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Abstract – In this work, we present definition of interval valued neutrosophic 

parameterized (IVNP-)soft set and its operations. Then we define parameter 

reduction method for IVNP-soft set.We also give an example which shows that 

they can be successfully applied to problem that contains indeterminacy. 
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1.  Introduction 

 
In 1999, Smarandache firstly proposed the theory of neutrosophic set (NS) [34], which is the 

generalization of the classical sets, conventional fuzzy set [40] and intuitionistic fuzzy set 

[5]. In recent years, neutrosophic sets has been successfully applied to many fields such 

as;control theory [1],  databases [3,4], clustering [36], medical diagnosis problem [2], 

decision making problem [25,37], topology [26],and so on. 

 

Presently work on the neutrosophic set theory is progressing rapidly such as; Bhowmik 

and Pal defined intuitionistic neutrosophic set [9] and intuitionistic neutrosophic relations 

[10]. Later on Salam, Alblowi [33] introduced another concept called generalized 

neutrosophic set. Wang et al. [38] proposed another extension of neutrosophic set which is 

single valued neutrosophic. Also Wang etal. [39] introduced the notion of interval valued 

neutrosophic set which is an instance of neutrosophic set. It is characterized by an interval 

membership degree, interval indeterminacy degree and interval non-membership 

degree.Many applications of neutrosophic theory have been worked by Geogiev [23],Ye 
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[36,37], Majumdar and Samanta [31], P.D. Liu [41,42] and Broumi and Smarandache  [14] 

and so on. 

 

In 1999 a Russian researcher [32] firstly gave the soft set theory as a general mathematical 

tool for dealing with uncertainty and vagueness and how soft set theory is free from the 

parameterization inadequacy syndrome of fuzzy set theory, rough set theory, probability 

theory. Then, many interesting results of soft set theory have been studied on fuzzy soft sets 

[15,,27], on FP-soft sets [20,21], on intuitionistic fuzzy soft set theory [8,17,28], on 

intuitionistic fuzzy parameterized soft set theory [18], oninterval valued intuitionistic fuzzy 

soft set [24], on generalized fuzzy soft sets [30,35], on generalized intuitionistic fuzzy soft 

[6], on possibility intuitionistic fuzzy soft set [7], on intuitionistic neutrosophic soft set [11], 

on generalized neutrosophic soft set [12], on fuzzy parameterized fuzzy soft set theory [16], 

on IFP−fuzzy soft set theory [19], on neutrosophic soft set [29]. Recently, Deli [22] 

introduced the concept of interval valued neutrosophic soft set as a combination of interval 

neutrosophic set and soft sets. 

 

In this paper our main objective is to introduce the notion of interval valued neutrosophic 

parameterized soft set which is a generalization of neutrosophic parameterized soft sets 

[13].The paper is structured as follows. In Section 2, we first recall the necessary 

background on neutrosophic sets, interval neutrosophic sets and soft sets. In Section 3,we 

present interval valued neutrosophic parameterized soft set theory and examines their 

respective properties. In section 4, we present a interval valued neutrosophic parameterized 

aggregation operator. Section 5, interval valued neutrosophic parameterized decision 

methods is presented with example. Finally we conclude the paper. 

 

 

2. Preliminaries 
 

Throughout this paper, let U be a universal set and E be the set of all possible parameters 

under consideration with respect to U, usually, parameters are attributes, characteristics, or 

properties of objects in U.  

 

We now recall some basic notions of neutrosophic set, interval valued neutrosophic set and 

soft set. For more details, the reader could refer to [29, 32, 34, 39].  

 
Definition 2.1. [34] Let U be a universe of discourse then the neutrosophic set A is an object 

having the form  
 

A = {< x: A(x), A(x), A(x)>,x ∈ U} 

 

where the functions , ,  : U→]
−
0,1

+
[ define respectively the degree of membership, the 

degree of indeterminacy, and the degree of non-membership of the element x ∈ X to the set 

A with the condition.  

