NEUTROSOPHIC INTERVAL BIALGEBRAIC STRUCTURES

W.B.Vasantha Kandasamy

Florentin Smarandache

NEUTROSOPHIC INTERVAL BIALGEBRAIC STRUCTURES

W. B. Vasantha Kandasamy

Florentin Smarandache

ZIP PUBLISHING Ohio 2011

This book can be ordered from:
Zip Publishing
1313 Chesapeake Ave.
Columbus, Ohio 43212, USA
Toll Free: (614) 485-0721
E-mail: info@zippublishing.com
Website: www.zippublishing.com

Copyright 2011 by Zip Publishing and the Authors

Peer reviewers:
Prof. Catalin Barbu, V. Alecsandri National College, Mathematics Department, Bacau, Romania
Prof. Zhang Wenpeng, Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R.China.
Prof. Mihàly Bencze, Department of Mathematics
Áprily Lajos College, Braşov, Romania

Many books can be downloaded from the following
Digital Library of Science:
http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm

ISBN-13: 978-1-59973-166-7
EAN: 9781599731667

Printed in the United States of America

CONTENTS

Preface 5
Chapter One
BASIC CONCEPTS 7
1.1 Neutrosophic Interval Bisemigroups 8
1.2 Neutrosophic Interval Bigroups 32
1.3 Neutrosophic Biinterval Groupoids 41
1.4 Neutrosophic Interval Biloops 57
Chapter Two
NEUTROSOPHIC INTERVAL BIRINGS AND NEUTROSOPHIC INTERVAL BISEMIRINGS 75
2.1 Neutrosophic Interval Birings 75
2.2 Neutrosophic Interval Bisemirings 85
2.3 Neutrosophic Interval Bivector Spaces and their Generalization 93
Chapter Three
NEUTROSOPHIC n- INTERVAL STRUCTURES (NEUTROSOPHIC INTERVAL n-STRUCTURES) 127
Chapter Four
APPLICATIONS OF NEUTROSOPHIC INTERVAL ALGEBRAIC STRUCTURES 159
Chapter Five
SUGGESTED PROBLEMS 161
FURTHER READING 187
INDEX 189
ABOUT THE AUTHORS 195

PREFACE

In this book the authors for the first time introduce the notion of neutrosophic intervals and study the algebraic structures using them. Concepts like groups and fields using neutrosophic intervals are not possible. Pure neutrosophic intervals and mixed neutrosophic intervals are introduced and by the very structure of the interval one can understand the category to which it belongs.

We in this book introduce the notion of pure (mixed) neutrosophic interval bisemigroups or neutrosophic biinterval semigroups. We derive results pertaining to them. The new notion of quasi bisubsemigroups and ideals are introduced. Smarandache interval neutrosophic bisemigroups are also introduced and analysed. Also notions like neutrosophic interval bigroups and their substructures are studied in section two of this chapter. Neutrosophic interval bigroupoids and the identities satisfied by them are studied in section three of this chapter.

The final section of chapter one introduces the notion of neutrosophic interval biloops and studies them. Chapter two of this book introduces the notion of neutrosophic interval birings and bisemirings. Several results in this direction are derived and described. Even new bistructures like neutrosophic interval ring-semiring or neutrosophic interval semiring-ring are introduced and analyzed. Further in this chapter the concept of neutrosophic biinterval vector spaces or neutrosophic interval bivector spaces are introduced and their properties are described.

In the third chapter we introduce the notion of neutrosophic interval n-structures or neutrosophic interval n-structures. Over 60 examples are given and various types of n-structures are studied. Possible applications of these new structures are given in chapter four. The final chapter suggests over hundred problems some of which are at research level.

We thank Dr. K.Kandasamy for proof reading and being extremely supportive.

