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1 Introduction 

The concept of hyperstructure together with the 
concept of hypergroup was introduced by F. Marty at the 
8th Congress of Scandinavian Mathematicians held in 
1934. A comprehensive review of the concept can be 
found in [5, 6, 12].  The concept of neutrosophy was  

introduced by F. Smarandache in 1995 and the concept of 
neutrosophic algebraic structures was introduced by F. 
Smarandache and W.B. Vasantha Kandasamy in 2006. A 
comprehensive review of neutrosophy and neutrosophic 
algebraic structures can be found in [1, 2, 3, 4, 15, 24 , 25]. 

One of the techniques of constructing hypergoupoids, 

quasi hypergroups, semihypergroups and hypergroups is to 
endow a nonempty set H with a hypercomposition derived 
from the binary relation ρ on H that give rise to a 
hypercompositional structure Hρ. In this paper, we consider 
binary relations τ on a neutrosophic set H(I) that define 
hypercompositional structures ( )H I  .Hypercompositions

in H(I) considered in this paper are in the sense of 
Rosenberg [22], Massouros and Tsitouras [16, 17], Corsini 
[8, 9], and De Salvo and Lo Maro [13, 14]. We give the 
characterizations of τ that make ( )H I  hypergroupoids,
quasihypergroups, semihypergroups, neutrosophic  
hypergroupoids, neutrosophic quasihypergroups,  

neutrosophic semihypergroups, and neutrosophic  
hypergroups.   

2 Preliminaries 

Definition 2.1. Let H be a non-empty set, and 

: *( )H H P H  be a hyperoperation. 
(1) The couple ( , )H is called a hypergroupoid. For 

any two non-empty subsets A and B of H and 
x H , we define 

,

, { }
a A b B

A B a b A x A x
 

  and 

{ }x B x B  

(2) A hypergroupoid ( , )H is called a 
semihypergroup if for all a,b,c of H we have 

( )a b c  ( )a b c , which means that  

.
u a b v b c

u c a v
 

  

A hypergroupoid ( , )H is called a 
quasihypergroup if for all a of H we have 

a H H a H  . This condition is also 

called the reproduction axiom.  
(3) A hypergroupoid ( , )H which is both a 

semihypergroup and a quasihypergroup is called a 
hypergroup. 

Definition 2.2. Let ( , )G  be any group and let 

( )G I G I  . The couple ( ( ), )G I  is called a 

neutrosophic group generated by G and I under the binary 
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operation  . The indeterminancy factor I is such that 

I I I  . If   is ordinary multiplication, then 

*...* nIastI I I I  and if   is ordinary addition, then 

...I I I I nI     for  n . 

If abba  for all , ( ),a b G I we say that G(I) is 

commutative. Otherwise, G(I) is called a non-commutative 

neutrosophic group. 

Theorem 2.3. [24] Let G(I) be a neutrosophic group. 
Then,  

(1) G(I) in general is not a group; 

(2)  G(I) always contain a group. 

Example 1. [3] Let G(I)={e, a, b, c, I, aI, bI, cI} be a set, 

where a2=b2=c2=e, bc=cb=a, ac=ca=b, ab=ba=c. Then  

(G(I),.) is a commutative neutrosophic group. 

Definition 2.4. [4] Let ( , )H be any hypergroup and let 

( ) {( , ) : , }.H I H I a bI a b H    The couple  

( ( ), )H I  is called a neutrosophic hypergroup generated 

by H and I under the hyperoperation . 

