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Abstract: Multiple attribute decision-making (MADM) models are accepted as powerful tools for 

evaluating alternatives when the decision-analysts should consider more than one attribute while 

reaching a decision. The decision-makers who are consulted need a scale for expressing their 

judgments, experiences, or opinions. The fuzzy logic and its contemporary versions can supply 

different kinds of scales to allow the decision-makers to state their ideas. A recent version is totally 

dependent-neutrosophic (picture fuzzy) sets which include independently assignable elements: 

positive, neutral, negative, and refusal membership degrees. In this study, we aim to contribute to 

the literature of the totally dependent-neutrosophic sets by (i) proposing three new subsethood 

measures dedicatedly developed for totally dependent-neutrosophic sets for the first time in the 

literature and (ii) showing their applicability in a decision-making case study including a novel 

totally dependent-neutrosophic version of EDAS (Evaluation Based on Distance from Average 

Solution) method which is extended differently from the existing ones. To validate the proposed 

method, a comparative analysis with the existing totally dependent-neutrosophic MADM methods 

is provided. As a result, the proposed Subsethood Measure-based Totally Dependent-Neutrosophic 

Version of EDAS (SM-TDN-EDAS) method involving fewer steps than others gave similar rankings. 

Keywords: Totally dependent-neutrosophic sets, subsethood measure, EDAS, multiple criteria 

evaluation, fuzzy numbers. 

 

 

1. Introduction 

In multiple attribute decision-making (MADM) problems in which the decision analysts do not 

have enough or proper cardinal data such as cost of investment, sales profit, market share at a certain 

time, etc., the linguistic terms are used by the decision-makers while expressing their preferences, 

opinions, or feelings. Linguistic terms are often defined in different fuzzy environments. Zadeh [1] 

initiated the concept of fuzzy sets as a symbolization and representation tool for quantifying human 

judgments. In the traditional definition of fuzzy sets, there is just membership degree (µA) which 

takes a value between 0 and 1. In general, the membership degree is a measure of the optimism or 

agreement level of judgment. Thus, it has a positive meaning.  

For decades, various scholars have defined several fuzzy sets for smoothing the symbolization 

of the vagueness and ambiguity which are hidden in the human subconscious. Atanassov [2] initiated 

the concept of intuitionistic fuzzy sets (IFS) and add a new element into set definition: non-
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membership degree (vA). This novel item puts a level of resilience into the representation of 

judgments since the decision-maker can state his/her pessimistic view or disagreement level. So, non-

membership degree exposes a negative meaning. Accordingly, Atanassov [2] also introduced a new 

measure regarding hesitancy which has a neutral meaning: 𝜋𝐴 = 1 − 𝜇𝐴 − 𝜐𝐴. Therefore, IFS can cope 

with three dimensions of judgments (membership, non-membership, and hesitancy). In real life, we 

can represent these degrees with yes, no, and abstain. However, the hesitancy degree in IFSs depends 

on the others so that the decision-maker cannot independently assign any value for that. 

After the development of IFS, some other extensions such as Pythagorean fuzzy sets [3], q-Rung 

orthopair fuzzy sets [4], neutrosophic sets [5], spherical fuzzy sets [6], etc. have been introduced. 

From a different perspective, Cuong and Kreinovich [7] defined picture fuzzy sets as the 

generalization of fuzzy sets and IFSs. However, Smarandache, for the first time, renamed it by 

“totally dependent-neutrosophic set (TDNS)” [8]. In this paper, we use “totally dependent-

neutrosophic set (TDNS)” instead of “picture fuzzy set (PFS)”.  

A TDNS is characterized by three independently assignable degrees expressing the positive 

membership, the neutral membership (which is equivalent to hesitancy degree), and the negative 

membership (which means non-membership). The sole constraint regarding these three degrees is 

that their sum must not exceed 1. The remaining part is called refusal degree and it represents the 

decision maker's choice of refusing to share his/her preference.  

For illustration, Cuong [9] gives the voting process as an example of TDNS for clarifying the 

elements defined: the voters may be divided into four groups of those who: vote for the candidate, 

abstain, vote against the candidate, and refusal of the voting, i.e., casting a veto. Garg [10] gives 

another example. When a decision analyst consults a certain decision-maker regarding a certain topic, 

then he/she may state that 0.3 is the possibility that statement is true, 0.4 is the possibility that 

statement is false and 0.2 is the possibility that he/she is not sure of it. This issue cannot be handled 

by fuzzy sets or IFSs. This declaration of preference can be well-defined by TDNS as (𝜇, 𝜂, 𝑣) =

(0.3, 0.2,0.4) where 𝜇 is the positive membership degree, 𝜂 is the neutral membership degree, and 

𝑣 is the negative membership degree. As seen, their sum is 0.9 and the remaining part is called refusal 

degree which is equal to (1-0.9=) 0.1. Formally, the refusal degree is defined as 𝜋 = 1 − 𝜇 − 𝜂 − 𝑣. 

More formal definitions and operations are explained in Section 2. As seen from the examples, TDNS 

has greater representation power than IFS, neutrosophic sets, or other extensions since it exposes an 

additional fourth component, namely refusal degree. TDNS is the only fuzzy set definition that can 

address this issue. 

The subsethood measure (or inclusion measure) indicates the degrees of quantitative extensions 

of the qualitative set inclusion relation. In classical set theory, since either a crisp set 𝐴 is a subset of 

a crisp set 𝐵 or vice versa, subsethood measure should be two-valued: 0 and 1. Fuzzy subsethood 

measures determine the degree to which a fuzzy set contains another fuzzy set within the range of 

[0, 1]. This notion fuzzifies classical fuzzy set containment which is a crisp property: a fuzzy set B 

contains a fuzzy set A if 𝜇𝐴 ≤ 𝜇𝐵 . Kosko [11] argues that if this inequality holds for all but just a few 

elements, one can still consider A to be a subset of B to some degree. Many researchers such as Kosko 

[11], Sanchez [12], and Young [13] define several axioms for developing subsethood measures. As 

seen from Section 2, even though there are attempts to stating subsethood measures for various fuzzy 

sets, there is no proposition for TDNS. As the first contribution of this study to the existing literature, 

we have developed subsethood measures for TDNS and we proved that they satisfy the required 

axiomatic properties.  

To show our measures’ applicability in real-life MADM problem-solving issues, we have 

integrated the concept of subsethood measure in a well-known MADM method, namely EDAS 

(Evaluation Based on Distance from Average Solution). EDAS method was firstly presented by 

Keshavarz Ghorabaee et al. [14] for searching the distances between each alternative and average 
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solution. EDAS is very similar to TOPSIS and VIKOR, but they take the distances between each 

alternative and positive/negative ideal alternatives as a decision criterion: the best alternative among 

the set of alternatives should be as distant as possible from the negative ideal alternative and as close 

as possible to the positive ideal one [15]. EDAS cancels the phase of obtaining the ideal solutions 

which might be complex by considering the distance between each alternative and average solution 

that can be easily found from the current data in the problem.  

