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PREFACE

In this book for the first time the authors introduce the notion of real
neutrosophic complex numbers. Further the new notion of finite

complex modulo integers is defined. For every C(Z,) the complex
modulo integer ir is such that if =n — 1. Several algebraic structures on

C(Z,) are introduced and studied.

Further the notion of complex neutrosophic modulo integers is
introduced. Vector spaces and linear algebras are constructed using
these neutrosophic complex modulo integers.

This book is organized into 5 chapters. The first chapter introduces
real neutrosophic complex numbers. Chapter two introduces the notion
of finite complex numbers; algebraic structures like groups, rings etc are
defined using them. Matrices and polynomials are constructed using

these finite complex numbers.



Chapter three introduces the notion of neutrosophic complex
modulo integers. Algebraic structures using neutrosophic complex
modulo integers are built and around 90 examples are given. Some
probable applications are suggested in chapter four and chapter five
suggests around 160 problems some of which are at research level.

We thank Dr. K.Kandasamy for proof reading and being extremely

supportive.

W.B.VASANTHA KANDASAMY
FLORENTIN SMARANDACHE



Chapter One

REAL NEUTROSOPHIC COMPLEX
NUMBERS

In this chapter we for the first time we define the notion of
integer neutrosophic complex numbers, rational neutrosophic
complex numbers and real neutrosophic complex numbers and
derive interesting properties related with them.

Throughout this chapter Z denotes the set of integers, Q the
rationals and R the reals. I denotes the indeterminacy and I* = 1.
Further i is the complex number and i* = —1 or i = J-1. Also
Zul)={a+blla,be Z} =N(Z) and Zl = {al | a € Z}.
Similarly (Q U I) = {a+ bl la,be Q} = N(Q) and QI = {al |
ae Q). (Rul)={a+blla,be R} =N(R)andRI={allae
R}. For more about neutrosophy and the neutrosophic or
indeterminate I refer [9-11, 13-4].

Let CKZu)={a+bl+ci+dlila,b,c,de Z} denote
the integer complex neutrosophic numbers or integer
neutrosophic complex numbers. f inC(Z ul)=a=c=d=0
then we get pure neutrosophic numbers ZI = {al la e Z}. Ifc =
d = 0 we get the neutrosophic integers {a + bl  a, b € Z} =
N(Z). If b =d = 0 then we get {a + ci} the collection of
complex integers J. Likewise P = {dli | d € Z} give the



collection of pure neutrosophic complex integers. However dI
that is pure neutrosophic collection ZI is a subset of P. Some of
the subcollection will have a nice algebraic structure. Thus
neutrosophic complex integer is a 4-tuple {a +bl + ci+ dli | a, b,
c,d e Z}. We give operations on them. Let x =a+ bl +ci +dli
andy=m+nl+si+tlibein C{ZUI)). Nowx+y=(a+bl+
ci+dhi)+ (m+nl+si+th)=(@+m)+ (b +n)l+(c+s)+
(d+0)L.

(We can denote dIi by idI or ild or Iid or dil) we see x + y is
again in C((Z U I)). We see 0! =0 + OI + 0i + Ol acts as the
additive identity.

Thus 0] +x=x+ 0] =x for every x € C(Z U I)).

In view of this we have the following theorem.

THEOREM 1.1: C((Z ul)) ={a+bl+ci+idlla, b, c,deZ)}
is integer complex neutrosophic group under addition.

Proof is direct and hence left as an exercise to the reader.

Letx=a+bl+ci+idland y =m + nl + ti + isI be in C((Z
w I)). To find the product xy = (a + bl + ci + idl) (m + nl + ti
+ isI) = am + mbl + mci + imdI + anl + bnl + ncil + indI + ati +
ibtl + cti® + i*tdI + iasI + ibis + i’csI + i’dsI (using the fact I =
and i* = —1).

= am + mbl + mci + imdI + anl + bnl + incl + indI + iat +
ibtl — ct — tdI + iasI + ibis — csI — dsI

=(am—ct) + (mb + an + bn — td — cs — ds)I + i (mc + at) +
i(md + nc + nd + bt + as + bs)I.

Clearly xy e C (Z U D).

Now 1! = 1 + OI + 0i + i0I acts as the multiplicative
identity. For x 1! = 1!'x = x for every x € C ((Z U I}). Thus C

({(Z v 1)) is a monoid under multiplication. No element in C ((Z
w I)) has inverse with respect to multiplication.
Hence without loss of generality we can denote 1! by 1 and

0! by 0.



THEOREM 1.2: C((Z u 1)) is a integer complex neutrosophic
monoid or integer neutrosophic complex monoid commutative
monoid under multiplication.

Proof is simple and hence left as an exercise to the reader.

Also it is easily verified that for x,y,ze C (Z U 1))

Xx.(y+z) = x.y+x.z and (x+y)z = X.z + y.z. Thus product
distributes over the addition.

In view of theorems 1.2 and 1.1 we have the following
theorem.

THEOREM 1.3: Let S=(C((Z Ul)), +, X); = {a + bl + ci + idl
where a, b, ¢, d € Z}; under addition + and multiplication Xis a
integer neutrosophic complex commutative ring with unit of
infinite order.

Thus S = (C (ZuU D)), +, X) is aring. S has subrings and ideals.
Further C ((Z v I)) has subrings which are not ideals. This is
evident from the following theorem the proof of which is left to
the reader.

THEOREM 1.4: Let C ((Z U 1)) be the integer complex

neutrosophic ring.

i) nZlIl cC((Z vl))is a integer neutrosophic subring of C((Z
w1)) and is not an ideal of C((Z V1)) (n=1, 2, ...)

ii) nZ cC((Z ul))is an integer subring of C ((Z w 1)) which
is not an ideal of C ((Z U1)), (n=1, 2, ...)

iii) Let C(Z) ={a+ibla, beZ) cC((Z ul)), C(Z)is again a
complex integer subring which is not an ideal of C((Z U1)).

iv) Let S={a+bl+ic+idlla b, ¢c,denZ; 2<n< e} cC
((Zul)).
S is a integer complex neutrosophic subring and S is also an

ideal of C ((Z U 1)).

The proof of all these results is simple and hence is left as an
exercise to the reader.

We can define ideals and also quotient rings as in case of
integers Z.



Consider J={a+bi+cl+idlla,b,c,de 2Z} cC ((Z U
I)) be the ideal of C ((Z U I)).

C(zuT))
J

Consider ={J,1+)i+Lil+,I+),1+1i+],

1+I1+),  1+i0+), 1++I4),  1+i+d+), 1+I+04),  i+I+HI+],
1++1HI4]), i+14), i+HI4+), I+il+J}.  Clearly order of P =

Eﬁégﬂlmzf

We see P is not an integral domain P has zero divisors.
Likewise if we consider S = {a+bi+cl+idl | a, b, ¢, d, € nZ}
C((Zul)) Sisanideal of C (ZUD)).

Cc(zuT))
S

c(zul)
S

Clearly is again not an integral domain and the

number of elements in isn.

We can define different types of integer neutrosophic
complex rings using C(Z U I)).

DEFINITION 1.1: Let C ((Z 1)) be the integer complex
neutrosophic ring. Consider S = {(xy, ..., x,) | x; € C ((Z U1));
1 <i <nj}; Sis again a integer complex neutrosophic 1 xn row
matrix ring. The operation in S is taken component wise and we
get a ring. This ring is not an integral domains has zero
divisors.

We will give some examples of them.

Example 1.1: Let S = {(X|, X2, X3) | X, =a,+ bi + ¢l +idl | a,
b, ¢, di € Z; 1 <t < 3} be the integer neutrosophic complex
ring. S has zero divisors, subrings and ideals.

Example 1.2: Let V = {(Xy, Xa,..., X12) | Xg = a; + ib; + ¢ + id I
where a,, b, ¢, d € Z; 1 <t <12} be the integer neutrosophic
complex 1 X 12 matrix ring. V has zero divisors, no units, no
idempotents, subrings and ideals. V is of infinite order.

10



DEFINITION 1.2: Let S = {(ay) | aj € C ((Z v1)); 1 <i, j <n}
be a collection of n x n complex neutrosophic integer matrices.
S is a ring of n X n integer complex neutrosophic ring of infinite
order and is non commutative. S has zero divisors, units,
idempotents, subrings and ideals.

We give examples of them.
Example 1.3: Let
M = {(al azj
a, a,
be a 2 X 2 complex neutrosophic integer ring. M has subrings

which are not ideals.
For we see

o)

is a integer complex neutrosophic subring of M which is only a
left ideal of M. Clearly N is not a right ideal for

x 0)(a b xa xb
= ¢ N.

(y 0) (C dj (yc ydj
a b)(x 0} f(ax+by 0
c d/\y O - cx+dy O

is in N. Hence N is a left ideal and not a right ideal.
Consider

=4 7
0 0
is a subring but is only a right ideal as

X y)fa b xa+yc xb+yd T
= €
0 0)lc d 0 0

11

aieC(<ZuI>);1SiS4}

a,,b, e C((ZUI>)} cM

However

X,y€ C(<2u1>)} cM



but

a b)(x y| f[ax ay
c dJlo o) lex dy
is not in T hence is only a right ideal of M.

Example 1.3: Let
a, a, a, a,
a
Tt lajec(zul)y;l<i<lie
a12
a3 Ay A5 A,

be a integer complex neutrosophic ring of 4 X 4 matrices.
M is not commutative. M has zero divisors.

1000
o100
ba=10 01 0

0001

in M is such that L4 is the multiplicative identity in M.

Consider
b, b, b, b,
0 b. b, b
P= >0 T b eC(Zul)yl<i<lor cM
0 0 b, b,
0 0 0 b,

is an integer complex neutrosophic subring which is not a left
ideal or right ideal of M.

Consider
a, 0 0 O
a, a, 0 O _
T= a,e C(ZUD);1<i<10p =M
a a a

W

12



is an integer complex neutrosophic subring only and not a left
ideal or a right ideal of M.

Now we can proceed onto define polynomial integer complex
neutrosophic ring.

DEFINITION 1.4: Let

V= {i ax'
i=0

be the collection of all polynomials in the variable x with
coefficients from the integer complex neutrosophic integral ring
C ((Z v 1) with the following type of addition and
multiplication.

Ifp(x) =ap+ax+ ... +ax"and g(x) =by+ bix+ ... +
bx" where a, b; € C((Z Ul)); 1 <i <n; areinV then
p(x)+q(x)=(ap+ax+...+ax")+ (bg+bix+..+b,x")

=(ap+by) +(a;+b)x+ ...+ (a,+b,)x" V.

a,eC((ZuI})}

The 0 = 0 + Ox + ... + OxX" is the zero integer complex
neutrosophic polynomial in V.
Now

p(x). q(x) =ap by + (apb; + a; bp) x + ... +a, b, "
isinC((Z ul).1 =1+ 0x+ ...+ 0x"inVissuchthatp (x). I
=1.p(x)=p(x).

(V, +, .) is defined as the integer complex neutrosophic
polynomial ring.

We just enumerate some of the properties enjoyed by V.
(1) V is a commutative ring with unit.
(i1) V is an infinite ring.

We can define irreducible polynomials in V as in case of usual
polynomials.

pXx)= x’—2 € V we see p (x) is irreducible in V.

qx) = X’ —3 € Vis also irreducible in V.

qx)= x'2 = 5 is also irreducible in V.

p (x) = x> + 4 is irreducible in V.

13



Thus in V we can define reducibility and irreducibility in
polynomials in V.

Letp(x) € Vifp(x) =(x—ay) ... (x —a,) where a; € C(Z L
I)); 1 <1 <t then p(x) is reducible linearly in a unique manner
except for the order in which a;’s occur.

It is infact not an easy task to define relatively prime or
greatest common divisor of two polynomials with coefficients
from C ((Z u I)). For it is still difficult to define g ¢ d of two
elements in C (Z U I)).

Forifa=5+3landb=(7+ 5I) wecansay gcd(a,b)=1,
ifa=3+i—4landb=4i—-2lthenalsogcd(a, b)=I.

Ifa=3+3i+6l+9landb=121+ 18i + 24 then gc d (a,
b) =3 and so on.

So it is by looking or working with a, b in C (Z U I)) we
canfind g c d.

Now having seen the problem we can not put any order on
C ((Z u I)). For consider i and I we cannot order them for i is
the complex number and I is an indeterminate so no relation can
be obtained between them. Likewise 1 +iandI and so on.

Concept of reducibility and irreducibility is an easy task but
other concepts to be obtained in case of neutrosophic complex
integer polynomials is a difficult task.

Thus

C{Z u)x] = {iaixi

a,e C((Q uI>)}

is a commutative integral domain. Let p(x) and q(x) € C((Z U
I)[x], we can define degree of p (x) as the highest power of x
in p(x) with non zero coefficients from C({Z U I)).
So if deg(p(x)) = n and deg q(x) = m and if n < m then we
can divide q(x) by p(x) and find
40 _ s S0
p(x) p(x)

where deg s(x) < n.

14



This division also is carried out as in case of usual
polynomials but due to the presence of four tuples the division
process is not simple.

Z[x] cC (ZuD)[x]=S. Thus Z [x] is only a subring and
Z[x] is an integral domain in C ((Z U 1)) [x] = S. Likewise ZI[x]
c C ((Z u D)) [x] is again an integral domain which is a subring.

Consider P={a+blla,be Z} c C(Z u D) [x], P is again
a subring which is not an ideal of C((Z U I)) [x].

AlsoC (Z)={a+1ibla, b e Z} is again a subring of C(Z L

D)[x].
Further

C@Z)x]= {i ax’

i=0

a; € C(Z)} cC(Zul) [x]

is only a subring of C ((Z U I)) [x] which is not an ideal.
Likewise

C(ZD[x] = {iaixi

i=0

a,eC(Zl);aj=a+iba,be ZI} c S

is only a subring of S and is also an ideal of S.

Several such properties enjoyed by C ((Z U I)) [x] can be
derived without any difficulty.

We can also define the notion of prime ideal as in case of
C(zul) [x].
Now we can also define semigroups using C ((Z U I)).

Consider

laie C(ZuD); 1<i<n}=H;

H is a group under addition but multiplication cannot be defined
on H. So H is not a ring but only a semigroup. Thus any
collection of m X n matrices with entries from C ((Z U I)) (m #
n) is only an abelian group under addition and is not a ring as
multiplication cannot be defined on that collection.

15



We can replace Z by Q then we get C({(Z U 1)) to be rational
complex neutrosophic numbers. Also C(Z U )) c CKQ u D).

CQul)={a+bi+cl+idlla, b, c,de Q} is a ring.
Infact C ((Q U I)) has no zero divisors.

For if we take
x=6+2i-31+4il
and
y=a+bi+cl+dil
inC (Qu).
Xy = (6+2i-31+4il) (a+bi+cl+dil)
= 6a+ 2ai—3al + 4ail
6bi — 2b — 3bil — 4bl
6cl + 2cil — 3cl + 4 cil
6dil — 2dI — 3dil — 4dI
= (6a-2b)+I1(2a+6b)+(—3a—-4b+6c—-3c—2d-
4d)I+(4a—3b+20+4C+6d 3d)
= 0
6a=2b 2a+6b=0
b=3a a=-3b thisis possible only whena=b =0
3c—6d=0 c=2d
6c+3d=0 d=-2c
Soc=d=0.

Thus a=b =c=d=0. Butin general C({Q U I)) is not a field.
This field contains subfields like Q, S = {a +ibla, b e Q}

C ((Q u I)) contains also subrings.

We can build algebraic structures using C ((Q U I)). We call C

({Q w I)) as the rational complex neutrosophic like field. C ((Q

w D)) is of characteristic zero C ((Q U I)) is not a prime like

field for it has subfields of characteristic zero.

C ((Q v I)[x] is defined as the neutrosophic complex
rational polynomial;

CUQU ) [x] = {Zax

a,e C((Qu 1})} .
C (Q u I)) is not a field, it is only an integral domain we can

derive the polynomial properties related with rational complex
neutrosophic polynomials in C ((Q U I)) [x].

16



C(Q u D) [x] can have ideals. Now consider T = {(xy, X»,
X lxpe CQuUTI)); 1<i<n};Tis a rational complex
neutrosophic 1 X n matrix. T is only a ring for T contains zero
divisors but T has no idempotents;T has ideals for take P = {(x,
X2, X3, 0, ..., 0l x,e C(QuUTI)); 1<i<3} cTis asubring as
well as an ideal of T.

T has several ideals, T also has subrings which are not
ideals. For take S = {(x1, X2, X3, ..., Xp) | xie C(ZuUD); 1<i
<n} c T; S is a subring of T and is not an ideal of T. We can
have several subrings of T which are not ideals of T.

Now we can define M = {A = (a;) | Ais a n X n rational
complex neutrosophic matrix with aj € C (Q U I)); 1 <i,j<n}
to be the n X n rational complex neutrosophic matrix ring. M
also has zero divisors, units, ideals, and subrings. For consider
N = {collection of all upper triangular n X n matrices with
elements from C ((Q U I))} < M; N is a subring of M and N is
not an ideal of M. We have T = {all diagonal n X n matrices
with entries from C ((Q U I))} < M; T is an ideal of M.

All usual properties can be derived with appropriate
modifications. Now if we replace Q by R we get C (R u I)) to
be the real complex neutrosophic ring. C ((R U I)) is not a field
called the like field of real complex neutrosophic numbers.
C (R U D)) is not a prime field. It has subfields and subrings
which are not subfields.

All properties enjoyed by C({(Q w I)) can also be derived for
CRUID). WeseeC(RUD)) D CQuUID)DC(ZUD).

We construct polynomial ring with real complex
neutrosophic coefficients and 1 X n matrix ring with real
complex neutrosophic matrices. Likewise the n X n real
complex neutrosophic matrix ring can also be constructed. The
latter two will have zero divisors and units where as the first
ring has no zero divisors it is an integral domain.

17



Now we have seen real complex neutrosophic like field, C
(R U D).

We proceed onto define vector spaces, set vector spaces,
group vector spaces of complex neutrosophic numbers.

DEFINITION 1.4: Let V be a additive abelian group of complex
neutrosophic numbers. Q be the field. If V is vector space over
Q then define V to be a ordinary complex neutrosophic vector
space over the field Q.

We will give examples of them.

Example 1.5: Let

a, a,
a, a,

V={la; ag|laeC(QuUI)I<i<IO0
a; 4ag
_a9 al()_

be an ordinary complex neutrosophic vector space over Q.

Example 1.6: Let

M:{{al azi|
a, a,

be the ordinary complex neutrosophic vector space over Q.

a e C(<Qu1>);13134}

Example 1.7: Let

a, a, a
1 2 3

P= ( J
a, a; ag

be the ordinary complex neutrosophic vector space over Q.

a,e C((QuUI))l<is 6}

We can as in case of usual vector spaces define subspaces
and basis of P over Q.

18



However it is pertinent to mention here that we can have
other types of vector spaces defined depending on the field we
choose.

DEFINITION 1.5: Let V be the complex neutrosophic additive
abelian group. Take F = {a + bil a, b € Q; 2 =-1); ifVisa
vector space over the complex field F; then we call V to be
complex - complex neutrosophic vector space.

We will give examples of them.
Example 1.8: Let
Ve a, a, a, a,
aS aG a7 aS
be a complex - complex neutrosophic vector space over the field

F={a+bjla,be Q}.
Take

W a, a, a,; a,
0 0 O
is a complex - complex neutrosophic vector subspace of V over

F. Infact V has several such subspaces.
Take

W o a, 0 0 a,
"“1lo a, 0 0
a complex - complex neutrosophic vector subspace of V over

the rational complex field F.
Suppose

0 0 0 O
W2 =
a, 0 a, O

is a complex - complex neutrosophic vector subspace of V over
F.

a,e C(QUI));I<i< 8}

a,e C((QuUI)1 3134}

a, e C(<QuI>);l£is3}g Vv,

a,,a, € C(<QUI>)} cV

19



Consider
W, = 0 a a, O
0 0 0 a
W3 is a complex - complex neutrosophic vector subspace of V
over F.
Clearly
V = W uW,uW;

= W1 + W2 + W3.
Thus V is a direct sum of subspaces.

a,,a,,a, € C((QuI))} cV;

Example 1.9: Let

V=1<la, a, a, a,||laeC(QuUI);I<i<20

be a complex - complex neutrosophic vector space over the
complex field F = {a + bila, b e Q}. V has subspaces and V
can be written as a direct sum / union of subspaces of V over F.

Now we can define complex neutrosophic - neutrosophic
like vector space or neutrosophic - neutrosophic vector space
over the neutrosophic like field (Q U I) or (R U I).

DEFINITION 1.6: Let V be an additive abelian group of
complex neutrosophic numbers. Let F = (Q U I) be the
neutrosophic like field of rationals. If V is a like vector space
over F then we define V to be a neutrosophic - neutrosophic
complex like vector space over the field F (complex
neutrosophic - neutrosophic vector space over the field F or
neutrosophic complex neutrosophic vector space over the field
F).

We will give examples of this situation.

20



Example 1.10: Let

a, a,
a; a,

V=14|a; ag|laeC(QuUI);1<i<l6
a a

16 |

be a neutrosophic complex neutrosophic like vector space over
the neutrosophic like field F = (Q U I).

Example 1.11: Let

a, a, a; a,

a a

6

7% a,e C(QUI));1<i<l16

all

10
a3 Ay A5 A,

be a neutrosophic - neutrosophic complex like vector space over
the neutrosophic like field (Q U I) = F.

Take

[a, a, 0 O]

p=d® % 0 O ceqouiisisal v,
0o 0 o0 o =
0 0 0 0]
[0 0 a, a,]

p=d|0 Ot Rl codQuisisaleV,
000 0 =
00 0 0]

21



0 0 0O
P;= 0 0 00 a,e C(QuUI);l<i<4; cV
a, a, 0 O[] N
a, a;, 0 O
and
00 0 O
P, = 0000 a,e C(QuI);l<i<d4r cV
0 0 a a,l||' -
0 0 a; a,
be subspace of V.

Clearly V=P, + P, + P3;+ Psand PN Pi=(0)ifi#j,s0V
is a direct sum of subspaces of V over F = (Q U I).

Consider

[a, 0 0 a,
\Y% 0.0 00 C(QuI));l<i<6r cV
= a. e U AS1s c Vv,
: 0 a, a, O[]

10 0 a5 ag

[a, a, a, O]
vz P % 000 c(Quisl<i<6l cV
= a. e U A1 c Vv,
1o o o oll”

10 0 0 ag]

fa, 0 0 O]

0 a, a, a
V; = > g e c{QuI):l<i<6er C V,
3a5000.(<Q>) c

|0 0 0 O]

22



a, 0 0 0
0 0 a, 0 _

V,= a,e C(QuUI));1<i<7; cV,
a, a, a; a
0 0 0 a,

and

fa, 0 0 a,

v 0 0 a0 a,e C(QUIYI<i<T cV
0 0 0 a,lf|' =
la; a, a; O

issuch that V=V, UV, U V; U V, U Vs but Vi NV = (0) if
1# jso Vis only a pseudo direct sum of the subspaces of V over
F. Now we have defined neutrosophic complex - neutrosophic
like vector spaces over the neutrosophic like field.

We now proceed onto define special complex neutrosophic like
vector space over the complex neutrosophic like field.

DEFINITION 1.7: Let V be an abelian group under addition of
complex neutrosophic numbers. Let F = C ((Q U 1)) be the
complex - neutrosophic like field of rationals; if V is a vector
space over F then we define V to be a special complex
neutrosophic like vector space over the complex neutrosophic

rational like field F = C ((Q U 1)).
We will give examples of them.

Example 1.12: Let

where a; € C(Q U I)); 1 <i < 15} be the special complex
neutrosophic like vector space over the complex neutrosophic
like field of rationals C(Q u I)) =F.
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It is easily verified V has subspaces. The dimension of V over
Fis 15.

For take
~_To]l T[o][o]
0 . .
1 0 : :
1
0 1 0|0
B= . ) 0 ) 9eeey s CV
: , 0 0[]0
0l : 1110
0
-0 (0] 1]
is B is a basis of V over F.
Example 1.13: Let
a, a, a, a,
V=1dla; a, a, ag|[aeC(QuUI);I<i<I2

be a special complex neutrosophic like vector space over the
field F=C (Qu D).

Now we can define like subfield subspace of a vector space.

DEFINITION 1.8: Let V be an additive abelian group of
complex neutrosophic numbers. 'V be a special complex
neutrosophic vector space over the complex neutrosophic like
field

F=C(Qul)={fa+bi+cl+idlla b, c de Q)

Let W c 'V, W also a proper subgroup of Vand K c F. K
the neutrosophic like field (Q v 1) cC ((Q v 1)) = F.

If W is a vector space over K then we define W to be a
neutrosophic subfield complex neutrosophic vector subspace of
V over the neutrosophic like subfield K of F.

We will give examples of this situation.
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Example 1.14: Let

a, a; a,

V=1dla, a; a, |[aeC(QuUI);l<i<ls
a a4 ap
_al3 a4, a;

be a special complex neutrosophic vector space over the
complex neutrosophic like field F = C (Q U I)).

Nothing is lost if we say neutrosophic field also for we have
defined so but an indeterminate or neutrosophic field need not
have a real field structure like a neutrosophic group is not a
group yet we call it a group.

Take
_al a, a3_
0 0 0
W=40 0 0]laeC(Qul)l<i<6r cV;
0 0 0
|3, a5 ag|

take K=(Q uU I) c F=C ((QuU I); W is a neutrosophic
special complex neutrosophic vector subspace of V over the
neutrosophic like subfield (Q U I) of F=C ((Q U D).

Consider
[a, 0 0]
0 a, O
M=:0 0 a,|laeC(QuUI)l<i<5cV
a, 0
10 a; O

take K={a+ibla,be Q} cF= C (Qu I)) acomplex
subfield of C ((Q U I)). W is a special complex neutrosophic

complex subvector space of V over the rational complex
subfield K of F.
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Suppose

a, 0 a,
0 a, O
S=4la, 0 a,(|aeC(QUI);I<i<8l V.
0 a, O
la; 0 ag]

Take Q < C ((Q U 1)) = F the field of rationals as a subfield of
F. S is a ordinary special neutrosophic complex vector subspace
of V over the rational subfield Q of F=C (Q U I)).

All properties can be derived for vector space over C ((Q U I)).

It is interesting to see that only these special neutrosophic
complex vector spaces has many properties which in general is
not true over the usual field Q.

THEOREM 1.5: Let V be a special neutrosophic complex vector
space over C ((Q w1)). V has only 2 subfields over which vector
subspaces can be defined.

When we say this it is evident from the example 1.14, hence left
as an exercise to the reader.

THEOREM 1.6: Let V be an ordinary neutrosophic complex
vector space over the field Q. V has no subfield vector subspace.

Proof easily follows from the fact Q is a prime field.

THEOREM 1.7: Let V be a neutrosophic complex neutrosophic
vector space over the neutrosophic field (Q v 1) = F. V has
only one subfield over which vector subspaces can be defined.

THEOREM 1.8: Let V be a complex neutrosophic complex
vector space over the rational complex field F = {a + ib |l a, b €

Q}. V has only one subfield over which subvector spaces can be
defined.
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Proof follows from the fact Q c F.
We see

Qc(Qu HcC(KQu D),
QcC@Q={a+ibla,be Q} cC(Qu D).

These spaces behave in a very different way which is
evident from the following example.

Example 1.15: Let

al a2 a3
V =<la, a, a,|la,eCQUD);I<i<9
a; g dy

be a special complex neutrosophic vector space over the
complex neutrosophic like field F = C (Q U I)).
It is easily verified V is of dimension 9 over F = C (Q U

I)). However V has special complex neutrosophic subspaces of
dimensions 1, 2, 3,4, 5, 6, 7 and 8.
Now consider

a, a, O
W=410 a, 0]|laeCQuUD);l<i<4; cV.
0 0 a,

W is a special subfield neutrosophic complex neutrosophic
vector subspace of V over the neutrosophic subfield (Q U I) of
F. Clearly dimension of W over (Q U I) is not finite. Suppose
W is considered as a special neutrosophic complex vector
subspace of V over F = C ((Q U I)) then dimension of W over
F is four.

W as a special complex neutrosophic complex vector
subspace over the rational complex field K={a+ibla,b e Q}
c C ((Q u I)) which is also of infinite dimension over K. W as
a special neutrosophic complex ordinary vector subspace over
the rational field Q is also of infinite dimension over the rational
subfield Q of F.
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Consider

a, 0 a,
T=40 a, O0||a,eQl<i<5; cV.
a, 0 a;

T is a special neutrosophic complex ordinary vector subspace of
V over Q dimension 5.
Clearly T is not defined over the subfield, (Q U 1) of C(Q)

or C{KQu D).

Consider
0 a O
S=4qla, 0 a;|la,e(QuUI)I<i<4,cV
0 a,

be a special neutrosophic-neutrosophic complex vector
subspace of V over the neutrosophic rational subfield (Q U I).
S is of dimension four over (Q U I). S is also a special
neutrosophic complex ordinary vector subspace of V over the
rational field Q and S is of infinite dimension over Q. Clearly S
is not a vector subspace over C(Q) = {a +ibla, b e Q} or

CQuU ).
Consider
al a2 a3
P=<10 a, a,|la,eCQ)
0 0 a

={a+ibla,be Q},1<1<6} cV,Pis a special complex
neutrosophic complex vector subspace of V over the rational
complex field C(Q) of dimension 6. P is also a special complex
neutrosophic ordinary vector subspace over the field of rationals
Q of infinite dimension.

Clearly P is not a special complex neutrosophic complex
vector subspace of V over (Q U I) or C ((Q U I)). As it is not
defined over the two fields.
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Thus we have seen several of the properties about special
neutrosophic complex vector spaces defined over C ((Q U I)).
We now proceed onto define the linear algebra structures.

DEFINITION 1.9: Let V be a ordinary complex neutrosophic
vector space over the rationals Q. If on V a product . can be
defined and V is compatible with respect to the product *.’, then
we call V to be a ordinary complex neutrosophic linear algebra
over the rational field Q.

We provide examples of them.

Example 1.16: Let
V= {|:al az:|
a, a,
be an ordinary complex neutrosophic linear algebra over Q. V
is of infinite dimension over Q. V has linear subalgebras. It is
interesting to notice V is also a vector space but all ordinary

complex neutrosophic vector spaces over Q need not in general
be linear algebras.

a; € C((QUI>);13134}

In view of this we have the following theorem.

THEOREM 1.9: Let V be an ordinary neutrosophic complex
linear algebra over the rationals Q, then V is an ordinary
neutrosophic complex vector space. If V is an ordinary
neutrosophic complex vector space over Q then V in general is
not an ordinary neutrosophic complex linear algebra over Q.

The proof is straight forward hence left as an exercise for the
reader. On similar lines we can define neutrosophic - complex
neutrosophic linear algebra over (Q U I), neutrosophic complex
- complex linear algebra over C(Q) = {a +ibla, b € Q} and
special neutrosophic complex linear algebra over C({(Q U I)).

We give only examples of them as the definition is a matter
of routine.
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Example 1.17: Let

V= {iaixi

i=0

a; e CKQ UD)}

be a neutrosophic complex neutrosophic linear algebra over the
neutrosophic field F = (Q U I).

