

Neutrosophic Hypercompositional Structures defined by Binary Relations

A.A.A. Agboola¹ and S.A. Akinleye²

¹ Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria. E-mail: aaaola2003@yahoo.com

² Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria. E-mail: akinleye_sa@yahoo.com

Abstract: The objective of this paper is to study *neutrosophic* hypercompositional structures $H(I)_{\tau}$ arising from the hypercompositions derived from the binary relations τ on a *neutrosophic* set H(I). We give the characterizations of τ that make $H(I)_{\tau}$

Keywords: hypergroup, neutrosophic hypergroup, binary relations.

1 Introduction

The concept of hyperstructure together with the concept of hypergroup was introduced by F. Marty at the 8th Congress of Scandinavian Mathematicians held in 1934. A comprehensive review of the concept can be found in [5, 6, 12]. The concept of neutrosophy was introduced by F. Smarandache in 1995 and the concept of *neutrosophic* algebraic structures was introduced by F. Smarandache and W.B. Vasantha Kandasamy in 2006. A comprehensive review of *neutrosophy* and *neutrosophic*

algebraic structures can be found in [1, 2, 3, 4, 15, 24, 25]. One of the techniques of constructing hypergoupoids, quasi hypergroups, semihypergroups and hypergroups is to endow a nonempty set H with a hypercomposition derived from the binary relation ρ on H that give rise to a hypercompositional structure H_0 . In this paper, we consider binary relations τ on a neutrosophic set H(I) that define hypercompositional structures $H(I)_{\tau}$. Hypercompositions in H(I) considered in this paper are in the sense of Rosenberg [22], Massouros and Tsitouras [16, 17], Corsini [8, 9], and De Salvo and Lo Maro [13, 14]. We give the characterizations of τ that make $H(I)_{\tau}$ hypergroupoids, quasihypergroups, semihypergroups, neutrosophic hypergroupoids, neutrosophic quasihypergroups, neutrosophic semihypergroups, and neutrosophic hypergroups.

2 Preliminaries

Definition 2.1. Let H be a non-empty set, and

hypergroupoids,quasihypergroups, semihypergroups, neutrosophic hypergroupoids, neutrosophic quasihypergroups, neutrosophic semihypergroups and neutrosophic hypergroups.

 $\circ: H \times H \to P^*(H)$ be a hyperoperation.

(1) The couple (H, \circ) is called a hypergroupoid. For any two non-empty subsets A and B of H and $x \in H$, we define

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b, A \circ x = A \circ \{x\}$$
 and

$$x \circ B = \{x\} \circ B$$

(2) A hypergroupoid (H, \circ) is called a semihypergroup if for all a,b,c of H we have $(a \circ b) \circ c = a \circ (b \circ c)$, which means that $\bigcup_{u \in a \circ b} u \circ c = \bigcup_{v \in b \circ c} a \circ v.$

A hypergroupoid (H, \circ) is called a quasihypergroup if for all a of H we have $a \circ H = H \circ a = H$. This condition is also called the reproduction axiom.

(3) A hypergroupoid (H, \circ) which is both a semihypergroup and a quasihypergroup is called a hypergroup.

Definition 2.2. Let (G, *) be any group and let

 $G(I) = \langle G \cup I \rangle$. The couple (G(I), *) is called a

neutrosophic group generated by G and I under the binary

A.A.A. Agboola, S.A. Akinleye, Neutrosophic Hypercompositional Structures defined by Binary Relations

operation *. The indeterminancy factor I is such that I * I = I. If * is ordinary multiplication, then $IastI * ... * I = I^n = I$ and if * is ordinary addition, then I * I * I * ... * I = nI for $n \in \mathbb{N}$. If a * b = b * a for all $a, b \in G(I)$, we say that G(I) is commutative. Otherwise, G(I) is called a non-commutative *neutrosophic* group. **Theorem 2.3.** [24] Let G(I) be a neutrosophic group.

Theorem 2.3. [24] Let G(1) be a neutrosophic group. Then, (1) G(I) in general is not a group;

(2) G(I) always contain a group.

Example 1. [3] Let $G(I) = \{e, a, b, c, I, aI, bI, cI\}$ be a set, where $a^2 = b^2 = c^2 = e$, bc = cb = a, ac = ca = b, ab = ba = c. Then (G(I),.) is a commutative *neutrosophic* group.

Definition 2.4. [4] Let (H, \circ) be any hypergroup and let

 $H(I) = \langle H \cup I \rangle = \{(a, bI) : a, b \in H\}.$ The couple

 $(H(I), \circ)$ is called a *neutrosophic hypergroup* generated

by H and I under the hyperoperation \circ .

