
SOFT NEUTROSOPHIC LOOP, SOFT NEUTROSOPHIC BILOOP
AND SOFT NEUTROSOPHIC N-LOOP

MUMTAZ ALI, FLORENTIN SMARANDACHE, AND MUHAMMAD SHABIR

Abstract. Soft set theory is a general mathematical tool for dealing with
uncertain, fuzzy, not clearly de�ned objects. In this paper we introduced soft
neutrosophic loop,soft neutosophic biloop, soft neutrosophic N -loop with the
discuission of some of their characteristics. We also introduced a new type of
soft neutrophic loop, the so called soft strong neutrosophic loop which is of pure
neutrosophic character. This notion also foound in all the other corresponding
notions of soft neutrosophic thoery. We also given some of their properties
of this newly born soft structure related to the strong part of neutrosophic
theory.

1. Introduction

Florentin Smarandache for the �rst time intorduced the concept of neutroso-
phy in 1995; which is basically a new branch of philosophy which actually studies
the origion, nature, and scope of neutralities. The neutrosophic logic came into
being by neutrosophy. In neutrosophic logic each proposition is approximated to
have the percentage of truth in a subset T , the percentage of indeterminacy in
a subset I, and the percentage of falsity in a subset F . Neutrosophic logic is
an extension of fuzzy logic. In fact the neutrosophic set is the generalization of
classical set, fuzzy conventional set, intuitionistic fuzzy set, and interal valued
fuzzy set. Neutrosophic logic is used to overcome the problems of impercise-
ness, indeterminate, and inconsistentness of date etc. The theoy of neutrosophy
is so applicable to every �eld of agebra. W.B Vasantha Kandasamy and Florentin
Smarandache introduced neutrosophic �elds, neutrosophic rings,neutrosophic vec-
torspaces,neutrosophic groups,neutrosophic bigroups and neutrosophic N -groups,
neutrosophic semigroups, neutrosophic bisemigroups, and neutrsosophicN -semigroups,
neutrosophic loops, nuetrosophic biloops, and neutrosophic N -loops, and so on.
Mumtaz ali et al introduced nuetosophic LA-semigoups.
Molodtsov intorduced the theory of soft set. This mathematical tool is free

from parameterization inadequacy, syndrome of fuzzy set theory, rough set theory,
probability theory and so on. This theory has been applied successfully in many
�elds such as smoothness of functions, game theory, operation reaserch, Riemann
integration, Perron integration, and probability. Recently soft set theory attained
much attention of the researchers since its appearance and the work based on several
operations of soft set introduced in [2; 9; 10]. Some properties and algebra may be
found in [1] : Feng et al. introduced soft semirings in [5]. By means of level soft
sets an adjustable approach to fuzy soft set can be seen in [6]. Some other concepts
together with fuzzy set and rough set were shown in [7; 8].
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This paper is about to introduced soft nuetrosophic loop, soft neutrosphic biloop,
and soft neutrosophic N -loop and the related strong or pure part of neutrosophy
with the notions of soft set theory. In the proceeding section, we de�ne soft neu-
trosophic loop, soft neutrosophic strong loop, and some of their properties are
discuissed. In the next section, soft neutrosophic biloop are presented with their
strong neutrosophic part. Also in this section some of their characterization have
been made. In the last section soft neutrosophic N -loop and their coresponding
strong theory have been constructed with some thier properties.

2. Neutrosophic Loop

De�nition 1. A neutrosophic loop is generated by a loop L and I denoted by hL[Ii.
A neutrosophic loop in general need not be a loop for I2 = I and I may not have
an inverse but every element in a loop has an inverse.

De�nition 2. Let hL[Ii be a neutrosophic loop. A proper subset hP [Ii of hL[Ii
is called the neutrosophic subloop, if hP [ Ii is itself a neutrosophic loop under the
operations of hL [ Ii.

De�nition 3. Let (hL[Ii; o) be a neutrosophic loop of �nite order. A proper subset
P of hL [ Ii is said to be Lagrange neutrosophic subloop, if P is a neutrosophic
subloop under the operation �o�and o(P )=ohL [ Ii.

If every neutrosophic subloop of hL [ Ii is Lagrange then we call hL [ Ii to be
a Lagrange neutrosophic loop.

De�nition 4. If hL[ Ii has no Lagrange neutrosophic subloop then we call hL[ Ii
to be a Lagrange free neutrosophic loop.

De�nition 5. If hL[Ii has atleast one Lagrange neutrosophic subloop then we call
hL [ Ii a weakly Lagrange neutrosophic loop.

3. Neutrosophic Biloops

De�nition 6. Let (hB[Ii; �1; �2) be a non empty neutrosophic set with two binary
operations �1; �2, hB [ Ii is a neutrosophic biloop if the following conditions are
satis�ed.

(1) hB [ Ii = P1 [ P2 where P1 and P2 are proper subsets of hB [ Ii.
(2) (P1; �1) is a neutrosophic loop.
(3) (P2; �2) is a group or a loop.

De�nition 7. Let (hB [ Ii; �1; �2) be a neutrosophic biloop. A proper subset P
of hB [ Ii is said to be a neutrosophic subbiloop of hB [ Ii if (P; �1; �2) is itself a
neutrosophic biloop under the operations of hB [ Ii.

De�nition 8. Let (B = B1 [ B2; �1; �2) be a �nite neutrosophic biloop. Let P =
(P1 [ P2; �1; �2) be a neutrosophic biloop. If o(P )=o(B) then we call P a Lagrange
neutrosophic subbiloop of B.

If every neutrosophic subbiloop of B is Lagrange then we call B to be a Lagrange
neutrosophic biloop.

De�nition 9. If B has atleast one Lagrange neutrosophic subbiloop then we call B
to be a weakly Lagrange neutrosophic biloop.
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De�nition 10. If B has no Lagrange neutrosophic subbiloops then we call B to be
a Lagrange free neutrosophic biloop.

4. Neutrosophic N-loop

De�nition 11. Let S(B) = fS(B1) [ : : : [ S(BN); �1; : : : ; �Ng be a non empty
neutrosophic set with N binary operations. S(B) is a neutrosophic N -loop if
S(B) = S(B1)[ : : :[S(BN ), S(Bi) are proper subsets of S(B) for 1 � i � N) and
some of S(Bi) are neutrosophic loops and some of the S(Bj) are groups.

De�nition 12. Let S(B) = fS(B1)[S(B2)[ : : :[S(BN ); �1; : : : ; �Ng be a neutro-
sophic N -loop. A proper subset (P; �1; : : : ; �N ) of S(B) is said to be a neutrosophic
sub N loop of S(B) if P itself is a neutrosophic N -loop under the operations of
S(B).

De�nition 13. Let (L = L1 [ L2 [ : : : [ LN ; �1; �2; : : : ; �Ng be a neutrosophic N -
loop of �nite order. Suppose P is a proper subset of L, which is a neutrosophic sub
N -loop. If o(P )=o(L) then we call P a Lagrange neutrosophic sub N -loop.

If every neutrosophic sub N-loop is Lagrange then we call L to be a Lagrange
neutrosophic N-loop.

De�nition 14. If L has atleast one Lagrange neutrosophic sub N -loop then we call
L to be a weakly Lagrange neutrosophic N -loop.

De�nition 15. If L has no Lagrange neutrosophic sub N -loop then we call L to
be a Lagrange free neutrosophic N -loop.

5. Soft Set

Throughout this subsection U refers to an initial universe, E is a set of parame-
ters, P (U) is the power set of U , and A � E. Molodtsov [10] de�ned the soft set
in the following manner:

De�nition 16. A pair (F;A) is called a soft set over U where F is a mapping
given by F : A �! P (U).

In other words, a soft set over U is a parameterized family of subsets of the
universe U . For a 2 A, F (a) may be considered as the set of a-elements of the soft
set (F;A), or as the set of a-approximate elements of the soft set.

