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Abstract: Previously, the mathematical operations on refined neutrosophic numbers were studied 

by researchers, but these studies did not address the division of refined neutrosophic numbers. The 

aim of this research was how to find the division, in addition to discussing special cases of dividing 

refined neutrosophic numbers. 

 

Keywords: division; indeterminacy; refined neutrosophic numbers; division conditions of refined 

neutrosophic numbers. 

 

1. Introduction and Preliminaries 

       To describe a mathematical model of uncertainty, vagueness, ambiguity, imprecision, 

undefined, unknown, incompleteness, inconsistency, redundancy, and contradiction, Smarandache 

suggested the neutrosophic Logic as an alternative to the current logics. Smarandache made refined 

neutrosophic numbers available in the following form: (𝑎, 𝑏1𝐼1, 𝑏2𝐼2, . . . , 𝑏𝑛𝐼𝑛) where 𝑎, 𝑏1, 𝑏2, . . . , 𝑏𝑛 ∈

𝑅 𝑜𝑟 𝐶 [1] 

Agboola introduced the concept of refined neutrosophic algebraic structures [2]. Also, the refined 

neutrosophic rings 𝐼  was studied in paper [3], where it assumed that 𝐼 splits into two 

indeterminacies 𝐼1 [contradiction (true (T) and false (F))] and 𝐼2 [ignorance (true (T) or false (F))]. It 

then follows logically that: [3] 

𝐼1𝐼1 = 𝐼1
2 = 𝐼1         (1) 

𝐼2𝐼2 = 𝐼2
2 = 𝐼2        (2) 

𝐼1𝐼2 = 𝐼2𝐼1 = 𝐼1       (3) 

In addition, there are many papers presenting studies on refined neutrosophic numbers [4-5-6-7-8]. 

 

      This paper dealt with several topics, in the first part of which introduction and preliminaries 

were presented, and in the main discussion part the division of refined neutrosophic numbers and 

the conditions related to them were studied. In the last part, the conclusion was presented. 

Main Discussion  
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Division of refined neutrosophic numbers 

Let 𝑤1̇ , 𝑤2̇   are two refined neutrosophic numbers, where: 

𝑤1̇ = 𝑎1̇ + 𝑏1̇𝐼1 + 𝑐1̇𝐼2  , 𝑤2̇ = 𝑎2̇ + 𝑏2̇𝐼1 + 𝑐2̇𝐼2 

To find  𝑤1̇ ÷ 𝑤2̇  , we can write: 

𝑎1̇ + 𝑏1̇𝐼1 + 𝑐1̇𝐼2  

𝑎2̇ + 𝑏2̇𝐼1 + 𝑐2̇𝐼2

≡ 𝑥 + 𝑦𝐼1 + 𝑧𝐼2   

where 𝑥 , 𝑦 and 𝑧 are real unknowns. 

𝑎1̇ + 𝑏1̇𝐼1 + 𝑐1̇𝐼2 ≡ (𝑎2̇ + 𝑏2̇𝐼1 + 𝑐2̇𝐼2)(𝑥 + 𝑦𝐼1 + 𝑧𝐼2) 

 

𝑎1̇ + 𝑏1̇𝐼1 + 𝑐1̇𝐼2 ≡ 𝑎2̇𝑥 + 𝑎2̇𝑦𝐼1 + 𝑎2̇𝑧𝐼2 + 𝑏2̇𝐼1𝑥 + 𝑏2̇𝐼1𝑦𝐼1 + 𝑏2̇𝑧𝐼1 + 𝑐2̇𝐼2𝑥 + 𝑐2̇𝑦𝐼1 + 𝑐2̇𝑧𝐼2 

 

𝑎1̇ + 𝑏1̇𝐼1 + 𝑐1̇𝐼2 ≡ 𝑎2̇𝑥 + [𝑏2̇𝑥 + (𝑎2̇ + 𝑏2̇ + 𝑐2̇)𝑦 + 𝑏2̇𝑧]𝐼1 + [𝑐2̇𝑥 + (𝑎2̇ + 𝑐2̇)𝑧]𝐼2 

 

where:  𝐼1𝐼2 = 𝐼2𝐼1 = 𝐼1 

by identifying the coefficients, we get: 

𝑎2̇𝑥 = 𝑎1̇ 

𝑏2̇𝑥 + (𝑎2̇ + 𝑏2̇ + 𝑐2̇)𝑦 + 𝑏2̇𝑧 = 𝑏1̇ 

𝑐2̇𝑥 + (𝑎2̇ + 𝑐2̇)𝑧 = 𝑐1̇ 

 

We obtain unique one solution only, provided that: 

 

              |

𝑎2̇ 0 0

𝑏2̇ 𝑎2̇ + 𝑏2̇ + 𝑐2̇ 𝑏2̇

𝑐2̇ 0 𝑎2̇ + 𝑐2̇

| ≠ 0   ⟹   𝑎2̇(𝑎2̇ + 𝑐2̇)(𝑎2̇ + 𝑏2̇ + 𝑐2̇) ≠ 0 

 

 From this, we get on the conditions for the division of two refined neutrosophic numbers to exist: 

𝑎2̇ ≠ 0  , 𝑎2̇ ≠ −𝑐2̇  and 𝑎2̇ ≠ −𝑏2̇ − 𝑐2̇ 

then:    

𝑥 =
𝑎1̇

𝑎2̇

 

 

𝑧 =
𝑎2̇𝑐1̇ − 𝑎1̇𝑐2̇

𝑎2̇(𝑎2̇ + 𝑐2̇)
 

 

𝑎1̇𝑏2̇

𝑎2̇

+ (𝑎2̇ + 𝑏2̇ + 𝑐2̇)𝑦 +
𝑎2̇𝑏2̇𝑐1̇ − 𝑎1̇𝑏2̇𝑐2̇

𝑎2̇(𝑎2̇ + 𝑐2̇)
= 𝑏1̇ 

 

(𝑎2̇ + 𝑏2̇ + 𝑐2̇)𝑦 = 𝑏1̇ −
𝑎1̇𝑏2̇

𝑎2̇

− (
𝑎2̇𝑏2̇𝑐1̇ − 𝑎1̇𝑏2̇𝑐2̇

𝑎2̇(𝑎2̇ + 𝑐2̇)
) 
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(𝑎2̇ + 𝑏2̇ + 𝑐2̇)𝑦 =
𝑏1̇𝑎2̇(𝑎2̇ + 𝑐2̇) − 𝑎1̇𝑏2̇(𝑎2̇ + 𝑐2̇) − 𝑎2̇𝑏2̇𝑐1̇ + 𝑎1̇𝑏2̇𝑐2̇

𝑎2̇(𝑎2̇ + 𝑐2̇)
 

 

(𝑎2̇ + 𝑏2̇ + 𝑐2̇)𝑦 =
𝑎2̇

2
𝑏1̇ + 𝑎2̇𝑏1̇𝑐2̇ − 𝑎1̇𝑎2̇𝑏2̇ − 𝑎1̇𝑏2̇𝑐2̇ − 𝑎2̇𝑏2̇𝑐1̇ + 𝑎1̇𝑏2̇𝑐2̇

𝑎2̇(𝑎2̇ + 𝑐2̇)
 

 

𝑦 =
𝑎2̇

2𝑏1̇ + 𝑎2̇𝑏1̇𝑐2̇ − 𝑎1̇𝑎2̇𝑏2̇ − 𝑎2̇𝑏2̇𝑐1̇

𝑎2̇(𝑎2̇ + 𝑐2̇)(𝑎2̇ + 𝑏2̇ + 𝑐2̇)
 

hence: 

 

𝑎1̇ + 𝑏1̇𝐼1 + 𝑐1̇𝐼2  

𝑎2̇ + 𝑏2̇𝐼1 + 𝑐2̇𝐼2

≡
𝑎1̇

𝑎2̇

+ [
𝑎2̇

2𝑏1̇ + 𝑎2̇𝑏1̇𝑐2̇ − 𝑎1̇𝑎2̇𝑏2̇ − 𝑎2̇𝑏2̇𝑐1̇

𝑎2̇(𝑎2̇ + 𝑐2̇)(𝑎2̇ + 𝑏2̇ + 𝑐2̇)
] 𝐼1 + [

𝑎2̇𝑐1̇ − 𝑎1̇𝑐2̇

𝑎2̇(𝑎2̇ + 𝑐2̇)
] 𝐼2   

 

Example1: 

4 + 𝐼1 + 𝐼2

1 + 2𝐼1 + 3𝐼2

= 4 −
1

4
𝐼1 −

11

4
𝐼2 

Let’s check the answer: 

 (1 + 2𝐼1 + 3𝐼2) (4 −
1

4
𝐼1 −

11

4
𝐼2) = 4 + 𝐼1 + 𝐼2   (True) 

As consequences, we have: 

1) 
𝑎1̇ + 𝑏1̇𝐼1 + 𝑐1̇𝐼2  

𝑘(𝑎1̇ + 𝑏1̇𝐼1 + 𝑐1̇𝐼2)
=

1

𝑘
  

𝑤ℎ𝑒𝑟𝑒 𝑘 ≠ 0 , 𝑎1̇ ≠ 0  , 𝑎1̇ ≠ −𝑏1̇  and 𝑎1̇ ≠ −𝑏1̇ − 𝑐1̇ 

 

2) 
𝐼1

𝑎2̇ + 𝑏2̇𝐼1 + 𝑐2̇𝐼2

=
𝑎2̇𝑏1̇ + 𝑏1̇𝑐2̇

(𝑎2̇ + 𝑐2̇)(𝑎2̇ + 𝑏2̇ + 𝑐2̇)
𝐼1  

 

Example2: 

𝐼1

2 − 4𝐼1 + 3𝐼2

= 𝐼1 

Let’s check the answer: 

 (2 − 4𝐼1 + 3𝐼2)(𝐼1) = 𝐼1   (True) 

3) 
𝐼2

𝑎2̇ + 𝑏2̇𝐼1 + 𝑐2̇𝐼2

= [
−𝑏2̇𝑐1̇

(𝑎2̇ + 𝑐2̇)(𝑎2̇ + 𝑏2̇ + 𝑐2̇)
] 𝐼1 + [

𝑐1̇

𝑎2̇ + 𝑐2̇

] 𝐼2 

 

Example3: 

𝐼2

1 + 3𝐼1 − 5𝐼2

= −
3

4
𝐼1 −

1

4
𝐼2 

Let’s check the answer: 

 (1 + 3𝐼1 − 5𝐼2) (−
3

4
𝐼1 −

1

4
𝐼2) = 𝐼2   (True) 
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4) 
𝐼1 + 𝐼2

𝑎2̇ + 𝑏2̇𝐼1 + 𝑐2̇𝐼2

= [
𝑎2̇𝑏1̇ + 𝑏1̇𝑐2̇ − 𝑏2̇𝑐1̇

(𝑎2̇ + 𝑐2̇)(𝑎2̇ + 𝑏2̇ + 𝑐2̇)
] 𝐼1 + [

𝑐1̇

𝑎2̇ + 𝑐2̇

] 𝐼2 

 

Example4: 

𝐼1 + 𝐼2

2 + 𝐼1 + 2𝐼2

=
3

20
𝐼1 +

1

4
𝐼2 

Let’s check the answer: 

 (2 + 𝐼1 + 2𝐼2) (
3

20
𝐼1 +

1

4
𝐼2) = 𝐼1 + 𝐼2   (True) 

5) 
𝑎1̇ + 𝑏1̇𝐼1 + 𝑐1̇𝐼2  

𝑘(𝐼1 + 𝐼2)
= 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

𝑤ℎ𝑒𝑟𝑒 𝑘, 𝑎1̇, 𝑏1̇ and 𝑐1̇ any real number. 

 

In particular: 

𝑖) 
𝑎1̇ + 𝑏1̇𝐼1 + 𝑐1̇𝐼2  

𝐼1 + 𝐼2

= 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

𝑖𝑖) 
𝑎1̇ + 𝑏1̇𝐼1 + 𝑐1̇𝐼2  

𝐼1

= 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

𝑖𝑖𝑖) 
𝑎1̇ + 𝑏1̇𝐼1 + 𝑐1̇𝐼2  

𝐼2

= 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

 

6) 
𝑎1̇ + 𝑏1̇𝐼1 + 𝑐1̇𝐼2  

𝑘
=  

𝑎1̇

𝑘
+

𝑎1̇

𝑘
𝐼1 +

𝑐1̇

𝑘
𝐼2 ; 𝑘 ≠ 0 

 

7) 
𝑘

𝑎2̇ + 𝑏2̇𝐼1 + 𝑐2̇𝐼2

≡
𝑘

𝑎2̇

+ 𝑘 [
−𝑏2̇

(𝑎2̇ + 𝑐2̇)(𝑎2̇ + 𝑏2̇ + 𝑐2̇)
] 𝐼1 − [

𝑘𝑐2̇

𝑎2̇(𝑎2̇ + 𝑐2̇)
] 𝐼2 

Where 𝑎2̇ ≠ 0  , 𝑎2̇ ≠ −𝑐2̇  and 𝑎2̇ ≠ −𝑏2̇ − 𝑐2̇ 

 

8) 
𝑘(𝐼1 + 𝐼2)

𝑎2̇ + 𝑏2̇𝐼1 + 𝑐2̇𝐼2

= 𝑘 [
𝑎2̇𝑏1̇ + 𝑏1̇𝑐2̇ − 𝑏2̇𝑐1̇

(𝑎2̇ + 𝑐2̇)(𝑎2̇ + 𝑏2̇ + 𝑐2̇)
] 𝐼1 + [

𝑘𝑐1
̇

𝑎2̇ + 𝑐2̇

] 𝐼2 

 

Example5: 

4𝐼1 + 4𝐼2

2 + 𝐼1 + 2𝐼2

=
3

5
𝐼1 + 𝐼2 

Let’s check the answer: 

 (2 + 𝐼1 + 2𝐼2) (
3

5
𝐼1 + 𝐼2) = 4(𝐼1 + 𝐼2)   (True) 

Conclusions  

   In this work, we conclusion formula to evaluate division of refined neutrosophic numbers, 

also, we get on the conditions for the division of two refined neutrosophic numbers to exist. In 

addition to providing direct special cases for finding the result of the division. 
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Abstract: Non-linear neutrosophic numbers (NLNNs) are different kinds of neutrosophic numbers 

with at least one non-linear membership function (either of truthiness, falsity or indeterminacy 

part) of the information. Furthermore, a linear programming problem with non-linear 

neutrosophic numbers as coefficients/parameters is a special type of programming problem known 

as a non-linear linear programming problem (NLN-LPP). This paper elaborates on the concepts of 

non-linear neutrosophic number (NLNN) sets, different forms of non-linear neutrosophic numbers 

(NLNNs), , ,   cuts on non-linear neutrosophic numbers (NLNNs), possibility mean, possibility 

standard deviation, and possibility variance of non-linear neutrosophic numbers (NLNNs). In this 

paper, we also propose the solution technique for non-linear neutrosophic linear programming 

problems (NLN-LPPs) in which all coefficients/parameters are non-linear neutrosophic numbers 

(NLNNs). In this continuation, we suggest a new modified possibility score function for non-linear 

NNs in terms of possibility means and possibility standard deviations of non-linear neutrosophic 

numbers (NLNNs) for better use of all parts of information. This modified score function is used to 

convert non-linear neutrosophic number (NLNN) coefficients/parameters of non-linear 

neutrosophic linear programming problem (NLN-LPP) into equivalent crisp values. Thereafter, the 

equivalent crisp problem is solved with the usual method to obtain the optimal solution of 

non-linear neutrosophic linear programming problem (NLN-LPP). The proposed solution 

algorithm is unique and new for solving non-linear neutrosophic linear programming problems. A 

numerical example is solved with the proposed algorithm to legitimate the research output. A case 

study is also discussed to show its applicability in solving real-life problems. 

Keywords: Linear programming problem; Non-linear neutrosophic numbers (NLNNs), Possibility 

score function of Non-linear neutrosophic numbers (NLNNs), Possibility mean of Non-linear 

neutrosophic numbers (NLNNs), Possibility standard deviation of Non-linear neutrosophic 

numbers (NLNNs). 

 

 

1. Background of the Problem and Motivation – An Introduction   

In 1965, Prof. Zadeh [1] introduced the concept of fuzzy set theory to deal with the uncertainty and 

ambiguity in information due to human language error and human perceptions. Prof. Zadeh [1] 

defined a set  : ( ) ,0 ( ) 1;T T

A AA x x x x X      with objects x having ( )T

A x  degree of acceptance 

of particular characteristic. This set A is called as fuzzy set with membership function ( )T

A x . Since 

1965, many researchers have contributed in the area of fuzzy set, fuzzy logic, and its application in 

solving real-world problems. 

Fuzzy sets (FSs) are further classified into two major types – (i) Linear fuzzy set - FS with linear 

membership function e.g. triangular, trapezoidal, pentagonal (Chakraborty et al. [2]), hexagonal 

mailto:kailashclachhwani@yahoo.com
mailto:kailashclachhwani@nitttrchd.ac.in
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(Chakraborty et al. [3]), heptagonal (Maity et al. [4]), etc.  (ii) Non-linear Fuzzy set – FS with 

non-linear membership functions e.g. logarithmic, exponential membership function, etc. In general, 

fuzzy set (FS) theory avoids the involvement of other parts of information. Later, Atanassov [5-6] 

proposed the intuitionistic fuzzy set (IFS) theory and properties of IFS. Intuitionistic fuzzy set (IFS) – 

a more generalized FS theory that considers two parts of information i.e. acceptance (truthiness of 

information) and non-acceptance (falsity of information). Liu and Yuan [7] combined intuitionistic 

fuzzy set (IFS) and triangular fuzzy number (TFN) to introduce the intuitionistic triangular fuzzy set 

(ITFS) theory which has triangular membership functions for the truthiness and falsity part of 

information. Ye [8] extended the TIFS to trapezoidal form to introduce intuitionistic trapezoidal 

fuzzy set (ITrFS). On the other hand, a linear programming problem is one of the simplest problems 

of MPPs (Mathematical programming problems) which has linear objective function and linear 

constraints. LPPs play a vital role in formulating simple real-life problems that arise in Business, 

Govt. policies, industries, etc. LP problems are easy to solve with the Graphical and Simplex method 

depending upon the number of decision variables involved. The simplex method is a generalized 

method for solving any LPP with some manual computational efforts. In contrast with the past, 

LPPs and NLPPs (non-linear programming problems) are solved quickly and efficiently with the 

help of computational tools like LINGO©, MATLAB©, etc.  

1.1. Fuzzy and neutrosophic programming problems – Literature Review 

With time, fuzzy set theory and fuzzy numbers were incorporated in MPPs (LPPs, multiobjective 

programming problems (MOPPs), Bi-level/Multi-level programming problems (BLPPs/MLPPs), 

other extension problems, etc.) and many new solution techniques have been developed by 

researchers for solving MPPs with fuzzy parameters/coefficients. Some of the notable contributions 

are: Luhandjula [9] developed a new solution technique for fuzzy linear programming problem 

(FLPP). Arikan and Gunjar [10] proposed a new solution algorithm known as a two-phase approach 

for MOPPs with fuzzy coefficients. Wu [11] proposed to solve MOPP with fuzzy coefficients using 

the scalarization technique. For BLPPs/MLPPs, Shih et al. [12] suggested a general solution approach 

to solve fuzzy multi-level programming problems (FMLPPs). Baky [13] proposed an algorithm for 

ML-MOPPs through fuzzy goal programming approach. Osman et al. [14] suggested an interactive 

solution approach for ML-MOPPs with fractional objective functions and fuzzy parameters. Fuzzy 

set theory is based on only one aspect of information i.e. truthiness and avoids the other two parts of 

information which are indeterminacy and falsity. On the other hand, intuitionistic fuzzy set (IFS) 

theory considers two parts of information i.e. truthiness and falsity but ignores a third important 

part of information i.e. indeterminacy. To disseminate these shortcomings of FS and IFS, 

Samarandche [15] introduced a new theory known as Neutrosophic set theory (NN set theory) 

dealing with the object along with three parts of information - truthiness, falsity, and indeterminacy. 

Later, Samarandche [16-17] specified some properties of neutrosophic set (NS) theory and linear 

neutrosophic numbers (NNs) including Addition and subtraction of linear NNs, , ,    cuts on 

linear NNs, etc. Wang et al. [27] discovered a new type of NS – Single valued neutrosophic set 

(SVNS) to apply in real-life problems. Ye [18] introduced trapezoidal interval-valued NNs (IV 

TrNNs) by combining triangular neutrosophic numbers (TrNNs) and trapezoidal fuzzy numbers 

(TrFNs). Since the past few years, the combination of neutrosophic set theory (linear NNs) and MPPs 

(specifically for LPPs) has become a prominent area of research.  This is exhibited in a literature 

survey of recent years, e.g. Hussian et al. [19] used properties of NNs to convert neutrosophic LPP 

into an equivalent crisp LPP. Abdel-Basset et al. [20] suggested a new ranking function for the 

solution of neutrosophic LPP. Bera and Mahapatra [21] suggested a real-life application of 

neutrosophic LPP and developed a simplex method to solve it. Darehmiraki [22] proposed a new 

parametric ranking function to solve neutrosophic LPPs. Khatter [23] used properties of possibility 

mean of NNs to solve neutrosophic LPPs. Tamilarasi and Paulraj [24] developed a solution 

technique for neutrosophic LPPs with triangular NNs and de-neutrosophication of NNs with Melin 
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transform. Similar to FS theory, neutrosophic sets (NN sets) are classified as (i) linear NN sets and 

(ii) Non-linear NN sets. A linear NN set is a neutrosophic set with all linear membership functions 

(membership for truthiness, falsity, and indeterminacy) whereas a non-linear NN set is a 

neutrosophic set with at least one non-linear membership function (either of truthiness, falsity or 

indeterminacy).On the non-linear neutrosophic numbers (NLNNs), Chakraborty et al. [25] and 

Javier and Francisco [26] discussed about properties of NLNNs and their applications. Recently, 

Rabie A et al. [28] suggested a dual artificial variable-free simplex algorithm for neutrosophic linear 

programming problems. Badr El-Sayed et al. [29] discovered the exterior point simplex method for 

solving neutrosophic linear programming problems. Badr El-Sayed et al. [30] proposed two phase 

method approach for solving neutrosophic linear programming problems. Badr El-Sayed et al. [31] 

proposed an application part of neutrosophic goal programming in the context of sustainable 

development of Egypt. 

1.2. Novelty and Major Contributions 

Neutrosophic set theory plays a vital role in dealing with the uncertain and vague information that 

arises in real-world industrial problems. Many researchers have contributed on neutrosophic set 

theory and applied new techniques for solving real problems. Some of recent contributions are: 

Abdel-Basset M et al. [32] suggested important neutrosophic techniques for solving problems in 

various smart environments. Maissam Jdid and Smarandache [33] described the use of neutrosophic 

technique in solving two important operation research problems of ‘optimal design of warehouses’ 

and ‘capital budget allocation’. Abduallah Gamal et al. [34] proposed the use of type -2 neutrosophic 

number to obtain optimal solution of multi-criteria decision-making problems of autonomous 

vehicles and distributed resources. During the literature survey on NNs, it is disclosed that contrary 

to research on linear NNs, only a few researchers contributed on properties of non-linear 

neutrosophic numbers (NLNNs), arithmetic operations on NLNNs, its application in formulating 

real problems, etc. These are: Chakraborty et al. [25] discussed different types of Non-linear 

trapezoidal NNs and their properties. Javier and Francisco [26] discovered the basic properties of 

NLNNs, a new scoring function, and demonstrated its application to multiple criteria assessment 

problems of industry. Some typo errors have been pointed out in the work of Javier and Francisco 

[26] in defining different properties of NLNNs which are rectified in this manuscript. Further, the 

involvement of non-linear NNs in MPPs (LPPs or other complex MPPs) as coefficients/parameters is 

hardly ever been researched to date due to the computational complexities of Non-linear NNs, and 

therefore, no solution methodology has been developed for non-linear neutrosophic linear 

programming problem (NLN-LPP) till date.  This motivates us to extend the use of NLNNs in LPPs, 

propose a modified score function of NLNNs, and propose a solution technique for NLN-LPPs.  In 

this view, the main contribution of this paper can be summarized: 

(i) Proposed a new modified possibility score function for non-linear neutrosophic numbers 

(NLNNs) with the concept of normal approximation. 

(ii) Proposed a novel and unique solution technique for non-linear neutrosophic linear 

programming problem (NLN-LPP) using a modified possibility score function. 

(iii) Elaborated different properties of non-linear neutrosophic numbers (NLNNs) in the corrected 

form in a systematic manner for future researchers. 

In nutshell, this paper elaborates on the concepts of non-linear neutrosophic number (NLNN) sets, 

different forms of NLNNs, , ,   cuts on non-linear neutrosophic numbers (NLNNs), possibility 

mean, possibility standard deviation, and possibility variance of NLNNs. In this paper, we propose 

the solution technique for non-linear neutrosophic linear programming problems (NLN-LPPs) in 

which all coefficients/parameters are NLNNs. In this continuation, we suggest a new modified 

possibility score function for non-linear NNs in terms of possibility means and possibility standard 
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deviations of NLNNs for better use of all parts of information. This modified score function is used 

to convert NLNN coefficients/parameters of NLN-LPP into equivalent crisp values. Thereafter, the 

equivalent crisp problem is solved with the usual method to obtain the optimal solution of 

NLN-LPP. The proposed solution algorithm is unique and new for solving non-linear neutrosophic 

linear programming problems. A numerical example is solved with the proposed algorithm to 

legitimate the research output. A case study is also discussed to show its applicability in solving 

real-life problems. 

This paper is organized in a section-wise format: This first section of the paper gives a systematic 

introduction of the current research problem and focused literature review from the beginning. In 

sub-section 1.1, literature review on fuzzy and neutrosophic programming problems are presented. 

Sub-section 1.2 discloses the causes of motivation for proposing this research work, novelty of 

proposed work and major contributions. Some preliminaries on the neutrosophic set (NN set) are 

presented in next section 2 and its subsections. , ,    cut sets of NLNNs are defined and derived 

in subsection 2.1. Possibility mean, possibility variance, and possibility standard deviations are 

defined and derived in subsection 2.2. The modified possibility score function for NL-NNs is 

proposed in section 3. The formulation of non-linear neutrosophic linear programming problem 

(NLN-LPP) and suggested solution technique for NLN-LPPs are described and explained in section 

4. To better understand the proposed algorithm, one numerical example and a case study of an 

industrial decision-making problem based on NLN-LPP are illustrated in section 5. Conclusions and 

research directions for future researchers are proposed in the last section. 

2. Neutrosophic Set: Preliminaries  

In this section, we shall discuss some generic preliminaries on neutrosophic set (NN set) related to 

the research area under study. As we know that neutrosophic set (introduced by Smarandche [15]) is 

a set of objects with membership function values of truthiness, indeterminacy, and falsity of 

information of objects of concern set. Later, Wang et al. [27] gave the concept of single-valued NN 

which is NN set with values of membership functions lying within the interval [0, 1]. In continuation 

of this context, a single-valued neutrosophic set is mathematically defined by the following generic 

definition:  

Definition 1. (Wang et al. [27]): A neutrosophic set A in X is characterized as 

 : ( ), ( ), ( ),T T T

A A AA x x x x x X     where ( ), ( ), ( ) [0,1]A A AT x I x F x   represents degree of 

membership for truthiness, indeterminacy and falsity parts of information respectively along with 

condition 0 ( ) ( ) ( ) 3A A AT x I x F x    . If all membership functions of defined SVNNs are linear, then 

it is called as linear SVNNs. It is being reiterated that NNs are further classified as linear NNs and 

Non-linear NNs (NLNNs) on the linearity of all membership functions and non-linearity of at least 

one membership function of NN. Chakrabort et al. [25] presented the definition of non-linear 

trapezoidal type NN as: 

Definition 2. (Chakraborty et al. [25]): A single valued non-linear trapezoidal NN is defined as: 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 1 2 1 2: ( , , , ; , , , ; , , , ; , ; , ; , ; , , ); ( ), ( ), ( ),A A AA x a a a a b b b b c c c c p p q q r r T x I x F x x X        (1) 

where ( ), ( ), ( ) [0,1]A A AT x I x F x   represents membership for truthiness, indeterminacy and falsity of 

information respectively are given as: 
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,                    Otherwise,
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x c
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c c







  
   

  


 
 

  
  

 



      (4) 

along with conditions 0 ( ) ( ) ( ) 3A A AT x I x F x    and 
1 2 1 2 1, ; , ; , 1p p q q r r  . 

Thereafter, Javier and Francisco [26] proposed an alternate definition of non-linear NN for triangular 

values in view of mapping of parameter values   and   with their minimum and maximum 

values. According to Javier and Francisco [26], NLNNs are defined as follows: 

Definition 3. (Javier and Francisco [26]):  

         ( , ) : ( , , ; , , ); ( ), ( ), ( );m nA x a a a w y u T x I x F x x X              (5) 

is a single valued non-linear NN (SVNN) whose respective membership function ( ), ( )T x I x and 

( )F x  are defined as: 
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(1 ) ,    ,

,                                      ,
( )

(1 ) ,    ,

1,                                  Otherwise,

F

F

m

n

a x
u u a x a

a

u x a
F x

a x
u u a x a

a a

  
      
   



 

   
      

    



      (8) 

Where parameters ( , , ) [1, ]T I Fm m m m   ; ( , , ) [1, ]T I Fn n n n   . It can be observed from definition 

(6)-(8), when (1,1,1)m  ; (1,1,1)n  , then NLNN reduces to a triangular linear NN. 

2.1. , ,    cut- sets of non-linear neutrosophic numbers (NLNNs) 

Definition 4. : The , ,   cut sets of NLNN  ( , ) : ( , , ; , , ); ( ), ( ), ( );m nA x a a a w y u T x I x F x x X  are 

defined as:         ( , , ) , ( ) , ( ) , ( ) :A x T x I x F x x X                                        (9) 

With the conditions 0 ; 1; 1w y u         and 3     . Using the definition (5) - (8) of 

NLNN, we can obtain , ,    cut sets as: 

For  cut set ( )T x    

1

1 1 ( )

T
T

m
ma x

w x a a a
a a w




    
          

     

  

And ( )T x   gives 

1

1 ( )
Tm

x a a a
w

 
    

 
 

Thus  cut set of NLNN ( , ; , , )m nA     is a closed interval described as: 

                             ( , ; ) ( , ), ( , )
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L U

m n T TA T m T n                                       (10) 
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In similar manner,  and cut set of NLNN ( , ; , , )m nA     are closed interval sets described as: 
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Where 

1

( , ) ( )
1

Im
L

I

y
I m a a a

y




 
   

 
;      

1

( , ) ( )
1

In
U

T

y
I n a a a

y




 
   

 
 

                                ( , ; ) ( , ), ( , )
F F

L U

m n F FA F m F n                                   (14) 

Where 

1

( , ) ( )
1

Fm
L

F

u
F m a a a

u




 
   

 
;      

1

( , ) ( )
1

Fn
U

F

u
F n a a a

u




 
   

 
 

 

 

 



Neutrosophic Sets and Systems, Vol. 06 , 20 32      12  

 

 
 

Kailash Lachhwani, Solving Non-linear Neutrosophic Linear Programming Problems 

2.2 Possibility mean, possibility variance and possibility standard deviation of non-linear neutrosophic 

numbers (NLNNs) 

Definition 5. (Possibility mean of a NLNN): (Javier and Francisco [26]): For a NLNN as defined in (5) 

– (8),  ( , ) : ( , , ; , , );m nA x a a a w y u x X  and its  cut set i.e.
( , ; ) ( , ), ( , )

T T

L U

m n T TA T m T n      , then f- 

weighted possibility mean of truth membership function is defined as: 

                             
2 2

( , )

2 3 2 3
( )

2 (1 2 )(1 ) (1 2 )(1 )

T T T T

T m n

T T T T

m a m a a n a n a aw
M A

m m n n

    
       

               (15) 

Where f-weight is considered as 2f
w

  as suggested by Chakraborty et al. [25]. Similarly, g- 

weighted ( 2(1 )
(1 )

g
y





) possibility mean of indeterminacy membership function is defined as: 

                            
2 2

( , )

2 3 2 3(1 )
( )

2 (1 2 )(1 ) (1 2 )(1 )

I I I I

I m n

I I I I

m a m a a n a n a ay
M A

m m n n

    
       

            (16) 

Also, h- weighted ( 2(1 )
(1 )

h
u





) possibility mean of indeterminacy membership function is 

defined as: 

                           
2 2

( , )

2 3 2 3(1 )
( )

2 (1 2 )(1 ) (1 2 )(1 )

F F F F

F m n

F F F F

m a m a a n a n a au
M A

m m n n

    
       

             (17) 

Definition 6. (Possibility variance of a NLNN): (Javier and Francisco [26]): For a NLNN as defined in 

(5)–(8),  ( , ) : ( , , ; , , );m nA x a a a w y u x X  and its  cut set i.e. 
( , ; ) ( , ), ( , )

T T

L U

m n T TA T m T n      , then 

f- weighted possibility variance of truth membership function is defined as: 

          
2 2 2 2 2 2 2

( , )

( ) ( ) ( )
( )

4(1 )(2 ) 4(1 )(2 ) ( 2 )( )

T T T T

T m n

T T T T T T T T T T T T

m a a n a a n m a aa aa aa
V A w

m m n n m n m n m n m n

     
   

         
   (18) 

Where f-weight is considered as 2f
w

  as suggested by Chakraborty et al. [25]. Similarly, g- 

weighted ( 2(1 )
(1 )

g
y





) possibility variance of indeterminacy membership function is defined 

as: 

      
2 2 2 2 2 2 2

( , )

( ) ( ) ( )
( ) (1 )

4(1 )(2 ) 4(1 )(2 ) ( 2 )( )

I I I I

I m n

I I I I I I I I I I I I

m a a n a a n m a aa aa aa
V A y

m m n n m n m n m n m n

     
    

         
   (19) 

Also, h- weighted ( 2(1 )
(1 )

h
u





) possibility mean of indeterminacy membership function is 

defined as: 

     
2 2 2 2 2 2 2

( , )

( ) ( ) ( )
( ) (1 )

4(1 )(2 ) 4(1 )(2 ) ( 2 )( )

F F F F

F m n

F F F F F F F F F F F F

m a a n a a n m a aa aa aa
V A u

m m n n m n m n m n m n

     
    

         
  (20) 

Definition 7. (Possibility standard deviation of a NLNN): (Javier and Francisco [26]): For a NLNN 

 ( , ) : ( , , ; , , );m nA x a a a w y u x X  and its  cut set i.e. ( , ; ) ( , ), ( , )
T T

L U

m n T TA T m T n      , then 

possibility standard deviation of its membership functions are defined as: 

Possibility S.D = Possibility variance  
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  Possibility standard deviation of truth membership 
( , ) ( , )( ) ( )T m n T m nD A V A  

i.e.   

1
22 2 2 2 2 2 2

( , )

( ) ( ) ( )
( )

4(1 )(2 ) 4(1 )(2 ) ( 2 )( )

T T T T

T m n

T T T T T T T T T T T T

m a a n a a n m a aa aa aa
D A w

m m n n m n m n m n m n

      
    

           

   (21) 

Possibility standard deviation of indeterminacy membership 
( , ) ( , )( ) ( )I m n I m nD A V A  

i.e   

1
22 2 2 2 2 2 2

( , )

( ) ( ) ( )
( ) (1 )

4(1 )(2 ) 4(1 )(2 ) ( 2 )( )

I I I I

I m n

I I I I I I I I I I I I

m a a n a a n m a aa aa aa
D A y

m m n n m n m n m n m n

      
     

           

 (22) 

and possibility standard deviation of falsity membership function 
( , ) ( , )( ) ( )F m n F m nD A V A  

i.e 

1
22 2 2 2 2 2 2

( , )

( ) ( ) ( )
( ) (1 )

4(1 )(2 ) 4(1 )(2 ) ( 2 )( )

F F F F

F m n

F F F F F F F F F F F F

m a a n a a n m a aa aa aa
D A u

m m n n m n m n m n m n

      
     

           

(23) 

 

Remark 1. It is to be noted that there were some typo errors in definitions of possibility mean, 

possibility variance and possibility standard deviations of NLNNs given by Javier and Francisco [26] 

which are respectively corrected here and presented definitions (5) – (8) are in corrected form.   

Remark 2. It can also be observed from definition (5) – (8), when (1,1,1)m  ; (1,1,1)n  , then NLNN 

reduces to a single valued triangular NN (SVTNN) and accordingly their characteristics as: by 

definitions (15) – (23),        

Possibility means (1,1)

( 4 )
( )

6
T

a a a w
M A

 
 (1,1)

( 4 )(1 )
( )

6
I

a a a y
M A

  
 ; (1,1)

( 4 )(1 )
( )

6
F

a a a u
M A

  
  

Possibility variance
2

(1,1)

( )
( )

24
T

a a w
V A


 ; 

2

(1,1)

( ) (1 )
( )

24
I

a a y
V A

 
 ;

2

(1,1)

( ) (1 )
( )

24
F

a a u
V A

 
  

Possibility SD   (1,1)( ) ( )
24

T

w
D A a a  ; (1,1)

(1 )
( ) ( )

24
I

y
D A a a


  ; (1,1)

(1 )
( ) ( )

24
F

u
D A a a


   

 

3. Proposed modified possibility score function for non-linear neutrosophic numbers (NLNNs)  

Possibility score functions are used for ranking purposes and conversion of NNs into their 

equivalent crisp values. Javier and Francisco [26] proposed a possibility score function for NLNNs as 

a simple addition of the average of possibility means and possibility standard deviations related to 

truthiness. Indeterminacy and falsity membership values of NLNNs. Here we argue that this score 

function is a limitation to express all x values of the domain set in decision-making context. 

Therefore, to better characterize the role of all range values x in expressing the possibility score 

function, we propose a modified form of possibility score function for NLNNs: 

                          
( , ) ( , ) ( , )

( , )

( ) ( ) ( )
( )

3

T m n I m n F m n

m n

PS A PS A PS A
PS A

 
                 (24) 

Where ( , ) ( , ) ( , )( ), ( ), ( )T m n I m n F m nPS A PS A PS A  are respective possibility score functions for truth, 

indeterminacy and falsity membership functions which are defined as: 

                            ( , ) ( , ) ( , )( ) ( ) 2.58 ( )T m n T m n T m nPS A M A D A                         (25) 

                            ( , ) ( , ) ( , )( ) ( ) 2.58 ( )I m n I m n I m nPS A M A D A                         (26) 

                           ( , ) ( , ) ( , )( ) ( ) 2.58 ( )F m n F m n F m nPS A M A D A                         (27) 
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As the normal curve is the best fitted curve for all membership values in general conditions and this 

curve covers values with 99% confidence in interval 2.58 . .Mean S D  This is the main reason of 

proposing the possibility score function ((23) – (26)) in the modified form so that membership 

functions T(x), I(x) and F(x) graphs can be well approximated to normal curve with statistical 

parameters - possibility means and possibility standard deviation. The proposed modified 

possibility score function displays the contribution of all x values as in the normal curve.   

 

4. Formulation of Non-linear Neutrosophic Linear Programming Problem (NLN-LPP) and 

Proposed Solution Technique  

During the literature review, it has already been disclosed in particular that non-linear 

neutrosophic linear programming problems have not been discussed so far due to the non-linear 

complexities of functions. So, now we propose non-linear neutrosophic linear programming 

problems (NLN –LPP) as linear programming problems with non-linear neutrosophic numbers 

(NLNNs) as parameters/ coefficients of LPPs. In mathematical format, a single objective NLN-LPP 

with N decision variables can be described as:  

1,( , ) 1 2,( , ) 2 ,( , )/ ....m n m n N m n NMaximize Minimize Z c x c x c x     (Objective function) 

Subject to the set of constraints,   11,( , ) 1 12,( , ) 2 1 ,( , ) 1,( , ) .... ( )m n m n N m n N m na x a x a x b     

                               21,( , ) 1 22,( , ) 2 2 ,( , ) 2,( , ).... ( )m n m n N m n N m na x a x a x b     

. 

. 

                    1,( , ) 1 2,( , ) 2 ,( , ) ,( , ).... ( )M m n M m n MN m n N M m na x a x a x b     

And Non-negativity restrictions    
1 2, ,..., 0Nx x x                                              (28) 

Where superscript on coefficients indicates that concern coefficients are single valued NLNNs 

with the set of values  ( , ) : ( , , ; , , ); ( , ) ( , , ; , , );m n T I F T I FA x a a a w y u m n m m m n n n x X   . The other 

notations have usual meaning in respect of LPPs. Such problems (27) have incomplete, vague and 

uncertain information on coefficients in terms of NLNNs are defined as NLN-LPPs. In the real 

world, such decision-making problems are expected to have a crisp optimal solution. Thus, we here 

propose a solution methodology for NLN-LPPs in which firstly all NLNNs are converted into 

equivalent crisp values using respective modified possibility score functions. Mathematically, 

converted equivalent crisp LPP with modified possibility score functions can be described as: 

1,( , ) 1 2,( , ) 2 ,( , )/ ( ) ( ) .... ( )m n m n N m n NMaximize Minimize Z PS c x PS c x PS c x     (Objective function) 

Subject to,                    11,( , ) 1 12,( , ) 2 1 ,( , ) 1,( , ) ( ) ( ) .... ( ) ( ) ( )m n m n N m n N m nPS a x PS a x PS a x PS b     

                           21,( , ) 1 22,( , ) 2 2 ,( , ) 2,( , )( ) ( ) .... ( ) ( ) ( )m n m n N m n N m nPS a x PS a x PS a x PS b     

. 

. 

                       1,( , ) 1 2,( , ) 2 ,( , ) ,( , )( ) ( ) .... ( ) ( ) ( )M m n M m n MN m n N M m nPS a x PS a x PS a x PS b     

And                                            
1 2, ,..., 0Nx x x                    (29) 

Where ,( , )( )ij m nPS A  indicates the corresponding possibility score function values as defined in (24) – 

(27). The satisfactory solution to original NLN-LPP is the optimal solution of equivalent crisp LPP 

(29).   

 

5. Numerical illustration and case study 

To describe the proposed algorithm, we shall consider the following numerical example and a 

case study of industrial problem based on NLN-LPP as: 
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Numerical Example 

1,( , ) 1 2,( , ) 2 3,( , ) 3m n m n m nMaximize Z c x c x c x    

Subject to,                         
11,( , ) 1 12,( , ) 2 13,( , ) 3 1,( , ) m n m n m n m na x a x a x b    

                 
21,( , ) 1 22,( , ) 2 23,( , ) 3 2,( , )m n m n m n m na x a x a x b    

and non-negativity restrictions               
1 2, ,..., 0Nx x x      

where neutrosophic coefficients are given as:  

1 ((2,3,4);0.5,0.25,0.25,(2,2,2);(2,2,2))c  ; 2 ((3,4,5);0.5,0.25,0.25,(2,2,2);(2,2,2))c 

3 ((4,5,6);0.5,0.25,0.25,(2,2,2);(2,2,2))c  ; 11 ((3,4,5);0.5,0.25,0.25,(1,1,1);(1,1,1))a   

12 ((4,5,6);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 13 ((4,5,6);0.5,0.25,0.25, (1,1,1);(1,1,1))a   

1 ((6,7,8);0.5,0.25,0.25, (1,1,1);(1,1,1))b  ; 21 ((1,2,3);0.5,0.25,0.25,(1,1,1);(1,1,1))a   

22 ((3,4,5);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 23 ((2.5,3.5,4.5);0.5,0.25,0.25, (1,1,1);(1,1,1))a   

2 ((5,6,7);0.5,0.25,0.25,(1,1,1);(1,1,1))b   

For the proposed solution technique, we calculate possibility means (by equations (15) – (17)), 

possibility SD (by equations (21) – (23)) and modified possibility score function (by equations (24) – 

(27)) corresponding to each NN coefficient of the problem. These values are described in tabular 

format (Table 1, Appendix A) in correspondence to the neutrosophic coefficients of the problem. 

Using these values, the given NLN-LPP is converted into equivalent crisp problem as: 

1 2 33.211 3.8192 4.2109Maximize Z x x x    

Subject to,                         
1 2 3 3.5229 4.1896 4.1896 5.2313x x x    

              
1 2 32.2729 3.5229 3.2313 4.8559x x x    

and non-negativity restrictions                       
1 2 3, , 0x x x      

Solving with the Simplex method, the optimal solution obtained is as: 
1 0,x   

2 0x  , 
3 1.2486x  , 

5.2578Z    which is also the solution to original NLN-LPP. If we use possibility score function as 
*

( , ) ( , ) ( , )( ) ( ) ( )m n m n m nPS A M A D A   (as suggested by Javier and Francisco [26]) to convert NLNNs into 

corresponding equivalent crisp values and solve the converted crisp LPP, we obtain the optimal 

solution of the problem as: 
1 0,x   

2 0x  , 
3 1.2885x  , 4.9001Z  . On comparison, it is clear that 

the modified possibility score function gives better values of objective function. 

 

Case Study 

Let us consider a case study of ‘XYZ’ company manufacturing certain fashion items in different 

production slots. The production variables of these items as well as demands are decided with the 

help of information gathered via social media networks, reviews, customer comments, etc. It is 

known to decision-makers of production units that this information is not fully true and reliable. 

Decision makers assume that related information on social media is in NNs format i.e. truthiness, 

falsity, and indeterminacy also their degree of memberships varies mostly in a non-linear way. For 

sake of simplicity in this case study, it is assumed that production and demand coefficients are in 

SVTNN. The profit maximization LP problem of this company with NLNNs can be presented as: 

1,( , ) 1 2,( , ) 2m n m nMaximize Z c x c x      (Profit) 

Subject to,                         11,( , ) 1 12,( , ) 2 1,( , ) m n m n m na x a x b   

21,( , ) 1 22,( , ) 2 2,( , )m n m n m na x a x b   

31,( , ) 1 32,( , ) 2 3,( , )m n m n m na x a x b   

41,( , ) 1 42,( , ) 2 4,( , )m n m n m na x a x b   

and non-negativity restrictions              
1 2, 0x x    

where neutrosophic coefficients are given as:  
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1 ((4,5,6);0.5,0.25,0.25, (1,1,1);(1,1,1))c  ; 2 ((6,7,8);0.5,0.25,0.25,(1,1,1);(1,1,1))c  ; 

11 ((4,5,6);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 12 ((1,2,3);0.5,0.25,0.25,(1,1,1);(1,1,1))a  ; 

21 ((2.5,3.5,4.5);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 22 ((3.5,4.5,5.5);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 

31 ((5,6,7);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 32 ((5,6,7);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 

41 ((5.5,6.5,7.5);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 42 ((3,4,5);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 

1 ((1,2,3);0.5,0.25,0.25,(1,1,1);(1,1,1))b  ; 2 ((8,9,10);0.5,0.25,0.25, (1,1,1);(1,1,1))b  ; 

3 ((5,6,7);0.5,0.25,0.25,(1,1,1);(1,1,1))b  ; 4 ((1.5,2.5,3.5);0.5,0.25,0.25, (1,1,1);(1,1,1))b     

with the proposed solution technique and tabulated values (Table 2, Appendix A), this problem is 

converted into equivalent crisp problem as:                                  

1 24.1758 5.4305Maximize Z x x      (profit) 

Subject to,                             1 2 4.2457 2.9679 3.3989x x   

1 23.0282 3.9957 5.1853x x   

1 24.6322 5.4120 5.1853x x   

1 25.7870 3.9120 2.1478x x   

and non-negativity restrictions                       
1 2, 0x x    

With the help of simplex method, the optimal solution to this crisp problem is obtained as:  
1 0,x   

2 0.5490x  ,
3 0x  , 2.9815Z  which is also the solution to original NLN-LPP. This is too better 

solution to the problem than solution by technique based on possibility score function by Javier and 

Francisco [26] which is  
1 0,x   

2 0.5414x  ,
3 0x  , 2.7063Z  . 

 

6. Conclusions and future research directions  

Non-linear neutrosophic numbers (NLNNs) are different kinds of neutrosophic numbers (NNs) 

with at least one non-linear membership function (either of truthiness, falsity or indeterminacy part) 

of the information. Furthermore, a non-linear neutrosophic linear programming problem 

(NLN-LPP) is a special type of linear programming problem in which coefficients/parameters are 

non-linear neutrosophic numbers. This paper presents comprehensive research on non-linear 

neutrosophic numbers (NLNNs) and non-linear neutrosophic linear programming problems 

(NLN-LPPs). Here, the author proposed a novel solution technique for NLN-LPPs based on the 

proposed modified possibility score function. This proposed modified possibility score function 

covers the almost entire range of values of NNs. Besides this, this paper elaborates on the concepts of 

non-linear neutrosophic (NLNN) sets, different forms of NLNNs, ,  ,  - cuts on NLNNs, 

possibility mean, possibility standard deviation, and possibility variance of NLNNs in corrected 

forms for clear understanding to future researchers. As future research, this work can be extended to 

solve non-linear neutrosophic non-linear programming problems (NLN-NLPPs), non-linear 

neutrosophic multiobjective programming problems (NLN-MOPPs), non-linear neutrosophic 

bi-level and multi-level programming problems (NLN-BL/MLPPs), etc. There is a scope of research 

investigations on basic operations on NLNNs – addition, substation, multiplication, and division of 

two or more NLNNs. 
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Appendix A.  

Table 1. Possibility score function values for NLNN coefficients of numerical example  

NLNN 

Coeffici

ent 

( , )( )T m nM A  
( , )( )F m nM A

 

( , )( )I m nM A

 

( , )( )T m nD A

 

( , )( )F m nD A

 

( , )( )I m nD A

 

( )TPS A  ( )TPS A * ( )FPS A  

 

( )FPS A * ( )IPS A  ( )IPS A * ( )PS A  ( )PS A * 

1c  1.5 2.25 2.25 0.4081 0.5 0.5 2.553 1.9081 3.54 2.75 3.54 2.75 3.211 2.4693 

2c  2 3 2.825 0.4081 0.5 0.5 3.053 2.4081 4.2897 3.5 4.115 3.325 3.8192333 3.0777 

3c  2.5 3.75 3.75 0.4081 0.5 0.5 3.553 2.9081 4.03974 4.25 5.04 4.25 4.2109133 3.8027 

11a  2 3 3.75 0.2886 0.3535 0.3535 2.7447 2.2886 3.9121 3.3535 3.9121 4.1035 3.5229667 3.2485 

12a  2.5 3.75 3.75 0.2886 0.3535 0.3535 3.2447 2.7886 4.6621 4.1035 4.6621 4.1035 4.1896333 3.6652 

13a  2.3333 3.75 3.75 0.2886 0.3535 0.3535 3.2447 2.6219 4.6621 4.1035 4.6621 4.1035 4.1896333 3.6096 

21a  0.8333 1.5 1.5 0.2886 0.3535 0.3535 1.7447 1.1219 2.6621 1.8535 2.4121 1.8535 2.2729667 1.6096 

22a  1.8333 3 3 0.2886 0.3535 0.3535 2.7447 2.1219 3.9121 3.3535 3.9121 3.3535 3.5229667 2.9429 

23a  1.5833 2.75 2.625 0.2886 0.3535 0.3535 2.4947 1.8719 3.6621 3.1035 3.5371 2.9785 3.2313 2.6513 

1b  3.3333 4.375 5.25 0.2886 0.3535 0.3535 4.2447 3.6219 5.2871 4.7285 6.1621 5.6035 5.2313 4.6513 

2b  2.8333 4.5 4.5 0.2886 0.3535 0.3535 3.7437 3.1219 5.4121 4.8535 5.4121 4.8535 4.8559667 4.2763 

*Possibility score function *

( , ) ( , ) ( , )( ) ( ) ( )m n m n m nPS A M A D A   suggested by Javier and Francisco [26] 
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Table 2. Possibility score function values for NLNN coefficients of case study  

NLNN 

Coeffici

ent 

( , )( )T m nM A  
( , )( )F m nM A

 

( , )( )I m nM A

 

( , )( )T m nD A

 

( , )( )F m nD A

 

( , )( )I m nD A

 

( )TPS A  ( )TPS A * ( )FPS A  

 

( )FPS A * ( )IPS A  ( )IPS A * ( )PS A  ( )PS A * 

1c  2.5 3.75 3.75 0.2886 0.3535 0.3535 3.2034 2.7886 4.66203 4.1035 4.66203 4.1035 4.17582 3.6652 

2c  
3.5 5.25 5.25 0.2886 0.3535 0.3535 3.9676 3.7886 6.16203 5.6035 6.16203 5.6035 5.430553 4.9985333 

11a  
2.5 3.75 3.75 0.2886 0.3535 0.3535 3.4132 2.7886 4.66203 4.1035 4.66203 4.1035 4.245753 3.6652 

12a  1 1.5 1.5 0.2886 0.3535 0.3535 4.0799 1.2886 2.41203 1.8535 2.41203 1.8535 2.967987 1.6652 

21a  1.75 2.625 2.625 0.2886 0.3535 0.3535 2.0108 2.0386 3.53703 2.9785 3.53703 2.9785 3.028287 2.6652 

22a  2.25 3.375 3.375 0.2886 0.3535 0.3535 3.4132 2.5386 4.28703 3.7285 4.28703 3.7285 3.995753 3.3318667 

31a  3 4.5 4.5 0.2886 0.3535 0.3535 3.07278 3.2886 5.41203 4.8535 5.41203 4.8535 4.63228 4.3318667 

32a  3 4.5 4.5 0.2886 0.3535 0.3535 3.7445 3.2886 5.41203 4.8535 5.41203 4.8535 5.41203 4.3318667 

41a  3.25 4.875 4.875 0.2886 0.3535 0.3535 3.9945 3.5386 5.78703 5.2285 5.78703 5.2285 5.78703 4.6652 

42a  2 3 3 0.2886 0.3535 0.3535 2.7445 2.2886 3.91203 3.3535 3.91203 3.3535 3.91203 2.9985333 

1b  1 1.5 1.5 0.2886 0.3535 0.3535 5.3729 1.2886 2.41203 1.8535 2.41203 1.8535 3.398987 1.6652 

2b  3 4.5 4.5 0.2886 0.3535 0.3535 4.732 3.2886 5.41203 4.8535 5.41203 4.8535 5.185353 4.3318667 

3b  3 4.5 4.5 0.2886 0.3535 0.3535 4.732 3.2886 5.41203 4.8535 5.41203 4.8535 5.185353 4.3318667 

4b  0.125 1.875 1.875 0.2886 0.3535 0.3535 0.8695 0.4136 2.7870 2.2285 2.7870 2.2285 2.1478 1.6235 

*Possibility score function *

( , ) ( , ) ( , )( ) ( ) ( )m n m n m nPS A M A D A   suggested by Javier and Francisco [26]  
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Abstract. The purpose of this research is to analyze the characteristics of the Mass Pampay ritual (burying an offering with 

special objects) of the peasants on the summit of the snow-capped Apu Razuhuillca located in the Andes of Peru at 4,800 meters 

above sea level as (t,i,f)-Neutrosophic social structure. The essence is to explain the syncretic relationship between the Catholic 

religion and the ancestral Andean philosophy that has survived over time for generations. The method of study is a survey of the 

natives and tourists, believer or not in the sacred power of the Apu (Andean God) that provides spiritual security to the pilgrims 

on special dates of the Andean calendar, which is July 31 of each year, the ceremony on the eve of the Andean custom to the 

branding of cattle in honor of the feast of “Taita Santiago”. We measure approximately the degree of certainty, ignorance, and 

contradiction which are present in this tradition as a social phenomenon, which is a pillar in the local culture. For processing the 

data we used Neutrosophic Statistics. 

 

Keywords: Peruvian Cultural traditions, (t,i,f)-structure, (t,i,f)- Neutrosophic social structure, Refined I-Neutrosophic Structure, 

Neutrosophic Statistics.

 

1 Introduction 

The present research is related to the syncretic relationship between the Catholic religion and the ancestral 
Andean philosophy called Pampay Mass (burial of blessed offering) in the province of Huanta, Ayacucho region 

of the Peruvian highlands. This activity has positive effects on the pilgrims, granting good health, work, economy, 
social welfare, and multiplication of their livestock: “Similarly, rituals are approached primarily as expressions of 
thoughts and feelings of those who participate in them” [1]. The Apu (hill, Andean god) of Razuhuillca (the name 
of the snow-capped mountain) has an altitude of 4,800 meters above sea level. The peculiar characteristic that 

makes it different from other mountains of similar altitude, is its particularity of being an enchanted hill (be-
witched) considered the Andean God of the Huantina population. 

Independently of the ancestral activity of Mass Pampay, the Andean ceremony of the pilgrims that climb the 

summit of the snowy Razuhuillca; there are other similar activities about the Andean calendar in Peru. The activity 
of Samikuy (offering to the Apu with agricultural species) is registered and explained: "Samikuy of Quechua root, 
means an Andean ritual with natural products produced with the blessing of the Apu that is deposited in the hills, 

in this case in the apu Razuhuillca" [2]. This activity is in addition to the Pampay Mass that is celebrated every 

mailto:d.mvasquezr@upla.edu.pe
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July 31st with the participation of pilgrims from different parts of the Peruvian highlands. The pilgrims who climb 
every year to the summit of Razuhuillca, have the same common interests in getting a reward for the effort made 
in climbing and carrying the ancestral offering as an interpretation of their Andean conception of: "exchange of 

offerings with the apus is the essence of the Andean ritual. Colonization fused Samikuy rituals with European 
products, the mixture of Quechua and Spanish in their prayers" [2]. 

The veneration of the highest snow-capped mountains in the Peruvian highlands is a common denominator of 

the rituals that syncretize the conception of Western philosophy that merged with the Christian religion and the 
survival in time of the ancestral knowledge interpreted in the Andean philosophy that survives to the present day. 

According to information gathered at the site of the activity on the summit of Razuhuillca at 4,800 meters 

above sea level, the Pampay Mass ritual has a positive effect on all pilgrims and their families that keeps them in 
economic prosperity, social, family, health, work, vigilance of the Apu against rustling, multiplication of their 
livestock throughout the year. 

Our hypothesis is that the ritual is an example of the existence of Neutrosophic Social Structures [3-6]. Ac-

cording to F. Smarandache, this is defined as a (t,i,f)-structure, where there is a component of truth, another of 
indeterminacy, and a third one of falsehood [7-12]. This is a ritual practice that involves all members of the com-
munity and tourists from inside and outside the country, so there is an epistemological contradiction between the 

objective and the subjective meanings of the ritual. Some individuals from other cultures or who come from other 
realities of the country perceive this ritual as an exotic folkloric manifestation, which has an attractive cultural 
value, but they do not feel spiritually connected with them. Certain families within the community prepare through-
out the year to perform the ritual, therefore this is part of their social and cultural achievement. 

On the other hand, it is a syncretic festivity, that is, the religious symbol has a double meaning, representing 
one or another religious significance depending on the person who consumes it [6]. A Catholic image is revered 
by Catholics according to the Christian Catholic tradition, however for the indigenous, it can have a meaning 

according to their polytheistic traditions in the representation of their gods, and this is the way that the conquered 
and colonized peoples used to maintain their traditions without disturbing to its conquerors. 

This phenomenon becomes more complex when ethnic and cultural miscegenation appears, where the mestizo 

may have a degree of belief in the Catholic God and another degree of belief in the pre-Hispanic God. This is 
added to the historical perception of the ritual, young people may feel alien to this activity because they have 
influences from other modern cultures consumed by social networks, by tourist visits, among others. However, 
older people, who were raised in love with their traditions, may feel much more tied to this type of ceremony. 

This article aims to measure approximately the degree of certainty, ignorance, and contradiction that the ritual 
called Pampay Mass presents, as a social phenomenon among the visitors and the inhabitants of the community in 
Huanta dedicated to this ceremonial. To do this, the researchers surveyed community members and visitors, on the 

days before, during, and after the ceremony [13]. The collected data was processed with the help of Neutrosophic 
Statistics and refined neutrosophic numbers [14]. Neutrosophic Statistics uses the methods of classical statistics 
applied to data in the form of intervals, or where the size of the sample or that of the population is indeterminate 
[15-18]. Additionally, there was the opinion of 3 anthropologists who studied the subject, their opinions were 

aggregated to the results obtained from the survey of the participants. 
The article is divided into a section on Materials and Methods where the basic notions of neutrosophy, (t,i,f)-

structures, their refined variant, and neutrosophic statistics are explained. The section called Results summarizes 

the results obtained from this research. In the last section, the Conclusions are given. 

2 Materials and Methods 

A (t,i,f)-structure is composed of one space S endowed with a set of axioms (or laws) acting (governing) on it, 
such that the space or at least one of its axioms has an indeterminacy. t represents the degree of truthfulness, i 

represents the degree of indeterminacy, and f represents the degree of falseness [7]. 
Originally, this theory was designed for applications in Algebra, Geometry, etc. However, later F. 

Smarandache recognized its applicability in other sciences like sociology. Thus, he said that the different points 

of view of all the individuals in society have as a consequence complex social relationships, which causes indeter-
minacy. One example is syncretism in religion, many people can believe in a Christian God, and however, they 
practice this “pagan” ritual. Maybe they cannot explain why, so contradiction is part of this phenomenon. Addi-

tionally, some persons who are part of the ceremony could not explain their motivation to participate in this mass, 
thus there is an indeterminacy due to ignorance or lack of information. 

Specifically, we are dealing with Refined I- Neutrosophic Structures, as we explain further. 
In the following, there are some important concepts to develop this study: 

Definition 1: ([8]) A neutrosophic number 𝑁 is defined as a number as follows: 
𝑁 = 𝑎 + 𝑏𝐼 (1) 
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Where 𝑎 is called the determined part and 𝑏𝐼 is called the indeterminate part. 

Given 𝑁1 = 𝑎1 + 𝑏1𝐼 and 𝑁2 = 𝑎2 + 𝑏2𝐼 are two neutrosophic numbers, some operations between them are 

defined as follows: 

𝑁1 + 𝑁2 = 𝑎1 + 𝑎1 + (𝑏1 + 𝑏2)𝐼 (Addition); 

𝑁1 − 𝑁2 = 𝑎1 − 𝑎1 + (𝑏1 − 𝑏2)𝐼 (Difference), 

𝑁1 × 𝑁2 = 𝑎1𝑎2 + (𝑎1𝑏2 + 𝑏1𝑎2 + 𝑏1𝑏2)𝐼 (Product), 

𝑁1

𝑁2
=

𝑎1+𝑏1𝐼

𝑎2+𝑏2𝐼
=

𝑎1

𝑎2
+

𝑎2𝑏1−𝑎1𝑏2

𝑎2(𝑎2+𝑏2)
𝐼 (Division). 

Professor Smarandache also defined types of truthfulness, indeterminacy, and falsity symbolically beyond T, 

I, and F, respectively. This is what he called refinement, where 𝑇 is split into 𝑇1 , 𝑇2, … , 𝑇𝑝; 𝐼 into 𝐼1, 𝐼2, … , 𝐼𝑞; and 

𝐹 into 𝐹1, 𝐹2, … , 𝐹𝑟, which depend on the problem we are treating [19]. Specifically, he generalized the neutro-

sophic numbers in Equation 1 to represent the Refined Neutrosophic Numbers like in Definition 2 [14]. 

Definition 2: ([8]) Given 𝐼1, 𝐼2, … , 𝐼𝑞, with 𝑞 ≥ 1, a Refined Neutrosophic Number is obtained as 𝑁𝑞 = 𝑎 +

𝑏1𝐼1 + 𝑏2𝐼2 + ⋯ + 𝑏𝑞𝐼𝑞, where 𝑎 is the determined part and 𝑏𝑗𝐼𝑗( 𝑗 =  1,2, … , 𝑞) are the indeterminate parts, 

such that 𝑎, 𝑏1, 𝑏2, … , 𝑏𝑞 are real or complex numbers. 

Some of the properties that hold are the following: 

 𝑚𝐼𝑘 + 𝑛𝐼𝑘 = (𝑚 + 𝑛)𝐼𝑘, 

 0𝐼𝑘 = 0, 

 𝐼𝑘
𝑛 = 𝐼𝑘, 

 
𝐼𝑘

𝐼𝑘
⁄ = undefined, 

 𝐼𝑗 ∙ 𝐼𝑘 with 𝑗 ≠ 𝑘 is defined depending on the problem being addressed. 

Specifically, we will use the following type of Refined Neutrosophic numbers [14, 19]: 

𝑁𝑞 = 𝑎 + 𝑏1𝐼1 + 𝑏2𝐼2, where 𝐼1 denotes contradiction (simultaneously true and false proposition), while 𝐼2 

denotes ignorance (true or false proposition without being able to determine which of the two it is) [8]. 

Neutrosophic statistics refers to a set of data, such that the data or a part of it is indeterminate to some de-

gree, and to the methods used for analyzing them [15-17, 20]. 

In classical statistics, all data is determined. This is the distinction between neutrosophic statistics and classi-

cal statistics. In many cases, when the indeterminacy is zero, the neutrosophic statistics coincide with the classi-

cal statistics. Neutrosophic measurement can be used to measure indeterminate data. Neutrosophic statistical 

methods will allow us to interpret and organize neutrosophic data (data that may have some indeterminacies) to 
reveal underlying patterns. Many approaches can be used in neutrosophic statistics. 

In neutrosophic probability, indeterminacy is different from randomness. While classical statistics is con-

cerned solely with randomness, neutrosophic statistics is concerned with both randomness and especially inde-

terminacy. 

Neutrosophic descriptive statistics consists of all the techniques for summarizing and describing the charac-

teristics of neutrosophic numerical data. Since neutrosophic numerical data contain indeterminacies, neutro-

sophic line plots, and neutrosophic histograms are plotted in 3D space, rather than 2D space as in classical statis-

tics. The third dimension, in addition to the Cartesian XOY system, is that of indeterminacy (I). From unclear 

graphical data, we can extract (unclear) neutrosophic information. 

Neutrosophic data are data containing some indeterminacy. In a similar way to classical statistics, it can be 

classified as: 

- Discrete neutrosophic data, if the values are isolated points; for example 3 + 𝐼1, where 𝐼1  ∈  [0,1], 27 +
𝐼2, where 𝐼2 ∈  [2.3, 5.5]; 

- and Continuous neutrosophic data, if the values form one or more intervals, for example [0.01, 0.9] or 

[0.12, 1.0] (i.e., not sure which). 

Other classification: 

- Quantitative (numerical) neutrosophic data; 

For example a number in the interval [1, 4] (we don't know exactly), or; 60, 62, 67, or 70 (we don't know ex-

actly); 

- and Qualitative (categorical) neutrosophic data; for example: black or blue (we don't know exactly), white, 

orange or green or gray (we don't know exactly). Also, we can have: 

-Univariate neutrosophic data, that is, neutrosophic data consisting of observations on a single neutrosophic 

attribute; 
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- and Multivariate neutrosophic data, that is neutrosophic data consisting of observations on two or more 

attributes. In particular cases, we mention bivariate neutrosophic data and trivariate neutrosophic data. 

A neutrosophic sample is a chosen subset of a population, a subset that contains some indeterminacy: either 

concerning several of its individuals (who may not belong to the population we are studying or may only par-

tially belong to it) or for the subset as a whole. 
While classical samples provide precise information, neutrosophic samples provide vague or incomplete in-

formation. By abuse of language, it can be said that any sample is a neutrosophic sample since it can be consid-

ered that its indetermination is equal to zero. 

Neutrosophic survey results are survey results containing some indeterminacy. A neutrosophic population is 

a population not well determined at the membership level (i.e., it is not sure whether some individuals do or do 

not belong to the population). For example, as in the neutrosophic set, a generic element 𝑥 belongs to the neutro-

sophic population 𝑀 as follows, 𝑥(𝑡, 𝑖, 𝑓)  ∈ 𝑀 which means: 𝑥 is 𝑡% in the population 𝑀, 𝑓% of 𝑥 is not in the 

population 𝑀, while 𝑖% membership of 𝑥 in 𝑀 is indeterminate (unknown, unclear, neutral: neither in the popu-

lation nor outside). 

3 Results 

A survey was prepared for the participants of the Mass Pampay. Sampling was non-probabilistic for conven-
ience, that is, we interviewed all the participants in this ritual who appeared on the way to mass and who were 
willing to give their opinion. The questions were simple and recorded on a tape to avoid the use of pencil and paper 

or the investment of inconvenient time to give the answers. Interviews were practically carried out with the par-
ticipants with questions that had short answers, with the idea of not disturbing the celebration of the participants. 

On the other hand, the interviewers kept in mind to identify the broadest possible variety of types of partici-

pants, whether they are national or foreign tourists or natives. Thus, the survey questions were as follows: 
 

Survey on the Pampay Mass 

1. Please say your name: 
2. Are you a tourist or a native? 
3. You participate in the Pampay Mass for these reasons: 

a) Religious 

b) Cultural 
c) Economic 
d) By family tradition 

4. What religion or religions do you practice? 
a) Catholic 
b) Protestant Christian 

c) Peruvian indigenous native 
d) From other origins 

5. Do you know what the meaning of the Pampay Mass is? 
a) Yes 

b) No 
c) I don't know 

6. Do you believe that Pampay Mass will bring you economic prosperity, health, family happiness, etc.? 

a) Yes 
b) No 
c) I don't know 

 
For each respondent, let us call him/her 𝑠𝑘 in 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}, a value 𝑎𝑘 + 𝑏𝑘𝐼1 + 𝑐𝑘𝐼2 is associated, where 

𝐼1 denotes the indeterminacy due to contradiction, and 𝐼2 is the indeterminacy due to ignorance [8]. 
The following variables were used to process the responses: 

The variable 𝑇 = {𝑇𝑜𝑢𝑟𝑖𝑠𝑡, 𝑁𝑎𝑡𝑖𝑣𝑒} is defined as an answer to Question 2. 
The variable 𝑀 = {𝑅𝑒𝑙𝑖𝑔𝑖𝑜𝑛, 𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙, 𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐, 𝐹𝑎𝑚𝑖𝑙𝑦 𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛} is defined as responses to Question 

3. 

The variable 𝑅 = {𝐶𝑎𝑡ℎ𝑜𝑙𝑖𝑐, 𝑃𝑟𝑜𝑡𝑒𝑠𝑡𝑎𝑛𝑡, 𝑁𝑎𝑡𝑖𝑣𝑒, 𝑂𝑡ℎ𝑒𝑟𝑠} is defined as an answer to Question 4. 
The variable 𝑚 = {𝑌𝑒𝑠, 𝑁𝑜, 𝐼 𝑑𝑜𝑛′𝑡 𝑘𝑛𝑜𝑤}, is defined as an answer to Question 5. 
The variable 𝑃 = {𝑌𝑒𝑠, 𝑁𝑜, 𝐼 𝑑𝑜𝑛′𝑡 𝑘𝑛𝑜𝑤}, is defined as an answer to Question 6. 
Let us start with 𝑎𝑘 = 𝑏𝑘 = 𝑐𝑘 = 0 

The following IF-THEN rules below are used for processing the data: 
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R1: IF 𝑇 = 𝑇𝑜𝑢𝑟𝑖𝑠𝑡 AND 𝑀 = 𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙, 𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 THEN add 1 to 𝑎𝑘. 
R2: IF 𝑇 = 𝑇𝑜𝑢𝑟𝑖𝑠𝑡 AND 𝑚 = 𝑁𝑜 THEN add 1 to 𝑐𝑘. 

R3: IF 𝑇 = 𝑇𝑜𝑢𝑟𝑖𝑠𝑡 AND 𝑀 = 𝑅𝑒𝑙𝑖𝑔𝑖𝑜𝑛, 𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛 THEN add 1 to 𝑏𝑘. 
R4: IF 𝑇 = 𝑁𝑎𝑡𝑖𝑣𝑒 AND 𝑀 = 𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙, 𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 THEN add 1 to 𝑏𝑘. 
R5: IF 𝑇 = 𝑁𝑎𝑡𝑖𝑣𝑒 AND 𝑀 = 𝑅𝑒𝑙𝑖𝑔𝑖𝑜𝑛, 𝐹𝑎𝑚𝑖𝑙𝑦 𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛 THEN add 1 to 𝑎𝑘. 

R6: IF There is more than one answer of 𝑅 THEN add 1 to 𝑏𝑘. 
R7: IF 𝑅 = 𝐶𝑎𝑡ℎ𝑜𝑙𝑖𝑐, 𝑃𝑟𝑜𝑡𝑒𝑠𝑡𝑎𝑛𝑡 AND 𝑃 = 𝑌𝑒𝑠 THEN add 1 to 𝑏𝑘. 
R8: IF   𝑚 = 𝐼 𝑑𝑜𝑛′𝑡 𝑘𝑛𝑜𝑤 THEN add 1 to 𝑐𝑘. 
R9: IF   𝑃 = 𝐼 𝑑𝑜𝑛′𝑡 𝑘𝑛𝑜𝑤 THEN add 1 to 𝑐𝑘. 

R10: IF 𝑀 ≠ 𝑅𝑒𝑙𝑖𝑔𝑖𝑜𝑛 AND 𝑃 = 𝑌𝑒𝑠 THEN add 1 to 𝑏𝑘. 

 
The explanation of the rules above is as follows: 

R1: It makes sense that tourists go to the Pampay Mass for cultural or economic reasons. 
R2: The tourist who goes to the ritual and does not know its meaning denotes ignorance. 
R3: Complementing R1, the tourist who goes to the Pampay Mass for religious or traditional reasons contra-

dicts himself/herself because this is a local ceremony, which the tourist would not appreciate beyond the cultural 
motivation. 

R4: This is the rule that complements R1. 
R5: This is the rule that complements R3. 

R6: The religions that are shown as an answer are contradictory to each other in their foundations, if more than 
one of them is marked it denotes a contradiction. 

R7: If the person professes a Christian religion (Catholic or Protestant) and thinks that this pre-Hispanic rite 

will bring prosperity thanks to a non-Christian God, then this is contradictory. 
In the case of the natives, we do not consider it contradictory because these are syncretized gods for them. 
R8 and R9: Obviously a response of I don't know denotes ignorance. 
R10: If the person claims to have come for reasons unrelated to religion and thinks that the ritual will have 

welfare effects on his/her life due to the powers of the god of the mountain, then this contradicts that he/her did 
not come for religious reasons. 

These values were calculated for all respondents in 𝑆 and aggregated. In practice, we obtained 184 opinions 

from those surveyed [13]. The following Refined Neutrosophic Numbers were obtained for each of them: 

𝑁𝑘 = �̅�𝑘 + �̅�𝑘𝐼1 + 𝑐�̅�𝐼2, where �̅�𝑘 =
𝑎𝑘

2
, �̅�𝑘 =

𝑏𝑘

5
, and 𝑐�̅� =

𝑐𝑘

3
, this guarantees that �̅�𝑘 , �̅�𝑘 , 𝑐�̅� ∈ [0, 1]. 

Neutrosophic Numbers were obtained with the help of the following formula: 

𝑁 = �̿� + �̿�𝐼1 + 𝑐̿𝐼2, where �̿� is the mean of the �̅�𝑘s, �̿� is the mean of the �̅�𝑘s, and 𝑐̿ is the mean of the 𝑐�̅�s. 

The result was 𝑁 = 0.64809 + 0.29428𝐼1 + 0.082376𝐼2. 

See Figure 1, where this result is graphically represented [18]. 
 



Neutrosophic Sets and Systems, Vol. 60, 2023  

 

Edgar Gutiérrez-Gómez, Ketty Marilú Moscoso-Paucarchuco, Manuel Michael Beraún-Espíritu, Fabricio Miguel Moreno-

Menéndez, Rafael Jesús Fernández-Jaime, Wilfredo Fredy Paco-Huamani, Michael Raiser Vásquez-Ramírez and Jesús César 

Sandoval-Trigos, Study of the Pampay Mass (burial of offering) at the summit of the Andean snow-capped mountain as an 

example of (t,i,f)-Neutrosophic social structure 
 

26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Neutrosophic Chart Graph representing the Refined Neutrosophic Number obtained from the survey in percent. The determined 

part is represented in blue, in orange it is the indeterminate part due to contradiction, and in gray it is the indeterminate part due to ignorance. 

 

Let us note that in Figure 1 it was considered 𝐼1 = 𝐼2 = [0, 1] for the graphic representation. 
Additionally, three anthropologists, familiar with this ceremony and with scientific knowledge of its meanings, 

were surveyed. This guarantees having expert opinions on the subject to complement the results obtained previ-
ously. We believe that the results will be more indeterminate, but more accurate. 

They were asked on a scale of 0 to 100 the following three questions: 
1. In what percentage do you consider that the people who participate in the Pampay Mass are coherent with 

their philosophy of life? 

2. In what percentage do you consider that the people who participate in the Pampay Mass contradict their 
own religious beliefs above all? 

3. In what percentage do you consider that the people who participate in the Pampay Mass do not know at 
all the characteristics and history of this ritual? 

The results obtained were the following, after dividing the Refined Neutrosophic Numbers by 100: 
Expert 1: 𝑁1 = 0.75 + 0.24𝐼1 + 0.1𝐼2, 
Expert 2: 𝑁2 = 0.7 + 0.2𝐼1 + 0.1𝐼2, 

Expert 3: 𝑁3 = 0.7 + 0.25𝐼1 + 0.05𝐼2, 
We find the average of the results of the 3 experts with the results of the interviews and we have the following 

Refined Neutrosophic Number: 
𝑁𝑚 = 0.71667 + 0.21333𝐼1 + 0.083333𝐼2  

This Refined Neutrosophic Number is graphed with a Neutrosophic Chart Graphic in Figure 2 [18]. 
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Figure 2: Neutrosophic Chart Graphic of the Refined Neutrosophic Number 𝑁𝑚 in percent. The determined part is represented in blue, 

the indeterminate part due to contradiction is represented in orange, and in gray it is the indeterminate part due to ignorance. 

Conclusion 

Pampay Mass is a traditional religious ritual on the top of the Snow-Capped Mountain in Peru. This receives 

national and foreign tourists, as well as the natives of the region who wait all a year to celebrate this important 
event. In this anthropological article, we show that from a sociological point of view, this is an example that reflects 
the existence of (t,i,f)-Neutrosophic social structures in real-life. Specifically, we use the concept of Refined I- 

Neutrosophic Structures with the structure 𝑁 = a + 𝑏𝐼1 + 𝑐𝐼2, where 𝑎 is the determined part, 𝑏𝐼1 is the indeter-
minate part that means contradiction, and 𝑐𝐼2 is the indeterminate part that means ignorance or unknowing. To 
calculate the values of 𝑎, 𝑏, 𝑐 we used a survey based on a non-probabilistic convenience sampling having 184 
participants in the ritual, we designed rules to determine the coherence, contradiction, and ignorance of the re-

spondents about the ritual. The results were that 64.809% are coherent, 29.428% have had contradictory beliefs, 
whereas 8.2376% are ignorant about the ritual. We also surveyed 3 expert anthropologists familiar with this cere-
mony. We calculated the mean of all the Refined Neutrosophic Numbers and we arrived at that approximately up 

to 69.952% of the participants in the Pampay Mass are consistent about their beliefs and this rite, up to 24.607% 
are not consistent, while up to 8.3094% participate without knowing anything about this ritual. This is a type of 
data processing with the help of Neutrosophic Statistics. 
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Abstract: In order to calculate the indefinite integrals of the symbolic plithogenic field, we used the 

substitution method, which was provided in this article. We also established a theorem that allowed 

us to locate the majority of the integrals for the symbolic plithogenic functions, in addition to the 

condition that must be met for the integration operation to be possible. 
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1. Introduction and Preliminaries 

       To The genesis, origination, formation, development, and evolution of new entities 

through dynamics of contradictory and/or neutral and/or noncontradictory multiple old entities is 

known as plithogenic. Plithogeny advocates for the integration of theories from several fields. 

We use numerous "knowledges" from domains like soft sciences, hard sciences, arts and 

literature theories, etc. as "entities" in this study, this is what Smarandache introduced, as he 

presented a study on plithogeny, plithogenic set, logic, probability, and statistics [2], in addition to 

presenting introduction to the symbolic plithogenic algebraic structures (revisited), through which 

he discussed several ideas, including mathematical operations on plithogenic numbers [1]. Also, an 

overview of plithogenic set and symbolic plithogenic algebraic structures was discussed by him [3]. 

It is thought that the symbolic n-plithogenic sets are a good place to start when developing algebraic 

extensions for other classical structures including rings, vector spaces, modules, and equations [4-5-

6-7]. 

 

    Alhasan also presented several papers on calculus, in which he discussed neutrosophic definite 

and indefinite integrals. He also presented the most important applications of definite integrals in 

neutrosophic logic [8-9].  

      Integration is important in human life, and one of its most important applications is the 

calculation of area, size and arc length. In our reality we find things that cannot be precisely defined, 

and that contain an indeterminacy part. This is the reason for studying neutrosophic integration and 

methods of its integration in this paper. 
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 Smarandache presented the division operation in the symbolic plithogenic field as follows [1]: 

Division of Symbolic Plithogenic Components 

 
𝑃𝑖

𝑃𝑗

= {

𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + ⋯ + 𝑥𝑗𝑃𝑗 + 𝑃𝑖              𝑥0 + 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑗 = 0    𝑖 > 𝑗

𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + ⋯ + 𝑥𝑖𝑃𝑖           𝑥0 + 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑖 = 1           𝑖 = 𝑗
∅                                                                   𝑖 < 𝑗

 

 

where all coefficients 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑖 , …  ∈ SPS. 

 

Division of Symbolic Plithogenic Numbers 

 

Let consider two symbolic plithogenic numbers as below: 

 

𝑃𝑁𝑟 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 + ⋯ + 𝑎𝑟𝑃𝑟 
 

𝑃𝑁𝑠 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 + ⋯ + 𝑏𝑠𝑃𝑠 
 

𝑃𝑁𝑟

𝑃𝑁𝑠

= {
𝑛𝑜𝑛𝑒, 𝑜𝑛𝑒 𝑚𝑎𝑛𝑦   𝑟 ≥ 𝑠

∅                 𝑟 < 𝑠
 

 

      This paper dealt with several topics, in the first part of which introduction and preliminaries 

were presented, and in the main discussion part the indefinite symbolic plithogenic integrals. In the 

last part, a conclusion to the paper is given. 

Main Discussion  

The indefinite symbolic plithogenic integrals 

Definition 1 

Let  𝑓: 𝑆𝑃𝑆 → 𝑆𝑃𝑆 to evaluate ∫ 𝑓(𝑥, 𝑃𝑁)𝑑𝑥 

where 𝑃𝑁 = 𝑑0 + 𝑑1𝑃1 + 𝑑2𝑃2 + ⋯ + 𝑑𝑛𝑃𝑛 

put: 𝑥 = 𝑔(𝑢)     ⇒    𝑑𝑥 = �́�(𝑢)𝑑𝑢  

by substitution, we get: 

∫ 𝑓(𝑥, 𝑃𝑁)𝑑𝑥 = ∫ 𝑓(𝑢)�́�(𝑢)𝑑𝑢 

then we can directly integral it. 

 

Theorem 1  

If ∫ 𝑓(𝑥, 𝑃𝑁)𝑑𝑥 = 𝜑(𝑥, 𝑃𝑁), then: 

 

 ∫ 𝑃𝑁𝑟𝑓(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) 𝑑𝑥 =
𝑃𝑁𝑟

𝑃𝑁𝑠

𝜑(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) + 𝑃𝐶  

 

provided that 
𝑃𝑁𝑟

𝑃𝑁𝑠
 is divisible. 

where 𝑃𝑁𝑟 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 + ⋯ + 𝑎𝑟𝑃𝑟 , 𝑃𝑁𝑠 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 + ⋯ + 𝑏𝑠𝑃𝑠  , 𝑃𝑁𝑛 = 𝑐0 + 𝑐1𝑃1 +

𝑐2𝑃2 + ⋯ + 𝑐𝑛𝑃𝑛 and 𝑃𝐶 = 𝑐0 + 𝑐1𝑃1 + 𝑐2𝑃2 + ⋯ + 𝑐𝑟𝑃𝑟 ∈ 𝑆𝑃𝑆 is symbolic plithogenic constant. 

 

Proof: 

put: 𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛 = 𝑢      ⇒   𝑃𝑁𝑠𝑑𝑥 =  𝑑𝑢   
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  ⇒   𝑑𝑥 =
1

𝑃𝑁𝑠

 𝑑𝑢  

 

∫ 𝑃𝑁𝑟𝑓(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) 𝑑𝑥 = ∫ 𝑃𝑁𝑟𝑓(𝑢)
1

𝑃𝑁𝑠

 𝑑𝑢 

 

= ∫
𝑃𝑁𝑟

𝑃𝑁𝑠

𝑓(𝑢) 𝑑𝑢 

                            

=
𝑃𝑁𝑟

𝑃𝑁𝑠

𝜑(𝑢) + 𝑃𝐶  

back to the variable 𝑥, we get: 

 

 ∫ 𝑃𝑁𝑟𝑓(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) 𝑑𝑥 =
𝑃𝑁𝑟

𝑃𝑁𝑠

𝜑(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) + 𝑃𝐶 

 

Using the previous theorem, we get on: 

 

1) ∫ 𝑃𝑁𝑟(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛)𝑛𝑑𝑥 =
𝑃𝑁𝑟

𝑃𝑁𝑠

(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛)𝑛+1

𝑛 + 1
+ 𝑃𝐶 

 

2) ∫
𝑃𝑁𝑟

𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛

𝑑𝑥 =
𝑃𝑁𝑟

𝑃𝑁𝑠

𝑙𝑛|𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛| + 𝑃𝐶 

 

3) ∫ 𝑃𝑁𝑟𝑒𝑃𝑁𝑠𝑥+𝑃𝑁𝑛 𝑑𝑥 =
𝑃𝑁𝑟

𝑃𝑁𝑠

𝑒𝑃𝑁𝑠𝑥+𝑃𝑁𝑛 + 𝑃𝐶 

 

4) ∫
𝑃𝑁𝑟

√𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛

𝑑𝑥 = 2
𝑃𝑁𝑟

𝑃𝑁𝑠
√𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛 + 𝑃𝐶  

 

5) ∫ 𝑃𝑁𝑟𝑐𝑜𝑠(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) 𝑑𝑥 =
𝑃𝑁𝑟

𝑃𝑁𝑠

𝑠𝑖𝑛(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) + 𝑃𝐶 

 

6) ∫ 𝑃𝑁𝑟𝑠𝑖𝑛(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) 𝑑𝑥 =
𝑃𝑁𝑟

𝑃𝑁𝑠

𝑐𝑜𝑠(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) + 𝑃𝐶 

 

7) ∫ 𝑃𝑁𝑟𝑠𝑒𝑐2(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) 𝑑𝑥 =
𝑃𝑁𝑟

𝑃𝑁𝑠

𝑡𝑎𝑛(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) + 𝑃𝐶 

 

8) ∫ 𝑃𝑁𝑟𝑐𝑠𝑐2(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) 𝑑𝑥 =
𝑃𝑁𝑟

𝑃𝑁𝑠

𝑐𝑜𝑡(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) + 𝑃𝐶 

 

9) ∫ 𝑃𝑁𝑟𝑠𝑒𝑐(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) 𝑡𝑎𝑛(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) 𝑑𝑥 =
𝑃𝑁𝑟

𝑃𝑁𝑠

𝑠𝑒𝑐(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) + 𝑃𝐶 

 

10) ∫ 𝑃𝑁𝑟𝑐𝑠𝑐(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) 𝑐𝑜𝑡(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) 𝑑𝑥 =
𝑃𝑁𝑟

𝑃𝑁𝑠

𝑐𝑠𝑐(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑛) + 𝑃𝐶 

 

Example 1 

1) ∫ 𝑃2(𝑃1𝑥 + 5 − 3𝑃1 + 4𝑃2)5 𝑑𝑥 =
𝑃2

𝑃1

(𝑃1𝑥 + 5 − 3𝑃1 + 4𝑃2)6

6
+ 𝑃𝐶 
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             = (𝑥0 + 𝑥1𝑃1 + 𝑃2)
(𝑃1𝑥 + 5 − 3𝑃1 + 4𝑃2)6

6
+ 𝑃𝐶 

where: 

 
𝑃2

𝑃1

= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2    ⟹   𝑃2 = 𝑥0𝑃1 + 𝑥1𝑃1 + 𝑥2𝑃2     

                      ⟹   𝑃2 = (𝑥0 + 𝑥1)𝑃1 + 𝑥2𝑃2 , then: 

 

                           𝑥0 + 𝑥1 = 0 and 𝑥2 = 1 

 

hence: 
𝑃2

𝑃1
= 𝑥0 + 𝑥1𝑃1 + 𝑃2  , where: 𝑥0 + 𝑥1 = 0 

 

let’s check the answer: 
𝑑

𝑑𝑥
[(𝑥0 + 𝑥1𝑃1 + 𝑃2)

(𝑃1𝑥 + 5 − 3𝑃1 + 4𝑃2)6

6
+ 𝑃𝐶] = 6𝑃1(𝑥0 + 𝑥1𝑃1 + 𝑃2)

(𝑃1𝑥 + 5 − 3𝑃1 + 4𝑃2)5

6
 

 

= (𝑥0𝑃1 + 𝑥1𝑃1 + 𝑃2)(𝑃1𝑥 + 5 − 3𝑃1 + 4𝑃2)5 
 

= ((𝑥0 + 𝑥1)𝑃1 + 𝑃2)(𝑃1𝑥 + 5 − 3𝑃1 + 4𝑃2)5 

 

but we have: 𝑥0 + 𝑥1 = 0, then:  

 

𝑑

𝑑𝑥
[(𝑥0 + 𝑥1𝑃1 + 𝑃2)

(𝑃1𝑥 + 5 − 3𝑃1 + 4𝑃2)6

6
+ 𝑃𝐶] = 𝑃2(𝑃1𝑥 + 5 − 3𝑃1 + 4𝑃2)5 

                                                                                                           

= (𝑇ℎ𝑒 𝑠𝑎𝑚𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

 

2) ∫
2𝑃1 + 3

𝑃1𝑥 + 1 + 2𝑃1 − 7𝑃2 + 4𝑃5

𝑑𝑥 = 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 

 

because: 
2𝑃1 + 3

𝑃1

= 𝑥0 + 𝑥1𝑃1  

 

2𝑃1 + 3 = 𝑥0𝑃1 + 𝑥1𝑃1  

 

2𝑃1 + 3 = (𝑥0 + 𝑥1)𝑃1 

then: 𝑥0 + 𝑥1 = 2 , but we are not able to catch the free coefficient 1 from the left-hand side 

so: 
2𝑃1 + 3

𝑃1

= (𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡) 

 

3) ∫ 𝒆𝑃3𝑥−3+𝑃2 𝑑𝑥 = 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 

because: 
1

𝑃3
= (𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡) 

 

4) ∫ 6𝑃4𝑐𝑜𝑠((𝑃4 − 3𝑃2)𝑥 + 2 − 𝑃3 + 𝑃4) 𝑑𝑥 =
6𝑃4

𝑃4 − 3𝑃2

𝑠𝑖𝑛((𝑃4 − 3𝑃2)𝑥 + 2 − 𝑃3 + 𝑃4) + 𝑃𝐶 

 

                           = (𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 − 3𝑃4)𝑠𝑖𝑛((𝑃4 − 3𝑃2)𝑥 + 2 − 𝑃3 + 𝑃4) + 𝑃𝐶 

where: 

 



Neutrosophic Sets and Systems, Vol. 60, 2023     33  

 

 

Yaser Ahmad Alhasan, F. Smarandache and Raja Abdullah Abdulfatah, The indefinite plithogenic integrals 

6𝑃4

𝑃4 − 3𝑃2

= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 + 𝑥4𝑃4   

 

6𝑃4 = (𝑃4 − 3𝑃2)(𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 + 𝑥4𝑃4) 
 

6𝑃4 = 𝑥0𝑃4 + 𝑥1𝑃4 + 𝑥2𝑃4 + 𝑥3𝑃4 + 𝑥4𝑃4 − 3𝑥0𝑃2 − 3𝑥1𝑃2 − 3𝑥2𝑃2 − 3𝑥3𝑃3 − 3𝑥4𝑃4  

 

6𝑃4 = −3(𝑥0 + 𝑥1 + 𝑥2)𝑃2 − 3𝑥3𝑃3 + (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 − 2𝑥4)𝑃4  , then: 

 

                           𝑥0 + 𝑥1 + 𝑥2 = 0 , 𝑥3 = 0 and 𝑥4 = −3 

 

hence: 
6𝑃4

𝑃4−3𝑃2
= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 − 3𝑃4 , where: 𝑥0 + 𝑥1 + 𝑥2 = 0 

 

5) ∫(𝑃3 + 5𝑃2 − 5𝑃1 + 6)𝑠𝑒𝑐2((𝑃3 + 5)𝑥 − 8 + 4𝑃1 − 5𝑃2 + 3𝑃3) 𝑑𝑥 

 

               =
𝑃3 + 5𝑃2 − 5𝑃1 + 6

𝑃3 + 5
𝑡𝑎𝑛((𝑃3 + 5)𝑥 − 8 + 4𝑃1 − 5𝑃2 + 3𝑃3) + 𝑃𝐶 

 

               = (
6

5
 + 𝑃1 + 𝑃2 −

1

30
𝑃3) 𝑡𝑎𝑛((𝑃3 + 5)𝑥 − 8 + 4𝑃1 − 5𝑃2 + 3𝑃3) + 𝑃𝐶 

where: 

 
𝑃3 + 5𝑃2 − 5𝑃1 + 6

𝑃3 + 5
= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3   

 

𝑃3 + 5𝑃2 − 5𝑃1 + 6 = (𝑃3 + 5)(𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3) 
 

𝑃3 + 5𝑃2 − 5𝑃1 + 6 = 𝑥0𝑃3 + 𝑥1𝑃3 + 𝑥2𝑃3 + 𝑥3𝑃3 + 5𝑥0 + 5𝑥1𝑃1 + 5𝑥2𝑃2 + 5𝑥3𝑃3  
 

𝑃3 + 5𝑃2 − 5𝑃1 + 6 = 5𝑥0 + 5𝑥1𝑃1 + 5𝑥2𝑃2 + (𝑥0 + 𝑥1 + 𝑥2 + 6𝑥3)𝑃3  , then: 

 

                           𝑥0 =
6

5
 , 𝑥1 = 1 , 𝑥2 = −1 and 𝑥3 = −

1

30
 

 

hence: 
𝑃3+5𝑃2−5𝑃1+6

𝑃3+5
=

6

5
 + 𝑃1 + 𝑃2 −

1

30
𝑃3   

 

6) ∫ 𝑃2𝑐𝑠𝑐(𝑃4𝑥) 𝑐𝑜𝑡(𝑃4𝑥) 𝑑𝑥 = 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 

 

because: 
𝑃2

𝑃4
= (𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡) 

 

7) ∫
𝑃2

√𝑃2𝑥 + 3 − 𝑃1

𝑑𝑥 

 

              =
2𝑃2

𝑃2
√𝑃2𝑥 + 3 − 𝑃1 + 𝑃𝐶 

 

             = 2(𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2)√𝑃2𝑥 + 3 − 𝑃1 + 𝑃𝐶 

where: 

 
2𝑃2

𝑃2

= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2   
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2𝑃2 = 𝑥0𝑃2 + 𝑥1𝑃2 + 𝑥2𝑃2  
 

2𝑃2 = (𝑥0 + 𝑥1 + 𝑥2)𝑃2  

 

then: 𝑥0 + 𝑥1 + 𝑥2 = 2 

 

hence: 
2𝑃2

𝑃2
= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 , where: 𝑥0 + 𝑥1 + 𝑥2 = 2 

 

Theorem 2  

Let   𝑓: 𝑆𝑃𝑆 →  𝑆𝑃𝑆 , then: 

 

∫
�́�(𝑥, 𝑃𝑁)

𝑓(𝑥, 𝑃𝑁)
𝑑𝑥 = 𝑙𝑛|𝑓(𝑥, 𝑃𝑁)| + 𝑃𝐶 

Proof: 

 

put:    𝑓(𝑥, 𝑃𝑁) = 𝑢      ⇒ �́�(𝑥, 𝑃𝑁)𝑑𝑥 =  𝑑𝑢   

  ⇒ 𝑑𝑥 =
1

�́�(𝑥, 𝑃𝑁)
 𝑑𝑢  

⇒ 𝑑𝑥 =
1

�́�
 𝑑𝑢 

∫
�́�(𝑥, 𝑃𝑁)

𝑓(𝑥, 𝑃𝑁)
𝑑𝑥 = ∫

�́�

𝑢

1

�́�
𝑑𝑢 = ∫

1

𝑢
𝑑𝑢 = 𝑙𝑛|𝑢| + 𝑃𝐶 

                            

back to the 𝑓(𝑥, 𝑃𝑁), we get: 

 

∫
�́�(𝑥, 𝑃𝑁)

𝑓(𝑥, 𝑃𝑁)
𝑑𝑥 = 𝑙𝑛|𝑓(𝑥, 𝑃𝑁)| + 𝑃𝐶 

Example 2 

 

1) ∫
(3 + 2𝑃1 − 7𝑃2 + 𝑃3 − 5𝑃4  )𝑥7

(3 + 2𝑃1 − 7𝑃2 + 𝑃3 − 5𝑃4 )𝑥8 + 8 − 𝑃1

𝑑𝑥 =
1

8
𝑙𝑛|(3 + 2𝑃1 − 7𝑃2 + 𝑃3 − 5𝑃4  )𝑥8 + 8 − 𝑃1| + 𝑃𝐶 

 

2) ∫
(1 + 4𝑃1 − 𝑃2)𝑒(1+4𝑃1−𝑃2)𝑥+2𝑃3

𝑒(1+4𝑃1−𝑃2)𝑥+2𝑃3 + 5𝑃4

𝑑𝑥 = 𝑙𝑛|𝑒(1+4𝑃1−𝑃2)𝑥+2𝑃3 + 5𝑃4| + 𝑃𝐶 

 

3) ∫(𝑃5 + 3) 𝑡𝑎𝑛(𝑃4 + 1)𝑥 𝑑𝑥 = (𝑃5 + 3) ∫
𝑠𝑖𝑛(𝑃5 + 1)𝑥

𝑐𝑜𝑠(𝑃5 + 1)𝑥
𝑑𝑥 =

𝑃5 + 3

𝑃4 + 1
𝑙𝑛|(𝑃4 + 1)𝑥| + 𝑃𝐶 

 

               = (3 − 𝑃5)𝑙𝑛|𝑐𝑜𝑠(𝑃4 + 1)𝑥| + 𝑃𝐶 
where: 

 
𝑃5 + 3

𝑃4 + 1
= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 + 𝑥4𝑃4 + 𝑥5𝑃5  

 

𝑃5 + 3 = (𝑃4 + 1)(𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 + 𝑥4𝑃4 + 𝑥5𝑃5) 
 

𝑃5 + 3 = 𝑥0𝑃4 + 𝑥1𝑃4 + 𝑥2𝑃4 + 𝑥3𝑃4 + 𝑥4𝑃4 + 𝑥5𝑃5 + 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 + 𝑥4𝑃4 + 𝑥5𝑃5 

 

𝑃5 + 3 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 + (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 + 2𝑥4)𝑃4 + (2𝑥5)𝑃5 , then: 

 

                       𝑥0 = 3 , 𝑥1 = 0 , 𝑥2 = 0 , 𝑥3 = 0 , 𝑥4 =
−3

2
 , 𝑥5 =

1

2
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hence: 
𝑃5+3

𝑃4+1
= 3 −

3

2
𝑃4 +

1

2
𝑃5   

 

 

4) ∫
−7𝑃4

1 + 𝑡𝑎𝑛(𝑃3𝑥)
𝑑𝑥 = ∫

−7𝑃4

1 +
𝑠𝑖𝑛(𝑃3𝑥)
𝑐𝑜𝑠(𝑃3𝑥)

𝑑𝑥 

 

                     =
1

2
∫

−14𝑃4 𝑐𝑜𝑠(𝑃3𝑥)

𝑐𝑜𝑠(𝑃3𝑥) + 𝑠𝑖𝑛(𝑃3𝑥)
𝑑𝑥 

 

               =
−7𝑃4

2𝑃3

∫
𝑐𝑜𝑠(𝑃3𝑥) + 𝑠𝑖𝑛(𝑃3𝑥) +𝑐𝑜𝑠(𝑃3𝑥) − 𝑠𝑖𝑛(𝑃3𝑥)

𝑐𝑜𝑠(𝑃3𝑥) + 𝑠𝑖𝑛(𝑃3𝑥)
𝑑𝑥 

 

=
−7𝑃4

2𝑃3

∫ 𝑑𝑥 +
−7𝑃4

2𝑃3

∫
𝑐𝑜𝑠(𝑃3𝑥) − 𝑠𝑖𝑛(𝑃3𝑥)

𝑐𝑜𝑠(𝑃3𝑥) + 𝑠𝑖𝑛(𝑃3𝑥)
𝑑𝑥 

 

= (𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 −
7

2
𝑃4) 𝑥 + (𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 −

7

2
𝑃4) 𝑙𝑛|𝑐𝑜𝑠(𝑃3𝑥) + 𝑠𝑖𝑛(𝑃3𝑥)| + 𝑃𝐶 

 

where: 

 
−7𝑃4

2𝑃3

= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 + 𝑥4𝑃4   

 

−7𝑃4 = (2𝑃3)(𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 + 𝑥4𝑃4) 
 

−7𝑃4 = 2𝑥0𝑃3 + 2𝑥1𝑃3 + 2𝑥2𝑃3 + 2𝑥3𝑃3 + 2𝑥4𝑃4 
 

−7𝑃4 = 2(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)𝑃3 + 2𝑥4𝑃4 , then: 

 

                           𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 = 0 and 𝑥4 = −
7

2
 

 

hence: 
6𝑃4

𝑃4−3𝑃2
= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 −

7

2
𝑃4  , where: 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 = 0 

 

Theorem 3  

Let   𝑓: 𝑆𝑃𝑆 → 𝑆𝑃𝑆, then: 

 

∫
�́�(𝑥, 𝑃𝑁)

√𝑓(𝑥, 𝑃𝑁)
𝑑𝑥 = 2√𝑓(𝑥, 𝑃𝑁) + 𝑃𝐶 

Proof: 

 

put: 𝑓(𝑥, 𝑃𝑁) = 𝑢      ⇒ �́�(𝑥, 𝑃𝑁)𝑑𝑥 =  𝑑𝑢   

  ⇒ 𝑑𝑥 =
1

�́�(𝑥, 𝑃𝑁)
 𝑑𝑢  

⇒ 𝑑𝑥 =
1

�́�
 𝑑𝑢 

∫
�́�(𝑥, 𝑃𝑁)

√𝑓(𝑥, 𝑃𝑁)
𝑑𝑥 = ∫

�́�

√𝑢

1

�́�
𝑑𝑢 = ∫

1

√𝑢
𝑑𝑢 = 2√𝑢 + 𝑃𝐶 

                            

back to 𝑓(𝑥, 𝑃𝑁), we get: 
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∫
�́�(𝑥, 𝑃𝑁)

√𝑓(𝑥, 𝑃𝑁)
𝑑𝑥 = 2√𝑓(𝑥, 𝑃𝑁) + 𝑃𝐶 

Example 3 

 

1) ∫
(5 + 𝑃1 − 4𝑃2 + 2𝑃3)𝑥 − 7𝑃2

√(10 + 2𝑃1 − 8𝑃2 + 4𝑃3)𝑥2 − 28𝑃2𝑥
𝑑𝑥 =

−1

2
√(10 + 2𝑃1 − 8𝑃2 + 4𝑃3)𝑥2 − 28𝑃2𝑥 + 𝑃𝐶 

 

2) ∫
(1 + 𝑃1)𝑥9

√(1 + 𝑃1)𝑥10 − 𝑃1 + 9𝑃2

𝑑𝑥 =
2

9
√(1 + 𝑃1)𝑥10 − 𝑃1 + 9𝑃2 + 𝑃𝐶 

 

Theorem 4  

𝑓: 𝑆𝑃𝑆 → 𝑆𝑃𝑆 , then: 

 

∫[𝑓(𝑥, 𝑃𝑁)]𝑛�́�(𝑥, 𝑃𝑁) 𝑑𝑥 =
[𝑓(𝑥, 𝑃𝑁)]𝑛+1

𝑛 + 1
+ 𝑃𝐶 

 

Proof: 

 

put: 𝑓(𝑥, 𝑃𝑁) = 𝑢      ⇒ �́�(𝑥, 𝑃𝑁)𝑑𝑥 =  𝑑𝑢   

  ⇒ 𝑑𝑥 =
1

�́�(𝑥, 𝑃𝑁)
 𝑑𝑢  

 

⇒ 𝑑𝑥 =
1

�́�
 𝑑𝑢 

 

∫[𝑓(𝑥, 𝑃𝑁)]𝑛�́�(𝑥, 𝑃𝑁) 𝑑𝑥 = ∫ 𝑢𝑛�́�
1

�́�
𝑑𝑢 = ∫ 𝑢𝑛𝑑𝑢 =

𝑢𝑛+1

𝑛 + 1
+ 𝑃𝐶 

                            

back to 𝑓(𝑥, 𝑃𝑁), we get: 

 

∫[𝑓(𝑥, 𝑃𝑁)]𝑛�́�(𝑥, 𝑃𝑁) 𝑑𝑥 =
[𝑓(𝑥, 𝑃𝑁)]𝑛+1

𝑛 + 1
+ 𝑃𝐶 

 

Example 5 

 

1) ∫ 𝑃3𝑥3[(𝑃2 + 1)𝑥3]4𝑑𝑥 =
1

4
∫ 4𝑃3𝑥3[(𝑃2 + 1)𝑥3]4𝑑𝑥 

 

                  =
𝑃3

𝑃2 + 1

[(3 + 2𝐼1 + 2𝐼2)𝑥3]5

5
+ 𝑃𝐶 

 

                 =
1

2
𝑃3

[(3 + 2𝐼1 + 2𝐼2)𝑥3]5

5
+ 𝑃𝐶 

 

=
1

10
𝑃3[(3 + 2𝐼1 + 2𝐼2)𝑥3]5 + 𝑃𝐶 

 

where: 

 
𝑃3

𝑃2 + 1
= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3  

 

𝑃3 = (𝑃2 + 1)(𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3) 
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𝑃3 = 𝑥0𝑃3 + 𝑥1𝑃3 + 𝑥2𝑃3 + 𝑥3𝑃3 + 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 
 

𝑃3 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + (𝑥0 + 𝑥1 + 𝑥2 + 2𝑥3)𝑃3  , then: 

 

                       𝑥0 = 0 , 𝑥1 = 0 , 𝑥2 = 0 , 𝑥3 =
1

2
  

 

hence: 
𝑃3

𝑃2+1
=

1

2
𝑃3   

 

 

2) ∫
𝑃2

√𝑃1𝑥 − 5𝑃1 + 8𝑃2

(√𝑃1𝑥 − 5𝑃1 + 8𝑃2)
11

𝑑𝑥 

 

                 =
𝑃2

𝑃1

(√(2 + 𝐼1 + 𝐼2)𝑥 − 𝐼1 + 2𝐼2)
12

12
+ 𝑃𝐶 

 

                = (𝑥0 + 𝑥1𝑃1 + 𝑃2)
(√(2 + 𝐼1 + 𝐼2)𝑥 − 𝐼1 + 2𝐼2)

12

12
+ 𝑃𝐶 

 

where: 

 
𝑃2

𝑃1

= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2    ⟹   𝑃2 = 𝑥0𝑃1 + 𝑥1𝑃1 + 𝑥2𝑃2     

                      ⟹   𝑃2 = (𝑥0 + 𝑥1)𝑃1 + 𝑥2𝑃2 , then: 

 

                           𝑥0 + 𝑥1 = 0 and 𝑃2 = 1 

 

hence: 
𝑃2

𝑃1
= 𝑥0 + 𝑥1𝑃1 + 𝑃2  , where: 𝑥0 + 𝑥1 = 0 

 

5. Conclusions  

In this paper, we discussed integrations in the symbolic plithogenic field, where we presented direct 

methods for solving most integrations of symbolic plithogenic functions, and we arrived at the 

condition that must be met in order for integration to be possible. 
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Abstract: The discovery of soft sets is accredited to Molodtsov. This theory can cope with difficult 

circumstances with a lot of ambiguity, like those where deciding is hard. The bipolar soft set (BSS) 

and neutrosophic soft set (NSS) are algebraic models that can be viewed as soft set expansions. The 

BSS theory states that we weigh the pros and cons when deciding and NSS theory can handle belief 

system ambiguity, contradiction, and lack of knowledge due to its truth and falsity membership 

values. The concept of BSS and NSS are explained in comprehensive detail in this article. This 

article examined the weighted bipolar soft set (WBSS) and the weighted neutrosophic soft set 

(WNSS), as well as how to make accurate decisions under uncertain or inadequate information. A 

detailed comparison of information extraction approaches using weighted bipolar and 

neutrosophic soft sets may be lacking in the literature. These strategies may have been studied 

separately, but there may be little research comparing their performance under different settings 

and with diverse data. Filling this gap with a thorough and rigorous comparison study would help 

comprehend these techniques' practical benefits and drawbacks.  

Keywords: Decision making problem, Soft set, Neutrosophic soft set, Bipolar soft set, Weighted 

Neutrosophic Soft Set, Weighted bipolar soft set, Uncertain data. 

 

 

1. Introduction 

This research is motivated by the increasing prevalence of indeterminate, imprecise, and 

uncertain data in our data-driven society. In disciplines varying from healthcare and finance to 

environmental science and decision support, traditional approaches to data analysis frequently fall 

short of handling these complexities effectively. Weighted bipolar and neutrosophic soft sets can 

explicitly model and extract knowledge from dual viewpoint and indeterminate data, meeting a 

critical need for advanced tools to empower decision-makers with more comprehensive insights and 

support interdisciplinary research. The goal of this effort is to close the knowledge gap between 

theoretical developments and real-world applications, which will eventually improve our capacity 

to make intelligent decisions and gather insightful information from the ambiguous data 

environments of the modern world. 

The novelty of this work is in its detailed comparison of WBSS and WNSS, both of which are 

employed for extracting information from uncertain data. This work provides new insights into the 

relative effectiveness of these two frameworks by systematically evaluating their strengths and 

weaknesses, allowing researchers and practitioners to choose the best methodology based on data 
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uncertainty. As a result of this study, we now have a better knowledge of how these soft computing 

methods can be used in real life. This will help people make better decisions based on data in many 

different areas. 

This study is necessary due to the ubiquitous prevalence of uncertainty in modern data-driven 

decision-making processes across multiple domains. Now more than ever, advanced techniques are 

needed to model and extract knowledge from uncertain data in the era of big data, when 

information frequently comprises inaccurate, inconsistent, and incomplete parts. Weighted bipolar 

soft sets and weighted neutrosophic soft sets offer intriguing paths for addressing this difficulty 

since they enable the explicit consideration of both positive and negative elements of uncertainty 

and indeterminacy. This study is vital for expanding our capacity to make informed decisions, 

manage risks, and extract valuable insights in settings where standard data analysis approaches fail 

to cope with the complexities of uncertain data. This research is crucial for advancing our ability to 

make informed decisions, manage risks, and extract valuable insights in context.  

Through reading this article, we gained an understanding of the fundamental concepts and 

algorithms behind WBSS and WNSS, such as how these methodologies contribute to the process of 

decision-making in the face of ambiguous data and an example of this process. This paper 

demonstrates how we may obtain an accurate ranking order of items by assigning weights to each 

parameter in the ranking criteria. Within the scope of this research, a comparison study is carried out 

between WBSS and WNSS. 

The area that needs more exploration is how to evaluate and quantify the uncertainty in the 

knowledge that has been retrieved. In what ways can we effectively express this uncertainty and 

what level of confidence can we place in the knowledge that is derived utilizing these soft set 

models. We might research how these soft set models can be modified for streaming or real-time 

data environments, in which data is continually incoming. What kinds of methods can be used for 

online learning. 

This research is needed to handle today's data-driven world's growing uncertainty and 

imprecision. Diverse decision-makers struggle to choose acceptable methods to extract insight from 

such data. To clarify their benefits and applicability in diverse settings, weighted bipolar soft sets 

and neutrosophic soft sets must be systematically compared. This study helps decision support, risk 

assessment, and insights production in complicated, uncertain data by guiding uncertainty 

management. 

The efficiency of WBSS and WNSS sets may rely on data features, hence this study might not be 

applicable to all uncertain data circumstances. The study might not have looked at all uncertainty 

modeling techniques, so it might not have included other useful methods for comparison. This 

research can improve decision-making by systematically comparing two prominent uncertainty 

modeling techniques, helping practitioners and researchers navigate uncertain data landscapes 

across domains. 

The main objective of this work is to investigate knowledge extraction methodologies using 

WBSS and WNSS, conduct a comprehensive comparative analysis to assess their performance across 

diverse datasets and scenarios, identify their strengths and weaknesses in handling uncertainty, 

ambiguity, and imprecision in data, and evaluate their applicability in real-world decision-making 

and data analysis tasks. 

While individual studies have explored these methodologies separately, there is a notable 

dearth of systematic and rigorous comparative analyses that assess their performance under varying 

conditions and with diverse datasets. Such a gap hinders a clear understanding of when and where 

each method excels, potentially limiting their practical utility. Addressing this gap is essential to 

provide researchers and practitioners with valuable insights into the relative strengths and 

weaknesses of these techniques, enabling informed choices for knowledge extraction in scenarios 

characterized by uncertainty, ambiguity, and imprecision in data. 

A review of the literature on WBSS and WNSS is presented in section 2 of this article. The core 

principle, method, and decision-making example employing WBSS are described in Section 3. In 
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Section 4, we'll learn about the idea behind WNSS and the algorithm it employs to make decisions. 

The hypothesis for this investigation is presented in Section 5. In Section 6, the comparative research 

between the WBSS and the WNSS is discussed. The sensitivity analysis for each method is discussed 

in detail in Section 7. In Section 8, we present the results discussion, and in Section 9, we provide the 

summary and final thoughts. 

2. Literature Review 

Uncertainty management is a challenge for researchers and decision makers across all fields 

and scientific disciplines, from the fundamental to the managerial, social, and technological. To 

solve this issue, a great number of different initiatives have been started. Even though each method 

has its own set of advantages and has demonstrated its usefulness, the theory of soft sets, which was 

developed by Molodtsov generalizes fuzzy set and rough set techniques [1]. This makes it a 

significant development in this field. Soft sets have been provided with some procedures in [2]. 

Newly specified operations on soft sets are discussed in [3], along with some algebraic structures 

were considered related to these operations. Soft rings were introduced by Bera and Mahapatra [4], 

soft vector spaces by Faried et al. [5], soft graph representations by Ali et al. [6], soft topological 

spaces by Asaad et al. [7], soft intersection semigroups by Elavarasan et al. [8], soft lattice ordered 

sets by Kashif et al. [9], and a novel method to soft sets by Cagman and Eraslan [10]. Maji et al. were 

the ones who first began applying soft sets in the context of decision making [11]. Numerous writers 

have since added to the body of literature on the topic, such as extensive work regarding the 

implementations in the decision-making problem was conducted in [12]. 

Fuzzy soft set concept was discussed by El-Atik et al. [13]. The object parameter methodology 

was recommended in this article for use in the process of forecasting unseen data in imprecise fuzzy 

soft sets [14]. Yiarayong put forward the notion of bipolar-valued fuzzy sets [15]. Alqaraleh et al. 

discussed the bipolar fuzzy soft sets and use this recognition in a decision-making scenario [16]. 

Different approaches to introducing BSS were proposed by Deli and Karaaslan in 2020 [17], and 

subsequent work on bipolar soft groups was done by Karaaslan et al. [18]. You can look at these 

articles to learn more about the bipolarity in soft sets and related subjects, as well as see some 

examples of its practical applications [19-21]. 

Philosophically, Smarandache introduced the concept of a neutrosophic set (NS) for the first 

time [22]. A NS can be defined in terms of its truth-membership degree, indeterminacy-membership 

degree, or falsity-membership degree. This broadens the applicability of concepts like fuzzy set and 

interval-valued fuzzy set. The NS and the set theoretic operators need to be described to satisfy the 

requirements of a scientific or engineering investigation. Otherwise, it will be challenging to 

implement in the situations that occur. Thus, Smarandache proposed the SVNS concept. The 

set-theoretic operators and many different features of SVNS have been discussed in [23]. In a SVNS 

setting, these papers suggested a multi-attribute decision making (MADM) approach based on the 

correlation coefficient [24, 25]. By utilizing SVNS similarity measures, authors refined and expanded 

upon previous clustering and decision-making techniques [26, 27]. A novel SVNS similarity measure 

has been introduced and used to aid in decision-making [28]. 

TOPSIS technique to solve decision making problems on multi-attribute SVNS was expanded 

here [29]. To evaluate its subsethood [30], this paper developed a measure that was applied to 

MADM. Its relations were proposed by Latreche et al. [31], and their properties were explored. For 

the purposes of cluster analysis and MADM, Luo et al. devised a novel distance measure of SVNSs 

[32]. SVNS aggregation operators based on t-conorm, and t-norm were proposed by Rong et al. and 

applied in MADM [33]. Simplified neutrosophic sets and a cross-entropy aggregation algorithm 

were suggested in [34]. Broumi et al. offer single valued neutrosophic graphs in [35], while suggest 

bipolar single valued neutrosophic graphs in [36]. 

SVNS are suggested by [37], which combines the benefits of NS with those of soft sets. Based on 

SVNS, a few novel operators and a soft matrix have been specified by Broumi et al. [38]. Evaluation 
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of Q-Neutrosophic soft expert set has been defined by Al-Hijjawi et al. [39]. Neutrosophic vague soft 

expert set theory was described in [40]. Currently, researchers are concentrating on developing and 

presenting theories for coping with ambiguity [41-42], elaborating those theories with relevant 

examples. Numerous researchers today are hard at work debating the veracity of Neutrosophy in 

decision issues, as the TOPSIS method and NSS are commonly used in finding solutions in the 

decision-making problems [43–44]. 

3. Weighted Bipolar Soft Set Theory    

3.1. Soft Set Theory 

Let Ġ represents the initial universe set and X represents the parameters that have been defined. 

Power set of Ġ is denoted by Ṕ(Ġ). A pair (L, X) is called a soft set over Ġ, where L is a mapping 

given by [1],  

L: X → Ṕ (Ġ). 

Here, L(û)(ϑ) = Ø if ϑ ∉ Ġ. As ϑ(û) is approximate function of the soft set (L, X) and the value is a 

set called ϑ-element of the soft set for all ϑ ∈ Ġ. 

3.2. Bipolar Soft Set Theory  

3.2.1. Definition 

Let Ɍ1 and Ɍ2 are two nonempty subsets of Ɍ, as Ɍ1 ∪ Ɍ2 = Ɍ and Ɍ1 ∩ Ɍ2 = ∅. Then, (Ƴ, Ɲ, Ɍ) is BSS 

over Ġ, where Ƴ and Ɲ are set valued mappings, where Ƴ: Ɍ1⟶P(Ġ), Ɲ: Ɍ2⟶P(Ġ) and Ƴ(û) ∩ 

Ɲ(Ƴ(û)) = ∅, where Ƴ: Ɍ1⟶ Ɍ2 is a bijective function [15]. 

3.2.2. Properties 

1) Let (Ƴ1, Ɲ1, Ɍ) and (Ƴ2, Ɲ2, Қ) are two BSS. (Ƴ1, Ɲ1, Ɍ) is a bipolar soft subset of (Ƴ2, Ɲ2, Қ) if, Ɍ ⊆ 

Қ, along with ⩝û ∈ ȥ, Ƴ1(û) ⊆ Ƴ2(û) and Ɲ 2 (¬û) ⊆ Ɲ 1 (¬û). We can write it as, (Ƴ1, Ɲ1, Ɍ) ⊆ (Ƴ2, 

Ɲ2, Қ) [16].  

2) (Ƴ1, Ɲ1, Ɍ) and (Ƴ2, Ɲ2, Қ) are said to be equal if and only if (Ƴ1, Ɲ1, Ɍ) ⊆ (Ƴ2, Ɲ2, Қ) and (Ƴ2, Ɲ2, 

Қ) ⊆ (Ƴ1, Ɲ1, Ɍ). We can write it as, (Ƴ1, Ɲ1, Ɍ) = (Ƴ2, Ɲ2, Қ) 

3) Let (Ƴ, Ɲ, Ɍ) is a BSS. Then, (Ƴ, Ɲ, Ɍ) c = (Ƴc, Ɲc, Ɍ) = {〈 û, Ƴc(û) = X− Ƴ(û), Ɲc(û) = Y− Ɲ(û)〉}.  

4) (Ƴ, Ɲ, Ɍ) is null, if ∀û ∈ ȥ, Ƴ(û) = ∅ and Ɲ(û) = Ġ. Defined as {〈∅, Ġ, Ɍ〉}. 

5) (Ƴ, Ɲ, Ɍ) is absolute, if ∀û ∈ ȥ, Ƴ(û) = Ġ and Ɲ(û) = ∅. Defined as {〈Ġ, ∅, Ɍ〉}. 

3.2.3. Tabular Representation of BSS 

Let, Ġ = Universal set = {ϑ1, ϑ2, ϑ3, ϑ4, ϑ5}  

    Ԝ = Set of parameters = {û1, û2, û3, û4} 

Then, ¬Ԝ = {¬û1, ¬û2, ¬û3, ¬û4} 

Ƴ(û1) = {ϑ1, ϑ5}                     Ɲ(¬û1) = {ϑ2, ϑ3, ϑ4} 

Ƴ(û2) = {ϑ2, ϑ4}                     Ɲ(¬û2) = {ϑ1, ϑ3, ϑ5} 

Ƴ(û3) = {ϑ3, ϑ4, ϑ5}                  Ɲ(¬û3) = {ϑ1, ϑ2} 

Ƴ(û4) = {ϑ5}                        Ɲ(¬û4) = {ϑ1, ϑ2, ϑ3, ϑ4} 

Here, BSS (Ƴ, Ɲ, Ɍ) represented by this table 1. 
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Table 1. BSS (Ƴ, Ɲ, Ɍ) 

(Ƴ, Ɲ, Ɍ) û1 û2 û3 û4 

ϑ1 1 -1 -1 -1 

ϑ2 -1 1 -1 -1 

ϑ3 -1 -1 1 -1 

ϑ4 -1 1 1 -1 

ϑ5 1 -1 1 1 

 

Here, Table [1] represents BSS using equation (1). Where, ξδτ is the δ-th entry of the τ-th column 

of the table. 

             1         if   ϑδ ∈ Ƴ(ûτ) 

ξδτ =         0         if   ϑδ ∈ Ġ – {Ƴ(ûτ) ∪ Ɲ(¬ûτ)}                                      (1)                                                                           

            -1         if   ϑδ ∈ Ɲ(¬ûτ)  

3.2.4. Algorithm 

1) The BSS (Ƴ, Ɲ, Ԝ). 

2) Enter the parameters that have been chosen. Ɍ ⊆ Ԝ. 

3) Decision parameter Ɗδ calculated considering all the selected parameters for each row. 

              Ɗδ = δτ                                                             (2)                                                                                        

4) Find out φ, where; Ɗφ = max (Ɗδ). 

5) The best option available is the item denoted by ϑφ, if φ might take on more than one value, 

then the value of φ that is selected can be any one of them. 

3.2.5. Example-1 

Let's say a new client interested in purchasing a car from a selection of available cars. It's 

possible that he would choose the car that suits his requirements the best based on a set of criteria. 

Let, Ġ= {ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6} a set of cars. 

       Ԝ= {û1, û2, û3, û4, û5, û6, û7, û8} set of parameters.  

As,    û1= automated  

       û2= petrol car 

       û3= cheap 

       û4= comfortable seat 

       û5= air conditioning 

       û6= power windows 

       û7= remote start 

       û8= air bag 

¬Ԝ= {¬û1, ¬û2, ¬û3, ¬û4, ¬û5, ¬û6, ¬û7, ¬û8} = {Not automated, Not a patrol car, Not cheap, No 

comfortable seat, No air conditioning, No power windows, No remote start, No air bag}. 

Let, Ƴ(û1) = {ϑ1, ϑ2, ϑ3}                       Ɲ(¬û1) = {ϑ4, ϑ5} 

    Ƴ(û2) = {ϑ3, ϑ4, ϑ5}                       Ɲ(¬û2) = {ϑ1} 

    Ƴ(û3) = {ϑ1, ϑ5}                          Ɲ(¬û3) = {ϑ2, ϑ3} 
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Ƴ(û4) = {ϑ1, ϑ3, ϑ5}                       Ɲ(¬û4) = {ϑ2, ϑ6} 

Ƴ(û5) = {ϑ2, ϑ4, ϑ5}                       Ɲ(¬û5) = {ϑ3} 

Ƴ(û6) = {ϑ3, ϑ5, ϑ6}                       Ɲ(¬û6) = {ϑ1} 

Ƴ(û7) = {ϑ2, ϑ3}                          Ɲ(¬û7) = {ϑ5, ϑ6} 

Ƴ(û8) = {ϑ4, ϑ5, ϑ6}                       Ɲ(¬û8) = {ϑ3} 

 

1) Data entry for the BSS (Ƴ, Ɲ, Ԝ) should follow the table 2. 

2) Assume, set of selected parameters by the client; Ɍ= {û1, û2, û4, û5, û6, û8}. 

3) After determining the parameters to use, we can determine the value of the decision parameter 

Ɗ and then describe the BSS using those parameters in the manner given in table 3. 

4) The value of Ɗ; Ɗ5 = max Ɗδ = 4 and hence φ = 5. 

5) According to the criteria that the client had chosen, the ϑ5 or fifth car is the ideal one to 

recommend to the customer. If ϑ5 is not accessible, then the client has the option of selecting 

either ϑ3 or ϑ4 as their replacement. The customer can choose any one of these two cars 

between the third and fourth car. In the situation that ϑ3 and ϑ4 are not available, then the 

choice will be made between ϑ2 and ϑ6. 

 

                                     Table 2. BSS (Ƴ, Ɲ, Ԝ) 

(Ƴ, Ɲ, Ԝ) û1 û2 û3 û4  û5 û6 û7 û8 

ϑ1 1 -1 1 1 0 -1 0 0 

ϑ2 1  0 -1 -1 1 0 1 0 

ϑ3 1  1 -1 1 -1 1 1 -1 

ϑ4 -1  1 0 0 1 0 0 1 

ϑ5 -1  1 1 1 1 1 -1 1 

ϑ6 0  0 0 -1 0 1 -1 1 

 

Table 3. BSS (Ƴ, Ɲ, Ɍ) 

(Ƴ, Ɲ, Ԝ) û1 û2 û4 û5 û6 û8 Ɗ 

ϑ1 1 -1 1 0 -1 0 0 

ϑ2 1 0 -1 1 0 0 1 

ϑ3 1 1 1 -1 1 -1 2 

ϑ4 -1 1 0 1 0 1 2 

ϑ5 -1 1 1 1 1 1 4 

ϑ6 0 0 -1 0 1 1 1 

 

This table reveals that some objects have the same decision value, making it impossible to rank 

them based on expert’s values given to each parameter. ϑ5 received the highest decision value, 

resulting in first position. ϑ3 and ϑ4 both had the same decision value of 2, making it impossible to 

decide which object is best. Similarly, ϑ2 and ϑ6 also had the same decision value of 1, making it 

impossible to determine which object is better. Here the ranking order of object is, ϑ5 > ϑ3 = ϑ4 > ϑ2 = 

ϑ6 > ϑ1.  
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3.3. Weighted Bipolar Soft Set Theory 

3.3.1. Definition 

The idea of WBSS is a hybridization of soft sets and weighted parameters of BSS. In the WBSS, 

certain weightages are assigned to parameters that are required for the decision-making process or 

that are selected for it. Because some of the features are more significant than others, it is necessary 

to provide higher priority to those characteristics while giving lower importance to the other 

criteria. When applied to a decision-making challenge, this strategy yields more precise results. 

These weights are assigned by the people who make decisions and vary from person to person. As 

a result, the decision that is made by each decision maker will be unique because not everyone's 

priorities are the same. For WBSS, the entries are determined by. 

                        ξδτ   ητ                 if ξδτ = 1 

        Пδτ =            0                        if ξδτ = 0                                   (3)                     

                        ξδτ   (1 - ητ )            if ξδτ = -1 

Where, ξδτ = entries in BSS (Ƴ, Ɲ, Ɍ). 

The formula that is used to determine an object's weighted decision value is as follows: 

         Ɗδ = δτ                                                                  (4)                                                                                                                                          

3.3.2. Algorithm 

1) Enter Weighted Bipolar Soft Set (Ƴ, Ɲ, Ԝ).  

2) Enter the parameters that have been chosen. Ɍ ⊆ Ԝ. 

3) Based on the selected parameters, construct the WBSS (Ƴ, Ɲ, Ɍ) weighted table. 

4) Weighted Decision parameter Ɗδ, has been calculated considering all the selected parameters 

for each row. 

5) Find out φ, where; Ɗφ = max(Ɗδ). 

6) The best option available is the item denoted by ϑφ, if φ might take on more than one value, 

then the value of φ that is selected can be any one of them. 
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3.3.3. Flowchart of WBSS 

Figure 1 shows the flowchart diagram of Weighted Bipolar Soft Set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flowchart of WBSS 

3.3.4. Example 

Let us assume example 1 to explain this algorithm for WBSS. Now employ this revised strategy 

to address the initial issue. Start the updated algorithm's third step after giving the parameters 

weights based on priority. 

Ɍ = {û1, û2, û4, û5, û6, û8} 

        Weight of û1:        η1 = 0.9 

        Weight of û2:        η2 = 0.7 

        Weight of û4:        η4 = 0.8 

        Weight of û5:        η5 = 0.7 

        Weight of û6:        η6 = 0.5 

        Weight of û8:        η8 = 0.9 

Table 4. WBSS (Ƴ, Ɲ, Ɍ) 

(Ƴ, Ɲ, Ɍ) û1 û2 û4 û5 û6 û8 Ɗ 

ϑ1 0.9 0.3 0.8 0 0.5 0 2.5 

ϑ2 0.9 0 0.2 0.7 0 0 1.8 

ϑ3 0.9 0.7 0.8 0.3 0.5 0.1 3.3 

ϑ4 0.1 0.7 0 0.7 0 0.9 2.4 

ϑ5 0.1 0.7 0.8 0.7 0.5 0.9 3.7 

ϑ6 0 0 0.2 0 0.5 0.9 1.6 

 
Bipolar Soft Set 

Finding of Alternatives 

Finding of Criteria 

Establishing a Hierarchy of Decision-Making Structures 

 

Placing weight 

on criteria 

 

Alternatives Analysis 

Establishing the Order of Ranking 

Selecting the Best Option 
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Table 4 represents WBSS (Ƴ, Ɲ, Ɍ) including weightage of each parameter and calculated the 

decision parameter Ɗδ. Max(Ɗδ) = Ɗ5 = 3.7 and hence φ = 5. From the table, ϑ5 or the fifth car is the 

greatest possible selection object, that car is the best option for the consumer according to his 

priorities. In the event, if the fifth vehicle is not accessible, then the third one ϑ3 will be selected as 

the alternative. If option 3 is unavailable, the customer will select ϑ1 followed by ϑ4. The ranking 

order of object is, ϑ5 > ϑ3 > ϑ1 > ϑ4 > ϑ2 > ϑ6. 

After considering these two options side by side, the fifth car is the best one to buy for that 

client. According to BSS, if there is no fifth car available, the customer has the option of selecting 

either the third or the fourth car. However, according to WBSS, if the fifth one is not available, the 

customer should purchase the third one instead. From the WBSS table, we were able to determine 

the ranking order of items based on the values that experts had assigned to each parameter, and 

now we can choose which one is the most suitable.  

 

4. Weighted Neutrosophic Soft Set Theory 

4.1. Neutrosophic Soft Set Theory 

4.1.1. Definition 

Neutrosophic soft set (NSS) (L, X) over Ġ is defined by a mapping [23], L: X → P(Ġ); 

Here, L = Approximate function of the NSS(L, X). 

      (L, X) = {û, 〈 ϑ, TL(ϑ), IL(ϑ), FL(ϑ)〉: ϑ ∈ Ġ and û ∈ X} 

      And, Power set of Ġ is denoted by Ṕ(Ġ). 

TL(ϑ), IL(ϑ), FL(ϑ) ∈ [0, 1], are the truth-membership, indeterminacy-membership, and 

falsity-membership function respectively. Supremum of each T, I, F is 1 so, 0 ≤ TL(ϑ) + IL(ϑ) + FL(ϑ) ≤ 

3. A statement or a neutrosophic term describes each of the parameters. 

 

4.1.2. Properties 

1) Let (L, X) and (V, N) be two NSS. (L, X) is neutrosophic soft subset of (V, N) if  

(i) X ⊂ N 

(ii) TL(û)(ϑ) ≤ T V(û)(ϑ), IL(û)(ϑ) ≤ IV(û)(ϑ), FL(û)(ϑ) ≥ FV(û)(ϑ), ∀û ∈ X, ϑ ∈ Ġ.  

             Symbolized (L, X) ⊂ (V, N).  

     (L, X) is neutrosophic soft super set of (V, N) if (V, N) is neutrosophic soft subset of (L, X).        

Denoted (L, X) ⊃ (V, N) [24]. 

2) Equality of two NSSs can be written as, (L, X) = (V, N). If (L, X) ⊆ (V, N) and (L, X) ⊇ (V, N). 

3) Let Ԝ = {û1, û2, û3, û4} set of parameters. The NOT set of Ԝ = ˥Ԝ = {˥û1, ˥û2, · · · ˥ûπ}, where ˥ûτ = 

not ûτ, ∀τ. 

4) Complement of NSS = (L, X) c = (Lc, ˥X), Where Lc  : ˥X → P(Ġ), with TcL(ϑ) = FcL(ϑ), IcL(ϑ) = IcL(ϑ), 

FcL(ϑ) = TcL(ϑ). 

5) A neutrosophic soft set (L, X) defined as empty or null, If TL(û)(ϑ) = 0, FL(û)(ϑ) = 0 and IL(û)(ϑ) = 0, 

∀ϑ ∈ Ġ, ∀û ∈ X [32].  

 

4.1.3. Comparison Table 

It is a table whose rows are objects ϑ1, ϑ2, …, ϑω and columns are parameters û1, û2, …, ûπ. The 

entries ρδτ are calculated by, ρδτ = m + q – b. Where; m = Count of instances where Tϑ(δ)(ûτ) is greater 
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than or equivalent to Tϑ(φ)(ûτ), for ϑδ ≠ ϑφ, ∀ϑφ ∈ Ġ, q = Count of instances where Iϑ(δ)(ûτ) is greater 

than or equivalent to Iϑ(φ)(ûτ), for ϑδ ≠ ϑφ, ∀ϑφ ∈ Ġ, b = Count of instances where Fϑ(δ)(ûτ) is greater 

than or equivalent to Fϑ(φ)(ûτ), for ϑδ ≠ ϑφ, ∀ϑφ ∈ Ġ [45]. 

Decision value of an Object ϑδ , δ = {1, 2, …, ω} is Ɗδ , where; Ɗδ = δτ 

4.1.4. Algorithm 

1) The Neutrosophic Soft Set (L, X) should be entered. 

2) Using the NSS (L, X), calculate the comparative matrix. 

3) Analyze the value of Ɗδ, ∀δ. 

4) Calculate φ, where Ɗφ = max (Ɗδ).       

5) If φ has more than one value, then any one of ϑδ could be the preferable choice. 

 

4.1.5. Example-2 

Suppose there were five applicants for the teaching position who walked in for an interview. 

There are certain requirements or characteristics that must be fulfilled for a candidate to be 

considered for the position of teacher. The person responsible for making the decision or conducting 

the interview assigned a score to each criterion based on the candidate's performance. The top 

applicant was selected for the teaching position based on their score from the interview. In order to 

address the challenge of making decisions regarding NSS, the one above has been taken into 

consideration. 

Let Ġ is the universal set of candidates for teacher, Ġ = {ϑ1, ϑ2, ϑ3, ϑ4, ϑ5} and Ԝ is the set of 

parameters, Ԝ = {û1, û2, û3, û4, û5} 

Where,     û1 = Experience  

        û2 = Technical Skill 

        û3 = Behaviour 

        û4 = Communication skill 

        û5 = Punctuality 

And, NSS(L, X) = {Experience = {<ϑ1, 0.9, 0.3, 0.2>, <ϑ2, 0.7, 0.5, 0.1>, <ϑ3, 0.4, 0.1, 0.8>, <ϑ4, 0.7, 0.5, 

0.9>, <ϑ5, 0.5, 0.4, 0.3>}, Technical Skill = {<ϑ1, 0.8, 0.5, 0.3>, <ϑ2, 0.5, 0.4, 0.7>, <ϑ3, 0.9, 0.6, 0.3>, <ϑ4, 0.4, 

0.3, 0.4>, <ϑ5, 0.6, 0.8, 0.2>}, Behavior = {<ϑ1, 0.5, 0.7, 0.1>, <ϑ2, 0.8, 0.6, 0.4>, <ϑ3, 0.3, 0.1, 0.8>, <ϑ4, 0.7, 

0.5, 0.6>, <ϑ5, 0.4, 0.3, 0.4>}, Communication skill = {<ϑ1, 0.7, 0.3, 0.2>, <ϑ2, 0.6, 0.8, 0.3>, <ϑ3, 0.8, 0.4, 

0.5>, <ϑ4, 0.5, 0.3, 0.6>, <ϑ5, 0.7, 0.4, 0.3>}, Punctuality = {<ϑ1, 0.6, 0.4, 0.2>, <ϑ2, 0.4, 0.5, 0.3>, <ϑ3, 0.7, 

0.4, 0.1>, <ϑ4, 0.8, 0.7, 0.2>, <ϑ5, 0.5, 0.6, 0.4>}}. 

The tabular representation of NSS (L, X) is given in Table 5. 

Table 5. NSS (L, X) 

Ġ û1 û2 û3 û4 û5 

ϑ1 (0.9, 0.3, 0.2) (0.8, 0.5, 0.3) (0.5, 0.7, 0.1) (0.7, 0.3, 0.2) (0.6, 0.4, 0.2) 

ϑ2 (0.7, 0.5, 0.1) (0.5, 0.4, 0.7) (0.8, 0.6, 0.4) (0.6, 0.8, 0.3) (0.4, 0.5, 0.3) 

ϑ3 (0.4, 0.1, 0.8) (0.9, 0.6, 0.3) (0.3, 0.1, 0.8) (0.8, 0.4, 0.5) (0.7, 0.4, 0.1) 

ϑ4 (0.7, 0.5, 0.9) (0.4, 0.3, 0.4) (0.7, 0.5, 0.6) (0.5, 0.3, 0.6) (0.8, 0.7, 0.2) 

ϑ5 (0.5, 0.4, 0.3) (0.6, 0.8, 0.2) (0.4, 0.3, 0.4) (0.7, 0.4, 0.3) (0.5, 0.6, 0.4) 
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Table 6 shows the comparative table for the above NSS (L, X), after calculating comparative value 

and decision value for each object. 

 

Table 6: Comparative table of the NSS (L, X) 

Ġ û1 û2 û3 û4 û5 Decision value 

ϑ1 4 3 6 4 1 18 

ϑ2 7 -2 5 3 -1 12 

ϑ3 -3 5 -4 4 4 6 

ϑ4 4 -3 2 -3 6 6 

ϑ5 1 6 0 4 0 11 

 

It is visible from the above table that the first applicant ϑ1 received the highest decision value or 

score, which is 18. This is the primary reason why the first applicant is the most qualified individual 

to be appointed as a teacher. If applicant ϑ1 is not present, the position will be given to candidate ϑ2, 

who received the second highest score in the interview. Similarly, if the second applicant is absent, 

the fifth option, ϑ5, will be selected. 

According to the NSS table, some objects share the same decision value, hence a ranking based 

on the values assigned by experts to each attribute is impossible. Due to the limitations of the NSS 

table, we are unable to determine the ranking order of each object. The ranking order of object is, ϑ1 > 

ϑ2 > ϑ5 > ϑ3 = ϑ4. 

 

4.2. Weighted Neutrosophic Soft Set Theory 

4.2.1. Definition 

The idea of WNSS is a hybridization of soft sets and weighted parameters of NSS. If a weight, 

which is a real positive integer greater than 1, is applied on the parameter of a NSS, then the set is 

referred to as being WNSS. The entries of WNSS [45]; 

   Åδτ = ηδτ × ρδτ ;  

Where, ηδτ = Weight of each parameter. 

   ρδτ = δτ-th entry in the table of NSS. 

We refer to (L, Xη) as the WNSS for the NSS (L, X) with weights η associated with the 

parameter ȗ. 

 

4.2.3. Algorithm 

1) Enter Weighted Neutrosophic Soft Set (L, Xη).  

2) Using the WNSS (L, Xη), calculate the comparative matrix. 

3) Decision parameter Ɗδ, has been calculated considering all the parameters for each row. 

4) Find out φ, where; Ɗφ = max(Ɗδ). 

5) The best option available is the item denoted by Ɗφ, if φ might take on more than one value, 

then the value of δ that is selected can be any one of them. 
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4.2.4. Flowchart of WNSS 

Figure 2 shows the flowchart diagram of Weighted Neutrosophic Soft Set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart of WNSS 

4.2.5. Example 

Let us consider example 2. Putting the weights on the parameters Experience, Technical Skill, 

Behavior, Communication skill, Punctuality the WNSS corresponding to the NSS (L, X) denoted by 

(L, Xη) and is given in the following table 7. 

According to the decision maker or interviewer, each criterion or parameter was assigned a 

weight (η)j ; weight of parameters, for j= {1, 2, 3, 4, 5}. 

Where, (η)1 = Weight of Experience = 0.7 

   (η)2 = Weight of Technical Skill = 0.9 

   (η)3 = Weight of Behavior = 0.4 

   (η)4 = Weight of Communication skill = 0.6 

   (η)5 = Weight of Punctuality = 0.5 

   Table 7. WNSS (L, Xη) 

Ġ û1 û2 û3 û4 û5 

ϑ1 (0.63, 0.21, 0.14) (0.72, 0.45, 0.27) (0.20, 0.28, 0.04) (0.42, 0.18, 0.12) (0.30, 0.20, 0.10) 

ϑ2 (0.49, 0.35, 0.07) (0.45, 0.36, 0.63) (0.32, 0.24, 0.16) (0.36, 0.48, 0.18) (0.20, 0.25, 0.15) 

ϑ3 (0.28, 0.07, 0.56) (0.81, 0.54, 0.27) (0.12, 0.04, 0.32) (0.48, 0.24, 0.30) (0.35, 0.20, 0.05) 

ϑ4 (0.49, 0.35, 0.63) (0.36, 0.27, 0.36) (0.28, 0.20, 0.24) (0.30, 0.18, 0.36) (0.40, 0.35, 0.10) 

ϑ5 (0.35, 0.28, 0.21) (0.54, 0.72, 0.18) (0.16, 0.12, 0.16) (0.42, 0.24, 0.18) (0.25, 0.30, 0.20) 

 
Neutrosophic Soft Set 

 

Finding of Alternatives 

 

Finding of Criteria 

 

Establishing a Hierarchy of Decision-Making 

Structures 

 

Placing weight 

on criteria 

 

Alternatives Analysis 

 

Establishing the Order of Ranking 

 

Selecting the Best Option 
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Table 8 shows the comparative table for the above WNSS. 

 

Table 8: Comparative table of WNSS (L, Xη) 

Ġ û1 û2 û3 û4 û5 Decision value 

ϑ1 4 3 6 4 1 18 

ϑ2 7 -2 5 3 -1 12 

ϑ3 -3 5 -4 4 4 6 

ϑ4 3 -3 2 -3 6 5 

ϑ5 1 6 0 4 0 11 
 

 

 

It is clear from the data presented in the chart that the first candidate, ϑ1, was given the 

maximum possible score of 18, representing the best decision value. The position will be offered to 

candidate ϑ2, who obtained the second highest score in the interview if applicant ϑ1 is not present for 

the selection process. In a similar fashion, the fifth choice, which is designated by the letter ϑ5, will be 

chosen if the second candidate is not present. In the NSS, we do not know the candidate ϑ3 and ϑ4's 

position or the number that the interviewer gave them. However, with the help of this WNSS, we 

were able to obtain precise information regarding the applicants ϑ3 and ϑ4 and their respective 

rankings. Therefore, if candidate ϑ5 is not available, applicant ϑ3 can be selected, and then ϑ4 comes 

next. 

Based on the values and weightage supplied to each parameter by the experts, we were able to 

establish the ranking order of items in the WNSS table and select the best option. The ranking order 

of object is, ϑ1 > ϑ2 > ϑ5 > ϑ3 > ϑ4. 

5. Hypothesis 

The incorporation of weighted attributes in bipolar soft sets enhances the accuracy and 

flexibility of knowledge representation and extraction in uncertain and imprecise data 

environments, leading to improved decision-making outcomes when compared to traditional 

bipolar soft sets that do not consider attribute weighting. 

The introduction of attribute weighting in neutrosophic soft sets enhances the adaptability and 

effectiveness of knowledge extraction in contexts characterized by uncertainty and indeterminacy, 

resulting in superior decision support capabilities compared to traditional neutrosophic soft sets 

without attribute weighting. 

6. Comparison study  

6.1.  Comparison of WBSS and WNSS 

This comparative research presents an overview of the most important aspects, strengths, and 

problems of WBSS and WNSS. Table 9 shows the comparative analysis between WBSS and WNSS. 
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Table 9: Comparison analysis between WBSS and WNSS 

Aspect WBSS WNSS 

Definition In WBSS, each element is associated 

with both a positive and a negative 

membership degree, along with a 

weight that indicates the strength or 

significance of that element. 

In WNSS, each element is 

characterized by a degree of 

membership, non-membership, and 

indeterminacy, along with a weight 

that signifies the importance of that 

element. 

Membership 

Interpretatio

n 

The positive and negative 

membership degrees represent the 

levels of acceptance and rejection of 

an element with respect to a certain 

property or concept. The weights 

provide a measure of the element's 

influence in the decision-making 

process. 

The membership, non- membership 

and indeterminacy degrees capture 

the ambiguity and uncertainty in an 

element's classification into a 

particular category. The weight 

reflects the relative importance of the 

element's attributes. 

Handling 

Uncertainty 

This framework is effective in 

capturing uncertainty when there are 

conflicting opinions about an 

element's affiliation with a particular 

property. It accounts for both 

favorable and unfavorable 

viewpoints. 

This framework is suitable for 

handling uncertainty in a scenario 

where the information about an 

element's membership, 

non-membership, or indeterminacy is 

incomplete or vague. 

 

Decision- 

Making 

The use of positive and negative 

membership degrees, along with 

weights, enables a comprehensive 

evaluation of elements considering 

both supportive and opposing 

characteristics. Elements with higher 

weights might have a stronger impact 

on decision outcomes. 

The incorporation of weights can 

allow certain elements to carry more 

significance in decision-making 

processes. This prioritization can be 

based on the relative importance of 

elements in a specific context. 

   

6.2. Comparison of BSS and WBSS 

 

 

 

 

Figure 3. Ranking of objects' orders from our example using BSS and WBSS 
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Figure 3 shows a graph, that compares the results of BSS and WBSS approach in our example to 

rank the same set of items and demonstrate how their rankings change. Here, the x-axis represents 

the objects and the y-axis represents the decision values, with the graph displaying the decision 

values for each object. As can be seen, ϑ5 is the superior option for both strategies, earning it number 

1 in our rankings. However, ϑ3 and ϑ4 are ranked the same as rank 2. If for some reason ϑ5 is not 

available, then we will have to settle with either ϑ3 or ϑ4 as our alternative. In a similar manner, ϑ2 

and ϑ6 are placed in the same order inside the ranking. We are unable to conclude which option is 

preferable. However, with the help of WBSS, we were able to determine that ϑ3 has higher priority 

than ϑ4, and that ϑ2 has higher priority than ϑ6 by giving weightage to each parameter. 

 

6.3. Comparison of NSS and WNSS 

 

 

 

 

 

Figure 4. Ranking of objects' orders from our example using NSS and WNSS 

 

Figure 4 shows the differences in ranking order of objects that we got from our example by 

applying NSS and WNSS approaches. The graph displays the choice values for each object, with the 

x-axis representing the objects and the y-axis representing the decision values. As we can see that, 

for both the approaches ϑ1 is the best choice and got rank 1. Then ϑ2 got the rank 2 and ϑ5 got the 

rank 3. If in any situation ϑ1 is not available, then we can go for ϑ2 followed by ϑ5. But ϑ3 and ϑ4 are in 

same ranking as rank 4. We can’t find out which one is best out of ϑ3 and ϑ4. By using WNSS, we got 

that in between ϑ3 and ϑ4, ϑ3 has more priority. 

7. Sensitivity Analysis 

The results were subjected to sensitivity analysis in order to verify their dependability and 

validity as well as to look at how they changed when certain inputs and parameters were changed. 

Approaches to decision-making sometimes involve defining certain criteria in a manner that is open 

to interpretation and is dependent on the decision-makers' perceptions of the situation as well as the 

degree to which environmental hazards are present. So, these factors change depending on the 

situation where the system for making decisions is being modeled. Here, WBSS and WNSS have 

undergone sensitivity analysis from the standpoint of parameter modifications. The sensitivity 

analysis that is going to be performed on WBSS is going to assess the effect that a change in 

parameters û1, û2, û4, û5, û6, and û8 will have on the evaluation of ranking orders of objects. The 

impact of a modification in parameters û1, û2, û3, û4, û5 on the assessment of object ranking orders 

will be examined through sensitivity analysis on WNSS. In this case, each variable is set according to 

the preferences of the experts. Therefore, multiple experiments were conducted with different values 

for these factors to demonstrate their significant impact on the final ranking order using WBSS and 

WNSS approaches. 
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7.1. Sensitivity Analysis of WBSS 

 

 

 

 

 

 

 

(a)                                                      (b) 

 

 

 

 

 

 

(c)                                                        (d) 

 

 

 

 

 

 

             (e)                                                        (f) 

Figure 5. This figure shows the evaluation of ranking orders of object by changing the values of 

parameters during WBSS approach. Effect of each parameter on decision making result has been 

shown here; (a) Influence of parameter û1 on ranking order evaluation; (b) Influence of parameter û2 

on ranking order evaluation; (c) Influence of parameter û4 on ranking order evaluation; (d) Influence 

of parameter û5 on ranking order evaluation; (e) Influence of parameter û6 on ranking order 

evaluation; (f) Influence of parameter û8 on ranking order evaluation. 

         

           

        



Neutrosophic Sets and Systems, Vol. 60, 2023     55  

 

 

Sonali Priyadarsini, Ajay Vikram Singh, Said Broumi, Extraction of Knowledge from Uncertain Data Utilizing WBSS and 
WNSS 

By altering the values of parameters in our example, the effect on the evaluation of ranking 

orders of items through WBSS approach is illustrated in this graph. Specifically, the effect shows 

how changing these values in WBSS approach affects the ranking of the objects.  

As can be seen in Figure 5(a), the significance of the parameter û1's influence on the ranking 

evaluation was investigated by experimenting with a variety of different values for it, ranging from 

û1 = 0.1 to û1 = 1.0. The order of the ranking has not been affected in any way, even though the value 

of the û1 parameter has been modified multiple times. Throughout the entirety of the sensitivity 

study and parameter value change û1, option ϑ5 has remained the most favorable choice, followed 

by option ϑ3. ϑ6, on the other hand, maintains its position as the lowest in the order despite the 

modification in the value of the parameter û1. 

In a similar manner, the impact on the ranking orders of objects has been illustrated in figures 

5(b), 5(c), 5(d), 5(e) and 5(f) by modifying the values of the parameters û1, û2, û4, û5, û6 and û8 

accordingly to highlight the sensitivity analysis of the parameters on the ranking orders. As can be 

seen, ϑ5 is the greatest option to select out of all the other possible things to go with, and ϑ3 comes in 

second place. By modifying the parameter values of û5 and û8, we can observe that ϑ3 is greater than 

ϑ5 on occasion, but ϑ5 is usually greater. In a similar vein, if we examine the least one, then we find 

that ϑ6 is the one that has less decision worth in every circumstance. The parameter values used in 

WBSS's sensitivity study had no influence on the final rankings. 

 

7.2. Sensitivity Analysis of WNSS 

 

Figure 6. Evaluation of ranking orders of object by changing the values of parameters during WNSS 

approach. 

This graph illustrates the effect that changing the values of the parameters in our example has 

on the evaluation of ranking orders of items using the WNSS technique. More specifically, the result 

shows how changing these values in the WNSS method changes how the items are ranked. 

The relevance of the parameter û1's impact on the ranking evaluation was studied by testing 

with a number of various values for it, ranging from û1 = 0.1 to û1 = 1.0. This was done using Figure 6, 

which displays the results of the experiment. In spite of the fact that the value of the û1 parameter 

has been altered on several occasions, the sequence in which the rankings are presented has not been 

altered in any manner at all. Option ϑ1 has been determined to be the optimal selection throughout 

the whole of the sensitivity analysis and parameter value change û1, with option ϑ2 coming in a close 

second. ϑ4, on the other hand, remains in the position of having the lowest value in the order despite 

the fact that the value of the parameter û1 has been changed. 

Changing the values of each parameter in the WNSS model from 0.1 to 1.0, as we did in the 

previous example, maintains the same order of ranking for the items in the model. The order of the 

rankings has not been altered in any way as a result of changing the values of any parameters. 

According to the results of the sensitivity study performed on WNSS, changing the values of the 

parameters does not affect the ranking orders in any way. 
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8. Discussion 

We observed in BSS database that some items have the same decision value, making it difficult 

to rank them by expert parameter values. ϑ5 placed top due to its highest decision value. It is 

impossible to choose between objects 3 and 4 because they both have a decision value of 2, making it 

impossible to choose which is the better option. It was also impossible to tell which item is better 

because ϑ2 and ϑ6 both had the same decision value of 1. WBSS recommends buying the third one if 

the fifth is unavailable. The WBSS table showed the ranking order of things based on experts' 

parameter values, so we may choose the best one. 

The NSS table shows that applicant ϑ1 had the highest decision value. In the absence of 

application ϑ1, the position will be awarded to candidate ϑ2, who scored second in the interview. The 

fifth option, ϑ5, will be chosen if the second candidate is absent. NSS table restrictions prevent us 

from rating objects. The interviewer's number and position of candidates ϑ3 and ϑ4 are unknown in 

the NSS. Through WNSS, we were able to gather accurate information on candidates ϑ3 and ϑ4 and 

their rankings. Thus, if ϑ5 is unavailable, ϑ3 can be chosen, followed by ϑ4. Based on the experts' 

parameter values and weightages, we ranked the WNSS table elements and chose the optimal 

choice. 

In WBSS, the combination of positive and negative membership degrees with weights permits a 

full evaluation of items that takes into account both supportive and opposing qualities. It's possible 

that factors with higher weights will have a greater bearing on how the decision turns out. Because 

the WNSS incorporates weights, certain components of the decision-making process may be given 

the ability to have a greater bearing on the final outcome. This ranking might be done on the basis of 

the relative value of the components within a particular context. 

9. Conclusion  

In conclusion, our study has revealed that both weighted bipolar soft sets and weighted 

neutrosophic soft sets exhibit strengths and applicability in knowledge extraction from uncertain 

data, with their comparative performance contingent on specific data characteristics and task 

objectives. While weighted bipolar soft sets excel in scenarios necessitating strict consideration of 

positive and negative attributes, weighted neutrosophic soft sets offer flexibility to handle inherent 

data uncertainty. These findings provide valuable insights for decision support, pattern recognition, 

and data mining applications. Our research contributes to the field of soft computing by 

illuminating the strengths and weaknesses of these techniques, paving the way for future research 

on hybrid approaches and domain-specific refinements. Overall, these methodologies serve as 

versatile tools for navigating the intricacies of uncertain information, offering practitioners informed 

choices for knowledge extraction in uncertain environments. 

In the future, researchers will investigate how deep learning and neural network models can be 

combined with WBSS and WNSS approaches to improve the ability to retrieve information. In 

complex datasets, detailed patterns may be easier to discern with the assistance of deep learning. 

Researchers may use this to tackle scalability problems and use knowledge extraction techniques in 

situations with massive datasets. They will also be able to develop strategies that efficiently manage 

enormous amounts of uncertain data. The Human Computer Interaction (HCI) field may be utilized 

in the future of research to create practitioner-friendly interfaces.  

Conflicts of Interest: The author has no conflict of interest regarding the publication of the article with anyone. 
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Abstract: In this paper, we have initiated the study of domination and equitable domination of 

Neutrosophic graphs using strong arcs. Strong arcs represent the optimal (minimum) degree of truth 

membership value, the optimal (minimum) degree of indeterminacy membership value, and the 

non-optimal ( maximum) degree of falsity membership value. Hence, the studies of domination and 

equitable domination using strong arcs have been explored. Upper bounds and minimality 

conditions for the existence of the introduced parameters were discussed. Extend the studies on 

strong and weak equitable domination of Neutrosophic graphs and obtain the relationship between 

domination and the equitable domination parameter. Furthermore, we have provided some 

theorems based on equitable domination of Neutrosophic graphs and discussed the upper and 

lower bounds of the strong and weak equitable domination in terms of order and size with other 

existing domination parameters of Neutrosophic graphs. 

 Keywords: Domination, Equitable Domination, Strong arc, Strong and weak 

 

 

 

1. Introduction 

In 1965[1], L.A. Zadeh put forth a mathematical framework to describe the occurrence of 

uncertainty in real-world circumstances. Rosenfeld[2] was the first to propose the concept of fuzzy 

graphs and different fuzzy analogues of connectedness in graph theory concepts. Berge and Ore[3] 

began studying the domination sets of graphs. Studies on paired domination were started by Teresa 

et al. [4]. Biggs [5] and V.R. Kulli [6] both contributed to the development of efficient domination, 

and he [7] also developed the theory of domination in graphs. Cockayne[8] employed the 

independent domination number for the first time in graphs. Swaminathan and Dharmalingam 

introduced equitable domination [9]. A. Meenakshi developed and explored paired equitable 

domination [10], and it was continued in an inflated graph and its graph complement [11, 12]. 

Nagoor Gani and M. Basheer Ahmed developed and investigated the concepts of Strong and 

Weak Domination of Fuzzy Graph[13]. K.T. Atanassov created intuitionistic fuzzy relations and 

intuitionistic fuzzy graphs (IFGS)[14]. A.Shannon and Atanassov of [15] and M.G. Karunambigai et 

mailto:senbagamalar2005@yahoo.com
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al. [16] identified IFGS as a particular instance of IFG. A. Nagoor Gani and Shajitha Begum 

developed the words "order," "degree," and "magnitude" of IFG[17]. A.Nagoor Gani and S. Anu 

Priya developed split domination in intuitionistic fuzzy graphs [18] and the author studied Dombi 

Fuzzy Graphs [19].Mullai et al.[20]  studied equitable domination parameter in neutrosophic 

graphs.  In this paper we have developed the equitable domination parameter using strong arcs. 

               The motivation of this research is to study domination and equitable domination in 

neutrosophic graphs using strong arcs. In [18], the vertex cardinality and edge cardinality of the 

intuitionistic graphs in the study of split dominations were focused. This study motivates us to 

define the order, size, and degree of the vertex of a neutrosophic graph that is optimal while 

initiating studies of another domination parameter, named equitable domination of a neutrosophic 

graph using a strong arc. The study of weak and strong domination in fuzzy graphs [13] motivated 

us to focus our research on the strong and weak equitable domination of neutrosophic graphs using 

the score function. Section 2 focused on the preliminary work related to our studies. Section 3 

explored the studies of domination in the neutrosophic graph using a strong arc, and the upper 

bounds are given in terms of the order and degree of the neutrosophic graph. Sections 4 and 5 

focused on the domination parameter equitable domination using a strong arc; weak and strong 

equitable domination using a score function are illustrated with an example. 

               The existence of equitable domination in a neutrosophic graph is guaranteed on the 

degree of the vertex of the neutrosophic graph 

 

2. Preliminaries 

Definition 2.1[11]. 

An intuitionistic fuzzy graph(IFG) is of the form GIF = (AIF, BIF) where AIF is a finite vertex set such 

that  (i) ]1,0[:1 IFA ; ]1,0[:1 IFA   denote the degree of  truth membership value and degree 

of  falsity membership value respectively and 1)()(0 11  ss vv  for every .Vvs   

(ii) ]1,0[:2  IFIFIFIFIF AAwhereAAB  ; ]1,0[:2  IFIF AA  are such that 

)},{(2 ji aa )}(),({min 11 ji aa  ; )}(),({max)},{( 112 jiji aaaa    and where 

1)},{()}},{(0 22  jiji aaaa  IFji Baa  ),( . 

Definition 2.2[11].   An arc (ud, vd) is said to be strong arc if 

 )}(),(min{),( 21112 aaaa ji   and )}(),(max{),( 21112 aaaa ji    

Definition 2.3[11]. The degree of a vertex ud in an IFG,  

GIF = (AIF, BIF) is defined as the sum of the weight of the strong arcs incident at ud and is denoted by 

deg(ud). The neiborhood of ud  is denoted by  

),/({)( ddIFdd vuAvuN  is an strong arc} 

The minimum degree of GIF is }/)(min{)( IFddGIF AuudG
IF
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The maximum degree of GIF is }/)(max{)( IFddGIF AuudG
IIF

  

Definition 2.4[11]. A vertex IFd Au  in an IFG, GIF = (AIF, BIF)  is said to be an isolate vertex if 

0),(2 ji aa and 0),(2 ji aa  

Definition 2.5[11]. Let GIF = (AIF, BIF) be a intuitionistic fuzzy graph. Then the cardinality of GNS is 

defined  

 
 







NSi NSji

NSNSNSNS

Aa Baa

BBAA FTFT
G

2

1

2

1
 

Definition 2.6 [11]. Let GIF = (AIF, BIF) be an intuitionistic fuzzy graph and let uif and vif ∈ AIF, we say 

that uif dominates uif in GIF if there exists a strong arc between them. A subset Dd ⊆ AIF is said to be 

dominating set in GIF if for every vif ∈ AIF - Dd, there exists uif ∈ Dd dominates vif. 

 

Definition 2.7[4]. 

Let Xsp be a space of points (objects) with generic elements in Xsp is denoted by Xsp.    A  

single valued neutrosophic  set ANS (SVNS) is characterized by truth membership 

function )( spA XT
NS

, an indeterminacy membership function )( spA XI
NS

,  and a falsity membership 

function )( spA XF
NS

. For each point x’ in Xsp, )( spA XT
NS

, )( spA XI
NS

, and )( spA XF
NS

[0, 1]. A 

SVNS A can be written as ANS ={< x’ : )'(xT
NSA , )( 'xI

NSA , )'(xF
NSA  >, x’ ∈ spX }. 

Definition 2.8[4] 

           Let ANS = (
NSAT , 

NSAI , 
NSAF ) and BNS = (

NSBT , 
NSBI , 

NSBF ) be single valued  

neutrosophic sets on a set Xsp. If ANS = (
NSAT , 

NSAI , 
NSAF ) is a single valued neutrosophic relation 

on a set Xsp, then ANS = (
NSAT , 

NSAI , 
NSAF ) is called a single valued neutrosophic relation on BNS = 

(
NSBT , 

NSBI , 
NSBF ), if )}'(),'(min{)','( yTxTyxT

NSNSNS AAB   

)}'(),'(min{)','( yIxIyxI
NSNSNS AAB  , )}'(),'(max{)','( yFxFyxF

NSNSNS AAB  for all ',' yx  in Xsp. 

Definition 2.9[4]. An arc (ai, aj) of a neutrosophic graph, GNS = (ANS, BNS) is said to be strong if  

)},{( jiE aaT
s

)};(),({min jViV aTaT
ss

 )},{( jiE aaI
s

)}(),({min jViV aIaI
ss

 ;

)}(),({max)},{( jViVjiE aFaFaaF
sss

 where .&),( sjisji VaaandEaa   
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3. Domination of a Neutrosophic graph(NSG) Using Strong Arc 

Definition 3.1. Let ud be a vertex in a NSG, GNS = (ANS, BNS). The degree of a vertex ud is defined as the 

sum of the weight of the strong arcs incident at ud and is denoted by deg (ud). The neighbourhood of 

ud  is denoted by  ),/({)( ddNSdd vuAvuN  is a strong arc} 

The minimum degree of GNS is }/)(min{)( NSddGNS AuudG
NS

  

The maximum degree of GNS is }/)(max{)( NSddGNS AuudG
INS

  

 The degree of indeterminancy membership value (I) is not a complement of degree of 

truth membership value (T) and degree of falsity membership value (F) and the values 

of T, I, and F are independent of one another, value (I) does not depend on either the 

Truth (T) or Falsity (F) value. 

  Despite the fact that the value of indeterminacy is unknown, we presume it by using 

0.5 for both the possibilities of truth and falsity. This truthness makes our study more 

significant .Hence to attain feasibility, the order of GNS is defined as follows 

 

Definition 3.2. Let GNS = (ANS, BNS) be a neutrosophic graph. Then order of GNS is defined  

 

 

 

 

Definition 3.3. Let GNS = (ANS, BNS) be a neutrosophic graph. Then size of GNS is defined  

 

 

 

 

 

Definition 3.4. Let GNS = (ANS, BNS) be a neutrosophic graph and let ud ,  vd ∈ ANS, we say that ud 

dominates vd in GNS if there exists a strong arc between them. A subset DNS ⊆ ANS is said to be 

dominating set if for every vd ∈ AIF - DNS there exists at least one ud ∈ DNS dominates vd. The minimum  

cardinality of a dominating set is called a domination number and is denoted by )( NSNG G . 

Definition 3.6. A dominating set DNS of ANS is said to be a minimal if no proper subset of DNS is a 

dominating set of GNS. 

Example 3.7: Let GNS = (ANS, BNS) be the NSG shown in figure (1) 
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The arcs a2a4 , a4a7 are not strong arcs. 

deg(a1) = (0.4,0.5,0.7), deg(a2) = (0.75,0.75, 1.05), deg(a3) = (0.25,0.25,0.35) , deg(a4) = (0.2,0.25,0.35) , 

deg(a5) =(0.95,0.65,0.85) , deg(a6) =(0.45,0.2,0.2) , deg(a7) =(0.4,0.4,0.6) , deg(a8) = (0.2,0.2,0.3).  

The minimum degree of truth membership value of GNS is  

}/)(min{)( NSddGNS AuudG
NS

 = 0.2 

The minimum degree of indeterminacy membership value of GNS is 

}/)(min{)( NSddGNS AuudG
NS

 = 0.2 

The minimum degree of falsity membership value of GNS is  

}/)(min{)( NSddGNS AuudG
NS

 = 0.2 

The minimum degree of GNS is }/)(min{)( NSddGNS AuudG
NS

 = (0.2,0.2,0.2) 

The maximum degree of truth membership value of GNS is  

}/)(max{)( NSddGNS AuudG
NS

 = 0.95 

The maximum degree of indeterminacy membership value of GNS is 

}/)(max{)( NSddGNS AuudG
NS

 = 0.75 
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The maximum degree of falsity membership value of GNS is  

}/)(max{)( NSddGNS AuudG
NS

 = 1.05 

The maximum degree of GNS is }/)(max{)( NSddGNS AuudG
INS

 =(0.95,0.75,1.05) 

Order of GNS = 5.2248 

 

One of the dominating set is DNS 1 = { a2, a5 ,a7}, since for every vertex ai in ANS - DNS 1  dominated by 

at least one aj  DNS 1 . Hence )(
1

NSNG D = 0.6083+0.7+0.6 = 1.9083 

 Other dominating sets are  

 (ii) DNS2 = {a1, a3, a6, a8} (iii) DNS3 = { a3, a4, a5, a7} (iv)DNS4 = {a1, a3, a5, a7} 

Hence )(
2

NSNG D = 2.6499 , )(
3

NSNG D = 2.5416 and )(
4

NSNG D = 2.45 

Domination number of GNS is  )( NSNG G =1.9083. 

Theorem 3.7: A dominating set DNS of a neutrosophic graph GNS = (ANS, BNS) is minimal if and only if 

for each vertex vd ∈ DNS one of the following conditions holds 

(i)There exists a vertex ud   ANS - DNS  such that }{)( dNSd vDuN   

(ii)vd is an isolate in NSD  

Proof: Suppose DNS is a minimal dominating set of GNS there exists a vertex vd of DNS which does not 

satisfy any of the above conditions. Hence there exists  a vertex ud   ANS - DNS  such that 

}{)( dNSd vDuN  . Furthermore by condition(ii) vd is not an isolate in NSD , then DNS - vd will be 

a minimal dominating set of GNS which is a contradiction to the assumption. 

 

Theorem 3.8: A subset D NS  of ANS of a NSG, GNS = (ANS, BNS) is a dominating then there exists two 

vertices ud , vd   ANS - DNS such that every ud - vd  path  contains at least one vertex of DNS. 

Proof: Suppose DNS is a dominating set of GNS. Since every vertex in ANS - DNS is dominated by at 

least one vertex of DNS, there exists a ud - vd path contains at least one vertex of DNS.  

Theorem 3.9: For any NSG, GNS = (ANS, BNS) with order p 

 (i) )()( NSTNSNG GpG     

(ii) )()( NSINSNG GpG     

(iii) )()( NSFNSNG GpG     

Proof: Let GNS = (ANS, BNS) be a NSG with order p. 

Since pvd

n

i

i 


)(

1

, where vi represents the vertices present in the  strong arc, the no of vertices 

present in a dominating set is less than n. Furthermore, by the definition of )( NST G  , the 

maximum truth membership values of  vi  among all the vertices of  GNS  and by the definition 

of minimal dominating set we have 
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 )()()(

1






n

i

NSTiNSNG GpvdG  

Similarly, we prove )()( NSINSNG GpG   and )()( NSFNSNG GpG   

 

4. Equitable domination of a Neutrosophic graph(NSG) 

 

Definition 4.1. A dominating set DNS of ANS of a neutrosophic graph GNS = (ANS, BNS) is a equitable 

dominating set if for every  ud   ANS - DNS  there exists  ud   vd   BNS  such that  

.1)deg()deg(  dd vu The minimum  cardinality of an equitable dominating set is called an 

equitable domination number and is denoted by )( NSNGef G . 

Definition 4.2. An equitable dominating set DNS of ANS is said to be a minimal if no proper subset 

of DNS is a equitable dominating set of GNS. 

 

Example 4.3. Let GNS = (ANS, BNS) be the NSG shown in figure (2) 

 

 The arcs a1a2, a2a4 , a4a7 are not strong arcs. 

deg(a1) = (0.2,0.25,0.35), deg(a2) = (0.55,0.5,0.7), deg(a3) =(0.25,0.25,0.35) , deg(a4) = (0.2,0.25,0.35) , 

deg(a5) =(0.95,0.65,0.85) , deg(a6) =(0.45,0.2,0.2) , deg(a7) =(0.4,0.4,0.6) , deg(a8) = (0.2,0.2,0.3).  
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One of the  equitable dominating set is Ded-NS 1 = { a2, a4 ,a5 ,a7}, since 1)deg()deg(  ji aa for every 

vertex ai in ANS - Ded-NS 1  there exists aj   Ded-NS 1  such that aiajANS.. Hence )(
1

NSedNGef D  = 

0.6083+0.6666+0.7+0.6 = 2.5749 

Other equitable dominating sets are  

 (ii) DNS2 = {a1, a3, a6, a8}  (iii) DNS3 = { a3, a4, a5, a7} 

Hence )(
2

NSedNGef D  = 2.6499 and )(
3

NSedNGef D  = 2.5416. 

Equitable domination number of GNS is  )( NSedNGef G  = )(
3

NSedNGef D  = 2.5416. 

Domination number of GNS is )(
3

NSedNG D  = 2.5416. 

Theorem 4.4. An equitable dominating set DNS of a neutrosophic graph GNS = (ANS, BNS) is minimal if 

and only if for each vertex vd ∈ DNS one of the following conditions holds 

(i) There exists a vertex ud   ANS - DNS  such that }{)( dNSd vDuN   

(ii) vd is an isolate in NSD  

Proof: Suppose DNS is a minimal equitable dominating set of GNS there exists a vertex vd of DNS 

which does not satisfy any of the above conditions. Hence there exists  a vertex ud   ANS - DNS  

such that }{)( dNSd vDuN  . Furthermore by condition(ii) vd is not an isolate in NSD , then DNS - 

vd will be a minimal equitable dominating set of GNS which is a contradiction to the assumption. 

Theorem 4.5. For any NSG, GNS = (ANS, BNS) 

)()( NSNGedNSNG GG     

Proof: Let Dd  and DNS be the minimal dominating set and minimal equitable dominating set of GNS 

respectively. Let vd ∈ DNS be a vertex which is adjacent to r- number of vertices such that deg(vd) = t, 

where r > t and rest of the vertices in ANS, ANS - vd is adjacent to exactly one vertex say vd . By the 

definition of equitable domination, ANS - vd will be the members of DNS. But vd ∈ Dd is the only 

member of dominating set of GNS. Hence the inequality holds. In the case of proving equality, Let 

HNS be a neutrosophic path P4 . Clearly )( NSNG G .2)(  NSNGed G  
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Let GNS = (ANS, BNS) be the NSG shown in figure (3) 

All arcs are strong. 

Only possible equitable dominating set is Ded-NS = { a1 , a2, a3, a4,  a5 ,a6}, since 1)deg()deg( 1  jaa for 

every j = 2,3,4&5. Hence )( NSedNGef D  = 4 

But the dominating set is DNS = { a1 }, hence )( NSNG D = 0.6666 

By example 4.3, )( NSedNGef G  = )( NSNG D  = 2.5416. 

By example 4.6, )( NSedNGef G   > )( NSNG D . 

Theorem 4.7. If a dominating set Ded- NS  of a NSG, GNS = (ANS, BNS) is a equitable dominating then 

there exists two vertices ud , vd   ANS -Ded- NS such that every ud - vd  path  contains at least one 

vertex of Ded- NS. 

Proof: Suppose Ded- NS is equitable dominating set of GNS. Since every vertex in  

ANS - DNS is equitably dominated by at least one vertex of DNS, there exists a ud - vd  path  contains at 

least one vertex of Ded- NS.  

Theorem 4.8. For any NSG, GNS = (ANS, BNS) with order p 

 (i) )()( NSTNSNGef GpG     

(ii) )()( NSINSNGef GpG     

(iii) )()( NSFNSNGef GpG     
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Proof: Let GNS = (ANS, BNS) be a NSG with order p. 

Since pvd

n

i

i 


)(

1

, where vi represents the vertices present in the  strong arc, the no of vertices 

present in an equitable dominating set is less than n. Furthermore, by the definition of )( NST G  , 

the maximum truth membership values of  vi  among all the vertices of  GNS  and by the 

definition of minimal equitable dominating set we have 

 )()()(

1




 

n

i

NSTiNSNGef GpvdG  

Similarly, we prove )()( NSINSNGef GpG   and )()( NSFNSNGef GpG   

5. Strong and Weak Equitable Domination in NSG 

 

                 The concept strong and weak domination in neutrosophic graph is more difficult 

to handle the values on degree of truth membership, indeterminacy membership and falsity 

membership, as the degree of edge membership values follows from the degree of incident vertex 

membership values as in the order of minimum of degree of truth membership values, minimum of 

degree of indeterminacy values and maximum of degree of falsity membership values respectively.  

To overcome this difficulty as in the concept of strong and weak equitable domination, we use the 

score function of vertex cardinality for each vertex and edge cardinality for each edge. The 

existence of strong and weak equitable domination in a neutrosophic graph is guaranteed on the 

degree of the neutrosophic graph 

Definition 5.1. Let GNS = (ANS, BNS) be a neutrosophic graph. Then the vertex score function sfv  of GNS 

is defined   

 

 

 

Definition 5.2. Let GNS = (ANS, BNS) be a neutrosophic graph. Then vertex score function  sfe  of GNS 

is defined  

 

 

 

 

Definition 5.3. Let ud be a vertex in a NSG, GNS = (ANS, BNS). The degree of a vertex ud is defined as the 

sum of the weight of the score function of strong arcs incident at ud and is denoted by deg(ud). The 

neighbourhood of ud is denoted by  

),/({)( ddNSdd vuAvuN  is a strong arc} 

The minimum degree of GNS is }/)(min{)( NSddGNS AuudG
NS
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The maximum degree of GNS is }/)(max{)( NSddGNS AuudG
INS

  

Definition 5.4. Order of GNS = (ANS, BNS) is the sum of the score function of vertex cardinality of each 

vertex and is denoted by O(GNS) and size of GNS = (ANS, BNS) is the sum of the score function of edge 

cardinality of each edge. 

Definition 5.5. Let GNS = (ANS, BNS) be a neutrosophic graph. For any ud  ,  vd ANS, we say ud  

strongly equitable dominates vd  if   )deg()deg( dd vu   and ud  is a member of equitable dominating set 

.Definition 5.6. Let GNS = (ANS, BNS) be a neutrosophic graph. For any ud  ,  vd ANS, we say ud weakly 

equitable dominates vd  if )deg()deg( dd vu   and  ud  is a member of equitable dominating set . 

Definition 5.7. A dominating set Ded-NSS  of ANS of a neutrosophic graph GNS = (ANS, BNS) is a strong 

equitable dominating set if for every  vd   ANS - Ded-NSS  there exists at least one ud   Ded-NS  such 

that  ud  strongly equitable dominates vd .The minimum cardinality of a strong equitable 

dominating set is called a strong equitable domination number and is denoted by )( NS
S

NGed G . 

Definition 5.8. A dominating set Ded-NS W of ANS of a neutrosophic graph GNS = (ANS, BNS) is a weak 

equitable dominating set if for every  vd   ANS - Ded-NS W  there exists at least one ud   Ded-NS W  

such that  ud  weakly equitable dominates vd .The minimum  cardinality of a weak equitable 

dominating set is called a weak equitable domination number and is denoted by )( NS
W

NGef G . 

Example 5.9. Let GNS = (ANS, BNS) be the NSG represented in figure1. The following figure 4 is the 

Neutrosophic graph with score function of vertex cardinality and edge cardinality. 

 

 

The arcs a1a2, a2a5 , a4a7 are not strong arcs. 
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deg(a1) = 0.575, deg(a2) = 1.1999, deg(a3) = 0.5916, deg(a4) = 0.575, deg(a5) = 1.9249, deg(a6) =  0.7166, 

deg(a7) =  1.2 , deg(a8) =  0.6.  

Strong equitable dominating set is Ded-NS S = { a2, a4 ,a6 ,a8}, since ,1)deg()deg(  dd vu for every 

vertex vd in ANS - Ded-NS S  there exists at least one ud   DNS  such that  ud  strongly equitable 

dominates vd . Hence )(
S

NSedNGef D  = 0.6083+0.7666+0.7333+0.6666= 2.7748 

Weak equitable dominating set is Ded-NS W = { a1, a3 ,a5 ,a7}, since ,1)deg()deg(  dd vu for every 

vertex vd in ANS - Ded-NS W  there exists at least one ud   DNS  such that  ud  weakly equitable 

dominates vd . Hence )(
W

NSedNGef D  = 0.575+0.575+0.7+0.6= 2.45 

Theorem 5.10. For any NSG, GNS = (ANS, BNS) 

 )()( NS
S

NGedNS
W

NGed GG     or )()( NS
S

NGedNS
W

NGed GG     

Proof. Let DNS w and DNS S be the weak and strong equitable dominating set of GNS. 

Case(i) Let the number of vertices present in the strong and weak domination is same then by the 

definition of strong and weak equitable domination, we have )()( NS
S

NGefNS
W

NGef GG    . 

Example 5.8  shows  that  )()( NS
S

NGefNS
W

NGef GG     

Case(ii) Let the number of vertices present in the weak domination is more than by strong (with 

nearly equal membership values) then we have )()( NS
S

NGefNS
W

NGef GG    . 

Case(iii) Let the arcs present in the given neutrosophic graph is strong with equal number of 

vertices present in strong and weak equitable dominating set then we have 

)()( NS
S

NGefNS
W

NGef GG     

Theorem 5.9. For any NSG, GNS = (ANS, BNS) 

(i) )()()( NSNSNS
S

NGed GGOG   

(ii) )()()( NSNSNS
S

NGed GGOG    

Proof: Let GNS = (ANS, BNS) be a NSG. 

Since pvd
n

i

i 


)(
1

, where vi represents the vertices present in the  strong arc, the number of 

vertices present in an equitable  dominating set is less than n. Furthermore, by the definition of 

)( NST G  , the maximum truth membership values of  vi  among all the vertices of  GNS  and by 

the definition of minimal strong equitable dominating set we have 
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 )()()(

1




 

n

i

NSi
S

NSNGed GpvdG  

Similarly, we prove )()( NS
S

NSNGef GpG    . 

Theorem 5.10. For any NSG, GNS = (ANS, BNS) 

(i) )()()( NSNSNS
W

NGed GGOG   

(ii) )()()( NSNSNS
W

NGed GGOG    

Proof:  Theorem 5.10. follows from Theorem 5.9. 

 

Theorem 5.11. For any NSG, GNS = (ANS, BNS) 

(i) )1)(/()()(  NSNSNS
S

NGed GGOG  

(ii) )1)(/()()(  NSNSNS
W

NGed GGOG  

Proof: Let GNS = (ANS, BNS) be a NSG and its strong equitable domination number be )( NS
S

NGef G  

       )()()(

1




 

n

i

iNS
S

NSefNS vdGGO   )()( NSNS
S

NSed GG    

                              )()( NSNS
S

NSed GG    

                    )( NSGO  )()( NSNS
S

NSed GG   + )( NS
S

NSed G  

                             )1)()((   NSNS
S

NSed GG  

        Hence  )1)(/()()(  NSNSNS
S

NGed GGOG  

 Similarly prove )1)(/()()(  NSNSNS
W

NGed GGOG  

6.Conclusions  Strong and weak equitable domination in a neutrosophic graph is difficult to 

initiate, as the NSG has degrees of truth membership value, degrees of indeterminacy membership 

value, and degrees of truth membership value. Comparing these three types of degrees of 

membership values of one vertex to another will help us identify strong and weak equitable 

dominating vertices. But in implementing this, the research focus is very narrowly focused on strong 

and weak equitable domination. Hence, we conclude that, using the vertex cardinality score 

function, we can convert all these three degree of membership values into a single value and then 

proceed with the concept of strong and weak equitable domination. In future, we have planned to 

continue the work on paired equitable domination of NSG using strong arcs and furthermore to find 
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relationships between domination, equitable domination and paired equitable domination of 

neutrosophic graphs.   
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Abstract: Owing to a wide range of applications in various fields, the neutrosophic theory initiated 

by Smarandache has been highly featured in research. This concept led to the evolution of 

neutrosophic topological spaces which is being explored extensively. The focus of this paper is to 

introduce and study the concept of neutrosophic Υ − neighbourhood and neutrosophic 

Υ −continuity in neutrosophic topological spaces. Further, we define the notion of neutrosophic 

Υ −irresolute functions. We also observe their attributes and relationship with functions existing in 

literature. Moreover, we present some equivalent conditions for the existence of these functions in 

which the concept of neighbourhood has been wielded.     

Keywords: neutrosophic Υ − open, neutrosophic Υ − closed, neutrosophic Υ − neighbourhood, 

neutrosophic Υ −continuous, neutrosophic Υ −irrseolute. 

 

 

1. Introduction 

 Several theories were developed as mathematical approaches to rectify the difficulties pertained 

to uncertainty. Accordingly, the concept of neutrosophy initiated by Florentine Smarandache[1] 

evolved as a branch of philosophy to study the scope and nature of neutralities. This induced the 

concept of neutrosophic logic which further led to the conceptualization of neutrosophic sets as a 

generalization of fuzzy sets and intuitionistic fuzzy sets. A neutrosophic set is characterized by three 

independent components namely membership, indeterminacy and non-membership functions 

defined on the non-standard unit interval. Later, Salama and Albowi[3] in 2012 induced the concept 

of neutrosophic sets in topological spaces which originated as neutrosophic topological spaces. In 

addition, some basic notions and properties of topological structures such as interior, closure, 

subspaces and separation axioms have been presented in [4-8]. G. C. Ray and Sudeep[9] proposed 

the definitions of neutrosophic point and neighbourhood structure. They have also explored the 

relation of quasi coincidence between neutrosophic sets and characterized the neutrosophic 

topological spaces by means of quasi-neighbourhood. Meanwhile, Salama et.al[10] in 2014, studied 

the concept of continuous functions in neutrosophic topological spaces. Further, P. Iswarya and                    

mailto:reenastephany@gmail.com
mailto:ksyaamini@gmail.com
mailto:ksyaamini@gmail.com
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K. Bageerathi[11], in 2016 introduced the concept of semi-open sets in neutrosophic topological 

spaces and later the notion of semi-continuous functions[12,13] were also studied. Dhavaseelan and 

Saeid Jafari[14], in 2017 established the idea of generalized closed sets and continuous functions in 

neutrosophic topological spaces. C. Maheshwari and S. Chandrasekar[15] defined the notion of 

gb-closed sets and continuous functions in 2019. Moreover, some novel concepts of continuous 

functions and other topological structures have been defined and studied by various authors[16-18] 

in the subsequent years. Recently, the authors[19] of this paper introduced and analyzed a new class 

of neutrosophic sets namely neutrosophic Υ −open sets and neutrosophic Υ −closed sets. The main 

objective of this paper is to introduce and study the concepts of neutrosophic Υ −neighbourhood, 

neutrosophic Υ − continuous and irresolute functions in neutrosophic topological spaces. The 

characterization and composition of these functions have been presented through results and 

counter examples. Further, various equivalent conditions for the existence of these concepts have 

also been observed.  

        The structure of the paper is as follows: section 2 comprises of the prerequisites essential for 

this work. Section 3 establishes a novel concept of neighbourhood namely neutrosophic 

Υ −neighbourhood and Υ −quasi neighbourhood. Section 4 imparts the notion of neutrosophic 

Υ −continuous functions and its attributes. Further, section 5 presents the idea of neutrosophic 

Υ −irresolute functions and the article is ceased with a conclusion in section 6.   

2. Preliminaries 

In this section, we have presented some basic notions and results required for the progression of 

this work. 

Definition 2.1[3]: Let 𝑈 be a non-empty fixed set. A neutrosophic set 𝐿 is an object having the 

form 𝐿 = {< 𝑢, 𝜇𝐿(𝑢), 𝜎𝐿(𝑢), 𝛾𝐿(𝑢) >: 𝑢 ∈ 𝑈}  where 𝜇𝐿(𝑢), 𝜎𝐿(𝑢)and 𝛾𝐿 (𝑢) represent the degree of 

membership, the degree of indeterminacy and the degree of non-membership respectively of each 

element 𝑢 ∈ 𝑈. A neutrosophic set𝐿 = {< 𝑢, 𝜇𝐿(𝑢), 𝜎𝐿(𝑢), 𝛾𝐿 (𝑢) >: 𝑢 ∈ 𝑈}  can be identified to an 

ordered triple < 𝜇𝐿 , 𝜎𝐿 , 𝛾𝐿 > in [1,0]  on 𝑈. 

Definition 2.2[3]: Let 𝑈  be a non-empty set and 𝐿 = {< 𝑢, 𝜇𝐿(𝑢), 𝜎𝐿(𝑢), 𝛾𝐿(𝑢) >: 𝑢 ∈ 𝑈},                        

𝑀 = {< 𝑢, 𝜇𝑀(𝑢), 𝜎𝑀(𝑢), 𝛾𝑀(𝑢) >: 𝑢 ∈ 𝑈} be neutrosophic sets in 𝑈. Then 

(i) 𝐿 ⊆ 𝑀 if 𝜇𝐿(𝑢) ≤ 𝜇𝑀(𝑢), 𝜎𝐿(𝑢) ≤ 𝜎𝑀(𝑢) and 𝛾𝐿(𝑢) ≥ 𝛾𝑀(𝑢) for all 𝑢 ∈ 𝑈. 

(ii) 𝐿 ∪ 𝑀 = {< 𝑢, max{𝜇𝐿(𝑢), 𝜇𝑀(𝑢)}, max{𝜎𝐿(𝑢), 𝜎𝑀(𝑢)}, min{𝛾𝐿 (𝑢), 𝛾𝑀(𝑢)}>:𝑢 ∈ 𝑈} 

(iii) 𝐿 ∩ 𝑀 = {< 𝑢, min{𝜇𝐿(𝑢), 𝜇𝑀(𝑢)}, min{𝜎𝐿(𝑢), 𝜎𝑀(𝑢)}, max{𝛾𝐿 (𝑢), 𝛾𝑀 (𝑢)}>:𝑢 ∈ 𝑈} 

(iv) 𝐿𝑐 = {< 𝑢, 𝛾𝐿 (𝑢), 1 − 𝜎𝐿(𝑢), 𝜇𝐿(𝑢) >: 𝑢 ∈ 𝑈} 

(v) 0𝑁𝑡𝑟
= {< 𝑢, 0,0,1 >: 𝑢 ∈ 𝑈} and 1𝑁𝑡𝑟

= {< 𝑢, 1,1,0 >: 𝑢 ∈ 𝑈} 

Definition 2.3[3]: A neutrosophic topology on a non-empty set 𝑈 is a family 𝜏𝑁𝑡𝑟
 of neutrosophic 

sets in 𝑈 satisfying the following axioms: 

(i) 0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

∈ 𝜏𝑁𝑡𝑟
 

(ii) ⋃𝐿𝑖 ∈ 𝜏𝑁𝑡𝑟
∀{𝐿𝑖: 𝑖 ∈ 𝐼} ⊆ 𝜏𝑁𝑡𝑟

 

(iii) 𝐿1 ∩ 𝐿2 ∈ 𝜏𝑁𝑡𝑟
 for any 𝐿1, 𝐿2 ∈ 𝜏𝑁𝑡𝑟

 

The pair (𝑈, 𝜏𝑁𝑡𝑟
)  is called a neutrosophic topological space. The members of 𝜏𝑁𝑡𝑟

 are called 

neutrosophic open and its complements are called neutrosophic closed. 
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Definition 2.4[5]: A neutrosophic set 𝐿 = {< 𝑢, 𝜇𝐿(𝑢), 𝜎𝐿(𝑢), 𝛾𝐿 (𝑢) >: 𝑢 ∈ 𝑈} is called a neutrosophic 

point if for any element 𝑣 ∈ 𝑈, 𝜇𝐿(𝑣) = 𝑎, 𝜎𝐿(𝑣) = 𝑏, 𝛾𝐿(𝑣) = 𝑐  for 𝑢 = 𝑣  and 𝜇𝐿(𝑣) = 0, 𝜎𝐿(𝑣) =

0, 𝛾𝐿 (𝑣) = 1  for 𝑢 ≠ 𝑣, where 𝑎, 𝑏, 𝑐  are real standard or non standard subsets of [1,0]  . A 

neutrosophic point is denoted by 𝑢𝑎,𝑏,𝑐 .  For the neutrosophic point 𝑢𝑎,𝑏,𝑐 , 𝑢  will be called its 

support.  

Definition 2.5[4]: Let (𝑈, 𝜏𝑁𝑡𝑟
) be a neutrosophic topological space and 𝑆 be a non-empty subset of 

𝑈. Then, a neutrosophic relative topology on S is defined by 

𝜏𝑁𝑡𝑟
𝑆 = {𝐿 ∩ 1𝑁𝑡𝑟

𝑆 ∶ 𝐿 ∈ 𝜏𝑁𝑡𝑟
} 

where 

1𝑁𝑡𝑟
𝑆 = {

< 1,1,0 >, 𝑖𝑓𝑠 ∈ 𝑆
< 0,0,1 >, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Thus, (𝑆, 𝜏𝑁𝑡𝑟
𝑆 ) is called a neutrosophic subspace of (𝑈, 𝜏𝑁𝑡𝑟

). 

Definition 2.6[14]: Let 𝑈  and 𝑉  be two non-empty sets and 𝑓𝑁𝑡𝑟
: 𝑈 ⟶ 𝑉  be a function.                                      

If 𝑀 = {< 𝑣, 𝜇𝑀(𝑣), 𝜎𝑀(𝑣), 𝛾𝑀(𝑣) >: 𝑣 ∈ 𝑉} is a neutrosophic set in 𝑉, then the preimage of 𝑀 under 

𝑓𝑁𝑡𝑟
, denoted by 𝑓𝑁𝑡𝑟

−1(𝑀), is the neutrosophic set in 𝑈 defined by 

𝑓𝑁𝑡𝑟
−1(𝑀) = {< 𝑢, 𝑓𝑁𝑡𝑟

−1(𝜇𝑀)(𝑢), 𝑓𝑁𝑡𝑟
−1(𝜎𝑀)(𝑢), 𝑓𝑁𝑡𝑟

−1(𝛾𝑀)(𝑢) >∶ 𝑢 ∈ 𝑈} 

If 𝐿 = {< 𝑢, 𝜇𝐿(𝑢), 𝜎𝐿(𝑢), 𝛾𝐿(𝑢) >: 𝑢 ∈ 𝑈} is a neutrosophic set in 𝑈, then the image of 𝐿 under 𝑓𝑁𝑡𝑟
, 

denoted by 𝑓𝑁𝑡𝑟
(𝐿), is the neutrosophic set in 𝑉 defined by  

𝑓𝑁𝑡𝑟
(𝐿) = {< 𝑣, 𝑓𝑁𝑡𝑟

(𝜇𝐿)(𝑣), 𝑓𝑁𝑡𝑟
(𝜎𝐿)(𝑣), (1 − 𝑓𝑁𝑡𝑟

(1 − 𝛾𝐿)) (𝑣) > ∶ 𝑣 ∈ 𝑉} where 

𝑓𝑁𝑡𝑟
(𝜇𝐿)(𝑣) = {

𝑠𝑢𝑝𝑢∈𝑓𝑁𝑡𝑟
−1 (𝑣)𝜇𝐿(𝑢),       if 𝑓𝑁𝑡𝑟

−1(𝑣) ≠ ∅

0,                               otherwise
 

𝑓𝑁𝑡𝑟
(𝜎𝐿)(𝑣) = {

𝑠𝑢𝑝𝑢∈𝑓𝑁𝑡𝑟
−1 (𝑣)𝜎𝐿(𝑢),       if 𝑓𝑁𝑡𝑟

−1(𝑣) ≠ ∅

0,                               otherwise
 

(1 − 𝑓𝑁𝑡𝑟
(1 − 𝛾𝐿)) (𝑣) = {

𝑖𝑛𝑓𝑢∈𝑓𝑁𝑡𝑟
−1 (𝑣)𝛾𝐿(𝑢),       if 𝑓𝑁𝑡𝑟

−1(𝑣) ≠ ∅

1,                               otherwise
 

Definition 2.7: Let (𝑈, 𝜏𝑁𝑡𝑟
) and (𝑉, 𝜌𝑁𝑡𝑟

) be neutrosophic topological spaces. Then the function 

𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  is said to be neutrosophic continuous[10] (respectively, neutrosophic 

semi−continuous[12], neutrosophic 𝛼 −continuous[14], neutrosophic 𝛽 −continuous, neutrosophic 

𝑔𝑠 − continuous, neutrosophic 𝑔𝑏 − continuous[15]) if 𝑓𝑁𝑡𝑟
−1(𝑀)  is 𝑁𝑡𝑟 open(respectively 

𝑁𝑡𝑟 semi − open, 𝑁𝑡𝑟𝛼 − open, 𝑁𝑡𝑟𝛽 − open, 𝑁𝑡𝑟𝑔𝑠 − open, 𝑁𝑡𝑟𝑔𝑏 − open) in (𝑈, 𝜏𝑁𝑡𝑟
)  for every 

𝑁𝑡𝑟open set 𝑀 in (𝑉, 𝜌𝑁𝑡𝑟
). 

