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An Original Notion to Find Maximal Solution in the Fuzzy Neutrosophic 

Relation Equations (FNRE) with Geometric Programming (GP) 

Dr. Huda E. Khalid

University of  Telafer, Head ; Mathematics Department, College of  Basic Education,  Telafer- Mosul –

Iraq. E-mail: hodaesmail@yahoo.com

Abstract. In this paper, finding -  a maximal 

solution is introduced to (𝑉, 𝛬) fuzzy 

neutrosophic relation equation. the notion of 

fuzzy relation equation was first investigated 

by  Sanchez in 1976, while Florentin 

Smarandache  put forward a fuzzy 

neutrosophic relation equations in 2004 with 

innovative investigation. This paper is first 

attempt to establish the structure of solution set 

on model. The NRE have a wide applications 

in various real world problems like flow rate in 

chemical plants, transportation problem, study 

of  bounded labor problem, study of 

interrelations among HIV/AIDS affected 

patients and use of genetic algorithms in 

chemical problems . 

Keyword  Neutrosophic Logic, Neutrosophic Relation Equations (NRE),Integral Neutrosophic 

lattices, Fuzzy Integral Neutrosophic Matrices, Maximal Solution, Fuzzy Geometric Programming 

(FGP). 

Introduction 

    The analysis of most of the real world 

problems involves the concept of 

indeterminacy. One cannot establish or cannot 

rule out the possibility of some relation but 

says that cannot determine the relation or link; 

this happens in legal field, medical diagnosis 

even in the construction of chemical flow in 

industries and more chiefly in socio economic 

problems prevailing in various countries.[4], as 

well as the importance of geometric 

programming and the fuzzy neutrosophic 

relation equations in theory and application, I 

have proposed a new structure for maximum 

solution in FNRE with geometric 

programming. 

1.1 Definition [4]

 Let  𝑇, 𝐼, 𝐹 be real standard or non-

standard subsets 𝑜𝑓 ]-0,1+[, with

 𝑠𝑢𝑝 𝑇 =  𝑡_𝑠𝑢𝑝, 𝑖𝑛𝑓 𝑇 =  𝑡_𝑖𝑛𝑓, 𝑠𝑢𝑝 𝐼 =
 𝑖_𝑠𝑢𝑝, 𝑖𝑛𝑓 𝐼 =  𝑖_𝑖𝑛𝑓, 𝑠𝑢𝑝 𝐹 =
 𝑓_𝑠𝑢𝑝, 𝑖𝑛𝑓 𝐹 =  𝑓_𝑖𝑛𝑓, 𝑎𝑛𝑑 𝑛_𝑠𝑢𝑝 =
 𝑡_𝑠𝑢𝑝 + 𝑖_𝑠𝑢𝑝 + 𝑓_𝑠𝑢𝑝, 𝑛_𝑖𝑛𝑓 =  𝑡_𝑖𝑛𝑓 +
𝑖_𝑖𝑛𝑓 + 𝑓_𝑖𝑛𝑓. 𝐿𝑒𝑡 𝑈 

be a universe of discourse, and 𝑀 a set 

included in 𝑈. An element 𝑥 from U is noted 

with respect to the set 𝑀 𝑎𝑠 𝑥(𝑇, 𝐼, 𝐹) and 

belongs to 𝑀 in the following way: It is 𝑡% 

true in the set, 𝑖% indeterminate (unknown if it 

is) in the set, and 𝑓% false, where 𝑡 varies in 

𝑇, i varies in 𝐼, 𝑓 varies in 𝐹. Statically 𝑇, 𝐼, 𝐹 

are subsets, but dynamically 𝑇, 𝐼, 𝐹 are 

functions operators depending on many known 

or unknown parameters.  

1.2 Physics Example for Neutrosophic 

Logic [4] 

 For example the Schrodinger's Theory says 

that the quantum state of a photon can 

basically be in more than one place in the same 

time , which translated to the neutrosophic set 

means that an element (quantum state) belongs 

and does not belong to a set (one place) in the 

same time; or an element (quantum state) 

belongs to two different sets (two different 

places) in the same time. It is a question of   

“alternative worlds” theory very well 

represented by the neutrosophic set theory. In 

Schroedinger’s Equation on the behavior of 

electromagnetic waves and “matter waves” in 

quantum theory, the wave function Psi which 

describes the superposition of possible states 

may be simulated by a neutrosophic function, 

i.e. a function whose values are not unique for 

each argument from the domain of definition 

(the vertical line test fails, intersecting the 

graph in more points). Don’t we better 

describe, using the attribute “neutrosophic” 

than “fuzzy” or any others, a quantum particle 

that neither exists nor non-exists?   
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1.3 Application for Neutrosophic 

Logic [4] 

 A cloud is a neutrosophic set, because its 

borders are ambiguous, and each element 

(water drop) belongs with a neutrosophic 

probability to the set. (e.g. there are a kind of 

separated water  props, around a compact mass 

of water drops, that we don't know how to 

consider them: in or out of the cloud). Also, we 

are not sure where the cloud ends nor where it 

begins, neither if some elements are or are not 

in the set. That's why the percent of 

indeterminacy is required and the neutrosophic 

probability (using subsets - not numbers - as 

components) should be used for better 

modeling: it is a more organic, smooth, and 

especially accurate estimation. Indeterminacy 

is the zone of ignorance of a proposition’s 

value, between truth and falsehood. From the 

intuitionistic logic, paraconsistent logic, 

dialetheism, fallibilism, paradoxes, 

pseudoparadoxes, and tautologies we transfer 

the "adjectives" to the sets, i.e. to intuitionistic 

set (set incompletely known), paraconsistent 

set, dialetheist set, faillibilist set (each element 

has a percentage of indeterminacy), paradoxist 

set (an element may belong and may not 

belong in the same time to the set), 

pseudoparadoxist set, and tautological set  

respectively. hence, the neutrosophic set 

generalizes: 

• the intuitionistic set, which supports

incomplete set theories (𝑓𝑜𝑟 0 <  𝑛 <
 1, 0 [ 𝑡, 𝑖, 𝑓 [ 1) and incomplete known 

elements belonging to a set; 

• the fuzzy set (for 𝑛 =  1 𝑎𝑛𝑑 𝑖 =
 0, 𝑎𝑛𝑑 0 [ 𝑡, 𝑖, 𝑓 [ 1); 
• the classical set (for 𝑛 =  1 𝑎𝑛𝑑 𝑖 =  0, with

𝑡, 𝑓 𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1); 

• the paraconsistent set (for  𝑛 >
 1, 𝑤𝑖𝑡ℎ 𝑎𝑙𝑙 𝑡, 𝑖 , 𝑓 < 1+); 
• the faillibilist set (𝑖 >  0);
• the dialetheist set, a set 𝑀 whose at least one

of its elements also belongs to its complement 

𝐶(𝑀); thus, the intersection of some disjoint 

sets is not empty 

• the paradoxist set (𝑡 =  𝑓 =  1);
• the pseudoparadoxist set (0 <  𝑖 <  1, 𝑡 =
 1 𝑎𝑛𝑑 𝑓 >  0 𝑜𝑟 𝑡 >  0 𝑎𝑛𝑑 𝑓 =  1); 
• the tautological set (𝑖 , 𝑓 <  0).
Compared with all other types of sets, in the 

neutrosophic set each element has three 

components which are subsets (not numbers as 

in fuzzy set) and considers a subset, similarly  

to intuitionistic fuzzy set, of "indeterminacy" - 

due to unexpected parameters hidden in some 

sets, and let the superior limits of the 

components to even boil over 1 (over flooded) 

and the inferior limits of the components to 

even freeze under 0 (under dried). For 

example: an element in some tautological sets 

may have 𝑡 >  1, called "over included". 

Similarly, an element in a set may be "over 

indeterminate" (for 𝑖 >  1, in some paradoxist 

sets), "over excluded" (for 𝑓 >  1, in some 

unconditionally false appurtenances); or 

"under true" (for 𝑡 <  0, in some 

unconditionally false appurtenances), "under 

indeterminate" (for 𝑖 <  0, in some 

unconditionally true or false appurtenances), 

"under fals some unconditionally true 

appurtenances). This is because we should 

make a distinction between unconditionally 

true (𝑡 >  1, 𝑎𝑛𝑑 𝑓 <  0 𝑜𝑟 𝑖 <  0) and 

conditionally true appurtenances 

(𝑡 [ 1, 𝑎𝑛𝑑 𝑓 [ 1 𝑜𝑟 𝑖 [ 1). In a rough set RS, an 

element on its boundary-line cannot be 

classified neither as a member of RS nor of its 

complement with certainty. In the neutrosophic 

set a such element may be characterized by 

𝑥(𝑇, 𝐼, 𝐹), with corresponding set-values for 𝑇, 
𝐼, 𝐹 ]-0,1+[. One first presents the evolution of 

sets from fuzzy set to neutrosophic set. Then 

one introduces the neutrosophic components 𝑇, 
𝐼, 𝐹 which represent the membership, 

indeterminacy, and non-membership values 

respectively, where ]-0,1+[ is the non-standard 

unit interval, and thus one defines the 

neutrosophic set.[4] 

 2 Basic Concepts for NREs 

2.1 Definition [3]. 
 A Brouwerian lattice L in which, for any 

given elements 𝑎 & 𝑏 the set of all 𝑥 ∈ 𝐿 such 

that 𝑎Ʌ𝑥 ≤ 𝑏 contains a greatest element, 

denoted 𝑎 ∝ 𝑏, the relative pseudocomplement 

of   𝑎 𝑖𝑛 𝑏 [san]. 

2.2 Remark [4] 
 If 𝐿 =  [0, 1], then it is easy to see that for 

any given 𝑎, 𝑏 ∈ 𝐿,  

𝑎 ∝ 𝑏 = {
1    𝑎 ≤ 𝑏
𝑏     𝑎 > 𝑏

2.3 Definition [4] 
 Let 𝑁 =  𝐿 ∪ {𝐼} where L is any lattice and I 

an indeterminate. 

Define the max, min operation on N as  

follows 

 𝑀𝑎𝑥 {𝑥, 𝐼}  =  𝐼 for 𝑎𝑙𝑙 𝑥 ∈ 𝐿\ {1} 

Neutrosophic Sets and Systems, Vol. 7, 2015 

Dr. Huda E. Khalid, An Original Notion to Find Maximal Solution in the Fuzzy Neutrosophic  Relation Equations (FNRE) with 
Geometric Programming (GP)

4



𝑀𝑎𝑥 {1, 𝐼}  =  1 
 𝑀𝑖𝑛 {𝑥, 𝐼}  =  𝐼 for 𝑎𝑙𝑙 𝑥 ∈  𝐿 \ {0}  
𝑀𝑖𝑛 {0, 𝐼}  =  0 
We know if 𝑥, 𝑦 ∈  𝐿 then max and min are 

well defined in L. N is called the integral 

neutrosophic lattice. 

2.3 Example [4] 
 Let 𝑁 =  𝐿 ∪ {𝐼} given by the following 

diagram: 

Clearly [4] 
𝑀𝑖𝑛 {𝑥, 𝐼 }  =  𝐼      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝐿\ {0}  
𝑀𝑖𝑛 {0, 𝐼 }  =  0 
𝑀𝑎𝑥 {𝑥, 𝐼 }  =  𝐼    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝐿 \ {1}  
𝑀𝑎𝑥 {1, 𝐼 }  =  1 

We see N is an integral neutrosophic lattice 

and clearly the order of N is 6. 

2.4 Remark [4] 
1- If L is a lattice of order n and N =  L ∪ {I } 
be an integral neutrosophic lattice then order of 

N is n +  1.  

2. For an integral neutrosophic lattice

𝑁 also {0} is the minimal element and {1} is 

the maximal element of N. 

2.5 Conventions About Neutrosophic 

Sets  [4] 

Let  𝐴, 𝐵 ∈ 𝑁(𝑋) 𝑖. 𝑒., 
𝐴 ∶ 𝑋 → [0, 1] ∪ 𝐼   , 𝐵 ∶ 𝑋 → [0, 1] ∪ 𝐼 
(𝐴 ∩ 𝐵) (𝑥) = 𝑚𝑖𝑛 {𝐴 (𝑥), 𝐵 (𝑥)},if 
𝐴 (𝑥) = 𝐼 or 𝐵 (𝑥) = 𝐼 then (𝐴 ∩ 𝐵) (𝑥) is 

defined to be 𝐼 i.e., 𝑚𝑖𝑛 {𝐴 (𝑥), 𝐵 (𝑥))} = I9
 𝐼 (𝐴 ∪ 𝐵) (𝑥)  =  𝑚𝑎𝑥 {𝐴 (𝑥), 𝐵 (𝑥)} if one 

of 𝐴 (𝑥)  =  𝐼 𝑜𝑟 𝐵 (𝑥)  =  𝐼 𝑡ℎ𝑒𝑛 (𝐴 ∪
 𝐵) (𝑥)  =  𝐼 i.e., 𝑚𝑎𝑥 {𝐴 (𝑥), 𝐵 (𝑥)}  =  𝐼.  
Thus it is pertinent to mention here that if one 

of 𝐴 (𝑥) =  𝐼 𝑜𝑟 𝐵(𝑥) =  𝐼 then (𝐴 ∪ 𝐵)(𝑥) =
(𝐴 ∩  𝐵)( 𝑥). i.e., is the existence of 

indeterminacy 𝑚𝑎𝑥 {𝐴 (𝑥), 𝐵 (𝑥)} =
𝑚𝑖𝑛 {𝐴 (𝑥), 𝐵(𝑥)}  =  𝐼 
𝐴̅ (𝑥) =  1 −  𝐴 (𝑥);   𝑖𝑓 𝐴 (𝑥) =  𝐼 
𝑡ℎ𝑒𝑛      𝐴̅ (𝑥)  =  𝐴 (𝑥)  =  𝐼. 

2.6 Definition [4] 

Let 𝑁 =  [0, 1]  ∪  𝐼 where I is the 

indeterminacy. The 𝑚 ×  𝑛 matrices 𝑀𝑚×𝑛  =
 {(𝑎𝑖𝑗) / 𝑎𝑖𝑗  ∈  [0, 1]  ∪  𝐼} is called the fuzzy

integral neutrosophic matrices. Clearly the 

class of 𝑚 ×  𝑛 matrices is contained in the 

class of fuzzy integral neutrosophic matrices. 

2.7 Example [4] 

 Let 𝐴 = (
𝐼 0.1 0
0.9 1 𝐼

)

A is a  2 × 3 integral fuzzy neutrosophic 

matrix. We define operation on these matrices. 

An integral fuzzy neutrosophic row vector is a 

1 × 𝑛 integral fuzzy neutrosophic matrix. 

Similarly an integral fuzzy neutrosophic 

column vector is a 𝑚 ×  1 integral fuzzy 

neutrosophic matrix. 

2.8 Example [4]

 𝐴 = (0.1, 0.3, 1, 0, 0, 0.7, 𝐼, 0.002, 0.01
, 𝐼, 1, 0.12) is a integral row vector or a 

1 × 12, integral fuzzy neutrosophic matrix.

2.9  Example [4]  
𝐵 =  (1, 0.2, 0.111, 𝐼, 0.32, 0.001, 𝐼, 0, 1) 𝑇 is 

an integral neutrosophic column vector or B is 

a 9 ×  1 integral fuzzy neutrosophic matrix. 

We would be using the concept of fuzzy 

neutrosophic column or row vector in our 

study.

2.10 Definition [4] 

Let P =  (pij) be a m ×  n integral fuzzy

neutrosophic matrix and Q  =  (qij)  be a n ×

 p integral fuzzy neutrosophic matrix. The 

composition map P o Q is defined by R 
= (rij) which is a m ×  p matrix where

(
rij = maxmin(pik qkj)

k
)   with the 

assumption max(pij, I) =  I  and min(pij, I)  =

 I where pij ϵ(0, 1). min (0, I) =  0 and 

max(1, I)  =  1.

2.11 Example [4] 

 Let   𝑝 = [
0.3 𝐼 1
0 0.9 0.2
0.7 0 0.4

]   , 𝑄 = (0.1, 𝐼, 0)𝑇 

be two integral fuzzy neutrosophic matrices. 

P o Q = [
0.3 𝐼 1
0 0.9 0.2
0.7 0 0.4

] o [
0.1
𝐼
0
] =

(𝐼  , 𝐼  , 0.1)T 
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3 Structure of the Maximal Solution 

Set

B.Y.Cao proposed the structure set of maximal 

and minimal solution for FRGP (fuzzy relation 

geometric programming) with (V, Λ) operator 

[optimal models & meth with fuzzy quantities 

2010] [1-2]. Its useful and necessary to call

back the following ideas 

3.1 Definition

If 𝑋(𝐴, 𝑏) ≠ ∅  it can be completely 

determined by a unique maximum solution and 

a finite number of minimal solution. The 

maximum solution can be obtained by 

applying the following operation:-

𝑛

𝑥𝑗̂ = ˄{𝑏𝑖|𝑏𝑖 < 𝑎𝑖𝑗} (1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛) 
Stipulate that set {˄∅ = 1}. If 𝑥̂j =
(𝑥̂1, 𝑥̂2, …., 𝑥̂)T is a solution to  𝐴𝜊𝑋 = 
𝑏 . then 𝑥̂ must be the greatest solution.

3.2 An original notion to find 

maximal solution

The most important question: 

What is the structure of the maximum element 

for any fuzzy neutrosophic relation equations 

in the interval [0,1] ∪ 𝐼 ??

We know that 

max{0, 𝐼} = 𝐼 &  max{𝑥, 𝐼} = 𝐼     ∀ 𝑥 ∈
[0,1) ∪ 𝐼. 

Depending upon the definition ( 3.1),  the 

stipulation that   {˄∅ = 1} will be fixed. 

Also by Sanchez (1976) we have 

𝑎𝛼𝑏 = {
1   𝑎 ≤ 𝑏
𝑏     𝑎 > 𝑏

 Don’t forget that 𝛼 is relative psedo 

complement of  𝑎 𝑖𝑛 𝑏 . On the other hand, 

Florentin was deffind the neutrosophic lattice 

see ref.  [4] p.235 

So if we want to establish the maximum 

solution for any FNRE in the interval [0,1] ∪ 𝐼 
, we must redefine 𝑎𝛼𝑏 where 𝑎𝛼𝑏 = 𝑎˄𝑥 ≤
𝑏 ; 𝑎, 𝑥, 𝑏 ∈ [0,1] ∪ 𝐼 .  

Note that, all matrices in this work are an 

integral fuzzy neutrosophic matrices. It is 

obvious that  𝑎  or  𝑏 are either belonging to  

[0,1]   or equal to 𝐼 , so we have that following 

status:  

1- If  𝑎 ∈ [0,1] & 𝑏 ∈ 𝐼  , 𝑎𝛼𝑏 = 𝑥 = 𝐼 where 

𝑎 ≠ 0 therefore 𝑎 ∈ (0,1] , here we must 

remember that min(𝐼, 𝑥) = 𝐼 ∀ 𝑥 ∈ (0,1] ∪
𝐼. 

2- If 𝑎 = 𝐼 & 𝑏 ∈ [0,1], then 𝑎𝛼𝑏 = 𝑥 = 0 

,here  min(𝐼, 𝑥) = 𝐼  ∀ 𝑥 ∈ (0,1] ∪ 𝐼 also 

min(𝐼, 0) = 0. 

3- At 𝑎&𝑏 ∈ [0,1], the solution will back to 

the same case  that stated by Sanchez ,i.e. 

𝑎𝛼𝑏 = {
1   𝑎 ≤ 𝑏
𝑏     𝑎 > 𝑏

4- At 𝑎 = 𝑏 = 𝐼 ,this implies that 𝑎𝛼𝑏 = 1. 

Note that , 𝑎˄𝑥 ≤ 𝑏  → min(𝑎, 𝑥) ≤ 𝑏 →
min(𝐼, 𝑥) ≤ 𝐼 → 𝑥 = 1 

Consequently : 

𝑥𝑗̂ = 𝑎𝛼𝑏 =

{
 
 
 

 
 
 
1      𝑎𝑖𝑗 ≤ 𝑏𝑖 𝑜𝑟 𝑎𝑖𝑗 = 𝑏𝑖𝑗 = 𝐼

𝑏𝑖  𝑎𝑖𝑗 > 𝑏𝑖 

0  𝑎𝑖𝑗 = 𝐼 𝑎𝑛𝑑 𝑏𝑖𝑗 = [0,1]

𝐼  𝑏𝑖 = 𝐼 𝑎𝑛𝑑  𝑎𝑖𝑗 = (0,1]

𝑛𝑜𝑡 𝑐𝑜𝑚𝑝. 𝑎𝑖𝑗 = 0 𝑎𝑛𝑑 𝑏𝑖𝑗 = 𝐼

3.3 Lemma 

If  𝑎𝑖𝑗 = 0  𝑎𝑛𝑑 𝑏𝑖 = 𝐼  then 𝐴𝜊𝑋 = 𝑏 is not

compatible. 

Proof 

Let 𝑎𝑖𝑗 = 0  , 𝑏𝑖 = 𝐼

What is the value of 𝑥𝑗 ∈ [0,1] ∪ 𝐼 satisfying

˅𝑖𝑗
𝑛  (𝑎𝑖𝑗˄𝑥𝑗) = 𝑏𝑖    ∀   1 ≤ 𝑖 ≤ 𝑚 ?

We have 

1- 𝑎𝛼𝑏 = 𝑎𝑖𝑗˄𝑥𝑗 ≤ 𝑏𝑖
2- min(0, 𝑥𝑗) = 0      ∀  𝑥𝑗 ∈ [0,1] ∪ 𝐼

So 𝑎𝛼𝑏 = 𝑎𝑖𝑗˄𝑥𝑗 = min(0, 𝑥𝑗) = 0 not equal

nor less than to 𝐼 

We know that  the incomparability occurs only 

when 𝑥 ∈ 𝐹𝑁 𝑎𝑛𝑑 𝑦 ∈ [0,1]  see ref. [4] p.233 

∴ 𝐴𝜊𝑋 = 𝑏   is not compatible 
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Without loss of generality , suppose  𝑏1 ≥
𝑏2 ≥ 𝑏3 ≥ ⋯ ≥ 𝑏𝑛 when we rearranged the

components of 𝑏 in decreasing order we also 

adjusted 𝐴, 𝑥 and 𝑓(𝑥) accordingly 𝑏. 

Now, in fuzzy neutrosophic numbers, how can 

we classify  numbers  to rearrange  them? For 

more details see ref. [5] page 245. 

3.4 Example 

Rearranged the following matrices in 

decreasing order 

1) 𝑏 = [

0.85
𝐼
0.5
𝐼

] 2) 𝑏 = [

𝐼
𝐼
0.5
0.1

] 3) 𝑏 = [

𝐼
0.6
𝐼
0.1

]  

Solution. 

1) 𝑏 = [

𝐼
𝐼

0.85
0.5

]  2) 𝑏 = [

𝐼
𝐼
0.5
0.1

]  3) 𝑏 = [

𝐼
𝐼
0.6
0.1

] 

4 Numerical Examples:- 

Find the maximum solution for the following 

FNREGP problems:- 

1) 

𝑚𝑖𝑛𝑓(𝑥) =  5𝑥1
−.5𝑥2

−1.5𝑥3
2𝑥4

−2𝑥5
−1

𝑠. 𝑡.

[

 
𝐼
0.8
0.6

0.8
0.7
0.9

0.6
0.8
0.8

𝐼
1
0.9

0
0.8
0.5

𝐼   0.2  𝐼  0.6  0.2
0.3
𝐼

0.3
0.1

0.5
0.2

0.2
0.3

0.1
𝐼 ]
 
 
 
 
 

𝜊

[

 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5]
 
 
 
 

=

[

 
𝐼
𝐼
𝐼
. 5
. 5
. 4]
 
 
 
 
 

Solution :- The greatest solution is 

𝑥̂1 = ˄{1, 𝐼, 𝐼, 0,1,0} = 0
𝑥̂2 = ˄{𝐼, 𝐼, 𝐼, 1,1,1} = 𝐼
𝑥̂3 = ˄{𝐼, 𝐼, 𝐼, 0,1,1} = 0
𝑥̂4 = ˄{1, 𝐼, 𝐼, .5,1,1} = 𝐼
𝑥̂5 = ˄{𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒, …… . }

Therefore by lemma (3.3) the system 𝐴𝜊𝑥 = 𝑏 

is not comparable. 

 2)  

min 𝑓(𝑥) =
(1.5𝐼𝛬𝑥1

.5)𝑉(2𝐼𝛬𝑥2)𝑉(. 8𝛬𝑥3
−.5)𝑉(4𝛬𝑥4

−1)

 s.t.  𝐴𝜊𝑥 = 𝑏   where   

𝐴 = [

𝐼 . 2 . 85 . 9
. 8 . 2   𝐼   .1
. 9 . 1 𝐼   .6

𝐼 . 8 . 1   𝐼

]

𝑏 = (𝐼, .6, .5, 𝐼)  ,  0 ≤ 𝑥𝑖 ≤ 1     , 1 ≤ 𝑖 ≤ 4

𝑥̂1 = ˄(1,1, .5,1 ) = 0.5

𝑥̂2 = ˄(𝐼, 1,1, 𝐼 ) = 𝐼

𝑥̂3 = ˄(𝐼, 0,0, 𝐼 ) = 0

𝑥̂4 = ˄(𝐼, 1, .5,1 ) = 𝐼

∴  𝑥̂  = (0.5, 𝐼, 0, 𝐼 )𝑇 

Conclusion 

In this article, the basic notion for finding 

maximal solution in a geometric programming 

subject to a system of fuzzy neotrosophic 

relational equation with max-min composition 

was introduced. In 1976,Sanchez gave the 

formula of the maximal solution for fuzzy 

relation equation concept and describing in 

details its structure. Some numerical examples 

have shown that the proposed method is 

betimes step to enter in this kind of problems 

to search for minimal solutions which remains 

as unfathomable issue. 
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Abstract. This paper presents rough netrosophic multi-
attribute decision making based on grey relational 
analysis. While the concept of neutrosophic sets is a  
powerful logic  to  deal  with  indeterminate  and 
inconsistent  data,  the  theory  of rough neutrosophic sets 
is also a powerful mathematical tool to deal with 
incompleteness. The rating of all alternatives is 
expressed with the upper and lower approximation 
operator and the pair of neutrosophic sets which are 
characterized by truth-membership degree, 
indeterminacy-membership degree, and falsity-
membership degree. Weight of each attribute is partially 
known to decision maker. We extend the neutrosophic 
grey relational analysis method to rough neutrosophic 

grey relational analysis method and apply it to multi-
attribute decision making problem. Information entropy 
method is used to obtain the partially known attribute 
weights. Accumulated geometric operator is defined to 
transform rough neutrosophic number (neutrosophic pair) 
to single valued neutrosophic number. Neutrosophic grey 
relational coefficient is determined by using Hamming 
distance between each alternative to ideal rough 
neutrosophic estimates reliability solution and the ideal 
rough neutrosophic estimates un-reliability solution. 
Then rough neutrosophic relational degree is defined to 
determine the ranking order of all alternatives. Finally, a 
numerical example is provided to illustrate the 
applicability and efficiency of the proposed approach. 

Keywords: Neutrosophic set, Rough Neutrosophic set, Single-valued neutrosophic set, Grey relational analysis, Information 
Entropy, Multi-attribute decision making. 

 Introduction 

The notion of rough set theory was originally proposed by 
Pawlak [1, 2].  The concept of rough set theory [1, 2, 3, 4] 
is  an extension of the crisp set theory for the study of 
intelligent systems characterized by inexact, uncertain or 
insufficient information. It is a useful tool for dealing with 
uncertainty or imprecision information. It has been 
successfully applied in the different fields such as artificial 
intelligence [5], pattern recognition [6, 7], medical 
diagnosis [8, 9, 10, 11], data mining [12, 13, 14], image 
processing [15], conflict analysis [16], decision support 
systems [17,18], intelligent control [19], etc. In recent 
years, the rough set theory has caught a great deal of 
attention and interest among the researchers. Various 
notions that combine the concept of rough sets [1], fuzzy 
sets [20], vague set [21], grey set [22, 23] intuitionistic 
fuzzy sets [24], neutrosophic sets [25]  are developed such 
as rough fuzzy sets [26], fuzzy rough sets [27, 28, 29],  
generalized fuzzy rough sets [30, 31], vague rough set [32], 
rough grey set [33, 34, 35, 36]  rough intuitionistic fuzzy 
sets [37], intuitionistic  fuzzy rough sets [38], rough 
neutrosophic sets [ 39, 40].  However neutrosophic set [41, 
42] is the generalization of fuzzy set, intuitionistic fuzzy
set, grey set, and vague set.  Among the hybrid concepts, 

the concept of rough neutrosophic sets [39, 40] is recently 
proposed and very interesting.  Literature review reveals 
that only two studies on rough neutrosophic sets [39, 40] 
are done.   
Neutrosophic sets and rough sets are two different 
concepts. Literature review reflects that both are capable of 
handing uncertainty and incomplete information. New 
hybrid intelligent structure called “rough neutrosophic 
sets” seems to be very interesting and applicable in 
realistic problems. It seems that the computational 
techniques based on any one of these structures alone will 
not always provide the best results but a fusion of two or 
more of them can often offer better results [40].  
Decision making process evolves through crisp 
environment to the fuzzy and uncertain and hybrid  
environment.  Its dynamics, adaptability, and flexibility 
continue to exist and reflect a high degree of survival value. 
Approximate reasoning, fuzziness, greyness, neutrosophics 
and dynamic readjustment characterize this process. The 
decision making paradigm evolved in modern society must 
be strategic, powerful and pragmatic rather than retarded.  
Realistic model cannot be constructed without genuine 
understanding of the most advanced decision making 
model evolved so far i.e. the human decision making 
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process.  In order to perform this, very new hybrid concept 
such as rough neutrosophic set must be introduced in 
decision making model.   
Decision making that includes more than one measure of 
performance in the evaluation process is termed as multi-
attribute decision making (MADM). Different methods of 
MADM are available in the literature.  Several methods of 
MADM have been studied for crisp, fuzzy, intuitionistic 
fuzzy, grey and neutrosophic environment. Among these, 
the most popular MADM methods are Technique for Order 
Preference by Similarity to Ideal Solution (TOPSIS) 
proposed by Hwang & Yoon [43], Preference Ranking 
Organization Method for Enrichment Evaluations (PRO-
METHEE) proposed by Brans et al. [44], 
VIšekriterijumsko KOmpromisno Rangiranje (VIKOR) 
developed by Opricovic & Tzeng [45], ELimination Et 
Choix Traduisant la REalité (ELECTRE) studied by  Roy 
[46], ELECTRE II proposed by Roy and Bertier [47], 
ELECTREE III  proposed by( Roy [48], ELECTRE IV 
proposed by Roy and Hugonnard [49), Analytical 
Hierarchy Process(AHP) developed by Satty [50], fuzzy 
AHP developed by Buckley [51], Analytic Network 
Process (ANP)  studied by Mikhailov [52], Fuzzy TOPSIS 
proposed by  Chen [53], single valued neutrosophic multi 
criteria decision making studied by Ye [54, 55, 56], 
neutrosophic MADM studied by Biswas et al. [57], 
Entropy based grey relational analysis method for MADM 
studied by Biswas et al. [58].  A small number of 
applications of neutrosophic MADM are available in the 
literature. Mondal and Pramanik [59] used neutrosophic 
multicriteria decision making for teacher selection in 
higher education.  Mondal and Pramanik [60] also 
developed model of school choice using neutrosophic 
MADM based on grey relational analysis. However, 
MADM in rough neutrosophic environment is yet to 
appear in the literature. In this paper, an attempt has been 
made to develop rough neutrosophic MADM based on 
grey relational analysis.  
Rest of the paper is organized in the following way. 
Section 2 presents preliminaries of neutrosophic sets and 
rough neutrosophic sets. Section 3 is devoted to present 
rough neutrosophic multi-attribute decision-making  based 
on grey relational analysis. Section 4 presents a numerical 
example of the proposed method. Finally, section 5 
presents concluding remarks and direction of future 
research. 

2 Mathematical Preliminaries 
2.1 Definitions on neutrosophic Set 

The concept of neutrosophy set is originated from the new 
branch of philosophy, namely, neutrosophy.  Neutrosophy 

[25] gains very popularity because of its capability to deal 
with the origin, nature, and scope of neutralities, as well as 
their interactions with different conceptional spectra.  
Definition2.1.1: Let E be a space of points (objects) with 
generic element in E denoted by y. Then a neutrosophic set 
N1 in E is characterized by a truth membership function 
TN1 , an indeterminacy membership function IN1 and a 
falsity membership function FN1. The functions TN1 and FN1 
are real standard or non-standard subsets of ] [+− 1,0 that is
TN1: ] [+−→ 10,E ; IN1: ] [+−→ 10,E ; FN1: ] [+−→ 10,E .

It should be noted that there is no restriction on the 
sum of ( ),yT N1 ( ),yI N1 ( )yF N1  i.e.

( ) ( ) ( ) 3≤≤0 111
+++ yFyIyT NNN

-

Definition2.1.2: (complement) The complement of a 
neutrosophic set A is denoted by N1c and is defined by  

( ) { } ( )yTyT NN c 11 1 −= + ; ( ) { } ( )yIyI NN c 11 1 −= +

( ) { } ( )yFyF NN c 11 1 −= +

Definition2.1.3: (Containment) A neutrosophic set 
N1 is contained in the other neutrosophic set N2, 

2N1N ⊆ if and only if the following result holds. 
( ) ( ),inf≤inf yTyT 2N1N ( ) ( )yTyT 2N1N sup≤sup
( ) ( ),inf≥inf yIyI 2N1N  ( ) ( )yIyI 2N1N sup≥sup    
( ) ( ),inf≥inf yFyF 2N1N ( ) ( )yFyF 2N1N sup≥sup

for all y in E. 
Definition2.1.4: (Single-valued neutrosophic set). 

Let E be a universal space of points (objects) with a 
generic element of E denoted by y.  

A single valued neutrosophic set [61] S is characterized by 
a truth membership function ( )yT N , a falsity membership
function ( )yF N  and indeterminacy membership function

( )yI N with ( )yT N , ( )yF N , ( )yI N ∈ [ ]1,0 for all y in E.

When E is continuous, a SNVS S can be written as 
follows: 

( ) ( ) ( )∫ ∈∀=
y

SSS Ey,yyI,yF,yTS

and when E is discrete, a SVNS S can be written as 
follows: 

( ) ( ) ( ) Ey,yyI,yF,yTS SSS ∈∀∑=

It should be observed that for a SVNS S, 
( ) ( ) ( ) Ey3yIyFyT0 SSS ∈∀,≤sup+sup+sup≤

    Definition2.1.5: The complement of a single valued 
neutrosophic set S is denoted by cS  and is defined by 

( ) ( )yFyT S
c

S = ; ( ) ( )yIyI S
c

S −=1 ; ( ) ( )yTyF S
c

S =  
Definition2.1.6: A SVNS SN1 is contained in the other 

SVNS SN2 , denoted as SN1 ⊆ SN2 iff, ( ) ( )yTyT S NS N 21 ≤ ;
( ) ( )yIyI S NS N 21 ≥ ; ( ) ( )yFyF S NS N 21 ≥ , Ey∈∀ . 
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Definition2.1.7: Two single valued neutrosophic sets 
SN1 and SN2 are equal, i.e. SN1= SN2, iff, SS 2N1N ⊆ and 

SS 2N1N ⊇  
Definition2.1.8: (Union) The union of two SVNSs SN1 

and SN2 is a SVNS SN3 , written as SSS 2N1N3N ∪= . 
Its truth membership, indeterminacy-membership and 

falsity membership functions are related to  SN1 and SN2 as 
follows: 

( ) ( ) ( )( )yT,yTmaxyT S 2NS 1NS 3N = ; 
( ) ( ) ( )( )yI,yImaxyI S 2NS 1NS 3N = ; 
( ) ( ) ( )( )yF,yFminyF S 2NS 1N3NS =  for all y in E.

Definition2.1.9: (Intersection) The intersection of two 
SVNSs N1 and N2 is a SVNS N3, written as .2N1N3N ∩=  
Its truth membership, indeterminacy membership and 
falsity membership functions are related to N1 an N2 as 
follows: 

( ) ( ) ( )( ) ;yT,yTmin=yT 2NS1NS3NS

( ) ( ) ( )( ) ;yI,yImax=yI 2NS1NS3NS  ( ) ( ) ( )( ),yF,yFmax=yF 2NS1NS3NS . E∈y∀ .

