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Abstract. In n-Valued refined logic truth value T can be split into many types of truths: T1, T2, ..., Tp and

I into many types of indeterminacies: I1, I2, ..., Ir and F into many types of falsities: F1, F2, ..., Fs, where p, r

and s are integers greater than 1, and p+ r+ s = n. Importance of n-valued refined logic and sets appeared in

different applications specially in medical diagnosis. In this paper we post a condition on neutrosophic n-valued

refined sets to make them functional to be applied in different mathematical branches. We define and study

n-valued refined topological spaces. We defined neutrosophic n-valued refined α-open, β-open, pre-open and

semi-open sets and studied their properties. We constructed different counter examples to clarify the relations

between these different types of neutrosophic n-valued refined generalized open sets.

Keywords: n-valued refined topology; refined logic; refined sets; n-valued refined α-open; semi-open sets;

n-valued refined generalized open sets.)

————————————————————————————————————————

1. Introduction

Neutrosophic sets are, first, introduced in 2005 by [26,27] as a generalization of intuitionistic

fuzzy sets [13], where any element x ∈ X we have three degrees; the degree of membership(T),

indeterminacy(I), and non-membership(F). Neurosophic vague sets are introduced in 2015 by

[30]. Neutrosophic vague topological spaces introduced in [21] we are many different notations

are introduced and studied such as neurosophic vague continuity and compactness.

Neutrosophic topologies are defined and studied by Smarandache [27], Lupianez [19,20] and

Salama [?]. Open and closed neutrosophic sets, interior, exterior, closure and boundary of

neutrosophic sets can be found in [29].

Neutrosophic sets applied to generalize many notaions about soft topology and applications

[18], [23], [16], generalized open and closed sets [31] , fixed point theorems [18] , graph theory
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[17]and rough topology and applications [22]. Neutrosophy has many applications especially

in decision making, for more details about new trends of neutrosophic applications one can

consult [1]- [7].

Generalized topology and continuity introduced in 2002 in [?] which is a generalization of

topological spaces and has different properties than general topology, see for example [8], [11]

and [12]. Neutrosophic generalized sets and topologies are introduced and studies by Murad

M. Arar in 2020 see [9] and [10]. In n-valued refined logic truth value T can be split into

many types of truths: T1, T2, ..., Tp and I into many types of indeterminacies: I1, I2, ..., Ir and

F into many types of falsities: F1, F2, ..., Fs, where p, r and s are integers greater than 1, and

p + r + s = n see [28]. Importance of n-valued refined logic and sets appeared in different

applications specially in medial diagnosis see [25] and [14], where a strong assumption is

assumed to make them functional; that is p = r = s.

Definition 1.1. [26]: We say that the set A is neutrosophic on X if

A = {⟨x, µA(x), σA(x), νA(x)⟩;x ∈ X}; µ, σ, ν : X →]−0, 1+[ and −0 ≤ µ(x)+σ(x)+ν(x) ≤ 3+.

The class of all neutrosophic sets on the universe X will be denoted by N (X). The basic

neutrosophic operations (inclusion, union, and intersection) where first introduced by [24].

Definition 1.2 (Neutrosophic sets operations). Let A,Aα, B ∈ N (X) such that α ∈ ∆. Then

we define the neutrsophic:

(1) (Inclusion): A ⊑ B If µA(x) ≤ µB(x), σA(x) ≥ σB(x) and νA(x) ≥ νB(x).

(2) (Equality): A = B ⇔ A ⊑ B and B ⊑ A.

(3) (Intersection) ⊓
α∈∆

Aα(x) = {⟨x, ∧
α∈∆

µAα(x), ∨
α∈∆

σAα(x), ∨
α∈∆

νAα(x)⟩;x ∈ X}.
(4) (Union) ⊔

α∈∆
Aα(x) = {⟨x, ∨

α∈∆
µAα(x), ∧

α∈∆
σAα(x), ∧

α∈∆
νAα(x)⟩;x ∈ X}.

(5) (Complement) Ac = {⟨x, νA(x), 1− σA(x), µA(x)⟩;x ∈ X}
(6) (Universal set) 1X = {⟨x, 1, 0, 0⟩;x ∈ X}; called the neutrosophic universal set.

(7) (Empty set) 0X = {⟨x, 0, 1, 1⟩;x ∈ X}; called the neutrosophic empty set.

Proposition 1.3. [24] For A,Aα ∈ N (X) for every α ∈ ∆ we have:

(1) A ⊓ ( ⊔
α∈∆

Aα) = ⊔
α∈∆

(A ⊓Aα).

