Neutrosophic Ideal Theory

Neutrosophic Local Function and Generated Neutrosophic Topology

A. A. Salama &Florentin Smarandache

ABSTRACT

Abstract In this paper we introduce the notion of ideals on neutrosophic set which is considered as a generalization of fuzzy and fuzzy intuitionistic ideals studies in [9,11], the important neutrosophic ideals has been given in [4]. The concept of neutrosophic local function is also introduced for a neutrosophic topological space. These concepts are discussed with a view to find new nutrosophic topology from the original one in [8]. The basic structure, especially a basis for such generated neutrosophic topologies and several relations between different neutrosophic ideals and neutrosophic topologies are also studied here. Possible application to GIS topology rules are touched upon.

KEYWORDS: Neutrosophic Set, Intuitionistic Fuzzy Ideal, Fuzzy Ideal, Neutrosophic Ideal, Neutrosophic Topology.

1-INTRODUCTION

The neutrosophic set concept was introduced by Smarandache [12, 13]. In 2012 neutrosophic sets have been investigated by Hanafy and Salama at el [4, 5, 6, 7, 8, 9, 10]. The fuzzy set was introduced by Zadeh [14] in 1965, where each element had a degree of membership. In 1983 the intuitionstic fuzzy set was introduced by K. Atanassov [1, 2, 3] as a generalization of fuzzy set, where besides the degree of membership and the degree of non- membership of each element. Salama at el [9] defined intuitionistic fuzzy ideal for a set and generalized the concept of fuzzy ideal concepts, first initiated by Sarker [10]. Neutrosophy has laid the foundation for a whole family of new mathematical theories generalizing both their classical and fuzzy counterparts. In this paper we will introduce the definitions of normal neutrosophic set, convex set, the concept of α -cut and neutrosophic ideals, which can be discussed as generalization of fuzzy and fuzzy intuitionistic studies.

2-TERMINOLOGIES

We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in [12, 13], and Salama at el. [4, 5, 6, 7, 8, 9, 10].

3- NEUTROSOPHIC IDEALS [4].

Definition.3.1

Let X is non-empty set and L a non-empty family of NSs. We will call L is a neutrosophic ideal (NL for short) on X if

• $A \in L$ and $B \subseteq A \Rightarrow B \in L$ [heredity],

• $A \in L$ and $B \in L \Rightarrow A \lor B \in L$ [Finite additivity].

A neutrosophic ideal L is called a σ -neutrosophic ideal if $A_j \in A_j \subseteq L$, implies $A_j \in A_j \subseteq L$ (countable additivity).

The smallest and largest neutrosophic ideals on a non-empty set X are 0_N and NSs on X. Also, $N.L_f$, $N.L_c$ are denoting the neutrosophic ideals (NL for short) of neutrosophic subsets having finite and countable support of X respectively. Moreover, if A is a nonempty NS in X, then $B \in NS : B \subseteq A$ is an NL on X. This is called the principal NL of all NSs of denoted by $NL\langle A \rangle$.

Remark 3.1

- If $1_N \notin L$, then L is called neutrosophic proper ideal.
- If $1_N \in L$, then L is called neutrosophic improper ideal.
- $O_N \in L$

Example.3.1

Any Initiutionistic fuzzy ideal ℓ on X in the sense of Salama is obviously and NL in the form $L=A:A=\langle x,\mu_A,\sigma_A,\nu_A\rangle\in\ell$.

Example.3.2

Let X = a, b, c $A = \langle x, 0.2, 0.5, 0.6 \rangle$, $B = \langle x, 0.5, 0.7, 0.8 \rangle$, and $D = \langle x, 0.5, 0.6, 0.8 \rangle$, then the family $L = \Theta_N, A, B, D$ of NSs is an NL on X.

Example.3.3

Let
$$X = a, b, c, d, e$$
 and $A = \langle x, \mu_A, \sigma_A, \nu_A \rangle$ given by:

X	$\mu_A \blacktriangleleft$	$\sigma_A \P$	$v_A \blacktriangleleft$
а	0.6	0.4	0.3
b	0.5	0.3	0.3
С	0.4	0.6	0.4
d	0.3	0.8	0.5
e	0.3	0.7	0.6

Then the family $L = O_N$, A is an NL on X.

