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—————————————————————————————————————————-

1. Introduction

L. A. Zadeh [14] first put forward the idea of fuzzy sets in 1965, C. L. Chang [5] created fuzzy

topological spaces in 1968, built around the idea of fuzzy sets, In 1986 [2] K. Atanassov de-

rived the intuitionistic fuzzy sets, In 1997 [6] D.Coker have introduced the intuitionistic fuzzy

topological spaces, F. Smarandache [9] proposed A unified field approach in neutrosophic logic

in 1999 and analyzed some of its characteristics, F. Smarandache [10] started researching neu-

trosophy and neutrosophic logic in 2002. A. A. Salama and S. A. Alblowi [8] examined the

neutrosophic set and neutrosophic topological spaces in 2012 and mentioned some of their

findings. Broumi Said and Florentin Smarandache [4] proposed the intuitionistic neutrosophic

soft set concept and derived some results in 2013. Smarandache, Florentin, Said Broumi,

Mamoni Dhar, and Pinaki Majumdar [11] brought new intuitionistic fuzzy soft set results and

derived some results in 2014. Wadel Faris Al-omeri and Florentin Smarandache [13] suggested

a new neutrosophic sets using neutrosophic topological spaces in Wadel Faris Al-omeri and

P.Basker and Broumi Said, On Neutrosophic Homeomorphisms via Neutrosophic Functions

Neutrosophic Sets and Systems, Vol. 55, 2023



Florentin Smarandache’s article.

In 2017 [1] I.Arokiarani, R.Dhavaseelan, S. Jafari and M.Parimala have derived some new

notions and functions in neutrosophic topological spaces, In 2021 [3] P. Basker, Broumi Said

have introduced Nψ#0
α and Nψ#1

α -spaces in neutrosophic topological spaces, In 2021 [7] D.

Nagarajan, S. Broumi, F. Smarandache, and J. Kavikumar derived the analysis of neutro-

sophic multiple regression and have given some properties, In 2021 [12] A. Vadivel1, C. John

Sundar derived the neutrosophic δ-open maps and neutrosophic δ-closed maps

The abbreviations NS and NTS refer to the neutrosophic set and neutrosophic toplogical

spaces, respectively, throughout this study.

2. Preliminaries

We should review and analyze definitions before we begin our study.

Definition 2.1. A NS, A in a NTS is referred to as a neutrosophic set, Nα-open set (NαOS),

if A is a subset of Nint(Ncl(Nint(A))). The complement of NαOS is called NαCS.

Definition 2.2. (a) Assume N is an NTS and n ∈ N . N1 is a subset of N is called as

Nα-nbhd of n ∃ Nα-open set N2 such that n ∈ N2 ⊂ N1.

The collection of all Nα-nbhd of n ∈ N is called Nα-neighbourhood system at n and shall be

denoted by NBHNα(n).

(b) Let N be a NTS and N1 be a subset of N , A subset N2 of N is supposed to be Nα-

nbhd of N1 ∃ Nα-open set M such that N1 ∈M ⊆ N2.

(c) Let N1 be a subset of N . A point n1 ∈ N1 is supposed to be Nα-interior point of

N1, if N1 is an NBHNα(n1). The entirety of everything Nα-interior points of N1 is referred

to as an Nα-interior of N1 and is denoted by NBHNα(n1).

(d) Nα-interior of N1 is the union of all NαOS ⊂ N1 and it is denoted by INTNα(N1).

INTNα(N1) =
⋃
{M : M is NαOS, M ⊆ N1}.

(e) Nα-closure of N1 is the intersection of all NαCS ⊃ N1 and it is denoted by CLNα(N1).

CLNα(N1) =
⋂
{M : M is a Nα-closed set and N1 ⊆M}.

(f)
⋂

of all Nα-open subsets of (N, τN ) containing N1 is called the Nα-kernel of N1 (briefly,

nkNα# (N1)). nk
Nα
# (N1) = ∩{M ∈ Nα(N, τN ) : N1 ⊆M}.
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(g) Let n ∈ N1. Then Nα-kernel of n is meant to refer to as nkNα# ({n}) = ∩{M ∈ Nα(N, τN ) :

n ∈M}. CLNα(N1) =
⋂
{M : N1 ⊂M ∈ Nα(N, τN )}.

