Neutrosophic ℵ-interior ideals in semigroups

K. Porselvi 1, B. Elavarasan 2 *, F. Smarandache 3

1, 2 Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore - 641 114, Tamilnadu, India.
E-mail: porselvi94@yahoo.co.in; porselvi@karunya.edu.
E-mail: belavarasan@gmail.com; elavarasan@karunya.edu.
3 Mathematics Department, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA.
E-mail: fsmarandache@gmail.com; smarand@unm.edu.

* Correspondence: belavarasan@gmail.com

Abstract: We define the concepts of neutrosophic ℵ-interior ideal and neutrosophic ℵ-characteristic interior ideal structures of a semigroup. We infer different types of semigroups using neutrosophic ℵ-interior ideal structures. We also show that the intersection of neutrosophic ℵ-interior ideals and the union of neutrosophic ℵ-interior ideals is also a neutrosophic ℵ-interior ideal.

Keywords: Semi group, neutrosophic ℵ-ideals, neutrosophic ℵ-interior ideals, neutrosophic ℵ-product.

1. Introduction

Nowadays, the theory of uncertainty plays a vital role to manage different issues relating to modelling engineering problems, networking, real-life problem relating to decision making and so on. In 1965, Zadeh[24] introduced the idea of fuzzy sets for modelling vague concepts in the globe. In 1986, Atanassov [1] generalized fuzzy set and named as Intuitionistic fuzzy set. Also, from his viewpoint, there are two degrees of freedom in the real world, one a degree of membership to a vague subset and the other is a degree of non-membership to that given subset.

Smarandache generalized fuzzy set and intuitionistic fuzzy set, and named as neutrosophic set (see [4, 7, 8, 14, 19, 22-23]). These sets are characterized by a truth membership function, an indeterminacy membership function and a falsity membership function. These sets are applied to many branches of mathematics to overcome the complexities arising from uncertain data. A Neutrosophic set can distinguish between absolute membership and relative membership. Smarandache used this in non-standard analysis such as the result of sports games (winning/defeating/tie), decision making and control theory, etc. This area has been studied by several authors (see [3, 11, 12, 16-18]).

For more details on neutrosophic set theory, the readers visit the website http://fs.gallup.unm.edu/FlorentinSmarandache.htm

In [2], Abdel Basset et al. designed a framework to manage scheduling problems using neutrosophic theory. As the concept of time-cost tradeoffs and deterministic project scheduling disagree with the real situation, some data were changed during the implementation process. Here fuzzy scheduling and time-cost tradeoffs models assumed only truth-membership functions dealing
with uncertainties of the project and their activities duration which were unable to treat indeterminacy and inconsistency.

In [6], Abdel Basset et al. evaluated the performance of smart disaster response systems under uncertainty. In [5], Abdel Basset et al. introduced different hybrid neutrosophic multi-criteria decision-making framework for professional selection that employed a collection of neutrosophic analytical network process and order preference by similarity to the ideal solution under bipolar neutrosophic numbers.

In [21], Prakasam Muralikrishna1 et al. presented the characterization of MBJ – Neutrosophic β Ideal of β – algebra. They analyzed homomorphic image, pre–image, cartesian product and related results, and these concepts were explored to other substructures of a β – algebra. In [9], Chalapathi et al. constructed certain Neutrosophic Boolean rings, introduced Neutrosophic complement elements and mainly obtained some properties satisfied by the Neutrosophic complement elements of Neutrosophic Boolean rings.

In [14], M. Khan et al. presented the notion of neutrosophic \aleph-subsemigroup in semigroup and explored several properties. In [11], Gulistan et al. have studied the idea of complex neutrosophic subsemigroups and introduced the concept of the characteristic function of complex neutrosophic sets, direct product of complex neutrosophic sets.

In [10], B. Elavarasan et al. introduced the notion of neutrosophic \aleph-ideal in semigroup and explored its properties. Also, the conditions for neutrosophic \aleph-structure to be neutrosophic \aleph-ideal are given, and discussed the idea of characteristic neutrosophic \aleph-structure in semigroups and obtained several properties. In [20], we have introduced and discussed several properties of neutrosophic \aleph-product and the intersection of neutrosophic \aleph-ideals were identical for regular semigroups. In this paper, we define and discuss the concepts of neutrosophic \aleph-interior ideal and neutrosophic \aleph-characteristic interior ideal structures of a semigroup.

Throughout this paper, X denotes a semigroup. Now, we present the important definitions of semigroup that we need in sequel.

Recall that for any $X_1, X_2 \subseteq X$, $X_1X_2 = \{ab | a \in X_1 \text{ and } b \in X_2\}$, multiplication of X_1 and X_2.

Let X be a semigroup and $\emptyset \neq X_1 \subseteq X$. Then

(i) X_1 is known as subsemigroup if $X_1^2 \subseteq X_1$.

