Similarity Measure for m-Polar Interval Valued Neutrosophic Soft Set with Application for Medical Diagnoses

Rana Muhammad Zulqarnain*, Imran Siddique1, Muhammad Asif1, Shahzad Ahmad1, Said Broumi3, Sehrish Ayaz2

1 Department of Mathematics, University of Management and Technology, Lahore, Sialkot Campus, Pakistan. E-mail: muhammad.asif@math.qau.edu.pk; shahzad.ahmed@skt.umt.edu.pk
2 School of Science, Department of Mathematics, University of Management and Technology, Lahore, Pakistan. E-mail: imransiddique@umt.edu.pk;
3 Laboratory of Information Processing, Faculty of Science Ben M'Zik, University Hassan II, Casablanca. E-mail: broumisaid78@gmail.com.
4 College of Urban and Environmental Sciences, Northwest University, Xian, China.
* Correspondence: E-mail: ranazulqarnain7777@gmail.com

Abstract:

The similarity measure is used to tackle many issues that include indistinct as well as blurred information excluding is not in a position to deal with the general fuzziness along with obscurity of the problems that have various information. The main purpose of this research is to propose a multipolar interval-valued neutrosophic soft set (mPIVNSS) with operations and basic properties. We also develop Hamming distance and Euclidean distance by using mPIVNSS and numerical examples and use the developed distances to introduce similarity measures. By using the developed similarity measures a decision-making approach is presented for mPIVNSS. Finally, we used the developed decision-making approach for medical diagnosis.

Keywords: Multipolar interval-valued neutrosophic set; multipolar interval-valued neutrosophic soft set; similarity measures.

1. Introduction

Uncertainty plays a dynamic role in many areas of life (such as modeling, medicine, engineering, etc.). However, researchers raised a general question, that is, how do we express and use the concept of uncertainty in mathematical modeling. Many researchers in the world have proposed and recommended different methods of using uncertainty. First of all, Zadeh proposed the concept of fuzzy sets [1] to solve those problems containing uncertainty and ambiguity. It can be seen that in some cases, fuzzy sets cannot handle situations. To overcome such situations, Turksen [2] proposed the idea of interval-valued fuzzy sets (IVFS). In some cases, we must consider the unbiased value of the appropriate representation of the object under the conditions of uncertainty and vagueness, as the non-membership values of the appropriate representation of the object, these fuzzy sets or IVFS cannot handle. To overcome these difficulties, Atanassov proposed the concept of an Intuitionistic Fuzzy Set (IFS) [3]. Zulqarnain et. [4] introduced the correlation coefficient for interval-valued intuitionistic fuzzy soft sets and established the TOPSIS technique based on their developed correlation measures to solve decision-making complications. The theory proposed by Atanassov only deals with under-considered data and membership and non-membership values. However, the
IFS theory cannot deal with overall incompatibility and imprecise information. To solve this incompatible and imprecise information, Smarandache [5] proposed the idea of NS.

Molodtsov [6] proposed a general mathematical tool to deal with uncertain, ambiguous, and undefined substances, called soft sets (SS). Maji et al. [7] extended the work of SS and defined some operations and their features. They also used the SS theory to make decisions [8]. Ali et al. [9] modified the Maji method of SS and developed some new operations with its properties. Sezgin and Atagun [10] proved De Morgan’s SS theory and law by using different operators. Cagman and Enginoğlu [11] proposed the concept of soft matrices with operations and discussed their properties. They also introduced a decision-making method to solve problems that contain uncertainty. In [12], they modified the actions proposed by Molottsov’s SS. In [13], the author plans to perform some new operations on soft matrices, such as soft differential product, soft limited differential product, soft extended differential product, and weak extended differential product. Zulqarnain et al. [14, 15] discussed the Pythagorean fuzzy soft sets and established the aggregation operator and TOPSIS technique to solve the MCDM problem.

Maji [16] put forward the idea of NSS with necessary operations and characteristics. The idea of NSS possibility was put forward by Karaaslan [17] and introduced a neutrosophic soft decision method to solve those uncertain problems based on And-product. Broumi [18] developed a generalized NSS with certain operations and properties and used the proposed concept for decision-making. To solve the MCDM problem with single-valued neutrosophic numbers (SVNN) proposed by Deli and Subas [19], they constructed the concept of SVNN cut sets. Based on the correlation of IFS, the CC term of SVNS was introduced [20]. In [21], the idea of simplifying NS introduced some operational laws and aggregation operators, such as weighted arithmetic and weighted geometric average operator. They constructed the MCDM method based on the proposed aggregation operator. Mukherjee and Das [22] neutrosophic bipolar vague soft sets and some of its operations using. It is the combination of neutrosophic bipolar vague sets and soft sets neutrosophic bipolar vague soft sets and some of its operations. It is the combination of neutrosophic bipolar vague sets and soft sets. Zulqarnain et al. [23, 24] used the neutrosophic TOPSIS model to solve the MCDM problem and for the selection of suppliers in the production industry. Masooma et al. [25] by combining multi-polar fuzzy sets and neutrosophic sets, developed a new concept called multi-polar neutrosophic sets. They also established various representations and instance arithmetic.

In the past few years, many mathematicians have developed various similarity measures, correlation coefficients, aggregation operators, and decision-making applications. These structures are based on different sets and provide better solutions to decision-making problems. It has multiple applications in different fields such as pattern recognition, medical diagnosis, artificial intelligence, social science, business, and multi-attribute decision-making problems. Garg [26] developed the MCDM method based on weighted cosine similarity measures under an intuitionistic fuzzy environment and used the proposed technique for pattern recognition and medical diagnoses. To measure the relative strength of IFS Garg and Kumar [27] presented some new similarity measures, they also formulated a connection number for set pair analysis (SPA) and developed some new similarity measures and weighted similarity measures based on definedSPA. Nguyen et al. [28] defined some similarity measures for PFS by using the exponential function for the membership and non-membership degrees with its several properties and relations. Peng and Garg [29] presented some diverse types of similarity measures for PFS with multiple parameters. In [30] the authors established the concept of mPNSS with its properties and operators, they also developed the distance-based similarity measures and used the proposed similarity measures for decision making and medical diagnoses. Recently, Smarandache [31] extended the concept of the SS to hypersoft set (HSS) by replacing the single-parameter function F with a multi-parameter (sub-attribute) function defined on Cartesian products of n different attributes. The established HSS is more flexible than SS and is more suitable for the decision-making environment. He also introduced the further extension of HSS,
such as crisp HSS, fuzzy HSS, intuitionistic fuzzy HSS, neutrosophic HSS, and plithogenic HSS. Nowadays, HSS theory and its extensions are developing rapidly. Many researchers have developed different operators and properties based on HSS and its extensions [32-44].

In this era, professionals believe that real life is moving in the direction of multi-polarization. Therefore, there is no doubt that the multi-polarization of information has played an important role in the prosperity of many fields of science and technology. In neurobiology, multipolar neurons in the brain collect a lot of information from other neurons. In information technology, multi-polar technology can be used to control a wide range of structures. In the full text, the motivation for the expansion and mixed work of this research is gradually given. We proved that under any appropriate circumstances, different hybrid structures containing fuzzy sets will be converted into special privileges of mPIVNSS. The concept of a neutrosophic environment to a multipolar interval-valued neutrosophic soft set is novel. We tend to discuss the effectiveness, flexibility, quality, and advantages of planning work and algorithms. This research will be the most versatile form and will combine data to a considerable extent, as well as appropriate medicine, engineering, artificial intelligence, agriculture, and other daily life complications. In the future, the current work may be competent for other methods and different types of mixed structures.

The following research is organized as follows: In section 2, we recollected some basic definitions which are used in the following sequel such as NS, SS, NSS, and multipolar neutrosophic set. In section 3, we proposed the mPIVNSS with its properties and operations. In section 4, distance-based similarity measures have been developed by using Hamming distance and Euclidean distance between two mPIVNSS. In section 5, we use the developed distance-based similarity measures for medical diagnoses. Finally, the conclusion and future directions are presented in section 6.

2. Preliminaries

In this section, some basic concepts have been recalled such as NS, SS, NSS, and IVNSS, etc. which are used in the following sequel.

Definition 2.1 [7]
Let \(\mathcal{U} \) be a universe and \(\mathcal{A} \) be an NS on \(\mathcal{U} \) is defined as \(\mathcal{A} = \{ u, u_{\mathcal{A}}(u), v_{\mathcal{A}}(u), w_{\mathcal{A}}(u) : u \in \mathcal{U} \} \), where \(u, v, w: \mathcal{U} \to [0^-, 1^+] \) and \(0^- \leq u_{\mathcal{A}}(u) + v_{\mathcal{A}}(u) + w_{\mathcal{A}}(u) \leq 3^+ \).