Example 1. Suppose that U is the set of shops. E is the set of parameters and each
parameter is a word or senctence. Let E = fhigh rent,normal rent,in good condition,in bad conditiong.
Let us consider a soft set (F;A) which describes the �attractiveness of shops�
that Mr.Z is taking on rent. Suppose that there are �ve houses in the universe
U = fh1; h2; h3; h4; h5g under consideration, and that A = fe1; e2; e3g be the set of
parameters where

a1 stands for the parameter �high rent,
a2 stands for the parameter �normal rent,
a3 stands for the parameter �in good condition.
Suppose that
F (a1) = fh1; h4g,
F (a2) = fh2; h5g,
F (a3) = fh3g.
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The soft set (F;A) is an approximated family fF (ai); i = 1; 2; 3g of subsets of
the
set U which gives us a collection of approximate description of an object. Thus,

we have the soft set (F,A) as a collection of approximations as below:
(F;A) = fhigh rent = fh1; h4g;normal rent = fh2; h5g;in good condition =

fh3gg.
De�nition 17. For two soft sets (F;A) and (H;B) over U , (F;A) is called a soft
subset of (H;B) if

(1) A � B and
(2) F (a) � G(a) for all a 2 A.
This relationship is denoted by (F;A)

�
� (H;B). Similarly (F;A) is called a

soft superset of (H;B) if (H;B) is a soft subset of (F;A) which is denoted by

(F;A)
�
� (H;B).

De�nition 18. Two soft sets (F;A) and (H;B) over U are called soft equal if
(F;A) is a soft subset of (H;B) and (H;B) is a soft subset of (F;A).

De�nition 19. (F;A) over U is called an absolute soft set if F (a) = U for all
a 2 A and we denote it by FU :
De�nition 20. Let (F;A) and (G;B) be two soft sets over a common universe
U such that A \ B 6= �. Then their restricted intersection is denoted by(F;A) \R
(G;B) = (H;C) where (H;C) is de�ned as H(c) = F (c) \ G(c) for all c 2 C =
A \B.
De�nition 21. The extended intersection of two soft sets (F;A) and (G;B) over
a common universe U is the soft set (H;C), where C = A [ B, and for all c 2 C,
H(c) is de�ned as

H(c) =

8<: F (c) if c 2 A�B
G(c) if c 2 B �A

F (c) \G(c) if c 2 A \B.
We write (F;A) \" (G;B) = (H;C).

De�nition 22. The resticted union of two soft sets (F;A) and (G;B) over a com-
mon universe U is the soft set (H;C), where C = A [ B, and for all c 2 C,
H(e) is de�ned as the soft set (H;C) = (F;A) [R (G;B) where C = A \ B and
H(c) = F (c) [G(c) for all c 2 C.
De�nition 23. The extended union of two soft sets (F;A) and (G;B) over a
common universe U is the soft set (H;C), where C = A [ B, and for all c 2 C,
H(c) is de�ned as

H(c) =

8<: F (c) if c 2 A�B
G(c) if c 2 B �A

F (c) [G(c) if c 2 A \B.
We write (F;A) [" (G;B) = (H;C).

6. Soft Neutrosophic Loop

De�nition 24. Let hL [ Ii be a neutrosophic loop and (F;A) be a soft set over
hL [ Ii. Then (F;A) is called soft neutrosophic loop if and only if F (a) is neutro-
sophic subloop of hL [ Ii, for all a 2 A.
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Example 2. Let hL[Ii = hL7(4)[Ii be a neutrosophic loop where L7(4) is a loop.
he; eI; 2; 2Ii; he; 3i and he; eIi are neutrosophic subloops of L7(4). Then (F;A) is a
soft neutrosophic loop over hL [ Ii, where

F (a1) = fhe; eI; 2; 2Iig ; F (a2) = fhe; 3ig ;
F (a3) = fhe; eIig :

Theorem 1. Every soft neutrosophic loop over hL[ Ii contains a soft loop over L.
Proof. The proof is straight forward. �
Theorem 2. Let (F;A) and (H;A) be two soft neutrosophic loops over hL [ Ii.
Then their intersection (F;A)\(H;A) is again a soft neutrosophic loop over hL[Ii.
Proof. The proof is staight forward. �
Theorem 3. Let (F;A) and (H;B) be two soft neutrosophic loops over hL[ Ii. If
A \B = �, then (F;A) [ (H;B) is a soft neutrosophic loop over hL [ Ii.
Theorem 4. Let (F;A) and (H;A) be two soft neutrosophic loops over hL[ Ii. If
F (a) � H(a) for all a 2 A, then (F;A) is a soft neutrosophic subloop of (H;A).
Theorem 5. Let (F;A) and (K;B) be two soft neutrosophic loops over hL [ Ii.
Then

(1) Their extended union (F;A)[" (K;B) over hL[ Ii is not soft neutrosophic
loop over hL [ Ii.

(2) Their extended intersection (F;A)\"(K;B) over hL[Ii is soft neutrosophic
loop over hL [ Ii.

(3) Their restricted union (F;A)[R (K;B) over hL[Ii is not soft neutrosophic
loop over hL [ Ii.

(4) Their restricted intersection (F;A)\"(K;B) over hL[Ii is soft neutrosophic
soft loop over hL [ Ii.

Theorem 6. Let (F;A) and (H;B) be two soft neutrosophic loops over hL [ Ii.
Then

(1) Their AND operation (F;A)^(H;B) is soft neutrosophic loop over hL[Ii.
(2) Their OR operation (F;A)_(H;B) is not soft neutrosophic loop over hL[Ii.

De�nition 25. Let hLn(m) [ Ii = fe; 1; 2; : : : ; n; e:I; 1I; : : : ; nIg be a new class of
neutrosophic loop and (F;A) be a soft neutrosophic loop over hLn(m) [ Ii. Then
(F;A) is called soft new class neutrosophic loop if F (a) is neutrosophic subloop of
hLn(m) [ Ii; for all a 2 A.
Example 3. Let hL5(3)[Ii = fe; 1; 2; 3; 4; 5; eI; 1I; 2I; 3I; 4I; 5Ig be a new class of
neutrosophic loop and fe; eI; 1; 1Ig; fe; eI; 2; 2Ig; fe; eI; 3; 3Ig; fe; eI; 4; 4Ig; fe; eI; 5; 5Ig
are neutrosophic subloops of L5(3). Then (F;A) is soft new class neutrosophic loop
over L5(3), where

F (a1) = fe; eI; 1; 1Ig; F (a2) = fe; eI; 2; 2Ig;
F (a3) = fe; eI; 3; 3Ig; F (a4) = fe; eI; 4; 4Ig;
F (a5) = fe; eI; 5; 5Ig:

Theorem 7. Every soft new class neutrosophic loop over hLn (m) [ Ii is a soft
neutrosophic loop over hLn(m) [ Ii but the converse is not true.
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Theorem 8. Let (F;A) and (K;B) be two soft new class neutrosophic loops over
hLn (m) [ Ii. Then

(1) Their extended union (F;A) [" (K;B) over hLn (m) [ Ii is not soft new
class neutrosophic loop over hLn (m) [ Ii.

(2) Their extended intersection (F;A) \" (K;B) over hLn (m) [ Ii is soft new
class neutrosophic loop over hLn (m) [ Ii.

(3) Their restricted union (F;A) [R (K;B) over hLn (m) [ Ii is not soft new
class neutrosophic loop over hLn (m) [ Ii.

(4) Their restricted intersection (F;A) \" (K;B) over hLn (m) [ Ii is soft new
class neutrosophic soft loop over hLn (m) [ Ii.

Theorem 9. Let (F;A) and (H;B) be two soft new class neutrosophic loops over
hLn (m) [ Ii. Then

(1) Their AND operation (F;A) ^ (H;B) is soft new class neutrosophic loop
over hLn (m) [ Ii.

(2) Their OR operation (F;A)_ (H;B) is not soft new class neutrosophic loop
over hLn (m) [ Ii.

De�nition 26. Let (F;A) be a soft neutrosophic loop over hL [ Ii, then (F;A) is
called the identity soft neutrosophic loop over hL [ Ii if F (a) = feg, for all a 2 A,
where e is the identity element of L.

De�nition 27. Let (F;A) be a soft neutrosophic loop over hL [ Ii, then (F;A) is
called Full-soft neutrosophic loop over hL [ Ii if F (a) = hL [ Ii, for all a 2 A.

De�nition 28. Let (F;A) and (H;B) be two soft neutrosophic loops over hL[ Ii.
Then (H;B) is soft neutrosophic subloop of (F;A), if

(1) B � A.
(2) H(a) is neutrosophic subloop of F (a), for all a 2 A.