For all (a,bI),(c,dI) $\in H(I)$, the composition of elements

of H(I) is defined by

 $(a,bI) \circ (c,dI) = \{(x, yI) : x \in a \circ c, \\ y \in a \circ d \cup b \circ c \cup b \circ d\}.$

Example 2. [4] Let H(I)={a,b,(a,aI),(a,bI),(b,aI), (b,bI)} be

a set and let $\,\circ\,$ be a hyperoperation on H defined in the table below.

0	a	b	(a,aI)	(a,bI)	(b,aI)	(b,bI)
a	a	b	(a,aI)	(a,bI)	(b,aI)	(b,bI)
b	b	a b	(b,bI)	(b,aI) (b,bI)	(a,bI) (b,bI)	(a,aI) (a,bI) (b,aI) (b,bI)
(a,aI)	(a,aI)	(b,bI)	(a,aI)	(a,aI) (b,bI)	(b,aI) (b,bI)	(b,bI)
(a,bI)	(a,bI)	(b,aI) (b,bI)	(a,aI) (a,bI)	(a,aI) (a,bI)	(b,aI) (b,bI)	(b,aI) (b,bI)
(b,aI)	(b,aI)	(b,bI) (a,bI)	(b,aI) (b,bI)	(b,aI) (b,bI)	(a,aI) (a,bI) (b,aI) (b,bI)	(a,aI) (a,bI) (b,aI) (b,bI)
(b,bI)	(b,bI)	(a,aI) (a,bI) (b,aI) (b,bI)	(b,bI)	(b,aI) (b,bI)	(a,aI) (a,bI) (b,aI) (b,bI)	(a,aI) (a,bI) (b,aI) (b,bI)

Then $(H(I), \circ)$ is a *neutrosophic* hypergroup.

Definition 2.5. Let H be a nonempty set and let ρ be a binary relation on H.

- (1) $\rho \circ \rho = \rho^2 = \{(x, y) : (x, z), (z, y) \in \rho, \text{ for some } z \in H\}.$
- (2) An element x ∈ H is called an outer element of ρ if (z, x) ∉ ρ² for some z ∈ H. Otherwise, x is called an inner element.
- (3) The domain of ρ is the set $D(\rho) = \{x \in H : (x, z) \in \rho, \text{ for } some \ z \in H\}.$
- (4) The range of ρ is the set

31

$$R(\rho) = \{x \in H : (z, x) \in \rho, \text{ for some } z \in H\}.$$

In [22], Rosenberg introduced in H the hypercomposition
$$x \circ x = \{z \in H : (x, z) \in \rho\} \text{ and}$$

$$x \circ x = \{z \in \Pi : (x, z) \in p\}$$
 and
 $x \circ y = x \circ x \cup y \circ y$

and proved the following:

Proposition 2.6. [22] $H_{\rho} = (H, \circ)$ is a hypergroupoid if and only if $H = D(\rho)$.

Proposition 2.7. [22] H_{ρ} is a quasihypergroup if and only if

(1) $H = D(\rho)$. (2) $H = R(\rho)$.

Proposition 2.8. [22] H_{ρ} is a semihypergroup if and only if

- (1) $H = D(\rho).$
- (2) $\rho \subseteq \rho^2$.
- (3) $(a, x) \in \rho^2$ implies that $(a, x) \in \rho$ whenever x is an outer element of ρ .

Proposition 2.9. [22] H_o is a hypergroup if and only if

- (1) $H = D(\rho)$.
- (2) $H = R(\rho)$.
- (3) $\rho \subseteq \rho^2$.
- (4) $(a, x) \in \rho^2$ implies that $(a, x) \in \rho$ whenever x is an outer element of ρ .

In [17], Massouros and Tsitouras noted that whenever x is an outer element of ρ , then it can be deduced from condition (2) and (3) (conditions (3) and (4)) of Proposition 2.8 (Proposition 2.9) that $(a, x) \in \rho$ if and only if $(a, x) \in \rho^2$ for some $a \in H_{\rho}$. Hence, they restated Propositions 2.8 and 2.9 in the following equivalent forms:

Proposition 2.10. [17] H_{ρ} is a semihypergroup if and only if

- (1) $H = D(\rho)$.
- (2) $(a, x) \in \rho^2$ if and only if $(a, x) \in \rho$ for all $a \in H$ whenever x is an outer element of ρ .

Proposition 2.11. [17] H_{ρ} is a semihypergroup if and only if

- (1) $H = D(\rho)$.
- (2) $H = R(\rho)$.
- (3) $(a, x) \in \rho^2$ if and only if $(a, x) \in \rho$ for all

 $a \in H$ whenever x is an outer element of ρ .

