SINGLE VALUED (2N+1) SIDED POLYGONAL NEUTROSOFPIC NUMBERS AND SINGLE VALUED (2N) SIDED POLYGONAL NEUTROSOFPIC NUMBERS

Said Broumi\(^1\), Mullai Murugappan\(^2\), Mohamed Talea\(^1\), Assia Bakali\(^3\), Florentin Smarandache\(^4\), Prem Kumar Singh\(^5\), Arindam Dey\(^6\)

\(^1\) Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, B.P 7955, Sidi Othman, Casablanca, Morocco. E-mail: broumisaid78@gmail.com; taleamohamed@yahoo.fr
\(^2\)Department of Mathematics, Alagappa University, Tamilnadu, India. mullaialu25@gmail.com
\(^3\)Ecole Royale Navale, Boulevard Sour Jdid, B.P 16303 Casablanca, Morocco. E-mail: assiabakali@yahoo.fr
\(^4\)Department of Mathematics, University of New Mexico, 705 Gurley Avenue, Gallup, NM 87301, USA. E-mail: smarand@unm.edu
\(^5\)Amity Institute of Information Technology, Amity University- Sector 125, Noida-Uttar Pradesh, India. E-mail: premsingh.csjm@gmail.com
\(^6\)Department of Computer Science and Engineering, Saroj Mohan Institute of Technology, Hooghly 712512, West Bengal, India. arindam84nit@gmail.com

Abstract. This paper introduces a single valued (2n as well as 2n+1) sided polygonal neutrosophic numbers in continuation with other defined single valued neutrosophic numbers. The paper provides basic algebra like addition, subtraction and multiplication of a single valued (2n as well as 2n+1) sided polygonal neutrosophic numbers with examples. In addition, the paper introduces matrix for single valued (2n as well as 2n+1) sided polygonal neutrosophic matrix and its properties.

Keywords: Fuzzy numbers, Intuitionistic fuzzy numbers, Single valued trapezoidal neutrosophic numbers, Single valued triangular neutrosophic numbers, Neutrosophic matrix.

1 Introduction

In the real world problems, uncertainty occurs in many situations which cannot be handled precisely via crisp set theory. To approximate those uncertainties exists in the given linguistics words the fuzzy set theory is introduced by Zadeh [10]. After that, Dubois and Prade [2] defined the fuzzy number as a generalization of real number. In continuation, many authors [5-8, 11-23] introduced various types of fuzzy numbers such as triangular, trapezoidal, pentagonal, hexagonal fuzzy numbers etc. with their membership functions. Atanassov [1] introduced the concept of intuitionistic fuzzy sets that provides precise solutions to the problems in uncertain situations than fuzzy sets with membership and non-membership functions. After developing intuitionistic fuzzy sets, authors in [4, 6, 10, 19] defined various types of intuitionistic fuzzy numbers and different types of operations on intuitionistic fuzzy sets are also established by suitable examples. Smarandache [9] introduced the generalization of both fuzzy and intuitionistic fuzzy sets and named it as neutrosophic set. The Single valued neutrosophic number and its applications are described in [3]. The results of the problems using neutrosophic sets are more accurate than the results given by fuzzy and intuitionistic fuzzy sets [11-20]. Due to which it is applied in various fields for multi-decision tasks [20-32]. The applications of n-valued neutrosophic set [24-26] in data analytics research fields given a thrust to study the neutrosophic numbers. This paper focuses on introducing mathematical operation of 2n and 2n+1 sided polygonal neutrosophic numbers and its matrices with examples.

The rest of the paper is organized as follows: The section 2 contains preliminaries. Section 3 explains single valued 2n+1 polygonal neutrosophic numbers whereas the Section 4 demonstrates Single valued 2n side polygonal neutrosophic numbers. Section 5 provides conclusions followed by acknowledgements and references.
2. Preliminaries

Definition 1 (Fuzzy Number) [4]: A fuzzy number is nothing but an extension of a regular number in the sense that it does not refer to one single value but rather to a connected set of possible values, where each of the possible value has its own weight between 0 and 1. This weight is called the membership function. The complex fuzzy set for a given fuzzy number \tilde{A} can be defined as $\mu_{\tilde{A}}(x)$ is non-decreasing for $x \leq x_0$ and non-increasing for $\geq x_0$. Similarly other properties can be defined.

