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Abstract. The aim of present paper is to introduce the concept of neutrosophic 2−norm space ( briefly abbre-

viated as N−2−NS) and study statistical summability in these spaces. We construct examples to demonstrate

that statistical convergence is stronger method than usual convergence. Finally, we define statistically Cauchy

sequence, statistical completeness and obtain the Cauchy convergence criteria.
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—————————————————————————————————————————-

1. Introduction

Summability method is primarily concerned with the assignment of a limit in some gen-

eralized form to those sequences which do not converge in the usual sense. Over the years,

many summability methods have been developed. One among these is developed by Henry

Fast[6] and Schoenberg [20] independently by use of the natural density δ of subsets of N and

called it as statistical convergence. For any set K ⊆ N, the natural density of K is denoted by

δ(K) and is defined by limn
1
n |{k ≤ n : k ∈ K}| provided the limit exists. Using δ, statistical

convergent can be defined as follows.

“A sequence x = (xk) of numbers is said to be statistical convergent to L if for each ϵ > 0

lim
n→∞

1

n

∣∣∣∣{k ≤ n : |xk − L| ≥ ϵ}
∣∣∣∣ = 0;

or equivalently δ
(
{k ≤ n : |xk − L| ≥ ϵ}

)
= 0. In this case, we write S − limk xk = L”. Over

the years, statistical convergence and related concepts have been further explored by numerous

authors in different directions. For some interesting works on statistical convergence in this

concern, we refer [5], [8], [11]-[13], and [19].
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Apart from this, fuzzy sets were introduced by Zadeh [22] in 1965 as a generalization of

crisp sets and turned out to be a very effective tool to deal with those situations which can

not be fit in the framework of classical sets. These sets have wide applications in many ar-

eas of science and technology, especially in control engineering, artifical intelegence, robotics

and many more to achieve better solutions. During development phase of fuzzy sets, many

interesting generalizations of these sets have been appeared in the literature. For instance:

intuitionistic fuzzy sets [1], vague fuzzy sets [4], interval-valued fuzzy sets [21], neutrosophic

sets [15], etc. These sets have been further used to define some new kind of spaces such as

fuzzy normed spaces [7], intuitionistic fuzzy metric spaces [17], intuitionistic fuzzy 2-normed

spaces [16], intuitionistic fuzzy topological spaces [18] and neutrosophic normed spaces ([2],

[3]). Recently, these spaces have been explored from sequence spaces point of view and linked

with summability theory. Many summability method such as statistical convergence, ideal

convergence, and lacunary statistical convergence have been developed. For an extensive view

in this direction, we refer to the reader [10], [12]-[14]. In present work, we define a generalized

neutrosophic normed space which we call neutrosophic 2−norm space and introduce the con-

vergence structure in these spaces. Later, we define statistical convergence, statistical Cauchy

sequences in a neutrosophic 2−norm space and develop some of their properties.

2. Prelimanaries

This section record a few definitions and outcomes that will be required in present study.

Through out this work, R+ will denote the open interval (0,∞) and N, the set of positive

integers.

Definition 2.1 [11] Let I = [0, 1]. A function ◦ : I × I → I is said to be a t−norm for all

f, g, h, i ∈ I we have:

(i) f ◦ g = g ◦ f ;
(ii)f ◦ (g ◦ h) = (f ◦ g) ◦ h;
(iii) ◦ is continuous;

(iv) f ◦ 1 = f for every f ∈ [0, 1] and

(v) f ◦ g ≤ h ◦ i whenever f ≤ h and g ≤ i.

Definition 2.2 [11] Let I = [0, 1]. A function ⋄ : I × I → I is said to be a continuous

triangular conorm or t−conorm for all f, g, h, i ∈ I we have:

(i) f ⋄ g = g ⋄ f ;
(ii)f ⋄ (g ⋄ h) = (f ⋄ g) ◦ h;
(iii) ⋄ is continuous;
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(iv) f ⋄ 0 = f for every f ∈ [0, 1]

(v) f ⋄ g ≤ h ⋄ i whenever f ≤ h and g ≤ i.

Kirişci and Şimşek [13] recently defined NNS as follows.

