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Abstract: In this work we present for the first time the concept of literal 

neutrosophic markov chains and literal plithogenic markov chains. Also, we 

presented many theorems related to the properties of transition matrix. In literal 

neutrosophic markov chains we proved that a neutrosophic matrix 𝑀 = 𝐴 + 𝐵𝐼 is 

a transition matrix if and only if 𝐴 is a classical transition matrix and 𝐴 + 𝐵 is a 

classical transition matrix. We also proved that multiplication of two neutrosophic 

transition matrices is again a neutrosophic transition matrix and that the power of 

a neutrosophic transition matrix is a neutrosophic transition matrix. Finally, we 

proved that the (𝑛) step neutrosophic transition matrix is equivalent to raising the 

main neutrosophic transition matrix to the power n. In literal plithogenic markov 

chains which is a generalization of the previous case we proved that 𝑀 = 𝐴 +

𝐵𝑃1 + 𝐶𝑃2 is a plithogenic transition matrix if and only if all of the matrices 𝐴, 𝐴 +

𝐵, 𝐴 + 𝐵 + 𝐶  are transition matrices in classical concept. We also proved that 

multiplication of two plithogenic transition matrices is a plithogenic transition 

matrix and that raising a plithogenic transition matrix to a power r will produce a 

new plithogenic transition matrix. Also, as in neutrosophic case, the (𝑛)  step 

plithogenic transition matrix is equivalent to the main plithogenic matrix raised to 
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the power n. Theorems were provided with suitable solved examples and 

problems. 

Keywords: Neutrosophic; Plithogenic; Markov Chains; Transition Matrix; 

Chapman-Kolmogorov. 

 

 

1. Introduction 

In the realm of stochastic processes and probability theory, Markov chains stand as 

a foundational model for understanding the dynamics of sequential events. These 

chains provide a powerful framework for analyzing various systems, ranging from 

biological processes to financial markets. However, traditional Markov chains often 

struggle to capture the inherent uncertainties and ambiguities present in many real-

world scenarios. [1]–[5] 

This paper delves into the intriguing fusion of two distinct conceptual frameworks, 

namely plithogenic and neutrosophic, with the well-established Markov chain 

theory. Plithogenic and neutrosophic concepts extend the conventional notions of 

truth and falsity to encompass the realm of partial truth and indeterminacy, 

respectively.[6]–[21] This unique blend of theories offers a promising avenue to 

model complex systems where inherent vagueness and uncertainty play a 

significant role. 

 

Throughout this paper, we aim to elucidate the theoretical foundations of 

plithogenic and neutrosophic Markov chains, shedding light on their mathematical 

underpinnings and conceptual implications. We will explore how these novel 

extensions can be seamlessly integrated into traditional Markov chain models which 
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have many practical applications across diverse domains such as decision-making, 

risk assessment, and artificial intelligence. 

By merging the realms of classical Markov chains, plithogenic reasoning, and 

neutrosophic logic, this paper strives to contribute to the advancement of 

probabilistic modeling in situations where uncertainty and ambiguity are central. 

Through comprehensive exploration and illustrative examples, we endeavor to 

demonstrate the utility and significance of these novel frameworks in tackling the 

intricacies of real-world systems. In doing so, we aim to provide researchers and 

practitioners with a deeper understanding of the capabilities and limitations of 

plithogenic and neutrosophic Markov chains, paving the way for more nuanced and 

accurate modeling in complex and uncertain scenarios.  

This work can be considered as a complement to previous works in probability 

theory and stochastic processes built under symbolic neutrosophic structures and 

can be also considered as an introduction to related fields such as queueing theory, 

reliability theory, dynamic systems, etc.[11], [17], [22]–[41] 

 

2. Preliminaries  

Definition 2.1 

Let 𝑹(𝑰) = {𝒂 + 𝒃𝑰; 𝑰𝟐 = 𝑰}, we call 𝐑(𝐈) the neutrosophic field of reals.  

Definition 2.2 

Let 𝑅(𝐼)  be the neutrosophic field of reals, and let 𝑎𝑁 = 𝑎1 + 𝑎2𝐼, 𝑏𝑁 = 𝑏1 +

b2𝐼 ∈ 𝑅(𝐼). We can say that 𝑎𝑁 ≥𝑁 𝑏𝑁 if: 𝑎1 ≥ 𝑏1 𝑎𝑛𝑑  𝑎1 + 𝑎2 ≥ 𝑏1 + 𝑏2  

Definition 2.3 

One-dimensional isometry between R(I) and R×R and its inverse are defined as 

follows: 

𝑻: 𝑹(𝑰) → 𝑹 × 𝑹; 𝑻(𝒂 + 𝒃𝑰) = (𝒂, 𝒂 + 𝒃). 

𝑻−𝟏: 𝑹 × 𝑹 → 𝑹(𝑰); 𝑻−𝟏(𝒂, 𝒃) = 𝒂 + (𝒃 − 𝒂)𝑰. 