 For all (a,bI),(c,dI) ( ),H I the composition of elements 

of H(I) is defined by 

( , ) ( , ) {( , ) : ,a bI c dI x yI x a c   

}.y a d b c b d       

Example 2. [4] Let H(I)={a,b,(a,aI),(a,bI),(b,aI), (b,bI)} be 

a set and let  be a hyperoperation on H defined in the 
table below. 

a b (a,aI) (a,bI) (b,aI) (b,bI) 

a a b (a,aI) (a,bI) (b,aI) (b,bI) 

b b a 

b 

(b,bI) (b,aI) 

(b,bI) 

(a,bI) 

(b,bI) 

(a,aI) 

(a,bI) 

(b,aI) 

(b,bI) 

(a,aI) (a,aI) (b,bI) (a,aI) (a,aI) 

(b,bI) 

(b,aI) 

(b,bI) 

(b,bI) 

(a,bI) (a,bI) (b,aI) 

(b,bI) 

(a,aI) 

(a,bI) 

(a,aI) 

(a,bI) 

(b,aI) 

(b,bI) 

(b,aI) 

(b,bI) 

(b,aI) (b,aI) (b,bI) 

(a,bI) 

(b,aI) 

(b,bI) 

(b,aI) 

(b,bI) 

(a,aI) 

(a,bI) 

(b,aI) 

(b,bI) 

(a,aI) 

(a,bI) 

(b,aI) 

(b,bI) 

(b,bI) (b,bI) (a,aI) 

(a,bI) 

(b,aI) 

(b,bI) 

(b,bI) (b,aI) 

(b,bI) 

(a,aI) 

(a,bI) 

(b,aI) 

(b,bI) 

(a,aI) 

(a,bI) 

(b,aI) 

(b,bI) 

Then ( ( ), )H I  is a neutrosophic hypergroup. 

Definition 2.5. Let H be a nonempty set and let ρ be a 

binary relation on H. 

(1) 
2 {( , ) : ( , ), ( , ) ,x y x z z y      for 

some }.z H  

(2) An element  x H is called an outer element of ρ 

if 
2( , )z x   for some .z H Otherwise, x is 

called an inner element. 

(3) The domain of ρ is the set 

( ) { : ( , ) ,D x H x z    for some 

}.z H  

(4) The range of ρ is the set   
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( ) { : ( , ) ,R x H z x    for some }.z H  

In [22], Rosenberg introduced in H the hypercomposition 

{ : ( , ) }x x z H x z    and 

x y x x y y   (1) 

and proved the following: 

Proposition 2.6. [22] ( , )H H  is a hypergroupoid if 

and only if ( )H D  .  

Proposition 2.7. [22]  H
is a quasihypergroup if and

only if 

(1) ( )H D  . 
(2) ( )H R  . 

Proposition 2.8. [22] H
 is a semihypergroup if and only

if 

(1) ( )H D  . 

(2) 
2  . 

(3) 
2( , )a x  implies that ( , )a x   whenever x 

is an outer element of ρ. 

Proposition 2.9. [22] H
 is a hypergroup if and only if

(1) ( )H D  . 
(2) ( )H R  . 

(3) 
2  . 

(4) 
2( , )a x  implies that ( , )a x   whenever x 

is an outer element of ρ. 

In [17], Massouros and Tsitouras noted that 

whenever x is an outer element of ρ, then it can be deduced 

from condition (2) and (3) (conditions (3) and (4)) of 

Proposition 2.8 (Proposition 2.9) that ( , )a x   if and 

only if 
2( , )a x   for some a H  . Hence, they 

restated Propositions 2.8 and 2.9 in the following 

equivalent forms: 

Proposition 2.10. [17] H
 is a semihypergroup if and

only if 

(1) ( )H D  . 

(2) 
2( , )a x  if and only if ( , )a x   for all 

a H whenever x is an outer element of ρ. 

Proposition 2.11. [17] H
 is a semihypergroup if and

only if 

(1) ( )H D  . 

(2) ( )H R  . 

(3) 
2( , )a x  if and only if ( , )a x   for all 

a H whenever x is an outer element of ρ. 

If H is a nonempty set and ρ is a binary on H, 
Massouros and Tsitouras [17] defined hypercomposition  
on H as follows: 

{ : ( , ) }x x z H z x    and 
x y x x y y           (2) 
and stated that: 

Proposition 2.12. [17] If ρ is symmetric, then the 
hypercompositional structures ( , )H and  

( , )H coincide. 