 
    −

0 ≤ A(x) + A(x) + A(x) ≤ 3
+
.                                         (1) 

 

From philosophical point of view, the neutrosophic set takes the value from real standard 

or non-standard subsets of ]−0,1
+
[. So instead of ]

−
0,1

+
[ we need to take the interval [0,1] for 

technical applications, because ]
−
0,1

+
[ will be difficult to apply in the real applications  such 
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as in scientific and engineering problems. 

 

Definition 2.2. [39] Let X be a space of points (objects) with generic elements in X denoted 

by x. An interval valued neutrosophic set (for short IVNS) A in X is characterized by truth-

membership function      , indeteminacy-membership function       and falsity-

membership function      . For each point x in X, we have 

that      ,     ,     ∈[0,1]. 

 
For two IVNS 

 

      = {<x, [  
    ,   

    ] ,    
       

          
       

       > |  ∈   } 

 

and 

 

     = {<x, [  
    ,   

    ] ,    
       

          
       

     > |  ∈   } 

 

Then, 

 

1.             if and only if 

 

  
       

    ,  
       

        
       

     ,  
       

     ,   
        

     

,  
       

    . 
 

2.                               ,  
 

      =      ,      =      ,      =      for any ∈  . 

 

3. The complement of       is denoted by      
  and is defined by 

 

     
 ={<x,    

       
     >,      

         
     , [  

    ,   
    ] |  ∈   } 

 

4. A B = { <x, [min(  
    ,  

    ), min(  
    ,  

    )], [max(  
    ,  

    ),    
max(  

    ,  
       [max(  

    ,  
    ), max(  

    ,  
    )] >:  ∈   } 

 

5. A B = {<x, [max(  
    ,  

    ), max(  
    ,  

    )], [min(  
    ,  

    ),  
min (  

    ,  
       [min(  

    ,  
    ), min(  

    ,  
    )] >:  ∈   } 

 

As an illustration, let us consider the following example. 

 

Example 2.3. Assume that the universe of discourse U= {           }. Then, A is a 

interval valued neutrosophic set (IVNS) of U such that, 

 

A = {< x1, [0.1 0.8], [0.2 0.6], [0.8 0.9] >, < x2, [0.2 0.5], [0.3 0.5], [0.6 0.8]>, 

< x3, [0.5 0.8], [0.4 0.5], [0.45 0.6] >, < x4, [0.1 0.4], [0.1 0.5], [0.4 0.8] >} 

 

Definition 2.4. [32] Let U be an initial universe set and E be a set of parameters. Let P(U) 

denotes the power set of U. Consider a nonempty set A, A ⊂ E. A pair (K, A) is called a soft 

set over U, where K is a mapping given by K: A → P (U). 
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As an illustration, let us consider the following example. 

Example 2.5 .Suppose that U is the set of houses under consideration, say U = {  ,  . . 

.,  }. Let E be the set of some attributes of such houses, say E = {e1, e2, . . ., e4}, where e1, e2, 

. . ., e4 stand for the attributes “beautiful”, “costly”, “in the green surroundings’”, “moderate”, 

respectively.  

 

In this case, to define a soft set means to point out expensive houses, moderate houses, and 

so on. For example, the soft set (K, A) that describes the “attractiveness of the houses” in the 

opinion of a buyer, saysMr. X, and may be defined like this:  

 

A= E,(K, A) ={(  , {  ,  }), (  , {  }), (  , {  ,  .  }), (  , U)}. 

 

 

3. Interval Neutrosophic Parameterized Soft Set Theory 
 

In this section, we define interval neutrosophic parameterized soft set and their operations. 

 

Definition 3.1. Let U be an initial universe, P(U) be the power set of U,E be a set of all 

parameters and  K be an interval valued neutrosophic set over E . Then an interval 

neutrosophic parameterized soft sets(IVNP-soft sets), denoted by             ; 
 

   =         
       

           
       

          
       

                  ∈     
         :E   [0, 1],   :E   [0, 1],  :E   [0, 1] and    :E  P(U) such that       =Φ if  

                           . 

 

Here, the  ,   and    called truth-membership function  indeteminacy-membership 

function and falsity-membership function of (IVNP-soft set), respectively.  