Example 4. Consider the neutrosophic loop hL15(2)[Ii = fe; 1; 2; 3; 4; : : : ; 15; eI; 1I; 2I; : : : ; 14I; 15Ig
of order 32. It is easily veri�ed P = fe; 2; 5; 8; 11; 14; eI; 2I; 5I; 8I; 11I; 14Ig; Q =
fe; 2; 5; 8; 11; 14g and T = fe; 3; eI; 3Ig are neutrosophic subloops of hL15(2) [ Ii:
Then (F;A) is a soft neutrosophic loop over hL15 (2) [ Ii, where

F (a1) = fe; 2; 5; 8; 11; 14; eI; 2I; 5I; 8I; 11I; 14Ig;
F (a2) = fe; 2; 5; 8; 11; 14g;
F (a3) = fe; 3; eI; 3Ig:

Hence (G;B) is a soft neutrosophic subloop of (F;A) over hL15(2) [ Ii, where
G (a1) = fe; eI; 2I; 5I; 8I; 11I; 14Ig;
G (e3) = fe; 3g:

Theorem 10. Every soft loop over L is a soft neutrosophic subloop over hL [ Ii.

Theorem 11. Every absolute soft loop over L is a soft neutrosophic subloop of
Full-soft neutrosophic loop over hL [ Ii.

De�nition 29. Let hL [ Ii be a neutrosophic loop and (F;A) be a soft set over
hL [ Ii. Then (F;A) is called normal soft neutrosophic loop if and only if F (a) is
normal neutrosophic subloop of hL [ Ii, for all a 2 A.
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Example 5. Let hL5(3)[Ii = fe; 1; 2; 3; 4; 5; eI; 1I; 2I; 3I; 4I; 5Ig be a neutrosophic
loop and fe; eI; 1; 1Ig, fe; eI; 2; 2Ig, fe; eI; 3; 3Ig are normal neutrosophic subloops
of hL5(3)[Ii: Then Clearly (F;A) is normal soft neutrosophic loop over hL5(3)[Ii,
where

F (a1) = fe; eI; 1; 1Ig; F (a2) = fe; eI; 2; 2Ig;
F (a3) = fe; eI; 3; 3Ig:

Theorem 12. Every normal soft neutrosophic loop over hL [ Ii is a soft neutro-
sophic loop over hL [ Ii but the converse is not true.

Theorem 13. Let (F;A) and (K;B) be two normal soft neutrosophic loops over
hL [ Ii. Then

(1) Their extended union (F;A) [" (K;B) over hL [ Ii is not normal soft neu-
trosophic loop over hL [ Ii.

(2) Their extended intersection (F;A) \" (K;B) over hL [ Ii is normal soft
neutrosophic loop over hL [ Ii.

(3) Their restricted union (F;A) [R (K;B) over hL [ Ii is not normal soft
neutrosophic loop over hL [ Ii.

(4) Their restricted intersection (F;A) \" (K;B) over hL [ Ii is normal soft
neutrosophic soft loop over hL [ Ii.

Theorem 14. Let (F;A) and (H;B) be two normal soft neutrosophic loops over
hL [ Ii. Then

(1) Their AND operation (F;A)^(H;B) is normal soft neutrosophic loop over
hL [ Ii.

(2) Their OR operation (F;A) _ (H;B) is not normal soft neutrosophic loop
over hL [ Ii.

De�nition 30. Let hL [ Ii be a neutrosophic loop and (F;A) be a soft neutrosophic
loop over hL [ Ii. Then (F;A) is called Lagrange soft neutrosophic loop if each F (a)
is lagrange neutrosophic subloop of hL [ Ii, for all a 2 A.

Example 6. In (example 1), (F;A) is lagrange soft neutrosophic loop over hL[Ii:

Theorem 15. Every lagrange soft neutrosophic loop over hL [ Ii is a soft neutro-
sophic loop over hL [ Ii but the converse is not true.

Theorem 16. If hL [ Ii is lagrange neutrosophic loop, then (F;A) over hL [ Ii is
lagrange soft neutrosophic loop but the converse is not true.

Theorem 17. Every soft new class neutrosophic loop over hLn (m)[Ii is lagrange
soft neutrosophic loop over hLn (m) [ Ii but the converse is not true.

Theorem 18. If hL[ Ii is a new class neutrosophic loop, then (F;A) over hL[ Ii
is lagrange soft neutrosophic loop.

Theorem 19. Let (F;A) and (K;B) be two lagrange soft neutrosophic loops over
hL [ Ii. Then

(1) Their extended union (F;A) [" (K;B) over hL [ Ii is not lagrange soft
neutrosophic loop over hL [ Ii.

(2) Their extended intersection (F;A) \" (K;B) over hL [ Ii is not lagrange
soft neutrosophic loop over hL [ Ii.
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(3) Their restricted union (F;A) [R (K;B) over hL [ Ii is not lagrange soft
neutrosophic loop over hL [ Ii.

(4) Their restricted intersection (F;A) \" (K;B) over hL [ Ii is not lagrange
soft neutrosophic soft loop over hL [ Ii.

Theorem 20. Let (F;A) and (H;B) be two lagrange soft neutrosophic loops over
hL [ Ii. Then

(1) Their AND operation (F;A)^(H;B) is not lagrange soft neutrosophic loop
over hL [ Ii.

(2) Their OR operation (F;A) _ (H;B) is not lagrange soft neutrosophic loop
over hL [ Ii.

De�nition 31. Let hL [ Ii be a neutrosophic loop and (F;A) be a soft neutrosophic
loop over hL [ Ii. Then (F;A) is called weak Lagrange soft neutrosophic loop if
atleast one F (a) is lagrange neutrosophic subloop of hL [ Ii, for some a 2 A.
Example 7. Consider the neutrosophic loop hL15(2)[Ii = fe; 1; 2; 3; 4; : : : ; 15; eI; 1I; 2I; : : : ; 14I; 15Ig
of order 32. It is easily veri�ed P = fe; 2; 5; 8; 11; 14; eI; 2I; 5I; 8I; 11I; 14Ig; Q =
fe; 2; 5; 8; 11; 14g and T = fe; 3; eI; 3Ig are neutrosophic subloops of hL15(2) [ Ii:
Then (F;A) is a weak lagrange soft neutrosophic loop over hL15 (2) [ Ii, where

F (a1) = fe; 2; 5; 8; 11; 14; eI; 2I; 5I; 8I; 11I; 14Ig;
F (a2) = fe; 2; 5; 8; 11; 14g;
F (a3) = fe; 3; eI; 3Ig:

Theorem 21. Every weak lagrange soft neutrosophic loop over hL [ Ii is a soft
neutrosophic loop over hL [ Ii but the converse is not true.
Theorem 22. If hL[Ii is weak lagrange neutrosophic loop, then (F;A) over hL[Ii
is also weak lagrange soft neutrosophic loop but the converse is not true.

Theorem 23. Let (F;A) and (K;B) be two weak lagrange soft neutrosophic loops
over hL [ Ii. Then

(1) Their extended union (F;A) [" (K;B) over hL [ Ii is not weak lagrange
soft neutrosophic loop over hL [ Ii.

(2) Their extended intersection (F;A)\"(K;B) over hL[Ii is not weak lagrange
soft neutrosophic loop over hL [ Ii.

(3) Their restricted union (F;A) [R (K;B) over hL [ Ii is not weak lagrange
soft neutrosophic loop over hL [ Ii.

(4) Their restricted intersection (F;A) \" (K;B) over hL [ Ii is not weak la-
grange soft neutrosophic soft loop over hL [ Ii.

Theorem 24. Let (F;A) and (H;B) be two weak lagrange soft neutrosophic loops
over hL [ Ii. Then

(1) Their AND operation (F;A)^(H;B) is not weak lagrange soft neutrosophic
loop over hL [ Ii.

(2) Their OR operation (F;A)_ (H;B) is not weak lagrange soft neutrosophic
loop over hL [ Ii.

De�nition 32. Let hL [ Ii be a neutrosophic loop and (F;A) be a soft neutrosophic
loop over hL [ Ii. Then (F;A) is called Lagrange free soft neutrosophic loop if F (a)
is not lagrange neutrosophic subloop of hL [ Ii, for all a 2 A.
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Theorem 25. Every lagrange free soft neutrosophic loop over hL [ Ii is a soft
neutrosophic loop over hL [ Ii but the converse is not true.

Theorem 26. If hL[Ii is lagrange free neutrosophic loop, then (F;A) over hL[Ii
is also lagrange free soft neutrosophic loop but the converse is not true.

Theorem 27. Let (F;A) and (K;B) be two lagrange free soft neutrosophic loops
over hL [ Ii. Then

(1) Their extended union (F;A)[" (K;B) over hL[ Ii is not lagrange free soft
neutrosophic loop over hL [ Ii.