Definition 2.2 [25]
Let \(\mathcal{U} \) be the universal set and \(\mathcal{E} \) be the set of attributes concerning \(\mathcal{U} \), then \(\mathcal{F}_\mathcal{E} \) is said to multipolar neutrosophic set if

\[\mathcal{F}_\mathcal{E} = \{ u, (s_i \cdot u_{\mathcal{E}}(u), s_i \cdot v_{\mathcal{E}}(u), s_i \cdot w_{\mathcal{E}}(u)) : u \in \mathcal{U}, e \in \mathcal{E}, i = 1, 2, 3, ..., m \} \],

where \(s_i \cdot u_{\mathcal{E}}, s_i \cdot v_{\mathcal{E}}, s_i \cdot w_{\mathcal{E}}: \mathcal{U} \to [0, 1] \), and \(0 \leq s_i \cdot u_{\mathcal{E}}(u) + s_i \cdot v_{\mathcal{E}}(u) + s_i \cdot w_{\mathcal{E}}(u) \leq 3 \); \(i = 1, 2, 3, ..., m \). \(u_{\mathcal{E}}, v_{\mathcal{E}}, \) and \(w_{\mathcal{E}} \) represent the truth, indeterminacy, and falsity of the considered alternative.

Definition 2.3 [3]
Let \(\mathcal{U} \) be the universal set and \(\mathcal{E} \) be the set of attributes concerning \(\mathcal{U} \). Let \(\mathcal{P}(\mathcal{U}) \) be the power set of \(\mathcal{U} \) and \(\mathcal{A} \subseteq \mathcal{E} \). A pair \((\mathcal{F}, \mathcal{A}) \) is called a soft set over \(\mathcal{U} \) and its mapping is given as

\[\mathcal{F}: \mathcal{A} \to \mathcal{P}(\mathcal{U}) \]

It is also defined as:

\[(\mathcal{F}, \mathcal{A}) = \{ \mathcal{F}(e) \in \mathcal{P}(\mathcal{U}) : e \in \mathcal{E}, \mathcal{F}(e) = \emptyset \ i f \ e \notin \mathcal{A} \} \]

Definition 2.4 [16]
Let \mathcal{U} be the universal set and \mathcal{E} be the set of attributes concerning \mathcal{U}. Let $\mathcal{P}(\mathcal{U})$ be the set of all neutrosophic values of \mathcal{U} and $\mathcal{A} \subseteq \mathcal{E}$. A pair $(\mathcal{F}, \mathcal{A})$ is called a neutrosophic soft set over \mathcal{U} and its mapping is given as:

$$\mathcal{F} : \mathcal{A} \rightarrow \mathcal{P}(\mathcal{U})$$

Definition 2.5 [46]

Let \mathcal{A} be a universal set, then interval-valued neutrosophic soft set can be expressed by the set $\mathcal{A} = \{< u, u_A(u), v_A(u), w_A(u) > : u \in \mathcal{U} \}$, where u_A, v_A, and w_A are truth, indeterminacy, and falsity membership functions for \mathcal{A} respectively, u_A, v_A, and $w_A \subseteq [0, 1]$ for each $u \in \mathcal{U}$. Where

$$u_A(u) = [u^T_A(u), u^L_A(u)]$$
$$v_A(u) = [v^T_A(u), v^L_A(u)]$$
$$w_A(u) = [w^T_A(u), w^L_A(u)]$$

For each point $u \in \mathcal{U}$, $0 \leq u_A(u) + v_A(u) + w_A(u) \leq 3$ and IVNSS(\mathcal{U}) represent the family of all interval-valued neutrosophic sets.

Definition 2.6 [45]

Let \mathcal{U} be an initial universe set, IVN(\mathcal{U}) denotes the set of all interval-valued neutrosophic sets of \mathcal{U} and \mathcal{E} be a set of parameters that describe the elements of \mathcal{U}. An interval-valued neutrosophic soft sets(ivn-soft sets) over \mathcal{U} is a set defined by a set-valued function Y_K representing a mapping $v_K : \mathcal{E} \rightarrow$ IVN(\mathcal{U}). It can be written as a set of ordered pairs $Y_K = \{(x, v_K(x)) : x \in \mathcal{E}\}$

Here, v_K, which is interval-valued neutrosophic sets, is called the approximate function of the ivn-soft sets Y_K and $v_K(x)$ is called the x-approximate value of $x \in \mathcal{E}$. The subscript K in the v_K indicates that v_K is the approximate function of Y_K. Generally if v_K, v_L, v_M, ..., will be used as an approximate function of Y_K, Y_L, Y_M, ..., respectively. Note that the sets of all ivn-soft sets over \mathcal{U} will be denoted by IVNSS.

3. Multi-Polar Interval Valued Neutrosophic Soft Set with Aggregate Operators and Properties

In this section, we develop the concept of mPIVNSS and introduce some basic operations on mPIVNSS with their properties.

Definition 3.1

Let \mathcal{U} and \mathcal{E} are universal and set of attributes respectively, and $\mathcal{A} \subseteq \mathcal{E}$, if there exists a mapping Φ such as:

$$\Phi : \mathcal{A} \rightarrow \text{mPIVNSS}^U$$

Then (Φ, \mathcal{A}) is called mPIVNSS over \mathcal{U} defined as follows:

$$Y_K = \{(u, \Phi_A(e)(u)) : e \in \mathcal{E}, u \in \mathcal{U}\}$$

where

$$\Phi_A(e) = \{(e, u, [s_i \cdot \inf w_A(e)(u), s_i \cdot \sup w_A(e)(u)], [s_i \cdot \inf \sigma_A(e)(u), s_i \cdot \sup \sigma_A(e)(u)], [s_i \cdot \inf w_A(e)(u), s_i \cdot \sup w_A(e)(u)] : u \in \mathcal{U}, e \in \mathcal{E}\}$$

$0 \leq s_i \cdot \sup u_A(e)(u) + s_i \cdot \sup v_A(e)(u) + s_i \cdot \sup w_A(e)(u) \leq 3$ for all $i \in 1, 2, 3, \ldots, m$; $e \in \mathcal{E}$ and $u \in \mathcal{U}$.

Definition 3.2

Let Y_A and $Y_B \in \text{mPIVNSS}$ over \mathcal{U}, then Y_A is called a multi-polar interval-valued neutrosophic soft subset of Y_B. If

$$s_i \cdot \inf u_A(e)(u) \leq s_i \cdot \inf u_B(e)(u), s_i \cdot \sup u_A(e)(u) \leq s_i \cdot \sup u_B(e)(u)$$

$$s_i \cdot \inf v_A(e)(u) \leq s_i \cdot \inf v_B(e)(u), s_i \cdot \sup v_A(e)(u) \leq s_i \cdot \sup v_B(e)(u)$$

$$s_i \cdot \inf w_A(e)(u) \geq s_i \cdot \inf w_B(e)(u), s_i \cdot \sup w_A(e)(u) \geq s_i \cdot \sup w_B(e)(u)$$

Rana Muhammad Zulqarnain, Imran Siddique, Muhammad Asif, Shahzad Ahmad, Said Broumi, Sehrish Ayaz, Similarity Measure for m-Polar Interval Valued Neutrosophic Soft Set with Application for Medical Diagnoses
for all $i \in 1, 2, 3, \ldots, m$; $e \in E$ and $u \in \mathcal{U}$.

Example 1 Assume $\mathcal{U} = \{u_1, u_2\}$ be a universe of discourse and $E = \{x_1, x_2, x_3, x_4\}$ be a set of attributes and $A = B = \{x_1, x_2\} \subseteq E$. Consider F_A and $G_B \in 3$-PIVNSS over \mathcal{U} can be represented as follows

$$F_A = \left\{ \left(x_1, \{ (u_1, [5, 8], [2, 5], [1, 6]), ([3, 5], [1, 3], [3, 7]), ([4, 6], [3, 7], [8, 1]), (u_2, ([2, 4], [3, 0, 4], [2, 5]), ([2, 5], [1, 6], [3, 8]), ([3, 8], [4, 9], [6, 7]) \} \right) \right\}$$

and

$$G_B = \left\{ \left(x_2, \{ (u_1, [1, 6], [4, 7], [0, 2], [1, 4], [5, 9]), ([3, 6], [1, 4], [5, 8]) \} \right) \right\}$$

Thus

$$F_A \subseteq G_B.$$

Definition 3.3

Let Y_A and $Y_B \in m$-PIVNSS over \mathcal{U}, then $Y_A = Y_B$, if

$$s_1 \text{ inf } u_{A(e)}(u) \leq s_1 \text{ inf } u_{B(e)}(u), s_1 \text{ sup } u_{A(e)}(u) \leq s_1 \text{ sup } u_{B(e)}(u)$$

for all $i \in 1, 2, 3, \ldots, m$; $e \in E$ and $u \in \mathcal{U}$.