 Distance between two neutrosophic sets.  
The general SVNS can be presented in the follow form 

( ) ( ) ( )( )( ){ }Ey:yF,yI,yTyS SSS ∈=  
Finite SVNSs can be represented as follows: 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( ) )1(,

,,
,,,, 1111 Ey

yFyIyTy
yFyIyTy

S
mSmSmSm

SSS
∈∀

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
L

Definition 2.1.10:Let ( ) ( ) ( )( )( )
( ) ( ) ( )( )( ) )2(

,,

,,,,

111

1111111
1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
yFyIyTy

yFyIyTy
S

nNSnNSnNSn

NSNSNS
N

L                                                                           

( ) ( ) ( )( )( )
( ) ( ) ( )( )( ) )3(

,,

,,,,

222

1212121
2

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
yFyIyTx

yFyIyTx
S

nNSnNSnNSn

NSNSNS
N

L

                   

                                               

be two single-valued neutrosophic sets, then  the 
Hamming distance [57] between two SNVS N1and N2 is 
defined as follows: 

( )
( ) ( )
( ) ( )
( ) ( )

∑

−

+−

+−

=
=

n

1i

2NS1NS

2NS1NS

2NS1NS

2N1NS

yFyF

yIyI

yTyT

SSd ,

 

                (4)   

and normalized Hamming distance [58] between two 

SNVSs  SN1 and SN2 is defined as follows: 

( )
( ) ( )
( ) ( )
( ) ( )

∑

−

+−

+−

=
=

n

1i

2NS1NS

2NS1NS

2NS1NS

2N1N
N

S

yFyF

yIyI

yTyT

n3
1

SSd ,           (5)                                                                                  

with the following properties 
( ) )6(3,0.1 21 nSSd NNS ≤≤

( ) )7(1,0.2 21 ≤≤ SSd NN
N

S  

2.2 Definitions on rough neutrosophic set 
There exist two basic components in rough set theory, 

namely, crisp set and equivalence relation, which are the 
mathematical basis of RSs. The basic idea of rough set is 
based on the approximation of sets by a couple of sets 
known as the lower approximation and the upper 
approximation of a set. Here, the lower and upper 
approximation operators are based on equivalence relation. 
Rough neutrosophic sets [39, 40] is the generalization of 
rough fuzzy set [26] and rough intuitionistic fuzzy set [ 37]. 

Definition2.2.1: Let Z be a non-null set and R be an 
equivalence relation on Z. Let P be neutrosophic set in Z 
with the membership function ,PT  indeterminacy 
function PI  and non-membership function PF . The lower 
and the upper approximations of P in the approximation (Z, 
R) denoted by ( )PN  and ( )PN   are respectively defined as
follows: 

( ) [ ] )8(,
,

/)(),(),(, )()()(

Zxxz

xFxIxTx
PN

R

PNPNPN

∈∈

><
=

( )
[ ]

)9(
,

/)(),(),(, )()()(

Zxxz

xFxIxTx
PN

R

PNPNPN

∈∈

><
=

Here, [ ] ( )zTxxT PRzPN ∈=∧)()( ,
[ ] ( )zIxxI PRzPN ∈=∧)()( , [ ] ( )zFxxF PRzPN ∈=∧)()( ,
[ ] ( )zTxxT PRzPN ∈=∨)()( , [ ] ( )zTxxI PRzPN ∈=∨)()( ,
[ ] ( )zIxxF PRzPN ∈=∨)()(

So, 3)()()(0 )()()( ≤++≤ xFxIxT PNPNPN  
3)()()(0 )()()( ≤++≤ xFxIxT PNPNPN  

Here ∨ and ∧  present the “max” and the “min’’ 
operators respectively.  ( )zT P , ( )zI P  and ( )zF P present
the membership, indeterminacy and non-membership of z  
with respect to P.  It is very easy to observe that ( )PN and  

( )PN are two neutrosophic sets in Z. Therefore, the NS 
mapping ,N N : N(Z) →  N(Z) presents the lower  and  
upper  rough  NS  approximation  operators. The pair 

))(),(( PNPN is called the rough neutrosophic set [40] in ( Z, 
R). 

Based on the above definition, it is observed that 
)(PN and )(PN  have constant membership on the 

equivalence clases of R if )()( PNPN =  
i.e ),(=)( )()( xTxT PNPN ),(=)( )()( xIxI PNPN  

).(=)( )()( xFxF PNPN . 
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P is said to be  a definable neutrosophic set in the 
approximation (Z, R). It can be easily proved that zero 
neutrosophic set (0N) and unit neutrosophic sets (1N) are 
definable neutrosophic sets [40]. 

Definition2.2.2  If N(P) = ( )(),( PNPN ) is a rough 
neutrosophic set in (E, R) , the rough complement of N(P) 
[40] is the rough neutrosophic set denoted  
by ))(,)(()(~ cc PNPNPN = ,where cc PNPN )(,)( represent  
the  complements of neutrosophic sets of 

)(),( PNPN respectively. 

( ) ,
,

/)(),(1),(, )()()(

Zx

xFxIxTx
PN PNPNPNc

∈

>−<
= ,and  

( ) )10(
,

/)(),(1),(, )()()(

Zx

xFxIxTx
PN PNPNPNc

∈

>−<
=

Definition2.2.3.  If  )()( 21 PNandPN  are  two  rough 
neutrosophic  sets   of  the  neutrosophic  sets respectively 
in Z, then Bromi et al. [40] defined the following 
definitions. 

)()()()()()( 212121 PNPNPNPNPNPN =∧=⇔=  

)()()()()()( 212121 PNPNPNPNPNPN ⊆∧⊆⇔⊆  
><= )()(,)()()()( 212121 PNPNPNPNPNPN UUU  
><= )()(,)()()()( 212121 PNPNPNPNPNPN III  
>++<=+ )()(,)()()()( 212121 PNPNPNPNPNPN  

><= )(.)(,)(.)()(.)( 212121 PNPNPNPNPNPN  

If N, M, L are rough neutrosophic sets in (Z, R), then 
the following proposition [40] are stated from definitions 

Proposition i: 
NNN =)(~~.1

MNNMNMMN UUUU == ,.2

)()(
,)()(.3

NMLNML
NMLNML

IIII

UUUU

=
=

)()()(
,)()()(.4

NLMLNML
NLMLNML

IUIUI

UIUIU

=
=

Proposition ii: 
De Morgan‘s Laws are satisfied for neutrosophic sets 

))((~))(~())()((~.1 2121 PNPNPNPN IU =

))((~))((~))()((~.2 2121 PNPNPNPN UI =

Proposition iii: 
If P1 and P2 are two neutrosophic sets in U such that 

thenPP ,21⊆ )()( 21 PNPN ⊆  
)()()(.1 2221 PNPNPPN II ⊆

)()()(.2 2221 PNPNPPN UU ⊇

Proposition iv: 
)(~~)(.1 PNPN =

)(~~)(.2 PNPN =

)()(.3 PNPN ⊆

rough neutrosophic multi-attribute decision-making  based 
on grey relational analysis 

3. Rough neutrosophic multi-attribute decision-
making based on grey relational analysis 

We consider a multi-attribute decision making problem 
with m alternatives and n attributes. Let A1, A2, ..., Am and 
C1, C2, ..., Cn represent the alternatives and attributes 
respectively.  

The rating reflects the performance of the alternative Ai 
against the attribute Cj. For MADM weight vector W = {w1, 
w2,...,wn } is assigned to the attributes. The weight wj ( j = 
1, 2, ..., n) reflects the relative importance of the attribute 
Cj ( j = 1, 2, ..., m) to the decision making process. The 
weights of the attributes are usually determined on 
subjective basis. They represent the opinion of a single 
decision maker or accumulate the opinions of a group of 
experts using group decision technique. The values 
associated with the alternatives for MADM problems are 
presented in the Table 1.  

Table1: Rough neutrosophic decision 
matrix

)11(

,...,,
.............
.............
,...,,

,...,,

,

2211

22222221212

11121211111

21

mnmnmmmmm

nn

nn

n

nmijij

ddddddA

ddddddA

ddddddA
CCC

ddD

L

== ×

Where ijij dd , is rough neutrosophic number according to 

the i-th alternative and the j-th attribute. 

 

Grey relational analysis [GRA] [62] is a method of mea-
suring degree of approximation among sequences accord-
ing to the grey relational grade. Grey system theory deals 
with primarily on multi-input, incomplete, or uncertain in-
formation. GRA is suitable for solving problems with 
complicated relationships between multiple factors and va-
riables. The theories of grey relationalanalysis have al-
ready caught much attention and interest among the re-
searchers [63, 64]. In educational field, Pramanik and 
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Mukhopadhyaya [65] studied grey relational analysis 
based intuitionistic fuzzy multi criteria group decision-
making approach for teacher selection in higher education. 
Rough neutrosophic multi-attribute decision-making based 
on grey relational analysis is presented by the following 
steps. 

 Step1: Determination the most important criteria. 
Many attributes may be involved in decision making 

problems. However, all attributes are not equally important. 
So it is important to select the proper criteria for decision 
making situation. The most important criteria may be 
selected based on experts’ opinions. 

Step2: Data pre-processing 
Considering a multiple attribute decision making 

problem having m alternatives and n attributes, the general 
form of decision matrix can be presented as shown in 
Table-1. It may be mentioned here that the original GRA 
method can effectively deal mainly with quantitative 
attributes. There exists some complexity in the case of 
qualitative attributes. In the case of a qualitative attribute 
(i.e. quantitative value is not available), an assessment 
value is taken as rough neutrosophic number. 

Step3: Construction of the decision matrix with 
rough neutrosophic form 

For multi-attribute decision making problem, the rating 
of alternative Ai (i = 1, 2,…m ) with respect to attribute Cj 
(j = 1, 2,…n) is assumed to be rough neutrosophic sets. It 
can be represented with the following form. 

( ) ( )

( ) ( )

( ) ( ) ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∈

=

CC
FITNFITN

C

FITNFITN
C

FITNFITN
C

A

j
inininninininn

n

iiiiii

iiiiii

i

:
,

,,
,

,
,

22222222

2

11111111

1

L
 

( ) ( )
nj

forCC
FITNFITN

C
j

ijijijjijijijj

j

,,2,1

:
,

L=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∈=

(12)

Here N and N are neutrosophic sets with

ijijijijijij FITandFIT ,,,,

are the degrees of truth membership, degree of 
indeterminacy and degree of falsity membership of the 
alternative Ai satisfying the attribute Cj, respectively where   

,1,0 ≤≤ ijij TT ,1,0 ≤≤ ijij II 1,0 ≤≤ ijij FF            
,30 ≤++≤ ijijij FIT 30 ≤++≤ ijijij FIT

 
The rough neutrosophic decision matrix (see Table 2) 

can be presented in the following form: 

Table 2. Rough neutrosophic decision matrix 

)13(

,...,,
.............
.............
,...,,

,...,,
...

)(),(

2211

22222221212

11121211111

21

~

mnmnnnnnm

nn

nn

n

nmijij
N

NNNNNNA

NNNNNNA

NNNNNNA
CCC

FNFNd == ×

Where ijij NandN are lower and upper approximations of 
the neutrosophic set P.  

 

Step4: Determination of the accumulated geometric 
operator.

                       Let us consider a rough neutrosophic set as 
( ) ( )ijijijijijijijij

FITNFITN ,,,,,

 We transform the rough neutrosophic number to 
SVNSs by the following operator. The Accumulated 
Geometric Operator (AGO) is  defined in the following 
form:   

=ijijijij
FITN ,,

 
( ) ( ) ( ) ,.,.,. 5.05.05.0

ijijijijijij
ij

FFIITTN  (14)
The decision matrix (see Table 3)  is transformed in the 

form of SVNSs as follows: 

Table 3. Transformed decision matrix in the form SVNS

mnmnmnmmmmmmm

nnn

nnn

n

nmijijijS

FITFITFITA

FITFITFITA
FITFITFITA

CCC

FITd

,,...,,,,
.............
.............

,,...,,,,
,,...,,,,

...

,,

222111

2222222222121212

1111212121111111

21

== ×

  (15) 
Step5: Determination of the weights of criteria.  
During decision-making process, decision makers may 

often encounter with partially known or unknown attribute 
weights. So, it is crucial to determine attribute weight for 
proper decision making. Many methods are available in the 
literatre to determine the unknown attribute weight such as 
maximizing deviation method proposed by Wu and Chen 
[66], entropy method proposed by Wei and Tang [67], and 
Xu and Hui [68]), optimization method proposed by Wang 
and Zhang [69], Majumder and Samanta [70].   

 Biswas et al. [57] used entropy method [70] for single 
valed neutrosophic MADM. 

12
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In this paper we use an entropy method for 
determining attribute weight. According to Majumder and 
Samanta [70], the entropy measure of a SVNS

)(),(),( 1111 iNSiNSiNSN xFxIxTS =

∑ −+−

=

=
m
i i

c
NSiNSiNSiNS

Ni

xIxIxFxT
n

SEn

1 1111

1

)()())()((11

)(

(16)       

which has the following properties: 

.0)(
0)(.1

1

11

ExxI

andsetcrispaisSSEn

iNS

NNi

∈∀=
⇒=

.5.0,5.0,5.0

)(),(),(1)(.2 1111111

Ex

xFxIxTSEn NSNSNSNi

∈∀=

⇒=

)()()()(

)()(()()((
)()(.3

12121111

12121111

21

xIxIxIxI

andxFxTxFxT

SEnSEn

c
NSNSc

NSNS

NSNSNSNS

NiNi

−≤−

+≤+

⇒≥

.)()(.4
11 ExSEnSEn cNiNi ∈∀=  

In order to obtain the entropy value Enj of the j-th 
attribute Cj (j = 1, 2,…, n), equation (16) can be written as 
follows: 

∑ −+−= =
m
i i

C
ijiijiijiijj xIxIxFxT

n
En 1 )()())()((11

For i = 1, 2, …, n; j = 1, 2, …, m       (17) 
It is observed that Ej  [0,1] . Due to Hwang and Yoon 

[71], and Wang and Zhang [69] the entropy weight of the 
j-th attibute Cj is presented as:  

( )∑ −

−
=

=
n
j j

j
j En

En
W

1 1
1

                                                     
(18)

We have weight vector W= (w1, w2,…,wn)T of 
attributes Cj (j = 1, 2, …, n) with  wj ≥ 0 and  11 =∑ =

n
i jw  

Step6: Determination of the ideal rough 
neutrosophic estimates reliability solution (IRNERS) 
and the ideal rough neutrosophic estimates un-
reliability solution (IRNEURS) for rough neutrosophic 
decision matrix. 
Based on the concept of the neutrosophic cube [72], 
maximum reliability occurs when the indeterminacy 
membership grade and the degree of falsity membership 
grade reach minimum simultaneously. Therefore, the ideal 
neutrosophic estimates reliability solution (INERS) 

[ ]rrrR nSSSS
++++ = ,,,

21
L is defined  as the solution in which

every component FITr jjjjS
++++ = ,, is defined as follows: 

{ },max TT ij
i

j =+ { }IminI ij
i

j =+ and { }FF ij
i

j min=+ in the

neutrosophic decision matrix nmijijijS FITD ×= ,,  (see the 
Table 1) for i = 1, 2, …, n and j = 1, 2, …, m. 
Based on the concept of the neutrosophic cube [72], 
maximum un-reliability occurs when the indeterminacy 
membership grade and the degree of falsity membership 
grade reach maximum simultaneously. So, the ideal 
neutrosophic estimates unreliability solution (INEURS) 

[ ]rrrR nSSSS
−−−− = ,,, 21 L

 

is the solution in which every 

component FITr jjjjS
−−−− = ,, is defined as follows: 

{ },max TT ij
i

j =− { } andII ij
i

j min=− { }FF ij
i

j min=−

 in the 

neutrosophic decision matrix nmijijijS FITD ×= ,,  (see the 
Table 1)for i = 1, 2, …, n and j = 1, 2, …, m. 

For the rough neutrosophic decision making matrix 
D  = nmijijij FIT ×,, (see Table 1), Tij, Iij, Fij are the degrees 
of membership, degree of indeterminacy and degree of non 
membership of the alternative Ai of A satisfying the 
attribute Cj of C.  

 Step7: Calculation of the rough neutrosophic grey 
relational coefficient of each alternative from IRNERS 
and IRNEURS. 

Rough grey relational coefficient of each alternative 
from IRNERS is: 

Δρ+Δ

Δρ+Δ
=

++

++

+

ij
ji

ij

ij
ji

ij
ji

ijG
maxmax

maxmaxminmin
, where 

( )qqd
ijSjSij ,++ =Δ , i=1, 2, …,m and 

 j=1, 2, ….,n     (19) 
Rough grey relational coefficient of each alternative 

from IRNEURS is: 

Δρ+Δ

Δρ+Δ
=

−−

−−

−

ij
ji

ij

ij
ji

ij
ji

ijG
maxmax

maxmaxminmin
, where 

( )qqd
ijSijSij

−− =Δ , , i=1, 2, …,m and 

 j=1, 2, ….,n     (20) 
[ ]1,0∈ρ  is the distinguishable coefficient or the 

identification coefficient used to adjust the range of the 
comparison environment, and to control level of 
differences of the relation coefficients. When 1=ρ , the 
comparison environment is unchanged; when 0=ρ , the 
comparison environment disappears. Smaller value of 
distinguishing coefficient reflests the large range of grey 
relational coefficient. Generally, 5.0=ρ is fixed for 
decision making . 

Step8: Calculation of the rough neutrosophic grey 
relational coefficient.  

13



Neutrosophic Sets and Systems, Vol.7, 2015  

Kalyan Mondal, and Surapati Pramanik, Rough Neutrosophic Multi-Attribute Decision-Making  Based on Grey 
Relational Analysis

Rough neutrosophic grey relational coefficient of each 
alternative from IRNERS and IRNEURS are defined 
respectively as follows: 

GwG ij
n
j ji

+
=

+ ∑= 1   for i=1, 2, …,m  (21)                       

GwG ij
n
j ji

−
=

− ∑= 1   for i=1, 2, …,m     (22) 
Step9: Calculation of the rough neutrosophic 

relative relational degree.  
Rough neutrosophic relative relational degree of each 

alternative from Indeterminacy Trthfullness Falsity 
Positive Ideal Soltion (ITFPIS) is defined as follows: 

GG
G

ii

i
i +−

+

+
=ℜ , for i=1, 2, …,m     (23)                           

Step 10: Ranking the alternatives. 
The ranking order of all alternatives can be determined 

according to the decreasing order of the rough relative 
relational degree. The highest value of ℜi  indicates the 
best alternative. 

4 Numerical example  

In this section, rough neutrosophic MADM is 
considered to demonstrate the application and the 
effectiveness of the proposed approach. Let us consider a 
decision-making problem stated as follows. Suppose there 
is a conscious guardian, who wants to admit his/her child 
to a suitable school for proper education. There are three 
schools (possible alternatives) to admit his/her child: (1) A1 
is a Christian Missionary School; (2) A2 is a Basic English 
Medium School; (3) A3 is a Bengali Medium Kindergarten. 
The guardian must take a decision based on the following 
four criteria: (1) C1 is the distance and transport; (2) C2 is 
the cost; (3) C3 is stuff and curriculum; and (4) C4 is the 
administration and other facilites. We obtain the following 
rough neutrosophic decision matrix (see the Table 4) based 
on the experts’ assessment: 

Table 4. Decision matrix with rough neutrosophic 
number 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )1.,1.,9.

,2.,3.,8.
1.,2.,9.,

2.,2.,7.
2.,2.,8.,

3.,4.,7.
1.,2.,8.

,3.,2.,7.
2.,2.,8.

,4.,4.,7.
1.,2.,8.,

3.,2.,7.
1.,1.,8.,

3.,3.,6.
2.,1.,8.

,3.,4.,7.
2.,2.,9.

,4.,4.,7.
1.,2.,8.,

3.,4.,6.
2.,2.,8.,

3.,4.,6.
2.,2.,8.

,4.,3.,6.

)(),(

3

2

1

4321

43

A

A

A

CCCC

PNPNd ijijS == ×

         

(23) 
Step2: Determination of the decision matrix in the 

form SVNS 
Using accumulated geometric operator (AGO) from 

equation (13) we have the decision matrix in SVNS form is 

presented as follows:

)24(

1414.
,1732.
,8485.

1414.
,2000.
,7937.

2449.
,2828.
,7483.

1732.
,2000.
,7483.

2000.
,2449.
,7483.

1414.
,2000.
,7483.

1732.
,1732.
,6928.

2449.
,2000.
,7483.

2828.
,2828.
,7937.

1732.
,2828.
,6928.

2449.
,2828.
,6928.

2828.
,2449.
,6928.

3

2

1

4321

A

A

A

CCCC

 

Step3: Determination of the weights of attribute 
Entropy value Enj of the j-th (j = 1, 2, 3) attributes can 

be determined from the decision matrix d S (15) and 
equation (17) as: En1= 0.4512, En2 = 0.5318, En3 = 0.5096, 
En4 = 0.4672. 

Then the corresponding entropy weights w1, w2, w3, w4
of all attributes according to equation (17) are obtained by 
w1 = 0.2700, w2 =0.2279, w3 =0.2402, w4 =0.2619 such that 

11 =∑ =
n
j jw  

Step4: Determination of the ideal rough 
neutrosophic estimates reliability solution (IRNERS): 

{ } { } { }

{ } { } { }

{ } { } { }
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1414.0,1732.0,8485.0,1414.0,2000.0,7937.0

,1732.0,1732.0,7483.0,1732.0,2000.0,7483.0

Step5: Determination of the ideal rough neutrosophic 
estimates un-reliability solution (IRNEURS): 

{ } { } { }

{ } { } { }
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,2449.0,2828.0,6928.0,2828.0,2449.0,6928.0
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Step 6: Calculation of the rough neutrosophic grey 
relational coefficient of each alternative from IRNERS 
and IRNEURS.  

By using Equation (19) the rough neutrosophic grey 
relational coefficient of each alternative from IRNERS can 
be obtained 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=×

+

0000.10000.16399.00000.1
6305.08368.08075.07645.0
5544.06341.06207.03333.0

43Gij (25)

Similarly, from Equation (20) the rough neutrosophic 
grey relational coefficient of each alternative from 
IRNEURS is 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=×

−

3333.04690.06812.04755.0
5266.05314.04752.05948.0
5403.00000.10000.10000.1

43Gij (26)

Step7: Determine the degree of rough neutrosophic 
grey relational co-efficient of each alternative from INERS 
and IRNEURS. The required rough neutrosophic grey 
relational co-efficient corresponding to IRNERS is 
obtained by using equations (20) as: 

G+
1 = 0.5290, G+

2 = 0.7566, G+
3 = 0.9179                 (27) 

and corresponding to IRNEURS is obtained with the help 
of equation (21) as: 

G−
1 = 0.8796, G−

2 = 0.5345, G−
3 = 0.4836                 (28) 

Step8: Thus rough neutrosophic relative degree of 
each alternative from IRNERS can be obtained with the 
help of equation (22) as: 

ℜ1 = 0.3756, ℜ2 =0.5860, ℜ3  =0.6549                    (29) 
Step9: The ranking order of all alternatives can be 

determined according to the value of rough neutrosophic 
relational degree i.e.  ℜ3 > ℜ2  > ℜ1 . It is seen that the 
highest value of rough neutrosophic relational degree is R3 
therefore A3 (Bengali Medium Kindergarten) is the best 
alternative (school) to admit the child.  

Conclusion 
In this paper, we introduce rough neutrosophic multi-

attribute decision-making based on modified GRA. The 
concept of rough set, netrosophic set and grey system 
theory are fused to conduct the study first time.  We define 
the  Accumulated Geometric Operator (AGO) to transform 
rough neutrosophic matrix to SVNS. Here all the attribute 
weights information are partially known. Entropy based 
modified GRA analysis method is introduced to solve this 
MADM problem. Rough neutrosophic grey relation 
coefficient is proposed for solving multiple attribute 
decision-making problems. Finally, an illustrative example 
is provided to show the effectiveness and applicability of 
the proposed approach.  

  However, we hope that the concept presented here 
will open new approach of research in current rough 
neutrosophic decision-making field. The main thrsts of the 
paper will be in the field of practical decision-making, 
pattern recognition, medical diagnosis and clustering 
analysis.  
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Abstract. Since the world is full of indeterminacy, the neutro-

sophics found their place into contemporary research. The fun-

damental concepts of neutrosophic set, introduced by 

Smarandache in [30, 31, 32] and Salama et al. in [4-29]. In Geo-

graphical information systems (GIS) there is a need to model 

spatial regions with indeterminate boundary and under indeter-

minacy. In this paper the structure of some classes of neutrosoph-

ic crisp nearly open sets are investigated and some applications 

are given. Finally we generalize the crisp topological and intui-

tioistic studies to the notion of neutrosophic crisp set.  Possible 

applications to GIS topological rules are touched upon. 

Keywords: Neutrosophic Crisp Set; Neutrosophic Crisp Topology; Neutrosophic Crisp Open Set; Neutrosophic Crisp Nearly 

Open Set; Neutrosophic GIS Topology.

1 Introduction 

The fundamental concepts of neutrosophic set, introduced 

by Smarandache [30, 31, 32] and Salama et al. in [4-29]., pro-

vides a natural foundation for treating mathematically the 

neutrosophic phenomena which exist pervasively in our re-

al world and for building new branches of neutrosophic 

mathematics. Neutrosophy has laid the foundation for a 

whole family of new mathematical theories generalizing 

both their classical and fuzzy counterparts [1, 2, 3, 20, 21, 

22, 23, 34 ] such as a neutrosophic set theory. In this paper 

the structure of some classes of neutrosophic crisp sets are 

investigated, and some applications are given. Finally we 

generalize the crisp topological and intuitioistic studies to 

the notion of neutrosophic crisp set.  

2 2 Terminologies 

     We recollect some relevant basic preliminaries, and in 

particular, the work of   Smarandache   in [30, 31, 32] and 

Salama et al. [4-29]. Smarandache introduced the neutro-

sophic components T, I, F which represent the membership, 

indeterminacy, and non-membership values respectively, 

where  1,0 -
is non-standard unit interval. Salama et al. [9, 

10, 13, 14, 16, 17] considered some possible definitions for 

basic concepts of the neutrosophic crisp set and its opera-

tions. We now improve some results   by the following. 

Salama extended the concepts of topological space and in-

tuitionistic topological space to the case of neutrosophic 

crisp sets.

Definition1. 2 [13] 

A neutrosophic crisp topology (NCT for short) on a 

non-empty set X is a family   of neutrosophic crisp sub-

sets in X satisfying the following axioms 

i) NN X, . 

ii)  21 AA  for any 1A and 2A . 

iii)  jA      JjA j : . 

In this case the pair  ,X  is called a neutrosophic crisp

topological space NCTS( for short) in X. The elements 

in  are called neutrosophic crisp open sets (NCOSs for 

short) in X.  A neutrosophic crisp set F is closed if and

only if its complement CF  is an open neutrosophic crisp 

set. 

Let  ,X  be  a NCTS ( identified with its class of

neutrosophic crisp open sets ), and NCint and NCcl denote 

neutrosophic interior crisp set and neutrosophic crisp clo-

sure  with respect to neutrosophic crisp topology 
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3 Nearly Neutrosophic Crisp Open Sets 
Definition3. 1 

Let  ,X  be a NCTS and 321 ,, AAAA   be a NCS in 

X, then A is called 

Neutrosophic crisp  open set iff 

))),int((int( ANCNCclNCA  

Neutrosophic crisp  open set iff 

)).int(( ANCNCclA 

Neutrosophic crisp semi-open set iff 

)).(int( ANCclNCA   

We shall denote the class of all neutrosophic crisp 

 open sets
NC , the calls all neutrosophic crisp 

 open sets
NC , and the class of all neutrosophic 

crisp semi-open sets 
sNC . 

Remark 3.1 
A class consisting of exactly all a neutrosophic crisp 

 structure (resp. NC  structure). Evident-

ly   NCNCNC . 

 We notice that every non- empty neutrosophic crisp 

 open has NC  nonempty interior. If all neutrosophic

crisp sets the following IiiB }{ are NC  open sets, 

then ))int((}{ iIii
Ii

BNCNCclB 

 ))int(( iBNCNCcl , 

that is A NC  structure is a neutrosophic closed with 

respect to arbitrary neutrosophic crisp unions. 

We shall now characterize 
NC in terms 

NC

Theorem 3.1 

 Let  ,X  be a NCTS.
NC  Consists of exactly 

those neutrosophic crisp set A for which BA  
NC for 

NCB

Proof 

Let
 NCA , 

NCB , BAp  and U be  a 

neutrosophic crisp neighbourhood (for short NCnbd )of p. 

Clearly ))),int((int( ANCNCclNCU  too is a 

neutrosophic crisp open neighbourhood of p, so 

)int())))int((int(( BNCANCNCclNCUV 

is non-empty. Since ))int(( ANCNCclV  this im-

plies ))int()int(( BNCANCU  = NANCV  )int( . 

It follows that 

))int()int(( BNCANcNCclBA  =

))int(( BANCNCcl  i.e. 
 NCBA . Conversely, let  

 NCBA for all 
NCB  then in particular 

 NCA . Assume that 
cANCANCclNCAp )))int()(int((  . Then 

),(BNCclp where
cANCNCcl )))int((( . Clearly 

,}{  NCBp and consequently 

.}}{{  NCBpA  But }{}}{{ pBpA  . Hence 

}{p  is a neutrosophic crisp open.  As 

))int((( ANCNCclp this im-

plies )))int((int( ANCNCclNCp , contrary to assumption. 

Thus Ap  implies ))int(( ANCNCclp and
 NCA . 

This completes the proof. Thus we have found that 
NC is complete determined by 

NC i.e. all neutro-

sophic crisp topologies with the same NC  -structure also 

determined the same NC -structure, explicitly given

Theorem 3.1. 

We shall that conversely all neutrosophic crisp topolo-

gies with the same NC -structure, so that 
NC is com-

pletely determined by
NC . 

Theorem 3.2 
Every neutrosophic crisp NC -structure is a neutro-

sophic crisp topology. 

Proof 
NC  Contains the neutrosophic crisp empty set and is

closed with respect to arbitrary unions. A standard result 

gives the class of those neutrosophic crisp sets A for which 
 NCBA for all 

NCB constitutes a neutrosoph-

ic crisp topology, hence the theorem. Hence forth we shall 

also use the term NC -topology for NC -structure two

neutrosophic crisp topologies deterring the same  NC -

structure shall be called NC -equivalent , and the equiva-

lence classes shall be called NC -classes.

We may now characterize 
NC in terms of 

NC in 

the following way. 

Proposition 3.1 

Let  ,X  be  a NCTS. Then
NC =

NC and 

hence NC -equivalent topologies determine the same 

NC  -structure. 

Proof 

Let NC cl and NC int denote neutrosophic clo-

sure and Neutrosophic crisp interior with respect to 
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NC . If 
 NCBp and 

 NCBp , then 

NBNCANCNCclNC  ))int()))int((int(( . Since 

)))int((int( ANCNCclNC is a crisp neutrosophic neigh-

bourhood of point p. So certainly )int( BNC meets  

))int(( ANCNCcl and therefore (bing neutrosophic open ) 

meets )int( ANC , proving NBNCA  )int( this 

means ))int(( BNCclNCB  i.e. 
 NCB on the oth-

er hand let 
 NCA , Ap and  NCVp . As 

NCV  and ))int(( ANCNCclp we have 

NANCV  )int( and there exist a nutrosophic crisp 

set W such that .)int( AANCVW    

In other words 

NANCV  )int( and ))int(( ANCNCclp . Thus we 

have verified 
  NCNC , and the proof is complete 

combining Theorem 1 and Proposition 1. We get  
  NCNC  . 

Corollary 3.2 
A neutrosophic crisp topology NC a NC topology iff 

 NCNC . Thus an NC topology belongs to the 

NC class if all its determining a Neutrosophic crisp to-

pologies, and is the finest topology of finest neutrosophic 

topology of this class. Evidently 
NC  is a neutrosophic 

crisp topology iff
  NCNC . In this case 

  NCNC =
NC . 

Corollary 3.3 
NC Structure   is a neutrosophic crisp topology, then 

. 

 We proceed to give some results an the neutrosophic 

structure of neutrosophic crisp NC topology 

Proposition 3.4 

The NC open with respect to a given neutrosophic 

crisp topology are exactly those sets which may be written 

as a difference between a neutrosophic crisp open set and 

neutrosophic crisp nowhere dense set  

If 
 NCA  we 

have  ))int((int(( ANCNCclNCA

CCAANCNCclNC )))int((int((  , where 

)))int((int(( CAANCNCclNC   clearly is neutrosophic 

crisp nowhere dense set , we easily see that 

))int(( ANCNCclB  and consequently 

))int((int( ANCNCclNCBA  so the proof is complete. 

Corollary 3.4 
A neutrosophic crisp topology is a NC topology iff all 

neutrosophic crisp nowhere dense sets are neutrosophic 

crisp closed. 

 For a neutrosophic crisp NC topology may be charac-

terized as neutrosophic crisp topology where the difference 

between neutrosophic crisp open and neutrosophic crisp 

nowhere dense set is again a neutrosophic crisp open, and 

this evidently is equivalent to the condition stated. 

Proposition 3.5 
Neutrosophic crisp topologies which are NC  equiva-

lent determine the same class of neutrosophic crisp no-

where dense sets. 

Definition 3.2 

We recall a neutrosophic crisp topology a neutrosophic 

crisp extremely  disconnected  if  the neutrosophic crisp 

closure of every neutrosophic crisp open set is a neutro-

sophic crisp open . 

Proposition 3.6 

If NC Structure    is a neutrosophic crisp topology, 

all a neutrosophic crisp topologies  for which 

are neutrosophic crisp extremely disconnected. 

In particular: Either all or none of the neutrosophic crisp 

topologies of a NC class are extremely disconnected.   

Proof 

Let   and suppose there is a A such 

that )(ANCcl Let 

CANCclNCANCclp ))(int(()(  with

))(int(}{ ANCclNCp  ,  CANCclNCM ))(int(  we

have  CANCclNCMp ))(int(}{  ),int(( MNCNCcl

))(int(()(}{ ANCclNCNCclANCclp 

))int(( BNCNCcl . Hence both  and M are in  . The 

intersection }{pM   is not neutrosophic crisp open 

since
CMANCclp  )( , hence not NC  open so. 

  is not a neutrosophic crisp topology. Now sup-

pose  is not a topology, and  There is 

a  such that .  Assume 

that .)int(( NCNCcl Then 

 )int((NCNCcl ))int((int( NCNCclNC .i.e. 

 , contrary to assumption. Thus we have produced a 

neutrosophic crisp open set whose neutrosophic crisp clo-

sure is not neutronsophic crisp open, which completes the 

proof. 
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Corollary 3.5 
A neutrosophic crisp topology   is a neutrosophic crisp 

extremely disconnected if and only if  is a neutrosophic 

crisp topology. 

4 Conclusion and future work 
Neutrosophic set is well equipped to deal with missing data. 

By employing NSs in spatial data models, we can express a 

hesitation concerning the object of interest. This article has 

gone a step forward in developing methods that can be 

used to define neutrosophic  spatial regions and their 

relationships. The main contributions of the paper can be 

described as the following: Possible applications have been 

listed after the definition of  NS. Links to other models 

have been shown. We are defining some new operators to 

describe objects, describing a simple neutrosophic region. 

This paper has demonstrated that spatial object may 

profitably be addressed in terms of neutrosophic set. 

Implementation of the named applications is necessary as a 

proof of concept.  
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Abstract:  This Paper combines interval- valued  

neutrouphic  sets and rough sets. It studies roughness in 

interval- valued neutrosophic sets and some of its 

properties. Finally  we propose a  Hamming distance 

between lower and upper approximations of interval 

valued neutrosophic sets. 

Keywords: interval valued neutrosophic sets, rough sets, interval  valued neutrosophic sets. 

1.Introduction

Neutrosophic set (NS for short), a part of neutrosophy 

introduced by Smarandache [1] as a new branch of 

philosophy, is a mathematical tool dealing with problems 

involving imprecise, indeterminacy and inconsistent 

knowledge. Contrary to fuzzy sets and  intuitionistic fuzzy 

sets, a neutrosophic set consists of three basic membership 

functions independently of each other, which are truth, 

indeterminacy and falsity. This theory has been well 

developed in both theories and applications. After the 

pioneering work  of  Smarandache,  In 2005, Wang [2] 

introduced the notion of  interval neutrosophic sets ( INS 

for short) which is another extension of neutrosophic sets. 

INS can be described by a membership interval, a non-

membership interval and indeterminate interval, thus the 

interval neutrosophic  (INS) has the virtue of 

complementing NS, which is more flexible and practical 

than neutrosophic set, and Interval Neutrosophic Set (INS ) 

provides a more  reasonable mathematical framework to 

deal with indeterminate and inconsistent information. The 

interval neutrosophic set generalize, the classical set ,fuzzy 

set [ 3] , the interval valued fuzzy set [4], intuitionistic 

fuzzy set [5 ] , interval valued intuitionstic fuzzy set [ 6] 

and so on. Many scholars have performed studies on 

neutrosophic sets , interval neutrosophic sets and their 

properties [7,8,9,10,11,12,13]. Interval neutrosophic sets 

have also been widely applied to many fields 

[14,15,16,17,18,19]. 

The rough  set  theory  was introduced  by  Pawlak  [20]  in 

1982, which  is  a  technique  for  managing  the  

uncertainty  and  imperfection,  can  analyze  incomplete 

information  effectively. Therefore, many models have 

been built upon different aspect, i.e, univers, relations, 

object, operators by many scholars [21,22,23,24,25,26] 

such as rough fuzzy sets, fuzzy rough sets, generalized 

fuzzy rough, rough intuitionistic fuzzy set.  intuitionistic 

fuzzy rough sets [27].  It has been successfully applied in 

many fields such as attribute reduction [28,29,30,31], 

feature selection [32,33,34], rule extraction [35,36,37,38] 

and so on. The  rough sets theory approximates any subset 

of objects of the universe by two sets, called the lower and 

upper approximations. It focuses on the ambiguity caused 

by the limited discernibility of  objects in the universe of 

discourse.  