Definition 2.3 [13] Let F is a vector space, N = {⟨ϑ,H(ϑ), I(ϑ),J (ϑ)⟩ : ϑ ∈ F} be a normed

space in which N : F ×R+ → [0, 1] and ◦, ⋄ respectively are t−norm and t−conorm. The four

touple V = (F,N, ◦, ⋄ ) is called a neutrosophic normed spaces (NNS) briefly it for every

p, q ∈ F , ρ µ > 0 and for every ς ̸= 0 we have

(i) 0 ≤ H (p, ρ) ≤ 1, 0 ≤ I (p, ρ) ≤ 1, 0 ≤ J (p, ρ) ≤ 1 for every ρ∈ R+ ;

(ii) H (p, ρ) + I (p, ρ) + J (p, ρ) ≤ 3 for ρ∈ R+ ;

(iii) H (p, ρ) = 1 (for ρ > 0) iff p = 0;

(iv) H (ςp, ρ) = H
(
p, ρ

|ς|

)
;

(v) H (p, µ) ◦ H (q, ρ) ≤ H (p+ q, µ+ ρ);

(vi) H (p, .) is a non-decreasing function that runs continuously;

(vii) limρ→∞H (p, ρ) = 1;

(viii) I (p, ρ) = 0 (forρ > 0) iff p = 0;

(ix) I (ςp, ρ) = I
(
p, ρ

|ς|

)
;

(x) I (p, µ) ⋄ I (q, ρ) ≥ I (p+ q, ρ+ µ);

(xi) I (p, .) is a non-decreasing function that runs continuously;

(xii) limλ→∞ I (p, ρ) = 0;

(xiii) J (p, ρ) = 0 (for ρ > 0) iff p = 0;

(xiv) J (ςp, ρ) = J
(
p, ρ

|ς|

)
;

(xv) J (p, µ) ⋄ J (q, ρ) ≥ J (p+ q, ρ+ µ);

(xvi) J (p, .) is a non-decreasing function that runs continuously;

(xvii) limλ→∞ J (p, ρ) = 0;

(xviii) If ρ ≤ 0, then H (p, ρ) = 0, I (p, ρ) = 1 and J (p, ρ) = 1.

We call N (H, I,J ) the neutrosophic norm.

We next give the notions of statistical convergence and statistical Cauchy sequences in

neutrosophic norm spaces as introduced in [13].

Definition 2.4 [13] Let V be a NNS. Choose 0 < ϵ < 1 and ρ > 0. A sequence (vk)

in V is said to be statistical convergent if ∃ v0 ∈ F s.t. limn
1
n |{k ≤ n : H(vk − v0, ρ) ≤

1− ε or I(vk − v0, ρ) ≥ ε and J (vk − v0, ρ) ≥ ε}| = 0; or equivalently, the set’s natural density

A(ε, ρ) = {k ≤ n : H(vk − v0; ρ) ≤ 1− ε or I(vk − v0; ρ) ≥ ε and J (vk − v0, ρ) ≥ ε} is zero,

i.e., δ (A (ε, ρ)) = 0. we can write it as S(N)− limk→∞ vk = v0.

Sajid Murtaza, Archana Sharma and Vijay Kumar, Neutrosophic 2−normed spaces and
generalized summability

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               417



Definition 2.5 [13] Let V be a NNS. Choose 0 < ϵ < 1 and ρ > 0. A sequence (vk)

in V is said to be statistical Cauchy if ∃ p ∈ N s.t. limn
1
n |{k ≤ n : H(vk − vp, ρ) ≤

1− ε or I(vk − vp, ρ) ≥ ε and J (vk − vp, ρ) ≥ ε}| = 0; or equivalently, the natural density of

the set A(ε, ρ) = {k ≤ n : H(vk − vp, ρ) ≤ 1− ε or I(vk − vp, ρ) ≥ ε and J (vk − vp, ρ) ≥ ε}
is zero, i.e., δ (A (ε, ρ)) = 0.

We now turn towards the paper [9] and would like to quote the idea of two norm.

Definition 2.6 [9] Let V be a d−dimensional real vector space, where 2 ≤ d < ∞. A 2−norm

on V is a function ∥., .∥ : V × V → R fulfilling the below listed requirements:

For all p, q ∈ V , and scalar α, we have

(i) ||p, q|| = 0 iff p and q are linearly dependent;

(ii) ||p, q|| = ||p, q||;
(iii)||αp, q|| = |α|||p, q|| and
(iv) ||p, q + r|| ≤ ||p, q||+ ||p, r||.
The pair (V, ||., .||) is known as 2−normed space in this case.

Let V = R2 and for p = (p1, p2) and q = (q1, q2) we define ||p, q|| = |p1q2−p2q1|, then ||p, q||
is a 2− norm on V = R2.

We now proceed with our main results.