Definition 2 (Triangular fuzzy number [4]): A fuzzy number $\tilde{A} = \{a, b, c\}$ is said to be a triangular fuzzy number if its membership function is given by, where $a \leq b \leq c$

$$\mu_{\tilde{A}}(x) = \begin{cases} \frac{(x-a)}{(b-a)} & \text{for } a \leq x \leq b \\ \frac{(c-x)}{(c-b)} & \text{for } b \leq x \leq c \\ 0 & \text{otherwise} \end{cases}$$

Definition 3 (Trapezoidal fuzzy number [4])
A Trapezoidal fuzzy number (TrFN) denoted by \tilde{A}_P is defined as (a, b, c, d), where the membership function

$$\mu_{\tilde{A}_P}(x) = \begin{cases} 0 & \text{for } x \leq a \\ \frac{(x-a)}{(b-a)} & \text{for } a \leq x \leq b \\ 1 & \text{for } b \leq x \leq c \\ \frac{(d-x)}{(d-c)} & \text{for } c \leq x \leq d \\ 0 & \text{for } x \geq d \end{cases}$$

Or, $\mu_{\tilde{A}_P}(x) = \max \left(\min \left(\frac{(x-a)}{(b-a)}, 1, \frac{(d-x)}{(d-c)} \right), 0 \right)$

Definition 4 (Generalized Trapezoidal Fuzzy Number) (GTrFNs)
A Generalized Fuzzy Number (a, b, c, d, w), is called a Generalized Trapezoidal Fuzzy Number “x” if its membership function is given by

$$\mu_{\tilde{A}_P}(x) = \begin{cases} 0 & \text{for } x < a \\ \frac{(x-a)}{(b-a)} w & \text{for } a \leq x \leq b \\ w & \text{for } b \leq x \leq c \\ \frac{(d-x)}{(d-c)} w & \text{for } c \leq x \leq d \\ 0 & \text{for } x > d \end{cases}$$

Or, $\mu_{\tilde{A}_P}(x) = \max \left(\min \left(w \frac{(x-a)}{(b-a)}, w, w \frac{(d-x)}{(d-c)} \right), 0 \right)$

Definition 5 (Pentagonal fuzzy number [4])
A pentagonal fuzzy number (PFN) of a fuzzy set $\tilde{A}_P = \{a, b, c, d, e\}$ and its membership function is given by,

$$\mu_{\tilde{A}_P}(x) = \begin{cases} 0 & \text{for } x < a \\ \frac{(x-a)}{(b-a)} & \text{for } a \leq x \leq b \\ \frac{(x-b)}{(c-b)} & \text{for } b \leq x \leq c \\ 1 & \text{for } x = c \\ \frac{(d-x)}{(d-c)} & \text{for } c \leq x \leq d \\ \frac{(e-x)}{(e-d)} & \text{for } d \leq x \leq e \\ 0 & \text{for } x > d \end{cases}$$

S. Broumi, M. Mullai, M. Talea, A.Bakali, F. Smarandache, P. K. Singh, and Arindam Dey, SINGLE VALUED (2N+1) SIDED POLYGONAL NEUTROSOPHIC NUMBERS AND SINGLE VALUED (2N) SIDED POLYGONAL NEUTROSOPHIC NUMBERS
Definition 6 (Hexagonal fuzzy number [4])
A Hexagonal fuzzy number (HFN) of a fuzzy set $\mathcal{A}_p = \{a, b, c, d, e, f\}$ and its membership function is given by,
\[
\mu_{\mathcal{A}_p}(x) = \begin{cases}
0 & \text{for } x < a \\
\frac{1}{2} \frac{x-a}{b-a} & \text{for } a \leq x \leq b \\
\frac{1}{2} + \frac{1}{2} \frac{x-b}{c-b} & \text{for } b \leq x \leq c \\
1 & \text{for } c \leq x \leq d \\
1 - \frac{1}{2} \frac{x-d}{e-d} & \text{for } d \leq x \leq e \\
\frac{1}{2} \frac{e-x}{f-e} & \text{for } d \leq x \leq e \\
0 & \text{for } x > d
\end{cases}
\]