3. On tNα# -space via NαOS

Definition 3.1. L is NS in a NTS, NαM#CS if Nint(Ncl(L)) is a subset of Q, only when

L is a ⊂ of Q and Q is NαOS. The opponent of NαM#CS is called an NαM#OS.

Example 3.2. Here N = {n1, n2, n3} with τN = {0N , 1N , O1, O2} where

O1 =
〈
( 7
10 ,

7
10 ,

5
10), ( 3

10 ,
8
10 , 1), (1, 8

10 ,
6
10)
〉
,

O2 =
〈
( 2
10 ,

5
10 ,

9
10), ( 3

10 ,
7
10 , 1), ( 7

10 ,
6
10 , 1)

〉
,

O3 =
〈
( 3
10 ,

3
10 ,

5
10), ( 7

10 ,
2
10 , 0), (0, 2

10 ,
4
10)
〉
,

O4 =
〈
( 8
10 ,

5
10 ,

1
10), ( 7

10 ,
3
10 , 0), ( 3

10 ,
4
10 , 0)

〉
,

O5 =
〈
( 4
10 ,

5
10 , 1), ( 2

10 ,
3
10 , 1), ( 5

10 ,
3
10 , 1)

〉
. Here the sets O3, O4 and O5 are the NαM#CS.

Definition 3.3. A NTS is neutrosophic in nature which is tNα# -space if every NαM#CS is

CS.

Theorem 3.4. For a TS that is neutrosophic (N, τN ) The criteria listed below are equivalent.

(a) (N, τN ) is tNα# -space.

(b) Every singleton {n1} is either NαCS (or) NclNopen.

Proof. (a) ⇒ (b) Let n1 ∈ N . Suppose {n1} is not an NαCS of (N, τN ). Then N − {n1}
is not an NαOS. Thus N − {n1} is an NαCS of (N, τN ). Since (N, τN ) is a tNα# -space,

N − {n1} is a NαCS of (N, τN ), i.e., {n1} is NαOS of (N, τN ).

(b) ⇒ (a) Let N1 be an NαM#CS of (N, τN ). Let n1 ∈ Nint(Ncl(N1)) by (b), {n1} is

either NαCS (or) NclNopen.

Case(i): Let {n1} be an NαCS. If we take the presumption that n1 /∈ N1, we would now

have n1 ∈ Nint(Ncl(N1))−N1 which isn’t possible. Hence n1 ∈ N1.

Case(ii): Let {n1} be a NclNopen. Since n1 ∈ Nint(Ncl(N1)), then {n1}
⋂
N1 6= φN . This

demonstrates that n1 ∈ N1. As a result, in both circumstances, we have Nint(Ncl(A)) ⊆ N1.
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Trivially N1 ⊆ Nint(Ncl(N1)). Therefore N1 = Nint(Ncl(N1)) (or) equivalently N1 is

NclNopen. Hence (N, τN ) is a tNα# -space.

Definition 3.5. A function D : (N I , τ iN ) −→ (N II , τ iiN ) is called

(a) an NαM#-continuous if D−1(Y ) is NαM#CS in (N I , τ iN ) for every closed set Y of

(N II , τ iiN ).

(b) an NαM#-irresolute if D−1(Y ) is NαM#CS in (N I , τ iN ) for every NαM#CS Y of

(N II , τ iiN ).