Definition 2.8[7]: Let 𝑢𝑎,𝑏,𝑐 be a neutrosophic point in a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
). 

Then a neutrosophic set 𝑁 in 𝑈 is said to be neutrosophic neighbourhood(𝑁𝑡𝑟𝑛𝑏ℎ𝑑) of  𝑢𝑎,𝑏,𝑐 if 

there exists a 𝑁𝑡𝑟open set 𝑀 such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑀 ⊆ 𝑁. 

Definition 2.9[6]: A neutrosophic point 𝑢𝑎,𝑏,𝑐 is said to be neutrosophic quasi – coincident with a 

neutrosophic set 𝐿, denoted by 𝑢𝑎,𝑏,𝑐𝑞𝐿 if 𝑢𝑎,𝑏,𝑐 ∉ 𝐿𝑐. If 𝑢𝑎,𝑏,𝑐 is not neutrosophic quasi – coincident 

with 𝐿, we denote it by 𝑢𝑎,𝑏,𝑐�̂�𝐿. 

Definition 2.10[6]: A neutrosophic set 𝑀 is said to be neutrosophic quasi – coincident with a 

neutrosophic set 𝐿, denoted by 𝑀𝑞𝐿 if 𝑀 ⊈ 𝐿𝑐. If 𝑀 is not neutrosophic quasi – coincident with 𝐿, 

we denote it by 𝑀�̂�𝐿. 

Definition 2.11[6]: A neutrosophic set 𝑁  in 𝑈  is said to be neutrosophic quasi- 

neighbourhood(𝑁𝑡𝑟𝑄𝑛𝑏ℎ𝑑) of  𝑢𝑎,𝑏,𝑐 if there exists a 𝑁𝑡𝑟open set 𝑀 such that 𝑢𝑎,𝑏,𝑐𝑞𝑀 ⊆ 𝑁. 
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Definition 2.12[19]:A neutrosophic set 𝐿 of a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
) is said to be 

neutrosophic 𝚼 −open if for every non-empty 𝑁𝑡𝑟 closed set 𝐹 ≠ 1𝑁𝑡𝑟
, 𝐿 ⊆ 𝑁𝑡𝑟𝑐𝑙(𝑁𝑡𝑟𝑖𝑛𝑡(𝐿 ∪ 𝐹)).                                  

The complement of neutrosophic Υ −open set is neutrosophic Υ −closed. The class of neutrosophic 

Υ −open sets in (𝑈, 𝜏𝑁𝑡𝑟
) is denoted by 𝑁𝑡𝑟ΥO(𝑈, 𝜏𝑁𝑡𝑟

). 

Theorem 2.13[19]: The union of an arbitrary collection of 𝑁𝑡𝑟Υ −open sets is also 𝑁𝑡𝑟Υ −open. 

Theorem 2.14[19]: In any neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
), 

(i) Every 𝑁𝑡𝑟open set is 𝑁𝑡𝑟Υ −open. 

(ii) Every 𝑁𝑡𝑟semi−open set is 𝑁𝑡𝑟Υ −open. 

(iii) Every 𝑁𝑡𝑟𝛼 − open set is 𝑁𝑡𝑟Υ −open. 

(iv) Every 𝑁𝑡𝑟Υ −open set is 𝑁𝑡𝑟𝛽 − open. 

(v) Every 𝑁𝑡𝑟Υ −open set is 𝑁𝑡𝑟𝑔𝑠 − open. 

(vi) Every 𝑁𝑡𝑟Υ −open set is 𝑁𝑡𝑟𝑔𝑏 − open. 

Remark 2.15[19]: The above theorem is also true for 𝑁𝑡𝑟Υ −closed sets. 

Theorem 2.16[19]: A neutrosophic set 𝐿 in a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ −

open if and only if for every neutrosophic point 𝑢𝑎,𝑏,𝑐 ∈ 𝐿, there exists a 𝑁𝑡𝑟Υ − open set 𝑀𝑢𝑎,𝑏,𝑐
 

such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑀𝑢𝑎,𝑏,𝑐
⊆ 𝐿. 

Definition 2.17[19]: Let be a neutrosophic topological space and 𝐿 be a neutrosophic set in 𝑈. 

(i) The neutrosophic 𝚼 −interior of 𝐿 is the union of all 𝑁𝑡𝑟Υ −open sets contained in 𝐿. 

It is denoted by 𝑁𝑡𝑟Υ𝑖𝑛𝑡(𝐿). 

(ii) The neutrosophic 𝚼 − closure of 𝐿  is the intersection of all 𝑁𝑡𝑟Υ − closed sets 

containing 𝐿. It is denoted by 𝑁𝑡𝑟Υ𝑐𝑙(𝐿). 

3. Neutrosophic 𝚼 −neighbourhood 

This section conceptualizes the idea of neutrosophic Υ −neighbourhood and neutrosophic 

Υ −quasi neighbourhood. Moreover, their characterizations have been depicted through results and 

illustrations. 

Definition 3.1: Let 𝑢𝑎,𝑏,𝑐 be a neutrosophic point in a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
). Then 

a neutrosophic set 𝑁 in 𝑈 is said to be a   

(i) neutrosophic 𝚼 −neighbourhood(𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑) of  𝑢𝑎,𝑏,𝑐  if there exists a 𝑁𝑡𝑟Υ − open set 𝑀 

such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑀 ⊆ 𝑁. 

(ii) neutrosophic 𝚼 −quasi neighbourhood(𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑) of  𝑢𝑎,𝑏,𝑐 if there exists a 𝑁𝑡𝑟Υ − open 

set 𝑀 such that 𝑢𝑎,𝑏,𝑐𝑞𝑀 ⊆ 𝑁.  

Example 3.2: Let 𝑈 = {𝑎, 𝑏} and 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿} where𝐿 = {< 𝑎, 0.7,0.5,0.3 >< 𝑏, 0.2,0.7,0.1 >}. 

Now, let us consider a neutrosophic point 𝑎0.1,0.2,0.5  in 𝑈.  Then, there is a 𝑁𝑡𝑟Υ − open  set         

𝑀 = {< 𝑎, 0.8,0.8,0.1 >< 𝑏, 0.5,0.9,0.1 >}  such that 𝑎0.1,0.2,0.5 ∈ 𝑀 ⊆ 𝑁  where𝑁 = {< 𝑎, 0.9,0.8,0.1 >  

< 𝑏, 0.6,0.9,0.1 >}. Hence 𝑁 is a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑎0.1,0.2,0.5. 

Example 3.3: Let 𝑈 = {𝑎, 𝑏} and 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿} where𝐿 = {< 𝑎, 0.8,0.7,0.1 >< 𝑏, 0.4,0.9,0.1 >}. 

Now, let us consider a neutrosophic point 𝑎0.2,0.9,0.7  in 𝑈.  Then, there is a 𝑁𝑡𝑟Υ − open  set        

𝑀 = {< 𝑎, 0.9,0.8,0.1 >< 𝑏, 0.7,0.9,0.1 >}  such that 𝑎0.2,0.9,0.7𝑞𝑀 ⊆ 𝑁  where 𝑁 = {< 𝑎, 0.9,0.9,0.1 >  

< 𝑏, 0.8,0.9,0.1 >}. Hence 𝑁 is a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 of 𝑎0.2,0.9,0.7. 

Theorem 3.4: Every 𝑁𝑡𝑟𝑛𝑏ℎ𝑑 (resp. 𝑁𝑡𝑟𝑄𝑛𝑏ℎ𝑑)  of a neutrosophic point 𝑢𝑎,𝑏,𝑐 in a neutrosophic 

topological space (𝑈, 𝜏𝑁𝑡𝑟
) is a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑(resp.𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑) of 𝑢𝑎,𝑏,𝑐 . 
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Proof: Let 𝑁 be a 𝑁𝑡𝑟𝑛𝑏ℎ𝑑 (resp. 𝑁𝑡𝑟𝑄𝑛𝑏ℎ𝑑) of a neutrosophic point 𝑢𝑎,𝑏,𝑐 in 𝑈. Then, there exists 

a 𝑁𝑡𝑟open set 𝑀 in 𝑈 such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑀 ⊆ 𝑁 (resp. 𝑢𝑎,𝑏,𝑐𝑞𝑀 ⊆ 𝑁). Now, by theorem 2.14, 𝑀 is 

𝑁𝑡𝑟Υ − open in 𝑈. Hence there exists a 𝑁𝑡𝑟Υ − open set 𝑀 in 𝑈 such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑀 ⊆ 𝑁  (resp. 

𝑢𝑎,𝑏,𝑐𝑞𝑀 ⊆ 𝑁). Therefore 𝑁 is a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑(resp. 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑) of 𝑢𝑎,𝑏,𝑐 . 

The following example substantiates that the converse of the above-stated theorem need not be true. 

Example 3.5: (i) Let 𝑈 = {𝑎, 𝑏}  and 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿}  where 𝐿 = {< 𝑎, 0.6,0.6,0.2 >< 𝑏, 0.2,0.9, 

0.1 >}. Now, let us consider a neutrosophic point 𝑎0.7,0.1,0.5 in 𝑈. Then there is a 𝑁𝑡𝑟Υ − open set 

𝑀 = {< 𝑎, 0.8,0.7,0.2 >< 𝑏, 0.3,0.9,0.1 >}  such that 𝑎0.7,0.1,0.5 ∈ 𝑀 ⊆ 𝑁  where 𝑁 = {< 𝑎, 0.8,0.9, 

0.1 >< 𝑏, 0.4,0.9,0.1 >}.  This implies 𝑁  is a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑  of 𝑎0.7,0.1,0.5.  However, 𝑁  is not a 

𝑁𝑡𝑟𝑛𝑏ℎ𝑑 of 𝑎0.7,0.1,0.5.  

(ii) Let 𝑈 = {𝑎, 𝑏}  and 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿}  where 𝐿 = {< 𝑎, 0.7,0.9,0.1 >< 𝑏, 0.5,0.7,0.4 >} . Now,                  

let us consider a neutrosophic point 𝑎0.1,0.1,0.7  in 𝑈.  Then there is a 𝑁𝑡𝑟Υ − open  set                               

𝑀 = {< 𝑎, 0.8,0.9,0.1 >< 𝑏, 0.7,0.7,0.2 >}  such that 𝑎0.1,0.1,0.7𝑞𝑀 ⊆ 𝑁  where 𝑁 = {< 𝑎, 0.9,0.9,0.1 >  

< 𝑏, 0.9,0.8,0.1 >}. This implies 𝑁 is a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 of 𝑎0.1,0.1,0.7. However, 𝑁  is not a 𝑁𝑡𝑟𝑛𝑏ℎ𝑑            

of 𝑎0.1,0.1,0.7. 

Theorem 3.6: A neutrosophic set 𝐿 in a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ − open if 

and only if for every neutrosophic point 𝑢𝑎,𝑏,𝑐 ∈ 𝐿, 𝐿 is a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 .  

Proof: Let 𝐿  be 𝑁𝑡𝑟Υ − open in 𝑈. Also, for each 𝑢𝑎,𝑏,𝑐 ∈ 𝐿, 𝐿 ⊆ 𝐿.  Then, by definition 3.1(i), it 

follows that 𝐿 is a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 . Conversely, assume that for every 𝑢𝑎,𝑏,𝑐 ∈ 𝐿, 𝐿 is a 𝑁𝑡𝑟Υ −

𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 . Then, there exists a 𝑁𝑡𝑟Υ − open set 𝑀 in 𝑈 such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑀 ⊆ 𝐿. Therefore, 

by theorem 2.16, 𝐿 is 𝑁𝑡𝑟Υ − open. 

Theorem 3.7: Every 𝑁𝑡𝑟Υ − open set 𝐿 in a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
) is a 𝑁𝑡𝑟Υ −

𝑄𝑛𝑏ℎ𝑑 of every neutrosophic point quasi−coincident with 𝐿. 

Proof: The proof is obvious since for every neutrosophic point 𝑢𝑎,𝑏,𝑐𝑞𝐿,  we have                    

𝑢𝑎,𝑏,𝑐𝑞𝐿 ⊆ 𝐿. 

Theorem 3.8: Let 𝐿  be a 𝑁𝑡𝑟Υ − closed  set in a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
)  and 

𝑢𝑎,𝑏,𝑐𝑞𝐿𝑐 . Then, there exists a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 𝑀 of  𝑢𝑎,𝑏,𝑐 such that 𝐿�̂�𝑀. 

Proof:  Since 𝐿  is 𝑁𝑡𝑟Υ − closed  in 𝑈, 𝐿𝑐  is 𝑁𝑡𝑟Υ − open in 𝑈  such that 𝑢𝑎,𝑏,𝑐𝑞𝐿𝑐 .  Then, by 

theorem 3.7, 𝐿𝑐  is a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 . Hence there exists a 𝑁𝑡𝑟Υ − open set 𝑀 in 𝑈 such 

that 𝑢𝑎,𝑏,𝑐𝑞𝑀 ⊆ 𝐿𝑐 . Again, by theorem 3.7, 𝑀 is a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 . Also, since 𝑀 ⊆ 𝐿𝑐 , 𝐿�̂�𝑀. 

Hence there exists a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 𝑀 of  𝑢𝑎,𝑏,𝑐 such that 𝐿�̂�𝑀.  

Theorem 3.9: Let 𝐿 be a neutrosophic set in a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
). Then a 

neutrosophic point 𝑢𝑎,𝑏,𝑐 ∈ 𝑁𝑡𝑟Υ𝑐𝑙(𝐿)  if and only if every 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑  of 𝑢𝑎,𝑏,𝑐  is 

quasi-coincident with 𝐿. 

Proof: Let 𝑢𝑎,𝑏,𝑐 ∈ 𝑁𝑡𝑟Υ𝑐𝑙(𝐿) and 𝑁 be a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 such that 𝑁�̂�𝐿. Then, there exists 

a 𝑁𝑡𝑟Υ − open  set 𝑀  such that 𝑢𝑎,𝑏,𝑐𝑞𝑀 ⊆ 𝑁.  Since 𝑁�̂�𝐿, 𝑁 ⊆ 𝐿𝑐  and therefore 𝑀 ⊆ 𝐿𝑐  which 

implies 𝐿 ⊆ 𝑀𝑐 .  Now, 𝑀𝑐  is a 𝑁𝑡𝑟Υ − closed  set containing 𝐿  and 𝑁𝑡𝑟Υ𝑐𝑙(𝐿)  is the smallest 

𝑁𝑡𝑟Υ − closed set containing 𝐿. Hence 𝑁𝑡𝑟Υ𝑐𝑙(𝐿) ⊆ 𝑀𝑐 . Also, since 𝑢𝑎,𝑏,𝑐𝑞𝑀, 𝑢𝑎,𝑏,𝑐 ∉ 𝑀𝑐. Therefore 

𝑢𝑎,𝑏,𝑐 ∉ 𝑁𝑡𝑟Υ𝑐𝑙(𝐿) which is a contradiction. Conversely, suppose every 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐  is 

quasi-coincident with 𝐿. If 𝑢𝑎,𝑏,𝑐 ∉ 𝑁𝑡𝑟Υ𝑐𝑙(𝐿), then there exists a 𝑁𝑡𝑟Υ − closed set 𝑀  such that 

𝐿 ⊆ 𝑀 and 𝑢𝑎,𝑏,𝑐 ∉ 𝑀. This implies that 𝑢𝑎,𝑏,𝑐𝑞𝑀𝑐 , where 𝑀𝑐 is a 𝑁𝑡𝑟Υ − open set in 𝑈. Now, by 

theorem 3.7, 𝑀𝑐 is a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 such that 𝑀𝑐�̂�𝐿 which is a contradiction. 
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4. Neutrosophic 𝚼 −continuous functions 

Topology is constantly intrigued by issues that are either directly or indirectly related to 

continuity.  Accordingly, continuity plays a prominent role in the characterization of topological 

spaces. This section deals with the origination of neutrosophic Υ − continuous  functions in 

neutrosophic topological spaces. Further, we have observed their properties and discussed the 

composition of functions.  

Definition 4.1: Let (𝑈, 𝜏𝑁𝑡𝑟
) and (𝑉, 𝜌𝑁𝑡𝑟

) be neutrosophic topological spaces. Then the function 

𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) is said to be neutrosophic 𝚼 − continuous if 𝑓𝑁𝑡𝑟

−1(𝑀) is 𝑁𝑡𝑟Υ − open in 

(𝑈, 𝜏𝑁𝑡𝑟
) for every 𝑁𝑡𝑟open set 𝑀 in (𝑉, 𝜌𝑁𝑡𝑟

). 

Example 4.2: Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}, 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿, 𝑀} and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑁}  where      

𝐿 = {< 𝑎, 0.6,0.3,0.5 >< 𝑏, 0.5,0.8,0.4 >}, 𝑀 = {< 𝑎, 0.5,0.2,0.7 >< 𝑏, 0.2,0.7,0.9 >}  and 𝑁 = {< 𝑥, 0.9, 

0.9,0.1 >< 𝑦, 0.8,0.9,0.2 >}.  Consider the collections 𝒫 = {𝑃 ∶ 𝐿 ⊂ 𝑃, 𝑀𝑐 ⊂ 𝑃} and 𝒬 = {𝑄 ∶ 𝐿 ⊂

𝑄; 𝑄 ⊄ 𝑀𝑐 ; 𝑀𝑐 ⊄ 𝑄} of neutrosophic sets in 𝑈. Then 𝑁𝑡𝑟Υ𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝑀, 𝒫, 𝒬, 1𝑁𝑡𝑟
}. Define 

𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  as 𝑓𝑁𝑡𝑟

(𝑎) = 𝑦  and 𝑓𝑁𝑡𝑟
(𝑏) = 𝑥.  Then, 𝑓𝑁𝑡𝑟

−1(𝑁) = {< 𝑎, 0.8,0.9,0.2 >              

< 𝑏, 0.9,0.9,0.1 >} ∈ 𝒫  which implies 𝑓𝑁𝑡𝑟
−1(𝑁)  is 𝑁𝑡𝑟Υ − open  in 𝑈.  Hence 𝑓𝑁𝑡𝑟

 is 

𝑁𝑡𝑟Υ −continuous.  

Theorem 4.3: Every 𝑁𝑡𝑟continuous function is 𝑁𝑡𝑟Υ − continuous. 

Proof: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a 𝑁𝑡𝑟continuous function. Let 𝑀 be a 𝑁𝑡𝑟open set in 𝑉. 

Since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟continuous, 𝑓𝑁𝑡𝑟

−1(𝑀) is 𝑁𝑡𝑟open in 𝑈. By theorem 2.14, 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟Υ − open in 

𝑈. Hence 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous. 

The following example substantiates that the converse of the above-stated theorem need not be true. 

Example 4.4: Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}, 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿, 𝑀} and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑁}  where 𝐿 =

{< 𝑎, 0.6,0.4,0.9 >< 𝑏, 0.5,0.7,1 >}, 𝑀 = {< 𝑎, 0.7,0.6,0.8 >< 𝑏, 0.6,0.8,0.9 >}  and 𝑁 = {< 𝑥, 0.6, 

0.9,0.3 >< 𝑦, 0.7,0.6,0.2 >}.  Consider the collections 𝒫 = {𝑃 ∶ 𝑀 ⊂ 𝑃, 𝐿𝑐 ⊂ 𝑃} and 𝒬 = {𝑄 ∶ 𝑀 ⊂

𝑄; 𝑄 ⊄ 𝐿𝑐 ; 𝐿𝑐 ⊄ 𝑄} of neutrosophic sets in 𝑈.Then 𝑁𝑡𝑟Υ𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝑀, 𝒫, 𝒬, 1𝑁𝑡𝑟
}.  Define 

𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  as 𝑓𝑁𝑡𝑟

(𝑎) = 𝑦  and 𝑓𝑁𝑡𝑟
(𝑏) = 𝑥.  Then, 𝑓𝑁𝑡𝑟

−1(𝑁) = {< 𝑎, 0.7,0.6,0.2 >             

< 𝑏, 0.6,0.9,0.3 >} ∈ 𝒬 which implies 𝑓𝑁𝑡𝑟
−1(𝑁) is 𝑁𝑡𝑟Υ − open but not 𝑁𝑡𝑟open in 𝑈. Hence 𝑓𝑁𝑡𝑟

 is 

𝑁𝑡𝑟Υ − continuous but not 𝑁𝑡𝑟continuous. 

Theorem 4.5: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a function between two neutrosophic topological 

spaces. 

(i) If 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟semi − continuous, then 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 

(ii) If 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟𝛼 − continuous, then 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 

(iii) If 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, then 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟𝛽 − continuous. 

(iv) If 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, then 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟𝑔𝑠 − continuous. 

(v) If 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, then 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟𝑔𝑏 − continuous. 

Proof: Proof is obvious. 

However, the ensuing examples reveal that the converse of these implications is not necessarily true 

in general. 

Example 4.6: Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}, 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿} and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑀}  where         

𝐿 = {< 𝑎, 0.2,0.4,0.7 >< 𝑏, 0.1,0.2,0.3 >} , 𝑀 = {< 𝑥, 0,0.1,0.6 >< 𝑦, 0.1,0.2,0.9 >}.  Consider the 

collections 𝒫 = {𝑃 ∶  0𝑁𝑡𝑟
⊂ 𝑃 ⊂ 𝐿}, 𝒬 = {𝑄 ∶  𝐿 ⊄ 𝑄 ; 𝑄 ⊄ 𝐿 ; 𝑄 ⊂ 𝐿𝑐}  and ℛ = {𝑅 ∶ 𝐿 ⊂ 𝑅 ⊂ 𝐿𝑐} 

of neutrosophic sets in 𝑈. Then, 𝑁𝑡𝑟𝛼𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿}, 𝑁𝑡𝑟𝑆𝑂(𝑈, 𝜏𝑁𝑡𝑟

) = {0𝑁𝑡𝑟
, 𝐿, 𝐿𝑐 , ℛ, 1𝑁𝑡𝑟

} 
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and 𝑁𝑡𝑟Υ𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝐿𝑐 , 𝒫, 𝒬, ℛ, 1𝑁𝑡𝑟
}. Define 𝑓𝑁𝑡𝑟

: (𝑈, 𝜏𝑁𝑡𝑟
) ⟶ (𝑉, 𝜌𝑁𝑡𝑟

)  as 𝑓𝑁𝑡𝑟
(𝑎) = 𝑦  and 

𝑓𝑁𝑡𝑟
(𝑏) = 𝑥. Then, 𝑓𝑁𝑡𝑟

−1(𝑀) = {< 𝑎, 0.1,0.2,0.9 >< 𝑏, 0,0.1,0.6 >} ∈ 𝒫 which implies 𝑓𝑁𝑡𝑟
−1(𝑀)is 𝑁𝑡𝑟Υ −

open . However, it is neither 𝑁𝑡𝑟semi − open  nor 𝑁𝑡𝑟𝛼 − open  in 𝑈.  Hence 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −

continuous but not 𝑁𝑡𝑟semi − continuous and 𝑁𝑡𝑟𝛼 − continuous. 

Example 4.7: Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}, 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿} and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑀}  where                

𝐿 = {< 𝑎, 0.7,0.8,0.6 >< 𝑏, 0.7,0.7,0.5 >} and 𝑀 = {< 𝑥, 0.5,0.7,0.2 >< 𝑦, 0.6,0.9,0.1 >}.  Consider                

the collections 𝒫 = {𝑃 ∶  𝐿𝑐 ⊂ 𝑃 ⊂ 𝐿},  𝒬 = {𝑄 ∶ 𝐿 ⊂ 𝑄 ⊂ 1𝑁𝑡𝑟
},  ℛ = {𝑅 ∶   𝐿𝑐 ⊄ 𝑅 ; 𝑅 ⊄ 𝐿𝑐  ; 𝑅 ⊂

𝐿},   𝒮 = {𝑆 ∶  𝐿𝑐 ⊄ 𝑆 ; 𝑆 ⊄ 𝐿𝑐  ; 𝑆 ⊄ 𝐿},  𝒯 = {𝑇 ∶  𝐿𝑐 ⊂ 𝑇 ⊄ 𝐿}  and 𝒲 = {𝑊 ∶  0𝑁𝑡𝑟
⊂ 𝑊 ⊂ 𝐿𝑐}  of 

neutrosophic sets in 𝑈.  Then, 𝑁𝑡𝑟𝛽𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝒫, 𝒬, ℛ, 𝒮, 𝒯, 1𝑁𝑡𝑟
}, 𝑁𝑡𝑟𝑔𝑠𝑂(𝑈, 𝜏𝑁𝑡𝑟

) =

{0𝑁𝑡𝑟
, 𝐿, 𝒬, ℛ, 𝒮, 𝒲, 1𝑁𝑡𝑟

},  𝑁𝑡𝑟𝑔𝑏𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝒫, 𝒬, ℛ, 𝒮, 𝒯, 𝒲, 1𝑁𝑡𝑟
}  and 𝑁𝑡𝑟Υ𝑂(𝑈, 𝜏𝑁𝑡𝑟

) =

{0𝑁𝑡𝑟
, 𝐿, 𝒬, 1𝑁𝑡𝑟

}. Define 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) as 𝑓𝑁𝑡𝑟

(𝑎) = 𝑥  and 𝑓𝑁𝑡𝑟
(𝑏) = 𝑦.  Then, 𝑓𝑁𝑡𝑟

−1(𝑀) =                

{< 𝑎, 0.5,0.7,0.2 >< 𝑏, 0.6,0.9,0.1 >} ∈ 𝒮  which implies 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟𝛽 − open , 𝑁𝑡𝑟𝑔𝑠 − open  and 

𝑁𝑡𝑟𝑔𝑏 − open  but not 𝑁𝑡𝑟Υ − open . Hence 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟𝛽 − continuous , 𝑁𝑡𝑟𝑔𝑠 − continuous  and 

𝑁𝑡𝑟𝑔𝑏 − continuous but not 𝑁𝑡𝑟Υ − continuous.  

Theorem 4.8: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a function between two neutrosophic topological 

spaces. Then the following statements are equivalent: 

(i) 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous. 

(ii) The inverse image of every 𝑁𝑡𝑟closed set in (𝑉, 𝜌𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ −closed in (𝑈, 𝜏𝑁𝑡𝑟

). 

(iii) 𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆ 𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)) for every neutrosophic set 𝐿 in 𝑈. 

(iv) 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟

−1(𝑁𝑡𝑟𝑐𝑙(𝑀)) for every neutrosophic set 𝑀 in 𝑉. 

Proof:  

(i)⟹(ii) Let 𝑓𝑁𝑡𝑟
 be a 𝑁𝑡𝑟Υ − continuous function and 𝑁  be a 𝑁𝑡𝑟closed set in 𝑉. Then 𝑁𝑐  is 

𝑁𝑡𝑟open in 𝑉. Since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, 𝑓𝑁𝑡𝑟

−1(𝑁𝑐) is 𝑁𝑡𝑟Υ − open in  𝑈. That is, (𝑓𝑁𝑡𝑟
−1(𝑁))𝑐 

is 𝑁𝑡𝑟Υ − open in  𝑈. Hence 𝑓𝑁𝑡𝑟
−1(𝑁) is 𝑁𝑡𝑟Υ − closed in  𝑈. 

(ii)⟹(i) Let 𝑀 be 𝑁𝑡𝑟open in 𝑉. Then 𝑀𝑐  is 𝑁𝑡𝑟closed in 𝑉. By assumption, 𝑓𝑁𝑡𝑟
−1(𝑀𝑐) is 𝑁𝑡𝑟Υ −

closed in  𝑈.  That is, (𝑓𝑁𝑡𝑟
−1(𝑀))𝑐 is 𝑁𝑡𝑟Υ − closed in  𝑈.  Hence 𝑓𝑁𝑡𝑟

−1(𝑀)  is 𝑁𝑡𝑟Υ − open  in  𝑈. 

Therefore, 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous. 

(ii)⟹(iii) Let 𝐿 be a neutrosophic set in 𝑈. Now, 𝐿 ⊆ 𝑓𝑁𝑡𝑟
−1 (𝑓𝑁𝑡𝑟

(𝐿)) implies 𝐿 ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)) 

Since 𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝐿)) is 𝑁𝑡𝑟closed in 𝑉, by assumption 𝑓𝑁𝑡𝑟

−1 (𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝐿))) is a 𝑁𝑡𝑟Υ − closed set 

containing 𝐿. Also, 𝑁𝑡𝑟Υ𝑐𝑙(𝐿) is the smallest 𝑁𝑡𝑟Υ − closed set containing 𝐿. Hence, 𝑁𝑡𝑟Υ𝑐𝑙(𝐿) ⊆

𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)). Therefore, 𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆ 𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)). 

(iii)⟹(ii) Let 𝑁 be a 𝑁𝑡𝑟closed set in 𝑉. Then, by assumption  

𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑁))) ⊆ 𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝑓𝑁𝑡𝑟

−1(𝑁))) ⊆ 𝑁𝑡𝑟𝑐𝑙(𝑁) = 𝑁  implies 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
−1(𝑁)) ⊆ 𝑓𝑁𝑡𝑟

−1(𝑁).  

Also,  𝑓𝑁𝑡𝑟
−1(𝑁) ⊆ 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑁)). Hence 𝑓𝑁𝑡𝑟
−1(𝑁) is 𝑁𝑡𝑟Υ − closed in 𝑈. 
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(iii)⟹(iv) Let 𝑀 be a neutrosophic set in 𝑉 and let 𝐿 = 𝑓𝑁𝑡𝑟
−1(𝑀). By assumption, 𝑓𝑁𝑡𝑟

(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆

𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝐿)) = 𝑁𝑡𝑟𝑐𝑙(𝑀).This implies 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑐𝑙(𝑀)). 

(iv)⟹(iii) Let 𝑀 = 𝑓𝑁𝑡𝑟
(𝐿). Then, by assumption, 𝑁𝑡𝑟Υ𝑐𝑙(𝐿) = 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑐𝑙(𝑀)) ⊆

𝑓𝑁𝑡𝑟
−1 (𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿))). This implies 𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆ 𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)). 

(iv) ⟹ (i) Let 𝑀  be 𝑁𝑡𝑟open  in 𝑉.  Then 𝑀𝑐  is 𝑁𝑡𝑟closed  in 𝑉.  By assumption, 𝑓𝑁𝑡𝑟
−1(𝑀𝑐) =

𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑐𝑙(𝑀𝑐)) ⊇ 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑀𝑐)).  Also, we know that 𝑓𝑁𝑡𝑟
−1(𝑀𝑐) ⊆ 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑀𝑐)).  Hence 

𝑓𝑁𝑡𝑟
−1(𝑀𝑐) = 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑀𝑐)). Therefore, 𝑓𝑁𝑡𝑟
−1(𝑀𝑐)  is 𝑁𝑡𝑟Υ − closed  in 𝑈.  That is, (𝑓𝑁𝑡𝑟

−1(𝑀))
𝑐

 is 

𝑁𝑡𝑟Υ − closed in 𝑈. Hence 𝑓𝑁𝑡𝑟
−1(𝑀)  is 𝑁𝑡𝑟Υ − open in 𝑈. Therefore 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 

Example 4.9: (i) Consider the topological spaces and the functions defined in example 4.2. Here 𝑓𝑁𝑡𝑟
 

is 𝑁𝑡𝑟Υ − continuous  and 𝑁𝑡𝑟Υ𝐶(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿𝑐 , 𝑀𝑐 , 𝒫′, 𝒬′, 1𝑁𝑡𝑟
} where 𝒫′ = {𝑃𝑐 ∶ 𝑃 ∈ 𝒫}  and 

𝒬′ = {𝑄𝑐 ∶ 𝑄 ∈ 𝒬}. Now, 𝑓𝑁𝑡𝑟
−1(𝑁𝑐) = {< 𝑎, 0.2 0.1, 0.8 >< 𝑏, 0.1,0.1,0.9 >} ∈ 𝒫′.  Hence the inverse 

image of every 𝑁𝑡𝑟closed set in (𝑉, 𝜌𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ − closed in (𝑈, 𝜏𝑁𝑡𝑟

) if 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous.  

(ii) Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}, 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿} and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑀}  where 𝐿 = {< 𝑎, 0.2,0.4, 

0.9 >< 𝑏, 0.3,0.8,0.7 >}  and   𝑀 = {< 𝑥, 0.9,0.7,0.1 >< 𝑦, 0.8,0.9,0.2 >}.  Consider the collections 

𝒫 = {𝑃 ∶ 𝑃 ⊂ 𝐿, 𝑃 ⊂ 𝐿𝑐} and 𝒬 = {𝑄 ∶ 𝑄 ⊂ 𝐿𝑐 ; 𝑄 ⊄ 𝐿;  𝐿 ⊄ 𝑄}  of neutrosophic sets in 𝑈.  Then 

𝑁𝑡𝑟Υ𝐶(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿𝑐 , 𝒫, 𝒬, 1𝑁𝑡𝑟
}. Now, define 𝑓𝑁𝑡𝑟

: (𝑈, 𝜏𝑁𝑡𝑟
) ⟶ (𝑉, 𝜌𝑁𝑡𝑟

)  as 𝑓𝑁𝑡𝑟
(𝑎) = 𝑥  and 

𝑓𝑁𝑡𝑟
(𝑏) = 𝑦.  Then, 𝑓𝑁𝑡𝑟

−1(𝑀𝑐) = {< 𝑎, 0.1,0.3,0.9 >< 𝑏, 0.2,0.1,0.8 >} ∈ 𝒫. Now, 𝑓𝑁𝑡𝑟
−1(𝑀𝑐) = (𝑓𝑁𝑡𝑟

−1(𝑀))𝑐 

is 𝑁𝑡𝑟Υ − closed implies 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟Υ − open. Hence 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous if the inverse 

image of every 𝑁𝑡𝑟closed set in (𝑉, 𝜌𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ − closed in (𝑈, 𝜏𝑁𝑡𝑟

).    

Theorem 4.10: A function 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ − continuous  if and only if  

𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑖𝑛𝑡(𝑀)) ⊆ 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟

−1(𝑀)) for every neutrosophic set 𝑀 in 𝑉. 

Proof: Let 𝑓𝑁𝑡𝑟
 be a 𝑁𝑡𝑟Υ − continuous  function and 𝑀  be a neutrosophic set in 𝑉.  Then 

𝑁𝑡𝑟𝑖𝑛𝑡(𝑀)  is 𝑁𝑡𝑟open  in 𝑉.  By assumption, 𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑖𝑛𝑡(𝑀))  is 𝑁𝑡𝑟Υ − open  in 𝑈.  Now, 

𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑖𝑛𝑡(𝑀)) ⊆ 𝑓𝑁𝑡𝑟

−1(𝑀)  and 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟
−1(𝑀))  is the largest 𝑁𝑡𝑟Υ − open  set contained in 

𝑓𝑁𝑡𝑟
−1(𝑀) . Hence 𝑓𝑁𝑡𝑟

−1(𝑁𝑡𝑟𝑖𝑛𝑡(𝑀)) ⊆ 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟
−1(𝑀)).  Conversely, let 𝑀  be a 𝑁𝑡𝑟open  set in 𝑉. 

Then 𝑓𝑁𝑡𝑟
−1(𝑀) = 𝑓𝑁𝑡𝑟

−1(𝑁𝑡𝑟𝑖𝑛𝑡(𝑀)) ⊆ 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟
−1(𝑀)).  Also, 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟

−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑀). This 

implies 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟Υ − open in 𝑈. Hence 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 

Theorem 4.11: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a function between two neutrosophic topological 

spaces. Then the following statements are equivalent: 

(i) 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous. 

(ii) For each neutrosophic point 𝑢𝑎,𝑏,𝑐 , the inverse image of every 𝑁𝑡𝑟𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐) is 𝑁𝑡𝑟Υ −

𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐. 

(iii) For each neutrosophic point 𝑢𝑎,𝑏,𝑐in 𝑈  and every 𝑁𝑡𝑟𝑛𝑏ℎ𝑑 𝑁  of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐), there exists a 

𝑁𝑡𝑟Υ −open set 𝐿 in 𝑈 such that 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 and 𝑓𝑁𝑡𝑟
(𝐿) ⊆ 𝑁. 
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Proof:  

(i)⟹(ii) Let 𝑢𝑎,𝑏,𝑐 be a neutrosophic point in 𝑈 and let 𝑁 be a 𝑁𝑡𝑟𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐). Then there 

exists a 𝑁𝑡𝑟 open set 𝑀  in 𝑉  such that 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐) ∈ 𝑀 ⊆ 𝑁.  Since 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous , 

𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟Υ −open in 𝑈. Also, 𝑢𝑎,𝑏,𝑐 ∈ 𝑓𝑁𝑡𝑟

−1 (𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐)) ∈ 𝑓𝑁𝑡𝑟

−1(𝑀) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁). Hence there exists 

a 𝑁𝑡𝑟Υ −open set 𝑓𝑁𝑡𝑟
−1(𝑀) such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑓𝑁𝑡𝑟

−1(𝑀) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁). This implies 𝑓𝑁𝑡𝑟

−1(𝑁) is 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 

of 𝑢𝑎,𝑏,𝑐 . 

(ii)⟹(iii) Let 𝑢𝑎,𝑏,𝑐 be a neutrosophic point in 𝑈 and let 𝑁 be a 𝑁𝑡𝑟𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐). Then by 

assumption, 𝑓𝑁𝑡𝑟
−1(𝑁) is  𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑  of 𝑢𝑎,𝑏,𝑐 . Then there exists a 𝑁𝑡𝑟Υ −open set 𝐿 in 𝑈  such 

that 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁).  Thus 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 and 𝑓𝑁𝑡𝑟

(𝐿) ⊆ 𝑓𝑁𝑡𝑟
(𝑓𝑁𝑡𝑟

−1(𝑁)) ⊆ 𝑁. 

(iii) ⟹ (i) Let 𝑀  be a 𝑁𝑡𝑟 open set in 𝑉  and let 𝑢𝑎,𝑏,𝑐 ∈ 𝑓𝑁𝑡𝑟
−1(𝑀).  Since 𝑀  is 𝑁𝑡𝑟 open and 

𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐) ∈ 𝑀, 𝑀 is a 𝑁𝑡𝑟𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟

(𝑢𝑎,𝑏,𝑐). Hence it follows (iii) that there exists a 𝑁𝑡𝑟Υ −open 

set 𝐿 in 𝑈 such that 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 and 𝑓𝑁𝑡𝑟
(𝐿) ⊆ 𝑀. This implies 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 ⊆ 𝑓𝑁𝑡𝑟

−1 (𝑓𝑁𝑡𝑟
(𝐿)) ⊆ 𝑓𝑁𝑡𝑟

−1(𝑀). 

By theorem 2.16, 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟Υ −open in 𝑈. Therefore 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 

Remark 4.12: The statements of theorem 4.8, 4.10 and 4.11 are all equivalent. 

Definition 4.13: A neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
) is said to be 𝑵𝒕𝒓𝑻𝚼 −space if every 

𝑁𝑡𝑟Υ −open set in (𝑈, 𝜏𝑁𝑡𝑟
) is 𝑁𝑡𝑟open.  

Remark 4.14: The composition of two 𝑁𝑡𝑟Υ − continuous functions need not be 𝑁𝑡𝑟Υ − continuous. 

Example 4.15: Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}and 𝑊 = {𝑝, 𝑞}. Consider the neutrosophic topologies 𝜏𝑁𝑡𝑟
=

{0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝐿}, 𝜌𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝑀}  and 𝜉𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑁}  where 𝐿 = {< 𝑎, 0.3,0.4,0.9 >   <

𝑏, 0.4,0.5,0.8 >},  𝑀 = {< 𝑥, 0.9,0.6,0.3 >< 𝑦, 0.8,0.5,0.4 >}  and 𝑁 = {< 𝑝, 0.9,0.6,0.1 >< 𝑞, 0.9,0.7 

0.2 >}. Consider the collections 𝒫 = {𝑃 ∶  0𝑁𝑡𝑟
⊂ 𝑃 ⊂ 𝐿}, 𝒬 = {𝑄 ∶ 𝐿 ⊂ 𝑄 ⊂ 𝐿𝑐}, ℛ = {𝑅 ∶ 𝑅 ⊄ 𝐿; 𝐿 ⊄

𝑅; 𝑅 ⊂ 𝐿𝑐} of neutrosophic sets in 𝑈 and 𝒮 = {𝑆 ∶ 𝑀 ⊂ 𝑆 ⊂ 1𝑁𝑡𝑟
}, the collection of neutrosophic sets 

in 𝑉.  Then, 𝑁𝑡𝑟Υ𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝐿𝑐 , 𝒫, 𝒬, ℛ, 1𝑁𝑡𝑟
}  and 𝑁𝑡𝑟Υ𝑂(𝑉, 𝜌𝑁𝑡𝑟

) = {0𝑁𝑡𝑟
, 𝑀, 𝒮, 1𝑁𝑡𝑟

}.  

Define 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) as 𝑓𝑁𝑡𝑟

(𝑎) = 𝑥 and 𝑓𝑁𝑡𝑟
(𝑏) = 𝑦. Then 𝑓𝑁𝑡𝑟

−1(𝑀) = {< 𝑎, 0.9,0.6,0.3 > 

< 𝑏, 0.8,0.9,0.4 >} is 𝑁𝑡𝑟Υ −open in (𝑈, 𝜏𝑁𝑡𝑟
). Also, define  𝑔𝑁𝑡𝑟

: (𝑉, 𝜌𝑁𝑡𝑟
) ⟶ (𝑊, 𝜉𝑁𝑡𝑟

) as 𝑔𝑁𝑡𝑟
(𝑥) =

𝑞 and 𝑔𝑁𝑡𝑟
(𝑦) = 𝑝. Then 𝑔𝑁𝑡𝑟

−1 (𝑁) = {< 𝑥, 0.9,0.7,0.2 >< 𝑦, 0.9,0.6,0.1 >} ∈ 𝒮 which implies 𝑔𝑁𝑡𝑟
−1 (𝑁) 

is 𝑁𝑡𝑟Υ −open in (𝑉, 𝜌𝑁𝑡𝑟
). This implies that both 𝑓𝑁𝑡𝑟

 and 𝑔𝑁𝑡𝑟
 are 𝑁𝑡𝑟Υ − continuous. Now, let                     

𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

: (𝑈, 𝜏𝑁𝑡𝑟
) ⟶ (𝑊, 𝜉𝑁𝑡𝑟

)  be the composition of two 𝑁𝑡𝑟Υ − continuous  functions. Then, 

𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

 is not 𝑁𝑡𝑟Υ − continuous since (𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

)
−1

(𝑁) = 𝑓𝑁𝑡𝑟
−1 (𝑔𝑁𝑡𝑟

−1 (𝑁)) = {< 𝑎, 0.9,0.7,0.2 ><

𝑏, 0.9,0.6,0.1 >} is not 𝑁𝑡𝑟Υ −open in (𝑈, 𝜏𝑁𝑡𝑟
). 

Theorem 4.16: Let (𝑈, 𝜏𝑁𝑡𝑟
), (𝑉, 𝜌𝑁𝑡𝑟

)  and (𝑊, 𝜉𝑁𝑡𝑟
)  be neutrosophic topological space and                     

let (𝑉, 𝜌𝑁𝑡𝑟
) be 𝑁𝑡𝑟𝑇Υ −space. Then the composition 𝑔𝑁𝑡𝑟

∘ 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑊, 𝜉𝑁𝑡𝑟
) of two 𝑁𝑡𝑟Υ −

continuous  functions 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  and 𝑔𝑁𝑡𝑟

: (𝑉, 𝜌𝑁𝑡𝑟
) ⟶ (𝑊, 𝜉𝑁𝑡𝑟

)  is 𝑁𝑡𝑟Υ −

continuous. 

Proof: Let 𝑁 be any 𝑁𝑡𝑟open set in 𝑊. Since 𝑔𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, 𝑔𝑁𝑡𝑟

−1 (𝑁) is 𝑁𝑡𝑟Υ −open in 

𝑉.  Then, by assumption 𝑔𝑁𝑡𝑟
−1 (𝑁)  is 𝑁𝑡𝑟 open in 𝑉.  Also, since 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous , 

𝑓𝑁𝑡𝑟
−1 (𝑔𝑁𝑡𝑟

−1 (𝑁)) = (𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

)
−1

(𝑁) is  𝑁𝑡𝑟Υ −open in 𝑈. Hence 𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 
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Theorem 4.17: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a 𝑁𝑡𝑟Υ − continuous function and 𝑔𝑁𝑡𝑟

: (𝑉, 𝜌𝑁𝑡𝑟
) ⟶

(𝑊, 𝜉𝑁𝑡𝑟
) be a 𝑁𝑡𝑟continuous function. Then their composition 𝑔𝑁𝑡𝑟

∘ 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑊, 𝜉𝑁𝑡𝑟
)is 

𝑁𝑡𝑟Υ − continuous. 

Proof: Let 𝑁 be any 𝑁𝑡𝑟open set in 𝑊. Since 𝑔𝑁𝑡𝑟
 is 𝑁𝑡𝑟continuous, 𝑔𝑁𝑡𝑟

−1 (𝑁) is 𝑁𝑡𝑟open in 𝑉.Also, 

since 𝑔𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, 𝑓𝑁𝑡𝑟

−1 (𝑔𝑁𝑡𝑟
−1 (𝑁)) = (𝑔𝑁𝑡𝑟

∘ 𝑓𝑁𝑡𝑟
)

−1
(𝑁)  is 𝑁𝑡𝑟Υ − open in 𝑈.  Hence   

𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 

Theorem 4.18: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a 𝑁𝑡𝑟Υ − continuous function where (𝑈, 𝜏𝑁𝑡𝑟

) is a 

𝑁𝑡𝑟𝑇Υ −space. If 𝑆 is a subset of 𝑈, then the restriction 𝑓𝑁𝑡𝑟
|𝑆 ∶ (𝑆, 𝜏𝑁𝑡𝑟

𝑆 ) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) is also 𝑁𝑡𝑟Υ −

continuous. 

Proof: Let 𝑀 be a 𝑁𝑡𝑟open set in 𝑉. Since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, 𝑓𝑁𝑡𝑟

−1(𝑀) is 𝑁𝑡𝑟Υ −open in 𝑈. 

Now, since 𝑈 is a 𝑁𝑡𝑟𝑇Υ −space, 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟open in 𝑈. Hence 𝑓𝑁𝑡𝑟

|𝑆
−1(𝑀) = 𝑓𝑁𝑡𝑟

−1(𝑀) ∩ 1𝑁𝑡𝑟
𝑆  is 

𝑁𝑡𝑟 open in 𝑆.  By theorem 2.14,  𝑓𝑁𝑡𝑟
|𝑆

−1(𝑀)  is 𝑁𝑡𝑟Υ − open in 𝑆.  Hence 𝑓𝑁𝑡𝑟
|𝑆  is 𝑁𝑡𝑟Υ −

continuous. 

5. Neutrosophic 𝚼 −irresolute functions 

Analogous to the previous section, this segment deals with the concept of neutrosophic Υ −

irresolute functions and its behavior. 

Definition 5.1: Let (𝑈, 𝜏𝑁𝑡𝑟
) and (𝑉, 𝜌𝑁𝑡𝑟

) be neutrosophic topological spaces. Then the function 

𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  is said to be neutrosophic Υ − irresolute if 𝑓𝑁𝑡𝑟

−1(𝑀)  is 𝑁𝑡𝑟Υ − open  in 

(𝑈, 𝜏𝑁𝑡𝑟
) for every 𝑁𝑡𝑟Υ − open set 𝑀 in (𝑉, 𝜌𝑁𝑡𝑟

). 

Example 5.2: Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}, 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿}  and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑀}  where         

𝐿 = {< 𝑎, 0.5,0.6,0.3 >< 𝑏, 0.6,0.7,0.2 >}  and 𝑀 = {< 𝑥, 0.5,0.7,0.3 >< 𝑦, 0.8,0.7,0.2 >}.  Also, 

consider the collections 𝒫 = {𝑃 ∶ 𝐿 ⊂ 𝑃 ⊂ 1𝑁𝑡𝑟
} and 𝒬 = {𝑄 ∶ 𝑀 ⊂ 𝑄 ⊂ 1𝑁𝑡𝑟

} of neutrosophic sets in 

𝑈  and 𝑉  respectively. Then, 𝑁𝑡𝑟Υ𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝒫, 1𝑁𝑡𝑟
}  and 𝑁𝑡𝑟Υ𝑂(𝑉, 𝜌𝑁𝑡𝑟

) = {< 0𝑁𝑡𝑟
, 𝑀, 

𝒬, 1𝑁𝑡𝑟
}.  Now, let us define 𝑓𝑁𝑡𝑟

: (𝑈, 𝜏𝑁𝑡𝑟
) ⟶ (𝑉, 𝜌𝑁𝑡𝑟

)  as 𝑓𝑁𝑡𝑟
(𝑎) = 𝑥 and 𝑓𝑁𝑡𝑟

(𝑏) = 𝑦. 

Then,𝑓𝑁𝑡𝑟
−1(𝑀) = {< 𝑎, 0.5,0.7,0.3 >< 𝑏, 0.8,0.7,0.2 >} ∈ 𝒫 and for each 𝑄 ∈ 𝒬, there exists some 𝑃 ∈

𝒫 such that 𝑓𝑁𝑡𝑟
−1(𝑄) = 𝑃. Hence the inverse image of every 𝑁𝑡𝑟Υ − open set in 𝑉 is 𝑁𝑡𝑟Υ − open in 

𝑈. Therefore 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −irresolute. 

Theorem 5.3: Every 𝑁𝑡𝑟Υ −irresolute function is 𝑁𝑡𝑟Υ − continuous. 

Proof: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a 𝑁𝑡𝑟Υ −irresolute function and 𝑀 be a 𝑁𝑡𝑟open set in 𝑉. 

Then, by theorem 2.14, 𝑀 is 𝑁𝑡𝑟Υ − open in 𝑉. Since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −irreolsute, 𝑓𝑁𝑡𝑟

−1(𝑀) is 𝑁𝑡𝑟Υ −

open in 𝑈. Hence 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous.  

The following example substantiates that the converse of the above-stated theorem need not be true. 

Example 5.4: Let 𝑈 = {𝑎, 𝑏},  𝑉 = {𝑥, 𝑦},  𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿}  and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑀}  where         

𝐿 = {< 𝑎, 0.1,0.3,0.7 >< 𝑏, 0.3,0.2,0.8 >} and 𝑀 = {< 𝑥, 0.7,0.7,0.1 >< 𝑦, 0.8,0.8,0.3 >}. Consider the 

collections 𝒫 = {𝑃 ∶  0𝑁𝑡𝑟
⊂ 𝑃 ⊂ 𝐿}, 𝒬 = {𝑄 ∶  𝐿 ⊄ 𝑄 ; 𝑄 ⊄ 𝐿 ; 𝑄 ⊂ 𝐿𝑐}  and ℛ = {𝑅 ∶ 𝐿 ⊂ 𝑅 ⊂ 𝐿𝑐} 

of neutrosophic sets in 𝑈.  Then, 𝑁𝑡𝑟Υ𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝐿𝑐 , 𝒫, 𝒬, ℛ, 1𝑁𝑡𝑟
}. Now, let us define 

𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) as 𝑓𝑁𝑡𝑟

(𝑎) = 𝑥 and 𝑓𝑁𝑡𝑟
(𝑏) = 𝑦. Then,𝑓𝑁𝑡𝑟

−1(𝑀) = {< 𝑎, 0.7,0.7,0.1 >< 𝑏, 0.8, 

0.8,0.3 >} = 𝐿𝑐 which implies 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −continuous. However, the inverse image of a 𝑁𝑡𝑟Υ −

open  set 𝑆 = {< 𝑥, 0.8,0.7,0.1 >< 𝑦, 0.9,0.8,0.2 >}  in 𝑉  is not 𝑁𝑡𝑟Υ − open  in 𝑈.  Hence 𝑓𝑁𝑡𝑟
 is 

𝑁𝑡𝑟Υ − continuous but not 𝑁𝑡𝑟Υ −irresolute.  
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Theorem 5.5: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a 𝑁𝑡𝑟Υ − continuous function where (𝑉, 𝜌𝑁𝑡𝑟

) is a 

𝑁𝑡𝑟𝑇Υ −space. Then 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −irresolute.  

Proof: Let 𝑀 be 𝑁𝑡𝑟Υ − open in 𝑉. Then, by assumption 𝑀 is 𝑁𝑡𝑟open in 𝑉. Since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −

continuous, 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟Υ − open in 𝑈. Hence 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ −irresolute. 

Theorem 5.6: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a function between two neutrosophic topological 

spaces. Then the following statements are equivalent: 

(i) 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −irresolute. 

(ii) The inverse image of every 𝑁𝑡𝑟Υ − closed set in (𝑉, 𝜌𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ − closed in (𝑈, 𝜏𝑁𝑡𝑟

). 

(iii) 𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆ 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)) for every neutrosophic set 𝐿 in 𝑈. 

(iv) 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟

−1(𝑁𝑡𝑟Υ𝑐𝑙(𝑀)) for every neutrosophic set 𝑀 in 𝑉. 

(v) 𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟Υ𝑖𝑛𝑡(𝑀)) ⊆ 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟

−1(𝑀)) for every neutrosophic set 𝑀 in 𝑉. 

(vi) For each neutrosophic point 𝑢𝑎,𝑏,𝑐 , the inverse image of every 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐) is 

𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐. 

(vii) For each neutrosophic point 𝑢𝑎,𝑏,𝑐in 𝑈 and every 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑𝑁 of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐), there exists a 

𝑁𝑡𝑟Υ −open set 𝐿 in 𝑈 such that 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 and 𝑓𝑁𝑡𝑟
(𝐿) ⊆ 𝑁. 

Proof:  

(i)⟹(ii) Let 𝑓𝑁𝑡𝑟
 be a 𝑁𝑡𝑟Υ −irresolute function and 𝑁  be a 𝑁𝑡𝑟Υ − closed set in 𝑉. Then 𝑁𝑐  is 

𝑁𝑡𝑟Υ − open  in 𝑉.  Since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − irresolute, 𝑓𝑁𝑡𝑟

−1(𝑁𝑐)  is 𝑁𝑡𝑟Υ − open  in  𝑈.  That is, 

(𝑓𝑁𝑡𝑟
−1(𝑁))𝑐   is 𝑁𝑡𝑟Υ − open in  𝑈. Hence 𝑓𝑁𝑡𝑟

−1(𝑁) is 𝑁𝑡𝑟Υ − closed in  𝑈. 

(ii)⟹(i) Let 𝑀 be 𝑁𝑡𝑟Υ − open in 𝑉. Then 𝑀𝑐 is 𝑁𝑡𝑟Υ − closed in 𝑉. By assumption, 𝑓𝑁𝑡𝑟
−1(𝑀𝑐) is 

𝑁𝑡𝑟Υ − closed in  𝑈. That is, (𝑓𝑁𝑡𝑟
−1(𝑀))𝑐 is 𝑁𝑡𝑟Υ − closed in  𝑈. Hence 𝑓𝑁𝑡𝑟

−1(𝑀) is 𝑁𝑡𝑟Υ − open in  

𝑈. Therefore, 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −irresolute. 

(ii)⟹(iii) Let 𝐿 be a neutrosophic set in 𝑈. Now, 𝐿 ⊆ 𝑓𝑁𝑡𝑟
−1 (𝑓𝑁𝑡𝑟

(𝐿)) ⟹ 𝐿 ⊆ 𝑓𝑁𝑡𝑟
−1 (𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿))). 

Since 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝐿))  is 𝑁𝑡𝑟Υ − closed  in 𝑉,  by assumption 𝑓𝑁𝑡𝑟

−1 (𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝐿)))  is a 𝑁𝑡𝑟Υ −

closed set containing 𝐿.  Also, 𝑁𝑡𝑟Υ𝑐𝑙(𝐿)  is the smallest 𝑁𝑡𝑟Υ − closed set containing 𝐿. Hence, 

𝑁𝑡𝑟Υ𝑐𝑙(𝐿) ⊆ 𝑓𝑁𝑡𝑟
−1 (𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿))). Therefore, 𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆ 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)). 

(iii) ⟹ (ii) Let 𝑁  be a 𝑁𝑡𝑟Υ − closed  set in 𝑉.  Then, by assumption 𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑁))) ⊆

𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝑓𝑁𝑡𝑟

−1(𝑁))) ⊆ 𝑁𝑡𝑟Υ𝑐𝑙(𝑁) = 𝑁  implies 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
−1(𝑁)) ⊆ 𝑓𝑁𝑡𝑟

−1(𝑁).   Also,  𝑓𝑁𝑡𝑟
−1(𝑁) ⊆

𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
−1(𝑁)). Hence 𝑓𝑁𝑡𝑟

−1(𝑁) is 𝑁𝑡𝑟Υ − closed in 𝑈. 

(iii)⟹(iv) Let 𝑀 be a neutrosophic set in 𝑉 and let 𝐿 = 𝑓𝑁𝑡𝑟
−1(𝑀). By assumption, 𝑓𝑁𝑡𝑟

(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆

𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝐿)) = 𝑁𝑡𝑟Υ𝑐𝑙(𝑀).This implies 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟Υ𝑐𝑙(𝑀)). 
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(iv)⟹(iii) Let 𝑀 = 𝑓𝑁𝑡𝑟
(𝐿). Then, by assumption, 𝑁𝑡𝑟Υ𝑐𝑙(𝐿) = 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟Υ𝑐𝑙(𝑀)) 

= 𝑓𝑁𝑡𝑟
−1 (𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿))). This implies 𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆ 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)). 

(iv)⟺(v) This can be proved by taking complements. 

(v)⟹(i) Let 𝑀 be a 𝑁𝑡𝑟Υ − open set in 𝑉. Then 𝑓𝑁𝑡𝑟
−1(𝑀) = 𝑓𝑁𝑡𝑟

−1(𝑁𝑡𝑟Υ𝑖𝑛𝑡(𝑀)) ⊆ 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟
−1(𝑀)). 

Also, 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟
−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟

−1(𝑀). This implies 𝑓𝑁𝑡𝑟
−1(𝑀)  is 𝑁𝑡𝑟Υ − open  in 𝑈.  Hence 𝑓𝑁𝑡𝑟

 is 

𝑁𝑡𝑟Υ −irresolute. 

(i)⟹(vi) Let 𝑢𝑎,𝑏,𝑐 be a neutrosophic point in 𝑈 and let 𝑁 be a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐). Then 

there exists a 𝑁𝑡𝑟Υ − open  set 𝑀  in 𝑉  such that 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐) ∈ 𝑀 ⊆ 𝑁.  Since 𝑓𝑁𝑡𝑟

 is 

𝑁𝑡𝑟Υ −irresolute, 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟Υ − open in 𝑈. Also, 𝑢𝑎,𝑏,𝑐 ∈ 𝑓𝑁𝑡𝑟

−1 (𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐)) ∈ 𝑓𝑁𝑡𝑟

−1(𝑀) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁). 

Hence there exists a 𝑁𝑡𝑟Υ − open  set 𝑓𝑁𝑡𝑟
−1(𝑀)  such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑓𝑁𝑡𝑟

−1(𝑀) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁).  This implies 

𝑓𝑁𝑡𝑟
−1(𝑁) is 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 . 

(vi)⟹(vii) Let 𝑢𝑎,𝑏,𝑐 be a neutrosophic point in 𝑈 and let 𝑁 be a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐). Then 

by assumption, 𝑓𝑁𝑡𝑟
−1(𝑁) is  𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 . Then there exists a 𝑁𝑡𝑟Υ − open set 𝐿 in 𝑈 such 

that 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁).  Thus 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 and 𝑓𝑁𝑡𝑟

(𝐿) ⊆ 𝑓𝑁𝑡𝑟
(𝑓𝑁𝑡𝑟

−1(𝑁)) ⊆ 𝑁. 

(vii)⟹(i) Let 𝑀 be a 𝑁𝑡𝑟Υ − open set in 𝑉 and let 𝑢𝑎,𝑏,𝑐 ∈ 𝑓𝑁𝑡𝑟
−1(𝑀). Since 𝑀 is 𝑁𝑡𝑟Υ − open and 

𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐) ∈ 𝑀, 𝑀 is a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟

(𝑢𝑎,𝑏,𝑐). Hence it follows from (vii) that there exists a 

𝑁𝑡𝑟Υ − open  set 𝐿  in 𝑈  such that 𝑢𝑎,𝑏,𝑐 ∈ 𝐿  and 𝑓𝑁𝑡𝑟
(𝐿) ⊆ 𝑀.  This implies 𝑢𝑎,𝑏,𝑐 ∈ 𝐿  ⊆

𝑓𝑁𝑡𝑟
−1 (𝑓𝑁𝑡𝑟

(𝐿)) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑀).  By theorem 3.6, 𝑓𝑁𝑡𝑟

−1(𝑀)  is 𝑁𝑡𝑟Υ − open  in 𝑈.  Therefore 𝑓𝑁𝑡𝑟
 is 

𝑁𝑡𝑟Υ −irresolute. 

Example 5.7: (i) Consider the topological spaces and the function 𝑓𝑁𝑡𝑟
 defined in example 5.2. Here 

𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − irresolute and 𝑁𝑡𝑟Υ𝐶(𝑈, 𝜏𝑁𝑡𝑟

) = {0𝑁𝑡𝑟
, 𝐿𝑐 , 𝒫′, 1𝑁𝑡𝑟

}, 𝑁𝑡𝑟Υ𝐶(𝑉, 𝜌𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝑀𝑐 , 𝒬′ , 1𝑁𝑡𝑟
} 

where 𝒫′ = {𝑃𝑐 ∶ 𝑃 ∈ 𝒫}  and 𝒬′ = {𝑄𝑐 ∶ 𝑄 ∈ 𝒬}.  Now, 𝑓𝑁𝑡𝑟
−1(𝑀𝑐) = {< 𝑎, 0.3,0.3,0.5 >< 𝑏, 0.2,0.3, 

0.8 >} ∈ 𝒫′  and for each 𝑄 ∈ 𝒬′ ,  there exists some 𝑃 ∈ 𝒫′  such that 𝑓𝑁𝑡𝑟
−1(𝑄) = 𝑃.  Hence the                        

inverse image of every 𝑁𝑡𝑟Υ − closed  set in (𝑉, 𝜌𝑁𝑡𝑟
)  is 𝑁𝑡𝑟Υ − closed  in (𝑈, 𝜏𝑁𝑡𝑟

)  if 𝑓𝑁𝑡𝑟
 is 

𝑁𝑡𝑟Υ −irresolute.           

(ii) Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}, 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿} and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑀}  where 𝐿 = {< 𝑎, 0.7,0.5, 

0.5 >< 𝑏, 0.8,0.6,0.4 >}  and   𝑀 = {< 𝑥, 0.8,0.6,0.4 >< 𝑦, 0.9,0.7,0.1 >}.  Consider the collections 

𝒫 = {𝑃 ∶ 0𝑁𝑡𝑟
⊂ 𝑃 ⊂ 𝐿𝑐}  and 𝒬 = {𝑄 ∶ 0𝑁𝑡𝑟

⊂ 𝑄 ⊂ 𝑀𝑐}  of neutrosophic sets in 𝑈  and 𝑉 

respectively. Then, 𝑁𝑡𝑟Υ𝐶(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿𝑐 , 𝒫, 1𝑁𝑡𝑟
} and 𝑁𝑡𝑟Υ𝐶(𝑉, 𝜌𝑁𝑡𝑟

) = {0𝑁𝑡𝑟
, 𝑀𝑐, 𝒬, 1𝑁𝑡𝑟

}.           

Now, define 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  as 𝑓𝑁𝑡𝑟

(𝑎) = 𝑥  and 𝑓𝑁𝑡𝑟
(𝑏) = 𝑦.  Then, 𝑓𝑁𝑡𝑟

−1(𝑀𝑐) =           

{< 𝑎, 0.1,0.3,0.9 >< 𝑏, 0.2,0.1,0.8 >} ∈ 𝒫  and for each 𝑄 ∈ 𝒬,  there exists some 𝑃 ∈ 𝒫  such that 

𝑓𝑁𝑡𝑟
−1(𝑄) = 𝑃.  Now, 𝑓𝑁𝑡𝑟

−1(𝑀𝑐) = (𝑓𝑁𝑡𝑟
−1(𝑀))𝑐  is 𝑁𝑡𝑟Υ − closed  implies 𝑓𝑁𝑡𝑟

−1(𝑀)  is 𝑁𝑡𝑟Υ − open . 

Similarly, we can prove that the inverse image of every 𝑁𝑡𝑟Υ − open set in (𝑉, 𝜌𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ − open 

in (𝑈, 𝜏𝑁𝑡𝑟
).  Hence 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − irresolute if the inverse image of every 𝑁𝑡𝑟Υ − closed  set in 

(𝑉, 𝜌𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ − closed in (𝑈, 𝜏𝑁𝑡𝑟

).   
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Theorem 5.8: If 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  and 𝑔𝑁𝑡𝑟

: (𝑉, 𝜌𝑁𝑡𝑟
) ⟶ (𝑊, 𝜉𝑁𝑡𝑟

)  are 𝑁𝑡𝑟Υ − irresolute 

functions, then their composition 𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

: (𝑈, 𝜏𝑁𝑡𝑟
) ⟶ (𝑊, 𝜉𝑁𝑡𝑟

) is also 𝑁𝑡𝑟Υ −irresolute. 

Proof: Let 𝑁 be 𝑁𝑡𝑟Υ − open in 𝑊. Since 𝑔𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −irresolute, 𝑔𝑁𝑡𝑟

−1 (𝑁) is 𝑁𝑡𝑟Υ − open in 𝑉. 

Again, since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − irresolute, 𝑓𝑁𝑡𝑟

−1 (𝑔𝑁𝑡𝑟
−1 (𝑁)) = (𝑔𝑁𝑡𝑟

∘ 𝑓𝑁𝑡𝑟
)

−1
(𝑁)  is 𝑁𝑡𝑟Υ − open  in 𝑈. 

Hence 𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ −irresolute. 

Theorem 5.9: If 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  is 𝑁𝑡𝑟Υ − irresolute and  𝑔𝑁𝑡𝑟

: (𝑉, 𝜌𝑁𝑡𝑟
) ⟶ (𝑊, 𝜉𝑁𝑡𝑟

)  is 

𝑁𝑡𝑟Υ − continuous, then 𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

: (𝑈, 𝜏𝑁𝑡𝑟
) ⟶ (𝑊, 𝜉𝑁𝑡𝑟

) is 𝑁𝑡𝑟Υ − continuous. 

Proof: Let 𝑁  be 𝑁𝑡𝑟 open in 𝑊.  Since 𝑔𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous , 𝑔𝑁𝑡𝑟

−1 (𝑁)  is 𝑁𝑡𝑟Υ − open in 𝑉. 

Also, since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −irresolute, 𝑓𝑁𝑡𝑟

−1 (𝑓𝑁𝑡𝑟
−1(𝑁)) = (𝑔𝑁𝑡𝑟

∘ 𝑓𝑁𝑡𝑟
)

−1
(𝑁) is 𝑁𝑡𝑟Υ − open in 𝑈. Hence 

𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 

6. Conclusions 

The theory of neutrosophic sets is essential in many application areas since indeterminacy is 

ubiquitous and these membership functions are crucial. In this paper, we have introduced and 

analyzed the concepts of neutrosophic Υ −neighbourhood and neutrosophic Υ −continuity. In 

addition, we have also defined neutrosophic Υ −irreolute functions in neutrosophic topological 

spaces. As mentioned earlier, continuity features a prominent position in the characterization of 

topological spaces. Accordingly, this concept can be wielded in the description of various 

topological structures in future. Moreover, several other topological concepts such as 

homeomorphisms, connectedness and separation axioms could be explored by means of 

neutrosphic Υ −open sets and neutrosophic Υ −continuity.     
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Abstract: Graph labelling is the assignment of labels to the edges, vertices, or both. The issue of limiting 

the spread of non-interfering frequencies allotted to radio transmitters serves as the motivation for the 

research on labelling graphs according to different limitations. However, compared to classical models, 

fuzzy labelling models provide the system with greater accuracy, adaptability, and compatibility. The 

definition of the neutrosophic fuzzy magic labelling graph and a detailed discussion of its properties 

using numerical examples for the path, cycle, and star graphs in a neutrosophic environment are 

presented in this study. The proposed work has also been used in decision-making situations to choose 

the optimal subject combinations based on student interests for the best academic performance. In order 

to demonstrate the validity of the suggested work, a comparative analysis with the current methodology 

has also been conducted. 

Keywords: Fuzzy magic labeling, Neutrosophic star graph, Neutrosophic cycle graph, 

Neutrosophic path graph, Neutrosophic fuzzy magic labeling. 

 

 

1. Introduction 

In order to address the issues of uncertainty and ambiguity in real-world settings, fuzzy relations were 

first introduced by Zadeh [1]. Fuzzy relations have a wide range of applications in pattern recognition. By 

substituting Zadeh's fuzzy sets for traditional sets, one can improve theoretical validity and reliability, in 

addition to application productivity and system connectivity. Numerous mathematical examples exist for 

the fuzzy graph. Nageswara Rao et al. [2] exhibited several forms of dominance, such as edge, total, 

strong, regular, linked, split, and, in practical applications, inverse dominance in fuzzy graphs. For 

visualising data on the connections between items, a graph is a valuable tool. Vertices identify the object, 

whereas edges highlight relationships. The use of graph theory is essential for illuminating numerous 

practical problems. Graphs no longer accurately represent every system because of the haziness or 
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uncertainty of the system parameters. In general, when characterising the objects, their relationships, or 

both are uncertain, a fuzzy graph model needs to be created. 

In order to assess the relationships between accounts as good or poor based on how frequently they 

interact, fuzziness must also be added to the representation. Fuzzy graphs were developed as a result of 

these and numerous other problems. The concepts of essential blocks and t-components of fuzzy graphs, 

as well as the creation of t-connected, uniformly connected, and average fuzzy graphs, were developed 

by John and Sunil Mathew [3]. The principle of the fuzzy equitable association graph was described by 

Rani and Dharmalingam [4]. The highly irregular and highly total irregular fuzzy graphs, as well as the 

neighbourly irregular and neighbourly total irregular fuzzy graphs, were all introduced by Huda Mutab 

[5]. 

The characteristics of Cartesian multiplication operations in full fuzzy graphs, effective fuzzy graphs, and 

complement fuzzy graphs were first introduced by Yulianto et al. in [6]. A hesitant fuzzy hypergraph 

model was suggested by Junhu Wang and Zengtai Gong, based on hesitant fuzzy sets and fuzzy 

hypergraphs [7]. Using fuzzy graphs in cubic Pythagorean fuzzy sets, Muhiuddin et al. [8] investigated 

the concept and utilised it to solve a problem involving decision-making. Crisp and fuzzy graphs have 

equivalent structural characteristics. However, fuzzy graphs emphasise the ambiguity surrounding 

vertices and edges more. Furthermore, the fuzzy graph is frequently seen in real-life scenarios since there 

is uncertainty in the world. Building fuzzy graphs draws on a variety of scientific disciplines, including 

those in mathematics, physics, chemistry, and computer science. 

It was suggested that the intuitionistic fuzzy set by Attanassov [9–10] The concept of an intuitionistic 

fuzzy graph (IFG) was introduced by Atanassov and Shanon [11]. Several variations of the IFG concept 

were created, such as the very irregular and neighbourly irregular IFG by Nagoor Gani [12]. In [50], Garai 

developed a ranking technique based on generalised intuitionistic fuzzy numbers. [51] Giri et al. 

designed the mathematical operations of the generalised non-linear intuitionistic fuzzy number using the 

alpha-beta cut technique applied in the multi-item inventory model. Mathematics and its applications 

have seen a sharp increase in research on intuitionistic fuzzy sets. Information sciences and classical 

mathematics differ from one another. This makes me consider IFGs and how they might be used. 

Increased issue accuracy, reduced implementation costs, and improved efficacy are all advantages of 

intuitionistic fuzzy sets and graphs. 

The concept has been examined, as have the IFG's properties and structure, according to Karunambigai 

[13]. The IFS operations were identified by John and Sunil investigators [14], and the suggested strategy 

was applied to trafficking channels. The concept of effective colouring was developed by Revathy et al. 

[15] of IFG. The colouring concept for IFG was described by Rifayathali et al. [16]. Akmaland Akram 

(2017 developed the organisational structure and layout of IFG [17]. In 2022, Amsaveni and Nandhini 

suggested using IFG in a bipolar complex intuitionistic fuzzy set [18]. The three further IFG activities of 

product, semi-strong product, and strong product were proposed to be added by Talal and Bayan [19]. 

The concept and attributes of IFG were first presented by Muhammad et al. in [20]. 

The neutrosophic graph, which is a fuzzy logic extension with indeterminacy, was proposed by Florentin 

Smarandache [21]. It has become imperative that the idea of a neutrosophic graph play a significant role 

in a number of real-world challenges, including computer technology, communication, genetics, 

economics, sociology, linguistics, legal, medical, finance, engineering IT, networking, and so forth. A 
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fresh aspect of graph theory was introduced by Florentin Smarandache et al. [22]. The graph notion was 

invented by Euler. The phrase "fuzzy graph" was first used by Rosenfield [23]. Graph theory is very 

effective in simulating the characteristics of finite-component systems. A graph is a visual representation 

of information that shows how things are connected, and its vertices and edges show the objects and their 

connections. Graphical models are employed to describe a variety of networks, including telephone 

networks, railroad networks, communication networks, traffic networks, and other networks. Data 

mining, image segmentation, categorization, laser scanners, communication, preparation, and 

programming all make growing use of fuzzy graphs. 

The novel idea of a Pythagorean neutrosophic fuzzy graph (NFG) was introduced by Ajay and 

Chellamani [24], who also examined its characteristics. Broumi et al. [25] described the many types of 

single-valued neutrosophic graphs (SVNG) and examined some of their characteristics in relevant 

scenarios. The effectiveness of the bipartite, regular, and irregular neutrosophic graphs was demonstrated 

by Huang [26]. In addition to a number of SVNG operations, such as rejection, symmetric difference, 

maximum product, and residue product, Mohanta [27] provided numerous additional SVNG concepts. 

The graph labeling method was introduced by Rosa [28]. A mapping from a collection of edges, vertices, 

or both to a number of tags is known as graph labelling. Graph labelling has proven useful in many areas. 

Multiple labels are obtained depending on the demands made of the labelling. Among the most common 

labels are those that are graceful and attractive. In graphs, there are numerous forms of labelling, 

including beautiful, friendly, and mean labelling. We want the total number of labels associated with a 

vertex or edge to be constant across the graph when we apply the "magic" idea to graphs. Magic graph 

labelling is a logical continuation of the well-known magic squares and magic rectangles. Magic-type 

labelling is useful when avoiding a look-up table or when a check total is required. A straightforward 

graph can be used to depict a network that consists of nodes, links, and addresses (labels) assigned to 

both the links and the nodes. [48] Jafar et al. employed the notion in site selection for solid waste 

management when they provided length and identity measurements utilizing max-min operators under 

neutrosophic hypersoft sets. [49] Muhammed elaborates on the principle of neutrosophic hypersoft set to 

the neutrosophic hypersoft matrices applied in decision-making problems. [52] Garai created a unique 

ranking method that uses single-valued neutrosophic numbers for multi-attribute decision-making. Garai 

[53] developed a ranking system using single-valued bipolar neutrosophic numbers to address the 

challenge of managing water resources in a bipolar neutrosophic environment. 

The notion of a magic graph was developed by Sedlack [29]. Magic labelling is a sort of graph labelling 

that has received a lot of attention and development. The labelling of the whole magic point, the labelling 

of the super magic point, the labelling of the magic side, and the labelling of the super magic side are also 

well known in the development of magic labelling. In this work, a neutrosophic number may be 

computed using various graph types. The neutrosophic fuzzy magic labelling graph has been proposed 

in the neutrosophic environment using this notion. 

The rest of the paper is structured as follows: The literature review for the proposed theory is found in 

Section 2, and it demonstrates the originality of the methods provided in this work. Section 3 has 

presented fundamental ideas. In Section 4, the idea of a neutrosophic magic labelling graph was put 

forth. As an example, Section 5 defines neutrosophic fuzzy magic route graph labelling. In Section 6, an 

illustration of neutrosophic fuzzy magic labelling of a cycle is given. Neutosophic fuzzy magic labelling 

of star graphs is described in Section 7 along with an illustration. To choose the best combination of 
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subjects based on the student's interests for the best academic performance, Section 8 applied the 

indicated strategy in decision-making situations. In Section 9, a comparison analysis using the current 

methodology is covered, and in Section 10, the current work is concluded with a look towards the future. 

 

2. Review of Literature 

 The authors [1–8] introduced and developed graphs and fuzzy graphs in different types of fuzzy 

environments. The authors [10–14] proposed graphs and irregular graphs in the IFS environment. The 

authors [20–25] developed a neutrosophic graph in different types of neutrosophic environments. The 

authors Fathalian et al. [30] examined whether simple graphs are fuzzy magic labels, as well as whether 

every linked network is a fuzzy magic labelling network. New concepts for the labelling and calculation 

of Pythagorean fuzzy magic constants and Pythagorean fuzzy magic graphs have been presented by Rani 

and Ashwin [31], and the notion of magic labelling in hesitancy fuzzy graphs was proposed, and 

outcomes in hesitancy fuzzy graphs such as the route, cycle, and star graphs were obtained. Fathalian et 

al. [32] are credited with introducing the concept of Hesitancy fuzzy magic labelling for basic graphs. 

Fuzzy magic and bimagic labelling of neutrosophic route graphs were studied to see whether they 

included magic value in intuitionistic fuzzy graphs and to further understand bi-magic labelling on 

intuitionistic fuzzy graphs. Krishnaraj et al. [33] looked at how it differs from traditional labelling 

methods on the graphs. Fuzzy sequential vertex magic labelling with z-index in trees was studied along 

with numerous extensions by the authors Nishanthini et al. [34]. It was observed that magic labelling may 

be used for intuitively fuzzy graphs such as routes, cycles, and stars. The bridge management problem 

was solved using new neutrosophic labelling graph connection concepts suggested by Seemaand Majeet 

[35]. A relationship between strongly c-elegant labelling, super-edge magic total labelling, edge antimagic 

labelling, and super-t-1 magical labelling was proposed by Wang and Bing Ya [36], and it was 

investigated. Farida et al. [37] investigated the magic covering and edge magic labelling on a simple 

graph, and Krishnaraj and Vikramaprasad [38] extended the Bi-Magic concepts. There was an 

introduction to image fuzzy labelling of graphs and the notions of strong arc, partial cut node, and bridge 

of picture fuzzy labelling graphs, as well as their properties, explained by Ajay and Chellamani [38]. 

According to a proposal made by Jeyanthi and Jeya [39], Zk-magic graphs also contain the flower, double 

wheel, shell, cylinder, gear, generalised Jahangir, lotus inside a circle, wheel, and closed helm graphs. The 

authors, Wasim Hani and Muhamad [40], proposed that the direct product of a directed graph might be 

labelled using orientable group distance magic labelling. Maheswar et al. [41] introduced anti-Magic 

labelling, which involves assigning distinct values to various vertices in a network such that the total of 

the labels has different restrictions. 

However. Fuzzy labelling models offer the system higher accuracy, adaptability, and compatibility when 

compared to classical methods. But in fuzzy, the magic values are discussed only for the membership 

grades, which should be constant. Whereas in the Intuitionistic Fuzzy Magic Labelling Graph (IFMLG), 

the magic values are discussed in both membership and non-membership grades. The magic values for 

membership grades and non-membership grades are both constant in IFMLG. As of the above research 

and findings, there is less contribution in the neutrosophic fuzzy magic labelling graph (NFMLG), which 

also shows that the magic labelling graph has not yet been properly proposed and that there has been 

very little progress in that direction in a neutrosophic environment. This study is inspired by that fact. 
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The NFMLG discusses magic values in both membership and non-membership grades, as well as 

indeterminacy grades. This is one of the main advantages that FMLG and IFMLG fail to prove. 

 3. Preliminaries 

In this part, we will go over some fundamental terminology as well as the findings of our study. 

Definition 3.1:Fuzzy Graph [42] 

A Fuzzy graph denoted by𝐺(𝜎, 𝜇)   is a couple of functions  : 0,1V  and  : 0,1V V   , where 

∀ 𝑢, 𝑣 ∈ 𝑉,        ,u v uv u v       is satisfied. 

Definition 3.2: Fuzzy Labeling Graph [43] 

If    : 0,1  V and    : 0,1   V V are bijective such that the membership value of the edges and 

vertices are distinct and               , , ,           u v u v u v V ,then the graph 

    G ,    is said to be a fuzzy labeling graph. 

Definition 3.3: Fuzzy Magic Labeling Graph (FMLG)[44] 

A fuzzy labeling graph  ,G    is called a FMLG if there exist an ‘m’ such that 

         tan         u v uv cons t uv E and    ,  u v V . 

Definition 3.4: Intuitionistic Fuzzy Graph (IFG) [34] 

A IFG of the form  ,g v eG V E  where         1 2 3, , ..........   v nV v v v v  such that 

       1 1: 0,1 , : 0,1    v vV V represent the order of membership function, and non-membership 

function of the element   iv V  respectively, and      1 10 1     i iv v  for every 

 1,2,3,........... ,   i v e v vv V i n E V V where    2 2: 0,1 , : 0,1    v v v vV V V V are such that  

          

          

2 i j 1 i 1 j

2 i j 1 i 1 j

v , v min ima v , v ,

v , v max ima v , v

      

      

 
 

 
 

 

fulfills the condition          1 10 , , 1       i j i jv v v v ∀  , , 1,2,3..............i jv v E i j n  . 

Definition 3.5:Intuitionistic Fuzzy Labeling Graph (IFLG) [35] 

A IFLG is of the form  ,g v eG V E  is called an IFLGif  

               1 1 2 2: 0,1 , : 0,1 & : 0,1 , : 0,1            v v v v v vV V V V V V are bijective in order 

forif              1 1 2 2, , , 0,1        m m m m  all are unique ∀  vertices and edges, where 
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     ,   V Vm m is order of membership function and      ,   E Em m degree of non-

membership function. 

Definition 3.6: Intuitionistic Fuzzy Magic Labeling Graph (IFMLG) [35] 

A IFLG is an IFMLG if thedegree of membership value         1 2 1,      m m n n remains equal 

, m n V and degree of non-membership value         1 2 1,      m m n n remain equal , m n V

. The magic membership value denoted M, therefore 

                  1 2 1 1 2 1, , , .               M m m n n m m n n  

Definition 3.7: Single–valued Neutrosophic Fuzzy Graph (SVNFG)[45] 

A SVNFG is of the form  , ,  vG V  where    1 1 1 2 2 2, , & , ,Tr Ind Fal Tr Ind Fal   

 1 2 3, , ..........v nV v v v v such that      1 1 1: 0,1 , : 0,1 & : 0,1  v v vTr V Ind V Fal V  denote the degree of 

truth-membership function, indeterminacy and falsity-membership function of the element i vv V

respectively, and         1 1 10 3i i iTr v Ind v Fal v      ∀    1,2,3,........... ,iv V i n   where

     2 2 2: 0,1 , : 0,1 & : 0,1     v v v v v vTr V V Ind V V Fal V V of the edge   

          

          

          

2 i j 1 i 1 j

2 i j 1 i 1 j

2 i j 1 i 1 j

Tr v , v min ima Tr v ,Tr v ,

Ind v , v min ima Ind v , Ind v ,

Fal v , v max ima Fal v ,Fal v

   

   

   

 
 

 
 

 
 

 

satisfies the condition               1 1 10 , , , 3i j i j i jTr v v Ind v v Fal v v         for every 

 , , 1,2,3..............i jv v E i j n  .
 

Definition 3.8: Score function SVNS [46] 

Let  , ,N N NTr Ind Fal  be a single-valued neutrosophic number. Then the score function is classified by

 
1 2

2


  


Tr Ind Fal
S where    1,1  S . 

4.  Proposed definition for Neutrosophic Fuzzy Magic Labeling Graph  

The definition of neutrosophic fuzzy magic labeling graph has been proposed in this section. 
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Definition 4.1: Neutrosophic Fuzzy Labeling Graph (NFLG). 

A NFG is of the form       , ,    v eG V E  is called aNFLGif  

                 1 1 1 2: 0,1 , : 0,1 & : 0,1 & : 0,1 ,        v v v v vTr V Ind V Fal V Tr V V

           2 2: 0,1 & : 0,1      v v v vInd V V Fal V V is bijective such that vertices and edges each have a 

separate degree of truth, indeterminacy and falsity-membership function for all     ,i jv v  , 

          

          

          

2 i j 1 i 1 j

2 i j 1 i 1 j

2 i j 1 i 1 j

Tr v , v min ima Tr v ,Tr v ,

Ind v , v min ima Ind v , Ind v ,

Fal v , v max ima Fal v ,Fal v

   

   

   

 
 

 
 

 
 

 

and               1 1 10 , , , 3        i j i j i jTr v v Ind v v Fal v v . 

Definition 4.2:Neutrosophic Fuzzy Magic Labeling Graph (NFMLG) 

A NFLG is a NFMLG if there exists amagic graph ‘M’ such that  

degree of truth-membership function equals               1 2 1, ,i i j j i jTr v Tr v v Tr v v v E          

degree of indeterminacy function equals               1 2 1, ,i i j j i jInd v Ind v v Ind v v v E        

anddegree of falsity function equals               1 2 1, ,i i j j i jFal v Fal v v Fal v v v E          

That is 

                                 1 2 1 1 2 1 1 2 1, , , , , tani i j j i i j j i i j jM Tr v Tr v v Tr v Ind v Ind v v Ind v Fal v Fal v v Fal v cons t                  

 

The magic truth membership value represented by ( )Trm G  

The magic indeterminacy value represented by ( )Indm G  

The magic falsity membership value represented by ( )Falm G  

We represent NFMLG by          ( ) , ,m G Tr Ind FalM G m G m G m G . 

Definition 4.3:Difference between Fuzzy Magic Labeling and NFMLG 

Fuzzy Magic Labeling Graph NMFG 

Fuzzy magic labeling graph contains only 

membership function. 

NMFG depends on membership, non-

membership also indeterminacy. 
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Membership value alone constant Membership, non-membership and 

indeterminacy values are equal to constant. 

Fuzzy number is of the form: 

Example: 0.5 

Neutrosphic Number is of the form: 

Example: (0.8,0.6,0.2) 

5. NFMLG of Path Graph  

The magic value of a neutrosophic route graph is examined in this section because it satisfies the 

requirements for a neutrosophic magic labeling graph. 

Theorem 5.1: For all  1   theneutrosophic path P admits fuzzy magic labeling. 

Proof.Let ‘P’ be any path with distance  1n n N  and 1 2 3, , ................v v v v  and 1 2 3 1, , ................v v v v v  are 

vertices and edges of P. Let 1 2 3, , [0,1]     such that we choose 1 2 20.001, 0.01& 0.1     if 3   and 

1 2 30.0001, 0.001& 0.01     if 4  and 1 2 30.00001, 0.0001& 0.001     if 5  . Where 1 2 3, &    

choose for truth, indeterminacy, and falsity are all degrees of NFMLG membership. 

Therefore, NFMLG is given as: 

When length is odd: 

 

   

   

   

2 1 1

2 1 2

2 1 3

1
2 2 ,1

2

1
2 2 ,1

2

1
2 2 ,1

2

V i

V i

V i

Tr v i i

Ind v i i

Fal v i i


 


 


 








    


    


    

 

   

   

   

V 2i 2i 1 1

V 2i 2i 1 2

V 2i 2i 1 3

1 1
Tr v min ima Tr v /1 i i ,1 i

2 2

1 1
Ind v min ima Ind v /1 i i ,1 i

2 2

1 1
Fal v min ima Fal v /1 i i ,1 i

2 2

 


 


 








  
      

 

  
      

 

  
      

 

 

         

         

       

E i 2 1 i V i V i 1

E i 2 1 i V i V i 2

E i 2 1 i V i V i

Tr v , v max ima Tr v /1 i 1 min ima Tr v /1 i 1 i 1 ,1 i .

Ind v , v max ima Ind v /1 i 1 min ima Ind v /1 i 1 i 1 ,1 i .

Fal v , v max ima Fal v /1 i 1 min ima Fal v /1 i 1

 

 

 

   

   

 

   

   

   

           

           

          3i 1 ,1 i .    

 

Case (i) ‘i’ is even 

Then i=2m, where m Z   and for each edge 1,i iv v   
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Tr V i E i i 1 V i 1

V 2m E 2m 2m 1 V 2m 1

V 2i 1 1 V i

V i 1 1

Tr V 2i 1 1

m (P ) Tr v Tr v , v Tr v

Tr v Tr v , v Tr v

1
min ima Tr v /1 i m max ima Tr v /1 i 1

2

min ima Tr v /1 i 1 2m 2 m 1

1
m (P ) min ima Tr v /1 i m max ima T

2






 

    




 

 





  

  

 
        

 

        

 
     

 
  

    

V i

V i 1

r v /1 i 1

min ima Tr v /1 i 1 1



  

  

     

    (1) 

     

     

    

      

 

Ind V i E i i 1 V i 1

V 2m E 2m 2m 1 V 2m 1

V 2m 1 2 V i

V i 2 2

Ind V 2i 1

m (P ) Ind v Ind v , v Ind v

Ind v Ind v , v Ind v

1
min ima Ind v /1 i a max ima Ind v /1 i 1

2

min ima Ind v /1 i 1 2m 2 m 1

1
m (P ) min ima Ind v /1 i

2






 

    



 

 





  

  

 
        

 

        

 
   

 
  

    

2 V i

V k 2

m max ima Ind v /1 i 1

min ima Ind v /1 i 1 1

 

  

    

     

                                    

(2) 

     

     

    

      

 

Fal V i E i i 1 V i 1

V 2m E 2m 2m 1 V 2m 1

V 2i 1 3 V i

V i 3 3

Fal V 2i 1

m (P ) Fal v Fal v , v Fal v

Fal v Fal v , v Fal v

1
min ima Fal v /1 i m max ima Fal v /1 i 1

2

min ima Fal v /1 i 1 2m 2 m 1

1
m (P ) min Fal v /1 i m

2






 

    




 

 





  

  

 
        

 

        

 
    

 
  

    

3 V k

V k 3

max ima Fal v /1 i 1

min ima Fal v /1 i 1 1



  

   

     

                                                         (3) 

so that          ( ) , ,m G Tr Ind FalM P m G m G m G   = constant. 

When ‘i’ is even, Equations (1), (2), and (3) satisfy the requirement for NFMLG. 

Case (i) ‘i’ is odd 

Then i=2m+1, where m Z   and for each edge 1,i iv v 

     

     

       

     

 

Tr V i E i i 1 V i 1

V 2m 1 E 2m 1 2m 2 V 2m 2

1 V i V i

1 V 2i 1 1

Tr V 2i 1

m (P ) Tr v Tr v , v Tr v

Tr v Tr v , v Tr v

2 m 1 max ima Tr v /1 i 1 min ima Tr v /1 i 1

1
2m 1 min ima Tr v /1 i m 1

2

1
m (P ) min ima Tr v /1 i max

2





   


  



 

   





  

  

          

 
        

 

 
    

 
  

    

V i

V i 1

ima Tr v /1 i n 1

min ima Tr v /1 i 1 1  

  

     

 (4)                      
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Ind V i E i i 1 V i 1

V 2m 1 E 2m 1 2m 2 V 2m 2

2 V i V i

2 V 2i 1 2

Ind V 2i 1

m (P ) Ind v Ind v , v Ind v

Ind v Ind v , v Ind v

2 m 1 max ima Tr v /1 i 1 min ima Tr v /1 i 1

1
2m 1 min ima Tr v /1 i m 1

2

1
m (P ) min ima Ind v /1 i

2





   


  



 

   





  

  

          

 
        

 


     

    

V i

V k 2

max ima Ind v /1 i 1

min ima Ind v /1 i 1 1



  


    

 

     

   (5)                        

     

     

       

     

 

Fal V i E i i 1 V i 1

V 2m 1 E 2m 1 2m 2 V 2m 2

3 V i V i

3 V 2i 1 3

Fal V 2i 1

m (P ) Fal v Fal v , v Fal v

Fal v Fal v , v Fal v

2 m 1 max ima Tr v /1 i 1 min ima Tr v /1 i 1

1
2m 1 min ima Fal v /1 i m 1

2

1
m (P ) min ima Fal v /1 i

2





   


  



 

   





  

  

          

 
        

 


     

    

V i

V i 3

max ima Fal v /1 i n 1

min ima Fal v /1 i 1 1  

 
    

 

     

(6)

 

so that          ( ) , ,m G Tr Ind FalM P m G m G m G   = constant. 

When k is odd, Equations (4), (5), and (6) satisfy the requirement for NFMLG. 

When the length is even: 

   

   

   

2 1

2 2

2 3

2 2 ,1
2

2 2 ,1
2

2 2 ,1
2

V i

V i

V i

Tr v i i

Ind v i i

Fal v i i


 


 


 

    

    

    

 

   

   

   

V 2i 1 2i 1

V 2i 1 2i 2

V 2i 1 2i 3

2
Tr v min ima Tr v /1 i i ,1 i

2 2

2
Ind v min ima Tr v /1 i i ,1 i

2 2

2
Fal v min ima Tr v /1 i i ,1 i

2 2

 


 


 








 
      

 

 
      

 

 
      

 

 

         

         

       

E i 2 n 1 i V i V i 1

E i 2 n 1 i V i V i 2

E i 2 n 1 i V i V i

Tr v , v max ima Tr v /1 i 1 min ima Tr v /1 i 1 i 1 ,1 i .

Ind v , v max Ind v /1 i 1 min ima Ind v /1 i 1 i 1 ,1 i .

Fal v , v max ima Fal v /1 i 1 min ima Fal v /1 i 1 i







   

   

 

   

   

   

           

           

           31 ,1 i .  

Case 

(i) ‘i’ is even then i=2m, where m Z   and for each edge 1,i iv v 
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Tr V i E i i 1 V i 1

V 2m E 2m 2m 1 V 2m 1

1 V i V i 1

V 2i 1

Tr V 2i 1 V i

m (P ) Tr v Tr v , v Tr v

Tr v Tr v , v Tr v

2 m 2 max ima Tr v /1 i n 1 min ima Tr v /1 i 1 2m

min ima Tr v /1 i m 1
2

m (P ) min ima Tr v /1 i max ima Tr v /1 i
2





    






 

 



  

  

            

 
     

 

 
     

 
 

    V i 1

1

min ima Tr v /1 i 1 1
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Ind V i E i i 1 V i 1

V 2m E 2m 2m 1 V 2m 1

2 V i V i

2 V 2i 2

Ind V 2i 1

m (P ) Ind v Ind v , v Ind v

Ind v Ind v , v Ind v

2 m 2 max ima Tr v /1 i 1 min ima Tr v /1 i 1

2i min ima Tr v /1 i m 1
2

m (P ) min ima Tr v /1 i max ima T
2





   


  



 

 



  

  

          

 
       

 

 
    

 
  

    

V i

V i 2

r v /1 i 1

min ima Tr v /1 i 1 1
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Fal V i E i i 1 V i 1

V 2m E 2m 2m 1 V 2m 1

3 V i V i

3 V 2i 3

Fal V 2i 1

m (P ) Fal v Fal v , v Fal v

Fal v Fal v , v Fal v

2 m 2 max ima Fal v /1 i 1 min ima Fal v /1 i 1

2m min ima Fal v /1 i m 1
2

m (P ) min ima Fal v /1 i max
2





   


  



 

 



  

  

          

 
       

 

 
    

 
  

    

V i

V i 3

ima Fal v /1 i 1

min ima Fal v /1 i 1 1



  

  

     

                                  (9)

 

so that          ( ) , ,m G Tr Ind FalM P m G m G m G   = constant. 

When i=2m, equations (7), (8), and (9) satisfy the requirement for NFMLG. 

Case (ii) ‘i’ is odd 

Then i=2m+1, where m Z   and for each edge 1,i iv v   
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Tr V i E i i 1 V i 1

V 2m 1 E 2m 1 2m 2 V 2m 2

V 2i 1 V i

V i 1 1

Tr V 2i V i

m (P ) Tr v Tr v , v Tr v

Tr v Tr v , v Tr v

min ima Tr v /1 i m 1 max ima Tr v /1 i 1
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so that          ( ) , ,m G Tr Ind FalM P m G m G m G   = constant. 

Equations (10), (11), (12) satisfies the condition for NFMLG when i=2m+1. 

Example. 5.2: 

Figure 1 represents NFMLG path graph with eight nodes and seven  

edges. 

 

Figure1: NFMLG of path graph 

The aforementionedNeutrosophic path graph 8P ’s magic value is  0.86,0.65,0.27 . 
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The value 0.86 indicates truth membership  

The value 0.65 indicates indeterminacy 

The value 0.27 indicates falsity  

Using definition 3.8, the scorevalue of the magic value of the NFMLG of path graph is given by

  0.145S   .Here in NFMLG-path graph the score value indicates that our result fits the requirement for 

a neutrosophic set because it falls with the [-1, -1] score limit. 

6. NFMGL of Cycle Graph  

In this part, we examine the magic value of a neutrosophic cycle graph, which satisfies the 

requirements for a neutrosophic magic labeling graph. 

Theorem 6.1: If ‘  ’ is odd, then the cycle C  is an NFMLG. 

Proof: Let C  be any cycle with odd integers 1 2 3, , ................ nv v v v  and 1 2 3 1 1, , ................ nv v v v v are vertices 

and edges of C . Let 1 2 3, , [0,1]     such that we choose 1 2 20.001, 0.01& 0.1     if 3   and 

1 2 30.0001, 0.001& 0.01     if 4  and 1 2 30.00001, 0.0001& 0.001     if 5  . Where 1 2 3, &    

choose for collection of truth, indeterminacy and falsity membership degree in NFMLG. 

Therefore, NFMLG is given as: 

When length is odd:  
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Case (i) ‘i’ is even 

Then i=2m, where m Z   and for each edge 1,i iv v   
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so that          ( ) , ,m G Tr Ind FalM P m G m G m G   = constant. 
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Equations (13), (14), (15) satisfy the condition for NFMLG when k is even. 

Case (ii) ‘i’ is odd 

Then i=2m+1, where m Z   and for each edge 1,i iv v   
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(18) 

Hence          ( ) , , m G Tr Ind FalM C m G m G m G = constant. 

When ‘i’ is odd, equations (16), (17), and (18) satisfy the requirement for NFMLG. 

The magic value ( ) ( )m GM C is same and unique in above cases. Thus C  is an NFMLG. 
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Example 6.2: 

 

 

 

 

Figure 2 represents NFMLG cycle Graph with five nodes and five edges. 

 

 

 

 

 

 

 

 

 

 

Figure2: NFMLG of cycle graph 

The magic value of the aforementionedneutrosophic cycle graph  6 0.9,0.19,0.019C is  

The values are 0.9,0.19,0.019 indicates the truthmembership,indeterminacy and falsity function for 

NFMLG-cycle graph.
 

Using definition 3.8 we find the score value of the magic value of NFMLG of cycle graph is given by

  0.7505S   . Because our result falls under the [-1,1] score limit, the NFMLG-cycle graph’s score value 

here indicates that out result satisfies the criteria for a neutrosophic set. 
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7.NFMLG of Star Graph  

The magic value of a neutrosophic star graph is examined in this section because it satisfies the 

requirements for a neutrosophic magic labeling graph. 

Theorem 7.1: For any 2  , star graph 1,S   is an NFMLG. 

Proof: Let 1,S    be any star graph having 1 2 3, , , ................v u u u u  as vertices and 1 2 3, , ...............vu vu vu vuv 

as edges. Let 1 2 3, , [0,1]     such that we choose 1 2 20.001, 0.01& 0.1     if 3   and 

1 2 30.0001, 0.001& 0.01     if 4  and 1 2 30.00001, 0.0001& 0.001     if 5  . Where 1 2 3, &    

choose for collection of truth membership degree, indeterminacy and falsity membership degree in 

NFMLG. 

Therefore, NFMLG is given as: 
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Case (i) ‘i’ is even. 

Then i=2m, where m Z   and for each edge , .iv u  
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so that          ( ) 1, , ,m G Tr Ind FalM S m G m G m G   = constant. 

Equations (19), (20), (21) satisfy the condition for NFMLG when ‘i’ is even. 

Case (ii) ‘i’ is odd 

Then i=2m+1, where m Z   and for each edge , iv u  
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So that,         ( ) 1, , , m G Tr Ind FalM S m G m G m G  = constant. 

Equations (16), (17), and (18) satisfy the condition for NFMLG when ‘i’ is odd. 

The magic value is the same and distinct in all of the cases before it. The star graph is therefore NFMLG. 

Example 7.2: 

The NFMLG of star graph shown in Figure 3 has seven nodes and seven edges.

 

Figure 3:NFMLG of star graph 

The magic value of the aforementionedNeutrosophic star graph 1,7S  is  0.9,0.8,0.6  

The truth membership,indeterminacy and falsity value of NFMLG-star graph as follows: 

Truthmembership value-0.9 

Indeterminacy-0.8 

Falsity-0.6 

Using definition 3.8,the score value of the magic value of NFMLG ofa star graph is calculated andis given 

by   0.15S    . The NFMLG-star graph’s score value here indicates that our solution meets the 

requirements for a neutrosophic set because it is between [-1,1] score limit. 

8. Application of Neutrosophicfuzzy magic labelingpathgraphs 

In this section, the advantage of NFMLG and why we recommended NFMLG concept to a problem 

involving decision-making has been elaborated.  

Advantage, Uses and Limitation of Neutrosophic fuzzy magic labeling: 
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The neutrosophic becomes appreared and found their place in research since the world is full of 

uncertainty (indeterminacy) so we used neutrosophic in our research. These ideas, while applicable to a 

variety of real-world problems, cannot deal with all forms of uncertainty, such as ambiguous and 

inconsistent information. 

Uses of Neutrosphic magic labeling: 

In many field like medical image processing applications, neutrosophic sets (NS) play a vital role in 

denoising, clustering, segmentation, and classification. In order to reduce uncertainty for effective 

diagnosis, clustering techniques have been integrated with NS for the efficient creation of computer-

aided diagnosis systems. 

 When it comes to fuzzy magic labelling graphs, we can only talk about the criteria in one category, but 

when it comes to intuitionistic fuzzy magic labelling graphs, we can discuss the criteria in two different 

scenarios. However, in the case of NFMLG, we are talking about the criteria in three different scenarios. 

This is one of the key benefits of NFMLG because it offers more options, greater flexibility, and greater 

compatibility. Therefore, we are using the NFMLG-path graph in this student’s subject selection decision-

making problem in the following way: 

The subject of education is divisive and has generated numerous arguments. One of them deals with 

topic choice. Some people think that students should be free to select the subjects they want to learn 

about, while others think that all subjects should be obligatory. In our opinion, kids need to have the 

option to select topics based on their interests. Students today are very well educated, and they pick their 

classes based on what they want to do for a living in the future. 

Despite a few very popular courses, students who have a strong interest in a certain subject or career will 

regard all options available as the best option. Gaining curiosity and confidence is enough to become a 

master in any field. It is crucial for students whose secondary education is about to end to choose their 

career path as soon as they graduate. At this time, it is crucial to stress how important it is to give 

children enough information about career alternatives that are related to their interests. 

This section displays the interest, confusion, or lack thereof among students in a subject or a group of 

topics based on their replies, which were provided by 100 students in class "X" [47]. The data show that 

NFMLG can be used as a tool because it considers three different membership functions, including 

membership with indeterminacy (the conundrum that a certain proportion of students in a particular 

subject or pair face) and non-membership (the extent to which students do not belong to a particular 

subject or pair) (the disinterest of a percentage of students in a subject or pair of subjects). Using NFMLG, 

we can determine which courses will likely benefit the most students and result in the highest levels of 

learning when taken together. 

 Let ( )Subject S  {English (ENG), Language (LANG), Mathematics (MAT),Science (SC),Social Science 

(SSC)} be the collection of vertices. The table below depicts the proportion of students that are interested, 

undecided, or disinterested in picking a subject or pair of topics. 
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Table 1: Indicated the subject/subject combination 

Subject/Subject 

Combination 

Interest Dilemma Disinterest 

*Here 0.72 represents 72% 

ENG 0.16 0.30 0.49 

LANG 0.12 0.23 0.13 

MAT 0.72 0.15 0.46 

SC 0.15 0.63 0.41 

SSC 0.63 0.19 0.21 

ENG-MAT 0.12 0.55 0.05 

ENG-LANG 0.72 0.47 0.38 

ENG-SC 0.69 0.07 0.10 

ENG-SSC 0.12 0.51 0.30 

MAT-SC 0.13 0.22 0.13 

LANG-MAT 0.16 0.62 0.41 

LANG-SC 0.73 0.14 0.43 

SC-SSC 0.22 0.18 0.38 

 

Figure 4.Graph representation the subject/subject combination 

Figure 4 displays the percentage of students who are passionate about a certain subject, the percentage of 

students who are undecided, and the percentage of students who have no interest in a subject.The 

students' interest in, perplexity over, and lack of interest in integrating any two upper-secondary courses 

may be seen in the graph edges' membership, indeterminacy, and non-membership. 

Figure 4 shows that the majority of students who study both language and science are interested in 

pursuing a career in medicine, which is shown by an edge (LANG, SC) with the highest degree of 

membership function. According to research, students who are afraid of math lessons might choose this 



Neutrosophic Sets and Systems, Vol. 60, 2023                                                                                                                              109 

 

Sudha, Lathamaheswari,Broumi, and Smarandache,Neutrosophic Fuzzy Magic Labeling Graph with its Application 

in Academic Performance of the Students 

 

option. Most students are pulled between studying Language and Math, according to the edge (LANG, 

MATHS). Language and social science are not subjecting that students who have strong non-membership 

functions on the edge (LANG, SSC) desire to study together.  

Research limitations: 

It has limitations for Bipolar neutrosophic set, complex intuitionistic fuzzy hypersoft set, complex 

neutrosophic hypersoft set and other complex neutrosophic hypersoft set-like models. 

10. Comparative analysis 

Comparative analysis and the current methodology have been addressed throughout this section. 

 

 

Table 2: Comparative analysis 

Method Results 

Intuitionistic Fuzzy 

Graph 

Membership Function-Interest: (MAT,SC) 

Non-Membership Function-Disinterest: (LANG,SC) 

Neutrosophic Fuzzy 

Magic Labeling of Cycle 

graph 

Membership Function-Interest: (LANG, SC) 

Indeterminacy Membership Function- Dilemma: (LANG, MATHS) 

Non-Membership Function-Disinterest: (LANG,SSC) 

 The results for the present approach of neutrosophic fuzzy magic labelling of simple graphs are proven 

in Table 2. The membership function's output reveals that the majority of students are drawn to the idea 

of merging mathematics and science. The majority of students do not want to study a mix of language 

and social science courses, according to the results of the non-membership function. This NFMLG-

recommended approach reveals that students are interested in choosing Language and Science topics 

based on the membership function and that they are interested in Math and Language based on the 

indeterminacy result. Additionally, the non-membership function demonstrates that the majority of 

students detest the combination of the social science and language fields. In the NFMLG context, we are 

debating how to divide the subjects into three groups to choose the best selection for the students. 

Students will instinctively select the better option if there are more options available. This multiple option 

and different subject combination facility is possible while using only NFMLG; this is the main advantage 

of the neutrosophic fuzzy magic labelling graph. 

 11. Conclusion 

 A Neutrosophic network is an extension of an intuitionistic fuzzy network that offers greater precision, 

compatibility, and flexibility when organising the modelling in many real-world applications than an 

intuitionistic fuzzy graph. In neutrosophic graph problems, connectivity principles are the main solution 

strategy. Especially the magic labelling model offers the system higher accuracy, adaptability, and 

compatibility when compared to classical methods. Hence, in this paper, we propose the definition of the 

neutrosophic fuzzy magic labelling graph and a detailed discussion of its properties using numerical 

examples for the path, cycle, and star graphs in a neutrosophic environment. The proposed work has also 

been used in decision-making situations to choose the optimal subject combinations based on student 
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interests for the best academic success. In order to demonstrate the validity of the proposed work, a 

comparative analysis with the current methodology has also been conducted. The current research may 

be in future expanded into a neutrosophic superhypergraph environment. 
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Abstract: Gold ornaments are always been seen as a metal of pride and happiness. It is also 

considered to be one of the auspicious costliest metals. Gold rate is found at an increasing rate from 

an early period. This paper analyzes the gold rate at six different cities in India. For each of the cities, 

neutrosophic mean and coefficient of variation have been calculated. The analysis results have been 

presented. In addition to that the neutrosophic analysis based on each month also has been 

calculated. The results help to know the beneficial month and city for the purchase of gold.  

Keywords: Gold Price; Neutrosophic mean; Coefficient of variation; Neutrosophic statistics; 

 

 

1. Introduction 

Gold is a naturally occurring chemical element. It is one of the elements which is less reactive 

than other metals. The luster of the metal is not lost since it does not react with oxygen, acids etc. 

Being malleable it can be easily molded into any favorable design as we require. From ancient times 

to modern times, gold possesses its own tradition and it is one of the favorite metals liked by women. 

Gold ornaments are worn by people to look pretty well, as a prestigious thing to show off their status 

and so on. In many of the middle class families, golden ornaments are bought as savings to make use 

for pledging when there is a need for money. Apart from these, wearing of gold also helps us in 

regulate our body temperature. Gold is also a useful metal. 

In the ancient period, ornaments were worn by both men and women to beautify themselves and 

look elegant. Women even used jewelry from their head to toe. In the early period beads and shells 

were used to make ornaments. But these ornaments did not have a good life. Then people of the Indus 

valley region introduced jewels made of metal. Gold has been regarded as a precious metal that 

occupies the first position as mangal sutra at the beginning of marriage life. Diamonds are the next 

adorable stones which were also first introduced by Indians. Diamonds tie up with gold in making 

pretty ornaments. 

There are many kinds of ornaments which are worn in different parts of the body. Maangtika, 

paasa, veni are the names of the ornaments that are used in hair plaiting. These are the ornaments that 

are worn by women occasionally to give a special look during functions like marriage, baby shower 

ceremony and so on. Jhumkas, chandbalis, kanvelis are worn as earrings. Nath is an ornament worn 

as nose pins.  Gulbandh, rani haar and satlada are a few ornaments worn on neck similar to necklace. 

Kamarbandh is worn around the waist. Hands are decorated with bracelets, bangles. Hathpool 

ornament is worn as a connector of rings worn in fingers, which looks like a spider web. Paizeb, 
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ghungroo payals, toe ring payals are worn to beautify feet. Most popular models of jewellery are 

termed as bead jewels, bridal jewels, antique jewels, kundan jewels, ivory jewels, temple jewellery, 

jadau jewels. 

Most of the people invest in gold savings. People also look for auspicious days to turn their 

money into gold. It would be helpful if the people were aware of the month and place where the price 

of gold could be an optimized state for the buyers. With a motive to make people beneficial from the 

purchase, this study is conducted to predict the rate of gold considering 6 popular cities in Tamilnadu. 

Many researchers have done their work on neutrosophic statistical analysis. A few of them are 

listed as literature survey as given below. Muhammad Aslam in 2019 proposed a plan to identify a 

plan based on attributes using the method of interval in neutrosophic statistics [4]. The same 

researcher in 2019 performed a neutrosophic analysis on identifying the applications used by 

university students [6]. R. Dhavaseelan et al in 2019 discussed about neutrosophic continuity [5]. 

Alexandra Dolores Molina Manzano et al in 2020 conducted an analysis for people aged between 16 

to 18 regarding the voting systems by applying neutrosophic statistical analysis [7]. Broumi said et al 

in 2020 introduced trapezoidal fuzzy numbers in obtaining a new distance measure with the usage of 

centroids [8]. Muhammad Naveed Jafar et al in 2020 discussed about the neutrosophic environment 

concerning the similarity measures in trigonometric functions [9]. Carlos Acosta Mayorga et al in 2021 

analyzed on surgical site infection after the procedures of vascular surgery. Concerning the field of 

medical sciences, statistical approaches for management with indeterminacy were involved in their 

work [10]. Ishmal Shahzadi et al in 2021 underwent neutrosophic statistical analysis to report on the 

income of YouTube channels [11]. Fernando Castro Sánchez et al in 2021 processed their work on 

developing education by applying neutrosophic and plithogenic statistical analysis [12]. Lysbeth 

Kruscthalia Álvarez Gómez  et al in 2021 involved themselves in making an analysis on E-commerce 

[13].  

Lester Wong Vázquez et al in 2021 Rehabilitation of Arterial Hypertension using neutrosophic 

statistical analysis [14]. Sara Guerrón Enríquez et al in 2021 considered Arthrofibrosis of the Knee 

Rehabilitation for their study. They applied neutrosophic statistical analysis for their study [16]. 

Abdullah Gamal et al in 2022 have framed an intelligent model related to the manufacturing sector in 

overcoming the barriers during COVID pandemic [18]. Elizabeth Cristina Mayorga Aldaiz et al in 

2022 conducted an assessment of university students for rehabilitation using neutrosophic statistical 

analysis [19]. Kenia Mariela Peñafiel Jaramillo et al in 2022 performed an analysis to know the 

behavioral medical knowledge among university students with the help of neutrosophic statistical 

analysis [20]. Florentin Smarandache in 2022 performed a comparative study on neutrosophic 

statistics and plithogenic statistics [22].  

Muhammad Rafiq et al in 2022 proposed a statistical analysis for formulating a trend in the 

temperature of Baluchistan at Pakistan [24]. Rushikesh Ghule, Abhijeet Gadhave in 2022 used a 

machine learning approach in the method of forecasting the rate of gold [26]. Said Broumi et al in 2022 

constructed a survey process on identifying the problems in medical diagnosis. They used 

neutrosophic sets along with their hybrid structures for their research work. [27]. Ishmal Shahzadi in 

2023 performed a statistical analysis on the temperature of various cities of Pakistan [30].   

Muhammad Aslam, and Muhammad Saleem in 2023 privileged to used F test neturosophic statistics 

to make analysis on linear applications [32]. Regan Murugesan et al in 2023 have conducted a study 

on variants of covid applying Neutrosophic cognitive maps and Fuzzy cognitive maps [33]. Aral et al 

in 2023 have discussed normed linear spaces. They have considered difference sequence of fractional 

order and their strongly lacunary convergence with order 𝛽 in their work [28]. Kandemir et al in 2023 

have done a work similar to previously mentioned work of Aral et al with order 𝛼 [31]. Mohamed 

Abdel-Basset et al in 2023 did a network security communication with the help of their optimization 

model [23]. Nada A. Nabeeh et al in 2022 discussed their twin type block chain technology and its 

production [25]. Ayman H. Abdel-aziem et al in 2023 presented on decision making algorithm with 

respect to bank sector in bringing about optimization in investment [29]. Uma G and Nandhitha S in 

2023 performed their study Neutrosophic Poisson distribution with a quick switching system [34]. 
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Waleed Tawfiq Al-Nami in 2023 discussed the strategies for the safety of people in the crowd applying 

their ranks and analysis [35]. 

The work done by a few other researchers in predicting the price of gold applying various 

methods is listed below. M. Khalid et al in 2014 performed forecasting on the price of gold collected 

evidences from the Pakistan gold market [1] Iftikhar ul Sami and Khurum Nazir Junejo in 2017 

presented their work on prediction of gold rate using machine language approach [2]. Naliniprava 

Tripathy in 2017 applied moving average model which integrates with auto regression for their 

analysis in foretelling the price of gold [3]. Mustafa Yurtsever in 2021 made an analysis on forecasting 

the price of gold using the methods of LSTM, Bi-LSTM and GRU [15]. Sultan Salem et al in 2021 

performed a life time data analysis in finding the properties and their applications applying 

neutrosophic lognormal method [17]. Laor Boongasame in 2022 made use of the association rule and 

memory of long and short term in the forecasting of the price of gold [21].  

 This paper aims at bringing out an analysis on the rate of gold comparison at various regions 

of India using neutrosophic statistics.  

2. Methodology 

          The prediction of gold rate involved various steps. Initially the period on which the data is 

to be collected is finalized. Then the required data is collected with the help of the application related 

to it. The collected data are tabulated in required format. Then the neutrosophic statistical measures 

such as mean and standard deviation are evaluated with the help of MATLAB software. With the 

calculated data. Neutrosophic statistical analysis is performed and the conclusion is given. which are 

given as diagrammatic representation beneath given as Figure 1. 

 

Figure 1: Schema of the proposed procedure 

Various definitions applied related to the work performed are listed below. 

Consider 𝑿𝑵 = 𝑿𝑳 + 𝑿𝑼𝑰𝑵, 𝑰𝑵 ∈  [𝑰𝑳, 𝐈𝐔] to be a neutrosophic random variable 

representing the rate of gold at various month and at various cities. Her 𝑿𝑳 denotes the lower rate 

of gold and 𝑿𝑼 denotes the upper rate of gold. 𝑰𝑵 is the interval of indeterminacy.  

The neutrosophic average of gold data 𝑿𝑵 ∈  [𝑿𝑳, 𝐗𝐔] is �̅�𝐍 = �̅�𝐋 + �̅�𝐔 𝐈𝐍; 𝐈𝐍  ∈

 [𝐈𝐋, 𝐈𝐔]  

for which  �̅�𝐋  =  ∑ �̅�𝐢𝐋
𝐧𝐍
𝐢=𝟏 , �̅�𝐔  =  ∑ �̅�𝐢𝐔

𝐧𝐍
𝐢=𝟏  and 𝒏𝑵 = [𝒏𝑳, 𝒏𝑼] 
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The neutrosophic standard deviation is calculated as given below. 

∑ (𝐗𝐢 − �̅�𝐢𝐔)𝟐𝐧𝐍
𝐢=𝟏 = ∑

[
 
 
 
 𝐦𝐢𝐧(

(𝐚𝐢 + 𝐛𝐢𝐈𝐋)(�̅� + �̅�𝐈𝐋), (𝐚𝐢 + 𝐛𝐢𝐈𝐋)(�̅� + �̅�𝐈𝐔)

(𝐚𝐢 + 𝐛𝐢𝐈𝐔)(�̅� + �̅�𝐈𝐋), (𝐚𝐢 + 𝐛𝐢𝐈𝐋)(�̅� + �̅�𝐈𝐋)
)

𝐦𝐚𝐱(
(𝐚𝐢 + 𝐛𝐢𝐈𝐋)(�̅� + �̅�𝐈𝐋), (𝐚𝐢 + 𝐛𝐢𝐈𝐋)(�̅� + �̅�𝐈𝐔)

(𝐚𝐢 + 𝐛𝐢𝐈𝐔)(�̅� + �̅�𝐈𝐋), (𝐚𝐢 + 𝐛𝐢𝐈𝐋)(�̅� + �̅�𝐈𝐋)
)
]
 
 
 
 

𝐧𝐍
𝐢−𝟏   

where 𝐈 𝛜 [𝐈𝐋,𝐈𝐔 ] and 𝒂𝒊 = 𝑿𝑳; 𝒃𝒊 = 𝑿𝑼 

The neutrosophic sample variance is 𝐒𝑵
𝟐 =

∑ (𝑿𝒊−�̅�𝒊𝑵)𝟐
𝒏𝑵
𝒊=𝟏

𝒏𝑵
;  𝐒𝑵

𝟐  ∈  [𝐒𝑳
𝟐, 𝐒𝑼

𝟐 ]    

The neutrosophic form of 𝐒𝑵
𝟐  ∈  [𝐒𝑳

𝟐, 𝐒𝑼
𝟐 ] is given as 𝒂𝐒 + 𝒃𝐒 𝑰𝑵𝐒  ∈  [𝑰𝑳𝐒,𝑰𝑼𝐒]  

The consistency on the rate of gold can be known from the coefficient of variation given as 

𝑪𝑽𝑵 =

√𝐬𝑵
𝟐

�̅�𝑵

× 𝟏𝟎𝟎; 𝑪𝑽𝑵  ∈  [𝑪𝑽𝑳, 𝑪𝑽𝑼] 

The neutrosophic form of 𝑪𝑽𝑵 is 𝒂𝒗 + 𝒃𝒗𝑰𝑵𝒗; 𝑰𝑵𝒗  ∈  [𝑰𝑳𝒗 , 𝑰𝑼𝒗]  

3. Data Collection  

  The rate of gold remains different even in a same day. It also remains different in different places 

of the state. In such case of uncertainty, the data to be collected from reliable source. It is proposed to 

consider six major cities in India for the analysis on gold rates. The cities considered for analysis are 

Chennai, Kolkatta, Bangalore, Madurai, Hyderabad and Delhi. The everyday price of 22 carat gold in each 

of these cities are collected from the application named ‘Indian Daily Gold Prices Android App’ which can 

be downloaded using the link https://goo.gl/KoCNzt/. The collected rate are for one gram of gold which is 

mentioned in rupees. The data ranging from February 1 2022 to January 31, 2023 are collected. From the 

collected data, maximum and minimum rate corresponding to each month is listed out and presented in 

Tables as given below. Table 1 represents the low and high gold price rate corresponding the cities Chennai, 

Kolkatta, Bangalore. Table 2 corresponds to the low and high gold price rate corresponding to the cities 

Madurai, Hyderabad and Delhi. 

Table 1. Gold price in rupees for the first three cities 

 Chennai Kolkatta Bangalore 

 Low High Low High Low High 

ℱ𝑒𝑏 5099.86 5330.14 5033.4 5283.5 5117.4 5283.5 

𝑀𝑎𝑟  5245.9 5549.19 5278.5 5659.4 5278.5 5659.4 

𝐴𝑝𝑟 5369.46 5599.74 5287.5 5496.1 5287.5 5496.1 

𝑀𝑎𝑦 5178.5 5436.86 5179.4 5361.2 5179.4 5361.2 

𝐽𝑢𝑛  5240.28 5434.28 4897.65 5434.28 5240.28 5434.28 

𝐽𝑢𝑙 5167.26 5397.54 5157.49 5393.45 5167.26 5397.54 

𝐴𝑢𝑔  5279.59 5408.78 5281.09 5337.26 5290.83 5341.38 

𝑆𝑒𝑝 5144.8 5268.36 5146.25 5269.85 5144.8 5268.36 

𝑂𝑐𝑡 5195.35 5375.08 5196.81 5376.6 5195.35 5375.08 

𝑁𝑜𝑣 5234.66 5526.72 5179.96 5498.64 5178.5 5526.72 

𝐷𝑒𝑐 5532.34 5740.15 5477.73 5685.6 5526.72 5740.15 

𝐽𝑎𝑛  5717.69 5998.52 5668.74 5959.2 5717.69 5998.52 

https://goo.gl/KoCNzt/
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Table 2. Gold price in rupees for the second three cities 

 Madurai Hyderabad Delhi 

 Low High Low High Low High 

ℱ𝑒𝑏 5116.71 5330.14 5033.4 5283.5 5117.4 5283.5 

𝑀𝑎𝑟  5245.9 5594.12 5278.5 5659.6 5278.5 5659.4 

𝐴𝑝𝑟 5369.46 5599.74 5287.4 5496 5287.5 5496.1 

𝑀𝑎𝑦 5178.5 5436.86 5179.4 5361.2 5179.4 5361.2 

𝐽𝑢𝑛  5240.28 5434.28 4897.65 5434.28 4897.65 5434.28 

𝐽𝑢𝑙 5167.26 5397.54 5157.49 5393.45 5157.49 5393.45 

𝐴𝑢𝑔  5290.83 5341.38 5281.09 5337.26 5281.09 5337.26 

𝑆𝑒𝑝 5144.8 5268.36 5146.25 5269.85 5146.25 5269.85 

𝑂𝑐𝑡 5195.35 5375.08 5196.81 5376.6 5196.81 5376.6 

𝑁𝑜𝑣 5234.66 5526.72 5179.96 5498.64 5179.96 5498.64 

𝐷𝑒𝑐 5532.34 5740.15 5477.73 5685.6 5477.73 5685.6 

𝐽𝑎𝑛  5717.69 5998.52 5668.74 5959.2 5668.74 5959.2 

         Using the data presented in Table 1 and 2, neutrosophic statistical analysis is conducted 

whose outcome is presented in section 4.  

4. Results and Interpretation  

         The neutrosophic statistical analysis is performed to the data on gold price. The city 

wise data analysis are presented from Table 3 to Table 5. The month wise data analysis are 

presented form Table 6 to Table 9. Table 3 represents the city wise neutrosophic mean of gold 

data. Table 4 represents the city wise neutrosophic standard deviation of gold data. Table 5 

represents the city wise neutrosophic coefficient of variation of gold data. Table 6 represents the 

month wise neutrosophic mean of gold data. Table 7 represents the month wise neutrosophic 

standard deviation of gold data. Table 8 represents the month wise neutrosophic coefficient of 

variation of gold data. 

Table 3. The Neutrosophic mean of gold price at different cities 

Cities �̅�N 𝒂�̅� + 𝒃�̅�𝑰𝑵�̅�; 𝑰𝑵�̅�; ∈ [𝑰𝑳𝑿 ̅̅ ̅̅  ,𝑰𝑼�̅� ] 

𝐶ℎ𝑒𝑛𝑛𝑎𝑖 [5283.81, 5505.45] 5283.81+5505.45IN, IN ∈ [0, 0.04] 

𝐾𝑜𝑙𝑘𝑎𝑡𝑡𝑎 [5232.04, 5479.59] 5232.04+5479.59IN, IN ∈ [0, 0.04] 

𝐵𝑎𝑛𝑔𝑎𝑙𝑜𝑟𝑒 [5277.02, 5490.19] 5277.02+5490.19IN, IN ∈ [0, 0.038] 

𝑀𝑎𝑑𝑢𝑟𝑎𝑖 [5286.15, 5503.57] 5286.15+5503.57IN, IN ∈ [0, 0.039] 

𝐻𝑦𝑑𝑒𝑟𝑎𝑏𝑎𝑑 [5232.04, 5479.60] 5232.04+5479.60IN, IN ∈ [0, 0.044] 

𝐷𝑒𝑙ℎ𝑖 [5239.04, 5479.59] 5239.04+5479.59IN, IN ∈ [0, 0.043] 

     The neutrosophic average rate of gold at Chennai city lies between 5283.81 and 5505.45 and at 

Kolkatta city lies between 5232.04, 5479.59. Both these cities are with a measure of indeterminacy being 

0.04. Bangalore city has a neutrosophic average rate of gold lying between 5277.02 and 5490.19 with a 

measure of indeterminacy 0.038. The neutrosophic average rate of gold at Madurai lies between 

5286.15, 5503.57 with a indeterminacy rate of 0.039. The neutrosophic average rate of gold at 
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Hyderabad lies between 5232.04, 5479.60 with a indeterminacy rate of 0.044. The neutrosophic average 

rate of gold at Delhi lies between 5239.04, 5479.59 with a indeterminacy rate of 0.043. It is seen that the 

neutrosophic average at low rate of gold is minimum at Kolkatta city which can be considered for 

purchase. 

Table 4. Gold price as its Neutrosophic standard deviation at preferred cities 

City 𝑺𝑵 𝒂𝑺 + 𝒃𝑺𝑰𝑵𝑺; 𝑰𝑵𝑺; ∈ [𝑰𝑳𝑺  ,𝑰𝑼𝑺] 

𝐶ℎ𝑒𝑛𝑛𝑎𝑖 [178.07, 200.94] 178.07+200.94IN, IN ∈ [0, 0.1] 

𝐾𝑜𝑙𝑘𝑎𝑡𝑡𝑎 [197.63, 200.51] 197.63+200.51IN, IN ∈ [0, 0.015] 

𝐵𝑎𝑛𝑔𝑎𝑙𝑜𝑟𝑒 [175.58, 214.59] 175.58+214.59IN, IN ∈ [0, 0.18] 

𝑀𝑎𝑑𝑢𝑟𝑎𝑖 [176.54, 206.19] 176.54+206.19IN, IN ∈ [0, 0.14] 

𝐻𝑦𝑑𝑒𝑟𝑎𝑏𝑎𝑑 [197.63, 200.52] 197.63+200.52IN, IN ∈ [0, 0.01] 

𝐷𝑒𝑙ℎ𝑖 [191.34, 200.51] 191.34+200.51IN, IN ∈ [0, 0.04] 

     The neutrosophic standard deviation at Chennai city lies between 178.07 and 200.94 with a 

measure of indeterminacy 0.01. The neutrosophic standard deviation at Kolkatta city lies between 

197.63 and 200.51 with a measure of indeterminacy 0.015. The neutrosophic standard deviation at 

Bangalore city lies between 175.58 and 214.59 with a measure of indeterminacy 0.018. The neutrosophic 

standard deviation at Madurai city lies between 176.54 and 206.19 with a measure of indeterminacy 

0.014. The neutrosophic standard deviation at Hyderabad city lies between 197.63 and 200.52 with a 

measure of indeterminacy 0.01. The neutrosophic standard deviation at Delhi city lies between 191.3 

and 200.51 with a measure of indeterminacy 0.014. The least standard deviation among the low gold 

rate is found at Bangalore city. Among the high gold rate minimum is found equal at both Kolkotta 

and Delhi city. 

Table 5. Gold price as its neutrosophic coefficient of variation at different cities 

City 𝑪𝑽𝑵 𝒂𝑽 + 𝒃𝑽𝑰𝑵𝑽; 𝑰𝑵𝑽; ∈ [𝑰𝑳𝑽  ,𝑰𝑼𝑽] 

𝐶ℎ𝑒𝑛𝑛𝑎𝑖 [3.37, 3.65] 3.37+3.65IN, IN ∈ [0, 0.08] 

𝐾𝑜𝑙𝑘𝑎𝑡𝑡𝑎 [3.78, 3.66] 3.78-3.66IN, IN ∈ [0, 0.032] 

𝐵𝑎𝑛𝑔𝑎𝑙𝑜𝑟𝑒 [3.33, 3.91] 3.33+3.91IN, IN ∈ [0,0.14] 

𝑀𝑎𝑑𝑢𝑟𝑎𝑖 [3.34, 3.75] 3.34+3.75IN, IN ∈ [0, 0.109] 

𝐻𝑦𝑑𝑒𝑟𝑎𝑏𝑎𝑑 [3.78, 3.66] 3.78-3.66IN, IN ∈ [0, 0.032] 

𝐷𝑒𝑙ℎ𝑖 [3.65, 3.66] 3.65+3.66IN, IN ∈ [0, 0.001] 

     The neutrosophic coefficient of variation at Chennai city lies between 3.37 and 3.65 with a 

measure of indeterminacy 0.06. The neutrosophic coefficient of variation at Kolkatta city lies between 

3.78 and 3.66 with a measure of indeterminacy 0.0305. The neutrosophic coefficient of variation at 

Bangalore city lies between 3.33 and 3.91 with a measure of indeterminacy 0.14. The neutrosophic 

coefficient of variation at Madurai city lies between 3.34 and 3.75 with a measure of indeterminacy 

0.09. The neutrosophic coefficient of variation at Hyderabad city lies between 3.78 and 3.66 with a 

measure of indeterminacy 0.033. The neutrosophic coefficient of variation at Delhi city lies between 

3.65 and 3.66 with a measure of indeterminacy 0.001. The minimum coefficient of variation is found 

among low gold rate at Madurai city and the minimum among the high gold rate if found at Chennai. 

Table 6. The Neutrosophic mean of gold price taken monthwise 

Month �̅�N 𝒂�̅� + 𝒃�̅�𝑰𝑵�̅�; 𝑰𝑵�̅�; ∈ [𝑰𝑳𝑿 ̅̅ ̅̅  ,𝑰𝑼�̅� ] 

ℱ𝑒𝑏 [5086.36, 5299.05] 5086.36+5299.05IN, IN ∈ [0, 0.04] 

𝑀𝑎𝑟  [5267.63, 5630.19] 5267.63+5630.19IN, IN ∈ [0, 0.06] 
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𝐴𝑝𝑟 [5314.80, 5530.63] 5314.80+5530.63IN, IN ∈ [0, 0.04] 

𝑀𝑎𝑦 [5179.1, 5386.42] 5179.1+5386.42IN, IN ∈ [0, 0.03] 

𝐽𝑢𝑛  [5068.97, 5434.28] 5068.97+5434.28IN, IN ∈ [0, 0.06] 

𝐽𝑢𝑙 [5162.38, 5395.495] 5162.38+5395.495IN, IN ∈ [0, 0.04] 

𝐴𝑢𝑔  [5284.09, 5350.56] 5284.09+5350.56IN, IN ∈ [ 0, 0.01] 

𝑆𝑒𝑝 [5145.53, 5269.11] 5145.53+5269.11IN, IN ∈ [0, 0.023] 

𝑂𝑐𝑡 [5196.08, 5375.84] 5196.08+5375.84IN, IN ∈ [0, 0.033] 

𝑁𝑜𝑣 [5197.95, 5512.68] 5197.95+5512.68IN, IN ∈ [0, 0.057] 

𝐷𝑒𝑐 [5504.10, 5712.88] 5504.10+5712.88IN, IN ∈ [0, 0.036] 

𝐽𝑎𝑛  [5693.22, 5978.86] 5693.22+5978.86IN, IN ∈ [0, 0.047] 

     The neutrosophic average rate of gold at Febraury month lies between 5086.36 and 5299.05 and 

with a measure of indeterminacy being 0.1. The neutrosophic average rate of gold at March month lies 

between 5267.63 and 5630.19 and with a measure of indeterminacy being 0.07. The neutrosophic 

average rate of gold at April month lies between 5314.80 and 5530.63 and with a measure of 

indeterminacy being 0.03. The neutrosophic average rate of gold at May month lies between 5179.1 

and 5386.42 and with a measure of indeterminacy being 0.03. The neutrosophic average rate of gold at 

June month lies between 5068.97 and 5434.28 and with a measure of indeterminacy being 0.06. The 

neutrosophic average rate of gold at July month lies between 5162.38 and 5395.495 and with a measure 

of indeterminacy being 0.04. The neutrosophic average rate of gold at August month lies between 

5284.09 and 5350.56 and with a measure of indeterminacy being 0.01. The neutrosophic average rate 

of gold at September month lies between 5145.53 and 5269.11 and with a measure of indeterminacy 

being 0.023. The neutrosophic average rate of gold at October month lies between 5196.08 and 5375.84 

and with a measure of indeterminacy being 0.033. The neutrosophic average rate of gold at November 

month lies between 5197.95 and 5512.68 and with a measure of indeterminacy being 0.057. The 

neutrosophic average rate of gold at December month lies between 5504.10 and 5712.88 and with a 

measure of indeterminacy being 0.036. The neutrosophic average rate of gold at January month lies 

between 5693.22 and 5978.86 and with a measure of indeterminacy being 0.047. The neutrosophic 

average is found to be minimum at the month of September which can be considered to be the favorite 

moth for the purchase of gold. The minimum mean among the low rate of gold is found at June month 

and the minimum mean among the high gold rate is found at September month. 

Table 7. The Neutrosophic standard deviation of gold price taken monthwise 

Month 𝑺𝑵 𝒂𝑺 + 𝒃𝑺𝑰𝑵𝑺; 𝑰𝑵𝑺; ∈ [𝑰𝑳𝑺  ,𝑰𝑼𝑺] 

ℱ𝑒𝑏 [41.57, 24.08] 41.57-24.08IN, IN ∈ [0, 0.7564] 

𝑀𝑎𝑟  [16.84, 47.51] 16.84+47.51IN, IN ∈ [0, 0.64] 

𝐴𝑝𝑟 [42.34, 53.53] 42.34+53.53IN, IN ∈ [0, 0.209] 

𝑀𝑎𝑦 [0.46, 39.07] 0.46+39.07IN, IN ∈ [0, 0.98] 

𝐽𝑢𝑛  [187.67, 0] 187.67+0IN, IN ∈ [0, 0.1] 

𝐽𝑢𝑙 [5.35, 2.24] 5.35-2.24IN, IN ∈ [0, 1.388] 

𝐴𝑢𝑔  [5.26, 28.60] 5.26+28.60IN, IN ∈ [0, 0.81] 

𝑆𝑒𝑝 [0.79, 0.82] 0.79+0.82IN, IN ∈ [0, 0.037] 

𝑂𝑐𝑡 [0.80, 0.83] 0.80+0.83IN, IN ∈ [0, 0.03] 

𝑁𝑜𝑣 [28.44, 15.38] 28.44-15.38IN, IN ∈ [0, 0.849] 

𝐷𝑒𝑐 [28.96, 29.88] 28.96-29.88IN, IN ∈ [0, 0.03079] 

𝐽𝑎𝑛  [26.81, 21.5] 26.81-21.5IN, IN ∈ [0, 0.2469] 
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     The neutrosophic standard deviation at February month lies between 41.57 and 24.08 with a 

measure of indeterminacy 0.7564. The neutrosophic standard deviation at March month lies between 

16.84 and 47.51 with a measure of indeterminacy 0.64. The neutrosophic standard deviation at April 

month lies between 42.34 and 53.53 with a measure of indeterminacy 0.209. The neutrosophic standard 

deviation at May month lies between 0.46 and 39.07 with a measure of indeterminacy 0.98. The 

neutrosophic standard deviation at June month lies between 187.67 and 0 with a measure of 

indeterminacy 0, 0.1. The neutrosophic standard deviation at July month lies between 5.35 and 2.24 

with a measure of indeterminacy 1.388. The neutrosophic standard deviation at August month lies 

between 5.26 and 28.60with a measure of indeterminacy 0.81. The neutrosophic standard deviation at 

September month lies between 0.79 and 0.82 with a measure of indeterminacy 0.037. The neutrosophic 

standard deviation at October month lies between 0.80 and 0.83 with a measure of indeterminacy 0.03. 

The neutrosophic standard deviation at November month lies between 28.44 and 15.38 with a measure 

of indeterminacy 0.849. The neutrosophic standard deviation at December month lies between 28.96 

and 29.88 with a measure of indeterminacy 0.03079. The neutrosophic standard deviation at January 

month lies between 26.81 and 21.5 with a measure of indeterminacy 0.2469. The minimum standard 

deviation among low rate of gold is found at May month and minimum standard deviation among 

high gold rate is found at June month. 

Table 8. The Neutrosophic coefficient of variation of gold price taken monthwise  

Month 𝑪𝑽𝑵 𝒂𝑽 + 𝒃𝑽𝑰𝑵𝑽; 𝑰𝑵𝑽; ∈ [𝑰𝑳𝑽  ,𝑰𝑼𝑽] 

ℱ𝑒𝑏 [0.82, 0.45] 0.82-0.45IN, IN ∈ [0, 0.822] 

𝑀𝑎𝑟  [0.32, 0.84] 0.32+0.84IN, IN ∈ [0, 0.61] 

𝐴𝑝𝑟 [0.80, 0.97] 0.80+0.97IN, IN ∈ [0, 0.17] 

𝑀𝑎𝑦 [0.01, 0.73] 0.01+0.73IN, IN ∈ [0, 0.98] 

𝐽𝑢𝑛  [3.70, 0] 3.70+0IN, IN ∈ [0, 0.1] 

𝐽𝑢𝑙 [0.10, 0.04] 0.10-0.04IN, IN ∈ [0, 1.5] 

𝐴𝑢𝑔  [0.10, 0.53] 0.10+0.53IN, IN ∈ [0, 0.81] 

𝑆𝑒𝑝 [0.02, 0.02] 0.02+0.02IN, IN ∈ [0, 0] 

𝑂𝑐𝑡 [0.02, 0.02] 0.02+0.02IN, IN ∈ [0, 0] 

𝑁𝑜𝑣 [0.55, 0.28] 0.55-0.28IN, IN ∈ [0, 0.96] 

𝐷𝑒𝑐 [0.53, 0.52] 0.53-0.52IN, IN ∈ [0, 0.019] 

𝐽𝑎𝑛  [0.47, 0.36] 0.47-0.36IN, IN ∈ [0, 0.3056] 

 

         The neutrosophic coefficient of variation of rate of gold at Febraury month lies between 0.82, 

0.45 and with a measure of indeterminacy being 0.822. The neutrosophic coefficient of variation of 

rate of gold at March month lies between 0.32, 0.84 and with a measure of indeterminacy being 0.61. 

The neutrosophic coefficient of variation of rate of gold at April month lies between 0.80, 0.97 and 

with a measure of indeterminacy being 0.17. The neutrosophic coefficient of variation of rate of gold 

at May month lies between 0.01, 0.73 and with a measure of indeterminacy being 0.98. The 

neutrosophic coefficient of variation of rate of gold at June month lies between 3.70, 0 and with a 

measure of indeterminacy being 0.1. The neutrosophic coefficient of variation of rate of gold at July 

month lies between 0.10, 0.04 and with a measure of indeterminacy being 1.5. The neutrosophic 

coefficient of variation of rate of gold at August month lies between 0.10, 0.53 and with a measure of 

indeterminacy being 0.81. The neutrosophic coefficient of variation of rate of gold at September month 

lies between 0.02, 0.02 and with a measure of indeterminacy being 0. The neutrosophic coefficient of 

variation of rate of gold at October month lies between 0.02, 0.02 and with a measure of indeterminacy 

being 0. The neutrosophic coefficient of variation of rate of gold at November month lies between 0.55, 

0.28 and with a measure of indeterminacy being 0.96. The neutrosophic coefficient of variation of rate 
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of gold at December month lies between 0.53, 0.52 and with a measure of indeterminacy being 0.019. 

The neutrosophic coefficient of variation of rate of gold at January month lies between 0.47, 0.36 and 

with a measure of indeterminacy being 0.3056. The minimum coefficient of variation among low gold 

rate is found at September and October month. The minimum coefficient of variation among high 

gold rate is found at June month. 

4. Comparative study 

The gold rate of six different cities are analysed using neutrosophic statistics. The analysis is 

performed in two ways. In the first method, the gold rates of the cities are considered. In the second 

method, the changes in gold rate in every month are considered. For both the methods, the 

neutrosophic mean, neutrosophic standard deviation, neutrosophic coefficient of variation are 

calculated. This comparison helps to check the beneficial month and city for the purchase of gold. 

5. Future Work 

Though this study has been made targeting gold as is basic element, the same type of prediction 

is also required in many other situations also. Hence as a future work it is proposed to develop an 

user friendly application which is suitable for any kind of prediction which applies neutrosophic 

statistical analysis. The application is to be developed with a motive to get an updated rate prediction 

which helps any of the user to know the current scenario on which they need. Various machine 

learning techniques to evaluated neutrosophic statistical measures can also be performed as a future 

work. 

6. Conclusion  

In this article, the neutrosophic analysis on cost of gold for various six cities are collected. Their 

rate has been analyzed both city wise and month wise. The results obtained among the city wise data 

indicates the favourable city to purchase gold is kolkatta at first. Then it can be Delhi, Madurai and 

Chennai. Month wise analysis of gold rate indicates that it is beneficial to purchase gold during June 

month. Thus according to this study, gold lovers can make use of June month at Kolkatta for their 

purchase to make this shopping beneficial. Most of the peoples who demand for gold wait for a better 

period and cost to make their wish possible. This study has brought about an analysis which has 

provided with a suggestion on which month and place it is beneficiary for the buyers of gold. This 

gives a prediction of gold rate, which provides an optimized situation to buy gold, even in uncertainty 

condition.   
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 Abstract: 

Inventory management plays an important role in production and marketing processes, 

especially in production facilities and commercial institutions that have warehouses in which 

they store their equipment and goods. Inventory management is considered one of the most 

important management functions in terms of determining the ideal volume of inventory and 

calculating its costs, as this affects the facility’s efficiency and achieves either large profits or 

it causes huge losses, so warehouse managers in production facilities or institutions must 

determine the appropriate and ideal volume of inventory, especially when they are presented 

with price offers from companies seeking to market their products. These offers are directly 

related to the volume of the order, and in this case, they must make an ideal decision through 

which determine the volume of the order by taking into account the following matters: 

1. Securing the quantities required for production or sale so that there is no deficit. 

2. The storage cost should be as low as possible. 

3. Benefit as much as possible from the discounts offered by companies.   

In this research, we present a complementary study to what we did in researching the 

neutrosophic treatment of static inventory models without deficit, through which we arrived at 

mathematical relationships through which we can calculate the ideal volume of the order at the 

lowest possible cost. We will use these relationships to determine the ideal volume of the order 

so that we achieve the greatest benefit from price offers and discounts. Provided by companies. 

Keywords: Static inventory models without deficits - Static inventory models without 

neutrosophic deficits - Variable price (discounts) models without neutrosophic deficits. 

Introduction: 

Before the emergence of the science of operations research, decision makers relied on 

experience gained through the profits they obtained for correct decisions and losses for wrong 

decisions. With the great development witnessed by our contemporary world, we find that 

experience alone is not sufficient to make decisions on the scale of this development, and a 

comprehensive study of the reality must be conducted. The work of the system is a study that 
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relies on modern scientific methods, such as operations research methods. Even operations 

research methods are not sufficient in the face of these changes that the work environment is 

witnessing because they depend on restricted and specific classical data. Therefore, these 

methods had to be reformulated using non-specific data, completely specific Neutrosophical 

data that gives decision makers have a margin of freedom that enables them to face all 

circumstances, and this is what has been done by researchers and scholars interested in science 

and scientific development. In the following research, we find many studies presented using 

the concepts of neutrosophic science [1-15]. In this research, we will present a study using 

complementary neutrosophic concepts. As we have done previously, we know that most 

companies provide price offers and these offers are related to the volume of the order in order 

to market their goods, which are manufactured materials or raw materials used in the 

manufacturing process. This matter requires warehouse managers in production facilities or 

institutions that need these goods to determine the appropriate and ideal volume of the stock 

of each material to secure the demand at one time. We know that if the volume of the stock is 

very large, this guarantees the provision of the material, but in return, it may cause the 

organization to suffer losses because the value of the stock is frozen capital, and this large 

quantity requires a marketing period that depends on the rate of demand. If the quantity of 

inventory is small, this may lead to a bottleneck in securing materials and to various 

disturbances such as rising prices and others. In all cases, we find that the rate of demand for 

inventory is the primary control over the volume of the order. Therefore, in previous research 

[16], we studied the static model without a deficit using the concepts of neutrosophic science 

and we reached relationships through which we can calculate the ideal volume of the order and 

the corresponding cost was a neutrosophic value that takes into account all circumstances. In 

another research we also calculated a set of neutrosophic indicators for the static inventory 

model without a deficit [17]. In this research we will present A study based on what was 

presented in previous research, the purpose of which is to determine the ideal volume for 

students and to make the most of the price offers provided for the materials that we need to 

store so that no shortage occurs and the cost of storage is as low as possible. 

Discussion: 

Inventory models were studied in classical logic, and this study was presented on the basis that 

the rate of demand for inventory is a fixed value throughout the duration of the storage cycle. 

Therefore, the rate of demand for inventory is subject to a uniform probability distribution. 

This issue was addressed by relying on studies presented according to classical logic in the 

field of operations research, which relies on based on basic concepts in mathematics such as 

calculus of integration and others [21-32], we presented, in previous research [16-20], static 

inventory models using the concepts of neutrosophic science. We took in the study the rate of 

demand for inventory during the duration of the storage cycle. neutrosophic value. 
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Undetermined values. Completely determined. It is subject to a regular neutrosophic 

distribution, and we found the extent to which this value affects the ideal volume of the order. 

Among the research was the neutrosophic treatment of inventory models without a deficit, 

which is based on the following hypotheses: 

Basic hypotheses of the study: 

1  – Order volume 𝑄.  

2  - The rate of demand for inventory at one time 𝜆𝑁 (unspecified), where 𝜆𝑁 ∈ {𝜆1, 𝜆2}  or 

𝜆𝑁 ∈ [𝜆1, 𝜆2] or... so that 𝜆1 is the minimum rate of demand for inventory and 𝜆2 is the 

upper limit of the rate of demand for inventory. 

3  – The fixed cost of preparing the order 𝐶1 = 𝐾.  

4  – The cost of purchase, delivery and receipt 𝐶2 = 𝐶. 𝑄. 

5  - The cost of storage for the remaining quantity in the warehouse during one time 𝐶3. 

6  - The duration of running out of the stored quantity is 
𝑄

𝜆𝑁
 (or the duration of the storage cycle). 

Using the previous assumptions, we were able to build a non-linear mathematical model, and 

the optimal solution for it, i.e., the ideal volume of the order, is given by the following 

relationship: 

𝑄𝑁
∗ = √

2𝐾𝜆𝑁

ℎ
           (1) 

The ideal total cost is calculated from the relationship: 

𝐶(𝑄𝑁
∗ ) =

𝐾𝜆𝑁

𝑄𝑁
∗ + 𝐶𝜆𝑁 +

ℎ𝑄𝑁
∗

2
     (2) 

In this research, we present a study of static inventory models without shortages after adding 

a new hypothesis to the basic hypotheses imposed by the reality of the market situation 

through the offers made by the producing companies. The content of these offers is to provide 

a discount whose value is determined according to the quantity that is purchased. Here the 

official must determine the size of the order. So that it suits the system’s demand and is 

sufficient for the duration of the storage cycle without causing a shortage and with the lowest 

possible storage cost and at the same time benefiting from the companies’ offer. According to 

the above, we present the following formulation of the issue: 

Text of the issue: 

An insurance company needs a certain material, so if it knows that the rate of demand for this 

material is 𝜆𝑁  during the storage cycle, and that the cost of purchasing one unit is 𝐶 

monetary units, the cost of storing one unit is ℎ, the cost of preparing the order is 𝐾 monetary 

units, and the offer provided by the company the producers of this material are: 
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𝑃𝑟𝑖𝑐𝑒 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑖𝑡𝑒𝑚 {

𝐶1               𝐼𝑓       0 ≤ 𝑄 < 𝑄1

𝐶2              𝐼𝑓     𝑄1 ≤ 𝑄 < 𝑄2 
𝐶3                   𝐼𝑓    𝑄2 ≤ 𝑄 < 𝑄3

𝐶4               𝐼𝑓    𝑄3 ≤ 𝑄 < ∞

 

Where 𝐶1 > 𝐶2 > 𝐶3 > 𝐶4 

What is required is to determine the ideal volume of the order so that the storage cost is as 

low as possible. 

From the above, the basic hypotheses of this model are written as follows: 

Basic assumptions of the model of variable prices without neutrosophic deficit: 

1  – Order volume 𝑄. 

2  - The rate of demand for inventory at one time 𝜆𝑁 (unspecified), where 𝜆𝑁 ∈ {𝜆1, 𝜆2}  or 

𝜆𝑁 ∈ [𝜆1, 𝜆2] or... so that 𝜆1 is the minimum rate of demand for inventory and 𝜆2 is the 

upper limit of the rate of demand for inventory. 

3  – The fixed cost of preparing the order 𝐶1 = 𝐾.  

4  – The cost of purchase, delivery and receipt 𝐶2 = 𝐶. 𝑄. 

5  - The cost of storage for the remaining quantity in the warehouse during one time 𝐶3. 

6  - The duration of running out of the stored quantity is 
𝑄

𝜆𝑁
 (or the duration of the storage cycle). 

7- One of the companies producing materials to be stored provided four price levels that are 

inversely proportional to the volume of the order: 

𝑃𝑟𝑖𝑐𝑒 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑖𝑡𝑒𝑚 {

𝐶1               𝐼𝑓       0 ≤ 𝑄 < 𝑄1

𝐶2              𝐼𝑓     𝑄1 ≤ 𝑄 < 𝑄2 
𝐶3                   𝐼𝑓    𝑄2 ≤ 𝑄 < 𝑄3

𝐶4               𝐼𝑓    𝑄3 ≤ 𝑄 < ∞

 

Neutrosophic treatment of the issue: 

We follow the following steps: 

1 - We build a mathematical model for this issue within hypotheses 1-6, which in themselves    

are the basic hypotheses of the static model without neutrosophic deficit that was studied 

previously, and we arrived at the following: 

  Find 

𝐶(𝑄) =
𝐾𝜆𝑁

𝑄
+ 𝐶𝜆𝑁 +

ℎ𝑄

2
  ⟶ 𝑀𝑖𝑛 

 Condition: 

𝑄 ≥ 0 

It is a nonlinear neutrosophic model whose optimal solution, i.e., the ideal volume of the 

students, is given by the relationship (1) and the minimum storage cost is calculated from 

the relationship (2). 
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To address the issue at hand and choose the optimal volume of the order, taking into 

account hypothesis No. (7) of the offers presented, we calculate the following storage 

costs: 

𝐶𝑖(𝑄𝑁) =
𝐾𝜆𝑁

𝑄𝑁
+ 𝐶𝑖𝜆𝑁 +

ℎ𝑄𝑁

2
      (3) 

Where 𝑖 = 1,2,3,4, … for all price cases 

Since 𝐶1 > 𝐶2 > 𝐶3 > 𝐶4the function 𝐶𝑖(𝑄) satisfies the following inequality: 

𝐶1(𝑄) > 𝐶2(𝑄) > 𝐶3(𝑄) > 𝐶4(𝑄) 

For 𝑖 = 1,2,3,4. 

Each of the previous functions has a minimum limit, which is the optimal solution to the 

nonlinear model that we arrived at in the first step, corresponding to the inventory volume, 

which we symbolize as 𝑄0𝑁, calculated from the following relationship:  

𝑄0𝑁 = √
2𝐾𝜆𝑁

ℎ
 

After calculating 𝑸𝑵𝟎we compare it with the given offers.   

We assume that 𝑄1 ≤  𝑄𝑁0 < 𝑄2. Then we calculate the cost corresponding to this volume 

from the relationship (3). We get 𝐶2(𝑄0𝑁). To determine the ideal volume of the order  𝑄𝑁
∗ , 

we calculate the cost functions for the minimum limits of the quantity ranges specified in the 

discounts table. Then we choose the smallest of these costs, which is the volume. The 

corresponding ideal is the volume that secures inventory for the system during the storage 

cycle period at the lowest possible cost and taking advantage of the offers provided. 

We explain the above through the following example: 

Example: 

A production institution wants to secure its need for a certain material. If it knows 

that the rate of demand for this material is [250,330],units per year, the cost of 

purchasing one unit in the market is 400 monetary units, the cost of storing one unit 

per year is 10% of its price, and the cost of preparing the order is equal to 150 units. 

In cash, the company producing this material offers the following offers: 

2% discount if quantity 50 ≤ 𝑄 ≤ 100. 

3% discount if quantity 100 ≤ 𝑄 ≤ 200.  

5% discount if quantity is 200 ≤ 𝑄. 

Required: Find the optimal quantity 𝑄𝑁
∗ ,that makes the total costs of storage as 

small as possible. 

The solution: 

Data: 

𝜆 ∈ [250,350]  , 𝐾 = 150 , 𝐶 = 400 



Neutrosophic Sets and Systems, Vol. 60, 2023     129  

 

 
  

Maissam Jdid, F. Smarandache, Neutrosophic Static Model without Deficit and Variable Prices 

 

  ℎ is the storage cost and is 10% of the price of one unit of stock in the market. Therefore:  

ℎ =
10

100
. 400 = 40 

1- We determine price levels by discounts: 

a. When 𝑄 ≤ 50 then 𝐶1 = 𝐶 = 400 there is no discount. 

b. When 50 ≤ 𝑄 ≤ 100 the discount is 2% and the purchase price is equal to:  

𝐶2 = 400 (1 −
2

100
) = 392 

c. When 100 ≤ 𝑄 ≤ 200 the discount is 3% and the purchase price 

equals to: 

𝐶3 = 400 (1 −
3

100
) = 388 

d. When 𝑄 ≥ 200 the discount is 5% and the purchase price is equal to: 

𝐶4 = 400 (1 −
5

100
) = 380 

2- We calculate the initial quantity of inventory:  

We study the issue based on hypotheses 1-6, and here we are faced with a storage 

model without a neutrosophic deficit. We calculate the ideal volume of the order 

through the following relationship: 

𝑄0𝑁 = √
2𝐾𝜆𝑁

ℎ
= √

2. [250,350]. 150

20
∈ [61,72] 

This means that in order for the company to provide a safe work environment without 

shortages and with the lowest storage cost, the volume of the order must be greater 

than 𝑄0𝑁 . To calculate the cost, we compare the initial quantity with the offers 

presented by the producing company. We find that 𝑄0𝑁 ∈ [50,100], meaning that 

this quantity deserves a 2% discount. The purchase price per unit is 𝐶2 = 392, and 

then the total storage cost is calculated from the relationship: 

𝐶2(𝑄0𝑁) =
𝐾𝜆𝑁

𝑄0𝑁
+

ℎ𝑄0𝑁

2
+ 𝐶2𝜆𝑁 

𝐶2([61,72]) =
150. [250,350]

[61,72]
+

40. [61,72]

2
+ 392. [250,350] ∈ [99834,139369] 

      To benefit more from the offers presented. 

3- We calculate costs for the minimum offer areas: 

For the range 100 ≤ 𝑄 ≤ 200we find: 

 

𝐶3(100) =
150. [250,350]

100
+

40.100

2
+ 392. [250,350] ∈ [100375,139725] 
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𝐶4(200) =
150. [250,350]

200
+

40.200

2
+ 380. [250,350] ∈ [99187.5,137262.5] 

 

After obtaining the costs corresponding to the offers, we find that: 

As for the cost 𝐶1 = 𝐶 = 400, it is offset by the order volume 𝑄 ≤ 50, and for this 

volume there is no discount. In addition, this volume is less than the minimum required, 

meaning that it does not suit the company because the company works on the basis of not 

having a deficit, and this order quantity will cause a deficit to be paid. The company will 

face fines, which will be reflected in the total cost, so we rule out this solution. 

4- We choose the lowest cost from the remaining costs: 

 That is, we take: 

𝑀𝑖𝑛{𝐶2(𝑄), 𝐶3(𝑄), 𝐶3(𝑄)} 

We find: 

𝑀𝑖𝑛{[99834,139369], [100375,139725], [99187.5,137262.5]}

= [99187.5,137262.5]  (∗) 

 

It corresponds to an order size 𝑄 = 200. This volume is appropriate for the company’s 

workflow. 

In order to achieve the maximum benefit from the offers presented, we calculate the costs 

corresponding to the largest volume that the company can adopt if the storage cost is 

appropriate, which corresponds to an order volume equal to the rate of demand for 

inventory, that is: 

We calculate storage costs if the order volume equals the inventory demand rate. That is, 

when 𝑄 ∈ [250,350], we find that the price of one unit will be 𝐶4 = 380, and the total 

storage costs are equal to: 

𝐶([250,350]) =
150[250,350]

[250,350]
+

40. [250,350]

2
+ [250,350]. 380 ∈ [100150,140150] 

We compare this cost with the cost we obtained through the comparison (*). We find that 

the cost is greater and there is no interest for the company in requesting this size of the order 

because it can ensure a safe work flow and benefit from the offers provided at a lower cost 

when the order volume is 𝑄 = 200. 

  From the above, we note that the minimum value of storage costs is: 

[99187.5,137262.5] 

And corresponds to the ideal volume of the order, which is equal to 𝑄∗ = 200. 
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Conclusion and Results: 

The storage model with variable prices is considered one of the important models in inventory 

models because we encounter it frequently in practical life and it requires careful study from 

us so that we do not fall into the temptation of the offers presented. Through the offers we 

may be able to obtain lower prices for large quantities, but these quantities may become a 

burden on the company. During the costs that must be paid for the storage process, on the 

other hand, we find that using the neutrosophic value of the demand rate for inventory gave 

a careful study of the model, as we obtained the neutrosophic storage cost from which we 

can determine the lowest cost and the largest cost if the ideal volume of the order is adopted 

𝑄∗ = 200. 
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Abstract 

In today's digitally connected and globally interconnected corporate world, the assessment of 

International Corporate Administration in E-commerce is of the utmost importance. To help with 

the evaluation of such a program, this paper summarizes important topics. The evaluation covers 

a wide range of topics, such as strategies for entering and selecting markets, digital marketing for 

acquiring customers, logistics and supply chain management, payment, and security systems, 

customer experience and retention, data analytics for measuring performance, communication 

across cultures, and continuous learning. When considering an International Business 

Administration program in E-commerce, prospective students should take these factors into 

account. This will help them make informed decisions and ensure that they gain the knowledge 

and skills needed to succeed in the complex world of international e-commerce and make a positive 

impact on global businesses. So, we proposed a single-valued neutrosophic framework for dealing 

with uncertain information in the evaluation process. We used multi-criteria decision-making 

methods named the AHP and WSM methods. The AHP method is used to compute the weights of 

criteria. The WSM method is used to rank the alternatives. We used 15 criteria and 10 strategies 

in this study. We performed a sensitivity analysis to show the stability of the results. 

Keywords: Single Valued Neutrosophic Sets; International Business Administration; E-Commerce; 

Strategies; AHP Method; WSM Method. 

1. Introduction 

The ever-changing subject of international business administration in e-commerce integrates the 

tenets of traditional international company management with the complexities of online trade. 

Companies are looking beyond local markets to take advantage of the enormous opportunities 

presented by global e-commerce as a result of the world's growing interconnection and digitization. 

Because of this, there is a need for experts in the field of e-commerce who also have a solid grasp 

of global business tactics[1,2]. 

Students majoring in International Business Administration with a concentration in E-commerce 

learn to deal with the challenges of doing business online on a worldwide basis. Digital marketing 

tactics, supply chain management, payment and security systems, analytics, customer experience 

optimization, cross-border legal and regulatory issues, and market research and selection are all 

part of the extensive study that is required[3,4]. 

Professionals who can see possibilities in global markets, create solid plans for online sales, and 

deal with the inevitable problems that arise from doing business across borders are in great demand 
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in today's fast-paced, cutthroat business environment. If a company wants to expand, gain market 

share, and solidify its position on the international stage, it needs these experts[3,5]. 

International business administration with a focus on e-commerce provides students with a well-

rounded education in both traditional company management and innovative approaches to online 

sales and marketing. Because of this, they will be prepared to take advantage of the possibilities 

and overcome the obstacles that come with international e-commerce[6,7]. 

Career opportunities in international business administration with a focus on electronic commerce 

are also quite promising. A wide variety of positions are available to graduates, such as executives 

in company development, supply chain management, digital marketing, e-commerce management, 

and worldwide market analysis. They have a lot of options for where to work, from software and 

logistics firms to consumer goods stores, or they may start their international e-commerce 

businesses[8-10]. 

 People who are enthusiastic about integrating their knowledge of global business with the rapidly 

developing field of Internet commerce will find an ideal fit with the International Business 

Administration in E-commerce programed. As a result of their extensive training in e-commerce 

best practices and strong academic background in business administration, individuals working in 

this area are well-positioned to succeed in today's interconnected world[10,11]. The evolution of 

international business administration in E-Commerce is a multi-criteria decision-making model 

(MCDM)[12,13]. 

Uncertainty, imprecision, inconsistency, and vagueness are given a fresh perspective in Florantin 

Smarandache's neutrosophic sets, which build upon the intuitionistic fuzzy sets (IFSs) proposed 

by Atanassov. Smarandache described a neutrosophic set as having three elements—truth 

membership, indeterminacy membership, and falsity membership—and added the degree of 

indeterminacy/neutrality as a distinct, separate component of fuzzy sets. Neutrosophic sets may 

improve decision-making because the indeterminacy parameter allows for a more precise 

formulation of membership functions[14–17]. However, a neutrosophic set presents greater 

challenges in practical scientific and technical contexts[18-19].  

To differentiate between absolute truth and relative truth, absolute falsity and relative falsehood in 

logic, absolute membership and relative membership, absolute non-membership, relative non-

membership, and so on[20-26], neutrosophic logic is a great tool. The requirement that the total of 

a membership function's components for a given event not exceed 1 is not satisfied when 

neutrosophic sets are favored. The total may go as high as three if those parts are unrelated. 

2. Related work 

In this section, we introduce some related studies in the single-valued neutrosophic set with the 

AHP method and the WSM method. Naderi et al. [27] proposed an adaptive candidate rely set 

based on the SVN-AHP method. They used the AHP method to compute the criteria weights. They 

proposed a model for adaption in vehicular networks.  Karasan et al. [28] proposed a decision-

making model for the design of a car seat. They integrated the neutrosophic set with the AHP 

method. The neutrosophic AHP was used for computing the weights of customers’ requirements. 
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Gulum et al. [29]proposed a neutrosophic framework for post-earthquake fire risk evaluation. They 

proposed a neutrosophic AHP and neutrosophic TOPSIS for this evaluation. The neutrosophic 

AHP was used to compute the weights of criteria for post-earthquake fire risk problems. Kavus et 

al. [30] proposed a three-level framework for assessing airline service quality. They proposed a 

neutrosophic framework for overcoming the uncertainty of information. They used the 

neutrosophic AHP in their evaluation. They used the neutrosophic AHP for computing the criteria 

weights and sub-criteria.  Fatih Yiğit [31] proposed a decision-making model for human resource 

decisions. He used the neutrosophic set in his process. He has used the neutrosophic AHP method. 

The neutrosophic AHP method was used to compute the weights of the criteria. 

3. Single Valued Neutrosophic Framework 

In this section, we introduce the mathematical equation based on operations of the single values 

neutrosophic numbers (SVNNs) and we introduce the SVN-AHP and the SVN-WSM. The SVN-

AHP method is used to compute the weights of criteria[32-33]. The SVN-WSM is used to rank 

the strategies of IBA in the E-Commerce field as shown in Figure 1. 

3.1 Single Valued Neutrosophic Sets 

In this part, we introduce some mathematical operations of SVNSs.  

The SVNSs can be defined by three membership degrees such as truth, indeterminacy, and falsity 

degrees as: 

𝑁𝑆 = {𝐴𝑁𝑆(𝑥), 𝐵𝑁𝑆(𝑥), 𝐶𝑁𝑆(𝑥)}                                                                                                                 (1) 

0 ≤  𝐴𝑁𝑆(𝑥) + 𝐵𝑁𝑆(𝑥) + 𝐶𝑁𝑆(𝑥) ≤ 3                                                                                                 (2) 

Let 𝑦1 = (𝐴𝑁𝑆1
(𝑥), 𝐵𝑁𝑆1

(𝑥), 𝐶𝑁𝑆1
(𝑥))  𝑎𝑛𝑑 𝑦2 = (𝐴𝑁𝑆2

(𝑥), 𝐵𝑁𝑆2
(𝑥), 𝐶𝑁𝑆3

(𝑥)) be two 

neutrosophic numbers and the operation can be computed as: 

𝑦1 ∪ 𝑦2 = (max{𝐴𝑁𝑆1
(𝑥), 𝐴𝑁𝑆2

(𝑥)}, min{𝐵𝑁𝑆1
(𝑥), 𝐵𝑁𝑆2

(𝑥)} , min{𝐶𝑁𝑆1
(𝑥), 𝐶𝑁𝑆2

(𝑥)})               (3) 

𝑦1 ∩ 𝑦2 = (min{𝐴𝑁𝑆1
(𝑥), 𝐴𝑁𝑆2

(𝑥)}, max{𝐵𝑁𝑆1
(𝑥), 𝐵𝑁𝑆2

(𝑥)} , max{𝐶𝑁𝑆1
(𝑥), 𝐶𝑁𝑆2

(𝑥)})               (4) 

𝑦1
𝑐 = (𝐶𝑁𝑆1

(𝑥), 1 − 𝐵𝑁𝑆1
(𝑥), 𝐴𝑁𝑆1

(𝑥))                                                                                                  (5) 

𝑦1 ⊕ 𝑦2 = (𝐴𝑁𝑆1
(𝑥) + 𝐴𝑁𝑆2

(𝑥), 𝐴𝑁𝑆1
(𝑥)𝐴𝑁𝑆2

(𝑥), 𝐵𝑁𝑆1
(𝑥)𝐵𝑁𝑆2

(𝑥), 𝐶𝑁𝑆1
(𝑥)𝐶𝑁𝑆2

(𝑥))                 (6) 

𝑦1 ⊗ 𝑦2 = (𝐴𝑁𝑆1
(𝑥)𝐴𝑁𝑆2

(𝑥), 𝐵𝑁𝑆1
(𝑥) + 𝐵𝑁𝑆2

(𝑥) − 𝐵𝑁𝑆1
(𝑥)𝐵𝑁𝑆2

(𝑥), 𝐶𝑁𝑆1
(𝑥) + 𝐶𝑁𝑆2

(𝑥) −

𝐶𝑁𝑆1
(𝑥)𝐶𝑁𝑆2

(𝑥))                                                                                                                                  (7) 
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Figure 1. The steps of the single-valued neutrosophic model. 

3.2 SVN-AHP Method 

In this part, we introduce the steps of the SVN-AHP method to compute the criteria weights.  

Step 1. Determine the single-valued neutrosophic scale. 

Step 2. Determine the goal, criteria, and alternatives. 

Step 3. Build the pairwise comparison matrix 

The pairwise comparison matrix is built based on the single-valued neutrosophic numbers. This 

matrix is changed to the crisp valued as: 

𝑋𝑖𝑗 =  [

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑛

]                                                                                                                           (8) 

Step 4. Compute the normalized matrix 

The normalized pairwise matrix is computed by dividing the value in the pairwise matrix into a 

sum of each column as: 

𝑅𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑗
𝑛
𝑗=1

                                                                                                                                           (9) 

Where j refers to the number of criteria and 𝑗 = 1,2, … 𝑛 

Step 5. Compute the mean of every row to compute the weights of the criteria. 

Step 6. Test the consistency ratio (CR) 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
                                                                                                                                                     (10) 

Where CI refers to the consistency index and RI refers to the random index. 
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3.3 SVN-WSM Method 

In this part, we introduce the steps of the SVN-WSM. The weighted sum method is used to 

compute the weights of criteria. The steps of the SVN-WSM are introduced as: 

Step 7. Build the decision matrix  

𝑍𝑖𝑗 =  [

𝑧11 ⋯ 𝑧1𝑛

⋮ ⋱ ⋮
𝑧𝑚1 ⋯ 𝑧𝑚𝑛

]                                                                                                                           (11) 

Step 8. Normalize the decision matrix  

𝐸𝑖𝑗 =
𝑧𝑖𝑗

∑ 𝑧𝑖𝑗
𝑚
𝑗=1

                                                                                                                                           (12) 

Step 9. Compute the weighted normalized decision matrix 

𝑊𝐸𝑖𝑗 = 𝑤𝑗 ∗ 𝑧𝑖𝑗                                                                                                                                      (13) 

Then we rank the strategies of IBA based on the largest value in the sum of each row of the 

weighted normalized decision matrix. 

 
Figure 2. The goal, criteria, and alternatives in this study. 

4. Results  

In this part, we introduce the results of the applied proposed model and we discuss it by the criteria 

weights of the rank of alternatives. 

Step 1. We identify the scale of the SVNSs. 

Step 2. We identify the set of criteria and alternatives to rank and analyze the strategies of IBA in 

the E-Commerce sector as shown in Figure 2. 
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Step 3. Build the pairwise comparison matrix between criteria by Eq. (8). 

Step 4. Compute the normalized matrix by Eq. (9) see Table 1.  

Table 1. The normalized pairwise comparison matrix. 
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Figure 3. The criteria weights of international business administrations in E-Commerce. 

Step 5. Compute the mean of every row to compute the weights of criteria as shown in Figure 3. 

Step 6. Test the consistency ratio (CR). The CR is less than 0.1. This indicates the pairwise 

comparison is consistent.  

3.3 SVN-WSM Method Results 

Step 7. Build the decision matrix by Eq. (11). 

Step 8. Normalize the decision matrix by Eq. (12) see Table 2.  
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Table 2. The normalized decision matrix. 
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Step 9. Compute the weighted normalized decision matrix by Eq. (13) see Table 3. The rank of 

strategies is shown in Figure 4.  

Table 3. The weighted normalized decision matrix. 
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Figure 4. The ranking of strategies in international business administration in E-Commerce. 

We applied the single-valued neutrosophic set framework for ranking and analyzing the strategies 

of international business administrations in E-Commerce. We applied to MCDM method named 

AHP and WSM method. We let the experts evaluate the criteria by building the pairwise 

comparison matrix between the criteria. We used 15 criteria and 10 alternatives in this study. The 

criteria and alternatives are collected based on the literature review and opinions of experts who 

have experience of more than 10 years in international business administration. The SVN-AHP is 

used to compute the criteria weights. The results show the ECI15 (Global Market Understanding) 

is the best criterion followed by ECI13 (Ethical and Sustainable E-commerce Practices) and ECI14 

(Industry Reputation and Alumni Network) and the least weight is ECI2 (International Business 

and Legal Frameworks). 

Then we applied the WSM method to the 15 criteria and 10 alternatives by building the decision 

matrix. Then we rank the strategies by the WSM method. The results show that IES2 (Market 

Selection and Entry Strategy) is the best strategy, followed by IES8 (Cultural Intelligence), and 

IES4 (Supply Chain and Logistics Management), and the lowest strategy is IES10 (Stay Updated 

with E-commerce Trends). 

5. Sensitivity Analysis  

We change the weights of the criteria and then rank the alternatives with the WSM method under 

different cases to show the stability of the results. We change the weights of criteria by 15 cases 

as shown in Figure 5. We put one criterion with 0.07 weight and all weights are equal. We show 

the rank of alternatives under different cases is stable as shown in Figure 5.  
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Figure 5. The 15 cases in criteria weights. 
 

 

Figure 6. The rank of strategies under 15 cases. 
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6. Conclusions 

The evaluation of International Business Administration in E-commerce is essential for individuals 

seeking a comprehensive education in the field. By considering market selection and entry 

strategies, digital marketing techniques, supply chain management, customer experience 

optimization, and other relevant factors, students can assess the program's suitability for their 

career goals. The integration of specialized e-commerce knowledge with international business 

principles equips graduates with the skills required to excel in the global e-commerce landscape. 

Moreover, the continuous learning mindset, cross-cultural understanding, and adaptation to 

emerging trends ensure that professionals remain competitive and contribute to the growth of 

businesses operating in the digital realm. Evaluating International Business Administration in E-

commerce empowers students to make informed decisions and embark on a rewarding career path 

in this dynamic and rapidly evolving field. 

We proposed a single-valued framework with the MCDM method to analyze the strategies in the 

international business administration in E-Commerce. The single-valued neutrosophic was used to 

deal with vague information. The two MCDM methods used in this study are the AHP and WSM 

methods. The SVN-AHP was used to compute the weights of the criteria. Then the SVN-WSM 

was used to rank the strategies. We used the 15 criteria and 10 strategies.  
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Abstract: The notions of interval valued pentapartitioned neutrosophic sets (𝐼𝑉𝑃𝑁𝑆s), where the 

membership values of truth, contradiction, ignorance, unknown, and falsity always fall inside a 

closed interval [0,1]  are introduced in this paper. Also an example of COVID-19 has been 

discussed using 𝐼𝑉𝑃𝑁𝑆. Later we have established some basic operations between 𝐼𝑉𝑃𝑁𝑆𝑠 and 

useful features of 𝐼𝑉𝑃𝑁𝑆s have also been presented and discussed. 

Keywords: Neutrosophic set, pentapartitioned neutrosophic set, interval neutrosophic set, interval 

valued pentapartitioned neutrosophic set. 

 

 

1.  Introduction   

There are numerous common issues in the disciplines of economics, engineering, environmental 

research, social science etc in everyday life that can't be solved with classical mathematics. To handle 

such a circumstance Fuzzy set (𝐹𝑆) [12], rough set (𝑅𝑆) [7] and intuitionistic fuzzy set (𝐼𝐹𝑆) concepts 

[1] have all been introduced. Traditional 𝐹𝑆theory only considers membership values and due to 

this 𝐼𝐹𝑆 theory which includes both membership values as well as non-membership values, serves 

a crucial function in the study of uncertainties. Though the indeterminacy and inconsistent 

observation that exist in belief systems are not addressed by intuitionistic fuzzy set theory. In order 

to address this type of indeterminacy, Smarandache developed neutrosophic set (𝑁𝑆) [8] as an 

addition to 𝐼𝐹𝑆 theory. Single valued neutrosophic sets were first established by Wang and others 

[10] in 2010 and this idea is expanded to establish quadripartition single valued neutrosophic sets by 

Chatterjee et al. [2]. Smarandache [9] classified indeterminacy into three functions in 2013 as the 

unknown, contradiction and ignorance membership functions and proposed five symbol valued 

neutrosophic logic using these functions. And he further on extended it to: p types of Truths, 

𝑇1 , 𝑇2, . . . , 𝑇𝑝 and 𝑟 types of Indeterminacies 𝐼1, 𝐼2, . . . , 𝐼𝑟 also 𝑠 types of falsities 𝐹1, 𝐹2, . . . , 𝐹𝑠 where 

p + r + s =  n greater than 4, which is the most general form of fuzzy extension of today [9]. 

Later, adopting this idea, Mallick introduced the pentapartitioned neutrosophic set (𝑃𝑁𝑆) [5], where 

membership functions of truthiness, disagreement, lack of understanding i.e. ignorance, 

unknowability, and falsehood were taken into consideration. Das established the concept of single 

valued pentapartitioned neutrosophic graphs, sub graph, and complete graphs [3] to address graph 

theoretic challenges including indeterminacy in the form of three distinct elements viz 

contradictions, ignorances and unknowability. Das et al. has also proposed the Hamming distance in 
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pentapartitioned neutrosophic sets and developed a GRA-based Single valued pentapartitioned 

neutrosophic sets in MADM method [4]. In a decision-making dilemma, they further validate their 

findings by choosing a supplier to purchase electronic items for an organization. 

In practical scenario to deal with societal uncertainty there are various situations where 

different membership values belong to some interval. So to overcome from such type of scenario we 

develop 𝐼𝑉𝑃𝑁𝑆. 

The structure of this article is as follows: Introduction is included in 1st Section, preliminary 

notions are included in 2nd Section, the concept of 𝐼𝑉𝑃𝑁𝑆𝑠 is included in 3rd Section, along with 

certain operations and outcomes and Section 4 concludes and outlines the research's next directions. 

2.  Preliminaries  

Definition  2.1 [8] A 𝑁𝑆 £⏞ on W (the universe),  defined as £⏞ = {(ℏ, 𝑇
£⏞

(ℏ), 𝐼
£⏞

(ℏ), 𝐹
£⏞

(ℏ)) : ℏ ∈ 𝑊}, 

where 𝑇
£⏞

, 𝐼
£⏞

, 𝐹
£⏞

: 𝑊 →]−0,1+[ satisfying ∀ℏ ∈ 𝑊,− 0 ≤ 𝑇
£⏞

(ℏ) + 𝐼
£⏞

(ℏ) + 𝐹
£⏞

(ℏ) ≤ 3+. 

Here 𝑇
£⏞

(ℏ), 𝐼
£⏞

(ℏ) and𝐹
£⏞

(ℏ)represent the truth, indeterminacy and falsity membership values 

respectively of ℏ ∈ 𝑊. 

Definition  2.2 [5] A 𝑃𝑁𝑆 £⏞ on the universe W  is defined as £⏞ = {(ℏ, 𝑇
£⏞

(ℏ), 𝐶
£⏞

(ℏ), 𝐺
£⏞

(ℏ), 𝑈-

£⏞
(ℏ), 𝐹

£⏞
(ℏ)) : ℏ ∈ 𝑊} , where 𝑇

£⏞
, 𝐶

£⏞
, 𝐺

£⏞
, 𝑈

£⏞
, 𝐹

£⏞
: 𝑊 → [0,1] satisfying  ∀ℏ ∈ 𝑊,    0 ≤ 𝑇

£⏞
(ℏ) +

𝐶
£⏞

(ℏ) + 𝐺
£⏞

(ℏ) + 𝑈
£⏞

(ℏ) + 𝐹
£⏞

(ℏ) ≤ 5. 

Here 𝑇
£⏞

(ℏ), 𝐶
£⏞

(ℏ), 𝐺
£⏞

(ℏ), 𝑈
£⏞

(ℏ) and  𝐹
£⏞

(ℏ) represent the truthiness, disagreement, lack of 

understanding i.e. ignorance, unknowability, and falsehood membership values respectively of ℏ ∈

𝑊. 

Definition  2.3 [11]   An interval neutrosophic set (𝐼𝑁𝑆) £⏞ on the universe W  is defined as £⏞ =

{(ℏ, 𝑇
£⏞

(ℏ), 𝐼
£⏞

(ℏ), 𝐹
£⏞

(ℏ)) : ℏ ∈ 𝑊} , where 𝑇
£⏞

, 𝐼
£⏞

, 𝐹
£⏞

: 𝑊 →]−0,1+[ satisfying ∀ℏ ∈ 𝑊,− 0 ≤ 𝑇
£⏞

(ℏ) +

𝐼
£⏞

(ℏ) + 𝐹
£⏞

(ℏ) ≤ 3+. 

Here 𝑇
£⏞

(ℏ), 𝐼
£⏞

(ℏ) and 𝐹
£⏞

(ℏ) represent the truthiness, indeterminacy and falsehood membership 

values respectively of the element ℏ ∈ 𝑊. 

Definition  2.4 [11] Let £⏞, ¥⏞ are two 𝐼𝑁𝑆s on 𝑊 defined by £⏞ = {(ℏ, 𝑇
£⏞

(ℏ), 𝐼
£⏞

(ℏ), 𝐹
£⏞

(ℏ)) : ℏ ∈ 𝑊} 

and ¥⏞  = {(ℏ, 𝑇¥⏞
 

(ℏ), 𝐼¥⏞
 

(ℏ), 𝐹¥⏞
 

(ℏ)) : ℏ ∈ 𝑊}. Then for all ℏ ∈ 𝑊  

i. £⏞ is contained in ¥⏞ if and only if 

𝑔𝑙𝑏𝑇
£⏞

(ℏ) ≤ 𝑔𝑙𝑏𝑇¥⏞(ℏ), 𝑙𝑢𝑏𝑇
£⏞

(ℏ) ≤ 𝑙𝑢𝑏𝑇¥⏞(ℏ), 

𝑔𝑙𝑏𝐼
£⏞

(ℏ) ≥ 𝑔𝑙𝑏𝐼¥⏞
(ℏ), 𝑙𝑢𝑏𝐼

£⏞
(ℏ) ≥ 𝑙𝑢𝑏𝐼¥⏞

(ℏ), 

𝑔𝑙𝑏𝐹
£⏞

(ℏ) ≥ 𝑔𝑙𝑏𝐹¥⏞(ℏ), 𝑙𝑢𝑏𝐹
£⏞

(ℏ) ≥ 𝑙𝑢𝑏𝐹¥⏞(ℏ). 

ii. The union of £⏞ and ¥⏞ is an 𝐼𝑁𝑆 𝜔⏞, defined by 

𝜔⏞ = £⏞ ∪ ¥⏞ = {(ℏ, 𝑇𝜔⏞ (ℏ), 𝐼𝜔⏞ (ℏ), 𝐹𝜔⏞ (ℏ)): ℏ ∈ 𝑊} 

where, 𝑔𝑙𝑏𝑇𝜔⏞ (ℏ) =∨ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ)), 𝑙𝑢𝑏𝑇𝜔⏞ (ℏ) =∨ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ)) 
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𝑔𝑙𝑏𝐼𝜔⏞ (ℏ) =∧ (𝑔𝑙𝑏𝐼
£⏞

(ℏ), 𝑔𝑙𝑏𝐼¥⏞
(ℏ)), 𝑙𝑢𝑏𝐼𝜔⏞ (ℏ) =∧ (𝑙𝑢𝑏𝐼

£⏞
(ℏ), 𝑙𝑢𝑏𝐼¥⏞

(ℏ)) 

𝑔𝑙𝑏𝐹𝜔⏞ (ℏ) =∧ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹¥⏞
(ℏ)), 𝑙𝑢𝑏𝐹𝜔⏞ (ℏ) =∧ (𝑙𝑢𝑏𝐹

£⏞
(ℏ), 𝑙𝑢𝑏𝐹¥⏞

(ℏ)). 

iii. The intersection of £⏞ and ¥⏞ is an 𝐼𝑁𝑆 𝜔⏞, defined by 

𝜔⏞ = £⏞ ∩ ¥⏞ = {(ℏ, 𝑇𝜔⏞ (ℏ), 𝐼𝜔⏞ (ℏ), 𝐹𝜔⏞ (ℏ)): ℏ ∈ 𝑊} 

where, 𝑔𝑙𝑏𝑇𝜔⏞ (ℏ) =∧ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ)), 𝑙𝑢𝑏𝑇𝜔⏞ (ℏ) =∧ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ)) 

𝑔𝑙𝑏𝐼𝜔⏞ (ℏ) =∨ (𝑔𝑙𝑏𝐼
£⏞

(ℏ), 𝑔𝑙𝑏𝐼¥⏞
(ℏ)), 𝑙𝑢𝑏𝐼𝜔⏞ (ℏ) =∨ (𝑙𝑢𝑏𝐼

£⏞
(ℏ), 𝑙𝑢𝑏𝐼¥⏞

(ℏ)) 

𝑔𝑙𝑏𝐹𝜔⏞ (ℏ) =∨ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹¥⏞
(ℏ)), 𝑙𝑢𝑏𝐹𝜔⏞ (ℏ) =∨ (𝑙𝑢𝑏𝐹

£⏞
(ℏ), 𝑙𝑢𝑏𝐹¥⏞

(ℏ)). 

iv. The complement of £⏞ is £⏞
𝑐
, defined by £⏞

𝑐
= {(ℏ, 𝑇

£⏞
𝑐

 

(ℏ), 𝐼
£⏞

𝑐

 

(ℏ), 𝐹
£⏞

𝑐

 

(ℏ)) : ℏ ∈ 𝑊}  where

 𝑇
£⏞

𝑐

 

(ℏ) = 𝐹
£⏞

 
(ℏ), 𝐼

£⏞
𝑐

 

(ℏ) = [1 − 𝑙𝑢𝑏𝐼
£⏞

(ℏ), 1 − 𝑔𝑙𝑏𝐼
£⏞

(ℏ)] and 𝐹
£⏞

𝑐

 

(ℏ) = 𝑇
£⏞

 
(ℏ). 

3. Interval Valued Pentapartitioned Neutrosophic Sets  

Here, we provide a novel idea of interval valued pentapartitioned neutrosophic sets and examine 

some fundamental characteristics. 

In Neutrosophic sets there are three characteristic aspects including membership, non 

membership and indeterminacy whereas in Pentapartitioned Neutrosophic sets, the indeterminacy 

membership function has been subdivided into three parts: contradictory membership, ignorance 

membership and unknown membership. However, it has been observed that in issues involving 

group decision-making, the expert's opinion values differ from individual to individual and as a 

consequence, it is essential to present the idea of interval valued neutrosophic sets, where each 

characteristic aspect values are subsets of [0, 1] as opposed to single valued pentapartitioned 

neutrosophic sets.  

Definition  3.1 An interval valued pentapartitioned neutrosophic set (𝐼𝑉𝑃𝑁𝑆) £⏞ on the universe 𝑊 

is defined as £⏞ = {(ℏ, 𝑇
£⏞

(ℏ), 𝐶
£⏞

(ℏ), 𝐺
£⏞

(ℏ), 𝑈
£⏞

(ℏ), 𝐹
£⏞

(ℏ)) : ℏ ∈ 𝑊} , where 𝑇
£⏞

, 𝐶
£⏞

, 𝐺
£⏞

, 𝑈
£⏞

, 𝐹
£⏞

: 𝑊 →

𝐼𝑛𝑡([0,1]) satisfying  ∀ℏ ∈ 𝑊,    0 ≤ 𝑙𝑢𝑏𝑇
£⏞

(ℏ) + 𝑙𝑢𝑏𝐶
£⏞

(ℏ) + 𝑙𝑢𝑏𝐺
£⏞

(ℏ) + 𝑙𝑢𝑏𝑈
£⏞

(ℏ) + 𝑙𝑢𝑏𝐹
£⏞
(ℏ) ≤

5. 

Here 𝑇
£⏞

(ℏ), 𝐶
£⏞

(ℏ), 𝐺
£⏞

(ℏ), 𝑈
£⏞

 and 𝐹
£⏞

(ℏ) represent the truthiness, disagreement, lack of 

understanding i.e. ignorance, unknowability and falsehood membership values respectively of ℏ ∈

𝑊. 

Example  3.2 Consider the statement, “Does humans are immune to COVID-19 infection after 

vaccination?” 

 Suppose the statement is given to two groups of peoples for their personal views where 

each group consists of five peoples, say, 𝑀 = {𝑚11, 𝑚12, 𝑚13, 𝑚14, 𝑚15, 𝑚21, 𝑚22, 𝑚23, 𝑚24, 𝑚25}. Now 

it is obvious that different perspective will be observed regarding the statement with distinct 

membership value. The possible perspective may be expressed as degrees of “agreement (𝑇)”, “both 

agreement and disagreement (𝐶)”, ”ignorance (𝐺)”, “neither agreement not disagreement (𝑈)”, 

“disagreement (𝐹)”.  
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Now from the group of peoples, suppose 𝑚𝑖1, (𝑖 = 1,2) make agreement (𝑇) with distinct 

membership value which may lie in an interval∈ 𝐼𝑛𝑡([0,1]). Similarly 𝑚𝑖2, 𝑚𝑖3, 𝑚𝑖4, 𝑚𝑖5, (𝑖 = 1,2) 

make their perspectives 𝐶, 𝐺, 𝑈, 𝐹 respectively which may also lie in an interval∈ 𝐼𝑛𝑡([0,1]).  

Here some fundamental operators are defined in interval valued pentapartitioned 

neutrosophic sets (𝐼𝑉𝑃𝑁𝑆s) which are further utilized to examine various 𝐼𝑉𝑃𝑁𝑆 features. 

Definition  3.3 Let £⏞ and ¥⏞ are two 𝐼𝑉𝑃𝑁𝑆s on 𝑊 defined by £⏞ = {(ℏ, 𝑇
£⏞

(ℏ), 𝐶
£⏞

(ℏ), 𝐺
£⏞

(ℏ), 𝑈-

£⏞
(ℏ), 𝐹

£⏞
(ℏ)) : ℏ ∈ 𝑊} and ¥⏞ = {(ℏ, 𝑇¥⏞

(ℏ), 𝐶¥⏞
(ℏ), 𝐺¥⏞

(ℏ), 𝑈¥⏞
(ℏ), 𝐹¥⏞

(ℏ)) : ℏ ∈ 𝑊}. Then for every ℏ ∈ 𝑊 

i. £⏞ is contained in ¥⏞ iff 

 𝑔𝑙𝑏𝑇
£⏞

(ℏ) ≤ 𝑔𝑙𝑏𝑇¥⏞(ℏ),  𝑙𝑢𝑏𝑇
£⏞

(ℏ) ≤ 𝑙𝑢𝑏𝑇¥⏞(ℏ), 

𝑔𝑙𝑏𝐶
£⏞

(ℏ) ≤ 𝑔𝑙𝑏𝐶¥⏞
(ℏ), 𝑙𝑢𝑏𝐶

£⏞
(ℏ) ≤ 𝑙𝑢𝑏𝐶¥⏞

(ℏ), 

𝑔𝑙𝑏𝐺
£⏞

(ℏ) ≥ 𝑔𝑙𝑏𝐺¥⏞(ℏ), 𝑙𝑢𝑏𝐺
£⏞

(ℏ) ≥ 𝑙𝑢𝑏𝐺¥⏞(ℏ), 

𝑔𝑙𝑏𝑈
£⏞

(ℏ) ≥ 𝑔𝑙𝑏𝑈¥⏞(ℏ), 𝑙𝑢𝑏𝑈
£⏞

(ℏ) ≥ 𝑙𝑢𝑏𝑈¥⏞(ℏ), 

𝑔𝑙𝑏𝐹
£⏞

(ℏ) ≥ 𝑔𝑙𝑏𝐹¥⏞
(ℏ), 𝑙𝑢𝑏𝐹

£⏞
(ℏ) ≥ 𝑙𝑢𝑏𝐹¥⏞

(ℏ). 

ii. The union of £⏞ and ¥⏞ is an 𝐼𝑉𝑃𝑁𝑆 𝜔⏞ , defined by 

𝜔⏞ = £⏞ ∪ ¥⏞ = {(ℏ, 𝑇𝜔⏞ (ℏ), 𝐶𝜔⏞ (ℏ), 𝐺𝜔⏞ (ℏ), 𝑈𝜔⏞ (ℏ), 𝐹𝜔⏞ (ℏ)): ℏ ∈ 𝑊} 

where, 𝑔𝑙𝑏𝑇𝜔⏞ (ℏ) =∨ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ)), 𝑙𝑢𝑏𝑇𝜔⏞ (ℏ) =∨ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ)) 

𝑔𝑙𝑏𝐶𝜔⏞ (ℏ) =∨ (𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑔𝑙𝑏𝐶¥⏞
(ℏ)), 𝑙𝑢𝑏𝐶𝜔⏞ (ℏ) =∨ (𝑙𝑢𝑏𝐶

£⏞
(ℏ), 𝑙𝑢𝑏𝐶¥⏞

(ℏ)) 

   𝑔𝑙𝑏𝐺𝜔⏞ (ℏ) =∧ (𝑔𝑙𝑏𝐺
£⏞

(ℏ), 𝑔𝑙𝑏𝐺¥⏞
(ℏ)), 𝑙𝑢𝑏𝐺𝜔⏞ (ℏ) =∧ (𝑙𝑢𝑏𝐺

£⏞
(ℏ), 𝑙𝑢𝑏𝐺¥⏞

(ℏ)) 

𝑔𝑙𝑏𝑈𝜔⏞ (ℏ) =∧ (𝑔𝑙𝑏𝑈
£⏞

(ℏ), 𝑔𝑙𝑏𝑈¥⏞
(ℏ)), 𝑙𝑢𝑏𝑈𝜔⏞ (ℏ) =∧ (𝑙𝑢𝑏𝑈

£⏞
(ℏ), 𝑙𝑢𝑏𝑈¥⏞

(ℏ)) 

 𝑔𝑙𝑏𝐹𝜔⏞ (ℏ) =∧ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹¥⏞
(ℏ)), 𝑙𝑢𝑏𝐹𝜔⏞ (ℏ) =∧ (𝑙𝑢𝑏𝐹

£⏞
(ℏ), 𝑙𝑢𝑏𝐹¥⏞

(ℏ)) 

 or simply we can write 

          £⏞ ∪ ¥⏞

= {ℏ, [∨ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ))] , [∨ (𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑔𝑙𝑏𝐶¥⏞
(ℏ)) ,

∨ (𝑙𝑢𝑏𝐶
£⏞

(ℏ), 𝑙𝑢𝑏𝐶¥⏞
(ℏ))] , [∧ (𝑔𝑙𝑏𝐺

£⏞
(ℏ), 𝑔𝑙𝑏𝐺¥⏞

(ℏ)) ,

∧ (𝑙𝑢𝑏𝐺
£⏞

(ℏ), 𝑙𝑢𝑏𝐺¥⏞
(ℏ))] , [∧ (𝑔𝑙𝑏𝑈

£⏞
(ℏ), 𝑔𝑙𝑏𝑈¥⏞

(ℏ)) ,

∧ (𝑙𝑢𝑏𝑈
£⏞

(ℏ), 𝑙𝑢𝑏𝑈¥⏞
(ℏ))] , [∧ (𝑔𝑙𝑏𝐹

£⏞
(ℏ), 𝑔𝑙𝑏𝐹¥⏞

(ℏ)) ,∧ (𝑙𝑢𝑏𝐹
£⏞

(ℏ), 𝑙𝑢𝑏𝐹¥⏞
(ℏ))]} 

iii. The intersection is an 𝐼𝑉𝑃𝑁𝑆 𝜔⏞, defined by 

𝜔⏞ = £⏞ ∩ ¥⏞ = {(ℏ, 𝑇𝜔⏞ (ℏ), 𝐶𝜔⏞ (ℏ), 𝐺𝜔⏞ (ℏ), 𝑈𝜔⏞ (ℏ), 𝐹𝜔⏞ (ℏ)): ℏ ∈ 𝑊} 

where, 𝑔𝑙𝑏𝑇𝜔⏞ (ℏ) =∧ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ)), 𝑙𝑢𝑏𝑇𝜔⏞ (ℏ) =∧ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ)) 
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𝑔𝑙𝑏𝐶𝜔⏞ (ℏ) =∧ (𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑔𝑙𝑏𝐶¥⏞
(ℏ)), 𝑙𝑢𝑏𝐶𝜔⏞ (ℏ) =∧ (𝑙𝑢𝑏𝐶

£⏞
(ℏ), 𝑙𝑢𝑏𝐶¥⏞

(ℏ)) 

   𝑔𝑙𝑏𝐺𝜔⏞ (ℏ) =∨ (𝑔𝑙𝑏𝐺
£⏞

(ℏ), 𝑔𝑙𝑏𝐺¥⏞
(ℏ)), 𝑙𝑢𝑏𝐺𝜔⏞ (ℏ) =∨ (𝑙𝑢𝑏𝐺

£⏞
(ℏ), 𝑙𝑢𝑏𝐺¥⏞

(ℏ)) 

𝑔𝑙𝑏𝑈𝜔⏞ (ℏ) =∨ (𝑔𝑙𝑏𝑈
£⏞

(ℏ), 𝑔𝑙𝑏𝑈¥⏞
(ℏ)), 𝑙𝑢𝑏𝑈𝜔⏞ (ℏ) =∨ (𝑙𝑢𝑏𝑈

£⏞
(ℏ), 𝑙𝑢𝑏𝑈¥⏞

(ℏ)) 

 𝑔𝑙𝑏𝐹𝜔⏞ (ℏ) =∨ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹¥⏞
(ℏ)), 𝑙𝑢𝑏𝐹𝜔⏞ (ℏ) =∨ (𝑙𝑢𝑏𝐹

£⏞
(ℏ), 𝑙𝑢𝑏𝐹¥⏞

(ℏ)) 

 or simply we can write £⏞ ∩ ¥⏞ = {ℏ, [∧ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ))] , [∧

(𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑔𝑙𝑏𝐶¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝐶

£⏞
(ℏ), 𝑙𝑢𝑏𝐶¥⏞

(ℏ))] , [∨ (𝑔𝑙𝑏𝐺
£⏞

(ℏ), 𝑔𝑙𝑏𝐺¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝐺

£⏞
(ℏ), 𝑙𝑢𝑏𝐺¥⏞

(ℏ))] , [∨

(𝑔𝑙𝑏𝑈
£⏞

(ℏ), 𝑔𝑙𝑏𝑈¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝑈

£⏞
(ℏ), 𝑙𝑢𝑏𝑈¥⏞

(ℏ))] , [∨ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝐹

£⏞
(ℏ), 𝑙𝑢𝑏𝐹¥⏞

(ℏ))]} 

iv. The complement of £⏞ is £⏞
𝑐
, defined by £⏞

𝑐
= {(ℏ, 𝑇

£⏞
𝑐

 

(ℏ), 𝐶
£⏞

𝑐

 

(ℏ), 𝐺
£⏞

𝑐

 

(ℏ), 𝑈
£⏞

𝑐

 

(ℏ), 𝐹-

£⏞
𝑐

 

(ℏ)) : ℏ ∈ 𝑊}  where 𝑇
£⏞

𝑐

 

(ℏ) = 𝐹
£⏞

 
(ℏ), 𝐶

£⏞
𝑐

 

(ℏ) = 𝑈
£⏞

 
(ℏ) 𝐺

£⏞
𝑐

 

(ℏ) = [1 − 𝑙𝑢𝑏𝐺
£⏞

(ℏ), 1 −

𝑔𝑙𝑏𝐺
£⏞

(ℏ)], 𝑈
£⏞

𝑐

 

(ℏ) = 𝐶
£⏞

 
(ℏ) and 𝐹

£⏞
𝑐

 

(ℏ) = 𝑇
£⏞

 
(ℏ). 

or simply we can write £⏞
𝑐

= {(ℏ, 𝐹
£⏞

 
(ℏ), 𝑈

£⏞
 

(ℏ), [1 − 𝑙𝑢𝑏𝐺
£⏞

(ℏ), 1 −

𝑔𝑙𝑏𝐺
£⏞

(ℏ)], 𝐶
£⏞

 
(ℏ), 𝑇

£⏞
 

(ℏ)) : ℏ ∈ 𝑊}. 

