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Abstract. The objective of this article is to create a Neutrosophic Generalized Exponential (NGE) distribution

in the presence of uncertainty. It is possible to calculate the mean, variance, moments, and reliability expression

of the NGE distribution. With the help of graphs, the nature of the distribution and the reliability and haz-

ard functions are studied. To determine the NGE distribution’s parameters, a maximum likelihood estimation

technique is used. The performance of estimated parameters is further tested using simulations. Finally, an

actual data set is examined to show how the NGE distribution works. According to a model validity test, the

NGE distribution is superior to the existing neutrosophic distributions that can be found in the literature.

Keywords: Generalized exponential distribution; Neutrosophic; Indeterminacy; Maximum likelihood estima-

tion; Simulation; Reliability.

—————————————————————————————————————————-

1. Introduction

Numerous researchers have started developing various studies based on Neutrosophic statis-

tics in recent years. The original research on neutrosophic statistics was initiated by Smaran-

dache [1]. This new area of research is a generalization of the fuzzy logic environment, and

it is used in an uncertain environment. Due to its ability to administer sets of values in an

interval form, neutrosophic statistics play a crucial role in statistics and other research fields.

For more details about Neutrosophic statistics and its related works, please refer to [2–11].

The neutrosophic theory of probability is indispensable and has practical applications. This

area of study has not received a great deal of attention. Some authors have focused more on the
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neutrosophic statistics approach and its applications in various fields in recent years. For more

information about neutrosophic probability, see [12,13]. Patro and Smarandache [14] presented

the neutrosophic statistical distribution, more problems, and more solutions. Alhabib et al. [9]

studied some neutrosophic probability distributions by generalizing some classical probability

distributions such as the Poisson distribution, exponential distribution, and uniform distribu-

tion to the neutrosophic type. Nayana et al. [15] created a new neutrosophic model using the

DUS-Weibull transformation, while Alhasan and Smarandache [16] studied the neutrosophic

Weibull distribution. Zeina and Hatip [17] developed the neutrosophic random variables. They

studied various statistical properties and examples. Sherwani [18] studied neutrosophic beta

distribution with properties and applications. The other application of neutrosophic statis-

tics in various field like quality control, sampling plans, process capability analysis and social

science indeterminacy environment studied by [19–22]. The neutrosophic theory has many

applications in a variety of fields, such as the neutrosophic treatment of the static model,

the integration of renewable energy using a variety of resources, such as photovoltaic panels

and wind turbines, and COVID-19 and its Omicron mutation. In traditional mathematics,

crispness is the most crucial prerequisite; however, in actual problems, ambiguous data are

present. In order to solve these issues, mathematical concepts based on uncertainty must be

used. Uncertainty modeling is something that many scientists and engineers are interested in

because it helps them define and explain the useful information that is hidden in uncertain

data. Although it is one of the most crucial tools and has practical applications, the neutro-

sophic probability theory has not gotten much attention. It has, however, been the subject of

some studies. More studies have focused in recent years on various areas of neutrosophic statis-

tics, including correlation, regression analysis, test procedures, probability distributions, etc.

The mentioned studies and literature reviews have motivated us to develop a neutrosophic

generalized exponential distribution and its properties.

1.1. Neutrosophic Approach

Neutrosophic statistics is the generalization of classical statistics. We administer with spe-

cific or crumple values in classical statistics, but in neutrosophic statistics, the sample values

are chosen from a population with an uncertain environment. In neutrosophic statistics, the

information can be vague, imprecise, ambiguous, uncertain, incomplete, or even unknown.

Neutrosophic numbers have a standard form based on classical statistics, which is given be-

low.

XN = E + I
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Data is broken down into two parts, E and I, where E is the exact or determined data and I

is the uncertain, inexact, or indeterminate part of the data. It is equivalent to XN ∈ [XL, XU ].

A subscript N is used to distinguish the neutrosophic random variable, for example, XN .

1.2. Generalized Exponential distribution

The generalized exponential (GE) distribution is one of the most widely used and flexible

distributions compared to the exponential, gamma, and Weibull distributions; see [23] for more

details. The GE distribution has more applications in reliability analysis, hydrology, quality

control and medical field etc, please refer [24–30].

