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Abstract. The theory of superhyperalgebras is a new concept in the study of all branches of algebra structures.
In this paper, we introduce a novel concept of (m,n)-superhyper G-algebra and present several results from the
study of certain properties of (m,n)-superhyper G-algebras. The purpose of this paper is the study an extension
of G-algebras to (m,n)-superhyper G-algebras, as a generalization of a logic algebra. The main motivation of
this work was obtained based on an extension of G-algebra to superhyper G-algebra based on the nth-power
set of a set.
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1. Introduction

The concept of superhyperalgebra has been introduced by Smarandache in [12]. Smaran-
dache presented the nth-power set of a set, superhyper operation, superhyper axiom, superhy-
per algebra, their corresponding neutrosophic superhyper operation, neutrosophic superhyper
axiom, and neutrosophic superhyper algebra. In general, in any field of knowledge, he ana-
lyzes to encounter superhyper structures (or more accurately (m,n)-SuperHyperStructures).
He studied related concepts, for example, the concepts of superhyperoperation, superhyper-
axiom, superhyperstructure, superhyperalgebra, superhyperfunction, superhypergroup, super-
hypertopology, superhypergraph, and their corresponding neutrosophic superhyperoperation,
neutrosophic superhyperaxiom, and neutrosophic superhyperalgebra in [10–14] between 2016-
2022. Recently Hamidi et al. investigated some research in this scope such as the spectrum of
superhypergraphs via flows [3], on neutro-d-subalgebras [4], neutro-BCK-algebra [5], on neu-
tro G-subalgebra [7], single-valued neutro hyper BCK-subalgebras [6] and superhyper BCK-
algebra [8]. The superhyperalgebra theory both extends some well-known algebra results and
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introduces new topics. The notion of superhyperalgebra is a natural generalization of the
notion of algebra and the development of its fundamental properties. In 2012, the concept
of G-algebra was introduced by Bandaru and Rafi [2]. They proved that QS-algebras are G-
algebras, but the opposite is not necessarily true. The concept of G-algebra is a generalization
of Q-algebra, which has many applications in algebra. We can read more about G-algebras
in [1, 9]. In this paper, (m,n)-superhyper G-algebras is defined and considered. Examples
of (m,n)-superhyper G-algebras are given and some of their properties are described. The
concept of (m,n)-superhyper G-algebra is a generalization of G-algebra. The purpose of this
paper is the study an extension of G-algebras to (m,n)-superhyper G-algebras, as a generaliza-
tion of a logic algebra. The main motivation of this work was obtained based on an extension
of G-algebra to superhyper G-algebra based on the powerset. In this regard, the notation
of nth-power set of a set, superhyper operation, superhyper axiom play the main role in the
construction of (m,n)-superhyper G-algebras.

2. Preliminaries

In this section, we recall some concepts that need for our work.

Definition 2.1. [2] Let X ̸= ∅ and 0 ∈ X be a constant. Then a universal algebra (X, ∗, 0)
of type (2, 0) is called a G-algebra, if for all x, y ∈ X:
(G-1) x ∗ x = 0,
(G-2) x ∗ (x ∗ y) = y.

Proposition 2.2. [2] If (X, ∗, 0) is a G-algebra. Then, for all x, y ∈ X, the following
conditions hold:
(i) x ∗ 0 = x,
(ii) 0 ∗ (0 ∗ x) = x,
(iii) (x ∗ (x ∗ y))y = 0,
(iv) x ∗ y = 0 impliesx = y,
(v) 0 ∗ x = 0 ∗ y implies x = y.

Theorem 2.3. [2] Let (X, ∗, 0) be a G-algebra. Then the following are equivalent.
(i) (x ∗ y) ∗ z = (x ∗ z) ∗ y for all x, y ∈ X,
(ii) (x ∗ y) ∗ (x ∗ z) = z ∗ y for all x, y ∈ X.

Theorem 2.4. [2]Let (X, ∗, 0) be a G-algebra.
(i) If (x ∗ y) ∗ (0 ∗ y) = x for all x, y ∈ X, then x ∗ z = y ∗ z implies x = y.
(ii) a ∗ x = a ∗ y implies x = y for all a, x, y ∈ X.

