

University of New Mexico

Extension of G-Algebras to SuperHyper G-Algebras

Marzieh Rahmati
1,* and Mohammad Hamidi $^{\rm 2}$

^{1,2}Department of Mathematics, University of Payame Noor, Tehran, Iran. P.O. Box 19395-4697.

¹ m.rahmati@pnu.ac.ir

 2 m.hamidi@pnu.ac.ir

*Correspondence: m.rahmati@pnu.ac.ir

Abstract. The theory of superhyperalgebras is a new concept in the study of all branches of algebra structures. In this paper, we introduce a novel concept of (m, n)-superhyper *G*-algebra and present several results from the study of certain properties of (m, n)-superhyper *G*-algebras. The purpose of this paper is the study an extension of *G*-algebras to (m, n)-superhyper *G*-algebras, as a generalization of a logic algebra. The main motivation of this work was obtained based on an extension of *G*-algebra to superhyper *G*-algebra based on the n^{th} -power set of a set.

Keywords: (m, n)-superhyperoperation, (m, n)-superhyperalgebra, (m, n)-superhyper G-algebra.

1. Introduction

The concept of superhyperalgebra has been introduced by Smarandache in [12]. Smarandache presented the n^{th} -power set of a set, superhyper operation, superhyper axiom, superhyper axiom, and neutrosophic superhyper algebra. In general, in any field of knowledge, he analyzes to encounter superhyper structures (or more accurately (m, n)-SuperHyperStructures). He studied related concepts, for example, the concepts of superhyperoperation, superhyperaxiom, superhyperstructure, superhyperalgebra, superhyperfunction, superhypergroup, superhypertopology, superhypergraph, and their corresponding neutrosophic superhyperoperation, neutrosophic superhyperaxiom, and neutrosophic superhyperalgebra in [10–14] between 2016-2022. Recently Hamidi et al. investigated some research in this scope such as the spectrum of superhypergraphs via flows [3], on neutro-d-subalgebras [4], neutro-BCK-algebra [5], on neutro G-subalgebra [7], single-valued neutro hyper BCK-subalgebras [6] and superhyper BCKalgebra [8]. The superhyperalgebra theory both extends some well-known algebra results and

Marzieh Rahmati and Mohammad Hamidi, Extension of G-Algebras to SuperHyper G-Algebras

introduces new topics. The notion of superhyperalgebra is a natural generalization of the notion of algebra and the development of its fundamental properties. In 2012, the concept of G-algebra was introduced by Bandaru and Rafi [2]. They proved that QS-algebras are G-algebras, but the opposite is not necessarily true. The concept of G-algebra is a generalization of Q-algebra, which has many applications in algebra. We can read more about G-algebras in [1,9]. In this paper, (m, n)-superhyper G-algebras is defined and considered. Examples of (m, n)-superhyper G-algebras are given and some of their properties are described. The concept of (m, n)-superhyper G-algebra is a generalization of G-algebra. The purpose of this paper is the study an extension of G-algebras to (m, n)-superhyper G-algebras to (m, n)-superhyper G-algebra based on the powerset. In this regard, the notation of n^{th} -power set of a set, superhyper G-algebras.

2. Preliminaries

In this section, we recall some concepts that need for our work.

Definition 2.1. [2] Let $X \neq \emptyset$ and $0 \in X$ be a constant. Then a universal algebra (X, *, 0) of type (2, 0) is called a *G*-algebra, if for all $x, y \in X$: (*G*-1) x * x = 0, (*G*-2) x * (x * y) = y.

Proposition 2.2. [2] If (X, *, 0) is a G-algebra. Then, for all $x, y \in X$, the following conditions hold:

 $\begin{array}{l} (i) \ x * 0 = x, \\ (ii) \ 0 * (0 * x) = x, \\ (iii) \ (x * (x * y))y = 0, \\ (iv) \ x * y = 0 \ implies x = y, \\ (v) \ 0 * x = 0 * y \ implies \ x = y. \end{array}$

Theorem 2.3. [2] Let (X, *, 0) be a *G*-algebra. Then the following are equivalent. (i) (x * y) * z = (x * z) * y for all $x, y \in X$, (ii) (x * y) * (x * z) = z * y for all $x, y \in X$.

Theorem 2.4. [2]Let (X, *, 0) be a *G*-algebra. (i) If (x * y) * (0 * y) = x for all $x, y \in X$, then x * z = y * z implies x = y. (ii) a * x = a * y implies x = y for all $a, x, y \in X$.

