

University of New Mexico

On Neutrosophic Homeomorphisms via Neutrosophic Functions

P. $\operatorname{Basker}^{1,*},$ Broumi Said^2

¹Associate Professor, Department of Mathematics, Chandigarh University, Punjab-140413, India; mcpdbasker@gmail.com

²Laboratory of Information Processing, Faculty of Science Ben M'Sik, University Hassan II, Casablanca, Morocco; broumisaid78@gmail.com

*Correspondence: mcpdbasker@gmail.com

Abstract. By using neutrosophic m-alpha closed sets in neutrosophic topological spaces, we introduce the space known as neutrosophic t-alpha space in this paper. We also introduce the mappings referred as neutrosophic m-alpha continuous functions, homeomorphisms, and connectedness, and we research the characterizations and their properties.

Keywords: neutrosophic t-alpha space, neutrosophic m-alpha closed sets, neutrosophic m-alpha continuous functions, neutrosophic m-alpha homeomorphisms and neutrosophic m-alpha connectedness.

1. Introduction

L. A. Zadeh [14] first put forward the idea of fuzzy sets in 1965, C. L. Chang [5] created fuzzy topological spaces in 1968, built around the idea of fuzzy sets, In 1986 [2] K. Atanassov derived the intuitionistic fuzzy sets, In 1997 [6] D.Coker have introduced the intuitionistic fuzzy topological spaces, F. Smarandache [9] proposed A unified field approach in neutrosophic logic in 1999 and analyzed some of its characteristics, F. Smarandache [10] started researching neutrosophy and neutrosophic logic in 2002. A. A. Salama and S. A. Alblowi [8] examined the neutrosophic set and neutrosophic topological spaces in 2012 and mentioned some of their findings. Broumi Said and Florentin Smarandache [4] proposed the intuitionistic neutrosophic soft set concept and derived some results in 2013. Smarandache, Florentin, Said Broumi, Mamoni Dhar, and Pinaki Majumdar [11] brought new intuitionistic fuzzy soft set results and derived some results in 2014. Wadel Faris Al-omeri and Florentin Smarandache [13] suggested a new neutrosophic sets using neutrosophic topological spaces in Wadel Faris Al-omeri and

P.Basker and Broumi Said, On Neutrosophic Homeomorphisms via Neutrosophic Functions

Florentin Smarandache's article.

In 2017 [1] I.Arokiarani, R.Dhavaseelan, S. Jafari and M.Parimala have derived some new notions and functions in neutrosophic topological spaces, In 2021 [3] P. Basker, Broumi Said have introduced $N\psi_{\alpha}^{\#0}$ and $N\psi_{\alpha}^{\#1}$ -spaces in neutrosophic topological spaces, In 2021 [7] D. Nagarajan, S. Broumi, F. Smarandache, and J. Kavikumar derived the analysis of neutrosophic multiple regression and have given some properties, In 2021 [12] A. Vadivel1, C. John Sundar derived the neutrosophic δ -open maps and neutrosophic δ -closed maps

The abbreviations NS and NTS refer to the neutrosophic set and neutrosophic topological spaces, respectively, throughout this study.

2. Preliminaries

We should review and analyze definitions before we begin our study.

Definition 2.1. A NS, A in a NTS is referred to as a neutrosophic set, $N\alpha$ -open set $(N\alpha OS)$, if A is a subset of Nint(Ncl(Nint(A))). The complement of $N\alpha OS$ is called $N\alpha CS$.

Definition 2.2. (a) Assume N is an NTS and $n \in N$. N_1 is a subset of N is called as $N\alpha$ -nbhd of $n \exists N\alpha$ -open set N_2 such that $n \in N_2 \subset N_1$.

The collection of all $N\alpha$ -nbhd of $n \in N$ is called $N\alpha$ -neighbourhood system at n and shall be denoted by $NBH_{N\alpha}(n)$.

(b) Let N be a NTS and N_1 be a subset of N, A subset N_2 of N is supposed to be $N\alpha$ nbhd of $N_1 \exists N\alpha$ -open set M such that $N_1 \in M \subseteq N_2$.

(c) Let N_1 be a subset of N. A point $n_1 \in N_1$ is supposed to be $N\alpha$ -interior point of N_1 , if N_1 is an $NBH_{N\alpha}(n_1)$. The entirety of everything $N\alpha$ -interior points of N_1 is referred to as an $N\alpha$ -interior of N_1 and is denoted by $NBH_{N\alpha}(n_1)$.

(d) $N\alpha$ -interior of N_1 is the union of all $N\alpha OS \subset N_1$ and it is denoted by $INT_N\alpha(N_1)$. $INT_N\alpha(N_1) = \bigcup \{M : M \text{ is } N\alpha OS, M \subseteq N_1\}.$

(e) $N\alpha$ -closure of N_1 is the intersection of all $N\alpha CS \supset N_1$ and it is denoted by $CL_N\alpha(N_1)$. $CL_N\alpha(N_1) = \bigcap \{M : M \text{ is a } N\alpha\text{-closed set and } N_1 \subseteq M \}.$

(f) \bigcap of all $N\alpha$ -open subsets of (N, τ_N) containing N_1 is called the $N\alpha$ -kernel of N_1 (briefly, $nk_{\#}^{N\alpha}(N_1)$). $nk_{\#}^{N\alpha}(N_1) = \cap \{M \in N\alpha(N, \tau_N) : N_1 \subseteq M\}.$

(g) Let $n \in N_1$. Then $N\alpha$ -kernel of n is meant to refer to as $nk_{\#}^{N\alpha}(\{n\}) = \cap \{M \in N\alpha(N, \tau_N) : n \in M\}$. $CL_N\alpha(N_1) = \bigcap \{M : N_1 \subset M \in N\alpha(N, \tau_N)\}.$

3. On $t^{N\alpha}_{\#}$ -space via $N\alpha OS$

Definition 3.1. *L* is *NS* in a *NTS*, $N\alpha^{M_{\#}}CS$ if Nint(Ncl(L)) is a subset of *Q*, only when *L* is a \subset of *Q* and *Q* is $N\alpha OS$. The opponent of $N\alpha^{M_{\#}}CS$ is called an $N\alpha^{M_{\#}}OS$.