For enriching the representation power of EDAS, some extensions including TDNS have been 

proposed in the literature. For example, Zhang et al. [16] developed a TDNS-based EDAS with newly 

defined operations and illustrated its application in green supplier selection while Liang et al. [17] 

integrated TDNS-based EDAS and ELECTRE methods for cleaner production evaluation in gold 

mines. Similarly, Li et al. [18] defined totally dependent-neutrosophic (picture fuzzy) ordered 

weighted interaction averaging operator and totally dependent-neutrosophic (picture fuzzy) hybrid 

ordered weighted interaction averaging operator and used them in TDNS-based EDAS. Ping et al. 

[19] combined TDNS-based EDAS with quality function deployment and showed its application in 

an illustrative example. Tirmikcioglu Cinar [20] applied TDNS-based EDAS method for team leader 

selection for an audit firm. To the best of our knowledge, the literature does not have any integration 

of subsethood measures and EDAS until now. This study’s second contribution is this integration 

proposition to ease the mathematical operations of EDAS/TDNS-based EDAS and smooth the 

complexity.  

As a summarization, it can be stated that this study proposes some subsethood measures for 

TDNS for the first time in the literature and their usability is shown in a novel TDNS extension of 

EDAS. The rest of the paper is organized as follows. Section 2 gives the preliminaries of TDNS and 

its operations, and the extensive literature survey’s results on subsethood measure definitions for 

various fuzzy set environments. In Section 3, the definitions of three novel subsethood measures are 

detailed and it is proven that the proposed measures satisfy the required properties. In Section 4, 

novel subsethood measure-based totally dependent-neutrosophic (picture fuzzy) extension of EDAS 

(SM-TDN-EDAS) is explained step-by-step. To demonstrate the new extension’s usability, the results 

of a case study are shared in Section 5. Section 6 concludes the study with the findings and further 

research potential. 

2. Preliminaries  

In this chapter, the details of TDNS and operations defined on it are given. Then, the results of 

an extensive literature survey on subsethood measures for various fuzzy sets are stated. 

2.1. Totally dependent-neutrosophic set 

Cuong and Kreinovich [7] presented TDNS theory which is a generalization of Zadeh’s fuzzy set 

theory and Atanassov’s IFS theory and gave basic operations on TDNSs. A TDNS is defined with the 

help of the degree of positive membership, the degree of neutral membership, the degree of negative 

membership, and the degree of refusal membership mappings such that the sum of these components 

is equal to 1. Essentially, fundamental structures of TDNS have enough application to carry out 

situations requiring opinions of humans, which is comprising answer types such as yes, no, abstain, 

and refusal. 

 

Definition 1. [9,21] Let 𝑋 be a universal set. Then a TDNS 𝐴 on 𝑋 is defined as follows: 

𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜂𝐴(𝑥), 𝜈𝐴(𝑥)) | 𝑥 ∈ 𝑋} (1) 
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where 𝜇𝐴, 𝜂𝐴, 𝜈𝐴 are mapping from 𝑋 to [0,1]. For all 𝑥 ∈ 𝑋,  𝜇𝐴(𝑥) is called positive membership 

degree of 𝑥 ∈ 𝐴 , 𝜂𝐴(𝑥)  is called neutral membership degree of 𝑥 ∈ 𝐴  and 𝜈𝐴(𝑥)  is negative 

membership degree of 𝑥 ∈ 𝐴. Also, 𝜇𝐴, 𝜂𝐴, 𝜈𝐴 satisfy the following condition: 

0 ≤ 𝜇𝐴(𝑥) + 𝜂𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1,∀𝑥 ∈ 𝑋   (2) 

and 𝜋(𝑥) = 1 − 𝜇𝐴(𝑥) − 𝜂𝐴(𝑥) − 𝜈𝐴(𝑥) is called refusal membership degree of 𝑥 in 𝐴. 

We denote by 𝑇𝐷𝑁𝑆(𝑋)  the collection of TDNSs on 𝑋 . Cuong [9] defined the subsethood, 

equality, union, intersection, and complement for every two TDNSs 𝐴 and 𝐵 as follow: 

1. 𝐴 ⊆ 𝐵 if ∀𝑥 ∈ 𝑋, 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥), 𝜂𝐴(𝑥) ≤ 𝜂𝐵(𝑥),  𝜈𝐴(𝑥) ≥ 𝜈𝐵(𝑥); 

2. 𝐴 = 𝐵 iff 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴; 

3. 𝐴 ∪ 𝐵 = {〈𝑥,max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) ,min(𝜂𝐴(𝑥), 𝜂𝐵(𝑥)) , min(𝜈𝐴(𝑥), 𝜈𝐵(𝑥))〉| 𝑥 ∈ 𝑋}  

4. 𝐴 ∩ 𝐵 = {〈𝑥,min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) , min(𝜂𝐴(𝑥), 𝜂𝐵(𝑥)) , max(𝜈𝐴(𝑥), 𝜈𝐵(𝑥))〉| 𝑥 ∈ 𝑋} 

5. 𝐴𝑐 = {〈𝑥, 𝜈𝐴(𝑥), 𝜂𝐴(𝑥), 𝜇𝐴(𝑥)〉| 𝑥 ∈ 𝑋}. 

For all 𝐴,𝐵 ∈ 𝑇𝐷𝑁𝑆(𝑋), Cuong [9] presented normalized Hamming distance measure by extending 

distance measure for IFS. 

𝑑1(𝐴,𝐵) = [
1

𝑛
∑((𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖))

2
+ (𝜂𝐴(𝑥𝑖) − 𝜂𝐵(𝑥𝑖))

2
+ (𝜈𝐴(𝑥𝑖) − 𝜈𝐵(𝑥𝑖))

2)

𝑛

𝑖=1

]

1
2

 (3) 

for all 𝐴,𝐵 ∈ 𝑇𝐷𝑁𝑆(𝑋), Van Dinh et al. [22] introduced some distance measures for TDNSs as follow: 

𝑑2(𝐴,𝐵) =
1

𝑛
∑(max{|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|, |𝜂𝐴(𝑥𝑖) − 𝜂𝐵(𝑥𝑖)|, |𝜈𝐴(𝑥𝑖) − 𝜈𝐵(𝑥𝑖)|})

𝑛

𝑖=1

, (4) 

𝑑3(𝐴,𝐵) = [∑(max{(𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖))
2
, (𝜂𝐴(𝑥𝑖) − 𝜂𝐵(𝑥𝑖))

2
, (𝜈𝐴(𝑥𝑖) − 𝜈𝐵(𝑥𝑖))

2})

𝑛

𝑖=1

]

1
2

. (5) 

2.2. Subsethood measures for different fuzzy environments 

The subsethood measure (also called inclusion measure or degree) indicates the degrees of 

quantitative extensions of the qualitative set inclusion relation. In classical set theory, since either a crisp 

set A is a subset of a crisp set B or vice versa, subsethood measure should be two-valued. Fuzzy 

subsethood measures determine the degree to which a fuzzy set contains another between 0 and 1. 