Definition 3.4

Let $F_A \in m$-PIVNSS over \mathcal{U}, then empty m-PIVNSS can be represented as F_0, and defined as follows

$$F_0 = \{ e, u, ([0, 0], [1, 1], [1, 1]), ([0, 0], [1, 1], [1, 1]), \ldots, ([0, 0], [1, 1], [1, 1]) \} : e \in E, u \in \mathcal{U}.$$

Definition 3.5

Let $F_A \in m$-PIVNSS over \mathcal{U}, then universal m-PIVNSS can be represented as $F_\mathcal{U}$, and defined as follows

$$F_\mathcal{U} = \{ e, u, ([1, 1], [0, 0], [0, 0]), ([1, 1], [0, 0], [0, 0]), \ldots, ([1, 1], [0, 0], [0, 0]) \} : e \in E, u \in \mathcal{U}.$$

Example 2 Assume $\mathcal{U} = \{u_1, u_2\}$ be a universe of discourse and $E = \{x_1, x_2, x_3, x_4\}$ be a set of attributes. The tabular representation of F_0 and $F_\mathcal{U}$ given as follows in table 1 and table 2 respectively.

| Table 1: Tabular representation of m-PIVNSS F_0 |
| \hline
| \mathcal{U} | u_1 | u_2 | \ldots | u_n |
| \hline
| x_1 | ([0, 0], [1, 1], [1, 1]) | ([0, 0], [1, 1], [1, 1]) | \ldots | ([0, 0], [1, 1], [1, 1]) |
| \hline

Rana Muhammad Zulqarnain, Imran Siddique, Muhammad Asif, Shahzad Ahmad, Said Broumi, Sehrish Ayaz, Similarity Measure for m-Polar Interval Valued Neutrosophic Soft Set with Application for Medical Diagnoses
\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\$x_2\$ & \([0,0],[1,1],[1,1]\) & \([0,0],[1,1],[1,1]\) & \ldots & \([0,0],[1,1],[1,1]\) \\
\hline
\$x_n\$ & \([0,0],[1,1],[1,1]\) & \([0,0],[1,1],[1,1]\) & \ldots & \([0,0],[1,1],[1,1]\) \\
\hline
\end{tabular}
\caption{Tablur representation of mPIVNSS \(F_E\)}
\end{table}

Definition 3.6
Let \(F_A \in \text{mPIVNSS}\) over \(\mathcal{U}\), then the complement of mPIVNSS is defined as follows
\[
F_A^c = \{ e, \in \mathcal{U} : s_i \cdot \inf \omega_{A(e)}(u), s_i \cdot \sup \omega_{A(e)}(u), [(1,1), \ldots, 1] - s_i \cdot \sup \sigma_{A(e)}(u), (1,1, \ldots, 1) - s_i \cdot \inf \sigma_{A(e)}(u) \} > : u \in \mathcal{U}\}
\]

Example 3 Assume \(\mathcal{U} = \{u_1, u_2\}\) be a universe of discourse and \(E = \{x_1, x_2, x_3, x_4\}\) be a set of attributes and \(A = \{x_1, x_2\} \subseteq E\). Consider \(F_A \in \text{3-PIVNSS}\) over \(\mathcal{U}\) can be represented as follows
\[
F_A = \left\{ \begin{array}{l}
(x_1, \{u_1, ([1,1],[1,2],[1,3]), ([1,1],[1,2],[1,3]), ([1,1],[1,2],[1,3]) \},)
(x_2, \{u_1, ([1,1],[1,2],[1,3]), ([1,1],[1,2],[1,3]) \},)
\end{array} \right\}
\]

Then,
\[
F_A^c = \left\{ \begin{array}{l}
(x_1, \{u_1, ([1,1],[1,2],[1,3]), ([1,1],[1,2],[1,3]), ([1,1],[1,2],[1,3]) \},)
(x_2, \{u_1, ([1,1],[1,2],[1,3]), ([1,1],[1,2],[1,3]) \},)
\end{array} \right\}
\]

Proposition 3.7
If \(F_A \in \text{mPIVNSS}\), then
1. \((F_A^c)^c = F_A\)
2. \((F_0)^c = F_E\)
3. \((F_E)^c = F_0\)

Proof 1
Let
\[
F_A(e) = \left\{ \begin{array}{l}
< u, s_i \cdot \inf u_{A(e)}(u), s_i \cdot \sup u_{A(e)}(u) > : u \in \mathcal{U}, e \in E
\end{array} \right\}
\]

Then by using definition 3.6, we get
Again by using definition 3.6
\((F_A^c(e))^c = \begin{cases}
< u, [s_i \cdot \inf \omega_A(u), s_i \cdot \sup \omega_A(u)], \\
[1(1, \ldots, 1) - s_i \cdot \sup \omega_A(u), (1, 1, \ldots, 1) - s_i \cdot \inf \omega_A(u)], \\
[s_i \cdot \inf \omega_A(u), s_i \cdot \sup u_A(e)(u)] > : u \in \mathcal{U}, e \in E \end{cases} \)

\((F_B^c(e))^c = \begin{cases}
< u, [s_i \cdot \inf \omega_B(u), s_i \cdot \sup \omega_B(u)], \\
[s_i \cdot \inf \omega_B(u), s_i \cdot \sup \omega_B(u)], \\
[s_i \cdot \inf \omega_A(u), s_i \cdot \sup \omega_A(u)] > : u \in \mathcal{U}, e \in E \end{cases} \)

\((F_A^c(e))^c = F_A(e). \)

Similarly, we can prove 2 and 3.

Definition 3.8

Let \(F_A(e) \) and \(G_B(e) \) \(\in \) mPIVNSS over \(\mathcal{U} \), then

\[F_A(e) \cup G_B(e) = \begin{cases}
(e, < u, [\max\{s_i \cdot \inf \omega_A(u), s_i \cdot \inf \omega_B(u)\}], \max\{s_i \cdot \sup u_A(e)(u), s_i \cdot \sup u_B(e)(u)\}], \\
[\min\{s_i \cdot \inf u_A(e)(u), s_i \cdot \inf u_B(e)(u)\}, \min\{s_i \cdot \sup \omega_A(u), s_i \cdot \sup \omega_B(u)\}], \\
[\min\{s_i \cdot \inf \omega_A(u), s_i \cdot \inf \omega_B(u)\}, \min\{s_i \cdot \sup \omega_A(u), s_i \cdot \sup \omega_B(u)\}] > : u \in \mathcal{U}, e \in E \end{cases} \]

Example 4 Assume \(\mathcal{U} = \{u_1, u_2\} \) be a universe of discourse and \(E = \{x_1, x_2, x_3, x_4\} \) be a set of attributes and \(A = B = \{x_1, x_2\} \subseteq E \). Consider \(F_A(e) \) and \(G_B(e) \) \(\in \) 3-PIVNSS over \(\mathcal{U} \) can be represented as follows

\[F_A(x) = \begin{cases}
(x_1, (u_1, [5, 8], [2, 0], [1, 2]), (u_2, (2, 4), [3, 0], [1, 3], [2, 4]), (u_3, 6, 9), [7, 8], [8, 1]), \\
(x_2, (u_1, [5, 8], [2, 0], [1, 2]), (u_2, (2, 4), [3, 0], [1, 3], [2, 4]), (u_3, 6, 9), [7, 8], [8, 1]), \\
(x_3, (u_1, [5, 8], [2, 0], [1, 2]), (u_2, (2, 4), [3, 0], [1, 3], [2, 4]), (u_3, 6, 9), [7, 8], [8, 1]), \\
(x_4, (u_1, [5, 8], [2, 0], [1, 2]), (u_2, (2, 4), [3, 0], [1, 3], [2, 4]), (u_3, 6, 9), [7, 8], [8, 1]), \end{cases} \]

and

\[G_B(x) = \begin{cases}
(x_1, (u_1, [5, 8], [2, 0], [1, 2]), (u_2, (2, 4), [3, 0], [1, 3], [2, 4]), (u_3, 6, 9), [7, 8], [8, 1]), \\
(x_2, (u_1, [5, 8], [2, 0], [1, 2]), (u_2, (2, 4), [3, 0], [1, 3], [2, 4]), (u_3, 6, 9), [7, 8], [8, 1]), \\
(x_3, (u_1, [5, 8], [2, 0], [1, 2]), (u_2, (2, 4), [3, 0], [1, 3], [2, 4]), (u_3, 6, 9), [7, 8], [8, 1]), \\
(x_4, (u_1, [5, 8], [2, 0], [1, 2]), (u_2, (2, 4), [3, 0], [1, 3], [2, 4]), (u_3, 6, 9), [7, 8], [8, 1]), \end{cases} \]