 

Example 3.2.Assume that U= {  ,     } is a universal set and E= {  ,  } is a set of 

parameters. If 

 

K= {(<  , [0.2, 0.3],[0.3,0.5],[0.4 ,0.5]>) , (<  ,[0.3 ,0.4], [0.5,0.6],[0.4 ,0.5]>)} 

 

and 

 

      = {   ,  },      =U 

 

then a IVNP-soft set   is written by 

  

  = {(<  , [0.2, 0.3], [0.3,0.5], [0.4 ,0.5]>,{  ,  }),(<  ,[0.3 ,0.4], [0.5,0.6],[0.4 ,0.5]>, 

U)} 

 

Definition 3.3. Let    ∈IVNP-soft sets.  If       =  ,   
    =  

     =0 ,   
    =  

     
  and   

    =  
     =1 all x ∈ E. then    is called  empty IVNP-soft set, denoted by   . 

 

Definition 3.4.Let    ∈IVNP-soft sets. If      =U,  
    =  

    =1,   
    =  

       and 

  
    =  

    =0 all x ∈ E. Then    is called  K-universal IVNP-soft set, denoted by   . 

If K= E, then the K-universal IVNP-soft set is called universal IVNP-soft set, denoted 

by    . 
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Definition 3.5.    and    are two IVNP-soft set. Then,   =  ,if and only if     
  and      for all x ∈ E. 

 

Definition 3.6.    and    are two IVNP-soft set. Then,    is IVNP-subset of  , denoted 

by       if and only if    
       

     ,  
       

    ,  
       

    ,   
     

  
    ,  

       
     ,  

       
     and            for all x ∈ E. 

 

Definition 3.7. Let   ∈IVNP-soft set. Then, the complement of   , denoted by   
  , is 

defined by 

 

  
 ={(<x,     

       
           

       
          

       
      ,           ∈   } 

 

where        =         
 

Definition 3.8. Let      and     are two IVNP-soft set. Then ,union of     and   ,denoted 

by       , is defined by  

 

     = {(<x, [max {  
       

      max {  
       

       , [min {  
       

       
min {  

       
      , [min{  

       
       min{  

       
      >, 

             ∈  } 

 

Where           =             
 

Definition 3.9. Let      and     are two IVNP-soft set. Then, intersection of  

  and  ,denoted by      , is defined by   

 

     = {(<x, [min {  
       

      min {  
       

       , [max {  
       

       
max {  

       
      , [max{  

       
       max{  

       
      >, 

                                    

        ∈  } 

 

where          =             
 

Example 3.10. Let U = {  ,  ,   ,   }, E={   ,  ,  }. Then, 

  = {(<  ,[0.1,0.5], [ 0.4, 0.5] ,[0.2 ,0.3]>,{  ,  }), 

(<  ,[0.2,0.3], [ 0.5, 0.7] ,[0.1 ,0.3]>,{  ,  })} 

  = {(<   ,[0.1,0.6], [ 0.2, 0.3] ,[0.2 ,0.4]>,{   ,  }), 

(<   ,[0.4,0.7], [ 0.1, 0.2] ,[0.3 ,0.4]>,{   })} 

 

Then  

 

     ={(<   , [0.1,0.5], [ 0.4, 0.5] ,[0.2 ,0.3]>,{   ,   }),(<    ,[0.2,0.6], [0. 2, 0.3]  

,[0.1 ,0.3]>,{   ,   ,    }),(<   ,[0.4,0.7], [ 0.1, 0.2] ,[0.3 ,0.4]>,{   })} 

     = { (<   , [0.1,0.3], [ 0.5, 0.7] ,[0.2 ,0.4]>,{   })}. 

  
 ={(<    ,[0.2,0.3], [ 0.4, 0.5] ,[0.1 ,0.5]>,{   ,   }), 

(<   ,[0.1,0.3], [ 0.5, 0.7] ,[0.2 ,0.3]>,{    ,   })} 
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Remark 3.11.      does not imply that every element of    is an element of    as in 

the definition of classical subset. For example assume that U={  ,  ,  ,  }is a universal set 

of objects and E={  ,  ,  }is a set of all parameters, if IVNP-soft sets    and    are 

defined as 

 

  = {(<  ,[0.1,0.3], [ 0.5, 0.5] ,[0.2 ,0.3]>,{  ,  }),(<  , [0.3,0.4], [ 0.4, 0.5] , 

[0.3, 0.5]>,{  })} 

  = {(<  ,[0.2,0.6], [ 0.3, 0.4] ,[0.1 ,0.2]>,U),(<  , [0.4,0.7], [ 0.1, 0.3] , 

[0.2, 0.3]>,{  ,  })} 

 

It can be seen that      , but every element of    is not an element of  . 