If a continuous random variable Xi; i = 1, 2, . . . , n is followed by the generalized exponential

distribution with shape parameter δ and scale parameter υ then its probability density function

(p.d.f.) and cumulative distribution function are respectively given as follows:

f(x) =
δ

υ

(
1− exp{−x

υ
}
)δ−1

exp{−x
υ
}; x > 0, δ > 0, υ > 0, (1)

and

F (x) =
(
1− exp{−x

υ
}
)δ

; x > 0, δ > 0, υ > 0. (2)

2. Neutrosophic Generalized Exponential distribution

Let us assume that XNi ∈ [XL, XU ], i = 1, 2, . . . , nN is neutrosophic random variable fol-

lowing the neutrosophic generalized exponential (NGE) distribution with neutrosophic shape

parameter δN ∈ [δL, δU ] and neutrosophic scale parameter υN ∈ [υL, υU ]. The neutrosophic

probability density function (n.p.d.f.) of NGE distribution is given as follows:

f(xN) =
δN
υN

(
1− exp{−xN

υN

}
)δN−1

exp{−xN

υN

}; xN > 0, δN > 0, υN > 0 (3)

Where XN ∈ [XL, XU ], δN ∈ [δL, δU ], υN ∈ [υL, υU ]. NGE distribution with neutrosophic

shape parameter δN and neutrosophic scale parameter υN is denoted as NGED(δN , υN). NGE

distribution is transformed into a neutrosophic exponential distribution with neutrosophic scale

parameter υN ∈ [υL, υU ] when NGED(1, υN). Figure 1 display the p.d.f. plots for different

parametric values of NGE distribution.

The developed NGE distribution is more flexible on account of the different shapes of the

density function. From Figure 1, The curves of p.d.f. show that the behavior of the curves

exponentially diminishes and starts from the infinite point for δN < 1. For δN = 1, its behavior

exponentially diminishes but starts from a specific point on the y-axis. The density curves

show unimodal behavior for δN > 1.

The cumulative distribution function (c.d.f.) of NGE distribution is

F (xN) =

(
1− exp{−xN

υN

}
)δN

; xN > 0, δN > 0, υN > 0. (4)
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The survival function and hazard function of NGE distribution respectively expressed as

s(xN) = 1−
(
1− exp{−xN

υN

}
)δN

, (5)

and

h(xN) =

δN
υN

(
1− exp{−xN

υN
}
)δN−1

exp{−xN
υN

}

1−
(
1− exp{−xN

υN

)δN
(6)

From Figure 2, it is interesting to note that the NGE distribution has variable shapes.

The survival function and failure rate curves for various neutrosophic parametric values are

presented in Figures 3 and 4. Form Figure 4, the failure rate of NGE distribution is a bathtub

and increasing behavior, which is very important for analyzing data sets in various fields.

3. Statistical Properties

In this section, we reviewed some statistical characteristics of the NGE distribution.

The mean and variance values are respectively expressed as

µN =
1

υN

[ψ (δN + 1)− ψ (1)] , (7)

and

σ2N =
1

υ2N

[
ψ′ (1)− ψ′ (δN + 1)

]
. (8)

The expressions ψ (·) denotes the digamma function while ψ′ (·) denotes a derivative of ψ (·).
For details about classical GED moments, refer to [23]. The qth quantile of NGE distribution

is obtained as follows:

xNq = −υN ln

(
1− q

1
δN
N

)
. (9)

Consequently, the median value is xN(0.5) = −υN ln
(
1− 2

−1
δN

)
.

4. Estimation of parameters

In this section, using the method of maximum likelihood estimation (MLE) the parameters

of NGE distribution are estimated. Let XN1, XN2, . . . , XNn be a neutrosophic random sample

of size n taken from NGE distribution. The log-likelihood equation is given by

l (δN , υN) = ln (L) = n ln (δN)− n ln (υN)−
n∑

i=1

xNi

υN

+ (δN − 1)

n∑
i=1

ln

(
1− exp{−xNi

υN

}
)

(10)
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Figure 1. The p.d.f. plots of NGE distribution
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Figure 2. The c.d.f. plots of NGE distribution
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Figure 3. The survival function plots of NGE distribution
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Figure 4. The hazard function plots of NGE distribution
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The MLEs of δN and υN are denoted as δ̂N ∈
[
δ̂L, δ̂U

]
and υ̂N ∈ [υ̂L, υ̂U ] respectively, and are

obtained by maximizing the equation (10). Thus δ̂N and υ̂N are the solutions of the following

two derivative equations

∂l (δN , υN)

∂δN
=

n

δN
+

n∑
i=1

ln

(
1− exp{−xNi

υN

}
)

= 0 (11)

and

∂l (δN , υN)

∂υN

=
−n
υN

+

n∑
i=1

xNi

υ2N
− (δN − 1)

