
              
ISSN: 1304-7981                                                  Number: 7, Year: 2014, Pages: 29-47 http://jnrs.gop.edu.tr 

 
Received: 19.07.2014 Editors-in-Chief:  Naim Çağman 

Accepted: 08.08.2014 Area Editor: Oktay Muhtaroğlu 

 

 

Generalized Interval Neutrosophic Soft Set and  

its Decision Making Problem 

 

 
Said Broumi a 

Rıdvan Sahin b 

Florentin Smarandache c 

(broumisaid78@gmail.com) 

(mat.ridone@gmail.com) 

(fsmarandache@gmail.com) 
 

 

a Faculty of Letters and Humanities, Hay El Baraka Ben M'sik Casablanca B.P. 7951, Hassan II 

Mohammedia-Casablanca University, Morocco 
b Department of Mathematics, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey 
c Department of Mathematics, University of New Mexico,705 Gurley Avenue, Gallup, NM 87301, USA 
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1. Introduction  

 
Neutrosophic sets, founded by Smarandache [8] has capability to deal with uncertainty, imprecise, 

incomplete and inconsistent information which exist in real world. Neutrosophic set theory is a 

powerful tool which generalizes the concept of the classic set, fuzzy set [16], interval-valued fuzzy set 

[10], intuitionistic fuzzy set [13] interval-valued intuitionistic fuzzy set [14], and so on. 

 

After the pioneering work of Smarandache, Wang [9] introduced the notion of interval neutrosophic set 

(INS) which is another extension of neutrosophic set. INS can be described by a membership interval, a 

non-membership interval and indeterminate interval, thus the interval value (INS) has the virtue of 

complementing NS, which is more flexible and practical than neutrosophic set, and interval 

neutrosophic set provides a morereasonable mathematical framework to deal with indeterminate and 

inconsistent information.The theory of neutrosophic sets and their hybrid structures has proven useful in 

many different fields such as control theory [25], databases [17,18], medical diagnosis problem [3,11], 

decision making problem [1,2,15,19,23,24,27,28,29,30,31,32,34], physics[7], and etc. 

In 1999, a Russian researcher [5] firstly gave the soft set theory as a general mathematical tool for 

dealing with uncertainty and vagueness. Soft set theory is free from the parameterization inadequacy 

syndrome of fuzzy set theory, rough set theory, probability theory. Recently, some authors have 

introduced new mathematical tools by generalizing and extending Molodtsov’s classical soft set theory; 
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fuzzy soft set [22], vague soft set [35], intuitionistic fuzzy soft set [20], interval valued intuitionistic 

fuzzy set [36]. 

 

Similarity, combining neutrosophic set models with other mathematical models has attracted the 

attention of many researchers: neutrosophic soft set [21], intuitionistic neutrosophic soft set [26], 

generalized neutrosophic soft set [23], interval neutrosophic soft set [12]. 

 

Broumi et al. [33] presented the concept of rough neutrosophic set which is based on a combination of 

the neutrosophic set and rough set models. Recently, Şahin and Küçük [23] generalized the concept of 

neutrosophic soft set with a degree of which is attached with the parameterization of fuzzy sets while 

defining a neutrosophic soft set, and investigated some basic properties of the generalized neutrosophic 

soft sets. 

 

In this paper our main objective is to extend the concept of generalized neutrosophic soft set introduced 

by Şahin and Küçük [23] to the case of interval neutrosophic soft set [12]. 

 

The paper is structured as follows. In Section 2, we first recall the necessary background on 

neutrosophic sets,soft set and generalized neutrosophic soft set. The concept of generalized interval 

neutrosophic soft sets and some of their properties are presented in Section 3.In Section 4, we present 

an application of generalized interval neutrosophic soft sets in decision making. Finally we conclude 

the paper. 

 

 

2. Preliminaries 

 
In this section, we will briefly recall the basic concepts of neutrosophic set,soft sets and generalized 

neutrosophic soft sets. Let 𝑈 be an initial universe set of objects and E the set of parameters in relation 

to objects in 𝑈 . Parameters are often attributes, characteristics or properties of objects. Let 𝑃(𝑈) 
denote the power set of 𝑈 and  𝐴 ⊆  𝐸. 

 

 

2.1 Neutrosophic Sets 

 

Definition 2.1 [8]. Let 𝑈 be an universe of discourse.The neutrosophic set 𝐴 is an object having the 

form 𝐴 =  {<  𝑥: 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥) > : 𝑥 ∈  𝑈},where the functions 𝑢,𝑤, 𝑣 ∶  𝑈 → ]0−, 1+[define 

respectively the degree of membership, the degree of indeterminacy, and the degree of non-

membership of the element 𝑥 ∈  𝑈 to the set 𝐴 with the condition.  

 

0− ≤  𝑢𝐴(𝑥) + 𝑤𝐴(𝑥) + 𝑣𝐴(𝑥)) ≤ 3+ 

 

From philosophical point of view, the neutrosophic set takes the value from real standard or non-

standard subsets of ]−0,1+[. So instead of ]−0,1+[ we need to take the interval [0,1] for 

technical applications, because ]−0,1+[will be difficult to apply in the real applicationssuch as in 

scientific and engineering problems. 

 

Definition 2.2 [8] A neutrosophicset 𝐴 is contained in the other neutrosophic set 𝐵 , 𝐴 ⊆ 𝐵  iff 

inf 𝑢𝐴(𝑥) ≤ inf 𝑢𝐵(𝑥) , sup𝑢𝐴(𝑥) ≤ sup𝑢𝐵(𝑥) , inf 𝑤𝐴(𝑥) ≥ inf𝑤𝐵(𝑥), sup𝑤𝐴(𝑥) ≥ sup𝑤𝐵(𝑥)and 

inf 𝑣𝐴(𝑥) ≥ inf 𝑣𝐵(𝑥), sup𝑣𝐴(𝑥) ≥ sup 𝑣𝐵(𝑥) for all 𝑥 ∈ 𝑈. 

 

An INS is an instance of a neutrosophic set, which can be used in real scientific and engineering 

applications. In the following, we introduce the definition of an INS. 
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2.2 Interval Neutrosophic Sets 

 

Definition 2.3 [9] Let 𝑈 be a space of points (objects) and Int[0,1] be the set of all closed subsets of 

[0,1]. An INS 𝐴 in 𝑈 is defined with the form  

 

𝐴 = {〈𝑥, 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥)〉: 𝑥 ∈ 𝑈} 
 

where 𝑢𝐴(𝑥): 𝑈 → int[0,1] , 𝑤𝐴(𝑥): 𝑈 → int[0,1]  and 𝑣𝐴(𝑥): 𝑈 → int[0,1]  with 0 ≤ sup𝑢𝐴(𝑥) +
sup𝑤𝐴(𝑥) + sup𝑣𝐴(𝑥) ≤ 3  for all 𝑥 ∈ 𝑈 . The intervals 𝑢𝐴(𝑥),𝑤𝐴(𝑥)  and 𝑣𝐴(𝑥)  denote the truth-

membership degree, the indeterminacy-membership degree and the falsity membership degree of 𝑥to 

𝐴, respectively. 

 

For convenience,  

 

if let 𝑢𝐴(𝑥) = [𝑢𝐴
−(𝑥), 𝑢𝐴

+(𝑥)], 𝑤𝐴(𝑥) = [𝑤𝐴
−(𝑥),𝑤𝐴

+(𝑥)] and 𝑣(𝑥) = [𝑣𝐴
−(𝑥), 𝑣𝐴

+(𝑥)], then  

𝐴 = {〈𝑥, [𝑢𝐴
−(𝑥), 𝑢𝐴

+(𝑥)], [𝑤𝐴
−(𝑥),𝑤𝐴

+(𝑥)], [𝑣𝐴
−(𝑥), 𝑣𝐴

+(𝑥)]〉: 𝑥 ∈ 𝑈} 
 

with the condition, 0 ≤ sup𝑢𝐴
+(𝑥) + sup𝑤𝐴

+(𝑥) + sup 𝑣𝐴
+(𝑥) ≤ 3  for all 𝑥 ∈ 𝑈 . Here, we only 

consider the sub-unitary interval of [0,1]. Therefore, an INS is clearly a neutrosophic set.  

 

Definition 2.4 [9] Let 𝐴 and 𝐵 be two interval neutrosophic sets, 

 

𝐴 = {〈𝑥, [𝑢𝐴
−(𝑥), 𝑢𝐴

+(𝑥)], [𝑤𝐴
−(𝑥),𝑤𝐴

+(𝑥)], [𝑣𝐴
−(𝑥), 𝑣𝐴

+(𝑥)]〉: 𝑥 ∈ 𝑈} 
𝐵 = {〈𝑥, [𝑢𝐵

−(𝑥), 𝑢𝐵
+(𝑥)], [𝑤𝐵

−(𝑥),𝑤𝐵
+(𝑥)], [𝑣𝐵

−(𝑥), 𝑣𝐵
+(𝑥)]〉: 𝑥 ∈ 𝑈}.  

 

Then some operations can be defined as follows: 

 

(1) 𝐴 ⊆ 𝐵 iff 𝑢𝐴
−(𝑥) ≤ 𝑢𝐵

−(𝑥), 𝑢𝐴
+(𝑥) ≤ 𝑢𝐵

+(𝑥),𝑤𝐴
−(𝑥) ≥ 𝑤𝐵

−(𝑥), 𝑤𝐴
+(𝑥) ≥ 𝑤𝐵

+(𝑥)𝑣𝐴
−(𝑥) ≥

𝑣𝐵
−(𝑥), 𝑣𝐴

+(𝑥) ≥ 𝑣𝐵
+(𝑥) for each 𝑥 ∈ 𝑈. 

(2) 𝐴 = 𝐵iff𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴. 

(3) 𝐴𝑐 = {〈𝑥, [𝑣𝐴
−(𝑥), 𝑣𝐴

+(𝑥)], [1 − 𝑤𝐴
+(𝑥), 1 − 𝑤𝐴

−(𝑥)], [𝑢𝐴
−(𝑥), 𝑢𝐴

+(𝑥)]〉: 𝑥 ∈ 𝑈} 
 

 

2.3 Soft Sets 

 

Defnition2.5 [5] A pair (𝐹, 𝐴) is called a soft set over, where 𝐹 is a mapping given by 𝐹 ∶  𝐴 →
 𝑃 (𝑈 ). In other words, a soft set over 𝑈 is a mapping from parameters to the power set of 𝑈, and it is 

not a kind of set in ordinary sense, but a parameterized family of subsets of U. For any parameter𝑒 ∈
 𝐴, 𝐹 (𝑒) may be considered as the set of 𝑒 −approximate elements of the soft set (𝐹, 𝐴). 
 