More recently, S.Broumi et al [39] combined neutrosophic 

sets with rough sets in a new hybrid mathematical structure 

called “rough neutrosophic sets” handling incomplete and 

indeterminate information . The concept of rough 

neutrosophic sets generalizes fuzzy rough sets and 

intuitionistic fuzzy rough sets. Based on the equivalence 

relation on the universe of discourse, A.Mukherjee et al 

[40]  introduced lower and upper approximation of interval 

valued intuitionistic fuzzy set in Pawlak’s approximation 

space . Motivated by this ,we extend the  interval 

intuitionistic fuzzy  lower and upper approximations to the 

case of interval valued neutrosophic set. The concept of 

interval valued neutrosophic rough set is introduced by  

coupling both interval neutrosophic sets and rough sets. 
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The organization of this paper is as follow : In section 2, 

we briefly present some basic definitions and preliminary 

results are given which will be used in the rest of the paper. 

In section 3 , basic concept of rough approximation of an 

interval valued neutrosophic sets and their properties are 

presented. In section 4, Hamming distance between lower 

approximation and upper approximation of interval 

neutrosophic set is introduced, Finally, we concludes the 

paper. 

2.Preliminaries

Throughout this paper, We now recall some basic notions 

of neutrosophic sets , interval valued neutrosophic sets , 

rough set theory and intuitionistic fuzzy rough sets. More 

can found in ref [1, 2,20,27]. 

Definition 1 [1] 

Let U be an universe of discourse  then the neutrosophic 

set A is an object having the form A= {< x: 𝛍 A(x), 𝛎 A(x), 𝛚 

A(x) >,x ∈ U}, where the functions 𝛍, 𝛎, 𝛚 : U→]−0,1+[

define respectively the degree of membership , the degree 

of indeterminacy, and the degree of non-membership of the 

element x ∈ X to the set A with the condition.  
   −0 ≤μ A(x)+ ν A(x) + ω A(x) ≤ 3+.            (1)    

From philosophical point of view, the neutrosophic set 

takes the value from real standard or non-standard subsets 

of ]−0,1+[.so instead of ]−0,1+[ we need to take the interval 

[0,1] for technical applications, because ]−0,1+[will be 

difficult to apply in the real applications  such as in 

scientific and engineering problems.  

Definition 2 [2] 

Let X be a space of points (objects) with generic elements 

in X denoted by x. An interval valued neutrosophic set 

(for short IVNS) A in X is characterized by truth-

membership function μ
A

(x), indeteminacy-membership

function νA(x) and falsity-membership function ωA(x).

For each point x in X, we have that μ
A

(x), νA(x),

ωA(x) ∈ [0 ,1].

For two IVNS, A= {<x , [μ
A
L (x), μ

A
U(x)] ,

[νA
L (x), νA

U(x)] , [ωA
L (x), ωA

U(x)]  > | x ∈ X }       (2) 

And B= {<x , [μ
B
L (x), μ

B
U(x)] , 

[νB
L (x), νB

U(x)] , [ωB
L (x), ωB

U(x)]> | x ∈ X } the two

relations are defined as follows: 

(1)A ⊆  Bif and only if μ
A
L (x) ≤ μ

B
L (x),μ

A
U(x) ≤

μ
B
U(x) , νA

L (x) ≥ νB
L (x) ,ωA

U(x) ≥ ωB
U(x) , ωA

L (x) ≥ ωB
L (x)

,ωA
U(x) ≥ ωB

U(x)

(2)A =  B  if and only if , μ
A

(x) =μ
B

(x) ,νA(x) =νB(x)

,ωA(x) =ωB(x) for any x ∈ X

The complement of AIVNS is denoted by AIVNS
o and is

defined by 

Ao={ <x , [ωA
L (x), ωA

U(x)]>  ,  [1 − νA
U(x), 1 − νA

L (x)]  ,

[μ
A
L (x), μ

A
U(x)] | x ∈ X }

A∩B ={ <x , [min(μ
A
L (x),μ

B
L (x)), min(μ

A
U(x),μ

B
U(x))],

[max(νA
L (x),νB

L (x)),

max(νA
U(x),νB

U(x)],  [max(ωA
L (x),ωB

L (x)),

max(ωA
U(x),ωB

U(x))] >: x ∈ X }

A∪B ={ <x , [max(μ
A
L (x),μ

B
L (x)), max(μ

A
U(x),μ

B
U(x))],

[min(νA
L (x),νB

L (x)),

min(νA
U(x),νB

U(x)], [min(ωA
L (x),ωB

L (x)),

min(ωA
U(x),ωB

U(x))] >: x ∈ X }

ON = {<x, [ 0, 0] ,[ 1 , 1], [1 ,1] >| x ∈ X}, denote the 

neutrosophic empty set ϕ 

1N = {<x, [ 0, 0] ,[ 0 , 0], [1 ,1] >| x ∈ X}, denote the 

neutrosophic universe set U 

As an illustration, let us consider the following example. 

Example 1. Assume that the universe of discourse 

U={x1, x2, x3}, where x1characterizes the capability, 

x2characterizes the trustworthiness and x3  indicates the 

prices of the objects. It may be further assumed that the 

values of x1, x2 and x3 are in [0, 1] and they are obtained 

from some questionnaires of some experts. The experts 

may impose their opinion in three components viz. the 

degree of goodness, the degree of indeterminacy and that 

of poorness to explain the characteristics of the objects. 

Suppose A is an interval neutrosophic set (INS) of U, 

such that, 

A = {< x1,[0.3 0.4],[0.5 0.6],[0.4 0.5] >,< x2, ,[0.1 

0.2],[0.3 0.4],[0.6 0.7]>,< x3, [0.2 0.4],[0.4 0.5],[0.4 0.6] 

>}, where the degree of goodness of capability is 0.3, 
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degree of indeterminacy of capability is 0.5 and degree of 

falsity of capability is 0.4 etc. 

Definition 3 [20]  

Let R be an equivalence relation on the universal set U. 

Then the pair (U, R) is called a Pawlak approximation 

space. An equivalence class of R containing x will be 

denoted by [x]R. Now for X ⊆ U, the lower and upper

approximation of X with respect to (U, R) are denoted by 

respectively R ∗X and R∗ X and are defined by

R∗ X ={x∈U: [x]R ⊆ X},

R ∗X ={ x∈U: [x]R ∩ X ≠ ∅}.

Now if R ∗X = R∗ X, then X is called definable; otherwise

X is called a rough set. 

Definition 4 [27] 

Let U be a universe and X , a rough set in U. An IF rough 

set A in U is characterized  by a membership function  μA

:U→ [0, 1] and  non-membership function  νA :U→ [ 0 , 1]

such that 

 μA(R X) = 1 ,  νA(R X) = 0

Or [μA(x), νA(x)] = [ 1, 0] if  x ∈ (R X ) and  μA(U -R X)

= 0 ,  νA(U -R X) = 1

Or [ μA(x) ,  νA(x)] = [ 0, 1]      if   x ∈ U − R X ,

0 ≤  μA(R X − R X) + νA(R X − R X) ≤ 1

Example 2: Example of IF Rough Sets 

Let U= {Child,  Pre-Teen,  Teen,  Youth,  Teenager, 

Young-Adult, Adult, Senior, Elderly} be a universe.  

Let the equivalence relation R be defined as follows: 

R*= {[Child,  Pre-Teen],  [Teen,  Youth,  Teenager], 

[Young-Adult, Adult],[Senior, Elderly]}. 

Let  X = {Child, Pre-Teen, Youth, Young-Adult} be a 

subset  of univers U. 

We  can  define X in  terms  of  its  lower  and  upper  

approximations: 

R X = {Child, Pre-Teen}, and R X =  {Child,  Pre-Teen,  

Teen,  Youth,  Teenager,  

Young-Adult, Adult}. 

The  membership  and  non-membership  functions  

 μA:U→] 1 , 0 [  and   νA∶ U→] 1 , 0 [  on a set  A are

defined as  follows: 

 μAChild) = 1,   μA (Pre-Teen) = 1 and   μA (Child) = 0,

 μA(Pre-Teen) = 0

 μA (Young-Adult) = 0,   μA (Adult) = 0,  μA(Senior) = 0,

 μA (Elderly) = 0

3.Basic Concept of Rough Approximations of an

Interval Valued Neutrosophic Set and their 

Properties. 

In  this  section  we  define  the  notion  of interval valued 

neutrosophic rough sets (in brief  ivn- rough  set ) by 

combining both rough sets and interval neutrosophic sets. 

IVN- rough sets are the generalizations  of interval valued 

intuitionistic fuzzy rough sets, that  give  more information 

about uncertain or boundary region. 

Definition  5  : Let ( U,R) be a pawlak approximation 

space ,for an interval valued neutrosophic set  

𝐴= {<x , [μA
L (x), μA

U(x)], [νA
L (x), νA

U(x)], [ωA
L (x), ωA

U(x)]  >

| x ∈ X } be  interval neutrosophic set. The lower 

approximation  𝐴𝑅   and 𝐴𝑅 upper approximations   of  A

in the pawlak approwimation space (U, R) are defined as: 

𝐴𝑅={<x, [⋀ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {μA
U(y)}𝑦 ∈[x]𝑅

], 

[⋁ {νA
L (y)}𝑦 ∈[x]𝑅

, ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

], [⋁ {ωA
L (y)}𝑦 ∈[x]𝑅

,  

⋁ {ωA
U(y)}𝑦 ∈[x]𝑅

]>:x ∈ U}. 

𝐴𝑅={<x, [⋁ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋁ {μA
U(y)}𝑦 ∈[x]𝑅

], 

[⋀ {νA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {νA
U(y)𝑦 ∈[x]𝑅

], [⋀ {ωA
L (y)}𝑦 ∈[x]𝑅

,  

⋀ {ωA
U(y)}𝑦 ∈[x]𝑅

]:x ∈ U}. 

Where “ ⋀  “ means “ min” and “ ⋁ “ means “ max”, R 

denote an equivalence relation for interval valued 

neutrosophic set A. 

Here [x]𝑅  is the equivalence class of the element x. It is

easy to see that 

[⋀ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {μA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

[⋁ {νA
L (y)}𝑦 ∈[x]𝑅

, ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

[⋁ {ωA
L (y)}𝑦 ∈[x]𝑅

,  ⋁ {ωA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

And 

 0 ≤  ⋀ {μA
U(y)}𝑦 ∈[x]𝑅

 + ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

 + ⋁ {ωA
U(y)}𝑦 ∈[x]𝑅

≤ 3 

Then,  𝐴𝑅 is an interval neutrosophic set 
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Similarly , we have 

[⋁ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋁ {μA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

[⋀ {νA
L (y)}𝑦 ∈[x]𝑅

, ⋀ {νA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

[⋀ {ωA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {ωA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

And 

 0 ≤  ⋁ {μA
U(y)}𝑦 ∈[x]𝑅

 + ⋀ {νA
U(y)}𝑦 ∈[x]𝑅

 + ⋀ {ωA
U(y)}𝑦 ∈[x]𝑅

≤ 3 

Then,  𝐴𝑅 is an interval neutrosophic set 

If 𝐴𝑅 = 𝐴𝑅 ,then A is a definable set, otherwise A is an 

interval valued neutrosophic rough set, 𝐴𝑅 and 𝐴𝑅 are 

called the lower and upper approximations of interval 

valued neutrosophic set with respect to approximation 

space ( U, R), respectively. 𝐴𝑅 and 𝐴𝑅 are simply denoted 

by 𝐴 and 𝐴. 

In the following , we employ an example to illustrate the 

above concepts 

Example: 

 Theorem 1.  Let A, B be interval neutrosophic sets and 𝐴 

and 𝐴 the lower and upper approximation of interval –

valued neutrosophic set A with respect to approximation 

space (U, R) ,respectively. 𝐵 and 𝐵 the lower and upper 

approximation of interval –valued neutrosophic set B with 

respect to approximation space (U,R) ,respectively.Then 

we have 

i. 𝐴 ⊆ A ⊆  𝐴

ii. 𝐴 ∪ 𝐵 =𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 =𝐴 ∩ 𝐵

iii. 𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵

iv. (𝐴) =(𝐴) =𝐴 , (𝐴)= (𝐴)=𝐴

v. 𝑈 =U ; 𝜙  = 𝜙

vi. If A ⊆ B ,then 𝐴 ⊆ 𝐵 and 𝐴 ⊆ 𝐵

vii. 𝐴𝑐 =(𝐴)𝑐  , 𝐴𝑐=(𝐴)𝑐

Proof: we prove only i,ii,iii, the others are trivial 

(i) 

Let  𝐴= {<x , [μA
L (x), μA

U(x)], [νA
L (x), νA

U(x)],

[ωA
L (x), ωA

U(x)]  > | x ∈ X } be  interval neutrosophic set

From definition of  𝐴𝑅 and 𝐴𝑅, we have

Which implies that 

μ𝐴
L(x) ≤ μA

L (x) ≤ μ
𝐴
L(x) ; μ𝐴

U(x) ≤ μA
U(x) ≤ μ

𝐴
U(x) for all

x ∈ X 

ν𝐴
L(x) ≥ νA

L (x) ≥ ν
𝐴
L (x) ; ν𝐴

U(x) ≥ νA
U(x) ≥ ν

𝐴
U(x) for all

x ∈ X 

ω𝐴
L(x) ≥ ωA

L (x) ≥ ω
𝐴
L (x) ; ω𝐴

U(x) ≥ ωA
U(x) ≥ ω

𝐴
U(x) for

all x ∈ X 

([μ𝐴
L  , μ𝐴

U], [ν𝐴
L , ν𝐴

U], [ω𝐴
L , ω𝐴

U]) ⊆ ([μ𝐴
L  , μ𝐴

U], [ν𝐴
L , ν𝐴

U], [ω𝐴
L

, ω𝐴
U]) ⊆([μ

𝐴
L , μ

𝐴
U], [ν

𝐴
L  , ν

𝐴
U], [ω

𝐴
L  , ω

𝐴
U]) .Hence  𝐴𝑅 ⊆A ⊆

𝐴𝑅

(ii) Let  𝐴= {<x , [μA
L (x), μA

U(x)], [νA
L (x), νA

U(x)],

[ωA
L (x), ωA

U(x)]  > | x ∈ X } and

B= {<x, [μB
L (x), μB

U(x)], [νB
L (x), νB

U(x)] , [ωB
L (x), ωB

U(x)] > |

x ∈ X } are two intervalvalued  neutrosophic set and  

𝐴 ∪ 𝐵 ={<x , [μ
𝐴∪𝐵
L (x), μ

𝐴∪𝐵
U (x)] , [ν

𝐴∪𝐵
L (x), ν

𝐴∪𝐵
U (x)] ,

[ω
𝐴∪𝐵
L (x), ω

𝐴∪𝐵
U (x)]  > | x ∈ X } 

𝐴 ∪ 𝐵= {x, [max(μ
𝐴
L (x) , μ

𝐵
L (x)) ,max(μ

𝐴
U(x) , μ

𝐵
U(x)) ],[ 

min(ν
𝐴
L (x) , ν

𝐵
L (x)) ,min(ν

𝐴
U(x) , ν

𝐵
U(x))],[ min(ω

𝐴
L (x) 

, ω
𝐵
L (x)) ,min(ω

𝐴
U(x) , ω

𝐵
U(x))] 

for all x ∈ X 

μ
𝐴∪𝐵
L (x) =⋁{ μ𝐴 ∪𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {μA
L (y)  ∨  μB

L (y) | 𝑦 ∈ [x]𝑅}

= ( ∨  μA
L (y) | 𝑦 ∈ [x]𝑅) ⋁  (∨  μA

L (y) | 𝑦 ∈ [x]𝑅)

=(μ
𝐴
L  ⋁ μ

𝐵
L  )(x)

μ
𝐴∪𝐵
U (x) =⋁{ μ𝐴 ∪𝐵

u (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {μA
U(y)  ∨  μB

U(y) | 𝑦 ∈ [x]𝑅}
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= ( ∨  μA
u (y) | 𝑦 ∈ [x]𝑅) ⋁  (∨  μA

U(y) | 𝑦 ∈ [x]𝑅)

=(μ
𝐴
U ⋁ μ

𝐵
U )(x)

ν
𝐴∪𝐵
L (x)=⋀{ ν𝐴 ∪𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {νA
L (y)  ∧  νB

L (y) | 𝑦 ∈ [x]𝑅}

= ( ∧  νA
L (y) | 𝑦 ∈ [x]𝑅) ⋀  (∧  νB

L (y) | 𝑦 ∈ [x]𝑅)

=(ν
𝐴
L  ⋀ ν

𝐵
L  )(x)

ν
𝐴∪𝐵
U (x)=⋀{ ν𝐴 ∪𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {νA
U(y)  ∧  νB

U(y) | 𝑦 ∈ [x]𝑅}

= ( ∧  νA
U(y) | 𝑦 ∈ [x]𝑅) ⋀  (∧ νB

U(y) | 𝑦 ∈ [x]𝑅)

=(ν
𝐴
U(y) ⋀ ν

𝐵
U(y) )(x)

ω
𝐴∪𝐵
L (x)=⋀{ ω𝐴 ∪𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {ωA
L (y)  ∧  ωB

L (y) | 𝑦 ∈ [x]𝑅}

= ( ∧  ωA
L (y) | 𝑦 ∈ [x]𝑅) ⋀  (∧  ωB

L (y) | 𝑦 ∈ [x]𝑅)

=(ω
𝐴
L  ⋀ ω

𝐵
L  )(x)

ω
𝐴∪𝐵
U (x)=⋀{ ω𝐴 ∪𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {ωA
U(y)  ∧  νB

U(y) | 𝑦 ∈ [x]𝑅}

= ( ∧  ωA
U(y) | 𝑦 ∈ [x]𝑅) ⋀  (∧ ωB

U(y) | 𝑦 ∈ [x]𝑅)

=(ω
𝐴
U ⋀ ω

𝐵
U )(x)

 Hence, 𝐴 ∪ 𝐵 =𝐴 ∪ 𝐵 

Also for 𝐴 ∩ 𝐵 =𝐴 ∩ 𝐵 for all x ∈ A 

μ𝐴∩𝐵 
L (x) =⋀{ μ𝐴 ∩𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {μA
L (y)  ∧  μB

L (y) | 𝑦 ∈ [x]𝑅}

= ⋀  (μA
L (y) | 𝑦 ∈ [x]𝑅) ⋀  ( ∨ μB

L (y) | 𝑦 ∈ [x]𝑅)

 =μ𝐴
L (x) ∧ μ𝐵

L (x) 

         =(μ𝐴
L  ∧ μ𝐵

L )(x) 

Also 

μ𝐴∩𝐵 
U (x) =⋀{ μ𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {μA
U(y)  ∧  μB

U(y) | 𝑦 ∈ [x]𝑅}

= ⋀  (μA
U(y) | 𝑦 ∈ [x]𝑅) ⋀  ( ∨ μB

U(y) | 𝑦 ∈ [x]𝑅)

=μ𝐴
U(x) ∧ μ𝐵

U(x)

=(μ𝐴
U ∧ μ𝐵

U)(x)

ν𝐴∩𝐵 
L (x) =⋁{ ν𝐴 ∩𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {νA
L (y)  ∨  νB

L (y) | 𝑦 ∈ [x]𝑅}

= ⋁  (νA
L (y) | 𝑦 ∈ [x]𝑅) ⋁  ( ∨ νB

L (y) | 𝑦 ∈ [x]𝑅)

 =ν𝐴
L(x) ∨ ν𝐵

L (x) 

=(ν𝐴
L ∨ ν𝐵

L )(x)

ν𝐴∩𝐵 
U (x) =⋁{ ν𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {νA
U(y)  ∨  νB

U(y) | 𝑦 ∈ [x]𝑅}

= ⋁  (νA
U(y) | 𝑦 ∈ [x]𝑅) ⋁  ( ∨ νB

U(y) | 𝑦 ∈ [x]𝑅)

=ν𝐴
U(x) ∨ ν𝐵

U(x)

=(ν𝐴
U ∨ ν𝐵

U)(x)

ω𝐴∩𝐵 
L (x) =⋁{ ω𝐴 ∩𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {ωA
L (y)  ∨  ωB

L (y) | 𝑦 ∈ [x]𝑅}

= ⋁  (ωA
L (y) | 𝑦 ∈ [x]𝑅) ⋁  ( ∨ ωB

L (y) | 𝑦 ∈ [x]𝑅)

=ω𝐴
L(x) ∨ νω𝐵

L (x)

=(ω𝐴
L ∨ ω𝐵

L )(x)

ω𝐴∩𝐵 
U (x) =⋁{ ω𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {ωA
U(y)  ∨  ωB

U(y) | 𝑦 ∈ [x]𝑅}

= ⋁  (ωA
U(y) | 𝑦 ∈ [x]𝑅) ⋁  ( ∨ ωB

U(y) | 𝑦 ∈ [x]𝑅)

=ω𝐴
U(x) ∨ ω𝐵

U(x)
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=(ω𝐴
U ∨ ω𝐵

U)(x)

(iii)  

μ
𝐴∩𝐵
U (x) =⋁{ μ𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {μA
U(y)  ∧  μB

U(y) | 𝑦 ∈ [x]𝑅}

=( ⋁  ( μA
U(y) | 𝑦 ∈ [x]𝑅)) ∧ (⋁  ( μA

U(y) | 𝑦 ∈

[x]𝑅))

= μ
𝐴
U(x) ∨ μ

𝐵
U(x) 

=(μ
𝐴
U ⋁ μ

𝐵
U )(x) 

ν
𝐴∩𝐵
U (x) =⋀{ ν𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {νA
U(y)  ∧  νB

U(y) | 𝑦 ∈ [x]𝑅}

=( ⋀  ( νA
U(y) | 𝑦 ∈ [x]𝑅)) ∨ (⋀  ( νA

U(y) | 𝑦 ∈

[x]𝑅))

= ν
𝐴
U(x) ∨ ν

𝐵
U(x) 

=(ν
𝐴
U ⋁ ν

𝐵
U )(x) 

ω
𝐴∩𝐵
U (x) =⋀{ ω𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {ωA
U(y)  ∧  ωνB

U(y) | 𝑦 ∈ [x]𝑅}

=( ⋀  ( ωA
U(y) | 𝑦 ∈ [x]𝑅)) ∨ (⋀  ( ωA

U(y) | 𝑦 ∈

[x]𝑅))

= ω
𝐴
U(x) ∨ ω

𝐵
U(x) 

=(ω
𝐴
U ⋁ ω

𝐵
U )(x) 

Hence follow that 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵 .we get    𝐴 ∪ 

𝐵 = 𝐴 ∪ 𝐵    by following the same procedure as above. 

Definition  6: 

Let ( U,R) be a pawlak approximation space ,and A and B 

two interval valued neutrosophic sets over U. 

If  𝐴 =𝐵 ,then A and B are called interval valued 

neutrosophic lower rough equal. 

If 𝐴=𝐵 , then A and B are called interval valued 

neutrosophic upper rough equal. 

If 𝐴 =𝐵 , 𝐴=𝐵, then A and B are called interval valued 

neutrosophic rough equal. 

Theorem 2 . 

Let ( U,R) be a pawlak approximation space ,and A and B 

two interval valued neutrosophic sets over U. then 

1. 𝐴 =𝐵 ⇔ 𝐴 ∩ 𝐵 =𝐴 , 𝐴 ∩ 𝐵 =𝐵

2. 𝐴=𝐵 ⇔ 𝐴 ∪ 𝐵 =𝐴 , 𝐴 ∪ 𝐵 =𝐵

3. If 𝐴 = 𝐴′ and 𝐵 = 𝐵′ ,then 𝐴 ∪ 𝐵 =𝐴′ ∪ 𝐵′

4. If 𝐴 =𝐴′ and 𝐵 =𝐵′ ,Then

5. If  A ⊆ B and  𝐵 = 𝜙   ,then 𝐴 = 𝜙

6. If  A ⊆ B and  𝐵 = 𝑈  ,then 𝐴 = 𝑈

7. If  𝐴 = 𝜙   or  𝐵 = 𝜙    or  then 𝐴 ∩ 𝐵 =𝜙

8. If 𝐴 = 𝑈 or 𝐵 =𝑈,then 𝐴 ∪ 𝐵 =𝑈

9. 𝐴 = 𝑈 ⇔ A = U

10. 𝐴 = 𝜙  ⇔ A = 𝜙
Proof: the proof is trial 

4.Hamming distance between Lower 

Approximation and Upper Approximation of IVNS 

 In this section , we will compute the Hamming distance 

between lower and upper approximations of interval 

neutrosophic sets based on Hamming distance introduced 

by Ye [41 ] of interval neutrosophic sets. 

Based on Hamming distance between two interval 

neutrosophic set A and B as follow: 

d(A,B)=
1

6
∑ [|μA

L (xi) − μB
L (xi)| + |μA

U(xi) − μB
U(xi)| +𝑛

𝑖=1

|νA
L (xi) − νB

L (xi)| + |νA
U(xi) − νB

U(xi)| + |ωA
L (xi) −

ωB
L (xi)| +  |ωA

L (xi) − vB
U(xi)|]

we can obtain the standard hamming distance of 𝐴 and 𝐴 

from 

𝑑𝐻(𝐴 , 𝐴) = 
1

6
∑ [|μ𝐴

L(xj) − μ
𝐴
L (xj)| + |μ𝐴

U(xj) −𝑛
𝑖=1

μ
𝐴
U(xj)| + |ν𝐴

L(xj) − ν
𝐴
L(xj)| + |ν𝐴

U(xj) − ν
𝐴
U(xj)| +

|ω𝐴
L(xj) − ω

𝐴
L(xj)| + |ω𝐴

U(xj) − ω
𝐴
U(xj)|] 
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Where 

𝐴𝑅={<x, [⋀ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {μA
U(y)}𝑦 ∈[x]𝑅

], 

[⋁ {νA
L (y)}𝑦 ∈[x]𝑅

, ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

], [⋁ {ωA
L (y)}𝑦 ∈[x]𝑅

,  

⋁ {ωA
U(y)}𝑦 ∈[x]𝑅

]>:x ∈ U}. 

𝐴𝑅={<x, [⋁ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋁ {μA
U(y)}𝑦 ∈[x]𝑅

], 

[⋀ {νA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {νA
U(y)𝑦 ∈[x]𝑅

], [⋀ {ωA
L (y)}𝑦 ∈[x]𝑅

,  

⋀ {ωA
U(y)}𝑦 ∈[x]𝑅

]:x ∈ U}. 

μ𝐴
L(xj) =   ⋀ {μA

L (y)}𝑦 ∈[x]𝑅
 ; μ𝐴

U(xj) =⋀ {μA
U(y)}𝑦 ∈[x]𝑅

ν𝐴
L(xj)=  ⋁ {νA

L (y)}𝑦 ∈[x]𝑅
  ; ν𝐴

U(xj) =  ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

ω𝐴
L(xj)=  ⋁ {ωA

L (y)}𝑦 ∈[x]𝑅
 ; ω𝐴

U(xj) = ⋁  {ωA
U(y)}𝑦 ∈[x]𝑅

μ
𝐴
L(xj)=   ⋁ {μA

L (y)}𝑦 ∈[x]𝑅
 ; μ

𝐴
U(xj) =  ⋁ {μA

U(y)}𝑦 ∈[x]𝑅
                       

μ
𝐴
L(xj)=  ⋀ {νA

L (y)}𝑦 ∈[x]𝑅
 ; μ

𝐴
U(xj) =  ⋀  {νA

U(y)𝑦 ∈[x]𝑅
}  

ω
𝐴
L (xj)= ⋀ {ωA

L (y)}𝑦 ∈[x]𝑅
 ; ω

𝐴
U(xj) =   ⋀ {ωA

U(y)}𝑦 ∈[x]𝑅

Theorem 3. Let (U,  R) be approximation space, A be 

an interval valued neutrosophic set over U . Then 

(1) If d (𝐴 , 𝐴) = 0, then A is a definable set. 

(2) If 0 < d(𝐴 , 𝐴) < 1, then A is an interval-valued 

neutrosophic rough set.     

Theorem 4. Let (U, R) be a Pawlak approximation space, 

and A and B two interval-valued neutrosophic sets over U 

. Then 

1. d (𝐴 , 𝐴) ≥ d (𝐴 , 𝐴) and  d (𝐴 , 𝐴) ≥ d (𝐴 , 𝐴);

2. d (𝐴 ∪ 𝐵 , 𝐴 ∪ 𝐵) = 0, d (𝐴 ∩ 𝐵 , 𝐴 ∩ 𝐵 ) = 0.

3. d (𝐴 ∪ 𝐵 , A  ∪ B)  ≥ d(𝐴 ∪ 𝐵 , 𝐴 ∪ 𝐵)

and  d(𝐴 ∪ 𝐵 , A  ∪ B)  ≥ d(𝐴 ∪ 𝐵 , A  ∪  B) ;

and d( A ∩ B, 𝐴 ∩ 𝐵)  ≥ d(A ∩ B, 𝐴 ∩ 𝐵)

and d( A ∩ B, 𝐴 ∩ 𝐵)   ≥ 𝑑(𝐴 ∩ 𝐵, 𝐴 ∩ 𝐵)

4. d((𝐴), (𝐴)= 0 , d((𝐴), 𝐴) = 0 , d((𝐴) , 𝐴)= 0;

d((𝐴) , (𝐴)) = 0 , d((𝐴) , , 𝐴) = 0 , d((𝐴) , 𝐴) = 0,

5. d (𝑈, U) =0 , d(𝜙, 𝜙) = 0

6. if A  B   ,then d(𝐴 ,B) ≥ d(𝐴 , 𝐵) and d(𝐴 , 𝐵) ≥
d(𝐵 ,B)

         d(𝐴 , 𝐵) ≥d( A, 𝐴) and d( A, 𝐵)= 

≥d(𝐴 , 𝐵) 

7. d(𝐴𝑐 ,(𝐴)𝑐)= 0, d( 𝐴𝑐,(𝐴)𝑐) = 0

5-Conclusion 
In this paper we have defined the notion of interval valued 

neutrosophic rough sets. We have also studied some 

properties on them and proved some propositions. The 

concept combines two different theories which are rough 

sets theory and  interval valued neutrosophic set  theory. 

Further, we have introduced the Hamming distance 

between two interval neutrosophic rough sets. We hope 

that our results can also be extended to other algebraic 

system. 
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Abstract: This paper re-discusses the problems of the 

so-called “law of nonconservation of parity” and “ac-

celerating expansion of the universe”, and presents the 

examples of determining Neutrosophic Probability of 

the experiment of Chien-Shiung Wu et al in 1957, and 

determining Neutrosophic Probability of accelerating 

expansion of the partial universe. 

Keywords: Neutrosophic Probability, law of nonconservation of parity, accelerating expansion of the universe .

1 Introduction 

According to reference [1], Neutrosophic probability 
is a generalization of the classical and imprecise 

probabilities. Several classical probability rules are 
adjusted in the form of neutrosophic probability rules. In 
some cases, the neutrosophic probability is extended to n-
valued refined neutrosophic probability.  

The neutrosophic probability is a generalization of the 

classical probability because, when the chance of 
indeterminacy of a stochastic process is zero, these two 
probabilities coincide. 
    The Neutrosophic Probability that an event A occurs is 

NP (A) = (ch (A) ,ch (neutA) ,ch(antiA)) = (T ,I ,F ) 
where T ,I ,F are standard or nonstandard subsets of the 

nonstandard unitary interval ]-0, 1+[, and T is the chance 
that A occurs, denoted ch(A); I is the indeterminate chance 
related to A, ch(neutA); and F is the chance that A does not 
occur, ch(antiA). 

This paper presents some examples of Neutrosophic 
Probability in physics. 

2 Determining Neutrosophic Probability of the 
experiment of Chien-Shiung Wu et al in 1957  

One of the reasons for 1957 Nobel Prize for physics is 
“for their penetrating investigation of the so-called parity 
laws which has led to important discoveries regarding the 
elementary particles”, and according to the experiment of 

Chien-Shiung Wu et al in 1957, the so-called “law of 
nonconservation of parity” is established. While, according 
to the viewpoint of Neutrosophic Probability, this 
conclusion should be re-discussed. 

Supposing that event A denotes parity is conservation, 
antiA denotes parity is nonconservation, and neutA denotes 

indeterminacy. 
In the experiment of Chien-Shiung Wu et al in 1957, 

they found that the number of the electrons that exiting 
angle θ＞90° is 40% more than that of θ＜90° (the ratio is 

1.4:1.0). For this result, we cannot simply say that parity is 
conservation or nonconservation. The correct way of 
saying should be that, besides indeterminacy, the chance of 
conservation of parity is as follows 

ch (A) = 1.0/1.4 = 71% 

and the chance of nonconservation of parity is as 
follows 

ch(antiA)) = (1.4 – 1.0)/1.4 = 29%  
Thus, the Neutrosophic Probability that “parity is 

conservation” is as follows 
  NP (A) = (ch (A) ,ch (neutA) ,ch(antiA)) = (71%, 0, 

29% ) 
It should be noted that, for the reason that we cannot 

know the indeterminacy, so we suppose that it is equal to 0. 
In reference [2] we point out that, the essential reason 

for the phenomena of nonconservation (including 
nonconservation of parity, momentum, angular momentum 

and the like) is that so far only the “law of conservation of 
energy” can be considered as the unique truth in physics. 
As for other “laws”, they are correct only in the cases that 
they are not contradicted with law of conservation of 
energy or they can be derived by law of conservation of 
energy. 

Similarly, the Neutrosophic Probability for other laws 
of conservation should be determined by law of 
conservation of energy or experiment (currently for most 
cases the Neutrosophic Probability can only be determined 
by experiment, like the experiment of Chien-Shiung Wu et 
al in 1957). 

3 Determining Neutrosophic Probability of 
accelerating expansion of the partial universe 

One of the reasons for 2011 Nobel Prize for physics is 
"for the discovery of the accelerating expansion of the 
universe through observations of distant supernovae". But 

"the accelerating expansion of the universe" is debatable, 
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and Neutrosophic Probability of the accelerating expansion 
of the partial universe should be determined. 

In 1929, Hubble, an astronomer of the United States, 
found the famous Hubble's law. According to Hubble's law, 
some scholars reach the conclusion of the accelerating 
expansion of the universe. But "the accelerating expansion 

of the universe" is debatable. Due to the observation of 
distance is limited and the observation time is also limited, 
at most we can say: "partial universe is in the state of 
expansion (including accelerating expansion) for limited 
time." 

Firstly we discuss the unreasonable results caused by 

Hubble’s Law. 
Hubble's law reads 

DHV  0          （1） 

where：V —（galaxy’s） far away speed, unit: km/s；

0H —Hubble's Constant, unit: km/(s ． Mpc) ； D —

（galaxy’s） far away distance, unit: Mpc. 

    According to Hubble's law, we have 

    )(
)(

0 tDH
dt

tdD
V         （2） 

From this differential equation, it gives 

)exp( 0
0 tHkkeD
tH
              （3） 

where： k — a constant to be determined; if we assume 

that the distance is positive, then its value is positive too. 

It gives the far away speed as follows 

    )exp( 00 tHkHV               （4） 

The far away acceleration is as follows 

    )exp(/ 0

2

0 tHkHdtdVa                （5） 

According to Newton's second law, the force acted on 

this galaxy is as follows 

)exp( 0

2

0 tHmkHmaF                 （6） 

Based on these equations, apparently we can reach the 

unreasonable conclusions: as time tends to infinity, all of 

the values will tend to infinity too.  

If Hubble’s law needs to be amended, the conclusion 

of "the accelerating expansion of the universe" also needs 
to be amended. At least it should be amended as "the 
accelerating expansion of the partial universe." 

Secondly we discuss the states of contraction and the 
like of the partial universe. 

Many scholars have presented the state of contraction 

of the universe (or partial universe). Here we stress that 
partial universe (such as the area nearby a black hole) is in 
the state of contraction. 

As well-known, the mass of black hole (or similar 
black hole) is immense, and it produces a very strong 
gravitational field, so that all matters and radiations 

(including the electromagnetic wave or light) will be 
unable to escape if they enter to a critical range around the 
black hole. 

The viewpoint of "the accelerating expansion of the 
universe" unexpectedly turns a blind eye to the fact that 
partial universe (such as the area nearby a black hole) is in 
the state of contraction. 

To sum up, considering all possible situations, the 
correct conclusion is that there exist at least seven states of 

accelerating expansion and contraction and the like in the 
universe, namely "partial universe is in the state of 
accelerating expansion, partial universe is accelerating 
contraction, partial universe is uniform expansion, partial 
universe is uniform contraction, partial universe is 
decelerating expansion, partial universe is decelerating 

contraction, and partial universe is neither expansion nor 
contraction (this may be the static state)". As for the 
detailed study for these seven states, it will be the further 
topic in future. 

Besides these seven states, due to the limitations of 
human knowledge and the like, there may be other 

unknown states or indeterminacy states. 
Supposing that the chance of getting indeterminacy 

ch(indeterm) = 9%, and the chance of accelerating 
expansion of the partial universe is equal to the chance of 
other states, thus the Neutrosophic Probability that 
“accelerating expansion of the partial universe (A)” is as 

follows 
  NP (A) = (ch(A) ,ch(neutA) ,ch(antiA)) = (13%, 9%, 

78% ) 

While, according to the classical probability, the 

probability that “accelerating expansion of the partial 

universe” is equal to 1/7 (14.2857%). 