(ii) A subsemigroup X_1 is known as left (resp., right) ideal if $X_1X \subseteq X_1$(resp., $XX_1 \subseteq X_1$).

(iii) X_1 is known as ideal if X_1 is both a left and a right ideal.

(iv) X is known as left (resp., right) regular if for each $r \in X$, there exists $i \in X$ such that $r = ir^2$(resp., $r = r^2i$) [13].

(v) X is known as regular if for each $b_1 \in X$, there exists $i \in X$ such that $b_1 = b_1i$ b_1

(vi) X is known as intra-regular if for each $x_1 \in X$, there exist $i,j \in X$ such that $x_1 = ix_1^2j$ [15].

2. Definitions of neutrosophic \aleph - structures

We present definitions of neutrosophic \aleph – structures namely neutrosophic \aleph – subsemigroup, neutrosophic \aleph – ideal, neutrosophic \aleph – interior ideal of a semigroup X
The set of all the functions from X to $[-1, 0]$ is denoted by $\mathcal{Z}(X, [-1, 0])$. We call that an element of $\mathcal{Z}(X, [-1, 0])$ is \mathcal{K}-function on X. A \mathcal{K}-structure means an ordered pair (X, g) of X and an \mathcal{K}-function g on X.

Definition 2.1[14] A neutrosophic \mathcal{K}-structure of X is defined to be the structure:

$$X_M := \left\{ x \in (T_M, I_M, F_M) : \exists r \in X \right\},$$

where T_M, I_M and F_M are the negative truth, negative indeterminacy and negative falsity membership functions on $X (\mathcal{K}$-functions).

It is evident that $-3 \leq T_M(r) + I_M(r) + F_M(r) \leq 0$ for all $r \in X$.

Definition 2.2[14] A neutrosophic \mathcal{K}-structure X_M of X is called a neutrosophic \mathcal{K}-subsemigroup of X if the following assertion is valid:

$$(\forall g, h \in X) \left(T_M(g, h) \leq T_M(g) \lor T_M(h) \right)$$

Let X_M be a neutrosophic \mathcal{K}-structure and $\gamma, \delta, \varepsilon \in [-1, 0]$ with $-3 \leq \gamma + \delta + \varepsilon \leq 0$. Consider the sets:

$T_M^\gamma = \{ r \in X : T_M(r) \leq \gamma \}$

$I_M^\delta = \{ r \in X : I_M(r) \geq \delta \}$

$F_M^\varepsilon = \{ r \in X : F_M(r) \leq \varepsilon \}$

The set $X_M(\gamma, \delta, \varepsilon) := \{ r \in X : T_M(r) \leq \gamma, I_M(r) \geq \delta, F_M(r) \leq \varepsilon \}$ is known as $(\gamma, \delta, \varepsilon)$-level set of X_M. It is easy to observe that $X_M(\gamma, \delta, \varepsilon) = T_M^\gamma \cap I_M^\delta \cap F_M^\varepsilon$.

Definition 2.3[10] A neutrosophic \mathcal{K}-structure X_M of X is called a neutrosophic \mathcal{K}-left (resp., right) ideal of X if

$$(\forall g, h \in X) \left(T_M(g, h) \leq T_M(h) \quad (\text{resp.,} \quad T_M(g, h) \leq T_M(g)) \right)$$

X_M is neutrosophic \mathcal{K}-ideal of X if X_M is neutrosophic \mathcal{K}-left and \mathcal{K}-right ideal of X.

Definition 2.4 A neutrosophic \mathcal{K}-subsemigroup X_M of X is known as neutrosophic \mathcal{K}-interior ideal if

$$(\forall x, a, y \in X) \left(T_M(x, y) \leq T_M(a) \quad \text{resp.,} \quad T_M(x, y) \leq T_M(a) \right)$$

It is easy to observe that every neutrosophic \mathcal{K}-ideal is neutrosophic \mathcal{K}-interior ideal, but neutrosophic \mathcal{K}-interior ideal need not be a neutrosophic \mathcal{K}-ideal, as shown by an example.

Example 2.5 Let X be the set of all non-negative integers except 1. Then X is a semigroup with usual multiplication.

Let $X_M = \{ 0, 2, 5, 10 \}$ then X_M is neutrosophic \mathcal{K}-interior ideal, but not neutrosophic \mathcal{K}-ideal with $T_M(2.5) = -0.3 \leq T_M(2)$.

