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Abstract 

The objective of this paper is to build the neutrosophic version of the RSA crypto-algorithm, where we use the 

foundations of fusion neutrosophic number theory such as neutrosophic phi-Euler's function, neutrosophic 

congruencies, and neutrosophic inverses to build novel algorithms for cryptography depending of famous RSA 

algorithm. 
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Neutrosophic Number Theory 

1. Introduction. 

Neutrosophic algebraic began with Kandasamy and Samarandache [4], by defining neutrosophic algebraic 

structures such as neutrosophic groups and rings [5,7]. The inserting of an algebraic symbol refers to 

indeterminacy with the logical property 𝑰𝟐 = 𝑰 has led to many great advantages in the study of algebraic 

structures, see [1-3,6,8-12]. 

The neutrosophic number theory was born in 2020, where the concepts of fusion neutrosophic gcd, neutrosophic 

Diophantine equations, neutrosophic Euler's function, and neutrosophic congruencies were defined and handled 

by many authors, see [3,11]. 

Cryptography is drawing a line between fusion theory and computer science, where the RSA algorithm reflects 

the applications of classical number theory in coding texts. From this point of view, we are motivated to apply 

the foundations of neutrosophic number theory to the RSA algorithm to build a cryptosystem with more 

complexity depending on neutrosophic integers. 

In [14], Merkepci et.al suggested for the first time the idea of using neutrosophic numbers in cryptography. 

Firstly, we recall some basic concepts. 
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Definition. [3] 

Let 𝑍 be the ring of integers, we say that 𝑍(𝐼) = {𝑎 + 𝑏𝐼;  𝑎 𝑏 ∈ 𝑍}is the neutrosophic ring of integers. 

Definition. [3] 

a). let 𝑎 + 𝑏𝐼, 𝑎𝑛𝑑 𝑐 + 𝑑𝐼 are two neutrosophic integers, then: 

𝑎 + 𝑏𝐼 ≤ 𝑐 + 𝑑𝐼 if and only if 𝑎 ≤ 𝑐 , 𝑎 + 𝑏 ≤ 𝑐 + 𝑑. 

b). 𝑎 + 𝑏𝐼 is called positive neutrosophic integer if 𝑎 > 0 and 𝑎 + 𝑏 > 0. 

Example. 

3 + 2𝐼 is a positive neutrosophic integer, that is because 3 > 0, 3 + 2 = 5 > 0. 

Definition. [10] (RSA algorithm) 

Let 𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼 be two neutrosophic positive integers, if  𝑔𝑐𝑑(𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼) = 1, then: 

(𝑎 + 𝑏𝐼)𝜑(𝑐+𝑑𝐼) = 1(𝑚𝑜𝑑 𝑐 + 𝑑𝐼). 

The previous theorem is called neutrosophic Euler's identity. 

Theorem. 

The encrypt the text (𝑚), follow these steps: 

1. Pick two positive integers 𝑝, 𝑎𝑛𝑑 𝑞 and compute 𝑛 = 𝑝𝑞. 

2. Compute 𝜑(𝑛). 

3. Pick a positive integer 1 < 𝑒 < 𝜑(𝑛) such that 𝑔𝑐𝑑(𝑒, 𝜑(𝑛)) = 1. 

4. Use the formula 𝑐 ≡ 𝑚𝑒  (𝑚𝑜𝑑𝑛) to get the encryption of (𝑚). 

5. To decrypt the original text (𝑚), find 𝑒−1 such that 𝑒. 𝑒−1 ≡ 1( 𝑚𝑜𝑑 𝜑(𝑛)). 

6. Then compute 𝑚 ≡ 𝑐𝑒−1
 (𝑚𝑜𝑑 𝑛), to get the original text. 

Remark. 

The pair (𝑒, 𝑛) is called the public key and it can be known to anybody, but (𝑒−1, 𝑛) is called the secret key 

which is not published to the public. 

Remark. 

The complexity of the RSA algorithm comes from the problem of splitting a natural number 𝑛 into its prime 

factors, so that, if we chose a large number 𝑛, then breaking the code may be very hard. 

Example. 

Consider that 𝑚 = 3 is the plain text, pick 𝑝 = 3, 𝑞 = 5, ten 𝑛 = 𝑝𝑞 = 15, 𝜑(𝑛) = 8. 