υ2N

n∑
i=1

xNi exp{−xNi
υN

}(
1− exp{−xNi

υN
}
) = 0 (12)

or simply,

∂l (δN , υN)

∂υN

= −nυN +
n∑

i=1

xNi − (δN − 1)
n∑

i=1

xNi exp{−xNi
υN

}(
1− exp{−xNi

υN
}
) = 0. (13)

Solving Eq. (11) results in

δ̂N (υN) =
−n

n∑
i=1

ln
(
1− exp{−xNi

υN
}
) . (14)

The estimator ν̂N is calculated by substituting δ̂N value in Eq. (12), which results in an

expression in terms of υN as

−nυN+

n∑
i=1

xNi+
n

n∑
i=1

ln
(
1− exp{−xNi

υN
}
)
 n∑

i=1

xNi exp{−xNi
υN

}(
1− exp{−xNi

υN
}
)
+ n∑

i=1

xNi exp{−xNi
υN

}(
1− exp{−xNi

υN
}
) = 0

(15)

Hence, MLE of υN say υ̂N is an iterative solution of equation (15). After finding υ̂N by iterative

solution, we can substitute in Eq. (14) to get the MLE of δ̂N .

5. Justification of Estimation with Simulation

To study the performance of the proposed NGE distribution model, a simulation study is

carried out. The accomplishment of NGE distribution estimated parameters and their per-

formance are expressed as neutrosophic average estimates (AEs), neutrosophic average biased

(Avg. Biases), and neutrosophic measure square error (MSEs) using simulation investigation.

The simulation results of average Bias and MSE are summarized in Tables 1-4. It is noticed

from the tables that the average Bias and MSE decrease when the size of the sample increases,

as expected. According to Tables 1-4, Bias of shape parameters is negative and the scale

parameter is positive at different values of shape parametric and scale parametric values.
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Table 1. υN = [1, 1], δN = [1, 3]

AEs Avg. Biases MSEs

υ̂N δ̂N υ̂N δ̂N υ̂N υ̂N

30 0.9781 [1.1008,3.4551] -0.0219 [0.1008,0.4551] 0.2137 [0.3258,1.3166]

50 0.9866 [1.0558,3.2537] -0.0133 [0.0558,0.2537] 0.1645 [0.2149,0.8673]

100 0.9929 [1.0267,3.1265] -0.0071 [0.0267,0.1265] 0.1168 [0.1410,0.5542]

200 0.9958 [1.0131,3.0610] -0.0041 [0.0131,0.0610] 0.0825 [0.0948,0.3640]

500 0.9987 [1.0048,3.0231] -0.0012 [0.0048,0.0231] 0.0524 [0.0589,0.2294]

1000 0.9995 [1.0024,3.0112] -0.0005 [0.0024,0.0112] 0.0367 [0.0419,0.1572]

Table 2. υN = [1, 1], δN = [0.5, 0.75]

AEs Avg. Biases MSEs

υ̂N δ̂N υ̂N δ̂N υ̂N δ̂N

30 0.9775 [0.5397,0.8185] -0.0225 [0.0397,0.0685] 0.2761 [0.1363,0.2205]

50 0.9862 [0.5225,0.7888] -0.0138 [0.0225,0.0388] 0.2131 [0.0942,0.1524]

100 0.9925 [0.5108,0.7692] -0.0075 [0.0108,0.0192] 0.1516 [0.0625,0.1008]

200 0.9955 [0.5053,0.7591] -0.0045 [0.0053,0.0091] 0.1071 [0.0424,0.0676]

500 0.9987 [0.5018,0.7538] -0.0012 [0.0018,0.0038] 0.0682 [0.0264,0.0434]

1000 1.0000 [0.5011,0.7514] 0.0000 [0.0011,0.0014] 0.0477 [0.0189,0.0301]

Table 3. υN = [0.5, 0.75], δN = [1, 1]

AEs Avg. Biases MSEs

α̂N δ̂N υ̂N δ̂N υ̂N δ̂N

30 [0.4877,0.7362] 1.1005 [-0.0123,-0.0138] 0.1005 [0.1196,0.1783] 0.3204

50 [0.4928,0.7412] 1.0562 [-0.0072,-0.0088] 0.0562 [0.0927,0.1364] 0.2154

100 [0.497,0.7436] 1.0274 [-0.003,-0.0064] 0.0274 [0.0652,0.0982] 0.1415

200 [0.4981,0.7465] 1.0132 [-0.0019,-0.0035] 0.0132 [0.0461,0.0692] 0.0948

500 [0.4992,0.7495] 1.0051 [-0.0008,-0.0005] 0.0051 [0.0292,0.0443] 0.0598

1000 [0.4997,0.7497] 1.0025 [-0.0003,-0.0003] 0.0025 [0.0205,0.031] 0.0419

6. Application

A realistic attempt of NGE distribution model is studied with help a real data in this

section. The Parameter estimates along with the values of AIC (Akaike’s Information crite-

ria), BIC (Bayesian Information criteria) and KS (Kolmogorov–Smirnov) statistic are provided

for comparision neutrosophic normal distribution (NND), neutrosophic gamma distribution