Definition 2.6[14] For any $E \subseteq X$, the characteristic neutrosophic \mathcal{K}-structure is defined as

$$X_E(X_M) = \frac{X}{(X_E(T_M) \cap X_E(I_M) \cap X_E(F_M))}$$
where

\[
X_E(T)_M: X \to [-1, 0], \ r \to \begin{cases} -1 & \text{if } r \in E \\ 0 & \text{otherwise}, \end{cases}
\]

\[
X_E(I)_M: X \to [-1, 0], \ r \to \begin{cases} 0 & \text{if } r \in E \\ -1 & \text{otherwise}, \end{cases}
\]

\[
X_E(F)_M: X \to [-1, 0], \ r \to \begin{cases} -1 & \text{if } r \in E \\ 0 & \text{otherwise}. \end{cases}
\]

Definition 2.7.[14] Let \(X_N := \frac{x}{(T_N, I_N, F_N)}\) and \(X_M := \frac{x}{(T_M, I_M, F_M)}\) be neutrosophic \(\kappa\)-structures of \(X\). Then

(i) \(X_N\) is called a neutrosophic \(\kappa\)-substructure of \(X_M\), denote by \(X_M \subseteq X_N\), if \(T_M(r) \geq T_N(r), I_M(r) \leq I_N(r), F_M(r) \geq F_N(r)\) for all \(r \in X\).

(ii) If \(X_N \subseteq X_M\) and \(X_M \subseteq X_N\), then we say that \(X_N = X_M\).

(iii) The neutrosophic \(\kappa\)-product of \(X_N\) and \(X_M\) is defined to be a neutrosophic \(\kappa\)-structure of \(X\),

\[
X_N \otimes X_M := \frac{x}{(T_N \circ T_M, I_N \circ I_M, F_N \circ F_M)} = \left\{ \frac{h}{T_{N \circ M}(h), I_{N \circ M}(h), F_{N \circ M}(h)} \mid h \in X \right\},
\]

where

\[
(T_N \circ T_M)(h) = T_{N \circ M}(h) = \begin{cases} \bigwedge_{r \in rs} (T_N(r) \lor T_M(s)) & \text{if } \exists r, s \in X \text{ such that } h = rs \\ 0 & \text{otherwise}, \end{cases}
\]

\[
(I_N \circ I_M)(h) = I_{N \circ M}(h) = \begin{cases} \bigvee_{r \in rs} (I_N(r) \land I_M(s)) & \text{if } \exists u, v \in X \text{ such that } h = rs \\ -1 & \text{otherwise}, \end{cases}
\]

\[
(F_N \circ F_M)(h) = F_{N \circ M}(h) = \begin{cases} \bigwedge_{r \in rs} (F_N(r) \lor F_M(s)) & \text{if } \exists u, v \in X \text{ such that } h = rs \\ 0 & \text{otherwise}. \end{cases}
\]

For \(i \in X\), the element \(\frac{i}{(T_{N \circ M}(i), I_{N \circ M}(i), F_{N \circ M}(i))}\) is simply denoted by \((X_N \otimes X_M)(i) = (T_{N \circ M}(i), I_{N \circ M}(i), F_{N \circ M}(i))\).

(iii) The union of \(X_N\) and \(X_M\), a neutrosophic \(\kappa\)-structure over \(X\) is defined as

\[
X_N \cup X_M = X_{N \cup M} = (X; T_{N \cup M}, I_{N \cup M}, F_{N \cup M}),
\]

where

\[
(T_{N \cup M}(h)) = T_{N \cup M}(h) = T_N(h) \lor T_M(h),
\]

\[
(I_{N \cup M}(h)) = I_{N \cup M}(h) = I_N(h) \land I_M(h),
\]

\[
(F_{N \cup M}(h)) = F_{N \cup M}(h) = F_N(h) \lor F_M(h) \forall h \in X.
\]

(iv) The intersection of \(X_N\) and \(X_M\), a neutrosophic \(\kappa\)-structure over \(X\) is defined as

\[
X_N \cap X_M = X_{N \cap M} = (X; T_{N \cap M}, I_{N \cap M}, F_{N \cap M}),
\]

where

\[
(T_{N \cap M}(h)) = T_{N \cap M}(h) = T_N(h) \land T_M(h),
\]

\[
(I_{N \cap M}(h)) = I_{N \cap M}(h) = I_N(h) \lor I_M(h),
\]

\[
(F_{N \cap M}(h)) = F_{N \cap M}(h) = F_N(h) \land F_M(h) \forall h \in X.
\]

3. Neutrosophic \(\kappa\)-interior ideals

We study different properties of neutrosophic \(\kappa\)-interior ideals of \(X\). It is evident that neutrosophic \(\kappa\)-ideal is a neutrosophic \(\kappa\)-interior ideal of \(X\), but not the converse. Further, for a regular and for an intra-regular semigroup, every neutrosophic \(\kappa\)-interior ideal is neutrosophic \(\kappa\)-ideal.
All throughout this part, we consider X_m and X_n are neutrosophic \aleph—structures of X.