Definition 2.4 
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Let  𝑹(𝑷𝟏, 𝑷𝟐) = {𝒂𝟎 + 𝒂𝟏𝑷𝟏 + 𝒂𝟐𝑷𝟐; 𝑷𝟏
𝟐 = 𝑷𝟏, 𝑷𝟐

𝟐 = 𝑷𝟐, 𝑷𝟏𝑷𝟐 = 𝑷𝟐𝑷𝟏 = 𝑷𝟐}, we 

call 𝑹(𝑷𝟏, 𝑷𝟐)   Plithogenic field of reals. 

Definition 2.5 

Let 𝑅(𝑃1, 𝑃2)   be the Plithogenic field of reals, and let 𝑎𝑃 = 𝑎0 + 𝑎1𝑃1 +

𝑎2𝑃2, 𝑏𝑃 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 ∈ 𝑅(𝑃1, 𝑃2). We say that 𝑎𝑃 ≥𝑃 𝑏𝑃 if: 

𝒂𝟎 ≥ 𝒃𝟎, 𝒂𝟎 + 𝒂𝟏 ≥ 𝒃𝟎 + 𝒃𝟏  𝒂𝒏𝒅 𝒂𝟎 + 𝒂𝟏 + 𝒂𝟐 ≥ 𝒃𝟎 + 𝒃𝟏 + 𝒃𝟐  

Definition 2.6 

One-dimensional isometry between 𝑹(𝑷𝟏, 𝑷𝟐) and the space 𝑹 × 𝑹 × 𝑹  is 

defined as follows: 

𝑻: 𝑹(𝑷𝟏, 𝑷𝟐) → 𝑹 × 𝑹 × 𝑹; 𝑻(𝒂𝟎 + 𝒂𝟏𝑷𝟏 + 𝒂𝟐𝑷𝟐) = (𝒂𝟎, 𝒂𝟎 + 𝒂𝟏, 𝒂𝟎 + 𝒂𝟏 + 𝒂𝟐) 

𝑇−1: 𝑅 × 𝑅 × 𝑅 → 𝑅(𝑃1, 𝑃2); 𝑇−1(𝑎0, 𝑎1, 𝑎2) = 𝑎0 + (𝑎1 − 𝑎0)𝑃1 + (𝑎2 − 𝑎1)𝑃2 

3. Literal Neutrosophic Markov chains 

Definition 3.1  

  A set of random variables 𝑋0, 𝑋1, 𝑋2, … satisfying: 

𝑃r {𝑋𝑛+1  =  𝑖𝑛+1|𝑋𝑛  =  𝑖𝑛, 𝑋𝑛−1  = 𝑖𝑛−1, … , 𝑋0 =  𝑖0 } = 𝑃𝑟 {𝑋𝑛+1  =  𝑖𝑛+1|𝑋𝑛  =  𝑖𝑛 }  

is called a literal or symbolic neutrosophic markov chain if the last probability 

takes the form 𝑃𝑟 {𝑋𝑛+1  =  𝑖𝑛+1|𝑋𝑛  =  𝑖𝑛 } = 𝑎 + 𝑏𝐼; 0 ≤ 𝑎 ≤ 1,0 ≤ 𝑎 + 𝑏 ≤ 1, 𝐼2 = 𝐼  

Definition 3.2 

We call  𝒑𝒊𝒋
(𝒏,𝒏+𝟏)

𝑵
= 𝑷𝒓(𝑿𝒏+𝟏 = 𝒋|𝑿𝒏 = 𝒊) ∈ 𝑹(𝑰) literal or symbolic neutrosophic 

one-step transition probability.   

Definition 3.3 

A squared neutrosophic matrix 

𝑀𝑁 = 𝐴 + 𝐵𝐼 = [𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼]
𝑛×𝑛

 

Is called a neutrosophic markov transition matrix if its elements satisfy: 

1. ∑ 𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼
𝑗

= 1                               ;  𝑖 = 1,2,3, … , n                                     

2. 0 ≤𝑁 𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼 ≤𝑁 1                          ;  𝑖, 𝑗 = 1,2,3, … , 𝑛     
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Example 3.1 

let′s take:                         MN = [
0.3I 1 − 0.3I

0.4 + 0.2I 0.6 − 0.2I
] 

Then MN is a neutrosophic transition matrix because: 

0.3I + 1 − 0.3I = 1     and    0.4 + 0.2I + 0.6 − 0.2I = 1  

Also, according to the definition of comparison between Neutrosophic numbers we 

have: 

0 + 0.3𝐼 ≤𝑁 1 + 0𝐼 because 0 ≤ 1  &  0.3 ≤ 1 

1 − 0.3𝐼 ≤𝑁 1 +0I because 1 ≤ 1  &  0.7 ≤ 1 

0.4 + 0.2𝐼 ≤𝑁 1 + 0𝐼 because 0.4 ≤ 1  &  0.6 ≤ 1 

0.6 − 0.2𝐼 ≤𝑁 1 + 0𝐼 because 0.6 ≤ 1  &  0.4 ≤ 1 

0 + 0𝐼 ≤𝑁 0 + 0.3𝐼 because 0 ≤ 0  &  0 ≤ 0.3 

0 + 0𝐼 ≤𝑁 1 − 0.3𝐼 because 0 ≤ 1  &  0 ≤ 0.7 

0 + 0𝐼 ≤𝑁 0.4 + 0.2𝐼 because 0 ≤ 0.4  &  0 ≤ 0.6 

0 + 0𝐼 ≤𝑁 0.6 − 0.2𝐼 because 0 ≤ 0.6  &  0 ≤ 0.4 

Theorem 3.1 

The matrix   𝑀𝑁 = 𝐴 + 𝐵𝐼 is a neutrosophic transition matrix if and only if 𝐴 is 

a crisp transition matrix and 𝐴 + 𝐵 is a crisp transition matrix. 