Definition 2.5. [14] Let X be a nonempty set. Then $(X, \circ_{(m,n)}^*)$ is called an (m, n)-super hyperalgebra, where $\circ_{(m,n)}^* : X^m \to P_*^n(X)$ is called an (m, n)-super hyperoperation, $P_*^n(X)$

TABLE 1. *G*-algebra (X, *, 0)

*	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	3	2	5	4
2	2	3	0	1	5	4
3	3	2	1	0	4	5
4	4	5	3	2	0	1
5	5	$ \begin{array}{c} 1 \\ 2 \\ 0 \\ 3 \\ 2 \\ 5 \\ 4 \end{array} $	2	3	1	0

is the n^{th} -powerset of the set $X, \emptyset \notin P_*^n(X)$, for any subset A of $P_*^n(X)$, we identify $\{A\}$ with $A, m, n \ge 1$ and $X^m = \underbrace{X \times X \times \ldots \times X}_{m \ times}$. Let $\circ^*_{(m,n)}$ be an (m, n)-super hyperoperation on X and A_1, \ldots, A_m subsets of X. We define

$$\circ_{(m,n)}^*(A_1,\ldots,A_m) = \bigcup_{x_i \in A_i} \circ_{(m,n)}^*(x_1,\ldots,x_m).$$

3. Superhyper G-Algebras

At the beginning of this section, we construct a G-algebra on every nonempty set. Then we give an example of G-algebra.

Theorem 3.1. Let X be a nonempty set and $0 \in X$ be a constant. Then there exists * on X such that (X, *, 0) is a G-Algebra.

$$x * y = \begin{cases} 0 & x = y \\ y & o.w. \end{cases}$$

Proof. (G-1) is true because x * x = 0. According to the definition x * y = y, therefore x * (x * y) = x * y = y, and (G-2) also hold. So (X, *, 0) is a G-algebra.

Example 3.2. Let $X = \{0, 1, 2, 3, 4, 5\}$ which * is defined in Table 1. Then (X, *, 0) is a G-algebra.

Example 3.3. Let $X = \{0, 1, 2, 3\}$ which * is defined in Table 2. Then (X, *, 0) is not a *G*-algebra, , since $0 * (0 * 2) = 0 * 0 \neq 2$.

In this section, we introduce the concept of (m, n)-superhyper G-algebra based on the n^{th} power set of a set. Also, investigate the properties of this concept.

Definition 3.4. Let X be a nonempty set and $0 \in X$ be a constant. Then $(X, \circ_{(m,n)}^*, 0)$ is called an (m, n)-superhyper G-algebra, if for all $x, y \in X$:

TABLE 2

*	0	1	2	3
0	0	0	0	3
1	1	0	3	0
2	2	2	0	1
3	3	3	3	0

TABLE 3. superhyper G-algebra $(X, \circ_{(2,1)}^*, x)$

$^{\circ^{*}_{(2,1)}}$	x	y	z
x	x	$\{x, y\}$	$\{x, z\}$
y	y	x	$\{y,z\}$
z	$\{x, z\}$	$\{x,y,z\}$	x

TABLE 4. superhyper G-algebra $(X, \circ_{(2,2)}^*, a)$

$$\begin{array}{c|c|c|c|c|c|c|} & & \{a\} & \{b\} \\ \hline & \{a\} & \{\{a\}, \{a, b\}\} \{\{a\}, \{b\}, \{a, b\}\} \\ \hline & \{b\} & & \{a, b\} & a \end{array}$$

$$(G_{sh}-1) \ 0 \in \circ^*(\underbrace{x, x, \dots, x}_{m}),$$

$$(G_{sh}-2) \ y \in \circ^*(\underbrace{x, x, \dots, x}_{m-1}, \circ^*(\underbrace{x, x, \dots, x}_{m-1}, y)).$$

Example 3.5. (i) Let $X = \{x, y, z\}$ and x be a constant. $P_*(X) = \{x, y, z, \{x, y, z\}, \{x, y\}, \{x, z\}, \{y, z\}\}$. Then $(X, \circ_{(2,1)}^*, x)$ is called a (2, 1)-superhyper *G*-algebra as shown in Table 3.

(*ii*) Let $X = \{a, b\}, a$ be a constant and

 $P^2_*(X) = \{\{a\}, \{b\}, \{a, b\}, \{\{a\}, \{a, b\}\}, \{\{b\}, \{a, b\}\}, \{\{a\}, \{b\}, \{a, b\}\}\}.$ Then $(X, \circ^*_{(2,2)}, a)$ is called a (2, 2)-superhyper G-algebra as shown in Table 4.