Theorem 3.1. For any $L \subseteq X$, the equivalent assertions are:

(i) L is an interior ideal,

(ii) The characteristic neutrosophic \aleph—structure $\chi_L(X_N)$ is a neutrosophic \aleph—interior ideal.

Proof: Suppose L is an interior ideal and let $x, a, y \in X$.

If $a \in L$, then $xay \in L$, so $\chi_L(T)_N(xay) = -1 = \chi_L(T)_N(a)$, $\chi_L(I)_N(xay) = 0 = \chi_L(I)_N(a)$ and $\chi_L(F)_N(xay) = -1 = \chi_L(F)_N(a)$.

If $a \notin L$, then $\chi_L(T)_N(xay) \leq 0 = \chi_L(T)_N(a)$, $\chi_L(I)_N(xay) \geq -1 = \chi_L(I)_N(a)$ and $\chi_L(F)_N(xay) \leq 0 = \chi_L(F)_N(a)$.

Therefore $\chi_L(X_N)$ is a neutrosophic \aleph—interior ideal.

Conversely, assume that $\chi_L(X_N)$ is a neutrosophic \aleph—interior ideal. Let $u \in L$ and $x, y \in X$. Then

$$\chi_L(T)_N(xay) \leq \chi_L(T)_N(u) = -1,$$

$$\chi_L(I)_N(xay) \geq \chi_L(I)_N(u) = 0,$$

$$\chi_L(F)_N(xay) \leq \chi_L(F)_N(u) = -1.$$

So $xuy \in L$. \hfill \square

Theorem 3.2. If X_M and X_N are neutrosophic \aleph—interior ideals, then X_{MN} is neutrosophic \aleph—interior ideal.

Proof: Let X_M and X_N be neutrosophic \aleph—interior ideals. For any $r, s, t \in X$, we have

$$T_{MN}(rst) = T_M(rst) \cup T_N(rst) \subseteq T_M(s) \cup T_N(s) = T_{MN}(s),$$

$$I_{MN}(rst) = I_M(rst) \cap I_N(rst) \supseteq I_M(s) \cap I_N(s) = I_{MN}(s),$$

$$F_{MN}(rst) = F_M(rst) \cap F_N(rst) \subseteq F_M(s) \cap F_N(s) = F_{MN}(s).$$

Therefore X_{MN} is neutrosophic \aleph—interior ideal. \hfill \square

Corollary 3.3. The arbitrary intersection of neutrosophic \aleph—interior ideals is a neutrosophic \aleph—interior ideal.

Theorem 3.4. If X_M and X_N are neutrosophic \aleph—interior ideals, then X_{MN} is neutrosophic \aleph—interior ideal.

Proof: Let X_M and X_N be neutrosophic \aleph—interior ideals. For any $r, s, t \in X$, we have

$$T_{MN}(rst) = T_M(rst) \cap T_N(rst) \subseteq T_M(s) \cap T_N(s) = T_{MN}(s),$$

$$I_{MN}(rst) = I_M(rst) \cup I_N(rst) \supseteq I_M(s) \cup I_N(s) = I_{MN}(s),$$

$$F_{MN}(rst) = F_M(rst) \cup F_N(rst) \subseteq F_M(s) \cup F_N(s) = F_{MN}(s).$$

Therefore X_{MN} is neutrosophic \aleph—interior ideal. \hfill \square

Corollary 3.5. The arbitrary union of neutrosophic \aleph—interior ideals is neutrosophic \aleph—interior ideal.

Theorem 3.6. Let X be a regular semigroup. If X_M is neutrosophic \aleph—interior ideal, then X_M is neutrosophic \aleph—ideal.
Proof: Assume that \(X_M \) is an interior ideal, and let \(u, v \in X \). As \(X \) is regular and \(u \in X \), there exists \(r \in X \) such that \(u = uru \). Now, \(T_M(uv) = T_M(uru) \leq T_M(u) \), \(I_M(uv) = I_M(uru) \geq I_M(u) \) and \(F_M(uv) = F_M(uru) \leq F_M(u) \). Therefore \(X_M \) is neutrosophic \(\kappa - \) right ideal.

Similarly, we can show that \(X_M \) is neutrosophic \(\kappa - \) left ideal and hence \(X_M \) is neutrosophic \(\kappa - \) ideal. \(\square \)

Theorem 3.7. Let \(X \) be an intra-regular semigroup. If \(X_M \) is neutrosophic \(\kappa - \) interior ideal, then \(X_M \) is neutrosophic \(\kappa - \) ideal.