3. Neutrosophic-2-norm spaces (N − 2−NS)

This section starts with the following definition of neutrosophic−2−norm spaces.

Definition 3.1 Let F is a vector space, N2 = ({(p, q),H(p, q), I(p, q),J (p, q)} : (p, q) ∈ F×F )

be a 2−norm space s.t. N2 : F × F × R+ → [0, 1]. If ◦, ⋄ respectively denotes t − norm and

t− conorm, then four-tuple V = (F,N2, ◦, ⋄) is known as neutrosophic 2−norm spaces (briefly

N − 2−NS) if for every p, q, w ∈ V , ρ, µ ≥ 0 and ς ̸= 0:

(i) 0 ≤ H(p, q; ρ) ≤ 1, 0 ≤ I(p, q; ρ) ≤ 1 and 0 ≤ J (p, q; ρ) ≤ 1 for every ρ ∈ R+;

(ii) H(p, q; ρ) + I(p, q; ρ) + J (p, q; ρ) ≤ 3;

(iii) H(p, q; ρ) = 1 iff p, q are linearly dependent;

(iv) H(ςp, q; ρ) = H(p, q; ρ
|ς|) for each ς ̸= 0;

(v) H(p, q; ρ) ◦ H(p, w;µ) ≤ H(p, q + w; ρ+ µ);

(vi) H(p, q; .) : (0,∞) → [0, 1] is a non-increasing function that runs continuously;

(vii) lim
ρ→∞

H(p, q; ρ) = 1 ;

(viii) H(p, q; ρ) = H(q, p; ρ)

(ix) I(p, q; ρ) = 0 iff p, q are linearly dependent;
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(x) I(ςp, q; ρ) = I(p, q; ρ
|ς|) for each ς ̸= 0;

(xi) I(p, q; ρ) ⋄ I(p, w;µ) ≥ I(p, q + w; ρ+ µ);

(xii) I(p, q; .) : (0,∞) → [0, 1] is a non-increasing function that runs continuously;

(xiii) lim
ρ→∞

I(p, q; ρ) = 0 ;

(xiv) I(p, q; ρ) = I(q, p; ρ)
(xvi) J (p, q; ρ) = 0 iff p, q are linearly dependent;

(xv)J (ςp, q; ρ) = J (p, q; ρ
|ς|) for each ς ̸= 0;

(xvi) J (p, q; ρ) ⋄ J (p, w;µ) ≥ J (p, q + w; ρ+ µ);

(xvii) J (p, q; .) : (0,∞) → [0, 1] is a non-increasing function that runs continuously;

(xviii) lim
λ→∞

J (p, q; ρ) = 0 ;

(xix) J (p, q; ρ) = J (q, p; ρ)

(xx) if ρ ≤ 0, then H(p, q; ρ) = 0, I(p, q; ρ) = 1, J (p, qρ) = 1.

In this case, we call N2(H, I,J ) a neutrosophic 2−norm on F and is denoted by N2.

Example 3.1 Let (F, ||., .||) be a N − 2 − NS. We define the continuous t − norm and

t− conorm by

p ◦ q = pq and p ⋄ q = p+ q − pq.

For p, q ∈ F , ρ > 0 with ρ > ∥p, q∥, we define

H(p, q; ρ) = ρ
ρ+∥p,q∥ , I(p, q; ρ) =

∥p,q∥
ρ+∥p,q∥ , and J (p, q; ρ) = ∥p,q∥

ρ .

If we take ||p, q|| ≥ ρ, then H(p, q; ρ) = 0, I(p, q; ρ) = 1, J (p, q; ρ) = 1 and (F,N2, ◦, ⋄) is a

N − 2−NS where N2 : F × F ×R+ → [0, 1].

We now define convergence structure and Cauchy sequences in N − 2−NS.

Definition 3.2 Let V be a N−2−NS. Choose 0 < ϵ < 1 and ρ > 0. A sequence (vk) in a V is

said to be convergent if ∃ a positive integer m and v0 ∈ F s.t. H(vk − v0, w; ρ) > 1− ϵ, I(vk −
v0, w; ρ) < ϵ and J (vk − v0, w; ρ) < ϵ for all k ≥ m and w ∈ V which is equivalently to say

limk→∞H(vk−v0, w; ρ) = 1, limk→∞ I (vk − v0, w; ρ) = 0 and limk→∞ J (vk − v0, w; ρ) = 0 .

In this case, we write N2 − limk→∞ vk = v0.

Theorem 3.1 Let V be a N − 2−NS (uk) and (vk) be two sequences in V and α being any

scalar.