Example 3.6. Let N = {n1, n2, n3} with τN = {0N , 1N , η#1 , η
#
2 , η

#
3 , η

#
4 } and δN =

{0N , 1N , η∗1, η∗2, η∗3, η∗4} where

η#1 =
〈
( 4
10 ,

4
10 ,

6
10), ( 5

10 ,
4
10 ,

6
10), ( 5

10 ,
8
10 ,

7
10)
〉
,

η#2 =
〈
( 5
10 ,

7
10 ,

7
10), ( 6

10 ,
5
10 ,

5
10), ( 5

10 ,
5
10 ,

4
10)
〉
,

η#3 =
〈
( 5
10 ,

7
10 ,

7
10), ( 5

10 ,
5
10 ,

5
10), ( 5

10 ,
5
10 ,

4
10)
〉
,

η#4 =
〈
( 4
10 ,

4
10 ,

3
10), ( 6

10 ,
5
10 ,

5
10), ( 5

10 ,
7
10 ,

7
10)
〉
,

η∗1 =
〈
( 5
10 ,

7
10 ,

6
10), ( 4

10 ,
5
10 ,

4
10), ( 5

10 ,
5
10 ,

6
10)
〉
,

η∗2 =
〈
( 5
10 ,

5
10 ,

5
10), ( 4

10 ,
4
10 ,

3
10), ( 5

10 ,
7
10 ,

6
10)
〉
,

η∗3 =
〈
( 5
10 ,

5
10 ,

5
10), ( 4

10 ,
5
10 ,

4
10), ( 5

10 ,
7
10 ,

6
10)
〉
,

η∗4 =
〈
( 5
10 ,

7
10 ,

6
10), ( 4

10 ,
4
10 ,

3
10), ( 5

10 ,
5
10 ,

6
10)
〉
. Thus, (N, τN ) and (N, δN ) are Nutrosophic

Topologies. Define Λ : (N, τN ) −→ (N, δN ) as Λ(n1) = n1, Λ(n2) = n3, Λ(n3) = n2.

Then Λ is NαM#-continuous, since Λ−1(L#) is NαM#CS in (N, τN ) for every closed set L#

of (N, δN ) where L# =
〈
( 3
10 ,

5
10 ,

5
10), ( 4

10 ,
4
10 ,

4
10), ( 5

10 ,
5
10 ,

6
10)
〉
.

Proposition 3.7. If D : (N I , τ iN ) −→ (N II , τ iiN ) be an NαM#-continuous function and

(N I , τ iN ) be a tNα# -space, D is continuous.

Proof. Assume Y to be closed in (N II , τ iiN ). As such D is an NαM#-continuous function,

D−1(Y ) is an NαM#CS in (N I , τ iN ). Since (N I , τ iN ) is a tNα# -space, D−1(Y ) is closed set in

(N I , τ iN ). Hence D is continuous.

Remark 3.8. Let D : (N I , τ iN ) −→ (N II , τ iiN ) be a mapping and (N I , τ iN ) be a tNα# -space,

then D is continuous if one of the following conditions is satisfied.
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(a) f is NαM#-continuous.

(b) f is NαM#-irresolute.

Theorem 3.9. A map D : (N I , τ iN ) −→ (N II , τ iiN ) is an NαM#-continuous function ⇐⇒
every open set’s inverted image in (N II , τ iiN ) are the NαM#OS in the (N I , τ iN ).

Proof. Necessity : Assume D : (N I , τ iN ) −→ (N II , τ iiN ) be an NαM#-continuous function

and Z be a collection that is open in (N II , τ iiN ), N II − Z is closed (N II , τ iiN ). As such D is

an NαM#-continuous function, f−1(N II − Z) = N I − D−1(Z) is an NαM#CS in (N I , τ iN )

and hence D−1(Z) is an NαM#OS in (N I , τ iN ).

Sufficiency : Assume that D−1(Y ) is an NαM#OS in (N I , τ iN ) for each open set N II in

(N II , τ iiN ). Assume Y is a closed set in (N II , τ iiN ), N II −Y is a set that is open in (N II , τ iiN ).

By assumption, D−1(N II − Y ) = N I −D−1(Y ) is an NαM#OS in (N I , τ iN ), which implies

that D−1(Y ) is an NαM#CS in (N I , τ iN ). Hence D is an NαM#-continuous.

Proposition 3.10. Let D1 : (N I , τ iN ) −→ (N II , τ iiN ) be any topological space that is neutro-

sophic (N II , τ iiN ) is a tNα# -space. If D1 : (N I , τ iN ) −→ (N II , τ iiN ) and D2 : (N II , τ iiN ) −→
(N III , τ iiiN ) are NαM#-continuous functions, then their composition D2 ◦D1 : (N I , τ iN ) −→
(N III , τ iiiN ) is an NαM#-continuous.

