Neutrosophic Ideal Theory

Neutrosophic Local Function and Generated Neutrosophic Topology

A. A. Salama* & Florentin Smarandache**

Department of Mathematics and Computer Science, Faculty of Sciences, Port Said University, Egypt drsalama44@gmail.com

**Department of Mathematics, University of New Mexico Gallup, NM, USA smarand@unm.edu

ABSTRACT

Abstract In this paper we introduce the notion of ideals on neutrosophic set which is considered as a generalization of fuzzy and fuzzy intuitionistic ideals studies in [9,11], the important neutrosophic ideals has been given in [4]. The concept of neutrosophic local function is also introduced for a neutrosophic topological space. These concepts are discussed with a view to find new nutrosophic topology from the original one in [8]. The basic structure, especially a basis for such generated neutrosophic topologies and several relations between different neutrosophic ideals and neutrosophic topologies are also studied here. Possible application to GIS topology rules are touched upon.

KEYWORDS: Neutrosophic Set, Intuitionistic Fuzzy Ideal, Fuzzy Ideal, Neutrosophic Ideal, Neutrosophic Topology.

1-INTRODUCTION

The neutrosophic set concept was introduced by Smarandache [12, 13]. In 2012 neutrosophic sets have been investigated by Hanafy and Salama at el [4, 5, 6, 7, 8, 9, 10]. The fuzzy set was introduced by Zadeh [14] in 1965, where each element had a degree of membership. In 1983 the intuitionstic fuzzy set was introduced by K. Atanassov [1, 2, 3] as a generalization of fuzzy set, where besides the degree of membership and the degree of non- membership of each element. Salama at el [9] defined intuitionistic fuzzy ideal for a set and generalized the concept of fuzzy ideal concepts, first initiated by Sarker [10]. Neutrosophy has laid the foundation for a whole family of new mathematical theories generalizing both their classical and fuzzy counterparts. In this paper we will introduce the definitions of normal neutrosophic set, convex set, the concept of α -cut and neutrosophic ideals, which can be discussed as generalization of fuzzy and fuzzy intuitionistic studies.

2-TERMINOLOGIES

We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in [12, 13], and Salama at el. [4, 5, 6, 7, 8, 9, 10].

3- NEUTROSOPHIC IDEALS [4].

Definition.3.1

Let X is non-empty set and L a non-empty family of NSs. We will call L is a neutrosophic ideal (NL for short) on X if

• $A \in L$ and $B \subseteq A \Longrightarrow B \in L$ [heredity],

• $A \in L$ and $B \in L \Longrightarrow A \lor B \in L$ [Finite additivity].

A neutrosophic ideal L is called a σ -neutrosophic ideal if $A_j \leq L$, implies $\bigvee_{j \in J} A_j \in L$ (countable

additivity).

The smallest and largest neutrosophic ideals on a non-empty set X are 0_N and NSs on X. Also, $N.L_f$, $N.L_c$ are denoting the neutrosophic ideals (NL for short) of neutrosophic subsets having finite and countable support of X respectively. Moreover, if A is a nonempty NS in X, then $B \in NS : B \subseteq A$ is an NL on X. This is called the principal NL of all NSs of denoted by NL $\langle A \rangle$.

Remark 3.1

- If $1_N \notin L$, then L is called neutrosophic proper ideal.
- If $1_N \in L$, then L is called neutrosophic improper ideal.
- $O_N \in L$ ·

Example.3.1

Any Initiationistic fuzzy ideal ℓ on X in the sense of Salama is obviously and NL in the form $L = A: A = \langle x, \mu_A, \sigma_A, \nu_A \rangle \in \ell$.

Example.3.2

Let X = a, b, c $A = \langle x, 0.2, 0.5, 0.6 \rangle, B = \langle x, 0.5, 0.7, 0.8 \rangle$, and $D = \langle x, 0.5, 0.6, 0.8 \rangle$, then the family $L = \mathcal{O}_{N}, A, B, D$ of NSs is an NL on X.

Example.3.3

Let X = a, b, c, d, e and $A = \langle x, \mu_A, \sigma_A, \nu_A \rangle$ given by:

Χ	$\mu_A \blacksquare$	$\sigma_A $	V _A ₹
a	0.6	0.4	0.3
b	0.5	0.3	0.3
С	0.4	0.6	0.4
d	0.3	0.8	0.5
е	0.3	0.7	0.6

Then the family $L = O_N, A$ is an NL on X.

