On Single Valued Neutrosophic Signed Digraph and its Applications

Kalyan Sinha¹, Pinaki Majumdar ²

¹Department of Mathematics, PSTDS Vidyapith, Chinsurah, India 712305. E-mail: kalyansinha90@gmail.com
²Department of Mathematics, MUC Womens’ College, Burdwan, India 713104. E-mail: pmajumdar2@rediffmail.com

Abstract: The development of the theory of the single valued neutrosophic (SVN) digraph is done in this paper. Also this paper introduces the concept of SVN signed digraph. Some basic terminologies and operations of SVN digraphs and SVN signed digraphs have been defined. Finally classification problem in a signed network system is solved with the help of SVN signed digraphs.

Keywords: SVN set, SVN digraph, SVN signed digraph, Classification Problem.

1 Introduction

Uncertainty is something that we cannot be sure about. It is a common phenomenon of our daily existence, because our world is full of uncertainties. There are many situations and complex physical processes, where we encounter uncertainties of different types and often face many problems due to it. Therefore it is natural for us to understand and try to model these uncertain situations prevailing in those physical processes. From centuries, the Science, whether Physics or Biology, or in Philosophy, i.e. every domain of knowledge has strived to understand the manifestations and features of uncertainty. Perhaps that is the main reason behind the development of Probability theory and Stochastic techniques which started in early eighteenth century, which has the ability to model uncertainties arising due to randomness. But the traditional view of Science, especially Mathematics was to worship certainty and to avoid uncertainty by all possible means. Therefore the classical mathematics failed to model many complex physical phenomena such as complex chemical processes or biological systems where uncertainty was unavoidable. Again probabilistic techniques cannot also model all kinds of uncertain situations. Natural language processing is an example of such problem where the above method fails. Thus the need for a fundamentally different approach to study such problems, where uncertainty plays a key role, was felt and that stimulated new developments in Mathematics.

Recently a new theory has been introduced and which is known as neutrosophic logic and sets. The term neutro-sophy means knowledge of neutral thought and this neutral represents the main distinction between fuzzy and intuitionistic fuzzy logic and set. Neutrosophic logic was introduced by Florentin Smarandache in 1995. It is a logic in which each proposition is estimated to have a degree of truth (T), a degree of indeterminacy (I) and a degree of falsity (F). A Neutrosophic set is a set where each element of the universe has a degree of truth, indeterminacy and falsity respectively and which lies between, the non-standard unit interval. Unlike in intuitionistic fuzzy sets, where the incorporated uncertainty is dependent of the degree of belongingness and degree of non belongingness, here the uncertainty present, i.e. indeterminacy factor, is independent of truth and falsity values. In 2005, Wang et. Al. introduced an instance of neutrosophic set known as single valued neutrosophic sets which were motivated from the practical point of view and that can be used in real scientific and engineering applications. The single valued neutrosophic set is a generalization of classical set, fuzzy set, intuitionistic fuzzy set and paraconsistent sets etc.

The recently proposed notion of neutrosophic sets is a general formal framework for studying uncertainties arising due to indeterminacy factors. From the philosophical point of view, it has been shown that a neutrosophic set generalizes a classical set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy set etc. Also single valued neutrosophic (SVN) set can be used in modeling real scientific and engineering problems. The SVN set is a generalization of classical fuzzy set [54], intuitionistic fuzzy set [7] etc. Therefore the study of neutrosophic sets and its properties have a considerable significance in the sense of applications as well as in understanding the fundamentals of uncertainty [See [2, 3, 4, 5, 8, 10, 15, 16, 28, 29, 32, 33, 35, 36, 37, 38, 39, 40, 55]]. This new topic is very sophisticated and only a handful of papers have been published till date but it has immense possibilities which are to be explored.

Graphs and Digraphs play an important role to solve many practical problems in algebra, analysis, geometry etc. A couple of researchers are continuously engaged in research on fuzzy graph theory, fuzzy digraph theory, intuitionistic fuzzy graphs, soft digraphs [17, 22, 23, 24, 49]. However Neutrosophic graphs, SVN graphs concept have been defined by Samarandache and Broumi et al. in their papers [12, 45]. We have defined the SVN digraphs in our previous paper [50]. In this paper we have developed the notion of SVN digraphs. Some preliminaries regarding SVN sets, graph theory etc. are discussed in Section 2. In section 3, we have defined the some terminologies regarding SVN digraph with examples. We have discussed SVN signed digraphs for the first time in Section 4. In section 5, we have solved a real life networking problem by using SVN signed digraph. Section 6 concludes the paper.