(i) If (uk) is convergent w.r.t. N2, then its limit is unique.

(ii) If N2 − limk→∞ uk = u0, then N2 − limk→∞ αuk = αu0.

(iii) If N2− limk→∞ uk = u0 and N2− limk→∞ vk = v0, then N2− limk→∞(uk+vk) = (u0+v0).

Proof. Omitted. □

Sajid Murtaza, Archana Sharma and Vijay Kumar, Neutrosophic 2−normed spaces and
generalized summability

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               419



Definition 3.3 Let V be a N − 2−NS. Choose 0 < ϵ < 1 and ρ > 0. A sequence (vk) in a V

if ∃ a positive integer m is said to be Cauchy s.t. H(vk − vn, w; ρ) > 1− ϵ, I(vk − vn, w; ρ) <

ϵ and J (vk − vn, w; ρ) < ϵ ∀ k, n ≥ m and ∀ w ∈ V .

Definition 3.4 A N − 2−NS V is said to be complete if and only if each Cauchy sequence

in V is converget in V .

Theorem 3.2 Every convergent sequence in a N − 2−NS, V is Cauchy however converse is

not true.

Proof. Let ϵ > 0 and choose r > 0 s.t. (1 − ϵ) ◦ (1 − ϵ) > 1 − r and ϵ ⋄ ϵ < r. For ρ > 0,

if we take (vk) be any convergent in V with N2 − limk→∞ vk = v0. There is an integer m s.t.

H(vk − v0, w; ρ) > 1 − ϵ, I(vk − v0, w; ρ) < ϵ and J (vk − v0, w; ρ) < ϵ for all k ≥ m and

w ∈ V . Now, for all k, n ≥ m we have H(vk − vn, w; ρ) ≥ H(vk − v0, w;
ρ
2)◦ H(vn − v0, w;

ρ
2)

> (1− ϵ)◦ (1− ϵ) > r. Similarly one can easily get I(vk−vn, w; ρ) < r and J (vk−vn, w; ρ) < r

for every k, n ≥ m. This prove that the (vk) sequence is Cauchy. □

Example 3.2 Let F = {zmn = ( 1
m , 1

n) : m,n ∈ N} ⊆ R2 be a 2−normed space with

∥(m,n)∥ = | 1m − 1
n |. If we define the neutrosophic norm N2 as in Example 3.1 then

V = (F,N2, ◦, ⋄) is a N − 2 − NS. Further, the sequence zmn is Cauchy but not conver-

gent as limk→∞ I (vk − v0, w; ρ) ̸= 0 . □

4. Statistical Convergence in N − 2−NS

This section explore the statistical convergence and its properties in a N − 2−NS.

Definition 4.1 Let V be a N − 2 − NS. Choose 0 < ϵ < 1 and ρ > 0. A sequence (vk) in

V is said to be statistical convergent to v0 provided that limn
1
n |{k ≤ n : H(vk − v0, w; ρ) ≤

1 − ε or I(vk − v0, w; ρ) ≥ ε and J (vk − v0, w; ρ) ≥ ε}| = 0 for every w ∈ V or equivalently,

δ (A (ε, ρ)) = 0. where A(ε, ρ) = {k ≤ n : H(vk − v0, w; ρ) ≤ 1 − ε or I(vk − v0, w; ρ) ≥
ε and J (vk − v0, w; ρ) ≥ ε} and we write S(N2)− limk→∞ vk = v0.

Theorem 4.1 Let V be a N−2−NS and (vk) be any sequence in V . If N2− limk→∞ vk = v0,

then S(N2)− limk→∞ vk = v0.

Proof According to the hypothesis, for every ϵ > 0 and ρ > 0, there is an integer k0 ∈ N s.t.

H(vk − v0, w; ρ) > 1− ϵ and I(vk − v0, w; ρ) < ϵ, J (vk − v0, w; ρ) < ϵ for all k ≥ k0 and every

w ∈ V . This guarantees that the set {k ∈ N : H(vk − v0, w; ρ) ≤ 1− ϵ or I(vk − v0, w; ρ) < ϵ,
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J (vk − v0, w; ρ) < ϵ} has a finite number of terms whose density is zero. This immediately

shows that S(N2)− limk→∞ vk = v0. □

In general, The converse of the theorem is false.