If H is a nonempty set and ρ is a binary on H, Massouros and Tsitouras [17] defined hypercomposition \bullet on H as follows:

 $x \bullet x = \{z \in H : (z, x) \in \rho\} \text{ and}$ $x \bullet y = x \bullet x \cup y \bullet y$ and stated that: (2)

Proposition 2.12. [17] If ρ is symmetric, then the hypercompositional structures (H, \circ) and (H, \bullet) coincide.

Following Rosenberg's terminology in [22], Massouros and Tsitouras established the following:

Definition 2.13. [17]

(1)

- (1) For $(a,b) \in \rho$, a is called a predecessor of b and b a successor of a.
- (2) An element x of H is called a predecessor outer element of ρ if (x, z) ∉ ρ² for some z ∈ H. Using hypercomposition •, Massouros and Tsitouras established the following:

Proposition 2.14. [17] $H_{\rho} = (H, \bullet)$ is hypergroupoid if and only if $H = R(\rho)$.

Proposition 2.15. [17] $H_{\rho} = (H, \bullet)$ is quasihypergroup if and only if

(1) $H = D(\rho)$. (2) $H = R(\rho)$.

Proposition 2.16. [17] $H_o = (H, \bullet)$ is

semihypergroup if and only if

- (1) $H = R(\rho)$.
- (2) $(x, y) \in \rho^2$ if and only if $(x, y) \in \rho$ for all $y \in H$ whenever x is a predecessor outer element of ρ .

Proposition 2.17. [17] $H_{\rho} = (H, \bullet)$ is hypergroup if and only if

(1)
$$H = D(\rho)$$

(2)
$$H = R(\rho).$$

(3) $(x, y) \in \rho^2$ if and only if $(x, y) \in \rho$ for all $y \in H$ whenever x is a predecessor outer element of ρ .

If H is a nonempty set and ρ is a binary relation on H, Corsini [8, 9] introduced in H the hypercomposition: $x * y = \{z \in H : (x, z) \in \rho \text{ and } \}$

A.A.A. Agboola, S.A. Akinleye, Neutrosophic Hypercompositional Structures defined by Binary Relations

 $(z, y) \in \rho$ for some $z \in H$ }. (3)

It is clear that (H, *) is a partial hypergroupoid and it is a hypergroupoid if for each pair of elements $x, y \in H$, there exists $z \in H$ such that $(x, z) \in \rho$ and $(z, y) \in \rho$. Equivalently, (H, *) is a hypergroupoid if and only if $\rho^2 = H^2$.

If H_{ρ} is the hypercompositional structure defined by equation (3) , Massouros and Tsitouras [16] proved the following:

Proposition 2.18. [16] H_{ρ} is a quasihypergroup if and only if $(x, y) \in \rho$ for all $x, y \in H_{\rho}$.

Lemma 2.19. [16] If H_{ρ} is a semihypergroup and $(z, z) \notin \rho$ for some $z \in H_{\rho}$, then $(s, z) \in \rho$ implies that $(z, s) \notin \rho$.

Corrolary 2.20. [16] If H_{ρ} is a semihypergroup and ρ is not reflexive, then ρ is not symmetric.

Lemma 2.21. If H_{ρ} is a semihypergroup then ρ is reflexive.

Proposition 2.22. [16] H_{ρ} is a semihypergroup if and only if $(x, y) \in \rho$ for all $x, y \in H_{\rho}$.

Definition 2.23. A hyperoperation * defined through ρ is said to be a total hypercomposition if and only if $(x, y) \in \rho$ for all $x, y \in H_{\rho}$. In other words, * is said to be a total hypercomposition if $x * y = H_{\rho}$ for all $x, y \in H_{\rho}$.

Remark 1. If a hypercompositional structure H_{ρ} is endowed with the total hypercomposition *, then $(H_{\rho}, *)$ is a hypergroup.

Theorem 2.24. [16] The only semihypergroup and the only quasihypergroup defined by the binary relation ρ is the total hypergroup.

If H is a nonempty set and $\boldsymbol{\rho}$ is a binary relation on H,

De Salvo and Lo Faro [13, 14] introduced in H the hypercomposition:

$$x \Diamond y = \{ z \in H : (x, z) \in \rho$$

 $(x, y) \in \rho$ for some $z \in H$.

They characterized the relations ρ which give quasihypergoups, semihypergroups and hypergroups.