(2) A ⊔ ( ⊓
α∈∆

Aα) = ⊓
α∈∆

(A ⊔Aα).

Definition 1.4. [24] [Neutrosophic Topology ] τ ⊆ N (X) is called a neutrosophic topology for

X if

(1) 0X , 1X ∈ τ .

(2) If Aα ∈ τ for every α ∈ ∆, then ⊔
α∈∆

Aα ∈ τ ,

(3) For every A,B ∈ τ , we have A ⊓B ∈ τ .
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The ordered pair (X, τ) will be said a neutrosophic space over X. The elements of τ will be

called neutrosophic open sets. For any A ∈ N (X), If Ac ∈ τ , then we say A is neutrosophic

closed.

2. Neutrosophic n-valued refined sets and topology

In neutrosophic n-valued refined logic (see [28]) the membership degree refined (split) into r

values µ1, µ2, ..., µr, the indetermancy refined into s values σ1, σ2, ..., σs and the nonmebership

refined into t values ν1, ν2, ..., νt such that n = r + s+ t and

−0 ≤
r∑

i=1

µi +

s∑
i=1

σi +

t∑
i=1

νi ≤ n+

Some authors assumes that r = s = t see for example [14]. Actually, there is no guarntee

that the membership, intedermancy and nonmembership degrees refined or split into the same

number of values, and we will not get a functional system of Neutrosophic n-valued refined

sets if no more restrictions are assumed on r, s and t. This accurse when we define the basic

set operations on the neutrosophic n-valued refined sets, especially when we try to define the

neutrosophic n-valued refined complement of a given neutrosophic n-valued refined set; where

r plays the role of t and vice versa. We will be back to this discussion after stating some

definitions and theorems.

Definition 2.1. [26]: A is called a neutrosophic n-valued refined set on a universe X

if A = {⟨x, µ1
A(x), µ

2
A(x), ..., µ

r
A(x);σ

1
A(x), σ

2
A(x), ..., σ

s
A(x); ν

1
A(x), ν

2
A(x), ..., ν

t
A(x)⟩;x ∈ X};

µi
A, σ

j
A, ν

k
A : X →]−0, 1+[ for every i = 1, ..., r, j = 1, ..., s, k = 1, ..., t such that r + s + t = n

and

−0 ≤
r∑

i=1

µi
A(x) +

s∑
j=1

σj
A +

t∑
k=1

νkA ≤ n+.

The class of all neutrosophic n-valued refined sets on the universe X will be denoted by

Rn(X).

The following is the definition of the basic operations (inclusion, union, intersection and com-

plement) on neutrosophic n-valued refined sets.

Definition 2.2. [Neutrosophic n-valued refined sets operations] Let A,Aα, B ∈ Rn(X) such

that α ∈ ∆. Then we define the neutrsophic n-valued refined:

(1) (Inclusion): A ⊑R B If µi
A(x) ≤ µi

B(x), σ
j
A(x) ≥ σj

B(x) and νkA(x) ≥ νkB(x) for every

i = 1, ..., r, j = 1, ..., s, k = 1, ..., t.

(2) (Equality): A = B ⇔ A ⊑R B and B ⊑R A.

(3) (Intersection) ⊓
α∈∆R

Aα(x) = {⟨x, ∧
α∈∆

µ1
Aα

(x), ..., ∧
α∈∆

µr
Aα

(x); ∨
α∈∆

σ1
A(x), ..., ∨

α∈∆
σs
A(x);

∨
α∈∆

ν1A(x), ..., ∨
α∈∆

νtA(x)⟩;x ∈ X}.
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(4) (Union) ⊔
α∈∆R

Aα(x) = {⟨x, ∨
α∈∆

µ1
Aα

(x), ..., ∨
α∈∆

µr
Aα

(x); ∧
α∈∆

σ1
A(x), ..., ∧

α∈∆
σs
A(x);

∧
α∈∆

ν1A(x), ..., ∧
α∈∆

νtA(x)⟩;x ∈ X}.

(5) (Complement) Ac = {⟨x, ν1A(x), ..., νtA(x); 1−σ1
A(x), ..., 1−σs

A(x);µ
1
A(x), ..., µ

r
A(x)⟩;x ∈

X}
(6) (Universal set) 1X = {⟨x, 1, ..., 1; 0, ..., 0; 0, ..., 0⟩;x ∈ X}; called the neutrosophic n-

valued refined universal set.