(*iii*) Let $X = \{0, 1, 2\}$ and $P_*(X) = \{0, 1, 2, \{0, 1, 2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}\}$. Then $(X, \circ^*_{(3,1)}, 0)$ is called a (3, 1)-superhyper *G*-algebra as shown in Table 5.

We see that two axioms $(G_{sh}-1)$ and $(G_{sh}-2)$ are independent. Let $X = \{0, 1, 2\}$ be a set with Table 6 and Table 7. In Table 6, the axiom $(G_{sh}-1)$ is valid but $(G_{sh}-2)$ does not, because $1 \notin \circ^*(2, \circ^*(2, 1))$, and in Table 7, the axiom $(G_{sh}-2)$ is valid, but the axiom $(G_{sh}-1)$ is not, because $0 \notin \circ^*(1, 1)$.

TABLE 5.	superhyper	G-algebra	$(X, \circ^*_{(3,1)}, 0)$

$^{\circ^{*}_{(3,1)}}$	0	1	2
(0,0)	0	1	2
(0,1)	1	$\{0,2\}$	$\{1,2\}$
(0,2)	2	$\{1, 2\}$	$\{0,1\}$
(1, 0)	1	$\{0,2\}$	$\{1,2\}$
(2, 0)	2	$\{1,2\}$	$\{0,1\}$
(1, 1)	$\{0,2\}$	$\{0,1\}$	$\{0, 1, 2\}$
(1,2)	$\{1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$
(2, 1)	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$
(2, 2)	$\{0, 1\}$	$\{0, 1, 2\}$	$\{0,2\}$

TABLE 6

$\circ^{*}_{(2,1)}$	0	1	2
0	0	$\{0, 1, 2\}$	$\{0,2\}$
1	$\{0, 1\}$	$\{0, 1, 2\}$ $\{0, 2\}$	2
2	$\{0, 2\}$	$\{0,2\}$	0

TABLE 7

$\circ^{*}_{(2,1)}$	0	1	2
0	0	$\{0, 1\}$	$\{0,2\}$
1	$\{0, 1\}$	1	2
2	$\{0, 2\}$	$\{0,1\}$	2 {0, 1, 2}

The following theore, we construct an (m, n)-superhyper G-algebra on each nonempty set.

Theorem 3.6. Let X be a nonempty set and $0 \in X$ be a constant. Then there exists $\circ_{(m,n)}^*$ on X such that $(X, \circ_{(m,n)}^*, 0)$ is an (m, n)-superhyper G-algebra.

$$\circ^*(x_1, x_2, \dots, x_m) = \begin{cases} \{0\} & \forall i \neq j; \ x_i = x_j \\ \{0, y\} & o.w. \end{cases}$$

Proof. (*G_{sh}-1*) is true because $0 \in \circ^*(\underbrace{x, x, \ldots, x}_{m-1})$. According to the definition $y \in \circ^*(\underbrace{x, x, \ldots, x}_{m-1}, y)$, therefore $y \in \circ^*(\underbrace{x, x, \ldots, x}_{m-1}, \circ^*(\underbrace{x, x, \ldots, x}_{m-1}, y))$ and (*G_{sh}-2*) also hold. So, the proof is complete. □

Proposition 3.7. Let $(X, \circ_{(m,n)}^*, 0)$ be an (m, n)-superhyper G-algebra. Then for any $x \in X$, the following conditions hold: (i) $\circ^*(\underbrace{x, x, \dots, x}_{m-1}, 0) \subseteq \circ^*(\underbrace{x, x, \dots, x}_{m-1}, \circ^*(\underbrace{x, x, \dots, x}_{m}))$, (ii) $x \in \circ^*(\underbrace{0, 0, \dots, 0}_{m-1}, \circ^*(\underbrace{0, 0, \dots, 0}_{m-1}, x))$. Proof. (i) By $(G_{sh}$ -1), $0 \in \circ^*(\underbrace{x, x, \dots, x}_{m})$. Then we get $\circ^*(\underbrace{x, x, \dots, x}_{m-1}, 0) \subseteq$

 $\overset{\circ^{*}}{\underbrace{(x, x, \dots, x, x, \circ^{*}(\underbrace{x, x, \dots, x}_{m}))}_{m-1}.$ (*ii*) If we put x = 0 and y = x in (G_{sh} -2), then we get (*ii*). \Box

Proposition 3.8. Let $(X, \circ_{(m,n)}^*, 0)$ be an (m, n)-superhyper G-algebra. Then for any $x, y \in X$, $0 \in \circ^* \left(\circ^* (\underbrace{x, x, \dots, x}_{m-1}, \circ^* (\underbrace{x, x, \dots, x}_{m-1}, y)), \underbrace{y, y, \dots, y}_{m-1} \right)$.