(2) Their extended intersection (F;A) \" (K;B) over hL [ Ii is not lagrange
free soft neutrosophic loop over hL [ Ii.

(3) Their restricted union (F;A)[R (K;B) over hL[Ii is not lagrange free soft
neutrosophic loop over hL [ Ii.

(4) Their restricted intersection (F;A) \" (K;B) over hL [ Ii is not lagrange
free soft neutrosophic soft loop over hL [ Ii.

Theorem 28. Let (F;A) and (H;B) be two lagrange free soft neutrosophic loops
over hL [ Ii. Then

(1) Their AND operation (F;A)^(H;B) is not lagrange free soft neutrosophic
loop over hL [ Ii.

(2) Their OR operation (F;A) _ (H;B) is not lagrange free soft neutrosophic
loop over hL [ Ii.

7. Soft Neutrosophic Biloop

De�nition 33. Let (hB [ Ii; �1; �2) be a neutrosophic biloop and (F;A) be a soft
set over (hB [ Ii; �1; �2). Then (F;A) is called soft neutrosophic biloop if and only
if F (a) is neutrosophic subbiloop of (hB [ Ii; �1; �2), for all a 2 A.

Example 8. Let (hB [ Ii; �1; �2) = (fe; 1; 2; 3; 4; 5; eI; 1I; 2I; 3I; 4I; 5Ig [ fg jg6 =
eg; �1; �2) be a neutrosophic biloop and fe; 2; eI; 2Ig [

�
g2; g4; e

	
, fe; 3; eI; 3Ig [�

g3; e
	
are two neutrosophic subbiloops of (hB [ Ii; �1; �2): Then (F;A) is clearly

soft neutrosophic biloop over (hB [ Ii; �1; �2); where
F (a1) = fe; 2; eI; 2Ig [

�
g2; g4; e

	
;

F (a2) = fe; 3; eI; 3Ig [
�
g3; e

	
:

Theorem 29. Let (F;A) and (H;A) be two soft neutrosophic biloops over (hB [
Ii; �1; �2). Then their intersection (F;A)\(H;A) is again a soft neutrosophic biloop
over (hB [ Ii; �1; �2).

Proof. Straight forward. �

Theorem 30. Let (F;A) and (H;B) be two soft neutrosophic biloops over (hB [
Ii; �1; �2) such that A \ B = �, then their union is soft neutrosophic biloop over
(hB [ Ii; �1; �2).

Proof. Straight forward. �

Theorem 31. Let (F;A) and (K;B) be two soft neutrosophic biloops over (hB [
Ii; �1; �2). Then
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(1) Their extended union (F;A) [" (K;B) over (hB [ Ii; �1; �2) is not soft
neutrosophic biloop over (hB [ Ii; �1; �2).

(2) Their extended intersection (F;A) \" (K;B) over (hB [ Ii; �1; �2) is soft
neutrosophic biloop over

(hB [ Ii; �1; �2):
(1) Their restricted union (F;A) [R (K;B) over (hB [ Ii; �1; �2) is not soft

neutrosophic biloop over (hB [ Ii; �1; �2).
(2) Their restricted intersection (F;A) \" (K;B) over (hB [ Ii; �1; �2) is soft

neutrosophic biloop over (hB [ Ii; �1; �2).

Theorem 32. Let (F;A) and (H;B) be two soft neutrosophic biloops over (hB [
Ii; �1; �2). Then

(1) Their AND operation (F;A)^(H;B) is soft neutrosophic biloop over (hB[
Ii; �1; �2).

(2) Their OR operation (F;A) _ (H;B) is not soft neutrosophic biloop over
(hB [ Ii; �1; �2).

De�nition 34. Let B = (hLn(m) [ Ii [ B2; �1; �2) be a new class neutrosophic
biloop and (F;A) be a soft set over B = (hLn(m) [ Ii [ B2; �1; �2). Then (F;A)
is called soft new class neutrosophic subbiloop if and only if F (a) is neutrosophic
subbiloop of B = (hLn(m) [ Ii [B2; �1; �2), for all a 2 A.

Example 9. Let B = (hB1 [ B2; �1; �2) be a new class neutrosophic biloop B1 =
(hL5(3) [ Ii = fe; 1; 2; 3; 4; 5; eI; 1I; 2I; 3I; 4I; 5Ig be a new class of neutrosophic
loop and B2 =

�
g : g12 = 1

	
is a group. fe; eI; 1; 1Ig [

�
1; g6

	
; fe; eI; 2; 2Ig [�

1; g2; g4; g6; g8; g10
	
; fe; eI; 3; 3Ig [

�
1; g3; g6; g9

	
; fe; eI; 4; 4Ig [ f1; g4; g8g are

neutrosophic subloops of B. Then (F;A) is soft new class neutrosophic biloop over
B, where

F (a1) = fe; eI; 1; 1Ig [
�
1; g6

	
;

F (a2) = fe; eI; 2; 2Ig [
�
1; g2; g4; g6; g8; g10

	
;

F (a3) = fe; eI; 3; 3Ig [
�
1; g3; g6; g9

	
;

F (a4) = fe; eI; 4; 4Ig [ f1; g4; g8g:

Theorem 33. Every soft new class neutrosophic biloop over B = (hLn(m) [ Ii [
B2; �1; �2) is a soft neutrosophic biloop over but the converse is not true.

Theorem 34. Let (F;A) and (K;B) be two soft new class neutrosophic biloops
over B = (hLn(m) [ Ii [B2; �1; �2). Then

(1) Their extended union (F;A) [" (K;B) over hLn (m) [ Ii is not soft new
class neutrosophic biloop over B = (hLn(m) [ Ii [B2; �1; �2).

(2) Their extended intersection (F;A) \" (K;B) over B = (hLn(m) [ Ii [
B2; �1; �2) is soft new class neutrosophic biloop over B = (hLn(m) [ Ii [
B2; �1; �2).

(3) Their restricted union (F;A)[R (K;B) over B = (hLn(m)[ Ii [B2; �1; �2)
is not soft new class neutrosophic biloop over B = (hLn(m)[Ii[B2; �1; �2).

(4) Their restricted intersection (F;A) \" (K;B) over B = (hLn(m) [ Ii [
B2; �1; �2) is soft new class neutrosophic soft biloop over B = (hLn(m) [
Ii [B2; �1; �2).
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Theorem 35. Let (F;A) and (H;B) be two soft new class neutrosophic biloops
over B = (hLn(m) [ Ii [B2; �1; �2). Then

(1) Their AND operation (F;A)^ (H;B) is soft new class neutrosophic biloop
over B = (hLn(m) [ Ii [B2; �1; �2).

(2) Their OR operation (F;A)_(H;B) is not soft new class neutrosophic biloop
over B = (hLn(m) [ Ii [B2; �1; �2).

De�nition 35. Let (F;A) be a soft neutrosophic biloop over B = (hB1 [ Ii [
B2; �1; �2), then (F;A) is called the identity soft neutrosophic biloop over B =
(hB1[Ii[B2; �1; �2) if F (a) = fe1; e2g, for all a 2 A, where e1,e2 are the identities
element of B = (hB1 [ Ii [B2; �1; �2) respectively.

De�nition 36. Let (F;A) be a soft neutrosophic biloop over B = (hB1 [ Ii [
B2; �1; �2), then (F;A) is called Full-soft neutrosophic biloop over B = (B1 [
B2; �1; �2) if F (a) = B = (hB1 [ Ii [B2; �1; �2), for all a 2 A.

De�nition 37. Let (F;A) and (H;B) be two soft neutrosophic biloops over B =
(hB1 [ Ii [B2; �1; �2). Then (H;B) is soft neutrosophic subbiloop of (F;A), if

(1) B � A.
(2) H(a) is neutrosophic subbiloop of F (a), for all a 2 A.

