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PREFACE 

 

 
 

 

In this book authors for the first time have made a through 

study of neutrosophic graphs. This study reveals that these 

neutrosophic graphs give a new dimension to graph theory. The 

important feature of this book is it contains over 200 

neutrosophic graphs to provide better understanding of this 

concepts. Further these graphs happen to behave in a unique 

way inmost cases, for even the edge colouring problem is 

different from the classical one. Several directions and 

dimensions in graph theory are obtained from this study.  

Finally certainly these new notions of neutrosophic graphs 

in general and in particular the bipartite neutrosophic graphs and 

neutrosophic trees follow special format distinctly different 

from the usual graphs. 

Positively these can find applications in data mining and in 

other various engineering problems which has indeterminacy  

associated with it.  
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However these directed neutrosophic graphs have been 

applied by the authors in Neutrosophic Cognitive Maps (NCM) 

models, Neutrosophic Relational Maps (NRM) models and 

Neutrosophic Relational Equations (NRE).  

 

We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  

 

  

W.B.VASANTHA KANDASAMY 

ILANTHENRAL K 

FLORENTIN SMARANDACHE 

 



 
 
 
 
Chapter One 
 

 
 
INTRODUCTION 
 
 
 

In this chapter we just recall some basic definitions about 

neutrosophy. For basic concepts about graphs please refer [1]. 

 

 Here we introduce the notion of neutrosophic logic created 

by Florentin Smarandache [2-4] which is an extension of the 

fuzzy logic in which indeterminancy is included. It has become 

very essential that the notion of neutrosophic logic play a vital 

role in several of the real valued problems like law, medicine, 

industry, finance, engineering IT, etc. 

 

 These neutrosophic cognitive maps models make use of 

neutrosophic graphs. Here the directed graphs of an FCMs 

(Fuzzy Cognitive Maps) or NCMs (Neutrosophic Cognitive 

Maps) or FRMs (Fuzzy Relational Maps) or NRMs 

(Neutrosophic Relational Maps) are nothing but the 

psychological inter relations or feelings of different nodes, 

where when we use NRMs and NCMs the concept of 

indeterminancy is also given a reasonable place.  

 

We denote the indeterminancy by the letter I. I is such that 

I
2
 = I, I + I = 2I, I – I = 0 and I + I + … + I (n times) = nI.  

 

Neutrosophic algebraic structures like neutrosophic graphs, 

neutrosophic vector spaces etc; where introduced by the authors.  
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Further we have built analogous to Fuzzy Relational 

Equations (FRE) Neutrosophic Relational Equations (NRE) [7]. 

These models are also depicted by neutrosophic bipartite 

graphs. [5-8]. 

 

 Thus we see the neutrosophic graphs happen to play a vital 

role in the building of neutrosophic models. Also these graphs 

can be used in networking, computer technology, 

communication, genetics, economics, sociology, linguistics, etc 

when the concept of indeterminancy is present. 

 

 

 



C1 

C3 

C4 

C5 

C2 

5 

4I 

2 

1 

3 

7 
7 

2I 

 
 
 
  
Chapter Two 
 
 

 
 
NEUTROSOPHIC GRAPHS  
 
 

 

 Here we proceed on to define the notion of neutrosophic 

graphs and their related matrices.  If the edge values are from 

the set 〈R ∪ I〉 or 〈Q ∪ I〉 or 〈Zn ∪ I〉 or 〈Z ∪ I〉 or 〈C ∪ I〉 they 

will termed as neutrosophic graphs.  If we take the edge values 

are taken from 〈[0, 1] ∪ [0, I]〉 then we call such graphs of fuzzy 

neutrosophic graphs. 

 

 In most cases we will be using only fuzzy neutrosophic 

graphs in the fuzzy neutrosophic models used by us. 

 

Example 2.1:  Let us consider the graph this is a neutrosophic 

 

 
Figure 2.1 
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directed graph with 5 vertices and some edges are neutrosophic 

edges. 

 

 We denote the neutrosophic edges by dotted lines.  The 

neutrosophic matrix associated with this graph is a 5 × 5 matrix 

M which is as follows: 

 

 

M = 

1 2 3 4 5

1

2

3

4

5

C C C C C

C 0 3 0 2I 0

C 0 0 0 0 0

C 1 0 0 0 4I

C 0 7 2 0 5

C 0 7 0 0 0

 
 
 
 
 
 
  

. 

 

Example 2.2:   Let {V1, V2, …, V7} be the vertices of a 

neutrosophic directed graph given in the following. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 

 

The matrix N associated with the neutrosophic directed 

graph is as follows: 

V1 

V3 
V4 

V5 

V2 

6 

2 

3I 

2 

5I 
5 

8 

4 

V6 

V7 

8 

2I 

10I 3I 
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N = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

V V V V V V V

V 0 5I 4 0 0 0 0

V 0 0 0 2 0 5 0

V 2 0 0 3I 0 0 0

V 0 0 0 0 0 0 2I

V 0 8 0 8 0 10I 0

V 0 0 0 3I 0 0 0

V 0 0 0 0 6 0 0

 
 
 
 
 
 
 
 
 
 
 

. 

 

 

 Clearly N is 7 × 7 neutrosophic matrix. 

 

 We see both the neutrosophic graphs are directed and are 

not complete neutrosophic graphs.   

 

We now describe complete neutrosophic graphs. 

 

Example 2.3:  The following graph G is a neutrosophic graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 G        G′′′′ 

 

Figure 2.3 

 

The above graph G′ is also a neutrosophic graph which is 

the complement of G. 

• • 

• • 

• 

• 

• 

• 

• 

• 
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 Consider the neutrosophic graph G″. 

 

 

  

 

 

 

 

 

            G″ 

 

 

 

Figure 2.4 

 

 

 Clearly G″ is not the complement of G. 

 

 Suppose H is the graph 

 

 

 

 

 

 

 

 

 

 

 

        H 

 

Figure 2.5 

 

 

H is not the complement of G as H is not neutrosophic. 

 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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Consider H′ 

 

 

 

 

 

 

 

 

 

        H′ 

 

Figure 2.6 

    

H′ is the neutrosophic graph but H′ is not the complement 

of G.  Further we see the neutrosophic graphs G and G′ are 

isomorphic.   

 

However G and G″ are not isomorphic.  Even G′ is not 

isomorphic with G″.  

 

 G, G′ and G″ are not isomorphic with H. 

 

 H′ is not isomorphic with G, G′, G″ and H.  Thus in 

neutrosophic graphs we see there are several graphs which has 

same number of edges and same number of vertices but which 

are not isomorphic. 

 

 

 

 

 

 

     

H″ 

 

 

Figure 2.7 

 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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 H″ is not isomorphic with any of these graphs.  Further 

none of the graphs mentioned above are complements of H″.  

The only graph which is the complement of H″ is K″. 

 

 

 

  

    

           K″ 

 

 

 

 

 

 

Figure 2.8 

 

 Further H″ and K″ are isomorphic. Thus we see 

neutrosophic graphs can be isomorphic if the number of vertices 

are the same, the number of edges are the same and the number 

of neutrosophic edges must be same in both graphs.   

 

Thus if the number of edges are the same but the 

neutrosophic edges are not the same they are not isomorphic.  

 

 We say such graphs belong to the same class but not under 

isomorphic property. 

 

 Thus if the graph is a single point no change can be found.  

If G is a graph say    

 

  

                               and G′ is  the  graph  say              then  

 

   Figure 2.9                 Figure 2.10 

 

 

 

G is not isomorphic with G′. 

• • 

• • 

• 

• • 
G 

• • 
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 Let G1, G2 and G3 be three neutrosophic graphs 

 

 

 

 

 

 

             G1          G2           G3 

 Figure 2.11 

  

 We say G1, G2 and G3 are identical neutrosophic graphs. 

 

 Consider the neutrosophic graphs H1 and H2. 

 

 

 

    H1          H2 

 

 

 

Figure 2.12 

 

 We see H1 and H2 are not isomorphic they are not identical 

either.  

 

 Consider the graphs P1, P2, P3, …, P6. 

 

 

 

 

 

 

 

 

 

 

 

               P1                           P2 

Figure 2.13 

• • 

• 

• • 

• 

• • 

• 

• • 

• • 

• • 

• • 

• • 

• 

• • 

• 

• • 

• 

• • 

• 
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         P3             P4 

 

 

 

 

 

 

 

 

 

 

 

  

          P5             P6 

Figure 2.13 

 

They are all  identical neutrosophic graphs and are also 

isomorphic as graphs. 

 

 It is left as an open problem given p edges and n vertices of 

a neutrosophic graph (n ≥ 4). 

 

(i) Find the number of identical neutrosophic 

graphs. 

 

(ii) Find the number of non identical neutrosophic 

graphs. 

• • 

• 

• • 

• 

• • 

• 

• • 

• 

• • 

• 

• • 

• 

• • 

• 

• • 

• 
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(iii) How many neutrosophic graphs can be 

constructed? (with n edges and n vertices). 

 

We will just discuss this problem in case of three  edges.  

 

   G1               G2          G3 

 

 

 

 

 

 

 

 

 

    G4                  G5            G6 

 

 

 

 

 

 

     G7             G8 

 

 

 

 

 

 

Figure 2.14 

 

 

We see all the eight neutrosophic graphs are not identical or 

isomorphic.  We see G1 and G5 remain unrelated with every 

other neutrosophic graphs. 

 

 However G2, G4 and G8 are identical as graphs and G3, G7 

and G6 are identical as a graphs.   

 

• • 

• 

• • 

• 

• • 

• 

V1 V2 

V3 

• • 

• 

• • 

• 

• • 

• 

• • 

• 

• • 

• 
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To this end we define some more concepts related with 

these neutrosophic graphs.   