Definition 7 (Octagonal fuzzy number [4])
A Octagonal fuzzy number (OFN) of a fuzzy set $\mathcal{A}_p = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8\}$ and its membership function is given by,
\[
\mu_{\mathcal{A}_p}(x) = \begin{cases}
k \frac{x-a_1}{a_2-a_1}, & a_1 \leq x \leq a_2 \\
k, & a_2 \leq x \leq a_3 \\
k + (1-k) \frac{x-a_3}{a_4-a_3}, & a_3 \leq x \leq a_4 \\
1, & a_4 \leq x \leq a_5 \\
k + (1-k) \frac{a_6-x}{a_6-a_5}, & a_5 \leq x \leq a_6 \\
k, & a_6 \leq x \leq a_7 \\
k \frac{a_8-x}{a_8-a_7}, & a_7 \leq x \leq a_8 \\
0, & \text{Otherwise}
\end{cases}
\]
Where $k = \max\{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8\}$

Definition 8 (A triangular intuitionistic fuzzy number)[4]
A triangular intuitionistic fuzzy number $\tilde{\alpha}$ is denoted as $\tilde{\alpha} = ((a, b, c), (a', b', c'))$, where $a' \leq a \leq b \leq b' \leq c \leq c'$ with the following membership function $\mu_{\tilde{\alpha}}(x)$ and non-membership function $\nu_{\tilde{\alpha}}(x)$,
\[
\mu_{\tilde{\alpha}}(x) = \begin{cases}
x-a \quad & a \leq b \\
\frac{b-x}{b-a'} \quad & a' \leq b \\
0 \quad & \text{otherwise}
\end{cases}
\]
\[
\nu_{\tilde{\alpha}}(x) = \begin{cases}
x-b \quad & b \leq c \\
\frac{x-b}{c'-b} \quad & b \leq c' \\
1 \quad & \text{otherwise}
\end{cases}
\]

S. Broumi, M. Mullai, M. Talea, A. Bakali, F. Smarandache, P. K. Singh, and Arindam Dey, SINGLE VALUED (2N+1) SIDED POLYGONAL NEUTROSOPHIC NUMBERS AND SINGLE VALUED (2N) SIDED POLYGONAL NEUTROSOPHIC NUMBERS
Definition 9 (Trapezoidal Intuitionistic fuzzy number)

\[
\mu_a(x) = \begin{cases}
0 & \text{for } x \leq 0 \\
\frac{(x-a)}{(b-a)} & \text{for } a < x < b \\
w & \text{for } b \leq x \leq c \\
\frac{(d-x)}{(d-c)} & \text{for } c < x < d \\
0 & \text{otherwise}
\end{cases}
\]

\[
\nu_a(x) = \begin{cases}
1 & \text{for } x \leq 0 \\
\frac{(b-x+u_a(x-a))}{(b-a)} & \text{for } a < x < b \\
u_a & \text{for } b \leq x \leq c \\
\frac{(x-c+u_a(d-x))}{(d-c)} & \text{for } c < x < d \\
1 & \text{otherwise}
\end{cases}
\]

Definition 10 (Single valued triangular neutrosophic number [3]):

A triangular neutrosophic number \(\tilde{a} = < (a, b, c), w_a, u_a, y_a > \) is a special neutrosophic set on the real number set \(\mathbb{R} \), whose truth-membership, indeterminacy–membership and falsity-membership functions are defined as follows:

\[
\mu_a(x) = \begin{cases}
\frac{(x-a)}{(b-a)} w_a & \text{for } a \leq x \leq b \\
w_a & \text{for } x = b \\
\frac{(d-x)}{(d-c)} w_a & \text{for } b \leq x \leq c \\
0 & \text{otherwise}
\end{cases}
\]

\[
\lambda_a(x) = \begin{cases}
\frac{(b-x+u_a(x-a))}{(b-a)} & \text{for } a \leq x \leq b \\
u_a & \text{for } x = b \\
\frac{(x-c+u_a(d-x))}{(d-c)} & \text{for } c \leq x \leq d \\
1 & \text{otherwise}
\end{cases}
\]

A triangular neutrosophic number \(\tilde{a} = < (a, b, c), w_a, u_a, y_a > \) may express an ill-known quantity about \(b \) which is approximately equal to \(b \).