Definition.3.3

Let L_1 and L_2 be two NL on X. Then L_2 is said to be finer than L_1 or L_1 is coarser than L_2 if $L_1 \le L_2$. If also $L_1 \ne L_2$. Then L_2 is said to be strictly finer than L_1 or L_1 is strictly coarser than L_2 .

Two NL said to be comparable, if one is finer than the other. The set of all NL on X is ordered by the relation L_1 is coarser than L_2 this relation is induced the inclusion in NSs.

New Concepts of Neutrosophic Sets

The next Proposition is considered as one of the useful result in this sequel, whose proof is clear.

Proposition.3.1

Let $L_j: j \in J$ be any non - empty family of neutrosophic ideals on a set X. Then $\bigcap_{j \in J} L_j$ and $\bigcup_{j \in J} L_j$ are

neutrosophic ideal on X,

In fact L is the smallest upper bound of the set of the L_i in the ordered set of all neutrosophic ideals on X.

Remark.3.2

The neutrosophic ideal by the single neutrosophic set O_N is the smallest element of the ordered set of all neutrosophic ideals on X.

Proposition.3.3

A neutrosophic set A in neutrosophic ideal L on X is a base of L iff every member of L contained in A.

Proof

(Necessity)Suppose A is a base of L. Then clearly every member of L contained in A.

(Sufficiency) Suppose the necessary condition holds. Then the set of neutrosophic subset in X contained in A coincides with L by the Definition 4.3.

Proposition.3.4

For a neutrosophic ideal L_1 with base A, is finer than a fuzzy ideal L_2 with base B iff every member of B contained in A.

Proof

Immediate consequence of Definitions

Corollary.3.1

Two neutrosophic ideals bases A, B, on X are equivalent iff every member of A, contained in B and via versa.

Theorem.3.1

Let $\eta = \langle \mu_j, \sigma_j, \gamma_j \rangle$: $j \in J$ be a non empty collection of neutrosophic subsets of X. Then there exists a

neutrosophic ideal L (η) = {A \in NSs: A $\subseteq \lor A_j$ } on X for some finite collection {A_j: j = 1,2,, n $\subseteq \eta$ }.

Proof

Clear.

Remark.3.3

ii) The neutrosophic ideal L (η) defined above is said to be generated by η and η is called sub base of L(η).

Corollary.3.2

Let L_1 be an neutrosophic ideal on X and $A \in NSs$, then there is a neutrosophic ideal L_2 which is finer than L_1

and such that $A \in L_2$ iff

 $A \lor B \in L_2$ for each $B \in L_1$.

Corollary.3.3

Let $A = \langle x, \mu_A, \sigma_A, \nu_A \rangle \in L_1$ and $B = \langle x, \mu_B, \sigma_B, \nu_B \rangle \in L_2$, where L_1 and L_2 are neutrosophic ideals on the set X. then the neutrosophic set $A * B = \langle \mu_{A*B} \blacklozenge , \sigma_{A*B}(x), \nu_{A*B} \blacklozenge \rangle \in L_1 \lor L_2$ on X where $\mu_{A*B} \blacklozenge = \lor \mu_A \blacklozenge \land \mu_B \blacklozenge : x \in X, \sigma_{A*B}(x)$ may be $= \lor \sigma_A(x) \land \sigma_B(x)$ or $\land \sigma_A(x) \lor \sigma_B(x)$ and $\nu_{A*B} \blacklozenge = \land \nu_A \blacklozenge \lor \nu_B \blacklozenge : x \in X$.

4. Neutrosophic local Functions

Definition.4.1. Let (X,τ) be a neutrosophic topological spaces (NTS for short) and L be neutrosophic ideal (NL, for short) on X. Let A be any NS of X. Then the neutrosophic local function $NA^* \mathbf{1}, \tau$ of A is the union of all neutrosophic points (NP, for short) $C \alpha, \beta, \gamma$ such that if $U \in N C \alpha, \beta, \gamma$ and

 $NA^*(L,\tau) = \bigvee C(\alpha,\beta,\gamma) \in X : A \land U \notin L$ for every U nbd of $C(\alpha,\beta,\gamma)$, $NA^*(L,\tau)$ is called a neutrosophic local function of A

with respect to τ and L which it will be denoted by $NA^*(L,\tau)$, or simply NA^*

Example .4.1. One may easily verify that.