Definition 2.5. [14] Let X be a nonempty set. Then (X, ◦∗(m,n)) is called an (m,n)-super
hyperalgebra, where ◦∗(m,n) : X

m → Pn
∗ (X) is called an (m,n)-super hyperoperation, Pn

∗ (X)
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Table 1. G-algebra (X, ∗, 0)

∗ 0 1 2 3 4 5

0 0 2 1 3 4 5

1 1 0 3 2 5 4

2 2 3 0 1 5 4

3 3 2 1 0 4 5

4 4 5 3 2 0 1

5 5 4 2 3 1 0

is the nth-powerset of the set X, ∅ ̸∈ Pn
∗ (X), for any subset A of Pn

∗ (X), we identify {A} with
A, m,n ≥ 1 and Xm = X ×X × . . .×X︸ ︷︷ ︸

m times

.

Let ◦∗(m,n) be an (m,n)-super hyperoperation on X and A1, . . . , Am subsets of X. We define

◦∗(m,n)(A1, . . . , Am) =
⋃

xi∈Ai

◦∗(m,n)(x1, . . . , xm).

3. Superhyper G-Algebras

At the beginning of this section, we construct a G-algebra on every nonempty set. Then we
give an example of G-algebra.

Theorem 3.1. Let X be a nonempty set and 0 ∈ X be a constant. Then there exists ∗ on X

such that (X, ∗, 0) is a G-Algebra.

x ∗ y =

0 x = y

y o.w.

Proof. (G-1) is true because x ∗ x = 0. According to the definition x ∗ y = y, therefore
x ∗ (x ∗ y) = x ∗ y = y, and (G-2) also hold. So (X, ∗, 0) is a G-algebra.

Example 3.2. Let X = {0, 1, 2, 3, 4, 5} which ∗ is defined in Table 1. Then (X, ∗, 0) is a
G-algebra.

Example 3.3. Let X = {0, 1, 2, 3} which ∗ is defined in Table 2. Then (X, ∗, 0) is not a
G-algebra, , since 0 ∗ (0 ∗ 2) = 0 ∗ 0 ̸= 2.

In this section, we introduce the concept of (m,n)-superhyper G-algebra based on the nth-
power set of a set. Also, investigate the properties of this concept.

Definition 3.4. Let X be a nonempty set and 0 ∈ X be a constant. Then (X, ◦∗(m,n), 0) is
called an (m,n)-superhyper G-algebra, if for all x, y ∈ X:
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Table 2

∗ 0 1 2 3

0 0 0 0 3

1 1 0 3 0

2 2 2 0 1

3 3 3 3 0

Table 3. superhyper G-algebra (X, ◦∗(2,1), x)

◦∗(2,1) x y z

x x {x, y} {x, z}
y y x {y, z}
z {x, z} {x, y, z} x

Table 4. superhyper G-algebra (X, ◦∗(2,2), a)

◦∗(2,2) {a} {b}
{a} {{a}, {a, b}}{{a}, {b}, {a, b}}
{b} {a, b} a

(Gsh-1) 0 ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m

),

(Gsh-2) y ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)).

Example 3.5. (i) Let X = {x, y, z} and x be a constant. P∗(X) =

{x, y, z, {x, y, z}, {x, y}, {x, z}, {y, z}}. Then (X, ◦∗(2,1), x) is called a (2, 1)-superhyper G-
algebra as shown in Table 3.

(ii) Let X = {a, b}, a be a constant and
P 2
∗ (X) = {{a}, {b}, {a, b}, {{a}, {a, b}}, {{b}, {a, b}}, {{a}, {b}, {a, b}}}. Then (X, ◦∗(2,2), a) is

called a (2, 2)-superhyper G-algebra as shown in Table 4.

(iii) Let X = {0, 1, 2} and P∗(X) = {0, 1, 2, {0, 1, 2}, {0, 1}, {0, 2}, {1, 2}}. Then
(X, ◦∗(3,1), 0) is called a (3, 1)-superhyper G-algebra as shown in Table 5.

We see that two axioms (Gsh-1) and (Gsh-2) are independent. Let X = {0, 1, 2} be a set
with Table 6 and Table 7. In Table 6, the axiom (Gsh-1) is valid but (Gsh-2) does not, because
1 ̸∈ ◦∗(2, ◦∗(2, 1)), and in Table 7, the axiom (Gsh-2) is valid, but the axiom (Gsh-1) is not,
because 0 ̸∈ ◦∗(1, 1).
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Table 5. superhyper G-algebra (X, ◦∗(3,1), 0)

