Properties of Productional NeutroOrderedSemigroups

Madeleine Al-Tahan1,*, Bijan Davvaz2, Florentin Smarandache3, and Osman Anis4

1Department of Mathematics, Lebanese International University, Bekaa, Lebanon; madeline.tahan@liu.edu.lb
2Department of Mathematics, Yazd University, Yazd, Iran; davvaz@yazd.ac.ir
3Mathematics and Science Division, University of New Mexico, Gallup Campus, USA, smarand@unm.edu
4Department of Mathematics, Lebanese International University, Akkar, Lebanon; osman.anis@liu.edu.lb

*Correspondence: madeline.tahan@liu.edu.lb

Abstract. The introducing of NeutroAlgebra by Smarandache opened the door for researchers to define many related new concepts. NeutroOrderedAlgebra was one of these new related definitions. The aim of this paper is to study productional NeutroOrderedSemigroup. In this regard, we firstly present many examples and study subsets of productional NeutroOrderedSemigroups. Then, we find sufficient conditions for the productional NeutroSemigroup to be a NeutroOrderedSemigroup. Finally, we find sufficient conditions for subsets of the productional NeutroOrderedSemigroup to be NeutroOrderedSubSemigroups, NeutroOrderedIdeals, and NeutroOrderedFilters.

Keywords: NeutroSemigroup, NeutroOrderedSemigroup, NeutroOrderedIdeal, NeutroOrderedFilter, Productional NeutroOrderedSemigroup.

1. Introduction

Smarandache [1–3] introduced NeutroAlgebra as a generalization of the known Algebra. It is known that in an Algebra, operations are well defined and axioms are always true whereas for NeutroAlgebra, operations and axioms are partially true, partially indeterminate, and partially false. The latter is considered as an extension of Partial Algebra where operations and axioms are partially true and partially false. Many researchers worked on special types of NeutroAlgebras by applying them to different types of algebraic structures such as semigroups, groups, rings, \(BE \)-Algebras, \(CI \)-Algebras, \(BCK \)-Algebras, etc. For more details about NeutroStructures, the reader may see [4–8]. I order on it that satisfies the monotone property, we get an Ordered Algebra (as illustrated in Figure 1). And starting with a partial order on a
NeutroAlgebra, we get a NeutroStructure. The latter if it satisfies the conditions of Neutro-Order, it becomes a NeutroOrderedAlgebra (as illustrated in Figure 2). In [9], the authors defined NeutroOrderedAlgebra and applied it to semigroups by studying NeutroOrderedSemigroups and their subsets such as NeutrosOrderedSubSemigroups, NeutroOrderedIdeals, and NeutroOrderedFilters.

Our paper is concerned about Cartesian product of NeutroOrderedSemigroups and the remainder part of it is as follows: In Section 2, we present some definitions and examples related to NeutroOrderedSemigroups. In Section 3, we define productional NeutroOrderedSemigroup and find sufficient conditions for the Cartesian product of NeutroSemigroups and semigroups to be NeutroOrderedSemigroups. Finally in Section 4, we find sufficient conditions for subsets of the productional NeutroOrderedSemigroup to be NeutroOrderedSubSemigroups, NeutroOrderedIdeals, and NeutroOrderedFilters.

2. NeutroOrderedSemigroups

In this section, we present some definitions and examples about NeutroOrderedSemigroups, introduced and studied by the authors in [9], that are used throughout the paper.

Definition 2.1. [10] Let \((S, \cdot)\) be a semigroup (\(\cdot\) is an associative and a binary closed operation) and \(\leq\) a partial order on \(S\). Then \((S, \cdot, \leq)\) is an ordered semigroup if for every \(x \leq y \in S\), \(z \cdot x \leq z \cdot y\) and \(x \cdot z \leq y \cdot z\) for all \(z \in S\).
Definition 2.2. [10] Let \((S, \cdot, \leq)\) be an ordered semigroup and \(\emptyset \neq M \subseteq S\). Then

1. \(M\) is an ordered subsemigroup of \(S\) if \((M, \cdot, \leq)\) is an ordered semigroup and \((x) \subseteq M\) for all \(x \in M\). i.e., if \(y \leq x\) then \(y \in M\).
2. \(M\) is an ordered left ideal of \(S\) if \(M\) is an ordered subsemigroup of \(S\) and for all \(x \in M\), \(r \in S\), we have \(rx \in M\).
3. \(M\) is an ordered right ideal of \(S\) if \(M\) is an ordered subsemigroup of \(S\) and for all \(x \in M\), \(r \in S\), we have \(xr \in M\).
4. \(M\) is an ordered ideal of \(S\) if \(M\) is both: an ordered left ideal of \(S\) and an ordered right ideal of \(S\).
5. \(M\) is an ordered filter of \(S\) if \((M, \cdot)\) is a semigroup and for all \(x, y \in S\) with \(x \cdot y \in M\), we have \(x, y \in M\) and \([y) \subseteq M\) for all \(y \in M\). i.e., if \(y \in M\) with \(y \leq x\) then \(x \in M\).

For more details about semigroup theory and ordered algebraic structures, we refer to [10,11].

Definition 2.3. [2] Let \(A\) be any non-empty set and “\(\cdot\)” be an operation on \(A\). Then “\(\cdot\)” is called a NeutroOperation on \(A\) if the following conditions hold.

1. There exist \(x, y \in A\) with \(x \cdot y \in A\). (This condition is called degree of truth, “\(T\)”.)
2. There exist \(x, y \in A\) with \(x \cdot y \notin A\). (This condition is called degree of falsity, “\(F\)”.)
3. There exist \(x, y \in A\) with \(x \cdot y\) is indeterminate in \(A\). (This condition is called degree of indeterminacy, “\(I\)”.)

Where \((T, I, F)\) is different from \((1, 0, 0)\) that represents the classical binary closed operation, and from \((0, 0, 1)\) that represents the AntiOperation.