2 Preliminaries

Neutrosophic sets play an important role in decision making under uncertain environment of Mathematics. Most of the preliminary ideas regarding Neutrosophic sets and its possible applications can be easily found in any standard reference say [30, 43, 45, 46]. However we will discuss some definitions and terminologies regarding neutrosophic sets which will be used in the rest of the paper. Also we have added some new definitions and results on SVN digraphs in this section.

Definition 1 [30] Let X be a universal set. A neutrosophic set A on X is characterized by a truth membership function tA, an indeterminacy function iA and a falsity function fA, where tA, iA, fA : X → [0, 1], are functions and ∀ x ∈ X, x = x(tA(x), iA(x), fA(x)) ∈ A is a single valued neutrosophic element of A. A single valued neutrosophic set (SVNS) A over a finite universe X = {x₁, x₂, . . . , xn} is represented as below:

\[A = \sum_{i=1}^{n} (tA(xᵢ), iA(xᵢ), fA(xᵢ)) \]
Definition 2 [11] Let \(A = \{ (x; t_A(x); i_A(x); f_A(x)) : x \in X \} \) be a single-valued neutrosophic set of the set \(X \). For \(\alpha \in [0, 1] \), the \(\alpha \)-cut of \(A \) is the crisp set \(A_\alpha \):

\[
A_\alpha = \{ x \in X : \text{either}(t_A(x); i_A(x)) \geq \alpha \text{ or } f_A(x) < 1 - \alpha \}.
\]

Let \(B = \{ ((x, y); t_B(x, y); i_B(x, y); f_B(x, y)) \} \) be a neutrosophic set on \(E \subseteq X \times X \). For \(\alpha \in [0, 1] \), the \(\alpha \)-cut of the crisp set \(B_\alpha \) defined by:

\[
B_\alpha = \{ (x, y) \in E : \text{either} (t_B(x, y); i_B(x, y)) \geq \alpha \text{ or } f_B(x, y) \leq 1 - \alpha \}.
\]

Example 5 An entropy measure of an element \(x \) of a SVN set \(A \) can be calculated as follows:

\[
E_1(x_1) = 1 - (t_A(x_1) + f_A(x_1)) \times |i_A(x_1) - i_A-(x_1)|.
\]

Graph theory are widely used in different areas of neutrosophic theory. Many authors have used different types of graphs in neutrosophic theory. Consider a SVN set \(A = \{ (v_1, v_2, v_3, \ldots, v_n) \} \) over a universal set \(X \).

Example 7 Consider the SVN digraph \(D_0 = (V_{D_0}, A_{D_0}) \) in Figure 1 with vertex set \(V_{D_0} = \{ v_1, v_2, v_3 \} \) and arc set \(A_{D_0} = \{ (v_2, v_1), (v_1, v_3), (v_2, v_3) \} \) with one loop at each vertex as follows:

\[
\begin{bmatrix}
t_{D_0} & 0.4 & 0.4 & 0.5 \\
0.1 & 0.3 & 0.2 & f_{D_0} \\
0.2 & 0.1 & 0.5 & 0.52 & 0.8 & 0.4 \\
\end{bmatrix},
\]

It is clear that the \(D_0 \) is a SVN digraph.

Definition 8 Suppose \(D = (V_D, A_D) \) and \(H = (V_H, A_H) \) be two SVN digraphs with \(|V_D| = |V_H| \) corresponding to the SVN sets \(V_D \) and \(V_H \) over an universal set \(X \). Then the cartesian product of two SVN digraphs \(D \) and \(H \) is defined as a SVN digraph \(C = (V_C, A_C) \) in which the following holds:

(i) \(V_C = V_D \times V_H \).
Definition 9 The degree and the total degree of a vertex v_i of a SVN digraph $D = (V, A)$ are denoted by
\[
\begin{align*}
\delta_D(v_i) &= (d_i(v_i), d_f(v_i), d_j(v_i)) \\
T_{\delta_D}(v_i) &= (\sum_{j : j \neq i} t_A(v_i, v_j), \sum_{j : j \neq i} i_A(v_i, v_j), \sum_{j : j \neq i} f_A(v_i, v_j)).
\end{align*}
\]

Example 10 The degree and total degree of the vertex v_2 of the SVN digraph D_0 in Example 7 are $d_D(v_2) = (0.5, 0.7, 0.8)$ and $T_{d_D}(v_2) = (0.9, 1, 0.9)$.