(7) (Empty set) 0X = {⟨x, 0, ..., 0; 1, ..., 1; 1, ..., 1⟩;x ∈ X}; called the neutrosophic n-valued

refined empty set.

Theorem 2.3. Let Aα, A,B ∈ Rn(X) such that α ∈ ∆. Then we have

(1) If A ⊑R B ⊑R C, then A ⊑R C.

(2) If A ⊑R B, then Bc ⊑R Ac.

(3) ( ⊔
α∈∆R

Aα) ⊓R A = ⊔
α∈∆R

(Aα ⊓R A)

(4) ( ⊓
α∈∆R

Aα) ⊔R A = ⊓
α∈∆R

(Aα ⊔R A)

[Demorgan’s Laws]

(5) (A ⊔R B)c = Ac ⊓R Bc

(6) (A ⊓R B)c = Ac ⊔R Bc

Proof. (1) and (2) are Straight forward! (3) and (4) can be proved using the following two

propositions:

− (∨aα
α∈∆

) ∧ b = ∨
α∈∆

(aα ∧ b)

− ( ∧
α∈∆

aα) ∨ b = ∧
α∈∆

(aα ∨ b)

Now, we prove (3) and (4) can be proved by duality:

(A ⊔R B)c = ({⟨x, µ1
A(x) ∨ µ1

B(x), ..., µ
r
A(x) ∨ µr

B(x);σ
1
A(x) ∧ σ1

B(x), ..., σ
s
A(x) ∧ σs

B(x); ν
1
A(x) ∧

ν1B(x), ..., ν
t
A(x) ∧ νtA(x)⟩;x ∈ X})c

= {⟨x, ν1A(x) ∧ ν1B(x), ..., ν
t
A(x) ∧ νtA(x); 1 − (σ1

A(x) ∧ σ1
B(x)), ..., 1 − (σs

A(x) ∧ σs
B(x));µ

1
A(x) ∨

µ1
B(x), ..., µ

r
A(x) ∨ µr

B(x)⟩;x ∈ X}
= {⟨x, ν1A(x) ∧ ν1B(x), ..., ν

t
A(x) ∧ νtA(x); (1 − σ1

A(x)) ∨ (1 − σ1
B(x)), ..., (1 − σs

A(x)) ∨ (1 −
σs
B(x));µ

1
A(x) ∨ µ1

B(x), ..., µ
r
A(x) ∨ µr

B(x)⟩;x ∈ X}
= {⟨x, ν1A(x), ..., νtA(x); 1− σ1

A(x), ..., 1− σs
A(x);µ

1
A(x), ..., µ

r
A(x)⟩;x ∈ X} ⊓R

{⟨x, ν1B(x), ..., νtA(x); 1− σ1
B(x), ..., 1− σs

B(x);µ
1
B(x), ..., µ

r
B(x)⟩;x ∈ X} = Ac ⊓R Bc

So, as the above theorem shows, the system defined in Definition 2.2 is rich to a certain

extent, but it still needs to be stronger to deal with some situations: for example A ⊓R Ac

is not well-defined if r ̸= t. The concept True (membership) and False (nonmembership)

are related, it is reasonable to discuss them in any world simultaneously, so we can assume

r = t, and this is what F. Smarandache did in [28] when he discussed the relative (absolute)
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truth and falsity simultaneously. The condition r = s = t mentioned in [14] is very strong and

will not add any value to us, actually it implies that n is divisible by 3, since n = r + s + t,

so it does not include some worlds, for example a world of seven and five-valued logic which

discussed in [28]. On the other hand if we, only, assume r = t, then n can be any value since

we have not assumed any condition on s and worlds of any n-valued logic will be included.

Definition 2.4. : Let A be a neutrosophic n-valued refined set on a universe X. If r = s, then

we call A a homogeneous neutrosophic n-valued refined set. n will be called the dimension of

A, and r, s will be called the sub-dimensions of A. The class of all homogeneous neutrosophic

n-valued refined sets on the universe X with sub-dimensions r, s will be denoted by R(n,r,s)(X).

The following is obvious:

Proposition 2.5. Let A,B ∈ R(n,r,s)(X). Then

(1) A ⊓R B ∈ R(n,r,s)(X).

(2) A ⊔R B ∈ R(n,r,s)(X).

(3) Ac ∈ R(n,r,s)(X).