Example 1.18: Let M = {All 5 X 5 upper triangular matrices
with entries from C ((Q U I))} be a neutrosophic complex

neutrosophic linear algebra over the neutrosophic field (Q U I)
=F

Example 1.19: Let P = {all 10 x 10 matrices with complex
neutrosophic entries from C(Q w I))} be a neutrosophic
complex neutrosophic linear algebra over the neutrosophic field
F=(Qul. M= {all 10 x 10 upper triangular matrices with
complex neutrosophic entries from C((Q u I))} < P is the
neutrosophic complex neutrosophic linear subalgebra of P over
the field F = (Q U I).

This space is of infinite dimension over (Q U I) = F.
Example 1.20: Let

P= {i ax'
i=0

be a complex neutrosophic complex linear algebra over the
complex rational field C(Q) = {a+ bila, b e Q}.

a; e CQ UD)}

Example 1.21: Let

a, a, a; a,

0 a; a, a, _
V= a,e C(Zul));1<i<10

0 0 a; a

0 0 0 a

be a complex neutrosophic complex linear algebra over the
rational complex field C(Q) ={a+bila,b € Q}.
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Example 1.22: Let M = {all 8 x 8 lower triangular complex
neutrosophic matrices with entries from C ((Q v I))} be a
complex neutrosophic complex linear algebra over the complex
field C(Q)={a+bila, be Q}.

Example 1.23: Let

al a2 a3
T=4la, a; a,|la,eCQUI));1<i<9
a; g g

be an ordinary neutrosophic complex linear algebra over the
rational field Q.

Example 1.24: Let A = {all 10 x 10 upper triangular matrices
with complex neutrosophic entries from the complex
neutrosophic field} be an ordinary neutrosophic complex linear
algebra over the field of rationals Q.

Example 1.25: Let

B= {i ax'
i=0

a,e C(Q u1>>}

be a special neutrosophic complex linear algebra over the
neutrosophic complex field C ((Q U I)).

Example 1.26: Let

al a2 a3
C=4<0 a, a |la,eCQuUD);I<i<6
0 0 a

be a special neutrosophic complex linear algebra over the
neutrosophic complex field C ((Q U I)).

Clearly C is of dimension 6 over C ({(Q L I)). We can derive

almost all properties of vector spaces in case of linear algebras
with simple appropriate modifications.
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We can also define the notion of linear transformation and
linear operators.

We can define linear transformation T of neutrosophic
complex vector spaces from V to W only if V and W are
defined over the same field. Also T (I) =1 is a basic criteria for
the transformation for the indeterminancy cannot be mapped on
to any other element.

Likewise if W is replaced by V this linear transformation T of V
to V becomes the linear operator. All properties associated with
linear transformation and linear operators of neutrosophic
complex vector spaces can be easily derived in case of these
operators.

We can now define the characteristic values and
characteristic vectors as in case of complex neutrosophic vector
spaces / linear algebras defined over the fields.

DEFINITION 1.10: Let V be a special complex neutrosophic
vector space over the complex neutrosophic field C ((Q U 1)).
Let T be a special linear operator on V. A complex
neutrosophic value of T is a scalar ¢ in C ((Q 1)) so that there
is a non zero neutrosophic complex vector ain V with Tat = c.
If c is the special characteristic value of T then
i) any & such that T = ca is called the characteristic
neutrosophic complex vector of T associated with c.
ii) The collection of all « such that Ta = ca is called
the neutrosophic complex characteristic space
associated with c.
If the complex neutrosophic field C((Q 1)) is replaced by (Q
vl)or CQ) = {a + bila b e Q) or Q we get the
characteristic value c as neutrosophic number a + bl or ¢ + di
or a respectively and the associated characteristic space of
them would be a neutrosophic complex neutrosophic subspace
or complex neutrosophic complex subspace or ordinary
complex neutrosophic subspace respectively.

The following theorem is left an exercise for the reader to
prove.
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THEOREM 1.10: Let T be a complex neutrosophic linear
operator on a finite dimensional special (ordinary or complex
or neutrosophic) complex neutrosophic vector space V and let ¢
be a scalar in C((Q v 1)) (or Q or C(Q) or (Q U I)
respectively),
The following are equivalent

i) cis the characteristic value of T.

ii) The operator (T — cl) is singular.

iti) det (T —cl) = 0.

We can define diagonlizable linear operator as in case of other
linear operator. Also we will show by an example how to find
the characteristic polynomial in case of special (ordinary or
complex or neutrosophic) matrices.

Let

| a+bi+cl+dil a,+b,i+c,I+d,il

" la,+bji+c,I+dil a, +bi+c,I+dil|
be a 2 X 2 matrix with entries over the field C ((Q U I)) such
that the matrix (M — cl,,) is non invertible.

All results related with linear operators of special (ordinary or
complex or neutrosophic) vector spaces can be derived as in
case of wusual vector spaces with simple appropriate
modifications.

Now we proceed onto define the concept of linear functionals.
We can define four types of linear functionals.

Let V be a special neutrosophic complex vector space over
the neutrosophic complex field F = C((Q U I)). The special
linear functional on V is a map (a linear transformation) f: V —
F such that

Fca+p)=cf()+fP)
o BeVandCe C(QuUI)).

We will first illustrate this by an example.
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Example 1.27: Let

V= a, a, a

a, ay, a,

be a special neutrosophic complex vector space over the
neutrosophic complex field F = C((Q UL I)).

a,e C(QuUI))1<i< 6}

Define f: V — F by

¢ a, a, a, =Zélai'
a, as; ag pary

Clearly f is a special linear functional on V.

If V is a neutrosophic complex neutrosophic vector space
over the neutrosophic field K = (Q U I). We definef: V - K
and f (v) € {(Q U I) that is only neutrosophic number.

Example 1.28: Let

’|la,e C(QUD);1<i<6

be a neutrosophic complex neutrosophic vector space over the
neutrosophic field (Q U I) = K.
Define f: V— K by

a,
a2
f . =(a11+...+a16)+(cn+...+cl6)l

ag
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where a; =ap; + blli + CHI + id]]I
a =ap+t+ blzi + Clzl + idlzl

and A = a1+ b16i + C16I + id16I.

Clearly

f =(a11+...+a16)+(cn+...+cl6)l

ag

is in (Q W I) is a neutrosophic linear functional on V.

Example 1.29: Let V = {(a;, a5, a3) laje C((QuUD); 1<i<3}
be a complex neutrosophic complex vector space over the
rational complex field K=C(Q)={a+ibla,be Q}. Letf:V
— K defined by f (a;, a, a3) = (a;; + a;p + ag;3) + 1 (byy + by +
b3) where

a = a11+blli+CHI+idHI
a = ap + blzi + Clzl + idlz I
and a = a;z + b13i + C13I + id13I

where a;;, by, cjand d;; arein Q; 1 <j <3.

Clearly f is a complex linear functional on V. Now we proceed
onto give an example of a ordinary linear functional on V.

Example 1.30: Let

Q= a;+ ib]i + CliI + id]iI

where aj;, by, €15, dij € Q; 1 <i<3 and 1 <j <4} be an ordinary
neutrosophic complex vector space over the rational field Q.
Define f: V— Q by
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al a2
f =aj +ap+aps;
a, a,

f is an ordinary linear functional on V.

Now having seen the definitions of linear functionals
interested reader can derive all properties related with linear
functionals with appropriate changes. We can now define set
neutrosophic complex vector spaces, semigroup neutrosophic
complex vector spaces and group neutrosophic complex vector
spaces. Also the corresponding linear algebras.

DEFINITION 1.11: Let V < C ((QUl)) be a proper subset of
complex neutrosophic rationals. S < Q be a subset of S. We
define V to a set complex neutrosophic vector space over the set
ScQifforallveVands €S, vsand sv € V.

We give examples of this situation.

Example 1.31: Let

a,

V={(@,a,a), |a, a,]|,

as

20 .
2ax

i=0

a,.e C{QUI));0<i< 20}

be set vector space of neutrosophic complex rationals over Z <
Q or set complex neutrosophic rational vector space over the set
Z.

Example 1.32: Let
Ve a, a,|| 0 a a, a,
0 a,|la, 0 a, O

1 £1 <5} be a set complex neutrosophic vector space over the
setS=1{0,1,2,3,4,12,17,-5,-9,-23} c Q.

ae CQuUI;
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Example 1.33: Let

a,

8 : a
V=Y ax,(a,85,85,..85),] . || a€ C(QUID);

i=0

4,

0 <1< 20} be a set neutrosophic complex vector space over the
set S={0, -1, 1}.

Now having seen examples of set neutrosophic complex vector
spaces we now proceed onto define set neutrosophic complex
vector subspaces of V over the set S.

Let V be a set complex neutrosophic vector space over the
set S. Suppose W < V and if W itself is a set complex
neutrosophic vector space over the set S then we define W to be
a set complex neutrosophic vector subspace of V over S.

We will illustrate this situation by some examples.

Example 1.34: Let

o
a,| |

V={(a,a,,a,),| a, ,Z:aixi ae CQUI));0<i<5}
a4 i=0
L35

be set vector space of neutrosophic complex rationals over the

set S ={0, 1}.
Consider
o
0
W =1:(0,a,,0),| a, | |a,.a,,a,€ C(QUIN} CV,
0
L33 ]
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W is a set vector subspace of neutrosophic complex rationals
over the set S ={0, 1}.

Take
o
a, 3
M= {(a;,a,.a,).| a; [Y ax'| ae C(ZuUI))
214 i=0
L35

c CQu ) 0<Li<5) c Vis a set complex neutrosophic
vector subspace of V over the set S = {0, 1}.

Example 1.35: Let

a, a, a,||a a, .. a,
25
V= i A4 s Ag | [ A . Ay
- Zaix ) . . . D)
i=0 : a5 Ay a3
Qg Ayg A3y | [ A3 Az ... Ay

a€ C (QuUT; 0<1i<40} be a set neutrosophic complex
vector space over the set {-5, 4, 2, 1, 3, 8, 10,0} < S.

Consider

_al %2 a3_ [ a a a, |

0 0 0 1 2 b 10

s 0 0 0 0 o .. 0

W = Zaixi, . . . s

= 0 0 0 a21 a22 a30

0 0 0
184 a5 ag | -

a,2€ CQuUD);0<a;<12,3=1,2,3,4,5,6,7,8,9, 10,
21, 22, ..., 30} < V is a set neutrosophic complex vector
subspace of V over the set S.

Now as in case of usual set vector spaces we can derive all
the related properties we can also define the notion of subset
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neutrosophic complex vector subspace over a subset, which is
simple and left as an exercise to the reader.

We give examples of this structure.

Example 1.36: Let

a€ C((QuUT); 1<i< 16} be a set neutrosophic complex
vector space over the set S =3Z U 5Z U 72 U 13Z.

Consider
0 a, O
a, 0 a, 1 2
a, a, 0 O 0 a, 0 a,
P= 0 0 a; 0],
0 0 a, a, a, 0 a;, O
4 0 5
0 a, 0 a

a€ C(QuTI); 1<i<8} cV;Pis a subset neutrosophic
complex vector subspace of V over the subset T = 3Z U 13Z
S.

Also
a, 0 0 O
al a2 a3
0 0 0 O 0 a, 0 O
M= O 0 0
a, a, a,; a, 0 0 a 0 0 a, O
0 0 0 a,

2, CQuUD);1<i<4} cV, Mis a subset neutrosophic
complex vector subspace of V over the set T =3Z U 5Z c S.
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Example 1.37: Let

4, a,
29
V= P @3 Ay a4, a,
- aix ) . . s ,(31,32,33,34)
i=0 . . .‘:13 .‘:14
4, 34,

g€ C ((QuUTI;0<i<29)be a set neutrosophic complex
vector space over the set S = 3Z" U 52 U 7Z".

Consider
fa 0]
a, 0
20
M= ;aixi,LOz ﬂ 8 8 ,(a,,0,,,0)
0 O
L3 ]

a € C(QuT);0<i<20} ¢ V;is a subset neutrosophic
complex vector subspace of V over the subset T = {3Z" U 57}
c S. Take

_al 0]
a, 0
.10 Ofja; O

P= Z;aix ,Ll 0}, 2, 0 ,(0,0,a,,a,)
a; 0
L3s 0

ae C(QuUTI));0<i<10} cV, is a subset vector complex
neutrosophic subspace of V over the subset T = 7Z"  S.

We can define set linear transformation, set linear operator
and set basis of a set neutrosophic complex vector space over
the set S, which is left as an exercise as it can be carried out as a
matter of routine. We can also define special set neutrosophic
complex vector space over the complex neutrosophic subset of

CQ U ).
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Example 1.38: Let

al a2 a3
al a2 a2 .
V= J T a, as; ag|la,e CQUID);1<i<9
a, a, :
a, a; a,
ag

be a set neutrosophic of complex neutrosophic vector over a set
S={L,i, 1 +1 3i— 1, 2I+1+5i + 181} < C({Q UI)). We observe
S & Q so we call such vector spaces as special set vector spaces.

DEFINITION 1.12: Let V be a set vector space of complex
neutrosophic rationals (set complex neutrosophic rationals
vector space) over a set S < C ((Q U 1)) and S & Q then we
define 'V to be a special set vector space of complex
neutrosophic rationals over the set S if vs and sv € V for all s €
Sandv e V.

We will illustrate this by some examples.

Example 1.39: Let

a, a,||a a a
1 2 1 2 o 7
V= { },{ },(al,az,...,am)
a, a,||ag a, .. a,

a; € C((Q u I));1 <£i<14} be a special set complex neutrosophic
rational vector space over the set S=C (ZuUI)) cC (QuU D).

Example 1.40: Let

a,
R a, a a a
1 2 9 2
M=<|a, a5 a, ,{ },
alO all a18
a, ag; a,
a;

41



a € C(Q u D); 1 <i < 18} be a special set neutrosophic
complex vector space over the set S = C({3Z ul)) c CKQ u D).

Example 1.41: Let

a4 Ay a,
V=13(a,a,,.,3),| a5 a, a, ag ,Zaix'
i=0
a A Ay Ap
aa € C{Q u I); 0 <i < 12} be a special set complex
neutrosophic vector space over the set C((3Z U I)).

Example 1.42: Let

a, a,
a; A, | a, a,
a, a, a, )
M= a. a ax',a, a
)| As 6 | X sldy Ay
a, a5 34 i—0
a; ag a5 4
139 @y |

a € CQ U I); 0 <i < 25} be a special set complex
neutrosophic vector space over the set S = {C((5Z U I)) U
C(13Z u I))}.Take

10 la, 0 a
P= a.Xl, 1 2 ,
{; ! {0 a, 0}

P is a special set neutrosophic complex vector subspace of V
over S. Consider

aieC(<QuI>);0SiS10} cV,

0 a

a, % a, O
W=<:0 a, ,Zaixi, 0 a,||aeC(QuUI);0<i<20}

a, 0]"° a, 0

|0 ay |
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c V, W is a special set complex neutrosophic vector subspace
of V over the set S.
Consider

B=4¢0 00 0[>ax'|aeC(Qu)

0<i<5}cV,takeT={C (252U ) UCKI9ZUI)} cS;
we see B is a special subset complex neutrosophic vector
subspace of V over the subset T of S.

Now having seen examples of special set subspaces and
special subset vector subspaces of complex neutrosophic
rationals we proceed onto define the notion of semigroup
complex neutrosophic vector space and special semigroup
complex neutrosophic vector space.

Just we mention in case of special set neutrosophic complex
vector space also one can define special set linear
transformations provided both the special set vector spaces are
defined over the same set of complex neutrosophic numbers.
Further the basis, direct sum of subspace and other properties
can be easily derived as a matter of routine. All these work is
left as exercises to the reader.

DEFINITION 1.13: Let V be any subset of complex neutrosophic
numbers and S be any additive semigroup with zero. We call V
to be a semigroup neutrosophic complex vector space over S if
the following conditions hold good.

i) vs=sveVforallseSandveV.
ii) O0v=0¢€ Vforallve Vand 0 € S; 0 € Vis a zero
vector.

iii) (s;+82)v=sv+svforalls;, s; € Sandv e V.
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We will first illustrate this situation by some examples.

Example 1.43: Let

4, 4,
a a a a al a2 alO
3 4 )
V= ’{ :|’ 4, ap ay
a; a,
ay Ay a3
a9 3y

a € C(Q u D); 1 £1i < 30} be a semigroup neutrosophic
complex vector space over the semigroup S = Z" U {0}.

Example 1.44: Let

40 .
M= Zaix', ,
= a, a, a, a

a € C(Q U T)); 0 <ic< 40} be a semigroup neutrosophic
complex vector space over the additive semigroup S = 5Z° U

{0}.

Example 1.45: Let

e C((QuT); 1<i<10} be a semigroup neutrosophic
complex vector space over the semigroup S = 2Z" U {0}.
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Consider

v 4 | 0 a, 0 0 a, .
= ’ > ayayayaya
0o off.la, 0 00 o "

C (Qu )} c P; Vis a semigroup neutrosophic complex vector
subspace of P over the semigroup S.

Also
B 0 a,|(a, a, a 0 O
“lla, 0l0o 0 0 a a

a;, a3 € C (Q u D}c B is a subsemigroup neutrosophic
complex vector subspace of P over the subsemigroup A = 8Z"
U {0} of the semigroup S.

Here also all properties of semigroup linear transformation of
vector spaces can be obtained provided they are defined over
the same, semigroup, semigroup linear operator and basis can be
defined as in case of usual semigroup vector spaces.

Example 1.46: Let

a, a,
4, a, a; 3, a;
vol|a a, a,
= s|dy A5 Ag Ay Ay |,
a; a,
a; a5 A9 A Ay
4, 3y

a € CHQ U I)); 1 <1i< 15} be a semigroup complex
neutrosophic vector space over the semigroup S = 3Z* U {0}.
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Consider

ae C(QuUI);1<i<4}cV,

L llae cQuDy1<i<isicV

and

Ws=4| 7 PllaeCQu); 1<i<10}cV

a9 3y

be semigroup complex neutrosophic vector subspaces of V over
the semigroup S = 3Z" U {0}. It is easily seen V = W; + W, +
Wi and W; " W;=¢; 1 <1, j<3. Thus V is a direct sum of
semigroup complex neutrosophic vector subspaces of V over S.

Let
a, 0 0 0 a,
a, a,
W, = { }, 0 0 a, 0 O
a, a,
0 0 0 a, O
ae C(QuUD); 1<i<4}cV,
0 0
a, a, a, a, a5 (|0 O
a 0
W2={ }, a, a, ag a, ay[,|]0 O
0 a,
4 ap A3 ay 3 0 0
L& 2 ]

ae C(QuI); 1<i<15}cV and
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fa o]
a, 0 0 O a,;||a, a,
W;=40 0 a, 0 O0]]a; a
0 0 0 a, Of|a, a,

_a9 alO_

ae C(QuUI)); 1<i<10} cV;clearly Wy + Wo + W3 =V
and WiNnW; z¢ifi#j;1<1i,j<3. Thus V is only a pseudo
direct union of subspaces.

We define special semigroup complex vector as follows.

DEFINITION 1.14: Let V be a semigroup neutrosophic complex
vector space over the complex neutrosophic additive semigroup
S. Then we define V to be a special semigroup neutrosophic
complex vector space over the semigroup S.

We will illustrate this situation by some examples.

Example 1.47: Let

a; € C(QuUI)); 1<i<40} be a special semigroup neutrosophic
complex vector space over the complex neutrosophic additive
semigroup S = C ((3Z U I)).

Example 1.48: Let

28
6 al a2 A alO i
o, Sax
: e Ay | S

11 12
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a € C(QuUT)); 0<i<45} be a special semigroup complex
neutrosophic ~ vector space over the  semigroup under
addition S = C({5Z U ).

Example 1.49: Let

4 a,
12 a2, a a a
i 3 4 .
M=:>ax'|a, a; ag|, D0 |aeCQUD);0<i<32
i=0 . .
l a7 aS a9
43 4y

be a special semigroup complex neutrosophic vector space over

the neutrosophic complex semigroup S = C((10Z U I)) under
addition.

Take
6 al a2 a3

V=1>ax'.|0 a, a|la,eC(QUD);0<i<6f M
= 0 0 a,

be a special semigroup complex neutrosophic vector subspace
of M over the neutrosophic complex semigroup S.
Take

a, O
6 la, O
P= >ax'| [ .|laeC(QuUD);0<i<l6r cM

i=0
a, O

be a special subsemigroup complex neutrosophic subvector
space of M over the subsemigroup T = C ((40Z U I)) < S under
addition. We can also write M as a direct sum of subspaces as
well as a pseudo direct sum of special semigroup vector
subspaces.

Now we proceed onto define the notion of set linear
algebra, special set linear algebra, semigroup linear algebra and
special semigroup linear algebra using complex neutrosophic
rationals.
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DEFINITION 1.15: Let V be a set neutrosophic complex vector
space over the set S. We define V to be a set complex
neutrosophic linear algebra over the set S if s (a + b) = sa + sb
foralla, b e Vands € S.

We give examples of them.

Example 1.50: Let

a  a,
33 a4 .

V= . Clla, e CKQuUD)1<i<l4
a3 Ay

be a set complex neutrosophic linear algebra over the set S =
5Z v 72).

Example 1.51: Let
M = {|:al azi|
a, a,

be a set complex neutrosophic linear algebra over the set S = 3Z
CNVACKRYA

a,e C(QuUI))l<i< 4,><}

Example 1.52: Let

a a a
1 2 12
\/l = |: i|
a13 a14 a24

be a set neutrosophic complex linear algebra over the set S = 5Z
u2Zu 177

We a, 0 a, .. a, O
0 a, 0 .. 0 a,
c M is a set neutrosophic complex linear subalgebra of M over
the set S. Take

R = {al a, .. al}
b, b .. b

a,e C(QUI)I<i< 24}

a,,a5,...,a,, € C((QUI))}

a,.b € C((Q u1>>} o M;
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R is a set neutrosophic complex linear algebra over the set S =

52027 U 177.
Consider

a, 0 a; 0 a;, 0 .. a, O
A=
a, 0 a, 0 a, 0 .. a, O

C M be a subset complex neutrosophic linear subalgebra of M
over the subset T =5Z U 2Z c S.
Suppose

goJ|® & o B
0 0 .. O

B is a subset neutrosophic complex linear subalgebra of M over
the subset R = 17Z < S.

a; € C(QUD);
1<i<12

a.e C((QuI));lSiSlz} cM;

Example 1.53: Let

4

7

a
a
a > |la, e CUQUD);1<i <18
a

10

a3 Ay A

a16 a17 a18

be a set neutrosophic complex linear algebra over the set S =

37" U {0}.
Consider

_31 a, a3_

0 0 0

W, = %A a,e C{QUD));1<i<6

0 0 0

0 0 0

|0 0 0
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a proper subset of M,

[0 0 0]
al a2 a3
0 0 O .
W, = a, e C(QUD);I<i<6, M,
a, ay; a,
0 0 O
10 0 0]
[0 0 0]
0 0 O
0 0 O
W; = 0 0 0 a,a,,a,e CQUID);y cM
a, a, a,
10 0 0]
and
[0 0 0]
0 0 O
W, = 0 00 aeCQuD);lki<3; cM
0 0 of|" o
0 0 O
|3, a, a;]

be set neutrosophic complex linear subalgebras of M over the
set S.

Clearly M =W, + Wy + W3+ Wyoand Wi M W; = (0) if i # J;
1<1i,j<4. Thus M is the direct sum of sublinear algebras of
M. Now we can also define special set linear algebra of
complex neutrosophic numbers.

We will give only examples of them and their substructures as it
is a matter of routine to define them.

51



Example 1.54: Let

4 9y
a
!l aie C(QUD)1<i<I8

4y A

be a special set linear algebra of complex neutrosophic rationals
over theset S =C ((Z U I)).

Example 1.55: Let

al a2 alO
M=4la, a, a,, [[a,€ CKQUI));1<i<30
A, Ay .. Ay

be a special set neutrosophic complex linear algebra over the set
S=C((BZul) uC(KSZuUD).

Example 1.56: Let

a, a, .. a
V — |: 1 2 40i|
a,, a, .. ag
be a special set complex neutrosophic linear algebra of V over

theset S=C ((3ZuU ) UC (5Z U )).
Take

Mo a, a, 0 .. 0 a,
a, a; 0 .. 0 a
c V be a special set complex neutrosophic linear subalgebra of
V over the set S.

a,e C(QuUI))l<i< 80}

a,e C(QuI))1<i< 6}
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Consider

T a, a, .. a,
0O o0 .. 0

be a special set complex neutrosophic linear subalgebra of V
over S.
Take

- {0 0 .. a40}
a, a, .. O
and subset T=C ((3ZuU 1)) c S.
A is a subset special neutrosophic complex sublinear algebra of
V over the subset T =C((3Z U I)) < S.
Having seen examples of substructures in case of set special
neutrosophic complex linear algebra over the set S, we now

proceed onto give examples of semigroup complex neutrosophic
linear algebras and their substructures.

a, € C((QuI));lSiS40} cV,

a e C((QuI));1£i$40} cV

Example 1.57: Let

al a2 a3
V=1la, a, a,||a,eCQUD);I<i<9
a; g g

be a semigroup linear algebra of complex neutrosophic numbers
over the semigroup S =Z" U {0}.

Example 1.58: Let P = {all 10 x 10 neutrosophic complex
numbers from C ((Q w I))} be a semigroup neutrosophic
complex linear algebra of complex numbers over the semigroup
S =57

Clearly V = {all 10 x 10 upper triangular neutrosophic
complex numbers with entries from C ((Q U I))} < P is a
semigroup neutrosophic complex linear subalgebra of P over S.

Take W = {all 10 x 10 diagonal neutrosophic complex
matrices with entries from C ((Q U I))} <€ P; W is a
subsemigroup complex neutrosophic linear subalgebra of P over
the subsemigroup T = 15Z, a subsemigroup of 5Z = S.
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Example 1.58: Let

a, a,||la,eCQuD)l<i<ls

be a semigroup complex neutrosophic linear algebra over the
semigroup S = 2Z.
Let

a a a a

1 4 a; a4, A
Mi=4/0 0 0 0 0]laeCQul);l<i<iO

dg a7 dg A9 Ay

C V be a semigroup complex neutrosophic linear subalgebra of
Vover S =27.

0O 0 0 0O
My=4la, a, 0 0 Ofla,a,eCQUIL); CV,
0O 0 0 0O

is a semigroup complex neutrosophic linear subalgebra of V
over S = 27.

00 0 0 O
M;=<0 0 a, a, a,||a,a,eCQUI),cV
00 0 0 O

is a semigroup complex neutrosophic linear subalgebra of V
over S = 27.

We see V=W, + W, + W3 where Wi "' W; =(0),1 <1,

J < 3. Thus V is a direct sum of semigroup linear subalgebras of
complex neutrosophic numbers over S = 2Z.
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Let

M,

1l
o
o
o
o
o

a e C(QuUD)l<i<al cV,

My=4|0 a, 0 0 0 ||laeC(QuUI);I<i<6!cV,

Ms=<a, a, 0 0 O |la,eCQUD)I<I<T: cV,
lag a;, 0 0 a,|
0O a a, a, O

My=<la, a;, 0 a, a,||a,eCQUD);I<I<8: CV,
0 0 a, 0 O
a, 0 0 0 a,

Ms=4/0 0 a, 0 a,||la,eCQuUD)I<i<6; cV
a, 0 a; 0 a

be semigroup complex neutrosophic linear subalgebras of V
over the semigroup S.

We see
5
v=Jw
i=1
but Wi N W; = (0); ifi#j, 1 <1, j<5. Thus V is the pseudo

direct sum of semigroup complex neutrosophic linear
subalgebras of V over S.
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Example 1.60: Let

A=3la, a, a; a, a;|laeCQuUI);I<i<25

be a semigroup neutrosophic complex linear algebra over the
semigroup S = 10Z.
Take

a, 0 a, 0 a,

M=4qla, 0 a, 0 a;|la,eCQUD);I<i<I3: CA;

is a subsemigroup neutrosophic complex linear subalgebra of A
over the subsemigroup 40Z =T of S = 10Z.

We can have several such subsemigroup complex
neutrosophic linear subalgebras of A over T < S.

Now we give examples of special semigroup neutrosophic
complex linear algebras and their substructures.

Example 1.61: Let

7 g L
. . |la, e CQuUD)1<i<o4
dg dgp Adg Ay

be a special semigroup complex neutrosophic linear algebra
over the semigroup C ((Z U I)).
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Example 1.62: Let

a, a, a9
Clas g . ay L
M=+ . C. L 3 e CKQUD)1<i<60
351 352 eee 360

be a special semigroup neutrosophic complex linear algebra
over the semigroup C ((Z U I)).

Example 1.63: Let

7 Ag . .
a.e C(QUI));1<i<16,+

a3 Ay A5 A

be a special semigroup neutrosophic complex linear algebra
over the semigroup S = C ((Q U I)).

We see V is of finite dimension and dimension of V is 16
over S.

Take M = {set of all 4 X 4 upper triangular matrices with
entries from C ((Q U I))} < V; V is a special semigroup
complex neutrosophic linear subalgebra of V over S.

Consider
a, 0 0 O
0 a, 0 O )
H= a,e CQuUD);1<i<4;, CV,
0 0 a,
0 0 0 a,

H is a special subsemigroup complex neutrosophic linear
subalgebra of V over the subsemigroup T = C (Z U I)) c C ((Q
u ).
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Take

a, a, 0 O

W, = a, a, 00 a,,a,,a;,a,€ CQUD); CV,
0O 0 0O B
0O 0 0O

W, is a special semigroup of complex neutrosophic linear
subalgebra of V over C ((Q U I)).

&

W, = a,.e C(QUI),1<i<2} cV

oS O o O
oS O o O
o o O

is also a sublinear algebra of V.

0 0 0O
0 0 0O _
W; = a,e C(QUI)),1<i<4, cV
a, a, 0 O
a, a, 0 0

is also a special semigroup complex neutrosophic linear

subalgebra of V over C ((Q U I)).
Let

0

W, = apazeC«QUD) cV;

o O o O
o O o O
oS o fP o

be a special semigroup neutrosophic complex linear subalgebra
of V over the semigroup S.
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00 0 O
00 0 O
Ws = a,a,e CQuUI);, cV
0 0 a, a,
00 0 O

be a special semigroup neutrosophic complex linear subalgebra
of V over the semigroup S.

Clearly W + Wy + W3+ Wi+ Ws = V with Wi W;=(0) ;
1#j;1<1,j<5, butstill V is not a direct sum of subspaces. On
the other hand suppose we add the special semigroup complex
neutrosophic linear subalgebra.

00 0 O

We = 000 a,a,e CQuUI)r CV,
0 0 O o
0 0 a a,

then V=W; + Wy + W3 + Wy + Ws + Wgand W; " W; = (0) if
i#],1<1,j<6.
Thus V is a direct sum of subspaces.

Example 1.64: Let

al a2 a3
V=1la, a, a,||a,eCQuUD);I<i<9
a, ag a,

be a special semigroup neutrosophic complex linear algebra
over the neutrosophic complex semigroup S = C ((Q U I)).

a, 0 a,
W, =<0 a, 0]a,a,,a,eCQUI); CV;
0 0 O
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[a, a, O]
W,=4<0 a, 0 ||la,eCQUD);I<i<4; cCV,
10 0 a,]
a, 0 a,]
Wi;=<la, 0 a,|la,eCQuUD)I<i<5: cV
0 0 a,|
a, 0 O
and W,=4<0 a, a,||la,eCQUD);I<i<6;cV
a, as a

be the collection of special semigroup complex neutrosophic
linear subalgebra of V. We see

v-Uw
i=1

and Wi N W; = (0);if i #j, 1 <1, j <4, thus V is only a pseudo
direct sum of subspaces of V.