 

Proposition 3.12. Let  ,  ∈IVNP-soft set .Then 

i.        

ii.       

iii.       

 

Proof. It is clear from Definition 3.3-3.5. 

 

Proposition 3.13. Let  ,   and   ∈IVNP-soft set. Then 

i.    =    and   =      =    

ii.      and         =    

iii.       and             

 

Proof. It can be proved by Definition 3.3-3.5 

 

Proposition 3.14 Let   ∈ IVNP-soft set. Then 

i.    
    =   

ii.   
  =    

iii.   
 =    

 

                   
 

Proposition 3.15. Let   ,   and   ∈IVNP-soft set. Then 

i.      =   

ii.       =   

iii.       =    

iv.      =      

v. (     )    =   (     ) 

 

Proof. It is clear 

 

Proposition  3.16. Let   ,   and   ∈IVNP-soft set, Then 

i.      =   

ii.       =    

iii.       =   

iv.      =      

v. (     )    =   (     ) 
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Proof. It is clear 

 

Proposition 3.17.Let  ,   and   ∈IVNP-soft set, Then 

i.    (     )= (     )   (      ) 

ii.    (     =(     )  (      ) 

 

Proof. It can be proved by definition 3.8 and 3.9 

 

Proposition 3.18.Let  ,  ∈IVNP-soft set, Then 

i.         
 =  

    
  

ii.         
 =  

    
  

 

Proof. It is clear. 

 

Definition 3.19. Let     ∈IVNP-soft set, Then 

i. OR-product of     and    denoted by       ,is defined as following 

     (x, y)=  (<(x,y),([max {  
     ,  

 (y)},max{  
     ,  

 (y)}], 

[min {  
     ,  

 (y)},min{  
     ,  

 (y)],[min{  
     ,  

 (y)}, 

min {  
     ,  

 (y)]) >,     (x,y)) :x,y ∈      
where      (x,y)=   (x)    (y) 

ii. AND-product of    and    denoted by         is defined as following 

      (x,y)=   (<(x,y), ([min{  
     ,  

 (y)},min{  
     ,  

 (y)}],  

[max {  
     ,  

 (y)},max{  
     ,  

 (y)], [max{  
     ,  

 (y)}, 

max {  
     ,  

 (y)]) >,     (x,y)) :x,y ∈      
where      (x,y)=   (x)    (y) 

 

Proposition 3.20.Let  ,   and   ∈IVNP-soft set. Then 

i.       =   

ii.       =       

iii.      =      

iv. (      )    =    (      ) 

v. (     )   =   (     ) 

 

Proof . It can be proved by definition 3.15 

 

 

4. Parameter Reduction Method  
 

In this section, we have defined a parameter reduction method of an IVNP-soft set, that 

produce a soft set from an IVNP-soft set. For this, we define level set for IVNP-soft set. 

This concept presents an adjustable approach to IVNP–soft sets based decision making 

problems.  

 

Throughout this section we will accept that the parameter set E and the initial universe U are 

finite sets.  

 

Definition 4.1 Let   ∈ IVNPS. Then for a = [  ,  ],  = [  ,  ], = [   ,  ]  [0, 1],  the 

(s, t, q) –level soft set of     is a crisp soft set,denoted by (  ; ( ,   ,  )), defined by 
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(   ; ( ,  , )) = {((  ,   (  )) :  ∈ E} 

where 

     
     , 

    
     , 

    
     , 

    
        and       

     , 
    

      
 

Remark In Definition 4.1, s   [0,1] can be viewed as a given least threshold on degrees of 

truth-membership, t [0, 1] can be viewed as a given greatest threshold on degrees of 

indeterminacy-membership and q   [0, 1] can be viewed as a given greatest threshold on 

degrees of falsity-membership. If      
     , 

    
     , 

    
     , 

    
        and  

     
     , 

    
     , it shows that the degree of the truth-membership of x with 

respect to the u is not less than s, and the degree of the indeterminacy-membership of u with 

respect to the parameter x is not more than t and the degree of the falsity-membership of u 

with respect to the parameter x is not more than q. In practical applications of IVNP-soft 

sets, the thresholds s,t,q [0, 1] is pre-established by decision makers and reflect decision 

makers requirements on “truth-membership levels”, “indeterminacy-membership levels ”and 

“falsity-membership levels”. 