4  Conclusions 

The problems of the so-called “law of 
nonconservation of parity” and “the accelerating expansion 
of the universe” should be re-discussed. The Neutrosophic 
Probability that “parity is conservation” is (71%, 0, 29% ), 

and the Neutrosophic Probability that “accelerating 
expansion of the partial universe” is (13%, 9%, 78% ). 
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Abstract. Multi-space is the notion combining different 

fields in to a unifying field, which is more applicable in 

our daily life. In this paper, we introduced the notion of 

multi-soft space which is the approximated collection of 

the multi-subspaces of a multi-space  . Further, we de-

fined some basic operations such as union, intersection, 

AND, OR etc. We also investigated some properties of 

multi-soft spaces. 

Keywords: Multi-space, soft set, multi-soft space.

1. Introduction

    Multi-spaces [24] were introduced by 
Smarandache in 1969 under the idea of hybrid 
structures: combining different fields into a 
unifying field [23] that are very effective in our 
real life. This idea has a wide range of 
acceptance in the world of sciences. In any 
domain of knowledge a Smarandache multi-
space is the union of n different spaces with 
some different for an integer 2n  .  
Smarandache multi-space is a qualitative notion 
as it is too huge which include both metric and 
non-metric spaces. This multi-space can be used 
for both discrete or connected spaces specially in 
spacetimes and geometries in theoretical physics. 
Multi-space theory has applied in physics 
successfully in the Unified Field Theory which 
unite the gravitational, electromagnetic, weak 
and strong interactions or in the parallel quantum 
computing or in the mu-bit theory etc. Several 
multi-algebraic structures have been introduced 
such as multi-groups, multi-rings, multi-vector 
spaces, multi-metric spaces etc. Literature on 
multi-algebraic structures can be found in [17]. 
   Molodtsov [20] proposed the theory of soft 

sets. This mathematical framework is free from 

parameterization inadequacy, syndrome of fuzzy 

set theory, rough set theory, probability theory 

and so on. Soft set theory has been applied suc-

cessfully in many areas such as smoothness of 

functions, game theory, operation research, Rie-

mann integration, Perron integration, and proba-

bility thoery. Soft sets gained much attention of 

the researchers recently from its appearance and 

some literature on soft sets can be seen in [1]-

[16]. Some other properties and algebras may be 

found in [18,19,20]. Some other concepts togeth-

er with fuzzy set and rough set were shown in 

[21,22,23]. 

    In  section 2, we review some basic concepts 

and notions on multi-spaces and soft sets. In sec-

tion 3, we define multi-subspac. Then multi-soft 

spaces has been introduced in the current section. 

Multi-soft space is a parameterized collection of 

multi-subspaces. We also investigated some 

properties and other notions of multi-soft spaces. 

2. Basic Concepts

In this section, we review some basic material of multi-

spaces and soft sets. 
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Definition 2.1 [24]. For any integer i , 1 i n , let

iM  be a set with ensemble of law iL ,  and the intersec-

tion of k  sets
1 2
, ,...,

ki i iM M M  of them constrains the

law 
1 2
, ,...,

ki i iI M M M . Then the union of iM ,

1 i n

1

n

i
i

M M

is called a multi-space. 

Let U  be  an initial universe, E  is a set of parame-

ters, ( )PU  is the power set of  U , and ,A B E . Mo-

lodtsov defined the soft set in the following manner: 

Definition 2.2 [20]. A pair ( , )F A  is called a soft set over

U ,  where F is a mapping given by  : ( )F A PU .

In other words, a soft set over  U  is a parameterized fami-

ly of subsets of the universe  U . For  a A  , F a
may be considered as the set of  a -elements of the soft set

( , )F A  , or as the set of  a -approximate elements of the

soft set. 

Example 2.3.  Suppose that U  is the set of shops. E is

the  set of parameters and each parameter is a word or sen-

tence. Let 

high rent,normal rent,

in good condition,in bad condition
E

Let us consider a soft set ( , )F A which describes the at-

tractiveness of shops that Mr.Z  is taking on rent. Suppose

that there are five houses in the universe  

1 2 3 4 5{ , , , , }U s s s s s  under consideration, and that

1 2 3{ , , }A a a a  be the set of parameters where

1a   stands for the parameter 'high rent,

2a   stands for the parameter 'normal rent,

3a   stands for the parameter 'in good condition.

Suppose that 

1 1 4( ) { , }F a s s  ,

2 2 5( ) { , }F a s s ,

3 3( ) { }.F a s

The soft set ( , )F A  is an approximated family

{ ( ), 1,2,3}iF a i  of subsets of the set U which gives

us a collection of approximate description of an object. 

Then ( , )F A  is a soft set as a collection of approximations

over  U , where

21 1  { , }) ,( high rea nt s sF

2 2 5( )   { , },F normal ra ent s s

3 3( )    { }.F in good condit na io s

Definition 2.4 [19].  For two soft sets ( , )F A  and

( ,B)H  over U , ( , )F A  is called a soft subset of

( ,B)H  if

1. A B   and

2. ( ) ( )F a H a , for all  x A  .

This relationship is denoted by ( , ) ( ,B)F A H . Simi-

larly ( , )F A  is called a soft superset of ( ,B)H  if

( ,B)H  is a soft subset of ( , )F A  which is denoted by

( , ) ( ,B)F A H .

Definition 2.5 [19].  Two soft sets ( , )F A  and ( ,B)H
over  U are called soft equal if ( , )F A  is a soft subset of

( ,B)H  and ( ,B)H  is a soft subset of ( , )F A .

Definition 2.6 [19].  Let ( , )F A  and (G,B)  be two soft

sets over a common universe U  such that  A B  . 

Then their restricted intersection is denoted by 

( , ) (G,B) ( ,C)RF A H where ( ,C)H  is defined

as  ( ) ( ) )H c F c c for all  c C A . 

Definition 2.7 [12].  The extended intersection of two soft 

sets  ( , )F A  and  (G,B)  over a common universe U is

the soft set  ( ,C)H  , where  C A B  , and for all

c C  , ( )H c  is defined as
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( ) if c ,

( ) G( ) if c ,

( ) G( ) if c .

F c A B

H c c B A

F c c A

We write  ( , ) (G,B) ( ,C)F A H .

Definition 2.8 [19]. The restricted union of two soft sets  

( , )F A  and (G,B)  over a common universe U is the

soft set  ( ,B)H , where  C A  , and for all

c C  , ( )H c  is defined as  ( ) ( ) G( )H c F c c
for all  c C  . We write it as

 
( , ) (G,B) ( ,C).RF A H

Definition 2.9 [12]. The extended union of two soft sets 

( , )F A  and (G,B)  over a common universe U is the

soft set  ( ,B)H , where  C A  , and for all

c C  ,  ( )H c   is defined as

( ) if c

( ) G( ) if c ,

( ) ( ) if c .

F c A B

H c c B A

F c G c A B

We write ( , ) (G,B) ( ,C)F A H .

In the next section, we introduced multi-soft spaces. 

3. Multi-Soft Space and Its Properties

    In this section, first we introduced the definition of 

multi-subspace. Further, we introduced multi-soft spaces 
and their core properties. 

Definition 3.1. Let M  be a multi-space and 
'M M  . 

Then 
'M  is called a multi-subspace if 

'M  is a multi-
space under the operations and constaints of M . 

Definition 3.2. Let 
1 { : j J}jA a  , 

2 { : k }kA a K  ,…, { : n }n nA a L   be n-set of 
parameters. Let 1 1 2 2( , ),( , ),...,( , )n nF A F A F A  are soft 
set over the distinct universes 1 2, ,..., nM M M
respectively. Then ( , )H C  is called a multi-soft space 

over 1 2 ... nM M M M    , where 

1 1 2 2(H,C) ( , ) ( , ) ,..., ( , )E E E n nF A F A F A   
such that 1 2 .... nC A A A     and for all c C , 

( )H c  is defined by 

1 2
( ) ( ) ( ) ... ( )

ki i iH c F c F c F c

if 

2 1 21( ... ) ( ... )
k k ni i ik i i ic A A A A A A ,

where 1 2 1( , ,..., , ,..., )k k ni i i i i  are all possible 

permutations of the indexes (1,2,..., )n  k = 1, 2, …, n.

There are 
12n

 pieces of the piece-wise function  ( , )H C .

Proposition 3.3. Let M  be a universe of discourse and

( , )F A  is a soft set over M . Then ( , )F A  is a multi-soft

space over M  if and only if M  is a multi-space.

Proof: Suppose that M  is a multi-space and 

: (M)F A P  be a mapping. Then clearly for each 

a A , then ( )F a  is a subset of M  which is a multi-

subspace. Thus each ( )F a  is a multi-subspace of M
and so the soft set ( , )F A  is the parameterized collection 

of multi-subspaces of M . Hence ( , )F A  is a multi-soft

space over M .

 For converse, suppose that ( , )F A  is a multi-soft space 

over M . This implies that ( )F a  is a multi-subspace of

M  for all a A . Therefore, M  is a mutli-space.

This situation can be illustrated in the following Example. 

Example 3.4. Let 1 2 3 4 5 6 7{ , , , , , , }M u u u u u u u  be an 

initial universe such that M  is a multi-space. Let 

1 1 2 3 8{ , , , }A a a a a  , 2 2 4 5 6 8{ , , , , }A a a a a a  and 

3 5 7 8{ , , }A a a a  are set of parameters. Let 

1 1 2 2( , ),( , )F A F A  and 3 3( , )F A  respectively be the soft 

sets over M  as following:

1 1 1 2 3( ) {m ,m ,m },F a   

1 2 4 5( ) {m ,m },F a   

 1 3 1 4 6 7{m ,m ,m ,m }F a  ,

 1 8 2 4 6 7{m ,m ,m ,m }F a  .

and 

2 2 1 2 3 6 7( ) {m ,m ,m ,m ,m },F a 

2 4 3 4 5 6( ) {m ,m ,m ,m },F a 

 2 5 2 4 5{m ,m ,m },F a 
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2 6 1 7F ( ) {m ,m }a  ,

 2 8 1 3 5 7{m ,m ,m ,m }F a  .

Also 

3 5 1 2 3 4 5( ) {m ,m ,m ,m ,m ,},F a 

3 7 4 5 7( ) {m ,m ,m }F a  , 

 3 8 2{m }F a  .

Let 1 2 3 1 2 3 4 5 6 7 8{ , , , , , , , }A A A A a a a a a a a a    . 

Then the multi-soft space of 1 1 2 2( , ),(F , )F A A  and 

3 3( , )F A  is ( , )F A , where 

1 1 2 2 3 3( , ) ( , ) ( , ) ( , )E EF A F A F A F A    such that 

1 1 1 1 2 3( ) ( ) {m ,m ,m },F a F a   as 

1 1 2 3a A A A   , 

2 1 2 2 2 1 2 3 4 5 6 7( ) ( ) F ( ) {m ,m ,m ,m ,m ,m ,m },F a F a a  

 as 2 1 2 3a A A A   , 

 3 1 3 1 4 6 7( ) {m ,m ,m ,m }F a F a   as

3 1 2 3a A A A   , 

4 2 4 3 4 5 6( ) ( ) {m ,m ,m ,m },F a F a   as 

4 2 1 3a A A A   , 

5 2 5 3 5 1 2 3 4 5( ) ( ) ( ) {m ,m ,m ,m ,m ,},F a F a F a    

as 5 2 3 1a A A A   , 

6 2 6 1 7F( ) F ( ) {m ,m }a a   as 6 2 1 3a A A A   , 

7 3 7 4 5 7( ) ( ) {m ,m ,m }F a F a   as 

7 3 1 2a A A A   , 

 8 1 8 2 8 3 8 1 2 3 4 5 6 7( ) ( ) ( ) {m ,m ,m ,m ,m ,m ,m }F a F a F a F a   

 as 8 1 2 3a A A A   . 

Definition 3.5.  Let ( , )F A  and  ( , )H B  be two multi-

soft spaces over  
1 2 ... nM M M   . Then ( , )F A  is

called a multi-soft subspace  of  ( , )H B  if

1. A B   and

2. ( ) ( )F a H a , for all  a A  .

This can be denoted by ( , ) ( , )F A H B .

Similarly ( , )F A  is called a multi-soft superspace of

( , )F A  if  ( , )F A  is a multi-soft subspace of ( , )F A
which is denoted by  ( , ) ( , )F A H B .

Definition 3.6.  Two multi-soft spaces ( , )F A  and

( , )H B  over 
1 2 ... nM M M   are called multi-soft

multi-equal if ( , )F A  is a multi-soft subspace of  ( , )H B
and ( , )H B  is a multi-soft subspace of ( , )F A .

Proposition 3.6.  Let ( , )F A  and ( , )K B  be two multi-

soft spaces over 
1 2 ... nM M M   such that  

A B  . Then their restricted intersection 

( , ) ( , ) ( , )RF A K B H C  is also a multi-soft

space over 1 2 ... nM M M    . 

Proposition 3.7.  The extended intersection of two multi-

soft multi-spaces  ( , )F A  and  ( , )K B  over

1 2 ... nM M M   is again a multi-soft multi-space 

over 1 2 ... nM M M   . 

Proposition 3.8.  Let ( , )F A  and ( , )K B  be two multi-

soft multi-spaces over 
1 2 ... nM M M   such that  

A B  . Then their restricted union 

( , ) ( , ) ( , )RF A K B H C  is also a multi-soft muti-

space over 1 2 ... nM M M    . 

Proposition 3.9.  The extended union of two multi-soft 

multi-spaces  ( , )F A  and  ( , )K B  over

1 2 ... nM M M is again a multi-soft multi-space

over 1 2 ... nM M M   . 
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Proposition 3.10.  The AND operation of two multi-soft 

multi-spaces  ( , )F A  and  ( , )K B  over

1 2 ... nM M M   is again a multi-soft mulit-space 

over 1 2 ... nM M M   . 

Proposition 3.11.  The OR operation of two multi-soft 

multi-spaces  ( , )F A  and  ( , )K B  over

1 2 ... nM M M   is again a multi-soft multi-space 

over 1 2 ... nM M M   . 

Proposition 3.12. The complement of a multi-soft space 

over a multi-space M  is again a multi-soft space over

M .

Prof. This is straightforward. 

Definition 3.13. A multi-soft multi-space ( , )F A  over

1 2 ... nM M M    is called absolute multi-soft 
multi-space if ( )F a  = 1 2 ... nM M M    for all 

a A .

Proposition 3.14. Let ( , )F A , ( , )G B  and ( , )H C  are
three multi-soft multi-spaces over 1 2 ... nM M M   . 
Then 

1. ( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E EF A G B H C F A G B H C ,

2. ( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R RF A G B H C F A G B H C .

Proposition 3.15. Let ( , )F A , ( , )G B  and ( , )H C  are
three multi-soft multi-spaces over 1 2 ... nM M M   . 
Then 

1. ( , ) ( , ) ( , ) ( , ) ( , ) ( , )F A G B H C F A G B H C ,

2. ( , ) ( , ) ( , ) ( , ) ( , ) ( , )F A G B H C F A G B H C .

Conclusion 

  In this paper, we introduced multi-soft spaces 
which is a first attempt to study the multi-spaces 
in the context of soft sets. Multi-soft spaces are 
more rich structure than the multi-spaces which 
represent different fields in an approximated 
unifying field. We also studied some properties 
of multi-soft spaces. A lot of further research can 
do in the future in this area. In the future, one can 
define the algebraic structures of multi-soft 
spaces. 
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Abstract. This paper presents two variants of penta-

valued representation for neutrosophic entropy. The first 

is an extension of Kaufman's formula and the second is 

an extension of Kosko's formula. 

 Based on the primary three-valued information repre-

sented by the degree of truth, degree of falsity and degree 

of neutrality there are built some penta-valued represen-

tations that better highlights some specific features of 

neutrosophic entropy. Thus, we highlight five features of 

neutrosophic uncertainty such as ambiguity, ignorance, 

contradiction, neutrality and saturation. These five fea-

tures are supplemented until a seven partition of unity by 

adding two features of neutrosophic certainty such as 

truth and falsity. 

 The paper also presents the particular forms of neutroso-

phic entropy obtained in the case of bifuzzy representa-

tions, intuitionistic fuzzy representations, paraconsistent 

fuzzy representations  and finally the case of  fuzzy rep-

resentations. 

Keywords: Neutrosophic information,  neutrosophic entropy, neutrosophic uncertainty, ambiguity, contradiction, neutrality, igno-

rance, saturation.

1 Introduction 

Neutrosophic representation of information was proposed 

by Smarandache [10], [11], [12] as an extension of fuzzy 

representation proposed by Zadeh [16] and intuitionistic 

fuzzy  representation proposed by Atanassov [1], [2]. Pri-

mary neutrosophic information is defined by three parame-

ters: degree of truth  , degree of falsity   and degree of 

neutrality  . 

Fuzzy representation is described by a single parameter, 

degree of truth  , while the degree of falsity   has a de-

fault value calculated by negation formula : 

 1  (1.1) 

and the degree of neutrality has a default value that is 

0 . 

Fuzzy intuitionistic representation is described by two ex-

plicit parameters, degree of truth   and  degree of falsity 

 , while the degree of neutrality has a default value that is

0 . 

Atanassov considered the incomplete variant taking into 

account that 1 . This allowed defining the index of 

ignorance (incompleteness) with the formula: 

 1       (1.2) 

thus obtaining a consistent representation of information, 

because the sum of the three parameters is 1 , namely: 

    1         (1.3) 

Hence, we get for neutrality the value 0 . 

For paraconsistent fuzzy information where 1 , the 

index of contradiction can be defined: 

  1                                      (1.4) 

and for neutrality it results: 0 . 

For bifuzzy information that is defined by the pair ),(  , 

the net truth, the index of ignorance (incompleteness), in-

dex of contradiction and index of ambiguity can be defined, 

by: 

               (1.5) 

)1,min(1    (1.6) 

   1)1,max(                (1.7) 

  |1|||1      (1.8) 

Among of these information parameters the most important 
is the construction of some measures for information 

entropy or information uncertainty. This paper is dedicated 

to the construction of neutrosophic entropy formulae. 

 In the next, section 2 presents the construction of two 

variants of the neutrosophic entropy. This construction is 
based on two similarity formulae; Section 3 presents a 

penta-valued representation of neutrosophic entropy based 
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on ambiguity, ignorance, contradiction, neutrality and 

saturation; Section 4 outlines some conclusions. 

2 The Neutrosophic Entropy 

For neutrosophic entropy, we will trace the Kosko idea for 

fuzziness calculation [5]. Kosko proposed to measure this 

information feature by a similarity function between the 

distance to the nearest crisp element and the distance to the 

farthest crisp element. For neutrosophic information the 

two crisp elements are )0,0,1(  and )1,0,0( . We consider 

the following vector: ),1,(  V . For 

)0,0,1( and )1,0,0( it results: )0,0,1(TV  and 

)0,0,1(FV . We will compute the distances: 

  |1||1|),( TVVD  (2.1)     

  |1||1|),( FVVD     (2.2) 

The neutrosophic entropy will be defined by the similarity 
between these two distances. 

Using the Czekanowskyi formula [3] it results the similar-

ity CS  and the neutrosophic entropy CE : 

  
),(),(

|),(),(|
1

FT

FT
C

VVDVVD

VVDVVD
S




     (2.3) 










|1|1

||
1CE   (2.4) 

or in terms of  ,,, : 








1

||
1CE       (2.5) 

The neutrosophic entropy defined by (2.4) can be particu-

larized for the following cases: 

For 0 , it result the bifuzzy entropy, namely: 

|1|1

||
1









CE   (2.6) 

For 0  and 1  it results the intuitionistic fuzzy 

entropy proposed by Patrascu [8], namely: 










1

||
1CE   (2.7) 

For 0  and 1  it results the paraconsistent fuzzy 

entropy,  namely: 










1

||
1CE       (2.8) 

For 1   and 0 , it results the fuzzy entropy pro-

posed by Kaufman [4], namely: 

      |12|1  CE      (2.9) 

Using the Ruzicka formula [3] it result the formulae for the 

similarity RS  and the neutrosophic entropy RE : 

 ),(),,(max

|),(),(|
1

FT

FT
R

VVDVVD

VVDVVD
S


    (2.10) 










|1|||1

||2
1RE    (2.11) 

or its equivalent form: 










|1|||1

|1|||1
RE     (2.12) 

or in terms of  ,,, : 








||1

||2
1RE   (2.13) 

The neutrosophic entropy defined by (2.12) can be particu-

larized for the following cases: 

For 0 , it results the bifuzzy entropy proposed by 

Patrascu [7], namely: 

|1|||1

|1|||1









RE       (2.14) 

For 0  and 1  it results the intuitionistic fuzzy 

entropy proposed by Szmidt and Kacprzyk [14], [15], ex-

plicitly:  










||1

||1
RE       (2.15) 

For 0  and 1  it results the paraconsistent fuzzy 

entropy, explicitly : 










||1

||1
RE       (2.16) 

For 1 and 0 , it results the fuzzy entropy pro-

posed by Kosko [5], namely:  

|12|1

|12|1









RE       (2.17) 

We notice that the neutrosophic entropy is a strictly de-

creasing function in ||    and non-decreasing in   and 
in |1|  . 
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The neutrosophic entropy verify the following conditions: 

(i) 0),,( E  if ),,(   is a crisp value, 
namely if  )1,0,0(),0,0,1(),,(  .

(ii) 1),,( E       if   . 

(iii) ),,(),,(  EE   

(iv) ),,(),,( 21  EE   if 21   . 

(v) ),,,(),,,( 21  EE          if |||| 21   . 

(vi) ),,,(),,,( 21  EE           if 21   . 

(vii) ),,,(),,,( 21  EE           if 21   .

(viii) ),,,(),,,( 21  EE    if 21   . 

3 Penta-valued Representation of Neutrosophic 
Entropy 

The five components of neutrosophic entropy will be: am-

biguity a , ignorance u , contradiction c , neutrality n  and 

saturation s  [6]. We construct formulas for these features 

both for the variant defined by formula (2.4) and for the 

variant defined by formula (2.12). For each decomposi-

tion, among the four components csnu ,,, , always two of 

them will be zero. 

In the neutrosophic cube, we consider the entropic rectan-

gle defined by the points: )0,0,0(U , 

)0,1,0(N , )1,1,1(S , )1,0,1(C . 

In addition, we consider the point  5.0,0,5.0A  which is

located midway between the point U  (unknown) and the 

point C (contradiction).  

Figure 1. The neutrosophic cube TUFCT’NF’S and its entropic 

rectangle UNSC. 

Also, this point is located midway between the point F  

(false) and the point T  (true). In other words, the point A  

(ambiguous) represents the center of the Belnap square 

TUFC (true-uknown-false-contradictory). 

If the projection of the point ),,(   on the rectangle 

UNSC  (unknown-neutral-saturated-contradictory) is in-

side the triangle UNA  (unknown-neutral-ambiguous) then 

saturation and contradiction will be zero )0(  cs , if the 

projection is inside the triangle ANS  (ambigouous-

neutral-saturated) then ignorance and contradiction will be 

zero )0(  cu  and if the projection is inside the triangle 

ASC (ambiguous-saturated-contradictory) then ignorance 

and neutrality will be zero )0(  nu .  

We consider first the first version defined by formula (2.4), 

namely: 










|1|1

||
1CE   (3.1) 

The five features must verify the following condition: 

  CEsncua   (3.2) 

First, we start with ambiguity formula defined by: 

  









|1|1

|1|||1
a    (3.3) 

The prototype for the ambiguity is the point )5.0,0,5.0(  and 

the formula (3.3) defines the similarity between the points 

),,(   and )5.0,0,5.0( . 

Then, the other four features will verify the condition: 

  









|1|1

|1|2
sncu    (3.4) 

We analyze three cases depending on the order relation 

among the three parameters  ,,  where   is the 

bifuzzy ignorance and   is the bifuzzy contradiction [9].  

It is obvious that: 

0  (3.5) 

Case (I) 

0   (3.6) 

It results for ignorance and contradiction these formulas: 

   









1

22
u  (3.7) 

   0c           (3.8) 

and for saturation and neutrality: 

  0s      (3.9) 



Neutrosophic Sets and Systems, Vol. 7, 2015 43 

Vasile Pătraşcu, The Neutrosophic Entropy and its Five Components

  







1

3
n  (3.10) 

Case (II) 

     0        (3.11) 

It results for ignorance and contradiction these formulas: 

 0u           (3.12) 

   









1

22
c  (3.13) 

then for neutrality and saturation it results: 

 0n      (3.14) 

  







1

3
s  (3.15) 

Case (III) 

     ),max(     (3.16) 

It results for ignorance and contradiction these values: 

   0u               (3.17) 

   0c           (3.18) 

Next we obtain: 

 









1

33)(
ns          (3.19) 

The sum (3.19) can be split in the following manner: 

  











1

3
2n  (3.20) 












1

3
2s  (3.21) 

Combining formulas previously obtained, it results  the fi-

nal formulas for the five components of the neutrosophic 

entropy defined by (3.1): 

ambiguity 

  









1

||1
a  (3.22) 

ignorance 

  









1

),max(
2u   (3.23) 

The prototype for ignorance is the point )0,0,0(  and for-

mula (3.23) defines the similarity between the points 

),,(   and )0,0,0( . 

contradiction 

 









1

),max(
2c  (3.24)  

The prototype for contradiction is the point )1,0,1(  and 

formula (3.24) defines the similarity between the points 

),,(   and )1,0,1( . 

neutrality         

  











1

),min(3
2

)0,max(

n       (3.25) 

The prototype for neutraliy is the point )0,1,0(  and formula 

(3.25) defines the similarity between the points ),,(   

and )0,1,0( . 

saturation 

 











1

),min(3
2

)0,max(

s (3.26) 

The prototype for saturation is the point )1,1,1(  and for-

mula (3.26) defines the similarity between the points 

),,(   and )1,1,1( . 

In addition we also define: 

The index of truth 

     









1

),max(
t  (3.27) 

The prototype for the truth is the point )0,0,1(  and formula 

(3.27) defines the similarity between the points ),,(   

and )0,0,1( . 

The index of falsity 










1

),max(
f     (3.28) 

The prototype for the falsity is the point )1,0,0(  and for-

mula (3.28) defines the similarity between the points 

),,(   and )1,0,0( . 

Thus, we get the following hepta-valued partition for the 

neutrosophic information: 

   1 sncuaft                         (3.29) 
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Formula ( 3.29 ) shows that neutrosophic information can 

be structured so that it is related to a logic where the in-

formation could be: true, false, ambiguous, unknown, con-

tradictory, neutral or saturated [6] (see Figure 2). 

Figure 2. The structure of the neutrosophic information. 

Next, we also deduce the five components for the variant 

defined by the formula (2.12). 

Using (1.5)  formula (2.12) becomes: 








||1

||2
1RE   (3.30) 

or 










||1

||1
RE  (3.31) 

In this case, the five formulas are obtained from formulas 

(3.22) - (3.26) by changing the denominator, thus: 

ambiguity 

  









||1

||1
a  (3.32) 

ignorance 

  









||1

)0,max(2
u     (3.33) 

contradiction 

  









||1

)0,max(2
c     (3.34) 

neutrality         

  











||1

),min(3
2

)0,max(

n           (3.35) 

saturation 

 











||1

),min(3
2

)0,max(

s (3.36) 

From (3.27) and (3.28) it results: 

Index of truth 

 







||1

)0,max(2
t     (3.37) 

Index of falsity 










||1

)0,max(2
f  (3.38) 

Also in this case, the 7 parameters verify the condition of 

partition of unity defined by formula (3.29 ). 

For bifuzzy information when 0 , neutrality and satu-

ration are zero and formula (3.29) becomes: 

 1 cuaft          (3.39) 

Thus, we obtained for bifuzzy information a penta-valued 

representation. We can conclude that the bifuzzy infor-

mation is related to a penta-valued logic where the infor-

mation could be: true, false, ambiguous, unknown and con-

tradictory [6] (see Figure 3). 

Figure 3. The structure of the bifuzzy information. 
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For intuitionistic fuzzy information when 0  and 

1 , neutrality, saturation and contradiction are zero 

and formula (3.29) becomes: 

 1 uaft              (3.40) 

Thus, we obtained for intuitionistic fuzzy information a tet-

ra-valued representation. We can conclude that the intui-

tionistic fuzzy information is related to a tetra-valued logic 

where the information could be: true, false, ambiguous and 

unknown [6] (see Figure 4). 

Figure 4. The structure of the intuitionistic fuzzy information. 

For paraconsistent fuzzy information when 0  and 

1 , neutrality, saturation and ignorance are zero and 

formula (3.29) becomes: 

 1 caft              (3.41) 

The paraconsistent fuzzy information is related to a tetra-

valued logic where the information could be: true, false, 

ambiguous and contradictory [6] (see Figure 5). 

Figure 5. The structure of the paraconsistent fuzzy information. 

For fuzzy information when 0  and 1 , neu-

trality, saturation ignorance and contradiction are zero and 

formula (3.29) becomes: 

 1 aft              (3.42) 

Thus, we obtained for fuzzy information a three-valued 

representation. We can conclude that the fuzzy information 

is related to a three-valued logic where the information 

could be: true, false and ambiguous [6]  (see Figure 6). 

Figure 6. The structure of the fuzzy information. 

4  Conclusion 

In this article, there are constructed two formulas for 

neutrosophic entropy calculating. For each of these, five 

components are defined and they are related to the follow-

ing features of neutrosophic uncertainty: ambiguity, igno-

rance, contradiction, neutrality and saturation. Also, two 

components are built for neutrosophic certainty: truth and 

falsity. All seven components, five of the uncertainty and 

two of certainty form a partition of unity. Building these 

seven components, primary neutrosophic information is 

transformed in a more nuanced representation . 
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Abstract. This paper proposes a generalized distance 

measure and its similarity measures between single val-

ued neutrosophic multisets (SVNMs). Then, the similari-

ty measures are applied to a medical diagnosis problem 

with incomplete, indeterminate and inconsistent infor-

mation. This diagnosis method can deal with the diagno-

sis problem with indeterminate and inconsistent infor-

mation which cannot be handled by the diagnosis method 

based on intuitionistic fuzzy multisets (IFMs). 

Keywords: Single valued neutrosophic multiset, distance measure, similarity measure, medical diagnosis.

1 Introduction 

The vagueness or uncertainty representation of imper-
fect knowledge becomes a crucial issue in the areas of 

computer science and artificial intelligence. To deal with 
the uncertainty, the fuzzy set proposed by Zadeh [1] allows 
the uncertainty of a set with a membership degree between 
0 and 1. Then, Atanassov [2] introduced an intuitionistic 
Fuzzy set (IFS) as a generalization of the Fuzzy set. The 
IFS represents the uncertainty with respect to both mem-

bership and non-membership. However, it can only handle 
incomplete information but not the indeterminate and in-
consistent information which exists commonly in real situ-
ations. Therefore, Smarandache [3] proposed a neutrosoph-
ic set. It can independently express truth-membership de-
gree, indeterminacy-membership degree, and false-

membership degree and deal with incomplete, indetermi-
nate, and inconsistent information. After that, Wang et al 
[4] introduced a single valued neutrosophic set (SVNS), 
which is a subclass of the neutrosophic set. SVNS is a gen-
eralization of the concepts of the classic set, fuzzy set, and 
IFS. The SVNS should be used for better representation as 

it is a more natural and justified estimation [4]. All the fac-
tors described by the SVNS are very suitable for human 
thinking due to the imperfection of knowledge that human 
receives or observes from the external world. For example, 
for a given proposition “Movie X would be hit”, in this sit-
uation human brain certainly cannot generate precise an-

swers in terms of yes or no, as indeterminacy is the sector 
of unawareness of a proposition’s value between truth and 
falsehood. Obviously, the neutrosophic components are 
best fit in the representation of indeterminacy and incon-
sistent information. Recently, Ye [5-7] proposed some sim-
ilarity measures of SVNSs and applied them to decision 

making and clustering analysis. 
Based on multiset theory, Yager [8] introduced a fuzzy 

multiset concept, which allows the repeated occurrences of 
any element. Thus, the fuzzy multiset can occur more than 
once with the possibility of the same or different member-

ship values. Then, Shinoj and Sunil [9] extended the fuzzy 
multiset to the intuitionistic fuzzy multiset (IFM) and pre-
sented some basic operations and a distance measure for 
IFMs, and then applied the distance measure to medical di-
agnosis problem. Rajarajeswari and Uma [10] put forward 
the Hamming distance-based similarity measure for IFMs 

and its application in medical diagnosis. Recently, Ye et al. 
[11] presented a single valued neutrosophic multiset 
(SVNM) as a generalization of IFM and the Dice similarity 
measure between SVNMs, and then applied it to medical 
diagnosis. Based on SVNMs, this paper further develops a 
generalized distance measure and the distance-based simi-

larity measures between SVNMs, and then applies the sim-
ilarity measures to medical diagnosis. To do so, the rest of 
the article is organized as follows. Section 2 introduces 
some concepts and basic operations of SVNSs and 
SVNMSs. Sections 3 presents a generalized distance and 
its similarity measures between SVNMs and investigates 

their properties. In Section 4, the similarity measures are 
applied to medicine diagnosis. Conclusions and further re-
search are contained in Section 5. 

2 Preliminaries 

2.1 Some concepts of SVNSs 

Smarandache [3] originally presented the concept of a 

neutrosophic set. A neutrosophic set A in a universal set X 

is characterized by a truth-membership function TA(x), an 

indeterminacy-membership function IA(x), and a falsity-

membership function FA(x). The functions TA(x), IA(x), 

FA(x) in X are real standard or nonstandard subsets of ]−0,

1+[, i.e., TA(x): X  ]−0, 1+[, IA(x): X  ]−0, 1+[, and FA(x):
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X  ]−0, 1+[. Then, the sum of TA(x), IA(x) and FA(x) is no

restriction, i.e. −0 ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+.

However, Smarandache [3] introduced the 

neutrosophic set from philosophical point of view. 

Therefore, it is difficult to apply the neutrosophic set to 

practical problems. To easily apply in science and 

engineering areas, Wang et al. [4] introduced the concept 

of SVNs, which is a subclass of the neutrosophic set and 

gave the following definition. 

Definition 1 [4]. Let X be a universal set. A SVNs A in X 

is characterized by a truth-membership function TA(x), an 

indeterminacy-membership function IA(x), and a falsity-

membership function FA(x). Then, a SVNS A can be 

denoted by the following form: 

AAA
, 

where TA(x), IA(x), FA(x)  [0, 1] for each x in X. Therefore, 

the sum of TA(x), IA(x) and FA(x) satisfies the condition 0 ≤ 

TA(x) + IA(x) + FA(x) ≤ 3. 

AAA
For two SVNs A   x,T (x),I (x),F (x) | x X

 and  XxxFxIxTxB BBB  |)(),(),(, , there are the

following relations [4]: 

(1) Complement: 

 XxxTxIxFxA AAA

c  |)(),(1),(, ; 

(2) Inclusion: 

A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x)

≥ FB(x) for any x in X; 

(3) Equality: 

A = B if and only if A ⊆ B and B ⊆ A; 

(4) Union: 

 XxxFxFxIxIxTxTx

BA

BABABA 



|)()(),()(),()(,


; 

(5) Intersection: 

 XxxFxFxIxIxTxTx

BA

BABABA  |)()(),()(),()(,


; 

(6) Addition: 
















 Xx
xFxFxIxI

xTxTxTxTx
BA

BABA

BABA
|

)()(),()(

),()()()(, ; 

(7) Multiplication: 

















 Xx

xFxFxFxF

xIxIxIxIxTxTx
BA

BABA

BABABA
|

)()()()(

),()()()(),()(,
. 

2.2 Some concepts of SVNMs 

As a generalization of the concept of IFM, a concept of 

SVNM and some basic operational relations for SVNMs 

[11] are introduced below. 

Definition 2 [11]. Let X be a nonempty set with generic 

elements in X denoted by x. A single valued neutrosophic 

multiset (SVNM) A drawn from X is characterized by three 

functions: count truth-membership of CTA, count 

indeterminacy-membership of CIA, and count falsity-

membership of CFA such that CTA(x): X  Q, CIA(x): X  

Q, CFA(x): X  Q for x  X, where Q is the set of all real 

number multisets in the real unit interval [0, 1]. Then, a 

SVNM A is denoted by 



















 Xx

xFxFxF
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xTxTxTx

A

q

AAA

q

AAA

q

AAA

|

))(),(),((

)),(),...,(),((

)),(),...,(),((,

21

21

21

, 

where the truth-membership sequence 

))(),...,(),(( 21 xTxTxT q

AAA
, the indeterminacy-membership 

sequence ))(),...,(),(( 21 xIxIxI q

AAA
, and the falsity-

membership sequence ))(),...,(),(( 21 xFxFxF q

AAA
 may be in 

decreasing or increasing order, and the sum of )(xT i

A
, 

)(xI i

A
, )(xF i

A
  [0, 1] satisfies the condition 0 ≤ )(xT i

A
+ 

)(xI i

A  + )(xF i

A
 ≤ 3 for x  X and i = 1, 2, …, q. 

For convenience, a SVNM A can be denoted by the 

following simplified form: 

 qiXxxFxIxTxA i

A

i

A

i

A ,...,2,1,|)(),(),(,  . 