We can as in case of semigroup vector spaces define the notion
of linear transformations of special semigroup complex
neutrosophic linear algebras only if both these linear algebras
are defined over the same complex neutrosophic semigroup.
We can also define linear operator of special semigroup
complex neutrosophic linear algebras over the semigroup of
complex neutrosophic numbers.

Further the notion of basis and dimension can also be
defined. Now we proceed onto define the notion of group
neutrosophic complex vector space and other related concepts.

DEFINITION 1.16: Let V be a set of complex neutrosophic
numbers with zero, which is non empty. Let G be a group under
addition.

We call V to be a group neutrosophic complex number
vector space over G if the following conditions are true.

60



i. ForeveryveVandgeVgvandvgareinV.
ii. 0.v=0foreveryv eV, 0is the additive identity of G.

We give examples of them.

Example 1.65: Let

V= ,
c d

be a group complex neutrosophic vector space over the group
G="7

,(a,b,c,d) |a,b,c,de C{QUI))

o o o &

Example 1.66: Let

a,
v i cla,|(a, a, .. ag)la,eCQUI)),
=q>ax,| | .
i=0 l a, a, 4 A6 0<i<21
a,

be a group complex neutrosophic vector space over the group G
=37

Example 1.67: Let

7 aS .
. . |la,e CKQuUID),1<1<48
s Aye Ay Ayg
be a group complex neutrosophic vector space over the group G

=Q.
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Example 1.68: Let

al
20 . a

V=Y ax'| ] (a,8,,..8,)[a,€ C(QUI),0<i<20
i=0 .

4,

be a group complex neutrosophic vector space over the group G

=Q.
Consider
a
aZ
15 la aeC ul)),
H= Zaix‘, ’ .(0,a,,0,a,,00...00) | (§Q 2
Py 0 0<i<15
- 0 -
c V; His a group complex neutrosophic vector subspace over
the group G = Q.
Take

12
P= {Zaixi,(al,az,a3,a4,0,...,0) a, € C((QuI)),OSiSlz}
i=0

c V; P is a group complex neutrosophic vector subspace of V
over G.

Example 1.69: Let

Q. a, a3
4, a, a9 i
V= a, a. a Za.x'
s 4 5 6 |° 1
a4, 3y 4y i=0
a, ay a,

a € C ((Qu); 0<i<20} be a group complex neutrosophic
vector space over the group G =Z.
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Consider

a a a
W 1 2 o 10
1 |: i|
a,, a, ... Ay

a.e C(QUIY),I<i< 20} cV,

al a2 a3
W,=<la, a, a,||a,eC(QUI)1<i<9:cV
a, ag a

and

W; = {Zglaixi

i=0

aieC((QuI>),0SiS9} cV

be group complex neutrosophic vector subspaces of V over G.
Further V=W, + W, U W3;; Win W; = (0); ifi#j, 1 <1,
< 3. Let

a, a a K4 .
B= 1 2 10 , a-xl
‘ {0 0 .. 0 ZO:

a, e C((QuI)),OSiSlO} cV

[a, a, .. a
B, = ! 2 10} a,e C(QuUI)),1<i<20;, cV
(@) A, . Ay
and
a, a, a
a, a, 0 .. 0 a I i
B;= { o 9}’ a; a5 8 ,Zaix'
a, a, 0 .. 0 a, a a a i=0
7 8 9

€ C(QuT); 1<i<10} < V be group complex
neutrosophic vector subspaces of V over the group G.

Clearly V=B, UB, UB;3; BinBj# ¢; 1 <1, j <3, hence
V is a pseudo direct union of subspaces.
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We say a group complex neutrosophic vector space V over
a group G is said to be a group complex neutrosophic linear
algebra over the group G if V is a group under addition. We
give examples of group complex neutrosophic linear algebra
over group G.

Example 1.70: Let

28 .
V= {Z a;x'
i=0

a,e C(QuUI)),0<i< 28}

be a group complex neutrosophic linear algebra over the group
G="7

Example 1.71: Let

V= a, a, a
a, ay; a,
be a group neutrosophic complex linear algebra over the group
G=3Z.

a e C(QUI)),I<i< 6}

Example 1.72: Let

*lla,e C(QUI),1<i<16

be a group neutrosophic complex linear algebra over the group
G="7

a, 0 a, O
0 a, a, )
W= a,e C(QuUI)),1<i<8; CV;
a;, 0 a, O
0 a, 0 a
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be a group neutrosophic complex linear subalgebra of V over
the group G = Z.

a, 0 0 O
a, a, 0 O .

M= a,e C(QUI)),1<i<10;, cV
a, a; a

be a group neutrosophic complex neutrosophic complex linear
subalgebra of V over the group G =Z.

Example 1.73: Let
_ 4 5 a6 .
V= ) ) . lla,e CQUI)),1<i<27

be a group complex neutrosophic linear algebra over the group
G="7

Take

P=4{0 0 0]laecqQul)i<i<3tcV,

[0 0 0
a, 00 _

Po=ql . . .]|la€eC(<QuUI>)I<i<8; cV,
a, 0 0
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0 0 O
0 a a,
0 a, a,
P;=4<10 a; a,||a,eCQUD)I<i<6;CV,
0 0 O
10 0 0]
[0 0 0]
0 0 O
0 0 O
P,=<0 0 O0fla,eCQuUI))1<i<5; cV
0 a, O
10 a; 0
and
[0 0 0]
00 O
00 O
Ps=4/0 0 O ||]a,eCQuUI)),1<i<5; cV
0 0 a,
10 0 aj

be group complex neutrosophic linear subalgebras of V over the
group G. Now we have V=P, +P,+P;+Ps+Psand P, P;
=) ifi#j, 1<1i,j<5. Thus V is the direct sum of group
complex neutrosophic vector subspaces Py, Py, ..., Ps of V over
G.
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Example 1.74: Let
°lla,e CQUID),1<i<12

be a special semigroup linear algebra of neutrosophic complex
numbers over the complex neutrosophic semigroup S = C((Z U
I)). Take

®lla,e C(ZUD),1<i<12} CV,

P is a special semigroup linear subalgebra of complex
neutrosophic numbers over the neutrosophic complex
semigroup S = C ((Z U I)). We see P cannot be used to find a
direct sum of sublinear algebras however, P can be used in the
pseudo direct union of sublinear algebras.

Further we define special subsemigroup pseudo complex
neutrosophic linear subalgebra of V.

We say a proper subset T of V is a pseudo special
semigroup complex neutrosophic linear subalgebra of V over
the pseudo subsemigroup B of S if B is just a semigroup of reals
and T is also only reals.

We proceed onto give examples of this situation.
Example 1.75: Let

a, a, a
1 2 3
a, a; ag

be a special semigroup complex neutrosophic linear algebra
over the complex neutrosophic semigroup S = C ((Z U I)).

a.e C((ZuI)),l£i£6}
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Let
p= a, a, a
a, ay; a,
P is not a special semigroup linear subalgebra over the
semigroup S = C ((Z U I)), but P is a semigroup linear algebra
over the semigroup Z = T. Then P is defined / called as the

pseudo special semigroup of complex neutrosophic linear
subalgebra over the pseudo subsemigroup T = Z.

aieQ,ISiS6} cV,

Infact P is also a pseudo special semigroup complex
neutrosophic linear subalgebra over the pseudo special
subsemigroup M = 3Z" U {0}.

Thus we have infinite number of pseudo special semigroup
complex neutrosophic linear subalgebras over the pseudo
special subsemigroups N of S.

Now we can also have pseudo special neutrosophic semigroup
linear subalgebras over the pseudo neutrosophic subsemigroup
B of S.

We will illustrate this situation also by examples.

Example 1.76: Let

V= {|:al a2i|
a, a,
be a special complex neutrosophic linear algebra over the

complex neutrosophic semigroup S = C (Z U I))}.
Take

W = a, a,
a, a,
be the pseudo neutrosophic subsemigroup special complex

neutrosophic linear subalgebra of V over the pseudo
neutrosophic subsemigroup B = (Z U I) of S.

a,e C(QuUI)),1<i< 4}

aie(<QuI>),1SiS4} cV
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Now consider
A= {|:al azi|
a, a,
be a pseudo special subsemigroup complex neutrosophic linear
subalgebra of V over the pseudo neutrosophic subsemigroup

(3Z U I) of the neutrosophic complex semigroup S.
Consider

N = a, a,
a, a,
N is a pseudo special subsemigroup linear subalgebra of

neutrosophic complex numbers of V over the neutrosophic
subsemigroup T = {3Z U I} = S.

a.e C((ZuI)),l$i£4}

a e ((ZuI)),lSiS4} cV,

We can have several such examples. The following theorem is
sufficient to prove these.

THEOREM 1.11: Let V be a special semigroup neutrosophic
complex linear algebra over the complex neutrosophic
semigroup S.

1.V has pseudo special neutrosophic subsemigroup complex
neutrosophic linear subalgebras over the pseudo
neutrosophic subsemigroup of S.

2.V has pseudo special ordinary subsemigroup complex
neutrosophic linear subalgebra over the pseudo real
subsemigroup of S.

Example 1.77: Let

al az
.’:13 .‘:14 .
V=14 . . [laeCQuI))l<i<Io6

a5 A

be a special semigroup complex neutrosophic linear algebra
over the semigroup S = C ((Q U I)). Clearly dimension of V
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over S is 16; however if S is replaced by T=C (Z U 1)) = S
then the dimension of V over T is infinite.

So we can have special subsemigroup linear algebras to be
of infinite dimension even when the dimension of the special
semigroup linear algebra is finite dimension over the semigroup
S but of infinite dimension over the subsemigroup of S.

Example 1.78: Let

ae C(QuUI)

Oy
Oy

be a special semigroup linear algebra of complex neutrosophic
number over C ((Q U I)). Dimension of V is one.

Clearly V has no special semigroup linear subalgebras but
V has pseudo ordinary special subsemigroup linear subalgebras
and pseudo neutrosophic special subsemigroup linear
subalgebras.

For

ae C{Zzul); CV,

<
Il
O oD o o D W

Oy

is a pseudo neutrosophic subsemigroup linear subalgebra over
the pseudo neutrosophic subsemigroup T =(Z U I) € C(Q U

D).

Likewise
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ae/Z

Z
1l
O I O )

Oy

is a pseudo ordinary subsemigroup neutrosophic complex linear
subalgebra over the pseudo ordinary subsemigroup B =7 c S.

Thus we can say, V is a special semigroup neutrosophic
complex linear algebra over S to be simple if it has no proper
special semigroup neutrosophic complex linear subalgebra
over S.

Example 1.79: Let

a a a
V=4la a a|laeCKQuUI))
a a a

be a special semigroup neutrosophic complex linear algebra
over the semigroup S = C (Q U I)). V is simple. However V
has special subsemigroup complex neutrosophic linear
subalgebras M over the subsemigroup T = C(Z U I)) ¢ C(Q
U I)) =S where

a a a
M=<la a a|laeC(Zul); cV.
a a a

Also we consider

b b b
N={b b bllacC3ZuU)! cV;
b b b

N is a special subsemigroup neutrosophic complex linear
subalgebra of V over the subsemigroup B = {C ((2Z U 1))}  S.
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DEFINITION 1.17: Let V be a ordinary (neutrosophic or
special) semigroup complex neutrosophic linear algebra over
the ordinary semigroup S (or neutrosophic semigroup or
complex neutrosophic semigroup). If on V we can define a
product and V is compatible with product (V is a semigroup
with respect to another operation apart from addition) then we
define V to be a ordinary (neutrosophic or special) semigroup
double linear algebra over the ordinary semigroup S (or
neutrosophic semigroup or neutrosophic complex semigroup).

We will illustrate this situation by some simple examples.

Example 1.80: Let

al a2 a3
V=4la, a, a,||a,eCQUI))I<i<9
a, ag a,

be a ordinary semigroup complex neutrosophic linear algebra
over S = Z. V is clearly a ordinary semigroup complex
neutrosophic double linear algebra over S where S = Z.

Example 1.81: Let

P= {iaixi

i=0

a,e C(Q u1>>}

be a ordinary semigroup complex neutrosophic double linear
algebra over the semigroup S = 3Z" U {0}.

We can define substructure, basis, linear operator and linear
transformation which is just a matter of routine.

We have the following interesting result.

THEOREM 1.12:  Every ordinary semigroup complex
neutrosophic double linear algebra over the semigroup S is a
ordinary semigroup complex neutrosophic linear algebra over S
but however in general a ordinary semigroup complex
neutrosophic linear algebra is not a double linear algebra.
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For the latter part of the proof we give an example.

Example 1.82: Let

fa o]
a, a,

M= q{la; a, ||a,e C(QUID));1<i<10
a, ag
_a9 al()

be an ordinary semigroup complex neutrosophic linear algebra

over the semigroup S = Z" U {0}. Clearly M is not an ordinary
semigroup complex neutrosophic double linear algebra over S.

Example 1.83: Let

V= {i ax'
i=0

a; e C(Q UD)}

be an ordinary semigroup complex neutrosophic double linear
algebra over the semigroup S = 3Z" U {0}.
Consider

M= {iaixi

i=0

a, € C<<2u1>>} cV;

M is also an ordinary semigroup complex neutrosophic double
linear subalgebra of V over the semigroup S.
Take

i=0

20 .
P= {Zaix'

a; € C(<QuI>)} cV;

P is only a pseudo ordinary semigroup complex neutrosophic
double linear subalgebra of V over S or ordinary semigroup
complex neutrosophic pseudo double linear subalgebra of V
over S for on P product cannot be defined.

This same concept of double linear algebra can be easily
extended to the case of special semigroup complex neutrosophic
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linear algebras, complex semigroup complex neutrosophic
linear algebras and neutrosophic semigroup complex
neutrosophic linear algebras. The definition is a matter of
routine so we give only examples of them.

Example 1.84: Let

M= {iaixi

i=0

a; e C(Q UD)}

be a neutrosophic semigroup neutrosophic complex double

linear algebra over the neutrosophic semigroup S = (Z U I).
Take

100 .
P= {Z a;x'

i=0

a, € C<<2u1>>} cM;

P is only a neutrosophic semigroup neutrosophic complex linear
subalgebra which is not a double linear subalgebra of M. We
call T a neutrosophic semigroup neutrosophic complex pseudo
double linear subalgebra of M. Thus apart from double linear
subalgebras we can also have pseudo double linear subalgebras
of M.

Example 1.85: Let

7 ]a e C(QUI)),1<i<20

be a complex semigroup neutrosophic complex semigroup
neutrosophic complex linear algebra over the complex
semigroup C (Z)={a+bila,be Z} =S.

Clearly V is not a double linear algebra.

Example 1.86: Let

S:{{al a2i|
a, a,

a,e C(QuUI)),1<i< 4}
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be a complex semigroup complex neutrosophic double linear
algebra over the complex semigroup T=C (Q)={a+1ibla,be

‘ x= {3

We see
is only a complex semigroup complex neutrosophic pseudo
double linear subalgebra of S over T.

For we see if

0 a 0 c
A= and B =
b O d 0
0 a||0 c ad O
AB = = ¢ X.
b 0f|d O 0 bc

Hence X is only a pseudo linear subalgebra of S over T.

Tl

be again a complex semigroup neutrosophic complex double
linear subalgebra of S over the semigroup T.
Let us consider

a 0
L=
s 2
L is again a complex subsemigroup neutrosophic complex
double linear subalgebra over the complex subsemigroup C (Z)
=f{a+bila,be Z} cC(Q)=T.
Now having seen neutrosophic and complex double linear

algebra we now proceed onto give examples of special
semigroup neutrosophic complex double linear algebras.

a,be C((QuI))} cS

in X then

a,b,ce C{Q uI))} c S,

a,be C((QUD)} cS,
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Example 1.87: Let

al aZ a3
V=4la, a, a,||a,eCQUI)),I<i<9
a, ag a,

be a special complex neutrosophic double linear algebra over

the neutrosophic complex semigroup S = {C (Q U I))}.
Consider

al aZ a3
A=30 a, a,|la,eC(QuUD)1<i<6; CV,
0 0 a

A is a special complex neutrosophic double linear subalgebra of
V over the complex semigroup S = {C ((Q U I)}.

Take
0 0 a

B=30 a, 0]|aeCQuI)1<i<3; cV;
a, 0 O

B is a special neutrosophic complex pseudo linear subalgebra
of V over S.

For if
0 0 a 0 0 b
x=|0 a, Ojandy=|0 b, 0|€B;
a, 0 O b, 0 O
0 0 a|]|0 O b
xy=0 a, 0|0 b, O
a, 0 O||b; O O
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so B is only a pseudo linear subalgebra of V over S.
Now consider

a, 0 O
L=4la, a;, 0 |]la,eCQUI)),I<i<6;CV,
a, a5 a

be a special subsemigroup complex neutrosophic double linear
subalgebra of V over the special subsemigroup T = C ((Z U I))
c S;of S.

Let
a, a, a,
P=1<la, a; a,|la,eC(ZUI)),1<i<9; cV
a, ag a,

be a pseudo special complex subsemigroup complex
neutrosophic double linear subalgebra of V over the complex
subsemigroup N = {(a +ib) la, be Z} < S, N a pseudo special

subsemigroup of S.
Let
al a2 a3
C=<la, a, a,|la,e(ZUl))1<i<9; cV
a, ag a,

be a pseudo neutrosophic special subsemigroup of double linear
subalgebra of V over the neutrosophic subsemigroup E =
{(zul)} < S, E is a pseudo neutrosophic special subsemigroup
of V over S.

We can define basis, special double linear transformation,
double operator and so on as in case of usual semigroup linear
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algebras in case of semigroup neutrosophic complex linear
algebras.
This task is also left as an exercise to the reader.

Now we will proceed onto continue to define and work to group
neutrosophic complex vector spaces / linear algebras.

Example 1.88: Let

a, ||a,e CUQUI,1<i<12

a4 3 A Ap

be a group complex neutrosophic linear algebra over the group
S =7
Let

a, ||a,e C(ZuU),I<i<12} cV

a 3 A Ap

be a pseudo semigroup complex neutrosophic linear subalgebra
of V over the semigroup T =Z" U {0} < Z.

That is T is a Smarandache special definite group as it has a
proper set which is a semigroup. We define a group
neutrosophic complex linear algebra V to be a group
neutrosophic complex double linear algebra if V is endowed
with another operation product.

We will illustrate this situation by some examples.

Example 1.89: Let

al a2 a3
M= 4la, a, a,||a,eCQUI))I<i<9
a, ag a,
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be a group neutrosophic complex double linear algebra over the
group G = Q. We can find substructures of M. Clearly M is
also compatible with respect to matrix multiplication.

Example 1.90: Let

7 dg .
a,e C{QUI)),1<i<16

be a group neutrosophic complex double linear algebra over the
group G = Q.

Consider

7 A .
a.e C(ZUT)),1<i<16

a3 Ay A5 A

c V, M is a subgroup neutrosophic complex double linear
subalgebra of V over the subgroup H=72c Q =G.

Take
a, 0 0 O
0 a, 0 O )
N = a,e CQuUI)),I1<i<4;, CV,
0 0 a,
0 0 0 a,

be a group neutrosophic complex double linear subalgebra of V
over the group G = Q.
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Let

a, a, 0 O
Lod|® 2 00N croumcizal o
o 0o o0 ol =
00

o
o

L is also a group neutrosophic complex double linear subalgebra
of V over the group G = Q.

Let
0 0 a a,
0 0 a;, a, _
A= 0 0 a,e C(QuUI)),1<i<4, cV
00 0 O

be a group complex neutrosophic linear subalgebra of V, infact
a double linear subalgebra of V over G.

For if
0 0 a b 0 0 e f
0 0 c¢c d 0 0 g h
X = andy: e A
00 0 O 0 0 0 O
00 0 O 0 0 0 O
then
0 0 a b 0 0 e f 00 0O
0 0 c¢c d 0 0 g h 0 0 0O
Xy = X =
0 0 0 O 00 0 O 0 0 0O
0 0 0 O 00 0 O 0 0 0O

Thus A is a group complex neutrosophic double linear
subalgebra of V over G.
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Let

0 0 0 a
0 0 a, _
C= a,e C(QuUI)),1<i<4, cV
0 a;, O
a, 0 0 O

be group neutrosophic complex pseudo double linear subalgebra
of V over the group G. For if

0 0 0 a 0 0 0 b
0 0 a, O 0 0 b, O
X= andy =
0 a, 0 O 0 b, 0 O
a, 0 0 O b, 0 0 O
are in C.
Now consider the product
0 0 0 a||0 0 0 b
0 0 a, 0||]O0O O b, O
Xy =
0 a, 0 0|0 b, 0 O
a, 0 0 O||b, O 0 O
ab, 0
0 a,b 0 0
= 27 ¢ C.

So C < Vis not a double linear subalgebra, hence C is only
a group complex neutrosophic pseudo double linear subalgebra
of V over G.

Now having seen examples of them we can proceed on to
define basis, linear operator, linear transformation, direct sum,
pseudo direct sum as in case of semigroup neutrosophic
complex double linear algebras. This task is left as an exercise
to the reader.
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We can define fuzzy neutrosophic complex groups,
semigroups etc in two ways. For if we want to induct complex
fuzzy number we see —1 = i’ so if product is to be defined we
need to induct i* = —1 but if we wish to work only with min max
then we do in the following way.

Let C ({[0,1] U [0,I])) = {a + bi + c] + id]l where a, b, c,d €
[0, 1]}, we define C ({[0,1] U [0,I])) to be the fuzzy complex
neutrosophic numbers.

We define max or min operation on C ({[0,1] U [0,I])) as
follows:

Ifx=a+bi+cl+idl andy=m+ni+tl+isl arein C
(0,11 v [0,11));
then
min (X, y)

min (a+bi+cl+idl, m+ni+tl+isI)
min (a, m) + min (bi, ni) + min (cI, tI) +
min(idl, isI).

It is easily verified min (x, y) is again in C ({[0,1] U [O,I])).
Consider x = 0.7 + 0.61i + 0.231 + i(0.08)I and y = 0.9 + 0.23i +
0.1931 +1 (0.7)I'in C (([0,1] L [0,I1)).

Now min {x, y} =min {0.7 + 0.611 + 0.231 + 1 (0.08)L, 0.9 +
0.23i 4+ 0.1931 + 1 (0.7)1}

=min {0.7, 0.9} + min {0.61i, 0.23i} + min {0.231, 0.1931}
+ min {i(0.08)I, I (0.7)I}

=0.7 +0.231 + 0.231 + 1 (0.08)L.

Thus {C ({[0,1] v [0.,I])), min} is a semigroup. Likewise
we can define the operation of max on C ({[0,1] U [0,I])) and
{C ([0,1] U [0,I])) max} is also a semigroup. These semigroups
will be known as fuzzy neutrosophic complex semigroup.

Now we define special fuzzy complex neutrosophic group,
semigroup and ring as follows:

DEFINITION 1.18: Let V be a ordinary semigroup neutrosophic
complex vector space over the semigroup S. Let 1 be a map
from V into C (([0,1] v [0,1])) such that (V, n) is a fuzzy
semigroup neutrosophic complex vector space or semigroup
neutrosophic complex fuzzy vector space [ ].
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Likewise one can define for neutrosophic semigroup
neutrosophic complex vector space, complex semigroup
neutrosophic complex vector space, special semigroup
neutrosophic complex vector space over the neutrosophic
semigroup, complex semigroup and complex neutrosophic
semigroup respectively the fuzzy analogue. Further we can
define for set complex neutrosophic vector space and group
complex neutrosophic vector space over a set and group
respectively also the fuzzy analogue.

Thus defining these fuzzy notions is a matter of routine and
hence left as an exercise to the reader.

We give examples of these situations.

Example 1.91: Let

al a2 a3
V=13la, a, ag|la,eC(ZUI)),I<i<9
a, ag a,

be a semigroup complex neutrosophic linear algebra over the
semigroup S = Z.
Letm:V — C ([0,1] U [0,1]))

L a, # 0if
a;
a,e’l
L if 2 € C(2)
a, a, a, a
- #0
n(la, as; ag|)= I _a'
a, a, a, a—i if a,e (ZUI)
il .
— if a,e C(ZUI))
ai
a, #0

If a; =0 then 1. If every a; = 0 then
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where
al a2 a3 bl b2 b3
A=|a, a, a;|andB=|b, b, b,
a7 aS a9 b7 8 9

forevery A,Be V andn (rx) 2n (x),r € Z.

Example 1.92: Let
i az .
V=1>ax| 7 l(a,a,,..8,) |2, C(QUI)),0<i<10
a

be a set complex neutrosophic vector space over the set S = 3Z
u2Zu 52

Definen : V — C ({[0,1] U [0,I]))

L ifa,#0
ai
1 if a, =0
- if ia; # 0 is complex
ai
n (@) = ,
— if Ia, # 0is neutrosophic
ai
i if ila;.
a;
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with this stipulation (V, 1) is a set fuzzy complex neutrosophic
vector space over Z.

Our main criteria is to built the map n such that 1 (i) = 1,
N (I) =1 and m (i) = il with this ordinary mapping n : V —
C ([0,1] v [0,I])) we get the fuzzy complex neutrosophic
structures.

Now other way of defining fuzzy structures of complex
neutrosophic elements is as follows.

DEFINITION 1.19 : Let V = {(x;, ..., x,) | x;, € C (([0, 1] U [0,
1])), 1 <i <nj; Vis a fuzzy complex neutrosophic semigroup
with min (or max) function.

‘or’ used in the mutually exclusive sense.

Example 1.93: Let V = {(X}, X2, X3) | x; € C (([0,1] U [0,I]));
1 £1< 3}, Vis a fuzzy complex neutrosophic semigroup under
max.

Example 1.94: Let

X
V= X:z x;€ C[0,11uU[0I]); 1<i<10}

X9

be a fuzzy complex neutrosophic semigroup under min function.

Example 1.95: Let M = {all 10 x 3 fuzzy neutrosophic
complex matrices with entries from C ({[0,1] v [0,1]}))}. M
under max (or min) is a semigroup.

For if
al a2 a3 bl b2 b3
x=| % and ¥ = bft b; bfﬁ
a28 a29 a30 b28 b29 b30
bein M,
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min{a,,b,}  min{a,,b,} min{a;,b,}

min{a,,b,} min{a,,b;} min{a,,b}

min{a,,,b,} minf{a,,b,} min{a,,,b,,}

(If min is replaced by max still we get a semigroup).

Example 1.96: Let

a,  a,
V=1la, a;
a; ag

o ||2;€ C(LO,1]U[0,1]);1<i<9¢.

V is a semigroup under max (or min).

Now we can define only set semivector space over the set S.

DEFINITION 1.20: Let V be a set of fuzzy complex neutrosophic
elements. S = {0, 1} be a set; V is a set semivector space over

the set S if

i) ForveVands e S wehavevs =svevV.

ii) O0v=0¢eV.
lv=vey,

we define V to be a fuzzy neutrosophic complex semivector

space over the set S.

We will give examples of set fuzzy neutrosophic complex

semivector space over the set S.
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Example 1.97: Let V = {(X}, X2, X3, X4),

X,
X Xy X311 Xy|
Xy X5 Xg|s| X3 |5 Zaixl xi, aj € C ([0,1] U [0,I])),
X, X, Xo||x, |7

Xs

1<1<9;0<j<6} be a set of fuzzy neutrosophic complex
elements. V is a set fuzzy neutrosophic complex semivector
space over the set S = {0,1} .

Example 1.98: Let V = {(x, X2, ..., Xo),

; Xi, aj € C (([0,1] L [0,I])),

1 <1<20;1<j<16} be a set fuzzy complex neutrosophic
semivector space over the set S ={0, 1}.

Example 1.99: Let

where a; € C (([0,1] U [0,I])), 1 <1 < 60} be semigroup under
max operation V is a set fuzzy complex neutrosophic semilinear
algebra over the set S = {0, 1}.
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Example 1.100: Let

la; € C([0,1] L [0,1])), 1 <1 < 80} be a set fuzzy neutrosophic
complex semi linear algebra over the set X = {0, 1}.

Now we can define substructures, basis, linear transformation
and linear operator for these set fuzzy complex neutrosophic
semivector spaces / semilinear algebras over the set S.

This task is left as an exercise to the reader.

DEFINITION 1.21: Let V be a set with elements from C (([0,1]
U [0,1])) and S be a semigroup with min or max or product. We
define V to be a semigroup fuzzy neutrosophic complex
semivector space over S if the following conditions hold good;
i) sveVforallve Vands € S.
ii) Ov=0€Vforallve VandO € S.

Example 1.101: Let

a,

a, ||a, € C([0.1]U[0,1]));
: 1<i<20

al a2
V= . ,(a,,8,,...,39),

a3 4

ay

be a semigroup fuzzy complex neutrosophic semivector space
over the semigroup S = {0, 1} under multiplication.

Results in this direction can be got without any difficulty.
Thus one can define structures on C ({([0,1] U [0,I])) but the
scope is limited. However if we consider a map n : V —
C ({[0,1] U [0,1])) we can have almost define all algebraic fuzzy
neutrosophic complex structures without any difficulty.
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Chapter Two

FINITE COMPLEX NUMBERS

We know i is a complex number where i* = —1 or J-1 =i
where —1 is from the set of reals. However here we define finite
complex numbers in modulo integers which are in a finite set
up. Through out this book Z, will denote the set of modulo
integers {0, 1, 2, ..., n—1} and -1 is (n—1), =2 = (n—2) and so on.
Thus we use the fact —1 = n-1 to define the finite complex
modulo numbers.

DEFINITION 2.1: Let C (Z,) = {a + bir | a, b € Z,, ir is the finite
complex modulo number such that i; = n—-1, n < o} we define

ir as the finite complex modulo number. C (Z,) is the finite
complex modulo integer numbers.

It is interesting to note that since finite values in Z, are
dependent on n so also the finite complex number is also

dependent on Z, for every n.

We give examples of them.

Example 2.1: Let C (Z,) = {ir, 1,0, 1 +ir}. We see i7 = -1 =
2-1=1.Also (ir+ 1)*=1+ i +2ip= 141 = 0. C(Zy) is a ring.
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Example 2.2: Let C (Z3) = {a+birla,be Z3} = {0, 1, i, 2, 2iF,
1 + ip, 2+ip, 2 + 2ig | if: =-1=3-1=2} (ZiF)2=—4=—1=2

Ge+ 1 = 1+ i2+2i
= 1+ 2+ 2ip = 2ip (mod 3).
(1+2ip)* = 1+ ip)*+ 22ip (mod 3)
= 1+2+ip(mod 3)
= i (mod 3).
Q+1ip)* = 4+ (ip)* + 4ir (mod 3)
= 442+
= i (mod 3).
Qip+2)* = 4+ 8ip+ (2ip)’ (mod 3)

= 1+ 2ig+2 (mod3)
= 2ip (mod 3).
We give the tables associated with C(Z,) and C(Z3).

Multiplication table C(Z,).