 

We in the first place say the base line in G1, G2, G6 and G8 

are real and base line in the neutrosophic graphs G3, G4, G5 and 

G7 are neutrosophic edges.   

 

Suppose we fix the vertices as V1, V2 and V3 statement that 

V2 V3 is the base line and make the following subtle 

observations. 

 

 (i)  We say, two neutrosophic graphs G and G′ are 

neutrosophically isomorphic if from a isomorphic vertex of G 

there are ‘t’ neutrosophic edges then it must be true for G′. 

  

This is explained  

 

 

 

 

 

 

 

 

      G           G′       G″ 

 

Figure 2.15 

 

Clearly G and G′ are not neutrosophically isomorphic.  

However G and G′ are isomorphic.  We see G and G″ are 

neutrosophically isomorphic but they are also isomorphic as 

neutrosophic graphs. 

 

 

 

 

 

 

 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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Consider 

 

 

 

 

 

 

 

 

 

 

                   G                H 

Figure 2.16 

 

G and H two neutrosophic graphs we see G and H both 

isomorphic as well as neutrosophically isomorphic  

 

 

 

         and 

 

 

 

 

 

    P1           P2 

 

Figure 2.17 

 

are isomorphic but not neutrosophically isomorphic. 

 

THEOREM 2.1: Two neutrosophic graphs which are 

neutrosophically isomorphic are isomorphic.  But isomorphic 

neutrosophic graphs in general are not neutrosophically 

isomorphic. 

 
Proof:  If two neutrosophic graphs G and H are 

neutrosophically isomorphic then we see the number of edges in 

• 

• 

• 

• 

• 

• • 

• 

• • 

• • 

• • 

• 

• 

• 

• 

• 

• 
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G is equal to number of edges in H and the number of vertices 

in H and G are equal.  Further the number of neutrosophic edges 

in G is equal to the number of  neutrosophic edges in H.  Finally 

the number of neutrosophic edges emerging for any of the 

isomorphic vertices are the same, then the two neutrosophic 

graph are isomorphic.   

 

If on the other hand two neutrosophic graphs are isomorphic 

they need not be neutrosophically isomorphic.  

 

 For consider the two neutrosophic graphs G and H where 

 

 

 

G is 

 

 

 

 

 

 

Figure 2.18 

 

and  

 

 

 

 

 

      H = 

 

 

 

 

 

Figure 2.19 

                                                                                                                                                       

 Clearly G and H are isomorphic but are not 

neutrosophically isomorphic.  Hence the theorem. 

• • 

• • 

• • 

v1 v2 

v3 

v4 v5 

v6 

• • 

• • 

• • 

1v′
2v′  

6v′  
3v′

4v′  5v′  
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 As in case of usual graphs we can define in case of 

neutrosophic graphs the notion of union of graphs, intersection 

of graphs and difference of graphs.   

 

We will only illustrate this situation by some examples. 

 

 Consider the neutrosophic graphs. 

 

 

    G               G′ 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20 

 

Now G ∪ G′ 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21 

• • 

• 

• • 

• 1 

2 

3 

6 

4 

5 

• • 

• • 

• 

3 

4 

6 

7 

5 

8 

• 

• • 

• 

• • 

• 1 

2 

3 

6 

4 

5 

• • 

• 

7 
8 
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is again a neutrosophic graph. 

 

G \ G′ =  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22 

 

G – G′ is again a neutrosophic graph. 

 

Consider G ∩ G′  

 

 

 

 

 

 

 

 

 

Figure 2.23 

 

G ∩ G′ is again a neutrosophic graph. 

 

 However we can have two neutrosophic graphs whose 

difference and intersection, are not neutrosophic graphs.   

 

To this end we give an example or two.   

 

• • 

• 

• • 

• 1 

2 

3 

6 

4 

5 

• • 

• 

7 
8 

• • 

• 

3 

4 5 

• 

6 
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Consider the graph  

 

 

 

 

 

 

         and 

 

 

 

 

 

       G            G′ 

Figure 2.24 

 

both G and G′  are neutrosophic graphs.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.25 

 

which is again a neutrosophic graph. 

 

• • 

• 

• • 

• 
1 

2 

6 

3 

4 

5 

• • 

• 

• 

• 
5 

6 

3 

4 

7 

• • 

• 

• • 

• 
1 

2 

6 

3 

4 

5 

• 7 
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   G \ G′ 

 

 

 

 

 

 

 

 

 

Figure 2.26 

 

 Consider G \ G′, G \ G′ is again a neutrosophic graph.  Now 

G ∩ G′ is given by 

 

 

 

 

 

 

 

 

 

Figure 2.27 

 

 Clearly G ∩ G′ is not a neutrosophic graph.   

Now if take the neutrosophic graphs G and G′; 

 

 

 

           

  G        and  G′ 

 

 

 

 

   

Figure 2.28 

 

• • 

• • 

• 
1 

2 

6 

3 

4 

• 7 

• • 

5 

6 4 

• 

3 

• 

• • 

• 

• • 

• 
1 

2 

4 

5 

6 

3 

• 

• 

• 

• 
1 

2 

3 

4 

• 7 
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     Clearly G ∪ G′ is as follows is again a neutrosophic graph. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.29 

 

 G ∩ G′ is only a graph which not neutrosophic.  

 

   

 

 

 

 

 

 

 

Figure 2.30 

 

 However G \ G′ is as follows. 

 

 

 

 

 

 

 

 

 

 

     Figure 2.31 

• • 

1 

2 3 

• 

4 

• 

• 
• 

1 

3 
5 

• 

6 

• 7 
• 

4 
• 

• • 

• 

• • 

• 
1 

2 5 

6 

3 

• 

4 

7 
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which is a neutrosophic graph.   

 

Now we give an example where G \ G′ is not a neutrosophic 

graph.  Let G and G′ be two neutrosophic graphs. 

 

 

 

 

   G         G′ 

 

 

 

 

 

 

 

 

 

  G ∪ G′ 

 

 

 

 

 

 

Figure 2.32 

 

 Clearly G ∪ G′ is a neutrosophic graph. 

 

 Consider G \ G′; 

 

 

 

 

 

 

 

  

Figure 2.33 

• 

• 

• 

• 

• 

1 

3 

4 

5 

2 

• 

• 

• 

• 

1 

3 

4 2 

• 7 

• 

• 

• 

• 

• 

1 

3 

4 

5 

2 

• 7 

• 

• 

• 

• 

• 

1 

3 

4 

5 

2 

• 7 
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Clearly G \ G′ is not a neutrosophic graph. 

 

 Consider G ∩ G′ 

 

 

 

 

 

 

       

 

Figure 2.34 

 

G ∩ G′ is the neutrosophic graph. 

 

 In view of the above examples we have the following 

theorem. 

 

THEOREM 2.2:  Let G and G′ be any two neutrosophic graphs. 

(i) G ∪ G′ is always a neutrosophic graph. 

(ii) G ∩ G′ in need not general be always a 

neutrosophic graph. 

(iii) G \ G′ in general need not always be a 

neutrosophic graph. 

 

The proof of the above theorem is direct hence it is left as 

an exercise to the reader. 

 

In the neutrosophic graph there is a neutrosophic path if 

there exist at least one edge xi xi+1 which is a neutrosophic edge. 

 

If all the edges are neutrosophic edges then we call the path 

as the pure neutrosophic path.  

 

We will just illustrate this by examples. 

 

Example 2.4:  Let V = {x0, x1, …, x8} E = {x0 x1, x1 x2, …, x7 

x8} 

 

• 

• 

• 

• 

• 

1 

3 

4 

5 

2 
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Figure 2.35 

 

This path P is a neutrosophic path however P is not a pure 

neutrosophic path. 

 

 

 

 

 

 

 

 

 

Figure 2.36 

 

 We give some more examples. 

 

Example 2.5:  Let G be a 

 

 

 

 

 

 

 

Figure 2.37 

 

neutrosophic graph.  The neutrosophic path of G is as follows 

 

 

• 

x0 

• 
x2 

 

• 

x1 

 

• 
x3 

 

• 
x6 

 

• 
x4 

 

• 
x5 

• 

x7 

 

• 
x8 

 

• 

x0 

• 
x2 

 

• 

x1 

 

• 
x3 

 

• 
x6 

 

• 
x4 

 

• 
x5 

• 

x7 

 

• 
x8 

 

• • 

• 

• 

• • 

• 
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Figure 2.38 

 

We see this path in G is not pure neutrosophic. 

 

Example 2.6:  Let G be a neutrosophic graph.  Let P be the 

path. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.39 

 

We have in this graph pure neutrosophic path also. 

 

 

 

 

 

 

 

 

      Figure 2.40 

• 

• 

• 

• • 

• 

• 

• 

• 

• • 

• 

• 

• 

• 

• • 

• 

• 

• • 

• 
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Now we proceed onto discuss about the degree or valency 

of a vertex v of a graph G.  Degree of v can be purely 

neutrosophic or mixed neutrosophic or non neutrosophic. 

 

 We say degree of v is purely neutrosophic if all the edges at 

v are only neutrosophic edges and the number of such 

neutrosophic edges corresponds to pure neutrosophic degree. 

 

 If the number of edges at v is n and if d ≠ 0 (d < n) are 

neutrosophic and the rest n – d are not neutrosophic we say the 

mixed degree of v is n = d + (n–d). 

 

 If the number of edges at the vertex v are such that none of 

the edge is neutrosophic then we call the degree of v to be non 

neutrosophic degree.  Thus in case of a neutrosophic graph the 

degree of the vertex can be three types.   

