurement of Alternatives and Ranking 

according to the Compromise Solution (T2NNs-MARCOS) methodology was used in order to 

evaluate, choose, and rank the most reliable wheat suppliers in the African and Middle Eastern 

regions. According to the data, Russia is the country that provides the highest quality wheat. Because 

of its proximity, its robust connections via official channels, and its adaptability, this provider is often 

regarded as being the most reliable and cost-effective option. Because wheat is a key commodity, 

importers, decision-makers, and anyone involved with wheat imports may find this research helpful 

in identifying and selecting suppliers. 

Keywords: Wheat; Neutrosophic; Supplier; Supply chain; T2NNs; MARCOS. 

 

 

1. Introduction 

Wheat is a fundamental commodity in numerous nations, particularly in the regions of the 

Middle East and Africa, where dietary practices heavily rely on various wheat-based products. 

Wheat-based products such as bread, pasta, and sweets are commonly consumed as staple food 

items. Hence, wheat stands as the primary and fundamental commodity subject to governmental 

oversight, encompassing its importation, storage, and subsequent distribution. The quantity of 

tender is contingent upon factors such as the existing storage capacity, consumption rate, warehouse 

management practices, strategic plans for food security, and prevailing storage conditions. Hence, 

the tender encompasses the expenses associated with procurement, shipment, conveyance, handling, 

insurance, and additional charges and expenditures. The importation of wheat in the Middle East 

region exhibits a distinct process, wherein the relevant governmental authorities issue invitations to 

tender. Subsequently, applicants are required to select suppliers based on the specified conditions. 

This signifies that the government does not directly determine the supplier, but rather, the 

responsibility lies with the applicant or bidder to make the selection. 

mailto:reda_mabrouk@fci.kfs.edu.eg
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It is imperative to establish explicit terms and conditions for the tender process, encompassing 

various aspects such as specifications, quality requirements, timelines, supplier solvency, procedural 

requirements, contractual and financial considerations, as well as essential tests and acceptance 

criteria. After the tender has been awarded, it is imperative for the relevant authorities to adhere to 

the specified guidelines for the storage and distribution of wheat, in accordance with the established 

principles governing this process. Additionally, it is imperative to guarantee the presence of a 

strategic inventory of said product for specific timeframes, typically ranging from six months to a 

minimum of one year. The primary specifications for wheat encompass its origin, protein content, 

test weight, moisture level, purity, fall number, wet gluten content, presence of soft grain admixture, 

foreign matter, and grain admixture. The primary factors that determine the quality of processing are 

grain hardness, protein concentration and quality, and gluten strength. 

Therefore, the primary objective of this study is to address this research gap by providing 

answers to the following research inquiries: The supplier selection process encompasses various 

approaches and stages. Which wheat suppliers offer high-quality products at the most competitive 

prices and provide flexible delivery options? What are the appropriate criteria for assessing 

suppliers? Based on the prevailing international environment and situation, an inquiry is made 

regarding the most reputable wheat suppliers in the Middle East. 

One of the key challenges encountered in the process of decision-making is the identification 

and selection of the most optimal alternative, which necessitates the careful consideration of 

numerous selection criteria [1], [2]. Multi-criteria decision-making (MCDM) techniques are 

frequently employed to effectively manage a diverse range of decision-making criteria [3], [4]. The 

extensive utilization of these techniques in the supply chain domain can be attributed to their 

computational capabilities [5]. 

The primary purpose of this research was to determine the most important wheat suppliers in 

the Middle East and Africa via the use of MCDM methods and to rank those suppliers according to 

the features that were discovered. Wheat is an essential agricultural product across the nations that 

make up the Middle East, and the government is in charge of bringing it in, regulating it, and storing 

it. The purpose of this research was to investigate different wheat suppliers in light of established 

standards. This research gives a comprehensive framework for the selection of suppliers, which may 

be used to effectively find suppliers of wheat as well as other items, products, or materials and to 

reduce the risks associated with the selection process. The type-2 neutrosophic numbers-

Measurement of Alternatives and Ranking according to the Compromise Solution (T2NNs-

MARCOS) MCDM methodology was used throughout the evaluation, selection, and ranking of the 

most effective wheat providers [6], [7]. It was determined using a numerical case study which wheat 

suppliers were the most important, and then it was determined which wheat supplier was the best 

based on the features that were determined. The neutrosophic set applied in many applications like 

[8], [9][10]–[13] 

The remainder parts of the research are planned as follows: Section 2 develops the applied 

approach for selecting a suitable supplier of wheat. Section 3 employs a real case study for applying 

the suggested methodology and analysis of the results. Section 5 concludes the research. 

2. Methodology  

In this section, the proposed methodology to solve the problem of selecting and determining the 

best wheat supplier is presented. The proposed methodology is based on the MARCOS method. The 

proposed methodology consists of several stages. The first stage presents the details of the study and 

the selection of experts. The second stage is related to determining the weights of the criteria used in 

the study. The third and final stage is related to the arrangement of the alternatives chosen in the 

study. Figure 1 provides details of the proposed methodology. 
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Figure 1. Details of the proposed methodology. 

 

Step 1. The problem is studied in detail and the participating experts are identified as shown in Table 

1. The participating experts give their opinions on the problem and define the criteria and available 

alternatives. Suppose a set of m alternatives is represented by A ={𝐴1, … , 𝐴𝑖 , … 𝐴𝑚} and a set of n 

criteria is denoted by C = {𝐶1, … , 𝐶𝑛 , … , 𝐶𝑛}. Let experts = {𝐸1, … , 𝐸𝑒 , … , 𝐸𝑘} be a set of experts who 

offered their valuation report for each alternative 𝐴𝑖(i = 1, 2... m) against their criteria 𝐶𝑗(j = 1, 2... n). 

Let 𝑤 = (w1, w2, … , we)𝑇 be the weight vector for experts 𝐸𝑒(e = 1, 2... k) such that ∑ w𝑙
𝑛
𝑗=1 =1. 
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Goal: Determine the most suitable wheat suppliers. 

Construct expert evaluation committee 

Identify the suppliers 

Primary selection and discussion 

Construct expert evaluation 

Construct expert evaluation 

Give semantic evaluation information T2NN evaluation matrices 

Determine the criteria weight. 

Synthetic weight. 

Construct a comparison matrices using semantic terms and T2NNs. 

Compute the score function for the T2NN evaluations. 

Define the greatest and the worst T2NN group evaluations. 

Compute the normalized extended decision matrix. 

Compute the weighted normalized decision matrix. 

Compute the utility degree for each anti-ideal and ideal alternative. 

Compute the utility function for each anti-ideal and ideal alternative. 

Compute the utility function of the alternatives and rank them. 
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Table 1. Details on the participants of the panel of experts. 

Expert Experience  Occupation Profession Gender 

Expert1 5 Industry 

G
o

v
er

n
m

en
t 

p
o

li
cy

 
m

ak
er

 

Male 

Expert2 12 Academia Male 

Expert3 11 Industry Male 

Expert4 8 Academia Male 

 

Step 2. A set of variables and their corresponding T2NNs are identified as shown in Table 2, for 

experts to use in evaluating the selected criteria and alternatives. 

Table 2. T2NN semantic terms for weighing dimensions and alternatives. 

Semantic terms Abridgements Type-2 neutrosophic number 

Exceedingly little EXC 〈(0.20, 0.20, 0.10); (0.65, 0.80, 0.85); (0.45, 0.80, 0.70)〉 

Little  LLE 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 

Moderate little MOL 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 

Moderate MOD 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 

Moderate high MOH 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 

High  HIG 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 

Exceedingly high EXH 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 

 

Step 3. Construct a preference matrix of criteria by experts to show their preferences to determine the 

criteria weights using the linguistic terms, then by using T2NNs. 

Step 4. Compute the score function for the T2NN assessments according to Eq. (1) [14]. 

𝑆(�̃�𝑖𝑗)  = 
1

12
 ⟨8 + (𝑇𝑇�̃�𝑖𝑗

(𝑦) + 2 (𝑇𝐼�̃�𝑖𝑗
(𝑦)) +  𝑇𝐹�̃�𝑖𝑗

(𝑦)) − (𝐼𝑇�̃�𝑖𝑗
(𝑦) + 2 (𝐼𝐼�̃�𝑖𝑗

(𝑦)) + 𝐼𝐹�̃�𝑖𝑗
(𝑦)) −

 (𝐹𝑇�̃�𝑖𝑗
(𝑦) + 2 (𝐹𝐼�̃�𝑖𝑗

(𝑦)) + 𝐹𝐹�̃�𝑖𝑗
(𝑦))⟩, i = 1, ..., m; j = 1, ..., n.                  (1) 

Step 5. Determine the best and the worst T2NN assessments according to the extended T2NN decision 

matrix for denoting the ideal (AI) and anti-ideal (AAI) alternatives, respectively according to Eqs. (2) 

and (3). 

The anti-ideal substitute  𝐴0 = {X01, … , X0j, … , X0n} 

𝐴0𝑗 = {
max

1≤𝑖≤𝑚
Xij    |𝐶𝑗 ∈  𝐶− 

max
1≤𝑖≤𝑚

Xij     |𝐶𝑗 ∈  𝐶+, j = 1, ..., n.                       

(2) 

where 𝐴0𝑗(j = 1, ..., n) designates anti-ideal group estimations under each criterion. 

The ideal substitute  𝐴𝑚+1 = {Xm+1 1, … , Xm+1 j, … , Xm+1 n} 

𝐴𝑚+1 𝑗 = {
max

1≤𝑖≤𝑚
Xij   |𝐶𝑗 ∈  𝐶− 

max
1≤𝑖≤𝑚

Xij    |𝐶𝑗 ∈  𝐶+, j = 1, ..., n.                      

(3) 

where 𝐴𝑚+1 𝑗(j = 1,..., n) indicates ideal group evaluations under each criterion. 

Step 6. Calculate the normalized decision matrix according to Eq. (4). 
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𝑅𝑖𝑗 = {

Xij

Xm+ij
  |𝐶𝑗 ∈  𝐶+ 

Xm+ij

Xij
   |𝐶𝑗 ∈  𝐶−

, i = 0, ..., m + 1; j = 1, ..., n.                         (4) 

Step 7. Calculate the weighted normalized decision matrix according to Eq. (5). 

𝑆𝑖𝑗  = 𝑤𝑗 𝑆𝑖𝑗 , i = 0, ..., m + 1; j = 1, ..., n.                   (5) 

Step 8. Compute the utility degree for each anti-ideal substitute according to Eq. (6).Then, compute 

the utility degree for each ideal substitute according to Eq. (7).   

𝑈−
𝑖 = 

∑ 𝑆𝑖𝑗 𝑛
𝑗=1

∑ 𝑆0𝑗 𝑛
𝑗=1

, i = 0, ..., m + 1.                    (6) 

𝑈+
𝑖 = 

∑ 𝑆𝑖𝑗 𝑛
𝑗=1

∑ 𝑆𝑚+1 𝑗 𝑛
𝑗=1

, i = 0, ..., m + 1.                    (7) 

Step 9. Compute the utility function for each anti-ideal alternative according to Eq. (8).Then, compute 

the utility function for each ideal substitute according to Eq. (9).   

𝑓(𝑈−) = 
𝑈+

0

𝑈−
0+ 𝑈+

0
                       (8) 

𝑓(𝑈+) = 
𝑈−

𝑚+1

𝑈−
𝑚+1+ 𝑈+

𝑚+1
                      (9) 

Step 10. Compute the utility function of the substitutes and rank them by employing Eq. (10). The 

optimal substitute has the highest utility function. 

𝑓(𝑈𝑖) = 
(𝑈−

𝑖 + 𝑈+
𝑖)[𝑓(𝑈−) ×𝑓(𝑈+) ]

𝑓(𝑈−)+𝑓(𝑈+)− 𝑓(𝑈−) ×𝑓(𝑈+)
, i = 1, ..., m.                (10) 

3. Application  

3.1 Case Study 

Most countries in the Middle East and Africa rely on wheat in their daily diet. Wheat, flour, and 

bread are staples that may be found on most people's dinner tables. The variety, quality, purchase 

prices from the source, transportation fees, loading and unloading charges, and other considerations 

such as delivery intervals all play a role in determining the source of wheat. Wheat production 

follows the cycles of the seasons, and storage capacity are often restricted or only enough for a range 

of time spans. Wheat prices fluctuate across the world based on the variety being purchased and the 

accepted level of quality. Wheat is normally divided into two categories: hard and soft. When 

choosing wheat suppliers for the Middle East and Africa, it is important to keep in mind that many 

nations in North America and Europe control the majority of the wheat supply chain. Wheat has been 

negatively affected by COVID-19 since it caused crop harvesting to be delayed, and the subsequent 

lockdown had an effect on both the supply chain and price. The extent to which wheat can be grown 

has a considerable bearing on the wheat supply chain's ability to continue operating profitably. As a 

result, the wheat supply chain has to commit to and actively engage in innovations that are 

sustainable via joint efforts. When doing an investigation to determine who the primary source of 

wheat is or how the various suppliers stack up against one another, each of these aspects should be 

taken into consideration. In addition, the identification and selection of the primary wheat suppliers 

in the Middle East and Africa may be impacted in the future by developments and risks that are both 

anticipated and unanticipated. In this study, we seek to assess four countries as suppliers of wheat. 

The four countries are Romania (A1), Australia (A2), Russia (A3), and Ukraine (A4). 

3.2 Application of the proposed methodology 

In this part, the steps of the proposed approach are applied to evaluate and select the most 

suitable country as a supplier of wheat for the countries of the Middle East and Africa. 

Step 1. In the beginning, the problem and its main and subsidiary aspects were studied. In this regard, 

four experts were selected, as shown in Table 1, for the participation of the authors in expressing their 

views on the importance of the criteria, the arrangement of alternatives, and other matters related to 

the study. 
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Step 2. Seven semantic terms and their corresponding T2NNs were identified as in Table 2, to be used 

by experts in evaluating the criteria, determining their weights, and arranging the four selected 

alternatives. 

Step 3. Seven criteria have been identified that have a direct impact on choosing the best country as a 

supplier of wheat. The seven selected criteria are Quality (C1 ), Expenses (price and costs) (C2 ), 

Delivery (time, place, and amount) (C3), Origin (source country) (C4), Flexibility (C5), Communication 

(C6), and Reliability/solvency of the importer (C7). In addition, four alternatives were selected to be 

used in the evaluation process. The four alternatives selected are Romania (A1), Australia (A2), Russia 

(A3), and Ukraine (A4). 

Step 4. An evaluation matrix was constructed by the four experts to show their preferences for the 

seven criteria using linguistic terms as in Table 3, then by using T2NNs as presented in Table 4. 

Step 5. The T2NNs were converted to real values using Eq. (1), and the final weights for the seven 

criteria were determined as exhibited in Table 4 and Figure 2. 

Table 3. Assessment matrix of criteria by the four experts using semantic terms. 

Experts 
Criteria 

𝐂𝟏 𝐂𝟐 𝐂𝟑 𝐂𝟒 𝐂𝟓 𝐂𝟔 𝐂𝟕 

Expert1 MOL EXH HIG LLE MOL EXH HIG 

Expert2 EXC MOL EXH LLE LLE LLE EXC 

Expert3 EXH EXH MOH HIG LLE LLE MOL 

Expert4 HIG EXH EXH MOH EXH MOH EXH 

 

Table 4. Assessment matrix of criteria by the four experts using T2NNs. 

Experts 
Criteria 

𝐂𝟏 𝐂𝟐 

Expert1 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 
Expert2 〈(0.20, 0.20, 0.10); (0.65, 0.80, 0.85); (0.45, 0.80, 0.70)〉 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 
Expert3 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 
Expert4 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 
Weight 0.139 0.185 

Experts 𝐂𝟑 𝐂𝟒 

Expert1 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 
Expert2 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 
Expert3 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 
Expert4 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 
Weight 0.192 0.122 

Experts 𝐂𝟓 𝐂𝟔 

Expert1 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 
Expert2 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 
Expert3 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 
Expert4 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 
Weight 0.114 0.129 

Experts 𝐂𝟕 

Expert1 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 
Expert2 〈(0.20, 0.20, 0.10); (0.65, 0.80, 0.85); (0.45, 0.80, 0.70)〉 
Expert3 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 
Expert4 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 

Weight 0.119 
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Figure 2. Weights of criteria. 

Step 6. An evaluation matrix was constructed by the four experts to show their preferences for the 

four alternatives regarding the seven criteria using linguistic terms as in Table 5, then by using T2NNs 

as presented in Table 6. 

Step 7. The T2NNs were converted to real values using Eq. (1). 

Step 8. The best and the worst T2NN assessments according to the T2NN decision matrix were 

determined for denoting the AI and AAI substitutes, respectively according to Eqs. (2) and (3), as 

presented in Table 7.  

Step 9. The normalized decision matrix was computed according to Eq. (4) as presented in Table 7.  

Step 10. The weighted normalized decision matrix was computed according to Eq. (5) as presented in 

Table 8. 

Step 11. The utility degree for each anti-ideal substitute was computed according to Eq. (6), as 

presented in Table 9. Then, the utility degree for each ideal substitute was computed according to Eq. 

(7), as presented in Table 9.  

Step 12. The utility function for each anti-ideal alternative was computed according to Eq. (8), as 

presented in Table 9. Then, the utility function for each ideal substitute was computed according to 

Eq. (9), as presented in Table 9.  

Step 13. The utility function of the substitutes was computed according to Eq. (10), as presented in 

Table 9. The alternatives were ranked as presented in Table 9 and shown in Figure 3.  

Table 5. Assessment matrix of the four alternatives by the four experts using semantic terms. 

Experts 
Criteria 

𝐂𝟏 𝐂𝟐 𝐂𝟑 𝐂𝟒 𝐂𝟓 𝐂𝟔 𝐂𝟕 

A1 EXH MOL EXH HIG HIG MOH EXH 

A2 HIG MOH EXH MOH HIG HIG MOH 

A3 MOL MOH LLE EXC EXC MOD LLE 

A4 MOH MOD MOD MOH LLE HIG MOD 

 

Table 6. Assessment matrix of the four alternatives by the four experts using T2NNs. 

Altern
atives 

Criteria 

𝐂𝟏 𝐂𝟐 

A1 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 

A2 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 
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A3 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 

A4 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 

Altern
atives 

Criteria 

𝐂𝟑 𝐂𝟒 

A1 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 

A2 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 

A3 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 〈(0.20, 0.20, 0.10); (0.65, 0.80, 0.85); (0.45, 0.80, 0.70)〉 

A4 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 

Altern
atives 

Criteria 

𝐂𝟓 𝐂𝟔 

A1 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 

A2 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 

A3 〈(0.20, 0.20, 0.10); (0.65, 0.80, 0.85); (0.45, 0.80, 0.70)〉 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 

A4 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 

Altern
atives 

Criteria 

𝐂𝟕 

A1 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 

A2 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 

A3 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 

A4 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 

 

Table 7. Normalized matrix of the four alternatives according to all criteria. 

Experts 
Criteria 

𝐂𝟏 𝐂𝟐 𝐂𝟑 𝐂𝟒 𝐂𝟓 𝐂𝟔 𝐂𝟕 

AAI 0.495 0.648 0.333 0.296 0.296 0.716 0.333 

A1 0.495 1.000 0.333 0.296 0.296 0.817 0.333 

A2 0.568 0.648 0.333 0.338 0.296 0.716 0.437 

A3 1.000 0.648 1.000 1.000 1.000 1.000 1.000 

A4 0.648 0.793 0.534 0.338 0.774 0.716 0.534 

AI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 

Table 8. Weighted normalized matrix of the four alternatives according to all criteria. 

Experts 
Criteria 

𝐂𝟏 𝐂𝟐 𝐂𝟑 𝐂𝟒 𝐂𝟓 𝐂𝟔 𝐂𝟕 

AAI 0.069 0.120 0.064 0.036 0.034 0.092 0.040 

A1 0.069 0.185 0.064 0.036 0.034 0.105 0.040 

A2 0.079 0.120 0.064 0.041 0.034 0.092 0.052 

A3 0.139 0.120 0.192 0.122 0.114 0.129 0.119 

A4 0.090 0.147 0.103 0.041 0.088 0.092 0.064 

AI 0.139 0.185 0.192 0.122 0.114 0.129 0.119 

 

Table 9. Final ranking of the four alternatives. 

Alternatives 𝑂𝑖 𝑈𝑖
− 𝑈𝑖

+ 𝑓(𝑈−) 𝑓(𝑈−) 𝑓(𝑈𝑖) Rank 
AAI 0.455       
A1 0.533 1.172 0.533 0.313 0.687 0.466 3 
A2 0.482 1.061 0.482 0.313 0.687 0.422 4 
A3 0.935 2.057 0.935 0.313 0.687 0.819 1 
A4 0.625 1.375 0.625 0.313 0.687 0.547 2 
AI 1.000       
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Figure 3. Final ranking of the four alternatives. 

 

3.3 Results and discussion 

In this part, the results obtained from the application of the proposed model to evaluate and 

determine the most suitable countries supplying wheat to the countries of the Middle East and Africa 

are discussed. The results are divided into two parts. The first part is concerned with evaluating the 

seven criteria and determining the weights. The seven criteria were evaluated through expert 

opinions as shown in Table 4. The results indicate that the Delivery criterion (time, place, and 

amount) (C3), is the criterion with the highest weight by 0.192, followed by the Expenses criterion 

(price and costs) (C2) with a weight of 0.185, while the Flexibility criterion (C5) has the least weight 

by 0.114. 

The second part is concerned with evaluating the four alternatives selected in the study. The 

four selected alternatives were arranged as shown in Table 9 and Figure 3. The results show that 

Russia (A3) is the highest in the order, followed by Ukraine (A4), while Australia (A2) is the lowest in 

the order. 

4. Conclusions 

Wheat is a fundamental and significant product that is used in the majority of countries, 

including those in the Middle East and Africa, where derivatives of wheat are almost always present 

on dining tables. Because of this, the governments are able to maintain a consistent supply of wheat 

via the processes of importing, storing, and distributing it. The supply chain for wheat has a 

considerable influence not just on environmental sustainability but also on the safety of food supplies. 

In addition, nations are confronted with a number of issues, some of which include a fast-expanding 

population, considerable urbanization, a lack of water, and poor soil quality. Despite the ever-

increasing need for food, agriculture is not a viable solution to the problem. In addition, the choice of 

supply is affected by a broad variety of variables, such as the price of the product at issue, the number 

of producers, the cost of inputs, technical advancements, the cost of alternative goods, and 

unpredictability in the form of the weather. This research addresses a knowledge gap regarding the 

ranking or selection of top wheat suppliers for the African area as well as the Middle Eastern region. 

This research examines alternatives to wheat suppliers based on recognized needs. This is important 

in light of the fact that wheat is seen as an essential food item in the Middle East. Given that 

governments are in charge of importing, managing, and storing wheat, this is of the utmost 

importance. 
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The main objective of the study is to identify and choose the most suitable wheat suppliers from 

the four countries used in the study. The four countries identified in the evaluation process are 

Russia, Romania, Ukraine, and Australia. Also, seven basic criteria were identified in selecting the 

most suitable suppliers. The evaluation process was conducted in a neutrosophic environment and 

by applying the MARCOS method to determine the most suitable countries for wheat supply. 
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Abstract: Purchasing food in a way that minimizes negative effects on the environment, society, and the 

economy is a growing trend in the food industry. Sustainable procurement is discussed in this study, along 

with its significance, important criteria, and advantages in the food business. Businesses may aid 

sustainable development, lessen their impact on the environment, provide aid to local communities, and 

keep up with shifting consumer expectations for sustainably and ethically produced food when they 

prioritize responsible sourcing practices. To effectively implement sustainable procurement in the food 

sector, this article stresses the need for teamwork, openness, and a long-term commitment to sustainability. 

So, this paper ranks the best supplier in sustainable procurement in the food business to achieve 

sustainability. The concept of multi-criteria decision-making (MCDM) is used in this paper to deal with the 

various criteria. This paper used the TOPSIS method as an MCDM tool to compute the weights of criteria 

and rank the suppliers. The TOPSIS method is integrated with the single-valued neutrosophic set to deal 

with uncertain and vague information. There are seven criteria and 10 suppliers in the food business are 

evaluated and ranked in this study. We obtained the environmental impacts as the best criteria in seven 

criteria.  The goal of environmental impact prioritizing suppliers and products that minimize negative 

environmental impact. 

Keywords: Neutrosophic Set, MCDM, TOPSIS, Procurement, Sustainability  

 

1. Introduction  

As businesses become more aware of the environmental, social, and financial consequences of their supply 

chains, they are beginning to prioritize sustainable procurement practices within the food industry. 
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Businesses in the food industry, such as restaurants, caterers, and grocery stores, may have a significant 

impact on global sustainability by shifting to ethical purchasing policies. Sustainable food procurement 

involves making ethical and ecologically sound decisions throughout the manufacturing, distribution, 

consumption, and disposal of food items. This article delves into the topic of sustainable procurement in 

the food sector, discussing its value, obstacles, and recommendations for moving forward. Businesses in 

the food industry may improve their environmental impact, give back to their communities, and satisfy 

customer demand for sustainably and ethically sourced products by giving sustainable procurement first 

priority[1], [2]. 

Deforestation, greenhouse gas emissions, and water pollution are just some of the ways in which the food 

business is damaging the environment. Sustainable and sustainably sourced food items are in high demand 

as consumer knowledge of the environmental and social implications of food production increases. The 

key to environmentally, socially, and economically responsible food procurement is to take into account all 

stages of the supply chain, from raw material sourcing through final retail packaging. The focus is on long-

term viability rather than short-term gains in efficiency or quality[3], [4]. 

The mitigation of negative effects on the environment is a major advantage of sustainable procurement in 

the food business. Organic farming and regenerative agriculture are two examples of sustainable 

agriculture that help companies reduce their chemical footprint, save biodiversity, and preserve scarce 

natural resources. Waste is reduced and landfill contributions are decreased because of sustainable 

procurement's emphasis on responsible waste management and the promotion of environmentally friendly 

packaging materials[5], [6]. 

The importance of social responsibility in sustainable food purchases cannot be overstated. Businesses may 

aid in the growth of their communities by investing in the agricultural sector. Farmers may be protected 

from exploitation and paid fairly for their goods with the help of fair trade practices and ethical sourcing. 

In addition, by prioritizing universal access to safe, healthy, and reasonably priced food, sustainable 

procurement may contribute to solving problems of food security and food justice[7], [8]. 

There are a number of obstacles that must be overcome before the food business can adopt sustainable 

buying practices. One major challenge is the proliferation of middlemen and international sourcing 

networks that characterize modern supply chains. It might be difficult to ensure traceability and 

transparency across the supply chain, but new tools like blockchain and digital tracking systems are 

making it easier than ever. It is important for firms to weigh the long-term advantages against the potential 

additional expenses of obtaining sustainable goods, and to explore opportunities for cooperation and 

partnership to take advantage of economies of scale[9], [10]. 

There are a variety of approaches that companies may take to sustainable buying in the food sector. 

Establishing connections with certified sustainable suppliers, developing explicit sustainability standards 

for suppliers, and performing frequent audits and evaluations are all crucial. Sustainable practices across 

the supply chain can only be driven by encouraging supplier participation and cooperation. Moreover, 

companies may guarantee that procurement choices are consistent with sustainable values by investing in 

staff training and education[11], [12]. 

Sustainable food procurement practices are mostly driven by consumer demand. Sustainable food 

enterprises may gain an advantage as consumers grow more aware of the ecological and social 
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consequences of their purchases. Increased brand reputation and customer satisfaction may result from 

open communication regarding sustainable sourcing practices and certifications that have been earned by 

the company[13], [14]. 

In this paper, we improve the supply chain by selecting the best suppliers in sustainable procurement in 

the food business. There are various criteria for sustainable procurement in the food business so, we used 

the concept of multi-criteria decision-making (MCDM) to deal with various criteria[15], [16].  

In light of these considerations, the proper handling of uncertainties or imprecision has emerged as a critical 

problem in MCDM analysis. The single-valued neutrosophic set (SVNS) suggested by Smarandache and 

Wang et al. is one such tool for capturing such uncertainties or imprecision information[17], [18]. The SVNS, 

a novel and practical extension of fuzzy sets, is distinguished by the strength of the relationships between 

its truth-member, indeterminacy-member, and falsity-member. The SVNS seems to be more successful at 

dealing with uncertain information than other fuzzy tools like the intuitionistic fuzzy set (IFS) and the 

Pythagorean fuzzy set (PFS), as it can deal with indeterminate information that IFS and PFS cannot. 

According to this new line of inquiry, SVNS theory may be used to MCDM issues even while facing 

ambiguity and complexity[19], [20]. 

The paper is organized as follows: section 2 provides the challenges in the food business. The proposed 

method in the neutrosophic TOPSIS method is organized in section 3. The results and discussion of the 

proposed method are presented in section 4. Section 5 presented the conclusions of this study. 

2. Challenges in Food Business   

Many obstacles might arise when companies strive to practice sustainable buying in the food 

sector. Some typical difficulties encountered by the food industry are listed below. 

Tracing the origin and viability of food items may be difficult because of the food industry's 

notoriously complicated and worldwide supply networks, which sometimes include several 

middlemen. When working with several suppliers with different data availability, it may be 

challenging to maintain supply chain transparency and traceability[21], [22]. 

Consequences on Expenditures Sustainable product sourcing and working with certified suppliers 

may cost more than traditional product procurement in certain cases. Some organizations, 

particularly those with slim profit margins, may be put off by the initial investment or additional 

expenditures associated with sustainable buying practices. 

Supply Chain Challenges It may be difficult for businesses to locate suppliers who match the 

requirements for sustainable procurement, especially if they need a big quantity of a certain 

product. An obstacle to implementation may be the scarcity of sustainable suppliers in a certain 

area or for a given component[23], [24]. 

The tastes and expectations of consumers change with time, and businesses must be prepared to 

respond by offering more and more sustainably and ethically based goods. Successfully navigating 

customers' ever-evolving expectations and communicating the company's commitment to 

sustainable sourcing is essential for gaining their confidence and loyalty. 
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Sustainable buying necessitates weighing several variables, including the effect on the 

environment, the impact on society, and the profitability of the business. It might be difficult to 

strike a balance between competing needs. Environmental concerns about transportation 

emissions, for instance, may collide to prioritize local sources[24], [25]. 

It might be difficult to get suppliers on board with adopting sustainable procedures and standards 

for both production and business. It calls for establishing reliable connections, inspecting suppliers, 

and encouraging cooperation for ongoing improvement. However, not all vendors can easily adapt 

to new conditions or fulfill stringent environmental standards. 

The process of verifying and certifying a company's sustainability claims may be time-consuming 

and costly. Additional time, money, and knowledge may be needed to ensure that all sustainable 

practices and certifications are being adhered to. 

The value of sustainability, the criteria for sustainable sourcing, and the advantages of sustainable 

procurement can only be fully realized if all personnel in an organization are educated and trained 

in these areas. In bigger organizations with more varied teams and stakeholders, it may be difficult 

to ensure that everyone has the same knowledge of and commitment to sustainability. 

Collaboration among stakeholders, utilizing technology for traceability and transparency, seeking 

partnerships and collaborations, and incorporating sustainability concerns into the core business 

plan are just some of the avenues that may be pursued to address these difficulties. Food companies 

may set the path for good change in the food sector by overcoming these challenges to sustainable 

procurement[10], [13]. 

3. Neutrosophic TOPSIS Method 

To deal with the MCDM difficulties precisely, the traditional TOPSIS developed by Hwang and 

Yoon has been widely used. Distance from the negative ideal solution (NIS) to the positive ideal 

solution (PIS) is used in this method to evaluate alternatives (and ultimately choose the best one). 

The optimal option(s) will be those that both minimize the travel time to the PIS and maximize the 

travel time to the NIS[26], [27] [28],[29]. The following steps explain how Ye modified the 

traditional TOPSIS approach to work in an SVNLS setting as shown in Figure 1. 

Step 1. Build the decision matrix  

𝑋𝑒 =  [
𝑥11

(𝑒)
⋯ 𝑥1𝑛

(𝑒)

⋮ ⋱ ⋮

𝑥𝑚1
(𝑒)

⋯ 𝑥𝑚𝑛
(𝑒)

]                                                                                                                     (1) 

Where 𝑥𝑖𝑗
(𝑒)

=< (𝑇𝑥𝑖𝑗
𝑒 , 𝐼𝑥𝑖𝑗

𝑒 , 𝐹𝑥𝑖𝑗
𝑒 ) > ,𝑖 = 1,2,3 … 𝑚 (𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠); 𝑗 = 1,2,3, … 𝑛 (𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎)  

Step 2. Normalize the decision matrix  

The normalization matrix is built based on positive and negative criteria. 
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𝐿 =  [
𝑙11

(𝑒)
⋯ 𝑙1𝑛

(𝑒)

⋮ ⋱ ⋮

𝑙𝑚1
(𝑒)

⋯ 𝑙𝑚𝑛
(𝑒)

]                                                                                                                                 (2) 

Step 3. Combined the decision matrix  

𝐿 =  [
𝑙11 ⋯ 𝑙1𝑛

⋮ ⋱ ⋮
𝑙𝑚1 ⋯ 𝑙𝑚𝑛

]                                                                                                                                 (3) 

Where 𝑙11 =  ∑ 𝑤𝑒 ∗ 𝑙𝑖𝑗
(𝑒)𝑑

𝑒=1 , d refers to the number of decision makers. 

Step 4. Compute the weights of criteria 

Step 5. Compute the weighted decision matrix 

𝐺 =  [
𝑤1𝑙11 ⋯ 𝑤𝑛𝑙1𝑛

⋮ ⋱ ⋮
𝑤1𝑙𝑚1 ⋯ 𝑤𝑛𝑙𝑚𝑛

]                                                                                                                                 (4) 

Step 6. Compute the distance between alternatives (𝑆𝑖(𝑖 = 1,2,3, … . 𝑚)) and positive and negative 

criteria 

𝑇(𝑆𝑖 , 𝑆+) = ∑ 𝑡(𝑔𝑖𝑗 , 𝑔𝑖
+)𝑛

𝑗=1                                                                                                            (5) 

𝑇(𝑆𝑖 , 𝑆−) = ∑ 𝑡(𝑔𝑖𝑗 , 𝑔𝑖
−)𝑛

𝑗=1                                                                                                            (6) 

Step 7. Calculate the coefficient of closeness value 

𝐹(𝑆𝑖) =
𝑇(𝑆𝑖,𝑆−)

𝑇(𝑆𝑖,𝑆+)+𝑇(𝑆𝑖,𝑆−)
                                                                                                                         (7) 

Step 8. Order the suppliers 
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Figure 1. The Steps of the single valued neutrosophic TOPSIS method. 

4. Results  

This section introduces the results of the proposed method. This paper used single-valued 

neutrosophic numbers to evaluate the criteria and suppliers. There are various experts in the field 

of supply chain in the food business to evaluate the criteria and suppliers. This study gathered 

seven criteria from previous studies to evaluate it and ten suppliers. First, we compute the weights 

of these criteria, then rank and select suppliers in the food business to achieve sustainable 

procurement.  There are seven criteria organized as:  

Organic and regenerative farming practices have a positive effect on the environment because they 

improve soil quality, increase biodiversity, and reduce the need for synthetic chemicals. 

You may help protect marine habitats and support local economies by purchasing seafood from 

sustainable fisheries and aquaculture businesses. 

Favor vendors that have integrated water and energy-saving practices throughout their whole 

manufacturing operations. 

Accountability to Society: 

If you care about things like fair salaries, safe working conditions, and the absence of child labor, 

you should support businesses that source their goods ethically. 

Priorities purchasing from regional farmers and manufacturers to bolster regional economies, cut 

down on carbon emissions from transportation, and foster growth in existing communities. 

Support vendors that value diversity and inclusion in their workforce, and who seek to ensure that 

all of their workers are afforded the same respect and opportunity. 
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Purchase meat, dairy, and eggs from farms that place a premium on animal welfare and adhere to 

established industry guidelines for humane animal care. 

Favor vendors that raise their animals without confining them in cages and instead provide them 

access to outdoor areas where they may forage and engage in other natural behaviors. 

Sustainable packaging is selecting vendors whose packaging is either fully or partially recyclable, 

compostable, or biodegradable. This helps reduce landfill trash and supports the circular economy. 

Reduce your impact on the environment by supporting businesses that recycle and compost food 

scraps and other organic waste, as well as packaging and other items. 

Look for vendors that have supplier certifications like USDA Organic, Fair Trade, MSC (Marine 

Stewardship Council), or Rainforest Alliance to know that they engage in ethical and sustainable 

practices. 

Make that your suppliers are abiding by all applicable laws and regulations about food quality and 

safety, as well as the environment and workers' rights. 

Transparency and tractability 

Seeing the whole supply chain: If you want to know where your food came from and how it was 

made, you need to find a supplier that can tell you. 

Regular audits and inspections of suppliers are necessary to guarantee compliance with 

sustainability standards and maintain supply chain transparency. 

Effortless Updating: 

Inspire your suppliers to work together on sustainability projects and to brainstorm new ways to 

solve environmental and social problems so that everyone benefits. 

To ensure ongoing development and accountability, it is important to set up systems for tracking 

supplier performance and encouraging frequent reporting on sustainability measures. 

To motivate real change and advance sustainability in the food sector, organizations must set their 

sustainable procurement criteria, communicate them clearly to suppliers, and periodically analyze 

and evaluate supplier compliance. 

Then we applied the SVNS TOPSIS method to show the weights of the criteria and rank the 

suppliers. There are seven criteria and ten suppliers in this study. 

 Step 1. Build the decision matrix  

We used three decision-makers who have expertise in the food business to rank the criteria of 

sustainable procurement in the food business and suppliers. Then we built the decision matrix 

between criteria and suppliers based on the opinions of three decision-makers by using Eq. (1).  

Step 2. Normalize the decision matrix  
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Then we normalized the decision matrix by using Eq. (2) as shown in Table 1. 