Many researchers have studied different subsethood measures for fuzzy sets, IFS, and neutrosophic 

sets.  

Sinha and Dougherty [23] presented the axiomatic structure of subsethood measure for fuzzy sets. 

Young [13] introduced different axioms of the definition of subsethood measure for fuzzy sets from 

axioms of Sinha and Dougherty [23]. Fan et al. [24] and Guoshun and Yunsheng [25] defined new 

different subsethood measures for fuzzy sets. Bustince et al. [26] defined strong S-subsethood measures 

for interval-valued fuzzy sets (IVFS). Vlachos and Sergiadis [27] and Takáč [28,29] presented different 

subsethood measures for IVFS. Rickard et al. [30] introduced subsethood measure for Type-2 fuzzy sets 

and generalized Type-n fuzzy sets.  

Liu and Xiong [31] proposed the definition of subsethood measure for IFS. Cornelis and Kerre [32] 

introduced a different framework of subsethood measure for IFSs by considering the subsethood 

degree to be in the unit square [0,1]2. Grzegorzewski and Mrowka [33] presented subsethood measure 

for IFSs based on the Hamming distance measure. Zhang et al. [34] defined subsethood measure for 

IFSs and IVFSs. Xie et al. [35] gave a new axiomatic definition and some inclusion measures for IFSs. 

Zhang et al. [36] introduced another new axiomatic definition and presented inclusion measure for IFSs.  
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Şahin and Küçük [37] proposed subsethood measure for single-valued neutrosophic sets (SVNSs) 

while Şahin and Karabacak [38] presented a subsethood measure for interval-valued neutrosophic sets 

(IVNS). Ji and Zhang [39] introduced a subsethood measure for IVNSs based on the Hausdorff distance 

measure. Zhang and Wang [40] proposed an inclusion measure for hesitant fuzzy sets (HFSs). Finally, 

Aydoğdu [41] introduced the very first subsethood measure for TDNSs (PFSs) as a conference 

proceeding for the first time in the literature.  

3. Novel subsethood measures for TDNS  

This In this section, we propose axioms of the definition of subsethood measure for TDNSs and 

some new subsethood measures for TDNSs based on the distance measures of TDNSs. To establish 

the subsethood degree to which A belongs to B, we use the distance between TDNSs A and A ∩ B. 

d1, d2, and d3 distance measures are given in Eqs. (3-5) in Chapter 2.1. 

Definition 2. Let 𝑋 be a universe of discourse. A mapping 𝑆:𝑇𝐷𝑁𝑆(𝑋) × 𝑇𝐷𝑁𝑆(𝑋) → [0,1] is 

called subsethood measure if it satisfies the following properties. For all 𝐴,𝐵, 𝐶 ∈ 𝑇𝐷𝑁𝑆(𝑋), 

1. 𝑆(𝐴,𝐵) = 1 iff 𝐴 ⊆ 𝐵, 

2. 𝑆(𝐴, 𝐴𝑐) = 1 ⇔ 𝜇𝐴(𝑥) ≤ 𝜈𝐴(𝑥), 

3. 𝑆(𝐴,𝐵) = 0 if 𝐴 = 〈𝑥, 1,0,0〉 and 𝐵 = 〈𝑥, 0,0,1〉, 

4. If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝑆(𝐶, 𝐴) ≤ 𝑆(𝐵,𝐴) and 𝑆(𝐶, 𝐴) ≤ 𝑆(𝐶,𝐵). 

The following theorem gives the subsethood measures based on distance measures. 

Theorem: Let 𝑋 be a universe of discourse. For 𝐴,𝐵 ∈ 𝑇𝐷𝑁𝑆(𝑋), the mappings 

𝑆1(𝐴,𝐵) = 1 −
1

√2
𝑑1(𝐴, 𝐴 ∩ 𝐵) (6) 

𝑆2(𝐴, 𝐵) = 1 − 𝑑2(𝐴, 𝐴 ∩ 𝐵) (7) 

𝑆3(𝐴,𝐵) = 1 −
1

√𝑛
𝑑3(𝐴, 𝐴 ∩ 𝐵) (8) 

are subsethood measures for TDNSs. 

Proof: In order that 𝑆𝑖(𝐴,𝐵) (𝑖 = 1,2,3) to be described as a subsethood measure for TDNSs, it 

must satisfy the properties of Definition 2. For simplicity, we only prove that 𝑆1(𝐴,𝐵) satisfies these 

properties. 𝑆2(𝐴,𝐵) and 𝑆3(𝐴,𝐵) may also be shown in the same fashion. 

Let 𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜂𝐴(𝑥), 𝜈𝐴(𝑥)) | 𝑥 ∈ 𝑋}  and 𝐵 = {(𝑥, 𝜇𝐵(𝑥), 𝜂𝐵(𝑥), 𝜈𝐵(𝑥)) | 𝑥 ∈ 𝑋}  be two 

TDNSs. Since 𝐴𝑐 = {(𝑥, 𝜈𝐴(𝑥), 𝜂𝐴(𝑥), 𝜇𝐴(𝑥)) | 𝑥 ∈ 𝑋} , we have 𝐴 ∩ 𝐴𝑐 = {(𝑥,min(𝜇𝐴(𝑥), 𝜇𝐴𝑐(𝑥) =

𝜈𝐴(𝑥)) , min(𝜂𝐴(𝑥), 𝜂𝐴𝑐(𝑥) = 𝜂𝐴(𝑥)) , max(𝜈𝐴(𝑥), 𝜈𝐴𝑐(𝑥) = 𝜇𝐴(𝑥))) | 𝑥 ∈ 𝑋}. 

1. Let  𝐴 ⊆ 𝐵, then 𝐴 ∩ 𝐵 = {(𝑥, 𝜇𝐴(𝑥), 𝜂𝐴(𝑥), 𝜈𝐴(𝑥)) | 𝑥 ∈ 𝑋}. 

𝑆1(𝐴,𝐵) = 1 −
1

√2
𝑑1(𝐴, 𝐴 ∩ 𝐵) 

= 1−
1

√2
[
1

𝑛
∑((𝜇𝐴(𝑥𝑖) − 𝜇𝐴∩𝐵(𝑥𝑖))

2
+ (𝜂𝐴(𝑥𝑖) − 𝜂𝐴∩𝐵(𝑥𝑖))

2
+ (𝜈𝐴(𝑥𝑖) − 𝜈𝐴∩𝐵(𝑥𝑖))

2
)

𝑛

𝑖=1

]

1
2

 

= 1. 
Conversely, suppose that 𝑆1(𝐴,𝐵) = 1, then 𝑑1(𝐴, 𝐴 ∩ 𝐵) = 0. So 𝜇𝐴(𝑥) = 𝜇𝐴∩𝐵(𝑥), 𝜂𝐴(𝑥) = 𝜂𝐴∩𝐵(𝑥) 

and 𝜈𝐴(𝑥) = 𝜈𝐴∩𝐵(𝑥). Because of the definition of intersection and inclusion of TDNSs, TDNS 𝐴 is a 

subset of TDNS 𝐵. 