Proof. According to $(G_{sh}-2), y \in \circ^*(\underbrace{x, x, \dots, x}_{m-1}, \circ^*(\underbrace{x, x, \dots, x}_{m-1}, y))$. Now we have according to $(G_{sh}-1), 0 \in \circ^*(\underbrace{y, y, \dots, y}_{m}) \subseteq \circ^*(\circ^*(\underbrace{x, x, \dots, x}_{m-1}, \circ^*(\underbrace{x, x, \dots, x}_{m-1}, y)), \underbrace{y, y, \dots, y}_{m-1})$ and therefore the proof is complete. \Box

Theorem 3.9. Let $(X, \circ_{(m,n)}^*, 0)$ be an (m, n)-superhyper G-algebra. If for any $x, y, z \in X$, $\circ^* \left(\circ^* (\underbrace{x, x, \dots, x}_{m-1}, y), \underbrace{z, z, \dots, z}_{m-1} \right) = \circ^* \left(\circ^* (\underbrace{x, x, \dots, x}_{m-1}, z), \underbrace{y, y, \dots, y}_{m-1} \right)$. Then $\circ^* (\underbrace{z, z, \dots, z}_{m-1}, y) \subseteq \circ^* \left(\circ^* (\underbrace{x, x, \dots, x}_{m-1}, y), \circ^* (\underbrace{x, x, \dots, x}_{m-1}, z), \underbrace{x, x, \dots, x}_{m-2} \right)$. Proof. By $(G_{sh}$ -2), $z \in \circ^* (\underbrace{x, x, \dots, x}_{m-1}, \circ^* (\underbrace{x, x, \dots, x}_{m-2}, z))$. Now we have $\circ^* (\underbrace{z, z, \dots, z}_{m-2}, y) \subseteq \circ^* (\circ^* (\underbrace{x, x, \dots, x}_{m-1}, z), \underbrace{x, x, \dots, x}_{m-2}, z)$.

$$\underbrace{(\underbrace{x, x, \dots, x}_{m-1}, \circ^*(\underbrace{x, x, \dots, x}_{m-1}, z)), \underbrace{y, y, \dots, y}_{m-1}}_{m-1}, \operatorname{According to the assumption}^{m-1} \circ^*(\circ^*(\underbrace{x, x, \dots, x}_{m-1}, \circ^*(\underbrace{x, x, \dots, x}_{m-1}, z)), \underbrace{y, y, \dots, y}_{m-1}) = \circ^*(\circ^*(\underbrace{x, x, \dots, x}_{m-1}, y), \circ^*(\underbrace{x, x, \dots, x}_{m-1}, z), \underbrace{x, x, \dots, x}_{m-2}). \text{ Thus it is obtained. } \square$$

Theorem 3.10. Let $(X, \circ_{(m,n)}^*, 0)$ be an (m, n)-superhyper G-algebra. If for any $x, y, z \in X$, $\circ^* \left(\circ^* (\underbrace{x, x, \dots, x}_{m-1}, y), \circ^* (\underbrace{x, x, \dots, x}_{m-1}, z), \underbrace{x, x, \dots, x}_{m-2} \right) = \circ^* (\underbrace{z, z, \dots, z}_{m-1}, y).$ Then $\circ^* \left(\circ^* (\underbrace{x, x, \dots, x}_{m-1}, y), \underbrace{z, z, \dots, z}_{m-1} \right) = \circ^* \left(\circ^* (\underbrace{x, x, \dots, x}_{m-1}, z), \underbrace{y, y, \dots, y}_{m-1} \right).$

Proof. By
$$(G_{sh}-2), z \in \circ^*(\underbrace{x, x, \dots, x}_{m-1}, \circ^*(\underbrace{x, x, \dots, x}_{m-1}, z))$$
. Now by the assumption, we have
 $\circ^*(\circ^*(\underbrace{x, x, \dots, x}_{m-1}, y), \underbrace{z, z, \dots, z}_{m-1}) \subseteq \overset{(m-1)}{\longrightarrow} (\circ^*(\underbrace{x, x, \dots, x}_{m-1}, y), \circ^*(\underbrace{x, x, \dots, x}_{m-1}, z), \underbrace{y, y, \dots, y}_{m-1})$.
 $\circ^*(\circ^*(\underbrace{x, x, \dots, x}_{m-1}, z), \underbrace{y, y, \dots, y}_{m-1})$.
Conversely, by $(G_{sh}-2), y \in \circ^*(\underbrace{x, x, \dots, x}_{m-1}, \circ^*(\underbrace{x, x, \dots, x}_{m-1}, y))$. Therefore by the assumption,

