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1. Introduction

In many practical situations and in many complex systems like biological, behavioral and chemical etc., 

we encounter different types of uncertainties. Our classical mathematics does not practice any kind of 

uncertainty in its tools, excluding possibly the case of probability, where it can handle a particular king of 

uncertainty called randomness. Therefore new techniques and modification of classical tools are 

required to model such uncertain phenomenon. In 1965, L. A. Zadeh [14] coined his remarkable theory 

of Fuzzy sets that deals with a kind of uncertainty known as “Fuzziness” and which is due to partial 

membership of an element in a set. Later this “Fuzziness” concept leads to the highly acclaimed theory 

of Fuzzy Logic. After the invention of fuzzy sets many other hybrid concepts begun to develop. In 1983, 

K. Atanasov [1] introduced the idea of Intuitionistic fuzzy sets, a set with each member having a degree 

of belongingness as well as a degree of non-belongingness. This is again a generalization of fuzzy set 

theory.  Although Fuzzy set theory is very successful in handling uncertainties arising from vagueness or 

partial belongingness of an element in a set, it cannot model all sorts of uncertainties prevailing in 

different real physical problems such as problems involving incomplete information. Hence further 

generalizations of fuzzy and intuitionistic fuzzy sets are required. After that many theories have been 

evolved which are successful in their respective domains.

Recently a new theory has been introduced and which is known as neutrosophic logic and sets. 

The term “neutro-sophy” means “knowledge of neutral thought” and this ‘neutral’ represents the main 

distinction between ‘fuzzy’ and ‘intuitionistic fuzzy’ logic and set. ‘Neutrosophic logic’ was introduced by 

Florentin Smarandache [10] in 1995. It is a logic in which each proposition is estimated to have a degree 

of truth (T), a degree of indeterminacy (I) and a degree of falsity (F). A Neutrosophic set is a set where 
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each element of the universe has a degree of truth, indeterminacy and falsity respectively and which lies 

between ] 0,1 [- +
, the non-standard unit interval. Unlike in intuitionistic fuzzy sets, where the 

incorporated uncertainty is dependent of the degree of belongingness and degree of non belongingness, 

here the uncertainty present, i.e. indeterminacy factor, is independent of truth and falsity values.  In 

2005, Wang et. al. [12] introduced an instance of neutrosophic set known as single valued neutrosophic 

sets (SVNS) which were motivated from the practical point of view and that can be used in real scientific 

and engineering applications. The single valued neutrosophic set is a generalization of classical set, fuzzy 

set, intuitionistic fuzzy set and paraconsistent sets etc. Again fuzziness is a feature of imperfect 

information which is due to partial belongingness of an element to a set. The term ‘entropy’ as a 

measure of fuzziness was first coined by Zadeh [15] in 1965. The entropy measure of fuzzy sets has

many applications in areas like image processing, optimizations etc. [4, 9]. Actually a measure of 

imperfectness of information represented by a set is measured in terms of entropy. So measuring of 

entropy of single valued neutrosophic sets will be useful in cases whenever modeling of uncertain 

situations is done through SVNSs. On the other hand similarity is a key concept in a number of fields 

such as linguistics, psychology and computational intelligence. In several problems we often need to 

compare two sets. We are often interested to know whether two patterns or images are identical or 

approximately identical or at least to what degree they are identical. Similar elements are regarded from 

different points of view by using resemblances, distances, closeness, proximity, dissimilarities etc. So it is 

natural and very useful to address the issues similarity measure for this new set, viz. single valued 

neutrosophic set. 

The rest of the paper is constructed as follows: Some preliminary definitions and results were 

given in section 2. In section 3, different types of distances between two single valued neutrosophic sets 

have been introduced. Different measures of similarity and their properties have been discussed in 

section 4. In section 5, the notion of entropy of a single valued neutrosophic set has been given. Section 

6 briefly compares the methods described here with earlier available methods. Section 7 concludes the 

paper.

2. Preliminaries

In this section we recall some definitions, operations and properties regarding single valued 

neutrosophic sets (SVNS in short) from [12], which will be used in the rest of the paper.

