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1 Introduction

The theory of fuzzy set introduced by L.A. Zadeh [20] is mainly concerned with the
measurement of the degree of membership and non-membership of a given abstract
situation. Despite its wide range of real life applications, fuzzy set theory cannot be
applied to model an abstract situation where indeterminancy is involved. In his quest to
modeling situations involving indeterminates, F. Smarandache introduced the theory of
neutrosophy in 1995. Neutrosophic logic is an extension of the fuzzy logic in which inde-
terminancy is included. In the neutrosophic logic, each proposition is characterized by
the degree of truth in the set (T ), the degree of falsehood in the set (F ) and the degree
of indeterminancy in the set (I) where T, F, I are subsets of ] − 0, 1 + [. Neutrosophic
logic has wide applications in science, engineering, IT, law, politics, economics, finance
etc. The concept of neutrosophic algebraic structures was introduced by F. Smaran-
dache and W.B. Vasantha Kandasamy in 2006. However, for details about neutrosophy
and neutrosophic algebraic structures, the reader should see [1, 2, 3, 11, 16, 17, 18, 19].

The concept of hyperstructures was introduced by F. Marty [10] in 1934 at the
8th Congress of Scandinavian Mathematicians. The concept has been further studied,
developed and generalized by many reseachers in hyperstructures. In the development
of studies in hyperstructures, M.S. Talini [13] introduced the concept of hypervector
spaces in 1990 at the 4th International Congress on Algebraic Hyperstructures and Ap-
plications. Since its introduction in 1990, hypervector spaces have been further studied
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and expanded by other reseachers. For further details about hypervector spaces, the
reader should see [5, 6, 7, 8, 9, 12, 14, 15].

The concept of neutrosophic vector spaces was studied by A.A.A. Agboola and
S.A. Akinleye in [4]. In the present paper, we are concerned with the study of neu-
trosophic hypervector spaces. Some basic definitions and properties of the hypervector
spaces are generalized.

2 Preliminaries

In this section, we present some known definitions and results that will be used in the
present paper.

Definition 2.1. Let (G, ∗) be any group and let G(I) =< G∪I >. The couple (G(I), ∗)
is called a neutrosophic group generated by G and I under the binary operation ∗. The
indeterminancy factor I is such that I ∗ I = I. If ∗ is ordinary multiplication, then
I ∗ I ∗ · · · ∗ I = In = I and if ∗ is ordinary addition, then I ∗ I ∗ I ∗ · · · ∗ I = nI for
n ∈ N.

If a∗ b = b∗a for all a, b ∈ G(I), we say that G(I) is commutative. Otherwise, G(I)
is called a non-commutative neutrosophic group. (R(I),+), (Q(I),+), (C(I),+) are
examples of commutative neutrosophic groups while (Am×n(I), .) is a non-commutative
neutrosophic group.

Definition 2.2. Let (K,+, .) be any field and let K(I) =< K ∪ I > be a neutro-
sophic set generated by K and I. The tripple (K(I),+, .) is called a neutrosophic field.
The zero element 0 ∈ K is represented by 0 + 0I in K(I) and 1 ∈ K is represented by
1 + 0I in K(I). Examples of neutrosophic field include (Q(I), .), (R(I), .) and (C(I), .).

Definition 2.3. Let K(I) be a neutrosophic field and let F (I) be a nonempty subset of
K(I). F (I) is called a neutrosophic subfield of K(I) if F (I) is itself a neutrosophic field.
It is essential that F (I) contains a proper subset which is a field. (Q(I), .) is a neutro-
sophic subfield of (R(I), .) and (R(I), .) is a neutrosophic subfield of (C(I), .).

Definition 2.4. [4] Let (V,+, .) be any vector space over a field K and let V (I) =<
V ∪ I > be a neutrosophic set generated by V and I. The tripple (V (I),+, .) is called
a weak neutrosophic vector space over a field K. If V (I) is a neutrosophic vector space
over a neutrosophic field K(I), then V (I) is called a strong neutrosophic vector space.
The elements of V (I) are called neutrosophic vectors and the elements of K(I) are
called neutrosophic scalars.

If u = a + bI, v = c + dI ∈ V (I) where a, b, c and d are vectors in V and α =
k +mI ∈ K(I) where k and m are scalars in K, we define:

u+ v = (a+ bI) + (c+ dI) = (a+ c) + (b+ d)I, and

α.u = (k +mI).(a+ bI) = k.a+ (k.b+m.a+m.b)I.
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Theorem 2.5. [4] Every strong neutrosophic vector space is a weak neutrosophic vector
space.