If L={0_N}, then N $A^*(L, \tau) = Ncl(A)$, for any neutrosophic set $A \in NSs$ on X.

If L = all NSs on X then $NA^*(L, \tau) = 0_N$, for any $A \in NSs$ on X.

Theorem.4.1. Let (\mathbf{X}, τ) be a NTS and L_1, L_2 be two neutrosophic ideals on X. Then for any neutrosophic sets A, B of X. then the following statements are verified

i)
$$A \subseteq B \Longrightarrow NA^*(L,\tau) \subseteq NB^*(L,\tau)$$

ii)
$$L_1 \subseteq L_2 \Longrightarrow NA^*(L_2, \tau) \subseteq NA^*(L_1, \tau).$$

iii) $NA^* = Ncl(A^*) \subseteq Ncl(A)$.

iv)
$$NA^{*} \subseteq NA^{*}$$

- v) $N \triangleleft \vee B^* = NA^* \vee NB^*$.,
- vi) $N(A \wedge B)^*(L) \leq NA^*(L) \wedge NB^*(L)$.
- vii) $\ell \in L \Longrightarrow N \blacktriangleleft \lor \ell^* = NA^*.$
- viii) $NA^*(L,\tau)$ is neutrosophic closed set.

Proof.

i) Since $A \subseteq B$, let $p = C \notin \beta, \gamma \in NA^* = I_1$ then $A \land U \notin L$ for every $U \in N \notin I_2$. By hypothesis we get $B \land U \notin L$, then $p = C \notin \beta, \gamma \in NB^* = I_1$.

ii) Clearly. $L_1 \subseteq L_2$ implies $NA^*(L_2, \tau) \subseteq NA^*(L_1, \tau)$ as there may be other IFSs which belong to L_2 so that for GIFP $p = C \, \mathbf{a}, \beta, \gamma \in NA^*$ but $C \, \mathbf{a}, \beta, \gamma$ may not be contained in $NA^* \, \mathbf{d}_2$.

iii) Since $O_N \subseteq L$ for any NL on X, therefore by (ii) and Example 3.1, $NA^* \mathbf{L} \subseteq NA^* \mathbf{O}_N = Ncl(A)$ for any NS A on X. Suppose $p_1 = C_1 \mathbf{a}, \beta, \gamma \in Ncl(NA^* \mathbf{L}_1)$. So for every $U \in N \mathbf{p}_1$, $NA^* \wedge U \neq O_N$, there exists $p_2 = C_2 \mathbf{a}, \beta \in A^* \mathbf{L}_1 \wedge U$) such that for every V nbd of $p_2 \in N \mathbf{p}_2$, $A \wedge U \notin L$. Since $U \wedge V \in N \mathbf{p}_2$ then $A \wedge U \cap V \notin L$ which leads to $A \wedge U \notin L$, for every $U \in N \mathbf{C} \mathbf{a}, \beta$ therefore $p_1 = C \mathbf{a}, \beta \in (A^* \mathbf{L}_1)$ and so $Ncl \, NA^* \leq NA^*$ While, the other inclusion follows directly. Hence $NA^* = Ncl(NA^*)$. But the inequality $NA^* \leq Ncl(NA^*)$.

iv) The inclusion $NA^* \vee NB^* \leq N \ \mathbf{A} \vee B^*$ follows directly by (i). To show the other implication, let $p = C \ \mathbf{A}, \beta, \gamma \in N \ \mathbf{A} \vee B^*$ then for every $U \in N(p)$, $\mathbf{A} \vee B \land U \notin L$, *i.e.*, $\mathbf{A} \wedge U \lor \mathbf{B} \wedge U \notin L$. then, we have two cases $A \wedge U \notin L$ and $B \wedge U \in L$ or the converse, this means that exist $U_1, U_2 \in N \ C(\alpha, \beta, \gamma)$ such that $A \wedge U_1 \notin L$, $B \wedge U_1 \notin L$, $A \wedge U_2 \notin L$ and $B \wedge U_2 \notin L$. Then $A \wedge U_1 \wedge U_2 \in L$ and $B \wedge U_1 \wedge U_2 \in L$ this gives $\mathbf{A} \vee B \land U_1 \wedge U_2 \in L$, $U_1 \wedge U_2 \in N \ C(\alpha, \beta, \gamma)$ which contradicts the hypothesis. Hence the equality holds in various cases.