A single valued neutrosophic set has been defined in [12] as follows:

Definition 2.1 Let X be a universal set. A Neutrosophic set A in X is characterized by a truth-

membership function ,At a indeterminacy-membership function Ai and a falsity-membership function 

, , , : [0,1],A A A Af where t i f X ® are functions and , ( ( ), ( ), ( )) ,A A Ax X x x t x i x f x A" Î º Î is a single 

valued neutrosophic element of .A

A single valued neutrosophic set A over a finite universe 1 2 3{ , , ,...., }nX x x x x= is represented as
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i A i A i A i

x
A

t x i x f x=

=
< >

å

In case of SVNS the degree of truth membership (T), indeterminacy membership (I) and the falsity 

membership(F) values lies in [0, 1] instead of the non standard unit interval ] 0,1 [- +
as in the case of 

ordinary neutrosophic sets.

An example of SVNS is given below:

Example 2.2 Assume that 1 2 3{ , , },X x x x= where 1x is capacity, 2x is trustworthiness and, 3x is price of 

a machine, be the universal set. The values of 1 2 3, ,x x x are in [0, 1]. They are obtained from the 

questionnaire of some domain experts, their option could be a degree of “good service”, a degree of 

indeterminacy and a degree of “poor service”. A is a single valued Neutrosophic set of X defined by

1 2 3

0.3,0.4,0.5 0.5,0.2,0.3 0.7,0.2,0.2 .A
x x x

< > < > < >= + +

Next we state the definitions of complement and containment as follows:

Definition 2.3 The complement of a SVNS A is denoted by
cA and is defined by

( ) ( ); ( ) 1 ( )& ( ) ( ) .c c cA A AA A A
t x f x i x i x f x t x x X= = - = " Î

Definition 2.4 A SVNS A is contained in the other SVNS ,B denoted as ,A BÌ if and only if

( ) ( ); ( ) ( )& ( ) ( ) .A B A B A Bt x t x i x i x f x f x x X£ £ ³ " Î          

Two sets will be equal, i.e. ,A B= iff & .A B B AÌ Ì

Let us denote the collection of all SVNS in X as ( ).N X

Several operations like union and intersection has been defined on SVNS’s and they satisfy most of the 

common algebraic properties of ordinary sets.

Definition 2.5 The union of two SVNS &A B is a SVNS , ,C written asC A B= È which is defined as 

follows: ( ) max( ( ), ( )); ( ) max( ( ), ( ))& ( ) min( ( ), ( )) .C A B C A B C A Bt x t x t x i x i x i x f x f x f x x X= = = " Î

Definition 2.6 The intersection of two SVNS &A B is a SVNS , ,C written asC A B= Ç which is defined 

as follows: ( ) min( ( ), ( )); ( ) min( ( ), ( ))& ( ) max( ( ), ( )) .C A B C A B C A Bt x t x t x i x i x i x f x f x f x x X= = = " Î

For practical purpose, throughout the rest of the paper, we have considered only SVNS in a finite 

universe.          
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3. Distance between two neutrosophic sets.

In this section we introduce the notion of distance between two single valued neutrosophic sets A and

B in the universe 1 2 3{ , , ,...., }.nX x x x x=

Definition 3.1 Let
1 1( ), ( ), ( ) ( ), ( ), ( )

n n
i i

i iA i A i A i B i B i B i

x x
A and B

t x i x f x t x i x f x= =

= =
< > < >

å å be two single 

valued neutrosophic sets in 1 2 3{ , , ,...., }.nX x x x x= Then

· The Hamming distance between A andB is defined as follows:

1

( , ) { ( ) ( ) ( ) ( ) ( ) ( )} ...........................(1)
n

N A i B i A i B i A i B i

i

d A B t x t x i x i x f x f x
=

= - + - + -å

· The normalized Hamming distance between A and B is defined as follows:

1

1
( , ) { ( ) ( ) ( ) ( ) ( ) ( )} .........................(2)

3

n

N A i B i A i B i A i B i

i

l A B t x t x i x i x f x f x
n =

= - + - + -å

· The Euclidian distance between A andB is defined as follows:

2 2 2

1

( , ) {( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ..............................(3)
n

N A i B i A i B i A i B i

i

e A B t x t x i x i x f x f x
=

= - + - + -å

· The normalized Euclidian distance between A andB is defined as follows:

2 2 2

1

1
( , ) {( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ..............................(4)

3

n

N A i B i A i B i A i B i

i

q A B t x t x i x i x f x f x
n =

= - + - + -å

Now for equations (1) – (4) the following holds:

( ) 0 ( , ) 3 ...................................................................................(5)

( ) 0 ( , ) 1 ...................................................................................(

N

N

i d A B n

ii l A B

£ £

£ £ 6)

( ) 0 ( , ) 3 ............................................................................(7)