Table 1. Normalized decision matrix 

 SPFB1 SPFB2 SPFB3 SPFB4 SPFB5 SPFB6 SPFB7 

SPFBS1 0.19916 0.412945 0.581344 0.550445 0.355256 0.455857 0.161866 

SPFBS2 0.216038 0.141239 0.357227 0.341767 0.332499 0.221326 0.248287 

SPFBS3 0.19916 0.216647 0.307107 0.152471 0.149182 0.14429 0.175584 

SPFBS4 0.533344 0.153209 0.160277 0.169914 0.149182 0.149792 0.312759 

SPFBS5 0.381442 0.372847 0.451764 0.152471 0.162014 0.14429 0.587109 

SPFBS6 0.44389 0.270868 0.17223 0.339829 0.233255 0.14429 0.508233 

SPFBS7 0.311398 0.512291 0.17386 0.402174 0.437433 0.523355 0.161866 

SPFBS8 0.105487 0.378234 0.17386 0.152471 0.610003 0.462338 0.253088 

SPFBS9 0.213506 0.128073 0.245849 0.421233 0.22883 0.382306 0.161866 

SPFBS10 0.305491 0.323773 0.24449 0.1641 0.149182 0.156517 0.253088 

 

Step 3. Combined the decision matrix  

We combined the decision matrix into one matrix by using Eq. (3) 

Step 4. Compute the weights of criteria 

Then the weights of criteria are computed as shown in Figure 2. The environmental impacts have 

the largest weight in all criteria. 

 

 

Figure 2. Weights of the criteria of sustainable procurement in food business.  
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Step 5. Compute the weighted decision matrix 

Then we used Eq. (4) to compute the weighted decision matrix by multiplying the weights of 

criteria by the normalization matrix as shown in Table 2. 

Table 2. Weighted normalized decision matrix 

 SPFB1 SPFB2 SPFB3 SPFB4 SPFB5 SPFB6 SPFB7 

SPFBS1 0.016807 0.061654 0.123603 0.103175 0.054523 0.05187 0.016024 

SPFBS2 0.018231 0.021087 0.075952 0.06406 0.05103 0.025184 0.024579 

SPFBS3 0.016807 0.032346 0.065296 0.028579 0.022896 0.016418 0.017382 

SPFBS4 0.045008 0.022874 0.034078 0.031849 0.022896 0.017044 0.030961 

SPFBS5 0.032189 0.055667 0.096052 0.028579 0.024865 0.016418 0.05812 

SPFBS6 0.037459 0.040441 0.036619 0.063697 0.035799 0.016418 0.050312 

SPFBS7 0.026278 0.076486 0.036965 0.075383 0.067135 0.05955 0.016024 

SPFBS8 0.008902 0.056471 0.036965 0.028579 0.09362 0.052607 0.025054 

SPFBS9 0.018017 0.019122 0.052271 0.078955 0.03512 0.043501 0.016024 

SPFBS10 0.02578 0.04834 0.051983 0.030759 0.022896 0.017809 0.025054 

 

Step 6. Compute the distance between alternatives (𝑆𝑖(𝑖 = 1,2,3, … . 𝑚)) and positive and negative 

criteria. 

All criteria are positive criteria, so we compute the distance of each suppliers and positive criteria 

as shown in Eq. (5). 

Step 7. Calculate the coefficient of closeness value 

Then compute the closeness value by using Eq. (7). 

Step 8. Order the suppliers 

The suppliers are ranked according to the largest value in closeness coefficient. The supplier 1 is 

the best and supplier 4 is the worst as shown in figure 3. 
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Figure 3.  The rank of suppliers in food business. 

5. Conclusions  

Fostering a more sustainable and resilient food system requires a focus on sustainable procurement in the 

food industry. Sustainable development may be greatly aided by the food industry if it takes into account 

environmental implications, social responsibility, animal welfare, packaging and waste management, 

certifications and standards, traceability and transparency, and the need for continual improvement. 

Reduced environmental degradation, greater community development, enhanced brand reputation, and 

the satisfaction of customer expectations are all possible thanks to sustainable procurement practices. 

However, sustainable procurement isn't without its obstacles, such as convoluted supply networks and 

unknown financial consequences. Overcoming these challenges, this paper introduces the framework to 

show the importance of sustainable procurement in food business criteria and select the best supplier in 

the food business. This paper used the TOPSIS MCDM method to rank these suppliers. The TOPSIS is 

integrated with a single valued neutrosophic set to deal with uncertain data. The main results show that 

environmental impacts have the highest importance in all criteria. Food companies may play a crucial role 

in ensuring the long-term viability of the food industry and society at large by adopting sustainable 

procurement practices. 
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Abstract. A generalisation of soft sets called a hypersoft set incorporates a multiargument function. The

major goal of this study is to provide appropriate examples for the introduction of hypersoft semi-open sets
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—————————————————————————————————————————-

1. Introduction

Molodstov [14] established the concept of a soft set in 1999 to handle difficult prob-

lems in finance, technical education, and ecological science when no mathematical instruments

could effectively address the many types of uncertainty. [13] constructed a number of soft set

theory operators and carried out a more thorough conceptual analysis.

Numerous applications of topology, a subfield of mathematics, may be found in the

computer and physical sciences. Soft topology is determined on soft sets in two different ways,

one by Shabir [20] and the other by Cagman et al. [5].

Soft SOS and soft SCS were first presented in soft TS by Sasikala, V., E. and Sivaraj,

D., [19]. Soft semi connected and soft locally semi connected characteristics in soft TS were
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established by Krishnaveni, J., and Sekar, C., [12].

In 2018, Florentin Smarandache [22] extended the concept of a soft set to a hypersoft

set and the hypersoft topology was introduced by Musa and Assad, [15].

The hypersoft sets have been utilised in the Covid-19 Decision Making Model by Inthu-

mathi et al., who cited [9]. Hypersoft subspace topology, hypersoft basis, hypersoft limit point,

and hypersoft Hausdorff space were also introduced by Inthumathi et al. in 10. Neutrosophic

hypersoft TS and Neutrosophic Semi-open hypersoft sets were produced by Ajay et al. [2] with

an illustration to the MAGDM in the Covid-19 Scenario.

When there exist inconclusive data, uncertain functions, or ambiguous sets, Florentin

Smarandache [6] recently invented the IndetermHypersoft set as an enhancement of the hyper-

soft set. He [7] as the company that created the TreeSoft set as an addition to the Multisoft

set. It can be seen that the level 2 TreeSoft set resembles the hypersoft set.

The framework of the manuscript is as follows. The preliminary information relevant to

this article is provided in section 2. Hypersoft SOS and hypersoft SCS are introduced in sec-

tion 3 of the paper. We present the idea of hypersoft semi-interior and hypersoft semi-closure

in section 4 and demonstrate some of its features.

2. Preliminaries

The preceding definitions are crucial to understanding the content of this manuscript.

Definition 2.1. [14] “Let U be an initial universe and E be a set of parameters. Let P(U)

denote the power set of U. The pair (F, E) or simply FE , is called a soft set over U, where F

is a mapping given by F : E→P (U)”.

Definition 2.2. [22] “Let U be a universe of discourse, P(U) the power set of U and

E1, E2, · · · , En the pairwise disjoint sets of parameters. Let Ai be the nonempty subset of

Ei for each i=1,2,...,n. A hypersoft set can be identified by the pair (Ω, A1 ∗ A2 ∗ · · · ∗ An),

where Ω : A1 ∗ A2 ∗ · · · ∗ An → P (U). For sake of simplicity, we write the symbols T for

E1 ∗ E2 ∗ · · · ∗ En, P for A1 ∗A2 ∗ · · · ∗An”.

Definition 2.3. [1] “Let (Ω,Q) and (G ,R) be two hypersoft sets over U. Then union of

(Ω,Q) and (G ,R) is denoted by (H ,S ) = (Ω,Q)∪ (G ,R) with S=D1 ∗D2 ∗ · · · ∗Dn, where

Di=Qi ∪Ri for i=1,2,...,n, and H is defined by

H (α) =



Ω(α), ifα ∈ Q −R

G (α), ifα ∈ R− Q

Ω(α) ∪ G (α), ifα ∈ Q ∩R

0, else,

where α = (d1, d2, ..., dn) ∈ S ”.
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Definition 2.4. [1] “Let (Ω,Q) and (G ,R) be two hypersoft sets over U. Then intersection

of (Ω,Q) and (G ,R) is denoted by (H ,S ) = (Ω,Q) ∩ (G ,R) with S=D1 ∗ D2 ∗ · · · ∗ Dn,

is such that Di=Qi ∩ Ri for i=1,2,...,n, and H is defined as H (α) = Ω(α) ∩ G (α), where

α = (d1, d2, ..., dn) ∈ S . If Di is an empty for some i, then (Ω,Q) ∩ (G ,R) is defined to be a

null hypersoft set”.

Definition 2.5. [15] “Let τ be a collection of hypersoft sets over U, then τ is said to be a

hypersoft topology over U if

(1) (∅,P) and(Ω,P) belongs to τ,

(2) The intersection of any two hypersoft sets in τ belongs to τ,

(3) The union of any number of a hypersoft sets in τ belongs to τ.

Then ((Ω,P), τ) is called a hypersoft TS over U”.

Proposition 2.6. [15] “Let ((Ω,P), τ) be a hypersoft space over U. Then

(1) (∅,P) and (Ω,P) are hypersoft closed sets over U,

(2) The union of any two hypersoft closed sets is a hypersoft closed set over U,

(3) The intersection of any number of hypersoft closed sets is a hypersoft closed set over

U”.

Definition 2.7. [15] “Let ((Ω,P), τ) be a hypersoft TS and let (Ω,Q) be a hypersoft set then

(1) The hypersoft interior of (Ω,Q) is the hypersoft set

h-int(Ω,Q) =
⋃
{(Ω,R) : (Ω,R) is hypersoft open and (Ω,R) ⊆ (Ω,Q)}.

(2) The hypersoft closure of (Ω,Q) is the hypersoft set

h-cl(Ω,Q) =
⋂
{(Ω,R) : (Ω,R) is hypersoft closed and (Ω,Q) ⊆ (Ω,R)}”.

Proposition 2.8. [15] “Let ((Ω,P), τ) be a hypersoft TS and let (Ω,Q) be a hypersoft set

then

(1) h-cl(Ω,Q) is the smallest hypersoft closed set containing (Ω,Q).

(2) (Ω,Q) is a hypersoft closed set if and only if (Ω,Q)=h-cl(Ω,Q)”.

Proposition 2.9. [15] “Let ((Ω,P), τ) be a hypersoft TS and let (Ω,Q) be a hypersoft set

then

(1) h-int(Ω,Q) is the largest hypersoft open set contained in (Ω,Q).

(2) (Ω,Q) is a hypersoft open set if and only if (Ω,Q)=h-int(Ω,Q)”.

Proposition 2.10. [15] “Let ((Ω,P), τ) be a hypersoft TS and let (Ω,Q),(Ω,R) be a hypersoft

sets over U. Then

(1) h-int(h-int(Ω,Q))=h-int((Ω,Q).

(2) (Ω,Q) ⊆ (Ω,R) implies h-int(Ω,Q)⊆h-int(Ω,R).
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(3) h-int((Ω,Q) ∪ (Ω,R)) ⊆ h-int(Ω,Q)∪h-int(Ω,R).

(4) h-int((Ω,Q) ∩ (Ω,R)) = h-int(Ω,Q)∩h-int(Ω,R)”.

Proposition 2.11. [15] “Let ((Ω,P), τ) be a hypersoft TS and let (Ω,Q),(Ω,R) be a hypersoft

sets over U. Then

(1) (Ω,Q) ⊆ (Ω,R) implies h-cl(Ω,Q) ⊆ h-cl(Ω,R).

(2) h-cl((Ω,Q) ∪ (Ω,R)) = h-cl(Ω,Q)∪h-cl(Ω,R).

(3) h-cl((Ω,Q) ∩ (Ω,R)) ⊆ h-cl(Ω,Q)∩h-cl(Ω,R).

(4) h-cl(h-cl(Ω,Q))=h-cl((Ω,Q)”.

3. Hypersoft semi-open sets and hypersoft semi-closed sets

In this segment we produce the notion of hypersoft SOS, hypersoft SCS and examine

a few of its properties.

Definition 3.1. Let (Ω,Q) be a hypersoft set of a hypersoft TS ((Ω,P), τ). (Ω,Q) is known

as a hypersoft SOS if (Ω,Q) ⊆ h-cl(h-int(Ω,Q)).

Definition 3.2. A hypersoft set (Ω,Q) in a hypersoft TS ((Ω,P), τ) is called a hypersoft SCS

if its relative complement is a hypersoft SOS.

Example 3.3. Let U = {h1, h2}, Q1 = {ℓ1, ℓ2}, Q2 = {ℓ3}, Q3 = {ℓ4} and let Ω is a function

from P → P(U). Then the hypersoft sets are classified as follows.

(Ω,P)1={((ℓ1, ℓ3, ℓ4), ∅), ((ℓ2, ℓ3, ℓ4), ∅)},
(Ω,P)2={((ℓ1, ℓ3, ℓ4), ∅), ((ℓ2, ℓ3, ℓ4), {h1})},
(Ω,P)3={((ℓ1, ℓ3, ℓ4), ∅), ((ℓ2, ℓ3, ℓ4), {h2})},
(Ω,P)4={((ℓ1, ℓ3, ℓ4), ∅), ((ℓ2, ℓ3, ℓ4), {h1, h2})},
(Ω,P)5={((ℓ1, ℓ3, ℓ4), {h1}), ((ℓ2, ℓ3, ℓ4), ∅)},
(Ω,P)6={((ℓ1, ℓ3, ℓ4), {h1}), ((ℓ2, ℓ3, ℓ4), {h1})},
(Ω,P)7={((ℓ1, ℓ3, ℓ4), {h1}), ((ℓ2, ℓ3, ℓ4), {h2})},
(Ω,P)8={((ℓ1, ℓ3, ℓ4), {h1}), ((ℓ2, ℓ3, ℓ4), {h1, h2})},
(Ω,P)9={((ℓ1, ℓ3, ℓ4), {h2}), ((ℓ2, ℓ3, ℓ4), ∅)},
(Ω,P)10={((ℓ1, ℓ3, ℓ4), {h2}), ((ℓ2, ℓ3, ℓ4), {h1})},
(Ω,P)11={((ℓ1, ℓ3, ℓ4), {h2}), ((ℓ2, ℓ3, ℓ4), {h2})},
(Ω,P)12={((ℓ1, ℓ3, ℓ4), {h2}), ((ℓ2, ℓ3, ℓ4), {h1, h2})},
(Ω,P)13={((ℓ1, ℓ3, ℓ4), {h1, h2}), ((ℓ2, ℓ3, ℓ4), ∅)},
(Ω,P)14={((ℓ1, ℓ3, ℓ4), {h1, h2}), ((ℓ2, ℓ3, ℓ4), {h1})},
(Ω,P)15={((ℓ1, ℓ3, ℓ4), {h1, h2}), ((ℓ2, ℓ3, ℓ4), {h2})},
(Ω,P)16={((ℓ1, ℓ3, ℓ4), {h1, h2}), ((ℓ2, ℓ3, ℓ4), {h1, h2})},
τ={(Ω,P)1, (Ω,P)5, (Ω,P)7, (Ω,P)8, (Ω,P)16}.
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Then ((Ω,P), τ) is a hypersoft TS.

The collection of all hypersoft open sets is

{(Ω,P)1, (Ω,P)5, (Ω,P)7, (Ω,P)8, (Ω,P)16}.
The set of all hypersoft closed sets is

{(Ω,P)1, (Ω,P)9, (Ω,P)10, (Ω,P)12, (Ω,P)16}.

The collection of hypersoft SOS is

{(Ω,P)1, (Ω,P)5, (Ω,P)6, (Ω,P)7, (Ω,P)8, (Ω,P)13, (Ω,P)14, (Ω,P)15, (Ω,P)16}.
The collection of hypersoft SCS is

{(Ω,P)1, (Ω,P)2, (Ω,P)3, (Ω,P)4, (Ω,P)9, (Ω,P)10, (Ω,P)11, (Ω,P)12, (Ω,P)16}.

Theorem 3.4. Every hypersoft open set in a hypersoft TS ((Ω,P), τ) is a hypersoft SOS.

Proof:

Let (Ω,Q) be a hypersoft open set. Then h-int(Ω,Q) = (Ω,Q). we know that, (Ω,Q) ⊆
h-cl(Ω,Q). Thus (Ω,Q) ⊆ h-cl(h-int(Ω,Q)).

The preceding Ex. 3.5 demonstrate that the reverse implification of Thm. 3.4 is not

true.

Example 3.5. Consider the hypersoft TS of Ex. 3.3.

Here (Ω,P)6, (Ω,P)13, (Ω,P)14, (Ω,P)15 are hypersoft semi-open set but not hypersoft open

sets, since(Ω,P)6, (Ω,P)13, (Ω,P)14, (Ω,P)15 /∈ τ.

Remark 3.6. (∅,P) and (Ω,P) are always hypersoft SCS and hypersoft SOS.

Proposition 3.7. A hypersoft set (Ω,Q) in a hypersoft TS ((Ω,P), τ) is a hypersoft SOS iff

∃ a hypersoft open set (Ω,R) such that (Ω,R) ⊆ (Ω,Q) ⊆ h-cl(Ω,R).

Proof: Assume that (Ω,Q) ⊆ h-cl(h-int(Ω,Q)). Then for (Ω,R) = h-int(Ω,Q), we have

(Ω,R) ⊆ (Ω,Q) ⊆ h-cl(Ω,R). Therefore, the condition holds. Conversely, suppose that

(Ω,R) ⊆ (Ω,Q) ⊆ h-cl(Ω,R) for some hypersoft open set (Ω,R). Since (Ω,R) ⊆
h-int(Ω,Q), and so h-cl(Ω,R) ⊆ h-cl(h-int(Ω,Q)). Hence (Ω,Q) ⊆ h-cl(Ω,R) ⊆
h-cl(h-int(Ω,Q)). Hence (Ω,Q) is hypersoft SOS.

Theorem 3.8. Let ((Ω,P), τ) be a hypersoft TS and {(Ω,Q)α : α ∈ ∆} be a set of hypersoft

SOS in ((Ω,P), τ). Then ∪α∈∆(Ω,Q)α is also a hypersoft SOS.

Proof: Let {(Ω,Q)α : α ∈ ∆} be a set of hypersoft SOS in ((Ω,P), τ). Then ∀ α ∈ ∆, we have

a hypersoft open set (Ω,R)α ⊆ (Ω,Q)α such that (Ω,R)α ⊆ (Ω,Q)α ⊆ h-cl(Ω,R)α. Then

∪α∈∆(Ω,R)α ⊆ ∪α∈∆(Ω,Q)α ⊆ ∪α∈∆h-cl(Ω,R)α ⊆
h-cl(∪α∈∆(Ω,R)α).
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Theorem 3.9. Every hypersoft closed set in a hypersoft TS ((Ω,P), τ) is a hypersoft SCS.

Proof: Let (Ω,Q) be a hypersoft closed set. Then h-cl(Ω,Q) = (Ω,Q). we know that,

(Ω,Q) ⊇ h-int(Ω,Q). Thus (Ω,Q) ⊇ h-int(h-cl(Ω,Q)).

The opposite simplification of Thm. 3.9 cannot be true, as demonstrated by Ex. 3.10

before it.

Example 3.10. Here (Ω,P)2, (Ω,P)3, (Ω,P)4 and (Ω,P)11 are hypersoft SCS but not hypersoft

closed sets.

Theorem 3.11. (Ω,R) be a hypersoft semi-closed in a hypersoft TS ((Ω,P), τ) iff h-

int(Ω,T ) ⊆ (Ω,R) ⊆ (Ω,T ) for some hypersoft closed set (Ω,T ).

Proof: (Ω,R) is hypersoft semi-closed iff (Ω,R)c is hypersoft semi-open iff there is a hypersoft

open set (Ω,S ) s.t. (Ω,S ) ⊆ (Ω,R)c ⊆ h-cl(Ω,S ), by proposition 3.7 iff there is a hypersoft

open set (Ω,S ) s.t. (h-cl(Ω,S ))c ⊆ (Ω,R) ⊆ (Ω,S )c iff there is a hypersoft open set

(Ω,S ) s.t. h-int(Ω,S )c ⊆ (Ω,R) ⊆ (Ω,S )c iff there is a hypersoft closed set (Ω,S ) s.t.

h-int(Ω,T ) ⊆ (Ω,R) ⊆ (Ω,T ), where (Ω,T ) = (Ω,S )c.

Theorem 3.12. A hypersoft set (Ω,Q) in a hypersoft TS ((Ω,P), τ) is hypersoft semi-closed

iff h-int(h-cl(Ω,Q)) ⊆ (Ω,Q).

Proof: (Ω,Q) is hypersoft semi-closed iff (Ω,Q)c is hypersoft semi-open iff (Ω,Q)c ⊆ h-cl(h-

int(Ω,Q)c) iff (Ω,Q)c ⊆ h-cl((h-cl(Ω,Q))c), by definition iff (Ω,Q)c ⊆ (h-int(h-cl(Ω,Q)))c,

iff h-int(h-cl(Ω,Q)) ⊆ (Ω,Q).

Theorem 3.13. Let ((Ω,P), τ) be a hypersoft TS and

{(Ω,Q)α : α ∈ ∆} be a set of hypersoft SCS in ((Ω,P), τ). Then ∩α∈∆(Ω,Q)α is also a

hypersoft SCS.

Proof: Let {(Ω,Q)α : α ∈ ∆} be a set of hypersoft SCS in ((Ω,P), τ). Then ∀ α ∈ ∆,

we have a hypersoft soft closed set (Ω,R)α s.t. h-int(Ω,R)α ⊆ (Ω,Q)α ⊆ (Ω,R)α.

Then h-int(∩α∈∆(Ω,Rα)) ⊆ ∩α∈∆h-int(Ω,Rα) ⊆ ∩α∈∆(Ω,Q)α ⊆ ∩α∈∆(Ω,R)α. Because

∩α∈∆(Ω,R)α = (Ω,R) is hypersoft closed set by prop 2.6(3), then ∩α∈∆(Ω,Q)α is hyper-

soft SCS.

4. Hypersoft semi-interior and hypersoft semi-closure

Definition 4.1. Let ((Ω,P), τ) be a hypersoft TS and let (Ω,Q) be a hypersoft set in (Ω,P).

(1) The hypersoft semi-interior of (Ω,Q) is the hypersoft set⋃
{(Ω,R) : (Ω,R) is hypersoft semi-open and (Ω,R) ⊆ (Ω,Q)} and it is identified by

h-sint(Ω,Q).
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(2) The hypersoft semi-closure of (Ω,Q) is the hypersoft set⋂
{(Ω,R) : (Ω,R) is hypersoft semi-closed and (Ω,Q) ⊆ (Ω,R)} and it is identified by

h-scl(Ω,Q).

Clearly, h-scl(Ω,Q) is the smallest hypersoft SCS containing (Ω,Q) and

h-sint(Ω,Q) is the largest hypersoft SOS ⊆ (Ω,Q). By Thm. 3.8 and 3.13, we have

h-sint(Ω,Q) is hypersoft SOS and h-scl(Ω,Q) is hypersoft SCS.

Example 4.2. Let the hypersoft TS ((Ω,P), τ) and the

hypersoft set (Ω,P)8={((ℓ1, ℓ3, ℓ4), {h1}), ((ℓ2, ℓ3, ℓ4), {h1, h2})} be the same as in Example

3.3, we get h-sint(Ω,Q)8 = (Ω,Q)8.

Example 4.3. Let the hypersoft TS ((Ω,P), τ) and the

hypersoft set (Ω,P)14={((ℓ1, ℓ3, ℓ4), {h1, h2}), ((ℓ2, ℓ3, ℓ4), {h1})} be the same as in Example

3.3, we get h-scl(Ω,Q)14 = (Ω,Q)16.

Theorem 4.4. Let ((Ω,P), τ) be a hypersoft TS and (Ω,Q) be a hypersoft set in (Ω,P). Then

h-int(Ω,Q) ⊆ h-sint(Ω,Q) ⊆ (Ω,Q) ⊆ h-scl(Ω,Q) ⊆ h-cl(Ω,Q).

Proof: The proof follows from the following facts that every hypersoft open set is hypersoft

SOS and every hypersoft closed set is hypersoft SCS.

Theorem 4.5. Let ((Ω,P), τ) be a hypersoft TS and let (Ω,Q) be a hypersoft set in (Ω,P).

Then the succeeding conditions holds.

(1) (h-scl(Ω,Q))c=h-sint(Ω,Q)c.

(2) (h-sint(Ω,Q))c=h-scl(Ω,Q)c.

Proof:

(1) (h-scl(Ω,Q))c

=(
⋂
{(Ω,R) : (Ω,R) is hypersoft semi-closed and (Ω,Q) ⊆ (Ω,R)})c,

=
⋃
{(Ω,R)c : (Ω,R) is hypersoft semi-closed and (Ω,Q) ⊆ (Ω,R)},

=
⋃
{(Ω,R)c : (Ω,R)c, is hypersoft semi-open and (Ω,R)c ⊆ (Ω,Q)c},

=h-sint(Ω,Q)c.

(2) (h-sint(Ω,Q))c

=(
⋃
{(Ω,R) : (Ω,R) is hypersoft semi-open and (Ω,R) ⊆ (Ω,Q)})c,

=
⋂
{(Ω,R)c : (Ω,R) is hypersoft semi-open and (Ω,R) ⊆ (Ω,Q)},

=
⋃
{(Ω,R)c : (Ω,R)c is hypersoft semi-closed and (Ω,Q)c ⊆ (Ω,R)c},

=h-scl(Ω,Q)c.

Theorem 4.6. Let ((Ω,P), τ) be a hypersoft TS and let (Ω,Q) and (Ω,R) be a hypersoft sets

in (Ω,P). Then the preceding condition holds.
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(1) h-scl(∅,P)=(∅,P) and h-scl(Ω,P)=(Ω,P)

(2) (Ω,Q) is hypersoft semi-closed set iff (Ω,Q)=h-scl(Ω,Q).

(3) h-scl(h-scl(Ω,Q))=h-scl(Ω,Q).

(4) (Ω,Q) ⊆ (Ω,R) implies h-scl(Ω,Q) ⊆ h-scl(Ω,R).

(5) h-scl((Ω,Q) ∩ (Ω,R)) ⊆ h-scl(Ω,Q) ∩ h-scl(Ω,R).

(6) h-scl((Ω,Q) ∪ (Ω,R)) = h-scl(Ω,Q) ∪ h-scl(Ω,R).

Proof:

(1) The proof is obvious.

(2) If (Ω,Q) is hypersoft SCS, then (Ω,Q) is itself a hypersoft SCS in (Ω,P) which

⊂ (Ω,Q). So, h-scl(Ω,Q) is the smallest hypersoft SCS ⊂ (Ω,Q) and (Ω,Q) = h-

scl(Ω,Q). Conversely, suppose that (Ω,Q) = h-scl(Ω,Q). Since h-scl(Ω,Q) is a hy-

persoft SCS, so (Ω,Q) is hypersoft SCS.

(3) Since h-scl(Ω,Q) is a hypersoft SCS therefore by part(2) we obtain

h-scl(h-scl(Ω,Q))=h-scl(Ω,Q).

(4) Suppose that (Ω,Q) ⊆ (Ω,R). Then every hypersoft semi-closed super set of (Ω,R)

will also ⊂ (Ω,Q). That is every hypersoft semi-closed super set of (Ω,R) is also a

hypersoft semi-closed super set of (Ω,Q). Thus h-scl(Ω,Q) ⊆ h-scl(Ω,R).

(5) Since (Ω,Q) ∩ (Ω,R) ⊆ (Ω,Q) and (Ω,Q) ∩ (Ω,R) ⊆ (Ω,R) and so by part(4)

h-scl((Ω,Q) ∩ (Ω,R)) ⊆ h-scl(Ω,Q) and h-scl((Ω,Q) ∩ (Ω,R)) ⊆ h-scl(Ω,R). Thus

h-scl((Ω,Q) ∩ (Ω,R)) ⊆ h-scl(Ω,Q) ∩ h-scl(Ω,R).

(6) Since (Ω,Q) ⊆ (Ω,Q) ∪ (Ω,R) and (Ω,R) ⊆ (Ω,Q) ∪ (Ω,R). So by part(iv)

(Ω,Q) ⊆ (Ω,R) implies h-scl(Ω,Q) ⊆ h-scl(Ω,R). Then h-scl(Ω,Q) ⊆
h-scl((Ω,Q) ∪ (Ω,R)) and h-scl(Ω,R) ⊆ h-scl((Ω,Q) ∪ (Ω,R)), which is implies h-

scl(Ω,Q) ∪ h-scl(Ω,R) ⊆ h-scl((Ω,Q) ∪ (Ω,R)). Now, h-scl(Ω,Q), h-scl(Ω,R) is be-

long to hypersoft SCS in (Ω,P) which is implies that h-scl(Ω,Q) ∪
h-scl(Ω,R) is belong to hypersoft SCS in (Ω,P). Then (Ω,Q) ⊆
h-scl(Ω,Q) and (Ω,R) ⊆ h-scl(Ω,R) imply (Ω,Q) ∪ (Ω,R) ⊆ h-scl(Ω,Q) ∪
h-scl(Ω,R). That is h-scl(Ω,Q) ∪ h-scl(Ω,R) is a hypersoft SCS containing (Ω,Q) ⊆
(Ω,R). Hence h-scl((Ω,Q) ∪ (Ω,R)) ⊆ h-scl(Ω,Q) ∪ h-scl(Ω,R). So,

h-scl((Ω,Q) ∪ (Ω,R)) = h-scl(Ω,Q) ∪ h-scl(Ω,R).

Theorem 4.7. Let ((Ω,P), τ) be a hypersoft TS and let (Ω,Q) and (Ω,R) be a hypersoft sets

in (Ω,P). Then the succeeding condition holds.

(1) h-sint(∅,P)=(∅,P) and h-sint(Ω,P)=(Ω,P).

(2) (Ω,Q) is hypersoft SOS iff (Ω,Q)=h-sint(Ω,Q).

(3) h-sint(h-sint(Ω,Q))=h-sint(Ω,Q).
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(4) (Ω,Q) ⊆ (Ω,R) implies h-sint(Ω,Q) ⊆ h-sint(Ω,R).

(5) h-sint(Ω,Q) ∩ h-sint(Ω,R) ⊆ h-sint((Ω,Q) ∩ (Ω,R)).

(6) h-sint((Ω,Q) ∪ (Ω,R)) = h-sint(Ω,Q) ∪ h-sint(Ω,R).

Proof:

(1) The proof is obvious.

(2) If (Ω,Q) is hypersoft SOS, then (Ω,Q) is itself a hypersoft SOS in (Ω,P) ⊂ (Ω,Q).

So, h-sint(Ω,Q) is the largest hypersoft SOS contained in (Ω,Q) and (Ω,Q) = h-

sint(Ω,Q). Conversely, suppose that

(Ω,Q) = h-sint(Ω,Q). Since h-sint(Ω,Q) is a hypersoft SOS, so (Ω,Q) is hypersoft

semi-open set in (Ω,P).

(3) Since h-sint(Ω,Q) is a hypersoft SOS therefore by part(2) we have

h-sint(h-sint(Ω,Q))=h-sint(Ω,Q).

(4) Suppose that (Ω,Q) ⊆ (Ω,R). Since h-sint(Ω,Q) ⊆ (Ω,Q) ⊆ (Ω,R). h-sint(Ω,Q) is

a hypersoft semi-open subset of (Ω,R), so by defn. of h-sint(Ω,R),

h-sint(Ω,Q) ⊆ h-sint(Ω,R).

(5) Since (Ω,Q) ⊆ (Ω,Q) ∩ ((Ω,R) and (Ω,R) ⊆ (Ω,Q) ∩ ((Ω,R) and so by part(4),

h-sint(Ω,Q) ⊆ h-sint((Ω,Q)∩ (Ω,R)) and h-sint(Ω,R) ⊆ h-sint((Ω,Q)∩ (Ω,R)). So

that h-sint(Ω,Q)∩h-sint(Ω,R) ⊆ h-sint((Ω,Q)∩(Ω,R)), since h-sint((Ω,Q)∩(Ω,R))

is a hypersoft semi-open set.

(6) Since (Ω,Q) ⊆ (Ω,Q) ∪ (Ω,R) and (Ω,R) ⊆ (Ω,Q) ∪ (Ω,R) and So by part(4)

(Ω,Q) ⊆ (Ω,R) implies h-sint(Ω,Q) ⊆ h-sint(Ω,R). Then h-sint(Ω,Q) ⊆
h-sint((Ω,Q) ∪ (Ω,R)) and h-sint(Ω,R) ⊆ h-sint((Ω,Q) ∪ (Ω,R)) which is implies

h-sint(Ω,Q) ∪ h-sint(Ω,R) ⊆ h-sint((Ω,Q) ∪ (Ω,R)). Now, h-sint(Ω,Q),

h-sint(Ω,R) is belong to hypersoft SOS in (Ω,P) which is implies that h-sint(Ω,Q)∪h-
sint(Ω,R) is belong to hypersoft SOS in (Ω,P). Then (Ω,Q) ⊆ h-sint(Ω,Q) and

(Ω,R) ⊆ h-sint(Ω,R) imply (Ω,Q) ∪ (Ω,R) ⊆
h-sint(Ω,Q) ∪ h-sint(Ω,R). That is h-sint(Ω,Q) ∪ h-sint(Ω,R). is a hypersoft SOS

containing (Ω,Q) ∪ (Ω,R). Hence h-sint((Ω,Q) ∪ (Ω,R)) ⊆
h-sint(Ω,Q) ∪ h-sint(Ω,R). So, h-sint((Ω,Q) ∪ (Ω,R))=h-sint(Ω,Q) ∪
h-sint(Ω,R).

Theorem 4.8. Let ((Ω,P), τ) be a hypersoft TS and let (Ω,Q) be a hypersoft set in (Ω,P).

Then the preceding conditions holds.

(1) h-scl(h-cl(Ω,Q)) = h-cl(h-scl(Ω,Q)) = h-cl(Ω,Q).

(2) h-sint(h-int(Ω,Q)) = h-int(h-sint(Ω,Q)) = h-int(Ω,Q).

Proof:
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(1) Let h-cl(Ω,Q) is hypersoft closed set, then h-cl(Ω,Q) is hyersoft SCS by Thm. 3.9.

So we can get h-scl(h-cl(Ω,Q)) = h-cl(Ω,Q) by Theorem 4.6(2). By Thm. 4.4, we

have (Ω,Q) ⊆ h-scl(Ω,Q) ⊆ h-cl(Ω,Q), then we can get

h-cl(Ω,Q) ⊆ h-cl(h-scl(Ω,Q)) ⊆ h-cl(Ω,Q) and so h-cl(h-scl(Ω,Q)) = h-cl(Ω,Q).

This completes the proof.

(2) Let ((Ω,P), τ) be a hypersoft TS and because h-int(Ω,Q) is hypersoft open set, we have

h-int(Ω,Q) is hypersoft SOS by Thm. 3.4. So we can get h-sint(h-int(Ω,Q)) = h-

int(Ω,Q) by Thm. 4.7(2). By Thm. 4.4, we have h-int(Ω,Q) ⊆ h-sint(Ω,Q) ⊆
(Ω,Q), then we can get h-int(Ω,Q) ⊆
h-int(h-sint(Ω,Q)) ⊆ h-int(Ω,Q) and so h-int(h-sint(Ω,Q)) = h-int(Ω,Q).

Theorem 4.9. Let ((Ω,P), τ) be a hypersoft TS and let (Ω,Q) be a hypersoft set in (Ω,P).

Then the succeeding are equivalent.

(1) (Ω,Q) is hypersoft SCS.

(2) h-int(h-cl(Ω,Q)) ⊆ (Ω,Q).

(3) h-cl(h-int((Ω,Q)c) ⊇ (Ω,Q)c.

(4) (Ω,Q)c is hypersoft SOS.

Proof:

(1)⇒(2): If (Ω,Q) is hypersoft SCS, then ∃ hypersoft closed set (Ω,R) s.t. h-int(Ω,R) ⊆
(Ω,Q) ⊆ (Ω,R) ⇒ h-int(Ω,R) ⊆ (Ω,Q) ⊆ h-cl(Ω,Q) ⊆ (Ω,R). By the property of interior,

we get h-int(h-cl(Ω,Q)) ⊆ h-int(Ω,R) ⊆ (Ω,Q).

(2)⇒(3): h-int(h-cl(Ω,Q)) ⊆ (Ω,Q) ⇒ (Ω,Q)c ⊆ h-int(h-cl(Ω.Q))c=

h-cl(h-int(Ω,Q)c) ⊇ (Ω,Q)c.

(3)⇒(4): (Ω,R) = h-int((Ω,Q)c) is an hypersoft open set s.t. h-int((Ω,Q)c) ⊆ (Ω,Q)c ⊆ h-

cl(h-int((Ω,Q)c), hence (Ω,Q)c is hypersoft SOS.

(4)⇒(1): As (Ω,Q)c is hypersoft SOS, ∃ an hypersoft open set (Ω,R) s.t. (Ω,R) ⊆ (Ω,Q)c ⊆
h-cl(Ω,R) ⇒ (Ω,R)c is a hypersoft closed set such that (Ω,Q) ⊆ (Ω,R)c and (Ω,Q)c ⊆ h-

cl(Ω,R) ⇒ h-int(Ω,R)c ⊆ (Ω,Q). Hence (Ω,Q) is hypersoft SCS.