3 Neutrosophic Hypercompositional Structures

3.1 Neutrosophic Hypercompositional Structures of Rosenberg Type

Let τ be a binary relation on H(I) and let $\rho = \tau |_{H}$. For all $(a, bI), (c, dI) \in H(I)$, define hypercomposition on H(I) as follows:

$$(a,bI) \circ (a,bI) = \{(x, yI) \in H(I) : x \in a \circ a, y \in a \circ a \cup b \circ b\}$$
$$= \{(x, yI) \in H(I) : (a, x) \in \rho, (a, y) \in \rho \text{ or } (b, y) \in \rho\}.$$

(5)

$$(a,bI) \circ (c,dI) = \{(x,yI) \in H(I) : x \in a \circ a \cup c \circ c, y \in a \circ a \cup b \circ b \cup c \circ c \cup d \circ d \} = \{(x,yI) \in H(I) : (a,x) \in \rho, \text{ or } (c,x) \in \rho, (a,y) \in \rho \text{ or } (b,y) \in \rho \text{ or } (c,y) \in \rho \text{ or } (d,y) \in \rho \}.$$
(6)

Let $H(I)_{\tau} = (H(I), \circ)$ be a hypercompositional structure arising from the hypercomposition defined by equation (6).

Proposition 3.1.1. $H(I)_{\tau}$ is a hypergroupoid if and only if H_0 is a hypergroupoid.

Proof. Suppose that H_{ρ} is a hypergroupoid. Then $H = D(\rho)$ and from equation (6) we have $(a,bI) \circ (c,dI) \subseteq H(I)_{\tau}$ for all

 $(a,bI), (c,dI) \in H(I)$. Hence $H(I)_{\tau}$ is a hypergroupoid. The converse is obvious.

Proposition 3.1.2. $H(I)_{\tau}$ is a quasihypergroup if and only if H_{ρ} is a quasihypergroup.

Proof. Suppose that H_{ρ} is a quasihypergroup. Then $H = D(\rho) = R(\rho)$. Let $(x, yI) \in (a, bI) \circ (c, dI)$ for an arbitrary $(c, dI) \in H(I)$. Then

$$(a,bI) \circ H(I)_{\tau} = \bigcup \{ (a,bI) \circ (c,dI) \}$$

$$= \bigcup \{ (x, yI) \in H(I) : (a, x) \in \rho, \\ \text{or } (c, x) \in \rho, (a, y) \in \rho \\ \text{or } (b, y) \in \rho \text{ or } (c, y) \in \rho \text{ or } (d, y) \in \rho \}. \\ = H(I)_r$$

Similarly, it can be shown that

 $H(I)_{\tau} \circ (a,bI) = H(I)_{\tau}$ for all $(a,bI) \in H(I)$. Hence $(H(I)_{\tau}, \circ)$ is a quasihypergroup. The converse is obvious.

Lemma 3.1.1. If
$$\rho$$
 is not reflexive, then $(a,bI) \notin (a,bI) \circ (a,bI)$ for all $(a,bI) \in H(I)$

Proof. Suppose that ρ is not reflexive and suppose that $(a,bI) \notin (a,bI) \circ (a,bI)$ for all $(a,bI) \in H(I)$. Assuming that $(a,b) \in \rho$, we have from equation (5): $(a,bI) \circ (a,bI) = \{(a,bI) \in H(I) : (a,a) \in \rho, (a,b) \in \rho \text{ or } (b,b) \in \rho \}$ $= \emptyset$ a contradiction. Hence $(a,bI) \notin (a,bI) \circ (a,bI)$.

Proposition 3.1.3. $H(I)_{\tau}$ is a semihypergroup if ρ is reflexive and symmetric.

Proof. Suppose that ρ is reflexive and symmetric. Let $(a,bI), (b,aI) \in H(I)$ be arbitrary and let $(x,a) \in \rho$, $(x,b) \in \rho$ and $(y,a) \in \rho$. Then $(b,aI) \in (a,bI) \circ ((b,aI) \circ (a,bI))$ implies that

$$(a,bI) \circ ((b,aI) \circ (a,bI)) = \{(b,aI) \in H(I) : (a,b) \in or (x,b) \in \rho, (a,a) \in \rho, (b,a) \in \rho or (x,a) \in \rho or (y,a) \in \rho \}$$
$$= ((a,bI) \circ (b,aI)) \circ (a,bI).$$
This shows that

 $(b, aI) \in ((a, bI) \circ (b, aI)) \circ (a, bI)$. Since (a,bI) and (b,aI) are arbitrary, it follows that $H(I)_{\tau}$ is a semihypergroup.

The following results are immediate from the hypercomposition defined by equation (6):

Proposition 3.1.4. (1) $H(I)_{\tau}$ is a *neutrosophic* hypergroupoid if and only if H_{ρ} is a hypergroupoid.

- (2) $H(I)_{\tau}$ is a *neutrosophic* semihypergroup if and only if H_{ρ} is a semihypergroup.
- (3) H(I)_τ is a *neutrosophic* hypergroup if and only if H_ρ is a hypergroup.