( ) 0 ( , ) 1 ..................................................................................(8)

N

N

iii e A B n

iv q A B

£ £

£ £

Example 3.2 Let { , , , }X a b c d= be the universe and A and B be two single valued neutrosophic sets in

X defined as follows:

PDF generated by deskPDF Creator Trial - Get it at http://www.docudesk.com
PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com



5

{ , , , }.
0.5,0.2,0.9 0.8,0.4,0.2 0.3,0.8,0.7 0.6,0.3,0.5

a b c d
A =

< > < > < > < >

{ , , , }.
0.7,0.4,0.2 0.5,0.5,0.3 0.1,0.2,0.3 0.8,0.1,0.6

a b c d
B =

< > < > < > < >

Then the distance between ,A B will be as follows:

( , ) 3.3.Nd A B =

Similarly the other three distances will be 
3.3

( , ) 0.275, ( , ) 1.15, ( , ) 0.33.
12

N N Nl A B e A B q A B= = @ @

Then the following result can be easily proved.

Proposition 3.3 The distances , , ,N N N Nd l e q defined above are metric.

Definition 3.4 (Cardinality) The minimum (or sure) cardinality of a SVNS A is denoted as 

min ( ) lcount A or cå and is defined as
1

( ).
n

l

A i

i

c t x
=

=å The maximum cardinality of A is denoted by

max ( ) ucount A or cå and is defined as
1

{ ( ) (1 ( ))}.
n

u

A i A i

i

c t x i x
=

= + -å The cardinality of A is defined 

by the interval [ , ].l uc c

Example 3.5 For the SVNS A given in example 3.2 we have the following:

1

( ) 0.5 0.8 0.3 0.6 2.2 &
n

l

A i

i

c t x
=

= = + + + =å

1

{ ( ) (1 ( ))} 1.3 1.4 0.5 1.3 4.5.
n

u

A i A i

i

c t x i x
=

= + - = + + + =å

4. Similarity Measure between two single valued neutrosophic sets

In this section we define the notion of similarity between two SVNSs. We have adopted various methods 

for calculating this similarity. The first method is based on distances defined in the previous section. The 

second one is based on a matching function and the last one is based on membership grades.                   
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In general a similarity measure between two SVNSs is a function defined as 
2: ( ) [0,1]s N X ® which 

satisfies the following properties:

( ) ( , ) [0,1],

( ) ( , ) 1 ,

( ) ( , ) ( , ), (9)

( ) ( , ) ( , ) ( , )

i S A B

ii S A B A B

iii S A B S B A

iv A B C S A C S A B S B C

Î

= Û =

=

Ì Ì Þ £ Ù

�� �� �� �� �� �� �� �� �� �� ��

But individual measures may satisfy more properties in addition to (9).

Now similarity can be calculated using several techniques. Here we have adopted three common 

techniques namely, the distance based, the one based on a matching function and lastly on membership 

grade based.

4.1 Distance based similarity measure

We know that similarity is inversely proportional with the distance between them. Using the distances 

defined in equation (1) – (4) we define measures of similarity
1s between two SVN sets A andB as 

follows:

1 1
( , ) .....................................................................................(10)

1 ( , )
s A B

d A B
=

+

For example if we use Hamming distance Nd then the associated measure of similarity will be denoted 

by
1

Ns and is defined by:

1 1
( , ) .....................................................................................(11)

1 ( , )
N

N

s A B
d A B

=
+

The following example calculates the similarity measure between the two SVNSs:

Example 4.1.1 The similarity measure between the two SVNSs defined in example 3.2 will be

1 1
( , ) 0.233.

1 3.3
s A B = @

+

Proposition 4.1.2 The distance based similarity measure 
1,s between two SVNSs A and B satisfies the 

following properties:
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1

1

1 1

( )0 ( , ) 1

( ) ( , ) 1

( ) ( , ) ( , )

i s A B

ii s A B iff A B

iii s A B s B A

£ £

= =

=

( ) ( , ) ( , ) ( , )iv A B C S A C S A B S B CÌ Ì Þ £ Ù

Proof. The results (i)- (iii)  holds trivially from definition. We only prove (iv).

Let .A B CÌ Ì Then we have

( ) ( ) ( ); ( ) ( ) ( )& ( ) ( ) ( ) .A B c A B c A B ct x t x t x i x i x i x f x f x f x x U£ £ £ £ ³ ³ " Î Now

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) willhold.