vi) By (iii), we have $NA^{**} = Ncl(NA^{*})^{*} \leq Ncl(NA^{*}) = NA^{*}$

Let \P, τ be a GIFTS and L be GIFL on X. Let us define the neutrosophic closure operator $cl^*(A) = A \cup A^*$ for any GIFS A of X. Clearly, let $Ncl^*(A)$ is a neutrosophic operator. Let $N\tau^*(L)$ be NT generated by Ncl^*

i.e.
$$N\tau^* \mathbf{A} = A: Ncl^*(A^c) = A^c$$
. Now $L = O_N \implies Ncl^* \mathbf{A} = A \cup Ncl \mathbf{A}$ for every

neutrosophic set A. So, $N\tau^*(O_N) = \tau$. Again L = all NSs on $X \implies Ncl^* \P = A$, because $NA^* = O_N$, for every neutrosophic set A so $N\tau^* \P$ is the neutrosophic discrete topology on X. So we can conclude by Theorem 4.1.(ii). $N\tau^*(O_N) = N\tau^* \P$ i.e. $N\tau \subseteq N\tau^*$, for any neutrosophic ideal L_1 on X. In particular, we have for two neutrosophic ideals L_1 , and L_2 on X, $L_1 \subseteq L_2 \Longrightarrow N\tau^* \P_1 \subseteq N\tau^* \P_2$.

Theorem.4.2. Let τ_1, τ_2 be two neutrosophic topologies on X. Then for any neutrosophic ideal L on X, $\tau_1 \leq \tau_2$ implies $NA^*(L, \tau_2) \subseteq NA^*(L, \tau_1)$, for every $A \in L$ then $N\tau_1^* \subseteq N\tau_2^*$

Proof. Clear.

A basis $N\beta \mathbf{L}, \tau$ for $N\tau^*(L)$ can be described as follows:

 $N\beta \mathbf{L}, \tau = A - B : A \in \tau, B \in L$ Then we have the following theorem

Theorem 4.3. $N\beta \mathbf{L}, \tau = A - B : A \in \tau, B \in L$ Forms a basis for the generated NT of the NT \mathbf{K}, τ with neutrosophic ideal L on X.

Proof. Straight forward.

The relationship between τ and ${}_{N}\tau^{*}(L)$ established throughout the following result which have an immediately proof

Theorem 4.4. Let τ_1, τ_2 be two neutrosophic topologies on X. Then for any neutrosophic ideal L on X, $\tau_1 \subseteq \tau_2$ implies $N\tau_1^* \subseteq N\tau_2^*$.

Theorem 4.5: Let \mathcal{M}, τ_{-} be a NTS and L_1, L_2 be two neutrosophic ideals on X. Then for any neutrosophic set A in X, we have

i) $NA^* \mathbf{4}_1 \lor L_2, \tau = NA^* \mathbf{4}_1, N\tau^*(L_1) \land NA^* \mathbf{4}_2, N\tau^*(L_2) :$ $N\tau^*(L_1 \lor L_2) = \mathbf{4}\tau^*(L_1)^{\mathbf{*}}(L_2) \land N \mathbf{4}^*(L_2^{\mathbf{*}}(L_1))$

Proof Let $p = C(\alpha, \beta) \notin \mathbf{1}_1 \lor L_2, \tau$, this means that there exists $U_p \in N \mathbf{P}$ such that $A \land U_p \in \mathbf{1}_1 \lor L_2$ i.e. There exists $\ell_1 \in L_1$ and $\ell_2 \in L_2$ such that $A \land U_p \in \mathbf{1}_1 \lor \ell_2$ because of the heredity of L_1 , and assuming

 $\ell_1 \wedge \ell_2 = O_N$. Thus we have $\mathbf{A} \wedge U_p - \ell_1 = \ell_2$ and $\mathbf{A} \wedge U_p - \ell_2 = \ell_1$ therefore $\mathbf{U}_p - \ell_1 \wedge A = \ell_2 \in L_2$