Definition 2.4. [2] Let \(A\) be any non-empty set and “\(\cdot\)” be an operation on \(A\). Then “\(\cdot\)” is called a NeutroAssociative on \(A\) if there exist \(x, y, z, a, b, c, e, f, g \in A\) satisfying the following conditions.

1. \(x \cdot (y \cdot z) = (x \cdot y) \cdot z\); (This condition is called degree of truth, “\(T\)”.)
2. \(a \cdot (b \cdot c) \neq (a \cdot b) \cdot c\); (This condition is called degree of falsity, “\(F\)”.)
3. \(e \cdot (f \cdot g)\) is indeterminate or \((e \cdot f) \cdot g\) is indeterminate or we can not find if \(e \cdot (f \cdot g)\) and \((e \cdot f) \cdot g\) are equal. (This condition is called degree of indeterminacy, “\(I\)”.)

Where \((T, I, F)\) is different from \((1, 0, 0)\) that represents the classical associative axiom, and from \((0, 0, 1)\) that represents the AntiAssociativeAxiom.

Definition 2.5. [2] Let \(A\) be any non-empty set and “\(\cdot\)” be an operation on \(A\). Then \((A, \cdot)\) is called a NeutroSemigroup if “\(\cdot\)” is either a NeutroOperation or NeutroAssociative.
Definition 2.6. [9] Let \((S, \cdot)\) be a NeutroSemigroup and \("\leq"\) be a partial order (reflexive, antisymmetric, and transitive) on \(S\). Then \((S, \cdot, \leq)\) is a NeutroOrderedSemigroup if the following conditions hold.

1. There exist \(x \leq y \in S\) with \(x \neq y\) such that \(z \cdot x \leq z \cdot y\) and \(x \cdot z \leq y \cdot z\) for all \(z \in S\).
 (This condition is called degree of truth, “\(T\”).)
2. There exist \(x \leq y \in S\) and \(z \in S\) such that \(z \cdot x \not\leq z \cdot y\) or \(x \cdot z \not\leq y \cdot z\). (This condition is called degree of falsity, “\(F\”).)
3. There exist \(x \leq y \in S\) and \(z \in S\) such that \(z \cdot x\) or \(z \cdot y\) or \(x \cdot z\) or \(y \cdot z\) are indeterminate, or the relation between \(z \cdot x\) and \(z \cdot y\), or the relation between \(x \cdot z\) and \(y \cdot z\) are indeterminate. (This condition is called degree of indeterminacy, “\(I\”).)

Where \((T, I, F)\) is different from \((1, 0, 0)\) that represents the classical Ordered Semigroup, and from \((0, 0, 1)\) that represents the AntiOrderedSemigroup.

Definition 2.7. [9] Let \((S, \cdot, \leq)\) be a NeutroOrderedSemigroup . If \("\leq"\) is a total order on \(S\) then \(S\) is called NeutroTotalOrderedSemigroup.

Example 2.8. [9] Let \(S_1 = \{s, a, m\}\) and \((S_1, \cdot_1)\) be defined by the following table.

\[
\begin{array}{ccc}
\cdot_1 & s & a & m \\
\hline
s & s & m & s \\
a & m & a & m \\
m & m & m & m \\
\end{array}
\]

By defining the total order

\[\leq_1 = \{(m, m), (m, s), (m, a), (s, s), (s, a), (a, a)\}\]

on \(S_1\), we get that \((S_1, \cdot_1, \leq_1)\) is a NeutroTotalOrderedSemigroup.

Example 2.9. Let \(S_2 = \{0, 1, 2, 3\}\) and \((S_2, \cdot_2)\) be defined by the following table.

\[
\begin{array}{cccc}
\cdot_2 & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
2 & 0 & 1 & 3 & 2 \\
3 & 0 & 1 & 3 & 2 \\
\end{array}
\]

By defining the partial order

\[\leq_2 = \{(0, 0), (0, 1), (0, 2), (1, 1), (2, 2), (3, 3)\}\]

on \(S_2\), we get that \((S_2, \cdot_2, \leq_2)\) is a NeutroOrderedSemigroup.

Example 2.10. [9] Let \(S_3 = \{0, 1, 2, 3, 4\} \) and \((S_3, \cdot, \leq)\) be defined by the following table.

<table>
<thead>
<tr>
<th>(\cdot)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

By defining the partial order

\[\leq_3 = \{(0,0), (0,1), (0,3), (0,4), (1,1), (1,3), (1,4), (2,2), (3,3), (3,4), (4,4)\} \]

on \(S_3 \), we get that \((S_3, \cdot, \leq_3)\) is a NeutroOrderedSemigroup.

Example 2.11. Let \(\mathbb{Z} \) be the set of integers and define “\(*\)” on \(\mathbb{Z} \) as follows: \(x \ast y = xy - 2 \) for all \(x, y \in \mathbb{Z} \). We define the partial order “\(\leq_* \)” on \(\mathbb{Z} \) as \(-2 \leq_* x \) for all \(x \in \mathbb{Z} \) and for \(a, b \geq -2, a \leq_* b \) is equivalent to \(a \leq b \) and for \(a, b < -2, a \leq_* b \) is equivalent to \(a \geq b \). In this way, we get \(-2 \leq_* -1 \leq_* 0 \leq_* 1 \leq_* \ldots \) and \(-2 \leq_* -3 \leq_* -4 \leq_* \ldots \) Then \((\mathbb{Z}, \ast, \leq_*)\) is a NeutroOrderedSemigroup.