Proof: Suppose that \(X_M \) is neutrosophic \(\kappa - \) interior ideal, and let \(u, v \in X \). As \(X \) is intra regular and \(u \in X \), there exist \(s, t \in S \) such that \(u = su^2t \). Now,

\[
T_M(uv) = T_M(su^2tv) \leq T_M(u),
I_M(uv) = I_M(su^2tv) \geq I_M(u)
F_M(uv) = F_M(su^2tv) \leq F_M(u).
\]

Therefore \(X_M \) is neutrosophic \(\kappa - \) right ideal. similarly, we can show that \(X_M \) is neutrosophic \(\kappa - \) left ideal and hence \(X_M \) is neutrosophic \(\kappa - \) ideal. \(\square \)

Definition 3.8. A semigroup \(X \) is left simple (resp., right simple) if it does not contain any proper left ideal (resp., right ideal) of \(X \). A semigroup \(X \) is simple if it does not contain any proper ideal of \(X \).

Definition 3.9. A semigroup \(X \) is said to be neutrosophic \(\kappa - \)simple if every neutrosophic \(\kappa - \) ideal is a constant function

i.e., for every neutrosophic \(\kappa - \) ideal \(X_M \) of \(X \), we have \(T_M(i) = T_M(j), I_M(i) = I_M(j) \) and \(F_M(i) = F_M(j) \) for all \(i, j \in X \).

Notation 3.10. If \(X \) is a semigroup and \(s \in X \), we define a subset, denoted by \(I_s \), as follows:

\[
I_s = \{ i \in X \mid T_N(i) \leq T_N(s), I_N(i) \geq I_N(s) \ \text{and} \ F_N(i) \leq F_N(s) \}.
\]

Proposition 3.11. If \(X_N \) is neutrosophic \(\kappa - \) right (resp., \(\kappa - \) left, \(\kappa - \) ideal) ideal, then \(I_s \) is right (resp., left, ideal) ideal for every \(s \in X \).

Proof: Let \(s \in X \). Then it is clear that \(\varphi \neq I_s \subseteq X \). Let \(u \in I_s \) and \(x \in X \). Then \(ux \in I_s \). Indeed; Since \(X_N \) is neutrosophic \(\kappa - \) right ideal and \(u, x \in X \), we get \(T_N(ux) \leq T_N(u), I_N(ux) \geq I_N(u) \) and \(F_N(ux) \leq F_N(t) \). Since \(u \in I_N \), we get \(T_N(u) \leq T_N(s), I_N(u) \geq I_N(s) \) and \(F_N(u) \leq F_N(s) \) which imply \(ux \in I_s \). Therefore \(I_s \) is a right ideal for every \(s \in X \). \(\square \)

Theorem 3.12.\([4]\) For any \(L \subseteq X \), the equivalent assertions are:

(i) \(L \) is left (resp., right) ideal,
(ii) Characteristic neutrosophic \(\kappa - \) structure \(\chi_L(X_N) \) is neutrosophic \(\kappa - \) left (resp., right) ideal.

Theorem 3.13. Let \(X \) be a semigroup. Then \(X \) is simple if and only if \(X \) is neutrosophic \(\kappa - \)simple.
Proof: Suppose \(X \) is simple. Let \(X_M \) be a neutrosophic \(\mathcal{N} \)– ideal and \(u, v \in X \). Then by Proposition 3.11, \(I_u \) is an ideal of \(X \). As \(X \) is simple, we have \(I_u = X \). Since \(v \in I_u \), we have \(T_M(v) \leq T_M(u), I_M(v) \geq I_M(u) \) and \(F_M(v) \leq F_M(u) \).

Similarly, we can prove that \(T_M(u) \leq T_M(v), I_M(u) \geq I_M(v) \) and \(F_M(u) \leq F_M(v) \). So \(T_M(u) = T_M(v), I_M(u) = I_M(v) \) and \(F_M(u) = F_M(v) \). Hence \(X \) is neutrosophic \(\mathcal{N} \)– simple.

Conversely, assume that \(X \) is neutrosophic \(\mathcal{N} \)– simple and \(I \) is an ideal of \(X \). Then by Theorem 3.12, \(\chi(X_N) \) is a neutrosophic \(\mathcal{N} \)– ideal. We now claim that \(X = I \). Let \(w \in X \). Since \(X \) is neutrosophic \(\mathcal{N} \)– simple, we have \(\chi(X_N)(w) = \chi(X_N)(y) \) for every \(y \in X \). In particular, we have \(\chi(T_N)(w) = \chi(T_N)(d) = -1, \chi(I_N)(w) = \chi(I_N)(d) = 0 \) and \(\chi(F_N)(w) = \chi(F_N)(d) = -1 \) for any \(d \in I \) which implies \(w \in I \). Thus \(X \subseteq I \) and hence \(X = I \).

Lemma 3.14. Let \(X \) be a semigroup. Then \(X \) is simple if and only for every \(t \in X \), we have \(X = Xtx \).

Proof: Suppose \(X \) is simple and let \(t \in X \). Then \(X(Xtx) \subseteq Xtx \) and \((Xtx)X \subseteq Xtx \) imply that \(Xtx \) is an ideal. Since \(X \) is simple, we have \(Xtx = X \).