3.2 Neutrosophic Hypercompositional Structures of Massouros and Tsitouras Type

Let τ be a binary relation on H(I) and let $\rho = \tau|_{H}$. For all $(a,bI), (c,dI) \in H(I)$, define hypercomposition on H(I) as follows:

$$(a,bI) \bullet (a,bI) = \{(x,yI) : x \in a \bullet a, y \in a \bullet a \cup b \bullet b\} = \{(x,yI) : (x,a) \in \rho, (y,a) \in \rho \text{ or } (y,b) \in \rho\}$$
(7)
$$(a,bI) \bullet (c,dI) = \{(x,yI) : x \in a \bullet a \cup c \bullet c, y \in a \bullet a \cup b \bullet b \cup c \bullet c \cup d \bullet d\} = \{(x,yI) : (x,a) \in \rho, \text{ or } (x,c) \in \rho, (y,a) \in \rho \text{ or } (y,b) \in \rho \text{ or } (y,c) \in \rho \text{ or } (y,d) \in \rho\}$$
(8)

 $H(I)_{\tau} = (H(I), \bullet)$ be a hypercompositional structure arising from the hypercomposition defined by equation (8).

Proposition 3.2.1. If ρ is symmetric, then

hypercompositional structure $(H(I), \bullet)$ coincide with

hypercompositional structure $(H(I), \circ)$.

Proof. This follows directly from equations (6) and (8).

Proposition 3.2.2. $H(I)_{\tau}$ is a hypergroupoid if and only if H_0 is a hypergroupoid.

Proof. Suppose that H_{ρ} is a hypergroupoid. Then $H = R(\rho)$ and from equation (8) we have $(a,bI) \cdot (c,dI) \subseteq H(I)_{\tau}$ for all $(a,bI), (c,dI) \in H(I)$. Hence $H(I)_{\tau}$ is a hypergroupoid. The converse is obvious.

*P***Proposition 3.2.3.** $H(I)_{\tau}$ is a quasihypergroup if and only if H_ρ is aquasi hypergroup.

Proof. Suppose that H_{ρ} is a quasihypergroup. Then $H = D(\rho) = R(\rho)$. Let $(x, yI) \in (a, bI) \bullet (c, dI)$ for an arbitrary $(c, dI) \in H(I)$. Then

$$(a,bI) \bullet H(I)_{\tau} = \bigcup \{(a,bI) \bullet (c,dI)\}$$
$$= \bigcup \{(x,yI) \in H(I) : (x,a) \in \rho$$
or $(x,c) \in \rho, (y,a) \in \rho$ or $(y,b) \in \rho$ or $(y,c) \in \rho$ or $(y,d) \in \rho$ }
$$= H(I)$$

Similarly, it can be shown that

 $H(I)_{\tau} \bullet (a, bI) = H(I)_{\tau}$ for all $(a, bI) \in H(I)$. Hence $H(I)_{\tau}$ is a quasihypergroup. The converse is obvious.

Lemma 3.2.1. If ρ is not reflexive, then $(a,bI) \notin (a,bI) \cdot (a,bI)$ for all $(a,bI) \in H(I)$.

Proof. The same as the proof of Lemma 3.1.1.

Proposition 3.2.4. $H(I)_{\tau}$ is a semihypergroup if ρ is reflexive and symmetric.

A.A.A. Agboola, S.A. Akinleye, Neutrosophic Hypercompositional Structures defined by Binary Relations

Proof. This follows from Proposition 3.1.3 and Proposition 3.2.1.

Proposition 3.2.5. (1) $H(I)_{\tau}$ is a *neutrosophic* hypergroupoid if and only if H_{ρ} is a hypergroupoid.

- (2) $H(I)_{\tau}$ is a *neutrosophic* semihypergroup if and only if H_{ρ} is a semihypergroup.
- (3) $H(I)_{\tau}$ is a *neutrosophic* hypergroup if and only if H_{ρ} is a hypergroup.

3.3 Neutrosophic Hypercompositional Structures of Corsini Type

Let τ be a binary relation on H(I) and let $\rho = \tau \Big|_{H}$. For

all $(a,bI), (c,dI) \in H(I)$, define hypercomposition on H(I) as follows:

$$(a,bI)*(c,dI) = \{(x,yI) \in H(I) : x \in a * a, y \in a * d \cup b * c \cup b * d\}$$
$$= \{(x,yI) \in H(I) : (a,x) \in \rho, and (x,c) \in \rho, [(a,y) \in \rho and (y,c) \in \rho]$$
and $(y,d) \in \rho$] or $[(b,y) \in \rho$ and $(y,c) \in \rho$]

or
$$[(b, y) \in \rho \text{ and } (y, d) \in \rho]$$
. (9)

Let $H(I)_{\tau} = (H(I), *)$ be a hypercompositional structure arising from the hypercomposition defined by equation (9).

Proposition 3.3.1. $H(I)_{\tau}$ is a hypergroupoid if and only if H_{0} is a hypergroupoid.