Example 4.1 Let (R, |.|) be the real space with the usual norm. For f, g ∈ [0, 1]. Let the

t − norm and t − conorm are defined by f ◦ g = fg and f ⋄ g = min{f + g, 1}. Choose

p, q ∈ F and ρ > 0 with ρ > ∥p, q∥. If we define H(p, q; ρ) = ρ
ρ+∥p,q∥ , I(p, q; ρ) = ∥p,q∥

ρ+∥p,q∥

and J (p, q; ρ) = ∥p,q∥
ρ , then N2(H, I,J ) is a neutrosophic-2-norm and V = (F,N2, ◦, ⋄) is a

N − 2−NS. Define a sequence (vk) by

vk =

(0, 1), if k = m2, m ∈ N;

(0, 0), otherwise.
(1)

Let, An(ε, ρ) = {k ≤ n : H(vk, w; ρ) ≤ 1 − ε or I(vk, w; ρ) ≥ ε, J (vk, w; ρ) ≥ ε}, then
An(ε, ρ) = {k ≤ n : ρ

ρ+∥p,q∥ ≤ 1 − ε or ||p,q||
ρ+||p,q|| ≥ ε, ||p,q||

ρ ≥ ε} = {k ≤ n : ||p, q|| ≥
ρϵ
1−ϵ or ||p, q|| ≥ ρϵ} = {k ≤ n : vk = (0, 1)} = {k ≤ n : k = m2} and therefore we have

limn
1
n |An(ε, ρ)| = {k ≤ n : k = m2} ≤

√
n
n = 1

n → 0. Thus S(N2)− limk→∞ vk = 0. However,

the sequence (vk) is not usual convergent. □

Lemma 4.1 Let V be a N − 2−NS. Then for every 0 < ϵ < 1, ρ > 0 and for every w ∈ V ,

The statements below are equivalents:

(i) S(N2)− limk→∞ vk = v0;

(ii) δ{k ∈ N : H(vk − v0, w; ρ) ≤ 1 − ϵ} = δ{k ∈ N : I(vk − v0, w; ρ) ≥ ϵ} = δ{k ∈ N :

J (vk − v0, w; ρ) ≥ ϵ} = 0;

(iii) δ{k ∈ N : H(vk − v0, w; ρ) > 1− ϵ and I(vk − v0, w; ρ) < ϵ , J (vk − v0, w; ρ) < ϵ} = 1 ;

(iv) δ{k ∈ N : H(vk − v0, w; ρ) > 1 − ϵ} = δ{k ∈ N : I(vk − v0, w; ρ) < ϵ} = δ{k ∈ N :

J (vk − v0, w; ρ) < ϵ} = 1 and

(v) S(N2)− limk→∞H(vk − v0, w; ρ) = 1 or S(N2)− limk→∞ I(vk − v0, w; ρ) = 0 and S(N2)−
limk→∞ J (vk − v0, w; ρ) = 0.

Proof. Omitted. □

Theorem 4.2 Let V be a N − 2 − NS. For any sequence (vk), if S(N2) − limk→∞ vk exists

then it must be unique.

Proof Assume that S(N2)− limk→∞ vk = v1 and S(N2)− limk→∞ vk = v2. For a given ϵ > 0,

choose l > 0 s.t. (1 − l) ◦ (1 − l) > 1 − ϵ and q ⋄ q < ϵ. For any ρ > 0 and any w ∈ V

The following sets are defined: KH,1(l, ρ) = {k ∈ N : H(vk − v1, w; ρ) ≤ 1 − l}, KH,2(l, ρ) =

{k ∈ N : H(vk − v2, w; ρ) ≤ 1 − l}; KI,1(l, ρ) = {k ∈ N : I(vk − v1, w; ρ) ≥ l}, KI,2(l, ρ) =

{k ∈ N : I(vk − v2, w; ρ) ≥ l}; KJ ,1(l, ρ) = {k ∈ N : Y(vk − v1, w; ρ) ≥ l}, KJ ,2(l, ρ) =
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{k ∈ N : J (vk − v2, w; ρ) ≥ l}. Since S(N2) − limk→∞ vk = v1, so by Lemma 4.1, we have

δ{KH,1(l, ρ)} = δ{KI,1(l, ρ)} = δ{KJ ,1(l, ρ)} = 0. Furthermore, using S(N2) − limk→∞ vk =

v2, we get, δ{KH,2(l, λ)} = δ{KI,2(l, ρ)} = δ{KJ ,2(l, ρ)} = 0. Now let KH, I,J (ϵ, ρ) =

{KH,1(ϵ, ρ) ∪KH,2(ϵ, ρ)} ∩ {KI,1(ϵ, ρ) ∪KI,2(ϵ, ρ)} ∩{KJ ,1(ϵ, ρ) ∪KJ ,2(ϵ, ρ)}. Then observe

that δ({KH,I,J (ϵ, ρ)}) = 0 which implies δ({N/KH,I,J (ϵ, ρ)}) = 1. If k ∈ N/KH,I,J (ϵ, ρ), then

we have the following possibilities.