Conversely, let \(P \) be an ideal and let \(a \in P \). Then \(X = Xax, Xax \subseteq XPX \subseteq P \) which implies \(P = X \). Therefore \(X \) is simple.

Theorem 3.15. Suppose \(X \) is a semigroup. Then \(X \) is simple if and only every neutrosophic \(\mathcal{N} \)– interior ideal of \(X \) is a constant function.

Proof: Suppose \(X \) is simple and \(s, t \in X \). Let \(X_N \) be neutrosophic \(\mathcal{N} \)– interior ideal. Then by Lemma 3.14, we get \(X = Xsx = Xtx \). As \(s \in Xsx \), we have \(s = abt \) for \(a, b \in X \). Since \(X_N \) is neutrosophic \(\mathcal{N} \)– interior ideal, we have \(T_N(s) = T_N(abt) \leq T_N(t), I_N(s) = I_N(abt) \geq I_N(t) \) and \(F_N(s) = F_N(abt) \leq F_N(t) \). Similarly, we can prove that \(T_N(t) \leq T_N(s), I_N(t) \geq I_N(s) \) and \(F_N(t) \leq F_N(s) \). So \(X_N \) is a constant function.

Conversely, suppose \(X_N \) is neutrosophic \(\mathcal{N} \)– ideal. Then \(X_N \) is neutrosophic \(\mathcal{N} \)– interior ideal. By hypothesis, \(X_N \) is a constant function and so \(X_N \) is neutrosophic \(\mathcal{N} \)–simple. By Theorem 3.13, \(X \) is simple.

Theorem 3.16. Let \(X_M \) be neutrosophic \(\mathcal{N} \)– structure and let \(\gamma, \delta, \epsilon \in [-1, 0] \) with \(-3 \leq \gamma + \delta + \epsilon \leq 0 \). If \(X_M \) is neutrosophic \(\mathcal{N} \)– interior ideal, then \((\gamma, \delta, \epsilon)\)-level set of \(X_M \) is neutrosophic \(\mathcal{N} \)– interior ideal whenever \(X_M(\gamma, \delta, \epsilon) \neq \emptyset \).

Proof: Suppose \(X_M(\gamma, \delta, \epsilon) \neq \emptyset \) for \(\gamma, \delta, \epsilon \in [-1, 0] \) with \(-3 \leq \gamma + \delta + \epsilon \leq 0 \).

Let \(X_M \) be a neutrosophic \(\mathcal{N} \)– interior ideal and let \(u, v, w \in X_M(\gamma, \delta, \epsilon) \). Then \(T_M(uvw) \leq T_M(v) \leq \alpha; I_M(uvw) \geq I_M(v) \geq \beta \) and \(F_M(uvw) \leq F_M(v) \leq \gamma \) which imply \(uvw \in X_M(\alpha, \beta, \gamma) \). Therefore \(X_M(\gamma, \delta, \epsilon) \) is a neutrosophic \(\mathcal{N} \)– interior ideal of \(X \).

Theorem 3.17. Let \(X_N \) be neutrosophic \(\mathcal{N} \)– structure with \(\alpha, \beta, \gamma \in [-1, 0] \) such that \(-3 \leq \alpha + \beta + \gamma \leq 0 \). If \(T^u_N, I^t_N \) and \(F^d_N \) are interior ideals, then \(X_N \) is neutrosophic \(\mathcal{N} \)– interior ideal of \(X \) whenever it is non-empty.

Proof: Suppose that for \(a, b, c \in X \) with \(T_N(abc) > T_N(b) \). Then \(T_N(abc) > t_a \geq T_N(b) \) for some \(t_a \in [-1, 0] \). So \(b \in T^b_N(b) \) but \(abc \notin T^a_N(b) \), a contradiction. Thus \(T_N(abc) \leq T_N(b) \).
Suppose that for \(a, b, c \in X \) with \(I_N(ab) \leq F_N(b) \). Then \(I_N(ab) < t_a \leq I_N(b) \) for some \(t_a \in [-1, 0) \). So \(b \in I_N^a \) but \(abc \notin I_N^a \), a contradiction. Thus \(I_N(ab) \geq I_N(b) \).

Suppose that for \(a, b, c \in X \) with \(F_N(ab) > F_N(b) \). Then \(F_N(ab) > t_a \geq F_N(b) \) for some \(t_a \in [-1, 0) \). So \(b \in I_N^a \) but \(abc \notin I_N^a \), a contradiction. Thus \(F_N(ab) \leq F_N(b) \).