Definition 2.12. [9] Let \((S, \cdot, \leq)\) be a NeutroOrderedSemigroup and \(\emptyset \neq M \subseteq S \). Then

1. \(M \) is a NeutroOrderedSubSemigroup of \(S \) if \((M, \cdot, \leq)\) is a NeutroOrderedSemigroup and there exist \(x \in M \) with \(\{y \in S : y \leq x\} \subseteq M \).
2. \(M \) is a NeutroOrderedLeftIdeal of \(S \) if \(M \) is a NeutroOrderedSubSemigroup of \(S \) and there exists \(x \in M \) such that \(r \cdot x \in M \) for all \(r \in S \).
3. \(M \) is a NeutroOrderedRightIdeal of \(S \) if \(M \) is a NeutroOrderedSubSemigroup of \(S \) and there exists \(x \in M \) such that \(x \cdot r \in M \) for all \(r \in S \).
4. \(M \) is a NeutroOrderedIdeal of \(S \) if \(M \) is a NeutroOrderedSubSemigroup of \(S \) and there exists \(x \in M \) such that \(r \cdot x \in M \) and \(x \cdot r \in M \) for all \(r \in S \).
5. \(M \) is a NeutroOrderedFilter of \(S \) if \((M, \cdot, \leq)\) is a NeutroOrderedSemigroup and there exists \(x \in S \) such that for all \(y, z \in S \) with \(x \cdot y \in M \) and \(z \cdot x \in M \), we have \(y, z \in M \) and there exists \(y \in M \) \(\{y \in S : y \leq x\} \subseteq M \).

Definition 2.13. [9] Let \((A, \star, \leq_A)\) and \((B, \circ, \leq_B)\) be NeutroOrderedSemigroups and \(\phi : A \rightarrow B \) be a function. Then

1. \(\phi \) is called NeutroOrderedHomomorphism if \(\phi(x \ast y) = \phi(x) \circ \phi(y) \) for some \(x, y \in A \) and there exist \(a \leq_A b, a, b \in A \) with \(a \neq b \) such that \(\phi(a) \leq_B \phi(b) \).
2. \(\phi \) is called NeutroOrderedIsomorphism if \(\phi \) is a bijective NeutroOrderedHomomorphism.
Case " is a NeutroOperation.

(3) \(\phi \) is called \textit{NeutroOrderedStrongHomomorphism} if \(\phi(x \ast y) = \phi(x) \circ \phi(y) \) for all \(x, y \in A \) and \(a \leq_A b \in A \) is equivalent to \(\phi(a) \leq_B \phi(b) \in B \).

(4) \(\phi \) is called \textit{NeutroOrderedStrongIsomorphism} if \(\phi \) is a bijective NeutroOrdered-StrongHomomorphism.

\textbf{Example 2.14.} Let \((S_3, \cdot, \leq_3)\) be the NeutroOrderedSemigroup presented in Example 2.10. Then \(I = \{0, 1, 2\} \) is both: a NeutroOrderedLefttIdeal and a NeutroOrderedRightIdeal of \(S_3 \).

\textbf{Example 2.15.} Let \((Z, \ast, \leq_\ast)\) be the NeutroOrderedSemigroup presented in Example 2.11. Then \(I = \{-2, -1, 0, 1, -2, -3, -4, \ldots\} \) is a NeutroOrderedIdeal of \(Z \).

\textbf{Example 2.16.} Let \((Z, \ast, \leq_\ast)\) be the NeutroOrderedSemigroup presented in Example 2.11. Then \(F = \{-2, -1, 0, 1, 2, 3, 4, \ldots\} \) is a NeutroOrderedFilter of \(Z \).

\section{Productional NeutroOrderedSemigroups}

Let \((A_\alpha, \leq_\alpha)\) be a partial ordered set for all \(\alpha \in \Gamma \). We define \(\leq \) on \(\prod_{\alpha \in \Gamma} A_\alpha \) as follows:

For all \((x_\alpha), (y_\alpha) \in \prod_{\alpha \in \Gamma} A_\alpha \),

\[
(x_\alpha) \leq (y_\alpha) \iff x_\alpha \leq_\alpha y_\alpha \text{ for all } \alpha \in \Gamma.
\]

One can easily see that \((\prod_{\alpha \in \Gamma} A_\alpha, \leq) \) is a partial ordered set.

Let \(A_\alpha \) be any non-empty set for all \(\alpha \in \Gamma \) and \(\cdot_\alpha \) be an operation on \(A_\alpha \). We define \(\cdot \) on \(\prod_{\alpha \in \Gamma} A_\alpha \) as follows: For all \((x_\alpha), (y_\alpha) \in \prod_{\alpha \in \Gamma} A_\alpha \), \((x_\alpha) \cdot (y_\alpha) = (x_\alpha \cdot_\alpha y_\alpha) \).

Throughout the paper, we write NOS instead of NeutroOrderedSemigroup.

\textbf{Theorem 3.1.} Let \((G_1, \leq_1), (G_2, \leq_2)\) be partially ordered sets with operations \(\cdot_1, \cdot_2 \) respectively. Then \((G_1 \times G_2, \cdot, \leq)\) is an NOS if one of the following statements is true.

\begin{enumerate}
 \item \(G_1 \) and \(G_2 \) are NeutroSemigroups with at least one of them is an NOS.
 \item One of \(G_1, G_2 \) is an NOS and the other is a semigroup.
\end{enumerate}

\textit{Proof.} Without loss of generality, let \(G_1 \) be an NOS. We prove 1. and 2. is done similarly. We have three cases for \(\cdot_1 \) and \(\cdot_2 \): Case \(\cdot_1 \) is a NeutroOperation, Case \(\cdot_2 \) is a NeutroOperation, and Case \(\cdot_1 \) and \(\cdot_2 \) are NeutroAssociative.