Definition 3 [11]. The length of an element x in a SVNM 

is defined as the cardinality of CTA(x) or CIA(x), or CFA(x) 

and is denoted by L(x: A). Then L(x: A) = |CTA(x)| = 

|CIA(x)| = |CFA(x)|. 

Definition 4 [11]. Let A and B be two SVNMs in X, then 

the length of an element x in A and B is denoted by lx = 

L(x: A, B) = max{L(x: A), L(x: B)}. 

Example 1. Consider two SVNMs in the set X = {x, y, z}: 

A = {<x, (0.3, 0.2), (0.4, 0.3), (0.6, 0.8)>, <y, (0.5, 0.4, 

0.3), (0.1, 0.2, 0.3), (0.3, 0.4, 0.5)>}, 

B = {<x, (0.3), (0.4), (0.6) >, <z, (0.5, 0.4, 0.3, 0.2), 

(0.0, 0.1, 0.2, 0.3), (0.2, 0.3, 0.4, 0.5)>}. 

Thus, there are L(x: A) = 2, L(y: A) = 3, L(z: A) = 0; 

L(x: B) = 1, L(y: B) = 0, L(z: B) = 4, lx = L(x: A, B) = 2, ly = 

L(y: A, B) = 3, and lz = L(z: A, B) = 4. 

For convenient operation between SVNMs A and B in 

X, one can make L(x: A) = L(x: B) by appending sufficient 

48



Neutrosophic Sets and Systems, Vol. 7, 2015 

 Shan Ye, Jing Fu and Jun Ye, Medical Diagnosis Using Distance-Based Similarity Measures of Single Valued 

Neutro-sophic Multisets

minimal number for the truth-membership value and 

sufficient maximum number for the indeterminacy-

membership and falsity-membership values. 

Definition 5 [11]. Let A = {x, )(),(),( xFxIxT i

A

i

A

i

A | x  

X, i = 1, 2, …, q} and B = {x, )(),(),( xFxIxT i

B

i

B

i

B | x  

X, i = 1, 2, …, q} be any two SVNMs in X. Then, there are 

the following relations: 

(1) Inclusion: A ⊆ B if and only if )(xT i

A  ≤ )(xT i

B , 

)(xI i

A  ≥ )(xI i

B , )(xF i

A  ≥ )(xF i

B  for i = 1, 2, …, q 

and x  X; 

(2) Equality: A = B if and only if A ⊆ B and B ⊆ A; 

(3) Complement: 

  qiXxxTxIxFxA i

A
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(5) Intersection: 
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For convenience, we can use a = (T1, T2, …, Tq), (I1, I2, 

…, Iq), (F1, F2, …, Fq) to represent an element in a SVNM 

A and call it a single valued neutrosophic multiset value 

(SVNMV). 

Definition 6. Let a1 =  ),...,,( 1

2
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1
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qFFF  be two SVNMVs and   0, then the 

operational rules of SVNMVs are defined as follows: 
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(3) 
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3 Distance and similarity measures of SVNMs 

The distance measure and similarity measure are 

usually used in real science and engineering applications. 

Therefore, the section proposes a generalized distance 

measure between SVNMs and the distance-based 

similarity measures between SVNMs. However, the 

distance and similarity measures in SVNSs are considered 

for truth-membership, indeterminacy-membership, and 

falsity-membership functions only once, while the distance 

and similarity measures in SVNMs should be considered 

more than once because their functions are multi-values.  

Definition 7. Let A = {xj, )(),(),( j

i

Aj

i

Aj

i

A xFxIxT | xj  X, 

i = 1, 2, …, q} and B = {xj, )(),(),( j

i

Bj

i

Bj

i

B xFxIxT | xj  

X, i = 1, 2, …, q} be any two SVNMs in X = {x1, x2, …, 

xn}. Then, we define the following generalized distance 

measure between A and B: 
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, (1) 

where lj = L(xj: A, B) = max{L(xj: A), L(xj: B)} for j = 1, 2, 

…, n. If p = 1, 2, Eq. (1) reduces to the Hamming distance 

and the Euclidean distance, which are usually applied to 

real science and engineering areas. 

Then, the defined distance measure has the following 

Proposition 1: 

Proposition 1. For two SVNMs A and B in X = {x1, x2, …, 

xn}, the generalized distance measure Dp(A, B) should 

satisfy the following properties (D1-D4): 

49



Neutrosophic Sets and Systems, Vol. 7, 2015 

 Shan Ye, Jing Fu and Jun Ye, Medical Diagnosis Using Distance-Based Similarity Measures of Single Valued Neutro-

sophic Multisets

(D1) 0  Dp(A, B)  1; 

(D2) Dp(A, B) = 0 if and only if A = B; 

(D3) Dp(A, B) = Dp(B, A); 

(D4) If C is a SVNM in X and A  B  C, then Dp(A, 

C)  Dp(A, B) + Dp(B, C) for p >0.

Proofs: 

(D1) Proof is straightforward. 

(D2) If A = B,  then there are )( j

i

A xT  = )( j

i

B xT , )( j

i

A xI  = 

)( j

i
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Hence A = B. 

(D3) Proof is straightforward. 
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For p >0, we have 
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Considering the above inequalities and Eq. (1), one can 

obtain that Dp(A, C)  Dp(A, B) + Dp(B, C) for p >0. 

Therefore, the proofs of these properties are completed. 

 

Based on the relationship between the distance measure 

and the similarity measure, we can introduce two distance-

based similarity measures between A and B: 
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According to Proposition 1 for the defined distance 

measure and the relationship between the distance measure 

and the similarity measure, it is easy to obtain the 

following Proposition 2 for the distance-based similarity 

measures. 

Proposition 2. For two SVNMs A and B in X = {x1, x2, …, 

xn}, the distance-based similarity measure Sk(A, B) (k =1, 

2) should satisfy the following properties (S1-S4):

(S1) 0  Sk(A, B)  1; 

(S2) Sk(A, B) = 1 if and only if A = B; 

(S3) Sk(A, B) = Sk(B, A); 

(S4) If C is a SVNM in X and A  B  C, , then Sk(A, 

C)  Sk(A, B) and Sk(A, C)  Sk(B, C).

By the similar proofs of Proposition 1 and the 

relationship between the distance and the similarity 

measure, Proofs are straightforward. 

Example 2: Let A and B be two SVNMs in X = {x1, x2}, 

which are given as follows: 

A = {<x1, (0.7, 0.8), (0.1, 0.2), (0.2, 0.3)>, <x2, (0.5, 

0.6), (0.2, 0.3), (0.4, 0.5)>}, 

B = {<x1, (0.5, 0.6), (0.1, 0.2), (0.4, 0.5)>, <x2, (0.6, 

0.7), (0.1, 0.2), (0.7, 0.8)>}. 

The calculational process of the similarity measures 

between A and B is shown as follows: 
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(1) Using Hamming distance (p = 1): 

By using Eq. (1) we obtain: 

D1(A, B) = [(|0.7 – 0.5|+|0.1 – 0.1| + |0.2 – 0.4| + |0.8 –

0.6| + |0.2 – 0.2| + |0.3 – 0.5|)/6 + (|0.5 – 0.6| + |0.2 – 0.1| 

+|0.4 – 0.7| + |0.6 – 0.7| + |0.3 – 0.2| + |0.5 – 0.8|)/6]/2 = 

0.15. 

Then, by applying Eqs. (2) and (3) we have the 

following result: 

S1(A, B) = 1 – D1(A, B) = 1 – 0.15 = 0.85 and S2(A, B) 

= [1 – D1(A, B)]/[ 1+ D1(A, B)] = 0.7391. 

(2) Using the Euclidean distance (p = 2): 

By using Eq. (1) we can obtain the following result: 

D2(A, B) = {[(|0.7 – 0.5|2 + |0.1 – 0.1|2 + |0.2 – 0.4|2 +

|0.8 – 0.6|2 + |0.2 – 0.2|2 +| 0.3 – 0.5|2)/6 + (|0.5 – 0.6|2 + |0.2 

– 0.1|2 + |0.4 – 0.7|2 + |0.6 – 0.7|2 + |0.3 – 0.2|2 + |0.5 –

0.8|2)/6]/2}1/2 = 0.178. 

Then, by applying Eqs. (2) and (3) we have the 

following result: 

S1(A, B) = 1 – D2(A, B) = 1 – 0.178 = 0.822 and S2(A, 

B) = [1 – D2(A, B)]/[ 1 + D2(A, B)] = 0.6979.

4 Medical diagnosis using the similarity measure 

Due to more and more complexity of real medical 

diagnosis, a lot of information available to physicians from 

modern medical technologies is often incomplete, 

indeterminate and inconsistent information. Then, the 

SVNS proposed by Wang et al. [4] can be better to express 

this kind of information, but fuzzy sets and intuitionistic 

fuzzy sets cannot handle indeterminate and inconsistent 

information. However, by only taking one time inspection, 

we wonder whether we can obtain a conclusion from a 

particular person with a particular decease or not. 

Sometimes he/she may also show the symptoms of 

different diseases. Then, how can we give a proper 

conclusion? One solution is to examine the patient at 

different time intervals (e.g. two or three times a day). 

Thus, we present SVNMs as a better tool for reasoning 

such a situation. The details of a typical example (adapted 

from [9]) are given below. 

Let P = {P1, P2, P3, P4} be a set of four patients, D = 

{D1, D2, D3, D4} = {Viral fever, Tuberculosis, Typhoid, 

Throat disease} be a set of diseases, and S = {S1, S2, S3, S4, 

S5} = {Temperature, Cough, Throat pain, Headache, Body 

pain} be a set of symptoms. Table 1 shows the 

characteristics between symptoms and the considered 

diseases represented by the form of single valued 

neutrosophic values (SVNVs).  

In the medical diagnosis, if we have to take three 

different samples in three different times in a day (e.g., 

morning, noon and night), we can construct Table 2, in 

which the characteristics between patients and the 

indicated symptoms are represented by SVNMVs. 

Then, by using Eqs. (1) and (2) and taking p = 2, we 

can obtain the similarity measure between each patient Pi (i 

= 1, 2, 3, 4) and the considered disease Dj (j = 1, 2, 3, 4), 

which are shown in Table 3. 

Similarly, by using Eqs. (1) and (3) and taking p = 2, 

we can obtain the similarity measure between each patient 

Pi (i = 1, 2, 3, 4) and the considered disease Dj (j = 1, 2, 3, 

4), which are shown in Table 4. 

In Tables 3 and 4, the largest similarity measure 

indicates the proper diagnosis. Patient P1 suffers from viral 

fever, Patient P2 suffers from tuberculosis, Patient P3 

suffers from typhoid, and Patient P4 also suffers from 

typhoid. 

Table 1 Characteristics between symptoms and the considered diseases represented by SVNVs 

Temperature (S1) Cough (S2) Throat pain (S3) Headache (S4) Body pain (S5) 

Viral fever (D1) <0.8, 0.1, 0.1> <0.2, 0.7, 0.1> <0.3, 0.5, 0.2> (0.5, 0.3, 0.2) <0.5, 0.4, 0.1> 

Tuberculosis (D2) <0.2, 0.7, 0.1> <0.9, 0.0, 0.1> <0.7, 0.2, 0.1> (0.6, 0.3, 0.1) <0.7, 0.2, 0.1> 

Typhoid (D3) <0.5, 0.3, 0.2> <0.3, 0.5, 0.2> <0.2, 0.7, 0.1> (0.2, 0.6, 0.2) <0.4, 0.4, 0.2> 

Throat disease(D4) <0.1, 0.7, 0.2> <0.3, 0.6, 0.1> <0.8, 0.1, 0.1> (0.1, 0.8, 0.1) <0.1, 0.8, 0.1> 

Table 2 Characteristics between patients and the indicated symptoms represented by SVNMVs 

Temperature (S1) Cough (S2) Throat pain (S3) Headache (S4) Body pain (S5) 

P1 

<(0.8, 0.6, 0.5), 

(0.3, 0.2, 0.1), 

(0.4, 0.2, 0.1)> 

<(0.5, 0.4, 0.3), 

(0.4, 0.4, 0.3), 

(0.6, 0.3, 0.4)> 

<(0.2, 0.1, 0.0), 

(0.3, 0.2, 0.2), 

(0.8, 0.7, 0.7)> 

<(0.7, 0.6, 0.5), 

(0.3, 0.2, 0.1), 

(0.4, 0.3, 0.2)> 

<(0.4, 0.3, 0.2), 

(0.6, 0.5, 0.5), 

(0.6, 0.4, 0.4)> 

P2 

<(0.5, 0.4, 0.3), 

(0.3, 0.3, 0.2), 

(0.5, 0.4, 0.4)> 

<(0.9, 0.8, 0.7), 

(0.2, 0.1, 0.1), 

(0.2, 0.2, 0.1)> 

<(0.6, 0.5, 0.4), 

(0.3, 0.2, 0.2), 

(0.4, 0.3, 0.3)> 

<(0.6, 0.4, 0.3), 

(0.3, 0.1, 0.1), 

(0.7, 0.7, 0.3)> 

<(0.8, 0.7, 0.5), 

(0.4, 0.3, 0.1), 

(0.3, 0.2, 0.1)> 

P3 

<(0.2, 0.1, 0.1), 

(0.3, 0.2, 0.2), 

(0.8, 0.7, 0.6)> 

<(0.3, 0.2, 0.2), 

(0.4, 0.2, 0.2), 

(0.7, 0.6, 0.5)> 

<(0.8, 0.8, 0.7), 

(0.2, 0.2, 0.2), 

(0.1, 0.1, 0.0)> 

<(0.3, 0.2, 0.2), 

(0.3, 0.3, 0.3), 

(0.7, 0.6, 0.6) 

<(0.4, 0.4, 0.3), 

(0.4, 0.3, 0.2), 

(0.7, 0.7, 0.5)> 

P4 

<(0.5, 0.5, 0.4), 

(0.3, 0.2, 0.2), 

(0.4, 0.4, 0.3)> 

<(0.4, 0.3, 0.1), 

(0.4, 0.3, 0.2), 

(0.7, 0.5, 0.3)> 

<(0.2, 0.1, 0.0), 

(0.4, 0.3, 0.3), 

(0.7, 0.7, 0.6)> 

<(0.6, 0.5, 0.3), 

(0.2, 0.2, 0.1), 

(0.6, 0.4, 0.3)> 

<(0.5, 0.4, 0.4), 

(0.3, 0.3, 0.2), 

(0.6, 0.5, 0.4)> 
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Table 3 Similarity measure values of S1(Pi, Dj) 

Viral 

fever (D1) 

Tuberculosis 

(D2) 
Typhoid 

(D3) 

Throat 

disease(D4) 

P1 0.7358 0.6101 0.7079 0.5815 

P2 0.6884 0.7582 0.6934 0.5964 

P3 0.6159 0.6141 0.6620 0.6294 

P4 0.7199 0.6167 0.7215 0.5672 

Table 4 Similarity measure values of S2(Pi, Dj) 

Viral 

fever (D1) 

Tuberculosis 

(D2) 
Typhoid 

(D3) 

Throat 

disease(D4) 
P1 0.5821 0.4390 0.5478 0.4100 

P2 0.5248 0.6106 0.5307 0.4249 

P3 0.4450 0.4431 0.4948 0.4592 

P4 0.5624 0.4459 0.5643 0.3958 

6 Conclusion 

This paper proposed the generalized distance and its 

two similarity measures. Then, the two similarity measures 

of SVNMs were applied to medical diagnosis to 

demonstrate the effectiveness of the developed measure 

methods. The medical diagnosis shows that the new 

measures perform well in the case of truth-membership, 

indeterminacy-membership, and falsity-membership 

functions and the example depicts that the proposed 

measure is effective with the three representatives of 

SVNMV – truth-membership, indeterminacy-membership 

and falsity-membership values. Therefore, the measures of 

SVNMs make them possible to handle the diagnosis 

problems with indeterminate and inconsistent information, 

which cannot be handled by the measures of IFMs because 

IFMs cannot express and deal with the indeterminate and 

inconsistent information.  

In further work, it is necessary and meaningful to 

extend SVNMs to propose interval neutrosophic multisets 

and their operations and measures and to investigate their 

applications such as decision making, pattern recognition, 

and medical diagnosis. 
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1 Introduction 

During recent years soft set theory has gained 

popularity among the researchers due to its 

applications in various areas. Number of publications 

related to soft sets has risen exponentially. Theory of 

soft sets is proposed by Moldtsov in [16]. Basic aim of 

this theory is to introduce a mathematical model with 

enough parameters to handle uncertainty. Prior to soft 

set theory, probability theory, fuzzy set theory, rough 

set theory and interval mathematics were common 

tools to discuss uncertainty. But unfortunately 

difficulties were attached with these theories, for 

details see [11, 16]. As mentioned above soft set 

theory has enough number of parameters, so it is free 

from difficulties associated with other theories. Soft 

set theory has been applied to various fields very 

successfully. 

The concept of neutrosophic set was introduced by 

Smarnandache [20]. The traditional neutrosophic sets 

is characterized by the truth value, indeterminate value 

and false value. Neutrosophic set is a mathematically 

tool for handling problems involving imprecise, 

indeterminacy inconsistent data and inconsistent 

information which exits in belief system. 

Maji et al. proposed the concept of "Fuzzy Soft Sets" 

[13] and later on applied the theories in decision 

making problem [14, 15]. Different algebraic 

structures and their applications have also been 

studied in soft and fuzzy soft context [2, 19]. In [12] 

Maji proposed the concept of "Neutrosophic soft set" 

and applied the theories in decision making problem. 

Later Broumi and Smarandache defined the concepts 

of interval valued neutrosophic soft set and 

inituitionistic neutrosophic soft set in [3, 5]. Recently 

Sahin and Kucuk applied the concept of neutrosophic 

soft set in decision making problems [17,18]. 

Different algebraic structures and their application can 

be study in neutrosophic soft set context [4,7, 8, 9, 10]. 

In this paper we define some new operations on the 

neutrosophic soft set and modified results and laws are 

established. And also define the associativity and 

distributivity of these operations. The paper is 

organized in five sections. First we have given 

preliminaries on the theories of soft sets and 

neutrosophic sets. Section 3  completely describes 

for what new and modified operations define on 

neutrosophic soft set. In section 4  we have used new 

and modified definitions and operations to discuss the 

properties of associativity and distributivity of these 

operations for neutrosophic soft sets. Counter 

examples are provided to show the converse of proper 

inclusion is not true in general. In section 5 , 

monoids, semiring and lattices of neutrosophic soft 

sets associated with new operations have been 

determined completely. 

2 Preliminaries 

In this section we present the theory of neutrosophic 

sets and soft sets, taken from [1,20] ,  and some

definitions and notions about algebraic structures are 

given. 

Let X be a universe of discourse and a neutrosophic 
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set A  on X  is defined as 

      XxxFxIxTxA AAA   , , , ,

where  ,T   ,I   [1,0]: XF   and 

      .30   xFxIxT AAA

Philosophical point of view, neutrosophic set takes the 

value from real standard or non standard subsets of 

[.1,0] 
 But it is difficult to use neutrosophic set 

with value from real standard or non standard subsets 

of  [1,0] 
  in real life application like scientific 

and engineering problems. 

Definition 2.1: 

A neutrosophic set  A   is contained in another 

neutrosophic set B  ..ei    BA   if 

           

.  

 , ,

Xx

xFxFxIxIxTxT BAAABA





Example 2.2: 

Mr. X and his father wants to purchase a laptop. They 

have their expectations and perceptions. Based on 

these, they identify three criteria x1, x2, x3 which are as 

follows 

x1=Performance, x2=Size of laptop, x3=Price of laptop 

It may be assumed that the values of ,1x   ,2x 3x

are in   .1 ,0   The buyer consults with experts and

also collects data from his own survey. The experts 

may impose their opinion in three components viz, the 

degree of goodness, the degree of indeterminacy and 

that of poorness to explain the characteristics of the 

objects. Suppose A  is a neutrosophic set of 

 321 ,, xxxX    such that 

.
4.0,3.0,8.0,

,4.0,2.0,7.0,,5.0,4.0,8.0,

3

21














x

xx
A  

Where the degree of goodness of performance  1x

is 0.8 degree of indeterminacy of performance  1x

is 0.4 and the degree of poorness of performance is 

0.5 etc. 

Definition 2.3: 

Let  U  be an initial universe set and  E  be the

set of parameters. Let   UP   denote the power set

of  U   and let  A   be a non-empty subset of  E  .

A pair   AF  ,   is called soft set over  U,   where

F   is mapping given by   .: UPAF 

Definition 2.4: 

For two soft sets   AF  ,   and   BG  ,   over a

common universe  U  , we say that   AF  ,   is a

soft subset of   BG  ,   if

 i   ,BA

 ii     eGeF     e  A.

We write     . , , BGAF 

Definition 2.5: 

Two soft sets   AF  ,   and   BG  ,   over a

common universe  U   are said to be soft equal if 

 AF  ,   is a soft subset of   BG  ,   and

 BG  ,   is a soft subset of   . , AF

Definition 2.6: 

Extended union of two soft sets  F, A   and  ,(G

)B over the common universe  U   is the soft set

H,  )C  , where  BAC    and for all

,Ce   

 

 

 

   















. if  

 if  

 if  

BAeeGeF

ABeeG

BAeeF

eH

We write  ,(F  ,() GA
E

 ,() HB   ).C

Let  F,  A  and  G,    B   be two soft sets

over the same universe  U  , such that  A  B  
. The restricted union of  F,  A   and  G,  B

is denoted by  F,  A R G,   B   and is

defined as  F, A R G, B  H,

C,   where  C  A  B   and for all  e  C,

He  Fe Ge.
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2.7 Definition: 

The extended intersection of two soft sets  ,(F  )A

and  G,  B   over the common universe  U   is

the soft set  ,(H  )C  , where  BAC    and 

for all  ,Ce   

He 

Fe if e  A  B

Ge if e  B  A

Fe  Ge if e  A  B.

We write  ,(F ,() GA
E

  ,() HB  ).C

Let  F,  A   and  G,  B   be two soft sets over

the same universe U  , such that   BA  . 

The restricted intersection of  F,  A   and  G,

B   is denoted by  ,(F  ,() GA
R

 )B and is

defined as  ,(F  ,() GA
R

 ,() HB   ),C

where BAC    and for all ,Ce    

     .eGeFeH 

A semigroup ),( S   is a non-empty set with an 

associative binary operation  . We use usual 

algebraic practice and write xy  instead of yx . If 

there exists an element e  in S  such that

ex  xe  x   for all  x   in  S   then we say

that  S   is a monoid and  e   is called the identity

element. An element  Sx   is called idempotent if 

xxx   . If every element of  S   is idempotent

then we say that  S   is idempotent.

A semiring is an algebraic structure consisting of a 

non-empty set  R   together with two associative 

binary operations, addition “+” and multiplication “.”  

such that “.” distributes over “+” from both sides. 

Semirings which are regarded as a generalization of 

rings. By a hemiring, we mean a semiring with a zero 

and with a commutative addition. 

A Lattice  ),,( L   is a non-empty set with two 

binary operations     and     such that

1  ),( L is a commutative, idempotent 

semigroup, 

2 ),( L is a commutative, idempotent 

semigroup, 

3  Absorption laws abaa  )( and 

abaa  )(   hold for all  a,b  L  .

If a lattice has identity elements with respect to both 

the operations then we say that it is bounded. Usually 

identity element of L with respect to operation     

is denoted by  0   and whereas the identity element 

with respect to binary operation     is denoted by 

1  . If a lattice  L   has identities and for each 

La   there exists an element  b   such that 

0ba   and  1ba  , then  L   is called 

complemented. If distributive laws hold in a lattice 

then it is called a distributive lattice. 

3 Neutrosophic soft set 

Definition 3.1[12]: 

Let  U   be an initial universe set and  E   be the 

set of all parameters. Consider  .EA   Let  

 UP   denotes the set of all neutrosophic sets of

.U  A pair   AF  ,   is termed to be the

neutrosophic soft set   NSS   over  U  , where

F   is mapping given by   .: UPAF 

Example 3.2: 

Let U  be the set of calculators under consideration 

and  E   is the set of parameters. Consider 














function 

 , ,

3

21

fourc

leprogrammabcscientificc
U

and 

E  e1  performance, e2  size, e3  price

  suppose that 

  ,
8.0,6.0,4.0,,

3.0,5.0,8.0,,5.0,4.0,7.0,

3

21

1













c

cc
eF
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  ,
6.0,4.0,8.0,

,7.0,4.0,2.0,,8.0,7.0,6.0,

3

21

2













c

cc
eF

  .
4.0,3.0,1,

,9.0,8.0,5.0,,7.0,1.0,8.0,

3

21

3













c

cc
eF  

The neutrosophic soft set  EF  , is a 

parametrized family   3,2,1 , ieF i of all 

neutrosophic sets of  U   and describes a collection

of approximation of an object. 

To store a neutrosophic soft set in computer, we could 

present it in the form of a table as shown below. In this 

table the entries are  a ij   corresponding to the

calculator  c i   and the parameter  e j   where



















i

i

i

ij

c

c

c

a

 of  valuemembership-falsity

, of  valuemembership-acyindetermin 

, of  valuemembership-true

in   .jeF The neutrosophic soft set   EF  ,   in

tabular representation is as follow: 

Definition 3.3 [14]: 

For two neutrosophic soft sets   AH  ,   and

 BG  ,   over the common universe  U  . We say

that   AH  ,   is a neutrosophic soft subset of

 BG  ,   if

i   ,BA

ii
     ,xTxT eGeH       ,xIxI eGeH 

     xFxF eGeH 

for all  Ae   and  .Ux  We write  

   . , , BGAH 

Definition 3.4: 

For two neutrosophic soft sets  H , A  and

 BG  ,   over the common universe  U  . We say

that   AH  ,   is a neutrosophic soft twisted subset

of   BG  ,   if

 i   BA

 ii      ,xTxT eGeH       ,xIxI eGeH 

     xFxF eGeH 

for all  Ae  and .Ux  We write 

 

 . , , BGAH 

Definition 3.5: 

 1   AH  ,   is called relative null neutrosophic

soft set  (  with respect to parameter  ),A   if 

         . and    1 ,0 ,0 UxAexFxIxT eHeHeH 

It is denoted by  A .

 2   AG  ,  is called relative whole neutrosophic

soft set    with respect to parameter  A   if

         . and    0 ,1 ,1 UxAexFxIxT eGeGeG 

 It is denoted by .AU  

Similarly we define absolute neutrosophic soft set 

over  U  , and it is denoted by  ,EU   and null

neutrosophic soft set over  U,   it is denoted by

.E  

Definition 3.6: 

Let  neeeeE ....,, ,321   be a set of parameters. 

The not set of  E   is denoted by  E   and 

defined as  ,....,, ,321 neeeeE    where 

 ie  not ,ie    .i  

Definition 3.7 [14]: 

Complement of a neutrosophic soft set 

 AG  ,  denoted by  cAG  , and is defined as
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   AGAG cc
  , ,   where 

 UPAG c :   is a mapping given by

 eGc
 neutrosophic soft compliment with 

   ,eGeG
FT c 

    eGeG
II c 


  and 

   .eGeG
TF c 



Definition 3.8: 

Let   AH  ,   and   BG  ,   be two NSS,s over

the common universe  U  . Then the extended union 

of   AH  ,   and   BG  ,   is denoted by

   BGAH  , ,
E

   and defined as 

     , , , , CKBGAH 
E where 

,BAC    and the truth-membership, 

indeterminacy-membership and falsity-membership 

of K, C   are as follows 

  
  

  

      















BAexTxT

ABexT

BAexT

xT

eGeH

eG

eH

eK

 if  ,max

 if  

 if  

  
  

  

      















BAexIxI

ABexI

BAexI

xI

eGeH

eG

eH

eK

 if  ,max

 if  

 if  

  
  

  

      















BAexFxF

ABexF

BAexF

xF

eGeH

eG

eH

eK

 if  ,min

 if  

 if  

and the restricted union of   AH  ,   and   BG  ,

is denoted and defined as 

     CKBGAH  , , , 
R where 

BAC    and 

          BAexTxTxT eGeHeK   if  ,max

IKex  maxIHex, IGex if e  A  B

          BAexFxFxF eGeHeK   if  ,min

If  A  B  ,   then

H, A R G, B  .

Definition 3.9: 

Let   AH  ,   and   BG  ,   be two NSS,s over

the common universe  U  . Then the extended

intersection of   AH  ,   and   BG  ,   is denoted

by     BGAH  , ,
E

   and defined as 

     , , , , CKBGAH 
E   where 

,BAC    and the truth-membership, 

indeterminacy-membership and falsity-membership 

of   CK  ,   are as follows

  
  

  

      















BAexTxT

ABexT

BAexT

xT

eGeH

eG

eH

eK

 if  ,min

 if  

 if  

  
  

  

      















BAexIxI

ABexI

BAexI

xI

eGeH

eG

eH

eK

 if  ,min

 if  

 if  

  
  

  

      















BAexFxF

ABexF

BAexF

xF

eGeH

eG

eH

eK

 if  ,max

 if  

 if  

and the restricted intersection of   AH  ,   and

 BG  ,   is denoted and defined as

     CKBGAH  , , , 
R   where 

C  A  B  and

57



Neutrosophic Sets and Systems, Vol. 7, 2015

Asim Hussain and Muhammad Shabir, Algebraic Structures of Neutrosophic Soft Sets

          BAexTxTxT eGeHeK   if  ,min

          BAexIxIxI eGeHeK   if  ,min

          BAexFxFxF eGeHeK   if  ,max

If   BA   then 

    . , ,  BGAH
R  

4 Distributive laws for neutrosophic soft sets 

In this section we present distributive laws on the 

collection of neutrosophic soft set. It is 

interesting to see that the equality does not hold 

in some assertions and counter example is given 

to show it. 

Let  U   be an initial universe and  E   be the

set of parameters. We denote the collection as 

follows: 

  :
E

UNSS   The collection of all 

neutrosophic soft sets over  U.

  :AUNSS   The collection of all those 

neutrosophic soft sets over  U   with a fixed 

parameter set  A.  

Theorem 4.1: 

Let   AH  ,   and   BG  ,   be two neutrosophic

soft sets over the common universe  U  . Then

i        AHAHAH R  , , ,  and 

     , , , , AHAHAH R 

ii     , , AARAH   

iii     , , , AHAH AR 

iv     , , AARAH UU 

     , , , AHAHv AR  U

           , , , , ,
c

R

cc

R BGAHBGAHvi 

           . , , , ,
c

R

cc

R BGAHBGAHvii 

Proof:  Straightforward.

Remark 4.2: 

Let  ,  ,,,,
EERR

   if 

      

         CKAHBGAH

CKBGAH

 , , , ,

 , , ,



 

holds, then we have  1   otherwise  0   in the 

following table 

setssoft  icneutrosophfor  law veDistributi

1111

1111

0110

1001

R

R

E

E

RREE











Proofs in the cases where equality holds can be 

followed by definition of respective operations. For 

which the equality does not hold, see the following 

example.

Example 4.3: 

Let  U   be the set of houses under consideration and 

E   is the set of parameters. Each parameter is a

neutrosophic word. Consider  

},,,,{ 54321 hhhhhU    and  E    beautiful,

wooden ,   costly, green surroundings, good repair,

cheap, expensive   .

Suppose that  {A  beautiful, wooden ,   costly,

green surroundings }    {B  costly, good repair, 

green surroundings }   and  {C  costly,good 

repair,beautiful }.  Let   , , AF     BG  ,   and

 CH  ,   be the neutrosophic soft sets over  U  ,

which are defined as follows: 
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and Neutrosophic soft set   CH  ,   is

Let 

          and  , , , , CBAICHBGAF 
RE

              CABAJCHAFBGAF   , , , , ,
ERE

Then 

Thus 

      

         . , , , ,

 , , ,

CHAFBGAF

CHBGAF

ERE

RE





Similarly we can show that  

        CHBGAF  , , ,
RE

         , , , , , CHAFBGAF
ERE



and 

        CHBGAF  , , ,
EE

         , , , , , CHAFBGAF
EEE



        CHBGAF  , , ,
EE

         CHAFBGAF  , , , ,
EEE

 . 

5 Algebraic structures associated with 
neutrosophic soft sets 

In this section, we initiate the study of algebraic 

structures associated with single and double 

binary operations, for the set of all neutrosophic 

soft sets over the universe  U  , and the set of all 

neutrosophic soft sets with a fixed set of 

parameters. Recall that, let  U   be an initial 

universe and  E   be the set of parameters. Then 

we have: 

  :
E

UNSS   The collection of all neutrosophic 

soft sets over  U.

  :AUNSS   The collection of all those 

neutrosophic soft sets over  U   with a fixed 

parameter set  A.

5.1 Commutative monoids 

From Theorem 4.1, it is clear that    ,E
UNSS

are idempotent, commutative, semigroups for 

  R ,R ,E ,E .

1    
R

NSS  ,
E

U is a monoid with  E   as

an identity element,   
R

NSS  ,AU   is a 

subsemigroup of   . ,
R

NSS 
E

U

2   
R

NSS  ,
E

U is a monoid with  UE   as

an identity element,    
R

NSS  ,AU   is a 

subsemigroup of   . ,
R

NSS 
E

U

3    
E

NSS  ,
E

U is a monoid with  

as an identity element,    
E

NSS  ,AU   is a 

subsemigroup of   . ,
E

NSS 
E

U

4    
E

NSS  ,
E

U is a monoid with  

as an identity element,    
E

NSS  ,AU   is a 
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subsemigroup of   . ,
E

NSS 
E

U

5.2 Semirings: 

1   
RR

NSS   , ,
E

U   is a commutative, 

idempotent semiring with EU   as an identity 

element. 

2   
ER

NSS   , ,
E

U   is a commutative, 

idempotent semiring with     as an identity

element. 

3   
ER

NSS   , ,
E

U   is a commutative, 

idempotent semiring with     as an identity

element. 

4   
RR

NSS   , ,
E

U   is a commutative, 

idempotent semiring with  E   as an identity

element. 

5   
ER

NSS   , ,
E

U   is a commutative, 

idempotent semiring with     as an identity

element. 

6    
ER

NSS   , ,
E

U   is a commutative, 

idempotent semiring with     as an identity

element. 

7    
RE

NSS   , ,
E

U   is a commutative, 

idempotent semiring with  UE   as an identity

element. 

8    
RE

NSS   , ,
E

U   is a commutative, 

idempotent semiring with  E   as an identity

element.

5.3 Lattices: 

In this subsection we study what type of lattice 

structure is associated with the neutrosophic soft sets.

Remark 5.3.1: 

Let   .,,,,
EERR

   if the absorption 

law 

        AFBGAFAF  , , , , 

holds we write 1 otherwise  0 in the following table. 

setssoft  icneutrosophfor  law Absorption

0001

0010

0100

1000

R

R

E

E

RREE











1     
ER

NSS   , , , , E

E
U U   and 

  
ER

NSS   , , , , E

E
U U   are lattices with 

  
ER

NSS   , , , , AAAU U   and 

  
ER

NSS   , , , , AAAU U   as their 

sublattices respectively. 

2    
RE

NSS   , , , , E

E
U U   and 

  
ER

NSS   , , , , E

E
U U   are lattices with 

  
RE

NSS   , , , , AAAU U   and 

  
ER

NSS   , , , , AAAU U   as their 

sublattices respectively.

The above mentioned lattices and sublattices are 

bounded distributive lattices.

Proposition 5.3.2 : 

For the lattice of neutrosophic soft set 

  
ER

NSS   , , , , E

E
U U   for any 

H, A and      , ,
E

UBG NSS   then 

1   

 BGAH  , ,    if and only if

     . , , , AHBGAH 
R

2   

 BGAH  , ,    if and only if

H, A E G, B  G, B .

Proof:  Straightforward. 

Proposition 5.3.3: 

For the lattice of neutrosophic soft set 

  
RE

NSS   , , , , E

E
U U   for any 
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 AH  ,   and      , ,
E

UBG NSS   then 

1     BGAH  , ,    if and only if

     . , , , BGBGAH 
E

2     BGAH  , ,    if and only if

     . , , , AHBGAH 
R

Proof: Straightforward. 
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Abstract The purpose of this paper is to present single 
valued neutrosophic decision making model of school 
choice. Childhood is a crucial stage in terms of a child's 
physical, intellectual, emotional and social development 
i.e. all round development of a child. Mental and physical 
abilities of children grow at an increasing rate. Children 
particularly need high quality personal care and learning 
experiences. 

Children begin learning from the moment the child 
takes his/her birth and continues on throughout his/her life. 
Babies and toddlers need positive early learning 
experiences for their mental and physical development and 
this lays the foundation for later school success. So it is 
necessary to select the best school for the children among 

all the feasible alternatives by which all needs of the 
children are fulfilled. 

A large number of parents have an increasing array of 
options in choosing the best school for their children 
among all alternatives. Those options vary from place to 
place. In this paper, neutrosophic multi-attribute decision-
making with interval weight information is used to form a 
decision-making model for choosing the best school for 
the children. A numerical example is developed based on 
expert opinions from english medium schools of Nadia 
districts, West Bengal, India. The problem is solved to 
show the effectiveness of the proposed single valued 
neutrosophic decision making model. 

Keywords: Neutrosophic multi-attribute decision-making, Grey relational analysis, School choice. 

1 Introduction 

Decision-making is a challenging act of choosing 
between two or more possible alternatives. Decision 
makers have to make decision based on complete or 
incomplete information. That’s why new scientific 
strategies must be introduced for improvement the quality 
of decisions.  