Following Rosenberg’s terminology in [22],  
Massouros and Tsitouras established the following: 

Definition 2.13. [17] 

(1) For ( , )a b  , a is called a predecessor of b and 
b a successor of a.  

(2) An element x of H is called a predecessor outer 

element of ρ if 
2( , )x z  for some z H . 

Using hypercomposition , Massouros and 

Tsitouras established the following: 

Proposition 2.14. [17] ( , )H H  is hypergroupoid if 

and only if ( ).H R    

Proposition 2.15. [17] ( , )H H  is quasihypergroup if 

and only if 

(1) ( )H D  . 
(2) ( )H R  . 

Proposition 2.16. [17] ( , )H H  is 

semihypergroup if and only if 

(1) ( )H R  . 

(2) 
2( , )x y  if and only if ( , )x y   for all 

y H whenever x is a predecessor outer 

element of ρ. 

Proposition 2.17. [17] ( , )H H  is hypergroup if 

and only if 

(1) ( )H D  . 
(2) ( )H R  . 

(3) 
2( , )x y  if and only if ( , )x y   for all 

y H whenever x is a predecessor outer 

element of ρ. 

If H is a nonempty set and ρ is a binary relation on H, 
Corsini [8, 9] introduced in H the hypercomposition: 

{ : ( , )x y z H x z     and 
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( , )z y  for some }.z H                           (3) 

It is clear that ( , )H   is a partial hypergroupoid and it is a 

hypergroupoid if for each pair of elements ,x y H , 

there exists z H such that ( , )x z  and ( , )z y  . 

Equivalently, ( , )H   is a hypergroupoid if and only if 

2 2H  .  

If H
 is the hypercompositional structure defined by

equation (3) , Massouros and Tsitouras [16] proved the 

following: 

Proposition 2.18. [16] H
 is a quasihypergroup if and

only if ( , )x y   for all ,x y H .

Lemma 2.19. [16] If H
 is a semihypergroup and

( , )z z   for some z H , then ( , )s z  implies

that ( , )z s  . 

Corrolary 2.20. [16] If H
 is a semihypergroup and ρ is

not reflexive, then ρ is not symmetric. 

Lemma 2.21. If H
 is a semihypergroup then ρ is

reflexive. 

Proposition 2.22. [16] H
 is a semihypergroup if and

only if ( , )x y   for all ,x y H .

Definition 2.23. A hyperoperation   defined through ρ is 

said to be a total hypercomposition if and only if 

( , )x y   for all ,x y H . In other words,   is said 

to be a total hypercomposition if x y H   for all 

,x y H . 

Remark 1. If a hypercompositional structure H
 is

endowed with the total hypercomposition  , then 

( , )H   is a hypergroup. 

Theorem 2.24. [16] The only semihypergroup and the 

only quasihypergroup defined by the binary relation ρ is 

the total hypergroup. 

If H is a nonempty set and ρ is a binary relation on H, 

De Salvo and Lo Faro [13, 14] introduced in H the 

hypercomposition: 

{ : ( , )x y z H x z      

( , )x y   for some }.z H  

They characterized the relations ρ which give 

quasihypergoups, semihypergroups and hypergroups. 

3 Neutrosophic Hypercompositional Structures  

3.1 Neutrosophic Hypercompositional Structures 
of Rosenberg Type 

Let τ be a binary relation on H(I) and let 
H

  . For 

all ( , ), ( , ) ( )a bI c dI H I , define hypercomposition on 

H(I) as follows: 

( , ) ( , ) {( , ) ( ) : ,a bI a bI x yI H I x a a  

}y a a b b     

{( , ) ( ) : ( , ) ,x yI H I a x     

( , )a y  or ( , ) }b y  . 

(5)

( , ) ( , ) {( , ) ( ) : ,a bI c dI x yI H I x a a c c   

}y a a b b c c d d   

{( , ) ( ) : ( , ) ,x yI H I a x     

or ( , ) , ( , )c x a y    

or ( , )b y  or ( , )c y  or ( , ) }.d y    (6) 

Let ( ) ( ( ), )H I H I  be a hypercompositional 
structure arising from the hypercomposition defined by 
equation (6). 