\textbf{Case \(\cdot_1 \) is a NeutroOperation.} There exist \(x_1, y_1, a_1, b_1 \in G_1 \) such that \(x_1 \cdot_1 y_1 \in G_1 \) and \(a_1 \cdot_1 b_1 \notin G_1 \) or \(x_1 \cdot_1 y_1 \) is indeterminate in \(G_1 \). Since \(G_2 \) is a NeutroSemigroup, it follows that there exist \(x_2, y_2 \in G_2 \neq \emptyset \) such that \(x_2 \cdot_2 y_2 \in G_2 \) or \(x_2 \cdot_2 y_2 \) is indeterminate in \(G_2 \) (If no such elements exist then \(G_2 \) will be an AntiSemigroup.). Then \((x_1, x_2) \cdot (y_1, y_2) \in G_1 \times G_2 \) and \((a_1, x_2) \cdot (b_1, y_2) \notin G_1 \times G_2 \) or \((x_1, x_2) \cdot (y_1, y_2) \) is indeterminate in \(G_1 \times G_2 \). Thus \(\cdot \) is a NeutroOperation.

\textbf{Case \(\cdot_2 \) is a NeutroOperation.} This case can be done in a similar way to Case \(\cdot_1 \) is a NeutroOperation.
NeutroOperation.

Case “1” and “2” are NeutroAssociative. There exist $x_1, y_1, z_1, a_1, b_1, c_1 \in G_1$ and $x_2, y_2, z_2, a_2, b_2, c_2 \in G_2$ such that

$$x_1 \cdot (y_1 \cdot z_1) = (x_1 \cdot y_1) \cdot z_1,$$

$$x_2 \cdot (y_2 \cdot z_2) = (x_2 \cdot y_2) \cdot z_2,$$

and

$$a_1 \cdot (b_1 \cdot c_1) \neq (a_1 \cdot b_1) \cdot c_1,$$

$$a_2 \cdot (b_2 \cdot c_2) \neq (a_2 \cdot b_2) \cdot c_2.$$

The latter implies that

$$(x_1, x_2) \cdot ((y_1, y_2) \cdot (z_1, z_2)) = ((x_1, x_2) \cdot (y_1, y_2)) \cdot (z_1, z_2)$$

and

$$(a_1, a_2) \cdot ((b_1, b_2) \cdot (c_1, c_2)) = ((a_1, a_2) \cdot (b_1, b_2)) \cdot (c_1, c_2).$$

Thus, “\leq” is NeutroAssociative.

Having “\leq” a NeutroOrder on G_1 implies that:

1. There exist $x \leq y \in G_1$ with $x \neq y$ such that $z \cdot x \leq z \cdot y$ and $x \cdot z \leq y \cdot z$ for all $z \in G_1$.
2. There exist $x \leq y \in G_1$ and $z \in G_1$ such that $z \cdot x \not\leq z \cdot y$ or $x \cdot z \not\leq y \cdot z$.
3. There exist $x \leq y \in G_1$ and $z \in G_1$ such that $z \cdot x$ or $z \cdot y$ or $x \cdot z$ or $y \cdot z$ are indeterminate, or the relation between $z \cdot x$ and $z \cdot y$, or the relation between $x \cdot z$ and $y \cdot z$ are indeterminate.

Where (T, I, F) is different from $(1, 0, 0)$ and from $(0, 0, 1)$.

Having $b \leq_2 b$ for all $b \in G_2$ implies that:

By (1), we get that there exist $(x, b) \leq (y, b) \in G_1 \times G_2$ with $(x, b) \neq (y, b)$. For all $(z, a) \in G_1 \times G_2$, we have either $a \cdot_2 b \in G_2$ or $a \cdot_2 b \notin G_2$ or $a \cdot_2 b$ is indeterminate in G_2. Similarly for $b \cdot_2 a$. The latter implies that $(z, a) \cdot (x, b) \leq (z, a) \cdot (y, b)$ and $(x, b) \cdot (z, a) \leq (y, b) \cdot (z, a)$ or $(z, a) \cdot (x, b) \leq (z, a) \cdot (y, b)$ is indeterminate in $G_1 \times G_2$ or $(x, b) \cdot (z, a) \leq (y, b) \cdot (z, a)$ is indeterminate in $G_1 \times G_2$.

By (2), we get that there exist $(x, b) \leq (y, b) \in G_1 \times G_2$ and $(z, a) \in G_1 \times G_2$ such that $(z, a) \cdot (x, b) \not\leq (z, a) \cdot (y, b)$ or $(x, b) \cdot (z, a) \not\leq (y, b) \cdot (z, a)$ or $(z, a) \cdot (x, b) \leq (z, a) \cdot (y, b)$ or $(x, b) \cdot (z, a) \leq (y, b) \cdot (z, a)$ is indeterminate in $G_1 \times G_2$.

By (3), we get that there exist $(x, b) \leq (y, b) \in G_1 \times G_2$ and $(z, a) \in G_1 \times G_2$ such that $(z, a) \cdot (x, b) \leq (z, a) \cdot (y, b)$ is indeterminate in $G_1 \times G_2$ or $(x, b) \cdot (z, a) \leq (y, b) \cdot (z, a)$ is indeterminate in $G_1 \times G_2$ or $(z, a) \cdot (x, b)$ is indeterminate in $G_1 \times G_2$ or $(x, b) \cdot (z, a)$ is indeterminate in $G_1 \times G_2$. Therefore, $(G_1 \times G_2, \cdot, \leq)$ is an NOS.

Theorem 3.1 implies that $G_1 \times G_2$ is an NOS if either G_1, G_2 are both NOS, G_1 is an NOS and G_2 is a NeutroSemigroup, G_1 is an NOS and G_2 is a semigroup (or ordered semigroup), M. Al-Tahan, B. Davvaz, F. Smarandache, and O. Anis, On Some Properties of Productional NeutroOrderedSemigroups.
G_1 is a NeutroSemigroup and G_2 is an NOS, or G_1 is a semigroup (or ordered semigroup) and G_2 is an NOS.

We present a generalization of Theorem 3.1.

