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In this article we give an extension of group action theory to neutrosophic theory and 

develop G-neutrosophic spaces by certain valuable techniques. Every G-neutrosophic space 

always contains a G-space. A G-neutrosophic space has neutrosophic orbits as well as strong 

neutrosophic orbits. Then we give an important theorem for orbits which tells us that how many 

orbits of a G-neutrosophic space. We also introduce new notions called pseudo neutrosophic 

space and ideal space and then give the important result that the transitive property implies to 

ideal property 

. 
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1. Introduction 

    The Concept of a G-space came into being as a consequence of Group 

action on an ordinary set. Over the history of Mathematics and Algebra, theory of 

group action has emerged and proven to be an applicable and effective framework 

for the study of different kinds of structures to make connection among them. The 

applications of group action in different areas of science such as physics, 

chemistry, biology, computer science, game theory, cryptography etc has been 

worked out very well. The abstraction provided by group actions is a powerful 

one, because it allows geometrical ideas to be applied to more abstract objects. 

Many objects in Mathematics have natural group actions defined on them. In 

particular, groups can act on other groups, or even on themselves. Despite this 

generality, the theory of group actions contains wide-reaching theorems, such as 

the orbit stabilizer theorem, which can be used to prove deep results in several 

fields. Neutrosophy is a branch of neutrosophic philosophy which handles the 

origin and stages of neutralities. Neutrosophic science is a newly emerging 

science which has been firstly introduced by Florentin Smarandache in 1995. This 

is quite a general phenomenon which can be found almost everywhere in the 

nature. Neutrosophic approach provides a generosity to absorbing almost all the 

corresponding algebraic structures open heartedly. This tradition is also 

maintained in our work here. The combination of neutrosophy and group action 

gives some extra ordinary excitement while forming this new structure called G-

neutrosophic space. This is a generalization of all the work of the past and some 

new notions are also raised due to this approach. Some new types of spaces and 

their core properties have been discovered here for the first time. Examples and 

counter examples have been illustrated wherever required. In this paper we have 

also coined a new term called pseudo neutrosophic spaces and a new property 



M. Ali, F. Smarandache, M. Naz, M. Shabir 

 

called ideal property. The link of transitivity with ideal property and the 

corresponding results are established. 

 

2. Basic Concepts 
 

Group Action 

 

Definition 1:  Let  be a non empty set and G be a group. Let : G  be 

a mapping. Then   is called an action of G on  such that for all  and  

,g h G . 

1)  , , ,g h gh   

2)  ,1 , where 1 is the identity element in G . 

Usually we write g  instead of  , g . Therefore 1  and 2  becomes as 

1)  
h ghg . For all  and ,g h G . 

2) 1  . 

  

Definition 2:  Let  be a G -space. Let 1   be a subset of . Then 1 is 

called G -subspace of  if 1

g  for all 1  and  g G .  

  

Definition 3:  We say that is transitive G -space if for any , G , there exist 

g G   such that 
g

. 

  

Definition 4:  Let , then G  or G  is called G -orbit and is defined as  

:G g g G .  

 A transitive G -subspace is also called an orbit. 

 

 Remark 1:  A transitive G  space has only one orbit. 

 

Definition 5:  Let G be a group acting on   and if   , we denote stabilizer 

of  by G   and is define as  : g

GG stab g G .  

 Lemma 1:  Let  be a G -space and  . Then 

1)  G G  and 

2) There is one-one correspondence between the right cosets of G  and the G -

orbit G in G . 

 Corollary 1:  If G is finite, then . GG G   



G-Neutrosophic Space 

 

 Definition 6:  Let  be a G -space and g G . Then 

: gfix g . 

 Theorem 1:  Let  and G be finite. Then 

1

g G

Orb G fix g
G

,  

where Orb G  is the number of orbits of G  in . 

 

 

3. Neutrosophic Spaces 
 

Definition 10:  Let  be a G -space. Then N  is called G -neutrosophic 

space if  N I  which is generated by  and I. 