Proposition 3.1.1. ( )H I  is a hypergroupoid if and only

if Hρ is a hypergroupoid. 

Proof. Suppose that Hρ is a hypergroupoid. Then 

( )H D  and from equation (6) we have 

( , ) ( , ) ( )a bI c dI H I  for all 

( , ), ( , )a bI c dI ( )H I . Hence ( )H I  is a 

hypergroupoid. The converse is obvious. 

Proposition 3.1.2. ( )H I  is a quasihypergroup if and

only if Hρ is a quasihypergroup. 

Proof. Suppose that Hρ is a quasihypergroup. Then 

( ) ( )H D R   . Let ( , ) ( , ) ( , )x yI a bI c dI for 

an arbitrary ( , ) ( )c dI H I . Then 

( , ) ( ) {( , ) ( , )}a bI H I a bI c dI   
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{( , ) ( ) : ( , ) ,x yI H I a x   

or ( , ) , ( , )c x a y    

or ( , )b y  or ( , )c y  or ( , ) }.d y   

( )H I 

Similarly, it can be shown that 
( ) ( , )H I a bI  ( )H I  for all ( , ) ( )a bI H I .

Hence ( ( ) , )H I  is a quasihypergroup. The converse 
is obvious.  

Lemma 3.1.1. If ρ is not reflexive, then  

( , )a bI  ( , ) ( , )a bI a bI for all ( , ) ( )a bI H I . 

Proof. Suppose that ρ is not reflexive and suppose 
that ( , )a bI  ( , ) ( , )a bI a bI for all ( , ) ( )a bI H I . 
Assuming that ( , )a b  , we have from equation (5): 

( , ) ( , ) {( , ) ( ) : ( , ) ,a bI a bI a bI H I a a   
( , )a b  or ( , ) }b b   

    
a contradiction. Hence ( , )a bI  ( , ) ( , )a bI a bI . 

Proposition 3.1.3. ( )H I   is a semihypergroup if ρ is

reflexive and symmetric.  

Proof. Suppose that ρ is reflexive and symmetric. Let 

( , ), ( , ) ( )a bI b aI H I be arbitrary and let ( , )x a  , 

( , )x b   and ( , )y a  . Then ( , ) ( , )b aI a bI  

(( , ) ( , ))b aI a bI implies that 

( , ) (( , ) ( , )) {( , ) ( ) : ( , )a bI b aI a bI b aI H I a b   
or ( , )x b  , ( , ) , ( , )a a b a   or 

( , )x a  or ( , ) }y a   

(( , ) ( , )) ( , ).a bI b aI a bI  

This shows that 

( , ) (( , ) ( , ))b aI a bI b aI ( , )a bI . Since (a,bI) 
and (b,aI) are arbitrary, it follows that ( )H I   is a

semihypergroup. 

The following results are immediate from the 

hypercomposition defined by equation (6): 

Proposition 3.1.4. (1) ( )H I  is a neutrosophic
hypergroupoid if and only if Hρ is a hypergroupoid. 

(2) ( )H I  is a neutrosophic semihypergroup if and
only if Hρ is a semihypergroup. 

(3) ( )H I  is a neutrosophic hypergroup if and only if
Hρ is a hypergroup. 

3.2 Neutrosophic Hypercompositional Structures 
of Massouros and Tsitouras Type 

Let τ be a binary relation on H(I) and let 
H

  . For 

all ( , ), ( , ) ( )a bI c dI H I , define hypercomposition on 

H(I) as follows: 

( , ) ( , ) {( , ) : ,a bI a bI x yI x a a   

 }y a a b b 
 

 
{( , ) : ( , ) ,x yI x a  

 

( , )y a  or ( , ) }y b 
           (7)

( , ) ( , ) {( , ) : ,a bI c dI x yI x a a c c    

}y a a b b c c d d   
 

    
{( , ) : ( , ) ,x yI x a  

 

or ( , ) ,x c   ( , )y a  or 

( , )y b  or ( , )y c  or ( , ) }y d        (8) 

( ) ( ( ), )H I H I  be a hypercompositional structure 
arising from the hypercomposition defined by equation (8). 