Proof. Suppose that H_{ρ} is a hypergroupoid. Then $H^2 = \rho^2$. Since $(a, c), (a, d), (b, c), (b, d) \in \rho^2$ from equation (9), it follows that $(a, bI) * (c, dI) \subseteq H(I)_{\tau}$ for all $(a, bI), (c, dI) \in H(I)$. Hence $H(I)_{\tau}$ is a hypergroupoid. The converse is obvious.

Proposition 3.3.2. $H(I)_{\tau}$ is a quasihypergroup if and only if H_{ρ} is a quasihypergroup.

Proof. Suppose that H_{ρ} is a quasihypergroup. Then $(x, y) \in \rho$ for all $x, y \in H$. Let $(x, yI) \in (a, bI) * (c, dI)$ for an arbitrary $(c, dI) \in H(I)$. Then $(a, bI) * H(I)_{\tau} = \bigcup \{(a, bI) * (c, dI)\}$ $= \{(x, yI) \in H(I) : (a, x) \in \rho,$ and $(x, c) \in \rho, [(a, y) \in \rho$ and $(y, d) \in \rho$] or $[(b, y) \in \rho$ and $(y, c) \in \rho$] or $[(b, y) \in \rho$ and $(y, d) \in \rho$]}. $= H(I)_{\tau}$ Similarly, it can be shown that

 $H(I)_{\tau} * (a, bI) = H(I)_{\tau}$ for all $(a, bI) \in H(I)$. Hence $H(I)_{\tau}$ is a quasihypergroup. The converse is obvious.

Proposition 3.3.3. $H(I)_{\tau}$ is a *neutrosophic* quasihypergroup if and only if H_{ρ} is aquasihypergroup.

Proof. Follows directly from equation (9).

Lemma 3.3.1. If ρ is not reflexive and symmetric, then

- (1) $(a,bI) \notin (a,bI) * (a,bI)$ for all $(a,bI) \in H(I)$.
- (2) $(b,aI) \notin (a,bI) * (a,bI)$ for all $(a,bI), (b,aI) \in H(I)$.
- (3) $(a, aI) \notin (a, bI) * (a, bI)$ for all $(a, aI), (a, bI) \in H(I)$.
- (4) $(a,bI) \notin (a,bI) * (a,bI)$ for all $(a,bI), (b,aI) \in H(I)$.
- (5) $(b, aI) \notin (a, bI) * (b, aI)$ for all $(a, bI), (b, aI) \in H(I)$.
- (6) $(a,aI) \notin (a,bI) * (b,aI)$ for all $(a,aI), (a,bI), (b,aI) \in H(I)$.

Proof. (1) Suppose that ρ is not reflexive and symmetric and suppose that $(a,bI) \notin (a,bI) * (a,bI)$. Then

$$(a,bI)*(a,bI) = \{(a,bI) \in H(I) : (a,a) \in \rho, \\ (b,b) \in \rho \quad \text{or} \quad [(a,b) \in \rho \text{ and} \\ (b,b) \in \rho] \text{ or} \quad [(b,b) \in \rho \text{ and} \quad (a,b) \in \rho] \\ = \emptyset$$

a contradiction. Hence $(a,bI) \notin (a,bI) * (a,bI)$. Using similar argument, (2), (3), (4), (5) and (6) can be established.

Proposition 3.3.4. $H(I)_{\tau}$ is a semihypergroup if ρ is reflexive and symmetric.

Proof. Suppose that ρ is reflexive and symmetric. Let $(a,bI), (b,aI) \in H(I)$ be arbitrary and let $(x,a) \in \rho$, $(x,b) \in \rho, (y,b) \in \rho$ and $(b,a) \in \rho$. Then $(a,bI) \in (a,bI) * ((b,aI) * (a,bI))$ implies that $(a,bI) * ((b,aI) * (a,bI)) = \{(a,bI) \in H(I) :$ $(x,a) \in \rho$ and $(a,a) \in \rho, [(x,b) \in \rho$ and $(b,b) \in \rho$] or $[(y,a) \in \rho$ and $(b,a) \in \rho$] or $[(y,b) \in \rho$ and $(b,b) \in \rho$] = ((a,bI) * (b,aI)) * (a,bI). This shows that $(b,aI) \in ((a,bI) * (b,aI)) * (a,bI)$.

 $(b,aI) \in ((a,bI)*(b,aI))*(a,bI)$. Since (a,bI) and (b,aI) are arbitrary, it follows that $H(I)_{\tau}$ is a semihypergroup.

Corollary 3.3.1. $H(I)_{\tau}$ is a semihypergroup if and only if H_{ρ} is a semihypergroup.

Proposition 3.3.5. If any pair of elements of H_{ρ} does not belong to ρ , then $H(I)_{\tau}$ is not a semihypergroup.