 

Example 1:  Let  
2 2, , , , ,e x x y xy x y =S3 and  ,G e y .  Let 

: G  be an action of G   on   defined by , g g ,  for all 

 and  g G .  Then   be a G -space under this action. Let N  be the 

corresponding G -neutrosophic space, where 

2 2 2 2, , , , , , , , , , ,N I e x x y xy x y I Ix Ix Iy Ixy Ix y  

 

 Theorem 3:  N  always contains . 

 

 Definition 11:  Let N  be a neutrosophic space and  1N be a subset of 

N .  Then 1N  is called neutrosophic subspace of  N  if 1

gx N  

for all 1x N  and  g G  . 

 

 Example 2:  In the above example 1 . Let  1 ,N x xy  and  

2 2

2 ,N Ix Ix y  are subsets of  N . Then clearly 1N  and 2N   

are neutrosophic subspaces of N . 

 

Theorem 4:  Let N be aG -neutrosophic space and  be a G -space. Then 

 is always a neutrosophic subspace of N . 
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Proof:  The proof is straightforward. 

 

Definition 12:  A neutrosophic subspace 1N  is called strong neutrosophic 

subspace or pure neutrosophic subspace if all the elements of 1N  are 

neutrosophic elements. 

 

 Example 3:  In example 1  , the neutrosophic subspace  
2 2

2 ,N Ix Ix y  is 

a strong neutrosophic subspace or pure neutrosophic subspace of N .  

 

 Remark 2:  Every strong neutrosophic subspace or pure neutrosophic subspace is 

trivially neutrosophic subspace. 

 

The converse of the above remark is not true. 

 

Example 4:  In previous example 1 ,N x xy  is a neutrosophic subspace but 

it is not strong neutrosophic subspace or pure neutrosophic subspace of  N .  

  

Definition 13:  Let N  be a  G -neutrosophic  space. Then N  is said to 

be transitive G -neutrosophic space if for any ,x y N , there exists  g G  

such that  
gx y . 

 

 Example 5:  Let 4 ,G Z , where  4Z  is a group under addition modulo 

4 . Let : G   be an action of  G  on itself defined by , g g , 

for all   and  g G . Then   is a G -space and N  be the 

corresponding G -neutrosophic space , where 

0,1,2,3, ,2 ,3 ,4 ,1 ,2 ,3 ,1 2 ,2 2 ,2 3 ,3 2 ,3 3N I I I I I I I I I I I I

 

Then N is not transitive neutrosophic space. 

 

Theorem 5:  All the G -neutrosophic spaces are intransitive G -neutrosophic 

spaces. 

 



G-Neutrosophic Space 

Definition 14:  Let  n N  , the neutrosophic orbit of n  is denoted by nNO  

and is defined as  :g

nNO n g G .  

 

 Equivalently neutrosophic orbit is a transitive neutrosophic subspace. 

 

Example 6:  In example 1 , the neutrosophic space  N  has 6  neutrosophic 

orbits which are given below 

2

2

2 2

2 2

, , , ,

, , , ,

, , , .

e x

Ix

Ix Ix

NO e y NO x xy

NO x x y NO I Iy

NO Ix Ixy NO Ix Ix y

 

 

Definition 15:  A neutrosophic orbit nNO  is called strong neutrosophic orbit or 

pure neutrosophic orbit if it has only neutrosophic elements. 

 

 Example 7:  In example 1 ,  

2

2 2

, ,

, ,

, .

I

Ix

Ix

NO I Iy

NO Ix Ixy

NO Ix Ix y

 

are strong neutrosophic orbits or pure neutrosophic orbits of  N .  

 

Theorem 7: All strong neutrosophic orbits or pure neutrosophic orbits are 

neutrosophic orbits. 

 

Proof: Straightforward 

 

 To show that the converse is not true, let us check the following example. 

 

 Example 8:  In example 1   

2

2 2

, ,

, ,

, .

e

x

x

NO e y

NO x xy

NO x x y
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are neutrosophic orbits of N  but they are not strong or pure neutrosophic 

orbits. 

 

 Definition 16:  Let G  be a group acting on  and  x N . The neutrosophic 

stabilizer of x  is defined as  : g

x GG stab x g G x x . 