$$\circ^{*}(\circ^{*}(\underbrace{x,x,\ldots,x}_{m-1},z),\underbrace{y,y,\ldots,y}_{m-1}) \subseteq \\\circ^{*}(\circ^{*}(\underbrace{x,x,\ldots,x}_{m-1},z),\circ^{*}(\underbrace{x,x,\ldots,x}_{m-1},\circ^{*}(\underbrace{x,x,\ldots,x}_{m-1},y)),\underbrace{x,x,\ldots,x}_{m-2}) \\= \circ^{*}(\circ^{*}(\underbrace{x,x,\ldots,x}_{m-1},y),\underbrace{z,z,\ldots,z}_{m-1}). \Box$$

Theorem 3.11. Let
$$(X, \circ_{(m,n)}^*, 0)$$
 be an (m, n) -superhyper *G*-algebra. If for any $x, y, z \in X$, $\circ^*(\underbrace{z, z, \dots, z}_{m-1}, y) = \circ^*(\circ^*(\underbrace{x, x, \dots, x}_{m-1}, y), \circ^*(\underbrace{x, x, \dots, x}_{m-1}, z), \underbrace{x, x, \dots, x}_{m-2})$. Then $\circ^*(\underbrace{x, x, \dots, x}_{m-1}, z) \subseteq \circ^*(\circ^*(\underbrace{x, x, \dots, x}_{m-1}, y), \circ^*(\underbrace{z, z, \dots, z}_{m-1}, y), \underbrace{x, x, \dots, x}_{m-2})$.

Proof. According to
$$(G_{sh}-2)$$
, $\circ^*(\underbrace{x, x, \ldots, x}_{m-1}, z) \subseteq$
 $\circ^*(\circ^*(\underbrace{x, x, \ldots, x}_{m-1}, y), \circ^*(\circ^*(\underbrace{x, x, \ldots, x}_{m-1}, y), \circ^*(\underbrace{x, x, \ldots, x}_{m-1}, z), \underbrace{x, x, \ldots, x}_{m-2}), \underbrace{x, x, \ldots, x}_{m-2})$. By the assumption, we have $\circ^*(\circ^*(\underbrace{x, x, \ldots, x}_{m-1}, y), \circ^*(\underbrace{x, x, \ldots, x}_{m-1}, z), \underbrace{x, x, \ldots, x}_{m-2}) = \circ^*(\underbrace{z, z, \ldots, z}_{m-1}, y)$. Therefore it is obtained. \Box

Theorem 3.12. Let $(X, \circ_{(m,n)}^*, 0)$ be an (m, n)-superhyper G-algebra. If for any $x, y, z \in X$, $\circ^* \left(\circ^* \underbrace{(x, x, \dots, x, y)}_{m-1}, \circ^* \underbrace{(z, z, \dots, z, y)}_{m-1}, \underbrace{x, x, \dots, x}_{m-2} \right) = \circ^* \underbrace{(x, x, \dots, x, z)}_{m-1}$. Then $\circ^* \underbrace{(z, z, \dots, z, y)}_{m-1} \subseteq \circ^* \left(\circ^* \underbrace{(x, x, \dots, x, y)}_{m-1}, \circ^* \underbrace{(x, x, \dots, x, z, y)}_{m-1}, \underbrace{x, x, \dots, x}_{m-2} \right)$.

 $\begin{array}{l} Proof. \text{ According to } (G_{sh}-2), \circ^*(\underbrace{x, x, \dots, x}_{m-1}, z) \subseteq \\ \circ^*\left(\circ^*(\underbrace{x, x, \dots, x}_{m-1}, y), \circ^*(\circ^*(\underbrace{x, x, \dots, x}_{m-1}, y), \circ^*(\underbrace{x, x, \dots, x}_{m-1}, z), \underbrace{x, x, \dots, x}_{m-2}), \underbrace{x, x, \dots, x}_{m-2}\right) \text{ and by the} \\ \text{assumption, } \circ^*(\circ^*(\underbrace{x, x, \dots, x}_{m-1}, y), \circ^*(\underbrace{z, z, \dots, z}_{m-1}, y), \underbrace{x, x, \dots, x}_{m-2}) = \circ^*(\underbrace{x, x, \dots, x}_{m-1}, z). \text{ Therefore} \\ \circ^*(\circ^*(\underbrace{x, x, \dots, x}_{m-1}, y), \circ^*(\underbrace{z, z, \dots, z}_{m-1}, y), \underbrace{x, x, \dots, x}_{m-2}) \subseteq \\ \hline \end{array}$