3.1 Neutrosophic Hypercompositional Structures of De Salvo and Lo Faro Type

Let τ be a binary relation on H(I) and let $\rho = \tau \Big|_{H}$. For

all $(a,bI), (c,dI) \in H(I)$, define hypercomposition on H(I) as follows:

$$(a,bI) \Diamond (c,dI) = \{(x,yI) \in H(I) : x \in a \Diamond c, \\ y \in a \Diamond d \cup b \Diamond c \cup b \Diamond d\} \\ = \{(x,yI) \in H(I) : (a,x) \in \rho, \\ \text{or } (x,c) \in \rho, (a,y) \in \rho \}$$

or
$$(b, y) \in \rho$$
 or $(y, c) \in \rho$ or $(y, d) \in \rho$. (10)

Let $H(I)_{\tau} = (H(I), \Diamond)$ be a hypercompositional structure arising from the hypercomposition defined by equation (10).

Proposition 3.4.1. If ρ is symmetric, then hypercompositional structures $(H(I), \Diamond)$, $(H(I), \circ)$ and $(H(I), \bullet)$ coincide.

Proof. Follows directly from equations (6), (8) and (10).

Proposition 3.4.2. $H(I)_{\tau}$ is a hypergroupoid if and only if H_{0} is a hypergroupoid.

Proof. Suppose that H_{ρ} is a hypergroupoid. Then $H=D(\rho)$ or $H=R(\rho)$ and from equation (10) we have $(a,bI)\Diamond(c,dI) \subseteq H(I)_{\tau}$ for all $(a,bI), (c,dI) \in H(I)$. Hence $H(I)_{\tau}$ is a hypergroupoid. The converse is obvious.

Proposition 3.4.3. $H(I)_{\tau}$ is a quasihypergroup if and only if H_{ρ} is a quasihypergroup.

Proof. The same as the proof of Proposition 3.2.3.

- **Lemma 3.4.1.** If ρ is not reflexive and symmetric, then (1) $(a,bI) \notin (a,bI) \Diamond (a,bI)$
 - for all $(a, bI) \in H(I)$.
 - (2) (b,aI) ∉ (a,bI)◊(a,bI) for all (a,bI),(b,aI) ∈ H(I).
 (3) (a,aI) ∉ (a,bI)◊(a,bI)
 - for all $(a, aI) \notin (a, bI) \vee (a, bI)$ (4) $(a, bI) \notin (a, bI) \Diamond (a, bI)$
 - for all (a,bI), $(b,aI) \in H(I)$. (5) $(b,aI) \notin (a,bI) \Diamond (b,aI)$
 - for all (a,bI), $(b,aI) \in H(I)$.
 - (6) $(a, aI) \notin (a, bI) \Diamond (b, aI)$ for all $(a, aI), (a, bI), (b, aI) \in H(I)$.

Proof. (1) Suppose that ρ is not reflexive and symmetric and suppose that $(a,bI) \notin (a,bI) \Diamond (a,bI)$. Then

 $(a,bI) \Diamond (a,bI) = \{(a,bI) \in H(I) : (a,a) \in \rho, \\ (a,b) \in \rho \text{ or } (b,b) \in \rho \text{ or } (b,a) \in \rho\}$

 $= \emptyset$

a contradiction. Hence $(a,bI) \notin (a,bI) \Diamond (a,bI)$. Using similar argument, (2), (3), (4), (5) and (6) can be established.

Proposition 3.4.4. $H(I)_{\tau}$ is a semihypergroup if ρ is reflexive and symmetric.

Proof. Suppose that ρ is reflexive and symmetric. Let $(a,bI), (b,aI) \in H(I)$ be arbitrary and let $(a,x) \in \rho$, $(b,x) \in \rho, (b,y) \in \rho$ and $(a,b) \in \rho$. Then $(a,bI) \in (a,bI) \Diamond ((b,aI) \Diamond (a,bI))$ implies that $(a,bI) \Diamond ((b,aI) \Diamond (a,bI)) = \{(a,bI) \in H(I) : (a,a) \in \rho \text{ or } (a,x) \in \rho, (a,b) \in \rho \text{ or } (b,y) \in \rho \text{ or } (b,b) \in \rho \text{ or } (b,x) \in \rho \}$ = $((a,bI) \Diamond (b,aI) \Diamond (a,bI)$. This shows that

 $(a,bI) \in ((a,bI) \Diamond (b,aI)) \Diamond (a,bI)$. Since (a,bI) and (b,aI) are arbitrary, it follows that $H(I)_{\tau}$ is a semihypergroup.

The following results are immediate from the hypercomposition defined by equation (10):

Proposition 3.4.5. (1) $H(I)_{\tau}$ is a *neutrosophic* hypergroupoid if and only if H_0 is a hypergroupoid.