Theorem 2.6. [4] Every weak (strong) neutrosophic vector space is a vector space.

Example 1. (1) R(I) is a weak neutrosophic vector space over a field Q and it is a
strong neutrosophic vector space over a neutrosophic field Q(I).

(2) Rn(I) is a weak neutrosophic vector space over a field R and it is a strong neu-
trosophic vector space over a neutrosophic field R(I).

(3) Mm×n(I) = {[aij ] : aij ∈ Q(I)} is a weak neutrosophic vector space over a field
Q and it is a strong neutrosophic vector space over a neutrosophic field Q(I).

Definition 2.7. [4] Let V (I) be a strong neutrosophic vector space over a neutro-
sophic field K(I) and let W (I) be a nonempty subset of V (I). W (I) is called a strong
neutrosophic subspace of V (I) if W (I) is itself a strong neutrosophic vector space over
K(I). It is essential that W (I) contains a proper subset which is a vector space.

Example 2. Let V (I) = R3(I) be a strong neutrosophic vector space over a neutro-
sophic field R(I) and let

W (I) = {(u = a+ bI, v = c+ dI, 0 = 0 + 0I) ∈ V (I) : a, b, c, d ∈ V }.

Then W (I) is a strong neutrosophic subspace of V (I).

Definition 2.8. [4] Let W (I) be a strong neutrosophic subspace of a strong neutro-
sophic vector space V (I) over a neutrosophic field K(I). The quotient V (I)/W (I) is
defined by the set

{v +W (I) : v ∈ V (I)}.

V (I)/W (I) can be made a strong neutrosophic vector space over a neutrosophic field
K(I) if addition and multiplication are defined for all u+W (I), v+W (I) ∈ V (I)/W (I)
and α ∈ K(I) as follows:

(u+W (I)) + (v +W (I)) = (u+ v) +W (I),

α(u+W (I)) = αu+W (I).

The strong neutrosophic vector space (V (I)/W (I),+, .) over a neutrosophic field K(I)
is called a strong neutrosophic quotient space.

Definition 2.9. [13] Let P (V ) be the power set of a set V , P ∗(V ) = P (V )\{∅} and
let K be a field. The quadruple (V,+, •,K) is called a hypervector space over a field
K if:

(1) (V,+) is an abelian group.

(2) • : K × V → P ∗(V ) is a hyperoperation such that for all k,m ∈ K and u, v ∈ V ,
the following conditions hold:

3



(i) (k +m) • u ⊆ (k • u) + (m • u),

(ii) k • (u+ v) ⊆ (k • u) + (k • v),

(iii) k • (m • u) = (km) • u, where k • (m • u) = {k • v : v ∈ m • u},
(iv) (−k) • u = k • (−u),

(v) u ∈ 1 • u.

A hypervector space is said to be strongly left distributive (resp. strongly right
distributive) if equality holds in (i) (resp. in (ii)). (V,+, •,K) is called a strongly
distributive hypervector space if it is both strongly left and strongly right distributive.

3 Neutrosophic Hypervector Spaces and Neutrosophic Sub-
hypervector Spaces

In this section, we develop the concept of neutrosophic hypervector spaces and present
some of their basic properties.

Definition 3.1. Let (V,+, •,K) be any strongly distributive hypervector space over a
field K and let

V (I) =< V ∪ I >= {u = (a, bI) : a, b ∈ V }

be a set generated by V and I. The quadruple (V (I),+, •,K) is called a weak neutro-
sophic strongly distributive hypervector space over a field K.

For every u = (a, bI), v = (c, dI) ∈ V (I) and k ∈ K, we define

u+ v = (a+ c, (b+ d)I) ∈ V (I),

k • u = {(x, yI) : x ∈ k • a, y ∈ k • b}.

If K is a neutrosophic field, that is, K = K(I), then the quadruple (V (I),+, •,K(I))
is called a strong neutrosophic strongly distributive hypervector space over a neutro-
sophic field K(I).

For every u = (a, bI), v = (c, dI) ∈ V (I) and α = (k,mI) ∈ K(I), we define

u+ v = (a+ c, (b+ d)I) ∈ V (I),

α • u = {(x, yI) : x ∈ k • a, y ∈ k • b ∪m • a ∪m • b}.

The elements of V (I) are called neutrosophic vectors and the elements of K(I) are
called neutrosophic scalars. The zero neutrosophic vector of V (I), (0, 0I), is denoted
by θ, the zero element 0 ∈ K is represented by (0, 0I) in K(I) and 1 ∈ K is represented
by (1, 0I) in K(I).