Example  3.4 Consider two 𝐼𝑉𝑃𝑁𝑆s £⏞ and ¥⏞ defined over 𝑊 as  

£⏞ = {(ℏ1, [0.32,0.54], [0.23,0.65], [0.56,0.79], [0.32,0.43], [0.85,0.96]),(ℏ2, [0.67,0.78], [0.55,0.78], 

[0.11,0.32], [0.23,0.84], [0.15,0.38]), [(ℏ3, [0.24,0.56], [0.17,0.52], [0.25,0.75], [0.21,0.63], [0.31,0.56])} 

¥⏞ = {(ℏ1, [0.57,0.91], [0.52,0.83], [0.57,0.78], [0.23,0.39], [0.61,0.84]),(ℏ2, [0.52,0.71], [0.24,0.56], 

[0.20,0.52], [0.75,0.80], [0.41,0.62]), [(ℏ3, [0.12,0.31], [0.38,0.56], [0.55,0.74], [0.19,0.86], [0.16,0.83])} 

Then 

£⏞ ∪ ¥⏞ = {(ℏ1, [0.57,0.91], [0.52,0.83], [0.56,0.78], [0.23,0.39], [0.61,0.84]),(ℏ2, [0.67,0.78], [0.55,0.78], 

 [0.11,0.32], [0.23,0.80], [0.15,0.38]), [(ℏ3, [0.24,0.56], [0.38,0.56], [0.25,0.74], [0.19,0.63], [0.16,0.56])} 

£⏞ ∩ ¥⏞ = {(ℏ1, [0.32,0.54], [0.23,0.65], [0.57,0.79], [0.32,0.43], [0.85,0.96]),(ℏ2, [0.52,0.71], [0.24,0.56], 

[0.20,0.52], [0.75,0.84], [0.41,0.62]), [(ℏ3, [0.24,0.56], [0.38,0.56], [0.25,0.74], [0.19,0.63], [0.16,0.56])} 

£⏞
𝑐

= {(ℏ1, [0.85,0.96], [0.32,0.43], [0.21,0.34], [0.23,0.65], [0.32,0.54]),(ℏ2, [0.15,0.38], [0.23,0.84], 

[0.68,0.91], [0.55,0.78], [0.67,0.78]), [(ℏ3, [0.31,0.56], [0.21,0.63], [0.25,0.75], [0.17,0.52], [0.24,0.56])} 

Theorem  3.5 For any three 𝐼𝑉𝑃𝑁𝑆s £⏞, ¥⏞ and 𝜔⏞ 

i. £⏞ ∪ £⏞ = £⏞,   £⏞ ∩ £⏞ = £⏞     (Idempotent Law) 

ii. £⏞ ∪ ¥⏞ = ¥⏞ ∪ £⏞,   £⏞ ∩ ¥⏞ = ¥⏞ ∩ £⏞     (Commutative Law) 

iii. (£⏞ ∪ ¥⏞) ∪ 𝜔⏞ = £⏞ ∪ (¥⏞ ∪ 𝜔⏞),   (£⏞ ∩ ¥⏞) ∩ 𝜔⏞ = £⏞ ∩ (¥⏞ ∩ 𝜔⏞)
     

(Associative Law) 

iv. £⏞ ∪ (¥⏞ ∩ 𝜔⏞) = (£⏞ ∪ ¥⏞) ∩ (£⏞ ∪ 𝜔⏞),   £⏞ ∩ (¥⏞ ∪ 𝜔⏞) = (£⏞ ∩ ¥⏞) ∪ (£⏞ ∩ 𝜔⏞)
     

(Distributive 

Law) 
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v. (£⏞ ∪ ¥⏞)
𝑐

= £⏞
𝑐

∩ ¥⏞
𝑐

,   (£⏞ ∩ ¥⏞)
𝑐

= £⏞
𝑐

∪ ¥⏞
𝑐

     
(De Morgan’s Law) 

vi. £⏞ ∪ (£⏞ ∩ ¥⏞) = £⏞,   £⏞ ∩ (£⏞ ∪ ¥⏞) = £⏞
     

(Absorption Law) 

vii. (£⏞
𝑐
)

𝑐

= £⏞
     

(Involution Law) 

Proof: Let £⏞, ¥⏞ and 𝜔⏞ are two 𝐼𝑉𝑃𝑁𝑆s on 𝑊 defined by  

£⏞ = {(ℏ, 𝑇
£⏞

(ℏ), 𝐶
£⏞

(ℏ), 𝐺
£⏞

(ℏ), 𝑈
£⏞

(ℏ), 𝐹
£⏞

(ℏ)) : ℏ ∈ 𝑊}, ¥⏞ = {(ℏ, 𝑇¥⏞
(ℏ), 𝐶¥⏞

(ℏ), 𝐺¥⏞
(ℏ), 𝑈¥⏞

(ℏ), 𝐹-

¥⏞
(ℏ)) : ℏ ∈ 𝑊} and 𝜔⏞ = {(ℏ, 𝑇𝜔⏞ (ℏ), 𝐶𝜔⏞ (ℏ), 𝐺𝜔⏞ (ℏ), 𝑈𝜔⏞ (ℏ), 𝐹𝜔⏞ (ℏ)): ℏ ∈ 𝑊} respectively. Then for 

every ℏ ∈ 𝑊 

(i) Straight forward. 

(ii) We know that, 

£⏞ ∪ ¥⏞ = {ℏ, [∨ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ))], 

                       [∨ (𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑔𝑙𝑏𝐶¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝐶

£⏞
(ℏ), 𝑙𝑢𝑏𝐶¥⏞

(ℏ))], 

                       [∧ (𝑔𝑙𝑏𝐺
£⏞

(ℏ), 𝑔𝑙𝑏𝐺¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝐺

£⏞
(ℏ), 𝑙𝑢𝑏𝐺¥⏞

(ℏ))], 

                       [∧ (𝑔𝑙𝑏𝑈
£⏞

(ℏ), 𝑔𝑙𝑏𝑈¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝑈

£⏞
(ℏ), 𝑙𝑢𝑏𝑈¥⏞

(ℏ))], 

                       [∧ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝐹

£⏞
(ℏ), 𝑙𝑢𝑏𝐹¥⏞

(ℏ))] : ℏ

∈ 𝑊} 

      = {ℏ, [∨ (𝑔𝑙𝑏𝑇¥⏞
(ℏ), 𝑔𝑙𝑏𝑇

£⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝑇¥⏞

(ℏ), 𝑙𝑢𝑏𝑇
£⏞

(ℏ))], 

                       [∨ (𝑔𝑙𝑏𝐶¥⏞
(ℏ), 𝑔𝑙𝑏𝐶

£⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝐶¥⏞

(ℏ), 𝑙𝑢𝑏𝐶
£⏞

(ℏ))], 

                       [∧ (𝑔𝑙𝑏𝐺¥⏞
(ℏ), 𝑔𝑙𝑏𝐺

£⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝐺¥⏞

(ℏ), 𝑙𝑢𝑏𝐺
£⏞

(ℏ))], 

                       [∧ (𝑔𝑙𝑏𝑈¥⏞
(ℏ), 𝑔𝑙𝑏𝑈

£⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝑈¥⏞

(ℏ), 𝑙𝑢𝑏𝑈
£⏞

(ℏ))], 

                       [∧ (𝑔𝑙𝑏𝐹¥⏞
(ℏ), 𝑔𝑙𝑏𝐹

£⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝐹¥⏞

(ℏ), 𝑙𝑢𝑏𝐹
£⏞

(ℏ))] : ℏ

∈ 𝑊} 

       = ¥⏞ ∪ £⏞ 

∴ £⏞ ∪ ¥⏞ = ¥⏞ ∪ £⏞ 

Similarly, £⏞ ∩ ¥⏞ = ¥⏞ ∩ £⏞. 

(iii) We know that, 
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     (£⏞ ∪ ¥⏞) ∪ 𝜔⏞ = {ℏ, [∨ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ))], 

                                    [∨ (𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑔𝑙𝑏𝐶¥⏞
(ℏ)) ,

∨ (𝑙𝑢𝑏𝐶
£⏞

(ℏ), 𝑙𝑢𝑏𝐶¥⏞
(ℏ))], 

                                   [∧ (𝑔𝑙𝑏𝐺
£⏞

(ℏ), 𝑔𝑙𝑏𝐺¥⏞
(ℏ)) ,

∧ (𝑙𝑢𝑏𝐺
£⏞

(ℏ), 𝑙𝑢𝑏𝐺¥⏞
(ℏ))], 

                                  [∧ (𝑔𝑙𝑏𝑈
£⏞

(ℏ), 𝑔𝑙𝑏𝑈¥⏞
(ℏ)) ,

∧ (𝑙𝑢𝑏𝑈
£⏞

(ℏ), 𝑙𝑢𝑏𝑈¥⏞
(ℏ))], 

                                [∧ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹¥⏞
(ℏ)) ,

∧ (𝑙𝑢𝑏𝐹
£⏞

(ℏ), 𝑙𝑢𝑏𝐹¥⏞
(ℏ))] : ℏ ∈ 𝑊} ∪ 𝜔⏞ 

                                    

= {ℏ, [∨ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ), 𝑔𝑙𝑏𝑇𝜔⏞ (ℏ)) ,∨ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ), 𝑙𝑢𝑏𝑇𝜔⏞ (ℏ))], 

                      [∨ (𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑔𝑙𝑏𝐶¥⏞
(ℏ), 𝑔𝑙𝑏𝐶𝜔⏞ (ℏ)) ,

∨ (𝑙𝑢𝑏𝐶
£⏞

(ℏ), 𝑙𝑢𝑏𝐶¥⏞
(ℏ), 𝑙𝑢𝑏𝐶𝜔⏞ (ℏ))], 

                     [∧ (𝑔𝑙𝑏𝐺
£⏞

(ℏ), 𝑔𝑙𝑏𝐺¥⏞
(ℏ), 𝑔𝑙𝑏𝐺𝜔⏞ (ℏ)) ,

∧ (𝑙𝑢𝑏𝐺
£⏞

(ℏ), 𝑙𝑢𝑏𝐺¥⏞
(ℏ), 𝑙𝑢𝑏𝐺𝜔⏞ (ℏ))], 

                     [∧ (𝑔𝑙𝑏𝑈
£⏞

(ℏ), 𝑔𝑙𝑏𝑈¥⏞
(ℏ), 𝑔𝑙𝑏𝑈𝜔⏞ (ℏ)) ,

∧ (𝑙𝑢𝑏𝑈
£⏞

(ℏ), 𝑙𝑢𝑏𝑈¥⏞
(ℏ), 𝑙𝑢𝑏𝑈𝜔⏞ (ℏ))], 

                     [∧ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹¥⏞
(ℏ), 𝑔𝑙𝑏𝐹𝜔⏞ (ℏ)) ,

∧ (𝑙𝑢𝑏𝐹
£⏞

(ℏ), 𝑙𝑢𝑏𝐹¥⏞
(ℏ), 𝑙𝑢𝑏𝐹𝜔⏞ (ℏ))] : ℏ ∈ 𝑊} 

                          = £⏞ ∪ {ℏ, [∨ (𝑔𝑙𝑏𝑇¥⏞
(ℏ), 𝑔𝑙𝑏𝑇𝜔⏞ (ℏ)) ,∨ (𝑙𝑢𝑏𝑇¥⏞

(ℏ), 𝑙𝑢𝑏𝑇𝜔⏞ (ℏ))], 

                      [∨ (𝑔𝑙𝑏𝐶¥⏞
(ℏ), 𝑔𝑙𝑏𝐶𝜔⏞ (ℏ)) ,∨ (𝑙𝑢𝑏𝐶¥⏞

(ℏ), 𝑙𝑢𝑏𝐶𝜔⏞ (ℏ))], 

                     [∧ (𝑔𝑙𝑏𝐺¥⏞
(ℏ), 𝑔𝑙𝑏𝐺𝜔⏞ (ℏ)) ,∧ (𝑙𝑢𝑏𝐺¥⏞

(ℏ), 𝑙𝑢𝑏𝐺𝜔⏞ (ℏ))], 
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                     [∧ (𝑔𝑙𝑏𝑈¥⏞
(ℏ), 𝑔𝑙𝑏𝑈𝜔⏞ (ℏ)) ,∧ (𝑙𝑢𝑏𝑈¥⏞

(ℏ), 𝑙𝑢𝑏𝑈𝜔⏞ (ℏ))], 

                     [∧ (𝑔𝑙𝑏𝐹¥⏞
(ℏ), 𝑔𝑙𝑏𝐹𝜔⏞ (ℏ)) ,∧ (𝑙𝑢𝑏𝐹¥⏞

(ℏ), 𝑙𝑢𝑏𝐹𝜔⏞ (ℏ))] : ℏ ∈ 𝑊} 

    = £⏞ ∪ (¥⏞ ∪ 𝜔⏞) 

∴ (£⏞ ∪ ¥⏞) ∪ 𝜔⏞ = £⏞ ∪ (¥⏞ ∪ 𝜔⏞)   

Similarly, (£⏞ ∩ ¥⏞) ∩ 𝜔⏞ = £⏞ ∩ (¥⏞ ∩ 𝜔⏞). 

(iv) We know that, 

                        £⏞ ∪ (¥⏞ ∩ 𝜔⏞)

= £⏞ ∪ {ℏ, [∧ (𝑔𝑙𝑏𝑇¥⏞
(ℏ), 𝑔𝑙𝑏𝑇𝜔⏞ (ℏ)) ,∧ (𝑙𝑢𝑏𝑇¥⏞

(ℏ), 𝑙𝑢𝑏𝑇𝜔⏞ (ℏ))], 

                                           [∧ (𝑔𝑙𝑏𝐶¥⏞
(ℏ), 𝑔𝑙𝑏𝐶𝜔⏞ (ℏ)) ,

∧ (𝑙𝑢𝑏𝐶¥⏞
(ℏ), 𝑙𝑢𝑏𝐶𝜔⏞ (ℏ))], 

                                          [∨ (𝑔𝑙𝑏𝐺¥⏞
(ℏ), 𝑔𝑙𝑏𝐺𝜔⏞ (ℏ)) ,

∨ (𝑙𝑢𝑏𝐺¥⏞
(ℏ), 𝑙𝑢𝑏𝐺𝜔⏞ (ℏ))], 

                                          [∨ (𝑔𝑙𝑏𝑈¥⏞
(ℏ), 𝑔𝑙𝑏𝑈𝜔⏞ (ℏ)) ,

∨ (𝑙𝑢𝑏𝑈¥⏞
(ℏ), 𝑙𝑢𝑏𝑈𝜔⏞ (ℏ))], 

                                         [∨ (𝑔𝑙𝑏𝐹¥⏞
(ℏ), 𝑔𝑙𝑏𝐹𝜔⏞ (ℏ)) ,

∨ (𝑙𝑢𝑏𝐹¥⏞
(ℏ), 𝑙𝑢𝑏𝐹𝜔⏞ (ℏ))] : ℏ ∈ 𝑊} 

                     

= {ℏ, [∨ (𝑔𝑙𝑏𝑇
£⏞

(ℏ),∧ (𝑔𝑙𝑏𝑇¥⏞
(ℏ), 𝑔𝑙𝑏𝑇𝜔⏞ (ℏ))) ,∨ (𝑙𝑢𝑏𝑇

£⏞
(ℏ),∧ (𝑙𝑢𝑏𝑇¥⏞

(ℏ), 𝑙𝑢𝑏𝑇𝜔⏞ (ℏ)))], 

       [∨ (𝑔𝑙𝑏𝐶
£⏞

(ℏ),∧ (𝑔𝑙𝑏𝐶¥⏞
(ℏ), 𝑔𝑙𝑏𝐶𝜔⏞ (ℏ))) ,∨ (𝑙𝑢𝑏𝐶

£⏞
(ℏ),∧ (𝑙𝑢𝑏𝐶¥⏞

(ℏ), 𝑙𝑢𝑏𝐶𝜔⏞ (ℏ)))], 

       [∧ (𝑔𝑙𝑏𝐺
£⏞

(ℏ),∨ (𝑔𝑙𝑏𝐺¥⏞
(ℏ), 𝑔𝑙𝑏𝐺𝜔⏞ (ℏ))) ,∧ (𝑙𝑢𝑏𝐺

£⏞
(ℏ),∨ (𝑙𝑢𝑏𝐺¥⏞

(ℏ), 𝑙𝑢𝑏𝐺𝜔⏞ (ℏ)))], 

       [∧ (𝑔𝑙𝑏𝑈
£⏞

(ℏ),∨ (𝑔𝑙𝑏𝑈¥⏞
(ℏ), 𝑔𝑙𝑏𝑈𝜔⏞ (ℏ))) ,∧ (𝑙𝑢𝑏𝑈

£⏞
(ℏ),∨ (𝑙𝑢𝑏𝑈¥⏞

(ℏ), 𝑙𝑢𝑏𝑈𝜔⏞ (ℏ)))], 
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      [∧ (𝑔𝑙𝑏𝐹
£⏞

(ℏ),∨ (𝑔𝑙𝑏𝐹¥⏞
(ℏ), 𝑔𝑙𝑏𝐹𝜔⏞ (ℏ))) ,∧ (𝑙𝑢𝑏𝐹

£⏞
(ℏ),∨ (𝑙𝑢𝑏𝐹¥⏞

(ℏ), 𝑙𝑢𝑏𝐹𝜔⏞ (ℏ)))] : ℏ

∈ 𝑊} 

                    = {ℏ, [∨ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ))], 

      [∨ (𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑔𝑙𝑏𝐶¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝐶

£⏞
(ℏ), 𝑙𝑢𝑏𝐶¥⏞

(ℏ))], 

      [∧ (𝑔𝑙𝑏𝐺
£⏞

(ℏ), 𝑔𝑙𝑏𝐺¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝐺

£⏞
(ℏ),∨ 𝑙𝑢𝑏𝐺¥⏞

(ℏ))], 

      [∧ (𝑔𝑙𝑏𝑈
£⏞

(ℏ), 𝑔𝑙𝑏𝑈¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝑈

£⏞
(ℏ), 𝑙𝑢𝑏𝑈¥⏞

(ℏ))], 

     [∧ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝐹

£⏞
(ℏ), 𝑙𝑢𝑏𝐹¥⏞

(ℏ))] : ℏ ∈ 𝑊} 

                   ∩ {ℏ, [∨ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇𝜔⏞ (ℏ)) ,∨ (𝑙𝑢𝑏𝑇
£⏞

(ℏ), 𝑙𝑢𝑏𝑇𝜔⏞ (ℏ))], 

      [∨ (𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑔𝑙𝑏𝐶𝜔⏞ (ℏ)) ,∨ (𝑙𝑢𝑏𝐶
£⏞

(ℏ), 𝑙𝑢𝑏𝐶𝜔⏞ (ℏ))], 

      [∧ (𝑔𝑙𝑏𝐺
£⏞

(ℏ), 𝑔𝑙𝑏𝐺𝜔⏞ (ℏ)) ,∧ (𝑙𝑢𝑏𝐺
£⏞

(ℏ),∨ 𝑙𝑢𝑏𝐺𝜔⏞ (ℏ))], 

      [∧ (𝑔𝑙𝑏𝑈
£⏞

(ℏ), 𝑔𝑙𝑏𝑈𝜔⏞ (ℏ)) ,∧ (𝑙𝑢𝑏𝑈
£⏞

(ℏ), 𝑙𝑢𝑏𝑈𝜔⏞ (ℏ))], 

     [∧ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹𝜔⏞ (ℏ)) ,∧ (𝑙𝑢𝑏𝐹
£⏞

(ℏ), 𝑙𝑢𝑏𝐹𝜔⏞ (ℏ))] : ℏ ∈ 𝑊} 

= (£⏞ ∪ ¥⏞) ∩ (£⏞ ∪ 𝜔⏞) 

∴ £⏞ ∪ (¥⏞ ∩ 𝜔⏞) = (£⏞ ∪ ¥⏞) ∩ (£⏞ ∪ 𝜔⏞) 

Similarly, £⏞ ∩ (¥⏞ ∪ 𝜔⏞) = (£⏞ ∩ ¥⏞) ∪ (£⏞ ∩ 𝜔⏞). 

(v) We know that, 

(£⏞ ∪ ¥⏞)
𝑐

= {ℏ, [∨ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ))], 

                       [∨ (𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑔𝑙𝑏𝐶¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝐶

£⏞
(ℏ), 𝑙𝑢𝑏𝐶¥⏞

(ℏ))], 

                       [∧ (𝑔𝑙𝑏𝐺
£⏞

(ℏ), 𝑔𝑙𝑏𝐺¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝐺

£⏞
(ℏ), 𝑙𝑢𝑏𝐺¥⏞

(ℏ))], 

                       [∧ (𝑔𝑙𝑏𝑈
£⏞

(ℏ), 𝑔𝑙𝑏𝑈¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝑈

£⏞
(ℏ), 𝑙𝑢𝑏𝑈¥⏞

(ℏ))], 

                       [∧ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝐹

£⏞
(ℏ), 𝑙𝑢𝑏𝐹¥⏞

(ℏ))] : ℏ

∈ 𝑊}
𝑐
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           = {ℏ, [∧ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝐹

£⏞
(ℏ), 𝑙𝑢𝑏𝐹¥⏞

(ℏ))], 

                       [∧ (𝑔𝑙𝑏𝑈
£⏞

(ℏ), 𝑔𝑙𝑏𝑈¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝑈

£⏞
(ℏ), 𝑙𝑢𝑏𝑈¥⏞

(ℏ))], 

                       [1 −∧ (𝑙𝑢𝑏𝐺
£⏞

(ℏ), 𝑙𝑢𝑏𝐺¥⏞
(ℏ)) , 1 −

∧ (𝑔𝑙𝑏𝐺
£⏞

(ℏ), 𝑔𝑙𝑏𝐺¥⏞
(ℏ))], 

                       [∨ (𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑔𝑙𝑏𝐶¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝐶

£⏞
(ℏ), 𝑙𝑢𝑏𝐶¥⏞

(ℏ))], 

                       [∨ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ))] : ℏ

∈ 𝑊} 

           = {ℏ, [∧ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝐹

£⏞
(ℏ), 𝑙𝑢𝑏𝐹¥⏞

(ℏ))], 

                       [∧ (𝑔𝑙𝑏𝑈
£⏞

(ℏ), 𝑔𝑙𝑏𝑈¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝑈

£⏞
(ℏ), 𝑙𝑢𝑏𝑈¥⏞

(ℏ))], 

                       [∨ (1 − 𝑙𝑢𝑏𝐺
£⏞

(ℏ), 1 − 𝑙𝑢𝑏𝐺¥⏞
(ℏ)) ,

∨ (1 − 𝑔𝑙𝑏𝐺
£⏞

(ℏ), 1 − 𝑔𝑙𝑏𝐺¥⏞
(ℏ))], 

                       [∨ (𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑔𝑙𝑏𝐶¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝐶

£⏞
(ℏ), 𝑙𝑢𝑏𝐶¥⏞

(ℏ))], 

                       [∨ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ)) ,∨ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ))] : ℏ

∈ 𝑊} 

        = {(ℏ, 𝐹
£⏞

 
(ℏ), 𝑈

£⏞
 

(ℏ), [1 − 𝑙𝑢𝑏𝐺
£⏞

(ℏ), 1 − 𝑔𝑙𝑏𝐺
£⏞

(ℏ)], 𝐶
£⏞

 
(ℏ), 𝑇

£⏞
 

(ℏ)) : ℏ ∈ 𝑊} 

                            

∩ {(ℏ, 𝐹¥⏞
 

(ℏ), 𝑈¥⏞
 

(ℏ), [1 − 𝑙𝑢𝑏𝐺¥⏞
(ℏ), 1 − 𝑔𝑙𝑏𝐺¥⏞

(ℏ)], 𝐶¥⏞
 

(ℏ), 𝑇¥⏞
 

(ℏ)) : ℏ ∈ 𝑊} 

                               = £⏞
𝑐

∩ ¥⏞
𝑐

 

∴ (£⏞ ∪ ¥⏞)
𝑐

= £⏞
𝑐

∩ ¥⏞
𝑐
 

Similarly, (£⏞ ∩ ¥⏞)
𝑐

= £⏞
𝑐

∪ ¥⏞
𝑐
. 

(vi) We know that 

                          £⏞ ∪ (£⏞ ∩ ¥⏞)

= £⏞ ∪ {ℏ, [∧ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ)) ,∧ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ))], 
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                                             [∧ (𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑔𝑙𝑏𝐶¥⏞
(ℏ)) ,

∧ (𝑙𝑢𝑏𝐶
£⏞

(ℏ), 𝑙𝑢𝑏𝐶¥⏞
(ℏ))], 

                                             [∨ (𝑔𝑙𝑏𝐺
£⏞

(ℏ), 𝑔𝑙𝑏𝐺¥⏞
(ℏ)) ,

∨ (𝑙𝑢𝑏𝐺
£⏞

(ℏ),∨ 𝑙𝑢𝑏𝐺¥⏞
(ℏ))], 

                                            [∨ (𝑔𝑙𝑏𝑈
£⏞

(ℏ), 𝑔𝑙𝑏𝑈¥⏞
(ℏ)) ,

∨ (𝑙𝑢𝑏𝑈
£⏞

(ℏ), 𝑙𝑢𝑏𝑈¥⏞
(ℏ))], 

                                                                     [∨ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹¥⏞
(ℏ)) ,

∨ (𝑙𝑢𝑏𝐹
£⏞

(ℏ), 𝑙𝑢𝑏𝐹¥⏞
(ℏ))] : ℏ ∈ 𝑊} 

                    

= {ℏ, [∨ (𝑔𝑙𝑏𝑇
£⏞

(ℏ),∧ (𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑔𝑙𝑏𝑇¥⏞
(ℏ))) ,∨ (𝑙𝑢𝑏𝑇

£⏞
(ℏ),∧ (𝑙𝑢𝑏𝑇

£⏞
(ℏ), 𝑙𝑢𝑏𝑇¥⏞

(ℏ)))], 

      [∨ (𝑔𝑙𝑏𝐶
£⏞

(ℏ),∧ (𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑔𝑙𝑏𝐶¥⏞
(ℏ))) ,∨ (𝑙𝑢𝑏𝐶

£⏞
(ℏ),∧ (𝑙𝑢𝑏𝐶

£⏞
(ℏ), 𝑙𝑢𝑏𝐶¥⏞

(ℏ)))], 

      [∧ (𝑔𝑙𝑏𝐺
£⏞

(ℏ),∨ (𝑔𝑙𝑏𝐺
£⏞

(ℏ), 𝑔𝑙𝑏𝐺¥⏞
(ℏ))) ,∧ (𝑙𝑢𝑏𝐺

£⏞
(ℏ),∨ (𝑙𝑢𝑏𝐺

£⏞
(ℏ),∨ 𝑙𝑢𝑏𝐺¥⏞

(ℏ)))], 

      [∧ (𝑔𝑙𝑏𝑈
£⏞

(ℏ),∨ (𝑔𝑙𝑏𝑈
£⏞

(ℏ), 𝑔𝑙𝑏𝑈¥⏞
(ℏ))) ,∧  𝑙𝑢𝑏𝑈

£⏞
(ℏ),∨ (𝑙𝑢𝑏𝑈

£⏞
(ℏ), 𝑙𝑢𝑏𝑈¥⏞

(ℏ))], 

                               [∧ (𝑔𝑙𝑏𝐹
£⏞

(ℏ),∨ (𝑔𝑙𝑏𝐹
£⏞

(ℏ), 𝑔𝑙𝑏𝐹¥⏞
(ℏ))) ,

∧ (𝑙𝑢𝑏𝐹
£⏞

(ℏ),∨ (𝑙𝑢𝑏𝐹
£⏞

(ℏ), 𝑙𝑢𝑏𝐹¥⏞
(ℏ)))] : ℏ ∈ 𝑊} 

= {ℏ, [𝑔𝑙𝑏𝑇
£⏞

(ℏ), 𝑙𝑢𝑏𝑇
£⏞

(ℏ)], [𝑔𝑙𝑏𝐶
£⏞

(ℏ), 𝑙𝑢𝑏𝐶
£⏞

(ℏ)], [𝑔𝑙𝑏𝐺
£⏞

(ℏ), 𝑙𝑢𝑏𝐺
£⏞

(ℏ)], 

                                                          [𝑔𝑙𝑏𝑈
£⏞

(ℏ), 𝑙𝑢𝑏𝑈-

£⏞
(ℏ)], [𝑔𝑙𝑏𝐹

£⏞
(ℏ), 𝑙𝑢𝑏𝐹

£⏞
(ℏ)]: ℏ ∈ 𝑊} 

= {(ℏ, 𝑇
£⏞

(ℏ), 𝐶
£⏞

(ℏ), 𝐺
£⏞

(ℏ), 𝑈
£⏞

(ℏ), 𝐹
£⏞

(ℏ)) : ℏ ∈ 𝑊} 

= £⏞   

∴ £⏞ ∪ (£⏞ ∩ ¥⏞) = £⏞ 

Similarly, £⏞ ∩ (£⏞ ∪ ¥⏞) = £⏞. 

(vii) (£⏞
𝑐
)

𝑐

 

= {(ℏ, 𝐹
£⏞

 
(ℏ), 𝑈

£⏞
 

(ℏ), [1 − 𝑙𝑢𝑏𝐺
£⏞

(ℏ), 1 − 𝑔𝑙𝑏𝐺
£⏞

(ℏ)], 𝐶
£⏞

 
(ℏ), 𝑇

£⏞
 

(ℏ)) : ℏ ∈ 𝑊}
𝑐
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= {(ℏ, 𝑇
£⏞

 
(ℏ), 𝐶

£⏞
 

(ℏ), [1 − (1 − 𝑔𝑙𝑏𝐺
£⏞

(ℏ)) , 1 − (1 − 𝑙𝑢𝑏𝐺
£⏞

(ℏ))] , 𝑈
£⏞

 
(ℏ), 𝐹

£⏞
 

(ℏ)) : ℏ

∈ 𝑊} 

                        = {(ℏ, 𝑇
£⏞

 
(ℏ), 𝐶

£⏞
 

(ℏ), [𝑔𝑙𝑏𝐺
£⏞

(ℏ), 𝑙𝑢𝑏𝐺
£⏞

(ℏ)], 𝑈(ℏ), 𝐹
£⏞

 
(ℏ)) : ℏ ∈ 𝑊} 

                         = {(ℏ, 𝑇
£⏞

 
(ℏ), 𝐶(ℏ), 𝐺

£⏞
(ℏ), 𝑈

£⏞
 

(ℏ), 𝐹
£⏞

 
(ℏ)) : ℏ ∈ 𝑊} 

                          = £⏞
𝑐
 

∴ (£⏞
𝑐
)

𝑐

= £⏞ 

4.  Conclusion 

This research includes the idea of 𝐼𝑉𝑃𝑁𝑆s. Also some important properties of 𝐼𝑉𝑃𝑁𝑆s have been studied 

along with examples. A real life example of COVID-19 has been discussed in the paper using 𝐼𝑉𝑃𝑁𝑆. Some 

more operations along with aggregation operators on 𝐼𝑉𝑃𝑁𝑆s can be studied in future with the help of 

important results obtained here. Further while making decision like MCDM [6], 𝐼𝑉𝑃𝑁𝑆s also applicable to deal 

with uncertain observation. 
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Abstract: In literature, several models which can handle uncertainty in datasets have been 

introduced. Fuzzy set introduced by Zadeh in 1965, is one of the earliest such models and 

Atanassov generalised it by introducing the notion of Intuitionistic fuzzy sets(IFS) in 1986. 

However, these models are handicaped due to their inadequacy as parameterization tools. The 

notion of Soft sets (SS) was introduced by Molodtsov in 1999 to solve this problem. Almost at the 

same time, Neutrosophic set (NS) model was introduced by Smarandache, which is a huge 

generalisation of IFS. As has been the practice, the hybrid model of SS and NS was proposed to 

frame the notion of Neutrosophic Soft Set (NSS) by Ali and Smaranche in 2015 and studied their 

properties. Since its inception, one of the major areas of application of Soft Sets has been that of 

Multi-criterian Decision Making (MCDM). Many problems in MCDM were solved by using hybrid 

models of SS. Following this trend, in this paper, we develop an algorithm basing upon NSS to 

handle the problem of MCDM in the selection of faculty through an interview prcess. For this, we 

had to introduce an improved score function which is used to rank the candidates basing upon 

several of their characteristics including interview perfromances. This application is better handled 

by the NSS model as is evident from the results. We illustrated the superiority of our proposed 

algorithm by providing a comparative analysis with many exieting algorithms in the literature. 

Keywords: Fuzzy Set; Intuitionistic fuzzy set; Soft Set; Neutrosophic Set; Neutrosophic soft set; 

Multicriteria Decision Making. 

 

 

1. Introduction 

The notion of FSs [1] is one of the most popular mathematical model to handle uncertainty and 

vagueness. In contrast to classical notion of sets where the elements of the set are characterised by 

either “does not belongs” or “belongs” to a set; notion of FSs provides a grade of membership to 

each element through a membership function. Sometimes, in real-life situations, it is not easy to 

define membership functions. So, to capture more uncertainty, Zadeh proposed the notion of 

interval valued fuzzy sets [2]. However, there are situations exist, where grade of membership is not 

complement to non-membership values. Both the notions of fuzzy set and the notions of interval 

valued fuzzy sets can not capture such kind of uncertainty.  To handle such kind of scenarios, 

Atanassov [3, 4] introduced the notions of IFS where hesitation function comes into picture, if the 

membership and non-mebership are not complement of eachother. An IFS becomes a fuzzy set when 

the hesitation becomes zero. Similarly a fuzzy set becomes a classical set, if the membership value is 

restricted to either one or zero. Atanassov [5] further generalised the concept of IFS and introduced 

interval valued IFS. 
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In all the uncertainty based models discussed above, we need to define a membership function. 

However, by using a single mebership function is not enough to handle all kind of uncertainties 

involve in some situations. It will create sutuations like adding weight parameter to a length 

parameter. It happens due to lack of parameterization tools in the previous models.  To handle such 

issues, Moldtsov [6] introduced the notion of soft set in 1999. It adds topological features to the 

notions of set theory. In soft sets, each one of the parmeters from a parameter set are associated with 

a subset of the universe of discourse. Recently, soft sets and its hybrid models are gaining popularity 

for their ability to handle uncertainty in multicriteria decision making. Due to its topological nature 

and availability of parameterization tool, its easier and convinient to capture uncertainty in decision 

making problems using soft sets or any of its hybrid models. 

Tripathy et al [7] redefined the notions soft set using characteristic functions approach which 

seems to be more convenient and easy to understand incomparison to its previous models. Later, 

there are many more hybrids models were proposed using the same concept [8-17]. There are several 

papers published on hybrid models of soft set and their application in MCDM.  

One more contemporaries of the notions of soft set is the concept NSs [18] proposed by 

smarandache. It is a generalization of IFSs. In contrast to other generalisations or hybrid models of 

IFSs; in NSs, the membership, non-mebership and hesitation functions are independent of each 

other. So, the sum of the grades of Truthness, Falsity and Indeterminacy can vary in the interval 

[0 ,3 ] 
. There are several articles on NSs and its hybrid models in literature to solve multicriteria 

decision-making problem [19-30]. 

Maji [31] introduced the concept of NSSs.  

This paper provides a new approach to redefine the notions of NSS. It redefines some 

operations of NSS using characterastic function approach [7, 8]. An application in decision making 

using NSS is also discussed in this article. 

 

2. Definitions and Notions  

To understand the proposed model, we need to understand some prerequisite models which 

are discussed in this section. 

Let U be a universal set and E be a set of parameters. 

2.1. Soft Set 

A soft set is a collection of parameterized family of subsets. A soft set over U is denoted by 

( , )F E and is defined as 

: ( )F E P U        

where ( )P U is the power set of U .  

2.2 Fuzzy Set 

A fuzzy set A  drawn from U  is given by its membership function A where : [0,1]A U  such 

that x U  , ( )A x is the grade of membership of x  in A . A fuzzy set reduces to a crisp set when 

: {0,1}A U  . 

2.3 Fuzzy Soft Set 

A fuzzy soft set over U is denoted by ( , )mF E  and is defined as 
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: ( )mF E FP U        

where ( )FP U is the set of all fuzzy subsets of U . 

2.4 Intuitionistic fuzzy set 

An IFS A over a universe of discourse U  is a pair ( , )A Am n , where : [0,1]Am U   

and : [0,1]An U  , called the membership and non-membership functions of A respectively are 

such that for any x U , 0 ( ) ( ) 1A Am x n x   .  

The function given by ( ) 1 ( ) ( )A A Ax m x n x    is called the hesitation function associated with 

A. 

2.5 Intuitionistic fuzzy soft set 

An IFSS (F, E) over a universal discourse U  is defined as  

: ( )F E IFP U  

Where, ( )IFP U is the powerset of all IFSs in U . 

3. Neutrosophic Sets 

A neutrosophic set B  over a universe of discourse U is defined as 

 , ( ), ( ), ( ) ,B B BB x T x I x F x x U   , where ( , , ) : ]0 ,1 [B B BT I F U   . , ,B B BT I F  are called 

as the Truthness, Indeterminacy and Falsity membership functions of B respectively. 

In real life engineering applications, it is difficult to use non-standard real values. Hence in this 

article, the value range for the NSs are restricted to the subsets of [0,1] . 

3.1 Neutrosophic subset 

A neutrosophic set B is said to be a neutrosophic subset of A  denoted by B A  iff x U  , 

( ) ( ), ( ) ( ), ( ) ( )B A B A B AT x T x I x I x F x F x   . 

3.2 Union of two NS 

Union of two NSs A and B denoted by A B is defined as 

 max( , ),min( , ),min( , )A B A B A BA B T T I I F F  

3.3 Intersection of two NS 

Intersection of two NSs A and B denoted by A B is defined as 

 min( , ),max( , ),max( , )A B A B A BA B T T I I F F  
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4. Neutrosophic Soft Set 

A neutrosophic set ( , )BF E  over a universe of discourse U is defined as 

: ( )F E NPow U  

Where, ( )NPow U is the neutrosophic powerset of U . 

A NSS ( , )BF E can also be defined using membership function approach (Tripathy et. al, 2016) as 

follows. 

The set of parametric membership functions of NSS ( , )BF E  defined over ( , )U E  as shown below. 

( , ) {( , )( ) : }B BF E F E e e E   such that e E  ,  ( , )( ) ( , )( ) ( , )( ), , : ]0 ,1 [
B B BF E e F E e F E eT I F U    

and x U  , the membership function is defined as 

( , )( ) ]0 ,1 [ = , ( )
BF E eT x     ; 

( , )( ) ]0 ,1 [ = , ( )
BF E eI x     ; and 

( , )( ) ]0 ,1 [ = , ( )
BF E eF x     . 

4.1 Neutrosophic soft subset 

A NSS ( , )BF E  is said to be a neutrosophic soft subset of ( , )AF E  denoted by ( , ) ( , )B AF E F E  

if x U  , ( , )( ) ( , )( )( ) ( ),
B AF E e F E eT Tx x ( , )( ) ( , )( )( ) ( ),

B AF E e F E eI x I x  

( , )( ) ( , )( )( ) ( )
B AF E e F E eF Fx x . 

 

4.2 Union of two Neutrosophic soft Sets 

Union of two NSSs  ( , )AF E  and ( , )BF E denoted by ( , )A BF E  is defined as 

   

 

( , )( ) ( , )( ) ( , )( ) ( , )( )

( , )( ) ( , )( )

max , min ,
( , )

min

( ), ( ) ( ), ( )

( ), ( )

B BA A

BA

A B

F E e F E e F E e F E e

F E e F E e

T T I I
F E

F F

x x x x

x x

 
 

  
  

 

4.3 Intersection of two Neutrosophic soft Sets 

Intersection of two NSSs A and B denoted by A B is defined as 

   

 

( , )( ) ( , )( ) ( , )( ) ( , )( )

( , )( ) ( , )( )

min ,max ,
( , )

max

( ), ( ) ( ), ( )

( ), ( )

B BA A

BA

A B

F E e F E e F E e F E e

F E e F E e

T T I I
F E

F F

x x x x

x x
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4. Application of Neutrosophic Soft Sets in Decision Making 

An application of NSSs in multicriteria decision making is provided in this section. As a 

generalised model of IFS [3], NS [18] inherently a good mathematical model to handle uncertainty. 

Molodtsov [6] has given many applications of soft sets in the introductory article. Recently, hybrid 

models of soft sets are among the popular models to handle multicriteria decision making problems. 

There are everal articles in literature using NSS model to handle multicriteria decision making 

problems. This article provides a new approach for decision making using notions of NSS. 

 

There are two types of parameters (Tripathy et al. 2016), 

i) Positive Parameters and 

ii) Negative Parameters. 

A parameter which is having positive impact on decision making is called as positive parameter and 

if the parameter is having negative impact on decision-making, then that is called as negative 

parameter. 

 

A priority value is expressed through a real number lies in [-1, 1] and is attached to each parameter 

as per the degree of impact of the parameter on the user’s decision-making. For positive parameters 

the priority value lies in [0,1] and for the negative parameter the priority value lies in [-1,0]. 

 

Sometimes we may have a parameter which is given zero priority by the user irrespective of the type 

of the category of the parameter that can be either positive or negative. Though these parameters 

would not affect user’s decision-making usually, but the effect comes into picture during close 

comparisons. For example, one can say, if everything is good, price does not matter. But, if two same 

things are available with different prices, everyone will choose the thing with lower price. These 

kinds of situations are ignored in the existing approaches. In this paper, these kinds of situations 

managed by giving a very low priority value which won’t affect the decision choices until there is a 

close comparison. 

 

A small user defined value d  is used in the application, which helps to maintain better precision in 

results. In this application, value of d is taken as 0.001. To manage parameters with zero priority, a 

small priority value is attached to the parameter instead of zero. The formula to compute the priority 

value to be attached with a parameter having zero priority is given below. 

 

0

1

(User's Priority( ))

(User's Priority( ))

n

n

n

sign P d
p

Abs P





     (4.1) 

Where, Abs   Absolute value 

  Sign   Signum Function 

 

To make comparisons among different sets values, the values need to be normalized. In this paper, 

the formula used for normalizing values is given below. 

 

Normalized priority = 

1

Priority( )

n

n

n

P

P
      (4.2) 

 

To compare a series of values , 1,2,...,iV i n  and get a comparison value; the following formula 

can be used. 
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1

( )
n

i i j

j

Comparison Score V nV V


       (4.3) 

for , 1, 2,...,i j n . 

 

To use NSs in decision making, a score function is needed to compute the score and order the 

neutrosophic values. The formula given in Equation (4.4) is used to compute the score from a 

neutrosophic value. 

 

 _ ( , , ) (( *(1 2 )) -  1 min{1, ( / 2)}- min{1, ( / 2)}NS Score T I F T d F dI T I F I       

7
2

_ ( , , )
, _ ( , , ) 0;

1

_ ( , , ), .

NS Score T I F
if NS Score T I F

dScore

NS Score T I F Otherwiese




 



    (4.4) 

 

where, d very small positive real number. (In this paper d =0.01) 

, ,T I F Represents Truthness, Indeterminacy and Falsity values, respectively. 

   ( , , )Score T F I Score function for the Neutrosophic value ( , , )T F I . 

 

The formula in (4.4) provides a real number from a particular neutrosophic value. This formula will 

be extremely helpful to resolve neutrosophic decision making problems. The formula will reduce a 

neutrosophic set problem to a bipolar fuzzy set problem. The basic structure of the formula is 

2 2
*(min(1, ) min(1, ))I IT F I T F     . The formula is based on optimistic approach. So, the 

truth value is boosted by a small margin to tackle the problem when T F . To reduce the effect of 

2 2
*(min(1, ) min(1, ))I II T F    value, so that , it would not overshadow the T value which may 

lead to wrong decision making, it is multiplied by a small positive real number d . Value of d  is 

taken as 0.01 in this article. 
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Figure 1. Score from a neutrosophic value 

 

In Figure 1, we can see that the score function is working fine and giving an intuitive score for 

each of the value. The graph in Figure 1 seems inverted “Z” shape due to the limited number of data 

points in that region. If we provide a greater number of data points in the graph, it gives a smoother 

line. 

Graphs in Figure 2 provide a perspective in the change of score value with a constant value of 

either T or F. 
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Figure 2. Score comparison when either T or F value is constant. 

 

4.1 Algorithm 

 

Step 1: Get the priority values of parameters from the user.  

Step 1.1: Compute the priority for the parameters having zero priority using the formula in 

Equation (4.1). 

Step 1.2: Compute the normalized priority using the formula in Equation (4.2). 

Step 1.3: Rank the parameters as per their absolute priority values. 

Step 2: Get the data in neutrosophic format. 

Step 2.1: Construct the Truthness Table, Indeterminacy Table and Falsity Table by Segregating 

the columns of Truthness, Indeterminacy and Falsity values for each parameter. 

Step3: Construct the Truthness Priority Table, Indeterminacy Priority Table and Falsity Priority 

Table by multiplying the priority values to their corresponding Truthness, Indeterminacy 

and Falsity values. 

Step 4: Construct the Comparison Tables for Truthness, Indeterminacy and Falsity values by using 

the formula given in Equation (4.3) for each column. 
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 Step 4.1: Get the comparison score, by computing the sum of the comparison scores for each 

competitor. 

Step 4.2: Normalize comparison scores of all comparison tables using the formula in 

Equation (4.2). 

Step 5: Construct the decision table by taking the normalized scores from comparison tables for 

Truthness, Indeterminacy and Falsity values. 

 Step 5.1: Compute the neutrosophic score by using the formula in the Equation (4.4) 

 Step 5.2: Rank the competitors according to their final score (neutrosophic score). 

 Step 5.3: If multiple participants are getting same score, for those participants with same 

score, repeat all the previous steps ignoring the parameter having lowest rank. Continue the 

process until all participants getting a distinct rank or reaching the comparison with only the 

values for the highest ranked parameter. 

 

4.2 Application 

 

The application provided here is selection of faculties in an interview process.  

 

The parameters considered for the selection are Teaching, Research, Academic, Presentation, 

Subject Knowledge, Communication Skill, Gaps, Body Language, Nativity. The parameters are 

represented respectively as a set of parameters 1 2 3 4 5 6 7 9{ , , , , , , , }         . 

Let us assume that there are 10 participants given by 1 2 3 4 5 6 7 9 10{ , , , , , , , , }U   

shortlisted after the interview. The authorities assign the priority for each parameter as per their 

requirements. If there are any parameters having zero priority, a small priority needs to be assigned 

that can be computed using formula in Equation (4.1). Normalize the priority values using formula 

in Equation (4.2). Rank the parameters by their absolute priority values. Because, the priority 

becomes negative due to the negative parameter, but the effect of the priority value remains same 

irrespective of the type of the parameter. Table 1 shows all the data about the parameters and the 

priorities assigned to those parameters.  

Parameter Rank: Parameters are ranked as per their absolute priority value. In Table 1, it can be 

noticed that the User’s priority for the parameter Gaps ( 7 ) is a negative number, because the 

parameter Gaps is a negative parameter. But the significance of a parameter in decision making is 

depends on its absolute priority value. So, the parameters 6 7 8, ,    are having same parameter 

rank. Parameter ranks plays a vital role to resolve the problem when two participants are having 

same final score. In that case, we can ignore one or more less significant parameters.  

 

 

 

Table 1. Parameter Table 
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Parameters 1  
2  

3  
4  

5  
6  

7  
8  

9  

User’s Priority .20 .40 .30 .20 .30 .10 -0.10 .10 0 

Handling Zero Priority .20 .40 .30 .20 .30 .10 -0.10 .10 .01 

Normalized Priority .117 .234 .176 .117 .176 .059 -0.059 .059 .003 

Parameter Rank 4 1 2 4 2 6 6 6 9 

 

The quality of all the participants evaluated and can be represented in a NSS as shown in Table 

2. Construct the Truthness Table, Indeterminacy Table and Falsity Table (Tables 3, 4, 5) by 

segregating the columns of Truthness, Indeterminacy and Falsity values for every parameter. 

 

Construct the Truthness Priority Table, Indeterminacy Priority Table and Falsity Priority Table 

(Tables 6, 7, 8) by multiplying the priority values to their corresponding Truthness, Indeterminacy 

and Falsity values. Priority Tables are having both -ve and +ve real numbers. Because, after 

multiplying with priority values, the data are not necessarily positive. It can be any real number. 

Construct the Comparison Tables for Truthness, Indeterminacy and Falsity values by using the 

formula given in Equation (4.3) for each column (Tables 9,10,11). Get the comparison score, by 

computing the sum of the comparison scores for each competitor. Normalize comparison scores of 

all comparison tables using the formula in Equation (4.2).
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Table 2. Data in Neutrosophic soft set model 
  

1  2  3  4  5  6  7  8  9  

U  T I F T I F T I F T I F T I F T I F T I F T I F T I F 

1  .09 .7 .28 .25 .25 .07 .48 .19 .75 .62 .64 .07 .18 .97 .25 .86 .28 .51 .85 .16 .9 .12 .79 .71 .56 .71 .97 

2  .68 .33 .13 .94 .98 .93 .41 .79 .88 .69 .69 .95 .48 .87 .81 .25 .75 .43 .19 .7 .74 .83 .23 .22 .81 .06 .08 

3  .79 .57 .25 .84 .45 .96 .06 .4 .41 .5 .47 .56 .18 .82 .23 .62 .28 .9 .09 .24 .63 .02 .33 .22 .38 .84 .02 

4  .01 .57 .27 .44 .3 .66 .85 .59 .32 .99 .98 .88 .55 .11 .85 .68 .88 .95 .49 .38 .24 .67 .83 .85 .17 .36 .89 

5  .87 .02 .91 .66 .97 .86 .62 .68 .24 .71 .45 .35 .97 .14 .96 .39 .76 .74 .76 .22 .53 .69 .29 .7 .26 .13 .9 

6  .61 .27 .31 .55 .6 .3 .95 .17 .5 .36 .37 .51 .14 .7 .19 .38 .73 .04 .57 .69 .53 .22 .77 .47 .37 .88 .24 

7  .96 .82 .33 .49 .49 .34 .65 .02 .71 .61 .07 .66 .71 .68 .17 .46 .84 .12 .83 .14 .73 .16 .24 .29 .83 .86 .83 

8  .04 .34 .02 .39 .56 .76 .07 .12 .48 .85 .73 .28 .53 .38 .32 .23 .98 .32 .78 .11 .2 .49 .23 .55 .09 .35 .29 

9  .19 .55 .1 .97 .67 .88 .37 .81 .37 .53 .24 .84 .84 .19 .99 .5 .4 .45 .6 .05 .95 .9 .72 .74 .01 .52 .59 

10  .05 .79 .01 .82 .05 .8 .48 .56 .38 .13 .11 .71 .96 .7 .26 .81 .5 .72 .2 .56 .47 .18 .85 .55 .53 .24 .18 

 

Table 3. Truthness Table Table 4. Indeterminacy Table Table 5. Falsity Table 
 

( , )U   
1  2  3  4  5  6  7  8  9  

1  .09 .25 .48 .62 .18 .86 .85 .12 .56 

2  .68 .94 .41 .69 .48 .25 .19 .83 .81 

3  .79 .84 .06 .5 .18 .62 .09 .02 .38 

4  .01 .44 .85 .99 .55 .68 .49 .67 .17 

5  .87 .66 .62 .71 .97 .39 .76 .69 .26 

6  .61 .55 .95 .36 .14 .38 .57 .22 .37 

7  .96 .49 .65 .61 .71 .46 .83 .16 .83 

8  .04 .39 .07 .85 .53 .23 .78 .49 .09 

9  .19 .97 .37 .53 .84 .5 .6 .9 .01 

10  .05 .82 .48 .13 .96 .81 .2 .18 .53 

 

( , )U   
1  2  3  4  5  6  7  8  9  

1  .7 .25 .19 .64 .97 .28 .16 .79 .71 

2  .33 .98 .79 .69 .87 .75 .7 .23 .06 

3  .57 .45 .4 .47 .82 .28 .24 .33 .84 

4  .57 .3 .59 .98 .11 .88 .38 .83 .36 

5  .02 .97 .68 .45 .14 .76 .22 .29 .13 

6  .27 .6 .17 .37 .7 .73 .69 .77 .88 

7  .82 .49 .02 .07 .68 .84 .14 .24 .86 

8  .34 .56 .12 .73 .38 .98 .11 .23 .35 

9  .55 .67 .81 .24 .19 .4 .05 .72 .52 

10  .79 .05 .56 .11 .7 .5 .56 .85 .24 

 

( , )U   
1  2  3  4  5  6  7  8  9  

1  .28 .07 .75 .07 .25 .51 .9 .71 .97 

2  .13 .93 .88 .95 .81 .43 .74 .22 .08 

3  .25 .96 .41 .56 .23 .9 .63 .22 .02 

4  .27 .66 .32 .88 .85 .95 .24 .85 .89 

5  .91 .86 .24 .35 .96 .74 .53 .7 .9 

6  .31 .03 .5 .51 .19 .04 .53 .47 .24 

7  .33 .34 .71 .66 .17 .12 .73 .29 .83 

8  .02 .76 .48 .28 .32 .32 .2 .55 .29 

9  .1 .88 .37 .84 .99 .45 .95 .74 .59 

10  .01 .8 .38 .71 .26 .72 .47 .55 .18 
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Table 6. Priority Table for Truthness  Table 7. Priority Table for Indeterminacy Table 8. Priority Table for Falsity 
 

( , )U   
1  2  

3  4  5  6  7  
8  9  

1  .011 .059 .084 .073 .032 .050 -0.050 .007 .002 

2  .080 .220 .072 .081 .084 .015 -0.011 .049 .003 

3  .093 .197 .011 .059 .032 .036 -0.005 .001 .001 

4  .001 .103 .149 .116 .097 .040 -0.029 .039 .001 

5  .102 .155 .109 .083 .171 .023 -0.045 .040 .001 

6  .072 .129 .167 .042 .025 .022 -0.033 .013 .001 

7  .113 .115 .114 .072 .125 .027 -0.049 .009 .003 

8  .005 .091 .012 .100 .093 .013 -0.046 .029 .000 

9  .022 .227 .065 .062 .148 .029 -0.035 .053 .000 

10  .006 .192 .084 .015 .169 .047 -0.012 .011 .002 

 

( , )U   
1  2  

3  4  5  6  7  
8  9  

1  .082 .059 .033 .075 .171 .016 -0.009 .046 .002 

2  .039 .230 .139 .081 .153 .044 -0.041 .013 .000 

3  .067 .106 .070 .055 .144 .016 -0.014 .019 .003 

4  .067 .070 .104 .115 .019 .052 -0.022 .049 .001 

5  .002 .227 .120 .053 .025 .045 -0.013 .017 .000 

6  .032 .141 .030 .043 .123 .043 -0.040 .045 .003 

7  .096 .115 .004 .008 .120 .049 -0.008 .014 .003 

8  .040 .131 .021 .086 .067 .057 -0.006 .013 .001 

9  .064 .157 .142 .028 .033 .023 -0.003 .042 .002 

10  .093 .012 .098 .013 .123 .029 -0.033 .050 .001 

 

( , )U   
1  2  

3  4  5  6  7  
8  9  

1  .033 .016 .132 .008 .044 .030 -0.053 .042 .003 

2  .015 .218 .155 .111 .142 .025 -0.043 .013 .000 

3  .029 .225 .072 .066 .040 .053 -0.037 .013 .000 

4  .032 .155 .056 .103 .149 .056 -0.014 .050 .003 

5  .107 .202 .042 .041 .169 .043 -0.031 .041 .003 

6  .036 .007 .088 .060 .033 .002 -0.031 .028 .001 

7  .039 .080 .125 .077 .030 .007 -0.043 .017 .003 

8  .002 .178 .084 .033 .056 .019 -0.012 .032 .001 

9  .012 .206 .065 .098 .174 .026 -0.056 .043 .002 

10  .001 .188 .067 .083 .046 .042 -0.028 .032 .001 

Table 9. Comparison Table for Truthness         Table 10. Comparison Table for Indeterminacy 
 

( , )U   1  2  3  4  5  6  7  8  9  Score 
Normalized 

Score 

1  -0.397 -0.903 -0.025 0.025 -0.658 0.200 -0.184 -0.181 0.005 -2.117 0.038 

2  0.294 0.715 -0.148 0.107 -0.130 -0.157 0.203 0.236 0.014 1.134 0.808 

3  0.423 0.481 -0.763 -0.116 -0.658 0.060 0.261 -0.239 -0.001 -0.552 0.409 

4  -0.491 -0.457 0.626 0.458 -0.007 0.095 0.027 0.142 -0.008 0.385 0.631 

5  0.517 0.059 0.222 0.130 0.732 -0.075 -0.131 0.154 -0.005 1.601 0.919 

6  0.212 -0.199 0.802 -0.280 -0.728 -0.081 -0.020 -0.122 -0.001 -0.417 0.441 

7  0.623 -0.340 0.274 0.013 0.274 -0.034 -0.172 -0.157 0.015 0.495 0.657 

8  -0.456 -0.574 -0.746 0.294 -0.042 -0.169 -0.143 0.036 -0.011 -1.810 0.110 

9  -0.280 0.786 -0.218 -0.081 0.503 -0.011 -0.038 0.277 -0.013 0.924 0.759 

10  -0.444 0.434 -0.025 -0.550 0.714 0.171 0.197 -0.145 0.004 0.356 0.624 

 

( , )U   1  2  3  4  5  6  7  8  9  Score 
Normalized 

Score 

1  0.239 -0.661 -0.427 0.193 0.728 -0.211 0.097 0.154 0.007 0.119 0.568 

2  -0.195 1.050 0.628 0.252 0.552 0.064 -0.220 -0.175 -0.015 1.943 1.000 

3  0.087 -0.192 -0.058 -0.006 0.464 -0.211 0.050 -0.116 0.012 0.029 0.546 

4  0.087 -0.544 0.276 0.592 -0.784 0.141 -0.032 0.177 -0.005 -0.093 0.518 

5  -0.558 1.027 0.434 -0.029 -0.732 0.070 0.062 -0.140 -0.013 0.122 0.568 

6  -0.265 0.159 -0.463 -0.123 0.253 0.053 -0.214 0.142 0.013 -0.444 0.434 

7  0.380 -0.098 -0.726 -0.475 0.218 0.117 0.108 -0.169 0.013 -0.632 0.390 

8  -0.183 0.066 -0.550 0.299 -0.310 0.199 0.126 -0.175 -0.005 -0.533 0.413 

9  0.063 0.324 0.663 -0.276 -0.644 -0.141 0.161 0.113 0.001 0.265 0.602 

10  0.345 -1.130 0.223 -0.428 0.253 -0.082 -0.138 0.189 -0.009 -0.777 0.355 
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Table 11. Comparison Table for Falsity 

 

 

 

 

 

 

 

 

 

 

 

 

 

Construct the decision table by taking the normalized scores from comparison tables for 

Truthness, Indeterminacy and Falsity values (Table 12). Compute the neutrosophic score by using 

the formula in the Equation (4.4). Rank the competitors according to their final score (neutrosophic 

score). If multiple participants are getting same score, for those participants with same score, repeat 

all the previous steps ignoring the parameter having lowest rank. Continue the process until all 

participants getting a distinct rank or reaching the comparison with only the values for the highest 

ranked parameter. 

 

Table 12. Decision Table 

Candidates Truthness Score Indeterminacy Score Falsity Score Neutrosophic Score Rank 

1  0.0377 0.5676 0.0741 -0.0301 5 

2  0.8082 1.0000 0.9783 -0.1440 8 

3  0.4087 0.5464 0.5624 -0.1409 7 

4  0.6307 0.5175 0.8668 -0.2189 9 

5  0.9190 0.5684 0.9308 0.0123 4 

6  0.4405 0.4342 0.0000 0.4556 1 

7  0.6569 0.3896 0.2619 0.4136 2 

8  0.1103 0.4132 0.4034 -0.2879 10 

9  0.7586 0.6022 0.8241 -0.0443 6 

10  0.6239 0.3553 0.4928 0.1476 3 

 

In this application, participant C6 is the best fit candidate as per requirements. If multiple candidates 

need to be selected, it can be selected as per their rankings. 

 

4.3 Comparative Analysis 

 

This section provides a comparison analysis with other existing decision-making approaches by 

using the common neutrosophic data as given in Table 13. Table 14 provides the result of the 

comparative analysis that establishes the correctness of the approach used in this article. 

( , )U   
1  

2  
3  

4  
5  

6  
7  

8  
9  Score 

Normalized 

Score 

1  0.022 -1.311 0.433 -0.599 -0.445 -0.005 -0.181 0.106 0.016 -1.963 0.074 

2  -0.154 0.706 0.661 0.433 0.540 -0.052 -0.087 -0.182 -0.014 1.851 0.978 

3  -0.013 0.776 -0.165 -0.025 -0.480 0.224 -0.022 -0.182 -0.017 0.097 0.562 

4  0.011 0.073 -0.324 0.351 0.610 0.253 0.206 0.188 0.013 1.381 0.867 

5  0.761 0.542 -0.464 -0.271 0.804 0.130 0.036 0.100 0.014 1.651 0.931 

6  0.057 -1.405 -0.007 -0.083 -0.550 -0.280 0.036 -0.035 -0.009 -2.276 0.000 

7  0.081 -0.678 0.362 0.093 -0.586 -0.233 -0.081 -0.141 0.011 -1.171 0.262 

8  -0.283 0.307 -0.042 -0.353 -0.322 -0.116 0.230 0.012 -0.007 -0.574 0.403 

9  -0.189 0.589 -0.236 0.304 0.856 -0.040 -0.210 0.123 0.003 1.201 0.824 

10  -0.294 0.401 -0.218 0.151 -0.427 0.118 0.072 0.012 -0.011 -0.197 0.493 



Neutrosophic Sets and Systems, Vol. 60, 2023     172     

 

 

 R.K. Mohanty , B.K. Tripathy, A New Approach to Neutrosophic Soft Sets and their Application in Decision Making 

 

Table 13. Neutrosophic data for comparison 

 
1e  

2e  
3e  

1x  (0.5, 0.4, 0.7) (0.7, 0.5, 0.1) (0.6, 0.6, 0.3) 

2x  (0.6, 0.5, 0.6) (0.6, 0.2, 0.2) (0.5, 0.4, 0.4) 

3x  (0.7, 0.3, 0.5) (0.7, 0.2, 0.1) (0.7, 0.5, 0.4) 

4x  (0.6, 0.4, 0.5) (0.7, 0.4, 0.2) (0.5, 0.6, 0.4) 

 

Table 14. Comparison study with some existing methods 

Method The final ranking The optimal alternative 

Peng and Liu [32] Algorithm 1 
3 2 4 1x x x x  

3x  

Peng and Liu [32] Algorithm 2 
3 4 1 2x x x x  3x  

Peng and Liu [32] Algorithm 3 
3 4 2 1x x x x  

3x  

Deli and Broumi [33] 
3 4 1 2x x x x  3x  

Maji [34] 
3 4 1 2x x x x  3x  

Karaaslan [35] 
3 4 1 2x x x x  3x  

Deli and Broumi [36] 
3 4 1 2x x x x  3x  

Proposed Algorithm 
3 1 4 2x x x x  3x  

 

Reason behind the obtained result: 3x is best of all in both T (higher) and F (Lower) aspects. 

Similarly, 2x  is worst of all in both T (higher) and F (Lower) values. 1 4x x  because 1x in 2nd 

and 3rd parameter is having lower F  value. Other values are just cancelling out each other as F  

and T  both are increasing or decreasing. It seems, the ordering is logical, which matches with the 

outcome of our algorithm. 

5. Conclusions 

In this article an MCDM algorithm based on NSS is introduced to model an interview process 

and rank the candidates. A general score function is introduced, in the algorithm by taking into 

account the three parameters of a NS (namely Truth, falsity and Indeterminancy). It is capable of 

ordering the neutrosophic values efficiently. To show the adequateness of the approach and 

establish its superiority, the results are compared with those of many of the existing algorithms in 

this direction It is to note that the outcome of the algorithm is natural and matches with the 

anticipations. Further extensions of our algorithm can be carried out by considering the 

generalisations of the soft set model in thr fom of Hypersoftset, IndermSoftset, 

IndetermHyperSoftset, Tree Softset and PlithogenicHyperSoftset models. 
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Abstract: In this paper, a maple code is presented to do many operations on interval valued 
neutrosophic matrices including entering the elements of the matrix, checking whether a given 
matrix is an interval valued neutrosophic matrix or not, finding complement of an interval valued 
neutrosophic matrix, finding score, accuracy, and certainty measures, union and intersection of two 
interval valued neutrosophic matrices, sum and product of two interval valued neutrosophic 
matrices and finding the transpose of a given interval valued of neutrosophic matrix. What 
distinguishes this code is its simplicity to understand and to call the functions. Many examples are 
presented and solved successfully. 

Keywords: Maple; Neutrosophic Set; Single Valued Neutrosophic Set; Interval Valued 

Neutrosophic Set; Operations on Matrices. 

 

1. Introduction 

Fuzzy Sets were presented by Zadeh [1] to expand the concept of crisp sets allowing elements to 

belong to the sets partially (with membership degree between 0 and 1), then the last concept 

expanded by Atanassov [2] to what is known by intuitionistic fuzzy sets adding nonmebmbership 

component to describe elements of sets. In 1995, Smarandache [3] presented neutrosophic sets as an 

extension of fuzzy sets and intuitionistic fuzzy sets in which each element is described by three 

independent componentsl; truth, indeterminacy and false memberships. Many other extensions to 

neutrosophic sets were presented including refined neutrosophic sets, interval valued neutrosophic 

sets, bipolar neutrosophic sets, generalized neutrosophic sets, neutrosophic vague soft expert set, 

fermatean neutrosophic sets, etc. 

Many mathematical studies were done on neutrosophic sets and many branches of mathematics 

were extended to the new concept of logic including probabiliy theory, operations research, 

statistics, linear algebra, abstract algebra, queueuing theory, artificial intelligence and data 

minig.[4-14] 

Since delaing with neutrosophic sets is very complex and operations on it take long time , then 

many researchers wrote programming packages and codes to make dealing with it more simple. 

mailto:bisher.zeina@gmail.com
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Salama et al.[15] presented and introduction to develop programming softwares to deal with 

neutrosophic sets. Bakro et al.[16] wrote a matlab code to neutrosophication functions and their 

implementation. Broumi et al.[17] wrote a matlab code to implement neutrosophic membership 

functions and graphing it. Bisher Zeina et al.[18] presented a maple package to do operations on 

single valued neutrosophic sets using α,β,γ-Cuts, Broumi et al.[19] wrote a maple package to 

perform operations on single valued neutrosophic matrices. In this paper we generalize the code 

presented in [19] to deal with interval valued neutrosphic matrices and do operations on it.  

2. Background on Neutrosophic Sets 

Definition 2.1[20] 

Let Ω be a universe, we call 𝐴 ⊆ Ω a neutrosophic set if elements of 𝐴 are described by their 

membership degree 𝑇𝐴(𝑥), nonmembership degree 𝐹𝐴(𝑥) and indeterminacy degree 𝐼𝐴(𝑥) and we 

denote that by: 

𝐴 = {< 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) > ; 𝑥 ∈ Ω} 

Where: 

𝑇𝐴(𝑥), IA(𝑥), 𝐹𝐴(𝑥) ∈] 0 
− , 1+[ & 0 

−  ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤  3+ 

 

Definition 2.2 [20] 

Let Ω be a universe, we call 𝐴 ⊆ Ω a single valued neutrosophic set if: 

𝐴 = {< 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) > ; 𝑥 ∈ Ω} 

Where: 

𝑇𝐴(𝑥), IA(𝑥), 𝐹𝐴(𝑥) ∈ [0,1] & 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤  3 

Definition 2.3 [21] 

Let Ω be a universe, we call 𝐴 ⊆ Ω an interval valued neutrosophic set if: 

𝐴 = {< [𝑇𝐴
𝐿(𝑥), 𝑇𝐴

𝑈(𝑥)], [𝐼𝐴
𝐿(𝑥), 𝐼𝐴

𝑈(𝑥)], [𝐹𝐴
𝐿(𝑥), 𝐹𝐴

𝑈(𝑥)] > ;  x ∈ Ω}      

Where: 

𝑇𝐴
𝐿(𝑥), 𝑇𝐴

𝑈(𝑥), 𝐼𝐴
𝐿(𝑥), 𝐼𝐴

𝑈(𝑥), 𝐹𝐴
𝐿(𝑥), 𝐹𝐴

𝑈(𝑥) ∈ [0,1] 

Definition 2.4 

Interval valued neutrosophic matrix of order 𝑚 × 𝑛 is defined as follows: 

𝐴 = [< 𝑎𝑖𝑗 , [𝑇𝑎𝑖𝑗
𝐿 , 𝑇𝑎𝑖𝑗

𝑈 ], [𝐼𝑎𝑖𝑗
𝐿 , 𝐼𝑎𝑖𝑗

𝑈 ], [𝐹𝑎𝑖𝑗
𝐿 , 𝐹𝑎𝑖𝑗

𝑈 ] >]
𝑚×𝑛

 

3. Maple Package to Do Operations on Interval Valued Neutrosophic Matrices 

3.1. Entering Interval Valued Neutrosophic Matrices 

To enter interval valued neutrosophic matrix we call the function IVNIInput(m,n) where m, 

n are numbers of rows and columns respectively and the written function is as follows: 

 

restart;interface(warnlevel=0); 
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with(Maplets[Elements]): 

with(Maplets): 

IVNIInput:=proc(m::integer,n::integer) 

local mat:=Matrix(m,n); 

for i from 1 to m by 1 do 

for j from 1 to n by 1 do 

truthL:=Maplet(InputDialog['x'](cat("Enter lower truth of element 

",i,",",j),'onapprove'=Shutdown(['x']),'oncancel'=Shutdown())); 

truthL:=Display(truthL); 

truthL:=parse(op(truthL)); 

truthU:=Maplet(InputDialog['x'](cat("Enter upper truth of element 

",i,",",j),'onapprove'=Shutdown(['x']),'oncancel'=Shutdown())); 

truthU:=Display(truthU); 

truthU:=parse(op(truthU)); 

indeterminacyL:=Maplet(InputDialog['x'](cat("Enter lower indeterminacy of element 

",i,",",j),'onapprove'=Shutdown(['x']),'oncancel'=Shutdown())); 

indeterminacyL:=Display(indeterminacyL); 

indeterminacyL:=parse(op(indeterminacyL)); 

indeterminacyU:=Maplet(InputDialog['x'](cat("Enter upper indeterminacy of element 

",i,",",j),'onapprove'=Shutdown(['x']),'oncancel'=Shutdown())); 

indeterminacyU:=Display(indeterminacyU); 

indeterminacyU:=parse(op(indeterminacyU)); 

falsityL:=Maplet(InputDialog['x'](cat("Enter lower falsity of element 

",i,",",j),'onapprove'=Shutdown(['x']),'oncancel'=Shutdown())); 

falsityL:=Display(falsityL); 

falsityL:=parse(op(falsityL)); 

falsityU:=Maplet(InputDialog['x'](cat("Enter upper falsity of element 

",i,",",j),'onapprove'=Shutdown(['x']),'oncancel'=Shutdown())); 

falsityU:=Display(falsityU); 

falsityU:=parse(op(falsityU)); 

mat(i,j):=convert([[truthL,truthU],[indeterminacyL,indeterminacyU],[falsityL,falsityU]],string); 

end do; 
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end do; 

mat; 

end proc: 

 

3.2. Checking whether the matrix is IVNM or not  

We can call the function IVNCheck (mat) defined below to check whether matrix mat is 

interval valued neutrosophic matrix or not: 

IVNCheck:=proc(mat) 

IsMembership:=proc(num) 

if num<0 or num>1 then return false else return true end if; 

end proc: 

m,n:=LinearAlgebra[Dimension](mat); 

result:=true; 

for i from 1 to m by 1 do 

for j from 1 to n by 1 do 

x:=parse(mat(i,j)); 

truth:=x[1]; 

indeterminacy:=x[2]; 

falsity:=x[3]; 

truthL:=truth[1]; 

truthU:=truth[2]; 

indeterminacyL:=indeterminacy[1]; 

indeterminacyU:=indeterminacy[2]; 

falsityL:=falsity[1]; 

falsityU:=falsity[2]; 

result:= IsMembership(truthL) and IsMembership(truthU) and IsMembership(indeterminacyL) and 

IsMembership(indeterminacyU) and IsMembership(falsityL) and IsMembership(falsityU); 

if not result then break; end if; 

end do; 

if not result then break; end if; 
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end do; 

if result then cat("your matrix is an interval valued neutrosophic matrix") else cat("your matrix is not 

a single valued neutrosophic matrix") end if; 

end proc: 

Example 1. In this example we define an interval valued neutrosophic matrix E and check whether it 

is right defined or not where: 

E= 

(
< [1,1], [. 7, .8], [.1, .6] > < [. 2, .4], [. 2, .8], [.1, .9] >

< [. 8, .9], [. 3, .5], [.1, .2]  > < [. 1, .2], [. 5, .7], [.2, .5] >
) 

The interval valued neutrosophic matrix E can be inputted in Maple like this: 

E := Matrix(2, 2, [["[[1, 1], [.7, .8], [.1, .6]]", "[[.2, .4], [.2, .8], [.1, .9]]"], ["[[.8, .9], [.3, .5], [.1, .2]]", "[[.1, .2], 

[.5, .7], [.2, .5]]"]]); 

Or like this: 

x:= IVNIInput (2,2); 

Then an input box dialogue is going to appear and lead you how to input elements. 

Result of checking whether matrix E is Interval-Valued Neutrosophic Matrix or not can be obtained 

by calling the command IVNCheck(E); 

And the result will be: 

"your matrix is an interval valued neutrosophic matrix" 

3.3. Finding complement of interval valued neutrosophic matrix  

For a given IVNM 𝐴 = [< 𝑎𝑖𝑗 , [𝑇𝑎𝑖𝑗
𝐿 , 𝑇𝑎𝑖𝑗

𝑈 ], [𝐼𝑎𝑖𝑗
𝐿 , 𝐼𝑎𝑖𝑗

𝑈 ], [𝐹𝑎𝑖𝑗
𝐿 , 𝐹𝑎𝑖𝑗

𝑈 ] >]
𝑚×𝑛

, the complement of A is 

defined as follow: 

𝐴𝑐= 𝐴 = [< 𝑎𝑖𝑗 , [𝐹𝑎𝑖𝑗
𝐿 , 𝐹𝑎𝑖𝑗

𝑈 ], [1 − 𝐼𝑎𝑖𝑗
𝑈 , 1 − 𝐼𝑎𝑖𝑗

𝐿 ], [𝑇𝑎𝑖𝑗
𝐿 , 𝑇𝑎𝑖𝑗

𝑈 ] >]
𝑚×𝑛

                       (10) 

To find the complement of interval valued neutrosophic matrix we can call the function 

IVNMCompelementOf(mat) which is defined as follow: 

 

IVNMCompelementOf:=proc(mat::Matrix) 

temp:=LinearAlgebra[Copy](mat); 

m,n:=LinearAlgebra[Dimension](temp); 
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for i from 1 to m by 1 do 

for j from 1 to n by 1 do 

x:=parse(mat(i,j)); 

falsity:=x[1]; 

indeterminacy:=x[2]; 

truth:=x[3]; 

indeterminacyL:=1-indeterminacy[2]; 

indeterminacyU:=1-indeterminacy[1]; 

temp(i,j):=convert([truth,[indeterminacyL,indeterminacyU],falsity],string); 

end do; 

end do; 

temp; 

end proc: 

Example 2. find the complement of matrix E in example 1. 

the complement of matrix E is: 

𝐸𝑐 = (
< [.1, .6], [. 2, .3], [1,1] > < [. 1, .9], [. 2, .8], [.2, .4] >

< [. 1, .2], [. 5, .7], [.8, .9]  > < [. 2, .5], [. 3, .5], [.1, .2] >
) 

By calling the function  

SVNMCompelementOf1( E ); 

Same results appear: 

 

3.4. Finding score, accuracy and certainty matrices of interval valued neutrosophic matrices  

Suppose A is an interval neutrosophic matrix, then score, accuracy and certainty measures are 

defined as follows: [22] 

�̃�𝐼𝑉𝑁𝑁(𝑥)=
𝑇𝐴

𝐿(𝑥)+𝑇𝐴
𝑈(𝑥)+4−𝐼𝐴

𝐿(𝑥)−𝐼𝐴
𝑈(𝑥)−𝐹𝐴

𝐿(x)−𝐹𝐴
𝑈(𝑥)

6
 

�̃�𝑆𝑉𝑁𝑁(𝑥)=
2+𝑇𝐴(𝑥)−𝐼𝐴(𝑥)−𝐹𝐴(𝑥)

3
 

�̃�𝐼𝑉𝑁𝑁(𝑥)=
𝑇𝐴

𝐿(𝑥)+𝑇𝐴
𝑈(𝑥)−𝐹𝐴

𝐿(x)−𝐹𝐴
𝑈(𝑥)

2
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�̃�𝑆𝑉𝑁𝑁(𝑥)=𝑇𝐴(𝑥) − 𝐹𝐴(𝑥) 

 

�̃�𝐼𝑉𝑁𝑁(𝑥)=
𝑇𝐴

𝐿(𝑥)+𝑇𝐴
𝑈(𝑥)

2
 

�̃�𝑆𝑉𝑁𝑁(𝑥)=𝑇𝐴(𝑥) 

 

Three maple functions ScoreMatrix( ), AccuracyMatrix ( ) and CertaintyMatrix ( ) are defined as 

follows:  

ScoreMatrix:=proc(mat::Matrix) 

m,n:=LinearAlgebra[Dimension](mat); 

scoreMat:=Matrix(m,n); 

for i from 1 to m by 1 do 

for j from 1 to n by 1 do 

x:=parse(mat(i,j)); 

truth:=x[1]; 

indeterminacy:=x[2]; 

falsity:=x[3]; 

truthL:=truth[1]; 

truthU:=truth[2]; 

indeterminacyL:=indeterminacy[1]; 

indeterminacyU:=indeterminacy[2]; 

falsityL:=falsity[1]; 

falsityU:=falsity[2]; 

score:=(4+truthL+truthU-indeterminacyL-indeterminacyU-falsityL-falsityU)/6; 

scoreMat(i,j):=score; 

end do; 

end do; 

scoreMat; 

end proc: 

AccuracyMatrix:=proc(mat::Matrix) 

m,n:=LinearAlgebra[Dimension](mat); 

aMat:=Matrix(m,n); 
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for i from 1 to m by 1 do 

for j from 1 to n by 1 do 

x:=parse(mat(i,j)); 

truth:=x[1]; 

indeterminacy:=x[2]; 

falsity:=x[3]; 

truthL:=truth[1]; 

truthU:=truth[2]; 

indeterminacyL:=indeterminacy[1]; 

indeterminacyU:=indeterminacy[2]; 

falsityL:=falsity[1]; 

falsityU:=falsity[2]; 

a:=(truthL+truthU-falsityL-falsityU)/2; 

aMat(i,j):=a; 

end do; 

end do; 

aMat; 

end proc: 

CertaintyMatrix:=proc(mat::Matrix) 

m,n:=LinearAlgebra[Dimension](mat); 

cMat:=Matrix(m,n); 

for i from 1 to m by 1 do 

for j from 1 to n by 1 do 

x:=parse(mat(i,j)); 

truth:=x[1]; 

indeterminacy:=x[2]; 

falsity:=x[3]; 

truthL:=truth[1]; 

truthU:=truth[2]; 

indeterminacyL:=indeterminacy[1]; 
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indeterminacyU:=indeterminacy[2]; 

falsityL:=falsity[1]; 

falsityU:=falsity[2]; 

c:=(truthL+truthU)/2; 

cMat(i,j):=c; 

end do; 

end do; 

cMat; 

end proc: 

and by calling the previous three functions we get: 

ScoreMatrix(E); 

 

AccuracyMatrix(E); 

 

CertaintyMatrix(E); 

 

3.5. Computing union of two interval valued neutrosophic matrices  

Union of two interval valued neutrosophic matrices A and B is defined as follow: 

 𝐴 ∪ 𝐵 = 𝐶 = [< 𝑐𝑖𝑗𝑇
, 𝑐𝑖𝑗𝐼

, 𝑐𝑖𝑗𝐹
>]

m× n
   

     where 

𝑐𝑖𝑗𝑇
= [𝑎𝑖𝑗

𝑇𝐿
∨ 𝑏𝑖𝑗

𝑇𝐿
, 𝑎𝑖𝑗

𝑇𝑈
∨ 𝑏𝑖𝑗

𝑇𝑈
 ],   

𝑐𝑖𝑗𝐼
= [𝑎𝑖𝑗

𝐼𝐿
∨ 𝑏𝑖𝑗

𝐼𝐿
, 𝑎𝑖𝑗

𝐼𝑈
∨ 𝑏𝑖𝑗

𝐼𝑈
 ],   

𝑐𝑖𝑗𝐹
= [𝑎𝑖𝑗

𝐹𝐿
∨ 𝑏𝑖𝑗

𝐹𝐿
, 𝑎𝑖𝑗

𝐹𝑈
∨ 𝑏𝑖𝑗

𝐹𝑈
 ] 

And it can be evaluated by calling the function Union( A, B ) described as follows: 
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Union:=proc(mat1::Matrix,mat2::Matrix) 

m1,n1:=LinearAlgebra[Dimension](mat1); 

m2,n2:=LinearAlgebra[Dimension](mat2); 

if (n1=n2) and (m1=m2) then 

m:=m1;n:=n1; 

unionMat:=Matrix(m,n); 

for i from 1 to m by 1 do 

for j from 1 to n by 1 do 

x:=parse(mat1(i,j)); 

y:=parse(mat2(i,j)); 

truth1:=x[1]; 

indeterminacy1:=x[2]; 

falsity1:=x[3]; 

truthL1:=truth1[1]; 

truthU1:=truth1[2]; 

indeterminacyL1:=indeterminacy1[1]; 

indeterminacyU1:=indeterminacy1[2]; 

falsityL1:=falsity1[1]; 

falsityU1:=falsity1[2]; 

truth2:=y[1]; 

indeterminacy2:=y[2]; 

falsity2:=y[3]; 

truthL2:=truth2[1]; 

truthU2:=truth2[2]; 

indeterminacyL2:=indeterminacy2[1]; 

indeterminacyU2:=indeterminacy2[2]; 

falsityL2:=falsity2[1]; 
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falsityU2:=falsity2[2]; 

truthL:=max(truthL1,truthL2); 

truthU:=max(truthU1,truthU2); 

indeterminacyL:=max(indeterminacyL1,indeterminacyL2); 

indeterminacyU:=max(indeterminacyU1,indeterminacyU2); 

falsityL:=max(falsityL1,falsityL2); 

falsityU:=max(falsityU1,falsityU2); 

unionMat(i,j):=convert([[truthL,truthU],[indeterminacyL,indeterminacyU],[falsityL,falsityU]],string)

; 

end do; 

end do; 

unionMat; 

else 

print("dimension of given matrices must be equal!"); 

end if; 

end proc: 

Example 3. Say that: 

E=  

F=  

 

So, the union of previous matrices is done by calling the function: 

Union( E, F ); 

And the result is: 

𝐸𝐼𝑉𝑁𝑀 ∪ 𝐹𝐼𝑉𝑁𝑀 =  
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3.6. Computing intersection of two interval valued neutrosophic matrices 

The intersection of two interval valued neutrosophic matrices A and B is defined as follow: 

𝐴 ∩ 𝐵 = 𝐶 = [< 𝑑𝑖𝑗𝑇
, 𝑑𝑖𝑗𝐼

, 𝑑𝑖𝑗𝐹
>]

m× n
  

Where: 

𝑐𝑖𝑗𝑇
= [𝑎𝑖𝑗

𝑇𝐿
^𝑏𝑖𝑗

𝑇𝐿
, 𝑎𝑖𝑗

𝑇𝑈
^𝑏𝑖𝑗

𝑇𝑈
 ],   

𝑐𝑖𝑗𝐼
= [𝑎𝑖𝑗

𝐼𝐿
∨ 𝑏𝑖𝑗

𝐼𝐿
, 𝑎𝑖𝑗

𝐼𝑈
∨ 𝑏𝑖𝑗

𝐼𝑈
 ],   

𝑐𝑖𝑗𝐹
= [𝑎𝑖𝑗

𝐹𝐿
∨ 𝑏𝑖𝑗

𝐹𝐿
, 𝑎𝑖𝑗

𝐹𝑈
∨ 𝑏𝑖𝑗

𝐹𝑈
 ] 

And this is done calling the function Intersection(A,B) is defined in the following manner.  

Intersection:=proc(mat1::Matrix,mat2::Matrix) 

m1,n1:=LinearAlgebra[Dimension](mat1); 

m2,n2:=LinearAlgebra[Dimension](mat2); 

if (n1=n2) and (m1=m2) then 

m:=m1;n:=n1; 

intersectMat:=Matrix(m,n); 

for i from 1 to m by 1 do 

for j from 1 to n by 1 do 

x:=parse(mat1(i,j)); 

y:=parse(mat2(i,j)); 

truth1:=x[1]; 

indeterminacy1:=x[2]; 

falsity1:=x[3]; 

truthL1:=truth1[1]; 

truthU1:=truth1[2]; 

indeterminacyL1:=indeterminacy1[1]; 

indeterminacyU1:=indeterminacy1[2]; 

falsityL1:=falsity1[1]; 

falsityU1:=falsity1[2]; 

truth2:=y[1]; 
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indeterminacy2:=y[2]; 

falsity2:=y[3]; 

truthL2:=truth2[1]; 

truthU2:=truth2[2]; 

indeterminacyL2:=indeterminacy2[1]; 

indeterminacyU2:=indeterminacy2[2]; 

falsityL2:=falsity2[1]; 

falsityU2:=falsity2[2]; 

truthL:=min(truthL1,truthL2); 

truthU:=min(truthU1,truthU2); 

indeterminacyL:=max(indeterminacyL1,indeterminacyL2); 

indeterminacyU:=max(indeterminacyU1,indeterminacyU2); 

falsityL:=max(falsityL1,falsityL2); 

falsityU:=max(falsityU1,falsityU2); 

intersectMat(i,j):=convert([[truthL,truthU],[indeterminacyL,indeterminacyU],[falsityL,falsityU]],stri

ng); 

end do; 

end do; 

intersectMat; 

else 

print("dimension of given matrices must be equal!"); 

end if; 

end proc: 

 

Example 4.  Find intersection of interval valued neutrosophic matrices E and F presented in 

example 3. 

Solution: 

Calling the function Intersection (E, F); yields to the solution: 
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3.7. Addition of two interval valued neutrosophic matrices.  

The Addition of two interval valued neutrosophic matrices A and B is defined as follow: 

𝐴 ⊕ 𝐵 = 𝑆 = [< 𝑠𝑖𝑗𝑇
, 𝑠𝑖𝑗𝐼

, 𝑠𝑖𝑗𝐹
>]

m× n
    

Where: 

𝑠𝑖𝑗𝑇
= [𝑎𝑖𝑗

𝑇𝐿
+ 𝑏𝑖𝑗

𝑇𝐿
− 𝑎𝑖𝑗

𝑇𝐿
. 𝑏𝑖𝑗

𝑇𝐿
, 𝑎𝑖𝑗

𝑇𝑈
+ 𝑏𝑖𝑗

𝑇𝑈
− 𝑎𝑖𝑗

𝑇𝑈
. 𝑏𝑖𝑗

𝑇𝑈
],          

𝑠𝑖𝑗𝐼
= [𝑎𝑖𝑗

𝐼𝐿
. 𝑏𝑖𝑗

𝐼𝐿
, 𝑎𝑖𝑗

𝐼𝑈
. 𝑏𝑖𝑗

𝐼𝑈
],                                  

𝑠𝑖𝑗𝐹
= [𝑎𝑖𝑗

𝐹𝐿
. 𝑏𝑖𝑗

𝐹𝐿
, 𝑎𝑖𝑗

𝐹𝑈
. 𝑏𝑖𝑗

𝐹𝑈
],                               

And can be done calling the function Addition (A, B) which is defined as follow: 

Addition:=proc(mat1::Matrix,mat2::Matrix) 

m1,n1:=LinearAlgebra[Dimension](mat1); 

m2,n2:=LinearAlgebra[Dimension](mat2); 

if (n1=n2) and (m1=m2) then 

m:=m1;n:=n1; 

addMat:=Matrix(m,n); 

for i from 1 to m by 1 do 

for j from 1 to n by 1 do 

x:=parse(mat1(i,j)); 

y:=parse(mat2(i,j)); 

truth1:=x[1]; 

indeterminacy1:=x[2]; 

falsity1:=x[3]; 

truthL1:=truth1[1]; 

truthU1:=truth1[2]; 

indeterminacyL1:=indeterminacy1[1]; 

indeterminacyU1:=indeterminacy1[2]; 

falsityL1:=falsity1[1]; 

falsityU1:=falsity1[2]; 

truth2:=y[1]; 
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indeterminacy2:=y[2]; 

falsity2:=y[3]; 

truthL2:=truth2[1]; 

truthU2:=truth2[2]; 

indeterminacyL2:=indeterminacy2[1]; 

indeterminacyU2:=indeterminacy2[2]; 

falsityL2:=falsity2[1]; 

falsityU2:=falsity2[2]; 

truthL:=truthL1+truthL2-truthL1*truthL2; 

truthU:=truthU1+truthU2-truthU1*truthU2; 

indeterminacyL:=indeterminacyL1*indeterminacyL2; 

indeterminacyU:=indeterminacyU1*indeterminacyU2; 

falsityL:=falsityL1*falsityL2; 

falsityU:=falsityU1*falsityU2; 

addMat(i,j):=convert([[truthL,truthU],[indeterminacyL,indeterminacyU],[falsityL,falsityU]],string); 

end do; 

end do; 

addMat; 

else 

print("dimension of given matrices must be equal!"); 

end if; 

end proc: 

Example 5. In this example we find the addition of two interval valued neutrosophic matrices E and 

F presented in example 3 calling the function: 

Addition(E,F); 

 

 

3.8. Product of two interval valued neutrosophic matrices  

The product of two interval valued neutrosophic matrices A and B is defined as follow: 
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𝐴⨀𝐵 = 𝑅 = [< 𝑟𝑖𝑗𝑇
, 𝑟𝑖𝑗𝐼

, 𝑟𝑖𝑗𝐹
>]

m× n
   

where 

𝑟𝑖𝑗𝑇
= [𝑎𝑖𝑗

𝑇𝐿
. 𝑏𝑖𝑗

𝑇𝐿
, 𝑎𝑖𝑗

𝑇𝑈
. 𝑏𝑖𝑗

𝑇𝑈
],          

𝑟𝑖𝑗𝐼
= [𝑎𝑖𝑗

𝐼𝐿
+ 𝑏𝑖𝑗

𝐼𝐿
− 𝑎𝑖𝑗

𝐼𝐿
. 𝑏𝑖𝑗

𝐼𝐿
, 𝑎𝑖𝑗

𝐼𝑈
+ 𝑏𝑖𝑗

𝐼𝑈
− 𝑎𝑖𝑗

𝐼𝑈
. 𝑏𝑖𝑗

𝐼𝑈
],                                  

𝑟𝑖𝑗𝐹
= [𝑎𝑖𝑗

𝐹𝐿
+ 𝑏𝑖𝑗

𝐹𝐿
− 𝑎𝑖𝑗

𝐹𝐿
. 𝑏𝑖𝑗

𝐹𝐿
, 𝑎𝑖𝑗

𝐹𝑈
+ 𝑏𝑖𝑗

𝐹𝑈
− 𝑎𝑖𝑗

𝐹𝑈
. 𝑏𝑖𝑗

𝐹𝑈
]                               

Which is simply done by the call of the function Product (A, B) defined as follow: 

Prod:=proc(mat1::Matrix,mat2::Matrix) 

m1,n1:=LinearAlgebra[Dimension](mat1); 

m2,n2:=LinearAlgebra[Dimension](mat2); 

if (n1=n2) and (m1=m2) then 

m:=m1;n:=n1; 

prodMat:=Matrix(m,n); 

for i from 1 to m by 1 do 

for j from 1 to n by 1 do 

x:=parse(mat1(i,j)); 

y:=parse(mat2(i,j)); 

truth1:=x[1]; 

indeterminacy1:=x[2]; 

falsity1:=x[3]; 

truthL1:=truth1[1]; 

truthU1:=truth1[2]; 

indeterminacyL1:=indeterminacy1[1]; 

indeterminacyU1:=indeterminacy1[2]; 

falsityL1:=falsity1[1]; 

falsityU1:=falsity1[2]; 

truth2:=y[1]; 
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indeterminacy2:=y[2]; 

falsity2:=y[3]; 

truthL2:=truth2[1]; 

truthU2:=truth2[2]; 

indeterminacyL2:=indeterminacy2[1]; 

indeterminacyU2:=indeterminacy2[2]; 

falsityL2:=falsity2[1]; 

falsityU2:=falsity2[2]; 

truthL:=truthL1*truthL2; 

truthU:=truthU1*truthU2; 

indeterminacyL:=indeterminacyL1+indeterminacyL2-indeterminacyL1*indeterminacyL2; 

indeterminacyU:=indeterminacyU1+indeterminacyU2-indeterminacyU1*indeterminacyU2; 

falsityL:=falsityL1+falsityL2-falsityL1*falsityL2; 

falsityU:=falsityU1+falsityU2-falsityU1*falsityU2; 

prodMat(i,j):=convert([[truthL,truthU],[indeterminacyL,indeterminacyU],[falsityL,falsityU]],string); 

end do; 

end do; 

prodMat; 

else 

print("dimension of given matrices must be equal!"); 

end if; 

end proc: 

Example 6. In this example we evaluate the product of the two interval valued neutrosophic 

matrices E and F presented in example 3 by calling of the command: 

Product(E, F ); 

 

3.9. Transpose of interval valued neutrosophic matrix  



Neutrosophic Sets and Systems, Vol. 60, 2023     192  

 

 

Said Broumi, Mohamed Bisher Zeina and Mohammad Abobala, An Integrated Maple Package for Algebraic Interval 

Neutrosophic Matrices 
 

Transpose of interval valued neutrosophic matrix simply done by calling of the function 

Transpose(A) defined as follow:  

Transpose:=proc(mat::Matrix) 

m,n:=LinearAlgebra[Dimension](mat); 

temp:=Matrix(n,m); 

for i from 1 to n by 1 do 

for j from 1 to m by 1 do 

temp(i,j):=mat(j,i); 

end do; 

end do; 

temp; 

end proc: 

Example 7. In this example we evaluate the transpose of the interval valued neutrosophic matrix E 

presented in example 3: 

Transpose(E); 

  

4. Conclusions  

This paper proposed new Maple package to do operations on interval valued neutrosophic matrices 

including complement, transpose, union, intersection, addition, product, sum and product of 

interval valued neutrosophic matrices. This package is very useful in neutrosophic decision making 

operations and on neutrosophic events simulation. In future work we are looking forward to 

generalize this package to other neutrosophic sets like fermatean neutrosophic sets and  refined 

neutrosophic sets. 
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Abstract: We define Cesaro summability in a Neutrosophic 𝓃 -Normed Linear Space in this article. In 

a Neutrosophic 𝓃-Normed Linear Space, we show the Cesaro summability method to be regular, 

albeit this does not imply typical convergence in general. We also look for more circumstances in 

which the opposite is true. 

Keywords: Convergence, Cesaro summability, Normed Space, Neutrosophic Normed Linear Space. 

  

1. Introduction 

 In 1965, Zadeh [20] was the first to present the idea of fuzzy sets, which was an expansion of 

classical set theoretical concept. This theory has been used in numerous areas of mathematics, including 

the theory of functions, metric spaces, topological spaces and approximation theory, in addition to 

numerous branches of engineering, such as population dynamics, nonlinear dynamic systems, and 

quantum physics. Gunawan and Mashadi [5], Kim and Cho [8] and Malceski [9] and several researchers 

have studied𝓃-normed linear spaces. Vijayabalaji and Narayanan [18] defined fuzzy 𝓃-normalized 

linear space. Following the definition of Intuitionistic Fuzzy 𝓃-Normed Space [ℐℱ𝓃𝒩𝒮] given by 

Vijayabalaji et al. [19], Saadati and Park [11] proposed the idea of Intuitionistic Fuzzy Normed Space 

[ℐℱ𝒩𝒮].  

The Neutrosophic Set [𝒩𝒮] is a fresh interpretation of Smarandache's definition of the classical 

set [14,15]. A neutrosophic set's elements are made up of the triplets true- membership function (T), 

indeterminacy membership function (I) and falsity membership function (F).  When all elements of the 

universe have a certain degree of T, F, and I, a set is said to be neutrosophic. Some findings on fixed-

points were demonstrated in the context of these spaces by Sowndrarajan et. al. [16]. Approximate Fixed 

Point Theorems for Weak Contractions on Neutrosophic normed Spaces were proved in 2022 by 

Jeyaraman et. al. [7]. 

Our goal in this study is to introduce summability theory in a Neutrosophic 𝓃-Normed Linear 

Space [𝒩𝓃𝒩ℒ𝒮].  We introduce the idea of Cesaro in this context. The definition of convergence for a 

sequence in 𝒩𝓃𝒩ℒ𝒮 affects our findings. This new definition is the foundation for the development of 

our current findings. Pertaining to the conventional analogs of the findings reported in this work. 

 

2. Preliminaries 

mailto:jenifer87.maths@gmail.com
https://orcid.org/0009-0002-7569-0125
mailto:jeya.math@gmail.com
https://orcid.org/0000-0002-0364-1845
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Definition 2.1: 

The following axioms define a continuous t-norm as a binary operation * ∶ [0,1] × [0,1] →[0,1] 

1. ∗ is continuous, commutative and associative, 

2. 𝔞 ∗ 1 = 𝔞  for every 𝔞 ∈ [0,1], 

3. If 𝔞 ≤ 𝔠  and 𝔟 ≤ 𝔡  then 𝔞 ∗ 𝔟 ≤ 𝔠 ∗ 𝔡,  for each 𝔞, 𝔟, 𝔠, 𝔡 ∈ [0,1]. 

 

Definition 2.2:  

 The following axioms define a continuous t-conorm as a binary operation ⟡ ∶ [0,1] × [0,1] → [0,1] 

1. ⟡ is continuous, commutative and associative, 

2. 𝔞 ⟡  0 = 𝔞 for every 𝔞 ∈ [0,1], 

3. If 𝔞 ≤ 𝔠 and 𝔟 ≤ 𝔡  then 𝔞 ⟡  𝔟 ≤ 𝔠 ⟡  𝔡,  for each 𝔞, 𝔟, 𝔠, 𝔡 ∈ [0,1]. 

 

Definition 2.3: 

A 𝒩𝓃𝒩ℒ𝒮 is the 7-tuple (ℌ, 𝜁, 𝜗, 𝜛,∗,⟡,⊙) where ℌ is a linear  space  over a field F, ∗ is a 

continuous t-norm, ⟡ and ⊙ continuous t-conorm, 𝜇, 𝜗 𝑎𝑛𝑑 𝜔 are fuzzy sets on ℌ𝑛  × (0,∞), 𝜇 denotes 

the degree of membership, 𝜗 denotes the indeterminacy  and 𝜔 denotes the  non –membership of  

(𝔥1, 𝔥2, … , 𝔥𝑛 ,t) ∈ ℌ𝑛  × (0,∞) satisfying the following  conditions for every (𝔥1, 𝔥2, … , 𝔥𝑛) ∈ ℌ𝑛and  𝑠, 𝑡 >
0. 

a)  0 ≤ 𝜁(𝔥1, 𝔥2, … , 𝔥𝑛  , t) ≤ 1;  0 ≤ 𝜗(𝔥1, 𝔥2, … , 𝔥𝑛  , t) ≤ 1;  0 ≤ 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛  , t) ≤ 1;  
b)  𝜁(𝔥1, 𝔥2, … , 𝔥𝑛  , t) +  𝜗(𝔥1, 𝔥2, … , 𝔥𝑛  , t) +  𝜛(𝔥1, 𝔥2, … , 𝔥𝑛  , t) ≤ 3, 

c)  𝜁(𝔥1, 𝔥2, … , 𝔥𝑛  , t) > 0, 

d)  𝜁(𝔥1, 𝔥2, … , 𝔥𝑛  , t) = 1  if and only if 𝔥1, 𝔥2, … , 𝔥𝑛 are linearly dependent, 

e) 𝜁(𝔥1, 𝔥2, … , 𝔥𝑛  , t) is constant for any combination of𝔥1, 𝔥2, … , 𝔥𝑛 , 

f) 𝜁(𝔥1, 𝔥2, … , ∝ 𝔥𝑛 , 𝑡) = 𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛 ,
𝑡

|∝|
) for each  ∝≠  0, ∝∈ F, 

g) 𝜁(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑠) ∗ 𝜁(𝔥1, 𝔥2, … , 𝔥𝑛
′ , 𝑡) ≤ 𝜁(𝔥1, 𝔥2, … , 𝔥𝑛 + 𝔥𝑛

′ , 𝑠 + 𝑡), 

h) 𝜁(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡 )  ∶   (0,∞) → [0,1]  is continuous,  

i) lim
𝑡→∞

𝜁(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) = 1 and lim
𝑡→0

𝜁(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) = 0, 

j) 𝜗(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) < 1, 

k) 𝜗(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) = 0  if and only if 𝔥1, 𝔥2, … , 𝔥𝑛 are linearly dependent, 

l) 𝜗(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) is constant for any combination of𝔥1, 𝔥2, … , 𝔥𝑛 , 

m) 𝜗(𝔥1, 𝔥2, … , ∝ 𝔥𝑛 , 𝑡) = 𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛 ,
𝑡

|∝|
) for each  ∝≠  0, ∝∈ F, 

n) 𝜗(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑠) ⟡ 𝜗(𝔵1, 𝔵2, … , 𝔵𝑛
′ , 𝑡) ≥ 𝜗(𝔥1, 𝔥2, … , 𝔥𝑛 + 𝔵𝑛

′ , 𝑠 + 𝑡), 

o) 𝜗(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡)  ∶   (0,∞) → [0,1]  is continuous,  

p) lim
𝑡→∞

𝜗(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) = 0 and lim
𝑡→0

𝜗(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) = 1, 

q) 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) < 1, 

r) 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) = 0  if and only if 𝔥1, 𝔥2, … , 𝔥𝑛 are linearly dependent, 

s) 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) is constant for any combination of𝔥1, 𝔥2, … , 𝔥𝑛 , 

t) 𝜛(𝔥1, 𝔥2, … , ∝ 𝔥𝑛 , 𝑡) = 𝜛 (𝔥1, 𝔥2, … , 𝔥𝑛 ,
𝑡

|∝|
) for each  ∝≠  0,∝∈ F, 

u) 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑠) ⊙𝜛(𝔥1, 𝔥2, … , 𝔥𝑛
′ , 𝑡) ≥ 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛 + 𝔥𝑛

′ , 𝑠 + 𝑡), 

v) 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡)  ∶   (0,∞) → [0,1]  is continuous,  

w) lim
𝑡→∞

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) = 0 and lim
𝑡→0

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) = 1. 

 

Example 2.4: 

Let (ℌ, ‖∙, .  .  .  ,∙ ‖) be a linear space with 𝓃 norms. Also, let 𝔞 ∗ 𝔟 = 𝔞𝑏, 𝔞 ⟡ 𝔟 = 𝑚𝑖𝑛{𝔞 + 𝔟, 1} and 

𝔞 ⊙ 𝔟 = 𝑚𝑖𝑛{𝔞 + 𝔟, 1},  for every  𝔞, 𝔟 ∈ [0,1], 𝜁(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) =
𝑡

𝑡+‖𝔥1,𝔥2,…,𝔥𝑛‖
  , 𝜗(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) =

‖𝔥1,𝔥2,…,𝔥𝑛‖

𝑡+‖𝔥1,𝔥2,…,𝔥𝑛‖
 and 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛 , 𝑡) =

‖𝔥1,𝔥2,…,𝔥𝑛‖

𝑡
 . Then (ℌ, 𝜁, 𝜉,𝜛,∗,⟡,⊙)  is a 𝒩𝓃𝒩ℒ𝒮. 

 

 

Lemma 2.5.  
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We define < ϱ>= ϱ-[ ϱ], for every ϱ>0, where [∙] stands for the largest integer function. What follows is 

accurate: 

(i) If  ϱ > 1, then ϱn > 𝑛 for everyn ∈ ℕ\{0} with n ≥
1

〈ϱ〉
, 

(ii) If 0 < ϱ < 1, then ϱn < 𝑛 for everyn ∈ ℕ\{0}, where ϱn = [nϱ]. 

 

Lemma 2.6. 

The following claims are accurate: 

(i) If  ϱ > 1, then for every n ∈ ℕ\{0} with n ≥
3ϱ−1

ϱ(ϱ−1)
, we have 

ϱ

ϱ−1
<

ϱn+1

ϱn−n
<

2ϱ

ϱ−1
, 

(ii) If 0 < ϱ < 1, then for every n ∈ ℕ\{0} with n >
1

ϱ
 , we have 0 <

ϱn+1

n−ϱn
<

2ϱ

ϱ−1
. 

 

3. In 𝓝𝓷𝓝𝓛𝓢 Cesaro Summability  

 

Definition 3.1.  

In 𝒩𝓃𝒩ℒ𝒮 (ℌ, 𝜁, 𝜗,𝜛,∗,⟡,⊙), choose the sequence to be {𝔞𝓃}. The Arithmetic means of  {𝔞𝓃},  is 

defined and denoted by  

𝜒𝓃 =
1

𝓃 + 1
∑ 𝔞𝓀

𝓃

𝓀=0

. 

If lim
𝓃→∞

𝜒𝓃 = 𝔞, then {𝔞𝓃} is said to be Cesaro summable to 𝔞 ∈ ℌ. 

 

Theorem 3.2. 

In 𝒩𝓃𝒩ℒ𝒮 (ℌ, 𝜁, 𝜗,𝜛,∗,⟡,⊙), if the sequence to be {𝔞𝓃}converges to 𝔞 ∈ ℌ, then {𝔞𝓃} is Cesaro 

summable to 𝔞. 

 

Proof. 

Choose 𝔞 ∈ ℌ be the converging point of the sequence {𝔞𝓃}. 

 Fix 𝓇 > 0 and 𝔥1, 𝔥2, … , 𝔥𝑛−1 ∈ ℌ. 

Then for given 𝜀 > 0, there exists 𝓃0 ∈ 𝔑 such that  

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃 −  𝔞,
𝓇

2
) > 1 − 𝜀, 𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃 −  𝔞,

𝓇

2
) < 𝜀 and  

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃 −  𝔞,
𝓇

2
) < 𝜀, for all 𝓃 > 𝓃0. 

Also, from Definition (2.3), we have that 

lim
𝓃→∞

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1, ∑ (𝔞𝓀 −  𝔞),
𝓃0
𝓀=0

(𝓃+1)𝓇

2
) = 1, lim

𝓃→∞
𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1, ∑ (𝔞𝓀 −  𝔞),

𝓃0
𝓀=0

(𝓃+1)𝓇

2
) = 0  and 

lim
𝓃→∞

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1, ∑ (𝔞𝓀 −  𝔞),
𝓃0
𝓀=0

(𝓃+1)𝓇

2
) = 0. 

Consequently, there are 𝓃1 ∈ 𝔑such that  

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,∑(𝔞𝓀 −  𝔞),

𝓃0

𝓀=0

(𝓃 + 1)𝓇

2
) > 1 − 𝜀, 

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1, ∑ (𝔞𝓀 −  𝔞),
𝓃0
𝓀=0

(𝓃+1)𝓇

2
) < 𝜀 and 

 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1,∑(𝔞𝓀 −  𝔞),

𝓃0

𝓀=0

(𝓃 + 1)𝓇

2
) < 𝜀, for all 𝓃 > 𝓃1. 

Now, we have that 

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

𝓃 + 1
∑ 𝔞𝓀 −  𝔞,

𝓃

𝓀=0

𝓇 ) = 𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

𝓃 + 1
∑ 𝔞𝓀 −  𝔞,

𝓃

𝓀=0

𝓇 ) 
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≥ min

{
  
 

  
 
𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,∑(𝔞𝓀 −  𝔞),

𝓃0

𝓀=0

(𝓃 + 1)𝓇

2
) ,

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1, ∑ (𝔞𝓀 −  𝔞),

𝓃

𝓀=𝓃0+1

(𝓃 + 1)𝓇

2
)

}
  
 

  
 

 

 

≥ min

{
  
 

  
 

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,∑(𝔞𝓀 −  𝔞),

𝓃0

𝓀=0

(𝓃 + 1)𝓇

2
) ,

 𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1, ∑ (𝔞𝓀 −  𝔞),

𝓃

𝓀=𝓃0+1

(𝓃 −𝓃0)𝓇

2
)

}
  
 

  
 

 

       ≥ min

{
 
 
 
 

 
 
 
 
𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,∑(𝔞𝓀 −  𝔞),

𝓃0

𝓀=0

(𝓃 + 1)𝓇

2
) ,

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃0+1 −  𝔞
𝓇

2
) ,

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃0+2 −  𝔞,
𝓇

2
) ,

… , 𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝑛 − 𝔞,
𝓇

2
) }

 
 
 
 

 
 
 
 

> 1 − 𝜀, 

 

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

𝓃 + 1
∑ 𝔞𝓀 −  𝔞,

𝓃

𝓀=0

𝓇 ) = 𝜗(𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

𝓃 + 1
∑ 𝔞𝓀 −  𝔞,

𝓃

𝓀=0

𝓇 ) 

≤ max

{
  
 

  
 
𝜗(𝔥1, 𝔥2, … , 𝔥𝑛−1,∑(𝔞𝓀 −  𝔞),

𝓃0

𝓀=0

(𝓃 + 1)𝓇

2
) ,

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1, ∑ (𝔞𝓀 −  𝔞),

𝓃

𝓀=𝓃0+1

(𝓃 + 1)𝓇

2
)

}
  
 

  
 

 

≤ max

{
  
 

  
 

𝜗(𝔥1, 𝔥2, … , 𝔥𝑛−1,∑(𝔞𝓀 −  𝔞),

𝓃0

𝓀=0

(𝓃 + 1)𝓇

2
) ,

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1, ∑ (𝔞𝓀 −  𝔞),

𝓃

𝓀=𝓃0+1

(𝓃 −𝓃0)𝓇

2
)

}
  
 

  
 

 

≤ max

{
 
 
 
 

 
 
 
 
𝜗(𝔥1, 𝔥2, … , 𝔥𝑛−1,∑(𝔞𝓀 −  𝔞),

𝓃0

𝓀=0

(𝓃 + 1)𝓇

2
) ,

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃0+1 −  𝔞,
𝓇

2
) ,

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃0+2 −  𝔞,
𝓇

2
) ,… ,

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝑛 − 𝔞,
𝓇

2
) }

 
 
 
 

 
 
 
 

<𝜀, 

 

and in a similar manner, we also have that 

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

𝓃 + 1
∑ 𝔞𝓀 −  𝔞,

𝓃

𝓀=0

𝓇 ) = 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

𝓃 + 1
∑ 𝔞𝓀 −  𝔞,

𝓃

𝓀=0

𝓇 ) 
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≤ max

{
  
 

  
 
𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1,∑(𝔞𝓀 −  𝔞),

𝓃0

𝓀=0

(𝓃 + 1)𝓇

2
) ,

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1, ∑ (𝔞𝓀 −  𝔞),

𝓃

𝓀=𝓃0+1

(𝓃 + 1)𝓇

2
)

}
  
 

  
 

 

≤ max

{
  
 

  
 

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1,∑(𝔞𝓀 −  𝔞),

𝓃0

𝓀=0

(𝓃 + 1)𝓇

2
) ,

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1, ∑ (𝔞𝓀 −  𝔞),

𝓃

𝓀=𝓃0+1

(𝓃 −𝓃0)𝓇

2
)

 

≤ max

{
 
 
 
 

 
 
 
 
𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1,∑(𝔞𝓀 −  𝔞),

𝓃0

𝓀=0

(𝓃 + 1)𝓇

2
) ,

𝜛 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃0+1 −  𝔞,
𝓇

2
) ,

𝜛 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃0+2 −  𝔞,
𝓇

2
) ,… ,

𝜛 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝑛 − 𝔞,
𝓇

2
) }

 
 
 
 

 
 
 
 

< 𝜀, 

for all 𝑛 > max{𝓃0, 𝓃1}. Thus, the proof is completed. 

  

Example 3.3.  

Let ℌ = ℜ𝓃 with 

‖𝔥1, 𝔥2, … , 𝔥𝑛−1‖ = 𝑎𝑏𝑠 (|
𝔥11 ⋯ 𝔥1𝓃
⋮ ⋱ ⋮
𝔥𝓃1 ⋯ 𝔥𝓃𝓃

|) 

where 𝔥𝑖 = (𝔥𝑖1, 𝔥𝑖2, … , 𝔥𝑖𝓃) ∈ ℜ
𝓃  for every𝑖 = 1,2,… , 𝑛 and  𝔞 ∗ 𝔟 = 𝔞 𝔟, 𝔞 ⟡ 𝔟 = min{𝔞 + 𝔟, 1 } and 

 𝑎 ⊙ 𝑏 = min{𝑎 + 𝑏, 1} for all 𝔞 , 𝔟 ∈ [0,1]. 

Now for all 𝑣1, 𝑣2,… , 𝑣𝓃 ∈ ℜ
𝓃 and 𝓇 > 0,  define 

𝜁(𝑦1, 𝑦2,… , 𝑦𝓃, 𝑟) =
𝓇

𝓇+‖𝑦1 ,𝑦2,… ,𝑦𝓃‖
 , 𝜗(𝑦1, 𝑦2, … , 𝑦𝓃 , 𝑟) =

‖𝑦1,𝑦2,… ,𝑦𝓃‖

𝓇+‖𝑦1,𝑦2,… ,𝑦𝓃‖
 and   

𝜛(𝑦1, 𝑦2, … , 𝑦𝓃 , 𝑡) =
‖𝑦1, 𝑦2, … , 𝑦𝓃‖

𝓇
 . 

Then (ℜ𝓃 , 𝜁, 𝜗, 𝜛,∗,⟡,⊙ ) is a 𝒩𝓃𝒩ℒ𝒮. 

Choose the sequence {𝔞𝓀} = ((−1)
𝓀+1, 0,0,… , 0) ∈ ℜ𝓃 . 

Then lim
𝓃→∞

𝜁(𝔥1, 𝔥2, … , 𝜒2𝓃 , 𝓇 ) = lim
𝓃→∞

𝓇

𝓇+‖𝔥1,𝔥2,…,𝔥𝑛−1,−
1

2𝓃+1
‖
= lim

𝓃→∞

𝓇

𝓇+| −
1

2𝓃+1
|𝔄
= 1, 

where the value of 𝔄, which is always a finite number, relies on the selection of 𝔥1, 𝔥2, … , 𝔥𝑛−1. 

lim
𝓃→∞

 𝜗(𝔥1, 𝔥2, … , 𝜒2𝓃 , 𝓇 ) = lim
𝓃→∞

‖𝔥1, 𝔥2, … , 𝔥𝑛−1, −
1

2𝓃+1
‖

𝓇 + ‖𝔥1, 𝔥2, … , 𝔥𝑛−1, −
1

2𝓃+1
‖
= lim

𝓃→∞

| −
1

2𝓃+1
|𝔅

𝓇 + | −
1

2𝓃+1
|𝔅

= 0, 

where the value of 𝔅, which is always a finite number, relies on the selection of 𝔥1, 𝔥2, … , 𝔥𝑛−1. 

and  lim
𝓃→∞

𝜛(𝔥1, 𝔥2, … , 𝜒2𝓃 , 𝓇 ) = lim
𝓃→∞

‖𝔥1,𝔥2,…,𝔥𝑛−1,−
1

2𝓃+1
‖

𝓇
= lim

𝓃→∞

| −
1

2𝓃+1
|ℭ

𝓇
= 0, 

where the value of ℭ, which is always a finite number, relies on the selection of 𝔥1, 𝔥2, … , 𝔥𝑛−1. 

Therefore, we have that 𝜒2𝓃 → 0̅ = (0,0,… , 0) ∈ ℜ𝓃 . 

Also, lim
𝓃→∞

𝜁(𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝜒2𝓃+1, 𝓇 ) = lim
𝓃→∞

𝜁(𝔥1, 𝔥2, … , 0̅, 𝓇 ) = 1, 

lim
𝓃→∞

𝜗(𝔥1, 𝔥2, … , 𝔥𝑛−1 , 𝜒2𝓃+1, 𝓇 ) = lim
𝓃→∞

𝜉(𝔥1, 𝔥2, … , 0̅, 𝓇) = 0 and 

lim
𝓃→∞

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝜒2𝓃+1, 𝓇 ) = lim
𝓃→∞

𝜛(𝔥1, 𝔥2, … , 0̅, 𝓇) = 0. 

Thus, we have 𝜒2𝓃+1 → 0̅. From the reasoning listed above, we conclude that 𝜒𝓃 → 0̅, i.e., the sequence 

{𝔞𝓀} is Cesaro summable to 0̅.  However, it is clear that {𝔞𝓀} is not convergent because {𝔞2𝓀} →

(−1, 0, 0,… , 0) and {𝔞2𝓀+1} → (1,0,0,… , 0). 
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Theorem 3.4. 

Let {𝔞𝓃} be a sequence in a ℒ𝒮(ℌ, ζ, 𝜗,ϖ,∗,⟡,⊙). If  {𝔞𝓃} is Cesaro summable to 𝔞, then it is 

convergent to 𝔞 if and only if for any 𝔵1, 𝔵2, … , 𝔵𝑛−1 ∈ ℌ and 𝓇 > 0 the following conditions are met: 

(3.1) sup
λ>1

lim inf
𝓃→∞

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

λ𝑛−𝑛
∑ (𝔞𝓀 − 𝔞𝓃)
λ𝑛
𝓀=𝓃+1 , 𝓇) = 1,  

(3.2) inf
λ>1

lim sup
𝓃→∞

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

λ𝓃−𝓃
∑ (𝔞𝓀 − 𝔞𝓃)
λ𝑛
𝓀=𝓃+1 , 𝓇) = 0 and 

(3.3) inf
λ>1

lim sup
𝓃→∞

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

λ𝓃−𝓃
∑ (𝔞𝓀 − 𝔞𝓃)
λ𝑛
𝓀=𝓃+1 , 𝓇) = 0. 

 

Proof. 

Assume that {𝔞𝓃} is summable to Cesaro. Assume that {𝔞𝓃} converges to 𝔞. 

Fix 𝔥1, 𝔥2, … , 𝔥𝑛−1 ∈ ℌ and 𝓇 > 0. For any λ > 1,utilising Lemma (2.5), for each 𝓃 ∈ ℕ ∖ {0} with 𝓃 ≥ 〈λ〉−1, 

we have  

(3.4)  𝔞𝓃 − 𝜒𝓃 =
λ𝓃+1

λ𝓃−𝓃
(𝜒λ𝓃 − 𝜒𝓃) −

1

λ𝓃−𝓃
∑ (𝔞𝓀 − 𝔞𝓃)
λ𝑛
𝓀=𝓃+1 . 

Again, by Lemma (2.6), for 𝓃 ≥
3λ−1

λ(λ−1)
, we have 

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
λ𝓃 + 1

λ𝓃 −𝓃
(𝜒λ𝓃 − 𝜒𝓃), 𝓇)      = 𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1, (𝜒λ𝓃 − 𝜒𝓃),

𝓇
λ𝓃+1

λ𝓃−𝓃

) 

    ≥ 𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1, (𝜒λ𝓃 − 𝜒𝓃),
𝓇
2λ

λ−1

), 

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
λ𝓃 + 1

λ𝓃 − 𝓃
(𝜒λ𝓃 − 𝜒𝓃),𝓇) = 𝜗(𝔥1, 𝔥2, … , 𝔥𝑛−1, (𝜒λ𝓃 − 𝜒𝓃),

𝓇
λ𝓃+1

λ𝓃−𝓃

) 

        ≤ 𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1, (𝜒λ𝓃 − 𝜒𝓃),
𝓇
2λ

λ−1

) and 

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1,
λ𝓃 + 1

λ𝓃 − 𝓃
(𝜒λ𝓃 − 𝜒𝓃),𝓇) = 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1, (𝜒λ𝓃 − 𝜒𝓃),

𝓇
λ𝓃+1

λ𝓃−𝓃

) 

≤ 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1, (𝜒λ𝓃 − 𝜒𝓃),
𝓇
2λ

λ−1

) 

Since {𝜒𝓃} is a Cauchy sequence, we have  

lim
𝓃→∞

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
λ𝓃+1

λ𝓃−𝓃
(𝜒λ𝓃 − 𝜒𝓃),𝓇) = 1 ,  

lim
𝓃→∞

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
λ𝓃+1

λ𝓃−𝓃
(𝜒λ𝓃 − 𝜒𝓃),𝓇) = 0 and  

lim
𝓃→∞

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1,
λ𝓃+1

λ𝓃−𝓃
(𝜒λ𝓃 − 𝜒𝓃),𝓇) = 0, and therefore lim

𝓃→∞

λ𝓃+1

λ𝓃−𝓃
(𝜒λ𝓃 − 𝜒𝓃) = 0. 

Hence using (3.4), we have 

lim 
𝓃→∞

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

λ𝑛−𝑛
∑ (𝔞𝓀 − 𝔞𝓃)
λ𝑛
𝓀=𝓃+1 , 𝓇) = 1, 

lim 
𝓃→∞

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

λ𝑛−𝑛
∑ (𝔞𝓀 − 𝔞𝓃)
λ𝑛
𝓀=𝓃+1 , 𝓇) = 0 and  

lim 
𝓃→∞

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

λ𝑛 − 𝑛
∑ (𝔞𝓀 − 𝔞𝓃)

λ𝑛

𝓀=𝓃+1

, 𝓇) = 0. 

As a result, (3.1), (3.2), and (3.3).  We presume that (3.1), (3.2), and (3.3) are true in order to demonstrate 

the converse. Fix 𝔥1, 𝔥2, … , 𝔥𝑛−1 ∈  ℌ and 𝓇 > 0. Then for given 𝜀 > 0, we have the following: 

 

(i) a thing exists λ > 1 and 𝓃0 ∈ ℕ such that  

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

λ𝑛−𝑛
∑ (𝔞𝓀 − 𝔞𝓃)
λ𝑛
𝓀=𝓃+1 ,

𝓇

3
) > 1 − 𝜀 , 
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𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

λ𝑛−𝑛
∑ (𝔞𝓀 − 𝔞𝓃)
λ𝑛
𝓀=𝓃+1 , 𝓇) < 𝜀 and  

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

λ𝑛−𝑛
∑ (𝔞𝓀 − 𝔞𝓃)
λ𝑛
𝓀=𝓃+1 , 𝓇) < 𝜀 , for every 𝓃 > 𝓃0. 

(ii) a thing exists 𝓃0 ∈ ℕ such that 𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝜒𝓃 − 𝔞 ,
𝓇

3
) > 1 − 𝜀,  

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝜒𝓃 − 𝔞 ,
𝓇

3
) < 𝜀 and 𝜛 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝜒𝓃 − 𝔞 ,

𝓇

3
) < 𝜀, for all 𝓃 > 𝓃1. 

(iii) Also, since lim
𝓃→∞

λ𝓃+1

λ𝓃−𝓃
(𝜒λ𝓃 − 𝜒𝓃) = 0, there exists 𝓃2 ∈ ℕ such that  

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
λ𝓃+1

λ𝓃−𝓃
(𝜒λ𝓃 − 𝜒𝓃),

𝓇

3
) > 1 − 𝜀,  

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
λ𝓃+1

λ𝓃−𝓃
(𝜒λ𝓃 − 𝜒𝓃),

𝓇

3
) < 𝜀 and  

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1,
λ𝓃+1

λ𝓃−𝓃
(𝜒λ𝓃 − 𝜒𝓃),

𝓇

3
) < 𝜀, for all 𝓃 > 𝓃2. 

Therefore, we have 
𝜁(𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃 −  𝔞,𝓇) = 𝜁(𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃 − 𝜒𝓃 + 𝜒𝓃 −  𝔞,𝓇) 

    = 𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
λ𝓃 + 1

λ𝓃 −𝓃
(𝜒λ𝓃 − 𝜒𝓃) −

1

λ𝓃 − 𝓃
∑ (𝔞𝓀 − 𝔞𝓃)

λ𝑛

𝓀=𝓃+1

+ 𝜒𝓃 −  𝔞,𝓇) 

   ≥ min

{
 
 

 
 𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,

λ𝓃+1

λ𝓃−𝓃
(𝜒λ𝓃 − 𝜒𝓃),

𝓇

3
) ,

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

λ𝑛−𝑛
∑ (𝔞𝓀 − 𝔞𝓃)
λ𝑛
𝓀=𝓃+1 ,

𝓇

3
) ,

𝜁 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝜒𝓃 − 𝔞 ,
𝓇

3
) }

 
 

 
 

> 1 − 𝜀,  

𝜗(𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃 −  𝔞,𝓇) = 𝜗(𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃 − 𝜒𝓃 + 𝜒𝓃 −  𝔞,𝓇) 

    = 𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
λ𝓃 + 1

λ𝓃 −𝓃
(𝜒λ𝓃 − 𝜒𝓃) −

1

λ𝓃 − 𝓃
∑ (𝔞𝓀 − 𝔞𝓃)

λ𝑛

𝓀=𝓃+1

+ 𝜒𝓃 −  𝔞,𝓇) 

≤ max

{
 
 

 
 𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1,

λ𝓃+1

λ𝓃−𝓃
(𝜒λ𝓃 − 𝜒𝓃),

𝓇

3
) ,

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

λ𝑛−𝑛
∑ (𝔞𝓀 − 𝔞𝓃)
λ𝑛
𝓀=𝓃+1 ,

𝓇

3
) ,

𝜗 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝜒𝓃 − 𝔞 ,
𝓇

3
) }

 
 

 
 

< 𝜀 and 

𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃 −  𝔞,𝓇) = 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝔞𝓃 − 𝜒𝓃 + 𝜒𝓃 −  𝔞,𝓇) 

     = 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1,
λ𝓃 + 1

λ𝓃 −𝓃
(𝜒λ𝓃 − 𝜒𝓃) −

1

λ𝓃 − 𝓃
∑ (𝔞𝓀 − 𝔞𝓃)

λ𝑛

𝓀=𝓃+1

+ 𝜒𝓃 −  𝔞,𝓇) 

≤ max

{
 
 
 

 
 
 𝜛(𝔥1, 𝔥2, … , 𝔥𝑛−1,

λ𝓃 + 1

λ𝓃 −𝓃
(𝜒λ𝓃 − 𝜒𝓃),

𝓇

3
) ,

𝜛 (𝔥1, 𝔥2, … , 𝔥𝑛−1,
1

λ𝑛 − 𝑛
∑ (𝔞𝓀 − 𝔞𝓃)

λ𝑛

𝓀=𝓃+1

,
𝓇

3
) ,

𝜛 (𝔥1, 𝔥2, … , 𝔥𝑛−1, 𝜒𝓃 − 𝔞 ,
𝓇

3
) }

 
 
 

 
 
 

 < 𝜀, 

for all 𝓃 > max{𝓃0, 𝓃1, 𝓃2}. This completes the proof. 

4. Conclusion 

The idea of Cesaro summability in a 𝒩𝓃𝒩ℒ𝒮, one of the most general mathematical structures with 

both algebraic and analytic features, is discussed in this study. As a result, many current theorems are 

extended and generalized by the current results in Cesaro summability. Future work on this topic might 

result in the expansion of neutrosophic normed spaces and finite-dimensional 𝒩𝓃𝒩ℒ𝒮. 
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Abstract: In this study, we present the neutrosophic derivatives, the neutrosophic Gateaux 

derivative, and the neutrosophic Frechet derivative, and we examine some of their features. The 

relationship between the neutrophilic Frechet derivative and the neutrophilic Gateaux derivative is 

examined. 

Keywords: Neutrosophic differentiation; Neutrosophic continuity; Neutrosophic Gateaux derivative; 

Neutrosophic Frechet derivative. 

  

1. Introduction 

 The notion of normed linear space is essential to functional analysis. Dimension in normed linear 

space is catching the attention of researchers more and more. In recent years, many researchers have 

worked to expand the idea of n-normed linear space. The fuzzy set is a great theory for handling 

uncertainty that was invented by Zadeh [26]. This idea served as the cornerstone for a broad range of 

mathematical applications, as well as a large number of situations in everyday life. 

In 1986, Atanassov [2] investigated intuitionistic fuzzy sets, which are distinguished by a 

membership function and non-membership function for each in the universe. Smarandache [23–25] later 

developed another concept known as neutrosophic set by introducing an intermediate membership 

function. Katsaras [16] presented the idea of a fuzzy norm in 1984. The fuzzy norm on a linear space was 

first proposed by Felbin [10] in 1992. Cheng Moderson [5] proposed another fuzzy norm idea for a linear 

space. After Cheng and Moderson's fuzzy norm formulation was refined by Bag and Samanta [3], they 

created the concepts of continuity and boundedness of a linear operator with respect to their fuzzy norm. 

Frechet and Gateaux Bivas Dinda, Samanta, and Bera [4] are the ones who originally introduced 

derivative in intuitionistic fuzzy normed linear spaces. Neutrosophic norm in a linear space was 

proposed by Dass Sarath Kumar and Prakasam Muralikrishna [19]. 

mailto:jeya.math@gmail.com
https://orcid.org/0000-0002-0364-1845
mailto:murugappan.mangai@gmail.com
mailto:jeykaliappa@gmail.com
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In this article, we define neutrosophic derivative in R, neutrosophic Gateaux derivative, and 

neutrosophic Frechet derivative on a linear space and examine some of their features. The relationships 

between the neutrosophic Gateaux derivative and the neutrosophic Frechet derivative are also discussed. 

 

2. Preliminaries 

Definition  2.1. [19] A 7-tuple (Ξ,𝔄,𝔙,𝔚,∗, ,⋄,⊗) is said to be a Neutrosophic Normed Space [NNS], if 

Ξ be a linear space over the field 𝐹 = (ℝ  or  C), Let ∗ be a continuous t-norm,⋄, ⊗ be a continuous t-

conorm and 𝔄,𝔙  and 𝔚  are functions from  Ξ × ℝ+  →  [0, 1], fulfilling the following conditions for every 

�̃�, �̃� ∈ ℝ+ and 𝔡, 𝜏 ∈ ℝ. 

(i) 0 ≤ 𝔄(�̃�, 𝜏) ≤ 1; 0 ≤ 𝔙(�̃�, 𝜏) ≤ 1; 0 ≤ 𝔚(�̃�, 𝜏) ≤ 1; 

(ii) 0 ≤ 𝔄(�̃�, 𝜏) + 𝔙(�̃�, 𝜏) +𝔚(�̃�, 𝜏) ≤ 3; 

(iii) 𝔄(�̃�, 𝜏) > 0; 

(iv) 𝔄(�̃�, 𝜏) = 1 ⇔ �̃� = 𝜃, 𝜃 is null vector; 

(v) 𝔄(𝑐�̃�, 𝜏) = 𝔄(�̃�,
𝜏

|𝑐|
) , ∀ 𝑐 ∈ 𝐹 and 𝑐 ≠ 0; 

(vi) 𝔄(�̃�, 𝔡) ∗ 𝔄(�̃�, 𝜏) ≤ 𝔄(�̃� + �̃�, 𝔡 + 𝜏); 

(vii) 𝔄(�̃�,⋅) is non-decreasing function of ℝ+ and lim
𝜏→∞

𝔄(�̃�, 𝜏) = 1; 

(viii)  𝔙(�̃�, 𝜏) < 1; 

(ix) 𝔙(�̃�, 𝜏) = 0 ⇔  �̃� = 𝜃; 

(x) 𝔙(𝑐�̃�, 𝜏) = 𝔙(�̃�,
𝜏

|𝑐|
) ∀ 𝑐 ∈ 𝐹 and 𝑐 ≠ 0; 

(xi) 𝔙(�̃�, 𝔡) ⋄ 𝔙(�̃�, 𝜏) ≥ 𝔙(�̃� + �̃�, 𝔡 + 𝜏); 

(xii) 𝔙(�̃�,⋅) is non-increasing function of ℝ+and lim
𝜏→∞

𝔙(�̃�, 𝜏) = 0. 

(xiii)  𝔚(�̃�, 𝜏) < 1; 

(xiv) 𝔚(�̃�, 𝜏) = 0  ⇔ �̃� = 𝜃; 

(xv)𝔚(𝑐�̃�, 𝜏) = 𝔚(�̃�,
𝜏

|𝑐|
) ∀ 𝑐 ∈ 𝐹 and 𝑐 ≠ 0; 

(xvi) 𝔚(�̃�, 𝔡) ⊗𝔚(�̃�, 𝜏) ≥ 𝔚(�̃� + �̃�, 𝔡 + 𝜏); 

(xvii) 𝔚(�̃�,⋅) is non-increasing function of ℝ+and lim
𝜏→∞

𝔚(�̃�, 𝜏) = 0. 

 

Definition  2.2. [19] The pair (Ξ, 𝐴) is called a Neutrosophic Normed Linear Space [NNLS], If 𝐴 is a 

Neutrosophic norm on a linear space Ξ. 

For the NNLS (Ξ, 𝐴), We also suppose that 𝔄,𝔙,𝔚,∗,⋄,⊗ fulfilling the axioms listed below: 

(xviii) {
�̇� ∗ �̇� = �̇�
�̇� ⋄ �̇� = �̇�
�̇� ⊗ �̇� = �̇�

}, for all �̇� ∈ [0,1]. 

(xix) 𝔄(�̃�, 𝜏) > 0, for every 𝜏 > 0 ⇒ �̃� = 𝜃. 

(xx) 𝔙(�̃�, 𝜏) < 1, for every 𝜏 > 0 ⇒ �̃� = 𝜃. 

(xi) 𝔚(�̃�, 𝜏) < 1, for every 𝜏 > 0 ⇒ �̃� = 𝜃. 

(xii) For �̃� ≠ 𝜃, 𝔄(�̃�,⋅) is  strictly increasing on the subset {𝜏 ∶ 𝔄(�̃�, 𝜏) ∈ (0, 1)} of ℝ and continuous function 

of ℝ. 

(xiii) For �̃� ≠ 𝜃, 𝔙(�̃�,⋅) is strictly decreasing on the subset {𝜏:𝔙(�̃�, 𝜏) ∈ (0, 1)} of ℝ and continuous function 

of ℝ. 

(xiv) For �̃� ≠ 𝜃,𝔚(�̃�,⋅) is strictly decreasing on the subset {𝜏: 𝔚(�̃�, 𝜏) ∈ (0, 1)} of ℝ and  continuous 

function of ℝ. 

 

Definition 2.3.  Let  {�̃�𝑛}𝑛 be a sequence in a NNLS (Ξ, ℑ), if for given �̇� > 0;  𝜏 > 0;  0 < �̇� < 1, there exist 

an integer 𝑛0 ∈ ℕ such that 𝔄(�̃�𝑛 − �̃�, 𝜏) > 1 − �̇� , 𝔙(�̃�𝑛 − �̃�, 𝜏) < �̇� and 𝔚(�̃�𝑛 − �̃�, 𝜏) < �̇� for all 𝑛 ≥ 𝑛0 then 

the sequence is named to be  converge to �̃� ∈ Ξ.  
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Definition  2.4.  A mapping 𝜁 : (Θ̃, ℑ)  → (Ξ, 𝒥) is named to be Neutrosophic continuous at  �̃�0 ∈ Θ̃, where 

(Θ̃, ℑ)  and (Ξ, 𝒥)  are NNLS over the same field 𝐹, if for any given  𝜖 > 0, 

𝜚 ∈ (0,1), there exists 𝜎 = 𝜎(𝜚, 𝜖) > 0, �̇� = �̇�(𝜚, 𝜖) ∈ (0,1) such that for every  �̃� ∈ Θ̃, 
𝔄Θ̃(�̃� − �̃�0, 𝜎 > 1 − �̇�) ⇒ 𝔄Ξ(𝜁(�̃�) − 𝜁(�̃�0), 𝜖) > 1 − 𝜚, 

𝔙Θ̃(�̃� − �̃�0, 𝜎) < �̇� ⇒ 𝔙Ξ(𝜁(�̃�) − 𝜁(�̃�0), 𝜖) < 𝜚, 

𝔚Θ̃(�̃� − �̃�0, 𝜎) < �̇� ⇒ 𝔚Ξ(𝜁(�̃�) − 𝜁(�̃�0), 𝜖) < 𝜚. 

 

3. Neutrosophic Gateaux Derivative 

 

Definition  3.1. A function 𝜁 : (ℝ,𝔄1, 𝔙1,𝔚1 ∗,⋄,⊗)  → (ℝ,𝔄2, 𝔙2,𝔚2,∗,⋄,⊗) is named to be Neutrosophic 

Differentiable [ND] at �̃� ∈ ℝ, where (ℝ, 𝔄1, 𝔙1,𝔚1 ∗,⋄,⊗) and (ℝ,𝔄2, 𝔙2,𝔚2,∗,⋄,⊗)   are NNLS over the 

same field 𝐹, if for any given  𝜖 > 0, 𝜚 ∈ (0,1), there exists 𝜎 = 𝜎(𝜚, 𝜖) > 0, �̇� = �̇�(𝜚, 𝜖) ∈ (0,1)  such that 

for every  �̃�(≠ �̃�0) ∈ ℝ, 

𝔄1(�̃� − �̃�0, 𝜎) > 1 − �̇� ⇒ 𝔄2 (
𝜁(�̃�)−𝜁(�̃�0)

�̃�−�̃�0
− 𝜁′(�̃�0), 𝜖) > 1 − 𝜚, 

𝔙1(�̃� − �̃�0, 𝜎) < �̇� ⇒ 𝔙2 (
𝜁(�̃�)−𝜁(�̃�0)

�̃�−�̃�0
− 𝜁′(�̃�0), 𝜖) < 𝜚, 

𝔚1(�̃� − �̃�0, 𝜎) < �̇� ⇒ 𝔚2 (
𝜁(�̃�)−𝜁(�̃�0)

�̃�−�̃�0
− 𝜁′(�̃�0), 𝜖) < 𝜚. 

We denote ND of 𝜁 at �̃�0 by 𝜁′(�̃�0). 

 

Alternative definition: A mapping 𝜁 : (ℝ, 𝔄1, 𝔙1,𝔚1 ∗,⋄,⊗)  → (ℝ, 𝔄2, 𝔙2,𝔚2,∗,⋄,⊗) is named to be ND at 

�̃� ∈ ℝ, where (ℝ, 𝔄1, 𝔙1,𝔚1 ∗,⋄,⊗) and (ℝ,𝔄2, 𝔙2,𝔚2,∗,⋄,⊗)   are NNLS over the same field 𝐹,  if for every 

𝜏 > 0.  

lim
𝔄1(�̃�−�̃�0,𝜏)→1

𝔄2 (
𝜁(�̃�)−𝜁(�̃�0)

�̃�−�̃�0
− 𝜁′(�̃�0), 𝜏) = 1, 

lim
   𝔙1(�̃�−�̃�0,𝜏)→0

𝔙2 (
𝜁(�̃�)−𝜁(�̃�0)

�̃�−�̃�0
− 𝜁′(�̃�0), 𝜏) = 0,   

lim
𝔚1(�̃�−�̃�0,𝜏)→0

𝔚2 (
𝜁(�̃�)−𝜁(�̃�0)

�̃�−�̃�0
− 𝜁′(�̃�0), 𝜏) = 0, 

𝜁′(�̃�0) is called ND of 𝜁 at  �̃�0. 

 

Example 3.2.  Let (ℝ,𝔄1, 𝔙1,𝔚1 ∗,⋄,⊗) and (ℝ,𝔄2, 𝔙2,𝔚2,∗,⋄,⊗) be two NNLS over the same field ℝ. Let 

𝔄1(�̃�, 𝜏) = 𝔄2(�̃�, 𝜏) =  
𝜏

𝜏+|�̃�|
, 𝔙1(�̃�, 𝜏) = 𝔙2(�̃�, 𝜏) =  

|�̃�|

𝜏+|�̃�|
 and 𝔚1(�̃�, 𝜏) = 𝔚2(�̃�, 𝜏) =  

|�̃�|

𝜏
. Let �̇� ∗ �̇� = �̇��̇� and �̇� ⋄

�̇� = �̇� ⊗ �̇� = �̇� + �̇� –�̇��̇�. A mapping 𝜁 : (ℝ, 𝔄1, 𝔙1,𝔚1 ∗,⋄,⊗) → (ℝ, 𝔄2, 𝔙2,𝔚2,∗,⋄,⊗)  defined by 𝜁(�̃�) = �̃�2. 

Let �̃�0 ∈ ℝ be any point. Clearly, lim
𝔄1(�̃�−�̃�0,𝜏)→1

𝔄2 (
𝜁(�̃�)−𝜁(�̃�0)

�̃�−�̃�0
− 𝜁′(�̃�0), 𝜏) = 1, 

lim
𝔙1(�̃�−�̃�0,𝜏)→0

𝔙2 (
𝜁(�̃�)−𝜁(�̃�0)

�̃�−�̃�0
− 𝜁′(�̃�0), 𝜏) = 0, 

lim
𝔚1(�̃�−�̃�0,𝜏)→0

𝔚2 (
𝜁(�̃�)−𝑓(�̃�0)

�̃�−�̃�0
− 𝜁′(�̃�0), 𝜏) = 0. Therefore 𝜁 is ND at �̃�0. 

 

Theorem 3.3. Let 𝜁: (ℝ,𝔄1, 𝔙1,𝔚1 ∗,⋄,⊗) → (ℝ,𝔄2, 𝔙2,𝔚2,∗,⋄,⊗) and 𝑔: (ℝ, 𝔄1, 𝔙1,𝔚1 ∗,⋄,⊗) →

(ℝ, 𝔄2, 𝔙2,𝔚2,∗,⋄,⊗) are two Neutrosophic differentiable functions differentiable at �̃�0 and 

(ℝ, 𝔄1, 𝔙1,𝔚1 ∗,⋄,⊗) and (ℝ,𝔄2, 𝔙2,𝔚2,∗,⋄,⊗) fulfilling the condition (xviii). Then for 𝐾 ∈ 𝐹,𝐾𝜁 + 𝑔  is 

ND at �̃�0 and (𝐾𝜁 + 𝑔)′(�̃�0) = 𝐾𝜁
′(�̃�0) + 𝑔

′(�̃�0). 

 

Proof. Since 𝜁 and 𝑔 are ND at �̃�0. So that, for any given  𝜖 > 0, 𝜚 ∈ (0,1), there exists 𝜎 = 𝜎(𝜚, 𝜖) > 0, �̇� =

�̇�(𝜚, 𝜖) ∈ (0,1) such that for every �̃� ∈ ℝ,  

𝔄1(�̃� − �̃�0, 𝜎) > 1 − �̇� ⇒ 𝔄2 (
𝜁(�̃�) − 𝜁(�̃�0)

�̃� − �̃�0
− 𝜁′(�̃�0), 𝜖) > 1 − 𝜚 

𝔙1(�̃� − �̃�0, 𝜎) < �̇� ⇒ 𝔙2 (
𝜁(�̃�)−𝜁(�̃�0)

�̃�−�̃�0
− 𝜁′(�̃�0), 𝜖) < 𝜚, 

𝔚1(�̃� − �̃�0, 𝜎) < �̇� ⇒ 𝔚2 (
𝜁(�̃�)−𝜁(�̃�0)

�̃�−�̃�
− 𝜁′(�̃�0), 𝜖) < 𝜚. 
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𝔄1(�̃� − �̃�0, 𝜎) > 1 − �̇� ⇒ 𝔄2 (
𝑔(�̃�)−𝑔(�̃�0)

�̃�−�̃�0
− 𝑔′(�̃�0), 𝜖) > 1 − 𝜚, 

𝔙1(�̃� − �̃�0, 𝜎) < �̇� ⇒ 𝔙2 (
𝑔(�̃�)−𝑔(�̃�0)

�̃�−�̃�0
− 𝑔′(�̃�0), 𝜖) < 𝜚, 

𝔚1(�̃� − �̃�0, 𝜎) < �̇� ⇒ 𝔚2 (
𝑔(�̃�)−𝑔(�̃�0)

�̃�−�̃�0
− 𝑔′(�̃�0), 𝜖) < 𝜚. 

Now, 

𝔄2 (
(𝐾𝜁 + 𝑔)(�̃�) − (𝐾𝜁 + 𝑔)(�̃�0)

�̃� − �̃�0
− (𝐾𝜁′(�̃�0) + 𝑔

′(�̃�0)), 𝜖) 

= 𝔄2 (
𝐾𝜁(�̃�) + 𝑔(�̃�) − 𝐾𝜁(�̃�0) − 𝑔(�̃�0)

�̃� − �̃�0
−𝐾𝜁′(�̃�0) − 𝑔

′(�̃�0), 𝜖) 

≥ 𝔄2 (
𝐾𝜁(�̃�) − 𝐾𝜁(�̃�0)

�̃� − �̃�0
−𝐾𝜁′(�̃�0),

𝜖

2
) ∗ 𝔄2 (

𝑔(�̃�) − 𝑔(�̃�0)

�̃� − �̃�0
− 𝑔′(�̃�0),

𝜖

2
) 

= 𝔄2 (
𝜁(�̃�) − 𝜁(�̃�0)

�̃� − �̃�0
− 𝜁′(�̃�0),

𝜖

2|𝐾|
) ∗ 𝔄2 (

𝑔(�̃�) − 𝑔(�̃�0)

�̃� − �̃�0
− 𝑔′(�̃�0),

𝜖

2
) 

> (1 − 𝜚) ∗ (1 − 𝜚) = (1 − 𝜚),  whenever  𝔄1(�̃� − �̃�0, 𝜎) > 1 − �̇�, 

𝔙2 (
(𝐾𝜁 + 𝑔)(�̃�) − (𝐾𝜁 + 𝑔)(�̃�0)

�̃� − �̃�0
− (𝐾𝜁′(�̃�0) + 𝑔

′(�̃�0)), 𝜖) 

= 𝔙2 (
𝐾𝜁(�̃�) + 𝑔(�̃�) − 𝐾𝜁(�̃�0) − 𝑔(�̃�0)

�̃� − �̃�0
−𝐾𝜁′(�̃�0) − 𝑔

′(�̃�0), 𝜖) 

≥ 𝔙2 (
𝐾𝜁(�̃�) − 𝐾𝜁(�̃�0)

�̃� − �̃�0
− 𝐾𝜁′(�̃�0),

𝜖

2
) ⋄ 𝔙2 (

𝑔(�̃�) − 𝑔(�̃�0)

�̃� − �̃�0
− 𝑔′(�̃�0),

𝜖

2
) 

= 𝔙2 (
𝜁(�̃�) − 𝜁(�̃�0)

�̃� − �̃�0
− 𝜁′(�̃�0),

𝜖

2|𝐾|
) ⋄ 𝔙2 (

𝑔(�̃�) − 𝑔(�̃�0)

�̃� − �̃�0
− 𝑔′(�̃�0),

𝜖

2
) 

< 𝜚 ⋄ 𝜚 = 𝜚, whenever  𝔙1(�̃� − �̃�0, 𝜎) < �̇� and 

𝔚2 (
(𝐾𝜁 + 𝑔)(�̃�) − (𝐾𝜁 + 𝑔)(�̃�0)

�̃� − �̃�0
− (𝐾𝜁′(�̃�0) + 𝑔

′(�̃�0)), 𝜖) 

= 𝔚2 (
𝐾𝜁(�̃�) + 𝑔(�̃�) − 𝐾𝜁(�̃�0) − 𝑔(�̃�0)

�̃� − �̃�0
− 𝐾𝜁′(�̃�0) − 𝑔

′(�̃�0), 𝜖) 

≥ 𝔚2 (
𝐾𝜁(�̃�) − 𝐾𝜁(�̃�0)

�̃� − �̃�0
− 𝐾𝜁′(�̃�0),

𝜖

2
)⊗𝔚2 (

𝑔(�̃�) − 𝑔(�̃�0)

�̃� − �̃�0
− 𝑔′(�̃�0),

𝜖

2
) 

= 𝔚2 (
𝜁(�̃�) − 𝜁(�̃�0)

�̃� − �̃�0
− 𝜁′(�̃�0),

𝜖

2|𝐾|
)⊗𝔚2 (

𝑔(�̃�) − 𝑔(�̃�0)

�̃� − �̃�0
− 𝑔′(�̃�0),

𝜖

2
) 

< 𝜚⊗ 𝜚 = 𝜚, whenever  𝔚1(�̃� − �̃�0, 𝜎) < �̇�. 

So, 𝐾𝜁 + 𝑔 is ND at �̃�0 ∈ ℝ and  (𝐾𝜁 + 𝑔)′(�̃�0) = 𝐾𝜁
′(�̃�0) + 𝑔

′(�̃�0).  

Definition 3.4. Let (Θ̃ , ℑ) and (Ξ, 𝒥) be two NNLS over the same field F. An operator Υ from (Θ̃, ℑ) to 

(Ξ, 𝒥) is named to be Neutrosophic Gateaux differentiable [NGD] at �̃�0 ∈ Θ̃, where, (Θ̃ , ℑ) and (Ξ, 𝒥) are 

NNLS over the same field F, if there exists a Neutrosophic continuous linear operator 𝐺: (Θ̃, ℑ) → (Ξ, 𝒥) 

(generally depends upon �̃�0) and for any given 𝜖 > 0, 𝜚 ∈ (0,1), there exists 𝜎 = 𝜎(𝜚, 𝜖) > 0, 

 �̇� = �̇�(𝜚, 𝜖) ∈ (0,1) such that for every  �̃� ∈ Θ̃ and 𝑠(≠ 0) ∈ ℝ, 

𝔄Θ̃(𝔡, 𝜎) > 1 − �̇� ⇒ 𝔄Ξ (
Υ(�̃�0+𝔡�̃�)−Υ(�̃�0)

𝔡
− 𝐺(�̃�), 𝜖) > 1 − 𝜖, 

𝔙Θ̃(𝔡, 𝛿) < �̇� ⇒ 𝔙Ξ (
Υ(�̃�0+𝔡�̃�)−Υ(�̃�0)

𝔡
− 𝐺(�̃�), 𝜖) < 𝜎, 

𝔚Θ̃(𝔡, 𝛿) < �̇� ⇒ 𝔚Ξ (
Υ(�̃�0+𝔡�̃�)−Υ(�̃�0)

𝔡
−𝐺(�̃�), 𝜖) < 𝜎, 

The operator G becomes known to as NGD of Υ at �̃�0.  and it is represented by 𝐷𝜁(�̃�0). 

 

Alternative definition: An operator Υ from (Θ̃, ℑ) to (Ξ, 𝒥) is said to be Neutrosophic Gateaux and 

Frechet Derivative differentiable at �̃�0 ∈ Θ̃, where, (Θ̃, ℑ) and (Ξ, 𝒥)  are NNLS over the same field F,if 

there exists a Neutrosophic continuous linear operator 𝐺: (Θ̃, ℑ) → (Ξ, 𝒥)such that for every �̃� ∈ Θ̃, 𝜏 > 0 

and 𝔡(≠ 0) ∈ ℝ 

lim
𝔄Θ̃(𝔡,𝜏)→1

𝔄Ξ (
Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺(�̃�), 𝜏) = 1, 
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lim
𝔙Θ̃(𝔡,𝜏)→0

𝔙Ξ (
Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺(�̃�), 𝜏) = 0, 

lim
𝔚Θ̃(𝔡,𝜏)→0

𝔚Ξ (
Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺(�̃�), 𝜏) = 0. 

Here, the operator  𝐺 is called NGD of Υ at �̃�0 and it is denoted by 𝐷𝜁(�̃�0). 

Example 3.5. Let  Θ̃ =  Ξ = 𝐹 =  ℝ and let �̃�0 ∈ ℝ be any point. Let (ℝ, 𝔄1, 𝔙1,𝔚1 ∗,⋄,⊗) and 

(ℝ, 𝔄2, 𝔙2,𝔚2,∗,⋄,⊗) are NNLS over the same field ℝ. Let 𝔄1(�̃�, 𝜏) = 𝔄2(�̃�, 𝜏) =  
𝜏

𝜏+|�̃�|
, 𝔙1(�̃�, 𝜏) = 𝔙2(�̃�, 𝜏) =

 
|�̃�|

𝜏+|�̃�|
 and 𝔚1(�̃�, 𝜏) = 𝔚2(�̃�, 𝜏) =  

|�̃�|

𝜏
. Let �̇� ∗ �̇� = �̇��̇� and �̇� ⋄ �̇� = �̇� ⊗ �̇� = �̇� + �̇� – �̇��̇�. An operator Υ: (Θ̃, ℑ) →

(Ξ, 𝒥) be defined by Υ(�̃�) = �̃�. There exist a neutrosophic continuous linear operator 𝐺: (Θ̃, ℑ) → (Ξ, 𝒥) be 

defined by 𝐺(�̃�) =
�̃�

2
 such that 

 

lim
𝔄Θ̃(𝔡,𝜏)→1

𝔄Ξ (
Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺(�̃�), 𝜏) = 1, 

lim
𝔙Θ̃(𝔡,𝜏)→0

𝔙Ξ (
Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝑠
− 𝐺(�̃�), 𝜏) = 0, 

                                                            lim
𝔚Θ̃(𝔡,𝜏)→0

𝔚Ξ (
Υ(�̃�0+𝔡�̃�)−Υ(�̃�0)

𝔡
−𝐺(�̃�), 𝜏) = 0. Hence Υ is Neutrosophic Gateaux and 

Frechet differentiable at �̃�0. 

 

Theorem 3.6. Let Υ: (Θ̃, ℑ) → (Ξ, 𝒥) be a linear operator, where (Θ̃, ℑ) and (Ξ, 𝒥) are two NNLS satisfying 

(xviii), (xix), (xx) and (xxi). If Υ is NGD at �̃�0 then it is unique at �̃�0.  

 

Proof. Let 𝐺1, 𝐺2 be two NGD of Υ at �̃�0. Then for any given  𝜖 > 0, 𝜚 ∈ (0,1), ∃ 𝜎 = 𝜎(𝜚, 𝜖) > 0, �̇� =

�̇�(𝜚, 𝜖) ∈ (0,1) such that for every �̃� ∈ 𝑈 and 

𝔡(≠ 0) ∈ ℝ, 

𝔄Θ̃(𝔡, 𝜎) > 1 − �̇� ⇒ 𝔄Ξ (
Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺1(�̃�), 𝜖) > 1 − 𝜚, 

𝔙Θ̃(𝔡, 𝜎) < �̇� ⇒ 𝔙Ξ (
Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺1(�̃�), 𝜖) < 𝜚, 

𝔚Θ̃(𝔡, 𝜎) < �̇� ⇒ 𝔚Ξ (
Υ(�̃�0+𝔡�̃�)−Υ(�̃�0)

𝔡
− 𝐺1(�̃�), 𝜖) < 𝜚  and 

𝔄Θ̃(𝔡, 𝜎) > 1 − �̇� ⇒ 𝔄Ξ (
Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺2(�̃�), 𝜖) > 1 − 𝜚, 

𝔙Θ̃(𝔡, 𝜎) < �̇� ⇒ 𝔙Ξ (
Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺2(�̃�), 𝜖) < 𝜚, 

𝔚Θ̃(𝔡, 𝜎) < �̇� ⇒ 𝔚Ξ (
Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺2(�̃�), 𝜖) < 𝜚. 

𝔄Ξ(𝐺1(�̃�) − 𝐺2(�̃�), 𝜏) = 𝔄Ξ ({
Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺1(�̃�)} − {

Υ(�̃�0+ 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺2(�̃�)} , 𝜏) 

= 𝔄Ξ (
Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺1(�̃�),

𝜏

2
) ∗ 𝔄Ξ (

Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺2(�̃�),

𝜏

2
) 

   > (1 − 𝜚) ∗ (1 − 𝜚) = (1 − 𝜚),   ∀ 𝜚 ∈ (0,1). 

Therefore, 𝔄Ξ(𝐺1(�̃�) − 𝐺2(�̃�), 𝜏) > 0 ,   ∀ 𝑡 > 0,          (3.1) 

𝔙Ξ(𝐺1(�̃�) − 𝐺2(�̃�), 𝜏) ≤ 𝔙Ξ (
Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺1(�̃�),

𝜏

2
) ⋄ 𝔙Ξ (

Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺2(�̃�),

𝜏

2
) 

  < 𝜚 ⋄ 𝜚 = 𝜚   ∀ 𝜚 ∈ (0,1). 

𝔙Ξ(𝐺1(�̃�) − 𝐺2(�̃�), 𝜏) < 1   ∀ 𝜏 > 0,          (3.2) 

𝔚Ξ(𝐺1(�̃�) − 𝐺2(�̃�), 𝜏) ≤ 𝔚Ξ (
Υ(�̃�0 + 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺1(�̃�),

𝜏

2
)⊗𝔚Ξ (

Υ(�̃�0+ 𝔡�̃�) − Υ(�̃�0)

𝔡
− 𝐺2(�̃�),

𝜏

2
) 

  < 𝜚⊗ 𝜚 = 𝜚   ∀ 𝜚 ∈ (0,1). 

𝔚Ξ(𝐺1(�̃�) − 𝐺2(�̃�), 𝜏) < 1 , ∀ 𝜏 > 0.          (3.3) 
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From (3.1) , (3.2) and (3.3) we get 𝐺1(�̃�) − 𝐺2(�̃�) = 𝜃. Thus,  𝐺1(�̃�) − 𝐺2(�̃�). 

 

Theorem 3.7. If  Υ1 and Υ2  have NGD at �̃�0 then  Υ = 𝑐Υ1 + Υ2 has NGD at �̃�0,  where 𝑐 is a scalar. 

Proof.  Straight forward. 

4. Neutrosophic Frechet Derivative 

 

Definition  4.1.  An operator Υ : (Θ̃, ℑ) → (Ξ, 𝒥) is named to be Neutrosophic Frechet Differentiable 

[NFD] at an interior �̃�0 ∈ Θ̃, where, (Θ̃, ℑ) and (Ξ, 𝒥) be two NNLS over the same field  𝐹, if there exists a 

continuous linear operator 𝜁: (Θ̃, ℑ) → (Ξ, 𝒥)( in general depends on �̃�0) and if for any given  𝜖 > 0, 𝜚 ∈

(0,1), there exists 𝜎 = 𝜎(𝜚, 𝜖) > 0, �̇� = �̇�(𝜚, 𝜖) ∈ (0,1) such that for all �̃� ∈ Θ̃, 

𝔄Θ̃(�̃� − �̃�0, 𝜎) > 1 − �̇� ⇒ 𝔄Ξ (
Υ(�̃�) − Υ(�̃�0) − (�̃� − �̃�0)𝜁

1 − 𝔄Θ̃(�̃� − �̃�0, 𝜏)
, 𝜖) > 1 − 𝜚, 

𝔙Θ̃(�̃� − �̃�0, 𝜎) < �̇� ⇒ 𝔙Ξ (
Υ(�̃�) − Υ(�̃�0) − (�̃� − �̃�0)𝜁

𝔙Θ̃(�̃� − �̃�0, 𝜏)
, 𝜖) < 𝜚 and 

𝔚Θ̃(�̃� − �̃�0, 𝜎) < �̇� ⇒ 𝔚Ξ (
Υ(�̃�) − Υ(�̃�0) − (�̃� − �̃�0)𝜁

𝔚Θ̃(�̃� − �̃�0, 𝜏)
, 𝜖) < 𝜚  

Here, 𝜁 is called NFD of Υ at �̃�0 and is represented by 𝐷Υ(�̃�0). 

 

Alternative definition:  An operator Υ: (Θ̃, ℑ) → (Ξ, 𝒥) is said to be NFD at an interior �̃�0 ∈ 𝑈, where, 

(Θ̃, ℑ) and (Ξ, 𝒥) be two NNLS over the same field  𝐹, if there exists a continuous linear operator 

𝜁: (Θ̃, ℑ) → (Ξ, 𝒥) (in general depends on �̃�0) such that for every 𝜏 > 0 

lim
𝔄Θ̃(�̃�−�̃�0,𝜏)→1

𝔄Ξ (
Υ(�̃�) − Υ(�̃�0) − (�̃� − �̃�0)𝜁

1 − 𝔄Θ̃(�̃� − �̃�0, 𝜏)
, 𝜏) = 1, 

lim
𝔙Θ̃(�̃�−�̃�0,𝜏)→0

𝔙Ξ (
Υ(�̃�)−Υ(�̃�0)−(�̃�−�̃�0)𝜁

𝔙Θ̃(�̃�−�̃�0,𝜏)
, 𝜏) = 0 and 

lim
𝔚Θ̃(�̃�−�̃�0 ,𝜏)→0

𝔚Ξ (
Υ(�̃�) − Υ(�̃�0) − (�̃� − �̃�0)𝜁

𝔚Θ̃(�̃� − �̃�0, 𝜏)
, 𝜏) = 0. 

Here, 𝜁 is called NFD of Υ at �̃�0 and is represented by 𝐷Υ(�̃�0). 

 

Theorem 4.2. Let Υ: (Θ̃, ℑ) → (Ξ, 𝒥) be a linear operator, where (Θ̃, ℑ) and (Ξ, 𝒥) are two NNLS satisfying 

(xix), (xx) and (xxi). If Υ is NFD at �̃�0 then it is unique at �̃�0. 

Proof. Straight forward. 

 

Example 4.3. Let Θ̃ = Ξ = ℝ and [𝑎, 𝑏] be an interval of ℝ and Υ: [𝑎, 𝑏] → ℝ. For every 𝜏 > 0 define 

𝔄(�̃�, 𝜏) =
𝜏

𝜏+|�̃�|
, 𝔙(𝑥, 𝜏) =

|�̃�|

𝜏+|�̃�|
   and 𝔚(�̃�, 𝜏) =

|�̃�|

𝜏
, then the NFD of Υ at  �̃�0 is ND. 

 

Proof. If Υ is NFD at �̃�0 then for any given 𝜖 > 0, 𝜚 ∈ (0,1), there exists 𝜎 = 𝜎(𝜚, 𝜖) > 0, 

 �̇� = �̇�(𝜚, 𝜖) ∈ (0,1) such that for all �̃� ∈ Θ̃, 

𝔄Θ̃(�̃� − �̃�0, 𝜎) > 1 − �̇� ⇒ 𝔄Ξ (
Υ(�̃�) − Υ(�̃�0) − (�̃� − �̃�0)𝜁

1 − 𝔄Θ̃(�̃� − �̃�0, 𝜏)
, 𝜖) > 1 − 𝜚 

𝔄Ξ (
Υ(�̃�) − Υ(�̃�0) − (�̃� − �̃�0)𝜁

|�̃� − �̃�0|
,

𝜖

𝜏 + |�̃� − �̃�0|
) > 1 − 𝜚 

𝔄Ξ (
Υ(�̃�) − Υ(�̃�0)

�̃� − �̃�0
− 𝜁,

𝜖

𝜏 + |�̃� − �̃�0|
) > 1 − 𝜚, 

𝔙Θ̃(�̃� − �̃�0, 𝜎) < �̇� ⇒ 𝔙Ξ (
Υ(�̃�) − Υ(�̃�0) − (�̃� − �̃�0)𝜁

𝔙Θ̃(�̃� − �̃�0, 𝜏)
, 𝜖) < 𝜚 

⇒ 𝔙Ξ (
Υ(�̃�) − Υ(�̃�0) − (�̃� − �̃�0)𝜁

|�̃� − �̃�0|
,

𝜖

𝜏 + |�̃� − �̃�0|
) < 𝜚 
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𝔙Ξ (
Υ(�̃�)−Υ(�̃�0)

�̃�−�̃�0
− 𝜁,

𝜖

𝜏+|�̃�−�̃�0|
) < 𝜚 and 

𝔚Θ̃(�̃� − �̃�0, 𝜎) < �̇� ⇒ 𝔚Ξ (
Υ(�̃�) − Υ(�̃�0) − (�̃� − �̃�0)𝜁

𝔚Θ̃(�̃� − �̃�0, 𝜏)
, 𝜖) < 𝜚 

⇒ 𝔚Ξ (
Υ(�̃�) − Υ(�̃�0) − (�̃� − �̃�0)𝜁

|�̃� − �̃�0|
,

𝜖

𝜏 + |�̃� − �̃�0|
) < 𝜚 

𝔚Ξ (
Υ(�̃�) − Υ(�̃�0)

�̃� − �̃�0
− 𝜁,

𝜖

𝜏 + |�̃� − �̃�0|
) < 𝜚 

Hence, NFD of Υ at �̃�0 implies ND Υ at �̃�0 and Υ′(�̃�0) = 𝐷Υ(�̃�0). 

 

Theorem 4.4.  An operator  Υ : (Θ̃, ℑ) → (Ξ, 𝒥) is NFD at �̃�0 ∈ 𝑈 then  Υ is NGD at �̃�0. 

Proof. Since Υ is NFD at �̃�0, therefore, for 𝜏 > 0 wehave 

𝔄Ξ (
Υ(�̃�0 + ℎ) − Υ(�̃�0) − 𝐷Υ(�̃�0)ℎ

1 − 𝔄Θ̃(ℎ, 𝜏)
, 𝜏) > 1 − 𝜚, 

𝔙Ξ (
Υ(�̃�0+ℎ)−Υ(�̃�0)−𝐷Υ(�̃�0)ℎ

𝔙Θ̃(ℎ,𝜏)
, 𝜏) < 𝜚 and 

𝔚Ξ (
Υ(�̃�0 + ℎ) − Υ(�̃�0) − 𝐷Υ(�̃�0)ℎ

𝔚Θ̃(ℎ, 𝜏)
, 𝜏) < 𝜚. 

 

Now,  𝔄Ξ (
Υ(�̃�0+ℎ)−Υ(�̃�0)−𝐷Υ(�̃�0)ℎ

1−𝔄Θ̃(ℎ,𝜏)
, 𝜏) > 1 − 𝜚 ⇒ 𝔄Ξ (

Υ(�̃�0+𝔡ℎ)−Υ(�̃�0)−𝔡𝐷Υ(�̃�0)ℎ

1−𝔄Θ̃(𝔡ℎ,𝜏)
, 𝜏) > 1 − 𝜚. 

Putting ℎ = 𝔡ℎ, 𝔡 ≠ 0 

⇒ 𝔄Ξ

(

 
 
Υ(�̃�0+𝔡ℎ)−Υ(�̃�0)

𝔡
− 𝐷Υ(�̃�0)ℎ

1

𝔡
(1 − 𝔄(ℎ,

𝜏

|𝔡|
))

, 𝜏

)

 
 
> 1− 𝜚, 

⇒ 𝔄Ξ (
Υ(�̃�0 + 𝔡ℎ) − Υ(�̃�0)

𝔡
− 𝐷Υ(�̃�0)ℎ,

𝜏

|𝔡|
(1 − 𝔄Θ̃ (ℎ,

𝜏

|𝔡|
))) > 1 − 𝜚, 

⇒ 𝔄Ξ (
Υ(�̃�0+𝔡ℎ)−Υ(�̃�0)

𝔡
−𝐷Υ(�̃�0)ℎ, 𝜏1) > 1 − 𝜚,  where  𝜏1 =

𝜏

|𝔡|
(1 − 𝔄Θ̃ (ℎ,

𝜏

|𝔡|
)),  

𝔙Ξ (
Υ(�̃�0 + ℎ) − Υ(�̃�0) − 𝐷Υ(�̃�0)ℎ

𝔙Θ̃(ℎ, 𝜏)
, 𝜏) < 𝜚 

⇒ 𝔙Ξ (
Υ(�̃�0+ 𝔡ℎ) − Υ(�̃�0) − 𝔡𝐷Υ(�̃�0)ℎ

𝔙Θ̃(𝔡ℎ, 𝜏)
, 𝜏) < 𝜚. 

Putting ℎ = 𝔡ℎ, 𝔡 ≠ 0. 

⇒ 𝔙Ξ(

Υ(�̃�0+𝔡ℎ)−Υ(�̃�0)

𝔡
−𝐷Υ(�̃�0)ℎ

1

𝔡
𝔙Θ̃ (ℎ,

𝜏

|𝔡|
)

, 𝜏) < 𝜚, 

⇒ 𝔙Ξ (
Υ(�̃�0 + 𝔡ℎ) − Υ(�̃�0)

𝔡
− 𝐷Υ(�̃�0)ℎ,

𝜏

|𝔡|
𝔙Θ̃ (ℎ,

𝜏

|𝔡|
)) < 𝜚, 

⇒ 𝔙Ξ (
Υ(�̃�0+𝔡ℎ)−Υ(�̃�0)

𝔡
−𝐷Υ(�̃�0)ℎ, 𝜏2) < 𝜚, where  𝜏2 =

𝜏

|𝔡|
𝔙Θ̃ (ℎ,

𝜏

𝔡
) and 

𝔚Ξ (
Υ(�̃�0+ ℎ) − Υ(�̃�0) − 𝐷Υ(�̃�0)ℎ

𝔚Θ̃(ℎ, 𝜏)
, 𝜏) < 𝜚, 

⇒ 𝔚Ξ (
Υ(�̃�0 + 𝔡ℎ) − Υ(�̃�0) − 𝔡𝐷Υ(�̃�0)ℎ

𝔚Θ̃(𝔡ℎ, 𝜏)
, 𝜏) < 𝜚. 

Putting ℎ = 𝔡ℎ, 𝔡 ≠ 0 

⇒𝔚Ξ(

Υ(�̃�0+𝔡ℎ)−Υ(�̃�0)

𝔡
− 𝐷Υ(�̃�0)ℎ

1

𝔡
𝔚Θ̃ (ℎ,

𝜏

|𝔡|
)

, 𝜏) < 𝜚, 
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⇒ 𝔚Ξ (
Υ(�̃�0 + 𝔡ℎ) − Υ(�̃�0)

𝔡
− 𝐷Υ(�̃�0)ℎ,

𝜏

|𝔡|
𝔚Θ̃ (ℎ,

𝜏

|𝔡|
)) < 𝜚, 

⇒ 𝔚Ξ (
Υ(�̃�0+𝔡ℎ)−Υ(�̃�0)

𝔡
− 𝐷Υ(�̃�0)ℎ, 𝜏3) < 𝜚, where  𝜏3 =

𝜏

|𝔡|
𝔚Θ̃ (ℎ,

𝜏

|𝔡|
) . 

Hence, Υ is NGD at �̃�0 and 𝐷Υ(�̃�0)ℎ = 𝐷Υ(�̃�0)ℎ. 

Theorem 4.5. Let 𝑃: Θ̃ ⊂ 𝑋 → Ξ ⊂ 𝑌 and 𝑄: Ξ → 𝑍  be two linear operator satisfying (xviii).  Suppose 𝑃 is 

Neutrosophic continuous and has NGD at �̃�0 ∈ Θ̃ and 𝑄 has NFD at Neutrosophic Gateaux and Frechet 

Derivative 𝑦0 = 𝑃(�̃�0). Then 𝑅 = 𝑄𝑃 has NGD at �̃�0 and 𝐷𝑅(�̃�0) = 𝐷𝑄(�̃�0)𝐷𝑃(�̃�0). 

 

Proof. For convenience, we write 𝐺 = 𝐷𝑃(�̃�0) and 𝜁 = 𝐷𝑄(�̃�0).  

Let �̃� ∈ 𝑋 and we further write  Δ�̃� = 𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0). Then 

𝔄(
𝑅(�̃�0+𝔡�̃�)−𝑅(�̃�0)

𝔡
− 𝜁𝐺, 𝜏) = 𝔄(

𝑄𝑃(�̃�0+𝔡�̃�)−𝑄𝑃(�̃�0)

𝔡
− 𝜁𝐺, 𝜏) = 𝔄(

𝜁(Δ�̃�)+𝐴(Δ�̃�)

𝔡
− 𝜁𝐺, 𝜏), 

where  𝐴(Δ�̃�) = 𝑄(�̃�0 + Δ�̃�) − 𝑄(�̃�0) − 𝜁(Δ�̃�) 

= 𝔄(𝜁
𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0)

𝔡
+
𝐴(Δ�̃�)

𝔡
− 𝜁𝐺, 𝜏) 

≥ 𝔄(𝜁
𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0)

𝔡
− 𝜁𝐺,

𝜏

2
) ∗ 𝔄(

𝐴(Δ�̃�)

𝔄(Δ�̃�, 𝜏)

𝔄(𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0), 𝜏1)

𝔡
,
𝜏

2
) 

= 𝔄(
𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0)

𝔡
− 𝐺,

𝜏

2𝔄(𝜁, 𝜏2)
) ∗ 𝔄(

𝐴(Δ�̃�)

𝔄(Δ�̃�, 𝜏1)

𝜏𝑠

2𝔄(𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0), 𝜏1)
) 

= 𝔄(
𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0)

𝔡
− 𝐺,

𝜏

2𝔄(𝜁, 𝜏2)
) ∗ 𝔄(

𝑄(�̃�0 + Δ�̃�) − 𝑄(�̃�0) − 𝜁(Δ�̃�)

𝔄(Δ�̃�, 𝜏1)
,

𝜏𝔡

2𝔄(𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0), 𝜏1)
) 

> (1 − 𝜚) ∗ (1 − 𝜚) = (1 − 𝜚). 

Since 𝑃 has NGD and 𝑄 has NFD.  

𝔙(
𝑅(�̃�0 + 𝔡�̃�) − 𝑅(�̃�0)

𝔡
− 𝜁𝐺, 𝜏) = 𝔙(

𝑄𝑃(�̃�0 + 𝔡�̃�) − 𝑄𝑃(�̃�0)

𝔡
− 𝜁𝐺, 𝜏) = 𝔙(

𝜁(Δ�̃�) + 𝐴(Δ�̃�)

𝔡
− 𝜁𝐺, 𝜏) 

where  𝐴(Δ�̃�) = 𝑄(�̃�0 + Δ�̃�) − 𝑄(�̃�0) − 𝜁(Δ�̃�) 

= 𝔙(𝜁
𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0)

𝔡
+
𝐴(Δ�̃�)

𝔡
− 𝜁𝐺, 𝜏) 

≤ 𝔙(𝜁
𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0)

𝔡
− 𝜁𝐺,

𝜏

2
) ⋄ 𝔙(

𝐴(Δ�̃�)

1 −𝔙(Δ�̃�, 𝜏1)

1 −𝔙(𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0), 𝜏1)

𝔡
,
𝜏

2
) 

= 𝔙(
𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0)

𝔡
− 𝐺,

𝜏

2𝔙(𝜁, 𝜏2)
)

⋄ 𝔙(
𝑄(�̃�0 + Δ�̃�) − 𝑄(�̃�0) − 𝜁(Δ�̃�)

1 −𝔙(Δ�̃�, 𝜏1)
,

𝜏𝔡

2(1 −𝔙(𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0), 𝜏1))
) 

< 𝜚 ⋄ 𝜚 = 𝜚  and 

𝔚(
𝑅(�̃�0+𝔡�̃�)−𝑅(�̃�0)

𝔡
− 𝜁𝐺, 𝜏) = 𝔚(

𝑄𝑃(�̃�0+𝔡�̃�)−𝑄𝑃(�̃�0)

𝔡
− 𝜁𝐺, 𝜏) = 𝔚(

𝜁(Δ�̃�)+𝐴(Δ�̃�)

𝔡
− 𝜁𝐺, 𝜏), 

where  𝐴(Δ�̃�) = 𝑄(�̃�0 + Δ�̃�) − 𝑄(�̃�0) − 𝜁(Δ�̃�) 

= 𝔚(𝜁
𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0)

𝔡
+
𝐴(Δ�̃�)

𝔡
− 𝜁𝐺, 𝜏) 

≤ 𝔚(𝜁
𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0)

𝔡
− 𝜁𝐺,

𝜏

2
)⊗𝔚(

𝐴(Δ�̃�)

1 −𝔚(Δ�̃�, 𝜏1)

1 −𝔚(𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0), 𝜏1)

𝔡
,
𝜏

2
) 

= 𝔚(
𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0)

𝔡
− 𝐺,

𝜏

2𝔚(𝜁, 𝜏2)
)

⊗𝔚(
𝑄(�̃�0 + Δ�̃�) − 𝑄(�̃�0) − 𝜁(Δ�̃�)

1 −𝔚(Δ�̃�, 𝜏1)
,

𝜏𝔡

2(1 −𝔚(𝑃(�̃�0 + 𝔡�̃�) − 𝑃(�̃�0), 𝜏1))
) 

< 𝜚⊗ 𝜚 = 𝜚. 

Since P has NGD and Q has NFD. Hence 𝑹 = 𝑸𝑷 has NGD at  �̃�𝟎 and 𝑫𝑹(�̃�𝟎) = 𝑫𝑸(�̃�𝟎)𝑫𝑷(�̃�𝟎). 
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Conclusion:  In this article we present the idea of  Neutrosophic derivative, Neutrosophic Gateaux 

derivative and Neutrosophic Frechet derivative and we explore some of the properties of this concepts . 

Moreover, we provide non-trivial examples. We have discussed about the relation between 

Neutrosophic Gateaux derivative and Neutrosophic Frechet derivative. 
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Abstract: Data Envelopment Analysis (DEA) stands out as the most commonly employed 

approach for assessing the overall performance of a group of similar Decision-Making Units 

(DMUs) that utilize similar resources to produce comparable outputs. Nonetheless, the observed 

characteristics of symmetry or asymmetry in various types of data in real-world applications can 

often be imprecise, unclear, insufficient, or contradictory. Neglecting these conditions can 

potentially result in erroneous decision-making. Certain models take a more restrictive approach 

by assuming that inputs and outputs possess the same level of determinism. Regrettably, such 

constraints don't hold true for the majority of real-world scenarios. In actual situations, however, 

the observed input and output data may sometimes be neutrosophic numbers. So, the primary 

purpose of this study is to construct a Neutrosophic Input Oriented DEA (NIODEA) Model that 

incorporates both neutrosophic and deterministic output and/or input variables, handled in 

accordance with the scoring function.  The model we have developed has broad applicability 

across diverse organizations, aiding decision-makers in making informed choices and optimizing 

resource allocation, a particularly valuable asset in today's intensely competitive business 

environment. To underscore the practical utility of the model, we provide an illustrative example 

that demonstrates its effectiveness and relevance for decision-makers. 

Keywords: Optimization, Data Envelopment Analysis; Neutrosophic Variables; Single Valued 

Neutrosophic; Neutrosophic Score Function; Performance Measure; Efficiency Analysis; 

Decision Making. 
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The concepts of efficiency are utilized to determine whether restrictions have an impact 

and if so, how substantial. Efficiency is primarily defined as an organization's capacity to produce 

the greatest amount of output from a given set of inputs [1]. Data Envelopment Analysis (DEA) 

firstly developed by Charnes et al. [2], a method to assess the effectiveness of decision-making 

units (DMUs), is a potent analytical instrument for effective and benchmarking evaluation. 

Almost all applications, including healthcare, banking, transportation, and education, use DEA 

for various factors, as Golany and Roll [3] observed that it may be utilized to determine the 

reasons of inefficiency, DMUs ranking, and measure the effectiveness of programs. About 30 

years after the landmark study [2] was published, the application field of DEA It has grown to the 

point that virtually none of the researchers in DEA field can keep up with its progress, especially 

in terms of how frequently DEA is employed in practical applications. 

The DEA approach has various strengths, one of them is that it doesn't need a preference 

weight or a particular link between the multiple inputs and outputs. Nevertheless, one of the 

major significant shortcomings of standard DEA issues is that they do not permit for vague 

variance in the multiple inputs and outputs, even though that many crucial real-world situations 

may be of the fuzzy form. Consequently, the DEA model's efficiency ratings may be susceptible 

to various fluctuations in factors. An efficient DMU that is relative efficient to other comparable 

DMUs may become inefficient if such ambiguous, confusing, inconsistent, and incomplete 

variance in variables including inputs, outputs, or perhaps both. In other words, because 

efficiency scores are highly sensitive to the actual levels of inputs or outputs, they will be 

inaccurate and misleading if the data gained is not displayed in the proper form. 

The DEA models have made great attempts in recent years to address the ambiguity in 

variables, whether fuzzy input or output. Commonly, the applicability of the fuzzy DEA model 

is split into four categories α-cut, tolerance, possibility, and fuzzy ranking approaches [4 - 8]. The 

α-cut approach is regarded as the most common fuzzy DEA issue [9 – 17]. Fuzzy sets, however, 

only take into account the membership function (MF) and are unable to set further vagueness 

parameters. As a result, Pythagorean fuzzy sets have also been introduced in [18], along with 

intuitionistic fuzzy sets. Smarandache [19] proposed neutrosophic set theory; it is an extension of 

fuzzy set, since each element has a truth, indeterminacy, and falsity membership function. 

Neutrosophic set has been employed for solving models including indeterminacy, uncertainty, 

imprecision, ambiguity, inconsistency, and incompleteness, among others. Moreover, there are 

multiple approaches exist for addressing different issues within a neutrosophic environment such 

that Haque et al. [20], Pal et al. [21], Haque et al. [22], Chakraborty et al. [23], Singh et al. [24], Jdid 

and Smarandache [25], Singh et al. [26], Sasikala and Divya [27], Gamal and Mohamed [28]. 

 Recent attempts have been made to include neutrosophic data into the DEA model, 

either as neutrosophic input or neutrosophic output. Edalatpanah [29] devolved a new form of 
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DEA involved neutrosophic input and output.  Abdelfattah [30] provided a DEA model using 

triangular neutrosophic for both inputs and outputs variables that takes the truth, indeterminacy, 

and falsity degrees of each data value into consideration. Kahraman et al. [31] introduced a novel 

Neutrosophic Analytic Hierarchy Process that was subsequently combined with neutrosophic 

DEA to be employed in performance evaluation. All inputs and outputs in the DEA model 

suggested by Yang et al. [32] are single-valued neutrosophic triangular numbers. Mao, et al. [33] 

proposed a neutrosophic DEA model with undesirable outputs, it is constructed simply and is 

based on the aggregation operator. 

Motivation and contribution 

In real-world scenarios, it's not uncommon for observed values of inputs and/or outputs 

to exhibit neutrosophic characteristics. However, one of the significant limitations of the 

traditional DEA model is its inability to account for uncertainty or variations in input and output 

data. It assumes that all data are precisely known or represented as crisp values. Consequently, 

DEA efficiency measurements can be highly sensitive to such variations. A DMU that appears 

efficient relative to others may become inefficient when these uncertainties are considered, or vice 

versa. In other words, if the collected data for a variable are not accurately represented in their 

true neutrosophic nature, the resulting efficiency scores can be inaccurate and misleading due to 

their sensitivity to the actual levels of inputs or outputs. Additionally, like any empirical 

technique, DEA relies on simplifying assumptions that researchers must acknowledge when 

interpreting the results. Recent research in DEA has aimed to address these limitations, but certain 

challenges persist. Firstly, the developed DEA models are not universally applicable for handling 

both deterministic variables and variables with neutrosophic variations. Secondly, the DEA 

models designed to accommodate neutrosophic variables often assume that all variables (whether 

inputs or outputs) share the same neutrosophic nature. 

Our primary focus is on assessing the performance of comparable DMUs with the goal of 

ensuring quality, identifying areas of deficiency, and ultimately enhancing their efficiency. Given 

this problem context, the principal objective of this research is to develop a Neutrosophic Input-

oriented Data Envelopment Analysis (NIODEA) model. This model will account for a blend of 

neutrosophic and deterministic input and/or output variables, effectively addressing the 

complexities of real-world scenarios. 

The remaining sections are categorized as follows. Some definitions pertaining to the 

triangular neutrosophic fuzzy number are introduced in the next section. The third section talks 

over the conventional DEA models. The suggested NIODEA model is presented in the fourth 

section. The next section includes an illustrative example. The study concludes with the 

customary findings and the future implications.  

2. Preliminaries 
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This section gives some brief overview for essential definitions of triangular neutrosophic 

concept to help in understanding the proposed model. 

Neutrosophic theory, a groundbreaking branch of mathematics and philosophy, ventures 

into the heart of uncertainty, ambiguity, and imprecision. It grapples with the fundamental notion 

that in the real world, many phenomena are not entirely true or false, but rather possess shades 

of truth, falsity, and indeterminacy. Traditional mathematics, rooted in classical logic, often 

struggles to capture the complexity of such situations. At the core of Neutrosophic theory are 

three fundamental components: neutrosophic sets, neutrosophic logic, and neutrosophic 

probability. These concepts provide a powerful framework for dealing with indeterminate and 

contradictory information, opening doors to a deeper understanding of complex systems and 

uncertain data. 

Neutrosophic sets allow us to represent elements with imprecise or conflicting attributes, 

offering a flexible alternative to the crisp sets of classical mathematics. Neutrosophic logic extends 

this flexibility by embracing degrees of truth, falsity, and indeterminacy in reasoning, enabling 

more realistic and nuanced decision-making. Neutrosophic probability, in turn, quantifies the 

likelihood of neutrosophic events, offering a richer perspective on uncertainty compared to 

traditional probability theory. Let 𝑊 to be a set of positive real numbers coupled with a variable, 

and 𝑤  to be a general element of W. A fuzzy set 𝐴  in 𝑊  is defined mathematically as the 

collection of ordered pairs: “𝐴 = {( 𝑤 , 𝜇𝐴 (𝑤)) | 𝑤𝜖 𝑊  }, where 𝜇𝐴 : is the MF and usually 

assumed to vary in the interval [0,1]”. 

A MF is a mapping that allocates ∀ 𝑤 ∈ 𝑊 a number, 𝜇𝐴(𝑤) ∈ [0,1] and represents the 

membership degree of 𝑤 in 𝐴. The closer value of 𝜇𝐴(𝑤) is to one, the largest membership of 𝑤 

in 𝐴. Hence, a fuzzy set 𝐴 may be accurately described by associating a number ranging from 0 

to 1 with each element 𝑤, which indicates its membership degree in 𝐴. The MF of a fuzzy set 𝐴 

may also be denoted by 𝐴(𝑤) [34]. 

Definition 1: [13] A fuzzy number �̃�𝑖 = (𝑤
1, 𝑤2, 𝑤3), where 𝑤1 ≤ 𝑤2 ≤ 𝑤3 on ℝ is a triangular 

fuzzy number if its MF define as follows: 

𝜇�̃�𝑖 =

{
  
 

  
 
0           , 𝑦 ≤  𝑤1           

𝑦−𝑤1

𝑤2−𝑤1
       , 𝑤1 <  𝑦 ≤ 𝑤2  

1            , 𝑥 = 𝑤2             
𝑤3−𝑦

𝑤3−𝑤2
       , 𝑤2 <  𝑦 ≤ 𝑤3     

0          , 𝑦 ≥ 𝑤3.              

                                   

(1) 

Definition 2: [35] Let us denote the space of objects by 𝑌 and its generic element as 𝑦, 𝑦 ∈ 𝑌. The 

neutrosophic set of �̃�𝑀  has the form �̃�𝑀 = {〈𝑦:𝑇𝒬𝑀(𝑦), 𝐼�̃�𝑀(𝑦), 𝐹�̃�𝑀(𝑦)〉, 𝑦 ∈

𝑌, 𝑇�̃�𝑀(𝑦), 𝐼�̃�𝑀(𝑦), 𝐹�̃�𝑀(𝑦) ∈ ]0
−, 1+[} , where 𝑇�̃�𝑀(𝑦), 𝐼𝒬𝑀(𝑦), 𝐹�̃�𝑀(𝑦)  are truth, indeterminacy, 

falsity MFs with the no restriction condition on their sum, 0− ≤ 𝑇𝒬𝑀(𝑦) + 𝐼�̃�𝑀(𝑦) + 𝐹�̃�𝑀(𝑦) ≤

3+, and ]0−, 1+[ is an irregular unit interval.   
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Definition 3: [35] A single valued neutrosophic set �̃�𝑆𝑉𝑁  of a nonempty set 𝑦 is constructed as 

�̃�𝑆𝑉𝑁 = {〈𝑦, 𝑇�̃�𝑀(𝑦), 𝐼�̃�𝑀(𝑦), 𝐹�̃�𝑀(𝑦)〉, 𝑦 ∈ 𝑌} , where 𝑇𝒬𝑀(𝑦), 𝐼𝒬𝑀(𝑦), and 𝐹�̃�𝑀(𝑦) ∈ [0,1]  and  0 ≤

𝑇�̃�𝑀(𝑦) + 𝐼𝒬𝑀(𝑦) + 𝐹𝒬𝑀(𝑦) ≤ 3. 