$$\circ^{*} \left(\circ^{*} \underbrace{(\underbrace{x, x, \dots, x}_{m-1}, y), \circ^{*} (\circ^{*} \underbrace{(\underbrace{x, x, \dots, x}_{m-1}, y), \circ^{*} \underbrace{(\underbrace{x, x, \dots, x}_{m-1}, z), \underbrace{x, x, \dots, x}_{m-2}}_{m-1}, \underbrace{\underbrace{x, x, \dots, x}_{m-2}}_{m-2} \right).$$
Thus
$$\circ^{*} \underbrace{(\underbrace{z, z, \dots, z}_{m-1}, y) \subseteq \circ^{*} \left(\circ^{*} \underbrace{(\underbrace{x, x, \dots, x}_{m-1}, y), \circ^{*} \underbrace{(\underbrace{x, x, \dots, x}_{m-1}, z), \underbrace{x, x, \dots, x}_{m-2}}_{m-1}, \underbrace{z, x, \dots, x}_{m-2} \right).$$

Definition 3.13. Let $(X, \circ_{(m,n)}^*, 0)$ be an (m, n)-superhyper *G*-algebra and $A, B \in \circ_{(m,n)}^*(x_1, \ldots, x_m)$. Then *A* and *B* are called adjacent.

Proposition 3.14. Let $(X, \circ^*_{(m,n)}, 0)$ be an (m, n)-superhyper G-algebra. Then for any $a, x, y \in X$, $\circ^*(\underbrace{a, a, \ldots, a}_{m-1}, x) = \circ^*(\underbrace{a, a, \ldots, a}_{m-1}, y)$ implies x and y are adjacent.

Proof. Let $a, x, y \in X$ and $\circ^*(\underbrace{a, a, \dots, a}_{m-1}, x) = \circ^*(\underbrace{a, a, \dots, a}_{m-1}, y)$. It follows that $\circ^*(\underbrace{a, a, \dots, a}_{m-1}, \circ^*(\underbrace{a, a, \dots, a}_{m-1}, x)) = \circ^*(\underbrace{a, a, \dots, a}_{m-1}, \circ^*(\underbrace{a, a, \dots, a}_{m-1}, y))$. Thus according to $(G_{sh}-2)$, x and y are adjacent. \Box

Theorem 3.15. Let $(X, \circ_{(m,n)}^*, 0)$ be an (m, n)-superhyper *G*-algebra. Then for any $x, y \in X$, $\circ^*(\underbrace{0, 0, \ldots, 0}_{m-1}, x) = \circ^*(\underbrace{0, 0, \ldots, 0}_{m-1}, y)$ implies x and y are adjacent.

Proof. According to the assumption, $\circ^*(\underbrace{0,0,\ldots,0}_{m-1},x) = \circ^*(\underbrace{0,0,\ldots,0}_{m-1},y)$, So we have $\circ^*(\underbrace{0,0,\ldots,0}_{m-1},\circ^*(\underbrace{0,0,\ldots,0}_{m-1},x)) = \circ^*(\underbrace{0,0,\ldots,0}_{m-1},\circ^*(\underbrace{0,0,\ldots,0}_{m-1},y))$. Therefore by Theorem 3.7 (ii), $x \in \circ^*(\underbrace{0,0,\ldots,0}_{m-1},\circ^*(\underbrace{0,0,\ldots,0}_{m-1},x))$ and $y \in \circ^*(\underbrace{0,0,\ldots,0}_{m-1},\circ^*(\underbrace{0,0,\ldots,0}_{m-1},y))$. By definition x and y are adjacent. \Box

Theorem 3.16. Let $(X, \circ_{(m,n)}^*, 0)$ be an (m, n)-superhyper G-algebra. Then for any $x, y \in X$, $x \in \circ^* \left(\circ^* (\underbrace{x, x, \ldots, x}_{m-1}, y), \circ^* (\underbrace{0, 0, \ldots, 0}_{m-1}, y), \underbrace{y, y, \ldots, y}_{m-2} \right)$ and $\circ^* (\underbrace{x, x, \ldots, x}_{m-1}, z) = \circ^* (\underbrace{x, x, \ldots, x}_{m-1}, z)$, implies x and y are adjacent.