5. Conclusion

We have introduced hypersoft semi-open sets in hypersoft TS which are identified

over an initial universe with a fixed set of parameters. We then define hypersoft semi-interior

and hypersoft semi-closure with suitable example. The concept of open sets produced in this

work may be developed to α-open hypersoft sets and β-open hypersoft sets. Based on the

works of [6] and [7], our future research may be on IndetermHypersoft semi-open sets and on

TreeSoft semi-open sets.
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Abstract: This research was conducted with the intention of determining which scenario for the 

construction of an intelligent reverse logistics system had the most potential for success. This 

selection would then be used as a reference point for decision-making throughout the process of 

constructing environmentally friendly closed supply chains and circular economies. The research 

includes the definition of four different development scenarios, each of which is then reviewed by 

representatives of the key stakeholders based on a comprehensive list of eight sub-indicators that are 

categorized under the four primary dimensions. In order to tackle the issue that was specified, a 

brand new multi-criteria decision-making (MCDM) framework was constructed. This model 

included using the Combinative Distance based Assessment (CODAS) technique in a neutrosophic 

environment and applying the type-2 neutrosophic numbers (T2NNs). The utilization of the 

developed framework led to the identification of the scenario that optimally reconciles the 

widespread implementation of Industry 4.0 technologies with the requisite resources. 

Keywords: Reverse Logistics; Intelligent Logistics; Industry 4.0; MCDM; Supply chain; T2NNs; 

CODAS. 

 

 

1. Introduction 

The absence of raw resources, the increasing degradation of the environment, a rising degree of 

social responsibility, environmental restrictions, and shifting market conditions have brought the 

topic of reverse logistics to the forefront of many ongoing research on sustainability [1]. The 

development of reverse logistics systems is the most important requirement and a precondition for 

the establishment of a closed-loop supply chain, which is a type of supply chain that is analogous to 

the idea of a circular economy. In the beginning, public awareness was the driving force behind 

research on closed-loop supply chains and reverse logistics, which means that the difficulties caused 

by return flows to ordinary people and their environment were the impetus for this line of inquiry 

[2]. These issues become the focus of the legislative authorities, which pass a variety of laws and 

directives to regulate this area as a response to the growing consumer society, the decrease in the 

product lifetime, and the pressure from the general public to find solutions to the problems caused 

by end-of-life products [3]. Finally, reverse logistics and closed-loop supply chains are seen as the 

regions in which many actors in the supply chain have the potential to make money for themselves. 

A market that is centered on reverse logistics is now in the process of developing as a result of the 
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emergence of new demands for the supply of services as well as new suppliers of those services [4]. 

As a result, the construction of a sustainable reverse logistics system that is in accordance with the 

objectives and interests of the primary stakeholders, including the service providers, service users, 

administrations, and people, becomes the goal. They gain advantages as a result of this type of system 

as a result of a decrease in the amount of waste that is disposed of, an increase in the amount of 

product value and energy that is recovered, an extension of the product's life cycle, the extraction of 

materials and their subsequent recycling, the generation of competitive advantage, an acceleration of 

the return on investment, an improvement in customer relations, and a decrease in the amount of 

emissions produced by transportation [5,6]. As a result, the focus of this research is on the formulation 

and analysis of potential futures for the development of intelligent reverse logistics systems [4]. These 

futures are to be conceived with the level of advancement of Industry 4.0 technologies, the scope of 

their potential applications, and the current state of social, economic, technical, service quality, and 

environmental trends in mind. 

As a consequence of this, the scenario that offers the greatest balance between the extensive use 

of Industry 4.0 technologies and the required resources for its development and implementation is 

chosen as the optimal option. It is feasible to draw the conclusion from the findings that the broadest 

possible use of technologies related to Industry 4.0 does not necessarily guarantee the most acceptable 

development scenarios and that the choice ought to be taken by reaching a compromise between the 

interests of all stakeholders. In this work, a unique multi-criteria decision-making (MCDM) model 

has been constructed in order to answer the issue that has been specified [7–9]. This model 

incorporates the Combinative Distance based Assessment (CODAS) [10] approach inside a 

neutrosophic environment. The neutrosophic set is applied in various filed as: [11-17] 

The residue sections of the study are organized as follows: Section 2 develops the suggested 

framework for determining the suitable reverse logistics development scenario. Section 3 applies the 

suggested framework and analysis of the findings. Section 4 concludes the study. 

2. Suggested Framework  

In this section, the proposed approach to solve the problem of selecting and defining the best 

scenarios for the development of intelligent logistics services is introduced. The proposed framework 

is divided into three stages. The first stage is related to studying the problem and defining the main 

goal. In addition, identifying the committee involved with the authors in studying the problem and 

expressing their opinions on the main dimensions, and evaluating the alternatives. The second stage 

is related to evaluating the dimensions and determining the weights, whether for the main 

dimensions or the sub-indicators. The third stage is related to evaluating and ranking the alternatives 

selected for the study using the CODAS method. Also, the study and its details were conducted in a 

neutrosophic environment and by applying T2NNs. Figure 1 presents the steps of the proposed 

approach and details of the study procedure. 
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Figure 1. Research framework. 

 

Step 1. The issue is considered in detail and the participating consultants are determined as shown in 

Table 1. The participating consultants give their opinions on the problem and define the dimensions 

and available scenarios. Suppose a set of m substitutes is represented by A ={𝐴1, … , 𝐴𝑖 , … 𝐴𝑚} and a 

set of n dimensions is denoted by D = {𝐷1, … , 𝐷𝑛 , … , 𝐷𝑛} . Let consultants = 

{𝐶𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑛𝑡1, … , 𝐶𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑛𝑡𝑒 , … , 𝐶𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑛𝑡𝑘} be a set of consultants who offered their valuation 

report for each substitute 𝐴𝑖 (i = 1, 2... m) against their dimensions 𝐷𝑗 (j = 1, 2... n). Let 𝑤  = 

(w1, w2, … , we)𝑇 be the weight vector for consultants 𝐶𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑛𝑡𝑒(e = 1, 2... k) such that ∑ w𝑙
𝑛
𝑗=1 =1. 
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Create a list of alternatives. 

Define dimensions and sub-indicators for evaluation of the alternatives. 

Identify stakeholder groups interested in solving the problem  
Expert 

opinion 

Literature 
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Determine the criteria weight. 

Synthetic weight. 

Create a decision matrix between the four alternatives and the 
selected sub-indicators. 

Compute the normalized decision matrix. 

Compute the weighted normalized decision matrix. 
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Compute the Euclidean and Hamming distances. 
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Step 2. The issue is considered in detail and the participating consultants are determined as shown in 

Table 1. The participating consultants give their opinions on the problem and define the dimensions 

and available scenarios. 

 

Table 1. Particulars on the members of the panel of consultants. 

Consultants Experience  Occupation Academic degree Gender 

Consultant1 18 Industry M.Sc. Male 

Consultant2 25 Academia Ph.D. Male 

Consultant3 18 Industry M.Sc. Female 

Consultant4 25 Industry Ph.D. Female 

 

Step 2. A set of linguistic variables and their equivalent T2NNs are identified as presented in Table 2, 

for consultants to use in evaluating the main dimensions and their sub-indicators, in addition to 

evaluating and arranging the selected alternatives. 

Table 2. T2NN linguistic terms for weighing dimensions and alternatives. 

Linguistic terms Abridgements Type-2 neutrosophic number 

Exceedingly little ELE 〈(0.20, 0.20, 0.10); (0.65, 0.80, 0.85); (0.45, 0.80, 0.70)〉 

Little  LLE 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 

Moderate little MEE 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 

Moderate MOE 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 

Moderate high HHH 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 

High  HIH 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 

Exceedingly high ELG 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 

 

Step 3. Construct a decision matrix of main dimensions or their sub-indicators by consultants to show 

their preferences to identify the main dimensions and their sub-indicators weights using the 

linguistic terms, then by using T2NNs. 

Step 4. Calculate the score function for the T2NN valuations according to Eq. (1)[18]. 

𝑆(𝑍𝑖𝑗)  = 
1

12
 ⟨8 + (𝑇𝑇�̃�𝑖𝑗

(𝑎) + 2 (𝑇𝐼�̃�𝑖𝑗
(𝑎)) +  𝑇𝐹�̃�𝑖𝑗

(𝑎)) −  (𝐼𝑇�̃�𝑖𝑗
(𝑎) + 2 (𝐼𝐼�̃�𝑖𝑗

(𝑎)) + 𝐼𝐹�̃�𝑖𝑗
(𝑎)) −

 (𝐹𝑇�̃�𝑖𝑗
(𝑎) + 2 (𝐹𝐼�̃�𝑖𝑗

(𝑎)) +  𝐹𝐹�̃�𝑖𝑗
(𝑎))⟩, i = 1, ..., m; j = 1, ..., n.                  (1) 

Step 5. Determine the local weights for the main dimensions and their sub-indicators based on the 

opinions of the consultants. In this regard, the global weights of the sub-indicators are determined, 

which are used in evaluating and arranging the selected alternatives. 

Step 6. Building a decision matrix between the selected alternatives and sub-indicators according to 

the opinions of consultants to express their preferences for these alternatives using linguistic terms, 

then using the T2NNs in Table 2.  

Step 7. Convert the T2NNs to real values using Eq. (1). 

Step 8. Calculate the normalized decision matrix according to Eq. (2) for benefit indicators B, and for 

cost indicators C. 

𝑦𝑖𝑗 = {

𝑦𝑖𝑗

max
𝑖

𝑦𝑖𝑗
  𝑖𝑓 𝑗 ∈  𝐵

min
𝑖

𝑦𝑖𝑗

𝑦𝑖𝑗
 𝑖𝑓 𝑗 ∈  𝐶

                         

(2) 



Neutrosophic Sets and Systems, Vol. 57, 2023     310  

 

 
 

Karam M. Sallam, Amr A. Abohany, Ahmed Salem and Reda M Hussien , An Effective Decision-Making Framework for 
Evaluating the Intelligent Logistics Development Scenarios Performance 

Step 9. Compute the weighted normalized decision matrix according to Eq. (3). Here (𝑤𝑗)1×𝑛 

introduces weight of 𝑗𝑡ℎ indicator. 

G = [𝑔𝑖𝑗]
𝑛×𝑚

= 𝑤𝑗 × 𝑦𝑖𝑗                      (3) 

Step 10. Identify the negative ideal solution 𝑁𝑆𝑗  for each indicator according to Eq. (4). 

NS = [𝑛𝑠𝑗]
1×𝑚

 = min
𝑖

𝑔𝑖𝑗                      (4) 

Step 11. Compute the Euclidean and Taxicab distances of substitutes from negative ideal solution by 

employing the Eqs. (5) and (6). 

𝐸𝑖= √∑ (𝑔𝑖𝑗 − 𝑁𝑆𝑗)
2𝑛

𝑗=1                       (5) 

𝑇𝑖= ∑ |𝑔𝑖𝑗 − 𝑁𝑆𝑗|𝑛
𝑗=1                                 (6) 

Step 12. Construct the comparative valuation matrix [ℎ𝑖𝑠] 𝑛×𝑛 according to Eq. (7). 

ℎ𝑖𝑠 = (𝐸𝑖 − 𝐸𝑠)+ (𝛾(𝐸𝑖 − 𝐸𝑠) × (𝑇𝑖 −  𝑇𝑠) )                           

(7) 

where s ∈ {1, 2… m} and 𝛾 designates a threshold function to identify the equality of the Euclidean 

distances of two substitutes. 

Step 13. Compute the valuation score of each substitute according to Eq. (8). Rank the substitutes 

according to the greatest valuation score is the one that is measured to be the optimum substitute. 

𝐹𝑖 = ∑ ℎ𝑖𝑠
𝑛
𝑘=1                         (8) 

3. Application  

In this section, the steps of the proposed methodology T2NN-CODAS are applied to evaluate 

and determine the most appropriate scenarios for the development of intelligent reverse logistics 

services. This section is divided into three parts. The first part is about identifying experts, main 

dimensions, and their sub-indicators. In addition, the alternatives selected for the study are defined. 

In the second part, the steps of the proposed methodology are applied. The third part discusses and 

analyzes the results of the study. 

Step 1. The problem was studied and the main objective was determined, which is to choose the most 

appropriate scenario among the scenarios for developing smart reverse logistics services. Also, four 

consultants were identified for the participation of the authors in conducting the study and 

evaluating the four main dimensions and their eight sub-indicators that have an impact on choosing 

the most appropriate scenario for the development of reverse logistics services. 

Step 2. Seven terms and their corresponding T2NNs were identified, as shown in Table 2, for use by 

the participants in the assessment process, whether for the main dimensions and their sub-indicators 

or the selected alternatives. 

Step 3. The evaluation dimensions and their sub-indicators have been identified. The four evaluation 

dimensions that have been identified are economic (D1), technical (D2), environmental (D3), and 

service quality (D4). In addition, each main dimension includes two sub-indicators. The eight sub-

indicators in a row are investment and logistics costs (D1_1), conservation of property value (D1_1), 

developmental level (D2_1 ), complexity and compatibility (D2_2 ), waste and emissions reduction 

(D3_1), protection of energy sources (D3_2), reliability and flexibility (D4_1), and time efficiency (D4_2). 

In addition, the selected alternatives are four scenarios. The four scenarios are defined as follows: 

 Scenario 1 (𝐴1) 

The Internet of Things, cloud computing, and electronic and mobile markets are the three 

technologies that are most suited to Industry 4.0, and the first scenario assumes that they will be 

used to accomplish some of the fundamental tasks. 

 Scenario 2 (𝐴2) 

The second scenario contains the technologies and their applications from the first scenario, as 

well as some more applications of the same technologies, as well as the applications of 

autonomous vehicles, artificial intelligence, big data, and data mining in reverse logistics 
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networks. In addition, this scenario also includes some further applications of the same 

technologies. 

 Scenario 3 (𝐴3) 

This scenario encompasses the technologies utilized in previous instances, while also 

incorporating supplementary ones. Another potential application of the Internet of Things is the 

implementation of a control system, which involves a shift from traditional pushed flows to 

pulled flows. The system offers data regarding the timing, geographical coordinates, and 

quantity of waste that necessitates collection, thereby streamlining waste management within an 

extensive physical region encompassed by the reverse logistics network. 

 Scenario 4 (𝐴4) 

This scenario represents the highest level of complexity, involving the integration of all relevant 

Industry 4.0 technologies and their established or potential uses within the reverse logistics 

network. In this scenario, the utilization of IoT technology is extended to encompass the 

development of a comprehensive reverse logistics information management system. The primary 

objective of this system is to gather precise and dependable real-time data regarding the evolving 

characteristics of products. The system facilitates the monitoring, gathering, and administration 

of data, as well as the decision-making process pertaining to the handling of reverse flow 

materials and products and the utilization of resources. 

Step 4. A decision matrix of main dimensions was created by the four consultants to show their 

preferences of the main dimensions weights using the linguistic terms as presented in Table 3, then 

by using T2NNs as exhibited in Table 4. The final weights of the main dimensions are presented in 

Table 4 and shown in Figure 2. 

Table 3. Assessment matrix of main dimensions by the four consultants using semantic terms. 

Consultants 
Criteria 

𝐃𝟏 𝐃𝟐 𝐃𝟑 𝐃𝟒 

Consultant1 ELG LLE HHH ELE 

Consultant2 MEE MEE HIH HIH 

Consultant3 MOE HIH ELG MOE 

Consultant4 HIH HHH MOE HHH 

 

Table 4. Assessment matrix of main dimensions by the four consultants using T2NNs. 

Consultants 
Main dimensions 

𝐃𝟏 𝐃𝟐 

Consultant1 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 

Consultant2 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 

Consultant3 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 

Consultant4 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 

Weight 0.266 0.219 

Consultants 𝐃𝟑 𝐃𝟒 

Consultant1 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 〈(0.20, 0.20, 0.10); (0.65, 0.80, 0.85); (0.45, 0.80, 0.70)〉 

Consultant2 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 

Consultant3 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 

Consultant4 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 

Weight 0.290 0.224 
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Figure 2. Weights of main dimensions. 

Step 5. A decision matrix of all sub-indicators was created by the four consultants to show their 

preferences of the sub-indicators weights using the linguistic terms as presented in Table 5, then by 

using T2NNs as exhibited in Table 6. The final weights of all sub-indicators are presented in Tables 

6-9. Also, the global weights of the sub-indicators were calculated based on the weights of the main 

dimensions and the weights of the local sub-indicators as presented in Table 10 and shown in Figure 

3. 

Table 5. Assessment matrix of all sub-indicators using semantic terms. 

Consultants 
All sub-indicators 

𝐃𝟏_𝟏 𝐃𝟏_𝟐 𝐃𝟐_𝟏 𝐃𝟐_𝟐 𝐃𝟑_𝟏 𝐃𝟑_𝟐 𝐃𝟒_𝟏 𝐃𝟒_𝟐 

Consultant1 ELG LLE HHH ELE HHH ELG HIH ELE 

Consultant2 MEE MEE HIH HIH HIH MEE MEE LLE 

Consultant3 MOE HIH ELG MOE ELE MOE MOE HHH 

Consultant4 HIH HHH MOE HHH LLE ELG MEE HIH 
  

Table 6. Assessment matrix of economic dimension’s sub-indicators using T2NNs. 

Consultants 
Economic dimension’s sub-indicators 

𝐃𝟏_𝟏 𝐃𝟏_𝟐 

Consultant1 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 

Consultant2 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 

Consultant3 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 

Consultant4 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 

Weight 0.548 0.452 
   

Table 7. Assessment matrix of technical dimension’s sub-indicators using T2NNs. 

Consultants 
Technical dimension’s sub-indicators 

𝐃𝟐_𝟏 𝐃𝟐_𝟐 

Consultant1 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 〈(0.20, 0.20, 0.10); (0.65, 0.80, 0.85); (0.45, 0.80, 0.70)〉 

Consultant2 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 

Consultant3 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 

Consultant4 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 

D1, 0.266, 
27%

D2, 0.219, 
22%

D3, 0.29, 29%

D4, 0.224, 
22%

D1 D2 D3 D4
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Weight 0.564 0.436 

 

Table 8. Assessment matrix of environmental dimension’s sub-indicators using T2NNs. 

Consultants 
Environmental dimension’s sub-indicators 

𝐃𝟑_𝟏 𝐃𝟑_𝟐 

Consultant1 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 

Consultant2 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 

Consultant3 〈(0.20, 0.20, 0.10); (0.65, 0.80, 0.85); (0.45, 0.80, 0.70)〉 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 

Consultant4 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 〈(0.95, 0.90, 0.95); (0.10, 0.10, 0.05); (0.05, 0.05, 0.05)〉 

Weight 0.416 0.584 

   

Table 9. Assessment matrix of service quality dimension’s sub-indicators using T2NNs. 

Consultants 
Service quality dimension’s sub-indicators 

𝐃𝟒_𝟏 𝐃𝟒_𝟐 

Consultant1 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 〈(0.20, 0.20, 0.10); (0.65, 0.80, 0.85); (0.45, 0.80, 0.70)〉 

Consultant2 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 〈(0.35, 0.35, 0.10); (0.50, 0.75, 0.80); (0.50, 0.75, 0.65)〉 

Consultant3 〈(0.50, 0.45, 0.50); (0.40, 0.35, 0.50); (0.35, 0.30, 0.45)〉 〈(0.60, 0.45, 0.50); (0.20, 0.15, 0.25); (0.10, 0.25, 0.15)〉 

Consultant4 〈(0.40, 0.30, 0.35); (0.50, 0.45, 0.60); (0.45, 0.40, 0.60)〉 〈(0.70, 0.75, 0.80); (0.15, 0.15, 0.25); (0.10, 0.15, 0.15)〉 

Weight 0.527 0.473 

 

Table 10. Final global weights of main dimensions and their sub-indicators. 

Main 

dimensions 

Weights of 

dimensions 
Sub-indicators 

Global weight of 

sub-indicators 

Economic D1 0.266 
Investment and logistics costs D1_1 0.146 

Conservation of property value D1_2 0.120 

Technical D2 0.219 
Developmental level  D2_1 0.124 

Complexity and compatibility D2_2 0.095 

Environmental 

D3 
0.290 

Waste and emissions reduction D3_1 0.121 

Protection of energy sources D3_2 0.169 

Service quality 

D4 
0.224 

Reliability and flexibility D4_1 0.118 

Time efficiency TPB4_2 0.106 
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Figure 3. Final global weights of all sub-barriers. 

Step 6. A decision matrix between the selected four scenarios and the eight sub-indicators was created 

according to the opinions of consultants to express their preferences for these scenarios using 

linguistic terms as exhibited in Table 11. The T2NNs was converted to real values according to Eq. 

(1). 

Step 7. The normalized decision matrix was computed according to Eq. (2) for all sub-indicators as 

benefit indicators as presented in Table 12. 

Step 8. The weighted normalized decision matrix was calculated according to Eq. (3), as presented in 

Table 13. 

Step 9. The negative ideal solution was determined for each indicator according to Eq. (4), as 

displayed in Table 13.  

Step 10. The Euclidean and Taxicab distances of substitutes from negative ideal solution were 

identified by employing the Eqs. (5) and (6), as presented in Table 14.  

Step 11. The comparative valuation matrix was computed according to Eq. (7), as presented in Table 

15. The four scenarios were ranked according to Eq. (8) as displayed in Table 15 and shown in Figure 

4. 

Table 11. Assessment matrix of the four scenarios according to the eight indicators using semantic terms. 

Scenarios 
All sub-indicators 

𝐃𝟏_𝟏 𝐃𝟏_𝟐 𝐃𝟐_𝟏 𝐃𝟐_𝟐 𝐃𝟑_𝟏 𝐃𝟑_𝟐 𝐃𝟒_𝟏 𝐃𝟒_𝟐 

Scenario1 MOE LLE HHH ELE HHH HHH HIH MOE 

Scenario2 MEE ELE HIH ELG MOE MEE MEE LLE 

Scenario3 MOE HIH ELG MOE ELE MOE MOE HIH 

Scenario4 HIH MEE MOE HHH LLE ELG MEE HIH 

  

Table 12. Normalized matrix of the four scenarios according to the eight indicators. 

Scenarios 
All sub-indicators 

𝐃𝟏_𝟏 𝐃𝟏_𝟐 𝐃𝟐_𝟏 𝐃𝟐_𝟐 𝐃𝟑_𝟏 𝐃𝟑_𝟐 𝐃𝟒_𝟏 𝐃𝟒_𝟐 

Scenario1 0.716 0.383 0.763 0.258 1.000 0.763 1.000 0.716 

Scenario2 0.568 0.296 0.871 1.000 0.817 0.495 0.568 0.383 

Scenario3 0.716 1.000 1.000 0.624 0.338 0.624 0.716 1.000 

Scenario4 1.000 0.568 0.624 0.763 0.437 1.000 0.568 1.000 
  

Table 13. Weighted normalized matrix of the four scenarios according to the eight indicators. 

Scenarios 
All sub-indicators 

𝐃𝟏_𝟏 𝐃𝟏_𝟐 𝐃𝟐_𝟏 𝐃𝟐_𝟐 𝐃𝟑_𝟏 𝐃𝟑_𝟐 𝐃𝟒_𝟏 𝐃𝟒_𝟐 

Scenario1 0.105 0.046 0.095 0.025 0.121 0.129 0.118 0.076 

Scenario2 0.083 0.036 0.108 0.095 0.099 0.084 0.067 0.041 

Scenario3 0.105 0.120 0.124 0.059 0.041 0.105 0.084 0.106 

Scenario4 0.146 0.068 0.077 0.073 0.053 0.169 0.067 0.106 

Negative ideal 0.083 0.036 0.077 0.025 0.041 0.084 0.067 0.041 
  

Table 14. Euclidean and taxicab distances of the four scenarios. 

𝐀𝐥𝐭𝐞𝐫𝐧𝐚𝐭𝐢𝐯𝐞𝐬 𝐄𝐢 𝐓𝐢 

Scenario1 0.115 0.261 
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Scenario2 0.096 0.159 

Scenario3 0.127 0.292 

Scenario4 0.138 0.306 

  

Table 15. Comparative valuation matrix and ranking of the four scenarios. 

Alternatives 𝐒𝐜𝐞𝐧𝐚𝐫𝐢𝐨𝟏 𝐒𝐜𝐞𝐧𝐚𝐫𝐢𝐨𝟐 𝐒𝐜𝐞𝐧𝐚𝐫𝐢𝐨𝟑 𝐒𝐜𝐞𝐧𝐚𝐫𝐢𝐨𝟒 𝐅𝐢 Rank 

Scenario1 0.000 0.019 -0.012 -0.023 -0.016 3 

Scenario2 -0.018 0.000 -0.030 -0.041 -0.088 4 

Scenario3 0.012 0.031 0.000 -0.011 0.032 2 

Scenario4 0.023 0.043 0.011 0.000 0.078 1 

 

 

Figure 4. Final ranking of the four intelligent development logistics systems. 

 

3.1 Results and discussion 

In this part, the results obtained from the application of the proposed model to evaluate and 

determine the most suitable intelligent logistics development scenarios are discussed. The results are 

divided into two parts. The first part is concerned with evaluating the four main dimensions and 

their eight sub-indicators and determining the weights. The four main dimensions were evaluated 

through expert opinions as shown in Table 4.  

The results indicate that the environmental dimension (D3), is the dimension with the highest 

weight by 0.290, followed by the economic dimension (D1) with a weight of 0.266, while the technical 

dimension (D2) has the least weight by 0.219. 

The second part is concerned with evaluating the four scenarios selected in the study. The four 

selected scenarios were arranged as shown in Table 15 and Figure 4. The results show that Scenario 

4 (A4) is the highest in the order, followed by Scenario 3 (A3), while Scenario 2 (A2) is the lowest in 

the order. 

4. Conclusions 

The primary objective of this study was to ascertain the framework for the advancement of smart 

reverse logistics, which can guide decision-making at both strategic and tactical levels. Additionally, 

the study aimed to develop a reverse logistics system that is universally accepted by all key 
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stakeholders, thereby facilitating its extensive implementation and maximizing the associated 

positive outcomes. In light of this consideration, the study formulated four development scenarios. 

The individuals were assessed based on four dimensions that considered the objectives and concerns 

of the primary stakeholders. A proposed solution to address the defined problem involves the 

utilization of a T2NN-CODAS MCDM method. The formulation of the complete smart reverse 

logistics development scenarios as well as the framework for their assessment and ranking is the 

primary addition that this research makes to the existing body of literature dealing with reverse 

logistics and Industry 4.0. 
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Abstract. Florentin Smarandache, introduced a creative idea named superhyper algebras as a popularization

of algebras, via the nested power sets, superhyper operation, and superhyper axiom. This paper used the

significance of superhyper BEsubalgebras as a popularization of BE subalgebras and investigated attributes of

this pioneer significance in logic algebra. We prove that every BE algebras can be extended to a superhyper

BE subalgebra and show how a superhyper BE algebra is a popularization of a hyper BE algebra and a

BE algebra. The identity element in superhyper BE algebras acts a main designation in the form, attribute,

analysis, and communication of other elements in these types of superhyper logic algebras.

Keywords: BE algebra, hyper BE algebra, superhyper BE algebra, generalized operation.

—————————————————————————————————————————-

1. Introduction

Logic algebra is one of the superlative important algebraic interdisciplinary structures that

is used in various engineering sciences, especially computer science and all related branches.

In this theory, on each finite and arbitrary collection, axiom principles are defined according to

the ruling logic and its application in the actual religion, which gives this collection a special

rule and rule. Based on these principles, a logical algebra is formed that all elements under

this algebra must follow a certain rule. The importance of logical algebras is so great that

many researchers in different fields are investigating its attribute and importance. During the

research, they also found some deficiencies in the field of these algebras, which they solved

with new definitions and popularizations of its principles. One of the ways to fix the defects in

these algebras is to generalize them to logical algebraic significances and superstructures, which

leads to the popularization and correction of the subject principles in logical algebras. Logi-

cal algebraic hyperstructures by covering the shortcomings of logical algebras can have more

applications in the actual universe, especially when the proportion amongst a set of objects is
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discussed. One of the important logic algebras is the class of BE algebras, which is applied in

the computer sciences. An mentioned, the BE algebras as a special of logic algebras, has and

still has shortcomings, so the of hyper BE algebras is started to solve the defects in these logic

algebras. The hyper BE algebras extended in recent years and has many applications. In this

theory, for every given two elements, is created a set of elements that are related to axiom

principles and must follow their principles. In this theory, just two elements can be combined

and related to a set. But if we want to have more than two elements, we can’t follow the

axiom principles in hyper BE algebras. Therefore, this causes a defect in the application of

these logical hyperalgebras and it is necessary to eliminate this defect. Based on these defects,

Smarandache presented a new significance titled superhyper algebras as a popularization of

hyperalgebras which have disparate attribute and are relevant with the actual universe [12–14].

In this theory, we can for every given more than two elements consider a set of sets of elements

that are related under axiom principles and so we cover the defects in the of hyperalgebras.

After then and based on these unprecedented significances, some researchers investigated some

varius of superhyperalgebras. Hamidi, et al. in the realm of indeterminate logic (hyper) al-

gebra, bring forward the significance of neutro BCK subalgebras. Beside, Rahmati et al.

introduced the significance of superhyper BCK algebras as a popularization of BCK alge-

bras and investigated some attribute of this unprecedented significance [6]. They published

the significance of eextension of G algebras to superhyper G Algebras, wherethrough has nice

outcomes in superhyper logic algebras. Some kinds of literature in this scops wherethrough

we use for our work is such as on hyper K algebras [1], systems of propositional calculi [8], on

hyper BE algebras [9], on fuzzy subalgebras of BE algebras [10], extension of G algebras to

superhyper G algebras [11], popularizations and alternatives of classical algebraic structures

to neutroalgebraic structures and antialgebraic structures [15], Implicative ideals of BCK alge-

bras based on MBJ neutrosophic sets, on commutative BE algebras [17], extended fuzzy BCK

Subalgebras [18], compactness and neutrosophic topological space via grills, neutrosophic sys-

tems with applications [2], separation axioms in neutrosophic topological spaces, neutrosophic

systems with applications [3], separation axioms in neutrosophic topological spaces [4] and

new types of topologies and neutrosophic topologies [16]. In this research, we try to apply

the axioms in superhyper algebras and present the notation of superhyper BE algebras and

analyze the connection between of BE algebras and superhyper BE algebras.

Motivation: Considering the ideas and creativity presented in new mathematics, especially

Smarandache mathematics, we are looking to increase the communication of mathematics with

applied and interdisciplinary topics. Development and expansion of logical algebra of super-

hypr BE algebras, can be the basis for discussions related to the communication of engineering

sciences, especially computer sciences. Our whole motive for presenting this research is that
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superhypr BE algebras considering the nested super actions, it can study and research the sets

of elements of whole-to-whole and part-to-whole communication elements in the first, middle

and outer layers.

2. Preliminaries

In what lies ahead, we recollect some significances that require at follows.

Definition 2.1. [7] A system (X;σ, ι) known as a BE algebra provided,

(BE1) xσx = ι,

(BE2) xσι = ι,

(BE3) ισx = x,

(BE4) xσ(yσz) = yσ(xσz),

wherethrough x, y, z ∈ X are arbitrary. An arbitrary BE algebra (X,σ, ι) is commutative,

provided for each x, y ∈ X, (xσy)σy = (yσx)σx.

Proposition 2.2. [7] Assume X is an arbitrary BE algebra. Afterwards for all x, y ∈ X

(i) xσ(yσx) = ι,

(ii) yσ((yσx)σx) = ι.

Definition 2.3. [10] Assume H is an arbitrary nondevoid set, ϵ ∈ X and ϱ : H2 → P∗(H)

be a map. Afterwards (H, ϱ, ι) known as a hyper BE–algebra, provided

(HBE1) ι ∈ xϱι and ι ∈ xϱx,

(HBE2) xϱ(yϱz) = yϱ(xϱz),

(HBE3) x ∈ ιϱx,

(HBE4) provided ι ∈ ιϱx, so x = ι,

wherethrough x, y, z ∈ H.

Theorem 2.4. [10] In every hyper BE algebra H,

(i) Aϱ(BϱC) = Bϱ(AϱC),

(ii) ι ∈ AϱA,

(iii) provided ι ∈ ιϱA, afterwards ι ∈ A,

(iv) ι ∈ xϱ(yϱx),

(v) provided ι ∈ xϱ(yϱz), afterwards ι ∈ yϱ(xϱz),

(vi) ι ∈ (xϱy)ϱy,

(vii) provided z ∈ xϱy, afterwards ι ∈ xϱ(zϱy),

(viii) provided y ∈ ιϱx, afterwards ι ∈ yϱx,

wherethrough A,B,C ⊆ H.
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Definition 2.5. [12,13] Let X be an arbitrary nondevoid set and ι ∈ X. For a map ϑ∗
{m→n} :

Xm → Pn
∗ (X), (X,ϑ∗

{m→n}) known as an {m → n}-super hyperalgebra, that Pn
∗ (X) is the nth

nested powerset of X and ∅ ̸∈ Pn
∗ (X).

3. On development of BE subalgebra

In what follows, present the significance of superhyper BE subalgebras based on the popu-

larization of axioms of BE algebras and make a connection between of these logic superhyper

algebras and BE algebras.

In the following, we prove a proposition that is fundamental in our work.

Lemma 3.1. Assume (X,σ, ι) is a BE algebra. Afterwards xσ(yσz) = ισ(xσ(yσz)), whence

x, y, z ∈ X.

Proof. Whereof for every x ∈ X,, we have xϱι = x, we get xσ(yσz) = ισ(xσ(yσz)), whence

x, y, z ∈ X.

According to Lemma 3.1, we describe the significance of {m → n} superhyper BE subalge-

bras.

Definition 3.2. Let m− 2 = κ, X be a nonavoided set and ι ∈ X. Afterwards (X,ϑ∗
{m→n}, ι)

known as an {m → n} superhyper BE subalgebra, provided

(i) ι ∈ ϑ∗
{m→n} (x, x, . . . , x, x

)︸ ︷︷ ︸
m−times

,

(ii) ι ∈ ϑ∗
{m→n}(x, (ι, ι, . . . , ι, ι

)︸ ︷︷ ︸
(λ)−times

),

(iii) x ∈ ϑ∗
{m→n}((ι, ι, . . . , ι, ι

)︸ ︷︷ ︸
(λ)−times

, x),

(iv)

ϑ∗
{m→n}((ι, ι, . . . , ι, ι

)︸ ︷︷ ︸
(κ)−times

, x, ϑ∗
{m→n}(y, x1, . . . , xm−1)) = ϑ∗

{m→n}((ι, ι, . . . , ι, ι
)︸ ︷︷ ︸

(κ)−times

, y, ϑ∗
{m→n}(x, x1, . . . , xm−1)).

From now on, we will use {m → n} S.H BE algebra instead of {m → n} superhyper BE

subalgebra, for simplify.

Example 3.3. (i) Suppose (X,ϑ∗
{m→n}) is an {m → n} S.H BE algebra. Afterwards

(X,ϑ∗
(2,0)) is a BE subalgebra.

(ii) Assume (X,ϑ∗
{m→n}) is an {m → n} S.H BE algebra. Afterwards (X,ϑ∗

{2→1}) is a

hyper BE subalgebra.
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Example 3.4. Let X = {ι, s}.
(i) Afterwards (X,ϑ∗) is a {3 → 3} S.H BE algebra what comes next:

ϑ∗
(3,3)(r, r, r) = P3

∗ ({ι, r}), ϑ∗
(3,3)(r, s, ι) = P3

∗ ({ι}),

ϑ∗
(3,3)(ι, s, t) = P3

∗ ({r}), and, for each another cases ϑ∗
(3,3)(r, s, t) = P3

∗ ({r, s, t}),

where

P∗({s}) = P2
∗ ({s}) = P3

∗ ({s}) = {s},

P∗({ι, s}) = {ι, s, {ι, s}},

P2
∗ ({ι, s}) = {ι, s, {ι, s}, {ι, {ι, s}}, {s, {ι, s}}},

P3
∗ ({ι, s}) =

{
ι, s, {ι, s}, {ι, {ι, s}},

{s, {ι, s}}, {ι, {ι, {ι, s}}, {ι, {s, {ι, s}}, {s, {ι, {ι, s}},

{s, {s, {ι, s}}, {{ι, s}, {ι, {ι, s}}}, {{ι, s}, {s, {ι, s}}, {{ι, {ι, s}}, {s, {ι, s}}}
}
.

(i) By definition, ι ∈ ϑ∗
{3→3}(r, r, r) = P3

∗ ({ι, r}).
(ii) By definition, ι ∈ ϑ∗

{3→3}(r, ι, ι) = P3
∗ ({ι}).

(iii) By definition, x ∈ ϑ∗
{3→3}(ι, ι, r) = P3

∗ ({r}).
(iv) By definition,

ϑ∗
{3→3}(ι, x, ϑ

∗
{3→3}(y, z, w)) = ϑ∗

{3→3}(ι, r,P
3
∗ ({u, v, w}))

= P3
∗ ({r, u, v, w})

= ϑ∗
{3→3}(ι, u, ϑ

∗
{3→3}(r, v, w)).

(ii) Afterwards (X,ϑ∗) is a {3 → 0} S.H BE subalgebra what comes next:

ϑ∗
(3,ι)(r, r, r) = {ι}, and for another cases, ϑ∗

(3,ι)(s, r, t) = {t}.

Theorem 3.5. Assume (X,ϑ∗
{m→n}) is an {m → n} S.H BE algebra. Afterwards for every

k ≥ n, (X,ϑ∗
{m→n}) is an {m → k} superhyper BE subalgebra.

Proof. Suppose (X,ϑ∗
{m→n}) is an {m → n} S.H BE algebra and k ≥ n. Whereof Pn

∗ (X) ⊆
Pk
∗ (X), for every y1, y2, . . . , ym ∈ X,ϑ∗

{m→n}(y1, y2, . . . , ym) ⊆ ϑ∗
(m,k)(y1, y2, . . . , ym). Thus

ι ∈ ϑ∗
{m→n}(y1, y2, . . . , ym) implies that ι ∈ ϑ∗

(m,k)(y1, y2, . . . , ym) and every principles are

accurate.
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Example 3.6. Let X = {0, s}. Afterwards for each n ≥ 3, using above Theorem, (X,ϑ∗) is a

{3 → n} S.H BE algebra what comes next:

ϑ∗
(3,3)(u, u, u) = Pn

∗ ({ι, u}), ϑ∗
(3,3)(u, v, ι) = Pn

∗ ({ι}),

ϑ∗
(3,3)(ι, v, w) = Pn

∗ ({u}),

and for another cases ϑ∗
(3,3)(u, v, w) = Pn

∗ ({u, v, w}).