Example 3.2. Here $N = \{n_1, n_2, n_3\}$ with $\tau_N = \{0_N, 1_N, O_1, O_2\}$ where $O_1 = \langle (\frac{7}{10}, \frac{7}{10}, \frac{5}{10}), (\frac{3}{10}, \frac{8}{10}, 1), (1, \frac{8}{10}, \frac{6}{10}) \rangle,$ $O_2 = \langle (\frac{2}{10}, \frac{5}{10}, \frac{9}{10}), (\frac{3}{10}, \frac{7}{10}, 1), (\frac{7}{10}, \frac{6}{10}, 1) \rangle,$ $O_3 = \langle (\frac{3}{10}, \frac{3}{10}, \frac{5}{10}), (\frac{7}{10}, \frac{2}{10}, 0), (0, \frac{2}{10}, \frac{4}{10}) \rangle,$ $O_4 = \langle (\frac{8}{10}, \frac{5}{10}, \frac{1}{10}), (\frac{7}{10}, \frac{3}{10}, 0), (\frac{3}{10}, \frac{4}{10}, 0) \rangle,$ $O_5 = \langle (\frac{4}{10}, \frac{5}{10}, 1), (\frac{2}{10}, \frac{3}{10}, 1), (\frac{5}{10}, \frac{3}{10}, 1) \rangle.$ Here the sets O_3 , O_4 and O_5 are the $N\alpha^{M\#}CS$.

Definition 3.3. A *NTS* is neutrosophic in nature which is $t^{N\alpha}_{\#}$ -space if every $N\alpha^{M\#}CS$ is *CS*.

Theorem 3.4. For a TS that is neutrosophic (N, τ_N) The criteria listed below are equivalent.

(a) (N, τ_N) is $t_{\#}^{N\alpha}$ -space.

(b) Every singleton $\{n_1\}$ is either $N\alpha CS$ (or) NclNopen.

Proof. (a) \Rightarrow (b) Let $n_1 \in N$. Suppose $\{n_1\}$ is not an $N\alpha CS$ of (N, τ_N) . Then $N - \{n_1\}$ is not an $N\alpha OS$. Thus $N - \{n_1\}$ is an $N\alpha CS$ of (N, τ_N) . Since (N, τ_N) is a $t_{\#}^{N\alpha}$ -space, $N - \{n_1\}$ is a $N\alpha CS$ of (N, τ_N) , i.e., $\{n_1\}$ is $N\alpha OS$ of (N, τ_N) .

 $(b) \Rightarrow (a)$ Let N_1 be an $N\alpha^{M_{\#}}CS$ of (N, τ_N) . Let $n_1 \in Nint(Ncl(N_1))$ by $(b), \{n_1\}$ is either $N\alpha CS$ (or) NclNopen.

Case(i): Let $\{n_1\}$ be an $N\alpha CS$. If we take the presumption that $n_1 \notin N_1$, we would now have $n_1 \in Nint(Ncl(N_1)) - N_1$ which isn't possible. Hence $n_1 \in N_1$.

Case(ii): Let $\{n_1\}$ be a NclNopen. Since $n_1 \in Nint(Ncl(N_1))$, then $\{n_1\} \bigcap N_1 \neq \phi_N$. This demonstrates that $n_1 \in N_1$. As a result, in both circumstances, we have $Nint(Ncl(A)) \subseteq N_1$.

Trivially $N_1 \subseteq Nint(Ncl(N_1))$. Therefore $N_1 = Nint(Ncl(N_1))$ (or) equivalently N_1 is NclNopen. Hence (N, τ_N) is a $t_{\#}^{N\alpha}$ -space.

Definition 3.5. A function $D: (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ is called

(a) an $N\alpha^{M_{\#}}$ -continuous if $D^{-1}(Y)$ is $N\alpha^{M_{\#}}CS$ in (N^{I}, τ_{N}^{i}) for every closed set Y of (N^{II}, τ_{N}^{ii}) .

(b) an $N\alpha^{M_{\#}}$ -irresolute if $D^{-1}(Y)$ is $N\alpha^{M_{\#}}CS$ in (N^{I}, τ_{N}^{i}) for every $N\alpha^{M_{\#}}CS$ Y of (N^{II}, τ_{N}^{ii}) .