Example 2.6. Let X = {a, b} , and let A,B ∈ R(5,2,1)(X) such that

A = {⟨a, 0.2, 0.1; 0.7; 0.1, 0.4⟩, ⟨b, 0.5, 0.3; 0.2; 0.9, 0.5⟩} and

B = {⟨a, 0.4, 0.01; 0.3; 0.4, 0.3⟩, ⟨b, 0.4, 0.2; 0.1; 0.7, 0.7⟩}. Then we have:

A ⊓R B = {⟨a, 0.2, 0.01; 0.7; 0.4, 0.4⟩, ⟨b, 0.4, 0.2; 0.2; 0.9, 0.7⟩} ∈ R(5,2,1)

A ⊔R B = {⟨a, 0.4, 0.1; 0.3; 0.1, 0.3⟩, ⟨b, 0.5, 0.3; 0.1; 0.7, 0.5⟩} ∈ R(5,2,1)

Ac = {⟨a, 0.1, 0.4; 0.3; 0.2, 0.1⟩, ⟨b, 0.9, 0.5; 0.8; 0.5, 0.3⟩} ∈ R(5,2,1)

Definition 2.7 (Neutrosophic n-valued Refined Topology). τ ⊂ R(n,r,s)(X) is called a neutro-

sophic n-valued refined topology on X if

(1) 0X , 1X ∈ τ .

(2) For every A,B ∈ τ , we have A ⊓R B ∈ τ .

(3) If Aα ∈ τ for every α ∈ ∆, then ⊔R
α∈∆

Aα ∈ τ ,

Elements of τ are called neutrosophic n-valued refined open sets. A ∈ R(n,r,s)(X) is said

neutrosophic n-valued refined closed set if Ac ∈ τ .

The class of all neutrosophic n-valued refined topologies on X with sub-dimensions r, s will be

denoted by TOP(n,r,s)(X).

Definition 2.8. Let τ ⊆ R(n,r,s)(X) be a neutrosophic n-valued refined topology on X and

let A ∈ R(n,r,s)(X). Then:

(1) The neutrosophic n-valued refined interior of A is defined to be

IntR(A) = ⊔R{O ∈ τ ;O ⊑R A} .
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(2) The neutrosophic n-valued refined closure of A is defined to be

ClR(A) = ⊓R{C ∈ R(n,r,s)(X);Cc ∈ τ and A ⊑R C}

Example 2.9. Let X = {a, b} , and let τ = {0X , 1X , A,B,C,D} ⊂ R(5,2,1)(X) where

A = {⟨a, 0.2, 0.1; 0.7; 0.1, 0.4⟩, ⟨b, 0.5, 0.3; 0.2; 0.9, 0.5⟩},
B = {⟨a, 0.4, 0.01; 0.3; 0.4, 0.3⟩, ⟨b, 0.4, 0.2; 0.1; 0.7, 0.7⟩},
C = {⟨a, 0.2, 0.01; 0.7; 0.4, 0.4⟩, ⟨b, 0.4, 0.2; 0.2; 0.9, 0.7⟩}
D = {⟨a, 0.4, 0.1; 0.3; 0.1, 0.3⟩, ⟨b, 0.5, 0.3; 0.1; 0.7, 0.5⟩}
Then τ is a Neutrosophic 5-valued refined topology on X. All closed set are:

0X , 1X , Ac, Bc, Cc, Dc where

Ac = {⟨a, 0.1, 0.4; 0.3; 0.2, 0.1⟩, ⟨b, 0.9, 0.5; 0.8; 0.5, 0.3⟩}
Bc = {⟨a, 0.4, 0.3; 0.7; 0.4, 0.01⟩, ⟨b, 0.7, 0.7; 0.9; 0.4, 0.2⟩},
Cc = {⟨a, 0.4, 0.4; 0.3; 0.2, 0.01⟩, ⟨b, 0.9, 0.7; 0.8; 0.4, 0.2⟩}
Dc = {⟨a, 0.1, 0.3; 0.7; 0.4, 0.1⟩, ⟨b, 0.7, 0.5; 0.9; 0.5, 0.3⟩}
Let K = {⟨a, 0.43, 0.09; 0.2; 0.1, 0.2⟩, ⟨b, 0.5, 0.25; 0.1; 0.5, 0.6⟩}. Then the open sets in τ con-

tained in K are only 0X , B,C, so that IntR(K) = 0X ⊔R B ⊔R C = B. Now; we consider the

set Kc = {⟨a, 0.1, 0.2; 0.8; 0.43, 0.09⟩, ⟨b, 0.5, 0.6; 0.9; 0.5, 0.25⟩} and compute ClR(K
c); the only

closed sets containing Kc are 1X ,Bc and Cc, so that ClR(K
c) = 1X ⊓RBc⊓RCc = Bc. Which

means ClR(K
c) = Bc and so (ClR(K

c))c = B = IntR(K); that is IntR(K) = (ClR(K
c))c and

this leads us to the following theorem:

Theorem 2.10. Let (X, τ) be an n-valued refined topological space with sub-dimensions r, s

and let A ∈ R(n,r,s)(X). Then we have:

(1) IntR(A) = (ClR(A
c))c

(2) ClR(K) = (IntR(K
c))c

Proof. Since ∨ and ∧ has duality, we will, only, proof part (1).

Let A = {⟨x, µ1
A(x), ..., µ

r
A(x);σ

1
A(x), ..., σ

s
A(x); ν

1
A(x), ..., ν

r
A(x)⟩;x ∈ X}. Then

Ac = {⟨x, ν1A(x), ..., νrA(x); 1− σ1
A(x), ..., 1− σs

A(x);µ
1
A(x), ..., µ

r
A(x)⟩;x ∈ X}, so

ClR(A
c) = ⊓R{C ∈ R(n,r,s)(X);Cc ∈ τ and Ac ⊑R C}. We apply Demorgan’s Laws in

Theorem 2.3 to get: (ClR(A
c))c = ⊔R{Cc ∈ R(n,r,s)(X);Cc ∈ τ and Cc ⊑R A} = ⊔R{O ∈

R(n,r,s)(X);O ∈ τ and O ⊑R A} = IntR(A).

Theorem 2.11. Let (X, τ) be an n-valued refined topological space with sub-dimensions r, s

and let A,B ∈ R(n,r,s)(X). Then we have:

(1) IntR(A) ⊑R A.

(2) If A is a neutrosophic n-valued refined open set, then IntR(A) = A.
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(3) IntR(IntR(A)) = IntR(A).

(4) If A ⊑R B, then IntR(A) ⊑R IntR(B).

(5) IntR(A ⊓R B) = IntR(A) ⊓R IntR(B)

(6) IntR(A ⊔R B) ⊒R IntR(A) ⊔R IntR(B)

(7) IntR(⊔R
α∈∆

Aα) ⊒R ⊔R
α∈∆

IntR(Aα)

(8) A ⊑R ClR(A).

(9) If A is a neutrosophic n-valued refined closed set, then ClR(A) = A.

(10) ClR(ClR(A)) = ClR(A).

(11) If A ⊑R B, then IntR(A) ⊑R IntR(B).

(12) ClR(A ⊔R B) = ClR(A) ⊔R ClR(B)

(13) ClR(A ⊓R B) ⊑R ClR(A) ⊓R ClR(B)

(14) ClR(⊔R
α∈∆

Aα) ⊒R ⊔R
α∈∆

ClR(Aα)

Proof. (1) Let O ∈ τ such that O ⊑R A. Then for every x ∈ X we have µi
O(x) ≤ µi

A(x)

for every i = 1, .., r, σi
O(x) ≥ σi

A(x) for every i = 1, .., s and νiO(x) ≥ νiA(x) for

every i = 1, .., r, which implies that
∨

O∈τ,O⊑RA

µi
O(x) ≤ µi

A(x) for every i = 1, .., r,∧
O∈τ,O⊑RA

σi
O(x) ≥ σi

O(x) for every i = 1, .., s and
∧

O∈τ,O⊑A

νiO(x) ≥ νiA(x) for every

i = 1, .., r; that is IntR(A) ⊑ A.

(2) Since A is open, then, from the definition of IntR(A), we have A ⊑R IntR(A), and

from part (1) we have the converse, and we done.

(3) Since IntR(A) is a neutrosophic n-valued refined open set, we have (from part (2))

IntR(IntR(A)) = IntR(A).

(4) Let O be a neutrosophic n-valued refined open set such that O ⊑R A. Then since

A ⊑R B, we have O ⊑R B, that is IntR(A) ⊑R IntR(B)

(5) From part (4) we have IntR(A ⊓R B) ⊑R IntR(A) ⊓R IntR(B). On the other hand,

IntR(A) ⊓R IntR(B) is a neutrosophic n-valued refined open set contained in A and

B, so that IntR(A) ⊓R IntR(B) ⊑R IntR(A ⊓R B), and we done.