Proof. If
$$\circ^*(\underbrace{x, x, \dots, x}_{m-1}, z) = \circ^*(\underbrace{y, y, \dots, y}_{m-1}, z)$$
, then
 $\circ^*(\circ^*(\underbrace{x, x, \dots, x}_{m-1}, z), \circ^*(\underbrace{0, 0, \dots, 0}_{m-1}, z), \underbrace{x, x, \dots, x}_{m-2}) =$
 $\circ^*(\circ^*(\underbrace{y, y, \dots, y}_{m-1}, z), \circ^*(\underbrace{0, 0, \dots, 0}_{m-1}, z), \underbrace{x, x, \dots, x}_{m-2})$. By the assumption
 $x \in \circ^*(\circ^*(\underbrace{x, x, \dots, x}_{m-1}, z), \circ^*(\underbrace{0, 0, \dots, 0}_{m-1}, z), \underbrace{x, x, \dots, x}_{m-2})$ and
 $y \in \circ^*(\circ^*(\underbrace{y, y, \dots, y}_{m-1}, z), \circ^*(\underbrace{0, 0, \dots, 0}_{m-1}, z), \underbrace{x, x, \dots, x}_{m-2})$. It follows that x and y are adjacent. \Box

Definition 3.17. A non-empty subset Y of an (m, n)-superhyper G-algebra X is called an (m, n)-superhyper G-subalgebra if for all $a_1, a_2, \ldots, a_m \in Y$, implies $\circ^*_{(m,n)}(a_1, a_2, \ldots, a_m) \in P^n_*(Y)$.

Definition 3.18. Let $(X, \circ_{(m,n)}^*, 0_X)$ and $(X', \circ_{(m,n)}^{\prime*}, 0_{X'})$ be (m, n)-superhyper *G*-algebras. A mapping $\phi : X \longrightarrow X'$ is called a homomorphism if

(i)
$$\phi(\circ^*(x_1, x_2, \dots, x_m)) = \circ'^*(\phi(x_1), \phi(x_2), \dots, \phi(x_m)), \text{ for } x_1, x_2, \dots, x_m \in X$$

(*ii*) $0_{X'} \in \phi(0_X)$.

The homomorphism ϕ is said to be a monomorphism (resp., an epimorphism) if it is injective (resp., surjective). If the map ϕ is both injective and surjective then X and X' are said to be isomorphic, written $X \cong X'$. For any homomorphism $\phi : X \longrightarrow X'$, the set $\{x \in X | 0_{X'} \in \phi(x)\}$ is called the kernel of ϕ and is denoted by $Ker\phi$.

Lemma 3.19. Let $\phi : (X, \circ^*_{(m,n)}, 0_X) \longrightarrow (X', \circ^{**}_{(m,n)}, 0_{X'})$ be a homomorphism of (m, n)-superhyper G-algebras, then we have the following:

- (i) $Ker\phi$ is an (m, n)-superhyper G-algebra of X,
- (ii) $Im\phi = \{y \in X' | y = \phi(x), \text{ for some } x \in X\}$ is an (m, n)-superhyper G-subalgebra of X.

Proof. (i) Since $0_X \in Ker\phi$, then $Ker\phi \neq \emptyset$. Suppose $x_1, x_2, \ldots, x_m \in Ker\phi$. So $0_{X'} \in \phi(x_i)$ for $i = 1, \ldots, m$. From $\phi(\circ^*(x_1, x_2, \ldots, x_m)) = \circ'^*(\phi(x_1), \phi(x_2), \ldots, \phi(x_m))$. Because $0_{X'} \in \circ'^*(\phi(x_1), \phi(x_2), \ldots, \phi(x_m))$, Implies that $0_{X'} \in \phi(\circ^*(x_1, x_2, \ldots, x_m))$. It follows that, $\circ^*(x_1, x_2, \ldots, x_m) \in Ker\phi$.

(ii) Direct to prove. \Box

Definition 3.20. An (m, n)-superhyper G-algebra $(X, \circ_{(m,n)}^*, 0)$ is said to be 0-commutative if for any $x, y \in X$, $\circ^*(\underbrace{x, x, \ldots, x}_{m-1}, \circ^*(\underbrace{0, 0, \ldots, 0}_{m-1}, y)) = \circ^*(\underbrace{y, y, \ldots, y}_{m-1}, \circ^*(\underbrace{0, 0, \ldots, 0}_{m-1}, x)).$

Theorem 3.21. Let $(X, \circ_{(m,n)}^*, 0)$ be an 0-commutative (m, n)-superhyper G-algebra. Then for any $x, y \in X$, $\circ^*(\underbrace{y, y, \ldots, y}_{m-1}, x) \subseteq \circ^*(\circ^*(\underbrace{0, 0, \ldots, 0}_{m-1}, x), \circ^*(\underbrace{0, 0, \ldots, 0}_{m-1}, y), \underbrace{x, x, \ldots, x}_{m-2})$.

