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Abstract :   The idea of neutrosophic code came into my mind at that time when i was reading the literature 
about linear codes and i saw that, if there is data transfremation between a sender and a reciever. They want to send 
11 and 00  as codewords. They suppose 11  for true and 00   for false. When the sender sends the these two 
codewords and the error occures. As a result the reciever  recieved 01  or 10  instead of 11  and 00 . This 
story give a way to the neutrosophic codes and thus we introduced neutrosophic codes over finite field in this paper. 

 
Introduction 

   
  Florentin Smarandache for the first time intorduced the concept of neutrosophy in 1995  which  
is basically a new branch of philosophy which actually studies the origion, nature, and scope of  
neutralities. The neutrosophic logic came into being by neutrosophy. In neutrosophic logic each proposition is 
approximated to have the percentage of truth in a subsetT , the percentage of indeterminacy in a subset I , and the 
percentage of falsity in a subset F . Neutrosophic logic is an extension of fuzzy logic. In fact the neutrosophic set 
is the generalization of classical set, fuzzy conventional set, intuitionistic fuzzy set, and interal valued fuzzy set. 
Neutrosophic logic is used to overcome the problems of imperciseness, indeterminate, and inconsistentness of data 
etc. The theory of neutrosophy is so applicable to every field of agebra.W.B Vasantha Kandasamy and Florentin 
Smarandache introduced neutrosophic fields, neutrosophic rings, neutrosophic vectorspaces, neutrosophic groups, 
neutrosophic bigroups and neutrosophic N -groups, neutrosophic semigroups, neutrosophic bisemigroups, and 
neutrsosophic N -semigroups, neutrosophic loops, nuetrosophic biloops, and neutrosophic N -loops, and so on. 
Mumtaz ali  et al . introduced nuetrosophic LA -semigoups. 
  Algebriac codes are used for data compression, cryptography, error correction and and for network coding. The 
theory of codes was first focused by Claude Shanon in 1948 and then gradually developed by time to time. There are 
many types of codes which is important to its algebriac structures such as Linear block codes, Hamming codes, 
BCH codes etc. The most common type of code is a linear code over the field qF . There are also linear codes 
which are define over the finite rings. The linear codes over finite ring are initiated by Blake in a series of papers 
[ ] [ ]2 , 3 , Spiegel [ ] [ ]4 , 5  and Forney et al. [ ]6 . Klaus Huber defined codes over Gaussian integers. 
 In the further section, we intorduced the concept of neutrosophic code and establish the basic results of codes. We 
also developed the decoding procedures for neutrosophic codes and illustrate it with examples. 

 
Basic concepts 
 Definition 1 Let A be a finite set of q  symbols where ( )1q >  and let nV A=  be the set of n -tuples of 

elements of A where n  is some positive integer greater than 1.  In fact V is a vecotr space over A . Now letC
be a non empty subset of V . Then C is called a q -ary code of length n over .A   
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 Definition 2 Let nF be a vector space over the field F , and , nx y F∈  where 1 2... nx x x x= , 

1 2... ny y y y= . The Hamming distance between the vectors x  and y  is denoted by ( ),d x y , and is defined 

as ( ), : i id x y i x y= ≠ . 

Definition 3 The minimum distance of a code C  is the smallest distance between any two distinct codewords in 

C  which is denoted by  ( ) ,d C  that is ( ) ( ){ }min , : , ,d C d x y x y C x y= ∈ ≠ . 

 Definition 4 Let F be a finite field and n  be a positive integer. Let C  be a subspace of the vector space 
nV F= . Then C  is called a linear code over F . 

 Definition 5 The linear code C  is called linear [ ],n k -code if ( )dim C k= . 

 Definition 6 Let C  be a linear [ ],n k -code. Let G  be a k n×  matrix whose rows form basis of C .  

Then G  is called generator matrix of the code C . 
 Definition 7 Let C  be an [ ],n k -code over F . Then the dual code of C  is defined to be 

{ }: 0,nC y F x y x C⊥ = ∈ ⋅ = ∀ ∈  

 
 Definition 8 Let C  be an [ ],n k -code and let H  be the generator matrix of the dual code  C⊥ . Then H  

is called a parity-check matrix of the code C .  
 Definition 9 A code C  is called self-orthogonal code if  C C⊥⊂  . 
 Definition 10 Let C  be a code over the field F  and for every  nx F∈ , the coset of C  is defined to be 

{ }:C x c c C= + ∈  

 Definition 11 Let C  be a linear code over F . The coset leader of a given coset is defined to be the vector with 
least weight in that coset. 
 Definition 12 If a codeword x  is transmitted and the vector y  is received, then e y x= −  is called error 
vector. Therefore a coset leader is the error vector for each vector y  lying in that coset. 