- (2) $H(I)_{\tau}$ is a *neutrosophic* semihypergroup if and only if H_0 is a semihypergroup.
- (3) $H(I)_{\tau}$ is a *neutrosophic* hypergroup if and only if H_{ρ} is a hypergroup.

References

- A. A. A. Agboola, A. D. Akinola, and O. Y. Oyebola. Neutrosophic Rings I, Int. J. Math. Comb. 4 (2011), 1-14.
- [2] A. A. A. Agboola, E. O. Adeleke, and S. A. Akinleye. Neutrosophic Rings II, Int. J. Math. Comb. 2 (2012), 1-8.
- [3] A. A. A. Agboola, A. O. Akwu, and Y. T. Oyebo. Neutrosophic Groups and Neutrosophic Subgroups, Int. J. Math. Comb. 3 (2012), 1-9.
- [4] A. A. A. Agboola and B. Davvaz. Introduction to Neutrosophic Hypergroups (To appear in ROMAI Journal of Mathematics).
- [5] P. Corsini. Prolegomena of Hypergroup Theory. Second edition, Aviain Editore, 1993.
- [6] P. Corsini and V. Leoreanu. Applications of Hyperstructure Theory. Advances in Mathematics. Kluwer Academic Publisher, Dordrecht, 2003.

A.A.A. Agboola, S.A. Akinleye, Neutrosophic Hypercompositional Structures defined by Binary Relations

- [7] P. Corsini and V. Loereanu, Hypergroups and Binary Relations. Algebra Universalis 43 (2000), 321-330.
- [8] P. Corsini, On the Hypergroups associated with Binary Relations. Multiple Valued Logic, 5 (2000), 407-419.
- [9] P. Corsini, Binary Relations and Hypergroupoids. Italian J. Pure and Appl. Math 7 (2000), 11-18.
- [10] L. Cristea and M. Stefanescu, Binary Relations and Reduced Hypergroups. Discrete Math. 308 (2008), 3537-44.
- [11] L. Cristea, M. Stefanescu, and C. Angheluta, About the Fundamental Relations defined on the Hypergroupoids associated with Binary Relations. Electron. J. Combin. 32 (2011), 72-81.
- [12]B. Davvaz and V. Leoreanu-Fotea. Hyperring Theory and Applications. International Academic Press, USA, 2007.
- [13]M. De Salvo and G. Lo Faro. Hypergroups and Binary Relations, Multi-Val. Logic 8 (2002), 645-657.
- [14]M. De Salvo and G. Lo Faro. A New class of Hypergroupoids Associated with Binary Relations, Multi-Val. Logic Soft Comput., 9 (2003), 361-375.
- [15]F. Smarandache. A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic Set, Neutrosophic Probability (3rd Ed.). American Research Press, Rehoboth, 2003. URL: <u>http://fs.gallup.unm.edu/eBook-Neutrosophic4.pdf</u>.
- [16]Ch.G. Massouros and Ch. Tsitouras, Enumeration of Hypercompositional Structures defined by Binary Relations, Italian J. Pure and App. Math. 28 (2011), 43-54.
- [17]Ch.G. Massouros and Ch. Tsitouras, Enumeration of Rosenberg-Type Hypercompositional Structures defined by Binary Relations, Euro J. Comb. 33 (2012), 1777-1786.
- [18]F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm, Sweden, (1934), 45-49.
- [19]S. Mirvakili, S.M. Anvariyeh and B. Davvaz, On α -relation and transitivity conditions of α , Comm. Algebra, 36 (2008), 1695-1703.
- [20]S. Mirvakili and B. Davvaz, Applications of the α^* -relation to Krasner hyperrings, J. Algebra, 362 (2012), 145-146.
- [21]J. Mittas, Hypergroups canoniques, Math. Balkanica 2 (1972), 165-179.

- [22]I.G. Rosenberg, Hypergroups and Join Spaces determined by relations, Italian J. Pure and App. Math. 4 (1998), 93-101.
- [23]S.I. Spartalis and C. Mamaloukas, Hyperstructures Associated with Binary Relations, Comp. Math. Appl. 51 (2006), 41-50.
- [24]W.B. Vasantha Kandasamy and F. Smarandache. Some Neutrosophic Algebraic Structures and Neutrosophic N-Algebraic Structures. Hexis, Phoenix, Arizona, 2006. URL: http://fs.gallup.unm.edu/NeutrosophicN-AlgebraicStructures.pdf.
- [25] W.B. Vasantha Kandasamy and F. Smarandache. Neutrosophic Rings, Hexis, Phoenix, Arizona, 2006. URL: http://fs.gallup.unm.edu/NeutrosophicRings.pdf.

Received: May 26th, 2014. Accepted: June 10th, 2014.