Definition 11 (Single valued trapezoidal neutrosophic number [3]):

A triangular neutrosophic number \(\tilde{a} = < (a, b, c, d), w_a, u_a, y_a > \) is a special neutrosophic set on the real number set \(\mathbb{R} \), whose truth-membership, indeterminacy–membership and falsity-membership function are defined as follows:

\[
\mu_a(x) = \begin{cases}
\frac{(x-a)}{(b-a)} w_a & \text{for } a \leq x \leq b \\
w_a & \text{for } x = b \\
\frac{(d-x)}{(d-c)} w_a & \text{for } b \leq x \leq c \\
0 & \text{otherwise}
\end{cases}
\]

\[
\lambda_a(x) = \begin{cases}
\frac{(b-x+u_a(x-a))}{(b-a)} & \text{for } a \leq x \leq b \\
u_a & \text{for } x = b \\
\frac{(x-c+u_a(d-x))}{(d-c)} & \text{for } c \leq x \leq d \\
1 & \text{otherwise}
\end{cases}
\]

The single valued trapezoidal neutrosophic numbers are a generalization of the intuitionistic trapezoidal fuzzy numbers. Thus, the neutrosophic number may express more uncertainty than the intuitionistic fuzzy number.

3. Single valued 2n+1 polygonal neutrosophic numbers

Definition 12 (Single valued 2n+1 polygonal neutrosophic number):

A single valued 2n+1 sided polygonal neutrosophic number \(\tilde{a} = < (a_1, a_2, \ldots, a_n, a_{2n}, a_{2n+1}), w_{a}, u_{a}, y_{a} > \) is a special neutrosophic set on the real number set \(\mathbb{R} \), whose truth-membership, indeterminacy–membership and falsity-membership functions are defined as follows:

\[
\mu_a(x) = \begin{cases}
\frac{(x-a)}{(b-a)} w_a & \text{for } a \leq x \leq b \\
w_a & \text{for } b \leq x \leq c \\
\frac{(d-x)}{(d-c)} w_a & \text{for } c \leq x \leq d \\
0 & \text{otherwise}
\end{cases}
\]

\[
\lambda_a(x) = \begin{cases}
\frac{(b-x+u_a(x-a))}{(b-a)} & \text{for } a \leq x \leq b \\
u_a & \text{for } b \leq x \leq c \\
\frac{(x-c+u_a(d-x))}{(d-c)} & \text{for } c \leq x \leq d \\
1 & \text{otherwise}
\end{cases}
\]
\[
T_a(x) = \begin{cases}
\frac{x-a_1}{a_2-a_1}, & a_1 \leq a_2 \\
\frac{x-a_2}{a_3-a_2}, & a_2 \leq a_3 \\
\vdots \\
\frac{x-a_n}{a_{n+1}-a_n}, & a_n \leq a_{n+1} \\
0, & \text{Otherwise}
\end{cases}
\]

\[
I_A(x) = \begin{cases}
\frac{a_2 - x + u_\alpha (x-a_1)}{a_2-a_1}, & a_1 \leq a_2 \\
\frac{a_3 - x + u_\alpha (x-a_2)}{a_3-a_2}, & a_2 \leq a_3 \\
\vdots \\
\frac{a_n - x + u_\alpha (x-a_{n+1})}{a_n-a_{n+1}}, & a_n \leq a_{n+1} \\
\end{cases}
\]