Definition.3.3

Let L_1 and L_2 be two NL on X. Then L_2 is said to be finer than L_1 or L_1 is coarser than L_2 if $L_1 \le L_2$. If also $L_1 \ne L_2$. Then L_2 is said to be strictly finer than L_1 or L_1 is strictly coarser than L_2 .

Two NL said to be comparable, if one is finer than the other. The set of all NL on X is ordered by the relation L_1 is coarser than L_2 this relation is induced the inclusion in NSs.

The next Proposition is considered as one of the useful result in this sequel, whose proof is clear.

Proposition.3.1

Let $L_j: j \in J$ be any non - empty family of neutrosophic ideals on a set X. Then $\bigcap_{j \in J} L_j$ and $\bigcup_{j \in J} L_j$ are neutrosophic ideal on X,

In fact L is the smallest upper bound of the set of the L_i in the ordered set of all neutrosophic ideals on X.

Remark.3.2

The neutrosophic ideal by the single neutrosophic set O_N is the smallest element of the ordered set of all neutrosophic ideals on X.

Proposition.3.3

A neutrosophic set A in neutrosophic ideal L on X is a base of L iff every member of L contained in A.

Proof

(Necessity)Suppose A is a base of L. Then clearly every member of L contained in A.

(Sufficiency) Suppose the necessary condition holds. Then the set of neutrosophic subset in X contained in A coincides with L by the Definition 4.3.

Proposition.3.4

For a neutrosophic ideal L_1 with base A, is finer than a fuzzy ideal L_2 with base B iff every member of B contained in A.

Proof

Immediate consequence of Definitions

Corollary.3.1

Two neutrosophic ideals bases A, B, on X are equivalent iff every member of A, contained in B and via versa.

Theorem.3.1

Let $\eta = \left\langle \mu_j, \sigma_j, \gamma_j \right\rangle$: $j \in J$ be a non empty collection of neutrosophic subsets of X. Then there exists a neutrosophic ideal L $(\eta) = \{A \in NSs: A \subseteq \bigvee A_j\}$ on X for some finite collection $\{A_j: j = 1, 2,, n \subseteq \eta\}$.

Proof

Clear.

Remark.3.3

ii) The neutrosophic ideal L (η) defined above is said to be generated by η and η is called sub base of L (η) .

Corollary.3.2

Let L_1 be an neutrosophic ideal on X and $A \in NSs$, then there is a neutrosophic ideal L_2 which is finer than L_1

and such that $A \in L_2$ iff

 $A \vee B \in L_2$ for each $B \in L_1$.

Corollary.3.3

4. Neutrosophic local Functions

Definition.4.1. Let (X,τ) be a neutrosophic topological spaces (NTS for short) and L be neutrosophic ideal (NL, for short) on X. Let A be any NS of X. Then the neutrosophic local function NA^* **1.** τ of A is the union of all neutrosophic points (NP, for short) C α , β , γ such that if $U \in N$ C α , β , γ and

 $NA^*(L,\tau) = \bigvee C(\alpha,\beta,\gamma) \in X : A \land U \notin L$ for every U nbd of $C(\alpha,\beta,\gamma)$, $NA^*(L,\tau)$ is called a neutrosophic local function of A with respect to τ and L which it will be denoted by $NA^*(L,\tau)$, or simply NA^* .

Example .4.1. One may easily verify that.

If L= $\{0_N\}$, then N $A^*(L,\tau) = Ncl(A)$, for any neutrosophic set $A \in NSs$ on X.

If L = all NSs on X then $NA^*(L, \tau) = 0_N$, for any $A \in NSs$ on X.

Theorem.4.1. Let \mathbf{X}, τ be a NTS and L_1, L_2 be two neutrosophic ideals on X. Then for any neutrosophic sets A, B of X. then the following statements are verified

- $A \subseteq B \Rightarrow NA^*(L,\tau) \subseteq NB^*(L,\tau),$
- ii) $L_1 \subseteq L_2 \Rightarrow NA^*(L_2, \tau) \subseteq NA^*(L_1, \tau)$.
- iii) $NA^* = Ncl(A^*) \subset Ncl(A)$.
- iv) $NA^{**} \subset NA^{*}$.
- v) $N \triangleleft V B^* = NA^* \vee NB^*$.,
- vi) $N(A \wedge B)^*(L) \leq NA^*(L) \wedge NB^*(L)$.
- vii) $\ell \in L \Rightarrow N \blacktriangleleft \lor \ell^* = NA^*$.
- viii) $NA^*(L,\tau)$ is neutrosophic closed set .