 

To find effect we give some examples. 

 

Example 2.7:  Let G be a neutrosophic graph given in the 

following. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.41 

 

We see for all the vertices of G none of them have pure 

neutrosophic degree or non neutrosophic degree.  All of them 

have a mixed neutrosophic degree. Mixed neutrosophic degree 

of v1 is 4 with d (v1) = 1 + 3 (1 neutrosophic edge rest non 

neutrosophic edges). 

v1 

v4 

v5 

v3 

v2 
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d (v2) = 2 + 2 (2 neutrosophic edges and 2 non neutrosophic 

edge) 

 

d (v3) = 3 +1 (3 non neutrosophic edges and one neutrosophic 

edge)  

 

d (v4) = 1 + 3 (1 neutrosophic edges and 3 non neutrosophic 

edge) and 

 

d (v5) = 3 + 1 (3 non neutrosophic edges and one neutrosophic 

edge). 

 

 Likewise we can define three types of regularity in 

neutrosophic graphs. 

 

 If G be a neutrosophic graph and the degree of every vertex 

is the same and every vertex has a mixed neutrosophic edge or 

pure neutrosophic edge or non neutrosophic edge then we call G 

to be just mixed neutrosophic regular. 

 

 If each vertex has mixed neutrosophic k-edges say k = d + 

(k–d) with d neutrosophic edges and (k–d) non neutrosophic 

edges we call G to be uniformly mixed neutrosophic regular.  If 

every vertex has k edges and all of them are pure neutrosophic 

we call them purely neutrosophic regular.   

 

We see     this graph is purely neutrosophic 

regular. 

 

 Consider  

 

 

  

  

 

                          G 

 

Figure 2.42 

 

• • 

• • 

• 
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the neutrosophic graph G is just neutrosophic mixed regular. 

 

 Let H  

 

 

 

 

 

Figure 2.43 

 

be a pure neutrosophic graph. H is purely neutrosophic 2 

regular.  Using 3 vertices it is impossible to get a uniformly 

mixed neutrosophic regular graph.   

 

We have the following interesting theorem the proof of 

which is left to the reader.  

 

THEOREM 2.3:  If a neutrosophic graph G is purely 

neutrosophic regular then G is a pure neutrosophic graph.   

 

We first give some examples of regular neutrosophic graphs 

of all the three types. 

 

Example 2.8:  Let G be a neutrosophic graph given in the 

following: 

 

 

 

 

 

 

 

Figure 2.44 

 

G is a uniformly mixed  neutrosophic 2-regular graph.   

 

Example 2.9:  Let G be a neutrosophic graph 

 

 

• • 

• 

• • 

• • 



Neutrosophic Graphs  33 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.45 

 

G is clearly a uniformly neutrosophic mixed 3-regular graph. 

 

 

               H =  

 

 

 

 

Figure 2.46 

 

is again a uniformly mixed neutrosophic 3-regular graph. 

 

 It is pertinent to mention here that both G and H are 

uniformly mixed neutrosophic 3-regular graphs but they are 

different. 

 

 

    K is  

 

 

 

 

Figure 2.47 

 

Neutrosophic graph with uniformly mixed neutrosophic  

3-regular.   

 

However K is different from H also K and G are not 

identical.  

 

 S is a purely neutrosophic graph 

• • 

• • 

• • 

• • 

• • 

• • 
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Figure 2.48 

 

S is purely neutrosophic 2-regular 

 

 Take T a purely neutrosophic graph 

 

 

 

 

 

 

Figure 2.49 

 

 

T is purely neutrosophic 3-regular. 

 

 Thus T and S are distinctly different.  Consider B a 

neutrosophic graph. 

 

 

 

 

 

 

 

 

Figure 2.50 

 

B is just neutrosophic mixed 2-regular graph. 

 

 Let N be a neutrosophic graph.  

 

 

• • 

• • 

• • 

• • 

• • 

• • 
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N = 

 

 

 

 

           Figure 2.51 

 

 N is a just mixed neutrosophic 2-regular graph. 

 

 Let L be a neutrosophic graph L =  

 

 

 

 

Figure 2.52 

 

 L is a just mixed neutrosophic 2-regular graph. 

 

 Let D be a neutrosophic graph 

 

 

 

 

 

 

 

Figure 2.53 

 

D is a just mixed neutrosophic 3-regular graph. 

  

Let E be a neutrosophic graph E =  

 

 

 

 

    Figure 2.54 

 

E is a just mixed neutrosophic 3-regular graph. 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 
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 Now we will find type of neutrosophic regular graphs with 

5 and more vertices. 

 

 Let A be the neutrosophic graph. 

 

 

 

 

 

 

 

 

 

 

Figure 2.55 

 

A is a just mixed neutrosophic 2-regular graph. 

 

 We cannot get a uniformly mixed neutrosophic regular 

graph with 5 vertices and 5 edges.   

 

 Let B be the pure neutrosophic graph 

 

 

 

 

 

 

 

 

 

 

Figure 2.56 

 

 

B is a purely neutrosophic 2-regular graph.  

• • 

• • 

• 

• • 

• • 

• 
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Consider H =  

 

 

 

 

 

 

 

 

Figure 2.57 

 

H is a neutrosophic graph which is just mixed neutrosophic 2 

regular graph. 

 

 We see we have the following theorem. 

 

THEOREM 2.4:  A neutrosophic graph with 5 vertices which is 2 

regular cannot be uniformly mixed two regular. 

 

Proof is direct hence left as an exercise to the reader. 

 

 We wish to state if a neutrosophic graph G with odd number 

of vertices and if G is 2-regular;  can G be uniformly mixed two 

regular? 

 

Example 2.10:  Let G be a neutrosophic graph with seven 

vertices. 

 

 

 

 

 

 

 

 

  

Figure 2.58 

 

 Clearly G is just mixed neutrosophic 2-regular.   

• • 

• • 

• 

• 

• 

• • 

• 

• 

• 
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But we see we cannot find a uniform neutrosophic mixed 2-

regular. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.59 

 

The neutrosophic graph H is only just mixed neutrosophic 

2-regular.   

 

Clearly H is not uniformly neutrosophic 2-regular. 

 

 Let M be pure neutrosophic 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.60 

 

graph.  Clearly M is a pure neutrosophic 2-regular.   

 

• • 

• • 

• • 

• 

H

• 

• • 

• • 

• 

• • 

M 
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We see we cannot get for a neutrosophic graph which is 

uniformly mixed neutrosophic 2-regular.   

 

Can M be a uniformly mixed neutrosophic 3 regular with 7 

vertices? 

 

 Is the above question true in case of 5 vertices 

 

 

 

 

 

 

 

 

 

Figure 2.61 

 

 We leave the following as open problems. 

 

Problem 2.1:  Suppose G is a neutrosophic graph with five 

vertices. 

 

(i) Can G be just neutrosophic mixed 3-regular? 

(ii) Can G be uniformly neutrosophic mixed 3-

regular? 

(iii) Can G be pure neutrosophic 3-regular? 

 

We just take G to be pure neutrosophic graph with five 

vertices. 

 

 

 

 

 

 

 

 

Figure 2.62 

• • 

• • 

• 

• • 

• • 

• 
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 It is impossible to have 3-regular pure neutrosophic graph 

with five vertices. 

 

 However there cannot exist a 3-regular just mixed 

neutrosophic graph with 5 vertices.  Likewise there cannot exist 

a 3-regular uniform mixed neutrosophic graph. 

 

 Can a neutrosophic graph with five vertices be 4-regular of 

any type? 

 

  

 

              G = 

 

 

 

 

 

         Figure 2.63 

 

 We see the neutrosophic graph G with 5 vertices.  Clearly 

the graph G is uniformly mixed neutrosophic 4-regular we see 

degree of each of the vertices of the neutrosophic graph has two 

neutrosophic edges and two usual edges at each of the vertex of 

G.   

 

Consider the pure neutrosophic graph G with five vertices 

given by 

 

 

 

 

 

 

 

 

 

 

Figure 2.64 

• • 

• • 

• 

• • 

• • 

• 
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 Clearly G is pure neutrosophic 4-regular graph. 

 

 Now we proceed onto study the neutrosophic graph G with 

seven vertices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 2.65 

 

Clearly this neutrosophic graph G is just mixed 6-regular. 

 

 If we take pure neutrosophic graph H with seven vertices 

say H; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.66 

• • 

• • 

• • 

• 

• • 

• • 

• • 
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is a pure neutrosophic 6-regular graph. 

 

 In view of this we have the following theorem the proof of 

which is left to the reader. 

 

THEOREM 2.5:  A complete pure neutrosophic graph with n 

vertices is a pure neutrosophic (n–1)-regular graph. 

 

 Now we see only a few graphs of uniformly mixed 

neutrosophic regular graphs. 

 

 In view of this we leave the following as open problems.   

 

Problem 2.2:  Characterize those neutrosophic graphs which 

are uniformly mixed neutrosophic r-regular.   

 

Problem 2.3:  Characterize those neutrosophic graphs which 

are only just mixed neutrosophic k-regular. 

 

A mixed neutrosophic walk in a neutrosophic graph G is a 

non empty alternating sequence v0e0 v1e1  … ek–1 vk where at 

least one of the ei = {vi vi+1} is a neutrosophic edge. 

 

 If in the walk  v0e0 v1e1  … ek–1vk in a neutrosophic graph G 

each ei is only a neutrosophic edge then we define the walk to 

be a pure neutrosophic walk; 0 ≤ i ≤ k–1.   