X 0 1 ig 1 +ig
0 0 0 0 0
1 0 1 ig 1 +ig
1 +ig 0 g+ 1 g+ 1 0
Table for C(Z3)
X 0 1 2 ip 2ip I+ | 2+ip | 14+2ip | 242iF
0 0 0 0 0 0 0 0 0 0
1 0 1 2 ip 2ip iptl | 2+ | 142ip | 2420
2 0 2 1 2ip ip 2+42ig | 14+2ip | 2+ip | g+l

We see C(Z,) is a ring with zero divisor of characteristic two
where as C(Z3) is a field of characteristic three and o(C(Z3)) = 9.
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Example 2.3: Let C(Zy) = {a+Dbigla,be Z,} = {0, 1, 2, 3, if,
211:, 311:, 1+ iF, 2+ iF, 3+iF, 1+2iF, 1+3iF, 2iF+2, 2iF+3, 3iF+2,
3ip+3} is a complex ring of order 16.

Example 2.4: C(Zs) = {a+Dbirla,be Zs} = {0, 1, 2, 3, 4, i,
2if, 3ip, 4iF, ..., 4 + 4ig} is only a finite complex ring for (1 +
2ig) (2 + ig) = 0 is a zero divisor in C(Zs).

Example 2.5: Consider C(Z;) = {a + bir | a, b € Z;} be the finite
complex ring C(Z;) is a field. For take (a + big) (¢ + digp) = 0
where a + big, ¢ + dip € C(Z7) with a, b, ¢, d e Z;\ {0}.

(a + big) (c + dip) = 0 implies

ac+6bd = 0 (1
ad + bc = 0 (2)
(1) xa+(2) xb gives
a’c+6bda =0
b’c+bda =0

c?(@’+b%) =0c#0
this forces a*> + b”> = 0 in Z,. But for no a and b in Z; \ 0) we
have a*> + b* = 0 so C(Z;) is a finite complex field of
characteristic seven.

We see C(Z;) is again a finite complex field of
characteristic eleven C(Z;3) is not finite complex field only a
ring for 9 + 4ir and 4 + 9ir in C (Z3) is such that (9 + 4ir) (3 +
9ig) = 0.

In view of all these we have the following theorem which
gurantees when C (Z,) is not a field.

THEOREM 2.1: Let C(Z,) be the finite complex number ring.
C(Z,) is not a field if and only if there exists a, b € Z,\ {0} with
& + b’ =p ord® + b* =0 (mod p) where p is a prime.

Proof: Let C(Z,) = {a+ bir |l a, b € Z, if: =p - 1}. To show
C(Z,) is not a field it is enough if we show C(Z,) has zero
divisors. Suppose C(Z,) has zero divisors say a + bir and ¢ + dip
in C(Z,) (a, b, ¢, d € Z,\ {0}) is such that (a + big) (c+di) = 0,
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then ac + bdif: + (ad + bc) ip = 0 that is ac + (p—1) bd + (ad +
be) ip = 0 this forces

ac+ (p— 1)bd = 0 @)
and bc + ad = 0 (i1)
(1) x a + (ii) b gives

a‘c+(p-)bad = O+

b’c + bad = 0
(since a, b, ¢, d are in Z, \ {0} and p is a prime, no item is zero)
gives a’c + b’c = 0 that is
c@+b)=0asce Z,\ {0}
and ¢’ exists as p is a prime.
We see ¢ (a’+ b?) = 0 is possible only if a* + b* = 0.
Conversely if a* + b> = 0 than we have
(a + bip) (b+aip) =0
for consider,
(a + big) (b + aip) = ab + (p—1)ab + (a’+b?) ir
pab + (a>+b%)ip= 0 (mod p)
as a, b e Z, and given a* + b> = 0. Thus C (Z,) has zero divisors
hence C (Z,) is a ring and not a field.

THEOREM 2.2: Let C(Z,) be the commutative finite complex
ring, p a prime, C(Z,) is a field if and only if Z, has no two
distinct elements a and b different from zero such that @ + b* =
0 (mod p).

Proof: Follows from the fact that if C(Z,) has no zero divisors it
is a commutative integral domain which is finite hence is a field

by [].

Now we will derive other properties related with these finite
complex rings / fields. Let C(Z) = {a + bi | a, b € Z} be the
collection of complex numbers.

Clearly C(Z) is a ring.

Consider the ideal generated by 2 + 2i, denote it by 1.

@ ={L1+Li+L 1+i+1}
where (1 + ) +I1=2+2i + [ =1as here i’ = 1 (mod 2) and
1+1=0mod?2.
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Now we denote it by ir and

@ = C(Z,). Consider 3 + 31 €

C(Z). Let J be the ideal generated by 3 + 31.

& = {L1+),2+4+),i+1,2i+),i+1+L2+i1+],
I ={3+3I)

20+ 1+J,2+2i+7J}.

Here also 2 + 1 =0 (mod 3) and 2i + 1 = 0 (mod 3) further i2
= -1 =2. We use i for ir for one can understand from the fact i;
=n-1. So we can say
CzZ
e

where i; = 2. Thus we get a relation between
C®)
J= <n + ni> .

We have in C(Z,) zero divisors, idempotents, nilpotent
everything depending on n.

We call C(Z,) when C (Z,) is a field as the complex Galois
field to honour Galois. However for every prime p, C(Z,) need
not in general be a complex Galois field. Here we give some
properties about C(Z,), p a prime or otherwise.

Consider

C(Z,) and

x =a+ bir € C(Z,)
then X =a+(n-1igbe CZ)
is defined as the conjugate of x and vice versa. We see
X. X (a+igb) (a+ (n—1)igb)
a’+ipab + (n— igab + (n— )b’ i2
a’+0+@m-1)7°b
a’ + b’

Recall if a> + b =0 (mod n) then C(Z,) has a nontrivial zero
divisor. We can add and multiply finite complex number using

if: = (n - 1) if elements are from C(Z,).
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Thus if x = a + igb and y = ¢ + igd are in C(Z,) then
Xx+y = (a+igb)+ (c+ipd)
= (a+c)modn + ig (b + d) mod n.
Likewise
X.y = (a+1igb) (c +ird)
= ac+ipbc+ipda+ if: bd
= ac+igbc+irda+ (n— 1)bd
(ac + (n—1)bd) (mod n) + ir (bc + da) (mod n).
The operation + and X are commutative and associative.

It is important to note they are modulo n integers and they
are not orderable (n > 2) we can have for a + ib = x, X' exist or
need not exist in C(Z,). For in C(Z,) we see x = 1 + i € C(Z,)
and x”' does not exist as (1 + il:)2 =0 (mod 2)

Consider x = 3 + ig4 in C(Z7) we have y = 6 + ig6 in C(Z7)
such that xy = 1.

Consider xy = (3+ig4) (6+ig6)

=18 + i} 24 + i 18 + 24ir

=44+3ip+4ip + 6 X3

=4+7ig+4

=8+ 7ir

=1 (mod7)as7ig=0mod 7 and 8 =1
mod 7.

Other properties of usual complex numbers are not true in
case of finite complex modulo numbers.

We can give a graphical representation of complex modulo
integers in 3 layers. The inner most layer consists of real
modulo integers makes as in the figure.

The outer layer consists of complex modulo numbers,
where as the outer most layer is the mixed complex modulo
integer we represent the graph or diagram for C (Z,)

1+i
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The diagram for C (Z3)

2i + i+2

2i+2 i+1

The diagram for C (Z4)

3+3i

0

0(C(Z4)) = 16 and is a ring we can draw for any C(Z,); n = 2.
We cannot do any plane geometry using these finite
complex modulo integers but we can get several algebraic
results on C(Z,); n > 2.
Our main motivation to introduce these concepts is to
introduce finite neutrosophic complex modulo number /
integers.

Just before we proceed to define these concepts, we define
substructures in C(Z,); n = 2.

DEFINITION 2.2: Let C (Z,) be the ring of finite complex
modulo integer / numbers. Let H ¢ C(Z,) (n =2) if H itself is a
ring under the operations of C(Z,). We call H a subring of finite

complex modulo integers C(Z,).

We give some examples of them.
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Example 2.6: Let C(Z,) be the ring of finite complex modulo
integers C(Zy) = {a + bir la, be Z,} P = {0, l+ir | i;= 1} <
C(Z,) is a subring of C(Z,).

Example 2.7: Let C(Z3) = {a + bir | a, b € Z3}, be the ring.
P={1, 2, 0} < C(Z;) is a subring of C(Z3; P = Z3) is the ring of
modulo integers three. We see i;= 2, so we cannot find a
subring in C(Z3).

It is pertinent to mention here that for 2 € Z, is zero 2 € Z3

is such that 2> = 1, 2 € Z, is such that 2> = 0, 2 € Zs is such that
2 =1 (mod 7) and so on.

Likewise i is finite, iZ= 1 (mod 2) , (ir)* = 2 (mod 3), (ir)’
= 3(mod 4) and so on (iF)2 =(n-1) (mod n).

Example 2.8: Let C(Zg) = {a+birla,b e Zg, if: =5},3+3ire
C(Ze);

(B +3ip)* = 9+9if +2.3%
= 3+9X%5
= 3+3x5=3+3
= 0 (mod 6).

For 1 + ig € C(Zs) we have
(1+ip)* = 1 + 2ip + i2 =1+ 2ip+ 5 =2ig.

We have an interesting theorem.

THEOREM 2.3: Let C (Z,,) be the finite complex ring, p a prime
p > 2. C(Zy) is a ring and (1+ir)* = 2ir.

Proof: Consider (1+ip)* = 1420 + if: =1+ 2ig + 2p-1 = 2ig as
2p=0.

Now to show C (Z,,) is a ring it is enough if we prove the
existence of a zero divisor. Take p + pir in C (Zy,),

(p +irp)” p’ (1+ip)’
p* (2ip) = 2p>. ir
2p (pir) = 0 (mod 2p).
Thus C (Z,p) has zero divisors, hence C (Z,,) is a ring.
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COROLLARY 2.1: Let C (Z,) be any complex finite ring | field. If
x = I+ip € C(Z,) then x°* = 2ip.

Proof: Consider 1 +ir=x € C (Z,), now
(1+ip)* = 2+ il +2if = 1+4n-1+2i
= 2ir (mod n).
Hence the claim.

It is infact a difficult task to find subrings and ideals in
C(Z,) where o(C(Z,)) = n’.

Example 2.9: Let C(Zy) be the finite complex ring. I = {0, 2 +
2ip} < C(Zy) is an ideal of C(Zy). P = {0, 1, 2, 3} < C(Zy) is
only a subring of C (Z4) and not an ideal. We see S = {0, i, 2i,
3ig} € C (Zg) S is not even a subring only a set under
multiplication as i} = 3.

So in general we cannot get any nice algebraic structure
using {0, i, 2ir, 3 i} = S; S can only be a group under addition
and not even a semigroup under multiplication.

THEOREM 2.4: Let C (Z,) be the ring, Z, < C (Z,) is a subring
of C (Z,) and not an ideal of C (Z,).

Proof is direct and hence left as an exercise to the reader.

THEOREM 2.5: Let C (Z;,) be the ring. P = {0, p + pif} <
C (Z,) is the ideal of C (Z,,), p a prime.

Proof: Let C (Z,,) be the given ring, p a prime. Consider S = {0,
p + pir} € C (Zyp). Clearly S under addition is an abelian group.
Now
(p+pip) (a+bip) = ap+apip+pb i+ pb (ir)’

= ap+(@p+pb)ig+(p-1)pb

= pa+@-Db)+p@+b) i

= p+pir(mod 2p)
(using simple number theoretic techniques).

Example 2.10: Let C(Zy) = R be a complex ring of modulo
integers. C(Zy) = {a + igb | a, b € Zy}. Consider P = {0, 13 +
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13ir} < R; to show P is an ideal of R. (P, +) is an additive
abelian group. To show (P, X) is a semigroup (13 + 13 ir). 0 =0,
(13 +13ip) (13 + 13ip) = 132 +2.13.131 + 132.. if: (if: =25)
13% + 13% (25)
132 (1425)
13%.26 (mod 26) = 0.

Thus (P, +, X) is a ring. Consider (a + big) P; a, b € Zy; if
a=3and b =5 both a and b odd in Z», then
(3 + 5ip) (13+13ir) =3 x 13 +5.131i+ 3.131 +5.13i12; (mod 26)
39 + 104 ir + 1625 (mod 26)
1664 + 104 ir (mod 26)

= 0+ Oir (mod 26) € P.

Now takea=5oddandb=8 even. a + igb =5 + 8irin R
(5 + 8ip) (13 + 13ip)

= 65+8X%13ig+ 1315 + 8.13 X 25 (mod 26)

= 65+ 65 i (mod 26)

= 13 + 13ig (mod 26)
Hence 13 + 13ir is in P. Hence the claim.

Example 2.11: Let R = C (Z;;) be a complex modulo integer
ring with if: = 10. Consider 5 + 5ig in R.
(5+5ip)° 25 +2.5%i + 57, i2 (mod 11)

= 3+ 6ip+ 8 = 0Oip.
It is interesting to see (a + aip)” is always a bir only an
imaginary or a complex modulo number further (6 + 6ir)> = 6ir.

We have a nice interesting number theoretic result.

THEOREM 2.6: Let R = C(Z,), p a prime be the ring of complex
modulo integers i, = p — 1, then
(i) (a + aip)’ = bip, b, a € Z, and

(ii) (”_”JFP_HZ-FJ :((P+1)jiF:(p+I)iF.

2 2 2 2

The proof uses only simple number theoretic techniques hence
left as an exercise to the reader.
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Example 2.12: Let S = C(Zy) = {a +ib |l a, b € Zy} be a
complex ring of modulo integers.
Consider
x = 8+ 12ipe S, x*=(8+ 12ip)’
8% + 144 x 19 + 2 x 8 X 12ir (mod 20)
4 + 16 + 12ir (mod 20)
12ip (mod 20).
Thus if x =a + (20 — a) ir € C (Zx); then x> = (a + (20 — a)ip)’ =
a’ + (20 — a)* x 19 + 2a (20 — a)ir (mod 20)
a’+a’x 19 + (2 x 20a — 2a%) ir (mod 20)
a’ (1 + 19) + cir (mod 20)
0 + cir (mod 20); ¢ € Zyy.

Inview of this example we have an interesting result.

THEOREM 2.7: Let S = C (Z,) be a complex ring of modulo

integers x = a + (n—a)ir € C (Z,) then ¥ = bip for some b €Z,,
.2

ip =n—1.

Simple number theoretic method yields the solution.

Example 2.13: Let C (Z1;) = S be a modulo integer ring.
Consider x = (6 + 6if) in S, x> = 0 is a zero divisor in S. Take y
=3ir+9€ S, y2 =9 x 11 + 81 +2.3.9ir = 99 + 81 + 54ir (mod
12) = 6if. a = 4+8ir in S.

a°=16+64x 11 +2.4.8 ip=4ipin S.

If we consider b = 2+6ir in S, b? = (2+6ir)’ =4 + 36 x 11 +
2.2.6ig = 4 for 2.6 € Z;, 1s such that 2.6 = 0. If n = 3+8ig then n’
=(3+8ip)’=9+64x11+238ip=5.

Thus we see every X = a + bip in S for which a.b =0 mod 12
is such that x> € 71> 1s a real value.

THEOREM 2.8: Let R = C (Z,) be a ring of complex modulo
integers (n not a prime). Every x = a + bir in which a.b = 0

(mod n) gives x° to be a real value.

Proof follows from simple number theoretic techniques. We see
this ring S = C(Z,) has zero divisors, units and idempotents
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when n is not a prime. Now we can use these rings and build
polynomial rings and matrix rings. We will give examples of
them. Let S = C(Z,) be a complex modulo integer ring.

S[x] = [C(Z,)][x] is a polynomial ring with complex modulo
integer coefficients.

For we see if

S[x] = C(Zy)[x] = {Zax

where a; = m; + n; ip; my, n; € Z3} we see S[x] is a commutative
ring of infinite order but of characteristic three.

If p(x) =2 +ip) + (1 + 2ip) x + (2 + 2 ipx’

and q(x) = i + 2 + ipx’ + 2x°

are in S [x],

px)qx) = [Q+iD+ (A +2ipx+ Q2 +2ip) X ] lir+ 2+

X + 2x°]

= Q2+ipip+ Qi+ Digx + 2 + 2ipir X’ + 2 +
in)” X° + (142ip) Q+Hpx* + 242 ip) 2+ ip) X' +
(2+2ip)2x " + 2+ip)2x° + (142ip) 2%

= Qi) + (1 +ipx +(1 + 2ipx" + (1 +2 + 4iF)x3
+Q+ip+ 1 +ipx* + (1 +ip+ 2+ Dx'"+
(1 +ipx”+ 1 + 2ipx° + 2 + ipX’

= Q+2ip+(+ipx+ipxX+2ipx +2x°+ (1 +
ix" + (1 +2ip)x°+ 2 + ipx.

This is the way the product of two polynomials is
performed.

Example 2.14: Let S [x] = C (Zg) [X] = {Za x'la; e C(Z) =

i=0

{(x+iry | X, ye Zg}; 0<1<90} be the set of polynomials in
the variable x with coefficients from C (Zg). S [x] is an additive
abelian group of complex modulo integer polynomials of finite
order. Clearly S [x] is not closed with respect to product.

Clearly S[x] contains Zg[x] = {Za X'

i=0

an}CS[x] the
usual polynomial group under addition of polynomials.

Zgip [X] = {Za x' such that a; = x; i with x; € Zg and 1 =7}
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c S[x] is a pure complex modulo integer group of finite order
contained in S[x] under addition. Thus S[x] = Zg[x] + Zg if[X]
with Zg[x] M Zs ir [x] = {0} is the direct sum of subgroups.
Other than these subgroups S[x] has several subgroups.

Example 2.15: Let

S[x] = C[Z,] [x] = {Zax

i=0

a, =X+Yyig;X,yE Z, }

= {0, 1, 2, ir, 2ip, X, 2X, ipx, 2igx, X°, 2X°, ir xX° and so on} be a
complex abelian group under addition of modulo complex
integers of finite order.

Example 2.16: Let

S[x] = {Zax

i=0

aje C (Zg) = {a+birla, be Zyg, iy =79}}

be the set of polynomials in the variable x with complex modulo
integer coefficients. S[x] is a semigroup under multiplication.

We have the following interesting theorems; the proof of
which is simple and hence is left as exercise to the reader.

THEOREM 2.9: Let S [x] = {Za,xi n<esa€C(Z)={a+

i=0

irb | ii =n-landa, b € Z,}. S [x] is group of complex modulo
integer polynomials under addition.

THEOREM 2.10: Let S [x] = {Zaixi a; € C(Z,) = {a + bir |

i=0

a b eZ,and ii =n-1}.
(1) S [x] is a group under addition of infinite order.
(2) S [x] is a commutative monoid under multiplication.

a; € C(Zs) = {x

i=0

Example 2.17: Let S[x] = C(Z3)[X] {Za X'

+ yiel X,y € Z3 and i; =17} be the collection of all polynomials.
S[x] is a ring. S[x] has zero divisors, units and idempotents.
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It is interesting to note that these polynomial rings with
complex modulo integers can be studied as in case of usual
polynomials like the concept of reducibility, irreducibility
finding roots etc. This can be treated as a matter of routine and
can be done with simple and appropriate changes.

Now we proceed onto study and introduce the notion of
matrix ring with complex modulo integer entries. We will
illustrate this by some examples.

Example 2.18: Let V = {(X, X, ..., Xo) | X; € C(Z7) = {a + bip |
a, b e Z; and if: =6}; 1 £1<9} be the 1 X9 row matrix
(vector). Clearly V is a group under addition of finite order and
V is a semigroup under product of finite order. V as a
semigroup has zero divisors. This semigroup (V, X) is a
Smarandache semigroup.

Example 2.19: Let P = {(X, Xo, X3, X4) | X; € C (Z2) = {a + big |
a,be Zp and if: =11, 1 £1<4} be the collection of 1 X 4 row
matrices with complex modulo integer entries. P is a group
under addition of finite order and (P, X) is a semigroup of finite
order having ideals, subsemigroups, zero divisors, and units.

Now we show how addition is carried out. Let
X = (7 + 3ig, 4 + 2ip, ig, 7)

and y = (2, 5if, 9 + 2ir, 10 + i)
be in (P, +).
X+y (7 + 3ir, 4 + 2ip, i, 7) + (2, 5ir, 9 + 2i, 10 + ir)

(7+3ig+ 2,4+ 2ig+ Sif, i+ 9 + 2ip + 7 + 10 + ip)
(mod 12)
9 +3ig,4+ 7 3ig+ 9,5 +1p) € P.
(0, 0, 0, 0) acts as the additive identity of P.

Now (P, X) is a commutative semigroup of finite order; (1,
1, 1, 1) is the multiplicative identity of (P, X).
Suppose x = (3 ip, 2 + i, 8, 5+7 ig) and y = 3+ iF, 8, 9+ ip,
8ig) are in P to find
xy = @Bip 2+1ip, 7, 5+7 ip) X 3 + i, 8, 9 + iF, 8ip)
(3ig X 3+ip, 2+ig X 8, 8X(9+ ig), S+7ig X 8ig) (mod 12)
(9ig + 3x11, 16 + 8ig, 72 + 8ip, 40ig + 56 X 11) (mod 12)
(usingif: =11)

102



= (9 + 9, 448ip, 8i, 4+4ip) is in P. Clearly (P, X) has
zero divisors, units, idempotents, ideals and subsemigroups.

Interested reader can study the associated properties of the

group of row matrices with complex modulo number entries and

semigroup of row matrices of complex modulo integer entries.
Now let

where x;’s are in C (Z,); 1 <1< m, that is x; = a; + bjir withié =
n—1. Y is called / defined as the column matrix or column vector
of complex modulo integers.

We see if we get a collection of m X 1 column vectors, that
collection is group under addition. Infact multiplication is not
defined on that collection.

We will illustrate this situation by some examples.

Example 2.20: Let

x;€e C(Zs)={a+birla,be Zs; if: =4,1<1<5}. Pisagroup
under addition of finite order.

For if
[2+4i, | 0]
3i, 2+4i,
X=|2i;+1|andy= 4
3 3+2i,
| 4ip +3 | 1+ip |
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arein P tofindx +y.

[2+4i,, | 0
3i, 2+4i,
X+y=|2i+1|+ 4
3 3+2i,
|4 +3| | T+ip
[ 2+4i,+0 | [2+4i, ]
3i, +2+4i, 2ip+2
= 1+2i,+4 |(mod5) = 2i,
3+3+2i, 1+2i,
| 3+4ip+1+i | | 4 ]
isin P.
0]
0
Now |0 | acts as the additive identity. Multiplication or
0
_0_

product cannot be defined on P.

Example 2.21: Let

xi € C(Zos) = {a + bigla, b e Zy); ip =23;1<i<20} bea
group of 20 X 1 complex modulo integer column matrix. M is of
finite order and is commutative. Now we proceed to define m X
n (m # n) complex modulo integer matrix and work with them.
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Example 2.22: Let

P=41x, X X, ||Xi€e C(Zy)={a+birla, be Zy};

iZ =19; 1 <i<15} be a5 x 3 complex modulo integer matrix.

P is a group under addition and in P we cannot define product P
is defined as a 5 X 3 matrix group of complex modulo integers.

Example 2.23: Let

W {al a, .. all}

a, a; .. a,
iZ =18;1<i<22} bea2x 11 complex modulo integer group
of finite order under addition.

00 .. 0
e W
{0 0 .. 0}

acts as the additive identity.

aie C(Zw) ={a+birla, be Zy);

Example 2.24: 1et

a, € C(Z3)={a+bigpl

a, b e Zs}; if: =2;1<1<20} be a group of 4 X 5 complex
modulo integer matrices under addition.
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Consider
O 0 0 O O

p=J| ™
“llo 0 0 0 0

g a7 dg A9 Ay

a.e C(Z,):1<i<10} =S

Also

a.e C(Z,):1<i<10} =S

0 a, 0 a, O

is a subgroup of S of finite order.

Now
0 0 0 0 O
a, 0 a, 0 a, _
PNT= a,e C(Z;);1<i<5
0 0 0 0 O
0 a, 0 a; O

is a subgroup of S.
Thus almost all results true in case of general groups can be
easily derived in case of group of complex modulo integer
matrix groups.
Example 2.25: Let

p= {|:al azi|

a, a,

={a+ bipl a, b e Zs}; if: =49; 1 <1< 4} be the group of
complex modulo integers under addition.

[ 3

is a subgroup of P of finite order.

a; € C (Zso)

me(XLQﬂSiS2}gP
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Example 2.26: Let S = {all 15 X 15 matrices with entries from
C (Zg)} be the group of complex modulo integers under
addition which is commutative and is of finite order.

Example 2.27: Let

al a2 a3
M=<:{A=|a, a;, a ||acC(Zy)={a+birla, be Z;};
a; ag dq

if: =6; 1 <1<9} be the set of 3 X 3 matrices. If |Al#0, M is a
group under matrix multiplication. M is a finite non
commutative group. If we relax the condition IAl # 0 then M is
only finite non commutative semigroup of complex modulo
integers.

M has subgroups also. Also properties of finite groups can
be easily extended to the case of complex modulo integers finite
groups without any difficulty.

Infact M = {collection of all m X m square matrices with
entries from C (Z,) (n < o)} is a non commutative complex
modulo integer finite ring of characteristic n. Thus we have a
nice ring structure on M. So for finite non commutative rings
one can easily make use of them. We can have subrings, ideals,
zero divisors, units, idempotents and so on as in case of usual
rings. This work is also a matter of routine and hence left as an
exercise to the reader.

Now having seen examples of rings, semigroups and rings using
matrices of complex modulo integers we proceed onto define
the notion of complex modulo integers vector spaces and linear
algebra.

DEFINITION 2.3: Let V be a complex modulo integer group
under addition with entries from C(Z,); p a prime. If V is a
vector space over Z, then we define V to be a complex modulo

integer vector space over Z,.

We will first illustrate this situation by some examples.
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20
Example 2.28: Let V = {Z:aixi a,€ C(Zs)={a+Dbigla,be
i=0

Zs}; if: =4; 0 <1< 20} be a complex modulo integer vector
space over the field Zs.

Example 2.29: Let

V=4’ H 1]l aie C(Zy)={a+bigla, be Zy};

iZ =42; 0 <i<26} be a complex modulo integer vector space
over the field Z4s.

Example 2.30: Let

=17 18 19 20

aje C(Zy)={a+bigla, be Zy}; if: =40;1<i1<20}bea
complex modulo integer vector space over the field F = Zy;.

We can define subspaces, basis, direct sum, pseudo direct
sum, linear transformation and linear operators, which is a
matter of routine so left as an exercise to the reader.

However we proceed onto give some examples.

Example 2.31: Let
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ae C(Zp)=f{a+birla,be Zy}; iz =22; 1 <i< 15} bea
complex modulo integer vector space over the field Z,; = F.
Consider

a, a, a,
0 0 O

M= qla, a; ag||a,€C(Zy)l<i<9;, CP;
0 0 O
|a; ag 4|

M is a complex modulo integer vector subspace of P over F =
Zo3.

a, 0 a
a, 0 a,
S=4la; 0 ag |la,eC(Zy);1<i<10; CP,
a, 0 a,
la; 0 a|

is again a complex modulo integer vector subspace of P over Z;;
=F. We see

a, 0 a,
0 0 O
MnNS=<la, 0 a,|la,eC(Zy);l<i<6; P
0 0 O
la; 0 ag |

is again a vector subspace of complex modulo integers over the
field Z,; = F.

In view of this we have a nice theorem the proof of which is
left as an exercise to the reader.

THEOREM 2.11: Let V be a complex modulo integer vector
space over the field Z, = F; p a prime. If W;, W, ..., W, (t < oo
are complex modulo integer vector subspaces of V over F = Z,

13
then W= ﬂWl is a complex modulo integer vector subspace of V

i=1
over F.
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Example 2.32: Let

|laye C(Zy)={a+birla,be Z;};

iZ = 10; 1 <i< 12} be a complex modulo integer vector space
over the field F = 7.

Consider

[a, a, 0
0 O _

W, = a,eC(Z,);1<i<4; CV,
0 O
10 a; a,
[0 0 a
0 0 0 _

W, = a,eC(Z,);1<i<2; CV,
0 0 0
la, 00
[0 0 0
a, 0 a, .

W; = a,€eC(Z,,);1<i<3;, cV
0 a, O
10 0

and

0 0 0
0 a O .

W, = a,eC(Z,);1<i<3; CV,
a, 0 a,
0 0 0
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be complex modulo integer vector subspaces of V over the field

4
Zy,. Clearly V = UWi and WyNnW;=(0)ifi#j,1<1,j<4.
i=1
Thus V is a direct sum or direct union of complex modulo
integer subspaces over Z;.

Consider

a, 0 a,
0 a, O .

P, = a,e€C(Z,);1<i<3; CV,
0 0 O
0 0 0]
a, 0 O

p= ™ 0 a3] a,€C(Z,)1<i<4y CV,
0 0 O0f|" B
a, 0 O

a, a, O
0 a, a, )
P;= a,e C(Z,);1<i<5;, CV,

a, 0 O
0 0 O _
P, = a,e C(Z,);1<i<5;, <V,
0 a, a,
a, 0 O
a, 0 O
0 0 a, _
Ps= a,€C(Z,);1<i<4;, cV
a, 0 O
0 a, O
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and

a, 0 O
0 0 O _
P = a,€C(Z,);1<i<4; cV
. 0 0
a, a; a;

be complex modulo integer vector subspaces of V over the

6
complex field Z;;. Clearly V = UR ,but PN P; # (0) for i # j;
i=1
1 <1, j<6. Thus V is only a pseudo direct sum of complex
modulo integer vector subspaces of V over Z;.

a, a, a, )
Example 2.33: Let V = a; e C(Zs)={a+bipl
aS a6

a,

a, b € Zs}; ir = 4} be a complex modulo integer vector space
over the field Zs. Now consider the set

g_ [t 0 0]fo 1 0] fo 01
“llo o oflo 0o o]’|0 0 0]
0 0 0][0o 0 o][0o 0 O[i 0 0][0 O O
1 0 o/lo 1 070 0 170 0 O]0 i, O}
0 i, 0][0o 0 i,[[0 0 0] [0 O O
) )| . , |y V.
0 0 o[0 0 0[i 0 0|0 O i,

B is a basis of V over Zs. Clearly complex dimension of V over
Zs is 12. Likewise we can find basis for V and determine the
dimension of V over F.

Example 2.34: Let

ae C(Zi3)={a+bila, be Z):
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:2

ir = 12} be a complex modulo integer vector space over the

field Z 5
and
al a2 a3
W=4la, a, a ||aecC@Zsz={a+birla be Zy};
a; ag 4

:2
IF

same field Z;3. Only now we can define the notion of complex
linear transformation from V to W.

= 12} be a complex modulo integer vector space over the

Let T : V— W be a map such that

4, a, a
T al a2 33 a4 — |3 a a
4 A5 3¢
a; ag a; ag
0 a, a

T is a complex linear transformation of V to W.

It is pertinent to mention here that most important factor is if T
is a complex linear transformation we map i to i. Of course we
can have other ways of mapping but those maps should give us
the expected complex linear transformation.

We can define
werTo | 2 & A fia a2y a ) 0000
a, a, a, ag a, a, a, ag 0000

c V; ker T is again a subspace of V. We also can easily derive
all results about complex linear transformations as in case of
usual transformation only with some simple appropriate
operations on them.