Nuetrosophic code 
 Definition 13 Let C  be a q -ary code of length n  over the field F . Then the neutrosophic code is denoted 

by ( )N C , and is defined to be 

( )N C C nI= ∪  
 
where I  is indeterminacy and called neutrosophic element with the property 22 ,I I I I I+ = = . For an integer  

n ,  n I+ , nI  are neutrosophic elements and  0. 0I =  .  1I − , the inverse of I  is not defined and hence 
does not exist. 
 Example 1 Let { }000,111C =  be a binary code of length 3  over the field 2F Z= . Then the 

corresponding neutrosophic binary code is ( )N C , where 

( ) { }' ' '000,111, ,N C C III III I I I= ∪ =  

 
where ( )' 1I I= +  which is called dual bit or partially determinate bit. In 1 I+ , 1 is determinate bit and I  is 

indeterminate bit or multibit. This multibit is sometimes 0  and sometimes 1 . 
 Theorem 1 A neutrosophic code ( )N C is a neutrosophic vector space over the field F . 

 Definition 14 Let ( )nF I  be a neutrosophic vector space over the field F  and  ( ), nx y F I∈ ,  where 
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1 2... nx x x x= , 1 2... ny y y y= . The Haming neutrosophic distance between the neutrosophic vectors x  and y  

is denoted by ( ),Nd x y , and is defined as  ( ), :N j jd x y j x y= ≠ . 

 Example 2 Let the neutrosophic code ( )N C  be as in above example. Then the Hamming neutrosophic 

distance  ( ), 3Nd x y = , for all  ( ),x y N C∈ . 

 Remark 1 The Hamming neutrosophic distance satisfies the three conditions of a distance function: 
1)  ( ), 0Nd x y =  if and only if  x y= . 

2)  ( ) ( ), ,N Nd x y d y x=  for all  ( ), nx y F I∈ . 

3)  ( ) ( ) ( ), , ,N N Nd x z d x y d y z≤ +  for all  ( ), , nx y z F I∈ . 

 Definition 15 The minimum neutrosophic distance of a neutrosophic code ( )N C  is the smallest distance 

between any two distinct neutrosophic codewords in ( )N C . We denote the minimum neutrosophic distance by  

( )( )Nd N C .  Equivalently  ( )( ) ( ) ( ){ }min , : , ,N Nd N C d x y x y N C x y= ∈ ≠ .  

 Example 3 Let ( )N C  be a neutrosophic code over the field { }2 0,1F Z= = , where 

( ) { }' ' '000,111, ,N C C III III I I I= ∪ =  

 

with ( )' 1I I= + . Then the minimum neutrosophic distance ( )( ) 3.Nd N C =   

 Definition 16 Let C  be a linear code of lenght n  over the field F . Then  ( )N C C nI= ∪  is called 

neutrosophic linear code over F . 
 Example 4 In example ( )3 , { }000,111C =  is a linear binary code over the field  { }2 0,1F Z= = , and 

the required neutrosophic linear code is 

( ) { }' ' '000,111, ,N C C III III I I I= ∪ =  

 
where ( )' 1I I= + . 

 Theorem 2 Let C  be a linear code and ( )N C  be a neutrosohic linear code. If ( )dim C k= , then 

( )( )dim 1.N C k= +   

 Definition 17 The linear neutrosophic code ( )N C  is called linear [ ], 1n k + -neutrosophic code if 

( )( )dim 1.N C k= +  

 Theorem 3 The linear [ ], 1n k + -neutrosophic code ( )N C  contains the linear [ ],n k -code  C . 

 Theorem 4 The linear code C  is a subspace of the neutrosophic code ( )N C  over the field  F . 

 Theorem 5 The linear code C  is a sub-neutrosophic code of the neutrosophic code ( )N C   over the field 

F . 
 Theorem 6 Let B  be a basis of a linear code C  of lenght n  over the field F . Then  B nI∪  is the 

neutrosophic basis of the neutrosophic code ( ) ,N C  where I  is the neutrosophic element. 

 Theorem 7 If the linear code C  has a code rate 
k
n

, then the neutrosophic linear code  ( )N C  has code rate 
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1k
n
+

 . 

