Abstract. Deneutrosophication is a process to evaluate real output from neutrosophic information. The paper presents on a novel deneutrosophication algorithm. The process is developed with similarity measure and probability density function (PDF). This similarity measure is newly defined to prepare a correct transformation from neutrosophic set (NS) to fuzzy set (FS). Then an approach to find PDF is formulated which relates with fuzzy set. Finally, the algorithm has been implemented in solving a critical path problem to find out the completion time of a certain project.

Keywords: Deneutrosophication; Similarity measure; Probability density function

1. Introduction

Modern technology and science can not be evolved without dealing with uncertainty. Before the era of fuzzy, problems of uncertainty would solved by theory of probability only. Fuzzy set (FS) [1] can easily cope up with uncertainty by its membership grade (Zadah, 1965). But the necessity of handling incomplete information addressed to the introduction of intuitionistic fuzzy set (IFS) [2] (Atanasov, 1985). IFS can not link indeterminacy. Neutrosophic set [3] (NS) can overcome all the limitations of FS, IFS due to its easy relationship between mathematical and formal language (Smarandache, 1998).

One of the most challenging issue to the neutrosophic researchers is to innovate better solution approach or method to reach to a better decision or conclusion from several pieces of neutrosophic informations. Similarity measure, a popular information measure method, is used in different researches to solve real life problems. Ye [4] in 2014 solved decision making (DM) problem by introducing Jaccard, Dice and cosine similarity measures for single valued neutrosophic sets (SVNSs). Further, the author (Ye, 2015) eliminated limitations of the cosine similarity measure in [5] and used in a medical diagnosis problem. In [6], using the
similarity function entropy measure was also developed (Aydogdu, 2015). Some more similarity functions [7] were introduced for recovery of some disadvantages of Jaccard, Dice and cosine similarity measures and applied to a minimum spanning tree problem (Mandal et al., 2016). It is also effectively used in medical diagnosis by using the euclidean distance based similarity measure [8] (Donghai Liu et al., 2018), hybrid distance based similarity measure for refined neutrosophic sets [9] (Vakkas Ulucay et al., 2019). Further similarity measure is applied in smart port development [10] (Jihong chen et al., 2019), selection of cricket players [11] (Muhammad et al., 2020), medical diagnosis as well as lecturer selection for universities [12] (Saeed et al., 2020).

In recent years different effective methods have been implemented to deal with several existing problems. Abdel-Basset et al. [13] developed a model on the basis of neutrosophic AHP which was succesfully used in Egypt steel industry. In [14] Plithogenic aggregation operator was proposed to aggregate the opinions of decision makers and was used in best worst method in solving supply chain, ware house location and plant evaluation problem (Abdel-Basset et al., 2020). In order to monitoring the spread of epidemic covid 19, a novel approach using best worst and Topsis method [15] is introduced (Abdel-Basset et al., 2020). Another technique health fog method was discussed in [16] to assist covid patient (Yasser et al., 2020). In [17] Carmen et al. analyzed emotional intelligence of some randomly selected university students. Further, contributions in neutrosophic researches are on medical diagnosis [18–21], smart product service systems [23], decision making in personnel selection [24], recommending in museum room [25], predicting tax time series [26], Sustainability of goat and sheep production systems [27], also in [28–32] etc.

The methods used in the above discussed literature correspond to real data, not the actual real output to solve problems. But sometimes it becomes necessary to evaluate the actual real output of the respective event from the neutrosophic information. Suppose a decision maker put his decision on some activity time of a certain project by a SVNS $\langle 15, 0.3, 0.5, 0.6 \rangle$. Now a common thought arises upon us about the expected activity completion time. Deneutrosophication gives the answer, it is the process which can evaluate the crisp value from the neutrosophic data. Smarandache et al. [33] first discussed a deneutrosophication method in 2005 by using synthesization and center of gravity method. The synthesization process according to [33] corresponds a NS to different FSs resulting different crisp values. Using removal area method, a deneutrosophication technique [34] was studied on pentagonal neutrosophic number and utilized in MST problem (Chakraborty et al., 2019). A deneutrosophication equation computed in [35] gives the neat truth grade not the real output of the respective event (Azzah Awang et al., 2019). Deneutrosophicated value for a trapezoidal fuzzy number (TFN)
was found in [36] using the score function involving center of gravity of TFN (Said Broumi et al., 2019).