Example 3.6. Let $N = \{n_1, n_2, n_3\}$ with $\tau_N = \{0_N, 1_N, \eta_1^{\#}, \eta_2^{\#}, \eta_3^{\#}, \eta_4^{\#}\}$ and $\delta_N = \{0_N, 1_N, \eta_1^{*}, \eta_2^{*}, \eta_3^{*}, \eta_4^{*}\}$ where $\eta_1^{\#} = \langle (\frac{4}{10}, \frac{4}{10}, \frac{6}{10}), (\frac{5}{10}, \frac{4}{10}, \frac{6}{10}), (\frac{5}{10}, \frac{8}{10}, \frac{7}{10}) \rangle,$ $\eta_2^{\#} = \langle (\frac{5}{10}, \frac{7}{10}, \frac{7}{10}), (\frac{6}{10}, \frac{5}{5}, \frac{5}{10}), (\frac{5}{5}, \frac{5}{5}, \frac{4}{10}) \rangle,$ $\eta_3^{\#} = \langle (\frac{5}{10}, \frac{7}{10}, \frac{7}{10}), (\frac{5}{10}, \frac{5}{5}, \frac{5}{10}), (\frac{5}{5}, \frac{5}{10}, \frac{4}{10}) \rangle,$ $\eta_4^{\#} = \langle (\frac{4}{10}, \frac{4}{10}, \frac{3}{10}), (\frac{5}{10}, \frac{5}{10}, \frac{5}{10}, \frac{5}{10}, \frac{7}{10}, \frac{7}{10}) \rangle,$ $\eta_1^{\#} = \langle (\frac{5}{10}, \frac{7}{10}, \frac{6}{10}), (\frac{4}{10}, \frac{5}{10}, \frac{5}{10}, \frac{7}{10}, \frac{7}{10}) \rangle,$ $\eta_1^{\#} = \langle (\frac{5}{10}, \frac{5}{10}, \frac{5}{10}), (\frac{4}{10}, \frac{4}{10}, \frac{3}{10}), (\frac{5}{10}, \frac{7}{10}, \frac{6}{10}) \rangle,$ $\eta_1^{\#} = \langle (\frac{5}{10}, \frac{5}{10}, \frac{5}{10}), (\frac{4}{10}, \frac{4}{10}, \frac{3}{10}), (\frac{5}{10}, \frac{7}{10}, \frac{6}{10}) \rangle,$ $\eta_1^{\#} = \langle (\frac{5}{10}, \frac{5}{10}, \frac{5}{10}), (\frac{4}{10}, \frac{5}{10}, \frac{5}{10}, \frac{7}{10}, \frac{6}{10}) \rangle,$ $\eta_1^{\#} = \langle (\frac{5}{10}, \frac{7}{10}, \frac{6}{10}), (\frac{4}{10}, \frac{3}{10}), (\frac{5}{10}, \frac{5}{10}, \frac{6}{10}) \rangle,$ $\eta_1^{\#} = \langle (\frac{5}{10}, \frac{5}{10}, \frac{5}{10}), (\frac{4}{10}, \frac{3}{10}), (\frac{5}{10}, \frac{5}{10}, \frac{6}{10}) \rangle,$ $\eta_1^{\#} = \langle (\frac{5}{10}, \frac{7}{10}, \frac{6}{10}), (\frac{4}{10}, \frac{3}{10}), (\frac{5}{10}, \frac{5}{10}, \frac{6}{10}) \rangle,$ $\eta_1^{\#} = \langle (\frac{5}{10}, \frac{7}{10}, \frac{6}{10}), (\frac{4}{10}, \frac{3}{10}), (\frac{5}{10}, \frac{5}{10}, \frac{6}{10}) \rangle.$ Thus, (N, τ_N) and (N, δ_N) are Nutrosophic Topologies. Define $\Lambda : (N, \tau_N) \longrightarrow (N, \delta_N)$ as $\Lambda(n_1) = n_1, \Lambda(n_2) = n_3, \Lambda(n_3) = n_2.$ Then Λ is $N\alpha^{M\#}$ -continuous, since $\Lambda^{-1}(L_{\#})$ is $N\alpha^{M\#}CS$ in (N, τ_N) for every closed set $L_{\#}$ of (N, δ_N) where $L_{\#} = \langle (\frac{3}{10}, \frac{5}{10}, \frac{5}{10}), (\frac{4}{10}, \frac{4}{10}, \frac{5}{10}), (\frac{4}{10}, \frac{4}{10}, \frac{5}{10}), (\frac{4}{10}, \frac{5}{10}), \frac{5}{10}), (\frac{4}{10}, \frac{5}{10}), \frac{5}{10}), (\frac{4}{10}, \frac{5}{10}), \frac{5}{10}), (\frac{4}{10}, \frac{5}{10}), \frac{5}{10}), (\frac{5}{10}, \frac{5}{10}), (\frac{5}{10}, \frac{5}{10}), \frac{6}{10}) \rangle$

Proposition 3.7. If $D : (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ be an $N\alpha^{M_{\#}}$ -continuous function and (N^I, τ_N^i) be a $t_{\#}^{N\alpha}$ -space, D is continuous.

Proof. Assume Y to be closed in (N^{II}, τ_N^{ii}) . As such D is an $N\alpha^{M_{\#}}$ -continuous function, $D^{-1}(Y)$ is an $N\alpha^{M_{\#}}CS$ in (N^I, τ_N^i) . Since (N^I, τ_N^i) is a $t_{\#}^{N\alpha}$ -space, $D^{-1}(Y)$ is closed set in (N^I, τ_N^i) . Hence D is continuous.

Remark 3.8. Let $D: (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ be a mapping and (N^I, τ_N^i) be a $t_{\#}^{N\alpha}$ -space, then D is continuous if one of the following conditions is satisfied.

(a) f is $N\alpha^{M_{\#}}$ -continuous.

(b) f is $N\alpha^{M_{\#}}$ -irresolute.

Theorem 3.9. A map $D: (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ is an $N\alpha^{M_{\#}}$ -continuous function \iff every open set's inverted image in (N^{II}, τ_N^{ii}) are the $N\alpha^{M_{\#}}OS$ in the (N^I, τ_N^i) .

Proof. Necessity : Assume $D : (N^{I}, \tau_{N}^{i}) \longrightarrow (N^{II}, \tau_{N}^{ii})$ be an $N\alpha^{M_{\#}}$ -continuous function and Z be a collection that is open in $(N^{II}, \tau_{N}^{ii}), N^{II} - Z$ is closed (N^{II}, τ_{N}^{ii}) . As such D is an $N\alpha^{M_{\#}}$ -continuous function, $f^{-1}(N^{II} - Z) = N^{I} - D^{-1}(Z)$ is an $N\alpha^{M_{\#}}CS$ in (N^{I}, τ_{N}^{i}) and hence $D^{-1}(Z)$ is an $N\alpha^{M_{\#}}OS$ in (N^{I}, τ_{N}^{i}) .