Proof.

- i) Since $A \subseteq B$, let $p = C \, \mathcal{C}, \beta, \gamma \in NA^* \, \mathbf{1}_1$ then $A \wedge U \notin L$ for every $U \in N \, \mathcal{P}$. By hypothesis we get $B \wedge U \notin L$, then $p = C \, \mathcal{C}, \beta, \gamma \in NB^* \, \mathbf{1}_1$.
- ii) Clearly. $L_1 \subseteq L_2$ implies $NA^*(L_2,\tau) \subseteq NA^*(L_1,\tau)$ as there may be other IFSs which belong to L_2 so that for GIFP $p = C \blacktriangleleft, \beta, \gamma \in NA^*$ but $C \blacktriangleleft, \beta, \gamma$ may not be contained in $NA^* \blacktriangleleft_2$.
- iii) Since $O_N \subseteq L$ for any NL on X, therefore by (ii) and Example 3.1, $NA^* \mathrel{L} \subseteq NA^* \mathrel{O}_N = Ncl(A)$ for any NS A on X. Suppose $p_1 = C_1 \mathrel{A}, \beta, \gamma \in Ncl(NA^* \mathrel{L}_1)$. So for every $U \in N \mathrel{P}_1$, $NA^* \land U \neq O_N$, there exists $p_2 = C_2 \mathrel{A}, \beta \in A^* \mathrel{L}_1 \land U$) such that for every V nbd of $p_2 \in N \mathrel{P}_2$, $A \land U \not\in L$. Since $U \land V \in N \mathrel{P}_2$ then $A \land U \cap V \not\in L$ which leads to $A \land U \not\in L$, for every $U \in N \mathrel{C} \mathrel{A}, \beta$ therefore $p_1 = C \mathrel{A}, \beta \in (A^* \mathrel{L}_1)$

and so $Ncl \ NA^* \le NA^*$ While, the other inclusion follows directly. Hence $NA^* = Ncl(NA^*)$. But the inequality $NA^* \le Ncl(NA^*)$.

iv) The inclusion $NA^* \vee NB^* \leq N \ \mathbf{A} \vee B^*$ follows directly by (i). To show the other implication, let $p = C \ \mathbf{A}, \beta, \gamma \in N \ \mathbf{A} \vee B^*$ then for every $U \in N(p)$, $\mathbf{A} \vee B \ \wedge U \not\in L$, i.e., $\mathbf{A} \wedge U \ \vee B \ \wedge U \not\in L$. then, we have two cases $A \wedge U \not\in L$ and $B \wedge U \in L$ or the converse, this means that exist $U_1, U_2 \in N \ \mathbf{C}(\alpha, \beta, \gamma)$ such that $A \wedge U_1 \not\in L$, $B \wedge U_1 \not\in L$, $A \wedge U_2 \not\in L$ and $B \wedge U_2 \not\in L$. Then $A \wedge U_1 \wedge U_2 \in L$ and $B \wedge U_1 \wedge U_2 \in L$ this gives $\mathbf{A} \vee B \wedge U_1 \wedge U_2 \in L$, $U_1 \wedge U_2 \in N \ \mathbf{C}(\alpha, \beta, \gamma)$ which contradicts the hypothesis. Hence the equality holds in various cases.

vi) By (iii), we have $NA^* = Ncl(NA^*)^* \le Ncl(NA^*) = NA^*$

Let \P , τ be a GIFTS and L be GIFL on X . Let us define the neutrosophic closure operator $cl^*(A) = A \cup A^*$ for any GIFS A of X. Clearly, let $Ncl^*(A)$ is a neutrosophic operator. Let $N\tau^*(L)$ be NT generated by Ncl^* i.e. $N\tau^* = A : Ncl^*(A^c) = A^c$. Now $L = O_N \implies Ncl^* = A \cup NA^* = A \cup Ncl = A$ for every neutrosophic set A. So, $N\tau^*(O_N) = \tau$. Again L = all NSs on $X \implies Ncl^* = A$, because $NA^* = O_N$, for every neutrosophic set A so $N\tau^* = A$ is the neutrosophic discrete topology on X. So we can conclude by Theorem 4.1.(ii). $N\tau^*(O_N) = N\tau^* = A$ i.e. $N\tau \subseteq N\tau^*$, for any neutrosophic ideal L_1 on X. In particular, we have for two neutrosophic ideals L_1 , and L_2 on X, $L_1 \subseteq L_2 \Rightarrow N\tau^* = A$.