In this article first time similarity measure is used to have a meaningful relation between NS and FS. To establish this, a similarity function is posed by redefining the axiomatic definition. It also overcome the limitation of existing ones [5–7]. Then, an approach to relate FS with PDF is proposed. Finally, a deneutrosophication algorithm is established which is more generalized and robust in comparison with [33–36] as it can provide a single crisp value, deal with both continuous and discrete neutrosophic data and find the real output of the respective event. A comparative study to show its consistency and effectiveness has been delivered. At last a critical path method is solved as an application of the deneutrosohication approach.

2. Preliminaries

2.1. Neutrosophic set [3]

Let U be an universe of discourse, then the neutrosophic set A is defined as $A = \{ \langle x : T_A(x), I_A(x), F_A(x) \rangle, x \in U \}$, where the functions $T, I, F : U \to [-0, 1]$ define respectively the degree of membership (or Truth), the degree of indeterminacy and the degree of non-membership (or falsehood) of the element $x \in U$ to the set A with the condition $-0 \leq T_A(x) + I_A(x) + F_A(x) \leq 3$.

2.2. Single Valued Neutrosophic Sets (SVNS) [38]

Let X be a space of points (objects) with generic elements in X denoted by x. A SVNS, A, in X is characterized by a truth-membership function $T_A(x)$, an indeterminacy membership function $I_A(x)$ and a falsity-membership function $F_A(x)$, for each point $x \in X$, $T_A(x), I_A(x), F_A(x) \in [0, 1]$. Therefore, a SVNS A can be written as $A_{SVNS} = \{ \langle x, T_A(x), I_A(x), F_A(x) \rangle, x \in X \}$.

2.3. Single valued triangular neutrosophic number [40]

A triangular neutrosophic number $A = \langle (a_1, b_1, c_1); w_a, u_a, y_a \rangle$ is a special neutrosophic set on the real number set R, whose truth-membership indeterminacy-membership and falsity-membership functions are defined as follows:

K Mandal, On Deneutrosophication
Neutrosophic Sets and Systems, Vol. 38, 2020

2.4. Single valued trapezoidal neutrosophic number

A single valued trapezoidal neutrosophic number \(\langle A = (a_1, b_1, c_1, d_1); w_a, u_a, y_a \rangle \) is a special neutrosophic set on the real number set \(R \), whose truth-membership, indeterminacy-membership, and a falsity-membership are given as follows:

\[
T_A(x) = \begin{cases}
\frac{(x-a_1)w_a}{b_1-a_1}, & a_1 \leq x \leq b_1 \\
w_a, & x = b_1 \\
\frac{(c_1-x)w_a}{c_1-b_1}, & b_1 \leq x \leq c_1 \\
0, & \text{otherwise.}
\end{cases}
\]

\[
I_A(x) = \begin{cases}
\frac{b_1-x+u_a(x-a_1)}{b_1-a_1}, & a_1 \leq x \leq b_1 \\
u_a \frac{(x-b_1)+u_a(c_1-x)}{c_1-b_1}, & 0.5 \leq x \leq 0.7 \\
1, & \text{otherwise.}
\end{cases}
\]

\[
F_A(x) = \begin{cases}
\frac{b_1-x+y_a(x-a_1)}{b_1-a_1}, & a_1 \leq x \leq b_1 \\
y_a \frac{(x-b_1)+y_a(c_1-x)}{c_1-b_1}, & b_1 \leq x \leq c_1 \\
1, & \text{otherwise.}
\end{cases}
\]

2.5. Similarity measure

Similarity measure \(s \) for SVNS(X) is a real function on universe \(X \) such that \(S : SVNS(X) \times SVNS(X) \to [0, 1] \) and satisfies the following properties: (i) \(0 \leq s(A, B) \leq 1, \forall A, B \in SVNS(X) \),

(ii) \(s(A, B) = s(B, A), \forall A, B \in SVNS(X) \),

(iii) \(s(A, B) = 1 \), if and only if \(A = B, \forall A, B \in SVNS(X) \).