Case 1 k ∈ N/{KH,1(ϵ, ρ) ∪KH,2(ϵ, ρ)},
Case 2 k ∈ N/{KI,1(ϵ, ρ) ∪KI,2(ϵ, ρ)},
Case 3 k ∈ N/{KJ ,1(ϵ, ρ) ∪KJ ,2(ϵ, ρ)}.
We prove the result only for case 1 as other cases can be obtain similarly. Assume, k ∈

N/{KH,1(ϵ, ρ) ∪ KH,2(ϵ, ρ)}. Then for any w ∈ V we have H(vk − v1, w; ρ) > 1 − l and

H(vk − v2, w; ρ) > 1 − l. Now H(v1 − v2, w; ρ) ≥ H(vk − v1, w, ;
ρ
2) ◦ H(vk − v2, w;

ρ
2) >

(1− l) ◦ (1− l) > 1− ϵ (by choice of q). i.e., H(v1 − v2, w; ρ) > 1− ϵ. Since ϵ > 0 is arbitrary

so we have H(v1 − v2, w; ρ) = 1, and therefore v1 − v2 = 0. This shows that v1 = v2. Similarly

in case 2 and case 3, we obtain I(v1 − v2, w; ρ) < ϵ and J (v1 − v2, w; ρ) < ϵ which gives

I(v1 − v2, w; ρ) = 0 and J (v1 − v2, w; ρ) = 0. The complete proof of the theorem. □

Theorem 4.3 Let V be a N − 2−NS; (uk) and (vk) be two sequences in V and α being any

scalar.

(i) If S(N2)− limk→∞ uk = u0, then S(N2)− limk→∞ αuk = αu0.

(ii) If S(N2)− limk→∞ uk = u0 and S(N2)− limk→∞ vk = v0, then S(N2)− limk→∞(uk+vk) =

(u0 + v0).

Proof. Omitted. □

Theorem 4.4 Let V be aN−2−NS and (vk) be any sequence in V , then S(N2)−limk→∞ vk =

v0 iff an ascending index sequence of natural numbers K = {kn : n ∈ N} exists with δ{K} =

1 and N2 − lim
n→∞

vkn = v0.

Proof Necessity: Assume that S(N2)− limk→∞ vk = v0. For any ρ > 0, j ∈ N and w ∈ V , let,

KN2(j, ρ) = {n ∈ N : H(vn − v0, w; ρ) > 1− 1
j and I(vn − v0, w; ρ) <

1
j , J (vn − v0, w; ρ) <

1
j }.

Then it is clear that KN2(j + 1, ρ) ⊂ KN2(j, ρ). Since S(N2) − limk→∞ vk = v0, so we

have δ{KN2(j, ρ)} = 1. Let m1 be an arbitrary number in KN2(1, ρ). Then, ∃ a number

m2 ∈ KN2(2, ρ), (m2 > m1), such that for all n ≥ m2,
1
n |{k ≤ n : H(vk − v0, w; ρ) > 1− 1

2 and

I(vk − v0, w; ρ) <
1
2 , J (vk − v0, w; ρ) <

1
2}| >

1
2 . Again on the similar lines there is another

number m3 ∈ KN2(3, ρ), (m3 > m2), such that for all n ≥ m3,
1
n |{k ≤ n : H(vk − v0, w; ρ) >

1 − 1
3 and I(vk − v0, w; ρ) < 1

3 , J (vk − v0, w; ρ) < 1
3}| >

2
3 and so on. Thus we can set a
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sequence {mj}j∈N of positive integers satisfying mj ∈ KN2(j, ρ) and for all n ≥ mj(j ∈ N):
1
n |{k ≤ n : H(vk − v0, w; ρ) > 1− 1

j and I(vk − v0, w; ρ) <
1
j , J (vk − v0, w; ρ) <

1
j }| >

j−1
j .