Example 3. (1) Let V (I) = R(I) and let K = R. For all u = (a, bI), v = (c, dI) ∈
V (I) and k ∈ K, define:

u+ v = (a+ c, (b+ d)I),

k • u = {(x, yI) : x ∈ k • a, y ∈ k • b}.
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Then (V (I),+, •,K) is a weak neutrosophic strongly distributive hypervector
space over the field K.

(2) Let V (I) = R2(I) and letK = R(I). For all u = ((a, bI), (c, dI)), v = ((e, fI), (g, hI)) ∈
V (I) and α = (k,mI) ∈ K(I), define:

u+ v = ((a+ e, (b+ f)I), (c+ g, (d+ h)I)),

α • u = {((x, yI), (w, zI)) : x ∈ k • a, y ∈ k • b ∪m • a ∪m • b,
w ∈ k • c, z ∈ k • d ∪m • c ∪m • d}.

Then (V (I),+, •,K(I)) is a strong neutrosophic strongly distributive hypervector
space over the neutrosophic field K(I).

From now on, every weak(strong) neutrosophic strongly distributive hypervector
space will simply be called a weak(strong) neutrosophic hypervector space.

Lemma 3.2. Let V (I) be a weak neutrosophic hypervector space over a field K. Then
for all k ∈ K and u = (a, bI) ∈ V (I), we have

(1) k • θ = {θ}.

(2) k • u = {θ} implies that k = 0 or u = θ.

(3) −u ∈ (−1) • u.

Theorem 3.3. Every strong neutrosophic hypervector space is a weak neutrosophic hy-
pervector space.

Proof. Obvious since K ⊆ K(I).

Theorem 3.4. Every weak neutrosophic hypervector space is a strongly distributive
hypervector space.

Proof. Suppose that V (I) is a weak neutrosophic hypervector space over a field K.
Obviously, (V (I),+) is an abelian group. Let u = (a, bI), v = (c, dI) ∈ V (I) and
k,m ∈ K be arbitrary. Then
(1)

k • u+m • u = {(p, qI) : p ∈ k • a, q ∈ k • b}+ {(r, sI) : r ∈ m • a, s ∈ m • b}
= {(p+ r, (q + s)I) : p+ r ∈ k • a+m • a, q + s ∈ k • b+m • b}.

Also,

(k +m) • u = {(x, yI) : x ∈ (k +m) • a, y ∈ (k +m) • b}
= {(x, yI) : x ∈ k • a+m • a, y ∈ k • b+m • b}
= k • u+m • u.
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(2)

k • u+ k • v = {(p, qI) : p ∈ k • a, q ∈ k • b}+ {(r, sI) : r ∈ k • c, s ∈ k • d}
= {(p+ r, (q + s)I) : p+ r ∈ k • a+ k • c, q + s ∈ k • b+ k • d}.

Also,

k • (u+ v) = k • (a+ c, (b+ d)I)

= {(x, yI) : x ∈ k • (a+ c), y ∈ k • (b+ d)}
= {(x, yI) : x ∈ k • a+ k • c, y ∈ k • b+ k • d}
= k • u+ k • v.

(3)

k • (m • u) = k • {(x, yI) : x ∈ m • a, y ∈ m • b}
= {(p, qI) : p ∈ k • x, q ∈ k • y}
= {(p, qI) : p ∈ k • (m • a), q ∈ k • (m • b)}
= {(p, qI) : p ∈ (km) • a, q ∈ (km) • b}
= (km) • (a, bI)

= (km) • u.

(4)

(−k) • u = {(x, yI) : x ∈ (−k) • a, y ∈ (−k) • b}
= {(x, yI) : x ∈ k • (−a), y ∈ k • (−b)}
= k • (−a,−bI)

= k • (−u).

(5)

1 • u = {(x, yI) : x ∈ 1 • a, y ∈ 1 • b}
= {(a, bI) : a ∈ 1 • a, b ∈ 1 • b}

showing that u ∈ 1 • u. Accordingly, V (I) is a strongly distributive hypervector space.

Theorem 3.5. Let V (I) be a strong neutrosophic hypervector space over a neutro-
sophic field K(I). Then

(1) V (I) generally is not a strongly distributive hypervector space.