 

If in a mixed neutrosophic walk v0e0 v1e1  … ek–1 vk if ei is a 

neutrosophic path than ei–1 and ei+1 are usual path, that is if e0 is 

a neutrosophic path e1 is a usual path, e2 is a neutrosophic path 

and e3 is the usual  path and ek–1 is the usual path.  Likewise if e0 

is the usual path, e1 is a neutrosophic path so on the ek–1 is the 

neutrosophic path.  Then we define the walk to be specially 

mixed alternating neutrosophic walk.   

 

First we will supply with examples for all the three types of 

walk.  The walk is a closed walk if v0 = vk–1. 
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Example 2.11:  Let us consider the neutrosophic graph G  

 

 

 

 

 

  

 

 

Figure 2.67 

 

 We see the walk is a closed walk and the walk is only a 

mixed neutrosophic closed walk. 

 

 Consider the neutrosophic graph H  

 

 

 

 

 

 

 

Figure 2.68 

 

The walk is again only a mixed neutrosophic closed walk. 

 

Consider the pure neutrosophic graph.  

 

 

 

 

 

 

 

    Figure 2.69 

 

 

 The walk is a pure neutrosophic closed walk.   

• • 

• 
v0 

v1 v2 

e2 e0 

e1 

• 

• 

• 
v0 

v1 

v2 

• • 

• 
v0 

v1 v2 
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However for the complete neutrosophic graph K
3
 we cannot 

obtain a specially mixed alternating neutrosophic closed walk. 

 

Example 2.12:  Let G be the neutrosophic graph; 

 

 

 

 

 

 

 

        G 

 

Figure 2.70 

 

 Clearly G has a closed specially mixed alternating 

neutrosophic walk. 

 

 Consider 

 

 

 

 

 

 

 

Figure 2.71 

 

neutrosophic graph.  The walk is only is a mixed neutrosophic 

closed walk. 

 

Example 2.13:  Let G be a pure neutrosophic graph  

 

 

 

          G 

 

 
Figure 2.72 

• • 

• • v0 v3 

v1 v2 

e3 

e2 

e1 

e0 

• • 

• • v0 v3 

v1 v2 

e3 

e2 

e1 

e0 

• • 

• • v0 v3 

v1 v2 
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G has a pure neutrosophic closed walk. 

 

 Thus this graph with four vertices can have all the types of 

neutrosophic walks. 

 

Example 2.14:  Let G be the neutrosophic graph given by in the 

following 

 

 

 

 

 

 

 

 

 

 

Figure 2.73 

 

 The walk of G is a closed mixed neutrosophic walk. 

 Consider the neutrosophic graph 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.74 

 

H is associated only a mixed neutrosophic closed walk. 

 

• • 

• • 

• 

v0 

v3 v1 

v2 

v4 

• • 

• • 
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v0 

v3 v1 

v2 

v4 
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 Consider P  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.75 

 

the neutrosophic graph.  The walk associated with P is only a 

mixed neutrosophic closed walk. 

 

 However for the neutrosophic graph which has a closed 

walk with 5 vertices we can have only a mixed neutrosophic 

closed walk and never a specially mixed alternating 

neutrosophic closed walk. 

 

 In view of this we have the following theorem the proof of 

which is left as an exercise to the reader.  

 

THEOREM 2.6:  If G is a neutrosophic graph with n vertices n 

odd and G is mixed neutrosophic two regular with a closed 

walk.  Then the mixed neutrosophic closed walk can never be a 

specially mixed alternately neutrosophic closed walk. 

 

Corollary 2.1:  If in the above theorem n is even there exist one 

specially alternative mixed neutrosophic closed walk. 

 

 This proof is also direct, hence is left as an exercise to the 

reader. 

 

 We will illustrate this special situation by some examples. 

 

• • 

• • 

• 

v0 

v3 v1 

v2 

v4 
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Example 2.15:  Let G be the neutrosophic graph given in the 

following 

 

 

 

 

 

 

 

 

 

 

 

 

        G 

 

Figure 2.76 

 

G can never have a specially alternatively mixed 

neutrosophic closed walk.  Let H be a neutrosophic graph given 

in the following: 

 

 

 

 

 

 

 

 

 
        H 

 

Figure 2.77 

 

 The neutrosophic graph H has a specially alternative mixed 

neutrosophic closed walk.  

 

Example 2.16:  Let G be a neutrosophic graph given in the 

following: 

• • 

• • 

• 

• • 

v0 

v3 

v1 

v2 

v4 

v5 

v6 

v7 

v8 

• • 

• • 

• • 

• • 
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v1 

v2 

v4 

v5 

v6 

v7 

• • 
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Figure 2.78 

 

Consider the mixed neutrosophic walk from v0e0 v1e1 v2e2 v3 

e v0 in G.   

 

This is a closed specially alternative mixed neutrosophic 

walk.  

 

However v0e0 v1e1 v2e2 … v5e5v0 is a mixed neutrosophic 

closed walk which is not specially alternatively mixed 

neutrosophic closed walk. 

 

 Now we proceed onto define the notion of connectivity in 

neutrosophic graphs. 

  

Let G be a neutrosophic graph which is non empty is called 

mixed neutrosophically connected if two of its vertices are 

linked by a mixed neutrosophic path in G; purely 

neutrosophically connected if two of its vertices are linked by a 

pure neutrosophic path.  

 

 We will give examples of them. 

 

 

Example 2.17:  Let G be a neutrosophic graph which is as 

follows. 

 

• • 

• • 

• • 

v0 v5 

v4 

v3 v2 

v1 
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e1 

e2 

e3 
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Figure 2.79 

 

 We see v0 is neutrosophic connected to v4 by a path which 

is a pure neutrosophic path. 

 

 The vertex v3 is connected v4 and the path is a mixed 

neutrosophic path. 

 

Example 2.18:  Let G be a neutrosophic graph which is as 

follows: 

 

 

 

 

 

 

 

 

 

 

Figure 2.80 

 

v0 to v4 has two paths.  One is a usual path and the other is a 

mixed neutrosophic path.   

 

Likewise v0 to v3 is the real path also v0 to v3 can be a 

mixed neutrosophic path.   

 

• • 

• • 

• • 

v0 v5 

v4 

v3 v2 

v1 
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 We see in case of a neutrosophic graph the bridge can be 

neutrosophic edge or a usual edge. 

 

 We give examples of them. 

 

 

 

 

 

 

 

 

 

 

Figure 2.81 

 

 

 We see b, a, d, x and y are cut vertices and the bridge in this 

case is a neutrosophic edge. 

 

 We can have yet neutrosophic graphs whose edge is not a 

neutrosophic edge; we just illustrate this situation by an 

example. 

 

 Consider the neutrosophic graph 

 

 

 

 

 

 

 

 

 

 

Figure 2.82 
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We see this neutrosophic graph has a, b, x and y to be cut 

vertices and e1 = ab and e2 = xy are the two bridges which are 

not neutrosophic edges. 

 

 Finally we can have neutrosophic graphs which can have 

both neutrosophic edge and usual edge.   

 

Let G be a neutrosophic graph which is as follows: 

 

 

 

 

 

 

 

 

 

 

Figure 2.83 

 

We see this neutrosophic graph G has a, b, c, d, e, f and g to 

be cut vertices.   Further e1 = ab, e2 = de and e3 = fg are the three 

bridges of G.  We see the edges e1 is neutrosophic where as e2 

and e3 are usual.   

 

 Let G be a neutrosophic graph.  Let P be a path say x0 …  

xk–1, k ≥ 3 of G; If P is a mixed neutrosophic path then C = P + 

xk, x0 is called the mixed neutrosophic cycle if P is a pure 

neutrosophic path then C = P + xk–1 x0 is a pure neutrosophic 

cycle.  If xk–1 x0 is not neutrosophic edge we call the cycle to be 

a one mixed pure neutrosophic cycle.   

 

The neutrosophic length of the cycle is the number of usual 

edges and neutrosophic edges.  The minimum length of mixed 

neutrosophic cycle is called the mixed neutrosophic girth. 

 

 Maximum length of the neutrosophic cycle is the 

neutrosophic circumference.  If the neutrosophic graph does not 

• • 

• 

a 
• 

• 

• 

• 

d 

• • 

e 

• • 

• • 
f 

• 

• • 

• 

• 

• 

• 

b c 
g 
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contain a mixed neutrosophic cycle we say the neutrosophic 

girth is infinite and the neutrosophic circumference is zero.  

 

 An edge which joins two vertices of a mixed neutrosophic 

cycle but is not itself an edge of a cycle is a neutrosophic chord 

of that mixed neutrosophic cycle if the edge is the neutrosophic 

edge, otherwise the call the chord as quasi neutrosophic chord. 

 

 The neutrosophic induced cycle in a neutrosophic graph G, 

a mixed neutrosophic cycle in forming an induced subgraph, is 

one that no neutrosophic chords or quasi neutrosophic chord. 

 

 Here it is pertinent to mention that for a neutrosophic graph 

G can have subgraphs which may be a neutrosophic subgraph or 

a usual subgraph.   

 

The usual subgraph of a neutrosophic graph G will be 

defined as the quasi neutrosophic subgraph. 

 

 We will illustrate this situation by some examples. 

 

Example 2.19:  Let G be a neutrosophic graph given in the 

following. 

 

 

 

 

 

 

 

 

 

 

 

 

G 

 

Figure 2.84 
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Consider the subgraph H of G 

 

 

 

 

 

 

 

 

 

 

        H 

 

Figure 2.85 

 

Clearly H is a quasi neutrosophic subgraph of G.  Consider 

the subgraph P. 

 

 

 

 

 

 

 

 

 

 

Figure 2.86 

 

P is a neutrosophic subgraph.  Consider the subgraph X of G 

 

 

 

 

 

 

 

 
Figure 2.87 
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X is a pure neutrosophic subgraph which we define as the 

quasi pure neutrosophic subgraph. 