Example 2.6 Suppose that 𝑈 is the set of houses under consideration, say 𝑈 = {ℎ1, ℎ2, . . . , ℎ5}. Let 𝐸 

be the set of some attributes of such houses, say 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}, where 𝑒1, 𝑒2, 𝑒3, 𝑒4 stand for the 

attributes “beautiful”, “costly”, “in the green surroundings” and “moderate”, respectively.  

In this case, to define a soft set means to point out expensive houses, beautiful houses, and so on. For 

example, the soft set (𝐹, 𝐴) that describes the “attractiveness of the houses” in the opinion of a buyer, 

say Thomas, may be defined like this: 

 

𝐹(𝑒1)  =  {ℎ2, ℎ3, ℎ5}, 𝐹(𝑒2)  =  {ℎ2, ℎ4}, 𝐹(𝑒4)  =  {ℎ3, ℎ5} for 𝐴 =  {𝑒1, 𝑒2, 𝑒4}. 
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2.4 Neutrosophic Soft Sets 

 

Definition 2.7 [21] Let𝑼 be an initial universe set and 𝑨 ⊂  𝑬 be a set of parameters. Let NS(U) 

denotes the set of all neutrosophic subsets of 𝑼. The collection (𝑭, 𝑨) is termed to be the neutrosophic 

soft set over 𝑼, where 𝐅 is a mapping given by 𝑭: 𝑨 →  𝑵𝑺(𝑼). 
 

Example 2.8 [21] Let U be the set of houses under consideration and E is the set of parameters. Each 

parameter is a neutrosophic word or sentence involving neutrosophic words. Consider 𝐸 ={beautiful, 

wooden, costly, very costly, moderate, green surroundings, in good repair, in bad repair, cheap, 

expensive}. In this case, to define a neutrosophic soft set means to point out beautiful houses, wooden 

houses, houses in the green surroundings and so on. Suppose that, there are five houses in the universe 𝑈 

given by𝑈 = {ℎ1, ℎ2, . . . , ℎ5} and the set of parameters 

 

𝐴 =  {𝑒1, 𝑒2, 𝑒3, 𝑒4},where 𝑒1 stands for the parameter `beautiful', 𝑒2 stands for the parameter `wooden', 

𝑒3 stands for the parameter `costly' and the parameter 𝑒4stands for `moderate'. Then the neutrosophic set 

(𝐹, 𝐴) is defined as follows: 

 

(𝐹, 𝐴) =

{
 
 
 
 

 
 
 
 (𝑒1 {

ℎ1
(0.5,0.6,0.3)

,
ℎ2

(0.4,0.7,0.6)
,

ℎ3
(0.6,0.2,0.3)

,
ℎ4

(0.7,0.3,0.2)
,

ℎ5
(0.8,0.2,0.3)

})

(𝑒2 {
ℎ1

(0.6,0.3,0.5)
,

ℎ2
(0.7,0.4,0.3)

,
ℎ3

(0.8,0.1,0.2)
,

ℎ4
(0.7,0.1,0.3)

,
ℎ5

(0.8,0.3,0.6)
})

(𝑒3 {
ℎ1

(0.7,0.4,0.3)
,

ℎ2
(0.6,0.7,0.2)

,
ℎ3

(0.7,0.2,0.5)
,

ℎ4
(0.5,0.2,0.6)

,
ℎ5

(0.7,0.3,0.4)
})

(𝑒4 {
ℎ1

(0.8,0.6,0.4)
,

ℎ2
(0.7,0.9,0.6)

,
ℎ3

(0.7,0.6,0.4)
,

ℎ4
(0.7,0.8,0.6)

,
ℎ5

(0.9,0.5,0.7)
})
}
 
 
 
 

 
 
 
 

 

 

 

2.5 Interval Neutrosophic Soft Sets 

 

Definition 2.9 [12] Let𝑼 be an initial universe set and 𝑨 ⊂  𝑬 be a set of parameters. Let INS(U) 

denotes the set of all interval neutrosophic subsets of 𝑼. The collection (𝑭, 𝑨) is termed to be the 

interval neutrosophic soft set over 𝑼, where 𝐅 is a mapping given by 𝑭: 𝑨 →  𝑰𝑵𝑺(𝑼). 
 

Example 2.10 [12] Let 𝑼 =  {𝒙𝟏, 𝒙𝟐}  be set of houses under consideration and 𝐄  is a set of 

parameters which is a neutrosophic word. Let 𝐄 be the set of some attributes of such houses, say 𝑬 =
 {𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒}, where 𝐞𝟏, 𝐞𝟐, 𝐞𝟑, 𝐞𝟒 stand for the attributes 𝐞𝟏 = cheap, 𝐞𝟐 = beautiful, 𝐞𝟑 = in the 

green surroundings, 𝐞𝟒 =  costly and 𝐞𝟓 =  large, respectively. Then we define the interval 

neutrosophic soft set 𝐀 as follows:  

 

(𝑭, 𝑨) =

{
 
 
 
 
 

 
 
 
 
 (𝒆𝟏 {

𝒙𝟏
[𝟎. 𝟓, 𝟎. 𝟖], [𝟎. 𝟓, 𝟎. 𝟗], [𝟎. 𝟐, 𝟎. 𝟓]

,
𝒙𝟐

[𝟎. 𝟒, 𝟎. 𝟖], [𝟎. 𝟐, 𝟎. 𝟓], [𝟎. 𝟓, 𝟎. 𝟔]
})

(𝒆𝟐 {
𝒙𝟏

[𝟎. 𝟓, 𝟎. 𝟖], [𝟎. 𝟐, 𝟎. 𝟖], [𝟎. 𝟑, 𝟎. 𝟕]
,

𝒙𝟐
[𝟎. 𝟏, 𝟎. 𝟗], [𝟎. 𝟔, 𝟎. 𝟕], [𝟎. 𝟐, 𝟎. 𝟑]

})

(𝒆𝟑 {
𝒙𝟏

[𝟎. 𝟐, 𝟎. 𝟕], [𝟎. 𝟏, 𝟎. 𝟓], [𝟎. 𝟓, 𝟎. 𝟖]
,

𝒙𝟐
[𝟎. 𝟓, 𝟎. 𝟕], [𝟎. 𝟏, 𝟎. 𝟒], [𝟎. 𝟔, 𝟎. 𝟕]

})

(𝒆𝟒 {
𝒙𝟏

[𝟎. 𝟒, 𝟎. 𝟓], [𝟎. 𝟒, 𝟎. 𝟗], [𝟎. 𝟒, 𝟎. 𝟗]
,

𝒙𝟐
[𝟎. 𝟑, 𝟎. 𝟒], [𝟎. 𝟔, 𝟎. 𝟕], [𝟎. 𝟏, 𝟎. 𝟓]

})

(𝒆𝟓 {
𝒙𝟏

[𝟎. 𝟏, 𝟎. 𝟕], [𝟎. 𝟓, 𝟎. 𝟔], [𝟎. 𝟏, 𝟎. 𝟓]
,

𝒙𝟐
[𝟎. 𝟔, 𝟎. 𝟕], [𝟎. 𝟐, 𝟎. 𝟒], [𝟎. 𝟑, 𝟎. 𝟕]

})
}
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2.6 Generalized Neutrosophic Soft Sets 

 
The concept of generalized neutrosophic soft is defined by Şahin and Küçük [23] as follows: 

 

Definition 2.11 [23] Let𝑈 be an intial universe and 𝐸 be a set of parameters. Let 𝑁𝑆(𝑈) be the set of 

all neutrosophic sets of 𝑈. A generalized neutrosophic soft set 𝐹𝜇  over 𝑈  is defined by the set of 

ordered pairs 

 

𝐹𝜇 = {(𝐹(𝑒), 𝜇 (𝑒)): 𝑒 ∈  𝐸 , 𝐹(𝑒)  ∈ 𝑁(𝑈), 𝜇(𝑒)  ∈  [0, 1]},  
 

where𝐹 isa mapping given by𝐹: 𝐸 → 𝑁𝑆(𝑈) ×  𝐼 and 𝜇 is a fuzzy set such that 𝜇: 𝐸 →  𝐼 = [0, 1]. 
Here,𝐹𝜇is a mapping defined by𝐹𝜇: 𝐸 → 𝑁𝑆(𝑈) ×  𝐼. 
 

For any parameter 𝑒 ∈  𝐸, 𝐹(𝑒) is referred as the neutrosophic value set of parameter 𝑒, i.e, 

 

𝐹(𝑒) = {〈𝑥, 𝑢𝐹(𝑒)(𝑥),𝑤𝐹(𝑒)(𝑥), 𝑣𝐹(𝑒)(𝑥)〉: 𝑥 ∈ 𝑈} 

 

where  𝑢, 𝑤, 𝑣  : U→  [0 ,1] are the memberships functions of truth, indeterminacy and falsity 

respectively of the element 𝑥 ∈  𝑈. For any 𝑥 ∈  𝑈and 𝑒 ∈  𝐸, 

 

0 ≤ 𝑢𝐹(𝑒) (𝑥)  + 𝑤𝐹(𝑒) (𝑥) + 𝑣𝐹(𝑒) (𝑥)  ≤ 3. 

 

In fact, 𝐹𝜇is a parameterized family of neutrosophic sets over𝑈, which has the degree of possibility of 

the approximate value set which is represented by 𝜇 (𝑒) for each parameter 𝑒, so 𝐹𝜇 can be expressed 

as follows: 

 

𝐹𝜇(𝑒) = {(
𝑥1

𝐹(𝑒)(𝑥1)
 ,

𝑥2
𝐹(𝑒)(𝑥2)

 , … . . ,
𝑥𝑛

𝐹(𝑒)(𝑥𝑛)
) , 𝜇(e)}. 