Definition 11 A SVN digraph $D = (V_D, A_D)$ is called a k-regular SVN digraph if $d_D(v_i) = (k, k, k)$ $\forall v_i \in V_D$.

Definition 12 A SVN digraph $D = (V_D, A_D)$ is called a totally regular SVN digraph of degree (k_1, k_2, k_3) if $T_{d_D}(v_i) = (k_1, k_2, k_3)$ $\forall v_i \in V_D$.

It is quite clear that the concept of a regular SVN digraph and totally regular SVN digraph are completely different. We have seen that the arc set A_D in D forms a SVN set [50]. Now we consider the concept of degree and total degree of an arc of a SVN digraph in the next definition.

Definition 13 The degree and the total degree of an arc (u, v) of a SVN digraph are denoted by $d_D(u, v) = (d_t(u, v), d_i(u, v), d_f(u, v))$ and $T_{d_D}(u, v) = (T_{d_t}(u, v), T_{d_i}(u, v), T_{d_f}(u, v))$, respectively and are defined as follows:
\[
\begin{align*}
\delta_D(u, v) &= d_D(u) + d_D(v) - \frac{1}{2}(t_A(u, v), i_A(u, v), f_A(u, v)), \\
T_{\delta_D}(u, v) &= d_D(u) + d_D(v) + (t_A(u, v), i_A(u, v), f_A(u, v)).
\end{align*}
\]

Example 14 Consider the SVN digraph D_0 in Figure 1. Here the degree and total degree of the vertices $\{v_1, v_2, v_3\}$ of D_0 as follows:
\[
\begin{align*}
d_D(v_1) &= (0.4, 0.3, 0.4), T_{d_D}(v_1) = (0.8, 0.4, 0.6), \\
d_D(v_2) &= (0.5, 0.7, 0.8), T_{d_D}(v_2) = (0.9, 1, 0.9), \\
d_D(v_3) &= (0, 0, 0), T_{d_D}(v_3) = (0, 0, 0).
\end{align*}
\]

Now we calculate the degree and total degree of each arc of A_{D_0} of D_0 as follows:
\[
\begin{align*}
d_D(v_2, v_1) &= (0.85, 0.8, 1.1), T_{d_D}(v_2, v_1) = (0.6, 0.6, 1.0), \\
d_D(v_2, v_3) &= (0.4, 0.55, 0.5), T_{d_D}(v_2, v_3) = (0.3, 0.4, 0.2), \\
d_D(v_1, v_3) &= (0.2, 0.15, 0.2), T_{d_D}(v_1, v_3) = (0, 0, 0).
\end{align*}
\]

Definition 15 The maximum degree of a SVN digraph $D = (V_D, A_D)$ is defined as $\Delta(D) = (\Delta_t(D), \Delta_i(D), \Delta_f(D))$ where
\[
\begin{align*}
\Delta_t(D) &= \max\{d_t(v) : v \in V_D\}, \\
\Delta_i(D) &= \max\{d_i(v) : v \in V_D\}, \\
\Delta_f(D) &= \max\{d_f(v) : v \in V_D\},
\end{align*}
\]

Definition 16 The minimum degree of a SVN digraph $D = (V_D, A_D)$ is defined as $\delta(D) = (\delta_t(D), \delta_i(D), \delta_f(D))$ where
\[
\begin{align*}
\delta_t(D) &= \min\{d_t(v) : v \in V_D\}, \\
\delta_i(D) &= \min\{d_i(v) : v \in V_D\}, \\
\delta_f(D) &= \min\{d_f(v) : v \in V_D\}.
\end{align*}
\]
Definition 18 Suppose \(D = (V_D, A_D) \) be a SVN digraph corresponding to a SVN set \(V_D \). Then \(D \) is said to be

(i) arc regular SVN digraph if every arc in \(D \) has the same degree \((k_1, k_2, k_3)\).

(ii) equally arc regular SVN digraph if \(k_1 = k_2 = k_3 \).

(iii) totally arc regular SVN digraph if every arc in \(D \) has the same total degree \((k_1, k_2, k_3)\).

It is also quite clear that the above three concepts are completely different to each other.