Proof. Because

Theorem 3.22. Let
$$(X, \circ_{(m,n)}^*, 0)$$
 be a 0-commutative (m, n) -superhyper G-algebra satisfying $\circ^*(\underbrace{0, 0, \ldots, 0}_{m-1}, \circ^*(\underbrace{x, x, \ldots, x}_{m-1}, y)) = \circ^*(\underbrace{y, y, \ldots, y}_{m-1}, x)$. Then for any $x, y \in X$, $x \in \circ^*(\circ^*(\underbrace{x, x, \ldots, x}_{m-1}, y), \circ^*(\underbrace{0, 0, \ldots, 0}_{m-1}, y), \underbrace{x, x, \ldots, x}_{m-2}))$.

. . .

Proof. Because X be a 0-commutative, implies that $\circ^* \left(\circ^* \underbrace{(x, x, \dots, x, y)}_{m-1}, \circ^* \underbrace{(0, 0, \dots, 0, y)}_{m-1}, \underbrace{x, x, \dots, x}_{m-2} \right) = \\ \circ^* \underbrace{(y, y, \dots, y, \circ^* \underbrace{(0, 0, \dots, 0, \circ^* \underbrace{(x, x, \dots, x, y)}_{m-1})}_{m-1} \right).$ By the assumption and $(G_{sh}-2),$ $x \in \circ^* \underbrace{(y, y, \dots, y, \circ^* \underbrace{(y, y, \dots, y, x)}_{m-1}, x)}_{m-1} = \circ^* \underbrace{(y, y, \dots, y, \circ^* \underbrace{(0, 0, \dots, 0, \circ^* \underbrace{(x, x, \dots, x, y)}_{m-1})}_{m-1} \right).$ Thus it is obtained. \Box

4. Conclusions

In this paper, we have introduced the novel concept of (m, n)-superhyper G-algebras based on a powerset and studied their properties. We have presented some basic results and examples of this superhyperalgebra. The basis of our work is the extension of G-algebras to superhyper G-algebras using a powerset. We wish that these results are helpful for further studies in the theory of superhyperalgebra. For future work, we hope to investigate the idea of neutrosophic superhyper G-algebras, fuzzy superhyper G-algebras, and soft superhyper G-algebras and obtain some results in this regard and their applications.

References

- 1. D. Al-Kadi, R. Hosny, Notes on G-algebra and its derivations, Math Sci Lett, 2017, 6, no. 3, 287–292.
- 2. R. K. Bandrur, and N. Rafii, On G-algebras, Sci. Magna., 2012, 8(3) 1-7.
- M. Hamidi, F. Smarandache, and E. Davneshvar, Spectrum of Superhypergraphs via Flows, Journal of Mathematics, 2022 (2022) 12 pages.
- M. Hamidi, On neutro-d-subalgebras, journal of Algebraic Hyperstructures and Logical Algebras, 2021,2(2), 13-23.
- 5. M. Hamidi, F. Smarandache, Neutro-BCK-Algebra, Int. j. neutrosophic sci, 2020, 8 110-117.
- 6. M. Hamidi and F. Smarandache, Single-Valued Neutro Hyper BCK-Subalgebras, J. Math., 2021, 1-11.
- M. Hamidi and M. Rahmati, On neutro-G-subalgebra, 9th Iranian Joint Congress on Fuzzy and Intelligent Systems, 2022, 529-532.
- 8. M. Hamidi, On superhyper BCK-algebra, Neutrosophic Sets and Systems (2022)(submitted).
- W. Messirdi and A. Fallatah, About derivations on G-algebras. Journal of Taibah University for Science, 2020, 14, 1–5.
- F. Smarandache, Introduction to SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra. Journal of Algebraic Hyperstructures and Logical Algebras, 2022, Inpress, 8.
- 11. F. Smarandache, The SuperHyperFunction and the Neutrosophic SuperHyperFunction, Neutrosophic Sets and Systems, 2022, **49**, 594-600.

- 12. F. Smarandache, SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra, Section into the authors book Nidus Idearum. Scilogs, II: de rerum consectatione, second edition, Bruxelles: 2016, Pons, 107.
- F. Smarandache, Extension of HyperGraph to n-SuperHyperGraph and to Plithogenic n-SuperHyperGraph, and Extension of HyperAlgebra to n-ary (Classical-/Neutro-/Anti-)HyperAlgebra. Neutrosophic Sets and Systems, 2020, 33, 290–296.
- F. Smarandache, Introduction to the n-SuperHyperGraph the most general form of graph today. Neutrosophic Sets and Systems, 2022, 48, 483–485.

Received: January 07, 2023 / Accepted: April 10, 2023