(iv) If \(A \subset B \subset C \), \(s(A, B) \geq s(A, C) \) and \(s(B, C) \geq s(A, C) \) \(\forall A, B \in SVNS(X). \)

K Mandal, On Deneutrosophication
3. Limitations of existing similarity functions and redefinition

According to the definition of similarity measure function as defined in subsec 2.5, \(s(A, B) \) should be 1 if and only if \(A = B \). But there is no such necessary and sufficient condition for which \(s(A, B) \) is zero.

\((1, 0, 0)\) and \((0, 0, 1)\) represent respectively the total affirmation and the total denial of the belongingness of an element to a given NS. Obviously, the similarity between \{(1, 0, 0)\} and \{(0, 0, 1)\} is zero. The existing formulæ in [5–7], violate this argument. So, a new similarity measure is proposed by redefining the definition.

3.1. Proposed similarity measure

Along with the four properties in 2.5, the similarity measure is redefined with an extra fifth property:

(v) \(s(A, B) = 0 \), if \(A = \{(1, 0, 0)\} \) and \(B = \{(0, 0, 1)\} \),

which gives the sufficient condition for which the similarity between \(A \) and \(B \) will be zero.

Following the proposed function which satisfies all the property of similarity measure along with the fifth property.

\[
s(A, B) = 1 - \frac{1}{2n} \sum_{i=1}^{n} |T_A(x_i) - T_B(x_i)| + \max \{ |I_A(x_i) - I_B(x_i)|, |F_A(x_i) - F_B(x_i)| \}
\]

Clearly, \(s(A, B) \) satisfies all the required properties of similarity measure function as defined in 3.1

3.2. Remark

Consider \(A = \{(1, 0, 0)\} \) and \(B = \{(0, 1, 1)\} \). Then, using equation 1, we get \(s(A, B) = 0 \). Thus, the condition (stated as property (v)) for which similarity is zero is sufficient but not necessary.

3.2.1. Example 1 [7]

Let \(A = \{(x_1, (0.2, 0.5, 0.6)), (x_2, (0.2, 0.4, 0.4))\} \) and
\(B = \{(x_1, (0.2, 0.4, 0.4)), (x_2, (0.4, 0.2, 0.3))\} \) be two SVNSs.

<table>
<thead>
<tr>
<th>Table 1. Similarity values ((s(A, B))) in different methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s(A, B))</td>
</tr>
</tbody>
</table>

K Mandal, On Deneutrosophication
3.2.2. Example 2 \[7\]

Consider \(C = \{ (x_1, (0.3, 0.2, 0.3)), (x_2, (0.5, 0.2, 0.3)), (x_3, (0.5, 0.3, 0.3)) \} \) and \(D = \{ (x_1, (0.7, 0.1, 0.1)), (x_2, (0.6, 0.1, 0.2)), (x_3, (0.6, 0.1, 0.2)) \} \).

| Table 2. \(s(C, D) \) using different methods |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| \(s(C, D) \) | Using \[5\] | Using \[6\] | using equ(3) | using equ(4) | By proposed formula |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| \(s(C, D) \) | 0.9629 | 0.844 | 0.79 | 0.964 | 0.8167 |

From the above examples, it may be observed that the proposed formula gives consistent result.

Using the similarity measure function, we can convert neutrosophic fuzzy data to fuzzy data and hence PDF also which is discussed in the following section.

