Neutrosophic Quadruple Numbers, Refined Neutrosophic Quadruple Numbers, Absorbance Law, and the Multiplication of Neutrosophic Quadruple Numbers

Florentin Smarandache
University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA
E-mail: smarand@unm.edu

Abstract. In this paper, we introduce for the first time the neutrosophic quadruple numbers (of the form \(a + bT + cI + dF\)) and the refined neutrosophic quadruple numbers. Then we define an absorbance law, based on a prevalence order, both of them in order to multiply the neutrosophic components \(T, I, F\) or their sub-components \(T_p, I_k, F_l\) and thus to construct the multiplication of neutrosophic quadruple numbers.

Keywords: neutrosophic quadruple numbers, refined neutrosophic quadruple numbers, absorbance law, multiplication of neutrosophic quadruple numbers, multiplication of refined neutrosophic quadruple numbers.

1 Neutrosophic Quadruple Numbers

Let’s consider an entity (i.e. a number, an idea, an object, etc.) which is represented by a known part \(a\) and an unknown part \((bT + cI + dF)\).

Numbers of the form:

\[\text{NQ} = a + bT + cI + dF, \]

where \(a, b, c, d\) are real (or complex) numbers (or intervals or in general subsets), and

- \(T = \text{truth / membership / probability,}\)
- \(I = \text{indeterminacy,}\)
- \(F = \text{false / membership / improbability,}\)

are called Neutrosophic Quadruple (Real respectively Complex) Numbers (or Intervals, or in general Subsets).

“\(a\)” is called the known part of \(\text{NQ}\), while “\(bT + cI + dF\)” is called the unknown part of \(\text{NQ}\).

2 Operations

Let’s consider that Neutrosophic Quadruple Numbers are numbers of the form:

\[\text{RNQ} = a + \sum_{i=1}^{p} b_i T_i + \sum_{j=1}^{r} c_j I_j + \sum_{k=1}^{s} d_k F_k, \]

where \(a, b_i, c_j, d_k\) are real (or complex) numbers, intervals, or, in general Subsets.

Then:

2.1 Addition

\[\text{NQ}_1 + \text{NQ}_2 = (a_1 + a_2) + (b_1 + b_2)T + (c_1 + c_2)I + (d_1 + d_2)F. \]

2.2 Subtraction

\[\text{NQ}_1 - \text{NQ}_2 = (a_1 - a_2) + (b_1 - b_2)T + (c_1 - c_2)I + (d_1 - d_2)F. \]

2.3 Scalar Multiplication

\[a \cdot \text{NQ} = \text{NQ} \cdot a = a(a + abT + acI + adF). \]

One has:

\[0 \cdot T = 0 \cdot I = 0 \cdot F = 0, \]

\[mT + nT = (m + n)T, \]

\[mI + nI = (m + n)I, \]

\[mF + nF = (m + n)F. \]

3 Refined Neutrosophic Quadruple Numbers

Let us consider that Refined Neutrosophic Quadruple Numbers are numbers of the form:

\[\text{RNQ} = a + \sum_{i=1}^{p} b_i T_i + \sum_{j=1}^{r} c_j I_j + \sum_{k=1}^{s} d_k F_k, \]

where \(a, b_i, c_j, d_k\) are real (or complex) numbers, intervals, or, in general Subsets.

Then:

2.1 Addition

\[\text{RNQ}_1 + \text{RNQ}_2 = (a_1 + a_2) + (b_1 + b_2)T + (c_1 + c_2)I + (d_1 + d_2)F. \]

2.2 Subtraction

\[\text{RNQ}_1 - \text{RNQ}_2 = (a_1 - a_2) + (b_1 - b_2)T + (c_1 - c_2)I + (d_1 - d_2)F. \]

There are cases when the known part \((a)\) can be refined as well as \(a_1, a_2, \ldots\)

The operations are defined similarly.

Let
\[RNQ^{(u)} = a^{(u)} + \sum_{i=1}^{p} b_i^{(u)}T_i + \sum_{j=1}^{r} c_j^{(u)}I_j + \sum_{k=1}^{s} d_k^{(u)}F_k, \]

for \(u = 1 \) or \(2 \).

3.1 Addition

\[
RNQ^{(1)} + RNQ^{(2)} = \left[a^{(1)} + a^{(2)} \right] + \sum_{i=1}^{p} \left[b_i^{(1)} + b_i^{(2)} \right] T_i + \sum_{j=1}^{r} \left[c_j^{(1)} + c_j^{(2)} \right] I_j + \sum_{k=1}^{s} \left[d_k^{(1)} + d_k^{(2)} \right] F_k.
\]

3.2 Substraction

\[
RNQ^{(1)} - RNQ^{(2)} = \left[a^{(1)} - a^{(2)} \right] + \sum_{i=1}^{p} \left[b_i^{(1)} - b_i^{(2)} \right] T_i + \sum_{j=1}^{r} \left[c_j^{(1)} - c_j^{(2)} \right] I_j + \sum_{k=1}^{s} \left[d_k^{(1)} - d_k^{(2)} \right] F_k.
\]

3.3 Scalar Multiplication

For \(\alpha \in \mathbb{R} \) (or \(\alpha \in \mathbb{C} \)) one has:

\[
\alpha \cdot RNQ^{(1)} = \alpha \cdot a^{(1)} + \alpha \cdot \sum_{i=1}^{p} b_i^{(1)}T_i + \alpha \cdot \sum_{j=1}^{r} c_j^{(1)}I_j + \alpha \cdot \sum_{k=1}^{s} d_k^{(1)}F_k.
\]