(2) V (I) always contain a strongly distributive hypervector space.
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Theorem 3.6. Let (V1(I),+1, •1,K(I)) and (V2(I),+′2, •′2,K(I)) be two strong neu-
trosophic hypervector spaces over a neutrosophic field K(I). Let

V1(I)× V2(I) = {((a1, b1I), (a2, b2I)) : (a1, b1I) ∈ V1(I), (a2, b2I) ∈ V2(I)}

and for all u = ((a1, b1I), (a2, b2I)), v = ((a′1, b
′
1I), (a′2, b

′
2I)) ∈ V1(I) × V2(I) and α =

(k,mI) ∈ K(I), define:

u+ v = ((a1 + a′1, (b1 + b′1)I), (a2 + a′2, (b2 + b′2)I)),

α • u = {((x, yI), (p, qI)) : x ∈ k • a1, y ∈ k • b1 ∪m • a1 ∪m • b1,
p ∈ k • a2, q ∈ k • b2 ∪m • a2 ∪m • b2}.

Then (V1(I)× V2(I),+, •,K(I)) is a strong neutrosophic hypervector space.

Definition 3.7. Let (V (I),+, •,K(I)) be a strong neutrosophic hypervector space over
a neutrosophic field K(I) and let W [I] be a nonempty subset of V (I). W [I] is said to be
a subhypervector space of V (I) if (W [I],+, •,K(I)) is also a neutrosophic hypervector
space over the neutrosophic field K(I). It is essential that W [I] contains a proper
subset which is a hypervector space over a field K.

Theorem 3.8. Let W [I] be a subset of a strong neutrosophic hypervector space (V (I),+, •,K(I))
over a neutrosophic field K(I). Then W [I] is a neutrosophic subhypervector space of
V (I) if and only if for all u = (a, bI), v = (c, dI) ∈ V (I) and α = (k,mI) ∈ K(I), the
following conditions hold:

(1) W [I] 6= ∅,

(2) u+ v ∈W [I],

(3) α • u ⊆W [I],

(4) W [I] contains a proper subset which is a hypervector space over K.

Corollary 3.9. Let W [I] be a subset of a strong neutrosophic hypervector space
(V (I),+, •,K(I)) over a neutrosophic field K(I). Then W [I] is a neutrosophic sub-
hypervector space of V (I) if and only if for all u = (a, bI), v = (c, dI) ∈ V (I) and
α = (k,mI), β = (r, sI) ∈ K(I), the following conditions hold:

(1) W [I] 6= ∅,

(2) α • u+ β • v ⊆W [I],

(3) W [I] contains a proper subset which is a hypervector space over K.

Theorem 3.10. Let W1[I],W2[I], · · · ,Wn[I] be neutrosophic subhypervector spaces of
a strong neutrosophic hypervector space (V (I),+, •,K(I)) over a neutrosophic field
K(I). Then

⋂n
i=1Wi[I] is a neutrosophic subhypervector space of V (I).
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Remark 1. If W1[I] and W2[I] are neutrosophic subhypervector spaces of a strong
neutrosophic hypervector space V (I) over a neutrosophic field K(I), then generally,
W1[I]∪W2[I] is not a neutrosophic subhypervector space of V (I) except ifW1[I] ⊆W2[I]
or W2[I] ⊆ W1[I]. However, W1[I] ∪W2[I] is a neutrosophic bihypervector space over
K(I).

Example 4. Let V (I) be the strong neutrosophic hypervector space of Example 3(2)
and let

W [I] = {((a, bI), θ) ∈ V (I) : a, b ∈ R}.

Then W [I] is a neutrosophic subhypervector space of V (I).

Definition 3.11. Let W [I] and X[I] be two neutrosophic subhypervector spaces of
a strong neutrosophic hypervector space (V (I),+, •,K(I)) over a neutrosophic field
K(I). The sum of W [I] and X[I] denoted by W [I] +X[I] is defined by the set⋃

{w + x : w = (a, bI) ∈W [I], x = (c, dI) ∈ X[I]}.

If W [I] ∩X[I] = {θ}, then the sum of W [I] and X[I] is denoted by W [I] ⊕X[I] and
it is called the direct sum of W [I] and X[I].

Theorem 3.12. Let W [I] and X[I] be two neutrosophic subhypervector spaces of a
strong neutrosophic hypervector space (V (I),+, •,K(I)) over a neutrosophic field K(I).

(1) W [I] +X[I] is a neutrosophic subhypervector space of V (I).

(2) W [I] + X[I] is the least neutrosophic subhypervector space of V (I) containing
W [I] and X[I].

Definition 3.13. Let W [I] and X[I] be two neutrosophic subhypervector spaces of
a strong neutrosophic hypervector space (V (I),+, •,K(I)) over a neutrosophic field
K(I). V (I) is said to be the direct sum of W [I] and X[I] written V (I) = W [I]⊕X[I]
if every element v ∈ V (I) can be written uniquely as v = w + x where w ∈ W [I] and
x ∈ X[I].