\[
F_A(x) = \begin{cases}
y_\alpha, & x = a_{n+1} \\
\frac{x-a_{n+1} + y_\alpha (a_{n+2} - x)}{a_{n+2} - a_{n+1}}, & a_{n+1} \leq a_{n+2} \\
\frac{x-a_{n+2} + y_\alpha (a_{n+3} - x)}{a_{n+3} - a_{n+2}}, & a_{n+2} \leq a_{n+3} \\
\vdots \\
\frac{x-a_{2n+1} + y_\alpha (a_{2n+2} - x)}{a_{2n+1} - a_{2n}}, & a_{2n} \leq a_{2n+1} \\
1, & \text{Otherwise}
\end{cases}
\]
Example: 1 If $w_\tilde{a} = 0.2$, $\mu_\tilde{a} = 0.4$, $\gamma_\tilde{a} = 0.3$ and $n=4$, then we have an nanogonal neutrosophic number \tilde{a} and it is taken as $\tilde{a} = (3, 6, 8, 10, 11, 21, 43, 44, 56)$. Figure 1 demonstrates the Example 1.

![Figure 1](image1.jpg)

Example: 2
If $w_\tilde{a} = 0.2$, $\mu_\tilde{a} = 0.4$, $\gamma_\tilde{a} = 0.3$ and $n=4$, then we have an nanogonal neutrosophic number \tilde{a} and it is taken as $\tilde{a} = (3, 6, 8, 10, 1, 2, 4, 7, 5)$. Figure 2 demonstrates the Example 2 and its neutrosophic membership.

![Figure 2](image2.jpg)

Note
The single valued triangular neutrosophic number can be generalized to a single valued $2n+1$ polygonal neutrosophic number, where $n=1, 2, 3, \ldots, n$

$$\tilde{a} = (a_1, a_2, \ldots, a_n, \ldots, a_{2n}, a_{2n+1}) : w_\tilde{a}, \mu_\tilde{a}, \gamma_\tilde{a},$$
where \tilde{a} may express an ill–known quantity about a_n which is gradually equal to a_n. We mean that a_2 approximates a_n, a_3 approximates a_n a littte better than a_2,……………….a_{n-1} approximates a_n a litte better than all previous a_1, a_2, \ldots, a_n.
Remark
If \(0 \leq w_\tilde{a}, u_\tilde{a}, y_\tilde{a} \leq 1 \), \(0 \leq w_\tilde{a} + u_\tilde{a} + y_\tilde{a} \leq 1 \), \(y_\tilde{a} = 0 \) and the single valued \(2n+1 \) sided polygonal neutrosophic number reduced to the case single valued \(2n+1 \) sided polygonal fuzzy number.

3.1. Operations of single valued \(2n+1 \) sided polygonal neutrosophic numbers
Following are the three operations that can be performed on single valued \(2n+1 \) polygonal neutrosophic numbers suppose \(A_{PN\\tilde{a}} = \langle \tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n, \tilde{a}_{2n}, \tilde{a}_{2n+1} \rangle \); \(w_\tilde{a}, u_\tilde{a}, y_\tilde{a} \rangle \) and \(B_{PN\\tilde{b}} = \langle b_1, b_2, \ldots, b_n, b_{2n}, b_{2n+1} \rangle \); \(w_\tilde{b}, u_\tilde{b}, y_\tilde{b} \rangle \) are two single valued \(2n+1 \) sided polygonal neutrosophic numbers then

(i) Addition:
\[
A_{PN\\tilde{a}} + B_{PN\\tilde{b}} = \langle a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n, a_{2n} + b_{2n}, a_{2n+1} + b_{2n+1} \rangle; \quad w_\tilde{a} + w_\tilde{b}, u_\tilde{a} + u_\tilde{b}, y_\tilde{a} + y_\tilde{b} \rangle
\]

(ii) Subtraction:
\[
A_{PN\\tilde{a}} - B_{PN\\tilde{b}} = \langle a_1 - b_1, a_2 - b_2, \ldots, a_n - b_n, a_{2n} - b_{2n}, a_{2n+1} - b_{2n+1} \rangle; \quad w_\tilde{a} + w_\tilde{b}, u_\tilde{a} + u_\tilde{b}, y_\tilde{a} + y_\tilde{b} \rangle
\]