 

 Example 9:  Let  2 2, , , , ,e x x y xy x y  and  
2, ,G e x x .  Let  

: G  be an action of  G  on  defined by  , g g , for all  

 and g G .  Then   is a  G -space under this action.  Now N  be the  

G -neutrosophic space, where 

2 2 2 2, , , , , , , , , , ,N e x x y xy x y I Ix Ix Iy Ixy Ix y  

Let  x N , then the neutrosophic stabilizer of x  is  xG e  and also let 

I N , so the neutrosophic stabilizer of I is IG e .  

 

 Lemma 2:  Let N  be a neutrosophic space and  x N , then 

1)  xG G . 

2) There is also one-one correspondence between the right cosets of xG  and the 

neutrosophic orbit xNO . 

 

 Corollary 2:  Let G is finite and x N , then  .x xG G NO  . 

  

Definition 17:  Let x N , then the neutrosophic stabilize of x  is called 

strong neutrosophic stabilizer or pure neutrosophic stabilizer if and only if x  is a 

neutrosophic element of  N .  

  

Example 10: In above example (9), IG e   is a strong neutrosophic or pure 

neutrosophic stabilizer of neutrosophic element I , where  I N .  

 

 Remark 3:  Every strong neutrosophic stabilizer or pure neutrosophic stabilizer 

is always a neutrosophic stabilizer  

 

but the converse is not true. 

 



G-Neutrosophic Space 

 Example 11:  Let  x N ,  where 

2 2 2 2, , , , , , , , , , ,N e x x y xy x y I Ix Ix Iy Ixy Ix y  

Then xG e  is the neutrosophic stabilize of x  but it is not strong neutrosophic 

stabilizer or pure neutrosophic stabilizer as x  is not a neutrosophic element of  

N . 

  

Definition 18:  Le  N  be a neutrosophic space and  G  be a finite group 

acting on .  For  g G ,  : g

N
fix g x N x x   

Example 12:  In example 11, 
2 2 2 2, , , , , , , , , , ,

N
fix e e x x y xy x y I Ix Ix Iy Ixy Ix y  

N
fix g , where g e . 

 

 Theorem 8:  Let N  be a finite neutrosophic space, then 

1
N N

g G

NO G fix g
G

. 

 Proof:  The proof is same as in group action. 

 

 Example 13:  Consider example 1 , only identity element of  G  fixes all the 

elements of N .  Hence  
2 2 2 2, , , , , , , , , , ,

N
fix e e x x y xy x y I Ix Ix Iy Ixy Ix y  

and hence 12
N

fix e . 

 The number of neutrosophic orbits of N  are given by above theorem 

1
12 6

2
N

NO G  

Hence N  has 6  neutrosophic orbits. 

4. Pseudo Neutrosophic Space 

 

 Definition 19:   A neutrosophic space N  is called pseudo neutrosophic space 

which does not contain a proper set which is a G -space. 

 

Example 14:  Let  2G Z  where 2Z  is a group under addition modulo 2 .  

Let : G  be an action of G  on  defined by  , g g , for all  
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 and  g G .  Then  be a G -space under this action and N  be the 

G -neutrosophic space, where 0,1, ,1N I I
.
 

Then clearly N  is a pseudo neutrosophic space. 

  

Theorem 9:  Every pseudo neutrosophic space is a neutrosophic space but the 

converse is not true in general. 

 

 Example 15:  In example 1 , N  is a neutrosophic space but it is not pseudo 

neutrosophic space because  , , ,e y x xy  and  
2 2,x x y  are  proper subsets 

which are G -spaces. 

 

 Definition 20:  Let N  be a neutrosophic space and  1N  be a 

neutrosophic subspace of N . Then  1N  is called pseudo neutrosophic 

subspace of  N   if 1N  does not contain a proper subset of   which is a 

G -subspace of  . 

 

Example 16:  In example 1 , , , ,e y Ix Ixy  etc are pseudo neutrosophic 

subspaces of N  but  , , ,e y Ix Ixy  is not pseudo neutrosophic subspace of  

N  as ,e y  is a proper G -subspace of . 