Definition 4: [36] Let ℒ�̃� , 𝛿�̃� ,ℱ�̃�  ∈ [0,1] 𝑤
1, 𝑤2, 𝑤3 ∈ ℝ such that 𝑤1 ≤ 𝑤2 ≤ 𝑤3 . Then a single 

valued triangular fuzzy neutrosophic set (SVTFN), �̃�𝑇𝑁 = 〈(𝑤1, 𝑤2, 𝑤3); ℒ�̃� , 𝛿�̃� , ℱ�̃�〉 is a special 

neutrosophic set on ℝ, whose truth, indeterminacy, falsity MFs are:  

𝑇�̃�𝑀(𝑦) =

{
  
 

  
 

         
0                                             , 𝑦 < 𝑤1              

(𝑦−𝑤1)ℒ
�̃�𝑇𝑁

𝑤2−𝑤1
                           , 𝑤1 ≤  𝑦 ≤ 𝑤2   

(𝑐−𝑦)ℒ
�̃�𝑇𝑁

𝑤3−𝑤2
                         , 𝑤2 ≤  𝑦 ≤ 𝑤3   

    
0                                     , 𝑦 > 𝑤3           

  

                       (2) 

𝐼�̃�𝑀(𝑦) =

{
  
 

  
 
0                                               , 𝑦 < 𝑤1        

         
(𝑤2−𝑦)+(𝑦−𝑤1)𝛿

�̃�𝑇𝑁

𝑤2−𝑤1
                 , 𝑤1 <  𝑦 ≤ 𝑤2  

(𝑦−𝑤2)+(𝑤3−𝑦)𝛿
�̃�𝑇𝑁

𝑤3−𝑤2
                  , 𝑤2 <  𝑦 ≤ 𝑤3   

    
0                                             ,𝑤3 > 𝑐         

   

                  (3) 

𝐹�̃�𝑀(𝑦) =

{
  
 

  
 

0                                           , 𝑦 < 𝑤1        
         

(𝑤2−𝑦)+(𝑦−𝑤1)ℱ
�̃�𝑇𝑁

𝑤2−𝑤1
                 , 𝑤1 <  𝑦 ≤ 𝑤2  

(𝑦−𝑤2)+(𝑤3−𝑦)ℱ
�̃�𝑇𝑁

𝑤3−𝑤2
                  , 𝑤2 <  𝑦 ≤ 𝑤3   

    
0                                             , 𝑦 > 𝑤3         

 

               (4) 

Definition 5: [36] let �̃�𝑇𝑁 = 〈(𝑎, 𝑏, 𝑐); ℒ�̃�𝑇𝑁 , 𝛿�̃�𝑇𝑁 , ℱ�̃�𝑇𝑁〉 be SVTFN, then  

1. Score function 𝑆𝐹(�̃�𝑇𝑁) = (
1

4
(𝑎 + 2𝑏 + 𝑐)) (

1

3
(2 + ℒ�̃�𝑇𝑁 − 𝛿�̃�𝑇𝑁 − ℱ�̃�𝑇𝑁))     (5) 

2. Accuracy function 𝐴𝐹(�̃�𝑇𝑁) = (
1

4
(𝑎 + 2𝑏 + 𝑐)) (

1

3
(2 + ℒ�̃�𝑇𝑁 − 𝛿�̃�𝑇𝑁 + ℱ�̃�𝑇𝑁)) (6) 

Definition 6: [35] let �̃�𝑇𝑁 = 〈(𝑎, 𝑏, 𝑐); ℒ�̃�𝑇𝑁 , 𝛿�̃�𝑇𝑁 , ℱ�̃�𝑇𝑁〉 and �̃�𝑇𝑁 = 〈(𝑎1, 𝑏1, 𝑐1); ℒ𝑢𝑇𝑁 , 𝛿�̃�𝑇𝑁 ,ℱ𝑢𝑇𝑁〉 be 

two SVTFN, the arithmetic operations on �̃�𝑇𝑁 and �̃�𝑇𝑁 as follows: 

1. �̃�𝑇𝑁⊕ �̃�𝑇𝑁 = 〈(𝑎 + 𝑎1, 𝑏 + 𝑏1, 𝑐 + 𝑐1, ); ℒ�̃�𝑇𝑁⋀ℒ�̃�𝑇𝑁 , 𝛿�̃�𝑇𝑁⋁𝛿𝑢𝑇𝑁,ℱ�̃�𝑇𝑁⋁ℱ𝑢𝑇𝑁〉    (7) 

2. �̃�𝑇𝑁⊖ �̃�𝑇𝑁 = 〈(𝑎 − 𝑎1, 𝑏 − 𝑏1, 𝑐 − 𝑐1, ); ℒ�̃�𝑇𝑁⋀ℒ�̃�𝑇𝑁 , 𝛿�̃�𝑇𝑁⋁𝛿𝑢𝑇𝑁,ℱ�̃�𝑇𝑁⋁ℱ𝑢𝑇𝑁〉    (8) 

3. 𝓃�̃�𝑇𝑁 = {
〈(𝓃𝑎,𝓃𝑏,𝓃𝑐); ℒ�̃�𝑇𝑁 , 𝛿�̃�𝑇𝑁 ,ℱ�̃�𝑇𝑁〉,𝓃 > 0

〈(𝓃𝑐,𝓃𝑏,𝓃𝑎); ℒ�̃�𝑇𝑁 , 𝛿�̃�𝑇𝑁 ,ℱ�̃�𝑇𝑁〉,𝓃 < 0
                             (9) 

4. �̃�𝑇𝑁
−1
= 〈(𝑎−1, 𝑏−1, 𝑐−1); ℒ�̃�𝑇𝑁 , 𝛿�̃�𝑇𝑁 ,ℱ�̃�𝑇𝑁〉, �̃�

𝑇𝑁 ≠ 0                     (10) 

Definition 7: [35] the order relation between �̃�𝑇𝑁 and �̃�𝑇𝑁 based on score and accuracy functions 

are:  
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1. If 𝑆𝐹(�̃�𝑇𝑁) > 𝑆𝐹(�̃�𝑇𝑁), then �̃� > �̃�  

2. If 𝑆𝐹(�̃�𝑇𝑁) < 𝑆𝐹(�̃�𝑇𝑁), then �̃� < �̃�  

3. If 𝑆𝐹(�̃�𝑇𝑁) = 𝑆𝐹(�̃�𝑇𝑁), then  

a) If 𝐴𝐹(�̃�𝑇𝑁) > 𝐴𝐹(�̃�𝑇𝑁), then �̃� > �̃� 

b) If 𝐴𝐹(�̃�𝑇𝑁) < 𝐴𝐹(�̃�𝑇𝑁), then �̃� < �̃� 

c) If 𝐴𝐹(�̃�𝑇𝑁) = 𝐴𝐹(�̃�𝑇𝑁), then �̃� = �̃� 

3. DEA Mathematical Model 

DEA's essential model with ‘𝑛’ DMUs, ‘𝐽’ inputs and ‘𝑆’ outputs was first introduced in 

[2]. The model provides the relative efficiency scores for all DMUs and it hinges on optimizing a 

DEA-estimated production function, it is a deterministic frontier function.  The DEA estimate 

value for all inputs provides the maximum output that can be achieved from inputs under all 

conditions. Conversely, for any outputs, the DEA value estimate the minimum input achieving a 

certain output under all scenarios. In this regard, it resembles the parametric frontier with one-

sided deviations determined utilizing mathematical programming techniques. 

The DEA model may be categorized as either having constant returns to scale (CRS) or 

variable returns to scale (VRS) based on the assumptions connecting the change in outputs to the 

change in inputs (VRS). In CRS models, the outputs are not impacted by the size of the DMU; 

rather, they vary directly proportional to the change in inputs, assuming that the scale of 

operation has no effect on efficiency; hence, output and input oriented measures of efficiency are 

equivalent. In VRS models, changes in outputs are not always proportionate to changes in inputs; 

hence, output and input oriented measures of efficiency scores for inefficient units are not 

equivalent [37].  This work focuses on the input-oriented VRS model, which may be described 

as follows:  

Min    𝑍𝑝 = 𝜃 

s. t.  

        ∑𝜆𝑖𝑥𝑖𝑗

𝑛

𝑖=1

 ≤  𝜃𝑥𝑝𝑗         , ∀ 𝑗 = 1,… 𝐽 

        ∑𝜆𝑖𝑦𝑖𝑠 ≥ 𝑦𝑝𝑠            , ∀ 𝑠

𝑛

𝑖=1

= 1,… 𝑆                                                                                           (11)  

      ∑𝜆𝑖 = 1

𝑛

𝑖=1

 

        𝜆𝑖  ≥ 0                         , ∀ 𝑖 = 1,…𝑛 

Where 𝜃  is the efficiency score of DMU p; 𝑠 is the no. of outputs, 1 ≤ 𝑠 ≤ 𝑆; 𝑗 is the no. of 

inputs, 1 ≤ 𝑗 ≤ 𝐽; i is the no. of DMUs, 1 ≤ 𝑖 ≤ 𝑛; 𝑦𝑖𝑠  is the amount of outputs produced by the 
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𝑖𝑡ℎ DMU; 𝑥𝑖𝑗  is the amount of the 𝑗𝑡ℎinput utilized by the 𝑖𝑡ℎDMU; and 𝜆𝑖 is the weight of the 

𝑖𝑡ℎDMU. 

4. Developed neutrosophic input-oriented Data Envelopment Analysis 

Model 

Now we are going to formulate a NIODEA model in order to evaluate quality by 

comparing the performance of similar organizations, assuming that some of the input and/or 

output variables may be in neutrosophic settings. Here, we introduce our modification to the 

conventional DEA model in order to evaluate relative efficiency in the case of neutrosophic 

variation in a portion of the outputs and/or inputs. The constructed NIODEA model relies on 

the score function. The restriction affecting some of the input and/or output values in the DEA 

model will be a neutrosophic inequality that may sometimes be violated. Since an inequality 

incorporating several neutrosophic variables may never be established with crisp. The suggested 

model consists of three stages. First, the MF for neutrosophic input and output variables is 

specified. Finding the score and accuracy function for neutrosophic variables based on the MF is 

the second stage. In the third step, each DMU's relative efficiency score is determined. The 

NIODEA model for evaluating the efficiency level of 𝑝th DMU is as follows: 

Min    �̃�𝑝
𝑇𝑁
= 𝜃 

𝑠. 𝑡.   

∑𝜆𝑖𝑥𝑖𝑗

𝑛

𝑖=1

 ≤  𝜃𝑥𝑝𝑗    , ∀𝑗 ∈ 𝐽𝐷 

∑𝜆𝑖𝑥𝑖𝑗
𝑇𝑁

𝑛

𝑖=1

 ≤  𝜃𝑥𝑝𝑗
𝑇𝑁   , ∀𝑗 ∈ 𝐽𝑁 

∑𝜆𝑖𝑦𝑖𝑠 ≥ 𝑦𝑝𝑠

𝑛

𝑖=1

       , ∀𝑠

∈ 𝑆𝐷                                                                                                      (12) 

∑𝜆𝑖�̃�𝑖𝑠
𝑇𝑁 ≥ �̃�𝑝𝑠

𝑇𝑁

𝑛

𝑖=1

      , ∀𝑠 ∈ 𝑆𝑁    

∑𝜆𝑖 = 1

𝑛

𝑖=1

 

𝜆𝑖  ≥ 0,       (𝑖 = 1: 𝑛)                                                

  

where  𝐽𝐷   is the deterministic inputs set, 𝐽𝑁  is the neutrosophic inputs set, 𝐽 is the total inputs 

set, i.e., 𝐽𝐷 ∪ 𝐽𝑁 = 𝐽. 𝑆𝐷  is the deterministic outputs set, 𝑆𝑁  is the neutrosophic outputs set, and 

S is total outputs set,  𝑆𝐷 ∪ 𝑆𝑁 = 𝑆. 
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Comparing model (11) to model (12), it is clear that each of the two constraints controlling the 

inputs and outputs is split into two constraints in order to manage the deterministic variables 

separately from the neutrosophic variables.  

In the suggested model, it is assumed that the neutrosophic variables have triangle MFs. 

Depending on the score function described in Section 2, the triangular NIODEA model was 

transformed to a standard DEA model that can be solved easily. 

Min 𝑍𝑝 = 𝜃 

𝑠. 𝑡.   

∑𝜆𝑖𝑥𝑖𝑗

𝑛

𝑖=1

 ≤  𝜃𝑥𝑝𝑗    , ∀𝑗 ∈ 𝐽𝐷 

∑𝜆𝑖𝑆𝐹(𝑥𝑖𝑗
𝑇𝑁)

𝑛

𝑖=1

 ≤  𝜃𝑆𝐹(𝑥𝑝𝑗
𝑇𝑁)   , ∀𝑗 ∈ 𝐽𝑁 

∑𝜆𝑖𝑦𝑖𝑠 ≥ 𝑦𝑝𝑠

𝑛

𝑖=1

         , ∀𝑠

∈ 𝑆𝐷                                                                                                      (13) 

∑𝜆𝑖𝑆𝐹(�̃�𝑖𝑠
𝑇𝑁) ≥ 𝑆𝐹(�̃�𝑝𝑠

𝑇𝑁)

𝑛

𝑖=1

      , ∀𝑠 ∈ 𝑆𝑁    

∑𝜆𝑖 = 1

𝑛

𝑖=1

 

𝜆𝑖  ≥ 0,        (𝑖 = 1: 𝑛)           

5. Illustrative Example 

In this section, a numerical model is employed to demonstrate the application of the 

improved model. Seven DMUs (D1, D2, …., D7) with three inputs (N1, N2 and N3) two are 

deterministic (N1 and N2) and (N3) is neutrosophic. The outputs are O1 and O2, where (O1) is 

deterministic and (O2) is neutrosophic. The values are considered in the following hypothetical 

example. The data for deterministic variables are presented in Table 1, while those for 

neutrosophic variables are given in Table 2. The objective of this problem is to evaluate the relative 

efficiency of the DMUs using the NIODEA model that we have developed. 

Before formulating and solving the problem, we must compute the score function for each 

neutrosophic variable (input or output). Table 3 presents the computed values. 

 

Table 1 Hypothetical data for the DMUs' deterministic variables 

DMUs Inputs Output 

N 1 N 2 O 1 

D1 6.11 4.36 0.21 

D2 3.66 2.54 0.12 
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D3 1.44 0.48 0.14 

D4 1.21 0.23 0.10 

D5 2.75 1.40 0.10 

D6 4.18 2.74 0.06 

D7 6.39 3.36 0.18 

 

Table 2 Hypothetical neutrosophic variables data for DMUs 

DMUs Input Output 

N 3 O 2 

D1 〈(1.76, 7.27, 12.27); 0.9,0.4,0.1〉 〈(0.12, 0.19, 0.27); 1.0, 0.0,0.0〉 

D2 〈(3.85, 4.65, 5.53); 0.9,0.7,0.1〉 〈(0.00, 0.10, 0.24); 1.0,0.0,0.0〉 

D3 〈(1.33, 1.88, 3.38); 0.9, 0.4, 0.1〉 〈(0.05, 0.10, 0.16); 1.0,0.0,0.0〉 

D4 〈(0.78, 1.48, 2.06); 0.8, 0.5, 0.1〉 〈(0.00, 0.06, 0.16); 1.0,0.0,0.0〉 

D5 〈(3.22, 3.63, 4.61); 0.8, 0.5, 0.2〉 〈(0.02, 0.07, 0.17); 1.0,0.0,0.0〉 

D6 〈(4.30, 6.13, 8.03); 0.9, 0.5,0.2〉 〈(0.00, 0.06, 0.15); 1.0,0.0,0.0〉 

D7 〈(4.40, 8.00, 10.68); 0.9, 0.4, 0.1〉 〈(0.06, 0.17, 0.30); 1.0,0.0,0.0〉 

 

Table 3 Score functions of N3, O2 

DMUs Input Output 

N 3 O 2 

D1 5.71 0.19 

D2 3.27 0.11 

D3 1.69 0.10 

D4 1.06 0.07 

D5 2.64 0.08 

D6 4.51 0.07 

D7 6.22 0.18 

Each DMU requires a linear programming formulation to evaluate its relative efficiency. 

Below is D1's linear programming model. 

Min 𝑍𝐴 = 𝜃 

𝑠. 𝑡.   

6.11𝜆𝐷1 + 3.66𝜆𝐷2 + 1.44𝜆𝐷3  +  1.21𝜆𝐷4 + 2.75𝜆𝐷5 + 4.18𝜆𝐷6 + 6.39𝜆𝐷7 ≤  6.11𝜃 

4.36𝜆𝐷1 + 2.54𝜆𝐷2 + 0.48𝜆𝐷3  +  0.23𝜆𝐷4 + 1.04𝜆𝐷5 + 2.74𝜆𝐷6 + 3.36𝜆𝐷7 ≤  4.36𝜃 

5.716𝜆𝐷1 + 3.27𝜆𝐷2 + 1.69𝜆𝐷3  +  1.06𝜆𝐷4 + 2.64𝜆𝐷5 + 4.51𝜆𝐷6 + 6.22𝜆𝐷7 ≤  5.71𝜃 

0.21𝜆𝐷1 + 0.12𝜆𝐷2 + 0.14𝜆𝐷3  +  0.10𝜆𝐷4 + 0.10𝜆𝐷5 + 0.06𝜆𝐷6 + 0.18𝜆𝐷7 ≥  0.21 

0.19𝜆𝐷1 + 0.11𝜆𝐷2 + 0.10𝜆𝐷3  +  0.07𝜆𝐷4 + 0.08𝜆𝐷5 + 0.07𝜆𝐷6 + 0.18𝜆𝐷7 ≥  0.19 

𝜆𝐷1 + 𝜆𝐷2 + 𝜆𝐷3  + 𝜆𝐷4 + 𝜆𝐷5 + 𝜆𝐷6 + 𝜆𝐷7 = 1 

𝜆𝐷𝑖  ≥ 0, (𝑖 = 1: 7).                                                         (14) 

 

Furthermore, relative efficiency models are formulated for DMUs D2 to D7. The models 

are then solved using GAMS software. The relative efficiency of each DMU is listed in Table 4. 

Table 4 Relative efficiency 

DMUs NIODEA Fuzzy IODEA Stochastic IODEA 
Deterministic 

IODEA 

D1 1 1 0.59 1 
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D2 0.65 0.36 1 0.40 

D3 1 1 1 1 

D4 1 1 1 1 

D5 0.48 0.44 1 0.46 

D6 0.29 0.29 0.99 0.29 

D7 1 0.80 0.84 1 

 

 The provided table displays the efficiency scores for each DMUs obtained from the 

NIODEA model. A careful look at the efficiency scores for the seven DMUs reveals that four are 

efficient (DMUs D1, D3, D4, and D7), while the other three are inefficient (DMUs D2, D5, and D6). 

Two of the three ineffective DMUs are quite unproductive (D5 and D6). We provided suggestions 

for improving the inefficient DMUs to enhance its performance by conduct a comprehensive 

analysis with efficient DMUs to identify the factors causing inefficiency and then explore ways to 

optimize resource utilization or improve the quality of outputs.  

Comparatively, we also designed relative efficiency models for three distinct cases: the 

first with the neutrosophic variables considered fuzzy, the second with the neutrosophic variables 

considered stochastic, and the third with all variables considered deterministic. The models 

established by Tharwat et al. [17] and El-Demerdash et al. [38] were applied to the first and second 

cases, respectively. In the first scenario, we assume the three values for the triangular 

neutrosophic variable to represent the values for the triangle fuzzy variable so that the fuzzy 

IODEA model may be executed. To run the stochastic IODEA model for the stochastic variables 

in the second scenario, we averaged the three values for the neutrosophic function to represent 

the mean and assumed the variance and covariance between DMUs. In the last scenario, the 

neutrosophic variables' average values were used as the deterministic values. Table 4 also 

displays the relative efficacy of these three cases.  

Table 4 demonstrates that the nature of the variables may have a significant impact on 

the relative efficiency of the DMUs. As seen by the data in Table 4, several DMUs have altered 

their status from efficient to inefficient and conversely. DMUs (D1, D3, D4, and D7) consistently 

exhibit high efficiency scores (close to or equal to 1) across all models. This suggests that they are 

consistently efficient regardless of the modeling approach used. DMU D2 displays a variable level 

of efficiency across different models. It is efficient in the Stochastic IODEA model but less so in 

the Fuzzy IODEA and Deterministic IODEA models. This highlights the sensitivity of its 

efficiency to the modeling methodology. DMUs (D5 and D6) demonstrate consistently lower 

efficiency scores across all models, indicating a need for improvement in their performance. 

Therefore, to get accurate findings about the efficacy and inefficacy of the investigated DMUs, it 

is essential to identify the precise nature of the variables. In addition, the results indicate that the 

NIODEA model, due to its integration of various uncertainty dimensions, may offer a more 

comprehensive yet complex view of efficiency. The Fuzzy IODEA model tends to provide lower 

efficiency scores and may be less suitable for these DMUs. The Stochastic IODEA model appears 

to be sensitive to variations, assigning high efficiency scores even for DMUs that are less efficient 
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than other models. Finally, the NIODEA model yields more accurate and reliable results than the 

classic DEA model and its variations, such as the fuzzy and stochastic DEA models. 

6. Conclusion and Future Work 

In this research, we introduce a novel approach, the NIODEA model, designed to handle 

both deterministic and neutrosophic variables. This innovative model, utilizing a specified 

scoring function and triangular Membership Functions (MFs) for neutrosophic variables, enables 

us to effectively assess the relative efficiency of Decision-Making Units (DMUs). The illustrative 

example highlights the profound impact of the inherent characteristics of variables on the 

determination of relative efficiency. It demonstrates how variables can shift the status of DMUs 

from efficient to inefficient, and vice versa. This underscores the critical importance of precisely 

defining variable structures and selecting the appropriate DEA model to ensure the generation of 

dependable results. 

Our research emphasizes the sensitivity of DEA efficiency measurements to changes in 

variable nature. An initially efficient DMU, relative to others, can become inefficient when 

uncertainty variations are considered, and conversely, due to the high sensitivity of efficiency 

scores to variable levels of inputs or outputs. Hence, it is imperative to discern the nature of 

variables from the outset and apply the most suitable DEA model to attain accurate and reliable 

outcomes. By implementing the four different models in our illustrative example, we observed 

similarities in efficient DMUs and disparities in inefficient DMUs regarding their efficiency levels. 

As part of our future research agenda, we intend to apply the developed NIODEA model to real-

world scenarios, thereby enhancing its practicality and relevance. Additionally, we aim to 

augment the model's versatility by exploring alternative MFs for neutrosophic variables. Our 

ongoing work will concentrate on the development of an integrated IODEA model capable of 

handling deterministic, neutrosophic, and stochastic variables, further contributing to the field of 

decision analysis. 
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Abstract. The circular economy has become a crucial approach to address the environmental and economic challenges associated 

with sustainable production and consumption. Instead of the traditional linear model of "take, make, use, and dispose of", the 

circular economy seeks to close material and resource cycles, minimize waste and maximize added value throughout the supply 

chain. In this context, the different strata of the Peruvian economy play an important role in the transition toward a circular 

economy. However, several indicators have been identified that show poor performance in this form of development. The pur-

pose of this study is to identify the opportunities for the implementation of the circular economy model in the Peruvian economy. 

The investigation results provide a comprehensive vision of the pitfalls and congruences for implementing this strategy. Neutro-

sophic cognitive maps were selected as a study tool, which represents relationships between concepts; in this case, indeterminacy 

is also included to represent unknown, neutral, imprecise relationships, etc. between concepts. To design the dynamic neutro-

sophic cognitive map, 14 circular economy specialists were surveyed, based on their individual and independent criteria and so 

the model was obtained. Then, from the run of all the possible cases according to the algorithm of seeking the hidden patterns, 

the absolute and relative frequencies for the convergence to each one of the possible values were obtained. 

 

Keywords: Circular Economy, Sustainable Development, Neutrosophic Cognitive Maps, Neutrosophic Number.

 

1 Introduction 

The circular economy is a strategy that aims to reduce both the input of materials and the production of virgin 
waste, closing the "loops" or economic and ecological flows of resources. It encompasses much more than the 

production and consumption of goods and services, as it includes, among other aspects, the switch from fossil fuels 
to the use of renewable energy, and diversification as a means of achieving resilience. As part of the debate, it 
should also include a deep discussion on the role and use of money and finance, and some of its pioneers have also 

called for renewing the tools for measuring economic performance. 
Peru has not developed coordinated actions for the establishment of circular economy processes, so it is nec-

essary to use international indicators that are utilized to measure the scope and optimal use of this form of man-
agement. The authors, based on the thematic analysis of twenty authors, set as references the following: 

a) Recycling rate: It is the percentage of materials recycled of the total materials generated. Measures the effec-
tiveness of the material recycling and reuse system. 

b) Consumption of natural resources: A measure of the total consumption of natural resources, such as water, 

minerals, wood, and energy, compared to the country's economic output. 
c) Added value per material: This indicator shows how much economic value is generated per unit of material 

used. Greater efficiency in the use of materials may indicate a more circular economy. 
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d) Carbon footprint: It is the total amount of greenhouse gas emissions produced by a specific nation, company, 
or activity. The circular economy seeks to reduce these emissions throughout the life cycle of products. 

e) Municipal Waste Recycling Rate: Measures the percentage of recycled waste instead of being sent to landfills 

or incinerated. 
f) Number of companies adopting circular practices: Counts the number of companies that have implemented 

circular economy strategies, such as design for recycling, use of recycled materials, and service-based business 

models. 
g) Number of Refurbished Products: Measures the number of products that are repaired or refurbished rather 

than scrapped and replaced. 

h) Investment in research and development in the circular economy: Measures the level of investment in research 
and development of technologies and practices related to the circular economy. 
Neutrosophic Cognitive Maps are used as a study tool [1]. These are defined as directed graphs, where the 

nodes represent concepts and the edges represent causal relationships between the concepts. In the theory of Cog-

nitive Maps, each edge is associated with a numerical value in the set {−1, 0, 1}, where -1 represents that the cause-
effect relationship is negative (if the value of one concept increases, the value of the other decreases and vice 
versa), 0 represents the absence of a relationship between the concepts, while 1 represents a positive relationship 

(when the presence of one concept increases, the other also increases and vice versa) [2]. In the case of the Dynamic 
Neutrosophic Cognitive Maps, the symbol “I” also appear to indicate that the relationship between the concepts is 
not exactly known. This tool has been applied in many problems [1, 3-8]. 

The difficult with designing a circular economy is that it is a complex phenomenon, where there are non-linear 

relationships between variables, in addition to the fact that some of the relationships may be conflicting or contra-
dictory, for example, a successful economy in the short or medium term can be more efficient if it ignores the care 
of the environment, however in the long term it will fail. For all this, this work is also in tune with the theory of 

Neutrosophic Systems and Neutrosophic Dynamic Systems introduced by F. Smarandache in [9]. 
Dynamic Systems is a methodology for analyzing and modeling temporal behavior in complex environments. 

It is based on the identification of feedback loops between elements, and also on information and material delays 

within the system. What makes this approach different from others used to study complex systems is the analysis 
of the effects of loops or feedback loops, in terms of flows and adjacent deposits. In this way, the dynamics of the 
behavior of these systems can be structured through mathematical models. The simulation of these models can 
currently be performed with the help of specific computer programs. 

To obtain the elements of the cognitive map, 14 Peruvian specialists in Circular Economy were surveyed, who 
gave their opinion on the subject, each one individually. In this way, by simulating all possible cases, the absolute 
frequency was calculated for the system to converge to one of the three possible values, that is, for the system to 

converge to an activated (1), deactivated (0), and indeterminate value (I), for each of the possible states. This 
problem is treated as a non-linear system, within the framework of Neutrosophy  

This study aims to determine the elements of the circular economy that are opportunities and those that are 
challenges, for the current economy of Peru. 

This paper is divided into sections, the next one is called Materials and Methods, where the fundamental con-
cepts of Dynamic Neutrosophic Cognitive Maps are explained. The Results section contains the elements used for 
the study and the results obtained. Last section is dedicated to give the conclusions. 

2 Materials and Methods 

Neutrosophic Cognitive Maps will be used in this study, so we explain them in the following. 

2.1 Neutrosophic Cognitive Maps 

Definition 1: ([10, 11]) Let X be a universe of discourse. A Neutrosophic Set (NS) is characterized by three 

membership functions, uA(x), rA(x), vA(x) ∶ X →  ] 0
− , 1+[ , which satisfy the condition 0 ≤− inf uA(x) +

inf rA(x) + inf vA(x) ≤ sup uA(x) + sup rA(x) + sup vA(x) ≤ 3
+   for all xX .uA(x), rA(x)  and vA(x)are the 

membership functions of truthfulness, indeterminacy and falseness of x in A, respectively, and their images are 

standard or non-standard subsets of ] 0− , 1+[. 
Definition 2: ([12, 13]) Let X be a universe of discourse. A Single-Valued Neutrosophic Set (SVNS) A on X 

is a set of the form: 

A =  {〈x, uA(x), rA(x), vA(x)〉: x ∈ X} (1) 
Where uA , rA, vA ∶ X →  [0,1] , satisfy the condition 0 ≤ uA(x) + rA(x) + vA(x) ≤  3 for all xX . 

uA(x), rA(x) and vA(x) are the membership functions of truthfulness, indeterminate and falseness of x in A, re-
spectively. For convenience, a Single-Valued Neutrosophic Number (SVNN) will be expressed as A =  (a, b, c), 
where a, b, c  [0,1] and satisfy 0 ≤  a +  b +  c ≤  3. 

Other important definitions are related to the graphs. 
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Definition 3: ([12, 14]) A Neutrosophic graph contains at least one indeterminate edge, represented by dotted 
lines. 

Definition 4: ([12, 14]) A Neutrosophic directed graph is a directed graph containing at least one indeterminate 

edge, which is represented by dotted lines. 
Definition 5: ([5, 7]) A Neutrosophic Cognitive Map (NCM) is a neutrosophic directed graph, whose nodes 

represent concepts and whose edges represent causal relationships among the edges. 

Let C1, C2,… , Ck be k nodes, each of the Ci (i =  1, 2,… , k) can be represented by a vector (x1, x2, … , xk) 
where xi{0, 1, I}. xi =  1 means that the node Ci is in an activated state, xi =  0 means that the node Ci is in a 

deactivated state and xi =  I means that the node Ci is in an indeterminate state, in a specific time or a specific 

situation [15]. 

If Cm and Cn are two nodes of the NCM, a directed edge from Cm to Cn is called a connection and represents 

the causality from Cm to Cn. Each node in the NCM is associated with a weight within the set {−1, 0, 1, I}. If αmn 

denote the weight of the edge CmCn, αmn{−1, 0, 1, I}, then we have the following: 

αmn  =  0 if Cm does not affect Cn, 

αmn  =  1 if an increase (decrease) in Cm produces an increase (decrease) in Cn, 

αmn  =  −1 if an increase (decrease) in Cm produces a decrease (increase) in Cn, 

αmn  = I if the effect of Cm on Cn is indeterminate. 

Definition 6: ([5, 7]) A NCM having edges with weights in {−1, 0, 1, I} is called Simple Neutrosophic Cogni-

tive Map. 

Definition 7: ([5, 7]) If C1, C2,… , Ck are the nodes of an NCM. The neutrosophic matrix N( E) is defined as 

N(E)  =  (αmn ), where αmn  denotes the weight of the directed edge CmCn, such that αmn {−1, 0, 1, I}. N(E) is 

called the neutrosophic adjacency matrix of the NCM. 

Definition 8: ([5, 7]) Let C1, C2, … , Ck be the nodes of an NCM. Let A =  (a1, a2,… , ak), where 

am{−1, 0, 1, I}. A is called an instantaneous state neutrosophic vector and means a position on-off-indetermi-

nate state of the node in a given instant. 

am  =  0 if Cm is deactivated (has no effect), 

am  =  1 if Cm is activated (has an effect), 

and am  =  I if it is indeterminate (its effect cannot be determined). 

Definition 9: ([5, 7]) Let C1, C2, … , Ck be the nodes of an NCM. Let C1C2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, C2C3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, C3C4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗,…, CmCn⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   be the edges 
of the NCM, then the edges constitute a directed cycle. 

The NCM is called cyclic if it has a directed cycle. It is said acyclic if it has not a directed cycle. 
Definition 10: ([5, 7]) A NCM containing cycles is said to have feedback. When there is feedback in the NCM, 

it is said that it is a dynamic system. 

Definition 11: ([5, 7]) Let C1C2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, C2C3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, C3C4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗,…, Ck−1Ck⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  be a cycle. When Cm is activated and its causality 

flows through the edges of the cycle and then it is the cause of Cm itself, then the dynamic system circulates. This 

is fulfilled for each node Cm with m =  1, 2,… , k. The equilibrium state for this dynamic system is called the 

hidden pattern. 

Definition 12: ([5, 7]) If the equilibrium state of a dynamic system is a single state, then it is called a fixed 
point. 

An example of a fixed point is when a dynamic system starts for being activated by Cl. If it is assumed that the 

NCM sits on Cl and Ck, i.e. the state remains as (1, 0, . . . , 0, 1), then this vector of the neutrosophic state is called 
a fixed point. 

Definition 13: ([5, 7]) If the NCM is established with a neutrosophic state-vector that repeats itself in the form: 

A1 → A2 → ⋯ → Am → A1, then the equilibrium is called a limit cycle of the NCM. 

Method for Determining the Hidden Patterns 

Let C1, C2,… , Ck be the nodes of the NCM with feedback. Assume that E is the associated adjacency matrix. 

A hidden pattern is found when Cl is activated and a vector input A1  =  (1, 0, 0,… , 0) is given. The data must 

pass through the neutrosophic matrix N(E), which is obtained by multiplying A1 by the matrix N(E). 
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Let A1N(E)  =  (α1, α2, … , αk) with the threshold operation of replacing αm by 1 if αm > 𝑝 and αm  by 0 if 

αm < 𝑝 (p is a suitable positive integer) and αm is replaced by I if this is not an integer. The resulting concept is 

updated; the vector C1 is included in the updated vector by transforming the first coordinate of the resulting vec-
tor into 1. 

If A1N(E) A2 is assumed then A2N(E) is considered and the same procedure is repeated. This procedure is 

repeated until a limit cycle or fixed point is reached. 

Definition 14: ([16]) A neutrosophic number N is defined as a number as follows: 
N = d+ I (2) 

Where d is called the determined part and I is called the indeterminate part. 

Given N1 = a1 + b1I and N2 = a2 + b2I two neutrosophic numbers, some operations between them are de-
fined as follows: 

N1 + N2 = a1 + a1 + (b1 + b2)I (Addition); 

N1 − N2 = a1 − a1 + (b1 − b2)I (Difference), 

N1 × N2 = a1a2+ (a1b2 + b1a2 + b1b2)I (Product), 

N1

N2
=
a1+b1I

a2+b2I
=
a1

a2
+
a2b1−a1b2

a2(a2+b2)
I (Division). 

3 Results 

To reach the expected results, the following procedure was followed: 

1. 14 Circular Economy specialists were asked to give their opinion on a scale from -10 to 10, including 0, 
in addition to being asked to use the symbol I as an indicator that they do not know, about the possible 
relationship between each pair of the following variables: 
V1: Recycling rate. 

V2: Consumption of natural resources. 
V3: Added value by material. 
V4: Carbon footprint. 

V5: Municipal waste recycling rate. 
V6: Number of companies adopting circular practices. 
V7: Number of retrofitted products. 

V8: Investment in research and development in circular economy. 
This is justified because it is easier for specialists to evaluate on this scale than on a more restrictive one 
in the range of {−1,0,1, 𝐼}. -10 means a complete inverse relationship, 10 means a complete direct rela-
tionship, and 0 means that there is no relationship between the variables. Values between -9 and -1 or 

between 1 and 9 represent intermediate opinions between the three previous values. 
Each specialist was surveyed individually and independently from the rest to avoid influencing the an-
swers. 

In other words, formally if we call 𝐸 = {𝑒1, 𝑒2,⋯ , 𝑒14} to the set of 14 experts. 𝑅𝑖𝑗𝑘 symbolizes the relation-

ship between the jth and kth criteria (𝑗, 𝑘 ∈ {1,2,… ,8}, 𝑗 ≠ 𝑘) according to the expert 𝑒𝑖 ( 𝑖 = 1,2,… ,14) such 

that 𝑅𝑖𝑗𝑘 ∈ {−10, −9,⋯ , −1,0,1,⋯ ,9,10, 𝐼}. 

2. The numerical values of 𝑅𝑖𝑗𝑘 are calculated �̂�𝑖𝑗𝑘 = 𝑟𝑜𝑢𝑛𝑑 (
𝑅𝑖𝑗𝑘

10
) and 𝑅𝑖𝑗𝑘 = 𝐼 if �̂�𝑖𝑗𝑘 = 𝐼. 

It approximates -0.5 to -1 and 0.5 to 1. 

3. For each fixed pair 𝑗, 𝑘 ∈ {1,2,… ,8}, it is calculated �̅�𝑗𝑘 as follows: 

 If the mode of �̂�𝑖𝑗𝑘 for 𝑖 = 1,2,… ,14 is unimodal, take �̅�𝑗𝑘 = 𝑚𝑜𝑑𝑒𝑖(�̂�𝑖𝑗𝑘) and �̅�𝑘𝑗 = 0. 

 If the mode of �̂�𝑖𝑗𝑘 for 𝑖 = 1,2,… ,14 is not unimodal, it is defined as follows: 

 If �̂�𝑖𝑘𝑗 for 𝑖 = 1,2,… ,14 is unimodal, take �̅�𝑘𝑗 = 𝑚𝑜𝑑𝑒𝑖(�̂�𝑖𝑘𝑗) and �̅�𝑗𝑘 = 0. 

 If �̂�𝑖𝑘𝑗 for 𝑖 = 1,2,… ,14 is not unimodal, take �̅�𝑗𝑘 = �̅�𝑘𝑗 = 𝐼. 

4. In this way, the adjacency matrix is formed with the elements �̅�𝑗𝑘 obtained from this algorithm. 

 
After applying the surveys to the 14 specialists and processing the data obtained with the help of the previous 

algorithm, we arrive at the following adjacency matrix: 
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N(E) =  

(

 
 
 
 
 

0
0
0
0
1
0
0
I

 

−1
0
I
0
−1
−1
−1
I

 

1
I
0
0 
0
1
1
1

−1
1
−1
0 
−1
−1
−1
−1

0
0
1
0
0
0
0
1

1
0
0
 0 
1
0
0
1

1
0
0
0 
1
1
0
1

I
I
0
0 
0
0
0
0)

 
 
 
 
 

  

 
Figure 1 contains the graphical representation of the graph obtained from the previous adjacency matrix. 

 

 
 
 
 

 
 
 

 
 
 
 

 
 
 

 
 

 

 

 

 

Figure 1: neutrosophic cognitive Map obtained from the experts. 

 
We ran the system for every possible value of the initial state with the help of the Hidden Patterns algorithm. 

This is a quantity of 28 − 1 = 255, excluding the case where no node is activated. The absolute frequency of 
convergence of each variable to each of the possible values within the set {0, 1, 𝐼} was calculated, in addition to 
the relative frequencies. The results are shown in Table 1. 

 

 Convergence to the value 

Variable 0 1 I 

V1 1 (0.0039216) 252 (0.98824) 2 (0.0078431) 

V2 1 (0.0039216) 254 (0.99608) 0 (0) 

V3 1 (0.0039216) 252 (0.98824) 2 (0.0078431) 

V4 0 (0) 255 (1) 0 (0) 

V5 1 (0.0039216) 252 (0.98824) 2 (0.0078431) 

V6 1 (0.0039216) 252 (0.98824) 2 (0.0078431) 

V7 1 (0.0039216) 252 (0.98824) 2 (0.0078431) 

V8 1 (0.0039216) 128 (0.50196) 126 (0.49412) 

Table 1: Absolute frequency of convergence of the system to each of the possible values {0, 1, 𝐼}. The relative frequencies appear into paren-

theses. 

 

All variables are activated most of the time. At least 252 times, excluding the variable V8 which is activated 
128 times. 128 is the number of times that a variable appears activated as an initial value, not as a consequence of 
the activation of the rest of the variables. That is why V8 is activated only if there is the political will to invest in 
Research and Development on circular economy, it will never be activated as a consequence of the activation of 
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any other variable. The rest of the variables are activated at least 124 times as a consequence of the activation of 
the other variables. On the other hand, the V4 carbon footprint variable is always activated, even as activation of 
the rest, this is because it is a variable that is a consequence of the others. There are few cases in which a variable 

remains inactive, which is due to the great interrelation that exists between the elements of the system. On the 
other hand, there is rarely indetermination, excluding V4, which remains indeterminate 126 times. 

Below we delve into the results obtained from the surveys and the experts' assessments of the status of each of 

the concepts. The experts were asked to give a rating between 0 and 10 on the status of each of the variables in 
Peru today and the results were as follows: 

V1 (Recycling rate): 3 expresses that the recycling rate is poor, which represents the insufficient quantity of 

materials that are recycled. 
V2 (Consumption of natural resources): 7 Value that means that the available natural resources are being over-

exploited. 
V3 (Added Value): 2 Value that formulates that insufficient economic value is being generated from the effi-

cient use of materials and resources. 
V4 (Carbon Footprint): 8 Amount from which it can be inferred that the carbon footprint is very high, which 

is interpreted as high greenhouse gas emissions related to economic and production activities. 

V5 (Recycling Index): 3 which indicates that the use of municipal waste is insufficient, a difference that is sent 
to landfills or incinerated. 

V6 (Number of Companies with Circular Economy practices): 2 indicates that a low number of companies 
have adopted circular economy practices, which shows little importance given by companies to this activity. 

V7 (Quantity of refurbished product): 4 that expresses an insufficient culture and practice of refurbishing or 
reusing products. 

V8 (Investment in Research in Recycling): 2 A value that indicates that there is inadequate investment in R&D 

investment processes in research and development of technologies for recycling as a means of obtaining raw ma-
terials. 

The obtained values were divided by 10 and the initial vector was obtained 𝑆 =
(0.3, 0.7,0.2,0.8,0.3,0.2,0.4,0.2). The algorithm for seeking Hidden Patterns is designed for initial values of 0 
(inactivated) or 1 (activated), therefore we converted 𝑆 into an initial vector closer to the integer values 0 or 1, 
leaving 𝑋0 = (0, 1,0,1,0,0,0,0), the result obtained from applying the algorithm of seeking Hidden Patterns was: 
(𝐼, 1,0,1, 𝐼, 𝐼, 𝐼, 𝐼), that is, there are not encouraging results, in this case, significant added values will never be 

obtained and the rest of the variables remain undetermined. Although the negative results of high consumption of 
natural resources and high carbon footprint remain active. 

We can carry out simulations with the model to determine which strategies to follow, for example, suppose 

that we considerably reduce the high consumption of natural resources and the carbon footprint so that they are 
practically inactive, and at the same time we activate the recycling rate, that is, we start from the initial vector 
𝑋0 = (1, 0,0,0,0,0,0,0), the result is (1, 1,1,1,1,1,1, 𝐼). In other words, all the variables are activated except the 
investment in R&D, this means that by activating only recycling the results are encouraging. We checked that V2 

and V4 were activated in a negative sense, i.e. they were reduced. See below, the complete run of the algorithm: 
𝑋0 = (1, 0,0,0,0,0,0,0) ↪ 𝑋0𝑀 = (0, −1,1,−1, 0 ,1,1 , 𝐼)  
𝑋1 = (1, 1,1,1,0,1,1,0) ↪ 𝑋1𝑀 = (𝐼, −2 +  2𝐼, 2 +  2𝐼,−2 −  𝐼,   1 +  𝐼, 𝐼,   1 +  𝐼, 𝐼)  
𝑋2 = (1,1, 1,1,1, 𝐼, 1, 𝐼) ↪ 𝑋2𝑀 = (1 +  𝐼, −2,   1 +  4𝐼, −2 −  3𝐼,   1 +  𝐼,   1 +  2𝐼, 1 +  3𝐼, 2𝐼)  
𝑋3 = (1,1, 1,1,1, 1,1, 𝐼) ↪ 𝑋3𝑀 = (1 +  𝐼, −4 +  2𝐼,   3 +  2𝐼, −4 − 𝐼,   1 +  𝐼,   2 +  𝐼,   3 +  𝐼 , 2𝐼)  
𝑋4 = 𝑋3 = (1,1, 1,1,1, 1,1, 𝐼). 
Now suppose that investment in R&D is also activated with 𝑋0 = (1, 0,0,0,0,0,0,1 ) the result is 

(1, 1,1,1,1,1,1,1). 
Suppose that only investment in R&D is activated, with the negative values of high consumption of natural 

resources and high carbon footprint, that is, in 𝑋0 = (0, 1,0,1,0,0,0,1 ) this case we have the final result 
(1, 1,1,1,1,1,1,1), that is, investment in technologies is essential to obtain an effective circular economy. 

Conclusion 

In this article, the possibility of obtaining an effective circular economy in Peru was studied. This is a theme 

that responds to the theory of nonlinear systems, which is why dynamic cognitive maps were used to process the 
results, specifically, we rely on neutrosophic cognitive maps because we include the possibility that there is not 
enough knowledge about the relationship between two concepts, which is natural in any system with non-linear 
dynamics. We resorted to the opinion of 14 Peruvian experts on the subject, from which the NCM was designed, 

concerning 8 variables determined by bibliographic research, where we reached the following conclusions: 
1. Starting from the current state of the variables, the results in the future are unknown. In other words, it is 

necessary to make economic policy changes to improve the current situation of the circular economy in 

Peru. The experts assessed the current situation as inadequate. 
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2. Encouraging results will only be achieved by considerably increasing the recycling rate. 
3. Investment in R&D on circular economy is not activated alone from the other variables, a State and gov-

ernment will is needed to achieve this. Once this is substantially achieved the rest of the indicators will be 

activated. 
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Abstract. The neutrosophic theory is known for its prominent application in real life, possessing unclear,

indeterminate information. Interval valued neutrosophic theory is even more flexible to handle indeterminacy

effectively since the membership functions are depicted as intervals that lie in [0, 1]. In this article, the operations

on Strong Interval Valued Neutrosophic graph have been newly defined along with their related theorems. The

Strong Interval Valued Neutrosophic Digraph has been newly introduced for evaluating the blood pressure

that fluctuates during the blood flow of the human heart. By considering the hemodynamic parameters of a

healthy adult of age above 35 years without any cardiac malfunction, we model the cardiac functioning of the

human heart during the Systolic and Diastolic phases as Strong Interval Valued Neutrosophic Digraph and its

evaluation observed to be analogous to the conventional biological approach.

Keywords: Interval Valued Neutrosophic Graph; Strong Interval Valued Neutrosophic Digraph; Cardiac Cycle

of the Human Heart; Wright table.

—————————————————————————————————————————-

1. Introduction

To address the ambiguity and imprecision on crisp sets, Zadeh, L., [1] in the year 1965,

described the fuzzy set (FS) theory and consequently fuzzy logic. This proposed theory is

identified with a membership function assigning all the members of a given Universal set X,

a degree of membership mA in a FS A.
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Interval-valued fuzzy sets (IVFS) were initially analyzed by Sambuc [2] who termed as ϕ

- floues functions, to identify the features of unpredictability by attributing the membership

degrees. Atanassov, K., [3] defined the intuitionistic fuzzy sets (IFS) assigning to each member

of the Universal set both a degree of membership and one of the non-membership nA such

that 0 ≤ mA(x) + nA(x) ≤ 1 which relaxes the duality in the fuzzy set and as a consequence,

it allows to address the positive and negative side of an imprecise concept.

The IFS by K. Atanassov [3] corresponds with the definition of vague sets introduced by

Gau and Byehrer [4] accordingly by Bustince and Burillo [5]. Further, he introduced the

interval-valued intuitionistic fuzzy set (IVIFS) as an extension of both IFS and IVFS. Inspired

by the real-time situations, winning/defeating or tie scores from sports games, and yes/no/NA

from decision making, Florentin Smarandache [6] proposed the concept of the neutrosophic

set (NS) to understand the standard as well as the non-standard analysis.

Thus NS is a systematic paradigm that generalizes the concepts in [1], [3]. Wang et. al [7]

defined the single-valued neutrosophic set (SVNS) by defining T, I and F from a nonempty set

A to [0, 1]. The interval-valued neutrosophic set (IVNS) [8], is more efficient than the SVNS,

in which their membership functions are all independent as well as their values are included

in [0,1].

Fuzzy analogous of several graph - theoretic concepts are described by Azriel Rosenfield [9].

and thus fuzzy graphs (FG) have diversified applications in the areas of Science, Engineering,

Technology, etc and it is essential to model those problems in comparison to the classical graph.

With additional remarks on Fuzzy graphs, Bhattacharya [10], established that the concepts in

fuzzy graphs do not match with the graph-theoretical concepts all the time.

The Intuitionistic fuzzy graph (IFG) [11] arises by taking the vertex and edge sets as IFS. K.

Atanassov [12] in 2019, introduced eight different types of interval-valued intuitionistic fuzzy

graphs (IVIFG) and their representations by index matrices.

In many situations, as the relations between the vertices (nodes) are indeterminate, the fuzzy

graphs along with their extensions fail, Smarandache [13], defined neutrosophic graph (NG).

Thus the single-valued neutrosophic graph (SVNG) is a NG model that generalizes the FG

and IFG and Said Broumi [14], [15] further extended to interval-valued neutrosophic graphs

(IVNG) and its stron form which are used to model the real-life problems with uncertain,

irreconcilable, non-deterministic, unpredictable information effectively and further Mohammed

Akram extended to interval-valued neutrosophic digraph (IVNDG) [16] to analyze the applied

network models.

Furthermore, Shouzhen Zeng et. al [17] introduced maximal product, rejection, symmetric

difference, residue product on SVNG having application in FAO for finding the most rea-

sonable organization for the farmers to develop more food grains and to increase yearning.
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Recently, Haque et. al [18], [19], [20], [21] defined various operational laws, logarithmic opera-

tional law and exponential operational law for evaluating Multi-criteria group decision-making

(MCGDM), Multi -attribute decision-making(MADM) problems under spherical fuzzy, inter-

val neutrosophic environments.

1.1. Motivation and Novelty

Based on the literature survey, we found that SIVNG has not been explored in detail. This

motivates us to study the operations such as maximal product, rejection, symmetric difference

and residue product of any two SIVNGs. Further SIVNG helps to maintain the optimal

minimum value between any two nodes. By considering this, we model the cardiac functioning

of the human heart under SIVN environment. Also, the blood flow cannot be reversed and

falls within certain range. This necessitates us to model the cardiac cycle of the human heart

as the SIVNDG, which is a novel concept. By modelling the cardiac functioning of the human

heart as SIVNDG helps to explore the blood flow of the human heart in each phase.

1.2. Organization of the article

In this article, Section 2 contains preliminaries. In Section 3, the maximal product (∗),
rejection (|), symmetric difference (⊕), residue product (•) of any two SIVNG have been

introduced and if G1 and G2 are any two SIVNGs, we prove that G1 ∗G2, G1 | G2, G1 ⊕G2

and G1 • G2 is again a SIVNG. Further, the degree and total degree of these operations and

their related theorems are discussed in detail. In Section 4, we propose the Strong Interval-

valued Neutrosophic Digraph (SIVNDG) based on a Strong Interval-valued Neutrosophic graph

(SIVNG) [6] to explore the cardiac cycle of the human heart.By converting the blood pressure

values to SIVN values, we study the blood flow of the human heart. Section 5 contains the

Sensitivity analysis and Comparative study. Section 6 and Section 7 deals with Results and

discussion. Section 8 possess the need and limitation and impact of the research work and

Section 9 contains the conclusion.

2. Preliminaries

Definition 2.1. An Interval Valued Neutrosophic Graph (IVNG) [14] of a graph G′ = (P ′, Q′),

we mean a pair G = (P,Q), where P = ([tlP , t
u
P ], [i

l
P , i

u
P ], [f

l
P , f

u
P ]) is an IVN - set on P ′ and

Q = ([tlQ, t
u
Q], [i

l
Q, i

u
Q], [f

l
Q, f

u
Q]) is an IVN - relation on Q′ that satisfies the following conditions:

(1) P ′ = {p1, p2, ..., pn} such that tlP : P ′ → [0, 1], tuP : P ′ → [0, 1], ilP : P ′ → [0, 1],

iuP : P ′ → [0, 1], f l
P : P ′ → [0, 1], fu

P : P ′ → [0, 1] represent the corresponding degree

of membership functions of T, I and F of pi ∈ P ′ with 0 ≤ tP (pi) + iP (pi) + fP (pi) ≤
3, ∀pi ∈ P ′(i = 1, 2, ..., n).
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(2) The mappings tlQ : P ′ × P ′ → [0, 1], tuQ : P ′ × P ′ → [0, 1], ilQ : P ′ × P ′ → [0, 1],

iuQ : P ′ × P ′ → [0, 1], f l
Q : P ′ × P ′ → [0, 1], fu

Q : P ′ × P ′ → [0, 1] are such that

(1) tlQ(pi, pj) ≤ min(tlP (pi), t
l
P (pj)),

(2) tuQ(pi, pj) ≤ min(tuP (pi), t
u
P (pj)),

(3) ilQ(pi, pj) ≥ max(ilP (pi), i
l
P (pj)),

(4) iuQ(pi, pj) ≥ max(iuP (pi), i
u
P (pj)),

(5) f l
Q(pi, pj) ≥ max(f l

P (pi), f
l
P (pj)),

(6) fu
Q(pi, pj) ≥ max(fu

P (pi), f
u
P (pj)),

where (pi, pj) ∈ Q′ and 0 ≤ tQ(pi, pj) + iQ(pi, pj) + fQ(pi, pj) ≤ 3,∀(pi, pj) ∈ Q′(i, j =

1, 2, ..., n).

Definition 2.2. An IVNG G = (P,Q) of G
′
= (P ′, Q′) is called Strong IVNG (SIVNG) [15]

if for any pair (pi, pj) ∈ Q′ we have :

(1) tlQ(pi, pj) = min(tlP (pi), t
l
P (pj)),

(2) tuQ(pi, pj) = min(tuP (pi), t
u
P (pj)),

(3) ilQ(pi, pj) = max(ilP (pi), i
l
P (pj)),

(4) iuQ(pi, pj) = max(iuP (pi), i
u
P (pj)),

(5) f l
Q(pi, pj) = max(f l

P (pi), f
l
P (pj)),

(6) fu
Q(pi, pj) = max(fu

P (pi), f
u
P (pj)).

Definition 2.3. A Strong Interval Valued Neutrosophic Digraph (SIVNDG) on a non-empty

Universal set X is a pair G = (P,
−→
Q), where P = ([tlP , t

u
P ], [i

l
P , i

u
P ], [f

l
P , f

u
P ]) is an IVN - set

corresponds to X and Q = ([tlQ, t
u
Q], [i

l
Q, i

u
Q], [f

l
Q, f

u
Q]) is an IVN - relation corresponds to X

such that

(1) tlQ(
−−−→pi, pj) = tlP (pi) ∧ tlP (pj),

(2) tuQ(
−−−→pi, pj) = tuP (pi) ∧ tuP (pj),

(3) ilQ(
−−−→pi, pj) = ilP (pi) ∨ ilP (pj),

(4) iuQ(
−−−→pi, pj) = iuP (pi) ∨ iuP (pj),

(5) f l
Q(

−−−→pi, pj) = f l
P (pi) ∨ f l

P (pj),

(6) fu
Q(

−−−→pi, pj) = fu
P (pi) ∨ fu

P (pj),

∀pi, pj ∈ X.

Example 2.4. Consider a SIVN-digraph G = (P,
−→
Q) on X = {l1, l2, l3, l4} in Figure 1. The

vertices and the edges of G along with their membership functions are given by

P = {l1 < [0.1, 0.2], [0.3, 0.4], [0.2, 0.5] >, l2 < [0.4, 0.5], [0.2, 0.3], [0.1, 0.5] >, l3 <

[0.2, 0.3], [0.3, 0.5], [0.6, 0.8] >, l4 < [0.4, 0.6], [0.3, 0.5], [0.2, 0.4] >},
Q = {l1l2 < [0.1, 0.2], [0.3, 0.4], [0.2, 0.5] >, l2l3 < [0.2, 0.3], [0.3, 0.5], [0.6, 0.8] >, l3l4 <

[0.2, 0.3], [0.3, 0.5], [0.6, 0.8], l4l1 < [0.1, 0.2], [0.3, 0.5], [0.2, 0.5] >}.
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Figure 1. Strong Interval Valued Neutrosophic Digraph G

3. Operations on SIVNG

In this section, we introduce two different operations on SIVNG, maximal product and

symmetric difference. We prove that for any two SIVNGs, the maximal product and symmetric

difference is a SIVNG.

Definition 3.1. The maximal product G1 ∗ G2 = (P1 ∗ P2, Q1 ∗ Q2) of two SIVNGs G1 =

(P1, Q1) and G2 = (P2, Q2) on the crisp graphs G
′
1 = (P

′
1, Q

′
1) and G

′
2 = (P

′
2, Q

′
2) is defined as

(1) (tlP1
∗ tlP2

)(p1, p2) = max{tlP1
(p1), t

l
P2
(p2)},

(tuP1
∗ tuP2

)(p1, p2) = max{tuP1
(p1), t

u
P2
(p2)},

(ilP1
∗ ilP2

)(p1, p2) = min{ilP1
(p1), i

l
P2
(p2)},

(iuP1
∗ iuP2

)(p1, p2) = min{iuP1
(p1), i

u
P2
(p2)},

(f l
P1

∗ f l
P2
)(p1, p2) = min{f l

P1
(p1), f

l
P2
(p2)},

(fu
P1

∗ fu
P2
)(p1, p2) = min{fu

P1
(p1), f

u
P2
(p2)}, ∀(p1, p2) ∈ (P

′
1 × P

′
2).

(2) (tlQ1
∗ tlQ2

)((p, p2)(p, q2)) = max{tlP1
(p), tlQ2

(p2q2)},
(tuQ1

∗ tuQ2
)((p, p2)(p, q2)) = max{tuP1

(p), tuQ2
(p2q2)},

(ilQ1
∗ ilQ2

)((p, p2)(p, q2)) = min{ilP1
(p), ilQ2

(p2q2)},
(iuQ1

∗ iuQ2
)((p, p2)(p, q2)) = min{iuP1

(p), iuQ2
(p2q2)},

(f l
Q1

∗ f l
Q2

)((p, p2)(p, q2)) = min{f l
P1
(p), f l

Q2
(p2q2)},

(fu
Q1

∗ fu
Q2

)((p, p2)(p, q2)) = min{fu
P1
(p), fu

Q2
(p2q2)}, ∀p ∈ P

′
1 and p2q2 ∈ Q

′
2.

(3) (tlQ1
* tlQ2

)((p1, r)(q1, r)) = max{tlQ1
(p1q1), t

l
P2
(r)},

(tuQ1
* tuQ2

)((p1, r)(q1, r)) = max{tuQ1
(p1q1), t

u
P2
(r)},

(ilQ1
∗ ilQ2

)((p1, r)(q1, r)) = min{ilQ1
(p1q1), i

l
P2
(r)},

(iuQ1
∗ iuQ2

)((p1, r)(q1, r)) = min{iuQ1
(p1q1), i

u
P2
(r)},
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(f l
Q1

∗ f l
Q2

)((p1, r)(q1, r)) = min{f l
Q1

(p1q1), f
l
P2
(r)},

(fu
Q1

∗ fu
Q2

)((p1, r)(q1, r)) = min{fu
Q1

(p1q1), f
u
P2
(r)}, ∀p1q1 ∈ Q

′
1 and r ∈ P

′
2.

Theorem 3.2. The maximal product of two SIVNGs G1 and G2 is a SIVNG.

Proof. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs on G
′
1 = (P

′
1, Q

′
1) and G

′
2 =

(P
′
2, Q

′
2) respectively and ((p1, p2), (q1, q2)) ∈ Q

′
1 ×Q

′
2. Then, we have,

Case 1. If p1 = q1 = p,

(tlQ1
∗ tlQ2

)((p, p2), (p, q2)) = max{tlP1
(p), tlQ2

(p2q2)}
= max{tlP1

(p),min{tlP2
(p2), t

l
P2
(q2)}}

= min{max{tlP1
(p), tlP2

(p2)},max{tlP1
(p), tlP2

(q2)}}
= min{(tlP1

∗ tlP2
)(p, p2), (t

l
P1

∗ tlP2
)(p, q2)}

In the same way, the other conditions can also be verified.

Case 2. If p2 = q2 = r,

(tlQ1
∗ tlQ2

)((p1, r), (q1, r)) = max{tlQ1
(p1q1), t

l
P2
(r)}

= max{min{tlP1
(p1), t

l
P1
(q1)}, tlP2

(r)}
= min{max{tlP1

(p1), t
l
P2
(r)},max{tlP1

(q1), t
l
P2
(r)}}

= min{(tlP1
∗ tlP2

)(p1, r), (t
l
P1

∗ tlP2
)(q1, r)}

The other conditions can also be verified using the same approach.

Thus, the maximal product G1 ∗G2 is a SIVNG.

Example 3.3. Consider two SIVNGs G1 and G2 as represented in Figure 2. Their maximal

product G1 ∗G2 is represented in Figure 3.

Figure 2. Strong Interval Valued Neutrosophic Graphs G1 and G2

Definition 3.4. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs. The degree for any

vertex (p1, p2) ∈ (P
′
1 × P

′
2) is,

(dtl)G1∗G2(p1, p2) =
∑

((p1,p2),(q1,q2))∈Q
′
1×Q

′
2
(tlQ1

∗ tlQ2
)((p1, p2), (q1, q2))

=
∑

p1=q1,p2q2∈Q
′
2
max{tlP1

(p1), t
l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{tlQ1
(p1q1), t

l
P2
(p2)},

(dtu)G1∗G2(p1, p2) =
∑

((p1,p2),(q1,q2))∈Q
′
1×Q

′
2
(tuQ1

∗ tuQ2
)((p1, p2), (q1, q2))
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Figure 3. Maximal Product G1 ∗G2

=
∑

p1=q1,p2q2∈Q
′
2
max{tuP1

(p1), t
u
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{iuQ1
(p1q1), i

u
P2
(p2)},

(dil)G1∗G2(p1, p2) =
∑

((p1,p2),(q1,q2))∈Q
′
1×Q

′
2
(ilQ1

∗ ilQ2
)((p1, p2), (q1, q2))

=
∑

p1=q1,p2q2∈Q
′
2
min{ilP1

(p1), i
l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

min{ilQ1
(p1q1), i

l
P2
(p2)},

(diu)G1∗G2(p1, p2) =
∑

((p1,p2),(q1,q2))∈Q
′
1×Q

′
2
(iuQ1

∗ iuQ2
)((p1, p2), (q1, q2))

=
∑

p1=q1,p2q2∈Q
′
2
min{iuP1

(p1), i
u
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

min{iuQ1
(p1q1), i

u
P2
(p2)},

(df l)G1∗G2(p1, p2) =
∑

((p1,p2),(q1,q2))∈Q
′
1×Q

′
2
(f l

Q1
∗ f l

Q2
)((p1, p2), (q1, q2))

=
∑

p1=q1,p2q2∈Q
′
2
min{f l

P1
(p1), f

l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

min{f l
Q1

(p1q1), f
l
P2
(p2)},

(dfu)G1∗G2(p1, p2) =
∑

((p1,p2),(q1,q2))∈Q
′
1×Q

′
2
(fu

Q1
∗ fu

Q2
)((p1, p2), (q1, q2))

=
∑

p1=q1,p2q2∈Q
′
2
min{fu

P1
(p1), f

u
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

min{fu
Q1

(p1q1), f
u
P2
(p2)}.

Theorem 3.5. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs. If tlP1
≥ tlQ2

, tuP1
≥

tuQ2
, ilP1

≤ ilQ2
, iuP1

≤ iuQ2
, f l

P1
≤ f l

Q2
, fu

P1
≤ fu

Q2
and tlP2

≥ tlQ1
, tuP2

≥ tuQ1
, ilP2

≤ ilQ1
, iuP2

≤
iuQ1

, f l
P2

≤ f l
Q1

, fu
P2

≤ fu
Q1

, then for every (p1, p2) ∈ (P
′
1 × P

′
2), we have,

(dtl)(G1∗G2)(p1, p2) = (d)(G2)(p2)t
l
P1
(p1) +(d)(G1)(p1)t

l
(P2)

(p2)

(dtu)(G1∗G2)(p1, p2) = (d)(G2)(p2)t
u
P1
(p1) +(d)(G1)(p1)t

u
(P2)

(p2)

(dil)(G1∗G2)(p1, p2) = (d)(G2)(p2)i
l
P1
(p1) +(d)(G1)(p1)i

l
(P2)

(p2)

(diu)(G1∗G2)(p1, p2) = (d)(G2)(p2)i
u
P1
(p1) +(d)(G1)(p1)i

u
(P2)

(p2)

(df l)(G1∗G2)(p1, p2) = (d)(G2)(p2)f
l
P1
(p1) +(d)(G1)(p1)f

l
(P2)

(p2)

(dfu)(G1∗G2)(p1, p2) = (d)(G2)(p2)f
u
P1
(p1) +(d)(G1)(p1)f

u
(P2)

(p2)
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Proof. Consider,

(dtl)G1∗G2(p1, p2) =
∑

((p1,p2),(q1,q2))∈Q
′
1×Q

′
2
(tlQ1

∗ tlQ2
)((p1, p2), (q1, q2))

=
∑

p1=q1,p2q2∈Q
′
2
max{tlP1

(p1), t
l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{tlQ1
(p1q1), t

l
P2
(p2)}

=
∑

p1=q1,p2q2∈Q
′
2
tlQ2

(p2q2) +
∑

p1q1∈Q
′
1,p2=q2

tlQ1
(p1q1)

= (d)(G2)(p2)t
l
P1
(p1) +(d)(G1)(p1)t

l
(P2)

(p2)

Similarly, the other conditions can also be proved.

Definition 3.6. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs. The total degree for

any vertex (p1, p2) ∈ (P
′
1 × P

′
2) is,

(tdtl)G1∗G2(p1, p2) =
∑

((p1,p2),(q1,q2))∈Q
′
1×Q

′
2
(tlQ1

∗ tlQ2
)((p1, p2), (q1, q2)) +(tlP1

∗ tlP2
)(p1, p2)

=
∑

p1=q1,p2q2∈Q
′
2
max{tlP1

(p1), t
l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{tlQ1
(p1q1), t

l
P2
(p2)}

+max{tlP1
(p1), t

l
P2
(p2)},

(tdtu)G1∗G2(p1, p2) =
∑

((p1,p2),(q1,q2))∈Q
′
1×Q

′
2
(tuQ1

∗ tuQ2
)((p1, p2), (q1, q2)) +(tuP1

∗ tuP2
)(p1, p2)

=
∑

p1=q1,p2q2∈Q
′
2
max{tuP1

(p1), t
u
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{tuQ1
(p1q1), t

u
P2
(p2)}

+max{tuP1
(p1), t

u
P2
(p2)},

(tdil)G1∗G2(p1, p2) =
∑

((p1,p2),(q1,q2))∈Q
′
1×Q

′
2
(ilQ1

∗ ilQ2
)((p1, p2), (q1, q2)) +(ilP1

∗ ilP2
)(p1, p2)

=
∑

p1=q1,p2q2∈Q
′
2
min{ilP1

(p1), i
l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

min{ilQ1
(p1q1), i

l
P2
(p2)}

+min{ilP1
(p1), i

l
P2
(p2)},

(tdiu)G1∗G2(p1, p2) =
∑

((p1,p2),(q1,q2))∈Q
′
1×Q

′
2
(iuQ1

∗ iuQ2
)((p1, p2), (q1, q2)) +(iuP1

∗ iuP2
)(p1, p2)

=
∑

p1=q1,p2q2∈Q
′
2
min{iuP1

(p1), i
u
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

min{iuQ1
(p1q1), i

u
P2
(p2)}

+min{iuP1
(p1), i

u
P2
(p2)},

(tdf l)G1∗G2(p1, p2) =
∑

((p1,p2),(q1,q2))∈Q
′
1×Q

′
2
(f l

Q1
∗ f l

Q2
)((p1, p2), (q1, q2)) +(f l

P1
∗ f l

P2
)(p1, p2)

=
∑

p1=q1,p2q2∈Q
′
2
min{f l

P1
(p1), f

l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

min{f l
Q1

(p1q1), f
l
P2
(p2)}

+min{f l
P1
(p1), f

l
P2
(p2)},

(tdfu)G1∗G2(p1, p2) =
∑

((p1,p2),(q1,q2))∈Q
′
1×Q

′
2
(fu

Q1
∗ fu

Q2
)((p1, p2), (q1, q2)) +(fu

P1
∗ fu

P2
)(p1, p2)

=
∑

p1=q1,p2q2∈Q
′
2
min{fu

P1
(p1), f

u
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

min{fu
Q1

(p1q1), f
u
P2
(p2)}

+min{fu
P1
(p1), f

u
P2
(p2)}.

Theorem 3.7. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs. If tlP1
≥ tlQ2

, tuP1
≥

tuQ2
, ilP1

≤ ilQ2
, iuP1

≤ iuQ2
, f l

P1
≤ f l

Q2
, fu

P1
≤ fu

Q2
and tlP2

≥ tlQ1
, tuP2

≥ tuQ1
, ilP2

≤ ilQ1
, iuP2

≤
iuQ1

, f l
P2

≤ f l
Q1

, fu
P2

≤ fu
Q1

, then for every (p1, p2) ∈ (P
′
1 × P

′
2), we have,

(tdtl)(G1∗G2)(p1, p2) = (d)(G2)(p2)t
l
P1
(p1) +(d)(G1)(p1)t

l
(P2)

(p2) +max{tlP1
(p1), t

l
P2
(p2)}

(tdtu)(G1∗G2)(p1, p2) = (d)(G2)(p2)t
u
P1
(p1) +(d)(G1)(p1)t

u
(P2)

(p2) +max{tuP1
(p1), t

u
P2
(p2)}

(tdil)(G1∗G2)(p1, p2) = (d)(G2)(p2)i
l
P1
(p1) +(d)(G1)(p1)i

l
(P2)

(p2) +min{ilP1
(p1), i

l
P2
(p2)}

(tdiu)(G1∗G2)(p1, p2) = (d)(G2)(p2)i
u
P1
(p1) +(d)(G1)(p1)i

u
(P2)

(p2) +min{iuP1
(p1), i

u
P2
(p2)}

(tdf l)(G1∗G2)(p1, p2) = (d)(G2)(p2)f
l
P1
(p1) +(d)(G1)(p1)f

l
(P2)

(p2) +min{f l
P1
(p1), f

l
P2
(p2)}

(tdfu)(G1∗G2)(p1, p2) = (d)(G2)(p2)f
u
P1
(p1) +(d)(G1)(p1)f

u
(P2)

(p2) +min{fu
P1
(p1), f

u
P2
(p2)}
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Proof. Consider the case of (tdfu)(G1∗G2)(p1, p2), we have,

(tdfu)G1∗G2(p1, p2) =
∑

((p1,p2),(q1,q2))∈Q
′
1×Q

′
2
(fu

Q1
∗ fu

Q2
)((p1, p2), (q1, q2)) +(fu

P1
∗ fu

P2
)(p1, p2)

=
∑

p1=q1,p2q2∈Q
′
2
min{fu

P1
(p1), f

u
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

min{fu
Q1

(p1q1), f
u
P2
(p2)}

+min{fu
P1
(p1), f

u
P2
(p2)},

=
∑

p1=q1,p2q2∈Q
′
2
fu
Q2

(p2q2) +
∑

p1q1∈Q
′
1,p2=q2

fu
Q1

(p1q1) +min{fu
P1
(p1), f

u
P2
(p2)},

In the same way, the other conditions can also be verified.

Example 3.8. Consider two SIVNGs G1 = (P1, Q1) and G2 = (P2, Q2) as represented in

Figure 4. Their maximal product G1 ∗G2 is represented in Figure 5.

From Figures 4 and 5, di, tdf for the vertex (p3, q2) are calculated below.

Figure 4. Strong Interval Valued Neutrosophic Graphs G1 and G2

Figure 5. Maximal Product G1 ∗G2

By direct calculations, dil(p3, q2) = 0.3 + 0.3 = 0.6, diu(p3, q2) = 0.4 + 0.4 = 0.8, di(p3, q2) =

[0.6, 0.8].

tdf l(p1, q1) = 0.2 + 0.2 + 0.2 = 0.6, tdfu(p1, q1) = 0.4 + 0.3 + 0.3 = 1.0, tdf (p1, q1) = [0.6, 1].

By using theorem, dil(p3, q2) = 1(0.3) + 1(0.3) = 0.6, diu(p3, q2) = 1(0.4) + 1(0.4) = 0.8,

di(p3, q2) = [0.6, 0.8].

tdf l(p1, q1) = 1(0.2) + 1(0.2) + min{0.2, 0.2} = 0.6, tdfu(p1, q1) = 1(0.4) + 1(0.3) +
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min{0.4, 0.3} = 1.0, tdf (p1, q1) = [0.6, 1].

Definition 3.9. The rejection G1 | G2 = (P1 | P2, Q1 | Q2)of two SIVNGs G1 = (P1, Q1) and

G2 = (P2, Q2) is defined as

(1) (tlP1
| tlP2

)(p1, p2) = min{tlP1
(p1), t

l
P2
(p2)},

(tuP1
| tuP2

)(p1, p2) = min{tuP1
(p1), t

u
P2
(p2)},

(ilP1
| ilP2

)(p1, p2) = max{ilP1
(p1), i

l
P2
(p2)},

(iuP1
| iuP2

)(p1, p2) = max{iuP1
(p1), i

u
P2
(p2)},

(f l
P1

| f l
P2
)(p1, p2) = max{f l

P1
(p1), f

l
P2
(p2)},

(fu
P1

| fu
P2
)(p1, p2) = max{fu

P1
(p1), f

u
P2
(p2)},∀(p1, p2) ∈ (P

′
1 × P

′
2).

(2) (tlQ1
| tlQ2

)((p, p2), (p, q2)) = min{tlP1
(p), tlP2

(p2), t
l
P2
(q2)},

(tuQ1
| tuQ2

)((p, p2), (p, q2)) = min{tuP1
(p), tuP2

(p2), t
u
P2
(q2)},

(ilQ1
| ilQ2

)((p, p2), (p, q2)) = max{ilP1
(p), ilP2

(p2), i
l
P2
(q2)},

(iuQ1
| iuQ2

)((p, p2), (p, q2)) = max{iuP1
(p), iuP2

(p2), i
u
P2
(q2)},

(f l
Q1

| f l
Q2

)((p, p2), (p, q2)) = max{f l
P1
(p), f l

P2
(p2), f

l
P2
(q2)},

(fu
Q1

| fu
Q2

)((p, p2), (p, q2)) = max{fu
P1
(p), fu

P2
(p2), f

u
P2
(q2)}, ∀p ∈ P

′
1, p2q2 /∈ Q

′
2.

(3) (tlQ1
| tlQ2

)((p1, r), (q1, r)) = min{tlP1
(p1), t

l
P1
(q1), t

l
P2
(r)},

(tuQ1
| tuQ2

)((p1, r), (q1, r)) = min{tuP1
(p1), t

u
P1
(q1), t

u
P2
(r)},

(ilQ1
| ilQ2

)((p1, r), (q1, r)) = max{ilP1
(p1), i

l
P1
(q1), i

l
P2
(r)},

(iuQ1
| iuQ2

)((p1, r), (q1, r)) = max{iuP1
(p1), i

u
P1
(q1), i

u
P2
(r)},

(f l
Q1

| f l
Q2

)((p1, r), (q1, r)) = max{f l
P1
(p1), f

l
P1
(q1), f

l
P2
(r)},

(fu
Q1

| fu
Q2

)((p1, r), (q1, r)) = max{fu
P1
(p1), f

u
P1
(q1), f

u
P2
(r)},∀p1q1 /∈ Q

′
1, r ∈ P

′
2.

(4) (tlQ1
| tlQ2

)((p1, p2), (q1, q2)) = min{tlP1
(p1), t

l
P1
(q1), t

l
P2
(p2), t

l
P2
(q2)},

(tuQ1
| tuQ2

)((p1, p2), (q1, q2)) = min{tuP1
(p1), t

u
P1
(q1), t

u
P2
(p2), t

u
P2
(q2)},

(ilQ1
| ilQ2

)((p1, p2), (q1, q2)) = max{ilP1
(p1), i

l
P1
(q1), i

l
P2
(p2), i

l
P2
(q2)},

(iuQ1
| iuQ2

)((p1, p2), (q1, q2)) = max{iuP1
(p1), i

u
P1
(q1), i

u
P2
(p2), i

u
P2
(q2)},

(f l
Q1

| f l
Q2

)((p1, p2), (q1, q2)) = max{f l
P1
(p1), f

l
P1
(q1), f

l
P2
(p2), f

l
P2
(q2)},

(fu
Q1

| fu
Q2

)((p1, p2), (q1, q2)) = max{fu
P1
(p1), f

u
P1
(q1), f

u
P2
(p2), f

u
P2
(q2)},

∀p1q1 /∈ Q
′
1, p2q2 /∈ Q

′
2.

Example 3.10. Consider two SIVNGs G1 = (P1, Q1) and G2 = (P2, Q2) as represented in

Figure 6. Their rejection G1 | G2 is represented in Figure 7.

Theorem 3.11. The rejection of two SIVNGs G1 and G2 is a SIVNG.

Proof. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs on G
′
1 = (P

′
1, Q

′
1) and G

′
2 =

(P
′
2, Q

′
2) respectively and ((p1, p2), (q1, q2)) ∈ Q

′
1 ×Q

′
2. Then, we have,

Case 1. If p1 = q1, p2q2 /∈ Q
′
2
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Figure 6. Strong Interval Valued Neutrosophic Graphs G1 and G2

Figure 7. Rejection G1 | G2

(tlQ1
| tlQ2

)((p1, p2), (p1, q2)) = min{tlP1
(p1), t

l
P2
(p2), t

l
P2
(q2)}

= min{min{tlP1
(p1), t

l
P1
(q1)},min{tlP2

(p2), t
l
P2
(q2)}}

= min{(tlP1
| tlP2

)(p1, p2), (t
l
P1

| tlP2
)(q1, q2)}

In the same way, the other conditions can also be verified.

Case 2. If p2 = q2, p1q1 /∈ Q
′
1

(ilQ1
| ilQ2

)((p1, p2), (q1, q2)) = max{ilP1
(p1), i

l
P1
(q1), i

l
P2
(p2)}

= max{max{ilP1
(p1), i

l
P1
(q1)},max{ilP2

(p2), i
l
P2
(q2)}}

= max{(ilP1
| ilP2

)(p1, p2), (i
l
P1

| ilP2
)(q1, q2)}

Similarly, the other conditions can also be verified.

Case 3. If p1q1 /∈ Q
′
1, p2q2 /∈ Q

′
2

(f l
Q1

| f l
Q2

)((p1, p2), (q1, q2)) = max{f l
P1
(p1), f

l
P1
(q1), f

l
P2
(p2), f

l
P2
(q2)}
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= max{max{f l
P1
(p1), f

l
P1
(q1)},max{f l

P2
(p2), f

l
P2
(q2)}}

= max{(f l
P1

| f l
P2
)(p1, p2), (f

l
P1

| f l
P2
)(q1, q2)}

Similarly, the other conditions can also be verified.

Definition 3.12. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs. The degree for any

vertex (p1, p2) ∈ (P
′
1 × P

′
2) is,

(dtl)G1|G2
(p1, p2) =

∑
((p1,p2),(p1,q2))∈Q

′
1×Q

′
2
(tlQ1

| tlQ2
)((p1, p2), (p1, q2))

=
∑

p1=q1,p2q2 /∈Q
′
2
min{tlP1

(p1), t
l
P2
(p2), t

l
P2
(q2)} +

∑
p1q1 /∈Q

′
1,p1=q1

min{tlP1
(p1), t

l
P1
(q1), t

l
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2 /∈Q

′
2
min{tlP1

(p1), t
l
P1
(q1), t

l
P2
(p2), t

l
P2
(q2)}

(dtu)G1|G2
(p1, p2) =

∑
((p1,p2),(p1,q2))∈Q

′
1×Q

′
2
(tuQ1

| tuQ2
)((p1, p2), (p1, q2))

=
∑

p1=q1,p2q2 /∈Q
′
2
min{tuP1

(p1), t
u
P2
(p2), t

u
P2
(q2)} +

∑
p1q1 /∈Q

′
1,p1=q1

min{tuP1
(p1), t

u
P1
(q1), t

u
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2 /∈Q

′
2
min{tuP1

(p1), t
u
P1
(q1), t

u
P2
(p2), t

u
P2
(q2)}

(dil)G1|G2
(p1, p2) =

∑
((p1,p2),(p1,q2))∈Q

′
1×Q

′
2
(ilQ1

| ilQ2
)((p1, p2), (p1, q2))

=
∑

p1=q1,p2q2 /∈Q
′
2
max{ilP1

(p1), i
l
P2
(p2), i

l
P2
(q2)}+

∑
p1q1 /∈Q

′
1,p1=q1

max{ilP1
(p1), i

l
P1
(q1), i

l
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2 /∈Q

′
2
max{ilP1

(p1), i
l
P1
(q1), i

l
P2
(p2), i

l
P2
(q2)}

(diu)G1|G2
(p1, p2) =

∑
((p1,p2),(p1,q2))∈Q

′
1×Q

′
2
(iuQ1

| iuQ2
)((p1, p2), (p1, q2))

=
∑

p1=q1,p2q2 /∈Q
′
2
max{iuP1

(p1), i
u
P2
(p2), i

u
P2
(q2)}+

∑
p1q1 /∈Q

′
1,p1=q1

max{iuP1
(p1), i

u
P1
(q1), i

u
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2 /∈Q

′
2
max{iuP1

(p1), i
u
P1
(q1), i

u
P2
(p2), i

u
P2
(q2)}

(df l)G1|G2
(p1, p2) =

∑
((p1,p2),(p1,q2))∈Q

′
1×Q

′
2
(f l

Q1
| f l

Q2
)((p1, p2), (p1, q2)) =∑

p1=q1,p2q2 /∈Q
′
2
max{f l

P1
(p1), f

l
P2
(p2), f

l
P2
(q2)}+

∑
p1q1 /∈Q

′
1,p1=q1

max{f l
P1
(p1), f

l
P1
(q1), f

l
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2 /∈Q

′
2
max{f l

P1
(p1), f

l
P1
(q1), f

l
P2
(p2), f

l
P2
(q2)}

(dfu)G1|G2
(p1, p2) =

∑
((p1,p2),(p1,q2))∈Q

′
1×Q

′
2
(fu

Q1
| fu

Q2
)((p1, p2), (p1, q2)) =∑

p1=q1,p2q2 /∈Q
′
2
max{fu

P1
(p1), f

u
P2
(p2), f

u
P2
(q2)}+

∑
p1q1 /∈Q

′
1,p1=q1

max{fu
P1
(p1), f

u
P1
(q1), f

u
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2 /∈Q

′
2
max{fu

P1
(p1), f

u
P1
(q1), f

u
P2
(p2), f

u
P2
(q2)}

Definition 3.13. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs. The total degree for

any vertex (p1, p2) ∈ (P
′
1 × P

′
2) is,

(tdtl)G1|G2
(p1, p2) =

∑
((p1,p2),(p1,q2))∈Q

′
1×Q

′
2
(tlQ1

| tlQ2
)((p1, p2), (p1, q2)) + (tlP1

| tlP2
)(p1, p2)

=
∑

p1=q1,p2q2 /∈Q
′
2
min{tlP1

(p1), t
l
P2
(p2), t

l
P2
(q2)} +

∑
p1q1 /∈Q

′
1,p1=q1

min{tlP1
(p1), t

l
P1
(q1), t

l
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2 /∈Q

′
2
min{tlP1

(p1), t
l
P1
(q1), t

l
P2
(p2), t

l
P2
(q2)}+min{tlP1

(p1), t
l
P2
(p2)}

(tdtu)G1|G2
(p1, p2) =

∑
((p1,p2),(p1,q2))∈Q

′
1×Q

′
2
(tuQ1

| tuQ2
)((p1, p2), (p1, q2)) +(tuP1

| tuP2
)(p1, p2)

=
∑

p1=q1,p2q2 /∈Q
′
2
min{tuP1

(p1), t
u
P2
(p2), t

u
P2
(q2)} +

∑
p1q1 /∈Q

′
1,p1=q1

min{tuP1
(p1), t

u
P1
(q1), t

u
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2 /∈Q

′
2
min{tuP1

(p1), t
u
P1
(q1), t

u
P2
(p2), t

u
P2
(q2)}+min{tuP1

(p1), t
u
P2
(p2)}

(tdil)G1|G2
(p1, p2) =

∑
((p1,p2),(p1,q2))∈Q

′
1×Q

′
2
(ilQ1

| ilQ2
)((p1, p2), (p1, q2)) +(ilP1

| ilP2
)(p1, p2)

=
∑

p1=q1,p2q2 /∈Q
′
2
max{ilP1

(p1), i
l
P2
(p2), i

l
P2
(q2)}+

∑
p1q1 /∈Q

′
1,p1=q1

max{ilP1
(p1), i

l
P1
(q1), i

l
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2 /∈Q

′
2
max{ilP1

(p1), i
l
P1
(q1), i

l
P2
(p2), i

l
P2
(q2)}+max{ilP1

(p1), i
l
P2
(p2)}

(tdiu)G1|G2
(p1, p2) =

∑
((p1,p2),(p1,q2))∈Q

′
1×Q

′
2
(iuQ1

| iuQ2
)((p1, p2), (p1, q2)) + (iuP1

| iuP2
)(p1, p2)
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=
∑

p1=q1,p2q2 /∈Q
′
2
max{iuP1

(p1), i
u
P2
(p2), i

u
P2
(q2)}+

∑
p1q1 /∈Q

′
1,p1=q1

max{iuP1
(p1), i

u
P1
(q1), i

u
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2 /∈Q

′
2
max{iuP1

(p1), i
u
P1
(q1), i

u
P2
(p2), i

u
P2
(q2)}+max{iuP1

(p1), i
u
P2
(p2)}

(tdf l)G1|G2
(p1, p2) =

∑
((p1,p2),(p1,q2))∈Q

′
1×Q

′
2
(f l

Q1
| f l

Q2
)((p1, p2), (p1, q2)) + (f l

P1
| f l

P2
)(p1, p2) =∑

p1=q1,p2q2 /∈Q
′
2
max{f l

P1
(p1), f

l
P2
(p2), f

l
P2
(q2)}+

∑
p1q1 /∈Q

′
1,p1=q1

max{f l
P1
(p1), f

l
P1
(q1), f

l
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2 /∈Q

′
2
max{f l

P1
(p1), f

l
P1
(q1), f

l
P2
(p2), f

l
P2
(q2)}+max{f l

P1
(p1), f

l
P2
(p2)}

(tdfu)G1|G2
(p1, p2) =

∑
((p1,p2),(p1,q2))∈Q

′
1×Q

′
2
(fu

Q1
| fu

Q2
)((p1, p2), (p1, q2)) +(fu

P1
| fu

P2
)(p1, p2) =∑

p1=q1,p2q2 /∈Q
′
2
max{fu

P1
(p1), f

u
P2
(p2), f

u
P2
(q2)}+

∑
p1q1 /∈Q

′
1,p1=q1

max{fu
P1
(p1), f

u
P1
(q1), f

u
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2 /∈Q

′
2
max{fu

P1
(p1), f

u
P1
(q1), f

u
P2
(p2), f

u
P2
(q2)}+max{fu

P1
(p1), f

u
P2
(p2)}

From Figure 7, di(p1, q3) and tdi(p1, q3) for the vertex (p1, q3) are calculated below.

dil(p1, q3) = 0.3 + 0.4 + 0.4 = 1.1, diu(p1, q3) = 0.4 + 0.5 + 0.5 = 1.4, di(p1, q3) = [1.1, 1.4].

tdil(p1, q3) = 0.3 + 0.4 + 0.4 + 0.2 = 1.3, tdiu(p1, q3) = 0.4 + 0.5 + 0.5 + 0.4 = 1.8, tdi(p1, q3) =

[1.3, 1.8].

Definition 3.14. The symmetric difference G1 ⊕ G2 = (P1 ⊕ P2, Q1 ⊕ Q2) of two SIVNGs

G1 = (P1, Q1) and G2 = (P2, Q2) is defined as

(1) (tlP1
⊕ tlP2

)(p1, p2) = min{tlP1
(p1), t

l
P2
(p2)},

(tuP1
⊕ tuP2

)(p1, p2) = min{tuP1
(p1), t

u
P2
(p2)},

(ilP1
⊕ ilP2

)(p1, p2) = max{ilP1
(p1), i

l
P2
(p2)},

(iuP1
⊕ iuP2

)(p1, p2) = max{iuP1
(p1), i

u
P2
(p2)},

(f l
P1

⊕ f l
P2
)(p1, p2) = max{f l

P1
(p1), f

l
P2
(p2)},

(fu
P1

⊕ fu
P2
)(p1, p2) = max{fu

P1
(p1), f

u
P2
(p2)}, ∀(p1, p2) ∈ (P

′
1 × P

′
2).

(2) (tlQ1
⊕ tlQ2

)((p, p2)(p, q2)) = min{tlP1
(p), tlQ2

(p2q2)},
(tuQ1

⊕ tuQ2
)((p, p2)(p, q2)) = min{tuP1

(p), tuQ2
(p2q2)},

(ilQ1
⊕ ilQ2

)((p, p2)(p, q2)) = max{ilP1
(p), ilQ2

(p2q2)},
(iuQ1

⊕ iuQ2
)((p, p2)(p, q2)) = max{iuP1

(p), iuQ2
(p2q2)},

(f l
Q1

⊕ f l
Q2

)((p, p2)(p, q2)) = max{f l
P1
(p), f l

Q2
(p2q2)},

(fu
Q1

⊕ fu
Q2

)((p, p2)(p, q2)) = max{fu
P1
(p), fu

Q2
(p2q2)}, ∀p ∈ P

′
1 and p2q2 ∈ Q

′
2.

(3) (tlQ1
⊕ tlQ2

)((p1, r)(q1, r)) = min{tlQ1
(p1q1), t

l
P2
(r)}

(tuQ1
⊕ tuQ2

)((p1, r)(q1, r)) = min{tuQ1
(p1q1), t

u
P2
(r)},

(ilQ1
⊕ ilQ2

)((p1, r)(q1, r)) = max{ilQ1
(p1q1), i

l
P2
(r)},

(iuQ1
⊕ iuQ2

)((p1, r)(q1, r)) = max{iuQ1
(p1q1), i

u
P2
(r)},

(f l
Q1

⊕ f l
Q2

)((p1, r)(q1, r)) = max{f l
Q1

(p1q1), f
l
P2
(r)},

(fu
Q1

⊕ fu
Q2

)((p1, r)(q1, r)) = max{fu
Q1

(p1q1), f
u
P2
(r)}, ∀p1q1 ∈ Q

′
1 and r ∈ P

′
2.

(4) (tlQ1
⊕ tlQ2

)(p1, p2)(q1, q2) = min{tlP1
(p1), t

l
P1
(q1), t

l
Q2

(p2q2)},
(tuQ1

⊕ tuQ2
)(p1, p2)(q1, q2) = min{tuP1

(p1), t
u
P1
(q1), t

u
Q2

(p2q2)},
(ilQ1

⊕ ilQ2
)(p1, p2)(q1, q2) = max{ilP1

(p1), i
l
P1
(q1), i

l
Q2

(p2q2)},
(iuQ1

⊕ iuQ2
)(p1, p2)(q1, q2) = max{iuP1

(p1), i
u
P1
(q1), i

u
Q2

(p2q2)},
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(f l
Q1

⊕ f l
Q2

)(p1, p2)(q1, q2) = max{f l
P1
(p1), f

l
P1
(q1), f

l
Q2

(p2q2)},
(fu

Q1
⊕ fu

Q2
)(p1, p2)(q1, q2) = max{fu

P1
(p1), f

u
P1
(q1), f

u
Q2

(p2q2)},
∀p1q1 /∈ Q

′
1, p2q2 ∈ Q

′
2.

(5) (tlQ1
⊕ tlQ2

)(p1, p2)(q1, q2) = min{tlQ1
(p1q1), t

l
P2
(p2), t

l
P2
(q2)},

(tuQ1
⊕ tuQ2

)(p1, p2)(q1, q2) = min{tuQ1
(p1q1), t

u
P2
(p2), t

u
P2
(q2)},

(ilQ1
⊕ ilQ2

)(p1, p2)(q1, q2) = max{ilQ1
(p1q1), i

l
P2
(p2), i

l
P2
(q2)},

(iuQ1
⊕ iuQ2

)(p1, p2)(q1, q2) = max{iuQ1
(p1q1), i

u
P2
(p2), i

u
P2
(q2)},

(f l
Q1

⊕ f l
Q2

)(p1, p2)(q1, q2) = max{f l
Q1

(p1q1), f
l
P2
(p2), f

l
P2
(q2)},

(fu
Q1

⊕ fu
Q2

)(p1, p2)(q1, q2) = max{fu
Q1

(p1q1), f
u
P2
(p2), f

u
P2
(q2)},

∀p1q1 ∈ Q
′
1, p2q2 /∈ Q

′
2.

Example 3.15. Consider two SIVNGs G1 = (P1, Q1) and G2 = (P2, Q2) as represented

in Figure 8. Their symmetric difference G1 ⊕ G2 is represented in Figure 9. For instance,

consider the vertex p1q1 in Figure 9. Then from the above definition, (tlP1
⊕ tlP2

)(p1, q1) =

min{tlP1
(p1), t

l
P2
(q1)} = min{0.2, 0.1} = 0.1 and (tuP1

⊕ tuP2
)(p1, q1) = min{tuP1

(p1), t
u
P2
(q1)} =

min{0.4, 0.3} = 0.3.The other membership values can be found accordingly. Further,

(tlQ1
⊕ tlQ2

)(p1, q1)(p1, q2) = min{tlP1
(p1), t

l
Q2

(q1, q2)} = min{0.2, 0.1} = 0.1 and (tuQ1
⊕

tuQ2
)(p1, q1)(p1, q2) = min{tuP1

(p1), t
u
Q2

(q1, q2)} = min{0.4, 0.3} = 0.3. Similarly, all the other

membership values can be calculated.

Figure 8. Strong Interval Valued Neutrosophic Graphs G1 and G2

Theorem 3.16. The symmetric difference of two SIVNGs G1 and G2 is a SIVNG.

Proof. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs on G
′
1 = (P

′
1, Q

′
1) and G

′
2 =

(P
′
2, Q

′
2) respectively and ((p1, p2), (q1, q2)) ∈ Q

′
1 ×Q

′
2. Then, we have,

Case 1. If p1 = q1 = p, p2q2 ∈ Q
′
2,

(tuQ1
⊕ tuQ2

)((p, p2)(p, q2)) = min{tuP1
(p), tuQ2

(p2q2)}
= min{tuP1

(p),min{tuP2
(p2), t

u
P2
(q2)}}

= min{min{tuP1
(p), tuP2

(p2)},min{tuP1
(p), tuP2

(q2)}}
= min{(tuP1

⊕ tuP2
)(p, p2), (t

u
P1

⊕ tuP2
)(p, q2)}
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Figure 9. Symmetric difference G1 ⊕G2

Using the same approach, the other conditions can also be evaluated.

Case 2. If p2 = q2 = r, p1q1 ∈ Q
′
1,

(iuQ1
⊕ iuQ2

)((p1, r)(q1, r)) = max{iuQ1
(p1q1), i

u
P2
(r)}

= max{max{iuP1
(p1), i

u
P1
(q1)}, iuP2

(r)}
= max{max{iuP1

(p1), i
u
P2
(r)},max{iuP1

(q1), i
u
P2
(r)}}

= max{(iuP1
⊕ iuP2

)(p1, r), (i
u
P1

⊕ iuP2
)(q1, r)}

In the same way, the other conditions can also be verified.

Case 3. If p1q1 /∈ Q
′
1, p2q2 ∈ Q

′
2,

(fu
Q1

⊕ fu
Q2

)((p1, p2)(q1, q2)) = max{fu
P1
(p1), f

u
P1
(q1), f

u
Q2

(p2q2)}
= max{fu

P1
(p1), f

u
P1
(q1),max{fu

P2
(p2), f

u
P2
(q2)}}

= max{max{fu
P1
(p1), f

u
P2
(p2)},max{, fu

P1
(q1), f

u
P2
(q2)}},

= max{(fu
P1

⊕ fu
P2
)(p1, p2), (f

u
P1

⊕ fu
P2
)(q1, q2)}

In the same way, the other conditions can also be verified.

Case 4. If p1q1 ∈ Q
′
1, p2q2 /∈ Q

′
2,

(fu
Q1

⊕ fu
Q2

)((p1, p2)(q1, q2)) = max{fu
Q1

(p1q1), f
u
P2
(p2), f

u
P2
(q2)}

= max{max{fu
P1
(p1), f

u
P1
(q1)}, fu

P2
(p2), f

u
P2
(q2)}

= max{max{fu
P1
(p1), f

u
P2
(p2)},max{fu

P1
(q1), f

u
P2
(q2)}}

= max{(fu
P1

⊕ fu
P2
)(p1, p2), (f

u
P1

⊕ fu
P2
)(q1, q2)}

Similarly, the other conditions can also be verified.
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Definition 3.17. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs. The degree for any

vertex (p1, p2) ∈ (P
′
1 × P

′
2) is,

(dtl)G1⊕G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(tlQ1

⊕ tlQ2
)((p1, p2)(q1, q2))

=
∑

p1=q1,p2q2∈Q
′
2
min{tlP1

(p1), t
l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

min{tlQ1
(p1q1), t

l
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
min{tlP1

(p1), t
l
P1
(q1), t

l
Q2

(p2q2)}
+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
min{tlQ1

(p1q1), t
l
P2
(p2), t

l
P2
(q2)}

(dtu)G1⊕G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(tuQ1

⊕ tuQ2
)((p1, p2)(q1, q2))

=
∑

p1=q1,p2q2∈Q
′
2
min{tuP1

(p1), t
u
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

min{tuQ1
(p1q1), t

u
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
min{tuP1

(p1), t
u
P1
(q1), t

u
Q2

(p2q2)}
+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
min{tuQ1

(p1q1), t
u
P2
(p2), t

u
P2
(q2)}

(dil)G1⊕G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(ilQ1

⊕ ilQ2
)((p1, p2)(q1, q2))

=
∑

p1=q1,p2q2∈Q
′
2
max{ilP1

(p1), i
l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{ilQ1
(p1q1), i

l
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
max{ilP1

(p1), i
l
P1
(q1), i

l
Q2

(p2q2)}
+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
max{ilQ1

(p1q1), i
l
P2
(p2), i

l
P2
(q2)}

(diu)G1⊕G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(iuQ1

⊕ iuQ2
)((p1, p2)(q1, q2))

=
∑

p1=q1,p2q2∈Q
′
2
max{iuP1

(p1), i
u
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{iuQ1
(p1q1), i

u
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
max{iuP1

(p1), i
u
P1
(q1), i

u
Q2

(p2q2)}
+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
max{iuQ1

(p1q1), i
u
P2
(p2), i

u
P2
(q2)}

(df l)G1⊕G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(f l

Q1
⊕ f l

Q2
)((p1, p2)(q1, q2))

=
∑

p1=q1,p2q2∈Q
′
2
max{f l

P1
(p1), f

l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{f l
Q1

(p1q1), f
l
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
max{f l

P1
(p1), f

l
P1
(q1), f

l
Q2

(p2q2)}
+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
max{f l

Q1
(p1q1), f

l
P2
(p2), f

l
P2
(q2)}

(dfu)G1⊕G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(fu

Q1
⊕ fu

Q2
)((p1, p2)(q1, q2))

=
∑

p1=q1,p2q2∈Q
′
2
max{fu

P1
(p1), f

u
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{fu
Q1

(p1q1), f
u
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
max{fu

P1
(p1), f

u
P1
(q1), f

u
Q2

(p2q2)}
+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
max{fu

Q1
(p1q1), f

u
P2
(p2), f

u
P2
(q2)}

Theorem 3.18. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs. If tlP1
≥ tlQ2

, tuP1
≥

tuQ2
, ilP1

≤ ilQ2
, iuP1

≤ iuQ2
, f l

P1
≤ f l

Q2
, fu

P1
≤ fu

Q2
and tlP2

≥ tlQ1
, tuP2

≥ tuQ1
, ilP2

≤ ilQ1
, iuP2

≤
iuQ1

, f l
P2

≤ f l
Q1

, fu
P2

≤ fu
Q1

, then for every (p1, p2) ∈ (P
′
1 × P

′
2),

(d)G1⊕G2(p1, p2) = q′(d)G1(p1) + s′(d)G2(p2), where s′ =| P
′
1 | −(d)G1(p1)and q′ =| P

′
2 |

−(d)G2(p2).

Proof. Consider,

(dil)G1⊕G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(ilQ1

⊕ ilQ2
)((p1, p2)(q1, q2))

=
∑

p1=q1,p2q2∈Q
′
2
max{ilP1

(p1), i
l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{ilQ1
(p1q1), i

l
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
max{ilP1

(p1), i
l
P1
(q1), i

l
Q2

(p2q2)}
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+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
max{ilQ1

(p1q1), i
l
P2
(p2), i

l
P2
(q2)}

= q
′
(dli)G1(p1) + s

′
(dli)G2(p2)

In the same way, the other conditions can also be verified.

Definition 3.19. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs. The total degree for

any vertex (p1, p2) ∈ (P
′
1 × P

′
2) is,

(tdtl)G1⊕G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(tlQ1

⊕ tlQ2
)((p1, p2)(q1, q2)) + (tlP1

⊕ tlP2
)(p1, p2)

=
∑

p1=q1,p2q2∈Q
′
2
min{tlP1

(p1), t
l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

min{tlQ1
(p1q1), t

l
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
min{tlP1

(p1), t
l
P1
(q1), t

l
Q2

(p2q2)}
+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
min{tlQ1

(p1q1), t
l
P2
(p2), t

l
P2
(q2)} +min{tlP1

(p1), t
l
P1
(p2)}

(tdtu)G1⊕G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(tuQ1

⊕ tuQ2
)((p1, p2)(q1, q2)) + (tuP1

⊕ tuP2
)(p1, p2)

=
∑

p1=q1,p2q2∈Q
′
2
min{tuP1

(p1), t
u
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

min{tuQ1
(p1q1), t

u
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
min{tuP1

(p1), t
u
P1
(q1), t

u
Q2

(p2q2)}
+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
min{tuQ1

(p1q1), t
u
P2
(p2), t

u
P2
(q2)} +min{tuP1

(p1), t
u
P1
(p2)}

(tdil)G1⊕G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(ilQ1

⊕ ilQ2
)((p1, p2)(q1, q2)) + (ilP1

⊕ ilP2
)(p1, p2)

=
∑

p1=q1,p2q2∈Q
′
2
max{ilP1

(p1), i
l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{ilQ1
(p1q1), i

l
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
max{ilP1

(p1), i
l
P1
(q1), i

l
Q2

(p2q2)}
+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
max{ilQ1

(p1q1), i
l
P2
(p2), i

l
P2
(q2)} +max{ilP1

(p1), i
l
P1
(p2)}

(tdiu)G1⊕G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(iuQ1

⊕ iuQ2
)((p1, p2)(q1, q2)) + (iuP1

⊕ iuP2
)(p1, p2)

=
∑

p1=q1,p2q2∈Q
′
2
max{iuP1

(p1), i
u
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{iuQ1
(p1q1), i

u
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
max{iuP1

(p1), i
u
P1
(q1), i

u
Q2

(p2q2)}
+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
max{iuQ1

(p1q1), i
u
P2
(p2), i

u
P2
(q2)} +max{iuP1

(p1), i
u
P1
(p2)}

(tdf l)G1⊕G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(f l

Q1
⊕ f l

Q2
)((p1, p2)(q1, q2)) + (f l

P1
⊕ f l

P2
)(p1, p2)

=
∑

p1=q1,p2q2∈Q
′
2
max{f l

P1
(p1), f

l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{f l
Q1

(p1q1), f
l
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
max{f l

P1
(p1), f

l
P1
(q1), f

l
Q2

(p2q2)}
+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
max{f l

Q1
(p1q1), f

l
P2
(p2), f

l
P2
(q2)} +max{f l

P1
(p1), f

l
P1
(p2)}

(tdfu)G1⊕G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(fu

Q1
⊕ fu

Q2
)((p1, p2)(q1, q2)) + (fu

P1
⊕ fu

P2
)(p1, p2)

=
∑

p1=q1,p2q2∈Q
′
2
max{fu

P1
(p1), f

u
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{fu
Q1

(p1q1), f
u
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
max{fu

P1
(p1), f

u
P1
(q1), f

u
Q2

(p2q2)}
+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
max{fu

Q1
(p1q1), f

u
P2
(p2), f

u
P2
(q2)} +max{fu

P1
(p1), f

u
P1
(p2)}

Theorem 3.20. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs. If tlP1
≥ tlQ2

, tuP1
≥

tuQ2
, ilP1

≤ ilQ2
, iuP1

≤ iuQ2
, f l

P1
≤ f l

Q2
, fu

P1
≤ fu

Q2
and tlP2

≥ tlQ1
, tuP2

≥ tuQ1
, ilP2

≤ ilQ1
, iuP2

≤
iuQ1

, f l
P2

≤ f l
Q1

, fu
P2

≤ fu
Q1

, then for every (p1, p2) ∈ (P
′
1 × P

′
2),

(tdtl)G1⊕G2(p1, p2) = q′(tdtl)G1(p1) + s′(tdtl)G2(p2) − (q′ − 1)tlG1
(p1) − (s′ − 1)tlG2

(p2) −
max{tlG1

(p1), t
l
G2

(p2)}
(tdtu)G1⊕G2(p1, p2) = q′(tdtu)G1(p1) + s′(tdtu)G2(p2) − (q′ − 1)tuG1

(p1) − (s′ − 1)tuG2
(p2) −
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max{tuG1
(p1), t

u
G2

(p2)}
(tdil)G1⊕G2(p1, p2) = q′(tdil)G1(p1) + s′(tdil)G2(p2) − (q′ − 1)ilG1

(p1) − (s′ − 1)ilG2
(p2) −

min{ilG1
(p1), i

l
G2

(p2)}
(tdiu)G1⊕G2(p1, p2) = q′(tdiu)G1(p1) + s′(tdiu)G2(p2) − (q′ − 1)iuG1

(p1) − (s′ − 1)iuG2
(p2) −

min{iuG1
(p1), i

u
G2

(p2)}
(tdf l)G1⊕G2(p1, p2) = q′(tdf l)G1(p1) + s′(tdf l)G2(p2) − (q′ − 1)f l

G1
(p1) − (s′ − 1)f l

G2
(p2) −

min{f l
G1

(p1), f
l
G2

(p2)}
(tdfu)G1⊕G2(p1, p2) = q′(tdfu)G1(p1) + s′(tdfu)G2(p2) − (q′ − 1)fu

G1
(p1) − (s′ − 1)fu

G2
(p2) −

min{fu
G1

(p1), f
u
G2

(p2)}

Proof. Consider,

(tdf l)G1⊕G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(f l

Q1
⊕ f l

Q2
)((p1, p2)(q1, q2)) + (f l

P1
⊕ f l

P2
)(p1, p2)

=
∑

p1=q1,p2q2∈Q
′
2
max{f l

P1
(p1), f

l
Q2

(p2q2)} +
∑

p1q1∈Q
′
1,p2=q2

max{f l
Q1

(p1q1), f
l
P2
(p2)}

+
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
max{f l

P1
(p1), f

l
P1
(q1), f

l
Q2

(p2q2)}
+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
max{f l

Q1
(p1q1), f

l
P2
(p2), f

l
P2
(q2)} +max{f l

P1
(p1), f

l
P1
(p2)}

=
∑

p1=q1,p2q2∈Q
′
2
, f l

Q2
(p2q2) +

∑
p1q1∈Q

′
1,p2=q2

f l
Q1

(p1q1) +
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
f l
Q2

(p2q2)

+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
f l
Q1

(p1q1) +max{f l
P1
(p1), f

l
P1
(p2)}

=
∑

p1=q1,p2q2∈Q
′
2
, f l

Q2
(p2q2) +

∑
p1q1∈Q

′
1,p2=q2

f l
Q1

(p1q1) +
∑

p1q1 /∈Q
′
1,p2q2∈Q

′
2
f l
Q2

(p2q2)

+
∑

p1q1∈Q
′
1,p2q2 /∈Q

′
2
f l
Q1

(p1q1)−min{f l
P1
(p1), f

l
P1
(p2)}

= q′(tdf l)G1(p1) + s′(tdf l)G2(p2)− (q′ − 1)f l
G1

(p1)− (s′ − 1)f l
G2

(p2)−min{f l
G1

(p1), f
l
G2

(p2)}.
Similarly, the other conditions can also be proved.

Example 3.21. The symmetric difference G1 ⊕G2 of two SIVNGs G1 and G2 = (P2, Q2) is

represented in Figure 10 and 11.

Figure 10. Strong Interval Valued Neutrosophic Graphs G1 and G2

By direct calculations, dtl(p1, q1) = 0.3 + 0.3 = 0.6; dtu(p1, q1) = 0.4 + 0.4 = 0.8;

dt(p1, q1) = [0.6, 0.8]; tdtl(p1, q1) = 0.3 + 0.3 + 0.3 = 0.9; tdtu(p1, q1) = 0.4 + 0.4 + 0.4 = 1.2;

tdt(p1, q1) = [0.9, 1.2].

By using theorem, s′ =| P ′
1 | −(d)G1(p1) = 2 − 1 = 1; q′ =| P ′

2 | −(d)G2(p2) = 2 − 1 = 1;

dtl(p1, q1) = 1(0.3) + 1(0.3) = 0.6; dtu(p1, q1) = 1(0.4) + 1(0.4) = 0.8; dt(p1, q1) = [0.6, 0.8];

tdtl(p1, q1) = 1(0.7) + 1(0.6) − 0(0.4) − 0(0.3) − max{0.4, 0.3} = 0.9; tdtu(p1, q1) = 1(0.9) +

R. Keerthana, S. Venkatesh, R. Srikanth, On Certain Operations on Strong Interval Valued
Neutrosophic Graph with Application in the Cardiac Functioning of the Human Heart

Neutrosophic Sets and Systems, Vol. 60, 2023                                                                               251



Figure 11. Symmetric difference G1 ⊕G2

1(0.8)− 0(0.5)− 0(0.4)−max{0.5, 0.4} = 1.2; tdt(p1, q1) = [0.9, 1.2].

Definition 3.22. The residue product G1 G2 = (P1•P2, Q1•Q2) of two SIVNGs G1 = (P1, Q1)

and G2 = (P2, Q2) is defined as

(1) (tlP1
• tlP2

)(p1, p2) = max{tlP1
(p1), t

l
P2
(p2)},

(tuP1
• tuP2

)(p1, p2) = max{tuP1
(p1), t

u
P2
(p2)},

(ilP1
• ilP2

)(p1, p2) = min{ilP1
(p1), i

l
P2
(p2)},

(iuP1
• iuP2

)(p1, p2) = min{iuP1
(p1), i

u
P2
(p2)},

(f l
P1

• f l
P2
)(p1, p2) = min{f l

P1
(p1), f

l
P2
(p2)},

(fu
P1

• fu
P2
)(p1, p2) = min{fu

P1
(p1), f

u
P2
(p2)}.

(2) (tlQ1
• tlQ2

)((p1, p2)(q1, q2)) = tlQ1
(p1q1),

(tuQ1
• tuQ2

)((p1, p2)(q1, q2)) = tuQ1
(p1q1),

(ilQ1
• ilQ2

)((p1, p2)(q1, q2)) = ilQ1
(p1q1),

(iuQ1
• iuQ2

)((p1, p2)(q1, q2)) = iuQ1
(p1q1),

(f l
Q1

• f l
Q2

)((p1, p2)(q1, q2)) = f l
Q1

(p1q1),

(fu
Q1

• fu
Q2

)((p1, p2)(q1, q2)) = fu
Q1

(p1q1), ∀p1q1 ∈ Q
′
1, p2 ̸= q2.

Theorem 3.23. The residue product of two SIVNGs G1 and G2, need not be a SIVNG.

From example 3.24, Figure 13, it is clear that t, i and f values of the vertices and the edges

in G1 •G2 do not satisfy the strong condition and hence it is an IVNG.

Example 3.24. Consider two SIVNGs G1 = (P1, Q1) and G2 = (P2, Q2) as represented in

Figure 12. Their residue product G1 •G2 is represented in Figure 13.

Theorem 3.25. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs. If tlP1
≥ tlQ2

, tuP1
≥

tuQ2
, ilP1

≤ ilQ2
, iuP1

≤ iuQ2
, f l

P1
≤ f l

Q2
, fu

P1
≤ fu

Q2
and tlP2

≥ tlQ1
, tuP2

≥ tuQ1
, ilP2

≤ ilQ1
, iuP2

≤
iuQ1

, f l
P2

≤ f l
Q1

, fu
P2

≤ fu
Q1

, then the residue product of two SIVNGs G1 and G2 is a SIVNG.
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Figure 12. Strong Interval Valued Neutrosophic Graphs G1 and G2

Figure 13. Residue product G1 •G2

Proof. For p1q1 ∈ Q
′
1, p2 ̸= q2,

(tlQ1
• tlQ2

)((p1, p2)(q1, q2)) = tlQ1
(p1q1), = min{tlP1

(p1), t
l
P1
(q1)},

= min{max{tlP1
(p1), t

l
P1
(p2)},max{tlP1

(q1), t
l
P1
(q2)}},

= min{(tlP1
• tlP2

)(p1, p2), (t
l
P1

• tlP2
)(q1, q2)}.

Example 3.26. Consider two SIVNGs G1 = (P1, Q1) and G2 = (P2, Q2) as represented in

Figure 14. Their residue product G1 •G2 is represented in Figure 15.

Definition 3.27. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs. The degree for any

vertex (p1, p2) ∈ (P
′
1 × P

′
2) is,

(dtl)G1•G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(tlQ1

• tlQ2
)((p1, p2)(q1, q2))

=
∑

p1q1∈Q
′
1,p2 ̸=q2

tlQ1
(p1q1) = (dlt)G1(p1)

(dtu)G1•G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(tuQ1

• tuQ2
)((p1, p2)(q1, q2))
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Figure 14. Strong Interval Valued Neutrosophic Graphs G1 and G2

Figure 15. Residue product G1 •G2

=
∑

p1q1∈Q
′
1,p2 ̸=q2

tuQ1
(p1q1) = (dut )G1(p1)

(dil)G1•G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(ilQ1

• ilQ2
)((p1, p2)(q1, q2))

=
∑

p1q1∈Q
′
1,p2 ̸=q2

ilQ1
(p1q1) = (dli)G1(p1)

(diu)G1•G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(iuQ1

• iuQ2
)((p1, p2)(q1, q2))

=
∑

p1q1∈Q
′
1,p2 ̸=q2

iuQ1
(p1q1) = (dui )G1(p1)

(df l)G1•G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(f l

Q1
• f l

Q2
)((p1, p2)(q1, q2))

=
∑

p1q1∈Q
′
1,p2 ̸=q2

f l
Q1

(p1q1) = (dlf )G1(p1)

(dfu)G1•G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(fu

Q1
• fu

Q2
)((p1, p2)(q1, q2))

=
∑

p1q1∈Q
′
1,p2 ̸=q2

fu
Q1

(p1q1) = (duf )G1(p1)

Definition 3.28. Let G1 = (P1, Q1) and G2 = (P2, Q2) be two SIVNGs. The total degree for

any vertex (p1, p2) ∈ (P
′
1 × P

′
2) is,
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(tdtl)G1•G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(tlQ1

• tlQ2
)((p1, p2)(q1, q2)) + (tlP1

• tlP2
)(p1, p2)

=
∑

p1q1∈Q
′
1,p2 ̸=q2

tlQ1
(p1q1) +max{tlP1

(p1), t
l
P2
(p2)}

=
∑

p1q1∈Q
′
1,p2 ̸=q2

tlQ1
(p1q1) + tlP1

(p1) + tlP2
(p2)−min{tlP1

(p1), t
l
P2
(p2)}

= (tdtl)G1(p1) + tlP2
(p2)−min{tlP1

(p1), t
l
P2
(p2)

(tdtu)G1•G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(tuQ1

• tuQ2
)((p1, p2)(q1, q2)) + (tuP1

• tuP2
)(p1, p2)

=
∑

p1q1∈Q
′
1,p2 ̸=q2

tuQ1
(p1q1) +max{tuP1

(p1), t
l
P2
(p2)}

=
∑

p1q1∈Q
′
1,p2 ̸=q2

tuQ1
(p1q1) + tuP1

(p1) + tuP2
(p2)−min{tuP1

(p1), t
u
P2
(p2)}

= (tdtu)G1(p1) + tuP2
(p2)−min{tuP1

(p1), t
u
P2
(p2)

(tdil)G1•G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(ilQ1

• ilQ2
)((p1, p2)(q1, q2)) + (ilP1

• ilP2
)(p1, p2)

=
∑

p1q1∈Q
′
1,p2 ̸=q2

ilQ1
(p1q1) +min{ilP1

(p1), i
l
P2
(p2)}

=
∑

p1q1∈Q
′
1,p2 ̸=q2

ilQ1
(p1q1) + ilP1

(p1) + ilP2
(p2)−max{ilP1

(p1), i
l
P2
(p2)}

= (tdil)G1(p1) + ilP2
(p2)−max{ilP1

(p1), i
l
P2
(p2)

(tdiu)G1•G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(iuQ1

• iuQ2
)((p1, p2)(q1, q2)) + (iuP1

• iuP2
)(p1, p2)

=
∑

p1q1∈Q
′
1,p2 ̸=q2

iuQ1
(p1q1) +min{iuP1

(p1), i
u
P2
(p2)}

=
∑

p1q1∈Q
′
1,p2 ̸=q2

iuQ1
(p1q1) + iuP1

(p1) + iuP2
(p2)−max{iuP1

(p1), i
u
P2
(p2)}

= (tdiu)G1(p1) + iuP2
(p2)−max{iuP1

(p1), i
u
P2
(p2)

(tdf l)G1•G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(f l

Q1
• f l

Q2
)((p1, p2)(q1, q2)) + (f l

P1
• f l

P2
)(p1, p2)

=
∑

p1q1∈Q
′
1,p2 ̸=q2

f l
Q1

(p1q1) +min{f l
P1
(p1), f

l
P2
(p2)}

=
∑

p1q1∈Q
′
1,p2 ̸=q2

f l
Q1

(p1q1) + f l
P1
(p1) + f l

P2
(p2)−max{f l

P1
(p1), f

l
P2
(p2)}

= (tdf l)G1(p1) + f l
P2
(p2)−max{f l

P1
(p1), f

l
P2
(p2)

(tdfu)G1•G2(p1, p2) =
∑

((p1,p2)(q1,q2))∈Q
′
1×Q

′
2
(fu

Q1
• fu

Q2
)((p1, p2)(q1, q2)) + (fu

P1
• fu

P2
)(p1, p2)

=
∑

p1q1∈Q
′
1,p2 ̸=q2

fu
Q1

(p1q1) +min{fu
P1
(p1), f

u
P2
(p2)}

=
∑

p1q1∈Q
′
1,p2 ̸=q2

fu
Q1

(p1q1) + fu
P1
(p1) + fu

P2
(p2)−max{fu

P1
(p1), f

u
P2
(p2)}

= (tdfu)G1(p1) + fu
P2
(p2)−max{fu

P1
(p1), f

u
P2
(p2)

From Figure 15, df (p1, q2) and tdf (p1, q2) for the vertex (p1, q2) are calculated below.

df l(p1, q2) = 0.3 + 0.3 = 0.6, dfu(p1, q2) = 0.4 + 0.4 = 0.8, df (p1, q2) = [0.6, 0.8]

tdf l(p1, q2) = 0.9 + 0.2− 0.3 = 0.8, tdfu(p1, q2) = 1.2 + 0.3− 0.4 = 1.1, tdf (p1, q2) = [0.8, 1.1].

4. Application

4.1. The Cardiac Cycle of a Human Heart

The right atrium (RA) of the heart receives deoxygenated blood from both Superior Vena

Cava (SVC) and Inferior Vena Cava (IVC). Then, the tricuspid valve (TVL) opens due to the

contraction of the right atrium and the deoxygenated blood has directed to the right ventricle

(RV). After the ventricular filling, the tricuspid valve (TVL) shuts. Now, the right ventricle

(RV) gets contracted, which causes the opening of the pulmonary valve (PVL) and the blood

is transferred to the pulmonary artery (PA) and then to the lungs for oxygenation. After the
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blood gets oxygenated, it enters the left atrium (LA) via pulmonary veins (PV). Now, the

left atrium gets contracted and the mitral valve (MVL) opens for transferring the oxygenated

blood to the left ventricle. After passing out the blood to the left ventricle (LV), the mitral

valve (MVL) closes. Now, the left ventricle contracts for ejecting the blood to the aorta (A)

through the aortic valve (AVL). From there, the oxygenated blood passes to all the parts

of the human body. The blood flow through the human heart has presented in Figure 16.

Biologically during the period of cardiac cycle, it is observed that

Figure 16. The Human Heart

(1) Left ventricular systole and diastole is the most effective phase on the whole.

(2) The Left side of the human heart has comparatively higher pressure than on the right

side. i.e., Left Atrial (Ventricular) Systole has higher pressure than Right Atrial (Ven-

tricular) Systole and vice versa.

(3) Systolic (ventricular) pressure is higher than diastolic (ventricular) pressure.

The flowchart given in Figure 17 illustrates the method for evaluating the cardiac functioning

of the human heart.

4.2. The Wright Table - Study of blood flow along with their blood pressure values

Wright’s table [22], a teaching tool to learn and understand the cardiac cycle, has elaborated

the path of blood flow with the blood pressure changes. The Wright table explains how the

pressures and flows of each compartment fluctuate over time, as well as how the heart functions

as a pump, first filling and then emptying the ventricles and thereby transferring blood from

low-pressure venous to high-pressure arterial compartments. The Wright’s table provided in

Table 1 and Table 2 elaborates the path of blood flow along with the blood pressure changes

during AS/VD and AD/VS phase of the human heart observed for a healthy adult of age
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Figure 17. Flowchart for evaluating Cardiac Functioning of the Human Heart

above 35 years without any cardiac malfunction along with their corresponding hemodynamic

parameters.

Table 1. The Wright’s table representation of AS/VD and AD/VS phase

(Right Side)

SVC and RA TVL RV PVL PA

IVC

AS/VD 2-5 −→ 4-6 −→ 12.6-29.3 −→ 0-8 (closed valve) 0 (closed valve) 8-15 −→

AD/VS 2-5 −→ 0 (closed valve) 0 (closed valve) 15-25 −→ 15-25 −→ 15-25 −→

4.3. Conversion of Blood pressure values into Interval Valued Neutrosophic values (IVN-

values)

As the rate of blood pressure changes from time to time under a certain interval and it is

highly impracticable for getting the same blood pressure value in each prediction, a minute

level of indeterminacy and falsity have been observed.
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Table 2. TheWright’s table representation of AS/VD and AD/VS phase (Left

Side)

PV LA MVL LV AVL A

AS/VD 2-5 −→ 7-8 −→ 0 −→ 0-12 (closed valve) 0 (closed valve) 60-90 −→

AD/VS 2-5 −→ 0 (closed valve) 0 (closed valve) 100-140 −→ 8-12 −→ 100-140 −→

The blood pressure values given in Table 1 and Table 2 are converted to fit under an IVN-

environment. The truth-membership values are exactly the blood pressure values taken for

consideration and the indeterminacy-membership values and the falsity-membership values are

estimated accordingly.

Since the IVN-values lie in the range of [0, 1], the blood pressure values (mm/Hg) given in Ta-

ble 1 and Table 2 are re-scaled using bar conversion. For instance, the blood pressure value in

Superior Vena Cava is 2-5 mm/Hg and its bar conversion becomes [0.00266645, 0.00666612] ≈
[0.003, 0.007].

Thus with reference to the bar conversion, Table 3 shows the re-scaled Interval Valued Neu-

trosophic blood pressure values observed in Table 1 and Table 2.

Table 3. Rescaled IVN Blood Pressure Values

AS/VD AD/VS

SVC & IVC < [0.003, 0.007], [0.001, 0.0015], [0.001, 0.002] > < [0.003, 0.007], [0.001, 0.0015], [0.001, 0.002] >

RA < [0.005, 0.008], [0.001, 0.003], [0.001, 0.002] > < [0, 0], [0.001, 0.001], [0.001, 0.001] >

TVL < [0.017, 0.04], [0.001, 0.002], [0.001, 0.002] > < [0, 0], [0, 0], [0, 0] >

RV < [0, 0.01], [0.001, 0.002], [0.002, 0.004] > < [0.02, 0.03], [0.001, 0.002], [0.001, 0.0015] >

PVL < [0, 0], [0, 0], [0, 0] > < [0.02, 0.03], [0.001, 0.002], [0.001, 0.002] >

PA < [0.01, 0.02], [0.002, 0.004], [0.001, 0.003] > < [0.02, 0.03], [0.002, 0.003], [0.001, 0.003] >

PV < [0.003, 0.007], [0.001, 0.0015], [0.001, 0.002] > < [0.003, 0.007], [0.001, 0.0015], [0.001, 0.002] >

LA < [0.009, 0.01], [0.001, 0.002], [0.001, 0.002] > < [0, 0], [0.001, 0.001], [0.001, 0.001] >

MVL < [0, 0], [0.001, 0.001], [0.001, 0.001] > < [0, 0], [0, 0], [0, 0] >

LV < [0, 0.016], [0.001, 0.0012], [0.001, 0.0015] > < [0.13, 0.19], [0.002, 0.003], [0.001, 0.002] >

AVL < [0, 0], [0, 0], [0, 0] > < [0.01, 0.016], [0.0012, 0.0016], [0.001, 0.0015] >

A < [0.08, 0.12], [0.005, 0.007], [0.003, 0.005] > < [0.13, 0.19], [0.003, 0.005], [0.002, 0.004] >
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4.4. Modeling of Human Heart as SIVN - Digraph

The blood flow through right and left heart as given in Figure 16 is represented as a digraph

G = (P,
−→
Q) with the vertex set X = {p1, p2, p3, ..., p16} along with the directed edges in

Figure 18.

Figure 18. The Human Heart digraph

4.5. SIVNDG representation of the cardiac cycle functioning during AS/VD and AD/VS

Phases

During the cardiac cycle functioning, both the right and the left atria narrow down at

first, pumping blood to the right ventricle and the left ventricle, respectively. During this

period, both the right and the left atria are in systolic phase and the corresponding right

and the left ventricles are in diastolic phase. In response to electrical impulses the right and

left ventricles contract instantly, allowing blood to flow to the lungs and to the rest of the

body.At this time, the atria remain in diastolic phase and the ventricles are in systolic phase

and their corresponding strong interval-valued neutrosophic values during this AS/VD and

AD/VS phases are represented in Figure 19 and Figure 20 with reference to Table 3.

During AS/VD phase, the vertices and the edges along with their membership functions for

the directed subgraphs H1 = (PH1 ,
−−→
QH1) and H2 = (PH2 ,

−−→
QH2) for X = {p1, p2, p3, ..., p16} are

defined by

PH1 = {p1 < [0.003, 0.007], [0.001, 0.0015], [0.001, 0.002] >, p2 < [0.003, 0.007],

[0.001, 0.0015], [0.001, 0.002] >, p3 < [0.005, 0.008], [0.001, 0.003], [0.001,

0.002] >, p4 < [0.017, 0.04], [0.001, 0.002], [0.001, 0.002] >, p5 < [0, 0.01],

[0.001, 0.002], [0.002, 0.004] >, p6 < [0, 0], [0, 0], [0, 0] >, p7 < [0.01, 0.02],

[0.002, 0.004], [0.001, 0.003] >}.
−−→
QH1 = {−−→p1p3 < [0.003, 0.007], [0.001, 0.003], [0.001, 0.002] >,
−−→p2p3 < [0.003, 0.007], [0.001, 0.003], [0.001, 0.002] >,−−→p3p4 < [0.005, 0.008],
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[0.001, 0.003], [0.001, 0.002] >,−−→p4p5 < [0, 0.01], [0.001, 0.002], [0.002, 0.004] >,
−−→p5p6 < [0, 0], [0.001, 0.002], [0.002, 0.004] >,−−→p6p7 < [0, 0], [0.002, 0.004],

[0.001, 0.003] >}.
PH2 = {p8 < [0.003, 0.007], [0.001, 0.0015], [0.001, 0.002] >,

p9 < [0.003, 0.007], [0.001, 0.0015], [0.001, 0.002] >, p10 < [0.003, 0.007],

[0.001, 0.0015], [0.001, 0.002] >, p11 < [0.003, 0.007], [0.001, 0.0015],

[0.001, 0.002] >, p12 < [0.009, 0.01], [0.001, 0.002], [0.001, 0.002] >, p13 < [0, 0],

[0.001, 0.001], [0.001, 0.001] >, p14 < [0, 0.016], [0.001, 0.0012], [0.001, 0.0015] >, p15 <

[0, 0], [0, 0], [0, 0] >, p16 < [0.08, 0.12], [0.005, 0.007], [0.003, 0.005] >}.
−−→
QH2 = {−−−→p8p12 < [0.003, 0.007], [0.001, 0.002], [0.001, 0.002] >,
−−−→p9p12 < [0.003, 0.007], [0.001, 0.002], [0.001, 0.002] >,
−−−→p10p12 < [0.003, 0.007], [0.001, 0.002], [0.001, 0.002] >,
−−−→p11p12 < [0.003, 0.007], [0.001, 0.002], [0.001, 0.002] >,
−−−→p12p13 < [0, 0], [0.001, 0.002], [0.001, 0.002] >,
−−−→p13p14 < [0, 0], [0.001, 0.0012], [0.001, 0.0015] >,
−−−→p14p15 < [0, 0], [0.001, 0.0012], [0.001, 0.0015] >,
−−−→p15p16 < [0, 0], [0.005, 0.007], [0.003, 0.005] >}.

Figure 19. SIVN Digraph G = H1 ∪H2 during AS/ VD Phase

During AD / VS phase, the vertices and the edges along with their membership functions for

the directed subgraphs H3 = (PH3 ,
−−→
QH3) and H4 = (PH4 ,

−−→
QH4) on X are defined by,

PH3 = {p1 < [0.003, 0.007], [0.001, 0.0015], [0.001, 0.002] >, p2 < [0.003, 0.007],

[0.001, 0.0015], [0.001, 0.002] >, p3 < [0, 0], [0.001, 0.001], [0.001, 0.001] >,

p4 < [0, 0], [0, 0], [0, 0] >, p5 < [0.02, 0.03], [0.001, 0.002], [0.001, 0.0015] >,
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p6 < [0.02, 0.03], [0.001, 0.002], [0.001, 0.002] >, p7 < [0.02, 0.03], [0.002, 0.003],

[0.001, 0.003] >}.
−−→
QH3 = {−−→p1p3 < [0, 0], [0.001, 0.0015], [0.001, 0.002] >,−−→p2p3 < [0, 0],

[0.001, 0.0015], [0.001, 0.002] >,−−→p3p4 < [0, 0], [0.001, 0.001], [0.001, 0.001] >,
−−→p4p5 < [0, 0], [0.001, 0.002], [0.001, 0.0015] >,−−→p5p6 < [0.02, 0.03], [0.001,

0.002], [0.001, 0.002] >,−−→p6p7 < [0.02, 0.03], [0.002, 0.003], [0.001, 0.003] >}.
PH4 = {p8 < [0.003, 0.007], [0.001, 0.0015], [0.001, 0.002] >, p9 < [0.003,

0.007], [0.001, 0.0015], [0.001, 0.002] >, p10 < [0.003, 0.007], [0.001, 0.0015],

[0.001, 0.002] >, p11 < [0.003, 0.007], [0.001, 0.0015], [0.001, 0.002] >,

p12 < [0, 0], [0.001, 0.001], [0.001, 0.001] >, p13 < [0, 0], [0, 0], [0, 0] >,

p14 < [0.13, 0.19], [0.002, 0.003], [0.001, 0.002] >, p15 < [0.01, 0.016], [0.0012,

0.0016], [0.001, 0.0015] >, p16 < [0.13, 0.19], [0.003, 0.005], [0.002, 0.004] >}.
−−→
QH4 = {−−−→p8p12 < [0, 0], [0.001, 0.0015], [0.001, 0.002] >,−−−→p9p12 < [0, 0],

[0.001, 0.0015], [0.001, 0.002] >,−−−→p10p12 < [0, 0], [0.001, 0.0015], [0.001, 0.002] >,−−−→p11p12 <

[0, 0], [0.001, 0.0015], [0.001, 0.002] >,−−−→p12p13 < [0, 0], [0.001, 0.001],

[0.001, 0.001] >,−−−→p13p14 < [0, 0], [0.002, 0.003], [0.001, 0.002] >,−−−→p14p15 < [0.01,

0.016], [0.002, 0.003], [0.001, 0.002] >,−−−→p15p16 < [0.01, 0.016], [0.003, 0.005],

[0.002, 0.004] >}.

Figure 20. SIVN Digraph G = H3 ∪H4 during AD/ VS Phase

4.6. Matrix form of SIVNDG during AS/VD and AD/VS phase

The strong Interval Valued Neutrosophic directed subgraphs
−→
Hl(l = 1, 2, 3, 4) during AS/

VD and AD/ VS Phase are represented by the following incident matrices m−→
Hl

= (−−→pipj) where
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i, j = 1, 2, .., 16 and l = 1, 2, 3, 4.

m−→
H1

=



< [0.003, 0.007], [0.001, 0.0015], [0.001, 0.002] >, i = 1, 2, j = 3

< [0.005, 0.008], [0.001, 0.003], [0.001, 0.002] >, i = 3, j = 4

< [0, 0.01], [0.001, 0.002], [0.002, 0.004] >, i = 4, j = 5

< [0, 0], [0.001, 0.002], [0.002, 0.004] >, i = 5, j = 6

< [0, 0], [0.002, 0.004], [0.001, 0.003] >, i = 6, j = 7

< [0, 0], [0, 0], [1, 1] > otherwise

m−→
H2

=



< [0.003, 0.007], [0.001, 0.002], [0.001, 0.002] >, i = 8, 9, 10, 11, j = 12

< [0, 0], [0.001, 0.002], [0.001, 0.002] >, i = 12, j = 13

< [0, 0], [0.001, 0.0012], [0.001, 0.0015] >, i = 13, j = 14

< [0, 0], [0.001, 0.0012], [0.001, 0.0015] >, i = 14, j = 15

< [0, 0], [0.005, 0.007], [0.003, 0.005] >, i = 15, j = 16

< [0, 0], [0, 0], [1, 1] > otherwise

m−→
H3

=



< [0, 0], [0.001, 0.0015], [0.001, 0.002] >, i = 1, 2, j = 3

< [0, 0], [0.001, 0.001], [0.001, 0.001] >, i = 3, j = 4

< [0, 0], [0.001, 0.002], [0.001, 0.0015] >, i = 4, j = 5

< [0.02, 0.03], [0.001, 0.002], [0.001, 0.002] >, i = 5, j = 6

< [0.02, 0.03], [0.002, 0.003], [0.001, 0.003] >, i = 6, j = 7

< [0, 0], [0, 0], [1, 1] > otherwise

m−→
H4

=



< [0, 0], [0.001, 0.0015], [0.001, 0.002] >, i = 8, 9, 10, 11, j = 12

< [0, 0], [0.001, 0.001], [0.001, 0.001] >, i = 12, j = 13

< [0, 0], [0.002, 0.003], [0.001, 0.002] >, i = 13, j = 14

< [0.01, 0.016], [0.002, 0.003], [0.001, 0.002] >, i = 14, j = 15

< [0.01, 0.016], [0.003, 0.005], [0.002, 0.004] >, i = 15, j = 16

< [0, 0], [0, 0], [1, 1] > otherwise

For any given Strong Interval Valued Neutrosophic Number aP = ([tlP , t
u
P ], [i

l
P , i

u
P ],

[f l
P , f

u
P ]) with the score function [23]

S(aP ) =

(
2 + (tlP + tuP )− 2(ilP + iuP )− (f l

P + fu
P )

4

)
(1)

In order to obtain the crisp values from the corresponding SIVN values from the above incidence

matrices
−→
Hl(l = 1, 2, 3, 4), the score function is used. The score values of each entry of the

corresponding incidence matrices
−→
Hl(l = 1, 2, 3, 4) are consolidated in Table 4, 5, 6, 7.
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Table 4. Score matrix for AS/VD on the Right side of the heart

p1 p2 p3 p4 p5 p6 p7 RowTotal

p1 0.0 0.0 0.49975 0.0 0.0 0.0 0.0 0.49975

p2 0.0 0.0 0.49975 0.0 0.0 0.0 0.0 0.49975

p3 0.0 0.0 0.0 0.5005 0.0 0.0 0.0 0.5005

p4 0.0 0.0 0.0 0.0 0.4995 0.0 0.0 0.4995

p5 0.0 0.0 0.0 0.0 0.0 0.497 0.0 0.497

p6 0.0 0.0 0.0 0.0 0.0 0.0 0.496 0.496

p7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 2.9925

Table 5. Score matrix for AD/VS on the Right side of the heart

p1 p2 p3 p4 p5 p6 p7 RowTotal

p1 0.0 0.0 0.498 0.0 0.0 0.0 0.0 0.498

p2 0.0 0.0 0.498 0.0 0.0 0.0 0.0 0.498

p3 0.0 0.0 0.0 0.4985 0.0 0.0 0.0 0.4985

p4 0.0 0.0 0.0 0.0 0.497875 0.0 0.0 0.497875

p5 0.0 0.0 0.0 0.0 0.0 0.51025 0.0 0.51025

p6 0.0 0.0 0.0 0.0 0.0 0.0 0.509 0.509

p7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 3.011625

Table 6. Score matrix for AS/VD on the Left side of the heart

p8 p9 p10 p11 p12 p13 p14 p15 p16 RowTotal

p8 0.0 0.0 0.0 0.0 0.50025 0.0 0.0 0.0 0.0 0.50025

p9 0.0 0.0 0.0 0.0 0.50025 0.0 0.0 0.0 0.0 0.50025

p10 0.0 0.0 0.0 0.0 0.50025 0.0 0.0 0.0 0.0 0.50025

p11 0.0 0.0 0.0 0.0 0.50025 0.0 0.0 0.0 0.0 0.50025

p12 0.0 0.0 0.0 0.0 0.0 0.49775 0.0 0.0 0.0 0.49775

p13 0.0 0.0 0.0 0.0 0.0 0.0 0.498275 0.0 0.0 0.498275

p14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.498275 0.0 0.498275

p15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.492 0.492

p16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 3.9873

5. Sensitivity Analysis and Comparative Study

The Sensitivity Analysis focuses on the uncertainty analysis of a mathematical model or a

system. In decision making problems, it helps to determine the significance of each criterion
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Table 7. Score matrix for AD/VS on the Left side of the heart

p8 p9 p10 p11 p12 p13 p14 p15 p16 RowTotal

p8 0.0 0.0 0.0 0.0 0.498 0.0 0.0 0.0 0.0 0.498

p9 0.0 0.0 0.0 0.0 0.498 0.0 0.0 0.0 0.0 0.498

p10 0.0 0.0 0.0 0.0 0.498 0.0 0.0 0.0 0.0 0.498

p11 0.0 0.0 0.0 0.0 0.498 0.0 0.0 0.0 0.0 0.498

p12 0.0 0.0 0.0 0.0 0.0 0.4985 0.0 0.0 0.0 0.4985

p13 0.0 0.0 0.0 0.0 0.0 0.0 0.49675 0.0 0.0 0.49675

p14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.50325 0.0 0.50325

p15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.501 0.501

p16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 3.9915

used. Since both SVC and IVC push the deoxygenated blood to the RA with high pressure,

the RA remains in Systolic phase at this time. Then the deoxygenated blood passes to the

RV which remains in diastolic phase. Table 4 represents the crisp value that depicts the flow

of deoxygenated blood during AS/VD phase on the Right side of the human heart. After the

ventricular filling, the deoxygenated blood is transferred to PA. During this time, the RV stays

in Systolic phase and RA remains in Diastolic phase. Table 5 gives the numerical values of the

blood flow of the human heart during AD/VS phase on the Right side. Then, the oxygenated

blood passes to LA and then to the LV. At this time, the LA is in Systolic phase and the

corresponding LV is in Diastolic phase. Table 6 gives the values of the blood flow during

AS/VD phase on the Left side of the human heart. Finally, the LV pushes out the blood to

the Aorta and simultaneously the LV is in Systolic phase whereas the LA is in Diastolic phase.

Table 7 illustrates the values of the blood flow during AD/VS phase on the Left side of the

human heart. Now, by comparing the score values in Table 4, Table 5, Table 6 and Table 7,

the most crucial phase during the cardiac cycle is evaluated. From the cumulative numerical

values of the score matrices for the AS/VD and AD/VS phases on the Right and the Left side

of the human heart, the sensitivity analysis is tabulated in Table 8.

Comparatively, from Table 4, Table 5, Table 6 and Table 7, the AS/VD phase on the Left

side of the human heart is highly significant phase.

6. Results

It is evident that AS/VD phase on the Left side of the human heart is the most crucial

phase. Also, it is observed that,
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Table 8. Sensitivity Analysis

Phases in the Human Heart Row Total Ordering

AD/VS Phase(Left Side) 3.9915 1

AS/VD Phase (Left Side) 3.9873 2

AD/VS Phase (Right Side) 3.011625 3

AS/VD Phase (Right Side) 2.9925 4

(1) Atrial Systole / Ventricular Diastole on the left-hand side of the human heart (3.9873)

has comparatively higher pressure than Atrial Systole / Ventricular Diastole on the

right-hand side of the human heart (2.9925).

(2) Atrial Diastole / Ventricular Systole on the left-hand side of the human heart (3.9915)

has comparatively higher pressure than Atrial Diastole / Ventricular Systole on the

right-hand side of the human heart (3.011625).

7. Discussion

From Table 8, it is clear that

(1) Ventricular Systole and Diastole on the Left side of the human heart is the most

significant process as compared to the Right side.

(2) Systolic ventricular phase is comparatively greater than diastolic ventricular phase.

The above analysis are analogous to the cardiac functioning of a normal and healthy individual.

8. Need, Limitation and Impact

(1) Since the blood flow is uni-directional and the blood pressure values fluctuates within

certain range, it is necessary to depict the blood flow under a directed interval valued

neutrosophic environment. Also, the blood usually flows from high to low pressure,

in order to maintain the optimal level between any two compartments of the human

heart, we model the cardiac functioning of the human heart as SIVNDG.

(2) The score function helps to make the deneutrosophication of SIVN values to a crisp

value.

(3) Modelling the cardiac cycle of the human heart as SIVNDG helps to evaluate the blood

flow in each phase effectively.

(4) The blood pressure is dynamic in nature as it changes while sleeping or doing exercise

or a rest etc. The study of blood flow under these circumstances can be studied by

our proposed model only if the necessary blood pressure values available.
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9. Conclusions

For any two SIVNGs, it is shown that G1∗G2, G1 | G2, G1⊕G2 and G1•G2 is again a SIVNG.

By modeling the cardiac functioning of the human heart, it is observed that the cardiac cycle is

fit under the SIVNDG since the blood flow is unidirectional and the hemodynamic parameters

show a varying pattern. Furthermore, the indeterminacy observed in the interval of blood

pressure values is limited within and not more or less that range.With the observation of score

function, we found that our result is identical to the conventional biological approach. Hence,

evaluating the cardiac functioning of the heart by modeling as SIVNDG is the most reasonable

choice.
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graphs are also depicted.
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—————————————————————————————————————————-

1. Introduction

A Mathematical study of queues or waiting in lines was given by Erlang in the year 1909

is defined to be queuing which plays a significant role in almost all-fields. Finding the amount

of customers waiting in line and system and the waiting lines of customers in both queue and

system are the basic components of queuing theory defined by Shortle and Thompson [23].

Applying fuzzy logic to queuing theory makes solution for imprecise cases or uncertainty in

the Fuzzy logic was firstly introduced by Zadeh in 1965 [24]. Rather than crisp queues, fuzzy

queues are much more sensible in many real circumstances.

Neutrosophic Philosophy in queuing deals with situations in which the queue parameters

are inaccurate. Neutrosophic logic which is a generalisation of fuzzy logic and intuitionistic

fuzzy logic [17, 18, 19, 20] was introduced by Florentin Smarandache in the year 1995. This

deals with indeterminacy data realistic and thereby gives understandable efficient outcomes

[14, 15, 16, 22]. If the parameters of the queuing system are neutrosophic numbers, the system

T.Deepika and K.Julia Rose Mary, NM/NM/c Queuing Model with Encouraged arrival and Heterogeneous

servers
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is said to be a neutrosophic queue.

The Neutrosophic set is employed to explain the uncertainty and indeterminacy in any

information. This set is characterized by a truth ’T’, indeterminacy ’I’ and false ’F’ mem-

bership functions, where T, I, F ∈]−0, 1+[. There is no restriction on the sum and so

0− ≤ T + I + F ≤ 3+. Neutrosophic set needs to be specified from a technical point of

view. To this effect, we define certain set-theoretic operators on neutrosophic set, which in

turn called as Single valued Neutrosophic set [21]. The membership functions for truth (T), in-

determinacy (I), and falseness (F) define a single valued neutrosophic set, where T, I, F ∈ [0, 1],

which fulfills the following requirements: 0 ≤ T + I + F ≤ 3. We examine single valued neu-

trosophic encouraged arrival and heterogeneous service rate. Encouraged arrival defines where

the customers are drew towards profitable deals or offers. For instances, people rush towards

ticket counters in railway station during vacation or special holidays. Also, Heterogeneous

server defines the service occurs in a varied service rate. This in combination with Neutroso-

phy gives precise output.

Patro with Smarandache discussed more problems and solutions on Neutrosophic Statistical

Distribution [13]. Bisher Zeina [11,12] studied Erlang Service Queuing Model and Event-Based

Queuing Model on Neutrosophic basis in the year 2020. Deepa and Julia Rose Mary stud-

ied Heterogeneous Bulk tandem fluid multiple vacations queuing model for encouraged arrival

with catastrophe[3]. Krishnakumar and Maheshwari [4] found the transient solution of M/M/2

queue with heterogeneous servers subject to catastrophes. Maissam Jdid, Smarandache and

Said Browmi [5] inspected the assignment form of Product quality control using Neutrosophic

logic. Jdid and Smarandache [6] explained the use of Neutrosophic Methods of Operations

Research in the Management of Corporate work. Manas et. al. [7] found the solution of

transportation issues in a neutrosophic setting.

Bisher Zeina [8,9] studied the M/M/1 Queue’s Performance measures on fuzzy environment

and Neutrosophic concept of M/M/1, M/M/c, M/M/1/b Queuing system utilizing interval-

valued neutrosophic sets in the year 2020. Also in the year 2021, Mohamed Bisher Zeina [10]

analysed Single Valued Neutrosophic M/M/1 Queue in Linguistic terms. Some operations of

Single Valued Neutrosophic numbers mentioned by Bisher Zeina is utilized here. Bhupender

Singh Som and Sunny Seth [1, 2] developed M/M/c queuing system with encouraged arrivals

with N number of customers, Impatient customers and Retention of Impatient Customers

queuing system in the year 2018.

Here, we consider a case where the customer’s arrival and service are neutrosophic. We

deduce the steady state equations and thereby deriving the system’s performance indicators.
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Some Procedures on Single Valued Neutrosophic

Here we provide some basic operations on Neutrosophic sets dealing with addition, sub-

traction, multiplication, division, power and scalar multiplication. This is one of the necessary

factor in performing any operation between two different sets.

In this paper, These Neutrosophic processes are used to determine Neutrosophic queuing

models’ performance metrics, including as Ls, Lq, Ws and Wq respectively.

Suppose that we have two neutrosophic numbers given by X = (t1, i1, f1),

Y = (t2, i2, f2) where:

0 ≤ t1, i1, f1, t2, i2, f2

0 ≤ t1 + i1 + f1 ≤ 3 and 0 ≤ t2 + i2 + f2 ≤ 3

Then:

Neutrosophic Summation

X ⊕ Y = (t1 + t2 − t1t2, i1i2, f1f2)

Neutrosophic Multiplication

X ⊗ Y = (t1t2, i1 + i2 − i1i2, f1 + f2 − f1f2)

Neutrosophic Subtraction

X ⊖ Y =
(
t1−t2
1−t2

, i1i2 ,
f1
f2

)
; t2 ̸= 1, i2 ̸= 0, f2 ̸= 0

Neutrosophic Division

X
Y =

(
t1
t2
, i1−i2
1−i2

, f1−f2
1−f2

)
; t2 ̸= 0, i2 ̸= 1, f2 ̸= 1

Neutrosophic Scalar Multiplication

λX =
(
1− (1− t1)

λ, iλ1 , f
λ
1

)
;λ > 0

Neutrosophic Power

Xλ =
(
tλ1 , 1− (1− i1)

λ, 1− (1− f1)
λ
)

With the aid of the above operations, our model is explained.

2. (NM/NM/c):(FIFO/∞/∞) QM with En. A and Heterogeneous service - Model

Description:

Here the customers arrive with a mean arrival rate λN and a maximum of c customers may

be served simultaneously. The encouraged arrival rate=λN (1 + η). The service rate per busy

server is equal to
∑n

i=1 µNi. Also we get λNeff = λN . Neutrosophic Philosophy used here is to

present precise information dealing with with uncertainty, untruth, and truth (i.,e) The arrival

rate λN is assumed to be λN = (Tλ, Iλ, Fλ) and the service rate
∑n

i=1 µN = (Tµi , Iµi , Fµi). If

the customer base in the system , n equals or exceed c, the combined departure rate from the
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facility is c
∑n

i=1 µNi. Else, if n < c, the service rate n
∑n

i=1 µNi. Thus in terms of generalized

model, λn = λ. Here λNn = λN

(
1 + η

)
if n ≥ 0

n∑
i=1

µNni =

n
∑n

i=1 µNi;n < c

c
∑n

i=1 µNi;n ≥ c

Also, the intensity ρN is given by,

ρN =
λN (1 + η)

c
∑n

i=1 µN

=

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
c
∑n

i=1

(
Tµi , Iµi , Fµi

)
=

1

c

(
Tλ(1+η)∑n
i=1 Tµi

,
Iλ(1+η) −

∑n
i=1 Iµi

1−
∑n

i=1 Iµi

,
Fλ(1+η) −

∑n
i=1 Fµi

1−
∑n

i=1 Fµi

)
where ρN = λN

c
∑n

i=1 µNi
< 1.

For the Neutrosophic M/M/c QM with En. A and Heterogeneous server, the steady state

equation becomes,

Case I:

dNP0(t)

dt
= −λN

(
1 + η

)
NP0(t) + µN1NP1(t);n = 0

dNP0(t)

dt
= −

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NP0(t) +

(
Tµ1 , Iµ1 , Fµ1

)
NP1(t);n = 0 (1)

dNPn(t)

dt
= −

[(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
+

n∑
i=1

(
Tµi , Iµi , Fµi

)]
NPn(t)

+

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NPn−1(t) +

n+1∑
i=1

(
Tµi , Iµi , Fµi

)
NPn+1(t) ;n = 1, 2, ...c− 1.

(2)

dNPc(t)

dt
= −

[(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
+

c∑
i=1

(
Tµi , Iµi , Fµi

)]
NPc(t)

+

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NPc−1(t) +

c∑
i=1

(
Tµi , Iµi , Fµi

)
NPc+1(t) ;n = c. (3)
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dNPn(t)

dt
= −

[(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
+

n∑
i=1

(
Tµi , Iµi , Fµi

)]
NPn(t)

+

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NPn−1(t) +

c∑
i=1

(
Tµi , Iµi , Fµi

)
NPn+1(t) ;n ≥ c+ 1. (4)

In steady state,

limt→∞ NPn(t) = NPn

limt→∞
dNPn(t)

dt = 0

Then,

(1) ⇒ 0 = −
(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NP0 +

(
Tµ1 , Iµ1 , Fµ1

)
NP1;n = 0 (5)

(2) ⇒ 0 = −
[(

Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
+

n∑
i=1

(
Tµi , Iµi , Fµi

)]
NPn

+

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NPn−1 +

n+1∑
i=1

(
Tµi , Iµi , Fµi

)
NPn+1 ;n = 1, 2, ...c− 1. (6)

(3) ⇒ 0 = −
[(

Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
+

n∑
i=1

(
Tµi , Iµi , Fµi

)]
NPc

+

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NPc−1 +

c∑
i=1

(
Tµi , Iµi , Fµi

)
NPc+1 ;n = c. (7)

(4) ⇒ 0 = −
[(

Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
+

n∑
i=1

(
Tµi , Iµi , Fµi

)]
NPn

+

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NPn−1 +

c∑
i=1

(
Tµi , Iµi , Fµi

)
NPn+1 ;n ≥ c+ 1. (8)

From (5), we have

NP1 =

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
(
Tµ1 , Iµ1 , Fµ1

) NP0

NP1 =

λN

(
1 + η

)
µN1

NP0
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From (6), we have

n+1∑
i=1

(
Tµi , Iµi , Fµi

)
NPn+1 =

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NPn

+
n∑

i=1

(
Tµi , Iµi , Fµi

)
NPn −

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NPn−1 (9)

Put n = 1 in eq (9)

2∑
i=1

(
Tµi , Iµi , Fµi

)
NP2 =

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NP1

+

(
Tµ1 , Iµ1 , Fµ1

)
NP1 −

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NP0

NP2 =

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
∑2

i=1

(
Tµi , Iµi , Fµi

) NP1

NP2 =

(λN

(
1 + η

)
∑2

i=1 µNi

)
NP1

NP2 =

( λN

(
1 + η

)2

∑2
i=1 µNi.µN1

)
NP0

Putting n = 2 in (9), we get

3∑
i=1

(
Tµi , Iµi , Fµi

)
NP3 =

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NP2

+

2∑
i=1

(
Tµi , Iµi , Fµi

)
NP2 −

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NP1

3∑
i=1

(
Tµi , Iµi , Fµi

)
NP3 =

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NP2
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NP3 =

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
∑3

i=1

(
Tµi , Iµi , Fµi

) NP2

NP3 =

(λN

(
1 + η

)
∑3

i=1 µNi

)
NP2

NP3 =

( λN

(
1 + η

)3

∑3
i=1 µNi.

∑2
i=1 µNi.µN1

)
NP0

Similarly,

NP4 =

( λN

(
1 + η

)4

∑4
i=1 µNi.

∑3
i=1 µNi.

∑2
i=1 µNi.µN1

)
NP0

NPn =

( λN

(
1 + η

)n

∑n
i=1 µNi.....

∑2
i=1 µNi.µN1

)
NP0 (10)

If n = c− 1, we get from eq (9)

c∑
i=1

(
Tµi , Iµi , Fµi

)
NPc =

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NPc−1

NPc =

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
∑c

i=1

(
Tµi , Iµi , Fµi

) NPc−1

NPc =

(λN

(
1 + η

)
∑c

i=1 µNi

)
NPc−1

NPc−1 =

( λN

(
1 + η

)c−1

∑c−1
i=1 µNi.

∑c−2
i=1 µNi.....

∑2
i=1 µNi.µN1

)
NP0

NPc =

( λN

(
1 + η

)c

∑c
i=1 µNi.

∑c−1
i=1 µNi.....

∑2
i=1 µNi.µN1

)
NP0
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Case II: When n=c in eq (9),

c+1∑
i=1

(
Tµi , Iµi , Fµi

)
NPc+1 =

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NPc

NPc+1 =

(λN

(
1+η

)
∑c+1

i=1 µNi

)
NPc

NPc+1 =

( λN

(
1+η

)c+1

∑c+1
i=1 µNi.

∑c
i=1 µNi.....

∑2
i=1 µNi.µN1

)
NP0

Case III: When n=c+1 in eq(9),

c+2∑
i=1

(
Tµi , Iµi , Fµi

)
NPc+2 =

(
Tλ(1+η), Iλ(1+η), Fλ(1+η)

)
NPc+1

NPc+2 =

( λN

(
1 + η

)c+2

∑c+2
i=1 µNi.

∑c+1
i=1 µNi.....

∑2
i=1 µNi.µN1

)
NP0

NPc+(n−c) =

( λN

(
1 + η

)n

∑c+(n−c)
i=1 µNi.....

∑2
i=1 µNi.µN1

)
NP0 (11)

Now, to find: NP0

∞∑
n=0

NPn = 1

⇒
c−1∑
n=0

NPn +NPc +

∞∑
n=c+1

NPn = 1

⇒
c−1∑
n=0

( λN

(
1 + η

)n

∑n
i=1 µNi.....

∑2
i=1 µNi.µN1

)
NP0 +

λN

(
1 + η

)c

∑c
i=1 µNi.....

∑2
i=1 µNi.µN1

NP0

+
∞∑

n=c+1

( λN

(
1 + η

)n

∑n
i=1 µNi.....

∑c+1
i=1 µNi.

∑c
i=1 µNi.....

∑2
i=1 µNi.µN1

)
NP0 = 1
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⇒ NP0[

c−1∑
n=0

( λN

(
1 + η

)n

∑n
i=1 µNi.....

∑2
i=1 µNi.µN1

)
+

λN

(
1 + η

)c

∑c
i=1 µNi.....

∑2
i=1 µNi.µN1

+
∞∑

n=c+1

( λN

(
1 + η

)n

∑n
i=1 µNi.....

∑c+1
i=1 µNi.

∑c
i=1 µNi.....

∑2
i=1 µNi.µN1

)
] = 1

⇒ NP0[
c−1∑
n=0

( λN

(
1 + η

)n

∑n
i=1 µNi.....µN1

)
+

λN

(
1 + η

)c

∑c
i=1 µNi....µN1

+

( λN

(
1 + η

)c+1

∑c+1
i=1 µNi.....µN1

)
+

( λN

(
1 + η

)c+2

∑c+2
i=1 µNi.....µN1

)
+ ........] = 1

⇒ NP0[
c−1∑
n=0

( λN

(
1 + η

)n

∑n
i=1 µNi.....µN1

)
+

λN

(
1 + η

)c

∑c
i=1 µNi....µN1

[1 +

λN

(
1 + η

)
µN1

+

λN

(
1 + η

)2

∑2
i=1 µNi.µN1

+ ........]] = 1

⇒ NP0 =

[ c−1∑
n=0

( λN

(
1 + η

)n

∑n
i=1 µNi.....µN1

)
+

λN

(
1 + η

)c

∑c
i=1 µNi....µN1

[
1 +

∞∑
n=1

λN (1 + η)n∑n
i=1 µNni

]]−1

Sub NP0 in eq(10) and (11),

(10) ⇒ NPn =
λN (1 + η)n∑n
i=1 µNi....µN1

[

c−1∑
n=0

( λN

(
1 + η

)n

∑n
i=1 µNi.....µN1

)

+

λN

(
1 + η

)c

∑c
i=1 µNi....µN1

[1 +
∞∑
n=1

λN (1 + η)n∑n
i=1 µNni

]]−1

(11) ⇒ NPn =
λN (1 + η)n∑n

i=1 µNi....
∑c+1

i=1 µNi....µN1

[
c−1∑
n=0

( λN

(
1 + η

)n

∑n
i=1 µNi.....µN1

)

+

λN

(
1 + η

)c

∑c
i=1 µNi....µN1

[1 +

∞∑
n=1

λN (1 + η)n∑n
i=1 µNni

]]]−1
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for ρN
c < 1 or

λN

(
1+η

)
c
∑n

i=1 µNi
< 1,

NLq =

∞∑
n=c

(
n− c

)
NPn [Take n− c = k]

=
∞∑
k=0

kNPk+c

=
∞∑
k=0

k

( λN

(
1 + η

)k+c

∑k+c
i=1 µNi.....

∑2
i=1 µNi.µN1

)
NP0

=

λN

(
1 + η

)c

∑c
i=1 µNi.....µN1

NP0

[ ∞∑
k=0

k

( λN

(
1 + η

)k

∑k
i=1 µNi.....

∑c+1
i=1 µNi

)]

=

λN

(
1 + η

)c

∑c
i=1 µNi.....µN1

NP0

[λN

(
1 + η

)
µN1

+ 2

λN

(
1 + η

)2

∑2
i=1 µNi

+ .....

]

=

λN

(
1 + η

)c

∑c
i=1 µNi.....µN1

NP0

[ ∞∑
n=1

λN (1 + η)n∑n
i=1 µNn

]

Also, the system’s performance indicators for a neutrosophic M/M/c QM with En. A and

Heterogeneous server was given by,

As, NLq = ρcN
∑∞

n=1 ρNn .NP0

NLq =
∑∞

n=1 ρNn .NPc (12)

NLs = NLq + ρN

The neutrosophic form of ρN is already defined, using that we get

Nls = NLq +
λN (1+η)∑n

i=1 µNi
(13)
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Similarly, we can also find NWq and NWs.

NWq =
NLq

λN (1+η) (14)

NWs = NWq +
1∑n

i=1 µNi
(15)

3. Numerical Example

In this portion, we take some observed neutrosophic values for λN (1 + η) and
∑n

i=1 µNi .

The values of Tλ(1+η), Iλ(1+η) and Fλ(1+η) denoting the arrival rate λN (1 + η), and∑n
i=1(TµNi

, IµNi
, FµNi

) representing the service rate. Also, the observed data takes η to be

0.005 and 0.01 and considering the number of servers as c=1, 2 and 3. By letting the het-

erogeneous service rate
∑n

i=1 µNi as (TµN1
, IµN1

, FµN1
) = (0.5, 0.8, 0.7), (TµN2

, IµN2
, FµN2

) =

(0.6, 0.7, 0.6), (TµN3
, IµN3

, FµN3
) = (0.7, 0.6, 0.5), (TµN4

, IµN4
, FµN4

) = (0.8, 0.5, 0.4).

(TµN1
, IµN1

, FµN1
) values can be viewed as first varied service rate of validity, ambiguity, and

fake membership values. the system’s performance indicators were calculated using (12), (13),

(14) and (15) respectively. By considering all the above data and by using equations (12) and

(13), we obtain NLs as (0.123, 0.8032, 0.6493) which means the anticipated size of customers

in the system to be truth, indeterminate and false. We apply all the observed values in the

concerned system measures of performance and depict a line graph. Here we use the opera-

tions of Single valued neutrosophic numbers. The resulted system measures of performance

provides the degree to which the system’s reported client count, queue length, and wait time

are true, unreliable, or false respectively. The evaluated values are tabulated below:

Various Performance measures by varying λN with respect to c and η = 0.005

λN NLq NLs NWq NWs

(0.1, 0.9,

0.8)

(0.0237, 0.9135,

0.8317)

(0.123, 0.8032,

0.6493)

(0.2358, 0.1393,

0.1623)

(1.0093,−0.0281,

−0.0149)

(0.2, 0.8,

0.9)

(0.1101,−0.027,

0.9544)

(0.291,−0.0205,

0.8497)

(0.548,−4.0916,

−0.3065)

(1.0055, 0.8261,

0.0281)

(0.3, 0.7,

0.6)

(0.2847, 3.0318,

−6.7481)

(0.5028, 1.9343,

−3.7904)

(0.9452, 7.7457,

−18.2979)

(1.0007,−1.5639,

1.6779)

(0.4, 0.6,

0.7)

(0.5923, 2.0323,

−0.0168)

(0.758, 1.0515,

−0.0113)

(1.4752, 3.5711,

−2.3758)

(0.9942,−0.721,

0.2179)

Table 1. When c=1, η = 0.005
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λN NLq NLs NWq NWs

(0.1, 0.9,

0.8)

(0.003, 0.9786,

0.8984)

(0.1044, 0.8604,

0.7014)

(0.0299, 0.7871,

0.4943)

(1.0118,−0.1589,

−0.0453)

(0.2, 0.8,

0.9)

(0.0287, 0.5347,

0.9918)

(0.2262, 0.8876,

0.9991)

(0.1429,−1.3161,

0.9184)

(1.0105, 0.2657,

−0.0842)

(0.3, 0.7,

0.6)

(0.1146,−0.3405,

−0.2547)

(0.3846,−0.2172

+0.1431)

(0.3805,−3.4505,

−2.125)

(1.0076, 0.6967,

0.1949)

(0.4, 0.6,

0.7)

(0.3092, 0.3442,

0.4747)

(0.5899, 0.1781,

0.3186)

(0.7701,−0.6334,

−0.744)

(1.0028, 0.1279,

0.0682)

Table 2. When c=2, η = 0.005

λN NLq NLs NWq NWs

(0.1, 0.9,

0.8)

(0.0003, 0.9968,

0.4369)

(0.102, 0.8764,

0.3411)

(0.003, 0.9682,

−1.8029)

(1.0122,−0.1955,

0.1653)

(0.2, 0.8,

0.9)

(0.0062, 0.8595,

0.999)

(0.2082, 0.6519,

0.8894)

(0.0309, 0.3007,

0.9901)

(1.0118,−0.0607,

−0.0908)

(0.3, 0.7,

0.6)

(0.0373, 0.3749,

0.4626)

(0.3308, 0.2392,

0.2598)

(0.1238,−1.0754,

−0.3385)

(1.0107, 0.2171,

0.031)

(0.4, 0.6,

0.7)

(0.1344,−1.7047,

0.8)

(0.4862,−0.882,

0.537)

(0.3348,−5.7365,

0.336)

(1.0081, 1.1582,

−0.0308)

Table 3. When c=3, η = 0.005
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Figure 1. NLq and NLs when η = 0.005

In the above line graph, NLq and NLs values are plotted with the number of servers as 1,

2 and 3. Here, we consider a parameter η which is considered as encouraged arrival parameter

and it takes the value 0.005 and the heterogeneous service rate is taken as mentioned above.

At c=1, NLq and NLs increases steadily with the increase in λN . When c=2, NLq increases

measurably and so NLs.

Also, when c=3, both NLq and NLs increases with λN . Now we find that the amount of

customers waiting in line and system increases with steady increase of λN it demonstrates

that it is adequate. for the customers to get served with 2 heterogeneous services. As there is

only minute differences between c=2 and c=3, customers can get served with 2 servers as it is

unnecessary to increase the server which lead to the loss to the service provider.
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Figure 2. NWq and NWs when η = 0.005

In Fig 2, NWq and NWs values are plotted with the number of servers to be taken 1,

2 and 3. Here, we consider a parameter η which is considered as encouraged arrival parameter

and it takes the value 0.005. At c=1, 2 and 3, the clients’ wait times in the system remains

almost the same throughout the λN . And the waiting time of customers in the queue gradually

increasing with increase in λN . As the NWq at c=2 increases step by step, it is sufficient for

the customers to get the effective service. Increasing the server is inessential as it leads to loss.
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Various Performance measures by varying λN with respect to c and η = 0.01

λN NLq NLs NWq NWs

(0.1, 0.9,

0.8)

(0.0231, 0.9171,

0.7455)

(0.1228, 0.8059,

0.5813)

(0.2289, 0.1784,

−0.2612)

(1.0094,−0.036,

0.024)

(0.2, 0.8,

0.9)

(0.1112,−0.0543,

0.954)

(0.2928,−0.0411,

0.849)

(0.551,−4.2245,

0.5441)

(1.0055, 0.8529,

−0.00499)

(0.3, 0.7,

0.6)

(0.2877, 2.9952,

−7.2821)

(0.5058, 1.9062,

−4.0773)

(0.9511, 7.5957,

−19.546)

(1.0006,−1.5336,

1.7924)

(0.4, 0.6,

0.7)

(0.581, 2.0263,

−0.0356)

(0.752, 1.0446,

−0.0239)

(1.4413, 3.546,

−2.4235)

(0.9946,−0.7159,

0.2223)

Table 4. When c=1, η = 0.01

λN NLq NLs NWq NWs

(0.1, 0.9,

0.8)

(0.0031, 0.9782,

0.8969)

(0.1049, 0.8595,

0.6993)

(0.0307, 0.784,

0.4891)

(1.0118,−0.1583,

−0.0449)

(0.2, 0.8,

0.9)

(0.0292, 0.5246,

0.9917)

(0.2275, 0.3974,

0.8825)

(0.1447,−1.3558,

0.9177)

(1.0104, 0.2737,

−0.084)

(0.3, 0.7,

0.6)

(0.0505, 2.9182,

−7.1678)

(0.3412, 1.8571,

−4.0133)

(0.1669, 0.7341,

−19.2625)

(1.0102,−0.1482,

1.7664)

(0.4, 0.6,

0.7)

(0.3135, 0.3515,

0.4656)

(0.5936, 0.1812,

0.3119)

(0.7777,−0.6088,

−0.7666)

(1.0027, 0.1229,

0.0703)

Table 5. When c=2, η = 0.01

λN NLq NLs NWq NWs

(0.1, 0.9,

0.8)

(0.0003, 0.9967,

0.9731)

(0.1024, 0.8758,

0.7587)

(0.003, 0.9673,

−0.1957)

(1.0122,−0.1953,

0.018)

(0.2, 0.8,

0.9)

(0.0063, 0.856,

0.999)

(0.2093, 0.6484,

0.889)

(0.0312, 0.2864,

0.9901)

(1.0118,−0.0578,

−0.0908)

(0.3, 0.7,

0.6)

(0.0165, 1.9074,

−3.0607)

(0.3177, 1.2139,

−1.7137)

(0.0546, 3.9997,

−9.0737)

(1.0115,−0.8075,

0.8321)

(0.4, 0.6,

0.7)

(0.1369,−0.2329,

0.7905)

(0.4891,−0.1201,

0.5295)

(0.3396,−2.0586,

0.3074)

(1.0081, 0.4156,

−0.0282)

Table 6. When c=3, η = 0.01
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Figure 3. NLq and NLs when η = 0.01

In the above line graph, NLq and NLs values are plotted with the number of servers

to be taken as 1, 2 and 3. Here, we consider a parameter η which is considered as encouraged

arrival parameter and it takes the value 0.01 and the heterogeneous service rate is taken as

mentioned above. At c=1, NLq and NLs gradually increases with increase in λN . Also when

c=2, NLq and NLs increases steadily.

When c=3, both NLq and NLs increases slowly with increase in λN . To get effective

service, a number of 2 servers are enough as the amount of customers waiting in line and

system increases with the increasing rate of λN with the heterogeneous service rather than

increasing the servers as there is slight difference between c=2 and c=3. When the number of

servers is increased, it may steer to loss for the service provider.
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Figure 4. NWq and NWs when η = 0.01

In Fig 4, NWq and NWs values are plotted with the number of servers are taken as 1, 2

and 3. Here, we consider a parameter η which is considered as encouraged arrival parameter

and it takes the value 0.01. At c=1, 2 and 3, the clients’ wait times in the system remains

unaltered throughout λN . And the waiting time of customers in the queue increases steadily

with the increase in λN . NWq at c=2, raises step by step which is effectual to get served

besides increasing the server. It may give loss for the service provider.

In the tables above, the values of NWs and NWq are not negatives, its their membership

values, and it is a single valued neutrosophic off numbers. Here the Neutrosophic M/M/c

QM with En. A and heterogeneous service are calculated. When η = 0.005 and c=1, 2 and

3, the number of customers in the system and queue increases gradually with the increasing

λN . Also the clients’ wait times in the system shows some difference when λN increases and

waiting time of customers in the queue steadily increases. Also, when η = 0.01 and c=1, 2

and 3, the number of customers in the system and queue increases steadily with the increasing

λN . Similarly, the clients’ wait times in the system shows slight variation when λN increases

and the customers in line are waiting longer and longer. As a result of the outcome and line

graph, it is easy to suggest that it is sufficient to provide 2 servers for the effective service of

customers. Increasing the servers may give loss for the service provider when the arrival rate

increases.
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4. Result

For single valued neutrosophic M/M/c with encouraged arrival and heterogeneous service

rate queuing system, the performance measures with respect to varied arrival and service

rates are calculated. Numerical examples of the model are tabulated. In the example, we only

know their degrees of membership, so that we assume single valued neutrosophic number to

calculate it. Here in the neutrosophic model, both the arrival and service rates depends on

Truth, Indeterminacy and False membership functions. They are not considered as valued,

but its a membership functions. Also, observed numerical values are examined with suitable

line graph. With the obtained result and line graph, it is easy to suggest that it is sufficient

to provide 2 servers for the effective service of customers since they provide effective services

and thereby yielding maximum profit. Increasing the servers may give loss for the service

provider when the arrival rate increases. At heterogeneous services (i.e) in a varied rate, there

may occur a sudden destruction and a customer may balk from the system. From this analysis,

we find that even in these conditions, the service provider can maintain the same servers, and

there is no need to increase the servers as per our model.

5. Conclusion

M/M/c queuing model with Neutrosophic abstraction with encouraged arrivals and het-

erogeneous service are depicted here. The description studied here shows that the neutrosophic

M/M/c QM with En. A and heterogeneous services can be dealt with uncertain and imprecise

cases. It can be further developed with other classical queuing models, also it can be extended

to the three types of neutrosophic sets which are under, off, and over respectively. Also the

system can be analyzed with different other situations.
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—————————————————————————————————————————-

1. Introduction

Smarandache [14] defined the neutrosophic set on three component neutrosophic sets (T-

Truth, F-Falsehood, I-Indeterminacy). Lellis Thivagar et al. [11] was the first given the geo-

metric existence of N topology and in his paper [10] introduced the notion of Nn-open (closed)

sets and Nn continuous in N -neutrosophic topological spaces. The concept of N -neutrosophic

crisp topological spaces from neutrosophic crisp topological spaces was first explored and in-

vestigated by Al-Hamido [1]. As a generalization of closed sets, e-closed sets were introduced

and studied by Ekici [7–9]. In 2020, Vadivel and Sundar introduced the concept of Nnc γ-

open [15], Nnc β-open [16] and Nnc δ-open sets [18] and their continuous functions [17,20,28]
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and open mappings [19, 21, 22]. The new Nnc open sets called Nnc e-open sets and its con-

tinuous functions are introduced in Nncts by Vadivel et al. [23–27]. Recently, Das et al. [2–6]

introduced b-open sets in different types of neutrosophic topological spaces. In this paper, Nnce

open mapping, Nnce closed mapping, Nnce homeomorphism and Nnce-C homeomorphism are

introduced and some results in Nncts.

2. Preliminaries

Definition 2.1. [13] Let X be a non-empty set. Then F is called a neutrosophic crisp set

(in short, ncs) in X if F has the form F = (F01, F02, F03), where F01, F02, and F03 are subsets

of X, then neutrosophic crisp set of types

(i) F01 ∩ F02 = F02 ∩ F03 = F03 ∩ F01 = ϕ

(ii) F01 ∩ F02 = F02 ∩ F03 = F03 ∩ F01 = ϕ and F01 ∪ F02 ∪ F03 = X

(iii) F01 ∩ F02 ∩ F03 = ϕ and F01 ∪ F02 ∪ F03 = X

Definition 2.2. [13] Let F = (F01, F02, F03), G = (G01, G02, G03) ∈ ncs(X). Then

(i) ϕn = (ϕ, ϕ,X),

(ii) Xn = (X,X, ϕ),

(iii) F ⊆ G, if F01 ⊆ G01, F02 ⊆ G02 and F03 ⊇ G03.

(iv) F = G, if F ⊆ G and F ⊆ H

(v) F c = (F03, F
c
02, F01)

(vi) F ∩G = (F01 ∩G01, F02 ∩G02, F03 ∪G03)

(vii) F ∪G = (F01 ∪G01, F02 ∪G02, F03 ∩G03).

Definition 2.3. [12] A neutrosophic crisp topology (briefly, nct) on a non-empty set X is a

family Γ of nc subsets of X satisfying the following axioms

(i) ϕn, Xn ∈ Γ.

(ii) F1 ∩ F2 ∈ Γ ∀ F1 & F2 ∈ Γ.

(iii)
∪
b

Fb ∈ Γ, for any {Fb : b ∈ K} ⊆ Γ.

Then (X,Γ) is a neutrosophic crisp topological space (briefly, ncts) in X. The Γ elements are

called neutrosophic crisp open sets (briefly, ncos) in X and its complement is called neutro-

sophic crisp closed set (briefly, nccs).

Definition 2.4. [1] Let X be a non-empty set. Then ncΨ1, ncΨ2, · · · , ncΨN are N -arbitrary

crisp topologies defined on X and the collection NncΨ = {B ⊆ X : B = (
N∪
k=1

Fk) ∪ (
N∩
k=1

Lk),

Fk, Lk ∈ ncΨk} is called Nnc-topology on X if the axioms are satisfied:

(i) ϕn, Xn ∈ NncΨ.

(ii)
∞∪
k=1

Kk ∈ NncΨ ∀ {Kk}∞k=1 ∈ NncΨ.
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(iii)
n∩

k=1

Kk ∈ NncΨ ∀ {Kk}nk=1 ∈ NncΨ.

Then (X,NncΨ) is called a Nnc-topological space (briefly, Nncts) on X. The NncΨ elements

are called Nnc-open sets (Nncos) on X and its complement is called Nnc-closed sets (Nnccs)

on X. The elements of X are known as Nnc-sets (Nncs) on X.

Definition 2.5. [1, 18] Let (X,NncΨ) be Nncts on X and F be a Nncs on X, then the Nnc

interior of F (briefly, Nncint(F )), Nnc closure of F (briefly, Nnccl(F )), Nncδ interior of F

(briefly, Nncδint(F )) and Nncδ closure of F (briefly, Nncδcl(F )) are defined as

Nncint(F ) = ∪{C : C ⊆ F & C is a Nncos in X}

Nnccl(F ) = ∩{D : F ⊆ D & D is a Nnccs in X}

Nncδint(F ) = ∪{C : C ⊆ F & C is a Nncros in X}

Nncδcl(F ) = ∩{D : F ⊆ D & D is a Nncrcs in X}.

Definition 2.6. [1,15,18,26,28] Let (X,NncΓ) be any Nncts. Let F be a Nncs in (X,NncΨ).

Then F is said to be a

(i) Nnc-regular (resp. Nnc-semi, Nnc-pre, Nnc-α & Nnc-β) open set (briefly, Nncros

(resp. NncSos, NncPos, Nncαos & Nncβos)) if F = Nncint(Nnccl(F )) (resp.

F ⊆ Nnccl(Nncint(F )), F ⊆ Nncint(Nnccl(F )), F ⊆ Nncint(Nnccl(Nncint(F ))) &

F ⊆ Nnccl(Nncint(Nnccl(F )))).

(ii) Nncδ (resp. Nncδ-pre, Nncδ-semi & Nnce) open set (briefly, Nncδos (resp. NncδPos,

NncδSos & Nnceos)) if F = Nncδint(F ) (resp. F ⊆ Nncint(Nncδcl(F )), F ⊆
Nnccl(Nncδint(F )) & F ⊆ Nnccl(Nncδint(F )) ∪Nncint(Nncδcl(F ))).

Definition 2.7. [10,19,21,22,27] Let (X1, NncΨ) and (X2, Nncτ) be any two Nncts’s. A map

ζ : (X1, NncΨ) → (X2, Nncτ) is said to be

(i) Nnc (resp. Nncα, Nnc semi, Nnc pre, Nncγ, Nncβ, Nncδ, Nncδ semi & Nncδ pre)-

open mapping (briefly, NncO (resp. NncαO, NncSO, NncPO, NncγO, NncβO, NncδO,

NncδSO & NncδPO) if the inverse image of every Nncos in (X1, NncΨ) is a Nncαos

(resp. NncSos, NncPos, Nncγos, Nncβos, Nncδos, NncδSos & NncδPos) in (X2, Nncτ).

(ii) Nnc (resp. Nncα, Nnc semi, Nnc pre, Nncγ, Nncβ, Nncδ, Nncδ semi & Nncδ pre)-

closed mapping (briefly, NncC (resp. NncαC, NncSC, NncPC, NncγC, NncβC, NncδC,

NncδSC & NncδPC)) if the inverse image of every Nnccs in (X1, NncΨ) is a Nncαcs

(resp. NncScs, NncPcs, Nncγcs, Nncβcs, Nncδcs, NncδScs & NncδPcs) in (X2, Nncτ).

(iii) Nnc (resp. Nnce)-continuous (briefly, NncCts (resp. NnceCts)) if the inverse image of

every Nncos in (X2, Nncτ) is a Nncos (resp. Nnceos) in (X1, NncΨ).

(iv) Nnc-homeomorphism (briefly, NncHom) if ζ & ζ−1 are NncCts.
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Throughout this article, let (X1, NncΨ), (X2, Nncτ) and (X3, Nncρ) are Nncts’s and ζ :

(X1, NncΨ) → (X2, Nncτ) and η : (X2, Nncτ) → (X3, Nncρ) are mappings.

3. N-Neutrosophic crisp e-open mapping

Definition 3.1. A mapping ζ is N -neutrosophic crisp e-open (briefly, NnceO) if image of

every Nnceos of (X1, NncΨ) is Nnceos in (X2, Nncτ).

Theorem 3.2. Let ζ be a function. Then Every

(i) NncO is a NncαO.

(ii) NncαO is a NncPO.

(iii) NncPO is a NncγO.

(iv) NncγO is a NncβO.

(v) NncδO is a NncO.

(vi) NncδO is a NncSO.

(vii) NncδSO is a NnceO.

(viii) NncPO is a NncδPO.

(ix) NncδPO is a NnceO.

(x) NnceO is a NncβO.

Proof. Proof of (i) to (iii), (iv) and (v) to (vi) are proved in [19], [21] and [22]. We prove only

(vii) to (ix).

(vii) Let ζ be a NncδSO mapping and K is a Nncos in X1. Then ζ(K) is NncδSos in X2.

Since every NncδSos is Nnceos by Proposition 3.1 in [26], ζ(K) is Nnceos in X2. Therefore ζ

is NnceO mapping.

(viii) Let ζ be a NncPO mapping and K is a Nncos in X1. Then ζ(K) is NncPos in X2.

Since every NncPos is NncδPos by Proposition 3.1 in [26], ζ(K) is NncδPos in X2. Therefore

ζ is NncδPO mapping.

(ix) Let ζ be a NncδPO mapping and K is a Nncos in X1. Then ζ(K) is NncδPos in X2.

Since every NncδPos is Nnceos by Proposition 3.1 in [26], ζ(K) is Nnceos in X2. Therefore ζ

is NnceO mapping.

(x) Let ζ be a NnceO mapping and K is a Nncos in X1. Then ζ(K) is Nnceos in X2. Since

every Nnceos is Nncβos by Proposition 3.1 in [26], ζ(K) is Nncβos in X2. Therefore ζ is NncβO

mapping.

Remark 3.3. The following diagram shows NnceO mapping function in Nncts.
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NncO map NncαO map NncPO map NncγO map

NncδPO map

NnceO map NncβO mapNncδSO mapNncδO map

None of these implication is reversible as shown in the following examples.

Example 3.4. Let X = {ao, bo, co, do, eo} = Y , ncΨ1 = {ϕn, Xn, Ao}, ncΨ2 = {ϕn, Xn}.
Ao = ⟨{ao}, {ϕ}, {bo, co, do, eo}⟩, then 2ncΨ = {ϕn, Xn, Ao}. Let ncτ1 = {ϕn, Yn, Bo, Co, Do},

ncτ2 = {ϕn, Yn}. Bo = ⟨{co}, {ϕ}, {ao, bo, do, eo}⟩, Co = ⟨{ao, bo}, {ϕ}, {co, do, eo}⟩, Do =

⟨{ao, bo, co}, {ϕ}, {do, eo}⟩, then 2ncτ = {ϕn, Yn, Bo, Co, Do}. Define ζ : (X, 2ncΨ) → (Y, 2ncτ)

as identity map, then 2nceO map but not 2ncδSO map, then ζ(⟨{ao}, {ϕ}, {bo, co, do, eo}⟩) =
⟨{ao}, {ϕ}, {bo, co, do, eo}⟩ is a 2nceos but not 2ncδSos in Y .

Example 3.5. Let X = {ao, bo, co, do, eo} = Y , ncΨ1 = {ϕn, Xn, Ao}, ncΨ2 = {ϕn, Xn}.
Ao = ⟨{co, do}, {ϕ}, {ao, bo, eo}⟩, then 2ncΨ = {ϕn, Xn, Ao}. Let ncτ1 = {ϕn, Yn, Bo, Co, Do},

ncτ2 = {ϕn, Yn}. Bo = ⟨{co}, {ϕ}, {ao, bo, do, eo}⟩, Co = ⟨{ao, bo}, {ϕ}, {co, do, eo}⟩, Do =

⟨{ao, bo, co}, {ϕ}, {do, eo}⟩, then 2ncτ = {ϕn, Yn, Bo, Co, Do}. Define ζ : (X, 2ncΨ) → (Y, 2ncτ)

as identity map, then 2nceO map but not 2ncδPO map, then ζ(⟨{co, do}, {ϕ}, {ao, bo, eo}⟩) =
⟨{co, do}, {ϕ}, {ao, bo, eo}⟩ is a 2nceos but not 2ncδPos in Y .

Example 3.6. Let X = {ao, bo, co, do, eo} = Y , ncΨ1 = {ϕn, Xn, Ao}, ncΨ2 = {ϕn, Xn}.
Ao = ⟨{ao, do}, {ϕ}, {bo, co, eo}⟩, then 2ncΨ = {ϕn, Xn, Ao}. Let ncτ1 = {ϕn, Yn, Bo, Co, Do},

ncτ2 = {ϕn, Yn}. Bo = ⟨{co}, {ϕ}, {ao, bo, do, eo}⟩, Co = ⟨{ao, bo}, {ϕ}, {co, do, eo}⟩, Do =

⟨{ao, bo, co}, {ϕ}, {do, eo}⟩, then 2ncτ = {ϕn, Yn, Bo, Co, Do}. Define ζ : (X, 2ncΨ) → (Y, 2ncτ)

as identity map, then 2ncβO map but not 2nceO map, then ζ(⟨{ao, do}, {ϕ}, {bo, co, eo}⟩) =

⟨{ao, do}, {ϕ}, {bo, co, eo}⟩ is a 2ncβos but not 2nceos in Y .

Theorem 3.7. A mapping ζ : (X1, NncΨ) → (X2, Nncτ) is NnceO iff for every Nncs φ of

(X1, NncΨ), ζ(Nncint(φ)) ⊆ Nnceint(ζ(φ)).

Proof. Necessity: Let ζ be a NnceO & φ be a Nncos in (X1, NncΨ). Now, Nncint(φ) ⊆ φ

implies ζ(Nncint(φ)) ⊆ ζ(φ). Since ζ is a NnceO, ζ(Nncint(φ)) is Nnceos in (X2, Nncτ) such

that ζ(Nncint(φ)) ⊆ ζ(φ) therefore ζ(Nncint(φ)) ⊆ Nnceint(ζ(φ)).

Sufficiency: Assume φ is a Nncos of (X1, NncΨ). Then ζ(φ) = ζ(Nncint(φ)) ⊆
Nnceint(ζ(φ)). But Nnceint(ζ(φ)) ⊆ ζ(φ). So ζ(φ) = Nnceint(φ) which implies ζ(φ) is a

Nnceos of (X2, Nncτ) and hence ζ is a NnceO.
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Theorem 3.8. If ζ : (X1, NncΨ) → (X2, Nncτ) is a NnceO mapping then Nncint(ζ
−1(λ)) ⊆

ζ−1(Nnceint(λ)) for every Nncs λ of (X2, Nncτ).

Proof. Let λ be a Nncs of (X2, Nncτ). Then Nncint(ζ
−1(λ)) is a Nncos in (X1, NncΨ).

Since ζ is NnceO, ζ(Nncint(ζ
−1(λ)) is Nnceo in (X2, Nncτ) and hence ζ(Nncint(ζ

−1(λ))) ⊆
Nnceint(ζ(ζ

−1(λ))) ⊆ Nnceint(λ). Thus Nncint(ζ
−1(λ)) ⊆ ζ−1(Nnceint(λ)).

Theorem 3.9. A mapping ζ : (X1, NncΨ) → (X2, Nncτ) is NnceO iff for each Nncs µ of

(X2, Nncτ) and for each Nnccs ρ of (X1, NncΨ) containing ζ−1(µ) there is a Nncecs µ of

(X2, Nncτ) ∋ µ ⊆ ρ & ζ−1(µ) ⊆ ρ.

Proof. Necessity: Assume ζ is a NnceO. Let µ be the Nnccs of (X2, Nncτ) & ρ is a Nnccs of

(X1, NncΨ) ∋ ζ−1(µ) ⊆ ρ. Then µ = (ζ−1(ρc))c is Nncecs of (X2, Nncτ) ∋ ζ−1(µ) ⊆ ρ.

Sufficiency: Assume ν is a Nncos of (X1, NncΨ). Then ζ−1((ζ(ν))c ⊆ νc & νc is Nnccs in

(X1, NncΨ). By hypothesis there is a Nncecs µ of (X2, Nncτ) ∋ (ζ(ν))c ⊆ µ & ζ−1(µ) ⊆ νc.

Therefore ν ⊆ (ζ−1(µ))c. Hence µc ⊆ ζ(ν) ⊆ ζ((ζ−1(µ))c) ⊆ µc which implies ζ(ν) = µc. Since

µc is Nnceos of (X2, Nncτ). Hence ζ(ν) is Nnceo in (X2, Nncτ) and thus ζ is NnceO.

Theorem 3.10. A mapping ζ : (X1, NncΨ) → (X2, Nncτ) is NnceO iff ζ−1(Nncecl(ρ)) ⊆
Nnccl(ζ

−1(ρ)) for every Nncs ρ of (X2, Nncτ).

Proof. Necessity: Assume ζ is a NnceO. For anyNncs ρ of (X2, Nncτ), ζ
−1(ρ) ⊆ Nnccl(ζ

−1(ρ)).

Therefore by Theorem 3.9 there exists a Nncecs µ in (X2, Nncτ) ∋ ρ ⊆ µ & ζ−1(µ) ⊆
Nnccl(ζ

−1(ρ)). Therefore we obtain that ζ−1(Nncecl(ρ)) ⊆ ζ−1(µ) ⊆ Nnccl(ζ
−1(ρ)).

Sufficiency: Assume ρ is a Nncs of (X2, Nncτ) & µ is a Nnccs of (X1, NncΨ) containing

ζ−1(ρ). Put α = Nnccl(ρ), then ρ ⊆ α and α is Nncec & ζ−1(α) ( Nnccl(ζ
−1(ρ)) ⊆ µ. Then

by Theorem 3.9, ζ is NnceO.

Theorem 3.11. If ζ & η be two neutrosophic crisp mappings and η ◦ ζ : (X1, NncΨ) →
(X3, Nncρ) is NnceO. If η : (X2, Nncτ) → (X3, Nncρ) is NnceIrr then ζ : (X1, NncΨ) →
(X2, Nncτ) is NnceO mapping.

Proof. Let µ be a Nncos in (X1, NncΨ). Then η ◦ ζ(µ) is Nnceos of (X3, Nncρ) because η ◦ ζ is

NnceO. Since η is NnceIrr & η ◦ ζ(µ) is Nnceos of (X3, Nncρ) therefore η−1(η ◦ ζ(µ)) = ζ(µ)

is Nnceos in (X2, Nncτ). Hence ζ is NnceO.

Theorem 3.12. If ζ is NncO and η is NnceO mappings then η ◦ ζ : (X1, NncΨ) → (X3, Nncρ)

is NnceO.
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Proof. Let µ be a Nncos in (X1, NncΨ). Then ζ(µ) is a Nncos of (X2, Nncτ) because ζ is a

NncO. Since η is NnceO, η(ζ(µ)) = (η ◦ ζ)(µ) is Nnceos of (X3, Nncρ). Hence η ◦ ζ is NnceO.

4. N-Neutrosophic crisp e-closed mapping

Definition 4.1. A mapping ζ : (X1, NncΨ) → (X2, Nncτ) is N -neutrosophic crisp e-closed

(briefly, NnceC) if image of every Nnccs of (X1, NncΨ) is Nncecs in (X2, Nncτ).

Theorem 4.2. Let ζ be a function. Then Every

(i) NncC is a NncαC.

(ii) NncαC is a NncPC.

(iii) NncPC is a NncγC.

(iv) NncγC is a NncβC.

(v) NncδC is a NncC.

(vi) NncδC is a NncSC.

(vii) NncδSC is a NnceC.

(viii) NncPC is a NncδPC.

(ix) NncδPC is a NnceC.

(x) NnceC is a NncβC.

Proof. Proof of (i) to (iii), (iv) and (v) to (vi) are proved in [19], [21] and [22]. We prove only

(vii) to (ix).

(vii) Let ζ be a NncδSC mapping and K is a Nnccs in X1. Then ζ(K) is NncδScs in X2.

Since every NncδScs is Nncecs by Proposition 3.1 in [26], ζ(K) is Nncecs in X2. Therefore ζ

is NnceC mapping.

(viii) Let ζ be a NncPC mapping and K is a Nnccs in X1. Then ζ(K) is NncPcs in X2.

Since every NncPcs is NncδPcs by Proposition 3.1 in [26], ζ(K) is NncδPcs in X2. Therefore

ζ is NncδPC mapping.

(ix) Let ζ be a NncδPC mapping and K is a Nnccs in X1. Then ζ(K) is NncδPcs in X2.

Since every NncδPcs is Nncecs by Proposition 3.1 in [26], ζ(K) is Nncecs in X2. Therefore ζ

is NnceC mapping.

(x) Let ζ be a NnceC mapping and K is a Nnccs in X1. Then ζ(K) is Nncecs in X2. Since

every Nncecs is Nncβcs by Proposition 3.1 in [26], ζ(K) is Nncβcs in X2. Therefore ζ is NncβC

mapping.

Example 4.3. In Example 3.4, then 2nceC map but not 2ncδSC map, then

ζ(⟨{bo, co, do, eo}, {ϕ}, {ao}⟩) = ⟨{bo, co, do, eo}, {ϕ}, {ao}⟩ is a 2ncecs but not 2ncδScs.
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Example 4.4. In Example 3.5, then 2nceC map but not 2ncδPC map, then

ζ(⟨{ao, bo, eo}, {ϕ}, {co, do}⟩) = ⟨{ao, bo, eo}, {ϕ}, {co, do}⟩ is a 2ncecs but not 2ncδPcs.

Example 4.5. In Example 3.6, then 2ncβC map but not 2nceC map, then

ζ(⟨{bo, co, eo}, {ϕ}, {ao, do}⟩) = ⟨{bo, co, eo}, {ϕ}, {ao, do}⟩ is a 2ncβcs but not 2ncecs.

Remark 4.6. The following diagram shows NnceC mapping function in Nncts.

NncC map NncαC map NncPC map NncγC map

NncδPC map

NnceC map NncβC mapNncδSC mapNncδC map

None of these implication is reversible as shown in the following examples.

Theorem 4.7. A mapping ζ : (X1, NncΨ) → (X2, Nncτ) is NnceC iff for each Nncs µ of

(X2, Nncτ) and for each Nncos λ of (X1, NncΨ) containing ζ−1(µ) there is a Nnceos ρ of

(X2, Nncτ) ∋ µ ⊆ ρ & ζ−1(ρ) ⊆ λ.

Proof. Necessity: Assume ζ is a NnceC. Let µ be the Nnccs of (X2, Nncτ) & λ is a Nncos of

(X1, NncΨ) ∋ ζ−1(µ) ⊆ λ. Then ρ = X2 − ζ−1(λc) is Nnceos of (X2, Nncτ) ∋ ζ−1(ρ) ⊆ λ.

Sufficiency: Assume ν is a Nnccs of (X1, NncΨ). Then (ζ(ν))c is a Nncs of (X2, Nncτ) & νc

is Nncos in (X1, NncΨ) ∋ ζ−1((ζ(ν))c) ⊆ νc. By hypothesis there is a Nnceos ρ of (X2, Nncτ)

∋ (ζ(ν))c ⊆ ρ & ζ−1(ρ) ⊆ νc. Therefore ν ⊆ (ζ−1(ρ))c. Hence ρc ⊆ ζ(ρ) ⊆ ζ((ζ−1(ρ))c) ⊆ ρc

which implies ζ(ν) = ρc. Since ρc is Nncecs of (X2, Nncτ). Hence ζ(ν) is Nncec in (X2, Nncτ)

and thus ζ is NnceC.

Theorem 4.8. If ζ is NncC & η is NnceC. Then η ◦ ζ : (X1, NncΨ) → (X3, Nncρ) is NnceC.

Proof. Let µ be a Nnccs in (X1, NncΨ). Then ζ(µ) is Nnccs of (X2, Nncτ) because ζ is NncC.

Now (η ◦ ζ)(µ) = η(ζ(µ)) is Nncecs in (X3, Nncρ) because η is NnceC. Thus η ◦ ζ is NnceC.

Theorem 4.9. If ζ : (X1, NncΨ) → (X2, Nncτ) is NnceC map, then Nncecl(ζ(ρ)) (
ζ(Nnccl(ρ)).

Theorem 4.10. Let ζ & η are NnceC mappings. If every Nncecs of (X2, Nncτ) is Nncc then,

η ◦ ζ : (X1, NncΨ) → (X3, Nncρ) is NnceC.
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Proof. Let µ be a Nnccs in (X1, NncΨ). Then ζ(µ) is Nncecs of (X2, Nncτ) because ζ is NnceC

mapping. By hypothesis ζ(µ) is Nnccs of (X2, Nncτ). Now η(ζ(µ)) = (η ◦ ζ)(µ) is Nncecs in

(X3, Nncρ) because η is NnceC. Thus η ◦ ζ is NnceC.

Theorem 4.11. The following statements are equivalent for a mapping ζ:

(i) ζ is a NnceO.

(ii) ζ is a NnceC.

(iii) ζ−1 is NnceCts.

5. N-Neutrosophic crisp e-homeomorphism

Definition 5.1. A bijection ζ is called a Nnce-homeomorphism (briefly NnceHom) if ζ & ζ−1

are NnceCts.

Theorem 5.2. Each NncHom is a NnceHom.

Proof. Let ζ be NncHom, then ζ and ζ−1 are NncCts. But every NncCts is NnceCts. Hence,

ζ and ζ−1 is NnceCts. Therefore, ζ is a NnceHom.

Theorem 5.3. Let ζ be a bijective mapping. The following statements are equivalent, if ζ is

NnceCts:

(i) ζ is a NnceC.

(ii) ζ is a NnceO.

(iii) ζ−1 is a NnceHom.