 

Example 2.20:  Let G be a neutrosophic graph. 

 

 

 

 

 

 

  

          G 

Figure 2.88 

 

 Consider the subgraph H of G 

 

 

 

 

           H 

 

 

 

Figure 2.89 

 

H is a quasi neutrosophic subgraph of G. 

 

 Consider the subgraph P of G 

 

 

 

 

 

 

 

 

           P 

 

Figure 2.90 
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P is a quasi pure neutrosophic subgraph of G. 

 

 Let T be a subgraph given in the following. 

 

 

 

 

 

 

 

          T 

Figure 2.91 

 

T is a neutrosophic subgraph of G.  

 

Example 2.21:  Let G be a neutrosophic given in the following. 

 

 

 

 

 

 

 

 

     G 

 

Figure 2.92 

 

 

 

Let P    be a subgraph of G.   

 

 

 

Figure 2.93 

 

 

P is a neutrosophic subgraph of G.  
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 Consider the subgraph H of G which is given by the 

following. 

 

 

 

 

 

 

         H 

 

Figure 2.94 

 

H is a quasi pure neutrosophic graph.   

 

Let S be the subgraph which is as follows. 

 

 

 

 

 

 

 

 

          S 

 

Figure 2.95 

 

 S is a quasi neutrosophic subgraph of G.  

 

 Thus a neutrosophic graph G may have a subgraph which is 

quasi pure neutrosophic, some subgraphs which are quasi 

neutrosophic and subgraphs which is just  neutrosophic. 

 

 Now we see for a neutrosophic graph G all the components 

need not be neutrosophic subgraphs, some can be usual 

subgraphs and some pure neutrosophic. 

 

 We will illustrate this situation by an example. 

 

• 

• 

• 

• • 

• • 

• 

• 
• 

• 
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Example 2.22:  Let G be the neutrosophic graph which is as 

follows: 

 

 

 

 

 

 

 

 

 

 

G 

 

Figure 2.96 

 

 G has three components, one component subgraph is the 

usual graph, one a pure neutrosophic subgraph and another a 

neutrosophic graph which is not pure. 

 

Example 2.23:  Let G be a neutrosophic graph given in the 

following: 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

G 
Figure 2.97 
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 G has four components and each of the component 

subgraph is a neutrosophic subgraph. 

 

 Next we proceed onto define neutrosophic tree and 

neutrosophic forest, pure neutrosophic trees and forest. 

 

 A acyclic neutrosophic graph not containing any mixed 

neutrosophic cycles or pure neutrosophic cycles or usual cycles 

is called a neutrosophic forest.   

 

A connected neutrosophic forest is called a neutrosophic 

tree. 

 

 We will first illustrate this situation by some simple 

examples. 

 

 
Example 2.24:  A neutrosophic tree is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.98 
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Example 2.25:  A pure neutrosophic tree is as follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.99 

 

 We just describe a neutrosophic forest and a pure 

neutrosophic forest. 

 

Example 2.26:   The following neutrosophic graph F. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       F 

 

Figure 2.100 

 

is a neutrosophic forest. 

 

Example 2.27:  The following is a pure neutrosophic forest 
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Figure 2.101 

 

 Now we have seen examples of neutrosophic trees and 

neutrosophic forests. 

 

 We see the modified result in case a neutrosophic tree. 

 

THEOREM 2.7:  A connected neutrosophic graph with n vertices 

is a neutrosophic tree if and only if it has (n–1) edges and some 

of them are neutrosophic edges and some just edges. 

 

 The proof is straight forward and hence is left as an exercise 

to the reader. 

 

THEOREM 2.8:  A connected pure neutrosophic graph with n 

vertices is a pure neutrosophic tree if and only if it has (n–1) 

neutrosophic edges.   

 

This proof is also left as an exercise to the reader.   

 

We will now illustrate these situations by some examples. 

 

Example 2.28:  Let us consider the neutrosophic tree T given in 

the following: 
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Figure 2.102 

 

This tree has 18 vertices and 17 edges, of the 17 edges 9 are 

ordinary edges and 8 of the edges are neutrosophic. 

 

Example 2.29:  Let us consider the neutrosophic tree T given in 

the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.103 
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 This neutrosophic tree T has 26 vertices and 25 edges of 

which 12 are neutrosophic edges and 13 are usual edges.   

 

So the classical result about trees holds good in case of 

neutrosophic trees also.   

 

We define neutrosophic trees with roots in the same way as 

that of usual trees.   

 

The ordering of the vertices is also carried out in the same 

way. 

 

 Even in case of neutrosophic trees we define the notion of 

normal spanning trees or the depth first search trees, in a similar 

way they arise in computer searches on graphs.   

 

We will describe this situation by an example or two. 

 

Example 2.30:  Let T be a neutrosophic tree with root r: 

 

 

 

 

 

 

 

 

 

 

              

 

 

 

Figure 2.104 

 
Example 2.31:  Let T be a depth first search tree with root r: 
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              r 
 

Figure 2.105 

 

Example 2.32:  Let T be a pure neutrosophic tree with root r: 

 

 

 

 

 

 

 

        r 

Figure 2.106 
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Example 2.33:  Let T be a pure neutrosophic a depth first search 

and root r. 

 

 

 

 

 

 

        

r  

 

Figure 2.107 
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Chapter Three 
 
 

 
 
NEUTROSOPHIC BIPARTITE GRAPHS  
 
 
 

Now we proceed onto define neutrosophic bipartite graphs.  

Let G be a neutrosophic graphs if G admits a partition in two 

classes we call G to be a bipartite neutrosophic graph.   

 

The neutrosophic graphs if they are bipartite we can have a 

partition depending on the neutrosophic graph G.  

 

Let G be a neutrosophic graph if G is a partition into two 

graphs G1 and G2 such that G1 ∩ G2 = φ and G = G1 ∪ G2 is 

called 2-partite or bipartite, if G admits a partition into 2 classes 

such that every edge has its ends in different classes. 

 

 We will first illustrate this situation before we proceed onto 

describe and define r-partite neutrosophic graphs r > 2. 

 

Example 3.1:  Let G be a neutrosophic graph which is a 

bipartite graph given in the following. 
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Figure 3.1 

 

Example 3.2:  Let G be a pure neutrosophic graph.  G is a  

 

 

                                                                                                                                       

 

 

 

 

 

 

 

Figure 3.2 

 

bipartite pure neutrosophic graph. 

 

Example 3.3:  Let G be a neutrosophic graph 

 

 

 

 

 

 

 

Figure 3.3 
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G is a neutrosophic bipartite graph. 

 

We see the edges are both neutrosophic as well as non 

neutrosophic. 

 

Example 3.4:  Let G be a neutrosophic graph given in the 

following 

 

 

 

 

 

 

 

 

 

Figure 3.4 

 

 Now in case of neutrosophic  graphs we have the following 

result. 

 

THEOREM 3.1:  A neutrosophic graph is bipartite if and only if 

it contains no odd cycle. 

 

 The proof is as in case of usual graphs, hence left as an 

exercise to the reader.   

 

We define r-partite in case of a neutrosophic graph in an 

analogous way.  However we provide a few examples. 

 

Example 3.5:  Let G be the neutrosophic graph given in the 

following. 

 

• 

• 

• 

• 

• 

• 



68 Neutrosophic Graphs  

 

 

 
 

 

 

 

 

 

 

 

 

           

 

 

 

       

 

 

 

 

 

 

Figure 3.5 

G is a 3-partite graph. 

 

 It is interesting to make the following observations. 

 

 Suppose G = G1 ∪ G2 ∪ G3 we see Gi ∩ Gj = φ if i ≠ j.   

 

 Further it is important to note from the set G1 the edges to 

both G2 and G3 are only real where as the edges from G2 to G3 

are all neutrosophic.   

 

This occurrence is very special.   

 

Such 3-partite graphs we call as doubly 3-partite 

neutrosophic graphs. 

 

Example 3.6:  Let G be a neutrosophic graph. 

 

• 

  • 

• 

• 

    •   

     • 

       •       • 

G1 G3 

G2 
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Figure 3.6 

 

G is a 3 partite neutrosophic graph which is not doubly 

three partite. 

 

Example 3.7:  Let G be a neutrosophic graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 
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    •   

     • 

       •       • 

G1 G3 

G2 
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    •   

     • 

       •       • 

G1 G3 

G2 
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G is a doubly 3-partite neutrosophic graph. 

 

 

THEOREM 3.2:  Every doubly 3-partite neutrosophic graph is a 

3-partite neutrosophic graph but not conversely.   

 

The interested reader is requested to prove this theorem. 

 

 

Example 3.8:  Let G be a neutrosophic graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 

 

G is a doubly 4-partite neutrosophic graph. 

 
Example 3.9:  Let G be a pure neutrosophic graph which is as 

follows:  

• 

  • 

• 

• 

    •  

 

 •     •      •     • 

• 
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Figure 3.9 

G is only a 4-partite neutrosophic graph. 

 

 Now we proceed onto define the notion of contraction and 

minors in case of neutrosophic graphs G. 

 

 Let G be a neutrosophic graph.  Let e = xy be an edge which 

is neutrosophic or otherwise of the graph G = (V, E).   

 

By G/e we denote the neutrosophic graph obtained from G 

by contracting the edge e into a vertex ve which becomes 

adjacent to all the former neighbours of x and of y.   