Similarly, ( ) ( ) ( ) ( ) & ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) & ( ) ( ) ( ) ( ) holds.

A B A c B C A C

A B A c B C A C

A B A c B C A C

t x t x t x t x and t x t x t x t x

i x i x i x i x i x i x i x i x and

f x f x f x f x f x f x f x f x

- £ - - £ -

- £ - - £ -

- £ - - £ -

Thus 

1 1 1 1

1 1 1

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ).

d A B d A C s A B s A C and d B C d A C s B C s A C

s A C s A B s B C

£ Þ ³ £ Þ ³

Þ £ Ù

This is true for all the distance functions defined in equations (1) to (4).

Hence the result.

4.2 Similarity measure based on membership degrees

Another measure of similarity
2s between two SVN sets A andB could be defined as follows:

2 1

1

{min{ ( ), ( )} min{ ( ), ( )} min{ ( ), ( )}}

( , ) .......................(12)

{max{ ( ), ( )} max{ ( ), ( )} max{ ( ), ( )}

n

A i B i A i B i A i B i

i

n

A i B i A i B i A i B i

i

t x t x i x i x f x f x

s A B

t x t x i x i x f x f x

=

=

+ +

=

+ +

å

å

Example 4.2.1 Here the similarity measure between the two SVN sets defined in example 3.2 will be

2 3.8
( , ) 0.535.

7.1
s A B = @
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Proposition 4.2.2 The distance based similarity measure 
2 ,s between two SVNS A andB satisfies the 

following properties:

2

2

2 2

( )0 ( , ) 1

( ) ( , ) 1

( ) ( , ) ( , )

i s A B

ii s A B iff A B

iii s A B s B A

£ £

= =

=

3 3 3( ) ( , ) ( , ) ( , ).iv A B C s A C s A B s B CÌ Ì Þ £ Ù

Proof.  Properties (i) and (iii) follows readily from definition.

(ii) It is clear that if
2 ( , ) 1.A B s A B= Þ =

Conversely, let 

2 1

1

{min{ ( ), ( )} min{ ( ), ( )} min{ ( ), ( )}}

( , ) 1 1

{max{ ( ), ( )} max{ ( ), ( )} max{ ( ), ( )}

n

A i B i A i B i A i B i

i

n

A i B i A i B i A i B i

i

t x t x i x i x f x f x

s A B

t x t x i x i x f x f x

=

=

+ +

= Þ =

+ +

å

å

{min{ ( ), ( )} min{ ( ), ( )} min{ ( ), ( )}}

{max{ ( ), ( )} max{ ( ), ( )} max{ ( ), ( )}

{[min{ ( ), ( )} max{ ( ), ( )}] [min{ ( ), ( )} max{ ( ), (

A i B i A i B i A i B i

x

A i B i A i B i A i B i

x

A i B i A i B i A i B i A i B

x

t x t x i x i x f x f x

t x t x i x i x f x f x

t x t x t x t x i x i x i x i x

Þ + +

= + +

Þ - + -

å

å

å )}]

min[{ ( ), ( )} max{ ( ), ( )}] 0

i

A i B i A i B if x f x f x f x

+

- =

Thus for each ,x

min{ ( ), ( )} max{ ( ), ( )} 0,min{ ( ), ( )} max{ ( ), ( )} 0&

min{ ( ), ( )} max{ ( ), ( )} 0 .

A i B i A i B i A i B i A i B i

A i B i A i B i

t x t x t x t x i x i x i x i x

f x f x f x f x holds

- = - =

- =

Thus ( ) ( ), ( ) ( )& ( ) ( )A B A B A Bt x t x i x i x f x f x= = = .A BÞ =

(iv)Now we prove the last result.

Let .A B CÌ Ì Then we have

( ) ( ) ( ); ( ) ( ) ( )& ( ) ( ) ( ) .A B c A B c A B ct x t x t x i x i x i x f x f x f x x U£ £ £ £ ³ ³ " Î Now
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2 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )
( , ) ( , )

( ) ( ) ( ) ( ) ( ) ( )

A A B A A C

B B A C C A

A A CA A B

B B A C C A

t x i x f x t x i x f x and

t x i x f x t x i x f x

t x i x f xt x i x f x
s A B s A C

t x i x f x t x i x f x

+ + ³ + +

+ + £ + +

+ ++ +
\ = ³ =

+ + + +

Again similarly we have:

2 2

2 2 2

( ) ( ) ( ) ( ) ( ) ( ) &

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( , ) ( , )

( ) ( ) ( ) ( ) ( ) ( )

( , ) ( , ) ( , ).