Then

\[F_A(x) \cup G_B(x) = \begin{cases}
(x_1, (u_1, [5, 8], [2, 0], [1, 2]), (u_2, (2, 4), [3, 0], [1, 3], [2, 4]), (u_3, 6, 9), [7, 8], [8, 1]), \\
(x_2, (u_1, [5, 8], [2, 0], [1, 2]), (u_2, (2, 4), [3, 0], [1, 3], [2, 4]), (u_3, 6, 9), [7, 8], [8, 1]), \\
(x_3, (u_1, [5, 8], [2, 0], [1, 2]), (u_2, (2, 4), [3, 0], [1, 3], [2, 4]), (u_3, 6, 9), [7, 8], [8, 1]), \\
(x_4, (u_1, [5, 8], [2, 0], [1, 2]), (u_2, (2, 4), [3, 0], [1, 3], [2, 4]), (u_3, 6, 9), [7, 8], [8, 1]), \end{cases} \]

Proposition 3.9

Let \(F_A, G_B, H_C \in \) mPIVNSS over \(\mathcal{U} \). Then

1. \(F_A \cup F_A = F_A \)
2. \(F_A \cup G_B = F_A \)
3. \(F_A \cup F_B = F_B \)
4. \(F_A \cup G_B = G_B \cup F_A \)
5. \((\mathcal{F}_A \cup \mathcal{G}_B) \cup \mathcal{H}_E = \mathcal{F}_A \cup (\mathcal{G}_B \cup \mathcal{H}_E)\)

Proof 1. As we know that
\[F_A(e) = \left\{ \begin{array}{l}
(e, u, [s_i \cdot \inf u_{A(e)}(u), s_i \cdot \sup u_{A(e)}(u)],
\end{array} \right\}
\]
be an mPIVNS, then by using
definition 3.8, we have
\[F_{A(e)} \cup F_{A(e)} = \left\{ \begin{array}{l}
(e, u, \left\{ s_i \cdot \inf u_{A(e)}(u), s_i \cdot \inf u_{A(e)}(u) \right\}, \max\{s_i \cdot \sup u_{A(e)}(u), s_i \cdot \sup u_{A(e)}(u)\}],
\end{array} \right\}
\]

\[= \left\{ \begin{array}{l}
(e, u, \left\{ s_i \cdot \inf u_{A(e)}(u), s_i \cdot \sup u_{A(e)}(u) \right\}, \max\{s_i \cdot \sup u_{A(e)}(u), s_i \cdot \sup u_{A(e)}(u)\}],
\end{array} \right\}
\]

Proof 2. \(\mathcal{F}_A \cup \mathcal{F}_B = \mathcal{F}_A\)
\[F_A \cup F_B = \left\{ \begin{array}{l}
(e, u, \left\{ s_i \cdot \inf u_{A(e)}(u), s_i \cdot \inf u_{A(e)}(u) \right\}, \max\{s_i \cdot \sup u_{A(e)}(u), s_i \cdot \sup u_{A(e)}(u)\}],
\end{array} \right\}
\]

\[= \left\{ \begin{array}{l}
(e, u, \left\{ s_i \cdot \inf u_{A(e)}(u), s_i \cdot \sup u_{A(e)}(u) \right\}, \max\{s_i \cdot \sup u_{A(e)}(u), s_i \cdot \sup u_{A(e)}(u)\}],
\end{array} \right\}
\]

Proof 3. \(\mathcal{F}_A \cup \mathcal{F}_E = \mathcal{F}_A\)
\[F_A \cup F_E = \left\{ \begin{array}{l}
(e, u, \left\{ s_i \cdot \inf u_{A(e)}(u), s_i \cdot \inf u_{A(e)}(u) \right\}, \max\{s_i \cdot \sup u_{A(e)}(u), s_i \cdot \sup u_{A(e)}(u)\}],
\end{array} \right\}
\]

\[= \left\{ \begin{array}{l}
(e, u, \left\{ s_i \cdot \inf u_{A(e)}(u), s_i \cdot \sup u_{A(e)}(u) \right\}, \max\{s_i \cdot \sup u_{A(e)}(u), s_i \cdot \sup u_{A(e)}(u)\}],
\end{array} \right\}
\]

Proof 4. \(\mathcal{F}_A \cup \mathcal{G}_B = \mathcal{G}_B \cup \mathcal{F}_A\)
\[F_A \cup G_B = \left\{ \begin{array}{l}
(e, u, \left\{ s_i \cdot \inf u_{A(e)}(u), s_i \cdot \inf u_{B(e)}(u) \right\}, \max\{s_i \cdot \sup u_{A(e)}(u), s_i \cdot \sup u_{B(e)}(u)\}],
\end{array} \right\}
\]

\[= \left\{ \begin{array}{l}
(e, u, \left\{ s_i \cdot \inf u_{A(e)}(u), s_i \cdot \sup u_{B(e)}(u) \right\}, \max\{s_i \cdot \sup u_{A(e)}(u), s_i \cdot \sup u_{B(e)}(u)\}],
\end{array} \right\}
\]
\[\mathcal{G}_B \cup \mathcal{F}_A = \left\{ (e, u, \left[\max\left\{ s_i \cdot \inf \ u_{A(e)}(u), s_i \cdot \inf \ u_{B(e)}(u) \right\}, \max\left\{ s_i \cdot \sup \ u_{A(e)}(u), s_i \cdot \sup \ u_{B(e)}(u) \right\} \right] > : u \in \mathcal{U}, e \in \mathcal{E} \right\} \]

So, \(\mathcal{F}_A \cup \mathcal{G}_B = \mathcal{F}_A \cup \mathcal{G}_B. \)

Proof 5. Similar to assertion 4.

Definition 3.10

Let \(F_{A(e)} \) and \(G_{B(e)} \in \text{mPIVNSS} \) over \(\mathcal{U} \), then

\[\mathcal{F}_{A(e)} \cap \mathcal{G}_{B(e)} = \left\{ (e, u, \left[\max\left\{ s_i \cdot \inf \ u_{A(e)}(u), s_i \cdot \inf \ u_{B(e)}(u) \right\}, \min\left\{ s_i \cdot \sup \ u_{A(e)}(u), s_i \cdot \sup \ u_{B(e)}(u) \right\} \right] > : u \in \mathcal{U}, e \in \mathcal{E} \right\} \]

Proposition 3.11

Let \(\mathcal{F}_A, \mathcal{G}_B, \mathcal{H}_C \in \text{mPIVNSS} \) over \(\mathcal{U} \). Then

1. \(\mathcal{F}_A \cap \mathcal{G}_B = \mathcal{F}_A \)
2. \(\mathcal{F}_A \cap \mathcal{F}_0 = \mathcal{F}_A \)
3. \(\mathcal{F}_A \cap \mathcal{G}_B = \mathcal{F}_A \)
4. \(\mathcal{F}_A \cap \mathcal{G}_B = \mathcal{F}_B \cap \mathcal{F}_A \)
5. \((\mathcal{F}_A \cap \mathcal{G}_B) \cap \mathcal{H}_C = \mathcal{F}_A \cap (\mathcal{G}_B \cap \mathcal{H}_C) \)