 

Formally G/e is a neutrosophic graph (V′, E′) (not a 

neutrosophic graph if e is the only neutrosophic edge of G) with 

vertex set V′ = (V \ {x, y}) ∪ {ve} (where ve is the new vertex 

ve ∉ V ∪ E) and the edge set  

 

E′ = {vw ∈ E / {v, w} ∩ {x, y} = φ} ∪ {ve w / x w ∈ E \ 

{e} or yw ∈ E \ {e}}. 

 

 We will illustrate this situation by some examples. 

 

• 

    •   

     • 

           •   

       •       • 

       • 

  • 

     • 

  • 



72 Neutrosophic Graphs  

 

 

 
 

 

 

 

Example 3.10:  Let G be the neutrosophic graph.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 

 

Contracting the edge e = xy we get G/e which is again a 

neutrosophic graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 

 

G/e is also a neutrosophic graph in this case. 
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Example 3.11:  Let G be a neutrosophic graph. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 

 

Contracting the edge e = xy we get the graph G/e. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 

 

Clearly G/e is not a neutrosophic graph as G/e has no 

neutrosophic edges. 

 

 

Example 3.12:  let G be a neutrosophic graph given in the 

following.  

 

 

• • 
• 

• 
• • 

e 
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• 
• 

• 
• • 

ve 
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Figure 3.14 

 

 

Contracting the edge e = xy we get 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 

 

We get in this case we face some problems. 

 

We see the edge vet is neutrosophic after contraction, but 

the edge xt is also neutrosophic but the edge yt is not 

neutrosophic so vet should it be neutrosophic or otherwise we 

say these neutrosophic graphs are not contracted in the usual 

way. 

 

 In view of this we have the following theorem. 

 

• 

• 

• 

• 

• 
y u 
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r 

• 
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t r 
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ve=xy 



Neutrosophic Bipartite Graphs  75 

 

 

 

 

 

 

 

 

THEOREM 3.3:  A neutrosophic graph in general need not 

always be contracted at all the edges. 

 

 We will illustrate this by some examples. 

 

 

Example 3.13:  Let G be a neutrosophic graph. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 

 

Suppose e = v1 v5.  Contracting the edge e we get G/e the 

neutrosophic graph. 

 

 

 

 

 

 

 

 

Figure 3.17 

 

Example 3.14:  Let G be a neutrosophic graph. 

 

• 

• 

• 

• 

v4 
v1 

v5 

v2 

• v3 
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v4 
ve 
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Figure 3.18 

Let xy = e. 

 

By contracting the edge xy we get 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 

G/e = H. 

 

Let e′ = x′ y′ 

 

By contracting the edge e′ we get H/e′ 

 

 

 

 

 

 

 

 

Figure 3.20 
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ve • 

• 
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x′ 

y′ 
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ve • 
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• 
ve′ y″ 

e″ 

x″ 

• 

x • 

• 

• 

• 

• 

e y 
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We see H/e′ is a neutrosophic graph.   

Let H/e′ = P. 

e″ = x″ y″. 

 

By contracting the edge P/e″ we get a neutrosophic graph 

 

 

 

 

 

 

 

Figure 3.21 

 

Another interesting feature we wish to study about 

neutrosophic graphs is that if we have a neutrosophic graph G 

with v1, …, vn as its n vertices and has e1, …,ep as edges.   

 

Suppose et = vivj is contracted and suppose we get the 

contracted  graph G/et = H1 with (n–1) vertices {v1, …, iv
�

, …,  

jv
�

, …, vn} ∪ {
tev } and say q edges. 

 

 Now suppose em = 
tev vk an edge in G/et = H1 after 

contraction of the edge em let H1/em = H2 be the new 

neutrosophic graph 
mev  ∈ H2 now suppose 

mev vi = er an edge 

in H2 after contraction of the edge er we get H2/er, is again a 

graph and so on.  

 

When will we reach a graph with two vertices of the form 

     ? 

 

This study is interesting we illustrate this for some special 

type of graphs. 

 

 Let us consider the neutrosophic graph, G 

 

• 

ve • 

• 
ve′ y″ 

• • 
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   Figure 3.22 

 

Suppose we contract the graph G with edge e = v1 v2 we get 

G/e  as 

 

 

 

 

 

 

Figure 3.23 

 

Suppose we want contract the graph G with edge e1 = v0 v2 we 

get G/e1 for we get v1v2 a pure neutrosophic graph  G/e1  

 

 

 

Figure 3.24 

 

Suppose we contract the edge v0 v1 = e2 we get again a pure 

neutrosophic graph  

 

Figure 3.25 

 

One may feel should v1 
1ev  be a neutrosophic edge or usual 

edge. If the original structure of the graph is essentially to be 

maintained the edge is a neutrosophic edge. 

• • 

• 

e 
v2 v1 

v0 

• 

• 

ve 

v0 

• • v1 
1ev  

• • v2 
2ev
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 If one wishes to accept the changed edge then it is the usual 

edge.  If one does not agree upon the contraction for it is 

ambiguous one can say cannot be contracted. 

 

 All the three cases are accepted for while using it in 

problems flexibility leads to more true solutions. 

 

 Now we study the graph with four vertices and four edges. 

 

 Consider the neutrosophic graph G. 

 

 

 

 

 

 

Figure 3.26 

 

Suppose e = v1v2 is contracted in G.  We find the new graph 

H = G/e with vertices v0, ve v3 which is as follows. 

 

 

 

 

 

             

Figure 3.27 

 

 

Now we can in the graph H = G/e contract the edge e1 = ve 

v3 we get the resultant graph H/e1 which is as follows: 

 

 

is the H/e1. 

 

Figure 3.28 
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• • 

v1 v2 

v0 v3 
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ve • 

• 
v0 v3 

• • v0 
1ev  
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We see after two contraction we arrive at the graph of the  

form  

 

    Figure 3.29 

 

Now we study the same problem with five vertices and five 

edges.  Let G be a neutrosophic graph which is as follows: 

 

 

 

 

 

  

 

 

 

 

 

Figure 3.30 

 

Let e = v2 v3 by contracting G the edge e we get G/e = H 

which is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.31 

• • v0 
1ev
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v0 v4 

v1 v3 
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• • 
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v0 v4 
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ve 
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Now we contract the neutrosophic graph H by the edge  

e1 = ve v4 which is as follows: 

 

 

 

          

 

 

 

Figure 3.32 

 

H/e1 = P is the neutrosophic graph.  Now contracting P by 

the edge e2 = v1 
1ev  we get S  

 

  

 

   Figure 3.33 

 

 Thus the final graph S is got after three stages.  

 

We see get one more example before we pose a problem. 

 

 

 

 

 

 

 

 

 

 

Figure 3.34 

 

Let G be a neutrosophic graph with  

{v0, v1, v2, v3, v4, v5} = V as its vertices.  

• 

v1 • 

• 
v0 

1ev  

• • v0 
2ev

• • 

• • 

• • 

v0 v1 

v2 

v3 v4 

v5 
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 Let e = v5 v4 be the edge using which we contract the 

neutrosophic graph G.  We get G/e = H which is as follows with 

vertices V1 = {v0 v1 v2, v3, ve}. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35 

 

Now for this neutrosophic graph H we obtain the contracted 

graph by contracting the edge e1 = vev3.  Let P1 have vertices  

V2 = {v0, v1, v2, 
1ev }.  Here P1 = H/e1. 

 

 

 

 

 

 

 

 

 

 

Figure 3.36 

 

Now we find the graph S1 = P1 / e2 where e2 = 
1ev v2 is the edge 

which is contracted to the vertex 
2ev .   

 

The vertices of S1 are 
1SV  = {v0, v1, 

2ev }.   

• • 

• • 

• 

v0 v1 

v2 

v3 

ve 

• • 

• 

• 

v0 v1 

v2 

1ev
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The graph with vertices 
1SV  is as follows: 

 

 

 

 

 

 

 

 

Figure 3.37 

 

We see if S1 is contracted for this pure neutrosophic graph 

with 
1SV  vertices by the edge v1

2ev = e3 we get the pure 

neutrosophic graph 

 

 

 

   Figure 3.38 

With these we pose the following problem. 

 

Problem 3.1:  Let G be a neutrosophic graph of the form with n 

vertices and n edges given by the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.39 
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vn–1 



84 Neutrosophic Graphs  

 

 

 
 

 

 

 

 

That is V = {v0, v1, …, vn–1} and G has n vertices and n edges. 

 

 Will (n–2) contractions, by contracting first vn–1 vn–2 = e0 as 

G/e0 = P1 with vertices V1 = {v0, v1, …, vn–3, 
0ev } and the 

second contraction is P1 / e1 got by contracting the edge e1 = ve 

vn–3 and so on, so that P1/e1 has vertices V2 = {v0, …, vn–4, 
1ev }.  

Thus the ith contraction will be Pi–1 / ei–1 and has vertices vi = 

{v0, …, vn–(i+2), 
i 1ev
−

}; for i = 1, 2, …, n–2 lead a to a graph of 

the form 

 

                   or        ? 

 

Figure 3.40 

 

Now we see about other type of graphs. 

 

Example 3.15:  Suppose G is a neutrosophic graph with six 

edges and four vertices. 