Theorem 3.2. Let (G_α, \leq_α) be a partially ordered set with operation “α” for all $\alpha \in \Gamma$. Then $(\prod_{\alpha \in \Gamma} G_\alpha, \cdot, \leq)$ is an NOS if there exist $\alpha_0 \in \Gamma$ such that $(G_{\alpha_0}, \cdot, \leq_{\alpha_0})$ is an NOS and $(G_\alpha, \cdot, \leq_\alpha)$ is a semigroup or NeutroSemigroup for all $\alpha \in \Gamma - \{\alpha_0\}$.

Notation 1. Let (G_α, \leq_α) be a partially ordered set with operation “α” for all $\alpha \in \Gamma$. If $(\prod_{\alpha \in \Gamma} G_\alpha, \cdot, \leq)$ is an NOS then we call it the productional NOS.

Proposition 3.3. Let $(G_1, 1, \leq_1)$ and $(G_2, 2, \leq_2)$ be NeutroTotalOrderedSemigroups with $|G_1|, |G_2| \geq 2$. Then $(G_1 \times G_2, \cdot, \leq)$ is not a NeutroTotalOrderedSemigroup.

Proof. Since $(G_1, 1, \leq_1)$ and $(G_2, 2, \leq_2)$ are NeutroTotalOrderedSemigroups with $|G_1| \geq 2$ and $|G_2| \geq 2$, it follows that there exist $a \leq_1 b \in G_1$, $c \leq_2 d \in G_2$ with $a \neq b$ and $c \neq d$.

One can easily see that $(a, d) \not\leq (b, c) \in G_1 \times G_2$ and $(b, c) \not\leq (a, d) \in G_1 \times G_2$. Therefore, $(G_1 \times G_2, \cdot, \leq)$ is not a NeutroTotalOrderedSemigroup. □

Corollary 3.4. Let $(G_\alpha, \cdot, \leq_\alpha)$ be NeutroTotalOrderedSemigroups for all $\alpha \in \Gamma$ with $|G_{\alpha_0}|, |G_{\alpha_1}| \geq 2$ for $\alpha_0 \neq \alpha_1 \in \Gamma$. Then $(\prod_{\alpha \in \Gamma} G_\alpha, \cdot, \leq)$ is not a NeutroTotalOrderedSemigroup.

Proof. The proof follows from Proposition 3.3. □

Example 3.5. Let $S_1 = \{s, a, m\}$, $(S_1, 1, \leq_1)$ be the NOS presented in Example 2.8, and “\leq_1” be the trivial order on S_1. Theorem 3.1 asserts that Cartesian product $(S_1 \times S_1, \cdot, \leq)$ resulting from $(S_1, 1, \leq_1)$ and $(S_1, 1, \leq'_1)$ is an NOS of order 9.

Example 3.6. Let $S_1 = \{s, a, m\}$, $(S_1, 1, \leq_1)$ be the NOS presented in Example 2.8, and $(\mathbb{R}, \cdot, \leq_u)$ be the semigroup of real numbers under standard multiplication and usual order. Theorem 3.1 asserts that Cartesian product $(\mathbb{R} \times S_1, \cdot, \leq)$ is an NOS of infinite order.

Example 3.7. Let $S_1 = \{s, a, m\}$ and $(S_1, 1, \leq_1)$ be the NOS presented in Example 2.8. Theorem 3.2 asserts that $(S_1 \times S_1 \times S_1, \cdot, \leq)$ is an NOS of order 27. Moreover, by means of Proposition 3.3, $(S_1 \times S_1 \times S_1, \cdot, \leq)$ is not a NeutroTotalOrderedSemigroup.

Example 3.8. Let $(\mathbb{Z}, *, \leq_\star)$ be the NOS presented in Example 2.11 and $(\mathbb{Z}_n, \odot, \leq_i)$ be the semigroup under standard multiplication of integers modulo n and “\leq_i” is defined as follows. For all $\overline{x}, \overline{y} \in \mathbb{Z}_n$ with $0 \leq x, y \leq n - 1$,

$$\overline{x} \leq_i \overline{y} \iff x \leq y \in \mathbb{Z}.$$
Then \((\mathbb{Z}_n \times \mathbb{Z}_n, \cdot, \leq)\) is an NOS.

Proposition 3.9. Let \((G, \leq)\) be a partially ordered set with operation \(\alpha\) for all \(\alpha \in \Gamma\) and \((\alpha_0, \leq)\) be an NOS for some \(\alpha_0 \in \Gamma\). Then \(\phi : (\prod_{\alpha \in \Gamma} G_{\alpha}, \cdot, \leq) \to G_{\alpha_0}\) with \(\phi((x_{\alpha}))) = x_{\alpha_0}\) is a NeutroOrderedHomomorphism.

Proof. The proof is straightforward. □

Remark 3.10. If \(|\Gamma| \geq 2\) and there exist \(\alpha \neq \alpha_0 \in \Gamma\) with \(|G_{\alpha}| \geq 2\) then the NeutroOrderedHomomorphism \(\phi\) in Proposition 3.9 is not a NeutroOrderedIsomorphism.

Remark 3.11. If \(|\Gamma| \geq 2\) and there exist \(\alpha \neq \alpha_0 \in \Gamma\) with \(|G_{\alpha}| \geq 2\) then \(G_{\alpha_0} \not\cong \prod_{\alpha \in \Gamma} G_{\alpha}\). This is clear as there exist no bijective function from \(G_{\alpha_0}\) to \(\prod_{\alpha \in \Gamma} G_{\alpha}\).

Proposition 3.12. There are infinite non-isomorphic NOS.