Let k ∈ N, m = 2k, (X,ϑ∗
{m→n}) be an {m → n} S.H BE algebra. For ev-

ery given c1, c2, . . . , cm ∈ X, define (c1, c2, . . . , cm
2
) ≤ (cm

2
+1, cm

2
+2, . . . , cm) iff ι ∈

ϑ∗
{m→n}(c1, c2, . . . , cm).

Theorem 3.7. Let k ∈ N, m = 2k, c1, c2, . . . , cm ∈ X. Afterwards (X,ϑ∗
{m→n}) is an

{m → n} S.H BE algebra provided,

(i) ϑ∗
{m→n}(y, x, . . . , x) ≤ ϑ∗

{m→n}(y, x, . . . , x),

(ii) ϑ∗
{m→n}(c1, c2, . . . , cm) ≤ ϑ∗

{m→n}(c1, c2, . . . , cm−1, ι),

(iii) ϑ∗
{m→n}(c1, c2, . . . , cm) ≤ ϑ∗

{m→n}(ι, c1, . . . , cm−1, cm).

Proof. Occurring by definition.

Theorem 3.8. Assume (X,ϑ∗
{m→n}) is an {m → n} S.H BE algebra. Afterwards ι ∈

ϑ∗
{m→n}((ι, ι, . . . , ι, ι

)︸ ︷︷ ︸
(κ)−times

, x, ϑ∗
{m→n}(y, x, . . . , x)), when m− 2 = κ

Proof. Assume (X,ϑ∗
{m→n}) is an {m → n} S.H BE algebra and x, y ∈ X. Afterwards

ι ∈ ϑ∗
{m→n}((ι, ι, . . . , ι, ι

)︸ ︷︷ ︸
(κ)−times

, y, ι)

⊆ ϑ∗
{m→n}((ι, ι, . . . , ι, ι

)︸ ︷︷ ︸
(κ)−times

, y, ϑ∗
{m→n}(x, x, . . . , x))

= ϑ∗
{m→n}((ι, ι, . . . , ι, ι

)︸ ︷︷ ︸
(κ)−times

, x, ϑ∗
{m→n}(y, x, . . . , x)).

Theorem 3.9. Suppose (X,ϑ∗
{m→n}) is an {m → n} S.H BE algebra. Afterwards for m−2 =

κ,

ι ∈ ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, ϑ∗
{m→n}(ϑ

∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y), ι, ι, . . . , ι, ι︸ ︷︷ ︸
(κ)−times

, y).
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Proof. Assume x, y ∈ X. Afterwards

ι ∈ ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, ϑ∗
{m→n}((ι, ι, . . . , ι, ι

)︸ ︷︷ ︸
(κ)−times

, x, y), ϑ∗
{m→n}((ι, ι, . . . , ι, ι

)︸ ︷︷ ︸
(κ)−times

, x, y))

= ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y), y)).

It concludes that ι ∈ ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, ϑ∗
{m→n}(ϑ

∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y), ι, ι, . . . , ι, ι︸ ︷︷ ︸
(κ)−times

, y).

Definition 3.10. Let (X,ϑ∗
{m→n}) be an {m → n} S.H BE algebra. Afterwards (X,ϑ∗

{m→n})

known as distributive, provided

ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, y, z))

= ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y), ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, z)),

when m− 2 = κ.

Theorem 3.11. Assume (X,ϑ∗
{m→n}) is a distributive {m → n} S.H BE algebra. Afterwards

for when m− 2 = κ,

(i) If x ≤ y, afterwards ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, z, x) ≤ ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, z, y),

(ii) ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, y, z) ≤

ϑ∗
{m→n}(ϑ

∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y), ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, z)),

(iii) ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, y, x) ≤

ϑ∗
{m→n}(ϑ

∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, z, y), ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, z, x)).

Proof. (i) Let m − 2 = κ, x, y, z ∈ X. Afterwards x ≤ y, imples that ι ∈
ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y). Whereof (X,ϑ∗
{m→n}) is a distributive {m → n} S.H BE algebra,

we get that

ι ∈ ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, z, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y))

= ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, z, x), ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, z, y)).

It follows that ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, z, x) ≤ ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, z, y).
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(ii) Let x, y, z ∈ X. Afterwards for β = ι, ι, . . . , ι, ι︸ ︷︷ ︸
(κ)−times

, we get that

ι ∈ ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, y, z) ι, ι, . . . , ι, ι︸ ︷︷ ︸
(κ)−times

)

⊆ ϑ∗
{m→n}(β, ϑ

∗
{m→n}(β, ϑ

∗
{m→n}(β, y, z), x), ϑ

∗
{m→n}(β, ϑ

∗
{m→n}(β, y, z), ϑ

∗
{m→n}(β, y, z))

⊆ ϑ∗
{m→n}(β, ϑ

∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, y, z), ϑ∗
{m→n}(β, x, ϑ

∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, y, z)))

⊆ ϑ∗
{m→n}(β, ϑ

∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, y, z), ϑ∗
{m→n}(β, (ϑ

∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y),

ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, z)).

It follows that

ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, y, z) ≤ ϑ∗
{m→n}(ϑ

∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y), ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, z)).

(iii) It is similar to (ii).

Definition 3.12. Assume (X,ϑ∗
{m→n}) is an {m → n} S.H BE algebra. Afterwards

(X,ϑ∗
{m→n}) known as commutative, provided

ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y), y)

= ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, y, x), x),

when m− 2 = κ.

Example 3.13. Let X = {−1, 1, 2, 3, . . .}.
(i) Afterwards (X,ϑ∗) is a commutative {3 → 3} S.H BE subalgebra what comes next:

ϑ∗
(3,3)(x, y, z) =



P3
∗ ({−1}) provided z ≤ y ≤ x

P3
∗ ({−1, y − z, x− z}) provided z < y ≤ x

P3
∗ ({−1, y − z, x− z}) provided z < x ≤ y

P3
∗ ({−1, z − x, y − x}) provided x < z ≤ y

P3
∗ ({−1, z − x, y − x}) provided x < y ≤ z

P3
∗ ({−1, z − y, x− y}) provided y < z ≤ x

P3
∗ ({−1, z − y, x− y}) provided y < x ≤ z

P3
∗ ({x− y, x− z, y − z}) o.w

,
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Theorem 3.14. Assume (X,ϑ∗
{m→n}) is a commutative {m → n} S.H BE algebra. Afterwards

for when m− 2 = κ,

ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y)

⊆ ϑ∗
{m→n}

(
ι, ι, . . . , ι, ι︸ ︷︷ ︸
(κ)−times

, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y), y), y
)
and m− 2 = κ.

Proof. Let x, y ∈ X. Afterwards for α = m− 1, we get

ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y)

⊆ ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(α)−times

, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y))

⊆ ϑ∗
{m→n}(ι, ι, . . . , ϵ, ι︸ ︷︷ ︸

(κ)−times

, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(λ)−times

, y, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y),

ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y)))

⊆ ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y), y), y).

Thus

ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y)

⊆ ϑ∗
{m→n}

(
ι, ι, . . . , ι, ι︸ ︷︷ ︸
(κ)−times

, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(κ)−times

, x, y), y), y
)
.

Corollary 3.15. Assume (X,ϑ∗
{m→n}) is a commutative {m → n} S.H BE algebra. After-

wards (X,ϑ∗
{m→n}) is distributive iff for every x, y ∈ X,

ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(λ)−times

, x, y) = ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(λ)−times

, x, ϑ∗
{m→n}(ι, ι, . . . , ι, ι︸ ︷︷ ︸

(λ)−times

, x, y)) and m− 1 =.

4. Conclusion and discussion

One of the aims of this article is to consider the relationship between some arbitrary elements

that are dependent on the principles of axiom. Investigating this important issue is a more

complicated task compared to the connection of only two elements, wherethrough creates

a certain limitation for our article. Of course, the advantage of this work compared to the

structural mode is that we have no restrictions on the selection of elements, and for any number

of elements you can create a targeted connection. Indeed, the significance of {m → n} S.H

BE algebras can cover the defects of hyper BE algebras and so can be applied to more actual
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problems. We try to define it in such a way that it outcomes in BE algebras and hyper BE

algebras significances and at the same time we can connect more elements and eliminate the

limitation of two elements in application. In the next investigations, attempt to achieve more

outcomes concerning Neutro super (hyper)EQ subalgebras and utilizations in actual-universe

problems. We demand to expand the significance of EQ algebras concerning networks and

complex hypernetworks.
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Abstract: 

    

The shortest path (SP) problem (SPP) has several applications in graph theory. It can be used 

to calculate the distance between the provided initial and final vertex in a network. In this 

paper, we employed the Fermatean neutrosophic number as the appropriate edge weight of 

the network to estimate the SP connecting the start and end vertex. This technique is highly 

useful in establishing the shortest path for the decision-maker under uncertainty. We also 

investigated its effectiveness in comparison to several existing methods. Finally, a few 

numerical tests were performed to demonstrate the validity and stability of this new 

technique, as well as to compare different types of shortest paths with different networks. 

 

Keywords: Fermatean neutrosophic graph; Fermatean neutrosophic number, shortest path 

problem, Uncertainty. 

 

1. Introduction: 

The SPP is mainly a significant and essential combinatorial network optimization 

decision-making problem, and we can also say it is the heart of network flows. For example, 

it has a broad area of applications and is used in routing [1], transportation [2], supply chain 

management [3], communications [4], wireless networks [5], etc. Basically, this focuses on 

finding the SP between a particular initial node and the final node. Nowadays, it has 

important applications in engineering and research. In terms of competence, efficiency, and 

analytical techniques, the SPP has been extremely well researched. 

In a traditional problem, the length between two vertices is assumed to be a real number in a 

certain environment. But in case of uncertainty, fuzzy numbers can be used to obtain the best 
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result. The SPP is an essential component of the transport management system, connecting a 

specific source vertex to a destination vertex. Where the variety of research papers published 

regarding SPP in an uncertain environment where vertex and edges are stimulated to 

represent transportation cost or time. 

However, in a real-world situation, different types of ambiguity are usually caused like 

failures, deficient data, or other factors such as weather or traffic conditions. In these cases, 

evaluating the particular optimal path in given networks may be difficult, so here we take a 

fuzzy number. In real-world problems involving scheduling, transportation, vehicle green 

routing, etc. that use SPP, the edge weights need not be certain due to fluctuations in 

parameters such as weather and traffic conditions. In those circumstances, experts emphasize 

the use of probability concepts to handle randomness arising due to the uncertainties of the 

SPP. Zadeh [6] introduced the all-important uncertainty theory for dealing with imprecise 

data in many real-world problems. In real life, we have a tendency to find the optimum 

(maximum or minimum) solution to any problem. Since a large volume of the available data 

is imprecise and inconsistent, the results produced are inconsistent, which paves the way for 

the discovery of uncertainty theory. Fuzzy optimization has been a significantly popular 

topic among researchers in the last couple of decades due to its extensive usage in various 

areas involving network flow problems [7], production problems [8], Automotive Industry 

[9,10,11,12,13,14,15,16,17], pick-up and delivery problems [18], travelling salesman 

problems [19], and traffic assignment problems [20]. 

Over the past 20 years, numerous researchers have conducted extensive research on SPP 

using various fuzzy number types, such as edge and vertex weights. "Fuzzy SPP" is the name 

given to this type of SPP in fuzzy scenarios. In the course of time, numerous studies on the 

FSPP have been conducted [21,22,23,24,25,26,27].There are different research paper already 

done where edge weights are neutrosophic numbers (NNs), which can be single, interval, or 

bipolar valued, one can use a neutrosophic set (NS) to find the network's shortest path [28, 

29]. In situations where the theory of fuzzy logic is not useful when handling imprecise, 

uncertain and indeterminate issues, Smarandache introduced neutrosophic in 1995 and 

proposed a tool called the neutrosophic set (NS) theory. Truth (T), indeterminacy (I), and 

falsity (F) are three autonomous mappings that give rise to NS and have values between [0, 

1]. It is extremely challenging to use NS directly. 

Fuzzy graphs can be used for SPP while there is uncertainty in the vertices and edges, but 

neutrosophic concepts may be better able to manage uncertainty because indeterminacy is 

also taken seriously [30]. Since it can able to manage uncertain, inconsistent, and 

indeterminate information, NS is almost indispensable when it connecting with real-world 



Neutrosophic Sets and Systems, Vol. 57, 2023      330  

 

 

P.K. Raut,S.P. Behera, S.Broumi, D.Mishra, Calculation of shortest path on Fermatean Neutrosophic Networks 

issues in science and engineering [31]. In intelligent transportation systems, maintaining 

routes or providing uncertain supplies is of utmost importance. 

Some days before, Antony Crispin Sweety and Jansi R [32] introduced a new idea called the 

Fermatean neutrosophic set (FNS) by mixing the concept of two sets i.e Fermatean fuzzy sets 

and neutrosophic sets. After FNs, some new concepts were introduced by Said Broumi et al. 

[33], such as regular and Fermatean neutrosophic graphs, Cartesian, composition, and 

lexicographic products of FNG.  

The primary goal of this paper is to present an efficient algorithmic strategy for SPP that can 

be adapted to an uncertain environment arising in practical situations. The following are the 

main contributions of this paper: 

 We used the Fermatean neutrosophic number FNSP as a vertex and then calculated 

the arc length of a Fermatean neutrosophic network. Because a graph or network may 

contain ambiguity or imperfection in its relationships or connections in some cases. 

 Fermatean neutrosophic number (FNSP) is an extension of the neutrosophic number 

(NS) that addresses uncertainty by allowing the representation and analysis of 

uncertain or ambiguous information. 

 Here we introduce a new algorithm to handle the SPP in an uncertain environment 

that calculates the length of the shortest path connecting two given nodes. 

The remaining portion of the paper is prearranged in the following way: In Section 1, the 

literature analysis has been compiled. In Section 2, an overview of a Fermatean neutrosophic 

set is available. In Section 3, with the help of the suggested score function, novel algorithms 

are proposed. Section 4 provides a numerical example of finding the FNSP in Fermatean 

neutrosophic environments. Section 5 discussed the comparison of the shortest path with 

different networks and with different parameters, along with the benefits of the suggested 

approach. Section 6 provides the presented work's conclusion. 

 

2. Preliminaries: 
In this part of the article, the fundamental ideas and definitions of the neutrosophic set, 

Fermatean neutrosophic set, Fermatean neutrosophic relation, and score function of the 

Fermatean neutrosophic number are presented. 

Definition 2.1 [35] 

A neutrosophic set (NS) A in a universal set X is defined as 

. where , ,  is truth, Indeterminacy and  
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falsity membership degree. and sum of these three degrees of  membership is written as  

. 

 

Definition 2.2 [31]   

A Fermatean neutrosophic set (FNS) A in universal set X is characterized by 

 . 

Where  shows the membership degree,  indicates the 

indeterminacy-membership degree, and  shows the non-membership degree.  

Where sum cube of membership and falsity membership degree lies in between [0,1] i.e. 

 and cube of indeterminacy degree lies in between[0,1] i.e. 

 . 

Finally, the sum cube of this three membership degree lies in between [0, 2] i.e. 

.  

Definition 2.3 [31] 

Let X is a universal set and a mapping  S =  ((ŤS, ǏS, F̌S) ∶  X ×  X →  [0,1]) is 

called a Fermatean Neutrosophic relation on X  such that (ŤS(u, v), ǏS(u, v), F̌S(u, v)  ∈
 [0,1] for all u, v ∈  X. 

Definition 2.4[31] 

Let  and  ) be Fermatean Neutrosophic number on a vertices 

.then the edge length from R to S is defined as                                                        

  

                               )}  

                               

if  

Definition 2.5[31] 
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Let the vertices  be Fermatean neutrosophic number then the 

score function is defined as     

 

 

3. Proposed Shortest Path algorithm based on Fermatean neutrosophic 

number 
In this section, the proposed Shortest Path algorithm based on Fermatean neutrosophic 

number aims to address the limitations of existing path finding algorithms by incorporating 

the concept of Fermatean neutrosophic numbers 

 

 Step-1: Choose one vertex as the initial and one vertex as the final point of the 

associated network. 

 Step-2: Find the total possible path from initial node to final node of the associated 

network.  

 Step-3: By using definition -2.4 to find the edge weights of a network from nodes. 

 Step-4: After getting all edge value now convert it to crisp number by using score 

function (Definition-2.5).  

 Step-5: Calculate the average value of a path by adding all the edges. Arrange the 

path in ascending order from lowest to highest path. 

4. Illustrative Example 

Consider a Fermatean neutrosophic network, where the vertex weights are defined by 

Fermatean numbers. The source vertex is 1 and the destination vertex is 6. By utilizing 

Fermatean neutrosophic values, we can explore complex systems, decision-making 

processes, or social networks with incomplete or uncertain information. Neutrosophic graph 

theory and related techniques aim to handle indeterminacy and provide a more accurate 

representation of uncertain realities. 
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                  Figure1.Fermatean neutrosophic network 

 

 

 

 
Here, Fermatean neutrosophic values on reality represent the recognition and 

acknowledgment of the existence of multiple perspectives and uncertainties in any given 

situation. 

 

    

 

Vertices Fermatean neutrosophic number 

1 <0.3.0.7,0.5 > 

2 <0.5,0.3.0.8> 

3 <0.4,0.8,0.6> 

4 <0.6,0.5,0.7> 

5 <0.7,0.6,0.8> 

6 <0.8,0.4,0.5> 

 

Table-1: Vertices Weights 

 

Implementation of Algorithm 

In this section, it involves the conversion of a theoretical algorithm, which is a series of 

logical instructions, into a practical and executable solution that solves a specific problem. 

Step-1: 

From Figure1. Source vertex weight is 1 and destination vertex weight is 6. 

Step-2: 

The consequent of all probable paths connecting from source vertex to destination vertex are 

shown in Table-2. 
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Sl.no  Path 

1 1-2-4-6 

 

2 1-3-5-6 

 

3 1-3 -4-6 

 

4 1-2-3-4-6 

 

                       

                     Table-2: Path of a Network 

 

 

Step-3: 

In this given network, the nodes' weights are given. We can find the edge length of a given 

network by using definition 5. 

From node 1 nodes weight is <0.3, 0.7, 0.5 > 

From node 2 nodes weight is <0.5, 0.3, 0.8> 

Then, the edge length from node 1 to node 2 is 

              

                              )} 

                              

i.e 

 

 

 

So, the edge length from node-1 to node-2 is <0.3, 0.7, 0.8> 

 

Similarly, we can find the edge lengths of all the nodes in the network given in the table.                           

Edges Edge weights 

1-2 <0.3,0.7,0.8> 

1-3 <0.3,0.8,0.6> 

2-3 <0.4,0.8,0.8> 
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2-4 <0.5,0.5,0.8> 

3-4 <0.3,0.7,0.8> 

3-5 <0.4,0.8,0.8> 

4-6 <0.6,0.5,0.7> 

5-6 <0.7,0.6,0.8> 

 

Table-3:Edge weights 

Step-4: 

Now we convert Fermatean neutrosophic edge weight to crisp edge weight by using score 

function                     . 

 

 

 

 

Edge weight from node-1 to node-2 is  

 

 
Similarly to convert all Fermatean neutrosophic edge weight to crisp edge in Table-4 

 
 

 

 

 

 

 

 

 

 

 

 

 
Table-4:Edge weights in crisp number 

Step-5: 

 

  

 

Edges Edge weights in crisp 

number  

1-2 0.40 

1-3 0.53 

2-3 0.46 

2-4 0.30 

3-4 0.30 

3-5 0.46 

4-6 0.46 

5-6 0.50 
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1-2-4-6  

1-2-4-6  

Similarly, to calculate average weights of all possible paths from source to destination.   

 
Possible paths Average weights of a path 

1-2-4-6 

 

0.38 

1-3-5-6 

 

0.49 

 

1-3 -4-6 

 

0.43 

1-2-3-4-6 

 

0.40 

 

Table-5: average weights of all possible paths 

 

Here, the shortest path 1-2-4-6 and shortest path value is 0.3 

 

5. Comparison study: 

In this segment, we evaluate our algorithm with Fermatean neutrosophic environment and 

with some existing methodology [30] and [31].  

 

    

Table-6: Shortest path with different network 

and also we do a comparisons study for evaluation of SPP with different parameter as shown 

in Table-7 

Shortest path with different 

network 

Path Shortest path Length 

shortest path with IVNNs [34] 1 → 2 → 4→ 6 [0.35,0.60],[0.01,0.04],[0.008,0.7

5] 

shortest path with trapezoidal and 

triangular neutrosophic numbers 

[35] 

1 → 2 → 4→ 6 0.485 

Our proposed algorithm  1 → 2 → 4→ 6 0.38 
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Evaluating 

SPP with 

Different 

parameter 

Arc 

lengths/vert

ices 

Indetermina

cy 

Ambiguity Uncertain

ty 

Advantages Limitations 

  Crisp  

parameters 

crisp Number  insufficient to 

handle 

insufficient to 

handle 

insufficient 

to handle 

Able to 

determine 

easily 

information 

unable to fully 

express the 

uncertain 

information 

Fuzzy 

parameters  

Fuzzy Number  Not able to 

manage 

Not able to 

manage 

capable to 

manage 

with 

uncertainty 

Able to 

determine 

easily uncertain 

in formation 

Able determine 

only 

membership 

information 

but not for non 

membership 

Intuitionistic 

fuzzy 

parameters  

Intuitionistic 

Fuzzy Number  

insufficient to 

handle 

able to 

manage 

able to 

manage 

Able determine 

both 

membership 

and non 

membership 

information 

Not able to 

determine sum 

of membership 

and non 

membership 

value greater 

than one or not 

Neutrosophic 

parameters  

Neutrosophic 

Number  

sufficient to 

handle 

able to 

manage 

May or may 

not be able 

to manage 

Able determine 

both Truth, 

Indeterminacy 

and Falsity 

membership  

information  

Not able to 

determine the 

cube sum of 

Truth, 

Indeterminacy 

and falsity 

membership 

value > 2 

Fermatean 

neutrosophic 

parameters 

Fermatean 

neutrosophic 

number 

sufficient to 

handle 

able to 

manage 

able to 

manage 

Able to 

determine the 

cube sum of 

Truth, 

Indeterminacy 

and falsity 

membership 

value in 

between 0 to 3 

Not able to 

determine the 

interval data 
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Table-7: Shortest path with different parameter 

6. Conclusion: 

Uncertainty is essential to all scientific and engineering concerns. Fuzzy theory, intuitionistic 

fuzzy theory, and neutrosophic theory are the most valuable tools for determining the best 

answer to multi-criteria decision-making situations like the shortest path problem in a 

network. 

  In this paper, we study the advantages of employing the fermatean neutrosophic number in 

NSP. It incorporates uncertainty with the help of the Fermatean neutrosophic number edge 

weight between the source and destination vertex in a Fermatean neutrosophic environment. 

We are also expanding our research on this novel idea to include Interval-valued fermatean 

neutrosophic numbers, Interval-valued fermatean triangles, and trapezoidal neutrosophic 

numbers, as well as their applications, in future work. 
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Abstract:  Energy, healthcare, electronics, transportation, ecology, and infrastructure are just a few of the 

areas that might greatly benefit from the use of new materials and systems. This study delves into the 

factors that should be taken into account when determining the possible effect of a certain substance or 

system. This analysis takes into account ecological, monetary, technical, health and safety, regulatory, 

commercial, and cooperative factors. Stakeholders may make more well-informed decisions and ensure 

that materials and systems are used to their maximum capacity if they take these into account. This paper 

used the concept of multi-criteria decision-making (MCDM) to deal with various criteria and factors. The 

VIKOR method is used as an MCDM method to rank the materials according to various criteria. The VIKOR 

method is integrated with the single-valued neutrosophic set to overcome uncertain information. This 

paper used eight criteria and ten materials to select the best one. The results show the cost criteria is the 

height weight in all criteria. 

Keywords: Neutrosophic Set, Materials, Evaluation, MCDM, Uncertainty.  

 

1. Introduction  

Our contemporary world owes much to the materials and processes that drive technological progress and 

revolutionize several sectors. These materials and systems have the potential to have a huge impact on a 

variety of fields. Understanding and utilizing the potential of materials and systems is essential for tackling 

societal concerns, promoting sustainability, and supporting innovation in fields ranging from energy and 

healthcare to transportation and infrastructure[1], [2]. 

Potential impacts are evaluated using a multifaceted set of criteria and characteristics. Materials and 

systems should aim to decrease carbon emissions, energy consumption, and waste creation over their entire 

lifespan to minimize their environmental effect. Improving people's quality of life, their sense of security, 

and their ability to access resources are all examples of social effects. Material and system development 

should be cost-effective and promote economic growth to have a positive economic impact[3], [4]. 
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The effect possibilities of materials and systems are being pushed forward by technological development. 

New materials with enhanced performance qualities like strength, durability, and conductivity may be 

created because of developments in materials science. These developments pave the way for the 

development of novel systems that are more functional and have more capacities[5], [6]. 

When calculating impact probabilities, health, and safety must take precedence. Human health and safety 

must be the priority while designing and developing new materials and systems. Promoting sustainability 

and aligning with global objectives, such as cutting carbon emissions or bolstering circular economy 

practices, necessitates compliance with policies and regulations. 

Considerable thought must be given to the market's prospective interest and uptake. Market demands, 

client specifications, and competitive advantages should all be taken into account when designing materials 

and systems. Determining the economic feasibility and long-term success of materials and systems requires 

an analysis of market size, growth potential, and obstacles to entry[7], [8]. 

Last but not least, maximizing the effect of materials and systems requires teamwork and the participation 

of key stakeholders. To maximize the impact potentials of materials and systems, it is essential to encourage 

multidisciplinary cooperation among academics, industrial partners, policymakers, and end-users[9], [10]. 

In this work, we explore the factors and criteria used to calculate the potential effect of various materials 

and systems. We hope that by investigating these issues, we may shed light on the advantages and 

disadvantages of different materials and methods. To make smart choices, spur innovation, and build a 

future that is both sustainable and technologically advanced, it is essential to have a firm grasp on these 

impact potentials. So, the concept of MCDM is used to deal with these criteria and factors. The VIKOR 

method used an MCDM method to compute the weights of these factors and rank the materials. The VIKOR 

method is integrated with the neutrosophic set to deal with uncertain information.  

In such contexts, decision-maker preferences are seldom quantifiable, stable, and consistent. Memberships 

in traditional set theory are inadequate here[11]. Zadeh proposed using fuzzy sets (FSs) for dealing with 

uncertainty in cognitive processes, with memberships of the proposed technique ranging from 0 to 1 [12], 

[13]. 

Atanassov developed the intuitionistic fuzzy set (IFS) as a solution to the hesitancy issue of decision-makers 

since incorporating fuzziness into DM problems is not sufficient. Each element's degree of non-membership 

is represented by a number between 0 and 1. IFSs have seen widespread use in DM issues[14], [15]. 

To properly describe the indeterminacy, Smarandache has proposed the neutrosophic set (NS), an enlarged 

and generic variant of the classical fuzzy set and the intuitionistic fuzzy set. Neutrosophic set elements 

include T for truth, I for indeterminacy, and F for falsehood[16], [17]. 

 

2.  Examples of Materials Process and its Impacts 

A few sectors that have benefited greatly from new materials and methods are listed below. 

Modern materials, such as high-efficiency solar cells, have caused a paradigm shift in the 

renewable energy industry. Materials like perovskite solar cells have the potential to boost solar 
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energy production due to their high light absorption and conversion rates. Similarly, the 

widespread adoption of electric cars and grid-scale energy storage solutions has been made 

possible by breakthroughs in battery technology and the utilization of materials like lithium-

ion[18], [19]. 

Materials and systems have had a significant influence on healthcare, especially in the area of 

medical devices. Orthopedic implants made from biocompatible materials, such as titanium alloys, 

have improved patient outcomes and prolonged implant longevity. Smart materials, such as shape-

memory alloys, have also been developed, allowing for less intrusive surgical techniques and 

enhancing patient comfort during medical treatments. 

Improvements in materials and processes have allowed the electronics industry to shrink gadgets 

and boost their performance. Silicon and other similar materials have been crucial to the 

development of integrated circuits and microprocessors in the semiconductor industry. New 

opportunities for wearable electronics, flexible displays, and electronic textiles have emerged 

because of the advancement of flexible and stretchy electronics made possible by materials such 

as graphene and conductive polymers[20], [21]. 

The transportation sector has been profoundly affected by the use of lightweight materials like 

carbon fiber composites and aluminum alloys. The high strength-to-weight ratios of these materials 

let vehicles go further on a single tank of gas and produce less greenhouse gas emissions. Battery 

technology improvements, such as those seen in lithium-ion and solid-state batteries, have also 

contributed to increased electric vehicle range and a rise in their popularity. 

Improvements in structural integrity, energy efficiency, and sustainability have resulted from 

advances in materials and technologies used in the building industry. Fiber-reinforced composites 

and ultra-high-strength concrete are two examples of high-performance materials that may benefit 

infrastructure projects with longer lifespans and lower maintenance costs. Building automation 

and energy management systems are only two examples of smart technologies that have improved 

building efficiency and occupant comfort. 

The environmental sector has made significant progress in tackling environmental concerns thanks 

in large part to the use of sustainable materials and technologies. Waste has been cut down and the 

environmental effect of the packaging and building sectors has been lessened thanks to the use of 

recycled and eco-friendly materials. Water and air purification have benefited greatly from the use 

of cutting-edge filtration technologies and materials, which in turn has helped to enhance 

environmental quality[22], [23]. 

These cases show how materials and systems have had far-reaching effects in a variety of sectors, 

fostering innovation, enhancing performance, and resolving social issues. Future sustainable 

development and profoundly reshaping our planet may be enabled by further developments in 

materials science and engineering[24], [25]. 

3. Challenges of Impact Potentials of Materials and Systems  
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Although materials and systems might have far-reaching effects, several obstacles stand in the way 

of reaping such rewards. Key difficulties include, among others: 

The environmental effect of materials and systems is a major obstacle that must be overcome. 

Many economic sectors depend heavily on nonrenewable resources or produce enormous amounts 

of trash and pollutants during their operations. To overcome these difficulties, it is crucial to 

implement circular economy concepts and seek sustainable alternatives, as well as to reduce 

energy consumption, waste production, and waste disposal costs[26], [27]. 

The price tag associated with creating and deploying cutting-edge infrastructure might be 

prohibitive for certain people. Large sums of money are often needed for R&D, production, and 

increasing output. Especially in areas where cost is a major factor in adoption, like healthcare and 

renewable energy, making these technologies inexpensive and accessible is vital. 

Technological Readiness: It might be difficult to transition materials and systems from the research 

and development phase to practical applications. Scalability, dependability, and backward 

compatibility with current infrastructure are all technical hurdles that must be cleared. For 

materials and systems to be widely used, their long-term performance and durability must be 

guaranteed[28], [29]. 

There is a correlation between regulatory and policy frameworks and the pace of innovation in 

materials and systems. Promoting safety, sustainability, and market acceptance requires the 

establishment of suitable rules, standards, and incentives. However, complying with many local, 

state, federal, and international regulations may be difficult. 

The degree to which the public embraces and uses novel technologies depends greatly on how they 

are received in the marketplace. Safety issues, ethical considerations, and the potential for industry 

upheaval are all valid concerns. To alleviate these worries and restore confidence among 

stakeholders, open dialogue, public participation, and clear information sharing are essential. 

The full effect potential of materials and systems is seldom realized without the combined efforts 

of academics, industry professionals, policymakers, and end-users from a wide range of 

backgrounds and disciplines. Bridging knowledge gaps, aligning interests, and coordinating efforts 

across multiple industries and disciplines are all obstacles that may make interdisciplinary 

cooperation difficult. To face these difficulties, it is essential to construct efficient networks and 

platforms for cooperation[29], [30]. 

Taking into account a product's whole lifespan, from mining for basic materials to final disposal, 

is essential when assessing its potential effect. It is a difficult effort to evaluate resource depletion, 

waste management, and social equality at every step of the process. It is crucial to develop whole 

lifecycle assessment methods and embed sustainability concepts into all stages of the lifecycle. 

Research and development, legislative interventions, industry cooperation, and public awareness 

are all necessary to effectively tackle these issues. If we can get beyond these roadblocks, we can 

use materials and systems to their fullest extent, promoting long-term growth and social 

progress[28], [31]. 
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Figure 1. The framework of single valued neutrosophic set. 

 

4. Neutrosophic VIKOR Method 

In 2004, Opricovic and Tzeng were the first to publish the VIKOR technique. The fundamental 

idea behind the strategy is to choose the best option by ranking them according to competing 

criteria[32], [33] as shown in Figure 1. 

Step 1. Build the decision matrix 

The whole matrix of VIKOR method can be computed as: 

𝑇𝑝𝑗 = (∑ (𝑤𝑖
𝑓𝑖

∗−𝑓𝑖𝑗

𝑓𝑖
∗−𝑓𝑖

−)𝑛
𝑖=1 )

1

𝑝
                                                                                                                       (1) 

Step 2. Compute the weight of decision makers 

𝐴𝑒 = (𝑎𝑖𝑗
𝑒 )   

Where 𝑒 refers to the decision maker and experts. 
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Step 3. Combine the decision matrix  

𝑎𝑖𝑗 = < 1 − ∏ (1 − 𝑇𝑖𝑗
(𝑒)

), ∏ 𝐼𝑖𝑗
(𝑒)𝑘

𝑒=1 , ∏ 𝐹𝑖𝑗
(𝑒)𝑘

𝑒=1
𝑘
𝑒=1 >                                                                          (2) 

Step 4. Compute the weights of criteria 

Step 5. Normalize the decision matrix  

Step 6. Compute the weighted normalized decision matrix  

𝑑 = 𝐴𝑖𝑗 ∗ 𝑤𝑗                                                                                                                                       (3) 

Step 7. Attaining the beneficial and non-beneficial values of criteria. 

𝑇𝑗
𝑤+ = {(max 𝑇𝑖𝑗

𝑤), (min 𝑇𝑖𝑗
𝑤)}                                                                                                               (4) 

𝐼𝑗
𝑤+ = {(max 𝐼𝑖𝑗

𝑤), (min 𝐼𝑖𝑗
𝑤)}                                                                                                               (5) 

𝐹𝑗
𝑤+ = {(max 𝐹𝑖𝑗

𝑤), (min 𝐹𝑖𝑗
𝑤)}                                                                                                               (6) 

𝑇𝑗
𝑤− = {(max 𝑇𝑖𝑗

𝑤), (min 𝑇𝑖𝑗
𝑤)}                                                                                                               (7) 

𝐼𝑗
𝑤− = {(max 𝐼𝑖𝑗

𝑤), (min 𝐼𝑖𝑗
𝑤)}                                                                                                               (8) 

𝐹𝑗
𝑤− = {(max 𝐹𝑖𝑗

𝑤), (min 𝐹𝑖𝑗
𝑤)}                                                                                                               (9) 

Step 8. Compute the values of 𝑆𝑖 𝑎𝑛𝑑 𝑅𝑖 

𝑆𝑖 = ∑ 𝑤𝑗

|| 𝑤𝑗
+−𝑤𝑖𝑗     ||

|| 𝑤𝑗
+−𝑤𝑗

−||

𝑛
𝑗=1                                                                                                                       (10) 

𝑅𝑖 = max 𝑤𝑗

|| 𝑤𝑗
+−𝑤𝑖𝑗     ||

|| 𝑤𝑗
+−𝑤𝑗

−||
                                                                                                                 (11) 

Step 9. Compute the values of index 𝑄𝑖 

𝑄𝑖 = 𝜕 [
𝑆𝑖−𝑆+

𝑆−−𝑆+
] + (1 − 𝜕) [

𝑅𝑖−𝑅+

𝑅−−𝑅+
]                                                                                                  (12) 

Step 10. Rank the alternatives 

The alternatives are ranked according to the lowest value of 𝑄𝑖 

 

5. Results  

This section introduces the results of the proposed method. This paper use eight criteria and ten 

materials. The following are eight criteria. 
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Material and system impact assessment entails considering both the positive and negative 

outcomes that might result from using the material or system. When assessing the possible effects, 

it is important to keep in mind the following: 

Evaluate the environmental effects of materials and systems across their whole lifespan, from the 

gathering of raw materials to the final disposal of waste. Think about your impact on the 

environment in terms of things like your carbon footprint, energy use, trash output, and pollution 

risks. The potential effect of materials and systems is greater if they have a low environmental 

impact and help promote sustainability, such renewable materials or recyclable systems. 

Consider the effects that materials and systems may have on people, groups, and the larger society. 

Think on how things can be better in terms of price, accessibility, and quality of life. Think about 

how you can help local economies and create employment. The potential influence of a material 

or system increases when it is used to solve social problems, broaden participation, or better 

people's lives. 

Assess the financial effects of proposed materials and systems by analysing their costs, benefits, 

scalability, marketability, and growth prospects. Think about how you can save money, open up 

new markets, and stimulate creativity. The potential influence of a material or system increases as 

it provides economic advantages, stimulates industries, and aids in long-term economic growth. 

Technological Breakthroughs and Improvements Evaluate the Possibilities Opened Up by 

Materials and Systems. Think of ways to boost performance, add new features, and create new 

capabilities. Determine whether there is a chance that a new technology will significantly improve 

upon current methods. High-impact materials and systems are those that propel technological 

progress and usher in new possibilities. 

Assess how materials and setups could endanger people's health and safety. Think about the 

manufacture, using, and disposal stages from the perspective of toxicity, exposure hazards, and 

possible damage. Examine the opportunities for better health, medical progress, and increased 

safety in a variety of contexts. The health and safety impacts of materials and systems that pose 

low threats to human health and actually promote health and safety are greater. 