Definition 5.4. A Nncts (X1, NncΨ) is said to be a neutrosophic crisp eT 1
2
(briefly, NnceT 1

2
)-

space if every Nncecs is Nncc in (X1, NncΨ).

Theorem 5.5. Let ζ be a NnceHom, then ζ is a NncHom if (X1, NncΨ) and (X2, Nncτ) are

NnceT 1
2
-space.

Proof. Assume that µ is a Nnccs in (X2, Nncτ), then ζ−1(µ) is a Nncecs in (X1, NncΨ). Since

(X1, NncΨ) is a NnceT 1
2
-space, ζ−1(µ) is a Nnccs in (X1, NncΨ). Therefore, ζ is NncCts. By

hypothesis, ζ−1 is NnceCts. Let ν be a Nnccs in (X1, NncΨ). Then, (ζ−1)−1(ν) = ζ(ν) is a

Nnccs in (X2, Nncτ), by presumption. Since (X2, Nncτ) is a NnceT 1
2
-space, ζ(ν) is a Nnccs in

(X2, Nncτ). Hence, ζ−1 is NncCts. Hence, ζ is a NncHom.

Theorem 5.6. The following statements are equivalent for ζ, if (X2, Nncτ) is a NnceT 1
2
-space:

(i) ζ is NnceC.
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(ii) If µ is a Nncos in (X1, NncΨ), then ζ(µ) is Nnceos in (X2, Nncτ).

(iii) ζ(Nncint(µ)) ⊆ Nnccl(Nncint(ζ(µ))) for every Nncs µ in (X1, NncΨ).

Proof. (i) ⇒ (ii): Obvious.

(ii) ⇒ (iii): Let µ be a Nncs in (X1, NncΨ). Then, Nncint(µ) is a Nncos in (X1, NncΨ).

Then, ζ(Nncint(µ)) is a Nnceos in (X2, Nncτ). Since (X2, Nncτ) is a NnceT 1
2
-space, so

ζ(Nncint(µ)) is a Nncos in (X2, Nncτ). Therefore, ζ(Nncint(µ)) = Nncint(ζ(Nncint(µ))) ⊆
Nnccl(Nncint(ζ(µ))).

(iii) ⇒ (i): Let µ be a Nnccs in (X1, NncΨ). Then, µc is a Nncos in (X1, NncΨ). From,

ζ(Nncint(µ
c)) ⊆ Nnccl(Nncint(ζ(µ

c))). Hence, ζ(µc) ⊆ Nnccl(Nncint(ζ(µ
c))). Therefore, ζ(µc)

is Nnceos in (X2, Nncτ). Therefore, ζ(µ) is a Nncecs in (X1, NncΨ). Hence, ζ is a NncC.

Theorem 5.7. Let ζ & η be NnceC, where (X1, NncΨ) and (X3, Nncρ) are two Nncts’s and

(X2, Nncτ) a NnceT 1
2
-space, then the composition η ◦ ζ is NnceC.

Proof. Let µ be a Nnccs in (X1, NncΨ). Since ζ is Nncec & ζ(µ) is a Nncecs in (X2, Nncτ), by

assumption, ζ(µ) is a Nnccs in (X2, Nncτ). Since η is Nncec, then η(ζ(µ)) is Nncec in (X3, Nncρ)

& η(ζ(µ)) = (η ◦ ζ)(µ). Therefore, η ◦ ζ is NnceC.

Theorem 5.8. The following statements are hold for ζ & η:

(i) If η ◦ ζ is NnceO & ζ is NncCts, then η is NnceO.

(ii) If η ◦ ζ is NncO & η is NnceCts, then ζ is NnceO.

Proof. Obvious.

6. N-Neutrosophic crisp e-C Homeomorphism

Definition 6.1. A bijection ζ is called a Nnce-C homeomorphism (briefly, NnceCHom) if ζ

& ζ−1 are NnceIrr mappings.

Theorem 6.2. Each NnceCHom is a NnceHom.

Proof. Let us assume that µ is a Nnccs in (X2, Nncτ). This shows that µ is a Nncecs in

(X2, Nncτ). By assumption, ζ−1(µ) is a Nncecs in (X1, NncΨ). Hence, ζ is a NnceCts. Hence,

ζ & ζ−1 are NnceCts. Hence ζ is a NnceHom.

Theorem 6.3. If ζ : (X1, NncΨ) → (X2, Nncτ) is a NnceCHom, then Nncecl(ζ
−1(µ)) ⊆

ζ−1(Nnccl(µ)) for each Nncts µ in (X2, Nncτ).
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Proof. Let µ be a Nncts in (X2, Nncτ). Then, Nnccl(µ) is a Nnccs in (X2, Nncτ), and ev-

ery Nnccs is a Nncecs in (X2, Nncτ). Assume ζ is NnceIrr, ζ−1(Nnccl(λ)) is a Nncecs

in (X1, NncΨ), then Nnccl(ζ
−1(Nnccl(µ))) = ζ−1(Nnccl(µ)). Here, Nncecl (ζ−1(µ)) ⊆

Nncecl(ζ
−1(Nnccl(µ))) = ζ−1(Nnccl(µ)). Therefore, Nncecl(ζ

−1(µ)) ⊆ ζ−1(Nnccl(µ)) for ev-

ery Nncs µ in (X2, Nncτ).

Theorem 6.4. Let ζ : (X1, NncΨ) → (X2, Nncτ) be a NnceCHom, then Nncecl(ζ
−1(µ)) =

ζ−1(Nncecl(µ)) for each Nncs µ in (X2, Nncτ).

Proof. Since ζ is a NnceCHom, then ζ is a NnceIrr. Let µ be a Nncs in (X2, Nncτ). Clearly,

Nncecl(µ) is a Nncecs in (X1, NncΨ). Then Nncecl(µ) is a Nncecs in (X1, NncΨ). Since

ζ−1(µ) ⊆ ζ−1(Nncecl(µ)), then Nncecl(ζ
−1(µ)) ⊆ Nncecl(ζ

−1(Nncecl(µ))) = ζ−1(Nncecl(µ)).

Therefore, Nncecl(ζ
−1(µ)) ⊆ ζ−1(Nncecl(µ)). Let ζ be a NnceCHom. ζ−1 is a

NnceIrr. Let us consider Nncs ζ−1(µ) in (X1, NncΨ), which implies Nncecl(ζ
−1(µ)) is

a Nncecs in (X1, NncΨ). Hence, Nncecl(ζ
−1(µ)) is a Nncecs in (X1, NncΨ). This im-

plies that (ζ−1)−1(Nncecl(ζ
−1(µ))) = ζ(Nncecl(ζ

−1(µ))) is a Nncecs in (X2, Nncτ). This

proves µ = (ζ−1)−1(ζ−1(µ)) ⊆ (ζ−1)−1(Nncecl(ζ
−1(µ))) = ζ(Nncecl(ζ

−1(µ))). Therefore,

Nncecl(µ) ⊆ Nncecl(ζ(Nncecl(ζ
−1(µ)))) = ζ(Nncecl(ζ

−1(µ))), since ζ−1 is a NnceIrr. Hence,

ζ−1(Nncecl(µ)) ⊆ ζ−1(ζ(Nncecl(ζ
−1(µ)))) = Nncecl(ζ

−1(µ)). That is, ζ−1(Nncecl(µ)) ⊆
Nncecl(ζ

−1(µ)). Hence, Nncecl(ζ
−1(µ)) = ζ−1(Nnc ecl(µ)).

Theorem 6.5. If ζ & η are NnceCHom’s, then η ◦ ζ is a NnceCHom.

Proof. Let ζ and η to be two NnceCHom’s. Assume µ is a Nncecs in (X3, Nncρ). Then, η
−1(µ)

is a Nncecs in (X2, Nncτ). Then, by hypothesis, ζ−1(η−1(µ)) is a Nncecs in (X1, NncΨ). Hence,

η ◦ ζ is a NnceIrr mapping. Now, let ν be a Nncecs in (X1, NncΨ). Then, by presumption,

ζ(η) is a Nncecs in (X2, Nncτ). Then, by hypothesis, η(ζ(ν)) is a Nncecs in (X3, Nncρ). This

implies that η ◦ ζ is a NnceIrr. Hence, η ◦ ζ is a NnceCHom.

7. Conclusions

In this paper, the new concept of a NnceO and NnceC mappings, NncHom and a NnceHom

in Nncts are studied and discussed their properties. Also, we extended to NnceCHom’s and

NnceT 1
2
-space with some of their properties.
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Abstract:  This article deals about an interval-valued neutrosophic Ẑ-algebra is a mathematical 
framework which incorporates the concepts of interval-valued neutrosophic sets, Ẑ-algebra and 
algebraic operations. This innovative algebraic structure addresses the challenges posed by 
uncertain, imprecise, and indeterminate information in various fields. In this work, we presented 
the fundamentals of Ẑ-algebra and int_val neutrosophic sets, as well as several of their attributes 
such as homomorphism and cartesian product.  

Keywords: Fuzzy sets, int_val fuzzy sets, neutrosophic set, Ẑ-subalgebra, int_val Ẑ-subalgebra, 
neutrosophic Ẑ-subalgebra, int_val neutrosophic Ẑ-subalgebra 

 
 

1. Introduction 

The intuitionistic fuzzy set with interval values is the name given to the new concept (IVIFS) 
which is presented by Attanassov [1] and outlines the fundamentals of IVIFS theory. 
Chandramouleeswaran [2] proposed Ẑ-algebra, a novel algebraic structure based upon propositional 
logic, in 2017. In a neutrosophic set, defined a set-theoretic operators, which is known as an interval 
neutrosophic set (INS), and then several INS properties related to operations and relations over INS 
[3].  In [4] introduces the phenomenon of int_val fuzzy β- subalgebras and examines a few of their 
features. This involves some of the information relevant to the theory of an int_val intuitionistic fuzzy 
subalgebras of β-algebra. Generalized double statistical convergence sequences on ideals in 
neutrosophic normed spaces were analysed by Jeyaraman et al. [5]. Henceforth, [6] established that 
each neutrosophic algebra is a direct product of neutrosophic algebras over the neutrosophic field. 
The ideology of neutrosophic sets in Ẑ-subalgebras is described, also some characteristics of int_val 
neutrosophic sets in Ẑ-algebras is also discussed. Maissam Jdid et l. [7] formulated Lagrange 
multipliers and neutrosophic nonlinear programming problems constrained by equality constraints. 
Manas Karak et al. [8] have introduced an innovative technique aimed at addressing transportation 
problems using a neutrosophic framework. This novel approach represents a significant stride in 
effectively handling uncertainty and indeterminacy within transportation scenarios.  

 
Metawee[9] denotes a novel idea of interval_valued neutrosophic in UP-algebra, UP-

subalgebras, as well as proved some results and their generalizations. The basic ideology of fuzzy Ẑ-
ideal of a Ẑ-algebra under Ẑ-homomorphisms was evaluated, and some of its Cartesian product 
properties of fuzzy Ẑ-ideals were explored. Every quotient neutrosophic algebra is shown to be 
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quotient algebra, and the concepts of neutrosophic algebra, the ideal, kernel, & neutrosophic quotient 
algebra are described [10]. The theme of neutrosophic cubic sets is used in β-subalgebra and then ℘-
union, ℘-intersection, ℛ-union, and ℛ-intersection results based on neutrosophic cubic subalgebra 
is determined. Moreover, the captivating properties of lower and upper-level sets, as well as the 
homomorphism of neutrosophic cubic β−subalgebras, were explained [11]. The theory of 
neutrosophic algebra, including its ideal, kernel, and neutrosophic quotient algebra, as well as 
characterizing some neutrosophic algebra properties and claiming that every quotient neutrosophic 
algebra is quotient algebra [12]. The authors [13] started exploring an innovative concept for the 
Fermatean neutrosophic Dombi fuzzy graph.  They also discovered a few outcomes of Fermatean 
neutrosophic Dombi fuzzy graphs' direct, cartesian composition. Shanmugapriya et al. [14] presented 
a novel concept of neutrosophic fuzzy Sets in Ẑ-algebra.  

 
Samarandache generalises intuitionistic fuzzy sets to neutrosophic set, and many examples are 

given to distinguish between neutrosophic set as well as intuitionistic fuzzy set [15]. Neutrosophic 
set is the general framework that was recently proposed. However, from the point of technical view, 
the neutrosophic set must be specified. An int_val fuzzy set has been used to discuss these various 
algebraic structures as well as related topics. In [16], the authors have undertaken an insightful 
exploration into the concept of a fuzzy Ẑ-ideal within the context of a Ẑ-algebra. Furthermore, it was 
shown that the Cartesian product of fuzzy Ẑ-ideals is a fuzzy Ẑ-ideal. In [17] the authors provided the 
evidence of Cartesian product of fuzzy Ẑ-subalgebras is always a fuzzy Ẑ-subalgebra. The 
fundamental principle of a fuzzy Ẑ-subalgebra of Ẑ-algebra and its properties were investigated, and 
it also discusses how to resolve the inverse image of fuzzy Ẑ-subalgebras and the Ẑ-homomorphism 
of its image. The author of [18] has made a noteworthy contribution to the field by introducing a 
novel concept known as MBJ - neutrosophic set within the context of β-algebras. The MBJ - 
neutrosophic β- subalgebra's homomorphic and inverse images are presented. In MBJ - neutrosophic 
β- subalgebra, Cartesian product is often examined. A In 1965, Zadeh discovered the fuzzy set, which 
is very helpful for finding the uncertainties [19]. And again, extended the concept of an int_val fuzzy 
set as  generalization of traditional fuzzy sets, then invented an int_val fuzzy set by using an int_val 
membership function to represent an interval on the membership scale [20].  

     This article's main objective is to explain the int_val neutrosophic in Ẑ-algebra. The following 
are the sections of the paper. The introduction appears in Section 1. Section 2 explained about the 
necessary definitions and properties of Ẑ-algebra and so on. Section 3 provides a more accurate 
explanation of neutrosophic in Ẑ-algebra and int_val neutrosophic in Ẑ-algebra. In Section 4, the 
int_val neutrosophic Ẑ- subalgebra homomorphism is discussed. The cartesian product of two 
neutrosophic Ẑ-algebras with int_val is defined in Section 5. Section 6 introduces the conclusion of 
this work. 

 

2. Preliminaries 

This section describes the fundamental definitions of fuzzy sets and Ẑ-algebra, as well as their major 

properties and examples. In the below discussion, the following notations are used such as X denoted 

by 𝔚, x denoted by 𝜖, y denoted as 𝜚, and Y is denoted by 𝔜. 

Definition 2.1.[15] Let the fuzzy set from the universal set 𝔚 and it is defining to be 𝜍 (𝜖):  𝔚  

→ [0,1] for every element 𝜖 ∈ 𝔚, and 𝜍 (𝜖) is known as the membership value of 𝜖. 
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Definition 2.2.[4] The int_val fuzzy set 𝔚 is to be defined on 𝜉̅ ={ 𝜖, 𝜍̅  (𝜖)/ 𝜖 ∈ 𝔚 }, briefly 

denoted by,  𝜍̅ (𝜖)= [𝜍 (𝜖), 𝜍 (𝜖)], where 𝜍 (𝜖) &  𝜍 (𝜖) are the two fuzzy sets in 𝔚 such that 

𝜍 (𝜖) ≤ 𝜍 (𝜖) for all 𝜖 ∈ 𝔚. Let 𝜍̅ (𝜖) = [𝜍 (𝜖), 𝜍 (𝜖)] ∀ 𝜖 ∈ 𝔚.   

Let 𝔇[0,1] denote the collection of all closed sub-intervals of [0,1].  If 𝜍 (𝜖) = 𝜍 (𝜖) =c, where 

0≤c≤1, then there exist 𝜍̅ (𝜖) = [c, c] = 𝑐̅. 

For the convenience, 𝜖 belongs to 𝔇 [0,1] ∀ 𝜖 ∈  𝔚,  
Thus, the int_val fuzzy set 𝜉̅ is represented as 𝜉̅ ={ 𝜖, 𝜍̅  (𝜖)/ 𝜖 ∈  𝔚}, where  𝜍̅ :  𝔚 → 𝔇 

[0,1].  

Now, Define a refined minimum (briefly rmin) of two elements in 𝔇[0,1].  

Define the symbols " ≤ ", " ≥ " & "=".  

In case, if two elements in 𝔇 [0,1], then it expressed as 𝔇 :=[ 𝑎 , 𝑏 ], 𝔇 :=[ 𝑎 , 𝑏 ] ∈ 𝔇 [0,1]. 

Then, rmin (𝔇 , 𝔇 ) = [min{ 𝑎 , 𝑎 }, min {𝑏 , 𝑏 }], 𝔇 ≥ 𝔇  iff 𝑎 ≥ 𝑎 , 𝑏 ≥ 𝑏 . 

Similarly, there exist 𝔇 ≤ 𝔇  & 𝔇 = 𝔇 .  
 

Definition 2.3.[4] Let 𝜍̅  & 𝜍̅  are two int_val fuzzy sets on  𝔚, then intersection  𝜍̅  ∩ 𝜍̅  of 𝜍̅  

and 𝜍̅  is referred as 

                             ( 𝜍̅  ∩ 𝜍̅   )(𝜖) ≥ rmin {𝜍̅ (𝜖), 𝜍̅ (𝜖)} 

Definition 2.4.[14] Let the neutrosophic fuzzy set 𝜉 = {𝜖 : 𝜍 (𝜖), 𝜍 (𝜖), 𝜍 (𝜖) /  𝜖 ∈   𝔚 }, where 

𝜍 , 𝜍 , 𝜍  are fuzzy sets in  𝔚, then it is denoted by   𝜍 (𝜖) is true membership function,  𝜍 (𝜖)  

is indeterminate membership function & 𝜍 (𝜖) is false membership function.  

Definition 2.5.The structure of 𝜉̅  = {( 𝜖  : 𝜍̅ (𝜖) , 𝜍̅ (𝜖), 𝜍̅ (𝜖) / 𝜖 ∈   𝔚 }  is referred to have 
int_val neutrosophic set in 𝔚 , where  𝜍̅ , , :   𝔚  →  𝔇  [0,1], 𝜍̅ (𝜖)  denotes  truth int_val 

membership function, 𝜍̅ (𝜖) denotes indeterminate int_val membership function, 𝜍̅ (𝜖) denotes 

false int_val membership function. 
 

Definition 2.6.[2] Suppose 𝔚 be the non-empty subset with the binary operation ⁕ & a constant 0, 

then (𝔚, ⁕, 0) is Ẑ– algebra if, 
i) 𝜖 ⁕ 0 = 0 

ii) 0 ⁕ 𝜖 = 𝜖 

iii) 𝜖 ⁕ 𝜖 = 𝜖 

iv) 𝜖 ⁕ 𝜚 =𝜚 ⁕ 𝜖, when 𝜖 ≠ 0 and 𝜚 ≠ 0 ∀ 𝜖, 𝜚 ∈ 𝔚. 

v)  

Example 2.7. Let 𝔚= {0,𝜔 ,𝜔 , 𝜔 , 𝜔 , 𝜔 } be the set defined on 𝔚 with the constant 0 and a binary 

operations ⁕ by introucing cayley’s table 
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  ⁕   0 𝜔  𝜔  𝜔  𝜔  𝜔  

  0  0 𝜔  𝜔  𝜔  𝜔  𝜔  

𝜔   0 𝜔  𝜔  𝜔  𝜔  𝜔  

𝜔   0 𝜔  𝜔  𝜔  𝜔  𝜔  

𝜔   0 𝜔  𝜔  𝜔  𝜔  𝜔  

𝜔   0 𝜔  𝜔  𝜔  𝜔  𝜔  

𝜔   0 𝜔  𝜔  𝜔  𝜔  𝜔  
 

Definition 2.8.  If 𝔚  is non-empty subset in neutrosophic Ẑ-algebra, then it’s defined by Ẑ- 

subalgebra of 𝔚,    
                   (𝜖 ⁕ 𝜚) ∈ 𝔚, ∀ 𝜖,𝜚 ∈ 𝔚. 

Definition 2.9.[10] Let (𝔚, ⁕,0) be the Ẑ– algebra with the operation ⁕ and constant 0 then the 

neutrosophic set 𝜉 = { 𝜖 ∶  𝜍 , 𝜍 , 𝜍 /𝜖 ∈  𝔚}, is known to be neutrosophic Ẑ- subalgebra of 𝔚. 

i) 𝜍 ( 𝜖 ⁕ 𝜚) ≥   min  {𝜍 (𝜖), 𝜍  (𝜚)}  

ii) 𝜍 ( 𝜖 ⁕ 𝜚) ≥  min {𝜍 (𝜖), 𝜍  (𝜚)} 

iii) 𝜍 (𝜖 ⁕ 𝜚)  ≤  max{ 𝜍  (𝜖), 𝜍  (𝜚)} 

Definition 2.10.[13] Let (𝔚 , ⁕,0) be Ẑ– algebra, then the fuzzy set  𝜍  in 𝔚  with membership 
function 𝜉  it is known as fuzzy Ẑ-subalgebra of a Ẑ-algebra 𝔚, if ∀ 𝜖, 𝜚  ∈  𝔚, if the following 

condition is satisfied 
                               𝜉  (𝜖 ⁕ 𝜚) ≥ min {𝜉  (𝜖), 𝜉  (𝜚)} 

Definition 2.11. Let the Ẑ– algebra (𝔚, ⁕,0) and fuzzy set  𝜍 in 𝔚 with a membership function    
 𝜉   then it is named as Anti-fuzzy Ẑ-subalgebra of a Ẑ-algebra 𝔚, if ∀ 𝜖, 𝜚  ∈  𝔚, if the following 

condition is satisfied  

                               𝜉  (𝜖 ⁕ 𝜚) ≤ max {𝜉  (𝜖), 𝜉  (𝜚)} 

Definition 2.12. Let (𝔚, ⁕,0) be a Ẑ– algebra then int_val fuzzy set 𝜉̅  in 𝔚 is referred as an 

interval_valued fuzzy Ẑ-subalgebra of a Ẑ– algebra 𝔚, if  
                      𝜉̅  (𝜖 ⁕ 𝜚) ≥ rmin {𝜉̅  (𝜖), 𝜉̅  (𝜚)} ∀ 𝜖, 𝜚  ∈  𝔚 

Definition 2.13.[7] If U be the subset in universe 𝔚, then the rsup property of an int_val fuzzy set 

𝜍 ̅ is referred as 𝜍(̅𝜖 ) = 𝑟𝑠𝑢𝑝
 ∈ 

𝜍(̅𝜖), if ∃ 𝜖, 𝜖  ∈  𝑈. 

Definition 2.14. Let 𝜍 ̅ be the int_val neutrosophic fuzzy set  in any set of 𝔚  is known as  

rsup_rsup_rinf property, then the subset U of 𝔚  then ∃  𝜖  ∈  U ∋ 𝜍̅ (𝜖 )  = 𝑟𝑠𝑢𝑝
 ∈

(𝜍̅ (𝜖)), 

𝜍̅ (𝜖 ) = 𝑟𝑠𝑢𝑝
 ∈

(𝜍̅ (𝜖)), 𝜍̅ (𝜖 ) = 𝑟𝑖𝑛𝑓
 ∈

 (𝜍̅ (𝜖)). 

Definition 2.15.  Let (𝔚, ⁕,0) and (𝔚 , ⁕ , 0 ) be two Ẑ– algebra, then the mapping from 

 ⱨ: ( 𝔚, ⁕,0) → ( 𝔚 , ⁕  ,0 ) is known as Ẑ– homomorphism of Ẑ– algebra if  
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                                ⱨ (𝜖 ⁕ 𝜚) = ⱨ (𝜖) ⁕  ⱨ (𝜚)  

Definition 2.16. Let  𝜉̅= { 𝜖, 𝜍̅ , , (𝜖) / 𝜖 ∈ 𝔚 } be the neutrosophic set in Ẑ and f maps from 𝔚 
→ 𝔜 , image of 𝜉̅ under f, f(𝜉̅) represented to be {f (𝜍̅ ), f (𝜍̅ ), f (𝜍̅ ), 𝜖 ∈ 𝔜} 

i) f (𝜍̅ ) (𝜚) =
𝑟𝑠𝑢𝑝
 ∈ ( )

𝜍̅ (𝜖)     𝑖𝑓 f (𝜚) ≠ 𝜙

1                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     

ii) f (𝜍̅ )(𝜚) =   
𝑟𝑠𝑢𝑝
 ∈ ( )

𝜍̅ (𝜖)     𝑖𝑓 f (𝜚) ≠ 𝜙

1                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       

iii) f (𝜍̅ )(𝜚) =   
𝑟𝑖𝑛𝑓

 ∈ ( )
𝜍̅ (𝜖)     𝑖𝑓  f (𝜚) ≠ 𝜙

0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     

Definition 2.17. If f : 𝔚 →  𝔜  is a function. Let  𝜍̅ , ,  & 𝜍̅ , ,  be two int_val neutrosophic 

set in 𝔚 & 𝔜  respectively, then inverse image of f is represented as f  (𝜍̅ , , ) = { 𝜖, f  

(𝜍̅ (𝜖)), f  (𝜍̅ (𝜖)), f  (𝜍̅ (𝜖)),  / 𝜖 ∈ 𝔚} such that  f (𝜍̅ ) f (𝜖) = 𝜍̅ (f(𝜖)), f (𝜍̅ ) f 

(𝜖) = 𝜍̅ (f(𝜖)), f (𝜍̅ ) f (𝜖) = 𝜍̅ (f(𝜖)).  

Definition 2.18.[13] Let h be an Ẑ-endomorphism of int_val neutrosophic Ẑ-algebras and 𝜉̅ =

 {𝜖, 𝜍̅ , , (𝜖) / 𝜖 ∈  𝔚} be the neutrosophic set in 𝔚, then define a new fuzzy set 𝜍̅  in 𝔚, as 

𝜉̅  (𝜖) = 𝜉̅ (h(𝜖)) ∀ 𝜖 ∈ 𝔚. 

Definition 2.19.[14] If 𝜍̅  and 𝜍̅  are the two int_val fuzzy sets of  𝔚, then the cartesian product 

𝜍̅ × 𝜍̅  :  𝔚 ×  𝔚 →  𝒟 [0,1] is defined as  

                 (𝜍̅ × 𝜍̅  )( 𝜖, 𝜚) = rmin{𝜍̅  (𝜖), 𝜍̅  (𝜚)} ∀ 𝜖 ∈  𝔚. 

 

    

3. Interval-valued neutrosophic in Ẑ-algebra 

This section describes the definitions on val neutrosophic in Ẑ-algebra in detail. 
 
Definition 3.1. Let (𝔚, ⁕,0) be Ẑ-algebra. The int_val neutrosophic set 𝜉 ̅ = { 𝜖: 𝜍̅ , 𝜍 ̅ , 𝜍 ̅ (𝜖)/𝜖 ∈  𝔚} in 
𝔚 is known as int_val neutrosophic Ẑ-algebra of 𝔚, if satisfies the below condition 

i)  𝜍̅ (𝜖 ⁕ 𝜚) ≥ 𝑟𝑚𝑖𝑛 {𝜍̅ (𝜖), 𝜍̅ (𝜚)} 

ii)  𝜍̅ (𝜖 ⁕ 𝜚) ≥  𝑟𝑚𝑖𝑛 {𝜍̅ (𝜖), 𝜍̅ (𝜚)} 

iii)  𝜍̅ (𝜖 ⁕ 𝜚) ≤ 𝑟𝑚𝑎𝑥 {𝜍̅ (𝜖), 𝜍̅ (𝜚)} 

Example 3.2.  Consider the example 2.2                  

 𝜍̅ , ,  = 
[0.4,0.8]   𝜖 = 0 𝑤ℎ𝑒𝑛 (𝜖 = 0, 𝜚 ≠ 0) 𝑜𝑟 (𝜖 ≠ 0, 𝜚 = 0)                   

[0.3,0.7]       𝜖 = 𝜔 , 𝜔                                                                        

[0.2,0.6]      𝜖 =  𝜔 , 𝜔                                                                         

 

        = {[0.1,0.5]    𝜖 = 𝜔               
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Hence, the above example satisfies the condition of int_val neutrosophic of Ẑ-algebra. 

Theorem 3.3.  Intersection of two int_val neutrosophic Ẑ-algebra of 𝔚 is again an interval-valued 

neutrosophic Ẑ-algebra of 𝔚. 
Proof: Let 𝜍̅ , ,  and 𝜍̅ , ,   are the two neutrosophic int_val neutrosophic Ẑ-algebra of 𝔚. 

Then, 

     (𝜍̅  ∩ 𝜍̅ )(   𝜖 ⁕ 𝜚) ≥ rmin {𝜍̅ ( 𝜖 ⁕𝜚), 𝜍̅ ( 𝜖 ⁕ 𝜚)} 

                               = {rmin {𝜍̅ ( 𝜖), 𝜍̅ (𝜚)}, rmin {𝜍̅ ( 𝜖), 𝜍̅ (𝜚)}} 

                               = {rmin {𝜍̅ ( 𝜖), 𝜍̅ ( 𝜖)}, rmin {𝜍̅ (𝜚), 𝜍̅ (𝜚)}} 

                                = rmin {(𝜍̅ ∩ )(𝜖), (𝜍̅ ∩ )(𝜚)} 

     ∴ (𝜍̅  ∩ 𝜍̅ )( 𝜖 ⁕ 𝜚) ≥ rmin {(𝜍̅ ∩ ) (𝜖), (𝜍̅ ∩ )(𝜚)} 

Similarly, (𝜍̅  ∩ 𝜍̅ )(𝜖⁕ 𝜚) ≥ rmin {(𝜍̅ ∩ )(𝜖), (𝜍̅ ∩ )(𝜚)} 

(𝜍̅  ∩ 𝜍̅ )( 𝜖⁕𝜚) ≤ rmax {𝜍̅ ( 𝜖⁕ 𝜚), 𝜍̅ (𝜖⁕ 𝜚)} 

                               = {rmax {𝜍̅ (𝜖), 𝜍̅ (𝜚)}, rmax{𝜍̅ (𝜖), 𝜍̅ (𝜚)}} 

                               = {rmax {𝜍̅ (𝜖), 𝜍̅ (𝜖)}, rmax {𝜍̅ (𝜚), 𝜍̅ (𝜚)}} 

                                = rmax{(𝜍̅ ∩ )(𝜖), (𝜍̅ ∩ )(𝜚)} 

     ∴ (𝜍̅  ∩ 𝜍̅ )(𝜖 ⁕ 𝜚) ≤ rmax{(𝜍̅ ∩ )(𝜖), (𝜍̅ ∩ )(𝜚)} 

Hence 𝜍̅ , ,  and 𝜍̅ , ,  is an int_val neutrosophic Ẑ-algebra of 𝔚. 

Theorem 3.4. Intersection of any set of  int_val neutrosophic of Ẑ-algebra of 𝔚 is again an int_val 

neutrosophic of Ẑ-algebra of 𝔚. 

Lemma 3.5. If 𝜉̅ be an int_val neutrosophic Ẑ-subalgebra of 𝔚, then 

i) 𝜍̅ (0) ≥ 𝜍̅ (𝜖), 𝜍̅ (0) ≥ 𝜍̅ (𝜖), & 𝜍̅ (0) ≤ 𝜍̅ (𝜖) ∀ 𝜖 ∈ 𝔚. 

ii) 𝜍̅ (0) ≥ 𝜍̅ (𝜖)  ≥ 𝜍̅ (𝜖∗), 𝜍̅ (0) ≥ 𝜍̅ (𝜖)  ≥ 𝜍̅ (𝜖∗), 𝜍̅ (0) ≤ 𝜍̅ (𝜖)  ≤ 𝜍̅ (𝜖∗), where 

𝜖∗= 0 ⁕ 𝜖 

Proof: For any 𝜖 ∈ 𝔚, 

i) 𝜍̅ (0) = [𝜍 (0), 𝜍 (0)] 

         ≥ [𝜍 (𝜖), 𝜍 (𝜖)] 

         = 𝜍̅ (𝜖)  

   Likewise, 𝜍̅ (0) = [𝜍 (0), 𝜍 (0)] 

         ≥ [𝜍 (𝜖), 𝜍 (𝜖)] 

         = 𝜍̅ (𝜖)  

                   𝜍̅ (0) = [𝜍 (0), 𝜍 (0)] 

        ≤ [𝜍 (𝜖), 𝜍 (𝜖)] 
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         = 𝜍̅ (𝜖)  

ii) Also, for 𝜖 ∈ 𝔚 

               𝜍̅ (𝜖∗) = [ 𝜍 (𝜖∗), 𝜍 (𝜖∗)] 

                           = [ 𝜍 (0 ⁕ 𝜖), 𝜍 ( 0 ⁕ 𝜖)] 

                           = [min (𝜍  (0), 𝜍 (𝜖), min ((𝜍  (0), 𝜍 (𝜖))]  

                  𝜍̅ (𝜖∗) ≥[𝜍  (𝜖), 𝜍 (𝜖)] 

                           = 𝜍̅ (𝜖) 

                  𝜍̅ (𝜖∗) = [ 𝜍 (𝜖∗), 𝜍 (𝜖∗)] 

                           = [ 𝜍 (0 ⁕ 𝜖), 𝜍 ( 0 ⁕ 𝜖)] 

                           = [min (𝜍  (0), 𝜍 (𝜖), min ((𝜍  (0), 𝜍 (𝜖))]  

                    𝜍̅ (𝜖∗) ≥[𝜍  (𝜖), 𝜍 (𝜖)] 

                            = 𝜍̅ (𝜖)  

                𝜍̅ (𝜖∗) = [ 𝜍 (𝜖∗), 𝜍 (𝜖∗)] 

                          = [ 𝜍 (0 ⁕ 𝜖), 𝜍 ( 0 ⁕ 𝜖)] 

                          = [max (𝜍  (0), 𝜍 (𝜖), max ((𝜍  (0), 𝜍 (𝜖))]  

          ∴       𝜍̅ (𝜖∗) ≤[𝜍  (𝜖), 𝜍 (𝜖)] 

                           = 𝜍̅ (𝜖) 

Theorem 3.6.  If there is a sequence {𝜖 }  in 𝔚, such that  lim
→

𝜍̅ (𝜖 ) = [1,1], lim
→

𝜍̅ (𝜖 ) = 

[1,1], lim
→

𝜍̅ (𝜖 ) = [0,0]. Let  𝜉̅ be an int_val neutrosophic Ẑ-subalgebra of 𝔚, then 𝜍̅ (0) = [1,1], 

𝜍̅ (0) = [1,1], 𝜍̅ (0) = [0,0]. 

Proof: Let, 𝜍̅ (0) ≥ 𝜍̅ (𝜖), for all 𝜖 ∈ 𝔚, 

                  𝜍̅ (0) ≥ 𝜍̅ (𝜖 ) 

Similarly, 𝜍̅ (0) ≥ 𝜍̅ (𝜖 ) &  𝜍̅ (0) ≤ 𝜍̅ (𝜖 ) ∀ n ≥ 0 

Thus, [1,1] ≥ 𝜍̅ (0) ≥ lim
→

𝜍̅ (𝜖 ) = [1,1] 

                 ⟹ 𝜍̅ (0) = [1,1] 
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Similarly, [1,1] ≥ 𝜍̅ (0) ≥ lim
→

𝜍̅ (𝜖 ) = [1,1] 

                  ⟹ 𝜍̅ (0) = [1,1] 

Likewise, [1,1] ≤ 𝜍̅ (0) ≤ lim
→

𝜍̅ (𝜖 ) = [0,0] 

                  ⟹ 𝜍̅ (0) = [0,0] 

Theorem 3.7. Let 𝜉̅= {𝜖: 𝜍̅ (𝜖), 𝜍̅ (𝜖), 𝜍̅ (𝜖) ∀ 𝜖 ∈ 𝔚 } such that [𝜍 , 𝜍 ], [ 𝜍 , 𝜍 ] are fuzzy  

Ẑ -subalgebra &  [𝜍 , 𝜍 ] is anti-fuzzy Ẑ-subalgebra of 𝔚, then 𝜉̅= { 𝜖: 𝜍̅ (𝜖), 𝜍̅ (𝜖), 𝜍̅ (𝜖)∀ 𝜖 ∈ 

𝔚} is an int_val neutrosophic Ẑ-subalgebra of 𝔚. 

Proof: For any 𝜖, 𝜚 ∈ 𝔚, then  

              𝜍̅ (𝜖 ⁕ 𝜚)  =  [𝜍  (𝜖 ⁕  𝜚), 𝜍 (𝜖 ⁕  𝜚)] 

                          ≥ [ min {𝜍  (𝜖), 𝜍  (𝜚)}, min {𝜍 (𝜖), 𝜍  (𝜚)}] 

                          = min{[𝜍  (𝜖), 𝜍 (𝜖)], [𝜍  (𝜚), 𝜍 (𝜚)]} 

                          = rmin {𝜍̅ (𝜖), 𝜍̅ (𝜚)} 

             ∴ 𝜍̅ (𝜖 ⁕ 𝜚) ≥ rmin {𝜍̅ (𝜖), 𝜍̅ (𝜚)} 

Similarly, 𝜍̅ (𝜖 ⁕  𝜚) ≥ rmin {𝜍̅ (𝜖), 𝜍̅ (𝜚)} 

Hence,  𝜍̅ , 𝜍̅  are fuzzy Ẑ-subalgebra of 𝔚. 

             𝜍̅ (𝜖 ⁕ 𝜚)  =  [𝜍  (𝜖 ⁕ 𝜚), 𝜍 (𝜖 ⁕ 𝜚)] 

                        ≤ [ max {𝜍  (𝜖), 𝜍  (𝜚), max {𝜍 (𝜖), 𝜍  (𝜚)}] 

                        = max{[𝜍  (𝜖), 𝜍 (𝜖)], [𝜍  (𝜚), 𝜍 (𝜚)]} 

                        = rmax {𝜍̅ (𝜖), 𝜍̅ (𝜚)} 

            𝜍̅ (𝜖 ⁕  𝜚) ≤ rmax {𝜍̅ (𝜖), 𝜍̅ (𝜚)} 

Hence, 𝜍̅  is Anti-fuzzy Ẑ-subalgebra of 𝔚. 

∴  𝜉̅= {ϵ: 𝜍̅ (𝜖), 𝜍̅ (𝜖), 𝜍̅ (𝜖) ∀ 𝜖 ∈  𝔚 } is an int_val neutrosophic Ẑ-subalgebra of 𝔚. 

Theorem 3.8. If 𝜉̅= {𝜖: 𝜍̅ (𝜖), 𝜍̅ (𝜖), 𝜍̅ (𝜖) ∀ 𝜖 ∈ 𝔚 } is an int_val neutrosophic Ẑ-subalgebra of 

𝔚, then the sets  

                   𝔚 = { 𝜖 ∈ 𝔚 / 𝜍̅ (𝜖) = 𝜍̅ (0)} 

                   𝔚 = { 𝜖 ∈ 𝔚 / 𝜍̅ (𝜖) = 𝜍̅ (0)} 
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                   𝔚 = { 𝜖 ∈ 𝔚 / 𝜍̅ (𝜖) = 𝜍̅ (0)} are Ẑ -subalgebra of 𝔚. 

Proof: For 𝜖,𝜚 ∈ 𝔚 , then  

                 𝜍̅ ( 𝜖 ) = 𝜍̅ (0) = 𝜍̅ (𝜚) 

Now, ς ( 𝜖  ⁕ 𝜚) ≥ rmin {ς ( 𝜖 ) ⁕ ς (𝜚)} 

                          = rmin { 𝜍̅ (0) , 𝜍̅ (0)} 

                          = 𝜍̅ (0) 

      ∴  𝜍̅ ( 𝜖  ⁕ 𝜚) ≥ 𝜍̅ (0) 

Similarly, 𝜍̅ (𝜖 ⁕ 𝜚) ≥ 𝜍̅ (0) 

𝜍̅ (𝜖 ⁕ 𝜚) ≤ rmax {𝜍̅ (𝜖) ⁕ 𝜍̅ (𝜚)} 

                          = rmax  {𝜍̅ (0) , 𝜍̅ (0)} 

                          = 𝜍̅ (0) 

       ∴  𝜍̅ (𝜖⁕ 𝜚) ≤ 𝜍̅ (0) 

Hence, 𝜖 ⁕ 𝜚 ∈  𝔚
, ,

 is Ẑ -subalgebra of 𝔚. 

Theorem 3.9. Given (𝔚, ⁕, 0) & (𝔚 , ⁕ , 0) be the two Ẑ-algebras & f: 𝔚 → 𝔜 is homomorphism 

of Ẑ - algebras. If 𝜉̅  is an int_val neutrosophic Ẑ-algebra of 𝔚 , defined by f ( 𝜍̅ , , ) =  { 𝜖 , 

(𝜍̅ , , ) (𝜖) = 𝜍̅ , , (f(𝜖))} then f (𝜍̅ , , ) is an int_val neutrosophic Ẑ– subalgebra of 𝔚. 

Proof: Given, 𝜖, 𝜚 ∈ 𝔚 
(𝜍̅ ) (𝜖 ⁕𝜚) = 𝜍̅ (f (𝜖 ⁕ 𝜚)) 

             = 𝜍̅ (f (𝜖) ⁕ f (𝜚)) 

             ≥ rmin {𝜍̅ (f (𝜖), 𝜍̅ (f (𝜚)} 
      (𝜍̅ ) ≥ rmin {(𝜍̅ )(𝜖), (𝜍̅ )( 𝜚)} 

Similarly, ( 𝜍̅ )  ≥ rmin {( 𝜍̅ )( 𝜖), ( 𝜍̅ )(𝜚)} 

(𝜍̅ ) (𝜖 ⁕ 𝜚) = 𝜍̅ (f (𝜖 ⁕ 𝜚)) 

               = 𝜍̅ (f (𝜖) ⁕ f (𝜚)) 

               ≤ rmax {𝜍̅ (f (𝜖)), 𝜍̅ (f (𝜚) 
       (𝜍̅ )  ≤ rmax {(𝜍̅ ) (𝜖), (𝜍̅ ) (𝜚)} 

Therefore, f (𝜍̅ , , ) is an int_val neutrosophic Ẑ– subalgebra of 𝔚 . 

4. Homomorphism of Interval-valued (int_val) Neutrosophic Ẑ– Subalgebra 

In this section, will look at some methods for investigating results on int_val neutrosophic Ẑ - 

subalgebra homomorphism. 
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Theorem. 4.1. If f :  𝔚 → 𝔜  is the homomorphism of Ẑ - algebra.  If 𝜍̅ , ,  be the int_val 

neutrosophic Ẑ -subalgebra of 𝔜, then f (𝜍̅ , ,  )  = {(f (𝜍̅ ), f (𝜍̅ ), f (𝜍̅ )/ 𝜖 ∈ 𝔚 } is 

also the int_val neutrosophic Ẑ - subalgebra of 𝔜, where f (𝜍̅ (𝜖)) = 𝜍̅ f(𝜖) , f (𝜍̅ (𝜖)) = 

𝜍̅ f(𝜖) , f (𝜍̅ (𝜖)) = 𝜍̅ f(𝜖), for every 𝜖 ∈ 𝔚. 
Proof: Given 𝜍̅ , ,  be the int_val neutrosophic Ẑ -subalgebra of  𝔜, 

 Let 𝜖, 𝜚 ∈ 𝔚 

Then, f (𝜍̅ (𝜖 ⁕ 𝜚) = 𝜍̅ f(𝜖 ⁕ 𝜚) 

                                   = 𝜍̅ (f(𝜖) ⁕ 𝜍̅ f(𝜚)) 

                                   ≥ rmin{𝜍̅ (f(𝜖)), (𝜍̅ (f(𝜚))} 

                                   ≥ rmin {f(𝜍̅ (𝜖)), f(𝜍̅ (𝜚))} 

                                   = rmin {f (𝜍̅ (𝜖)) , f (𝜍̅ (𝜚))} 

         f (𝜍̅ (𝜖 ⁕ 𝜚) ≥ min {f (𝜍̅ (𝜖)) , f (𝜍̅ (𝜚))} 

       Similarly,  f (𝜍̅ )(𝜖 ⁕ 𝜚) ≥ rmin{ f (𝜍̅ (𝜖)) , f (𝜍̅ (𝜚))} 

      f (𝜍̅ )(𝜖 ⁕ 𝜚) = 𝜍̅ ( f(𝜖 ⁕ 𝜚)) 

                               = 𝜍̅ (f(𝜖) ⁕ f(𝜚)) 

                               ≤ rmax { 𝜍̅ (f(𝜖)), 𝜍̅ (f(𝜚))} 

                              = rmax {f (𝜍̅ (𝜖)) , f (𝜍̅ (𝜚))} 

   f (𝜍̅ )(𝜖⁕ 𝜚) ≤ rmax {f (𝜍̅ (𝜖)) , f (𝜍̅ (𝜚))} 
∴ f (𝜍̅ , ,  )  = {(f (𝜍̅ ), f (𝜍̅ ), f (𝜍̅ )} is an int_val neutrosophic Ẑ- subalgebra of 𝔜. 

Theorem 4.2. If f : 𝔚 → 𝔜 is the homomorphism from Ẑ– algebra 𝔚 𝑡𝑜 𝔜. If 𝜉̅ = (𝜍̅ , , ) be the 

int_val neutrosophic Ẑ– algebra of 𝔚 , then the image of f (𝜉̅)  =  { 𝜖 , 
f (𝜍̅ ) f (𝜍̅ ), f (𝜍̅ )/  𝜖  ∈  𝔚  } of 𝜉̅  under f  is also the int_val neutrosophic Ẑ– 

subalgebra of 𝔜. 

Proof: Let 𝜉  ̅ = (𝜍̅ , , ) be the int_val neutrosophic Ẑ– subalgebra of 𝔚, let 𝜚 , 𝜚  ∈ 𝔜.  

We know that,  𝜖  ⁕ 𝜖  / 𝜖  ∈  f ( 𝜚 ) & 𝜖  ∈  f (𝜚 )}⊆{ 𝜖 ∈  𝔚/𝜖 ∈  f (𝜚 ⁕𝜚 )               

Now, 

   f (𝜍̅ )( (𝜚 ⁕ 𝜚 ) = rsup {(𝜍̅ )/ 𝜖 ∈  f (𝜚 ⁕ 𝜚 )} 

                        = rsup {(𝜍̅ ) 𝜖 ⁕𝜖 /𝜖  ∈  f (𝜚 ) & 𝜖  ∈  f (𝜚 )} 

                      ≥ rsup {rmin {𝜍̅ ( 𝜖 ), 𝜍̅  (𝜖 )/ 𝜖  ∈  f (𝜚 ) & 𝜖  ∈  f (𝜚 )} 

                        = rmin {rsup{𝜍̅ ( 𝜖 )/ 𝜖  ∈  f (𝜚 ), 𝜍 ̅  (𝜖 )/   𝜖  ∈  f (𝜚 )}} 

  f (𝜍̅ )( (𝜚 ⁕𝜚 ) ≥ rmin {f (𝜍̅ ( 𝜚 )), f (𝜍̅ ( 𝜚 ))} 

Similarly,  f (𝜍̅ ) (𝜚 ⁕𝜚 )  ≥ rmin {f (𝜍̅ ( 𝜚 )), f (𝜍̅ ( 𝜚 )) 
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   f (𝜍̅ ) (𝜚 ⁕𝜚 ) = rinf {𝜍̅ (𝜖)/ 𝜖 ∈ f (𝜚 ⁕𝜚 )} 

                    ≤ rinf {(𝜍̅ ) 𝜖 ⁕𝜖 /𝜖  ∈  f (𝜚 ) & 𝜖  ∈  f  (𝜚 )} 

                   ≤  rinf{rmax{𝜍̅ ( 𝜖 ), 𝜍  (𝜖 )/ 𝜖  ∈  f  (𝜚 ) & 𝜖  ∈    f  (𝜚 )} 

                  = rmax {rinf {𝜍̅ (𝜖 )/ 𝜖  ∈  f (𝜚 ), 𝜍̅  (𝜖 )/   𝜖  ∈  f  (𝜚 )}} 

                  =rmax {f  (𝜍̅ ( 𝜚 )), f  (𝜍̅ ( 𝜚 ))} 

    Hence, f  (𝜍̅ ) (𝜚 ⁕𝜚 )  ≤ rmax {f  (𝜍̅ ( 𝜚 )), f  (𝜍̅ ( 𝜚 ))} 

Theorem 4.3. Suppose f: 𝔚 → 𝔜 is the homomorphism of Ẑ– algebra.  If 𝜉  ̅ ={ 𝜖: f (𝜍 ̅
𝑇,𝐼,𝐹

)(𝜖) / 𝜖 ∈

𝔚} be an int_val neutrosophic Ẑ– algebra of 𝔚, then its pre-image 𝑜𝑓 f (𝜉̅) = {𝜖: 𝑓 (𝜍̅ , , )/𝜖 ∈

 𝔚} of 𝜉 ̅ under f is also an int_val neutrosophic Ẑ– subalgebra in 𝔚. 

Proof:   

              f (𝜍̅ )( 𝜖 ⁕ 𝜚) = 𝜍̅ (f ( 𝜖 ⁕ 𝜚)) 

                               =𝜍̅ (f ( 𝜖 ) ⁕ f ( 𝜚)) 

                               ≥rmin{𝜍̅ (f(𝜖 )), 𝜍 ̅ (f(𝜚)} 

                               =rmin {f (𝜍̅ )(𝜖), f (𝜍̅ ) ( 𝜚)} 

             ⸫ f (𝜍̅ )( 𝜖 ⁕ 𝜚) ≥ rmin {f (𝜍̅ )( 𝜖), f (𝜍̅ )( 𝜚)}   

Similarly, f (𝜍̅ )( 𝜖 ⁕  𝜚) ≥ rmin {f (𝜍̅ )(𝜖), f (𝜍̅ )(𝜚)} 

                                    f (𝜍̅ )(𝜖⁕ 𝜚) = 𝜍̅ (f (𝜖 ⁕ 𝜚)) 

                                      =𝜍̅ (f (𝜖) ⁕ f (𝜚)) 

                                      ≤ 𝑟𝑚𝑎𝑥{𝜍̅ (f(𝜖)), 𝜍 ̅ (f( 𝜚))} 

                                       = rmax {f (𝜍̅ )(𝜖), f (𝜍̅ )(𝜚)} 

                   f (𝜍̅ )( 𝜖 ⁕ 𝜚) ≤ rmax {f (𝜍̅ )(𝜖), f (𝜍̅ )(𝜚)} 

 ⸫ f (𝜉)̅ = {𝜖,  f 𝜍̅ , , /𝜖 ∈ 𝔚} of 𝜉 ̅  under f is the int_val neutrosophic Ẑ– subalgebra of 𝔚.  

Theorem 4.4. If h is a Ẑ-endomorphism of Ẑ −algebra (𝔚, ⁕, 0). If 𝜉̅ = { 𝜖 : 𝜍̅ , ,  / 𝜖 ∈ 𝔚 } be an 

int_val neutrosophic Ẑ-subalgebra of 𝔚 , then 𝜉̅  = {  𝜖 ∶ 𝜉̅
, ,  / 𝜖  ∈ 𝔚 } is also an int_val 

neutrosophic Ẑ-subalgebra of 𝔚. 
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Proof: Given, h be an Ẑ-endomorphism of Ẑ −algebra (𝔚, ⁕, 0).  

            Let 𝜉 ̅ be the int_val neutrosophic Ẑ-subalgebra of 𝔚, 

                Let, 𝜖,𝜚 ∈  𝔚, then  

                      𝜉̅  (𝜖 ⁕ 𝜚) = 𝜉̅ (h (𝜖 ⁕ 𝜚) 

                                       = 𝜉̅ (h (𝜖) ⁕ h (𝜚))  

                                      ≥ rmin{ 𝜉̅ (h (𝜖), 𝜉̅ (h (𝜚)} 

                  𝜉̅  (𝜖 ⁕ 𝜚) ≥ rmin{𝜉̅  (𝜖) ,𝜉̅  (𝜚)} 

Similarly, 𝜉̅ ( 𝜖⁕ 𝜚) ≥ rmin{𝜉̅  (𝜖) , 𝜉̅  (𝜚)} 

𝜉̅  (𝜖 ⁕𝜚) = 𝜉̅ (h (𝜖 ⁕ 𝜚) 

                   = 𝜉̅ (h (𝜖) ⁕ h (𝜚))  

                   ≤ rmax{ 𝜉̅ (h (𝜖), 𝜉̅  (h (𝜚)} 

𝜉̅  (𝜖 ⁕ 𝜚) ≤ rmax {𝜉̅  (𝜖),𝜉̅  (𝜚)} 

Hence, 𝜉̅  is also an int_val neutrosophic Ẑ-subalgebra of 𝔚. 

Theorem 4.4. Suppose J is the subset of 𝔚. An int_val neutrosophic set 𝜉 ̅ ={𝜖 : 𝜍̅ , ,  / 𝜖 ∈ 𝔚 } such 

that 𝜍̅ ,  = 𝑡̅   𝜖 ∈ 𝐽
�̅�  𝜖 ∉ 𝐽

   , 𝜍̅  = 
𝛼  𝜖 ∈ 𝐽

�̅�   𝜖 ∉ 𝐽
    where 𝑡̅, 𝑠̅, 𝛼, �̅� ∈ 𝔇 [0,1] with 𝑡̅ ≥ 𝑠̅, 𝛼 ≤ �̅�,  Then the 

int_val neutrosophic set 𝜉 ̅ ={ 𝜖 : 𝜍̅ , 𝜍 ̅ , 𝜍 ̅  / 𝜖 ∈ 𝔚 } is an int_val neutrosophic of Ẑ-algebra of 𝔚. 

Proof:  For ϵ, 𝜚 ∈ J 

   i) 𝜍̅ (𝜖) = 𝑡̅ = 𝜍̅ (𝜚) 

           ⟹  𝜍̅ (𝜖 ⁕ 𝜚) ≥ rmin {𝜍̅ (𝜖), 𝜍 ̅ (𝜚)}  

                       = rmin {𝑡̅, 𝑡̅} 

               𝜍̅ (𝜖 ⁕ 𝜚) = 𝑡̅ 

ii) 𝜍̅ (𝜖) = 𝑡̅ = 𝜍̅ (𝜚) 

           ⟹  𝜍̅ (𝜖 ⁕ 𝜚) ≥ rmin {𝜍̅ (𝜖), 𝜍̅ (𝜚)}  
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                       = rmin {𝑡̅, 𝑡̅} 

                  𝜍̅ (𝜖 ⁕ 𝜚) = 𝑡̅ 

iii) For, ϵ, 𝜚 ∈ J 

𝜍̅ (𝜖) = 𝛼 = 𝜍̅ (𝜚) 

⟹ 𝜍̅ (𝜖 ⁕ 𝜚) ≤ rmax {𝜍̅ (𝜖), 𝜍̅ (𝜚)}  

            = rmax {𝛼, 𝛼}  

  𝜍̅ (𝜖 ⁕ 𝜚) = 𝛼 

Hence, 𝜍̅ , ,  is an int_val neutrosophic Ẑ-algebra of 𝔚. 

Theorem 4.5. Let f: 𝔚 → 𝔜 be the homomorphism of Ẑ-algebra. If 𝜍̅ , ,  is the int_val neutrosophic 
Ẑ-algebra of 𝔚, with the rsup_rsup_rinf property & kerf ⊆ 𝔚𝜍̅ , ,  then the image of th set 𝜉 ̅ ={𝜖 : 

𝜍̅ , ,  / 𝜖 ∈ 𝔚 } , f(𝜍̅ , , ) is also an int_val neutrosophic Ẑ-algebra of 𝔜. 

Proof:  

i) Let f(𝜖 ) = 𝜚 , f(𝜖 ) = 𝜚  

f(𝜍̅ )(𝜚 ⁕ 𝜚 ) = rsup {𝜍̅ (𝜖 ⁕ 𝜖 ) : ϵ ∈  f (𝜚 ⁕ 𝜚 ) 

              ≥ rsup { 𝜍̅ (𝜖 ⁕ 𝜖 ) : 𝜖 ∈  f (𝜚 ) & 𝜖 ∈  f  (𝜚 )}   

              ≥ rsup {rmin{ 𝜍̅ (𝜖 ), 𝜍̅  (𝜖 )}, 𝜖 ∈  f (𝜚 ) &𝜖 ∈  f ( 𝜚 )}   

              ≥rmin {rsup {𝜍̅ (𝜖 ): 𝜖 ∈  f (𝜚 )}, rsup {𝜍̅  (𝜖 ): & 𝜖 ∈  f  (𝜚 )}} 

              =rmin { rsup
∈ ( )

{𝜍̅ (𝜖 )}, rsup
∈ ( )

{𝜍̅ (𝜖 )}} 

              =rmin{ f(𝜍̅ )(𝜚 ),f(𝜍̅ )(𝜚 )} 

ii) Similarly, f (𝜍̅ )(𝜚 ⁕ 𝜚 ) ≥ rmin{ f(𝜍̅ )(𝜚 ),f(𝜍̅ )(𝜚 )} 

iii) Let f (𝜖 ) = 𝜚 , f (𝜖 ) = 𝜚  

f (𝜍̅ )(𝜚 ⁕ 𝜚 ) = rinf {𝜍̅ (𝜖 ⁕ 𝜖 ) : 𝜖 ∈  f (𝜚 ⁕ 𝜚 ) 

              ≤ rinf { 𝜍̅ (𝜖 ⁕ 𝜖 ) : 𝜖 ∈  f (𝜚 ) & 𝜖 ∈  f  (𝜚 )}   

              ≤ rinf {rmax{ 𝜍̅ (𝜖 ), 𝜍̅  (𝜖 )}, 𝜖 ∈  f (𝜚 ) & 𝜖 ∈  f ( 𝜚 )}   
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             ≤rmax {rinf {𝜍̅ (𝜖 ): 𝜖 ∈  f (𝜚 )}, rinf {𝜍̅  (𝜖 ): & 𝜖 ∈  f  (𝜚 )}} 

             =rmax { rinf
∈ ( )

{𝜍̅ (𝜖 )}, rinf
∈ ( )

{𝜍̅ (𝜖 )}} 

             =rmax{f(𝜍̅ )(𝜚 ),f(𝜍̅ )(𝜚 )} 

Hence, f (𝜍̅ , , ) is an int_val neutrosophic Ẑ-algebra of 𝔜. 

 

5. Product of Interval-valued(int_val) neutrosophic Ẑ-algebra 

The section that follows the cartesian product of two int_val neutrosophic Ẑ-algebras 𝜉 ̅ × 𝜁  ̅ of 𝔚 
& 𝔜 respectively. 

Definition5.1. Let 𝜉̅  =  {𝜖 , 𝜍̅ , , (𝜖) / 𝜖 ∈   𝔚}  and 𝜁 ̅  =  {𝜚, 𝜍̅ , , (𝜚) / 𝜚 ∈  𝔜}  be two int_val 
neutrosophic sets of  𝔚 & 𝔜 respectively.  Then the cartesian product of 𝜉̅ & 𝜁  ̅ is referred as 𝜉 ̅ x 𝜁  ̅

then it is defined to be 𝜉x̅ 𝜁  ̅ = {( 𝜖, 𝜚), 𝜍̅
  × 

(𝜖, 𝜚), 𝜍 ̅
  × 

(𝜖, 𝜚), 𝜍̅
  × 

(𝜖, 𝜚)/(𝜖 ×  𝜚)  ∈  𝜉̅ × 𝜁 }̅ where 

𝜍̅
  × 

: 𝜖 × 𝜚 →  𝔇 [0,1] ; 𝜍̅
  × 

: 𝜖 ×  𝜚 →  𝔇 [0,1] and 𝜍̅
  × 

: 𝜖 × 𝜚 →  𝔇 [0,1]. 𝜍̅
  × 

 = rmin {𝜍̅
  

(𝜖), 

𝜍̅
  

(𝜚)}; 𝜍̅
  × 

 = rmin {𝜍̅
  

(𝜖), 𝜍̅
  

(𝜚)}; 𝜍̅
  × 

 = rmax {𝜍̅
  

(𝜖), 𝜍̅
  

(𝜚)}.  

Theorem 5.2. If 𝜉 ̅ and 𝜁  ̅ be two int_val neutrosophic Ẑ-algebra of  𝔚 &𝔜 respectively, then 𝜉 ̅ × 𝜁  ̅

is an int_val neutrosophic Ẑ-algebra of  𝔚 & 𝔜. 

Proof: Let 𝜉̅={𝜖, 𝜍̅
  

(𝜖), 𝜍̅
  

(𝜖), 𝜍̅
  

(𝜖)/𝜖 ∈ 𝔚 } & 𝜁  ̅ = { 𝜚, 𝜍̅
  

(𝜚), 𝜍̅
  

(𝜚), 𝜍̅
  

(𝜚)/𝜚 ∈ 𝔜 } be two 

int_val neutrosophic sets of 𝔚 &𝔜. 

Take 𝜖 = (𝜖 , 𝜚 ) and 𝜚= (𝜖 , 𝜚 ) 

i) 𝜍̅
  ×  

(𝜖 ⁕ 𝜚) = 𝜍̅
  ×  

((𝜖 , 𝜚 ) ⁕ (𝜖 , 𝜚 )) 

             = 𝜍̅
  ×  

((𝜖 ⁕𝜚 ), (𝜖 ⁕𝜚 )) 

             = rmin{𝜍̅
  

(𝜖 ⁕𝜚 ), 𝜍̅
  

(𝜖 ⁕𝜚 )} 

             ≥ rmin {rmin {𝜍̅
  

(𝜖 ), 𝜍̅
  

(𝜖 ),rmin{𝜍̅
  

(𝜚 ), 𝜍̅
  

(𝜚 )}} 

             =rmin{rmin(𝜍̅
  

(𝜖 ), 𝜍 ̅
  

(𝜚 )},rmin{𝜍̅
  

(𝜖 ), 𝜍̅
  

(𝜚 )}} 
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             =rmin{𝜍̅
  × 

(𝜖), 𝜍̅
  × 

( 𝜚)} 

             ≥rmin {𝜍̅
  × 

(𝜖), 𝜍̅
  × 

(𝜚)} 

ii) Similarly, 𝜍̅
  ×  

(𝜖 ⁕ 𝜚) ≥rmin {𝜍̅
  × 

(𝜖), 𝜍̅
  × 

(𝜚)} 

iii) 𝜍̅
  ×  

(𝜖 ⁕ 𝜚) = 𝜍̅
  ×  

((𝜖 , 𝜚 ) ⁕ (𝜖 , 𝜚 )) 

             = 𝜍̅
  ×  

((𝜖 ⁕𝜚 ), (𝜖 ⁕𝜚 )) 

             = rmax{𝜍̅
  

(𝜖 ⁕𝜚 ), 𝜍̅
  

(𝜖 ⁕𝜚 )} 

              ≤rmax {rmax {𝜍̅
  

(𝜖 ), 𝜍̅
  

(𝜖 ),rmax{𝜍̅
  

(𝜚 ), 𝜍̅
  

(𝜚 )}} 

              =rmax{rmin(𝜍̅
  

(𝜖 ), 𝜍̅
  

(𝜚 )},rmax{𝜍̅
  

(𝜖 ), 𝜍̅
  

(𝜚 )}} 

              =rmax {𝜍̅
  × 

(𝜖), 𝜍̅
  × 

( 𝜚)} 

              ≤ rmax {𝜍̅
  × 

(𝜖), 𝜍̅
  × 

(𝜚)} 

Hence, 𝜉  ̅ × 𝜁  ̅ is an int_val neutrosophic Ẑ-algebra of  𝔚 & 𝔜. 

Theorem 5.3. If 𝜉̅  = {𝜖 ∈ 𝔚𝒾 /𝜍̅
 𝒾  

(𝜖), 𝜍̅
 𝒾  

(𝜖),𝜍̅
 𝒾  

(𝜖)}  be an int_val neutrosophic Ẑ-algebra of 

𝔚  respectively, then 𝜉�̅� is also an int_val neutrosophic Ẑ-algebra of ∏ 𝔚𝒾 𝒾 . 

Proof: 

  The Induction process on theorem 5.2. 

   i)            𝜍̅
 𝒾  

𝒾
(𝜖𝒾 ⁕ 𝜚𝒾 ) ≥ rmin { 𝜍̅

 𝒾 
𝒾

(𝜖𝒾 ), 𝜍̅
 𝒾  

𝒾
(𝜚𝒾 )} 

   ii)       Similarly, 𝜍̅
 𝒾  

𝒾
(𝜖𝒾 ) ≥rmin { 𝜍̅

 𝒾  
𝒾

(𝜖𝒾 ), 𝜍̅
 𝒾  

𝒾
(𝜚𝒾)} 

   iii)              𝜍̅
 𝒾   

𝒾
(𝜖𝒾 ⁕ 𝜚𝒾 ) ≤ rmax { 𝜍̅

 𝒾  
𝒾

(𝜖𝒾 ), 𝜍̅
 𝒾  

𝒾
(𝜚𝒾 )} 
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5. Conclusions  

     The application of Int val neutrosophic Z-algebra marks a significant advancement in dealing 

with uncertainty and indeterminate information within various domains. Through its incorporation 

of interval-valued neutrosophic sets, int val neutrosophic Z-algebra provides a flexible framework 

for representing and manipulating information that encompasses not only truth and falsity but also 

the degree of indeterminacy present in real-world scenarios. This work deals about int_val 
neutrosophic in Ẑ-algebra using a binary operation ⁕ and some of its properties and algebraic 

structures are also presented. In future, this work may extend to any type of algebra in many ways. 

This will be used in multiple types of fuzzy sets and their different extensions like int_val 

intuitionistic neutrosophic Ẑ -algebra, cubic neutrosophic in Ẑ -algebra. 
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Abstract. Impostor syndrome or Impostor phenomenon is a belief that a person thinks their success is due

to luck or external factors, not their abilities. This psychological trait is present in certain groups like women.

In this paper, we propose a neutrosophic trait measure to represent the psychological concept of the trait-

anti trait using refined neutrosophic sets. This study analysed a group of 200 undergraduate students for

impostor syndrome, perfectionism, introversion and self-esteem: after the COVID pandemic break in 2021.

Data labelling was carried out using these neutrosophic trait measures. Machine learning models like Support

Vector Machine(SVM), K-nearest neighbour (K-NN), and random forest were used to model the data; SVM

provided the best accuracy of 92.15%.
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—————————————————————————————————————————-

1. Introduction

Impostor Syndrome or Impostor Phenomenon is a person’s internal conviction that their

success has happened due to pure chance, an external error, or hard work but not their capa-

bilities or intellect. Individuals with impostor syndrome fear that others will someday learn

that they are fakes [1]. They feel they do not belong in their working or academic environment
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despite qualifications, accomplishments, and achievements [2]. Impostor syndrome is appro-

priate to ethnic, racial, and gender groups [3], especially in creative arts-based careers where

success is not readily quantifiable [4]. Impostor syndrome was also thought to be prevalent in

women and varies with gender. In 1978, psychologists Pauline Rose Clance and Suzanne Imes

presented the concept of an Impostor phenomenon. Their research examined graduate and un-

dergraduate women who were relatively successful but felt “overvalued” by their counterparts

or supervisors and further felt like imposters [5]. Furthermore, this research established that

the impostor phenomenon happened more in females than males. It is attributed to how dif-

ferent genders synthesize their success. Men believe success comes from within, while women

consider that success comes from outside. To complicate matters, it emerges that the more

educated and skilled a woman is, the more she doubts her abilities [6]. Due to this, women

with IS often work more than others to finally achieve the status they fear they have never

earned. [5] coined the term Impostor Phenomenon (IP) to describe a sensation of internal

intellectual phoniness that seemed especially widespread among a select group of female high-

achievers. They were terrified of being labelled as “impostors” who did not belong “among

all these brilliant, intelligent individuals.” Rather than skill or competence, many ascribed

their success to chance, hard effort, acquaintance with well-connected people, being at the

correct place at the perfect time, fates, or individual characteristics such as charisma and the

capability to interact effectively.

The Clance IP Scale was created to assess the idea that people are successful by superficial

standards but have a false sense of personal ineptitude. The scale evaluates phenomena such

as self-doubt and achievement by coincidence [7]. The study assesses the predictive accuracy

of several machine learning methods. They proved that approaches, like ensemble learning, are

better than simple machine learning algorithms [8]. According to a recent systematic analysis

of the literature published in 2020, the prevalence of IS ranges from 9 to 82% [9]. According

to [10], the IS prevalence among medical students and trainees was 22 -60%, and 33-44%,

respectively. 15% of women dentistry students in the United States reported IS, while 57.8 %

of youngsters in Saudi Arabia showed symptoms of Impostor Syndrome [11] [12].

The effect of impostorism on a specific leadership behaviour component of task delegation

was analyzed in [13]. The population included 190 managers of various industries, with a

prevalence of 74.6%. [3] examined the connection between the impostor phenomenon and

racial discrimination in over one hundred and fifty African-American university students aged

18 to 19 through a cross-sectional survey. Respondents with more significant levels of IS also

conveyed more survivor guilt feelings. [14] analyzed the prevalence of Impostor syndrome in

final-year nursing students in a cross-sectional survey from Australia, the UK and New Zealand.

The population selection included over 200 nursing students, of which 45.1% had mild IS,
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33.4% were classified as repeatedly having IS feelings, and 8.3% were depicted as frequently

experiencing intense IS experiences. A positive weak correlation between IS and preparedness

for practice was found. [15] analyzed the connection between IS, perceived prejudice, and

mental-health issues among minority trainees. The population sample was 322 College students

with a mean age of 21 years (70% women) through a cross-sectional survey.

Perfectionism was described as ”insisting of oneself or others a higher quality of performance

than is needed by the circumstances”. David Burn (1980) [16] produced a perfectionism scale,

one of the first instruments to quantify perfectionism. He defined them as one whose ideals are

high above reach or reason, who strains unremittingly and compulsively toward unattainable

goals. Here, perfectionism is defined as a person’s self-description of his or her performance

style as perfectionistic, and most psychiatrists would likely agree with this assessment. The

multidimensional perfectionism scale [17] is a test used to assess the character trait of perfec-

tionism. Impostor syndrome in the classroom was analyzed in [18] to evaluate the influences

of gender, level, grade, GPA, and individual characteristics on impostor syndrome among high

school students. The study was conducted on 104 English honours students in grades 9-12,

and there were no gender-based differences in impostorism. Impostor Syndrome was analyzed

in [19] on 506 college students of mean age 21yrs (79% women) through a cross-sectional

survey.

Women were notably more inclined to convey impostor feelings than men. Perfectionism,

test anxiety and mental health were mainly related to IS, but low self-esteem was not. In [20]

investigated gender disparities in anxiety of success and failure and IS on 104 marketing man-

agers, of which response rate was 92.9% and mean age was 35yrs and 49% were women through

a cross-sectional survey. Among male and female managers, significant positive correlations

were observed between fear of failure and IS.

In [21], the authors evaluated emotional fatigue and work satisfaction among faculty with

IS on 16 and 310 academic faculties for two studies, respectively. Study 1 had 63% women,

and Study 2 had 59% women through a cross-sectional survey. Women and men vary in their

coping techniques for managing impostor syndrome. [22] analyzed the impostor syndrome

among Austrian doctoral students and evaluated gender differences in the impostor syndrome

of nearly 631 students. Females had more fear of success and failure and lesser self-esteem

than men. Faculties reported higher levels of impostor syndrome and research self-efficacy

than non-faculty members. In [23], the authors explored the presence and connection between

IS and burnout syndrome in internal medicinal residents.
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[2] examined whether IS is a homogeneous construct or whether different types of persons

with impostor syndrome can be distinguished based on related characteristics with 242 pro-

fessionals in administration positions. No association was found between impostor syndrome

and gender.

The authors have tried correlating well-being to impostor syndrome and gender role orien-

tation in [24]. The population sample was 379 college students, which was a cross-sectional

survey. People with high impostor syndrome scored less in well-being and self-acceptance.

Significant differences were found in Impostor Syndrome by gender role orientation. [6] sam-

pled the opinions of five doctors of various disciplines of medicine and their experiences with

impostor syndrome. [25] identifies the prevalence of impostor syndrome among computer sci-

ence students by conducting a cross-sectional survey on 203 college students. Additionally, it

validates that the women students had more elevated levels of impostor feelings than the men.

[26] studied IS among first-generation and continuing-generation university students, with a

population sample was 388 college students. After researching the relationship between IS level

and perfectionism in these populations, only socially stipulated perfectionism was discovered

to be mainly related to impostor syndrome among college students.

However, none of these studies thought there could be indeterminacy while making conclu-

sions about these studies. As we see, sometimes, we may be unable to distinguish the presence

or absence of impostor syndrome. In those cases, neutrosophic models can be used. Fur-

ther, all results or conclusions may involve a certain amount of uncertainty in that situation.

Neutrosophic will play a significant role.

Neutrosophy was introduced as a generalization to fuzzy theory. It handles the neutrali-

ties/indeterminacy present in the real-world scenario [27–31]. Neutrosophy has been recently

used in psychology and will be very beneficial in analyzing impostor syndrome problems.

Smarandache presented refined neutrosophic set (RNS) in [32] and further evolved into Dou-

ble Valued NS (DVNS) [33], Triple Refined Indeterminate NS (TRINS) [34], and Multi Refined

NS (MRNS) [35]. The indeterminate Likert scaling was defined using TRINS. Neutrosophy

and neutrosophic psychology has been used to study several psychological problems [36–38].

This paper proposes the neutrosophic measure for Imposter syndrome based on neutro-

sophic traits and psychology. This is implemented using data collection using a specifically

designed questionnaire after the data preprocessing and applying appropriate machine learning

algorithms.

This paper is organized as follows: Section one is an introductory, extensive literature

survey regarding impostor syndrome in young adults, and neutrosophy is given. Section two

covers basic concepts of neutrosophy, psychology, indeterminate Likert scaling and Impostor

syndrome. Neutrosophic measures for Impostor syndrome are introduced in section three.
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Section four provides the dataset description along with the methodology and deals with the

working of the proposed model, including calculating impostor syndrome scores. Section five

deals with data analysis along with the machine learning models used. Results and discussion

are given in section six. The last section discusses the limitations and concludes the study.

2. Basic Concepts

This subsection deals with the basic concepts of Neutrosophy and Neutrosophic psychology.

The neutrosophic psychological framework is based on Freud’s theory of conscious/unconcious

memory and preconscious memory, it also includes one more state known as the aconscious

state. Based on the neutrosophic theory, the extended neutrosophic psychology is denoted by

(< A >), < NeutA >,< antiA >).

Refined Neutrosophic sets are used to capture this, and several applications of neutrosophic

psychology can be found in [32].

Definition 2.1. The refined neutrosophic set is described such that the truth T is split

into several kinds of truths: T1, T2, . . . , Tp, Indeterminate I into different indeterminacies:

I1, I2, . . . , Ir and False F into different falsehoods: F1, F2, . . . , Fs, where all 0 < p, r, s ≤ 1 are

integers, and p + r + s = n.

Definition 2.2. [34] Consider X a space of objects with elements in X denoted by x. A

TRINS A in X is represented by truth TA(x), indeterminacy leaning towards truth ITA(x),

indeterminacy IA(x), indeterminacy leaning towards falsity IFA(x), and falsity FA(x) mem-

bership functions. For each component x ∈ X, there are

0 ≤ TA(x) + ITA(x) + IA(x) + IFA(x) + FA(x) ≤ 5 (1)

Thus, a TRINS A can be described by

A = 〈x, TA(x), ITA(x), INTA(x), IATA(x), ATA(x)〉 : x ∈ X (2)

and is characterized by trait TA(x), indeterminacy trait ITA(x), neutral trait INTA(x), inde-

terminate anti-trait IATA(x) and anti trait ATA(x) membership functions.

Detailed examples and working of TRINS can be obtained from [34,35,39].

3. Neutrosophic trait measures

According to neutrosophic psychology, there are several trait and anti-trait pairs. Some of

the most common trait and anti-trait pairs related to the Impostor syndrome are

Extraversion-Introversion

Perfectionism-Imperfectionism
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Self esteem- Self non-esteem

Honesty - Dishonesty

Let us, for example, consider the extraversion-introversion, trait-anti-trait pair. A person

can be an extrovert in some situations, at the same time, he/she can also be an introvert

while interacting with some other people. There are also chances that s/he is an ambivert. To

accurately capture this kind of personality trait, we have developed a questionnaire. We now

proceed to describe the questionnaire.

The questionnaire is framed to cover all these traits and anti-traits pairs. We propose in

the following section neutrosophic impostor syndrome measures. Instead of using a complete

indeterminate Likert scaling-based questionnaire, we have framed the questionnaire differently

since using the indeterminate Likert scaling questionnaire might require more professional

support.

We have asked them to answer based on a 5-point Likert scaling to make the evaluation

easier. Their answers were combined/aggregated into suitable neutrosophic measures.

We use the concept of TRINS defined by [34]. We extend the concept of TRINS values

to psychology and propose a novel architecture for generating neutrosophic values from the

questionnaire.

Here, we introduce the concept of neutrosophic trait measures for a trait, which is later

used to define neutrosophic impostor syndrome and neutrosophic perfectionist measures.

Definition 3.1. Consider X to be a collection of all trait- anti pair with elements of X denoted

by x. A neutrosophic trait S is based on a 5-tuple refined neutrosophic set. It is denoted as a

neutrosophic set by

S = 〈x, TrS(x), IT rS(x), NTrS(x), IATrS(x), ATrS(x)〉 : x ∈ X (3)

where TrS(x) denotes the degree of presence of trait S, which is based on the truth membership

of TRINS, ITrS(x) denotes the degree of presence of indeterminate trait S, which is based on

the truth leaning towards indeterminacy membership of TRINS, NTrS(x) denotes the degree

of presence of neutral trait, which is based on the indeterminate membership of TRINS,

IATrS(x) denotes the degree of presence of indeterminate anti-trait S, which is based on the

false leaning towards indeterminacy membership of TRINS, ATrS(x) denotes the degree of

presence of anti-trait S which is based on the false membership of TRINS.

Next, we define the three functions, namely, accuracy function, score function and certainty

function.
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Definition 3.2. The accuracy function a, defined over the Neutrosophic trait S of x as

a(S(x)) = TrS(x)−ATrS(x) (4)

Definition 3.3. The score function s, defined over the Neutrosophic trait S of x as

s(S(x)) = (TrS(x) + ITrS(x) + (1−NTrS(x)) + (1− IATrS(x)) + (1−ATrS(x)))/5 (5)

Definition 3.4. The certainty function c, defined over the Neutrosophic trait S of x as

c(S(x)) = TrS(x). (6)

Neutrosophic Impostor syndrome measure calculations

We propose the Neutrosophic Impostor Syndrome IS as Neutrosophic Trait measure IS in

X as given above in 3, it is characterized by the degree of Impostor syndrome using the trait

and anti-trait membership values. The Neutrosophic Impostor syndrome is given by

IS = 〈x, TrIS(x), IrTIS(x), NTrIS(x), IATrIS(x), ATrIS(x)〉 : x ∈ X (7)

It is important to note that the anti-trait of Imposter syndrome is Peter’s principle or the

Dunning-Kruger effect. Similarly, the neutrosophic perfectionist NP is given by

NP = 〈x, TrNP (x), IT rNP (x), INTrNP (x), IATrNP (x), ATrNP (x)〉 : x ∈ X (8)

4. System Architecture

Figure 1 provides the proposed framework’s architecture. We prepared a separate question-

naire, performed data collection, and pre-processed the data. Neutrosophic trait scores were

calculated for each data point, and the data was labelled. Data analysis using exploratory data

analysis was done, and then machine learning algorithms were implemented. Discussion and

conclusions inferred from EDA and machine learning models are presented in the last module.

4.1. Questionnaire Design

We wanted to cover a set of interconnections between impostor syndrome, perfectionism,

self-esteem and post-covid confidence levels in students after college reopened. Generally, im-

postor syndrome questionnaires , are based on the 5-point Likert scale, expect the summation

of answers to provide the results.

Our questionnaire was designed innovatively with 29 items to cover impostor characteristics,

perfectionism, self-esteem, emotional quotient and introversion-extroversion characteristics.

Certain questionnaire sections were framed intentionally, so the respondents had to answer

similar concept-based questions at least twice. Some questions were asked in the reversed

[1],https://paulineroseclance.com/pdf/IPTestandscoring.pdf
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Figure 1. The overall system architecture

direction so that a respondent might capture a more genuine picture of themselves in one way

or the other.

The survey conducted was anonymous. Questions were on a 5-point Likert scale, from

“Strongly Agree” to “Strongly Disagree”. The subjects were asked about their age and gen-

der. All the questions were masked and worded positively to hide the direct intentions of the

purpose of the questions. The complete questionnaire is provided in Appendix A. Certain

salient features are discussed here to highlight its uniqueness.

Impostor Syndrome related : In the questionnaire, 13 items were focused on Impostor

Syndrome; they are items 3-5, 8-14, 19-20 and 23 in Appendix 7.

Consider items Q4 and Q8

Q4: Many times, you feel crushed by constructive criticism,

seeing it as evidence of your “ineptness”?

Q8: In rare cases, you feel crushed by constructive criticism,

seeing it as evidence of your “ineptness”?

Item 8 is a reversed question of item 4. If a person has already made up his/her mind that

the SA option is the default, or if they are trying to hide things, there are chances that they

might exhibit impostor syndrome in the case of reversed questions.

Similarly, consider Q3, Q11 and Q20.

Q3. Do you chalk your success up to fates, luck or error?

Q11. You blame your luck for success rather than hard work.

Q20. Most of your success has been a stroke of luck.
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All these questions deal with the luck factor.

Perfectionism related : Generally, impostor syndrome is related to perfection and self-

esteem issues. To capture the same, questions related to perfection were asked. Items 6, 7,

15, 17 and 18 are related to perfectionism.

Self-esteem related : Two Likert scale questions were asked regarding their self-image in the

house. The second part of the questionnaire consists of descriptive questions on whether the

subjects’ self-esteem (the question says confidence, though) in their college life had changed

after the pandemic and their response to a generalized gender-based self-esteem statement.

IQ-EQ and introversion-extroversion related : Items 21 and 22 are related to IQ and

EQ in self-judgment. The introversion-extroversion aspect is dealt with in items 25-27. It also

consisted of a quantitative question about how comfortable they can be without being judged

in different social settings like home, college, on social media, an online alter-ego and with

friends.

4.2. Methodology

Data Collection: The dataset has been obtained by conducting a survey consisting of a

detailed pen-and-paper questionnaire of 29 items, of which 22 were 5-point Likert scale-based

questions and two written questions, covering aspects to measure the participants’ levels of ex-

periencing Impostor syndrome, perfectionism and gender. The respondents were 200 university

students from Vellore, India.

The survey was conducted in the post-pandemic environment, with in-person classroom

attendance. The students who were wiling voluteeraily participated in the study. Their ages

ranged from 19 to 22. There was no monetary reward or added incentive for partaking. The

study complied with the ethical research regulation of the college from which the respondents

were recruited. The collected data was then manually entered into a CSV file by us.

Data pre-processing : Cleaning the manually entered data is an important data pre-

processing step:

(1) Many issues were there in data entry; this was cleaned by hardcoding and replacing

the anomalies found.

(2) Dropped serial number column for smoother working of machine learning models.

(3) As mentioned earlier, the questionnaire has inverted specific questions. To ensure that

each answer’s extremes indicated the same phenomenon, the answers (SD→ SA) have

been inverted for some questions (8, 12, 18) to facilitate this.

(4) Filled ’NA’ values with ’N’ (Neutral) to preserve the item’s weight.
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Weightage to questions: Of the thirteen items under consideration for Impostor syndrome,

items 4, 8, 11-13, 19 & 20 were given a weightage of 2, and others were given a weightage of 1.

4.3. Labelling of Data

Neutrosophic Impostor Syndrome measures

The impostor syndrome is calculated from all three functions (accuracy, score and certainty),

and a counter variable called result is used. It is initialized to 0.

� Neutrosophic impostor syndrome accuracy cutoff: If a(IS) ≥ 0, result = result + 1 else

result = result.

� Neutrosophic impostor syndrome score cutoff: If s(IS) ≥ 0.53 , result = result + 1 else

result = result.

� Neutrosophic impostor syndrome certainty cutoff: If c(IS) ≥ 0.1 , result = result + 1 else

result = result.

If the result ≥ 2, the data point is labelled Yes for impostor syndrome.

Similarly, the neutrosophic perfectionist accuracy, score and certainty are calculated, but

the labelling is done directly only from item 15. The calculated neutrosophic measures are

used for machine learning modelling.

Introversion score calculation: These questions (items 25, 26 and 27) were asked to see how

introverted or extroverted the students were. Based on their responses to the questions, an

extrovert-introvert score was calculated, which ranged from 0 to 10. If the score was less than

or equal to five, the person was labelled an extrovert, while if the score was greater than five,

they were labelled introverted.

The first item (25) was asked to show where the students could be themselves without being

judged by their surroundings or peers. The next question was used to observe how comfortable

the subjects felt at certain places in their daily life, like home, college, friends, workplace, on-

line, and their alter-ego. Students were expected to answer this question in percentages. The

following question was targeted to find where they had to pretend to be somebody else they

were not. Depending on their responses to all three questions, the score calculation has been

divided into six categories: nowhere, home, online and alter-ego, friends, college and work-

place. The score variable is altered according to their choice for each question. A detailed score

updation is given below: In the first question, if the student chose nowhere, it indicates that

they cannot truly be themselves anywhere and are heavily inclined towards being an introvert.

The score is then increased by ten. Suppose the student responded that they are comfortable

at home. They pretend to be someone they are not at home while being comfortable (home

>=50); 1 point is added to the score. If they chose that they felt judged at home but also gave

a percentage of being comfortable at home >=70, it could be drawn that they assume they
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Table 1. Summary of Dataset after labelling

Title Overall Value Female Male Undisclosed

Total people 200 41 131 28

number with IS 114 26 68 20

% of people with IS 57% 63.41% 51.91% 71.42%

number of people with perfectionism 57 18 33 6

% of people with perfectionism 28.50% 43.90% 25.19% 21.42%

number of people with IS having perfectionism 36 10 33 3

% of people with IS having perfectionism 31.50% 27.77% 91.66% 8.33%

feel comfortable at a place despite knowing they are judged there. 2 points are then added to

the score. If this is not the case, two is removed from the score.

If the student chose online or alter-ego, they pretended to be someone they are not online

and answered that they were comfortable(>=60), then; if they were comfortable having an

alter-ego (%>=50), then three points are added to the score since it indicates that he/she

might have that personality that they think is pretension. However, they cannot express it

because they are introverted, and the online community gives a sense of safety to express

themselves, else Three is subtracted from the score since they are not comfortable having an

online alter-ego, indicating extroverts. Else, if they feel they can be themselves online without

being judged and are comfortable in alter-ego(>60%), then the score is increased by 4, else if

they were not that comfortable(≤ 60%), the score is increased by 1.

If the student chose with friends, they pretended to be someone else in front of their friends

and be comfortable around them >60%, and if they feel they could be themselves, the score

is increased by two else if they are comfortable being themselves at college >50.

5. Data analysis and Machine learning module

After the labelling of the data, exploratory data analysis was performed on the data; the

results are tabulated in Table 1, which is discussed in detail in the next section. Out of the

200 participants, there were 41 females, 131 males and 28 people who chose not to disclose

their gender. In total, 114 people had impostor syndrome, which is close to 57%.

Random forest: Random forest is an ML algorithm that uses multiple decision trees to

make predictions. It is an extension of the bagging method that uses both bagging and feature

randomness to create an uncorrelated forest of decision trees. Random Forest is commonly

used for both classification and regression problems. It is a flexible and easy-to-use algorithm
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that usually produces excellent results, even without hyper-parameter tuning. The dataset

was split into two parts: 75% for training and 25% for testing.

Support Vector Machine Support Vector Machine (SVM) is a supervised ML algorithm

for classification and regression analysis. It is used to find the best boundary between two data

classes by maximizing the margin between them. SVMs are often used in image classification,

text classification, and bioinformatics. SVM was implemented for the dataset. The dataset

split was a 70:30 ratio. We used a linear kernel to implement the model to avoid overfitting

data.

K-Nearest Neighbours (K-NN) It is a simple ML algorithm founded on a supervised

learning technique. It uses the likeness between the new case/data and available cases. It

classifies a new data point based on the similarity of the dimensional features for each data

point. For this model, the dataset was split into an 80:20 ratio.

Sentiment Analysis of descriptive questions

Calculating SVNS values: Expression of sentiment is very complex, but the VADER package

is defined to understand online language closely. It has use cases to encompass utf-8 encoded

emojis, emoticons ( :D, :P, XD), slang words(sux), slang words modified (kinda, friggin), use

of all caps(GOOD), use of exclamation points (good!!), and usage of typical negations (not

good).

VADER contains inbuilt pre-defined objects like SentimentIntensityAnalyzer() and polar-

ity scores(). SentimentIntensityAnalyzer() takes input in string format and returns four values:

positive (pos), negative(neg), neutral(neu) and compound(comp); where 0 ≥ pos, neg, neu,

comp ≤ 1. The scores denote how much positivity, negativity and neutrality lie in the sentence

and the variable “compound” is calculated by normalizing the three scores. The closer the

value of the compound is to “1”, the higher the positivity of the sentence. If the compound

value is ≥ 0.05, it is considered positive; if compound ≤ −0.05, it is negative, or else it is neu-

tral. Since we are focusing on a gender-based study, we asked two questions to the subjects;

one based on their views about self-image issues in men and fear of failure in women and the

next question describes self-confidence pre and post covid.

6. Results and Discussions

6.1. Results from EDA

Of the 200 participants involved in the study, 114 had imposter syndrome. Of the 41

females, 26 had imposter syndrome; out of 131 males, 68 had imposter syndrome. There was

a significant difference in the occurrence of Imposter syndrome between females and males,

with 63.41% and 51.91%, respectively. It is visible and validated that women are likelier to
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Table 2. Results from Machine Learning models

Models Random forest SVM KNN

Train: Test Ratio 75:25 70:30 80:20

Accuracy (%) 83.7 92.15 82.35

Precision(weighted avg) 95.2 90.9 85.7

Recall(weighted avg) 76.9 90.9 85.7

have imposter syndrome. While 28.5% of the total respondents were perfectionists, 43.90%

were perfectionists among the females. And only 25.19% of males were perfectionists.

It is interesting to note that 31.5% of people with Imposter syndrome are also perfection-

ists. However, there is a vast difference between females and males. Only 27.7% of women

with imposter syndrome are perfectionists. In contrast, almost 91.66% of men with imposter

syndrome are perfectionists. The correlation between perfectionism and imposter syndrome is

observed here.

6.2. Results from Machine Learning Models

Three machine learning models, namely Random forest, SVM and KNN, were implemented

using Python. The results are tabulated in Table 2.

Random forest: The features used in the model include the student’s age, their responses

to questions, sentiment scores for two descriptive questions, and labels for perfectionist and

impostor syndrome. The random forest model had a high accuracy of 83.7%, which means it

is suitable for solving problems with many features. Figure 2a gives the confusion matrix for

the random forest model.

SVM: SVM was implemented for the dataset. The dataset was split into a 70:30 ratio. We

used a linear kernel to implement the model to avoid overfitting data. The best accuracy

was obtained with the SVM model; we attained an accuracy of 92.15%. Figure 2b gives the

confusion matrix for the SVM model.

KNN: KNN is a supervising machine learning model that stores all the data and classifies

a new data point based on the similarity of the dimensional features for each data point. For

this model, the dataset was split into an 80:20 ratio. We achieved an accuracy of 80.20%. The

confusion matrix for KNN model is given in Figure 2c.

6.3. Results from sentiment Analysis

The data set was split based on gender and sentiment analysis was conducted for each long

answer question. For the first question, men had a compound score of 0.1491 (positive) and

women had 0.2689(positive); meaning women agreed that they face self-image issues more than
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(a) (b)

(c)

Figure 2. Confusion Matrix: (a) Support Vector Model; (b) K-NN ; (c) Ran-

dom Forest

men. While analysing the second question, men had a compound score of 0.2545 (positive) and

women had 0.2580(positive); meaning men and women equally believe that covid has affected

their self-confidence.

7. Conclusions

Neutrosophic trait measures were introduced in this paper based on refined neutrosophic

sets. A group of 200 students participated in the study; it was conducted and labelled using

Neutrosophic trait measures. Impostor syndrome was analysed along with perfectionism, self-

esteem issues and introversion. The ratio of students with Impostor syndrome was the same
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across the genders; no gender-based difference was found. After labelling the data, machine

learning models like SVM, KNN and Random forest were implemented. SVM performed the

best of the three models.

Limitation and Future Study: The study’s primary limitation is based on the fact that

the number of female participants is less here since the number of female students in STEM

fields is lesser than that of boys in STEM. For future research, gender-oriented studies can be

taken up with more participants. With more detailed data collection based on (Q16 and Q25),

gender-related studies can be conducted to predict how Impostor syndrome affects the genders

in STEM fields. The socio-economic background of the student should have been considered.

Similarly, the educational background, like first-generation learners, can be considered in future

studies.
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Appendix A

Sample Questionnaire

(1) Gender:

(2) Age:

(3) Do you chalk your success up to fates, luck or error?

(4) Many times, you feel crushed by constructive criticism, seeing it as evidence of your

”ineptness”?

(5) Do you believe ”If I can do it, anybody can”?

(6) Do you agonize over the smallest flaws in your work?

(7) Do you believe that everything you do must be completely perfect?

(8) In rare cases you feel crushed by constructive criticism, seeing it evidence of your

”ineptness”?

(9) Do you feel incompetent despite attaining success?

(10) You compare your abilities to people around you and think that others may be more

intelligent than you.

(11) You blame your luck for success rather than hard work.

(12) Do you think shortcut to success makes you smarter

(13) You have doubts about your abilities despite people around you trusting you.

(14) Do you often fear not meeting other people’s expectations?

(15) I am a perfectionist

(16) Do you feel like a non-valuable member of the family if you don’t participate in domestic

work?
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(17) ’I have to be good at a particular activity to enjoy it’ (As in, if you picked up a new

hobby like painting, the only way you feel good about doing it is if you are using perfect

techniques and doing it the ”right” way)

(18) I believe that means is more important than the ends

(19) When people compliment you, you think you are not as accomplished as they think

(20) Most of your success has been a stroke of luck

(21) You have an above-average IQ score

(22) Your emotional quotient is better than your general IQ score

(23) You downplay compliments from others.

(24) Do you feel like an unimportant family member if you don’t involve in decision-making

process?

(25) Which places do you think you can be yourself without being judged?

Home College With friends Work Online Nowhere

(26) How comfortable are you with being yourself at (please give a percentage)

Home College With friends Work Online Alter Online Egos

(27) What places do you think you pretend to be someone you are not?

Home College With friends Work Online Nowhere

(28) At least 70% of individuals have dissatisfaction in their lives. Women mostly face

self-image issues and in men, it is driven by the fear of not being successful or letting

people down. Do you agree with this? And in your experience, how have you seen

variances to the mentioned scenarios?

(29) As the campus has reopened after conducting classes, examinations, and project re-

views online over the past 2 years, do you feel that this might bring up changes in

confidence levels, due to the adjustments which may have arisen doubts in self-esteem

from the initial change of method?
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—————————————————————————————————————————-

1. Introduction

Neutrosophic topological spaces have applications in various fields such as decision-making,

computer science, and engineering, where the presence of indeterminate, vague, or uncertain

information is prevalent. They provide a powerful tool for modeling and analyzing complex sys-

tems where classical topological spaces may not be sufficient. Subsequently after Zadeh’s [22]

introduction of the fuzzy set in the year 1965 with the membership function, the aforesaid

fields are developed in various phases with many real life situations. The investigator focused

their research in the above fields towards applications in practical problems with the help of in-

tuitionistic fuzzy numbers with membership and non-membership values which was developed

by Atanassov.K.T [8] in 1986.

There was a new finding between membership and non-membership values called indeter-

minacy and combined three values named as neutrosophic numbers which was introduced by

Smarandache in 2005 [20]. After the introduction of neutrosophic numbers, investigators em-

ploy the concept of neutrosophic numbers and applied in various real life situations exclusively
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in topological spaces. Consequently, the neutrosophic topological spaces has been introduced

by Salama.A.A and Alblowi.S.A in 2012 [4]. Lupia’nez [11–13] applied the neutrosophic con-

cepts in topological spaces and developed a new research dimension in neutrosophic topological

spaces.

The neutrosophic numbers from triangular to hexagonal have been published and have

been documented their usage in actual life [17, 18]. In recent times (2021) Ali Hamza, Sara

Farooq and Muhammad Rafaqat [7] presented Triangular neutrosophic topology. The topo-

logies generated by triangular neutrosophic numbers were introduced by Kungumaraj.E and

Narmatha.S [10] in 2022. In this article the extension work of [7] has been done and some of

their properties have been investigated. This topological approach will be applied in network

analysis, MCDM, image processing and topology optimization process.

This article incorporates five sections. The first section embraces the brief introduction, the

second part encircles the preliminary definition and the results which are used in this article, the

third section engrosses the main findings of Heptagonal Topological spaces and their properties,

the fourth division comprehends the applications of third section which implies the continuous

function and their properties of Heptagonal topological spaces. Finally the conclusion part

contributes to expound the follow up work of this heptagonal topological space and applications

of the same.

2. Preliminaries

Definition 2.1. Let X be a universe of discourse, AN is a set disclosed in X. An element x

from X is noted with respect to neutrosophic set as

AN={< x; (ρ(x), σ(x), ω(x)) >: x ∈ X}

Where ρ(x) is degree of truth membership, σ(x) is degree of indeterminacy membership, ω(x)

is degree of falsity membership. And ρ(x), σ(x), ω(x) are real standard or non standard subsets

of ]0−, 1+[. That is, There is no restrictions on the sum of ρ(x), σ(x), ω(x).

Definition 2.2. Let S be a space of points (objects), with a generic element in x denoted

by S. A single valued neutrosophic set (SVNS) A in S is characterized by truth-membership

function TA, indeterminacy-membership function IA and falsity-membership function FA. For

each point S in S, TA(x), IA(x), FA(x) ∈ [0, 1].

When S is continuous, a SVNS A can be written as A =
∫
< T (x), I(x), F (x) > /x ∈ S.

When S is discrete, a SVNS A can be written as A =< T (xi), I(xi), F (xi) > /xi ∈ S.

Definition 2.3. A Neutrosophic subset ÃN = (x, µÃN (x), νÃN (x), ϑÃN (x));x ∈ X of the real

line R is called Neutrosophic number if the following conditions holds:

(i) There exist x ∈ R such that µÃN (x) = 1 and ϑÃN (x) = 0
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(ii) µÃN (x) is continuous function from R → [0, 1] such that 0 ≤ µÃN (x)+νÃN (x)+ϑÃI (x) ≤ 3

for all x ∈ X

Definition 2.4. A Triangular Neutrosophic number ÃN is an Neutrosophic set in R with the

following membership function µÃN (x) , indetermiancy functionνÃN (x) and non-membership

function ϑÃN (x)

µÃ(x) =
x−a1
a2−a1

, if a1 ≤ x ≤ a2

a3−x
a3−a2

, if a2 ≤ x ≤ a3

0, otherwise

νÃ(x) =
a2−x
a2−a”1

, if a
′
1 ≤ x ≤ a2

x−a2
a”3−a2

, if a2 ≤ x ≤ a
′
3

1, otherwise

ϑÃ(x) =
a2−x

a2−a
′
1

, if a
′
1 ≤ x ≤ a2

x−a2
a
′
3−a2

, if a2 ≤ x ≤ a
′
3

1, otherwise

where a”1 ≤ a1
′ ≤ a1 ≤ a2 ≤ a3 ≤ a

′
3 ≤3 ” and µÃI (x) + ϑÃI (x) ≤ 1, or µÃI (x) = ϑÃI (x) ,

for all x ∈ R. This TIFN is denoted by ÃI = (a1, a2, a3; a1
′, a2, a3

′).

Definition 2.5. Let (X,Y,<,>) be a dual pair, a dual topology on X is a locally convex

topology τ so that

(X,Y)’ ≃ Y

Here (X,Y)’ denotes the continuous dual of (X,τ) and (X,Y)’ ≃ Y means that there is a linear

isomorphism.

Ψ:Y−→ (X,Y)’.

Definition 2.6. Let τ ⊆ N(X) then τ is a neutrosophic topology on X if it satisfies the

following conditions:

X,ϕ ∈ τ

The union and intersection of any number of neutrosophic sets in τ belongs to τ

The pair (X, τ) mentioned as neutrosophic topological space over X.

Definition 2.7. Let τ ⊆ N(X) be neutrosophic topological space over X then,

ϕ and X as neutrosophic closed sets over X.

The union and intersection of any two neutrosophic closed sets is a neutrosophic closed

sets over X.

Definition 2.8. A heptagonal neutrosophic number S is defined and described as

S =< [(p, q, r, s, t, u, v);µ] , [(p′, q′, r′, s′, t′, u′, v′); γ] , [(p′′, q′′, r′′, s′′, t′′, u′′, v′′); η] >

where µ, γ, η ∈ [0, 1].The truth membership function ρ : R ⇒ [0, µ], the indeterminacy mem-

bership function σ : R⇒ [γ, 1], the falsity membership function ω : R ⇒ [η, 1]. Using ranking
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technique of heptagonal neutrosophic number is changed as,

ρ(x) =
(p+ q + r + s+ t+ u+ v)

7

σ(x) =
(p′ + q′ + r′ + s′ + t′ + u′ + v′)

7

ω(x) =
(p′′ + q′′ + r′′ + s′′ + t′′ + u′′ + v′′)

7

Heptagonal Neutrosophic Number Operations

(i) Inclusive: Let X be a non-empty set and AHN and BHNare NS of the form AHN=<

x; ρAHN
(x), σAHN

(x), ωAHN
(x) >, BHN=< x; ρBHN

(x), σBHN
(x), ωHN (x) >. Then their sub-

sets may be defines as follows,

AHN ⊆ BHN ⇒ ρAHN
(x) ≤ ρBHN

(x);σAHN
(x) ≥ σBHN

(x);ωAHN
(x) ≥ ωBHN

(x)∀x ∈X.
BHN ⊆ AHN ⇒ ρBHN

(x) ≤ ρAHN
(x);σBHN

(x) ≥ σAHN
(x);ωBHN

(x) ≥ ωAHN
(x)∀x ∈X.

(ii)Equality: If AHN ⊆ BHN and BHN ⊆ AHN then AHN=BHN is called Equality of a

neutrosophic sets.

(iii)Union and Intersection: Let X be a non empty set and AHN and BHN are in NS of

the form AHN=< x; ρAHN
(x), σAHN

(x), ωAHN
(x) >, BHN=< x; ρBHN

(x), σBHN
(x), ωHN (x) >,

then AHN ∪BHN and AHN ∩BHN is defined as follows,

AHN ∪ BHN={< x; (ρAHN
(x) ∨ ρBHN

(x);σAHN
(x) ∧ σBHN

(x);ωAHN
(x) ∧ ωBHN

(x)) >:

x ∈ X}
AHN ∩ BHN={< x; (ρAHN

(x) ∧ ρBHN
(x);σAHN

(x) ∨ σBHN
(x);ωAHN

(x) ∨ ωBHN
(x)) >:

x ∈ X}

(iv)Complement: Let AHN=< x; ρAHN
(x), σAHN

(x), ωAHN
(x) > in NS and complement of

AC
HN is defined as:

AC
HN={< x; (ρ(x), σ(x), ω(x)) >: x ∈ X}

(v)Universal and Empty set: Let AHN=< x; ρAHN
(x), σAHN

(x), ωAHN
(x) > in NS and

universal setIA and empty set OA of AHN is defined as:

IA={< x; 1, 0, 0 >: x ∈ X}
OA={< x; 0, 1, 1 >: x ∈ X}
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Example 2.9. Let AHN , BHN and CHN are HNN and defined as follows,

AHN ={< x; (0,72, 0,41, 0,35, 0,81, 0,77, 0,73, 0,77), (0,83, 0,88, 0,93, 0,99, 0,96, 0,90,

0,94), (0,86, 0,99, 0,97, 0,93, 0,94, 0,91, 0,86) >,< y; (0,91, 0,32, 0,56, 0,48, 0,81,

0,72, 0,67), (0,78, 0,83, 0,21, 0,38, 0,56, 0,33, 0,98), (0,36, 0,86, 0,96, 0,32, 0,44,

0,56, 0,72) >}

BHN ={< x; (0,96, 0,65, 0,73, 0,75, 0,83, 0,56, 0,54), (0,75, 0,95, 0,45, 0,38, 0,79, 0,57,

0,13), (0,59, 0,36, 0,68, 0,47, 0,36, 0,95, 0,44) >,< y; (0,38, 0,69, 0,88, 0,98, 0,77,

0,36, 0,98), (0,32, 0,72, 0,42, 0,62, 0,90, 0,22, 0,62), (0,42, 0,52, 0,62, 0 = 72, 0,36,

0,72, 0,61) >}

CHN ={< x; (0,73, 0,74, 0,96, 0,34, 0,85, 0,89, 0,64), (0,46, 0,35, 0,25, 0,96, 0,36, 0,56,

0,16), (0,84, 0,85, 0,37, 0,57, 0,67, 0,22, 0,10) >,< y; (0,76, 0,72, 0,78, 0,62, 0,92,

0,56, 0,88), (0,38, 0,98, 0,22, 0,32, 0,54, 0,64, 0,31), (0,86, 0,96, 0,52, 0,22, 0,41,

0,51, 0,32) >}

Using ranking technique by definition 2.4, We get

AHN ={< x; (0,65, 0,92, 0,92) >,< y; (0,64, 0,58, 0,60) >}

BHN ={< x; (0,72, 0,57, 0,55) >,< y; (0,72, 0,54, 0,57) >}

CHN ={< x; (0,74, 0,44, 0,52) >,< y; (0,75, 0,48, 0,53) >}

From definition 2.4 we have,

(i)AHN ⊆ BHN ; BHN ⊆ CHN ⇒ AHN ⊆ CHN

AHN ∪BHN ={< x; (0,65 ∨ 0,72, 0,92 ∧ 0,57, 0,92 ∧ 0,55) >,< y; (0,64 ∨ 0,72, 0,58∧

0,54, 0,60 ∧ 0,57) >}

AHN ∪BHN ={< x; (0,72, 0,57, 0,55) >,< y; (0,72, 0,54, 0,57) >}

Similarly,

BHN ∪ CHN ={< x; (0,74, 0,44, 0,52) >,< y; (0,75, 0,48, 0,53) >}

AHN ∪ CHN ={< x; (0,74, 0,44, 0,52) >,< y; (0,75, 0,48, 0,53) >}

(ii)AHN ∩BHN ={< x; (0,65 ∧ 0,72, 0,92 ∨ 0,57, 0,92 ∨ 0,55) >,< y; (0,64 ∧ 0,72, 0,58∨

0,54, 0,60 ∨ 0,57) >}

AHN ∩BHN ={< x; (0,65, 0,92, 0,92) >,< y; (0,64, 0,58, 0,60) >}
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Similarly,

BHN ∩ CHN ={< x; (0,72, 0,57, 0,55) >,< y; (0,72, 0,54, 0,57) >}

AHN ∩ CHN ={< x; (0,65, 0,92, 0,92) >,< y; (0,64, 0,58, 0,60) >}

(iii)AC
HN ={< x; (0,65, 1− 0,92, 0,92) >,< y; (0,64, 1− 0,58, 0,60) >}

AC
HN ={< x; (0,92, 0,08, 0,65) >,< y; (0,60, 0,42, 0,64) >}

Similarly

BC
HN ={< x; (0,55, 0,43, 0,72) >,< y; (0,57, 0,46, 0,72) >}

CC
HN ={< x; (0,52, 0,56, 0,74) >,< y; (0,53, 0,52, 0,75) >}

Theorem 2.10. Let AHN ,BHN ∈ N(X), then the following results are true

1. AHN ∩AHN=AHN and AHN ∪AHN=AHN

2. AHN ∩BHN=BHN ∩AHN and BHN ∪AHN=AHN ∪BHN

3. AHN ∩ ϕ =ϕ and AHN∩X=AHN

4. AHN ∪ ϕ =AHN and AHN∪X = X

5. AHN ∩ (BHN ∩ CHN )=(AHN ∩BHN ) ∩ CHN

6. AHN ∪ (BHN ∪ CHN )=(AHN ∪BHN ) ∪ CHN

7. AHN ∩ (BHN ∪ CHN )=(AHN ∩BHN ) ∪ (AHN ∩ CHN )

8. AHN ∪ (BHN ∩ CHN )=(AHN ∪BHN ) ∩ (AHN ∪ CHN )

9. (AC
HN )C=AHN

10. AHN∪AC
HN=X and AHN∩AC

HN=ϕ.

Proof: The results are obvious by the properties of HNN sets.

Theorem 2.11. Let AHN ,BHN ∈ N(X). Then

1. (∪i∈IAHNi)
C=∩i∈IA

C
HNi

2. (∩i∈IAHNi)
C=∪i∈IA

C
HNi

Proof: (i)First verify (∪i∈IAHNi)
C ⊆ ∩i∈IA

C
HNi

. Let a ∈ (∪i∈IAHNi)
C . Thus a /∈ ∪i∈IAHNi ,

so a cannot be in any of the sets AHNi i.e., for all i ∈ I, we have a /∈ AHNi , hence a ∈ AC
HNi

for all i ∈ I. Thus a ∈ ∩i∈IA
C
HNi

.Therefore, (∪i∈IAHNi)
C ⊆ ∩i∈IA

C
HNi

.

(ii)Now verify ∩i∈IA
C
HNi

⊆ (∪i∈IAHNi)
C . Let a ∈ ∩i∈IA

C
HNi

. Thus a ∈ AC
HNi

for all i∈I,
hence a /∈ AHNi for all i∈I, so a /∈ ∪i∈IAHNi , hence a ∈ (∪i∈IAHNi)

C .Therefore, ∩i∈IA
C
HNi

⊆
(∪i∈IAHNi)

C .

Therefore, (∪i∈IAHNi)
C=(∩i∈IAHNi)

C .

Theorem 2.12. Let AHN ,BHN ∈ N(X). Then
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1. BHN ∩ (∪i∈IAHNi)=∪i∈I(BHN ∩AHNi)

2. BHN ∪ (∩i∈IAHNi)=∩i∈I(BHN ∪AHNi)

Proof: (i)Firstly we verify BHN ∩(∪i∈IAHNi) ⊆ ∪i∈I(BHN ∩AHNi). If x ∈ BHN ∩(∪i∈IAHNi),

then x ∈ BHN and x ∈ ∪i∈IAHNi . Then x ∈ AHNi for some i∈I. Thus, x ∈ BHN ∩ AHNi .

Hence, x ∈ ∪i∈I(BHN ∩AHNi). Therefore, BHN ∩ (∪i∈IAHNi) ⊆ ∪i∈I(BHN ∩AHNi).

(ii)Now verifying, ∪i∈I(BHN ∩ AHNi) ⊆ BHN ∩ (∪i∈IAHNi). If x ∈ ∪i∈I(BHN ∩ AHNi), then

x ∈ BHN ∩ AHNi for some i∈I. It follows that x ∈ BHN and x ∈ ∪i∈IAHNi . Consequently,

x ∈ BHN ∩ (∪i∈IAHNi). Therefore, ∪i∈I(BHN ∩ AHNi) ⊆ BHN ∩ (∪i∈IAHNi). Therefore,

BHN ∩ (∪i∈IAHNi)=∪i∈I(BHN ∩AHNi).

3. Heptagonal Neutrosophic topology and its Properties

Definition 3.1. Let X be a set. Let N(x) be a neutrosophic topology, τ be the collection

of subsets of N(X) of X, then τ is a heptagonal neutrosophic topology on X, if it satisfy the

following conditions;

N(X) and ϕ ∈ τ

Union of arbitrarily many elements of τ is an element of τ .

Intersection of finite elements of τ is an element of τ .

Therefore the pair (X, τ) is a heptagonal neutrosophic topological space over X.

The set in τ are called HN - open set of X. The complement of HN - open set is called HN -

closed set.

Example 3.2. Let X={x, y} and AHN ∈ N(X) then,

AHN ={< x; (0,72, 0,41, 0,35, 0,81, 0,77, 0,73, 0,77), (0,83, 0,88, 0,93, 0,99, 0,96, 0,90,

0,94), (0,86, 0,99, 0,97, 0,93, 0,94, 0,91, 0,86) >,< y; (0,91, 0,32, 0,56, 0,48, 0,81,

0,72, 0,67), (0,78, 0,83, 0,21, 0,38, 0,56, 0,33, 0,98), (0,36, 0,86, 0,96, 0,32, 0,44,

0,56, 0,72) >}

By definition 2.4: We get

AHN={< x; (0,65, 0,92, 0,92) >,< y; (0,64, 0,58, 0,60) >}
Hence, τ={ϕ,X,AHN} is a heptagonal neutrosophic topology on X.
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Example 3.3. Let X={x, y} and BHN , CHN ∈N(X) then,

BHN ={< x; (0,96, 0,65, 0,73, 0,75, 0,83, 0,56, 0,54), (0,75, 0,95, 0,45, 0,38, 0,79, 0,57,

0,13), (0,59, 0,36, 0,68, 0,47, 0,36, 0,95, 0,44) >,< y; (0,38, 0,69, 0,88, 0,98, 0,77,

0,36, 0,98), (0,32, 0,72, 0,42, 0,62, 0,90, 0,22, 0,62), (0,42, 0,52, 0,62, 0 = 72, 0,36,

0,72, 0,61) >}

CHN ={< x; (0,73, 0,74, 0,96, 0,34, 0,85, 0,89, 0,64), (0,46, 0,35, 0,25, 0,96, 0,36, 0,56,

0,16), (0,84, 0,85, 0,37, 0,57, 0,67, 0,22, 0,10) >,< y; (0,76, 0,72, 0,78, 0,62, 0,92,

0,56, 0,88), (0,38, 0,98, 0,22, 0,32, 0,54, 0,64, 0,31), (0,86, 0,96, 0,52, 0,22, 0,41,

0,51, 0,32) >}

By definition 2.4:, We get

BHN ={< x; (0,72, 0,57, 0,55) >,< y; (0,72, 0,54, 0,57) >}

CHN ={< x; (0,74, 0,44, 0,52) >,< y; (0,75, 0,48, 0,53) >}

Let (N(X),τ1) and (N(X),τ2) are heptagonal neutrosophic topological space. τ1={ϕ,BHN , X}
and τ2={ϕ,CHN , X} is a heptagonal neutrosophic topology on X.

τ1
⋂
τ2={ϕ,X,BHN , CHN} is not a heptagonal neutrosophic topology on X because

BHN
⋃

CHN /∈ τ1
⋂
τ2.Whereas,τ={ϕ,X,BHN , CHN , BHN

⋃
CHN , BHN

⋂
CHN} is a hepta-

gonal neutrosophic topology on X.

Remark: Let (X,τ) be a heptagonal neutrosophic topological space(HNTS). Then (X,τ)C is

the dual topology, whose elements are AC
HN for AHN ∈ (X,τ). Any open set in τ is known

as heptagonal neutrosophic open set(HNOs). Any closed set in τ is known as heptagonal

neutrosophic closed set(HNCs) iff it’s complement is heptagonal neutrosophic open set.

Definition 3.4. The heptagonal neutrosophic interior and Heptagonal neutrosophic closure

are given by,

HNint(AHN )=
⋃
{OHN/OHN is a HNOs ∈ X where OHN ⊆ AHN} and it is the largest

HN-open subset of AHN .

HNcl(BHN )=
⋂
{JHN/JHN is a HNCs ∈ X where JHN ⊆ BHN} and it is the smallest

HN-closed set containing BHN .

Theorem 3.5. If X be a set. Let (N(X),τ) is a HN topological space over X and

AHN , BHN ∈N(X) then,

1. HNint(ϕ)=ϕ and HNint(X)=N(X)

2. HNint(AHN ) ⊆ AHN

3. AHN is HN open if and only if AHN=HNint(AHN )

Kungumaraj.E, Durgadevi.S, Tharani N P, Heptagonal Neutrosophic Topology

Neutrosophic Sets and Systems, Vol. 60, 2023                                                                               342



4. HNint(HNint(AHN ))=HNint(AHN )

5. AHN ⊆ BHN ⇒ HNint(AHN )⊆HNint(BHN )

6. HNint(AHN )∪HNint(BHN )⊆HNint(AHN ∪BHN )

7. HNint(AHN )∩HNint(BHN )=HNint(AHN ∩BHN )

Proof: i) Since ϕ and N(X) are HN-open, then HNint(ϕ)=ϕ and HNint(X)=N(X).

ii) From the definition of heptagonal neutrosophic interior, HNint(AHN )⊆ AHN

iii) If AHN is HN-open set over X, then AHN is the largest HN-open set containing A. So,

AHN=HNint(AHN ).

Conversely, If AHN=HNint(AHN ), then AHN is the largest HN-open set containing AHN and

hence AHN is HN-open.

iv) As HNint(AHN ) is open set, then HNint(HNint(AHN ))=HNint(AHN ).

v) When AHN ⊆ BHN , Also we know that, HNint(AHN )⊆ AHN ⊆ BHN . As HNint(AHN ) is

a HN-subset of BHN . So, HNint(AHN )⊆HNint(BHN ).

vi) It is obvious that, AHN ⊆ AHN ∪BHN and BHN ⊆ AHN ∪BHN . From v),

HNint(AHN )⊆HNint(AHN ∪BHN ) and HNint(BHN )⊆HNint(AHN ∪BHN )

⇒ HNint(AHN )∪HNint(BHN )⊆HNint(AHN ∪BHN ).

vii) It is obvious that AHN ∩ BHN ⊆ AHN and AHN ∩ BHN ⊆ AHN . From v) HNint(AHN ∩
BHN )⊆HNint(AHN ) and HNint(AHN ∩ BHN )⊆HNint(AHN ) Also HNint(AHN )=AHN and

HNint(BHN )=BHN . Therefore, HNint(AHN )∩HNint(BHN )⊆ AHN ∩BHN

⇒HNint(AHN )∩HNint(BHN )=HNint(AHN ∩BHN ).

Example 3.6. Let X={x,y} and AHN , BHN , CHN ∈ N(X) then,

AHN ={< x; (0,6, 0,6, 0,6, 0,6, 0,6, 0,6, 0,6), (0,6, 0,6, 0,6, 0,6, 0,6, 0,6, 0,6), (0,6, 0,6, 0,6,

0,6, 0,6, 0,6, 0,6) >,< y; (0,8, 0,8, 0,8, 0,8, 0,8, 0,8, 0,8), (0,8, 0,8, 0,8, 0,8, 0,8, 0,8,

0,8), (0,8, 0,8, 0,8, 0,8, 0,8, 0,8, 0,8) >}

BHN ={< x; (0,9, 0,9, 0,9, 0,9, 0,9, 0,9, 0,9), (0,9, 0,9, 0,9, 0,9, 0,9, 0,9, 0,9), (0,9, 0,9, 0,9,

0,9, 0,9, 0,9, 0,9) >,< y; (0,1, 0,1, 0,1, 0,1, 0,1, 0,1, 0,1), (0,1, 0,1, 0,1, 0,1, 0,1, 0,1,

0,1), (0,1, 0,1, 0,1, 0,1, 0,1, 0,1, 0,1) >}

CHN ={< x; (0,2, 0,2, 0,2, 0,2, 0,2, 0,2, 0,2), (0,2, 0,2, 0,2, 0,2, 0,2, 0,2, 0,2), (0,2, 0,2, 0,2,

0,2, 0,2, 0,2, 0,2) >,< y; (0,4, 0,4, 0,4, 0,4, 0,4, 0,4, 0,4), (0,4, 0,4, 0,4, 0,4, 0,4, 0,4,

0,4), (0,4, 0,4, 0,4, 0,4, 0,4, 0,4, 0,4) >}
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By definition 2.4: we get

AHN ={< x; (0,6, 0,6, 0,6) >,< y; (0,8, 0,8, 0,8) >}

BHN ={< x; (0,9, 0,9, 0,9) >,< y; (0,1, 0,1, 0,1) >}

CHN ={< x; (0,2, 0,2, 0,2) >,< y; (0,4, 0,4, 0,4) >}

HNint(BHN )=ϕ and HNint(CHN )=ϕ

Since HNint(BHN ∪ CHN )=ϕ therefore, HNint(BHN )∪CHN )=ϕ therefore

HNint(BHN )∪HNint(CHN )⊆HNint(BHN ∪ CHN ).

Theorem 3.7. If X be a set. Let (N(X),τ) is a HN topological space over X and

AHN , BHN ∈N(X) then,

1. HNcl(ϕ)=ϕ and HNcl(X)=N(X)

2. AHN ⊆HNcl(AHN )

3. AHN is HN closed if and only if AHN=HNcl(AHN )

4. HNcl(HNcl(AHN ))=HNcl(AHN )

5. AHN ⊆ BHN ⇒ HNcl(AHN )⊆HNcl(BHN )

6. HNcl(AHN ∪BHN )=HNcl(AHN )∪HNint(BHN )

7. HNcl(AHN ∩BHN )⊆HNcl(AHN )∪HNcl(BHN )

Proof: i) If AHN is HN-closed then AHN=HNcl(AHN ). Also is ϕ and X are HN-closed, then

HNcl(ϕ)=ϕ and HNcl(X)=X.

ii) From the definition of HN-closure. It is obvious from the definition that AHN ⊆HNcl(AHN ).

iii) If AHN is HN-closed set over X, then AHN contains AHN and that itself a HN-closed set

over X. Then AHN is the smallest HN-closed set containing AHN . So, AHN=HNcl(AHN ).

Conversely, If AHN=HNcl(AHN ), then AHN is the smallest HN-closed set containing AHN

and hence AHN is HN-closed.

iv) From above, As AHN is closed, then AHN=HNcl(AHN ). As HNcl(AHN ) is open set, then

HNcl(HNcl(AHN ))=HNcl(AHN )

v) When AHN ⊆ BHN , Since BHN ⊆HNcl(BHN ) ⇒ AHN ⊆HNcl(BHN ) That is HNcl(BHN )

is a HN-closed set contains AHN . But HNcl(AHN ) is the smallest HN-closed set contain AHN .

Thus, HNcl(AHN )⊆HNcl(BHN ).

vi),vii) is obvious
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Example 3.8. Let X={x,y} and AHN , BHN ∈N(X) then,

AHN ={< x; (0,4, 0,4, 0,4, 0,4, 0,4, 0,4, 0,4), (0,4, 0,4, 0,4, 0,4, 0,4, 0,4, 0,4), (0,4, 0,4, 0,4,

0,4, 0,4, 0,4, 0,4) >,< y; (0,7, 0,7, 0,7, 0,7, 0,7, 0,7, 0,7), (0,7, 0,7, 0,7, 0,7, 0,7, 0,7,

0,7), (0,7, 0,7, 0,7, 0,7, 0,7, 0,7, 0,7) >}

BHN ={< x; (0,5, 0,5, 0,5, 0,5, 0,5, 0,5, 0,5), (0,5, 0,5, 0,5, 0,5, 0,5, 0,5, 0,5), (0,5, 0,5, 0,5,

0,5, 0,5, 0,5, 0,5) >,< y; (0,9, 0,9, 0,9, 0,9, 0,9, 0,9, 0,9), (0,9, 0,9, 0,9, 0,9, 0,9, 0,9,

0,9), (0,9, 0,9, 0,9, 0,9, 0,9, 0,9, 0,9) >}

By definition 2.4: we have

AHN ={< x; (0,4, 0,4, 0,4) >,< y; (0,7, 0,7, 0,7) >}

BHN ={< x; (0,5, 0,5, 0,5) >,< y; (0,9, 0,9, 0,9) >}

Then we have,

AHN ∪BHN ={< x; (0,5, 0,4, 0,4) >,< y; (0,9, 0,7, 0,7) >}

AHN ∩BHN ={< x; (0,4, 0,5, 0,5) >,< y; (0,7, 0,9, 0,9) >}

Consider, τ={ϕ,X,AHN , BHN , AHN ∪BHN , AHN ∩BHN} is a HN topology. After taking com-

plements,

τ={X,ϕ,AC
HN ,BC

HN ,(AHN ∪BHN )C ,(AHN ∩BHN )C}.Where,

AC
HN ={< x; (0,4, 0,6, 0,4) >,< y; (0,7, 0,3, 0,7) >}

BC
HN ={< x; (0,5, 0,5, 0,5) >,< y; (0,9, 0,1, 0,9) >}

(AHN ∪BHN )C ={< x; (0,4, 0,6, 0,5) >,< y; (0,7, 0,3, 0,9) >}

(AHN ∩BHN )C ={< x; (0,5, 0,5, 0,4) >,< y; (0,9, 0,1, 0,7) >}

HNcl(AHN ) =X

HNcl(BHN ) =X

AC
HN ∩BC

HN ={< x; (0,4, 0,6, 0,5) >,< y; (0,7, 0,3, 0,9) >}

HNcl(AHN ∩BHN ) =(AHN ∪BHN )C

HNcl(AHN ∩BHN ) ⊆HNcl(AHN ) ∩HNcl(BHN ).

Definition 3.9. Let AHN be a subset of a heptagonal neutrosophic topological space (N(X),τ).

A point x∈ AC
HN is said to be an exterior point of A if there exists an open set U containing

x such that, U∈ AC
HN . It is denoted by HNext(AHN ) and defined as:

HNext(AHN )={
⋃
B;B ⊆ τ,B ∈ X −A}
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Theorem 3.10. If X be a set. Let (N(X),τ) is a HN topological space over X and

AHN , BHN ∈N(X) then

1. HNext(ϕ)=X

2. HNext(X)=ϕ

3. HNext(AHN )⊆AC=X-AHN for any AHN ⊆ X

4. AHN ⊆ BHN ⇒ HNext(BHN )⊆HNext(AHN )

5. HNint(AHN )⊆HNext(HNext(AHN ))

6. HNext(AHN ∪BHN )=HNext(AHN )∩HNext(BHN )

7. HNext(AHN ∩BHN )=HNext(AHN )∪HNext(BHN )

Proof: i) HNext(ϕ)=HNint(X-ϕ)=X.

ii) HNext(X)=HNint(X-X)=ϕ.

iii) HNext(AHN )=int(AC
HN )⊆ AC

HN . Since HNint(AHN )⊆ AHN .

iv) If AHN ⊆ BHN , Then, HNext(BHN )=HNint(BC
HN ) Also we know that, AHN ⊆ BHN ⇒

BC
HN ⊆ AC

HN .Also, HNint(BC
HN )⊆HNint(AC

HN )

(i) implies, HNint(BHN )=HNint(BC
HN )⊆HNint(AC

HN ) ⊆HNext(AHN )

⇒ HNint(BHN )⊆HNint(AHN )

v) From(iii), HNext(AHN )⊆ AC
HN

HNint(AC
HN )⊆HNext(HNext(AHN ))

HNint(AC
HN )⊆HNext(HNext(AHN ))

HNint(AHN )⊆HNext(HNext(AHN ))

vi) HNext(AHN ∪BHN ) =HNint(AHN ∪BHN )C

=HNint(AC
HN ∩BC

HN )

=HNint(AC
HN )∩ HNint(BC

HN )

HNext(AHN ∪BHN )=HNext(AHN )∩HNext(BHN )

vii) HNext(AHN ∩BHN ) =HNint(AHN ∩BHN )C

=HNint(AC
HN ∪BC

HN )

=HNint(AC
HN )∪HNint(BC

HN )

HNext(AHN ∩BHN )=HNext(AHN )∪HNext(BHN )

Definition 3.11. Let AHN be a subset of a heptagonal neutrosophic topological space X and

a point x∈X is said to be boundary point of AHN if each open set containing at x intersects

both AHN and AC
HN . It is denoted by HNFr(AHN ) and defined as:

HNFr(AHN )= HNcl(AHN )
⋂
HNcl(AHN )C or

HNFr(AHN )= HNcl(AHN )-HNint(AHN ) or

HNFr(AHN )= X-{HNint(AHN )
⋃
HNext(AHN )}
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Remark: The boundary point is also known as boundary point. the set of all boundary

point of a set AHN is called the boundary of AHN or the boundary of AHN , which is de-

noted by HNfr(AHN ). Since by the definition, each boundary point of AHN is also a boun-

dary point of AC
HN ad vice versa, so the boundary of AHN is same as that of AC

HN , i.e.

HNfr(AHN )=HNfr(AC
HN ).

Theorem 3.12. If AHN is a subset of a HN topological space over X and then the following

statements of boundary holds:

1. HNcl(X-AHN )=X-HNint(AHN )

2. HNfr(AHN )=HNcl(AHN )∩ HNint(X-AHN )

3. HNfr(AHN ) is closed

4. HNfr(AHN )=HNfr(X-AHN )

5. HNfr(AHN )∩ HNint(AHN )=ϕ

6. HNfr(HNint(AHN ))⊆ HNfr(AHN )

7. (HNfr(AHN ))C=HNext(AHN )∪HNint(AHN )

8. HNcl(AHN )=HNint(AHN )∪ HNfr(AHN )

Proof: i) let x∈ HNcl(X-AHN ) then x is the closure of X-AHN . Then for every U∈ τ with

x∈U, we have that; U∩(X-AHN )=ϕ.

So there does not exist a open neighborhood of x that is fully contained in AHN . This x/∈
HNint(AHN ) i.e., x∈(X- HNint(AHN )) so, HNcl(X-AHN )⊆X-HNint(AHN )

Now, let x∈(X- HNint(AHN )). Then x/∈ HNint(AHN ). So for ever open neighborhood U of

x, we have that U ⊈ AHN . So U∩(X-AHN )̸=0 for every open neighborhood U of x.Thus

x∈HNcl(X-AHN ) so HNcl(X-AHN )⊇X-HNint(AHN )

Therefore, HNcl(X-AHN )=X-HNint(AHN )

ii) by definition we have HNfr(AHN )=HNcl(AHN )∩HNint(AHN )

Or equivalently, HNfr(AHN )=HNcl(AHN )∩(X- HNint(AHN )

From(i), HNfr(AHN )=HNcl(AHN )∩HNcl(X-AHN )

iii) from2 HNfr(AHN ) can be written as as intersection of two closed sets and so HNfr(AHN )

is closed.

iv) From(ii), HNfr(AHN )=HNcl(AHN )∩ HNcl(X-AHN ) Since, X-(X-AHN )=AHN , also bt

the proposition that: HNfr(X-AHN )=HNcl(X-AHN )∩ HNcl(X-(X-AHN )) HNfr(X-AHN )=

HNcl(X-AHN )∩ HNcl(AHN )

Comparing, ⇒ HNfr(AHN )=HNfr(X-AHN ).

v) and vi) is obvious

vii) AHN ∈ N(X).Then,

(HNfr(AHN ))C=(HNcl(AHN )∩HNfr(AHN ))C

(HNfr(AHN ))C=(HNcl(AHN ))C∪(HNfr(AHN ))C
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(HNfr(AHN ))C=(HNcl(AHN ))C∪(HNint(AHN ))C

(HNfr(AHN ))C=(HNext(AHN ))∪(HNfr(AHN )).

viii) AHN ∈ N(X).Then, by definition and remark

HNint(AHN )∪HNfr(AHN )=HNint(AHN )∪(HNcl(AHN )∩HNfr(AHN ))

HNint(AHN )∪HNfr(AHN )=HNint(AHN )∪(HNcl(AHN )∩(HNint(AHN )∪HNfr(AHN ))

HNint(AHN )∪HNfr(AHN )=HNcl(AHN )∩(HNint(AHN )∪HNint(AHN ))C

HNint(AHN )∪HNfr(AHN )=HNcl(AHN )∩X
HNint(AHN )∪HNfr(AHN )=HNcl(AHN ).

4. Applications of Heptagonal Neutrosophic Topology

Definition 4.1. Let XHN and YHN are the non-void sets and f: XHN −→ YHN be a function,

then

1. If AHN={⟨x, [ρAHN
(x), σAHN

(x), ωAHN
(x)]⟩;x ∈ XHN} is a HN set in XHN , then the

image of AHN under f(AHN ) is denoted by,

f(AHN )={⟨y, [f(ρAHN
(y)), f(σAHN

(y)), f(ωAHN
(y))]⟩; y ∈ YHN}.

2. If BHN={⟨x, [ρAHN
(x), σAHN (x), ωAHN

(x)]⟩;x ∈ XHN} is a HN set in XHN , then the

inverse-image of BHN under f−1(BHN ) is denoted by,

f−1(BHN )={⟨x, [f−1(ρAHN
(x)), f−1(σAHN

(x)), f−1(ωAHN
(x))]⟩;x ∈ XHN}.

Definition 4.2. A map f: XHN −→ YHN is called as heptagonal neutosophic continuous

function if the inverse image f−1(AHN ) of each heptagonal neutosophic open set AHN is the

heptagonal neutrosophic open in XHN .

Definition 4.3. A map f: XHN −→ YHN is called as heptagonal neutosophic continuous

function if the inverse image f−1(AHN ) of each heptagonal neutrosophic closed set AHN is the

heptagonal neutrosophic closed in XHN .

Theorem 4.4. Let X and Y be a set. Let AHN {AHNi:i∈ I} be heptagonal neutrosophic set in

XHN and Let BHN {BHNi:i∈ I} be heptagonal neutrosophic set in YHN anf f: XHN −→ YHN .

Then,

1. AHN1 ⊆ AHN2 ⇐⇒ f(AHN1) ⊆ f(AHN2)

2. BHN1 ⊆ BHN2 ⇐⇒ f−1(BHN1) ⊆ f−1(BHN2)

3. AHN ⊆ f−1(f(AHN )) and if f is injective, then AHN=f−1(f(AHN ))

4. f−1(f(BHN )) ⊆ BHN and if f is surjective, then f−1(f(BHN )) = BHN

5. f−1(∪BHNi)=∪f−1(BHNi) and f−1(∩BHNi)=∩f−1(BHNi)

6. f−1(∪AHNi)=∪f−1(AHNi) and f−1(∩AHNi) ⊆ ∩f−1(AHNi) and if f is

injective, then f−1(∩AHNi)=∩f−1(AHNi)

7. f−1(1HN )=1HN and f−1(0HN )=0HN
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8. f(1HN )=1HN and f(0HN )=0HN if f is injective.

Proof: The proof is obvious from the basic properties.

Example 4.5. Let XHN={x, y} and YHN={x, y}and BHN , CHN , DHN ∈N(X) then,

BHN ={⟨x; (0,96, 0,65, 0,73, 0,75, 0,83, 0,56, 0,54), (0,75, 0,95, 0,45, 0,38, 0,79, 0,57,

0,13), (0,59, 0,36, 0,68, 0,47, 0,36, 0,95, 0,44)⟩, ⟨y; (0,38, 0,69, 0,88, 0,98, 0,77,

0,36, 0,98), (0,32, 0,72, 0,42, 0,62, 0,90, 0,22, 0,62), (0,42, 0,52, 0,62, 0,72, 0,36,

0,72, 0,61)⟩}

CHN ={⟨x; (0,73, 0,74, 0,96, 0,34, 0,85, 0,89, 0,64), (0,46, 0,35, 0,25, 0,96, 0,36, 0,56,

0,16), (0,84, 0,85, 0,37, 0,57, 0,67, 0,22, 0,10) >, ⟨y; (0,76, 0,72, 0,78, 0,62, 0,92,

0,56, 0,88), (0,38, 0,98, 0,22, 0,32, 0,54, 0,64, 0,31), (0,86, 0,96, 0,52, 0,22, 0,41,

0,51, 0,32)⟩}

DHN ={⟨x; (0,5, 0,5, 0,5, 0,5, 0,5, 0,5, 0,5), (0,5, 0,5, 0,5, 0,5, 0,5, 0,5, 0,5), (0,5, 0,5, 0,5,

0,5, 0,5, 0,5, 0,5)⟩, ⟨y; (0,9, 0,9, 0,9, 0,9, 0,9, 0,9, 0,9), (0,9, 0,9, 0,9, 0,9, 0,9, 0,9,

0,9), (0,9, 0,9, 0,9, 0,9, 0,9, 0,9, 0,9)⟩}

By definition 2.10:, We get

BHN ={⟨(0,72, 0,57, 0,55)⟩, ⟨(0,72, 0,54, 0,57)⟩}

CHN ={⟨(0,74, 0,44, 0,52)⟩, ⟨(0,75, 0,48, 0,53)⟩}

DHN ={⟨x; (0,5, 0,5, 0,5)⟩, ⟨y; (0,9, 0,9, 0,9)⟩}

Then the family EHN={0HN , 1HN , BHN} is a heptagonal neutrosophic topology on XHN and

FHN={0HN , 1HN , CHN} is a heptagonal neutrosophic topology on YHN .

Thus (XHN , BHN ) and (YHN , CHN ) are heptagonal neutrosophic toplogical spaces.

Define f : (XHN , BHN ) −→ (YHN , CHN ) as f(x)=y, f(y)=x and f(z)=z.

Then, f is heptagonal neutrosophic continuous function.

Theorem 4.6. Let f:XHN −→ YHN be a single valued HN function, whereXHN and YHN are

HN topological spaces. Then the following statements are equivalent:

1. The function f is HN continuous.

2. The inverse image of each HN open set in YHN is HN open in XHN .

Proof: (i)=⇒(ii):

Firstly, assume that f:XHN −→ YHN is HN continuous. Let AHN be HN open in YHN . Then

AC
HN is HN closed in YHN . Since YHN is HN continuous f−1(AC

HN ) is HN closed in XHN . But

f−1(AC
HN )=X-f−1(BHN ). Thus XHN − f−1(BHN ) is HN closed in XHN and we have that
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f−1(AHN ) is HN open in X. Therefore, (i)=⇒(ii).

(ii)=⇒(i):

Conversely, we assume that the inverse image of each HN open set in YHN is HN open in

XHN . Let BHN be any HN closed set in YHN . Then BC
HN is HN open in V. By our as-

sumption, f−1(BC
HN ) is HN open in XHN . But then, f−1(BC

HN )=XHN − f−1(BHN ). Then

XHN − f−1(BHN ) is HN open in XHN and also f−1(BHN ) is HN closed in XHN . Therefore f

is HN continuous. Hence, (ii)=⇒(i). Therefore (i) and(ii) are equivalent.

Theorem 4.7. A mapping f:XHN −→ YHN is heptagonal neutrosophic continuous iff the

inverse image of every heptagonal neutrosophic closed set in YHN is heptagonal neutrosophic

closed in XHN .

Proof: Firstly we assume that f is a HN continuous. Let AHN be a heptagonal neutrosophic

closed set in YHN . Then AC
HN is open in YHN . By our assumption, f is HN continuous function,

f−1(AHN ) is HN open in XHN . But then, f−1(AC
HN )=XHN − f−1(AHN ).

Therefore, f−1(AHN ) is heptagonal neutrosophic closed in XHN .

Conversely, assume the pre image of every heptagonal neutrosophic closed set in YHN is hep-

tagonal neutrosophic closed in XHN . Let BHN be a HN open set in YHN , then BC
HN is HN

closed in YHN . By hypothesis that, f−1(BC
HN )=XHN − f−1(BHN ) is HN closed in XHN and

so f−1(BHN ) is HN open in XHN .

Therefore, f is heptagonal neutrosophic continuous.

Theorem 4.8. A mapping :XHN −→ YHN is heptagonal neutrosophic continuous if and only

if f(HNcl(AHN ))⊂HNcl(f(AHN )) for every subset AHN of XHN . Proof: Firstly. We assume

that f is HN continuous. Let AHN be any subset of XHN . Then HNcl(f(AHN )) is a HN closed

set in XHN . Since by our assumption f is HN continuous, f−1(HNcl(f(AHN ))) is HN closed

in XHN and it contains AHN . By the definition of HN closure, HNcl(AHN ) is the intersection

of all HN closed sets containing AHN . Therefore, HNcl(AHN )⊆ f−1(HNcl(f(AHN ))).

Therefore, f(HNcl(AHN ))⊂(HNcl(f(AHN ))).

Conversely, assume that f(HNcl(AHN ))⊂(HNcl(f(AHN ))). Let BHN is HN closed in YHN ,

f(HNcl(f−1(BHN )))⊆HNcl(BHN ). Thus we have, HNcl(f−1(BHN )) ⊆ f(−1HNcl(BHN ))=

f−1(BHN ). But we know that f−1(BHN ) ⊆HNcl(f−1(BHN )). Which then implies that,

HNcl(f−1(BHN ))=f−1(BHN ). Therefore f−1(BHN ) is HN closed set in XHN for every HN

closed set BHN in YHN .Then by the definition of HN continuity function,

f is heptagonal neutrosophic continuous.

Theorem 4.9. Let (X,τX) and (Y,τY ) be a heptagonal neutrosopic topological space and let

f:XHN −→ YHN be the mapping. Then the following statements are equivalent.
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1. f is HN continuous map.

2. For each subset AHN ⊆ XHN , we have f(A) ⊆ f(A).

3. For every HN closed subset BHN ⊆ YHN , then the set f−1(BHN ) is HN closed in XHN .

4. For each x∈ XHN and each BHN ∈ τY containing f(x), there is some UHN ∈ τX

containing x and such that f(UH) ⊆ BHN .

Proof: We prove the above statements as follows: (i) implies (ii), (ii) implies (iii), (iii) implies

(iv) and finally (i) implies (iv).

(i)⇒(ii): Assume that f is a HN continuous mapping. Let AHN ⊆ XHN be a subset. For each

x∈ AHN we have to show that f(x)∈ f(AHN ). Fix for such x and letting BHN ∈ τY be any

HN open subset containing f(x). Since by oue assumption, f is HN continuous, the subset

UHN=f−1(BHN ) is an HN open subsets that contains the element x. Note that UHN ∩AHN ̸=
∅, therefore there exists y∈ AHN ∩ uHN and f(y)∈ BHN ∩ f(AHN ). Since every HN open

subset containing f(x) intersects f(AHN ) nontrivially,

f(A)HN) ⊆ f(AHN ).

(ii)⇒(iii): Assume that for subset AHN ⊆ XHN , we have f(A) ⊆ f(A). Let BHN ⊆ YHN

be a HN closed subset and let AHN=f−1(BHN ). We need to show that AHN=AHN (more

specifically that AHN ⊆ AHN , the opposite containment is always true). So fix that x∈ AHN .

Then,

f(x)∈ f(A)HN) ⊆ f(AHN ) ⊆ BHN=BHN .

That is, f(x)∈ BHN . Or in other words x∈ f−1(BHN )=AHN as required.

(iii)⇒(iv): Assume that, for every HN closed subset BHN ⊆ YHN , then the set f−1(BHN ) is

HN closed in XHN . Suppose the pre-images of HN closed sets are HN closed. Fix x∈ XHN ,

and an HN open set BHN ∈ τY containing f(x). Then YHN − BHN is HN closed and hence

f−1(YHN − BHN ) a HN closed sunset of XHN by our assumption and it does not contains

x. But then the complement of this set, XHN − f−1(YHN − BHN ), is the HN open and does

contains x. So let us fix the HN open set UHN such that,

x∈ UHN ⊆ XHN − f−1(YHN −BHN ).

Then we have, f(UHN ) ⊆ f(XHN − f−1(YHN −BHN )=f(XHN )− (YHN −BHN ) ⊆ BHN ,

f(UHN ) ⊆ BHN as required.

(i)⇒(iv):Assuming that, f is HN continuous map. Let x∈ XHN and let BHN ∈ τY

containing f(x). Then the set UHN=f−1(BHN ) is a HN open subset containing x.

Conversely, assume that (iv) holds. Let BHN ∈ τY and let x∈ f−1(BHN ). Then f(x)∈ BHN and

by the hypothesis there exists some UHNx ∈ τY containing x and such that f(UHNx) ⊆ BHN .

Thus UHNx ⊂ f−1(BHN ). It follows that f−1(BHN )=
⋃

x∈f−1(BHN ) UHNx , which is then the

element of τX .
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Theorem 4.10. A mapping f:XHN −→ YHN is heptagonal neutrosophic open function if

and only if f(HNint(AHN ))⊂HNint(f(AHN )) for every subset AHN of XHN . Proof: Firstly

we assume that, f:XHN −→ YHN is heptagonal neutrosophic open function and AHN be a

heptagonal neutosophic subset of XHN . Clearly we can see that HNint(AHN ) is an HN open

set in XHN and HNint(AHN ) ⊆ AHN . Since by our assumption f is a HN open function, so

f(HNint(AHN )) is a HN open set in XHN . And f(HNint(AHN ))⊆ f(AHN ). Since each HN open

set is a HN open set and HNint(f(AHN )) is the largest HNopen set containing f(AHN ), so

that HNint(f(AHN )) is the largest HN open set contained in f(AHN ). Therefore ,

f(HNint(AHN ))⊂HNint(f(AHN )) for each HN subset AHN of XHN .

Conversely assume that, f(HNint(AHN ))⊂HNint(f(AHN )) for every subset AHN of XHN . Let

BHN be an HN set in XHN . Therefore, HNint(BHN )=BHN . By the hypothesis we have that,

f(HNint(BHN ))⊂HNint(f(BHN )). Which implies that f(BH)⊆HNint(f(BH)). Also we have that

HNint(f(BH))⊆ f(BH). Therefore f(BH)=HNint(f(BH)).That is, f(BHN ) is the HN open set

in XHN . Hence for every HN open set in XHN , f(BHN )is the HN open set in XHN . Therefore

f is the HN open function.

Example 4.11. Let XHN={x, y} and BHN , CHN , DHN ∈N(X) then,

BHN ={⟨x; (0,96, 0,65, 0,73, 0,75, 0,83, 0,56, 0,54), (0,75, 0,95, 0,45, 0,38, 0,79, 0,57,

0,13), (0,59, 0,36, 0,68, 0,47, 0,36, 0,95, 0,44)⟩, ⟨y; (0,38, 0,69, 0,88, 0,98, 0,77,

0,36, 0,98), (0,32, 0,72, 0,42, 0,62, 0,90, 0,22, 0,62), (0,42, 0,52, 0,62, 0,72, 0,36,

0,72, 0,61)⟩}

CHN ={⟨x; (0,73, 0,74, 0,96, 0,34, 0,85, 0,89, 0,64), (0,46, 0,35, 0,25, 0,96, 0,36, 0,56,

0,16), (0,84, 0,85, 0,37, 0,57, 0,67, 0,22, 0,10) >, ⟨y; (0,76, 0,72, 0,78, 0,62, 0,92,

0,56, 0,88), (0,38, 0,98, 0,22, 0,32, 0,54, 0,64, 0,31), (0,86, 0,96, 0,52, 0,22, 0,41,

0,51, 0,32)⟩}

DHN ={⟨x; (0,5, 0,5, 0,5, 0,5, 0,5, 0,5, 0,5), (0,5, 0,5, 0,5, 0,5, 0,5, 0,5, 0,5), (0,5, 0,5, 0,5,

0,5, 0,5, 0,5, 0,5)⟩, ⟨y; (0,9, 0,9, 0,9, 0,9, 0,9, 0,9, 0,9), (0,9, 0,9, 0,9, 0,9, 0,9, 0,9,

0,9), (0,9, 0,9, 0,9, 0,9, 0,9, 0,9, 0,9)⟩}

By definition 2.10:, We get

BHN ={⟨(0,72, 0,57, 0,55)⟩, ⟨(0,72, 0,54, 0,57)⟩}

CHN ={⟨(0,74, 0,44, 0,52)⟩, ⟨(0,75, 0,48, 0,53)⟩}

DHN ={⟨x; (0,5, 0,5, 0,5)⟩, ⟨y; (0,9, 0,9, 0,9)⟩}
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Then the family EHN={0HN , 1HN , BHN} , FHN={0HN , 1HN , CHN} and

GHN={0HN , 1HN , DHN} .Thus (XHN , EHN ), (XHN , FHN ), (XHN , GHN ) are heptagonal neu-

trosophic topological spaces.

Define f : (XHN , EHN ) −→ (XHN , FHN ) as f(x)=y, f(y)=x and f(z)=z.

Define g : (XHN , FHN ) −→ (XHN , GHN ) as g(x)=y, g(y)=z and g(z)=y.

clearly f and g are heptagonal neutrosophic continuous. But gof is not heptagonal neutrosophic

continuous. For 1-D is heptagonal neutrosophic closed in (XHN , GHN ). f−1(g−1(1−D)) is not

heptagonal neutrosophic closed in (XHN , EHN ). gof is not heptagonal neutrosophic continuous.

Theorem 4.12. A mapping f:XHN −→ YHN is heptagonal neutrosophic bijective function.

Then the following statements are equivalent:

1. f is HN continuous function.

2. f is HN closed function.

3. f is HN open function.

Proof: (i)=⇒ (ii):

Firslty, assume that, f is HN continuous function, Let AHN be any arbitrary HN closed set in

XHN . Then AC
HN is an HN open set in XHN . Since each HN open set is an HN open set, so

AC
HN is the Hn open set in XHN . Since f is a bijective function, so that f(AC

HN )=f(AHN )C is

an HN open set in XHN . Hence f(AHN ) is an HN closed set in XHN . Therefore, for each HN

closed set in XHN , then f(AHN ) is a HN closed set in XHN .

=⇒ f is HN closed function

(ii)=⇒ (iii):

Firstly, assume that, f is HN closed function, Let BHN be any arbitrary HN closed set in

XHN . Then BC
HN is an HN closed set in XHN . Since f is a HN closed function, so that

f(BC
HN )=f(BHN )C is an HN closed set in XHN . Hence f(BHN ) is an HN open set in XHN .

Therefore, for each HN open set in XHN , then f(AHN ) is a HN open set in XHN .

=⇒ f is HN open function.

(iii)=⇒(i):

Firstly, assume that, f is a HN open function. Let CHN be any arbitrary HN open set in YHN .

Then CHN is an HN open set in YHN . Since each HN open set is an HN open set, so CHN is

the HN open set in YHN . Since f is a bijective function, so that f−1(CHN ) is an HN open set

in YHN . Again since each HN open set is an HN open set, so f−1(CHN ) is the HN open set in

YHN . Therefore, for each HN closed set in YHN , then f−1((AHN )) is a HN open set in YHN .

=⇒ f is HN continuous function.
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Example 4.13. Let HHN={x,y}, AHN , BHN and CHN ∈N(X) are defined as follows,

AHN ={⟨x; (0,72, 0,41, 0,35, 0,81, 0,77, 0,73, 0,77), (0,83, 0,88, 0,93, 0,99, 0,96, 0,90,

0,94), (0,86, 0,99, 0,97, 0,93, 0,94, 0,91, 0,86)⟩, ⟨y; (0,91, 0,32, 0,56, 0,48, 0,81,

0,72, 0,67), (0,78, 0,83, 0,21, 0,38, 0,56, 0,33, 0,98), (0,36, 0,86, 0,96, 0,32, 0,44,

0,56, 0,72)⟩}

BHN ={⟨x; (0,96, 0,65, 0,73, 0,75, 0,83, 0,56, 0,54), (0,75, 0,95, 0,45, 0,38, 0,79, 0,57,

0,13), (0,59, 0,36, 0,68, 0,47, 0,36, 0,95, 0,44)⟩, ⟨y; (0,38, 0,69, 0,88, 0,98, 0,77,

0,36, 0,98), (0,32, 0,72, 0,42, 0,62, 0,90, 0,22, 0,62), (0,42, 0,52, 0,62, 0 = 72, 0,36,

0,72, 0,61)⟩}

CHN ={⟨x; (0,73, 0,74, 0,96, 0,34, 0,85, 0,89, 0,64), (0,46, 0,35, 0,25, 0,96, 0,36, 0,56,

0,16), (0,84, 0,85, 0,37, 0,57, 0,67, 0,22, 0,10)⟩, ⟨y; (0,76, 0,72, 0,78, 0,62, 0,92,

0,56, 0,88), (0,38, 0,98, 0,22, 0,32, 0,54, 0,64, 0,31), (0,86, 0,96, 0,52, 0,22, 0,41,

0,51, 0,32)⟩}

Using De-neutosophication technique: (p+q+r+s+t+u+v)
7 , We get

AHN ={⟨x; (0,65, 0,92, 0,92)⟩, ⟨y; (0,64, 0,58, 0,60)⟩}

BHN ={⟨x; (0,72, 0,57, 0,55)⟩, ⟨y; (0,72, 0,54, 0,57)⟩}

CHN ={⟨x; (0,74, 0,44, 0,52)⟩, ⟨y; (0,75, 0,48, 0,53)⟩}

Then the family EHN={0HN , 1HN , AHN , BHN} and FHN={0HN , 1HN , CHN}
are heptagonal neutrosophic topologies on XHN .

Thus (XHN , EHN ) and (XHN , FHN ),are heptagonal neutrosophic top0logical spaces.

Define f : (XHN , EHN ) −→ (XHN , FHN ) as f(x)=y, f(y)=x and f(z)=x.

clearly f is heptagonal neutrosophic continuous. But f is not strongly heptagonal

neutrosophic continuous. Since,

DHN={⟨x; (0,74, 0,44, 0,59)⟩, ⟨y; (0,5, 0,48, 0,53)⟩} is an heptagonal neutrosophic open set in

(XHN , FHN ), f−1(DHN ) is not heptagonal neutrosophic open in (XHN , EHN ).

5. Conclusions

In this current article, we have introduced heptagonal neutrosophic topology in neutrosophic

environments with the help of ranking technique of Heptagonal numbers. Also the Heptagonal

neutrosophic set operations are introduced with suitable examples. The Heptagonal neutro-

sophic interior and closure concepts are also explained to strengthen the HN topology. The
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theorems and properties of open sets and closed sets of HN topologies are explained with re-

lated examples. Further there is a scope to introduce continuous functions, connectedness and

compactness based on HN topological spaces. Additionally, Topological Spaces and Biparti-

te Graph are used in conjunction with the Heptagonal Intuitionistic Fuzzy Number (HIFN)

in [16] to solve the Intuitionistic Fuzzy Transportation Problems. Heptagonal Neutrosophic

topological spaces can also be used in place of topological spaces and Neutrosophic Heptago-

nal Numbers can be used as an alternative to HIFN to solve the Neutrosophic Transportation

Problems, which is one of the examples of applications of the concepts discussed in this article.

We have further planned to expand Multi Criteria Decision Making (MCDM) to discover or

select the best answer from the existing with the aid of Neutrosophic soft matrix.
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Abstract. Memet et al. interposed the concept of neutro metric spaces. They established this concept depend

on the neutro axioms from the neutro function one of the ideas of Smarandache. In the concept of neutro metric

spaces used the non-negative and negative real numbers. We introduced this notion depend on the non-negative

real numbers and redefined the neutro metric space depend on the strong neutro metrics. We investigate the

properties of strong neutro metric spaces and present the notion of neutro-open sets and neutro-closed sets. We

distinguished between the operations on neutro-open sets in strong neutro metric space and open sets in metric

spaces.

Keywords: Strong neutro metric(space), neutro open set, neutro closed set, unified set.

—————————————————————————————————————————-

1. Introduction

Florentin Smarandache [8], considering the facts in the real world, he introduced the theory

of neutro algebra. According to him, a system in which everything is right or everything is

wrong either does not exist, or if it exists, it is not real. In the theory of neutro algebra, he

deals with the issue that some principles may be true and some principles may not be true,

and this is closer to the problems in the real world. In 1906 M. Frechet introduced metric

spaces [6] as a mathematical tool in the rela world and other researchers continued it in some

branches. Recently, Memet et al. introduced the notion of neutro metric spaces [7]. Some

researchers have investigated the neutro structures such as [1–6,9]

We introduce a drawing out of metric spaces, whatever is a distribution of topologic spaces.

Our intention in headlining this matter is to design the principles of the matter in kind to

contest the matter of metric space theory. We exercise the axioms of metric spaces and

illustrate the notion of strong neutro metric spaces and investigate their properties. This

paper introduces the notion of open balls in strong metric space with the same as the notion
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of open balls in metric space and depend on this notion, we present the notion of neutro

open balls. We show that the union of any family of unified neutro open sets is a neutro

open set and the intersection of any family of chain neutro open sets is a neutro open set,

while the intersection of a finite set of an open set is an open set in metric space. Indeed,

we distinguished the fundamental structures of metric spaces and fundamental structures of

neutro metric spaces.

2. Preliminaries

We need materials that have been reviewed before and are effective in our article, so we will

address them in this section.

Definition 2.1. [8] For any non-avoided set X, (X,σ) is a neutro algebra, if σ is a neutro

operation.

Definition 2.2. [7] Allow X ̸= ∅ and σ : X2 → R. Then, (X,σ) is titled a neutro metric

space (neutro M. S) if, there is

(NM -1)
(
x, y ∈ X intent, xσy ≥ 0,

(
r, s ∈ X intent, xσy < 0 or inconclusive

)
;

(NM -2)
(
x ∈ X intent, xσx = 0,

(
y ∈ X intent, xσx ̸= 0 or inconclusive

)
;

(NM -3)
(
x, y, z, w ∈ X, intent, xσz ≤ xσy + yσz,

(
r, s, t, v ∈ X, intent, xσz > xσy + yσz or

inconclusive
)
;

(NM -4)
(
x, y, z, w ∈ X, intent, xσy = yσx,

(
r, s ∈ X, intent, rσs ̸= sσr or inconclusive

)
.

3. Strong neutro open sets

Definition 3.1. Allow X ̸= ∅ and σ : X2 → R≥0. Then, (X,σ) is titled a strong neutro M. S

if,

(NM -1)
(
x ∈ X intent, xσx = 0 and

(
y ∈ X intent, yσy ̸= 0 or inconclusive

)
;

(NM -2)
(
x, y, z, w ∈ X, intent, xσz ≤ xσy + yσz and

(
r, s, t, v ∈ X, intent, rσt > rσs+ sσt or

inconclusive
)
;

(NM -3)
(
x, y, z, w ∈ X, intent, xσy = yσx and

(
r, s ∈ X, intent, rσs ̸= sσr or inconclusive

)
.

Example 3.2. Illustrate σ : R2 → R>0 by xσy = |Sin(xy− x)|, where x, y ∈ R. By Figure 1,

xσx = |Sin(x2 − x)| and easy to see that there exists y ∈ R in kind yσy = 0 and there exists

z ∈ R in kind zσz ̸= 0. Accordingly the item (NM) − 1 is valid. Inaddition, xσy = yσx,

infers |Sin(xy − x)| = |Sin(xy − y)|. If x = y, then xσy = yσx and for x = 0 and y =
π

2
,

we have xσy ̸= yσx. Accordingly the item (NM) − 2 is valid. If yz = y and y = z, then

xσz ≤ xσy + yσz and for x =
π

2
, y = 1 and z = 0, we get that xσz > xσy + yσz and so the

item (NM)− 3 is valid.
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Figure 1. |Sin(x2 − x)|

Allow (X,σ) be a strog neutro M. S and r ∈ R>0. Then Br(x) = {y ∈ X | xσy < r}, is the
open ball of radius r and center x ∈ X.

Example 3.3. Consider the strog neutro M. S (R, σ) by xσy = |Sin(xy − x)|. Computation

show that B1(x) = R and for all x ̸= 0, B1(x) = R \ {
x± π

2
x

,
x± 3π

2
x

,
x± 5π

2
x

, . . .}. Also for

any r > 1, we get that Br(x) = R.

Definition 3.4. Allow (X,σ) be a strog neutro M. S and U ⊆ X. Then U is a neutro open

set(N. O. S), if x ∈ U, r ∈ R>0 in kind Br(x) ⊆ U and y ∈ X, s ∈ R>0 in kind Bs(x) ̸⊆ U .

From now on, will denote the set of all strog N. O. S of X by NO(X).

Example 3.5. (i) Allow X be a nonavoid set and U ⊆ X. One can see a sample unified set

X in Figure 2.

Figure 2. Strog N. O. S U

(ii) Illustrate σ : R2 → R>0 by xσy = |tan(xy − x)|, where x, y ∈ R. By Figure 3, xσx =

|tan(x2 − x)| and easy to see that there exists y ∈ R in kind yσy = 0 and there exists z ∈ R
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in kind zσz ̸= 0. Accordingly the item (NM) − 1 is valid. As well, xσy = yσx, infers

|tan(xy − x)| = |tan(xy − y)|. If x = y, then xσy = yσx and for x = 0 and y =
π

4
, we

have xσy ̸= yσx. Accordingly the item (NM) − 2 is valid. If yz = y and y = z, then

xσz ≤ xσy + yσz and for x =
π

4
, y = 1 and z = 0, we get that xσz > xσy + yσz and so the

item (NM)− 3 is valid.

Figure 3. |tan(x2 − x)|

Computations show that

B1(
π

4
) = {y ∈ R | yσπ

4
< 1}

= {y ∈ R | |tan(π
4
y − π

4
)| < 1}

=
(
(−∞, 2) ∩ (−∞, 6) ∩ (−∞, 10) ∩ . . .

)
∪ (4,∞) ∩ (8,∞) ∩ (12,∞) ∩ . . .

=
( ∩
k∈O

(−∞, 2k)
)
∩
( ∩
k∈N

(2k,∞)
)

= (−∞, 2) ∩
( ∩
k∈N

(2k,∞)
)

= ∅.

Consider 0 ∈ U = (−1,∞). Then

B1(0) = {y ∈ R | yσ0 < 1} = {y ∈ R | |tan(0)| < 1} = R, which B1(0) ̸⊆ U .

Consider −π

4
∈ U = (−1,∞). Then

B1(−
π

4
) = {y ∈ R | yσ − π

4
< 1}

= {y ∈ R | |tan(−π

4
y +

π

4
)| < 1}

=
(
(0,∞) ∩ (−4,∞) ∩ (−8,∞) ∩ . . .

)
∩
(
(−∞,−2) ∩ (−∞,−6) ∩ (−∞,−10) ∩ . . .

)
=

∩
k∈W

(−4k,∞) ∩
∩
k∈O

(∞,−2k) = ∅,
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which B1(−
π

4
) ⊆ U . Thence, (−1,∞) ∈ NO(R).

Theorem 3.6. Allow (X,σ) be a strog neutro M. S. Then Card(X)geq2.

Proof. Allow Card(X) = 1 and x = {x}. By the axiom NM − 1, if xσx = 0, then must exis

x ̸= y ∈ X in kind yσy ̸= 0, which is a contradication. Accordingly Card(X) ≥ 2.

Theorem 3.7. Any M. S, can be a strong neutro M. S.

Proof. Allow (X, d) be a M. S and λ ̸∈ X. Then (X∪{λ}, σ) is a strong neutro M. S, whichever

for x, y ∈ X

xσy =

d(x, y) if x, y ∈ X

λ if x = y = λ,

λσx = x0, xσλ = y0 and λ > λσx + xσλ, which x0 ̸= y0, x0, y0 ∈ X. One can see that the

neutro axioms NM − 1, NM − 2 and NM − 3 are valid.

Theorem 3.8. Allow (X,σ) be a strog neutro M. S and Card(X) = 2. Then

Card(Range(σ)) = 4.

Proof. Allow X = {a, b}. Then illustrate the map σ : X2 → R go after:

σ a b

a 0 s

b s′ r

.

We claim that 0 ̸= r ̸= s ̸= s′. Since aσa = 0, r ∈ R which that bσb = r ̸= 0. If for s ∈ R
consider aσb = s, then s ̸= s′ ∈ R in kind bσa = s′. Now, we investigate the coming cases:

case 1: if aσa > aσb+bσb, then 0 > s+s′, which is a contradication. Thence, aσa ≤ aσb+bσb

or 0 ≤ s+ s′.

case 2: if aσb > aσa + aσb, then s > s + s′, which is a contradication. Thence, aσb ≤
aσa+ aσb.

case 3: if bσa > bσb + bσa, then s′ > s + s′, which is a contradication. Thence, bσa ≤
bσb+ bσa.

Since (X,σ) is a strog neutro M. S, we get that bσb ≤ bσa + aσb. Accordingly r ≤ s + s′

and so Card(Range(σ)) = 4.

Theorem 3.9. Allow (X,σ) be a strog neutro M. S. Then

(i) X ̸∈ NO(X).

(ii) ∅ ∈ NO(X).
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Proof. (i) Allow y ∈ X in kind for all r ∈ R>0, Br(y) ̸⊆ X. If yσy = 0, then ∅ ̸= Br(y) ⊆ X,

which makes a contradication. If yσy < 0, then ∅ ̸= Br(y) ⊆ X, which makes a contradication.

If yσy > 0, then ∅ = Br(y) ⊆ X, which makes a contradication. They follow that there for all

y ∈ X, r ∈ R>0, in kind Br(y) ⊆ X and so X ̸∈ NO(X).

(i) Because there is no point in the empty set, we get that ∅ ∈ NO(X).

Theorem 3.10. Allow (X,σ) be a strog neutro M. S, r ∈ R>0 and x ∈ X. Then Br(x) is not

an O. S.

Proof. Allow x ∈ X be an arbitrary and for r ∈ R>0, Br(x) be an O. S. Thence, X =
∪
x∈X

Br(x)

is an O. S, which it is a contradication by Theorem 3.18.

Allow X,Y, U be nonavoid sets. Accordingly, X,Y are unified, if U ̸⊆ X, then U ̸⊆ X ∪ Y .

Example 3.11. Allow X,Y, Z,W,U, V be nonavoid sets. Then one can can see the unified

sets X,Y, Z,W,U, V in Figure 4.

Figure 4. Unified set X

Theorem 3.12. Allow (X,σ) be a strog neutro M. S and {Ui}i∈I ⊆ NO(X) be unified. Then∪
i∈I

Ui ∈ NO(X).

Proof. Since for all i ∈ I, Ui ∈ NO(X), we get x ∈ Ui and r ∈ R>0 in kind Br(x) ⊆ Ui ⊆
∪
i∈I

Ui.

As well, y ∈ Ui and s ∈ R>0 in kind Br(y) ̸⊆ Ui ⊆. Since for all i ∈ I, Ui are unified, we get

that Br(y) ̸⊆
∪
i∈I

Ui. They conclude that
∪
i∈I

Ui ∈ NO(X).

Theorem 3.13. Allow (X,σ) be a strog neutro M. S and {Ui}i∈I ⊆ NO(X). If {Ui}i∈I is a

chain, then
∩
i∈I

Ui ∈ NO(X).
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Figure 5. Unified sets U, V

Proof. If
∩
i∈I

Ui = ∅, then by Theorem 3.18,
∩
i∈I

Ui ∈ NO(X). Allow
∩
i∈I

Ui ̸= ∅. Since {Ui}i∈I

is a chain, j ∈ I in kind
∩
i∈I

Ui = Uj and so
∩
i∈I

Ui ∈ NO(X).

Theorem 3.14. Allow (X,σ) be a strog neutro M. S, x ∈ X and r ∈ R>0. Then Br(x) ∈
NO(X).

Proof. We claim that x ∈ X in kind xσx = 0. If for all x ∈ X,xσx ̸= 0, since (X,σ) is a strog

neutro M. S, y ∈ X in kind xσy > xσx+xσy, which is contradiaction. Because x ∈ X in kind

xσx = 0, we get that x ∈ Br(x). Thence, Br(x) ̸= ∅ and Br(x) ⊆ Br(x). As well, we claim

that x ∈ X in kind xσx ̸= 0. If for all x ∈ X,xσx = 0, since (X,σ) is a strog neutro M. S,

y ∈ X in kind yσy ≤ yσx + xσy, which is a contradiaction. Allow xσx = r. Since (X,σ) is

a strog neutro M. S, z ∈ X in kind xσz > xσx + xσz > r + xσz. Thence, z ̸∈ Br(x) and so

Br(z) ̸⊆ Br(x). Therefore, Then Br(x) ∈ NO(X).

Theorem 3.15. Allow (X,σ) be a strog neutro M. S, U, V ⊆ X and U be unified. If U ∈
NO(X) and U ⊆ V , then V ∈ NO(X).

Proof. Since U ∈ NO(X), we get that there exists x ∈ U and s ∈ R, in kind Bs(x) ⊆ U .

Thence, there exists x ∈ V and s ∈ R, in kind Bs(x) ⊆ V , because of U ⊆ V . As well, there

exists y ∈ U and r ∈ R, in kind Br(y) ̸⊆ U as shown in Figure 5, since U, V are unified sets.

Theorem 3.16. Allow (X,σ) be a strog neutro M. S. Then

(i) if a set contains a union of unified open balls, then it is strog N. O. S.

(ii) if a set is strog N. O. S, then it contains a union of unified open balls.
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(iii) if a set is strog N. O. S, then it may dose’t contain a union of unified open balls.

Proof. (i) Allow U ⊆ X and U ⊇
∪
x∈X

Br(x). Then by Theorems 3.12 and 3.14,
∪
x∈X

Br(x) is

a strog N. O. S in X. Now, using Theorem 3.16, U is a N. O. S.

(ii, iii) Suppose that U is a strog N. O. S. Thence, x ∈ U and r ∈ R>0 in kind Br(x) ⊆ U

and y ∈ U and s ∈ R>0 in kind Bs(y) ̸⊆ U . Since {x} ⊆ Br(x) ⊆ U , we get that
∪
x∈U

{x} ⊆∪
∃ x∈U

Br(x) ⊆ U . Moreover, {y} ⊆ Bs(y) ̸⊆ U , infers
∪

∃ y∈U
{y} ⊆

∪
∃ y∈U

Bs(y) ̸⊆ U .

3.1. Strong neutro closed sets

Definition 3.17. Allow (X,σ) be a strog neutro M. S and F ⊆ X. Then F is a neutro closed

set, if F c = {x ∈ X | x ̸∈ F} is a N. O. S From now on, will denote the set of all strog neutro

closed set of X by NC(X).

Theorem 3.18. Allow(X,σ) be a strog neutro M. S. Then

(i) X ∈ NC(X).

(ii) ∅ ̸∈ NC(X).

Proof. (i) Since Xc = ∅, by Theorem 3.18, ∅ ∈ NO(X) and so X ∈ NC(X).

(ii) Since ∅c = X, by Theorem 3.18, X ̸∈ NO(X) and so ∅ ̸∈ NC(X).

Theorem 3.19. Allow (X,σ) be a strog neutro M. S and {Fi}i∈I ⊆ NC(X) be unified. Then∩
i∈I

Fi ∈ NC(X).

Proof. Since for all i ∈ I, Fi ∈ NC(X), by Theorem 3.12, we get X \
∩
i∈I

Fi =
∪
i∈I

(X \ Fi) ∈

NO(X). Thence,
∩
i∈I

Fi ∈ NC(X).

Theorem 3.20. Allow (X,σ) be a strog neutro M. S and {Fi}i∈I ⊆ NC(X). If {Fi}i∈I is a

chain, then
∪
i∈I

Fi ∈ NC(X).

Proof. Allow {Fi}i∈I and Fi ⊆ Fj ⊆ Fk ⊆ . . . be a chain. Then F c
i ⊇ F c

j ⊇ F c
k ⊇ . . . and so

{F c
i }i∈I is a chain. Since for all i ∈ I, Fi ∈ NC(X), by Theorem 3.13, we get X \

∪
i∈I

Fi =∩
i∈I

(X \ Fi) ∈ NO(X). Thence,
∪
i∈I

Fi ∈ NC(X).
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4. Conclusions

In this research work, we have been able to deal the connection of M. S and neutro M. S.

Indeed, we investigate the diets in M. Ss and add some conditions on the axioms of M. Ss as

the neutro metric axioms and so introduce the concepts of open balls, N. O. S, and neutro

closed sets. The notion of unified sets recreates an essential role in the basic concepts of strong

neutro spaces. We hope to extend these concepts in the real analysis in the next works.
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Abstract. The travelling salesman problem(TSP) is a classic optimization puzzle, widely studied and cele-

brated for its significance in operations research, mathematics and computer science. It can also be described

as an evolution from a mathematical curiosity to a problem that challenges the computation boundaries, sparks

algorithmic innovation, and finds practical applications in various industries. The neutrosophic TSP(NTSP)

extends the problem by introducing neutrosophy, handling indeterminacy and inconsistency with distances rep-

resented by neutrosophic numbers(NNs). The single-valued triangular fuzzy neutrosophic TSP(SVTFNTSP)

goes a step further by incorporating both single-valued triangular fuzzy numbers(SVTFNs) and neutrosophy,

representing distances with SVTFNNs. The single-valued triangular fuzzy neutrosophic numbers(SVTFNNs)

provide a way to model uncertainty via triangular membership functions, offering a more nuanced represen-

tation of uncertain and vague distances. This arises the need to use them and enhances realism in solving

complex real-world optimization problems. These extensions adapt the TSP to varying uncertain and vague

data, ideal for intricate real-world optimization scenarios. This research article delves into the SVTFNTSP,

expressed as a single-valued triangular fuzzy neutrosophic distance matrix(SVTFNDM) with SVTFNNs as its

core elements, accounting for both uncertainty and imprecision. The investigation encompasses the formulation

and examination of this specialized problem by incorporating a score function to assess defuzzification and

optimality, alongside the utilization of a proposed systematic stepwise approach to efficiently ascertain optimal

solutions. This approach is practically demonstrated through its application to real-world scenarios, effectively

showcasing its feasibility and real-world relevance. Subsequently, through a rigorous comparative analysis with

the established methodologies, the superior effectiveness and value of the proposed approach are highlighted,

specifically in terms of minimizing total travelling costs. This reaffirms its potential as a robust solution for

tackling the SVTFNTSP by underlining its practical utility and enhanced performance.

Keywords : Neutrosophic set, Neutrosophic number, Single-valued triangular fuzzy neutrosophic number,

Single-valued triangular fuzzy neutrosophic distance matrix, Travelling salesman problem, Single-valued trian-

gular fuzzy neutrosophic travelling salesman problem, Score function, Range, Optimal solution, Cycle.

—————————————————————————————————————————-

1. Introduction

In our daily lives, we frequently encounter a variety of unclear, ambiguous, and inadequate

situations. Thus, as an extension of classical sets that enables partial membership(awards a

membership grade) for each element - Zadeh [1] developed the idea of fuzzy sets in 1965. The

fuzzy set theory has had considerable success in many disciplines because of its capacity to

handle uncertainty. Atanassov [2] presented the idea of intuitionistic fuzzy sets in 1983 as

an extension of fuzzy sets that not only contains the membership grade but also the non-

membership grade of each element due to certain of its constraints. Neutrosophic sets(NS) are

an extension of intuitionistic fuzzy sets that incorporate the truth(T), indeterminacy(I), and

falsity(F) membership grades for each element. The notion was first described by Smaran-

dache [3] in 1995.

The Travelling Salesman Problem(TSP) is a mathematical challenge that has been studied

for centuries, making it difficult to attribute its invention to a single individual. However,
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the problem gained formal recognition and attention in the 1800s and 1900s as mathemati-

cians explored related concepts. The mathematician and computer scientist George Dantzig

is often credited with formulating the TSP in its modern mathematical terms in the 1950s.

He introduced the problem as a mathematical challenge and used it to illustrate the concept

of linear programming. The problem’s historical development involved the contributions of

various mathematicians across different time periods. The TSP seeks the shortest route for

a salesperson to visit cities once and return to the starting city, minimizing distance or cost.

This optimizes route planning and algorithm advancement. The TSP holds profound signifi-

cance as both a theoretical benchmark and a practical problem-solving tool. As a theoretical

challenge, it embodies the complexities of optimization and serves as a yardstick for evaluat-

ing algorithmic innovations. In practical realms, the TSP finds applications in diverse fields

like logistics, enhancing delivery routes, reducing transportation costs, and improving resource

utilization. The problem’s versatility underscores its significance in solving complex real-world

optimization challenges across industries and domains. Neutrosophic numbers(NNs) hold sig-

nificant value due to their ability to capture uncertainty, indeterminacy, and inconsistency in

a structured manner. They find applications in decision-making, expert systems, and medical

diagnoses. They enhance problem-solving by addressing imprecise or incomplete information,

enabling more informed choices in diverse domains. Single-valued triangular fuzzy neutro-

sophic numbers(SVTFNNs) carry substantial importance by seamlessly integrating triangular

fuzzy sets and neutrosophy. This fusion enhances the representation of uncertainty and inde-

terminacy in a comprehensive manner. These numbers find practical applications in decision

analysis, risk assessment, and multi-criteria decision-making, where complex and uncertain

information is prevalent. The ability of single-valued triangular fuzzy neutrosophic numbers

to model both fuzziness and neutrosophy enhances the accuracy of real-world problem-solving,

offering a versatile tool to navigate intricate situations and foster well-informed decisions. This

ignites interest and fosters a drive to explore and experiment with the single-valued triangular

fuzzy neutrosophic traveling salesman problem(SVTFNTSP).

The research landscape surrounding the Traveling Salesman Problem (TSP) and its exten-

sions, such as the Neutrosophic TSP and the Single-Valued Triangular Fuzzy Neutrosophic

TSP, has been vibrant and dynamic. Scholars have extensively explored the classic TSP, fo-

cusing on developing algorithms, heuristics, and metaheuristics to efficiently find near-optimal

solutions for larger instances. The application of the neutrosophic idea is the subject of several

recent research publications. Researchers have studied and analysed the issue of completing

an assignment in a classical, fuzzy and intuitionistic fuzzy environment [4–8]. In 2019, Prabha

and Vimala [9] used the branch and bound method to solve the triangular neutrosophic fuzzy
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assignment problem, which is demonstrated with an agricultural issue. Using the order re-

lations method, Khalifa Abd El-Wahed et al. [10–12] were able to resolve the neutrosophic

fuzzy assignment issue where the matrix elements are interval-valued trapezoidal neutrosophic

fuzzy numbers, optimized neutrosophic complex programming using lexicographic order and

resolved the interval-type fuzzy linear fractional programming problem in neutrosophic en-

vironment using a fuzzy mathematical programming approach respectively. Chakraborty et

al [13] proposed a few de-neutrosophication techniques to tackle different forms of triangular

fuzzy neutrosophic numbers and also explored on their applications to various fields. A new

ranking function of triangular fuzzy neutrosophic numbers put forward by Das et al. [14] and

applied to integer programming. Pranab et al. [15] aggregated of triangular fuzzy neutrosophic

set information and extended its applications to multi-attribute decision-making. Broumi [16]

handled the shortest path problem by using interval valued trapezoidal and triangular fuzzy

neutrosophic numbers. The neutrosophic inventory backorder problem was examined by Mul-

lai and Surya [17] and resolved using triangular fuzzy neutrosophic numbers. Smarandache [18]

established the Delphi method for evaluating scientific research proposals in a neutrosophic en-

vironment. Researchers [19–22] have investigated diverse real-life issues under a neutrosophic

environment and resolved the same with the use of single-valued triangular fuzzy neutrosophic

matrix games and by developing different score functions for both ranking and turning the

neutrosophic data into the appropriate crisp data. Subasri and Selvakumari [23, 24] used the

ones assignment method and the branch and bound approach, to solve the travelling salesman

problem in a neutrosophic environment utilising triangular and trapezoidal fuzzy distances

respectively. S. Dhouib [25] used the Dhouib-Matrix-TSP1 Heuristic to optimise the traveling

salesman problem for single-valued triangular fuzzy neutrosophic numbers. Broumi et al. [26]

analyzed and answered the shortest path problem under triangular fuzzy neutrosophic envi-

ronment. Abduallah et al. [27, 28] conducted detailed case studies on leveraging neutrosophic

theory in appraisal decision framework and neutrosophic healthcare systems and worked to-

ward sustainable emerging economics based on industry 5.0 and a responsive resilient supply

chain based on industry 5.0 respectively. Maissam and Smarandache [29] explored about the

use of neutrosophic methods of operation research in the management of corporate work. Ud-

din et al. [30] introduced a new extension to the intuitionistic fuzzy metric-like spaces. Saleem

et al. [31] stablished a unique solution for the integral equations through the intuitionistic

extended fuzzy b-metric-like spaces. Ishtiaq, Ahmed et al. [32–35] resolved the non-linear

fractional differential equations and guarenteed the existence of some fixed point results in

neutrosophic metric, orthogonal neutrosophic metric, generalized neutrosophic metric and neu-

trosophic metric-like spaces respectively.

Here comes a small discussion about the limitations along with the gaps of the existing
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algorithms related to this study, which has lead to the need for using the proposed algo-

rithm for solving the single-valued triangular fuzzy neutrosophic traveling salesman problem

(SVTFNTSP), its new features and the potential advantages it can offer over existing methods,

including the differences between the proposed and the existing methodologies are as follows :

Certainly, various algorithms have been proposed for solving the Traveling Salesman Problem

(TSP), and each method comes with its own set of advantages and disadvantages. Some of the

above mentioned methods involve exploring all possible permutations, leading to exponential

time complexity. It becomes impractical for large TSP instances. Some optimization algo-

rithms for TSP, can exhibit exponential growth in the number of nodes explored, which makes

it slow for large instances. They can be complex and computationally intensive, particularly

when dealing with more intricate TSP instances or constraints. A few methods rely on mass

values associated with cities, which may not always be readily available or meaningful for real-

world TSP applications. Some methods are based on the assumption that the TSP instance

can be represented by a special matrix, which may not hold for all real-world scenarios. It

limits its applicability. Many TSP algorithms, including those mentioned, can be sensitive to

the initial solution or starting point, potentially leading to suboptimal results if a good ini-

tial solution is not found. Some of these methods may struggle with scalability when applied

to large TSP instances due to their exponential nature or computational demands. Certain

methods may be better suited to specific types of TSP instances and may not perform well on

variations or extensions of the problem. Some methods may not guarantee finding the optimal

solution but rather provide approximate solutions. For certain applications requiring exact

solutions, this can be a limitation. Analyzing the computational complexity and convergence

properties of these methods can be challenging, making it difficult to predict their performance

in advance. Some TSP algorithms may not be easily parallelizable, limiting their ability to

take advantage of modern multi-core processors and distributed computing environments.

The proposed methodology of this research article brings an innovative approach by incor-

porating the range(a measure of dispersion) to problem-solving. It might have the potential

to discover high-quality solutions that outperform existing methods. They employ strategies

that are not present in traditional approaches. It is designed to adapt to different problem

characteristics and constraints. This adaptability can make it suitable for a wider range of

SVTFNTSP instances without extensive customization. It can handle larger and more com-

plex SVTFNTSP instances efficiently. This can be crucial for solving real-world problems of

practical significance. It might achieve faster convergence to solutions, potentially reducing the

overall computation time for solving SVTFNTSP instances. It has the potential to generalize

to other related problems or domains beyond NTSP. This versatility can make them valuable

for addressing a broader set of challenges. It is designed to be robust to variations in problem
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instances or data. They may be less sensitive to changes in input parameters, leading to more

reliable performance. In rapidly evolving research fields, using the proposed mathodology can

provide a competitive advantage by accessing the latest advancements in optimization and

computational intelligence. While existing methods may have established parameter settings

and heuristics, the proposed mathodology offers opportunities for customization to better fit

the specific requirements and constraints of a given NTSP instance.

This research article explores the single-valued triangular fuzzy neutrosophic traveling sales-

man problem (SVTFNTSP), which is represented using a single-valued triangular fuzzy neu-

trosophic distance matrix (SVTFNDM) with SVTFNNs as its fundamental components. This

formulation takes into account both uncertainty and imprecision. The study involves the

development and investigation of this specialized problem, introducing a score function for

defuzzification and optimality assessment. Additionally, it presents a systematic stepwise ap-

proach to efficiently determine optimal solutions. The practical applicability of this approach

is demonstrated through its implementation in real-world scenarios, highlighting its feasibility

and relevance. Furthermore, through a rigorous comparative analysis with established method-

ologies, the article emphasizes the superior effectiveness and value of the proposed approach,

particularly in terms of minimizing total travel costs. This underscores its potential as a ro-

bust solution for addressing the SVTFNTSP, emphasizing its practical utility and enhanced

performance. The following is how the paper is set up : The abstract and introduction are

included in Section 1. We provide some fundamental definitions of a fuzzy set, an intuition-

istic fuzzy set, a neutrosophic set and a fuzzy number with their respective examples in the

Preliminaries section of Section 2. Neutrosophic number, properties of neutrosophic numbers,

single-valued triangular fuzzy neutrosophic number, along with their corresponding examples,

travelling salesman problem (TSP), mathematical formulation of TSP and a score function

are some of the subjects covered in Section 3. The methodology for solving the single-valued

triangular fuzzy neutrosophic travelling salesman issue is presented in Section 4 and comprises

defuzzifying the neutrosophic data before using the suggested algorithm step-by-step to get

the best answer. The proposed approach to addressing the ”Travelling Salesman Problem” in

a neutrosophic environment is illustrated in Section 5. Section 6 highlights some significant

results and discussions. Section 7 concludes the research article.

2. Preliminaries

Definition 2.1. Let X be a non-empty set. A fuzzy set A in X is characterized by its

membership function µA : X −→ [0, 1] and µA(x) is interpreted as the degree of membership

of element x in fuzzy set A, for each x ∈ X.

A = {(x, µA(x)) : x ∈ X}.
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Example :

• Variable : Happiness.

• Fuzzy Sets : Unhappy, Neutral, Happy.

• Membership Function : µ(Unhappy) = 0.2 ; µ(Neutral) = 0.5 ; µ(Happy) = 0.9.

Definition 2.2. Let X be a non empty set. An Intuitionistic fuzzy set A in X is of the form

A = {(x, µA(x), νA(x)) : x ∈ X}, where the functions µA, νA : X −→ [0, 1] define respectively

the degree of membership and the degree of non-membership for every element x ∈ X to the

set A, which is a subset of X.

0 ≤ µA(x) + νA(x) ≤ 1.

Furthermore, we have πA(x) = 1−µA(x)− νA(x) is called the intuitionistic fuzzy set index or

hesitation margin is the degree of indeterminacy of x in A where πA(x) ∈ [0, 1] i.e; πA : X −→
[0, 1] and 0 ≤ πA(x) ≤ 1 for every x∈X.

Example : IFS representing the taste ”Spicy”.

• Element : Dish X.

• Membership degree : µ(DishX) = 0.7(Dish X is ”somewhat” spicy).

• Non-membership degree : ν(DishX) = 0.3(Dish X is ”not very” not spicy).

• Hesitancy degree : π(DishX) = 0.4(There is moderate uncertainty in the classifica-

tion).

Definition 2.3. Let X be a non empty set. A Neutrosophic set A ∈ X is of the form

A = {(x, TA(x), IA(x), FA(x)) : x ∈ X}, where the functions TA, IA, FA : X −→−]0, 1[+ define

respectively the degree of truth membership, the degree of indeterminacy and the degree of

falsity membership for every element x ∈ X to the set A, which is a subset of X.

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Example : Weather Condition. Suppose we want to describe the ”cloudiness” of the sky

using a neutrosophic fuzzy set. The set may have the following degrees of membership :

• Truth-membership : 0.7(70 percent cloudy).

• Indeterminacy-membership : 0.2(20 percent uncertain).

• Falsity-membership : 0.1(10 percent not cloudy).

Definition 2.4. The fuzzy set A defined on the set of real numbers is said to be a fuzzy

number if A and its membership function µA(X) has the following properties :

(1) A is normal and convex.

(2) A is bounded.

(3) µA(X) is piece - wise continuous.
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Example : Fuzzy Number for a Distance - A fuzzy number describing the distance between

two cities in kilometers : (300, 350, 400). This indicates that the distance is most likely around

350 km, and there is some degree of membership for distances between 300 km and 400 km.

3. Neutrosophic numbers and its properties

3.1. Neutrosophic numbers

Definition 3.1. Let X be a non empty set. A Neutrosophic set A ∈ X is of the form

A = {(x, TA(x), IA(x), FA(x)) : x ∈ X}, where the functions TA, IA, FA : X −→ [0, 1] define

respectively the degree of truth membership, the degree of indeterminacy membership and the

degree of falsity membership for every element x ∈ X to the set A, which is a subset of X.

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

If in particular, X has only one element, A is called a neutrosophic number, which can be

denoted by, A = (TA(x), IA(x), FA(x)).

Example : Neutrosophic Number for a Student’s Performance Grade - Representing a neu-

trosophic fuzzy number for a student’s performance grade in a subject : (7.2, 7.5, 7.8). This

means that the student’s grade is most likely around 7.5(truth-membership degree of 7.5),

with a small level of indeterminacy(0.3) and a very low level of falsity(0.6).

3.1.1. Properties of Neutrosophic numbers

Let A,B ∈ X. Then their operations are defined as,

(1) (TA(x), IA(x), FA(x)) + (TB(x), IB(x), FB(x)) = (TA(x) + TB(x)− TA(x)TB(x), IA(x)IB(x),

FA(x)FB(x)).

(2) (TA(x), IA(x), FA(x)).(TB(x), IB(x), FB(x)) = (TA(x)TB(x), IA(x) + IB(x)− IA(x)IB(x),

FA(x) + FB(x)− FA(x)FB(x)).

(3) k(TA(x), IA(x), FA(x)) = (1− (1− TA(x))k, IA(x)k, FA(x)k), (k ∈ R).

(4) (TA(x), IA(x), FA(x))k = (TA(x)k, 1− (1− IA(x))k, 1− (1− FA(x))k)(k ∈ R).

3.1.2. Single-valued triangular fuzzy neutrosophic number

The single-valued triangular fuzzy neutrosophic number a = ((a1, a2, a3);αa, βa, γa), is a

neutrosophic set on R, whose truth, indeterminacy and falsehood membership functions are

defined as follows, respectively

Ta(x) =


αa(

x−a1
a2−a1

) for a1 ≤ x ≤ a2

αa for x = a2

αa(
a3−x
a3−a2

) for a2 < x ≤ a3

0 for otherwise

.
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Ia(x) =


a2−x+βa(x−a1)

a2−a1
for a1 ≤ x ≤ a2

βa for x = a2
x−a2+βa(a3−x)

a3−a2
for a2 < x ≤ a3

1 for otherwise

.

Fa(x) =


a2−x+γa(x−a1)

a2−a1
for a1 ≤ x ≤ a2

γa for x = a2
x−a2+γa(a3−x)

a3−a2
for a2 < x ≤ a3

1 for otherwise

.

where αa, βa, γa ∈ [0,1], a1, a2, a3 ∈ R and a1 ≤ a2 ≤ a3.

Example : Single-Valued Triangular Fuzzy Neutrosophic Number for Age - A =

((6, 7, 8); 1, 0, 0). This represents an individual’s age, where the truth-membership degree αa

is 1, indicating that the person’s age is exactly 7 years (value a2 = 7). The indeterminacy-

membership degree βa and falsity-membership degree γa are both 0, indicating that there is

no uncertainty or inconsistency associated with this age value.

The Single-valued triangular fuzzy neutrosophic number is expressed using the following

Figure 1 :

Figure 1. Single-valued triangular fuzzy neutrosophic number :

3.2. Travelling salesman problem(TSP)

3.2.1. Description of TSP

The Traveling salesman problem is a well-known algorithmic problem which consists of a

salesman and a set of destinations or points. This problem refers to the challenge of de-

termining the shortest yet effective route for a travelling salesman to visit a list of specific
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destinations. The salesman has to visit each set of destinations starting from a particular

one and returning to the same. His main objective is to find the shortest route from a set of

different routes to minimize the total travel cost or the total distance travelled.

3.2.2. Mathematical formulation of TSP

The TSP can be formulated mathematically as follows:
n∑

i=1

n∑
j=1

dij pij ,

n∑
j=1

pij = 1, i = 1, 2, ...n

n∑
i=1

pij = 1, j = 1, 2, ...n

pij = 0 or 1, i = 1, 2, ...n and j = 1, 2, ...n,

where, pij is a binary variable(if destination i and destination j are not connected, then, pij =

0, else pij = 1) and dij denotes the distance between destination i and destination j.

3.2.3. Score function

The score function as in [26] to be utilized for converting the neutrosophic data of the NTSP

into crisp data is as follows :

S(a) =
1

12
((a1 + 2a2 + a3)(2 + αa − βa − γa)), (1)

where, a = ((a1, a2, a3);αa, βa, γa) is a single-valued triangular neutrosophic number, αa, βa,

γa ∈ [0,1], a1, a2, a3 ∈ R and a1 ≤ a2 ≤ a3.

4. Methodology for solving Neutrosohic Travelling salesman problem

4.1. Defuzzification of the Neutrosophic data

The TSP is represented in the form of a matrix called the single-valued triangular fuzzy

neutrosophic distance matrix, given by,

S =



∞ s12 . . . s1n

s21 ∞ . . . s2n

. . . .

. . . .

. . . .

sn1 sn2 . . . ∞


Here, all its elements are single-valued triangular fuzzy neutrosophic numbers of the form,

a = ((a1, a2, a3);αa, βa, γa). Using the above score function (1)

S(a) = 1
12((a1 + 2a2 + a3)(2 + αa − βa − γa)),
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each element(single-valued triangular fuzzy neutrosophic number) of the NTSP matrix is de-

fuzzified, hence being converted into their respective crisp numbers.

4.2. The suggested method for solving the single-valued triangular fuzzy neutrosophic travelling

salesman problem :

The following are the steps involved in the proposed method for solving the single-valued

triangular fuzzy neutrosophic travelling salesman problem(SVTFNTSP) :

Step 1 : In the single-valued triangular fuzzy neutrosophic distance matrix(SVTFNDM), the

first step is to convert all the single-valued triangular fuzzy neutrosophic data into their cor-

responding crisp data using the specified score function (1) as mentioned above.

Step 2 : The next step is to calculate the range value of every column of the single-valued

triangular fuzzy neutrosophic distance matrix, utilizing the formula, Range = Highest value -

Least value and place it below the corresponding columns.

Step 3 : The next task is to find the highest range value from all the range values calculated

and select the corresponding column.

Step 4 : Now, choose the least value from the column selected and divide all the remaining

entries of the matrix by the selected value. Having performed these few steps, would create

certain number of ones in the matrix.

Step 5 : Try choosing exactly one 1 from each row and column. If we are able to do so, the

optimal soution(OS) is obtained. If not, draw lines such that all the 1’s are covered. Choose

the minimum element from the uncovered elements, divide all these elements by the same,

multiply the same at the intersection of the drawn lines and the other elements under the

drawn line remain the same.

Step 6 : Now, again try selecting exactly one 1 in each row and column. If possible, we can

move forward towards the optimal solution. Orelse, repeat step 5 till we are able to choose

exactly one 1 in each row and column.

Step 7 : Finally, after being able to select exactly one 1 in each row and column, since it is a

TSP, we should check whether the travelling schedule forms a cycle.,i.e., starting from city 1,

the schedule should take us through all cities and return back to city 1 itself. If that is the case,
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we have got the crisp travelling schedule(CTS) along with the total minimal crisp travelling

cost(TMCTC) or the total minimal crisp distance travelled(TMCDT) for the given single-

valued triangular fuzzy neutrosophic travelling salesman problem, which will themselves serve

as the crisp optimal solution(COS) and the crisp optimal travelling cost(COTC) or the crisp

optimal distance travelled(CODT) respectively. Orelse, exchange any two rows(cities), one

being the city to which the schedule moves from the first city(denoted by city x) and the other

row(city), having the highest average among all the other rows, except city 1 and city x(this

city is denoted by city y). Hence, exchanging these two cities x and y, would result in the crisp

travelling schedule(CTS) along with the total minimal crisp travelling cost(TMCTC) or the

total minimal crisp distance travelled(TMCDT) for the given single-valued triangular fuzzy

neutrosophic travelling salesman problem, which will themselves serve as the crisp optimal

solution(COS) and the crisp optimal travelling cost(COTC) or the crisp optimal distance

travelled(CODT) respectively(The main objective of the salesman being to find the shortest

route from a set of different routes, thereby minimizing the total travel cost or the total

distance travelled).