◦∗(3,1) 0 1 2

(0, 0) 0 1 2

(0, 1) 1 {0, 2} {1, 2}
(0, 2) 2 {1, 2} {0, 1}
(1, 0) 1 {0, 2} {1, 2}
(2, 0) 2 {1, 2} {0, 1}
(1, 1) {0, 2} {0, 1} {0, 1, 2}
(1, 2) {1, 2} {0, 1, 2} {0, 1, 2}
(2, 1) {0, 1, 2} {0, 1, 2} {0, 1, 2}
(2, 2) {0, 1} {0, 1, 2} {0, 2}

Table 6

◦∗(2,1) 0 1 2

0 0 {0, 1, 2} {0, 2}
1 {0, 1} {0, 1, 2} 2

2 {0, 2} {0, 2} 0

Table 7

◦∗(2,1) 0 1 2

0 0 {0, 1} {0, 2}
1 {0, 1} 1 2

2 {0, 2} {0, 1} {0, 1, 2}

The following theore, we construct an (m,n)-superhyper G-algebra on each nonempty set.

Theorem 3.6. Let X be a nonempty set and 0 ∈ X be a constant. Then there exists ◦∗(m,n)

on X such that (X, ◦∗(m,n), 0) is an (m,n)-superhyper G-algebra.

◦∗(x1, x2, . . . , xm) =

{0} ∀i ̸= j; xi = xj

{0, y} o.w.

Proof. (Gsh-1) is true because 0 ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m

). According to the definition y ∈

◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), therefore y ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)) and (Gsh-2) also hold. So,

the proof is complete.
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Proposition 3.7. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. Then for any x ∈ X,
the following conditions hold:
(i) ◦∗(x, x, . . . , x︸ ︷︷ ︸

m−1

, 0) ⊆ ◦∗
(
x, x, . . . , x︸ ︷︷ ︸

m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m

)
)
,

(ii) x ∈ ◦∗
(
0, 0, . . . , 0︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, x)
)
.

Proof. (i) By (Gsh-1), 0 ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m

). Then we get ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, 0) ⊆

◦∗
(
x, x, . . . , x︸ ︷︷ ︸

m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m

)
)
.

(ii) If we put x = 0 and y = x in (Gsh-2), then we get (ii).

Proposition 3.8. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. Then for any x, y ∈ X,
0 ∈ ◦∗

(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)), y, y, . . . , y︸ ︷︷ ︸
m−1

)
.

Proof. According to (Gsh-2), y ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)). Now we have according to

(Gsh-1), 0 ∈ ◦∗(y, y, . . . , y︸ ︷︷ ︸
m

) ⊆ ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)), y, y, . . . , y︸ ︷︷ ︸
m−1

)
and therefore

the proof is complete.

Theorem 3.9. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. If for any x, y, z ∈ X,
◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), z, z, . . . , z︸ ︷︷ ︸
m−1

) = ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, z), y, y, . . . , y︸ ︷︷ ︸
m−1

). Then ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y) ⊆

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
.

Proof. By (Gsh-2), z ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z)). Now we have ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y) ⊆ ◦∗
(
◦∗

(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z)), y, y, . . . , y︸ ︷︷ ︸
m−1

)
. According to the assumption

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z)), y, y, . . . , y︸ ︷︷ ︸
m−1

)
=

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
. Thus it is obtained.

Theorem 3.10. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. If for any x, y, z ∈ X,
◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
= ◦∗(z, z, . . . , z︸ ︷︷ ︸

m−1

, y).

Then ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), z, z, . . . , z︸ ︷︷ ︸
m−1

) = ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, z), y, y, . . . , y︸ ︷︷ ︸
m−1

).
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Proof. By (Gsh-2), z ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z)). Now by the assumption, we have

◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), z, z, . . . , z︸ ︷︷ ︸
m−1

) ⊆

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z)), x, x, . . . , x︸ ︷︷ ︸
m−2

)
=

◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), y, y, . . . , y︸ ︷︷ ︸
m−1

).

Conversely, by (Gsh-2), y ∈ ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)). Therefore by the assumption,

◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), y, y, . . . , y︸ ︷︷ ︸
m−1

) ⊆

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, z), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)), x, x, . . . , x︸ ︷︷ ︸
m−2

)
= ◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸

m−1

, y), z, z, . . . , z︸ ︷︷ ︸
m−1

).

Theorem 3.11. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. If for any
x, y, z ∈ X, ◦∗(z, z, . . . , z︸ ︷︷ ︸

m−1

, y) = ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
. Then

◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z) ⊆ ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

)
.

Proof. According to (Gsh-2), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z) ⊆

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

), x, x, . . . , x︸ ︷︷ ︸
m−2

)
. By the

assumption, we have ◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

) = ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y).