 

Definition 2.12 [4] A binary operation ⨂: [0,1] × [0,1] ⟶ [0,1]is continuous 𝑡 −norm if ⨂ satisfies 

the following conditions: 

 

(1) ⨂ is commutative and associative,  

(2) ⨂ is continuous, 

(3) 𝑎⨂1 = 𝑎, ∀𝑎 ∈ [0,1], 
(4) 𝑎⨂𝑏 ≤ 𝑐⨂𝑑whenever𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑 and 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1]. 
 

Definition 2.13 [4] A binary operation ⨁: [0,1] × [0,1] ⟶ [0,1] is continuous 𝑡 −conorm if ⨁ 

satisfies the following conditions: 

 

(1) ⨁ is commutative and associative,  

(2) ⨁ is continuous, 

(3) 𝑎⨁0 = 𝑎, ∀𝑎 ∈ [0,1], 
(4) 𝑎⨁𝑏 ≤ 𝑐⨁𝑑whenever𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑 and 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1]. 
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3. Generalized Interval Neutrosophic Soft Set 

 
In this section, we define the generalized interval neutrosophic soft sets and investigate some basic 

properties. 

 

Definition 3.1. Let 𝑈 be an initial universe and 𝐸 be a set of parameters.Suppose that𝐼𝑁𝑆(𝑈)is the set 

of all interval neutrosophic sets over𝑈 and int[0,1]is the set of all closed subsets of [0,1]. A generalized 

interval neutrosophic soft set 𝐹𝜇 over 𝑈 is defined by the set of ordered pairs 

 

𝐹𝜇 = {(𝐹(𝑒), 𝜇 (𝑒)): 𝑒 ∈  𝐸 , 𝐹(𝑒)  ∈  𝐼𝑁𝑆(𝑈), 𝜇(𝑒)  ∈  [0, 1]}, 
 

where 𝐹 is a mapping given by𝐹: 𝐸 → 𝐼𝑁𝑆(𝑈) ×  𝐼 and 𝜇 is a fuzzy set such that 𝜇: 𝐸 → 𝐼 = [0, 1]. 
Here,𝐹𝜇is a mapping defined by𝐹𝜇: 𝐸 → 𝐼𝑁𝑆(𝑈) ×  𝐼. 
 

For any parameter 𝑒 ∈ 𝐸,𝐹(𝑒) is referred as the interval neutrosophic value set of parameter e, i.e, 

 

𝐹(𝑒) = {〈𝑥, 𝑢𝐹(𝑒)(𝑥),𝑤𝐹(𝑒)(𝑥), 𝑣𝐹(𝑒)(𝑥)〉: 𝑥 ∈ 𝑈} 

 

where 𝑢𝐹(𝑒), 𝑤𝐹(𝑒), 𝑣𝐹(𝑒): 𝑈 →  int[0 ,1]with the condition  

 

0 ≤ sup𝑢𝐹(𝑒)(𝑥) + sup𝑤𝐹(𝑒)(𝑥) + sup𝑣𝐹(𝑒) (𝑥)  ≤ 3 

 

for all 𝑥 ∈ 𝑈. 

 

The intervals 𝑢𝐹(𝑒)(𝑥), 𝑤𝐹(𝑒)(𝑥) and 𝑣𝐹(𝑒)(𝑥)are the interval memberships functions of truth, interval 

indeterminacy and interval falsity of the element 𝑥 ∈  𝑈, respectively. 

 

For convenience, if let 

 

𝑢𝐹(𝑒)(𝑥) = [𝑢𝐹(𝑒)
𝐿 (𝑥), 𝑢𝐹(𝑒)

𝑈 (𝑥)] 

𝑤𝐹(𝑒)(𝑥) = [𝑤𝐹(𝑒)
𝐿 (𝑥),𝑤𝐹(𝑒)

𝑈 (𝑥)] 

𝑣𝐹(𝑒)(𝑥) = [𝑣𝐹(𝑒)
𝐿 (𝑥), 𝑣𝐹(𝑒)

𝑈 (𝑥)]  

 

then 

 

𝐹(𝑒) = {〈𝑥, [𝑢𝐹(𝑒)
𝐿 (𝑥), 𝑢𝐹(𝑒)

𝑈 (𝑥)], [𝑤𝐹(𝑒)
𝐿 (𝑥),𝑤𝐹(𝑒)

𝑈 (𝑥)], [𝑣𝐹(𝑒)
𝐿 (𝑥), 𝑣𝐹(𝑒)

𝑈 (𝑥)]〉: 𝑥 ∈ 𝑈} 

 

In fact, 𝐹𝜇 is a parameterized family of interval neutrosophic sets on U, which has the degree of 

possibility of the approximate value set which is represented by 𝜇 (𝑒) for each parameter 𝑒, so 𝐹𝜇can 

be expressed as follows: 

 

𝐹𝜇(𝑒) = {(
𝑥1

𝐹(𝑒)(𝑥1)
 ,

𝑥2
𝐹(𝑒)(𝑥2)

 , … . . ,
𝑥𝑛

𝐹(𝑒)(𝑥𝑛)
) , 𝜇 (e)} 

 

Example 3.2. Consider two generalized interval neutrosophic soft set 𝐹𝜇and 𝐺𝜃. Suppose that 𝑈 = 

{ ℎ1 , ℎ2 , ℎ3 } is the set of house and 𝐸 = {𝑒1, 𝑒2 , 𝑒3 } is the set of parameters where 

𝑒1 =cheap,𝑒2 =moderate,𝑒3 =comfortable. Suppose that 𝐹𝜇 and 𝐺𝜃are given as follows, respectively: 
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{
  
 

  
 𝐹𝜇(𝑒1) = (

ℎ1
([0.2, 0.3], [0.3, 0.5], [0.2, 0.3])

,
ℎ2

([0.3, 0.4], [0.3, 0.4], [0.5, 0.6])
 ,

ℎ3
([0.5, 0.6], [0.2, 0.4], [0.5, 0.7])

) , (0.2)

𝐹𝜇(𝑒2) = (
ℎ1

([0.1, 0.4], [0.5, 0.6], [0.3, 0.4])
,

ℎ2
([0.6, 0.7], [0.4, 0.5], [0.5, 0.8])

 ,
ℎ3

([0.2, 0.4], [0.3, 0.6], [0.6, 0.9])
) , (0.5)

𝐹𝜇(𝑒3) = (
ℎ1

([0.2, 0.6], [0.2, 0.5], [0.1, 0.5])
,

ℎ2
([0.3, 0.5], [0.3, 0.6], [0.4, 0.5])

 ,
ℎ3

([0.6, 0.8], [0.3, 0.4], [0.2, 0.3])
) , (0.6)

}
  
 

  
 

 

 

and 
 

{
  
 

  
 𝐺𝜃(𝑒1) = (

ℎ1
([0.1, 0.2], [0.1, 0.2], [0.1, 0.2])

,
ℎ2

([0.4, 0.5], [0.2, 0.3], [0.3, 0.5])
 ,

ℎ3
([0.6, 0.7], [0.1, 0.3], [0.2, 0.3])

) , (0.4)

𝐺𝜃(𝑒2) = (
ℎ1

([0.2, 0.5], [0.3, 0.4], [0.2, 0.3])
,

ℎ2
([0.7, 0.8], [0.3, 0.4], [0.4, 0.6])

 ,
ℎ3

([0.3, 0.6], [0.2, 0.5], [0.4, 0.6])
) , (0.7)

𝐺𝜃(𝑒3) = (
ℎ1

([0.3, 0.5], [0.1, 0.3], [0.1, 0.3])
,

ℎ2
([0.4, 0.5], [0.1, 0.5], [0.2, 0.3])

 ,
ℎ3

([0.7, 0.9], [0.2, 0.3], [0.1, 0.2])
) , (0.8)

}
  
 

  
 

 

 

For the purpose of storing a generalized interval neutrosophic soft sets in a computer, we can present it 

in matrix form. For example, the matrix form of𝐹𝜇can be expressed as follows; 

 

(

([0.2, 0.3], [0.3, 0.5], [0.2, 0.3]) ([0.3, 0.4], [0.3, 0.4], [0.5, 0.6]) ([0.5, 0.6], [0.2, 0.4], [0.5, 0.7]), ( 0.2 )

([0.1, 0.4], [0.5, 0.6], [0.3, 0.4]) ([0.6, 0.7], [0.4, 0.5], [0.5, 0.8]) ([0.2, 0.4], [0.3, 0.6], [0.6, 0.9]), (0.5)
([0.2, 0.6], [0.2, 0.5], [0.1, 0.5]) ([0.3, 0.5], [0.3, 0.6], [0.4 0.5]) ([0.6, 0.8], [0.3, 0.4], [0.2, 0.3]), (0.6)

) 

 

Definition 3.3. A generalized interval neutrosophic soft set𝐹𝜇over 𝑈 is said to be generalized null 

interval neutrosophic soft set ,denoted by ∅𝜇, if ∅𝜇: 𝐸 →IN(U) ×I such that 

 

∅𝜇(𝑒) =  {(𝐹(𝑒), 𝜇 (𝑒)}, where 𝐹(𝑒) = { < 𝑥, ([0, 0], [1,1], [1, 1]) >} and 𝜇 (𝑒)  =  0  for each 𝑒 ∈
𝐸 and 𝑥 ∈  𝑈. 

 

Definition 3.4. A generalized interval neutrosophic soft set𝐹𝜇over 𝑈  is said to be generalized 

absolute interval neutrosophic soft set, denoted by 𝑈𝜇 , if 𝑈𝜇: 𝐸 → 𝐼𝑁(𝑈)  ×  𝐼 such that 𝑈𝜇(𝑒) =
 {(𝐹(𝑒), 𝜇 (𝑒)},where 𝐹(𝑒) = { < 𝑥, ([1,1], [0 ,0], [0, 0]) >}and𝜇 (𝑒) = 1 for each 𝑒 ∈ 𝐸 and 𝑥 ∈  𝑈. 