Sufficiency : Assume that $D^{-1}(Y)$ is an $N\alpha^{M\#}OS$ in (N^{I}, τ_{N}^{i}) for each open set N^{II} in (N^{II}, τ_{N}^{ii}) . Assume Y is a closed set in (N^{II}, τ_{N}^{ii}) , $N^{II} - Y$ is a set that is open in (N^{II}, τ_{N}^{ii}) . By assumption, $D^{-1}(N^{II} - Y) = N^{I} - D^{-1}(Y)$ is an $N\alpha^{M\#}OS$ in (N^{I}, τ_{N}^{i}) , which implies that $D^{-1}(Y)$ is an $N\alpha^{M\#}CS$ in (N^{I}, τ_{N}^{i}) . Hence D is an $N\alpha^{M\#}$ -continuous.

Proposition 3.10. Let $D_1: (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ be any topological space that is neutrosophic (N^{II}, τ_N^{ii}) is a $t_{\#}^{N\alpha}$ -space. If $D_1: (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ and $D_2: (N^{II}, \tau_N^{ii}) \longrightarrow (N^{III}, \tau_N^{iii})$ are $N\alpha^{M\#}$ -continuous functions, then their composition $D_2 \circ D_1: (N^I, \tau_N^i) \longrightarrow (N^{III}, \tau_N^{iii})$ is an $N\alpha^{M\#}$ -continuous.

Proof. Assume Y is a closed set in (N^{III}, τ_N^{iii}) . As such $D_2 : (N^{II}, \tau_N^{ii}) \longrightarrow (N^{III}, \tau_N^{iii})$ is an $N\alpha^{M_{\#}}$ -continuous function, $D_2^{-1}(Y)$ is an $N\alpha^{M_{\#}}CS$ in (N^{II}, τ_N^{ii}) . Since (N^{II}, τ_N^{ii}) is a $t_{\#}^{N\alpha}$ -space, $D_2^{-1}(Y)$ is a closed set in (N^{II}, τ_N^{ii}) . Since $D_1 : (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ is an $N\alpha^{M_{\#}}$ -continuous function, $D_1^{-1}(D_2^{-1}(Y)) = (D_2 \circ D_1)^{-1}(Y)$ is an $N\alpha^{M_{\#}}CS$ in (N^I, τ_N^i) . Hence $D_2 \circ D_1 : (N^I, \tau_N^i) \longrightarrow (N^{III}, \tau_N^{iii})$ is an $N\alpha^{M_{\#}}$ -continuous function.

Definition 3.11. A map $D: (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ is said to be

(p) $N\alpha^{M_{\#}}$ -closed map if D(Y) is $N\alpha^{M_{\#}}$ -closed in (N^{II}, τ_N^{ii}) for every NCS Y of (N^I, τ_N^i) .

(q) $N\alpha^{M_{\#}}$ -open map if D(Y) is $N\alpha^{M_{\#}}$ -open in (N^{II}, τ_N^{ii}) for every NOS Y of (N^I, τ_N^i) .

Theorem 3.12. Let $D_1 : (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ and $D_2 : (N^{II}, \tau_N^{ii}) \longrightarrow (N^{III}, \tau_N^{iii})$ be two mappings and (N^{II}, τ_N^{ii}) be a $t_{\#}^{N\alpha}$ -space, then

(a) $D_2 \circ D_1$ is $N\alpha^{M_{\#}}$ -continuous, if D_1 and D_2 are $N\alpha^{M_{\#}}$ -continuous.

(b) $D_2 \circ D_1$ is $N\alpha^{M_{\#}}$ -closed, if D_1 and D_2 are $N\alpha^{M_{\#}}$ -closed.

Proof. (a) Let Y be a NCS of (N^{III}, τ_N^{iii}) , then $D_2^{-1}(Y)$ is $N\alpha^{M_{\#}}$ -closed set in (N^{II}, τ_N^{ii}) . Since (N^{II}, τ_N^{ii}) is a $t_{\#}^{N\alpha}$ -space, then $D_2^{-1}(Y)$ is a NCS in (N^{II}, τ_N^{ii}) . But D_1 is $N\alpha^{M_{\#}}$ continuous, then $(D_2 \circ D_1)^{-1}(Y) = D_1^{-1}(D_2^{-1}(Y))$ is $N\alpha^{M_{\#}}$ -closed in (N^I, τ_N^i) this implies that $(D_2 \circ D_1)$ is $N\alpha^{M_{\#}}$ -continuous mappings.

(b) The proof is similar.

Remark 3.13. Let $D: (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ be a mapping from a $t_{\#}^{N\alpha}$ -space (N^I, τ_N^i) into a space (N^{II}, τ_N^{ii}) , then

(p) D_1 is continuous mapping if, D_1 is $N\alpha^{M_{\#}}$ -continuous.

(q) D_1 is closed mapping if, D_1 is $N\alpha^{M_{\#}}$ -closed.

Theorem 3.14. Let $D: (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ is surjective closed and $N\alpha^{M_{\#}}$ -irresolute, then $(N^{II}, \tau_N^{ii}) t_{\#}^{N\alpha}$ -space if (N^I, τ_N^i) is also $t_{\#}^{N\alpha}$ -space.