Rational choice theory [1, 2, 3] suggests that parents 
are utility maximizer in decision making who make 
decisions from clear value preferences based on the costs, 
benefits, and probabilities of success of various options. 
The options [1, 2, 3] are namely, ability to fulfil the 
demand effectively from local schools and teachers, and 
pursuing the best interests of their children. 
Literature review for school choice [4, 5], however, 
reflects that the context of parental decision-making is 
more complex than the result of individual rational 
calculations of the economic return of their investment. 
Parental choice is a part of social process influenced by 
salient properties of social class and networks of social 
relationships [6-9]. Coleman [6], Bauch and Goldring [7], 
Bosetti [8], Reay and Lucey [9] explain that when an 
individual  comes in close contact with important decision 

making situation, a rational actor will engage in a search 
for information before making a decision. However, 
According to Ball [10], parents seem to use a mixture of 
rationalities involving an element of the fortuitous and 
haphazard.  
     For school choice, parents  generally depend on their 
personal values and judgment as well as others within their 
social and professional networks in order to collect 
required information. Parents prefer to choice private 
schools because they think their children will have better 
opportunities in private schools. To perform this optimally, 
parents need to have a clear understanding of school 
administration and the rules of the school admission 
process and engage in strategic school choice. In this 
challenging and demanding process, parents may make 
technical errors about the rules as well as in judgment in 
selecting and ordering the schools. Abdulkadiroglu and 
Sonmez [11] mentioned that the open enrollment school 
choice programs in Boston, Minneapolis, and Seattle ask 
parents to make complex school choice decisions, which 
can result in an inefficient allocation of school seats. In 
order to deal school choice problem, new model is urgently 
needed.  
     Most of the study on school choice is based on 
assumptions at the theoretical level with little practical 
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situation. Most of the research on school choice is done in 
crisp environment. Radhakrishnan and Kalaichelvi [12] 
studied school choice problem based on fuzzy analytic 
hierarchy process. However, in fuzzy environment degree 
of indeterminacy is not included. So neutrosophic set 
theoretic based approach may  be helpful to deal this type 
of problems.  Literature review indicates that no research 
on school choce is done in neutrosophic environment. 

Decision making is oriented in every sphere of human 
activities. However, human being realizes problems in 
making decision on many normal activities such as  
education for children, quality of food, transportation, 
purchasing, selection of partner, healthcare, selection of 
shelter, etc.  A small number of studies are done on 
edcational problems based on the concept of fuzzy set, 
neutrosophic set and grey system theory. Pramanik and 
Mukhopadhyaya [13] presented grey relational analysis 
based on intuitionistic fuzzy multi criteria group decision-
making approach for teacher selection in higher education. 
Mondal and Pramanik [14] presented multi-criteria group 
decision making approach for teacher recruitment in higher 
education under simplified neutrosophic environment. In 
this paper we present a methodological approach to choose 
the best elementary school for children among particular 
alternatives to their designated neighbourhood using 
neutrosophic multi-attribute decision-making with interval 
weight information based on grey relational analysis.  .  

A numerical example is developed based on expert 
opinions from english medium schools of Nadia districts, 
West Bengal, India . The problem is solved to demonstrate 
the effectiveness of the proposed neutrosophic decision 
making model. 

Rest of the paper is organized as follows: Section 2 
presents preliminaries of neutrosophic sets. Section 3 
describes single valued neutrosophic multiple attribute 
decision making problem based on GRA with interval 
weight information. Section 4 is devoted to propose 
neutrosophic decision making model of school choice. 
Finally, Section 5 presents concluding remarks.  

2 Neutrosophic preliminaries 
2.1 Definition on neutrosophic sets  

The concept of neutrosophic set is originated from 
neutrosophy, a new branch of philosophy. According to 
Smarandache [15] ‘‘Neutrosophy  studies the origin, nature, 
and scope of neutralities, as well as their interactions with 
different ideational spectra``.  

Definition1: Let ξ be a space of points (objects) with 
generic element in ξ denoted by x. Then a neutrosophic set 
α in ξ is characterized by a truth membership function Tα 
an indeterminacy membership function Iα and a falsity 
membership function Fα. The functions Tα and Fα are real 
standard or non-standard subsets of ] [1,0 +− that is Tα:

] [1,0 +−→ξ ; Iα: ] [1,0 +−→ξ ; Fα: ] [1,0 +−→ξ .

It should be noted that there is no restriction on the 
sum of ( )xTα , ( )xIα , ( )xFα  i.e.
 ( ) ( ) ( ) 30 +− ≤++≤ xFxIxT ααα

Definition2: The complement of a neutrosophic set α 
is denoted by α c  and is defined by  

( ) { } ( )xTxT c αα −= +1 ; ( ) { } ( )xIxI c αα −= +1
( ) { } ( )xFxF c αα −= +1

Definition3: (Containment) A neutrosophic set α is 
contained in the other neutrosophic set β, βα ⊆ if and 
only if the following result holds. 

( ) ( ),infinf xTxT βα ≤ ( ) ( )xTxT βα supsup ≤

( ) ( ),inf≥inf xIxI βα  ( ) ( )xIxI βα supsup ≥  
( ) ( ),infinf xFxF βα ≥ ( ) ( )xFxF βα supsup ≥   

for all x in ξ. 
Definition4: (Single-valued neutrosophic set). Let ξ 

be a universal space of points (objects) with a generic 
element of ξ denoted by x. 

A single-valued neutrosophic set S is characterized by 
a truth membership function ),(xT s an indeterminacy 
membership function ),(xI s and a falsity membership 
function )(xFs with )(xT s , )(xI s , )(xFs ∈ [0, 1] for all x in 
ξ . When ξ is continuous, a SNVS can be written as 
follows: 

( ) ( ) ( )∫ ∈∀=
x

sss xxxIxFxTS ξ,,,  
and when ξ  is discrete, a SVNSs S can be written as 
follows: 

( ) ( ) ( ) ξ∈∀∑= xxxIxFxTS SSS ,,,  
It should be noted that for a SVNS S, 

( ) ( ) ( ) ξ∈x∀,3≤xIsup+xFsup+xTsup≤0 SSS

    and for a neutrosophic set, the following relation holds: 
( ) ( ) ( ) ξ∈++ + xxIxFxT SSS ∀,3≤supsupsup≤0-

      Definition5: The complement of a neutrosophic set S 
is denoted by Sc  and is defined by 

( ) ( )xFxT S
c

S = ; ( ) ( )xIxI S
c

S −= 1 ; ( ) ( )xTxF S
c

S =  
Definition6: A SVNS Sα is contained in the other 

SVNS Sβ , denoted as Sα ⊆  Sβ iff, ( ) ( )xTxT SS βα ≤ ;

( ) ( )xIxI SS βα ≥ ; ( ) ( )xFxF SS βα ≥ , ξ∈∀x . 
Definition7: Two single valued neutrosophic sets Sα  

and Sβ are equal, i.e. Sα = Sβ , if and only if  Sα ⊆  Sβ and Sα 
⊇  Sβ 

Definition8: (Union) The union of two SVNSs Sα  and 
Sβ  is a SVNS γS , written as βαγ SSS ∪= . 

Its truth membership, indeterminacy-membership and 
falsity membership functions are related to those of αS and 

βS as follows: 
( ) ( )( )xTxTxT SSS βαγ ,max)( = ; 

( ) ( ) ( )( )xIxIxI SSS βαγ ,min= ; 
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( ) ( ) ( )( )xFxFxF SSS βαγ ,min=  for all x in ξ  
Definition 9: (intersection) The intersection of two 

SVNSs, Sα and Sβ is a SVNS δS , written as βαδ SSS ∩= . 
Its truth membership, indeterminacy-membership and 
falsity membership functions are related to those of Sα an 
Sβ  as follows: 

( ) ( ) ( )( ) ;,min xTxTxT SSS βαδ =

( ) ( ) ( )( ) ;,max xIxIxI SSS βαδ =  
( ) ( ) ( )( ) ξβαδ ∈∀= xxFxFxF SSS ,,max

3. Distance between two neutrosophic sets
The general SVNS can be written by the following 

form: 
( ) ( ) ( )( )( ){ }ξ∈= xxFxIxTxS SSS :,,  

Finite SVNSs can be represented by the ordered 
tetrads: 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( ) ξ∈∀

⎭
⎬
⎫

⎩
⎨
⎧

= x
xFxIxTx

xFxIxTxS
mSmSmSm

SSS ,
,,

,,,, 1111 L
(1)                                                                                                        

Definition 10:Let 
( ) ( ) ( )( )( )
( ) ( ) ( )( )( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
xFxIxTx

xFxIxTx
S

nSnSnSn

SSS

ααα

ααα
α ,,

,,,, 1111 L (2)                                                                                                         

( ) ( ) ( )( )( )
( ) ( ) ( )( )( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
xFxIxTx

xFxIxTx
S

nSnSnSn

SSS

βββ

βββ
β ,,

,,,, 1111 L

                          

(3)                                                                                                         

be two single-valued neutrosophic sets (SVNSs) in 
x={x1, x2, x3,…,xn} 

Then the Hamming distance between two SVNSs  
as  Sα and Sβ is defined as follows: 

( )
( ) ( )

( ) ( )

( ) ( )

∑

−

+−

+−

=
=

n

i

SS

SS

SS

S

xFxF

xIxI

xTxT

SSd
1

,

βα

βα

βα

βα

 

    (4)                                                                  

and normalized Hamming distance between two SNVS 
Sα and Sβ is defined as follows:  

( )
( ) ( )

( ) ( )

( ) ( )

∑

−

+−

+−

=
=

n

i

SS

SS

SS

N
S

xFxF

xIxI

xTxT

n
SSd

13
1,

βα

βα

βα

βα (5)                                                                                                        

with the following two properties 
( ) nSSd S 3,0.1 ≤≤ βα    (6)                                                                                   
( ) 1,0.2 ≤≤ βα SSdN

S (7)
                                                                                      

Definition11:    From the neutrosophic cube [16], it 
can be stated that the membership grade represents the 
estimates reliability. Ideal neutrosophic reliability solution 
INERS[17] 

qqqQ
nSSSS

++++ = ,,,
21
L is a solution in which every 

component is presented by FITq jjjjS
++++ = ,, where 

{ }TT ij
i

j max=+ , { }II ij
i

j min=+ and { }FF ij
i

j min=+  in the

neutrosophic decision matrix nmijijijS FITD ×= ,,  for i = 1, 
2, …, m,  j = 1, 2, …, n  Definition 12: In the neutrosophic cube [16] 
maximum un-reliability occurs when the indeterminacy 
membership grade and the degree of falsity membership 
reaches maximum simultaneously. Therefore, the ideal 
neutrosophic estimates un-reliability solution (INEURS) 
[17] 

qqqQ
nSSSS

−−−− = ,,,
21
L is a solution in which every 

component is represented by FITq jjjjS
−−−− = ,, where 

{ }TT ij
i

j min=− , { }II ij
i

j max=− and { }FF ij
i

j max=−  in the 

neutrosophic decision matrix nmijijijS FITD ×= ,,  for i = 1, 
2, …, m,  j = 1, 2, …, n   

3. Single valued neutrosophic multiple attrib-
ute decision-making problems based on GRA 
with interval weight information [17]   

A multi-criteria decision making problem with m al-
ternatives and n attributes is here considered. Let A1, A2 , ..., 
Am be a discrete set of alternatives, and C1, C2, ..., Cn be the 
set of criteria. The decision makers provide the ranking of 
alternatives. The ranking presents the performances of al-
ternatives Ai against the criteria Cj. The values associated 
with the alternatives for MADM problem can be presented 
in the following decision matrix (see Table 1).  
Table 1: Decision matrix 

mnmmm

n

n

n

nmij

A

A
A

CCC

D

δδδ

δδδ
δδδ

δ

...
.............
.............

...

...

21

222212

112111

21 L

== ×    (8)

 The weight jω  [0, 1] ( j = 1, 2, ..., n) represents the 
relative importance of criteria Cj ( j = 1, 2, ..., m) to the 
decision-making process such that 1=∑ ωn

1=j j . S is the set 
of partially known weight information that can be 
represented by the following forms due to Kim and 
Ahn[18] and Park [19].  

Form1. A weak ranking:  ωi  ≥  ωj  for i ≠ j; 
Form2.  A strict ranking:  ωi - ωj ≥ ψi , ψi > 0, for i ≠ j; 
Form3. A ranking of differences: ωi - ωj ≥ ωk -  ω1 , for 

j ≠ k≠ 1; 
Form4. A ranking with multiples: ωi ≥  σj ωj , σj ∈ [0, 

1], for i ≠  j;   
Form5. An interval form δi ≤ ωi ≤ δi +εi, 0 ≤ δi <δi +εi 

≤ 1  
The steps of single valued neutrosophic multiple at-

tribute decision-making based on GRA under SVNS due to 
Biswal et al.[20] can be presented as follows.  
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Step1. Construction of the decision matrix with 
SVNSs  

Consider the above mention multi attribte decision 
making problem(8). The general form of decision matrix as 
shown in Table1 can be presented after data pre-processing. 
Here, the ratings of alternatives Ai (i = 1, 2, … m ) with 
respect to attributes Cj (j = 1, 2,…n) are considered as 
SVNSs. The neutrosophic values associated with the 
alternatives for MADM problems can be represented in the 
following decision matrix (see Table 2): 

 Table2:Decision matrix with SVNS 

mnmnmnmmmmmmm

nnn

nnn

n

nmijijijS

FITFITFITA

FITFITFITA
FITFITFITA

CCC

FIT

,,...,,,,
.............
.............

,,...,,,,
,,...,,,,

...

,,

222111

2222222222121212

1111212121111111

21

== ×δ

 

(9)

 

In the matrix n×mijijijS F,I,T= d Tij Iij and Fij denote 
the degrees of truth membership, degree of indeterminacy 
and degree of falsity membership of the alternative Ai with  
respect to attribute Cj. These three components for SVNS 
satisfy the following properties:  

10,10,10.1 ≤≤≤≤≤≤ ijijij FIT (10)
30.2 ≤++≤ ijijij FIT (11)

Step2.  Determination of the ideal neutrosophic 
estimates reliability solution (INERS) and the ideal 
neutrosophic estimates un-reliability solution 
(INEURS). 

The ideal neutrosophic estimates reliability solution 
(INERS) and the ideal neutrosophic estimates un-reliability 
solution (INEURS)for single valued neutrosophic decision 
matrix can be determined from the defintion 11 and 12.  

Step3.  Calculation of  the neutrosophic grey 
relational coefficient. 

Grey relational coefficient of each alternative from 
INERS can be  defined as follows: 

ΔρΔ

ΔρΔ

++

++

+

+

+
=

ij
ji

ij

ij
ji

ij
ji

ijG
maxmax

maxmaxminmin
   (12) 

where ( )qqd
ijSjSij ,++ =Δ  , i = 1, 2,…,m. and   j = 1, 2,…,n.                                                                            

Grey relational coefficient of each alternative from 
INEURS can be defined as follows: 

 
ΔρΔ

ΔρΔ

−−

−−

−

+

+
=

ij
ji

ij

ij
ji

ij
ji

ijG
maxmax

maxmaxminmin
  (13) 

where ( )qqd
jSijSij

−− = ,Δ   , i = 1, 2,…,m. and j =1, 2,…, n.

ρ [0,1] is the distinguishing coefficient or the 
identification coefficient,. Smaller value of distinguishing 

coefficient reflects the large range of grey relational 
coefficient. Generally, ρ = 0.5 is set for decision-making 
situation. 

Step4. Determination of  the weights of the criteria 
The grey relational coefficient between INERS and 

itself is (1, 1, …, 1). Similarly, the grey relational 
coefficient between INEURS and itself is also (1, 1, …, 1). 
The corresponding deviations are presented as follows:  

( ) ( )wGwd j
n
j iji ∑ -11=

++ =
 (14) 

( ) ( )wGwd j
n
j iji ∑ -11

--
==

(15)    
A satisfactory weight vector W= (w1, w2,…, wn) is 

determined by making smaller all the distances
( ) ( )wGwd j

n
j iji ∑ -11=

++ =

   
and ( ) ( )wGwd j

n
j iji ∑ -11=

− =

 Using the max-min operator [21] to integrate all the 
distances 

( ) ( )wGwd j
n
j iji ∑ -11=

++ = for i = 1, 2, …, m and 

( ) ( )wGwd j
n
j iji ∑ -11=

− = for i = 1, 2, …, m, Biswas et al. [20] 
formulated the following programming model: 

( )⎪⎩

⎪
⎨
⎧

=
++

+

∑ ≤-1:

min
:1:

1
n
j ijij zwGtosubject

z
aModel  (16) 

 For i=1, 2, …, m 

( )⎪⎩

⎪
⎨
⎧

=
−∑ ≤-1:

min
:1 :

1
-

-

n
j ijij zwGtosubject

z
bModel  (17)    

 W S∈

Here ( )∑ -1max 1
n
j jiji

wGz =
++= and 

( )∑ -1max 1
- n

j jiji
wGz == for i =1, 2, …, m 

Solving these two models (Model-1a) and (Model-1b), 
the optimal solutions W+= ( w1

+, w2
+, …,   wn

+ ) and W- = 
( w1

-, w2
-, …,   wn

- ) can be obtained. Combination of these 
two optimal solutions provides the weight vector of the 
criterion i.e.       

W= tW++ (1-t)W- for  t  ]0, 1[ .                             (18)    
Step5. Calculation of the neutrosophic grey 

relational coefficient (NGRC) 
The degree of neutrosophic grey relational coefficient 

of each alternative from Indeterminacy Truthfullness 
Falsity Positive Ideal Solution (ITFPIS) and Indeterminacy 
Truthfullness Falsity Negative Ideal Solution (ITFNIS) are 
obtaoinrd using the following relationss: 

+
=

+= ij
n
j ji GwG ∑ 1

   (19) 
GwG ij

n
j ji

−
=

−=∑ 1  (20) 
Step6. Calculation of the neutrosophic relative 

relational degree (NRD)   
Neutrosophic relative relational degree of each 

alternative from ITFPIS can be obtained by employing the 
following equation: 
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−+

+

+
=

ii

i
i GG

G
R

 (21)                                                    
Step7. Ranking of the alternatives 

The highest value of neutrosophic relative relational degree 
Ri  reflects the most desired alternative. 

4. Single valued neutrosophic decision making model of
school choice 

Based on the field study, five major criteria for are 
identified by domain experts for developing a model for 
the selection of the best school by the parents for their 
children. The details are presented as follows.  

1) Facility of transportation (C1):
 
It includes the

cost of transportation facility availed by the child provided 
by school administration from child’s house to  the school. 

2) Cost (C2):
 
It includes reasonable admission fees

 

and other fees stipulated by the school administration. 
3) Staff and curriculums (C3): The degree of

capability of the school administration in providing good 
competent staff, teaching and coaching, and extra 
curricular activities. 

4) Healthy environmnet and medical facility(C4):
The degree of providing modern infrastructure, campus 
discipline, security, and medical facilities to the students 
by the school administration.. 

5) Administration(C5): The degree of capability of
administration in dealing with academic performance, staff 
and student welfare, reporting to parents. 

After the initial screening, three schools listed below 
were considered as alternatives and an attempt has been 
made to develop a model to select the best one based on 
the above mentioned criteria. 
A1: Ananda Niketan Nursery & KG School, Santipur 
A2:Krishnagar Academy English Medium Public        
School, Krishnagar        
A3: Sent Mary’s English School, Ranaghat 

We obtain the following single-valued neutrosophic 
decision matrix (see Table 3) based on the experts’ 
assessment:  
Table3: Decision matrix with SVNS  

2,.1,.9.3,.3,.8.3,.1,.7.2,.2,.7.3,.2,.8.
3,.3,.8.4,.3,.7.3,.2,.8.3,.2,.8.2,.2,.7.
3.,4.,7.4.,2.,7.3.,3.,8.3.,2.,7.2.,1.,8.

,,

3

2

1

54321

53

A
A
A

CCCCC

FIT ijijijS == ×δ

 

(22) 
Information of the attribute weights is partially known. 

The known weight information is given as follows: 

,2.0≤≤17.0,21.0≤≤13.0
,3.0≤≤19.0,25.0≤≤15.0,22.≤≤16.0

54

321

ww
www

15
1 =∑ =j jw

         and wj ≥ 0  for j = 1, 2, 3, 4, 5  
The problem is solved by the following steps: 
Step1: Determination of the ideal neutrosophic 

estimates reliability solution  
The ideal neutrosophic estimates reliability solution 

(INERS) from the given decision matrix (see Table 3)  can 
be obtained as follows: 

[ ]== ++++++ qqqqqQ SSSSSS 54321
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    (23) 
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⎡
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2.,1.,9.,3.,2.,8.

,3.,1.,8.,2.,2.,8.,2.,1.,8.

Step2. Determination of the ideal neutrosophic 
estimates un-reliability solution  

The ideal neutrosophic estimates un-reliability solution 
can be obtained as follows: 

[ ]== −−−−−− qqqqqQ SSSSSS 54321
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

3.,4.,7.,4.,3.,7.

,3.,3.,7.,3.,2.,7.,3.,2.,7.

Step3. Calculation of the neutrosophic grey 
relational coefficient of each alternative from INERS 
and INEURS  

Using equation (12), the neutrosophic grey relational 
coefficient of each alternative from INERS can be obtained 
as follows: 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=×
+

0000.16491.06491.06491.05692.0
4253.05211.06491.06491.05692.0
3333.05692.04805.05692.00000.1

53ijG

             

(25)

 and from equation (13), the neutrosophic grey 
relational coefficient of each alternative from INEUS is 
obtained as follows: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=×
−

3333.05692.04805.06411.06411.0
5692.00000.15692.06411.06411.0
0000.16411.06491.00000.15211.0

53ijG

               

(26)

Step4. Determination of the weights of attribute 
Case1. Using the model (Model-1a) and (Model-2b), 

the single objective LPP models is formulated as follows:  
Case1a: 

  Min z+

Subject to, 
0.4308w2+0.5195w3+0.4308w4+0.6667w5 ≤ z+; 
0.4308w1+0.3509w2+0.3509w3+0.4789w4+ 
0.5747w5 ≤ z+; 
0.4308w1+0.3509w2+0.3509w3+0.3509w4 ≤ z+; 
0.16≤w1 ≤0.22; 
0.15≤w2 ≤0.25; 
0.19≤w3 ≤0.30; 
0.13≤w4 ≤0.21; 
0.17≤w5≤0.20; 

  w1+ w2+ w3+ w4+ w5=1; 
wj ≥ 0, j= 1, 2, 3, 4, 5 

Case1b: 
 Min z-

Subject to, 
0.4789w1+0.3509w3+0.3589w4 ≤ z-; 
0.3509w1+0.3509w2+0.4308w3+0.4308w5 ≤ z-; 
0.3589w1+0.3509w2+0.5195w3+0.4308w4 + 
0.6667w5≤ z-; 

;2.17.0
;21.013.0

;3.019.0
;25.015.0

;22.16.0

5

4

3

2

1

≤≤
≤≤
≤≤
≤≤
≤≤

w
w
w
w
w

 w1+ w2+ w3+ w4+ w5=1; 
wj ≥ 0, j= 1, 2, 3, 4, 5 
After solving Case1a and Case1b separately, we obtain 

the solution set W+ = (0.1602, 0.15, 0.30, 0.21, 0.1798), W-  
= (0.16, 0.15, 0.30, 0.21, 0.18) Therefore,  the  obtained 
weight  vector  of  criteria  is W = (0.1601, 0.15, 0.30, 0.21, 
0.1799). 

Step5. Determination of the degree of neutrosophic 
grey relational co-efficient (NGRC) of each alternative 
from INERS and INEUS.  

The required neutrosophic grey relational co-efficient 
of each alternative from INERS is determined using 
equation (19). Tthe corresponding obtained weight vector 
W for Case-1 and Case-2 is presented in the Table 4. 
Similarly, the neutrosophic grey relational co-efficient of 
each alternative from INEURS is obtained with the help of 
equation (20) (see the Table 4). 

Step6. Calculation of the neutrosophic relative 
relational degree (NRD)   

Neutrosophic relative degree (NRD) of each alternative 
from INERS is obtained with the help of equation (21) (see 
the Table 4). 
 Table4: Ranking  of the alternatives 

Weight vector (0.1601, 0.15, 0.30, 0.21, 
0.1799)

 

NGRC from INERS (0.5691,  0.5692,  0.6994)
NGRC from INEURS (0.7427,  0.6820,  0.5224)
NRD from INERS (0.4338,  0.4549,  0.5724)
Ranking Result R3 >R2 > R1 
Selection R3 

Step7. Ranking of the alternatives 
From Table4, we  observe that R3 >R2 >R1 i.e. Sent 

Mary’s English School, Ranaghat (A3) is the best school 
for admission of children. 

Conclusion 

In this paper, we showed the application of  single 
valued neutrosophic decision making model on school 
choice based on hybridization of grey system theory and 
single valed neutrosophic set. Five criteria are used to 
modeling the school choice problem in neutrosophic 
environment which are realistic in nature. New criterion can 
be easily incorporated in the model for decision making if 
it is needed. Application of the single-valued neutrosophic 
multiple attribte decision-making in real life problems 
helps the people to take a correct decision from the 
available alternatives in grey and neutrosophic hybrid 
environment. The concept presented in this paper can also 
be easily extended when the weight information are 
incomplete.

Acknowledgements 

The authors would like to acknowledge the 
constructive comments and suggestions of the anonymous 
referees. 

67



Neutrosophic Sets and Systems, Vol. 7, 2015 

Kalyan Mondal, Surapati Pramanik, Neutrosophic Decision Making Model of School Choice 

References 
[1]  L. Bosetti. Determinants of school choice: understanding 

how parents choose elementary schools in Alberta, Journal 
of Education Policy, 19(4)(2004), 387-405. 

[2] C. Herfeld. The potentials and limitations of rational 
   choice theory: an interview with Gary Becker, Erasmus 

Journal for Philosophy and Economics, 5(1)(2012), 73-86. 
[3] J. Goldthorpe. Class analysis and the reorientation of class 

theory: the case of persisting differentials in educational 
attainment. British Journal of Sociology,47(3)(1996), 481–
505. 

[4] R. Hatcher. Class differentiation in education: rational 
choices?. British Journal of Education, 19(1)(1998), 5–24.  

[5] D. Reay, and S. Ball. Making their minds up: family 
dynamics of school choice. British Educational Research 
Journal, 24(4)(1998), 431–449.  

[6] J. S. Coleman. Social capital in the creation of human 
capital. American Journal of Sociology, 94(1988), 95–121. 

[7]  P.A. Bauch, E.B. Goldring. Parent involvement and school 
responsiveness: facilitating the home-school connection in 
schools of choice. Education Evaluation and Policy 
Analysis,17(1)(1995), 1–21.  

[8] L. Bosetti.  (2000) Alberta charter schools: paradox and 
promises. Alberta Journal of Educational Research, 
46(2)(2000), 179–190.  

[9] D. Reay, H. Lucey. (2000) Children, school choice and 
social differences. Educational Studies, 26(1)(2000), 83–
101.  

[10] S. Ball. Class strategies and the education market: the 
middle classes and social advantage, London, Routledge 
Falmer, (2003).  

[11] A. Abdulkadiroglu,  T. Sonmez. School choice: a 
mechanism design approach. The American Economic 
Review 93(3) (2003), 729-747. 

[12] R.Radhakrishnan, A. Kalaichelvi. Selection of  the best 
school for the children- A decision making model using 
extent analysis method on fuzzy analytic hierarchy process, 
International Journal of Innovative Research in Science, 
Engineering and Technology, 3(5)(2014),12334-12344. 

[13] S. Pramanik, D. Mukhopadhyaya. Grey relational analysis 
based intuitionistic fuzzy multi criteria group decision-
making approach for teacher selection in higher education. 
International Journal of Computer Applications, 34(10) 
(2011), 21-29. 

[14] K. Mondal, S. Pramanik.  Multi-criteria group decision 
making approach for teacher recruitment in higher 
education under simplified neutrosophic environment, 
Neutrosophic Sets and Systems, 6(2014), 28-34. 

[15] F. Smarandache. A unifying field in logics. neutrosophy: 
neutrosophic probability, set and logic. Rehoboth: American 
Research Press (1999).  

[16] J. Dezert. Open questions in neutrosophic inferences, 
Multiple-Valued Logic: An International Journal, 8(2002), 
439-472. 

[17] P. Biswas, S. Pramanik, and B. C. Giri. Entropy based grey 
relational analysis method  for multi-attribute 
decisionmaking under single valued neutrosophic 
assessments. Neutrosophic Sets and Systems, 2 (2014), 102-
110.  

[18] S.H. Kim, B.S. Ahn. Interactive group decision-making 
procedure under incomplete information, European Journal 
of Operational Research, 116 (1999), 498-507.  

[19] K.S. Park. Mathematical programming models for 
charactering dominance and  potential optimality when 
multicriteria alternative  values and weights are 
simultaneously incomplete, IEEE transactions on systems, 
man, and cybernetics-part A, Systems and Humans, 34 
(2004) 601-614. 

[20] P. Biswas, S. Pramanik, B. C. Giri. A  new   methodology 
for neutrosophic multiple attribute decision making with 
unknown weight information. Neutrosophic Sets and 
Systems, 3(2014), 42-50.  

[21] H.J. Zimmermannn, and P Zysco. Latent connectives in 
human decision-making. Fuzzy Sets and Systems,  4(1980), 
37-51. 

Received: November 26, 2014.   Accepted: January 2, 2015. 

68



Neutrosophic Sets and Systems, Vol. 7, 2015

 Said Broumi and Flornetin Smarandache, Soft  Interval –Valued Neutrosophic Rough Sets 

Soft  Interval –Valued Neutrosophic Rough Sets 

Said Broumi1 and Flornetin Smarandache2 
1 Faculty of Lettres and Humanities, Hay El Baraka Ben M'sik Casablanca B.P. 7951, University of Hassan II -

Casablanca, Morocco. E-mail: broumisaid78@gmail.com 

2Department of Mathematics, University of New Mexico,705 Gurley Avenue, Gallup, NM 87301, USA. E-mail: 
fsmarandache@gmail.com 

Abstract: In this paper, we first defined soft interval- 

valued neutrosophic rough sets(SIVN- rough sets for 

short)  which combines interval valued neutrosophic 

soft set and rough sets and studied some of its basic 

properties. This concept is an extension of soft interval 

valued intuitionistic fuzzy rough sets( SIVIF- rough 

sets). Finally an illustartive example is given to verfy 

the developped algorithm and to demonstrate its 

practicality and effectiveness. 

Keywords: Interval valued neutrosophic soft sets, rough set, soft Interval valued neutrosophic  rough sets 

1. Introduction
In 1999,  Florentin Smarandache introduced the concept of 

neutrosophic set (NS) [13]  which is a mathematical tool 

for handling problems involving imprecise, indeterminacy 

and inconsistent data. The concept of neutrosophic  set is 

the generalization of the classical sets, conventional fuzzy 

set [27], intuitionistic fuzzy set [24] and interval valued 

fuzzy set [45] and so on. A neutrosophic  sets is defined on 

universe U. x= x(T, I, F) ∈ A with T, I and F being the real 

standard or non –standard subset of  ] 0−,1+[ , T is the 

degree of truth membership of A, I is the degree of 

indeterminacy membership of A and F is the degree of 

falsity membership of A. In the neutrosophic set, 

indeterminacy is quantified explicitly and truth-

membership, indeterminacy membership and false –

membership are independent. 

Recently, works on the neutrosophic set theory is 

progressing rapidly. M. Bhowmik and M. Pal [28, 29] 

defined the concept “intuitionistic neutrosophic set”. Later 

on A. A. Salam and S. A.Alblowi [1] introduced another 

concept called “generalized neutrosophic set”. Wang et al 

[18] proposed another extension of neutrosophic set called 

”single valued neutrosophic sets”. Also,  H.Wang et al. 

[17] introduced the notion of interval valued neutrosophic 

sets  (IVNSs) which is an instance of neutrosophic set. The 

IVNSs is characterized by an interval membership 

degree,interval indeterminacy degree and interval non-

membership degree. K.Geogiev [25] explored some 

properties of the neutrosophic logic and proposed a general 

simplification of the neutrosophic sets into a subclass of 

theirs, comprising of elements of 𝑅3. Ye [20, 21] defined 

similarity measures between interval neutrosophic sets and 

their multicriteria decision-making method.  P. Majumdar 

and S.K. Samant [34] proposed some types of  similarity 

and entropy of neutrosophic sets. S.Broumi and F. 

Smarandache [38,39,40]  proposed several similarity 

measures of neutrosophic sets. P. Chi and L. Peid [33] 

extended TOPSIS to interval neutrosophic sets. 

In 1999,  Molodtsov [8 ]initiated the concept of soft set 

theory as  proposed  a  new mathematical for dealing with 

uncertainties. In soft set theory, the problem of setting the 

membership function does not arise, which makes the 

theory easily applied to many different fields including 

game theory, operations research, Riemmann integration, 

Perron integration. Recently, I. Deli [10] combined the 

concept of soft set and interval valued neutrosophic sets 

together by introducing anew concept called “ interval 

valued neutrosophic soft sets”  and gave an application of 

interval valued neutrosophic soft sets in decision making. 

This concept generalizes the concept of the soft sets, fuzzy 

soft sets [35], intuitionistic fuzzy soft sets [36], interval 

valued intuitionistic fuzzy soft sets [22], the concept of 

neutrosophic soft sets [37] and intuitionistic neutrosophic 

soft sets [41].  

The concept of  rough  set  was originally proposed    by  

Pawlak  [50]  as a formal tool for modeling and processing 

incomplete information in information systems. Rough set 

theory has been conceived as a tool to conceptualize, 

organize and analyze various types of data, in particular, to 

deal with inexact, uncertain or vague knowledge in 

applications related to artificial intelligence technique. 

Therefore, many models have been built upon different 

aspect, i.e, universe, relations, object, operators by many 
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scholars [6, 9, 23, 48, 49, 51] such as rough fuzzy sets, 

fuzzy rough sets, generalized fuzzy rough, rough 

intuitionistic fuzzy set, intuitionistic fuzzy rough sets [26]. 

The rough sets has been successfully applied in many 

fields such as attribute reduction [19, 30, 31, 46], feature 

selection [11, 18, 44], rule extraction [5, 7, 12, 47] and so 

on. The  rough sets theory approximates any subset of 

objects of the universe by two sets, called the lower and 

upper approximations. The lower approximation of a given 

set is the union of all the equivalence classes which are 

subsets of the set, and the upper approximation is the union 

of all the equivalence classes which have a non empty 

intersection with the set. 

Moreover, many new rough set models have also been 

established by combining the Pawlak rough set with other 

uncertainty theories such as soft set theory. Feng et al [14] 

provided a framework to combine fuzzy sets, rough sets, 

and soft sets all together, which gives rise to several 

interesting new concepts such as rough soft sets, soft rough 

sets, and soft rough fuzzy sets. The combination  of hybrid 

structures of soft sets and rough sets models was also 

discussed by some researchers [15,32,43]. Later on, J. 

Zhang, L. Shu, and S. Liao [22] proposed the notions of 

soft rough intuitionistic fuzzy sets and intuitionistic fuzzy 

soft rough sets, which can be seen as two new generalized 

soft rough set models, and investigated some properties of 

soft rough intuitionistic fuzzy sets and intuitionistic fuzzy 

soft rough sets in detail. A.Mukherjee and A. Saha [3] 

proposed the concept of interval valued intuitionistic fuzzy 

soft rough sets. Also A. Saha and A. Mukherjee [4] 

introduced the concept of Soft interval valued intuitionistic 

fuzzy rough sets. 

More recently, S.Broumi et al. [42] combined neutrosophic 

sets with rough sets in a new hybrid mathematical structure 

called “rough neutrosophic sets” handling incomplete and 

indeterminate information . The concept of rough 

neutrosophic sets generalizes rough fuzzy sets and rough 

intuitionistic fuzzy sets. Based on the equivalence relation 

on the universe of discourse, A. Mukherjee et al. [3] 

introduced soft lower and upper approximation of interval 

valued intuitionistic fuzzy set in Pawlak’s approximation 

space.  Motivated by the idea of soft interval valued 

intuitionistic fuzzy rough sets introduced in [4], we extend 

the  soft interval intuitionistic fuzzy rough to the case of an 

interval valued neutrosophic set. The concept of soft 

interval valued neutrosophic rough set is introduced by  

coupling both the  interval valued  neutrosophic soft sets 

and rough sets. 

The paper is structured as follows. In Section 2, we first 

recall the necessary background on soft sets, interval 

neutrosophic sets, interval neutrosophic soft sets,  rough 

set,  rough neutrosophic sets and soft interval valued 

intuitionistic fuzzy rough sets. Section 3 presents the 

concept of soft interval neutrosophic rough sets and 

examines their respective properties. Section 4 presents a 

multiciteria group decision making scheme under soft 

interval –valued neutrosophic rough sets. Section 5 

presents an application of multiciteria group decision 

making scheme regarding the candidate selection problem . 

Finally we concludes the paper. 

2. Preliminaries

Throughout this paper, let U be a universal set and E be the 

set of all possible parameters under consideration with 

respect to U, usually, parameters are attributes, 

characteristics, or properties of objects in U. We now recall 

some basic notions of soft sets, interval neutrosophic 

setsinterval neutrosophic soft set,  rough set,  rough 

neutrosophic sets and soft interval valued intuitionistic 

fuzzy rough sets.  For more details the reader may refer to 

[4, 8, 10, 13, 17, 50, 42].  