3 SVN Signed Digraph

In this paper, we will define the SVN signed digraph for the first time.

Definition 19 Suppose \(D = (V_D, A_D) \) be a SVN digraph over a single valued neutrosophic set \(V_D \). A signing of a SVN digraph \(D \) is an assignment of a sign (+ or −) to each arc of the digraph; the sign of arc \((v, w)\) is denoted \(\text{sgn}(v, w)\). The result of a signing of \(D \) is called a SVN signed digraph.

However to assign the sign of the arcs, we will follow some rules. For this, we will consider the \(\alpha\)-level subdigraph \(D_1 \) of a SVN digraph \(D \). Then we will assign + sign only to those arcs of \(D \) which are also the arcs of \(D_1 \). For the rest of arcs of \(D \), we will assign − sign.

Example 20 Consider the SVN digraph \(D_1 = (V_{D_1}, A_{D_1}) \) in Figure 2 with vertex set \(V_{D_1} = \{v_1, v_2, v_3, v_4\} \) and arc set \(A_{D_1} = \{(v_2, v_1), (v_3, v_2), (v_2, v_3), (v_2, v_4), (v_3, v_4), (v_4, v_1)\} \) with one loop at each vertex as follows:

\[
\begin{bmatrix}
 v_1 & v_2 & v_3 & v_4 \\
 t_{V_{D_1}} & 0.4 & 0.4 & 0.5 & 0.2 \\
 i_{V_{D_1}} & 0.1 & 0.3 & 0.2 & 0.5 \\
 f_{V_{D_1}} & 0.2 & 0.1 & 0.5 & 0.3 \\
 E & 0.52 & 0.8 & 0.4 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
 (v_2, v_1) & (v_2, v_3) & (v_4, v_1) & (v_1, v_3) & (v_4, v_2) \\
 t_{A_{D_1}} & 0.3 & 0.2 & 0.1 & 0.4 & 0.2 \\
 i_{A_{D_1}} & 0.4 & 0.3 & 0.5 & 0.3 & 0.5 \\
 f_{A_{D_1}} & 0.2 & 0.6 & 0.3 & 0.4 & 0.4 \\
\end{bmatrix}
\]

We take \(\alpha = 0.5\). In this case, the vertices \(\{v_1, v_2, v_4\}\) of \(D_1\) are \(\alpha\)-level vertices and the arcs \(\{(v_2, v_1), (v_4, v_1), (v_4, v_2)\}\) are the \(\alpha\)-level arcs. Thus we will assign the sign as follows to the arcs of \(D_1\):

\[
\text{sgn}(v_2, v_1) = \text{sgn}(v_4, v_1) = \text{sgn}(v_4, v_2) = + \\
\text{sgn}(v_1, v_2) = \text{sgn}(v_2, v_3) = \text{sgn}(v_4, v_4) = +, \\
\text{sgn}(v_2, v_3) = \text{sgn}(v_1, v_3) = \text{sgn}(v_4, v_3) = -
\]

![Figure 2: The SVN Digraph \(D_1\)](image)

Remark 21 Throughout this paper, we have taken the value of \(\alpha\) is 0.5. However, for different values of \(\alpha\) we will get different signed SVN digraphs. Also, by \(K_n\), we denote the complete SVN digraph of \(n\)-vertices.

Definition 22 The sets of positive and negative arcs of a SVN signed digraph \(D\) are respectively denoted by \(D^+\) and \(D^-\). Thus \(D = D^+ \cup D^-\).

Definition 23 A SVN signed digraph is said to be homogeneous if all of its arcs have either positive sign or negative sign, otherwise heterogeneous.

Definition 24 The sign of a SVN signed digraph is defined as the product of signs of its arcs. A SVN signed digraph is said to be positive (negative) if its sign is positive (negative) i.e., it contains an even (odd) number of negative arcs. A signed digraph is said to be all-positive (respectively, all negative) if all its arcs are positive (negative).

Example 25 It is clear that the sign of the SVN digraph \(D_1\) in Example 20 is negative. It is clear that the SVN digraph \(D_1\) is neither all positive nor all negative.

Definition 26 A SVN signed digraph is said to be cycle balanced if each of its cycles is positive, otherwise non cycle balanced.
Definition 27 A SVN signed digraph is symmetric if \((u, v) \in D^+(or D^-)\) then \((v, u) \in D^+(or D^-)\) where \(u, v \in V_D\).