Proof. Let Y be an $N\alpha^{M_{\#}}$ -closed subset of (N^{II}, τ_N^{ii}) . Then $D_1^{-1}(Y)$ is $N\alpha^{M_{\#}}$ -closed set in (N^I, τ_N^i) . Since, (N^I, τ_N^i) is a $t_{\#}^{N\alpha}$ -space, then $D_1^{-1}(Y)$ is closed set in (N^I, τ_N^i) . Hence, Y is closed set in (N^{II}, τ_N^{ii}) and so, (N^{II}, τ_N^{ii}) is $t_{\#}^{N\alpha}$ -space.

Proposition 3.15. If $D_1 : (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ is $N\alpha^{M_{\#}}$ -closed, $D_2 : (N^{II}, \tau_N^{ii}) \longrightarrow (N^{III}, \tau_N^{iii})$ is an $N\alpha^{M_{\#}}$ -closed, and (N^{II}, τ_N^{ii}) is a $t_{\#}^{N\alpha}$ -space, then their composition

$$D_2 \circ D_1 : (N^I, \tau^i_N) \longrightarrow (N^{III}, \tau^{iii}_N) \text{ is } N\alpha^{M_{\#}}\text{-closed.}$$

Proof. Let N_1 be a NCS of (N^I, τ_N^i) . Then by assumption $D_1(N_1)$ is $N\alpha^{M_{\#}}$ -closed in (N^{II}, τ_N^{ii}) . Since (N^{II}, τ_N^{ii}) is a $t_{\#}^{N\alpha}$ -space, $D_1(N_1)$ is NCS in (N^{II}, τ_N^{ii}) and again by assumption $D_2(D_1(N_1))$ is $N\alpha^{M_{\#}}$ -closed in (N^{III}, τ_N^{iii}) . i.e., $(D_2 \circ D_1)(N_1)$ is $N\alpha^{M_{\#}}$ -closed in (N^{III}, τ_N^{iii}) and so $D_2 \circ D_1$ is $N\alpha^{M_{\#}}$ -closed.

Proposition 3.16. For any bijection $D : (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ the following statements are equivalent:

- (p) $D^{-1}: (N^{II}, \tau_N^{ii}) \longrightarrow (N^I, \tau_N^i)$ is $N\alpha^{M_{\#}}$ -continuous.
- (q) D is $N\alpha^{M_{\#}}$ -open map.
- (r) D is $N\alpha^{M_{\#}}$ -closed map.

Proof. $(p) \Longrightarrow (q)$ Let U be a *NOS* of (N^I, τ_N^i) . By assumption, $(D^{-1})^{-1}(U) = D(U)$ is $N\alpha^{M_{\#}}$ -open in (N^{II}, τ_N^{ii}) and so D is $N\alpha^{M_{\#}}$ -open.

 $(q) \implies (r)$ Let F be a NCS of (N^{I}, τ_{N}^{i}) . Then F^{c} is NOS in (N^{I}, τ_{N}^{i}) . By assumption, $D(F^{c})$ is $N\alpha^{M_{\#}}$ -open in (N^{II}, τ_{N}^{ii}) . That is $D(F^{c}) = (D(F))^{c}$ is $N\alpha^{M_{\#}}$ -open in (N^{II}, τ_{N}^{ii}) and therefore D(F) is $N\alpha^{M_{\#}}$ -closed in (N^{II}, τ_{N}^{ii}) . Hence D is $N\alpha^{M_{\#}}$ -closed.

 $(r) \Longrightarrow (p)$ Let F be a NCS of (N^I, τ_N^i) . By assumption, D(F) is $N\alpha^{M_{\#}}$ -closed in (N^{II}, τ_N^{ii}) . But $D(F) = (D^{-1})^{-1}(F)$ and therefore D^{-1} is $N\alpha^{M_{\#}}$ -continuous.

4. On $N\alpha^{M_{\#}}$ -homeomorphisms

Definition 4.1. A function $D : (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ is supposed to be an $N\alpha^{M_{\#}}$ homeomorphism $[(hmpm(N, \tau_N))_{N\alpha^{M_{\#}}}]$ if both D and D^{-1} are $N\alpha^{M_{\#}}$ -irresolute.

We are using the entire family of all $N\alpha^{M_{\#}}$ -homeomorphisms of a NTS (N^{I}, τ_{N}^{i}) onto itself by $N\alpha^{M_{\#}}-H(N, \tau_{N})$.

Example 4.2. Let $M^{N^1} = \{\alpha, \beta\}, M^{N^2} = \{\gamma, \delta\}, O_1^{\#} = \langle (\frac{2}{10}, \frac{6}{10}, \frac{3}{10}), (\frac{3}{10}, \frac{6}{10}, \frac{4}{10}), (\frac{3}{10}, \frac{7}{10}, \frac{4}{10}) \rangle$ $O_2^{\#} = \langle (\frac{4}{10}, \frac{6}{10}, \frac{5}{10}), (\frac{5}{10}, \frac{6}{10}), (\frac{5}{10}, \frac{7}{10}, \frac{6}{10}) \rangle$. Then $\tau_{E1} = \{0_E, 1_E, O_1^{\#}\}$ and $\tau_{E2} = \{0_E, 1_E, O_2^{\#}\}$ are neutrosophic topologies on M^{N^1} and M^{N^2} respectively. Define a bijective mapping $F_{Nf_{\#}} = (M^{N^1}, \tau_{E1}) \longrightarrow (M^{N^2}, \tau_{E2})$ by $F_{Nf_{\#}}(\alpha) = \gamma$ and $F_{Nf_{\#}}(\beta) = \delta$. Then $F_{Nf_{\#}}$ is a $N\alpha^{M_{\#}}$ -irresolute $F_{Nf_{\#}}^{-1}$ is also a $N\alpha^{M_{\#}}$ -irresolute. Therefore the bijection function $F_{Nf_{\#}}$ is a $(hmpm(N, \tau_N))_{N\alpha^{M_{\#}}}$.