Proof 1. As we know that

\[\mathcal{F}_{A(e)} = \left\{ (e, u, \left[\max\left\{ s_i \cdot \inf \ u_{A(e)}(u), s_i \cdot \sup \ u_{A(e)}(u) \right\}, \min\left\{ s_i \cdot \inf \ u_{A(e)}(u), s_i \cdot \sup \ u_{A(e)}(u) \right\} \right] > : u \in \mathcal{U}, e \in \mathcal{E} \right\} \]

definition 3.8, we have

\[\mathcal{F}_{A(e)} \cap \mathcal{F}_{A(e)} = \left\{ (e, u, \left[\max\left\{ s_i \cdot \inf \ u_{A(e)}(u), s_i \cdot \inf \ u_{A(e)}(u) \right\}, \max\left\{ s_i \cdot \sup \ u_{A(e)}(u), s_i \cdot \sup \ u_{A(e)}(u) \right\} \right] > : u \in \mathcal{U}, e \in \mathcal{E} \right\} \]

Proof 2. \(\mathcal{F}_A \cap \mathcal{F}_0 = \mathcal{F}_A \)

\[\mathcal{F}_A \cap \mathcal{F}_0 = \left\{ (e, u, \left[\max\left\{ s_i \cdot \inf \ u_{A(e)}(u), s_i \cdot \inf \ u_{B(e)}(u) \right\}, \min\left\{ s_i \cdot \sup \ u_{A(e)}(u), s_i \cdot \sup \ u_{B(e)}(u) \right\} \right] > : u \in \mathcal{U}, e \in \mathcal{E} \right\} \]

\[\mathcal{F}_{\bar{A}(e)} \cap \mathcal{F}_{\bar{A}(e)} = \left\{ (e, u, \left[\max\left\{ s_i \cdot \inf \ u_{A(e)}(u), s_i \cdot \sup \ u_{A(e)}(u) \right\}, \min\left\{ s_i \cdot \inf \ u_{A(e)}(u), s_i \cdot \sup \ u_{A(e)}(u) \right\} \right] > : u \in \mathcal{U}, e \in \mathcal{E} \right\} \]
Proof 3. $\mathcal{F}_A \cap \mathcal{F}_B = \mathcal{F}_A$

$\mathcal{F}_A \cap \mathcal{F}_B = \left\{ (e, u, \left[\min\{s_i \cdot \inf u_{A(e)}(u), s_i \cdot \inf u_{B(e)}(u)\}, \min\{s_i \cdot \sup u_{A(e)}(u), s_i \cdot \sup u_{B(e)}(u)\} \right], \left[\max\{s_i \cdot \inf \sigma_{A(e)}(u), s_i \cdot \inf \sigma_{B(e)}(u)\}, \max\{s_i \cdot \sup \sigma_{A(e)}(u), s_i \cdot \sup \sigma_{B(e)}(u)\} \right] : u \in \mathcal{U}, e \in E \right\}$

$\mathcal{F}_A \cap \mathcal{F}_B = \left\{ (e, u, \left[\min\{s_i \cdot \inf u_{A(e)}(u), s_i \cdot \inf u_{B(e)}(u)\}, \max\{s_i \cdot \sup \sigma_{A(e)}(u), s_i \cdot \sup \sigma_{B(e)}(u)\} \right], \left[\max\{s_i \cdot \inf \omega_{A(e)}(u), s_i \cdot \inf \omega_{B(e)}(u)\}, \max\{s_i \cdot \sup \omega_{A(e)}(u), s_i \cdot \sup \omega_{B(e)}(u)\} \right] : u \in \mathcal{U}, e \in E \right\}$

Proof 4. 5. Similar to assertion 3.

Proposition 3.12

Let A and B be mPIVNS over \mathcal{U}, then

1. $(F_{A(e)} \cup F_{B(e)})^c = F_{A(e)}^c \cap F_{B(e)}^c$
2. $(F_{A(e)} \cap F_{B(e)})^c = F_{A(e)}^c \cup F_{B(e)}^c$

Proof 1 As we know that

$F_{A(e)} = \left\{ (e, u, \left[s_i \cdot \inf u_{A(e)}(u), s_i \cdot \sup u_{A(e)}(u) \right], \left[s_i \cdot \inf \sigma_{A(e)}(u), s_i \cdot \sup \sigma_{A(e)}(u) \right] : u \in \mathcal{U}, e \in E \right\}$

$G_{B(e)} = \left\{ (e, u, \left[s_i \cdot \inf u_{B(e)}(u), s_i \cdot \sup u_{B(e)}(u) \right], \left[s_i \cdot \inf \sigma_{B(e)}(u), s_i \cdot \sup \sigma_{B(e)}(u) \right] : u \in \mathcal{U}, e \in E \right\}$

By using definition 3.8, we get

$F_{A(e)} \cup G_{B(e)} = \left\{ (e, u, \left[\max\{s_i \cdot \inf u_{A(e)}(u), s_i \cdot \inf u_{B(e)}(u)\}, \max\{s_i \cdot \sup u_{A(e)}(u), s_i \cdot \sup u_{B(e)}(u)\} \right], \left[\min\{s_i \cdot \inf \sigma_{A(e)}(u), s_i \cdot \inf \sigma_{B(e)}(u)\}, \min\{s_i \cdot \sup \sigma_{A(e)}(u), s_i \cdot \sup \sigma_{B(e)}(u)\} \right] : u \in \mathcal{U}, e \in E \right\}$

Now by using definition 3.6, we get

$(F_{A(e)} \cup G_{B(e)})^c = \left\{ (e, u, \left[\min\{s_i \cdot \inf \omega_{A(e)}(u), s_i \cdot \inf \omega_{B(e)}(u)\}, \left[\max\{s_i \cdot \inf u_{A(e)}(u), s_i \cdot \inf u_{B(e)}(u)\}, \max\{s_i \cdot \sup u_{A(e)}(u), s_i \cdot \sup u_{B(e)}(u)\} \right] : u \in \mathcal{U}, e \in E \right\}$

Now

$F_{A(e)}^c = \left\{ (e, u, \left[s_i \cdot \inf \omega_{A(e)}(u), s_i \cdot \sup \omega_{A(e)}(u) \right], \left[s_i \cdot \inf \sigma_{A(e)}(u), s_i \cdot \inf \sigma_{A(e)}(u) \right] : u \in \mathcal{U}, e \in E \right\}$

$G_{B(e)}^c = \left\{ (e, u, \left[s_i \cdot \inf \omega_{B(e)}(u), s_i \cdot \sup \omega_{B(e)}(u) \right], \left[s_i \cdot \inf \omega_{B(e)}(u), s_i \cdot \inf \omega_{B(e)}(u) \right] : u \in \mathcal{U}, e \in E \right\}$

Rana Muhammad Zulqarnain, Imran Siddique, Muhammad Asif, Shahzad Ahmad, Said Broumi, Sehrish Ayaz, Similarity Measure for m-Polar Interval Valued Neutrosophic Soft Set with Application for Medical Diagnoses
By using definition 3.10
\(F_{A(e)}^C \cap G_{B(e)}^C = \)
\[\begin{cases}
(e, u, \min\{s_1 \cdot \inf w_{A(e)}(u), s_1 \cdot \inf w_{B(e)}(u), \min\{s_1 \cdot \sup w_{A(e)}(u), s_1 \cdot \sup w_{B(e)}(u)\}\}, \\
[\min \{1, 1, \ldots, 1\} - s_1 \cdot \sup \sigma_{A(e)}(u), (1, 1, \ldots, 1) - s_1 \cdot \sup \sigma_{B(e)}(u)] - \min\{s_1 \cdot \inf \sigma_{A(e)}(u), (1, 1, \ldots, 1) - s_1 \cdot \inf \sigma_{B(e)}(u)\} \\
\max\{s_1 \cdot \inf u_{A(e)}(u), s_1 \cdot \inf u_{B(e)}(u)\}, \max\{s_1 \cdot \sup u_{A(e)}(u), s_1 \cdot \sup u_{B(e)}(u)\} > : u \in U, e \in E
\end{cases} \]

Hence
\((F_{A(e)} \cup G_{B(e)})^C = F_{A(e)}^C \cap G_{B(e)}^C. \)

Proof 4, 5. Similar to assertion 1.