Proposition 3.2.1. If ρ is symmetric, then  

hypercompositional structure ( ( ), )H I   coincide with 

hypercompositional structure ( ( ), )H I . 

Proof. This follows directly from equations (6) and (8).   

Proposition 3.2.2. ( )H I  is a hypergroupoid if and only
if Hρ is a hypergroupoid. 

Proof. Suppose that Hρ is a hypergroupoid. Then 

( )H R  and from equation (8) we have 

( , ) ( , ) ( )a bI c dI H I  for all 

( , ), ( , )a bI c dI ( )H I . Hence ( )H I   is a 
hypergroupoid. The converse is obvious.  

Proposition 3.2.3. ( )H I  is a quasihypergroup if and
only if Hρ is aquasi hypergroup. 

Proof. Suppose that Hρ is a quasihypergroup. Then 

( ) ( )H D R   . Let ( , ) ( , ) ( , )x yI a bI c dI for 
an arbitrary ( , ) ( )c dI H I . Then    

( , ) ( ) {( , ) ( , )}a bI H I a bI c dI   

 {( , ) ( ) : ( , )x yI H I x a     

or ( , ) ,x c   ( , )y a  or 

( , )y b  or ( , )y c  or ( , ) }y d     

  ( )H I 

Similarly, it can be shown that 
( ) ( , ) ( )H I a bI H I  for all ( , ) ( )a bI H I . 

Hence ( )H I   is a quasihypergroup. The converse is
obvious. 

Lemma 3.2.1. If ρ is not reflexive, then 

( , )a bI  ( , ) ( , )a bI a bI  for all ( , ) ( )a bI H I . 

Proof. The same as the proof of Lemma 3.1.1. 

Proposition 3.2.4. ( )H I  is a semihypergroup if ρ is
reflexive and symmetric.  
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Proof. This follows from Proposition 3.1.3 and Proposition 
3.2.1. 

Proposition  3.2.5. (1) ( )H I  is a neutrosophic
hypergroupoid if and only if Hρ is a hypergroupoid. 

(2) ( )H I  is a neutrosophic semihypergroup if and
only if Hρ is a semihypergroup. 

(3) ( )H I  is a neutrosophic hypergroup if and only if
Hρ is a hypergroup. 

3.3 Neutrosophic Hypercompositional Structures 
of Corsini Type 

Let τ be a binary relation on H(I) and let 
H

  . For 

all ( , ), ( , ) ( )a bI c dI H I , define hypercomposition on 

H(I) as follows: 

( , ) ( , ) {( , ) ( ) : ,a bI c dI x yI H I x a a    

}y a d b c b d       

{( , ) ( ) : ( , ) ,x yI H I a x     

and ( , ) ,[( , )x c a y    

and ( , ) ]y d  or[( , )b y  and ( , ) ]y c    

or [( , )b y  and ( , ) ]}.y d    (9) 

Let ( ) ( ( ), )H I H I   be a hypercompositional 
structure arising from the hypercomposition defined by 
equation (9). 

Proposition 3.3.1. ( )H I  is a hypergroupoid if and only

if Hρ is a hypergroupoid. 

Proof. Suppose that Hρ is a hypergroupoid. Then H2=ρ2.
Since 

2( , ), ( , ), ( , ), ( , )a c a d b c b d  from equation (9), 
it follows that ( , ) ( , ) ( )a bI c dI H I   for all 

( , ), ( , )a bI c dI ( )H I . Hence ( )H I   is a
hypergroupoid. The converse is obvious.   

Proposition 3.3.2. ( )H I  is a quasihypergroup if and
only if Hρ is a quasihypergroup. 