We can also define as in case of usual vector spaces the notion
of invariant subspace by a complex linear operator and so on.
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Example 2.35: Let

9 a; € C(Zzg)={a+biFIa,be Zzg};

L"13 14 15 |

iZ =28; 1 <i<15} be a complex modulo integer vector space
over the field Z,y = F.
Let T : V— V be a map such that

a, a, a, a, 0 O
a, a, a 0 a, O
Tlla, a; a,[|=]0 0 a,l;
alO all a12 a4 0 0
Ld13 Qg Ay | 10 a; 0]
T is a linear operator on V.
Now let
[a, 0 O]
0 a, O
W=310 0 a,|laeC(Zy)sl<i<5; cV;
a, 0 O
10 a; O]

W is a complex modulo integer vector subspace of V over Zy.
Now we see T (W) < W so W is invariant under the complex
linear operator T.

Consider
[a, a, a,]
0 0 O
P=1<la, a; a;||a,eC(Zy)l<i<9; CV,
0 0 O
|a; ag 4|
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P is a complex modulo integer vector subspace of V over Zyg

but T (P) < P, so P is not a complex vector subspace of V which
is invariant under the linear operator T of V. Interested reader

can study the notion of Hom, (V,V)andHom, (W,V); p a prime.

Such study is also interesting.

aje C(Zi7)={a+ibla,b
a, a,

a;
Example 2.36: Let V =

€ Zin}; i; = 16} be a complex modulo integer vector space
over the field Z;;.

If
a, 0
W, = 0 0 a,€C(Z,,); cV,
0 a,]
W, = 0 0] a,eC(Z,); cV,
0 o
W; = a,e€CZ,); cV,
La; 0]
and

wie o 2]

be subspaces of V. We say V is a direct sum of W;, W,, W3 and
W, and V is spanned by W, W,, W3 and W,.

We can have several properties about linear operators like
projections and the related results in case of complex modulo
integers.

a e C(Z”)} cV

We can define modulo integer linear algebras if the modulo
integer vector space is endowed with a product. Infact all
complex modulo integer linear algebras are vector spaces but
vector spaces in general are not linear algebras. Several of the
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examples given prove this. We now give examples of complex
modulo integer linear algebras.

Example 2.37: Let V = {Z:aixi a€ C(Zy)={a+birla,b
i=0

€ Zy; ii = 10}} be a complex modulo integer linear algebra

over Zy;. Clearly V is of infinite dimension over Z;;.

Example 2.38: Let M = {(x1, Xo, X3, X4, X5, Xg) | X; € C (Z17) = {a
+ bigla, be Z; ié =16}; 1 <1< 6} be a complex modulo
integer linear algebra over Z,;. Clearly M is finite dimensional

and M is also of finite order.

Example 2.39: Let

al a2 a3
V=4la, a;, a,||aeC@s)={a+birla be Zs};
a, ag a,

ié =52; 1 <1<9} be a complex modulo linear algebra over Zs;.

V is finite dimensional and has only finite number of elements
in it. However V has complex modulo integer linear subalgebras.

Example 2.40: Let

V= {|:al az:|
a, a,
1 £1 <4} be a complex modulo integer linear algebra over the

field F = Z,.
Define T : V— V by

aie C (Zg) = {a+birla, be Zg; iy =60};

T is a linear operator on V.
Further if

o

a € C(ZGI);ISiS?)} cV;
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be a complex modulo integer linear subalgebra of V over
Z61 = F

T (W) ¢ W so T does not keep W as a invariant subspace of
V over Zg,.

Example 2.41: Let

V={|:al az:|
a, a,

a e C(zl3);13134}

and

*lla,e C(Z,;);1<i<16

be any two complex modulo integer linear algebras over the
field F = Z3.

Define T : V— W by

a, 0 0 O
a, a 0 a 0 0
(DR P IO ;
a, a, 0 0 a, O
0 0 0 a,
T is a linear transformation from V to W.
Example 2.42: Let
a, a, a, a,
a a a a
V= > 6 ! s aje C(Zsy)

={a+bipla, be Zs; ié = 36}; 1 <1< 16} be a complex
modulo integer linear algebra over the field Z3; = F.
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Define T : V— V by

a, a, a; a, a, 0 a, O

T a5 A a; Ay || _ 0 a, 0 a, :
a, a, a,; ap a; 0 a; 0
a3 Ay A5 A 0 a, 0 a

T is a linear operator on V.
All properties related with usual operators can be easily
derived in case of complex modulo integer linear operators.

We can define in case of linear operators of vector space / linear
algebra of complex modulo integers we can define the related
special characteristic values and characteristic vectors.

Let V be a complex modulo integer vector space over the
field Z, and let T be a linear operator on V. A special
characteristic value of T is a scalar c¢ in Z, such that there is a
non zero vector o in V with Taw = ca. If ¢ of characteristic value
of T, then

(a) any o such that To = couis called a characteristic vector

of T associated with value c.
(b) collection of all asuch that Too= ca is called the
special characteristic space associated with c.

The fact to be remembered is that in case of usual vector
spaces the associated matrix has its entries from the field F over
which the space is defined but in case of complex modulo
integers this may not be possible in general. We say in case of
special characteristic equation the roots may not in general be in
the field Z, but in C (Z,) where the vector space is defined
having its entries. Thus this is the major difference between
usual vector space and the complex modulo integer vector
space.

Now we define the notion of special Smarandache complex
modulo integer vector space / linear algebra over the S-ring.

DEFINITION 2.4: Let V be an additive abelian group with
entries from {C (Z,) = {a + birl a, b € Z,}; ii = n—1} where Z,
is a S-ring. If V is a vector space over the S-ring then we define

118



V to be a Smarandache complex modulo integer vector space

over the S-ring Z,.

We give examples of them.

Example 2.43: Let

={a+bipla, be Zy i;

2

a; € C(Zy)

9}; 1 £1< 6} be a Smarandache

complex modulo integer vector space over the S-ring R = Z,.

Example 2.44: 1et

.7 .8 aj € C(Zis)

d39 Ay

={a+ bigl a, b e Zy}; ié = 13} be a S-complex modulo

integer vector space over the ring S = Z,4.

Example 2.45: Let

={a+bipla be Zy; i

Example 2.46: Let

={a+bigla be Zsy; i

2
F

a, a,
a, a,

a; € C(Zse)
a4, ap
45 A

=45}; 1 £1< 6} be a S-complex
modulo integer linear algebra over the S-ring S = Zs.

2
F

ag a; € C(Z3g)

=37}; 1 £1 <9} be a complex

modulo integers linear algebra over Zs.
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Take

al a2 a3
W=410 a, a;||aecC(Zx);1<i<6}cM;
0 0 ag

W is a Smarandache complex modulo integer linear subalgebra
of M over Zss. Infact M has many S-complex modulo integer
linear subalgebras.

Example 2.47: Let V = {(X,, X2, X3, X4, X5, X, X7, Xg) | X; €
C(Zss)={a+birla,b e Z34;i§ =33}; 1 <1< 8} be a Smarandache
complex modulo integer linear algebra over the S-ring Zs, = S.
Take
Py ={(x1,%2,0,0,0,0,0,0) 1 x;, x2€ C(Zss)} CV,
P,=1{(0,0,x50,0,0,0,0) x5 C(Zs)} CV,
P;={(0,0,0, x4,%5,0,0,0) I x5, x4€ C (Z34)} C V,
P,={(00000x600)Ix6e C(Zs)} CV,
Ps={(000000x,0)Ix7e C(Zs)} <V and
P6= {(0 0... 0, Xg) | Xg € C (234)} c A\
be smarandache complex modulo integer linear subalgebras of

6
V over the S-ring Z34. Clearly V = UR andPinNP;=(00000
i=1
000)ifi#j; 1 <1,j<6.Thus V is a direct sum of subspaces.
Take
M, ={(X1,X2,0,x30000) I x;€ C(Z3g); 1 <1<3} CV,
M2= {(X], X2, 0, 0, X3, X400) | X; € C (Z34); 1 S1S4} QV,
M3= {(X1,00X20X300)|Xi€ C(Z34); 1 S1S3} QV,
M4= {(X], 0 X2, 0, X3 0 X4) | X; € C (Z34); 1<i< 4} c V,
M5= {(X1,00000X3X2)|Xi€ C(Z34); 1 S1S3} gVand
Me={(X1,0,%2,0,x30x40) IX;€ C (Zss); 1 <154} CV,
be S-complex modulo integer linear subalgebras of V over the
S-ring S = Z34.

6
V= UMi sMinMjz=0)ifi#j;1<i,j<6.
i=1
Thus V is only a pseudo direct union of S-complex modulo
integer sublinear algebras of V over Zs, = S.
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Example 2.48: Let

V={|:al az:|
a, a,

1 <1 <4} be a Smarandache complex modulo integer linear
algebra over the S-ring Ze.

Let
W = a;
0 a,
W is a Smarandache complex modulo integer linear subalgebra

of V over the S-ring Z.
Now let

=3 2)

P is a complex modulo integer linear algebra over the field F =
{0, 3} € Zs. Thus P is defined as a Smarandache pseudo
complex modulo integer linear algebra over the field F of V.
Infact P is also a Smarandache pseudo complex modulo
integer linear subalgebra of V over the field {0, 2, 4} < Z.

T

is a pseudo Smarandache complex modulo integer linear
subalgebra of V over the field F = {0, 2, 4} < Ze.

aje C(Zg)={a+isbla,be Z; ii =5};

a, e C(ZG);ISiS?)} cV,

a.eC(Z);1<i< 2} cV,

ae C(ZG)} cV

Example 2.49: Let

ae C(Zy)

Il
®» o W
B o W

a
a
a
a

I

={a+igbla be Zy ié = 6}} be a complex modulo integer

vector space over the field Z;. Clearly V has no subvector space

with entries of the forma=x +iry; x 20 and y # 0.
Inview of this we have the following theorem.
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THEOREM 2.12: Let

a a a a
a a a .. a

v=4l. | aecz)
a a a .. a

p a prime} be the set of all n x n matrices complex modulo
integer linear algebra over Z,.

i) V has no complex modulo integer linear subalgebra with
entries of the matrix x = a + bip, a #0and b #0a, b € Z,.

X X ... X

. X X .. X .

i)M=<. . . ||x€Z, cVisapseudo complex
X X ... X

modulo integer linear subalgebra of 'V over Z,.

The proof is straight forward and hence left as an exercise to the

reader.
a a
a a

be a complex modulo integer linear algebra over the field Zs.
Consider

i, 3ig 4i. 4
XY = 3% 3% 4?F 4%
i 3ip ) \ 41 4

C(2x12i2 2x12i2)  (24x4 24x4) (1 1
T loxni2 2x12i2 ) (24x4 24x4) (11

(using iy =4 and modulo adding 5).

Example 2.50: Let

ae(XZQ}

in V. Now

122



Thus if

=)

then P is not a linear subalgebra and product is defined on V but
it is not in P. For take

i g 3. 3ig
x=|~ _landy=| -~
ip 1 3i,  3i

ae ZSiF} = {aiF |ae ZS} cV

in P. Now

3iZ +3i2  3i +3i; 4 4
(?i v ?EJ <mod5><i§=4>=(4 LJEP‘
3ip +3ip  3ip +3i;

Thus P cannot be a linear subalgebra but P can be complex
modulo integer vector subspace so P is a pseudo complex
modulo integer vector subspace of V over Zs.

Example 2.51: Let

ae C(Zp) =

2~

Il
® o W
® o W
® o W
® o W

{a; + igby | aj, by € Zy; i; = 11}} be a S-complex modulo

integer linear algebra over the S-ring Z;,. P has pseudo S-
complex modulo integer linear subalgebra given by

acZ, i, r P

9]

Il
B o » W
B o » W
® o W
® o W
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is not a subalgebra. Thus if C(Z,) = {a+igbla, b e Z; i; =n—
1} then Z, < C(Z,) and Z, is a subring called the pseudo
complex modulo integer subring. However Z, ir ={air | a € Z,,

:2

iz =n— 1} is not a ring or a semigroup under product but only

F
a group under addition for air . bir (a, b € Z,) is abi}?; =ab (n-
1) and ab (n — 1) ¢ Z, ig. Thus product is not defined on Z,ir.
Now all properties associated with usual vector spaces can
be derived in case of complex modulo integer vector spaces. We
just indicate how linear functionals on complex modulo integer
of linear algebras / vector spaces defined over Z, is described in
the following.
Let

V= K N ae C(Zy)

a9 3y

={a+bipla, be Zy; i; = 22}; 1 £1 <10} be a complex
modulo integer vector space over the field Z,;.
We define f : V — Z; as follows:

a,+bjip a,+b,i

a;+b,i. a,+b,i,

a9 +bolp  aj, +blg

= (aj+by+a+by+ ... + a9+ bjp) mod 23.
Thus f is a linear functional on V over Zs.

However we have to be careful to make appropriate changes
while defining dual spaces and basis properties associated with
linear functionals. Further we can have f(v) = 0 even if v # 0;
and v € V. Interested reader can develop it as a matter of
routine.

If A =(a; + b; i) is a n X n complex modulo integer matrix
with entries from Z,, p a prime we can find characteristic values
as in case of usual matrices.
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Chapter Three

NEUTROSOPHIC COMPLEX MODULO
INTEGERS

In this chapter for the first time the authors introduce the notion
of neutrosophic complex modulo integers. We work with these
newly defined neutrosophic complex modulo integers to built
algebraic structures.

Let C((Z, UI)) = {a+big+cl+idlla,b,c,de Z, i; =n
— 1, P =1, (I)* = (n — DI} be the collection of neutrosophic
complex modulo integers. Thus neutrosophic complex modulo
integer is a 4-tuple (a, b, ¢, d) where first coordinate is a real
value second coordinate signifies the complex number, the third
coordinate the neutrosophic integer and the forth coordinate
represents the complex neutrosophic integer.

Example 3.1: Let C{(Zsu D) ={(a+igb+cl+irdl)la, b, c, d
€ Zs, if: =4, I’ = I, (iFI)2 = 41 } be the neutrosophic complex

modulo integer. The order of C((Zs U I)) is 5%,

Example 3.2: Let C{(Z,u D) ={(a+igb+cl+irdl)la, b, c, d
€ Za, if: =3, = I, (iFI)2 = 31} be the neutrosophic complex

modulo integers.
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Example 3.3: Let C(Z;, U D) = {(a + bip + cI + digl) | a, b, ¢, d
€ Zp, ii = 11, P =1, (igl)* = 111} be the neutrosophic complex

modulo integers.
We give now algebraic structure using C((Z, U I)).

DEFINITION 3.1: Let C((Z, 1)) = {a + igb + cl + isdl | a, b, c,
deZ, ii =n-1,F =1 (ird )2 = (n— 1)I}, suppose define addition
‘+"on C((Z, V1)) as follows if x= {a + irb + cl + irdl} and y =
{m + igp + sl + igrl} are in C((Z, U1)) then

x+y (a+irb+ cl+ipdl) + (m+igp + s+ iprl)

((a + m) (modn) + ir (b + p) (mod n) +

(¢ + s)I (mod n) + igl (d + r) (modn))

(C((Z, U1)), +) is a group for 0 + 0 + 0 + 0 = 0 acts as the
additive identity. For if x = {a + bir + cl + dipgl € C((Z, V1))
we have —x = (n—a) + (n—b)ir+ (n—c)l + (n—d)irl € C((Z,
1)) such that x + (—x) = 0.

(C((Z, U 1)), +) is defined as the group of neutrosophic
complex modulo integers or neutrosophic complex modulo
integers group.

All these groups are of finite order and are commutative.
We will illustrate this situation by some examples.

Example 3.4: Let G=C(Z;; v D) ={(a+igb +cl +igdl) | a, b,
c,de Zy, P =1, (ip)® = 10, (i)’ = 10I} be a neutrosophic
complex modulo integer group under addition. o(G) = 11°. G
can have only subgroups of order 11 or 121 = 11% or 11° only.

Example 3.5: Let G= {C({(Z,u D), +} = {0, 1, i, L, igl, 1+ g, 1
+ LI+ 1 +igL+ip+ L ip+ipl, 1+ip+ L 1 +1p+1, 1 +1+
ig I, T + ip + igl, 1+ i+l + igl} be the group neutrosophic
complex modulo integers of order 2* = 16.

We have H; = {0, 1}, H, = {0, I} and H; = {0, 1, I, 1 + I} are
subgroups of order two and four respectively.
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Example 3.6: Let

P — al az a3
a, a; a;
=f{a+big+cl+idlla, b c,de Zs, i2 =2, P =1, (if)’ = 2L, 1

<1< 6} be a group of neutrosophic complex modulo number 2
X 3 matrix under addition.

aie C(Zzul)

Example 3.7: Let

27 .
M= {Zaix‘

ae C(Zpul))

i=0

={a+bip+cl+idlla, b,c,de Zp, i =41, P =1, (i)’ =

411}; 0 <1 < 27} be a group of polynomials under addition of
complex neutrosophic modulo integers.
Clearly M is of finite order.

Example 3.8: Let

X X
X; X,

P= . R a; € C (<Z§() (W) I>)
X3 Xy

={a+bip+cl+idlla, b, c de Zs, i =49, =1, (iel)* =
491}} be the 22 X 2 group matrix under addition with entries
from C({(Zso U I)).

Example 3.9: Let M = {(X}, X2, ..., X11) | X, € C({(Zsu D) ={a
+big+cl+igdlla, b, c,de Zs, i2 =14, P =1, (ifd)’ = 141}; 1
<1< 11} be a group of row matrix of neutrosophic complex
modulo integers under addition.

Example 3.10: Let M = {(a, a,a,a,a,a)lae C({(Z,ul)={a
+bip+cl+diglla, b, c,de Z, i2 =10, P =1, (igl)* = 101}}
be a row matrix of neutrosophic complex modulo integers. M is
a group under product. (M does not contain (0, 0, 0, 0, 0, 0)).

127



Example 3.11: Let

a; € C (<Zl3 () I>)

Il
S R S 2 R - B VR

={a+igb+cl+digdla b c,de Zs, i2 =12, P =1, (ifl)’ =
121}} be a group of neutrosophic complex modular integers
under addition of finite order.

Example 3.12: Let

e ]

={m+nip+rl+islImnr,se€ Zs iz =14, P =1, (i)’ =
141}} be a group of complex neutrosophic modulo integers
under addition. Let

S

P is a subgroup under addition of M.

Take
a b
W =
{{c 0}

is also a group under addition.
Consider

= {0 ]

5,10} € Zy5}} < M is a subgroup of M.

a, b7 c, de C (<ZIS U I>)

a,be C(Z; uI>)} cM;

a,b,ce C(Z; uI>)} cM

a,b,c,de {m+nig+rl+igslIm, n, r,se {0,
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Now we have seen the concept of subgroups of a group.

Example 3.13: Let M = {(ay, ..., aj9) where a; € C((Zy U I)) =
{a+ipb+cl+ipdlla, b, c,de Zy, i2 =39, P =1, (ig])* = 391};

F
1 <1 < 10} be closed under product but is not a group under
product. But M is a commutative semigroup of neutrosophic
complex modulo integers under product. M has ideals and

subsemigroups.

Example 3.14: Let

2 aie C(Zu U

={a+biptcl+idlla, b, c,de Zs, i2 =42, P =1 (if])’ =

F

421}; 1 <1 < 30} be a complex neutrosophic modulo integer
semigroup under addition.

a) Find order of S.

b) Find ideals if any in S.

¢) Can S have zero divisors?

d) Find subsemigroups which are not ideals in S.

Study (a) to (d) to understand about neutrosophic complex

modulo integer semigroup.

Example 3.15: Let

e ]

= {m +rir + nl + Isi¢ | i; = 12, ' = 1, and (Tli)” = 121} be a
neutrosophic complex modulo integer semigroup under product
of matrices.

i.  Find order of M.

ii. Find subsemigroups which are not ideals of M.

0 a
. IsP =
{{b 0}

a,b,c,de C((ZiU1I))

a,be C(Z,; U 1})} C M an ideal of M?
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iv. Find right ideals in M, which are not left ideals of M.
v. Prove M is a non-commutative semigroup.
vi. Is M a S-semigroup?

Answer such questions to understand this concept. However
the last chapter of this book provides many problems for the
reader. Further we are not interested in the study of complex
neutrosophic modulo integer semigroups or groups.

What we are interested is the construction and study of
complex neutrosophic modulo integer vector spaces / linear
algebra and set complex neutrosophic modulo integer vector
space / linear algebra and their particularized forms. Now we
have seen examples of semigroups and groups built using the
complex neutrosophic modulo integers.

We will first define vector spaces of complex neutrosophic
modulo integers.

DEFINITION 3.2: Let V be an additive abelian group of complex
neutrosophic modulo integers using C((Z, U 1)), p a prime. Z,
be the field. If V is a vector space over Z, then V is defined as
the complex neutrosophic modulo integer vector space over Z,.

We will illustrate this situation by an example.

Example 3.16: Let

25 .
V= {Zaix‘

i=0

ae C(Z;ul)

= {a+big+cl+ixdlla, b, c,de Z;}, i2 =6, P =1}; 0<i<25)
be a complex neutrosophic modulo integer vector space over the
field Z;.

Example 3.17: Let

al a2 a3
M=1la, a, a,|lae C(Zyul))
4; 83 4
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={a+bis+cl+idlla,b,c,de Z,}, i2 =10, P =1; (il)* =

10I}; 1 <1 £ 9} be a neutrosophic complex modulo integer
vector space over the field Zy;.

Example 3.18: Let

a,

a2
P . a; € C(<Z43 () I>)

4,

={a+bis+cl+ipdl I a, b, c,de Zy)}, i2 =42, P =1; (iel])* =

421}; 1 £1 < 12} be a complex neutrosophic modulo integer
vector space over the field F = Zy;.

Example 3.19: Let M = {(a}, a5, ..., a;9) laje C ((Zyyu D)) ={a
+big+ cl + ipdl | a, b, ¢, d € Zy}, i2 =46, P =1I; (i)’ = 461}; 1

<1 < 10} be a neutrosophic complex modulo integer vector
space over the field F = Zy;.

Example 3.20: Let

W ( a, a, .. alzJ
a13 a14 a24
={a+bis+cl+ipdl I a, b, c,de Zy}, i2 =22, P=1; (il)* =

221}; 1 <1 £ 24} be a neutrosophic complex modulo integer
vector space over the field Z,; = F.

a; € C(<Zz3 () I>)

Example 3.21: Let

P P2 D3
w= | P P Pellne cqzsum)
Py Paus DPaus

={a+ib+cl+ipdlla, b, c,de Zs}, i =4, P =1; (igl)* = 41};

1 <1 < 45} be a neutrosophic complex modulo integer vector
space over the field F = Zs.
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Example 3.22: Let

¢ ae C((Zpul))

={a+big+cl+igdlla,b,c,de Zy}, i2 =28, P=1; (i)’ =

281}; 1 <1 < 12} be the neutrosophic complex modulo integer
vector space over the field Zyy = F.

The definition of subvector space is a matter of routine we
give a few examples of them.

Example 3.23: Let
Y llaie C(Ziu)

={a+bip+cl+igdlla, b,c,de Zs}, i2 =12, P =1; (il)* =

121}; 1 <1 £ 22} be the neutrosophic complex modulo integer
vector space over Zj;.

Consider
a, 0
a, 0 )
T= S |]la,eCkZ,,ul>);l<i<ll; CV,
a, O

T is a complex neutrosophic modulo integer vector subspace of
V over Z;5.
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fa a,]
0 O
a, a,
0 O
a; ag
M=10 0 |lacCccz,ul>s<i<2l cv
a, a,
0 O
4 a4y
0 O
L3 A

be a neutrosophic complex modulo integer vector subspace of V
over Zis.
Now

TAM= a.eC(<Z,Ul>;l<i<6} cV

S O O O O O o o o o o

is a subspace of V. We have the following theorem the proof of
which is left as an exercise to the reader.

THEOREM 3.1: Let V be a neutrosophic complex modulo

integer vector space over the field F = Z,. Let W, ..., W, (t < oo
be the collection of vector subspaces of V.
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W = n W, is a vector subspace of V. W can be the zero
subspace.

Example 3.24: Let
a, a, a, a,
V=1dla; a, a, ag|lae C(Z;Ul))
a 3 A Ap
=f{a+isb+cl+ipdlla,b,c,de Z;;i2 =6, =1; (ie)* = 6I};

1 €1 <12} be a neutrosophic complex modulo integer vector
space over Z;.

Consider
[a, 0 0 a,
Wi=40 0 0 0]|a,eCZ,ul>);l<i<3; cCV,
la, 0.0 0
[0 0 0 0
W,=<a, 0 0 a,|la,eC<Z,Ul>);l<i<3:;CV,
10 0 0 a,
[0 a, 00
W;=4/0 a, 0 O|la,a,eC(<Z,ul>); CV,
0 0 00
[0 0 a, 0
Ws=40 0 0 Ojla,a,eC(Z,ul>); cVand
10 a, 0 O
[0 0 0 O
Ws=4<0 0 a Ofla,a,eC(<Z,Ul>; cV
10 0 a, O
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be neutrosophic complex modulo integer vector subspaces of V
5
over Z;. Clearly V = UWi ifi#j, 1<1,j<5. Thus V is the

i=1

direct sum of W, Wy, ..., Ws.

Example 3.25: Let

aS aG a7 aS
a9 al() all a12

V=4dla, a, a; a,l|laecC{(ZsuUl))
a17 alS a19 aZO

25 26 a 27 28

={a+bip+cl+idlla b, c,de Zs;; i2 =52, P =L (ig])* =

F
52I}; 1 <1 < 28} be a complex neutrosophic modulo integer
vector space over the field F = Zs;.

Example 3.26: Let

a a a
M= K N ] N a; € C(Zs3)

dys Ay Ay Ay
= {a + big | ié =52} 1 <i<8} ¢V, (V mentioned in Example

3.25) M is called as the complex pseudo neutrosophic complex
modulo integer vector subspace of V over Zs;. Take

a a
6 7 8
. ||a,e({Z, )

dys Ay Ay Apg

={a+ bl | I’ = I, a, b e Zs;} < V. P is a neutrosophic pseudo
neutrosophic complex modulo integer vector subspace of V
over Zss.
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a
T=4 7 ° 7 PllaeZyl<i<28t cV;

Ars Ay Ay Ayg
then T is a real pseudo neutrosophic modulo integer vector
subspace of V over Zs;.
It is interesting to note that V is not a linear algebra.
We can also have

B=4 7 ° 7 FllaezZ l=(allacZ,};1<i<28

c V is a pure neutrosophic pseudo neutrosophic modulo integer
vector subspace of V over Zs;.

Finally if we take
a, a, a; a,
a;, a, a, ag . ]
C=4| . : : . ||a€ Zgipi{aiplae Zgy 1< j< 28

Ars Ay Ay Ayg
c V is again pure complex pseudo neutrosophic complex
modulo integer vector subspace.

However it is pertinent to mention here that if V is a linear
algebra then V cannot contain pure complex pseudo
neutrosophic complex modulo integer vector subspace. This is
the one of the marked difference between a vector space and
linear algebra. We have not so far defined the notion of
neutrosophic complex modulo integer linear algebra. We just
say a complex neutrosophic modulo integer vector space V is a
complex neutrosophic modulo integer linear algebra of V is
closed under a product. Inview of this we have the following
theorem.
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THEOREM 3.2: Let V be a complex neutrosophic modulo
integer linear algebra over the field Z,, then V is a neutrosophic
complex modulo integer vector space over the field Z,. If Vis a
complex neutrosophic modulo integer vector space then V need
not in general be a linear algebra.

The first part follows from the very definition and the later part
is proved by a counter example.

Example 3.27: Let

5 aG
a; € C (<Z]7U I>)

a, 4, Ay
={a+bir+cl+irdlla, b c,de Zy; il =16, P =1; (i)’ =
16I}; 1 <1 < 12} be a complex neutrosophic modulo vector
space over the field Z,;. Clearly a product cannot be defined on
M so M is only a vector space and not a linear algebra.

Example 3.28: Let

*llaje C (Znul)

={a+bip+cl+idlla, b, c,de Zy; i2 =22, P =L (if)* =

F
221}; 1 <1 £ 16} be a complex neutrosophic modulo integer
linear algebra over the field Z;;.

We can define subalgebras and direct sum.

Example 3.29: Let M = {Z:aixi € C{Zul))={a+Dbig+

i=0

cl+idlla, b, c,de Z;,}, iZ =is I’ =1 and (li)* = 101} be a
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complex neutrosophic modulo integer linear algebra of infinite
dimension over Z;.

Example 3.30: Let V = {(a;, a», a3, a4, as, ag, a7, ag) | a; €
C (Ziul)={a+big+tcl+idlla, b, c,de Zy}, i; =16,
I =1and (iFI)2 = 16I}; 1 <1 < 8} be a neutrosophic complex
modulo integer linear algebra over the field F = Z;5. Clearly V is
finite dimensional over Z .

Consider

Py ={(x1,0,%,0,0,0,0,0) I x;, x,e C{ZisUD)} CV,

P, ={(0, x4, 0, x5, 0,0,0,0) I x;, x, € C{ZsUD)} CV,
P;={(0,0,0, 0, x1, X2, 0, 0) | x1, X, € C{Z1; U I))} €V and
Ps={(000000x;x0) X5, %06 C({(ZpUD)} cV
be a collection of complex neutrosophic modulo integer linear

4

subalgebras of V over Z;7. Clearly V = UR ;PimMP;j=(0000
i=1

0000)ifi#j, 1 <1i,j<4. Thus V is a direct sum of linear

subalgebras.

Take N = {(x1, Xo, X3, X4, X5, X¢, X7, Xg3) | X; € C(Zy7) and x; =
ajip; a; € Zi7; i; = 16}c V; clearly N is a pseudo complex
neutrosophic complex modulo integer pseudo vector subspace
of V over Z;;. Clearly N is not a pseudo complex neutrosophic
complex modulo linear subalgebra of V over Z;;.

Take B = {(x1, X2, X3, X4, X5, X¢, X7, Xg) | X; € C(Z17) where x;
=a + bir with a, b € Z;7; i; = 16} < B; clearly B is a pseudo
complex neutrosophic complex modulo integer linear
subalgebra of V over Z5.

For if x = (2ig, 0, ig, 8ip, 3ig, 0, if, 8ip) is in N we see x.y =
(2ip, 0, ip, 8ip, 3ip, O, ip, 8ip). (ip, iF, ip, I, 0, 8if, ip, 9iF) =
(6.16, 0, i i, 8 i i, 3ir 0, O, 8ip, ir. ip, 8iF, 9ip) = (11, 0, 16, O,
0, 16, 4) ¢ N. Thus N is not closed under product so N is not a
pure complex modulo integer linear algebra over Z;;.

Let A={(X}, Xp, ..., Xg) IX;e (Zul)={a+blla, be
717, = I; 1 £i1<8} cV; Vis a pseudo neutrosophic complex
neutrosophic modulo integer sublinear algebra of V over Z,5.
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Consider B = {(x1, X, ..., Xg) | x; € Z;;1={alla e Z;, =
I 1 £1< 8} <V be a pure neutrosophic pseudo neutrosophic
complex modulo integer linear subalgebra of V over Z,5.

Now we can proceed onto define other properties which can be
treated as a matter of routine we would provide more illustrate

examples.