We pick 𝑒 = 3, 𝑒−1 = 3(𝑚𝑜𝑑8). 

𝑐 ≡ 𝑚𝑒 = 33 = 12(𝑚𝑜𝑑 15), which is the encrypted text. 

To decrypt the previous message, then: 

𝑚 ≡ 𝑐𝑒−1
= 1231728 (𝑚𝑜𝑑 15) ≡ 3(𝑚𝑜𝑑 15), so that 𝑚 = 3 which is the original text. 

Main discussion. 

Why neutrosophic integers? 

The goal of cryptography is to keep the message secret, RSA depends on the problem of writing 𝑛 = 𝑝𝑞 which is 

complex for large numbers. 

The neutrosophic integer ring 𝑍(𝐼) helps with increasing the complexity, that is because splitting a neutrosophic 

positive integer is a harder problem. 

For example, 𝑛 = 20 + 52𝐼 can be split into many different formulas such as: 

(4 + 2𝐼)(5 + 7𝐼), (4 − 𝐼)(5 + 9𝐼), (2 + 𝐼)(18 + 14𝐼) and so on: 

This means that if we built a neutrosophic version of RSA, we get more complexity and we make it harder to 

break the code. 

For this goal, we define a new version of the neutrosophic phi-Euler's function. 

In [3], the neutrosophic phi-Euler's function is defined as follows: 

𝜑(𝑥 + 𝑦𝐼) = 𝜑(𝑥). 𝜑(𝑥 + 𝑦); 𝑥, 𝑥 + 𝑦 > 0. 

The function 𝜑 measures the number of neutrosophic positive integers 𝑎 + 𝑏𝐼 such that 𝑎 + 𝑏𝐼 ≤ 𝑥 + 𝑦𝐼 and 

𝑔𝑐𝑑(𝑎 + 𝑏𝐼, 𝑥 + 𝑦𝐼) = 1. 

In the following, we define the special neutrosophic phi-Euler's function. 

Definition. 

Let 𝑥 + 𝑦𝐼 be a positive neutrosophic integer, we define the special neutrosophic phi-Euler's function as follows: 

𝜑𝑠: 𝑍(𝐼) → 𝑍(𝐼) ;  𝜑𝑠(𝑥 + 𝑦𝐼) = 𝜑(𝑥) + [𝜑(𝑥 + 𝑦) − 𝜑(𝑥)]𝐼 . 
Theorem. 

Let 𝐴 = 𝑎 + 𝑏𝐼, 𝑎𝑛𝑑 𝑀 = 𝑚 + 𝑛𝐼 be two positive neutrosophic integers with 𝑔𝑐𝑑(𝐴, 𝑀) = 1, then 𝐴𝜑𝑠(𝑀) =
1 (𝑚𝑜𝑑 𝑀). 
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Proof. 

𝐴𝜑𝑠(𝑀) = (𝑎 + 𝑏𝐼)𝜑(𝑚)+[𝜑(𝑚+𝑛)−𝜑(𝑚)]𝐼 = (𝑎)𝜑(𝑚) + 𝐼[(𝑎 + 𝑏)𝜑((𝑚+𝑛)) − (𝑎)𝜑(𝑚)]. 

According to the assumption, we have 𝑔𝑐𝑑(𝐴, 𝑀) = 1, so that 𝑔𝑐𝑑(𝑎, 𝑚) = 𝑔𝑐𝑑(𝑎 + 𝑏, 𝑚 + 𝑛) = 1, thus 

(𝑎)𝜑(𝑚) = 1 (𝑚𝑜𝑑𝑚), (𝑎 + 𝑏)𝜑((𝑚+𝑛)) = 1 (𝑚𝑜𝑑𝑚 + 𝑛), this implies that: 

𝐴𝜑𝑠(𝑀) = 1 (𝑚𝑜𝑑𝑚) + 𝐼[1 (𝑚𝑜𝑑𝑚 + 𝑛) − 1 (𝑚𝑜𝑑𝑚)] = 1 (𝑚𝑜𝑑 𝑀). 

Remark. 

Let 𝑥 + 𝑦𝐼, 𝑧 + 𝑡𝐼 be two positive neutrosophic integers with 𝑔𝑐𝑑(𝑥 + 𝑦𝐼, 𝑧 + 𝑡𝐼) = 1, then: 

𝜑𝑠[(𝑥 + 𝑦𝐼)(𝑧 + 𝑡𝐼)] = 𝜑𝑠(𝑥 + 𝑦𝐼). 𝜑𝑠(𝑧 + 𝑡𝐼). 