Theorem 3.14. Let W [I] and X[I] be two neutrosophic subhypervector spaces of a
strong neutrosophic hypervector space V (I),+, •,K(I)) over a neutrosophic field K(I).
V (I) = W [I]⊕X[I] if and only if the following conditions hold:

(1) V (I) = W [I] +X[I].

(2) W [I] ∩X[I] = {θ}.

Lemma 3.15. Let W [I] be a neutrosophic subhypervector space of a strong neutro-
sophic hypervector space (V (I),+, •,K(I)) over a neutrosophic field K(I). Then:

(1) W [I] +W [I] = W [I].
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(2) w +W [I] = W [I] for all w ∈W [I].

Definition 3.16. Let W [I] be a neutrosophic subhypervector space of a strong neu-
trosophic hypervector space (V (I),+, •,K(I)) over a neutrosophic field K(I). The
quotient V (I)/W [I] is defined by the set

{[v] = v +W [I] : v ∈ V (I)}.

If for every [u], [v] ∈ V (I)/W [I] and α ∈ K(I), we define:

[u]⊕ [v] = (u+ v) +W [I] and

α� [u] = [α • u] = {[x] : x ∈ α • u},

it can be shown that (V (I)/W [I],⊕,�,K(I)) is a strong neutrosophic hypervector over
a neutrosophic field K(I) called a strong neutrosophic quotient hypervector space.

4 Bases and Dimensions of Neutrosophic Hypervector Spaces

Theorem 4.1. Let (V (I),+, •,K(I)) be a strong neutrosophic hypervector space over
a neutrosophic field K(I) and let u1 = (a1, b1I), u2 = (a2, b2I), · · · , un = (an, bnI) ∈
V (I), α1 = (k1,m1I), α2 = (k2,m2I), · · · , α1 = (kn,mnI) ∈ K(I). If

W (I) =
⋃
{α1 • u1 + α2 • u2 + · · ·+ αn • un : ui ∈ V (I), αi ∈ K(I)},

then:

(1) (W (I),+, •,K(I)) is a neutrosophic subhypervector space of V (I).

(2) W (I) is the smallest neutrosophic subhypervector space of V (I) containing u1, u2, · · · , un.

Remark 2. The neutrosophic subhypervector space W (I) of the strong neutro-
sophic hypervector space V (I) over a neutrosophic field K(I) of Theorem 4.1 is said
to be generated or spanned by the neutrosophic vectors u1, u2, · · · , un and we write
W (I) = span{u1, u2, · · · , un}.

Definition 4.2. Let (V (I),+, •,K(I)) be a strong neutrosophic hypervector space
over a neutrosophic field K(I) and let B(I) = {u1 = (a1, b1I), u2 = (a2, b2I), · · · , un =
(an, bnI)} be a subset of V (I). B(I) is said to generate or span V (I) if V (I) =
span(B(I)).

Example 5. Let V (I) = R3(I) be a strong neutrosophic hypervector space over a neu-
trosophic field R(I) and letB(I) = {u1 = ((1, 0I), (0, 0I), (0, 0I)), u2 = ((0, 0I), (1, 0I), (0, 0I)), u3 =
((0, 0I), (0, 0I), (1, 0I))}. Then B(I) spans V (I).

Example 6. Let V (I) = R2(I) be a weak neutrosophic hypervector space over a field R
and let B(I) = {u1 = ((1, 0I), (0, 0I)), u2 = ((0, 0I), (1, 0I)), u3 = ((0, I), (0, 0I)), u4 =
((0, 0I), (0, I))}. Then B(I) spans V (I).
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Definition 4.3. Let (V (I),+, •,K(I)) be a strong neutrosophic hypervector space over
a neutrosophic field K(I). The neutrosophic vector u = (a, bI) ∈ V (I) is said to be
a linear combination of the neutrosophic vectors u1 = (a1, b1I), u2 = (a2, b2I), · · · , un =
(an, bnI) ∈ V (I) if there exists neutrosophic scalars α1 = (k1,m1I), α2 = (k2,m2I), · · · , α1 =
(kn,mnI) ∈ K(I) such that

u ∈ α1 • u1 + α2 • u2 + · · ·+ αn • un.

Definition 4.4. Let (V (I),+, •,K(I)) be a strong neutrosophic hypervector space
over a neutrosophic field K(I) and let B(I) = {u1 = (a1, b1I), u2 = (a2, b2I), · · · , un =
(an, bnI)} be a subset of V (I).