Example 3.31: Let

*llaje C(Zhul)

={a+bir+cl+idlla, b c,de Z, ;i =10, P=1; (i)’ =
10I}; 1 <i< 12} and

a4, a,
a, a,
as  ag
N= ae C((Znul)
a, ag
ay Ay
L& Q|

={a+bir+cl+idlla,b,c,de Z,; iZ =10, P =1 (iel)> =

10I}; 1 <1 < 12} be two neutrosophic complex modulo integer
vector spaces over Z;.
Consider T: M — N defined by

a,  a
a, a, aj a; a,
T a, as Aag _ a5 A
a; ag 3 a; ag
a A Ap 4 )
[a11 Ap
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for every

10
T is a linear transformation

We can define several other

Example 3.32: Let

4,
a a
4 5
M=
a; dg
dp 4y

={a+bip+cl+igdlla,b,c,de Zp; i

a2 a3
a a
5 6
e M.
a8 a9
all a12
of M to N.

linear transformations from M to N.

ae C((Zwul))

2
F

=18, =1 (if])* =

18I}; 1 <1 < 12} be a neutrosophic complex modulo integer
vector space over the field Z9. Define T : M — M by

al a2
a, a
T 4 5
a7 a8
a4y
T is a linear operator on M.
defined.
Suppose
a, 0 a,
0 a, O
W=
a, 0 a;
0 a, O

a, a, 0 a,
ag 0 a; O}
a, - a, 0 a,|
ap, 0 a, 0

Several such linear operators can be

a,€(<Z,ul>);l<i<6; cM

be a complex neutrosophic modulo integer vector subspace of

M over Zg.

We see T (W) < W; thus W is a invariant subspace of M

over Zo.
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Consider

al a2 a3
0 0 O .
P= 2,eC(<Z,ul>);1<i<6; cM;
a, a, a,
0 0 O
P is a complex neutrosophic modulo integer vector subspace of
M over Zo.
We see
a, a, a, a, 0 a,
0 0 O 0 0 O
T =
a, ay ag a, 0 a,
0 0 O 0 0 O
Thus P is also invariant under T.
Consider n : M — M given by
al a2 a3 al a2 a3
a, ay; ag a, 0 a,
n = )
a, a; a, a, 0 a,
ap A Ap a, 0 ap

M is a linear operator on M. But 1 (W) ¢ W so W is not
invariant under 1. Further 1 (P) & P so P is also not invariant
under M, we can derive several properties like relating nullity
and rank T with dimension of V, V a complex neutrosophic
modulo integer vector space and T a linear transformation from
V to W; W also a complex neutrosophic modulo integer vector
space over the same field as that of V. We can combine two
linear operators and find HomZp (V, V) and so on.

Example 3.33: Let

Ve {al am}
a, . Ay

be a complex neutrosophic modulo integer vector space over the
field Z;s.

ae C(Zsul); 1<i<20}
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Define f: V — Z;5 by

a, a, .. a, 2.
f = ZRepart of a, (mod13);

all a12 a20 i=1

f is a linear functional on V.

Example 3.34: Let V = {(a;, ) | a, € C (Z;u ) = {a + bip +
cl+idlla, b,c,de Z;;i2 =6, =1; (igl)* = 61}; 1 <i<2)
be a neutrosophic complex modulo integer vector space over the
field Z;. We define f : V — Z; by

2
f((ay, ap)) = ZRepart of a, (mod7).
i=1
For instance f ((3 + 4ir + 61 + 4igl), (64+2ir + 0.1+ 3is)) =3+ 6
(mod 7) =2 (mod 7).

Thus f is a linear functional on V. Suppose instead of
defining neutrosophic complex modulo integer vector space V
over a field Z, if we define V over Z,, Z, a S-ring then we call
V as a Smarandache neutrosophic complex modulo integer
vector space over the S-ring Z,.

We will give examples of this situation.

Example 3.35: Let

a4, a, ag
V=3la, a, .. a,|laecC{(Zsgul)
a7 Qg .. Ay

={a+big+cl+ixdlla, b,c,de Zy), i2 =77, ' =1 and (igl)’

= 771}, 1 £1 < 24} be a Smarandache complex neutrosophic
modulo integer vector space over the S-ring Zs.

Example 3.36: Let

:6 a€e C((Zas L 1))
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= {a + big+ cl +igdl | a, b, ¢, d € Zoy}, i =93, I’ =T and (iel)’

= 931}, 1< i < 30} be the S-neutrosophic complex modulo
integer vector space over the S-ring Zo,.

Example 3.37: Let P = {(a}, a5, a3, a4, ..., ay) la; € C{(Zp U I))
={a+big+cl+igdlla, b, c,de Zy}, i2 =9, P =Tand (i)’ =

91}, 1< a; < 20} be a S-neutrosophic complex modulo integer
linear algebra over the S-ring Z .

Example 3.38: Let
M= {al a, .. a7}
a, a, .. aj,
= {a + big+ cl +igdl | a, b, ¢, d € Zs4}, i2 =33, I’ =1 and (igl)’

= 33I}, 1 £1 < 14} be a S-neutrosophic complex modulo integer
vector space over the S-ring Zsa.

ae C((Zuyul))

It is important and interesting to note that every S- neutrosophic
complex modulo integer vector space over the S-ring is in
general not a S-neutrosophic complex modulo integer linear
algebra but always a S-neutrosophic complex modulo integer
linear algebra over a S-ring is a vector space over a S-ring.

Example 3.39: Let

S llaie C(Zuu )

={a+big+cl+ixdlla, b, c,de Zs), ii =45, I’ =1 and (ifl)’

= 451}, 1<1 £ 18} be a S-neutrosophic complex modulo integer
vector space over the S-ring Zas.

Clearly V is not a S-neutrosophic complex modulo integer
linear algebra over Zag.
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Example 3.40: Let

a, 4, 4
V=3la, a, .. a,|lacC{Zsul)
a9 ay ... Ay

= {a + big+ cl +igdl | a, b, ¢, d € Zy}, i =13, " =1 and (igl)’

= 13I}, 1< 1 £ 27} be a Smarandache complex neutrosophic
modulo integer vector space over the S-ring Z,4.

Consider
a, 0 .. O
P=40 0 .. Ofla,a,e((Z,Vl)); cV
a, 0 .. 0O

is a Smarandache complex neutrosophic modulo integer vector
subspace of V over Z4.

Take
0 0 .. 0 a a,
M=40 0 .. 0 a, a||a,eC(Z,uD)l<i<6:;cV
00 0 a, a

is a Smarandache complex neutrosophic modulo integer vector
subspace of V over Z4.

00 .. 0
PArM=||0 O ... 0||cV
00 .. 0

is the zero subspace of V over Z,4.

Example 3.41: Let

a, a; a,
a, a, a,
P= a€e C((ZpsU 1))
alO all a12
a a a
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= {a + big+ cl +igdl | a, b, ¢, d € Zy), iz =25, I’ =1 and (iel)’
= 251}, 1<1 £ 18} be a S-neutrosophic complex modulo integer
vector space of over Za.

Consider
al a2 a3
0O 0 O
W1 = . . . a, dp, A3z € C (<222 U I>)
0O 0 O

= {a + big+ cl +igdl | a, b, ¢, d € Zy}, i =21, " =1 and (igl)’
=211}} ¢V,

0 0 0
al a2 a3
W=4/0 0 0]|a,a,a3e C(Zrul)icV,
0 0 0]
0 0 0]
0 0 0
Wy= |, e C(Znu)lcV
= dap, dz, 4 =V,
3 0 0 0 1 2. 3 22
0 0 0]
0 0 0]
0 0 0
0 0 0
W4 = ap, do, A3 € C (<222 ) I>)}g V7
al a2 a3
0 0 0
0 0 0]
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Ws = a, a,a3€ C((Zpul))lcV

oS ©O © O
= el el =)
= e el =)

o
o
o

and

W = a, a, 3€ C((Znpul)icV

S O O O O
S O O O O

a, 3, a4,

be S-neutrosophic complex modulo number vector subspaces of

6
V.V= UWi;Wiij=(0)ifi;tj;1Si,j£6. Thus V is the
i=1
direct sum of S-neutrosophic complex modulo integer vector
subspaces of V over Zy;,.

Example 3.42: Let

al a2 a3
V=1dla, a, a,||lae C(ZuUI))
a; ag 4a

= {a + big+ cl +igdl | a, b, ¢, d € Zs4}, i2 =33, I’ =1 and (igl)’

= 331}, 1< i1 £ 9} be a Smarandache neutrosophic complex
modulo integer vector space over the S-ring Zs,.

Take
a, 0 a,
Wi=<0 a, 0]la,aaze C{(Zuul)}cV,
0 0 O
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a, 0 O

W,=4la, a, Ofla,a,a3e C(Zuul)lcV,
10 0 0
[a, 0 O]

W;=4<0 a, a,||la,anaze C{(Zuul)}cV,
10 0 0]
[a, 0 O

W,=40 0 a,||a,a,a3e C(Zuul)}jcV,
la, 0 0

and

[a, 0 O

Ws=4<10 0 O ||la,aya;e C{(Zyul)jcV
10 a, a,

be S-neutrosophic complex modulo integer vector subspaces of
V over the S-ring Z34. Clearly

. 0 00
UW:sWinwjz|0 0 0
= 000

ifi#j;1<j,j<5.S0 Visnot a direct sum of Wy, W, ..., W5,
but only a pseudo direct sum of W, Wy, ..., W5 of V.
We can also define neutrosophic complex modulo integer

vector space / linear algebra over (Z, U I).
We will give only examples of them.

Example 3.43: Let

ae C((Zpyul)
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{a+big+ cl+ipdl 1 a, b, ¢, d € Zpo}, i2 =28, I’ =1 and (igl)®
= 28I}, 1< 1 £ 16} be a neutrosophic complex neutrosophic
modulo integer linear algebra over F = C ((Zyy U I)).

Example 3.44: Let

a, ay ag

ae C(Zou1))

a3 a3 Az

={a+big+cl+ixdlla, b, c,de Zy), i2 =39, I’ =1 and (ifl)’
= 391}, 1< 1 < 33} be a neutrosophic complex neutrosophic
modulo integer vector space over ({(Zs U I)).

Example 3.45: Let

7 a8
. . a € C((Zpul))

= {a + big+ cl +igdl | a, b, ¢, d € Zy)}, i =28, I’ =T and (igl)’

= 28I}, 1< 1 <40} be a complex neutrosophic complex modulo
integer vector space over the complex ring C(Zy) = {a + bir | a,

be Zzg}, 112; =28}

Example 3.46: Let

* lae C({Zp UT))

= {a +big+ cl +igdl la, b, c,d € Zp}, i = 11, I’ =T and (il)’
= 111}, 11 £ 16} be a complex neutrosophic complex modulo
integer linear algebra over the complex ring C (Zy2) = {a + big |

a,be Zp}, ip =11}.
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Example 3.47: Let

n ap a; € C (<Zl6 () I>)

= {a + big+ cl +igdl | a, b, ¢, d € Zy4}, iz = 15, " =T and (iel)’
= 151}, 1< 1 £ 20} be a complex neutrosophic complex modulo
integer vector space over the complex ring C (Z¢) = {a + bir | a,

be Zys), ii = 15}.

Example 3.48: Let
al

a, ||aeC (Zisu D)

= {a + big+ cl +igdl | a, b, ¢, d € Zy}, i =13, I’ =1 and (igl)’

= 13I}, 1< 1 £ 12} be a strong neutrosophic complex modulo
integer vector space over the complex neutrosophic modulo
integer ring C ({(Z14 U I)). Clearly dimension of V over S is 12.

Example 3.49: Let

a, a,
a, a,

V= . X a; € C (<Z]3 (W) I>)
a9 Ay

= {a +big+ cl +igdl | a, b, c,d € Z3}, i2 = 12, I’ =T and (igl)’
= 12I}, 1< 1 £ 20} be a strong neutrosophic complex modulo

149



integer vector space over the modulo integer ring C ((Z3 U I)).
V is finite dimensional and dimension of V over S is 20.

Example 3.50: Let

al a2 a3
V=1la, a, a,||lae C(ZsUI))
a; ag 34

= {a + big+ cl +igdl | a, b, ¢, d € Zu3}, i =42, I’ =1 and (igl)’
= 421}, 1< 1 £ 9} be a special complex neutrosophic modulo
integer vector space over the neutrosophic complex modulo
integer ring S = C ((Zg3 U I)).

Consider

1 0 0j|]O 1 0|0 O 1{|0 O O||0O O O
B=4/0 0 0,0 O 0,0 O O|,J1 0 0[O0 1 O},
0 0 0]|0O O O|{O O Of|O0O O O]|O0O O O

B is a basis of V over S. Clearly dimension of V over S is nine.

However if S is replaced by (Zs U I) or Zy; or C (Zyg;) the
dimension is different from nine.

Example 3.51: Let

ag a; € C (<Z37 () I>)
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{a+big+ cl+ipdl 1 a, b, ¢, d € Zs7}, i2 =36, I’ =1 and (igl)
= 36l}} be a strong neutrosophic complex modulo integer

vector space over the ring S = C ((Zz; U I)).
Take

a a a a

1 2 3 4

wW=J0 0 0 0|laeC(Zsul);1<i<8)

c V, W is a strong neutrosophic complex modulo integer vector

space.
Consider
0 0 0 O
P=+<la, a, a, a,||aeC(Zy)
0 0 0 O

={a+birla,be C(Zy)}, i; =36, c C (Zsy U )}; 1<i< 4}
c V, P is only a pseudo strong complex neutrosophic complex
modulo integer vector subspace of V over C (Zs;). Clearly P is
not a strong vector subspace of V over C ((Z3; U I)).

Consider
0 a, 0 a,
B=30 0 a;, 0|laaeC{ZyuUl)
0 0 a, a;

={a+bigla, be Z3}, = I; Ii<6} < V; Bis only a pseudo
neutrosophic strong neutrosophic complex modulo integer
vector subspace of V over the neutrosophic field (Z3;; U 1)
C({(Zs; U I)). Clearly B is not a strong vector subspace of V over
C{Zyul)).

Consider

C=4la, a, a, a,||laeZy;Il<i<12}
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c V, C is only a usual modulo integer vector space over Za;.
Thus C is a pseudo strong usual modulo integer neutrosophic
complex vector subspace of V over Z3; < C((Z3; U I)). Clearly
C is not a strong vector space over C({(Zs; U I)). Thus we have
the following theorem.

THEOREM 3.3: Let V be a strong neutrosophic complex modulo

integer vector space / linear algebra over C ((Z, U1)).
Then

i. V has pseudo complex strong neutrosophic complex
modulo integer vector subspace / linear subalgebra over C
(Z,) ={a+birlabeZ, i, =p-1cC(Z, UI).

ii. 'V has pseudo neutrosophic strong neutrosophic complex
modulo integer vector subspace / linear subalgebra over
Z,ul)={a+blla beZ, =1} cC(Z, ).

iii. 'V has pseudo real modulo integer strong neutrosophic
complex vector subspace / linear subalgebra over Z, c C

((Z, V1))

Proof is simple and hence is left as an exercise to the reader.
Example 3.52: Let
V — al a2
a, a,
={a+big+cl+igdl | iZ =1, P=Tand (if)’ =1}, ISi<4} bea

strong neutrosophic complex modulo integer linear algebra over
the neutrosophic complex modulo integer ring.

aie C(Zyul)

C(Z, UT) M = {al az} ae C(Zy; 1<i<4lcV
a a

3 4

be a pseudo real strong neutrosophic complex modulo integer
linear subalgebra of V over Z, c C((Z, U I)).

Clearly M is not a strong neutrosophic complex modulo
integer linear subalgebra of V over C({(Z, U I)).
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Consider

al a2
P= ai € C(Zo);

a, a,
{a + big | if: =1,a,be Z}; 1 £1<4} c V; Pis a pseudo
complex strong neutrosophic complex modulo integer linear
subalgebra of V over C(Z,) c C({(Z, U I)).

Clearly P is not a strong complex neutrosophic modulo

integer linear subalgebra of V over C({(Z, U I)).

B — al a2

a, a,
={a+bllabe Z,,P=1} cC(Z,uD); 1<i<4} cV,isa
pseudo neutrosophic strong complex neutrosophic complex
modulo integer linear subalgebra of V over (Z, U I). Clearly B

is not a strong complex neutrosophic modulo integer linear
subalgebra of V over C({Z, U I)).

aie C(Zyul)

Now we proceed onto define the notion of set neutrosophic
complex modulo integer vector space over a set.

DEFINITION 3.3: Let V be a set of elements from C ((Z, U 1))
(the elements can be matrices with entries from C ((Z, U 1)) or
polynomial with coefficients from C ((Z, U 1)). Suppose S < Z,
be a subset of Z,. If forallv € Vand s € S, sv = vs € V then we
define V to be a set neutrosophic complex modulo integer vector
space over the set S C Z,.

We will give examples of this situation.

Example 3.53: Let
X
- Xl |8 ay 8
V = Zaixi s (Xh X2, X3, X4, X5)7 : 5
i=0 : a, a, a,
X7

ai, Xj € C(Z; u1); 0<1<10,1<j<7} be a set complex
neutrosophic vector space over the set {0, 1, 5} < Z5.
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Example 3.54: Let

bl

2
X Xy Xy

Xi € C({Zy U I)); 1 £1i <30} be a set neutrosophic complex
modulo integer vector space over the set S = {0, 1, 11, 12, 4, 7}
C Zy.

Example 3.55: Let

a € C((Zy U D);{a+bip+cl+ixdlla, b, c,de Zy}, ip = 46,

I*=1and (iFI)2 =461}, 1 <1 <9} be a set neutrosophic complex
modulo integer vector space over the set S = {0, 1, 7, 16, 19, 42,
43} C Zy.

Example 3.56: Let

aje C((Ziy U D); {a+big+cl+ixdlla, b, c,de Zy}, ip =18,
I =1 and (el)> = 18ig}, 1 < i < 82} be a set complex
neutrosophic modulo integer vector space over the set S = {0, 1,
2,14, 10,5, 16} < Zy,.
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Let us now give examples of set complex neutrosophic
vector subspaces and subset neutrosophic complex modular
integer subspaces of a vector space. The definition is left as an

exercise.

Example 3.57: Let

al
20 a2 al
V=1 >ax, J |
i=0 : a;
a17
a, a, a, a,
a5 a6 a7 a8
a, a, a, a

a,

a12

ae C((ZwuD):{a+bir+cl+ixdl la, b, c,de Zp}, i2 = 18,

I =1 and (if)* = 181}, 1 < i < 20} be a set neutrosophic
complex modulo integer vector space over the set S = {I, 0, 1, 2,
2+ 31,18, 151, 61, 8 + 51} < (Zy U I).

Consider

&

o
(S}

o
w

10
P= Zaixi,
i=0

oS O O
l\.—l
o o
= f
o O
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a, 0
0 a,
0 O
a; A

0
a

N

a
0

W

a € C{Zpwul);1<i<10) <V, Pis a set complex
neutrosophic modulo integer vector subspace of V over the set

S.
Consider
0
0
al
a,
a
P, 0 a, 0 a, O
0
0
0
_0_
0O 0 O
0 O 0 0 a,
a, a,||0 a, O
a, 0 O

o O O

a € C ((Zpyuwl) 1£i<9} <V, Bis a subset complex
neutrosophic vector subspace of V over the subset S = {0, 1, 2,

18, 61, 8 + 51} = (Ziy U I).
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Example 3.58: Let

20
s ,{al az},Zaixi ae C(Ziul)

a, | iz

{a+big+cl+ipdl 1 a, b, c, d € Zy), i2 =42, I’ =1and (igl)®
421}, 0< 1 < 30} be a set neutrosophic complex modulo

integer vector space over the set S = {0, 2, 22, 19, I} < C((Z4y L
I)). Take

a, a 12 .
1 2
P= , E a;x'
a, a,| =

c V; P is a set neutrosophic complex modulo integer vector
subspace of V over S.

a,b,c,d,ae C{Z3UI)); 0<i<12}

Example 3.59: Let

ae C(ZyuD)={a+birtcl+idlla b, c de Zy}, i2 =

22, I* =1 and (ig])* = 221}, 1< i < 30} be a set neutrosophic
complex modulo integer vector space over the set S = {0, 1, 5,
20, 18, 7} Zss.

Take
[0 0 0]
a, a, a,

Mo |2 3 % ’{0 a, 0 .. O}{al 0 a,|
0 0 0[]0 a, O .. OJ[0 a; O]
L0 0 0

a € C{Zys U I);, 11 <6} € V; M is a set complex
neutrosophic modulo integer vector subspace of V over S.

157



Now we provide examples of set neutrosophic complex
modulo integer linear algebra over the set S.

Example 3.60: Let

a, a, a; a,

29

al a2 aS aS a6 a7 aS i

V= N . . . E a,x
: : : S s

dgg A7 Ay Ap

ae C(Zyul)={a+birtcl+igdlla b, c de Zy}, i2 =

10, I* = I and (igl)* = 101}, 0< i < 72} be a set neutrosophic
complex modulo integer vector space over the set S = {1, 2, 0,
1431, I, 21+1}. Consider

00 0 0

a a a a

0 a 0 10 ' 1 2 3 4

B= { 1 },Zaix', 0 0 0 0
a, 0 4 | s . . . .
100 0 O]

a€ C((Z;uUl);, 0<i<10} cV, Bis a set neutrosophic
complex modulo integer vector subspace over the set S.

Now we see in example 3.60 we cannot define addition on
V. So V is not a linear algebra.

25
Example 3.61: Let V = {Z:aixi a, e C{Ziyul)) ={a+ bipt+
i=0

cl+igdlla, b,c,de Zy}, ii =16, P =1and (i)’ = 161}, 0 < i

< 25} be a set neutrosophic complex modulo integer linear
algebra over the set S = {0, 1, 4, 10, 12}.

25
Example 3.62: Let V = {Z:aixi ae C{Zyul))={a+bip+
i=0

cl+igdlla, b,c,de Zy}), ii =16, P =1and (i)’ = 161}, 0 < i

< 25} be a set neutrosophic complex modulo integer linear
algebra over the set S = {0, 1, 4, 10, 12}.
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Example 3.63: Let

5 a6
s ae cqzm o)

Ayg Ay Ay
={a+big+cl+ixdlla, b,c,de Zy}, i =36, I’ =1 and (ifl)’

= 36I},1< 1 < 30} be a set neutrosophic complex modulo integer
linear algebra over the set S = {0, 1, 2, 3, 10, 18, 23, 31}.

Example 3.64: Let V = {(a,, a5, ..., a53) laje C({(Zz;;uD)={a
+ big+ cl + ipdl | a, b, ¢, d € Z3,}, i2 =30, I = I and (igl)’ =

30I}, 1< 1 < 31} be a set neutrosophic complex modulo integer
linear algebra over the set S = {0, 1, 30}.

We give examples of linear subalgebras.

al a2 a3
Example 3.65: Let V= 1{|a, a, a, ||aeC{(Zsyul)={a
a; ag a4y

+ big+ cl + ipdl | a, b, ¢, d € Zy,}, i2 =42, I’ =1 and (iel)’ =
421}, 1< 1 < 9} be a set complex neutrosophic modulo integer
linear algebra over the set S = {0, 4, 8, 24, 9, 41, 39}. We see on
V we can define yet another operation product; so V becomes a
set neutrosophic complex modulo integer strong linear algebra
over S. We have the following interesting observations related
with such the set algebras.

THEOREM 3.4: Let V be a set complex neutrosophic modulo
integer strong linear algebra over the set S.

(i) V is a set complex neutrosophic modulo integer
linear algebra over the set S.
(ii) V is a set complex neutrosophic modulo integer

vector space over the set S.
However the converse of both (i) and (ii) are not true in
general.
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Example 3.66: Let

5 aG
a; € C(<Zz3 (W) I>)

dp 4 3Ap

= {a + big+ cl +igdl | a, b, ¢, d € Zy3}, i2 =22, I* =1 and (igl)’
= 22I}, 1< 1 £ 12} be a set complex neutrosophic modulo
integer linear algebra over the set S = {201, 0, 1 + 41, 5}.

Clearly V is not a set complex neutrosophic modulo integer
strong linear algebra over the set S.

However V is a set complex neutrosophic modulo integer
vector space over the set S. This proves the converse part for the
claim (1) of theorem 3.

Example 3.67: Let

al a2
V= ,(a,,a,,a;,a,,a5,a,,a,,3,,4,),
a, a,

a,e C((Z;; U )= {a+bip+cl+idlla, b, c,de Zs}, iz = 10,
I’=1and (iFI)2 = 111}, 1<1 <30} be a set complex neutrosophic
modulo integer vector space over the set S = {0, I, 1+I, 5+6I,
10I + 3}. Clearly V is not set complex neutrosophic modulo
integer linear algebra over the set S. Further it is not a strong
linear algebra as it is not even a linear algebra. Hence converse
of (i1) of theorem is verified.

Example 3.68: Let V = {(a;, a, ..., aj1); where a; € C ((Z¢g7 U
D)= {a + big+ cl + irdl | a, b, ¢, d € Zg}, if = 66, I’ =1 and
(iFI)2 = 661}, 1<1 < 11} be a set complex neutrosophic modulo
integer strong linear algebra over the set S = {0, 1, I, 20 + 331,
40 + 41, 5+17I, 20I + 41}. Clearly V is a set complex
neutrosophic modulo integer linear algebra over the set S. V is
also a set complex neutrosophic modulo integer vector space
over S.
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Now we will give examples of these structures.

Example 3.69: Let

Ve {a az}
a, a,
= {a +big+ cl +igdl | a, b, c,d € Z3}, i =12, I’ =T and (igl)’

= 12I}} be a set complex neutrosophic modulo integer strong
linear algebra over the set S = {0, 1, 2, 5, 7, 10, 0}.

w5 7]

is a set complex neutrosophic modulo integer strong linear
subalgebra of V over S.

[

is also set complex neutrosophic modulo integer strong linear
subalgebra of V over S.
Take

Mo 0 a

- a, O
M is only a pseudo set complex neutrosophic strong linear
subalgebra of V over S as M is not a strong set linear subalgebra

of V over S as product is not defined on M.
If we take

a, 0|0 0|0 a,
P = b b
0 Offa, O0]|0 O
c M, P is only a pseudo set complex neutrosophic modulo

integer subspace of V over S as in P we see the sum of two
elements.

_ a, 0 0 a, a, a,
is X+y= + = ¢ P.
0 0 0 0 0 O

Hence the claim.

a; € C (<Zl3 () I>)

aie C(Zul); I<i<3}cV

aie C(Zpul); 1<i<2}cV

aie C(ZzuD);1<i<2icV,

a, a, a3 C((Zzul))}
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Example 3.70: Let

al a2 a3
V=4la, a, a,||a,asaze C(Zoul))
a; a3 a4

= {a + big+ cl +igdl | a, b, ¢, d € Zy}, i2 = 18, I’ =T and (i¢l)’
= 18I}} be a set complex neutrosophic modulo integer strong
linear algebra over the set S = {0, 1, I+3, 9+8]I, 3, 21}.

Consider

P, = ac((Z,wl), cV

S O o o o
S O o o o

0
0
0
0
0

and P, = be (Z,ul)); cV

0 0D

be a set complex neutrosophic modulo integer strong linear
subalgebra over S of V.

However we may not be in a position to write V as a direct
sum of strong linear subalgebras.

Example 3.71: Let V = {(a,, a,, a3, a4, as, ag, a7, ag) la; € C ((Zs
U D) = {a +bipt cl +igdl | a, b, ¢, d € Zs}, i; =4, I*=1and
(iFI)2 = 41}} be a set neutrosophic complex modulo integer
strong linear algebra over the set S = {0, 1, I + 3, 2[ + 4}.

Consider Py = {(a;, 2, 000000)la;aye C({Zsu )} <
V,P,={(0,0,a,a,0000)la,ae C({(Zsul)} cV;P;=
{(0,0,0,0,a;,a,,00)la,ae C{Zsul)} cVand P, = {(0
00000,a,a)la,ae C{(Zsul))} cV; Py, Py, P;and Py
are set complex neutrosophic modulo integer strong linear
subalgebras of V over the set S.

4
Clearly V = Clearly | JP; PinP;=(00000000)if
i=1

i#];1<j,j<4. Vis a direct sum of strong linear subalgebras
over the set S. Let us consider the following examples.
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Example 3.72: Let

al aZ a3
V=4dla, a, a,||aecCZul))
a; Ay a4

= {a + big+ cl +ipdl | a, b, c, d € Z3}, i =2, I’ =T and (igl)* =

21}; 1 <1 < 9} be a set complex neutrosophic modulo integer
strong linear algebra over the set S = {0, 1, 1+I, 2+2I, 2}.

Consider
0 0 a
Pi=<0 a, 0]laeC(Z,ul);l<i<3;cV,
a, 0 O
a, a, O
P,=4la, O 0] a,e C{Z,ul))1<i<3:; c Vand
0 0 O
0 0 O
P;= {0 0 a ||a,eClZ,uD))1<i<3;cV
0 a, a,

are only pseudo set complex neutrosophic modulo integer
strong linear subalgebras of V. They are pseudo strong as they
are not closed under product, that is product is not closed on P,
P2 and P3.

3
But we see V = UR s PimPy=(0)ifi#j; 1 <j,j<3. Thus
i=1
V is only a pseudo direct sum and not a direct sum of strong
linear subalgebras. Now having seen properties one can define
linear transformations provided they are defined on the same
set.

Example 3.73: Let

al aZ a3
V=13la, a, a;|laeC(Zzul))
4; 83 4

163



={a+big+cl+igdl la, b, c,de Zs}, i =12, =T and (iel)’ =

12I}; 1 <1 < 9} be a set neutrosophic complex modulo integer
strong linear algebra defined over the set S = {0, I, 41, 2 + 71, 91,

8, 1+ 3I}.
Consider
a, a, a, a,
a a a a
M = >0 T B ae C((Zisul)
a, a a a

={a+big+cl+ixdlla, b, c,de Z3}), il =12, I’ =1 and (igl)’

= 12[};1<1 < 16} be a set neutrosophic complex modulo integer
strong linear algebra over the same set S.

We define T : V—> M by

a, a, a; 0
al a2 a3
a, a; a, O
Tl|la, a5 ag||=
0
a a a a7 aS a9
7 8 9
0 0

0 0
T is a strong linear transformation from V to M.
Suppose we define P : V— M by

a, a, a. O

IR alaz()SO
Pllac as acli=) " 0 o of
Bt W 0 0 0 0

P is not a strong linear transformation from V to M only a linear
transformation from V to M.

We can derive all related properties with appropriate
modifications. This task is left as an exercise to the reader.

Now we proceed onto define the notion of semigroup

neutrosophic complex modulo integer vector spaces / linear
algebras over a semigroup.
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DEFINITION 3.4: Let V be a set neutrosophic complex modulo
integer vector space over the set S. If S is an additive semigroup
then we define V to be a semigroup complex neutrosophic
modulo integer vector space over the semigroup S.

We will give examples of this situation.

Example 3.74: Let

a,
" a, a, .. a, .
i 2
V=3>ax a, a, . oayl| [ aeC(Zowul)
i=0 :
ay Ay a3
ays

={a+big+cl+ixdlla, b,c,de Zy}, ii = 18, I’ =T and (igl)’
= 18I}; 0 <1 < 30} be semigroup complex neutrosophic modulo
integer vector space over the semigroup Zio.