Therefore it is obtained.

Theorem 3.12. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. If for any x, y, z ∈ X,
◦∗
(
◦∗(x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

)
= ◦∗(x, x, . . . , x︸ ︷︷ ︸

m−1

, z). Then ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y) ⊆

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
.

Proof. According to (Gsh-2), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z) ⊆

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

), x, x, . . . , x︸ ︷︷ ︸
m−2

)
and by the

assumption, ◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

) = ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z). Therefore

◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), ◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

) ⊆

Marzieh Rahmati and Mohammad Hamidi, Extension of G-Algebras to SuperHyper
G-Algebras



Neutrosophic Sets and Systems, Vol. 55, 2023 564

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

), x, x, . . . , x︸ ︷︷ ︸
m−2

)
. Thus

◦∗(z, z, . . . , z︸ ︷︷ ︸
m−1

, y) ⊆ ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
.

Definition 3.13. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra and A,B ∈
◦∗(m,n)(x1, . . . , xm). Then A and B are called adjacent.

Proposition 3.14. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. Then for any a, x, y ∈
X, ◦∗(a, a, . . . , a︸ ︷︷ ︸

m−1

, x) = ◦∗(a, a, . . . , a︸ ︷︷ ︸
m−1

, y) implies x and y are adjacent.

Proof. Let a, x, y ∈ X and ◦∗(a, a, . . . , a︸ ︷︷ ︸
m−1

, x) = ◦∗(a, a, . . . , a︸ ︷︷ ︸
m−1

, y). It follows that

◦∗
(
a, a, . . . , a︸ ︷︷ ︸

m−1

, ◦∗(a, a, . . . , a︸ ︷︷ ︸
m−1

, x
)
= ◦∗

(
a, a, . . . , a︸ ︷︷ ︸

m−1

, ◦∗(a, a, . . . , a︸ ︷︷ ︸
m−1

, y
)
. Thus according to (Gsh-2),

x and y are adjacent.

Theorem 3.15. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. Then for any x, y ∈ X,
◦∗(0, 0, . . . , 0︸ ︷︷ ︸

m−1

, x) = ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y) implies x and y are adjacent.

Proof. According to the assumption, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, x) = ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y), So we have

◦∗
(
0, 0, . . . , 0︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, x)
)
= ◦∗

(
0, 0, . . . , 0︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y)
)
. Therefore by Theorem 3.7

(ii), x ∈ ◦∗
(
0, 0, . . . , 0︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, x)
)

and y ∈ ◦∗
(
0, 0, . . . , 0︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y)
)
. By defini-

tion x and y are adjacent.

Theorem 3.16. Let (X, ◦∗(m,n), 0) be an (m,n)-superhyper G-algebra. Then for any x, y ∈ X,
x ∈ ◦∗

(
◦∗(x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y), y, y, . . . , y︸ ︷︷ ︸
m−2

)
and ◦∗(x, x, . . . , x︸ ︷︷ ︸

m−1

, z) = ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z),

implies x and y are adjacent.

Proof. If ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, z) = ◦∗(y, y, . . . , y︸ ︷︷ ︸
m−1

, z), then

◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, z), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
=

◦∗
(
◦∗ (y, y, . . . , y︸ ︷︷ ︸

m−1

, z), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
. By the assumption

x ∈ ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, z), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
and

y ∈ ◦∗
(
◦∗ (y, y, . . . , y︸ ︷︷ ︸

m−1

, z), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, z), x, x, . . . , x︸ ︷︷ ︸
m−2

)
. It follows that x and y are adjacent.
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Definition 3.17. A non-empty subset Y of an (m,n)-superhyper G-algebra X is called an
(m,n)-superhyper G-subalgebra if for all a1, a2, . . . , am ∈ Y , implies ◦∗(m,n)(a1, a2, . . . , am) ∈
Pn
∗ (Y ).

Definition 3.18. Let (X, ◦∗(m,n), 0X) and (X ′, ◦′∗(m,n), 0X′) be (m,n)-superhyper G-algebras.
A mapping ϕ : X −→ X ′ is called a homomorphism if

(i) ϕ(◦∗(x1, x2, . . . , xm)) = ◦′∗(ϕ(x1), ϕ(x2), . . . , ϕ(xm)), for x1, x2, . . . , xm ∈ X.
(ii) 0X′ ∈ ϕ(0X).