2. If  𝜇𝐴(𝑥) ≤ 𝜈𝐴(𝑥), then  

𝐴 ∩ 𝐴𝑐 = {(𝑥,min(𝜇𝐴(𝑥), 𝜈𝐴(𝑥)) , min(𝜂𝐴(𝑥), 𝜂𝐴(𝑥)) , max(𝜈𝐴(𝑥), 𝜇𝐴(𝑥))) | 𝑥 ∈ 𝑋} 

= {(𝑥, 𝜇𝐴(𝑥), 𝜂𝐴(𝑥), 𝜈𝐴(𝑥))} . 

Thus, 
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𝑆1(𝐴, 𝐴
𝑐) = 1 −

1

√2
𝑑1(𝐴, 𝐴 ∩ 𝐴

𝑐) 

= 1 −
1

√2
[
1

𝑛
∑((𝜇𝐴(𝑥𝑖) − 𝜇𝐴∩𝐴𝑐(𝑥𝑖))

2
+ (𝜂𝐴(𝑥𝑖) − 𝜂𝐴∩𝐴𝑐(𝑥𝑖))

2
+ (𝜈𝐴(𝑥𝑖) − 𝜈𝐴∩𝐴𝑐(𝑥𝑖))

2
)

𝑛

𝑖=1

]

1
2

 

= 1 −
1

√2
[
1

𝑛
∑((𝜇𝐴(𝑥𝑖) − 𝜇𝐴(𝑥𝑖))

2
+ (𝜂𝐴(𝑥𝑖) − 𝜂𝐴(𝑥𝑖))

2
+ (𝜈𝐴(𝑥𝑖) − 𝜈𝐴(𝑥𝑖))

2
)

𝑛

𝑖=1

]

1
2

= 1 

3. For 𝐴 = {〈𝑥, 1,0,0〉} and 𝐵 = {〈𝑥, 0,0,1〉}, we have 𝐴 ∩ 𝐵 = {〈𝑥, 0,0,1〉}. Hence 

𝑆1(𝐴,𝐵) = 1 −
1

√2
𝑑1(𝐴, 𝐴 ∩ 𝐵) 

= 1−
1

√2
[
1

𝑛
∑((1 − 0)2 + (0 − 0)2 + (0 − 1)2)

𝑛

𝑖=1

]

1
2

 

= 0 
4. To prove that 𝑆1(𝐶, 𝐴) ≤ 𝑆1(𝐵, 𝐴), it suffices to show 𝑑1(𝐶, 𝐶 ∩ 𝐴) ≥ 𝑑1(𝐵,𝐵 ∩ 𝐴). Since 𝐴 ⊆

𝐵 ⊆ 𝐶, 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥) ≤ 𝜇𝐶(𝑥), 𝜂𝐴(𝑥) ≤ 𝜂𝐵(𝑥) ≤ 𝜂𝐶(𝑥) and 𝜈𝐴(𝑥) ≥ 𝜈𝐵(𝑥) ≥ 𝜈𝐶(𝑥). We get 

𝑑1(𝐶, 𝐶 ∩ 𝐴) = [
1

𝑛
∑((𝜇𝐶(𝑥𝑖) − 𝜇𝐶∩𝐴(𝑥𝑖))

2
+ (𝜂𝐶(𝑥𝑖) − 𝜂𝐶∩𝐴(𝑥𝑖))

2
+ (𝜈𝐶(𝑥𝑖) − 𝜈𝐶∩𝐴(𝑥𝑖))

2
)

𝑛

𝑖=1

]

1
2

 

= [
1

𝑛
∑((𝜇𝐶(𝑥𝑖) − 𝜇𝐴(𝑥𝑖))

2
+ (𝜂𝐶(𝑥𝑖) − 𝜂𝐴(𝑥𝑖))

2
+ (𝜈𝐶(𝑥𝑖) − 𝜈𝐴(𝑥𝑖))

2
)

𝑛

𝑖=1

]

1
2

 

≥ [
1

𝑛
∑((𝜇𝐵(𝑥𝑖) − 𝜇𝐴(𝑥𝑖))

2
+ (𝜂𝐵(𝑥𝑖) − 𝜂𝐴(𝑥𝑖))

2
+ (𝜈𝐵(𝑥𝑖) − 𝜈𝐴(𝑥𝑖))

2
)

𝑛

𝑖=1

]

1
2

 

= [
1

𝑛
∑((𝜇𝐵(𝑥𝑖) − 𝜇𝐵∩𝐴(𝑥𝑖))

2
+ (𝜂𝐵(𝑥𝑖) − 𝜂𝐵∩𝐴(𝑥𝑖))

2
+ (𝜈𝐵(𝑥𝑖) − 𝜈𝐵∩𝐴(𝑥𝑖))

2
)

𝑛

𝑖=1

]

1
2

 

= 𝑑1(𝐵,𝐵 ∩ 𝐴). 
Similarly, it can be shown that 𝑆(𝐶, 𝐴) ≤ 𝑆(𝐶, 𝐵). 

  

4. Subsethood measure-based totally dependent-neutrosophic set extension of EDAS (SM-TDN-

EDAS) 

EDAS is a distance-based MADM method like TOPSIS and VIKOR. The distances between each 

alternative and positive/negative ideal alternatives are computed and operationalized by the 

mentioned methods and then these distance measures are accepted as a criterion for reaching a 

decision about the rankings of alternatives. They include steps that are dedicated to obtaining or 

generating a positive and a negative ideal solution. In EDAS these probably complex and confusing 

steps are eliminated because the distance between alternative and the average solution is considered. 

Therefore, decision-analyst does not need to generate positive/negative ideal solutions but to 

compute the average performance scores of each attribute. Traditional EDAS uses two distinct 

measures: positive distance from average (PDA) and negative distance from average (NDA). 

Naturally, the decision reached should be based on higher positive distance and lower negative 

distance.  