 

Theorem 10:  All pseudo neutrosophic subspaces are neutrosophic subspaces but 

the converse is not true in general. 

 

Example 17:  In example 1 , , , ,e y Ix Ixy  is a neutrosophic subspace of  

N but it is not pseudo neutrosophic subspace of N . 

 

Theorem 11:  A neutrosophic space N has neutrosophic subspaces as well as 

pseudo neutrosophic subspaces. 

 

Proof : The proof is obvious. 

 

Theorem 12:  A transitive neutrosophic subspace is always a pseudo 

neutrosophic subspace but the converse is not true in general. 

 



G-Neutrosophic Space 

Proof:  A transitive neutrosophic subspace is a neutrosophic orbit and hence 

neutrosophic orbit does not contain any other subspace and so pseudo 

neutrosophic subspace. 

 

The converse of the above theorem does not holds in general. For instance let see 

the following example. 

 

Example 18:  In example 1 ,  , , ,I Iy Ix Ixy  is a pseudo neutrosophic subspace 

of  N  but it is not transitive. 

  

Theorem 13:  All transitive pseudo neutrosophic subspaces are always 

neutrosophic orbits. 

 

Proof:  The proof is followed from by definition. 

 

 Definition 21: The pseudo property in a pseudo neutrosophic subspace is called 

ideal property. 

  

Theorem 14: The transitive property implies ideal property but the converse is 

not true. 

 

 Proof:  Let us suppose that 1N  be a transitive neutrosophic subspace of 

N . Then by following above theorem, 1N  is pseudo neutrosophic 

subspace of  N  and hence transitivity implies ideal property. 

The converse of the above theorem is not holds. 

 

 Example 19:  In example 1 , , , ,I Iy Ix Ixy  is a pseudo neutrosophic subspace 

of N  but it is not transitive. 

 

Theorem 15: The ideal property and transitivity both implies to each other in 

neutrosophic orbits. 

 

Proof:  The proof is straightforward. 

  

Definition 22:  A neutrosophic space N is called ideal space or simply  if all 

of its proper neutrosophic subspaces are pseudo neutrosophic subspaces. 
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Example 20:  In example 14 , the neutrosophic space N  is an ideal space 

because 0,1 , ,1I I  are only proper neutrosophic subspaces which are pseudo 

neutrosophic subspaces of N . 

  

Theorem 16:  Every ideal space is trivially a neutrosophic space but the converse 

is not true. 

 

For converse, we take the following example 

 

Example 21:  In example 1 , N  is a neutrosophic space but it is not an ideal 

space. 

 

Theorem 17:  A neutrosophic space N  is an ideal space If  is transitive 

G -space. 

 

Theorem 18:  Let N  be a neutrosophic space, then N  is pseudo 

neutrosophic space if and only if N  is an ideal space. 

 

Proof:  Suppose that N is a pseudo neutrosophic space and hence by 

definition all proper neutrosophic subspaces are also pseudo neutrosophic 

subspaces. Thus N  is an ideal space. 

Conversely suppose that N  is an ideal space and so all the proper 

neutrosophic subspaces are pseudo neutrosophic subspaces and hence N  

does not contain any proper set which is G -subspace and consequently N  is 

a pseudo neutrosophic space. 

 

Theorem 19:  If the neutrosophic orbits are only the neutrosophic proper 

subspaces of N , then N  is an ideal space. 

 

Proof:  The proof is obvious. 

  

Theorem 20:  A neutrosophic space N  is an  ideal space if  2
N

NO G    

 Theorem 21:  A neutrosophic space N  is  ideal space if all of its proper 

neutrosophic subspaces are neutrosophic orbits. 



G-Neutrosophic Space 

6. Conclusions 

The main theme of this paper is the extension of neutrosophy to group action and 

G-spaces to form G-neutrosophic spaces. Our aim is to see the newly generated 

structures and finding their links to the old versions in a logical manner. 

Fortunately enough, we have found some new type of algebraic structures here, 

such as ideal space, Pseudo spaces. Pure parts of neutrosophy and their 

corresponding properties and theorems are discussed in detail with a sufficient 

supply of examples. 
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