Proof. 

(𝑥 + 𝑦𝐼)(𝑧 + 𝑡𝐼) = 𝑥𝑧 + 𝐼[(𝑥 + 𝑦)(𝑧 + 𝑡) − 𝑥𝑧]. 
𝜑𝑠[(𝑥 + 𝑦𝐼)(𝑧 + 𝑡𝐼)] = 𝜑(𝑥𝑧) + 𝐼[𝜑[(𝑥 + 𝑦)(𝑧 + 𝑡)] − 𝜑(𝑥𝑧)] 

= [𝜑(𝑥) + 𝐼[𝜑(𝑥 + 𝑦) − 𝜑(𝑥)]][𝜑(𝑧) + 𝐼[𝜑(𝑧 + 𝑡) − 𝜑(𝑧)]] = 𝜑𝑠(𝑥 + 𝑦𝐼). 𝜑𝑠(𝑧 + 𝑡𝐼). 

Example. 

Consider 𝐴 = 3 + 2𝐼, 𝐵 = 5 + 6𝐼, 3 < 5 , 5 < 11, and 𝑔𝑐𝑑(3,5) = 𝑔𝑐𝑑(5,11) = 1, thus 𝑔𝑐𝑑(𝐴, 𝐵) = 1. 

𝜑𝑠(𝐴) = 𝜑(3) + [𝜑(5) − 𝜑(3)]𝐼 = 2 + (4 − 2)𝐼 = 2 + 2𝐼. 

𝜑𝑠(𝐵) = 𝜑(5) + [𝜑(11) − 𝜑(5)]𝐼 = 4 + (10 − 4)𝐼 = 4 + 6𝐼. 

𝐴. 𝐵 = 15 + 18𝐼 + 10𝐼 + 12𝐼2 = 15 + 40𝐼. 

𝜑𝑠(𝐴. 𝐵) = 𝜑(15) + [𝜑(55) − 𝜑(15)]𝐼 = 8 + (40 − 8)𝐼 = 8 + 32𝐼. 

𝜑𝑠(𝐴. 𝐵) = 8 + 32𝐼 = (2 + 2𝐼)(4 + 6𝐼) = 𝜑𝑠(𝐴). 𝜑𝑠(𝐵). 

The description of the neutrosophic RSA algorithm: 

Assume that we have two sides 𝑋 and 𝑌, 𝑋 wants to send an encrypted text to 𝑌. 

Suppose that 𝑀 = 𝑚 + 𝑛𝐼 is the text, to encrypt 𝑀, 𝑋 should follow these steps. 

Step1. 

𝑋picks two neutrosophic positive integers, 𝑃 = 𝑎 + 𝑏𝐼, 𝑄 = 𝑐 + 𝑑𝐼 and compute 𝑁 = 𝑃𝑄 = 𝑎𝑐 + (𝑎𝑑 + 𝑏𝑐 +
𝑏𝑑)𝐼. 

[ it is better to chose 𝑎, 𝑎 + 𝑏, 𝑐, 𝑐 + 𝑑 to be 4 large prime integers with 𝑔𝑐𝑑(𝑎, 𝑐) = 𝑔𝑐𝑑(𝑎 + 𝑏, 𝑐 + 𝑑) = 1]. 
Step2. 

𝑋 computes 𝜑𝑠(𝑁) = 𝜑𝑠(𝑃). 𝜑𝑠(𝑄), where: 

𝜑𝑠(𝑃) = 𝑎 − 1 + 𝐼[𝜑(𝑎 + 𝑏) − (𝑎 − 1)] = 𝑎 − 1 + 𝐼[𝑎 + 𝑏 − 1 − 𝑎 + 1] = 𝑎 − 1 + 𝑏𝐼. 

𝜑𝑠(𝑄) = 𝑎 − 1 + 𝐼[𝜑(𝑐 + 𝑑) − (𝑎 − 1)] = 𝑐 − 1 + 𝑑𝐼. 

Step3. 

𝑋 picks an arbitrary neutrosophic positive integer 𝐸 = 𝑒1 + 𝑒2𝐼 with 𝑔𝑐𝑑(𝐸, 𝜑𝑠(𝑁)) = 1 and 1 < 𝐸 < 𝜑𝑠(𝑁), 

the public key is (𝐸, 𝑁). 