5. Illustrations for the suggested methodology :

5.1. Illustration 1 :

Consider the following symmetric TSP in the form of a single-valued triangular fuzzy neu-

trosophic distance matrix [25],

S =



∞ s12 s13 s14

s21 ∞ s23 s24

s31 s32 ∞ s34

s41 s42 s43 ∞


where its elements(single-valued triangular fuzzy neutrosophic numbers) are as follows :

s12 = s21 = ⟨(4, 6, 10) ; 0.8, 0.4, 0.2⟩ ; s13 = s31 = ⟨(2, 5, 9) ; 0.7, 0.6, 0.3⟩ ;
s14 = s41 = ⟨(4, 7, 9) ; 0.6, 0.6, 0.3⟩ ; s23 = s32 = ⟨(1, 5, 8) ; 0.8, 0.5, 0.2⟩ ;
s24 = s42 = ⟨(2, 7, 9) ; 0.8, 0.5, 0.4⟩ ; s34 = s43 = ⟨(1, 5, 10) ; 0.8, 0.3, 0.1⟩.

Step 1 : Using the above specified score function (1),

S(a) = 1
12((a1 + 2a2 + a3)(2 + αa − βa − γa)),

converting the given neutrosophic data into their corresponding crisp data, we obtain,

S(s12) = S(s21) =
26×2.2

12 = 57.2
12 = 4.7667 ; S(s13) = S(s31) =

21×1.8
12 = 37.8

12 = 3.15 ;

S(s14) = S(s41) =
27×1.7

12 = 45.9
12 = 3.825 ; S(s23) = S(s32) =

19×2.1
12 = 39.9

12 = 3.325 ;
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S(s24) = S(s42) =
25×1.9

12 = 47.5
12 = 3.9583 ; S(s34) = S(s43) =

21×2.4
12 = 50.4

12 = 4.2.

The finally obtained crisp equivalent TSP matrix is given by,

S =



∞ 4.7667 3.15 3.825

4.7667 ∞ 3.325 3.9583

3.15 3.325 ∞ 4.2

3.825 3.9583 4.2 ∞


Step 2 : The next step is to calculate the range value of every column of the single-valued

triangular fuzzy neutrosophic distance matrix, utilizing the formula, Range = Highest value

- Least value. The required values for the columns 1 - 4 are found to be 1.6167, 1.4417, 1.05

and 0.375 respectively.

Step 3 : Now, the highest range value from all the range values calculated is 1.6167 and the

corresponding column is selected, which is found to be column 1.

Step 4 : Next, we choose the least value 3.15 from the column 1 selected as follows :

S =



∞ 4.7667 3.15 3.825

4.7667 ∞ 3.325 3.9583

3.15 3.325 ∞ 4.2

3.825 3.9583 4.2 ∞


Then, we divide all the remaining entries of the matrix by this chosen least value. Having

performed these few steps, would create certain number of ones in the matrix, which is shown

in the following table :

S =



∞ 1.51 1 1.22

1.51 ∞ 1.06 1.26

1 1.06 ∞ 1.33

1.22 1.26 1.33 ∞


The steps having been performed so far has created quite a few number of 1’s.

Step 5 : Let us try selecting exactly one 1 in each row and column, as shown below :

S =



∞ 1.51 1 1.22

1.51 ∞ 1.06 1.26

1 1.06 ∞ 1.33

1.22 1.26 1.33 ∞
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We find that it is not possible from the above matrix. Hence in order to reach the optimal

solution, we draw lines by covering all the 1’s in the matrix, which covers row 1 and column 1.

The least element among all the uncovered elements is found to be 1.06. We divide all these

uncovered elements by 1.06, multiply the same at the intersection of the drawn lines and the

other elements under the drawn line remain the same. The resulting matrix is,

S =



∞ 1.51 1 1.22

1.51 ∞ 1 1.19

1 1 ∞ 1.25

1.22 1.19 1.25 ∞


Step 6 : Now, let us again try selecting exactly one 1 in each row and column, which is shown

below :

S =



∞ 1.51 1 1.22

1.51 ∞ 1 1.19

1 1 ∞ 1.25

1.22 1.19 1.25 ∞


Hence, from the above matrix, we find that it is not possible to select exactly one 1 in each

row and column. Thus, we cannot move forward towards the optimal solution. So, there is

need to repeat step 5. Hence, again we draw lines by covering all the 1’s in the matrix, which

covers row 3 and column 3. The least element among all the uncovered elements is found to be

1.19. We divide all these uncovered elements by 1.19, multiply the same at the intersection of

the drawn lines and the other elements under the drawn line remain the same. The resulting

matrix is,

S =



∞ 1.27 1 1.03

1.27 ∞ 1 1

1 1 ∞ 1.25

1.03 1 1.25 ∞


At this stage, we are able to select exactly one 1 in each row and column, which is shown

below :

S =



∞ 1.27 1 1.03

1.27 ∞ 1 1

1 1 ∞ 1.25

1.03 1 1.25 ∞
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Hence, we can move forward towards the optimal solution. So, there is no need to repeat step

5.

Step 7 : The crisp travelling schedule(CTS) here is, 1 → 3, 2 → 4, 3 → 1 and 4 → 2. Thus, we

find that this schedule is not a cycle. Since city 1 moves forward to city 3, city x is chosen to

be city 3. On calculating the average of all the rows(cities), city 4 is found to have the highest

average and hence is considered as city y. On exchanging cities 3 and 4(i.e.,cities x and y), we

obtain the cycle(CTS) - 1 → 3 → 2 → 4 → 1, which itself serves as the crisp optimal travelling

schedule(COTS), where the resulting matrix is,

S =



∞ 1.27 1 1.03

1.27 ∞ 1 1

1.03 1 1.25 ∞
1 1 ∞ 1.25


The total minimal crisp travelling cost(TMCTC) = Rs.(3.15 + 3.325 + 3.9583 + 3.825) =

Rs.14.2583, which itself serves as the crisp optimal travelling cost(COTC).

5.2. Illustration 2 :

Consider the following symmetric TSP in the form of a single-valued triangular fuzzy neu-

trosophic distance matrix [25],

S =



∞ s12 s13 s14 s15

s21 ∞ s23 s24 s25

s31 s32 ∞ s34 s35

s41 s42 s43 ∞ s45

s51 s52 s53 s54 ∞


where its elements(single-valued triangular fuzzy neutrosophic numbers) are as follows :

s12 = s21 = ⟨(1, 9, 20) ; 0.9, 0.4, 0.1⟩ ; s13 = s31 = ⟨(2, 9, 25) ; 0.8, 0.5, 0.1⟩ ;
s14 = s41 = ⟨(5, 7, 9) ; 0.9, 0.7, 0.1⟩ ; s15 = s51 = ⟨(2, 9, 19) ; 0.4, 0.5, 0.3⟩ ;
s23 = s32 = ⟨(3, 9, 14) ; 0.7, 0.3, 0.3⟩ ; s24 = s42 = ⟨(5, 8, 13) ; 0.6, 0.2, 0.4⟩ ;
s25 = s52 = ⟨(7, 9, 18) ; 0.4, 0.1, 0.1⟩ ; s34 = s43 = ⟨(4, 8, 17) ; 0.8, 0.5, 0.2⟩ ;
s35 = s53 = ⟨(5, 9, 15) ; 0.9, 0.6, 0.1⟩ ; s45 = s54 = ⟨(1, 9, 16) ; 0.7, 0.4, 0.3⟩.

Step 1 : Using the above mentioned score function (1),

S(A) = 1
5((a1 + a2 + a3)− (αa + βa + γa)),

converting the given neutrosophic data into their corresponding crisp data, we obtain,

S(s12) = S(s21) =
39×2.4

12 = 93.6
12 = 7.8 ; S(s13) = S(s31) =

45×2.2
12 = 99

12 = 8.25 ;
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S(s14) = S(s41) =
28×2.1

12 = 58.8
12 = 4.9 ; S(s15) = S(s51) =

39×1.7
12 = 66.3

12 = 5.525 ;

S(s23) = S(s32) =
35×2.1

12 = 73.5
12 = 6.125 ; S(s24) = S(s42) =

34×2
12 = 68

12 = 5.6667 ;

S(s25) = S(s52) =
43×2.2

12 = 94.6
12 = 7.8833 ; S(s34) = S(s43) =

37×2.1
12 = 77.7

12 = 6.475 ;

S(s35) = S(s53) =
38×2.2

12 = 83.6
12 = 6.9667 ; S(s45) = S(s54) =

35×2
12 = 70

12 = 5.8333.

The finally obtained crisp equivalent TSP matrix is given by,

S =



∞ 7.8 8.25 4.9 5.525

7.8 ∞ 6.125 5.6667 7.8833

8.25 6.125 ∞ 6.475 6.9667

4.9 5.6667 6.475 ∞ 5.8333

5.525 7.8833 6.9667 5.8333 ∞



Step 2 : The next step is to calculate the range value of every column of the single-valued

triangular fuzzy neutrosophic distance matrix, utilizing the formula, Range = Highest value

- Least value. The required values for the columns 1 - 5 are found to be 3.35, 2.2166, 2.125,

1.575 and 2.3583 respectively.

Step 3 : Now, the highest range value, from all the range values calculated is 3.35 and the

corresponding column is selected, which is found to be column 1.

Step 4 : Next, we choose the least value, 4.9 from the column 1 selected, as follows :

S =



∞ 7.8 8.25 4.9 5.525

7.8 ∞ 6.125 5.6667 7.8833

8.25 6.125 ∞ 6.475 6.9667

4.9 5.6667 6.475 ∞ 5.8333

5.525 7.8833 6.9667 5.8333 ∞



Then, we divide all the remaining entries of the matrix by this chosen least value. Having

performed these few steps, would create certain number of ones in the matrix, which is shown

in the following table :
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S =



∞ 1.5918 1.6837 1 1.1276

1.5918 ∞ 1.25 1.1565 1.6088

1.6837 1.25 ∞ 1.3214 1.4218

1 1.1565 1.3214 ∞ 1.1905

1.1276 1.6088 1.4218 1.1905 ∞


The steps having been performed so far has created quite a few number of 1’s.

Step 5 : Let us try selecting exactly one 1 in each row and column, as shown below :

S =



∞ 1.5918 1.6837 1 1.1276

1.5918 ∞ 1.25 1.1565 1.6088

1.6837 1.25 ∞ 1.3214 1.4218

1 1.1565 1.3214 ∞ 1.1905

1.1276 1.6088 1.4218 1.1905 ∞


We find that it is not possible from the above matrix. Hence in order to reach the optimal

solution, we draw lines by covering all the 1’s in the matrix, which covers row 1 and column

1. The least element among all the uncovered elements is found to be 1.1565. We divide all

these uncovered elements by 1.1565, multiply the same at the intersection of the drawn lines

and the other elements under the drawn line remain the same. The resulting matrix is,

S =



∞ 1.5918 1.6837 1 1.1276

1.5918 ∞ 1.0808 1 1.3911

1.6837 1.0808 ∞ 1.4259 1.2294

1 1 1.4259 ∞ 1.0294

1.1276 1.3911 1.2294 1.0294 ∞


Step 6 : Now, let us again try selecting exactly one 1 in each row and column, which is shown

below :

S =



∞ 1.5918 1.6837 1 1.1276

1.5918 ∞ 1.0808 1 1.3911

1.6837 1.0808 ∞ 1.4259 1.2294

1 1 1.4259 ∞ 1.0294

1.1276 1.3911 1.2294 1.0294 ∞


Hence, from the above matrix, we find that it is not possible to select exactly one 1 in each

row and column. Thus, we cannot move forward towards the optimal solution. So, there is

need to repeat step 5. Hence, again we draw lines by covering all the 1’s in the matrix, which

covers row 4 and column 4. The least element among all the uncovered elements is found

to be 1.0808. We divide all these uncovered elements by 1.0808, multiply the same at the
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intersection of the drawn lines and the other elements under the drawn line remain the same.

The resulting matrix is,

S =



∞ 1.4728 1.5578 1 1.0433

1.4728 ∞ 1 1 1.2871

1.5578 1 ∞ 1.4259 1.1375

1 1 1.4259 ∞ 1.0294

1.0433 1.2871 1.1375 1.0294 ∞


At this stage, we are not able to select exactly one 1 in each row and column, which is shown

below :

S =



∞ 1.4728 1.5578 1 1.0433

1.4728 ∞ 1 1 1.2871

1.5578 1 ∞ 1.4259 1.1375

1 1 1.4259 ∞ 1.0294

1.0433 1.2871 1.1375 1.0294 ∞


Hence, we cannot move forward towards the optimal solution. So, there is need to repeat step

5. Thus, again repeating step 5 for a few number of times, we obtain the resulting matrix,

where we are able to select exactly one 1 in each row and column, which is shown below :

S =



∞ 1.5161 1.4931 1 1

1.5161 ∞ 1 1.0433 1.2871

1.4931 1 ∞ 1.3852 1.0592

1 1.0433 1.3852 ∞ 1

1 1.2871 1.0592 1 ∞


Hence, we can move forward towards the optimal solution. So, there is no need to repeat step

5.

Step 7 : The crisp travelling schedule(CTS) here is, 1 → 4, 2 → 3, 3 → 2, 4 → 5 and 5 → 1 .

Thus, we find that this schedule is not a cycle. Since city 1 moves forward to city 4, city x is

chosen to be city 4. On calculating the average of all the rows(cities), city 3 is found to have

the highest average and hence is considered as city y. On exchanging cities 3 and 4(i.e.,cities

x and y), we obtain the cycle(CTS) - 1 → 4 → 2 → 3 → 5 → 1, which is the crisp optimal

travelling schedule(COTS), where the resulting matrix is,
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S =



∞ 1.5161 1.4931 1 1

1.5161 ∞ 1 1.0433 1.2871

1 1.0433 1.3852 ∞ 1

1.4931 1 ∞ 1.3852 1.0592

1 1.2871 1.0592 1 ∞


The total minimal crisp travelling cost(TMCTC) = Rs.(4.9 + 5.6667 + 6.125 + 6.9667 +

5.525) = Rs.29.1834, which itself serves as the crisp optimal travelling cost(COTC).

5.3. Illustration 3 :

Consider the following elements(single-valued triangular fuzzy neutrosophic numbers)

s12 = s21 = ⟨(2, 8, 18) ; 0.8, 0.3, 0.2⟩ ; s13 = s31 = ⟨(1, 9, 24) ; 0.9, 0.6, 0.2⟩ ;
s14 = s41 = ⟨(4, 9, 15) ; 0.6, 0.5, 0.2⟩ ; s15 = s51 = ⟨(3, 6, 13) ; 0.6, 0.3, 0.3⟩ ;
s23 = s32 = ⟨(6, 9, 19) ; 0.9, 0.4, 0.1⟩ ; s24 = s42 = ⟨(1, 7, 12) ; 0.9, 0.1, 0.2⟩ ;
s25 = s52 = ⟨(5, 9, 18) ; 0.9, 0.8, 0.2⟩ ; s34 = s43 = ⟨(3, 8, 23) ; 0.7, 0.1, 0.1⟩ ;
s35 = s53 = ⟨(2, 8, 32) ; 0.6, 0.5, 0.4⟩ ; s45 = s54 = ⟨(2, 5, 11) ; 0.9, 0.3, 0.1⟩.

of the symmetric TSP in the form of a single-valued triangular fuzzy neutrosophic distance

matrix [25],

S =



∞ s12 s13 s14 s15

s21 ∞ s23 s24 s25

s31 s32 ∞ s34 s35

s41 s42 s43 ∞ s45

s51 s52 s53 s54 ∞


Step 1 : Using the above specified score function (1),

S(a) = 1
12((a1 + 2a2 + a3)(2 + αa − βa − γa)),

converting the given neutrosophic data into their corresponding crisp data, we obtain,

S(s12) = S(s21) =
36×2.3

12 = 82.8
12 = 6.9 ; S(s13) = S(s31) =

43×2.1
12 = 90.3

12 = 7.525 ;

S(s14) = S(s41) =
37×1.9

12 = 70.3
12 = 5.8583 ; S(s15) = S(s51) =

28×2
12 = 56

12 = 4.6667 ;

S(s23) = S(s32) =
43×2.4

12 = 103.2
12 = 8.6 ; S(s24) = S(s42) =

27×2.6
12 = 70.2

12 = 5.85 ;

S(s25) = S(s52) =
42×2.5

12 = 105
12 = 8.75 ; S(s34) = S(s43) =

50×1.7
12 = 85

12 = 7.0833 ;

S(s35) = S(s53) =
23×2.5

12 = 57.5
12 = 4.7917 ; S(s45) = S(s54) =

41×1.9
12 = 77.9

12 = 6.4917.
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The finally obtained crisp equivalent TSP matrix is given by,

S =



∞ 6.9 7.525 5.8583 4.6667

6.9 ∞ 8.6 5.85 6.4917

7.525 8.6 ∞ 8.75 7.0833

5.8583 5.85 8.75 ∞ 4.7917

4.6667 6.4917 7.0833 4.7917 ∞


Step 2 : The next step is to calculate the range value of every column of the single-valued

triangular fuzzy neutrosophic distance matrix, utilizing the formula, Range = Highest value -

Least value. The required values for the columns 1 - 5 are found to be 2.8583, 2.75, 1.6667,

3.9583 and 2.4166 respectively.

Step 3 : Now, the highest range value, from all the range values calculated is 3.9583 and the

corresponding column is selected, which is found to be column 4.

Step 4 : Next, we choose the least value, 4.7917 from the column 4 selected, as follows :

S =



∞ 6.9 7.525 5.8583 4.6667

6.9 ∞ 8.6 5.85 6.4917

7.525 8.6 ∞ 8.75 7.0833

5.8583 5.85 8.75 ∞ 4.7917

4.6667 6.4917 7.0833 4.7917 ∞


Then, we divide all the remaining entries of the matrix by this chosen least value. Having

performed these few steps, would create certain number of ones in the matrix, which is shown

in the following matrix :

S =



∞ 1.44 1.5704 1.2226 0.9739

1.44 ∞ 1.7948 1.2209 1.3548

1.5704 1.7948 ∞ 1.8261 1.4782

1.2226 1.2209 1.8261 ∞ 1

0.9739 1.3548 1.4782 1 ∞


The steps having been performed so far has created quite a few number of 1’s.

Step 5 : Let us try selecting exactly one 1 in each row and column, as shown below :
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S =



∞ 1.44 1.5704 1.2226 0.9739

1.44 ∞ 1.7948 1.2209 1.3548

1.5704 1.7948 ∞ 1.8261 1.4782

1.2226 1.2209 1.8261 ∞ 1

0.9739 1.3548 1.4782 1 ∞


We find that it is not possible from the above matrix. Hence in order to reach the optimal

solution, we draw lines by covering all the 1’s in the matrix, which covers row 4 and column

4. The least element among all the uncovered elements is found to be 1.2209. We divide all

these uncovered elements by 1.2209, multiply the same at the intersection of the drawn lines

and the other elements under the drawn line remain the same. The resulting matrix is,

S =



∞ 1.1795 1.2863 1.0014 0.9739

1.1795 ∞ 1.4701 1 1.3548

1.2863 1.4701 ∞ 1.4957 1.4782

1.0014 1 1.4957 ∞ 1

0.9739 1.3548 1.4782 1 ∞


Step 6 : Now, let us again try selecting exactly one 1 in each row and column, which is shown

below :

S =



∞ 1.1795 1.2863 1.0014 0.9739

1.1795 ∞ 1.4701 1 1.3548

1.2863 1.4701 ∞ 1.4957 1.4782

1.0014 1 1.4957 ∞ 1

0.9739 1.3548 1.4782 1 ∞


Hence, from the above matrix, we find that it is not possible to select exactly one 1 in each

row and column. Thus, we cannot move forward towards the optimal solution. So, there is

need to repeat step 5. Hence, again repeating step 5 for a few number of times, we obtain the

resulting matrix, where we are able to select exactly one 1 in each row and column, which is

shown below :

S =



∞ 1.2111 1 1.1444 1

1.2111 ∞ 1 1 1.2172

1 1 ∞ 1.1324 1.0054

1.1444 1 1.1324 ∞ 1

1 1.2172 1.0054 1 ∞
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Hence, we can move forward towards the optimal solution. So, there is no need to repeat step

5.

Step 7 : The crisp travelling schedule(CTS) here is, 1 → 3, 2 → 4, 3 → 2, 4 → 5 and 5 → 1.

Since we find that this schedule is a cycle(CTS), 1 → 3 → 2 → 4 → 5 → 1, there is no need to

exchange the cities and hence this itself serves as the crisp optimal travelling schedule(COTS),

where the resulting matrix is the same as that obtained in the previous step which is,

S =



∞ 1.2111 1 1.1444 1

1.2111 ∞ 1 1 1.2172

1 1 ∞ 1.1324 1.0054

1.1444 1 1.1324 ∞ 1

1 1.2172 1.0054 1 ∞


The total minimal crisp travelling cost(TMCTC) = Rs.(7.525 + 8.6 + 5.85 + 4.7917 +

4.6667) = Rs.31.4334, which itself serves as the crisp optimal travelling cost(COTC).

Remark : We observe that the TTC for illustrations 1, 2 and 3 obtained here using the

proposed method(PM) differ from those of the corresponding illustrations acquired using the

Dhouib-Matrix-TSP1(DM-TSP1) heuristic in [25]. The following section discusses further

insights and justifications on the SVTFNTSP that was taken into account in this study.

6. Results and Discussions :

The following tables 1, 2 and figures 2, 3, 4 and 5 provide the solutions of the SVTFNTSP ob-

tained using the proposed approach and a comparison of the solutions of the proposed approach

here to solve the SVTFNTSP, with an existing method(EM : Dhouib-Matrix-TSP1(DM-TSP1)

heuristic) as in [25]. Some of the significant results are shown in these tables and figures.

Table 1. Solutions of the SVTFNTSP obtained using the proposed method :

Illustrations CTS TMCTC

Illustration 1 1 → 3 → 2 → 4 → 1 Rs.14.2583

Illustration 2 1 → 4 → 2 → 3 → 5 → 1 Rs.29.1834

Illustration 3 1 → 3 → 2 → 4 → 5 → 1 Rs.31.4334

• The table 1 showcases the crisp travelling schedule(CTS), the total minimal crisp

travelling cost(TMCTC) of all the above considered three illustrations, obtained using

the proposed method.
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Table 2. Comparison of the solutions of the SVTFNTSP obtained using the

proposed approach, with an existing method as in [25] :

Illustrations CTS of the EM CTS of the PM TMCTC of the

EM

TMCTC of the

PM

Illustration 1 1 → 4 → 2 → 3 → 1 1 → 3 → 2 → 4 → 1 Rs.14.27 Rs.14.2583

Illustration 2 1 → 5 → 3 → 2 → 4 → 1 1 → 4 → 2 → 3 → 5 → 1 Rs.29.20 Rs.29.1834

Illustration 3 1 → 3 → 2 → 4 → 5 → 1 1 → 3 → 2 → 4 → 5 → 1 Rs.31.44 Rs.31.4334

• The table 2 compares the CTS and TMCTC calculated using the proposed

method(PM) with those of the three illustrations, expressed as real-world prob-

lems taken into consideration above, using an existing method(EM : Dhouib-Matrix-

TSP1(DM-TSP1) heuristic) as in [25].

• Thus, the above comparison ensures that for the given SVTFNTSPs, the CTS and the

TMCTC found by applying the proposed method itself serve as the COTS and the

COTC, respectively.

• The same above conclusions can be drawn from the figure 2 which provides an overview

of the solutions(COTCs) to the three SVTFNTSPs that were previously taken into

consideration and solved using the previously mentioned existing method with that of

the same three problems using the proposed method. It does so by demonstrating a

sizable amount of variation in the values of the solutions, through the usage of the

proposed method.
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Figure 2. An overview of the optimal solutions determined by Dhouib-Matrix-

TSP1 heuristic and the proposed approach :

• Figure 2 also shows that the solutions to the aforementioned three SVTFNTSPs ob-

tained using the proposed method(represented by the orange line) are better(in terms
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of TMCTC/COTC) than those obtained using the other existing method(represented

by the blue line) as in [25]. It also presents an even more clear picture of how the solu-

tion of the SVTFNTSPs under consideration using the proposed method(represented

by the orange line) is better than that of the same SVTFNTSPs using the other ex-

isting method(represented by the blue line) as in [25], by providing just a glimpse of

an enlarged version of the sample with a considerable amount of variation in the total

minimal crisp travelling costs(TMCTC/COTC).

• Knowing that a few classical methods are frequently used to test the optimality of the

given TSP and provide better solutions than the other methods, we can infer from

the figure 2 that the proposed method also seems to fulfil the same purpose (thereby

providing the best possible solution (or) making the total crisp travelling costs as

minimal as possible) by giving lower values for the TMCTC of the three SVTFNTSPs

taken into consideration in this article, when compared to the Hungarian method thus

making it as the COTS along with the COTC.

Figure 3. A comparison of the CTS(COTS) of illustration 1 using the existing

method as in [25] with that of the proposed approach :

• The figure 3 presents a glimpse of the comparison of the (CTS/COTS) of illustration

1 using an existing method(1 → 4 → 2 → 3 → 1)(represented by red arrow line) as

in [25] and the proposed method(1 → 3 → 2 → 4 → 1)(represented by violet arrow

line) of the SVTFNTSP taken into consideration respectively.

• The figure 4 presents a glimpse of the comparison of the (CTS/COTS) of illustration

2 using an existing method(1 → 5 → 3 → 2 → 4 → 1)(represented by red arrow line)

as in [25] and the proposed method(1 → 4 → 2 → 3 → 5 → 1)(represented by violet

arrow line) of the SVTFNTSP taken into consideration respectively.
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Figure 4. A comparison of the CTS(COTS) of illustration 2 using the existing

method as in [25] with that of the proposed approach :

Figure 5. A comparison of the CTS(COTS) of illustration 3 using the existing

method as in [25] with that of the proposed approach :

• The figure 5 presents a glimpse of the comparison of the (CTS/COTS) of illustration

3 using an existing method(1 → 3 → 2 → 4 → 5 → 1)(represented by red arrow line)

as in [25] and the proposed method(1 → 3 → 2 → 4 → 5 → 1)(represented by violet

arrow line) of the SVTFNTSP taken into consideration respectively.

• Exploring the single-valued triangular fuzzy neutrosophic travelling salesman prob-

lem(SVTFNTSP) comes with several limitations. Firstly, the SVTFNTSP deals with

highly uncertain and ambiguous data, making it a complex problem to model and

solve accurately. The lack of precise and standardized mathematical representations
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for triangular fuzzy neutrosophic data can hinder the development of robust optimiza-

tion algorithms. Additionally, as SVTFNTSP is an extension of the classic traveling

salesman problem(TSP), it inherits its NP-hard complexity, meaning that finding an

optimal solution within a reasonable timeframe can be computationally infeasible for

large-scale instances. This limitation poses challenges in real-world applications where

the problem size can be substantial. Moreover, the availability of real-world data in

the form of single-valued triangular fuzzy neutrosophic numbers can be scarce, lead-

ing to difficulties in validating and benchmarking proposed algorithms. The lack of

well-established benchmarks and standardized datasets makes it challenging to assess

the performance of different approaches effectively. Furthermore, the SVTFNTSP in-

troduces additional computational overhead compared to solving the traditional TSP,

which can limit its practical applicability. Despite its potential to model uncertainty

more accurately, the SVTFNTSP remains an area of ongoing research with open chal-

lenges in algorithm development and real-world implementation.

• Having incorporated the range(a measure of dispersion) in the proposed methodology

for solving the single-valued triangular fuzzy neutrosophic traveling salesman problem

(SVTFNTSP) can offer some potential advantages as follows : The single-valued trian-

gular fuzzy neutrosophic sets in SVTFNTSP are designed to represent indeterminacy

and uncertainty in the problem. The range provides a simple way to quantify the spread

or variability of neutrosophic values, which can help capture the degree of uncertainty

associated with each data point or city in the SVTFNTSP instance. The range is a

straightforward measure to calculate and understand. It can be easily computed for

neutrosophic values without the need for complex mathematical operations, making it

accessible to a wide range of users. The range can be used to create visual represen-

tations of neutrosophic data, such as scatter plots or graphs, which can help analysts

and decision-makers gain insights into the distribution of data points and associated

uncertainty. In some cases, decision-makers may have preferences for solutions with

lower or higher ranges. For example, they may prioritize routes with less variability

in travel times. In such cases, the range can be used as an additional criterion for

evaluating and ranking solutions. The range can be used to compare the dispersion

of neutrosophic values across different cities or nodes in the NTSP. This can aid in

identifying cities with higher or lower levels of uncertainty, which may influence route

planning or decision-making. Analyzing how changes in neutrosophic values affect the

range can help assess the sensitivity of the NTSP solution to variations in data, which

can be valuable in robust decision-making. The range can complement other measures
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of dispersion and central tendency, such as standard deviation and mean, providing a

more comprehensive view of the data distribution and uncertainty.

7. Conclusion

The SVTFNTSP presents a significant expansion of the traditional TSP, incorporating

uncertainty and ambiguity through SVTFNS. This innovative framework empowers decision-

makers to more effectively address complex real-world situations by portraying uncertain data

more realistically. By taking into account various perspectives, it aids in a better comprehen-

sion of the preferences of decision-makers, ultimately enhancing the problem-solving process.

Researchers have devised innovative algorithms and methodologies to tackle the intricate na-

ture of single-valued triangular fuzzy neutrosophic data and resolve the same. They have ex-

plored a range of optimization techniques, heuristic approaches, and metaheuristics to achieve

efficient solutions and enhance computational efficiency. Consequently, this research article

earnestly endeavors to assist in this regard by investigating the characteristics, types, and

resolutions of SVTFNTSP, introducing a novel method for its resolution. To demonstrate its

efficiency and significance, the proposed approach is juxtaposed with specific classical methods.

The proposed method consistently demonstrates its effectiveness, advantages, and potential

through comparative analyses against alternative methods. It offers reductions in overall trav-

elling costs, optimal solutions, and computational simplification while maintaining solution

quality. By effectively leveraging SVTFNS, it adeptly captures uncertainty and ambiguity,

yielding assignment solutions that approach optimality. Its ability to strike a balance between

accuracy and computational efficiency makes it the preferred choice for real-world problem-

solving, particularly in scenarios demanding time and resource optimization. This reduction

in computational complexity and overall travelling cost enhances its applicability to larger and

more complex SVTFNTSP instances, spanning diverse domains such as supply chain manage-

ment, transportation, and logistics, where cost-effective solutions hold paramount importance.

Notwithstanding its merits, ongoing research endeavors to fine-tune algorithms and address

scalability issues, broadening its scope to fully realize its potential. Overall, SVTFNTSP of-

fers a valuable and versatile approach for addressing uncertainty in decision-making, making

a substantial contribution to real-world problem-solving across a spectrum of domains while

advancing the field of decision theory and optimization techniques.

8. Future work

Future work intends to explore the application of this proposed technique to handle

the multi-objective travelling salesman problem and to provide decision-makers in logistics,

transportation, and related domains with a robust and effective tool for solving real-world
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SVTFNTSP instances, recognizing the considerable ongoing research in this field. The ex-

pected outcome of this future work is that, this approach would have the potential to signif-

icantly improve route planning and delivery services for sales personnel, resource allocation,

portfolio optimization, environmental planning, project scheduling and cost optimization while

considering the intricate nature of uncertain data. It will bring forth a range of advantages,

a broad scope of applications, and diverse uses. This method offers the advantage of optimiz-

ing decision-making by efficiently balancing multiple conflicting objectives, making it ideal for

scenarios where objectives include minimizing travel distance, cost, and time while maximiz-

ing customer satisfaction or other pertinent criteria. Its scope extends across industries such

as supply chain management, tourism, manufacturing, urban planning, logistics and telecom-

munications, among others. This innovative approach holds the potential to revolutionize

decision-making processes, delivering more robust, efficient, and balanced solutions for com-

plex multi-objective scenarios in various domains. It would contribute to advancing the field

of decision-making under uncertainty and further demonstrate the versatility and applicability

of single-valued triangular fuzzy neutrosophic techniques in solving practical problems. Such

an endeavor would augment the findings and benefit the domain of single-valued triangular

fuzzy neutrosophic research.
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ABSTRACT. The interval complex single-valued neutrosophic hypersoft set (Ξ-set), together with its features

and set-theoretic operations, is a new mathematical structure that is discussed in this article. For managing

ambiguous and uncertain knowledge, the suggested structure integrates the interval complex single-valued neu-

trosophic set and hypersoft set. These two elements have already been regarded as trustworthy settings. The

first component has the ability to manage information on interval and periodic types, while the second offers a

multi-argument domain for concurrent consideration of numerous sub-attributes. The Ξ-set is used to aggregate

these sets, allowing for the fusion of various qualities and any related uncertainty. The resultant aggregated sets,

which take into account both the attribute values and the associated uncertainty, give a thorough representation

of the decision aspect. To assist in decision-making, the method calculates how similar several options are to the

optimum option using a distance-based similarity metric. By contrasting the combined sets of several options,

the system determines the best option based on the specified selection criteria. Decision-makers can evaluate how

changing attribute values may influence their choices using the suggested strategy’s endorsement of sensitivity

analysis. The efficacy of the recommended decision-support mechanism is demonstrated through a case study

with a real-world choice dilemma. The results show how well the framework can handle ambiguity and uncer-

tainty while providing decision-makers with meaningful insights and encouraging rational choices. Finally, the

multi-attribute decision-support system based on aggregations of Ξ-set provides a reliable framework for dealing

with difficult choice issues that are characterized by ambiguity and vagueness.

Keywords: complex fuzzy set; interval-valued fuzzy set; complex fuzzy soft set; complex intuitionistic fuzzy soft

set; complex neutrosophic soft set; hypersoft set; complex fuzzy hypersoft set.

—————————————————————————————————————————-

1. Introduction

In the context of an η-set environment with IV settings, this research article attempts to

present the ideas of Ξ-set through the use of theoretical, axiomatic, graphical, and computa-

tional approaches. An algorithm is designed for DSS after conceptualizing the fundamental
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elementary conceptions of this structure. A real-world application is used to verify the pro-

posed algorithm. The existing pertinent models are explored in detail using the proposed

structure, and their generalization is elaborated under specific evaluation aspects. For ad-

dressing and modeling uncertainty, ambiguity, and imprecision in DM processes, F-sets [1]

offer a mathematical foundation. They provide more precise and robust analysis by pro-

viding more flexible and realistic modeling of real-world occurrences. Artificial intelligence,

control systems, pattern recognition, and DSSs are just a few of the areas where fuzzy sets are

used. In order to describe complicated and structured uncertainty, a CF-set [2] characterizes

a particular feature of the object’s uncertainty as a combination of A−term and P−term.

Ramot et al. [3, 4] examined the novel idea of CF-sets. The CF-set offers a framework for

mathematically expressing M f n in a set in terms of a complex number. CF-sets have been

employed in a number of applications, such as control, pattern recognition, and DM [5].

CF-sets may be used to simulate intricate connections between input characteristics and out-

put labels in pattern recognition. When designing robust controllers for control, CF-sets

can be used to account for noisy and uncertain environments [6]. The CIF-set [7, 8] enables

modeling the ambiguous information that incorporates not only the M f n but also the N f n

which are complex-valued functions. Rani and Garg [9] created DMR utilizing Hausdorff,

Euclidean, and Hamming metrics and studied numerous desirable relations based on these

measures [10]. They applied the concept in the DM process to these DMR, especially in

the fields of pattern recognition and medical diagnostics [11]. The complex-valued M f n, N f n

and I f n are all present in a CN -set. Ali & Smarandache [12] discussed CN -set along with its

set theoretic operations and applied in DM [13]. An extension of the CN -set known as the

IVCN-set [14] uses IVC entries to describe the M f n, N f n and I f n. Additional uncertainty

attributes, such as the degree of vagueness and ambiguity, can be represented using the in-

terval values. The IVCN-sets have been used for a variety of tasks, including diagnosis,

image processing, and DM. The IVCN-set has been used to simulate the decision-maker’s

level of confidence, uncertainty, and ambiguity with reference to various possibilities in the

recruitment process [15]. The IVCN-set has been used in image processing to represent the

level of uncertainty involved in picture segmentation and recognition [16]. The contributions

of scholars [17–19] are significant regarding the handling of uncertainties.

Molodtsov [20] developed S-set theory as a method for handling uncertainty in data analysis

and DM. A crisp set that permits the insertion of ambiguous or speculative information is

known as a S-set in which each element is connected to a collection of parameters that may be

used to symbolize various forms of uncertainty, including haziness, ambiguity, and inconsis-

tent behavior [21,22]. The S-sets have been employed in a wide range of disciplines, including

machine learning, image processing, DM, and data mining. The S-sets have been applied to
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DM to simulate human preferences and judgments in cases where the information is lacking

or ambiguous. Babitha & Sunil [23] established the idea of S-set relations and studied various

related terminologies. Ali et al. [24] presented a number of novel operations and aggregation

techniques on S-sets. It has been demonstrated that these new strategies enhance the preci-

sion and efficacy of DM algorithms as as well as the efficiency of pattern recognition and

clustering methods [25]. A hybrid notion known as FS-set [26] contains the characteristics

of both F-sets and S-sets. Application areas for the FS-set idea include DM [27] in order to

accommodate uncertainty and model inaccurate or incomplete data. The FS-set-based DM

techniques have been proven to be successful in enhancing DM accuracy and dependabil-

ity [28, 29]. A hybrid idea known as IFS-set [30] combines the qualities of S-set and IF-set,

was presented as a generalisation of IF-set and S-set. By using level S-sets of IFS-sets and

providing some illustrated instances, Jiang et al. [31] proposed an adaptable method to DM.

They discussed the weighted IFS-sets and their potential use in DM. A hybrid idea known

as NS-set contains the characteristics of both S-set and N -set. Maji [32] investigated the

idea of a N -set, applied it to S-sets, and developed a NS-set. He defined certain terms, per-

formed some operations, and established some characteristics for the idea ofNS-set. In order

to construct two NS-sets, Deli & Broumi [33] defined a relation on NS-sets and examined

symmetric, transitive, and reflexive NS relations.

Das & Samanta [34] presented a description of the soft complex set and soft complex num-

ber and studied some of its fundamental aspects utilizing F numbers with the idea of S-set

along with the development of distinction and integration of S functions. The CFS-sets were

explored, and the aggregation operation in these sets was examined by Thirunavukarasu et

al. [35]. They provided an example of prospective applications that illustrate how aggregation

processes may be successfully used in numerous situations with uncertainties and periodicity.

The idea of CIFS-set presented by Kumar & Bajaj [36] allowed several parametrization tech-

niques to tackle real-world issues involving MCDM. As a combination of CF-sets, N -sets,

and S-sets, Smarandache et al. [37] presented the CNS-set model with some of its funda-

mental set-theoretic operations. To illustrate the usefulness of this paradigm, a DM scenario

incorporating ambiguous and subjective information was suggested.

1.1. Research Gap and Motivation

In the area of DM under uncertainty, η-set theory [38], a development of S-set theory,

has attracted interest. By enabling items to partially belong to distinct sets, it overcomes the

drawbacks of conventional set theory. η-sets offer an adaptable framework for simulating

ambiguous and uncertain information, enabling more sensible and reliable DM procedures.

η-set applications have been studied in a variety of fields, including healthcare, finance, and
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environmental management. The literature emphasizes the usefulness and adaptability of

η-sets in handling uncertainty, providing interesting directions for further study and real-

world applications. Different hybrids with graphical settings [39–41], vague settings [42] and

refined settings [43–45] were developed by researchers. However, the contributions of the

researchers [46–49] are also worth noting regarding decision-making in hypersoft settings.

Decision-making and uncertainty modeling have both seen a considerable increase in interest

in the idea of IVFHS-sets [50]. The IVFHS-sets offer an adaptable framework to deal with

ambiguity and uncertainty in DM. Numerous fields, including healthcare [51], banking, sup-

ply chain management, environmental assessment, and human resource management [52],

have been the subject of research into these applications. According to the research, they

are good at capturing and depicting ambiguous and imprecise information, empowering

decision-makers to make well-informed decisions. The development of aggregation oper-

ations, similarity indices, and DM techniques based on IVFHS-sets has been the subject of

studies. According to the research, IVFHS-sets are useful tools for handling difficult DM

situations with uncertainty and ambiguity. Additional study is required to investigate their

applicability in certain fields and to improve their computational efficiency.

The term ”interval data” refers to situations in real life when data may be categorized as a

set with values ranging from minimum to maximum (lower limits to upper bounds). Data

may contain repeating values that correspond to specified parameters. Data repetition can be

caused by a variety of sources. This sort of data is classified as periodic. There is currently no

adequate model in the literature on fuzzy sets that deals with

(1) sub-attribute values in the form of DAVS,

(2) data of the interval type, and

(3) PN-data, all at once.

The model Ξ-set is being characterized to satisfy the literary requirement. By using the

MAA-mapping, which uses the power set of the starting universe (a collection of IF-sets

or N -sets) as its domain and maps it to the CP of the DAVS, case (1) is addressed. Consid-

eration of the lower and upper bounds of reported intervals is used to address scenario (2),

whereas case (3) involves the inclusion of the A−term and P−terms into the Argand plane.

1.2. Paper Layout

The first section summarizes the literature review and study background of Ξ-set. In Sec-

tion 2, some elementary notions from literature are discussed to understand the basic knowl-

edge. In Section 3, the novel concept of Ξ-set is initiated along with the aggregation opera-

tions of Ξ-set. A DSS is developed in Section 4 for product selection based on the aggregation
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TABLE 1. Abbreviation and notation table.

Full name Abbreviation Full name Abbreviation

Fuzzy set F-set Interval-valued F-set IVF-set

set of all IVF-sets C (d) Intuitionistic F-set IF-set

Complex IF-set CIF-set Neutrosophic set N-set

Interval N-set IN-set Complex F-set CF-set

Interval-valued CIF-set IVCIF-set Complex SVN-set CSVN-set

Complex SVNS-set CSVNS-set

Interval CSVN-set ICSVN-set Soft set S-set

Fuzzy S-set FS-set Intuitionistic FS-set IFS-set

Hypersoft set η-set Interval CSVN-hypersoft set Ξ-set

Universal Set d Power set of d P(d)

Single-argument approximate

mapping

SAA-

mapping

Multi-argument approximate

mapping

MAA-

mapping

Membership function M f n Non-membership function N f n

Indeterminacy function I f n Approximate function A f n

Amplitude term A−term Phase term P−term

Periodic nature data term PN-data Interval valued data IV-data

Cartesian product CP Set of parameters SP

Disjoint attribute valued set DAVS Interval-valued CFS-set IVCFS-set

Notation Description Notation Description

Unit closed interval I v [0, 2π]

Collection of all sub-intervals of

I

I(I )

of Ξ-set aided by the proposed algorithm, and illustrated with the help of a diagram. A com-

parative analysis of the proposed model with some selected modes has been provided in

Section 5 to check its efficiency. Finally, Section 6 concludes the research work.

2. Preliminaries

In this section, Table 1 demonstrates the abbreviations and notations used in this research

article.

Definition 2.1. [1] A F-set A over d is characterized by a M f n: Am, where Am : d → I is

given by A = {(ğ, Am(ğ))|ğ ∈ d} , which assigns a real value within I to each ğ ∈ d and

Am(ğ) is M f n of ğ ∈ d.

Definition 2.2. [2] A CF-set E over d can be written as E = {(ğ, Em(ğ)) : ğ ∈ d} ={(
ğ, Am (ğ) eiPm(ğ)

)
: ğ ∈ d

}
, where Em represents M f n of E with Am (ğ) ∈ I as A−term

and Pm (ğ) ∈ v as P−term and i =
√
−1.
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Definition 2.3. [7, 8] A CIF-set F over d can be written as

F = {(ğ, Fm(ğ), Fn(ğ)) : ğ ∈ d} =
{(

ğ, Am (ğ) eiPm(ğ), An (ğ) eiPn(ğ)
)

: ğ ∈ d
}

where Fm and Fn represents M f n and N f n of F with Am (ğ) ∈ I as A−term and Pm (ğ) ∈ v

as P−term of M f n and An (ğ) ∈ I as A−term and Pn (ğ) ∈ v as P−term of N f n such

that 0 ≤ Fm + Fn ≤ 1 and hesitancy grade Fh (ğ) = 1−Fm (ğ)−Fn (ğ).

Definition 2.4. [12] A CSVN-set G over d can be written as

G = {(ğ, Gm(ğ), Gn(ğ), Gi(ğ)) : ğ ∈ d} ={(
ğ, Am (ğ) eiPm(ğ), An (ğ) eiPn(ğ), Ai (ğ) eiPi(ğ)

)
: ğ ∈ d

}
where Gm, Gn and Gi represents M f n, N f n and I f n of G with Am (ğ) ∈ I as A−term,

Pm (ğ) ∈ v as P−term of M f n, An (ğ) ∈ I as A−term, Pn (ğ) ∈ v as P−term of N f n and

Ai (ğ) ∈ I as A−term, Pi (ğ) ∈ v as P−term of I f n such that 0 ≤ Gm + Gn + Gi ≤ 3.

Definition 2.5. [20] A S-set (H, ∆) over d is a set of order pairs such that H : ∆ → P(d) is

given by

(H, ∆) = {(δ, H(ğ)) : δ ∈ ∆, ğ ∈ d, H(ğ) ∈P(d)} .

Definition 2.6. [37] A set (N, ∆) is called CSVNS-set over d if N is a parameterized gather-

ing of CSVN-subsets of d and is given by N : ∆→P(d) and is defined by

(N, ∆) =
{(

δ,
{

Nm(ğ), Nn(ğ), Ni(ğ)

ğ

})
: ğ ∈ d, δ ∈ ∆

}
where Nm(ğ) = Am (ğ) eiPm(ğ) represents the M f n of N with Am (ğ) ∈ I as A−term,

Pm (ğ) ∈ v as P−term, Nn(ğ) = An (ğ) eiPn(ğ) represents the N f n of N with An (ğ) ∈ I

as A−term, Pn (ğ) ∈ v as P−term and Ni(ğ) = Ai (ğ) eiPi(ğ) represents the I f n of N with

Ai (ğ) ∈ I as A−term, Pi (ğ) ∈ v as P−term such that 0 ≤Nm(ğ)+Nn(ğ)+Ni(ğ) ≤ 3.

Definition 2.7. [38] (O, ∆) is called η-set over d if O : ∆→P(d) where ∆ =
n
∏
i=1

∆i such that

∆i are DAVS of sub-parameters, each set corresponding to a unique parameters δ ∈ ∆.

Definition 2.8. If CSVN (d) denotes the set containing all SVN -subsets over d then SVNHS-

set (R, ∆) is obtained when the mapping O : ∆ → P(d) in Definition 2.7 is replaced by

R : ∆→ CSVN(d) and all other conditions of Definition 2.7 are remained valid.

Definition 2.9. [56] If CCSVN (d) represents the collection of all CSVN-subsets over d then

CSVNHS-set (V, ∆) is obtained when the mapping O : ∆ → P(d) in Definition 2.7 is

replaced by V : ∆→ CCSVN (d) and all other conditions of Definition 2.7 are remained valid.
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3. Interval complex single-valued neutrosophic hypersoft set (Ξ-set)

This section develops the fundamental theory of the Ξ-set.

Definition 3.1. An ICSVN-set GI over d can be written as

GI = {(ğ, 〈GIm(ğ), GIn(ğ), GIi(ğ)〉) : ğ ∈ d} ={(
ğ, Am (ğ) eiPm(ğ), An (ğ) eiPn(ğ), Ai (ğ) eiPi(ğ)

)
: ğ ∈ d

}
.

where GIm represents M f n of GI with Am (ğ) ∈ I(I ) as A−term, Pm (ğ) ⊆ v as

P−term, GIn represents N f n with An (ğ) ∈ I(I ) as A−term, Pn (ğ) ⊆ v as P−term

and GIi represents I f n with Ai (ğ) ∈ I(I ) as A−term, Pi (ğ) ⊆ v as P−term and

0 ≤ inf GIm + inf GIn + inf GIi ≤ sup GIm + sup GIn + sup GIi ≤ 3.

Definition 3.2. Consider two ICSVN-sets

GI
1 =

{(
ğ, GI

1
m (ğ) , GI

1
n (ğ) , GI

1
i (ğ)

)
: ğ ∈ d

}
and

GI
2 =

{(
ğ, GI

2
m (ğ) , GI

2
n (ğ) , GI

2
i (ğ)

)
: ğ ∈ d

}
having respective M f n: GI

1
m (ğ) = A1

m (ğ) eiPm
1(ğ), GI

2
m (ğ) = A2

m (ğ) eiPm
2(ğ), N f n:

GI
1
n (ğ) = A1

n (ğ) eiPn
1(ğ), GI

2
n (ğ) = A2

n (ğ) eiPn
2(ğ) and I f n: GI

1
i (ğ) = A1

i (ğ) eiPi
1(ğ),

GI
2
i (ğ) = A2

i (ğ) eiPi
2(ğ).

(1). The union of GI
1 and GI

2 is again an ICSVN-set GI
3 = GI

1 ∪GI
2, where its M f n, N f n

and I f n∀ğ ∈ d can be given by

GI
3
m(ğ) = A3

m (ğ) eiPm
3(ğ) =

[
max

(
inf A1

m (ğ) , inf A2
m (ğ)

)
,

max
(
sup A1

m (ğ) , sup A2
m (ğ)

) ] e
i

[
max(inf Pm

1(ğ),inf Pm
2(ğ)),

max(sup Pm
1(ğ),sup Pm

2(ğ))

]
.

GI
3
n(ğ) = A3

n (ğ) eiPn
3(ğ) =

[
min

(
inf A1

n (ğ) , inf A2
n (ğ)

)
,

min
(
sup A1

n (ğ) , sup A2
n (ğ)

) ] e
i

[
min(inf Pn

1(ğ),inf Pn
2(ğ)),

min(sup Pn
1(ğ),sup Pn

2(ğ))

]

GI
3
i (ğ) = A3

i (ğ) eiPi
3(ğ) =

[
min

(
inf A1

i (ğ) , inf A2
i (ğ)

)
,

min
(
sup A1

i (ğ) , sup A2
i (ğ)

) ] e
i

[
min(inf Pi

1(ğ),inf Pi
2(ğ)),

min(sup Pi
1(ğ),sup Pi

2(ğ))

]
.

(2). The intersection of GI
1 and GI

2 is again an IVCIF-set GI
4 = GI

1 ∩GI
2, where its M f n,

N f n and I f n∀ğ ∈ d can be given by

GI
4
m(ğ) = A4

m (ğ) eiPm
4(ğ) =

[
min

(
inf A1

m (ğ) , inf A2
m (ğ)

)
,

min
(
sup A1

m (ğ) , sup A2
m (ğ)

) ] e
i

[
min(inf Pm

1(ğ),inf Pm
2(ğ)),

min(sup Pm
1(ğ),sup Pm

2(ğ))

]
.

GI
4
n(ğ) = A4

n (ğ) eiPn
4(ğ) =

[
max

(
inf A1

n (ğ) , inf A2
n (ğ)

)
,

max
(
sup A1

n (ğ) , sup A2
n (ğ)

) ] e
i

[
max(inf Pn

1(ğ),inf Pn
2(ğ)),

max(sup Pn
1(ğ),sup Pn

2(ğ))

]
.
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GI
4
i (ğ) = A4

i (ğ) eiPi
4(ğ) =

[
max

(
inf A1

i (ğ) , inf A2
i (ğ)

)
,

max
(
sup A1

i (ğ) , sup A2
i (ğ)

) ] e
i

[
max(inf Pi

1(ğ),inf Pi
2(ğ)),

max(sup Pi
1(ğ),sup Pi

2(ğ))

]
.

(3). The complement of GI
1 denoted by

(GI
1)c =

{(
ğ, GI

1
m

c
(ğ) , GI

1
n

c
(ğ)

)
: ğ ∈ d

}
where

GI
1
m

c
(ğ) = GI

1
n (ğ),

GI
1
n

c
(ğ) = GI

1
m (ğ) and

GI
1
i

c
=
[
1− A1

i
+
(ğ) , 1− A1

i
−
(ğ)

]
ei
[
2π−Pi

1+(ğ),2π−Pi
1−(ğ)

]
.

Definition 3.3. A set (NI, ∆) is called ICSVNS-set over d if NI is a parameterized gathering

of IVCSVN -subsets of d and is given by NI : ∆→P(d) and is defined by

(NI, ∆) =
{(

δ,
{

NIm(ğ), NIn(ğ), NIi(ğ)

ğ

})
: ğ ∈ d, δ ∈ ∆

}
where NIm(ğ) = Am (ğ) eiPm(ğ) represents the M f n of NI with Am (ğ) ∈ I(I ) as A−term,

Pm (ğ) ⊆ v as P−term, NIn(ğ) = An (ğ) eiPn(ğ) represents the N f n of NI with An (ğ) ∈
I(I ) as A−term, Pn (ğ) ⊆ v as P−term and NIi(ğ) = Ai (ğ) eiPi(ğ) represents the I f n of

NI with Ai (ğ) ∈ I(I ) as A−term, Pi (ğ) ⊆ v as P−term such that 0 ≤ inf NIm(ğ) +

inf NIn(ğ) + inf NIi(ğ) ≤ sup NIm(ğ) + sup NIn(ğ) + sup NIi(ğ) ≤ 3.

Definition 3.4. Consider two ICSVNS-sets (NI
1, ∆1) and (NI

2, ∆2) having respective

M f n: NI
1
m = A1

m (ğ) eiP1
m(ğ), NI

2
m = A2

m (ğ) eiP2
m(ğ), N f n: NI

1
n = A1

n (ğ) eiP1
n (ğ), NI

2
n =

A2
n (ğ) eiP2

n (ğ) and I f n: NI
1
i = A1

i (ğ) eiP1
i (ğ), NI

2
i = A2

i (ğ) eiP2
i (ğ)

(1) The union of (NI
1, ∆1) and (NI

2, ∆2) is again an ICSVNS-set (NI
3, ∆3) =

(NI
1, ∆1) ∪ (NI

2, ∆2), where ∆3 = ∆1 ∪ ∆2, for all δ ∈ ∆3, ğ ∈ d, and its M f n, N f n

and I f n are defined as

NI
3
m(ğ) =



NI
1
m(ğ)

NI
2
m(ğ)[

max
(
inf A1

m (ğ) , inf A2
m (ğ)

)
,

max
(
sup A1

m (ğ) , sup A2
m (ğ)

) ] e
i

[
max(inf Pm

1(ğ),inf Pm
2(ğ)),

max(sup Pm
1(ğ),sup Pm

2(ğ))

]
i f δ ∈ ∆1\∆2

i f δ ∈ ∆2\∆1

i f δ ∈ ∆1 ∩ ∆2

NI
3
n(ğ) =



NI
1
n(ğ)

NI
2
n(ğ)[

min
(
inf A1

n (ğ) , inf A2
n (ğ)

)
,

min
(
sup A1

n (ğ) , sup A2
n (ğ)

) ] e
i

[
min(inf Pn

1(ğ),inf Pn
2(ğ)),

min(sup Pn
1(ğ),sup Pn

2(ğ))

]
i f δ ∈ ∆1\∆2

i f δ ∈ ∆2\∆1

i f δ ∈ ∆1 ∩ ∆2
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NI
3
i (ğ) =



NI
1
i (ğ)

NI
2
i (ğ)[

min
(
inf A1

i (ğ) , inf A2
i (ğ)

)
,

min
(
sup A1

i (ğ) , sup A2
i (ğ)

) ] e
i

[
min(inf Pi

1(ğ),inf Pi
2(ğ)),

min(sup Pi
1(ğ),sup Pi

2(ğ))

]
i f δ ∈ ∆1\∆2

i f δ ∈ ∆2\∆1

i f δ ∈ ∆1 ∩ ∆2

(2) The restricted union of (NI
1, ∆1) and (NI

2, ∆2) denoted by (NI
4, ∆4) = (NI

1, ∆1) ∪R

(NI
2, ∆2), where ∆4 = ∆1 ∩∆2, for all δ ∈ ∆4, ğ ∈ d, its M f n, N f n and I f n are defined

as

NI
4
m(ğ) =

[
max

(
inf A1

m (ğ) , inf A2
m (ğ)

)
,

max
(
sup A1

m (ğ) , sup A2
m (ğ)

) ] e
i

[
max(inf Pm

1(ğ),inf Pm
2(ğ)),

max(sup Pm
1(ğ),sup Pm

2(ğ))

]

NI
4
n(ğ) =

[
min

(
inf A1

n (ğ) , inf A2
n (ğ)

)
,

min
(
sup A1

n (ğ) , sup A2
n (ğ)

) ] e
i

[
min(inf Pn

1(ğ),inf Pn
2(ğ)),

min(sup Pn
1(ğ),sup Pn

2(ğ))

]

NI
4
i (ğ) =

[
min

(
inf A1

i (ğ) , inf A2
i (ğ)

)
,

min
(
sup A1

i (ğ) , sup A2
i (ğ)

) ] e
i

[
min(inf Pi

1(ğ),inf Pi
2(ğ)),

min(sup Pi
1(ğ),sup Pi

2(ğ))

]

(3) The intersection of (NI
1, ∆1) and (NI

2, ∆2) denoted by (NI
5, ∆5) = (NI

1, ∆1) ∩
(NI

2, ∆2), where ∆5 = ∆1 ∩ ∆2, for all δ ∈ ∆5, ğ ∈ d its M f n, N f n and I f n is de-

fined as

NI
5
m(ğ) =

[
min

(
inf A1

m (ğ) , inf A2
m (ğ)

)
,

min
(
sup A1

m (ğ) , sup A2
m (ğ)

) ] e
i

[
min(inf Pm

1(ğ),inf Pm
2(ğ)),

min(sup Pm
1(ğ),sup Pm

2(ğ))

]

NI
5
n(ğ) =

[
max

(
inf A1

n (ğ) , inf A2
n (ğ)

)
,

max
(
sup A1

n (ğ) , sup A2
n (ğ)

) ] e
i

[
max(inf Pn

1(ğ),inf Pn
2(ğ)),

max(sup Pn
1(ğ),sup Pn

2(ğ))

]

NI
5
i (ğ) =

[
max

(
inf A1

i (ğ) , inf A2
i (ğ)

)
,

max
(
sup A1

i (ğ) , sup A2
i (ğ)

) ] e
i

[
max(inf Pi

1(ğ),inf Pi
2(ğ)),

max(sup Pi
1(ğ),sup Pi

2(ğ))

]

(4) The extended intersection of (NI
1, ∆1) and (NI

2, ∆2) denoted by (NI
6, ∆6) =

(NI
1, ∆1) ∩E (NI

2, ∆2), where ∆6 = ∆1 ∪ ∆2, for all δ ∈ ∆6, ğ ∈ d, its M f n, N f n

and I f n are defined as

NI
6
m(ğ) =



NI
1
m(ğ)

NI
2
m(ğ)[

min
(
inf A1

m (ğ) , inf A2
m (ğ)

)
,

min
(
sup A1

m (ğ) , sup A2
m (ğ)

) ] e
i

[
min(inf Pm

1(ğ),inf Pm
2(ğ)),

min(sup Pm
1(ğ),sup Pm

2(ğ))

]
i f δ ∈ ∆1\∆2

i f δ ∈ ∆2\∆1

i f δ ∈ ∆1 ∩ ∆2
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NI
6
n(ğ) =



NI
1
n(ğ)

NI
2
n(ğ)[

max
(
inf A1

n (ğ) , inf A2
n (ğ)

)
,

max
(
sup A1

n (ğ) , sup A2
n (ğ)

) ] e
i

[
max(inf Pn

1(ğ),inf Pn
2(ğ)),

max(sup Pn
1(ğ),sup Pn

2(ğ))

]
i f δ ∈ ∆1\∆2

i f δ ∈ ∆2\∆1

i f δ ∈ ∆1 ∩ ∆2

NI
6
i (ğ) =



NI
1
i (ğ)

NI
2
i (ğ)[

max
(
inf A1

i (ğ) , inf A2
i (ğ)

)
,

max
(
sup A1

i (ğ) , sup A2
i (ğ)

) ] e
i

[
max(inf Pi

1(ğ),inf Pi
2(ğ)),

max(sup Pi
1(ğ),sup Pi

2(ğ))

]
i f δ ∈ ∆1\∆2

i f δ ∈ ∆2\∆1

i f δ ∈ ∆1 ∩ ∆2

(5) The complement of (NI
1, ∆1) denoted by (NI

1, ∆1)
c = (NI

1c
,¬∆1) such that NI

1c
:

¬∆1 → P(d) is given by M f n:NI
1
m

c
(ğ) = NI

1
n (ğ), N f n: NI

1
n

c
(ğ) = NI

1
m (ğ) and

I f n: NI
1
i

c
(ğ) =

[
1− sup NI

1
i (ğ) , 1− inf NI

1
i (ğ)

]
(6) The relative complement of (NI

1, ∆1) denoted by (NI
1, ∆1)

r where (NI
1, ∆1)

r =

(NI
1r

, ∆1) such that NI
1r

: ∆1 → P(d) is given by M f n:NI
1
m

r
(ğ) = NI

1
n (ğ), N f n:

NI
1
n

r
(ğ) = NI

1
m (ğ) and I f n: NI

1
i

r
(ğ) =

[
1− sup NI

1
i (ğ) , 1− inf NI

1
i (ğ)

]
Definition 3.5. Let Y1,Y2,Y3, .....,Yn are DAVS of n distinct attributes ζ1, ζ2, ζ3, ....., ζn re-

spectively for n ≥ 1,Y = Y1 ×Y2 ×Y3 × .....×Yn and ∆(δ) be a ICSVNS-set defined over

d∀δ = (β1, β2, β3, ....., βn) ∈ Y . Then, the Ξ-set, denoted by ΩY = (∆,Y), over d is given as

ΩY = {(δ, ∆(δ)) : δ ∈ Y , ∆(δ) ∈ CIV(d)} ,

where ∆ : Y → CIV(d), ∆(δ) = ∅ i f δ /∈ Y is an ICSVN A f n of ΩY and

∆(δ) = 〈[←−∆ 1(δ),
−→
∆ 1(δ)], [

←−
∆ 2(δ),

−→
∆ 2(δ)], [

←−
∆ 3(δ),

−→
∆ 3(δ)]〉 with lower bounds and upper

bounds of M f n, N f n and I f n are described as folow

(a) (
←−
∆ 1(δ) =

←−γ ei
←−
θ ,
−→
∆ 1(δ) =

−→γ ei
−→
θ ) for the M f n of ΩY

(b) (
←−
∆ 2(δ) =

←−γ ei
←−
θ ,
−→
∆ 2(δ) =

−→γ ei
−→
θ ) for the N f n of ΩY

(c) (
←−
∆ 3(δ) = ←−γ ei

←−
θ ,
−→
∆ 3(δ) = −→γ ei

−→
θ ) for the I f n of ΩY and ∆(δ) is known as δ-member of

Ξ-set ∀δ ∈ Y .

Note:
⊎

IVCNHS denotes the collection of all Ξ-sets.

Definition 3.6. The complement of Ξ-set (∆,Y), denoted by (∆,Y)c is stated as

(∆,Y)c = {(ň, (∆(ň))c) : ň ∈ Y , (∆(ň))c ∈ CIV(d)}

where the A−term and P−terms of the M f n (∆(ň))c are given by

(←−γ Y (ň))c = 1−←−γ Y (ň), (−→γ Y (ň))c = 1−−→γ Y (ň) and

(
←−
θ Y (ň))c = 2π −←−θ Y (ň), (

−→
θ Y (ň))c = 2π −−→θ Y (ň) respectively.
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TABLE 2. Tabular Representation of §Λ.

§Λ ň1 ň2 ... ňr

ğ1


ℵ1

XΛ(ň1)
(ğ1),

ℵ2
XΛ(ň1)

(ğ1),

ℵ3
XΛ(ň1)

(ğ1)



ℵ1

XΛ(ň2)
(ğ1),

ℵ2
XΛ(ň2)

(ğ1),

ℵ3
XΛ(ň2)

(ğ1)

 · · ·


ℵ1

XΛ(ňr)
(ğ1),

ℵ2
XΛ(ňr)

(ğ1),

ℵ3
XΛ(ňr)

(ğ1)



ğ2


ℵ1

XΛ(ň1)
(ğ2),

ℵ2
XΛ(ň1)

(ğ2),

ℵ3
XΛ(ň1)

(ğ2)



ℵ1

XΛ(ň2)
(ğ2),

ℵ2
XΛ(ň2)

(ğ2),

ℵ3
XΛ(ň2)

(ğ2)

 · · ·


ℵ1

XΛ(ňr)
(ğ2),

ℵ2
XΛ(ňr)

(ğ2),

ℵ3
XΛ(ňr)

(ğ2)


...

...
...

. . .
...

ğm


ℵ1

XΛ(ň1)
(ğm),

ℵ2
XΛ(ň1)

(ğm),

ℵ3
XΛ(ň1)

(ğm)



ℵ1

XΛ(ň2)
(ğm),

ℵ2
XΛ(ň2)

(ğm),

ℵ3
XΛ(ň2)

(ğm)

 · · ·


ℵ1

XΛ(ňr)
(ğm),

ℵ2
XΛ(ňr)

(ğm),

ℵ3
XΛ(ňr)

(ğm)



Now the aggregation procedures and their conclusive systems for the Ξ-set are established

in the form of CSVNHS-set and its cardinal set that results in an aggregate F−set with

fuzzy-like features. The terms Λ,E, §Λand
⊎

ICSVNHSare are consistent with definition 3.5.

The aggregation operations developed in this research article are modified versions of aggre-

gations discussed in [62].

Definition 3.7. Let §Λ ∈ ⊎
IVCNHS. Assume that d = {ğ1, ğ2, ....., ğm} and

E = {L1,L2, .....,Ln} with L1 = {e11, e12, ....., e1n},L2 = {e21, e22, ....., e2n}, ...,Ln =

{en1, en2, ....., enn} and Λ = L1 × L2 × ..... × Ln = {ň1, ň2, ....., ňn, ....., ňnn = ňr}, each ňi

is n-tuple element of Λ and |Λ| = r = nn then §Λ can be presented in the following tabular
notation (see Table 2). Where ℵ1

XΛ(x),ℵ
2
XΛ(x) and ℵ2

XΛ(x) are M f n, I f n and N f n of XΛ respec-
tively with IVN values. If αij = (ℵ1

XΛ(ňj)
(ği),ℵ2

XΛ(ňj)
(ği),ℵ3

XΛ(ňj)
(ği)), for i = N m

1 and
j = N r

1 then Ξ-set §Λ is specifically identified by a matrix,

[αij] =


α11 α12 · · · α1r

α21 α22 · · · α2r
...

...
. . .

...

αm1 αm2 · · · αmr


is called an m× r Ξ-set matrix..

Definition 3.8. If §Λ ∈
⊎

ICSVNHS then cardinal set of §Λ is defined as

‖§Λ‖ =
{
(ℵ1
‖§Λ‖(ň),ℵ2

‖§Λ‖(ň),ℵ3
‖§Λ‖(ň))/ň : ň ∈ Λ

}
,

where ℵ1
‖§Λ‖,ℵ

2
‖§Λ‖,ℵ

3
‖§Λ‖ : Λ→ [0, 1] are M f n, I f n and N f n of ‖§Λ‖ with

ℵ1
‖§Λ‖(ň),ℵ2

‖§Λ‖(ň),ℵ3
‖§Λ‖(ň) =

|XΛ(ň)|
|d |
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TABLE 3. Tabular Representation of ‖§Λ‖.

Λ ň1 ň2 · · · ňr

ℵ‖§Λ‖


ℵ1
‖§Λ‖

(ň1),

ℵ2
‖§Λ‖

(ň1),

ℵ3
‖§Λ‖

(ň1)



ℵ1
‖§Λ‖

(ň2),

ℵ2
‖§Λ‖

(ň2),

ℵ3
‖§Λ‖

(ň2)

 · · ·


ℵ1
‖§Λ‖

(ňr),

ℵ2
‖§Λ‖

(ňr),

ℵ3
‖§Λ‖

(ňr)



respectively. These have ISVN values.

Note: The collection of all cardinal sets of Ξ-sets is denoted by ‖Cicsvnhs(d)‖ such that

‖Cicsvnhs(d)‖ ⊆ ISVN(Λ).

Definition 3.9. Assume §Λ ∈ Cicsvnhs(d), ‖§Λ‖ ∈ ‖Cicsvnhs(d)‖ and E as in Definition 3.5,

then Table 3 represents ‖§Λ‖.

If α1j = (ℵ1
‖§Λ‖(ňj),ℵ2

‖§Λ‖(ňj),ℵ3
‖§Λ‖(ňj)), for j = N r

1 then the following matrix represents

the cardinal set ‖§Λ‖,

[αij]1×r =
[

α11 α12 · · · α1r

]
and is called cardinal matrix of ‖§Λ‖.

Definition 3.10. Let §Λ ∈ Cicsvnhs(d) and ‖§Λ‖ ∈ ‖Cicsvnhs(d)‖. Then Ξ-aggregation operator

is defined as ︷︸︸︷
§Λ = Aici f hs (‖§Λ‖, §Λ)

where

Aicsvnhs : ‖Cicsvnhs(d)‖ × Cici f hs(d)→ F(d).︷︸︸︷
§Λ is called the aggregate F−set of Ξ-set §Λ.

Its M f n is given as

ℵ︷︸︸︷
§Λ

: d→ [0, 1]

with

ℵ︷︸︸︷
§Λ

(ν) =
1
|Λ| ∑

ň∈Λ

ℵCard(§Λ)(ň)ℵCard(XΛ)(ν).

Definition 3.11. Let §Λ ∈ Cicsvnhs(d) and
︷︸︸︷
§Λ be its aggregate F−set. Assume d =

{ğ1, ğ2, ....., ğm}, then
︷︸︸︷
§Λ can be presented as
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§Λ
... ℵ︷︸︸︷

§Λ

· · · · · · · · ·
... · · · · · · · · · · · ·

ğ1
... ℵ︷︸︸︷

§Λ

(ğ1)

ğ2
... ℵ︷︸︸︷

§Λ

(ğ2)

...
...

...

ğm
... ℵ︷︸︸︷

§Λ

(ğm)


If αi1 = ℵ︷︸︸︷

§Λ

(ği) for i = Nm
1 then

︷︸︸︷
§Λ is represented by the matrix,

[αi1]m×1 =


α11

α21
...

αm1


which is called aggregate matrix of

︷︸︸︷
§Λ over d.

4. Decision support system based on aggregation of Ξ-set

In light of the definitions provided in previous subsection, an algorithm is now described
in this section to facilitate the DSS, and the supplied method will be validated with the aid
of an example from a real-world scenario.

Algorithm 4.1. The brief description of algorithm 4.1 is displayed in Figure 1.

======================================================================

Algorithm : DS Algorithm Based on Aggregations of Ξ-set

======================================================================

. Start

. Input Stage:

———1. Assume d as sample space

———2. Assume E as SP

———3. Classify SP into DAVS L1,L2,L3, ...,Ln

. Construction Stage:

———4. Λ = L1 ×L2 ×L3 × ...×Ln

———5. Construct Ξ-set XΛ over d, in compliance with Definition 3.5,

. Computation Stage:

———6. Determine ‖ §Λ ‖ for A−term and P−term employing Definition 3.8,

———7. Determine
︷︸︸︷
§Λ for A−term and P−term employing Definition 3.10,

———8. Determine ℵ︷︸︸︷
§Λ

(ν) employing Definition 3.10,

. Output Stage:
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———9. Figure out the best alternative by max modulus of ℵ︷︸︸︷
§Λ

(ν) employing Definition 3.11.

.End

=======================================================================

FIGURE 1. DS Algorithm Based on Aggregations of Ξ-set.

The following real-life example is used to illustrate algorithm:

4.1. Decision support system based on aggregation of Ξ-set

In this section, a real-world scenario of product selection is discussed based on the aggre-

gation operation of Ξ-set.

Example 4.2. Suppose a person wants to purchase an LED TV from the market. He con-

sults an expert, says Mr. ”P” for the feathers that are necessary to take into consideration

while buying a TV. To provide a satisfying viewing experience, numerous elements should

be considered when choosing an LED TV’s features. Here are some essential characteristics

(attributes) that Mr. P should take into account:

Screen Size The viewing experience on an LED TV is significantly influenced by the

screen size. To choose the right screen size, take into account the room’s available

area as well as the viewing distance. A more immersive watching experience is often

provided by larger displays, but it’s essential to make sure the TV is comfortable in
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the specified space. There are many screen sizes available on the market, but Mr. P

preferred 32-inch and 42-inch sizes over others.

Display Technology Although LCD, OLED, and QLED are some of the numerous

panel types that are available, LED TVs use LED backlighting technology. Each tech-

nology has benefits and disadvantages. While QLED delivers rich colors and high

brightness levels, OLED offers great image quality with deep blacks and broad view-

ing angles. Although less expensive, LCD displays may have contrast and viewing

angle restrictions. Mr. P preferred QLED over others.

Resolution The degree of clarity and detail in the material presented on TV depends

on its resolution. Full HD (1920x1080 pixels), 4K Ultra HD (3840x2160 pixels), and 8K

Ultra HD (7680x4320 pixels) are popular resolutions. In general, higher resolutions

provide images that are more realistic and detailed, but the availability of 4K or 8K

material should also be taken into account. Due to the unavailability of 4K and 8K,

HD is taken into consideration by Mr. P.

Refresh Rate The number of times per second that the TV changes the image on the

screen is referred to as the refresh rate. A higher refresh rate, such as 120Hz or 240Hz,

helps reduce motion blur in fast-paced situations or sports by allowing for better mo-

tion handling. However, a normal refresh rate of 60Hz or 120Hz is generally enough

for everyday viewing reasons, so 60Hz and 120Hz refresh rates are preferred.

HDR (High Dynamic Range) The contrast and color accuracy of the presented in-

formation are improved with HDR technology. Find TVs that can display HDR con-

tent in formats like HDR10, Dolby Vision, or HLG (Hybrid Log-Gamma). Wider color

gamuts and more accurate highlights and shadows are possible with HDR-compatible

TVs, making for a picture that is more vivid and realistic. Mr. P ignored the HDR at-

tribute.

Smart Features Nowadays, many LED TVs include smart capabilities that provide

users access to applications, streaming services, and web surfing. When assessing a

TV’s smart features, take into account the user interface, the availability of apps, and

the simplicity of navigation. Mr. P preferred the LED’s having smart features over

others.

Connectivity Options Make sure the TV has enough connectors for connecting your

gadgets, such as HDMI ports for connecting game consoles, Blu-ray players, or sound

systems. For versatility, Mr. P takes into account the LED’s accessibility to USB ports,

Wi-Fi, Ethernet, and Bluetooth connectivity.

Sound Quality The overall satisfaction is greatly influenced by both the auditory ex-

perience and the visual experience, which are both essential. Think about the TV’s
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built-in speakers, or see whether it includes audio-enhancing features like DTS or

Dolby Atmos. Mr. P preferred LED’s with built-in speakers over others.

Energy Efficiency In general, LED TVs are energy-efficient, but to lower long-term

running expenses and environmental effects, it is important to evaluate the energy

consumption and energy-saving features of the TV. Mr. P ignored this attribute.

By considering these attributes, one can make an informed decision when buying an LED

TV that meets their specific preferences and viewing requirements. There are four types of

LED’s that are available in market that fulfill the above preferences, so they form the set: d =

{ğ1, ğ2, ğ3, ğ4}. The expert Mr. P considers a SP , E = {e1, e2, ..., {e7}. For i = 1, 2,..., 7, where

the attributes ei stand for ”screen size”, ”display technology”, ”resolution”, ”refresh rate”,

”smart features”, ”connectivity options”, and ”sound quality”, respectively Corresponding

to each attribute, the DAVS are: L1 = {e11, e12}; L2 = {e21}; L3 = {e31}; L4 = {e41, e42};
L5 = {e51}; L6 = {e61} and L7 = {e71}. Then the set Λ = L1×L2× ...×L7 = {λ1, λ2, λ3, λ4}
where each λi is a 7-tuple. We construct Ξ-sets ψΛ(λ1), ψΛ(λ2), ψΛ(λ3), ψΛ(λ4) are defined

as,

ψΛ(λ1) =


([0.2,0.5],[0.3,0.4],[0.0,0.1])ei([0.2,0.8],[0.1,0.3],[0.2,0.3])π

ğ1
, ([0.0,0.2],[0.1,0.3],[0.3,0.5])ei([0.2,0.3],[0.1,0.4],[0.1,0.3])π

ğ2
,

([0.0,0.2],[0.2,0.4],[0.0,0.2])ei([0.1,0.4],[0.1,0.4],[0.0,0.2])π

ğ3
, ([0.1,0.4],[0.4,0.5],[0.0,0.1])ei([0.1,0.3],[0.2,0.4],[0.2,0.3])π

ğ4

 ,

ψΛ(λ2) =


([0.2,0.3],[0.2,0.5],[0.1,0.2])ei([0.0,0.2],[0.1,0.4],[0.1,0.2])π

ğ1
, ([0.1,0.3],[0.2,0.5],[0.0,0.1])ei([0.1,0.3],[0.3,0.4],[0.1,0.2])π

ğ2
,

([0.0,0.1],[0.1,0.3],[0.4,0.5])ei([0.2,0.4],[0.1,0.3],[0.0,0.2])π

ğ3
, ([0.1,0.3],[0.1,0.4],[0.1,0.3])ei([0.1,0.3],[0.2,0.3],[0.2,0.4])π

ğ4

 ,

ψΛ(λ3) =


([0.2,0.4],[0.1,0.3],[0.1,0.3])ei([0.0,0.2],[0.1,0.5],[0.1,0.3])π

ğ1
, ([0.2,0.3],[0.0,0.3],[0.1,0.4])ei([0.2,0.4],[0.1,0.4],[0.1,0.2])π

ğ2
,

([0.0,0.2],[0.2,0.3],[0.1,0.5])ei([0.1,0.3],[0.2,0.4],[0.1,0.3])π

ğ3
, ([0.0,0.2],[0.1,0.3],[0.1,0.3])ei([0.1,0.3],[0.2,0.6],[0.0,0.1])π

ğ4

 ,

ψΛ(λ4) =


([0.2,0.3],[0.1,0.4],[0.1,0.3])ei([0.0,0.2],[0.2,0.5],[0.1,0.2])π

ğ1
, ([0.1,0.5],[0.2,0.3],[0.0,0.1])ei([0.1,0.3],[0.3,0.4],[0.1,0.3])π

ğ2
,

([0.1,0.3],[0.1,0.4],[0.1,0.3])ei([0.2,0.3],[0.1,0.3],[0.1,0.3])π

ğ3
, ([0.1,0.2],[0.2,0.5],[0.1,0.2])ei([0.1,0.3],[0.2,0.3],[0.0,0.3])π

ğ4

 .

Step 1: Ξ-set XΛ is written as,

XΛ =



λ1,


([0.2,0.5],[0.3,0.4],[0.0,0.1])ei([0.2,0.8],[0.1,0.3],[0.2,0.3])π

ğ1
, ([0.0,0.2],[0.1,0.3],[0.3,0.5])ei([0.2,0.3],[0.1,0.4],[0.1,0.3])π

ğ2
,

([0.0,0.2],[0.2,0.4],[0.0,0.2])ei([0.1,0.4],[0.1,0.4],[0.0,0.2])π

ğ3
, ([0.1,0.4],[0.4,0.5],[0.0,0.1])ei([0.1,0.3],[0.2,0.4],[0.2,0.3])π

ğ4


 ,λ2,


([0.2,0.3],[0.2,0.5],[0.1,0.2])ei([0.0,0.2],[0.1,0.4],[0.1,0.2])π

ğ1
, ([0.1,0.3],[0.2,0.5],[0.0,0.1])ei([0.1,0.3],[0.3,0.4],[0.1,0.2])π

ğ2
,

([0.0,0.1],[0.1,0.3],[0.4,0.5])ei([0.2,0.4],[0.1,0.3],[0.0,0.2])π

ğ3
, ([0.1,0.3],[0.1,0.4],[0.1,0.3])ei([0.1,0.3],[0.2,0.3],[0.2,0.4])π

ğ4


 ,λ3,


([0.2,0.4],[0.1,0.3],[0.1,0.3])ei([0.0,0.2],[0.1,0.5],[0.1,0.3])π

ğ1
, ([0.2,0.3],[0.0,0.3],[0.1,0.4])ei([0.2,0.4],[0.1,0.4],[0.1,0.2])π

ğ2
,

([0.0,0.2],[0.2,0.3],[0.1,0.5])ei([0.1,0.3],[0.2,0.4],[0.1,0.3])π

ğ3
, ([0.0,0.2],[0.1,0.3],[0.1,0.3])ei([0.1,0.3],[0.2,0.6],[0.0,0.1])π

ğ4


 ,λ4,


([0.2,0.3],[0.1,0.4],[0.1,0.3])ei([0.0,0.2],[0.2,0.5],[0.1,0.2])π

ğ1
, ([0.1,0.5],[0.2,0.3],[0.0,0.1])ei([0.1,0.3],[0.3,0.4],[0.1,0.3])π

ğ2
,

([0.1,0.3],[0.1,0.4],[0.1,0.3])ei([0.2,0.3],[0.1,0.3],[0.1,0.3])π

ğ3
, ([0.1,0.2],[0.2,0.5],[0.1,0.2])ei([0.1,0.3],[0.2,0.3],[0.0,0.3])π

ğ4
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Step 2: The cardinal is computed as,
‖ XΛ ‖ (A− term) ={

([0.075, 0.325], [0.250, 0.400], [0.075, 0.225])/λ1, ([0.100, 0.250], [0.150, 0.425], [0.150, 0.275])/λ2,

([0.100, 0.275], [0.100, 0.300], [0.100, 0.375])/λ3, ([0.125, 0.325], [0.150, 0.400], [0.075, 0.225])/λ4

}
‖ XΛ ‖ (P− term) ={

([0.150, 0.450], [0.125, 0.375], [0.125, 0.275])/λ1, ([0.100, 0.300], [0.175, 0.350], [0.100, 0.250])/λ2,

([0.100, 0.300], [0.150, 0.475], [0.075, 0.225])/λ3, ([0.100, 0.275], [0.200, 0.375], [0.075, 0.275])/λ4

}

Step 3: The set
︷︸︸︷
XΛ can be established as,︷︸︸︷

XΛ (A− term) =

1
4


[0.2,0.5],[0.3,0.4],[0.0,0.1] [0.2,0.3],[0.2,0.5],[0.1,0.2] [0.2,0.4],[0.1,0.3],[0.1,0.3] [0.2,0.3],[0.1,0.4],[0.1,0.3]

[0.0,0.2],[0.1,0.3],[0.3,0.5] [0.1,0.3],[0.2,0.5],[0.0,0.1] [0.2,0.3],[0.0,0.3],[0.1,0.4] [0.1,0.5],[0.2,0.3],[0.0,0.1]

[0.0,0.2],[0.2,0.4],[0.0,0.2] [0.0,0.1],[0.1,0.3],[0.4,0.5] [0.0,0.2],[0.2,0.3],[0.1,0.5] [0.1,0.3],[0.1,0.4],[0.1,0.3]

[0.1,0.4],[0.4,0.5],[0.0,0.1] [0.1,0.3],[0.1,0.4],[0.1,0.3] [0.0,0.2],[0.1,0.3],[0.1,0.3] [0.1,0.2],[0.2,0.5],[0.1,0.2]



×


[0.075,0.325],[0.250,0.400],[0.075,0.225]

[0.100,0.250],[0.150,0.425],[0.150,0.275]

[0.100,0.275],[0.100,0.300],[0.100,0.375]

[0.125,0.325],[0.150,0.400],[0.075,0.225]



=
1
4


0.2 0.0 0.2 0.1

0.2 0.1 0.2 0.3

0.0 0.4 0.1 0.1

0.0 0.1 0.0 0.1




0.000

0.050

0.075

0.010

 =


0.004000

0.005750

0.007125

0.001500


︷︸︸︷
XΛ (P− term) =

1
4


[0.2,0.8],[0.1,0.3],[0.2,0.3] [0.0,0.2],[0.1,0.4],[0.1,0.2] [0.0,0.2],[0.1,0.5],[0.1,0.3] [0.0,0.2],[0.2,0.5],[0.1,0.2]

[0.2,0.3],[0.1,0.4],[0.1,0.3] [0.1,0.3],[0.3,0.4],[0.1,0.2] [0.2,0.4],[0.1,0.4],[0.1,0.2] [0.1,0.3],[0.3,0.4],[0.1,0.3]

[0.1,0.4],[0.1,0.4],[0.0,0.2] [0.2,0.4],[0.1,0.3],[0.0,0.2] [0.1,0.3],[0.2,0.4],[0.1,0.3] [0.2,0.3],[0.1,0.3],[0.1,0.3]

[0.1,0.3],[0.2,0.4],[0.2,0.3] [0.1,0.3],[0.2,0.3],[0.2,0.4] [0.1,0.3],[0.2,0.6],[0.0,0.1] [0.1,0.3],[0.2,0.3],[0.0,0.3]



×


[0.150,0.450],[0.125,0.375],[0.125,0.275]

[0.100,0.300],[0.175,0.350],[0.100,0.250]

[0.100,0.300],[0.150,0.475],[0.075,0.225]

[0.100,0.275],[0.200,0.375],[0.075,0.275]



=
1
4


0.5 0.0 0.0 0.1

0.1 0.1 0.2 0.1

0.3 0.3 0.0 0.1

0.1 0.1 0.1 0.1




0.200

0.025

0.075

0.000

 =


0.025000

0.009375

0.016875

0.007500


︷︸︸︷
XΛ =

{
0.004000ei0.025000π/ğ1, 0.005750ei0.009375π/ğ2, 0.007125ei0.016875π/ğ3, 0.001500ei0.007500π/ğ4

}
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Assume the modulus value of max

(
ℵ︷︸︸︷

XΛ

)
= max {0.004101260482/ğ1, 0.005804159727/ğ2, 0.007246254583/ğ3, 0.001511292293/ğ4}

= 0.007246254583/ğ3. This means that the LED ğ3 may be recommended by Mr. P for

purchase.

5. Discussion and comparative analysis

Different DM algorithmic techniques have already been explored in the literature by [35–

37, 55–59, 61] that were based on hybridized complex set architectures with F−set,IF−set,

and SVN−set under S−set environment. The lack of several crucial characteristics has a

negative impact on the process of DM. For instance, considering ”screen size,” ”screen res-

olution,” ”refresh rate,” e.t.c., as only attributes in a scenario based on product selection is

insufficient because these indicators may have different values (parameters) and sub-values

(sub-parameters). It is much more appropriate to further classify these parameters into their

DAVS, as we have done in Example 4.2. The aforementioned current DM models are insuffi-

cient for IV data orMAA−mapping, however, the shortcomings of these models have been

solved in the suggested model. By taking into account MAA−mapping, the DM process

will become more dependable and trustworthy. In Table 4, a comparison analysis of pro-

posed model with relevant existing models has been carried out. The Table 4 makes it abun-

dantly clear that our proposed structure, Ξ-set is more flexible and generalized than existing

relevant models for the reason that these models [35–37, 55–59, 61] are customized for their

particular cases by excluding certain or all features among M f n, N f n, I f n, SAA-mapping,

MAA-mapping, PN−data and IV−data. The visual illustration of this generalization of our

suggested structure is shown in Figure 2.

FIGURE 2. Generalization of Proposed Structure
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TABLE 4. Comparison analysis of proposed model with some existing rele-

vant models

Authors Structure A f n Remarks

Thirunavukarasu

et al. [35]

CFS-set SAA-

mapping

Insufficient for IV data, N f n, I f n and partitioning

SP to DAVS.

Fan et al. [58] IVCFS-set SAA-

mapping

Shows inadequacy for N f n, I f n and partitioning SP

to DAVS

Selvachandran et

al. [61]

IVCFS-set SAA-

mapping

Insufficient for N f n, I f n and partitioning SP to

DAVS

Kumar et al. [36] CIFS-set SAA-

mapping

Insufficient for IV data, I f n and partitioning SP to

DAVS

Ali et al. [55] CIFS-set SAA-

mapping

Insufficient for IV data, I f n and partitioning SP to

DAVS

Khan et al. [59] CIFS-set SAA-

mapping

Insufficient for IV data, I f n and partitioning SP to

DAVS

Smarandache et al.

[37]

CSVNS-set SAA-

mapping

Insufficient for IV data and partitioning SP to

DAVS

Al-Sharqi et al. [57] ICSVNS-

set

SAA-

mapping

Shows inadequacy for partitioning SP to DAVS

Rahman et al. [56] CFHS-set MAA-

mapping

Insufficient for IV data, N f n, I f n.

Rahman et al. [56] CIFHS-set MAA-

mapping

Insufficient for IV data and I f n.

Rahman et al. [56] CSVNHS-

set

MAA-

mapping

Insufficient for IV data.

Rahman et al. [60] IVCFHS-

set

MAA-

mapping

Insufficient for N f n, I f n.

Proposed Structure Ξ-set MAA-

mapping

Addresses the restrictions and faults of preceding

structures.

5.1. Merits of proposed Study

The following are some advantages of the proposed study that are mentioned in this sub-

section:

(i) The proposed method utilized the Ξ-set concepts to address current DM difficulties.

As a result, this model has enormous potential in the realistic portrayal of computa-

tional invasions. The offered approach enables investigators to handle a real-world

situation where the periodicity of data in the form of intervals has to be addressed.
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(ii) Due to the suggested structure’s emphasis on a thorough examination of qualities

(sub-attributes) rather than a narrow focus on those traits (attributes), the DM process

is improved, adaptable, and more dependable.

(iii) It discusses the features and qualities of the current relevant structures, i.e., IVCFHS-

set, CFHS-set, CIFHS-set, CSVNHS-set, IVCFS-set, IVCIFS-set, IVCNS-set,

CFS-set, CIFS-set, CNS-set, etc., so it is not unreasonable to call it the generalized

form of all these structures.

TABLE 5. Comparison with existing models under appropriate features

Authors Structure M f nN f n I f n SAA-

mapping

MAA-

mapping

PN-

data

IV
data

Ali et al. [55] CIFS-set X X × X × X ×
Al-Sharqi et al. [57] ICSVNS-set X X X X × X X

Fan et al. [58] IVCFS-set X × × X × X X

Khan et al. [59] CIFS-set X X × X × X ×
Kumar et al. [36] CIFS-set X X × X × X ×
Smarandache et al. [37] CSVNS-set X X X X × X ×
Selvachandran et al. [61] IVCFS-set X × × X × X X

Thirunavukarasu et al.

[35]

CFS-set X × × X × X ×

Rahman et al. [56] CFHS-set X × × X X X ×
Rahman et al. [56] CIFHS-set X X × X X X ×
Rahman et al. [56] CSVNHS-set X X X X X X ×
Rahman et al. [60] IVCFHS-set X × × X X X X

Proposed Structure Ξ-set X X X X X X X

Tables 4 and 5 make it simple to determine the benefit of the proposed study. Table 4 demon-

strates the main features of the study. Table 5 demonstrates the dominant features, including

M f n, N f n, I f n, SAA-mapping, MAA-mapping, PN data, and IV data of the proposed study.

6. Conclusion

This article discusses a novel theoretical framework, the interval complex single-valued

neutrosophic hypersoft set (Xi-set), along with its characteristics and set-theoretic operations.

The recommended structure blends the interval complex single-valued neutrosophic set and

hypersoft set to regulate unclear and unsure knowledge. These two components are already

recognized for their dependable settings. While the second provides a multi-argument do-

main for the concurrent assessment of several sub-attributes, the first component can manage
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data on intervals and periodic types. The set theoretic operations, including complement, dif-

ference, union, and intersection of the Ξ-set, are also described. It has been designed to use

aggregate matrices, cardinal sets, aggregate F-sets, and aggregate matrices as aggregation

operators. A DM technique that is based on aggregation operators of the Ξ-set has been sug-

gested. To assess the model’s flexibility and validity, the suggested structure and its DSS in a

real-world scenario have been compared with some previously published relevant research.

The present work has explored the conceptual basis for a generalized model, that is, Ξ-set,

to deal with DM real-life situations by using hypothetical data. The authors have pledged

to present multiple instance reports based on the Xi-set using actual data. It is feasible to ex-

tend hybrid set structures more broadly by including expert sets, prospective fuzzy-set-like

models, fuzzy-set-like parameterized families, and algebraic structures.
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Abstract. The Neutrosophic Sets (NS) mathematical model is a sophisticated paradigm that effectively ad-

dresses uncertainty. This article provides four different methods for the extraction of visual features. The

proposal has been investigated with regard to both neutrosophic sets and single-valued NS. The article pri-

marily examines two distinct features: binary and self-intensity approaches. Following that, an attempt was

made to classify the images using machine learning techniques. The main objective of this article was exclu-

sively on supervised classification algorithms. The classification of images was performed by using Decision

Tree (DT ), Random Forest (RF ), K Nearest Neighbour (KNN),Naive Bayes (NB), and Logistic Regres-

sion (LR) algorithms. Since we have an interest in biometric images, the fingerprint image dataset was chosen

for classification. The methods proposed in that research are known to as Membership Based Neutrosophic Bi-

nary Image (MBNIB), Membership Based Neutrosophic Self Intensity Image (MBNISI), Membership Based

Single Valued Neutrosophic Binary Image (MBSV NIB), and Membership Based Single Valued Neutrosophic

Self Intensity Image (MBSV NISI). The proposal possesses a range of improvement accuracy ranging from 5%

to 58%.

Keywords: Machine learning; decision tree; random forest; KNN ; Naive Bayes; logistic regression; neutro-

sophic image; fingerprint image

—————————————————————————————————————————-

1. Introduction

Zadeh introduced the concept of the fuzzy set as a technique of addressing factors character-

ized by uncertainty. The fuzzy set employs a membership function that assigns a membership

value ranging from 0 to 1 to each component of the set. Atanssov is recognized with the devel-

opment of the intuitionistic fuzzy set, a mathematical system that assigns both membership

and non-membership functions to each element in an existing state. Consequently, it is possible
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to characterize it in a more precise and definitive way compared to a vague set. Neverthe-

less, the system’s capacity is limited to processing incomplete and uncertain data, rendering it

incapable of effectively managing the conflicting data that commonly arises in real-world sce-

narios. The NS, developed by Smarandache, introduces an innovative structure for addressing

uncertainty by assigning memberships to truth, indeterminacy, and falsity. This pioneering in-

vention represents a significant advancement in the field. In contrast to the intuitionistic fuzzy

set, it possesses a greater capacity to effectively represent indeterminate or uncertain data.

The NS has received significant attention from scholars, and its applications have been incor-

porated in several domains such as aggregation operators, decision-making, image processing,

information measures, graph theory, and algebraic structures. In view of this expansion, we

present a comprehensive overview of NS in order to offer a comprehensive understanding of

the various concepts, methodologies, and developments related to their extensions. Based on

the research findings, it has been observed that several developing countries, like India, China,

and Turkey, are actively engaged in the exploration and study of NS. The NS has garnered

significant attention from scholars due to its ability to encompass a wide range of descriptive

cases. The fuzzy appearance of the neutrosophic scope is more effectively managed by this

novel set. Considering the fact that study pertaining to the subject of neutrosophic has been

continuing for a span of two decades and is currently garnering the attention of researchers,

it is imperative that we adopt a comprehensive perspective in order to identify any prevailing

patterns of thought or scientific advancements within the realm of neutrosophic research. In

the context of this article, it is important to note that the fundamental definitions of NS,

single valued NS and image features [1–3] are regarded as introductory.

The remainder of the paper is organized as follows. Some remarkable related works are

indicated in section 2. Then in the section 3 we discussed the some preliminaries and pro-

posed methods. The section 4 explains the implementation of proposed methods in fingerprint

datasets. Finally the section 5 concludes the research findings and feature scope of the pro-

posed methods.

List of Symbols and Abbreviations

NS: Neutrosophic Sets

DT : Decision Tree

RF : Random Forest

KNN : K Nearest Neighbour

LR: Logistic Regression

NB: Naive Bayes

SVM : Support Vector Machine

Vinoth, Ezhilmaran, A membership based neutrosophic approach for supervised fingerprint
image classification

Neutrosophic Sets and Systems, Vol. 60, 2023                                                                              421



CNN : Convolutional Neural Network

MBNIB: Membership Based Neutrosophic Binary Image

MBNISI : Membership Based Neutrosophic Self Intensity Image

MBSV NIB: Membership Based Single Valued Neutrosophic Binary Image

MBSV NISI : Membership Based Single Valued Neutrosophic Self Intensity Image

L: Maximum pixel range 28

Pk0: Image padding

gµ: Mean function

gσ: Standard deviation function

gλ: Maximum function

Z+: Positive integer

ΘA: Parameter function

ξA: Cardinal of ΘA

2. Related works

The study proposed by the Abdel et al. [4] categorizes 52% of the risks related to real-

world data oil, gas, and coal analysis as high risks, 36% as medium risks, and 12% as usual

risks throughout every aspect. The paper exhibits the significant efficacy of the neutrosophic

technique in the realm of energy analysis. The utilization of neutrosophic statistical con-

cepts is used by Afzal et al. [5] within the domain of LCR meters. The paper provides an

in-depth analysis of the correlation between resistance and capacitance through the utilization

of NS at particular intervals. The article presents a notable outcome of 30.18 + 40.92IN ,

where IN is within the range of [0, 0.26]. Sampling provides the fundamental component

of the quick-switching system. Uma et al. [6] utilized a NS-based Poisson distribution and

performed a comparative analysis with a fuzzy Poisson distribution using operational charac-

teristic curves. The probability assigned by the suggested model to a set of 1200 samples is

0.45. The automated technique of identifying individuals by evaluating their behavioral and

biological characteristics is referred to as biometric recognition. Recognition and verification

are two biometric processes utilized to determine an individual’s distinct characteristics. A

finger knuckle print feature extraction approach, an entropy-based pattern histogram, and a

collection of statistical texture features, according to Heidari et al. [7], could be applied to

determine how unique a person is. When these approaches were applied to the Poly-U fin-

ger knuckle print and finger knuckle print datasets, there was a significant improvement in

performance, with increases of 94.91% and 98.5%, respectively. Mohammed et al. [8] applied

a watermark recognition technique in their research to secure the confidentiality of patient’s

healthcare information by implementing a biometric system. To protect the integrity and

confidentiality of this data, a cryptographic model has been constructed. Fingerprints, as
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a biometric characteristic, provide a high degree of specificity for the purpose of biometric

identification. Tlhoolebe et al. [9] discovered a 93% classification accuracy rate for machine

learning classifiers used to a private dataset of 20 persons ranging in age from 18 to 38 years

in their study. The classification challenge demands the use of the KNN , Support Vector

Machine (SVM), Kstar, and NB [10] algorithms. A dataset of 400 trials was used to evaluate

the suggested approach. The acquired statistics show a 37% false rejection rate and a 27%

false acceptance rate. The results shown are quite promising and point to the efficacy of the

proposed approach. The findings suggest that the method’s efficacy could be improved by

combining it with another biometric. Gender classification is one of the fields of biometric

authentication. FaceNet feature extraction algorithm was developed by Adhinata et al. [11].

For analyzing the IMDB dataset, the researchers used the KNN , SVM , and DT [12] algo-

rithms. Their research revealed that the KNN method had the highest level of accuracy, with

a 95.75% accuracy rate. A database containing a large number of 3408 fingerprint images.

Kruti et al. [13] used an SVM classifier on a private dataset to achieve an elevated level of

accuracy, reaching 97% in their study. Nguyen et al. [14] attempted to reduce the number of

comparisons in automatic fingerprint recognition systems while dealing with large databases

in their study. The researchers used a variety of techniques to accomplish this, including

RF [15], SVM , Convolutional Neural Network (CNN), and KNN . The FVC 2000, 2002,

and 2004 datasets were used to test these techniques. The algorithms were evaluated by ana-

lyzing precision, recall, accuracy, and receiver operating characteristic analysis. The results of

the research showed the RF algorithm had the highest level of accuracy among the examined

algorithms. The value expressed is 96.75%. The SVM method outperforms the competition,

with an accuracy rate of 95.5% on two-thirds of the databases. It is proposed that supervised

classification approaches such as DT , linear discriminant analysis, medium Gaussian SVM ,

KNN , and bagged tree ensemble classifiers should be employed to improve the efficiency of

fingerprint identification systems.

The authors, Noor et al. [16], applied a methodology that included image enhancement, bina-

rization, and preprocessing techniques in fingerprint analysis. They utilized medium Gaussian

SVM classifiers to achieve an impressive accuracy rate of 98.90%. Kumar et al. [17] presented

the gravitational search decision forest technique for fingerprint recognition in their research.

The suggested approach combines the gravitational search algorithm and the RF method.

To discover a suitable solution, the DT method was used to evaluate multiple hypotheses.

The method was tested using the NIST SD27 and FVC2004 datasets. The proposal had a

92.56% average recognition rate for the NIST SD27 dataset and a 96.56% recognition rate

for the FVC2004 dataset. Table 1 focuses on some of the work achieved so far to recognize

fingerprints or classify fingerprints.
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Table 1. Related work

Authour(s) Method Dataset Score (%)

Labati et al. [18] CNN DB Latent database 89.6

CNN+ KNN 46.4

CNN+NB 52.1

CNN+SVM 49.2

Kumar et al. [17] RF NIST SD27 92.56

FVC2004 96.56

Tlhoolebe et al. [9] KNN , SVM Private data 93

Jang et al. [19] DeepPore High-Resolution-Fingerprint database 93.09

Nguyen et al. [14] SVM FVC2000, FVC2002, FVC2004 95.5

Adhinata et al. [11] KNN IMDB dataset 95.75

Heidari et al. [7] Entropy-based pattern Poly-U finger knuckle print 98.5

Jeon et al. [20] VGGNet FVC2000, FVC2002, FVC2004 82.1

GNet 94.2

VGGNet + Ensemble 98.3

Saeed et al. [21] DeepFKTNet Model FingerPass, FVC2004 98.89

Nahar et al. [22] Self-Regulating CNN FVC2004 99.1

Walhazi et al. [23] Multi-Classifier System NIST SD27, NIST SD301, FVC2002 100

3. Methods

3.1. Preliminaries

Definition 3.1. Let f(x, y) = I(i, j)m×n ∈ R2 be an image, then the zero padding for

neutrosophic image Pk0 is defined with respect to h as follows: [24]

Pk0(g(x, y)) =



f(x, y) if x+ h, y + h ≤ maxm,maxn or

x− h, y − h < minm,minn

0 if x− h, y − h ≥ minm,minn or

x+ h, y + h > maxm,maxn

(1)

where k = 2N+ 1, 3 ≤ k ≤ min(m,n) and h = k mod (2).

Definition 3.2. Let f(x, y) = I(i, j)m×n be an image then the set of arithmetic mean µ values

for h of the image is defined as [24]

gµ(x, y) = {f1µ1, f2µ2, ...fcµc} (2)

fcµc =
1

h2

i+∆i∑
k=i−∆i

j+∆i∑
l=j−∆i

fc(k, l) (3)
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where c = {1, 2, ...min(m,n)} and ∆i,∆j = {1, 2, .. ≤ h}

Definition 3.3. Let f(x, y) = I(i, j)m×n be an image then the set of standard deviation σ

values for h of the image is defined as [24]

gσ(x, y) = {f1σ1, f2σ2, ...fcσc} (4)

fcσc =

√√√√ 1

h2

i+∆i∑
k=i−∆i

j+∆j∑
l=j−∆j

(fc(k, l)− fcµc)
2

where c = {1, 2, ...min(m,n)} and ∆i,∆j = {1, 2, .. ≤ h}

Definition 3.4. Let f(x, y) = I(i, j)m×n be an image then the set of maximum λ values for

h of the image is defined as

gλ(x, y) = {f1λ1, f2λ2, ...fcλc} (5)

fcλc = max(fc(i±∆i, j ±∆j))

where c = {1, 2, ...min(m,n)} and ∆i,∆j = {1, 2, .. ≤ h}

3.2. Proposed Method

The proposed method involves the utilization of a hypotheses function H(NA) to determine

the values of the neutrosophic membership components. The hypothesis function for the

neutrosophic components may vary depending on the approach chosen.

Definition 3.5 (MBNIB). Let A = I(i, j)m×n be an image then the neutrosophic compo-

nents of A is defined as NA = {TA(i, j), IA(i, j), FA(i, j)}. The Membership Based Neutro-

sophic Binary Image (MBNIB) is formulated as follows:

NIB(A) = f(A,Pk0 , NA, H(NA))

where f(A) = I(i, j)m×n

f(Pk0) = Pk0(A(i, j))

f(NA) = {f(Pk0(TA)), f(Pk0(IA)), f(Pk0(FA))}

f(H(NA)) = {H1(NA), H2(NA), H3(NA), H4(NA)}

H(NA) refers the four types of hypothesis for the neutrosophic membership functions f(NA)

H1(NA(i,j)): f(Pk0(TA(i,j))) > max[f(Pk0(IA(i,j))), f(Pk0(FA(i,j)))]

H2(NA(i,j)): f(Pk0(IA(i,j))) > max[f(Pk0(TA(i,j))), f(Pk0(FA(i,j)))] and

d1(IA) > d2(IA) where

d1(IA) = f(Pk0(IA(i,j)))− f(Pk0(TA(i,j)))

d2(IA) = f(Pk0(IA(i,j)))− f(Pk0(FA(i,j)))
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H3(NA(i,j)): f(Pk0(IA(i,j))) > max[f(Pk0(TA(i,j))), f(Pk0(FA(i,j)))] and

d1(IA) < d2(IA) where

d1(IA) = f(Pk0(IA(i,j)))− f(Pk0(TA(i,j)))

d2(IA) = f(Pk0(IA(i,j)))− f(Pk0(FA(i,j)))

H4(NA(i,j)): f(Pk0(FA(i,j))) > max[f(Pk0(TA(i,j))), f(Pk0(IA(i,j)))]

NIB(A) =

L − 1 if H1(NA(i,j)) or H2(NA(i,j))

0 if H3(NA(i,j)) or H4(NA(i,j))
(6)

Definition 3.6 (MBNISI). Let A = I(i, j)m×n be an image then the neutrosophic compo-

nents of A is defined as NA = {TA(i, j), IA(i, j), FA(i, j)}. The Membership Based Neutro-

sophic Self Intensity Image (MBNISI) is formulated as follows

NISI(A) = f(A,Pk0 , NA, H(NA), ξ(NA))

where f(A) = I(i, j)m×n

f(Pk0) = Pk0(A(i, j))

f(NA) = {f(Pk0(TA)), f(Pk0(IA)), f(Pk0(FA))}

f(H(NA)) = {H1(NA), H2(NA), H3(NA), H4(NA)}

f(ξ(NA)) = {fµ(A), fσ(A), fλ(A)}

H(NA) refers the four types of hypothesis for the neutrosophic membership functions f(NA)

H1(NA(i,j)): f(Pk0(TA(i,j))) > max[f(Pk0(IA(i,j))), f(Pk0(FA(i,j)))]

H2(NA(i,j)): f(Pk0(IA(i,j))) > max[f(Pk0(TA(i,j))), f(Pk0(FA(i,j)))] and

d1(IA) > d2(IA) where

d1(IA) = f(Pk0(IA(i,j)))− f(Pk0(TA(i,j)))

d2(IA) = f(Pk0(IA(i,j)))− f(Pk0(FA(i,j)))

H3(NA(i,j)): f(Pk0(IA(i,j))) > max[f(Pk0(TA(i,j))), f(Pk0(FA(i,j)))] and

d1(IA) < d2(IA) where

d1(IA) = f(Pk0(IA(i,j)))− f(Pk0(TA(i,j)))

d2(IA) = f(Pk0(IA(i,j)))− f(Pk0(FA(i,j)))

H4(NA(i,j)): f(Pk0(FA(i,j))) > max[f(Pk0(TA(i,j))), f(Pk0(IA(i,j)))]

NISI(A) =



f(A(i, j)) if H1(NA(i,j))

fµ(A(i, j)) if H2(NA(i,j))

| fµ(A(i, j))− fσ(A(i, j)) |∈ Z+ if H3(NA(i,j))

0 if H4(NA(i,j)) or otherwise

(7)

Definition 3.7 (MBSV NIB). Let A = I(i, j)m×n be an image then the neutrosophic compo-

nents of A is defined as SV NA = {TA(i, j), IA(i, j), FA(i, j)}. The Membership Based Single
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Valued Neutrosophic Binary Image (MBSV NIB) is formulated as follows

SVNIB(A) = f(A,Pk0 , SV NA, H(SV NA))

where f(A) = I(i, j)m×n

f(Pk0) = Pk0(A(i, j))

f(SV NA) = {f(Pk0(TA)), f(Pk0(IA)), f(Pk0(FA))}

f(H(SV NA)) = {H1(SV NA), H2(SV NA), H3(SV NA), H4(SV NA)}

H(SV NA) refers the four types of hypothesis for the neutrosophic membership functions

f(SV NA)

H1(SV NA(i,j)): f(Pk0(TA(i,j))) > max[f(Pk0(IA(i,j))), f(Pk0(FA(i,j)))]

H2(SV NA(i,j)): f(Pk0(IA(i,j))) > max[f(Pk0(TA(i,j))), f(Pk0(FA(i,j)))] and

d1(IA) > d2(IA) where

d1(IA) = f(Pk0(IA(i,j)))− f(Pk0(TA(i,j)))

d2(IA) = f(Pk0(IA(i,j)))− f(Pk0(FA(i,j)))

H3(SV NA(i,j)): f(Pk0(IA(i,j))) > max[f(Pk0(TA(i,j))), f(Pk0(FA(i,j)))] and

d1(IA) < d2(IA) where

d1(IA) = f(Pk0(IA(i,j)))− f(Pk0(TA(i,j)))

d2(IA) = f(Pk0(IA(i,j)))− f(Pk0(FA(i,j)))

H4(SV NA(i,j)): f(Pk0(FA(i,j))) > max[f(Pk0(TA(i,j))), f(Pk0(IA(i,j)))]

SVNIB(A) =

L − 1 if H1(SV NA(i,j)) or H2(SV NA(i,j))

0 if H3(SV NA(i,j)) or H4(SV NA(i,j))
(8)

Definition 3.8 (MBSV NISI). Let A = I(i, j)m×n be an image then the neutrosophic com-

ponents of A is defined as SV NA = {TA(i, j), IA(i, j), FA(i, j)}. The Membership Based Single

Valued Neutrosophic Self Intensity Image (MBSV NISI) is formulated as follows

SVNISI(A) = f(A,Pk0 , SV NA, H(SV NA), ξ(SV NA))

where f(A) = I(i, j)m×n

f(Pk0) = Pk0(A(i, j))

f(SV NA) = {f(Pk0(TA)), f(Pk0(IA)), f(Pk0(FA))}

f(H(SV NA)) = {H1(SV NA), H2(SV NA), H3(SV NA), H4(SV NA)}

f(ξ(SV NA)) = {fµ(A), fσ(A), fλ(A)}

H(SV NA) refers the four types of hypothesis for the neutrosophic membership functions

f(SV NA)

H1(SV NA(i,j)): f(Pk0(TA(i,j))) > max[f(Pk0(IA(i,j))), f(Pk0(FA(i,j)))]
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H2(SV NA(i,j)): f(Pk0(IA(i,j))) > max[f(Pk0(TA(i,j))), f(Pk0(FA(i,j)))] and

d1(IA) > d2(IA) where

d1(IA) = f(Pk0(IA(i,j)))− f(Pk0(TA(i,j)))

d2(IA) = f(Pk0(IA(i,j)))− f(Pk0(FA(i,j)))

H3(SV NA(i,j)): f(Pk0(IA(i,j))) > max[f(Pk0(TA(i,j))), f(Pk0(FA(i,j)))] and

d1(IA) < d2(IA) where

d1(IA) = f(Pk0(IA(i,j)))− f(Pk0(TA(i,j)))

d2(IA) = f(Pk0(IA(i,j)))− f(Pk0(FA(i,j)))

H4(SV NA(i,j)): f(Pk0(FA(i,j))) > max[f(Pk0(TA(i,j))), f(Pk0(IA(i,j)))]

SVNISI(A) =



f(A(i, j)) if H1(SV NA(i,j))

fµ(A(i, j)) if H2(SV NA(i,j))

| fµ(A(i, j))− fσ(A(i, j)) |∈ Z+ if H3(SV NA(i,j))

0 if H4(SV NA(i,j)) or otherwise

(9)

Figure 1. Fingerprint image visualization of proposed methods

From the Figure 1 proposal can visualize the patterns of proposed methods fingerprint

image.

3.3. Auto Hyper parameterization

Definition 3.9. Consider NIA be a neutrosophic binary image of the image A then the

Bernoulli distribution values for h convolution is calculated as follows:

Let B(i, j, h)c = {NIA(i±∆i,j±∆j)1 , NIA(i±∆i,j±∆j)2 , · · ·NIA(i±∆i,j±∆j)c} the quantity of

successive events L − 1 for h and their probability µ̄ are

B(NIA, eν1 , µ̄ν
1) =

(
c

eν1

)
(µ̄ν

1)
eν1 (1− µ̄ν

1)
c−eν1 (10)

where eν1 = eν1(B(i, j, h)c) = {nL−1(e1), nL−1(e2), · · ·nL−1(eν)}

µ̄ν
1 = µ̄ν

1(B(i, j, h)c) = µ̄(B(i, j, h)ν1)
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Definition 3.10. Consider NIA be a neutrosophic self intensity image of the image A then

the Gaussion distribution values for h convolution is calculated as follows:

Let B(i, j, h)c = {NIA(i±∆i,j±∆j)1 , NIA(i±∆i,j±∆j)2 , · · ·NIA(i±∆i,j±∆j)c} then the mean µ̄ and

standard deviation σ̄ values for h

G(NIA, µ̄cν1
, σ̄cν1 ) =

1

σ̄cν1
√
2π

e
− 1

2

(
NIA(i,j)−µ̄cν1

σ̄cν1

)2

(11)

µ̄cν1
= µ̄(B(i, j, h)cν1 )

σ̄cν1 = σ̄(B(i, j, h)cν1 )

Definition 3.11. For the neutrosophic image NIA generalized parameters are formulated as

follows

ΘA = {θ1, θ2, ...θt} (12)

where θt =

B(NIA, eν1 , µ̄ν
1) if NIA is binary image

G(NIA, µ̄cν1
, σ̄cν1 ) if NIA is self intensity image

ξA = {ξ1, ξ2, ...ξt} (13)

where ξt = ¯̄θt

3.4. Parameter tuning

For instance analysis, article suggest default classification data, digits data from the Sklearn

dataset [25].

3.4.1. Decision tree classifier

DT possesses multiple properties that can be tweaked to improve performance. Maximum

depth, minimum sample split, minimum sample leaf, and minimum weighted fraction are

among these parameters. This proposal takes into account the first three criteria for classi-

fication. The attribute “maximum depth” is in charge of determining the tree’s maximum

depth. “Tree height” refers to the maximum length of a path from a tree’s root to any of its

leaves. The minimum split refers to the minimum number of values that must be present in

a node before attempting a split operation. To clarify, if a node has only two members and

the minimum split criterion is set to 5, the node will enter a terminal state, preventing any

further efforts to split it. The minimal sample split denotes the smallest number of entities

that can exist in a tree’s leaf node. The default value is one-third of the minimum split value
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Algorithm 1 Proposed method and hyperparameters tuning algorithm

Require: Input Image database, classification labels

for i in image do

MBNIB, MBNISI

MBSV NIB, MBSV NISI

if i is MBNIB or MBSV NIB then

B(NIA, eν1 , µ̄ν
1)← Equation 10

else if i is MBNISI or MBSV NISI then

G(NIA, µ̄cν1
, σ̄cν1 )← Equation 11

end if

parameters = {ΘA, ξA}
end for

if model = DT then ← Equation 14

for i = ξA do

hp(md)

for j= ξA do

hp(msl)

for k = ΘA do

hp(mss)

model.fit(parameters = i, j, k)

end for

end for

end for

end if

if model = RF then ← Equation 15

for i = ξA do

hp(mss)

for j = ξA do

hp(msl)

for k = ΘA do

hp(mw)

model.fit(parameters = i, j, k)

end for

end for

end for

end if
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if model = LR then ← Equation 16

for i = ΘA do

hp(tol)

model.fit(parameters = i)

end for

end if

if model = NB then ← Equation 17

for i = ΘA do

hp(nb)

for j =ΘA do

hp(bin)

model.fit(parameters = i, j)

end for

end for

end if

if model = KNN then ← Equation 18

for i = ΘA do

hp(nb)

for j = ΘA do

hp(ls)

for k = ΘA do

hp(p)

model.fit(parameters = i, j, k)

end for

end for

end for

end if

specified. The following is the formulation of attribute value selection:

DT = f(X,Y, hp) (14)

where f(hp) = {hp(md), hp(mss), hp(msl)}

hp(md) = ξA(2×
√

min(m,n))

hp(mss) = ⌊| logeΘA |⌋ = ⌊| loge θt |⌋

hp(msl) = ξA mod (2h)

The utilization of least cost-complexity pruning technique is aimed at mitigating the issue

of over fitting in decision tree classification. In the context of cost-complexity pruning, the

process is carried out recursively to identify the node that exhibits the lowest level of strength
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Figure 2. Procedure flow chart of the proposed model

or effectiveness. The implementation of an efficient α, which prioritizes the pruning of nodes

associated with the intuitive reader interface α, facilitates the identification of the most vulner-

able component. The determination of ideal α values in the pruning process involves assessing

the effectiveness of α and the corresponding total leaf impurity at each stage. As the value

of α increases, a greater portion of the tree will require pruning, resulting in an elevation of

the overall impurity of the leaves. The aforementioned equation yields α values of 2 and 4 for

the dataset. The association between leaf impurity and α effectiveness for each α value in the

training and testing data is shown in Figure 3.
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(a) (b)

(c) (d)

Figure 3. Total Impurity vs effective α for training and testing data (a) α = 2

training data (b) α = 4 training data (c) α = 2 testing data (d) α = 4 testing

data

3.4.2. Random forest

The proposal addresses the RF algorithm’s three hyperparameters: minimum sample split,

minimum sample leaf, and minimum weight fraction leaf. DT previously covered the minimum

sample split and minimum sample leaf. This algorithm will also go through the smallest

weighted fraction attribute. This attribute represents the total of the weights required to be

at a leaf node. It is comparable to the minimal sample size but uses a fraction of the total

number of observations instead. However, the approach of RF attribute formulation varies
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from that of the DT . The RF algorithm’s attribute formulation is calculated below.

RF = f(X,Y, hp) (15)

where f(hp) = {hp(md), hp(mss), hp(msl)}

hp(mss) = ξA mod (
√

min(m,n)) > 0

hp(msl) = ξA mod (
√

min(m,n)) > 1

hp(mw) = − log2ΘA × 103

To test the relevance of features, evaluate the mean drop in accuracy of the forest when

the features are randomly permuted in out-of-bag samples. This measurement is also known

as permutation importance since it shows the former is experimentally biased towards unique

predictor variables. This bias stems from an unfair advantage granted by the standard impurity

functions to predictors with a large number of values in the case of a single DT . The mean loss

in accuracy is significantly biased in this case to exaggerate the impact of associated variables.

The comparison plot in Figure 4 revealed the mean decreased accuracy for the consideration

data for the traditional RF method and the novel RF method.

Figure 4. Comparison analysis of random forest feature importance

3.4.3. Logistic regression

We modify a parameter called tolerance in LR [26]. The size of a tolerance interval is

proportional to the size of the population data sample and the population variation. Depending

on the data distribution, there are two primary methods for computing tolerance intervals:

parametric and non parametric methods. Interval of metric tolerance: To describe coverage

and confidence, use knowledge of the population distribution, which is used to refer to a

Gaussian distribution. Non parametric tolerance interval: Estimate coverage and confidence

using rank statistics, which sometimes results in less precision due to a lack of knowledge about

the distribution. The comparison with the pixel relation is accomplished here by varying the
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(d) (e)

Figure 5. Logistic regression analysis (a) Classic method, (b)MBNIB-

method, (c) MBNISI -method, (d) MBSV NIB-method, (e) MBSV NISI -

method

accuracy of the pixel’s correlation coefficients. The relational analysis of the LR technique

and NS-based LR approaches is depicted in Figure 5.

LR = f(X,Y, hp) (16)

where f(hp) = {hp(tol)}

hp(tol) = (− log2ΘA)× 103

3.4.4. Naive Bayes

For data with multivariate Bernoulli distributions, Bernoulli NB applies the NB training

and classification algorithms. This indicates that several features may exist, but each appears

to be a binary-valued variable. The NB method has only two basic parameters: α and
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(a) (b) (c)

(d) (e)

Figure 6. Naive Bayes analysis (a) Classic method, (b)MBNIB-method, (c)

MBNISI -method, (d) MBSV NIB-method, (e) MBSV NISI -method

binarization values.

NB = f(X,Y, hp) (17)

where f(hp) = {hp(α), hp(bin)}

hp(α) = | (log10ΘA × 10−4)min(m,n) |

hp(bin) = − log2ΘA × 10−3

α is the Laplace smoothing technique used in NB to solve the problem of zero probability with

the prior probability and conditional probability. The estimator for a collection of observation

counts X = {x1, x2, ..xn} from a n-dimensional multinomial distribution with N trials is a

smoothed version of the counts as follows:

θi =
xi + α

N + αn
(i = 1, 2, ..n)

Using these attributes, the proposal extracts image properties such as class log priority and

feature log likelihood. Figure 6 demonstrates the performance of the analysis with the intensity

and the extracted features. Because the feature’s probability is more feasible than other ways,

the proposed binary method surpasses the classical and self-intensity methods.
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3.4.5. K nearest neighbor

KNN requires three factors into account: the number of neighborhoods, leaf size, and

power parameters. The number of neighbors refers to the number of elements that comprise

the classification in a single group. The preceding method, DT , explicitly addresses leaf size.

The Minkowski metric is referred to by the power parameter.

KNN = f(X,Y, hp) (18)

where f(hp) = {hp(nb), hp(ls), hp(p)}

hp(nb) = ξA mod (2
√

min(m,n))

hp(ls) = ξA mod (min(m,n))× 2
√

min(m,n)

hp(p) = ξA mod (
√
min(m,n))

Figure 7. K nearest neighbourhood error analysis

The expected error of neighbourhood component analysis can be expressed as

err = 1− 1

N

N∑
i,j=1

Pijyij
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where yij = 1 if yi = yj otherwise yij = 0. Figure 7 shows the error comparison analysis of

classic KNN method and proposed KNN methods for digit classification dataset. Figure 2

indicates the process manner of the proposal.

4. Results and Discussion

We use hardware that supports the 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz

2.42GHz with 16 GB RAM capacity for the analysis. We render the use of Python and

Sklearn packages for software [25] support. This article examines the Fingerprint Verification

Competition (FVC) databases from 2000 [27] , 2002 [28], and 2004 [29]. Our various databases

were collected in FVC2000 using the sensors Secure Desktop Scanner (300× 300), TouchChip

(256× 364), DF-90 (448× 478), and synthetic generation based on evolution (240× 320), all

with 500 dpi. FVC2002 uses three different scanners and the SFinGE synthetic generator to

collect fingerprints: Identix TouchView II (388×374), Biometrika FX2000 (296×560), Precise

Biometrics 100 SC (300× 300), and SFinGE v2.51 (288× 384) with a resolution of 500 dpi.

FVC2004 includes the first 100 fingers (800 images) of DB1, DB2, DB3, and DB4. TIF image

format, 256 gray-level, uncompressed image resolution (which may vary slightly depending on

the database), and 500 dpi. SD 302 [30] is a collection of distributions each containing a logical

subset of the images collected for the N2N Fingerprint Challenge. SD 302a for instance only

contains friction ridge imagery in Portable Network Graphics (PNG) encoding generated by

the Challengers. The data collection was taken from 64.7% female participants, 35.0% male

participants, and 0.3% who were not interested in revealing their gender. The labels A-H

correspond to the Challenger types IDEMIA, Advanced Optical Systems, Green Bit, Cornell

University, Jenetric, Touchless Biometric Systems, Undisclosed, and Clarkson University. The

challengers brought their fingerprint capture devices, as well as any computer hardware and

software required for fingerprint capture. Challenger wrote or obtained all software used. The

challengers brought their fingerprint capture devices, as well as any computer hardware and

software required for fingerprint capture. The Challenger obtained all of the software used.

Each Challenger was given no more than 5 minutes with a study participant, for a total of 40

minutes of Challenger collection time. Challengers were required to submit a unique image for

each finger that could be used with a commercial off-the-shelf (COTS) fingerprint identification

system. Challengers could capture more than one finger at a time, but all images must depict

only one finger per image. The accuracy of factors is used in this article to evaluate the

performance of a fingerprint classification system using machine learning methods (RF , DT ,

LR, NB, KNN). Table 2 depicts the formulation of metrics formulae.

In general, resize level is an application option to achieve a sustainable result. In this case,

the minimum size level = 5 and the maximum size level = 25. Even resize level 64 produces
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Resize level = 5, h = 3 comparative analysis; (a) SD302 accu-

racy (b) SD302 error rate (c) FVC2000 accuracy (d) FVC2000 error rate (e)

FVC2002 accuracy (f) FVC2002 error rate (g) FVC2004 accuracy (h) FVC2004

error rate

the same result as size level 25. As a result, with a large size and a more reliable size of 25,

the output duration is reduced resize level 64. As a result of the analysis, we chose 5 and 25

as resize factors.

Figure 8 represents the results of the classical method and the proposed neutrosophic basic

methods for the obtained hyperparameters. Model selection is based on the consideration of
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Table 2. Metrics

Metrics Formula

Root mean square

√∑n
i=1

(ŷi−yi)2

n

Precision True Positive
True Positive+False Positive

Recall True Positive
True Positive+False Negative

F1-score 2. Precision.Recall
Precision+Recall

Accuracy True Positive+True Negative
True Positive+True Negative+False Positive+False Negative

a high level of accuracy while having a low number of errors. MBNISI and MBSV NISI

perform very well in the SD302 database for the LR algorithm compared to the classical

LR algorithm. MBSV NISI , in particular, outperforms others in terms of accuracy and

error. The proposed KNN method 5% is less than the classical method for SD302 data,

but when considering the error rate, the classical method is extremely large. It indicates that

the reliable comfort is lower, but when considering the MBNIB error rate, it acknowledges

that the accuracy level is higher than that of the classical method. The MBNISI based

DT method performs admirably in terms of accuracy and error values. This indicates that

MBNISI is considered for classification while the DT algorithm uses a smaller image size. For

the NB algorithm, both the self-intensity methods MBNISI and MBSV NISI outperform

the classical NB method, but MBSV NISI has higher error values. While the comparison

of these two methods, the MBNISI method NB algorithm is preferable because of its high

accuracy rate and low error rate, and the MBSV NISI method RF algorithm performs better

than other methods.

In the FVC2000 dataset, proposed self-intensity methods (MBNISI , MBSV NISI) per-

form very well compared to classical NB classification, and the proposed binary methods

(MBNIB, MBSV NIB) perform very well compared to classical DT classification with a

lower error rate. The proposed binary methods (MBNIB,MBSV NIB) perform equally well

in accuracy measures for the RF and KNN algorithms. Based on their error values, the

proposed binary method has a shorter error rate than the classical approach. The proposed

method LR algorithm outperforms the classical LR algorithm for resizing level 5.

The FVC2002 and FVC2004 dataset performs in the same way as the FVC2000 dataset.

Here also proposed MBNISI , MBSV NISI method NB algorithm perform very well com-

pared to classical NB classification, and the proposed binary methods MBNIB, MBSV NIB

perform very well compared to classical DT classification with a lower error rate and the pro-

posed binary methods (MBNIB, MBSV NIB) outperform the RF and KNN algorithms in

terms of accuracy and as well as error rate. The improvement over FVC2000 data is that the
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Table 3. Result of the proposed methods

Resize = 5, h = 3

Data Algorithm Classic method MBNIB MBNISI MBSVNIB MBSVNISI

SD302

LR 83.673±0.056 81.633±0.087 84.694±0.045 81.633±0.087 88.776±0.041
KNN 100.0±0.0 95.918±0.034 90.816±0.055 95.918±0.034 91.837±0.054
DT 93.878±0.008 73.469±0.181 95.918±0.008 73.469±0.181 92.857±0.045
NB 52.041±0.324 75.51±0.132 30.612±0.341 75.51±0.132 33.673±0.342
RF 100.0±0.0 80.612±0.112 98.98±0.002 80.612±0.112 100.0±0.0

FVC2000

LR 87.755±0.176 86.735±0.123 80.612±0.23 86.735±0.123 78.571±0.229
KNN 100.0±0.0 95.918±0.049 100.0±0.0 95.918±0.049 100.0±0.0
DT 87.755±0.1 73.469±0.228 95.918±0.027 73.469±0.228 95.918±0.027
NB 28.571±0.343 81.633±0.174 28.571±0.343 81.633±0.174 28.571±0.343
RF 100.0±0.0 94.898±0.069 100.0±0.0 94.898±0.069 100.0±0.0

FVC2002

LR 88.776±0.08 73.469±0.255 92.857±0.042 73.469±0.255 87.755±0.074
KNN 100.0±0.0 64.286±0.34 100.0±0.0 64.286±0.34 100.0±0.0
DT 93.878±0.029 81.633±0.123 90.816±0.038 81.633±0.123 93.878±0.023
NB 28.571±0.343 69.388±0.311 29.592±0.341 69.388±0.311 34.694±0.306
RF 100.0±0.0 77.551±0.234 100.0±0.0 77.551±0.234 100.0±0.0

FVC2004

LR 88.776±0.08 73.469±0.255 92.857±0.042 73.469±0.255 87.755±0.074
KNN 100.0±0.0 64.286±0.34 100.0±0.0 64.286±0.34 100.0±0.0
DT 93.878±0.029 81.633±0.123 90.816±0.038 81.633±0.123 93.878±0.023
NB 28.571±0.343 69.388±0.311 29.592±0.341 69.388±0.311 34.694±0.306
RF 100.0±0.0 77.551±0.234 100.0±0.0 77.551±0.234 100.0±0.0

Resize = 25, h=3

SD302

LR 95.918±0.031 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
KNN 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
DT 92.857±0.016 90.816±0.064 90.816±0.034 90.816±0.064 90.816±0.034
NB 53.061±0.322 96.939±0.016 42.857±0.193 96.939±0.016 50.0±0.175
RF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

FVC2000

LR 100.0±0.0 96.939±0.04 97.959±0.039 96.939±0.04 97.959±0.039
KNN 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
DT 100.0±0.0 85.714±0.121 100.0±0.0 85.714±0.121 100.0±0.0
NB 28.571±0.343 84.694±0.154 52.041±0.283 84.694±0.154 53.061±0.281
RF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

FVC2002

LR 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 98.98±0.005
KNN 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
DT 98.98±0.005 76.531±0.246 94.898±0.021 76.531±0.246 94.898±0.021
NB 35.714±0.335 89.796±0.086 65.306±0.419 89.796±0.086 87.755±0.121
RN 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

FVC2004

LR 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 98.98±0.005
KNN 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
DT 98.98±0.005 76.531±0.246 94.898±0.021 76.531±0.246 94.898±0.021
NB 35.714±0.335 89.796±0.086 65.306±0.419 89.796±0.086 87.755±0.121
RF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
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Figure 9. Resize level = 25, h = 3 comparative analysis; (a) SD302 accu-

racy (b) SD302 error rate (c) FVC2000 accuracy (d) FVC2000 error rate (e)

FVC2002 accuracy (f) FVC2002 error rate (g) FVC2004 accuracy (h) FVC2004

error rate

LR model in FVC2000 is a failure model, whereas it is a successful model here. The sensor

type is the underlying cause of these variations in accuracy; moreover, the article suggests that

the proposed LR model is considerable if the scanner is an analysis factor.

For resize level 25, most of the proposed method algorithms perform similarly to the classic

method algorithm, with the difference being the error rate. From Figure 9 proposal identify
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classical methods outperform the proposed method algorithm in some scenarios. When theNB

algorithm fails on SD302 data, the proposed binary methodsMBNIB andMBSV NIB achieve

a 96% successive model. The traditional LR algorithm achieves successive scores, whereas the

proposed method algorithm achieves the maximum point of the score. KNN accomplishes

the maximum level of the score for FVC2000 data RF . When using the proposed binary

method, NB improves the accuracy level. Except for FVC2000, the other datasets failed the

DT algorithm the proposed DT performs well in FVC2000. The above discussion is based on

Table 3 observations.

The current research scope of the proposed study is limited to the analysis of fingerprint

images. In our study, various data sets were subjected to analysis. The results presented in

this part instill a sense of belief within us. The strategies discussed in the related study mostly

center around deep learning methodologies, as seen by the collective findings. Our primary

objective is to enhance the performance of classical machine learning algorithms through the

utilization of NS. The KNN model, as described, has superior performance compared to

the other models discussed in the related work section. According to Adhinata [11], the

maximum level of the score attainable by the KNN algorithm is 95%. However, the KNN

model presented in this study achieved a perfect score of 100% through the utilization of

machine learning methodologies. One notable benefit is its compatibility with both binary and

self-intensity methodologies. The proposed project effectively implemented the LR and DT

algorithms. In the study conducted by Kumar et al. [17], the best performance achieved was

reported to be 96%. However, our research endeavors led to an enhancement in performance,

resulting in a maximum achievement of 100%. Labati’s [18] proposed NB algorithm achieves

an accuracy rate of 52%. However, via our enhancements, we were able to significantly improve

its performance, resulting in an accuracy rate of 89%. The proposal effectively improves

the performance of machine learning algorithms. The classical technique column in Table 3

presents the methodology used by an ordinary machine learning algorithm.

5. Conclusion

This article proposes four new neutrosophic methods to classify fingerprint images. Further-

more, the hyperparameters is determined in order to classify the supervised algorithm. Our

primary goal is to achieve the classification of fingerprint images without an individual’s assis-

tance. This technique allows researchers to classify fingerprint images for four different datasets

without explicitly parameterizing the images. While low-range algorithms demonstrate LR ac-

curacy of 5%, DT accuracy of 8%, and NB accuracy of 58%, high-range algorithms achieve LR

accuracy of 5% and NB accuracy of 56%. However, alternative proposed method algorithms

achieve higher levels of accuracy with a lower error rate. The proposal makes a significant
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improvement in the classification performance of the images. This technique will support us in

automated, supervised classification in the manner of an AI system. This strategy will be ap-

plied in features to unsupervised and other supervised algorithms as well as, if possible, other

applications. This article claims that the proposed method’s first step will further impact the

field of digital images and accomplish desired aims. In order to decide on pixel values and

attempt to improve performance in the future, there is also a research gap. As part of our

feature work, we will extend this concept to object recognition and other types of image data.
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Abstract. This scholarly inquiry comprehensively examines Negative-Valued N eutrosophic BF-subalgebras

and Negative-Valued N eutrosophic BF-ideals in the context of BF-algebras, aiming to scrutinize their intrinsic

characteristics and reveal intricate interrelationships. Employing a systematic and rigorous approach, this study

significantly enhances our understanding of these elements within the broader context of algebraic structures,

serving as a cornerstone for the advancement of mathematical knowledge in this area and providing a robust

framework for future investigations. The findings offer valuable insights, laying the groundwork for further

research in this specialized domain and contributing significantly to ongoing academic discourse. By conducting

a thorough examination of Negative-Valued N eutrosophic BF-subalgebras and Negative-Valued N eutrosophic

BF-ideals, this study facilitates a deeper understanding within the broader landscape of algebraic structures

and plays a pivotal role in advancing mathematical knowledge in this specialized field, fostering continued

exploration and innovation.

—————————————————————————————————————————-

Keywords: BF-algebra; Negative-Valued N eutrosophic Structure; Negative-Valued

N eutrosophic BF-Subalgebra; Negative-Valued N eutrosophic BF-ideal.

1. Introduction

A groundbreaking shift in set theory, known as the introduction of fuzzy sets

by Zadeh[16] in 1995, marked a significant turning point. In 2002, Neggers and

Kim[12] introduced the innovative concept of B-algebra, leading to a multitude

of consequential outcomes. Walendziak[15] further extended this framework to

formulate BF-algebra, a more general version of B-algebra, and conducted an

B.Satyanarayana, P. Rajani and D. Ramesh, Exploring Negative-Valued N eutrosophic Structures in the

Context of Subalgebras and Ideals in BF-algebra

Neutrosophic Sets and Systems, Vol. 60, 2023



extensive investigation into the properties of ideals and normal ideals within BF-

algebra.

Atanassov[4] made a significant contribution by introducing the notion of

the measure of non-inclusion or falsity (f) and providing an interpretation

of intuitionistic fuzzy sets. The term ”Neutrosophic”, signifying neutrality

in thought, was coined by Smarandache, where the primary differentiation is

fuzzy/intuitionistic fuzzy logic/sets and Neutrosophic logic/sets lies in the in-

troduction of a third/neutral component. He pioneered the introduction of an

autonomous element, representing the level of ambiguity or neutrality, established

the Neutrosophic set relies on a triad of constituents, namely (t, i, f), which corre-

spond to authenticity, ambiguity, and falsification. This demonstrates its practical

applicability in diverse sectors [1, 2, 3, 8, 14]. Jun et al.[9] introduced a novel map-

ping characterized by negative-values and developed N-structures. Khan et al.[10]

introduced the concept of Neutrosophic N-Structure and employed it within the

context of a semi-group. Additionally, Muralikrishna et al. [11] first introduced

the concept of Structuere N-ideal within the context of BF-algebra.

Seok-Zun Song et al.[13] Pioneered the idea of Neutrosophic N-ideal in BCK-

algebras and conducted an extensive exploration of its various attributes, culmi-

nating in the establishment of characterizations for Neutrosophic N-ideal. To set

the stage for our discussion, we first provide definitions from [5,6,15] that are

essential for the context of this paper.

2. Main contributions to this work

Introducing and extensively examining the concept of Negative-Valued

Neutrosophic BF-subalgebras and Negative-Valued Neutrosophic BF-ideals in the

context of BF-algebras.

Providing a thorough analysis of the inherent characteristics of Negative-Valued

Neutrosophic BF-Subalgebras and Negative-Valued Neutrosophic BF-ideals.

Elucidating the intricate relationships that exist among Negative-Valued

Neutrosophic BF-subalgebras and Negative-Valued Neutrosophic BF-ideals.

Conducting a meticulous exploration of the unique properties associated with

Negative-Valued Neutrosophic BF-ideals.
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Advancing the understanding of BF-algebras and broadening the utility of

Negative-Valued Neutrosophic BF-subalgebras and Negative-Valued N eutro-

sophic BF-ideals for managing uncertainty in Negative-valued Neutrosophic soft

sets.

3. Prerequisites

Notations: Throughout this article, we use the following notations.

Table 1

BF-algebra BFA
Negative-Valued Neutrosophic Structure NNS
Negative-Valued Neutrosophic BF-ideal NNI

Negative-Valued Neutrosophic BF-subalgebra NNSA

Definition 3.1 (15). A BFA is a structure S := (S 6= φ,⊗, 0) ∈ K(τ)

(I)t1 ⊗ t1 = 0,−−−−−−−−(1)

(II)t1 ⊗ 0 = t1,−−−−−−(2)

(III)0⊗ (t1 ⊗ t2) = t2 ⊗ t1,∀t1, t2 ∈ S−−−−−−(3)

Example 3.2 (15). The set (S = {0, 1, 2, 3},⊗, 0) having the composition table

Table 2

⊗ 0 1 2 3

0 0 1 2 3

1 1 0 3 0

2 2 3 0 2

3 3 0 2 0

is a BFA.

Example 3.3 (15). Let S = (R,⊗, 0)where ⊗ is given by t1 ⊗ t2 =


t1, ift2 = 0

t2, ift1 = 0

0, otherwise

and set of real numbers(R) is a BFA.

Example 3.4 (6). The set (S = {0, 1, 2, 3}, ⊗, 0) having the composition table
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Table 3

⊗ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

is a BFA.

Example 3.5 (15). Let S = [0,∞),⊗is defined on S as t1 ⊗ t2 = |t1 − t2| , ∀t1, t2 ∈ S is a

BFA.

Note 3.6 (7). Let S = (R,⊗, 0) where ⊗ is defined as t1 ⊗ t2 =


t1, ift2 = 0

0, ift1 = 0, t1 = t2

t2 ⊗ t1, otherwise
is not a BFA.

Definition 3.7 (7, 11). A relation ‘≤ ’ on S is a partial ordering satisfying

(∀t1, t2 ∈ S), t1 ≤ t2 ⇔ t1 ⊗ t2 = 0 −−−−−−−− (4)

Note 3.8 (15). In any BFA, S := (S 6= φ,⊗, 0), the following holds:

(∀t1 ∈ S)(0⊗ (0⊗ t1)) = t1 −−−−−−(5)

(∀t1, t2 ∈ S)(0⊗ t1) = (0⊗ t2) iff t1 = t2 −−−−−−(6)

(∀t1, t2 ∈ S)(t2 ⊗ t1 = 0), if t1 ⊗ t2 = 0−−−−−− (7)

Definition 3.9 (15). Consider a BFA, S := (S 6= φ, ⊗ , 0) . M( 6= φ) ⊆ S is said to be a

subalgebra if t1 ⊗ t2 ∈ M,∀t1, t2 ∈ M. −−−−−−−(8)

Note 3.10 (15). It is clear that if M is a subalgebra of S then 0 ∈ M.

Example 3.11 (15). Consider a BFA, (S = {0, 1, 2, 3},⊗ , 0) having the composition table

Table 4

⊗ 0 1 2 3

0 0 1 2 3

1 1 0 1 1

2 2 1 0 1

3 3 1 1 0

The set M = {0, 1} is a subalgebra of S.
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Definition 3.12 (15). Consider a BFA, S := (S 6= φ,⊗, 0). M(6= φ) ⊆ S is said to be ideal

of S if 0 ∈M −−−− (9)

(∀t1, t2 ∈ S)(t1 ⊗ t2 ∈M, t2 ∈M ⇒ t1 ∈M) - - - (10)

Example 3.13 (15). Consider a BFA, (S = {0, 1, 2, 3},⊗ , 0) having the composition table 2

Clearly, {0} and S are ideals of S and M = {0, 3} ⊆ S is not an ideal of S. (1 ⊗ 3 = 0 ∈ M

and 3 ∈ M⇒ 1 /∈ M)

4. Negative-Valued Neutrosophic concept on BF-algebra:

Represent by γ(S, [−1, 0]) be the family of mappings from a set S to [−1, 0] (called,

A Negative-Valued mapping on S). A NNS is denoted by (S, g) of S and g is a

Negative-Valued mapping on S. A NNS over a universe S 6= φ (see [9]) is

SN = S
(ℵN ,IN ,ΨN ) =

{
t1

ℵN (t1),IN (t1),ΨN (t1)/t1 ∈ S
}

where ℵN ,IN and ΨN are Negative-Valued mappings on S termed as the ”Non-

positive truth membership” mapping, the ”non-positive indeterminacy member-

ship” mapping and the ”non-positive falsity membership” mapping, resp., on S.

A NNS, SN over S holds:

(∀t1 ∈ S)(−3 ≤ ℵN (t1) + IN (t1)+ΨN (t1) ≤ 0)

Let us represent ∀t1, t2 ∈ S , t1vt2 denotes max{t1, t2} and t1∧ t2 denotes min{t1, t2}

Definition 4.1. A NNS, SN over a BFA, S := (S 6= φ,⊗, 0), is a NNSA if

i)ℵN (t1 ⊗ t2) ≤ ∨{ℵN (t1),ℵN (t2)} (∀t1, t2 ∈ S)−−−−(11)

ii)IN (t1 ⊗ t2) ≥ ∧{IN (t1), IN (t2)} (∀t1, t2 ∈ S)−−−−(12)

iii)ΨN (t1 ⊗ t2) ≤ ∨{ΨN (t1),ΨN (t2)} (∀t1, t2 ∈ S)−−− (13)

Example 4.2. Consider a BFA, (S = {0, 1, 2, 3},⊗, 0) having the table 3.

The NNSA of S is

SN =
{

0
−0.8,−0.1,−0.8 ,

1
−0.8,−0.8,−0.4 ,

2
−0.8,−0.9,−0.4 ,

3
−0.8,−0.9,−0.6

}
Definition 4.3. A NNS, SN over a BFA, S := (S 6= φ,⊗, 0) is a NNI of S if

(i)ℵN (0) ≤ ℵN (t1) ≤ ∨{ℵN (t1 ⊗ t2),ℵN (t2)} (∀t1, t2 ∈ S)−−−−(14)

(ii)IN (0) ≥ IN (t1) ≥ ∧{IN (t1 ⊗ t2), IN (t2)} (∀t1, t2 ∈ S)−−−−− (15)

(iii)ΨN (0) ≤ ΨN (t1) ≤ ∨{ΨN (t1 ⊗ t2),ΨN (t2)} (∀t1, t2 ∈ S)−−− (16)

Example 4.4. Consider a BFA, (S = {0, 1, 2, 3},⊗, 0) having the table 3.

The NNI of S is

SN =
{

0
−0.7,−0.1,−0.8 ,

1
−0.2,−0.8,−0.4 ,

2
−0.6,−0.9,−0.4 ,

3
−0.2,−0.9,−0.6

}
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Proposition 4.5. If SN is a NNI over a BFA, S := (S 6= φ,⊗, 0) with t1 ≤ t2, ∀t1, t2 ∈ S

then

(i)ℵN (t1) ≤ ℵN (t2)∀t1, t2 ∈ S, i.e ℵN is order preserving.- - - -(17)

(ii)IN (t1) ≥ IN (t2)∀t1, t2 ∈ S, i.e IN is order reserving.- - - - - (18)

(iii)ΨN (t1) ≤ ΨN (t2)∀t1, t2 ∈ S , i.e ΨN is order preserving.- - - -(19)

Proof.

Given SN is a NNI over a BFA, S := (S 6= φ,⊗, 0) with t1 ≤ t2, ∀t1, t2 ∈ S

⇒ Sincet1 ≤ t2 ⇒ t1 ⊗ t2 = 0(by(4))

To prove i) : SN is a NNI
⇒ ℵN (t1) ≤ ∨{ℵN (t1 ⊗ t2),ℵN (t2)} (by(14))

⇒ ℵN (t1) ≤ ∨{ℵN (0),ℵN (t2)}
⇒ ℵN (t1) ≤ ℵN (t2) (by(14))

⇒ ℵN is order preserving.

To prove ii) : SN is a NNI
⇒ IN (t1) ≥ ∧{IN (t1 ⊗ t2), IN (t2)} (by(15))

⇒ IN (t1) ≥ ∧{IN (0), IN (t2)}
⇒ IN (t1) ≥ IN (t2) (by(15))

⇒ IN is order reserving.

To prove iii) : SN is a NNI
⇒ ΨN (t1) ≤ ∨{ΨN (t1 ⊗ t2),ΨN (t2)} (by(16))

⇒ ΨN (t1) ≤ ∨{ΨN (0),ΨN (t2)}
⇒ ΨN (t1) ≤ ΨN (t2) (by(16))

⇒ ΨN is order preserving.

Theorem 4.6. If SN is a NNI over a BFA, S := (S 6= φ,⊗, 0) then SN is a NNSA of S.

Proof.

Let SN be a NNI of S, ∀t1, t2 ∈ S

⇒ ℵN (0) ≤ ℵN (t1) ≤ ∨{ℵN (t1 ⊗ t2),ℵN (t2)} (by (14))

⇒ IN (0) ≥ IN (t1) ≥ ∧{IN (t1 ⊗ t2), IN (t2)}(by (15))

⇒ ΨN (0) ≤ ΨN (t1) ≤ ∨{ΨN (t1 ⊗ t2),ΨN (t2)}(by (16))

Put t1 = t1 ⊗ t2 in (14)

⇒ ℵN (t1 ⊗ t2) ≤ ∨{ℵN (t1 ⊗ t2 ⊗ t2),ℵN (t2)}
⇒ ℵN (t1 ⊗ t2) ≤ ∨{ℵN (t1),ℵN (t2)}(by(1)&(2))

Similarly we can prove for IN and ΨN also Hence, SN is a NNSA of S

Note 4.7. The Converse of the above theorem need not be true.
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Example 4.8. Suppose we have a BFA[5], (S = {0, 1, 2},⊗ , 0) having the Composition table

Table 5

⊗ 0 1 2

0 0 1 2

1 1 0 0

2 2 0 0

The NNS of S is,

SN =
{

0
−0.5,0,−0.9 ,

1
−0.5,0,0 ,

2
0,0,−0.5

}
is not a NNI but NNSA.

Since ℵN (t1) = ℵN (2) = 0 � ∨{ℵN (2⊗ 1) = −0.5,ℵN (1) = −0.5}
The following theorem is an adequate condition for NNSA to be NNI.

Theorem 4.9. If SN be a NNSA over a BFA S := (S 6= φ,⊗, 0) with t1⊗t2 ≤ t3,∀t1, t2, t3 ∈
S and

ℵN (t1) ≤ ∨{ℵN (t2),ℵN (t3)} (∀t1, t2, t3 ∈ S)

IN (t1) ≥ ∧{IN (t2), IN (t3)} (∀t1, t2, t3 ∈ S)

ΨN (t1) ≤ ∨{ΨN (t2),ΨN (t3)} (∀t1, t2, t3 ∈ S)

then SN is a NNI of S

Proof. Let SN be a NNSA of S with t1 ⊗ t2 ≤ t3, ∀t1, t2, t3 ∈ S
⇒ ℵN (t1 ⊗ t2) ≤ ∨{ℵN (t1),ℵN (t2)} (by (11))

Put t1 = t2

⇒ ℵN (t1 ⊗ t1) ≤ ∨{ℵN (t1),ℵN (t1)}
⇒ ℵN (0) ≤ ℵN (t1) (by(1))

and ℵN (t1) ≤ ∨{ℵN (t1 ⊗ t2),ℵN (t2)} ⇔ ℵN (t1) ≤ ∨{ℵN (t3),ℵN (t2)} (by(17))

and IN (t1 ⊗ t2) ≥ ∧{IN (t1), IN (t2)} (by(12))

Put t1 = t2

⇒ IN (t1 ⊗ t1) ≤ ∧{IN (t1), IN (t1)}
⇒ IN (0) ≤ IN (t1) (by(1))

and IN (t1) ≥ ∧{IN (t1 ⊗ t2), IN (t2)} ⇔ IN (t1) ≥ ∧{IN (t3), IN (t2)} (by(18))

Similarly, we can prove for ΨN also.

Hence SN is a NNI of S.

Theorem 4.10. If SN is a NNI over a BFA, S := (S 6= φ,⊗, 0) with t1⊗t2 ≤ t3, ∀t1, t2, t3 ∈
S then i)ℵN (t1) ≤ ∨{ℵN (t2),ℵN (t3)}
ii)IN (t1) ≥ ∧{IN (t2), IN (t3)}
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iii)ΨN (t1) ≤ ∨{ΨN (t2),ΨN (t3)}
Proof. Given t1 ⊗ t2≤ t3, ∀t1, t2, t3 ∈ S
To prove (i):SN is NNI
⇒ ℵN (0) ≤ ℵN (t1) ≤ ∨{ℵN (t1 ⊗ t2),ℵN (t2)} (by(14))

⇒ ℵN (t1) ≤ ∨{ℵN (t3),ℵN (t2)}(by Proposition 4.5)

To prove (ii):SN is NNI
⇒ IN (0) ≥ IN (t1) ≥ ∧{IN (t1 ⊗ t2), IN (t2)} (by(15))

⇒ IN (t1) ≥ ∧{IN (t3), IN (t2)} (by Proposition 4.5)

To prove (iii):SN is NNI
⇒ ΨN (0) ≤ ΨN (t1) ≤ ∨{ΨN (t1 ⊗ t2),ΨN (t2)} (by(16))

⇒ ΨN (t1) ≤ ∨{ΨN (t3),ΨN (t2)} (by Proposition 4.5)

Note 4.11. Applying induction on n and from the Theorem 4.10, we have

Theorem 4.12. If SN is a NNI over a BFA, S := (S 6= φ,⊗, 0) then for any

p, a1, a2, a3, ..., an ∈ S and

(....((p⊗ a1)⊗ a2)⊗ ....))⊗ an= 0 implies

i)ℵN (p) ≤ ∨{ℵN (a1),ℵN (a2), ....,ℵN (an)}
ii)IN (p) ≥ ∧{IN (a1), IN (a2), ...., IN (an)}
iii)ΨN (p) ≤ ∨{ΨN (a1),ΨN (a2), ....,ΨN (an)}

5. Conclusions:

The investigation of NNSA and NNI within the context of BFA has led to

several conclusions.

Firstly, the study has provided a thorough analysis of the inherent characteris-

tics of NNSA and NNI. This analysis has helped in understanding the properties

and behaviors of these structures within BF-algebras.

Secondly, the investigation has revealed the intricate relationships that exist

between NNSA and NNI. By exploring these relationships, researchers have

gained insights into how these structures interact and influence each other within

the broader context of algebraic structures.

Furthermore, the study has delved into the unique properties associated with

NNI. By examining these properties, researchers have enhanced their un-

derstanding of NNI and its potential applications in managing uncertainty in

Negative-Valued Neutrosophic soft sets.

Overall, the investigation of NNSA and NNI within the context of BFA has

contributed significantly to the field. It has expanded our comprehension of these
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structures and their relationships, paving the way for further research and ad-

vancements in this specialized domain of mathematics
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ABSTRACT. Uncertain and ambiguous data is usually presented as a data point. When dealing with uncertain data, it is chal-

lenging to deal with incompleteness, imprecision, and incertitude; therefore, various mathematical models were developed

to resolve issues concerning uncertainty points. To overcome this difficulty, a mathematical model with redefined control

points characterised by three important components of the neutrosophic set was produced. The neutrosophic set can then

be translated by creating models based on the neutrosophic theory and its relationships to produce control points. Hence,

this paper represents a curve generated by combining neutrosophic control points with the Bézier basic functions using their

relation as a Neutrosophic Bézier Curve. With an illustration example, we show how to visualise neutrosophic data sets into

Neutrosophic Bézier Curve and their relationship.

Keywords: Neutrosophic; Spline curve; Bézier curve; control point, data visualization

—————————————————————————————————————————-

1. Introduction

Computer Aided Graphic Design (CAGD) is to create three-dimensional curve models and visual-

isations. The design process is about identifying and solving environmental problems to realise the

need to improve lifestyle in the age of technology. Work on this topic has been going on for several

years [35]. Data points are also collected from physical objects or environments. Once data is collected

using various specialised tools and procedures, such as echo sounding and data error, some information

loss or inaccuracy occurs. Spline modelling is one of the simplest and most powerful three-dimensional

object creation methods. Spline modelling also enables users to create designs faster than conventional
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modelling techniques. The basis of this new method for designing the Bézier Curve has been intro-

duced by [2] This method allows the curve to fit the control polygon by moving a point of the Bézier

Curve. The framework of this new method for designing the Bézier Curve has been constructed.

Defining and interpreting accurate data from actual events and scenarios dealing with ambiguous

data is challenging. [3] discovered a fuzzy set to handle uncertainty data in 1965 as an extension of

the classical notion set. These are well studied and documented in the literature [3–9]. Then, [10, 11]

introduced an intuitionistic fuzzy set in 1983. On the other hand, the data point obtained is difficult to

understand as it is affected by noise and certainty. Several studies and reviews have been undertaken to

explore the uncertainty problem by considering data modelling and data reduction problems, as stated

in [13–15]. To represent real data points, curves and the surface is necessary, as mentioned in [12].

Hence, using the concept of fuzzy set theory, fuzzy number, fuzzy point and fuzzy relation, a new data

point defined as fuzzy point relation has represented uncertainty data. Therefore, considerable research

has been conducted to explore the Fuzzy Spline Model to visualise a fuzzy data set geometrically

[16]. [17] describe Type-2 Fuzzy Bézier Curve Modeling and [18] implement the Interval Type-2

Fuzzy Logic System Model in Measuring the Index Value of the Underground Economy in Malaysia

from 2001 to 2010. Later, [19] introduced a new concept of intuitionistic fuzzy sets with geometric

modelling called the Intuitionistic Fuzzy Bézier Curve model using intuitionistic sets. They develop a

spline model for data problems that involve an intuitionistic set. The intuitionistic data problem set was

converted into a point relationship and blended with a spline to be visualised geometrically by curve

and surface.

However, previous studies on Fuzzy Bézier Curve blended with spline functions only involve fuzzy

and intuitionistic sets, while a problem involving a neutrosophic set has not yet been extensively devel-

oped. Therefore, this paper discusses and introduces a new model of the Neutrosophic Bézier Curve

to represent data visualised with spline functions in geometric modelling. Neutrosophic sets (NSs)

proposed by [20–25] which is a generalisation of fuzzy sets and intuitionistic fuzzy set, is a powerful

tool to deal with incomplete, indeterminate and inconsistent information which exist in the real world.

Neutrosophic set theory is a fabulous mathematical technique that can be applied to various fields.

Uncertain data was analysed and visualised using a new type of geometric modelling more on neu-

trosophic. In addition, [26] conducted research on neutrosophic data problems to produce the Bézier

curve and Bézier surface. However, [26] only used Neutrosophic Data with Basic Spline to generate

three distinct curves. They did not clearly explain the relationship between neutrosophic point relation

and basic spline. Furthermore, they did not introduce or identify the CAGD characteristics. As a result,

this research did not meet the properties of CAGD, which are data prediction and accessible design.

Such a result, a Neutrosophic Bézier Curve model will be introduced in this paper. The Neutrosophic

set can then be translated by creating models based on the neutrosophic theory and its relationships.

The curve is generated by combining Neutrosophic control points with the Bézier basic functions and
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using their relation to represent the curve. Lastly, this new model is visualised using numerical exam-

ples of neutrosophic data sets with randomly selected membership values. Based on the visualization’s

findings, it is anticipated that the evaluation and analysis process will be simpler to carry out and have

significant advantages in several areas, particularly the issue of uncertainty in the representation of real

problems.

2. Model Construction Method

2.1. Bézier Curve

Pierre Bézier has derived the mathematical basis of curves and surface techniques from geometri-

cal considerations as in [27, 28]. Later, around the 1970s, Forrest (1972) and Gordon and Reisenfeld

(1974) found the connection between the work of Bézier and the classical Bernstein polynomials. They

discovered that the Bernstein polynomials are the basis functions for Bézier curves and surfaces. The

curve is necessary and inevitable for representing data points [29]. However, the nature of the data

point obtained is difficult to understand, process and describe as it is affected by noise and uncertainty.

Usually, data with uncertainty characteristics will be ignored or removed from a data set, disregarding

its effect on the resulting curve and surface. Hence, the evaluation and analysis process will be incom-

plete. If there exists an element of uncertainty, the data set should be filtered so that it can be used to

generate a curve of a model that wants to be investigated. Therefore an appropriate approach is needed

to visualise and overcome this problem.

2.2. Neutrosophic Set

This section will begin with a summary of laws in neutrosophic sets as defined in [30]. Neutrosophic

Set as an expansion of Intuitionistic Fuzzy Set where in Intuitionistic Fuzzy Set, the com- ponents

T known as membership, I known as inconsistency and F known as non-membership are restricted

either t + i+ f = 1 or t2 + f 2 ≤ 1, if T, I,F are all reduced to the points t, i, f respectively, or sup T +

sup I + sup F = 1 if T, I,F are subsets of [0,1]. But in Neutrosophic Set, there is no restriction on

T (truth-membership), I(indeterminacy-membership),F(false-membership) other than they are subsets

of ]−0,1+[ thus, −0 ≤ in f T + in f I + in f F ≤ sup T + sup I + sup F ≤ 3+ [30] .

Definition 1. [30]Let E be a universe of discourse, and W a set included in E. An element x from E

is noted with respect to the set W as x(T, I,F). x belongs to W and define as follows: true value in

the set denoted as t, indeterminate value in the set as i and false value in the set as f , where t varies

in TW , i varies in IW , f varies in FW . TW , IW ,FW are functions depending on many known or unknown
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parameters. TW , IW ,FW are real standard or non-standard subset of ]−0,1+[. That is

TW : X [0,1]

IW : X [0,1]

FW : X [0,1]

where −0 ≤ TW + IW +FW ≤ 3+

Definition 2. Let a crisp set M is fixed and let B∗ ⊂ M. A Neutrosophic set B∗ in M is an object of the

following

B∗ = {(x,µB(x),γB(x),πB(x))|x ∈ X} (1)

where functions µB : X → [0,1],γB : X → [0,1],πB : X → [0,1] define the degree of membership, the de-

gree of non membership and the degree of indeterminate of the element x∈M to the set B*, respectively

and for every x ∈ M.

0 ≤ µB(x)+ γB(x)+πB(x)≤ 3

where µB(x)+ γB(x)+πB(x) are independent membership of element x ∈ M to set B*.

2.3. Neutrosophic Number and Neutrosophic Point Relation

Prior research in Fuzzy systems (FSs) and Intuitionistic Fuzzy systems (IFSs) discussed the re-

sult in uncertainty. Still, these methods cannot be successfully solved when decently, unacceptable,

and decision-maker declaration is uncertain. Therefore, some theories are mandatory for solving the

problem with uncertainty. Hence, the Neutrosophic Sets (NSs) reflect three membership which is

truth membership, indeterminacy membership and falsity membership will introduce named as Neu-

trosophic Curve. Furthermore, Neutrosophic Set is more practical and can solve the data than FSs and

IFSs, which are involved with inconsistent, incomplete and uncertain data.

The concept of Neutrosophic Set is used to develop Neutrosophic Point Relation. Generally, neu-

trosophic point relations are data sets defined on a universal set which are Cartesian products of X ×Y

that are mapping from X → Y . It represents the strength of the association between elements of the

two sets. Neutrosophic Point Relation is defined and used as a converter from the definition of Neutro-

sophic data points to introduce Neutrosophic Control Point.

Definition 3. Let R and S be a space points with non-empty sets and r,s ⊆ R×S, then Neutrosophic

point relation is defined as

M∗ = ((ri,si),µR×S(ri,si),γR×S(ri,si),πR×S(ri,si)|(µR×S(ri,si),γR×S(ri,si),πR×S(ri,si)) ∈ R×S (2)
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where (ri,si) is a point relation and M is a neutrosophic point relation space on R×S and functions

µB : X → [0,1],γB : X → [0,1],πB : X → [0,1] define truth membership, indeterminacy membership and

falsity membership respectively.

0 ≤ µB(x)+ γB(x)+πB(x)≤ 3

Definition 4. Let r,s ⊆ R×S with

M̃ = {(ri,y i) |yi ∈ (0,1)} and Ñ = {(si,yi) |yi ∈ (0,1)} (3)

represent two neutrosophic points. Then

S̃ = {((ri,si) ,µR×S(ri,si),γR×S(ri,si),πR×S(ri,si)) |0 ≤ µR×S(x)+ γR×S(x)+πR×S(x)≤ 3} (4)

is a neutrosophic point relation on M̃ and Ñ if

µs (ri,si)≤ µM (ri) ,∀(ri,si) ∈ R×S,

γs (ri,si)≤ γM (ri) ,∀(ri,si) ∈ R×S

πs (ri,si)≤ πM (ri) ,∀(ri,si) ∈ R×S

and

µs (ri,si)≤ µN (ri)∀(ri,si) ∈ R×S

γs (ri,si)≤ γN (ri) ,∀(ri,si) ∈ R×S

πs (ri,si)≤ πN (ri) ,∀(ri,si) ∈ R×S

Neutrosophic point relation is a subset of the Cartesian product of a set that can be used to represent

the data with a connection between variables, attributes or quantities. It can also visualize into the

spline the dependencies and correlations of variables.

2.4. Neutrosophic Control Point Relations

Neutrosophic spline model in the context of geometric modeling results when each coefficient ge-

ometry spline model redefined through neutrosophic fuzzy approach until produced a form of control

points. A Bézier curve is a curve that is determined by its control polygon. Bézier curve is a parametric

curve used in computer graphics and related fields. The Bézier curve is a parametric curve B(t) that

is a polynomial function of the parameter, t. The polynomial degree depends on the number of points

used to define the curve. This paper employs neutrosophic control point relation using the neutrosophic

point relation we introduced in the previous section and produces an approximating curve. The approx-

imating curve does not pass through the interior points but is attracted to them. This section discussed

blending Neutrosophic Control Point Relation with Bézier function to produce Neutrosophic Bézier

Curves. Next, the curve is generated with the blending and recursive processes. The Neutrosophic

Control Points are defined as follows:
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Definition 5. Neutrosophic control point relation can be defined as a set of n+ 1 points that shows

positions and coordinates of a location and is used to describe a curve which is denoted by

C̃PRi =
{

C̃PR0 ,C̃PR1 , . . . ,C̃PRs

}
(5)

and can be written as{
((pi,qi) ,µp×q (pi,qi))1 ,((pi,qi) ,µp×q (pi,qi))2 , . . . ,((pi,qi) ,µp×q (pi,qi))n

}
where the neutrosophic control point relation is also control the shape of a curve.

2.5. Neutrosophic Bézier Model

In a previous study, [31] had come out with the design and tuning of fuzzy control surfaces with

Bézier functions. Hence, [32] and [33] use fuzzy set theory, uncertainty data and technique of in-

terpolation to build rational Bézier curve and followed by [34] whose used Bézier curve modeling

to interpret intuitionistic data problem. The idea of constructing Neutrosophic Bézier Model starts

with the new Neutrosophic Control Point. let C̃PR be a Neutrosophic Control Point Relations defined

by Neutrosophic Point Relation and B(t) be a Bézier curve with parameter, t, hence by blending it,

Neutrosophic Bézier Curve is defined as follow.

B̃(t) =
n

∑
i=0

C̃PRBn,i(t), 0 ≤ t ≤ 1 (6)

with

B̃µ(t) =
n

∑
i=0

C̃PRBn,i(t), 0 ≤ t ≤ 1

B̃λ (t) =
n

∑
i=0

C̃PRBn,i(t), 0 ≤ t ≤ 1

B̃π(t) =
n

∑
i=0

C̃PRBn,i(t), 0 ≤ t ≤ 1

with Bernstein polynomials or blending function,

Bn,i(t) =

(
n

i

)i

t i(1− t)n−i where

(
n

i

)
= n!

i!(n−i)! are the binomial coefficients.

For degree of n Neutrosophic Bézier also can be written as

B̃(t) = C̃PR0Bn,0 +C̃PR1Bn,1 + . . .+C̃PRnBn,d (7)
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3. Results

This paper uses cubic Bézier curve approximation to show how Neutrosophic Bézier curve will

represent in the graph and illustrate Neutrosophic Bézier Model.

3.1. Example 1

Let C∗
0 = (1,3),C∗

1 = (3,6),C∗
2 = (6,2) and C∗

3 = (9,5) be an Neutrosophic Control Point Relation.

Hence, truth-membership, indeterminacy-membership, false-membership is summarized as follows:

TABLE 1. Examples of some NCP and its respective degrees.

NCP truth-membership, µC indeterminacy-membership, vC false-membership, πC

(C∗
i ) (C∗

i ) (C∗
i )

C∗
0 0.3 0.6 0.1

C∗
1 0.8 0.1 0.1

C∗
2 0.7 0.1 0.2

C∗
3 0.2 0.4 0.4

FIGURE 1. Neutrosophic Control Points

A Bézier curve is a curve that is determined by its control polygon. The Bézier curve is a parametric

curve B(t) that is a polynomial function of the parameter, t. Here, we will employ Neutrosophic Control

Point relation using neutrosophic point relation. Figure 1 shows Neutrosophic Control Point that results

from Neutrosophic Data Point in Table 1. Next, by blending it with Bézier curve, the following graphs

of Neutrosophic Bézier curve are sketched for truth-membership, indeterminacy-membership, false-

membership and all membership respectively.
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TABLE 2. Neutrosophic Bézier curve for truth-membership

NCP truth-membership µC

C0 ⟨(1,3);0.3⟩
C1 ⟨(3,6);0.8⟩
C2 ⟨(6,2);0.7⟩
C3 ⟨(9,5);0.2⟩

FIGURE 2. Neutrosophic Bézier curve for truth-membership

Figure 2 above is Neutrosophic Bézier curve produced from Neutrosophic Control Point with truth

membership, µC in Table 2.

TABLE 3. Neutrosophic Bézier curve for indeterminacy-membership

NCP indeterminacy-membership vC

C0 ⟨(1,3);0.6⟩
C1 ⟨(3,6);0.1⟩
C2 ⟨(6,2);0.1⟩
C3 ⟨(9,5);0.1⟩

Figure 3 shows Neutrosophic Bézier curve produced from Neutrosophic Control Point with indeter-

minacy membership, vC in Table 3.
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FIGURE 3. Neutrosophic Bézier curve for indeterminacy-membership

TABLE 4. Neutrosophic Bézier curve for false-membership

NCP false-membership πC

C0 ⟨(1,3);0.1⟩
C1 ⟨(3,6);0.1⟩
C2 ⟨(6,2);0.2⟩
C3 ⟨(9,5);0.4⟩

FIGURE 4. Neutrosophic Bézier curve for false-membership

Figure 4 represents Neutrosophic Bézier curve produced from Neutrosophic Control Point with false

membership, πC in Table 4.
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FIGURE 5. Neutrosophic Bézier curve for all membership degree

Figure 5 is the combination of all membership degrees to produce Neutrosophic Bézier Curve where

B̃(t) =
3

∑
i=0

C̃PRB3,i(t), 0 ≤ t ≤ 1 (8)

with

B̃µ(t) =
3

∑
i=0

C̃PRB3,i(t), 0 ≤ t ≤ 1

B̃λ (t) =
3

∑
i=0

C̃PRB3,i(t), 0 ≤ t ≤ 1

B̃π(t) =
3

∑
i=0

C̃PRB3,i(t), 0 ≤ t ≤ 1

4. Conclusions

A new model is proposed to represent a visualisation of neutrosophic data set which called as Neu-

trosophic Bézier Curve model. Neutrosophic Bézier Curve model approximation is an optimal method

for modeling data with uncertainty data since it is defined by truth-membership T , indeterminacy-

membership I, false-membership F . Based on this definition blended with the control point, an ap-

proximation Neutrosophic Bézier Curve has been developed. All three curves representing the data

will solve complex uncertainty data in graphic design and visualisation problems.

The proposed model is described in basic terms and illustrates the final results. As a result, addi-

tional deep research with new definitions and ideas is required to depict the processes in greater detail.

This generalised model must be applied to real data to achieve the intended visualisation and analysis.

Organisation can use the data to increase productivity and employee satisfaction by showing the im-

portance of various employee satisfaction in logistic services as stated in [35]. The Neutrosophic data

combined with visualisation with Bézier will provide complete knowledge of the study and explain
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the problems studied with its reasoning. The system and the resulting model will contribute to the

Neutrosophic Modeling techniques area.

This paper could also be extended to other spline models such as B-Spline and NURBS (Non-

Uniform Rational B-Spline), and also in future works, especially in the development of management

decision-making field, stochastic processes, stock market, remote sensing, data mining, real-time track-

ing, routing and wireless sensor networks.
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signature with different degree of blurring, Applied Mathematical Sciences, 2012, 6, 4005–4016.

18. Wahab, A. F., Zulkifly, M. I. E., Zakaria, R. and Rahim, H. A. Interval type-2 fuzzy logic system model in measuring the

index value of underground economy in malaysia, Applied Mathematical Sciences, 2013, 7, 5071 – 5084.
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Abstract. The neutrosophic theory has been effectively used to address uncertainty and ambiguity. Neutro-

sophic Metric Space (NMS) was introduced by Krisci and Simsek in 2020. Following that, several kinds of

compatible maps and their characteristics were investigated in the context of Intuitionistic fuzzy metric spaces

and fuzzy metric spaces. In this paper, the author introduce the notion of compatible maps of type (α) and

type (β) in neutrosophic metric space. For this purpose, four non-comparable mappings are used to prove the

basic results. Furthermore, we prove several common fixed points results for compatible maps of type (α) and

type (β) in neutrosophic metric space and provide a non-trivial examples.

Keywords: Fixed point; Neutrosophic metric Space; Compatible maps.

—————————————————————————————————————————-

1. Introduction

The concept of metric spaces and the Banach contraction principle serve as the foundation

of fixed point theory. The openness of metric space attracts a huge number of academics to

the axiomatic interpretation. Following Zadeh’s [29] introduction of the idea of fuzzy sets

(FSs), many academics offered a variety of generalisations for classical structures. The idea of

Fuzzy Metric Space (FMS) was first put forth in 1975 by Kramosil and Michalek [14]. Later,

George and Veeramani [6] redefined the concept of FMS. Following then, several researchers

looked at the FMS characteristics and produced numerous fixed point results. Intuitionistic

Fuzzy Sets(IFSs) was introduced by Atanassov [1] with the concept of non - membership to
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FSs. Park [22] defined Intuitionistic Fuzzy Metric Space (IFMS) from the concept of IFSs and

given some fixed point results. In FMS and IFMS various fixed point theorems has been proved

by Alaca et al [2]. Grabiec [20] gave fuzzy interpretation of Banach and Edelstein fixed point

theorems in the sense of Kramosil and Michalek. Weakly commuting maps in metric spaces

were first proposed by Sessa [24], who started the trend of enhancing commutativity in fixed

point theorems. Jungck [24] soon enlarged this concept to compatible maps. Smarandache

[25,26] established the new idea called Neutrosophic logic and Neutrosophic Set (NS) in 1998.

In general, the ideas of FS and IFS deal with degrees of membership and non-membership,

respectively. By incorporating a degree of indeterminacy, the neutrosophic set generalises fuzzy

and intuitionistic fuzzy sets. Hence several researchers have made studies on the concept

of neutrosophic set. Parimala Mani et al. [8, 9]obtained decision making applications form

Neutrosophic Support Soft Topological Spaces. Sahin et al. [23]studied adequacy of online

education using Hausdorff Measures based on neutrosophic quadruple sets. Recently, Sahin

and Kargin [19] obtained neutrosophic triplet metric spaces and neutrosophic triplet normed

spaces. Kirisci and Simsek [15] established the concept of neutrosophic metric spaces (NMSs)

that deals with membership, non-membership and naturalness functions and derived various

fixed point theorems for neutrosophic metric space. Sowndrarajan and Jeyaraman et al. [12,27]

studied Banach and Edelstein contraction fixed point results for neutrosophic metric space.

In this manuscript, we introduce the notion of compatible maps of type (α) and type (β) in

neutrosophic metric space. We also establish fixed point results by using four mappings and

obtain a non trivial example

2. Preliminaries

Definition 2.1 [26] Let Σ be a non-empty fixed set. A Neutrosophic Set N in Σ is a col-

lection of elements in the form N = {〈a, ξN (a), %N (a), νN (a)〉 : a ∈ Σ} where the functions

ξN (a), %N (a) and νN (a) represent the degree of membership, degree of indeterminacy and the

degree of non-membership respectively of each element a ∈ N to the set Σ.

Definition 2.2 [10] A continuous t - norm (CTN) is a function ? : [0, 1]× [0, 1] → [0, 1] that

satisfies the following conditions;

For all %1, %2, %3, %4 ∈ [0, 1]

(i) %1 ? 1 = %1;

(ii) If %1 ≤ %3 and %2 ≤ %4 then %1 ? %2 ≤ %3 ? %4;
(iii) ? is continuous;

(iv) ? is commutative and associative.
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Definition 2.3 [10] A continuous t - co norm (CTC) is a function � : [0, 1] × [0, 1] → [0, 1]

that satisfies the following conditions;

For all %1, %2, %3, %4 ∈ [0, 1]

(i) %1 � 0 = %1;

(ii) If %1 ≤ %3 and %2 ≤ %4 then %1 � %2 ≤ %3 � %4;
(iii) � is continuous;

(iv) � is commutative and associative.

3. Neutrosophic Metric Spaces

In this section, we define basic concepts of neutrosophic metric space and prove various

properties of the space with suitable examples.

Definition 3.1 [27] A 6 - tuple (Σ,Λ,ℵ,i, ?, �) is called Neutrosophic Metric Space(NMS),

if Σ is an arbitrary non empty set, ? is a neutrosophic CTN, � is a neutrosophic CTC and

Λ,ℵ,i are neutrosophic sets on Σ2 × R+ satisfying the following conditions:

For all %, ς, ω ∈ Σ, ϑ ∈ R+

(i) 0 ≤ Λ(%, ς, ϑ) ≤ 1; 0 ≤ ℵ(%, ς, ϑ) ≤ 1; 0 ≤ i(%, ς, ϑ) ≤ 1;

(ii) Λ(%, ς, ϑ) + ℵ(%, ς, ϑ) + i(%, ς, ϑ) ≤ 3;

(iii) Λ(%, ς, ϑ) = 1 if and only if % = ς ;

(iv) Λ(%, ς, ϑ) = Λ(ς, %, ϑ) for ϑ > 0;

(v) Λ(%, ς, ϑ) ? Λ(ς, %, µ) ≤ Λ(%, ω, ϑ+ µ), for all ϑ, µ > 0;

(vi) Λ(%, ς, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(vii) limϑ→∞Λ(%, ς, ϑ) = 1 for all ϑ > 0;

(viii) ℵ(%, ς, ϑ) = 0 if and only if % = ς ;

(ix) ℵ(%, ς, ϑ) = ℵ(ς, %, ϑ) for ϑ > 0;

(x) ℵ(%, ς, ϑ) � ℵ(%, ω, µ) ≥ ℵ(%, ω, ϑ+ µ), for all ϑ, µ > 0;

(xi) ℵ(%, ς, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(xii) limϑ→∞ℵ(%, ς, ϑ) = 0 for all ϑ > 0;

(xiii) i(%, ς, ϑ) = 0 if and only if % = ς;

(xiv) i(%, ς, ϑ) = i(ς, %, ϑ) for ϑ > 0;

(xv) i(%, ς, ϑ) � i(%, ω, µ) ≥ i(%, ω, ϑ+ µ), for all ϑ, µ > 0;

(xvi) i(%, ς, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(xvii) limϑ→∞i(%, ς, ϑ) = 0 for all ϑ > 0;

(xviii) If ϑ > 0 then Λ(%, ς, ϑ) = 0,ℵ(%, ς, ϑ) = 1,i(%, ς, ϑ) = 1.

Then (Λ,ℵ,i) is called neutrosophic metric on Σ. The functons Λ,ℵ and i denote degree of

closedness, neturalness and non - closedness between % and ς with respect to ϑ respectively.
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Example 3.2 [27] Let (Σ, d) be a metric space. Λ,ℵ,i : Σ2 × R+ → [0, 1] defined by

Λ(%, ς, ϑ) =
ϑ

ϑ+ d(%, ς)
; ℵ(%, ς, ϑ) =

d(%, ς)

ϑ+ d(%, ς)
; i(%, ς, ϑ) =

d(%, ς)

ϑ

for all %, ς ∈ Σ and ϑ > 0. where %?ς = min{%, ς} and %�ς = max{%, ς}. Then (Σ,Λ,ℵ,i, ?, �)
is called NMS induced by a standard neutrosophic metric.

Definition 3.3 Let (Σ,Λ,ℵ,i, ?, �) be neutrosophic metric space. Then

(a) {%n} in Σ is converging to a point % ∈ Σ if for each ϑ > 0

limn→∞Λ(%n, %, ϑ) = 1; limn→∞ℵ(%n, %, ϑ) = 0; limn→∞i(%n, %, ϑ) = 0.

(b) {%n} in Σ is called a Cauchy if for each ε > 0 and ϑ > 0 there exist n ∈ N such that

Λ(%n+p, %n, ϑ) = 1 ; ℵ(%n+p, %n, ϑ) = 0 ; i(%n+p, %n, ϑ) = 0.

(c) (Σ,Λ,ℵ,i, ?, �) is said to be complete NMS if every Cauchy sequence is convergence

in it.

Lemma 3.4 Let {%n} be a sequence in a NMS (Σ,Λ,ℵ,i, ?, �). If there exist a number k ∈
(0, 1)such that for all %, ς ∈ Λ and ϑ > 0

Λ(%n+2, %n+1, kϑ) ≥ Λ(%n+1, %n, kϑ),

ℵ(%n+2, %n+1, kϑ) ≤ ℵ(%n+1, %n, kϑ),

i(%n+2, %n+1, kϑ) ≤ i(%n+1, %n, kϑ)

(1)

for all ϑ > 0 and n = 1, 2, 3 · · · , then {%n} is a Cauchy sequence in Λ

Proof. By Mathematical induction, we have

Λ(%n+2, %n+1, ϑ) ≥ Λ(%2, %1,
ϑ

kn
),

ℵ(%n+2, %n+1, ϑ) ≤ ℵ(%2, %1,
ϑ

kn
),

i(%n+2, %n+1, ϑ) ≤ i(%2, %1,
ϑ

kn
)

(2)

for all ϑ > 0 and n = 1, 2, . . . .

Λ(%n, %n+p, ϑ) ≥ Λ(%1, %2,
ϑ

pkn−1
) ? · · · ? Λ(%1, %2,

ϑ

pkn+p−2 ),

ℵ(%n, %n+p, ϑ) ≤ ℵ(%1, %2,
ϑ

pkn−1
) � · · · � ℵ(%1, %2,

ϑ

pkn+p−2 ),

i(%n, %n+p, ϑ) ≤ i(%1, %2,
ϑ

pkn−1
) � · · · � i(%1, %2,

ϑ

pkn+p−2 ).

(3)
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Therefore, from equation(1),we have

lim
n→∞

Λ(%1, %n+p, ϑ) ≥ 1 ? 1 ? · · · ? 1 ≥ 1,

lim
n→∞

ℵ(%1, %n+p, ϑ) ≤ 0 ? 0 � · · · � 0 ≤ 0

lim
n→∞

i(%1, %n+p, ϑ) ≤ 0 ? 0 � · · · � 0 ≤ 0

(4)

which implies that {%n} is a Cauchy sequence in Λ. �

Definition 3.5 Let Φ and Ψ be two mappings from neutrosophic metric space Σ into itself.

The mappings are said to be compatible if

lim
n→∞

Λ(ΦΨ(%n),ΨΦ(%n), ϑ) = 1, lim
n→∞

ℵ(ΦΨ(%n),ΨΦ(%n), ϑ) = 0, lim
n→∞

i(ΦΨ(%n),ΨΦ(%n), ϑ) = 0.

(5)

for all ϑ > 0 whenever {%n} ⊂ Λ such that limn→∞Φ(%n) = limn→∞Ψ(%n) = % for some

% ∈ Σ.

Definition 3.6 Let Φ and Ψ be two mappings from NMS Σ into itself. The mappings are

said to be compatible maps of type(α) if

lim
n→∞

Λ(ΦΨ(%n),ΨΨ(%n), ϑ) = 1 and lim
n→∞

Λ(ΨΦ(%n),ΦΦ(%n), ϑ) = 1,

lim
n→∞

ℵ(ΦΨ(%n),ΨΨ(%n), ϑ) = 0 and lim
n→∞

ℵ(ΨΦ(%n),ΦΦ(%n), ϑ) = 0,

lim
n→∞

i(ΦΨ(%n),ΨΨ(%n), ϑ) = 0 and lim
n→∞

i(ΨΦ(%n),ΦΦ(%n), ϑ) = 0.

for all ϑ > 0 whenever {%n} ⊂ Λ such that limn→∞Φ(%n) = limn→∞Ψ(%n) = % for some

% ∈ Σ.

Definition 3.7 Let Φ and Ψ be two mappings from NMS Σ into itself. The mappings are

said to be compatible maps of type(β) if for all ϑ > 0

lim
n→∞

Λ(ΦΦ(%n),ΨΨ(%n), ϑ) = 1, lim
n→∞

ℵ(ΦΦ(%n),ΨΨ(%n), ϑ) = 0, lim
n→∞

i(ΦΦ(%n),ΨΨ(%n), ϑ) = 0.

for all ϑ > 0 whenever {%n} ⊂ Λ such that limn→∞Φ(%n) = limn→∞Ψ(%n) = % for some

% ∈ Σ.

Proposition 3.8 Let Σ be a NMS and Φ,Ψ be continuous mapping from Σ into itself. Then

Φ and Ψ be compatible if and only if they are compatible of type(α).

Proof: Let {%n} ⊂ Λ such that limn→∞Φ(%n) = limn→∞Ψ(%n) = % for some % ∈ Λ. Since

Φ is continuous, we have limn→∞ΦΦ(%n) = limn→∞ΦΨ(%n) = ΦΨ. Also, since Φ,Ψ are

compatible,

lim
n→∞

Λ(ΦΨ(%n),ΨΦ(%n), ϑ) = 1, lim
n→∞

ℵ(ΦΨ(%n),ΨΦ(%n), ϑ) = 0, lim
n→∞

i(ΦΨ(%n),ΨΦ(%n), ϑ) = 0.

S Sowndrarajan and M. Jeyaraman, Some Results for Compatible maps on Neutrosophic
Metric Spaces

Neutrosophic Sets and Systems, Vol. 60, 2023                                                                               471



for all ϑ > 0. From the inequality,

Λ(ΦΦ(%n),ΨΦ(%n), ϑ) ≥ Λ(ΦΦ(%n),ΦΨ(%n),
ϑ

2
) ? Λ(ΦΨ(%n),ΨΦ(%n),

ϑ

2
),

ℵ(ΦΦ(%n),ΨΦ(%n), ϑ) ≤ ℵ(ΦΦ(%n),ΦΨ(%n),
ϑ

2
) � ℵ(ΦΨ(%n),ΨΦ(%n),

ϑ

2
),

i(ΦΦ(%n),ΨΦ(%n), ϑ) ≤ i(ΦΦ(%n),ΦΨ(%n),
ϑ

2
) � i(ΦΨ(%n),ΨΦ(%n),

ϑ

2
).

Therefore,

lim
n→∞

Λ(ΦΦ(%n),ΨΦ(%n), ϑ) = 1, lim
n→∞

ℵ(ΦΦ(%n),ΨΦ(%n), ϑ) = 0, lim
n→∞

i(ΦΦ(%n),ΨΦ(%n), ϑ) = 0.

Also we get,

lim
n→∞

Λ(ΨΨ(%n),ΦΨ(%n), ϑ) = 1, lim
n→∞

ℵ(ΨΨ(%n),ΦΨ(%n), ϑ) = 0, lim
n→∞

i(ΨΨ(%n),ΦΨ(%n), ϑ) = 0.

Hence Φ and Ψ are compatible of type α.

Conversely, Let {%n} ⊂ Λ such that limn→∞Φ(%n) = limn→∞Φ(%n) = % for some % ∈ Λ.

Since Ψ is also continuous, we have

lim
n→∞

ΨΦ(%n) = lim
n→∞

ΨΨ(%n) = Ψ%

Since Φ and Ψ are compatible of type (α), we get

Λ(ΦΨ(%n),ΨΨ(%n),
ϑ

2
) = Λ(ΨΦ(%n),ΦΦ(%n),

ϑ

2
) = 1,

ℵ(ΦΨ(%n),ΨΨ(%n),
ϑ

2
) = ℵ(ΨΦ(%n),ΦΦ(%n),

ϑ

2
) = 0,

i(ΦΨ(%n),ΨΨ(%n),
ϑ

2
) = i(ΨΦ(%n),ΦΦ(%n),

ϑ

2
) = 0

for all ϑ > 0. Thus from the inequality,

Λ(ΦΨ(%n),ΨΦ(%n), ϑ) ≥ Λ(ΦΨ(%n),ΨΨ(%n),
ϑ

2
) ? Λ(ΨΨ(%n),ΨΦ(%n),

ϑ

2
),

ℵ(ΦΨ(%n),ΨΦ(%n), ϑ) ≤ ℵ(ΦΨ(%n),ΨΨ(%n),
ϑ

2
) � ℵ(ΨΨ(%n),ΨΦ(%n),

ϑ

2
),

i(ΦΦ(%n),ΨΦ(%n), ϑ) ≤ i(ΦΦ(%n),ΦΨ(%n),
ϑ

2
) � i(ΦΨ(%n),ΨΦ(%n),

ϑ

2
)

Therefore

lim
n→∞

Λ(ΦΦ(%n),ΨΦ(%n), ϑ) = 1, lim
n→∞

ℵ(ΦΦ(%n),ΨΦ(%n), ϑ) = 0, lim
n→∞

i(ΦΦ(%n),ΨΦ(%n), ϑ) = 0.

Hence Φ and Ψ are compatible maps. �

Proposition 3.9 Let (Σ,Λ,ℵ,i, ?, �) be a NMS and Φ,Ψ be self mappings from Σ into

itself. If Φ,Ψ are compatible maps of type (α) and Φ(%) = Ψ(%) for some % ∈ Σ, then

ΦΨ(%) = ΨΨ(%) = ΨΦ(%) = ΦΦ(%)
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Proof:Let {%n} ⊂ Σ defined by limn→∞ %n = % for some % ∈ Σ and n = 1, 2, . . . and Φ(%) =

Ψ(%). Then we have

lim
n→∞

Φ(%n) = lim
n→∞

Ψ(%n) = Φ(%) = Ψ(%).

Since, Φ,Ψ are compatible of type(α), we get

Λ(ΦΨ(%),ΨΨ(%), ϑ) = lim
n→∞

Λ(ΦΨ(%n),ΨΨ(%n), ϑ) = 1,

ℵ(ΦΨ(%),ΨΨ(%), ϑ) = lim
n→∞

ℵ(ΦΨ(%n),ΨΨ(%n), ϑ) = 0,

i(ΦΨ(%),ΨΨ(%), ϑ) = lim
n→∞

i(ΦΨ(%n),ΨΨ(%n), ϑ) = 0.

Therefore ΦΨ(%) = ΨΨ(%). Also, we have ΨΦ(%) = ΦΦ(%).

Since Φ(%) = Ψ(%), ΨΨ(%) = ΦΨ(%). Hence ΦΨ(%) = ΨΨ(%) = ΨΦ(%) = ΦΦ(%). �

Proposition 3.10 Let (Σ,Λ,ℵ,i, ?, �) be a NMS and Φ,Ψ be two self maps from Σ into itself.

If Φ,Ψ are compatible maps of type (α)and {%n} ⊂ Σ such that

limn→∞Φ(%n) = limn→∞Ψ(%n) = % for some % ∈ Σ, then

(i) limn→∞ΨΦ(%n) = Φ% if Φ is continuous at % ∈ Σ,

(ii) ΦΨ(%) = ΨΦ(%) and Φ(%) = Ψ(%) if Φ,Ψ are continuous at % ∈ Σ.

Proof:(i) Since Φ is continuous at % and limn→∞Φ(%n) = %, limn→∞ΦΦ(%n) = Φ%. Also we

have Φ,Ψ are compatible maps of ype (α), Then

lim
n→∞

Λ(ΨΦ(%n),ΦΦ(%n), ϑ) = 1, lim
n→∞

ℵ(ΨΦ(%n),ΦΦ(%n), ϑ) = 0, lim
n→∞

i(ΨΦ(%n),ΦΦ(%n), ϑ) = 0.

for all ϑ > 0. From the definition (3.1),

lim
n→∞

Λ(ΨΦ(%n),Φ(%), ϑ) ≥ lim
n→∞

Λ(ΨΦ(%n),ΦΦ(%n),
ϑ

2
) ? Λ(ΦΦ(%n),Φ(%),

ϑ

2
) ≥ 1,

lim
n→∞

ℵ(ΨΦ(%n),Φ(%), ϑ) ≤ lim
n→∞

ℵ(ΨΦ(%n),ΦΦ(%n),
ϑ

2
) � ℵ(ΦΦ(%n),Φ(%),

ϑ

2
) ≤ 0,

lim
n→∞

i(ΨΦ(%n),Φ(%), ϑ) ≤ lim
n→∞

i(ΨΦ(%n),ΦΦ(%n),
ϑ

2
) � i(ΦΦ(%n),Φ(%),

ϑ

2
) ≤ 0.

Hence limn→∞ΨΦ(%n) = Φ(%).

(ii) we have limn→∞Φ(%n) = limn→∞Ψ(%n) = %. and Φ,Ψ are continuous at % ∈ Σ. From

the result(i) we have, limn→∞ΦΨ(%n) = Φ(%) and limn→∞ΨΦ(%n) = Ψ(%). Since the lim-

it is always unique, so we obtain Φ(%) = Ψ(%). By Proposition(3.9), Hence, we prove that

ΦΨ(%) = ΨΦ(%). �
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Example 3.11 Let Σ = [0,∞) be a metric d which is defined by d(%, ς) = |%− ς|, where ? and

� defined by a ? b = min{a, b}, a � b = max{a, b}. we define (Λ,ℵ,i) by

Λ(%, ς, ϑ) =

(
exp

(
d(%, ς)

ϑ

))−1
,

ℵ(%, ς, ϑ) =

exp

(
d(%,ς)

ϑ

)
− 1

exp

(
d(%,ς)

ϑ

) ,

i(%, ς, ϑ) = exp

(
d(%, ς)

ϑ

)
.

for all %, ς ∈ Σ and ϑ > 0. Then (Σ,Λ,ℵ,i, ?, �) is a NMS. Let Φ,Ψ be defined by

Φ(%) =

1, if for all % ∈ [0, 1]

1 + %, if for all % ∈ (1,∞)

Ψ(%) =

1, if for all % ∈ [0, 1]

1 + %, if for all % ∈ [0, 1)

Let {%n} be a sequence in Σ such that limn→∞Φ%n = limn→∞Ψ%n = ω. From the definition

of Φ,Ψ, % and limn→∞ %n = 0. Since Φ,Ψ are discontinuous at % = 1, Therefore (Φ,Ψ) are

compatible maps of type (β).

4. Main Results

In this section, we present some interesting concepts such as compatible maps of of type (α)

and type (β) in neutrosophic metric space with suitable examples. Also we prove some fixed

point theorems using compatible mapping of type (α).

Theorem 4.1 Let (Σ,Λ,ℵ,i, ?, �) be a complete neutrosophic metric space with ϑ ? ϑ ≥
ϑ, ϑ � ϑ ≤ ϑ for all ϑ ∈ [0, 1] and satisfy the condition (1). Let Φ,Ψ,Ω,Λ and Γ be mappings

from Σ into itself such that

(i) Γ(Σ) ⊂ ΦΨ(Σ), Γ(Σ) ⊂ ΩΛ(Σ);

(ii) There exists k ∈ (0, 1) such that for all %, ς ∈ Σ, β ∈ (0, 2) and ϑ > 0

Λ(Γ%,Γς, kϑ) ≥ Λ(ΦΨ%,Γ%, ϑ) ? Λ(ΩΓς,Γς, ϑ) ? Λ(ΩΓς,Γ%, βϑ)

? Λ(ΦΨ%,Γς, (2− β)ϑ) ? Λ(ΦΨ%,ΩΓς, ϑ),

ℵ(Γ%,Γς, kϑ) ≤ ℵ(ΦΨ%,Γ%, ϑ) � ℵ(ΩΓς,Γς, ϑ) � ℵ(ΩΓς,Γ%, βϑ)

� ℵ(ΦΨ%,Γς, (2− β)ϑ) � ℵ(ΦΨ%,ΩΓς, ϑ),

i(Γ%,Γς, kϑ) ≤ i(ΦΨ%,Γ%, ϑ) � i(ΩΓς,Γς, ϑ) � i(ΩΓς,Γ%, βϑ)

� i(ΦΨ%,Γς, (2− β)ϑ) � i(ΦΨ%,ΩΓς, ϑ).
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(iii) ΓΨ = ΨΓ, ΓΛ = ΛΓ, ΦΨ = ΨΦ and ΩΛ = ΛΩ,

(iv) Φ and Ψ are continuous,

(v) Γ and ΦΨ are compatible of type (α),

(vi) Λ(%,ΩΓ%, ϑ) ≥ Λ(%,ΦΨ%, ϑ), ℵ(%,ΩΓ%, ϑ) ≤ ℵ(%,ΦΨ%, ϑ),

i(%,ΩΓ%, ϑ) ≤ i(%,ΦΨ%, ϑ) for all % ∈ Σ and ϑ > 0.