Thus \(X_N \) is neutrosophic \(\mathbb{K}^- \)– interior ideal.

\[\square \]

Theorem 3.18. Let \(X_M \) be neutrosophic \(\mathbb{K}^- \)– structure over \(X \). Then the equivalent assertions are:

(i) \(X_M \) is neutrosophic \(\mathbb{K}^- \)– interior ideal,

(ii) \(X_N \bigcap X_M \bigcap X_N \subseteq X_M \) for any neutrosophic \(\mathbb{K}^- \)– structure \(X_N \).

Proof: Suppose \(X_M \) is neutrosophic \(\mathbb{K}^- \)– interior ideal. Let \(x \in X \). For any \(u, v, w \in X \) such that \(x = uvw \). Then \(T_M(x) = T_M(uvw) \leq T_M(v) \leq T_N(u) \cup T_M(v) \cup T_N(w) \) which implies \(T_M(x) \leq T_{N,M-N}(x) \). Otherwise \(x = uvw \). Then \(T_M(x) = 0 = T_{N,M-N}(x) \). Similarly, we can prove that \(I_M(x) \geq I_{N,M-N}(x) \) and \(F_M(x) \leq F_{N,M-N}(x) \). Thus \(\bigcap X_M \subseteq X_M \).

Conversely, assume that \(X_N \bigcap X_M \bigcap X_N \subseteq X_M \) for any neutrosophic \(\mathbb{K}^- \)–structure \(X_N \).

Notation 3.19. Let \(X \) and \(Z \) be semigroups. A mapping \(g:X \rightarrow Z \) is said to be a homomorphism if \(g(uv) = g(u)g(v) \) for all \(u, v \in X \). Throughout this remaining section, we denote \(\text{Aut}(X) \), the set of all automorphisms of \(X \).

Definition 3.20. An interior ideal \(J \) of a semigroup \(X \) is called a characteristic interior ideal if \(h(J) = J \) for all \(h \in \text{Aut}(X) \).
Definition 3.21. Let X be a semigroup. A neutrosophic \mathfrak{K}-interior ideal X_M is called neutrosophic \mathfrak{K}-characteristic interior ideal if $T_M(h(u)) = T_M(u)$, $I_M(h(u)) = I_M(u)$ and $F_M(h(u)) = F_M(u)$ for all $u \in X$ and all $h \in Aut(X)$.

Theorem 3.22. For any $L \subseteq X$, the equivalent assertions are:

(i) L is characteristic interior ideal,

(ii) The characteristic neutrosophic \mathfrak{K}-structure $\chi_L(X_M)$ is neutrosophic \mathfrak{K}-characteristic interior ideal.

Proof: Suppose L is characteristic interior ideal and let $x \in X$. Then by Theorem 3.1, $\chi_L(X_M)$ is neutrosophic \mathfrak{K}-ideal. If $x \in L$, then $\chi_L(T)_M(x) = -1$, $\chi_L(I)_M(x) = 0$, and $\chi_L(F)_M(x) = -1$. Now, for any $h \in Aut(X)$, $h(x) \in h(L) = L$ which implies $\chi_L(T)_M(h(x)) = -1$, $\chi_L(I)_M(h(x)) = 0$, and $\chi_L(F)_M(h(x)) = -1$. If $x \notin L$, then $\chi_L(T)_M(x) = 0$, $\chi_L(I)_M(x) = -1$, and $\chi_L(F)_M(x) = 0$. Now, for any $h \in Aut(X)$, $h(x) \notin h(L)$ which implies $\chi_L(T)_M(h(x)) = 0$, $\chi_L(I)_M(h(x)) = -1$, and $\chi_L(F)_M(h(x)) = 0$. Thus $\chi_L(T)_M(h(x)) = \chi_L(T)_M(x)$, $\chi_L(I)_M(h(x)) = \chi_L(I)_M(x)$, and $\chi_L(F)_M(h(x)) = \chi_L(F)_M(x)$ for all $x \in X$ and hence $\chi_L(X_M)$ is neutrosophic \mathfrak{K}-characteristic interior ideal.

Conversely, assume that $\chi_L(X_M)$ is neutrosophic \mathfrak{K}-characteristic interior ideal. Then by Theorem 3.1, L is an interior ideal. Now, let $h \in Aut(X)$ and $x \in L$. Then $\chi_L(T)_M(x) = -1$, $\chi_L(I)_M(x) = 0$ and $\chi_L(F)_M(x) = -1$. Since $\chi_L(X_M)$ is neutrosophic \mathfrak{K}-characteristic interior ideal, we have $\chi_L(T)_M(h(x)) = \chi_L(T)_M(x)$, $\chi_L(I)_M(h(x)) = \chi_L(I)_M(x)$ and $\chi_L(F)_M(h(x)) = \chi_L(F)_M(x)$ which imply $h(x) \in L$. So $h(L) \subseteq L$ for all $h \in Aut(X)$. Again, since $h \in Aut(X)$ and $x \in L$, there exists $y \in L$ such that $h(y) = x$.