 

 

 

 

 

 

 

 

   Figure 3.41 

 

We see how many contractions are needed to make this G into 

 

       or 

 

Figure 3.42 

 

• • v0 
n 3ev

−

• • v0 
n 3ev

−

• • 
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v1 v2 

v0 v3 

• • v0 
tev • • v0 

rev
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Consider the edge e = v2 v3 by contracting the edge e of G 

we get the graph G/e which is as follows: 

 

 

 

      or 

 

 

 

 

Figure 3.43 

 

 

We see in the next stage we get  

 

       Figure 3.44 

 

Suppose we contract the edge e = v1 v3; the G/e is as follows: 

 

 

 

 

 

 

 

 

Figure 3.45 

 

Next we consider the neutrosophic graph G with 5 vertices  

V = {v0, v1, v2, v3, v4} which is as follows: 
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v1 ve 

v0 
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v1 ve 
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• • v0 
1ev  
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v1 v2 
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Figure 3.46 

 

Suppose we take the edge e = v3 v4 we find the contracted graph 

G/e which is as follows: 

 

 

 

 

 

 

 

 

 

 

Figure 3.47 

 

Now let H = G/e take the edge e1 = v2 ve we contract H by 

the edge e1; H/e1 is as follows: 

 

 

 

 

 

 

 

Figure 3.48 
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Contracting by the edge v1 
1ev  we get 

          Figure 3.49 

 

Suppose we contract the graph G by the edge e = v4 v2 we 

get G/e to be the contracted graph which is as follows: 

 

 

 

 

 

 

 

 

Figure 3.50 

 

Once again by contracting ve v1 or ve v3 we get a three 

vertex complete graph next stage of contraction leads to 

 

 

 

    Figure 3.51 

Finally let us consider the neutrosophic graph G with six 

vertices (v0, v1, v2, v3, v4, v5) and more than six edges. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.52 
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Let e = v4 v5 by contracting G by the edge e we get G/e which is 

as follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.53 

 

Now we see contracting any edge say v3ve = e1 leads to H/e1   

(H = G/e) which is as follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.54 

and so on. 

 

Thus with the following observations we propose the 

following problem. 

 

Problem 3.2:  Let G be a neutrosophic graph with n vertices 

and each vertex is of degree n–1, regular we will contract say 

• • 

• 

• • 

v0 v1 

ve v3 

v2 

• • 

• 

• 

v0 v1 

1ev  

v2 
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stage by stage also lead to graphs of same type such that G/e 

will have n–1 vertices with degree of each vertex n–2, … and so 

on? 

 

 Recall a minor of a graph or neutrosophic graph G obtained 

from G by contracting edges, deleting edges and deleting 

isolated vertices, a proper minor of G is any minor other than G 

itself. 

 

 We give examples of minors got by contracting a edge. 

 
Example 3.16:  Let G be a neutrosophic graph given by the 

following : 

 

 

 

 

 

 

 

 

 

 

Figure 3.55 

 

Let e = xy.  To find H = G/e 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.56 

• • 

• • 

• • 

• 

• 

y 

x 

e 

• 

• • 

• • 

• 

• 

ve 

a 



90 Neutrosophic Graphs  

 

 

 
 

 

 

 

 

G/e is also a neutrosophic graph a minor of G.   

 

Consider H / e1 where e1 = ave by contracting using the edge 

e1 = ave we get P = H/e1 which is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.57    

 

P is a minor of H as well as minor of G. 

 

 Let e2 = b
1ev  to find the contracted graph of by contracting 

the edge e2.   

 

P/e2 is a graph given by 

 

 

 

 

 

 

 

 

 

 

Figure 3.58 

and so on. 
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P/e2 is a minor of G, P and H. 

 

 We just recall the definition of subdivision of a graph. 

 

 Let G be a neutrosophic graph.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.59 

 

A subdivision of the edge e = uv of a neutrosophic graph G 

is the replacement of the edge e by a new vertex w and two new 

edges uw and wv. 

 

 The operation is also called an elementary subdivision of G. 

  

If G be the neutrosophic edge and G is as follows: 

 

 

 

 

 

 

 

 

 

 

Figure 3.60 
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the subdivision of edge uv of a graph G is the replacement of 

the neutrosophic edge e by a new vertex w and two new 

neutrosophic edges uw and wv. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.61 

 

We can have subdivision of a complete graph. 

 

 

 

 

 

 

 

 

Figure 3.62 

Let G be a neutrosophic complete graph. 

 

 

 

 

 

 

 

    Figure 3.63 
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The subdivision of uv leads to H 

 

 

 

 

 

 

 

 

Figure 3.64 

 

Clearly H is not a complete neutrosophic graph.   

 

Let G be a neutrosophic graph.  

 

 

 

 

 

 

 

   Figure 3.65 

 

but subdivision of the edge uv we get the neutrosophic graph W 

which is as follows: 

 

 

 

 

 

 

 

 
Figure 3.66 
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W is not a complete graph. 

 

Consider the neutrosophic graph G which is as follows: 

 

 

 

 

 

 

 

 

 

Figure 3.67 

 

The subdivision of the edge uv gives the new neutrosophic 

graphs which is as follows: 

 

 

 

 

 

 

 

 
 

 

 

 

 

        Figure 3.68 

 

 

 Study in the direction is both interesting and innovative. 
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• • 
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u v 
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• • 
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u v 

• w 



 
 
 
 
 
Chapter Four 
 
 

 
 
APPLICATIONS OF NEUTROSOPHIC 

GRAPHS 
 
 
 
 To the best of our knowledge these neutrosophic graphs 

find applications in fuzzy models [5-8].  Further we feel that 

when we have net work in which some of the edges cannot be 

predicted we can use these neutrosophic graphs.   

 

They can be helpful in that case.  Also with the advent of 

neutrosophic graphs the colouring of edges will have an impact 

for the same colour can be used for the edges if one edge is 

usual and other is neutrosophic.   

 

So it is interesting to redefine the edge colouring problems 

in case of neutrosophic graphs. 

 

 Proper colouring of the graph remains the same in case of 

neutrosophic graphs.  

 

 Now for neutrosophic graph the edge colouring problem 

reduces the number of colours for we need to colour differently 

to adjacent edges only both the edges happen to be usual or both 

are neutrosophic edge.  



96 Neutrosophic Graphs  

 

 

 
 

 

 

 

 

 

 

 

 

 

     Figure 4.1 

 

 To colour this graph we need minimum 3 colours say red 

yellow and black. 

 

 The same is true in case of pure neutrosophic graph. 

 

 

 

 

 

Figure 4.2 

 

 Now consider the neutrosophic graph. 

 

 

 

      or 

 

 

Figure 4.3 

 

 Two colour are enough for only two usual adjacent edges or 

two neutrosophic edges.  

 

 Consider the graph G 

 

 

 

 

 

 

 

Figure 4.4 
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Minimum two colours are need to colour G. 

 

 

 

 

 

 

 

        Figure 4.5 

 

 We see one colour is enough to edge colour this graph. 

 

 

 

 

 

 

 

 

    Figure 4.6 

 

 This graph needs atleast two colours.  

 

 So one can treat following as the open problem. 

 

 Characterize those neutrosophic graphs which need same 

number to colour the edges as that of the usual graphs. 

 

Example 4.1:  Let G be the graph. 

 

 

 

 

 

 

 

   Figure 4.7 

 

 We need minimum three colour to edge colour the graph G. 
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 Consider the neutrosophic graph H. 

 

 

 

 

 

 

 

Figure 4.8 

 

 Two colours are sufficient to colour H′ 

 

 

 

 

 

 

 

 

 Figure 4.9 

 

 Two colours are sufficient to edge colour H′. 

 

Example 4.2:  Consider the usual graph G. 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 4.10 

 

• R 

• 

R 

• 
R 

• 

Y 

• 
R 

• • 

• • 

• 

R 

Y 

R 

R 

Y 

• • 

• • 

• • 

R 

Y 

R 

Y 

R 

Y 



Applications of Neutrosophic Graphs  99 

 

 

 

 

 

 

 

 

 Two colour are enough to edge colour G.   

 

Consider the neutrosophic graph H. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 

 

One colour is enough to edge colour the neutrosophic graph 

H.   

 

Consider the neutrosophic graph K. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 

 

 

Two colour are needed to edge colour K. 

 

Consider the neutrosophic graph H1 
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         Figure 4.13 

 

 We need two colours to edge colour H1. 

 

Example 4.3:  Let G be a graph 

 

 

 

 

 

 

 

 

Figure 4.14 

 

 Three colours are needed to edge colour G. 

 

 If H is a pure neutrosophic graph.   

 

We need 3 colours to edge colour H. 

 

• • 

• • 

• • 

Y 

Y 

Y 

Y 

R 

R 

• • 

• • 

B 

R 

R 

Y 

Y 
B 

Y 



 
 
 
 
 
Chapter Five 
 
 

 
 
SUGGESTED PROBLEMS 
 
  
In this chapter we suggest a few problems some of which are 

very difficult, some are at research level.  In this juncture 

authors wish to keep on record neutrosophic graphs behave in a 

very unique manner.   

 

Several factors easily found in case of usual graphs are in 

fact very difficult or at time impossible to arrive at a conclusion.  

So the notion of indeterminacy’s vital role is seen in 

neutrosophic graphs in an explicit way.  
 

1. Find some interesting features enjoyed by neutrosophic 

graphs. 

 

2. Find the number of neutrosophic graphs with 5 vertices. 

 

3. Find the number of neutrosophic graphs with 5 edges which 

is connected.  

 

4. Find all the subgraphs S(G) of the neutrosophic graph G. 
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      Figure 5.1 

 

5. Give an example of a neutrosophic graph which is non 

planar with five vertices. 

 

6. Let G be the neutrosophic graph.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 

 

Find S(G). What is the cardinality of S(G). 

 

7. Let G be a neutrosophic graph given in the following  

 

• 

• 
• 

• 

• 
• 

• 

• v2 

v3 

v4 

v1 
v0 

v7 

v6 

v5 

• 

       
 •  

       •         • 
v0 v1 

v5 
v2 

       •         • 
v4 v3 
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8. Let G be a neutrosophic graph. S(G) = {Collection of all 

subgroups of G}.  