Example 10. Let B = (hB1 [ Ii [B2; �1; �2) be a neutrosophic biloop where B1 =
(hL5(3) [ Ii = fe; 1; 2; 3; 4; 5; eI; 1I; 2I; 3I; 4I; 5Ig be a neutrosophic loop and B2 =�
g : g12 = 1

	
is a group. fe; eI; 1; 1Ig[

�
1; g6

	
; fe; eI; 2; 2Ig[

�
1; g2; g4; g6; g8; g10

	
;

fe; eI; 3; 3Ig [
�
1; g3; g6; g9

	
; fe; eI; 4; 4Ig [ f1; g4; g8g are neutrosophic subbiloops

of B. Then (F;A) is soft neutrosophic biloop over B, where

F (a1) = fe; eI; 1; 1Ig [
�
1; g6

	
;

F (a2) = fe; eI; 2; 2Ig [
�
1; g2; g4; g6; g8; g10

	
;

F (a3) = fe; eI; 3; 3Ig [
�
1; g3; g6; g9

	
;

F (a4) = fe; eI; 4; 4Ig [ f1; g4; g8g:

(H;B) is soft neutrosophic subbiloop of (F;A), where

H (a2) = fe; 2; g [
�
1; g6

	
;

H (a3) = fe; eI; 3Ig [
�
1; g6

	
:

De�nition 38. Let B = (hB1 [ Ii [B2; �1; �2) be a neutrosophic biloop and (F;A)
be a soft set over B = (hB1[Ii[B2; �1; �2). Then (F;A) is called soft neutrosophic
Moufang biloop if and only if F (a) = (P1 [ P2; �1; �2; where P1 is a proper neutro-
sophic Moufang loop of B1) is neutrosophic subbiloop of B = (hB1[ Ii[B2; �1; �2),
for all a 2 A.

Example 11. Let B = (hB1[ Ii[B2); �1; �2) be a neutrosophic biloop where B1 =
hL5(3) [ Ii and B2 = S3: Let P = fe; 2; eI; 2Ig [ fe; (12)g and Q = fe; 3; eI; 3Ig [
fe; (123) ; (132)g are neutrosophic subbiloops of B in which fe; 2; eI; 2Ig and fe; 3; eI; 3Ig
are proper neutrosophic Moufang loops. Then clearly (F;A) is soft neutrosophic
Moufang biloop over B, where

F (a1) = fe; 2; eI; 2Ig [ fe; (12)g ;
F (a2) = fe; 3; eI; 3Ig [ fe; (123) ; (132)g :
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Theorem 36. Every soft neutrosophic Moufang biloop over B = (hB1 [ Ii [
B2; �1; �2) is a soft neutrosophic biloop but the converse is not true.
Theorem 37. Let (F;A) and (K;B) be two soft neutrosophic Moufang biloops over
B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their extended union (F;A)[" (K;B) over B is not soft neutrosophic Mo-
ufang biloop over B.

(2) Their extended intersection (F;A) \" (K;B) over B is soft neutrosophic
Moufang biloop over B.

(3) Their restricted union (F;A) [R (K;B) over B is not soft neutrosophic
Moufang biloop over B.

(4) Their restricted intersection (F;A) \" (K;B) over B is soft neutrosophic
Moufang biloop over B.

Theorem 38. Let (F;A) and (H;B) be two soft neutrosophic Moufang biloops over
B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their AND operation (F;A)^ (H;B) is soft neutrosophic Moufang biloop
over B.

(2) Their OR operation (F;A)_(H;B) is not soft neutrosophic Moufang biloop
over B.

De�nition 39. Let B = (hB1 [ Ii [B2; �1; �2) be a neutrosophic biloop and (F;A)
be a soft set over B = (hB1[Ii[B2; �1; �2). Then (F;A) is called soft neutrosophic
Bol biloop if and only if F (a) = (P1 [ P2; �1; �2; where P1 is a proper neutrosophic
Bol loop of B1) is neutrosophic subbiloop of B = (hB1 [ Ii [ B2; �1; �2), for all
a 2 A.
Example 12. Let B = (hB1[ Ii[B2); �1; �2) be a neutrosophic biloop where B1 =
hL5(3) [ Ii and B2 = S3: Let P = fe; 3; eI; 3Ig [ fe; (12)g and Q = fe; 2; eI; 2Ig [
fe; (123) ; (132)g are neutrosophic subbiloops of B in which fe; 3; eI; 3Ig and fe; 2; eI; 2Ig
are proper neutrosophic Bol loops. Then clearly (F;A) is soft neutrosophic Bol
biloop over B, where

F (a1) = fe; 3; eI; 3Ig [ fe; (12)g ;
F (a2) = fe; 2; eI; 2Ig [ fe; (123) ; (132)g :

Theorem 39. Every soft neutrosophic Bol biloop over B = (hB1 [ Ii [B2; �1; �2)
is a soft neutrosophic biloop but the converse is not true.

Theorem 40. Let (F;A) and (K;B) be two soft neutrosophic Bol biloops over
B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their extended union (F;A) [" (K;B) over B is not soft neutrosophic Bol
biloop over B.

(2) Their extended intersection (F;A)\" (K;B) over B is soft neutrosophic Bol
biloop over B.

(3) Their restricted union (F;A)[R (K;B) over B is not soft neutrosophic Bol
biloop over B.

(4) Their restricted intersection (F;A) \" (K;B) over B is soft neutrosophic
Bol biloop over B.

Theorem 41. Let (F;A) and (H;B) be two soft neutrosophic Bol biloops over
B = (hB1 [ Ii [B2; �1; �2). Then



SOFT NEUTROSOPHIC LOOP, SOFT NEUTROSOPHIC BILOOP AND SOFT NEUTROSOPHIC N-LOOP13

(1) Their AND operation (F;A) ^ (H;B) is soft neutrosophic Bol biloop over
B.

(2) Their OR operation (F;A)_(H;B) is not soft neutrosophic Bol biloop over
B.

De�nition 40. Let (hB [ Ii; �1; �2) be a neutrosophic biloop and (F;A) be a soft
set over (hB [ Ii; �1; �2). Then (F;A) is called soft Lagrange neutrosophic biloop
if and only if F (a) is Lagrange neutrosophic subbiloop of (hB [ Ii; �1; �2), for all
a 2 A.

Example 13. Let B = (B1[B2; �1; �2) be a neutrosophic biloop of order 20, where
B1 = fhL5(3) [ Ii; �1g and B2 = fgj g8 = 1g. Let (P = P1 [ P2; �1; �2) where
P1 = fe; eI; 2; 2Ig � B1 and P2 = f1g � B2 and (Q = Q1 [ Q2; �1; �2) where
Q1 = fe; eI; 3; 3Ig � B1 and Q2 = f1g � B2 are Lagrange neutrosophic subbiloops
of B: Then clearly (F;A) is a soft Lagrange neutrosophic biloop over B, where

F (a1) = fe; eI; 2; 2Ig [ f1g;
F (a2) = fe; eI; 3; 3Ig [ f1g:

Theorem 42. Every soft Lagrange neutrosophic biloop over B = (hB1 [ Ii [
B2; �1; �2) is a soft neutrosophic biloop but the converse is not true.

Theorem 43. Let (F;A) and (K;B) be two soft Lagrange neutrosophic biloops
over B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their extended union (F;A) [" (K;B) over B is not soft Lagrange neutro-
sophic biloop over B.

(2) Their extended intersection (F;A) \" (K;B) over B is not soft Lagrange
neutrosophic biloop over B.

(3) Their restricted union (F;A)[R (K;B) over B is not soft Lagrange neutro-
sophic biloop over B.

(4) Their restricted intersection (F;A) \" (K;B) over B is not soft Lagrange
neutrosophic biloop over B.

Theorem 44. Let (F;A) and (H;B) be two soft Lagrange neutrosophic biloops
over B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their AND operation (F;A) ^ (H;B) is not soft Lagrange neutrosophic
biloop over B.

(2) Their OR operation (F;A)_(H;B) is not soft Lagrange neutrosophic biloop
over B.

De�nition 41. Let (hB [ Ii; �1; �2) be a neutrosophic biloop and (F;A) be a soft
set over (hB [ Ii; �1; �2). Then (F;A) is called soft weakly Lagrange neutrosophic
biloop if atleast one F (a) is not Lagrange neutrosophic subbiloop of (hB[Ii; �1; �2),
for some a 2 A.