 

Definition 3.5. Let𝐹𝜇be a generalized interval neutrosophic soft set over U, where  

 

𝐹𝜇 (e) = {(𝐹(𝑒), 𝜇 (𝑒)} 
and 

 

𝐹(𝑒) = {〈𝑥, [𝑢𝐹(𝑒)
𝐿 (𝑥), 𝑢𝐹(𝑒)

𝑈 (𝑥)], [𝑤𝐹(𝑒)
𝐿 (𝑥),𝑤𝐹(𝑒)

𝑈 (𝑥)], [𝑣𝐹(𝑒)
𝐿 (𝑥), 𝑣𝐹(𝑒)

𝑈 (𝑥)]〉: 𝑥 ∈ 𝑈} 

 

for all 𝑒 ∈ 𝐸 . Then, for𝑒𝑚 ∈ 𝐸 and 𝑥𝑛 ∈  𝑈; 

 

(1) 𝐹⋆  =  [F𝐿
⋆, F𝑈

⋆ ]is said to be interval truth membership part of 𝐹𝜇 

where𝐹⋆  = {(F⋆𝑚𝑛 (𝑒𝑚) , 𝜇 (𝑒𝑚))} and 𝐹⋆𝑚𝑛(𝑒𝑚) = {〈𝑥𝑛, [𝑢𝐹(𝑒𝑚)
𝐿 (𝑥𝑛), 𝑢𝐹(𝑒𝑚)

𝑈 (𝑥𝑛)]〉}, 

(2) F≀  =  [F𝐿
≀ , F𝑈

≀ ]is said to be interval indeterminacy membership part of 𝐹𝜇 

where𝐹≀  = {𝐹≀𝑚𝑛 (𝑒𝑚) , 𝜇 (𝑒𝑚)} and𝐹≀𝑚𝑛(𝑒𝑚) = {〈𝑥𝑛, [𝑤𝐹(𝑒𝑚)
𝐿 (𝑥𝑛),𝑤𝐹(𝑒𝑚)

𝑈 (𝑥𝑛)]〉}, 

(3) F△  =  [F𝐿
△, F𝑈

△]is said to be interval falsity membership part of 𝐹𝜇 

whereF△ ={F△𝑚𝑛 (𝑒𝑚) , 𝜇 (𝑒𝑚)} and F△𝑚𝑛(𝑒𝑚) = {〈𝑥𝑛, [𝑣𝐹(𝑒𝑚)
𝐿 (𝑥𝑛), 𝑣𝐹(𝑒𝑚)

𝑈 (𝑥𝑛)]〉}. 

 

We say that every part of 𝐹𝜇 is a component of itself and is denote by 𝐹𝜇  = (F⋆, F≀, F△). Then matrix 

forms of components of 𝐹𝜇in example 3.2 can be expressed as follows: 
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F⋆= (

([0.2, 0.3], [0.3, 0.6], [0.4, 0.5]) (0.1)

([0.2, 0.5], [0.3, 0.5], [0.4, 0.7]) (0.4)

([0.3, 0.4], [0.1, 0.3], [0.1, 0.4]) (0.6)

) 

 

F≀= (

([0.2, 0.3], [0.3, 0.5], [0.2, 0.5]) (0.1)

([0.2, 0.5], [0.4, 0.8], [0.3, 0.8]) (0.4)

([0.3, 0.4], [0.2, 0.5], [0.2, 0.3]) (0.6)

) 

 

F△= (

([0.2, 0.3], [0.2, 0.4], [0.2, 0.6]) (0.1)

([0.2, 0.5], [0.8, 0.9], [0.3, 0.4]) (0.4)

([0.7, 0.9], [0.3, 0.7], [0.5, 0.7]) (0.6)

) 

 

where 

 

𝐹⋆𝑚𝑛(𝑒𝑚) = {〈𝑥𝑛, [𝑢𝐹(𝑒𝑚)
𝐿 (𝑥𝑛), 𝑢𝐹(𝑒𝑚)

𝑈 (𝑥𝑛)]〉} 

F≀𝑚𝑛(𝑒𝑚) = {〈𝑥𝑛, [𝑤𝐹(𝑒𝑚)
𝐿 (𝑥𝑛), 𝑤𝐹(𝑒𝑚)

𝑈 (𝑥𝑛)]〉} 

F△𝑚𝑛(𝑒𝑚) = {〈𝑥𝑛, [𝑣𝐹(𝑒𝑚)
𝐿 (𝑥𝑛), 𝑣𝐹(𝑒𝑚)

𝑈 (𝑥𝑛)]〉} 
 
are defined as the interval truth, interval indeterminacy and interval falsity values of 𝑛 −th element the 

according to 𝑚−th parameter, respectively. 

 

Remark 3.6. Suppose that 𝐹𝜇 is a generalizedinterval neutrosophic soft set over U.Then we say that 

each components of𝐹𝜇can be seen as the generalizedinterval valued vague soft set [15]. Also if it is 

taken 𝜇 (𝑒)  = 1 for all 𝑒 ∈ E,the our generalized interval neutrosophic soft set concides with the 

interval neutrosophic soft set [12]. 

 

Definition 3.7. Let 𝑈  be an universe and 𝐸  be a of parameters, 𝐹𝜇  and 𝐺𝜃  be two generalized 

interval neutrosophic soft sets, we say that 𝐹𝜇 is a generalized interval neutrosophic soft subset 𝐺𝜃 if 

 

(1) 𝜇 is a fuzzy subset of 𝜃, 

(2) For 𝑒 ∈ 𝐸, 𝐹(𝑒) is an interval neutrosophic subset of𝐺(𝑒), i.e, for all 𝑒𝑚 ∈ 𝐸 and 𝑚, 𝑛 ∈ ∧,  

 

𝐹⋆𝑚𝑛(𝑒𝑚) ≤ 𝐺
⋆
𝑚𝑛(𝑒𝑚), 𝐹

≀
𝑚𝑛(𝑒𝑚) ≥ 𝐺

≀
𝑚𝑛(𝑒𝑚) and 𝐹△𝑚𝑛(𝑒𝑚) ≥ 𝐺

△
𝑚𝑛(𝑒𝑚) where,  

𝑢𝐹(𝑒𝑚)
𝐿 (𝑥𝑛) ≤  𝑢𝐺(𝑒𝑚)

𝐿 (𝑥𝑛), 𝑢𝐹(𝑒𝑚)
𝑈 (𝑥𝑛) ≤  𝑢𝐺(𝑒𝑚)

𝑈 (𝑥𝑛) 

𝑤𝐹(𝑒𝑚)
𝐿 (𝑥𝑛) ≥ 𝑤𝐺(𝑒𝑚)

𝐿 (𝑥𝑛),𝑤𝐹(𝑒𝑚)
𝑈 (𝑥𝑛) ≥ 𝑤𝐺(𝑒𝑚)

𝑈 (𝑥𝑛) 

𝑣𝐹(𝑒𝑚)
𝐿 (𝑥𝑛) ≥  𝑣𝐺(𝑒𝑚)

𝐿 (𝑥𝑛), 𝑣𝐹(𝑒𝑚)
𝑈 (𝑥𝑛) ≥  𝑣𝐺(𝑒𝑚)

𝑈 (𝑥𝑛) 

 

For 𝑥𝑛 ∈ 𝑈. 
 

We denote this relationship by𝐹𝜇 ⊑ 𝐺𝜃 . Moreover if𝐺𝜃  is generalized interval neutrosophic soft 

subset of 𝐹𝜇, then𝐹𝜇 is called a generalized interval neutrosophic soft superset of 𝐺𝜃 this relation is 

denoted by 𝐹𝜇 ⊒ 𝐺𝜃. 

 

Example 3.8. Consider two generalized interval neutrosophic soft set 𝐹𝜇 and 𝐺𝜃.suppose that U= 

{ ℎ1 , ℎ2 , ℎ3 ] is the set of houses and E = {𝑒1, 𝑒2, 𝑒3} is the set of parameters where 

𝑒1=cheap,𝑒2 =moderate,𝑒3 =comfortable. Suppose that 𝐹𝜇 and 𝐺𝜃are given as follows respectively: 
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{
  
 

  
 𝐹𝜇(𝑒1) = (

ℎ1
([0.1, 0.2], [0.3, 0.5], [0.2, 0.3])

,
ℎ2

([0.3, 0.4], [0.3, 0.4], [0.5, 0.6])
 ,

ℎ3
([0.5, 0.6], [0.2, 0.4], [0.5, 0.7])

) , (0.2)

𝐹𝜇(𝑒2) = (
ℎ1

([0.1, 0.4], [0.5, 0.6], [0.3, 0.4])
,

ℎ2
([0.6, 0.7], [0.4, 0.5], [0.5, 0.8])

 ,
ℎ3

([0.2, 0.4], [0.3, 0.6], [0.6, 0.9])
) , (0.5)

𝐹𝜇(𝑒3) = (
ℎ1

([0.2, 0.6], [0.2, 0.5], [0.1, 0.5])
,

ℎ2
([0.3, 0.5], [0.3, 0.6], [0.4, 0.5])

 ,
ℎ3

([0.6, 0.8], [0.3, 0.4], [0.2, 0.3])
) , (0.6)

}
  
 

  
 

 

 

and 
 

{
  
 

  
 𝐺𝜃(𝑒1) = (

ℎ1
([0.2, 0.3], [0.1, 0.2], [0.1, 0.2])

,
ℎ2

([0.4, 0.5], [0.2, 0.3], [0.3, 0.5])
 ,

ℎ3
([0.6, 0.7], [0.1, 0.3], [0.2, 0.3])

) , (0.4)

𝐺𝜃(𝑒2) = (
ℎ1

([0.2, 0.5], [0.3, 0.4], [0.2, 0.3])
,

ℎ2
([0.7, 0.8], [0.3, 0.4], [0.4, 0.6])

 ,
ℎ3

([0.3, 0.6], [0.2, 0.5], [0.4, 0.6])
) , (0.7)

𝐺𝜃(𝑒3) = (
ℎ1

([0.3, 0.7], [0.1, 0.3], [0.1, 0.3])
,

ℎ2
([0.4, 0.5], [0.1, 0.5], [0.2, 0.3])

 ,
ℎ3

([0.7, 0.9], [0.2, 0.3], [0.1, 0.2])
) , (0.8)

}
  
 

  
 

 

 

Then 𝐹𝜇is a generalized interval neutrosophic soft subset of𝐺𝜃, that is𝐹𝜇 ⊑ 𝐺𝜃. 