4. The proposed approach to formulate PDF from neutrosophic fuzzy data

We segregate the approach in two intermediate steps:

Step 1:

Synthesization is the process to convert a NS (here we consider SVNS) into a FS. The process evaluates the overall truth over the truth, indeterminacy and falsity membership function. In the neutrosophic set theory, \(I_N = \{ (1, 0, 0) \} \) can be considered as the reference NS, as it signifies the full membership of an element to a given set. Full membership in FS is indicated by the membership value 1. So, \((1, 0, 0)\) (in NS) is equivalent to the maximum membership 1 (in fuzzy) since both implies total belongingness to the respective set. The more the similarity between each \((T_A(x), I_A(x), F_A(x))\) and \(I_N\) is, the more the belongingness of the element to the set i.e., \(I_N\) stands for the reference NS. Thus, we get the following proposition to convert a NS into a FS:

Proposition:

Let \(A_N = \{ (x, (T_A(x), I_A(x), F_A(x))) : x \in X \} \) be a NS. Its equivalent fuzzy membership set is defined as \(A_F = \{ (x, \mu_A(x)) : x \in X \} \), where \(\mu_A(x) = s((T_A(x), I_A(x), F_A(x)), (1, 0, 0)) \). So, using equation [1]

\[
\mu_A(x) = 1 - \frac{1}{2} [(1 - T_A(x)) + \max \{ I_A(x), F_A(x) \}] \tag{2}
\]

As the range of the similarity measure function is the unit interval \([0, 1]\), \(\mu_A(x) \in [0, 1] \) \(\forall x \in X \). Hence, the membership function of the derived fuzzy set belongs to \([0, 1]\) and thus it satisfies the property of membership function of a FS.

The larger is the similarity measure value between \((T_A(x), I_A(x), F_A(x))\) and \((1, 0, 0)\), the larger is the belongingness of \(x\) to the respective set, \(A\), the more is the membership value.
Moreover, \((1, 0, 0)\), the neutrosophic number which denotes the full belonginess to a set, is transformed into the membership value \(1\) which confirms to be the full belonginess to the set. Again \((0, 0, 1)\), the neutrosophic number which denotes the zero belonginess to a set, is transformed into the membership value \(0\) which confirms to be the zero belonginess to the set. So, the results of the transformation are desirable and meaningful.

Step 2:

Formulate PDF from fuzzy membership function:

[Case 1.] The variable is discrete in \((S)\):

Let \(S = \{x_1, x_2, \ldots, x_n\}\) be a universe of discourse and \(A = \{x_i, \mu_A(x_i) : x_i \in S\}\) be a fuzzy set with discrete membership function. Consider \(X\) to be the random variable corresponding to the event space \(S\). The density function of the random variable \(X\) is defined as

\[
P(X = x_i) = f(x_i) = \frac{\mu_A(x_i)}{\Delta} \tag{3}
\]

where \(\Delta = \sum_{-\infty}^{\infty} \mu_A(x_i)\). The proposed function \(f(x_i)\) satisfies the required properties of a density function:

1. \(f(x_i) \geq 0\), as membership function \(\mu_A(x_i) \geq 0\).
2. \(\sum_{-\infty}^{\infty} f(x_i) = \sum_{-\infty}^{\infty} \frac{\mu_A(x_i)}{\Delta} = 1\).

[Case 2.] The variable is continuous in \((S)\):

Let \(A = \{(x, \mu_A(x)) : x \in S\}\) be a fuzzy set. Consider \(X\) to be the random variable corresponding to the event space \(S\). The density function of the random variable \(X\) is defined as

\[
f(x) = \frac{\mu_A(x)}{\Delta} \tag{4}
\]

where \(\Delta = \int_{-\infty}^{\infty} \mu_A(x) dx\). Clearly \(f(x)\) also satisfies the desired properties of a density function.

4.1. Example

Discrete case: Let \(S = \{x_1, x_2, x_3\}\) be the universal set and the neutrosophic set is defined as

\[A_N = \{(x_1, (0.7, 0.5, 0.2)), (x_2, (0.7, 0.8, 0.9)), (x_3, (0.3, 0.8, 0.9))\}\]

Using equation (2), equivalent fuzzy set \(A_F = \{(x_1, 0.6), (x_2, 0.4), (x_3, 0.2)\}\). So, the corresponding density function (from equation (3)) at \(x_i\), \((i = 1, 2, 3)\) are as follows:

\[f(x_1) = \frac{0.6}{1.2} = 0.5, \ f(x_2) = 0.33, \ f(x_3) = 0.17\]

Continuous case: When the universal set \(S\) is a continuous, the degree of membership can be represented by a function which can take various shapes and forms like triangular membership function, trapezoidal membership function etc.