Theorem.4.2. Let τ_1, τ_2 be two neutrosophic topologies on X. Then for any neutrosophic ideal L on X, $\tau_1 \leq \tau_2$ implies $NA^*(L, \tau_2) \subseteq NA^*(L, \tau_1)$, for every $A \in L$ then $N\tau_1^* \subseteq N\tau_2^*$

Proof. Clear.

A basis $N\beta$ **L**, τ for $N\tau^*(L)$ can be described as follows: $N\beta$ **L**, $\tau = A - B : A \in \tau, B \in L$ Then we have the following theorem

Theorem 4.3. $N\beta$ **L**, $\tau = A - B$: $A \in \tau$, $B \in L$ Forms a basis for the generated NT of the NT **K**, τ with neutrosophic ideal L on X.

Proof. Straight forward.

The relationship between τ and $N\tau^*$ (L) established throughout the following result which have an immediately proof

Theorem 4.4. Let τ_1, τ_2 be two neutrosophic topologies on X. Then for any neutrosophic ideal L on X, $\tau_1 \subseteq \tau_2$ implies $N\tau_1^* \subseteq N\tau_2^*$.

Theorem 4.5: Let M, τ be a NTS and L_1, L_2 be two neutrosophic ideals on X. Then for any neutrosophic set A in X, we have

i)
$$NA^* \blacktriangleleft_1 \lor L_2, \tau = NA^* \blacktriangleleft_1, N\tau^*(L_1) \land NA^* \blacktriangleleft_2, N\tau^*(L_2)$$
 \vdots $N\tau^*(L_1 \lor L_2) = \P\tau^*(L_1)^*(L_2) \land N \P^*(L_2)^*(L_1)$

Proof Let $p = C(\alpha, \beta) \notin \mathbf{L}_1 \vee L_2, \tau$, this means that there exists $U_p \in N$ \mathbf{P} such that $A \wedge U_p \in \mathbf{L}_1 \vee L_2$ i.e. There exists $\ell_1 \in L_1$ and $\ell_2 \in L_2$ such that $A \wedge U_p \in \ell_1 \vee \ell_2$ because of the heredity of L_1 , and assuming $\ell_1 \wedge \ell_2 = O_N$. Thus we have $\mathbf{L}_1 \wedge U_p = \ell_1 = \ell_2$ and $\mathbf{L}_2 \wedge U_p = \ell_1$ therefore $\mathbf{L}_3 \wedge U_p = \ell_1 \wedge A = \ell_2 \in L_2$ and $\mathbf{L}_4 \wedge U_p = \ell_1 \wedge A = \ell_2 \in L_2$ and $\mathbf{L}_4 \wedge U_p = \ell_1 \wedge A = \ell_2 \wedge A = \ell_1 \in L_1$. Hence $p = C(\alpha, \beta, \gamma) \notin NA^*$ $\mathbf{L}_1 \wedge V\tau^*$ $\mathbf{L}_2 \wedge V\tau^*$ $\mathbf{L}_1 \wedge V\tau^*$ $\mathbf{L}_2 \wedge V\tau^*$. This implies that there exist $U_p \in N$ $\mathbf{L}_1 \wedge V\tau^*$ and $U_p = U_p \wedge V$ $\mathbf{L}_1 \wedge V\tau^*$ $\mathbf{L}_2 \wedge V\tau^*$ $\mathbf{L}_1 \wedge V\tau^*$ $\mathbf{L}_2 \wedge V\tau^*$ $\mathbf{L}_1 \wedge V\tau^*$ $\mathbf{L}_2 \wedge V\tau^*$ and $\mathbf{L}_1 \wedge V\tau^*$ $\mathbf{L}_2 \wedge V\tau^*$ $\mathbf{L}_1 \wedge V\tau^*$ $\mathbf{L}_2 \wedge V\tau^*$ and $\mathbf{L}_1 \wedge V\tau^*$ $\mathbf{L}_2 \wedge V\tau^*$ $\mathbf{L}_1 \wedge V\tau^*$ $\mathbf{L}_2 \wedge V\tau^*$ and define $\mathbf{L}_1 \wedge V\tau^*$ $\mathbf{L}_2 \wedge V\tau^*$ $\mathbf{L}_1 \wedge V\tau^*$ $\mathbf{L}_2 \wedge V\tau^*$ and define $\mathbf{L}_1 \wedge V\tau^*$ $\mathbf{L}_2 \wedge V\tau^*$ $\mathbf{L}_1 \wedge V\tau^*$ $\mathbf{L}_2 \wedge V\tau^*$ $\mathbf{L}_1 \wedge V\tau^*$ $\mathbf{L}_2 \wedge V\tau^*$ and define