(1) B(I) is called a linearly dependent set if there exists neutrosophic scalars α1 =
(k1,m1I), α2 = (k2,m2I), · · · , α1 = (kn,mnI) (not all zero) such that

θ ∈ α1 • u1 + α2 • u2 + · · ·+ αn • un.

(2) B(I) is called a linearly independent set if

θ ∈ α1 • u1 + α2 • u2 + · · ·+ αn • un implies that α1 = α2 = · · · = αn = (0, 0I).

Theorem 4.5. Let (V (I),+, •,K) be a weak neutrosophic hypervector space over a
field K and let θ 6= u = (a, bI) ∈ V (I). Then B(I) = {u} is a linearly independent set.

Proof. Suppose that θ 6= u = (a, bI) ∈ V (I). Let θ ∈ k•u and suppose that 0 6= k ∈ K.
Then k−1 ∈ K and therefore, k−1 • θ ⊆ k−1 • (k • u) so that

θ ∈ (k−1k) • u
= 1 • u
= {(x, yI) : x ∈ 1 • a, y ∈ 1 • b}
= {(x, yI) : x ∈ {a}, y ∈ {b}}
= {(a, bI)}
= {u}.

This shows that u = θ which is a contradiction. Hence, k = 0 and thus, B = {u} is a
linearly independent set.

Theorem 4.6. Let (V (I),+, •,K) be a weak neutrosophic hypervector space over a
field K and let B(I) = {u1 = (a1, b1I), u2 = (a2, b2I), · · · , un = (an, bnI)} be a subset
of V (I). Then B(I) is a linearly independent set if and only if at least one element of
B(I) can be expressed as a linear combination of the remaining elements of B(I).

Proof. Suppose thatB(I) is a linearly dependent set. Then there exists scalars k1, k2, · · · , kn
not all zero in K such that

θ ∈ k1 • u1 + k2 • u2 + · · ·+ kn • un.

10



Suppose that k1 6= 0. Then k−11 ∈ K and therefore

k−11 • θ ⊆ k−11 • (k1 • u1 + k2 • u2 + · · ·+ kn • un)

= (k−11 k1) • u1 + (k−11 k2) • u2 + · · ·+ (k−1n kn) • un
= 1 • u1 + (k−11 k2) • u2 + · · ·+ (k−1n kn) • un

so that
θ ∈ 1 • u1 + {u}

where u = (a, bI) ∈ (k−11 k2) •u2 + · · ·+ (k−1n kn) •un. Thus θ ∈ {(a, a1, (b+ b1)I)} from
which we obtain u1 = (a1, b1I) = −u = −(a, bI) so that

u1 ∈ (−1) • u
⊆ (−1) • ((k−11 k2) • u2 + · · ·+ (k−1n kn) • un)

⊆ (−k−11 k2) • u2 + (−k−11 k3) • u3 + · · ·+ (−k−11 kn) • un.

This shows that u1 ∈ span{u2, u3, · · · , un}.
Conversely, suppose that u1 ∈ span{u2, u3, · · · , un} and suppose that 0 6= −1 ∈ K.

Then there exists k2, k3, · · · , kn ∈ K such that

u1 ∈ k2 • u2 + k3 • u3 + · · ·+ kn • un.

and we have

u1 + (−u1) ∈ (−1) • u1+ ∈ k2 • u2 + k3 • u3 + · · ·+ kn • un.

from which we have

θ ∈ (−1) • u1+ ∈ k2 • u2 + k3 • u3 + · · ·+ kn • un.

Since −1 6= 0 in K, it follows that B(I) is a linearly dependent set.

Corollary 4.7. Let (V (I),+, •,K) be a weak neutrosophic hypervector space over a
field K and let B(I) = {u1, u2, · · · , un} be a subset of V (I). Then B(I) is a linearly
independent set if and only if ui ∈ B(I) can be expressed as a linear combination of
{u1, u2, · · · , ui−1}.

Theorem 4.8. Let (V (I),+, •,K(I)) be a strong neutrosophic hypervector space over
a neutrosophic field K(I) and let B1(I) and B2(I) be subsets of V (I) such that B1(I) ⊆
B2(I). If B1(I) is linearly dependent, then B2(I) is linearly dependent.

Proof. Obvious.

Theorem 4.9. Let (V (I),+, •,K(I)) be a strong neutrosophic hypervector space over
a neutrosophic field K(I) and let B1(I) and B2(I) be subsets of V (I) such that B1(I) ⊆
B2(I). If B2(I) is linearly indedependent, then B1(I) is linearly independent.
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Proof. Obvious.