and $\mathbf{U}_p - \ell_2 \wedge A = \ell_1 \in L_1$. Hence $p = C(\alpha, \beta, \gamma) \notin NA^* \mathbf{1}_2, N\tau^* \mathbf{1}_2$ or $p = C(\alpha, \beta, \gamma) \notin NA^* \mathbf{1}_1, N\tau^* \mathbf{1}_2$ because p must belong to either ℓ_1 or ℓ_2 but not to both. This gives $NA^* \mathbf{1}_1 \vee L_2, \tau \geq NA^* \mathbf{1}_1, N\tau^*(L_1) \wedge NA^* \mathbf{1}_2, N\tau^*(L_2)$. To show the second inclusion, let us assume $p = C(\alpha, \beta, \gamma) \notin NA^* \mathbf{1}_1, N\tau^* \mathbf{1}_2$. This implies that there exist $U_p \in N \mathbf{P}$ and $\ell_2 \in L_2$ such that $\mathbf{U}_p - \ell_2 \wedge A \in L_1$. By the heredity of L_2 , if we assume that $\ell_2 \leq A$ and define $\ell_1 = \mathbf{U}_p - \ell_2 \wedge A$. Then we have $A \wedge U_p \in \mathbf{1}_1 \vee \ell_2 \in L_1 \vee L_2$. Thus, $NA^* \mathbf{1}_1 \vee L_2, \tau \leq NA^* \mathbf{1}_1, \tau^*(L_1) \wedge NA^* \mathbf{1}_2, N\tau^*(L_2)$ and similarly, we can get $A^* \mathbf{1}_1 \vee L_2, \tau \leq A^* \mathbf{1}_2, \tau^*(L_1)$. This gives the other inclusion, which complete the proof.

Corollary 4.1. Let \mathbf{M}, τ be a NTS with neutrosophic ideal L on X. Then

i)
$$NA^*(L,\tau) = NA^*(L,\tau^*)$$
 and $N\tau^*(L) = N(N\tau^*(L))^*(L)$.

ii) $N\tau^*(L_1 \vee L_2) = \P\tau^*(L_1) \lor \P\tau^*(L_2)$

Proof. Follows by applying the previous statement.

REFERENCES

- 1. K. Atanassov, intuitionistic fuzzy sets, in V.Sgurev, ed., Vii ITKRS Session, Sofia (June 1983 central Sci. and Techn. Library, Bulg. Academy of Sciences (1984).
- 2. K. Atanassov, intuitionistic fuzzy sets, Fuzzy Sets and Systems 20, 87-96,(1986).
- 3. K. Atanassov, Review and new result on intuitionistic fuzzy sets, preprint IM-MFAIS-1-88, Sofia, (1988).

4. S. A. Albowi, A. A. Salama & Mohmed Eisa, New Concepts of Neutrosophic Sets, International Journal of Mathematics and Computer Applications Research (IJMCAR), Vol. 3, Issue 4, Oct 2013, 95-102.(2013).

- 5. I. Hanafy, A.A. Salama and K. Mahfouz, Correlation of neutrosophic Data, International Refereed Journal of Engineering and Science (IRJES), Vol.(1), Issue 2 PP.39-43.(2012)
- I.M. Hanafy, A.A. Salama and K.M. Mahfouz,," Neutrosophic Classical Events and Its Probability" International Journal of Mathematics and Computer Applications Research(IJMCAR) Vol.(3), Issue 1, Mar 2013, pp171-178.(2013)
- 7. A.A. Salama and S.A. Alblowi, "Generalized Neutrosophic Set and Generalized Neutrousophic Topological Spaces ", Journal computer Sci. Engineering, Vol. (2) No. (7) (2012).
- A.A.Salama and S.A.Albolwi, Neutrosophic set and neutrosophic topological space, ISORJ. Mathematics, Vol.(3), Issue(4), pp-31-35.(2012)
- A.A. Salama and S.A. Albalwi, Intuitionistic Fuzzy Ideals Topological Spaces, Advances in Fuzzy Mathematics, Vol.(7), Number 1, pp. 51- 60, (2012).
- A.A.Salama, and H.Elagamy, "Neutrosophic Filters" International Journal of Computer Science Engineering and Information Technology Research (IJCSEITR), Vol.3, Issue(1), Mar 2013, pp 307-312. (2013)
- Debasis Sarker, Fuzzy ideal theory, Fuzzy local function and generated fuzzy topology, Fuzzy Sets and Systems 87, 117 – 123. (1997)
- 12. Florentin Smarandache, Neutrosophy and Neutrosophic Logic , First International Conference on Neutrosophy , Neutrosophic Logic , Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA(2002).
- F. Smarandache. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, (1999).
- 14. L.A. Zadeh, Fuzzy Sets, Inform and Control 8, 338-353,(1965).