(NGD), neutrosophic Weibull distribution (NWD), neutrosophic Rayleigh distribution (NRD),
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Table 4. υN = [0.5, 0.75], δN = [1, 3]

AEs Avg. Biases MSEs

α̂N δ̂N υ̂N δ̂N υ̂N δ̂N

30 [0.4877,0.7356] [1.1008,3.4551] [-0.0123,-0.0144] [0.1008,0.4551] [0.1196,0.1411] [0.3258,1.3166]

50 [0.4928,0.7408] [1.0558,3.2537] [-0.0072,-0.0092] [0.0558,0.2537] [0.0927,0.1079] [0.2149,0.8673]

100 [0.497,0.7439] [1.0267,3.1264] [-0.0030,-0.0061] [0.0267,0.1264] [0.0652,0.0776] [0.1410,0.5542]

200 [0.4981,0.7467] [1.0131,3.061] [-0.0019,-0.0033] [0.0131,0.061] [0.0461,0.0546] [0.0948,0.3640]

500 [0.4992,0.7494] [1.0048,3.0231] [-0.0008,-0.0006] [0.0048,0.0231] [0.0292,0.0349] [0.0589,0.2294]

1000 [0.4997,0.7497] [1.0024,3.0112] [-0.0003,-0.0003] [0.0024,0.0112] [0.0205,0.0244] [0.0419,0.1572]

neutrosophic exponential distribution (NED) and neutrosophic generalized exponential dis-

tribution (NGED).

6.1. Example 1

The data set reported in Table 5 attempted is related to remission time in months of 128

cancer patients. The remission times data was originally studied and reported in [31] from

bladder cancer research. Under a neutrosophic environment, the remission periods data set is

used by [32] to model the neutrosophic exponential distribution.

Based on their study remission periods of cancer patients is well fitted to NED. We use the

same data set for the illustration of NGE distribution. Actively, data are the crumple obser-

vations, whereas to demonstrate the model, consider them as ambiguous sample observations

for specified cancer patients. The developed NGE distribution parameters are estimated based

on uncertainties of remission periods of cancer patients. The results in Table 6 shows that

NGED is more effective to investigate the properties of uncertainties of remission periods of

cancer patients neutrosophic data than the NED.

6.2. Example 2

To demonstrate a real example here we considered an rough population compactness of few

villages in rural USA. This data is taken from [33] and they studied for neutrosophic W/S

test based on the data follows to neutrosophic normal distribution. This data consists of the

population of 17 villages in USA and their neutrosophic data, which is reproduced in Table 7

for ready reference. The results in Table 8 also shows that NGED is more suitable to fit the

data than the NED.

7. Conclusions

In this article, a generalization exponential distribution is developed under neutrosophic

statistics environment. Very few researchers have studied probability distributions based on
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Table 5. Remission periods of 128 cancer patients.

Remission times

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.2

2.23 3.52 4.98 6.97 9.02 13.29 0.4 2.26 3.57

5.06 7.09 9.22 13.8 25.74 0.5 2.46 3.64 5.09

[7.26, 8.2] 9.47 14.24 25.82 0.51 2.54 3.7 5.17 7.28

9.74 14.76 [5.3, 7.1] 0.81 2.62 3.82 5.32 7.32 10.06

[12, 14.77] 32.15 2.64 3.88 5.32 7.39 10.34 14.83 34.26

0.9 2.69 4.18 5.34 7.59 10.66 15.96 36.66 1.05

2.69 4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75

4.26 5.41 7.63 [15, 17.2] 46.12 1.26 2.83 4.33 5.49

7.66 11.25 17.14 [75.02, 81] 1.35 2.87 5.62 7.87 11.64

17.36 1.4 3.02 4.34 5.71 7.93 11.79 18.1 1.46

4.4 5.85 8.26 11.98 19.13 1.76 3.25 4.5 6.25

8.37 12.02 [1.5, 3.2] 3.31 4.51 6.54 [7.5, 8.2] 12.03 20.28

2.02 3.36 6.76 12.07 21.73 2.07 3.36 6.93 8.65

12.63 22.69

Table 6. Estimates and Goodness-of-fit statistics for data set 1.