 Theorem 8 If the linear code C  has redundancy n k− , then the neureosophic code has redundancy 

( )1n k− + . 

 Definition 18 Let ( )N C  be a linear [ ], 1n k + -neutrosophic code. Let ( )N G  be a  ( )1k n+ ×  matrix 

whose rows form basis of ( ).N C  Then ( )N G  is called neutrosophic generator matrix of the neutrosophic 

code ( )N C . 

 Example 5 Let ( )N C  be the linear neutrosophic code of length 3  over the field F , where 

( ) { }' ' '000,111, ,N C C III III I I I= ∪ =  

 
with  ' 1 .I I= +  
 Let ( )N G  be a ( )1k n+ ×  neutrosophic matrixe where 

( )
2 3

1 1 1
N G

I I I ×

⎡ ⎤= ⎢ ⎥
⎣ ⎦

 

 
Then clearly ( )N G  is a neutrosophic generator matrix of the neutrosophic code ( )N C   because the rows of 

( )N G  generates the linear neutrosophic code ( )N C . In fact the rows of  ( )N G  form a basis of ( ).N G   

 Remark 2 The neutrosophic generator matrix of a neutrosophic code ( )N C  is not unique. 
We take the folowing example to prove the remark. 
 Example 6 Let ( )N C  be a linear neutrosophic code of length 3  over the field F , where 

( ) { }' ' '000,111, ,N C C III III I I I= ∪ =  

 
with ' 1I I= + . Then clearly ( )N C  has three neutrosophic generator matrices which are follows.  

( ) ( )

( )

1 2 ' ' '
2 3 2 3

3 ' ' '

1 1 1 1 1 1
, ,N G N G

I I I I I I

I I I
N G

I I I

× ×

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤= ⎢ ⎥
⎣ ⎦

 

 
 Theorem 9 Let G  be a generator matrix of a linear code C  and ( )N G  be the neutrosophic generator 

matrix of the neutrosophic linear code ( )N C , then G  is always contained in  ( ).N G   

 Definition 19 Let ( )N C  be an [ ], 1n k + -neutrosophic code over F . Then the neutrosophic dual code of 

the neutrosophic code ( )N C  is defined to be 

( ) ( ) ( ){ }: 0nN C y F I x y x N C
⊥

= ∈ = ∀ ∈g  

 
 Example 7 Let ( )N C  be a linear neutrosophic code of length 2  over the neutrosophic field  2F Z= , 
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where 

( ) { }' '00,11, ,N C II I I=  

 
with ' 1I I= + . 
Since 

( )
' '

2
2 ' ' ' ' ' '

00,01,0 ,0 ,10,11,1 ,1 ,
0, 1, , , 0, 1, ,

I I I I
F I

I I II II I I I I I I

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 

where ' 1I I= + . Then the neutrosophic dual code ( )N C
⊥

 of the neutrosophic code ( )N C  is given as 
follows, 

( ) { }' '00,11, , .N C II I I
⊥

=  

 

 Theorem 10 If the neutrosophic code ( )N C  has dimension 1k + , then the neutrosophic dual code ( )N C
⊥

 

has dimension ( )2 1n k− + . 

 Theorem 11 If C
⊥

 is a dual code of the code C  over F , then ( )N C
⊥

 is the neutrosophic dual code of 

the neutrosophic code ( )N C  over the field F , where ( )N C C nI
⊥ ⊥

= ∪ . 

Definition 20 A neutrosophic code ( )N C  is called self neutrosophic dual code if ( ) ( )N C N C
⊥

= . 

Example 8 In example ( )7 , the neutrosophic code ( )N C  is self neutrosophic dual code because 

( ) ( )N C N C
⊥

= . 

 Definition 21 Let ( )N C  be an [ ], 1n k + -neutrosophic code and let ( )N H  be the neutrosophic generator 

matrix of the neutrosophic dual code ( )N C
⊥

. Then ( )N H  is called a neutrosophic parity-check matrix of the 

neutrosophi code  ( )N C .  