Definition 28 The adjacency matrix of a SVN signed digraph \(D\) is the square matrix \(M = (a_{ij})\) whose \((i, j)\) entry \(a_{ij}\) is +1 if arc \((v_i, v_j)\) in \(D\) has a + sign, -1 if arc \((v_i, v_j)\) in \(D\) has a − sign, and 0 if arc \((v_i, v_j)\) is not in \(D\).

Example 29 The adjacency matrix \(M\) of the SVN signed digraph \(D_1\) in Figure 2 is as following:

\[
M = \begin{bmatrix}
1 & 0 & -1 & 0 \\
1 & 1 & -1 & 0 \\
0 & 0 & -1 & 0 \\
1 & 1 & 0 & 1 \\
\end{bmatrix}.
\]

Example 31 The characteristic polynomial \(\delta(t) = |I - M|\) of the adjacency matrix \(M\) of a SVN signed digraph \(D\) is called the characteristic polynomial of \(D\) and is denoted by \(\delta(t)\). The eigenvalues of \(M\) are called the spectral of the digraph \(D\).

Definition 32 Suppose \(D = (V_D, A_D)\) be a SVN signed digraph over a single valued neutrosophic set \(V_D = \{v_1, v_2, \ldots, v_n\}\). Consider the complement SVN digraph \(D^C\) corresponding to the complement SVN set \(V_D^C\). The digraph \(V_D^C\) with a signing of arcs is called the signed complement of the SVN signed digraph \(V_D\).

Here we choose the same value of \(\alpha\) as of \(D\) and also consider the \(\alpha\)-arcs and \(\alpha\)-vertices. According to the \(\alpha\)-arcs and \(\alpha\)-vertices we assign signs to the arcs of \(V_D^C\).

Example 33 Consider the SVN complement digraph \(D^C\) of the SVN digraph \(D_1\) in Figure 2.

\[
\text{sgn}(v_2, v_1) = \text{sgn}(v_1, v_2) = \text{sgn}(v_4, v_2) = -,
\]

\[
\text{sgn}(v_1, v_1) = \text{sgn}(v_2, v_2) = \text{sgn}(v_4, v_4) = +,
\]

\[
\text{sgn}(v_2, v_3) = \text{sgn}(v_1, v_3) = \text{sgn}(v_3, v_1) = +.
\]

![Figure 3: The SVN Digraph \(D^C\)](image)

4 Some important results of a SVN Signed Digraph

In this section we will discuss some results regarding SVN signed Neutrosophic digraphs. Like wise a SVN digraph \(D\), we define the terminologies of a SVN signed digraph. However, the order of a SVN signed digraph \(D\), denoted by \(|D|\), is the number of vertices of \(D\). The size of a SVN signed digraph \(D\), is the number of arcs of \(D\) i.e. \(|A_D|\).

Theorem 34 A SVN (signed) digraph \(D \neq K_n\) of order \(\geq 3\) is always acyclic.

Proof 35 Suppose exist a cyclic SVN (signed) digraph \(D = (V_D, A_D)\) has vertex set \(V_D = \{v_1, v_2, v_3, \ldots, v_n\}\). Without loss of generality, let \(D\) has a cycle of length \(k\), where \(k \geq 3\) say \(\langle v_1, v_2, \ldots, v_k \rangle\). Then we have \(E(v_1) > E(v_2) > \ldots, E(v_k) > E(v_1)\) which is impossible. Hence \(D\) does not have a cycle of length \(k\).

Corollary 36 Any asymmetric SVN signed digraph of order \(\geq 3\) is not balanced.

Theorem 37 Any asymmetric SVN (signed) digraph \(H\) of order \(\geq 3\) is not strongly connected.

Proof 38 Since there does not exists any SVN (signed) digraph with a cycle of length \(\geq 3\), hence the results follows.

Theorem 39 In any complete symmetric SVN digraph \(D = (V_D, A_D)\), where \(V_D = \{v_1, v_2, \ldots, v_n\}\),

\[
\sum_{i,j} d_D(v_i) = (d_1(v_i), d_1(v_i), \ldots, d_1(v_i)) = \sum_{j,i \neq j} t_A(v_i, v_j) + \sum_{j,i \neq j} i_A(v_i, v_j) + \sum_{j,i \neq j} f_A(v_i, v_j),
\]

\(\forall v_i \in V_D\).
We have, where

\[= \]

Consider the SVN set

\[\alpha \]

5.2 Algorithm for 2-point classification of a SVN set

One can attempt for 2-point classification of a SVN set by using the following algorithm:

(i) Consider a SVN set \(V(D) \).