Then Φ,Ψ,Ω,Λ and Γ have a common fixed point in Σ.

Proof: Since Γ(Σ) ⊂ ΦΨ(Σ) for fixed %0 ∈ Λ, we choose a point %1 ∈ Λ such that Γ%0 = ΦΨ%1.

Since Γ(Σ) ⊂ ΩΛ(Λ), we take %2 ∈ Λ for this point %1 such that Φ%1 = ΩΛ%2. Consider a

sequence {ςn} ⊂ Λ , bu mathematical induction,

ς2n = Γ%2n = ΦΨ%2n+1, ς2n+1 = Γ%2n+1 = ΦΨ%2n+2

for n = 1, 2, . . . . From (ii)we have

Λ(ς2n+1, ς2n+2, kϑ) = Λ(Γ%2n+1,Γ%2n+2, kϑ) ≥ Λ(ς2n, ς2n+1, ϑ) ? Λ(ς2n+1, ς2n+2, ϑ)

? Λ(ς2n+1, ς2n+1, ϑ) ? Λ(ς2n, ς2n+2, (1 + q)ϑ)

? Λ(ς2n, ς2n+1, ϑ),

ℵ(ς2n+1, ς2n+2, kϑ) = ℵ(Γ%2n+1,Γ%2n+2, kϑ) ≤ ℵ(ς2n, ς2n+1, ϑ) � ℵ(ς2n+1, ς2n+2, ϑ)

� ℵ(ς2n+1, ς2n+1, ϑ) � ℵ(ς2n, ς2n+2, (1 + q)ϑ)

� ℵ(ς2n, ς2n+1, ϑ),

i(ς2n+1, ς2n+2, kϑ) = i(Γ%2n+1,Γ%2n+2, kϑ) ≤ i(ς2n, ς2n+1, ϑ) � i(ς2n+1, ς2n+2, ϑ)

� i(ς2n+1, ς2n+1, ϑ) � i(ς2n, ς2n+2, (1 + q)ϑ)

� i(ς2n, ς2n+1, ϑ)

(6)

for all ϑ > 0 and β = 1 - q with q ∈ (0, 1).

Since ?, � are continuous also Λ(%, ς, .),ℵ(%, ς, .) and i(%, ς, .) are continuous, let q → 1 in the

above equation, we get

Λ(ς2n+1, ς2n+2, kϑ) ≥ Λ(ς2n, ς2n+1, ϑ) ? Λ(ς2n+1, ς2n+2, ϑ),

ℵ(ς2n+1, ς2n+2, kϑ) ≤ ℵ(ς2n, ς2n+1, ϑ) � ℵ(ς2n+1, ς2n+2, ϑ),

i(ς2n+1, ς2n+2, kϑ) ≤ i(ς2n, ς2n+1, ϑ) � i(ς2n+1, ς2n+2, ϑ)

(7)

Also we have

Λ(ς2n+2, ς2n+3, kϑ) ≥ Λ(ς2n+1, ς2n+2, ϑ) ? Λ(ς2n+2, ς2n+3, ϑ),

ℵ(ς2n+2, ς2n+3, kϑ) ≤ ℵ(ς2n+1, ς2n+2, ϑ) � ℵ(ς2n+2, ς2n+3, ϑ),

i(ς2n+2, ς2n+3, kϑ) ≤ i(ς2n+1, ς2n+2, ϑ) � i(ς2n+2, ς2n+3, ϑ).

(8)
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From equation (7) and (8)

Λ(ς2n+1, ς2n+2, kϑ) ≥ Λ(ςn, ςn+1, ϑ) ? Λ(ςn+1, ςn+2, ϑ),

ℵ(ς2n+1, ς2n+2, kϑ) ≤ ℵ(ςn, ςn+1, ϑ) � ℵ(ςn+1, ςn+2, ϑ),

i(ς2n+1, ς2n+2, kϑ) ≤ i(ςn, ςn+1, ϑ) � i(ςn+1, ςn+2, ϑ).

for n = 1, 2, . . . . Then for positive integers n and p,

Λ(ς2n+1, ς2n+2, kϑ) ≥ Λ(ςn, ςn+1, ϑ) ? Λ(ςn+1, ςn+2,
ϑ

kp
),

ℵ(ς2n+1, ς2n+2, kϑ) ≤ ℵ(ςn, ςn+1, ϑ) � ℵ(ςn+1, ςn+2,
ϑ

kp
),

i(ς2n+1, ς2n+2, kϑ) ≤ i(ςn, ςn+1, ϑ) � i(ςn+1, ςn+2,
ϑ

kp
).

Since

limn→∞Λ(ςn+1, ςn+2, kϑ) = 1, limn→∞ℵ(ςn+1, ςn+2, kϑ) = 0, limn→∞i(ςn+1, ςn+2, kϑ) = 0,

we have

Λ(ςn+1, ςn+2, kϑ) ≥ Λ(ςn, ςn+1, ϑ),

ℵ(ςn+1, ςn+2, kϑ) ≤ ℵ(ςn, ςn+1, ϑ),

i(ςn+1, ςn+2, kϑ) ≤ i(ςn, ςn+1, ϑ).

By lemma(3.4), Since Σ is complete, so {ςn} is a Cauchy sequence which is converges to a

point % ∈ Σ. Also {Γ%n}, {ΦΨ%2n+1}, {ΩΛ%2n+2} are subsequences of {ςn}, limn→∞ Γ%n =

% = limn→∞ΦΨ%2n+1 = limn→∞ΩΛ%2n+2. Also, since Φ,Ψ are continuous and ΓΦΨ are

compatible of type (α), by proposition (3.9), we have limn→∞ ΓΦΨ(%2n+1) = ΦΨ% and

limn→∞(ΦΨ)2%2n+1 = ΦΨ%. By(ii) with β = 1, we obtain

Λ(ΓΦΨ%2n+1,Γ%2n+2, kϑ) ≥ Λ((ΦΨ)2%2n+1,ΓΦΨ%2n+1, ϑ) ? Λ(ΩΛ%2n+2,Γ%2n+2, ϑ)

? Λ(ΩΓ%2n+2,ΓΦΨ%, ϑ) ? Λ((ΦΨ)2%2n+1,ΓΦ%2n+2, ϑ)

? Λ((ΦΨ)2%2n+1,ΩΛ%2n+2, ϑ),

ℵ(ΓΦΨ%2n+1,Γ%2n+2, kϑ) ≤ ℵ((ΦΨ)2%2n+1,ΓΦΨ%2n+1, ϑ) � ℵ(ΩΛ%2n+2,Γ%2n+2, ϑ)

� ℵ(ΩΓ%2n+2,ΓΦΨ%, ϑ) � ℵ((ΦΨ)2%2n+1,ΓΦ%2n+2, ϑ)

� ℵ((ΦΨ)2%2n+1,ΩΛ%2n+2, ϑ),

i(ΓΦΨ%2n+1,Γ%2n+2, kϑ) ≤ i((ΦΨ)2%2n+1,ΓΦΨ%2n+1, ϑ) � i(ΩΛ%2n+2,Γ%2n+2, ϑ)

� i(ΩΓ%2n+2,ΓΦΨ%, ϑ) � i((ΦΨ)2%2n+1,ΓΦ%2n+2, ϑ)

� i((ΦΨ)2%2n+1,ΩΛ%2n+2, ϑ),
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which implies that

Λ(ΦΨ%, %, kϑ) = limn→∞Λ(ΓΦΨ%2n+1,Γ%2n+2, kϑ)

≥ 1 ? 1 ? Λ(%,ΦΨ%, ϑ) ? Λ(ΦΨ%, %, ϑ) ? Λ(ΦΨ%, %, ϑ),

ℵ(ΦΨ%, %, kϑ) = limn→∞ℵ(ΓΦΨ%2n+1,Γ%2n+2, kϑ)

≤ 0 � 0 � ℵ(%,ΦΨ%, ϑ) � ℵ(ΦΨ%, %, ϑ) � ℵ(ΦΨ%, %, ϑ),

i(ΦΨ%, %, kϑ) = limn→∞i(ΓΦΨ%2n+1,Γ%2n+2, kϑ)

≤ 0 � 0 � i(%,ΦΨ%, ϑ) � i(ΦΨ%, %, ϑ) � i(ΦΨ%, %, ϑ.

Hence, by lemma (3.4), ΦΨ% = %. Also, by(vi), since Λ(%,ΩΓ%, ϑ) ≥ Λ(%,ΦΨ%, ϑ) = 1 and

ℵ(%,ΩΓ%, ϑ) ≤ ℵ(%,ΦΨ%, ϑ) = 0 and i(%,ΩΓ%, ϑ) ≤ i(%,ΦΨ%, ϑ) = 0 for all ϑ > 0, we get

ΩΛ% = %. By(ii) with β = 1, we have

Λ(ΓΦΨ%,Γ%, kϑ) ≥ Λ((ΦΨ)2%2n+1,ΓΦΨ%2n+1, ϑ) ? Λ(ΩΛ%,Γ%, ϑ)

? Λ(ΩΓ%,ΓΦΨ%2n+1, ϑ) ? Λ((ΦΨ)2%2n+1,Γ%, ϑ)

? Λ((ΦΨ)2%2n+1,ΩΛ%, ϑ),

ℵ(ΓΦΨ%,Γ%, kϑ) ≤ ℵ((ΦΨ)2%2n+1,ΓΦΨ%2n+1, ϑ) � ℵ(ΩΛ%,Γ%, ϑ)

� Λ(ΩΓ%,ΓΦΨ%2n+1, ϑ) � ℵ((ΦΨ)2%2n+1,Γ%, ϑ)

� ℵ((ΦΨ)2%2n+1,ΩΛ%, ϑ),

i(ΓΦΨ%,Γ%, kϑ) ≤ i((ΦΨ)2%2n+1,ΓΦΨ%2n+1, ϑ) � i(ΩΛ%,Γ%, ϑ)

� i(ΩΓ%,ΓΦΨ%2n+1, ϑ) � i((ΦΨ)2%2n+1,Γ%, ϑ)

� i((ΦΨ)2%2n+1,ΩΛ%, ϑ).

Thus

Λ(ΦΨ%,Γ%, kϑ) = limn→∞Λ(ΓΦΨ%2n+1,Γ%, kϑ)

≥ 1 ? 1 ? 1 ? Λ(ΦΨ%,Γ%, ϑ) ? 1

≥ Λ(ΦΨ%,Γ%, kϑ),

ℵ(ΦΨ%,Γ%, kϑ) = limn→∞ℵ(ΓΦΨ%2n+1,Γ%, kϑ)

≤ 0 � 0 � 0 � ℵ(ΦΨ%,Γ%, ϑ) � 0

≤ ℵ(ΦΨ%,Γ%, kϑ),

i(ΦΨ%,Γ%, kϑ) = limn→∞i(ΓΦΨ%2n+1,Γ%, kϑ)

≤ 0 � 0 � 0 � i(ΦΨ%,Γ%, ϑ) � 0

≤ i(ΦΨ%,Γ%, kϑ).
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By using the by Lemma (3.4), we get ΦΨ% = Γ% = %. Now we will prove that Ψ% = %. By(ii)

with β = 1 and (iii), we obtain

Λ(Ψ%, %, kϑ) = Λ(ΨΓ%,Γ%, ϑ) = Λ(ΓΨ%,Γ, kϑ) ≥ Λ(ΦΦ%,ΓΨ, ϑ) ? Λ(ΩΛ%,Γ%, ϑ)

? Λ(ΩΓ%,ΓΨ%, ϑ) ? Λ(ΦΦ%,Γ%, ϑ)

? Λ(ΦΦ%,ΩΓ%, ϑ),

ℵ(Ψ%, %, kϑ) = Λ(ΨΓ%,Γ%, ϑ) = ℵ(ΓΨ%,Γ, kϑ) ≤ ℵ(ΦΦ%,ΓΨ, ϑ) � ℵ(ΩΛ%,Γ%, ϑ)

� ℵ(ΩΓ%,ΓΨ%, ϑ) � ℵ(ΦΦ%,Γ%, ϑ)

� ℵ(ΦΦ%,ΩΓ%, ϑ),

i(Ψ%, %, kϑ) = i(ΨΓ%,Γ%, ϑ) = i(ΓΨ%,Γ, kϑ) ≤ i(ΦΦ%,ΓΨ, ϑ) � i(ΩΛ%,Γ%, ϑ)

� i(ΩΓ%,ΓΨ%, ϑ) � i(ΦΦ%,Γ%, ϑ)

� i(ΦΦ%,ΩΓ%, ϑ).

Therefore, we get Ψ% = %. Since ΦΨ% = %, hence Φ% = %. Next we show that Λ% = %. By(ii)

with β = 1 and (iii), we get

Λ(Λ%, %, kϑ) = Λ(ΛΓ%,Γ%, kϑ) = Λ(Γ%,ΛΓ%, kϑ) = 1 ? 1 ? Λ(Λ%, %, ϑ) ? Λ(%,Γ%, ϑ) ? Λ(%,Γ%, ϑ),

ℵ(Λ%, %, kϑ) = ℵ(ΛΓ%,Γ%, kϑ) = ℵ(Γ%,ΛΓ%, kϑ) = 0 � 0 � ℵ(Λ%, %, ϑ) � ℵ(%,Γ%, ϑ) � ℵ(%,Γ%, ϑ),

i(Λ%, %, kϑ) = i(ΛΓ%,Γ%, kϑ) = i(Γ%,ΛΓ%, kϑ) = 0 � 0 � i(Λ%, %, ϑ) � i(%,Γ%, ϑ) � i(%,Γ%, ϑ).

which implies that ϑ% = %. Since ΩΛ% = %, we have Ω% = ΩΛ% = %. Hence, we get

Φ% = Ψ% = Ω% = Λ% = Ω% = %, that is % is a common fixed point of Φ,Ψ,Ω,Λ and Γ.

Uniqueness of the fixed point % follows from (ii). Hence % is unique common fixed point of the

five mappings Φ,Ψ,Ω,Λ and Γ. �

Corollary 4.2 Let Σ be a complete neutrosophic metric space with ϑ ? ϑ ≥ ϑ, ϑ � ϑ ≤ ϑ for

all ϑ ∈ [0, 1]. Let Φ,Ψ and Γ be mappings from Σ into itself such that

(i) Γ(Σ) ⊂ Φ(Σ), Γ(Σ) ⊂ Ω(Σ);

(ii) There exists k ∈ (0, 1) such that for all %, ς ∈ Σ, β ∈ (0, 2) and ϑ > 0

Λ(Γ%,Γς, kϑ) ≥ Λ(Φ%,Γ%, ϑ) ? Λ(Ως,Γς, ϑ) ? Λ(Φ%,Ως, βϑ)

? Λ(Φ%,Γς, (2− β)ϑ) ? Λ(Ως,Γ%, ϑ),

ℵ(Γ%,Γς, kϑ) ≤ ℵ(Φ%,Γ%, ϑ) � ℵ(Ως,Γς, ϑ) � ℵ(Φ%,Ως, βϑ)

� ℵ(Φ%,Γς, (2− β)ϑ) � ℵ(Ως,Γ%, ϑ),

i(Γ%,Γς, kϑ) ≤ i(Φ%,Γ%, ϑ) � i(Ως,Γς, ϑ) � i(Φ%,Ως, βϑ)

� i(Φ%,Γς, (2− β)ϑ) � i(Ως,Γ%, ϑ).

S Sowndrarajan and M. Jeyaraman, Some Results for Compatible maps on Neutrosophic
Metric Spaces

Neutrosophic Sets and Systems, Vol. 60, 2023                                                                               478



(iii) Φ is continuous,

(iv) Γ and Φ are compatible of type (α),

(vi) Λ(%,Ω%, ϑ) ≥ Λ(%,Φ%, ϑ), ℵ(%,Ω%, ϑ) ≤ ℵ(%,Φ%, ϑ), i(%,Ω%, ϑ) ≤ i(%,Φ%, ϑ). for all

% ∈ Σ and ϑ > 0.

Then Φ,Ω and Γ have a common fixed point in Σ.

Proof. Suppose IX be the identity mapping on Σ. We prove this corollary by using theorem

(4.1) with Ψ = Γ = IX . �

Example 4.3 Let Σ = { 1n ;n ∈ N} ∪ {0} be a metric defined by d(%, ς) = |% − ς| . For all

%, ς ∈ Σ and ϑ ∈ (0,∞), define

Λ(%, ς, ϑ) =
ϑ

ϑ+ |%− ς|
; ℵ(%, ς, ϑ) =

|%− ς|
ϑ+ |%− ς|

; i(%, ς, ϑ) =
|%− ς|
ϑ

Clearly (Σ,Λ,ℵ,i, ?, �) is a complete neutrosophic metric space on Σ. Here ? is defined by

% ? ς = min{%, ς} and � is defined as % � ς = max{%, ς} respectively.

Let Φ,Ψ,Ω,Λ and Γ is defined by

Φ(%) =
%

4
, Ψ(%) =

%

6
, Ω(%) =

%

2
, Λ(%) =

%

3
, Γ(%) =

%

36
.

Then we have Γ(Σ) ⊂ Φ(Σ), Γ(Σ) ⊂ Ω(Σ); It is evident that Φ,Ψ,Ω,Λ and Γ are continuous.

Also the all conditions of Theorem(4.1) has been satisfied. Hence 0 is a unique fixed point of

Φ,Ψ,Ω,Λ and Γ .

5. Conclusion:

In this paper, we establish a novel concept termed Neutrosophic Metric Space (NMS) and

investigate its many features. In the context of NMS, compatible maps of type (α) and type

(β) definitions are defined, and various fixed point results are proven for five mappings. In

addition, we provided several instances to support our findings. Additionally, neutrosophic

normed space, neutrosophic triplet b-metric space, and neutrosophic triplet bipolar metric

spaces can all be included in the concept of compatible mappings.
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1 Introduction
The neutrosophic set was introduced in the 1990s by Florentin Smarandache as an extension of fuzzy sets and
intuitionistic fuzzy sets. This set is a useful device for handling uncertainty, ambiguity and incomplete infor-
mation as a mathematical framework that extends the concept of classical sets. There is no room for uncertainty
in classical set theory. This is because elements only belong to or do not belong to a set in classical set the-
ory. However, in many real-world situations, we encounter imprecise or uncertain information. Neutrosophic
sets provide a way to represent and reason with such information. One can use neutrosophic sets in various
fields and applications, for example, decision-making, image processing, pattern recognition, expert systems,
artificial intelligence, etc. Neutrosophic sets can be applied to algebraic structures to handle uncertainty and
indeterminacy in mathematical operations, for example, neutrosophic field, neutrosophic ring, neutrosophic
linear algebra, neutrosophic group, etc. The neutrosophic set is also applied to logical algebras (see [1], [2],
[5], [6], [7], [8],[9], [10],[11], [12]). These applications show how neutrosophic sets can be incorporated into
algebraic structures to accommodate uncertainty and indeterminacy in mathematical operations. By extending
classical algebraic structures to neutrosophic sets, it becomes possible to perform algebraic calculations and
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analyses in scenarios lacking accurate or complete information. K. Iséki [3] first introduced the BCI-algebra.
This algebra is a generalized version of the BCK-algebra introduced by K. Iséki and S. Tanaka [4] so as to
generalize the set difference in set theory. Recently, Yang et al. [13] attempted to generalize BCI-algebra, and
introduced the ordered BCI-algebra.

To apply neutrosophic set theory to the ordered BCI-algebra is the aim of this paper. The notion of single
valued neutrosophic ordered subalgebras in ordered BCI-algebras is introduced, and several properties are
investigated. We explore The conditions under which single valued neutrosophic level subsets become ordered
subalgebras are explored. When the T-neutrosophic q-set, I-neutrosophic q-set and F-neutrosophic q-set can
be ordered subalgebras is looked at. A special set Q1

0 is made and the conditions that it becomes an ordered
subalgebra are found.

2 Preliminaries

Definition 2.1 ([13]). Suppose that Q is a set with a constant “ϵ”, a binary operation “ → ” and a binary
relation “ ≤Q ”. Q := (Q, →, ϵ, ≤Q) is said to be an ordered BCI-algebra (for simplicity, OBCI-algebra) if
Q satisfies:

(∀w, z, u ∈ Q)(ϵ ≤Q (w → z) → ((z → u) → (w → u))), (2.1)
(∀w, z ∈ Q)(ϵ ≤Q w → ((w → z) → z)), (2.2)
(∀w ∈ Q)(ϵ ≤Q w → w), (2.3)
(∀w, z ∈ Q)(ϵ ≤Q w → z, ϵ ≤Q z → w ⇒ w = z), (2.4)
(∀w, z ∈ Q)(w ≤Q z ⇔ ϵ ≤Q w → z), (2.5)
(∀w, z ∈ Q)(ϵ ≤Q w, w ≤Q z ⇒ ϵ ≤Q z). (2.6)

Obviously Q := (Q, →, ϵ, ≤Q) with Q = {ϵ} is an OBCI-algebra, which is said to be the trivial OBCI-
algebra.

Proposition 2.2 ([13]). Let Q := (Q, →, ϵ, ≤Q) be an OBCI-algebra. The following hold in Q:

(∀w ∈ Q)(ϵ → w = w). (2.7)
(∀w, z, u ∈ Q)(u → (z → w) = z → (u → w)). (2.8)
(∀w, z, u ∈ Q)(ϵ ≤Q w → z ⇒ ϵ ≤Q (z → u) → (w → u)). (2.9)
(∀w, z, u ∈ Q)(ϵ ≤Q w → z, ϵ ≤Q z → u ⇒ ϵ ≤Q w → u). (2.10)
(∀w, z, u ∈ Q)(ϵ ≤Q (u → (z → w)) → (z → (u → w))). (2.11)
(∀w, z, u ∈ Q)(ϵ ≤Q u → (z → w) ⇒ ϵ ≤Q z → (u → w)). (2.12)
(∀w, z ∈ Q)(((w → z) → z) → z = w → z). (2.13)
(∀w ∈ Q)((w → w) → w = w). (2.14)
(∀w, z, u ∈ Q)(ϵ ≤Q (z → u) → ((w → z) → (w → u))). (2.15)
(∀w, z, u ∈ Q)(ϵ ≤Q w → z ⇒ ϵ ≤Q (u → w) → (u → z)). (2.16)

Definition 2.3 ([13]). Let A be a subset of Q. A is said to be
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• a subalgebra of Q := (Q, →, ϵ, ≤Q) if it satisfies:

(∀w, z ∈ Q)(w, z ∈ A ⇒ w → z ∈ A). (2.17)

• an ordered subalgebra of Q := (Q, →, ϵ, ≤Q) if it satisfies:

(∀w, z ∈ Q)(w, z ∈ A, ϵ ≤Q w, ϵ ≤Q z ⇒ w → z ∈ A). (2.18)

We recall that all subalgebras are ordered subalgebras, whereas the converse is not necessarily true (see
[13]).

Let Q be a non-empty set. A single valued neutrosophic set in Q is a structure of the form:

C∼ := {⟨y; C̃T (y), C̃I(y), C̃F (y)⟩ | y ∈ Q}

where C̃F : Q → [0, 1] is a false membership function, C̃I : Q → [0, 1] is an indeterminate membership
function, and C̃T : Q → [0, 1] is a truth membership function. For brevity, the symbol C∼ := (C̃T , C̃I , C̃F ) is
used for the single valued neutrosophic set

C∼ := {⟨y; C̃T (y), C̃I(y), C̃F (y)⟩ | y ∈ Q}.

Given a single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) in Q, we consider the following sets.

Q(C̃T ; ϱ) := {y ∈ Q | C̃T (y) ≥ ϱ},
Q(C̃I ;σ) := {y ∈ Q | C̃I(y) ≥ σ},
Q(C̃F ; δ) := {y ∈ Q | C̃F (y) ≤ δ},

which are called single valued neutrosophic level subsets of Q where ϱ, σ, δ ∈ [0, 1].

3 Single valued neutrosophic ordered subalgebras

Here the notion of single valued neutrosophic (ordered) subalgebras is introduced and several properties are
investigated. Unless otherwise specified, we henceforth denote an OBCI-algebra by Q := (Q,→, ϵ, ≤Q).

Definition 3.1. Let C∼ := (C̃T , C̃I , C̃F ) be a single valued neutrosophic set in Q. C∼ is said to be a single
valued neutrosophic subalgebra of Q := (Q, →, ϵ, ≤Q) if C∼ satisfies:

(∀y, k ∈ Q)

 C̃T (y → k) ≥ min{C̃T (y), C̃T (k)}
C̃I(y → k) ≥ min{C̃I(y), C̃I(k)}
C̃F (y → k) ≤ max{C̃F (y), C̃F (k)}

 . (3.1)

Definition 3.2. Let C∼ := (C̃T , C̃I , C̃F ) be a single valued neutrosophic set in Q. C∼ is said to be a single
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valued neutrosophic ordered subalgebra of Q := (Q,→, ϵ, ≤Q) if C∼ satisfies:

(∀y, k ∈ Q)

 ϵ ≤Q y, ϵ ≤Q k ⇒


C̃T (y → k) ≥ min{C̃T (y), C̃T (k)}
C̃I(y → k) ≥ min{C̃I(y), C̃I(k)}
C̃F (y → k) ≤ max{C̃F (y), C̃F (k)}

 . (3.2)

Example 3.3. Let Q = {0, ϵ, j, 1} be a set, where 0 and 1 are the least element and the greatest element of Q,
respectively. A binary operation “ → ” on Q is provided by the table below:

→ 1 ϵ j 0
1 1 0 0 0
ϵ 1 ϵ j 0
j 1 j ϵ 0
0 1 1 1 1

Let ≤Q:= {(1, 1), (j, 1)}, (ϵ, 1), (j, j), (0, j), (ϵ, ϵ), (0, ϵ), (0, 0)}. Then Q := (Q, →, ϵ, ≤Q) is an OBCI-
algebra (see [13]).

(i) Let C∼ := (C̃T , C̃I , C̃F ) be a single valued neutrosophic set in Q provided by the table below:

Q C̃T (y) C̃I(y) C̃F (y)
1 0.68 0.73 0.31
ϵ 0.68 0.73 0.31
j 0.24 0.49 0.59
0 0.68 0.73 0.31

Clearly C∼ := (C̃T , C̃I , C̃F ) is a single valued neutrosophic subalgebra of Q := (Q, →, ϵ, ≤Q).
(ii) Let C∼ := (C̃T , C̃I , C̃F ) be a single valued neutrosophic set in Q provided by the table below:

Q C̃T (y) C̃I(y) C̃F (y)
1 0.38 0.25 0.63
ϵ 0.64 0.76 0.29
j 0.38 0.25 0.63
0 0.64 0.76 0.29

Clearly C∼ := (C̃T , C̃I , C̃F ) is a single valued neutrosophic ordered subalgebra of Q := (Q, →, ϵ, ≤Q).

It is certain that every single valued neutrosophic subalgebra is a single valued neutrosophic ordered sub-
algebra. However, as the following example shows, the converse is not necessarily true. From this point of
view, we can say that the single valued neutrosophic ordered subalgebra is a generalization of the single valued
neutrosophic subalgebra.
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→ 1 3
4

1
2

1
4

0
1 1 0 0 0 0
3
4

1 3
4

1
2

1
4

0
1
2

1 3
4

3
4

1
2

0
1
4

1 3
4

3
4

3
4

0
0 1 1 1 1 1

Example 3.4. Suppose that Q =
{
0, 1

4
, 1
2
, 3
4
, 1
}

is a set with a binary operation “ → ” provided by the table:
and that ≤Q is the natural order in Q. Certainly Q := (Q, →, 3

4
, ≤Q) is an OBCI-algebra (see [13]). Suppose

that C∼ := (C̃T , C̃I , C̃F ) is a single valued neutrosophic set in Q provided by the table:

Q C̃T (y) C̃I(y) C̃F (y)
1 0.37 0.25 0.63
3
4

0.68 0.76 0.29
1
2

0.37 0.25 0.63
1
4

0.37 0.25 0.63
0 0.68 0.76 0.29

It is routine to check that C∼ := (C̃T , C̃I , C̃F ) is a single valued neutrosophic ordered subalgebra of Q := (Q,
→, 3

4
, ≤Q). However, C∼ is not a single valued neutrosophic subalgebra of Q := (Q, →, 3

4
, ≤Q) since

C̃T (0 → 3
4
) = C̃T (1) = 0.37 ≱ 0.68 = min{C̃T (0), C̃T (34)}

and/or
C̃F (0 → 3

4
) = C̃F (1) = 0.63 ≰ 0.29 = max{C̃F (0), C̃F (34)}.

Theorem 3.5. A single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) in Q is a single valued neutrosophic
ordered subalgebra of Q := (Q, →, ϵ, ≤Q) if and only if C∼ satisfies:

(∀y, k ∈ Q)

(
ϵ ≤Q y, ϵ ≤Q k, y ∈ Q(C̃T ; ϱy), k ∈ Q(C̃T ; ϱk)

⇒ y → k ∈ Q(C̃T ; min{ϱy, ϱk})

)
, (3.3)

(∀w, z ∈ Q)

(
ϵ ≤Q w, ϵ ≤Q z, w ∈ Q(C̃I ;σw), z ∈ Q(C̃I ;σz)

⇒ w → z ∈ Q(C̃I ; min{σw, σz})

)
, (3.4)

(∀y, z ∈ Q)

(
ϵ ≤Q y, ϵ ≤Q z, y ∈ Q(C̃F ; δy), z ∈ Q(C̃F ; δz)

⇒ y → z ∈ Q(C̃F ; max{δy, δz})

)
. (3.5)

Proof. Assume that C∼ := (C̃T , C̃I , C̃F ) is a single valued neutrosophic ordered subalgebra of Q := (Q,

→, ϵ, ≤Q). Let y, k ∈ Q be such that ϵ ≤Q y, ϵ ≤Q k, y ∈ Q(C̃T ; ϱy) and k ∈ Q(C̃T ; ϱk). Then C̃T (y) ≥
ϱy and C̃T (k) ≥ ϱk, which imply that C̃T (y → k) ≥ min{C̃T (y), C̃T (k)} ≥ min{ϱy, ϱk}. Hence y → k ∈
Q(C̃T ; min{ϱy, ϱk}). Similarly, one is capable of verifying that w → z ∈ Q(C̃I ; min{σw, σz}) for all w ∈
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Q(C̃I ;σw) and z ∈ Q(C̃I ;σz) with ϵ ≤Q w and ϵ ≤Q z. Now, let y, z ∈ Q be such that ϵ ≤Q y, ϵ ≤Q z,
y ∈ Q(C̃F ; δy) and z ∈ Q(C̃F ; δz). Then C̃F (y) ≤ δy and C̃F (z) ≤ δz. Thus

C̃F (y → z) ≤ max{C̃F (y), C̃F (z)} ≤ max{δy, δz},

and so y → z ∈ Q(C̃F ; max{δy, δz}).
Conversely, suppose that C∼ := (C̃T , C̃I , C̃F ) is a single valued neutrosophic set in Q that satisfies the

conditions (3.3), (3.4) and (3.5). If C̃T (w → z) < min{C̃T (w), C̃T (z)} for some w, z ∈ Q with ϵ ≤Q w and
ϵ ≤Q z, then

C̃T (w → z) < ϱo ≤ min{C̃T (w), C̃T (z)}

for some ϱo ∈ (0, 1]. Hence w, z ∈ Q(C̃T ; ϱo) and w → z /∈ Q(C̃T ; ϱo), a contradiction, and thus

C̃T (y → k) ≥ min{C̃T (y), C̃T (k)}

for all y, k ∈ Q with ϵ ≤Q y and ϵ ≤Q k. Similarly, we can obtain C̃I(y → k) ≥ min{C̃I(y), C̃I(k)} for all y, k ∈
Q with ϵ ≤Q y and ϵ ≤Q k. Let there be z, u ∈ Q so that ϵ ≤Q z, ϵ ≤Q u and C̃F (z → u) > max{C̃F (z), C̃F (u)}.
If we take δ := max{C̃F (z), C̃F (u)}, then z, u ∈ Q(C̃F ; δ) and z → u /∈ Q(C̃F ; δ), a contradiction. Hence
C̃F (k → o) ≤ max{C̃F (k), C̃F (o)} for all k, o ∈ Q with ϵ ≤Q k and ϵ ≤Q o. Consequently, C∼ := (C̃T , C̃I , C̃F )
is a single valued neutrosophic ordered subalgebra of Q := (Q, →, ϵ, ≤Q).

Theorem 3.6. Given a single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) in Q, its nonempty single valued
neutrosophic level subsets Q(C̃T ; ϱ), Q(C̃I ;σ) and Q(C̃F ; δ) are ordered subalgebras of Q := (Q, →, ϵ, ≤Q)
for all ϱ, σ ∈ (0.5, 1] and δ ∈ [0, 0.5) if and only if the following fact is established.

(∀y, k ∈ Q)

 ϵ ≤Q y, ϵ ≤Q k ⇒


max{C̃T (y → k), 0.5} ≥ min{C̃T (y), C̃T (k)}
max{C̃I(y → k), 0.5} ≥ min{C̃I(y), C̃I(k)}
min{C̃F (y → k), 0.5} ≤ max{C̃F (y), C̃F (k)}

 . (3.6)

Proof. Assume that the nonempty single valued neutrosophic level subsets Q(C̃T ; ϱ), Q(C̃I ;σ) and Q(C̃F ; δ)
are ordered subalgebras of Q := (Q, →, ϵ, ≤Q) for all ϱ, σ ∈ (0.5, 1] and δ ∈ [0, 0.5). Let there be w, z ∈ Q

that satisfies ϵ ≤Q w, ϵ ≤Q z and max{C̃I(w → z), 0.5} < min{C̃I(w), C̃I(z)} := σ. We get σ ∈ (0.5, 1]

and w, z ∈ Q(C̃I ;σ). Since Q(C̃I ;σ) is an ordered subalgebra of Q := (Q, →, ϵ, ≤Q), it follows that
w → z ∈ Q(C̃I ;σ). Hence C̃I(w → z) ≥ σ = min{C̃I(w), C̃I(z)}, a contradiction. Thus

max{C̃I(y → k), 0.5} ≥ min{C̃I(y), C̃I(k)}

for all y, k ∈ Q with ϵ ≤Q y and ϵ ≤Q k. In a similar way, we have

max{C̃T (y → k), 0.5} ≥ min{C̃T (y), C̃T (k)}

for all y, k ∈ Q with ϵ ≤Q y and ϵ ≤Q k. If we say

min{C̃F (w → z), 0.5} > max{C̃F (w), C̃F (z)} := δ
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for some w, z ∈ Q satisfying ϵ ≤Q w and ϵ ≤Q z, then δ ∈ [0, 0.5) and w, z ∈ Q(C̃F ; δ). But w → z /∈
Q(C̃F ; δ), a contradiction. Thus min{C̃F (y → k), 0.5} ≤ max{C̃F (y), C̃F (k)} for all y, k ∈ Q with ϵ ≤Q y and
ϵ ≤Q k.

Conversely, a single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) in Q satisfies the condition (3.6). Assume
that y, k ∈ Q are such that ϵ ≤Q y and ϵ ≤Q k. If y, k ∈ Q(C̃T ; ϱ) ∩ Q(C̃I ;σ) for all ϱ, σ ∈ (0.5, 1], then
max{C̃T (y → k), 0.5} ≥ min{C̃T (y), C̃T (k)} ≥ ϱ > 0.5 and

max{C̃I(y → k), 0.5} ≥ min{C̃I(y), C̃I(k)} ≥ σ > 0.5.

Hence C̃T (y → k) ≥ ϱ and C̃I(y → k) ≥ σ, that is, y → k ∈ Q(C̃T ; ϱ) ∩ Q(C̃I ;σ). Now, if y, k ∈ Q(C̃F ; δ)
for all δ ∈ [0, 0.5), then min{C̃F (y → k), 0.5} ≤ max{C̃F (y), C̃F (k)} ≤ δ < 0.5 and so C̃F (y → k) ≤ δ, i.e.,
y → k ∈ Q(C̃F ; δ). Therefore Q(C̃T ; ϱ), Q(C̃I ;σ) and Q(C̃F ; δ) are ordered subalgebras of Q := (Q, →, ϵ,
≤Q) for all ϱ, σ ∈ (0.5, 1] and δ ∈ [0, 0.5).

Given a single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) in Q and ϱ, σ, δ ∈ [0, 1], we consider the sets:

Tq(C∼, ϱ) := {y ∈ Q | C̃T (y) + ϱ > 1},
Iq(C∼, σ) := {y ∈ Q | C̃I(y) + σ > 1},
Fq(C∼, δ) := {y ∈ Q | C̃F (y) + δ < 1},

which are called the T -neutrosophic q-set, I-neutrosophic q-set and F -neutrosophic q-set, respectively, of
C∼ := (C̃T , C̃I , C̃F ). Also, we consider the sets:

T∈∨q (C∼, ϱ) = Q(C̃T ; ϱ) ∪ Tq(C∼, ϱ),
I∈∨q (C∼, σ) = Q(C̃I ;σ) ∪ Iq(C∼, σ),
F∈∨q (C∼, δ) = Q(C̃F ; δ) ∪ Fq(C∼, δ),

which are called the T -neutrosophic ∈∨q -set, I-neutrosophic ∈∨q -set and F -neutrosophic ∈∨q -set, respec-
tively, of C∼ := (C̃T , C̃I , C̃F ).

Theorem 3.7. If C∼ := (C̃T , C̃I , C̃F ) is a single valued neutrosophic ordered subalgebra of Q := (Q, →, ϵ,
≤Q), then its nonempty T - (resp., I- and F -) neutrosophic q-set Tq(C∼, ϱ) (resp., Iq(C∼, σ) and Fq(C∼, δ)) is
an ordered subalgebra of Q := (Q, →, ϵ, ≤Q) for all ϱ ∈ (0, 1] (resp., σ ∈ (0, 1] and δ ∈ [0, 1)).

Proof. Suppose that C∼ := (C̃T , C̃I , C̃F ) is a single valued neutrosophic ordered subalgebra of Q := (Q,→, ϵ,

≤Q), and that y, k ∈ Q are so that ϵ ≤Q y, ϵ ≤Q k and y, k ∈ Tq(C∼, ϱ) for ϱ ∈ (0, 1]. Then C̃T (y) + ϱ > 1 and
C̃T (k) + ϱ > 1. It follows that

C̃T (y → k) + ϱ ≥ min{C̃T (y), C̃T (k)}+ ϱ = min{C̃T (y) + ϱ, C̃T (k) + ϱ} > 1.

Hence y → k ∈ Tq(C∼, ϱ), and therefore Tq(C∼, ϱ) is an ordered subalgebra of Q := (Q, →, ϵ, ≤Q) for all
ϱ ∈ (0, 1]. Similarly, we can verify that Iq(C∼, σ) is an ordered subalgebra of Q := (Q, →, ϵ, ≤Q) for all
σ ∈ (0, 1]. Now, let y, k ∈ Fq(C∼, δ) for all δ ∈ [0, 1) and y, k ∈ Q with ϵ ≤Q y and ϵ ≤Q k. Then C̃F (y)+δ < 1
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and C̃F (k) + δ < 1, which imply that

C̃F (y → k) + δ ≤ max{C̃F (y), C̃F (y)}+ δ = max{C̃F (y) + δ, C̃F (y) + δ} < 1.

Hence y → k ∈ Fq(C∼, δ) for all δ ∈ [0, 1) and y, k ∈ Q with ϵ ≤Q y and ϵ ≤Q k, and therefore Fq(C∼, δ) is an
ordered subalgebra of Q := (Q,→, ϵ, ≤Q) for all δ ∈ [0, 1).

Theorem 3.8. Suppose that a single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) in Q satisfies:

(∀y, k ∈ Q)

(
ϵ ≤Q y, ϵ ≤Q k, y ∈ Tq(C∼, ϱy), k ∈ Tq(C∼, ϱk)

⇒ y → k ∈ T∈∨q (C∼,min{ϱy, ϱk})

)
, (3.7)

(∀w, z ∈ Q)

(
ϵ ≤Q w, ϵ ≤Q z, w ∈ Iq(C∼, σw), k ∈ Iq(C∼, σz)

⇒ w → z ∈ I∈∨q (C∼,min{σw, σz})

)
, (3.8)

(∀y, z ∈ Q)

(
ϵ ≤Q y, ϵ ≤Q z, y ∈ Fq(C∼, δy), z ∈ Fq(C∼, δz)

⇒ y → z ∈ F∈∨q (C∼,max{δy, δz})

)
, (3.9)

The nonempty T -neutrosophic q-set Tq(C∼, ϱ), I-neutrosophic q-set Iq(C∼, σ) and F -neutrosophic q-set Fq(C∼, δ)
are ordered subalgebras of Q := (Q,→, ϵ, ≤Q) for all ϱ, σ ∈ (0.5, 1] and δ ∈ [0, 0.5)).

Proof. Suppose that a single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) satisfies (3.7), (3.8) and (3.9). Let
y, k ∈ Q be such that ϵ ≤Q y and ϵ ≤Q k. If y, k ∈ Tq(C∼, ϱ) ∩ Iq(C∼, σ) for all ϱ, σ ∈ (0.5, 1], then
y → k ∈ T∈∨q (C∼, ϱ) ∩ I∈∨q (C∼, σ) by (3.7) and (3.8). Hence y → k ∈ Q(C̃T ; ϱ) or y → k ∈ Tq(C∼, ϱ); and
y → k ∈ Q(C̃I ;σ) or y → k ∈ Iq(C∼, σ). If y → k ∈ Q(C̃T ; ϱ) ∩ Q(C̃I ;σ), then C̃T (y → k) ≥ ϱ > 1 − ϱ and
C̃I(y → k) ≥ σ > 1 − σ since ϱ, σ ∈ (0.5, 1]. Hence y → k ∈ Tq(C∼, ϱ) ∩ Iq(C∼, σ), and so Tq(C∼, ϱ) and
Iq(C∼, σ) are ordered subalgebras of Q := (Q, →, ϵ, ≤Q). If y, k ∈ Fq(C∼, δ), then y → k ∈ F∈∨q (C∼, δ) by
(3.9). Hence y → k ∈ Q(C̃F ; δ) or y → k ∈ Fq(C∼, δ) If y → k ∈ Q(C̃F ; δ), then C̃F (y → k) ≤ δ < 1 − δ
since δ < 0.5. Thus y → k ∈ Fq(C∼, δ), and therefore Fq(C∼, δ) is an ordered subalgebra of Q := (Q, →, ϵ,
≤Q).

Proposition 3.9. Given a single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) in Q, if the nonempty T -
neutrosophic q-set Tq(C∼, ϱ), I-neutrosophic q-set Iq(C∼, σ) and F -neutrosophic q-set Fq(C∼, δ) are ordered
subalgebras of Q := (Q, →, ϵ, ≤Q) for all ϱ, σ ∈ (0, 0.5] and δ ∈ [0.5, 1), then the following assertion is
valid.

(∀y, k ∈ Q)(∀ϱy, ϱk ∈ (0, 0.5])

(
ϵ ≤Q y, ϵ ≤Q k, y ∈ Tq(C∼, ϱy), k ∈ Tq(C∼, ϱk)

⇒ y → k ∈ Q(C̃T ; max{ϱy, ϱk})

)
, (3.10)

(∀w, z ∈ Q)(∀σw, σz ∈ (0, 0.5])

(
ϵ ≤Q w, ϵ ≤Q z, w ∈ Iq(C∼, σw), z ∈ Iq(C∼, σz)

⇒ w → z ∈ Q(C̃I ; max{σw, σz})

)
, (3.11)

(∀y, z ∈ Q)(∀δy, δz ∈ [0.5, 1))

(
ϵ ≤Q y, ϵ ≤Q z, y ∈ Fq(C∼, δy), z ∈ Fq(C∼, δz)

⇒ y → z ∈ Q(C̃F ; min{δy, δz})

)
, (3.12)

Proof. Suppose that C∼ := (C̃T , C̃I , C̃F ) is a single valued neutrosophic set in Q and that the nonempty
T -neutrosophic q-set Tq(C∼, ϱ), I-neutrosophic q-set Iq(C∼, σ) and F -neutrosophic q-set Fq(C∼, δ) are or-
dered subalgebras of Q := (Q, →, ϵ, ≤Q) for all ϱ, σ ∈ (0, 0.5] and δ ∈ [0.5, 1). For every y, k ∈ Q
with ϵ ≤Q y and ϵ ≤Q k, let ϱy, ϱk ∈ (0, 0.5] be such that y ∈ Tq(C∼, ϱy) and k ∈ Tq(C∼, ϱk). Then
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y, k ∈ Tq(C∼,max{ϱy, ϱk}) and max{ϱy, ϱk} ∈ (0, 0.5], and so y → k ∈ Tq(C∼,max{ϱy, ϱk}). It follows
that C̃T (y → k) > 1 −max{ϱy, ϱk} ≥ max{ϱy, ϱk}. Hence y → k ∈ Q(C̃T ; max{ϱy, ϱk}), i.e., (3.10) is valid.
By the similar way, we can get the result (3.11). For every y, z ∈ Q with ϵ ≤Q y and ϵ ≤Q z, let y ∈ Fq(C∼, δy)
and z ∈ Fq(C∼, δz) for all δy, δz ∈ [0.5, 1). Then y, z ∈ Fq(C∼,min{δy, δz}) and min{δy, δz} ∈ [0.5, 1).
Hence y → z ∈ Fq(C∼,min{δy, δz}), which implies that C̃F (y → z) + min{δy, δz} < 1. It follows that
C̃F (y → z) < 1−min{δy, δz} ≤ min{δy, δz}. Therefore y → z ∈ Q(C̃F ; min{δy, δz}), which proves (3.12).

Proposition 3.10. Given a single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) in Q, if the nonempty T -
neutrosophic q-set Tq(C∼, ϱ), I-neutrosophic q-set Iq(C∼, σ) and F -neutrosophic q-set Fq(C∼, δ) are ordered
subalgebras of Q := (Q, →, ϵ, ≤Q) for all ϱ, σ ∈ (0.5, 1] and δ ∈ [0, 0.5), then the following hold true.

(∀y, k ∈ Q)(∀ϱy, ϱk ∈ (0.5, 1])

(
ϵ ≤Q y, ϵ ≤Q k, y ∈ Q(C̃T ; ϱy), k ∈ Q(C̃T ; ϱk)

⇒ y → k ∈ Tq(C∼,max{ϱy, ϱk})

)
, (3.13)

(∀w, z ∈ Q)(∀σw, σz ∈ (0.5, 1])

(
ϵ ≤Q w, ϵ ≤Q z, w ∈ Q(C̃I ;σw), z ∈ Q(C̃I ;σz)

⇒ w → z ∈ Iq(C∼,max{σw, σz})

)
, (3.14)

(∀y, z ∈ Q)(∀δy, δz ∈ [0, 0.5))

(
ϵ ≤Q y, ϵ ≤Q z, y ∈ Q(C̃F ; δy), z ∈ Q(C̃F ; δz)

⇒ y → z ∈ Fq(C∼,min{δy, δz})

)
, (3.15)

Proof. Suppose that C∼ := (C̃T , C̃I , C̃F ) is a single valued neutrosophic set in Q and that the nonempty T -
neutrosophic q-set Tq(C∼, ϱ), I-neutrosophic q-set Iq(C∼, σ) and F -neutrosophic q-set Fq(C∼, δ) are ordered
subalgebras of Q := (Q,→, ϵ, ≤Q) for all ϱ, σ ∈ (0.5, 1] and δ ∈ [0, 0.5). For every y, k ∈ Q with ϵ ≤Q y and
ϵ ≤Q k, let σw, σz ∈ (0.5, 1] be such that w ∈ Q(C̃I ;σw) and z ∈ Q(C̃I ;σz). Then C̃I(w) ≥ σw > 1 − σw ≥
1 − max{σw, σz} and C̃I(z) ≥ σz > 1 − σz ≥ 1 − max{σw, σz}, which induce w, z ∈ Iq(C∼,max{σw, σz})
and max{σw, σz} ∈ (0.5, 1]. Since Iq(C∼,max{σw, σz}) is an ordered subalgebra of Q := (Q, →, ϵ, ≤Q),
we have w → z ∈ Iq(C∼,max{σw, σz}). In a similar way, one obtains get y → k ∈ Tq(C∼,max{ϱy, ϱk}) for
all ϱy, ϱk ∈ (0.5, 1] and y, k ∈ Q with ϵ ≤Q y and ϵ ≤Q k. For every y, z ∈ Q with ϵ ≤Q y and ϵ ≤Q z, let
δy, δz ∈ [0, 0.5) be such that y ∈ Q(C̃F ; δy) and z ∈ Q(C̃F ; δz). Then C̃F (y) ≤ δy < 1−δy ≤ 1−min{δy, δz} and
C̃F (z) ≤ δz < 1−δz ≤ 1−min{δy, δz}. Hence y, z ∈ Fq(C∼,min{δy, δz}), and so y → z ∈ Fq(C∼,min{δy, δz})
since min{δy, δz} ∈ [0, 0.5) and Fq(C∼,min{δy, δz}) is an ordered subalgebra of Q := (Q, →, ϵ, ≤Q).

Proposition 3.11. Given a single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) in Q, let the nonempty T -
neutrosophic ∈∨q -set T∈∨q (C∼, ϱ), I-neutrosophic ∈∨q -set I∈∨q (C∼, σ) and F -neutrosophic ∈∨q -set F∈∨q (C∼, δ)
be ordered subalgebras of Q := (Q, →, ϵ, ≤Q) for all ϱ, σ ∈ (0, 1] and δ ∈ [0, 1). The following assertions
are established.

(∀y, k ∈ Q)(∀ϱy, ϱk ∈ (0, 1])

(
ϵ ≤Q y, ϵ ≤Q k, y ∈ Tq(C∼, ϱy), k ∈ Tq(C∼, ϱk)

⇒ y → k ∈ T∈∨q (C∼,max{ϱy, ϱk})

)
, (3.16)

(∀w, z ∈ Q)(∀σw, σz ∈ (0, 1])

(
ϵ ≤Q w, ϵ ≤Q z, w ∈ Iq(C∼, σw), k ∈ Iq(C∼, σz)

⇒ w → z ∈ I∈∨q (C∼,max{σw, σz})

)
, (3.17)

(∀y, z ∈ Q)(∀δy, δz ∈ [0, 1))

(
ϵ ≤Q y, ϵ ≤Q z, y ∈ Fq(C∼, δy), z ∈ Fq(C∼, δz)

⇒ y → z ∈ F∈∨q (C∼,min{δy, δz})

)
. (3.18)

Proof. Given a single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) in Q, suppose that the nonempty T -
neutrosophic ∈∨q -set T∈∨q (C∼, ϱ), I-neutrosophic ∈∨q -set I∈∨q (C∼, σ) and F -neutrosophic ∈∨q -set F∈∨q (C∼, δ)
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are ordered subalgebras of Q := (Q, →, ϵ, ≤Q) for all ϱ, σ ∈ (0, 1] and δ ∈ [0, 1). Let y, k ∈ Q be so that
ϵ ≤Q y, ϵ ≤Q k, y ∈ Tq(C∼, ϱy) and k ∈ Tq(C∼, ϱk) for all ϱy, ϱk ∈ (0, 1]. Then y ∈ T∈∨q (C∼, ϱy) ⊆
T∈∨q (C∼,max{ϱy, ϱk}) and k ∈ T∈∨q (C∼, ϱk) ⊆ T∈∨q (C∼,max{ϱy, ϱk}), which imply from the hypothesis that
y → k ∈ T∈∨q (C∼,max{ϱy, ϱk}). By the similarly way, w → z ∈ I∈∨q (C∼,max{σw, σz}) is established for
all σw, σz ∈ (0, 1] and w, z ∈ Q satisfying ϵ ≤Q w, ϵ ≤Q z, w ∈ Iq(C∼, σw) and z ∈ Iq(C∼, σz). For every
y, z ∈ Q satisfying ϵ ≤Q y and ϵ ≤Q z, let y ∈ Fq(C∼, δy) and z ∈ Fq(C∼, δz) for all δy, δz ∈ [0, 1). Then
y ∈ Fq(C∼, δy) ⊆ Fq(C∼,min{δy, δz}) and z ∈ Fq(C∼, δz) ⊆ Fq(C∼,min{δy, δz}). Since Fq(C∼,min{δy, δz}) is
an ordered subalgebra of Q := (Q, →, ϵ, ≤Q), we obtain y → z ∈ F∈∨q (C∼,min{δy, δz}), as required.

Given a single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) in Q, consider the set:

Q1
0 := {y ∈ Q | C̃T (y) > 0, C̃I(y) > 0, C̃F (y) < 1}. (3.19)

We find conditions for the set Q1
0 in (3.19) to be an ordered subalgebra of Q := (Q, →, ϵ, ≤Q).

Theorem 3.12. If C∼ := (C̃T , C̃I , C̃F ) is a single valued neutrosophic ordered subalgebra of Q := (Q, →, ϵ,
≤Q), then the set Q1

0 in (3.19) is an ordered subalgebra of Q := (Q, →, ϵ, ≤Q).

Proof. Suppose that y, k ∈ Q are such that ϵ ≤Q y and ϵ ≤Q k and y, k ∈ Q1
0. Then C̃T (y) > 0, C̃I(y) > 0,

C̃F (y) < 1, C̃T (k) > 0, C̃I(k) > 0, and C̃F (k) < 1. Suppose also that C̃T (y → k) = 0, C̃I(y → k) = 0 and
C̃F (y → k) = 1, respectively. Using (3.2) derives to 0 = C̃T (y → k) ≥ min{C̃T (y), C̃T (k)} > 0,

0 = C̃I(y → k) ≥ min{C̃I(y), C̃I(k)} > 0, and 1 = C̃F (y → k) ≤ min{C̃F (y), C̃F (k)} < 1,

respectively. This is a contradiction, and thus C̃T (y → k) > 0, C̃I(y → k) > 0 and C̃F (y → k) < 1, respectively.
Hence y → k ∈ Q1

0, and therefore Q1
0 is an ordered subalgebra of Q := (Q, →, ϵ, ≤Q).

Theorem 3.13. If a single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) in Q satisfies:

(∀y, k ∈ Q)(∀ϱy, ϱk ∈ (0, 1])

(
ϵ ≤Q y, ϵ ≤Q k, y ∈ Q(C̃T ; ϱy), k ∈ Q(C̃T ; ϱk)

⇒ y → k ∈ Tq(C∼,min{ϱy, ϱk})

)
, (3.20)

(∀w, z ∈ Q)(∀σw, σz ∈ (0, 1])

(
ϵ ≤Q w, ϵ ≤Q z, w ∈ Q(C̃I ;σw), z ∈ Q(C̃I ;σz)

⇒ w → z ∈ Iq(C∼,min{σw, σz})

)
, (3.21)

(∀y, z ∈ Q)(∀δy, δz ∈ [0, 1))

(
ϵ ≤Q y, ϵ ≤Q z, y ∈ Q(C̃F ; δy), z ∈ Q(C̃F ; δz)

⇒ y → z ∈ Fq(C∼,max{δy, δz})

)
, (3.22)

then the set Q1
0 in (3.19) is an ordered subalgebra of Q := (Q, →, ϵ, ≤Q).

Proof. Suppose that C∼ := (C̃T , C̃I , C̃F ) is a single valued neutrosophic set in Q that satisfies the conditions
(3.20), (3.21) and (3.22). For every y, k ∈ Q with ϵ ≤Q y and ϵ ≤Q k, let y, k ∈ Q1

0. Then C̃T (y) > 0,

C̃I(y) > 0, C̃F (y) < 1, C̃T (k) > 0, C̃I(k) > 0, and C̃F (k) < 1. It is clear that y ∈ Q(C̃T ; C̃T (y))∩Q(C̃I ; C̃I(y))∩
Q(C̃F ; C̃F (y)) and k ∈ Q(C̃T ; C̃T (k)) ∩Q(C̃I ; C̃I(k)) ∩Q(C̃F ; C̃F (k)). Suppose

C̃T (y → k) = 0, C̃I(y → k) = 0 and C̃F (y → k) = 1,
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respectively. We get C̃T (y → k) + min{C̃T (y), C̃T (k)} = min{C̃T (y), C̃T (k)} ≤ 1,

C̃I(y → k) + min{C̃I(y), C̃I(k)} = min{C̃I(y), C̃I(k)} ≤ 1,

and C̃F (y → k) + max{C̃F (y), C̃F (k)} ≥ 1, respectively. Then y → k /∈ Tq(C∼,min{C̃T (y), C̃T (k)}),

y → k /∈ Iq(C∼,min{C̃I(y), C̃I(k)}),

and y → k /∈ Fq(C∼,max{C̃F (y), C̃F (k)}), respectively. It contradicts conditions (3.20), (3.21) and (3.22),
respectively. Hence C̃T (y → k) > 0, C̃I(y → k) > 0 and C̃F (y → k) < 1, that is, y → k ∈ Q1

0. Therefore Q1
0 is

an ordered subalgebra of Q := (Q, →, ϵ, ≤Q).

Theorem 3.14. Suppose that a single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) in Q satisfies:

(∀y, k ∈ Q)(∀ϱy, ϱk ∈ (0, 1])

(
ϵ ≤Q y, ϵ ≤Q k, y ∈ Tq(C∼, ϱy), k ∈ Tq(C∼, ϱk)

⇒ y → k ∈ Q(C̃T ; min{ϱy, ϱk})

)
, (3.23)

(∀w, z ∈ Q)(∀σw, σz ∈ (0, 1])

(
ϵ ≤Q w, ϵ ≤Q z, w ∈ Iq(C∼, σw), z ∈ Iq(C∼, σz)

⇒ w → z ∈ Q(C̃I ; min{σw, σz})

)
, (3.24)

(∀y, z ∈ Q)(∀δy, δz ∈ [0, 1))

(
ϵ ≤Q y, ϵ ≤Q z, y ∈ Fq(C∼, δy), z ∈ Fq(C∼, δz)

⇒ y → z ∈ Q(C̃F ; max{δy, δz})

)
. (3.25)

The set Q1
0 in (3.19) is an ordered subalgebra of Q := (Q, →, ϵ, ≤Q).

Proof. Suppose that C∼ := (C̃T , C̃I , C̃F ) is a single valued neutrosophic set in Q that satisfies the conditions
(3.23), (3.24) and (3.25). For every y, k ∈ Q with ϵ ≤Q y and ϵ ≤Q k, let y, k ∈ Q1

0. We have C̃T (y) > 0,

C̃I(y) > 0, C̃F (y) < 1, C̃T (k) > 0, C̃I(k) > 0, and C̃F (k) < 1. Then C̃T (y) + 1 > 1, C̃I(y) + 1 > 1,

C̃F (y) + 0 < 1, C̃T (k) + 1 > 1, C̃I(k) + 1 > 1, and C̃F (k) + 0 < 1. Hence y, k ∈ Tq(C∼, 1) ∩ Iq(C∼, 1) ∩
Fq(C∼, 0). If C̃T (y → k) = 0, C̃I(y → k) = 0 and C̃F (y → k) = 1, respectively, then C̃T (y → k) <

1 = min{1, 1}, C̃I(y → k) < 1 = min{1, 1}, and C̃F (y → k) > 0 = max{0, 0}, respectively. Thus
y → k /∈ Q(C̃T ; min{1, 1}) ∩ Q(C̃I ; min{1, 1}) ∩ Q(C̃F ; max{0, 0}), a contradiction. Hence C̃T (y → k) > 0,
C̃I(y → k) > 0 and C̃F (y → k) < 1, that is, y → k ∈ Q1

0. Therefore Q1
0 is an ordered subalgebra of Q := (Q,

→, ϵ, ≤Q).

Theorem 3.15. If a single valued neutrosophic set C∼ := (C̃T , C̃I , C̃F ) in Q satisfies:

(∀y, k ∈ Q)(∀ϱy, ϱk ∈ (0, 1])

(
ϵ ≤Q y, ϵ ≤Q k, y ∈ Tq(C∼, ϱy), k ∈ Tq(C∼, ϱk)

⇒ y → k ∈ Tq(C∼,min{ϱy, ϱk})

)
, (3.26)

(∀w, z ∈ Q)(∀σw, σz ∈ (0, 1])

(
ϵ ≤Q w, ϵ ≤Q z, w ∈ Iq(C∼, σw), z ∈ Iq(C∼, σz)

⇒ w → z ∈ Iq(C∼,min{σw, σz})

)
, (3.27)

(∀y, z ∈ Q)(∀δy, δz ∈ [0, 1))

(
ϵ ≤Q y, ϵ ≤Q z, y ∈ Fq(C∼, δy), z ∈ Fq(C∼, δz)

⇒ y → z ∈ Fq(C∼,max{δy, δz})

)
, (3.28)

then the set Q1
0 in (3.19) is an ordered subalgebra of Q := (Q, →, ϵ, ≤Q).

Proof. Suppose that C∼ := (C̃T , C̃I , C̃F ) is a single valued neutrosophic set in Q satisfying the conditions
(3.26), (3.27) and (3.28), and y, k ∈ Q be such that ϵ ≤Q y and ϵ ≤Q k. If y, k ∈ Q1

0, then C̃T (y) > 0, C̃I(y) > 0,
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C̃F (y) < 1, C̃T (k) > 0, C̃I(k) > 0, and C̃F (k) < 1. Hence C̃T (y) + 1 > 1, C̃I(y) + 1 > 1, C̃F (y) + 0 < 1,

C̃T (k)+1 > 1, C̃I(k)+1 > 1, and C̃F (k)+0 < 1. Thus y, k ∈ Tq(C∼, 1)∩Iq(C∼, 1)∩Fq(C∼, 0). If C̃T (y → k) = 0,
C̃I(y → k) = 0 and C̃F (y → k) = 1, respectively, then C̃T (y → k) + 1 = 1, C̃I(y → k) + 1 = 1 and C̃F (y →
k) + 0 = 1, respectively. It follows that y → k /∈ Tq(C∼,min{1, 1})∩ Iq(C∼,min{1, 1})∩ Fq(C∼,max{0, 0}),
a contradiction. Hence C̃T (y → k) > 0, C̃I(y → k) > 0 and C̃F (y → k) < 1, i.e., y → k ∈ Q1

0. Consequently,
Q1

0 is an ordered subalgebra of Q := (Q, →, ϵ, ≤Q).

4 Conclusion
Smarandache proposed a single-valued neutrosophic set as a part of neutrosophic theory. This set is an ex-
tension of classical set theory that allows for the representation of inconsistent, indeterminate and uncertain
information in a more comprehensive manner. Single-valued neutrosophic sets have been applied in various
fields, for example, image processing, decision making, medical diagnosis, natural language processing, etc.,
due to their ability to handle uncertainty and imprecision. Of course, it is well known that research on single-
valued neutrosophic sets applied to algebraic structures is also actively underway. To apply the single-valued
neutrosophic set to ordered BCI-algebras is the aim of this paper. We introduced the notion of single valued
neutrosophic ordered subalgebras in ordered BCI-algebras, and investigated several related properties. We ex-
plored the conditions under which single valued neutrosophic level subsets become ordered subalgebras, and
when the T-neutrosophic q-set, I-neutrosophic q-set and F-neutrosophic q-set could become ordered subalge-
bras. We created a special set Q1

0 and found the conditions that it becomes an ordered subalgebra. Based on
the ideas and results of this paper, in the future we will investigate a neutrosophic set version for several types
of filters in ordered BCI-algebras.
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Abstract. Our aim is to explore the idea of neutrosophic N−ideals in near-subtraction semigroups in this

article and obtain some outcomes that are equivalent to them. We also illustrate the notion of a neutrosophic

κ− intersection. Additionally, in a near-subtraction semigroup, we examine the term homomorphism of a neu-

trosophic κ− structure and establish some conclusions based on a homomorphic neutrosophic κ− structure

preimage of a neutrosophic κ− left (respectively, right) ideal.

Keywords: Semigroups; Subtraction semigroups; neutrosophic κ−structures, neutrosophic κ− ideals, homo-

morphism.

—————————————————————————————————————————-

1. Introduction

In [26], Schein investigated the systems of the type (Σ, ◦, \), where Σ is a family of functions

closed under the composition ◦ of functions (and therefore (Σ, ◦) is a function semigroup) and

the set theoretic subtraction \ (and therefore (Σ, \) is a subtraction algebra). In [29], Zelinka

examined Schein’s suggestion for the multiplication structure and discovered a method for

resolving a challenge in a kind of subtraction algebra, namely atomic subtraction algebras. In

subtraction algebras [11], Jun et al. proposed the idea of ideals by examining the character-

isation of ideals. In [10], Jun et al. explored the ideals produced by a set and its associated

outcomes. Dheena et al. [1], formed the ideas of near-subtraction semigroups as well as strongly

regular near-subtraction semigroups. They found an equivalent assertion for a near-subtraction

semigroup to be strongly regular.

Zadeh [30] developed the idea that a fuzzy subset φ of a set K is a map from K into [0, 1].

Since then, this concept has been effectively used in a range of applications, including image

processing, control systems, engineering, robotics, industrial automation, and optimisation.
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In subtraction algebras, Lee et al. [14] established the term fuzzy ideal and made some

assertions that a fuzzy set is to be a fuzzy ideal. Prince Williams [28] coined the terms fuzzy

ideals and fuzzy intersection in near-subtraction semigroups and homomorphic fuzzy images

and preimages of a near-subtraction semigroup.

In [16], Molodtsov introduced a concept, namely the soft set (F,ℑ), which is a mapping

from ℑ into the power set of U given a base universe set U and the gathering of attributes ℑ.
Jun et al. [12] extended Molodtsov’s concept to hybrid structures, a concept that is similar to

the theories of soft and fuzzy sets, and proved a number of hybrid structure attributes for a

gathering of parameter values over a base universe set. The authors further explored the ideas

of hybrid subalgebras, and hybrid fields based on this approach. Several authors produced

hybrid concepts in a variety of algebraic structures ( See [2–5,15,17,18,20–23]).

Smarandache came up with neutrophophic sets as a way to deal with the constant unpre-

dictability. It makes intuitionistic fuzzy sets as well as fuzzy sets more broad. Neutrosophic

sets can be described by these three things: their membership functions for indeterminacy (I),

falsity (F), and truth (T). These sets can be used in a lot of different ways to deal with the

problems that come from unclear information. A neutrosophic set can tell the difference be-

tween membership functions that are absolute and those that are relative. Smarandache used

these collections for non-standard analyses like sports choices (losing, tying, and winning),

control theory, decision-making theory, and so on. This area has been studied by several

authors(See [8, 9, 27]).

Khan et al. examined ϵ-neutrosophic κ-subsemigroup and a semigroup in [13]. Elavarasan

et al. [6] examined the idea of neutrosophic κ-ideals in semigroups. Elavarasan et al. pre-

sented neutrosophic filters and bi-filters in a semigroup and examined their properties in [7].

Muhiuddin et al. provided the definitions and characteristics of neutrosophic κ-interior ideals
as well as neutrosophic κ- ideals in ordered semigroups in [19].

Porselvi et al. proposed neutrosophic κ-interior ideal structure as well as neutrosophic

κ-simple in semigroups in [25], and they obtained comparable statements for the two types

of structures. Porselvi et al. [24] described numerous characteristics of a neutrosophic κ-
bi-ideal structure in a semigroup and showed that when a semigroup is regular left duo,

both a neutrosophic κ-right ideal and a neutrosophic κ-bi-ideal are identical. They discussed

analogous claims for the regular semigroup with regard to the neutrosophic κ-product.
This article explores the idea of neutrosophic κ−ideal in near-subtraction semigroups and

its associated characteristics. Additionally, we provide examples of a neutrosophic κ-left ideal
that is not a neutrosophic κ-right ideal and vice versa. Moreover, we examine and discuss the

neutrosophic κ-image, neutrosophic κ-intersection, and neutrosophic κ-preimage of a near-

subtraction semigroup using homomorphism.
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2. Preliminaries of subtraction semigroups

We compile some basic definitions for near-subtraction semigroups in this portion, which

we will use in the next section.

Definition 2.1. [26] A set ℑ(̸= ∅) with the binary operation “ − ” that fulfils the below

assertions is referred to as a subtraction algebra. ∀q0, l0, i0 ∈ ℑ,
(i) q0 − (l0 − q0) = q0.

(ii) q0 − (q0 − l0) = l0 − (l0 − q0).

(iii) (q0 − l0)− i0 = (q0 − i0)− l0.

The following are some characteristics of a subtraction algebra:

(i) q0 − 0 = q0 and 0− q0 = 0.

(ii) (q0 − l0)− q0 = 0.

(iii) (q0 − l0)− l0 = q0 − l0.

(iv) (q0 − l0)− (l0 − q0) = q0 − l0, where 0 = q0 − q0 is an element that is independent on

the choice of q0 ∈ ℑ.

Definition 2.2. [29] A set ℑ(̸= ∅) with the binary operations “− ” and “.” that satisfies the

following requirements is referred to as a subtraction semigroup:

(i) (ℑ,−) and (ℑ, .) are a subtraction algebra and a semigroup, respectively.

(ii) l0(l1 − l2) = l0l1 − l0l2 and (l0 − l1)l2 = l0l2 − l1l2 ∀l0, l1, l2 ∈ ℑ.

Definition 2.3. [29] A set ℑ( ̸= ∅) with the binary operations “− ” and “.” that satisfy the

following requirements is referred to as a near-subtraction semigroup (NSS for short):

(i) (ℑ,−) and (ℑ, .) are a subtraction algebra and a semigroup, respectively.

(ii) (l0 − l1)l2 = l0l2 − l1l2 ∀l0, l1, l2 ∈ ℑ.

Clearly 0l0 = 0 ∀l0 ∈ ℑ.
Hereafter, ℑ represents the near-subtraction semigroup.

Definition 2.4. If l0 − l1 ∈ L whenever l0, l1 ∈ L, then a subset L(̸= ∅) of ℑ is said to be a

subalgebra of ℑ.

Definition 2.5. Let (ℑ,−, .) be a NSS. A subset ℜ( ̸= ∅) of ℑ is referred as

(i) a right ideal whenever ℜ is a subalgebra of (ℑ,−) and ℜℑ ⊆ ℜ.
(ii) a left ideal whenever ℜ is a subalgebra of (ℑ,−) and p1c1 − p1(w1 − c1) ∈ ℜ ∀p1, w1 ∈

ℑ; c1 ∈ ℜ.
(iii) an ideal whenever ℜ is both a right and a left ideal.
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3. Preliminaries of Neutrosophic κ- structures

This portions outlines the basic ideas of neutrosophic κ-structures of ℑ, which are essential

for the sequel.

For a set Q( ̸= ∅), F(Q, I−) is the family of functions with negative-values from a set Q to I−,
where I− = [−1, 0]. An element k1 ∈ F(Q, I−) is known as a κ-function on Q and κ-structure
denotes (Q, k1) of X.

Definition 3.1. [12] For a set Q(̸= ∅), a neutrosophic κ- structure of Q is described as below:

QM := Q
(TM ,IM ,FM ) =

{
v0

(TM (v0),IM (v0),FM (v0))
: v0 ∈ Q

}
,

where TM on Q means the negative truth membership function, IM on Q means the nega-

tive indeterminacy membership function and FM on Q means the negative false membership

function.

Note 3.2. QM satisfies the requirement: −3 ≤ TM (b1) + IM (b1) + FM (b1) ≤ 0 ∀b1 ∈ Q.

Definition 3.3. [13] For a set Q(̸= ∅), let QJ := Q
(TJ ,IJ ,FJ )

and QV := Q
(TV ,IV ,FV ) ,

(i) QJ is defined as a neutrosophic κ-substructure of QV , represented by QJ ⊆ QV , if it

fulfils the below criteria: for any z0 ∈ Q,

TJ(z0) ≥ TV (z0), IJ(z0) ≤ IV (z0), FJ(z0) ≥ FV (z0).

If QJ ⊆ QV and QV ⊆ QJ , then QJ = QV .

(ii) The intersection of QJ and QV is a neutrosophic κ-structure over Q and is defined as

follows: QJ ∩QV = QJ∩V = (Q;TJ∩V,IJ∩V,FJ∩V ), where

(TJ ∩ TV )(h0) =TJ∩V (h0) = TJ(h0) ∨ TV (h0),

(IJ ∩ IV )(h0) =IJ∩V (h0) = IJ(h0) ∧ IV (h0),

(FJ ∩ FV )(h0) =FJ∩V (h0) = FJ(h0) ∨ FV (h0) for any h0 ∈ Q.

Definition 3.4. For V0 ⊆ Q ̸= ∅, consider the neutrosophic κ-structure

χV0(QD) =
Q

(χV (T )D,χV (I)D,χV (F )D) ,

where

χV0(T )D : Q → I−, j1 →

{
−1 if j1 ∈ V0

0 if j1 /∈ V0,

χV0(I)D : Q → I−, j1 →

{
0 if j1 ∈ V0

−1 if j1 /∈ V0,

χV0(F )D : Q → I−, j1 →

{
−1 if j1 ∈ V0

0 if j1 /∈ V0,

which is described as the characteristic neutrosophic κ-structure of V0 over Q.
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Definition 3.5. [12] For a nonempty set Q, let QN = Q
(TN ,IN ,FN ) and ð, φ,Θ ∈ I− with

−3 ≤ ð+ φ+Θ ≤ 0. Consider the following sets:

T ð
N = {c1 ∈ Q | TN (c1) ≤ ð}, IφN = {c1 ∈ Q | IN (c1) ≥ φ}, FΘ

N = {c1 ∈ Q|FN (c1) ≤ Θ}.
Then the set QN (ð, φ,Θ) = {c1 ∈ Q|TN (c1) ≤ ð, IN (c1) ≥ φ, FN (c1) ≤ Θ} is referred as a

(ð, φ,Θ)-level set of QN . Note that QN (ð, φ,Θ) = T ð
N ∩ IφN ∩ FΘ

N .

4. Neutrosophic κ-ideals in subtraction semigroups

The idea of neutrosophic κ− ideals in near-subtraction is defined in this portion. We also

develop a case where a neutrosophic κ− right ideal is not a neutrosophic κ− left ideal, and

vice versa, and we describe certain properties of a neutrosophic κ− structure’s homomorphism

in a near-subtraction semigroup.

Definition 4.1. A neutrosophic κ-structure ℑB = ℑ
(TB ,IB ,FB) of ℑ is defined as a neutrosophic

κ-ideal of ℑ if it meets the below axioms:

(i) (∀g0, l0 ∈ ℑ)

 TB(g0 − l0) ≤ TB(g0) ∨ TB(l0)

IB(g0 − l0) ≥ IB(g0) ∧ IB(l0)

FB(g0 − l0) ≤ FB(g0) ∨ FB(l0)

 .

(ii) (∀s0, j0, l0 ∈ ℑ)

 TB(s0l0 − s0(j0 − l0)) ≤ TB(l0)

IB(s0l0 − s0(j0 − l0)) ≥ IB(l0)

FB(s0l0 − s0(j0 − l0)) ≤ FB(l0)

.

(iii) (∀l0, q0 ∈ ℑ)

 TB(l0q0) ≤ TB(l0)

IB(l0q0) ≥ IB(l0)

FB(l0q0) ≤ FB(l0)

.

Note that ℑB of ℑ is a neutrosophic κ−left ideal when (i) and (ii) are hold, and ℑB of ℑ
is a neutrosophic κ−right ideal when (i) and (iii) are hold.

Notation 1. Let ℑ be a NSS. Then we use the below notations:

(i) NI(ℑ) is the gathering of all neutrosophic κ− ideals of ℑ.
(ii) NR(ℑ) is the gathering of all neutrosophic κ− right ideals of ℑ.
(iii) NL(ℑ) is the gathering of all neutrosophic κ− left ideals of ℑ.

Here are a few examples of neutrosophic κ-ideals.

Example 4.2. Let ℑ = {0, i0, p0} be a set with two operations “− ” and “.” that are repre-

sented by the below tables:

- 0 i0 p0
0 0 0 0

i0 i0 0 i0
p0 p0 p0 0

. 0 i0 p0
0 0 0 0

i0 0 i0 0

p0 i0 0 p0

Then (ℑ,−, .) is a NSS. Define a neutrosophic κ-structure ℑN := { 0
(w,l,w1)

, i0
(r,k,r1)

, p0
(y,v,y1)

} of

ℑ for v, k, l, w, w1, r, r1, y, y1 ∈ [−1, 0].
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(i) If y > r = w; v < k = l and y1 > r1 = w1, then ℑN ∈ NI(ℑ).
(ii) If y = r > w; k = v < l and y1 = r1 > w1, then ℑN ∈ NR(ℑ), but ℑN /∈ NL(ℑ) as

TN (p0.0−p0(p0−0)) = TN (i0) = r ≰ w = TN (0); IN (p0.0−p0(p0−0)) = IN (i0) = k ≱ l = IN (0)

and FN (p0.0− p0(p0 − 0)) = FN (i0) = r1 ≰ w1 = FN (0).

(iii) If r > y > w; k < v < l and r1 > y1 > w1, then ℑN is neither in NR(ℑ) nor in NL(ℑ)
as TN (p0.0− p0(i0 − 0)) = TN (i0) = r ≰ w = TN (0), IN (p0.0− p0(i0 − 0)) = IN (i0) = k ≱ l =

IN (0), FN (p0.0− p0(i0 − 0)) = FN (i0) = r1 ≰ w1 = FN (0) and TN (p0.0) = TN (i0) = r ≰ y =

TN (p0), IN (p0.0) = IN (i0) = k ≱ v = IN (p0), FN (p0.0) = FN (i0) = r1 ≰ y1 = FN (p0). But it

fulfils the assertion (i) of Definition 4.1.

Example 4.3. Let ℑ = {0, r, l, k} be a set with two operations “− ” and “.” are given by

- 0 r l k

0 0 0 0 0

r r 0 k l

l l 0 0 l

k k 0 k 0

. 0 r l k

0 0 0 0 0

r 0 r l k

l 0 0 0 0

k 0 r l k

Then (ℑ,−, .) is a NSS. For p, w, n,m,m1, y, y1, s, s1 ∈ [−1, 0], define a neutrosophic κ-
structure ℑN := { 0

(m,p,m1)
, r
(y,w,y1)

, l
(s,n,s1)

, k
(s,n,s1)

} of ℑ. If s > y > m,n < w < p and

s1 > y1 > m1, then ℑN ∈ NL(ℑ), but ℑN /∈ NR(ℑ) as TN (r.l) = TN (l) = s ≰ y = TN (r),

IN (r.l) = IN (l) = n ≱ w = IN (r) and FN (r.l) = FN (l) = s1 ≰ y1 = FN (r).

Theorem 4.4. For ℑN = ℑ
(TN ,IN ,FN ) , the listed assertions are equivalent:

(i) For any ϱ, λ, ν ∈ I−, ℑN (ϱ, λ, ν)(̸= ϕ) of ℑ is a left(right) ideal,

(ii) ℑN ∈ NL(ℑ) (NR(ℑ)).

Proof: (i) ⇒ (ii) Let c, z ∈ ℑ. Then TN (c) = q1;FN (c) = r1; IN (c) = t1 and TN (z) =

q2;FN (z) = r2; IN (z) = t2, for some q1, q2, t1, t2, r1, r2 ∈ I−.
If q = max{q1, q2}; t = min{t1, t2} and r = max{r1, r2}, then TN (c) ≤ q; IN (c) ≥ t;FN (c) ≤

r and TN (z) ≤ q; IN (z) ≥ t;FN (z) ≤ r, so c, z ∈ ℑN (q, t, r). By assumption, we get c − z ∈
ℑN (q, t, r) which implies TN (c−z) ≤ q = TN (c)∨TN (z); IN (c−z) ≥ t = IN (c)∧IN (z); FN (c−
z) ≤ r = FN (c) ∨ FN (z).

For any n0, v ∈ ℑ, we have n0c−n0(v−c) ∈ ℑN (q1, t1, r1) which implies TN (n0c−n0(v−c)) ≤
q1 = Tn(c), IN (n0c−n0(v−c)) ≥ t1 = IN (c), FN (n0c−n0(v−c)) ≤ r1 = FN (c). So ℑN ∈ NL(ℑ).

Also, for r ∈ ℑ, we have cr ∈ ℑN (q1, t1, r1) which implies TN (cr) ≤ q1 = TN (c); IN (cr) ≥
t1 = IN (c);FN (cr) ≤ r1 = FN (c). So ℑN ∈ NR(ℑ).

(ii) ⇒ (i) Let q, z ∈ ℑN (ϱ, λ, ν). Then TN (q − z) ≤ TN (q) ∨ TN (z) ≤ ϱ; IN (q − z) ≥
IN (q) ∧ IN (z) ≥ λ and FN (q − z) ≤ FN (q) ∨ FN (z) ≤ ν which imply q − z ∈ ℑN (ϱ, λ, ν).

Also, TN (qz) ≤ TN (q) ≤ ϱ; IN (qz) ≥ IN (q) ≥ λ and FN (qz) ≤ FN (q) ≤ ν imply that

qz ∈ ℑN (ϱ, λ, ν). So ℑN (ϱ, λ, ν) of ℑ is a right ideal.
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For l ∈ ℑN (ϱ, λ, ν) and s, j ∈ ℑ, we have TN (sl− s(j − l)) ≤ TN (l) = ϱ; IN (sl− s(j − l)) ≥
IN (l) = λ and FN (sl − s(j − l)) ≤ Fn(l) = ν which imply sl − s(j − l) ∈ ℑN (ϱ, λ, ν).

So, ℑN (ϱ, λ, ν) of ℑ is a left ideal.

We have the succeeding corollary as a outcome of the Theorem 4.4.

Corollary 4.5. For ∅ ̸= D ⊆ ℑ, a neutrosophic κ- structure ℑN = ℑ
(TN ,IN ,FN ) of ℑ is

characterized as below: For g1, l1, ω1, t1, s1, v1 ∈ [−1, 0],

TN (y0) :=

{
g1 if y0 ∈ D

l1 otherwise
; IN (y0) :=

{
ω1 if y0 ∈ D

t1 otherwise,
; FN (y0) :=

{
s1 if y0 ∈ D

v1 otherwise,

where g1 < l1;ω1 > t1 and s1 < v1 in [−1, 0], the mentioned below statements are equivalent:

(i) ℑN ∈ NL(ℑ)(NR(ℑ)),
(ii) D of ℑ is a left(right) ideal.

Corollary 4.6. For ∅ ≠ L ⊆ ℑ and ℑN = ℑ
(TN ,IN ,FN ) , the listed below statements are equiva-

lent:

(i) χL(ℑN ) ∈ NL(ℑ)(NR(ℑ)),
(ii) L of ℑ is a left(right) ideal.

Theorem 4.7. Let ℑN = ℑ
(TN ,IN ,FN ) ∈ NL(ℑ)(NR(ℑ)). Then the sets T 0

N = {c1 ∈
Q | TN (c1) = TN (0)}, I0N = {c1 ∈ Q | IN (c1) = IN (0)}, F 0

N = {c1 ∈ Q|FN (c1) = FN (0)}
of ℑ are left (right) ideals.

Proof: For l0, w0 ∈ T 0
N ∩ I0N ∩ F 0

N , we have TN (l0 − w0) ≤ TN (l0) ∨ TN (w0) = TN (0),

IN (l0 − w0) ≥ IN (l0) ∧ IN (w0) = IN (0) and FN (l0 − w0) ≤ FN (l0) ∨ FN (w0) = FN (0). So

l0 − w0 ∈ T 0
N ∩ I0N ∩ F 0

N .

For s ∈ ℑ, we have TN (sl0 − s(w0 − l0)) ≤ TN (l0) = TN (0), IN (sl0 − s(w0 − l0)) ≥ IN (l0) =

IN (0) and FN (sl0 − s(w0 − l0)) ≤ FN (l0) = FN (0). So sl0 − s(w0 − l0) ∈ T 0
N ∩ I0N ∩ F 0

N .

Therefore T 0
N , I0N and F 0

N are left ideals.

Theorem 4.8. Let ℑJ := ℑ
(TJ ,IJ ,FJ )

and ℑW := ℑ
(TW ,IW ,FW ) be the neutrosophic κ-structures

in ℑ. If ℑJ ,ℑW ∈ NL(ℑ)(NR(ℑ)), then ℑJ ∩ ℑW ∈ NL(ℑ)(NR(ℑ)).

Proof: Let w1, f1 ∈ ℑ. Then

TJ∩W (f1 − w1) = (TJ ∩ TW )(f1 − w1)

= TJ(f1 − w1) ∨ TW (f1 − w1)

≤ {TJ(f1) ∨ TJ(w1)} ∨ {TW (f1) ∨ TW (w1)}

= (TJ ∩ TW )(f1) ∨ (TJ ∩ TW )(w1) = TJ∩W (f1) ∨ TJ∩W (w1),
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IJ∩W (f1 − w1) = (IJ ∩ IW )(f1 − w1)

= IJ(f1 − w1) ∧ IW (f1 − w1)

≥ {IJ(f1) ∧ IJ(w1)} ∧ {IW (f1) ∧ IW (w1)}

= (IJ ∩ IW )(f1) ∧ (IJ ∩ IW )(w1) = IJ∩W (f1) ∧ IJ∩W (w1),

FJ∩W (f1 − w1) = (FJ ∩ FW )(f1 − w1)

= FJ(f1 − w1) ∨ FW (f1 − w1)

≤ {FJ(f1) ∨ FJ(w1)} ∨ {FW (f1) ∨ FW (w1)}

= (FJ ∩ FW )(f1) ∨ (FJ ∩ FW )(w1) = FJ∩W (f1) ∨ FJ∩W (w1).

For s1 ∈ ℑ, we have

TJ∩W (s1w1 − s1(f1 − w1)) = (TJ ∩ TW )(s1w1 − s1(f1 − w1))

= TJ(s1w1 − s1(f1 − w1)) ∨ TW (s1w1 − s1(f1 − w1))

≤ TJ(w1) ∨ TW (w1) = (TJ ∩ TW )(w1),

IJ∩W (s1w1 − s1(f1 − w1)) = (IJ ∩ IW )(s1w1 − s1(f1 − w1))

= IJ(s1w1 − s1(f1 − w1)) ∧ IW (s1w1 − s1(f1 − w1))

≥ IJ(w1) ∧ IW (w1) = (IJ ∩ IW )(w1),

FJ∩W (s1w1 − s1(f1 − w1)) = (FJ ∩ FW )(s1w1 − s1(f1 − w1))

= FJ(s1w1 − s1(f1 − w1)) ∨ FW (s1w1 − s1(f1 − w1))

≤ FJ(w1) ∨ FW (w1) = (FJ ∩ FW )(w1).

So, ℑJ ∩ ℑW ∈ NL(ℑ).
Hereafter, the symbols ℑ and ℑ′ denote the near-subtraction semigroups.

Definition 4.9. A homomorphism ξ of ℑ into ℑ′
such that ξ(w1 − a1) = ξ(w1) − ξ(a1) and

ξ(w1a1) = ξ(w1)ξ(a1) ∀w1, a1 ∈ ℑ is defined.

Definition 4.10. Consider a mapping Ω : N → M, where N,M ̸= {ϕ}. Suppose MS :=

M
(TS ,IS ,FS)

over M is a neutrosophic κ-structure. Then, under Ω, the preimage of MS is

described as a neutrosophic κ-structure Ω−1(MS) = N
(Ω−1(TS),Ω−1(IS),Ω−1(FS))

over N, where
Ω−1(TS)(l0) = TS(Ω(l0)), Ω

−1(IS)(l0) = IS(Ω(l0)) and Ω−1(FS)(l0) = FS(Ω(l0)) for all l0 ∈ N.

Theorem 4.11. Let Ω : ℑ → ℑ′
be a homomorphism of NSS. If ℑ′

S ∈ NI(ℑ
′
), where

ℑ′
S := ℑ′

(TS ,IS ,FS)
, then Ω−1(ℑ′

S) ∈ NI(ℑ).

Proof: Let k0, g0 ∈ ℑ. Then

Ω−1(TS)(k0 − g0) = TS(Ω(k0 − g0)) = TS(Ω(k0)− Ω(g0))

≤ TS(Ω(k0)) ∨ TS(Ω(g0)) = Ω−1(TS)(k0) ∨ Ω−1(TS)(g0),
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Ω−1(IS)(k0 − g0) = IS(Ω(k0 − g0)) = IS(Ω(k0)− Ω(g0))

≥ IS(Ω(k0)) ∧ IS(Ω(g0)) = Ω−1(IS)(k0) ∧ Ω−1(IS)(g0),

Ω−1(FS)(k0 − g0) = FS(Ω(k0 − g0)) = FS(Ω(k0)− Ω(g0))

≤ FS(Ω(k0)) ∨ FS(Ω(g0)) = Ω−1(FS)(k0) ∨ Ω−1(FS)(g0).

Let q0 ∈ ℑ. Then

Ω−1(TS)(q0k0 − q0(g0 − k0)) = TS(Ω(q0k0 − q0(g0 − k0)))

= TS(Ω(q0k0)− Ω(q0(g0 − k0)))

= TS(Ω(q0)Ω(k0)− Ω(q0)(Ω(g0)− Ω(k0)))

≤ TS(Ω(k0)) = Ω−1(TS)(k0),

Ω−1(IS)(q0k0 − q0(g0 − k0)) = IS(Ω(q0k0 − q0(g0 − k0)))

= IS(Ω(q0k0)− Ω(q0(g0 − k0)))

= IS(Ω(q0)Ω(k0)− Ω(q0)(Ω(g0)− Ω(k0)))

≥ IS(Ω(k0)) = Ω−1(IS)(k0),

Ω−1(FS)(q0k0 − q0(g0 − k0)) = FS(Ω(q0k0 − q0(g0 − k0)))

= FS(Ω(q0k0)− Ω(q0(g0 − k0)))

= FS(Ω(q0)Ω(k0)− Ω(q0)(Ω(g0)− Ω(k0)))

≤ FS(Ω(k0)) = Ω−1(FS)(k0).

Also,

Ω−1(TS)(k0g0) = TS(Ω(k0g0) = TS(Ω(k0)Ω(g0)) ≤ TS(Ω(k0)) = Ω−1(TS)(k0),

Ω−1(IS)(k0g0) = IS(Ω(k0g0) = IS(Ω(k0)Ω(g0)) ≥ IS(Ω(k0)) = Ω−1(IS)(k0),

Ω−1(FS)(k0g0) = FS(Ω(k0g0) = FS(Ω(k0)Ω(g0)) ≤ FS(Ω(k0)) = Ω−1(FS)(k0).

So, Ω−1(ℑ′
S) ∈ NI(ℑ).

Definition 4.12. Consider a onto map Ω : N → M, where N,M ̸= {ϕ}. Suppose NB :=

N
(TB,IB,FB) over N is a neutrosophic κ-structure. Then, under Ω, the image of NB is described

as a neutrosophic κ-structure

Ω(NB) = M
(Ω(TB),Ω(IB),Ω(FB))

over M, where, for all y2 ∈ M,

Ω(TB)(y2) =
∧

y1∈Ω−1(y2)

TB(y1),

Ω(IB)(y2) =
∨

y1∈Ω−1(y2)

IB(y1),

Ω(FB)(y2) =
∧

y1∈Ω−1(y2)

FB(y1).
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Theorem 4.13. Let ξ : ℑ → ℑ′
be an onto homomorphism of NSS and ℑ′

Z := ℑ′

(TZ ,IZ ,FZ )

is a neutrosophic κ-structure of ℑ′
. If ξ−1(ℑ′

Z ) ∈ NI(ℑ), then ℑ′
Z ∈ NI(ℑ

′
).

Proof: Let v′0, r
′
0 ∈ ℑ′

. Then ∃ v0, r0 ∈ ℑ such that ξ(v0) = v′0 and ξ(r0) = r′0. Now,

TZ (v′0 − r′0) = TZ (ξ(v0)− ξ(r0)) = TZ (ξ(v0 − r0)) = ξ−1(TZ )(v0 − r0)

≤ ξ−1(TZ )(v0) ∨ ξ−1(TZ )(r0)

= TZ (ξ(v0)) ∨ TZ (ξ(r0))

= TZ (v′0) ∨ TZ (r′0),

IZ (v′0 − r′0) = IZ (ξ(v0)− ξ(r0)) = IZ (ξ(v0 − r0)) = ξ−1(IZ )(v0 − r0)

≥ ξ−1(IZ )(v0) ∧ ξ−1(IZ )(r0)

= IZ (ξ(v0)) ∧ IZ (ξ(r0))

= IZ (v′0) ∧ IZ (r′0),

FZ (v′0 − r′0) = FZ (ξ(v0)− ξ(r0)) = FZ (ξ(v0 − r0)) = ξ−1(FZ )(v0 − r0)

≤ ξ−1(FZ )(v0) ∨ ξ−1(FZ )(r0)

= FZ (ξ(v0)) ∨ FZ (ξ(r0))

= FZ (v′0) ∨ FZ (r′0).

Let s′0 ∈ ℑ′
. Then ∃s ∈ ℑ such that ξ(s) = s′0. Now

TZ (s′0v
′
0 − s′0(r

′
0 − v′0)) = TZ (ξ(s)ξ(v0)− ξ(s)(ξ(r0)− ξ(v0)))

= TZ (ξ(sv0)− ξ(s)ξ(r0 − v0))

= TZ (ξ(sv0)− ξ(s(r0 − v0)))

= TZ (ξ(sv0 − s(r0 − v0)))

= ξ−1(TZ )(sv0 − s(r0 − v0)) ≤ ξ−1(TZ )(v0) = TZ (ξ(v0)) = TZ (v′0),

IZ (s′0v
′
0 − s′0(r

′
0 − v′0)) = IZ (ξ(s)ξ(v0)− ξ(s)(ξ(r0)− ξ(v0)))

= IZ (ξ(sv0)− ξ(s)ξ(r0 − v0))

= IZ (ξ(sv0)− ξ(s(r0 − v0)))

= IZ (ξ(sv0 − s(r0 − v0)))

= ξ−1(IZ )(sv0 − s(r0 − v0)) ≥ ξ−1(IZ )(v0) = IZ (ξ(v0)) = IZ (v′0),

FZ (s′0v
′
0 − s′0(r

′
0 − v′0)) = FZ (ξ(s)ξ(v0)− ξ(s)(ξ(r0)− ξ(v0)))

= FZ (ξ(sv0)− ξ(s)ξ(r0 − v0))

= FZ (ξ(sv0)− ξ(s(r0 − v0)))

= FZ (ξ(sv0 − s(r0 − v0)))

= ξ−1(FZ )(sv0 − s(r0 − v0)) ≤ ξ−1(FZ )(v0) = FZ (ξ(v0)) = FZ (v′0).
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Also,

TZ (v′0r
′
0) = TZ (ξ(v0r0)) = ξ−1(TZ )(v0r0) ≤ ξ−1(TZ )(v0) = TZ (ξ(v0)) = TZ (v′0),

IZ (v′0r
′
0) = IZ (ξ(v0r0)) = ξ−1(IZ )(v0r0) ≥ ξ−1(IZ )(v0) = IZ (ξ(v0)) = IZ (v′0),

FZ (v′0r
′
0) = FZ (ξ(v0r0)) = ξ−1(FZ )(v0r0) ≤ ξ−1(FZ )(v0) = FZ (ξ(v0)) = FZ (v′0).

So, ℑ′
Z ∈ NI(ℑ

′
).

Definition 4.14. A neutrosophic κ- structure ℑB := ℑ
(TB,IB,FB) is defined to fulfils the sup

property in ℑ if ∀ S ⊆ ℑ, ∃ l0 ∈ S : TB(l0) =
∧
l∈S

TB(l); IB(l0) =
∨
l∈S

IB(l); FB(l0) =
∧
l∈S

FB(l).

Proposition 4.15. A homomorphic image of a neutrosophic κ-ideal having sup property is a

neutrosophic κ-ideal.

Proof: Let ϱ : ℑ → ℑ′ be a homomorphism of NSS and let ℑZ := ℑ
(TZ ,IZ ,FZ ) of ℑ be a

neutrosophic κ-ideal having sup property.

Suppose ϱ(b), ϱ(w) ∈ ℑ′ and let b0 ∈ ϱ−1(ϱ(b)) and w0 ∈ ϱ−1(ϱ(w)) be such that

TZ (b0) =
∧

k0∈ϱ−1(ϱ(b))

TZ (k0), IZ (b0) =
∨

k0∈ϱ−1(ϱ(b))

IZ (k0), FZ (b0) =
∧

k0∈ϱ−1(ϱ(b))

FZ (k0),

TZ (w0) =
∧

k0∈ϱ−1(ϱ(b))

TZ (k0), IZ (w0) =
∨

k0∈ϱ−1(ϱ(b))

IZ (k0), FZ (w0) =
∧

k0∈ϱ−1(ϱ(b))

FZ (k0).

Then

ϱ(TZ )(ϱ(b)− ϱ(w)) =
∧

z∈ϱ−1(ϱ(b)−ϱ(w))

TZ (z) ≤ TZ (b0) ∨ TZ (w0)

=

 ∧
k0∈ϱ−1(ϱ(b))

TZ (k0)

 ∨

 ∧
k0∈ϱ−1(ϱ(w))

TZ (k0)


= ϱ(TZ )(ϱ(b)) ∨ ϱ(TZ )(ϱ(w)),

ϱ(IZ )(ϱ(b)− ϱ(w)) =
∨

z∈ϱ−1(ϱ(b)−ϱ(w))

IZ (z) ≥ IZ (b0) ∧ IZ (w0)

=

 ∨
k0∈ϱ−1(ϱ(b))

IZ (k0)

 ∧

 ∨
k0∈ϱ−1(ϱ(w))

IZ (k0)


= ϱ(IZ )(ϱ(b)) ∧ ϱ(IZ )(ϱ(w)),

ϱ(FZ )(ϱ(b)− ϱ(w)) =
∧

z∈ϱ−1(ϱ(b)−ϱ(w))

FZ (z) ≤ FZ (b0) ∨ FZ (w0)

=

 ∧
k0∈ϱ−1(ϱ(b))

FZ (k0)

 ∨

 ∧
k0∈ϱ−1(ϱ(w))

FZ (k0)


= ϱ(FZ )(ϱ(b)) ∨ ϱ(FZ )(ϱ(w)).
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Given ϱ(s) ∈ ℑ′ and let s0 ∈ ϱ−1(ϱ(s)). Then

ϱ(TZ )(ϱ(s)ϱ(b)− ϱ(s)(ϱ(w)− ϱ(b))) =
∧

z∈ϱ−1(ϱ(s)ϱ(b)−ϱ(s)(ϱ(w)−ϱ(b)))

TZ (z)

≤ TZ (b0) =
∧

k0∈ϱ−1(ϱ(b))

TZ (k0) = ϱ(TZ )(ϱ(b)),

ϱ(IZ )(ϱ(s)ϱ(b)− ϱ(s)(ϱ(w)− ϱ(b))) =
∨

z∈ϱ−1(ϱ(s)ϱ(b)−ϱ(s)(ϱ(w)−ϱ(b)))

IZ (z)

≥ IZ (b0) =
∨

k0∈ϱ−1(ϱ(b))

IZ (k0) = ϱ(IZ )(ϱ(b)),

ϱ(FZ )(ϱ(s)ϱ(b)− ϱ(s)(ϱ(w)− ϱ(b))) =
∧

z∈ϱ−1(ϱ(s)ϱ(b)−ϱ(s)(ϱ(w)−ϱ(b)))

FZ (z)

≤ FZ (b0) =
∧

k0∈ϱ−1(ϱ(b))

FZ (k0) = ϱ(FZ )(ϱ(b)).

Also,

ϱ(TZ )(ϱ(b)ϱ(w)) =
∧

z∈ϱ−1(ϱ(b)ϱ(w))

TZ (z) ≤ TZ (b0) =
∧

k0∈ϱ−1(ϱ(b))

TZ (k0) = ϱ(TZ )(ϱ(b)),

ϱ(IZ )(ϱ(b)ϱ(w)) =
∨

z∈ϱ−1(ϱ(b)ϱ(w))

IZ (z) ≥ IZ (b0) =
∨

k0∈ϱ−1(ϱ(b))

IZ (k0) = ϱ(IZ )(ϱ(b)),

ϱ(FZ )(ϱ(b)ϱ(w)) =
∧

z∈ϱ−1(ϱ(b)ϱ(w))

FZ (z) ≤ FZ (b0) =
∧

k0∈ϱ−1(ϱ(b))

FZ (k0) = ϱ(FZ )(ϱ(b)).

Hence ϱ(ℑZ ) is a neutrosophic κ-ideal of ϱ(ℑ).

5. Conclusion

We defined and examined neutrosophic κ− ideals in near-subtraction semigroups in this

article. We formed ideals for a neutrosophic κ− ideal in a near-subtraction semigroup, and

we also obtained various aspects of the neutrosophic κ− image as well as the neutrosophic

κ− preimage of a near-subtraction semigroup using homomorphism mapping. In our future

research work, we will explore the notion of a neutrosophic κ− prime ideal and its related

properties in near-subtraction semigroups using the ideas and findings presented in this paper.
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Abstract. In this study, we introduce a novel concept, the Neutrosophic Inverse Soft Expert Set (NISES), and apply it to

the Failure Mode and Effect Analysis (FMEA) framework. Developed by NASA, FMEA is a robust tool for addressing

industrial challenges. Our approach leverages the Evaluation based on Distance from Average Solution (EDAS) algorithm

to solve FMEA problems. We implement this methodology in a real-world scenario involving a steam valve with eight

distinct failure modes. Through rigorous analysis, we employ the Technique for Order of Preference by Similarity to Ideal

Solution (TOPSIS) to rank the identified failure modes. Comparing our FMEA model, which integrates rough set theory and

TOPSIS, with the conventional method, we demonstrate the superior efficiency of our approach. Additionally, we extend

the application of Neutrosophic Inverse Soft Expert Sets using the Additive Ratio Assessment-Simplified Version (ARAS-

SV) method. This innovative method facilitates a quantitative assessment of alternative options based on multiple attributes,

allowing for a precise determination of the optimal choice.

Keywords: Soft set, inverse soft set, neutrosophic set, neutrosophic inverse soft set, Failure Mode and Effect Analysis,

Additive Ratio Assessment-Simplified Version method

—————————————————————————————————————————-

1. Introduction

The Failure Mode and Effect Analysis (FMEA) process constitutes a pivotal cornerstone in con-

temporary engineering and industrial practices. It stands as an indispensable methodology not only

for identifying potential failures within a given model but also for effecting requisite measures to rec-

tify them, ultimately ensuring the seamless operation of machinery and systems. This approach finds

Vijayabalaji. S, Thillaigovindan. N, Sathiyaseelan. N and Broumi. S. Neutrosophic inverse soft expert sets and their

application to failure mode and effect analysis
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extensive application in a diverse array of industries, including aviation, automotive, and automation,

where its effectiveness in real-life scenarios is unequivocally acknowledged.

Central to the FMEA process are three critical risk factors: Severity (S), Occurrence (O), and Detec-

tion (D). These elements collectively contribute to the calculation of the Risk Priority Number (RPN),

which, in turn, serves as the guiding metric for prioritizing and executing the FMEA process for a

specific model. Notably, the relative weightings assigned to Severity, Occurrence, and Detection may

vary, depending on the specific FMEA methodology employed, reflecting the nuanced nature of risk

assessment.

FMEA stands as an efficient and indispensable tool for mitigating uncertainties that invariably arise

in practical, real-world situations. Its application transcends mere fault detection; it encompasses a

systematic approach to preemptively predict the potential order of failure in a given model, signifi-

cantly enhancing the proactive management of operational risks. The versatility of FMEA is further

underscored by its adaptability to distinct scenarios, where the weights attributed to Severity, Occur-

rence, and Detection may either be uniformly distributed or differentially ranked, contingent upon the

specific FMEA technique in use.

In light of the existing body of research on FMEA techniques, we propose the hypothesis that

the integration of Neutrosophic Inverse Soft Expert Sets (NISES) in conjunction with the Evaluation

Based on Distance from Average Solution (EDAS) method will yield a more efficient and accurate

assessment of risk factors in complex systems. This hypothesis is grounded in the potential of NISES

to capture uncertainties in expert judgments and the robustness of the EDAS method in evaluating the

performance of alternatives. Through rigorous testing and comparative analysis, we aim to substantiate

this hypothesis and contribute to the advancement of risk assessment methodologies.

This introduction sets the stage for a comprehensive exploration of the nuanced methodologies and

applications associated with FMEA. In the ensuing sections, we delve into a rich tapestry of literature,

encompassing a spectrum of innovative approaches and models that have significantly advanced the

field. The motivation for the present study arises from the endeavor to incorporate the groundbreaking

concept of neutrosophic set theory into the FMEA framework, opening up new vistas for enhanced

risk assessment and decision-making. As we proceed, we embark on a journey through fundamental

concepts, detailed methodologies, and in-depth comparative analyses, collectively contributing to a

deeper understanding of FMEA’s evolving landscape.

Our research represents a groundbreaking exploration at the intersection of risk assessment method-

ologies and decision-making processes. In this study, we introduce a novel framework by incorporat-

ing Neutrosophic Inverse Soft Expert Sets into the well-established domain of Failure Mode and Effect

Analysis. This innovative approach stems from the pioneering work of Smarandache, who introduced

the concept of Neutrosophic Sets as a unified framework for handling uncertainty. We extend this

Vijayabalaji. S, Thillaigovindan. N, Sathiyaseelan. N and Broumi. S. Enhancing Failure Mode and
Effect Analysis with Neutrosophic Inverse Soft Expert Sets
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idea to address critical issues in FMEA, particularly in situations where conventional risk assessment

models may fall short in capturing the intricate nuances of complex systems.

Unlike traditional software-dependent approaches, our research adopts a manual, hands-on method-

ology, which allows for meticulous scrutiny and customization of the assessment process. Through

a detailed literature review, we have identified gaps and limitations in existing FMEA models, which

our study seeks to address. Our approach offers a systematic means of evaluating risk factors by con-

sidering the expertise of individuals (experts) in a neutrosophic form, allowing for the expression of

uncertain and indeterminate information.

To validate our approach, we conducted extensive empirical testing, drawing inspiration from influ-

ential studies in the field. Our results reveal not only the feasibility but also the potential superiority

of NISES-based FMEA in capturing uncertainties and providing more accurate risk assessments. The

empirical outcomes of our research affirm the innovative nature of our approach and its capacity to

enhance risk management practices in various domains, from engineering to healthcare.

By introducing this novel framework and eschewing reliance on software tools, we underscore the

importance of human expertise in risk evaluation. Our research contributes not only to the field of

risk assessment but also to the broader discourse on decision-making under uncertainty. It opens new

horizons for further exploration, encouraging scholars and practitioners to embrace the versatility and

effectiveness of Neutrosophic Inverse Soft Expert Sets as a valuable tool for managing and mitigating

risks in an ever-evolving world of complexity and ambiguity.

1.1. Literature review

The landscape of Failure Mode and Effect Analysis (FMEA) has been enriched by a wealth of

research contributions. Song et al. [20] addressed a specific case involving a steam valve system,

employing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method in

conjunction with a rough set approach. This study demonstrated the efficacy of integrating advanced

decision-making techniques with FMEA to enhance system reliability.

Zadeh’s pioneering work [23] on fuzzy sets introduced a transformative approach to address short-

comings in RPN for FMEA models. Chang et al. [6] further extended this concept by integrating grey

theory with fuzzy sets, augmenting risk assessment methodologies. Chin et al. [5] introduced Data

Envelopment Analysis (DEA) into FMEA, presenting an alternative perspective for risk evaluation.

Gilchrist’s innovative model [8] for FMEA opened new avenues for analysis, while Liu et al. [15]

combined grey theory with fuzzy evidential reasoning, enriching risk assessment strategies. Pillay

et al. [18] introduced a modified FMEA model with approximate reasoning, contributing a unique

viewpoint.
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Xu et al.’s work [22] on fuzzy assessment techniques in FMEA advanced risk evaluation methods.

Zavadskas et al. [9] made a significant contribution with the introduction of the Evaluation based on

Distance from Average Solution (EDAS) method, further expanding the FMEA toolkit.

Molodtsov’s introduction of soft set theory [17] marked a revolutionary shift in uncertainty manage-

ment. Feng’s hybrid models [7], combining soft set theory with other structures, further elevated risk

assessment strategies.

Hu-Chen Liu et al.’s integration of risk evaluation concepts with fuzzy digraph and matrix theory

[15] provided a fresh perspective on FMEA. Akram et al.’s introduction of TOPSIS and ELECTRE

I method using pythagorean fuzzy information [3] added diversity to the repertoire of approaches

available in FMEA.

Our approach, integrating Neutrosophic Inverse Soft Expert Sets (NISES) into Failure Mode and Ef-

fect Analysis (FMEA), introduces a novel framework for risk assessment. To provide a clear overview

of the literature landscape and how our approach stands out, we present a comprehensive table sum-

marizing studies based on their assumptions, methods, and results.

Our integration of NISES in FMEA stands out as a novel contribution, streamlining risk assessment

and offering adaptability to uncertainties. This comprehensive table highlights the unique perspective

our approach brings to Failure Mode and Effect Analysis, distinguishing it from prior methodologies

based on their underlying assumptions, methods, and results.
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Author Assumptions Methods Employed Results and Contributions
Song et al. Standard FMEA assumptions,

TOPSIS, Rough Set
Established foundational FMEA
techniques

Introduced a robust framework for
failure mode assessment

Zadeh Utilizes Fuzzy Sets Introduced a transformative ap-
proach to FMEA

Revolutionized risk assessment
through fuzzy logic

Chang et al. Embraces Grey Theory in Fuzzy
Sets

Expanded risk assessment method-
ologies in FMEA

Provided a comprehensive frame-
work for handling uncertainties

Chin et al. Applies Data Envelopment Analy-
sis (DEA) assumptions

Integrated DEA for alternative per-
spectives

Enhanced decision-making through
DEA in FMEA

Gilchrist Innovates in FMEA Modeling Pioneered a unique model for fail-
ure mode assessment

Introduced a novel approach for
comprehensive risk evaluation

Liu et al. Utilizes Grey Theory, Fuzzy Evi-
dential Reasoning assumptions

Advanced risk assessment strate-
gies in FMEA

Enhanced risk assessment by com-
bining multiple uncertainty sources

Pillay et al. Incorporates Modified FMEA as-
sumptions with Approximate Rea-
soning

Introduced a novel approach for
FMEA

Enhanced risk assessment through
tailored approximate reasoning

Xu et al. Applies Fuzzy Assessment of
FMEA assumptions

Elevated risk evaluation techniques
in FMEA

Provided a more nuanced approach
to risk assessment using fuzzy logic

Zavadskas et al. Leverages Evaluation based on
Distance from Average Solution
(EDAS) assumptions

Significant contribution to FMEA
methodology

Improved risk assessment through a
novel evaluation approach

Molodtsov Utilizes Soft Set Theory assump-
tions

Revolutionized uncertainty man-
agement in FMEA

Provided a comprehensive frame-
work for handling uncertainties us-
ing soft sets

Feng Applies Hybrid Models combining
Soft Set Theory assumptions

Elevated risk assessment strategies
in FMEA

Enhanced risk assessment by inte-
grating multiple methodologies

Hu-Chen Liu et
al.

Utilizes Risk Evaluation with
Fuzzy Digraph and Matrix Theory
assumptions

Provided a fresh perspective on
FMEA risk evaluation

Enhanced risk assessment by com-
bining fuzzy digraphs and matrix
theory

Akram et al. Incorporates TOPSIS, ELECTRE I
with Pythagorean Fuzzy Informa-
tion assumptions

Enhanced diversity of approaches
in FMEA

Provided a versatile approach to
risk assessment using multiple
methodologies

Smarandache Applies Neutrosophic Sets assump-
tions

Unified uncertainty structures un-
der neutrosophic sets

Introduced a novel framework for
handling uncertainties using neu-
trosophic sets

The empirical results of our study, which integrates Neutrosophic Inverse Soft Expert Sets (NISES)

into Failure Mode and Effect Analysis (FMEA), have unveiled promising advancements in risk assess-

ment methodologies. Building upon the foundational research of Zadeh [23] , Chang [6] , Chin [5],

Gilchrist [8], Liu [15] , Pillay [18] , Xu [22] , Zavadskas [9], Molodtsov [17] , Feng [7] , Hu-Chen

Liu [15] , and Akram [3] , our innovative approach offers a fresh perspective on addressing uncertain-

ties in complex systems. Through rigorous empirical testing, we have demonstrated the effectiveness of

NISES in enhancing the accuracy of risk evaluation. The integration of NISES with FMEA has not only

showcased its potential to provide more nuanced insights but has also yielded practical implications

for risk mitigation strategies. Our findings contribute to the ever-evolving landscape of risk assessment

and underscore the value of incorporating Neutrosophic Inverse Soft Expert Sets in decision-making

processes within a variety of domains.
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2. Preliminaries

Throughout this paper, let U denote universe set, Υ represent parameter set, P(U) denotes power set

of U, P(Υ) denotes the power set of Υ, H being set of experts, Θ represents a set of opinions and NU
S

denotes the collection of all neutrosophic subsets of U.

Definition 2.1. [17] For a given universe set U with parameter Υ, a soft set is mapping from S to

P(U), where S ⊆ Υ.

Definition 2.2. [10] Let P(Υ) be the set of all subsets of parameter set Υ. A pair (F,U) is called an

inverse soft set over Υ, where F is a mapping given by

F : U → P(Υ).

Definition 2.3. [4] The mapping from set A to the power set of U constitutes a soft expert set, where

A ⊆ Z, Z = Υ × H × Θ, Υ is a set of parameters, H is a set of experts and Θ is the set of opinions.

Definition 2.4. [21] Consider a mapping ΞΥ : U → P(A), where U denotes the universe set and Υ

denotes the set of parameters. Then the pair P = (ΞΥ,U) is defined as inverse soft expert sets, where

A ⊆ Z, Z = Υ × H × Θ, Υ is a set of parameters, H is a set of experts and Θ is the set of opinions.

Definition 2.5. [19] A neutrosophic set (N-sets) is defined by

A = {< u,TA(u), IA(u), FA(u) >; u ∈ U,TA(u), IA(u), FA(u) ∈ [0, 1]},

where u being the generic element of U, TA being truth-membership function, IA being indeterminacy-

membership function and FA represents falsity-membership function.

3. Neutrosophic inverse soft expert sets

Definition 3.1. Consider a mapping,

F : NU
S → P(Z)

where NU
S denotes the collection of all neutrosophic subsets of U , then the pair (F,NU

S ) is called as

neutrosophic inverse soft expert set (NISES).

Example 3.2. Let U = {ϑ1, ϑ2, ϑ3} be a universe set , Υ = ,1ג} {2ג be a set of parameters andH = {%1, %2}

be a set of experts. Suppose that F : NU
S → P(Z) is a function defined as follows.
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Table 1. Neutrosophic inverse soft expert set

(F,NU
S ) ,1ג) %1, 1) ,1ג) %1, 0) ,1ג) %2, 1) ,1ג) %2, 0) ,2ג) %1, 1) ,2ג) %1, 0) ,2ג) %2, 1) ,2ג) %2, 0)

ϑ1 (0.3,0.4,0.7) (0.7,0.5,0.2) (0.8,0.7,0.3) (0.2,0.3,0.7) (0.4,0.6,0.4) (0.7,0.3,0.6) (0.9,0.3,0.3) (0.4,0.6,0.1)

ϑ2 (0.5,0.2,0.9) (0.3,0.5,0.6) (0.3,0.1,0.5) (0.4,0.7,0.9) (0.9,0.3,0.5) (0.1,0.7,0.3) (0.1,0.4,0.7) (0.2,0.1,0.5)

ϑ3 (0.2,0.5,0.8) (0.4,0.1,0.6) (0.4,0.9,0.4) (0.1,0.4,0.6) (0.6,0.2,0.9) (0.1,0.5,0.5) (0.6,0.3,0.2) (0.3,0.6,0.7)

Thus, we can view the neutrosophic inverse soft expert set (F,NU
S ) as a collection of approximations

as follows.

(F,NU
S ) =

[{
(F, ϑ1) =

{ ,1ג) %1, 1)
(0.3, 0.4, 0.7)

,
,1ג) %1, 0)

(0.7, 0.5, 0.2)
,

,1ג) %2, 1)
(0.8, 0.7, 0.3)

,
,1ג) %2, 0)

(0.2, 0.3, 0.7)
,

,2ג) %1, 1)
(0.4, 0.6, 0.4)

,
,2ג) %1, 0)

(0.7, 0.3, 0.6)
,

,2ג) %2, 1)
(0.9, 0.3, 0.3)

,
,2ג) %2, 0)

(0.4, 0.6, 0.1)

}}
,{

(F, ϑ2) =

{ ,1ג) %1, 1)
(0.5, 0.2, 0.9)

,
,1ג) %1, 0)

(0.3, 0.5, 0.6)
,

,1ג) %2, 1)
(0.3, 0.1, 0.5)

,
,1ג) %2, 0)

(0.4, 0.7, 0.9)
,

,2ג) %1, 1)
(0.9, 0.3, 0.5)

,
,2ג) %1, 0)

(0.1, 0.7, 0.3)
,

,2ג) %2, 1)
(0.1, 0.4, 0.7)

,
,2ג) %2, 0)

(0.2, 0.1, 0.5)

}}
,{

(F, ϑ3) =

{ ,1ג) %1, 1)
(0.2, 0.5, 0.8)

,
,1ג) %1, 0)

(0.4, 0.1, 0.6)
,

,1ג) %2, 1)
(0.4, 0.9, 0.4)

,
,1ג) %2, 0)

(0.1, 0.4, 0.6)
,

,2ג) %1, 1)
(0.6, 0.2, 0.9)

,
,2ג) %1, 0)

(0.1, 0.5, 0.5)
,

,2ג) %2, 1)
(0.6, 0.3, 0.2)

,
,2ג) %2, 0)

(0.3, 0.6, 0.7)

}}]
.

Then (F,NU
S ) is a neutrosophic inverse soft expert set over (NU

S ,Z).

Definition 3.3. Let (F,NU
S )A be a neutrosophic inverse soft expert set over (NU

S ,Z). An agree-

neutrosophic inverse soft expert set is denoted as (F,NU
S )1

A defined as,

(F,NU
S )1

A = {F(ψ);ψ ∈ Υ × H × {1}}.

Definition 3.4. Let (F,NU
S )A be a neutrosophic inverse soft expert set over (NU

S ,Z). A disagree-

neutrosophic inverse soft expert set is denoted as (F,NU
S )0

A defined as,

(F,NU
S )0

A = {F(ψ);ψ ∈ Υ × H × {0}}.

Example 3.5. Consider example 3.2.Then the agree-neutrosophic inverse soft expert set (F,NU
S )1

A is

(F,NU
S )1

A =

[{
(F, ϑ1) =

{ ,1ג) %1, 1)
(0.3, 0.4, 0.7)

,
,1ג) %2, 1)

(0.8, 0.7, 0.3)
,

,2ג) %1, 1)
(0.4, 0.6, 0.4)

,
,2ג) %2, 1)

(0.9, 0.3, 0.3)

}}
,{

(F, ϑ2) =

{ ,1ג) %1, 1)
(0.5, 0.2, 0.9)

,
,1ג) %2, 1)

(0.3, 0.1, 0.5)
,

,2ג) %1, 1)
(0.9, 0.3, 0.5)

,
,2ג) %2, 1)

(0.1, 0.4, 0.7)

}}
,{

(F, ϑ3) =

{ ,1ג) %1, 1)
(0.2, 0.5, 0.8)

,
,1ג) %2, 1)

(0.4, 0.9, 0.4)
,

,2ג) %1, 1)
(0.6, 0.2, 0.9)

,
,2ג) %2, 1)

(0.6, 0.3, 0.2)
,
}}]

.
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and the disagree-neutrosophic inverse soft expert set (F,NU
S )0

A is

(F,NU
S )0

A =

[{
(F, ϑ1) =

{ ,1ג) %1, 0)
(0.7, 0.5, 0.2)

,
,1ג) %2, 0)

(0.2, 0.3, 0.7)
,

,2ג) %1, 0)
(0.7, 0.3, 0.6)

,
,2ג) %2, 0)

(0.4, 0.6, 0.1)

}}
,{

(F, ϑ2) =

{ ,1ג) %1, 0)
(0.3, 0.5, 0.6)

,
,1ג) %2, 0)

(0.4, 0.7, 0.9)
,

,2ג) %1, 0)
(0.1, 0.7, 0.3)

,
,2ג) %2, 0)

(0.2, 0.1, 0.5)

}}
,{

(F, ϑ3) =

{ ,1ג) %1, 0)
(0.4, 0.1, 0.6)

,
,1ג) %2, 0)

(0.1, 0.4, 0.6)
,

,2ג) %1, 0)
(0.1, 0.5, 0.5)

,
,2ג) %2, 0)

(0.3, 0.6, 0.7)

}}]
.

Definition 3.6. Let (F,NU
S )A be a neutrosophic inverse soft expert set over (NU

S ,Z). Then the comple-

ment of (F,NU
S )A denoted by (F,NU

S )C
A is defined as,

(F,NU
S )C

A = C̃(F(ψ));∀ψ ∈ U

where c̃ is neutrosophic inverse soft expert complement.

Example 3.7. Consider (F,NU
S )A over (NU

S ,Z) as given in Example 3.2. By using the complement for

(F,NU
S )A , we obtain (F,NU

S )C
A which is defined as,

(F,NU
S )c

A =

[{
(F, ϑ1) =

{ ,1ג) %1, 1)
(0.7, 0.4, 0.3)

,
,1ג) %1, 0)

(0.2, 0.5, 0.7)
,

,1ג) %2, 1)
(0.3, 0.7, 0.8)

,
,1ג) %2, 0)

(0.7, 0.3, 0.2)
,

,2ג) %1, 1)
(0.4, 0.6, 0.4)

,

,2ג) %1, 0)
(0.6, 0.3, 0.7)

,
,2ג) %2, 1)

(0.3, 0.3, 0.9)
,

,2ג) %2, 0)
(0.1, 0.6, 0.4)

}}
,{

(F, ϑ2) =

{ ,1ג) %1, 1)
(0.9, 0.2, 0.5)

,
,1ג) %1, 0)

(0.6, 0.5, 0.3)
,

,1ג) %2, 1)
(0.5, 0.1, 0.3)

,
,1ג) %2, 0)

(0.9, 0.7, 0.4)
,

,2ג) %1, 1)
(0.5, 0.3, 0.9)

,

,2ג) %1, 0)
(0.3, 0.7, 0.1)

,
,2ג) %2, 1)

(0.7, 0.4, 0.1)
,

,2ג) %2, 0)
(0.5, 0.1, 0.2)

}}
,{

(F, ϑ3) =

{ ,1ג) %1, 1)
(0.8, 0.5, 0.2)

,
,1ג) %1, 0)

(0.6, 0.1, 0.4)
,

,1ג) %2, 1)
(0.4, 0.9, 0.4)

,
,1ג) %2, 0)

(0.6, 0.4, 0.1)
,

,2ג) %1, 1)
(0.9, 0.2, 0.6)

,

,2ג) %1, 0)
(0.5, 0.5, 0.1)

,
,2ג) %2, 1)

(0.2, 0.3, 0.6)
,

,2ג) %2, 0)
(0.7, 0.6, 0.3)

}}]
.

4. FMEA with Neutrosophic Inverse Soft Expert Sets and EDAS

Problem statement

Let’s revisit the problem addressed by Song et al. [20]. They tackled an issue with a steam valve sys-

tem in a power plant, which exhibited eight distinct failure modes. Their approach involved employing

FMEA based on rough group preference by similarity to ideal solution. They began by computing

rough interval weights for the risk factors and then constructed a crisp evaluation matrix for the fail-

ure modes. Each failure mode (indexed as i = 1,2,...,m) was evaluated against criteria (indexed as j =

S,O,D) using conventional scores. To incorporate uncertainties, they transformed crisp elements in the

group decision matrix into rough number forms, resulting in a rough group decision-making matrix.

Furthermore, they computed rough sequences and average rough intervals along with their respective
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intervals. By determining the weighted normalized decision matrix in rough number form, they ob-

tained a comprehensive evaluation. Additionally, they defined positive and negative ideal solutions and

calculated the separation of each failure mode from these benchmarks. Finally, they compared their

approach with fuzzy FMEA, conventional FMEA, and rough FMEA, ultimately concluding the steam

valve problem based on their ranking values.

The motivation for our present study stems from the preceding work. We have taken up the same

steam valve system in a power plant featuring eight distinct failure modes as the focal point. Utilizing

the FMEA approach, we’ve adopted the EDAS method, incorporating the neutrosophic inverse soft

expert set (NISES) as a key tool in solving the problem. The subsequent section elucidates the failure

modes and their respective solutions in a clear and accessible manner. In contrast to rough interval

weights, we’ve opted for attribute weights. We then proceed to construct a decision matrix (DM) em-

ploying NISES, accounting for i failure modes (i = 1,2,...,m) against the three criteria (j = S,O,D). This

process involves the computation of positive distance average (PDA) and negative distance average

(NDA) matrices, weighted normalized positive distance averages (WNPDAi) and weighted normal-

ized negative distance averages (WNNDAi), as well as assessment scores (AS i). Finally, we conclude

the evaluation with a final ranking based on (AS i).

The algorithm is presented below and the comparative analysis of our new approach with existing

Song et al. [20] approach is presented in the next section.

4.1. Algorithm

We now present the algorithm on failure mode and effect analysis approach using evaluation based

on distance from average solution method with neutrosophic inverse soft expert set.

Input:NISES.

Output: Ranking the alternatives.

Step 1. Choose the criteria that reveals about failure data.

Step 2. The decision making matrix (D) using NISES is constructed.

D̃M =

1 2 3


1 r11 r12 r13

2 r21 r22 r23
...

...
...

...

m rm1 rm2 rm3

(1)
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Step 3. Define average solution as

AV j =

m∑
i=1

ri j

m
. (2)

Step 4. Calculate positive distance average (PDA) and negative distance average (NDA) matrices as

follows.

PDA = [PDAi j]m×3 (3)

NDA = [NDAi j]m×3 (4)

where,

PDAi j =
max(0, (AV j − ri j))

AV j
; i = 1, 2...,m, j = 1, 2, 3 (5)

NDAi j =
max(0, (ri j − AV j)

AV j
; i = 1, 2...,m, j = 1, 2, 3 (6)

Step 5. Determine weighted sum of positive distance average (WSPDA) and weighted sum of negative

distance average (WSNDA) .

WS PDAi =

3∑
j=1

PDAi j × w j; i = 1, 2...,m (7)

WS NDAi =

3∑
j=1

NDAi j × w j; i = 1, 2...,m (8)

Step 6. Calculate weighted normalized positive distance average (WNPDA) and weighted normalized

negative distance average (WNNDA)

WNPDAi =
WPDAi

maxi(WPDAi)
; i = 1, 2...,m (9)

WNNDAi =
WNDAi

maxi(WNDAi)
; i = 1, 2...,m (10)

Step 7. The assessment score (AS i) for each alternatives is calculated as follows.

AS i =
1
2

(WNPDAi + WNNDAi) (11)

Step 8. Perform final ranking by arranging the assessment score of alternatives in descending order .
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Figure 1. Algorithm on FMEA approach using EDAS

5. Comparative Analysis

In this section, we focus on the steam valve system within a power plant, where failures may mani-

fest under various circumstances. These failure modes encompass instances such as prolonged shutting

time (Mode 1), improper sealing causing leakage (Mode 2), steam leakage from the valve shaft (Mode

3), valve replacements (Mode 4), valve obstruction during operation (Mode 5), fractures in the valve

shaft (Mode 6), failure of the valve shaft bolster bearing (Mode 7), and excessive noise in the system

(Mode 8), particularly while a steam valve is in operation within the plant. A prior study [20] addressed

this specific scenario using the TOPSIS method within the framework of FMEA for the steam valve

system. Notably, they employed rough set theory as a pivotal tool to substantiate their findings and
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arguments

We present the table of steam valve system using FMEA model as presented by Song et al., (2013) in

table 2.

Table 2. Tabular representation of the steam valve system

S.No Failure Mode Causes Effects of failure Detection measures

1 Prolong of shutting

time

Counter-intuitive

spring decision

Over boost of

steam turbine rotor

and parts mishap

Valve seal test

2 Not being firmly

closed

Little bushing lee-

way, shaft twisting

Cutting edge ero-

sion of steam tur-

bine

Valve break test

3 Steam spill around

valve shaft

Compaction power

of firing filler isn’t

sufficient

Misuse of sub-

stance water and

warm misfortune

Assessment in the

wake of pressing

evacuation

4 Valve changes Water driven cham-

ber spills

Problem in regular

opening

closing of valve with

hazardous activity

5 Valve jam in activ-

ity

Due to procedure

and material imper-

fections

Valve can’t open

and close

Valve activity test

6 Crack of valve

shaft

Weariness break

under rotating

pressure

Stumbling of tur-

bine

Metallographic tests

on the crack hole

7 Breakdown of

valve shaft bolster

bearing

Low quality of

bearing material

and long haul

milage

Anomalous activity

of valve framework

Dismantle examina-

tion

8 Over the top com-

motion framework

Framework vibra-

tion because of out-

landish parts

Make the client feel

awkward

Change working con-

dition, recurrence esti-

mation of valve

In our current investigation, we have retained the focus on the eight potential failure modes occurring

within the plant. To validate the robustness of our findings, we have employed the Evaluation Based

on Distance from Average Solution method, leveraging Neutrosophic Inverse Soft Expert Set as a

crucial tool. This rigorous evaluation serves to establish the superiority of our approach in comparison

to the existing work [20]. It is noteworthy that we have diligently assigned weights to the factors

Vijayabalaji. S, Thillaigovindan. N, Sathiyaseelan. N and Broumi. S. Enhancing Failure Mode and
Effect Analysis with Neutrosophic Inverse Soft Expert Sets

Neutrosophic Sets and Systems, Vol. 60, 2023                                                                           519



Severity (S), Occurrence (O), and Detection (D), and subsequently validated the outcomes, ensuring a

comprehensive and reliable assessment.

5.1. NISES Group Decision Making Procedure

Step 1. The failure mode criteria are 1, 2, 3, 4, 5, 6, 7, 8. The problem of steam valve system discussed

in [20] is considered with the same eight failure modes.

Step 2. Create the decision making matrix.

Table 3. Tabular representation of rating for failure modes with RPN in ANISES

Severity Occurrence Detection

No. Failure mode i1 i2 i3 i4 i1 i2 i3 i4 i1 i2 i3 i4

1 Long shutting time of valve

(0
.8

,0
.6

,0
.3

)

(0
.4

,0
.5

,0
.8

)

(0
.5

,0
.3

,0
.1

)

(0
.4

,0
.4

,0
.5

)

(0
.5

,0
.3

,0
.4

)

(0
.9

,0
.1

,0
.5

)

(0
.5

,0
.4

,0
.1

)

(0
.5

,0
.2

,0
.5

)

(0
.4

,0
.9

,0
.4

)

(0
.6

,0
.2

,0
.9

)

(0
.6

,0
.3

,0
.2

)

(0
.8

,0
.4

,0
.2

)

2 Not being firmly closed

(0
.5

,0
.2

,0
.9

)

(0
.3

,0
.1

,0
.5

)

(0
.9

,0
.3

,0
.5

)

(0
.1

,0
.4

,0
.7

)

(0
.1

,0
.5

,0
.6

)

(0
.2

,0
.4

,0
.6

)

(0
.1

,0
.5

,0
.2

)

(0
.3

,0
.1

,0
.4

)

(0
.5

,0
.3

,0
.4

)

(0
.9

,0
.1

,0
.5

)

(0
.5

,0
.4

,0
.1

)

(0
.5

,0
.2

,0
.5

)

3 Steam spill around valve shaft

(0
.2

,0
.5

,0
.8

)

(0
.4

,0
.9

,0
.4

)

(0
.6

,0
.2

,0
.9

)

(0
.6

,0
.3

,0
.2

)

(0
.8

,0
.4

,0
.2

)

(0
.5

,0
.3

,0
.2

)

(0
.9

,0
.8

,0
.4

)

(0
.4

,0
.2

,0
.6

)

(0
.9

,0
.3

,0
.3

)

(0
.3

,0
.2

,0
.9

)

(0
.8

,0
.4

,0
.1

)

(0
.4

,0
.6

,0
.2

)

4 Valve changes

(0
.4

,0
.5

,0
.6

)

(0
.7

,0
.2

,0
.3

)

(0
.1

,0
.5

,0
.9

)

(0
.3

,0
.5

,0
.8

)

(0
.4

,0
.8

,0
.2

)

(0
.5

,0
.6

,0
.8

)

(0
.1

,0
.3

,0
.8

)

(0
.3

,0
.5

,0
.1

)

(0
.3

,0
.4

,0
.7

)

(0
.8

,0
.2

,0
.4

)

(0
.4

,0
.3

,0
.2

)

(0
.1

,0
.3

,0
.5

)

5 Valve jam in activity

(0
.3

,0
.4

,0
.7

)

(0
.8

,0
.2

,0
.4

)

(0
.4

,0
.3

,0
.2

)

(0
.1

,0
.3

,0
.5

)

(0
5,

0.
3,

0.
9)

(0
.7

,0
.5

,0
.3

)

(0
.5

,0
.7

,0
.2

)

(0
.9

,0
.5

,0
.2

)

(0
.9

,0
.3

,0
.3

)

(0
.3

,0
.2

,0
.9

)

(0
.8

,0
.4

,0
.1

)

(0
.4

,0
.6

,0
.2

)

6 Crack of valve shaft

(0
.3

,0
.4

,0
.7

)

(0
.8

,0
.7

,0
.3

)

(0
.4

,0
.6

,0
.4

)

(0
.9

,0
.3

,0
.3

)

(0
.3

,0
.2

,0
.9

)

(0
.8

,0
.4

,0
.1

)

(0
.4

,0
.6

,0
.2

)

(0
.1

,0
.9

,0
.7

)

(0
.9

,0
.2

,0
.3

)

(0
.4

,0
.6

,0
.3

)

(0
.1

,0
.7

,0
.3

)

(0
.3

,0
.9

,0
.1

)

7 Breakdown of valve shaft bolster bearing

(0
.9

,0
.2

,0
.3

)

(0
.4

,0
.6

,0
.3

)

(0
.1

,0
.7

,0
.3

)

(0
.3

,0
.9

,0
.1

)

(0
.2

,0
.3

,0
.1

)

(0
.4

,0
.5

,0
.2

)

(0
.9

,0
.4

,0
.9

)

(0
.4

,0
.2

,0
.5

)

(0
.4

,0
.8

,0
.2

)

(0
.5

,0
.6

,0
.8

)

(0
.1

,0
.3

,0
.8

)

(0
.3

,0
.5

,0
.1

)

8 Over the top commotion framework

(0
.3

,0
.4

,0
.8

)

(0
.7

,0
.9

,0
.1

)

(0
.2

,0
.4

,0
.3

)

(0
.3

,0
.8

,0
.2

)

(0
.9

,0
.4

,0
.9

)

(0
.8

,0
.7

,0
.3

)

(0
.6

,0
.2

,0
.9

)

(0
.1

,0
.5

,0
.9

)

(0
.1

,0
.3

,0
.5

)

(0
5,

0.
3,

0.
9)

(0
.5

,0
.4

,0
.1

)

(0
.5

,0
.2

,0
.5

)
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Table 4. Tabular representation of rating for failure modes with RPN in DNISES

Severity Occurrence Detection

No. Failure mode i1 i2 i3 i4 i1 i2 i3 i4 i1 i2 i3 i4

1 Long shutting time of valve

(0
.1

,0
.7

,0
.9

)

(0
.4

,0
.6

,0
.5

)

(0
.8

,0
.3

,0
.5

)

(0
.5

,0
.1

,0
.7

)

(0
.8

,0
.3

,0
.3

)

(0
.4

,0
.4

,0
.8

)

(0
.4

,0
.2

,0
.6

)

(0
.8

,0
.1

,0
.7

)

(0
.3

,0
.6

,0
.7

)

(0
.6

,0
.2

,0
.9

)

(0
.4

,0
.6

,0
.1

)

(0
.4

,0
.4

,0
.7

)

2 Not being firmly closed

(0
.3

,0
.5

,0
.6

)

(0
.4

,0
.7

,0
.9

)

(0
.1

,0
.7

,0
.3

)

(0
.2

,0
.1

,0
.5

)

(0
.9

,0
.2

,0
.9

)

(0
.3

,0
.1

,0
.7

)

(0
.8

,0
.5

,0
.2

)

(0
.8

,0
.7

,0
.1

)

(0
.4

,0
.6

,0
.1

)

(0
.4

,0
.3

,0
.7

)

(0
.8

,0
.2

,0
.5

)

(0
.7

,0
.3

,0
.8

)

3 Steam spill around valve shaft
(0

.4
,0

.1
,0

.6
)

(0
.1

,0
.4

,0
.6

)

(0
.1

,0
.5

,0
.5

)

(0
.3

,0
.6

,0
.7

)

(0
.6

,0
.2

,0
.9

)

(0
.6

,0
.3

,0
.4

)

(0
.3

,0
.2

,0
.6

)

(0
.1

,0
.8

,0
.9

)

(0
.1

,0
.7

,0
.6

)

(0
.6

,0
.4

,0
.5

)

(0
.9

,0
.2

,0
.3

)

(0
.4

,0
.6

,0
.3

)

4 Valve changes

(0
.2

,0
.5

,0
.8

)

(0
.4

,0
.7

,0
.9

)

(0
.3

,0
.5

,0
.4

)

(0
.8

,0
.9

,0
.3

)

(0
.4

,0
.1

,0
.9

)

(0
.7

,0
.2

,0
.9

)

(0
.3

,0
.6

,0
.8

)

(0
.5

,0
.2

,0
.4

)

(0
.6

,0
.4

,0
.5

)

(0
.9

,0
.2

,0
.3

)

(0
.4

,0
.6

,0
.3

)

(0
.4

,0
.2

,0
.9

)

5 Valve jam in activity

(0
.4

,0
.7

,0
.3

)

(0
.3

,0
.5

,0
.2

)

(0
.4

,0
.9

,0
.2

)

(0
.4

,0
.6

,0
.1

)

(0
.4

,0
.3

,0
.7

)

(0
.8

,0
.2

,0
.5

)

(0
.7

,0
.3

,0
.8

)

(0
.9

,0
.3

,0
.8

)

(0
.7

,0
.5

,0
.2

)

(0
.2

,0
.3

,0
.7

)

(0
.7

,0
.3

,0
.7

)

(0
.8

,0
.9

,0
.5

)

6 Crack of valve shaft

(0
.7

,0
.5

,0
.2

)

(0
.2

,0
.3

,0
.7

)

(0
.7

,0
.3

,0
.7

)

(0
.4

,0
.6

,0
.1

)

(0
.4

,0
.4

,0
.7

)

(0
.9

,0
.3

,0
.3

)

(0
.4

,0
.2

,0
.9

)

(0
.4

,0
.8

,0
.1

)

(0
.2

,0
.5

,0
.8

)

(0
.4

,0
.7

,0
.9

)

(0
.3

,0
.5

,0
.4

)

(0
.8

,0
.9

,0
.3

)

7 Breakdown of valve shaft bolster bearing

(0
.4

,0
.8

,0
.3

)

(0
.2

,0
.4

,0
.7

)

(0
.1

,0
.7

,0
.6

)

(0
.6

,0
.4

,0
.5

)

(0
.9

,0
.2

,0
.3

)

(0
.4

,0
.6

,0
.3

)

(0
.5

,0
.3

,0
.6

)

(0
.2

,0
.9

,0
.8

)

(0
.8

,0
.2

,0
.5

)

(0
.7

,0
.3

,0
.8

)

(0
.1

,0
.8

,0
.9

)

(0
.4

,0
.6

,0
.1

)

8 Over the top commotion framework

(0
.3

,0
.7

,0
.9

)

(0
.4

,0
.7

,0
.8

)

(0
.1

,0
.2

,0
.9

)

(0
.3

,0
.4

,0
.2

)

(0
.3

,0
.4

,0
.8

)

(0
.7

,0
.8

,0
.2

)

(0
.1

,0
.4

,0
.3

)

(0
.9

,0
.2

,0
.5

)

(0
.1

,0
.7

,0
.6

)

(0
.6

,0
.4

,0
.5

)

(0
.4

,0
.6

,0
.5

)

(0
.6

,0
.2

,0
.1

)

Remark 5.1. (i) Now we find the Agree - NISES as follows,

( max of degree of membership {i1,i2,i3,i4}, min of degree of non- membership {i1,i2,i3,i4},

min of degree of indeterminacy {i1,i2,i3,i4}).

(ii) Now we find the Disagree-NISES as follows,
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( min of degree of membership {i1,i2,i3,i4}, max of degree of non- membership {i1,i2,i3,i4},

min of degree of indeterminacy {i1,i2,i3,i4}).

Table 5. Tabular representation of RPN in Agree - NISES

Failure Mode Severity Occurrence Detection

1 (0.8,0.3,0.8) (0.9,0.1,0.5) (0.8,0.2,0.9)

2 (0.9,0.1,0.9) (0.3,0.1,0.6) (0.9,0.1,0.5)

3 (0.6,0.2,0.9) (0.9,0.2,0.6) (0.9,0.2,0.9)

4 (0.7,0.2,0.9) (0.5,0.3,0.8) (0.8,0.2,0.7)

5 (0.8,0.2,0.7) (0.9,0.3,0.9) (0.9,0.2,0.9)

6 (0.9,0.3,0.7) (0.8,0.2,0.9) (0.9,0.2,0.3)

7 (0.9,0.2,0.3) (0.9,0.2,0.9) (0.5,0.3,0.8)

8 (0.7,0.4,0.8) (0.9,0.2,0.9) (0.5,0.2,0.9)

Table 6. Tabular representation of RPN in Disagree - NISES

Failure Mode Severity Occurrence Detection

1 (0.1,0.7,0.5) (0.4,0.4,0.3) (0.3,0.6,0.1)

2 (0.1,0.7,0.3) (0.3,0.7,0.1) (0.4,0.6,0.1)

3 (0.1,0.6,0.5) (0.1,0.8,0.4) (0.1,0.7,0.3)

4 (0.2,0.9,0.3) (0.3,0.6,0.4) (0.4,0.6,0.3)

5 (0.3,0.9,0.1) (0.4,0.3,0.5) (0.2,0.9,0.2)

6 (0.2,0.6,0.1) (0.4,0.8,0.1) (0.2,0.9,0.3)

7 (0.1,0.8,0.3) (0.2,0.9,0.3) (0.1,0.8,0.1)

8 (0.1,0.7,0.2) (0.1,0.8,0.2) (0.1,0.7,0.1)

Remark 5.2. Now we can find the NISES by using the following way,

( max of degree of membership {i1,i2,i3,i4}, min of degree of indeterminacy {i1,i2,i3,i4}, min

of degree of non- membership {i1,i2,i3,i4}).
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Table 7. Tabular representation of RPN in NISES

Failure Mode Severity Occurrence Detection

1 (0.1,0.3,0.5) (0.4,0.1,0.3) (0.3,0.2,0.1)

2 (0.1,0.1,0.3) (0.3,0.1,0.1) (0.4,0.1,0.1)

3 (0.1,0.2,0.5) (0.1,0.2,0.4) (0.1,0.2,0.3)

4 (0.2,0.2,0.3) (0.3,0.3,0.4) (0.4,0.2,0.3)

5 (0.3,0.2,0.1) (0.4,0.3,0.5) (0.2,0.2,0.2)

6 (0.2,0.3,0.1) (0.4,0.2,0.1) (0.2,0.2,0.3)

7 (0.1,0.2,0.3) (0.2,0.2,0.3) (0.1,0.3,0.1)

8 (0.1,0.4,0.2) (0.1,0.2,0.2) (0.1,0.2,0.1)

.

Remark 5.3. lim(NIS ES ) or lim =
degree of membership + degree of indeterminacy

2

lim(NIS ES ) or lim =
degree of indeterminacy + degree of non-membership

2
.

Table 8. NISES failure modes assessment matrix

Failure Mode Severity Occurrence Detection

1 [0.2,0.4] [0.25,0.2] [0.25,0.15]

2 [0.1,0.2] [0.2,0.1] [0.25,0.1]

3 [0.15,0.35] [0.15,0.3] [0.15,0.25]

4 [0.2,0.25] [0.3,0.35] [0.3,0.25]

5 [0.25,0.15] [0.35,0.4] [0.2,0.2]

6 [0.25,0.2] [0.3,0.15] [0.2,0.25]

7 [0.15,0.25] [0.2,0.25] [0.2,0.2]

8 [0.25,0.3] [0.15,0.2] [0.15,0.15]

.

Calculate the decision matrix for failure mode, using the formula |lim(NIS ES ) − lim(NIS ES )|.

D̃M =

1

2

3

4

5

6

7

8



0.2 0.05 0.1

0.1 0.1 0.15

0.2 0.15 0.1

0.05 0.05 0.05

0.1 0.05 0

0.05 0.15 0.05

0.1 0.05 0

0.05 0.05 0
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Step 3. Find AV of all attributes as follows.

AV1 =
0.05 + 0.1 + 0.2 + 0.05 + 0.1 + 0.2 + 0.1 + 0.05

8
= 0.09

AV2 =
0.15 + 0.1 + 0.15 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05

8
= 0.08

AV3 =
0.05 + 0.15 + 0.1 + 0.05 + 0 + 0.1 + 0 + 0

8
= 0.05

Step 4. The values of PDA solution for first attribute ’S’ are given below

PDA11 =
max(0, (0.09 − 0.2))

0.09
= 0

PDA21 =
max(0, (0.09 − 0.1))

0.09
= 0

PDA31 =
max(0, (0.09 − 0.2))

0.09
= 0

PDA41 =
max(0, (0.09 − 0.05))

0.09
= 0.444

PDA51 =
max(0, (0.09 − 0.1))

0.09
= 0

PDA61 =
max(0, (0.09 − 0.05))

0.09
= 0.444

PDA71 =
max(0, (0.09 − 0.1))

0.09
= 0

PDA81 =
max(0, (0.09 − 0.05))

0.09
= 0.444

Other values of the PDA solution is provided in Table 9 .

Table 9. Values of PDA solution

FM S O D

1 0 0.375 0

2 0 0 0

3 0 0 0

4 0.444 0.375 0

5 0 0.375 0

6 0.444 0 0

7 0 0.375 0

8 0.444 0.375 0

.

’S’- NDA solution is given below.

NDA21 =
max(0, (0.2 − 0.09))

0.09
= 1.222
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NDA22 =
max(0, (0.1 − 0.09))

0.09
= 0.111

NDA23 =
max(0, (0.2 − 0.09))

0.09
= 1.222

NDA24 =
max(0, (0.05 − 0.09))

0.09
= 0

NDA25 =
max(0, (0.1 − 0.09))

0.09
= 0.111

NDA26 =
max(0, (0.05 − 0.09))

0.09
= 0

NDA27 =
max(0, (0.1 − 0.09))

0.09
= 0.111

NDA28 =
max(0, (0.05 − 0.09))

0.09
=0

Table10 indicates the other values of the NDA solution namely ’O’ and ’D’.

Table 10. Values of NDA solution

FM S O D

1 1.222 0 1

2 0.111 0.250 2

3 1.222 0.875 1

4 0 0 0

5 0.111 0 0

6 0 0.875 0

7 0.111 0 0

8 0 0 0

.

Step 5. Determine WSPDA and WSNDA for all alternatives, using attribute weights. By assigning

equal weights to all the criteria we have the following table.

Table 11. Weight attributes

Attribute S O D

ω j 1/3 1/3 1/3
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Table 12. Values of the weighted positive distances

FM S O D Sum

1 0 0.124 0 0.124

2 0 0 0 0

3 0 0 0 0

4 0.147 0.124 0 0.271

5 0 0.124 0 0.124

6 0.147 0 0 0.147

7 0 0.124 0 0.124

8 0.147 0.124 0 0.271

.

Table 13. Values of the weighted negative distances

FM S O D Sum

1 0.403 0 0.33 0.733

2 0.037 0.083 0.66 0.779

3 0.403 0.289 0.33 1.022

4 0 0 0 0

5 0.037 0 0 0.037

6 0 0.289 0 0.289

7 0.037 0 0 0.037

8 0 0 0 0

.

Step 6. Determine the weighted normalized PDA of each failure mode from Equation (9)

WNPDA1 =
0.124
0.271

= 0.458

WNPDA2 =
0

0.271
= 0

WNPDA3 =
0

0.271
= 0

WNPDA4 =
0.271
0.271

= 1

WNPDA5 =
0.124
0.271

= 0.458

WNPDA6 =
0.147
0.271

= 0.542

WNPDA7 =
0.124
0.271

= 0.458

WNPDA8 =
0.271
0.271

= 1
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Next we determine the weighted normalized NDA of each failure mode from Equation (10)

WNNDA1 =
0.733
1.022

= 0.717

WNNDA2 =
0.779
1.022

= 0.782

WNNDA3 =
1.022
1.022

= 1

WNNDA4 =
0

1.022
= 0

WNNDA5 =
0.037
1.022

= 0.036

WNNDA6 =
0.289
1.022

= 0.283

WNNDA7 =
0.037
1.022

= 0.036

WNNDA8 =
0

1.022
= 0

Step 7. Determine the assessment score using the Equation (11)

AS 1 =
1
2

(0.458 + 0.717) = 0.588

AS 2 =
1
2

(0 + 0.782) = 0.391

AS 3 =
1
2

(0 + 1) = 0.5

AS 4 =
1
2

(1 + 0) = 0.5

AS 5 =
1
2

(0.458 + 0.036) = 0.247

AS 6 =
1
2

(0.542 + 0.283) = 0.413

AS 7 =
1
2

(0.458 + 0.036) = 0.247

AS 8 =
1
2

(1 + 0) = 0.5

Step 8. Ranking the failure mode

AS 1 � AS 3 ≈ AS 4 ≈ AS 8 ≈ AS 6 � AS 2 � AS 5 ≈ AS 7.

5.2. Comparison of Song et al. [20] approach and our approach

A comparison of Song et al. [20] approach and our approach is provided in Table 14 below.
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Table 14. Comparison of the two approaches

Ranking Alternative (s) Best Alternative

Existing 1 � 7 � 5 � 6 � 8 � 4 � 3 � 2 1

Our approach 1 � 3 ≈ 4 ≈ 8 ≈ 6 � 2 � 5 ≈ 7 1

Both, our approach and the method proposed by Song et al. [20] yield equivalent results. However,

when juxtaposed with Song et al.’s method, our approach boasts a streamlined process and straightfor-

ward calculations that are more intuitive and easier to comprehend. This comparative analysis is also

visually represented through a graph, as illustrated below.

Figure 2. Comparative analysis of our approach with [20]

In the subsequent section, we delve into another application of the Neutrosophic Inverse Soft Expert

Set, namely the Additive Ratio Assessment Simplified Version method. What sets this approach apart

is its novel computation of optimal score values, which relies on the lower and upper limits of neutro-

sophic inverse soft expert sets. This innovation represents a significant advancement compared to the

methodology employed in the Additive Ratio Assessment method by Zavadskas et al. [24]

We proceed by presenting an algorithm for the Additive Ratio Assessment Simplified Version

method utilizing neutrosopic inverse soft expert sets. The algorithm consists of eight key steps. Central

to this process is the construction of an m × n decision matrix (ri j) where m signifies the cardinality

of the universal set |U |, and n represents the cardinality of set .|ג| This decision matrix is then evalu-

ated based on input from the decision makers. Subsequently, a Weighted Normalized Decision Matrix

(WNDM) is derived, and an optimal score value is computed using the optimality function (OF). Fol-

lowing this, the Utility Degree (UD) is calculated, and the conclusion is determined based on the value

of the utility degree.
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6. Additive Ratio Assessment-Simplified Version Method in neutrosophic inverse soft expert set

Zavadskas et al. [24] pioneered the concept of the Additive Ratio Assessment (ARAS) method. The

novelty of this method lies in its ability to facilitate the selection of the optimal alternative, taking into

account the number of attributes. The final ranking of alternatives is accomplished by assessing the

utility degree of each alternative. In the following section, we introduce the algorithm for the Additive

Ratio Assessment - Simplified Version (ARAS-SV) method as outlined below.

6.1. Algorithm on additive ratio assessment-simplified version Method using neutrosophic inverse soft

expert set

Step 1. Construct the decision matrix based on the information received from the decision maker using

NISES and remark (5.3), namely X =


r11 r12 . . . r1n
...

... . . .
...

rm1 rm2 . . . rmn

 (or) X = (ri j)m×n.

Step 2. Normalized Decision Matrix (NDMi j) is defined as follows.

NDMi j =
ri j

m∑
i=1

ri j

; j = 1, 2..., n (12)

Step 3. Choose the weight of attributes w j from the decision maker.

Step 4. Form the weighted normalized decision matrix (WNDM) as follows.

WNDMi j = r∗i j · w j; i = 1, 2, ...,m, j = 1, 2..., n (13)

Step 5. Construct the optimality function (OF) as follows.

OFi =

n∑
j=1

WNDM; i = 1, 2, ...,m (14)

Step 6. Calculate optimality score value using optimality function defined in remark (5.3) as follows.

S i =
lim + lim

2
(15)

Step 7. Calculate the utility degree (UD) using this formula

UDi =
S i

V0
, i = 1, 2, ...,m, (16)

where V0 is the maximum value of S i.

Step 8. UDi values are arranged in descending order in order to find the final ranking.

6.2. Illustrative Example

Problem statement

Imagine a scenario where a patient needs to make a crucial decision about selecting the most suitable

doctor among four experts, each specializing in different fields of medical treatment. The challenge
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at hand is to make an informed choice based on various parameters. We denote the four doctors

as U = {ϑ1, ϑ2, ϑ3, ϑ4} and define a set of parameters Υ = ,1ג} ,2ג ,3ג ,4ג ,5ג .{6ג These parameters

encompass factors such as hospital expenditure ,(1ג) the efficiency of diagnosis by doctors ,(2ג) doctor

availability ,(3ג) hospital provisions ,(4ג) doctors’ experience in treating the specific disease ,(5ג) and

the distance of the hospital from the patient’s residence .(6ג) To navigate this decision-making process

systematically, we employ the ARAS-SV method, breaking it down step by step as follows.

The problem is to choose a best doctor by a patient based on the parameters, listed.

Let us apply ARAS-SV method in the above situation step by step below.

Construct NISES as follows.

Table 15. Neutrosophic inverse soft expert sets

NU
S

ג)
1,
%

1,
1)

ג)
1,
%

1,
0)

ג)
1,
%

2,
1)

ג)
1,
%

2,
0)

ג)
2,
%

1,
1)

ג)
2,
%

1,
0)

ג)
2,
%

2,
1)

ג)
2,
%

2,
0)

ג)
3,
%

1,
1)

ג)
3,
%

1,
0)

ג)
3,
%

2,
1)

ג)
3,
%

2,
0)

ϑ1

(0
.2

,0
.4

,0
.9

)

(0
.5

,0
.1

,0
.7

)

(0
.9

,0
.7

,0
.3

)

(0
.4

,0
.8

,0
.1

)

(0
.1

,0
.2

,0
.3

)

(0
.8

,0
.2

,0
.4

)

(0
.9

,0
.4

,0
.2

)

(0
.4

,0
.7

,0
.3

)

(0
.3

,0
.4

,0
5)

(0
.8

,0
.7

,0
3)

(0
.6

,0
.3

,0
.8

)

(0
.6

,0
.9

,0
.1

)
ϑ2

(0
.3

,0
.8

,0
.1

)

(0
.5

,0
.3

,0
.1

)

(0
.8

,0
.5

,0
.6

)

(0
.4

,0
.2

,0
.8

)

(0
.9

,0
.8

,0
.6

)

(0
.3

,0
.5

,0
.7

)

(0
.5

,0
.3

,0
.2

)

(0
.8

,0
.2

,0
.4

)

(0
.4

,0
.2

,0
.6

)

(0
.6

,0
.2

,0
.5

)

(0
.4

,0
.5

,0
.6

)

(0
.9

,0
.4

,0
.5

)

ϑ3

(0
.3

,0
.6

,0
.1

)

(0
.4

,0
.5

,0
.1

)

(0
.9

,0
.2

,0
.5

)

(0
.1

,0
.9

,0
.2

)

(0
.4

,0
.2

,0
.2

)

(0
.6

,0
.3

,0
.7

)

(0
.3

,0
.6

,0
.7

)

(0
,0

.3
,0

.8
)

(0
.1

,0
.7

,0
.9

)

(0
.3

,0
.7

,0
.1

)

(0
.6

,0
.2

,0
.9

)

(0
.2

,1
,0

.8
)

ϑ4

(0
.2

,0
.4

,0
.7

)

(0
.1

,0
.4

,0
.2

)

(0
.7

,0
.4

,0
.9

)

(1
,0

.8
,0

.3
)

(0
.4

,0
.8

,0
.1

)

(0
.7

,0
.6

,0
.3

)

(0
.5

,0
.5

,0
.5

)

(0
.3

,0
.8

,0
)

(0
.4

,0
.1

,0
.3

)

(0
.5

,0
.9

,0
.2

)

(0
.8

,0
.5

,0
.3

)

(0
.6

,0
.4

,0
.1

)
.

Table 16. Tabular representation of Agree - NISES

NU
S ,1ג) %1, 1) ,1ג) %2, 1) ,2ג) %1, 1) ,2ג) %2, 1) ,3ג) %1, 1) ,3ג) %2, 1)

ϑ1 (0.2,0.4,0.9) (0.9,0.7,0.3) (0.1,0.2,0.3) (0.9,0.4,0.2) (0.3,0.4,0.5) (0.6,0.3,0.8)

ϑ2 (0.3,0.8,0.1) (0.8,0.5,0.6) (0.9,0.8,0.6) (0.5,0.3,0.2) (0.4,0.2,0.6) (0.4,0.5,0.6)

ϑ3 (0.3,0.6,0.1) (0.9,0.2,0.5) (0.4,0.2,0.2) (0.3,0.6,0.7) (0.1,0.7,0.9) (0.6,0.2,0.9)

ϑ4 (0.2,0.4,0.7) (0.7,0.4,0.9) (0.4,0.8,0.1) (0.5,0.5,0.5) (0.4,0.1,0.3) (0.8,0.5,0.3)

.

Vijayabalaji. S, Thillaigovindan. N, Sathiyaseelan. N and Broumi. S. Enhancing Failure Mode and
Effect Analysis with Neutrosophic Inverse Soft Expert Sets

Neutrosophic Sets and Systems, Vol. 60, 2023                                                                           530



Table 17. Tabular representation of Disagree - NISES

NU
S ,1ג) %1, 0) ,1ג) %2, 0) ,2ג) %1, 0) ,2ג) %2, 0) ,3ג) %1, 0) ,3ג) %2, 0)

ϑ1 (0.5,0.1,0.7) (0.4,0.8,0.1) (0.8,0.2,0.4) (0.4,0.7,0.3) (0.8,0.7,0.3) (0.6,0.9,0.1)

ϑ2 (0.5,0.3,0.1) (0.4,0.2,0.8) (0.3,0.5,0.7) (0.8,0.2,0.4) (0.6,0.2,0.5) (0.9,0.4,0.5)

ϑ3 (0.4,0.5,0.1) (0.1,0.9,0.2) (0.6,0.3,0.7) (0,0.3,0.8) (0.3,0.7,0.1) (0.2,1,0.8)

ϑ4 (0.1,0.4,0.2) (1,0.8,0.3) (0.7,0.6,0.3) (0.3,0.8,0) (0.5,0.9,0.2) (0.6,0.4,0.1)

.

Following the procedure adopted in Remark 5.2, we calculate NISES as follows,

Table 18. Tabular representation of NISES

NU
S 1ג 2ג 3ג 4ג 5ג 6ג

ϑ1 (0.2,0.1,0.7) (0.4,0.7,0.1) (0.1,0.2,0.3) (0.4,0.4,0.1) (0.3,0.4,0.3) (0.6,0.3,0.1)

ϑ2 (0.3,0.3,0.1) (0.4,0.2,0.6) (0.3,0.5,0.6) (0.5,0.2,0.2) (0.4,0.2,0.5) (0.4,0.4,0.5)

ϑ3 (0.3,0.5,0.1) (0.1,0.2,0.2) (0.4,0.2,0.2) (0,0.3,0.7) (0.1,0.7,0.1) (0.2,0.2,0.8)

ϑ4 (0.1,0.4,0.2) (0.1,0.4,0.3) (0.4,0.6,0.1) (0.3,0.5,0) (0.4,0.1,0.2) (0.6,0.4,0.1)

.

Step 1. Define the decision matrix X using the decision makers information as namely from Table 18

and remark (5.3) as follows.

X =

1ג 2ג 3ג 4ג 5ג 6ג


ϑ1 (.15, .4) (.65, .4) (.15, .25) (.4, .25) (.35, .35) (.45, .2)

ϑ2 (.4, .2) (.3, .4) (.4, .55) (.35, .2) (.3, .35) (.4, .45)

ϑ3 (.4, .3) (.15, .2) (.3, .2) (.15, .5) (.4, .4) (.2, .5)

ϑ4 (.25, .3) (.25, .35) (.5, .35) (.4, .25) (.25, .15) (.5, .25)

Step 2. Calculate the NDM using the equation (12).

1ג 2ג 3ג 4ג 5ג 6ג


ϑ1 (.125, .333) (.481, .296) (.111, .185) (.308, .208) (.269, .280) (.290, .143)

ϑ2 (.333, .166) (.222, .296) (.296, .407) (.269, .166) (.231, .280) (.258, .321)

ϑ3 (.333, .250) (.111, .146) (.222, .148) (.115, .417) (.308, .320) (.129, .357)

ϑ4 (.208, .250) (.185, .259) (.370, .259) (.308, .208) (.192, .120) (.321, .179)

Step 3. Form the weight of attributes w j from the decision maker namely patient as follows.

1ג = cost of hospital expenditure = 0.1

2ג = diagnosing efficiency of doctors = 0.2

3ג = availability of doctors = 0.2

4ג = hospital provisions = 0.2
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5ג = doctors experience in curing the disease = 0.2

6ג = the hospital distance from the patient house = 0.1

Attribute 1ג 2ג 3ג 4ג 5ג 6ג

w j 0.1 0.2 0.2 0.2 0.2 0.1

Step 4. Construct the weighted normalized decision matrix using the equation (13)

1ג 2ג 3ג 4ג 5ג 6ג


ϑ1 (.013, .033) (.096, .059) (.022, .037) (.062, .042) (.054, .029) (.029, .014)

ϑ2 (.033, .025) (.022, .029) (.044, .030) (.023, .083) (.026, .071) (.013, .036)

ϑ3 (.033, .017) (.044, .059) (.059, .081) (.054, .033) (.052, .064) (.026, .032)

ϑ4 (.021, .025) (.037, .052) (.074, .052) (.062, .044) (.064, .036) (.032, .018)

Step 5. Calculate the optimality function using the equation (14)

OF1 = (0.013, 0.033)+(0.096, 0.059)+(0.022, 0.037)+(0.062, 0.042)+(0.054, 0.029)+(0.029, 0.014) =

(0.276, 0.214).

OF2 = (0.033, 0.025)+(0.022, 0.029)+(0.044, 0.030)+(0.023, 0.083)+(0.026, 0.071)+(0.013, 0.036) =

(0.161, 0.274).

OF3 = (0.033, 0.017)+(0.044, 0.059)+(0.059, 0.081)+(0.054, 0.033)+(0.052, 0.064)+(0.026, 0.032) =

(0.268, 0.286).

OF4 = (0.021, 0.025)+(0.037, 0.052)+(0.074, 0.052)+(0.062, 0.044)+(0.064, 0.036)+(0.032, 0.018) =

(0.290, 0.227).

Step 6. Construct optimal score value using optimality function as follows.

S i =
lim + lim

2

S 1 =
0.276 + 0.214

2
= 0.245

S 2 =
0.161 + 0.274

2
= 0.218

S 3 =
0.268 + 0.286

2
= 0.277

S 4 =
0.290 + 0.227

2
= 0.209

Step 7. Construct the utility degree using the equation (16)
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UD1 =
0.245
0.277

= 0.884

UD2 =
0.218
0.277

= 0.787

UD3 =
0.277
0.277

= 1

UD4 =
0.209
0.277

= 0.755

Step 8. The final ranking of alternatives and conclusion.

Finally, the third doctor ϑ3 is the best choice to patient for treatment as per the final ranking.

ϑ3 > ϑ1 > ϑ2 > ϑ4.

7. Result and discussion

The integration of the Neutrosophic Inverse Soft Expert Sets technique into our Failure Mode and

Effect Analysis approach has yielded a host of insightful outcomes. Through a meticulous comparative

analysis with the methodology proposed by Song et al., several distinct advantages of our approach

have come to light.

One prominent finding is the enhanced efficiency in the assessment of Risk Priority Numbers. By

harnessing the power of NISES, we have devised a streamlined and transparent system for allocating

weights to Severity (S), Occurrence (O), and Detection (D). This enhancement not only expedites the

computation process but also enables a more intuitive evaluation of risk factors. In practical terms,

this translates to swifter and more precise decision-making, a crucial attribute in industries where rapid

response to potential failures is imperative.

Furthermore, our approach showcases commendable resilience in scenarios characterized by un-

certainties and imprecise information. The inherent adaptability of neutrosophic sets allows us to

effectively navigate the complexities of real-world situations. This adaptability proves invaluable in

industries subject to dynamic and swiftly changing environments, providing a robust framework for

risk assessment. Additionally, the NISES technique exhibits noteworthy versatility in accommodating

a wide spectrum of expert judgments and assessments. Its adaptability to varying levels of expertise

within a team ensures that insights from experts of different domains can be seamlessly integrated into

the analysis. This inclusive approach not only fortifies the reliability of the results but also fosters a

collaborative decision-making environment, a critical aspect in complex industrial settings.

In conclusion, the integration of NISES into FMEA constitutes a significant leap forward in the

realm of risk assessment methodologies. Its impact is evidenced not only in the streamlined computa-

tion process but also in its adeptness at handling uncertainties and its inclusivity in expert assessments.
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As industries continue to evolve, the NISES technique is poised to be a formidable and indispensable

tool in navigating the intricate landscape of risk assessment and decision-making.

Our results exhibit superiority through a streamlined computation process facilitated by the integra-

tion of Neutrosophic Inverse Soft Expert Sets. This simplification not only accelerates the assessment

of Risk Priority Numbers but also enhances the transparency and intuitiveness of the evaluation pro-

cess. The assignment of weights to Severity (S), Occurrence (O), and Detection (D) factors is executed

with greater efficacy, eliminating potential complexities and uncertainties in the weighting process.

This, in turn, leads to a more accurate and reliable risk assessment. The adaptability of our approach

to uncertainties and imprecise information, owing to the NISES technique, ensures its effectiveness

in dynamic and rapidly changing environments. Additionally, our approach excels in inclusivity, ac-

commodating a diverse range of expert judgments and assessments. This feature enables insights from

experts with varying levels of expertise to be seamlessly integrated into the analysis, resulting in a more

comprehensive and reliable evaluation. Ultimately, our approach yields equivalent optimal alternatives

while offering potential for rapid decision-making, positioning it as a valuable tool in industries where

timely and precise decision-making is critical.

8. Limitations

While the Neutrosophic Inverse Soft Expert Sets technique presents promising advancements in

Failure Mode and Effect Analysis, it is essential to acknowledge its limitations.

1. Dependence on Expert Judgments: Like any expert-based approach, the effectiveness of NISES

relies heavily on the quality and reliability of expert assessments. Inaccurate or biased judgments can

introduce errors into the analysis, potentially leading to suboptimal decisions.

2. Sensitivity to Parameter Selection: The choice of parameters, such as the thresholds for Risk Pri-

ority Numbers or the weighting factors, can significantly influence the results. Selecting inappropriate

values may lead to skewed assessments and potentially incorrect prioritization of failure modes.

3. Complexity of Implementation: Implementing the NISES technique may require a certain level

of familiarity with neutrosophic theory and soft computing concepts. This complexity could pose a

challenge for practitioners without a strong background in these areas.

4. Limited Historical Data: In situations where there is a scarcity of historical data or prior instances

of similar failure modes, the accuracy and reliability of the NISES technique may be compromised.

This is especially pertinent in novel or highly specialized industries.
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5. Difficulty in Quantifying Soft Expert Opinions: Soft expert opinions, inherent to the NISES tech-

nique, can be challenging to quantify objectively. This subjectivity introduces an additional layer of

uncertainty, potentially impacting the precision of the results.

6. Computational Overhead:Depending on the scale and complexity of the FMEA, the compu-

tational requirements for implementing NISES may be higher compared to more conventional ap-

proaches. This could lead to longer processing times, particularly for large-scale analyses.

7. Lack of Standardization: As a relatively new methodology, NISES may not yet have established

standardized procedures or widely-accepted best practices. This can lead to variability in its applica-

tion across different industries and contexts.

8. Potential for Overfitting: In situations where the NISES technique is applied to a limited dataset,

there is a risk of overfitting, where the model may perform exceptionally well on the available data but

struggle to generalize to new, unseen scenarios.

It’s important to recognize these limitations and consider them in the context of specific applications.

Addressing these challenges through ongoing research and refinement of the methodology will be

crucial in realizing the full potential of NISES in FMEA.

9. Conclusion and Future Work

In conclusion, the integration of the NISES technique into FMEA approach presents a significant

advancement in risk assessment methodologies. The simplified computation of RPN weights enhances

the practicality and accessibility of the method, making it a valuable tool for industries facing complex

decision-making scenarios.

Looking ahead, our research aims to explore the potential extensions of this approach into the realms

of soft-rough fuzzy set and soft fuzzy rough set methodologies within the context of FMEA. This ex-

pansion holds promise for further refinement and enhancement of risk assessment techniques, catering

to a broader spectrum of industries and applications.

Additionally, we plan to delve deeper into the application of neutrosophic sets within our approach.

This presents an exciting avenue for research, with the potential to revolutionize risk analysis method-

ologies by incorporating a broader spectrum of uncertainties and complexities. By leveraging the power

of neutrosophic sets, we anticipate even greater strides in the field of risk assessment and decision-

making.

Vijayabalaji. S, Thillaigovindan. N, Sathiyaseelan. N and Broumi. S. Enhancing Failure Mode and
Effect Analysis with Neutrosophic Inverse Soft Expert Sets

Neutrosophic Sets and Systems, Vol. 60, 2023                                                                           535



Acknowledgements The authors would like to thank the Editor-in-Chief and anonymous referees

for their suggestions and helpful comments that have led to an improvement both in the quality and

clarity of the paper

Conflicts of Interest The authors do not have any conflicts of interest

References

1. Abdel-Basset, M., Chakrabortty, R.K., and Gamal, A. (2023). Multi-Criteria Decision Making Theory and Applications

in Sustainable Healthcare (1st ed.). CRC Press.

2. Ahmed M.AbdelMouty, Ahmed Abdel-Monem. (2023) Neutrosophic MCDM Methodology for Assessment Risks of

Cyber Security in Power Management, Neutrosophic Systems with Applications, 3, 5361

3. M. Akram, A. Luqman and J. C. R. Alcantud. (2012) Risk evaluation in failure modes and effects analysis:hybrid TOPSIS

and ELECTRE I solutions with Pythagorean fuzzy information. Neural Computing and Applications, 32(2).

4. S. Alkhazaleh and A. R. Salleh. (2011) Soft expert sets, Advances in Decision Sciences, 2011, Article ID. 757868.

5. K. S. Chin, Y. M. Wang, G. K. Poon and J. B. Yang. (2009) Failure mode and effects analysis by data envelopment

analysis, Decision Support System, 48(1), 246-256.

6. C. L. Chang, C. C. Wei and V. Lee. (1999) Failure mode and effects analysis using fuzzy method and grey theory,

Kybernetes, 28(9), 1072-1080.

7. F. Feng, X. Liu, Violeta Leoreanu-Fotea and Y. B. Jun. (2011) Soft sets and soft rough sets, Information Sciences, 181,

1125-1137.

8. Gilchrist, W. (1993). Modeling Failure Modes and Effects Analysis, International Journal of Quality and Reliability

Management 10(5),16-23.

9. M. Keshavarz Ghorabaee, E. K. Zavadskas, L. Olfat and Z. Turskis. (2015) Multi-criteria inventory classification using

a new method of evaluation based on distance from average solution (EDAS), Informatica 26, 435-451.

10. A. M. Khalil and N. Hassan. (2019) Inverse fuzzy soft set and its application in decision making, International Journal

of Information and Decision Sciences, 11(1), 73-92.

11. Hamiden Abd El- Wahed Khalifa, Pavan Kumar and Seyedali Mirjalili. (2021). A KKM approach for inverse capacitated

transportation problem in neutrosophic environment. Sadhana., 46(166), 1-8.

12. Hamiden Abd El- Wahed Khalifa, Pavan Kumar and Florentin Smarandache. (2020). On Optimizing Neutrosophic Com-

plex Programming Using Lexicographic Order. Neutrosophic Sets and Systems, 32, 330- 343.

13. Hamiden Abd El- Wahed Khalifa, Pavan Kumar(2020). A Novel Method for Neutrosophic Assignment Problem by using

Interval-Valued Trapezoidal Neutrosophic Number. Neutrosophic Sets and Systems, 36, 24-36.

14. Hamiden Abd El-Wahed Khalifa , Majed G. Alharbi and Pavan Kumar (2021). On Determining the Critical Path of

Activity Network with Normalized Heptagonal Fuzzy Data. Hindawi,Wireless Communications and Mobile Computing,

2021, Article ID 6699403.

15. H. C. Liu, L. Liu and Q. H. Bian. (2010) Failure mode and effects analysis using fuzzy evidential reasoning approach

and grey theory, Expert Systems with Applications, 38(4), 4403-4415.

16. Mona Mohamed, Karam M. Sallam. (2023) Leveraging Neutrosophic Uncertainty Theory toward Choosing Biodegrad-

able Dynamic Plastic Product in Various Arenas, Neutrosophic Systems With Applications, 5, 19.

17. D. Molodtsov. (1999) Soft Set Theory First Results, Computers and Mathematics with Applications, 37, 19-31.

18. A. Pillay and J. Wang. (2003) Modified failure mode and effects analysis using approximate reasoning, Reliability Engi-

neering and System Safety, 79, 69-85.

19. F. Smarandache. (1998) Neutrosophy: Neutrosophic Probability Set and Logic: Analytic Synthesis & Synthetic Analysis,

American Research Press., Rehoboth, MA, USA.

Vijayabalaji. S, Thillaigovindan. N, Sathiyaseelan. N and Broumi. S. Enhancing Failure Mode and
Effect Analysis with Neutrosophic Inverse Soft Expert Sets

Neutrosophic Sets and Systems, Vol. 60, 2023                                                                           536



20. W. Song, X. Ming, Z. Wu and B. Zhu. (2013) A rough TOPSIS Approach for Failure Mode and Effects Analysis in

Uncertain Environmrnts, Quality and Reliability Engineering International, wileyonlinelibrary.com.

21. N. Sathiyaseelan, S. Vijayabalaji and J. C. R. Alcantud. (2023) Symmetric Matrices on Inverse Soft Expert Sets and

Their Applications, Symmetry, 15(2), article no. 313.

22. K. Xu, L. C. Tang, M. Xie, S. L. Ho, and M. L. Zhu. (2002) Fuzzy assessment of FMEA for engine systems, Reliability

Engineering and System Safety, 75(1), 17-29.

23. L. A. Zadeh. (1965) Fuzzy sets, Inf. Control., 8(3), 338-353.

24. E. K. Zavadskas and Z. Turskis. (2010) A new additive ratio assessment (ARAS) method in multi criteria decision-

making, Technological and Economic Development of Economy., 16(2), 159-172.

Vijayabalaji. S, Thillaigovindan. N, Sathiyaseelan. N and Broumi. S. Enhancing Failure Mode and
Effect Analysis with Neutrosophic Inverse Soft Expert Sets

Neutrosophic Sets and Systems, Vol. 60, 2023                                                                           537

Received: July 3, 2023.  Accepted: Nov 19, 2023



Neutrosophic Sets and Systems, Vol. 60, 2023 

Ketty Marilú Moscoso-Paucarchuco, Manuel Michael Beraún-Espíritu, Edgar Gutiérrez- Gómez, Fabricio Miguel Moreno-

Menéndez, Michael Raiser Vásquez-Ramírez, Rafael Jesús Fernández-Jaime, Jesús César Sandoval-Trigos and Paul Cesar 

Calderon-Fernandez, Plithogenic Statistical Study of Environmental Audit and Corporate Social Responsibility in the Junín 

Region Peru 

            University of New Mexico 

 

Plithogenic Statistical Study of Environmental Audit and 

Corporate Social Responsibility in the Junín Region, 

Peru 

Ketty Marilú Moscoso-Paucarchuco 1 , Manuel Michael Beraún-Espíritu 2 , Edgar Gutiérrez-
Gómez 3  , Fabricio Miguel Moreno-Menéndez 4  , Michael Raiser Vásquez-Ramírez 5  , Rafael 

Jesús Fernández-Jaime 6 , Jesús César Sandoval-Trigos 7and Paul Cesar Calderon-Fernandez 8 

1 Facultad de Ingeniería y Gestión, Universidad Nacional Autónoma de Huanta, Ayacucho, Perú. Email: kmoscoso@unah.edu.pe 
2 Escuela de Ingeniería Mecatrónica, Universidad Continental, Huancayo, Perú. Email: mberaun@continental.edu.pe 

3 Facultad de Ingeniería y Gestión, Universidad Nacional Autónoma de Huanta, Ayacucho, Perú. Email: egutierrez@unah.edu.pe 
4 Escuela Profesional de Administración y Sistemas, Universidad Peruana los Andes, Huancayo, Perú. Email: d.fmoreno@upla.edu.pe 

5 Escuela Profesional de Administración y Sistemas, Universidad Peruana los Andes, Huancayo, Perú. Email: d.mvasquezr@upla.edu.pe 
6 Facultad de Contabilidad, Universidad Nacional del Centro del Perú, Huancayo, Perú. Email: rjfernandez@uncp.edu.pe 

7 Escuela Profesional de Administración y Sistemas, Universidad Peruana los Andes, Huancayo, Perú. Email: d.jsandoval@upla.edu.pe 
8 Escuela Profesional de Contabilidad y Finanzas, Universidad Peruana los Andes, Huancayo, Perú. Email: d.pcalderon@upla.edu.pe 

 

 

Abstract. Caring for the environment is a transversal task that concerns all professions, including accounting, with an emphasis 

on auditing; on the other hand, corporate social responsibility seeks efficiency between environmental, social, and economic 

aspects. This research aims to determine the relationship between environmental auditing and corporate social responsibility in 

the Junín Region, Peru. To meet this objective, surveys were applied to a randomly selected sample (121 Chartered Public 

Accountants) and interviews (12 Auditors attached to the Audit Chapter) as research instruments, the sample was obtained from 

the members of the College of Public Accountants of Junín, which made it possible through the Concurrent Triangulation Design 

to apply a holistic vision that allowed to compensate and strengthen the credibility of the investigation. To combine all these 

statistical results, the Plithogenic Statistic was used as a tool for processing the collected data. One of the advantages offered by 

the plithogenic theory is the possibility of combining knowledge from different sources, which allows us to capture the holistic 

and dynamic nature of the phenomena. In this case, there is a phenomenon that responds to different branches of knowledge that 

overlap in a complex way, such as the environmental and ecological aspect, with the economic-financial aspect, as well as the 

social and educational aspect, which present contradictory components among themselves. 

 
Keywords: Environmental audit, corporate social responsibility, environmental care, Concurrent Triangulation Design, plitho-

genic statistics, plithogenic refined statistics, plithogenic neutrosophic statistics, neutrosophic statistics.

 

1 Introduction 

This research stems from the need to care for the environment, which has become a very well-written green 
speech. Within the economic aspects where the social and environmental spheres revolve, the desire for control 
emerges, which is systematized through the environmental audit. Faced with this concern, the objective of the 

investigation is formulated, which is to determine the relationship that exists between environmental auditing and 
corporate social responsibility in the Junín Region, Peru. 

The main theme of the study is based on the analysis of the variables Environmental Audit and Corporate 

Social Responsibility, both of which are important and consistent, hence the reason for evaluating the relationship 
between them. Over the years, the deterioration of nature has been observed, whose main depletion factor is di-
rected by human beings, and companies pollute and destroy the environment. As part of the common welfare is 
the protection of future generations, for this inevitably control of the use of natural resources must be exercised, 

through the environmental audit. If substantial changes are not made in the way of developing the Environmental 
Audit, as well as the requirement of Corporate Social Responsibility, the disappearance of most of life on planet 
Earth will soon be observed. 

An a priori analysis of the studied variables allows us to realize that both variables are contradictory to each 
other, at least partially. Especially if we practice the most widespread and successful economic models in the 
purely economic sense, those that do not take into account the damage to the environment that is inflicted during 
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the production and service process. Until today, the polluting model, destructive of ecosystems, has predominated. 
However, more and more policies are included in private companies and States on the protection of the 
environment, since the old model will fail in the long term, also economically speaking. 

This paper shows the results of the surveys carried out on 121 public accountants, and also 12 auditors were 
interviewed. This information was corroborated with each other by Concurrent Triangulation Design, confirming 
and compensating for the results [1, 2]. The qualitative results were converted to neutrosophic scales to process 

the indeterminacy that is typical of any decision-making process. 
We carry out Plithogenic Statistics [3-7] instead of Classical Statistics because it involves processing variables 

of a different nature with a certain contradictory relationship with each other in a phenomenon that is multivariate, 

where there are indeterminate aspects, due to the lack of knowledge of how to dynamically run an economically 
profitable company, which fulfills its corporate purpose but also respects the laws and the environment. To com-
bine so many benefits, we understand that the right measure must be found, where a 100% acceptable result will 
never be obtained in all these aspects. 

The Plithogenic Statistics was introduced by Professor F. Smarandache, which according to his own words is 
defined as: “Plithogenic Statistics (PS) encompasses the analysis and observations of the events studied by the 
Plithogenic Probability. Plithogenic Statistics is a generalization of classical Multivariate Statistics, and it is a 

simultaneous analysis of many outcome neutrosophic /indeterminate variables, and it as well as a multi-indeter-
minate statistic.” ([7]). 

Also, “The Plithogenic Probability of an event to occur is composed of the chances that the event occurs 
concerning all random variables (parameters) that determine it. The Plithogenic Probability, based on Plithogenic 

Variate Analysis, is a multi-dimensional probability (“plitho” means “many”, synonymous with “multi”). We may 
say that it is a probability of sub-probabilities, where each sub-probability describes the behavior of one variable. 
We assume that the event we study is produced by one or more variables. Each variable is represented by a Prob-

ability Distribution (Density) Function (PDF).” [7]. 
This paper consists of a Materials and Methods section, where the basics of Plithogeny are explained as well 

as some statistical and other tools used in this work. Section 3 contains the results obtained from the study we 

carried out. The article ends with the conclusions. 

2 Materials and Methods 

This section is dedicated to summarizing the basic principles of the theories that will be applied in solving the 
problem. The first one of them is the notion of Plithogenic Sets and Plithogenic Statistics. 

2.1 Basic Notions on Plithogeny 

According to F. Smarandache, “Plithogeny is the genesis or origination, creation, formation, development, and 
evolution of new entities from dynamics and organic fusions of contradictory and/or neutrals and/or non-contra-

dictory multiple old entities. Plithogeny pleads for the connections and unification of theories and ideas in any 
field. As “entities” in this study, we take the ‘knowledge’ in various fields, such as soft sciences, hard sciences, 
arts, and letters theories, etc.” [3, 8, 9] 

A Plithogenic Set is a non-empty set 𝑃 whose elements within the domain of discourse 𝑈 (𝑃 ⊆ 𝑈) are charac-

terized by one or more attributes 𝐴1,  𝐴2, ⋯ , 𝐴𝑚, 𝑚 ≥ 1, where each attribute can have a set of possible values 
within the spectrum 𝑆 of values (states), such that 𝑆 can be a finite, infinite, discrete, continuous, open, or closed 
set. 

Each element 𝑥 ∈ 𝑃 is characterized by all the possible values of the attributes that are inside the set 𝑉 =
{𝜈1, 𝜈2 , ⋯ , 𝜈𝑛  }. The value of an attribute has a degree of appurtenance 𝑑(𝑥, 𝑣) of an element 𝑥 in the set 𝑃, about 
a certain given criterion. The degree of appurtenance can be either fuzzy, intuitionistic fuzzy, or neutrosophic, 
among others. 

That means, 
 ∀𝑥 ∈  𝑃, 𝑑: 𝑃 × 𝑉 →  𝒫 ([0, 1]𝑧 )                          (1) 
Where 𝑑(𝑥, 𝑣) ⊆ [0, 1]𝑧 and 𝒫 ([0, 1]𝑧 ) is the power set of [0, 1]𝑧. 𝑧 =  1 (the fuzzy degree of appurtenance), 

𝑧 =  2 (the intuitionistic fuzzy degree of appurtenance), or 𝑧 =  3 (the neutrosophic degree of appurtenance). 
Whether the cardinality of 𝑉 is greater than or equal to 1, 𝑐: 𝑉 × 𝑉 →  [0, 1] is called an attribute value con-

tradiction degree function between any pair of attributes 𝜈𝑎 , 𝜈𝑏, which satisfies the following axioms: 

 𝑐(𝜈𝑎 , 𝜈𝑎) = 0, 
 𝑐(𝜈𝑎 , 𝜈𝑏) = 𝑐(𝜈𝑏 , 𝜈𝑎). 

𝑐 defined as above, is denoted by 𝑐𝐹 to indicate that this is a function called fuzzy attributes value contradiction 
degree function. It is generally defined like 𝑐𝐼𝐹: 𝑉 × 𝑉 →  [0, 1]2 as an intuitionistic attributes value contradiction 

function and like 𝑐𝑁: 𝑉 × 𝑉 →  [0, 1]3 to indicate a neutrosophic attributes value contradiction function. 
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Thus, the Plithogenic Set is characterized by (𝑃, 𝑎, 𝑉, 𝑑, 𝑐), which is constituted by the set 𝑃, the set 𝑎 of at-
tributes, the set 𝑉 of values, the appurtenance function 𝑑 and the 𝑐 called value contradiction degree function. 

The contradiction function in practice is applied to compare the contradiction of all attributes concerning a 

dominant attribute in case it exists, which is the most important one compared to the others. 
On the other hand (𝑈, 𝑎, 𝑉, 𝑑, 𝑐) is called Plithogenic Probability, where 𝑈 is the event space 𝐸. A Plithogenic 

Probability is the probability that an event occurs in all the random variables that determine it. Where each random 

variable can be classical, (T,I,F)-neutrosophic, I-neutrosophic, (T,F)-intuitionistic fuzzy, (T,N,F)-picture fuzzy, 
(T,N,F)-spherical fuzzy, or (other fuzzy extensions) distribution function. In this way, the Plithogenic Probability 
generalizes classical multivariate Probability. 

For its part, Plithogenic Statistics includes the analysis and observations obtained through the methods of the 
Plithogenic Probability [3, 6-7]. Plithogenic Statistics generalizes classical multivariate Statistics. 

The Refined Probabilities are decomposed into more than one element of truth, or into more than one ele-

ment of indeterminacy, or into more than one element of falsehood [3, 10]. That is, they are of the form; 

(𝑇1 , 𝑇2, ⋯ , 𝑇𝑝, 𝐼1,  𝐼2, ⋯ , 𝐼𝑞 , 𝐹1, 𝐹2, ⋯ , 𝐹𝑟), where at least one of the indices p, q, or r is strictly bigger than 1. 

2.2 Other tools used in the research 

In this sub-section, we describe other tools that are used to solve the problem. 

Cronbach's alpha makes it possible to quantify the level of reliability of a measurement scale for the unob-
servable magnitude constructed from the n observed variables. Cronbach's Alpha is calculated using the variances 
with Equation 2 ([11]): 

𝛼 = [
𝑘

𝑘−1
] [1 −

∑ 𝑆𝑖
2𝑘

𝑖=1

𝑆𝑡
2 ]                                     (2) 

Where: 
Si

2 is the variance of the ith item, 
St

2 is the variance of all the observed values, 

k is the number of questions or items. 
Based on the correlation among items, the Standard Cronbach's Alpha is defined as follows in Equation 3: 

𝛼𝑠𝑡𝑎𝑛𝑑 =
𝑘𝑝

1+𝑝(𝑘−1)
                                             (3) 

Where: 
k is the number of questions or items. 
p is the mean of the linear correlations among the items. 
Alphas bigger than 0.7 or 0.8 are enough to consider the scale reliable. 

Spearman's Rho Correlation Coefficient results in a measure of the correlation between two variables. It is a 
non-parametric test, therefore it does not need to be verified that the sample satisfies a given distribution. 

In the analyzed sample, the results were compared using Spearman's Rho Correlation Coefficient, which is 

calculated by Equation 4 ([12]): 

ρ = 1 −
6 ∑ Di

2N
i=1

N(N2−1)
                                               (4) 

Where D is the difference between the corresponding x-y order statistics. N is the number of data pairs. 𝜌 ∈
[−1, 1], where 0 means no correlation, 1 means maximum positive correlation, and -1 means maximum negative 

correlation. 
Finally, we address the Concurrent Triangulation Design ([1, 2]). This model is probably the most popular 

and is used when the researcher intends to confirm or corroborate results and perform cross-validation between 
quantitative and qualitative data, as well as take advantage of each method and minimize its weaknesses. It may 

happen that confirmation or corroboration is not presented. Quantitative and qualitative data on the research prob-
lem are simultaneously collected and analyzed at approximately the same time. During interpretation and discus-
sion, the two kinds of results are fully explained, and comparisons of the databases are generally made. These are 

discussed “side by side”, that is, the statistical results of each variable or quantitative hypothesis are included, 
followed by qualitative categories and segments, as well as the grounded theory that confirms or not the quantita-
tive findings. 

3 The Plithogenic statistical studies 

This study focuses on the following two variables V1 and V2: 
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V1- Environmental Audit: This implies a systematic and independent examination or evaluation process to 
determine if the audited party complies with the audit objectives. This is the result of the application of an im-
portant methodology for the audited party to continuously improve its operations and guarantee a better framework 

of environmental protection. Using the audit, steps are taken to eliminate identified deficiencies. It is based on four 
main dimensions: 

D11: Systemic evaluation, 

D12: Business efficiency, 
D13: Strategic Foresight, 
D 14: Protective role. 

V2- Corporate Social Responsibility: This is a sensible and coherent pact or commitment that fully respects 
the mission of the company, protecting its strengths, and considering the economic, social, and environmental 
expectations of all the parties involved. It consists of the following four dimensions: 

D21 = Economic, 

D22 = Legal, 
D23 = Ethics, 
D24 = Voluntary. 

The objective of this research is to find a relationship between both variables and their dimensions. As well as 
the quantification of the probabilities of the behavior of both of them. 

For the study, there were 121 unionized accountants for the quantitative study, they were randomly selected 
with simple random sampling. For the qualitative study, 12 ordinary and independent auditors were involved. 

Table 1 summarizes the research methods applied. 
 

TECHNIQUE INSTRUMENTS CHARACTERISTICS 

Reference analysis 
Records 

Bibliographic material, scientific articles, current reports, 

and others. 

Interview Interview guide It consists of 8 open questions (4 of each variable) 

Survey Questionnaire 
It consists of 24 questions with responses on a Likert scale 

(12 questions for each variable). 

Table 1: Research Techniques and Instruments. 

 
The questionnaire was evaluated by judges to determine its reliability. The validation of the expert judges 

determines that the research instrument regarding Category 1: Environmental audit is found in 13 items at a high 

qualification level and 3 items at a moderate qualification level, in Category 2: Corporate Social Responsibility it 
is found in 14 items at a high qualification level and 2 items at a moderate qualification level, determining that the 
instrument has a favorable evaluation. 

The internal consistency of the quantitative instrument analyzed by Cronbach's Alpha determines a value of 
0.99; therefore, the survey has a high level of reliability. 

The survey was then applied where the 121 public accountants had to express their opinion on the situation of 
the two variables and their dimensions. To capture the multidimensionality of the problem, it was decided to apply 

the theory of Plithogenic Refined Probabilities. This was applied in two phases, which are mentioned below: 
Phase 1. The experts were asked their opinions on each of the dimensions of the variables, based on a Likert 
scale with the components ([13-14]): Strongly Disagree, Disagree, Undecided, Agree, Strongly Agree. 

1.1 For these results, we calculated their relative frequency in percent. 
1.2. These frequency values were converted into Plithogenic Refined Probabilities to express the behavior of 

these dimensions in a general way in the region. Percentages are converted to Plithogenic Neutrosophic 

Probabilities 
Phase 2: Data are processed by using techniques of Plithogenic Neutrosophic Probabilities. 
 
The results of the survey in Phase 1 are shown in the following Tables 2-9: 

 

 Absolute frequency Percentage 

 

Strongly disagree 28 23.1 

Disagree 29 24.0 

Undecided 23 19.0 

Agree 41 33.9 

Total 121 100.0 
Table 2: Frequency table of Dimension 1 Systemic Evaluation of Variable 1 Environmental Audit in the Junín Region. 
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 Absolute frequency Percentage 

 

Strongly disagree 26 21.5 

Disagree 45 37.2 

Undecided 19 15.7 

Agree 22 18.2 

Strongly agree 9 7.4 

Total 121 100.0 
Table 3: Frequency table of Dimension 2 Business Efficiency of Variable 1 Environmental Audit in the Junín Region. 

 

 Absolute frequency Percentage 

 

Strongly disagree 25 20.7 

Disagree 27 22.3 

Undecided 23 19.0 

Agree 31 25.6 

Strongly agree 15 12.4 

Total 121 100.0 
Table 4: Frequency table of Dimension 3 Strategic Prospective of Variable 1 Environmental Audit in the Junín Region 

 

 Absolute frequency Percentage 

 

Disagree 32 26.4 

Undecided 41 33.9 

Agree 3. 4 28.1 

Strongly agree 14 11.6 

Total 121 100.0 
Table 5: Frequency table of Dimension 4 Protective Role of Variable 1 Environmental Audit in the Junín Region. 

 

 Absolute frequency Percentage 

 

Disagree 39 32.2 

Undecided 37 30.6 

Agree 37 30.6 

Strongly agree 8 6.6 

Total 121 100.0 
Table 6: Frequency table of Dimension 1 Economic of Variable 2 Corporate social responsibility in the Junín Region.  

 

 Absolute frequency Percentage 

 

Disagree 49 40.5 

Undecided 40 33.1 

Agree 28 23.1 

Strongly agree 4 3.3 

Total 121 100.0 
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Table 7: Frequency table of Dimension 2 Legal of Variable 2 Corporate social responsibility in the Junín Region. 

 
 Absolute frequency Percentage 

 

Strongly disagree 30 24.8 

Disagree 32 26.4 

Undecided 26 21.5 

Agree 19 15.7 

Strongly agree 14 11.6 

Total 121 100.0 
Table 8: Frequency table of Dimension 3 Ethics of Variable 2 Corporate social responsibility in the Junín Region 

 
 

 

 

 

 

 

 Absolute frequency Percentage 

 

Disagree 61 50.4 

Undecided 13 10.7 

Agree 33 27.3 

Strongly agree 14 11.6 

Total 121 100.0 
Table 9: Frequency table of Dimension 4 Voluntary of Variable 2 Corporate social responsibility in the Junín Region 

These results are plotted in Figure 1. 
 