Example 3.75: Let

4, a, a4

a, a, a,; a, .
V= i a4 aS aG
=<las; a, a, a ,(al,az,...,azo),Zaix 1. : :
i=0 .
a, a, a; a

10 12

a3 a3 aAgy

a € C (Zgt UI)= {a+bi+cl+ipdl 12, b, c,d e Zy}, i2 = 60,

I’ = I and (ig])* = 60I}; 0 < i < 33} be a semigroup complex
neutrosophic modulo integer vector space over the semigroup
C (Zg) ={a+birla,be Zg}, i; =60}.

Example 3.76: Let

4, a, a,
a4, a, Ay || Ay A
a, a; a,
V= . . <Pl s Age ay |s| 2, a5 ag[,(a;,a,,...,2,)
Ay Ay Ap | 137 A3 Ay
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a; € C ((Zyz U )= {a + big+ cl +ipdl | i2 =22, I’ =1 and (iel)®

= 22[}; 1 £ 1 < 42} be a semigroup neutrosophic complex
modulo integer vector space over the semigroup S = (Z).

We can define semigroup complex neutrosophic modulo integer
linear algebra over a semigroup S under addition. We give only

examples of them.

Example 3.77: Let

7 aS
. . ae C({(Zyul))

={a + big+ cl + irdl | a, b, ¢, d € Zy}, i2 =28, I’ =1 and (igl)’ =

281}; 1 <1 <40} be a semigroup neutrosophic complex modulo
integer linear algebra over the semigroup Zy = S.

Example 3.78: Let

4, 4 4,
a a a
13 14 2
V= e C(Zyul))
Ay; Ay a36
a3; Ay Ay

={a + big+ cl + irdl | a, b, ¢, d € Zy}, i2 = 16, I’ =T and (igl)’ =

161}; 1 <1 < 48} be a semigroup neutrosophic complex modulo
integer linear algebra over the semigroup S = Z;5.

Example 3.79: Let

$ ae C(Z, 01l
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= {a+big+ cl +ipdl la, b, c,de Z;}, i =6, I’ =1 and (igl)* =

61}; 1 <1< 16} be a semigroup neutrosophic complex modulo
integer linear algebra over the semigroup S = Z.

Example 3.80: Let V = {(a}, a5, ..., ay5) laj € C (Zizu D)= {a
+ big+ cl +ipdl | a, b, ¢, d € Zi3}, i2 =12, I’ = T and (igl)’ =
121} 1 <1 < 25} be a semigroup complex neutrosophic modulo
integer strong linear algebra over the semigroup S = Z;3.

We have three types of substructures associated with
semigroup neutrosophic complex modulo integer strong linear

algebra.

Example 3.81: Let

al a2 a3
V=3la, a, a;||laeC(Zoul))
4; 83 4

= {a + big+ cl +igdl | a, b, ¢, d € Zy}, i2 = 18, I’ =T and (i¢l)’
= 18I}; 1 £1 <9} be a semigroup complex neutrosophic modulo
integer strong linear algebra over the semigroup S =({Z;y U I).

al a2 a3
W=4<0 a, as||aeC{(Zoyul);1<i<6}
0 0 a

be semigroup complex neutrosophic modulo integer strong
linear subalgebra of V over the semigroup S.
Take

a

0 0
M = a, 0|laeC{Zoul);1<i<3},

2

0
0 0 a,

a semigroup complex neutrosophic modulo integer strong linear
subalgebra of V over the subsemigroup T =Z; = S.
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a, a, O
B=<a, 0 0||aeC{Zpul)l<i<3}cV
0 0 O

is only a pseudo semigroup complex neutrosophic modulo
integer strong linear subalgebra of V over S. Clearly B is not
closed with respect to product as

a, a, O||x y O ax+a,z ay 0
a, 0 Oj|lz O Of= a,x a,y 0| ¢ B
0 0 0/[0 0 0] 0 0 0
where as
[a, a, O] x y 0
a, 0 O|land|z 0 O
10 0 0 0 00

are in B. Hence B is only a semigroup complex
neutrosophic modulo integer linear subalgebra over the
semigroup which is not a strong linear subalgebra over the
semigroup S. Take

a, 0 0|0 O O[O0 O a,

P=40 0 O0,/O O OO O O

0 0 0[]0 O a,||0 O O
aj a a3 € C ((Zyu )} cV, Pis only a pseudo semigroup
neutrosophic complex modulo integer pseudo vector subspace
of V over S. Clearly V is not closed with respect to addition or
multiplication. Hence we see we can define several types of

substructures in case of strong linear algebras defined over
semigroups.

Example 3.82: Let

a, a4, 4, a4, 4
a a a a a
4 5 6 2 14
V= ,(al,az,...,azo), . .
a, a, a, :
dp 4 3Ap a, Ay
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ae C((Zyul)={a+big+tcl+ixdlla, b,c,de Zy}, iy =
46, I* = I and (iFI)2 = 46I}} be a semigroup neutrosophic
complex modulo integer vector space over the semigroup S =
Z47.

Clearly V is not a semigroup complex neutrosophic modulo
integer linear subalgebra or V is not a semigroup complex
neutrosophic modulo integer strong linear subalgebra.

Example 3.83: Let

Il ae C{Zrul)

= {a + big+ cl +igdl | a, b, ¢, d € Zy}, i2 =16, I’ =1 and (iel)’

= 161}, 1 <1 < 12} be a semigroup neutrosophic complex
modulo integer linear algebra over Z;7 the semigroup.

Clearly V is not a semigroup neutrosophic complex modulo
integer strong linear algebra over the semigroup Z,.

But consider

a, a, a,

M= 0 00 € C(Zyul))
0O 0 O
a, a, a,

= {a + big+ cl +igdl | a, b, c,d € Zy}, i2 = 16, I* =T and (igl)’
= 16I}, 1 £1 £ 6} < V is only a semigroup complex
neutrosophic modulo integer linear subalgebra of V over the
semigroup S = Z;7.

We can define linear transformation of two semigroup
neutrosophic complex linear algebra only they are defined over
the same semigroup S.

We give examples of them.
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Example 3.84: Let

al a2 a3
V=3la, a, a;||laeC({Zpul))
a; 83 4

= {a + big+ cl +igdl | a, b, ¢, d € Zy)}, i2 =28, I’ = and (i¢l)’
= 28I}} be a semigroup neutrosophic complex modulo integer
strong linear algebra over Zy. W = {(a;, a5, a3, a4, as, ag, a7, as,
a) laeC((Zpyul))={a+bigtcl+ixdlla, b, c,de Zy},
i2 =28, I’ =1 and (igl)* = 281}1 < i < 9} be a semigroup
complex neutrosophic modulo integer strong linear algebra over
S = Zzg.
Define T : V—> W where

al a2 a3
Ti|a, a5 ag||=/(an ay, as, a4, as, g, a7, ag, A9);
a; ag 4y

T is a linear transformation from V to W.
Letn : V — V be defined by

a, a, a, a, 0 O
nila, a; ag|[=|0 a, a
a, ag a, 0 a, a,

7 is a linear operator on V.

Now we can derive several related properties with some simple
appropriate changes. Now we proceed onto define the notion of
group neutrosophic complex modulo integer vector space /linear
algebra / strong linear algebra over a group G.

If V is a set with zero of complex neutrosophic modulo
integers and G to be a group of integers addition. We call V a
group neutrosophic complex modulo integer vector space over
the group G if

i) foreveryve Vandge Gand gvandvgarein V.
it) 0.v=0 for every v € V and O the additive identity of G.
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We give examples of them.

Example 3.85: Let

a,

a, a, a a a, a
1 2 3 2 1 2

V= { }, . ,(al,az,...,am),{ }
a, ay; a, : a, a,

a9

a € C (Zy UI)= {a+bir+ cl+ipdl 12, b, ¢, d e Zy)}, i2 =46,

I =T and (ie])* = 46I}; 1 < i < 24} be a group complex
neutrosophic modulo integer vector space over the group G =
Z.47 under addition.

Example 3.86: Let

al aZ alO
M=1la, a, .. a,||aeC{(Zpul))
A, Ay .. Ay

= {a + big+ cl +igdl | a, b, ¢, d € Zy)}, i2 =28, I’ =1 and (i¢l)’
= 28I}; 1 <1 < 30} be a group neutrosophic complex modulo
integer linear algebra over the semigroup G = Zy.

Clearly M is also a group complex neutrosophic modulo
integer vector space over the group. However V in example

3.78 is not a linear algebra only a vector space.

Example 3.87: Let

*Ilae C{(ZysuUl)

171



= {a + big+ cl +igdl | a, b, ¢, d € Zy3}, i2 =22, I’ =1 and (igl)’

= 22[}; 1 <1 £ 16} be a group neutrosophic complex modulo
integer strong linear algebra over the group G = Zy;.

Example 3.88: Let

al 212 34
V= ,(al,az,...,alz), .
a .

a3 4

Az Ayg Az

ae C(Zyul)={a+birtcl+igdlla b, c de Zy}, i2 =

10, I> = I and (igl)* = 101}; 1 <i < 30} be a group neutrosophic
complex modulo integer vector space over the group G = Z;,. V
is not a group neutrosophic complex modulo integer linear
algebra over G = Z;.

Clearly V is not a group neutrosophic complex modulo
integer strong linear algebra over the group G =Z;;.

Example 3.89: Let

5 aG
: . ae C(Zpul))

= {a + big+ cl +igdl | a, b, ¢, d € Zy3}, i2 =22, I* =1 and (igl)’

= 22[}; 1 <1 < 15} be a group neutrosophic complex modulo
integer linear algebra over the group G = Zy;.

Clearly T is not a group complex neutrosophic modulo strong
linear algebra over G.
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Example 3.90: Let

fa a]
aZ a7
V=4dla, a [|aaec C(Zyul)
a,; a4
L5 Q|

= {a+big+ cl +ipdl la, b, c,d e Z;}, i =6, I’ =1 and (igl)* =
61}; 1 <i<10} and

a a a a
P 1 2 3 4
|: i|
a; a, a; Qag

={a+bigtcl+Idipla, b, c,de Z;, i2 =6, (if))* = 6L P=1}; 1

F

ae C(Z, 0l

<1< 8} be a group complex neutrosophic modulo integer linear
algebra over the group G = (Z7, +).
Definen: M — P

a4, a4
a2 a7 a a a a
8, a3 Ay
nija; ag = { :|
as a, a; 3
a, 3
145 3y |

7 is a linear transformation from M to P.
If T: M — M such that

a, a, a, a,
a, a, 0 O
Tlla, ag||=|a, a,
a, a, 0, O

135 Ay | 145 A |

then T is a linear operator on M.
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We can derive almost all properties for group neutrosophic
complex modulo integer (strong) linear algebra defined over the
group G.

We can also find Homg (V, W) and Homg (V, V) study the
algebraic structure enjoyed by them.

Also study the substructure and writing them as direct sum
and pseudo direct sum can be taken as a routine exercise by the
interested reader.
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Chapter Four

APPLICATIONS OF COMPLEX
NEUTROSOPHIC NUMBERS AND
ALGEBRAIC STRUCTURES USING THEM

In this chapter we study the probable applications of
complex neutrosophic reals and complex neutrosophic modulo
integers.

It is pertinent to keep on record such study is very dormant;
we can say solving equations and finding solutions in C((R U
D)={a+bi+cl+1Idila, b,c,de R; iz=—l} has not been
carried out.

Clearly this set C((R U I)) contain R and the algebraically
closed field namely the field of complex number C = {a + ib
where a, b € R} as proper subsets.

Thus we can say this extended like field will also give the
roots when the roots are inderminates. We can denote the
complex neutrosophic number by the 4 - tuple (a, b, c, d) the
first coordinate represents the real value, the second coordinate
the complex coefficients, the third coordinate the neutrosophic
coefficient and forth coordinate the complex neutrosophic
coefficient and (a, b, ¢, d) = a + bi + cI + idL.
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Study of the eigen values as complex or indeterminate
stands as one of the applications.
Further the notion of complex modulo integers C(Z,) is

itself very new. Here the complex number ir is defined as i; =

n — 1 when Z, is taken into account. As n varies the value of the
finite square of the complex number also vary.

Hence C(Z,) = {a + bigr | a, b € Z, and if: =n - 1}. Thus
C(Z;) ={a + big | a, b € Z3 and if: = 2}. Now in due course of
time these new structures will find very many applications.

Finally the notion of complex neutrosophic modulo integers
is defined. This is also represented as a 4-tuple with a special
value for the finite complex number ir, ir is defined as if: =
n-1and (Tip)* = (n- 1)L

Thus C(Z, U I))={a + big+ cl +irdl | a, b, ¢, d € Z;; i} =
n— 1, =Tand (if))* = (n — DI}.

These new structures are given algebraic structures like
groups semigroups, rings, vector spaces and linear algebras and
they will find application in due course of time once this
research becomes popular.
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Chapter Five

SUGGESTED PROBLEMS

In this chapter we suggest over 150 problems some at research
level and some just routine exercises.

1. Obtain some interesting properties enjoyed by
(a) neutrosophic complex reals.
(b)  neutrosophic complex modulo integers.
(c) neutrosophic complex rationals.

2. Can any geometrical interpretation be given to the field of
neutrosophic complex numbers C ((Q U I))?

3. Can C ((Z u I)) be a Smarandache ring?

4, Is {(a;, ap) | aj, a, € C(Z v I)) under product x} a
Smarandache semigroup?
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Let V=1 2|lae CQuUT),i=1,2 3,4, +] bea

group.

1) Define a automorphism 1 : V — V so that ker 1 is a
nontrivial subgroup.

i) IsV=CQuUI)xCQuUI))xCKQuUI)) xC(KQ
v ))?

al a2
Let M =
a, a,

semigroup under multiplication.

i) Prove M is a S-semigroup.

i) Is M commutative?

ii1) Find at least three zero divisors in M.

iv) Does M have ideals?

v) Give subsemigroups in M which are not ideals.

e CQUTI), 1<i<4)bea

5% |l ae CUQUTY), 1 <i<12) be

a neutrosophic complex rational semigroup under ‘+’.
i) Find subsemigroups of S.

i1) Can S have ideals?

iii) Can S have idempotents?

iv) Can S have zero divisors? Justify your claim.

al a2
Let V =
a, a,

semigroup of neutrosophic  complex rationals under
product.

e CQUT), 1 <i<4)bea
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10.

11.

12.

13.

14.

15.

1) Is V commutative?

it) Can V have idempotents?

iii) Does V have a subsemigroup which is not an ideal?
iv) Give anideal in V.

v) Can V have zero divisors?

vi) Is V a Smarandache semigroup?

vii) Is V a Smarandache commutative semigroup?

LotV (al alOJ
a, .. ay

a complex neutrosophic group under addition.
a) Is V commutative?

b) Find subgroups of V.

¢) Find a subgroup H and describe V /H.

d) Definen : V — V so that

(0 00 0 .. Oj
kerm #

ae CLQuUT), 1 <i<20) be

0000 ..0)

e) Findm :V — Vsothat i exists.

Prove C((Z U I)) is a group under addition and only a
semigroup under multiplication. Is C ((Z U I)) an integral

domain? Justify your claim.

IsCQuI)={a+bi+cl+idlla, b, c,de Q} afield?
Is CKQ u I)) a prime field?

Can one say for all polynomials with complex
neutrosophic coefficients C ((R U 1)) is the algebraically
closed field?

Can C((R U I)) [x] have irreducible polynomials?

Find irreducible polynomials in C({(Q U I))?

Find irreducible polynomials in C((Z U I))? Is every
ideal in C({Z U I)) principal? Justify your claim.
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16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

a,b,c,d, e C{LZuUI))}.

. a b
Study the ring P = { }
c d

ooy |

group? Is G simple?

ad—-bc#0,a,b,c,d e C{LZUI))}a

Find zero divisors in P mentioned in problem (16)

What are the advantages of using the algebraic structure
CRuUID))?

Give some uses of this complete algebraic structure
CKRUI)).

a,

b
What is the cardinality of the semigroup S = {a d}
C

b,c,d, e C(Zyu 1)), x}?

a,b,c,

b
Find the number of elements in T = {B j
e

d, e, f e C((Z; L 1))}, the semigroup under addition.

. |

a) Find ideals if any in M.

b) Is M a S-ring?

¢) What is the order of M?

d) Can M have S-zero divisors?
e) Does M contain idempotents?

a,b,c,d, e C(Zsu D))} aring?.

Is C((Z1s U I)) a field?

Prove C({Z,s U I)) can only be a ring.
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26.

27.

28.

29.

30.

31.

32.

33.

34.

Can C((Z;; U I)) be a S-ring? Justify.

Can C({Zs U I)) have S-ideals?

Find ideals in C({Z¢ U I)).

Find maximum ideals of C({(Z;s U I)).

Find S-zero divisors and S-units if any in C({(Zy4 U ).

Is C({Z1; U I)) a Smarandache semigroup under product?

Does S = C({Z;s u I)) have S-ideals where S is a
semigroup under X?

Let R = C((Zy; U 1)) be a ring.

i) Find S-subrings of R.

i) Can R have S-ideals?

iii) Does R contain S-subrings which are not ideals?

iv) Find zero divisors in R.

v) Is every zero divisor in R a S-zero divisor?

vi) Find S-idempotent if any in R.

vii) Determine the number of elements in R.

viii) Is R a S-ring?

ix) Find an ideal I in R so that R /I is a field.

x) Does there exist an ideal J in R so that R/J is a
S-ring?

Let V = {(X}, X2, X3, X4, X5) | X, € C{Z;; U D)); 1 <i<5)
be a vector space over Z;;.

1) Find dimension of V.

ii) Is V finite dimensional?

ii1) Find a basis for V.

iv) Find subspaces of V.

v) Find Hom, (V, V).

vi) Find a linear operator T on V so that T"' does not
exist.
vii) Write V as a direct sum.
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35.

36.

viii) Write V as a pseudo direct sum.
ix) Definea T : V — V and verify Null T + Range T =
dim V.

Let V = {al a, a, a, a; }
a6 a7 aS a9 alO

< 10} be a set complex neutrosophic linear algebra over

the set S = 3Z U 5Z.

1) Find a basis of V.

ii) Is V finite dimensional?

ii1)) Write V as a direct sum.

iv) Write V as a pseudo direct sum.

v) Obtain conditions on a linear operator T of V so that
T exists.

vi) Can V have subset complex neutrosophic linear
subalgebras?

vii) Find the algebraic structure enjoyed Homs (V,V).

viii) Can V be a double linear algebra?

ae C(ZUD); 1<i

2
Let V = a, a, .. a;
et V.= qla, a,|, (@, a, ay), ,
11 a12 a20

5
Zaix'} be a set neutrosophic complex vector space with
i=0

a,€ C{QuU D), 0<i1<20over the set S =77 U 3Z.

1) Find a basis for V.

ii) Is 'V finite dimensional?

iii) Write V as a direct sum of subspaces.

iv) Find a linear operator on T so that T™' does not exist.

v) Does V contain subset vector subspace?

vi) Can V be written as a pseudo direct sum?

vii) Let V=W, ®...®@ W, find projection E on V and
describe their properties.
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37.

38.

. a, A |, q
il Ay
Let V=4la, a; .. a, ,Zaix , Jlay || g
i=0 a; a,
a3 Ay ... Ay a;

e C(Qu)), 0<i<21} be a special set neutrosophic
complex vector space over the set S = ZI U 3Z U 5Z U
C (2).
1) Find a basis.
i1) What is the dimension of V over S?
iii) Does there exists a subset vector subspace W of
dimension less than five over a subset T of S?
iv) Write V as a direct sum of set subspaces.
v) Find a non invertible linear operator on V.
vi) Write V as a pseudo direct sum and define
projections. Is that possible?

al a2
Let V =
a, a,

semigroup neutrosophic complex double linear algebra

over S =7.

1) Find a basis of V over Z

i) What is the dimension of V over Z?

iii) If Z is replaced by C (Z) what is dimension of V?

iv) If Z is replaced by (Z U I) what is dimension of V?

v) If Zis replaced by C({(ZuUI)) what is dimension of V?

vi) Is Z is replaced by C(Q) what is dimension of V?

vii) If Z is replaced by Q what is dimension of V over Q?

viii) If Z is replaced by (Q U I) what is dimension of V
over (QuU I)?

ix) If Z is replaced by C({Q U I)) what is dimension of V
over C({(QuI})?

Compare the dimension in (ii)) to (viii)) and derive

conclusions based on it.

e CQUT), 1 <i<4)bea

183



39.

40.

41.

42.

43.

44.

al aZ a3
Let V= Jla, a;, a;||aeC(ZuUl),1<i<9}bea
4; 83 4

group complex neutrosophic double linear algebra over

the group Z.

1) Find a basis of V.

ii) Does V have complex neutrosophic pseudo double
linear subalgebras?

Let V =C ((Z; U ) be a semigroup under multiplication.
i) IsVa S-semigroup?

i1) Find order of V.

iii) Find zero divisors if any in V.

iv) Can V have S-zero divisors?

v) CanV be a group?

vi) Can V have S-units?

vii) Can V have S-subsemigroups?

LetM={a+bi+cl+idlla, b, c,d e Zs} be a semigroup
under multiplication.
Study questions (i) to (vii) suggested in problem 40 for V.

Prove G = C ((Zs U I)) can be a group under addition and
only a semigroup under multiplication. Find order of G.

LetG=C ((Z; u D);

1) Is Ga group?

ii) Can G be a ring?

iii) Can G be a field?

iv) What is the strongest algebraic structure enjoyed
by G?

Let R = C ({Zyp U 1)) be a complex neutrosophic ring.
1) Find the order of R.

ii) Is R a S-ring?

iii) Can R have S-subrings?

iv) Can R have subrings which are not S-ideals?

v) Can R have S-idempotents?
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45.

46.

47.

48.

49.

50.

51.

52.

53.

vi) Does R contain zero divisors which are not S-zero
divisors?

vii) Define N:R — R so that I = ker 1] is a proper subring
of R; so that R/I is a field.

viii) Can R have Z as its subring?

ix) Is C(Zyo) a subring of R?

x) Can R have S-units?

xi) Does there exist an ideal I in R so that R/ is a field?

Let V=C(Zsul))={a+bi+cl+idlla, b, c,de Z;}

be a complex neutrosophic vector space over the field Z;.

1) Find a basis for V.

i1) Write V as a direct sum.

iii) Write V as a pseudo direct sum.

iv) Find subspaces of V so that V is neither a direct sum
nor a pseudo direct sum.

v) Find the algebraic structure enjoyed by Hom, (V.V).
vi) What is the algebraic structure of L (V, Z3)?

Find some interesting properties of set complex
neutrosophic vector space defined over the set S.

Study the special properties associated with the
neutrosophic complex modulo integer ring C({Zgo U I)).

What are the distinct properties of the complex modulo
integer C(Z,); n not a prime?

Enumerate the properties of the complex modulo integer
C(Z,); p a prime.

Find the zero divisors and units of C(Z,4).
Find an ideal I in C(Z5g) so that C(Z,5)/1 is a field.

Does there exist an ideal I in C(Zy9) so that C(Z4)/1 is a
field?

Find a subring S in C(Z,) so that S is not an ideal.
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54.

55.

56.

57.

58.

59.

60.

Is every complex modulo integer ring a S-ring?

Find a necessary and sufficient condition for a complex
modulo integer ring S = C(Z,) to have ideals I such that
the quotient ring is never a field.

Does every C(Z,) contain a zero divisor? Justify your
claim.

Can every C(Z,) be a field?

Is every element in C(Z,) invertible?

a a a a

1
Let G = a; a, a, ag a; € C(Z,) = {a+bipla,

2 3 4

4 3dp A Ap

be Z,, i; =1}; 1 <i< 12} be a complex modulo integer

group under addition.

1) Find the order of G?

ii) Find three subgroups and verify Lagranges theorem
for G.

iii) Does G have p-Sylow subgroup?

iv) Does G satisfy Cauchy theorem for finite abelian
groups.

a a a a
v) What is the order of A= <|a a a a| wherea e
a a a a

C(Z)}?

Let G = {iaixi

i=0

S C(Z3)} be a set.

i) Can G be a group under addition?

ii) Will G be a group under multiplication?

iii) Will G be a semigroup of complex modulo integers
under multiplication?

iv) Can G have normal subgroup under +?
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61.

62.

v) Is G a torsion free subgroup of torsion group?
vi) Can G have subgroups of finite order under +?

a1 aZ a3
LetS=4|a, a;, a,|| ae CZy)={a+birla be
a; dg 4

Zs1, i = 30}} be a complex modulo integer semigroup

under matrix multiplication.

1) Find order of S.

i1) Is S commutative?

ii1) Find ideals in S.

iv) Is S a S-semigroup?

v) Can S have subsemigroups which are not ideals?
vi) Can S have zero divisors?

vii) Can S have idempotents?

viii) Give S-ideals in any in S.

ix) Can S have nilpotent elements?

al aZ alO
LetS=4la, a, .. ay]|| ae CZy)={a+birla,
a, A, ... Ay

b € Zy, if: = 46}; 1 <1 < 30} be a complex modulo
integer vector space over the field Z;.

1) Find dimension of V over Z4;.

i1) Find the order of V.

ii1)) Write V as a direct sum.

iv) Write V as a pseudo direct sum over Zg;.

v) Define a linear operator T on V such that

a, a, 0 0 .. 0 a
W=4la, a, 0 0 .. 0 a, || a,a e CZy);
a; a, 0 0 ... 0 ay

1<£i<6,j=10, 20, 30} c Vsothat T (W) c W.
vi) Find S on V so that S (W) ¢ W.
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63.

64.

a1 aZ a3
LetV=4la, a;, a;||ae C(@y={a+birla be
a; ag 4

70, if: = 19}; 1 £1 £ 9} be a complex modulo integer
group under addition.
1) Find order of V.
it) Verify Lagrange’s theorem.
iii) What are the orders of subgroups of V?
iv) Find quotient groups.

3+ig 17 12+1,
v) Findorderof x=| 7i, 13i;+1 5+2i.|€ V.

0 3+10i; 7

vi) Is Cauchy theorem true for x in V?

Let V = > 11 ay e C (Zs) = {a + big |

a, b € Zy, if: =29}; 1 £1 < 16} be a Smarandache

complex modulo integer linear algebra over the S-ring

Zs.

1) Find a basis of V.

ii) Is V finite dimensional?

iii) Is order of V finite?

iv) Write V as a direct sum.

v) Write V as a pseudo direct sum.

vi) Find a sublinear algebra W of V such that for a linear
operator T, T(W) c W.

vii) Find a pseudo S-subvector space of V over Zs.
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65.

66.

4,  a,
a3 34 . )
LetS = . . aie C(Zy)={a+birla,be Zs, i;

ay ap

= 2}; 1 £1 < 22} be a complex modulo integer group

under addition.

i) Find subgroups of S.

ii) Can S be written as a interval direct sum of complex
modulo integer subgroups?

iii) Is every element in S is of finite order?

iv) What is the order of S?

v) Can S have p-Sylow subgroups?

vi) Find all the p-Sylow subgroups of G.

al aZ
Let G =
a, a,

= 39}; 1 <1 < 4} be a semigroup of complex modulo
integers under matrix multiplication.

1) Is G commutative? (Prove your claim)

i1) What is the order of G?

iii) Can G have S-subsemigroups?

iv) Is G a S-semigroup?

v) Can G have ideals?

vi) Can G have S-idempotents?

. a, a,
vii) Let H =
a, a,

1<i1<4} cG. Is H a subgroup of G.
viii) What is the order of H?
ix) Is H a commutative structure with respect to product?
x) Can G have zero divisors which are not S-zero
divisors?
xi) Can G be written as a direct sum of subsemigroups?

a; € C(Z40) = {a + blF | a, be 240, 112;

ajas—a a3 £ 0, € C(Za);
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67.

68.

69.

al aZ . :2

Let S = { } ai € C(Zy)={a+birla,be Zy, i;
a, a,

= 19}; 1 £1 < 3} be a complex modulo integer ring of

characteristic 20.

i) Is S a commutative ring?

it) Is S a S-ring.?

ii1) Can S have S-ideals?

iv) Can S have ideals which are not S-ideals?

v) What is the order of S?

vi) Can S have subrings which are not S-subrings?

vii) Does S contain a maximal ideal?

viii) Can S have zero divisors?

ix) Can S have S-units?

x) Does S contain subrings which are not S-ideals?

xi) Find a homomorphismm : S — S so that

ker m # 00 Find S/k
er . Fin erm.
n 0 0 n

ae C(Zs)=f{a+birlabe Zs, i =

Let M = {iaixi

i=0

41} be a complex modulo integer polynomial ring.

i) IsMafield ?

it) Can M be a S-ring?

iii) Is M an integral domain?

iv) Is M a principal ideal domain?

v) Can M have irreducible polynomials?

vi) Is the polynomial p (x) = (3 +2ig) + (1+4il:)x2 +
(3 + ip)x’ + 4igx* in M a reducible polynomial order
C(Zs)?

Let N = {Z:aixi aie C(Zp)={a+bipla,be Zp, i =
i=0

1}} be a complex modulo integer polynomial ring.

1) Is N a field or an integral domain?

it) Is N a S-ring?

ii1) Can N have zero divisors?
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70.

71.

72.

iv) Is N a principal ideal domain?

v) Can N have S-subrings?

vi) Does N contain S-units?

vii) Can N have subrings which are not ideals?
viii) Can N have S-idempotents?

ix) Can N have ideals which are minimal?

ae C(Zi={a+biplabe Z, i =

Let V= {iaixi
i=0

15}} be a complex modulo integer polynomial ring.
Answer the problem (1) to (ix) of problem (69) for V.

Let W = (C (Z12) X C (Z1o) X C (Zg3)) = {a + igb, c+dip,
e+mir) | a, b € Z,, if: =11,c,de Zy, if: =9ande me

243; 112; = 42}
1) Is W a group of complex modulo integers under
addition?

i) What is the order of W?

iii) Is W a semigroup under product?

iv) Is W as a semigroup of S-semigroup?

v) Find zero divisors in W?

vi) Find all p-Sylow subgroups of W treated as a group
of complex modulo integers? (Is it possible?)

vii) Can W be given a complex modulo integers ring
structure?

LetR= (Zs X C (Zs) x C (Z) X Z1) = {(a, b, c, d) | a e
Zybe C(Zs)={x+irylx,ye Zs, i2 =4} ce C (Zy) =

{m+ nir | m, n € Z, if: = 6}, d € Z;;} be a ring of

modulo complex integers.

1) Find order of R.

i1) Can R have ideals?

iii) Is R a S-ring?

iv) Can R have S-units?

v) Is R a principal ideal domain?

vi) Can R have S-zero divisors?

vii) Find ideals in R which are not S-ideal.
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73.

74.

75.

viii) Find an ideal I in R and determine R /I.
ix) Is it possible to have R/I to be a field?
x) Can R ever be an integral domain?

Let P = {(Z7 X C(Z4) X C(Z11)) = (a, b, c) wherea e Z;, b
€ C(Zy)={d+gig | d, g€ Zy, i; =39}, ce CZy) =
{m +nig | m, n € Z; if: = 10}} be a group under
addition.
i) Mention some special properties enjoyed by P.
i) What is the order of P?
iii) Is P abelian?
iv) Find p-Sylow subgroups of P.
v) Find subgroups of P which are only modulo integer
subgroups and not complex modulo integer
subgroups.