(6) Since IntR(A) ⊑R A and IntR(B) ⊑R B, we have IntR(A) ⊔R IntR(B) is a

neutrosophic n-valued refined open set contained in A ⊔R B, which implies that

IntR(A) ⊔R IntR(B) ⊑R IntR(A ⊔R B).

(7) Since Aα ⊑R ⊔R
α∈∆

Aα for every α ∈ ∆, IntR(Aα) ⊑R IntR(⊔R
α∈∆

Aα) for every α ∈ ∆,

that is ⊔R
α∈∆

IntR(Aα) ⊑R IntR(⊔R
α∈∆

Aα).

The remaining 5 parts can be proved by duality.

Equality in parts (7) and (13) of Theorem 2.11 does not hold.
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Example 2.12. Consider the neutrosophic 5-valued refined topological space (X, τ)

defined in Example 2.9 and let K = {⟨a, 0, 1; 0; 1, 1⟩, ⟨b, 1, 1; 0; 0, 1⟩}, and L =

{⟨a, 1, 0; 1; 0, 0⟩, ⟨b, 0, 0; 1; 1, 0⟩}. Then K ⊔R L = {⟨a, 1, 1; 0; 0, 0⟩, ⟨b, 1, 1; 0; 0, 0⟩} = 1X .

So we have IntR(K ⊔R L) = 1X , and since K and L contains no neutrosophic n-

valued refined open set except 0X we have IntR(K) = IntR(L) = 0X , which means

IntR(K) ⊔R IntR(L) = 0X , hence equality in parts (7) and (8) of Theorem 2.11 does

not hold. For part (13) let K = {⟨a, 0.1, 0.4; 0.6; 0.5, 0.1⟩, ⟨b, 0.7, 0.5; 0.9; 0.5, 0.3⟩}, L =

{⟨a, 0.1, 0.3; 0.7; 0.3, 0.1⟩, ⟨b, 0.7, 0.5; 0.9; 0.5, 0.3⟩}. Then
K ⊓R L = {⟨a, 0.1, 0.3; 0.7; 0.5, 0.1⟩, ⟨b, 0.7, 0.5; 0.9; 0.5, 0.3⟩}. The only neutrosophic 5-valued

Refined closed sets containing K are: 1X , Ac and Cc, so that we have ClR(K) = 1X ⊓R Ac ⊓R

Cc = Ac. Again the only neutrosophic 5-valued Refined closed sets containing L are:1X , Ac and

Cc, so that we have ClR(L) = 1X ⊓RAc⊓RCc = Ac, and ClR(K)⊓RClR(L) = Ac⊓RAc = Ac,

on the other hand the only neutrosophic 5-valued Refined closed sets containing K ⊓R L are:

1X , Ac, Bc and Dc, so that we have ClR(K ⊓R L) = 1X ⊓R Ac ⊓R Bc ⊓R Dc = Dc. Note that

Dc is a proper subset of Ac, so equality in Theorem 2.11 part (13) does not hold.

Question 2.13. Is there a neutrosophic n-valued refined topological space (X, τ) shows that

equality in part (14) of Theorem 2.11 does not hold.

Definition 2.14 (Neutrosophic n-valued refined pre-open and pre-closed sets). Let τ ∈
TOP(n,r,s)(X) and A ∈ R(n,r,s)(X). Then A is said to be:

(1) A neutrosophic n-valued refined semi-open set, if A ⊑R ClR(IntR(A)). The comple-

ment of a neutrosophic n-valued refined semi-open set is called a neutrosophic n-valued

refined semi-closed set.

(2) A neutrosophic n-valued refined pre-open set, if A ⊑R IntR(ClR(A)). The complement

of a neutrosophic n-valued refined pre-open set is called a neutrosophic n-valued refined

pre-closed set.

(3) A neutrosophic n-valued refined α-open set, if A ⊑R IntR(ClR(IntR(A))). The com-

plement of a neutrosophic n-valued refined α-open set is called a neutrosophic n-valued

refined α-closed set.

(4) A neutrosophic n-valued refined β-open set, if A ⊑R ClR(IntR(ClR(A))). The comple-

ment of a neutrosophic n-valued refined β-open set is called a neutrosophic n-valued

refined β-closed set.

Theorem 2.15. Let τ ∈ TOP(n,r,s)(X) and A ∈ R(n,r,s)(X). Then:

(1) Every Neutrosophic n-valued refined open (closed) set, is neutrosophic n-valued refined

α-open (closed) set.
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(2) Every Neutrosophic n-valued refined α-open (α-closed) set, is neutrosophic n-valued

refined pre-open (pre-closed) set and neutrosophic n-valued refined semi-open (semi-

closed) set.