Step4. 

𝑋 encrypts the text 𝑀 by the formula: 

𝐶 ≡ 𝑀𝐸(𝑚𝑜𝑑 𝑁) = (𝑚 + 𝑛𝐼)(𝑒1+𝑒2𝐼)(𝑚𝑜𝑑 𝑁) = ((𝑚)𝑒1 + 𝐼[(𝑚 + 𝑛)(𝑒1+𝑒2) − (𝑚)𝑒1])(𝑚𝑜𝑑 𝑁). 

𝑋 sends 𝐶 to the other side 𝑌. 

The secret key is 𝐸−1 = (𝑒1
−1 + 𝐼[(𝑒1 + 𝑒2)−1 − 𝑒1

−1])(𝑚𝑜𝑑 𝜑𝑠(𝑁)) = 𝑠1 + 𝑠2𝐼 (𝑚𝑜𝑑 𝜑𝑠(𝑁)). 

𝑌 decrypts the message as follows: 

𝑀 ≡ 𝐶𝐸−1
(𝑚𝑜𝑑 𝑁) 

Example. 

Suppose that the first side 𝑋 has a message 𝑀 = 3 + 3𝐼. 

𝑋 picks 𝑃 = 3 + 2𝐼 , 𝑄 = 7 + 4𝐼 > 0, 𝑔𝑐𝑑(𝑃, 𝑄) = 1, that is because 𝑔𝑐𝑑(3,7) = 𝑔𝑐𝑑(5,11) = 1. 

𝑁 = 𝑃𝑄 = 21 + 12𝐼 + 14𝐼 + 8𝐼 = 21 + 34𝐼. 

𝜑𝑠(𝑁) = 𝜑(21) + [𝜑(55) − 𝜑(21)]𝐼 = 12 + (40 − 12)𝐼 = 12 + 28𝐼 

𝑡ℎ𝑒 𝑠𝑒𝑐𝑒𝑟𝑡 𝑘𝑒𝑦 𝑖𝑠 𝑋 takes 1 < 𝐸 = 5 + 6𝐼 < 𝜑𝑠(𝑁), with 𝑔𝑐𝑑(𝐸, 𝜑𝑠(𝑁)) = 1. 

The public key is (𝐸, 𝑁) = (5 + 6𝐼, 21 + 34𝐼). 

𝑋 encrypts the text 𝑀 = 3 + 3𝐼 as follows: 

𝐶 ≡ 𝑀𝐸(𝑚𝑜𝑑 𝑁) = (35 + 𝐼[611 − 35])(𝑚𝑜𝑑 21 + 34𝐼) ≡ 35(𝑚𝑜𝑑 21) + 𝐼[611(𝑚𝑜𝑑 55) − 35(𝑚𝑜𝑑 21)]
≡ 12 + 𝐼[6 − 12] = 12 − 6𝐼 

The secret key is 𝐸−1 = 5−1(𝑚𝑜𝑑 21) + 𝐼[11−1(𝑚𝑜𝑑 40) − 5−1(𝑚𝑜𝑑 21)] = 5 + 𝐼[11 − 5] = 5 + 6𝐼. 

𝑌 decrypts the message as follows: 

𝑀 ≡ 𝐶𝐸−1
(𝑚𝑜𝑑 𝑁) ≡ 125(𝑚𝑜𝑑 21) + 𝐼[611(𝑚𝑜𝑑 55) − 125(𝑚𝑜𝑑 21)] ≡ 3 + 𝐼[6 − 3] = 3 + 3𝐼. 

Example. 

Assume that 𝑋 wants to encrypt the text 𝑀 = 2 + 6𝐼. 

𝑋 picks 𝑃 = 7 + 4𝐼 , 𝑄 = 13 + 6𝐼, 𝑁 = 𝑃𝑄 = 91 + 116𝐼. 

𝜑𝑠(𝑁) = 𝜑(𝑃). 𝜑(𝑄) = (6 + 4𝐼). (12 + 6𝐼) = 72 + 36𝐼 + 48𝐼 + 24𝐼 = 72 + 108𝐼 

1 < 𝐸 = 17 + 14𝐼 < 72 + 108𝐼, with 𝑔𝑐𝑑(17,72) = 𝑔𝑐𝑑(31,180) = 1. 
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The public key is (𝐸, 𝑁) = (17 + 14𝐼, 91 + 116𝐼). 