Define K = {n ∈ N : 1 < n < m1} ∪ { ∪
j∈N

{n ∈ KN2(j, ρ) : mj ≤ n < mj+1}}, Then it is

obvious that, for all n satisfying (mj ≤ n < mj +1), we have 1
n |{k ≤ n : k ∈ K}| ≥ 1

n |{k ≤ n :

H(vk−v0, w; ρ) > 1− 1
j and I(vk−v0, w; ρ) <

1
j , J (vk−v0, w; ρ) <

1
j }| >

j−1
j . By taking limit

on both side, we have δ(K) = 1. It remains to prove that the subsequence of the sequence

(vk) over K is N2−convergent to v0. For this, let ϵ > 0 be any number and select a number

j ∈ N with 1
j < ϵ. Moreover, let n ≥ mj as well as n ∈ K Then, according to the definition

of K, ∃ a number l ≥ j s.t, ml ≤ n < ml+1 and n ∈ KN2(j, ρ). Thus, for every ϵ > 0, and

for every w ∈ V we have H(vn − v0, w; ρ) > 1 − 1
j > 1 − ϵ and I(vn − v0, w; ρ) < 1

j < ϵ,

J (vn − v0, w; ρ) <
1
j < ϵ for all n ≥ hw and n ∈ K. This shows that N2 − lim

n∈K
vn = v0.

Sufficiency: In second part, we assume that there is a set K = {kn}n∈N ⊆ N with δ{K} = 1

and N2 − lim
n∈K

vn = v0. We shall show that S(N2) − limk→∞ vk = v0. Let ϵ > 0 and ρ > 0.

Since, N2 − lim
n∈K

vn = v0 so there exist positive integer n0 such that H(vkn − v0, w; ρ) >

1 − ϵ and I(vkn − v0, w; ρ) < ϵ, J (vkn − v0, w; ρ) < ϵ for every kn ≥ kn0 and every w ∈ V .

This implies the containment: TN2(ϵ, ρ) = {n ∈ N : H(vn − v0, w; ρ) ≤ 1 − ϵ and I(vn −
v0, w; ρ) ≥ ϵ, J (vn − v0, w; ρ) ≥ ϵ} ⊆ N− {vn0 , vn0+1, vn0+2, ...}. and therefore δ{TN2(ϵ, ρ)} ≤
δ{N − {vn0 , vn0+1, vn0+2, ...}. As δ{K} = 1, so δ{TN2(ϵ, ρ)} = 0. This shows that S(N2) −
limk→∞ vk = v0 and therefore the complete proof of the Theorem. □

Finally we define statistical Cauchy sequence in N − 2 − NS and obtain the Cauchy con-

vergence criteria in these spaces.

Definition 4.2 Let V be a N − 2−NS, ϵ > 0 and λ > 0. A sequence (vk) in V is said to be

statistical Cauchy if ∃ p ∈ N s.t. limn
1
n |{k ≤ n : H(vk−vp, w; ρ) ≤ 1−ε or I(vk−vp, w; ρ) ≥

ε and J (vk − vp, w; ρ) ≥ ε}| = 0 for every w ∈ V or equivalently, the natural density of the set

A(ε, ρ) = {k ≤ n : H(vk − vp, w; ρ) ≤ 1− ε or I(vk − vp, w; ρ) ≥ ε and J (vk − vp, w; ρ) ≥ ε}
is zero, i.e., δ (A (ε, ρ)) = 0.

Theorem 4.5 Let V be a N − 2 − NS, then every statistical convergent sequence in V is

statistical Cauchy.

Proof Let (vk) be a statistical convergent to v0 and ϵ > 0 be given. Chose µ > 0 s.t.

(1−ϵ)◦(1−ϵ) > 1−µ and ϵ⋄ϵ < µ. For ρ > 0, if we define A(ε, ρ) = {k ≤ n : H(vk−v0, w;
ρ
2) ≤

1 − ε or I(vk − v0, w;
ρ
2) ≥ ε and J (vk − v0, w;

ρ
2) ≥ ε}, then δ(A(ε, ρ)) = 0 and therefore

δ(AC(ε, ρ)) = 1. Let p ∈ Ac(ϵ, ρ) then for any w ∈ V we have H(vp − v0, w;
ρ
2) > 1 − ϵ and

I(vp − v0, w;
ρ
2) < ϵ,J (vp − v0, w;

ρ
2) < ϵ.
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Define B(µ, ρ) = {k ≤ n : H(vk − vp, w; ρ) ≤ 1−µ or I(vk − vp, w; ρ) ≥ µ,J (vk − vp, w; ρ) ≥
µ}. We claim that B(µ, ρ) ⊂ A(ϵ, ρ). Let q ∈ B(µ, ρ). Then we have H(vq − vp, w; ρ) ≤ 1− µ

or I(vq − vp, w; ρ) ≥ µ,J (vq − vp, w; ρ) ≥ µ.