Example 14. Let B = (B1 [ B2; �1; �2) be a neutrosophic biloop of order 20,
where B1 = fhL5(3)[Ii; �1g and B2 = fgj g8 = 1g. Let (P = P1[P2; �1; �2) where
P1 = fe; eI; 2; 2Ig � B1 and P2 = f1g � B2 is a Lagrange neutrosophic subbiloop of
B and (Q = Q1 [Q2; �1; �2) where Q1 = fe; eI; 3; 3Ig � B1 and Q2 = f1; g4g � B2
is not Lagrange neutrosophic subbiloop of B: Then clearly (F;A) is a soft weakly
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Lagrange neutrosophic biloop over B, where

F (a1) = fe; eI; 2; 2Ig [ f1g;
F (a2) = fe; eI; 3; 3Ig [ f1; g4g:

Theorem 45. Every soft weakly Lagrange neutrosophic biloop over B = (hB1 [
Ii [B2; �1; �2) is a soft neutrosophic biloop but the converse is not true.
Theorem 46. If B = (hB1 [ Ii [ B2; �1; �2) is a weakly Lagrange neutrosophic
biloop, then (F;A) over B is also soft weakly Lagrange neutrosophic biloop but the
converse is not holds.

Theorem 47. Let (F;A) and (K;B) be two soft weakly Lagrange neutrosophic
biloops over B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their extended union (F;A) [" (K;B) over B is not soft weakly Lagrange
neutrosophic biloop over B.

(2) Their extended intersection (F;A) \" (K;B) over B is not soft weakly La-
grange neutrosophic biloop over B.

(3) Their restricted union (F;A)[R (K;B) over B is not soft weakly Lagrange
neutrosophic biloop over B.

(4) Their restricted intersection (F;A) \" (K;B) over B is not soft weakly
Lagrange neutrosophic biloop over B.

Theorem 48. Let (F;A) and (H;B) be two soft weakly Lagrange neutrosophic
biloops over B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their AND operation (F;A) ^ (H;B) is soft not weakly Lagrange neutro-
sophic biloop over B.

(2) Their OR operation (F;A) _ (H;B) is not soft weakly Lagrange neutro-
sophic biloop over B.

De�nition 42. Let (hB[Ii; �1; �2) be a neutrosophic biloop and (F;A) be a soft set
over (hB [ Ii; �1; �2). Then (F;A) is called soft Lagrange free neutrosophic biloop
if and only if F (a) is not Lagrange neutrosophic subbiloop of (hB [ Ii; �1; �2), for
all a 2 A.
Example 15. Let B = (B1[B2; �1; �2) be a neutrosophic biloop of order 20, where
B1 = fhL5(3)[ Ii; �1g and B2 = fgj g8 = 1g. Let (P = P1 [P2; �1; �2) where P1 =
fe; eI; 2; 2Ig � B1 and P2 = f1; g2; g4; g6g � B2 and (Q = Q1 [ Q2; �1; �2) where
Q1 = fe; eI; 3; 3Ig � B1 and Q2 = f1; g4g � B2 are not Lagrange neutrosophic
subbiloop of B: Then clearly (F;A) is a soft Lagrange free neutrosophic biloop over
B, where

F (a1) = fe; eI; 2; 2Ig [ f1; g2; g4; g6g;
F (a2) = fe; eI; 3; 3Ig [ f1; g4g:

Theorem 49. Every soft Lagrange free neutrosophic biloop over B = (hB1 [ Ii [
B2; �1; �2) is a soft neutrosophic biloop but the converse is not true.
Theorem 50. If B = (hB1[ Ii[B2; �1; �2) is a Lagrange free neutrosophic biloop,
then (F;A) over B is also soft Lagrange free neutrosophic biloop but the converse
is not holds.

Theorem 51. Let (F;A) and (K;B) be two soft Lagrange free neutrosophic biloops
over B = (hB1 [ Ii [B2; �1; �2). Then
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(1) Their extended union (F;A) [" (K;B) over B is not soft Lagrange free
neutrosophic biloop over B.

(2) Their extended intersection (F;A) \" (K;B) over B is not soft Lagrange
free neutrosophic biloop over B.

(3) Their restricted union (F;A) [R (K;B) over B is not soft Lagrange free
neutrosophic biloop over B.

(4) Their restricted intersection (F;A) \" (K;B) over B is not soft Lagrange
free neutrosophic biloop over B.

Theorem 52. Let (F;A) and (H;B) be two soft Lagrange free neutrosophic biloops
over B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their AND operation (F;A)^(H;B) is not soft Lagrange free neutrosophic
biloop over B.

(2) Their OR operation (F;A) _ (H;B) is not soft Lagrange free neutrosophic
biloop over B.

De�nition 43. Let B = (B1 [ B2; �1; �2) be a neutrosophic biloop where B1 is a
neutrosopphic biloop and B2 is a neutrosophic group and (F;A) be soft set over B.
Then (F;A) over B is called soft strong neutrosophic biloop if and only if F (a) is
a neutrosopchic subbiloop of B, for all a 2 A.

Example 16. Let (B = B1 [B2; �1; �2) where B1 = hL5(2) [ Ii is a neutrosophic
loop and B2 = f1; 2; 3; 4; I; 2I; 3I; 4Ig under multiplication modulo 5 is a neutro-
sophic group. Let P = fe; 2; eI; 2Ig [ f1; I; 4Ig and Q = fe; 3; eI; 3Ig [ f1; Ig are
neutrosophic subbiloops of B. Then (F;A) is soft strong neutrosophic biloop of B,
where

F (a1) = fe; 2; eI; 2Ig [ f1; I; 4Ig ;
F (a2) = fe; 3; eI; 3Ig [ f1; Ig :

Theorem 53. Every soft strong neutrosophic biloop over B = (hB1[Ii[B2; �1; �2)
is a soft neutrosophic biloop but the converse is not true.

Theorem 54. If B = (hB1 [ Ii [ B2; �1; �2) is a strong neutrosophic biloop, then
(F;A) over B is also soft strong neutrosophic biloop but the converse is not holds.

Theorem 55. Let (F;A) and (K;B) be two soft soft neutrosophic biloops over
B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their extended union (F;A)["(K;B) over B is not soft strong neutrosophic
biloop over B.

(2) Their extended intersection (F;A) \" (K;B) over B is soft strong neutro-
sophic biloop over B.

(3) Their restricted union (F;A) [R (K;B) over B is not soft strong neutro-
sophic biloop over B.

(4) Their restricted intersection (F;A) \" (K;B) over B is soft strong neutro-
sophic biloop over B.

Theorem 56. Let (F;A) and (H;B) be two soft strong neutrosophic biloops over
B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their AND operation (F;A) ^ (H;B) is soft strong neutrosophic biloop
over B.
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(2) Their OR operation (F;A) _ (H;B) is not soft strong neutrosophic biloop
over B.

De�nition 44. Let B = (B1 [B2; �1; �2) be a neutrosophic biloop of type II and
(F;A) be a soft set over B. Then (F;A) over B is called soft neutrosophic biloop
of type II if and only if F (a) is a neutrosopchic subbiloop of B, for all a 2 A.

Example 17. Let B = (B1 [ B2; �1; �2) where B1 = hL7(3) [ Ii and B2 =
L5(2); then B is a neutrosophic biloop of type II. Hence (F;A) over B is a soft
neutrosophic biloop of type II.

All the properties de�ned for soft neutrosophic biloop can easily be extend to
soft neutrosophic biloop of type II.

8. Soft Neutrosophic N-loop

De�nition 45. Let S(B) = fS(B1) [ S(B2) [ : : : [ S(Bn); �1; : : : ; �Ng be a neu-
trosophic N -loop and (F;A) be a soft set over S (B). Then (F;A) over S (B) is
called soft neutrosophic N -loop if and only if F (a) is a neutrosopchic sub N -loop
of S (B), for all a 2 A.

Example 18. Let S(B) = fS(B1 [ S(B2) [ S(B3); �1; �2; �3g where S(B1) =
fhL5(3) [ Iig, S(B2) = hgjg12 = 1i and S(B3) = S3, is a neutrosophic 3-loop. Let
P =

�
e; eI; 2; 2I; 1; g6; e; (12)

	
and

�
e; eI; 3; 3I; 1; g4; g8; e; (13)

	
are neutrosophic

sub N -loops of S (B). Then (F;A) is sof neutrosophic N -loop over S (B), where

F (a1) =
�
e; eI; 2; 2I; 1; g6; e; (12)

	
;

F (a2) =
�
e; eI; 3; 3I; 1; g4; g8; e; (13)

	
:

Theorem 57. Let (F;A) and (H;A) be two soft neutrosophic N -loops over S (B).
Then their intersection (F;A) \ (H;A) is again a soft neutrosophic biloop over
S (B).

Proof. Straight forward. �

Theorem 58. Let (F;A) and (H;C) be two soft neutrosophic N -loops over S (B)
such that A \ C = �, then their union is soft neutrosophic biloop over S (B).