TDNS is one of the recent fuzzy concepts that can be used in MADM analysis in representing 

human judgments, opinions, or expertise. After a brief literature review, studies extending various 

MADM approaches into TDNS environment are exemplified and summarized in Table A1. In the 
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first column, the studies are given while the second column shows the study’s methodology which 

includes extension(s) of the MADM approach(es) under TDNS and the third column depicts the 

application of the study. As seen from the table, VIKOR (VlseKriterijumska Optimizacija I 

Kompromisno Resenje), EDAS, and TOPSIS (Technique for Order of Preference by Similarity to Ideal 

Solution) extensions have the majority. There are also TDNS extensions of ARAS, TODIM, MABAC, 

MULTIMOORA, and PROMETHEE II in a few studies. Also, it is found that there is no proposition 

integrating subsethood measure and EDAS under any kind of fuzzy sets as well as TDNSs. 

This study has extended EDAS method under the totally dependent-neutrosophic (picture 

fuzzy) environment in a different manner from existing extensions that are summarized in Table A1 

as a contribution to the literature. In this novelty, we propose to use the subsethood measures as 

decision criteria rather than PDA and NDA. Indeed, our basic aim is to show the applicability of 

subsethood measures in a MADM problem-solving methodology under TDNS environment. 

Additionally, it is seen that the EDAS method’s mathematical part is smoothed since the calculation 

complexity is reduced by replacing the idea of measuring distances to the average solution with 

calculating subsethood degree to the average solution in which includes just one operation. Also, 

TDNS may provide a higher independence possibility to the decision-makers since it is allowed to 

express independent degrees for positive, negative, and hesitancy preferences. The refusal degrees 

can also be calculated as a fourth element. 

In this novel extension, there are 5 steps explained below. 

Step 1. Decision-makers (e=1,…,k) are asked to express their judgments about alternatives’ 

(i=1,…,m) performances with respect to attributes (j=1,…,n). So, after collecting data from decision-

makers, there will be k decision matrices (𝑋1, 𝑋2, … , 𝑋𝑘) in hand. The judgments are aggregated via 

an aggregation operator defined for TDNS. In this step, the decision-makers can be weighted 

according to their expertise (𝜔𝑒). 〈𝜇𝑖𝑗
𝑒 , 𝜂𝑖𝑗

𝑒 , 𝑣𝑖𝑗
𝑒 〉 depicts the linguistic evaluation of eth decision-maker 

and 〈𝜇𝑖𝑗 , 𝜂𝑖𝑗 , 𝑣𝑖𝑗 〉  represents the aggregated performance evaluation. For obtaining aggregated 

decision matrix (Eq. 10), the totally dependent-neutrosophic (picture fuzzy) weighted averaging 

(TDNWA) operator (Eq. 9) defined by Zhang et al. [16] is utilized. 

𝑋𝑎𝑔𝑔 = 𝑃𝐹𝑊𝐴𝜔(𝑋
1, 𝑋2, … , 𝑋𝑘) =⊕𝑒=1

𝑘 𝜔𝑒𝑋
𝑒 = 〈𝜇𝑖𝑗 , 𝜂𝑖𝑗 , 𝑣𝑖𝑗〉 

= {1 −∏(1− 𝜇𝑖𝑗
𝑒 )

𝜔𝑒

𝑘

𝑒=1

 ,∏ (𝜂𝑖𝑗
𝑒 )

𝜔𝑒
𝑘

𝑒=1
,∏ (𝑣𝑖𝑗

𝑒 )
𝜔𝑒

𝑘

𝑒=1
} 

(9) 

𝑋𝑎𝑔𝑔 = [
〈𝜇11, 𝜂11, 𝑣11〉 ⋯ 〈𝜇1𝑛 , 𝜂1𝑛 , 𝑣1𝑛〉

⋮ ⋱ ⋮
〈𝜇𝑚1, 𝜂𝑚1, 𝑣𝑚1〉 ⋯ 〈𝜇𝑚𝑛 , 𝜂𝑚𝑛 , 𝑣𝑚𝑛〉

] (10) 

Step 2. The attributes included in any decision problem can be cost or benefit type. In order to 

convert any cost attribute to a benefit one, the positive and negative membership degrees should be 

replaced while the neutral membership degree keeps its value. This is called normalization.  

After normalization, the weights of attributes representing the importance and significance of 

the attribute should be considered. There are 4 possibilities: (i) When the weights are already known 

as prior information, they can be used directly; (ii) When the decision-makers’ preferences are 

important for the decision problem in hand, their expertise can be consulted and the subjective 

weights may be calculated via different approaches such as Analytic Hierarchy Process (AHP) or 

Analytic Network Process (ANP), etc.; (iii) When the subjectivity is not desired with the purpose of 

eliminating manipulation risk that may be originated from the decision-makers or when there is not 

enough time for data collection, the objective weights can be computed from the current data by 

referring to the methods such as entropy-based approaches or maximizing standard deviation 

method; (iv) If required, a mixture of objective and subjective methods can be used.  
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Independent from the methodology used, the weighted normalized decision matrix is obtained 

via Eq. (11) where 𝑤𝑗 represents the weight of attribute j. For this weighting process, we utilized the 

weighting formula proposed by Jovcic et al. [42]. 

〈𝜇𝑖𝑗
𝑤 , 𝜂𝑖𝑗

𝑤 , 𝑣𝑖𝑗
𝑤〉 = 𝑤𝑗 ∗ 〈𝜇𝑖𝑗 , 𝜂𝑖𝑗 , 𝑣𝑖𝑗〉 = 〈1 − (1 − 𝜇𝑖𝑗)

𝑤𝑗 , 𝜂
𝑖𝑗

𝑤𝑗 , (𝜂𝑖𝑗 + 𝑣𝑖𝑗)
𝑤𝑗 − (𝜂𝑖𝑗)

𝑤𝑗〉 (11) 

Step 3. The basic distinctive feature of EDAS is the consideration of average scores rather than 

positive or negative ideals. In this step, the TDN average scores of each attribute will be obtained. For 

this purpose, all the weighted aggregated performance scores depicted in columns are averaged. 

Firstly, the addition operation is used iteratively as given in Eq. (12). 

〈𝜇1𝑗
𝑤 , 𝜂1𝑗

𝑤 , 𝑣1𝑗
𝑤 〉 + 〈𝜇2𝑗

𝑤 , 𝜂2𝑗
𝑤 , 𝑣2𝑗

𝑤 〉 = 〈1 − (1 − 𝜇1𝑗
𝑤 )(1− 𝜇2𝑗

𝑤 ), 𝜂1𝑗
𝑤 𝜂2𝑗

𝑤 , (𝜂1𝑗
𝑤 + 𝑣𝑖𝑗

𝑤)(𝜂2𝑗
𝑤 + 𝑣2𝑗

𝑤 ) − 𝜂1𝑗
𝑤 𝜂2𝑗

𝑤 〉 (12) 

The sum of the overall TDN numbers is represented by 〈𝜇𝑖𝑗
𝑠𝑢𝑚 , 𝜂𝑖𝑗

𝑠𝑢𝑚 , 𝑣𝑖𝑗
𝑠𝑢𝑚〉 for each attribute j. Then, 

multiplication by a scalar (𝜆 = 1/𝑚 > 0) operation is used (Eq. 13). The mathematical operations are 

defined by Jovcic et al [42]. 