 

Definition3.9. The union of two generalized interval neutrosophic soft sets𝐹𝜇and𝐺𝜃over 𝑈, denoted 

by H𝜆  =  𝐹𝜇 ⊔ 𝐺𝜃 is a generalized interval neutrosophic soft setH𝜆defined by  

 

H𝜆 = ([ H𝐿
⋆, H𝑈

⋆ ], [ H𝐿
≀ , H𝑈

≀ ], [ H𝐿
△, H𝑈

△]) 
 

where𝜆 (𝑒𝑚) =  𝜇 (𝑒𝑚)⨁𝜃 (𝑒𝑚), 
 

H𝐿𝑚𝑛
⋆ = F𝐿𝑚𝑛

⋆ (𝑒𝑚)⨁G𝐿𝑚𝑛
⋆ (𝑒𝑚) 

H𝐿𝑚𝑛
≀ = F𝐿𝑚𝑛

≀ (𝑒𝑚)⨂G𝐿𝑚𝑛
≀ (𝑒𝑚) 

H𝐿𝑚𝑛
△ = F𝐿𝑚𝑛

△  (𝑒𝑚)⨂G𝐿𝑚𝑛
△ (𝑒𝑚)   

 

and 

 

H𝑈𝑚𝑛
⋆ = F𝑈𝑚𝑛

⋆ (𝑒𝑚)⨁G𝑈𝑚𝑛
⋆ (𝑒𝑚) 

H𝑈𝑚𝑛
≀ = F𝑈𝑚𝑛

≀ (𝑒𝑚)⨂G𝑈𝑚𝑛
≀ (𝑒𝑚) 

H𝑈𝑚𝑛
△ = F𝑈𝑚𝑛

△  (𝑒𝑚)⨂G𝑈𝑚𝑛
△ (𝑒𝑚) 

 

for all 𝑒𝑚 ∈ E and 𝑚, 𝑛 ∈ ∧ . 
 

Definition 3.10. The intersection of two generalized interval neutrosophic soft sets𝐹𝜇𝑎𝑛𝑑 𝐺𝜃over 𝑈, 

denoted by K𝜀 = 𝐹𝜇 ⊓ 𝐺𝜃isa generalized interval neutrosophic soft setK𝜀defined by  

 

K𝜀  =  ([ K𝐿
⋆ , K𝑈

⋆ ], [ K𝐿
≀ , K𝑈

≀ ], [ K𝐿
△, K𝑈

△]) 
 

where𝜀 (𝑒𝑚) = 𝜇 (𝑒𝑚)⨂ 𝜃 (𝑒𝑚), 
 

K𝐿𝑚𝑛
⋆ = F𝐿𝑚𝑛

⋆ (𝑒𝑚)⨂G𝐿𝑚𝑛
⋆ (𝑒𝑚) 

K𝐿𝑚𝑛
≀ = F𝐿𝑚𝑛

≀ (𝑒𝑚)⨁G𝐿𝑚𝑛
≀ (𝑒𝑚) 

K𝐿𝑚𝑛
△ = F𝐿𝑚𝑛

△  (𝑒𝑚)⨁G𝐿𝑚𝑛
△ (𝑒𝑚)   

 

and 

 

K𝑈𝑚𝑛
⋆ = F𝑈𝑚𝑛

⋆ (𝑒𝑚)⨂G𝑈𝑚𝑛
⋆ (𝑒𝑚) 

K𝑈𝑚𝑛
≀ = F𝑈𝑚𝑛

≀ (𝑒𝑚)⨁G𝑈𝑚𝑛
≀ (𝑒𝑚) 

K𝑈𝑚𝑛
△ = F𝑈𝑚𝑛

△  (𝑒𝑚)⨁G𝑈𝑚𝑛
△ (𝑒𝑚) 
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for all 𝑒𝑚 ∈ E and 𝑚, 𝑛 ∈ ∧ . 
 

Example 3.11. Let us consider the generalized interval neutrosophic soft sets 𝐹𝜇𝑎𝑛𝑑 𝐺𝜃defined in 

Example 3.2. Suppose that the t-conorm is defined by ⨁(𝑎, 𝑏) = max{𝑎, 𝑏}  and the 𝑡 − norm 

by⨂(𝑎, 𝑏)  = min{𝑎, 𝑏}for 𝑎, 𝑏 ∈  [ 0, 1].Then H𝜆 = 𝐹𝜇 ⊔ 𝐺𝜃is defined as follows: 

 

{
  
 

  
 𝐻(𝑒1) = (

ℎ1
([0.2, 0.3], [0.1, 0.2], [0.1, 0.2])

,
ℎ2

([0.4, 0.5], [0.2, 0.3], [0.3, 0.5])
 ,

ℎ3
([0.6, 0.7], [0.1, 0.3], [0.2, 0.3])

) , (0.4)

𝐻(𝑒2) = (
ℎ1

([0.2, 0.5], [0.3, 0.4], [0.2, 0.3])
,

ℎ2
([0.7, 0.8], [0.3, 0.4], [0.4, 0.6])

 ,
ℎ3

([0.3, 0.6], [0.2, 0.5], [0.4, 0.6])
) , (0.7)

𝐻(𝑒3) = (
ℎ1

([0.3, 0.6], [0.1, 0.3], [0.1, 0.3])
,

ℎ2
([0.4, 0.5], [0.1, 0.5], [0.2, 0.3])

 ,
ℎ3

([0.7, 0.9], [0.2, 0.3], [0.1, 0.2])
) , (0.8)

}
  
 

  
 

 

 

Example 3.12. Let us consider the generalized interval neutrosophic soft sets 𝐹𝜇𝑎𝑛𝑑 𝐺𝜃defined in 

Example 3.2. Suppose that the 𝑡 −conorm is defined by⨁ (a, b)  = max{a, b}and the 𝑡 −norm by 

⨂(𝑎, 𝑏)  = min{a, b} for𝑎, 𝑏 ∈ [ 0, 1].ThenK𝜀 = 𝐹𝜇 ⊓ 𝐺𝜃is defined as follows: 

 

{
  
 

  
 𝐾(𝑒1) = (

ℎ1
([0.1, 0.2], [0.3, 0.5], [0.2, 0.3])

,
ℎ2

([0.3, 0.4], [0.3, 0.4], [0.5, 0.6])
 ,

ℎ3
([0.5, 0.6], [0.2, 0.4], [0.5, 0.7])

) , (0.2)

𝐾(𝑒2) = (
ℎ1

([0.1, 0.4], [0.5, 0.6], [0.3, 0.4])
,

ℎ2
([0.6, 0.7], [0.4, 0.5], [0.5, 0.8])

 ,
ℎ3

([0.2, 0.4], [0.3, 0.6], [0.6, 0.9])
) , (0.5)

𝐾(𝑒3) = (
ℎ1

([0.2, 0.5], [0.2, 0.5], [0.1, 0.5])
,

ℎ2
([0.3, 0.5], [0.3, 0.6], [0.4, 0.5])

 ,
ℎ3

([0.6, 0.8], [0.3, 0.4], [0.2, 0.3])
) , (0.6)

}
  
 

  
 

 

 

Proposition 3.13. Let 𝐹𝜇 , 𝐺𝜃and H𝜆  be three generalized interval neutrosophic soft sets over U. 

Then 

 

(1) 𝐹𝜇 ⊔ 𝐺𝜃= 𝐺𝜃 ⊔ 𝐹𝜇, 

(2) 𝐹𝜇 ⊓ 𝐺𝜃= 𝐺𝜃 ⊓ 𝐹𝜇, 

(3) (𝐹𝜇 ⊔ 𝐺𝜃 ) ⊔ 𝐻𝜆=𝐹𝜇 ⊔ (𝐺𝜃 ⊔ 𝐻𝜆), 

(4) (𝐹𝜇 ⊓ 𝐺𝜃 ) ⊓ 𝐻𝜆=𝐹𝜇 ⊓ (𝐺𝜃 ⊓ 𝐻𝜆). 

 

Proof. The proofs are trivial. 

 

Proposition 3.14. Let 𝐹𝜇 , 𝐺𝜃and H𝜆 be three generalized interval neutrosophic soft sets over 𝑈. If 

we consider the 𝑡 −conorm defined by ⨁(𝑎, 𝑏) = 𝑚𝑎𝑥{𝑎, 𝑏} and the 𝑡 −norm defined by⨂(𝑎, 𝑏)  =
𝑚𝑖𝑛{𝑎, 𝑏}for 𝑎, 𝑏 ∈ [ 0, 1], then the following relations holds: 

 

(1) 𝐻𝜆 ⊓ (𝐹𝜇 ⊔ 𝐺𝜃 ) = (𝐻𝜆 ⊓ 𝐹𝜇) ⊔ ( 𝐻𝜆 ⊓ 𝐺𝜃), 

(2) 𝐻𝜆 ⊔ (𝐹𝜇 ⊓ 𝐺𝜃 ) = (𝐻𝜆 ⊔ 𝐹𝜇) ⊓ ( 𝐻𝜆 ⊔ 𝐺𝜃). 

 

Remark 3.15. The relations in above proposition does not hold in general. 