 $NA^* \blacktriangleleft_1 \lor L_2, \tau \leq NA^* \blacktriangleleft_1, \tau^*(L_1) \land NA^* \blacktriangleleft_2, N\tau^*(L_2)$ and similarly, we can get $A^* \blacktriangleleft_1 \lor L_2, \tau \leq A^* \blacktriangleleft_2, \tau^*(L_1)$. This gives the other inclusion, which complete the proof.

Corollary 4.1. Let \P , τ be a NTS with neutrosophic ideal L on X. Then

- i) $NA^*(L,\tau) = NA^*(L,\tau^*)$ and $N\tau^*(L) = N(N\tau^*(L))^*(L)$.
- ii) $N\tau^*(L_1 \vee L_2) = \P\tau^*(L_1) \vee \P\tau^*(L_2)$

Proof. Follows by applying the previous statement.

REFERENCES

- 1. K. Atanassov, intuitionistic fuzzy sets, in V.Sgurev, ed., Vii ITKRS Session, Sofia (June 1983 central Sci. and Techn. Library, Bulg. Academy of Sciences (1984).
- 2. K. Atanassov, intuitionistic fuzzy sets, Fuzzy Sets and Systems 20, 87-96,(1986).
- 3. K. Atanassov, Review and new result on intuitionistic fuzzy sets, preprint IM-MFAIS-1-88, Sofia, (1988).
- 4. S. A. Albowi, A. A. Salama & Mohmed Eisa, New Concepts of Neutrosophic Sets, International Journal of Mathematics and Computer Applications Research (IJMCAR), Vol. 3, Issue 4, Oct 2013, 95-102.(2013).
- 5. I. Hanafy, A.A. Salama and K. Mahfouz, Correlation of neutrosophic Data, International Refereed Journal of Engineering and Science (IRJES), Vol.(1), Issue 2 PP.39-43.(2012)
- I.M. Hanafy, A.A. Salama and K.M. Mahfouz," Neutrosophic Classical Events and Its Probability" International Journal of Mathematics and Computer Applications Research(IJMCAR) Vol.(3), Issue 1, Mar 2013, pp171-178.(2013)
- 7. A.A. Salama and S.A. Alblowi, "Generalized Neutrosophic Set and Generalized Neutrousophic Topological Spaces", Journal computer Sci. Engineering, Vol. (2) No. (7) (2012).
- 8. A.A.Salama and S.A.Albolwi, Neutrosophic set and neutrosophic topological space, ISORJ. Mathematics, Vol.(3), Issue(4), pp-31-35.(2012)
- 9. A.A. Salama and S.A. Albalwi, Intuitionistic Fuzzy Ideals Topological Spaces, Advances in Fuzzy Mathematics, Vol.(7), Number 1, pp. 51-60, (2012).
- 10. A.A.Salama, and H.Elagamy, "Neutrosophic Filters" International Journal of Computer Science Engineering and Information Technology Research (IJCSEITR), Vol.3, Issue(1),Mar 2013, pp 307-312.(2013)
- 11. Debasis Sarker, Fuzzy ideal theory, Fuzzy local function and generated fuzzy topology, Fuzzy Sets and Systems 87, 117 123. (1997)
- 12. Florentin Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA(2002).
- 13. F. Smarandache. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, (1999).
- 14. L.A. Zadeh, Fuzzy Sets, Inform and Control 8, 338-353,(1965).