(ii) Draw a SVN digraph \(D = (V(D), A(D)) \), where \(V(D), A(D) \) are the vertex set and arc set of \(D \) respectively.

(iii) Choose the value of \(\alpha \) and find out \(\alpha \)-level vertices and the arcs \(\{ (v_2, v_1), (v_4, v_1), (v_4, v_2) \} \) as the \(\alpha \)-level arcs. Then we assign the signs to the arcs of \(D \) as follows:

\[
\text{sgn}(v_2, v_1) = \text{sgn}(v_4, v_2) = \text{sgn}(v_2, v_1) = +,
\]

\[
\text{sgn}(v_1, v_1) = \text{sgn}(v_4, v_2) = \text{sgn}(v_4, v_1) = -.
\]

Hence, we can form a partition of two sets namely \(P, Q \) from the elements of a SVN set \(V(D) \). The partition is done on the basis of signing of the \(\alpha \)-level vertices. Thus by drawing SVN signed digraph of a SVN set, we can get a 2-point classification of a SVN set.
5.3 A Decision Making Problem

Suppose A, B, C be three nations willing to explore the possibility trade between them. Considering various situations in there countries like, political stability, case of doing business, human resource, trade laws etc. Each country was assigned grades of positive factors, indeterminacy and negative factors as follows:

$$A(0.4, 0.3, 0.2), B(0.4, 0.1, 0.2), C(0.5, 0.2, 0.4).$$

In these way, we can characterize the three country A, B, C respectively. We must to find the possibility of trade between them. For this, we consider A, B, C as the three vertices v_1, v_2, v_3 respectively as a vertex set V_{D_4} of a proposed SVN digraph $D_4 = (V_{D_4}, A_{D_4})$. Now we draw the SVN digraph D_4 as follows:

$$
\begin{bmatrix}
v_{v_1} & v_{v_2} & v_{v_3} \\
v_{v_2} & 0.4 & 0.5 \\
v_{v_3} & 0.3 & 0.2 \\
E & 0.2 & 0.4 \\
\end{bmatrix}
\begin{bmatrix}
\alpha & \beta & \gamma \\
\alpha & 0.3 & 0.2 & 0.4 \\
\beta & 0.4 & 0.3 & 0.3 \\
\gamma & 0.2 & 0.6 & 0.4 \\
\end{bmatrix}
$$

Here, we have seen that $A_{D_4} = \{(v_1, v_2), (v_1, v_3), (v_2, v_3)\}$. So we can say that, there is a good transport communication between the country pair $(A, B), (A, C), (B, C)$ respectively. Now consider $\alpha = 0.3$. Here, the vertices $\{v_1, v_2\}$ of D_4 are α-level vertices and the arcs $\{(v_1, v_2)\}$ is the only α-level arcs. Thus we will assign the sign as follows to the arcs of D_4

$$sgn(v_1, v_2) = sgn(v_1, v_1) = sgn(v_2, v_2) = +,$$

$$sgn(v_2, v_3) = sgn(v_1, v_3) = sgn(v_3, v_3) = −.$$

From this SVN signed digraph D_4 we can conclude that both A and B have a common enemy C. Hence although there is a good communication between two country (A, C) and (B, C), it is not possible to do business between them due to their political situation. Hence a cyclic triple SVN signed digraph D_4 with one positive arcs can evaluate the real networks.

6 Conclusion

F. Smarandache introduced the neutrosophic set theory in his paper [43] as a generalization of fuzzy intuitionistic set theory. After that many researchers have developed the neutrosophic set theory, SVN theory, neutrosophic graph theory etc. and have applied those theories in solving many practical problems ([1, 6, 10, 12, 13, 14, 19, 20, 21, 26, 31, 41, 42, 48, 50, 51, 52, 53] etc.). We have developed earlier SVN digraph theory corresponding to a SVN set in our paper [50]. In this paper we have further developed the SVN digraph theory and introduced the notion of SVN signed digraphs and studied some of its important properties and applied it in a decision making problem. In future, one may study the decision making problems using SVN signed digraphs. The study of deeper properties of SVN signed digraphs and solution of more real life problems will be done in our subsequent papers.

References

Received: October 11, 2018. Accepted: November 16, 2018