Think about how well your products and systems conform to any applicable laws, regulations, and 

industry standards. Think about how they may help achieve policy goals like lowering waste or 

increasing energy efficiency, or achieving environmental goals. The potential effect of a material 

or system increases when it is both regulatory compliant and helps to achieve policy goals. 

Examine the potential for materials and systems to be adopted in the market, as well as the demand 

for them. Think about the current size of the market, its potential for expansion, the level of 

competition, and any obstacles to entrance. Determine whether there is a chance to meet market 

demands, please customers, and give your company a leg up on the competition. The potential 

influence of a material or system increases as its market demand and rate of adoption increase. 

Collaboration and Stakeholder Engagement: Analyze the Prospects for Working Together and 

Involving Stakeholders in the Design and Implementation of Resources and Tools. Think about 
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how to include a wide range of people, such as companies, universities, government agencies, and 

end consumers. Think about how you may increase your effect by working together with others 

and sharing what you know. 

Impact assessment is difficult and context-dependent, so keep that in mind. There may be varying 

priorities or requirements depending on the application or industry. To evaluate materials and 

systems in their whole, it is necessary to take into account a wide variety of criteria, adapt them to 

the individual situation, and include several points of view. 

We applied the single valued neutrosophic VIKOR method on the eight criteria and ten 

alternatives.  

Step 1. Build the decision matrix 

The decision matrix is built based on the opinions of experts and single valued neutrosophic 

numbers.  

Step 2. Compute the weight of decision makers 

We compute the weights of criteria. The weights of criteria are equal.  

Step 3. Combine the decision matrix  

There are three experts and decision makers evaluate the criteria and alternatives, so we have three 

decision matrices. So, we combined these matrices to obtain the one matrix as shown in Table 1.  

Step 4. Compute the weights of criteria 

Then compute the weights of criteria as shown in Figure 2.  
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Figure 2. The weights of the eight criteria. 

Step 5. Normalize the decision matrix  

Then normalize the decision matrix. 

Table 1. The combined decision matrix by the VIJOR method 

 MPCS1 MPCS2 MPCS3 MPCS4 MPCS5 MPCS6 MPCS7 MPCS8 

MPMS1 0.369 0.236 0.256 0.452 0.369 0.562 0.9632 0.369 

MPMS2 0.623 0.369 0.256 0.516 0.236 0.369 0.256 0.236 

MPMS3 0.745 0.369 0.962 0.632 0.256 0.513 0.369 0.2563 

MPMS4 0.8526 0.7456 0.526 0.962 0.256 0.369 0.256 0.245 

MPMS5 0.369 0.856 0.826 0.625 0.263 0.2563 0.369 0.562 

MPMS6 0.512 0.963 0.963 0.256 0.26 0.856 0.526 0.2563 

MPMS7 0.369 0.236 0.526 0.256 0.562 0.962 0.263 0.526 

MPMS8 0.852 0.563 0.2569 0.695 0.256 0.856 0.236 0.632 

MPMS9 0.369 0.369 0.756 0.856 0.96 0.856 0.596 0.752 

MPMS10 0.256 0.256 0.963 0.256 0.415 0.526 0.236 0.523 

 

 

Step 6. Compute the weighted normalized decision matrix  

𝑑 = 𝐴𝑖𝑗 ∗ 𝑤𝑗                                                                                                                                       (3) 

We compete the weighted normalized decision matrix as shown in Table 2 by sing Eq. (3) 

0.154104269

0.093984962

0.079537687

0.15037594

0.093984962

0.144628099

0.189399118

0.093984962

MPCS1 MPCS2 MPCS3 MPCS4 MPCS5 MPCS6 MPCS7 MPCS8

Weights of Criteria

Weights of Criteria
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Table 2. The weighted normalization decision matrix by the VIJOR method 

 MPCS1 MPCS2 MPCS3 MPCS4 MPCS5 MPCS6 MPCS7 MPCS8 

MPMS1 0.124916 0.093985 0.079538 0.108629 0.07672 0.062651 0 0.06976 

MPMS2 0.059307 0.076791 0.079538 0.094997 0.093985 0.023097 0.18419 0.093985 

MPMS3 0.027794 0.076791 0.000113 0.070289 0.091389 0.052609 0.154759 0.090287 

MPMS4 0 0.028105 0.049163 0 0.091389 0.023097 0.18419 0.092346 

MPMS5 0.124916 0.013833 0.015413 0.07178 0.09048 0 0.154759 0.034607 

MPMS6 0.087978 0 0 0.150376 0.090869 0.122904 0.113869 0.090287 

MPMS7 0.124916 0.093985 0.049163 0.150376 0.051666 0.144628 0.182367 0.041164 

MPMS8 0.000155 0.051711 0.079436 0.05687 0.091389 0.122904 0.189399 0.021857 

MPMS9 0.124916 0.076791 0.023288 0.022578 0 0.122904 0.095637 0 

MPMS10 0.154104 0.091399 0 0.150376 0.070748 0.055273 0.189399 0.04171 

 

Step 7. Attaining the beneficial and non-beneficial values of criteria. 

Obtain the beneficial and non- beneficial criteria by using Eqs. (4-9). The cost criterion is non-

beneficial and other criteria are beneficial. 

Step 8. Compute the values of 𝑆𝑖 𝑎𝑛𝑑 𝑅𝑖 

Compute the values of 𝑆𝑖 𝑎𝑛𝑑 𝑅𝑖 by using Eqs. (10 and 11) 

Step 9. Compute the values of index 𝑄𝑖 

Then compute the value of 𝑄𝑖 by using Eq. (12) 

Step 10. Rank the alternatives 

Then alternatives are ranked according to the lowest value of 𝑄𝑖 as shown in Figure 3. The best 

material is 9, and the worst material is 7. 
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Figure 3. The value of 𝑄𝑖. 

 

6. Conclusions  

Materials and systems may have far-reaching effects in a wide variety of ways. The environmental, 

social, economic, technical, health and safety, policy, market, and collaborative factors must all be 

taken into account in order to provide an accurate assessment of these possibilities. By evaluating 

these factors, stakeholders may learn more about the pros and cons of various materials and 

systems, increasing the likelihood of effective choices being made. Fostering innovation, tackling 

difficult issues, and promoting sustainable development are all possible via multidisciplinary 

cooperation and stakeholder involvement, which are essential for realizing their full potential. This 

paper used the concept of MCDM to deal with various factors and criteria. The VIKOR is an 

MCDM method used to rank the various materials based on various criteria. The VIKOR method 

is integrated with the single-valued neutrosophic set to deal with uncertain information. We 

applied the proposed method to eight criteria and ten materials. We obtained the cost criteria as 

the highest important of all criteria. 
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Abstract: The most well-known subject in graph theory is the shortest path problem (SPP), 

which has real-world applications in several different fields of study, including 

transportation, emergency services, network communications, fire station services, etc. The 

arc weights of the applicable SP problems are typically represented by fuzzy numbers in 

real-world applications. In this paper, we discussed the process of finding the shortest 

distance in a connected graph network in which the arc weights are multi-valued 

neutrosophic numbers (MNNs). Moreover, here we compare our method with some of the 

existing results and illustrate one implementation of our method with the help of one 

numerical example. 
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technique; shortest path problem. 

 

 

 

1. Introduction 

Smarandache designed the perception of a neutrosophic set first, and most importantly, it is 

able to manage situations that are ambiguous, insufficient, inconsistent, and unspecified by 

applying additional correct ways. The indication of neutrosophic sets (NS) [1] is like that of 

normal fuzzy sets [2], intuitionistic fuzzy associate number sets [3], and interval-valued 

intuitionistic fuzzy sets [4], giving basic ideas for relations and operations over sets. On a 

personal level, the variety-class degree of the neutrosophic sets theory is represented by an 
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indeterminacy-category degree and a falsity-category degree. To utilize it in genuine 

scientific and technical areas, the idea of a neutrosophic set is proposed by Qiuping, N. [5] 

based on neutrosophic logic to make it more applicable to real-world circumstances. In 

reality, the degree of verity class, indeterminacy category, and falsity category of a handful of 

sure statements can't be written precisely inside the vitality items but expressed by various 

alternative interval values, which necessitated the use of the multi-valued neutrosophic set 

(MVNS). For this reason, Peng [6] suggested the idea of a multi-valued neutrosophic set 

(MVNS), which is superfluous exact, and more adaptable than an inter-valued neutrosophic 

(IVN) set. Multi-valued neutrosophic sets (MVNs) are like single-valued neutrosophic sets 

with three class functions, and the unit interval contains their values (0, 1). 

The SPP is a fundamental and remarkable connectional optimization issue that arises in a 

variety of engineering and scientific fields, including road networks, transport, and other 

technologies. The SPP issue in a given network seeks the optimal path between two given 

nodes whose arc length weight is less as possible. The weight assigned to edges of a given 

network can reflect necessary life elements such as time, value, and others. The call maker is 

supposed to be confident with the parameters (length, duration, etc.) among distinct nodes in 

the traditional shortest route issue. However, there is always ambiguity regarding the 

parameters across distinct nodes in real-life conditions. Many approaches have been 

established for determining the shortest path (SP) in different kinds of input files with respect 

to fuzzy sets (FS), intuitionistic fuzzy sets (IFs), and ambiguous sets,neutrosophic and 

fermatean neutrosophic sets[7–16]. 

To find SPP in a fuzzy environment, triangular, trapezoidal, and pentagonal numbers [17, 18] 

are already used as the arc length in many real-world problems, and in some cases, 

neutrosophic numbers [19] are used to describe the uncertain behavior in the neutrosophic 

environment and then interval-valued neutrosophic numbers [20] are used to evaluate the 

path. But in this case, we used multi-valued neutrosophic numbers as the arc length to solve 

the SPP. 

The primary purpose of this research is to identify the SPP for a given network with arc 

length weights determined by MVNNs. The constitution of the remaining article is as 

follows: In Section -2, we discuss some fundamental concepts related to neutrosophic sets, 

specifically single-valued, neutrosophic (SVN) sets. In Section -3 we present an approach for 

determining SP with connected edges with respect to neutrosophic data. Section -4 shows a 

realistic case solved by the suggested approach. Section -5 contains the comparison study 

with some of the existing methods, and Section -6 includes the conclusions and 

recommendations for additional research. 

2. Motivation and Contribution: 

The most important motivation of this paper is to initiate a method for SPP in an uncertain 

atmosphere that has a broad area of application in the real world. 

The following are the contributions of this paper's 
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 We use MVNNs as the arc length instead of the real number. 

 A new methodology is used to evaluate the (SP) problem in an uncertain 

environment. 

 Various algorithms already exist (Table 1) to solve FSPP in an uncertain 

environment, but here we use a new methodology to evaluate the FSPP. 

Compare our methodology with the existing methodology. 

Author Evaluation of SPP using 

different method 

Year 

Broumi, S. et al. [22] NSPP for interval-based data 

was evaluated using the 

Dijkstra method. 

2016 

Broumi, S. et al. [23] 

 

SP was found using 

SV-TpNNs. 

2016 

Broumi, S. et al. [24] 

 

SPP was evaluated using 

single-valued neutrosophic 

graphs. 

2016 

Broumi, S. et al. [25] SPP was assessed using a 

neutrosophic setup and the 

trapezoidal number. 

2016 

Broumi, S. et al. [26] 

 

SPP was evaluated in a 

bipolar neutrosophic 

environment. 

2017 

Broumi, S. et al. [27] SPP was evaluated using an 

interval-valued neutrosophic 

number. 

2017 

Broumi, S. et al. [28] 

 

The neutrosophic version of 

Bellman's algorithm is 

introduced. 

2017 

Our method Evaluating SPP under 

Multi-value neutrosophic 

number 

2019 

 

3. Preliminaries  
This section contains the literature studied for the basic notions and definitions of 

neutrosophic sets (NSs) and MVNSs 

Definition 3.1: 
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Assume �̃�  is a set of space points (objects), and �̃�  represents the associated generic 

elements in �̃�; then the element in neutrosophic set �̃�  has the form 

�̃� = {< �̃�: �̃��̃�(𝑥), 𝐼�̃�(𝑥), �̃��̃�(𝑥) > �̃�𝜖�̃�} 

Here the function takes the form   𝑇, 𝐼, 𝐹 : �̃� → [0−, 1+]   where �̃�  is called the 

truth-membership function, 𝐼 is called indeterminacy-membership function, and �̃� is called 

falsity membership function of the element  �̃� ∈ �̃� . 

0− ≤ {�̃��̃�(𝑥) + 𝐼�̃�(𝑥) + �̃��̃�(𝑥)} ≤ 3+ 

Now  �̃��̃�(𝑥), 𝐼�̃�(𝑥), �̃��̃�(𝑥)  are representing subsets of the interval [0−, 1+]  hence it's 

challenging to implement NSs to real-world situations. 

Definition 3.2: 

If �̃�  is a point in space and �̃�  represents generic elements defined in �̃� . Then truth, 

indeterminacy and the falsity-membership function differentiate �̃� in �̃�. The multi-valued 

neutrosophic (MVN) set is defined as. 

 �̃� = {�̃� , �̃��̃�(�̃�), 𝐼�̃�(�̃�), �̃��̃�(�̃�), �̃� ∈ 𝑋 ̃ } 

Here both �̃��̃�(𝑥), 𝐼�̃�(�̃�) 𝑎𝑛𝑑 �̃��̃�(�̃�) ∈ [0,1] are the collection of discrete values that satisfy 

the criterion 0 ≤ 𝛼, 𝛽, 𝛾 ≤ 1, 0 ≤ 𝛼+, 𝛽+, 𝛾+ ≤ 3, 𝛼 ∈ �̃��̃�(𝑥), 𝛽 ∈  𝐼�̃�(𝑥), 𝛾 ∈ �̃��̃�(𝑥). 

𝛼+ = 𝑆𝑢𝑝�̃��̃�(𝑥), 𝛽+ = 𝑆𝑢𝑝 𝐼�̃�(𝑥), 𝛾+ = 𝑆𝑢𝑝�̃��̃�(𝑥) − − − − − − − −(2) 

For the simplicity     �̃� = {�̃��̃�, 𝐼�̃�, �̃��̃�}
 
is referred to as a multi-valued neutrosophic (MVN) 

number. 

The multi-valued neutrosophic (MVN) sets are termed as the single valued neutrosophic sets 

if �̃� = {�̃��̃�, 𝐼�̃�, �̃��̃�}
 
 has just one value. 

Definition 3.3: 

Assume that
 

�̃�1 = {�̃��̃�1
, 𝐼�̃�1

, �̃��̃�1
}

 
and  �̃�2 = {�̃��̃�2

, 𝐼�̃�2
, �̃��̃�2

}
 
 are two sets of the 

neutrosophic numbers with multiple values. Then the functions for SVNNs are specified as 

follows: 

(a) �̃�1 +  �̃�2 = {�̃��̃�1
+ �̃��̃�2

− �̃��̃�1
�̃��̃�2

, 𝐼�̃�1
𝐼�̃�2

, �̃��̃�1
�̃��̃�2

} 

(b) �̃�1 ×  �̃�2 = {�̃��̃�1
�̃��̃�2

, 𝐼�̃�1
+ 𝐼�̃�2

− 𝐼�̃�1
𝐼�̃�2

, �̃��̃�1
+ �̃��̃�2

− �̃��̃�1
�̃��̃�2

} 

(c) 𝜆�̃�1 = {1 − (1 − �̃��̃�1
)𝜆, 𝐼�̃�1

𝜆
, �̃��̃�1

𝜆
} 

(d) �̃�1
𝜆

= {�̃��̃�1

𝜆
, 1 − (1 − 𝐼�̃�1

)𝜆, 1 − (1 −  �̃��̃�1
)𝜆} 

With 𝜆 > 0  

 

Definition 3.4:  

If �̃�1 = {�̃��̃�1
, 𝐼�̃�1

, �̃��̃�1
}
 
be a neutrosophic number of single value. Then, 

The Score function are defined as the value   𝑆�̃�1 =
2+�̃��̃�1

−𝐼�̃�1
−�̃��̃�1

3
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The Accuracy function takes the value as  𝑎(�̃�1) = {�̃��̃�1
− �̃��̃�1

}
 
 

and certainty function is defined as 𝑐(�̃�1) = �̃��̃�1
       

4. Algorithm to find the shortest path with respect to a multi-valued 

neutrosophic number 

 Step 1: Select any vertex as the source and destination point of the given network. 

 Step 2: Find every path that connects to the source node to the destination node. 

 Step 3: Determine all possible edge values from discrete multi-valued neutrosophic 

numbers to simplify the MMNN to SVN by using the fuzzy simplicity method 

(equation 2.0) and using the Score Function to convert SVN to a crisp number 

(definition 2.4). 

 Step 4: After obtaining all edge values (the Crisp number), calculate the path's 

average.  

 After getting all path values, arrange them using the selection sort technique, and 

finally, get the shortest path. 

5. Numerical Example: 

   Evaluation of the shortest path (SP) using multi-valued neutrosophic numbers 

 

 

Step-1: 

Let us look at a multi-valued neutrosophic network with source nodes 1 and destination 

nodes 6, with edge weights represented by MVNNs. 
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Step-2: 

 This table shows multi-valued neutrosophic distances. 

Edges MVN distance 

1-2 

1-3 

2-3 

2-5 

3-4 

3-5 

4-6 

5-6 

<[0.1,0.2,0.3],[0.2,0.4,0.5],[0.6,0.7,0.8]> 

<[0.2,0.3,0.4],[0.3,0.4,0.5],[0.2,0.3,0.5]> 

<[0.1,0.2,0.3],[0.4,0.6,0.7],[0.5,0.6,0.8]> 

<[0.2,0.4,0.6],[0.3,0.4,0.5],[0.1,0.2,0.3]> 

<[0.2,0.3,0.5],[0.2,0.4,0.5],[0.4,0.5,0.6]> 

<[0.1,0.3,0.4],[0.2,0.4,0.5],[0.3,0.5,0.6]> 

<[0.3,0.4,0.6],[0.3,0.4,0.7],[0.4,0.7,0.8]> 

<[0.1,0.2,0.3],[0.2,0.3,0.4],[0.5,0.7,0.9]> 

 

                                   

                              Table-1 

Step-3: 

Table-1: Edge information in terms of multivalued neutrosophic number. Here
   

�̃��̃�(𝑥), 𝐼�̃�(�̃�) 𝑎𝑛𝑑 �̃��̃�(�̃�) ∈ [0,1], are the finite discrete value that satisfy the 

conditions   0 ≤ 𝛼, 𝛽, 𝛾 ≤ 1, 0 ≤ 𝛼+, 𝛽+, 𝛾+ ≤ 3  
So now we apply equation (2) we get the Sake of simplicity of multi-value 

neutrosophic number  

i.e.  
�̃� = {�̃��̃�, 𝐼�̃�, �̃��̃�}

 

Then the edges From 1-2 is becomes [0.3,0.5,0.8] similarly all the edges value 

changes. here Table -2 represents the Simplicity of Multi-value neutrosophic number. 
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Edges MVN distance
 

1-2 

1-3 

2-3 

2-5 

3-4 

3-5 

4-6 

5-6 

[0.3,0.5,0.8] 

[0.4,0.5,0.5] 

[0.3,0.7,0.8] 

[0.6,0.5,0.3] 

[0.5,0.5,0.6] 

[0.4,0.5,0.6] 

[0.6,0.7,0.8] 

[0.3,0.4,0.9] 

                             Table-2 
Now by using Definition-2.4 we find the score function                             

 

1 1 1
1

2
( )

3

T I F
S A

  


 

 

1

2 0.3 0.5 0.8
( )

3
S A

  


 S(A1)=0.33 

Similarly to find all the values of edge (i,j) in table-3  

edges Score function 

1-2 

1-3 

2-3 

2-5 

3-4 

3-5 

4-6 

5-6 

0.33 

0.46 

0.26 

0.60 

0.46 

0.43 

0.36 

0.33 
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                                          Table-3 

 

 

 

Step-4: 

Path from source to destination is  

Path 1 − 3 − 4 − 6 =
0.33+0.46+0.36

3
 

                           = 0.42 

Similarly all the values of path distance in Table-2 

Path Distance 

1-3-4-6 0.42 

1-3-5-6 0.40 

1-2-3-5-6 0.43 

1-2-5-6 0.31 

                                               Table- 4 

Step-5: 

Input: 



Neutrosophic Sets and Systems, Vol. 57, 2023 364  

 

 

Prasanta Kumar Raut, Siva Prasad Behera, Said Broumi, Debdas Mishra,  

Calculation of Fuzzy shortest path problem using Multi-valued Neutrosophic number under fuzzy environment 

 

 

Output: 

 

 

Step-6: 

Minimum ranking value is 0.31. Hence the shortest path is 1-2-5-6 

 

6. Comparison with existing Algorithm 

 

Here in this section we compare our proposed method with some of the existing method of 

for neutrosophic shortest path problems 
Authors Path sequence Path length(Crisp) 

Ridvan.S [29] 1-2-5-6 0.35 

Nagarajan.S[30] 1-2-5-6 0.48 

Broumi.S[31] 1-2-5-6 [0.35,0.60][0.01,0.04][0.008,0.075] 

Our new approach 1-2-5-6 0.31 



Neutrosophic Sets and Systems, Vol. 57, 2023 365  

 

 

Prasanta Kumar Raut, Siva Prasad Behera, Said Broumi, Debdas Mishra,  

Calculation of Fuzzy shortest path problem using Multi-valued Neutrosophic number under fuzzy environment 

 

The results shows that our proposed algorithm is giving the crisp path length  

 

                      Comparison of our method with S Ridvan [21] 

 

 

 

 

 

 1→S Ridvan approach  

 2→Our new approach 

 

  1→Nagarajan.S approach 

  2→Our new approach 
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Comparison of our method with S.Nagarajan [22] 

 

 

Comparison of our method with S broumi [23] 

 

 

 Final graph  

   1→Broumi.S approach 

   2→Our new approach 

 

 1→S Ridvan approach 

   2→Nagarajan.S approach 

    3→Broumi.S approach 

 4→Our new approach 
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Where the shortest neutrosophic path remains the same namely 1-2-5-6. 

 

7. Conclusion: 

This paper describes the NSP using edge weights represented by MVNS and the benefits of 

using MVNS with the NSP. The traditional new method is used in MVNS to integrate 

uncertainty between the destination and source nodes. To express the effectiveness of the 

suggested approach, we use numerical examples. The primary purpose of this study is to 

explain the NSP algorithm in a neutrosophic environment using MVNS as edge weights. For 

real-world issues, the suggested technique is quite successful. In future studies, it will be 

important to investigate a large-scale and realistic shortest-path issue using the suggested 

method. 
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by assigned the truth, indeterminacy and falsity degrees of each element of NS. This article purposes a novel

type of ranking function based on value and ambiguity index of a single value triangular neutrosophic number

(SVTNN), which associated with DM’s preference level and risk factor that show the attitude of the DM to-

wards taking risk. Also, this article purposes a novel technique for solving the Neutrosophic DEA (Neu-DEA)

model having multiple input-outputs are the SVTNNs. The proposed ranking function is used to converts

the Neu-DEA model into a corresponding crisp DEA model which is solved to measure the efficiency of the

decision making units (DMUs) in Neutrosophic environment. The efficiency scores of the DMUs are calculated

based on the DM’s preference level by taking a specific risk (λ ∈ [0, 1]). A numerical example is provided to

demonstrate the proposed model’s validity and existence, and to compare efficiency scores with Yang et al.’s

ranking approach. Finally, How the DM’s preference level and risk factor affect the efficiency score of DMUs
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1. Introduction

Evaluating the performance of any public or commercial organization is one of the most

challenging jobs for DMs to ensure progress, expansion, and sustainability. DEA is the most

practical, trustworthy, and reliable way to analyze the performance/efficiency of DMUs. DEA

is a data-driven, non-parametric, linear programming-based approach that evaluates piecewise

linear production functions to determine the efficiency score of homogeneous DMUs with
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multiple inputs and outputs. Based on DEA results, DMUs are divided into efficient and

inefficient group and also ranked them. This MCDM technique is extensively used in a wide

range of fields to evaluate the relative efficiency of DMUs. Charnes et al. [10] introduced the

concept of DEA, which is based on Farrell’s earlier work [18] on measuring the efficiency of

DMUs with multiple inputs and outputs. This method is generally known as CCR model

which assumes that the production technology of all DMUs demonstrates constant returns to

scale (CRS). Banker et al. [8] added the convexity condition in CCR Model [10] and developed

a mathematical model is called the BCC model which assumes that the production technology

of all DMUs demonstrates variable returns to scale (VRS). According to the best practice

frontier, DMUs are either in the efficient group or inefficient group. Those DMUs are in

efficient group have an efficiency score of one and are found on the frontier. Those DMUs

are in inefficient group have an efficiency score ranges from 0 to 1 and are not found on the

frontier. The inefficient DMUs can improve their efficiency to approach the frontier by reducing

current inputs while maintaining outputs or increasing current outputs while keeping inputs

unchanged. After the CCR and BCC models, several DEA models, including Additive, SBM,

Super Efficiency, Undesirable, and others, have been created to evaluate the relative efficiency

of DMUs. DEA has become a popular performance evaluation technique adopted by numerous

industries to measure their relative efficiencies, including agriculture, insurance, operations

management, banking, healthcare, education, and environmental management [11, 22, 28, 42,

44]. In real-world applications, it is not always possible to provide the clear input and output

data that demands conventional/traditional DEA models. However, in practical applications,

the observed values might occasionally be confusing, insufficient, inconsistent, and imprecise.

This kind of uncertain data may be handled using probability or fuzzy theory. Also, the

interval DEA and stochastic DEA models are frequently used to address this problem [34,35].

The idea of a fuzzy set (FS) was established by Zadeh [46] in 1965, in which each element of

the FS is associated with a membership degree (µ) that lies in [0,1], and the non-membership

degree is defined as 1 − µ. FS theory has been widely used in practical applications of un-

certainty modeling. In 1992, Sengupta [38] was the first to introduce the concept of using

fuzzy numbers to represent the inputs and outputs of DMUs in the DEA model. Following

this work, many authors became interested in developing various approaches for solving the

fuzzy DEA model. These approaches are categorized into six types such as “the tolerance

technique, the α-level-based approach, the fuzzy ranking approach, the possibility approach,

the fuzzy arithmetic, and the fuzzy random/type-2 fuzzy set” [17, 19]. In 2020, Zhou and

Xu [49] provided a comprehensive overview of the present state, growth prospects, practical

implementations, and future research directions of fuzzy DEA studies. However, only the

fuzzy set has a single-membership degree of unclear and vague information, which is often
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insufficient to describe evidence of support and opposition together. Atanassov [7] expanded

Zadeh’s fuzzy set notion to the intuitionistic fuzzy set (IFS) in 1986, and its membership and

non-membership degrees are defined separately, with their sum lying between [0, 1]. Several

research papers using intuitionistic fuzzy sets have been published in DEA using various tech-

niques, such as the weighted approach, (α, β)-cut approach, optimistic-pessimistic efficiency

approach, hybrid TOPSIS-DEA, parametric approach, and composition approach, and alpha-

betical approach [6,37]. IFS is capable of addressing missing data for a wide range of real-world

problems, but it can’t deal with other types of uncertainty, such as indeterminate information.

Smarandache [40] proposed the Neutrosophic Logic and Neutrosophic Set (NS) as a general-

ization of FSs and IFSs in 1999. Each element of the Neutrosophic set has three independent

degrees, namely “truth, indeterminacy, and falsity”, and their sum ranges from 0 to 3. In

order to represent uncertainty in different areas, various extensions of the fuzzy set, such as

Pythagorean and spherical fuzzy sets, have been developed (as shown in Figure 1). The DM

always tries to increase the truth membership degree while decreasing the indeterminacy and

falsity membership degrees of each NS element, which are independently assigned. Currently,

the study of neutrosophic set theory is highly popular, and its applications are widespread

across a range of disciplines, including mathematics, computer science, engineering, medicine,

economics, social science, and environmental science [1,4,12,20,25,26,39,48]. In 2018, Edalat-

panah [14] presented the initial theoretical advancement of the Neutrosophic DEA (Neu-DEA)

model. As a result, many other authors became interested in developing the Neu-DEA model

in various neutrosophic environments and proposing novel techniques for solving it. Kahra-

man et al. [23] developed a novel Neutrosophic Analytic Hierarchy Process (NAHP), which

was subsequently combined with the Neu-DEA model to evaluate the efficiency of 15 private

universities. Abdelfattah [2] created a Neu-DEA model with triangular neutrosophic inputs

and outputs and developed a unique technique that converts the Neu-DEA model into an

interval DEA model that evaluates the efficiency of the DMUs in interval form. The input-

oriented Neu-DEA model is proposed by considering the inputs and outputs as simplified

neutrosophic numbers, which is a nonlinear model turned into an LP model by utilizing a nat-

ural logarithm to measure the efficiency of the DMUs [16]. Subsequently, several approaches

for solving Neu-DEA models were utilized to measure the efficiency of the DMUs [15, 43]. In

2020, Mao et al. [24] proposed a novel approach to solving the Neu-DEA model with undesir-

able outputs, where all data is considered as SVNNs, in order to assess the efficiency of the

DMUs. Yang et al. [45] developed the Neutrosophic DEA (Neu-DEA) model to evaluate the

efficiency of 13 hospitals affiliated with Tehran University of Medical Sciences in Iran. The

proposed model considered single-value triangular neutrosophic numbers (SVTNNs) for both

inputs and outputs. In 2021, Abdelfattah [3] proposed ranking and parametric approaches to
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solving the Neu-DEA model in order to evaluate the efficiency of 32 regional hospitals located

in Tunisia. The possibility mean [29] and ranking [33] approaches are developed to solve the

Neu-DEA model to measure the performance of AIIMS in India [32] and major sea ports in

India [30]. Recently, there has been a growing interest among authors in developing the DEA

model by incorporating various extensions of fuzzy sets. One such technique is the Fermatean

fuzzy DEA (FFDEA), developed to solve the Fermatean fuzzy multi-objective transportation

problem (FFMOTP) [5]. Other novel solution techniques have been developed for solving

the spherical fuzzy DEA model in the presence of spherical fuzzy inputs and outputs [27, 31].

Additionally, the plithogenic set has been utilized in the DEA model to evaluate the efficiency

of 20 bank branches and the performance of hotel industries [21,36].

Figure 1. Representation of extended fuzzy sets

The primary contribution of this paper is the development of a novel ranking function

based on the value and ambiguity index of the single-value triangular neutrosophic number

(SVTNN). This ranking function is associated with risk sensitivity and DM’s preferences.

The suggested ranking function has been used to convert the Neu-DEA model with SVTNN

inputs and outputs into the corresponding crisp DEA model. The efficiency scores of DMUs are

measured using different risk factors according to the DM’s specific preference level. This paper

investigates how the DM’s preference level affects the efficiency of the DMUs. A numerical

example is presented to compare the efficiency scores to the model suggested by Yang et al. [45].
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The rest of the manuscript is organized as follows: Section 2 provides some useful notation

for this study and details comparison of the suggested model with other existing Nue-DEA

model. Section 3 covers various aspects related to SVTNN, including Neutrosophic set, prop-

erties of SVTNN, Value and Ambiguity Index for SVTNN, as well as the proposed ranking

function for SVTNN along with its properties. Section 4 discusses the Neu-DEA model based

on SVTNN and how to obtain an equivalent crisp DEA model by applying the provided ranking

function. Section 5 discusses step-by-step technique for solving Neu-DEA model. In Section

6, a case study is given to demonstrate the validity and applicability of the proposed model.

Section 7 discusses the advantage and limitation of this study. Finally, the conclusion and

recommendations for further study are presented in Section 8.

2. Notation and Comparison Study

To make it easier for readers to understand, the manuscript has been updated with ad-

ditional notation that is presented in Table 1. The purpose of including this notation is to

simplify the content and make it more accessible to a wider researcher.

Table 1. Notation used in this Study

Symbol Description

X̂ Single Value Triangular Neutrosophic Number (SVTNN)

V Value Index function

A Ambiguity Index function

δ, ρ, η Preference parameter for the DM

λ Risk parameter

ℜ Ranking function

A Input Matrix

B Output Matrix

aij ith crisp input for DMUj

bki kth crisp output for DMUj

âij ith SVTNN input forDMUj

(
i.e., âij =

〈
(
︷︸︸︷
aLij ,

︷︸︸︷
aMij ,

︷︸︸︷
aUij ); (a

L
ij , a

M
ij , a

U
ij); ( a

L
ij︸︷︷︸, aMij︸︷︷︸, aUij︸︷︷︸)

〉)
b̂ki kth SVTNN output forDMUj

(
i.e., b̂ki =

〈
(
︷︸︸︷
bLki ,

︷︸︸︷
bMki ,

︷︸︸︷
bUki ); (b

L
ki, b

M
ki , b

U
ki); ( b

L
ki︸︷︷︸, bMki︸︷︷︸, bUki︸︷︷︸)〉)

In this part of the section, we compare our novel contribution to existing publications, as

shown in Table 2. Several researchers have developed various approaches for solving Neu-

DEA models without utilizing DM’s preference level and risk parameter. The preference

level of a DM plays a significant role in uncertainty modeling, indicating the desired decision

approach: pessimistic, optimistic, or neutral. Additionally, the risk parameter reflects the

DM’s attitude towards risk, whether they are a risk taker, risk averse, or neutral. In this
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Table 2. Comparing our proposed work to already published Nue-DEA work

Researcher Inputs and Outputs Concept DEA model
Risk

Factor

Edalatpanah [14] Single Valued Triangular Neu-

trosophic Number (SVTNN)

Score and Accuracy func-

tion

CCR No

Kahraman et al. [23] Linguistic interval-valued neu-

trosophic number

Deneutrosophication Hybrid AHP-

CCR

No

Abdelfattah [2] Triangular neutrosophic num-

bers

Ranking [1] & parametric

approach

CCR No

Edalatpanah and

Smarandache [16]

Simplified neutrosophic num-

bers (SNN)

Logarithm approach BCC No

Edalatpanah [15] Triangular neutrosophic num-

ber (TNN)

Ranking approach [1] Dual CCR No

Mao et al. [24] Simplified neutrosophic num-

bers (SNN)

Logarithm approach Undesirable No

Yang et al. [45] Single Valued Triangular Neu-

trosophic Number (SVTNN)

Simple Ranking approach CCR No

Tapia [43] Interval-valued neutrosophic

numbers

Robust tolerance approach CCR No

Mohanta and Sha-

ranappa [30]

Trapezoidal Neutrosophic

Number (TrNN)

Ranking Approach CCR No

Mohanta and Tora-

gay [33]

Pentagonal Neutrosophic

Number (PNN)

Ranking Approach CCR No

Proposed Work Single Valued Triangular Neu-

trosophic Number (SVTNN)

Ranking approach based

on Value and Ambiguity

index

CCR Yes

article, we incorporate the DM’s preference level and risk factor into the value and ambiguity

index to create a ranking function for SVTNN. This ranking function effectively compares

SVTNNs by taking into account the DM’s preference level and risk attitude. This ranking

function is then used to convert the Neu-DEA model into a corresponding crisp DEA model,

from which the efficiency score of the DMUs can be obtained. The preference level (δ, ρ, η)

and risk parameter (λ ∈ [0, 1]) are important factors in the performance assessment process

because they increase the DM’s freedom to express their own risk while making decisions.

3. Single Value Triangular Neutrophic Number (SVTNN) and Its Properties

This section introduces the Neutrosophic set, including the mathematical features of

SVTNNs, as well as the value and ambiguity index of SVTNNs, which are defined to cre-

ate a new ranking function. Additionally, a new ranking algorithm is introduced that utilizes

the value and ambiguity index of SVTNNs.

Definition 3.1. [40] A neutrosophic set Â in a universe of discourse Ω is given by

Â = {⟨x; τ(x), ι(x), ν(x)| x ∈ Ω⟩} (1)
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where τ(x), ι(x), and ν(x) are called truth, indeterminacy and falsity membership functions,

respectively. These membership functions are defined as τ : Ω → [0, 1], ι : Ω → [0, 1] and

ν : Ω → [0, 1] such that 0 ≤ τ(x), ι(x), ν(x) ≤ 3.

Definition 3.2. [13] The single value triangular neutrophic number (SVTNN) is defined as

X̂ =
〈
(
︷︸︸︷
xL ,

︷︸︸︷
xM ,

︷︸︸︷
xU ); (xL, xM , xU ); ( xL︸︷︷︸, xM︸︷︷︸, xU︸︷︷︸)〉 where the truth, indeterminacy, and

falsehood membership degrees of x are defined as :

τ(x) =



x−
︷︸︸︷
xL︷︸︸︷

xM −
︷︸︸︷
xL

, x ∈ [
︷︸︸︷
xL ,

︷︸︸︷
xM ]︷︸︸︷

xU −x︷︸︸︷
xU −

︷︸︸︷
xM

, x ∈ [
︷︸︸︷
xM ,

︷︸︸︷
xU ]

0, otherwise

ι(x) =



x− xL

xM − xL
, x ∈ [xL, xM ]

xU − x

xU − xM
x ∈ [xM , xU ]

1, otherwise

ν(x) =



x− xL︸︷︷︸
xM︸︷︷︸− xL︸︷︷︸ , x ∈ [ xL︸︷︷︸, xM︸︷︷︸]
xU︸︷︷︸−x

xU︸︷︷︸− xM︸︷︷︸ x ∈ [ xM︸︷︷︸, xU︸︷︷︸]
1, otherwise

where 0 ≤ τ(x) + ι(x) + ν(x) ≤ 3, ∀ x ∈ R.