Let S = {(Zyy X C(Z15) X C(Z15) X Zg) =(a, b, c,d) | a €
Zo,be CZp) =f{e+grle ge Zp i; =11}, b e
ClZyp) ={e+grle ge Zpy; ié =11}, c € CZs) =

{m + nig | m, n € Zs; if: = 14}, d € Zs} be a complex

modulo integer semigroup under product.

1) Find order of S.

it) Is S a S-semigroup?

ii1) Can S have zero divisors?

iv) Can S have S-units?

v) Find ideals in S.

vi) Find S-subsemigroups which are not ideals in S.
vii) Does S contain idempotents?

viii) Can S have S-Lagrange subgroups?

Let T ={(C(Z;) X C(Z,) x C(Zg)) =(a,b,c)lae C(Z;) =
{x+yirlx,ye Zs, if: =2},be C(Zy) = {m+ nig I m, n

€ Zyii=1},ce C(Zg={t+uiplt,ue Zg i =5} be

the ring of complex modulo integers.
1) What is the order of T?

it) Is T a S-ring?

iii) Find S-ideals if any in T.
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76.

77.

78.

79.

80.

1.

82.

83.

iv) Find a subring in T which is not an ideal.
v) Is T a principal ideal domain?

vi) Can T be a unique factorization domain?
vii) Does T contain S-zero divisors?

Let M = {(C(Z3) X C(Zs) X C(Zs) x C(Ze) X C(Z7)) = (a, b,
c,d,e)lae C(Zs)={g+hirlg he Zs, iy =2}, be
CZy) ={m+nig |l m, n € Zy if: =3}, ce C (s =
{t+uirlt,ue Zs if: =4},de C(Zg) = {r+siglr,s e
Zs; if: =5},ee C(Z)={p+qirlp,qe Zy3; if: =6}} be
a group of complex modulo integers under addition.

1) Find order of M.

ii) Find subgroups of M.

iii) Find all p-Sylow subgroups of M.

iv) Prove every element in M is of finite order.

v) Find an automorphism on M.

Can we have a unique factorization domain of complex
modulo integers? Justify your claim.

Give an example of a complex modulo integers which is a
principal ideal domain (Does it exist!).

What is the algebraic structure enjoyed by the complex
modulo ring C(Z9)?

Obtain some interesting properties about complex modulo
integer rings.

Obtain some unique properties enjoyed by rings built
using the complex modulo integers C(Z,).

Is C{Z u I)) a unique factorization domain?

Can C((R U I)) be a principal ideal domain?
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&4.

&5.

86.

&7.

It A= {a ﬂ a,b,c,de C(QUI)); ad—bc #0) bea
c

ring of neutrosophic complex modulo integers.

1) Is A commutative?

it) Is A a S-ring?

iii) Can A have S-ideals?

iv) Can A have zero divisors?

v) Can A have S- subrings which are not ideals?

vi) Can the concept of a.c.c. or d.c.c. to imposed on A?

Let M = {iaixi

i=0

a e C((ZuI))} be the neutrosophic

complex polynomial ring.

i) Find subrings in M which are not ideals?

it) Is M a S-ring?

iii) Study the concept of irreducible and reducible
polynomials in M.

iv) Find a linearly reducible polynomial in M.

v) Find a irreducible polynomial of degree three in M.

vi) Will an irreducible polynomial in M generate a
maximal ideal?

vii) Is M a principal ideal domain?

viii) Is M a unique factorization domain?

Let R = {iaixi
i=0

complex polynomial ring. Answer the questions (i) to
(viii) mentioned in problem (85).

a@C((QUI))} be a neutrosophic

Let F = {iaixi

i=0

a, e C} be a ring. Find the differences

between M in problem 82, R in problem (83) and F in this
problem.
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88.

&9.

90.

91.

92.

Suppose P = {Z:aixi
i=0

neutrosophc ring of polynomials.
1) Study / answer questions (i) to (viii).
i) Compare P with R, F and M in problems (82) to (84).

a@C((RUI))} be the real

Mention the properties distinctly associated with complex
modulo integer vector spaces defined over Z,, p a prime.

Find interesting properties enjoyed by Smarandache
complex modulo integer linear algebras defined over the
S-ring Z,, n not a prime.

a, a, .. a,
a a a
13 Ay 2% )
Let P = a; € C(Zyy) = {a + bigl a,
Ays Ay a36
d3; Ay ... Ay

b e Z, if: =23}, 1 <1<48} be a Smarandache complex

integer vector space over the S-ring Zs.

1) Find a basis for P over Z,,.

i) What is the dimension of P over Z,4?

iii) Find subspaces of P.

iv) Write P as a direct sum.

v) Write P as a pseudo direct sum.

vi) Find a linear operator T on P so that T exists.
vii) Does P contain pseudo S-complex modulo integer

vector subspaces over a field F € Z,,?

ai e C((Zu 1)) = {a + big + cl + igldl a,

Let V= {iaixi

i=0

b, c, de Z;, i2 =6, I’ =1 (igl)” = 61} } be the neutrosophic
complex polynomial ring.
i) IsVaS-ring?

it) Can V have reducible polynomials?
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93.

94.

iii) Give examples of irreducible polynomials?
iv) Is V an integral domain?

v) Can V have zero divisors?

vi) Is V a principal ideal domain?

vii) Can V have subrings which are not ideals?

ae C((Zgu D) ={a+bixla, be Z,

Let W = {iaixi

i=0

i> =5}} be a neutrosophic complex modulo integer ring.

1) Find zero divisors in W.

it) Find two relatively prime polynomials in W.
ii1) Find ideals in W.

iv) Is W a S-ring?

v) Find subrings in W which are not ideals?
vi) Can W have S-units?

vii) Can W have S-zero divisors?

viii) Is W a principal ideal ring?

ix) Can W have maximal ideals?

x) Does W contain minimal ideals?

xi) Will a.c.c. condition on ideals be true in W?
xii) Does W contain pure neutrosophic ideals?
xiii) Can W have complex modulo integer ideals?

a € C((Zyu 1)) = {a + bip+cl + igdl |

i=0

Let G = {iaixi

a,b,c,de 7, if: = 1}} be a group under addition.

1) Find order of G.

ii) Can G have Sylow subgroups?

iii) Can G be written as a direct product of subgroups?

10
iv) Let H= {Z:aixi

i=0

a;e C((Z,ul) c G. Find G/H.

v) What is the order of G/ H?
19
vi) Find ) ax'H.

i=0
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95.

96.

Let F = {al az} a e C(ZnuT)) = {a+birla be
a, a,

Zio, if: =1},1<i1<4} be aring.

i) IsF a S-ring?

i1) Is F is of finite order?

iii) Find subrings in F which are not ideals.

iv) Is F commutative?

v) Find a left ideal in F which is not a right ideal in F.

vi) Find S-zero divisors if any in F.

vii) Can F be a ring with S-units?

viii) What is the difference between F and

a, a,
H= a,e”Z,?
a, a,

ix) Find some special properties enjoyed by F and not by

-]

Zi, 2 = 11},

e ]

+ipdl la, b, c,de Zo, i =8, P =1, (if)> = 81}} be a
complex neutrosophic modulo integer semigroup under
multiplication.

1) Find order of P.

ii) Is P commutative?

iii) Find zero divisors if any in P.

iv) Is P a S-semigroup?

v) Can P have S-subsemigroups?

vi) Find right ideals which are not left ideals in P.

vii) Find S-units if any in P.

a,b,c,de C(Zp) =f{a+birla,be

a,b,c,de C(ZeuT) = {a+bir +cl
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97.

98.

99.

100.

101.

a,b,c,de C{(Zu D)) = {m+ nir +

e ]

tl+igsI Im, n, t, s € Zyy, i2 = 10, P =1, (igl)’ = 101}; ad —

bc # 0} be a group under multiplication.

1) Find order of M.

i1) Prove M is non commutative.

iii) Find normal subgroups in M.

iv) Find subgroups which are not normal in M.

v) Is Cauchy theorem true in M?

vi) Show M can be embedded in a symmetric group Sy,
give that n? (Cauley’s theorem).

Find some interesting properties associated with
neutrosophic complex modulo integer semigroups.

Let S = {(ay, a,, a3, a4, a5) | a; € C ((Zpyu 1)) = {a + bir +
cl+igdlla, b, c,de Zy, il =23, P =1, (iel)* =231}; 1 <
i £ 5} be a complex neutrosophic modulo integer
semigroup under multiplication.

1) Find order of S.

i1) Find zero divisors in S.

ii1) Find ideals in S.

iv) Is S a S-ring?

v) Find S-subsemirings in S.

Suppose S in problem (98) is taken as addition what are
the relevant differences you can find?

X
X
Let V = 2l xeCHZyo)={a+birla be Z,

X9

i2 =3, =1 (ig)’ = 3I}; 1 <i < 10} be a group of
complex neutrosophic modulo integers under addition.
i) Find subgroups.
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102.

103.

104.

i1) Find order of V.
iii) Find p-Sylow subgroups of V.
iv) Write V as a direct sum.

Let P = {(C (Z,0 1) x C (Znu ) x C (Z;u 1)) = (a,

b,c)lae C({(ZuD)={d+gr+hl+irklld, g h ke

Z, it =6, =1 (igl)’ = 61}} be C (Z,u D) = {m + nig

+tl+ipslim n t, se Zy, i2 =10, P =1, (i:l)* = 101}

and C € C ((Zsu D)) = {(a+Dbig+el +irdl) | i} =2, =

I (iFI)2 = 2I}} be a neutrosophic complex modulo integer

semigroup under product.

1) Find order of P.

ii) Find ideal of P.

iii) Is P a S-semigroup?

iv) Is T =T ={Z; X Z11 X Z3} < P a pseudo modulo
integer subsemigroup of P? Can T be an ideal of P?

v) Can W = {C(Z; ) x C (Z11) X C (Z3)} < P be a pseudo
complex ideal of P?

vi) CanB = {{Z; U DX C (Z D) xC(Zul)} <P
be a pseudo neutrosophic ideal of P?

Suppose P in problem 101 is taken as a neutrosophic
complex modulo integer group under addition then study
the basic properties associated with P. Compare P as a
group under + and semigroup under multiplication.

Let M = {Z; X C (Zs) x C (Znw 1)) X ((Z1p0w 1)) = {(a, b,

2

c,d)lae Z;,,be C(Zs)=a+pip;a,pe Zs, iz =4};ce
C({ZpuD)={a+bir+dl+eiflla, b, d ee Zp, i; =
11,P=L G)* =111}, de (ZpyuD ={a+blla,be Z,,
I> =1} } be a semigroup under multiplication.

1) Find order of M.

i1) Find zero divisors in M.

iii) Is M a S-semigroup?

iv) Find S-ideals if any in M.

v) Can M have S-units?
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105.

106.

107.

al a2 a9
LetL=4la, a, a, || aj€ C(Zy) = {a+bipla,
A, Ay .. Ay

b € Zy, if: =139}; 1 <1 <27} be a complex modulo

integer group under addition.
i) Find all p-Sylow subgroups of L.
it) Can L be written as a direct union sum of subgroups?

a, 0 .. 0 a,

i) fH=4{a, 0 .. 0 a;||aeC(Zy);1<i<6}
a;, 0 .. 0 a

c L. Is H a subgroup? If so find the coset of H in L.

al a2 a3
LetM=4la, a; a,||aeC{Zrl)) ={a+bip+cl
a; dg Qaq

+ipdlla, bede Zp, i3 =11}, P=L (lip* = 111}; 1 <i

F
< 9} be a neutrosophic complex modulo integer ring.
i) IsM a S-ring?
i1) Write S-units in M.
ii1) Find ideals in M.
iv) Find S-ideals if any in M.
v) Find subrings which are not ideals.
vi) What is the order of M?
vii) Does M contain S-subrings which are not S-ideals?
viii) Find a right ideal which is not a left ideal of M.

a, a, a; a,
L _ 5 7 Ag _
et T = a e C (<222UI>) = {a +

bip + cl + idl | a, b, ¢, d € Znp, ii =21, P =1; (i)’ =

21I}; 1 <1 £ 16} be a neutrosophic complex modulo
integer semigroup.
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108.

1009.

1) Find order of T.

i1) Find ideals in T.

iii) Find subrings in T which are not ideals of T.
iv) Find a right ideal of T and left ideal of T.

v) Find S-zero divisors if any in T.

vi) Is T a S-semigroup?

vii) Can T have idempotents?

Let B = {(x;, X2, X3, X4, X5, Xg) | X; € C ((Z12UI)) = {a + big

+cl+idlla, b,c,de Zp, i2 =11, P =T (igl)* = 111}; 1

<1 £ 6} be a ring of neutrosophic complex modulo

integers.

1) Find order of B.

i1) Find ideals of B.

iii) Can B have subrings which are not ideals?

iv) Can B have S-ideals?

v) Is B a S-ring?

vi) Can B have S-subrings?

vii) Can I = {(x; 0x, 0 x5 0) I x; € C (ZpLD)); 1 £1<3}
c B be an ideal?

viii) Find B/I.

e ]

+igdl | i2 = 13, I = L, (igl)> = 131}} be a ring of

neutrosophic complex modulo integer.

i) IsM a S-ring?

i1) Find order of M.

iii) Find S-ideals if any in M.

iv) Can M have S-zero divisors?

v) Find idempotents if any in M.

vi) Find a left ideal of M which is not a right ideal of M
and vice versa.

vii) Does M have a zero divisor which is not a S-zero
divisor?

viii) Find a S-subring which is not an ideal of M.

a,b,c,de C (Zul) = {a + big + cl
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110.

111.

112.

a; € C ((ZsuD) = {a + big + cI + ipdl

10
Let T = {Z“aixi
i=0

la, b, ¢, d € Zs; i2 =2, P =1; (igl)’ = I}} be a semigroup

(or group under addition).

1) Find order of T.

ii) What are the stricking differences when T is
considered as a group and as a semigroup?

iii) Find all p-Sylow subgroups of T.

iv) Find S, (exact n) so that T is embeddable in S,.

v) What are the distinct features as a group T enjoys?

vi) Can T have ideals, (T as a semigroup)?

Let M = {all 10 x 10 upper triangular matrices with
entries from C ((ZysUl)) = {a + bir+cl +irdl la, b, ¢, d €
Zos; i = 24, I = I; (ig)> = 241}} be a neutrosophic
complex modulo integer ring.

1) Is M commutative?

it) Is M a S-ring?

iii) Is M finite?

iv) Find subrings in M which are not ideals?

v) Find S-ideals if any.

vi) Does M have zero divisors?

vii) Can M have S-units?

viii) Find any special property enjoyed by M.

Let V= {(Xy, Xa, ..., X19) | X € C ((Z;U])) = {a + bip + cl
+ipdl la, b, c,de Z,;, i2 =10, P =L (ig)* = 10I}} be a
neutrosophic complex modulo integer linear algebra over
the field Z;;.
i) Find subspaces of V.
ii) Write V as a direct sum of subspaces (linear
subalgebras).
ii1) Find a basis of V.
iv) If V is defined over (Z;; U I). find the basis.
v) If Vs defined over C (Z;,) what is the dimension of
V over C (Zy,)?
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113.

114.

vi) What is dimension of V if V is defined over
C({(ZnuD)?

Let M = {al a, .. a }
A, a;, ... A
+cl+idlla, b, c,de Znp, i2 =22, P =1 (ie)* = 221}; ;

1 <1< 16} be a neutrosophic complex modulo integer
vector space over Zo;.

1) Find a basis of M over Z,;.

i) What is dimension of M over Z,3?

ii1)) Write M as a direct sum.

iv) Write M as a pseudo direct sum.

Y LetW:{al 0 a, 0 a, 0 a, 0}

ai € C (ZnUD) = {a + bix

a; €
0 a, 0 a;, 0 a, 0 a
C ((Zul)) 1 <1< 8} < M be a subspace of M. Find
a linear operator on V so that T (W) c W.
vi) Study (1) and (ii) if Zy; if replaced by C ((Z,; U I)).

Let P = {al azj
a, a,

igdlla, b,c,de Zp, i2 =11, P =1 G’ = 111};; 1 <i <

4} be a S-neutrosophic complex modular integer linear

algebra over the S-ring Z,,.

1) Find a basis of P.

i) What is the dimension of P over Z;,?

ii1) Write P as a direct sum.

iv) Write P as a pseudo direct sum.
v) Find the algebraic structure enjoyed by Hom, (V.V).

a, e C ((Zpul)) = {a+ bip +cl +

vi) Give a linear operator T such that T™' exists and keeps
no subspace of P invariant under it.
vii) Does such a linear operator exist?
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115.

116.

Let V = e C

al a2 i
{L‘ i|’(a1 a, 33)’zaix a
(ZaoUI)) = {a + big + cl + igdl | i2 =19, I* = I; (igl)* =
19I}; 0 <1 < 5} be a set neutrosophic complex integer
modulo vector space over the set S = {0, 2, 5, 10, 11} <
Zo.
1) Find the number of elements in V.
i1) Find a basis of V over S.
iii) Does V have subspaces?
iv) Can V be written as a direct sum? If so do it.
v) Write V as a pseudo direct sum.

LetP =
a,
a,
5 a; a4, a, a;
i 4 a3 a; a; dq
Daxa,|, Ja, a; ag|,
i=0 a, a, a5 3ag
as 7 4 @
ag
37
a, a, a; a,
as ag  a; A
a A Ay Ay .
ae C({Z b)) ={a+big+cl+
a3 Ay A5 A
7 Q3 3y Ay
421 @y Ay Ay

irdl 1a, b, c,de Zy, it =10, P =1; (ig)* = 10I}; 0<i<
24} be a set neutrosophic complex vector space of
modulo integers over the set S = {0, 3,5, 7} € Zy;.

1) Find dimension of P over S.

i1) Find a basis of P over S.

iii) Write P as a direct sum.
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117.

118.

iv) Find T : P — P such that T keep atleast two subspaces
invariant.

v) Prove P can have pure neutrosophic subspaces over S.

vi) Find complex modulo integer set vector subspaces of
P over S.

vii) Find just modulo integer vector subspaces of P over
S.

viii) Find the structure enjoyed by Homg (P, P).

ix) Can a linear operator on P be such that it keeps every
subspace invariant?

a
Let M = a
a3 Ay A5 A Ay A

(Zpol) = {a+ big+cl +idl | a, b, ¢, d € Zg, 1% = 42,

F
I’ = I; (ig])* = 421}; 1 <i < 18} be a set neutrosophic
complex linear algebra over the set S = {0, 1, 4, 41, 9, 42}
C Zys.
1) Find a basis for M over S.
ii) Write M as a direct sum of sublinear algebras over S.
ii1) Find dimension of M over S.
iv) Find two disjoint sublinear algebras of M so that the
intersection is the 3 X 6 zero matrix.
v) Find a linear operator T on M so that T does not
exist.

1 a2 a3 a4 aS a6

7 4y d @, Ay Ay a € C

Let V=<|a 0 a;€ C ((Zyul)) = {a+bip+cl

L 413 14 15

+ipdl la, b, c, de Zp, iZ =22, P =1 (ifd)* = 221}; 1<i
< 15} be a set neutrosophic complex modulo integer

linear algebra over the set S = {0, 1, 20, 19, 21,3, 5,7}
Zos.
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119.

120.

121.

1) Find a basis for V.

i1) What is the dimension of V over S?

iii) Write V as a direct sum of set sublinear algebras.

iv) Study Homg (V, V).

v) Study L (V, S).

vi) Introduce and study any other properties related with
V.

Let G — |:a1 a3 aS a7 a9 :|
a2 a4 aG aS a10

bip + cl +igdl la, b, ¢, d € Zs, iZ =4, ' = I; (ig)* = 41};

1 <1 <10} be a group of neutrosophic complex modulo

integers under addition.

1) What is the order of G?

it) Find all p-Sylow subgroups of G.

iii) Let H =

a, a, 0 0 O
0 0 a, a, O

c be a subgroup of G. find G/ H. What is o (G/H)?

e ]

a,b,c,de Zyy, ii =24, " = I; (igl)* = 241} be a group

under addition of neutrosophic complex modulo integers.

1) Find order of P.

ii) Obtain all p-Sylow subgroups of P.

iii) Give a subgroup of P which is not a p-Sylow
subgroup.

iv) Can P be a group under product?

v) Is it possible to write P as a direct sum of subgroups?

vi) Cann : P — P be such that ker 1 is nontrivial? (n - a
group homomorphism).

aie C(ZsJl) = {a+

aieC(<ZsuI>);1SiS4}

ae C ((Zyl))={a+bip+cl+ipdl |

Give any nice and interesting property enjoyed by
neutrosophic complex modulo integer groups.
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122.

123.

124.

125.

126.

127.

128.

129.

Obtain some classical theorems of finite groups in case of
complex modulo neutrosophic integer groups.

Construct a class of neutrosophic complex modulo integer
semigroups which are not S-semigroups.

Give an example of a complex neutrosophic modulo
integer semigroup which is a S-semigroup.

Does there exist rings built using neutrosophic complex
modulo integers which is not a S-ring?

Study the algebraic structure of HomZP (V, V) where V is

a neutrosophic complex modulo integer vector space over
Z,.

Study the algebraic structure of L (V, Z,) where V is the

neutrosophic complex modulo integer vector space over
Z,.

.  a, 4
Let V=+<a, a, ay | &€ C(Zpul) ={a+
Ay Ap . Ay

bi + cl +ipdl | a, b, ¢, d € Zy3, i2 =42, P =Tand (ig)’ =

421}; 1 <1 < 30} be a neutrosophic complex modulo
integer vector space over the field Z,;. Find L (V, Zg3).

al az . a6 212
Let V = 5 (al’ A, ..., alO)’ . a;
a7 218 . alz .

a,;

€ C((Zyul)) ={a+bir+cl+digl la, b, c,d e Zy, i} =
46, " =T and (ig])® = 461}; 1 <i< 12} be a set complex
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130.

131.

132.

133.

134.

neutrosophic modulo integer vector space over the set S =

{0, 421, 3+71, 271, 5+40L, 1}.

1) Find a basis.

ii) Is V finite or infinite dimensional over S?

ii1) Write V as a direct sum.

iv) Write V as a pseudo direct sum.

v) Find Homg (V,V).

vi) Find atleast one linear operator T on V so that T™'
exists.

Find some nice applications of set complex neutrosophic
modulo integer vector spaces defined over a set S.

What is the advantage of using set complex neutrosophic
modulo integer strong linear algebras over the set S?

Let V be a set neutrosophic complex modulo integer
strong linear algebra defined over a set S.
Find Homg (V,V).

{al azJ
LetM =
a, a,
(Z;uD)={a+bip+cl+idlla,b,c, de Zs, ii =2,
=1 and (if])*> = 2I} be a group complex neutrosophic
modulo integer strong linear algebra over the group G =
Zs.
i) Find a basis of M over G.
ii) Show the number of elements in M is finite

(Find o (M)).
iii) Write M as a pseudo direct sum.

iv) Is it possible to write M as a direct sum of strong
linear subalgebras?

aie C((Z3ul)), 1 <i<4} where C

Find some interesting properties associated with group
modulo integer neutrosophic complex vector spaces
defined over a group G.
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135.

136.

137.

138.

139.

140.

Compare group neutrosophic complex modulo integer
vector spaces with group neutrosophic complex modulo
integer strong linear algebras.

Find the difference between the semigroup complex
neutrosophic modulo integer vector spaces and semigroup
complex neutrosophic modulo integer strong linear
algebras.

Let V={(a, a3, ..., a9) las € C ((ZsLI)) = {a+ bip+cl +
idlla, b,c,de Zs, i2 =4, P=Tand (igl)’=41}; 1<i<
9} be a semigroup neutrosophic complex modulo integer
strong linear algebra over the semigroup S = C (Zs) = {a +
irb | a, b € Zs} under addition.

1) Find the number of elements in V.

i1) Find a basis of V.

iii) What is the dimension of V over S?

iv) Write V as a direct sum of sublinear algebras.

v) Write V as a pseudo direct sum.

Find the algebraic structure enjoyed by Homs (V,V); V a
set complex neutrosophic modulo integers over the set S.

If V is a neutrosophic complex modulo integer linear
algebra over Z, find HomZp (V, V).

a, a, a, a, as

a
Let M = 6 ’ 10 a € C ((ZLD) =

{a+bip+cl+idlla bc de Z, il =1, =1and

(ei)*=1};1<i<20) bea complex neutrosophic modulo
integer vector space over the field Z,.

1) Find dimension of M over Z,.

i1) What is the order of M?

ii1) Find a basis of M over Z,.

iv) Is M a linear algebra?

209



141.

142.

143.

144.

145.

v) Can M be a strong linear algebra?

vi) Write M as a direct sum of subspaces.

vii) Find Hom, (M, M).

viii) Find L (M, Z,).

ix) Write M as a pseudo direct sum of subspaces.

x) IfZ,is replaced by C ((Z,Ul)) what is the structure of
M?

a2 a9
Let M= qla;, a, .. a,|| aeCKZul)={a+
Ay Ay .. Ay

bir + cl +irdl I a, b, ¢, d € Zy,, i2 =10, P =Tand (i)’ =
10I}; 1 <1 <30} be a set complex neutrosophic modulo
integer linear algebra over the set S = {0, 1}.

1) Find a basis of M.

i1) Find the number of elements in M.

iii) Write M as a direct sum of subspaces.

iv) Find Homg (M, M).

v) Find T € Homs (M, M) such that T"' does not exist.

If S in problem 140 is replaced by Z;;, answer questions

(1) to (v).

If S in problem 140 is replaced by C (Z;;) then study the
questions (1) to (v).

If S in problem 140 is replaced by C ({(Z;; U 1)), will S be
a vector space?

a,

a,

a
Let V=1{| ° || a e C (ZyuD) = {a+bip +cl +irdl | a,
a4

as

ag

b,c,de Zy, i2 =19, P =Tand (igl)* = 191}; 1 <i<6)}
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146.

147.

be a Smarandache neutrosophic complex modulo integer
vector space over the S-ring Zy.

1) Find a basis of V.

i1) Find number of elements of V.

iii) Write V as a direct sum of subspaces.

iv) Find Hom, (V,V).

v) Find a projection operator on V.
vi) Does there exists a linear operator on V which keeps
every subspace of V invariant?

e L]

+ipslIm, n, 1,5 € Zy, i =9, P=Tand (iel)’=9I}} bea

Smarandache complex neutrosophic modulo integer linear

algebra over the S-ring S = Zy.

1) Find a basis of M.

ii) Find dimension of M over S - ring.

iii) If M is treated only as a vector space will dimension
of M over S be different? Justify your claim.

iv) Can M be written as a direct sum of linear
subalgebras?

v) Find the algebraic structure enjoyed by Homg (M, M).

vi) Write M as a pseudo direct sum of linear subalgebras.

. {0 a}
vil) IsP =
b 0

subalgebra?

a b c d
Let V =
e f g h

the Smarandache complex modulo integer vector space
over the S-ring Zs.

1) Find a basis of V over Z.

i1) Is V finite dimensional over Z¢?

iii) Find Hom, (V,V).

iv) If Zys is replaced by C (Z4s) will the dimension of V

a, b, ¢, de C ((Z,oul)) = {m + nig + I

a,be C(Z, uI))} < M be a linear

a,b,c,d,e,f,g,he C(Z46)} be
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148.

149.

150.

151.

over C (Zye) vary?

al a2 a3
Let T = a, a, a,||la,eC(Z,);1<i<9; be a
a; ag 4y

complex modulo integer linear algebra over the field F =

Z;.

1) Find a basis of T over Z;.

ii) Find L (T, Z,).

iii) Find Hom, (T, T).

iv) Find the number of elements in T.

v) Write T as a pseudo direct sum of sublinear algebras.

vi) Can T be written as a direct sum of sublinear
algebras?

Enumerate some interesting properties enjoyed by
complex modulo integer vector space.

What is the distinct features enjoyed by Smarandache
complex modulo integer vector spaces defined over a S-
ring (Z,) and a complex modulo integer vector spaces
defined over a field Z,.

a, a, a; a,

aS 7 aS
Let V= a, e C (<Zz3UI>) = {a +

bir + cl +ipdl 1 a, b, ¢, d € Zos, if =22, P =Tand (ifl)’ =
221}; 1 £1 <16} and W = {(a;, as, ..., app) | a; € C
(Znul)); 1 <1 < 12} be two complex neutrosophic
modulo integer linear algebra defined over the field Z,;.

1) Find a basis of V and a basis of W.

i1) What is the dimension of V?

iii) Find Hom, (V,W)=S.

iv) Find Hom, (W, V)=R.

v) IsR=S8?
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152.

153.

154.

155.

156.

157.

Obtain some interesting applications of complex modulo
integer linear algebras.

Determine some nice applications of complex
neutrosophic modulo integer vector space.

Find any property enjoyed by S - complex neutrosophic
modulo integer vector spaces defined over a S-ring.

a, .. a
Let V = { : 2“}
ay ... Ay
+ipdl la, b, c, d € Zn, iZ =28, P=Tand (igl)*=28I}; 1
<1 <40} be a set complex neutrosophic linear algebra of
modulo integer defined over the set S = {0, 1, I}.
i) Find a basis of V over S.
ii) Will the dimension of V change if V is replaced by

2Z5.
iii) Find Homs (V, V).

a, e C (<ZngI>) = {a + big + ¢l

Let P = {(aj, ..., a)5) l a; € C ((Z;30D) = {a + big + cl +
irdlla, b,c,de Zps, i =12, P=Tand (iel)> = 121}; 1<
i < 25} be a set complex neutrosophic modulo integer
strong linear algebra over S = {0, I}.
i) Find a basis of P over S.
ii) Find dimension of P over S.
iii) Write P as a direct sum of strong linear subalgebras.
iv) If S is replaced by T = {0, 1} will dimension of

P over T different?

Find applications of complex neutrosophic real linear
algebras.
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158.

159.

160.

Let S = {a ﬂ a, b, ¢, de C ((RUI)) = {m + ni + s +
c

Iri | ¥ = -1, " =1 and (il)> = -I}} be a complex

neutrosophic linear algebra over R.

i) Find a basis of S over R.

ii) Is S finite dimensional over R?

iii) Find Homg (S,S).

iv) Find L (S, R).

v) IfRisreplaced by (R U I) study results (1) to (v).

vi) If R is replaced by C (R)={a+bila,be R,i*=-1}
= C study questions (1) to (iv).

vii) If R is replaced by C ((R w I)) What is dimension of
S? Study (1) to (iv) questions.

viii) Compare and distinguish between the spaces given in
questions (v) (vi) and (vii).

Obtain some interesting results about complex
neutrosophic semivecor spaces defined over Z.

e {0

isl1i=-1, P=Tand (iI)2 =-I},m,n,r,s,areinZ}. Is
P a semifield? Justify your answer.

a,b,c,de C (Zul)) = {m+ni+rl +
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In this book the authors for the
first time introduce the notion of
complex modulo integer i_in Z .
ThatisC(Z)={a+bi. | a,b
areinZ,i?=n - 1} is the complex
modulo integer ring. We see
i‘f=n-1,i’=(n-1)i andi?*=1.
Thus{i_, 1, n-1, (n - 1)i_} forms
a group isomorphic to {i, -1, 1, -i }.
Further the notion of neutrosophic
complex numbers are introduced
and algebraic structures on them
are defined and described.
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