Proof. Assume Y is a closed set in (N III , τ iiiN ). As such D2 : (N II , τ iiN ) −→ (N III , τ iiiN ) is

an NαM#-continuous function, D−1
2 (Y ) is an NαM#CS in (N II , τ iiN ). Since (N II , τ iiN ) is a

tNα# -space, D−1
2 (Y ) is a closed set in (N II , τ iiN ). Since D1 : (N I , τ iN ) −→ (N II , τ iiN ) is an

NαM#-continuous function, D−1
1 (D−1

2 (Y )) = (D2 ◦ D1)
−1(Y ) is an NαM#CS in (N I , τ iN ).

Hence D2 ◦D1 : (N I , τ iN ) −→ (N III , τ iiiN ) is an NαM#-continuous function.

Definition 3.11. A map D : (N I , τ iN ) −→ (N II , τ iiN ) is said to be

(p) NαM#-closed map if D(Y ) is NαM#-closed in (N II , τ iiN ) for every NCS Y of (N I , τ iN ).
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(q) NαM#-open map if D(Y ) is NαM#-open in (N II , τ iiN ) for every NOS Y of (N I , τ iN ).

Theorem 3.12. Let D1 : (N I , τ iN ) −→ (N II , τ iiN ) and D2 : (N II , τ iiN ) −→ (N III , τ iiiN ) be

two mappings and (N II , τ iiN ) be a tNα# -space, then

(a) D2 ◦D1 is NαM#-continuous, if D1 and D2 are NαM#-continuous.

(b) D2 ◦D1 is NαM#-closed, if D1 and D2 are NαM#-closed.

Proof. (a) Let Y be a NCS of (N III , τ iiiN ), then D−1
2 (Y ) is NαM#-closed set in (N II , τ iiN ).

Since (N II , τ iiN ) is a tNα# -space, then D−1
2 (Y ) is a NCS in (N II , τ iiN ). But D1 is NαM#-

continuous, then (D2 ◦ D1)
−1(Y ) = D−1

1 (D−1
2 (Y )) is NαM#-closed in (N I , τ iN ) this implies

that (D2 ◦D1) is NαM#-continuous mappings.

(b) The proof is similar.

Remark 3.13. Let D : (N I , τ iN ) −→ (N II , τ iiN ) be a mapping from a tNα# -space (N I , τ iN )

into a space (N II , τ iiN ), then

(p) D1 is continuous mapping if, D1 is NαM#-continuous.

(q) D1 is closed mapping if, D1 is NαM#-closed.

Theorem 3.14. Let D : (N I , τ iN ) −→ (N II , τ iiN ) is surjective closed and NαM#-irresolute,

then (N II , τ iiN ) tNα# -space if (N I , τ iN ) is also tNα# -space.

Proof. Let Y be an NαM#-closed subset of (N II , τ iiN ). Then D−1
1 (Y ) is NαM#-closed set in

(N I , τ iN ). Since, (N I , τ iN ) is a tNα# -space, then D−1
1 (Y ) is closed set in (N I , τ iN ). Hence, Y

is closed set in (N II , τ iiN ) and so, (N II , τ iiN ) is tNα# -space.

Proposition 3.15. If D1 : (N I , τ iN ) −→ (N II , τ iiN ) is NαM#-closed, D2 : (N II , τ iiN ) −→
(N III , τ iiiN ) is an NαM#-closed, and (N II , τ iiN ) is a tNα# -space, then their composition
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D2 ◦D1 : (N I , τ iN ) −→ (N III , τ iiiN ) is NαM#-closed.

Proof. Let N1 be a NCS of (N I , τ iN ). Then by assumption D1(N1) is NαM#-closed in

(N II , τ iiN ). Since (N II , τ iiN ) is a tNα# -space, D1(N1) is NCS in (N II , τ iiN ) and again by

assumption D2(D1(N1)) is NαM#-closed in (N III , τ iiiN ). i.e., (D2 ◦D1)(N1) is NαM#-closed

in (N III , τ iiiN ) and so D2 ◦D1 is NαM#-closed.