The homomorphism ϕ is said to be a monomorphism (resp., an epimorphism) if it is injective
(resp., surjective). If the map ϕ is both injective and surjective then X and X ′ are said to be
isomorphic, written X ∼= X ′. For any homomorphism �ϕ : X −→ X ′, the set {x ∈ X|0X′ ∈
ϕ(x)} is called the kernel of ϕ and is denoted by Kerϕ.

Lemma 3.19. Let ϕ : (X, ◦∗(m,n), 0X) −→ (X ′, ◦′∗(m,n), 0X′) be a homomorphism of (m,n)-
superhyper G-algebras, then we have the following:

(i) Kerϕ is an (m,n)-superhyper G-algebra of X,
(ii) Imϕ = {y ∈ X ′|y = ϕ(x), for some x ∈ X} is an (m,n)-superhyper G-subalgebra of X.

Proof. (i) Since 0X ∈ Kerϕ, then Kerϕ ̸= ∅. Suppose x1, x2, . . . , xm ∈ Kerϕ. So 0X′ ∈
ϕ(xi) for i = 1, . . . ,m. From ϕ(◦∗(x1, x2, . . . , xm)) = ◦′∗(ϕ(x1), ϕ(x2), . . . , ϕ(xm)). Because
0X′ ∈ ◦′∗(ϕ(x1), ϕ(x2), . . . , ϕ(xm)), Implies that 0X′ ∈ ϕ(◦∗(x1, x2, . . . , xm)). It follows that,
◦∗(x1, x2, . . . , xm) ∈ Kerϕ.
(ii) Direct to prove.

Definition 3.20. An (m,n)-superhyper G-algebra (X, ◦∗(m,n), 0) is said to be 0-commutative
if for any x, y ∈ X, ◦∗(x, x, . . . , x︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y)) = ◦∗(y, y, . . . , y︸ ︷︷ ︸
m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, x)).

Theorem 3.21. Let (X, ◦∗(m,n), 0) be an 0-commutative (m,n)-superhyper G-algebra. Then
for any x, y ∈ X, ◦∗(y, y, . . . , y︸ ︷︷ ︸

m−1

, x) ⊆ ◦∗
(
◦∗ (0, 0, . . . , 0︸ ︷︷ ︸

m−1

, x), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

)
.

Proof. Because
X be a 0-commutative, implies that ◦∗

(
◦∗ (0, 0, . . . , 0︸ ︷︷ ︸

m−1

, x), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

)
=

◦∗
(
y, y, . . . , y︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, x))
)
. By Theorem 3.7 (ii), ◦∗(y, y, . . . , y︸ ︷︷ ︸

m−1

, x) ⊆

◦∗
(
y, y, . . . , y︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, x))
)

and the result is obtained.
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Theorem 3.22. Let (X, ◦∗(m,n), 0) be a 0-commutative (m,n)-superhyper G-algebra satisfying
◦∗
(
0, 0, . . . , 0︸ ︷︷ ︸

m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y)) = ◦∗(y, y, . . . , y︸ ︷︷ ︸
m−1

, x). Then for any x, y ∈ X,

x ∈ ◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

)
)
.

Proof. Because X be a 0-commutative, implies that
◦∗
(
◦∗ (x, x, . . . , x︸ ︷︷ ︸

m−1

, y), ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, y), x, x, . . . , x︸ ︷︷ ︸
m−2

)
)
=

◦∗
(
y, y, . . . , y︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y))
)
. By the assumption and (Gsh-2),

x ∈ ◦∗(y, y, . . . , y︸ ︷︷ ︸
m−1

, ◦∗(y, y, . . . , y︸ ︷︷ ︸
m−1

, x)) = ◦∗
(
y, y, . . . , y︸ ︷︷ ︸

m−1

, ◦∗(0, 0, . . . , 0︸ ︷︷ ︸
m−1

, ◦∗(x, x, . . . , x︸ ︷︷ ︸
m−1

, y))
)
. Thus it

is obtained.

4. Conclusions

In this paper, we have introduced the novel concept of (m,n)-superhyper G-algebras based
on a powerset and studied their properties. We have presented some basic results and examples
of this superhyperalgebra. The basis of our work is the extension of G-algebras to superhyper
G-algebras using a powerset. We wish that these results are helpful for further studies in the
theory of superhyperalgebra. For future work, we hope to investigate the idea of neutrosophic
superhyper G-algebras, fuzzy superhyper G-algebras, and soft superhyper G-algebras and
obtain some results in this regard and their applications.
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