Proof 

Let's assume that 𝑀𝑁  is a neutrosophic transition matrix and prove that 

𝐴   𝑎𝑛𝑑    𝐴 + 𝐵 are two transition matrices: 

we have  0 + 0𝐼 ≤𝑁 𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼 ≤N 1 + 0𝐼  so 𝑎𝑖𝑗 ≤ 1  ,   𝑎𝑖𝑗 + 𝑏𝑖𝑗 ≤ 1 , 0 ≤

𝑎𝑖𝑗   and 0 ≤ 𝑎𝑖𝑗 + 𝑏𝑖𝑗   which means that: 

0 ≤ 𝑎𝑖𝑗 ≤ 1  and  0 ≤ 𝑎𝑖𝑗 + 𝑏𝑖𝑗 ≤ 1 

Also, we have ∑ (aij + bijI) = 1
j

= 1 + 0I which means that∑ bij
j

=

0 and ∑ aij
j

= 1      

So, we can conclude that: 
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0 ≤ 𝑎𝑖𝑗 ≤ 1 𝑎𝑛𝑑 ∑ 𝑎𝑖𝑗
𝑗

= 1 ⇒  𝐴  is a transition matrix. 

0 ≤ 𝑎𝑖𝑗 + 𝑏𝑖𝑗 ≤ 1 𝑎𝑛𝑑 ∑ (𝑎𝑖𝑗 + 𝑏𝑖𝑗)
𝑗

= 1 ⇒  𝐴 + 𝐵 is a transition matrix. 

Now, let's assume that both A and A+B are transition matrices and prove that 𝑀𝑁 =

𝐴 + 𝐵𝐼 is a neutrosophic transition matrix:    

since  𝐴, 𝐴 + 𝐵  are transition matrices then 0 ≤ aij ≤ 1 , 0 ≤ aij + bij ≤ 1  which 

means that 0 ≤ 𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼 ≤ 1     

Also, we have ∑ aij
j

= 1 and  ∑ (𝑎𝑖𝑗 + 𝑏𝑖𝑗)
𝑗

= 1 that yields to the fact 

that ∑ 𝑏𝑖𝑗
𝑗

= 0 

Then we conclude that ∑ (aij + bijI) = 1
j

 and this proves the theorem. 

Example 3.2 

Let's take the matrix: 

𝑀𝑁 = [
0.3𝐼 1 − 0.3𝐼

0.4 + 0.2𝐼 0.6 − 0.2𝐼
] 

that is: 

𝑀𝑁 = [
0 1

0.4 0.6
] + [

0.3 −0.3
0.2 −0.2

]  𝐼 

 𝐴 = [
0 1

0.4 0.6
]   𝑎𝑛𝑑   𝐴 + 𝐵 = [

0.3 0.7
0.6 0.4

] 

we note that A and A+B are two transition matrices fulfill conditions   

∑ 𝑎𝑖𝑗

𝑗

= 1 ; 𝑖 = 1,2                    0 ≤ 𝑎𝑖𝑗 ≤ 1 ; 𝑖, 𝑗 = 1,2  

∑ 𝑎𝑖𝑗

𝑗

+ 𝑏𝑖𝑗 = 1 ; 𝑖 = 1,2       0 ≤ 𝑎𝑖𝑗 + 𝑏𝑖𝑗 ≤ 1 ; 𝑖, 𝑗 = 1,2 

Theorem 3.2 

If M1 and M2are two neutrosophic transition matrices, then their multiplication is a 

neutrosophic transition matrix. 

Proof 
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Let 𝑀1 = [
𝑎11 + 𝑏11𝐼 𝑎12 + 𝑏12𝐼
𝑎21 + 𝑏21𝐼 𝑎22 + 𝑏22𝐼

]  , 𝑀2 = [
𝑐11 + 𝑑11𝐼 𝑐12 + 𝑑12𝐼
𝑐21 + 𝑑21𝐼 𝑐22 + 𝑑22𝐼

] 