B B C A A C

C C A C C B

B B C A A C

C C B C C A

t x i x f x t x i x f x

t x i x f x t x i x f x

t x i x f x t x i x f x
s B C s A C

t x i x f x t x i x f x

s A C s A B s B C

+ + ³ + +

+ + ³ + +

+ + + +
\ = ³ =

+ + + +

Þ £ Ù

Hence the proof of this proposition is complete.

4.3 Similarity measure based on a matching function

Next consider a universe where each element ix has a weight .iw Then we require a new measure of 

similarity different from those discussed earlier.       

Often weights are associated with each element of an universe to give an order of importance among 

the elements. To illustrate the situation we give an example:                

Suppose that there is a system to detect a disease based on several symptoms associated with it. Now 

each symptoms is characterized by three things namely a degree of truth, a degree of indeterminacy and 

a degree of falsity. So for each disease we can have a corresponding single valued neutrosophic set with 

symptoms as its elements. These SVNSs will act as our knowledgebase. Whenever a patient comes with 

some health problem the system will generate his corresponding SVNS. The measure of similarity, as 

discussed in previous sections, between these SVNSs can detect the possible disease. But we know that 

many diseases have several symptoms in common. So for a specific disease all the symptoms are not 

equally important. Here we can assign weights to each symptom corresponding to a particular disease. 

So we have a universe of symptoms where each symptom has its corresponding weights. In this case we 

cannot use similarity measures described in 4.1 and 4.2.                    

Again a suitable function is often used to measure the similarity between two sets which is called a 

matching function. Chen [2, 3] first introduced the notion of matching function. Here a weighted 

similarity measure
ws between A andB has been defined using a matching function as follows:

2

1

2 2 2 2 2 2

1

( ( ) ( ) ( ) ( ) ( ) ( ))

( , ) ........................(13)

{( ( ) ( ) ( ) ).( ( ) ( ) ( ) )}

n

i A i B i A i B i A i B i
w i

n

i A i A i A i B i B i B i

i

t x t x i x i x f x f x

s A B

t x i x f x t x i x f x

w

w

=

=

× + × + ×

=

+ + + +

å

å
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Example 4.3.1 Consider the two SVN sets in example 3.2. Further let the elements 

, , , of the universe X have weights 0.1,0.3,0.5,0.2 respectively.a b c d

Then the weighted similarity measure between the two SVN sets will be

0.1 0.3721 0.3 0.4356 0.5 0.16 0.2 0.6561 0.37911
( , ) 0.84

0.1 0.759 0.3 0.4956 0.5 0.1708 0.2 0.707 0.45138

ws A B
´ + ´ + ´ + ´

= = @
´ + ´ + ´ + ´

Proposition 4.3.2 The weighted similarity measure ,ws between two SVNS A and B satisfies the 

following properties:

( )0 ( , ) 1

( ) ( , ) 1

( ) ( , ) ( , )

w

w

w w

i s A B

ii s A B if A B

iii s A B s B A

£ £

= =

=

Proof. Trivially follows from definition and Cauchy-Schawarz inequality.

Note that here the result (ii) and (iv) (i.e. monotonacity law) of equation (9) will not hold due to the 

effects of the weights.

5. Entropy of a Single Valued Neutrosophic Set

Entropy can be considered as a measure of uncertainty involved in a set, whether fuzzy or intuitionistic 

fuzzy or vague etc. Here the SVNS are also capable of handling uncertain data, therefore as a natural 

consequence we are also interested in finding the entropy of a single valued neutrosophic set.   

Entropy as a measure of fuzziness was first mentioned by Zadeh [15] in 1965. Later De Luca-Termini [5] 

axiomatized the non-probabilistic entropy. According to them the entropy E of a fuzzy set A should 

satisfy the following axioms:

Seve

ral 

othe

r authors have investigated the notion of entropy. Kaufmann [6] proposed a distance based measure of 

soft entropy; Yager [13] gave another view of degree of fuzziness of any fuzzy set in terms of lack of 

distinction between the fuzzy set and its complement. Kosko [7] investigated the fuzzy entropy in 

relation to a measure of subset hood. Szmidt & Kacprzyk [11] studied the entropy of intuitionistic fuzzy 

sets. Majumdar and Samanta [8] investigated the entropy of soft sets etc.