Proposition 3.13

Let \(F_{A(e)}^\prime, G_{B(e)}^\prime, H_{C(e)} \in mPIVNSS \) over \(U \). Then

1. \(F_{A(e)} \cup (G_{B(e)} \cap H_{C(e)}) = (F_{A(e)}^\prime \cup G_{B(e)}^\prime) \cap (F_{A(e)} \cup H_{C(e)}) \)
2. \(F_{A(e)} \cap (G_{B(e)} \cup H_{C(e)}) = (F_{A(e)} \cap G_{B(e)}^\prime) \cup (F_{A(e)} \cap H_{C(e)}) \)
3. \(F_{A(e)} \cup (F_{A(e)} \cap G_{B(e)}) = F_{A(e)}^\prime \)
4. \(F_{A(e)} \cap (F_{A(e)} \cup G_{B(e)}) = F_{A(e)} \)

Proof 1 As we know that
\(G_{B(e)}^\prime = \)
\[\begin{cases}
(e, u, \min\{s_1 \cdot \inf u_{B(e)}(u), s_1 \cdot \inf u_{B(e)}(u)\}, \min\{s_1 \cdot \sup u_{B(e)}(u), s_1 \cdot \sup u_{B(e)}(u)\}\}, \\
\max\{s_1 \cdot \inf \sigma_{B(e)}(u), s_1 \cdot \inf \sigma_{B(e)}(u)\}, \max\{s_1 \cdot \sup \sigma_{B(e)}(u), s_1 \cdot \sup \sigma_{B(e)}(u)\}\} \\
\max\{s_1 \cdot \inf \tau_{C(e)}(u), s_1 \cdot \sup \tau_{C(e)}(u)\}, \max\{s_1 \cdot \sup \tau_{C(e)}(u), s_1 \cdot \sup \tau_{C(e)}(u)\}\} \]
\(F_{A(e)} \cup G_{B(e)}^\prime \cap H_{C(e)} = \)
\[\begin{cases}
(e, u, \min\{s_1 \cdot \inf u_{A(e)}(u), s_1 \cdot \inf u_{A(e)}(u)\}, \min\{s_1 \cdot \sup u_{A(e)}(u), s_1 \cdot \sup u_{A(e)}(u)\}\}, \\
\max\{s_1 \cdot \inf \sigma_{A(e)}(u), s_1 \cdot \inf \sigma_{A(e)}(u)\}, \max\{s_1 \cdot \sup \sigma_{A(e)}(u), s_1 \cdot \sup \sigma_{A(e)}(u)\}\} \\
\max\{s_1 \cdot \inf \tau_{A(e)}(u), s_1 \cdot \sup \tau_{A(e)}(u)\}, \max\{s_1 \cdot \sup \tau_{A(e)}(u), s_1 \cdot \sup \tau_{A(e)}(u)\}\} \]
\(F_{A(e)} \cup H_{C(e)} = \)
\[\begin{cases}
(e, u, \min\{s_1 \cdot \inf u_{A(e)}(u), s_1 \cdot \inf u_{A(e)}(u)\}, \min\{s_1 \cdot \sup u_{A(e)}(u), s_1 \cdot \sup u_{A(e)}(u)\}\}, \\
\max\{s_1 \cdot \inf \sigma_{A(e)}(u), s_1 \cdot \inf \sigma_{A(e)}(u)\}, \max\{s_1 \cdot \sup \sigma_{A(e)}(u), s_1 \cdot \sup \sigma_{A(e)}(u)\}\} \\
\max\{s_1 \cdot \inf \tau_{A(e)}(u), s_1 \cdot \sup \tau_{A(e)}(u)\}, \max\{s_1 \cdot \sup \tau_{A(e)}(u), s_1 \cdot \sup \tau_{A(e)}(u)\}\} \]

Rana Muhammad Zulqarnain, Imran Siddique, Muhammad Asif, Shahzad Ahmad, Said Brouni, Sehrish Ayaz, Similarity Measure for m-Polar Interval Valued Neutrosophic Soft Set with Application for Medical Diagnoses
(ℱ\(\mathcal{A}(G)\) ∩ ℰ\(\mathcal{B}(G)\)) ∪ (ℱ\(\mathcal{A}(G)\) ∩ ℰ\(\mathcal{C}(G)\)) =
\[\begin{align*}
&\{ (e, u, [\min\{s_i \cdot \inf u_A(u), s_i \cdot \inf u_B(u)\}] , \min\{s_i \cdot \inf u_A(u), s_i \cdot \inf u_C(u)\} , \min\{s_i \cdot \inf v_A(u), s_i \cdot \inf v_B(u)\}] , \min\{s_i \cdot \inf v_A(u), s_i \cdot \inf v_C(u)\} \} \\
&\{ [\max\{s_i \cdot \inf u_A(u), s_i \cdot \inf u_B(u)\}, \max\{s_i \cdot \inf u_A(u), s_i \cdot \inf u_C(u)\} , [\max\{s_i \cdot \inf v_A(u), s_i \cdot \inf v_B(u)\}, [\max\{s_i \cdot \inf v_A(u), s_i \cdot \inf v_C(u)\} \} \\
&\{ \min\{s_i \cdot \inf u_A(u), s_i \cdot \inf v_B(u)\}, \min\{s_i \cdot \inf u_A(u), s_i \cdot \inf v_C(u)\} , \min\{s_i \cdot \inf v_B(u), s_i \cdot \inf v_A(u)\} \} \\
&\{ \max\{s_i \cdot \inf v_B(u), s_i \cdot \inf v_A(u)\}, [\max\{s_i \cdot \inf v_B(u), s_i \cdot \inf v_C(u)\} , \max\{s_i \cdot \inf v_C(u), s_i \cdot \inf v_A(u)\} \} \}
\end{align*}\]

Hence
\[\mathcal{F}_A(\mathcal{G}) \cup (\mathcal{G}_B(\mathcal{G}) \cap \mathcal{H}_C(\mathcal{G})) = (\mathcal{F}_A(\mathcal{G}) \cup \mathcal{G}_B(\mathcal{G})) \cap (\mathcal{F}_A(\mathcal{G}) \cup \mathcal{H}_C(\mathcal{G})).\]

Similarly, we can prove other results.

Definition 3.14
Let \(F_A, G_B \in \text{mPIVNSS}\), then their difference defined as follows
\[F_A \setminus G_B = \{ (e, u, [\min\{s_i \cdot \inf u_A(u), s_i \cdot \inf u_B(u)\}], \min\{s_i \cdot \sup u_A(u), s_i \cdot \sup u_B(u)\} , [\max\{s_i \cdot \inf v_A(u), s_i \cdot \inf v_B(u)\}, [\max\{s_i \cdot \inf v_A(u), s_i \cdot \inf v_B(u)\} \} \}
\]

Definition 3.15
Let \(F_A, G_B \in \text{mPIVNSS}\), then their addition defined as follows
\[F_A + G_B = \{ (e, u, [\min\{s_i \cdot \inf u_A(u) + s_i \cdot \inf u_B(u), (1,1,\ldots,1)\}], \min\{s_i \cdot \sup u_A(u) + s_i \cdot \sup u_B(u), (1,1,\ldots,1)\}], [\max\{s_i \cdot \inf v_A(u) + s_i \cdot \inf v_B(u), (1,1,\ldots,1)\}], [\max\{s_i \cdot \inf v_A(u) + s_i \cdot \inf v_B(u), (1,1,\ldots,1)\} \} \}
\]

Definition 3.16
Let \(F_A \in \text{mPIVNSS}\), then its scalar multiplication is represented as \(F_A.\bar{a}\), where \(\bar{a} \in [0, 1]\) and defined as follows
\[F_A.\bar{a} = \{ (e, u, [\min\{s_i \cdot \inf u_A(u), \bar{a}, (1,1,\ldots,1)\}], [\min\{s_i \cdot \inf v_A(u), \bar{a}, (1,1,\ldots,1)\}], [\min\{s_i \cdot \inf w_A(u), \bar{a}, (1,1,\ldots,1)\}], [\min\{s_i \cdot \sup u_A(u), \bar{a}, (1,1,\ldots,1)\}], [\min\{s_i \cdot \sup v_A(u), \bar{a}, (1,1,\ldots,1)\}], [\min\{s_i \cdot \sup w_A(u), \bar{a}, (1,1,\ldots,1)\} \} \}
\]

Definition 3.17
Let \(F_A \in \text{mPIVNSS}\), then its scalar division is represented as \(F_A/\bar{a}\), where \(\bar{a} \in [0, 1]\) and defined as follows
\[F_A/\bar{a} = \{ (e, u, [\min\{s_i \cdot \inf u_A(u)/\bar{a}, (1,1,\ldots,1)\}], [\min\{s_i \cdot \inf v_A(u)/\bar{a}, (1,1,\ldots,1)\}], [\min\{s_i \cdot \inf w_A(u)/\bar{a}, (1,1,\ldots,1)\}], [\min\{s_i \cdot \sup u_A(u)/\bar{a}, (1,1,\ldots,1)\}], [\min\{s_i \cdot \sup v_A(u)/\bar{a}, (1,1,\ldots,1)\}], [\min\{s_i \cdot \sup w_A(u)/\bar{a}, (1,1,\ldots,1)\} \} \}
\]

4. Distance and Similarity Measure of Multi-Polar Interval Valued Neutrosophic Soft set
In this section, we introduce the Hamming distance and Euclidean distance between two mPIVNSS and develop the similarity measure by using these distances.