Proof. Let \((G, \cdot, G, \leq_G)\) be an NOS with \(|G| \geq 2\), \(G \subseteq \mathbb{R}\), and \(|\Gamma| \geq 2\). Theorem 3.2 asserts that \((\prod_{\alpha \in \Gamma} G_{\alpha}, \cdot, \leq)\) is an NOS for every \(G \subseteq \mathbb{R}\). For all \(\Gamma_1, \Gamma_2 \subseteq \mathbb{R}\) with \(|\Gamma_1| \neq |\Gamma_2|\), Remark 3.11 asserts that \(\prod_{\alpha \in \Gamma_1} G \not\cong \prod_{\alpha \in \Gamma_2} G\). Therefore, there are infinite non-isomorphic NOS. □

Example 3.13. Let \((\mathbb{Z}, \ast, \leq)\) be the NOS presented in Example 2.11. Then for every \(n \in \mathbb{N}\), we have \((\prod_{i=1}^n \mathbb{Z}, \cdot, \leq)\) is an NOS. Moreover, we have infinite such non-isomorphic NOS.

Theorem 3.14. Let \((G, \cdot, \leq)\) and \((G_{\alpha}, \leq)\) be NOS for all \(\alpha \in \Gamma\). Then the following statements hold.

1. If there is a NeutroOrderedHomomorphism from \(G_{\alpha}\) to \(G_{\alpha}',\) for all \(\alpha \in \Gamma\) then there is a NeutroOrderedHomomorphism from \((\prod_{\alpha \in \Gamma} G_{\alpha}, \cdot, \leq)\) to \((\prod_{\alpha \in \Gamma} G_{\alpha}', \cdot, \leq)\).
2. If there is a NeutroOrderedStrongHomomorphism from \(G_{\alpha}\) to \(G_{\alpha}'\) for all \(\alpha \in \Gamma\) then there is a NeutroOrderedStrongHomomorphism from \((\prod_{\alpha \in \Gamma} G_{\alpha}, \cdot, \leq)\) to

\((\prod_{\alpha \in \Gamma} G_{\alpha}', \cdot, \leq)\).

3. If \(G_{\alpha} \cong G_{\alpha}'\) for all \(\alpha \in \Gamma\) then \((\prod_{\alpha \in \Gamma} G_{\alpha}, \cdot, \leq) \cong (\prod_{\alpha \in \Gamma} G_{\alpha}', \cdot, \leq)\).

4. If \(G_{\alpha} \cong s G_{\alpha}'\) for all \(\alpha \in \Gamma\) then \((\prod_{\alpha \in \Gamma} G_{\alpha}, \cdot, \leq) \cong s (\prod_{\alpha \in \Gamma} G_{\alpha}', \cdot, \leq)\).

Proof. We prove 1. and the proof of 2., 3., and 4. are done similarly. Let \(\phi_{\alpha} : G_{\alpha} \to G_{\alpha}'\) be a NeutroOrderedHomomorphism and define \(\phi : \prod_{\alpha \in \Gamma} G_{\alpha} \to \prod_{\alpha \in \Gamma} G_{\alpha}'\) as follows: For all \((x_{\alpha}) \in \prod_{\alpha \in \Gamma} G_{\alpha}\),

\[\phi((x_{\alpha})) = (\phi_{\alpha}(x_{\alpha})).\]

one can easily see that \(\phi\) is a NeutroOrderedHomomorphism. □
4. Subsets of productional NeutroOrderedSemigroups

In this section, we find some sufficient conditions for subsets of the productional NOS to be NeutroOrderedSubSemigroups, NeutroOrderedIdeals, and NeutroOrderedFilters. Moreover, we present some related examples.

Proposition 4.1. Let \((A_\alpha, \leq_\alpha)\) be a partial ordered set for all \(\alpha \in \Gamma\) and \((x_\alpha) \in \prod_{\alpha \in \Gamma} A_\alpha\). Then \(((x_\alpha)] = \prod_{\alpha \in \Gamma}(x_\alpha].

Proof. Let \((y_\alpha) \in ((x_\alpha)]\). Then \((y_\alpha) \leq (x_\alpha)\). The latter implies that \(y_\alpha \leq_\alpha x_\alpha\) for all \(\alpha \in \Gamma\) and hence, \(y_\alpha \in (x_\alpha]\) for all \(\alpha \in \Gamma\). We get now that \((y_\alpha) \in \prod_{\alpha \in \Gamma}(x_\alpha].\) Thus, \(((x_\alpha)] \subseteq \prod_{\alpha \in \Gamma}(x_\alpha].\) Similarly, we can prove that \(\prod_{\alpha \in \Gamma}(x_\alpha] \subseteq ((x_\alpha])\).

Proposition 4.2. Let \((A_\alpha, \leq_\alpha)\) be a partial ordered set for all \(\alpha \in \Gamma\) and \((x_\alpha) \in \prod_{\alpha \in \Gamma} A_\alpha\). Then \([(x_\alpha)) = \prod_{\alpha \in \Gamma}[x_\alpha).\)

Proof. The proof is similar to that of Proposition 4.1.

Theorem 4.3. Let \((G_\alpha, \cdot_\alpha, \leq_\alpha)\) be an NOS for all \(\alpha \in \Gamma\). If \(S_\alpha\) is a NeutroOrderedSubSemigroup of \(G_\alpha\) for all \(\alpha \in \Gamma\) then \(\prod_{\alpha \in \Gamma} S_\alpha\) is a NeutroOrderedSubSemigroup of \(\prod_{\alpha \in \Gamma} G_\alpha\).