Suppose that $y \notin L$. Then $\chi_L(T)_M(y) = 0$, $\chi_L(I)_M(y) = -1$ and $\chi_L(F)_M(y) = 0$. Since $\chi_L(T)_M(h(y)) = \chi_L(T)_M(y)$, $\chi_L(I)_M(h(y)) = \chi_L(I)_M(y)$ and $\chi_L(F)_M(h(y)) = \chi_L(F)_M(y)$, we get $\chi_L(T)_M(h(y)) = 0$, $\chi_L(I)_M(h(y)) = -1$ and $\chi_L(F)_M(h(y)) = 0$ which imply $h(y) \notin L$, a contradiction. So $y \in L$, i.e., $h(y) \in L$. Thus $L \subseteq h(L)$ for all $h \in Aut(X)$ and hence L is characteristic interior ideal.

Theorem 3.23. For a semigroup X, the equivalent statements are:

(i) X is intra-regular,

(ii) For any neutrosophic \mathfrak{K}-interior ideal X_M, we have $X_M(w) = X_M(w^2)$ for all $w \in X$.

Proof: (i) \Rightarrow (ii) Suppose X is intra-regular, and X_M is neutrosophic \mathfrak{K}-interior ideal and $w \in X$. Then there exist $r, s \in X$ such that $w = rw^2$. Now $T_M(w) = T_M(rw^2) \leq T_M(w^2) \leq T_M(w)$ and so $T_M(w) = T_M(w^2)$, $I_M(w) = I_M(rw^2) \geq I_M(w^2) \geq I_M(w)$ and so $I_M(w) = I_M(w^2)$, and $F_M(w) = F_M(rw^2) \leq F_M(w^2) \leq F_M(w)$ and so $F_M(w) = F_M(w^2)$. Therefore $X_M(w) = X_M(w^2)$ for all $w \in X$.

(ii) \Rightarrow (i) Let (ii) holds and $s \in X$. Then $I(s^2)$ is an ideal of X. By Theorem 3.5 of [4], $X_{I(s^2)}(X_M)$ is neutrosophic \mathfrak{K}-ideal. By assumption, $X_{I(s^2)}(X_M)(s) = X_{I(s^2)}(X_M)(s^2)$. Since $X_{I(s^2)}(T)_M(s^2) = -1 = X_{I(s^2)}(F)_M(s^2)$ and $X_{I(s^2)}(I)_M(s^2) = 0$, we get $X_{I(s^2)}(T)_M(s) = -1 = X_{I(s^2)}(F)_M(s)$ and $X_{I(s^2)}(I)_M(s^2) = 0$ which imply $s \in I(s^2)$. Hence X is intra-regular.

Theorem 3.24. For a semigroup X, the equivalent statements are:

(i) X is left (resp., right) regular,
(ii) For any neutrosophic \aleph–interior ideal X_M, we have $X_M(w) = X_M(w^2)$ for all $w \in X$.

Proof: (i) \Rightarrow (ii) Let X be left regular. Then there exists $y \in X$ such that $w = yw^2$. Let X_M be a neutrosophic \aleph–interior ideal. Then $T_M(w) = T_M(yw^2) \leq T_M(w)$ and so $T_M(w) = T_M(w^2)$. $I_M(w) = I_M(yw^2) \geq I_M(w)$ and so $I_M(w) = I_M(w^2)$, and $F_M(w) = F_M(yw^2) \leq F_M(w)$ and so $F_M(w) = F_M(w^2)$. Therefore $X_M(w) = X_M(w^2)$ for all $w \in X$.

(ii) \Rightarrow (i) Suppose (ii) holds and let X_M be neutrosophic \aleph–interior ideal. Then for any $w \in X$, $\chi_L(w^2)(T)_M(w) = \chi_L(w^2)(T)_M(w^2) = -1$, $\chi_L(w^2)(I)_M(w) = \chi_L(w^2)(I)_M(w^2) = 0$ and $\chi_L(w^2)(F)_M(w) = \chi_L(w^2)(F)_M(w^2) = -1$ which imply $w \in L(w^2)$. Thus X is left regular. □

Conclusions

In this paper, we have introduced the concepts of neutrosophic \aleph–interior ideals and neutrosophic \aleph–characteristic interior ideals in semigroups and studied their properties, and characterized regular and intra-regular semigroups using neutrosophic \aleph-interior ideal structures. We have also shown that \aleph is a characteristic interior ideal if and only if the characteristic neutrosophic \aleph–structure $\chi_M(X_\aleph)$ is neutrosophic \aleph–characteristic interior ideal. In future, we will define neutrosophic \aleph–prime ideals in semigroups and study their properties.

Reference

Received: May 7, 2020. Accepted: September 23, 2020