 Example 9 Let ( )N C  be the linear neutrosophic code of length 3  over the field F , where 

( ) { }' ' '000,111, ,N C III I I I=  

 
with ' 1I I= + . The neutrosophic generator matrix is  

( )
2 3

1 1 1
N G

I I I ×

⎡ ⎤= ⎢ ⎥
⎣ ⎦

 

 

The neutrosophic dual code ( )N C
⊥

 of the above neutrosophic code ( )N C  is as following, 

( )

' '

' ' ' '

' ' ' ' ' '

000,011,101,110,1 ,1 ,
0 , 0 , 1 , 0, 0 , 1 ,

1, 0, 1,0

II I I
N C II I I I I II I I I I

I I I I II I I

⊥

⎧ ⎫
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎩ ⎭
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The corresponding neutrosophic parity check matrix is given as follows, 

( )
'

'

1 1 0

0
0

I I I
N H

I I
I I

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 Theorem 12 Let ( )N C  be an [ ], 1n k + -neutrosophic code. Let ( )N G  and ( )N H  be neutrosophic 

generator matrix and neutrosophic parity check matrix of ( )N C  respectively. Then 

( ) ( ) ( ) ( )0T TN G N H N H N G= =  
 
 Remark 3 The neutrosophic parity check matrix ( )N H  of a neutrosophic code ( )N C  is not unique. 
To see the proof of this remark, we consider the following example. 
 Example 10 Let the neutrosophic code ( )N C  be as in above example. The neutrosophic parity check 

matrices of ( )N C  are given as follows.  

( ) ( )
' '

1 2

' '

1 1 0 1 0 1
1 1

,
0 0

0 0

I I I I
N H N H

I I I I
I I I I

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 
and so on. 

 Definition 22 A neutrosophic code ( )N C  is called self-orthogonal neutrosophic code if  ( ) ( )N C N C ⊥⊂ . 

 Example 11 Let ( )N C  be the linear [ ]4,2 -neutrosophic code of length 4  over the neutrosophic field 

2F Z= , where 

( ) { }' ' ' '0000,1111, ,N C IIII I I I I=  

 

with ' 1I I= + . The neutrosophic dual code ( )N C ⊥
 of ( )N C  is following; 

( ) ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

0000,1100,1010,1001,0110,0101,0011,1111, ,
, 00, 0 0, 00 ,0 0,0 0 ,00 ,...

IIII
N C

I I I I I I I I I I I I I I I I
⊥ ⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 

 

Then clearly ( ) ( )N C N C ⊥⊂ . Hence ( )N C  is self-orthogonal neutrosophic code. 

 Theorem 13 If C  is self-orthognal code then ( )N C  is self-orthognal neutrosophic code. 

Pseudo Neutrosophic Code 
 Definition 23 A linear [ ], 1n k + -neutrosophic code ( )N C  is called pseudo linear [ ], 1n k + -neutrosophic 

code if it does not contain a proper subset of S  which is a linear [ ],n k -code. 
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 Example 12 Let ( )N C  be the linear neutrosophic code of length 3  over the field { }2 0,1F Z= = , where 

( ) { }' ' '000,111, ,N C III I I I=  

 
with ' 1I I= + . Then clearly ( )N C  is a pseudo linear [ ]3,2 -neutrosophic code because it does not contain a 

proper subset of C  which is a linear [ ]3,1 -code. 

 Theorem 14 Every pseudo linear [ ], 1n k + -neutrosophic code ( )N C  is a trivially a linear  [ ], 1n k +
-neutrosophic code but the converse is not true. 
We prove the converse by taking the following example. 
 Example 13 Let { }00,01,10,11C =  be a linear [ ]2,2 -code and ( )N C  be the corresponding linear 

[ ]2,3 -neutrosophic code of length 2  over the field { }2 0,1F Z= = , where 

( ) { }' ' ' '00,01,10,11, , , ,N C II II I I I I=  

 
with  ' 1I I= + . 
Then clearly ( )N C  is not a pseudo linear  [ ]2,3 -neutrosophic code because { }00,11  is a proper subspace of 

C  which is a code. 

Strong or Pure Neutrosophic Code 
 Definition 24 A neutrosophic code ( )N C  is called strong or pure neutrosophic code if  0 y≠  is 

neutrosophic codeword for all ( )y N C∈ . 

 Example 14 Let ( )N C  be the linear neutrosophic code of length 3  over the field  { }2 0,1F Z= = , where 

( ) { }000,N C III=  

 
Then clearly ( )N C  is a strong or pure neutrosophic code over the field F . 

 Theorem 15 Every strong or pure neutrosophic code is trivially a neutrosophic code but the converse is not true. 
For converse, let us see the following example. 
 Example 15 Let ( )N C  be a neutrosophic code of length 3over the field  { }2 0,1F Z= = , where 

( ) { }' ' '000,111, ,N C III I I I=  

 
with ' 1I I= + . Then clearly ( )N C  is not a strong or pure neutrosophic code. 