Proposition 4.3. Let $D_1: (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ and $D_2: (N^{II}, \tau_N^{ii}) \longrightarrow (N^{III}, \tau_N^{iii})$ are $(hmpm(N, \tau_N))_{N\alpha^{M_{\#}}}$, then their composition $D_2 \circ D_1: (N^I, \tau_N^i) \longrightarrow (N^{III}, \tau_N^{iii})$ is also $(hmpm(N, \tau_N))_{N\alpha^{M_{\#}}}$.

Proof. Let J be an $N\alpha^{M\#}OS$ in (N^{III}, τ_N^{iii}) . Since D_2 is $N\alpha^{M\#}$ -irresolute, $D_2^{-1}(J)$ is $N\alpha^{M\#}OS$ in (N^{II}, τ_N^{ii}) . Since D_1 is $N\alpha^{M\#}$ -irresolute, $D_1^{-1}(D_2^{-1}(Y)) = (D_2 \circ D_1)^{-1}(Y)$ is $N\alpha^{M\#}OS$ in (N^I, τ_N^i) . Therefore $D_2 \circ D_1$ is $N\alpha^{M\#}$ -irresolute.

Also for an $N\alpha^{M\#}OS$, G in (N^{I}, τ_{N}^{i}) , we have $(D_{2} \circ D_{1})(G) = D_{2}(D_{1}(G)) = D_{2}(W)$, where $W = D_{1}(G)$. By hypothesis, $D_{1}(G)$ is $N\alpha^{M\#}OS$ in (N^{II}, τ_{N}^{ii}) and so again by hypothesis, $D_{2}(D_{1}(G))$ is an $N\alpha^{M\#}OS$ in $(N^{III}, \tau_{N}^{iii})$. That is $(D_{2} \circ D_{1})(G)$ is an $N\alpha^{M\#}OS$ in $(N^{III}, \tau_{N}^{iii})$ and therefore $(D_{2} \circ D_{1})^{-1}$ is $N\alpha^{M\#}$ -irresolute. Also $D_{2} \circ D_{1}$ is a bijection. Hence $D_{2} \circ D_{1}$ is $(hmpm(N, \tau_{N}))_{N\alpha^{M\#}}$.

Theorem 4.4. The set $N\alpha^{M_{\#}}$ - $H(N, \tau_N)$ is a subset of the map composition.

Proof. Establish a binary operation $*: N\alpha^{M\#}-H(N, \tau_N) \times N\alpha^{M\#}-H(N, \tau_N) \longrightarrow N\alpha^{M\#}-H(N, \tau_N)$ by $D_1 * D_2 = D_2 \circ D_1$ for all $D_1, D_2 \in N\alpha^{M\#}-H(N, \tau_N)$ and *circ* is the standard map composition operation. $D_2 \circ D_1 \in N\alpha^{M\#}-H(N, \tau_N)$.

We notice that maps are made up of associative elements, and the identity map is no exception $I : (N, \tau_N) \longrightarrow (N, \tau_N)$ belonging to $N\alpha^{M\#}-H(N, \tau_N)$ identity element as a distinguishing feature. If $D_1 \in N\alpha^{M\#}-H(N, \tau_N)$, then $D_1^{-1} \in N\alpha^{M\#}-H(N, \tau_N)$ such that $D_1 \circ D_1^{-1} = D_1^{-1} \circ D_1 = I$. As a result, there is an inverse for each element of $N\alpha^{M\#}-H(N, \tau_N)$.

Consequently $N\alpha^{M_{\#}}-H(N, \tau_N)$, \circ) is a network of under the operation on map composition.

Proposition 4.5. Let $J : (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ be an $N\alpha^{M_{\#}}$ -homeomorphism, J causes the group to become isomorphic $N\alpha^{M_{\#}}$ - $H(N^I, \tau_N^i)$ onto $N\alpha^{M_{\#}}$ - $H(N^{II}, \tau_N^{ii})$.

Proof. Making use of the map J, We construct a map $\Psi_J : N\alpha^{M_\#} - H(N^I, \tau_N^i) \longrightarrow N\alpha^{M_\#} - H(N^{II}, \tau_N^{ii})$ by $\Psi_J(F) = J \circ F \circ J^{-1}$ for every $F \in N\alpha^{M_\#} - H(N^I, \tau_N^i)$. Then Ψ_J is a bijection. Further, for all $h_1, h_2 \in N\alpha^{M_\#} - H(N^I, \tau_N^i)$, $\Psi_J(F_1 \circ F_2) = J \circ (F_1 \circ F_2) \circ J^{-1} = (J \circ F_1 \circ J^{-1}) \circ (J \circ F_2 \circ J^{-1}) = \Psi_J(F_1) \circ \Psi_J(F_2)$.

Therefore, Ψ_J It is an isomorphism caused by a homeomorphism by J.

5. On $N\alpha^{M_{\#}}$ -connectedness

Definition 5.1. A $NTS(N, \tau_N)$ is noted to be $N\alpha^{M\#}$ -connected if N can't be characterized as a non-empty union of two distinct elements $N\alpha^{M\#}OS$. A subset of N is $N\alpha^{M\#}$ -connected if any of this $N\alpha^{M\#}$ -connected as a subspace.

Theorem 5.2. For a $NTS(N, \tau_N)$, the following are better compared.

(a) (N, τ_N) is $N\alpha^{M_{\#}}$ -connected.

(b) (N, τ_N) and ϕ_N seem to be the only subsets of (N, τ_N) both of which are $N\alpha^{M_{\#}}$ -open and $N\alpha^{M_{\#}}$ -closed.

(c) Each $N\alpha^{M_{\#}}$ -continuous map of (N^{I}, τ_{N}^{i}) into a discrete space (N^{II}, τ_{N}^{ii}) the map is constant if there are at least two points.