Model Parameter Estimates LogLikelihood AIC BIC KS

NND
µ [9.1196,9.2453] [-478.1315,-482.0838] [960.263,968.1676] [975.6711,983.5758] [0.1899,0.1941]

σ [10.1397,10.4577]

NGD
shape [1.1896,1.1884] [-409.7832,-411.5487] [823.5665,827.0975] [838.9746,842.5056] [0.0757,0.0769]

scale [7.6658,7.7796]

NWD
shape [1.0553,1.0519] [-410.5979,-412.3855] [825.1958,828.7710] [840.6039,844.1791] [0.0716,0.0737]

scale [9.3370,9.4544]

NRD υ [9.6432,9.8702] [-486.1404,-490.4138] [976.2808,984.8275] [991.6890,1000.2360] [0.3544,0.3542]

NED υ [0.1096,0.1081] [-410.9358,-412.6880] [825.8715,829.3760] [841.2796,844.7842] [0.0815,0.0869]

NGED
υ [7.9506,8.0568] [-409.4565,-411.2037] [822.9129,826.4074] [838.3210,841.8155] [0.0752,0.0759]

δ [1.2390,1.2397]

neutrosophic statistics. The mathematical properties of the developed neutrosophic general-

ization exponential distribution are studied. The nature of the distribution is studied through

various neutrosophic parametric combinations. Using the maximum likelihood method the

parameters are estimated. A simulation study is carried out under neutrosophic environment.

The average Bias and MSE decrease as the sample size increases, as expected. Finally, the

application of the proposed NGE distribution is presented through real data sets. A com-

parative study with other distributions is also done based real data sets. Based on real data

examples, we conclude that the NGE distribution furnishes better performance over existing
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Table 7. Neutrosophic population density of some villages in the USA

Villages Population density Villages Population density

Aranza [4.13,4.14] Charapan [5.10,5.12]

Corupo [4.53,4.55] Comachuen [5.25,5.27]

San Lorenzo [4.69,4.70] Pichataro [5.36,5.38]

Cheranatzicurin [4.76,4.78] Quinceo [5.94,5.96]

Nahuatzen [4.77,4.79] Nurio [6.06,6.08]

Pomacuaran [4.96,4.98] Turicuaro [6.19,6.21]

Servina [4.97,4.99] Urapicho [6.30,6.32]

Arantepacua [5.00,5.06] Capacuaro [7.73,7.98]

Cocucho [5.04,5.06]

Table 8. Estimates and Goodness-of-fit statistics for data set 2.

Model Parameter Estimates LogLikelihood AIC BIC KS

NND
µ [5.3400,5.3723] [-21.1554,-21.9577] [46.3107,47.9155] [53.6436,55.2483] [0.2007,0.2024]

σ [0.8398,0.8804]

NGD
shape [40.4254,37.2310] [-20.2481,-20.9136] [44.4962,45.8272] [51.8290,53.1600] [0.1821,0.1816]

scale [0.1320,0.1442]

NWD
shape [5.8980,5.5773] [-23.0417,-23.9417] [50.0834,51.8834] [57.4162,59.2162] [0.2097,0.2115]

scale [5.7143,5.7621]

NRD υ [3.8223,3.8495] [-34.3024,-34.4533] [72.6049,72.9067] [79.9377,80.2395] [0.4457,0.4439]

NED υ [0.1873,0.1861] [-45.47884,-45.5815] [94.9577,95.1630] [102.2905,102.4959] [0.5386,0.5373]

NGED
υ [0.6067,0.6187] [-18.7673,-19.1981] [41.5345,42.3961] [48.8674,49.7290] [0.1443,0.1466]

δ [3630.608,3209.943]

distributions. This article develops a generalized exponential distribution inside a neutro-

sophic statistical framework. The study of probability distributions based on neutrosophic

statistics is quite uncommon. The generated neutrosophic generalization exponential distribu-

tion’s mathematical characteristics are investigated. The distribution’s nature is investigated

using a variety of neutrosophic parametric combinations. The parameters are computed using

the maximum likelihood approach. Simulation research is conducted in a neutrosophic setting.

When expected, as the sample size grows, the average bias and MSE drop. The use of the

suggested NGE distribution is then shown using actual data sets. Based on actual data sets, a

comparison study with different distributions is also conducted. We draw the conclusion that

the NGE distribution offers superior performance over current distributions based on studied

instances.
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