Definition 4.10. Let (V (I),+, •,K(I)) be a strong neutrosophic hypervector space
over a neutrosophic field K(I) and let B(I) = {u1 = (a1, b1I), u2 = (a2, b2I), · · · } be a
subset of V (I). B(I) is said to be a basis for V (I) if the following conditions hold:

(1) B(I) is a linearly independent set.

(2) V (I) = span(B(I)).

If B(I) is finite and its cardinality is n, then V (I) is called an n-dimensional strong
neutrosophic hypervector space and we write dims(V (I)) = n. If B(I) is not finite,
then V (I) is called an infinite-dimensional strong neutrosophic hypervector space.

Definition 4.11. Let (V (I),+, •,K) be a weak neutrosophic hypervector space over
a field K and let B(I) = {u1 = (a1, b1I), u2 = (a2, b2I), · · · } be a subset of V (I). B(I)
is said to be a basis for V (I) if the following conditions hold:

(1) B(I) is a linearly independent set.

(2) V (I) = span(B(I)).

If B(I) is finite and its cardinality is n, then V (I) is called an n-dimensional weak
neutrosophic hypervector space and we write dimw(V (I)) = n. If B(I) is not finite,
then V (I) is called an infinite-dimensional weak neutrosophic hypervector space.

Example 7. (1) In Example 5, B(I) is a basis for V (I) and dims(V (I)) = 3.

(2) In Example 6, B(I) is a basis for V (I) and dimw(V (I)) = 4.

Theorem 4.12. Let (V (I),+, •,K(I)) be a strong neutrosophic hypervector space over
a neutrosophic field K(I) and let B(I) = {u1 = (a1, b1I), u2 = (a2, b2I), · · · , un =
(an, bnI)} be a subset of V (I). Then B(I) is a basis for V (I) if and only if each neu-
trosophic vector u = (a, bI) ∈ V (I) can be expressed uniquely as a linear combination
of the elements of B(I).

Proof. Suppose that each neutrosophic vector u = (a, bI) ∈ V (I) can be expressed
uniquely as a linear combination of the elements of B(I). Then u ∈ span(B(I)) = V (I).
Since such a representation is unique, it follows that B(I) is a linearly independent set
and since u ∈ V (I) is arbitrary, it follows that B(I) is a basis for V (I).

Conversely, suppose that B(I) is a basis for V (I). Then V (I) = span(B(I)) and
B(I) is linearly independent. We show that u = (a, bI) ∈ V (I) can be expressed
uniquely as a linear combination of the elements of B(I). To this end, for α1 =
(k1,m1I), α2 = (k2,m2I), · · · , αn = (kn,mnI), β1 = (r1, s1I), β2 = (r2, s2I), · · · , βn =
(rn, snI) ∈ K(I), let us express u in two ways as follows:

u ∈ α1 • u1 + α2 • u2 + · · ·+ αn • un, (1)

u ∈ β1 • u1 + β2 • u2 + · · ·+ βn • un. (2)
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From equation(2), we have

−u ∈ (−1) • u ⊆ (−1) • (β1 • u1 + β2 • u2 + · · ·+ βn • un)

= ((−1)β1) • u1 + ((−1)β2) • u2 + · · ·+ ((−1)βn) • un
= (−β1) • u1 + (−β2) • u2 + · · ·+ (−1βn) • un. (3)

From equations (1) and (3), we have

u+ (−u) ∈ (α1 + (−β1)) • u1 + (α2 + (−β2)) • u2 + · · ·+ (αn + (−βn)) • un
⇒ θ ∈ (α1 − β1) • u1 + (α2 − β2) • u2 + · · ·+ (αn − βn) • un.

Since B(I) is linearly independent, it follows that α1−β1 = α2−β2 = · · · = αn−βn =
(0, 0I) and therefore, α1 = β1, α2 = β2, · · · , αn = βn. This shows that u has been
be expressed uniquely as a linear combination of the elements of B(I). The proof is
complete.

Theorem 4.13. Let (V (I),+, •,K) be a weak neutrosophic hypervector space over
a field K and let B1(I) = {u1 = (a1, b1I), u2 = (a2, b2I), · · · , un = (an, bnI)} be a
linearly independent subset of V (I). If u ∈ V (I)\B(I) is arbitrary, then B2(I) =
{u1 = (a1, b1I), u2 = (a2, b2I), · · · , un = (an, bnI), u} is a linearly dependent set if and
only if u ∈ span((B(I)).