 

Definition 3.16. The complement of a generalized interval neutrosophic soft sets 𝐹𝜇 over U, denoted 

by 𝐹𝜇(𝑐)is defined by𝐹𝜇(𝑐)  = ([ F𝐿
⋆(𝑐)

, F𝑈
⋆(𝑐)

], [ F𝐿
≀(𝑐)
, F𝑈
≀(𝑐)
], [ F𝐿

△(𝑐)
, F𝑈
△(𝑐)

]) where 

 

𝜇(𝑐)(𝑒𝑚) =  1 −  𝜇(𝑒𝑚) 
 

and 

 

F𝐿𝑚𝑛
⋆(𝑐) = F𝐿𝑚𝑛

△ ;  F𝐿𝑚𝑛
≀(𝑐)  =  1 − F𝑈𝑚𝑛

≀  ;  F𝐿𝑚𝑛
△(𝑐)  = F𝐿𝑚𝑛

⋆  
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F𝑈𝑚𝑛
⋆(𝑐)

= F𝑈𝑚𝑛
△  ;  F𝑈𝑚𝑛

≀(𝑐)
=  1 − F𝐿𝑚𝑛

≀ ;  F𝑈𝑚𝑛
△(𝑐)

 = F𝑈𝑚𝑛
⋆  

 

Example 3.17. Consider Example 3.2. Complement of the generalized interval neutrosophic soft set 

𝐹𝜇 denoted by 𝐹𝜇(𝑐) is given as follows: 

 

{
  
 

  
 𝐹𝜇(𝑐)(𝑒1) = (

ℎ1
([0.2, 0.3], [0.5, 0.7], [0.2, 0.3])

,
ℎ2

([0.5, 0.6], [0.6, 0.7], [0.3, 0.4])
 ,

ℎ3
([0.5, 0.7], [0.6, 0.8], [0.5, 0.6])

) , (0.8)

𝐹𝜇(𝑐)(𝑒2) = (
ℎ1

([0.3, 0.4], [0.4, 0.5], [0.1, 0.4])
,

ℎ2
([0.5, 0.8], [0.5, 0.6], [0.6, 0.7])

 ,
ℎ3

([0.6, 0.9], [0.4, 0.7], [0.2, 0.4])
) , (0.5)

𝐹𝜇(𝑐)(𝑒3) = (
ℎ1

([0.1, 0.5], [80.5, 0.5], [0.2, 0.6])
,

ℎ2
([0.4, 0.5], [0.4, 0.7], [0.3, 0.5])

 ,
ℎ3

([0.2, 0.3], [0.6, 0.7], [0.6, 0.8])
) , (0.4)

}
  
 

  
 

 

 

Proposition 3.18. Let𝐹𝜇 𝑎𝑛𝑑 𝐺𝜃 be two generalized interval neutrosophic soft sets over U. Then, 

 

(1) 𝐹𝜇 is a generalized interval neutrosophic soft subset of𝐹𝜇 ⊔ 𝐹𝜇(𝑐) 
(2) 𝐹𝜇 ⊓ 𝐹𝜇(𝑐)is a generalized interval neutrosophic soft subset of𝐹𝜇. 

 

Proof: It is clear. 

 

Definition 3.19. ”And” operation on two generalized interval neutrosophic soft sets 𝐹𝜇and𝐺𝜃 over 

U,denoted byH𝜆  = 𝐹𝜇 ∧ 𝐺𝜃 is the mappingH𝜆: 𝐶 → IN(U) ×  I defined by  

 

H𝜆  = ([ H𝐿
⋆, H𝑈

⋆ ], [ H𝐿
≀ , H𝑈

≀ ], [ H𝐿
△, H𝑈

△])  
 

where𝜆 (𝑒𝑚) =  min( 𝜇 (𝑒𝑘), 𝜃 (𝑒ℎ) and 

 

H𝐿
⋆(𝑒𝑚) = min{F𝐿

⋆(𝑒𝑘𝑛), G𝐿
⋆(𝑒ℎ𝑛)} 

H𝐿
≀ (𝑒𝑚) = max {F𝐿

≀ (𝑒𝑘𝑛), G𝐿
≀ (𝑒ℎ𝑛) 

H𝐿
△(𝑒𝑚) = max {F𝐿

△(𝑒𝑘𝑛), G𝐿
△(𝑒ℎ𝑛)} 

 

and 

HU
⋆ (em) = min{FU

⋆ (ekn), GU
⋆ (ehn)} 

H𝑈
≀ (𝑒𝑚) = max {F𝑈

≀ (𝑒𝑘𝑛), G𝑈
≀ (𝑒ℎ𝑛)} 

H𝑈
△(𝑒𝑚) = max {F𝑈

△(𝑒𝑘𝑛), G𝑈
△(𝑒ℎ𝑛)} 

 

for all𝑒𝑚 = (𝑒𝑘 , 𝑒ℎ) ∈ 𝐶 ⊆ 𝐸 × 𝐸 and 𝑚, 𝑛, 𝑘, ℎ ∈  𝛬. 

 

Definition 3.20. ”OR” operation on two generalized interval neutrosophic soft sets 𝐹𝜇and𝐺𝜃 over 

U,denoted byK𝜆 = 𝐹𝜇 ∨ 𝐺𝜃 is the mappingK𝜀: 𝐶 → IN(U) ×  Idefined by  

K𝜀 = ([K𝐿
⋆ , K𝑈

⋆ ], [k𝐿
≀ , K𝑈

≀ ], [ K𝐿
△, K𝑈

△]) 
 

where 𝜀 (𝑒𝑚)= max( 𝜇 (𝑒𝑘), 𝜃 (𝑒ℎ) and  

 

K𝐿
⋆(𝑒𝑚) = max{F𝐿

⋆(𝑒𝑘𝑛), G𝐿
⋆(𝑒ℎ𝑛)} 

K𝐿
≀ (𝑒𝑚) = min{𝐹𝐿

≀(𝑒𝑘𝑛), 𝐺𝐿
≀(𝑒ℎ𝑛)} 

K𝐿
△(𝑒𝑚) = min{𝐹𝐿

△(𝑒𝑘𝑛), 𝐺𝐿
△(𝑒ℎ𝑛)} 

 

and 

 

KU
⋆ (em) = max{𝐹𝑈

⋆(𝑒𝑘𝑛), 𝐺𝑈
⋆(𝑒ℎ𝑛)} 

K𝑈
≀ (𝑒𝑚) = min{F𝑈

≀ (𝑒𝑘𝑛), G𝑈
≀ (𝑒ℎ𝑛)} 

K𝑈
△(𝑒𝑚) = min{F𝑈

△(𝑒𝑘𝑛), G𝑈
△(𝑒ℎ𝑛)} 
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for all 𝑒𝑚 = (𝑒𝑘 , 𝑒ℎ) ∈ 𝐶 ⊆ 𝐸 × 𝐸 and 𝑚, 𝑛, 𝑘, ℎ ∈ 𝛬. 

 

Definition 3.21. Let𝐹𝜇and𝐺𝜃 be two generalizedinterval neutrosophic soft sets over UandC ⊆ E × E 

, a function 𝑅: 𝐶 →IN(U) ×Idefined by R= 𝐹𝜇 ∧ 𝐺𝜃and 𝑅(𝑒𝑚, 𝑒ℎ) = 𝐹
𝜇(𝑒𝑚) ∧ 𝐺

𝜃(𝑒ℎ )is said to be a 

interval neutrosophic relation from 𝐹𝜇 to 𝐺𝜃for all (𝑒𝑚, 𝑒ℎ) ∈ 𝐶. 

 

 

4. Application of Generalized Interval Neutrosophic Soft Set 

 
Now, we illustrate an application of generalized interval neutrosophic soft set in decision making 

problem. 

 

Example 4.1. Supposethat the universe consists of three machines, that is𝑈 ={𝑥1 ,𝑥2 ,𝑥3} and 

consider the set of parameters 𝐸 = {𝑒1,𝑒2,𝑒3} which describe their performances according to certain 

specific task. Assumethat a firm wants to buy one such machine depending on any two of the 

parameters only. Let there be two observations 𝐹𝜇  and 𝐺𝜃by two experts A and B respectively, 

defined as follows: 

 

{
  
 

  
 𝐹𝜇(𝑒1) = (

ℎ1
([0.2, 0.3], [0.2, 0.3], [0.2, 0.3])

,
ℎ2

([0.3, 0.6], [0.3, 0.5], [0.2, 0.4])
 ,

ℎ3
([0.4, 0.5], [0.2, 0.5], [0.2, 0.6])

) , (0.2)

𝐹𝜇(𝑒2) = (
ℎ1

([0.2, 0.5], [0.2, 0.5], [0.2, 0.5])
,

ℎ2
([0.3, 0.5], [0.4, 0.8], [0.8, 0.9])

 ,
ℎ3

([0.4, 0.7], [0.3, 0.8], [0.3, 0.4])
) , (0.5)

𝐹𝜇(𝑒3) = (
ℎ1

([0.3, 0.4], [0.3, 0.4], [0.7, 0.9])
,

ℎ2
([0.1, 0.3], [0.2, 0.5], [0.3, 0.7])

 ,
ℎ3

([0.1, 0.4], [0.2, 0.3], [0.5, 0.7])
) , (0.6)

}
  
 

  
 

 

 

{
  
 

  
 𝐺𝜃(𝑒1) = (

ℎ1
([0.2, 0.3], [0.3, 0.5], [0.2, 0.3])

,
ℎ2

([0.3, 0.4], [0.3, 0.4], [0.5, 0.6])
 ,

ℎ3
([0.5, 0.6], [0.2, 0.4], [0.5, 0.7])

) , (0.3)

𝐺𝜃(𝑒2) = (
ℎ1

([0.1, 0.4], [0.5, 0.6], [0.3, 0.4])
,

ℎ2
([0.6, 0.7], [0.4, 0.5], [0.5, 0.8])

 ,
ℎ3

([0.2, 0.4], [0.3, 0.6], [0.6, 0.9])
) , (0.6)

𝐺𝜃(𝑒3) = (
ℎ1

([0.2, 0.6], [0.2, 0.5], [0.1, 0.5])
,

ℎ2
([0.3, 0.5], [0.3, 0.6], [0.4, 0.5])

 ,
ℎ3

([0.6, 0.8], [0.3, 0.4], [0.2, 0.3])
) , (0.4)

}
  
 

  
 

 

 

 To find the “AND” between the two GINSSs, we have 𝐹𝜇and 𝐺𝜃,𝑅 = 𝐹𝜇 ∧ 𝐺𝜃 where 

 

(𝐹𝜇)⋆= (

𝑒1 ([0.2, 0.3], [0.3, 0.6], [0.4, 0.5]) (0.2)

𝑒2 ([0.2, 0.5], [0.3, 0.5], [0.4, 0.7]) (0.5)

𝑒3 ([0.3, 0.4], [0.1, 0.3], [0.1, 0.4]) (0.6)

) 

(𝐹𝜇)≀= (

𝑒1 ([0.2, 0.3], [0.3, 0.5], [0.2, 0.5]) (0.2)

𝑒2 ([0.2, 0.5], [0.4, 0.8], [0.3, 0.8]) (0.5)

𝑒3 ([0.3, 0.4], [0.2, 0.5], [0.2, 0.3]) (0.6)

) 

 

(𝐹𝜇)△= (

𝑒1 ([0.2, 0.3], [0.2, 0.4], [0.2, 0.6]) (0.2)

𝑒2 ([0.2, 0.5], [0.8, 0.9], [0.3, 0.4]) (0.5)

𝑒3 ([0.7, 0.9], [0.3, 0.7], [0.5, 0.7]) (0.6)

) 

 