𝑀1. 𝑀2

= [
(𝑎11 + 𝑏11𝐼)(𝑐11 + 𝑑11𝐼) + (𝑎12 + 𝑏12𝐼)(𝑐21 + 𝑑21𝐼) (𝑎11 + 𝑏11𝐼)(𝑐12 + 𝑑12𝐼) + (𝑎12 + 𝑏12𝐼)(𝑐22 + 𝑑22𝐼)
(𝑎21 + 𝑏21𝐼)(𝑐11 + 𝑑11𝐼) + (𝑎22 + 𝑏22𝐼)(𝑐21 + 𝑑21𝐼) (𝑎21 + 𝑏21𝐼)(𝑐12 + 𝑑12𝐼) + (𝑎22 + 𝑏22𝐼)(𝑐22 + 𝑑22𝐼)

] 

Let's check the first condition: 

(𝑎11 + 𝑏11𝐼)(𝑐11 + 𝑑11𝐼) + (𝑎12 + 𝑏12𝐼)(𝑐21 + 𝑑21𝐼) + (𝑎11 + 𝑏11𝐼)(𝑐12 + 𝑑12𝐼) + (𝑎12

+ 𝑏12𝐼)(𝑐22 + 𝑑22𝐼) = 

(𝑎11 + 𝑏11𝐼)[(𝑐11 + 𝑑11𝐼) + (𝑐12 + 𝑑12𝐼)] + (𝑎12 + 𝑏12𝐼)[ (𝑐21 + 𝑑21𝐼) + (𝑐22 + 𝑑22𝐼)]= 

(𝑎11 + 𝑏11𝐼) + (𝑎12 + 𝑏12𝐼) = 1 

Similarly, we find that sum of elements of the second row of matrix (M1. M2) is 1 

Also, since all elements of the matrices M1 and M2 are positive and since that sum 

of each row of the matrix M1. M2  is 1 then we conclude that each element lays 

between 0 and 1 

Example 3.3 

Let 𝑀1 = [
0.6𝐼 1 − 0.6𝐼

0.3 + 0.1𝐼 0.7 − 0.1𝐼
] , 𝑀2 = [

0.2 + 0.3𝐼 0.8 − 0.3𝐼
0.2𝐼 1 − 0.2𝐼

] 

𝑀1. 𝑀2 = [
0.6𝐼 1 − 0.6𝐼

0.3 + 0.1𝐼 0.7 − 0.1𝐼
] . [

0.2 + 0.3𝐼 0.8 − 0.3𝐼
0.2𝐼 1 − 0.2𝐼

]

= [
0.32𝐼 + 0.06𝐼2 1 − 0.32𝐼 − 0,06𝐼2

0.6 + 0.25𝐼 + 0,01𝐼2 0.94 − 0.25𝐼 − 0,01𝐼2]

= [
0.38𝐼 1 − 0.38𝐼

0.6 + 0.26𝐼 0.31 − 0.26𝐼
] 

Note that the matrix 𝑀1. 𝑀2 It is a neutrosophic transition matrix because it satisfies 

the assumed conditions. 

Definition 3.4 

Let 𝑀𝑁 = 𝐴 + 𝐵𝐼 be a neutrosophic matrix and let 𝑟 ∈ ℕ, then: 

𝑀𝑁
𝑟 = 𝐴𝑟 +  𝐼[(𝐴 + 𝐵)𝑟 −  𝐴𝑟]  

Theorem 3.3 

If  MN neutrosophic transition matrix, then MN
r  is a neutrosophic transition matrix. 

Proof 

Straight forward by mathematical induction according to theorem 3.2. 



Neutrosophic Sets and Systems, Vol. 59, 2023     126 

 

 

Suhar Massassati, Mohamed Bisher Zeina and Yasin Karmouta, Plithogenic and Neutrosophic Markov Chains: Modeling 

Uncertainty and Ambiguity in Stochastic Processes 

Example 3.4: 

Let 𝑀𝑁 = [
0.6𝐼 1 − 0.6𝐼

0.3 + 0.1𝐼 0.7 − 0.1𝐼
] 

𝑀𝑁
2 = 𝑀𝑁 . 𝑀𝑁 = [

0.6𝐼 1 − 0.6𝐼
0.3 + 0.1𝐼 0.7 − 0.1𝐼

] . [
0.6𝐼 1 − 0.6𝐼

0.3 + 0.1𝐼 0.7 − 0.1𝐼
] 

= [ 0.3 − 0.08𝐼 + 0.3𝐼2 0.7 + 0.08𝐼 − 0.3𝐼2

0.21 + 0.22𝐼 + 0.05𝐼2 0.79 − 0.22𝐼 − 0.05𝐼2] 

= [
0.3 − 0.38𝐼 0.7 + 0.38𝐼

0.21 + 0.27𝐼 0.79 − 0.27𝐼
] 

Notice that MN
2  is a neutrosophic transition matrix, also: 

𝑀𝑁
3 = 𝑀𝑁

2 . 𝑀𝑁 = [
0.3 − 0.38𝐼 0.7 + 0.38𝐼

0.21 + 0.27𝐼 0.79 − 0.27𝐼
] . [

0.6𝐼 1 − 0.6𝐼
0.3 + 0.1𝐼 0.7 − 0.1𝐼

] 

= [ 0.21 + 0.364𝐼 − 0.190𝐼2 0.79 − 0.364𝐼 + 0.190𝐼2

0.237 + 0.124𝐼 + 0.135𝐼2 0.763 − 0.124𝐼 − 0.135𝐼2]           

= [
0.21 + 0.174𝐼 0.79 − 0.174𝐼

0.237 + 0.259𝐼 0.763 − 0.259𝐼
] 

We note that 𝑀𝑁
3  is also a neutrosophic transition matrix. 