(3) Every Neutrosophic n-valued refined pre-open (pre-closed) or semi-open (semi-closed)

set, is a neutrosophic n-valued refined β-open (β-closed) set.

Proof. (1) Let A be a Neutrosophic n-valued refined open set. Then, from Theorem 2.11

part (2) and (8), we have IntR(A) = A and A ⊑R ClR(A). So IntR(ClR(intR(A))) ⊒R

IntR(ClR(A)) ⊒R IntR(A) = A. That is A is a neutrosophic n-valued refined α-open

set. Now, suppose that A is a Neutrosophic n-valued refined closed set. Then Ac is

a Neutrosophic n-valued refined open set, which implies Ac is a neutrosophic n-valued

refined α-open set, and so A is a is a neutrosophic n-valued refined α-closed set.

(2) Obvious! we only use Theorem 2.11 part (1).

(3) Obvious! we only use Theorem 2.11 part (8) .

None of the above implications reverse. The following is an example of a neutrosophic 5-

valued refined α-open set which is not open, and another example of a neutrosophic 5-valued

refined pre-open (so it is β-open) set which is neither semi-open nor α-open.

Example 2.16. Consider τ = {0X , 1X , A,B,C,D} in Example 2.9 and let

H = {⟨a, 0.5, 0.1; 0.3; 0.1, 0.3⟩, ⟨b, 0.5, 0.3; 0.1; 0.7, 0.5⟩}.
Then the neutrosophic 5-valued refined open sets contained in H are 0X , A,B,C,D; so we

have IntR(H) = 0X ⊔R A ⊔R B ⊔R C ⊔R D = D, and since the only neutrosophic 5-

valued refined close set containing D is 1X , we have ClR(IntR(H)) = 1X , which implies

IntR(ClR(intR(H))) = 1X , hence A ⊑R IntR(ClR(intR(A))) and H is a neutrosophic 5-

valued refined α-open set but not a neutrosophic 5-valued refined open set.

Consider, again, the set K = {⟨a, 0.1, 0.4; 0.6; 0.1, 0.3⟩, ⟨b, 0.9, 0.2; 0.4; 0.1, 0.5⟩}. Since µ1
K(a) <

µ1
O(a) for every O ∈ τ − {0X}, we have the only Neutrosophic 5-valued refined open

set contained in K is 0X and IntR(K) = 0X , which implies ClR(IntR(K)) = 0X and

IntR(ClR(IntR(K))) = 0X , so K is not a neutrosophic 5-valued refined semi-open nor α-open

set; on the other hand, µ1
K(b) > µ1

D(b) for every neutrosophic 5-valued refined closed set D in τ

except for 1X , that means ClR(K) = 1X and intR(ClR(A)) = 1X , hence K ⊑R IntR(ClR(A))

and K is a neutrosophic 5-valued refined pre-open set but not α-open. Since every neutro-

sophic 5-valued refined pre-open set is a neutrosophic 5-valued refined β-open set, K is, also,

and example of a neutrosophic 5-valued refined β-open set which is not neutrosophic 5-valued

refined semi-open.
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Here we give an example of a a neutrosophic 5-valued refined semi-open (so it is β-open)

set which is neither pre-open nor α-open.

Example 2.17. Let X = {a} , and let τ = {0X , 1X , A,B} ⊂ R(5,2,1)(X) where

A = {⟨a, 0.2, 0.1; 0.7; 0.3, 0.4⟩}, B = {⟨a, 0.3, 0.2; 0.5; 0.2, 0.3⟩}. Since A ⊓R B = A and

A ⊔R B = B, τ is a neutrosophic 5-valued refined topology on X. The 5-valued refined

closed sets in (X, τ) are: 0X , 1X , Ac, Bc where

Ac = {⟨a, 0.3, 0.4; 0.3; 0.2, 0.1⟩} and Bc = {⟨a, 0.2, 0.3; 0.5; 0.3, 0.2⟩}. Consider the neutro-

sophic 5-valued refined set L = {⟨a, 0.2, 0.2; 0.5; 0.3, 0.3⟩}. Then the only neutrosophic 5-

valued refined open sets contained in K are 0X , A, so that IntR(L) = 0X ⊔R A = A. To find

ClR(IntR(L)) we note that the neutrosophic 5-valued refined closed sets containing IntR(L)

are 1X , Ac, Bc, so ClR(IntR(L)) = 1x ⊓R Ac ⊓R Bc = Bc, and since L ⊑R Bc, L is a neu-

trosophic 5-valued refined semi-open sets. Now, we will show that L is not α-open. First

note that the neutrosophic 5-valued refined open sets contained in ClR(IntR(K)) = Bc are

0X and A, so we have IntR(ClR(IntR(L))) = A, and since L is not contained in A, L is not a

neutrosophic α-open set.