K Mandal, On Deneutrosophication
Consider the NS, \(A \), defined on the interval \(S = [0, 10] \) of real numbers by the truth, indeterminacy and falsity membership functions: \(T_A(x) = \frac{1}{1+x}, \ I_A(x) = \frac{1}{1+x^2}, \ F_A(x) = \frac{1}{1+x^3} \). Then its equivalent fuzzy membership function is
\[
\mu_A(x) = \begin{cases}
1 - \frac{1}{2} \left(1 - \frac{1}{1+x} + \frac{1}{1+x^3} \right) , & 0 \leq x \leq 1 \\
1 - \frac{1}{2} \left(1 - \frac{1}{1+x} + \frac{1}{1+x^2} \right) , & 1 \leq x \leq 10
\end{cases}
\]
Also the corresponding density function is \(f_A(x) = \frac{\mu_A(x)}{\Delta} \), where \(\Delta = \int_0^{10} \mu_A(x)dx = 5.4382 \).

5. **Proposed deneutrosophication method**

Deneutrosophication is the process to convert neutrosophic data to crisp data corresponding universe of discourse. In this section, a deneutrosophication method is presented through the algorithm given below:

Step 1. Convert NS to FS using proposition given in section 4.

Step 2. Formulate PDF \(f(x_i) \) or \(f(x) \) of the random variable \(X \) according to discrete case or continuous case respectively from the fuzzy membership function using step 2 of section 4.

Step 3. Find the expectation of \(X \). i.e., \(E(X) = \sum_{x_i \in S} x_i f(x_i) \) (discrete case)
\(= \int_{x \in S} x f(x)dx \) (for continuous case).

Step 4. Deneutrosophicated value = \(E(X) \).

5.1. **Examples**

5.1.1. Example 1

Let us consider the example (4.1). According to the proposed steps of the algorithm 5, the deneutrosophicated value is \(\int_0^{10} x f(x)dx = 5.0816 \).

5.1.2. Example 2

![Figure 1. Capacitated network](image)

We focus only on the arc 1 – 2 of the network (fig 1). Suppose flow through the arc is represented by a trapezoidal neutrosophic number \(P \), where \(P = ((0.3, 0.4, 0.5, 0.7); 0.5, 0.4, 0.3) \). To find the mean flow through the arc, deneutrosophication is useful.

K Mandal, On Deneutrosophication
Then using equation (2) the equivalent fuzzy membership function defined on the interval $[0.3, 0.7]$ is $\mu_P(x)$, where

$$
\mu_P(x) = \begin{cases}
1 - \frac{1}{2} [1 - \frac{(x-0.3)0.5}{0.1}] + \frac{0.4-x+0.3(x-0.3)}{0.1}, & 0.3 \leq x \leq 0.4 \\
1 - \frac{1}{2} [1 - 0.5 + 0.4], & 0.4 \leq x \leq 0.5 \\
1 - \frac{1}{2} [1 - \frac{(0.7-x)0.5}{0.2}] + \frac{(x-0.5)+0.4(0.7-x)}{0.2}, & 0.5 \leq x \leq 0.7 \\
0, & \text{otherwise.}
\end{cases}
$$

the corresponding PDF $f_P(x) = \frac{\mu_P(x)}{\Delta}$, where $\Delta = \int_{0.3}^{0.7} \mu_P(x)dx = 0.1375$.

So, the deneutrosophicated value i.e., mean flow through the arc is $\int_{0.3}^{0.7} x f_P(x)dx = 0.48$.