Definition 2.1 [13 ] : Let U be an universe of discourse 

then the neutrosophic set A is an object having the form  A 

= {< x:  μA(x), νA(x), ωA(x)>,x ∈ U}, where the

functions  𝛍𝐀(𝐱), 𝛎𝐀(𝐱), 𝛚𝐀(𝐱) : U→]−0,1+[ define

respectively the degree of membership , the degree of 

indeterminacy, and the degree of non-membership of the 

element x ∈ X to the set A with the condition.  
−0 ≤𝑠𝑢𝑝 μA(x)+ supνA(x)+ 𝑠𝑢𝑝ωA(x)) ≤ 3+.  (1)

From philosophical point of view, the neutrosophic set 

takes the value from real standard or non-standard subsets 

of ]−0,1+[. So instead of ]−0,1+[ we need to take the interval 

[0,1] for technical applications, because ]−0,1+[ will be 

difficult to apply in the real applications  such as in 

scientific and engineering problems. 

Definition 2.3 [13] 

Let X be a space of points (objects) with generic elements 

in X denoted by x. An interval valued neutrosophic set (for 

short IVNS) A in X is characterized by truth-membership 

function μA(x), indeterminacy-membership function νA(x)

and falsity-membership function ωA(x). For each point x

in X, we have that μA(x), νA(x), ωA(x) ∈ int([0 ,1]).

For two IVNS, 𝐴IVNS= {<x , [μA
L (x), μA

U(x)] ,

[νA
L (x), νA

U(x)] , [ωA
L (x), ωA

U(x)]  > | x ∈ X }   (2)

And 𝐵IVNS= {<x , [μB
L (x), μB

U(x)] ,

[νB
L (x), νB

U(x)] , [ωB
L (x), ωB

U(x)]> | x ∈ X } the two relations

are defined as follows: 

(1)𝐴IVNS ⊆  𝐵IVNSif and only if μA
L (x) ≤ μB

L (x), μA
U(x) ≤

μB
U(x) , νA

L (x) ≥ νB
L (x), ωA

U(x) ≥ ωB
U(x) , ωA

L (x) ≥ ωB
L (x)

,ωA
U(x) ≥ ωB

U(x).
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(2)𝐴IVNS =  𝐵IVNS  if and only if , μA(x) =μB(x) ,νA(x)
=νB(x) ,ωA(x) =ωB(x) for any x ∈ X

The complement of 𝐴IVNS is denoted by 𝐴𝐼𝑉𝑁𝑆
𝑜  and is

defined by 

𝐴𝐼𝑉𝑁𝑆
𝑜 ={ <x , [ωA

L (x), ωA
U(x)],  [1 − νA

U(x), 1 − νA
𝐿 (x)] ,

[μA
L (x), μA

U(x)] | x ∈ X }

A∩B ={ <x , [min(μA
L (x),μ𝐵

L (x)), min(μA
U(x),μ𝐵

U(x))],

[max(νA
L (x),ν𝐵

L (x)),

max(νA
U(x),ν𝐵

U(x)],  [max(ωA
L (x),ω𝐵

L (x)),

max(ωA
U(x),ω𝐵

U(x))] >: x ∈ X }

A∪B ={ <x , [max(μA
L (x),μ𝐵

L (x)), max(μA
U(x),μ𝐵

U(x))],

[min(νA
L (x),ν𝐵

L (x)),min(νA
U(x),ν𝐵

U(x)], [min(ωA
L (x),ω𝐵

L (x)),

min(ωA
U(x),ω𝐵

U(x))] >: x ∈ X }

As an illustration, let us consider the following example. 

Example 2.4.Assume that the universe of discourse U={x1, 

x2, x3}, where x1 characterizes the capability, x2 

characterizes the trustworthiness and x3 indicates the prices 

of the objects. It may be further assumed that the values of 

x1, x2 and x3 are in [0, 1] and they are obtained from some 

questionnaires of some experts. The experts may impose 

their opinion in three components viz. the degree of 

goodness, the degree of indeterminacy and that of poorness 

to explain the characteristics of the objects. Suppose A is 

an interval valued neutrosophic set (IVNS) of U, such that, 

A = {< x1,[0.3 0.4],[0.5 0.6],[0.4 0.5] >,< x2, ,[0.1 

0.2],[0.3 0.4],[0.6 0.7]>,< x3, [0.2 0.4],[0.4 0.5],[0.4 

0.6] >}, where the degree of goodness of capability is 

[0.3, 0.4], degree of indeterminacy of capability is[0.5, 0.6] 

and degree of falsity of capability is [0.4, 0.5] etc. 

Definition 2.5 . [8]  

Let U be an initial universe set and E be a set of 

parameters. Let P(U) denote the power set of U. Consider a 

nonempty set A, A ⊂ E. A pair (K, A) is called a soft set 

over U, where K is a mapping given by K : A → P(U).  

As an illustration, let us consider the following example. 

Example 2.6 .Suppose that U is the set of houses under 

consideration, say U = {h1, h2, . . ., h5}. Let E be the set of 

some attributes of such houses, say E = {e1, e2, . . ., e8}, 

where e1, e2, . . ., e8 stand for the attributes “beautiful”, 

“costly”, “in the green surroundings’”, “moderate”, 

respectively.  

In this case, to define a soft set means to point out 

expensive houses, beautiful houses, and so on. For 

example, the soft set (K, A) that describes the 

“attractiveness of the houses” in the opinion of a buyer, say 

Thomas, may be defined like this:  

A={e1,e2,e3,e4,e5};  

K(e1) = {h2, h3, h5}, K(e2) = {h2, h4}, K(e3) = {h1}, K(e4) = 

U, K(e5) = {h3, h5}.  

Definition 2.7. [10] 

Let U be an initial universe set and A ⊂ E be a set of 

parameters. Let IVNS (U) denote the set of all interval 

valued neutrosophic subsets of U. The collection (K, A) is 

termed to be the soft interval neutrosophic set over U, 

where F is a mapping given by K: A → IVNS(U).  

The interval valued neutrosophic soft set defined over an 

universe   is denoted by IVNSS. 

Here, 

1. Υ is an ivn-soft subset of Ψ, denoted by Υ ⋐ Ψ, if

K(e) ⊆L(e) for all e∈E.

2. Υ is an ivn-soft equals to Ψ, denoted by Υ = Ψ, if

K(e)=L(e) for all e∈E.

3. The complement of Υ is denoted by Υ𝑐 , and is

defined by Υ𝑐 = {(x, 𝐾𝑜 (x)): x∈E}

4. The union of Υ and Ψ is denoted by Υ ∪" Ψ, if

K(e) ∪L(e) for all e∈E.

5. The intersection of Υand Ψ is denoted by

Υ ∩" Ψ,if K(e) ∪ L(e) for all e∈E.

Example 2.8 : 

Let U be the set of houses under consideration and E is the 

set of parameters (or qualities). Each parameter is an 

interval neutrosophic word or sentence involving interval 

neutrosophic words. Consider E = { beautiful, costly, 

moderate, expensive }. In this case, to define an interval 

neutrosophic soft set means to point out beautiful houses, 

costly houses, and so on. Suppose that, there are four 

houses in the universe U given by, U = {h1,h2,h3,h4 } and 

the set of parameters A = {e1,e2,e3}, where each  ei  is a 

specific criterion for houses: 

e1 stands for ‘beautiful’, 

e2 stands for ‘costly’, 

e3 stands for ‘moderate’, 

Suppose that, 

K(beautiful)={< h1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,< 

h2,[0.4, 0.5], [0.7 ,0.8], [0.2, 0.3] >, < h3,[0.6, 0.7],[0.2 

,0.3],[0.3, 0.5] >,< h4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >} 

.K(costly)={< h1,[0.3, 0.6], [0.2 0.7], [0.1, 0.4]>,< h2,[0.3, 
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0.5], [0.6 ,0.8], [0.2, 0.6] >, < h3,[0.3, 0.7],[0.1 ,0.3],[0.3, 

0.6] >,< h4,[0.6 ,0.8],[0.2, 0.4],[0.2, 0.5 >} 

K(moderate)={< h1,[0.5, 0.8], [0.4, 0.7], [0.3, 0.6]>,< 

h2,[0.3, 0.5], [0.7 ,0.9], [0.2, 0.4] >, < h3,[0.1, 0.7],[0.3 

,0.3],[0.3, 0.6] >,< h4,[0.3,0.8],[0.2, 0.4],[0.3, 0.6] >}. 

Defintion.2.9 [50] 
Let R be an  equivalence relation on the universal set U. 

Then the pair (U, R) is called a Pawlak approximation 

space. An equivalence class of R containing x will be 

denoted by [𝑥]𝑅. Now for X ⊆ U, the lower and upper

approximation of X with respect to (U, R) are denoted by 

respectively R∗X and 𝑹∗X and are defined by

R∗X={x ∈ U: [𝑥]𝑅 ⊆ X},

𝑅∗X={ x ∈ U: [𝑥]𝑅 ∩ 𝑋 ≠  ∅}.

Now if R∗X = 𝑅∗ X, then X is called definable; otherwise

X is called a rough set. 

Definition 2.10 [42] 
Let U be a non-null set and R be an equivalence relation on 

U. Let F be neutrosophic set in U with the membership 

function µ
F
, indeterminacy function νF and non-

membership function ωF. Then, the lower and  upper rough 

approximations of F in (U, R) are denoted by R (F) and 

R(F) and respectively defined as follows: 

R(F) ={ <x, µ
𝑅(F) 

(x) , ν𝑅(F) (x) , ω𝑅(F) (x)> |  x∈ U},

𝑅(F) ={ <x, µ
𝑅(F)  

(x) , ν𝑅(F)  (x) , ω𝑅(F)  (x)> |  x∈ U},

Where: 

µ
𝑅(F) 

(x)  =⋁ µ
𝐹

(𝑦)𝑦 ∈[x]𝑅 , ν𝑅(F) (x)=⋀ ν𝐹(𝑦)𝑦 ∈[x]𝑅
, 

ω𝑅(F) =⋀ ω𝐹(𝑦)𝑦 ∈[x]𝑅
,

µ
𝑅(F)  

(x)=⋀ µ
𝐹

(𝑦)𝑦 ∈[x]𝑅 , ν𝑅(F)  (x)=⋁ ν𝐹(𝑦)𝑦 ∈[x]𝑅

, ω𝑅(F)  =⋁ ω𝐹(𝑦)𝑦 ∈[x]𝑅
,

It is easy to observe that  𝑅(F) and 𝑅(F) are two 

neutrosophic sets in U, thus NS mapping 

𝑅 , 𝑅 :R(U) → R(U) are, respectively, referred to as the 

upper and lower rough NS approximation operators, and 

the pair (𝑅(F), 𝑅(F)) is called the rough neutrosophic set. 

Definition 2.11[4] . Let  us consider an interval-valued 

intuitionstic fuzzy set  𝜎 defined by 

𝜎 = {x,  μ𝜎(x),  ν𝜎(x): x ∈ U} where  μ𝜎(x),  ν𝜎(x), ∈ int

([0, 1]) for each x ∈ U and 

0 ≤ μ𝜎(x)+ ν𝜎(x)  ≤ 1

Now Let Θ=(f,A) be an  interval-valued intuitionstic fuzzy 

soft set over U and the pair  SIVIF= (U, Θ) be the soft 

interval-valued intuitionistic fuzzy approximation space.  

Let f:A→  IVIFSU   be defined  f(a) ={ x,  μf(a)(x),

 νf(a)(x) : x ∈ U } for each a ∈ A. Then , the lower  and

upper soft interval-valued intuitionistic fuzzy rough 

approximations of σ with respect to SIVIF are  denoted by 

↓ AprSIVIF(𝜎) and ↑ AprSIVIF(𝜎) respectively, which are

interval valued intuitionistic fuzzy sets in U given by:  

↓ AprSIVIF(𝜎) ={<  x,

[ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎(x)),  ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧

sup μ𝜎(x)],  [ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎(x)),

 ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎(x)]>: x ∈ U }

↑ AprSIVIF(𝜎) ={<  x, [ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∨ inf μ𝜎(x)) ,

 ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∨ sup μ𝜎(x)],  [ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∧

inf ν𝜎(x)) ,   ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∧ sup ν𝜎(x)] >: x ∈ U}

The  operators ↓ AprSIVIF(𝜎) and  ↑ AprSIVIF(𝜎) are called

the lower and upper soft interval-valued intuitionistic fuzzy 

rough approximation operators on interval valued 

intuitionistic fuzzy sets. If ↓ AprSIVIF(𝜎)  = ↑ AprSIVIF(𝜎),

then 𝜎 is said to be soft interval  valued intuitionistic fuzzy 

definable; otherwise   is called a soft interval valued 

intuitionistic fuzzy rough set. 

 Example 3.3 . Let U={x, y) and A={a, b}. Let (f, A) be 

an interval –valued intuitionstic fuzzy soft set over U 

where f:A→  IVIFSU    be defined 

f(a)= { <𝑥,[0.2, 0. 5], [0.3, 0.4]>, <𝑦, [0.6, 0.7],[0.1, 0.2] 

>} 

f(b)= { <𝑥,[0.1, 0. 3], [0.4, 0.5>, <𝑦, [0.5, 0.8],[0.1, 0.2] >} 

Let 𝜎 = { <𝑥,[0.3, 0.4], [0.3, 0.4]>, <𝑦, [0.2, 0.4],[0.4, 0.5] 

>}. Then 

↓ AprSIVIF(𝜎)= { <𝑥,[0.1, 0.3],[0.3, 0.4] >, <𝑦,[0.2,

0.4],[0.4, 0.5]>} 

↑ AprSIVIF(𝜎) = { <𝑥,[0.3, 0.4],[0.3, 0.4] >, <𝑦,[0.5,

0.7],[0.1, 0.2]>}. Then 𝜎 is a soft interval-valued 

intuitionstic fuzzy rough set. 

3. Soft Interval Neutrosophic Rough Set.
A. Saha and A. Mukherjee [4] used the interval valued 

intuitioinstic fuzzy soft set to granulate the universe of 

discourse and obtained a mathematical model called soft 

interval –valued intuitionistic fuzzy rough set. Because the 

soft interval –valued intuitionistic fuzzy rough set cannot 

deal with indeterminate and inconsistent data, in this 

section, we attempt to develop an new concept called soft 

interval –valued neutrosophic rough sets. 

Definition 3.1. Let  us consider an interval-valued 

neutrosophic set  𝜎 defined by 

𝜎 = {x,  μ𝜎(x),  ν𝜎(x), ω𝜎(x) : x ∈ U} where  μ𝜎(x),

 ν𝜎(x), ω𝜎(x) ∈ int ([0, 1]) for each x ∈ U and

0 ≤ μ𝜎(x)+ ν𝜎(x) + ω𝜎(x) ≤ 3

Now Let Θ=(f,A) be an  interval-valued neutrosophic soft 

set over U and the pair  SIVN= (U, Θ) be the soft interval-

valued neutrosophic approximation space.  

Let f:A→  𝐼𝑉𝑁𝑆𝑈   be defined  f(a) ={ x,  μ𝑓(𝑎)(x),

 ν𝑓(𝑎)(x), ω𝑓(𝑎)(x) : x ∈ U } for each a ∈ A. Then , the

lower  and upper soft interval-valued neutrosophic rough 
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approximations of 𝜎 with respect to SIVN are  denoted by 

↓ AprSIVN(𝜎) and ↑ AprSIVN(𝜎) respectively, which are

interval valued neutrosophic sets in U given by:  

↓ AprSIVN(𝜎) ={<x,

[ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎(x)),  ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧

sup μ𝜎(x)],  [ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎(x)),

 ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎(x)], [ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨

inf ω𝜎(x)) ,   ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜎(x)]>: x ∈ U }

↑ AprSIVN(𝜎) ={<  x, [ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∨ inf μ𝜎(x)) ,

 ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∨ sup μ𝜎(x)],  [ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∧

inf ν𝜎(x)) ,   ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∧ sup ν𝜎(x)],

[ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∧ inf ω𝜎(x)) ,   ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∧

sup ω𝜎(x)]>: x ∈ U}

The  operators ↓ AprSIVN(𝜎) and  ↑ AprSIVN(𝜎) are called

the lower and upper soft interval-valued neutrosophic 

rough approximation operators on interval valued 

neutrosophic sets. If ↓ AprSIVN(𝜎)  = ↑ AprSIVN(𝜎), then 𝜎
is said to be soft interval  valued neutrosophic definable; 

otherwise   is called a soft interval valued neutrosophic 

rough set. 

Remark 3.2: it is to be noted that if μ𝜎(x),  ν𝜎(x),

ω𝜎(x) ∈ int ([0, 1]) and 0 ≤ μ𝜎(x)+ ν𝜎(x) + ω𝜎(x) ≤ 1,

then soft interval valued neutrosophic rough sets becomes 

soft interval valued intuitionistic fuzzy  rough sets. 

 Example 3.3 . Let U={x, y) and A={a, b}. Let (f, A) be an 

interval –valued neutrosophic soft se over U where f:A→  

𝐼𝑉𝑁𝑆𝑈    be defined 

f(a)= {<𝑥,[0.2, 0. 5],[0.3, 0.4],[0.4, 0.5]>,<𝑦,[0.6, 0.7],[0.1, 

0.2],[0.3 0.4]>} 

f(b)={<𝑥,[0.1, 0. 3],[0.4, 0.5],[0.1, 0.2]>, <𝑦,[0.5, 0.8],[0.1, 

0.2],[0.1 0.2]>} 

Let 𝜎 ={<𝑥,[0.3, 0.4],[0.3, 0.4],[0.1, 0.2]>, <𝑦,[0.2, 

0.4],[0.4, 0.5],[0.2 0.3]>}. Then 

↓ AprSIVN(𝜎)= { <𝑥,[0.1, 0.3],[0.3, 0.4],[0.1, 0.2]>,

<𝑦,[0.2, 0.4],[0.4, 0.5],[0.2, 0.3]>} 

↑ AprSIVN(𝜎) = { <𝑥,[0.3, 0.4],[0.3, 0.4],[0.1, 0.2]>,

<𝑦,[0.5, 0.7],[0.1, 0.2],[0.1, 0.2]>}. Then 𝜎 is a soft 

interval-valued neutrosophic rough set. 

Theorem 3.4 
Let Θ=(f,A) be an  interval-valued neutrosophic soft set 

over U and SIVN= (U, Θ) be the soft interval-valued 

neutrosophic approximation space. Then  for  𝜎, 𝜆 ∈ 

IVNSU , we have 

1) ↓ AprSIVN(∅) =  ∅ = ↑ AprSIVN(∅)

2) ↓ AprSIVN(𝑈) =  𝑈 = ↑ AprSIVN(𝑈)

3) 𝜎 ⊆  𝜆  ⟹↓ AprSIVN(𝜎) ⊆ ↓ AprSIVN(𝜆)

4) 𝜎 ⊆  𝜆  ⟹↑ AprSIVN(𝜎) ⊆↑ AprSIVN(𝜆)

5) ↓ AprSIVN(𝜎 ∩  𝜆) ⊆ ↓ AprSIVN(𝜎) ∩ ↓
AprSIVN(𝜆).

6) ↑ AprSIVN(𝜎 ∩  𝜆) ⊆↑ AprSIVN(𝜎) ∩↑ AprSIVN(𝜆).

7) ↓ AprSIVN(𝜎) ∪ ↓ AprSIVN(𝜆) ⊆ ↓ AprSIVN ( 𝜎 ∪
𝜆).

8) ↑ AprSIVN(𝜎) ∪ ↑ AprSIVN(𝜆) ⊆ ↑ AprSIVN(𝜎 ∪
𝜆)

Proof .(1)-(4) are straight forward. 

(5) We have 

𝜎={<x,[ inf μ𝜎(x), sup μ𝜎(x)], [ inf ν𝜎(x), sup ν𝜎(x)], [ inf ω𝜎(x), sup ω𝜎(x)]>:x∈  U},

𝜆 ={<x,[ inf μ𝜆(x), sup μ𝜆(x)], [ inf ν𝜆(x), sup ν𝜆(x)], [ inf ω𝜆(x), sup ω𝜆(x)]>:x∈  U}

and  

𝜎 ∩  𝜆= {<x,[ inf μ𝜎 ∩ 𝜆(x), sup μ𝜎 ∩ 𝜆(x)], [ inf ν𝜎 ∩ 𝜆(x), sup ν𝜎 ∩ 𝜆(x)], [ inf ω𝜎 ∩ 𝜆(x), sup ω𝜎 ∩ 𝜆(x)]>:x∈  U},

Now 

↓ AprSIVN(𝜎 ∩  𝜆)={<  x, [ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 ∩ 𝜆(x)) ,   ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ sup μ𝜎 ∩ 𝜆(x)],

[ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 ∩ 𝜆(x)) ,   ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎 ∩ 𝜆(x)], [ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 ∩ 𝜆(x)) ,

  ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜎 ∩ 𝜆(x)]>: x ∈ U }

={<  x, [ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ min(inf μ𝜎 (x) , inf μ 𝜆(x)) ,   ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ min(sup μ𝜎 (x) , sup μ 𝜆(x))],

[ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ max(inf ν𝜎 (x) , inf ν 𝜆(x))) ,   ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ max(sup ν𝜎 (x) , sup ν 𝜆(x))],

[ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ max(inf ω𝜎 (x) , inf ω 𝜆(x))) ,   ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ max(sup ω𝜎 (x) , sup ω 𝜆(x)]>: x ∈ U }

Now ↓ AprSIVN(𝜎) ∩ ↓ AprSIVN(𝜆).

= {<  x, [ min ( ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 (x)) , ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜆 (x)) ), min ( ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧

sup μ𝜎 (x)) , ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ sup μ𝜆 (x)) )] ,[ max ( ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 (x)) , ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜆 (x))

), max( ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎 (x)) , ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜆 (x)) )], [ max ( ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 (x))
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, ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜆 (x)) ), max( ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜎 (x)) , ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜆 (x)) )]> : x∈

U}. 

Since            min(inf μ𝜎 (y), infμ𝜆 (y)) ≤ inf μ𝜎(y)
and              min(inf μ𝜎 (y), infμ𝜆 (y)) ≤ inf μ𝜆(y)
we have 

⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ min(inf μ𝜎 (x) , inf μ 𝜆(x)) ≤ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 (x))

and ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ min(inf μ𝜎 (x) , inf μ 𝜆(x)) ≤ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜆 (x))

Hence  ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ min(inf μ𝜎 (x) , inf μ 𝜆(x))  ≤ 𝐦𝐢𝐧 ( ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 (x)) , ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧

inf μ𝜆 (x)) )

Similarly 

⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ min(sup μ𝜎 (x) , sup μ 𝜆(x))  ≤ 𝐦𝐢𝐧 ( ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ sup μ𝜎 (x)) , ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧

sup μ𝜆 (x)) )
Again since 

max(inf ν𝜎 (y), infν𝜆 (y)) ≥ inf ν𝜎(y)
and         max(inf ν𝜎 (y), infν𝜆 (y)) ≥ inf ν𝜆(y)

we have 

⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ max(inf ν𝜎 (x) , inf ν 𝜆(x))  ≥ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 (x))

and ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ max(inf ν𝜎 (x) , inf ν 𝜆(x))  ≥ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜆 (x))

Hence  ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ max(inf ν𝜎 (x) , inf ν 𝜆(x))  ≥ 𝐦𝐚𝐱 ( ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 (x)) , ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨

inf ν𝜆 (x)) )

Similarly 

⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ max(sup ν𝜎 (x) , sup ν 𝜆(x))  ≥ 𝐦𝐚𝐱 ( ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎 (x)) , ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨

sup ν𝜆 (x)) )

Again since 

max(inf ω𝜎 (y), infω𝜆 (y)) ≥ inf ω𝜎(y)
And    max(inf ω𝜎 (y), infω𝜆 (y)) ≥ inf ω𝜆(y)

we have 

⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ max(inf ω𝜎 (x) , inf ω 𝜆(x))  ≥ ⋀ (inf νω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 (x))

and ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ max(inf ω𝜎 (x) , inf ω 𝜆(x))  ≥ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∧ inf ω𝜆 (x))

Hence  

⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ max(inf ω𝜎 (x) , inf ν 𝜆(x))  ≥ 𝐦𝐚𝐱 ( ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 (x)) , ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨

inf ω𝜆 (x)) )

Similarly 

⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ max(sup ω𝜎 (x) , sup ω 𝜆(x))  ≥ 𝐦𝐚𝐱  ( ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜎 (x)) , ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨

sup ω𝜆 (x)) )
Consequently, 

↓ AprSIVN(𝜎 ∩  𝜆) ⊆  ↓ AprSIVN(𝜎) ∩  ↓ AprSIVN(𝜆).

(6) Proof is similar to (5). 

(7) we have 

𝜎={<x,[ inf μ𝜎(x), sup μ𝜎(x)] ,[ inf ν𝜎(x), sup ν𝜎(x)] ,[ inf ω𝜎(x), sup ω𝜎(x)]>:x∈  U},

𝜆 ={<x,[ inf μ𝜆(x), sup μ𝜆(x)],[ inf ν𝜆(x), sup ν𝜆(x)] ,[ inf ω𝜆(x), sup ω𝜆(x)]>:x∈  U}

And  
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𝜎 ∪  𝜆= {<x,[ inf μ𝜎 ∪ 𝜆(x), sup μ𝜎 ∪ 𝜆(x)], [ inf ν𝜎 ∪ 𝜆(x), sup ν𝜎 ∪ 𝜆(x)], [ inf ω𝜎 ∪ 𝜆(x), sup ω𝜎 ∪ 𝜆(x)]>:x∈  U},

↓ AprSIVN(𝜎 ∪  𝜆)={<  x, [ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 ∪ 𝜆(x)) ,   ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ sup μ𝜎 ∪ 𝜆(x)],

[ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 ∪ 𝜆(x)) ,   ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎 ∪ 𝜆(x)], [ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 ∪ 𝜆(x)) ,

  ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜎 ∪ 𝜆(x)]>: x ∈ U }

={<  x, [ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ max(inf μ𝜎 (x) , inf μ 𝜆(x)) ,   ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ max(sup μ𝜎 (x) , sup μ 𝜆(x))],

[ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ min(inf ν𝜎 (x) , inf ν 𝜆(x))) ,   ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ min(sup ν𝜎 (x) , sup ν 𝜆(x))],

[ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ min(inf ω𝜎 (x) , inf ω 𝜆(x))) ,   ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ min(sup ω𝜎 (x) , sup ω 𝜆(x)]>: x ∈ U }

Now ↓ AprSIVN(𝜎) ∪ ↓ AprSIVN(𝜆).

= {<  x, [ max ( ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 (x)) , ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜆 (x)) ), max( ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧

sup μ𝜎 (x)) , ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ sup μ𝜆 (x)) )], [ min ( ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 (x)) , ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜆 (x))

), min ( ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎 (x)) , ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜆 (x)) )], [ min ( ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 (x))

, ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜆 (x)) ), min ( ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜎 (x)) , ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜆 (x)) )]> : x∈

U} 

Since            max(inf μ𝜎 (y), infμ𝜆 (y)) ≥ inf μ𝜎(y)
and              max(inf μ𝜎 (y), infμ𝜆 (y)) ≥ inf μ𝜆(y)
we have 

⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ max(inf μ𝜎 (x) , inf μ 𝜆(x)) ≥ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 (x))

and ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ max(inf μ𝜎 (x) , inf μ 𝜆(x)) ≥ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜆 (x))

Hence  ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ max(inf μ𝜎 (x) , inf μ 𝜆(x))  ≥ 𝐦𝐚𝐱 ( ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 (x)) , ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧

inf μ𝜆 (x)) )

Similarly 

⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ max(sup μ𝜎 (x) , sup μ 𝜆(x))  ≥ 𝐦𝐚𝐱 ( ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ sup μ𝜎 (x)) , ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧

sup μ𝜆 (x)) )
Again since 

min(inf ν𝜎 (y), infν𝜆 (y)) ≤ inf ν𝜎(y)
and      min(inf ν𝜎 (y), infν𝜆 (y)) ≤ inf ν𝜆(y)

we have 

⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ min(inf ν𝜎 (x) , inf ν 𝜆(x))  ≤ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 (x))

and ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ min(inf ν𝜎 (x) , inf ν 𝜆(x))  ≤ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜆 (x))

Hence  ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ min(inf ν𝜎 (x) , inf ν 𝜆(x))  ≤ 𝐦𝐢𝐧 ( ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 (x)) , ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨

inf ν𝜆 (x)) )

Similarly 

⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ min(sup ν𝜎 (x) , sup ν 𝜆(x))  ≤ 𝐦𝐢𝐧𝐱 ( ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎 (x)) , ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨

sup ν𝜆 (x)) )

Again since 

min(inf ω𝜎 (y), infω𝜆 (y)) ≤ inf ω𝜎(y)
And    min(inf ω𝜎 (y), infω𝜆 (y)) ≤ inf ω𝜆(y)

we have 

⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ min(inf ω𝜎 (x) , inf ω 𝜆(x)) ≤ ⋀ (inf νω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 (x))

and ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ min(inf ω𝜎 (x) , inf ω 𝜆(x) ≤ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜆 (x))
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Hence  ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ min(inf ω𝜎 (x) , inf ν 𝜆(x))  ≤ 𝐦𝐢𝐧 ( ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 (x)) , ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨

inf ω𝜆 (x)) )

Similarly 

⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ min(sup ω𝜎 (x) , sup ω 𝜆(x))  ≤ 𝐦𝐢𝐧( ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∧ sup ω𝜎 (x)) , ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∧

sup ω𝜆 (x)) )
Consequently, 

↓ AprSIVN(𝜎) ∪ ↓ AprSIVN(𝜆) ⊆ ↓ AprSIVN( 𝜎 ∪  𝜆)

(8) Proof is similar to  (7). 

Theorem 3.5. Every soft interval-valued neutrosophic 

rough set is an interval valued neutrosophic soft set. 

Proof. Let Θ=(f,A) be an interval-valued neutrosophic soft 

set over U and SIVN=(U, Θ) be the soft interval-valued 

neutrosophic approximation space. Let 𝜎 be a soft interval-

valued neutrosophic rough set. Let us define an interval-

valued neutrosophic set  𝜒 by: 

𝜒 ={( x, [ 
⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧inf μ𝜎 (x))

⋀ (inf μ𝑓(𝑎)(x)a ∈A ∨inf μ𝜎 (x))

, 
⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧sup μ𝜎 (x))

⋀ (sup μ𝑓(𝑎)(x)a ∈A ∨sup μ𝜎 (x))
] , [ 

⋀ (inf ν𝑓(𝑎)(x)a ∈A ∧inf ν𝜎 (x))

⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨inf ν𝜎 (x))
 , 

⋀ (sup ν𝑓(𝑎)(x)a ∈A ∧sup ν𝜎 (x))

⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨sup ν𝜎 (x))
] , 

[ 
⋀ (inf ω𝑓(𝑎)(x)a ∈A ∧inf ω𝜎 (x))

⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨inf ω𝜎 (x))

, 
⋀ (sup ω𝑓(𝑎)(x)a ∈A ∧sup μω𝜎 (x))

⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨sup ω𝜎 (x))
]): x ∈ U } 

Now, for 𝜃 ∈ [0, 1], we consider the following six  

sets: 

𝐹1(𝜃)= { x ∈ U :
⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧inf μ𝜎 (x))

⋀ (inf μ𝑓(𝑎)(x)a ∈A ∨inf μ𝜎 (x))
  ≥ 𝜃} 

𝐹2(𝜃)= { x ∈ U :
⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧sup μ𝜎 (x))

⋀ (sup μ𝑓(𝑎)(x)a ∈A ∨sup μ𝜎 (x))
  ≥ 𝜃} 

𝐹3(𝜃)= { x ∈ U : 
⋀ (inf ν𝑓(𝑎)(x)a ∈A ∧inf ν𝜎 (x))

⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨inf ν𝜎 (x))
  ≥ 𝜃} 

𝐹4(𝜃)= { x ∈ U :
⋀ (sup ν𝑓(𝑎)(x)a ∈A ∧sup ν𝜎 (x))

⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨sup ν𝜎 (x))
  ≥ 𝜃} 

𝐹5(𝜃)= { x ∈ U : 
⋀ (inf ω𝑓(𝑎)(x)a ∈A ∧inf ω𝜎 (x))

⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨inf ω𝜎 (x))
  ≥ 𝜃} 

𝐹6(𝜃)= { x ∈ U :
⋀ (sup ω𝑓(𝑎)(x)a ∈A ∧sup μω𝜎 (x))

⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨sup ω𝜎 (x))
  ≥ 𝜃} 

Then  𝜓(𝜃)= { (x, [inf{ 𝜃: x ∈ 𝐹1(𝜃)}, inf{ 𝜃: x ∈ 𝐹2(𝜃)}],

[inf{ 𝜃: x ∈ 𝐹3(𝜃)}, inf{ 𝜃: x ∈ 𝐹4(𝜃)}], [inf{ 𝜃: x ∈
𝐹5(𝜃)}, inf{ 𝜃: x ∈ 𝐹6(𝜃)}]) :x ∈ U}is an interval –valued

neutrosophic set over U for each 𝜃 ∈ [0, 1]. Consequently 

(𝜓, 𝜃) is an interval-valued neutrosophic soft set over U. 

4.A Multi-criteria Group Decision Making Problem
In this section, we extend the soft interval –valued 

intuitionistic fuzzy rough set based multi-criteria group 

decision making scheme [4] to the case of the soft interval- 

valued neutrosophic  rough set. 

Let U={𝑜1, 𝑜2, 𝑜3,…, 𝑜𝑟} be a set of objects and E be a set

of parameters and A = {𝑒1, 𝑒2, 𝑒3,…, 𝑒𝑚} ⊆ E and S=(F,

A) be an interval- neutrosophic soft set over U. Let us

assume that we have an expert group G = 

{𝑇1, 𝑇2, 𝑇3,…, 𝑇𝑛} consisting of n specialists to evaluate

the objects in U. Each specialist will examine all the 

objects in U and will point out his/her evaluation result. 

Let 𝑋𝑖 denote the primary evaluation result of the specialist

𝑇𝑖. It is easy to see that the primary evaluation result of the

whole expert group G can be represented as an interval 

valued neutrosophic evaluation soft set 𝑆∗ = (𝐹∗, G) over 

U, where 𝐹∗: 𝐺 ⟶ 𝐼𝑉𝑁𝑆𝑈 is given by 𝐹∗(𝑇𝑖)= 𝑋𝑖, for

i=1,2,..n.  