(𝐺𝜃)⋆= (

𝑒1 ([0.2, 0.3], [0.3, 0.4], [0.5, 0.6]) (0.3)

𝑒2 ([0.1, 0.4], [0.6, 0.7], [0.2, 0.4]) (0.6)

𝑒3 ([0.2, 0.6], [0.3, 0.5], [0.6, 0.8]) (0.4)

) 

 

(𝐺𝜃)≀= (

𝑒1 ([0.3, 0.5], [0.3, 0.4], [0.2, 0.4]) (0.3)

𝑒2 ([0.5, 0.6], [0.4, 0.5], [0.3, 0.6]) (0.6)

𝑒2 ([0.2, 0.5], [0.3, 0.6], [0.3, 0.4]) (0.4)

) 
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(𝐺𝜃)△= (

𝑒1 ([0.2, 0.3], [0.5, 0.6], [0.5, 0.7]) (0.3)

𝑒2 ([0.3, 0.4], [0.5, 0.8], [0.6, 0.9]) (0.6)

𝑒3 ([0.1, 0.5], [0.4, 0.5], [0.2, 0.3]) (0.4)
) 

 
We present the table of three basic component of 𝑅, which are interval truth –membership, Interval 

indeterminacy membership and interval falsity-membership part.To choose the best candidate, we 

firstly propose the induced interval neutrosophic membership functions by taking the arithmetic 

average of the end point of the range, and mark the highest numerical grade (underline) in each row of 

each table. But here, since the last column is the grade of such belongingness of a candidate for each 

pair of parameters, its not taken into account while making. Then we calculate the score of each 

component of 𝑅 by taking the sum of products of these numerical grades with the corresponding 

values of μ. Next, we calculate the final score by subtracting the score of falsity-membership part of 𝑅 

from the sum of scores of truth-membership part and of indeterminacy membership part of 𝑅.The 

machine with the highestscore is the desired machine by company. 

 

For the interval truth membership function components we have: 

 

(𝐹𝜇)⋆= (

𝑒1 ([0.2, 0.3], [0.3, 0.6], [0.4, 0.5]) (0.2)

𝑒2 ([0.2, 0.5], [0.3, 0.5], [0.4, 0.7]) (0.5)

𝑒3 ([0.3, 0.4], [0.1, 0.3], [0.1, 0.4]) (0.6)

) 

 

(𝐺𝜃)⋆= (

𝑒1 ([0.2, 0.3], [0.3, 0.4], [0.5, 0.6]) (0.3)

𝑒2 ([0.1, 0.4], [0.6, 0.7], [0.2, 0.4]) (0.6)

𝑒3 ([0.2, 0.6], [0.3, 0.5], [0.6, 0.8]) (0.4)

) 

 

(𝑅)⋆ = 

(𝑅)⋆(𝑒1 , 𝑒1) = {(
𝑥1

[0.2, 0.3]
,

𝑥2
[0.3, 0.4]

 ,
𝑥3

[0.4, 0.5]
) , 0.2} 

 

(𝑅)⋆(𝑒1 , 𝑒2) = {(
𝑥1

[0.1, 0.3]
,

𝑥2
[0.3, 0.6]

 ,
𝑥3

[0.2, 0.5]
) , 0.2} 

 

(𝑅)⋆(𝑒1 , 𝑒3) = {(
𝑥1

[0.2, 0.3]
,

𝑥2
[0.3, 0.5]

 ,
𝑥3

[0.2, 0.4]
) , 0.2} 

 

(𝑅)⋆(𝑒2 , 𝑒1) = {(
𝑥1

[0.2, 0.3]
,

𝑥2
[0.3, 0.4]

 ,
𝑥3

[0.4, 0.6]
) , 0.3} 

 

(𝑅)⋆(𝑒2 , 𝑒2) = {(
𝑥1

[0.1, 0.4]
,

𝑥2
[0.3, 0.5]

 ,
𝑥3

[0.2, 0.4]
) , 0.5} 

 

(𝑅)⋆(𝑒2 , 𝑒3) = {(
𝑥1

[0.2, 0.5]
,

𝑥2
[0.3, 0.5]

 ,
𝑥3

[0.4, 0.7]
) , 0.4} 

 

(𝑅)⋆(𝑒3 , 𝑒1) = {(
𝑥1

[0.2, 0.3]
,

𝑥2
[0.1, 0.3]

 ,
𝑥3

[0.1, 0.4]
) , 0.3} 

 

(𝑅)⋆(𝑒3 , 𝑒2) = {(
𝑥1

[0.1, 0.4]
,

𝑥2
[0.1, 0.3]

 ,
𝑥3

[0.1, 0.4]
) , 0.6} 

 

(𝑅)⋆(𝑒3 , 𝑒3 ) = {(
𝑥1

[0.2, 0.4]
,

𝑥2
[0.1, 0.3]

 ,
𝑥3

[0.1, 0.4]
) , 0.4} 
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 𝑥1 𝑥2 𝑥3 𝜇 

(𝑒1 , 𝑒1 ) [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] 0.2 

(𝑒1 , 𝑒2 ) [0.1, 0.3] [0.3, 0.6] [0.2, 0.5] 0.2 

(𝑒1 , 𝑒3 ) [0.2, 0.3] [0.3, 0.5] [0.2, 0.4] 0.2 

(𝑒2 , 𝑒1 ) [0.2, 0.3] [0.3, 0.4] [0.4, 0.6] 0.3 

(𝑒2 , 𝑒2 ) [0.1, 0.4] [0.3, 0.5] [0.2, 0.4] 0.5 

(𝑒2 , 𝑒3 ) [0.2, 0.5] [0.3, 0.5] [0.4, 0.7] 0.4 

(𝑒3 , 𝑒1 ) [0.2, 0.3] [0.1, 0.3] [0.1, 0.4] 0.3 

(𝑒3 , 𝑒1 ) [0.1, 0.4] [0.1, 0.3] [0.1, 0.4] 0.6 

(𝑒3 , 𝑒2 ) [0.2, 0.4] [0.1, 0.3] [0.1, 0.4] 0.4 

 
Table 1: Interval truth membership function. 

 

 

 𝑥1 𝑥2 𝑥3 𝜇 

(𝑒1 , 𝑒1 ) 0.25 0.35 0.45 0.2 

(𝑒1 , 𝑒2 ) 0.2 0.45 0.35 0.2 

(𝑒1 , 𝑒3 ) 0.25 0.4 0.3 0.2 

(𝑒2 , 𝑒1 ) 0.25 0.35 0.5 0.3 

(𝑒2 , 𝑒2 ) 0.25 0.4 0.3 0.5 

(𝑒2 , 𝑒3 ) 0.35 0.4 0.55 0.4 

(𝑒3 , 𝑒1 ) 0.25 0.2 0.25 0.3 

(𝑒3 , 𝑒1 ) 0.25 0.2 0.25 0.6 

(𝑒3 , 𝑒2 ) 0.3 0.2 0.25 0.4 

 
Table 2: Induced interval truth membership function. 

 

 
The value of representation interval truth membership function [𝑎, 𝑏]  are obtained using mean 

value.Then, the scores of interval truth membership function of 𝑥1,𝑥2 and𝑥3are: 

 

𝑆(𝑅)⋆(𝑥1) = (0.25 × 0.3) + ( 0.25 × 0.6) + ( 0.3 × 0.4) = 𝟎. 𝟑𝟐𝟓 

𝑆(𝑅)⋆(𝑥2)  = ( 0.45 × 0.2) + (0.4 × 0.2) + (0.4 × 0.5)) =  𝟎. 𝟑𝟕 

𝑆(𝑅)⋆(𝑥3)  = (0.45 × 0.2) + ( 0.5 × 0.3) + ( 0.55 × 0.4) ) + ( 0.25 × 0.3) + ( 0.25 × 0.6)

=  𝟎. 𝟔𝟖𝟓. 
 

For the interval indeterminacy membership function components we have: 

 

(𝐹𝜇)≀= (

([0.2, 0.3], [0.3, 0.5], [0.2, 0.5]) (0.2)

([0.2, 0.5], [0.4, 0.8], [0.3, 0.8]) (0.5)

([0.3, 0.4], [0.2, 0.5], [0.2, 0.3]) (0.6)

) 

 

(𝐺𝜃)≀= (

([0.3, 0.5], [0.3, 0.4], [0.2, 0.4]) (0.3)

([0.5, 0.6], [0.4, 0.5], [0.3, 0.6]) (0.6)

([0.2, 0.5], [0.3, 0.6], [0.3, 0.4]) (0.4)

) 

 

(𝑅)≀ = 

(𝑅)≀(𝑒1 , 𝑒1) = {(
𝑥1

[0.3, 0.5]
,

𝑥2
[0.3, 0.5]

 ,
𝑥3

[0.2, 0.5]
) , 0.3} 
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(𝑅)≀(𝑒1 , 𝑒2) = {(
𝑥1

[0.5, 0.6]
,

𝑥2
[0.4, 0.5]

 ,
𝑥3

[0.3, 0.6]
) , 0.6} 

 

(𝑅)≀(𝑒1 , 𝑒3) = {(
𝑥1

[0.2, 0.5]
,

𝑥2
[0.3, 0.6]

 ,
𝑥3

[0.3, 0.5]
) , 0.4} 

 

(𝑅)≀(𝑒2 , 𝑒1) = {(
𝑥1

[0.3, 0.5]
,

𝑥2
[0.4, 0.8]

 ,
𝑥3

[0.3, 0.8]
) , 0.5} 

 

(𝑅)≀(𝑒2 , 𝑒2) = {(
𝑥1

[0.5, 0.6]
,

𝑥2
[0.4, 0.8]

 ,
𝑥3

[0.3, 0.8]
) , 0.6} 

 

(𝑅)≀(𝑒2 , 𝑒3) = {(
𝑥1

[0.2, 0.5]
,

𝑥2
[0.4, 0.8]

 ,
𝑥3

[0.3, 0.8]
) , 0.5} 

 

(𝑅)≀(𝑒3 , 𝑒1) = {(
𝑥1

[0.3, 05]
,

𝑥2
[0.3, 0.5]

 ,
𝑥3

[0.2, 0.4]
) , 0.6} 

 

(𝑅)≀(𝑒3 , 𝑒2) = {(
𝑥1

[0.5, 0.6]
,

𝑥2
[0.4, 0.5]