5.1.3. Some more examples and comparative study

Following are some more examples shown in Table 3

<table>
<thead>
<tr>
<th>Different</th>
<th>Deneutrosophicated value</th>
<th>Using</th>
<th>Using</th>
<th>Using</th>
<th>Using</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single valued neutrosophic numbers</td>
<td>using</td>
<td>considering</td>
<td>using</td>
<td>considering</td>
<td>using</td>
</tr>
<tr>
<td>(a = 0.4, b = 0.3, c = 0.2, d = 0.1)</td>
<td>3.5909</td>
<td>3.6042</td>
<td>3.6458</td>
<td>3.6667</td>
<td></td>
</tr>
<tr>
<td>(a = 0.6, b = 0.2, c = 0.15, d = 0.05)</td>
<td>2.4</td>
<td>2.38</td>
<td>2.35</td>
<td>2.33</td>
<td></td>
</tr>
<tr>
<td>Triangular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((2, 4.5); 0.3, 0.4, 0.5)</td>
<td>6.2300</td>
<td>6.2200</td>
<td>5.887</td>
<td>6.424</td>
<td></td>
</tr>
<tr>
<td>((0.4, 0.6, 0.7, 0.8); 0.5, 0.4, 0.2)</td>
<td>0.6169</td>
<td>0.6521</td>
<td>0.6222</td>
<td>0.6406</td>
<td></td>
</tr>
<tr>
<td>((1, 2.5, 6); 0.8, 0.6, 0.4)</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Trapezoidal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.3, 0.5, 0.8, 0.9); 0.2, 0.5, 0.8)</td>
<td>5.51</td>
<td>5.516</td>
<td>5.507</td>
<td>5.519</td>
<td></td>
</tr>
<tr>
<td>(0.4, 0.6, 0.7, 0.8); 0.5, 0.4, 0.2)</td>
<td>3.292</td>
<td>3.291</td>
<td>3.29</td>
<td>3.3</td>
<td></td>
</tr>
</tbody>
</table>

5.1.4. Results discussion and comparison analysis

From the Table 3 it is shown that the transformed crisp value of each SVNN using proposed deneutrosophication method is almost similar to the different deneutrosophicated values using existing method [33] for different choices of a, b, c, d. So, the values evaluated by the proposed deneutrosophication are consistent. On the other hand, according to [33], the membership values of the FS obtained from the NS depend on the choice of the parameters a, b, c, d which K Mandal, On Deneutrosophication
leads to the fact that for a given NS, there can be different membership values of the fuzzy set and so the different crisp values which is not desirable. Again, in the table, it is seen that the proposed technique is applicable on neutrosophic number with both continuous (Triangular, trapezoidal) and discrete membership grade. In this sense, the proposed deneutrosophication is more robust than the existing \cite{34,36}.

6. **Numerical Example**

6.1. **Example 1**

![Project Network](image)

Figure 2. Project Network

Fig. 2 shows a construction project network. The duration of each activity are estimated by three estimators. To find the critical path and expected project completion time, a decision organization is assigned to evaluate the degrees of each estimated activity time. The estimated times and the corresponding degrees given by the organization in single valued neutrosophic forms are given in the table \ref{table:activity_times}.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Estimated Activity Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 − 2</td>
<td>(8, (0.4, 0.3, 0.5))</td>
</tr>
<tr>
<td>1 − 3</td>
<td>(10, (0.4, 0.3, 0.2))</td>
</tr>
<tr>
<td>1 − 5</td>
<td>(13.5, (0.6, 0.3, 0.2))</td>
</tr>
<tr>
<td>2 − 4</td>
<td>(4, (0.3, 0.5, 0.4))</td>
</tr>
<tr>
<td>2 − 5</td>
<td>(5, (0.7, 0.3, 0.2))</td>
</tr>
<tr>
<td>3 − 4</td>
<td>(6, (0.73, 0.3, 0.3))</td>
</tr>
<tr>
<td>3 − 5</td>
<td>(4, (0.26, 0.37, 0.29))</td>
</tr>
<tr>
<td>3 − 6</td>
<td>(8, (0.69, 0.49, 0.20))</td>
</tr>
<tr>
<td>4 − 6</td>
<td>(7, (0.6, 0.4, 0.3))</td>
</tr>
<tr>
<td>5 − 6</td>
<td>(3.7, (0.6, 0.45, 0.33))</td>
</tr>
</tbody>
</table>