Definition 4.1

\(\mathcal{U} \) and \(\mathcal{E} \) are universal set and set of attributes respectively, assume mPIVNSS(\(\mathcal{U} \)) represents the collection of all multi polar interval-valued neutrosophic soft sets. Suppose (\(\Phi_{\mathcal{F}}, \mathcal{E} \)) and (\(\varphi_{\mathcal{G}}, \mathcal{E} \)) ∈ mPIVNSS and there exist a mapping \(\Phi: \mathcal{F} \rightarrow \text{mPIVNSS}(\mathcal{U}) \), then we define the distances between (\(\Phi_{\mathcal{F}}, \mathcal{E} \)) and (\(\varphi_{\mathcal{G}}, \mathcal{E} \)) as follows

Hamming distance

\[
d_H(\Phi_{\mathcal{F}}(e), \varphi_{\mathcal{G}}(e)) = \frac{1}{2m} \left\{ \sum_{i=1}^{m} \left(\sum_{j=1}^{p} \left(| s_i \cdot u_{\Phi_{\mathcal{F}}}(u_j) - s_i \cdot u_{\varphi_{\mathcal{G}}}(u_j) | + | s_i \cdot \sigma_{\Phi_{\mathcal{F}}}(u_j) - s_i \cdot \sigma_{\varphi_{\mathcal{G}}}(u_j) | + | s_i \cdot \omega_{\Phi_{\mathcal{F}}}(u_j) - s_i \cdot \omega_{\varphi_{\mathcal{G}}}(u_j) | \right) \right) \right\}
\]

(4.1)

Where

\[
s_i \cdot u_{\Phi_{\mathcal{F}}}(u_j) = \frac{1}{2} \left(s_i \cdot \inf u_{\Phi_{\mathcal{F}}}(u_j) + s_i \cdot \sup u_{\Phi_{\mathcal{F}}}(u_j) \right)
\]

\[
s_i \cdot \sigma_{\Phi_{\mathcal{F}}}(u_j) = \frac{1}{2} \left(s_i \cdot \inf \sigma_{\Phi_{\mathcal{F}}}(u_j) + s_i \cdot \sup \sigma_{\Phi_{\mathcal{F}}}(u_j) \right)
\]

\[
s_i \cdot \omega_{\Phi_{\mathcal{F}}}(u_j) = \frac{1}{2} \left(s_i \cdot \inf \omega_{\Phi_{\mathcal{F}}}(u_j) + s_i \cdot \sup \omega_{\Phi_{\mathcal{F}}}(u_j) \right)
\]

\[
s_i \cdot u_{\varphi_{\mathcal{G}}}(u_j) = \frac{1}{2} \left(s_i \cdot \inf u_{\varphi_{\mathcal{G}}}(u_j) + s_i \cdot \sup u_{\varphi_{\mathcal{G}}}(u_j) \right)
\]

\[
s_i \cdot \sigma_{\varphi_{\mathcal{G}}}(u_j) = \frac{1}{2} \left(s_i \cdot \inf \sigma_{\varphi_{\mathcal{G}}}(u_j) + s_i \cdot \sup \sigma_{\varphi_{\mathcal{G}}}(u_j) \right)
\]

\[
s_i \cdot \omega_{\varphi_{\mathcal{G}}}(u_j) = \frac{1}{2} \left(s_i \cdot \inf \omega_{\varphi_{\mathcal{G}}}(u_j) + s_i \cdot \sup \omega_{\varphi_{\mathcal{G}}}(u_j) \right)
\]

Normalized Hamming distance

\[
d_{NH}(\Phi_{\mathcal{F}}(e), \varphi_{\mathcal{G}}(e)) = \frac{1}{2mp} \left\{ \sum_{i=1}^{m} \sum_{j=1}^{p} \left(\left(s_i \cdot u_{\Phi_{\mathcal{F}}}(u_j) - s_i \cdot u_{\varphi_{\mathcal{G}}}(u_j) \right) + \left(s_i \cdot \sigma_{\Phi_{\mathcal{F}}}(u_j) - s_i \cdot \sigma_{\varphi_{\mathcal{G}}}(u_j) \right) + \left(s_i \cdot \omega_{\Phi_{\mathcal{F}}}(u_j) - s_i \cdot \omega_{\varphi_{\mathcal{G}}}(u_j) \right) \right) \right\}
\]

(4.2)

Euclidean distance

\[
d_\mathcal{E}(\Phi_{\mathcal{F}}(e), \varphi_{\mathcal{G}}(e)) = \left(\frac{1}{2m} \left\{ \sum_{i=1}^{m} \sum_{j=1}^{p} \left(\left(s_i \cdot u_{\Phi_{\mathcal{F}}}(u_j) - s_i \cdot u_{\varphi_{\mathcal{G}}}(u_j) \right)^2 + \left(s_i \cdot \sigma_{\Phi_{\mathcal{F}}}(u_j) - s_i \cdot \sigma_{\varphi_{\mathcal{G}}}(u_j) \right)^2 + \left(s_i \cdot \omega_{\Phi_{\mathcal{F}}}(u_j) - s_i \cdot \omega_{\varphi_{\mathcal{G}}}(u_j) \right)^2 \right) \right\} \right)^{\frac{1}{2}}
\]

(4.3)

Normalized Euclidean distance

\[
d_{\mathcal{E}N}(\Phi_{\mathcal{F}}(e), \varphi_{\mathcal{G}}(e)) = \left(\frac{1}{2mp} \left\{ \sum_{i=1}^{m} \sum_{j=1}^{p} \left(\left(s_i \cdot u_{\Phi_{\mathcal{F}}}(u_j) - s_i \cdot u_{\varphi_{\mathcal{G}}}(u_j) \right)^2 + \left(s_i \cdot \sigma_{\Phi_{\mathcal{F}}}(u_j) - s_i \cdot \sigma_{\varphi_{\mathcal{G}}}(u_j) \right)^2 + \left(s_i \cdot \omega_{\Phi_{\mathcal{F}}}(u_j) - s_i \cdot \omega_{\varphi_{\mathcal{G}}}(u_j) \right)^2 \right) \right\} \right)^{\frac{1}{2}}
\]

(4.4)

Weighted distance
\[d^w(\Phi_F(e), \varphi_G(e)) = \left(\frac{1}{2m} \left(\sum_{i=1}^m \sum_{j=1}^p \left(\left| \sum_{i=1}^m \sum_{j=1}^p \left(\left| s_i \cdot \alpha_{\varphi_F} - s_i \cdot \alpha_{\varphi_G} \right|^r + \left| s_i \cdot \varphi_{\varphi_F} - s_i \cdot \varphi_{\varphi_G} \right|^r \right) \right) \right) \right)^\frac{1}{r} \]

(4.5)

Where \(r > 0 \) and \(w = (w_1, w_2, w_3, ..., w_n)^T \) be a weight vector of \(e_i \) (\(i = 1, 2, 3, ..., n \)). If \(r = 1 \) and \(r = 2 \), then equation 4.5 becomes the weighted hamming and weighted euclidean distances respectively.

Definition 4.2

\(U \) and \(E \) are universal set and set of attributes respectively and \((\Phi_F, E), (\varphi_G, E)\) are two mIVNSS(\(U\)). Then similarity measure based on definition 4.1 between \((\Phi_F, E)\) and \((\varphi_G, E)\) defined as follows

\[S(\Phi_F, \varphi_G) = \frac{1}{1 + d(\Phi_F, \varphi_G)} \]

(4.6)

Another similarity measure between \((\Phi_F, E)\) and \((\varphi_G, E)\) defined as

\[S(\Phi_F, \varphi_G) = e^{-\beta d(\Phi_F, \varphi_G)} \]

(4.7)

Where \(\beta \) is a steepness measure and a positive real number.