Definition 3.3. [13] Suppose X̂1 =
〈
(
︷︸︸︷
xL1 ,

︷︸︸︷
xM1 ,

︷︸︸︷
xU1 ); (xL1 , x

M
1 , xU1 ); ( x

L
1︸︷︷︸, xM1︸︷︷︸, xU1︸︷︷︸)〉 and

X̂2 =
〈
(
︷︸︸︷
xL2 ,

︷︸︸︷
xM2 ,

︷︸︸︷
xU2 ); (xL2 , x

M
2 , xU2 ); ( x

L
2︸︷︷︸, xM2︸︷︷︸, xU2︸︷︷︸)〉 two SVTNNs. The arithmetic rela-

tions in SVTNNs are defined as

(1) X̂1 ⊕ X̂2 =
〈
(
︷︸︸︷
xL1 +

︷︸︸︷
xL2 ,

︷︸︸︷
xM1 +

︷︸︸︷
xM2 ,

︷︸︸︷
xU1 +

︷︸︸︷
xU2 ); (xL1 + xL2 , x

M
1 + xM2 , xU1 + xU2 );

( xL1︸︷︷︸+ xL2︸︷︷︸, xM1︸︷︷︸+ xM2︸︷︷︸, xU1︸︷︷︸+ xU2︸︷︷︸)〉.
(2) X̂1 − X̂2 =

〈
(
︷︸︸︷
xL1 −

︷︸︸︷
xL2 ,

︷︸︸︷
xM1 −

︷︸︸︷
xM2 ,

︷︸︸︷
xU1 −

︷︸︸︷
xU2 ); (xL1 + xL2 , x

M
1 − xM2 , xU1 + xU2 );

( xL1︸︷︷︸− xL2︸︷︷︸, xM1︸︷︷︸− xM2︸︷︷︸, xU1︸︷︷︸− xU2︸︷︷︸)〉.
(3) X̂1 ⊗ X̂2 =

〈
(
︷︸︸︷
xL1

︷︸︸︷
xL2 ,

︷︸︸︷
xM1

︷︸︸︷
xM2 ,

︷︸︸︷
xU1

︷︸︸︷
xU2 ); (xL1 x

L
2 , x

M
1 xM2 , xU1 x

U
2 ); ( x

L
1︸︷︷︸ xL2︸︷︷︸,

xM1︸︷︷︸ xM2︸︷︷︸, xU1︸︷︷︸ xU2︸︷︷︸)〉.
(4) αX̂1 =


〈
(α
︷︸︸︷
xL1 , α

︷︸︸︷
xM1 , α

︷︸︸︷
xU1 ); (αxL1 , αx

M
1 , αxU1 ); (α xL1︸︷︷︸, α xM1︸︷︷︸, α xU1︸︷︷︸)〉, α > 0〈

(α
︷︸︸︷
xU1 , α

︷︸︸︷
xM1 , α

︷︸︸︷
xL1 ); (αxU1 , αx

M
1 , αxL1 ); (α xU1︸︷︷︸, α xM1︸︷︷︸, α xL1︸︷︷︸)〉, α < 0
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Definition 3.4. Let X̂ =
〈
(
︷︸︸︷
xL ,

︷︸︸︷
xM ,

︷︸︸︷
xU ), (xL, xM , xU ), ( xL︸︷︷︸, xM︸︷︷︸, xU︸︷︷︸)〉 be a SVTNN.

The (α, β, γ)-cut of X̂ is defined as

X̂(α,β,γ) = {x : τ(x) ≥ α, ι(x) ≤ β, ν(x) ≤ γ} (2)

such that 0 ≤ α ≤ τ(x), ι(x) ≤ β ≤ 1 and ν(x) ≤ γ ≤ 1.

From Definition 3.2 and equation (2), the lower and upper limit of (α, β, γ)-cut of the

SVTNN X̂ are defined as

X̂α =
[
L(α), U(α)

]
=
[ ︷︸︸︷
xL +α(

︷︸︸︷
xM −

︷︸︸︷
xL ),

︷︸︸︷
xU −α(

︷︸︸︷
xU −

︷︸︸︷
xM )

]
X̂β = [L(β), U(β)] =

[
xL + β(xM − xL), xU − β(xU − xM )

]
X̂γ = [L(γ), U(γ)] =

[
xL︸︷︷︸+γ( xM︸︷︷︸− xL︸︷︷︸), xU︸︷︷︸−γ( xU︸︷︷︸− xM︸︷︷︸)]

3.1. The Proposed Ranking Function for Single Value Triangular Neutrosophic Number

(SVTNN)

The Value index and Ambiguity index play an important role to ranked the fuzzy numbers

in decision making problem [9, 47]. This subsection focuses on the development of value and

ambiguity index for SVTNN. Furthermore, a new ranking function is established by incorpo-

rating value and ambiguity index.

Definition 3.5 (Value Index). The value index Vτ (X̂),Vι(X̂), and Vν(X̂) with respect to the

truth τ(x), indeterminacy ι(x), and falsehood ν(x) membership degrees are defined as

Vτ (X̂) =

∫ 1

0

(
L(α) + U(α)

)
f(α)dα, Vι(X̂) =

∫ 1

0

(
L(β) + U(β)

)
g(β)dβ,

Vν(X̂) =

∫ 1

0

(
L(γ) + U(γ)

)
h(γ)dγ. (3)

where f(α) = α, g(β) = 1 − β and h(γ) = 1 − γ can be configured to reflect the nature of

decision making in real-world scenarios.

Definition 3.6 (Ambiguity Index). The ambiguity index Aτ (X̂),Aι(X̂), and Aν(X̂), with

respect to the truth τ(x), indeterminacy ι(x), and falsehood ν(x) membership degrees are

defined as

Aτ (X̂) =

∫ 1

0

(
U(α)− L(α)

)
f(α)dα, Aι(X̂) =

∫ 1

0

(
U(β)− L(β)

)
g(β)dβ,

Aν(X̂) =

∫ 0

1

(
U(γ)− L(γ)

)
h(γ)dγ, (4)

where L(α), L(β) and L(γ) are lower and U(α), U(β) and U(γ) are upper limits of SVTNN X̂.
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Thus from equations (3) and (4), the value and ambiguity for the truth, indeterminacy, and

falsehood membership degrees are calculated as follows:

Vτ (X̂) =

︷︸︸︷
xL +

︷︸︸︷
xU +4

︷︸︸︷
xM

6
,Vι(X̂) =

xL + xU + 4xM

6
, Vν(X̂) =

xL︸︷︷︸+ xU︸︷︷︸+4 xM︸︷︷︸
6

Aτ (X̂) =

︷︸︸︷
xU −

︷︸︸︷
xL

6
,Aι(X̂) =

xU − xL

6
,Aν(X̂) =

xU︸︷︷︸− xL︸︷︷︸
6

Definition 3.7. Suppose X̂ =
〈
(
︷︸︸︷
xL ,

︷︸︸︷
xM ,

︷︸︸︷
xU ); (xL, xM , xU ); ( xL︸︷︷︸, xM︸︷︷︸, xU︸︷︷︸)〉 be a

SVTNN. Then, for X̂, the value and ambiguity index are as follows:

Vδ,ρ,η(X̂) = δVτ (X̂) + ρVι(X̂) + ηVν(X̂) (5)

Aδ,ρ,η(X̂) = δAτ (X̂) + ρAι(X̂) + ηAν(X̂) (6)

where the DMs’ preference value is represented by the co-efficients δ, ρ, η of Vδ,ρ,η and Aδ,ρ,η

with the condition δ + ρ + η = 1. In an uncertain situation, the DM may want to make

pessimistic decisions for δ ∈ [0, 1/3] and ρ+ η ∈ [1/3, 1]. For δ ∈ [1/3, 1] and ρ+ η ∈ [0, 1/3],

on the other hand, the DM may seek to make an optimistic decision in an uncertain situation.

The impact of three membership degrees are same to the DM for δ = ρ = η = 1/3. As a result,

the value index and ambiguity index may indicate how DMs think about SVTNNs.

Lemma 3.8. Let X̂1 =
〈

(
︷︸︸︷
xL1 ,

︷︸︸︷
xM1 ,

︷︸︸︷
xU1 ); (xL1 , x

M
1 , xU1 ); ( xL1︸︷︷︸, xM1︸︷︷︸, xU1︸︷︷︸) 〉 and X̂2 =〈

(
︷︸︸︷
xL2 ,

︷︸︸︷
xM2 ,

︷︸︸︷
xU2 ); (xL2 , x

M
2 , xU2 ); ( x

L
2︸︷︷︸, xM2︸︷︷︸, xU2︸︷︷︸) 〉 be two SVTNNs in R. Then for δ, ρ, η ∈

[0, 1] and ϕ ∈ R, the following are satisfy

(1) Vδ,ρ,η(X̂1 + X̂2) = Vδ,ρ,η(X̂1) + Vδ,ρ,η(X̂2).

(2) Vδ,ρ,η(ϕX̂1) = ϕVδ,ρ,η(X̂1).

Proof. (1) From Definition 3.3, the sum of X̂1 and X̂2 is defined as

X̂1 ⊕ X̂2 =
〈
(
︷︸︸︷
xL1 +

︷︸︸︷
xL2 ,

︷︸︸︷
xM1 +

︷︸︸︷
xM2 ,

︷︸︸︷
xU1 +

︷︸︸︷
xU2 ); (xL1 + xL2 , x

M
1 + xM2 , xU1 + xU2 );

( xL1︸︷︷︸+ xL2︸︷︷︸, xM1︸︷︷︸+ xM2︸︷︷︸, xU1︸︷︷︸+ xU2︸︷︷︸)〉 (7)

From equation (5), we have

Vδ,ρ,η(X̂1 ⊕ X̂2) = δVτ (X̂1 ⊕ X̂2) + ρVι(X̂1 ⊕ X̂2) + ηVν(X̂1 ⊕ X̂2)

= δ
(︷︸︸︷xL1 +

︷︸︸︷
xL2 +

︷︸︸︷
xU1 +

︷︸︸︷
xU2 +4(

︷︸︸︷
xM1 +

︷︸︸︷
xM2 )

6

)
+ ρ
(xL1 + xL2 + xU1 + xU2 + 4(xM1 + xM2 )

6

)
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+ η
( xL1︸︷︷︸+ xL2︸︷︷︸+ xU1︸︷︷︸+ xU2︸︷︷︸+4( xM1︸︷︷︸+ xM2︸︷︷︸)

6

)
= δ
(︷︸︸︷xL1 +

︷︸︸︷
xU1 +4

︷︸︸︷
xM1

6

)
+ ρ
(xL1 + xU1 + 4xM1

6

)
+ η
( xL1︸︷︷︸+ xU1︸︷︷︸+4 xM1︸︷︷︸

6

)
+ δ
(︷︸︸︷xL2 +

︷︸︸︷
xU2 +4

︷︸︸︷
xM2

6

)
+ ρ
(xL2 + xU2 + 4xM2

6

)
+ η
( xL2︸︷︷︸+ xU2︸︷︷︸+4 xM2︸︷︷︸

6

)
= Vδ,ρ,η(X̂1) + Vδ,ρ,η(X̂2)

(2) From Definition 3.3, the scalar (ϕ ∈ R) multiplication of X̂1 =
〈
(
︷︸︸︷
xL1 ,

︷︸︸︷
xM1 ,

︷︸︸︷
xU1 );

(xL1 , x
M
1 , xU1 ); ( x

L
1︸︷︷︸, xM1︸︷︷︸, xU1︸︷︷︸)〉 is defined as

ϕX̂1 =
〈
(ϕ
︷︸︸︷
xL1 , ϕ

︷︸︸︷
xM1 , ϕ

︷︸︸︷
xU1 ); (ϕxL1 , ϕx

M
1 , ϕxU1 ); (ϕ xL1︸︷︷︸, ϕ xM1︸︷︷︸, ϕ xU1︸︷︷︸)〉

From equation (5), we have

Vδ,ρ,η(ϕX̂1) = δVτ (ϕX̂1) + ρVι(ϕX̂1) + ηVν(ϕX̂1)

= δ
(ϕ ︷︸︸︷xL1 +ϕ

︷︸︸︷
xU1 +4ϕ

︷︸︸︷
xM1

6

)
+ ρ
(ϕxL1 + ϕxU1 + 4ϕxM1

6

)
+ η
(ϕ xL1︸︷︷︸+ϕ xU1︸︷︷︸+4ϕ xM1︸︷︷︸

6

)
= ϕ

[
δ
(︷︸︸︷xL1 +

︷︸︸︷
xU1 +4

︷︸︸︷
xM1

6

)
+ ρ
(xL1 + xU1 + 4xM1

6

)
+ η
( xL1︸︷︷︸+ xU1︸︷︷︸+4 xM1︸︷︷︸

6

)]
= ϕ Vδ,ρ,η(X̂1)

This complete the proof.

Lemma 3.9. Let X̂1 =
〈
(
︷︸︸︷
xL1 ,

︷︸︸︷
xM1 ,

︷︸︸︷
xU1 ); (xL1 , x

M
1 , xU1 ); ( x

L
1︸︷︷︸, xM1︸︷︷︸, xU1︸︷︷︸)〉 and X̂2 =〈

(
︷︸︸︷
xL2 ,

︷︸︸︷
xM2 ,

︷︸︸︷
xU2 ); (xL2 , x

M
2 , xU2 ); ( x

L
2︸︷︷︸, xM2︸︷︷︸, xU2︸︷︷︸)〉 be two SVTNNs in R. Then for δ, ρ, η ∈

[0, 1] and ϕ ∈ R be a real number,

(1) Aδ,ρ,η(X̂1 + X̂2) = Aδ,ρ,η(X̂1) +Aδ,ρ,η(X̂2).

(2) Aδ,ρ,η(ϕX̂1) = ϕAδ,ρ,η(X̂1).

Proof.

(1) From Definition 3.3, the sum of two SVTNNs X̂1 and X̂2 is written as follows:

X̂1 ⊕ X̂2 =
〈
(
︷︸︸︷
xL1 +

︷︸︸︷
xL2 ,

︷︸︸︷
xM1 +

︷︸︸︷
xM2 ,

︷︸︸︷
xU1 +

︷︸︸︷
xU2 ); (xL1 + xL2 , x

M
1 + xM2 , xU1 + xU2 );

( xL1︸︷︷︸+ xL2︸︷︷︸, xM1︸︷︷︸+ xM2︸︷︷︸, xU1︸︷︷︸+ xU2︸︷︷︸)〉 (8)

From equation (6), we have

Aδ,ρ,η(X̂1 ⊕ X̂2) = δAτ (X̂1 ⊕ X̂2) + ρAι(X̂1 ⊕ X̂2) + ηAν(X̂1 ⊕ X̂2)
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= δ
(︷︸︸︷xU1 +

︷︸︸︷
xU2 −(

︷︸︸︷
xL1 +

︷︸︸︷
xL2 )

6

)
+ ρ
(xU1 + xU2 − (xL1 + xL2 )

6

)
+ η
( xU1︸︷︷︸+ xU2︸︷︷︸−( xL1︸︷︷︸+ xL2︸︷︷︸)

6

)
= δ
(︷︸︸︷xU1 −

︷︸︸︷
xL1

6

)
+ ρ
(xU1 − xL1

6

)
+ η
( xU1︸︷︷︸− xL1︸︷︷︸

6

)
+ δ
(︷︸︸︷xU2 −

︷︸︸︷
xL2

6

)
+ ρ
(xU2 − xL2

6

)
+ η
( xU2︸︷︷︸− xL2︸︷︷︸

6

)
= Aδ,ρ,η(X̂1) +Aδ,ρ,η(X̂2)

(2) From Definition 3.3, we have

ϕX̂1 =
〈
(ϕ
︷︸︸︷
xL1 , ϕ

︷︸︸︷
xM1 , ϕ

︷︸︸︷
xU1 ), (ϕxL1 , ϕx

M
1 , ϕxU1 ), (ϕ xL1︸︷︷︸, ϕ xM1︸︷︷︸, ϕ xU1︸︷︷︸)〉

From equation (6), we have

Aδ,ρ,η(ϕX̂1) = δAτ (ϕX̂1) + ρAι(ϕX̂1) + ηAν(ϕX̂1)

= δ
(ϕ ︷︸︸︷xU1 −ϕ

︷︸︸︷
xL1

6

)
+ ρ
(ϕxU1 − ϕxL1

6

)
+ η
(ϕ xU1︸︷︷︸−ϕ xL1︸︷︷︸

6

)
= ϕ

[
δ
(︷︸︸︷xU1 −

︷︸︸︷
xL1

6

)
+ ρ
(xU1 − xL1

6

)
+ η
( xU1︸︷︷︸− xL1︸︷︷︸

6

)]
= ϕ Aδ,ρ,η(X̂1)

This complete the proof.

Definition 3.10. Let X̂ =
〈
(
︷︸︸︷
xL ,

︷︸︸︷
xM ,

︷︸︸︷
xU ); (xL, xM , xU ); ( xL︸︷︷︸, xM︸︷︷︸, xU︸︷︷︸)〉 be a SVTNN.

Then, the ranking function is defined as

ℜ(X̂) = λVδ,ρ,η(X̂) + (1− λ)Aδ,ρ,η(X̂). (9)

The variable λ represents the perspective of the DM regarding risk.

(1) If λ belongs to the range [0, 0.5), then the DM is willing to take risks and prefers

uncertainty.

(2) If λ equals 0.5, then the DM has a neutral stance towards risk when making parameter

selections.

(3) If λ belongs to the range (0.5, 1], then the DM is sensitive to taking risks when making

decisions.

Theorem 3.11. Let X̂1 and X̂2 be two SVTNNs in R. Then for δ, ρ, η ∈ [0, 1] and ϕ ∈ R

(1) ℜ(X̂1 + X̂2) = ℜ(X̂1) + ℜ(X̂2).
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(2) ℜ(ϕX̂1) = ϕℜ(X̂1).

Proof.

(1) From Definition 3.10, we have

ℜ(X̂1 + X̂2) = λVδ,ρ,η(X̂1 + X̂2) + (1− λ)Aδ,ρ,η(X̂1 + X̂2)

From Lemma 3.8 and Lemma 3.9, we have

ℜ(X̂1 + X̂2) = λ
(
Vδ,ρ,η(X̂1) + Vδ,ρ,η(X̂2)

)
+ (1− λ)

(
Aδ,ρ,η(X̂1) +Aδ,ρ,η(X̂2)

)
=
[
λVδ,ρ,η(X̂1) + (1− λ)Aδ,ρ,η(X̂1)

]
+
[
λVδ,ρ,η(X̂2) + (1− λ)Aδ,ρ,η(X̂2)

]
= ℜ(X̂1) + ℜ(X̂2)

(2) From Definition 3.10, we have

ℜ(ϕX̂1) = λVδ,ρ,η(ϕX̂1) + (1− λ)Aδ,ρ,η(ϕX̂1)

From Lemma 3.8 and Lemma 3.9, we have

ℜ(ϕX̂1) = λ
(
ϕVδ,ρ,η(X̂1)

)
+ (1− λ)

(
ϕAδ,ρ,η(X̂1)

)
= ϕ

[
λVδ,ρ,η(X̂1) + (1− λ)Aδ,ρ,η(X̂1)

]
= ϕℜ(X̂1)

This complete the proof.

Corollary 3.12. Let X̂i =
〈
(
︷︸︸︷
xLi ,

︷︸︸︷
xMi ,

︷︸︸︷
xUi ); (xLi , x

M
i , xUi ); ( x

L
i︸︷︷︸, xMi︸︷︷︸, xUi︸︷︷︸)〉 be n SVTNNs

in R and ϕi ∈ R be the scalars where i = 1, 2, 3, · · · , n. Then

ℜ
( n∑

i=1

ϕiX̂i

)
=

n∑
i=1

[
λ
(
δ(

︷︸︸︷
xLi +

︷︸︸︷
xUi +4

︷︸︸︷
xMi

6
) + ρ(

xLi + xUi + 4xMi
6

) + η(

xLi︸︷︷︸+ xUi︸︷︷︸+4 xMi︸︷︷︸,
6

)
)

+ (1− λ)
(
δ(

︷︸︸︷
xUi −

︷︸︸︷
xLi

6
) + ρ(

xUi − xLi
6

) + η(

xUi︸︷︷︸− xLi︸︷︷︸
6

)
)]

ϕi (10)

Proof. This is proved by using Theorem 3.11, Lemma 3.8 and Lemma 3.9.

Definition 3.13. Suppose X̂1 and X̂2 be two SVTNNs, then two SVTNNs are compared by

(1) X̂1 ≤ X̂2 if and only if ℜ(X̂1) ≤ ℜ(X̂2),

(2) X̂1 < X̂2 if and only if ℜ(X̂1) < ℜ(X̂2),

where ℜ(.) is the ranking function.

Note: If X̂ = a ∈ R be a real crisp number so that it is independent of the risk factor λ, then

ℜ(X̂) = a.
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4. Neutrosophic Data Envelopment Analysis

Consider ai = (a1i, a2i, · · · , ami) ∈ Rm and bi = (b1i, b2i, · · · , bri) ∈ Rr are the input and

output vector of DMUi for i = 1, 2, · · · , n, respectively. The input matrix A and and the

output matrix B are defined as A = [a1, · · · , an] ∈ Rm×n, and B = [b1, · · · , bn] ∈ Rr×n such

that A > 0 and B > 0. Charnes et al. [10] developed the following LP model for measuring

the efficiency of DMUo

max
ω,µ

θ =

r∑
k=1

ωkbko,

subject to
m∑
j=1

µjajo = 1, (11)

r∑
k=1

ωkbki ≤
m∑
j=1

µjaji, i = 1, 2, · · ·n,

and ωk ≥ 0, k = 1, 2, · · · , r,

µj ≥ 0, j = 1, 2, · · · ,m.

This is popularly known CCR model.

In the classical DEA model, the efficiency score of the DMUo will be erroneous if the input

and output data of the DMUs are inaccurate, imprecise, or ambiguous. The application of

Neutrosophic set theory is a powerful strategy for dealing with this type of data.

Assuming inputs and outputs of the DMUs are SVTNNs while the weights µj ∈ R and

ωk ∈ R. Then, the Neutrosophic CCR (Nue-CCR) model can be defined as

max
ω,µ

θ =

r∑
k=1

ωk b̂ko,

subject to
m∑
j=1

µj âjo = 1, (12)

r∑
k=1

ωk b̂ki ≤
m∑
j=1

µj âji, i = 1, 2, · · ·n,

and ωk ≥ 0, k = 1, 2, · · · , r,

µj ≥ 0, j = 1, 2, · · · ,m,

where âji =
〈
(
︷︸︸︷
aLji ,

︷︸︸︷
aMji ,

︷︸︸︷
aUji ); (a

L
ji, a

M
ji , a

U
ji); ( a

L
ji︸︷︷︸, aMji︸︷︷︸, aUji︸︷︷︸)

〉
and b̂ki =

〈
(
︷︸︸︷
bLki ,

︷︸︸︷
bMki ,

︷︸︸︷
bUki );

(bLki, b
M
ki , b

U
ki); ( b

L
ki︸︷︷︸, bMki︸︷︷︸, bUki︸︷︷︸)〉 are the SVTNNs. The efficiency score of the Nue-CCR model

is θ∗ ∈ [0, 1].

Definition 4.1. A DMU is said to be efficient, if its efficiency score is 1; Otherwise it is

consider as inefficient DMU.
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Applying the ranking function (ℜ) in the Neu-CCR model given in equation (12).

max
ω,µ

θ = ℜ
( r∑

k=1

ωk b̂ko

)
,

subject to ℜ
( m∑

j=1

µj âjo

)
= ℜ

(
1
)
, (13)

ℜ
( r∑

k=1

ωk b̂ki

)
≤ ℜ

( m∑
j=1

µj âji

)
, i = 1, 2, · · ·n,

and ωk ≥ 0, k = 1, 2, · · · , r,

µj ≥ 0, j = 1, 2, · · · ,m.

Using Definition 3.3, The equation (13) can be written as

max
ω,µ

θ = ℜ

(〈
(

r∑
k=1

ωk

︷︸︸︷
bLko ,

r∑
k=1

ωk

︷︸︸︷
bMko ,

r∑
k=1

ωk

︷︸︸︷
bUko ); (

r∑
k=1

ωkb
L
ko,

r∑
k=1

ωkb
M
ko,

r∑
k=1

ωkb
U
ko);

(
r∑

k=1

ωk bLko︸︷︷︸,
r∑

k=1

ωk bMko︸︷︷︸,
r∑

k=1

ωk bUko︸︷︷︸)
〉)

,

s. t ℜ

(〈
(

m∑
j=1

µj

︷︸︸︷
aLjo ,

m∑
j=1

µj

︷︸︸︷
aMjo ,

m∑
j=1

µj

︷︸︸︷
aUjo ); (

m∑
j=1

µja
L
jo,

m∑
j=1

µja
M
jo ,

m∑
j=1

µja
U
jo);

(
m∑
j=1

µj aLjo︸︷︷︸,
m∑
j=1

µj aMjo︸︷︷︸,
m∑
j=1

µj aUjo︸︷︷︸)
〉)

= 1,

ℜ

(〈
(

r∑
k=1

ωk

︷︸︸︷
bLki ,

r∑
k=1

ωk

︷︸︸︷
bMki ,

r∑
k=1

ωk

︷︸︸︷
bUki ); (

r∑
k=1

ωkb
L
ki,

r∑
k=1

ωkb
M
ki ,

r∑
k=1

ωkb
U
ki);

(

r∑
k=1

ωk bLki︸︷︷︸,
r∑

k=1

ωk bMki︸︷︷︸,
r∑

k=1

ωk bUki︸︷︷︸)
〉)

≤ ℜ

(〈
(

m∑
j=1

µj

︷︸︸︷
aLji ,

m∑
j=1

µj

︷︸︸︷
aMji ,

m∑
j=1

µj

︷︸︸︷
aUji );

(
m∑
j=1

µja
L
ji,

m∑
j=1

µja
M
ji ,

m∑
j=1

µja
U
ji); (

m∑
j=1

µj aLji︸︷︷︸,
m∑
j=1

µj aMji︸︷︷︸,
m∑
j=1

µj aUji︸︷︷︸)
〉)

, i = 1, 2, · · · , n,

and ωk ≥ 0, k = 1, 2, · · · , r, µj ≥ 0, j = 1, 2, · · · ,m.

Now from Theorem 3.11 and Corollary 3.12, we have

max
ω,µ

θ =
r∑

k=1

[
λ
(
δ(

︷︸︸︷
bLko +

︷︸︸︷
bUko +4

︷︸︸︷
bMko

6
) + ρ(

bLko + bUko + 4bMko
6

) + η(

bLko︸︷︷︸+ bUko︸︷︷︸+4 bMko︸︷︷︸,
6

)
)

+ (1− λ)
(
δ(

︷︸︸︷
bUko −

︷︸︸︷
bLko

6
) + ρ(

bUko − bLko
6

) + η(

bUko︸︷︷︸− bLko︸︷︷︸
6

)
)]

ωk (14)

s.t

m∑
j=1

[
λ
(
δ(

︷︸︸︷
aLjo +

︷︸︸︷
aUjo +4

︷︸︸︷
aMjo

6
) + ρ(

aLjo + aUjo + 4aMjo
6

) + η(

aLjo︸︷︷︸+ aUjo︸︷︷︸+4 aMjo︸︷︷︸,
6

)
)
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+ (1− λ)
(
δ(

︷︸︸︷
aUjo −

︷︸︸︷
aLjo

6
) + ρ(

aUjo − aLjo
6

) + η(

aUjo︸︷︷︸− aLjo︸︷︷︸
6

)
)]

µj = 1

r∑
k=1

[
λ
(
δ(

︷︸︸︷
bLki +

︷︸︸︷
bUki +4

︷︸︸︷
bMki

6
) + ρ(

bLki + bUki + 4bMki
6

) + η(

bLki︸︷︷︸+ bUki︸︷︷︸+4 bMki︸︷︷︸,
6

)
)

+ (1− λ)
(
δ(

︷︸︸︷
bUki −

︷︸︸︷
bLki

6
) + ρ(

bUki − bLki
6

) + η(

bUki︸︷︷︸− bLki︸︷︷︸
6

)
)]

ωk

≤
m∑
j=1

[
λ
(
δ(

︷︸︸︷
aLji +

︷︸︸︷
aUji +4

︷︸︸︷
aMji

6
) + ρ(

aLji + aUji + 4aMji
6

) + η(

aLji︸︷︷︸+ aUji︸︷︷︸+4 aMji︸︷︷︸,
6

)
)

+ (1− λ)
(
δ(

︷︸︸︷
aUji −

︷︸︸︷
aLji

6
) + ρ(

aUji − aLji
6

) + η(

aUji︸︷︷︸− aLji︸︷︷︸
6

)
)]

µj , i = 1, 2, · · · , n,

and ωk ≥ 0, k = 1, 2, · · · , r, µj ≥ 0, j = 1, 2, · · · ,m.

This is the equivalent crisp LP model of the Neu-CCR model defined in equation (12).

Theorem 4.2. The Neutrosophic CCR model presented in equation (12) and the corresponding

crisp LP model presented in equation (14) of equal significance.

Proof. By utilizing the ranking formula put forth in Definition 3.10 of the Neu-CCR model,

which is illustrated in equation (13), it becomes straightforward to observe that the optimal

feasible solution derived in equation (12) for every Neu-CCR model is also an optimal feasible

solution of equation (14), and similarly, the converse holds true.

5. Method for Solving Neutrosophic DEA model

Fuzzification is the process of converting precise input-output data into fuzzy input-output

data by utilizing information from a knowledge base. Fuzzification is considered important

and advantageous in the early stages of uncertainty theory because the fuzzifier is defined as a

mapping from a crisp data space to a fuzzy data space within a particular discourse universe.

This article utilizes triangular neutrosophic membership functions during the fuzzification

process since they can be effectively implemented by embedded controllers in highly uncertain

environments. In this particular case, a single value neutrosophic set is employed during the

fuzzification process based on the observed data. The Neu-DEA model may be solved by

performing the procedures listed below.

Step 1: Convert the DEA model into the Neu-DEA model by considering the input-output

data are SVTNNs as shown in equation (12).

Step 2: Applying the ranking function (ℜ) in the Neu-DEA model given in equation (12).
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Step 3: Convert the Nue-DEA model into equivalent crisp LP model as shown in equation

(14).

Step 4: Solve the given crisp LP model effectively and determine the optimal solution θ∗ with

different DM’s preference parameters (δ, ρ, η ) for each risk factor λ ∈ [0, 1] which

represents the risk taking attitude of the DM, given in Definition 3.10.

Step 5: The DMUs are ranked according to the average of each DMU’s efficiency scores for

each DM’s preference level.

The flowchart depicted in Figure 2 illustrates the step-by-step approach utilized to solve the

Neu-DEA model. This technique serves as a visual representation of the process employed to

address the model’s complexities and arrive at a solution.

Figure 2. Flowchart for solving Neu-DEA model
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6. Numerical Example

In order to demonstrate the validity and applicability of the suggested model, this section

consider a real case study of hospital performance assessment provided by Yang et al. [45] in

a neutrosophic environment. The input parameters, which consist of “the number of doctors

and the number of nurses”, are displayed in Table 3. Correspondingly, the output parameters,

including “days of hospitalization, patient satisfaction, and the number of outpatients”, are

shown in Table 4.

Table 3. The SVTNNs input data

DMU Number of Doctors Number of Nurses

D1 ⟨(404, 540, 674); (350, 440, 560); (420, 645, 700)⟩ ⟨(520, 530, 535); (520, 525, 530); (532, 534, 540)⟩
D2 ⟨(119, 136, 182); (122, 125, 137); (125, 178, 200)⟩ ⟨(177, 180, 188); (173, 175, 179); (185, 189, 195)⟩
D3 ⟨(139, 145, 158); (139, 140, 147); (146, 155, 167)⟩ ⟨(208, 214, 218); (195, 209, 215); (210, 217, 230)⟩
D4 ⟨(86, 93, 151); (83, 85, 87); (89, 138, 160)⟩ ⟨(114, 116, 118); (114, 115, 117); (116, 118, 125)⟩
D5 ⟨(84, 93, 143); (84, 89, 120); (90, 140, 155)⟩ ⟨(110, 117, 121); (105, 112, 120); (113, 119, 128)⟩
D6 ⟨(101, 113, 170); (110, 112, 115); (112, 120, 177)⟩ ⟨(101, 107, 111); (95, 100, 104); (108, 112, 115)⟩
D7 ⟨(561, 694, 864); (510, 640, 750), (582, 857, 930)⟩ ⟨(492, 495, 508); (492, 494, 500); (493, 506, 520)⟩
D8 ⟨(123, 179, 199); (122, 125, 130); (195, 200, 205)⟩ ⟨(66, 68, 73); (63, 67, 69); (68, 70, 78)⟩
D9 ⟨(101, 153, 155); (140, 145, 150); (145, 149, 167)⟩ ⟨(192, 195, 198); (185, 193, 197); (194, 196, 205)⟩
D10 ⟨(147, 164, 170); (147, 160, 167); (165, 169, 180)⟩ ⟨(333, 340, 357); (335, 338, 350); (338, 347, 364)⟩
D11 ⟨(130, 158, 192); (110, 144, 173); (146, 177, 205)⟩ ⟨(96, 100, 114); (97, 99, 103); (99, 110, 129)⟩
D12 ⟨(128, 137, 187); (128, 133, 164); (134, 184, 199)⟩ ⟨(213, 220, 224); (208, 215, 223); (216, 222, 231)⟩
D13 ⟨(151, 160, 210); (151, 156, 187); (157, 207, 222)⟩ ⟨(320, 327, 331); (315, 322, 330); (323, 329, 338)⟩

Table 4. The SVTNNs output data

DMU Days of Hospitalization Patient satisfaction Numbers of Outpatient

D1 ⟨(121.13, 139.24, 140.04);
(138.64, 139.14, 139.81);

(139.14, 140.02, 141.17)⟩

⟨(38, 41, 45); (38, 40, 43);
(41, 44, 49)⟩

⟨(104.23, 114.04, 278.51);
(102.37, 109.15, 235.72);

(104.81, 275.25, 279.88)⟩
D2 ⟨(31.54, 34.15, 38.27);

(31.54, 34.93, 38.89);

(34.86, 38.15, 39.83)⟩

⟨(40, 44, 47); (35, 42, 45);
(41, 46, 50)⟩

⟨(34.54, 36.98, 54.82);
(36.45, 36.80, 41.57);

(47.61, 54.25, 55.35)⟩
D3 ⟨(81.62, 82.07, 85.51);

(81.41, 81.94, 83.35);

(81.78, 85.49, 88.16)⟩

⟨(18, 20, 29); (19, 21, 23);
(28, 30, 35)⟩

⟨(157.75, 177.57, 264.52);
(157.75, 176.68, 250.75);

(180.29, 263.98, 272.16)⟩
D4 ⟨(19.54, 20.41, 20.59);

(20.15, 20.25, 20.32);

(20.54, 20.58, 20.70)⟩

⟨(18, 21, 25); (15, 19, 23);
(20, 24, 30)⟩

⟨(32.89, 35.56, 87.74);
(35.25, 35.50, 35.61);

(87.50, 87.94, 88.30)⟩
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D5 ⟨(23.89, 24.60, 26.09);
(23.56, 23.60, 23.68);

(25.97, 26.35, 26.72)⟩

⟨(30, 36, 41); (34, 35, 37);
(35, 40, 57)⟩

⟨(63.23, 69.58, 120.73);
(63, 65.17, 94.93);

(64.47, 118.75, 124.75)⟩
D6 ⟨(21.33, 21.49, 23.31);

(20.94, 24.25, 22.68);

(21.38, 23.14, 23.94)⟩

⟨(50, 55, 60); (50, 53, 57);
(56, 59, 70)⟩

⟨(72.84, 82.84, 94.18);
(82.15, 82.68, 84.89);

(85.75, 93.50, 97.18)⟩
D7 ⟨(145.77, 148.28, 169.01);

(145.77, 147.16, 168.31);

(150.69, 168.95, 175.18)⟩

⟨(40, 44, 46); (42, 43, 45);
(43, 44, 55)⟩

⟨(147.59, 150.37, 227.12);
(147.30, 147.45, 148.25);

(218.24, 224.61, 229.63)⟩
D8 ⟨(11.56, 11.74, 12.96);

(11.42, 11.61, 11.98);

(11.58, 12.64, 13.16)⟩

⟨(60, 75, 80); (55, 60, 62);
(78, 83, 85)⟩

⟨(189.37, 202.08, 284.99);
(189.37, 200.52, 281.63);

(270.16, 284.55, 289.12)⟩
D9 ⟨(57.55, 62.67, 63.03);

(62.15, 62.50, 62.93);

(62.50, 62.97, 63.61)⟩

⟨(32, 35, 38); (32, 33, 35);
(34, 36, 45)⟩

⟨(14.63, 14.85, 29.40);
(14.70, 14.75, 15.25);

(24.75, 28.36, 32.64)⟩
D10 ⟨(73.21, 76.03, 81.90);

(75.76, 76.05, 76.25);

(81.67, 82.27, 82.64)⟩

⟨(22, 25, 40); (20, 24, 27);
(23, 25, 29)⟩

⟨(96.77, 97.27, 110.39);
(96.77, 96.89, 105.14);

(99.76, 108.62, 115.27)⟩
D11 ⟨(22.90, 27.71, 35.56);

(22.90, 26.45, 31.28);

(27.92, 34.62, 39.41)⟩

⟨(20, 23, 26); (21, 22, 24);
(22, 25, 30)⟩

⟨(171.53, 182.46, 384.99);
(171.12, 178.65, 210.34);

(175.59, 270.65, 400.12)⟩
D12 ⟨(58.41, 59.12, 60.61);

(58.08, 58.12, 58.20);

(60.49, 60.87, 61.24)⟩

⟨(25, 31, 37); (29, 30, 32);
(30, 35, 52)⟩

⟨(59.87, 66.22, 117.37);
(59.64, 61.81, 91.57);

(61.11, 115.39, 121.39)⟩
D13 ⟨(66.97, 67.68, 69.17);

(66.64, 66.68, 66.76);

(69.05, 69.43, 69.80)⟩

⟨(20, 27, 31); (23, 26, 28);
(24, 30, 46)⟩

⟨(96.97, 103.32, 154.47);
(96.74, 98.91, 128.67);