Proof. (a) \implies (b): Suppose (N^{I}, τ_{N}^{i}) is $N\alpha^{M_{\#}}$ -connected. Let S be both a valid subset $N\alpha^{M_{\#}}OS$ and $N\alpha^{M_{\#}}CS$ in (N^{I}, τ_{N}^{i}) . Its complement N/S is also $N\alpha^{M_{\#}}$ -open and $N\alpha^{M_{\#}}$ -closed. $N = S \cup (N/S)$, a non-empty union that is disjointed $N\alpha^{M_{\#}}$ -open sets that are incompatible (a). Therefore $S = \phi$ or N.

(b) \implies (a): Suppose that $N = I_1 \cup I_2$ where I_1 and I_2 are disjoint non-empty $N\alpha^{M_{\#}}$ open subsets of (N^I, τ_N^i) . Then I_1 is both $N\alpha^{M_{\#}}$ -open and $N\alpha^{M_{\#}}$ -closed. By assumption $I_1 = \phi$ or N. Therefore N is $N\alpha^{M_{\#}}$ -connected.

 $(b) \Longrightarrow (c)$: Let $D: (N^{I}, \tau_{N}^{i}) \longrightarrow (N^{II}, \tau_{N}^{ii})$ be an $N\alpha^{M_{\#}}$ -continuous map. Then (N^{I}, τ_{N}^{i}) is covered by $N\alpha^{M_{\#}}$ -open and $N\alpha^{M_{\#}}$ -closed covering $\{D^{-1}(n_{ii}): n_{ii} \in N_{ii}\}$. By assumption $D^{-1}(n_{ii}) = \phi_{N}$ or N for each $n_{ii} \in N_{ii}$. If $D^{-1}(n_{ii}) = \phi$ for all $n_{ii} \in N_{ii}$, then D a map that isn't a map. Then \exists a point $n_{ii} \in N_{ii}$ such that $D^{-1}(n_{ii}) \neq \phi_{N}$ and hence $D^{-1}(n_{ii}) = N$. This shows that D is a constant map.

 $(c) \implies (b)$: Let S be both $N\alpha^{M_{\#}}$ -open and $N\alpha^{M_{\#}}$ -closed in N. Suppose $S \neq \phi$. Let $D : (N^{I}, \tau_{N}^{i}) \longrightarrow (N^{II}, \tau_{N}^{ii})$ be an $N\alpha^{M_{\#}}$ -continuous map defined by $D(S) = n_{ii}$ and $D(S^{c}) = \{\omega\}$ for a few key reasons n_{ii} and ω in (N^{II}, τ_{N}^{ii}) . By assumption D is a constant map. Therefore we have S = N.

Theorem 5.3. Every $N\alpha^{M_{\#}}$ -Space that is linked is connected.

Proof. Let (N^{I}, τ_{N}^{i}) be $N\alpha^{M_{\#}}$ -linked(connected). Suppose N is not connected. There is then a suitable non-empty subset. B of (N^{I}, τ_{N}^{i}) which has both an open and a closed sets in (N^{I}, τ_{N}^{i}) . Since every closed set is $N\alpha^{M_{\#}}$ -closed, B is a proper non empty subset of (N^{I}, τ_{N}^{i}) as well as $N\alpha^{M_{\#}}OS$ and $N\alpha^{M_{\#}}CS$ in $(N^{I}, \tau_{N}^{i}), (N^{I}, \tau_{N}^{i})$ is not $N\alpha^{M_{\#}}$ -connected. This proves the theorem.

Theorem 5.4. If $J : (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ is an $N\alpha^{M_{\#}}$ -continuous and N is $N\alpha^{M_{\#}}$ -connected, then (N^{II}, τ_N^{ii}) is linked.

Proof. Presume that (N^{II}, τ_N^{ii}) is not linked. Let $N^{ii} = V_1 \cup V_2$ where V_1 and V_2 are disjoint non-empty OS in (N^{II}, τ_N^{ii}) . As such J is $N\alpha^{M_{\#}}$ -continuous and onto, $N = J^{-1}(V_1) \cup J^{-1}(V_2)$ where $J^{-1}(V_1)$ and $J^{-1}(V_2)$ are disjoint non-empty $N\alpha^{M_{\#}}$ -open sets in (N^I, τ_N^i) .

This is diametrically opposed to the fact that (N^{I}, τ_{N}^{i}) is $N\alpha^{M_{\#}}$ -connected. Furthermore N^{ii} is connected.

P.Basker and Broumi Said, On Neutrosophic Homeomorphisms via Neutrosophic Functions

Theorem 5.5. If $J: (N^I, \tau_N^i) \longrightarrow (N^{II}, \tau_N^{ii})$ is an $N\alpha^{M_{\#}}$ -irresolute and (N^I, τ_N^i) is $N\alpha^{M_{\#}}$ connected, then (N^{II}, τ_N^{ii}) is $N\alpha^{M_{\#}}$ -connected.

Proof. Suppose that (N^{II}, τ_N^{ii}) is not $N\alpha^{M_{\#}}$ -connected. Let $N^{ii} = V_1 \cup V_2$ where V_1 and V_2 are disjoint non-empty $N\alpha^{M_{\#}}$ -open sets in (N^{II}, τ_N^{ii}) . Since J is $N\alpha^{M_{\#}}$ -irresolute and onto, $N = j^{-1}(V_1) \cup j^{-1}(V_2)$ where $J^{-1}(V_1)$ and $J^{-1}(V_2)$ are disjoint non-empty $N\alpha^{M_{\#}}$ -open sets in (N^I, τ_N^i) .

This contradicts the fact that (N^{I}, τ_{N}^{i}) is $N\alpha^{M_{\#}}$ -connected. Hence (N^{II}, τ_{N}^{ii}) is $N\alpha^{M_{\#}}$ -connected.