Proof. For all \(\alpha \in \Gamma\), we have \(S_\alpha\) an NOS (as it is NeutroOrderedSubSemigroup of \(G_\alpha\)). Theorem 3.2 asserts that \(\prod_{\alpha \in \Gamma} S_\alpha\) is an NOS. Since \(S_\alpha\) is a NeutroOrderedSubSemigroup of \(G_\alpha\) for every \(\alpha \in \Gamma\), it follows that for every \(\alpha \in \Gamma\) there exist \(x_\alpha \in S_\alpha\) with \((x_\alpha] \subseteq S_\alpha\). Using Proposition 4.1, we get that there exist \((x_\alpha) \in \prod_{\alpha \in \Gamma} S_\alpha\) such that \(((x_\alpha)] = \prod_{\alpha \in \Gamma}(x_\alpha] \subseteq \prod_{\alpha \in \Gamma} S_\alpha\). Therefore, \(\prod_{\alpha \in \Gamma} S_\alpha\) is a NeutroOrderedSubSemigroup of \(\prod_{\alpha \in \Gamma} G_\alpha\).

Corollary 4.4. Let \((G_\alpha, \cdot_\alpha, \leq_\alpha)\) be an NOS for all \(\alpha \in \Gamma\). If there exists \(\alpha_0 \in \Gamma\) such that \(S_{\alpha_0}\) is a NeutroOrderedSubSemigroup of \(G_{\alpha_0}\) then \(\prod_{\alpha \in \Gamma, \alpha < \alpha_0} G_\alpha \times S_{\alpha_0} \times \prod_{\alpha \in \Gamma, \alpha > \alpha_0} G_\alpha\) is a NeutroOrderedSubSemigroup of \(\prod_{\alpha \in \Gamma} G_\alpha\).

Proof. The proof follows from Theorem 4.3 and having \(G_\alpha\) a NeutroOrderedSubSemigroup of itself.

Theorem 4.5. Let \((G_\alpha, \cdot_\alpha, \leq_\alpha)\) be an NOS for all \(\alpha \in \Gamma\). If \(I_\alpha\) is a NeutroOrderedLeftIdeal of \(G_\alpha\) for all \(\alpha \in \Gamma\) then \(\prod_{\alpha \in \Gamma} I_\alpha\) is a NeutroOrderedLeftIdeal of \(\prod_{\alpha \in \Gamma} G_\alpha\).

Proof. Having every NeutroOrderedLeftIdeal a NeutroOrderedSubSemigroup and that \(I_\alpha \) is a NeutroOrderedLeftIdeal of \(G_\alpha \) for all \(\alpha \in \Gamma \) implies, by means of Theorem 4.3, that \(\prod_{\alpha \in \Gamma} I_\alpha \) is a NeutroOrderedSubSemigroup of \(\prod_{\alpha \in \Gamma} G_\alpha \). Since \(I_\alpha \) is a NeutroOrderedLeftIdeal of \(G_\alpha \) for all \(\alpha \in \Gamma \), it follows that for every \(\alpha \in \Gamma \) there exist \(x_\alpha \in I_\alpha \) such that \(r_\alpha \cdot x_\alpha \in I_\alpha \) for all \(r_\alpha \in G_\alpha \).

The latter implies that there exist \((x_\alpha) \in \prod_{\alpha \in \Gamma} I_\alpha \) such that \((r_\alpha) \cdot (x_\alpha) = (r_\alpha \cdot x_\alpha) \in \prod_{\alpha \in \Gamma} I_\alpha \) for all \((r_\alpha) \in \prod_{\alpha \in \Gamma} G_\alpha \). Therefore, \(\prod_{\alpha \in \Gamma} I_\alpha \) is a NeutroOrderedLeftIdeal of \(\prod_{\alpha \in \Gamma} G_\alpha \). \(\square \)

Corollary 4.6. Let \((G_\alpha, \cdot, \leq_\alpha)\) be an NOS for all \(\alpha \in \Gamma \). If there exists \(\alpha_0 \in \Gamma \) such that \(I_{\alpha_0} \) is a NeutroOrderedLeftIdeal of \(G_{\alpha_0} \) and for \(\alpha \neq \alpha_0 \) there exist \(x_\alpha \in G_\alpha \) such that \(r_\alpha \cdot x_\alpha \in G_\alpha \) for all \(r_\alpha \in G_\alpha \) then \(\prod_{\alpha \in \Gamma, \alpha \neq \alpha_0} G_\alpha \times I_{\alpha_0} \times \prod_{\alpha \in \Gamma, \alpha > \alpha_0} \) is a NeutroOrderedLeftIdeal of \(\prod_{\alpha \in \Gamma} G_\alpha \).

Proof. The proof follows from Theorem 4.5 and having \(G_\alpha \) a NeutroOrderedLeftIdeal of itself. \(\square \)

Theorem 4.7. Let \((G_\alpha, \cdot, \leq_\alpha)\) be an NOS for all \(\alpha \in \Gamma \). If \(I_\alpha \) is a NeutroOrderedRightIdeal of \(G_\alpha \) for all \(\alpha \in \Gamma \) then \(\prod_{\alpha \in \Gamma} I_\alpha \) is a NeutroOrderedRightIdeal of \(\prod_{\alpha \in \Gamma} G_\alpha \).

Proof. The proof is similar to that of Theorem 4.5. \(\square \)

Corollary 4.8. Let \((G_\alpha, \cdot, \leq_\alpha)\) be an NOS for all \(\alpha \in \Gamma \). If there exists \(\alpha_0 \in \Gamma \) such that \(I_{\alpha_0} \) is a NeutroOrderedRightIdeal of \(G_{\alpha_0} \) and for \(\alpha \neq \alpha_0 \) there exist \(x_\alpha \in G_\alpha \) such that \(x_\alpha \cdot r_\alpha \in G_\alpha \) for all \(r_\alpha \in G_\alpha \) then \(\prod_{\alpha \in \Gamma, \alpha < \alpha_0} G_\alpha \times I_{\alpha_0} \times \prod_{\alpha \in \Gamma, \alpha > \alpha_0} \) is a NeutroOrderedRightIdeal of \(\prod_{\alpha \in \Gamma} G_\alpha \).