(98.21, 152.49, 158.50)⟩

Table 5. Efficiency Score of the DMUs

DM’s Preference DMUs
Efficiency Score

Ranking
λ = 0 λ =

0.25

λ =

0.5

λ =

0.75

λ = 1 Mean

(δ
,ρ
,η
)
=

(1
,0
,0
)

D1 1 0.703 0.6827 0.6763 0.6731 0.74702 10

D2 0.8808 0.8957 0.916 0.9126 0.9095 0.90292 5

D3 1 1 1 1 1 1 1

D4 1 0.6057 0.6456 0.6532 0.6566 0.71222 11

D5 0.582 0.9747 1 1 1 0.91134 4

D6 0.4806 0.948 1 1 1 0.88572 6

D7 1 0.8354 0.8061 0.7978 0.7937 0.8466 8

D8 1 1 1 1 1 1 1

D9 1 0.936 0.9892 1 1 0.98504 2
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D10 1 1 0.9501 0.9306 0.919 0.95994 3

D11 1 1 1 1 1 1 1

D12 0.6187 0.8863 0.9223 0.9316 0.9336 0.8585 7

D13 0.582 0.7698 0.8055 0.8165 0.8206 0.75888 9
(δ
,ρ
,η
)
=

(
1 2
,
1 4
,
1 4
)

D1 1 0.6929 0.6781 0.6736 0.6713 0.74318 10

D2 1 0.8486 0.8483 0.8474 0.8467 0.8782 5

D3 1 1 1 1 1 1 1

D4 0.8889 0.5962 0.6006 0.6047 0.607 0.65948 11

D5 0.6375 0.9041 0.915 0.9185 0.9202 0.85906 6

D6 0.6327 1 1 1 1 0.92654 3

D7 1 0.8525 0.816 0.8037 0.7979 0.85402 7

D8 1 1 1 1 1 1 1

D9 0.8183 0.9418 0.9585 0.9639 0.9666 0.92982 2

D10 1 0.9175 0.8957 0.8888 0.8854 0.91748 4

D11 1 1 1 1 1 1 1

D12 0.6646 0.8427 0.8657 0.8754 0.8808 0.82584 8

D13 0.6646 0.7452 0.7656 0.7741 0.7788 0.74566 9

(δ
,ρ
,η
)
=

(
1 3
,
1 3
,
1 3
)

D1 1 0.6895 0.6766 0.6726 0.6707 0.74188 10

D2 1 0.8219 0.8221 0.8217 0.8214 0.85742 6

D3 1 1 1 1 1 1 1

D4 1 0.5869 0.5865 0.5876 0.5893 0.67006 12

D5 0.6182 0.8696 0.8834 0.8882 0.8905 0.82998 8

D6 0.7943 1 1 1 1 0.95886 3

D7 1 0.8583 0.8199 0.807 0.8005 0.85714 7

D8 1 1 1 1 1 1 1

D9 0.7916 0.9381 0.9466 0.9493 0.9507 0.91526 4

D10 1 0.8912 0.8794 0.8757 0.874 0.90406 5

D11 1 1 1 1 0.9955 0.9991 2

D12 0.6353 0.8223 0.8455 0.8553 0.8606 0.8038 9

D13 0.6525 0.7335 0.7518 0.7596 0.7639 0.73226 11

(δ
,ρ
,η
)
=

(0
,0
,1
)

D1 1 0.6747 0.6712 0.67 0.6694 0.73706 9

D2 0.9612 0.6921 0.7016 0.7063 0.7088 0.754 7

D3 1 1 1 1 1 1 1

D4 0.6007 0.5211 0.5332 0.5386 0.5412 0.54696 10

D5 1 0.8298 0.8077 0.8036 0.8017 0.84856 4

D6 1 1 1 1 1 1 1

D7 1 0.8883 0.8581 0.8479 0.8428 0.88742 3

D8 1 1 1 1 1 1 1

D9 1 0.9575 0.9315 0.9231 0.9189 0.9462 2

D10 0.5714 0.8732 0.8783 0.88 0.8808 0.81674 6

D11 1 1 1 1 1 1 1

D12 1 0.7787 0.7705 0.7681 0.767 0.81686 5
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D13 1 0.695 0.6862 0.6853 0.6854 0.75038 8

(δ
,ρ
,η
)
=

(
1 4
,
1 2
,
1 4
)

D1 0.8799 0.6959 0.6829 0.6785 0.6763 0.7227 7

D2 1 0.8793 0.8663 0.8616 0.8592 0.89328 3

D3 1 1 1 1 1 1 1

D4 1 0.6968 0.671 0.6617 0.657 0.7373 6

D5 0.1528 0.7717 0.857 0.891 0.9102 0.71654 9

D6 1 1 1 1 1 1 1

D7 1 0.8499 0.8002 0.7838 0.7757 0.84192 4

D8 1 1 1 1 1 1 1

D9 0.2363 0.901 0.9133 0.9185 0.9211 0.77804 5

D10 0.2158 0.8411 0.8559 0.8609 0.8634 0.72742 6

D11 1 0.9837 0.9435 0.9314 0.9257 0.95686 2

D12 0.1528 0.7988 0.8613 0.8846 0.8968 0.71886 8

D13 0.2026 0.7333 0.7748 0.79 0.7978 0.6597 10

(δ
,ρ
,η
)
=

(0
,1
,0
)

D1 1 0.6899 0.678 0.674 0.672 0.74278 10

D2 1 0.836 0.8324 0.8309 0.8301 0.86588 6

D3 1 1 1 1 1 1 1

D4 1 0.6015 0.6017 0.6025 0.6032 0.68178 12

D5 0.4948 0.8477 0.8775 0.8884 0.8941 0.8005 8

D6 0.743 1 1 1 1 0.9486 3

D7 1 0.8562 0.814 0.7998 0.7931 0.85262 7

D8 1 1 1 1 1 1 1

D9 0.699 0.9294 0.9389 0.9421 0.9436 0.8906 5

D10 1 0.8803 0.8743 0.8726 0.8718 0.8998 4

D11 1 1 1 0.9912 0.9791 0.99406 2

D12 0.5075 0.8157 0.849 0.8621 0.8691 0.78068 9

D13 0.5456 0.7328 0.7572 0.7669 0.772 0.7149 11

The relative efficiencies of the 13 DMUs (or hospitals) are evaluated within a neutrosophic environ-

ment by solving the crisp LP model, as described in equation (14), which corresponds to the Neu-DEA

model. Table 5 Table 5 shows the outcomes obtained by solving the suggested Neu-DEA model in

MATLAB R2021a., which determines the relative efficiency of all DMUs across all degrees of risk.

The performance of DMUs is calculated by varying the risk parameter according to each DM’s pref-

erence level. Table 5 demonstrates how the DMUs’ performance is influenced by the DM’s preference

level and risk factor. The DMUs are ranked according to their efficiency by calculating the average effi-

ciency for different risk factors corresponding to each DM’s preference level. When the mean efficiency

of a DMU is 1, it implies that the DMU is performing efficiently across all risk factors and is marked in

blue color. Such DMUs are referred to as “fully efficient”. On the other hand, when a DMU performs

inefficiently across all risk factors, it is labeled in red color and called “fully inefficient”. However, some

DMUs may perform efficiently under some risk factors but not all. These DMUs are considered “par-

tially efficient” or “partially inefficient.” When considering optimistic, neutral, or pessimistic decisions,

it is observed that DMUs D3 and D8 consistently maintain their efficiency across different risk factors.
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As a result, D3 and D8 can be considered the top-performing DMUs among all the others. This finding

holds true even when analyzing the neutral DM’s preference level.

Figure 3. Efficiency Score of different preference level with risk factor λ = 0

Figure 4. Efficiency Score of different preference level with risk factor λ = 0.25

In Figure 3, the efficiency of DMUs is compared across different preference levels, with a fixed risk

factor of λ = 0. Approximately 60% of the DMUs are found to be efficient. Figure 4 examines the

efficiency of DMUs across different preference levels, using a fixed risk factor of λ = 0.25. It is observed

that approximately 29% of the DMUs are efficient. Similarly, Figure 5 analyzes the efficiency of DMUs

with various preference levels, keeping the risk factor fixed at λ = 0.5. Approximately 30% of the DMUs
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Figure 5. Efficiency Score of different preference level with risk factor λ = 0.5

are determined to be fully efficient. Figure 6 compares the efficiency of DMUs at various preference

Figure 6. Efficiency Score of different preference level with risk factor λ = 0.75

levels while keeping a constant risk factor of lambda = 0.75. It has been found that around 30% of

the DMUs are fully efficient. Figure 7 compares the efficiency of DMUs across various preference levels

with a constant risk factor of lambda = 1. It has been shown that around 29% of DMUs are fully

efficient. When considering the mean efficiency of the DMUs, it is found that approximately 22% of the

DMUs are fully efficient. These results demonstrate the impact of both the risk factor and preference
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level on efficiency of DMUs. Notably, as the risk factor increases, the number of efficient DMUs tends

to decrease.

Figure 7. Efficiency Score of different preference level with risk factor λ = 1

Figure 8. Compare the mean efficiency scores of DMUs in different preference

level with Yang et al. [45] ranking approach

The DMUs are evaluated and ranked based on their mean efficiency scores while considering a fixed

DM’s preference level. The DMUs that achieve an efficiency score of 1 are identified as the most efficient

and are assigned a rank of 1, indicating their top performance. Conversely, DMUs with efficiency scores

below 1 are deemed inefficient, and their rankings are determined by their relative efficiency scores.
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DMUs with higher relative efficiency scores receive higher rankings, whereas those with lower relative

efficiency scores are ranked lower (See Table 5).

Figure 8 presents a comparison between the mean efficiency of DMUs obtained through the proposed

solution technique and the efficiency scores derived from the method developed by Yang et al. [45]. The

results show that DMUs D3 and D8 have the same efficiency score in both methods. However, for

other DMUs, their efficiency scores differ based on the DM’s preference level. The proposed solution

technique is deemed more effective than the existing ranking approach since it allows the DM to obtain

the efficiency of the DMUs according to their own preference level and risk factor. This gives the DM

greater freedom to set their own preferences level and risk parameter while making a decision.

7. Advantages and Limitations of this Study

The key advantage of the suggested ranking function is that it enables DMs to evaluate their own

degree of risk while making a decision. The ranking function is established by incorporating the value

and ambiguity index, and it is related with the preference level of the DM, which indicates whether

the DM prefers a pessimistic, optimistic, or neutral a decision. Also, the ranking function is associated

with the risk factor which show the risk taking attitude of the DM. The suggested ranking function is

utilised to solve the Neu-DEA model by converting it into an equivalent crisp DEA model that can be

solved using existing LP approaches. The efficiency score of the DMUs is defined by a specific preference

and risk level. This preference level and risk factor provide DMs with more freedom when analysing

performance and making decisions. As a result, the suggested approach to solving the Neu-DEA model

gives DMs greater freedom to consider their degree of risk and preferences when making decisions,

allowing them to make better informed choices that are consistent with their objectives and values.

The present study is a case analysis that aims to measure the performance of hospitals. The in-

vestigation focuses on a small number of input and output variables, specifically two inputs and three

outputs. However, the overall performance of hospitals is affected by a variety of variables that relate

to either their inputs or their outputs. Therefore, the efficiency score may be changed by increasing or

decreasing the number of inputs or outputs. The DMUs are ranked according to the mean efficiency

scores of the DMUs with various risk factors for each DM’s preference level, but this approach does not

completely rank the DMUs, which is shown in the Table 5. Furthermore, the inputs of the DMUs may

be interconnected with various internal structures rather than having a direct relationship with the final

output. This suggested model only depends on the initial inputs and ultimate outputs, disregarding

the internal structure of the DMUs. Therefore, while evaluating the performance of the DMUs, it is

essential to take into account every relevant factor and internal DMU structures since these factors

may have a big influence on the DMUs’ rankings and efficiency evaluations. The suggested model is

valuable, but it has limits in terms of its abilities to rank DMUs completely and accurately as well as

the model does not consider the complex internal structures of DMUs.

8. Conclusions and Future Directions

The Neutrosophic Set is a generalized version of ordinary fuzzy sets, Intuitionistic fuzzy sets,

Pythagorean fuzzy sets, and Spherical fuzzy sets [41]. It is becoming a famous scholarly topic be-

cause it is used to solve many problems in decision-making, data analysis, and artificial intelligence.

The neutrosophic set has developed as a valuable technique for dealing with imprecise, indeterminate
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and inconsistent data. This set gives a more flexible way to analyse data, where data can be described

using multiple combinations of truth, indeterminacy, and falsity membership functions. The neutro-

sophic set may reflect the complexities of real-world situations and give a more realistic representation

of the underlying data by including these three variables. This research focuses on the construction of

a ranking function for a SVTNN that integrates both the value and ambiguity indexes, as well as the

DM’s preference level and risk variables. Additionally, a novel solution technique is developed for the

Neutrosophic DEA models with SVTNN inputs and outputs. The proposed ranking function converts

the Neu-DEA model into an equivalent crisp LP model which is solved with different preference levels

and risk parameters to measure the relative efficiency of the DMUs. The study examines how the DM’s

preference level and risk factor together affect the efficiency of the DMUs. Finally, to demonstrate the

applicability and validity of the proposed model, a numerical example is presented and the efficiency

scores are compared with Yang et al.’s ranking approach [45], as shown in Figure 8. It has been observed

that DMU D3 and D8 are the most efficient DMUs, whereas D12 and D13 are the least efficient DMUs,

and the number of efficient DMUs decreases as the risk factor increases. For a fixed DM’s preference

level, DMUs are ranked according to the mean efficiency score with different risk factors.

Future research directions can focus on addressing the limitations identified in the previous section.

One potential area of investigation is the increase of the number of inputs and outputs to improve

the accuracy of efficiency measurement. Additionally, there is a need to develop complete ranking

techniques that can be provide a complete ranking of DMUs in the proposed work. Furthermore, the

application of the network DEA model in a neutrosophic setting can be explored to calculate the ef-

ficiency of DMUs while considering the internal structure of the system. This novel technique gives

encouraging outcomes and can be utilized to solve various additional DEA models, including “BCC,

Super Efficiency, and Undesirable DEA, and Dynamic DEA models”, by incorporating SVTNN inputs

and outputs. Also as an application of this proposed approach employed for addressing MCDM, LP,

agricultural economic, assignment problem, banking and finance, manufacturing and production, and

transportation problems in neutrosophic environments.
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Abstract. This paper presents the unprecedented opinion of neutro Q algebra. Neutro Q algebras have a

complex structure and are based on the three axioms of neutro algebras. We investigated the important

properties of neutro Q algebras of orders 2 and 3. we try to find a connection between neutro Q algebras and

groups and neutro groups. The opinions of very thin neutro Q algebras and valued-strong neutro Q algebras

are introduced in this study and are computed in the numbers of 3-strong neutro Q algebras.

Keywords: Neutro Q algebra, very thin neutro Q algebra, valued-strong Q algebra.

—————————————————————————————————————————-

1. Introduction

Florentin Smarandache [9], according to the basic realism in the application of mathematical

problems in the real world, to the introduction of the theory of neuto algebra the payment.

From his point of view, whichever is a real point of view, it was noticed that all the real

problems of the world are not based on pure mathematical rules. They look at this issue in

such a way that in every finite or infinite set, there are elements that remain unknown or

cannot accept or apply some mathematical principles. In classical algebra, a set of elements

must apply to a series of specific rules, and this issue is mandatory, and this issue contradicts

the real world because, in the real world, there are elements that do not follow any rules or

always remain in an unknown state. They stay so the theory of neuto algebra it as it may bea

new step in this field so that we know that we don’t have to look at the real issues of the world

in a pure and forced way. The neutro algebras are very important in the real world and some

researchers have investigated these soups such as neutro groups [1], neutro BCK algebras [2],

neutro hyper BCK subalgebras [3], on neutro D subalgebras [4], semihypergroups [6], on

neutro BE algebras and anti BE algebras [7], CI algebra [8], neutro algebraic structures [10]

antialgebraic and semigroups [11].
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In this survey, we introduce a new extension of Q algebras, whichever is a generalization of

groups. Our goal in presenting this topic is to design the principles of the topic in such a way

as to challenge the topic of group theory. Our idea is to suggest that in neutro Q algebras,

we can confuse the number of null elements and the number of invertible elements and check

that it is not necessary entire elements to be participative. In final, we define the notation of

very thin neutro Q algebras and k-strong neutro Q algebras and bring up the relation between

groups, neutro groups, and neutro Q algebras.

2. Preliminaries

In what follows, we present the topics that we need in our research.

Definition 2.1. [9] Let X ̸= ∅. Then (X,κ) is a neutro-algebra, if κ be a neutro operation

or an operation, whichever is satisfied in the neutro axioms.

Definition 2.2. [5] Let X ̸= ∅, κ : X2 → X and ι be a steady. Then, (X,κ, ι) is titled a

Q-algebra if,

(D-1) κ(x, x) = ι,

(D-2) κ(x, ι) = x,

(D-3) κ(κ(x, y), z) = κ(κ(x, z), y).

3. Neutro Q algebras

In this section, characterize neutro Q algebras and inspect their properties.

Definition 3.1. Let X ̸= ∅, ι ∈ X be a steady and κ : X2 → X. Then (X,κ , ι) is a neutro

Q algebra, if

(NQ-1)
(
∃x ∈ X with the aim that xκ x = ι

)
and

(
∃y ∈ X with the aim that yκ y ̸= ι or

indeterminate
)
;

(NQ-2)
(
∃x ∈ X with the aim that xκ ι = x

)
and

(
∃y ∈ X with the aim that yκ ι ̸= y or

indeterminate
)
;

(NQ-3)
(
∃x, y, z ∈ X, with the aim that (xκ y)κ z = (xκ z)κ y

)
and

(
∃r, s, t ∈ X, with the

aim that (rκ s)κ t ̸= (rκ t)κ s or indeterminate
)
.

Example 3.2. (i) (R,−, ι) is a not a neutro Q algebra, while (R, κ , ι) is a neutro Q algebra,

where for x, y ∈ R, characterize xκ y = Sin(x+ xy) as shown in Figure 1.

By Figure 1, one can see that there would be x ∈ R, with the aim that xκ x = ι and there

would be y ∈ R, with the aim that yκ y ̸= ι. In addition, for any given x, y, z ∈ R, (xκ y)κ z =

(xκ z)κ y if and only if sin((sin(x+xy)+zsin(x+xy)) = sin((sin(x+xz)+ysin(x+xz)). It
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Figure 1. xκ x = sin(x+ x2)

follows that if z = y, then (xκ y)κ z = (xκ z)κ y and one can find x, y, z ∈ R with the aim that

(xκ y)κ z ̸= (xκ z)κ y. In addition, xκ ι = ι, implies that sinx = ι, whichever x = kπ, k ∈ Z
and xκ ι ̸= ι, implies that x ̸= kπ, k ∈ Z. Moreover, xκ ι = x, implies that sinx = x and

xκ ι ̸= x, implies that sinx ̸= x. The axiom NQ-2 is valid by Figure 2.

Figure 2. sin(x) = x, sin(x) ̸= x

(ii) (R, κ , ι) is a neutro Q algebra, whichever for x, y ∈ R, characterize xκ y = Ln(x2 + y).

It is clear that ικ ι is indeterminate, xκ ι = Ln(x2) and xκ x = Ln(x2 + x).

Figure 3. Ln(x2 + x), Ln(x) = x, Ln(x) ̸= x

Sirus Jahanpanah, Roohallah Daneshpayeh, On Neutro Variable Q-subalgebras

Neutrosophic Sets and Systems, Vol. 57, 2023                                                                              400



By Figure 3, the axioms NQ-1 and NQ-2 are valid. In addition, for x, y, z ∈ R, (xκ y)κ z =

(xκ z)κ y iff Ln(Ln2(x2 + y) + z) = Ln(Ln2(x2 + z) + z). It is clear that for y = z, we have

(xκ y)κ z = (xκ z)κ y and for y = z, we have (xκ y)κ z ̸= (xκ z)κ y or indeterminate.

(iii) Let X = {ι, 1, 2, 3, 4, 5}. Characterize κ on X in kind:

κ ι 1 2 3 4 5

ι ι ι ι ι ι 5

1 1 ι 1 1 1 5

2 2 2 ι 2 2 3

3 3 3 3 ι 3 ι

4 4 4 4 4 ι 1

5 ι 2 ι 2 ι 5

.

Computations show that ({ι, 1, 2, 3, 4}, κ ) is a Q algebra and ({ι, 1, 2, 3, 4, 5}, κ ) is a neutro

Q algebra.

Theorem 3.3. Any Q algebra, as it may be lengthen to a neutro Q algebra.

Proof. Let (X,κ , ι) be a Q algebra and α ̸∈ X. Then (X ∪ {α}, κ ′, ι) is a neutro Q algebra,

whichever entire x, y ∈ X,xκ ′y = xκ y, ακ ′α = α, ακ ′ι = x, whichever x ̸∈ {ι, α} and

xκ ′α ̸= x. Since (ακ ′ι)κ ′α = xκ ′α, (ακ ′α)κ ′ι = ακ ′ι = x and xκ ′α ̸= x, we acquire that

(ακ ′ι)κ ′α ̸= (ακ ′α)κ ′ι. Hence (X ∪ {α}, κ ′, ι) is a neutro Q algebra.

Theorem 3.4. Let |X| = 2 , ι ∈ X and (X,κ , ι) is a neutro Q algebra.

(i) If ικ ι = ι, then exists x ∈ X with the aim that ικ x = x or is indeterminate.

(ii) If ικ ι ̸= ι, then one can find x ∈ X with the aim that ικ x ∈ {ι, x} or is indeterminate.

Proof. (i) Since, ι ∈ X, by NQ-1 one can find x ∈ X, with the aim that xκ x = ι and one

can find y ∈ X with the aim that yκ y ̸= ι or is indeterminate. Assume that ικ ι = ι. In this

case one can find just one ι ̸= x ∈ X with the aim that xκ x ̸= ι or is indeterminate. Since

|X| = 2, we acquire xκ x = x or is indeterminate. Moreover, by NQ-2, one can find x ∈ X

with the aim that xκ ι ̸= x, because of ικ ι = ι. Since |X| = 2, we acquire xκ ι = ι or is

indeterminate. In addition by NQ-3, ι = ικ ι = (ικ ι)κ ι = (ικ ι)κ ι = ι, because of ικ ι = ι.

Now bring up the consecutive cases:

Case 1:

(xκ x)κ ι = (xκ ι)κ x ⇒ xκ ι = ικ x ⇒ ικ x = ι or is indeterminate.

Case 2:

(ικ x)κ ι = (ικ ι)κ x ⇒ (ικ x)κ ι = ικ x or is indeterminate.
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In this case, if ικ x = ι, then ι = ικ ι = ικ x and so ικ x = ι or is indeterminate. If ικ x = x,

then xκ ι = ικ x and so ικ x = ι or is indeterminate. They follow that NQ-3 is not valid and

it is a contradication. Hence we must bring up the consecutive cases:

Case 1:

(xκ x)κ x ̸= (xκ ι)κ x ⇒ xκ ι ̸= ικ x ⇒ ικ x ̸= ι ⇒ ικ x = x or is indeterminate.

Case 2:

(ικ x)κ ι ̸= (ικ ι)κ x ⇒ (ικ x)κ ι ̸= ικ x or is indeterminate.

In this case, if ικ x = ι, then ι = ικ ι ̸= ικ x and so ικ x ̸= ι or (ικ x = x or is indeterminate).

If ικ x = x, then xκ ι ̸= ικ x and so ικ x ̸= ι or (ικ x = x or is indeterminate). They concludee

that ικ x = x or is indeterminate.

(ii) Since |X| = 2 and ικ ι ̸= ι, we acquire there would be just one ι ̸= x ∈ X such that

ικ ι = x and so xκ x = ι or is indeterminate. Moreover, by NQ-2, there would be x ∈ X

with the aim that xκ ι = x, because of ικ ι ̸= ι. Since |X| = 2, we acquire xκ ι = x or is

indeterminate. In addition by NQ-3, (ικ ι)κ ι = xκ ι = x, because of ικ ι = x. Now, bring

up the consecutive cases:

Case 1:

(xκ x)κ ι = (xκ ι)κ x ⇒ ικ ι = xκ x ⇒ x = ι,whichever is contradication.

Case 2:

(ικ x)κ ι = (ικ ι)κ x ⇒ (ικ x)κ ι = xκ x ⇒ (ικ x)κ ι = ι or is indeterminate.

In this case, if ικ x = ι, then ικ ι = ι, whichever is a contradication. If ικ x = x, then xκ ι = ι,

whichever is a contradication. Thus, (xκ x)κ ι ̸= (xκ ι)κ x and (ικ x)κ ι ̸= (ικ ι)κ x. It

concludes that ικ x ∈ {ι, x} or is indeterminate.

Corollary 3.5. Let X be a set and (X,κ , ι) be a neutro Q algebra. Then |X| ≥ 2.

Theorem 3.6. Let (X,κ ) be a neutro Q algebra. Then there would be x, y ∈ X with the aim

that xκ (xκ y) ̸= xκ y or indeterminate.

Proof. Let entire x, y ∈ X,xκ (xκ y) = xκ y. Then by x = y, we acquire xκ (xκ x) = xκ x.

Since (X,κ ) is a neutro Q algebra, using NQ-2, we obtain that x = xκ ι = xκ (xκ x) =

xκ x = ι. It follows that |X| = 1, whichever is a contradication by Corollary 3.5.

Theorem 3.7. Let (X,κ , ι) be a neutro Q algebra.

(i) If there would be x, y ∈ X with the aim that xκ (xκ y) ̸= xκ y or indeterminate and

ικ ι = ι, then |X| ≥ 3.
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(ii) If one can find x, y ∈ X with the aim that xκ (xκ y) = xκ y or indeterminate and

ικ ι ̸= ι, then |X| ≥ 3.

Proof. Since (X,κ ) is a neutro Q algebra, by Corollary 3.5, we acquire |X| ≥ 2. Suppose that

|X| = 2 and X = {ι, x}.
(i) Because ικ ι = ι, we acquire xκ x = x and xκ ι = ι. It follows that xκ (xκ x) ̸= xκ x.Thus

xκ x ̸= xκ x, whichever is a contradication and so |X| ≥ 3.

(ii) Because ικ ι ̸= ι, we acquire xκ x = ι and xκ ι = x. It follows that xκ (xκ x) =

xκ x.Thus xκ ι = ι and so x = ι, whichever is a contradication and so |X| ≥ 3.

Definition 3.8. Let (X,κ , ι) be a neutro Q algebra. Then we will call it is a neutro-

commutative, if
(
∃x, y ∈ X with the aim that xκ y = yκ x

)
and

(
∃r, s ∈ X with the aim that

rκ s ̸= sκ r or indeterminate
)
.

Theorem 3.9. Let (X,κ , ι) be a neutro Q algebra and |X| = 2.

(i) If ικ ι = ι, then (X,κ , ι) is neutro-commutative.

(ii) If ικ ι ̸= ι, then (X,κ , ι) is not neutro-commutative, necessarily.

(iii) If ικ ι ̸= ι and ικ x = ι, then (X,κ , ι) is neutro-commutative.

Proof. Let x ∈ X.

(i) If ικ ι = ι, then by Theorem 3.4, we acquire ικ x = x and xκ ι = ι.

(ii, iii) If ικ ι = x, then by Theorem 3.4, we acquire xκ ι = x and ικ x ∈ {ι, x}. Now,

if ικ x = x, (X,κ , ι), then is not neutro-commutative and if ικ x = ι, then (X,κ , ι) is

neutro-commutative.

Theorem 3.10. Let X be nonevoid set, ι ∈ X and |X| ≥ 2. Then (X,κ , ι) is a neutro Q

algebra iff (X,κ , ι) is not a group.

Proof. Let (X,κ , ι) is a group. Then for any x ∈ X,xκ ι = x, and so the axiom (NQ-2) is

not valid. Thus (X,κ , ι) is a not neutro Q algebra.

Conversly, let (X,κ , ι) is a neutro Q algebra. Then using the axiom (NQ-2), the structure

(X,κ , ι) has’t the identity elemen, so (X,κ , ι) is not a group.

Theorem 3.11. Every group with involution, as it may be lengthen to a neutro Q algebra.

Proof. Let (X,κ , ι) be a group with involution and α ̸∈ X. Then (X ∪ {α}, κ ′, ι) is a neutro

Q algebra, whichever entire x, y ∈ X,xκ ′y = xκ y, ακ ′x ̸= xκ ′α and ακ ′ι is indeterminate.

Suppose that z ∈ X is an involution. Then zκ ′(ακ ′z) = (zκ ′α)κ ′z = (zκ ′z)κ ′α = ικ ′α = α.

It follows that zκ ′(zκ ′(ακ ′z)) = zκ ′α and so (zκ ′z)κ ′(ακ ′z) = zκ ′α, whichever is a
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contadication. Thus one can find α, z ∈ X with the aim that (zκ ′α)κ ′z ̸= (zκ ′z)κ ′α

and so the axiom NQ-3 is valid. In addition, zκ ′z = ι, implies that NQ-1 is valid Hence

(X ∪ {α}, κ ′, ι) is a neutro Q algebra.

Example 3.12. Bring up the abelian group (Z6,⊕) and X = {ι, 1, 2, 3, 4, 5,
√
2}. For every

x, y ∈ Z6, characterize xκ y = x ⊕ y and
√
2κ ι is an indeterminate. It is easey to see that

(X,κ , ι) is a neutro Q algebra.

S. Dus et al. introduced the opinion of neutro groups. We recall this consept in kind:

Let X be a non-empty set, ι ∈ X be a steady and “κ ” be a map on X. An algebra (X,κ , ι)

of type (2, ι) is a neutro group, if

(NG-1)
(
∃x, y, z ∈ X with the aim that (xκ y)κ z = xκ (yκ z)

)
and

(
∃r, s, t ∈ X with the aim

that (rκ s)κ t ̸= rκ (sκ t) or indeterminate
)
;

(NG-2)
(
∃x ∈ X with the aim that xκ ι = ικ x = x

)
and

(
∃y ∈ X with the aim that yκ ι ̸= y

or indeterminate
)
;

(NG-3)
(
∃x, y ∈ X, with the aim that xκ y = yκ x = ι

)
and

(
∃r ∈ X, with the aim that entire

s ∈ X, rκ s ̸= ι or indeterminate
)
.

Each above neutro axiom has a degree of equality (T ), degree of non-equality (F ), and degree

of indeterminacy (I), where (T, I, F ) /∈ (1, ι, ι), (ι, ι, 1).

Theorem 3.13. Let (X,κ , ι) be a neutro Q algebra whichever satisfies in (NG-1). Then

(X,κ , ι) is a neutro group.

Proof. Since (X,κ , ι) is a neutro Q algebra, one can find x ∈ X with the aim that xκ ι = ι and

one can find y ∈ X with the aim that yκ y = ι. Using (NG-1), we acquire ικ x = (yκ y)κ x =

yκ (yκ x) = xκ ι = ι and so ικ x = ι. It follows that one can find x ∈ X with the aim that

xκ ι = ι = ικ x.

Theorem 3.14. Let (X,κ , ι) be a neutro Q algebra and |X| = 2. Then

(i) if ικ ι = ι, then (X,κ , ι) is not a neutro group.

(ii) if ικ ι ̸= ι and ικ x = x, then (X,κ , ι) is a neutro group.

(iii) if ικ ι ̸= ι and ικ x = ι, then (X,κ , ι) is not a neutro group.

Proof. (i) Since ικ ι = ι, by Theorem 3.4, for x ∈ X, we acquire xκ x = x, xκ ι = ι, and

ικ x = x. It follows that the axioms NG-1 and NG-2 are valid. Let x ∈ X, then have the

consecutive cases:

Case 1:

(xκ ι)κ x = ικ x = x = xκ x = xκ (ικ x).
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Case 2:

(xκ x)κ ι = xκ ι = xκ (xκ ι).

Case 3:

(ικ x)κ x = xκ x = x = ικ x = ικ (xκ x).

Case 4:

(ικ ι)κ x = ικ x = x = ικ x = ικ (ικ x).

Case 5:

(ικ x)κ ι = xκ ι = ι = ικ ι = ικ (xκ ι).

They follow that the axiom NG-3 is not valid and so (X,κ , ι) is not a neutro group.

(ii) Let ικ ι ̸= ι. Using theorem 3.4, for x ∈ X, acquire xκ x = ι, xκ ι = x and ικ x ∈ {ι, x}.
If ικ x = x, then the axioms NG-2 and NG-3 are valid. Now, bring up the consecutive cases:

Case 1:

(xκ ι)κ x = xκ x = ι = xκ x = xκ (ικ x).

Case 2:

(xκ x)κ ι = ικ ι = x ̸= ι = xκ x = xκ (xκ ι).

They follow that NG-1 is valid and so (X,κ , ι) is a neutro group.

(iii) Let ικ ι ̸= ι. Using theorem 3.4, for x ∈ X, acquire xκ x = ι, xκ ι = x and ικ x ∈ {ι, x}.
If ικ x = ι, then the axiom NG-2 is not valid and so (X,κ , ι) is not a neutro group.

Definition 3.15. Let (X,κ , ι) be a neutro Q algebra. We say that (X,κ , ι) is a very thin

neutro Q algebra, if for any ι ̸= x ∈ X, ικ ι ̸= ι, xκ x = ι and xκ ι = x.

Example 3.16. Let X = {ι, 1, 2, 3, 4, 5}. Then (X,κ 1, ι) is a very thin neutro Q algebra and

(X,κ 2, ι) is a very strong neutro Q algebra in kind:

κ 1 ι 1 2 3 4 5

ι 1 ι ι ι ι ι

1 1 ι 1 1 1 1

2 2 2 ι 2 2 2

3 3 3 3 ι 3 3

4 4 4 4 4 ι 4

5 5 5 5 5 5 ι

and

κ 2 ι 1 2 3 4 5

ι ι ι ι ι ι ι

1 5 5 1 1 1 1

2 4 2 5 2 2 2

3 2 3 3 5 3 3

4 3 4 4 4 5 4

5 1 5 5 5 5 5

Theorem 3.17. Let (X,κ , ι) be a neutro commutative very thin neutro Q algebra and |X| ≥ 3.

Then (X,κ , ι) is a neutro group.
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Proof. Let x ∈ X. Since (X,κ , ι) is a very thin neutro Q algebra, acquire entire ι ̸= x ∈
X,xκ x = ι and xκ ι = x. Since (X,κ , ι) is neutro commutative, one can find y ∈ X with the

aim that ικ y ̸= y. They follow that NG-2 and NG-3 are valid. Because (xκ ι)κ x = xκ x =

ι = xκ x = xκ (ικ x) and (xκ x)κ ι = ικ ι ̸= ι = xκ x = xκ (xκ ι), acquire NG-1 is valid.

Hence (X,κ , ι) is a neutro group.

Definition 3.18. Let (X,κ , ι) be a neutro Q algebra and k ∈ N. We say that (X,κ , ι) is k-

strong neutro Q algebra, if one can find x1, x2, . . . , xk−1 ∈ X with the aim that ικ ι = xiκ xi =

ι, xiκ ι = ικ xi = xi, implies that i ∈ {1, 2, . . . , k−1} and for any i ̸∈ {1, 2, . . . , k−1}, xiκ xi ̸=
ι, xiκ ι ̸= xi, ικ xi ̸= xi and are’t indeterminate.

Let X be a set and k ∈ N. Denote N (X,Q, k) by the set of all k-strong neutro Q algebras

(X,κ , ι) and N (X,G, k) by the set of all k-strong neutro groups (X,κ , ι).

Theorem 3.19. Let |X| = 3. Then |N (X,Q, 2)| = 23 × 32.

Proof. Suppose that X = {ι, a, b}. If (X,κ , ι) is a 2-strong neutro Q algebras, we have

ικ ι = aκ a = ι and aκ ι = ικ a = a. Noe, characterize a general kayley table in kind:

κ i ι a b

ι ι a c(ι, b)

a a ι c(a, b)

b c(b, ι) c(b, a) c(b, b)

,

whichever for any x, y ∈ X, c(x, y) is the number of possible cases for choosing of the xκ iy.

Simple cimputations show that c(ι, b) = 2, c(a, b) = 3, c(b, ι) = 2, c(b, a) = 3 and c(b, b) = 2.

Thus |N (X,Q, 2)| = 23 × 32.

Corollary 3.20. Let X ̸= ∅. Then N (X,G, 3) ⊆ N (X,Q, 3).

4. Conclusions

As an important result of this article, we can mention that we have dealt with the connection

of the real world of objects with each other under a series of imagined principles of logic and

we have shown that even for a finite number of elements we can create an infinite system of

rules. Since the structure of neutro Q subalgebra is complex, we investigated the neutro Q

subalgebras with order 2, 3. We show that the Q subalgebras can’t be groups and try to make

some conditions to be neutro groups. After completing this research, which is an interesting

start in the field of neutro algebras, we intend to discuss the relationship of sets of elements

with other sets in a real way and under the principles of neutro. In fact, we want to apply

these types of algebras in the real world, and by modeling compatible and non-compatible

Sirus Jahanpanah, Roohallah Daneshpayeh, On Neutro Variable Q-subalgebras

Neutrosophic Sets and Systems, Vol. 57, 2023                                                                              406



systems with these types of algebras, we want to show the importance of publishing these

types of articles.
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—————————————————————————————————————————-

1. Introduction

Associative law is a kind of operation law describing symmetry in algebraic systems. Groups

and semigroups are two typical algebraic systems which satisfy associative law ([1–3]). In re-

cent years, with the wide application of algebraic systems in various fields ([4–6]), many kinds

of non-associative algebraic structures have been studied in order to explore more general-

ized symmetries and operation laws in algebras. Among them, Abel-Grassmann’s groupoid

(AG-groupoid), Cyclic associative groupoid (CA-groupoid) and TA-groupoid have been widely

discussed.

AG-groupoid([7]) is a non-associative groupoid satisfying the condition (xy)z = (zy)x.