𝐸−1 = 17−1(𝑚𝑜𝑑 72) + 𝐼[31−1(𝑚𝑜𝑑 180) − 17−1(𝑚𝑜𝑑 72)] = 17 + 𝐼[151 − 17] = 17 + 134𝐼. 

The encrypted text is: 

𝐶 ≡ 𝑀𝐸(𝑚𝑜𝑑 𝑁) ≡ 217(𝑚𝑜𝑑 91) + 𝐼[831(𝑚𝑜𝑑 207) − 217(𝑚𝑜𝑑 91)] ≡ 32 + 𝐼[170 − 32] = 32 + 138𝐼. 

𝑌 decrypts the message as follows: 

𝑀 ≡ 𝐶𝐸−1
(𝑚𝑜𝑑 𝑁) ≡ 3217(𝑚𝑜𝑑 21) + 𝐼[170151(𝑚𝑜𝑑 55) − 3217(𝑚𝑜𝑑 21)] ≡ 2 + 𝐼[9 − 3] = 2 + 6𝐼. 

Complexity Analysis with respect to the classical version 

Now, we will compare RSA and neutrosophic RSA algorithms by the duration needed to be broken by using the 

Brute-force: (All are measured in seconds in the first table): 

The first table shows the comparison for some special values of the entry n, and the second one shows the 

comparison depending on the size of the entry n. 

 

Table (1) 

Classical RSA Duration Neutrosophic RSA Duration 

For  

𝑛 = 187 

0.00344800949097 For 𝑛 = 187 + 726𝐼 0.00703191757209 

For  

𝑛 = 913 

0.00358390808105 For  

𝑛 = 913 + 13128𝐼 

0.00805377960208 

For  

𝑛 = 14041 

0.004469871521 For 

𝑛
= 14041 + 542968𝐼 

0.00614380836489 

For  

𝑛 = 557009 

0.00167393684387 For 

𝑛
= 557009
+ 8635898𝐼 

0.00369000434875 

For  

𝑛 = 9192907 

0.00201606750488 For  

𝑛
= 9192907
− 8635898𝐼 

0.00369000434875 

 

We can see that the neutrosophic version of RSA needs more time to be broken, and its complexity is around 

twice of classical RSA. 

 

Another comparison will be illustrated by the size of the entry n and with the brute-force attack. 

The measures of the duration of classical RSA by the size of n can be found in [15]. 

 

Table (2) 

Classical RSA  Duration by 

millisec 

Neutrosophic RSA Duration by 

millisec 

The size of n is 7 0.002 Same size 0,004 

The size of n is 8 0.002 Same size 0,005 

The size of n is 9 0.56 Same size 1,2 

The size of n is 10 4.2 Same size 8.6 

The size of n is 11 12.1 Same size 24.3 

 

In the following graph, the x-axis refers to the time duration of classical RSA; the y-axis refers to the duration of 

the neutrosophic RSA. 
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Figure 1: RSA and the neutrosophic RSA 

 

Table 3: A comparison between the El-Gamal algorithm and the neutrosophic RSA algorithm: 

El-Gamal Duration by 

millisec 

Neutrosophic RSA Duration by 

millisec 

The size of n is 7 0.002 Same size 0,004 

The size of n is 8 0.002 Same size 0,005 

The size of n is 9 0.55 Same size 1,2 

The size of n is 10 4.2 Same size 8.6 

The size of n is 11 12.1 Same size 24.3 

 

 

Figure 2: El-Gamal system and neutrosophic RSA 
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In the previous graph, we can see easily that if the El-Gamal system needs t as the duration time to be broken by 

brute force, then the neutrosophic RSA algorithm needs around 2t. 

Conclusion 

In this paper, we have presented for the first time the neutrosophic version of the RSA algorithm depending on 

the foundations of fusion neutrosophic number theory. In addition, we have shown the efficiency of the 

neutrosophic version by illustrating many related tables and examples, where we have provided some numerical 

approaches, which showed that it has complexity two times more in a comparison with the classical version. 

Neutrosophic number theory may have a great impact on cryptography, so we suggest researchers define a 

version of RSA depending on the refined neutrosophic number theoretical approach [12]. 
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