Proof. Suppose that Hρ is a quasihypergroup. Then 

( , )x y  for all ,x y H . Let  

( , )x yI  ( , ) ( , )a bI c dI for an arbitrary  

( , ) ( )c dI H I . Then    

( , ) ( ) {( , ) ( , )}a bI H I a bI c dI    

{( , ) ( ) : ( , ) ,x yI H I a x     

and ( , ) ,[( , )x c a y    

and ( , ) ]y d  or[( , )b y  and ( , ) ]y c    

or [( , )b y  and ( , ) ]}.y d   
( )H I 

Similarly, it can be shown that 
( ) ( , ) ( )H I a bI H I   for all ( , ) ( )a bI H I . 

Hence ( )H I   is a quasihypergroup. The converse is
obvious. 

Proposition 3.3.3. ( )H I  is a neutrosophic 

quasihypergroup if and only if Hρ is aquasihypergroup. 

Proof. Follows directly from equation (9). 

Lemma 3.3.1. If ρ is not reflexive and symmetric, then 
(1) ( , ) ( , ) ( , )a bI a bI a bI   

for all ( , ) ( )a bI H I . 
(2) ( , ) ( , ) ( , )b aI a bI a bI 

for all ( , ), ( , ) ( )a bI b aI H I . 
(3) ( , ) ( , ) ( , )a aI a bI a bI   

for all ( , ), ( , ) ( )a aI a bI H I . 
(4) ( , ) ( , ) ( , )a bI a bI a bI   

for all ( , ), ( , ) ( )a bI b aI H I . 
(5) ( , ) ( , ) ( , )b aI a bI b aI   

for all ( , ), ( , ) ( )a bI b aI H I . 
(6) ( , ) ( , ) ( , )a aI a bI b aI   

for all ( , ), ( , ), ( , ) ( )a aI a bI b aI H I . 

Proof. (1) Suppose that ρ is not reflexive and symmetric 
and suppose that ( , )a bI  ( , ) ( , )a bI a bI . Then 

( , ) ( , ) {( , ) ( ) : ( , ) ,a bI a bI a bI H I a a         

( , )b b 
 

or [( , )a b  and 

( , ) ]b b  or [( , )b b  and ( , ) ]a b 
    

a contradiction. Hence ( , )a bI  ( , ) ( , )a bI a bI . 
Using similar argument, (2), (3), (4), (5) and (6) can be 
established.  

Proposition 3.3.4. ( )H I   is a semihypergroup if ρ is
reflexive and symmetric.  

Proof. Suppose that ρ is reflexive and symmetric. Let 

( , ), ( , ) ( )a bI b aI H I be arbitrary and let ( , )x a  , 

( , )x b  , ( , )y b  and ( , )b a  . Then 

( , ) ( , )a bI a bI   (( , ) ( , ))b aI a bI implies that 
 ( , ) (( , ) ( , )) {( , ) ( ) :a bI b aI a bI a bI H I   

( , )x a  and ( , ) ,[( , )a a x b   and 

( , ) ]b b  or [( , )y a  and ( , ) ]b a  or 

[( , )y b  and ( , ) ]}b b   

(( , ) ( , )) ( , ).a bI b aI a bI    
This shows that 

( , ) (( , ) ( , ))b aI a bI b aI  ( , )a bI . Since (a,bI) and 
(b,aI) are arbitrary, it follows that ( )H I   is a

semihypergroup. 

Corollary 3.3.1. ( )H I  is a semihypergroup if and only if
Hρ is a semihypergroup. 

Proposition 3.3.5. If any pair of elements of Hρ does not 

belong to ρ, then ( )H I   is not a semihypergroup.
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3.1 Neutrosophic Hypercompositional Structures 
of De Salvo and Lo Faro Type 

Let τ be a binary relation on H(I) and let 
H

  . For 

all ( , ), ( , ) ( )a bI c dI H I , define hypercomposition on 

H(I) as follows: 

( , ) ( , ) {( , ) ( ) : ,a bI c dI x yI H I x a c    

}y a d b c b d       

{( , ) ( ) : ( , ) ,x yI H I a x     

or ( , ) , ( , )x c a y    

or ( , )b y  or ( , )y c  or ( , ) }.y d      (10) 

Let ( ) ( ( ), )H I H I   be a hypercompositional 
structure arising from the hypercomposition defined by 
equation (10). 