Theorem 3.4 

Let 𝑀𝑁 = 𝐴 + 𝐵𝐼 be a neutrosophic transition matrix and let 𝑀𝑁
(𝑛)

 be the (n) steps 

transition matrix then: 

𝑀𝑁
(𝑛)

= 𝑀𝑁
𝑛 

Proof 

By takin the isometric image we have: 

 T(MN
(n)

) = (A(n), (A + B)(n))  

Since both A(n), (A + B)(n) are transition matrices in classical scene then by the well-known 

Chapman-Kolmogorov theorem we have: 

𝐴(𝑛) = 𝐴𝑛, (𝐴 + 𝐵)(𝑛) = (𝐴 + 𝐵)𝑛 

Which means that: 

𝑇(𝑀𝑁
(𝑛)

) = (𝐴𝑛, (𝐴 + 𝐵)𝑛) 

Now, taking inverse isometry yields to: 

𝑇−1 (𝑇(𝑀𝑁
(𝑛)

)) = 𝐴𝑛 + [(𝐴 + 𝐵)𝑛 − 𝐴𝑛]𝐼 = 𝑀𝑛 
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4. Literal Plithogenic Markov chains 

Definition 4.1  

A set of random variables 𝑋0, 𝑋1, 𝑋2, … satisfying: 

𝑃r {𝑋𝑛+1  =  𝑖𝑛+1|𝑋𝑛  =  𝑖𝑛, 𝑋𝑛−1  = 𝑖𝑛−1, … , 𝑋0 =  𝑖0 } = 𝑃𝑟 {𝑋𝑛+1  =  𝑖𝑛+1|𝑋𝑛  =  𝑖𝑛 }  

is called a literal or symbolic neutrosophic markov chain if the last probability takes 

the form 𝑃𝑟 {𝑋𝑛+1  =  𝑖𝑛+1|𝑋𝑛  =  𝑖𝑛 } = 𝑎 + b𝑃1 + cP2; 0 ≤ a ≤ 1,0 ≤ a + b ≤ 1,0 ≤ a +

b + c ≤ 1; 𝑃1
2 = 𝑃1, 𝑃2

2 = 𝑃2, 

𝑃1𝑃2 = 𝑃2𝑃1 = 𝑃2 

Definition 4.2  

We call 𝒑𝒊𝒋
(𝒏,𝒏+𝟏)

𝑷
= 𝑷𝒓(𝑿𝒏+𝟏 = 𝒋|𝑿𝒏 = 𝒊) ∈ 𝑹(𝑷𝟏, 𝑷𝟐) literal or symbolic plithogenic 

one-step transition probability.   

Definition 4.3  

A squared plithogenic matrix 

𝑀𝑁 = 𝐴 + 𝐵𝑃1 + 𝐶𝑃2 = [𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑃1 + 𝑐𝑖𝑗𝑃2]
𝑛×𝑛

 

Is called a plithogenic markov transition matrix if its elements satisfy: 

1. ∑ aij + bijP1 + cijP2
j

= 1       ;  i = 1,2,3, … . , n 

2. 0 ≤p 𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑃1 + 𝑐𝑖𝑗𝑃2 ≤p 1      ;  i, j = 1,2,3, … . , n 

 

Example 4.1 

let′s take:    𝑀𝑃 = [
0.3𝑃1 + 0.1𝑃2 1 − 0.3𝑃1 − 0.1𝑃2

0.4 + 0.2𝑃1 − 0.6𝑃2 0.6 − 0.2𝑃1 + 0.6𝑃2
] 

Then MP is a plithogenic transition matrix because: 

0.3𝑃1 + 0.1𝑃2 + 1 − 0.3𝑃1 − 0.1𝑃2

= 1     and    0.4 + 0.2𝑃1 − 0.6𝑃2 + 0.6 − 0.2𝑃1 + 0.6𝑃2 = 1 
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Also, according to the definition of comparison between plithogenic numbers we 

have: 