Definition 4.3

\(U \) and \(E \) are universal set and set of attributes respectively and \((\Phi_F, E), (\varphi_G, E)\) are two mIVNSS(\(U\)). Then the following distances between \((\Phi_F, E)\) and \((\varphi_G, E)\) defined as follows

\[d(\Phi_F(e), \varphi_G(e)) = \left(\frac{1}{2m} \left(\sum_{i=1}^m \sum_{j=1}^p \left(\left| s_i \cdot \alpha_{\varphi_F} - s_i \cdot \alpha_{\varphi_G} \right|^r + \left| s_i \cdot \varphi_{\varphi_F} - s_i \cdot \varphi_{\varphi_G} \right|^r \right) \right) \right)^\frac{1}{r} \]

(4.8)

And

\[d(\Phi_F(e), \varphi_G(e)) = \]

\[\left(\frac{1}{2mp} \left(\sum_{i=1}^m \sum_{j=1}^p \left(\left| s_i \cdot \alpha_{\varphi_F} - s_i \cdot \alpha_{\varphi_G} \right|^r + \left| s_i \cdot \varphi_{\varphi_F} - s_i \cdot \varphi_{\varphi_G} \right|^r \right) \right) \right)^\frac{1}{r} \]

(4.9)

Where \(r > 0 \), equations 4.8 and 4.9 reduced to 4.1 and 4.2 respectively, if \(r = 1 \). Similarly, if \(r = 2 \) then equations 4.8 and 4.9 reduced to 4.3 and 4.4 respectively.

Definition 4.4

Similarity measure between two mIVNSS \((\Phi_F, E)\) and \((\varphi_G, E)\) based on the weighted distance of \((\Phi_F, E)\) and \((\varphi_G, E)\) defined as follows

\[S(\Phi_F, \varphi_G) = \frac{1}{1 + d^w(\Phi_F, \varphi_G)} \]

(4.10)

Definition 4.5

Let \(\Phi_F \) and \(\varphi_G \) are mPIVNSS over the universal set, then \(\Phi_F \) and \(\varphi_G \) are said to be \(\alpha \)-similar if and only if \(S_m(\Phi_F, \varphi_G) \geq \alpha \) for \(\alpha \in (0, 1) \). If \(S_m(\Phi_F, \varphi_G) > \frac{1}{2} \) then we can say that \(\Phi_F \) and \(\varphi_G \) are significantly similar.

5. Applications of Similarity Measures of mPIVNSS in Medical Diagnoses
In this section, we proposed the algorithm for mPIVNSS by using developed similarity measures. We also used the proposed methods for medical diagnoses.

5.1. Application of Similarity Measure in Medical Diagnoses

We develop the algorithm of mPIVNSS for similarity measure and used the developed similarity measure for medical diagnoses by using the proposed algorithm.

5.1.1. Algorithm for Similarity Measure of mPIVNSS

Step 1. Pick out the set containing parameters.

Step 2. Construct the mPIVNSS according to experts.

Step 3. Construct mPIVNSS Φ_S^t for the evaluation of different decision-makers, where $t = 1, 2, ..., m$.

Step 4. Find the distance between two mPIVNSS by using the distance formula.

$$d_{mPIVNSS}^H(\Phi_x, \Phi_y) = \frac{1}{2m} \left\{ \sum_{i=1}^{m} \sum_{j=1}^{p} \left(s_i \cdot u_{\Phi_x(u_i)} - s_i \cdot u_{\Phi_y(u_j)} \right) + \left(s_i \cdot v_{\Phi_x(u_i)} - s_i \cdot v_{\Phi_y(u_j)} \right) \right\}$$

Step 5. Compute the similarity measure between two mPIVNSS by utilizing the following formula

$$S_{mPIVNSS}(\Phi_x, \Phi_y) = \frac{1}{1 + d(\Phi_x, \Phi_y)}$$

Step 6. Analyze the result.

5.2. Problem Formulation and Application of Similarity Measure of mPIVNSS For Disease Diagnoses

The general proposed algorithm can be used in diagnosis complications, then we are giving one numerical example containing way out those diagnosis problems in the general lighted of scientific discipline. This planned algorithm may be obtained from immoderate medical disease diagnosis complications. We consider typhoid disease as a diagnosis problem, so whether a well-advised patient has typhoid or not, as many containing the overall signs and symptoms of typhoid are going to be compatible as well as other diseases such as malaria. For a verbal description of the disease, we tend dispensed similarity measures along the mPIVNSS structure to attain an insured person as well as high-fidelity consequences. The general m-polar anatomical structure offers us a record of medical experts rating for the extraordinary disease.

5.2.1. Application of Similarity Measure

Now we assume the universal set as follows $U = \{u_1 = \text{typhoid}, u_2 = \text{not typhoid}\}$ and E be a set of parameters which consist of symptoms of typhoid disease such as $E = \{x_1 = \text{flu}, x_2 = \text{body pain}, x_3 = \text{headache}\}$. Assume \mathcal{F} and $\mathcal{G} \subseteq E$, then we construct the 3-PIVNSS of \mathcal{F} and \mathcal{G} such as $\Phi_x(x)$ and $\Phi_y(x)$ according to experts given as follows.

<table>
<thead>
<tr>
<th>$\Phi_x(x)$</th>
<th>x_1</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>([5, 8], [2, 5], [1, 2]) ([3, 5], [1, 3], [2, 4])) ([6, 9], [7, 8], [8, 1])</td>
<td>([2, 4], [3, 0, 4], [1, 3]) ([2, 5], [1, 6], [1, 3])) ([8, 1], [6, 9], [6, 7])</td>
</tr>
</tbody>
</table>
Table 4: 3-PIVNSS of G_B according to experts

<table>
<thead>
<tr>
<th>$\varphi_f(x)$</th>
<th>x_1</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>([4,8],[3,0,6],[2,5]), ([2,7],[3,4],[4,6]), ([1,6],[5,0,7],[1,2]), ([3,4],[2,5],[2,5]), ([7,8],[4,9],[5,1])</td>
<td>([1,6],[5,9],[7,8],[1,2]), ([3,4],[2,5],[2,5]), ([1,6],[5,0,7],[1,2]), ([3,4],[2,5],[2,5]), ([7,8],[4,9],[5,1])</td>
</tr>
<tr>
<td>u_2</td>
<td>([2,7],[3,5],[2,6]), ([1,3],[2,5],[2,7]), ([4,9],[4,7],[5,8])</td>
<td>([1,6],[1,5],[4,8]), ([3,6],[3,4],[1,1]), ([4,9],[4,7],[5,8])</td>
</tr>
</tbody>
</table>

Now we compute distances between $\Phi_f(x)$ and $\varphi_g(x)$ by using definition 4.1 given as follows.

- $d^H_{3-PIVNSS}(\Phi_f(x),\varphi_g(x)) = 0.55$
- $d^N_{3-PIVNSS}(\Phi_f(x),\varphi_g(x)) = 0.275$
- $d^E_{3-PIVNSS}(\Phi_f(x),\varphi_g(x)) = 0.31111$
- $d^NE_{3-PIVNSS}(\Phi_f(x),\varphi_g(x)) = 0.22$

Now by using the above-calculated distances we will find the similarity measure between $\Phi_f(x)$ as well as $\varphi_g(x)$ given as follows

- $S^H_{3-PIVNSS}(\Phi_f,\varphi_g) = 0.6452 > 0.5$
- $S^N_{3-PIVNSS}(\Phi_f,\varphi_g) = 0.7843 > 0.5$
- $S^E_{3-PIVNSS}(\Phi_f,\varphi_g) = 0.7627 > 0.5$
- $S^NE_{3-PIVNSS}(\Phi_f,\varphi_g) = 0.8197 > 0.5$

According to the above calculation analyze that $S_{3-PIVNSS}(\Phi_f,\varphi_g) \geq 0.5$, so 3-PIVNSS of Φ_f and φ_g are significantly similar which shows that the patient suffering from typhoid.

6. Conclusion

In this article, we studied IVNSS and proposed the idea of mPIVNSS with some basic operations and properties. We use attributes and numerical examples to develop some basic operators. By using Hamming distance and Euclidean distance and their characteristics, a distance-based mPIVNSS similarity measure was also developed in this research. By using the presented distance-based similarity measure, a decision-making method has been developed for mPIVNSS. Finally, the developed technique has been used in medical diagnosis. In the future, the concept of mIVPNSS will be extended to neutrosophic fuzzy soft sets, interval-valued neutrosophic fuzzy soft sets, m-polar neutrosophic fuzzy soft sets, m-polar interval neutrosophic fuzzy soft sets, etc., and will be used to solve different real-life Problems, such as medical diagnosis, decision making, etc.

References

Neutrosophic Sets and Systems, Vol. 47, 2021

Received: Aug 17, 2021. Accepted: Dec 3, 2021