Proposition 3.16. For any bijection D : (N I , τ iN ) −→ (N II , τ iiN ) the following statements

are equivalent:

(p) D−1 : (N II , τ iiN ) −→ (N I , τ iN ) is NαM#-continuous.

(q) D is NαM#-open map.

(r) D is NαM#-closed map.

Proof. (p) =⇒ (q) Let U be a NOS of (N I , τ iN ). By assumption, (D−1)−1(U) = D(U) is

NαM#-open in (N II , τ iiN ) and so D is NαM#-open.

(q) =⇒ (r) Let F be a NCS of (N I , τ iN ). Then F c is NOS in (N I , τ iN ). By assumption,

D(F c) is NαM#-open in (N II , τ iiN ). That is D(F c) = (D(F ))c is NαM#-open in (N II , τ iiN )

and therefore D(F ) is NαM#-closed in (N II , τ iiN ). Hence D is NαM#-closed.

(r) =⇒ (p) Let F be a NCS of (N I , τ iN ). By assumption, D(F ) is NαM#-closed in (N II , τ iiN ).

But D(F ) = (D−1)−1(F ) and therefore D−1 is NαM#-continuous.

4. On NαM#-homeomorphisms

Definition 4.1. A function D : (N I , τ iN ) −→ (N II , τ iiN ) is supposed to be an NαM#-

homeomorphism [(hmpm(N, τN ))
Nα

M# ] if both D and D−1 are NαM#-irresolute.

P.Basker and Broumi Said, On Neutrosophic Homeomorphisms via Neutrosophic Functions

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               409



We are using the entire family of all NαM#-homeomorphisms of a NTS (N I , τ iN ) onto itself

by NαM#-H(N, τN ).

Example 4.2. Let MN1
= {α, β}, MN2

= {γ, δ}, O#
1 =

〈
( 2
10 ,

6
10 ,

3
10), ( 3

10 ,
6
10 ,

4
10), ( 3

10 ,
7
10 ,

4
10)
〉
,

O#
2 =

〈
( 4
10 ,

6
10 ,

5
10), ( 5

10 ,
6
10 ,

6
10), ( 5

10 ,
7
10 ,

6
10)
〉
. Then τE1 = {0E , 1E , O#

1 } and τE2 =

{0E , 1E , O#
2 } are neutrosophic topologies on MN1

and MN2
respectively. Define a bijective

mapping FNf# = (MN1
, τE1) −→ (MN2

, τE2) by FNf#(α) = γ and FNf#(β) = δ. Then

FNf# is a NαM#-irresolute F−1
Nf#

is also a NαM#-irresolute. Therefore the bijection function

FNf# is a (hmpm(N, τN ))
Nα

M# .

Proposition 4.3. Let D1 : (N I , τ iN ) −→ (N II , τ iiN ) and D2 : (N II , τ iiN ) −→ (N III , τ iiiN ) are

(hmpm(N, τN ))
Nα

M# , then their composition

D2 ◦D1 : (N I , τ iN ) −→ (N III , τ iiiN ) is also (hmpm(N, τN ))
Nα

M# .

Proof. Let J be an NαM#OS in (N III , τ iiiN ). Since D2 is NαM#-irresolute, D−1
2 (J) is

NαM#OS in (N II , τ iiN ). Since D1 is NαM#-irresolute, D−1
1 (D−1

2 (Y )) = (D2 ◦ D1)
−1(Y )

is NαM#OS in (N I , τ iN ). Therefore D2 ◦D1 is NαM#-irresolute.

Also for an NαM#OS, G in (N I , τ iN ), we have (D2◦D1)(G) = D2(D1(G)) = D2(W ), where

W = D1(G). By hypothesis, D1(G) is NαM#OS in (N II , τ iiN ) and so again by hypothesis,

D2(D1(G)) is an NαM#OS in (N III , τ iiiN ). That is (D2◦D1)(G) is an NαM#OS in (N III , τ iiiN )

and therefore (D2 ◦D1)
−1 is NαM#-irresolute. Also D2 ◦D1 is a bijection. Hence D2 ◦D1 is

(hmpm(N, τN ))
Nα

M# .

Theorem 4.4. The set NαM#-H(N, τN ) is a subset of the map composition.