𝐴�̃� = 〈𝜇𝑗
𝐴𝑉 , 𝜂𝑗

𝐴𝑉 , 𝑣𝑗
𝐴𝑉〉 =

1

𝑚
∗ 〈𝜇𝑖𝑗

𝑠𝑢𝑚 , 𝜂𝑖𝑗
𝑠𝑢𝑚 , 𝑣𝑖𝑗

𝑠𝑢𝑚〉 

= 〈1 − (1 − 𝜇𝑖𝑗
𝑠𝑢𝑚)

1
𝑚 , (𝜂𝑖𝑗

𝑠𝑢𝑚)
1
𝑚 , (𝜂𝑖𝑗

𝑠𝑢𝑚 + 𝑣𝑖𝑗
𝑠𝑢𝑚)

1
𝑚 − (𝜂𝑖𝑗

𝑠𝑢𝑚)
1
𝑚〉 

(13) 

Step 4. Rather than measuring the negative and positive distances from the average solution, this 

study proposes the usage of subsethood degrees. In this step, each alternative’s subsethood degree 

to the average solution will be measured. For this purpose, one of the subsethood measures proposed 

in this study can be used alternately. They are rewritten with the appropriate notions in Eqs. (14-16). 

Suppose �̃�𝑖 = 〈𝜇𝑖𝑗
𝑤 , 𝜂𝑖𝑗

𝑤 , 𝑣𝑖𝑗
𝑤〉 shows the TDN evaluation scores of alternative i and 𝐴�̃� = 〈𝜇𝑗

𝐴𝑉 , 𝜂𝑗
𝐴𝑉 , 𝑣𝑗

𝐴𝑉〉 

represents the average solution, 

𝑆1(�̃�𝑖 , 𝐴�̃�) = 1 −
1

√2
𝑑1(�̃�𝑖 , �̃�𝑖 ∩ 𝐴�̃�) (14) 

𝑆2(�̃�𝑖 , 𝐴�̃�) = 1 − 𝑑2(�̃�𝑖 , �̃�𝑖 ∩ 𝐴�̃�) (15) 

𝑆3(�̃�𝑖 , 𝐴�̃�) = 1 −
1

√𝑛
𝑑3(�̃�𝑖 , �̃�𝑖 ∩ 𝐴�̃�) (16) 

where 

𝑑1(�̃�𝑖 , �̃�𝑖 ∩ 𝐴�̃�) =

[
 
 
 
 
1

𝑛
∑

(

 
 
(𝜇𝑖𝑗

𝑤 −min(𝜇𝑖𝑗
𝑤 , 𝜇𝑗

𝐴𝑉))
2

+(𝜂𝑖𝑗
𝑤 −min(𝜂𝑖𝑗

𝑤 , 𝜂𝑗
𝐴𝑉))

2

+(𝑣𝑖𝑗
𝑤 −max(𝑣𝑖𝑗

𝑤 , 𝑣𝑗
𝐴𝑉))

2

)

 
 

𝑛

𝑖=1

]
 
 
 
 

1
2

 (17) 

𝑑2(�̃�𝑖 , �̃�𝑖 ∩ 𝐴�̃�) =
1

𝑛
∑(max{

|𝜇𝑖𝑗
𝑤 −min(𝜇𝑖𝑗

𝑤 , 𝜇𝑗
𝐴𝑉)|,

|𝜂𝑖𝑗
𝑤 −min(𝜂𝑖𝑗

𝑤 , 𝜂𝑗
𝐴𝑉)|,

|𝑣𝑖𝑗
𝑤 −max(𝑣𝑖𝑗

𝑤 , 𝑣𝑗
𝐴𝑉)|

})

𝑛

𝑖=1

 (18) 

𝑑3(�̃�𝑖 , �̃�𝑖 ∩ 𝐴�̃�) =

[
 
 
 
 

∑

(

 
 
max

{
 
 

 
 (𝜇𝑖𝑗

𝑤 −min(𝜇𝑖𝑗
𝑤 , 𝜇𝑗

𝐴𝑉))
2
,

(𝜂𝑖𝑗
𝑤 −min(𝜂𝑖𝑗

𝑤 , 𝜂𝑗
𝐴𝑉))

2
,

(𝑣𝑖𝑗
𝑤 −max(𝑣𝑖𝑗

𝑤 , 𝑣𝑗
𝐴𝑉))

2

}
 
 

 
 

)

 
 

𝑛

𝑖=1

]
 
 
 
 

1
2

 (19) 

Step 5. The decision-makers expect that the best alternative should have the lowest possibility of 

being a subset of the average solution since the average solution does not represent the ideal solution 

but a mean one. So, it is required that the subsethood measure between the best alternative and the 

average solution should be the lowest one. Thus, the alternatives are ranked in ascending order of 

their subsethood measures against average solution and it is decided that the alternative with the 

minimum subsethood measure is the best one. 
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5. A hypothetical application  

In this study, we have aimed to develop a novel TDNS version of EDAS with the integration of 

subsethood degree instead of distances between alternatives and average solution. We have also tried 

to keep the computations totally dependent-neutrosophic (picture fuzzy) until the very end of the 

steps. The proposed SM-TDN-EDAS is here applied in a real case. This case is taken from Jovcic, et 

al. [42]. They used a TDNS version of ARAS (Additive Ratio Assessment) method to the freight 

distribution concept selection problem for a tire manufacturing company in the Czech Republic. They 

considered 5 experts’ evaluations on 3 alternatives with respect to 23 sub-criteria under four main 

criteria. In order to show the applicability of our method proposition of SM-TDN-EDAS, we chose 

the environmental main criterion which includes 5 sub-criteria, namely air pollution, noise pollution, 

the effect on public health, energy consumption, and vehicle utilization. The alternatives are freight 

distribution by own transport fleet, freight distribution by the 3PL provider, and freight distribution 

by combining own transport fleet and 3PL services. They collected the data from experts and found 

the aggregated decision matrix of Xagg as given in Table 1. Here we have the aggregated decision 

matrix so that we did not apply TDNWA operator just for this case. 