0.3P1 + 0.1P2 ≤P 1 + 0P1 + 0P2 because 0 ≤ 1  &  0.3 ≤ 1 

1 − 0.3P1 − 0.1P2 ≤P 1 + 0P1 + 0P2 because 1 ≤ 1  &  0.7 ≤ 1 

0.4 + 0.2P1 − 0.6P2 ≤P 1 + 0P1 + 0P2 because 0.4 ≤ 1  &  0.6 ≤ 1 

0.6 − 0.2P1 + 0.6P2 ≤P 1 + 0P1 + 0P2 because 0.6 ≤ 1  &  0.4 ≤ 1 

0 + 0P1 + 0𝑃2 ≤P 0.3P1 + 0.1P2 because 0 ≤ 0  &  0 ≤ 0.3 

0 + 0P1 + 0𝑃2 ≤P 1 − 0.3P1 − 0.1P2 because 0 ≤ 1  &  0 ≤ 0.7 

0 + 0P1 + 0𝑃2 ≤P 0.4 + 0.2P1 − 0.6P2 because 0 ≤ 0.4  &  0 ≤ 0.6 

0 + 0P1 + 0𝑃2 ≤P 0.6 − 0.2P1 + 0.6P2 because 0 ≤ 0.6  &  0 ≤ 0.4 

Theorem4.1 

The matrix   MP = A + BP1 + CP2 is a plithogenic transition matrix if and only 

if 𝐴 is a crisp transition matrix, 𝐴 + 𝐵 is a crisp transition matrix and 𝐴 + 𝐵 + 𝐶 is 

a crisp transition matrix. 

Proof 

Let's assume that 𝑀𝑃  is a plithogenic transition matrix and prove that 𝐴 , 𝐴 +

𝐵 𝑎𝑛𝑑 𝐴 + 𝐵 + 𝐶 are transition matrices: 

we have 0 + 0P1 + 0P2 ≤P aij + bijP1 + cijP2 ≤P 1 + 0P1 + 0P2  so 𝑎𝑖𝑗 ≤ 1  ,   𝑎𝑖𝑗 + 𝑏𝑖𝑗 ≤

1and 𝑎𝑖𝑗 + 𝑏𝑖𝑗 + cij ≤ 1  

0 ≤ 𝑎𝑖𝑗   , 0 ≤ 𝑎𝑖𝑗 + 𝑏𝑖𝑗 𝑎𝑛𝑑 0 ≤ 𝑎𝑖𝑗 + 𝑏𝑖𝑗 + cij which means that: 

0 ≤ 𝑎𝑖𝑗 ≤ 1  and  0 ≤ 𝑎𝑖𝑗 + 𝑏𝑖𝑗 ≤ 1 

Also, we have ∑ (𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑃1 + 𝑐𝑖𝑗𝑃2) = 1
𝑗

= 1 + 0𝑃1 + 0𝑃2 which means 

that∑ cij
j

= 0     ∑ bij
j

= 0 and ∑ aij
j

= 1      

So, we can conclude that: 

0 ≤ 𝑎𝑖𝑗 ≤ 1 𝑎𝑛𝑑 ∑ 𝑎𝑖𝑗
𝑗

= 1 ⇒  𝐴  is a transition matrix. 

0 ≤ 𝑎𝑖𝑗 + 𝑏𝑖𝑗 ≤ 1 𝑎𝑛𝑑 ∑ (𝑎𝑖𝑗 + 𝑏𝑖𝑗)
𝑗

= 1 ⇒  𝐴 + 𝐵 is a transition matrix. 
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0 ≤ aij + bij + cij ≤ 1 and ∑(aij + bij + cij)

j

= 1 ⇒  A + B + C transition  matrix. 

Now, let's assume that both A, A+B and A+B+C are transition matrices and prove 

that 𝑀𝑃 = 𝐴 + 𝐵𝑃1 + 𝐶𝑃2 is a plithogenic transition matrix:    

since  𝐴, 𝐴 + 𝐵, 𝐴 + 𝐵 + 𝐶 are transition matrices then 0 ≤ aij ≤ 1, 0 ≤ aij + bij ≤ 1 , 0 ≤

aij + bij + cij ≤ 1 which means that 0 ≤P 𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑃1 + cij𝑃2 ≤𝑃 1     

Also, we have ∑ aij
j

= 1 , ∑ (aij + bij)
j

= 1and  ∑ (𝑎𝑖𝑗 + 𝑏𝑖𝑗 + cij)
𝑗

= 1 that yields 

to the fact that ∑ 𝑏𝑖𝑗
𝑗

= 0 and  ∑ 𝑐𝑖𝑗
𝑗

= 0 

Then we conclude that ∑ (aij + bijP1 + cij𝑃2) = 1
j

 and this proves the theorem. 

Example 4.2 

Let's take the matrix: 

MP = [
0.3P1 + 0.1P2 1 − 0.3P1 − 0.1P2

0.4 + 0.2P1 − 0.6P2 0.6 − 0.2P1 + 0.6P2
] 

that is: 

MP = [
0 1

0.4 0.6
] + [

0.3 −0.3
0.2 −0.2

] P1 +  [
0.1 −0.1

−0.6 0.6
] P2 

A = [
0 1

0.4 0.6
]     and   A + B = [

0.3 0.7
0.6 0.4

]    and   A + B + C = [
0.4 0.6
0 1

]      ⇒             

we note that 𝐴, 𝐴 + 𝐵 and  𝐴 + 𝐵 + 𝐶  are transition matrices fulfill conditions   

∑ 𝑎𝑖𝑗

𝑗

= 1 ; 𝑖 = 1,2                    0 ≤ 𝑎𝑖𝑗 ≤ 1 ; 𝑖, 𝑗 = 1,2  

∑ 𝑎𝑖𝑗

𝑗

+ 𝑏𝑖𝑗 = 1 ; 𝑖 = 1,2       0 ≤ 𝑎𝑖𝑗 + 𝑏𝑖𝑗 ≤ 1 ; 𝑖, 𝑗 = 1,2 

∑ 𝑎𝑖𝑗 + 𝑏𝑖𝑗 + 𝑐𝑖𝑗

𝑗

= 1    ; 𝑖 = 1,2        0 ≤ 𝑎𝑖𝑗 + 𝑏𝑖𝑗 + 𝑐𝑖𝑗 ≤ 1    ; 𝑖, 𝑗 = 1,2 

Theorem 4.2 

If M1 and M2are two plithogenic transition matrices, then their multiplication is a 

plithogenic transition matrix. 