 ,
𝑥3

[0.3, 0.6]
) , 0.6} 

 

(𝑅)≀(𝑒3 , 𝑒3) = {(
𝑥1

[03, 0.5]
,

𝑥2
[0.3, 0.6]

 ,
𝑥3

[0.3, 0.4]
) , 0.6} 

 

 

 𝑥1 𝑥2 𝑥3 𝜇 

(𝑒1 , 𝑒1 ) [0.3, 0.5] [0.3, 0.5] [0.2, 0.5] 0.3 

(𝑒1 , 𝑒2 ) [0.5, 0.6] [0.4, 0.5] [0.3, 0.6] 0.6 

(𝑒1 , 𝑒3 ) [0.2, 0.5] [0.3, 0.6] [0.3, 0.5] 0.4 

(𝑒2 , 𝑒1 ) [0.3, 0.5] [0.4, 0.8] [0.3, 0.8] 0.5 

(𝑒2 , 𝑒2 ) [0.5, 0.6] [0.4, 0.8] [0.3, 0.8] 0.6 

(𝑒2 , 𝑒3 ) [0.2, 0.5] [0.4, 0.8] [0.3, 0.8] 0.5 

(𝑒3 , 𝑒1 ) [0.3, 05] [0.3, 0.5] [0.2, 0.4] 0.6 

(𝑒3 , 𝑒1 ) [0.5, 0.6] [0.4, 0.5] [0.3, 0.6] 0.6 

(𝑒3 , 𝑒2 ) [0.3, 0.5] [0.3, 0.6] [0.3, 0.4] 0.6 

 
Table 3: Interval indeterminacy membership function 

 

 

 𝑥1 𝑥2 𝑥3 𝜇 

(𝑒1 , 𝑒1 ) 0.4 0.4 0.35 0.3 

(𝑒1 , 𝑒2 ) 0.55 0.45 0.45 0.6 

(𝑒1 , 𝑒3 ) 0.35 0.45 0.4 0.4 

(𝑒2 , 𝑒1 ) 0.4 0.6 0.55 0.5 

(𝑒2 , 𝑒2 ) 0.55 0.6 0.55 0.6 

(𝑒2 , 𝑒3 ) 0.35 0.6 0.55 0.5 

(𝑒3 , 𝑒1 ) 0.4 0.4 0.3 0.6 

(𝑒3 , 𝑒1 ) 0.55 0.45 0.45 0.6 

(𝑒3 , 𝑒2 ) 0.4 0.45 0.35 0.6 

 
Table 4: Induced interval indeterminacy membership function 
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The value of representation interval indeterminacy membership function[𝑎, 𝑏] are obtained using mean 

value. Then, the scores of interval indeterminacy membership function of 𝑥1, 𝑥2 and𝑥3are: 

 

𝑆(𝑅)≀(𝑥1) = (0.4 × 0.3) + (0.55 × 0.6) + (0.4 × 0.6) + (0.55 × 0.6) = 𝟏. 𝟎𝟐 

 
𝑆(𝑅)≀(𝑥2) = (0.4 × 0.3) + (0.45 × 0.4) + (0.6 × 0.5) + (0.6 × 0.6) + (0.6 × 0.5) + (0.4 × 0.60)

+ (0.45 × 0.6)+  =  𝟏. 𝟕𝟕 

 
𝑆𝐼(𝑅)≀(𝑥2) = 𝟎. 

 

For the interval indeterminacy membership function components we have: 

 

(𝐹𝜇)△= (

([0.2, 0.3], [0.2, 0.4], [0.2, 0.6]) (0.2)

([0.2, 0.5], [0.8, 0.9], [0.3, 0.4]) (0.5)

([0.7, 0.9], [0.3, 0.7], [0.5, 0.7]) (0.6)

) 

 

(𝐺𝜃)△= (

([0.2, 0.3], [0.5, 0.6], [0.5, 0.7]) (0.3)

([0.3, 0.4], [0.5, 0.8], [0.6, 0.9]) (0.6)

([0.1, 0.5], [0.4, 0.5], [0.2, 0.3]) (0.4)

) 

 

 

(𝑅)△ = 

(𝑅)△ (𝑒1 , 𝑒1) = {(
𝑥1

[0.2, 0.3]
,

𝑥2
[0.5, 0.6]

 ,
𝑥3

[0.5, 0.7]
) , 0.3} 

 

(𝑅)△ (𝑒1 , 𝑒2) = {(
𝑥1

[0.3, 0.4]
,

𝑥2
[0.5, 0.8]

 ,
𝑥3

[0.6, 0.9]
) , 0.6} 

 

(𝑅)△ (𝑒1 , 𝑒3) = {(
𝑥1

[0.2, 0.5]
,

𝑥2
[0.4, 0.5]

 ,
𝑥3

[0.2, 0.6]
) , 0.4} 

 

(𝑅)△ (𝑒2 , 𝑒1) = {(
𝑥1

[0.2, 0.5]
,

𝑥2
[0.8, 0.9]

 ,
𝑥3

[0.5, 0.7]
) , 0.5} 

 

(𝑅)△ (𝑒2 , 𝑒2) = {(
𝑥1

[0.3, 0.5]
,

𝑥2
[0.8, 0.9]

 ,
𝑥3

[0.6, 0.9]
) , 0.6} 

 

(𝑅)△ (𝑒2 , 𝑒3) = {(
𝑥1

[0.2, 0.5]
,

𝑥2
[0.8, 0.9]

 ,
𝑥3

[0.3, 0.4]
) , 0.5} 

 

(𝑅)△ (𝑒3 , 𝑒1) = {(
𝑥1

[0.7, 0.9]
,

𝑥2
[0.5, 0.7]

 ,
𝑥3

[0.5, 0.7]
) , 0.6} 

 

(𝑅)△ (𝑒3 , 𝑒2) = {(
𝑥1

[0.7, 0.9]
,

𝑥2
[0.5, 0.8]

 ,
𝑥3

[0.6, 0.9]
) , 0.6} 

 

(𝑅)△ (𝑒3 , 𝑒3 ) = {(
𝑥1

[0.7, 0.9]
,

𝑥2
[0.4, 0.7]

 ,
𝑥3

[0.5, 0.7]
) , 0.6} 

 

 

 



Journal of New Results in Science 7 (2014) 29-47                                                                                                         45 

 
 

 𝑥1 𝑥2 𝑥3 𝜇 

(𝑒1 , 𝑒1 ) [0.2, 0.3] [0.5, 0.6] [0.5, 0.7] 0.3 

(𝑒1 , 𝑒2 ) [0.3, 0.4] [0.5, 0.8] [0.6, 0.9] 0.6 

(𝑒1 , 𝑒3 ) [0.2, 0.5] [0.4, 0.5] [0.2, 0.6] 0.4 

(𝑒2 , 𝑒1 ) [0.2, 0.5] [0.8, 0.9] [0.5, 0.7] 0.5 

(𝑒2 , 𝑒2 ) [0.3, 0.5] [0.8, 0.9] [0.6, 0.9] 0.6 

(𝑒2 , 𝑒3 ) [0.2, 0.5] [0.8, 0.9] [0.3, 0.4] 0.5 

(𝑒3 , 𝑒1 ) [0.7, 0.9] [0.5, 0.7] [0.5, 0.7] 0.6 

(𝑒3 , 𝑒1 ) [0.7, 0.9] [0.5, 0.8] [0.6, 0.9] 0.6 

(𝑒3 , 𝑒2 ) [0.7, 0.9] [0.4, 0.7] [0.5, 0.7] 0.6 

 
Table 5: Interval falsity membership function. 

 

 

 𝑥1 𝑥2 𝑥3 𝜇 

(𝑒1 , 𝑒1 ) 0.25 0.55 0.6 0.3 

(𝑒1 , 𝑒2 ) 0.35 0.43 0.75 0.6 

(𝑒1 , 𝑒3 ) 0.35 0.45 0.4 0.4 

(𝑒2 , 𝑒1 ) 0.35 0.85 0.6 0.5 

(𝑒2 , 𝑒2 ) 0.4 0.85 0.75 0.6 

(𝑒2 , 𝑒3 ) 0.35 0.85 0.35 0.5 

(𝑒3 , 𝑒1 ) 0.8 0.6 0.6 0.6 

(𝑒3 , 𝑒1 ) 0.8 0.43 0.75 0.6 

(𝑒3 , 𝑒2 ) 0.8 0.55 0.6 0.6 

 
Table 6: Induced interval falsity membership function. 

 

 

The value of representation interval falsity membership function [𝑎, 𝑏] are obtained using mean value. 

Then, the scores of interval falsity membership function of 𝑥1, 𝑥2 and 𝑥3are: 

 

𝑆(𝑅)△ (𝑥1) = (0.8 × 0.6) + (0.8 × 0.6) + (0.8 × 0.6) =  𝟏. 𝟒𝟒 

𝑆(𝑅)△ (𝑥2) = (0.45 × 0.4) + (0.85 × 0.5) + (0.85 × 0.6) + (0.85 × 0.5) = 𝟏. 𝟓𝟒 

𝑆(𝑅)△ (𝑥3) = (0.6 × 0.3) + (0.75 × 0.6) = 𝟎. 𝟔𝟑. 

 

Thus, we conclude the problem by calculating final score, using the following formula: 

 

 S(𝑥i)  =  S(R)⋆( 𝑥i)  + S(R)≀( 𝑥i)  − S(R)△ ( 𝑥i) 

so, 

 

S(𝑥1) = 0.325 + 1.02 − 1.44 =  −0.095 

 
S(𝑥2) = 0.37 + 1.77 − 1.54 =  0.6 

 
S(𝑥3)  = 0.685 + 0 − 0.63 =  0.055. 

 

Then the optimal selection for Mr.X is the 𝑥2. 

 

Table 1, Table 3 and Table 5 present the truth–membership function, indeterminacy-membership 

function and falsity-membership function in generalized interval neutrosophic soft set respectively. 
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5. Conclusions 

 
This paper can be viewed as a continuation of the study of Sahin and Küçük [23]. We extended the 

generalized neutrosophic soft set to the case of interval valued neutrosophic soft set and also gave the 

application of GINSS in dealing with some decision making problems. In future work, will study 

another type of generalized interval neutrosophic soft set where the degree of possibility are interval. 
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