Based on this research, a series of AG-groupoid satisfying different conditions have been

proposed([8–10]). In 1954, the term “cyclic associative law” was used in Sholander’s
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article([11]) to represent the operating law: (xy)z = (yz)x. Subsequently, many scholars

systematically studied the relevant algebraic structures satisfying cyclic associative law.

If a semigroup satisfies x(yz) = x(zy), it can be called right commutative. On this basis, the

association law is added, then the following equation holds: (xy)z = x(zy) (Tarski associative

law). Tarski associative law is actually a special case of generalized associative law proposed

by Suschkewitsch ([12]) as early as 1929. Accordingly, Xiaohong Zhang proposed the concept

of TA-groupoid in 2020 and studied its related properties([13]).

In addition, based on the relevant theory of Neutrosophic set([14]) proposed in 1995,

Smarandache put forward a new algebraic structure of the neutrosophic extended triplet group

(NETG) ([15]). Subsequently, domestic and foreign scholars carried out a lot of research on

this basis. Among them, Xiaohong Zhang clarified some theoretical knowledge of TA-NET-

groupoid in 2020 by adding local identity elements and local inverse elements to the NETGs

and combining with TA-groupoid, laying a theoretical foundation for the research of related

algebraic structures. Xiaogang An et al. concluded that TA-NET-groupoid is a semigroup,

and explained the relationship between regular TA-groupoid and Tarski associative neutro-

sophic extended triplet groupoid (TA-NET-groupoid)([16]). The research of these scholars

greatly promoted the further development of algebra. In order to further study the structure

of regular TA-groupoid, the TA-group and inverse TA-groupoid are proposed, properties of

TA-group and the relations between different TA-groupoids are studied in detail in this paper.

This paper is organized as follows. In Section 2, some basic definitions and properties of

TA-groupoid and TA-NET-groupoid are recalled. In TA-groupoid, there is a special class of

groupoid with several right identity elements, which we call TA-group. Thus, the concept

of TA-group is put forward first in Section 3, which is followed with the discussion of some

structural properties of TA-group and the relationship between TA-group and other algebraic

structures. We then summarize our paper and indicate the next research direction at last.

2. Preliminaries

Definition 2.1 ([13]). If a groupoid (S, ∗) satisfies Tarski associative law: ∀x, y, z ∈ S, (x ∗
y) ∗ z = x ∗ (z ∗ y), then S is said as a Tarski associative groupoid (shortly TA-groupoid).

A TA-groupoid (S, ∗) is called locally associative ([13]) if ∀m ∈ S, (m∗m)∗m = m∗(m∗m).

Then TA-groupoid is locally associative.

Proposition 2.1 ([13]). Let (S, ∗) be a TA-groupoid. Then ∀a, b, c, d, e, f ∈ S,

(1) (a ∗ b) ∗ (c ∗ d) = (a ∗ d) ∗ (c ∗ b);
(2) ((a ∗ b) ∗ (c ∗ d)) ∗ (e ∗ f) = (a ∗ d) ∗ ((e ∗ f) ∗ (c ∗ b)).

Definition 2.2 ([15, 17]). If S is a non-empty set under the binary operation ∗, for any

m ∈ S, there are neut(m) and anti(m), s.t. neut(m) ∈ S, anti(m) ∈ S, and m ∗ neut(m) =
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neut(m) ∗m = m; m ∗ anti(m) = anti(m) ∗m = neut(m). Then S is said as a neutrosophic

extended triplet set.

Annotation: For any m ∈ S, neither neut(m) nor anti(m) is unique. Thus {neut(m)} and

{anti(m)} are used to denote the sets of neut(m) and anti(m), respectively.

Definition 2.3 ([13]). Let (G, ∗) be a neutrosophic extended triplet set. If

(1) ∀x, y ∈ G, x ∗ y ∈ G;

(2) ∀x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (z ∗ y).
Then, we say that (G, ∗) is a Tarski associative neutrosophic extended triplet groupoid (or

TA-NET-groupoid). A TA-NET-groupoid satisfying the commutative law is a commutative

TA-NET-groupoid.

Theorem 2.1 ([13]). Let (G, ∗) be a TA-NET-groupoid. Then ∀w ∈ G,

(1) neut(w) ∗ neut(w) = neut(w);

(2) neut(neut(w)) = neut(w);

(3) anti(neut(w)) ∈ {anti(neut(w))}, w = anti(neut(w)) ∗ w.

Theorem 2.2 ([13]). Let (G, ∗) be a TA-NET-groupoid. Then ∀w ∈ G, ∀p, q ∈
{anti(w)},∀anti(w) ∈ {anti(w)},
(1) p ∗ (neut(w)) = neut(w) ∗ q;
(2) anti(neut(w)) ∗ anti(w) ∈ {anti(w)};
(3) neut(w) ∗ anti(q) = w ∗ neut(q);
(4) neut(p) ∗ neut(w) = neut(w) ∗ neut(p) = neut(w);

(5) (q ∗ neut(w)) ∗ w = w ∗ (neut(w) ∗ q) = neut(w);

(6) neut(q) ∗ w = w.

Theorem 2.3 ([13]). If (G, ∗) is a TA-NET-groupoid. E(G) represents the set composed of

all different neutral elements in G, for all e ∈ E(G), G(e) = {a ∈ G|neut(a) = e}. Then,
(1) G(e) is a subgroup of G.

(2) for ∀e1, e2 ∈ E(G), e1 ̸= e2 ⇒ G(e1) ∩G(e2) = ∅.

(3) G = ∪e∈E(G)G(e).

Theorem 2.4 ([16]). A TA-NET-groupoid is a semigroup.

Definition 2.4 ([13]). A TA-groupoid (G, ∗) is said to be left cancellative, if x ∈ G, a, b ∈ G,

x ∗ a = x ∗ b implies a = b.

Definition 2.5 ([13]). A TA-groupoid (G, ∗) is said to be a right cancellative TA-groupoid,

if x ∈ G, a, b ∈ G, a ∗ x = b ∗ x implies a = b. A groupoid is a cancellative TA-groupoid which

is both a left and right cancellative.
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Theorem 2.5 ([13]). Let (G, ∗) be a TA-groupoid. Then

(1) A left cancellative element is a right cancellative element;

(2) Two left cancellative elements are still left cancellative after * operation;

(3) A left cancellative element and a right cancellative element are left cancellative after *

operation;

(4) For any x, y ∈ G, if x ∗ y is right cancellative, then y is right cancellative.

Definition 2.6 ([16]). Assume that (G, ∗) is a TA-groupoid, a ∈ G. Then a is a regular

element of G if there exists x ∈ G such that a ∗ (x ∗ a) = a. The TA-groupoid G is said to be

regular if all its elements are regular.

Definition 2.7 ([2]). A semigroup S is said to be an inverse semigroup, if there is a unary

operation a 7→ a−1 satisfying

(a−1)−1 = a, aa−1a = a,

and for all x, y ∈ S,

(xx−1)(yy−1) = (yy−1)(xx−1).

Theorem 2.6 ([2]). Let S be a semigroup. It is an inverse semigroup iff all its elements have

a unique inverse.

3. TA-Group and Inverse TA-Groupoid

In the following, we propose two new concepts of TA-group and inverse TA-groupoid, and

investigate their properties and structures.

Definition 3.1. Let (S, ∗) be a TA-groupoid. Then, S is called a TA-(r,l)-loop, if for any a ∈ S,

exist two elements neut(r,l)(a) and anti(r,l)(a) in S satisfying the condition: a∗neut(r,l)(a) = a,

anti(r,l)(a) ∗ a = neut(r,l)(a). That is, a ∗ (anti(r,l)(a) ∗ a) = a.

Definition 3.2. Assume that (G, ∗) is a TA-groupoid. G is said to be a Tarski associative

group (or simply TA-group), if

(1) there is a right identity element in G, that is to say, ∃e ∈ G, for all element a ∈ G, a∗e = a;

(2) there is a certain right identity element e ∈ G, for any a ∈ G, there exists an element a′ ∈ G

such that a′ ∗ a = e.

Obviously, by definition 3.1 and 3.2 we know that TA-group is a special TA-(r,l)-loop.

Exmaple 3.1. Let G = {1, 2, 3, 4}. In Table 1, the TA-group (G, ∗) is given. And

1 ∗ 1 = 1, 2 ∗ 1 = 2, 3 ∗ 1 = 3, 4 ∗ 1 = 4;

1 ∗ 1 = 1, 1 ∗ 2 = 1, 3 ∗ 3 = 1, 3 ∗ 4 = 1.
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At this time, right identity element is 1.

1 ∗ 2 = 1, 2 ∗ 2 = 2, 3 ∗ 2 = 3, 4 ∗ 2 = 4;

2 ∗ 1 = 2, 2 ∗ 2 = 2, 4 ∗ 3 = 2, 4 ∗ 4 = 2.

At this time, right identity element is 2.

Table 1. This is a TA-group.

∗ 1 2 3 4

1 1 1 3 3

2 2 2 4 4

3 3 3 1 1

4 4 4 2 2

Theorem 3.1. Let (G, ∗) be a TA-group, e is a right identity element in G. Then

(1) (a, a′ ∈ G, a′ ∗ a = e) ⇒ e ∗ a′ = a′;

(2) (a, a′ ∈ G, a′ ∗ a = e) ⇒ (a ∗ a′) ∗ (a ∗ a′) = a ∗ a′;
(3) (a, a′ ∈ G, a′ ∗ a = e) ⇒ x ∗ (a ∗ a′ = x) for all x ∈ G.

Proof. (1) In order to obtain the conclusion, suppose that a, a′ ∈ G, a′ ∗ a = e. We have

e ∗ a′ = (a′ ∗ a) ∗ a′ = a′ ∗ (a′ ∗ a) = a′ ∗ e = a′.

(2) If a, a′ ∈ G, a′ ∗ a = e. Then by (1),

(a ∗ a) ∗ a′ = (a ∗ a) ∗ (e ∗ a′) = (a ∗ a′) ∗ (e ∗ a) = ((a ∗ a′) ∗ a) ∗ e = (a ∗ a′) ∗ a = a ∗ (a ∗ a′);

a = a ∗ e = a ∗ (a′ ∗ a) = (a ∗ a) ∗ a′.

It follows that a = (a ∗ a) ∗ a′ = a ∗ (a ∗ a′). On the other hand,

a′ ∗ a = a′ ∗ (a ∗ (a ∗ a′)) = (a′ ∗ (a ∗ a′)) ∗ a;

a′ = e ∗ a′ = (a′ ∗ a) ∗ a′ = ((a′ ∗ (a ∗ a′)) ∗ a) ∗ a′

= (a′ ∗ (a ∗ a′)) ∗ (a′ ∗ a) = (a′ ∗ (a ∗ a′)) ∗ e

= a′ ∗ (a ∗ a′).

Therefore,

a ∗ a′ = ((a ∗ a) ∗ a′) ∗ (a′ ∗ (a ∗ a′)) = ((a ∗ a) ∗ (a ∗ a′)) ∗ (a′ ∗ a′)

= ((a ∗ a′) ∗ (a ∗ a)) ∗ (a′ ∗ a′) = (a ∗ a′) ∗ ((a′ ∗ a′) ∗ (a ∗ a))

= (a ∗ a′) ∗ ((a′ ∗ a) ∗ (a ∗ a′)) = (a ∗ a′) ∗ (e ∗ (a ∗ a′))

= ((a ∗ a′) ∗ (a ∗ a′)) ∗ e = (a ∗ a′) ∗ (a ∗ a′).
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(3) Assume that a, a′ ∈ G, a′ ∗ a = e. For any x ∈ G, applying (1) we get that x ∗ (a ∗ a′) =
(x ∗ (a ∗ a′)) ∗ e = x ∗ (e ∗ (a ∗ a′)) = x ∗ ((e ∗ a′) ∗ a) = x ∗ (a′ ∗ a) = x ∗ e = x.

Theorem 3.2. Let (G, ∗) be a TA-groupoid with right identity element. Then it is a semi-

group.

Proof. Let (G, ∗) be a TA-groupoid with right identity element. e is right identity element in

G, for any a, b, c ∈ G, there is,

a ∗ (b ∗ c) = [a ∗ (b ∗ c)] ∗ e

= a ∗ [e ∗ (b ∗ c)]

= (a ∗ b) ∗ (e ∗ c)

= (a ∗ c) ∗ (e ∗ b)(ByProposition2.1)

= a ∗ [(e ∗ b) ∗ c]

= a ∗ [e ∗ (c ∗ b)]

= [a ∗ (c ∗ b)] ∗ e

= a ∗ (c ∗ b).

Then according to Tarski associative law, a ∗ (b ∗ c) = a ∗ (c ∗ b) = (a ∗ b) ∗ c. That is to say,

G satisfies associative law. So G is a semigroup.

Theorem 3.3. Let (G, ∗) be a TA-group. Then it is a regular semigroup.

Proof. Because TA-group is a TA-groupoid with right identity element, according to Theorem

3.2, G is a semigroup. Then according to definition of TA-group, there exists x ∈ G such that

a ∗ (x ∗ a) = a. So G is regular semigroup.

But not every regular semigroup is TA-group, see Example 3.2.

Exmaple 3.2. Let G = {1, 2, 3, 4}. In Table 2, a regular semigroup (G, ∗) is given.

Table 2. This is a regular semigroup.

∗ 1 2 3 4

1 1 1 1 1

2 1 2 3 4

3 3 3 3 3

4 4 4 4 4

But it isn’t TA-group since (2 ∗ 1) ∗ 3 = 1 ̸= 3 = 2 ∗ (3 ∗ 1).
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Theorem 3.4. TA-group is TA-NET-groupoid.

Proof. Let G be a TA-group and e is right identity element of G. Then for all a ∈ G, there

exists x ∈ G such that x ∗ a = e. That is, a ∗ (x ∗ a) = a. On the basis of Theorem 3.2,

a ∗ (a ∗ x) = a. Assume that a ∗ x = neut(a) and x = anti(a), there is, a ∗ neut(a) = a and

a ∗ anti(a) = neut(a) = anti(a) ∗ a. Then neut(a) ∗ a = (a ∗ x) ∗ a = a ∗ (a ∗ x) = a. So

neut(a) ∗ a = a = a ∗ neut(a) and anti(a) ∗ a = neut(a) = a ∗ anti(a). So G is a TA-NET-

groupoid.

But not every TA-NET-groupoid is TA-group, see Example 3.3.

Exmaple 3.3. Let G = {1, 2, 3, 4}. Consider a TA-NET-groupoid in Table 3.

neut(1) = 1, anti(1) = 1;neut(2) = 2, anti(2) = 2;

neut(3) = 3, anti(3) = 3;neut(4) = 4, anti(4) = 4.

Table 3. This is a TA-NET-groupoid.

∗ 1 2 3 4

1 1 1 1 1

2 2 2 3 2

3 4 4 3 4

4 4 4 4 4

But it isn’t TA-group since there isn’t right identity element.

Theorem 3.5. Let (S, ∗) be a TA-group, a, b, c, d, f ∈ S, e is the right identity element in S.

There is,

(1) if a ∗ b = e, e is identity element of a;

(2) ((a ∗ b) ∗ c) ∗ d = a ∗ (d ∗ (c ∗ b));
(3) if a ∗ b = c ∗ d, then a ∗ (d−1 ∗ b) = c.

Proof. (1) If a ∗ b = e, i.e. a is left inverse element of b. Then

a = a ∗ e = a ∗ (a ∗ b) = (a ∗ b) ∗ a = e ∗ a.

That means that e is an identity element of a.

(2) According to Proposition 2.1, ((a ∗ b) ∗ c) ∗ d = (a ∗ b) ∗ (d ∗ c) = (a ∗ c) ∗ (d ∗ b) =

a ∗ ((d ∗ b) ∗ c) = a ∗ (d ∗ (b ∗ c)).
(3) If a∗b = c∗d, there exists d−1 ∈ S s.t. d−1 ∗d = e. Then according to Tarski associative

law,

(a ∗ b) ∗ d−1 = (c ∗ d) ∗ d−1 = c ∗ (d−1 ∗ d) = c ∗ e = c.
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That is to say, a ∗ (d−1 ∗ b) = c.

But right identity element of TA-group isn’t unique, see Example 3.4.

Exmaple 3.4. Let G = {1, 2, 3, 4}. Consider a TA-group in Table 1.

Right identity elements are 1 and 2.

Theorem 3.6. Let (G, ∗) be a TA-group, e be right identity element of G. Then for any

a ∈ G, left inverse element of a relative to e is unique.

Proof. Let a ∈ G and e is right identity element in G. Assume that left inverse element of a

relative to e isn’t unique, that is, there exist b, c ∈ G s.t. b ∗ a = e and c ∗ a = e. Then

b = b ∗ e = b ∗ (c ∗ a) = (b ∗ a) ∗ c = (c ∗ a) ∗ c = c ∗ (c ∗ a) = c ∗ e = c.

So b = c and left inverse element is unique.

Proposition 3.1. Assume that (G, ∗) is a TA-group. There is,

(1) G is right cancellative;

(2) if a ∗ b = e is a right identity element, then b ∗ a = e1 also is a right identity element.

Proof. (1) Assume that (G, ∗) is a TA-group and e is a right identity element in G. For

any a, b ∈ G and there exists y ∈ G s.t. a ∗ y = b ∗ y. And there exists y′ ∈ G s.t.

a ∗ e = a, b ∗ e = b, y ∗ e = y, y′ ∗ y = e. Then

a = a ∗ e = a ∗ (y′ ∗ y) = (a ∗ y) ∗ y′ = (b ∗ y) ∗ y′ = b ∗ (y′ ∗ y) = b ∗ e = b.

So G is right cancellative.

(2) According to Theorem 3.2, TA-group satisfies right commutative law, then for any c ∈ G,

there is,

c ∗ (b ∗ a) = c ∗ (a ∗ b) = c ∗ e = c.

Then b∗a is a right identity element in G, that is, b∗a = e1 is a right identity element in G.

Theorem 3.7. Let G be semigroup. Then it is a TA-group if and only if it satisfies:

(1) ∀a, b ∈ G, there is unique solution to equation x ∗ a = b;

(2) ∀a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (c ∗ b).

Proof. (⇒) Assume that c, d are solutions to equation x ∗ a = b, then c ∗ a = d ∗ a. Because G

is TA-group, according to Proposition 3.1(1), c = d. So there is unique a solution to equation

x ∗ a = b.
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(⇐) For given a ∈ G, there exists e ∈ G s.t. e ∗ a = a. Then e2 ∗ a = e ∗ (e ∗ a) = e ∗ a = a,

because x ∗ a = b has a unique solution, and e2 = e. If there exists e′ s.t. e′ ∗ a = a ∗ e, then
(e′ ∗ a) ∗ e = (a ∗ e) ∗ e = a ∗ e2 = a ∗ e. So e′ ∗ a = a ∗ e = (e′ ∗ a) ∗ e, then a = e′ ∗ a = a ∗ e.
For all b ∈ G, because x ∗ a = e has unique solution, there exists c ∈ G s.t. c ∗ a = b. And

b ∗ e = (c ∗ a) ∗ e = c ∗ (a ∗ e) = c ∗ a = b, so e is right identity element of G.

Let b = e, there exists c ∈ G s.t. c ∗ a = e, that is, c is left inverse element of a relative to

a. So G is TA-group.

Theorem 3.8. Assume that G is TA-groupoid. Then it is TA-group if and only if it satisfies:

(1) e is right identity element in G, that is, ∀a ∈ G, there is, a ∗ e = a;

(2) e is right identity element in G, and there exists right inverse element b ∈ G such that

a ∗ b = e.

Proof. (⇒) Let G be TA-groupoid. According to the definition of TA-group and e is right

identity element in G, ∀a ∈ G, there exist a′ ∈ G, s.t. a ∗ e = a, a′ ∗ a = e. According to

Proposition 3.1, a ∗ a′ = e1 is also a right identity element. So for any a ∈ G, there exist a′, e1

s.t. a ∗ a′ = e1. According to Theorem 3.3, for all a, b, c ∈ G, there is, (a ∗ b) ∗ c = a ∗ (b ∗ c).
(⇐) Let G be a TA-groupoid. Then for any a ∈ G, there exist e, c ∈ G s.t. a∗e = a, a∗c = e.

Accoring to Theorem 3.2, it satisfies right commutative law.

a ∗ (c ∗ a) = a ∗ (a ∗ c) = a ∗ e = a.

That is to say, c ∗ a is local right identity element of a. And ∀b ∈ G,

b ∗ (c ∗ a) = b ∗ (a ∗ c) = b ∗ e = a.

So c ∗ a is right identity element in G, and c is left inverse element of a relative to c ∗ a. Thus
G is TA-group.

In the following, we proposed the notion of TA-subgroup and gave the equivalent charac-

terization of TA-subgroup.

Definition 3.3. Let (G, ∗) be TA-group and S be non-empty subset of G. If S is a TA-group

under operation ∗ on G, then S is called TA-subgroup of G.

Theorem 3.9. The non-empty subset S of G is TA-subgroup if and only if

(1) ∀a, b ∈ S, there is, a ∗ b ∈ S;

(2) e is a right identity element of S, and for all a ∈ S, there is a′ ∈ S s.t. a′ ∗ a = e.
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Proof. (⇒) According to Definition 3.3, (1) and (2) hold.

(⇐) ∀a, b ∈ S, there is, a ∗ b ∈ S, then S is a TA-groupoid. Because e is right identity

element of S, then for any a ∈ S, there is, a ∗ e = a. And there exists a′ ∈ S such that

a′ ∗ a = e. So S is TA-group. Thus, S is TA-subgroup of G.

Theorem 3.10. Commutative TA-group is Abelian group.

Proof. Let (G, ∗) be a TA-group, e is a right identity element in G. According to Theorem 3.3,

G is a commutative semigroup. Then for any a ∈ G, there is x ∈ G s.t. a ∗ e = a, x ∗ a = e.

Then e ∗ a = a ∗ e = a and a ∗ x = x ∗ a = e. So e is identity element of G and x is inverse

element of a. Assume that e′ also is identity element in G, there is, e = e ∗ e′ = e′. That is to

say, identity element is unique. Assume that there exist x, y ∈ G such that x ∗ a = e = y ∗ a,
according to Proposition 3.1, G is right cancellative, and x = y, thus the inverse element is

unique. So G is Abelian group.

Theorem 3.11. If right identity element of TA-group is unique, then

(1) left inverse element is right inverse element;

(2) right identity element is left identity element;

(3) identity element is unique;

(4) inverse element is unique;

(5) it is a group.

Proof. (1) Suppose that (G, ∗) is a TA-group. ∀a ∈ G, ∃a′, a′′ ∈ G, s.t. a ∗ e = a, a′ ∗ a = e.

a′ ∗ e = a′, a′′ ∗ a′ = e. a′′ ∗ e = a′′. Then

e ∗ a = a′′ ∗ a′ ∗ a = a′′ ∗ (a′ ∗ a) = a′′ ∗ e = a′′.

Then

e ∗ a′ = a′′ ∗ a′ ∗ a′ = e ∗ a ∗ a′ ∗ a′,

And

e ∗ a′ = e ∗ a ∗ a′ ∗ a′.

e ∗ a′ ∗ a = e ∗ (a′ ∗ a) = e ∗ e = e.

e ∗ a ∗ a′ ∗ a′ ∗ a = e ∗ a ∗ a′ ∗ e = e ∗ a ∗ (a′ ∗ e) = e ∗ a ∗ a′.

So e = e ∗ a ∗ a′. Because e is unique, then a ∗ a′ = e.

(2) By(1), e ∗ a = (a ∗ a′) ∗ a = a ∗ (a ∗ a′) = a ∗ e = a.

(3) According to (2), right identity element is left identity element and right identity element

is unique, then there exists identity element and it is unique.
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(4) By (1), left inverse element and right inverse element are unique and they are equivalent

to each other. Assume that inverse element of a isn’t unique and there exists y ∈ G s.t.

a ∗ y = e. So a′ = a′ ∗ e = a′ ∗ (a ∗ y) = (a′ ∗ a) ∗ y = e ∗ y = y. That is, inverse element of a is

unique.

(5) By (3) and (4), there are identity element and inverse element in G, and they are unique.

And TA-group satiefies associative law, then G is a group.

Example 3.5 shows that TA-group whose right identity element is unique, and it is a group.

Exmaple 3.5. Let G = {a, b, c, d}, in Table 4, the operation ∗ on G is given. It is both a

TA-group and a group. And

a ∗ a = a, b ∗ a = b = a ∗ b, c ∗ a = c = a ∗ c, d ∗ a = d = a ∗ d.

a ∗ a = a, b ∗ b = a, c ∗ d = a = d ∗ c.

Table 4. This is a group.

∗ a b c d

a a b c d

b b a d c

c c d b a

d d c a b

Remark 3.1. TA-group is regular TA-groupoid.

But not every regular TA-groupoid is TA-group, see Example 3.6.

Exmaple 3.6. Let G = {a, b, c, d}, consider the regular TA-groupoid in Table 5. Since there

is no right identity element, so it isn’t TA-group.

Table 5. This is a regular TA-groupoid.

∗ a b c d

a a a b b

b a a b b

c c c c c

d d d d d

In the next part, the concept and property of inverse TA-groupoid are given.

Definition 3.4. Let G be a regular TA-groupoid. Then for any a ∈ G, there exists x ∈ G s.t.

a ∗ (x ∗ a) = a. G is called an inverse TA-groupoid if x is unique.
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The following Theorem shows that the decomposition theorem of inverse TA-groupoid.

Theorem 3.12. Let G be inverse TA-groupoid. Then it is disjoint union of groups.

Proof. Let x ∗ a = e, then a ∗ e = a. Assume that Ge is composed of element whose local right

identity element is e.

For any a, b, c ∈ Ge, there is,

a ∗ (b ∗ c) = [a ∗ (b ∗ c)] ∗ e = a ∗ [e ∗ (b ∗ c)]

= (a ∗ b) ∗ (e ∗ c) = (a ∗ c) ∗ (e ∗ b)(ByProposition2.1)

= a ∗ [(e ∗ b) ∗ c] = a ∗ [e ∗ (c ∗ b)]

= [a ∗ (c ∗ b)] ∗ e = a ∗ (c ∗ b)

According to Tarski associative law, (a ∗ b) ∗ c = a ∗ (c ∗ b) = a ∗ (b ∗ c). Then it satisfies

associative law.

For any a ∈ Ge, there exists x ∈ G such that a ∗ (x ∗ a) = a. Assume that x ∗ a = e, then

a∗ e = a, a∗ ((x∗ e)∗a) = a∗ (x∗ (a∗ e)) = a∗ (x∗a) = a. Because x is unique, then x∗ e = x.

That is to say, x ∈ Ge.

For any a ∈ Ge, a ∗ e = a. Then a ∗ (e ∗ e) = (a ∗ e) ∗ e = a ∗ e = a. And there exists x ∈ Ge

such that x∗a = e. (e∗ e)∗ e = (e∗ e)∗ (x∗a) = (e∗a)∗ (x∗ e) = (e∗a)∗x = e∗ (x∗a) = e∗ e.
That is to say, e ∗ e ∈ Ge and e ∗ e is right identity element of Ge. According to Theorem 3.2,

e ∗ e = (x ∗ a) ∗ (x ∗ a) = (x ∗ a) ∗ (a ∗ x) = x ∗ ((a ∗ x) ∗ a) = x ∗ (a ∗ (x ∗ a)) = x ∗ a = e. So

e ∈ Ge.

For any a, b ∈ Ge, according to associative law, there is, (a ∗ b) ∗ e = a ∗ (b ∗ e) = a ∗ b. So

a ∗ b ∈ Ge. That is to say, Ge is TA-groupoid.

Above all, Ge satisfies associative law, e ∈ Ge and for any a ∈ Ge, there exists x ∈ Ge such

that x ∗ a = e.

Because x is unique and e is unique, we know Ge is a TA-group with unique right identity

element, then it is a group.

Then G is union of group, and x is unique and x ∗ a = e is unique. That is to say, for any

local right identity element e ∈ G, every subgroup Ge of G is disjoint, G is disjoint union of

groups.

According to Definition 2.3 and Theorem 3.12, we know inverse TA-groupoid is TA-NET-

groupoid, but whether a TA-NET-groupoid is a inverse TA-groupoid? see Example 3.7. The

example shows that not every TA-NET-groupoid is inverse TA-groupoid.

Exmaple 3.7. Let G = {1, 2, 3, 4}. In Table 6, the TA-NET-groupoid (G, ∗) is shown. And

1 ∗ 1 = 1; 2 ∗ 2 = 2;
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1 ∗ 3 = 3 = 3 ∗ 1, 3 ∗ 3 = 1;

4 ∗ 4 = 4; 5 ∗ 5 = 5.

Table 6. This is a TA-NET-groupoid.

∗ 1 2 3 4 5

1 1 1 3 4 4

2 1 2 3 4 5

3 3 3 1 4 4

4 4 4 4 4 4

5 4 5 4 4 5

It isn’t inverse TA-groupoid since 1 ∗ (1 ∗ 1) = 1 , 1 ∗ (2 ∗ 1) = 1 and 1 ̸= 2.

We know both completely regular semigroup and inverse TA-groupoid are disjoint union

of groups, and completely regular semigroup satisfies associative law, whether a completely

regular semigroup is a TA-groupoid? See Example 3.8. The example shows that not every

completely regular semigroup is TA-groupoid.

Exmaple 3.8. Let G = {1, 2, 3, 4}. In Table 7, a completely regular semigroup (G, ∗) is given.

Table 7. This is a completely regular semigroup.

∗ 1 2 3 4

1 1 4 4 4

2 1 2 3 4

3 1 3 3 4

4 1 4 4 4

It isn’t TA-groupoid since (1 ∗ 1) ∗ 2 = 4 ̸= 1 = 1 ∗ (2 ∗ 1).
Because TA-NET-groupoid is semigroup and inverse TA-groupoid is TA-NET-groupoid,

inverse TA-groupoid is semigroup. According to Definition 2.7, Theorem 2.6 and Definition

3.4, inverse TA-groupoid is inverse semigroup.

The following figure shows relationships among various TA-groupoid.

4. Conclusions

In this paper, we proposed the concept of TA-group and inverse TA-groupoid. Some results

are obtained as follows: (1) if right identity element of TA-group is unique, then it is a group;

(2) the equivalent characterization of TA-group is given; (3) inverse TA-groupoid is disjoint

union of group; (4) commutative TA-groupoid is group. Figure 1 shows their relations.
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Figure 1. The relationships among various TA-groupoid.

As a future direction for further research, we can discuss the relationships among TA-

groupoid, AG-groupoid and hyper logical algebras(see [18–20]).

Funding: This research was funded by Shaanxi Provincial Education Department (No.

20JK0549).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Clifford, A. H.; Preston, G. B. The algebraic theory of semigroup. American Mathematical

Society, Providence, RI, USA, 1961.

2. Howie, J. M. Fundamentals of Semigroup Theory. Oxford University Press: Oxford, UK,

1995.

3. Akinmoyewa, J. T. A study of some properties of generalized groups. Octogon 2009, 17,

599-626.

4. Hirsch, R.; Jackson M.; Kowalski, T. Algebraic foundations for qualitative calculi and

networks. Theoretical Computer Science, 2019, 768, 99-116.

5. Maksa, G. CM solutions of some functional equations of associative type. Ann. univ. sci.

budapest. sect. comput, 2004, 24, 125-132.

6. Lazendic, S.; Pizurica, A.; Bie, H. D. Hypercomplex algebras for dictionary learning.

7th Conference on Applied Geometric Algebras in Computer Science and Engineering,

Unicamp/IMECC, 2018, 57-64.

7. Kazim, M. A.; Naseeruddin, M. On almost semigroups. Alig. Bull. Math. 1972, 2, 1-7.

8. Mushtaq, Q. Zeroids and idempoids in AG-groupoids. Quasigroups Relat. Syst. 2004, 11,

79-84.

9. Shah, M.; Ali, A. Some structural properties of AG-group. Int. Math. Forum 2011, 6,

1661-1667.

10. Mushtaq, Q.; Khan, M. Ideals in AG-band and AG*-groupoid. Quasigroups Relat. Syst.

2006, 14, 207-215.

Mingming Chen, Yudan Du, Xiaogang An, Research on a Class of Special Quasi
TA-Neutrosophic Extended Triplet: TA-Groups

Neutrosophic Sets and Systems, Vol. 57, 2023                                                                             421



11. Sholander, M. Medians, lattices, and trees. Proc. Am. Math. Soc. 1954, 5, 808-812.

12. Suschkewitsch, A. On a generalization of the associative law. Transactions of the American

Mathematical Society. 1929, 31(1), 204-214.

13. Zhang, X. H.; Yuan, W. T.; Chen, M. M.; Smarandache F. A kind of variation symmetry:

Tarski associative groupoids (TA-groupoids) and Tarski associative neutrosophic extended

triplet groupoids (TA-NET-groupoids). Symmetry, 2020, 12, 714.

14. Smarandache, F. Neutrosophic set-a generalization of the intuitionistic fuzzy set. Journal

of Defense Resources Management , 2010, 1, 107-116.

15. Smarandache, F. Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Oper-

ators, Modal Logic, Hedge Algebras and Applications. Pons Publishing House: Brussels,

Belgium, 2017.

16. An, X. G.; Chen, M. M.; Zhang, X. H. An open problem on Tarski associative NET-

groupoids and GTA-NET-groupoids. International Journal of Pure and Applied Mathe-

matics, 2022, 47, 1091-1112.

17. Smarandache, F.; Ali, M. Neutrosophic triplet group. Neural Comput. Appl. 2018, 29,

595-601.

18. Zhang, X. H.; Du, Y. D. A class of BCI-algebra and quasi-hyper BCI-algebra. Axioms

2022, 11(2), 72.

19. Du, Y. D.; Zhang, X. H. QM-BZ-algebras and quasi-hyper BZ-algebras. Axioms 2022,

11(3), 93.

20. Du, Y. D.; Zhang, X. H.; An, X. G. Transposition regular AG-groupoids and their decom-

position theorems. Mathematics 2022, 10(9), 1396.

Mingming Chen, Yudan Du, Xiaogang An, Research on a Class of Special Quasi
TA-Neutrosophic Extended Triplet: TA-Groups

Neutrosophic Sets and Systems, Vol. 57, 2023                                                                             422

Received: April 29, 2023. Accepted: Aug 20, 2023



$39.95

Neutrosophic Sets and Systems (NSS) is an academic journal, published quarterly online and on 
paper, that has been created for publications of advanced studies in neutrosophy, neutrosophic set, 
neutrosophic logic, neutrosophic probability, neutrosophic statistics etc. and their applications in any 
field.

All submitted papers should be professional, in good English, containing a brief review of a problem 
and obtained results.

It is an open access journal distributed under the Creative Commons Attribution License that 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work 
is properly cited. 

ISSN (print): 2331-6055, ISSN (online): 2331-608X
Impact Factor: 1.739

NSS has been accepted by SCOPUS. Starting with Vol. 19, 2018, all NSS articles are indexed in 
Scopus.

NSS is also indexed by Google Scholar, Google Plus, Google Books, EBSCO, Cengage Thompson 
Gale (USA), Cengage Learning, ProQuest, Amazon Kindle, DOAJ (Sweden), University Grants 
Commission (UGC) - India, International Society for Research Activity (ISRA), Scientific Index 
Services (SIS), Academic Research Index (ResearchBib), Index Copernicus (European Union),CNKI 
(Tongfang Knowledge Network Technology Co., Beijing, China), etc.

Google Dictionary has translated the neologisms "neutrosophy" (1) and "neutrosophic" (2), coined 
in 1995 for the first time, into about 100 languages.

FOLDOC Dictionary of Computing (1, 2), Webster Dictionary (1, 2), Wordnik (1), Dictionary.com, 
The Free Dictionary (1),Wiktionary (2), YourDictionary (1, 2), OneLook Dictionary (1, 2), 
Dictionary / Thesaurus (1), Online Medical Dictionary (1, 2), and Encyclopedia (1, 2) have included 
these scientific neologisms.

DOI numbers are assigned to all published articles.

Registered by the Library of Congress, Washington DC, United States,
https://lccn.loc.gov/2013203857.

s

Recently, NSS was also approved for Emerging Sources Citation Index (ESCI) available on
 the Web of Science platform, starting with Vol. 15, 2017.

Prof. Dr. Florentin Smarandache, Postdoc, Department of Mathematics, University of New Mexico, Gallup, 
NM 87301, USA, Email: smarand@unm.edu. 
Dr. Mohamed Abdel-Basset, Faculty of Computers and Informatics, Zagazig University, Egypt, 
Email: mohamed.abdelbasset@fci.zu.edu.eg. 
Dr. Said Broumi, Laboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan 
II,  Casablanca, Morocco, Email: s.broumi@flbenmsik.ma. 


	1. Introduction
	2. Preliminaries
	3. Neutrosophic manifolds and their transformations 
	4. Conclusion
	References
	1. Introduction
	2. Preliminaries
	3. Lacunary statistical convergence in NSNLS
	4. Lacunary statistical completeness in NSNLS
	5. Acknowledgments
	References
	1. Introduction
	2.  Preliminaries
	3.  Hypersoft semi-open sets and hypersoft semi-closed sets 
	4. Hypersoft semi-interior and hypersoft semi-closure
	5. Conclusion
	References
	1. Introduction
	2. Preliminaries
	3. On development of BE subalgebra
	4. Conclusion and discussion
	References
	1. Introduction
	2. Notation and Comparison Study 
	3. Single Value Triangular Neutrophic Number (SVTNN) and Its Properties
	3.1. The Proposed Ranking Function for Single Value Triangular Neutrosophic Number (SVTNN)

	4. Neutrosophic Data Envelopment Analysis 
	5. Method for Solving Neutrosophic DEA model
	6. Numerical Example
	7. Advantages and Limitations of this Study
	8. Conclusions and Future Directions
	References
	1.  Introduction
	2. Preliminaries
	3. Neutro Q algebras
	4.  Conclusions
	References
	1. Introduction
	2. Preliminaries
	3. TA-Group and Inverse TA-Groupoid
	4. Conclusions
	References