Proof 
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Let  

𝑀1 = [
a11 + b11P1 + c11P2 a12 + b12P1 + c12P2

a21 + b21P1 + c21P2 a22 + b22P1 + c22P2
]    𝑀2

= [
d11 + e11P1 + f11P2 d12 + e12P1 + f12P2

d21 + e21P1 + f21P2 d22 + e22P1 + f22P2
] 

𝑀1. 𝑀2 = [
x y
z w

] 

Where  

x = (a11 + b11P1 + c11P2)(d11 + e11P1 + f11P2)

+ (a12 + b12P1 + c12P2)(d21 + e21P1 + f21P2) 

y = (a11 + b11P1 + c11P2)(d12 + e12P1 + f12P2) + (a12 + b12P1 + c12P2)(d22 + e22P1

+ f22P2) 

z = (a21 + b21P1 + c21P2)(d11 + e11P1 + f11P2) + (a22 + b22P1 + c22P2)(d21 + e21P1

+ f21P2) 

w = (a21 + b21P1 + c21P2)(d12 + e12P1 + f12P2) + (a22 + b22P1 + c22P2)(d22 + e22P1

+ f22P2) 

Let's check the condition: 

(a11 + b11P1 + c11P2)(d11 + e11P1 + f11P2) + (a12 + b12P1 + c12P2)(d21 + e21P1 +

f21P2) + (a11 + b11P1 + c11P2)(d12 + e12P1 + f12P2) + (a12 + b12P1 + c12P2)(d22 +

e22P1 + f22P2)  

= (a11 + b11P1 + c11P2)[(d11 + e11P1 + f11P2) + (d12 + e12P1 + f12P2)]

+ (a12 + b12P1 + c12P2) 

 [(d21 + e21P1 + f21P2) + (d22 + e22P1 + f22P2)]

= ( a11 + b11P1 + c11P2) + (a12 + b12P1 + c12P2) = 1 

Similarly, we find that sum of elements of the second row of matrix (M1. M2) is 1 

Also, since all elements of the matrices M1 and M2 are positive and since that sum 

of each row of the matrix M1. M2  is 1 then we conclude that each element lays 

between 0 and 1 

 

Example 4.3 
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Let 𝑀1 = [
0.6P1 + 0.2P2 1 − 0.6P1 − 0.2P2

0.3 + 0.1P1 − 0.5P2 0.7 − 0.1P1 + 0.5P2
] , 𝑀2 =

[
0.2 + 0.3P1 − 0.1P2 0.8 − 0.3P1 + 0.1P2

0.2P1 + 0.3P2 1 − 0.2P1 − 0.3P2
] 

𝑀1. 𝑀2

= [
0.6P1 + 0.2P2 1 − 0.6P1 − 0.2P2

0.3 + 0.1P1 − 0.5P2 0.7 − 0.1P1 + 0.5P2
] . [

0.2 + 0.3P1 − 0.1P2 0.8 − 0.3P1 + 0.1P2

0.2P1 + 0.3P2 1 − 0.2P1 − 0.3P2
]

= [
0.06P1

2 + (0.32 − 0.22P2)P1 + 0.34P2 − 0.08P2
2 −0.06P1

2 + (−0.32 + 0.22P2)P1 − 0.34P2 + 0.08P2
2 + 1

0.01P1
2 + (0.25 − 0.09P2)P1 + 0.06 + 0.08P2 + 0.20P2

2 −0.01P1
2 + (−0.25 + 0.09P2)P1 + 0.94 − 0.08P2 − 0.20P2

2]

= [
0.06P1 + (0.32P1 − 0.22P2) + 0.34P2 − 0.08P2 −0.06P1 + (−0.32P1 + 0.22P2) − 0.34P2 + 0.08P2 + 1

0.01P1 + (0.25P1 − 0.09P2) + 0.06 + 0.08P2 + 0.20P2 −0.01P1 + (−0.25P1 + 0.09P2) + 0.94 − 0.08P2 − 0.20P2
]

= [
0.38P1 + 0.04P2 −0.38P1 − 0.04P2 + 1

0.26P1 + 0.06 + 0.19P2 −0.26P1 + 0.94 − 0.19P2
] 

Note that the matrix 𝑀1. 𝑀2 It is a plithogenic transition matrix because it satisfies 

the assumed conditions. 