Case (i): Suppose H(vq−vp, w; ρ) ≤ 1−µ, Then we have H(vq−v0, w;
ρ
2) ≤ 1−ϵ and therefore

q ∈ A(ϵ, ρ) (as otherwise, i.e, if H(vq − v0, w;
ρ
2) > 1 − ϵ, then 1 − µ ≥ H(vq − vp, w; ρ) ≥

H(vq − v0, w;
ρ
2) ◦ H(vp − v0, w;

ρ
2) > (1 − ϵ) ◦ (1 − ϵ) > 1 − µ which is not possible). Hence

B(µ, ρ) ⊂ A(ϵ, ρ).

Case (ii): Suppose I(vq−vp, w; ρ) ≥ µ,J (vq−vp, w; ρ) ≥ µ. We first consider I(vq−vp, w; ρ) ≥
µ, then we have I(vq − v0, w;

ρ
2) ≥ ϵ as otherwise, i.e, if I(vq − v0, w;

ρ
2) < ϵ, then µ ≤

I(vq − vp, w; ρ) ≤ I(vq − v0, w;
ρ
2) ⋄ I(vp − v0, w;

ρ
2) < ϵ ⋄ ϵ < µ which is not possible. On the

same lines we have J (vq − v0, w;
ρ
2) ≥ ϵ. Hence B(µ, ρ) ⊂ A(ϵ, ρ) and therefore the Theorem

is proved. □

Definition 4.3 A neutrosophic 2−normed space V is said to be statistically complete if every

statistical Cauchy sequence in V is statistical convergent in V .

Theorem 4.6 Every neutrosophic 2−normed space V is statistically complete.

Proof Let (vk) be statistical Cauchy sequence in V . To prove the Theorem, we have to show

that (vk) is statistical convergent in V . Suppose that (vk) is not statistical convergent. Let

ϵ > 0 and ρ > 0. Then ∃ p ∈ N such that w ∈ V if we take A(ϵ, ρ) = {k ≤ n : H(vk−vp, w; ρ) ≤
1−ϵ or I(vk−vp, w; ρ) ≥ ϵ , J (vk−vp, w; ρ) ≥ ϵ} and B(ϵ, ρ) = {k ≤ n : H(vk−v0, w;

ρ
2) > 1−ϵ

or I(vk − v0, w;
ρ
2) < ϵ , J (vk − v0, w;

ρ
2) < ϵ}, then δ(A(ϵ, ρ)) = δ(B(ϵ, ρ)) = 0 and therefore

we have δ(AC(ϵ, ρ)) = δ(BC(ϵ, ρ)) = 1.

Since H(vk − vp, w; ρ) ≥ 2H(vk − v0, w;
ρ
2) > 1− ϵ and I(vk − vp, w; ρ) ≤ 2I(vk − v0, w;

ρ
2) < ϵ

, J (vk − vp, w; ρ) ≤ 2J (vk − v0, w;
ρ
2) < ϵ if H(vk − v0, w;

ρ
2) >

1−ϵ
2 and I(vk − v0, w;

ρ
2) <

ϵ
2

, J (vk − v0, w;
ρ
2) <

ϵ
2 . We have δ({k ≤ n : H(vk − vp, w; ρ) > 1 − ϵ and I(vk − vp, w; ρ) < ϵ

, J (vk − vp, w; ρ) < ϵ}) = 0. i.e.,δ(AC(ϵ, ρ)) = 0. In this way we obtain a contradiction as

δ(AC(ϵ, ρ)) = 1. Hence, (vk) is statistically convergent w.r.t. 2−norm N2. □

Theorem 4.7 Let V be a N − 2 − NS and (vk) be a sequence in V , then the following

statements are equivalents.

(i) (vk) is a statistically cauchy sequence w.r.t. N2.

(ii) There is a setK = {kn} ⊆ N with δ{K} = 1 and the associated subsequence {vkn}n∈N is

a cauchy sequence w.r.t. N2.
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5. Conclusion

Fuzzy sets and its generalizations have been frequently used in many branches of science,

engineering and technology, especially, in control theory and mathematical modeling of various

systems. In present work, we define a neutrosophic 2−normed space as a generalization of

fuzzy normed space and study a generalized limit in a more general setting. The results and

definitions presented here will provide a new framework to resolve divergence related problems

in these spaces.
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