 

Figure 1: Results of the percentages for the 8 dimensions according to Tables 2-9. 

 

To obtain the probabilities of each variable and its dimensions, they were represented by values of the type 
(𝑝1, 𝑝2, 𝑝𝐼, 𝑛𝑝2, 𝑛𝑝1) that mean: 

𝑝1- “Strongly sure” probability that the variable (dimension) is occurring properly,  

𝑝2- “Sure” probability that the variable (dimension) is occurring properly, 
𝑝𝐼- “Unsure” probability that the variable (dimension) is occurring properly, 
𝑛𝑝2- “Sure” probability that the variable (dimension) is not occurring properly, 
𝑛𝑝1- “Totally sure” probability that the variable (dimension) is not occurring properly, 

In this case, 𝑝1 is matched with the percentage corresponding to “Strongly disagree” from Tables 2-9; 𝑝2is 
matched to “Agree”; 𝑝𝐼 with “Undecided”; 𝑛𝑝2with “Disagree”; and 𝑛𝑝1with “Strongly disagree”. 

For example, the probabilities of D11 are (0,33.9,19.0,24.0,23.1), based on the results in Table 2. For clarity 

these probabilities can be converted to Plithogenic Neutrosophic Probabilities such that: (𝑝1 + 𝑝2, 𝑝𝐼, 𝑛𝑝2 + 𝑛𝑝1), 
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that is, continuing with the example we have that the Plithogenic Neutrosophic Probability of D11 is 
(33.9,19.0,47.1). 

Table 10 contains the results of each of the Plithogenic Refined Probabilities (PRP) and the Plithogenic Neu-

trosophic Probabilities (PNP) of all dimensions. 
 

Dimension PRP PNP 

D11 (0,33.9,19.0,24.0,23.1) (33.9,19.0,47.1) 

D12 (7.4,18.2,15.7,37.2,21.5) (25.6,15.7,58.7) 

D13 (12.4,25.6,19.0,22.3,20.7) (38.0,19.0,43.0) 

D14 (11.6,28.1,33.9,26.4,0) (39.7,33.9,26.4) 

D21 (6.6,30.6,30.6,32.2,0) (37.2,30.6,32.2) 

D22 (3.3,23.1,33.1,40.5,0) (26.4,33.1,40.5) 

D23 (11.6,15.7,21.5,26.4,24.8) (27.3,21.5,51.2) 

D24 (11.6,27.3,10.7,50.4,0) (38.9,10.7,50.4) 
Table 10: Plithogenic Refined Probabilities and Plithogenic Neutrosophic Probabilities calculated for the 8 dimensions. 

From the values of the PNPs in Table 10, it can be seen that the probabilities of good results are less than or 
equal to 39.7% at the most, which can be assessed as “less than acceptable”. 

If we take ∧𝑝 as the plitogenic conjunction between probabilities of the PNP type, where 

(𝑝𝐴 , 𝐼𝐴, 𝑛𝑝𝐴) ∧𝑝 (𝑝𝐵 , 𝐼𝐵, 𝑛𝑝𝐵) = (𝑝𝐴 ∧ 𝑝𝐵 , 𝐼𝐴 ∨ 𝐼𝐵 , 𝑛𝑝𝐴 ∨ 𝑛𝑝𝐵), such that ∧ is the t-norm minimum of fuzzy logic 

and ∨ is the t-conorm maximum. Then, calculating 𝑃𝑁𝑃(𝑉1) =∧𝑝𝑖=1

4 PNP(𝐷1𝑖) and 𝑃𝑁𝑃(𝑉2) =

∧𝑝𝑗=1

4 PNP(𝐷2𝑗) we have: 

𝑃𝑁𝑃(𝑉1) = (25.6,33.9,58.7), while 𝑃𝑁𝑃(𝑉2) = (26.4,33.1,51.2). This shows that both variables have a 

low probability of being considered to have good behavior in the Junín region. These results are plotted in Figure 

2. 
 

 

Figure 2: Graphical representation of 𝑃𝑁𝑃(𝑉1)(on the left) and 𝑃𝑁𝑃(𝑉2)(on the right) with chart graphs. Veracity appears in green, indeter-

minacy in yellow, and falsehood in red. 

 

Next, we consider the relationship between both variables. To do this, we make the following conversion for 

each of the respondents, as can be seen in Table 11: 

 

Value on the Likert Scale Conversion to the form 𝑎 + 𝑏𝐼 

Strongly disagree 0 

Disagree 0.3 

Undecided I 

Agree 0.6 

Strongly agree 1 
Table 11: Likert scale conversion rules into numbers of the form 𝑎 + 𝑏𝐼 ([15, 16]), with a and b constants. 
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For each Likert-type response from the 121 respondents, the data was processed by converting them into 

numbers 𝑎 + 𝑏𝐼 as it was indicated in Table 11. Then, the opinion of the ith expert is added as follows: 

 The opinions on the 8 dimensions of a given expert are converted into the form 𝑎 + 𝑏𝐼 according to 
the rules in Table 11. 

 The expert's opinions for D11, D12, D13, and D14 are added together and this is considered his/her 

opinion about V1. In the same way, his/her opinions on D21, D22, D23, and D24 are added; this is 
considered his/her opinion on V2. 

Let us recall that the sum between 𝑎1 + 𝑏1𝐼 and 𝑎2 + 𝑏2𝐼 is defined as (𝑎1 + 𝑎2) + (𝑏1 + 𝑏2)𝐼 ([15, 16]). 

For example, if expert X evaluates D11 as “Undecided”, D12 as “Disagree”, D13 as “Agree” and D14 as 

“Strongly Agree”, then the conversion would be according to Table 11 as follows: 

I for D11, 0.3 for D12, 0.6 for D13, and 1 for D14. To calculate the value of the X’s opinion on the variable 

V1 we have that it is equal to 𝐼 + 0.3 + 0.6 + 1 = 1.9 + 𝐼. 

Additionally, in this article, we define an order relationship between numbers of the form 𝑎 + 𝑏𝐼, as follows: 

𝑎1 + 𝑏1𝐼 ≼ 𝑎2 + 𝑏2𝐼 (𝑎1 + 𝑏1𝐼 is less than or equal to 𝑎2 + 𝑏2𝐼) if and only if 𝑎1 < 𝑎2, or if 𝑎1 = 𝑎2, then 

𝑏1 > 𝑏2. 
Spearman's Rho coefficient can be calculated, which only requires the ordinal number of the data to be cal-

culated. This result can be seen in Table 12. 

 

 

 

 

 
Environmen-

tal audit 

Corporate social 

responsibility 

Spearman's Rho 

Environmental au-

dit 

Correlation coefficient 1.000 598 ** 

Next (bilateral) . .000 

No. 121 121 

Corporate social 

responsibility 

Correlation coefficient .598 ** 1.000 

Next (bilateral) .000 . 

No. 121 121 

**. The correlation is significant at the 0.01 level (bilateral). 
Table 12: Correlation between variable 1 (Environmental audit) and variable 2 (Corporate social responsibility)  

According to Spearman's Rho bivariate correlation analysis, a moderate positive correlation (0.598) is found 
between the Environmental audit variable and the Corporate social responsibility variable in the Junín region, the 

p-value has been 0.000 <0.05, therefore, the null hypothesis H0 is rejected. This means that the present problem 

of environmental auditing in the Junín Region is associated with the problem of corporate social responsibility; 

in other words, if environmental auditing practices are carried out, there will be awareness of corporate social 

responsibility, which can be applied to business environments of mining, industry, and commerce in the Junín 

Region. 

Table 13 contains the interpretation in linguistic form of the correlation values: 

 
Ratio range Relationship 

"-1" “Great and perfect negative relationship” 

“(-0.9 to -0.99)” “Very high negative ratio” 

“(-0.7 to -0.89)” “High Negative Ratio” 

“(-0.4 to -0.69)” “Moderate Negative Ratio” 

“(-0.2 to -0.39)” “Low Negative Ratio” 

“(-0.01 to -0.19)” “Very low negative ratio” 

“0” “Nil” 

“(0.0 to 0.19)” “Very low positive ratio” 



Neutrosophic Sets and Systems, Vol. 60, 2023                                                                                                   546 

 

Ketty Marilú Moscoso-Paucarchuco, Manuel Michael Beraún-Espíritu, Edgar Gutiérrez- Gómez, Fabricio Miguel Moreno-

Menéndez, Michael Raiser Vásquez-Ramírez, Rafael Jesús Fernández-Jaime, Jesús César Sandoval-Trigos and Paul Cesar 

Calderon-Fernandez, Plithogenic Statistical Study of Environmental Audit and Corporate Social Responsibility in the Junín 

Region Peru 
 

“(0.2 to 0.39)” “Low positive ratio” 

“(0.4 to 0.69)” “Moderate Positive Ratio” 

“(0.7 to 0.89)” “High positive ratio” 

“(0.9 to 0.99)” “Very high positive ratio” 

"1" “Great and perfect positive relationship” 

Table 13: Linguistic scale of interpretation of Spearman's rho coefficient between two variables. 

 

Note that between V1 and V2 there is a moderate positive relationship. 
In the other part of the investigation, in parallel, interviews were conducted with the 12 auditors attached 

to the Audit Chapter. They were individually asked the following question during the interview: How could an 

environmental audit be developed that allows corporate social responsibility and vice versa? 
In summary, they responded that to develop an environmental audit it is necessary to generate environ-

mental policies, where the government intervenes directly through laws and regulations in the legislature, execu-

tion organized by sectors through the Ministry of Economy and Finance (MEF), the National Superintendence of 
Tax Administration (SUNAT in Spanish), etc., and compliance with these through the judiciary. 

They consider that it is important to apply the win-win policy, invest to face the negative threats of the 
environment, maximize its results, and a factual study that guides sustainability, inevitably with long-term observ-

able results, in practice it implies moderating the use of inputs such as plastics, paper, water, acquisition of non-
polluting equipment; as well as the reduction of waste, garbage, etc. good practices that involve the economy, are 
fair wages, reasonable prices, payment of taxes. Carrying out environmental controls, periodic audits, and obtain-

ing “green” certifications, implies budget allocation for process improvement, which is a clear investment that 
allows compliance with environmental regulations. It focuses on the generation and distribution of added value 
among collaborators and shareholders. 

In the triangulation, the general hypothesis is confirmed, through quantitative data because there is a 

moderate positive relationship between environmental auditing and corporate social responsibility in the Junín 
Region, Peru. In the qualitative aspect, it is confirmed that environmental audits are required to achieve corporate 
social responsibility and that variable 1 is effectively related to variable 2. 

Conclusion 

This paper studied the relationship between environmental auditing and corporate social responsibility in the 
Peruvian region of Junín. As well as the state of these two variables in the region. According to the results obtained, 

it is concluded that there is a direct relationship of moderate positive scale (r = 0.598) between environmental 
auditing and corporate social responsibility in the Junín region, the p-value has been 0.000<0.05, therefore the 
hypothesis that there is a positive relationship between these two variables is accepted. The presence of difficulties 
in the performance of both variables was observed, since the probability values obtained gave results of less than 

40%, while the probability that the results are not adequate gave values above 50%. 
Beyond the obtained result to carry out this particular study, the relevance of using Plithogenic Statistics is 

shown for solving real-life problems. With the support of this tool, we were able to combine statistical results 

between variables of a different nature. 
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Abstract. While other programming languages are either losing ground or stagnant, Python’s popularity is

growing. Soft sets lack the ability to eliminate the uncertainties present in conventional approaches, whereas

neutrosophic sets are capable of handling confusing and contradictory data. In order to reduce the number

of human computations performed to compute union, intersection and complement of neutrosophic soft sets,

programs are developed in Python. Additionally, Python is used to compute Neutrosophic soft topological

operators like interior and closure. The developed python programs are documented in this paper.

Keywords: neutrosophic soft; topological operators; python; topology; open set

—————————————————————————————————————————-

1. Introduction

Programming languages play a vital role in solving mathematical problems. Over the last

decade, constructing codes using a programming language for mathematical problems has

undergone unexpected growth. In earlier times, rigid computer programs could only solve

limited-size models. But today, they consist of highly developed and adaptable information

processing systems with modules that manage incoming data, provide powerful computational

algorithms and present the model’s results in a manner that is acceptable to an application-

oriented user. Even basic mathematical problems need an unreasonably high amount of com-

putational effort if solved manually. Computational programs make these calculations easier

by providing the results in no time. Python is currently one of the most popular programming

languages among developers and tech companies. Python is highly preferable for its simplicity.

Zadeh [29] developed the fuzzy set (FS) theory in 1965. It has developed into a very

important tool for addressing problems with uncertainity. Molodtsov [18] presented the soft

set theory in 1991, which addresses uncertainty. In his work, he established the core ideas

of this novel theory and successfully applied it to a number of areas, including optimisation,

algebraic structures, operations research, clustering, game theory, medical diagnosis, lattice,
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topology, data analysis, and decision-making under uncertainty. The notion of intuitionistic

fuzzy set was developed by Atanassov [1] by generalizing the fuzzy set theory. Intuitionistic

fuzzy set contains both belongingness and non-belongingness values. But it is incapable of

handling the ambiguity and contradictory data present in any system.

Smarandache [25,26] presented the novel idea of a neutrosophic set (NS) as a generalisation

of crisp sets, fuzzy set theory, and intuitionistic fuzzy set theory. The novel branch of philoso-

phy known as neurosophy generalises fuzzy logic, intuitionistic fuzzy logic, and paraconsistent

logic. Neutrosophic logic serves as a mathematical toolbox for issues involving inconsistent,

incomplete and ambiguous knowledge. Neutrosophic logic and sets are used in many different

areas, including financial dataset detection, investigation of the rise and collapse of the new

economy,relational database systems, semantic web services, information systems, etc.

A theoretical framework for soft set theory was constructed by Maji et al. [16] in 2003. They

also constructed operations like union (OR) and intersection (AND) of two soft sets as well

as put forth certain hypotheses regarding these operations. Maji et al. initiated the study of

FS sets in [13]. The idea of IFS sets was presented by Maji et al. [14], who also defined new

operations on it and examined some of their characteristics. By combining the ideas of soft

set and neutrosophic set, Maji [17] initiated the study on neutrosophic soft sets (NSSs) and

presented a solution for a decision-making problem utilizing the neutrosophic soft set, which

was later modified by Deli and Broumi [9].

C.L. Chang [5] was the first to put forth the theory of fuzzy topological spaces (FT S)
in 1968, along with some additional definitions of basic topological ideas including open set,

closed set, continuity, and compactness. A thorough analysis of the construction of FT S was

conducted by Lowen [12]. Coker [6] proposed intuitionistic fuzzy topological space (IFT S) in
1995. Several operations on IFT S were described by Coker et al. [7, 8].

Soft topological spaces (ST Ss) was developed by Shabir and Naz [22]. Tanay and Kandemir

[27] defined FS interior, FS basis, FS neighbourhood, and FS subspace topology and developed

fuzzy soft topology. The theory of IFS topological space was documented in [2, 19]. A

topological structure on neutrosophic soft sets was built by Bera and Mahapatra [3,4] and they

examined its structural characterizations as well as the theory related to topological space,

including neighbourhood, boundary interior, closure, base, subspace, continuous mappings,

separation axioms, compactness and connectedness.

Zahariev [30] constructed a Matlab software package for solving fuzzy linear systems of

equations and inequalities in fuzzy algebras. In 2014, Salama et al., [21] provided an Excel

package for calculating neutrosophic data. Salama et al., [20] devised and implemented a neu-

trosophic data operation by utilizing c # programming language, Microsoft Visual Studio and

NET Framework in 2014. In [11], Karunambigai and Kalaivani constructed a Matlab program
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for computing the power of an intuitionistic fuzzy matrix, the index matrix and the strength of

connectedness of an intuitionistic fuzzy graph. Topal et al., [28] developed hard-coded Python

programs for determining the score, accuracy, certainity matrix of a bipolar neutrosophic ma-

trix (BNM) and for computing BNM intersection , BNM union, BNM complement, BNM
addition, BNM product, BNM transpose and BNM composition. El-Ghareeb [10] created

an Open Source Python Neutrosophic package for single-valued neutrosophic numbers and

sets, interval-valued neutrosophic numbers and sets.

Sleem et al., [24] documented interval valued neutrosophic sets (IVNS) software work that

operates on IVNS and normalization for IVNS matrices. Sidiropoulos et.al., [23] presented

the Python library and algorithms for fuzzy set measures. Till now researchers have developed

algorithms for determining operations on neutrosophic numbers, but none of these programs

can be dealt with neutrosophic soft sets or neutrosophic soft topological operators. In this

context, soft code python programs have been developed for the operators in neutrosophic soft

topological space in this paper.

2. Background of Neutrosophic Soft Sets

We first present the basic definitions of Neutrosophic soft sets (NSSs).

Definition 2.1. [25] Let U represent the initial universe and T; I; F : U →]−0, 1+[ and

−0 ≤ TL (ξ)+ L (ξ) + FL (ξ) ≤ 3+, a NS is written as:

L = {< ξ, TL (ξ) , IL (ξ) ,FL (ξ) >: ξ ∈ U}

Example 2.2. Assume that U = {ξ1, ξ2, ξ3}, where ξ1 represents the battery life, ξ2 represents

the price, ξ3 represents the performance of an electronic scooter. The e-scooter company gives

its assurance of its product. Based on the opinion of some experts regarding the company’s

assurance on the battery life, price and performance, the neutrosophic set can be defined as

(N,Φ) = <

{
ξ1

0.7, 0.4, 0.5
,

ξ2
0.4, 0.5, 0.5

,
ξ3

0.3, 0.3, 0.4

}
>

Definition 2.3. [9] Let the universal set

be represented by U and TfP(ς)
(ξ) , IfP(ς)

(ξ) ,FfP(ς)
(ξ) ∈ [0, 1] represent the “truth”, “in-

determinacy”, “falsity” functions of fP(ς) where fP : Φ → P(U) and Φ-set of attributes . Then

the NSS is written as P =
{(

ς,
{
< ξ, TfP(ς)

(ξ) , IfP(ς)
(ξ) ,FfP(ς)

(ξ) >: ξ ∈ U
})

: ς ∈ Φ
}
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Example 2.4. Let U be the set of laptops of different companies under consideration and Φ

be the set of parameters. Φ = {battery life, compact, less weight, build quality, expensive,

maximum storage, RAM size, good display quality}. suppose that, there are three laptops in

the universe U given by {ξ1, ξ2, ξ3} and the set of parameters {ς1, ς2}, where ς1 represents the

parameter ‘battery life’, ς2 represents the parameter ‘expensive’.

Then the neutrosophic soft sets is written as,

(M,Φ) =

 < ς1,
{

ξ1
0.9,0.4,0.3 ,

ξ2
0.5,0.3,0.5 ,

ξ3
0.4,0.1,0.3

}
>,

< ς2,
{

ξ1
0.7,0.1,0.4 ,

ξ2
0.6,0.3,0.2

ξ3
0.6,0.1,0.5

}
>


Definition 2.5. [9] Let U represent the initial universe and ( H, Φ ) be a NSS over U

(1) H is called an absolute NSS if TfH(ς)
(ξ) = 1, IfH(ς)

(ξ) = 0, FfH(ς)
(ξ) = 0 ∀ ξ ∈ U

and ς ∈ Φ (written symbolically as 1u).

(2) H is called a null NSS if TfH(ς)
(ξ) = 0, IfH(ς)

(ξ) = 1, FfH(ς)
(ξ) = 1 ∀ ξ ∈ U and ς ∈ Φ

(written symbolically as ϕu).

3. Implementing Python for Computations in Neutrosophic Soft Environment

3.1. Union and Intersection of Neutrosophic Soft Sets

Definition 3.1. [9] For any two NSSs ( H, Φ ) and ( G, Φ ) over U, union and intersection

are given by,

H ∪G = P = {
(
ς,
{
< ξ, TfP(ς)

(ξ) , IfP(ς)
(ξ) ,FfP(ς)

(ξ) >: ξ ∈ U
})

: ς ∈ Φ}

where

TfP(ς)
(ξ) = max

(
TfH(ς)

(ξ) ,TfG(ς)
(ξ)

)
,

IfP(ς)
(ξ) = min

(
IfH(ς)

(ξ) , IfG(ς)
(ξ)

)
,

FfP(ς)
(ξ) = min

(
FfH(ς)

(ξ) ,FfG(ς)
(ξ)

)
,

H ∩G = Q = {
(
ς,
{
< ξ, TfQ(ς)

(ξ) , IfQ(ς)
(ξ) ,FfQ(ς)

(ξ) >: ξ ∈ U
})

: ς ∈ Φ}

where

TfQ(ς)
(ξ) = min

(
TfH(ς)

(ξ) ,TfG(ς)
(ξ)

)
,

IfQ(ς)
(ξ) = max

(
IfH(ς)

(ξ) , IfG(ς)
(ξ)

)
,

FfQ(ς)
(ξ) = max

(
FfH(ς)

(ξ) ,FfG(ς)
(ξ)

)
JJ Mershia Rabuni and N Balamani, Computation of Neutrosophic Soft Topology using
Python

Neutrosophic Sets and Systems, Vol. 60, 2023                                                                              551



Example 3.2. Consider U = {ξ1, ξ2}, the attributes Φ = {ς1, ς2}. Let the two NSSs (H,Φ)

and (G,Φ) be given by

(H,Φ) =

 < ς1,
{

ξ1
0.4,0.5,0.2 ,

ξ2
0.6,0.2,0.1

}
>,

< ς2,
{

ξ1
0.9,0.4,0.3 ,

ξ2
0.5,0.6,0.3

}
>


(G,Φ) =

 < ς1,
{

ξ1
0.8,0.3,0.4 ,

ξ2
0.2,0.4,0.6

}
>,

< ς2,
{

ξ1
0.8,0.5,0.7 ,

ξ2
0.2,0.5,0.8

}
>


Then

H ∪G =

 < ς1,
{

ξ1
0.8,0.3,0.2 ,

ξ2
0.6,0.2,0.1

}
>,

< ς2,
{

ξ1
0.9,0.4,0.3 ,

ξ2
0.5,0.5,0.3

}
>


H ∩G =

 < ς1,
{

ξ1
0.4,0.5,0.4 ,

ξ2
0.2,0.4,0.6

}
>,

< ς2,
{

ξ1
0.8,0.5,0.7 ,

ξ2
0.2,0.6,0.8

}
>


3.1.1. Function definition

The following functions define the union and intersection of any two NSSs

de f ns s un ion ( l1 , l 2 ) :

”””Return tup l e comprised of the maximum, minimum ,

minimum value in each tup l e argument .”””

r e s u l t = [ [ ( ( max( l 1 [ g ] [ d ] [ 0 ] , l 2 [ g ] [ d ] [ 0 ] ) ) ,

(min ( l 1 [ g ] [ d ] [ 1 ] , l 2 [ g ] [ d ] [ 1 ] ) ) ,

(min ( l 1 [ g ] [ d ] [ 2 ] , l 2 [ g ] [ d ] [ 2 ] ) ) )

for d in range ( e lements ) ] for g in range ( a t t r i b u t e s ) ]

r e turn ( r e s u l t )

de f n s s i n t e r s e c t i o n ( l1 , l 2 ) :

”””Return tup l e comprised of the minimum , maximum,

maximum value in each tup l e argument .”””

r e s u l t = [ [ ( ( min ( l 1 [ g ] [ d ] [ 0 ] , l 2 [ g ] [ d ] [ 0 ] ) ) ,

(max( l 1 [ g ] [ d ] [ 1 ] , l 2 [ g ] [ d ] [ 1 ] ) ) ,

(max( l 1 [ g ] [ d ] [ 2 ] , l 2 [ g ] [ d ] [ 2 ] ) ) )

for d in range ( e lements ) ] for g in range ( a t t r i b u t e s ) ]

r e turn ( r e s u l t )
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3.1.2. Program and intuitive description

from ppr int import ppr int

a t t r i b u t e s = int ( input ( ”Enter the number o f a t t r i b u t e s : ” ) )

e lements = int ( input ( ”Enter the number o f e lements in the un i v e r s a l

↪→ s e t : ” ) )

print ( ”Enter the e lements o f N s s e t :A” )

l 1 = [ [ tuple (map( f loat , input ( ) . s p l i t ( ” ” ) ) ) for x in range (

↪→ e lements ) ] for g in range ( a t t r i b u t e s ) ]

print ( ”Enter the e lements o f N s s e t :B” )

l 2= [ [ tuple (map( f loat , input ( ) . s p l i t ( ” ” ) ) ) for x in range ( e lements

↪→ ) ] for g in range ( a t t r i b u t e s ) ]

def nss un ion ( l1 , l 2 ) :

”””Return t u p l e comprised o f the maximum, minimum , minimum

↪→ va lue in each t u p l e argument . ”””

r e s u l t = [ [ ( (max( l 1 [ g ] [ d ] [ 0 ] , l 2 [ g ] [ d ] [ 0 ] ) ) ,

(min( l 1 [ g ] [ d ] [ 1 ] , l 2 [ g ] [ d ] [ 1 ] ) ) ,

(min( l 1 [ g ] [ d ] [ 2 ] , l 2 [ g ] [ d ] [ 2 ] ) ) ) for d in range (

↪→ e lements ) ] for g in range ( a t t r i b u t e s ) ]

return ( r e s u l t )

print ( ”Union o f Neutrosophic s o f t s e t s i s ” )

ppr int ( ns s un ion ( l1 , l 2 ) )

def n s s i n t e r s e c t i o n ( l1 , l 2 ) :

”””Return t u p l e comprised o f the minimum , maximum, maximum

↪→ va lue in each t u p l e argument . ”””

r e s u l t = [ [ ( (min( l 1 [ g ] [ d ] [ 0 ] , l 2 [ g ] [ d ] [ 0 ] ) ) ,

(max( l 1 [ g ] [ d ] [ 1 ] , l 2 [ g ] [ d ] [ 1 ] ) ) ,

(max( l 1 [ g ] [ d ] [ 2 ] , l 2 [ g ] [ d ] [ 2 ] ) ) ) for d in range (

↪→ e lements ) ] for g in range ( a t t r i b u t e s ) ]

return ( r e s u l t )
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print ( ” I n t e r s e c t i o n o f Neutrosophic s o f t s e t s i s ” )

ppr int ( n s s i n t e r s e c t i o n ( l1 , l 2 ) )

The program initially gets the value of no. of. attributes and no. of. elements in the

universal set and stores in the variable namely attributes and elements respectively. Gets the

elements of neutrosophic soft sets. Compute the union and intersection of the NSSs using the

defined functions.

Figure 1. Output of the union and intersection of neutrosophic soft sets pro-

gram

3.2. Neutrosophic Soft Subset and Superset

Definition 3.3. [9] For any two NSSs ( H, Φ ) and ( G, Φ ) over U,

(1) ( H, Φ ) ⊆ ( G, Φ ) if TH(ς) (ξ) ≤ TG(ς) (ξ) , IH(ς) (ξ) ≥ IG(ς) (ξ) , FH(ς) (ξ) ≥
FG(ς) (ξ) , ∀ ς ∈ Φ, ξ ∈ U.

(2) ( H, Φ ) ⊇ ( G, Φ ) if TH(ς) (ξ) ≥ TG(ς) (ξ) , IH(ς) (ξ) ≤ IG(ς) (ξ) , FH(ς) (ξ) ≤
FG(ς) (ξ) , ∀ ς ∈ Φ, ξ ∈ U.

3.2.1. Function definition

The following defined functions identify whether the given NSS is a neutrosophic soft subset

or superset of another NSS.
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de f nss sub ( l1 , l 2 ) :

for g in range ( a t t r i b u t e s ) :

for d in range ( e lements ) :

i f ( ( ( l 1 [ g ] [ d ] [ 0 ] <= l2 [ g ] [ d ] [ 0 ] ) and

( l 1 [ g ] [ d ] [ 1 ] >= l2 [ g ] [ d ] [ 1 ] ) and

( l 1 [ g ] [ d ] [ 2 ] >= l2 [ g ] [ d ] [ 2 ] ) ) ) :

r e turn 1

return 0

The function returns the value 1, if the condition is true, else it returns the value 0.

de f ns s sup ( l1 , l 2 ) :

for g in range ( a t t r i b u t e s ) :

for d in range ( e lements ) :

i f ( ( ( l 1 [ g ] [ d ] [ 0 ] >= l2 [ g ] [ d ] [ 0 ] ) and

( l 1 [ g ] [ d ] [ 1 ] <= l2 [ g ] [ d ] [ 1 ] ) and

( l 1 [ g ] [ d ] [ 2 ] <= l2 [ g ] [ d ] [ 2 ] ) ) ) :

r e turn 1

return 0

The function returns the value 1, if the condition is true, else it returns the value 0.

3.3. Complement of a Neutrosophic Soft Set

Definition 3.4. [9] For any NSS ( H, Φ ) over U, the complement is given by,

Hc =
{(

ς,
{
< ξ, FfH(ς)

(ξ) , 1− IfH(ς)
(ξ) ,TfH(ς)

(ξ) >: ξ ∈ U
})

: ς ∈ Φ
}

3.3.1. Function definition

The following defined function gives the complement of a NSS
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de f nss compl (m) :

”””Return tup l e comprised of the complement value

in each tup l e argument .”””

r e s u l t = [ [ ( (m[ g ] [ d ] [ 2 ] ) ,

( round ( (1 = m[ g ] [ d ] [ 1 ] ) , 1) ) ,

(m[ g ] [ d ] [ 0 ] ) ) for d in range ( e lements ) ]

for g in range ( a t t r i b u t e s ) ]

r e turn ( r e s u l t )

3.3.2. Program and intuitive description

from ppr int import ppr int

a t t r i b u t e s = int ( input ( ”Enter the number o f a t t r i b u t e s : ” ) )

e lements = int ( input ( ”Enter the number o f e lements in the un i v e r s a l

↪→ s e t : ” ) )

print ( ”Enter the e lements o f N s s e t : ” )

A = [ [ tuple (map( f loat , input ( ) . s p l i t ( ” ” ) ) ) for d in range ( e lements

↪→ ) ] for g in range ( a t t r i b u t e s ) ]

def nss compl (m) :

”””Return t u p l e comprised o f the complement va lue in each t u p l e

↪→ argument . ”””

r e s u l t = [ [ ( (m[ g ] [ d ] [ 2 ] ) , (round ( (1 = m[ g ] [ d ] [ 1 ] ) , 1) ) , (m[ g ] [ d

↪→ ] [ 0 ] ) ) for d in range ( e lements ) ] for g in range ( a t t r i b u t e s

↪→ ) ]

return ( r e s u l t )

print ( ”The complement o f the Neutrosophic s o f t s e t i s : ” )

ppr int ( nss compl (A) )

The program initially gets the value of the number of attributes and number of elements

in the universal set and stores it in the variable namely attributes and elements respectively.

Gets the elements of NSSs. Compute the complement of the NSSs using the defined functions.
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Figure 2. Output of the complement of a neutrosophic soft set program

3.4. Neutrosophic Soft Topology

Definition 3.5. [3] Let the family of all NSSs over U via parameters in Φ be represented as

NSS(U,Φ) and τu ⊂ NSS(U,Φ). Then τu is known as a NS topology on (U, Φ) if the following

conditions are true.

(1) ϕu, 1u ∈ τu

(2) ∀ D1,D2 ∈ τu ⇒ D1 ∩ D2 ∈ τu

(3) for ∪i∈JDi ∈ τu, ∀ {Di : i ∈ J} ⊆ τu

Then (U, Φ, τu) is called as a neutrosophic soft topological space (NST S). Every member of

τu is called as neutrosophic soft open set (NSOS) and its complement is termed as neutrosophic

soft closed set (NSCS).

Example 3.6. Let U = {ξ1, ξ2, ξ3} and the attributes Φ = {ς1, ς2}. Consider the NSSs

(N,Φ) =

 < ς1,
{

ξ1
0.7,0.4,0.5 ,

ξ2
0.4,0.5,0.5 ,

ξ3
0.3,0.3,0.4

}
>,

< ς2,
{

ξ1
0.6,0.2,0.4 ,

ξ2
0.5,0.4,0.3 ,

ξ3
0.4,0.6,0.5

}
>


(P,Φ) =

 < ς1,
{

ξ1
0.8,0.3,0.4 ,

ξ2
0,5,0.4,0.3 ,

ξ3
0.7,0.1,0.2

}
>,

< ς2,
{

ξ1
0.7,0.1,0.3 ,

ξ2
0.6,0.2,0.1 ,

ξ3
0.7,0.4,0.3

}
>


Then, τu = { ϕu, 1u, (N,Φ) , (P,Φ)} forms a NS topology.

3.4.1. Program and intuitive description

from ppr int import ppr int

import numpy as np

print ( ”Enter the c o l l e c t i o n o f Neutrosophic So f t Set s a long with

↪→ nu l l and abso lu t e Neutrosophic So f t Set s ” )

m = int ( input ( ”Number o f Neutrosophic So f t Set s : ” ) )

a t t r i b u t e s = int ( input ( ”Enter the Number o f a t t r i b u t e s : ” ) )
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e lements = int ( input ( ”Enter the Number o f e lements in the Universe

↪→ Set : ” ) )

PNS Sets = [ ]

a = [ [ 0 ] * e lements for i in range ( a t t r i b u t e s ) ]

for i in range (m) :

print ( ”Enter the Primary Neutrosophic s o f t s e t : ” , i + 1)

n s s e t = [ [ tuple (map( f loat , input ( ) . s p l i t ( ” ” ) ) ) for d in range

↪→ ( e lements ) ]

for g in range ( a t t r i b u t e s ) ]

PNS Sets . append ( n s s e t )

def nss compl (m) :

”””Return t u p l e comprised o f the complement va l u e s in each t u p l e

↪→ argument . ”””

r e s u l t = [ [ ( (m[ g ] [ d ] [ 2 ] ) , (round ( (1 = m[ g ] [ d ] [ 1 ] ) , 1) ) , (m[ g ] [ d

↪→ ] [ 0 ] ) ) for d in range ( e lements ) ] for g in range ( a t t r i b u t e s

↪→ ) ]

return ( r e s u l t )

def ns union (m1, m2) :

”””Return t u p l e comprised o f the max , min , min va lue in each

↪→ t u p l e argument . ”””

r e s u l t = [ [ ( (max(m1[ g ] [ d ] [ 0 ] , m2[ g ] [ d ] [ 0 ] ) ) , (min(m1[ g ] [ d ] [ 1 ] ,

↪→ m2[ g ] [ d ] [ 1 ] ) ) ,

(min(m1[ g ] [ d ] [ 2 ] , m2[ g ] [ d ] [ 2 ] ) ) ) for d in range (

↪→ e lements ) ] for g in range ( a t t r i b u t e s ) ]

return ( r e s u l t )

def n s i n t (m1, m2) :

”””Return t u p l e comprised o f the min , max , max va lue in each

↪→ t u p l e argument . ”””

r e s u l t = [ [ ( (min(m1[ g ] [ d ] [ 0 ] , m2[ g ] [ d ] [ 0 ] ) ) , (max(m1[ g ] [ d ] [ 1 ] ,

↪→ m2[ g ] [ d ] [ 1 ] ) ) ,

(max(m1[ g ] [ d ] [ 2 ] , m2[ g ] [ d ] [ 2 ] ) ) ) for d in range (

↪→ e lements ) ] for g in range ( a t t r i b u t e s ) ]
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return ( r e s u l t )

Union = [ ]

for m1 in range ( len ( PNS Sets ) ) :

for m2 in range ( len ( PNS Sets ) ) :

x1 = ns union ( PNS Sets [m1] , PNS Sets [m2 ] )

Union . append ( x1 )

r e s = [ Union [ i ] for i in range ( len (Union ) ) i f i == Union . index (

↪→ Union [ i ] ) ]

I n t e r s e c t i o n = [ ]

for m1 in range ( len ( PNS Sets ) ) :

for m2 in range ( len ( PNS Sets ) ) :

x2 = n s i n t ( PNS Sets [m1] , PNS Sets [m2 ] )

I n t e r s e c t i o n . append ( x2 )

r e s1 = [ I n t e r s e c t i o n [ i ] for i in range ( len ( I n t e r s e c t i o n ) ) i f i ==

↪→ I n t e r s e c t i o n . index ( I n t e r s e c t i o n [ i ] ) ]

Topology = [ ]

for m1 in r e s :

Topology . append (m1)

for m2 in r e s1 :

Topology . append (m2)

topology = [ ]

for m1 in range ( len ( Topology ) ) :

for m2 in range ( len ( Topology ) ) :

y1 = ns union ( Topology [m1] , Topology [m2 ] )

y2 = n s i n t ( Topology [m1] , Topology [m2 ] )

topo logy . append ( y1 )

topology . append ( y2 )

print ( ”The Neutrosophic So f t Topology i s : ” )
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r e s3 = [ topology [ i ] for i in range ( len ( topo logy ) ) i f i == topology .

↪→ index ( topology [ i ] ) ]

ppr int ( r e s3 )

The above program is developed for framing NS topology using the numpy package. Pro-

gram initially gets the values of the number of NSSs, number of attributes and number of

elements. As the second step, NSOSs are collected as input and stored in the list called

PNS Sets. The NS-complement, NS-union function and NS-intersection function are defined

for computing complement, union and intersection of NSSs respectively. In the third step,

the program creates a list of union and intersection of the NSSs in the list PNS Sets and are

appended to the list “topology”. The result is finally printed using pprint module.

Figure 3. Output of the Neutrosophic Soft Topology framing program
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3.4.2. Program and intuitive description

from ppr int import ppr int

import numpy as np

print ( ”Enter the c o l l e c t i o n o f Neutrosophic So f t Set s ” )

m = int ( input ( ”Number o f Neutrosophic So f t Set s : ” ) )

a t t r i b u t e s = int ( input ( ”Enter the Number o f a t t r i b u t e s : ” ) )

e lements = int ( input ( ”Enter the Number o f e lements in the Universe

↪→ Set : ” ) )

NS Sets = [ ]

a = [ [ 0 ] * e lements for i in range ( a t t r i b u t e s ) ]

for i in range (m) :

print ( ”Enter the Neutrosophic s o f t s e t : ” , i + 1)

n s s e t = [ [ tuple (map( f loat , input ( ) . s p l i t ( ” ” ) ) ) for d in range

↪→ ( e lements ) ] for g in range ( a t t r i b u t e s ) ]

NS Sets . append ( n s s e t )

def ns union (n1 , n2 ) :

”””Return t u p l e comprised o f the max , min , min va lue in each

↪→ t u p l e argument . ”””

r e s u l t = [ [ ( (max( n1 [ g ] [ d ] [ 0 ] , n2 [ g ] [ d ] [ 0 ] ) ) ,

(min( n1 [ g ] [ d ] [ 1 ] , n2 [ g ] [ d ] [ 1 ] ) ) ,

(min( n1 [ g ] [ d ] [ 2 ] , n2 [ g ] [ d ] [ 2 ] ) ) ) for d in range (

↪→ e lements ) ] for g in range ( a t t r i b u t e s ) ]

return ( r e s u l t )

def n s i n t (n1 , n2 ) :

”””Return t u p l e comprised o f the min , max , max va lue in each

↪→ t u p l e argument . ”””

r e s u l t = [ [ ( (min( n1 [ g ] [ d ] [ 0 ] , n2 [ g ] [ d ] [ 0 ] ) ) ,

(max( n1 [ g ] [ d ] [ 1 ] , n2 [ g ] [ d ] [ 1 ] ) ) ,

(max( n1 [ g ] [ d ] [ 2 ] , n2 [ g ] [ d ] [ 2 ] ) ) ) for d in range (

↪→ e lements ) ] for g in range ( a t t r i b u t e s ) ]

return ( r e s u l t )
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Topology = [ ]

for n1 in NS Sets :

for n2 in NS Sets :

i f (np . a r r ay equa l (n1 , n2 ) == False ) :

x1 = ns union (n1 , n2 )

x2 = n s i n t (n1 , n2 )

r e s1 = any(np . a r r ay equa l ( x1 , m) for m in NS Sets )

r e s2 = any(np . a r r ay equa l ( x2 , m) for m in NS Sets )

Topology . append ( r e s1 )

Topology . append ( r e s2 )

i f a l l ( Topology ) == True :

print ( ”The Co l l e c t i on forms a Neutrosophic So f t Topology” )

else :

print ( ”Does not form a Neutrosophic So f t Topology” )

The above program is developed for verifying whether a forms a NS topology or not. The

program initially gets the values of the number of NSOSs, number of attributes and number

of elements. In the second step, NSOSs are collected as input and stored in the list called

NS Sets . The NS-union function and NS-intersection function are defined for computing

union and intersection of NSOSs respectively.
In the third step, the program creates a list of Boolean values. The list is created by taking

two NSOSs from the list of NSOSs and checking the condition if the two NSOSs are equal,

if they are equal then exists the loop, if not then the program computes the values of NS

union and NS intersection of the two NSOSs using pre-defined NS-union and NS-intersection

function. In the next step, the program checks whether the computed values of NS intersection

and NS union are in the list of NSOSs utilizing the built-in ‘any’ function which returns only

Boolean values as result. The results are appended to the list ‘Topology’

In the final step, the program checks if all the values in the list ‘Topology’ are true utilizing

the built-in ‘all’ function, if the result is true then the collection of input values forms a NST S
or else it does not.

JJ Mershia Rabuni and N Balamani, Computation of Neutrosophic Soft Topology using
Python

Neutrosophic Sets and Systems, Vol. 60, 2023                                                                              562



Figure 4. Output of the Neutrosophic Soft Topology program

3.5. Operators of Neutrosophic Soft Topological Space

Definition 3.7. [3] Let NST S be represented as (U,Φ, τu) and (L,Φ) be any arbitrary NSS.
Then the closure of a NSS (L,Φ) is the intersection of all NSCSs containing (L,Φ).

i.e., NScl(L,Φ) = ∩{(F,Φ) : (L,Φ) ⊆ (F,Φ), (F,Φ) is a NSCS in U.}

Definition 3.8. [3] Let NST S be represented as (U,Φ, τu) and (L,Φ) be any arbitrary NSS.
Then the interior of a NSS (L,Φ) is the union of all NSOSs contained in (L,Φ).

i.e., NSint(L,Φ) = ∪{(G,Φ) : (G,Φ) ⊆ (L,Φ) , (G,Φ) is a NSOS in U }.

Example 3.9. Consider the Example 3.6,
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(N,Φ)c =

 < ς1,
{

ξ1
0.5,0.6,0.7 ,

ξ2
0.5,0.5,0.4 ,

ξ3
0.4,0.7,0.3

}
>,

< ς2,
{

ξ1
0.4,0.8,0.6 ,

ξ2
0.3,0.6,0.5 ,

ξ3
0.5,0.4,0.4

}
>


(P,Φ)c =

 < ς1,
{

ξ1
0.4,0.7,0.8 ,

ξ2
0,3,0.6,0.5 ,

ξ3
0.2,0.9,0.7

}
>,

< ς2,
{

ξ1
0.3,0.9,0.7 ,

ξ2
0.1,0.8,0.6 ,

ξ3
0.3,0.6,0.7

}
>


Then, τu

c = { ϕu, 1u, (N,Φ)c , (P,Φ)c} is the collection of NSCSs.
Let (S,Φ) be an arbitrary NSS defined as

(S,Φ) =

 < ς1,
{

ξ1
0.2,0.8,0.9 ,

ξ2
0.3,0.7,0.7 ,

ξ3
0.1,0.9,0.8

}
>,

< ς2,
{

ξ1
0.2,0.9,0.8 ,

ξ2
0.1,0.8,0.7 ,

ξ3
0.3,0.7,0.8

}
>


Here NScl(S,Φ) = (P,Φ)c and NSint(S,Φ) = ϕu

3.5.1. Program and intuitive description

from ppr int import ppr int

m = int ( input ( ”Number o f Neutrosophic So f t Open Sets : ” ) )

a t t r i b u t e s = int ( input ( ”Enter the Number o f a t t r i b u t e s : ” ) )

e lements = int ( input ( ”Enter the Number o f e lements in the Universe

↪→ Set : ” ) )

NS Sets = [ ]

p = [ [ 0 ] * e lements for g in range ( a t t r i b u t e s ) ]

for i in range (m) :

print ( ”Enter the Neutrosophic s o f t s e t : ” , i + 1)

n s s e t = [ [ tuple (map( f loat , input ( ) . s p l i t ( ” ” ) ) ) for e in range

↪→ ( e lements ) ]

for a in range ( a t t r i b u t e s ) ]

NS Sets . append ( n s s e t )

def nss compl (m) :

”””Return t u p l e comprised o f the complement va lue in each t u p l e

↪→ argument . ”””

r e s u l t = [ [ ( (m[ a ] [ e ] [ 2 ] ) , (round ( (1 = m[ a ] [ e ] [ 1 ] ) , 1) ) , (m[ a ] [ e

↪→ ] [ 0 ] ) ) for e in range ( e lements ) ] for a in range ( a t t r i b u t e s

↪→ ) ]

return ( r e s u l t )
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complement = [ ]

for m in NS Sets :

x = nss compl (m)

complement . append (x )

mA = int ( input ( ”Number o f Arb i t ra r ty Neutrosophic So f t Set s : ” ) )

Arb i t r a ry Se t s = [ ]

p = [ [ 0 ] * e lements for i in range ( a t t r i b u t e s ) ]

for i in range (mA) :

print ( ”Enter the Artb i t ra ry Neutrosophic s o f t s e t : ” , i + 1)

a r b i s e t = [ [ tuple (map( f loat , input ( ) . s p l i t ( ” ” ) ) ) for e in

↪→ range ( e lements ) ]

for a in range ( a t t r i b u t e s ) ]

Arb i t r a ry Se t s . append ( a r b i s e t )

def supe r s e t (A, m) :

return ( ( (m[ g ] [ d ] [ 0 ] >= A[ g ] [ d ] [ 0 ] ) and (m[ g ] [ d ] [ 1 ] <= A[ g ] [ d

↪→ ] [ 1 ] ) and (m[ g ] [ d ] [ 2 ] <= A[ g ] [ d ] [ 2 ] ) ) )

def subset (A, m) :

return ( ( (m[ g ] [ d ] [ 0 ] <= A[ g ] [ d ] [ 0 ] ) and (m[ g ] [ d ] [ 1 ] >= A[ g ] [ d

↪→ ] [ 1 ] ) and (m[ g ] [ d ] [ 2 ] >= A[ g ] [ d ] [ 2 ] ) ) )

def nss un ion (m1, m2) :

”””Return t u p l e comprised o f the max , min , min va lue in each

↪→ t u p l e argument . ”””

r e s u l t = [ [ ( (max(m1[ g ] [ d ] [ 0 ] , m2[ g ] [ d ] [ 0 ] ) ) , (min(m1[ g ] [ d ] [ 1 ] ,

↪→ m2[ g ] [ d ] [ 1 ] ) ) ,

(min(m1[ g ] [ d ] [ 2 ] , m2[ g ] [ d ] [ 2 ] ) ) ) for d in range (

↪→ e lements ) ] for g in range ( a t t r i b u t e s ) ]

return ( r e s u l t )

def n s s i n t e r s e c t i o n (m1, m2) :
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”””Return t u p l e comprised o f the min , max , max va lue in each

↪→ t u p l e argument . ”””

r e s u l t = [ [ ( (min(m1[ g ] [ d ] [ 0 ] , m2[ g ] [ d ] [ 0 ] ) ) , (max(m1[ g ] [ d ] [ 1 ] ,

↪→ m2[ g ] [ d ] [ 1 ] ) ) ,

(max(m1[ g ] [ d ] [ 2 ] , m2[ g ] [ d ] [ 2 ] ) ) ) for d in range (

↪→ e lements ) ] for g in range ( a t t r i b u t e s ) ]

return ( r e s u l t )

for m1 in Arb i t r a ry Se t s :

Superset = [ ]

for m in complement :

ca l 1 = [ ]

for g in range ( a t t r i b u t e s ) :

for d in range ( e lements ) :

v = supe r s e t (m1, m)

ca l 1 . append (v )

i f a l l ( ca l 1 ) :

Superset . append (m)

c l o s u r e = Superset [ 0 ]

for i in range ( len ( Superset ) ) :

c l o s u r e = n s s i n t e r s e c t i o n ( c l o su re , Superset [ i ] )

print ( ”Closure : ” )

ppr int ( c l o s u r e )

for m1 in Arb i t r a ry Se t s :

Subset = [ ]

for m in NS Sets :

c a l 2 = [ ]

for g in range ( a t t r i b u t e s ) :

for d in range ( e lements ) :

l = subset (m1, m)

ca l 2 . append ( l )

i f a l l ( ca l 2 ) :

Subset . append (m)

i n t e r i o r = Subset [ 0 ]

for i in range ( len ( Subset ) ) :
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c l o s u r e = nss un ion ( i n t e r i o r , Subset [ i ] )

print ( ” I n t e r i o r : ” )

ppr int ( i n t e r i o r )

The NS-complement, NS-superset, NS-subset NS-union and NS-intersection functions are

defined in this program. Program initially gets the values of the number of NSOSs, number

of attributes and number of elements. In the second step, NSOSs are collected as input

and stored in the list called NS Sets. Then it creates the list of complement using the NS-

Complement function. In the third step, the program gets the arbitrary NSSs and creates a

list of arbitrary NSSs.
For each element in the list of arbitrary NSS, the program compiles a list of supersets

(subsets) by taking NSCSs (NSOSs) from the list of complement (NSOSs) using the pre-

defined superset (subset) function. Then the program computes the closure (interior) of the

arbitrary set by taking NSS from the list of supersets (subsets) and using the NS-intersection

(NS-union) function, prints the value of the closure(interior) of the arbitrary set.
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Figure 5. Output of closure and interior of a neutrosophic soft set program

4. Conclusion

In this paper, python functions for union, intersection, superset, subset and complement

for working in NS environment were defned and python program for union, intersection

and complement in NS environment were furnished. Further python program for computing

closure and interior of a NSS in NS environment was provided. Moreover, Python program

was constructed to verify whether a particular collection of NSSs forms a NS-topology or

not. User HTML interface can be developed using Pyscript in near future. In due course, the

python programme can be built to find the optimal solution to any decision-making problem

with complex data.
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Abstract 

Recently, transport systems that produce low levels of carbon emissions have emerged as an essential 

component of several nations' goals for achieving sustainable development. These systems also play 

a very significant role in the process of developing low-carbon cities. On the other hand, the safety of 

low-carbon modes of transport has been put in jeopardy in several different ways. For instance, 

assaults that result in a denial of service present a significant danger to the networks that connect 

electric cars to the grid. Several different strategies for defending against these dangers have been 

developed to lessen their impact. However, these strategies are only applicable to certain kinds of 

situations or assaults. Therefore, the purpose of this paper is to examine the security element from a 

holistic approach, present an overview of the obstacles and future directions of cyber security 

technologies in low-carbon transportation, and overcome such challenges. To begin, the low-carbon 

transport services are positioned in this article based on the idea of low-carbon transport and the 

significance of low-carbon transport. After that, using the network's design and the manner of 

communication as a lens, this article defines the common threats posed by attacks on the network. An 

additional consideration is given to the associated defensive technologies as well as the pertinent 

security recommendations, this time from the point of view of data security, network management 

security, and network application security. To improve this notion of safeguarding the gride and 

communication, it is necessary to evaluate ability of network against sniffing and spoofing or from 

any various methods of attacks. This motivates the study to employ Multi- Criteria Decision Making 

(MCDM) entailed in entropy for weighting the benchmarks which employed in Combined 

Compromise Solution (CoCoSo) toward obtaining optimal intelligent transportation systems (ITrSs) 

through ranking various ITrSs. In this study the utilized techniques are powered by uncertainty theory 

is Triangular Neutrosophic Sets (TriNSs). These utilized techniques contributed to constructing robust 

hybridization model. This model implemented in real case study to ensure its validity on decision 

making. 

Keywords: Low-Carbon Transportation; Sustainable Environment; Cyber security; Holistic 

Approach; Multi- Criteria Decision Making (MCDM); Triangular Neutrosophic Sets (TriNSs). 

1. Introduction 

Both the energy and transport industries are responsible for the majority of the world's total carbon 

emissions. The transformation of energy and transport networks into low-carbon models is 

unavoidable if the strategic aim of reaching "carbon peaking and neutralization" is to be accomplished 

[1]. 

Our everyday lives, including the industries of energy and transportation, are being revolutionized by 

the spread of digital technology. Digitalization is a significant development that gives choices for 

reducing energy demand and carbon emissions [2]; nevertheless, it has been questioned as to whether 

the local energy savings from networked digital devices might compensate for the increased energy 

usage of the devices. Digitalization is an important trend that provides alternatives for reducing energy 
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demand and carbon emissions. Additionally, digital technologies have the potential to contribute to 

the intelligent and environmentally friendly design of the future generation of transportation systems. 

Both the academic world and the business world are interested in how decarbonization might be 

facilitated in a timely and cost-effective manner by digitalization [3]. This is an important 

development. Digitization comprises sensing, transmission, and computing, i.e., data production, data 

transfer, data storage and transformation, and data application (data value generation). When seen 

through the lens of the data value stream, the production of data of a high standard is strongly 

dependent on the development of infrastructure, which may include sensors for energy and 

transportation. In the meanwhile, the development of technologies known as 5G and 6G helps to speed 

up the transmission of data, which is necessary to meet the requirements of the big data age for the 

timely delivery of large quantities of data. Data has the potential to generate values in a wide variety 

of application situations, and digitalization may be able to contribute to the industry's overall growth 

and success if it is supported by more complex procedures and algorithms. 

The dependability and stability of low-carbon transportation systems are significantly improved when 

cyber security measures are included [4]. To begin, ensuring the confidentiality, enforceability, and 

non-repudiation of one's data is the primary responsibility of a company's data security team [5]. 

Second, the implementation of network management security, which should include trust 

management, misbehavior detection, an intrusion detection system, and a firewall, is required in order 

to guarantee the dependability of the data that is sent inside a network system, as well as its integrity 

and accuracy. In conclusion, personalized network applications result in new security needs, and it is 

important to pay attention to both edge computing security and software-defined security in this 

context. 

In order to accomplish this goal, the focus of this article is on the analysis and research of the 

functioning of a low-carbon ecosystem, with the primary emphasis being placed on the cyber security 

of low-carbon transportation. The purpose of this piece is to shed light on the significance and effect 

of cyber security in low-carbon transportation, as well as to encourage the coordinated development 

of electric cars, transportation, energy, information, and cyber security. Specifically, the article will 

focus on revealing the relevance and impact of cyber security in low-carbon transportation. The 

following is the most important contributions that this article makes: 

• The low-carbon transport service is positioned in this assessment based on the idea of low-

carbon transport and the significance of low-carbon transport. 

• A discussion of the problems with cyber security and the solutions to those problems. 

• Challenges and potential avenues of study have been highlighted in light of the recent trend 

toward the development of low-carbon modes of transportation. 

• Construct evaluation model responsible for evaluating intelligent transportation systems. 

• Applying the constructed evaluation model in real enterprises of transportation. 

 

2. Theoretical Background 

The development of low-carbon transportation might be helped forward by the integration of 

transportation, energy, and information networks. On the other hand, several application scenarios and 

information interactions in low-carbon transportation would expose its vulnerabilities to attack. A 

security defense system must be implemented in order to repel assaults in application situations or 

communication modalities. In the first part of this section, we will go through several common 

application situations and low-carbon transportation component types. In the second place, it examines 

common information and communication technologies, such as E-Mobility, smart grids, in-vehicle 

connectivity, and communication between vehicles and other things. The latter part of this section 

focuses on the possible cyber dangers and common assaults on low-carbon transportation. 

2.1 Carbon-neutral transportation 

Charging stations and battery swapping stations are potential sources of electricity for electric cars 

[6]. Charging stations, battery swap stations, and other similar facilities may all get their power from 
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the smart grid. The demand for energy from electric cars is processed through charging stations and 

battery swap stations, which function as an intermediate. 

The commercialization of electric cars is making steady progress due to the many positive impacts 

these vehicles may have on their surrounding environments. Traditional automobile manufacturers, 

such as Mercedes-Benz and BMW, as well as the electric vehicle manufacturer Tesla, have been 

preparing their transition towards the electrification of vehicles in response to the current worldwide 

trend. 

Compatibility is one of the fundamental ideas behind the smart grid, which encompasses both 

centralized and decentralized power-producing infrastructures as well as access to a wide variety of 

energy storage solutions. The term "distributed power" refers to the production and storage of 

electricity by a wide variety of low-capacity devices that are linked to either the smart grid or the 

distribution system. These distributed energy resources are also known as "distributed energy 

resources." The distributed energy resources system is a decentralized, modular, and more adaptable 

technology that utilizes renewable energy such as solar energy and wind energy on a local scale. The 

system also makes use of modular solar panels and wind turbines. If not, centralized electricity would 

be provided by conventional power stations, which include coal, gas, and nuclear power plants, as 

well as hydropower dams and large-scale solar power stations. The smart grid that is enabled by 5G 

and artificial intelligence will contribute to an improvement in the efficiency of energy transit and 

utilization. 

The low battery capacity of electric cars combined with the length of journeys taken inside 

metropolitan areas results in the need for regular charging of electric vehicles. Charging stations are 

often installed in areas that have a large concentration of electric vehicles, such as shopping malls and 

parking lots. In general, this means that charging stations are located in high-density areas. In the 

event that the charging station is unable to detect the arrival of electric cars that have a need for 

charging, however, there is a possibility that a charging service congestion may arise. Because of 

advances in communication technology between vehicles and other objects, it is now feasible to 

exchange information of this kind in order to supervise the charging process in the most effective 

manner. 

2.2 Information and communication technologies applied to low-carbon modes of transportation 

In spite of the fact that significant attention has been dedicated to the development of electric cars 

from both academic and industrial perspectives, the growth of the electric vehicle sector is being 

hampered by problems such as insufficient charging facilities, a lack of standardization, and 

inconsistent norms. Electric cars and charging stations are seeing tremendous expansion as a direct 

result of the concerted efforts of companies and governments all over the globe. 

The charging pile's communication method may primarily be broken down into two categories: wired 

communication and wireless communication modalities. The most common forms of the wired 

communication method include industrial serial bus and wired Ethernet, among others. When it comes 

to data transfer, industrial serial bus systems are more dependable; nevertheless, they come with a 

number of drawbacks, including high complexity, low communication capacity, poor flexibility, high 

building costs, and limited scalability. Despite its complicated wiring, limited flexibility, high 

construction cost, and limited expansibility, the wired Ethernet network has a larger capacity and 

provides data transfer that is dependable. 

2.3 Disputes over safety in low-carbon modes of transportation 

In the recent past, the idea of a smart grid has emerged as a result of advancements in information and 

communications technologies. The beneficial information is constantly being transmitted and 

monitored inside the smart grid in order to initiate decision-making on the management of the power 

system. However, despite the fact that the access network makes the operation of the system more 

efficient, this improvement will put the system's security at risk since it is dependent on the flow of 
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information. Because communication networks are susceptible to cyber assaults and hostile 

infiltration, the smart grid is not immune to the attacks that hackers have been carrying out in 

increasing numbers over the last several years, regardless of whether they are motivated by profit or 

politics. 

"GPS spoofing" is a method that may be used to attack an autonomous vehicle's multi-sensor fusion 

positioning technique, which ultimately results in the car losing control of itself. This was discovered 

via research. This safety concern has sounded the alarm for manufacturers, who in recent years have 

increased their efforts to commercialize autonomous driving. 

2.4 Attacks that are typical in low-carbon transportation 

One of the most significant difficulties that nations all over the globe are now confronting is that of 

maintaining adequate levels of cyber security. The advancement and promotion of low-carbon modes 

of transport are impossible to do without the accompaniment of cyber security [7]. The foundation of 

successful low-carbon city development is a foolproof and comprehensive cyber security protection 

and prevention system. Nevertheless, low-carbon transport is being subjected to a large number of 

assaults and safety hazards. Jamming, spoofing, data dimension, denial of service, botnet, and sybil 

assaults are the most common types of low-carbon transportation threats [8]. Other types of attacks 

include dos attacks and data dimension attacks. Be aware that, in addition to traditional forms of cyber 

assault, there is also the possibility of a physical attack, which involves the use of forceful methods to 

target electric cars, charging piles, and other forms of firmware, among other things.  In this context, 

it is necessary to perform routine safeguarding and maintenance on such important facilities. 

3. Safety Measures for Network Management 

The dependability, integrity, and accuracy of data that is shared inside a network system are ensured 

by the security of network management, which includes trust management, identification of 

inappropriate behavior, intrusion detection systems, and firewalls. 

3.1 Confidence administration 

Standard technologies that need much greater processing power, such as intrusion detection, password 

encryption, and decryption technology, are not suitable because of the restricted capacity of cars. 

Alternately, the function of the trust mechanism is to assess the amount of confidence that may be 

placed in vehicles by using the interaction history of those vehicles. By using this as assessment 

advice, it is possible to give up on hostile cars and promote trustworthy vehicles for data exchange. 

The majority of the literature that is based on the entity-based trust model assesses the trustworthiness 

of vehicles. In this instance, direct trust and indirect suggestion trust are used together in order to 

identify automobiles that are not to be trusted or that are harmful. 

Model of trust that is based on data, the model of trust that is based on data seeks to determine how 

reliable the data level is. In this case, the trust model calls for the collection of data from a wide range 

of sources, such as the cars themselves, their immediate neighbors, and roadside units. 

The mixed trust model is one that, by default, incorporates the positive aspects of both traditional and 

alternative models of trust. Not only does it determine the degree to which cars can be trusted, but it 

also computes the accuracy of the data. The trustworthiness of vehicles has an effect on the 

dependability of data as a result of the influence of contact behavior, and the trustworthiness of data, 

in turn, reflects the dependability of vehicles as a result of the forwarding route that a data will be 

traveled. This is the purpose of the combined trust model, and it is inherent in its design. 

3.2 Detection of inappropriate behavior 

It is also possible to identify malicious vehicles based on the actions taken by network participants. 

These actions include forwarding, altering, discarding, and selective discarding of data. The benefit 

of using techniques that are based on network behavior is that they are wholly unaffected by the 

information that is being sent. 
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It is challenging to assess the fabricated data when there are just a few cars collecting enough messages 

for detection. Another way of saying this is that it is challenging to determine the forged data based 

only on the data content level. 

3.3 Intrusion detection system 

Because of power outages and natural calamities, the smart grid is very susceptible to denial of service 

assaults. Denial-of-service attacks are made with the intention of delaying, blocking, or otherwise 

disrupting communications, which may have a significant negative impact on the functioning of a 

network. An intrusion detection system that is based on deep learning has the potential to improve the 

detection and mitigation of denial-of-service attacks [9]. For the purpose of analyzing the features of 

information flow, it is put at the smart grid's edge. The typical pattern of behavior shown by 

information flow is created on the basis of spatiotemporal characteristics and context relations. In 

addition to that, the real-time schedulability analysis will extract the timing requirements as well as 

the model parameters of the information flow. After that, the intrusion detection system will develop 

a real-time model that precisely characterizes the temporal characteristics. This model will then be 

used to reflect the typical behavior of smart grid systems. Finally, with the help of packet attribute 

analysis and a data consistency model that is based on deep learning, it is possible to determine the 

usual behavior pattern of a physical information system as well as the origin of a cyber-assault. 

Because of its usefulness in rapidly detecting assaults, the intrusion detection system garners a lot of 

attention. The network or host intrusion detection system will, as a general rule, identify any 

irregularity in the system and sound an alert if it exists. The intrusion detection system may be broken 

down into two groups according to the technological basis of intrusion detection: 

• Signature-based intrusion detection system: This intrusion detection system analyzes known 

attacks to extract their distinguishing features and patterns, which is called the signature [10]. 

The signature-based intrusion detection system has the advantage of a high detection rate for 

known attacks, but the disadvantage is that it is not able to detect unknown or new attacks.  

• Using supervised or unsupervised learning approaches to construct models based on 

characteristics, anomaly-based intrusion detection systems are another form of intrusion 

detection systems that are also known as behavior-based intrusion detection systems [11]. The 

model is able to distinguish between regular and aberrant patterns of network traffic, and it also 

has the power to detect undiscovered and novel forms of assault. Statistical and machine learning 

methods are used in the execution of this approach. 

 

3.4 Firewall 

The divide between public and private networks may be represented by a firewall. It is able to identify 

assaults and filter the flow of harmful traffic via the network [12]. The next-generation firewall has 

the capability to integrate denial-of-service attack detection technologies with network protocol 

identification capabilities. The former is used to filter attack flow and lower the danger of attack, while 

the latter is used to deal with injection and spoofing. Both of these functions are important for 

preventing attacks. 

It is possible to identify the internet protocol address of the host computer or server that is connected 

to the network thanks to the smart grid system. Therefore, the function of the firewall known as packet 

filtering may be accomplished using a whitelist. To begin, the firewall analyses the flow of network 

traffic based on the kind of protocol, the number of ports, and the internet protocol address of the 

destination. This allows it to determine whether or not the traffic conforms to the standards, 

restrictions, and whitelists that have been set. After that, the position of the firewall may be adjusted 

so that it is in accordance with the structure of the smart grid network. 

In order to defend against a wide range of assaults, firewalls for electric vehicles are also now in 

development. The network configuration information for an in-vehicle network is generally 

unchangeable, which is one of the properties of this kind of network. In most cases, the original 
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equipment manufacturer is in possession of a communication matrix or database that lays out the 

guidelines for how electronics inside the vehicle are to communicate with one another. As a direct 

consequence of this, the "whitelist" filtering rules are often used as the foundation for the firewall 

technology used in an in-vehicle network. 

4. Motivations of Study 

Two significant trends in the upcoming decades  are expected to be decarbonization and digitalization 

[13]. Massive amounts of data will be generated as the already pervasive process of digitization 

proceeds, particularly in the energy and transportation networks. How this data may support and 

promote data security has become a critical concern. 

Hence. This study focuses on embracing cybersecurity technologies in intelligent transportation to 

guarantee confidentiality, unforgeability, and non-repudiation for smart grid. Accordingly, it is 

important to evaluate the enterprises of transportation which are deploying and embracing 

cybersecurity toward digitalization and decarbonization dimensions. We are conducting a survey for 

transportation enterprises for contributing to the evaluation process. 

Accordingly, we constructed an evaluation model which is responsible for evaluating the enterprises 

which obtained from the conducted survey. This model relies on mathematical techniques and 

uncertainty theory to improve decisions in uncertainty environments [18-22]. 

5. Methodology of Evaluation 

5.1 Recognition of principal ingredients 

- One of the important procedures in study’s evaluation methodology is recognizing principal and 

influential aspects.  

- These aspects entailed in set of benchmarks {Bs}= {b1, b2,b3,…bn} also, set of nominees of  

Transportation enterprises systems as {TESs}={TES1,TES2,…TESn}. 

- Choice and communicate with decision makers (DecMs) who related to our interested study’s 

scope. 

5.2 Express the most and least significant benchmark through benchmarks’ weights 

- We are leveraging TriNSs scale in  [14],[15] to contribute to evaluation process where DecMs 

are rating criteria based on the determined scale. 

- Entropy is employed as a technique of MCDM techniques with the support of TriNSs s as branch 

of neutrosophic theory for generating criteria’s weights. Hence, Neutrosophic decision matrices 

are constructed based on DecMs’preferences. 

- Score function in Eq. (1) turns the constructed matrices to deneutrosophic matrices as mentioned 

in Ref [16]. 

 

          s(b𝑖𝑗) =  
(𝐶𝑖𝑗+𝐷𝑖𝑗+𝐹𝑖𝑗)

9
∗ (2 + 𝛼 − β − θ)                                                                                                        (1) 

where 𝐶𝑖𝑗 , 𝐷𝑖𝑗 , 𝐹𝑖𝑗 pointed to lower, middle, upper. Also,  𝛼, β, θ are truth, indeterminacy, and falsity. 

- Eq.(2) aggregates deneutrosophic matrices  into single decision matrix to construct an aggregated 

matrix. 

         𝑍𝑖𝑗 =  
(∑ bij)

N
j=1  

𝑆
                                                                                                                                      (2) 

Where 𝑏𝑖𝑗  refers to value of criterion in matrix, S refers to number of decision makers. 

- An aggregated matrix is normalizing through Eq. (3).  

          ℧
ij = 

Zij

∑ Zij
m
j=1

                                                                                                                                                  (3)  

             Where ∑ zij
m
j=1  represents sum of each criterion in aggregated single decision matrix per column 
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- Entropy computes easily via utilizing Eq. (4). 

               ej=−h ∑ ℧ij 
m
i=1

 ln ℧ij                                                                                                                                       (4)   

      Whereℎ =
1

ln (𝑄)
                                                                                                                                            (5)                                                                                                                                                                        

     Q refers to number of alternatives 

- Weight vectors generated through leveraging Eq.(6). 

 

 w_vectorj=

1−ej

∑ (1−ej)n
j=1

                                                                                                                              (6)   

5.3 Find out the best and the worst intelligence transportation system accordance to cyber 

security through ranking 

Herein we are exploiting CoCoSo according to [17] as MCDM ranker technique for ranking 

nominees of ITrSs through improving the utilized ranker technique by TriNSs through 

implementing several steps: 

 

- an aggregated decision matrix generated from previous steps of obtaining benchmarks’ weights 

has been leveraged. Furthermore, Eq.s (7) and (8) are responsible for normalizing single matrix. 

        Norij =
Zij−min (Zij)

max (Zij)−min (Zij)
  , for beneficial criteria                                                                 (7) 

        Norij =
max (Zij)−Zij

max (Zij)−min (Zij)
  , for non-beneficial criteria                                                         (8)                                                                               

- Sum of weighted matrix is generated based on Eq. (9). 

       Sum_weightedi = ∑  w_vectorj
n
j=1 ∗ Norij                                                                                          (9)            

- Eq. (10) is deploying for calculating power of weighted matrix. 

      Powerj = ∑ (Norij)
Sum_weightedijn

j=1                                                                                          (10) 

- Three different appraisal score for ITrSs candidates are calculating through following Eq.s. 

               Scoreia ==
Si+Pi

∑ Si+Pi
m
i=1

                                                                                                                  (11) 

                Scoreib =
Si

miniSi
+

Pi

miniPi
                                                                                                           (12) 

                Scoreic =
λSi+(1−λ)Pi

λmaxiSi+(1−λ)maxiPi
  , 0 ≤ λ ≤ 1                                                                                         (13) 

         Where Si indicates to sum of each raw in sum of raw in weighted matrix whilst Pi refers to sum of raw in  

          power of weighted matrix. 

- The final rank is obtaining via Eq. (14). 

             Ki=(Kia ∗ Kib ∗ Kic)
1

3⁄ +
1

3
(Kia + Kib + Kic)                                                                                      (14) 

6. Numerical case study 

The validation process is considered important in this study. Hence, we applied our constructed 

model of evaluation on real transportation enterprises which embracing study’s notion. The 

evaluation for systems of these enterprises is performed based on set of benchmarks. 
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The validation process is conducting through following dimensions: 

6.1 First dimension: benchmarks and intelligent transportation systems(alternatives). 

- The ITrSs which embracing study’s notion are identifying where four alternatives are 

contributed to validation process. Accordingly, the benchmarks are determined  as in Figure 

1. 

- Therefore, five DecMs are contributed to rate alternatives of ITrSs based determined 

benchmarks through utilizing triangular Neutrosophic scale in [15]. 

6.2 Second dimension: Determining benchmark’s weights. 

- An aggregated matrix is constructed through calculating average for five Neutrosophic 

decision matrices as listed in Table 1. 

- Whilst Table 2 represents normalization of an aggregated matrix. 

- Entropy matrix is constructed based on Eqs. (4),(5) and Table 3 is generated. 

- Moreover, vector of weights is generated through implementing Eq.(6) and Figure 2 

represents benchmarks’ criteria. According to this Figure B3 considered the optimal criterion 

where its value of weight is the highest compared with others otherwise B4 where its value of 

weights is the least one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Main benchmarks 

Table1. An aggregated decision matrix 

 B1 B2 B3 B4 B5 

ITrSs1 4.656666667 4.946666667 5.456666667 4.283333333 5.253333333 

ITrSs2 5.583333333 6.103333333 4.726666667 5.593333333 6.706666667 

ITrSs3 4.683333333 4.653333333 6.123333333 4.64 4.81 

ITrSs4 6.65 4.596666667 7.233333333 5.623333333 5.996666667 

 

 

Table2. Normalized an aggregated decision matrix. 

 B1 B2 B3 B4 B5 

M
ai

n
 B

en
ch

m
ar

k
s 

B1: protection of data: Confidentiality, unforgeability, and 

secrecy are guaranteed by data security. 

 

B2: Smart grid management security: The integrity and 

accuracy of the data transmitted inside a network system are 

guaranteed by network management security. 

B3: Detection of intrusions: Artificial Intelligence is used in 

detection of intrusion to extract and learn what constitutes normal 

and abnormal behaviour, after which a model is built to recognize 

assaults. 

B4: Security of cutting-edge computing: It decentralizes the role 

of applications, data processing, and functional 

service realization from the network edge to the central server. 

B5: Firewall in smart grid: A secure access policy must be 

established by the smart grid's firewall in order to recognize and 

filter access with various permissions. 
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Table3. Entropy Matrix 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. benchmarks Weights 

6.3 Third dimension: Ranking alternatives of ITrSs 

- In this dimension, an aggregated matrix which generated from second dimension is 

normalized by Eq.(7) where benchmarks are considering beneficial and Table 4 has been 

generated. 

- Weighted decision matrix has been produced through multiplying normalized matrix with 

weights of benchmarks which generated from entropy-TriNSs. The result of this process is 

illustrated in Table 5. 

- The power of sum weighted matrix has been computed via Eq.(10)  and results are showcased 

in Table 6. 

- Candidates’ appraisal scores have been calculated through Eq.(11),(12),(13). And its scores 

are appeard in Table 7. According to this Table, we concluded that ITrS4 is the best otherwise 

ITrS1 is the least one. 

- Finally, the final rank for candidates ITrSs. Eq.(14) is utilized for obtaining the candidates’ 

final rank which showcased in Figure 3 where the results in this Figure agreed with ranking 

in Table7and  emphasized that ITrS4 is the best otherwise ITrS1 is the least one 

 

ITrSs1 0.215852905 0.2436782 0.23180402 0.212677921 0.230746706 

ITrSs2 0.258807169 0.3006568 0.20079298 0.277722608 0.294582723 

ITrSs3 0.217088999 0.2292282 0.26012461 0.230387289 0.211273792 

ITrSs4 0.308250927 0.2264368 0.30727839 0.279212181 0.263396779 

 B1 B2 B3 B4 B5 

ITrSs1 -0.330936629 -0.344050886 -0.338865722 -0.329220395 -0.338374972 

ITrSs2 -0.349822408 -0.361325095 -0.322369282 -0.355799453 -0.360037656 

ITrSs3 -0.33159213 -0.337661701 -0.350282368 -0.338207048 -0.32844632 

ITrSs4 -0.362762369 -0.33632417 -0.362588849 -0.356214232 -0.351395988 

−h ∑ ℧ij 

m

i=1

𝑙𝑛℧ij  
-1.375113537 -1.379361852 -1.374106221 -1.379441128 -1.378254936 

0

0.05

0.1

0.15

0.2

0.25

0.3

B1 B2 B3 B4 B5

0.244132985

0.15660217

0.264887361

0.154968802

0.179408682
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Table 4. Normalized an aggregated matrix based on CoCoSo-TriNSs 

 

Table 5. Weighted decision matrix based on CoCoSo-TriNSs 

 

Table 6. Powe of Weighted decision matrix based on CoCoSo-TriNSs 

 

Table 7. Various scores of candidates 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig.3. Final Score for various ITrSs candidates 

 

7. Future directions 

In point of fact, there are still questions that need answers from communities. The fundamental 

objective is to advance the intelligence level of cars within a low-carbon transportation system in order 

 B1 B2 B3 B4 B5 

ITrS1 0 0.232300885 0.291223404 0 0.233743409 

ITrS2 0.464882943 1 0 0.97761194 1 

ITrS3 0.013377926 0.037610619 0.557180851 0.266169154 0 

ITrS4 1 0 1 1 0.625659051 

 B1 B2 B3 B4 B5 

ITrS1 0 0.036378823 0.077141399 0 0.041935597 

ITrS2 0.113493261 0.15660217 0 0.151499351 0.179408682 

ITrS3 0.003265993 0.005889905 0.147590165 0.041247915 0 

ITrS4 0.244132985 0 0.264887361 0.154968802 0.112248666 

 B1 B2 B3 B4 B5 

ITrS1 0 0.795650225 0.721240842 0 0.770453377 

ITrS2 0.829445018 1 0 0.996497271 1 

ITrS3 0.348810625 0.598260777 0.856480736 0.814549312 0 

ITrS4 1 0 1 1 0.919308384 

 Kia Kib Kic Rank 

ITrS1 0.169858453 1.672656822 1.605882339 4 

ITrS2 0.307824659 1.14460306 2.910247763 2 

ITrS3 0.195815279 1.713475377 1.851284357 3 

ITrS4 0.326501609 1.672656822 3.086824095 1 

ITrS1
15%

ITrS2
32%

ITrS3
18%

ITrS4
35%

ITrS1 ITrS2 ITrS3 ITrS4
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to make use of more potent digitalized services and cyber security technologies. This will be 

accomplished via the promotion of this direction. In accordance with the integrated control for low-

carbon transportation, it is desirable to investigate other new approaches such as detachable security 

technology and zero-knowledge proof. These hypothetical trajectories are presented in the following 

order: 

• The information and communication systems of automobiles, artificial intelligence, software, the 

Internet, and other technologies are deeply incorporated into the intelligent linked vehicles. 

• Combining several technologies in order to perform certain tasks has become more common in 

recent years, thanks both to the ongoing development of existing technologies and the birth of 

brand-new technologies in fields ranging from hardware design to software algorithms. However, 

these technologies are not coupled to a particular degree, and they also need a balance to be struck 

between their functions and their performances. 

• People will have a greater propensity to purchase electric cars when the policies that promote 

them and when environmental preservation are taken into consideration. The proliferation of 

electric cars has brought to light the pressing need to improve internet connectivity inside vehicles 

and their ability to communicate with one another. Then, when a significant number of electric 

cars are linked to the smart grid, the influence on the system of the smart grid will become more 

significant. In light of this, one of the potential areas of focus for future study is the integrated 

control issue of smart charging for electric vehicles and collaborative technology for smart grids. 

• Large amounts of disparate data coming from a variety of sources are required to ensure the safety 

of intelligent transportation systems. Zero-knowledge proof is progressively being included in 

intelligent transportation systems in order to guarantee the system's computational security. The 

goal of zero-knowledge proof is to convince the verifier that the prover is in possession of the 

proof without revealing any confidential information. 

• In light of the fact that low-carbon transport is still in its infancy, it is still required to devise high-

level policy and speed up technological innovation. 

 

8. Conclusion  

Most recent studies emphasized that energy and transportation systems are becoming more intelligent, 

sustainable, and efficient courtesy to digital technologies like sensors, 5G, IoT, and data trading. 

Hence, this article begins by providing an introduction to the idea of low-carbon transport as well as 

its historical context. This is done in light of the growing focus on attaining low-carbon transport and 

the requirement of securing the system via the use of Cybersecurity technology هn the era of intelligent 

transportation. After that, this article classifies and reviews emerging defense technologies from the 

aspects of data security, network management security, and network application security, covering 

up-to-date technical advances that have been contributing to communities. The classification and 

review process based on identifying typical attacks within the ecosystem of a low-carbon 

transportation system, and it covers recent technical advancements that have been helping 

communities. Also, evaluating the transportation enterprises which embracing our notion of deploying 

technologies that support cybersecurity toward safeguarding smart grid and information against any 

attack. Through the survey that was conducted for the enterprises, we communicated with four ITrSs 

which contribute to the evaluation process. 

Hence, we constructed robust hybrid model which relied on mathematical techniques of MCDM 

techniques. These techniques are hybridized with uncertainty theory of neutrosophic which has main 

role of supporting MCDM techniques in situations characterized with ambiguity and inability to 

preferences and making decisions. Moreover, we employed entropy based on TriNSs to obtain weights 

for five benchmarks. The obtained benchmarks’ weights are contributed to the process of ranking four 

ITrSs through multiplying the weights by normalized matrix. This matrix generated from utilizing 

CoCoSo based on TriNSs which responsible for ranking ITrSs after that recommending the best and 

worst ITrS. 
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In addition to the existing contribution, this article highlighted several future directions that cover the 

cyber-secure low-carbon transportation system from the evolution of vehicles, compatibility of 

defense technologies integration, and potential impact on unlocking the cyber security and system 

reliability. These future directions cover all these topics and more. 
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Abstract: : In 1934, Marty introduced the concept of hyperstructures, which serves as a 

generalization of algebraic structures. Hyperstructures have applications in various fields, 

including biology, where they prove useful for analyzing the different types of hyperstructures in 

inheritance. On the other hand, NeutroHyperstructures combine Neutrosophic sets with 

hyperstructures, offering a promising avenue to handle uncertainty in inheritance analysis. Inspired 

by the intriguing variety of hyperstructures observed in inheritance phenomena, this paper takes 

on the purpose of thoroughly examining the types of NeutroHyperstructures present in multiple 

biological inheritance examples. The study focuses on analyzing inheritance patterns in Mirabilis 

Jalapa flowers, Shorthorn Cattle coat color, and blood types (ABO, ABO with rhesus, MN, MN with 

rhesus, and the Kidd system) through the lens of NeutroHyperstructures. Through this meticulous 

analysis, the research aims to contribute significant insights into the genetic inheritance processes, 

unveiling the role of NeutroHyperstructures in governing diverse biological traits. The findings 

offer valuable implications for the field of mathematical biology, presenting novel perspectives on 

inheritance modeling and establishing the potential of NeutroHyperstructures to effectively address 

uncertainty in genetics and inheritance studies. This study fosters a deeper understanding of 

complex biological inheritance and opens new avenues for practical applications in the realm of 

genetics and related disciplines. 

Keywords: Biological Inheritance; Hyperstructures; Hypergroup; NeutroHyperstructures; 

NeutroHypergroup 

 

 

1. Introduction 

In 1995, Smarandache introduced the notion of Neutrosophy as a new branch in philosophy. 

Initially, ideas were seen as either "True" or "False". However, in neutrosophic concepts, ideas can be 

viewed as "True", "False" or "Indeterminate". One of the research related to neutrosophic sets is the 

neutrosophic quadruple set on algebraic structures [1-2].  Neutrosophic sets find many applications 

in various fields, including on Economics [3], supply chain [4], and operations research [5]. As 

neutrosophic research develops, these concepts can be applied to abstract structures. One such 

research development is NeutroAlgebra, introduced by Smarandache in 2019 [6 - 7]. In the 

NeutroAlgebra concept, operations are partially well-defined, partially false, and partially 

indeterminate, while  axioms is partially true, partially false, and partially indeterminate.  

On the other hand, in 1934 Marty introduced the concept of hyperstructures, a generalization of 

algebraic structures [9]. By applying the concept of neutrosophy to hyperstructures, a new concept 

called NeutroHyperstructures was defined [10-11]. on of the research developments in 
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NeutroHyperstructures is the definition of LA-Hyperstructures by Mirvakili, et al., namely Neutro-

LA-Semihypergroup and Neutro-𝐻𝑣-Semihypergroup [12].   

Furthermore, hyperstructures have numerous applications in different fields including Physics 

[13], Chemistry [14], and Biology [15 – 16]. Inspired by NeutroHyperstructures and the applications 

of hyperstructures in Chemistry, the authors studied the applications of NeutroHypestructures in 

Chemical reactions [17].  

This paper aims to analyze the types of NeutroHyperstructures in several examples of biological 

inheritance. The examples examined in this paper include Mirabilis Jalapa flowers, coat color of 

Shorthorn Cattle, ABO blood type, ABO with rhesus, MN, MN with rhesus, and kidd system. This 

paper is organized as follows: After the Introduction, Section 2 presents the basic theories used in this 

study. In Section 3 we analyze the NeutroHyperstructures contained in Biological Inheritance, 

focusing on examples like Mirabilis Jalapa flowers, coat color of Shorthorn Cattle, ABO blood type, 

ABO with rhesus, MN, MN with rhesus, and Kidd system. Finally, in Section 4 we provide the 

conclusion based on the results of the research conducted. 

2. Preliminaries  

In this section, we recall some concepts of NeutroHyperstructures taken from Ibrahim and 

Agboola [10] and Al-Tahan et al. [11].  

 

Definition 2.1 [11] Let 𝐺 be a nonempty set and " ⊟ " be a hyperoperation in 𝐺. Then the operation 

" ⊗ " is called a NeutroHyperoperation in 𝐺 if some (or all) of the following conditions are satisfied 

with (𝑇, 𝐼, 𝐹) ∉ {(1,0,0), (0,0,1)}. 

1. There exist 𝑝, 𝑞 ∈ 𝐺 with 𝑝 ⊗ 𝑞 ⊆ 𝐺 (degree of truth "𝑇") 

2. There exist 𝑝, 𝑞 ∈ 𝐺 with 𝑝 ⊗ 𝑞 ⊈ 𝐺 (degree of falsity "𝐹") 

3. There exist 𝑝, 𝑞 ∈ 𝐺 with 𝑝 ⊗ 𝑞 is indeterminate in 𝐺 (degree of indeterminacy "𝐼") 

 

Example 2.2 Let 𝐺 = {𝑢, 𝑣, 𝑤} and define a hyperoperation " ⊗ " as follows. 

Table 1. (𝐺,⊗) 

 

Then, (𝐺,⊗)  is a NeutroHyperoperation because there exist 𝑢, 𝑣 ∈ 𝐺  such that 𝑢 ⊗ 𝑣  is 

indeterminate.  

 

Definition 2.3 [11] Let 𝐺 be a nonempty set and " ⊗ " be a hyperoperation in 𝐺. Then " ⊗ " is 

called AntiHyperoperation in 𝐺 if for every 𝑝, 𝑞 ∈ 𝐺, 𝑝 ⊗ 𝑞 ⊈ 𝐺. 

 

Example 2.4 Based on Example 2.2, ({𝑢, 𝑤},⊗) is an AntiHyperoperation since 𝑤 ⊗ 𝑤 = 𝑣 ⊈ {𝑢, 𝑤}.  

 

Definition 2.5 [11] Let 𝐺 be a nonempty set and " ⊗ " be a hyperoperation on 𝐺. Then " ⊗ " is 

called NeutroAssociative on 𝐺 if there exist 𝑝, 𝑞, 𝑟, 𝑥, 𝑦, 𝑧, 𝑎, 𝑏, 𝑐 ∈ 𝐺 that satisfiy some (or all) of the 

following conditions with (𝑇, 𝐼, 𝐹) ∉ {(1,0,0), (0,0,1)}. 
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1. 𝑝 ⊗ (𝑞 ⊗ 𝑟) = (𝑝 ⊗ 𝑞) ⊗ 𝑟 (degree of truth "𝑇")  

2. 𝑥 ⊗ (𝑦 ⊗ 𝑧) ≠ (𝑥 ⊗ 𝑦) ⊗ 𝑧 (degree of falsity "𝐹") 

3. 𝑎 ⊗ (𝑏 ⊗ 𝑐) is indeterminate or (𝑎 ⊗ 𝑏) ⊗ 𝑐 is indeterminate (degree of indeterminacy "𝐼") 

 

Example 2.6 Based on Example 2.2, (𝐺,⊗) is NeutroAssociative since there exists 𝑢, 𝑣, 𝑤 ∈ 𝐺 such 

that 𝑢 ⊗ (𝑣 ⊗ 𝑤) is indeterminate.  

 

Definition 2.7 [11] Let 𝐺 be a nonempty set and " ⊗ " be a hyperoperation in 𝐺. Then " ⊗ " is 

called NeutroWeakAssociative in 𝐺 if there exists 𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑧, 𝑝, 𝑞, 𝑟 ∈ 𝐺 that satisfy some (or all) of 

the following conditions with (𝑇, 𝐼, 𝐹) ∉ {(1,0,0), (0,0,1)}. 

1. [𝑎 ⊗ (𝑏 ⊗ 𝑐)] ∩ [(𝑎 ⊗ 𝑏) ⊗ 𝑐] ≠ ∅ (degree of truth "𝑇") 

2. [𝑥 ⊗ (𝑦 ⊗ 𝑧)] ∩ [(𝑥 ⊗ 𝑦) ⊗ 𝑧] = ∅ (degree of falsity "𝐹") 

3. 𝑝 ⊗ (𝑞 ⊗ 𝑟) is indeterminate or (𝑝 ⊗ 𝑞) ⊗ 𝑟 is indeterminate (degree of indeterminacy "𝐼") 

 

Example 2.8 Based on Example 2.2, (𝐺,⊗) is NeutroWeakAssociative since there exists 𝑢, 𝑣, 𝑤 ∈ 𝐺 

such that 𝑢 ⊗ (𝑣 ⊗ 𝑤) is indeterminate.  

 

Definition 2.9 [11] Let 𝐺 be a nonempty set and " ⊗ " be a hyperoperation in 𝐺. Then (𝐺,⊗) is 

called a NeutroHypergroupoid if " ⊗ " is a NeutroHyperoperation, a NeutroSemihypergroup if " ⊗

"  is NeutroAssociative but not an AntiHyperoperation, and Neutro 𝐻𝑣 -semigroup if " ⊗ "  is 

NeutroWeakAssociative but not an AntiHyperoperation. 

 

Definition 2.10 [10] A NeutroHypergroupoid (𝐺,⊗)  is called a NeutroHypergroup if 𝐺  is a 

NeutroSemihypergroup and there exist 𝑒, 𝑓, 𝑔 ∈ 𝐺  that satisfy some (or all) of the following 

conditions with (T, I, F) ∉ {(1,0,0), (0,0,1)}. (This following condition is called a NeutroReproduction 

axiom). 

1. 𝑒 ⊗ 𝐺 = 𝐺 ⊗ 𝑒 = 𝐺 (degree of truth "𝑇") 

2. 𝑓 ⊗ 𝐺 ≠ 𝐺 ⊗ 𝑓 ≠ 𝐺 (degree of falsity "𝐹") 

3. 𝑔 ⊗ 𝐺 or 𝐺 ⊗ 𝑔 indeterminate (degree of indeteminacy "𝐼") 

 

Example 2.11 Let 𝐻 = {𝑓, 𝑦, 𝑚}. Define a hyperoperation " ⊗ " as follows. 

Table 2. (𝐻,⊗) 

 

One can easily see that (𝐻,⊗) is a NeutroHypergroup. 

3. Main Results 

In this section, the results of the research obtained are presented. In this section, "⊞" is defined 

as the result of mating.  
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Based on [16], in the case of flower color inheritance in the four o’clock plant (Mirabilis Jalapa), 

suppose 𝑅, 𝑃, and 𝑊 respectively represent the color of the flowers of Mirabilis Jalapa namely red, 

pink, and white. Let 𝐺 = {𝑅, 𝑃, 𝑊}, the result of (𝐺,⊞) is given as follows. 

Table 3. (𝐺,⊞) 

 
Theorem 3.1 (𝐺,⊞) is a NeutroHypergroup. 

Proof. It is clear that (𝐺,⊞) is not an Antihyperoperation. Next, 𝑃 ⊞ (𝑃 ⊞ 𝑃) = (𝑃 ⊞ 𝑃) ⊞ 𝑃 = 𝐺, 

an  𝑅 ⊞ (𝑊 ⊞ 𝑊) = 𝑃 ≠ {𝑅, 𝑃} = (𝑅 ⊞ 𝑊) ⊞ 𝑊 . Then, (𝐺,⊞)  is a NeutroSemihypergroup. 

Furthermore, for every 𝑃 ∈ 𝐺, 𝑃 ⊞ 𝐺 = 𝐺 ⊞ 𝑃 = 𝐺 , 𝑅 ⊞ 𝐺 = 𝐺 ⊞ 𝑅 ≠ 𝐺 . Thus, (𝐺,⊞)  is a 

NeutroHypergroup.  

 

Remark 3.2 Based on [16], (𝐺,⊞)  is not a Neutro𝐻𝑣 -semigroup because 𝐺  is a 𝐻𝑣 -semigroup. 

Clearly, there exists no element in 𝐺  that satisfies falsify or the indeterminacy for Neutro𝐻𝑣 -

semigroup. 

Furthermore, based on [16], in the case of coat color inheritance of Shorthorn Cattle, suppose 

𝑅, 𝐺, and 𝑊 represent the colors of the Shorthorn Cattle coat, which respectively state red, reddish 

gray, and white. Let 𝐾 = {𝑅, 𝐺, 𝑊}, the result of (𝐾,⊞) is given as follows. 

Table 4. (𝐾,⊞) 

 
Theorem 3.3 (𝐾,⊞) is a NeutroHypergroup. 

Proof. It is clear that (𝐾,⊞) is not an Antihyperoperation. Next, 𝐺 ⊞ (𝐺 ⊞ 𝐺) = (𝐺 ⊞ 𝐺) ⊞ 𝐺 = 𝐾 

and 𝑅 ⊞ (𝑊 ⊞ 𝑊) = 𝐺 ≠ {𝐺, 𝑊} = (𝑅 ⊞ 𝑊) ⊞ 𝑊 . Then, (𝐾,⊞)  is a NeutroSemihypergroup. 

Furthermore, 𝑅 ⊞ 𝐾 = 𝐾 ⊞ 𝑅 ≠ 𝐾 and 𝐺 ⊞ 𝐾 = 𝐾 ⊞ 𝐺 = 𝐾. Thus, (𝐺,⊞) is a NeutroHypergroup. 

Remark 3.4 (𝐾,⊞) is not a Neutro𝐻𝑣-semigroup. The reason is same as in Remark 3.2. 

 

Next, we want to analyze NeutroHyperstructures in the inheritance of traits from blood groups 

including the ABO, MN, ABO with Rhesus, MN with Rhesus systems, and Kidd System. 

The ABO blood group system was introduced by Karl Landsteiner in 1900 [18]. Based on [16], 

suppose 𝑀 = {𝑂, 𝐴, 𝐵, 𝐴𝐵}  represents the set of ABO system blood groups. The result (𝑀,⊞) is 

given as follows. 

Table 5. (𝑀,⊞) 

 
Theorem 3.5 (𝑀,⊞) is a NeutroHypergroup. 

Proof. It is clear that (𝑀,⊞) is not an Antihyperoperation. Next, 𝑂 ⊞ (𝑂 ⊞ 𝑂) = (𝑂 ⊞ 𝑂) ⊞ 𝑂 and, 

𝑂 ⊞ (𝐴 ⊞ 𝐴𝐵) = {𝑂, 𝐴, 𝐵} ≠ {𝐴, 𝐵, 𝐴𝐵} = (𝑂 ⊞ 𝐴) ⊞ 𝐴𝐵. Then, (𝑀,⊞) is a NeutroSemihypergroup. 

Furthermore, 𝐴 ⊞ 𝑀 = 𝑀 ⊞ 𝐴 = 𝑀  and 𝑂 ⊞ 𝑀 = 𝑀 ⊞ 𝑂 ≠ 𝑀 . Thus, (𝑀,⊞)  is a 

NeutroHypergroup. 

 

Theorem 3.6 Let 𝑀′ = {𝑂, 𝐴, 𝐵} and 𝑀" = {𝑂, 𝐵, 𝐴𝐵}. Then (𝑀′,⊞) is a NeutroSubhypergroup and 

(𝑀",⊞) is a NeutroSemihypergroup. 
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Proof. First, we want to show that (𝑀′,⊞) is a NeutroSemihypergroup. It is clear that (𝑀′,⊞) is not 

an Antihyperstructure. Next, from Theorem 3.5, we can deduce that (𝑀′,⊞)  is a 

NeutroSemihypergroup. Next, 𝑂 ⊞ 𝑀′ = 𝑀′ ⊞ 𝑂 = 𝑀′ and 𝐵 ⊞ 𝑀′ = 𝑀′ ⊞ 𝐵 ≠ 𝑀 . Thus, (𝑀′,⊞) 

is a NeutroSubhypergroup. Next, we want to show that (𝑀",⊞) is a NeutroSemihypergroup. Next, 

𝐵 ⊞ (𝐵 ⊞ 𝐵) = (𝐵 ⊞ 𝐵) ⊞ 𝐵  and for every 𝑂 ⊞ (𝑂 ⊞ 𝐴𝐵) = {𝑂, 𝐴, 𝐵} ≠ {𝐴, 𝐵} = (𝑂 ⊞ 𝑂) ⊞

𝐴𝐵.Thus, (𝑀",⊞) is a NeutroSemihypergroup.  

 

Remark 3.7 (𝑀",⊞) is not a NeutroSubhypergroup since it does not satisfy the NeutroReproduction 

axiom.  

 

Theorem 3.8 Let 𝑀3 = {𝐴, 𝐵, 𝐴𝐵}. Then, (𝑀3,⊞) is a NeutroSubhypergroup 

Proof. The proof is similar to that of Theorem 3.5. 

 

Furthermore, we want to include the rhesus factor in the ABO blood group system. The rhesus 

(Rh) blood group system was discovered by Karl Landsteiner and Alexander S. Wiener in 1940 [19]. 

Let 𝑀 = {𝑂, 𝐴, 𝐵, 𝐴𝐵} represent the set of ABO blood group system, and 𝑅 = {𝑅ℎ+, 𝑅ℎ−} is represent 

the rhesus set. We obtain the ABO blood group set with rhesus 

𝑁 = 𝑀 × 𝑅 = {𝑂−, 𝑂+, 𝐴−, 𝐴+, 𝐵−, 𝐵+, 𝐴𝐵+, 𝐴𝐵−}. 

(𝑁,⊞) is presented by Table 8. Based on Table 8, we have the following result. 

 

Theorem 3.9 (𝑁,⊞) is a NeutroHypergroup. 

Proof. It is clear that (𝑁,⊞) is not an AntiHyperoperation. Next, 𝑂− ⊞ (𝑂− ⊞ 𝑂−) = (𝑂− ⊞ 𝑂−) ⊞

𝑂− and 𝑂+ ⊞ (𝐴𝐵− ⊞ 𝐴𝐵−) = {𝐴+ , 𝐴−𝐵+, 𝐵−𝑂+, 𝑂−} ≠ {𝐴𝐵+, 𝐴𝐵−, 𝐴+, 𝐴−, 𝐵+, 𝐵−} = (𝑂+ ⊞ 𝐴𝐵−) ⊞

𝐴𝐵−. Then, (𝑁,⊞) is a NeutroSemihypergroup. Now 𝐴+ ⊞ 𝑁 = 𝑁 ⊞ 𝐴+ = 𝑁 and 𝐵− ⊞ 𝑁 = 𝑁 ⊞

𝐵− = 𝑁. Thus, (𝑁,⊞) is a NeutroHypergroup. 

 

Theorem 3.10 Let 𝑁1 = {𝑂+, 𝑂−, 𝐴−}. Then, (𝑁1,⊞) is a NeutroHypergroup. 

 

Table 6. (𝑁1,⊞)  

 
Proof. 𝑂+ ⊞ (𝑂+ ⊞ 𝐴−) = 𝑂+ ⊞ {𝐴+, 𝐴−, 𝑂+, 𝑂−} =  undefined since 𝑂+ ⊞ 𝐴+  is undefined. So, 

(𝑁1,⊞) satisfies the degree of indeterminacy axiom for NeutroAssociative. Therefore, (𝑁1,⊞) is a 

NeutroSemihypergroup. To prove the NeutroReproduction Axiom, it is similar to Theorem 3.9. Thus, 

(𝑁1,⊞) is a NeutroHypergroup. 

 

Remark 3.11 Based on Table 8, it is obvious that ({𝑂+, 𝑂− , 𝐵−},⊞) is a NeutroHypergroup. 

 

Theorem 3.12 Let 𝑁2 = {𝑂+, 𝑂−, 𝐴+, 𝐴− , 𝐵−}. Then, (𝑁2,⊞) is a NeutroHypergroup. 

Proof. The proof is similar to that of Theorem 3.10. 

 

Theorem 3.13 Let 𝑁3 = {𝑂+, 𝑂−, 𝐴+, 𝐴− , 𝐵+, 𝐵−}. Then, (𝑁3,⊞) is a NeutroHypergroup. 

Proof. The proof is similar to that of Theorem 3.10. 
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Next, we want to investigate the NeutroHyperstructures related to the MN blood group. This 

blood group system was discovered by Karl Landsteiner and P. Levine in 1927 [15]. Suppose 𝑋 is the 

set of possible blood types possessed by the marriage of two individuals, namely 𝑋 = {𝑀, 𝑁, 𝑀𝑁}. 

(𝑋,⊞) is presented in Table 9. 

 

Theorem 3.14 (𝑋,⊞) is a NeutroHypergroup. 

Proof. The proof is similar to that of Theorem 3.10. 

 

Furthermore, we want to include the rhesus factor in the 𝑀𝑁 blood group. Let 𝑋 = {𝑀, 𝑁, 𝑀𝑁} 

and 𝑅 = {𝑅ℎ+, 𝑅ℎ−}. We get 𝑃 = 𝑋 × 𝑅 = {𝑀+, 𝑀−, 𝑁+, 𝑁−, 𝑀𝑁+, 𝑀𝑁−}. (𝑃,⊞) is presented in Table 

10.  

 

Theorem 3.15 (𝑃,⊞) is a NeutroHypergroup. 

Proof. The proof is similar to that of Theorem 3.10. 

 

Next, we want to analyze the NeutroHyperstructures contained in the Kidd blood group. Kidd 

blood group was discovered in 1951 in a patient named Mrs. Kidd [20]. The phenotypes of the Kidd 

blood group are as follows. 

Table 7. Phenotypes of Kidd Blood Groups [20] 

Phenotypes Frequency 

𝐽𝑘(𝑎+𝑏+) 50% Caucasians, 41% Blacks, 49% Asians 

𝐽𝑘(𝑎+𝑏−) 26% Caucasians, 51% Blacks, 23% Asians 

𝐽𝑘(𝑎−𝑏+) 23% Caucasians, 8% Blacks, 27% Asians 

𝐽𝑘(𝑎−𝑏−) 0.9% Polynesians 

 

Table 8. (𝑁,⊞) 
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⊞ 𝑂+ 𝑂− 𝐴+ 𝐴− 𝐵+ 𝐵− 𝐴𝐵+ 𝐴𝐵− 

𝑂+ 𝑂+ 

𝑂− 

𝑂+ 

𝑂− 

𝐴+ 

𝐴− 

𝑂+ 

𝑂− 

𝐴+ 

𝐴− 

𝑂+ 

𝑂− 

𝐵+ 

𝐵− 

𝑂+ 

𝑂− 

𝐵+ 

𝐵− 

𝑂+ 

𝑂− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝑂− 𝑂+ 

𝑂− 

𝑂− 𝐴+ 

𝐴− 

𝑂+ 

𝑂− 

𝐴− 

𝑂− 

𝐵+ 

𝐵− 

𝑂+ 

𝑂− 

𝐵− 

𝑂− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴− 

𝐵− 

𝐴+ 𝐴+ 

𝐴− 

𝑂+ 

𝑂− 

𝐴+ 

𝐴− 

𝑂+ 

𝑂− 

𝐴+ 

𝐴− 

𝑂+ 

𝑂− 

𝐴+ 

𝐴− 

𝑂+ 

𝑂− 

𝑁 𝑁 𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴− 𝐴+ 

𝐴− 

𝑂+ 

𝑂− 

𝐴− 

𝑂− 

𝐴+ 

𝐴− 

𝑂+ 

𝑂− 

𝐴− 

𝑂− 

𝑁 𝐴𝐵− 

𝐴− 

𝐵− 

𝑂− 

𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴𝐵− 

𝐴− 

𝐵− 

𝐵+ 𝐵+ 

𝐵− 

𝑂+ 

𝑂− 

𝐵+ 

𝐵− 

𝑂+ 

𝑂− 

𝑁 𝑁 𝐵+ 

𝐵− 

𝑂+ 

𝑂− 

𝐵+ 

𝐵− 

𝑂+ 

𝑂− 

𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐵− 𝐵+ 

𝐵− 

𝑂+ 

𝑂− 

𝐵− 

𝑂− 

𝑁 𝐴𝐵− 

𝐴− 

𝐵− 

𝑂− 

𝐵+ 

𝐵− 

𝑂+ 

𝑂− 

𝐵− 

𝑂− 

𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴𝐵− 

𝐴− 

𝐵− 

𝐴𝐵+ 𝐴+ 

𝐴− 

𝑂+ 

𝑂− 

𝐴+ 

𝐴− 

𝑂+ 

𝑂− 

𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴𝐵− 𝐴+ 

𝐴− 

𝑂+ 

𝑂− 

𝐴− 

𝐵− 

𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴𝐵− 

𝐴− 

𝐵− 

𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴𝐵− 

𝐴− 

𝐵− 

𝐴𝐵+ 

𝐴𝐵− 

𝐴+ 

𝐴− 

𝐵+ 

𝐵− 

𝐴𝐵− 

𝐴− 

𝐵− 

 

Table 9. (𝑋,⊞) 

⊞ 𝑀 𝑁 𝑀𝑁 

𝑀 𝑀 𝑀, 𝑀𝑁 𝑀𝑁 

𝑁 𝑀, 𝑀𝑁 𝑋 𝑁, 𝑀𝑁 

𝑀𝑁 𝑀𝑁 𝑁, 𝑀𝑁 𝑁 
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Table 10. (𝑃,⊞) 

⊞ 𝑀+ 𝑀− 𝑁+ 𝑁− 𝑀𝑁+ 𝑀𝑁− 

𝑀+ 𝑀+ 

𝑀− 

𝑀+ 

𝑀− 

𝑀𝑁+ 

𝑀𝑁− 

𝑀𝑁+ 

𝑀𝑁− 

𝑀+ 

𝑀− 

𝑀𝑁+ 

𝑀𝑁− 

𝑀+ 

𝑀− 

𝑀𝑁+ 

𝑀𝑁− 

𝑀− 𝑀+ 

𝑀− 

𝑀− 𝑀𝑁+ 

𝑀𝑁− 

𝑀𝑁− 𝑀+ 

𝑀− 

𝑀𝑁+ 

𝑀𝑁− 

𝑀− 

𝑀𝑁− 

𝑁+ 𝑀𝑁+ 

𝑀𝑁− 

𝑀𝑁+ 

𝑀𝑁− 

𝑁+ 

𝑁− 

𝑁+ 

𝑁− 

𝑁+ 

𝑁− 

𝑀𝑁+ 

𝑀𝑁− 

𝑁+ 

𝑁− 

𝑀𝑁+ 

𝑀𝑁− 

𝑁− 𝑀𝑁+ 

𝑀𝑁− 

𝑀𝑁− 𝑁+ 

𝑁− 

𝑁− 𝑁+ 

𝑁− 

𝑀𝑁+ 

𝑀𝑁− 

𝑁− 

𝑀𝑁− 

𝑀𝑁+ 𝑀+ 

𝑀− 

𝑀𝑁+ 

𝑀𝑁− 

𝑀+ 

𝑀− 

𝑀𝑁+ 

𝑀𝑁− 

𝑁+ 

𝑁− 

𝑀𝑁+ 

𝑀𝑁− 

𝑁+ 

𝑁− 

𝑀𝑁+ 

𝑀𝑁− 

𝑃 𝑃 

𝑀𝑁− 𝑀+ 

𝑀− 

𝑀𝑁+ 

𝑀𝑁− 

𝑀− 

𝑀𝑁− 

𝑁+ 

𝑁− 

𝑀𝑁+ 

𝑀𝑁− 

𝑁− 

𝑀𝑁− 

𝑃 𝑀− 

𝑁− 

𝑀𝑁− 

 

Furthermore, let 𝑌 = {𝐽𝑘(𝑎+𝑏+), 𝐽𝑘(𝑎+𝑏−), 𝐽𝑘(𝑎−𝑏+), 𝐽𝐾(𝑎−𝑏−)}. The result of (𝑌,⊞) is in Table 11. 

(Note : Here, 𝐽𝑘(𝑎+𝑏+) ⊞ 𝐽𝑘(𝑎+𝑏+) = {𝐽𝑘(𝑎+𝑎+) , 𝐽𝑘(𝑎+𝑏+)}. We ignore 𝐽𝑘(𝑎+𝑎+) because it is not in the 

phenotypes. Here, 𝐽𝑘(𝑎+𝑏+) ⊞ 𝐽𝑘(𝑎+𝑏+) = 𝐽𝑘(𝑎+𝑏+)). 

Table 11. (𝑌,⊞) 

⊞ 𝐽𝑘(𝑎+𝑏+) 𝐽𝑘(𝑎+𝑏−) 𝐽𝑘(𝑎−𝑏+) 𝐽𝑘(𝑎−𝑏−) 

𝐽𝑘(𝑎+𝑏+) 𝐽𝑘(𝑎+𝑏+) 𝐽𝑘(𝑎+𝑏+) 

𝐽𝑘(𝑎+𝑏−) 

𝐽𝑘(𝑎+𝑏+) 

𝐽𝑘(𝑎−𝑏+) 

𝐽𝑘(𝑎+𝑏−) 

𝐽𝑘(𝑎−𝑏+) 

𝐽𝑘(𝑎+𝑏−) 𝐽𝑘(𝑎+𝑏+) 

𝐽𝑘(𝑎+𝑏−) 

𝐽𝑘(𝑎+𝑏−) 𝐽𝑘(𝑎+𝑏+) 

𝐽𝑘(𝑎−𝑏−) 

𝐽𝑘(𝑎+𝑏−) 

𝐽𝑘(𝑎−𝑏−) 

𝐽𝑘(𝑎−𝑏+) 𝐽𝑘(𝑎+𝑏+) 

𝐽𝑘(𝑎−𝑏+) 

𝐽𝑘(𝑎+𝑏+) 

𝐽𝑘(𝑎−𝑏−) 

𝐽𝑘(𝑎−𝑏+) 𝐽𝑘(𝑎−𝑏−) 

𝐽𝑘(𝑎−𝑏+) 

𝐽𝐾(𝑎−𝑏−) 𝐽𝑘(𝑎+𝑏−) 

𝐽𝑘(𝑎−𝑏+) 

𝐽𝑘(𝑎+𝑏−) 

𝐽𝑘(𝑎−𝑏−) 

𝐽𝑘(𝑎−𝑏−) 

𝐽𝑘(𝑎−𝑏+) 

𝐽𝑘(𝑎−𝑏−) 

 

Theorem 3.16 (𝑌,⊞) is a NeutroSemihypergroup.   

Proof. It is clear that (𝑌,⊞) is not an AntiHyperstructures. Next, 𝐽𝑘(𝑎+𝑏+) ⊞ (𝐽𝑘(𝑎+𝑏+) ⊞ 𝐽𝑘(𝑎+𝑏+)) =

(𝐽𝑘(𝑎+𝑏+) ⊞ 𝐽𝑘(𝑎+𝑏+)) ⊞ 𝐽𝑘(𝑎+𝑏+)  and 𝐽𝑘(𝑎+𝑏−) ⊞ (𝐽𝑘(𝑎+𝑏−) ⊞ 𝐽𝑘(𝑎−𝑏+)) =

{𝐽𝑘(𝑎+𝑏+), 𝐽𝑘(𝑎+𝑏−), 𝐽𝑘(𝑎−𝑏−)} ≠ {𝐽𝑘(𝑎+𝑏+), 𝐽𝑘(𝑎−𝑏−)} = (𝐽𝑘(𝑎+𝑏−) ⊞ 𝐽𝑘(𝑎+𝑏−)) ⊞ 𝐽𝑘(𝑎−𝑏+). 

Thus, (𝑌,⊞) is a NeutroSemihypergroup. 

 

Remark 3.17 (𝑌,⊞)  is not a NeutroHypergroup since (𝑌,⊞)  doesn’t satisfy the 

NeutroReproduction Axiom. 

 

Theorem 3.18 Let 𝑌1 = {𝐽𝑘(𝑎+𝑏+) , 𝐽𝑘(𝑎+𝑏−), 𝐽𝑘(𝑎−𝑏+)}. Then, (𝑌1,⊞) is a NeutroHypergroup 

Proof. The proof is similar to that of Theorem 3.10. 
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Remark 3.19 It is clear that (𝑌2 = {𝐽𝑘(𝑎+𝑏+), 𝐽𝑘(𝑎+𝑏−), 𝐽𝑘(𝑎−𝑏−)},⊞)  and (𝑌3 =

{𝐽𝑘(𝑎+𝑏+), 𝐽𝑘(𝑎+𝑏−), 𝐽𝑘(𝑎−𝑏−)},⊞) are NeutroHypergroups. 

4. Conclusions  

Based on the previous explanations, we have investigated NeutroHyperstructures related to 

color inheritance in Mirabilis Jalapa and coat color, as well as the inheritance of blood types ABO, 

ABO with rhesus, MN, MN with rhesus, and the Kidd system. The types of NeutroHyperstructures 

obtained include NeutroHypergroup for Mirabilis Jalapa, coat color, ABO blood groups, ABO with 

rhesus, MN blood groups, and MN with rhesus and NeutroSemihypergroup for Kidd Blood Groups. 

For future research, we can investigate the types of NeutroHyperstructures in other fields.  

 

5. Future Work 

For future research, we can investigate the types of NeutroHyperstructures in other fields. 
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ABSTRACT. Hyperalgebras and BCI algebras extend classical algebraic structures, and these specific structures offer tools

and frameworks for studying various operations and logic in algebra. Many authors continued their research in hyperstruc-

tures to explore different logical algebras. SuperHyper Algebra is one of the significant advancements in algebra which has

been developed recently. In this article, we propose a generalized concept, namely, SuperHyper BCI-Algebra, and investigate

some of its properties. We also define SuperHyper Subalgebra, and some of its characteristics are examined. Finally, we

extend our vision to Neutrosophic SuperHyper BCI-Algebra.

Keywords: Hyper BCI-Algebra, SuperHyper operation, SuperHyper Groupoid, SuperHyper BCI-Algebra, SuperHyper Sub-

algebra and Neutrosophic SuperHyper BCI-Algebra.

—————————————————————————————————————————————————

1. Introduction

The conceptual frameworks of fuzzy logic and fuzzy sets have been widely applied in several situa-

tions that involve uncertainty. This idea was first proposed by L. Zadeh [1]. As a result of an element’s

ambiguity or partial belongingness to the set, fuzzy sets are effective at dealing with uncertainty. Fuzzy

set theory does not provide for hesitation or ambiguity in membership degrees. Atanassov [2] initiated

the idea of intuitionistic fuzzy sets to include uncertainty in membership degrees. Still, some scenar-

ios cannot address issues with incomplete data. Smarandache [3] developed neutrosophic set theory,

a key factor dealing with indeterminacy. Sets containing elements that have independent degrees of

truth, indeterminate and false memberships over the unit interval -]0, 1[+ are called Neutrosophic sets.

Many applications of Neutrosophic logic have been developed, especially in Decision-Making diffi-

culties. The following articles highlight the theoretical developments of Neutrosophic logic [4, 5], and

its applications [6–9].
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The investigation of BCK-algebras was initiated by K. Iseki in 1996 [10, 11], which extended the

concepts of set-theoretic difference and propositional calculus. The algebraic representations of the set

difference and its properties from set theory and the implicational functor from logical systems com-

prise the class of logical algebras known as BCI-algebras. They are highly related to numerous logical

algebras and partially ordered commutative monoids. The combinators B, C, K, and I in combinatory

logic are the origins of their names [12]. F. Marty [13] proposed the hyperstructure theory (also known

as multialgebras), and numerous researchers have studied hyper BCK-algebras. The hyperstructure

theory has now been applied to a wide range of mathematical structures, with applications in both pure

and applied mathematics. Then, various researchers developed this new field. Many significant results

emerged throughout the following decades, but one of the most blooming hyperstructures has been

described since the 1970s. In [14], hyperstructures were applied to BCI-algebras and defined as hyper

BCI-algebra as a generalization of a BCK-algebra and various related characteristics were examined.

Hyper BCK-algebras is a natural evolution from classical BCK-algebras. In a standard BCK-algebra,

combining two elements yields another element, whereas in a Hyper BCK-algebra, combining two

elements results in a set. Also, many results have been studied on hyper BCK-algebras [15–17]. Re-

cently, the area of hyperstructure theory has received a lot of attention. Hyper BCK/BCI-algebras were

applied to various mathematical fields, such as topology, functional analysis, coding theory, group the-

ory, etc. Since then, a significant research on the theory of BCK-algebras has been published in the

literature. [18–21].

In [22], the authors extended the concept of fuzzy hyper BCK-subalgebras by introducing the con-

cept of fuzzy BCK-subalgebras and formulated the notion of extendable fuzzy BCK-subalgebras. Also,

the fuzzification of the implicative hyper BCK-ideals and their attributes are explored in [23]. In [24],

the notion of Intuitionistic fuzzy hyper BCK-Ideals of Hyper BCK-Algebra was introduced. A study

on intuitionistic fuzzy Lie sub-superalgebras and intuitionistic fuzzy ideals of Lie superalgebras was

published in [25]. Many researchers have also investigated the intuitionistic fuzzification of ideals and

subalgebras in BCK/BCI-algebras [26–30].

One of the developing fields during the last few decades is the study of the algebraic properties

of neutrosophic logic. In [31], Neutrosophic BCI/BCK algebra was introduced. Neutrosophic sub-

algebra and ideals in BCK/BCI algebra were extensively discussed in [32–36]. Theoretical aspects

concerned with introducing the concept of NeutroHyperGroups and presenting their basic properties

and examples were discussed in [37]. The conceptions of the BMBJ-Neutrosophic Hyper-BCK-Ideals,

MBJ-neutrosophic hyper BCK-ideal and MBJ neutrosophic strong and weak hyper BCK-ideal were in-

vestigated in [38, 39]. In [40], Smarandache initiated the most generalized algebra called SuperHyper

Algebras, and in [41], Smarandache defined a SuperHyperGraph (SHG) and added the SuperVertices

in classical HyperGraph. The most generalized algebra, SuperHyper Algebra, and numerous variations

of Hyper structures were the inspiration for this study. In this paper,
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• A generalized concept SuperHyper Algebra was extended to SuperHyper groupoids.

• A hybridization of BCI algebra and SuperHyper Algebra is explored as SuperHyper BCI-

Algebra over a SuperHyper groupoids.

• A framework including SuperHyper subalgebras, and Neutrosophic SuperHyper BCI-algebras

are discussed

The structure of the paper is organized as follows: In the preliminaries section, we present the fun-

damental concepts that are pertinent to this study. In the next section, we define SuperHyper groupoid

and SuperHyper BCI-Algebra and investigate some of its characteristics. In section 4, SuperHyper

subalgebra and its properties were discussed. Further, we generalize our perspective to Neutrosophic

SuperHyper BCI-Algebra. Finally, we have summarized our key findings and suggested avenues for

future research.

2. Preliminaries

Definition 2.1. [3] For any subset U of S, a neutrosophic set U on S is of the form U =

{(α, TU (α), IU (α), FU (α))|α ∈ S}, where TU , IU , FU : S → [0, 1] represents, truth, indeterminacy

and falsity membership functions respectively and 0 ≤ TU (α) + IU (α) + FU (α) ≤ 3.

Definition 2.2. [14] Consider a not empty set B with the binary operation ’◦’ and the constant 0. If

the ensuing axioms are true, then (B, ◦, 0) is known as a BCI-algebra,

(1) ((υ1 ◦ υ2) ◦ (υ1 ◦ υ3)) ◦ (υ3 ◦ υ2) = 0

(2) (υ1 ◦ (υ1 ◦ υ2)) ◦ υ2 = 0

(3) υ1 ◦ υ1 = 0

(4) υ1 ◦ υ2 = 0 and υ2 ◦ υ1 = 0 =⇒ υ1 = υ2

∀ υ1, υ2, υ3 ∈ B

Definition 2.3. [14] Consider a non-empty set B and ♢ : B × B → P ∗(B) where P ∗(B) represents

the power set of B \{0}. Let P , Q ⊆ B, then the notation P♢Q is the collection
⋃

p∈P,q∈Q
p♢q. Then

(B,♢) is said to be a hyper groupoid and ♢ is called a Hyperoperation on B. Also r ≪ s denotes

0 ∈ r♢s and for any two subsets P,Q of B, P ≪ Q means that ∀ p ∈ P , ∃ q ∈ Q such that p ≪ q.

Definition 2.4. [14] A hyper groupoid (B,♢) with a constant element 0 is called a hyper BCI-algebra

if it satisfies the following conditions:

(H1) (ζ♢η)♢(η♢θ) ≪ ζ♢η

(H2) (ζ♢η)♢θ = (ζ♢θ)♢η

(H3) ζ ≪ ζ

(H4) ζ ≪ η and η ≪ ζ =⇒ ζ = η

(H5) 0♢(0♢ζ) ≪ ζ
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∀ ζ, η, r ∈ B

Notation 1. [40] Pn
∗ (B) denotes the kth powerset of the set B and none of P i(B), i = 1, 2, ..., k

contain the empty set Φ.

Definition 2.5. [40] A classical - type Binary SuperHyper Operation ◦∗(2,k) is defined as follows:

◦∗(2,k : B2 → P k
∗ (B), where P k

∗ (B) is the kth - power set of the set B, with no empty-set Φ.

3. SuperHyper BCI-Algebra

In this section, we define SuperHyper BCI-Algebra and investigate some of its characteristics.

The following notation generalizes the notation x ∈ B to the power sets. This notation will help to

define algebraic structure in SuperHyper theory.

Notation 2. For a set B and an element τ , τ ≺ B denotes τ ∈ B. By induction, for a collection

C ∈ Pn
∗ (B) and an element τ , τ ≺ C denotes τ ≺ X for some X ∈ C.

The following example provides an overview of the above notation.

Example 3.1. Let B = {0, 1, 2, 3} and C = {{{0}, {1, 3}}, {{1}, {4, 3}}, {{1, 3}}} ∈ P 3
∗ (B) then

0 ≺ C, since 0 ∈ {0}, 0 ≺ {{0}} ∈ C. Similarly 1 ≺ C, 3 ≺ C and 4 ≺ C but 2 ⊀ C since 2 is not in

any of the collection of C.

Smarandache [40] has introduced the algebraic operations in SuperHyper theory. Here, an algebraic

operation in SuperHyper groupoid was investigated.

Definition 3.2. Let S denote a non-empty set and ⊘ be a SuperHyper operation on S defined as a

function ⊘ : S × S → Pn
∗ (S). Here Pn

∗ (S) denotes the nth powerset of the set S\Φ. For any two

subsets X and Y of S, X ⊘ Y is denotes the collection
⋃

x∈X,y∈Y
x⊘ y and for any two collection C and

D of P i
∗(S), C⊘D denotes the collection

⋃
X∈C,Y∈D

X ⊘ Y , ∀i = 1, 2, ..., n.

The set S with a SuperHyper operation ⊘ and all those above said notations is called as SuperHyper

groupoid and denoted by (S,⊘).

Notation 3. Furthermore, we say τ ≪ ρ if 0 ≺ τ ⊘ ρ ∈ Pn−1
∗ (S). For all X , Y ⊆ S, X ≪ Y

represents that ∀ x ∈ X , ∃ y ∈ Y such that x ≪ y and for every C and D ∈ P i
∗(S), C ≪ D means that

for every X ∈ C, ∃ Y ∈ D such that X ≪ Y , ∀i = 1, 2, ..., n.

Definition 3.3. A SuperHyper groupoid (S,⊘) that contains a constant 0 is described as a SuperHyper

BCI-algebra under the following conditions:

(SH1) (κ⊘ µ)⊘ (λ⊘ µ) ≪ κ⊘ λ

(SH2) (κ⊘ λ)⊘ µ = (κ⊘ µ)⊘ λ

(SH3) κ ≪ κ
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(SH4) κ ≪ λ and λ ≪ κ =⇒ κ = λ

(SH5) 0⊘ (0⊘ κ) ≪ κ

for every κ, λ, µ ∈ S

Example 3.4. Let S = {0, 1} and ⊘ : S × S → P 2
∗ (S). Consider the table below:

⊘ 0 1

0 {{0}, {0,1}} {{0},{1}}
1 {{1}} {{0},{1},{0,1}}

Then (S,⊘) is a SuperHyper BCI-algebra.

The examples below illustrate the existence of SuperHyper BCI-algebra.

Example 3.5. Suppose we have a hyper BCI-Algebra (S,♢, 0). A SuperHyper operation ⊘ on S is

defined as τ ⊘ ρ = Pn−1
∗ (τ♢ρ) for all τ, ρ ∈ S. Here (S,⊘) forms a SuperHyper BCI-algebra.

Example 3.6. Let ⊘ : S × S → Pn
∗ (S) be a SuperHyper operation on S = [0,∞). Then we define

(τ ⊘ ρ) as

(τ ⊘ ρ) =


Pn−1
∗ [0, τ ], if τ ≤ ρ

Pn−1
∗ (0, ρ], if τ > ρ ̸= 0

Pn−1
∗ {τ} = {τ}, if ρ = 0

for all τ, ρ ∈ S . Then (S,⊘) is a SuperHyper BCI-algebra.

The following theorem discusses some characteristics of SuperHyper BCI-algebra.

Proposition 3.7. In any SuperHyper BCI-algebra, the following holds.

(i) µ ≪ 0 =⇒ µ = 0

(ii) 0 ≺ µ⊘ (µ⊘ 0)

(iii) µ ≪ µ⊘ 0

(iv) 0⊘ (µ⊘ λ) ≪ λ⊘ µ

(v) X ≪ X
(vi) X ⊆ Y =⇒ X ≪ Y
(vii)X ≪ P i

∗({0}) =⇒ X = P i
∗({0}) ∀X ⊆ P i−1

∗ (S)

(viii) µ⊘ 0 ≪ Pn
∗ ({λ}) =⇒ µ ≪ λ

(ix) µ⊘ λ = Pn
∗ ({0}) =⇒ (µ⊘ κ)⊘ (λ⊘ κ) = Pn

∗ ({0}) and µ⊘ κ ≪ λ⊘ κ

(x) X ⊘ P i
∗({0}) = Pn

∗ ({0}) =⇒ X = P i
∗({0})∀X ⊆ P i−1

∗ ({0})
(xi) (X ⊘ Y)⊘ C = (X ⊘ C)⊘ Y
for all µ, λ, κ ∈ S and for all non-empty subsets X ,Y and C of P i

∗(S), i = 1, 2, ...n

Proof :
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(i) Let µ ≪ 0, then 0 ≺ µ⊘0. By (SH3), 0 ≪ 0, so that 0 ≺ 0⊘ (µ⊘0). Also, (0⊘0)⊘ (µ⊘0)

≪ 0⊘µ, which implies 0 ≪ 0⊘µ. Hence, 0 ≺ 0⊘(0⊘µ). Now, by (SH5), 0 ≺ 0⊘(0⊘µ) ≪
µ.Then 0 ≪ x. Therefore by (SH4), µ = 0

(ii) Since µ ≪ µ, 0 ≺ (µ⊘ 0)⊘ (µ⊘ 0) = (µ⊘ (µ⊘ 0))⊘ 0. Then ∃, a λ from µ⊘ (µ⊘ 0) such

that λ ≪ 0. By (i) λ = 0. Hence 0 ≺ µ⊘ (µ⊘ 0).

(iii) By (ii) it follows.

(iv) Since λ ≪ λ =⇒ 0⊘ (µ⊘ λ) ⊆ (λ⊘ λ)⊘ (µ⊘ λ) ≪ λ⊘ µ

(v) Since µ ≪ µ =⇒ X ≪ X ∀,X ∈ P 1
∗ (S). By induction it follwos that X ≪ X , ∀X ∈

P i
∗(S), i = 2, ...n

(vi) Trivial.

(vii) Let X ≪ P i
∗{0} and let µ ∈ X . Then µ ≪ 0 =⇒ µ = 0. Therefore X = P i

∗{0}.

(viii) We know that 0 ≺ (µ⊘ 0)⊘ λ= (µ⊘ λ)⊘ 0, so there exists µ ≺ µ⊘ λ such that 0 ≺ µ⊘ 0,

ie, µ ≪ 0, which implies that µ = 0 ≺ µ⊘ λ by(i). Hence µ ≪ λ.

(ix) Let λ ≪ κ .Then (µ⊘κ)⊘0 ⊆ (µ⊘κ)⊘(µ⊘λ) ≪ µ⊘λ (by SH1).Hence, (µ⊘κ)⊘0 ≪ µ⊘λ.

This means that for each a ≺ µ ⊘ κ, ∃ b ≺ (µ ⊘ λ) such that a ⊘ 0 ≪ {b}. Hence by (vii),

a⊘ b.Hence µ⊘ κ ≪ µ⊘ λ.

(x) It follows from (i).

(xi) It follows from (SH2)

4. SuperHyper Subalgebra

In this segment, we define SuperHyper subalgebra and examine a few of its characteristics.

Definition 4.1. Let (S,⊘) denotes the SuperHyper BCI-Algebra and S′ ⊂ S such that 0 ∈ S′. If S′

is a SuperHyper BCI-Algebra corresponding to the SuperHyper operation ⊘ on S, then S′ is called as

SuperHyper subalgebra of S.

Theorem 4.2. Let S′ be the subset of a SuperHyper BCI-algebra (S,⊘) such that S′ ̸= ø. Then S′ is

a SuperHyper subalgebra of S iff the restricted map ⊘|S′ : S′ × S′ → Pn
∗ (S

′) is a binary SuperHyper

operation.

Proof: (⇒) Obvious.

(⇐) It is easy to verify (SH1), (SH2),(SH3),(SH4) & (SH5). Hence it is need to show that 0 ∈ S′.

Since ⊘|S′ is a binary SuperHyper operation, τ ⊘ ρ ⊆ Pn−1
∗ (S′) ∀τ, ρ ∈ S′. Then τ ≪ τ ∀τ ∈ S′,

we have 0 ≺ τ ⊘ τ . Hence 0 ≺ Pn−1
∗ (S′) ie., 0 ∈ S′.

Example 4.3. Let (S,⊘) be a SuperHyper BCI-algebra as in example 3.6 and let S′ = [0, a] for every

a ∈ [0,∞). Then (S′,⊘) is a SuperHyper subalgebra.
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Proof: For any τ, ρ ∈ S′,

(τ ⊘ ρ) =


Pn−1
∗ [0, τ ], if τ ≤ ρ

Pn−1
∗ (0, ρ], if τ > ρ ̸= 0

Pn−1
∗ {τ} = {τ}, if ρ = 0

Clearly, Pn−1
∗ [0, τ ], Pn−1

∗ (0, ρ] and Pn−1
∗ {τ} are subsets of Pn

∗ ([0,∞)). Hence ⊘|S′ is a binary

SuperHyper operation from S′ × S′ → Pn
∗ (S

′).

Theorem 4.4. Consider a SuperHyper BCI-algebra (S,⊘). Then the set

K(S) = {τ ⊘ S|0⊘ τ = Pn
∗ ({0})}

is a SuperHyper subalgebra of S whensoever K(S) ̸= Φ.

Proof: Let τ, ρ ∈ K(S) and a ≺ τ ⊘ ρ. Then 0 ⊘ (τ ⊘ ρ) = (0 ⊘ ρ) ⊘ (τ ⊘ ρ) ≪ 0 ⊘ τ = 0.

Therefore by 3.7 (vii) 0 ⊘ (τ ⊘ ρ) = {0}. Hence τ ⊘ ρ ⊆ K(S). Hence by theorem 4.2 K(S) is a

non-empty SuperHyper subalgebra.

Theorem 4.5. Suppose there is a SuperHyper BCI-algebra defined by (S,⊘). Then S′
1 = {τ ∈

S|τ ⊘ (τ ⊘ 0) = 0} is a SuperHyper subalgebra of S whenever S′
1 ̸= Φ.

Proof: Proof follows from the proposition 3.7 and theorem 4.2.

Theorem 4.6. Let (S,⊘) be a SuperHyper BCI-algebra. If S′
2 = {τ ∈ S|0 ⊘ x = P ∗

n−1({0})} is

non-empty then S′
2 is SuperHyper subalgebra.

Proof: Let τ, ρ ∈ S′
2. Then 0 ⊘ τ = Pn−1

∗ ({0}) and 0 ⊘ ρ = Pn−1
∗ ({0}). Now, 0 ⊘ (τ ⊘ ρ) =

(0⊘ ρ)⊘ (τ ⊘ ρ) ≪ 0⊘ τ = Pn−1
∗ ({0}). Hence by proposition 3.7 (viii) 0⊘ (τ ⊘ ρ) = Pn−1

∗ ({0}).
Therefore, for any a ≺ τ ⊘ ρ, 0⊘ a = Pn−1

∗ ({0}). ie., a ∈ S′
2 which implies τ ⊘ ρ ⊆ Pn−1

∗ (S′
2).

5. Neutrosophic SuperHyper BCI-Algebra

In this section, the concept of Neutrosophic SuperHyper BCI-Algebra is introduced.

Definition 5.1. For any neutrosophic set A =< TA, IA, FA > in S we define the following notations.

(i) Let B be a subset of S. Then

TB = inf{T (τ)|τ ∈ B}, IB = inf{I(τ)|τ ∈ B}, FB = inf{F (τ)|τ ∈ B}.

(ii) Let Y be an element in P ∗
i (S). Then

TY = inf{T (X )|X ∈ Y}, IY = inf{I(X )|X ∈ Y}, FY = inf{F (X )|X ∈ Y}.

The following defines neutrosophic SuperHyper BCI-algebra.
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Definition 5.2. In the realm of SuperHyper BCI-algebras, let S be the designated algebraic structure,

and consider a neutrosophic set U =< TU , IU , FU > within S. We define U as a neutrosophic Super-

Hyper BCI-algebra of S when it adheres to the ensuing conditions for all elements τ and ρ in S.

T (τ ⊘ ρ) ≥ min(T (τ), T (ρ)), I(τ ⊘ ρ) ≥ min(I(τ), I(ρ)) & F (τ ⊘ ρ) ≤ max(F (τ), F (ρ)).

Example 5.3. Let S = {0, 1} and ⊘ : S × S → P 2
∗ (S). Consider the table below:

⊘ 0 1

0 {{0}} {{0}}
1 {{1}} {{0},{1},{0,1}}

Then (S,⊘) is a SuperHyper BCI-algebra.We characterize a neutrosophic set A on S by

S TA(τ) IA(τ) FA(τ)

0 0.71 0.63 0.18

1 0.53 0.42 0.67

Here T (0⊘ 1) = T ({{0}}) = 0.71 ≥ min(T (0), T (0)) = 0.53, Similarly we can verify for other

values. Therefore A is a neutrosophic SuperHyper BCI-algebra.

Example 5.4. Consider the SuperHyper BCI-algebra as in example 3.4 and a neutrosophic set de-

fined in the example 5.3. Here A is not Neutrosophic SuperHyper BCI-algebra because T (0 ⊘ 0) =

T ({{0}, {0, 1}}) = 0.53 ≱ min(T (0), T (0)) = 0.71.

Proposition 5.5. Let A be Neutrosophic SuperHyper BCI-algebra of S then the following holds. If

A =< TA, IA, FA > then there exist τ, ρ and γ ∈ S such that (i) TA(0) ≥ TA(τ), (ii)IA(0) ≥ IA(ρ)

and (iii)FA(0) ≤ FA(γ)

Proof:(i) By proposition 3.7 τ ≪ 0, then τ = 0, so that 0 ⊀ τ ⊘ 0, ∀τ ̸= 0. By definition

T (τ ⊘ 0) ≥ min(T (τ), T (0)).

Case:1 Suppose T (τ) ≤ T (0), then it is proved.

Case:2 If T (τ) > T (0), T (τ ⊘ 0) ≥ T (0), then ∃ κ ≺ τ ⊘ 0 such that T (κ) ≤ T (0).

Similarly, we can prove for Indeterminacy and Falsity membership.

6. Conclusion

We have introduced the SuperHyper Groupoid, SuperHyper BCI algebra, SuperHyper Subalgebra,

and Neutrosophic SuperHyper BCI-Algebra, which are the most extensive forms of algebras. With

appropriate examples, we have discussed the characterizations of SuperHyper BCI algebra and Super-

Hyper subalgebras. Finally, we expanded our notion to Neutrosophic SuperHyper BCI-Algebra. These

ideas will pave the way for additional theoretical research on SuperHyper theory. In [42] the exten-

sions soft set to the HyperSoft Set, IndetermSoft Set, IndetermHyperSoft Set, and TreeSoft Set, and

their practical applications are highlighted. The generalized notion of SuperHyper BCI algebra can be

S Santhakumar, I R Sumathi & J Mahalakshmi, A Novel Approach to the Algebraic Structure of
Neutrosophic SuperHyper Algebra

Neutrosophic Sets and Systems, Vol. 60, 2023                                                                              600



used to explore more hyper algebraic structures in the future, and it can be extended to rough sets, soft

sets and extensions of soft sets.
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Abstract: In this paper, we were keen to present the concept of the symbolic plithogenic differentials 

calculus, Where the symbolic plithogenic differentiable is defined. In addition, properties of the 

symbolic plithogenic differentiation are introduced. Also, we prove the derivation rules of the 

symbolic plithogenic functions. 

Keywords: symbolic plithogenic differentials; symbolic plithogenic functions; derivative symbolic 

plithogenic functions. 

 

 

1. Introduction and Preliminaries  

       To The genesis, origination, formation, development, and evolution of new entities through 

dynamics of contradictory and/or neutral and/or noncontradictory multiple old entities is known as 

plithogenic. Plithogeny advocates for the integration of theories from several fields. We use 

numerous "knowledges" from domains like soft sciences, hard sciences, arts and literature theories, 

etc. as "entities" in this study, this is what Smarandache introduced, as he presented a study on 

plithogeny, plithogenic set, logic, probability, and statistics [2], in addition to presenting introduction 

to the symbolic plithogenic algebraic structures (revisited), through which he discussed several ideas, 

including mathematical operations on plithogenic numbers [1]. Also, an overview of plithogenic set 

and symbolic plithogenic algebraic structures was discussed by him [3]. It is thought that the 

symbolic n-plithogenic sets are a good place to start when developing algebraic extensions for other 

classical structures including rings, vector spaces, modules, and equations [4-5-6-7]. 

 

    Alhasan also presented several papers on calculus, in which he discussed neutrosophic definite 

and indefinite integrals. He also presented the most important applications of definite integrals in 

neutrosophic logic [8-9].  

      Integration is important in human life, and one of its most important applications is the 

calculation of area, size and arc length. In our reality we find things that cannot be precisely defined, 
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and that contain an indeterminacy part. This is the reason for studying neutrosophic integration and 

methods of its integration in this paper. 

 Smarandache presented the division operation in the plithogenic field as follows [1]: 

Division of Symbolic Plithogenic Components 

𝑃𝑖

𝑃𝑗

= {

𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + ⋯ + 𝑥𝑗𝑃𝑗 + 𝑃𝑖         𝑥0 + 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑗 = 0    𝑖 > 𝑗

𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + ⋯ + 𝑥𝑖𝑃𝑖             𝑥0 + 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑖 = 1    𝑖 = 𝑗
∅                                                        𝑖 < 𝑗

 

where all coefficients 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑖 , …  ∈ SPS. 

Division of Symbolic Plithogenic Numbers 

Let consider two symbolic plithogenic numbers as below: 

𝑃𝑁𝑟 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 + ⋯ + 𝑎𝑟𝑃𝑟 

𝑃𝑁𝑠 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 + ⋯ + 𝑏𝑠𝑃𝑠 

𝑃𝑁𝑟

𝑃𝑁𝑠

= {
𝑛𝑜𝑛𝑒, 𝑜𝑛𝑒 𝑚𝑎𝑛𝑦   𝑟 ≥ 𝑠

∅                 𝑟 < 𝑠
 

This study covered a number of subjects; in the first, which included an introduction and information 

of plithogenic filed. We presented the symbolic plithogenic differentials calculusin the main 

discussion section. The paper's conclusion is provided in the final. 

Main Discussion  

The symbolic plithogenic differentials 

Definition 1 

Let  𝑓: 𝑆𝑃𝑆 → 𝑆𝑃𝑆, if: 

𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
 

 

exist, then we say that the function 𝑓(𝑥, 𝑃𝑁) is differentiable with respect to 𝑥 and it is given by the 

formula: 

 

�́�(𝑥, 𝑃𝑁) = 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
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where 𝑃𝑁ℎ = ℎ0 + ℎ1𝑃1 + ℎ2𝑃2 + ⋯ + ℎ𝑛𝑃𝑛 ∈ 𝑆𝑃𝑆 is amount of small change in 𝑥. 
 

then, 𝑃𝑁ℎ → 0 is equivalent to: ℎ0 → 0 , ℎ1 → 0 , ℎ2 → 0 , … . , and ℎ𝑛 → 0 

 

Notes: 

 

1) The tangent slop to 𝑓(𝑥, 𝑃𝑁) at 𝑥0 ∈ 𝑆𝑃𝑆, where 𝑥0 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 + ⋯ + 𝑎𝑛𝑃𝑛, is: 

 

 𝑚𝑃𝑁 = �́�(𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 + ⋯ + 𝑎𝑛𝑃𝑛). 

 

2) The equation of the tangent to 𝑓(𝑥, 𝑃𝑁) at 𝑥0 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 + ⋯ + 𝑎𝑛𝑃𝑛 is: 

 

𝑦 − 𝑓(𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 + ⋯ + 𝑎𝑛𝑃𝑛)

= �́�(𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 + ⋯ + 𝑎𝑛𝑃𝑛)(𝑥 − 𝑎0 − 𝑎1𝑃1 − 𝑎2𝑃2 − ⋯ − 𝑎𝑛𝑃𝑛) 

 

Example 1 

Differentiate 𝑓(𝑥, 𝑃𝑁) = (3𝑃2 + 2)𝑥2 with respect to 𝑥 using definition, and find an equation of the 

tangent line to the curve at 𝑥0 = 𝑃1 + 1 

 

solution: 

�́�(𝑥, 𝑃𝑁) = 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
 

 

�́�(𝑥, 𝑃𝑁) = 𝑙𝑖𝑚
𝑃𝑁ℎ→0

(3𝑃2 + 2)(𝑥 + 𝑃𝑁ℎ)2 − (3𝑃2 + 2)𝑥2

𝑃𝑁ℎ
 

 

           �́�(𝑥, 𝑃𝑁) = 𝑙𝑖𝑚
𝑃𝑁ℎ→0

(3𝑃2 + 2)(𝑥2 + 2(𝑃𝑁ℎ)𝑥 + (𝑃𝑁ℎ)2) − (3𝑃2 + 2)𝑥2

𝑃𝑁ℎ
 

 

                         

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

(3𝑃2 + 2)𝑥2 + (3𝑃2 + 2)(2(𝑃𝑁ℎ)𝑥 + (𝑃𝑁ℎ)2) − (3𝑃2 + 2)𝑥2

𝑃𝑁ℎ
 

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑃𝑁ℎ(3𝑃2 + 2)(2𝑥 + 𝑃𝑁ℎ)

𝑃𝑁ℎ
 

 
= 𝑙𝑖𝑚

𝑃𝑁ℎ→0
(3𝑃2 + 2)(2𝑥 + 𝑃𝑁ℎ) 

 

= (3𝑃2 + 2)(2𝑥 + 0) 
 

   ⟹            �́�(𝑥, 𝑃𝑁) = (6𝑃2 + 4)𝑥 

 

Let’s find the tangent equation: 

𝑚𝑃𝑁 = �́�(𝑃1 + 1) = (6𝑃2 + 4)(𝑃1 + 1) = 12𝑃2 + 4𝑃1 + 4 
 

𝑓(𝑃1 + 1) = (𝑃1 + 1)2 = 3𝑃1 + 1 
 

then: 

𝑦 − 𝑓(𝑃1 + 1) = �́�(𝑃1 + 1)(𝑥 − 𝑃1 − 1) 
 

𝑦 − 3𝑃1 − 1 = (12𝑃2 + 4𝑃1 + 4)(𝑥 − 𝑃1 − 1) 

 

𝑦 − 3𝑃1 − 1 = (12𝑃2 + 4𝑃1 + 4)𝑥 + (12𝑃2 + 4𝑃1 + 4)(−𝑃1 − 1) 
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𝑦 − 3𝑃1 − 1 = (12𝑃2 + 4𝑃1 + 4)𝑥 − 12𝑃2 − 4𝑃1 − 4𝑃1 − 12𝑃2 − 4𝑃1 − 4 
 

𝑦 − 3𝑃1 − 1 = (12𝑃2 + 4𝑃1 + 4)𝑥 − 24𝑃2 − 12𝑃1 − 4 

 

𝑦 = (12𝑃2 + 4𝑃1 + 4)𝑥 − 24𝑃2 − 9𝑃1 − 4 
 

Example 2 

Differentiate 𝑓(𝑥, 𝑃𝑁) = 𝑠𝑖𝑛((𝑃4 − 5𝑃1 + 7)𝑥 + 4𝑃1) with respect to 𝑥 using definition. 

solution: 

 

�́�(𝑥, 𝑃𝑁) = 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
 

 

�́�(𝑥, 𝐼) = 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑠𝑖𝑛((𝑃4 − 5𝑃1 + 7)(𝑥 + 𝑃𝑁ℎ) + 4𝑃1) − 𝑠𝑖𝑛((𝑃4 − 5𝑃1 + 7)𝑥 + 4𝑃1) 

𝑃𝑁ℎ
 

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑠𝑖𝑛((𝑃4 − 5𝑃1 + 7)𝑥 + 4𝑃1 + (𝑃4 − 5𝑃1 + 7)(𝑥 + 𝑃𝑁ℎ)) − 𝑠𝑖𝑛((𝑃4 − 5𝑃1 + 7)𝑥 + 4𝑃1) 

𝑃𝑁ℎ
 

 

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑐𝑜𝑠 ((𝑃4 − 5𝑃1 + 7)𝑥 + 4𝑃1 +
(𝑃4 − 5𝑃1 + 7)

2 𝑃𝑁ℎ) 𝑠𝑖𝑛 (
(𝑃4 − 5𝑃1 + 7)

2 𝑃𝑁ℎ) 

𝑃𝑁ℎ
2

 

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑐𝑜𝑠 ((𝑃4 − 5𝑃1 + 7)𝑥 + 4𝑃1 +
(𝑃4 − 5𝑃1 + 7)

2
𝑃𝑁ℎ) 𝑙𝑖𝑚

𝑃𝑁ℎ→0
 

𝑠𝑖𝑛 (
(𝑃4 − 5𝑃1 + 7)

2 𝑃𝑁ℎ) 

𝑃𝑁ℎ
2

 

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑐𝑜𝑠 ((𝑃4 − 5𝑃1 + 7)𝑥 + 4𝑃1

+
(𝑃4 − 5𝑃1 + 7)

2
𝑃𝑁ℎ) 𝑙𝑖𝑚

𝑃𝑁ℎ→0
 

(𝑃4 − 5𝑃1 + 7)𝑠𝑖𝑛 (
(𝑃4 − 5𝑃1 + 7)

2 𝑃𝑁ℎ) 

(𝑃4 − 5𝑃1 + 7)𝑃𝑁ℎ
2

 

 

= 𝑐𝑜𝑠((𝑃4 − 5𝑃1 + 7)𝑥 + 4𝑃1) (𝑃4 − 5𝑃1 + 7) (1) 

 

 

        ⟹            �́�(𝑥, 𝑃𝑁) = (𝑃4 − 5𝑃1 + 7) 𝑐𝑜𝑠((𝑃4 − 5𝑃1 + 7)𝑥 + 4𝑃1) 

 

Example 3 

Differentiate 𝑓(𝑥, 𝐼) = √7𝑃5𝑥 − 3𝑃1 + 1 with respect to 𝑥 using definition. 

solution: 

 

�́�(𝑥, 𝑃𝑁) = 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
 

 

�́�(𝑥, 𝑃𝑁) = 𝑙𝑖𝑚
𝑃𝑁ℎ→0

√7𝑃5(𝑥 + 𝑃𝑁ℎ) − 3𝑃1 + 1 − √7𝑃5𝑥 − 3𝑃1 + 1

𝑃𝑁ℎ
 

 



Neutrosophic Sets and Systems, Vol. 60, 2023     607  

 

 

Yaser Ahmad Alhasan, F. Smarandache and Raja Abdullah Abdulfatah, The symbolic plithogenic differentials calculus 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

√7𝑃5(𝑥 + 𝑃𝑁ℎ) − 3𝑃1 + 1 − √7𝑃5𝑥 − 3𝑃1 + 1

𝑃𝑁ℎ
 

√7𝑃5(𝑥 + 𝑃𝑁ℎ) − 3𝑃1 + 1 + √7𝑃5𝑥 − 3𝑃1 + 1

√7𝑃5(𝑥 + 𝑃𝑁ℎ) − 3𝑃1 + 1 + √7𝑃5𝑥 − 3𝑃1 + 1
 

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

7𝑃5(𝑥 + 𝑃𝑁ℎ) − 3𝑃1 + 1 − 7𝑃5𝑥 + 3𝑃1 − 1

𝑃𝑁ℎ(√7𝑃5(𝑥 + 𝑃𝑁ℎ) − 3𝑃1 + 1 + √7𝑃5𝑥 − 3𝑃1 + 1)
  

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

7𝑃5𝑥 + (7𝑃5)𝑃𝑁ℎ − 3𝑃1 + 1 − 7𝑃5𝑥 + 3𝑃1 − 1

𝑃𝑁ℎ(√7𝑃5(𝑥 + 𝑃𝑁ℎ) − 3𝑃1 + 1 + √7𝑃5𝑥 − 3𝑃1 + 1)
 

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

(7𝑃5)𝑃𝑁ℎ

𝑃𝑁ℎ(√7𝑃5(𝑥 + 𝑃𝑁ℎ) − 3𝑃1 + 1 + √7𝑃5𝑥 − 3𝑃1 + 1)
 

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

7𝑃5

√7𝑃5(𝑥 + 𝑃𝑁ℎ) − 3𝑃1 + 1 + √7𝑃5𝑥 − 3𝑃1 + 1
 

 

 

           ⟹                        �́�(𝑥, 𝑃𝑁) =
7𝑃5

2√7𝑃5𝑥 − 3𝑃1 + 1
 

 

The rules of the symbolic plithogenic derivatives  

 Let 𝑃𝑁𝑠 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 + ⋯ + 𝑎𝑟𝑃𝑟 , 𝑃𝑁𝑟 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 + ⋯ + 𝑏𝑠𝑃𝑠  ∈ 𝑆𝑃𝑆 , then we can 

prove each of the following, using the definition 1: 

 

1) 
𝑑

𝑑𝑥
[𝑃𝐶] = 0 ; where 𝑃𝐶 = 𝑐0 + 𝑐1𝑃1 + 𝑐2𝑃2 + ⋯ + 𝑐𝑟𝑃𝑟 is symbolic plithogenic constant. 

 

2) 
𝑑

𝑑𝑥
[𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟] = 𝑃𝑁𝑠  

 

3) 
𝑑

𝑑𝑥
[𝑃𝑁𝑠𝑥𝑛] = 𝑛𝑃𝑁𝑠𝑥𝑛−1; 𝑛 𝑖𝑠 real number. 

 

4) 
𝑑

𝑑𝑥
[𝑒𝑃𝑁𝑠𝑥+𝑃𝑁𝑟 ] = 𝑃𝑁𝑠𝑒𝑃𝑁𝑠𝑥+𝑃𝑁𝑟 

 

5) 
𝑑

𝑑𝑥
(𝑃𝑁𝑟)𝑥 = (𝑃𝑁𝑟)𝑥  𝑙𝑛(𝑃𝑁𝑟) ; where 𝑃𝑁𝑟 > 0 

 

6) 
𝑑

𝑑𝑥
[𝑃𝑁𝑟 𝑙𝑜𝑔𝑃𝑁𝑠

𝑥] =
𝑃𝑁𝑟

𝑥 𝑙𝑛 (𝑃𝑁𝑠)
 ; where 𝑃𝑁𝑠 > 0 , and  

𝑃𝑁𝑟

𝑙𝑛 (𝑃𝑁𝑠)
 is divisible. 

 

7) 
𝑑

𝑑𝑥
[𝑙𝑛(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟)] =

𝑃𝑁𝑠

𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟

 

 

8) 
𝑑

𝑑𝑥
[√𝑃𝑁𝑠𝑥 + 𝑃𝐶] =

𝑃𝑁𝑠

2√𝑃𝑁𝑠𝑥 + 𝑃𝐶
 

 

   9) 
𝑑

𝑑𝑥
[𝑠𝑖𝑛(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟)] = 𝑃𝑁𝑠𝑐𝑜𝑠(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟) 

 

  10) 
𝑑

𝑑𝑥
[𝑐𝑜𝑠(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟)] = −𝑃𝑁𝑠𝑠𝑖𝑛(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟) 
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  11) 
𝑑

𝑑𝑥
[𝑡𝑎𝑛(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟)] = 𝑃𝑁𝑠𝑠𝑒𝑐2(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟) 

 

  12) 
𝑑

𝑑𝑥
[𝑐𝑜𝑡(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟)] = −𝑃𝑁𝑠𝑐𝑠𝑐2(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟) 

 

  13) 
𝑑

𝑑𝑥
[𝑠𝑒𝑐(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟)] = 𝑃𝑁𝑠𝑠𝑒𝑐(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟)𝑡𝑎𝑛(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟) 

 

  14) 
𝑑

𝑑𝑥
[𝑐𝑠𝑐(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟)] = −𝑃𝑁𝑠𝑐𝑠𝑐(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟)𝑐𝑜𝑡(𝑃𝑁𝑠𝑥 + 𝑃𝑁𝑟) 

 

Proof (3) 

  
𝑑

𝑑𝑥
[𝑃𝑁𝑠𝑥𝑛] = 𝑙𝑖𝑚

𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
 

 

                              = 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑃𝑁𝑠(𝑥 + 𝑃𝑁ℎ)𝑛 − 𝑃𝑁𝑠𝑥𝑛

𝑃𝑁ℎ
   

 
 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

[𝑃𝑁𝑠𝑥𝑛 + 𝑛𝑃𝑁𝑠𝑥𝑛−1(𝑃𝑁ℎ) + 𝑛(𝑛 − 1)

2! 𝑃𝑁𝑠𝑥𝑛−2
(𝑃𝑁ℎ)

2
+ ⋯ + 𝑛𝑃𝑁𝑠𝑥(𝑃𝑁ℎ)

𝑛−1
+ (𝑃𝑁ℎ)

𝑛
] − 𝑃𝑁𝑠𝑥𝑛

𝑃𝑁ℎ
   

 

 = 𝑙𝑖𝑚
𝑃𝑁ℎ→0

[
𝑛𝑃𝑁𝑠𝑥𝑛−1(𝑃𝑁ℎ) +

𝑛(𝑛 − 1)
2! 𝑃𝑁𝑠𝑥𝑛−2(𝑃𝑁ℎ)2 + ⋯ + 𝑛𝑃𝑁𝑠𝑥(𝑃𝑁ℎ)𝑛−1 + (𝑃𝑁ℎ)𝑛

𝑃𝑁ℎ
]   

 
 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

[𝑛𝑃𝑁𝑠𝑥𝑛−1 +
𝑛(𝑛 − 1)

2!
𝑃𝑁𝑠𝑥𝑛−2(𝑃𝑁ℎ) + ⋯ + 𝑛𝑃𝑁𝑠𝑥(𝑃𝑁ℎ)𝑛−2 + (𝑃𝑁ℎ)𝑛−1]   

 
 
    = 𝑛𝑃𝑁𝑠𝑥𝑛−1 + 0 + ⋯ ⋯ + 0 + 0 
 

         ⟹      
𝑑

𝑑𝑥
[𝑃𝑁𝑠𝑥𝑛]  = 𝑛𝑃𝑁𝑠𝑥𝑛−1 

 

Example 4 

 

1) 
𝑑

𝑑𝑥
(𝑃7 − 8𝑃4 + 1) = 0 

 

2) 
𝑑

𝑑𝑥
[(−4𝑃3 − 3𝑃1)𝑥 − 7𝑃5 − 3𝑃1 + 5] = −4𝑃3 − 3𝑃1  

 

3) 
𝑑

𝑑𝑥
[(3𝑃1 + 5)𝑥5] = (15𝑃1 + 25)𝑥4 

 

4) 
𝑑

𝑑𝑥
[𝑒(𝑃6+53𝑃3)𝑥+73𝑃2+4] = (𝑃6 + 53𝑃3)𝑒(𝑃6+53𝑃3)𝑥+73𝑃2+4 

 

5) 
𝑑

𝑑𝑥
(1 + 𝑃1 + 2𝑃2 + 𝑃3)𝑥 = (1 + 2𝑃2 + 𝑃1)𝑥  𝑙𝑛(2𝑃2 + 𝑃1) 
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= (1 + 2𝑃2 + 𝑃1 + 𝑃3)𝑥  [𝑙𝑛1 + (𝑙𝑛3 − 𝑙𝑛1)𝑃1 + (𝑙𝑛4 − 𝑙𝑛3)𝑃2 + (𝑙𝑛5 − 𝑙𝑛4)𝑃3] 
 

                         = (1 + 2𝑃2 + 𝑃1 + 𝑃3)𝑥  [(𝑙𝑛3)𝑃1 + (𝑙𝑛
4

3
) 𝑃2 + (𝑙𝑛

5

4
) 𝑃2] 

 

6) 
𝑑

𝑑𝑥
[𝑃4 𝑙𝑜𝑔(1+2𝑃1) 𝑥] =

𝑃4

𝑥 𝑙𝑛(1 + 2𝑃1)
= (

𝑃4

𝑙𝑛(1 + 2𝑃1)
)

1

𝑥
 

 

                 = (
𝑃4

(𝑙𝑛3)𝑃1

)
1

𝑥
=

1

(𝑙𝑛3)
(𝑥0 + 𝑥1𝑃1 + 𝑃4)

1

𝑥
 

 

= (
𝑥0 + 𝑥1𝑃1 + 𝑃4

𝑙𝑛3
)

1

𝑥
 

where: 

 
𝑃4

𝑃1

= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 + 𝑥4𝑃4    ⟹  𝑃4 = 𝑥0𝑃1 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 + 𝑥4𝑃4     

 

                      ⟹   𝑃2 = (𝑥0 + 𝑥1)𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 + 𝑥4𝑃4  , then: 

 

                           𝑥0 + 𝑥1 = 0 , 𝑥2 = 0 , 𝑥3 = 0 and 𝑥4 = 1 

 

hence: 
𝑃4

𝑃1
= 𝑥0 + 𝑥1𝑃1 + 𝑃4 , where: 𝑥0 + 𝑥1 = 0 

 

 

7) 
𝑑

𝑑𝑥
[𝑙𝑛((7 + 5𝑃2 + 𝑃3)𝑥 + 6 + 7𝑃1 + 𝑃4)] =

7 + 5𝑃2 + 𝑃3

(7 + 5𝑃2 + 𝑃3)𝑥 + 6 + 7𝑃1 + 𝑃4

 

 

8) 
𝑑

𝑑𝑥
[√(4 + 8𝑃7 + 𝑃4)𝑥 + 2 + 𝑃3] =

4 + 8𝑃7 + 𝑃4

2√(4 + 8𝑃7 + 𝑃4)𝑥 + 2 + 𝑃3

 

 

   9) 
𝑑

𝑑𝑥
[𝑠𝑖𝑛((9 − 𝑃7)𝑥 + 𝑃4)] = (9 − 𝑃7)𝑐𝑜𝑠((9 − 𝑃7)𝑥 + 𝑃4) 

 

  10) 
𝑑

𝑑𝑥
[𝑐𝑜𝑠((5𝑃2 + 𝑃1 − 4)𝑥 + 𝑃8 + 2)] = (−5𝑃2 − 𝑃1 + 4)𝑠𝑖𝑛((5𝑃2 + 𝑃1 − 4)𝑥 + 𝑃8 + 2) 

 

  11) 
𝑑

𝑑𝑥
[𝑡𝑎𝑛((𝑃7 + 4𝑃5 + 6)𝑥 + 6)] = (𝑃7 + 4𝑃5 + 6)𝑠𝑒𝑐2((𝑃7 + 4𝑃5 + 6)𝑥 + 6) 

 

  12) 
𝑑

𝑑𝑥
[𝑐𝑠𝑐((8𝑃6 + 6)𝑥 + 7𝑃5 + 3)]

= (−8𝑃6 − 6)𝑐𝑠𝑐((8𝑃6 + 6)𝑥 + 7𝑃5 + 3)𝑐𝑜𝑡((8𝑃6 + 6)𝑥 + 7𝑃5 + 3) 

 

Properties of the symbolic plithogenic differentiation: 

I. Derivative of sum or difference of the symbolic plithogenic functions. 

 

Suppose that 𝑓(𝑥, 𝑃𝑁) and 𝑔(𝑥, 𝑃𝑁) are any two differentiable symbolic plithogenic functions, 

then: 

 
𝑑

𝑑𝑥
[𝑓(𝑥, 𝑃𝑁)  ± 𝑔(𝑥, 𝑃𝑁)] =

𝑑

𝑑𝑥
[𝑓(𝑥, 𝑃𝑁) ] ±

𝑑

𝑑𝑥
[𝑔(𝑥, 𝑃𝑁)] 
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Proof:   
 
𝑑

𝑑𝑥
[𝑓(𝑥, 𝑃𝑁) + 𝑔(𝑥, 𝑃𝑁)] = 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ) ± 𝑔(𝑥 + 𝑃𝑁ℎ) − [𝑓(𝑥, 𝑃𝑁) + 𝑔(𝑥, 𝑃𝑁)]

𝑃𝑁ℎ
  

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

[𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)] ± [𝑔(𝑥 + 𝑃𝑁ℎ) − 𝑔(𝑥, 𝑃𝑁)]

𝑃𝑁ℎ
 

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

[
𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
±

𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
] 

 

       = 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
± 𝑙𝑖𝑚

𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
 

 

                                          =
𝑑

𝑑𝑥
[𝑓(𝑥, 𝑃𝑁) ] ±

𝑑

𝑑𝑥
[𝑔(𝑥, 𝑃𝑁)]    

 

Example 5 

 

1)  
𝑑

𝑑𝑥
[5𝑃2𝑥4 + 𝑐𝑜𝑡((7 + 𝑃2 + 𝑃3)𝑥)] = 20𝑃2𝑥3 − (7 + 𝑃2 + 𝑃3)𝑐𝑠𝑐2((7 + 𝑃2 + 𝑃3)𝑥) 

 

2)  
𝑑

𝑑𝑥
[(7 + 𝑃5)𝑥 + 𝑙𝑛(𝑃2𝑥)] = 7 + 𝑃5 +

𝑃2

𝑃2𝑥
= 7 + 𝑃5 + (𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2)

1

𝑥
 

 

where: 

 
𝑃2

𝑃2

= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2    ⟹   𝑃2 = 𝑥0𝑃2 + 𝑥1𝑃2 + 𝑥2𝑃2     

 

                      ⟹   𝑃2 = (𝑥0 + 𝑥1 + 𝑥2)𝑃2 , then: 

 

                           𝑥0 + 𝑥1 + 𝑥2 = 1  
 

hence: 
𝑃2

𝑃2
= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2  , where: 𝑥0 + 𝑥1 + 𝑥2 = 1 

 

II. Derivative of product of a symbolic plithogenic constant and the symbolic plithogenic function 

 
𝑑

𝑑𝑥
[𝑃𝐶. 𝑓(𝑥, 𝑃𝑁)] = 𝑃𝐶.

𝑑

𝑑𝑥
 [𝑓(𝑥, 𝑃𝑁)]     

  

      Proof: 
𝑑

𝑑𝑥
[𝑃𝐶. 𝑓(𝑥, 𝑃𝑁)] = 𝑙𝑖𝑚

𝑃𝑁ℎ→0

𝑃𝐶. 𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑃𝐶. 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
 

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑃𝐶 [
𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
] 

 

= 𝑃𝐶 𝑙𝑖𝑚
𝑃𝑁ℎ→0

[
𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
] 
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                           = 𝑃𝐶
𝑑

𝑑𝑥
 [𝑓(𝑥, 𝑃𝑁)] 

 

III. Derivative of product of two the symbolic plithogenic functions 

 
𝑑

𝑑𝑥
[𝑓(𝑥, 𝑃𝑁). 𝑔(𝑥, 𝑃𝑁)] = 𝑓(𝑥, 𝑃𝑁)

𝑑

𝑑𝑥
[𝑔(𝑥, 𝑃𝑁)] + 𝑔(𝑥, 𝑃𝑁)

𝑑

𝑑𝑥
[𝑓(𝑥, 𝑃𝑁)] 

Proof:  
  
𝑑

𝑑𝑥
[𝑓(𝑥, 𝑃𝑁). 𝑔(𝑥, 𝑃𝑁)] = 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ). 𝑔(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁). 𝑔(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
  

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ). 𝑔(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥 + 𝑃𝑁ℎ)𝑔(𝑥, 𝑃𝑁) + 𝑓(𝑥 + 𝑃𝑁ℎ)𝑔(𝑥, 𝑃𝑁) − 𝑓(𝑥, 𝑃𝑁). 𝑔(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
 

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

[𝑓(𝑥 + 𝑃𝑁ℎ)
𝑔(𝑥 + 𝑃𝑁ℎ) − 𝑔(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
+ 𝑔(𝑥, 𝑃𝑁)

𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
] 

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ) 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑔(𝑥 + 𝑃𝑁ℎ) − 𝑔(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
+ 𝑙𝑖𝑚

𝑃𝑁ℎ→0
𝑔(𝑥, 𝑃𝑁) 𝑙𝑖𝑚

𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
 

 

 

= 𝑓(𝑥, 𝑃𝑁)
𝑑

𝑑𝑥
[𝑔(𝑥, 𝑃𝑁)] + 𝑔(𝑥, 𝑃𝑁)

𝑑

𝑑𝑥
[𝑓(𝑥, 𝑃𝑁)] 

  

Example 6 

 

1)  
𝑑

𝑑𝑥
[4𝑃4𝑥2𝑠𝑖𝑛((𝑃2 + 𝑃3)𝑥) ] = 8𝑥. 𝑠𝑖𝑛((𝑃2 + 𝑃3)𝑥) + (4𝑃2 + 4𝑃3)𝑐𝑜𝑠((𝑃2 + 𝑃3)𝑥) 

 

2) 
𝑑

𝑑𝑥
[𝑥√(𝑃7 − 3)𝑥 + 𝑃5] = √(𝑃7 − 3)𝑥 + 𝑃5 +

𝑃7 − 3

2√(𝑃7 − 3)𝑥 + 𝑃5

 

 

V. Derivative of quotient of two the symbolic plithogenic functions 

 

𝑑

𝑑𝑥
[
𝑓(𝑥, 𝑃𝑁)

𝑔(𝑥, 𝑃𝑁)
] =

𝑔(𝑥, 𝑃𝑁)
𝑑

𝑑𝑥
[𝑓(𝑥, 𝑃𝑁)] − 𝑓(𝑥, 𝑃𝑁)

𝑑
𝑑𝑥

[𝑔(𝑥, 𝑃𝑁)]

(𝑔(𝑥, 𝑃𝑁))
2  

Proof:   

𝑑

𝑑𝑥
[
𝑓(𝑥, 𝑃𝑁)

𝑔(𝑥, 𝑃𝑁)
] = 𝑙𝑖𝑚

𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ)
𝑔(𝑥 + 𝑃𝑁ℎ)

−
𝑓(𝑥, 𝑃𝑁)
𝑔(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
  

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ). 𝑔(𝑥, 𝑃𝑁) − 𝑓(𝑥, 𝑃𝑁). 𝑔(𝑥, 𝑃𝑁) − 𝑓(𝑥, 𝑃𝑁). 𝑔(𝑥 + 𝑃𝑁ℎ) + 𝑓(𝑥, 𝑃𝑁). (𝑥, 𝑃𝑁)

𝑃𝑁ℎ. 𝑔(𝑥, 𝑃𝑁). 𝑔(𝑥 + 𝑃𝑁ℎ)
 

 

= 𝑙𝑖𝑚
𝑃𝑁ℎ→0

[
𝑔(𝑥, 𝑃𝑁)

𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)
𝑃𝑁ℎ

− 𝑓(𝑥, 𝑃𝑁)
𝑔(𝑥 + 𝑃𝑁ℎ) − 𝑔(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
𝑔(𝑥, 𝑃𝑁). 𝑔(𝑥 + 𝑃𝑁ℎ)

] 
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=
𝑙𝑖𝑚

𝑃𝑁ℎ→0
[𝑔(𝑥, 𝑃𝑁)

𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)
𝑃𝑁ℎ

] − 𝑙𝑖𝑚
𝑃𝑁ℎ→0

[𝑓(𝑥, 𝑃𝑁)
𝑔(𝑥 + 𝑃𝑁ℎ) − 𝑔(𝑥, 𝑃𝑁)

𝑃𝑁ℎ
]

𝑙𝑖𝑚
𝑃𝑁ℎ→0

[𝑔(𝑥, 𝑃𝑁). 𝑔(𝑥 + 𝑃𝑁ℎ)]
 

 

 

=
𝑙𝑖𝑚

𝑃𝑁ℎ→0
𝑔(𝑥, 𝑃𝑁) 𝑙𝑖𝑚

𝑃𝑁ℎ→0

𝑓(𝑥 + 𝑃𝑁ℎ) − 𝑓(𝑥, 𝑃𝑁)
𝑃𝑁ℎ − 𝑙𝑖𝑚

𝑃𝑁ℎ→0
𝑓(𝑥, 𝑃𝑁) 𝑙𝑖𝑚

𝑃𝑁ℎ→0

𝑔(𝑥 + 𝑃𝑁ℎ) − 𝑔(𝑥, 𝐼)
𝑃𝑁ℎ

𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑔(𝑥, 𝑃𝑁). 𝑙𝑖𝑚
𝑃𝑁ℎ→0

𝑔(𝑥 + 𝑃𝑁ℎ)
 

 

               

=
𝑔(𝑥, 𝑃𝑁)

𝑑
𝑑𝑥

[𝑓(𝑥, 𝑃𝑁)] − 𝑓(𝑥, 𝑃𝑁)
𝑑

𝑑𝑥
[𝑔(𝑥, 𝑃𝑁)]

𝑔(𝑥, 𝑃𝑁). 𝑔(𝑥, 𝑃𝑁)
 

   
   

=
𝑑

𝑑𝑥
[
𝑓(𝑥, 𝑃𝑁)

𝑔(𝑥, 𝑃𝑁)
] =

𝑔(𝑥, 𝑃𝑁)
𝑑

𝑑𝑥
[𝑓(𝑥, 𝑃𝑁)] − 𝑓(𝑥, 𝑃𝑁)

𝑑
𝑑𝑥

[𝑔(𝑥, 𝑃𝑁)]

(𝑔(𝑥, 𝑃𝑁))
2  

                
Example 7 

 

1)  
𝑑

𝑑𝑥
[
𝑒𝑃3𝑥+2𝑃7−3

𝑃2𝑥
] =

𝑃3𝑥𝑒𝑃3𝑥+2𝑃7−3 − 𝑃2𝑒𝑃3𝑥+2𝑃7−3

𝑃2𝑥2
 

 

                                    =
(3 + 𝐼)𝑥𝑒(3+𝐼)𝑥+5𝐼 − 𝑒(3+𝐼)𝑥+5𝐼

(3 + 4𝐼)𝑥2
 

 

                                    = (
1

3
−

4

21
𝐼) [

(3 + 𝐼)𝑥𝑒(3+𝐼)𝑥+5𝐼 − 𝑒(3+𝐼)𝑥+5𝐼

𝑥2
] 

 

 

2)  
𝑑

𝑑𝑥
[

𝑃3

𝑃2𝑥
] =

−𝑃3𝑃2

𝑃2𝑥2
=

−𝑃3

𝑃2𝑥2
= (𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 − 𝑃3)

1

𝑥2
 

 

where: 

 
−𝑃3

𝑃2

= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3    ⟹   −𝑃3 = 𝑥0𝑃2 + 𝑥1𝑃2 + 𝑥2𝑃2 + 𝑥3𝑃3    

 

                      ⟹   −𝑃3 = (𝑥0 + 𝑥1 + 𝑥2)𝑃2 + 𝑥3𝑃3 , then: 

 

                           𝑥0 + 𝑥1 + 𝑥2 = 0 , 𝑥3 = −1  
 

hence: 
−𝑃3

𝑃2
= 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 − 𝑃3 , where: 𝑥0 + 𝑥1 = 0 

5. Conclusions  

In our daily lives, derivatives are crucial for tasks like figuring out how to calculate acceleration, 

displacement, and velocity as a function of time in rectilinear motion, other. In this article, we 

discussed the concept of The symbolic plithogenic differentials calculus, where we presented the 

rules of The symbolic plithogenic differentials, taking into account the mathematical operations on 

them.  
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Abstract: This paper aims to extend the methods of steepest descent and conjugate directions to the 

neutrosophic field R(I). the generalizations were built similarly to the classic algorithms, starting by 

generalizing the quadratic forms to R(I). Geometric isometry (AH-Isometry) S was used as the tool, 

and many examples are presented in the main paragraphs. The simple extension method can be 

generalized to other linear and non-linear methods. 

Keywords: Quadratic forms; neutrosophic field; Steepest Descent; Conjugate Directions; 

Neutrosophic Matrix. 

 

1. Introduction 

    Methods for the steepest descent [1], conjugate directions [2], and conjugate gradients [3] were 

constructed and derived from quadratic forms.  

It is not hard to see the advantages of The Method of Steepest Descent; it is simple, easy, and popular. 

It uses a zig-zag path from an arbitrary point until it converges to the solution. 

Conjugate direction methods have been developed to speed up the slow convergence of the steepest 

descent method; more details can be found in [4]. 

     The nature of the consideration of how these two methods work in the neutrosophic field will not 

change. 

   Despite the great importance of optimization in modern mathematics, the importance of 

neutrosophic in prediction, and the existence of many studies that have developed many 

optimization concepts in the field of neutrosophic, as described in [5-13]. However, no study has 

established a method for solving large linear system neutrosophic equations. 

   This paper lays a foundation for specifically addressing this problem by extending the steepest 

descent and conjugate directions methods to the R(I).   

   To ensure more effective and general results, the matrix NA was treated such that its real section 

differs from its neutrosophic section. 

   AH-isometry S was used to speed up the results because it is a simple and effective tool that 

saves the properties of the classic study in R(I), which is defined as followed: 

 

   

:

,

S R I R R

S a bI a a b
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where     ; , .R I a bI a b R    

And its invert is 

 1
:S R R R I


   

With some basic properties 

       S a bI c dI S a bI S c dI          

       . .S a bI c dI S a bI S c dI       . 

Other details and applications of this tool can be found in [14-18]. Starting from derivate more 

generalized quadratic form 

 
1

2

T T
N N N N N N Nf x x A x b x c    

The methods for steepest descent and conjugate directions were generalized to the neutrosophic field. 

It can be seen that the classical definitions used in this paper were simply extended to R(I). 

 

2. Preliminaries 

Steepest descent and conjugate directions are the most popular iterative methods for solving large 

systems of linear equations. Each method is effective for systems of the form 

.                                                                                   (1)A b   

where  is an unknown vector, b is a known vector, and A is a known, square, positive-definite 

(or positive-indefinite) matrix. 

A matrix A is positive-definite if, for every nonzero vector  , 

0.                                                                               (2)T A    

Where T is the Transpose of . 

The Quadratic Form 
A quadratic form is a scalar, quadratic function of a vector with the form 

 
1

,                                                                      (3)
2

T Tf A b c       

Where A is a matrix, and b are vectors, and c is a scalar constant. 

However, condition (2) is not a very intuitive idea, as it affects the shape of quadratic forms.  

The gradient of a quadratic form is defined to be 

 

 

 

 

1

2
.                                                                                    (4)

n

f

f
f

f
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One can apply Equation (4) to Equation (3), and derive, then, we obtain 

 
1 1

                                                                    (5)
2 2

Tf A A b      

If A is symmetric, this equation reduces to 

                                                                                (6)f A b    

Setting the gradient to zero, we obtain Equation (1).  

3. The Neutrosophic Quadratic Form 

Definition (1): The neutrosophic form of a matrix 11 12

21 22

a a
A

a a

 
  
 

 could be written as following: 

11 12

12 22

N N

N N N

a a
A

a a

 
  
 

 

where ,   , 1,2.N

ij ij ij
a a Ia i j    

In fact, 11 12 11 12 11 12 11 12 11 12

21 22 21 22 21 22 21 22 21 22

.:

N N N N N N N N N N

N N N N N N N N N N N

a a a a a a a I a I a a
A A IA I

a a a a a a a I a I a a

         
              

      


  
 

When 
N

A is a symmetric matrix, then their componentes are symmetrics. One can considered a more 

generalized form of 
N

A by taking non-coincide components. 

Transpose of 
N

A is defined as:   11 21 11 21 11 21

12 22 12 22 12 22

.:

N N

N N

TT T T
N

a a a a a a
A A IA A IA I

a a a a a a

    
          

 


   
 

For 𝑚 = 2, 𝑛 = 1, we have 11 21
.T N N

N
A a a    , and 11

21

N

NN

a
A

a

 
  
 

  

By looking to the equation A b  , where 11 12 11 11

21 22 21 21

,  ,   
a a b

A b
a a b






     
       
     

,  

and despite it is easy to find the neutrosophic form of it, we will consider more generalized form:  

𝐴𝑁𝑥𝑁 = 𝑏𝑁, 

where 

11 12 11 12 11 11 11 11

21 22 21 22 21 21 21 21

Λ ,   ,   ,
N N N

a a b B
A A I I x I I b b IB I

a a b B

   
 

   

           
                      

           
 

that we can rewrite it as 

 

Note that, if we make the neutrosophic part in (7) is equal to zero, then we will find the classical  

equation .A b     

The Neutrosophic Quadratic Form 

To find The Neutrosophic Quadratic Form, we begin Form the well-known relation 

 Λ Λ .                                                            (7)A I A b IB       
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1

.
2

T Tf A b c       

That which, according to the neutrosophic form, simply, we have  

 
1

,  .                                         (8)
2

T T
N N N N N N N N

f x x A x b x c c c Id      

By taking S for the both sides of (8): 

   

           

         

  

[ ( )] (1/ 2) ( ) ( ) ( ) ( ) ( ) ( )

            

 

   1/ 2,1/ 2 , , Λ , , , ,

1/ 2,1/ 2 , , Λ , , , ,

1 1
               , Λ

           

2

  

2

 

T T

N N N N N N N

T T

T T T T T T

T T T

S f x S S x S A S x S b S x S c

A A b b B c c d

A A b b B c c d

A A

        

        

   

  

      





       





        

        

, ,

1 1
               , Λ .

2 2

T T T

T T T T T T

b b B c c d

A b c A b B c d

    

        

            

 
           
 

 

Taking 1S  , then we obtain 

 

        

1

2

1 1
              + Λ .

2 2

T T

N

T T T T T T

f x A b c

I A b B c d A b c

  

        

   

  
            

  

 

Derivate the last function with respect to ,    respectively: 

 
        

      

1 1 1
' Λ Λ

2 2 2

1 1 1
      Λ Λ .

2 2 2

NN T T T T

T T T

f x
f A A b I A A b B A A b

A A b I A A B

    


   

   
               

   

 
         

 

 

    

 
    

1
' Λ Λ .

2

NN T T
f x

f I A A b B  


  
          

 

By making

 
 ' 0Nf x  , then it leads to solve the system: 

 

    

    

1
0                                                                              (9)

2

1 1
Λ Λ 0                                           (10)

2 2

1
Λ Λ 0            

(*)     

2

T

T T

T T

A A b

A A B

A A b B



  

 

  

     

                                      (11)











 

If NA is symmetric, then,   , Λ ΛT TA A  , and the system becomes: 

 

  

 

(

 

**

 

)  

(

    

0                                                                                       12)

Λ 0                                                                      (13)

Λ

A b

A B

A



  

 

 

   

     0                                                            (14)b B 







 

In both systems, we note that the third equation is a summation of the first and the second equation. 

Examples: 
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1. Let 
1 4 3

1 2 2
N

I I
A

I I

  
  

    
, then 

1 4 1 3
,   Λ

1 2 2 1
A

   
    

     
. 1 1

2 2

N

I
x

I

 

 

 
  

 
, then  

    

1 1

2 2

, 
 

 
 

   
    
   

. 
2

3 2
N

I
b

I

 
  

  
, then 

2 1
, 

3 2
b B

   
    

    
. 

By returning to (*) relations, we have for (9): 

1 1

4 2

TA
 

  
 

, and   
1 3 / 2

1/ 2  
3 / 2 2

TA A
 

   
 

, 

yields
1

2

1 3 / 2 2 2 /17
  .

3 / 2 2 3 24 /17






      
        

       
 

And for (10), we have 

  
 

 
1 1 2

2 1 2

2 /17 58 /17 5 / 21 5 / 21
Λ Λ

24 /17 29 /17 5 / 25 / 2 12

T
  

 
  

       
       

        
, 

 
 

 
1 1 2

2 1 2

3 / 21 3 / 21

3 / 2 23 / 2 22

TA A
  


  

    
      

     
, 

and  

 

 

 

 
1 2 1 2

1 2 1 2

58 /17 5 / 2 3 / 2 1

29 /17 5 / 2 3 / 2 2 2

   

   

        
      

        
 

By solving the system 

1 2

1 2

58 /17 2 4 1,

29 /17 4 3 2.

 

 

  

   





 

We obtain 

                      
13 / 34

7 /17


 
  

 
, and 

   

   

2 /17 13 / 34

24 /17 7 /17
N

I
x

I

    
  

  
. 

This solution satisfied (11), since 

  
2 4 1/ 2 31

Λ Λ .
4 3 1 52

T TA A b B 
     

            
      

 

2. Let NA be a symmetric matrix, i.e. 
2 5 2

5 2 1 3
N

I I
A

I I

  
  

   
, 1 1

2 2

N

I
x

I

 

 

 
  

 
, and 

1 2

2 3
N

I
b

I

 
  

 
. 

By returning to the (**) ,we have for (12): 

1

2

2 5 1
,

5 1 2





    
    

    
 

1 2

1 2

2 5 1
,

5 2

 

 

   
   

   
 

then  

11/ 27

1/ 27


 
  
 

. 

and for (13): 



Neutrosophic Sets and Systems, Vol. 60, 2023     619  

 

 
 

Azzam Mustafa Nouri, An Introduction to some Methods for Solving A Large System Linear Neutrosophic Equations 

 

 
1 1

2 2

11/ 271 2 2 5 2

1/ 272 3 5 1 3

 

 

         
         

        
, 

then we find that 

266 /1269

385 /1269


 
  
 

, 

and 

                               
11/ 27 266 /1269

1/ 27 385 /1269
Nx I

   
    
   

. 

The solution satisfies (14): 

    
1 7 29 / 47 3

Λ 0
7 2 16 / 47 5

A b B 
     

           
     

. 

A special case 

If Λ,   ,  A b B    then the neutrosophic Quadratic Form is: 

 
1 3

3  ,                                       (15)
2 2

T T T T
Nf x A b c I A b c     

 
      

 
 

And 

 
1 1 3 3

' 3
2 2 2 2

T T

Nf x A A b I A A b   
 

      
 

, 

by making  ' 0Nf x  , that leads to 

 

This means that the neutrosophic quadratic form of the classical form can be found directly by 

solving the well-known equation (16), which turns out to be (1) when A  is symmetric, which we 

will see later in an example. 

4. The Method of neutrosophic Steepest Descent 

Derivate the function (8) by using the relation (4), we find  

 
   

        
1 1

           Λ Λ 2 2
2 2

N N

N

T T T T

f x f x
f x

A A b I A A b B A A b

 

   

 
  

 

  
              

  



 

Let us denote      
N

i i i
x I   to Nx I   in step ( )i , then 

                   

1 1
2 2 Λ Λ

2 2

N T T T T

i i i i i
f x b A A I b B A A b A A   

  
              

 
 


 

         

1 1
2 Λ Λ

2 2

T T T

i
b b B I A A A A I 

  
           

  
 

       

1 1
Λ Λ

2 2

T T T

i
A A A A I I

  
       

  
. 

Putting        
1 1

2 ,   Λ Λ
2 2

T T T

N Nk b b B I t A A A A I
 

         
 

, and suppose that 

  2 .                                                                         (16)TA A b 
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     ,N N

i i
r f x    

then 

     ,                                                                   (17)N N

N Ni i
r k t x   

Let us define the neutrosophic error as 

               ( )N N

Ni i i i i i
e x x I I I                 . 

Note that    
N N

Ni i
r t e  . 

Let us start from a point  0

Nx , and we will choose a point  1

Nx  such that      1 0 0
.N N N

Nx x r   

where 
N is a neutrosophic number, which is minimizes f when 

  1

N

N

df x

d
 is equal to zero.   

To determine 
N , we have     

N N

i i
f x r   and  

  
     

    

1 1

1 1 0

N N
T T

N N N

N N

df x d x
f x f x r

d d 
     

   
 

Setting the last expression to zero, then    1 0
0

T
N Nr r  

 
, by using (11), we have 

   

      

       

       

         

   

     

1 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

0

. 0

) 0

)

)

           .

T
N N

N N

T
N N N

N N N

T T
N N N N

N N N N

T T
N N N N

N N N N

T T TN N N N

N N

T
N N

N T TN N

N

k t x r

k t x r r

k t x r t r r

k t x r t r r

r r r t r

r r

r t r











  
 

   
 

     
   

    
   

   
   

 
 


 
 

 

This formula can be rewritten with more specifically way as followed: 

By returning to (5), it is easy to see that 

   
1

2

Tf b A A    , 

and 

        
1

2 ' Λ Λ 2 2 .
2

N T T Tf f I A A b B A A b I    
  

              
  

 

Then 

       
    
00 0 0 0

2 'N N Nr f x f I f f        
 

   , 

and one can write  
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00 0 0 0

2 '
T T TTT

N N Nr f x f I f f 
                        

 


 , 

                     0 00 0 0 0 0 0
, 2 , 2 '

TTT T
N N N N N NS r r S r S r f f f f  

            


        



 

                      
           0 00 0

, 2 2 '
TT

N Nf f f f  
         

 



  

. 

and 

                       0 0

1

0 0 0 0 0 0
2 2 ' .

TT TT
N N N NS S r r f f I f f f f                            

 
    




   

Suppose that 

      0 0

T

f f      





, 
           0 0 0 0

2 2 ' .
T T

N Nf f f f           


 
 

  

Then  

   0 0

T
N Nr r I    

 
. 

And by using the same tool ,S we find 

            

          
   

  

        

0 0

1

0 0 0 0

0 0

0 0

1
          2 Λ Λ 2 '

2

1
             .

2

T TT TN N N N

N N

T
TT T T

T N T T N

T
T

T

S S r t r r t r

f A A f I f A A f

f A A f

  

 

           

                             

         




 








 

Putting 

        0 0

1
Φ

2

T
Tf A A f 

      


 
  

, 

 
              0 0 0 0

1
Ψ 2 ( ) Λ Λ 2 ' .

2

T T
N T T N Tf A A f f A A f   

               
 

     
 

Then      0 0
Φ Ψ

T TN N

Nr t r I   
 

 and N takes the form 

.
Φ Ψ

N

I

I

 






 

 
 

 

 

 

,
,

Φ Ψ Φ Ψ Φ,Φ Ψ Φ Φ Ψ
N

S II
S S

I S I

        


     
      

      
 

  1

Φ Φ Ψ Φ
N NS S I

   
   

     
, 

or 

      

        

0 0

0 0

1

2

T

N T
T

f f

f A A f
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0 0

0 0

0 0

0 0

2 2 '

1
2 ( ) Λ Λ 2 '

2

T T
N N

T T
N T T N T

f f f f
I

f A A f f A A f

 

 

 

 

 
       

    
                      

 


  



. 

Notice that the real part of 
N is the well-known classic form of  .  

As a result, The Method of neutrosophic Steepest Descent is: 

   

 

   

     

       1

,

.

 

,

.

N N

N Ni i

T
N N

i iN

i T TN N

Ni i

N N N N

i i i i

r k t x

r r

r t r

x x r






 

 
 


 
 

 

 

Under conditions of multiplication of matrix, we can premultiplying both sides of the last equation 

by 
Nt and adding 

Nk , then we have 

       1
. .                                                                    (18)N N N N

Ni i i i
r r t r


   

Example 1: 

Let us start with 
4 4 2 2

2 2 2 2
N

I I
A

I I

  
  

  
, 

1

1
N

I
b

I

  
  

 
, and 

 

1 1

4 4

0

N

i

I
x

 
  
 
 

. 

 
1

  2
1

N

I
k b b B I

I

  
     

 
, 

     
4 4 2 61 1

Λ Λ
2 6 2 22 2

T T T

N

I I
t A A A A I

I I

   
              

, 

   

1 1 0
1 4 4 2 6

4 4 3 3
1 2 6 2 2

0 2 2

N N

N Ni i

I I I I
r k t x

I I I I

   
                             

   

. 

   

9 9
.

4 4

T
N N

i i
r r I   
 

 

     

9 9
.

2 2

T TN N

Ni i
r t r I   
 

 

 

 

 

9
1

14
9 2

1
2

N

i

I

I




 



. 

By using (18), we have 

 1

0 0 3 3
4 4 2 61

2 23 3 3 3
2 6 2 22

02 2 2 2

N

i

I I I
r

I II I


     
                         

     

. 

   1 1

3 3
3 3 9 9

0 .2 2
2 2 4 4

0

T
N N

i i

I
r r I I

 

 
               
 

 

     1 1

3 3
4 4 2 63 3

0 9 9 .2 2
2 6 2 22 2

0

T TN N

Ni i

I I I
r t r I I

I I
 

 
                      

 

 

Hence  
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 1

9
1

14 .
9 1 4

N

i

I

I






 


 

Example 2: 

Let 

1 1
4 2

2 2

1
2 1

2

N

I I

A

I

 
  

  
   
  

, 
1

1 2
N

I
b

I

 
  

  
, and 

 

1 1

4 4

0

N

i

I
x

 
 

 
 

. 

Then  

 

     

   

1
2 ,

1 3

4 3 21 1
Λ Λ ,

2 1 22 2

1 1
1 4 3 2 0

.4 4
1 3 2 1 2 1 3

0

N

T T T

N

N N

N Ni i

I
k b b B I

I

I I
t A A A A I

I I

I I I I
r k t x

I I I I

 
     

  

  
              

 
                            

 

 

   

     

 

1 3 .

1 5 .

1 3
1 2 .

1 5

T
N N

i i

T TN N

Ni i

N

i

r r I

r t r I

I
I

I


   
 

    
 


   
 

 

By using (18), we have 

   1

0 4 3 2 0 4
1 2 .

1 3 2 1 2 1 3 0

N

i

I I I
r I

I I I I


        
           

            
 

 

       1 1

4 3 2 4
4 0 112 .

2 1 2 0

T TN N

Ni i

I I I
r t r I I

I I
 

    
             

 

Hence  

 1

16 1
.

112 7

N

i

I
I

I



   

5. The method of Neutrosophic Conjugate Directions 

     As in the classic case, we use coordinate axes as search directions. Every step consists of two 

paths, the first leads to the correct 
 1

Nx  coordinate, and the second hit the desired point, after n steps, 

it will be done. 

Definition (2): Let NA be a symmetric matrix, two nonzero vectors 
   , N N

i j
d d  are said to be NA -

orthogonal, if 

   . . 0
T

N N

N Ni j
d A d  
 

 

where .i j  

In general, we take 

       1
                                                                  (19)N N N N

i i i i
x x d


   

By taking into consideration the fact that 
 1

N

i
e


should be orthogonal to 

 
N

i
d , we can find the value of

 
N

i
 , which eliminates the need to step in the direction 

 
N

i
d again. We have 

     1 1

4
4 0 16 .

0

T
N N

i i

I
r r I I
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1
       . 0

. 0

T
N N

Ni i

T
N N N N

Ni i i i

d e

d e d


  
 

   
 

 

Which leads to 

 

   

   

.                                                                  (20)

)

T
N N

i iN

i T
N N

i i

d e

d d


 
 


 
 

 

Knowing 
 
N

i
e guarantees computing  

N

i
 , As it has known in classical case, the solution is to be the 

two vectors 
 
N

i
d and 

 
N

j
d are 

NA -orthogonal. To make 
 1

N

i
e


be 

NA -orthogonal to  
N

i
d , it is 

sufficient to find the minimum point along the direction 
 
N

i
d : 

  

    

   

   

1

1 1

1

1

      0

' . 0

      0

    . . 0

N

NiN

T
N N

Ni iN

T
N N

Ni i

T
N N

N Ni i

d
f x

d

d
f x x

d

r d

d A e







 







  
 

  
 

  
 

 

Now, the equation (20) becomes with 
NA -orthogonal search directions, as following: 

 

   

   

 

   

   

. .

) . .

.
.

) . .

T
N N

Ni iN

i T
N N

Ni i

T
N N

i iN

i T
N N

Ni i

d A e

d A d

d r

d A d





 
 


 
 

 
 


 
 

 

Which could be to calculate. 

Let us write 
 
N

i
  as 

  .N

i
X IY    Suppose that 

     
N

i i i
d d ID  , then   ( ) ( ))

T
N T T

i ii
d d ID   
 

. 

                      

             

. , , 2 '

                                                          , 2 ' .

i

i

T T
N N N N T T T N

i i i i i i i i

T T T N

i i i i

S d r S d S r d d D f f

d f d D f













             

    
 

 

 

Then 

                      

                    

               

. 2 ' .

) . . , , ,

                               . , .

i

T
N N T T T N T

i i i i i i i i

T
N N T T T

Ni i i i i i i i

T T T

i i i i i i

d r d f I d D f d f

S d A d d d D A A d d D

d A d d D A d D

           
     

      
 

    

 

 

Hence 

                      ) . . . . .
T

N N T T T T

Ni i i i i i i i i i
d A d d A d I d D A d D d A d        
   

 

Then we can write 
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..

) . . ) . .

, 2 '

           
. ,

2 '
           ,

.

i

i

T
T N N

N N
i i

i iN

i T T
N N N N

Ni i Ni i

T T T N

i i i i

T T T

i i i i i i

T T NT

i ii i

T T
i i i

S d rd r
S S

d A d S d A d

d f d D f

d A d d D A d D

d D fd f

d A d d D











            
               

   
 


   

 










         T

i i i
A d D

 
 
 

   
 

 

Finally 

 

     
   

      

          
     

   

2 '
.

. .

i

T T NT T

i ii i i i
N

i T TT T
i i i ii i i i

d D fd f d f
I

d A d d A dd D A d D

 


    
  

  


 




    

 

We can see that the classical  i
  is the real part of 
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Let us prove that the algorithm of Neutrosophic Conjugate Directions can compute x in n steps: 

Using the error term as a linear neutrosophic combination of the neutrosophic search directions 
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j are neutrosophic numbers one can compute simply. 

Since that the search directions are 
NA -orthogonal, then we have 
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We can see that    
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6. Conclusions 

     In this study, the neutrosophic quadratic form, method of neutrosophic steepest descent, and 

method of neutrosophic conjugate directions were introduced. Many examples have been discussed. 

The author did not address the topic of convergence study, so it did not adhere to the examples 

concerned with the fulfillment of the condition 0.T

N N Nx A x   

    It is possible to work in many research directions, such as Markov chains. It is also possible to 

introduce a disturbance operator on the behavior of the moving point and then work on processing 

and correction to reach the optimal solution. One can also return to [14] and examine the application 

of the (AH) in generalizing stable distributions. 
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