Table 1. Aggregated decision matrix (𝑋𝑎𝑔𝑔) 

 C1 C2 C3 C4 C5 

A1 0.2 0.4 0.2 0.4 0.2 0.2 0 0.6 0.2 0.8 0.2 0 0 0.2 0.8 

A2 0.4 0.4 0 0.2 0.4 0.2 0.2 0.4 0 0 0.2 0.8 0.8 0.2 0 

A3 0.4 0.4 0 0.2 0.6 0.2 0.2 0.4 0.2 0 0.4 0.6 0.4 0.4 0.2 

 

The weights of attributes (𝑤𝑗) are provided as 0.2593, 0.0963, 0.1333, 0.1407, 0.3704. There is no 

need for normalization since all the attributes have benefit features. The weighted matrix is found by 

operating Eq. (11) and is given in Table 2. For illustration purposes, the weighting of the first 

alternatives’ scores concerning the first criterion is given as follows: 

     〈𝜇11
𝑤 , 𝜂11

𝑤 , 𝑣11
𝑤 〉 = 0.2593 ∗ 〈0.2,0.4,0.2〉 =  

            〈1 − (1 − 0.2)0.2593, 0.40.2593, (0.4 + 0.2)0.2593 − 0.40.2593〉 = 〈0.0562,0.7885,0.0874〉  
Referring to Eqs. (12-13), the average solution’s performance scores with respect to each attribute 

are obtained. To illustrate, the average solution’s performance score for attribute 1 is given: 

 〈𝜇11
𝑤 , 𝜂11

𝑤 , 𝑣11
𝑤 〉 + 〈𝜇21

𝑤 , 𝜂21
𝑤 , 𝑣21

𝑤 〉 = 〈0.0562,0.7885,0.0874〉 + 〈0.1241,0.7885,0〉 =  
〈1 − (1 − 0.0562)(1 − 0.1241), 0.7885 ∗ 0.7885, (0.7885 + 0.0874)(0.7885 + 0) − 0.7885 ∗

0.7885〉 = 〈0.1733,0.6218,0.0689〉.   

 〈0.1733,0.6218,0.0689〉 + 〈𝜇31
𝑤 , 𝜂31

𝑤 , 𝑣31
𝑤 〉 = 〈0.1733,0.6218,0.0689〉 + 〈0.1241,0.7885,0〉 = 〈1 −

(1 − 0.1733)(1 − 0.1241), 0.6218 ∗ 0.7885, (0.6218 + 0.0689)(0.7885 + 0) − 0.6218 ∗

0.7885〉 = 〈0.2759,0.4903,0.0544〉.   

 〈𝜇1
𝐴𝑉 , 𝜂1

𝐴𝑉 , 𝑣1
𝐴𝑉〉 =

1

3
∗ 〈0.2759,0.4903,0.0544〉 = 〈1 − (1 − 0.2759)

1

3, (0.4903)
1

3, (0.4903 +

0.0544)
1

3 − (0.4903)
1

3〉 = 〈0.1020,0.7885,0.0281〉.                  

All the TDN values of the average solution are shown in the last row of Table 2. In the next 

phase, the subsethood measures of each alternative to the average solution are calculated. Eq. (14-16) 

defines three novel subsethood measures and we use all of them for comparison purposes. To 

illustrate, the first subsethood measure (Eq. 14) between �̃�1 and 𝐴�̃� is: 
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𝑑1(�̃�1, �̃�1 ∩ 𝐴�̃�) = [
1

5
((0.0562 − min(0.0562,0.1020))2 + (0.7885 −min(0.7885,0.7885))2 +

(0.0874 − max(0.0874,0.0281))2 +⋯+ (0 − min(0,0.2303))2 + (0.5509 −min(0.5509,0.6002))2 +

(0.4491 − max(0.4491,0.1695))2)]

1

2
= 0.0762. 

𝑆1(�̃�𝑖 , 𝐴�̃�) = 1 −
1

√2
𝑑1(�̃�𝑖 , �̃�𝑖 ∩ 𝐴�̃�) = 1 −

1

√2
∗ 0.0762 = 0.9461. 

Table 3 shows all the solutions including alternatives’ distance values (please see Eqs.17-19) and 

subsethood measures for three different definitions (please see Eqs.14-16). In the last step, the 

alternatives are ranked in ascending order of subsethood measures: S1, S2, and S3. For each measure, 

similar rankings of alternatives are obtained as seen from the columns of Ranking in Table 3. For S1: 

𝐴2 ≻ 𝐴1 ≻ 𝐴3 ; for S2 and S3: 𝐴2 ≻ 𝐴3 ≻ 𝐴1  which is the same ranking obtained by the original 

methodology. The results of other applications specified by Jovcic et al. [42] are summarized in Table 

4 and it is seen that all these methods have given similar rankings. For each ranking, the most 

convenient alternative is found as A2. The rankings of the other alternatives are slightly different in 

the various applications. For instance, in the original application, there are so many consecutive steps 

while our proposition of SM-TDN-EDAS includes just 5 steps. Our method’s contribution to 

complexity reduction is obvious. 

6. Conclusion and future work 

Subsethood (inclusion) measures are very important components of fuzzy sets like entropy, 

distance, or similarity measures. In the literature, there are many subsethood measures developed 

for fuzzy sets, IFSs, and neutrosophic sets but there is no proposition for TDNSs. TDNS is generally 

accepted by the MADM field as one of the important fuzzy environments because it gives an 

extensive representation opportunity to the decision-maker. TDNS is defined by four elements, 

namely positive, negative, neutral, and refusal membership degrees and the first three elements can 

be independently assignable. The only rule is that the sum of these four elements should be equal to 

1. In order to exploit this feature in the applications of MADM,  

 for the first time in the literature, three subsethood measures were developed for TDNSs and 

it is proven that these definitions satisfy the required axiomatic properties;  

Table 2. Weighted aggregated decision matrix (𝑤𝑗 ∗ 𝑋
𝑎𝑔𝑔) 

 C1 C2 

A1 0.0562 0.7885 0.0874 0.0480 0.8564 0.0591 

A2 0.1241 0.7885 0.0000 0.0213 0.9155 0.0365 

A3 0.1241 0.7885 0.0000 0.0213 0.9520 0.0267 

𝐴�̃� 0.1020 0.7885 0.0281 0.0303 0.9071 0.0413 

 C3 C4 

A1 0.0000 0.9342 0.0365 0.2026 0.7974 0.0000 

A2 0.0293 0.8850 0.0000 0.0000 0.7974 0.2026 

A3 0.0293 0.8850 0.0492 0.0000 0.8790 0.1210 

𝐴�̃� 0.0196 0.9011 0.0282 0.0727 0.8237 0.1036 

 C5  

A1 0.0000 0.5509 0.4491    

A2 0.4491 0.5509 0.0000    



Neutrosophic Sets and Systems, Vol. 55, 2023     197  

 

 

 

 

Sait Gül, and Ali Aydoğdu, Novel Subsethood Measures for Totally Dependent-Neutrosophic Sets and Their Usage in 
Multiple Attribute Decision-Making 

A3 0.1724 0.7122 0.1154    

𝐴�̃� 0.2303 0.6002 0.1695    

Table 3. Results 

 d1 S1 

R
an

k
in

g
 d2 S2 

R
an

k
in

g
 d3 S3 

R
an

k
in

g
 

Ranking by 

Jovcic et al. 