Proof. Straight forward. �

Theorem 59. Let (F;A) and (K;C) be two soft neutrosophic N -loops over S (B) =
(S (B1) [ S (B2)[; :::;[S (BN ) ; �1; :::; �N ). Then

(1) Their extended union (F;A) [" (K;C) over S (B) is not soft neutrosophic
N -loop over S (B).

(2) Their extended intersection (F;A)\" (K;C) over S (B) is soft neutrosophic
N -loop over S (B).

(3) Their restricted union (F;A)[R (K;C) over S (B) is not soft neutrosophic
N -loop over S (B).

(4) Their restricted intersection (F;A)\" (K;C) over S (B) is soft neutrosophic
N -loop over S (B).

Theorem 60. Let (F;A) and (H;C) be two soft neutrosophic N -loops over S (B).
Then
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(1) Their AND operation (F;A) ^ (H;B) is soft neutrosophic N -loop over
S (B).

(2) Their OR operation (F;A) _ (H;B) is not soft neutrosophic N -loop over
S (B).

De�nition 46. Let S(L) = fL1 [ L2 [ : : : [ LN ; �1; : : : ; �Ng be a neutrosophic
N -loop of level II and (F;A) be a soft set over S (L). Then (F;A) over S (L) is
called soft neutrosophic N -loop of level II if and only if F (a) is a neutrosopchic
sub N -loop of S (L), for all a 2 A.

Example 19. Let S(L) = fL1[L2[L3[L4; �1; �2; �3; �4g be a neutrosophic 4-loop
of level II where L1 = fhL5(3) [ Iig, L2 = fe; 1; 2; 3g, L3 = S3 and L4 = N (Z3),
under multiplication modulo 3: Let P = fe; eI; 2; 2Ig [ fe; 1g [ fe; (12)g [ f1; Ig
and fe; eI; 3; 3Ig [ fe; 2g [ fe; (13)g[f1; 2g are neutrosophic sub N -loops of S (L).
Then (F;A) is sof neutrosophic N -loop of level II over S (L), where

F (a1) = fe; eI; 2; 2Ig [ fe; 1g [ fe; (12)g [ f1; Ig ;
F (a2) = fe; eI; 3; 3Ig [ fe; 2g [ fe; (13)g [ f1; 2g:

Theorem 61. Every soft neutrosophic N -loop of level II over S(L) = fL1 [ L2 [
: : : [ LN ; �1; : : : ; �Ng is a soft neutrosophic N -loop but the converse is not true.

Theorem 62. Let (F;A) and (K;C) be two soft neutrosophic N -loops of level II
over S(L) = fL1 [ L2 [ : : : [ LN ; �1; : : : ; �Ng. Then

(1) Their extended union (F;A) [" (K;C) over S (L) is not soft neutrosophic
N -loop of level II over S (L).

(2) Their extended intersection (F;A)\" (K;C) over S (L) is soft neutrosophic
N -loop of level II over S (L).

(3) Their restricted union (F;A) [R (K;C) over S (L) is not soft neutrosophic
N -loop of level II over S (L).

(4) Their restricted intersection (F;A)\" (K;C) over S (L) is soft neutrosophic
N -loop of level II over S (L).

Theorem 63. Let (F;A) and (H;C) be two soft neutrosophic N -loops of level II
over S(L) = fL1 [ L2 [ : : : [ LN ; �1; : : : ; �Ng. Then

(1) Their AND operation (F;A) ^ (H;B) is soft neutrosophic N -loop of level
II over S (L).

(2) Their OR operation (F;A)_ (H;B) is not soft neutrosophic N -loop of level
11 over S (L).

Now what all we de�ne for neutrosophic N -loops will be carried out to neutro-
sophic N -loops of level II with appropriate modi�cations.

De�nition 47. Let (F;A) be a soft neutrosophic N -loop over S (B) = (S (B1) [
S (B2)[; :::;[S (BN ) ; �1; :::; �N ), then (F;A) is called the identity soft neutrosophic
N -loop over S (B) if F (a) = fe1; e2; :::; eNg, for all a 2 A, where e1,e2; :::; eN are
the identities element of S (B1) ; S (B2) ; :::; S (BN ) respectively.

De�nition 48. Let (F;A) be a soft neutrosophic N -loop over S (B) = (S (B1) [
S (B2)[; :::;[S (BN ) ; �1; :::; �N ), then (F;A) is called Full-soft neutrosophic N -loop
over S (B) if F (a) = S (B), for all a 2 A.
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De�nition 49. Let (F;A) and (H;C) be two soft neutrosophic N -loops over S (B) =
(S (B1) [ S (B2)[; :::;[S (BN ) ; �1; :::; �N ). Then (H;C) is soft neutrosophic sub
N -loop of (F;A), if

(1) B � A.
(2) H(a) is neutrosophic sub N -loop of F (a), for all a 2 A.

De�nition 50. Let S (B) = (S (B1) [ S (B2)[; :::;[S (BN ) ; �1; :::; �N ) be a neu-
trosophic N -loop and (F;A) be a soft set over S (B). Then (F;A) is called soft
Lagrange neutrosophic N -loop if and only if F (a) is Lagrange neutrosophic sub
N -loop of S (B), for all a 2 A.

Theorem 64. All soft Lagrange neutrosophic N -loops are soft neutrosophic N -
loops but the converse is not true.

Theorem 65. Let (F;A) and (K;C) be two soft Lagrange neutrosophic N -loops
over S (B) = (S (B1) [ S (B2)[; :::;[S (BN ) ; �1; :::; �N ). Then

(1) Their extended union (F;A)[" (K;C) over S (B) is not soft Lagrange neu-
trosophic N -loop over S (B).

(2) Their extended intersection (F;A)\" (K;C) over S (B) is not soft Lagrange
neutrosophic N -loop over S (B).

(3) Their restricted union (F;A) [R (K;C) over S (B) is not soft Lagrange
neutrosophic N -loop over S (B).

(4) Their restricted intersection (F;A)\"(K;C) over S (B) is not soft Lagrange
neutrosophic N -loop over S (B).

Theorem 66. Let (F;A) and (H;C) be two soft Lagrange neutrosophic N -loops
over S (B). Then

(1) Their AND operation (F;A) ^ (H;B) is not soft Lagrane neutrosophic
N -loop over S (B).

(2) Their OR operation (F;A) _ (H;B) is not soft Lagrange neutrosophic N -
loop over S (B).

De�nition 51. Let S (B) = (S (B1)[S (B2)[; :::;[S (BN ) ; �1; :::; �N ) be a neutro-
sophic N -loop and (F;A) be a soft set over S (B). Then (F;A) is called soft weakly
Lagrange neutrosophic N -loop if atleast one F (a) is not Lagrange neutrosophic sub
N -loop of S (B), for all a 2 A.

Theorem 67. All soft weakly Lagrange neutrosophic N -loops are soft neutrosophic
N -loops but the converse is not true.

Theorem 68. Let (F;A) and (K;C) be two soft weakly Lagrange neutrosophic
N -loops over S (B) = (S (B1) [ S (B2)[; :::;[S (BN ) ; �1; :::; �N ). Then

(1) Their extended union (F;A)["(K;C) over S (B) is not soft weakly Lagrange
neutrosophic N -loop over S (B).

(2) Their extended intersection (F;A) \" (K;C) over S (B) is not soft weakly
Lagrange neutrosophic N -loop over S (B).

(3) Their restricted union (F;A) [R (K;C) over S (B) is not soft weakly La-
grange neutrosophic N -loop over S (B).

(4) Their restricted intersection (F;A) \" (K;C) over S (B) is not soft weakly
Lagrange neutrosophic N -loop over S (B).
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Theorem 69. Let (F;A) and (H;C) be two soft weakly Lagrange neutrosophic
N -loops over S (B). Then

(1) Their AND operation (F;A) ^ (H;B) is not soft weakly Lagrane neutro-
sophic N -loop over S (B).

(2) Their OR operation (F;A) _ (H;B) is not soft weakly Lagrange neutro-
sophic N -loop over S (B).

De�nition 52. Let S (B) = (S (B1) [ S (B2)[; :::;[S (BN ) ; �1; :::; �N ) be a neu-
trosophic N -loop and (F;A) be a soft set over S (B). Then (F;A) is called soft
Lagrange free neutrosophic N -loop if and only if F (a) is not Lagrange neutrosophic
sub N -loop of S (B), for all a 2 A.