Now we consider the soft interval valued neutrosophic 

rough approximations of the specialist 𝑇𝑖’s primary

evaluation result 𝑋𝑖 w.r.t the soft interval valued

neutrosophic approximation space SIVN = (U, S). Then we 

obtain two other interval valued neutrosophic  soft sets  

↓ 𝑆∗= (↓ 𝐹∗ ,G) and  ↑ 𝑆∗= (↑ 𝐹∗ ,G) over U, where ↓ 𝑆∗ 

: 𝐺 ⟶ 𝐼𝑉𝑁𝑆𝑈 is given by ↓ 𝐹∗ =↓ 𝑋𝑖  and

↑ 𝐹∗: 𝐺 ⟶ 𝐼𝑉𝑁𝑆𝑈 is given by ↑ 𝐹∗ (𝑇𝑖)= =↑ 𝑋𝑖  , for

i=1,2,..n. Here ↓ 𝑆∗ can be considered as the evaluation 

result for the whole expert group G with 'low confidence', 

 ↑ 𝑆∗ can be considered as the evaluation result for the 

whole expert group G with 'high confidence' and 𝑆∗ can be 

considered as the evaluation result for the whole expert 

group G with 'middle confidence' Let us define two 

interval valued neutrosophic sets 𝐼𝑉𝑁𝑆 ↓𝑆∗  and  𝐼𝑉𝑁𝑆 ↑𝑆∗

by  

𝐼𝑉𝑁𝑆 ↓𝑆∗ ={〈𝑜𝑘, [
𝟏

𝒏
∑ 𝒊𝒏𝒇μ↓𝐹∗ (𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ,  
𝟏

𝒏
∑ 𝒔𝒖𝒑 μ↓𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ],  [
𝟏

𝒏
∑ 𝒊𝒏𝒇ν↓𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ,
𝟏

𝒏
∑ 𝒔𝒖𝒑ν↓𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ],  [
𝟏

𝒏
∑ 𝒊𝒏𝒇ω↓𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ,  
𝟏

𝒏

∑ 𝒔𝒖𝒑 ω↓𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏
𝒋=𝟏 ]>: 𝑘 = 1,2, . . 𝑟} 

And 

𝐼𝑉𝑁𝑆 ↑𝑆∗ ={〈𝑜𝑘, [
𝟏

𝒏
∑ 𝒊𝒏𝒇μ↑𝐹∗(𝑇𝑖)(𝑜𝑘)𝒏

𝒋=𝟏 ,  
𝟏

𝒏

∑ 𝒔𝒖𝒑μ↑𝐹∗(𝑇𝑖)(𝑜𝑘)𝒏
𝒋=𝟏 ],  [

𝟏

𝒏
∑ 𝒊𝒏𝒇 ν↑𝐹∗(𝑇𝑖)(𝑜𝑘)𝒏

𝒋=𝟏 ,

𝟏

𝒏
∑ 𝒔𝒖𝒑ν↑𝐹∗(𝑇𝑖)(𝑜𝑘)𝒏

𝒋=𝟏 ],  [
𝟏

𝒏
∑ 𝒊𝒏𝒇ω↑𝐹∗(𝑇𝑖)(𝑜𝑘)𝒏

𝒋=𝟏 ,  
𝟏

𝒏

∑ 𝒔𝒖𝒑 ω↑𝐹∗(𝑇𝑖)(𝑜𝑘)𝒏
𝒋=𝟏 ]>: 𝑘 = 1,2, . . 𝑟} 
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Now we define another interval valued neutrosophic set  

𝐼𝑉𝑁𝑆 𝑆∗ by

𝐼𝑉𝑁𝑆 𝑆∗ ={〈𝑜𝑘, [
𝟏

𝒏
∑ 𝒊𝒏𝒇μ𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ,  
𝟏

𝒏

∑ 𝒔𝒖𝒑μ𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏
𝒋=𝟏 ],  [

𝟏

𝒏
∑ 𝒊𝒏𝒇 ν𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ,  
𝟏

𝒏

∑ 𝒔𝒖𝒑ν𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏
𝒋=𝟏 ],  [

𝟏

𝒏
∑ 𝒊𝒏𝒇ω𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ,  
𝟏

𝒏

∑ 𝒔𝒖𝒑 ω𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏
𝒋=𝟏 ]>: 𝑘 = 1,2, . . 𝑟} 

Then clearly,   

𝐼𝑉𝑁𝑆 ↓𝑆∗ ⊆ 𝐼𝑉𝑁𝑆 𝑆∗ ⊆ 𝐼𝑉𝑁𝑆 ↑𝑆∗ 

Let C={L (low confidence), M (middle confidence), H 

(high confidence)} be a set of parameters. Let us consider 

the interval valued neutrosophic soft set 𝑆∗∗= (f, C) over U, 

where f: 𝐶 ⟶ 𝐼𝑉𝑁𝑆𝑈 is given by f(L)= 𝐼𝑉𝑁𝑆 ↓𝑆∗,

f(M)= 𝐼𝑉𝑁𝑆 𝑆∗ ,  f(H)= 𝐼𝑉𝑁𝑆 ↑𝑆∗ . Now given a weighting

vector W= ( ω𝐿 , ω𝑀  , ω𝐻) such that ω𝐿 , ω𝑀  , ω𝐻 ∈ [0,

1], we define  𝛼: 𝑈 ⟶ 𝑃(𝑈)𝑏𝑦  𝛼(o𝑘) =  ω𝐿 ⋄ s𝑓(𝐿)(o𝑘)  +

 ω𝑀 ⋄ s𝑓(𝑀)(o𝑘) + ⋄ s𝑓(𝐻)(o𝑘) , o𝑘 ∈ U (⋄ represents

ordinary multiplication) where  

s𝑓(𝐿)(o𝑘) =
𝒊𝒏𝒇μ

↓𝐹∗(𝑇𝑗)
+𝒔𝒖𝒑μ

↓𝐹∗(𝑇𝑗)
−𝒊𝒏𝒇 ν↓𝐹∗(𝑇𝑗).𝒔𝒖𝒑 ν↓𝐹∗(𝑇𝑗)−𝒊𝒏𝒇ω↓𝐹∗(𝑇𝑗).𝒔𝒖𝒑ω↓𝐹∗(𝑇𝑗)

2

denotes  the score function, the same as s𝑓(𝑀)(o𝑘) and

s𝑓(𝐻)(o𝑘). Here α(ok) is called the weighted evaluation

value of the alternative o𝑘 ∈ U. Finally, we can select the

object o𝑝 =max{ 𝛼(o𝑘)}:k=1,2,…,r} as the most preferred

alternative. 

 Algorithm: 
(1) Input the original description Interval valued 

neutrosophic soft set  (F, A). 

(2) Construct the interval valued neutrosophic evaluation 

soft set  𝑆∗ =( 𝐹∗, G) 

(3) Compute the soft interval valued neutrosophic rough 

approximations and then construct the interval valued 

neutrosophic soft sets ↓ 𝑆∗ and  ↑ 𝑆∗ 

(4) Construct the interval valued neutrosophic 𝐼𝑉𝑁𝑆 ↓𝑆∗   ,
𝐼𝑉𝑁𝑆 𝑆∗ , 𝐼𝑉𝑁𝑆 ↑𝑆∗

(5) Construct the interval valued neutrosophic soft set 𝑆∗∗. 

(6) Input the weighting vector W and compute the 

weighted evaluation values of each alternative 𝛼(o𝑘) of

each alternative o𝑘 ∈ U.

(7) Select the object o𝑝such that  object o𝑝

=max{ 𝛼(o𝑘)}:k=1,2,…,r}    as the most preferred

alternative. 

5.An illustrative example  
The following example is adapted from [4] with minor 

changes. 

Let us consider a staff selection problem to fill a position 

in a private company. 

Let U = {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5} is the universe set consisting of

five candidates. Let us consider the soft set S=(F, A), 

which describes the "quality of the candidates", where 

A={𝑒1 (experience), 𝑒2 (computer knowledge), e3 (young

and efficient), e4 (good communication skill)}. Let the

tabular representation of the interval valued 

neutrosophicsoft set (F, A) be: 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 

𝑒1 ([.2, .3],[.4, .5],[.3, .4]) ([.5, .7],[.1, .3],[.2, .3]) ([.4, .5],[.2, .4],[.2, .5]) ([.1, .2],[.1, .3],[.1, .2]) ([.3, .5],[.3, .4],[.1, .2]) 

𝑒2 ([.3, .6],[.1, .2],[.2, .3]) ([.1, .3],[.2, .3],[.2, .4]) ([.3, .6],[.2, .4],[.2, .4]) ([.5, .6],[.2, .3],[.2, .4]) ([.1, .3],[.3, .6],[.2, .5]) 

𝑒3 ([.4, .5],[.2, .3],[.4, .5]) ([.2, .4],[.2, .5],[.1, .2]) ([1, .3],[.4, .6],[.3, .5]) ([.3, .4],[.3, .4],[.4, .6]) ([.4, .6],[.1, .3],[.2, .3]) 

𝑒4 ([.2, .4],[.6, .7],[.6, .7]) ([.6, .7],[.1, .2],[.4, .5]) ([.3, .4],[.3, .4],[.1, .2]) ([.2, .4],[.4, .6],[.1, .2]) ([.5, .7],[.1, .2],[.1, .5]) 

Let G = {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇4} be the set of interviewers to

judge the quality of the candidate in U. Now if 𝑋𝑖  denote

the primary evaluation result of the interviewer 𝑇𝑖 (for i=1,

2, 3, 4,5), then the primary evaluation result of the whole 

expert group G can be represented as an interval valued 

neutrosophic evaluation soft set  𝑆∗= ( 𝐹∗,G) over U, 

where 𝐹∗: 𝐺 ⟶ 𝐼𝑉𝑁𝑆𝑈 is given by  𝐹∗ (𝑇𝑖  ) = 𝑋𝑖   for i=1,

2, 3, 4,5. 

Let the tabular representation of 𝑆∗  be given as: 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 

𝑇1 ([.4, .6],[.4, .5],[.3, .4]) ([.3, .4],[.1, .2],[.2, .3]) ([.2, 3],[.2, .3],[.2, .5]) ([.6, .8],[.1, .2],[.1, .2]) ([.1, .4],[.2, .3],[.1, .2]) 

𝑇2 ([.3, .5],[.2, .4],[.2, .3]) ([.5, .7],[.1, .3],[.2, .4]) ([.4, .6],[.1, .3],[.2, .4]) ([.3, .5],[.1, .3],[.2, .4]) ([.4, .5],[.2, .3],[.2, .5]) 

𝑇3 ([.1, .3],[.5, .6],[.4, .5]) ([.2, .3],[.4, .5],[.1, .2]) ([.1, .4],[.2, .4],[.3, .5]) ([.2, .3],[.5, .6],[.4, .6]) ([.3, .6],[.2, .3],[.2, .3]) 

𝑇4 ([.2, .3],[.3, .4],[.6, .7]) ([.4, .7],[.1, .2],[.4, .5]) ([.3, .5],[.4, .5],[.1, .2]) ([.4, .5],[.2, .4],[.1, .2]) ([.5, .7],[.1, .2],[.1, .5]) 

𝑇5 ([.6, .7],[.1, .2],[.6, .7]) ([.3, .5],[.3, .4],[.4, .6]) ([.5, .6],[.3, .4],[.2, .3]) ([.1, .3],[.3, .6],[.4, .6]) ([.1, .2],[.6, .8],[.2, .5]) 
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Let us choose P=(U, S) as the soft interval valued 

neutrosophic approximation space. Let us consider the 

interval valued neutrosophic evaluation soft sets. 

↓ 𝑆∗ = (↓ 𝐹∗, G) and ↑ 𝑆∗ = (↑ 𝐹∗, G) over U. 

Then the tabular representation of these sets are:

 ↓ S∗ = (↓ F∗ , G): 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 

𝑇1 ([.2, .3],[.1, .2],[.3, .4]) ([.1, .3],[.3, .4],[.2, .3]) ([.1, .3],[.2, .4],[.2, .5]) ([.1, .2],[.1, .3],[.1, .2]) ([.1, .3],[.2, .4],[.1, .2]) 

𝑇2 ([.2, .3],[.2, .4],[.2, .3]) ([.1, .3],[.1, .3],[.2, .4]) ([.1, 3],[.2, .4],[.2, .4]) ([.1, .2],[.1, .3],[.2, .4]) ([.1, .3],[.2, .3],[.2, .5]) 

𝑇3 ([.1, .3],[.5, .6],[.4, .5]) ([.1, .3],[.4, .5],[.1, .2]) ([.1, .3],[.2, .4],[.3, .5]) ([.1, .2],[.5, .6],[.4, .6]) ([.1, .3],[.2, .3],[.2, .3]) 

𝑇4 ([.2, .3],[.3, .4],[.6, .7]) ([.1, .3],[.1, .2],[.4, .5]) ([.1, .3],[.4, .5],[.1, .2]) ([.1, .2],[.2, .4],[.1, .2]) ([.1, .3],[.1, .2],[.1, .5]) 

𝑇5 ([.2, .3],[.1, .2],[.6, .7]) ([.1, .3],[.2, .5],[.4, .6]) ([.1, .3],[.3, .4],[.2, .3]) ([.1, .2],[.3, 6],[.4, .6]) ([.1, .2],[.6, .8],[.2, .5]) 

↑ 𝑆∗ = (↑ 𝐹∗, G) 
c1 c2 c3 c4 c5 

T1 ([.4, .6],[.1, .2],[.2, .3]) ([.3, .4],[.1, .2],[.1, .2]) ([.2, .3],[.2, .3],[.1, .2]) ([.6, .8],[.1, .2],[.1, .2]) ([.1, .4],[.1, .2],[.1, .2]) 

T2 ([.3, .5],[1, .2],[.2, .3]) ([.5, .7],[.1, .2],[.1, .2]) ([.4, .6],[.1, .3],[.1, .2]) ([.3, .5],[.1, .3,[.1, .2]) ([.4, .5],[.1, .2],[.1, .2]) 

T3 ([.2, .3],[.1, .2],[.2, .3]) ([.2, .3],[.1, .2],[.1, .2]) ([.1, .4],[.2, .4],[.1, .2]) ([.2, .3],[.1 .3],[.1, .2]) ([.3, .6],[.1, .2],[.1, .2]) 

T4 ([.2, .3],[.1, .2],[.2, .3]) ([.4, .7],[.1, .2],[.1, .2]) ([.3, .5],[.2, .4],[.1, .2]) ([.4, .5],[.1, .3],[.1, .2]) ([.5, .7],[.1, .2],[.1, .2]) 

𝑇5 ([.6, .7],[.1, .2],[.2, .3]) ([.3, .5],[.1, .2],[.1, .2]) ([.5, .6],[.2, .4],[.1, .2]) ([.1, .3],[.1, 3],[.1, .2]) ([.1, .3],[.1, .2],[.1, .2]) 

Here, ↓ 𝑆∗ ⊆  𝑆∗ ⊆ ↑ 𝑆∗ 

𝐼𝑉𝑁𝑆 ↓𝑆∗   = { <𝑐1,[0.15, 0.35],[0.4, 0.625],[0.42, 0.52]>

<𝑐2,[0.175, 0.325],[0.375, 0.575],[0.26, 0.4]>, <𝑐3,[0.175,

0.375],[0.375, 0.575],[0.2, 0.38]>, <𝑐4,[0.175,

0.375],[0.375, 0.575],[0.24, 0.4]>, <𝑐5,[0.175,

0.375],[0.375, 0.575],[0.16, 0.4]>}. 

𝐼𝑉𝑁𝑆 ↑𝑆∗= { <𝑐1,[0.575, 0.75],[0.125, 0.225],[ 0.2, 0.3]>

<𝑐2,[0.575, 0.75],[0.125, 0.225], [ 0.1, 0.2]>, <𝑐3,[0.575,

0.725],[0.125, 0.225],[ 0.1, 0.2]>, <𝑐4,[0.525,

0.700],[0.125, 0.225],[ 0.1, 0.2]>, <𝑐5,[0.55, 0.700],[0.125,

0.225],[ 0.1, 0.2]>}. 

𝐼𝑉𝑁𝑆 𝑆∗= { <𝑐1,[0.25, 0.45],[0.375, 0.475],[ 0.42, 0.52]>

<𝑐2,[0.375, 0.525],[0.225, 0.35], [ 0.26, 0.4]>, <𝑐3,[0.350,

0.525],[0.2, 0.4],[ 0.2, 0.38]>, <𝑐4,[0.4, 0.6],[0.20, 0.35],[

0.24, 0.4]>, <𝑐5,[0.35, 0.55],[0.15, 0.375],[ 0.16, 0.4]>}.

Here, 𝐼𝑉𝑁𝑆 ↓𝑆∗ ⊆  𝐼𝑉𝑁𝑆 𝑆∗ ⊆ 𝐼𝑉𝑁𝑆 ↑𝑆∗ . Let

C={ L (low confidence), M (middle confidence),H( high 

confidence)} be a set of parameters. Let us consider the 

interval valued neutrosophic soft set  𝑆∗∗= (f, C) over U, 

where f: 𝐶 ⟶ 𝐼𝑉𝑁𝑆𝑈 is given by f(L) =  𝐼𝑉𝑁𝑆 ↓𝑆∗, f(M) =

𝐼𝑉𝑁𝑆 𝑆∗, f(H) = 𝐼𝑉𝑁𝑆 ↑𝑆∗. Now assuming the weighting

vector W =( ω𝐿,  ω𝑀,  ω𝐻) such that  ω𝐿=

0.7  ω𝑀=0.6,  ω𝐻=0.8, we have ,

𝛼(c1) = 0.7 ⋄  0.0158  +0.6 ⋄  0.15174  +0.8 ⋄ 0.6184

      =0.5968  

𝛼(c2)= 0.7 ⋄ 0.0901  +0.6 ⋄  0.3586  +0.8 ⋄ 0.6384

 = 0.7890   

𝛼(c3)= 0.7 ⋄  0.1041  +0.6 ⋄  0.3595 +0.8 ⋄ 0.6384

  =0.7993 

𝛼(c4)= 0.7 ⋄ 0.1191 +0.6 ⋄  0.4170  +0.8 ⋄ 0.6134

  =0.8243 

𝛼(c5)= 0.7 ⋄  0.1351  +0.6 ⋄ 0.3898 +0.8 ⋄ 0.600

 =0.8093 

Since max(𝛼(c1), 𝛼(c2), 𝛼(c3), 𝛼(c4), 𝛼(c5)} = 0.8243,

so the candidate  c4 will be selected as the most preferred

alternative. 

5.Conclusions 

In this paper we have defined, for the first time, the notion 

of soft  interval valued neutrosophic rough sets which is a 

combination of interval valued neutrosophic rough  sets 

and soft sets. We have studied some of their basic  

properties. Thus our work is a generalization of SIVIF-

rough sets. We hope that this paper will promote the future 

study on soft interval valued neutrosophic rough sets to 

carry out a general framework for their application in 

practical life. 
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Abstract. Neutrosophic LA-semigroup is a midway 

structure between a neutrosophic groupoid and a commu-

tative neutrosophic semigroup. Rings are the old concept 

in algebraic structures. We combine the neutrosophic 

LA-semigroup and ring together to form the notion of 

neutrosophic LA-semigroup ring. Neutrosophic LA-

semigroup ring is defined analogously to neutrosophic 

group ring and neutrosophic semigroup ring. 

Keywords: Neutrosophic LA-semigroup, ring, neutrosophic LA-semigroup ring.

1. Introduction
Smarandache [13] in 1980  introduced neutrosophy which 
is a branch of philosophy that studies the origin and scope 
of neutralities with ideational spectra. The concept of 

neutrosophic set and logic came into being due to 
neutrosophy, where each proposition is approximated to 
have the percentage of truth in a subset T, the percentage 
of indeterminacy in a subset I, and the percentage of falsity 
in a subset F.  This mathematical tool is used to handle 
problems with  imprecise, indeterminate, incomplete and 

inconsistent etc.  Kandasamy and Smarandache apply this 
concept in algebraic structures in a slight different manner 
by using the indeterminate/unknown element I, which they 
call neutrosophic element. The neutrosophic element I is 
then combine to the elements of the algebraic structure by 
taking union and link with respect to the binary operation * 

of the algebraic stucutre. Therefore, a neutrosophic 
algebraic structure is generated in this way. They studied 
several neutrosophic algebraic structure [3,4,5,6]. Some of 
them are neutrosophic fields, neutrosophic vector spaces, 
neutrosophic groups, neutrosophic bigroups, neutrosophic 
N-groups, neutrosophic semigroups, neutrosophic 

bisemigroups, neutrosophic N-semigroup, neutrosophic 
loops, neutrosophic biloops, neutrosophic N-loop, 
neutrosophic groupoids, and neutrosophic bigroupoids and 
so on. 
A left almost semigroup denoted as LA-semigroup is an 
algebraic structure which was studied by Kazim and 

Naseeruddin [7] in 1972. An LA-semigroup is basically a 
midway structure between a groupoid and a commutative 
semigroup. It is also termed as Able-Grassmann’s 
groupoid shortly AG -groupoid [11]. LA-semigroup is a 

non-associative and non-commutative algebraic structure 
which closely matching with commutative semigroup. LA-
semigroup is a generalization to semigroup theory which 
has wide applications in collaboration with semigroup. 

Mumtaz et al.[1] introduced neutrosophic left almost 
semigroup in short neutrosophic LA-semigroup which is 
basically generated by an LA-semigroup and the 
neutrosophic element I. Mumtaz et al.[1] also  studied their 
generalization and other properties. Neutrosophic group 
rings [5]  and neutrosophic semigroup rings [5] are defined 

analogously to group rings and semigroup rings 
respectively. In fact these are generalization of group ring 
and semigroup ring ring. The notion of neutrosophic 
matrix ring have been successfully applied and used in the 
neutrosophic models such as neutrosophic cognitive maps 
(NCMs), neutrosophic relational maps (NRMs) etc. 

In this paper, we introduced neutrosophic LA-semigroup 
rings owing to neutrosophic semigroup rings. Neutrosophic 
LA-semigroup rings are generalization of neutrosophic 
semigroup rings. These neutrosophic LA-semigroup rings 
are defined analogously to neutrosophic group rings and 
neutrosophic semigroup rings. We also studied some of 

their basic properties and other related notions in this paper. 
In section 2, we after reviewing the literature, we presented 
some basic concepts of neutrosophic LA-semigroup and 
rings. In section 3, neutrosophic LA-semigroup rings are 
introduced and studied some of their properties. 

. 

2. Basic Concepts

Definition 2.1 [1]:  Let  ,S   be an LA-semigroup and

let   : ,S I a bI a b S    . The neutrosophic

81
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LA-semigroup is generated by S  and I  under the opera-

tion   which is denoted as    ,N S S I   , where

I  is called the neutrosophic element with property 

2I I . For an integer n , n I and nI are neutrosophic 

elements and 0. 0I  . 

1I 
, the inverse of I is not defined and hence does not

exist. 

Definition 2.2 [1]: Let  N S  be a neutrosophic LA-

semigroup and  N H  be a proper subset of  N S .

Then  N H is called a neutrosophic sub LA-semigroup

if   N H  itself is a neutrosophic LA-semigroup under

the operation of  N S .

Definition 2.3 [1]:  Let  N S  be a neutrosophic LA-

semigroup and  N K  be a subset of  N S . Then

 N K  is called Left (right)  neutrosophic ideal of

 N S  if

      ,N S N K N K  {      N K N S N K }.

If  N K  is both left and right neutrosophic ideal, then

 N K  is called a two sided neutrosophic ideal or simply

a neutrosophic ideal. 

Definition 2.4 [5]: Let  , ,R    be a set with two binary

operations   and  . Then  , ,R    is called a ring if the

following conditions are hold. 

1.  ,R   is a commutative group under the opera-

tion of  .

2.  ,R   is a semigroup under the operation of  .

3.  a b c ab ac    and  b c a ba ca  

for all , ,a b c R .

Definition 2.5 [5]: Let  , ,R    be a ring and  1, ,R  

be a proper subset of  , ,R   . Then  1, ,R   is called a 

subring if   1, ,R    itself is a ring under the operation of 

R . 

Definition 2.6 [5]: Let R  be a ring. The neutrosophic ring 

R I  is also a ring generated by R  and I  under the 

operation of R , where I is called the  neutrosophic ele-

ment with property 
2I I . For an integer n , n I and 

nI are neutrosophic elements and 0. 0I  .
1I 

, the in-

verse of I is not defined and hence does not exist. 

Example 2.8:  Let  be  the ring of integers. Then 

I  is the neutrosophic ring of integers. 

Definition 2.8 [5]: Let R I  be a neutrosophic ring. A 

proper subset P  of R I  is called a neutosophic 

subring if  P  itself a neutrosophic ring under the opera-

tion of R I . 

Definition 2.9 [5]: Let R I  be a neutrosophic ring. A 

non-empty set P  of R I  is called a neutrosophic 

ideal of R I  if the following conditions are satisfied. 

1. P  is a neutrosophic subring of R I , and 

2. For every p P  and r R I  , pr  and 

rp P .

3. Neutrosophic LA-semigroup Rings

In this section, we introduced neutosophic LA-

semigroup rings and studied some of their basic 

properties and types. 

Definition 3.1: Let S I  be any neutrosophic LA-

semigroup. R  be any ring with 1 which is commutative or 

field. We define the neutrosophic LA-semigroup ring 

R S I  of the neutrosophic LA-semigroup S I

over the ring R  as follows: 
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1. R S I  consists of all finite formal sum of 

the form 

1

n

i i

i

rg


 , n   , ir R  and 

ig S I   R S I   .

2. Two elements 

1

n

i i

i

rg


  and 

1

m

i i

i

s g


  in 

R S I  are equal  if and only if i ir s  and 

n m . 

3. Let 

1 1

,
n m

i i i i

i i

rg s g R S I 
 

     ; 

 
1

n

i i i

i

g R S I   


     , as 

,i i R   , so i i R    and 

ig S I  . 

4. 
1

0 0
n

i

i

g


  serve as the zero of  R S I . 

5. Let 

1

n

i i

i

rg R S I


    then 

 
1

n

i i

i

g 


    is such that 

 
1

( ) 0

( )

0

n

i i i

i

i

g

g

 

 


  

  







 

Thus we see that R S I  is an abelian group under  . 

6. The product of two elements ,   in R S I

is follows:

Let 

1

n

i i

i

g 


  and 
1

m

j j

j

h 


 .  Then 

1
1

. .
n

i j i j

i n
j m

g h   
 
 

  k k

k

y t

where 
k i jy    with

i j kg h t , 
kt S I   and 

ky R . 

Clearly . R S I    . 

7. Let 

1

n

i i

i

g 


  and 
1

m

j j

j

h 


   and 

1

p

k k

k

l 


 .  

Then clearly ( )        and 

( )        for all , , R S I     , 

that is the distributive law holds. 

Hence R S I  is a ring under the binary operations 

and . We call R S I  as the neutrosophic LA-

semigroup ring. 

Similarly on the same lines, we can define neutrosophic 

Right Almost semigroup ring abbrivated as neutrosophic 

RA-semigroup ring. 

Example 3.2: Let  be the ring of real numbers and let 

   1,2,3,4,1 ,2 ,3 ,4N S I I I I  be a

neutrosophic LA-semigroup with the following  table. 

* 1 2 3 4 1I 2I 3I 4I 

1 1 4 2 3 1I 4I 2I 3I 

2 3 2 4 1 3I 2I 4I 1I 

3 4 1 3 2 4I 1I 3I 2I 

4 2 3 1 4 2I 3I 1I 4I 

1I 1I 4I 2I 3I 1I 4I 2I 3I 

2I 3I 2I 4I 1I 3I 2I 4I 1I 

3I 4I 1I 3I 2I 4I 1I 3I 2I 

4I 2I 3I 1I 4I 2I 3I 1I 4I 

Then S I  is a neutrosophic LA-semigroup ring. 

Theorem 3.3:  Let S I  be a neutrosophic LA-

semigroup and R S I  be a neutrosophic LA-

semigroup ring such that R S I  is a neutrosophic 

LA-semigroup ring over R . Then 

S I R S I   . 
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Proposition 3.4: Let R S I  be a neutrosophic LA-

semigroup ring over the ring R . Then R S I  has 

non-trivial idempotents. 

Remark 3.5: The neutrosophic LA-semigroup ring 

R S I  is commutative if and only if S I  is 

commutative neutrosophic LA-semigroup. 

Remark 3.6: The neutrosophic LA-semigroup ring 

R S I  has finite number of elements  if both R  and 

S I  are of finite order. 

Example 3.7: Let R S I  be a neutrosophic LA-

semigroup ring in Example (1). Then R S I  is a neu-

trosophic LA-semigroup ring of infinite order. 

Example 3.8: Let 

 1,2,3,4,5,1 ,2 ,3 ,4 ,5S I I I I I I   with left

identity 4, defined by the following  multiplication table. 

. 1 2 3 4 5 1 2 3 4 5

1 4 5 1 2 3 4 5 1 2 3

2 3 4 5 1 2 3 4 5 1 2

3 2 3 4 5 1 2 3 4 5 1

4 1 2 3 4 5 1 2 3 4 5

5 5 1 2 3 4 5 1 2 3 4

1 4 5 1 2 3 4 5 1 2 3

2 3 4 5 1 2 3 4 5 1 2

3 2 3 4 5 1 2 3 4 5 1

4 1 2 3 4 5 1 2 3 4 5

5 5 1 2 3 4 5 1

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I I I I I I I

I I I I I I I I I I I

I I I I I I I I I I I

I I I I I I I I I I I

I I I I I I I I 2 3 4I I I

Let 2  be the ring of two elements. Then 2 S I  is 

a neutrosophic LA-semigroup ring of finite order. 

Theorem 3.9: Every neutrosophic LA-semigroup ring 

R S I  contains atleast one proper subset which is an 

LA-semigroup ring. 

Proof: Let R S I  be a neutrosophic LA-semigroup 

ring. Then clearly RS R S I  . Thus R S I

contains an LA-semigroup ring. 

Definition 3.10: Let R S I  be a neutrosophic LA-

semigroup ring and let P  be a proper subset of 

R S I . Then P  is called a subneutrosophic LA-

semigroup ring of R S I  if P R H I   or 

Q S I  or T H I . In P R H I  , R  is a 

ring and H I  is a proper neutrosophic sub LA-

semigroup of S I  or in Q S I , Q  is a proper 

subring with 1  of R  and S I  is a neutrosophic LA-

semigroup and if P T H I  , T  is a subring of R  

with unity and H I  is a proper neutrosophic sub LA-

semigroup of S I . 

Example 3.11: Let S I  and S I  be as in 

Example 3.2.  Let  1 1,3H  ,  2 1,1H I  and 

 3 1,3,1 ,3H I I  are neutrosophic sub LA-semigroups. 

Then S I , 1H , 
2H I  and 

3H I

are all subneutrosophic LA-semigroup rings of 

S I . 

Definition 3.12: Let R S I  be a neutrosophic LA-

semigroup ring. A proper subset P  of R S I  is 

called a neutrosophic subring if 
1P S I   where 1S

is a subring of RS  or R . 

Example 3.13: Let 2R S I S I    be a neu-

trosophic LA-semigroup ring in Example 3.8. Then clearly 

2 I  is a neutrosophic subring of 2 S I . 

Theorem 3.14: Let R S I  be a neutrosophic LA-

semigroup ring of the neutrosophic LA-semigroup over the 
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ring R . Then R S I  always has a nontrivial neutro-

sophic subring. 

Proof: Let R I  be the neutrosophic ring which is 

generated by R  and I . Clearly R I R S I  

and this guaranteed the proof. 

Definition 3.15: Let R S I  be a neutrosophic LA-

semigroup ring. A proper subset T  of R S I  which 

is  a pseudo neutrosophic subring. Then we call T  to be a 

pseudo neutrosophic subring of R S I . 

Example 3.16: Let 6 S I  be a neutrosophic LA-

semigroup ring of  the neutrosophic LA-semigroup 

S I  over 6 . Then {0,3 }T I  is a proper subset 

of 6 S I  which is a pseudo neutrosophic subring of 

6 S I . 

Definition 3.17: Let R S I  be a neutrosophic LA-

semigroup ring. A proper subset P  of R S I  is 

called a sub LA-semigroup ring if 
1P R H  where 

1R  is 

a subring of R  and H  is a sub LA-semigroup of S . SH

is the LA-semigroup ring of the sub LA-semigroup H  

over the subring 
1R . 

Theorem 3.18: All neutrosophic LA-semigroup rings have 

proper sub LA-semigroup rings. 

Definition 3.19: Let R S I  be a neutrosophic LA-

semigroup ring. A proper subset P  of R S I  is 

called a subring but P  should not have the LA-semigroup 

ring structure and is defined to be a subring of R S I . 

Definition 3.20: Let R S I  be a neutrosophic LA-

semigroup ring. A proper subset P  of R S I  is 

called a neutrosophic ideal of R S I , 

1. if P  is a neutrosophic subring or subneutrosophic

LA-semigroup ring of R S I .

2. For all p P  and R S I   , p  and 

p P  . 

One can easily define the notions of left or right neutro-

sophic ideal of the neutrosophic LA-semigroup ring 

R S I . 

Example 3.21: Let  1,2,3,1 ,2 ,3S I I I I   be a

neutrosophic LA-semigroup with the following table. 

1 2 3 1 2 3

1 3 3 3 3 3 3

2 3 3 3 3 3 3

3 1 3 3 1 3 3

1 3 3 3 3 3 3

2 3 3 3 3 3 3

3 1 3 3 1 3 3

I I I

I I I

I I I

I I I

I I I I I I I

I I I I I I I

I I I I I I I



Let R   be the ring of integers. Then S I  is a 

neutrosophic LA-semigroup ring of the neutrosophic LA-

semigroup over the ring . Thus clearly 

2P S I   is a neutrosophic ideal of R S I . 

Definition 3.22: Let R S I  be a neutrosophic LA-

semigroup ring. A proper subset P  of R S I  is 

called a pseudo neutrosophic ideal of R S I  

1. if P  is a pseudo neutrosophic subring or pseudo

subneutrosophic LA-semigroup ring of

R S I .

2. For all p P  and R S I   , p  and 

p P  . 

Definition 3.23: Let R S I  be a neutrosophic LA-

semigroup ring and let 1R  be any subring ( neutrosophic 

or otherwise). Suppose there exist a subring P  in 

R S I  such that 1R  is an ideal over P  i.e, 
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1,rs sr R  for all p P  and r R . Then we call 1R

to be a quasi neutrosophic ideal of R S I   relative to 

P . 

If 1R  only happens to be a right or left ideal, then we call 

1R  to be a quasi neutrosophic right or left ideal of 

R S I . 

Definition 3.24: Let R S I  be a neutrosophic LA-

semigroup ring. If for a given 1R , we have only one P

such that 1R  is a quasi neutrosophic ideal relative to P

and for no other P . Then 1R  is termed as loyal quasi neu-

trosophic ideal relative to P . 

Definition 3.25: Let R S I  be a neutrosophic LA-

semigroup. If every subring 1R  of R S I   happens to 

be a loyal quasi neutrosophic ideal relative to a unique P . 

Then we call the neutrosophic LA-semigroup ring 

R S I  to be a loyal neutrosophic LA-semigroup ring. 

Definition 3.26: Let R S I  be a neutrosophic LA-

semigroup ring. If for 1R , a subring P  is another subring 

1( )R P  such that 1R  is a quais neutrosophic ideal rela-

tive to P . In short P  happens to be a quasi neutrosophic 

ideal relative to 1R . Then we call  1,P R  to be a bound-

ed quasi neutrosophic ideal of the neutrosophic LA-

semigroup ring R S I . 

Similarly we can define bounded quasi neutrosophic right 

ideals or bounded quasi neutrosophic left ideals. 

Definition 3.27: Let R S I  be a neutrosophic LA-

semigroup ring and let 1R  be any subring ( neutrosophic 

or otherwise). Suppose there exist a subring P  in 

R S I  such that 1R  is an ideal over P  i.e, 

1,rs sr R  for all p P  and r R . Then we call 1R

to be a quasi neutrosophic ideal of R S I   relative to 

P . If 1R  only happens to be a right or left ideal, then we 

call 1R  to be a quasi neutrosophic right or left ideal of 

R S I . 

Definition 3.28: Let R S I  be a neutrosophic LA-

semigroup ring. If for a given 1R , we have only one P

such that 1R  is a quasi neutrosophic ideal relative to P

and for no other P . Then 1R  is termed as loyal quasi neu-

trosophic ideal relative to P . 

Definition: Let R S I  be a neutrosophic LA-

semigroup. If every subring 1R  of R S I   happens to 

be a loyal quasi neutrosophic ideal relative to a unique P . 

Then we call the neutrosophic LA-semigroup ring 

R S I  to be a loyal neutrosophic LA-semigroup ring. 

Definition 3.29: Let R S I  be a neutrosophic LA-

semigroup ring. If for 1R , a subring P  is another subring 

1( )R P  such that 1R  is a quais neutrosophic ideal rela-

tive to P . In short P  happens to be a quasi neutrosophic 

ideal relative to 1R . Then we call  1,P R  to be a bound-

ed quasi neutrosophic ideal of the neutrosophic LA-

semigroup ring R S I . 

Similarly we can define bounded quasi neutrosophic right 

ideals or bounded quasi neutrosophic left ideals. 

One can define pseudo quasi neutrosophic ideal, pseudo 

loyal quasi neutrosophic ideal and pseudo bounded quasi 

neutrosophic ideals of a neutrosophic LA-semigroup ring 

R S I . 

4. LA-semigroup Neutrosophic Ring

In this section, LA-semigroup Neutrosophic ring is intro-

duced and studied some of their basic properties. 

Definition 4.1: Let S be an LA-semigroup and R I

be a commutative neutrosophic ring with unity. 
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 R I S  is defined to be the LA-semigroup neutro-

sophic ring which consist of all finite formal sums of the 

form 

1

n

i i

i

rs


 ; n   , ir R I   and is S . This 

LA-semigroup neutrosophic ring is defined analogous to 

the group ring or semigroup ring. 

Example 4.2: Let 2 {0,1, ,1 }I I I    be the neu-

trosophic ring and let  1,2,3S   be an LA-semigroup

with the following table: 

Then  2 I S  is an LA-semigroup neutrosophic 

ring. 

Definition 4.3: Let S I be a neutrosophic LA-

semigroup and K I  be a neutrosophic field or a 

commutative neutrosophic ring with unity. 

K I S I     is defined to be the neutrosophic

LA-semigroup neutrosophic ring which consist of all finite 

formal sums of the form 

1

n

i i

i

rs


 ; n   , ir K I 

and is S . 

Example 4.4: Let I  be the ring of integers and let 

   1,2,3,4,1 ,2 ,3 ,4N S I I I I  be a

neutrosophic LA-semigroup with the following  table. 

* 1 2 3 4 1I 2I 3I 4I 

1 1 4 2 3 1I 4I 2I 3I 

2 3 2 4 1 3I 2I 4I 1I 

3 4 1 3 2 4I 1I 3I 2I 

4 2 3 1 4 2I 3I 1I 4I 

1I 1I 4I 2I 3I 1I 4I 2I 3I 

2I 3I 2I 4I 1I 3I 2I 4I 1I 

3I 4I 1I 3I 2I 4I 1I 3I 2I 

4I 2I 3I 1I 4I 2I 3I 1I 4I 

Then I S I   is a neutrosophic LA-semigroup 

neutrosophic ring. 

Theorem 4.5: Every neutrosophic LA-semigroup neutro-

sophic ring contains a proper subset which is a neutrosoph-

ic LA-semigroup ring. 

Proof: Let R I S I   be a neutrosophic LA-

semigroup neutrosophic ring and let T R S I   be a 

proper subset of R I S I  . Thus clearly 

T R S I   is a neutrosophic LA-semigroup ring. 

Conclusion 

In this paper, we introduced neutosophic LA-semigroup 
rings which are more general concept than neutrosophic 
semigroup rings. These neutrosophic LA-semigroup rings 
are defined analogously to neutrosophic semigroup rings. 
We have studiesd several properties of neutrosophic LA-
semigroup rings and also define different kind of 

neutrosophic LA-semigroup rings.  
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