[42] 

A1 0.0762 0.9461 2 0.0361 0.9639 3 0.1352 0.9395 3 3 

A2 0.1256 0.9112 1 0.0567 0.9433 1 0.2225 0.9005 1 1 

A3 0.0665 0.9529 3 0.0500 0.9500 2 0.1361 0.9392 2 2 

 

Table 4. Comparison of different TDNS (PFS)-based MADM methods [42] 

Method Ranking of Alternatives 

TDNS TOPSIS [43] 𝐴2 ≻ 𝐴3 ≻ 𝐴1 

TDNS EDAS [16] 𝐴2 ≻ 𝐴3 ≻ 𝐴1 

TDNS MABAC [44] 𝐴2 ≻ 𝐴3 ≻ 𝐴1 

TDNS VIKOR [45] 𝐴2 ≻ 𝐴3 ≻ 𝐴1 

TDNS Fuzzy TODIM [46] 𝐴2 ≻ 𝐴1 ≻ 𝐴3 

 

EDAS, a well-known MADM approach is extended into TDNS in a different manner from the existing 

state-of-the-art propositions, i.e., the traditional and extended versions have focused on the distance 

between each alternative and average solution while the proposed version called SM-TDN-EDAS 

considered the subsethood degree of each alternative to the average solution as a decision criterion. 

So, the number of mathematical operations is significantly reduced in this new version; 

To validate the novel SM-TDN-EDAS method, an application is conducted, and the resulting 

rankings are compared with different applications’ rankings. It is found that the existing methods 

and current study give similar rankings. So, it is clear that the proposition is robust. 

The study also needs some improvements. Rather than enforcing the decision-makers to allocate 

directly positive, neutral, and negative membership degrees, a further study may work on providing 

appropriate linguistic terms which have TDN number correspondences so that the data collection 

process is eased and becomes more practical. Also, novel aggregation operators, entropy measures, 

similarity, and distance measures as well as division and subtraction operators can be defined for the 

concept of TDNS. 
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Table A1. Literature overview of MADM approaches under TDNS (PFS) 

Paper MADM Methods Used Application 

Zhang. et al. [16] TDN(PF)-EDAS for selection 
A numerical example for green 

supplier selection 

Liang, et al. [17] 

Extended SWARA for subjective criteria weights;  

Mean-squared deviation model for objective criteria 

weights;  

TDN(PF)-EDAS for establishing difference matrix;  

ELECTRE III for ranking orders;  

Extended MABAC, EDAS for comparison 

Evaluating the cleaner 

production performance for  

gold mines in China 

Li, et al. [18] 
Maximizing deviation method for criteria weights;  

TDN(PF)-EDAS for evaluation 

A numerical example of 

selecting an optimal emergency 

alternative 

Ping, et al. [19] 

TOPSIS & Maximum Entropy Theory for Expert 

Weighting; 

TDN(PF)-EDAS for evaluation;  

HF-VIKOR, cloud model GRA for comparison 

A numerical example of 

characteristic prioritization in 

quality function deployment 

Jovcic, et al. [42] 

TDN(PF)-ARAS for selection; TDN(PF)-TOPSIS, 

TDN(PF)-EDAS, TDN(PF)-TODIM,  

TDN(PF)-VIKOR, TDN(PF)-MABAC, TDN(PF)-

GRA for comparison 

Freight distribution concept 

selection problem for a tire 

manufacturing company in the 

Czech Republic 

Torun and 

Gördebil  

[43] 

Fuzzy TOPSIS, IF-TOPSIS, and TDN(PF)-TOPSIS 

for comparison 

Citizens’ satisfaction level from 

public services in Turkey 

Wang, et al. [44] 

Modified maximizing deviation method for criteria 

weighting;  

prospect theory-based TDN(PF)-MABAC for 

evaluation;  

TDN(PF)-MABAC, TDN(PF)-VIKOR for 

comparison 

Risk ranking of energy 

performance contracting project 

in Shanghai, China 

Wang, et al. [45] 

TDN(PF)-entropy-based objective weighting of 

attributes;  

TDN(PF)-normalized projection-based VIKOR for 

evaluation; 

Risk evaluation of construction 

projects in China 

Wei [46] TDN(PF)-TODIM for evaluation 

A numerical example of 

evaluation of emerging 

technology commercialization 

Meksavang, et al. 

[47] 

TDN(PF)-VIKOR for evaluation; fuzzy TOPSIS, IF-

VIKOR, 

IF-GRA for comparison 

A numerical example of 

sustainable supplier selection  

case in the beef supply chain 

Si, et al. [48] 
TDN(PF)-VIKOR & TDN(PF)-TOPSIS for 

evaluation 

Ranking of tiger reserve national 

parks in India 

Sindhu, et al. [49] 
Linear programming for criteria weighting;  

TDN(PF)-TOPSIS for evaluation 

A numerical example of human 

resource management 
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Zeng, et al. [50] TDN(PF)-TOPSIS for evaluation 

A numerical example of 

selecting Enterprise Resource  

Planning System 

Arya and Kumar 

[51] 

TDN(PF)-entropy-based TDN(PF)-VIKOR and 

TDN(PF)-TODIM for evaluation 

Numerical examples based on 

election forecast 

through opinion polls 

Joshi [52] 

TDN(PF)-entropy-based TDN(PF)-VIKOR for 

evaluation;  

TOPSIS, VIKOR for comparison 

Numerical examples based on 

election forecast 

through opinion polls 

Joshi [53] 

R-Norm information measure-based TDN(PF)-

VIKOR for evaluation; 

TDN(PF)-TODIM for comparison 

A numerical example of 

election; 

A numerical example of 

investment alternative 

evaluation 

Lin, et al. [54] 

TDN(PF)-entropy based criteria weighting; 

TDN(PF)-MULTIMOORA for evaluation; 

TDN(PF)-TODIM for comparison 

Site selection of car-sharing 

station in Beijing, China 

Tian, et al. [55] 

Improved AHP for criteria weighting; TDN(PF)-

PROMETHEE II for evaluation; TDN(PF)-VIKOR 

for comparison 

Tourism environmental impact 

assessment in Hubei,  

China 

Tian and Peng 

[56] 

Improved ANP for criteria weighting; TDN(PF)-

TODIM for evaluation 

Personalized tourism attraction 

evaluation 

Gül and Aydoğdu 

[57] 

TDN(PF)-CODAS for evaluation; CODAS, spherical 

fuzzy CODAS, and spherical fuzzy TOPSIS for 

comparison 

Selecting the best green supplier 

in Turkey 

Simic, et al. [58] 

CODAS, TOPSIS, EDAS, TODIM, VIKOR, MABAC, 

Cross-entropy, Projection, Grey relational 

projection, and Grey relational analysis under 

TDN(PF) environment 

Locating a new vehicle 

shredding facility in the 

Republic of Serbia 
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