We will show L is not a neutrosophic 5-valued refined pre-open set. The only neutrosophic

5-valued refined closed sets containing L are 1X , Ac and Bc, so ClR(L) = 1X⊓RA
c⊓RB

c = Bc,

and since the neutrosophic 5-valued refined open sets contained in Bc are 0X and A, we have

IntR(ClR(L)) = A which not containing L, that is L is not a neutrosophic 5-valued refined

pre-open set. So L is, also, an example of a neutrosophic 5-valued refined semi-open set which

is not pre-open. And since every neutrosophic 5-valued refined semi-open set is β-open set,

K is an example of a neutrosophic 5-valued refined β-open set which is not pre-open.

Finally we will give an example of a a neutrosophic 5-valued refined β-open set which is

neither pre-open nor semi-open.

Example 2.18. Let (X, τ) as in Example 2.17 and consider the neutrosophic 5-valued refined

set M = {⟨a, 0.2, 0.1; 0.9; 0.3, 0.5⟩}. Then the only neutrosophic 5-valued refined open sets in

τ contained in K is 0X , so IntR(M) = 0X , which implies ClR(IntR(M)) = 0X , and since

M is not contained in 0X , we have M is not neutrosophic 5-valued refined semi-open set; on

the other hand the neutrosophic 5-valued refined closed sets containing M are 1X , Ac and Bc,

so that ClR(M) = Bc, and since the only neutrosophic 5-valued refined open sets contained

in Bc are 0X and A we have IntR(ClR(M)) = A. Since IntR(ClR(M)) = A and A does

not contain M , we have M is not a neutrosophic 5-valued refined pre-open set. Now, to

find ClR(IntR(ClR(M))) we note that the only neutrosophic 5-valued refined closed sets in τ
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Figure 1. Relations between differen types of generalized neutrosophic n-

valued refined open sets.

containing A are 1X , Ac and Bc, so ClR(IntR(ClR(M))) = Bc which contains M , so M is a

neutrosophic 5-valued refined β-open set but not semi-open nor pre-open.

The following diagram shows the relations between different types of generalized neutro-

sophic n-valued refined sets:

Theorem 2.19. Let τ ∈ TOP(n,r,s)(X) and K ∈ R(n,r,s)(X). Then

(1) If there is a neutrosophic n-valued refined open set U such that K ⊑R U ⊑R ClR(K),

then K is a neutrosophic n-valued refined pre-open set.

(2) If there is a neutrosophic n-valued refined open set U such that U ⊑R K ⊑R ClR(U),

then K is a neutrosophic n-valued refined semi-open set.

Proof. (1) K ⊑R U ⊑R IntR(ClR(U)) ⊑R IntR(ClR(ClR(K))) = IntR(ClR(K)).

(2) Since ClR(IntR(U)) = ClR(U) we have

ClR(IntR(K)) ⊒R ClR(IntR(U)) = ClR(U) ⊒R K).
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Theorem 2.20. Let τ ∈ TOP(n,r,s)(X) and K ∈ R(n,r,s)(X). Then the union of any collection

of neutrosophic n-valued refined α-open, β-open, pre-open or semi-open sets is a neutrosophic

n-valued refined α-open, β-open, pre-open or semi-open set respectively.

Proof. We will prove it for neutrosophic n-valued refined β-open sets, and the remaining parts

can be proved in the same manner. Let Aγ be a neutrosophic n-valued refined β-open set for

every γ ∈ ∆. Then Aγ ⊑R ClR(intR(ClR(Aγ))) for every γ ∈ ∆. Then from parts (7) and

(14) of Theorem 2.11 we have:

ClR(intR(ClR(⊔R
γ∈∆

Aγ))) ⊒R ClR(intR(⊔R
γ∈∆

ClR(Aγ))) ⊒R ClR(⊔R
γ∈∆

intR(ClR(Aγ))) ⊒R

⊔R
γ∈∆

ClR(intR(ClR(Aγ))) ⊒R ⊔R
γ∈∆

Aγ
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