 Theorem 16 There is one to one correspondence between the codes and strong or pure neutrosophic codes. 
 Theorem 17 A neutrosophic vector space have codes, neutrosophic codes, and strong or pure neutrosophic codes. 
Decoding Algorithem 
 Definition 25 Let ( )N C  be a neutrosophic code over the field F and for every  ( )nx F I∈ ,  the 

neutrosophic coset of ( )N C  is defined to be 

( ) ( ){ }:
C

N C x c c N C= + ∈  

 
 Theorem 18 Let ( )N C  be a linear neutrosophic code over the field F  and let  ( )ny F I∈ . Then the 
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neutrosophic codeword x  nearest to y  is given by x y e= − , where e  is the neutosophic vector of the least 
weight in the neutrosophic coset containing y . 
if the neutrosophic coset containing y  has more than one neutrosophic vector of least weight, then there are more 
than one neutosophic codewords nearest to y . 

 Definition 26 Let ( )N C  be a linear neutrosophic code over the field F .  The neutrosophic coset leader of a 

given neutrosophic coset ( )C
N C  is defined to be the neutrosophic vector with least weight in that neutrosophic 

coset. 
 Theorem 19 Let F  be a field and ( )F I  be the corresponding neutrosophic vector space. If  F q= , then  

( ) 2F I q= . 

 Proof It is obvious. 
Algorithem 
   Let ( )N C  be an [ ], 1n k + -neutrosophic code over the field qF  with ( ) 2

qF I q= . As  ( )n
qF I  has 

2nq  elements and so there are 1kq +  elements in the coset of ( )N C . Therefore the number of distinct cosets of 

( )N C  are ( )2 1n kq − + . Let the coset leaders be denoted by  1 2, ,..., Ne e e , where ( )2 1n kN q − += . We also 

consider that the neutrosophic coset leaders are arranged in ascending order of weight; i.e ( ) ( )1i iw e w e +≤  for 

all i  and consequently 1 0e =   is the coset leader of ( ) ( )0N C N C= + . Let ( ) { }1 2, ,..., MN C c c c= , 

where 1kM q +=  and  1 0c = . The 2nq  vectors can be arranged in an N M×  table, which is given below. 

In this table the ( ),i j -entry is the neutrosophic vector i je c+ . The elements of the coset  ( )ie N C+  are in  

ith  row with the coset leader ie  as the first entry. The neutrosophic code ( )N C  will be placed on the top row. 

The corresponding table is termed as the standard neutrosophic array for the neutrosophic code ( )N C . 
 

1 10e c= =  2c  K  
jc  K  

Mc  

2e  2 2e c+  K  
2 je c+  K  

2 Me c+  

M M  M  M 

ie  2ie c+  K  
i je c+  K  

i Me c+  

M M  M  M 

Ne  2Ne c+  K  
N Je c+  K  

N Me c+  

      
 

Table 1. 
 
 For decoding, the standard neutrosophic array can be used as following: 
Let us suppose that a neutrosophic vector ( )n

qy F I∈  is recieved and then look at the position of  y  in the 

table. In the table if y  is the ( ),i j -entry, then i jy e c= +  and also ie  is the neutrosophic vector of least 

weight in the neutrosophic coset and by theoem it follows that  i jx y e c= − = . Hence the recieved neutrosophic 

51



vector y  is decoded as the neutrosophic codeword at the top of the column in which y  appears. 
 Definition 27 If a neutrosophic codeword x  is transmitted and the neutosophic vector y  is received, then 
e y x= −  is called neutrosophic error vector. Therefore a neutrosophic coset leader is the neutrosophic error 
vector for each neutrosophic vector y  lying in that neutrosophic coset. 

 Example 16 Let ( )2
2F I  be a neutrosophic vector space over the field { }2 0,1F Z= = , where 

( )
' '

2
2 ' ' ' ' ' '

00,01,0 ,0 ,10,1 ,1 ,
0, 1, , , 0, 1, ,

I I I I
F I

I I II II I I I I I I

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 

with ' 1I I= + . Let ( )N C  be a neutrosophic code over the field { }2 0,1F Z= = , where 

( ) { }' '00,11, ,N C II I I=  

The following are the neutrosophic cosets of  ( ) :N C   

( ) ( )
( ) { } ( )
( ) { } ( )
( ) { } ( )

' '

' '

' ' ' '

00 ,

01 01,10, , 10 ,

0 0 ,1 , 0, 1 0 ,

0 0 ,1 , 1, 0 0

N C N C

N C II I I N C

I N C I I I I I N C

I N C I I I I I N C

+ =

+ = = +

+ = = +

+ = = +

 

 
The standard neutrosophic array table is given as under; 
 

00 11 II 'I 'I  

01 10 I 'I  'I I 

0I 1 'I  I0 'I 1 

0 'I  1I I1 'I 0 

 
Table 2. 