Proof. Establish a binary operation ∗ : NαM#-H(N, τN ) × NαM#-H(N, τN ) −→ NαM#-

H(N, τN ) by D1 ∗D2 = D2 ◦D1 for all D1, D2 ∈ NαM#-H(N, τN ) and circ is the standard

map composition operation. D2 ◦D1 ∈ NαM#-H(N, τN ).

We notice that maps are made up of associative elements, and the identity map is no

exception I : (N, τN ) −→ (N, τN ) belonging to NαM#-H(N, τN ) identity element as a

distinguishing feature. If D1 ∈ NαM#-H(N, τN ), then D−1
1 ∈ NαM#-H(N, τN ) such that

D1◦D−1
1 = D−1

1 ◦D1 = I. As a result, there is an inverse for each element of NαM#-H(N, τN ).
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Consequently NαM#-H(N, τN ), ◦) is a network of under the operation on map composition.

Proposition 4.5. Let J : (N I , τ iN ) −→ (N II , τ iiN ) be an NαM#-homeomorphism, J causes

the group to become isomorphic NαM#-H(N I , τ iN ) onto NαM#-H(N II , τ iiN ).

Proof. Making use of the map J , We construct a map ΨJ : NαM#-H(N I , τ iN ) −→ NαM#-

H(N II , τ iiN ) by ΨJ(F ) = J ◦ F ◦ J−1 for every F ∈ NαM#-H(N I , τ iN ). Then ΨJ is a

bijection. Further, for all h1, h2 ∈ NαM#-H(N I , τ iN ), ΨJ(F1 ◦ F2) = J ◦ (F1 ◦ F2) ◦ J−1 =

(J ◦ F1 ◦ J−1) ◦ (J ◦ F2 ◦ J−1) = ΨJ(F1) ◦ΨJ(F2).

Therefore, ΨJ It is an isomorphism caused by a homeomorphism by J .

5. On NαM#-connectedness

Definition 5.1. A NTS(N, τN ) is noted to be NαM#-connected if N can’t be characterized

as a non-empty union of two distinct elements NαM#OS. A subset of N is NαM#-connected

if any of this NαM#-connected as a subspace.

Theorem 5.2. For a NTS(N, τN ), the following are better compared.

(a) (N, τN ) is NαM#-connected.

(b) (N, τN ) and φN seem to be the only subsets of (N, τN ) both of which are NαM#-open and

NαM#-closed.

(c) Each NαM#-continuous map of (N I , τ iN ) into a discrete space (N II , τ iiN ) the map is

constant if there are at least two points.

Proof. (a) =⇒ (b): Suppose (N I , τ iN ) is NαM#-connected. Let S be both a valid subset

NαM#OS and NαM#CS in (N I , τ iN ). Its complement N/S is also NαM#-open and NαM#-

closed. N = S ∪ (N/S), a non-empty union that is disjointed NαM#-open sets that are

incompatible (a). Therefore S = φ or N .
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(b) =⇒ (a): Suppose that N = I1 ∪ I2 where I1 and I2 are disjoint non-empty NαM#-

open subsets of (N I , τ iN ). Then I1 is both NαM#-open and NαM#-closed. By assumption

I1 = φ or N . Therefore N is NαM#-connected.

(b) =⇒ (c): Let D : (N I , τ iN ) −→ (N II , τ iiN ) be an NαM#-continuous map. Then (N I , τ iN )

is covered by NαM#-open and NαM#-closed covering
{
D−1(nii) : nii ∈ Nii

}
. By assumption

D−1(nii) = φN or N for each nii ∈ Nii. If D−1(nii) = φ for all nii ∈ Nii, then D a map that

isn’t a map. Then ∃ a point nii ∈ Nii such that D−1(nii) 6= φN and hence D−1(nii) = N .

This shows that D is a constant map.

(c) =⇒ (b): Let S be both NαM#-open and NαM#-closed in N . Suppose S 6= φ. Let

D : (N I , τ iN ) −→ (N II , τ iiN ) be an NαM#-continuous map defined by D(S) = nii and

D(Sc) = {ω} for a few key reasons nii and ω in (N II , τ iiN ). By assumption D is a constant

map. Therefore we have S = N .