Let \(X \) be the random variable representing the time duration for the activity 1 − 2. Then \(X \) can be written as

\[X = (8, (0.4, 0.3, 0.5)) \]

K Mandal, On Deneutrosophication
\[X = \{ \langle 10, (0.4, 0.3, 0.5) \rangle, \langle 9.7, (0.7, 0.3, 0.4) \rangle, \langle 8.5, (0.6, 0.4, 0.3) \rangle \} \]. So, to complete the activity 1 – 2, the expected time duration is the deneutrosophicated value = 8.544. (Using 5).

Table 5. Expected activity times

<table>
<thead>
<tr>
<th>Activity</th>
<th>deneutrosohicated values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 2</td>
<td>8.54</td>
</tr>
<tr>
<td>1 – 3</td>
<td>9.52</td>
</tr>
<tr>
<td>1 – 5</td>
<td>13.6</td>
</tr>
<tr>
<td>2 – 4</td>
<td>5.25</td>
</tr>
<tr>
<td>2 – 5</td>
<td>4.48</td>
</tr>
<tr>
<td>3 – 4</td>
<td>5.54</td>
</tr>
<tr>
<td>4 – 5</td>
<td>4.44</td>
</tr>
<tr>
<td>3 – 6</td>
<td>8.11</td>
</tr>
<tr>
<td>4 – 6</td>
<td>6.45</td>
</tr>
<tr>
<td>5 – 6</td>
<td>3.73</td>
</tr>
</tbody>
</table>

Now we reach to a project network with crisp duration time for each activity and apply forward pass method as well as backward pass method to find the critical path. Let \(E_i \) and \(L_j \) denote the earliest occurrence time and latest allowable time corresponding to the \(i^{th} \) event.

Forward pass method:

starting time \(E_1 = 0 \), \(E_2 = 0 + t_{12} = 8.54 \), \(E_3 = 0 + t_{13} = 9.52 \), \(E_4 = \max \{ E_2 + t_{2,4}, E_3 + t_{34} \} = 15.06 \).

Similarly, \(E_5 = 19.5 \), \(E_6 = \max \{ E_3 + t_{3,6}, E_4 + t_{4,6}, E_5 + t_{5,6} \} = 23.23 \).

Backward pass method:

\(L_6 = E_6 = 23.23 \), \(L_5 = L_6 - t_{5,6} = 19.5 \), \(L_4 = \min \{ L_6 - t_{4,6}, L_5 - t_{4,5} \} = 15.06 \), similarly, \(L_3 = 9.52 \), \(L_2 = 9.81 \), \(L_1 = 0 \).

So, the critical path is 1 – 3 – 4 – 5 – 6 (as \(E_1 = L_1 \), \(E_3 = L_3 \), \(E_4 = L_4 \), \(E_5 = L_5 \), \(E_6 = L_6 \)) and corresponding project completion time 23.23.

7. Conclusion and future scope

We discuss a deneutrosophication method for both the continuous and discrete cases, establishing a relation among neutrosophic fuzzy set, fuzzy set and probability density function. A well defined similarity measure function is formulated which meaningfully transform neutrosophic data to fuzzy data. The comparative study proves the consistency and effectiveness of the proposed algorithm. The method can be applied in any kinds of problem to deal with neutrosophic information. Various types of decision making methods to get the optimum solution is introduced in different researches but deneutrosophication not only measure the best among several informations but also can evaluate the crisp value of the universe of discourse.

K Mandal, On Deneutrosophication
In future our objective is to use this method on transformed neutrosophic covid 19 data of an area and comment on the infected and infective so that corrective measures can be taken to reduce the impact of the epidemic of the area.

Acknowledgment

The author is grateful to Prof. Abdel-Basset and reviewers for their suggestion and constructive comments which has become very helpful to elevate the paper.

References

K Mandal, On Deneutrosophication

K Mandal, On Deneutrosophication

Received: June 2, 2020. Accepted: Nov 25, 2020