 
We want to decode the neutrosophic vector '1I . Since '1I  occures in the second coloumn and the top entry in 
that column is 11 . Hence '1I  is decoded as the neutrosophic codeword 11 . 
Sydrome Decoding 
 Definition 28 Let ( )N C  be an [ ], 1n k + -neutrosophic code over the field F  with neutrosophic 

parity-check matrix ( )N H . For any neutrosophic vector ( )n
qy F I∈ , the syndrome of y  is denoted by 

( )S y  and is defined to be 

( ) ( )TS y yN H=  
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 Definition 29 A table with two columns showing the coset leaders ie  and the corresponding syndromes ( )iS e  
is called syndrome table. 
To decode a recieved neutrosophic vector ,y  compute the syndrome ( )S y  and then find the neutrosophic coset 

leader e  in the table for which ( ) ( )S e S y= . Then y  is decoded as  x y e= − . This algorithem is known 
as syndrome decoding. 
 Example 17 Let ( )2

2F I  be a neutrosophic vector space over the field { }2 0,1F Z= = , where 

( )
' '

2
2 ' ' ' ' ' '

00,01,0 ,0 ,10,1 ,1 ,
0, 1, , , 0, 1, ,

I I I I
F I

I I II II I I I I I I

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 

with ' 1I I= + .  
Let ( )N C  be a neutrosophic code over the field { }2 0,1F Z= = , where 

( ) { }' '00,11, ,N C II I I=  

 
The neutosophic parity-check matrix of ( )N C  is 

( ) 1 1
N H

I I
⎡ ⎤= ⎢ ⎥
⎣ ⎦

 

 
First we find the neutrosophic cosets of  ( ) :N C   

( ) ( )
( ) { } ( )
( ) { } ( )
( ) { } ( )

' '

' '

' ' ' '

00 ,

01 01,10, , 10 ,

0 0 ,1 , 0, 1 0 ,

0 0 ,1 , 1, 0 0

N C N C

N C II I I N C

I N C I I I I I N C

I N C I I I I I N C

+ =

+ = = +

+ = = +

+ = = +

 

 

These are the neutrosophic cosets of  ( )N C .  After computing the syndrome ( )TeN H  for every coset leader, 
we get the following syndrome table. 
 

Coset leaders Syndrome 

00  00  

01  1I  

0I  II  

'0I  ' 0I  

Table 3. 
 
Let 10y = , and we want do decode it. So 
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( ) ( ) [ ]

[ ]

1
1 0

1

1

T I
S y yN H

I
I

⎡ ⎤= = ⎢ ⎥
⎣ ⎦

=
 

 
Hence ( ) ( )10 01S S=  and thus y  is decoded as the neutrosophic codeword 

10 01
11

x y e
x

= − = −
=

 

 
Thus we can find all the decoding neutrosophic codewords by this way. 
Advantages and Betterness of Neutrosophic code 

1) The code rate of a neutrosophic code is better than the ordinary code. Since the code rate of a 

neutrosophic code is 
1k

n
+

, while the code rate of ordinary code is 
k
n

. 

2) The redundancy is decrease in neutrosophic code as compared to ordinary codes. The redundancy of 
neutrosophic code is ( )1n k− + , while the redundancy of ordinary code is n k− . 

3) The number of neutrosophic codewords in neutrosophic code is more than the number of codewords in 
ordinary code. 

4) The minimum distance remains same for both of neutrosophic codes as well as ordinary codes. 
Conclusion 
 In this paper we initiated the concept of neutrosophic codes which are better codes than other type of codes. We 
first construct linear neutrosophic codes and gave illustrative examples. This neutrosophic algebriac structure is 
more rich for codes and also we found the containement of corresponding code in neutrosophic code. We also found 
new types of codes and these are pseudo neutrosophic codes and strong or pure neutrosophic codes. By the help of 
examples, we illustrated in a simple way. We established the basic results for neutosophic codes. At the end, we 
developed the decoding proceedures for neutrosophic codes. 
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