Definition 4.4 

Let 𝑀𝑃 = 𝐴 + 𝐵𝑃1 + 𝐶𝑃2 be a plithogenic matrix and let 𝑟 ∈ ℕ, then: 

𝑀𝑃
𝑟 = 𝐴𝑟 +  𝑃1[(𝐴 + 𝐵)𝑟 −  𝐴𝑟] + 𝑃2[(𝐴 + 𝐵 + 𝐶)𝑟 − (𝐴 + 𝐵)𝑟 ]  

Theorem 4.3 

If MP plithogenic transition matrix, then MP
r  is a plithogenic transition matrix. 

Proof 

Straight forward by mathematical induction according to theorem 4.2. 

Example 4.4 

 Let    MP = [
0.6P1 + 0.2P2 1 − 0.6P1 − 0.2P2

0.3 + 0.1P1 − 0.5P2 0.7 − 0.1P1 + 0.5P2
] 

MP
2 = MP. MP

= [
0.6P1 + 0.2P2 1 − 0.6P1 − 0.2P2

0.3 + 0.1P1 − 0.5P2 0.7 − 0.1P1 + 0.5P2
] . [

0.6P1 + 0.2P2 1 − 0.6P1 − 0.2P2

0.3 + 0.1P1 − 0.5P2 0.7 − 0.1P1 + 0.5P2
] 

= [
0.30P1

2 + (0.52P2 − 0.08)P1 + 0.14P2
2 + 0.3 − 0.56P2 −0.30P1

2 + (0.08 − 0.52 P2)P1 + 0.56P2 − 0.14P2
2 + 0.7

0.05P1
2 + (0.22 − 0.18 P2)P1 − 0.14P2 − 0.35P2

2 + 0.21 −0.05 P1
2 + (−0.22 + 0.18P2)P1 + 0.79 + 0.14P2 + 0.35P2

2] 

= [
0.30P1 + (0.52P2 − 0.08P1) + 0.14P2 + 0.3 − 0.56P2 −0.30P1 + (0.08P1 − 0.52 P2) + 0.56P2 − 0.14P2 + 0.7

0.05P1 + (0.22P1 − 0.18 P2) − 0.14P2 − 0.35P2 + 0.21 −0.05 P1 + (−0.22P1 + 0.18P2) + 0.79 + 0.14P2 + 0.35P2
] 

= [
0.22P1 + 0.1P2 + 0.3 −0.22P1 + 0. P2 + 0.7

0.27P1 − 0.67P2 + 0.21 −0.27 P1 + 0.79 + 0.67P2
] 

Notice that MN
2  is a plithogenic transition matrix. 
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Theorem 4.4 

Let 𝑀𝑃 = 𝐴 + 𝐵𝑃1 + 𝐶𝑃2 be a plithogenic transition matrix and let 𝑀𝑃
(𝑛)

 be the (n) 

steps transition matrix then: 

𝑀𝑃
(𝑛)

= 𝑀𝑃
𝑛 

Proof 

By takin the isometric image we have: 

 T(MP
(n)

) = (A(n), (A + B)(n), (A + B + C)(n))  

Since A(n), (A + B)(n), (A + B + C)(n) are transition matrices in classical scene then by the 

well-known Chapman-Kolmogorov theorem we have: 

𝐴(𝑛) = 𝐴𝑛, (𝐴 + 𝐵)(𝑛) = (𝐴 + 𝐵)𝑛, (A + B + C)(n) = (𝐴 + 𝐵 + 𝐶)𝑛 

Which means that: 

𝑇(𝑀𝑃
(𝑛)

) = (𝐴𝑛, (𝐴 + 𝐵)𝑛, (𝐴 + 𝐵 + 𝐶)𝑛) 

Now, taking inverse isometry yields to: 

𝑇−1 (𝑇(𝑀𝑃
(𝑛)

)) = An + [(A + B)n − An]P1 + [(A + B + C)n − (A + B)n]P2 = 𝑀𝑛 

5. Conclusion 

In conclusion, this paper pioneers the integration of symbolic neutrosophic and 

plithogenic concepts into the well-established framework of Markov chains, 

yielding a profound extension that encapsulates the nuances of uncertainty and 

ambiguity. Through a meticulous presentation of eight theorems, we have 

established a bridge between these novel matrices and their classical counterparts, 

revealing their intrinsic alignment. The introduced operations of matrix 

exponentiation and multiplication further amplify the versatility of these 

frameworks, enabling the exploration of complex system dynamics under varying 

degrees of indeterminacy. Moreover, the adaptation of Chapman-Kolmogorov 

theorem to the symbolic neutrosophic and plithogenic domains augments our 

ability to analyze state transitions in environments laden with partial truth. This 
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study not only advances the theoretical frontiers of probabilistic modeling but also 

lays a fertile ground for practical applications across disciplines such as decision 

analysis, risk assessment, and artificial intelligence. As the confluence of traditional 

and innovative theories continues to shape the landscape of uncertainty modeling, 

symbolic neutrosophic and plithogenic Markov chains stand poised to offer 

invaluable insights into the intricate fabric of real-world systems. 
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