Proof. The proof follows from Theorem 4.7 and having \(G_\alpha \) a NeutroOrderedRightIdeal of itself. \(\square \)

Theorem 4.9. Let \((G_\alpha, \cdot, \leq_\alpha)\) be an NOS for all \(\alpha \in \Gamma \). If \(I_\alpha \) is a NeutroOrderedIdeal of \(G_\alpha \) for all \(\alpha \in \Gamma \) then \(\prod_{\alpha \in \Gamma} S_\alpha \) is a NeutroOrderedIdeal of \(\prod_{\alpha \in \Gamma} G_\alpha \).

Proof. The proof is similar to that of Theorem 4.5. \(\square \)

Corollary 4.10. Let \((G_\alpha, \cdot, \leq_\alpha)\) be an NOS for all \(\alpha \in \Gamma \). If there exists \(\alpha_0 \in \Gamma \) such that \(I_{\alpha_0} \) is a NeutroOrderedIdeal of \(G_{\alpha_0} \) and for \(\alpha \neq \alpha_0 \) there exist \(x_\alpha \in G_\alpha \) such that \(r_\alpha \cdot x_\alpha \in G_\alpha \) for all \(r_\alpha \in G_\alpha \) then \(\prod_{\alpha \in \Gamma, \alpha < \alpha_0} G_\alpha \times I_{\alpha_0} \times \prod_{\alpha \in \Gamma, \alpha > \alpha_0} \) is a NeutroOrderedIdeal of \(\prod_{\alpha \in \Gamma} G_\alpha \).

Proof. The proof follows from Theorem 4.9 and having \(G_\alpha \) a NeutroOrderedIdeal of itself. \(\square \)
Example 4.11. Let $(S_3, -, \leq_3)$ be the NeutroOrderedSemigroup presented in Example 2.10. Example 2.14 asserts that $I = \{0, 1, 2\}$ is both: a NeutroOrderedLefttIdeal and a NeutroOrderedRightIdeal of S_3. Theorem 4.5 and Theorem 4.7 imply that $I \times I = \{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)\}$ is both: a NeutroOrderedLefttIdeal and a NeutroOrderedRightIdeal of $S_3 \times S_3$. Moreover, $I \times S_3$ and $S_3 \times I$ are both: Neutro-OrderedLefttIdeals and NeutroOrderedRightIdeals of $S_3 \times S_3$.

Example 4.12. Let $(\mathbb{Z}, *, \leq_*)$ be the NeutroOrderedSemigroup presented in Example 2.11. Example 2.15 asserts that $I = \{-2, -1, 0, 1, -2, -3, \ldots\}$ is a NeutroOrderedIdeal of \mathbb{Z}. Theorem 4.9 asserts that for every $\alpha \in \Gamma$ implies that for every $x, y \in F$ such that $x, y \in F$ and $z \cdot \alpha \alpha x \in F$ imply that $y, z \in F$. We get now that there exist $(x_\alpha), (z_\alpha) \in \prod_{\alpha \in \Gamma} F_\alpha \cdot (x_\alpha)(y_\alpha) = (x_\alpha y_\alpha) \in \prod_{\alpha \in \Gamma} F_\alpha$ and $(z_\alpha)(x_\alpha) = (z_\alpha x_\alpha) \in \prod_{\alpha \in \Gamma} F_\alpha$ imply that $(y_\alpha), (z_\alpha) \in \prod_{\alpha \in \Gamma} F_\alpha$. Since F_α is a NeutroOrderedFilter of G_α for every $\alpha \in \Gamma$, it follows that for every $\alpha \in \Gamma$ there exist $x_\alpha \in F_\alpha$ with $[x_\alpha] \subseteq F_\alpha$. Using Proposition 4.2, we get that there exist $(x_\alpha) \in \prod_{\alpha \in \Gamma} F_\alpha$ such that $[(x_\alpha)] = \prod_{\alpha \in \Gamma} [x_\alpha] \subseteq \prod_{\alpha \in \Gamma} F_\alpha$. Therefore, $\prod_{\alpha \in \Gamma} F_\alpha$ is a NeutroOrderedFilter of $\prod_{\alpha \in \Gamma} G_\alpha$.

Corollary 4.14. Let $(G_\alpha, \cdot, \leq_\alpha)$ be an NOS for all $\alpha \in \Gamma$. If there exists $\alpha_0 \in \Gamma$ such that F_{α_0} is a NeutroOrderedFilter of G_{α_0} then $\prod_{\alpha \in \Gamma, \alpha < \alpha_0} G_\alpha \times F_{\alpha_0} \times \prod_{\alpha \in \Gamma, \alpha > \alpha_0}$ is a NeutroOrderedFilter of $\prod_{\alpha \in \Gamma} G_\alpha$.

Example 4.15. Let $(\mathbb{Z}, *, \leq_*)$ be the NeutroOrderedSemigroup presented in Example 2.11. Example 2.16 asserts that $F = \{-2, -1, 0, 1, 2, 3, 4, \ldots\}$ is a NeutroOrderedFilter of \mathbb{Z}. Theorem 4.13 implies that $F \times F \times F \times F$ is a NeutroOrderedFilter of $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$. Moreover, $\mathbb{Z} \times \mathbb{Z} \times F \times F$ is a NeutroOrderedFilter of $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.

5. Conclusion

The class of NeutroAlgebras is very large. This paper considered NeutroOrderedSemigroups (introduced by the authors in [9]) as a subclass of NeutroAlgebras. Results related to productional NOS and its subsets were investigated and some examples were elaborated. M. Al-Tahan, B. Davvaz, F. Smarandache, and O. Anis, On Some Properties of Productional NeutroOrderedSemigroups
For future work, it will be interesting to investigate the following.

1. Find necessary conditions for the productional NeutroSemigroup to be NeutroOrdered-Semigroup.

2. Check the possibility of introducing the quotient NeutroOrderedSemigroup and investigate its properties.

3. Study other types of productional NeutroOrderedStructures.

References