 

Definition 4.2 Let  ∈ IVNPS and an     = [    
 ,    

 ],     = [    
 ,    

 ], 

    = [    
 ,    

 ] [0, 1] which is called a threshould of IVNSP-soft set. The level soft set 

of    with respect to (    ,     ,    ) is a crisp soft set , denoted by  

 

(  ; (    ,     ,    )) , 

 

defined by; 

(  ; (    ,     ,    )) = {((  ,   (  )) :  ∈ E} 

where, 

    
    

      ,    
    

      ,    
    

       ,    
    

        and      
    

     , 
    
    

      
    
  = inf {  

      :  ∈ E},     
  = inf {  

      :  ∈ E} 

    
  = inf {  

      :  ∈ E},     
  = inf {  

      :  ∈ E} 

    
  = inf {  

      :  ∈ E},     
  = inf {  

      :  ∈ E} 

 

The (    ,    ,     ) is called the mmm-threshold of the IVNP-soft set    . In the 

following discussions, the mmm-level decision rule will mean using the mmm-threshold and 

considering the mmm-level soft set in IVNP-soft sets based decision making. 

 

Definition 4.3 Let   ∈ IVNPS and an     = [     
 ,    

 ],     = [    
 ,    

 ], 

    = [    
 ,    

 ]  [0,1] which is called a threshould of IVNSP-soft set . The level soft set 

of    with respect to (    ,    ,    ) is a crisp soft set, denoted by  

(  ; (    ,    ,     )),defined by; 

 

(   ; (    ,     ,    )) = {((  ,   (  )) :  ∈ E} 

where,  

    
    

     ,    
    

     ,    
    

     ,    
    

     and      
    

     ,    
  

  
      

    
  = 

  
     

    
  ∈  ,      

  = 
  
     

    
  ∈   

    
  = 

  
       

    
  ∈  ,     

  = 
  
       

    
  ∈   
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  = 

  
     

    
  ∈  ,     

  = 
  
     

    
  ∈   

For all   ∈   , where if   ∈ E/   then   (     . 

The (    ,     ,    ) is called the mmm-threshold of the IVNP-soft set   . In the 

following discussions, the mid-level decision rule will mean using the mid-threshold and 

considering the mid-level soft set in IVNP-soft sets based decision making. 

 

Definition 4.4 Let   ∈ IVNPS and an     = [     
  ,    

  ],     = [     
  ,    

  ], 

    = [     
  ,    

  ]  [ 0, 1] which is called a threshould of IVNSP-soft set . The level soft 

set of    with respect to (    ,     ,    ) is a crisp soft set, denoted by  

(   ; (    ,     ,    )),defined by; 

 

(   ; (    ,     ,    )) = {((  ,   (  )) :  ∈ E} 

where,  

    
    

      ,    
    

      ,    
    

       ,    
    

        and      
    

      
,    

    
      

    
  = sup{  

      :  ∈ E},     
  = sup{   

      :  ∈ E} 

    
  = inf{  

      :  ∈ E},     
  = inf{   

      :  ∈ E} 

    
  = inf{  

      :  ∈ E},     
  = inf{   

      :  ∈ E} 

 

The (    ,     ,    ) is called the Mmm-threshold of the IVNP-soft set    . In the 

following discussions, the Mmm-level decision rule will mean using the Mmm-threshold 

and considering the Mmm-level soft set in IVNP-soft sets based decision making. 