Proof. Suppose that B2(I) is a linearly dependent set. Then there exists scalars
k1, k2, · · · , kn, k not all zero such that

θ ∈ k1 • u1 + k2 • u2 + · · ·+ kn • un + k • u. (4)

Suppose that k = 0, then there exists at least one of the kis say k1 6= 0 and equation
(4) becomes

θ ∈ k1 • u1 + k2 • u2 + · · ·+ kn • un (5)

from which it follows that the set B1(I) = {u1 = (a1, b1I), u2 = (a2, b2I), · · · , un =
(an, bnI)} is linearly dependent. This contradicts the hypothesis that B1(I) is linearly
independent. Hence k 6= 0 and therefore k−1 ∈ K. From equation (4), we have

k−1 • θ ⊆ k−1 • (k1 • u1 + k2 • u2 + · · ·+ kn • un + k • u)

⇒ θ ∈ (k−1k1) • u1 + (k−1k2) • u2 + · · ·+ (k−1kn) • un + (k−1k) • u
⇒ θ = v + u(where (k−1k1) • u1 + (k−1k2) • u2 + · · ·+ (k−1kn) • un)

⇒ u = −v ∈ (−1) • v
⇒ u ∈ (−1) • ((k−1k1) • u1 + (k−1k2) • u2 + · · ·+ (k−1kn) • un)

⇒ u ∈ (−k−1k1) • u1 + (−k−1k2) • u2 + · · ·+ (−k−1kn) • un
⇒ u ∈ span(B1(I)).
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Conversely, suppose that u ∈ span(B1)). Then there exists k1, k2, · · · , kn ∈ K such
that

u ∈ k1 • u1 + k2 • u2 + · · ·+ kn • un
⇒ u+ (−u) ∈ k1 • u1 + k2 • u2 + · · ·+ kn • un + (−1) • u

⇒ θ ∈ k1 • u1 + k2 • u2 + · · ·+ kn • un + (−1) • u.

Since u 6∈ B1(I) and B1(I) is linearly independent, it follows that {u1, u2, · · · , un, u} =
B2(I) is a linearly dependent set. The proof is complete.

Definition 4.14. Let (V (I),+, •,K(I)) and W (I),+′, •′,K(I)) be two strong neutro-
sophic hypervector spaces over a neutrosophic field K(I). A mapping φ : V (I)→W (I)
is called a strong neutrosophic hypervector space homomorphism if the following con-
ditions hold:

(1) φ is a strong hypervector space homomorphism.

(2) φ((0, I)) = (0, I).

If in addition φ is a bijection, we say that V (I) is isomorphic to W (I) and we write
V (I) ∼= W (I).

Theorem 4.15. Let (V (I),+, •,K(I)) and W (I),+′, •′,K(I)) be two strong neutro-
sophic hypervector spaces over a neutrosophic field K(I) and let φ : V (I) → W (I)
be a bijective strong neutrosophic hypervector space homomorphism. If B(I) = {u1 =
(a1, b1I), u2 = (a2, b2I), · · · , un = (an, bnI)} is a basis for V (I), then B′(I) = φ(B(I)) =
{φ(u1, φ(u2, · · · , φ(un} is a basis for W (I).

Proof. Suppose that B(I) is a basis for V (I). Then for an arbitrary u = (a, bI) ∈ V (I),
there exists neutrosophic scalars α1 = (k1,m1I), α2 = (k2,m2I), · · · , αn = (kn,mnI) ∈
K(I) such that

u ∈ α1 • u1 + α2 • u2 + · · ·+ αn • un
⇒ φ(u) ∈ φ(α1 • u1 + α2 • u2 + · · ·+ αn • un)

= α1 •′ φ(u1) +′ α2 •′ φ(u2) +′ · · ·+′ αn •′ φ(un).

Since φ is surjective, it follows that φ(u), φ(u1, φ(u2, · · · , φ(un ∈ W (I) and therefore
φ(u) ∈ span(B′(I)). To complete the proof, we must show that B′(I) is linearly
independent. To this end, suppose that

φ(θ) ∈ β1 •′ φ(u1) +′ β2 •′ φ(u2) +′ · · ·+′ βn •′ φ(un)

where β1 = (r1, s1I), β2 = (r2, s2I), · · · , βn = (rn, snI) ∈ K(I), then

φ(θ) ∈ φ(β1 • u1) +′ φ(β2 • u2) +′ · · ·+′ φ(βn • un)

= φ(β1 • u1 + β2 • u2 + · · ·+ βn • un)
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Since φ is injective, we must have

θ ∈ β1 • u1 + β2 • u2 + · · ·+ βn • un

Also, since B(I) is linearly independent, we must have β1 = β2 = · · · = βn = (0, I).
Hence B′(I) = {φ(u1), φ(u2), · · · , φ(un)} is linearly independent and therefore a basis
for W (I).
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