(iii) Multiplication:
\[
A_{PN\\tilde{a}} \cdot B_{PN\\tilde{b}} = \langle a_1 \cdot b_1, a_2 \cdot b_2, \ldots, a_n \cdot b_n, a_{2n} \cdot b_{2n}, a_{2n+1} \cdot b_{2n+1} \rangle; \quad w_\tilde{a} \cdot w_\tilde{b}, u_\tilde{a} + u_\tilde{b}, y_\tilde{a} + y_\tilde{b} \rangle
\]

Remark
If \(w_\tilde{a} = 1, u_\tilde{a} = 0, y_\tilde{a} = 0 \) then single valued \(2n+1 \) sided polygonal neutrosophic number \(A_{PN\\tilde{a}} = \langle \tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n, \tilde{a}_{2n}, \tilde{a}_{2n+1} \rangle \); \(w_\tilde{a}, u_\tilde{a}, y_\tilde{a} \rangle \) reduced to the case of single valued \(2n+1 \) sided polygonal fuzzy number \(A_{PN\\tilde{a}} = \langle \tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n, \tilde{a}_{2n}, \tilde{a}_{2n+1} \rangle \); \(w_\tilde{a}, u_\tilde{a}, y_\tilde{a} \rangle \).

Remark
If \(0 \leq w_\tilde{a}, u_\tilde{a}, y_\tilde{a} \leq 1 \), \(0 \leq w_\tilde{a} + u_\tilde{a} + y_\tilde{a} \leq 3 \), and \(n = 1 \), the single valued \(2n+1 \) -sided polygonal neutrosophic number reduced to the case of the single valued triangular neutrosophic number \(A_{PN\\tilde{a}} = \langle \tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n, \tilde{a}_{2n}, \tilde{a}_{2n+1} \rangle \); \(w_\tilde{a}, u_\tilde{a}, y_\tilde{a} \rangle \).

Example 3: Let \(w_\tilde{a} = 1, u_\tilde{a} = 0, y_\tilde{a} = 0 \) and \(n = 1 \)

If \(w_\tilde{a} = 1, u_\tilde{a} = 0, y_\tilde{a} = 0 \) and \(n = 2 \), then we have an Pentagonal fuzzy number [5]:

Let \(A = (1, 2, 3, 4, 5) \) and \(B = (2, 3, 4, 5, 6) \) be two Pentagonal fuzzy numbers, then

i. \(A + B = (3, 5, 7, 9, 11) \)

ii. \(A - B = (-1, -1, -1, -1) \)

iii. \(2A = (2, 4, 6, 8, 10) \)

iv. \(A.B = (2, 6, 12, 20, 30) \)
Figure 3 demonstrates operation given in Example 3. The single valued $2n+1$ polygonal neutrosophic number are generalization of the Pentagonal fuzzy number numbers [5] and single valued triangular neutrosophic number [3]

4. Single valued $2n$-sided polygonal neutrosophic numbers

Definition 13: The single valued trapezoidal neutrosophic number can be extended to a single valued $2n$ sided polygonal neutrosophic number $\tilde{a} = (a_1, a_2, \ldots, a_n, \tilde{a}_{n+1}, \ldots, a_{2n-1}, a_{2n})$, where $n = 1, 2, 3, \ldots, n$, whose truth-membership, indeterminacy-membership and falsity-membership functions are defined as follows:

$$T_\tilde{a}(x) = \begin{cases}
k \frac{x - a_1}{a_2 - a_1} w_\tilde{a}, & a_1 \leq x \leq a_2 \\
+ (1 - k) \frac{x - a_2}{a_3 - a_2} w_\tilde{a}, & a_2 \leq x \leq a_3 \\
\vdots \\
+ (1 - mk) \frac{x - a_{n-1}}{a_n - a_{n-1}} w_\tilde{a}, & a_{n-1} \leq x \leq a_n \\
w_\tilde{a}, & a_n \leq x \leq a_{n+1} \\
+ (1 - mk) \frac{a_{n+1} - x}{a_{n+2} - a_{n+1}} w_\tilde{a}, & a_{n+1} \leq x \leq a_{n+2} \\
\vdots \\
\vdots \\
+ (1 - k) \frac{a_{2n-1} - x}{a_{2n-2} - a_{2n-1}} w_\tilde{a}, & a_{2n-2} \leq x \leq a_{2n-1} \\
k \frac{a_{2n} - x}{a_{2n} - a_{2n-1}} w_\tilde{a}, & a_{2n-1} \leq x \leq a_{2n} \\
0, & \text{Otherwise}
\end{cases}$$

S. Broumi, M. Mullai, M. Talea, A. Bakali, F. Smarandache, P. K. Singh, and Arindam Dey, SINGLE VALUED $(2N+1)$ SIDED POLYGONAL NEUTROSOPHIC NUMBERS AND SINGLE VALUED $(2N)$ SIDED POLYGONAL NEUTROSOPHIC NUMBERS
\[
I_A(x) = \begin{cases}
 k + (1 - mk) \frac{a_2 - x}{a_2 - a_1} u_{a_1}, & a_1 \leq x \leq a_2 \\
 k + (1 - (m - 1)k) \frac{a_3 - x}{a_3 - a_2} u_{a_2}, & a_2 \leq x \leq a_3 \\
 \vdots \\
 k + (1 - k) \frac{a_{n-1} - x}{a_{n-1} - a_{n-2}} u_{a_{n-2}}, & a_{n-2} \leq x \leq a_{n-1} \\
 k \frac{a_n - x}{a_n - a_{n-1}} u_{a_{n-1}}, & a_{n-1} \leq x \leq a_n \\
 0, & a_n \leq x \leq a_{n+1} \\
 k \frac{x - a_{n+1}}{a_{n+2} - a_{n+1}} u_{a_{n+1}}, & a_{n+1} \leq x \leq a_{n+2} \\
 k + (1 - k) \frac{x - a_{n+2}}{a_{n+3} - a_{n+2}} u_{a_{n+2}}, & a_{n+2} \leq x \leq a_{n+3} \\
 \vdots \\
 k + (1 - (m - 1)k) \frac{x - a_{2n-2}}{a_{2n-1} - a_{2n-2}} u_{a_{2n-2}}, & a_{2n-2} \leq x \leq a_{2n-1} \\
 k + (1 - mk) \frac{x - a_{2n-1}}{a_{2n} - a_{2n-1}} u_{a_{2n-1}}, & a_{2n-1} \leq x \leq a_{2n} \\
 1, & \text{Otherwise}
\end{cases}
\]
where \bar{a} may represent an ill-known quantity of range, which is gradually approximately equal to the interval $[a_n, a_{n+1}]$.

We mean that (a_2, a_{2n-1}) approximates $[a_n, a_{n+1}]$.
(a, a_{2n-2}) approximates $[a_n, a_{n+1}]$ a little better than (a_2, a_{2n-1}). … … (a_n, a_{n+1}) approximates $[a_n, a_{n+1}]$ a little better than previous intervals.

Remark

If $0 \leq w_\bar{a}, u_\bar{a}, y_\bar{a} \leq 1, 0 \leq w_\bar{y} + u_\bar{y} + y_\bar{y} \leq 1, y_\bar{y} = 0$ and the single valued 2n -sided polygonal neutrosophic number reduced to the case of single valued 2n-sided polygonal fuzzy number.

4.1 Single valued 2n-sided polygonal neutrosophic number

Following the three operations that can be performed on single valued 2n-sided polygonal neutrosophic numbers suppose $A_{PNN}=< (a_1, a_2, \ldots, a_n, a_{n+1}, \ldots, a_{2n-1}, a_{2n}); w_\bar{a}, u_\bar{a}, y_\bar{a}>$ and $B_{PNN}=< (b_1, b_2, \ldots, b_n, b_{n+1}, \ldots, b_{2n-1}, b_{2n}); w_\bar{b}, u_\bar{b}, y_\bar{b}>$ are two 2n-sided polygonal neutrosophic number.