Theorem 5.3. Every NαM#-Space that is linked is connected.

Proof. Let (N I , τ iN ) be NαM#-linked(connected). Suppose N is not connected. There is then

a suitable non-empty subset. B of (N I , τ iN ) which has both an open and a closed sets in

(N I , τ iN ). Since every closed set is NαM#-closed, B is a proper non empty subset of (N I , τ iN )

as well as NαM#OS and NαM#CS in (N I , τ iN ), (N I , τ iN ) is not NαM#-connected. This

proves the theorem.

Theorem 5.4. If J : (N I , τ iN ) −→ (N II , τ iiN ) is an NαM#-continuous and N is NαM#-

connected, then (N II , τ iiN ) is linked.

Proof. Presume that (N II , τ iiN ) is not linked. Let N ii = V1 ∪ V2 where V1 and V2 are disjoint

non-empty OS in (N II , τ iiN ). As such J is NαM#-continuous and onto, N = J−1(V1)∪J−1(V2)

where J−1(V1) and J−1(V2) are disjoint non-empty NαM#-open sets in (N I , τ iN ).

This is diametrically opposed to the fact that (N I , τ iN ) is NαM#-connected. Furthermore

N ii is connected.
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Theorem 5.5. If J : (N I , τ iN ) −→ (N II , τ iiN ) is an NαM#-irresolute and (N I , τ iN ) is NαM#-

connected, then (N II , τ iiN ) is NαM#-connected.

Proof. Suppose that (N II , τ iiN ) is not NαM#-connected. Let N ii = V1 ∪ V2 where V1 and V2

are disjoint non-empty NαM#-open sets in (N II , τ iiN ). Since J is NαM#-irresolute and onto,

N = j−1(V1) ∪ j−1(V2) where J−1(V1) and J−1(V2) are disjoint non-empty NαM#-open sets

in (N I , τ iN ).

This contradicts the fact that (N I , τ iN ) is NαM#-connected. Hence (N II , τ iiN ) is NαM#-

connected.

Theorem 5.6. Suppose that (N I , τ iN ) is tNα# -space then (N I , τ iN ) is connected ⇐⇒ NαM#-

connected.

Proof. Suppose that (N I , τ iN ) is connected. Then (N I , τ iN ) disjoint union of two non-empty

proper subsets of the set cannot be expressed in (N I , τ iN ). Suppose (N I , τ iN ) is not a NαM#-

connected space. Let V1 and V2 be any two NαM#-open subsets of (N I , τ iN ) such that

N ii = V1 ∪ V2, where V1 ∩ V2 = φN and V1 ⊂ N , V2 ⊂ N Since (N I , τ iN ) is tNα# -space and V1,

V2 are NαM#-open. V1, V2 are open subsets of (N I , τ iN ), which contradicts that (N I , τ iN ) is

connected. Therefore (N I , τ iN ) is NαM#-connected.

Conversely, every open set is NαM#-open. Therefore every NαM#-connected space is con-

nected.

Theorem 5.7. If the NαM#-open sets Z1 and Z2 form a separation of (N I , τ iN ) and if

(N II , τ iiN ) is NαM#-connected subspace of (N I , τ iN ), then (N II , τ iiN ) lies entirely within Z1

or Z2.

Proof. Since Z1 and Z2 are both NαM#-open in (N I , τ iN ), the sets Z1 ∩N ii and Z2 ∩N ii are

NαM#-open in (N II , τ iiN ). These two sets are incompatible, thus their union is impossible is

(N II , τ iiN ). They would represent a separation if they were both non-empty (N II , τ iiN ).
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Therefore, one of them is empty. Hence (N II , τ iiN ) must lie entirely in Z1 or in Z2.

6. Conclusion

The notions of NαM#CS in neutrosophic topological spaces have been discussed in this re-

search study. We have also introduced the neutrosophic tNα# -space in this paper. The mappings

known as neutrosophic NαM#-continuous functions, NαM#-irresolute functions, homeomor-

phisms and connectedness have also been introduced and investigate their characterizations

and distinguishing features.
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