( 1) ( ) 0 2

( 2) ( ) 1 ( ) 0.5,

( 3) ( ) ( ) , . . ( ) ( ) 0.5 ...............(14)

( ) ( ) 0.5, .

( 4) ( ) ( ).

X

A

A B

A B

c

DT E A iff A

DT E A iff x x X

DT E A E B iff Ais less fuzzy than B i e if x x x X

or if x x x X

DT E A E A

m

m m

m m

= Î

= = " Î

£ £ £ " Î

³ ³ " Î

=
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Definition 5.1 Similarly here in case of SVNS also we introduce the entropy as a function 

: ( ) [0,1]NE N X ® which satisfies the following axioms:            

( ) ( ) 0Ni E A = if A is a crisp set              

( ) ( ) 1 ( ( ), ( ), ( )) (0.5,0.5,0.5)N A A Aii E A if t x i x f x x X= = " Î             

( ) ( ) ( )N Niii E A E B³ if Amore uncertain than ,B ……………………………………………………………... (15)           

. . ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )c cA A B B A BA B
i e t x f x t x f x and i x i x i x i x+ £ + - £ -

( ) ( ) ( ) ( ).c

N Niv E A E A A N X= " Î

Now notice that in a SVNS the presence of uncertainty is due to two factors, firstly due to the partial 

belongingness and partial non-belongingness and secondly due to the indeterminacy factor. Considering 

these two factors we propose an entropy measure 1E of a single valued neutrosophic sets A as follows:

1

1
( ) 1 ( ( ) ( )) ( ) ( ) ............................................................(16)c

i

A i A i A i iA
x X

E A t x f x i x i x
n Î

= - + × -å

Proposition 5.2 1E satisfies all the axioms given in definition 5.1.

Proof  (i) For a crisp set A and ( ) 0 .Ai x x X= " Î Hence 1( ) 0E A = holds.

(ii) If such that ( ( ), ( ), ( )) (0.5,0.5,0.5) ,A A AA be t x i x f x x X= " Î

then 1( ) ( ) 1 ( ) ( ) 0.5 0.5 0 ( ) 1cA A A A
t x f x and i x i x x X E A+ = - = - = " Î Þ =

(iii) It holds from definition.

(iv) 1 1( ) ( )cE A E A= holds obviously from definition.

Thus 1E is an entropy function defined on ( ).N X

Example 5.3 Let { , , , }X a b c d= be the universe and A be a single valued neutrosophic set in X defined 

as follows:

{ , , , }.
0.5,0.2,0.9 0.8,0.4,0.2 0.3,0.8,0.7 0.6,0.3,0.5

a b c d
A =

< > < > < > < >

Then the entropy of Awill be 1( ) 1 0.52 0.48.E A = - =
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6. Discussions

The techniques of similarity and entropy described here are totally new concepts for single valued 

neutrosophic sets. For the case of entropy no earlier methods of measuring entropy will be able to 

determine the entropy of a SVNSs, as here the sum of the degrees of truth, indeterminacy and falsity is

not necessarily bounded. A fuzzy set F can be considered as a SVNS with degree of indeterminacy and 

degree of falsity zero, then its entropy will be 1

1
( ) 1 ( ( )).

i

A i

x X

E F t x
n Î

= - å For crisp set this value is 1, 

which is conformable with earlier known result.              

The similarity measurements described here are again totally new concepts for SVNSs. These measures 

can also be applied to measure the similarity of intuitionistic fuzzy sets (IFS) where the indeterminacy 

factor i should be replaced by 1 t fp = - - in case of IFS.

7. Conclusion

The recently proposed notion of neutrosophic sets is a general formal framework for studying 

uncertainties arising due to ‘indeterminacy’ factors. From the philosophical point of view, it has been 

shown that a neutrosophic set generalizes a classical set, fuzzy set, interval valued fuzzy set, 

intuitionistic fuzzy set etc. A single valued neutrosophic set is an instance of neutrosophic set which can 

be used in real scientific and engineering applications. Therefore the study of single valued neutrosophic 

sets and its properties have a considerable significance in the sense of applications as well as in 

understanding the fundamentals of uncertainty. In this paper we have introduced some measures of 

similarity and entropy of single valued neutrosophic sets for the first time. These measures are 

consistent with similar considerations for other sets like fuzzy sets and intuitionistic fuzzy sets etc.

Acknowledgement: The authors sincerely thankful to the anonymous reviewers for their helpful 

comments which has helped to rewrite the paper in its present form.
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