Proposition 3.4.1. If ρ is symmetric, then  

hypercompositional structures ( ( ), )H I  , ( ( ), )H I
and ( ( ), )H I coincide.    

Proof. Follows directly from equations (6), (8) and (10). 

Proposition 3.4.2. ( )H I  is a hypergroupoid if and only

if Hρ is a hypergroupoid. 

Proof. Suppose that Hρ is a hypergroupoid. Then H=D(ρ) 
or H=R(ρ) and from equation (10) we have  
( , ) ( , ) ( )a bI c dI H I   for all

( , ), ( , )a bI c dI ( )H I . Hence ( )H I   is a
hypergroupoid. The converse is obvious.   

Proposition 3.4.3. ( )H I  is a quasihypergroup if and
only if Hρ is a quasihypergroup. 

Proof. The same as the proof of Proposition 3.2.3. 

Lemma 3.4.1. If ρ is not reflexive and symmetric, then 

(1) ( , ) ( , ) ( , )a bI a bI a bI 
for all ( , ) ( )a bI H I . 

(2) ( , ) ( , ) ( , )b aI a bI a bI   
for all ( , ), ( , ) ( )a bI b aI H I . 

(3) ( , ) ( , ) ( , )a aI a bI a bI   
for all ( , ), ( , ) ( )a aI a bI H I . 

(4) ( , ) ( , ) ( , )a bI a bI a bI   
for all ( , ), ( , ) ( )a bI b aI H I . 

(5) ( , ) ( , ) ( , )b aI a bI b aI   
for all ( , ), ( , ) ( )a bI b aI H I . 

(6) ( , ) ( , ) ( , )a aI a bI b aI   
for all ( , ), ( , ), ( , ) ( )a aI a bI b aI H I . 

Proof. (1) Suppose that ρ is not reflexive and symmetric 
and suppose that ( , )a bI  ( , ) ( , )a bI a bI . Then 

( , ) ( , ) {( , ) ( ) : ( , ) ,a bI a bI a bI H I a a    
( , )a b  or  ( , )b b 

 
or ( , ) }b a 

    
a contradiction. Hence ( , )a bI  ( , ) ( , )a bI a bI . 

Using similar argument, (2), (3), (4), (5) and (6) can be 
established.  

Proposition 3.4.4. ( )H I   is a semihypergroup if ρ is

reflexive and symmetric.  

Proof. Suppose that ρ is reflexive and symmetric. Let 

( , ), ( , ) ( )a bI b aI H I be arbitrary and let ( , )a x  , 

( , )b x  , ( , )b y  and ( , )a b  . Then 

( , ) ( , )a bI a bI   (( , ) ( , ))b aI a bI implies that 

 ( , ) (( , ) ( , )) {( , ) ( ) :a bI b aI a bI a bI H I   
( , )a a  or ( , )a x  , ( , )a b  or 

( , )b y  or ( , )b b  or ( , ) }b x   

(( , ) ( , )) ( , ).a bI b aI a bI    
This shows that 

( , ) (( , ) ( , ))a bI a bI b aI  ( , )a bI . Since (a,bI) and 

(b,aI) are arbitrary, it follows that ( )H I   is a
semihypergroup. 

The following results are immediate from the 
hypercomposition defined by equation (10): 

Proposition  3.4.5. (1) ( )H I  is a neutrosophic
hypergroupoid if and only if Hρ is a hypergroupoid. 

(2) ( )H I  is a neutrosophic semihypergroup if and
only if Hρ is a semihypergroup. 

(3) ( )H I  is a neutrosophic hypergroup if and only if
Hρ is a hypergroup. 
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