 

Definition 4.5 Let   ∈ IVNPS. The threshold based on median could be expressed as a 

function  

     : A→      , i.e.     =[    
 ,    

 ],     = [    
 ,    

 ],    = [    
 ,    

 ]   [0,1] 

for all ε ∈ A, where for ∀ε ∈ A,    
 ,    

  is the median by ranking the degree of interval 

truth membership of all alternatives according to order from large to small (or from small to 

large), namely 

    
  = 

 
  
 

  
   

   
 
     

 
 
                                                     

    
   

 
   

 
 
    

   
 
   

 
   

  

 
 

                  

  

    
  = 

 
  
 

  
   

   
 
     

 
 
                                                     

    
   

 
   

 
 
    

   
 
   

 
   

  

 
 

                  

  

    
  ,    

 is the median by ranking the degree of interval indeterminacy membership of all 

alternatives according to order from large to small (or from small to large), namely 
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  = 

 
  
 

  
   

   
 
     

 
 
                                                     

    
   

 
   

 
 
    

   
 
   

 
   

  

 
 

                  

  

    
  = 

 
  
 

  
   

   
 
     

 
 
                                                     

    
   

 
   

 
 
    

   
 
   

 
   

  

 
 

                  

  

And     
  ,    

  is the median by ranking the interval  degree of falsity membership of all 

alternatives according to order from large to small (or from small to large), namely 

    
  = 

 
  
 

  
   

   
 
     

 
 
                                                     

    
   

 
   

 
 
    

   
 
   

 
   

  

 
 

                  

  

    
  = 

 
  
 

  
   

   
 
     

 
 
                                                     

    
   

 
   

 
 
    

   
 
   

 
   

  

 

 
                  

  

The (    ,     ,    ) is called themed-threshold of the IVNP-soft set    . In the following 

discussions, the Med-level decision rule will mean using the Med-threshold and considering 

the Med-level soft set in IVNP-soft sets based decision making. 

 

Example 4.6   = {(<   ,[0.1,0.5], [ 0.4, 0.5] ,[0.2 ,0.3]>,{    ,   }),(<   ,[0.2,0.3], [ 0.5, 

0.7], [0.1, 0.3]>,{   ,   }),(<  ,[0.1,0.3], [ 0.1, 0.7] ,[0.3 ,0.4]>,{   ,    ,   })} 

Then  

    = [0.13, 0.36],     = [0.33, 0.63],      = [0.2 0.43] 

    = [0.1, 0.3],     = [0.1, 0.5],      = [0.1,0.3] 

    = [0.2, 0.5],     = [0.1, 0.5],     = [0.1,0.3] 

    = [0.2, 0.3],     = [0.5, 0.7],      = [0.1, 0.3] 

 

Theorem 4.7.  Let   ∈ IVNP-soft set (  ; (    ,     ,    )), (   ; (    ,     ,    ))and  

(   ; (    ,     ,    ))  be the mid-level soft set, max –level soft set and min –level soft 

set of     ,respectively. Then, 

1. (   ; (    ,     ,    ))   (   ; (    ,     ,    )) 

2. (   ; (    ,     ,    ))    (   ; (    ,     ,    )) 

 

Proof. Let   ∈ IVNPSS.From definition, definition and definition,it can be seen that    

    
      

      
 ,     

      
      

  and      
      

      
 . 
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Thus 

i. for all    ∈ E which providing the inequalities   

    
    

          
 , (   ,  (  )   (   ; (    ,     ,    ))  . 

 

So, (  ; (    ,     ,    ))   (   ; (    ,     ,    )) 

ii. it can be proved similar way 

Now, we construct an IVNP –soft sets decision making method by the following algorithm; 

 

Algorithm: 

 

Step 1. Input the IVNP –soft sets -soft set      

Step 2.Input a threshold (     ,     ,    ) ( or (     ,     ,    ),(    ,     ,    )) by 

using mid –level decision rule ( or Mmm-level decision rule, mmm-level decision rule) for 

decision making. 

Step 3. Compute mid-level soft set (   ; (    ,     ,    )) ( or Mmm-level soft set (   ; 

(    ,     ,    )) ,mmm –level  soft set (   ; (    ,     ,    ), Med –level  soft set (   ; 

(    ,     ,    )) 

Step 4. Present the level soft set (  ;(    ,    ,    )) (or the level soft set (  ; 

(    ,    ,    )), the level soft set (  ;(    ,    ,    ), Med–level  soft set (  ; 

(    ,     ,    )))in tabular form. 