4 Absorbance Law

Let \(S \) be a set, endowed with a total order \(x \ll y \), named “\(x \) prevailed by \(y \)” or “\(x \) less stronger than \(y \)” or “\(x \) less preferred than \(y \)”. We consider \(x \preceq y \) as “\(x \) prevailed by or equal to \(y \)” “\(x \) less strong than or equal to \(y \)”, or “\(x \) less preferred than or equal to \(y \)”. For any elements \(x,y \in S \), with \(x \ll y \), one has the absorbance law:

\[x \cdot y = y \cdot x = \text{absorb} (x,y) = \max \{ x, y \} = y, \]

which means that the bigger element absorbs the smaller element (the big fish eats the small fish!). Clearly,

\[x \cdot x = \text{absorb} (x,x) = \max \{ x, x \} = x, \]

and

\[
x_1 \cdot x_2 \cdot \ldots \cdot x_n = \text{absorb} (\ldots \text{absorb} (\text{absorb} (x_1, x_2), x_3), \ldots, x_n) = \max \{ \ldots \max \{ \max \{ x_1, x_2 \}, x_3 \}, \ldots, x_n \} = \max \{ x_1, x_2, \ldots, x_n \}.
\]

Analogously, we say that “\(x > y \)” and we read: “\(x \) prevails to \(y \)” or “\(x \) is stronger than or equal to \(y \)”.

Also, \(x
precedes \) \(y \), and we read: “\(x \) prevails or is equal to \(y \)” “\(x \) is stronger than or equal to \(y \)”, or “\(x \) is preferred or equal to \(y \)”.

5 Multiplication of Neutrosophic Quadruple Numbers

It depends on the prevalence order defined on \(\{ T, I, F \} \). Suppose in an optimistic way the neutrosophic expert considers the prevalence order \(T > I > F \). Then:

\[
NQ_1 \cdot NQ_2 = (a_1 + b_1T + c_1I + d_1F) \cdot (a_2 + b_2T + c_2I + d_2F) = a_1a_2 + (a_1b_2 + a_2b_1 + b_1b_2 + b_1c_2 + c_1b_2 + b_1d_2 + d_1b_2)T + (a_1c_2 + a_2c_1 + c_1d_2 + c_2d_1)I + (a_1d_2 + a_2d_1 + d_1d_2)F,
\]

since \(TI = IT = T, TF = FT = T, IF = FI = I \), while \(T^2 = I, F^2 = F \).

Suppose in a pessimistic way the neutrosophic expert considers the prevalence order \(F > I > T \). Then:

\[
NQ_1 \cdot NQ_2 = (a_1 + b_1T + c_1I + d_1F) \cdot (a_2 + b_2T + c_2I + d_2F) = a_1a_2 + (a_1b_2 + a_2b_1 + b_1b_2 + b_1c_2 + c_1b_2 + b_1d_2 + d_1b_2)T + (a_1c_2 + a_2c_1 + c_1d_2 + c_2d_1)I + (a_1d_2 + a_2d_1 + d_1d_2)F,
\]

since \(F \cdot I = I \cdot F = F, F \cdot T = T \cdot F = F, I \cdot T = T \cdot I = I \) while similarly \(F^2 = F, I^2 = I, T^2 = T \).

5.1 Remark

Other prevalence orders on \(\{ T, I, F \} \) can be proposed, depending on the application/problem to solve, and on other conditions.
6 Multiplication of Refined Neutrosophic Quadruple Numbers

Besides a neutrosophic prevalence order defined on \(\{T, I, F\} \), we also need a sub-prevalence order on \(\{T_1, T_2, \ldots, T_p\} \), a sub-prevalence order on \(\{I_1, I_2, \ldots, I_r\} \), and another sub-prevalence order on \(\{F_1, F_2, \ldots, F_s\} \).

We assume that, for example, if \(T > I > F \), then \(T_j > I_k > F_l \) for any \(j \in \{1, 2, \ldots, p\} \), \(k \in \{1, 2, \ldots, r\} \), and \(l \in \{1, 2, \ldots, s\} \). Therefore, any prevalence order on \(\{T, I, F\} \) imposes a prevalence suborder on their corresponding refined components.

Without loss of generality, we may assume that \(T_1 > T_2 > \cdots > T_p \)
(if this was not the case, we re-number the subcomponents in a decreasing order).

Similarly, we assume without loss of generality that:

\[I_1 > I_2 > \cdots > I_r \]
\[F_1 > F_2 > \cdots > F_s \]

6.1 Exercise for the Reader

Let’s have the neutrosophic refined space
\(NS = \{T_1, T_2, T_3, I, F_1, F_2\} \),
with the prevalence order \(T_1 > T_2 > T_3 > I > F_1 > F_2 \).

Let’s consider the refined neutrosophic quadruples
\(NA = 2 - 3T_1 + 2T_2 + T_3 - I + 5F_1 - 3F_2 \), and
\(NB = 0 + T_1 - T_2 + 0 \cdot T_3 + 5I - 8F_1 + 5F_2 \).

By multiplication of sub-components, the bigger absorbs the smaller. For example:
\[T_2 \cdot T_3 = T_2, \]
\[T_1 \cdot F_1 = T_1, \]
\[I \cdot F_2 = I, \]
\[T_2 \cdot F_1 = T_2, \text{ etc.} \]
Multiply NA with NB.

References

Received: August 16, 2015. Accepted: September 30, 2015.