Theorem 70. All soft Lagrange free neutrosophic N -loops are soft neutrosophic
N -loops but the converse is not true.

Theorem 71. Let (F;A) and (K;C) be two soft Lagrange free neutrosophic N -
loops over S (B) = (S (B1) [ S (B2)[; :::;[S (BN ) ; �1; :::; �N ). Then

(1) Their extended union (F;A)[" (K;C) over S (B) is not soft Lagrange free
neutrosophic N -loop over S (B).

(2) Their extended intersection (F;A)\" (K;C) over S (B) is not soft Lagrange
free neutrosophic N -loop over S (B).

(3) Their restricted union (F;A)[R (K;C) over S (B) is not soft Lagrange free
neutrosophic N -loop over S (B).

(4) Their restricted intersection (F;A)\"(K;C) over S (B) is not soft Lagrange
free neutrosophic N -loop over S (B).

Theorem 72. Let (F;A) and (H;C) be two soft Lagrange free neutrosophic N -
loops over S (B). Then

(1) Their AND operation (F;A)^ (H;B) is not soft Lagrane free neutrosophic
N -loop over S (B).

(2) Their OR operation (F;A) _ (H;B) is not soft Lagrange free neutrosophic
N -loop over S (B).

De�nition 53. Let fhL[ Ii = L1 [L2 [L3; �1; : : : ; �Ng be a neutrosophic N -loop
and (F;A) be a soft set over fhL[ Ii = L1 [L2 [L3; �1; :::; �Ng. Then (F;A) over
fhL[ Ii = L1 [L2 [L3; �1; :::; �Ng is called soft strong neutrosophic N -loop if and
only if F (a) is strong neutrosopchic sub N -loop of fhL[Ii = L1[L2[L3; �1; :::; �Ng,
for all a 2 A.

Example 20. Let fhL[ Ii = L1 [L2 [L3; �1; �2; �3g where L1 = hL5(3)[ Ii; L2 =
hL7(3) [ Ii and L2 = f1; 2; I; 2Ig. fhL [ Iig is a strong neutrosophic 3-loop. Then
(F;A) is a soft strong neutrosophic N -loop over hL [ Ii, where

F (a1) = fe; 2; eI; 2Ig [ fe; 2; eI; 2Ig [ f1; Ig ;
F (a2) = fe; 3; eI; 3Ig [ fe; 3; eI; 3Ig [ f1; 2; 2Ig :

Theorem 73. All soft strong neutrosophic N -loops are soft neutrosophic N -loops
but the converse is not true.

Theorem 74. Let (F;A) and (K;C) be two soft strong neutrosophic N -loops over
fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then
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(1) Their extended union (F;A)["(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft Lagrange free neutrosophic N -loop.

(2) Their extended intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is soft Lagrange free neutrosophic N -loop.

(3) Their restricted union (F;A)[R(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft Lagrange free neutrosophic N -loop over.

(4) Their restricted intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is soft Lagrange free neutrosophic N -loop over.

Theorem 75. Let (F;A) and (H;C) be two soft strong neutrosophic N -loops over
fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then

(1) Their AND operation (F;A) ^ (H;B) is soft strong neutrosophic N -loop
over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.

(2) Their OR operation (F;A)_ (H;B) is not soft strong neutrosophic N -loop
over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.

De�nition 54. Let (F;A) and (H;C) be two soft strong neutrosophic N -loops over
fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then (H;C) is soft strong neutrosophic sub
N -loop of (F;A), if

(1) B � A.
(2) H(a) is neutrosophic sub N -loop of F (a), for all a 2 A.

De�nition 55. Let fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng be a strong neutrosophic
N -loop and (F;A) be a soft set over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then
(F;A) is called soft strong Lagrange neutrosophic N -loop if and only if F (a) is
strong Lagrange neutrosophic sub N -loop of fhL[ Ii = L1[L2[L3; �1; :::; �Ng, for
all a 2 A.
Theorem 76. All soft strong Lagrange neutrosophic N -loops are soft Lagrange
neutrosophic N -loops but the converse is not true.

Theorem 77. All soft strong Lagrange neutrosophic N -loops are soft neutrosophic
N -loops but the converse is not true.

Theorem 78. Let (F;A) and (K;C) be two soft strong Lagrange neutrosophic
N -loops over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then

(1) Their extended union (F;A)["(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft strong Lagrange neutrosophic N -loop.

(2) Their extended intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is not soft strong Lagrange neutrosophic N -loop.

(3) Their restricted union (F;A)[R(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft strong Lagrange neutrosophic N -loop over.

(4) Their restricted intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is not soft strong Lagrange neutrosophic N -loop over.

Theorem 79. Let (F;A) and (H;C) be two soft strong Lagrange neutrosophic
N -loops over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then

(1) Their AND operation (F;A) ^ (H;B) is not soft strong Lagrange neutro-
sophic N -loop over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.

(2) Their OR operation (F;A)_(H;B) is not soft strong Lagrange neutrosophic
N -loop over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.
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De�nition 56. Let fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng be a strong neutrosophic
N -loop and (F;A) be a soft set over fhL[Ii = L1[L2[L3; �1; :::; �Ng. Then (F;A)
is called soft strong weakly Lagrange neutrosophic N -loop if atleast one F (a) is not
strong Lagrange neutrosophic sub N -loop of fhL[ Ii = L1[L2[L3; �1; :::; �Ng, for
some a 2 A.
Theorem 80. All soft strong weakly Lagrange neutrosophic N -loops are soft weakly
Lagrange neutrosophic N -loops but the converse is not true.

Theorem 81. All soft strong weakly Lagrange neutrosophic N -loops are soft neu-
trosophic N -loops but the converse is not true.

Theorem 82. Let (F;A) and (K;C) be two soft strong weakly Lagrange neutro-
sophic N -loops over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then

(1) Their extended union (F;A)["(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft strong weakly Lagrange neutrosophic N -loop.

(2) Their extended intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is not soft strong weakly Lagrange neutrosophic N -loop.

(3) Their restricted union (F;A)[R(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft strong weakly Lagrange neutrosophic N -loop.

(4) Their restricted intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is not soft strong weakly Lagrange neutrosophic N -loop.

Theorem 83. Let (F;A) and (H;C) be two soft strong weakly Lagrange neutro-
sophic N -loops over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then

(1) Their AND operation (F;A) ^ (H;B) is not soft strong weakly Lagrange
neutrosophic N -loop over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.

(2) Their OR operation (F;A) _ (H;B) is not soft strong weakly Lagrange
neutrosophic N -loop over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.

De�nition 57. Let fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng be a strong neutrosophic
N -loop and (F;A) be a soft set over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then
(F;A) is called soft strong Lagrange free neutrosophic N -loop if and only if F (a) is
not strong Lagrange neutrosophic sub N -loop of fhL[Ii = L1[L2[L3; �1; :::; �Ng,
for all a 2 A.
Theorem 84. All soft strong Lagrange free neutrosophic N -loops are soft Lagrange
free neutrosophic N -loops but the converse is not true.

Theorem 85. All soft strong Lagrange free neutrosophic N -loops are soft neutro-
sophic N -loops but the converse is not true.

Theorem 86. Let (F;A) and (K;C) be two soft strong Lagrange free neutrosophic
N -loops over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then

(1) Their extended union (F;A)["(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft strong Lagrange free neutrosophic N -loop.

(2) Their extended intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is not soft strong Lagrange free neutrosophic N -loop.

(3) Their restricted union (F;A)[R(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft strong Lagrange free neutrosophic N -loop.

(4) Their restricted intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is not soft strong Lagrange free neutrosophic N -loop.
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Theorem 87. Let (F;A) and (H;C) be two soft strong Lagrange free neutrosophic
N -loops over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then

(1) Their AND operation (F;A)^ (H;B) is not soft strong Lagrange free neu-
trosophic N -loop over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.

(2) Their OR operation (F;A) _ (H;B) is not soft strong Lagrange free neu-
trosophic N -loop over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.

Conclusion 1. This paper is an extension of neutrosphic loop to soft neutrosophic
loop. We also extend neutrosophic biloop, neutrosophic N -loop to soft neutrosophic
biloop, and soft neutrosophic N -loop. Their related properties and results are ex-
plained with many illustrative examples. The notions related with strong part of
neutrosophy also established within soft neutrosophic loop.
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