Step 5. Compute the choice value     of     for any    ∈ U , 

Step 6. The optimal decision is to select    if    =        ∈     

 

Remark If k has more than one value then any one of    may be chosen. If there are too 

many optimal choices in Step 6, we may go back to the second step and change the 

threshold (or decision rule) such that only one optimal choice remains in the end. 

 

Example 4.8. Assume that a company wants to fill a position. There are 4 candidates who 

fill in a form in order to apply formally for the position. There is a decision maker (DM) that 

is from the department of human resources. He wants to interview the candidates, but it is 

very difficult to make it all of them. Therefore, by using the parameter reduction method, the 

numbers of candidates are reduced to a suitable one. Assume that the set of candidates 

U={  ,   ,   ,   ,  ,   ,   } which may be characterized by a set of parameters E={  ,   , 

   ,  ,   ,   } For i=1,2,3,4,5,6 the parameters i stand for experience, computer knowledge, 

training, young age, diction and flexible working hours compatible, respectively. Now, we 

can apply the method as follows: 

 

Step 1. After thinking thoroughly, he/she evaluates the alternative according to choosing 

parameters and constructs an IVNP-soft set   as follows 

 

  = {<  , ([0.6, 0.8], [0.1, 0.2], [0.3, 0.5])>,{  ,  ,  ,  }), (<  ,([0.5, 0.6], [0.3, 0.4], 

[0.2, 0.3])>,{  ,  ,  ,  }),(<  , ([0.4, 0.5], [0.3, 0.4], [0.1 ,0.4])>, 

{  ,  ,  ,  }), (<  , ([0.1, 0.2], [0.4, 0.8], [0.4 ,0.5])>, {  ,  ,  ,  }}, 

(<  , ([0.4, 0.5], [0.2, 0.4], [0.3, 0.6])>, {  ,  ,  })},(<  , ([0.7, 0. 7],  

[0.1, 0.3], [0.1, 0.5])>, {  ,  ,  }})} 

 

Step 2. Then, we have 

    , = [0.45, 0.655],     = [0.23, 0.41] ,      = [0.23, 0.46] 

    , = [0.7, 0.8],     = [0.1, 0.2] ,      = [0.1, 0.3] 



Journal of New Results in Science 7 (2014) 58-71                                                                                                      69 

 

    , = [0.1, 0.2],           = [0.1, 0.2],       = [0.1, 0.3] 

    , = [0.25, 0.35],        = [0.35, 0.6] ,      = [0.25, 0.45] 

 

Step 3. Thus, the (    ,    ,    )-level soft set of   is (after the necessary calculations, 

they can be seen that (    ,    ,    )-level soft set,(    ,    ,    )-level soft set, and 

(    ,     ,    )- level soft set of    are not suitable for decision making in this problem.) 

(  ; (    ,     ,    )) = {(<  ,([0.5, 0.6], [0.3, 0.4], [0.2 ,0.3])>,{  ,  ,  ,  }), 

 

  (<  , ([0.4, 0.5], [0.3, 0.4], [0.1, 0.4])>, {  ,  ,  ,  })} 

 

Step 4. Tabular form of (  ; (    ,     ,    )) is 

 

u                         

   0 1 0 0 1 1 0 1 

   0 1 1 0 0 1 1 0 

 

Step 5. Then, we have the choice value    for i = 1, 2, 3,…,8 

  = 0,  = 2,  = 1,  = 0,  = 1,  = 2,  = 1 and  =1 

 

Step 6. So,the optimal decision is   or    

Note that this decision making method can be applied for group decision making easily with 

help of the definition 3.19. 

 

 

5. Conclusions 
 

In this work, we have introduced the concept of interval valued neutrosophic parameterized 

soft set and studied some of its properties. The complement, union and intersection 

operations have been defined on the interval valued neutrosophic parameterized soft set. The 

definition of parameter reduction method is introduced with application of this operation in 

decision making problems. 
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