Theorem 5.6. Suppose that (N^I, τ_N^i) is $t_{\#}^{N\alpha}$ -space then (N^I, τ_N^i) is connected $\iff N\alpha^{M_{\#}}$ connected.

Proof. Suppose that (N^{I}, τ_{N}^{i}) is connected. Then (N^{I}, τ_{N}^{i}) disjoint union of two non-empty proper subsets of the set cannot be expressed in (N^{I}, τ_{N}^{i}) . Suppose (N^{I}, τ_{N}^{i}) is not a $N\alpha^{M_{\#}}$ connected space. Let V_{1} and V_{2} be any two $N\alpha^{M_{\#}}$ -open subsets of (N^{I}, τ_{N}^{i}) such that $N^{ii} = V_{1} \cup V_{2}$, where $V_{1} \cap V_{2} = \phi_{N}$ and $V_{1} \subset N$, $V_{2} \subset N$ Since (N^{I}, τ_{N}^{i}) is $t_{\#}^{N\alpha}$ -space and V_{1} , V_{2} are $N\alpha^{M_{\#}}$ -open. V_{1}, V_{2} are open subsets of (N^{I}, τ_{N}^{i}) , which contradicts that (N^{I}, τ_{N}^{i}) is connected. Therefore (N^{I}, τ_{N}^{i}) is $N\alpha^{M_{\#}}$ -connected.

Conversely, every open set is $N\alpha^{M_{\#}}$ -open. Therefore every $N\alpha^{M_{\#}}$ -connected space is connected.

Theorem 5.7. If the $N\alpha^{M_{\#}}$ -open sets Z_1 and Z_2 form a separation of (N^I, τ_N^i) and if (N^{II}, τ_N^{ii}) is $N\alpha^{M_{\#}}$ -connected subspace of (N^I, τ_N^i) , then (N^{II}, τ_N^{ii}) lies entirely within Z_1 or Z_2 .

Proof. Since Z_1 and Z_2 are both $N\alpha^{M_{\#}}$ -open in (N^I, τ_N^i) , the sets $Z_1 \cap N^{ii}$ and $Z_2 \cap N^{ii}$ are $N\alpha^{M_{\#}}$ -open in (N^{II}, τ_N^{ii}) . These two sets are incompatible, thus their union is impossible is (N^{II}, τ_N^{ii}) . They would represent a separation if they were both non-empty (N^{II}, τ_N^{ii}) .

Therefore, one of them is empty. Hence (N^{II}, τ_N^{ii}) must lie entirely in Z_1 or in Z_2 .

6. Conclusion

The notions of $N\alpha^{M\#}CS$ in neutrosophic topological spaces have been discussed in this research study. We have also introduced the neutrosophic $t^{N\alpha}_{\#}$ -space in this paper. The mappings known as neutrosophic $N\alpha^{M\#}$ -continuous functions, $N\alpha^{M\#}$ -irresolute functions, homeomorphisms and connectedness have also been introduced and investigate their characterizations and distinguishing features.

References

- Arokiarani. I; Dhavaseelan. R; Jafari. S and Parimala. M, On Some New Notions and Functions in Neutrosophic Topological Spaces, Neutrosophic Sets and Systems 2017, Vol.16, pp. 16-19.
- 2. Atanassov. K, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 1986, Vol.20, pp. 87-96.
- Basker. P and Broumi Said, Nψ^{#0}_α and Nψ^{#1}_α-spaces in Neutrosophic Topological Spaces, International Journal of Neutrosophic Science 2021, Vol.16, No.1, pp. 09-15.
- Broumi Said and Florentin Smarandache, Intuitionistic Neutrosophic Soft Set, Journal of Information and Computing Science 2013, Vol.8(2), pp.130-140.
- Chang. C. L, Fuzzy topological spaces, Journal of Mathematical Analysis and Applications 1968, Vol.24, pp.182-190.
- Coker. D, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 1997, Vol.88(1), pp.81-89.
- Nagarajan. D, Broumi. S, Smarandache. F, and Kavikumar. J, Analysis of Neutrosophic Multiple Regression. Neutrosophic Sets and Systems 2021, Vol.43, pp. 44-53.
- Salama. A. A and Alblowi. S. A, Neutrosophic set and Neutrosophic topological spaces, IOSR Journal of Mathematics 2012, Vol.3(4), pp. 31-35.
- 9. Smarandache. F, A unifying field in logics: Neutrosophic Logic. Neutrosophy, Neutrosophic set, Neutrosophic probability, American Research Press 1999, Rehoboth, NM.
- Smarandache, F, Neutrosophy and Neutrosophic logic. In:F. Smarandache(Ed.), Neutrosophy, neutrosophic logic, set, probability and statistics Proceeding of the International Conference, University of New Mexico 2002, Gallup, NM 87301, USA.
- Smarandache, Florentin, Said Broumi, Mamoni Dhar and Pinaki Majumdar, New Results of Intuitionistic Fuzzy Soft Set, International Journal of Information Engineering and Electronic Business 2014, pp.1-6.
- Vadivel. A, John Sundar. C, Neutrosophic δ-Open Maps and Neutrosophic δ-Closed Maps, International Journal of Neutrosophic Science 2021, Vol.13(2), pp.66-74.
- Wadel Faris Al-omeri and Florentin Smarandache, New Neutrosophic Sets via Neutrosophic Topological Spaces, New Trends in Neutrosophic Theory and Applications 2016, Vol.2, pp. 1-7.
- 14. Zadeh. L. A, Fuzzy sets, Information and Control 1965, Vol.8, pp.338-353.

Received: August 16, 2022. Accepted: January 12, 2023