(i) Addition: $A_{PNN} + B_{PNN} = < (a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n, a_{n+1} + b_{n+1}, \ldots, a_{2n-1} + b_{2n-1}, a_{2n} + b_{2n}); w_\bar{a} + w_\bar{b}, u_\bar{a} + u_\bar{b}, y_\bar{a} + y_\bar{b}>$

(ii) Subtraction: $A_{PNN} - B_{PNN} = < (a_1 - b_1, a_2 - b_2, \ldots, a_n - b_n, a_{n+1} - b_{n+1} - b_{2n-1}, a_{2n-1} - b_{2n-1}, a_{2n} - b_{2n}); w_\bar{a} + w_\bar{b}, u_\bar{a} - u_\bar{b}, y_\bar{a} - y_\bar{b}>$

(iii) Multiplication: $A_{PNN} \cdot B_{PNN} = < (a_1 \cdot b_1, a_2 \cdot b_2, \ldots, a_n \cdot b_n, a_{n+1} \cdot b_{n+1}, \ldots, a_{2n-1} \cdot b_{2n-1}, a_{2n} \cdot b_{2n}); w_\bar{a} \cdot w_\bar{b}, u_\bar{a} \cdot u_\bar{b}, u_\bar{a} \cdot y_\bar{b} + y_\bar{a} \cdot y_\bar{b}>$

Remark

If $w_\bar{a} = 1, u_\bar{a} = 0, y_\bar{a} = 0$ then single valued 2n-sided polygonal neutrosophic number $A_{PNN} = < (a_1, a_2, \ldots, a_n, a_{n+1}, \ldots, a_{2n-1}, a_{2n}); w_\bar{a}, u_\bar{a}, y_\bar{a}>$ reduced to the case of single valued 2n-sided polygonal fuzzy number $A_{FNN} = < (a_1, a_2, \ldots, a_n, a_{n+1}, \ldots, a_{2n-1}, a_{2n}); w_\bar{a}, u_\bar{a}, y_\bar{a} >$ for $n = 1, 2, 3, \ldots, n$.

S. Broumi, M. Mullai, M. Talea, A. Bakali, F. Smarandache, P. K. Singh, and Arindam Dey, SINGLE VALUE (2N+1) SIDED POLYGONAL NEUTROSOPHIC NUMBERS AND SINGLE VALUE (2N) SIDED POLYGONAL NEUTROSOPIH NUMBERS
Remark
If \(0 \leq w, u, y \leq 1\), and \(n=2\), the single valued \(2n\)-sided polygonal neutrosophic number reduced to the case of single valued trapezoidal neutrosophic number \(\mathbf{A}_{\mathbf{PN}}=< (a_{1}, a_{2}, a_{3}, a_{4}); w, u, y>\).

Example 4: if \(w = 1, u = 0, y = 0\) and \(n = 3\) then we have an Hexagonal fuzzy number [7-8]: Let \(A=(1, 2, 3, 5, 6)\) and \(B=(2, 4, 6, 8, 10, 12)\) be two Hexagonal fuzzy numbers then \(A + B = (3, 6, 9, 13, 16, 19)\).

Figure 4 demonstrates operation given in Example 4. The single valued \(2n\)-sided polygonal neutrosophic number are generalization of the hexagonal fuzzy numbers [8], intuitionistic trapezoidal fuzzy numbers [x] and single valued trapezoidal neutrosophic number [3] with its application [12-23] for multi-decision process [24-26].

5. Conclusion:
This paper introduces single valued \((2n\) and \(2n+1\)) sided polygonal neutrosophic numbers its addition, subtraction, multiplication as well as polygonal neutrosophic matrix with an illustrative example. In near future our focus will be on applications of single-valued \(2n\) sided polygonal neutrosophic numbers and its other mathematical algebra.

Acknowledgement:
Authors thank the reviewer for their useful comments and suggestions.

References

Received: January 07, 2019, Accepted: March 01, 2019