 

Find some interesting properties enjoyed by S(G). 

 

 

9. Let G be the neutrosophic given in the following: 

 

 

 

 

 

 

 

 

 

 

 

       Figure 5.3 

 

i. Find all subgraphs of G. 

ii. Find cardinality of S(G). 

iii. Find the neutrosophic adjacency matrix of G. 

iv. How many subgraphs of G are not neutrosophic? 

 

10. Let G be the graph given in problem 9. 

 

i. Find the neutrosophic adjacency matrix A of G. 

ii. Find A
2
  and verify the diagonal element of A

2
 denotes 

the number of edges at the vertices v0, v1, …, v6. 

 

11. For the neutrosophic graph given in problem 9 find A(G) 

the neutrosophic incidence matrix of G. 

 

12. Let G be the neutrosophic graph given in the following: 

 

 

 

 

• 
v6 

• v5 

• v4 

• • 

• • 
v0 v1 

v2 
v3 
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       Figure 5.4 

 

i. Find the adjacency matrix A of G. 

ii. Show the neutrosophic matrix Y = A + A + … + A has 

zeros. 

iii. Find A(G) the neutrosophic incidence matrix associated 

with G. 

 

13. Let G be the neutrosophic graph which is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 

 

i. Find the neutrosophic adjacency matrix A of G. 

• 
• v1 

v5 

• 
v0 
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v10 v9 

v8 

• • 
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• 
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v9 

v11 
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v8 
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ii. Prove G is disjoint using Y = A + A
2
 + … + A

13
. 

iii. Find A(G) the incidence matrix of G. 

iv. Prove A is a diagonal symmetric super neutrosophic 

square matrix. 

v. Hence or otherwise prove Y is a diagonal super 

symmetric neutrosophic square matrix. 

 

14. Find all the subgraphs of G given in problem 13. 

 

15. Find the incidence matrix A(G) of the neutrosophic graph 

given in problem 13. 

 

 

16. Let G be a pure neutrosophic graph which is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 5.6 

 

i. Find A the neutrosophic adjacency matrix of G. 

ii. Find all subgraphs of G. 
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• 
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• 
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v5 
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17. Let G be a graph which is neutrosophic planar. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 

 

i. How many distinct neutrosophic planar complete 

graphs with six vertices exist? (including pure 

neutrosophic planar graph with 6 vertices). 

 

 

18. Let G be a neutrosophic graph which is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 

 

i. Find the complement of this neutrosophic graph. 

ii. How many subgraphs of G are pure neutrosophic? 

iii. How many subgraphs of G are neutrosophic? 

iv. How many subgraphs of G are not neutrosophic? 

• • 

• • 
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v6 v5 

v4 

v3 v2 

v1 

• • 

• • 

• • 

v7 v6 

v5 

v4 v3 

v8 

• • 

• 

v2 v1 

v0 
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19.  Let G be the neutrosophic graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 
 

i. Find the adjacency neutrosophic matrix A associated 

with G. 

 

20. Let G be a neutrosophic graph given in the following. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 
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i. Find A the adjacency neutrosophic matrix of G. 

 

21. For graph given in problem 20. 

 

i. Find A
2
; hence or otherwise state the number of edges 

which passes through each vi 0 ≤ i ≤ 15 

ii. Find at least 3 pure neutrosophic subgraphs of G. 

iii. Find 5 neutrosophic subgraphs of G. 

iv. Find six usual subgraphs of G. 

 

22. Let G be a neutrosophic graph which is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 

 

 i. Find all neutrosophic subgraphs of G. 

 ii. Find pure neutrosophic subgraphs of G. 

 iii. Find usual subgraphs of G. 

 

23. Let G be a neutrosophic graph given in the following. 

 

 

 

 

 

 

 

 
Figure 5.12 
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i. Find the neutrosophic adjacency matrix A associated 

with G. 

 

24. Let G be the neutrosophic graph which is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 

 

i. Find A the adjacency neutrosophic matrix of G. 

ii. Find 3 pure neutrosophic subgraphs of G. 

iii. Find 5 neutrosophic subgraphs of G. 

 

25. Let G be the neutrosophic graph which is as follows: 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 

 

 i. Find the largest neutrosophic subgraphs of G. Is it    

             connected? 

 ii. Find the largest usual subgraphs fo G. Is it connected? 
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• v5 
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26. Find the adjacency matrix of the graph G given in problem 

25. 

 

27. Let G be neutrosophic graph which is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 

 

i. Find the largest pure neutrosophic subgraph of G and its 

incidence neutrosophic matrix. 

 

28. Let G be the neutrosophic graph given below 

 

 

 

 

 

 

 

 

  Figure 5.16 

 

i. Find the minimum number of colors required to edge 

color G. 

 

• v0 

• v3 

• v2 

• v9 
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29. Let G be the neutrosophic graph. 

 

 

 

 

 

 

 

 

 

 

 

    Figure 5.17 

 

 Find the minimum number of colors required to edge color 

G. 

 

30. Find the largest pure neutrosophic subgraph of G given in 

problems 29 and 30. 

 

31. Let G be a neutrosophic graph which is as follows: 

 

 

 

 

 

 

 

 

 

Figure 5.18 

 

 Find the minimum number of color required to edge color 

G. 
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• • 

• 

• • 

• 

• 

• 
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32. Let G be a neutrosophic graph. 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 

 

 Find all pure neutrosophic subgraphs of G. 

 

33. Let G be the neutrosophic graph  

 

 

 

 

 

 

 

 

 

Figure 5.20 

 

and H be another neutrosophic graph. 

 

 

 

 

 

 

 

 

  Figure 5.21 

 

 Compare the subgraphs of G and H. 
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34. Let P be the neutrosophic graph which is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22 

 

 Find S(P). What is the o(S(P))? 

 

35. Let G be the non planar graph  

 

 

 

 

 

 

 

Figure 5.23 

 

and H be the planar graph. 

 

 

 

 

 

 

 

Figure 5.24 

 

 Compare G and H. 
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36. Find some nice applications of neutrosophic graphs other 

than in fuzzy neutrosophic models. 

 

37. Let G be a neutrosophic graph with 5 vertices.  

Find how many neutrosophic graphs can be constructed 

with 5 vertices? 

 

38. Find if G has n vertices; how many neutrosophic graphs can 

be constructed using n vertices. 

 

39. Suppose G be a neutrosophic graph which is as follows: 

 

 

 

 

 

 

 

 

 

  

 

      Figure 5.25 

 

i. Find the maximum number of neutrosophic subgraphs 

using G. 

 

40. Let G be a neutrosophic graph which is as follows: 

  

 

 

 

 

 

 

 

 

 
    Figure 5.26 
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i. Find the maximum number of neutrosophic subgraphs. 

 ii. Find the total number of usual subgraphs of G. 

 

41. Let G and G′ be the neutrosophic graphs which are as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27 

 

 Are G and G′ neutrosophically isomorphic? 

 

42. Suppose G and G′ are two neutrosophic graphs which have 

same number of edges and vertices. 

 

 If they have also same number of neutrosophic edges will 

they be neutrosophically isomorphic? 

 

43. Find the neutrosophic path in the neutrosophic graph G. 

 

 

 

 

 

 

 

 

 

 
Figure 5.28 
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44. Will every neutrosophic graph have a neutrosophic path? 

Justify your claim. 

 

45. Can the neutrosophic graph G which is as follows have a 

neutrosophic path? 

 

 

 

 

 

 

 

 

 

 

Figure 5.29 

 

46. Can a complete neutrosophic graph have always a 

neutrosophic path? 

 

47. Give an example of a neutrosophic walk in a neutrosophic 

graph. 

 

48.  Will every neutrosophic graph have a neutrosophic walk? 

 

49. Will every neutrosophic graph have a usual walk? 

 

50. Give an example of a neutrosophic forest. 

 

51. Will every neutrosophic graph be a neutrosophic forest? 

 

52. Obtain some interesting properties about neutrosophic 

graphs which are not enjoyed by usual graphs. 

 

53. Show k-regular neutrosophic graph need not be regular 

usually. 
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• • 

• • • 
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54. Find the number colors needed to edge color the 

neutrosophic graph. 

 

 

 

 

 

 

 

 

 

 

   Figure 5.30 

 

55. Let G be a neutrosophic graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31 

 

 Find the number of colors needed to edge colors G. 

 

56. Let G be the planar connected neutrosophic graph with n 

vertices. Find the number of colors needed to edge color G. 

• • 

• • 

• • 

• 

• 

• 

• 

• 

• 
• 

• 
• 

• 
• 

• 

• 

• 

• 

• • 

• 

• 

• 
• 

• 



118 Neutrosophic Graphs  

 

 

 
 

 

 

 

 

 

57. Let G be a connected non planar neutrosophic graph with n 

vertices. How many colors are needed to edge color G. 

 

58. Let G1, …, G9 be the neutrosophic graphs given in the 

following. Find the number of colors needed to edge 

column G1, …, G9. 

 

        G1          G2 

 

 

 

 

 

 

 

 

 

   G3        G4 

 

 

 

 

   

 

 

 

 

   G5        G6 

 

 

 

 

 

 

 

 

Figure 5.32 
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       G7          G8 

 

 

 

 

 

 

 

 

 

   G9 

 

 

 

 

 

 

 

 

Figure 5.32 

 

 

i. Will any of the Gi’s need same number of colors to 

edge color Gi’s. 

 

59. Study problem for neutrosophic graphs with n-vertices. 
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60. Let G be a neutrosophic graph which is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.33  

 

Find the number of colors needed to edge color G. 
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• 

 

• 

    •   

     • 

       •   •    • 
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