Chapter One

Basic Concepts

In this chapter we first introduce the notion of neutrosophic intervals and special neutrosophic intervals. We built in this chapter interval neutrosophic bistructures with single binary operation; we call them also as biinterval neutrosophic algebraic structures.
$\mathrm{N}\left(\left(\mathrm{R}^{+} \cup\{0\}\right) \mathrm{I}\right)=\mathrm{R}^{+} \mathrm{I} \cup\{0\}=\left\{[0, \mathrm{aI}] \mathrm{I} \mathrm{a} \in \mathrm{R}^{+} \cup\{0\}\right\}$ denotes the pure neutrosophic intervals of reals.
$\mathrm{N}\left(\mathrm{Q}^{+} \mathrm{I} \cup\{0\}\right)=\mathrm{N}\left(\left(\mathrm{Q}^{+} \cup\{0\}\right) \mathrm{I}\right)=\mathrm{Q}^{+} \mathrm{I} \cup\{0\}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\left.\mathrm{Q}^{+} \cup\{0\}\right\}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\}\right\}$ denotes the pure neutrosophic intervals of rationals.
$\mathrm{N}\left(\mathrm{Z}^{+} \mathrm{I} \cup\{0\}\right)=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\}$ denotes the intervals of pure neutrosophic integers. $N\left(Z_{n} I\right)=\left\{[0, a I] \mid a \in Z_{n}\right\}$ denotes the pure neutrosophic interval of modulo integers, we can define now neutrosophic interval modulo integers as $\mathrm{N}\left(\left\langle\mathrm{Z}_{\mathrm{n}}\right.\right.$ $\left.\cup I\rangle)=\left\{[0, a+b I] \mid a, b \in Z_{n}\right\} . N\left(\left\langle Q^{+} \cup I\right\rangle\right) \cup\{0\}\right)=\{[0, a+b I]$ $\left.\mid \mathrm{a}, \mathrm{b} \in \mathrm{Q}^{+} \cup\{0\}\right\}$ is the rational neutrosophic interval.
$\mathrm{N}\left(\left\langle\mathrm{R}^{+} \cup \mathrm{I}\right\rangle \cup\{0\}\right)=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{R}^{+} \cup\{0\}\right\}$ is the neutrosophic interval of reals.

Finally $N\left(\left\langle Z^{+} \cup I\right\rangle \cup\{0\}\right)=\left\{[0, a+b I] \mid a, b \in Z^{+} \cup\{0\}\right\}$ is the neutrosophic interval of integers.

Now we will be using these intervals and work with our results. However by the context the reader can understand whether we are working with pure neutrosophic intervals or neutrosophic of rationals or integers or reals or modulo integers. This chapter has four sections. Section one introduces neutrosophic interval bisemigroups, neutrosophic interval bigroups are introduced in section two. Section three defines biinterval neutrosophic bigroupoids. The final section gives the notion of neutrosophic interval biloops.

1.1 Neutrosophic Interval Bisemigroups

In this section we define the notion of pure neutrosophic interval bisemigroup, neutrosophic interval bisemigroup, neutrosophic - real interval bisemigroup, quasi neutrosophic interval bisemigroup and quasi neutrosophic - real interval bisemigroup using Z_{n} or $\mathrm{Z}^{+} \cup\{0\}$ or $\mathrm{Q}^{+} \cup\{0\}$ or $\mathrm{R}^{+} \cup\{0\}$. We give some examples and describe their properties.

DEFINITION 1.1.1: Let $S=S_{1} \cup S_{2}$ where S_{1} and S_{2} are interval pure neutrosophic semigroups such that S_{1} and S_{2} are distinct, then we define S to be a pure neutrosophic interval bisemigroup or pure neutrosophic biinterval semigroup.

We will illustrate this situation by some examples.
Example 1.1.1: Let $S=S_{1} \cup S_{2}=\left\{[0\right.$, al $\left.] \mid a \in Z_{3},+\right\} \cup$ $\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\},+\right\}$ be the pure neutrosophic interval bisemigroup.

Example 1.1.2: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\},+\right\} \cup$ $\left\{[0, \mathrm{aI}] \quad \mid \mathrm{a} \in \mathrm{Z}_{12}, \times\right\}$ be a pure neutrosophic interval bisemigroup.

We see both the bisemigroups given in examples 1.1.1 and 1.1.2 are of infinite order.

Example 1.1.3: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40},+\right\} \cup\{[0$, aI] $\left.I \mathrm{a} \in \mathrm{Z}_{25}, \mathrm{x}\right\}$ be a pure neutrosophic interval bisemigroup of finite order.

Example 1.1.4: Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{[0, \mathrm{aI}] \mathrm{I} \mathrm{a} \in \mathrm{Q}^{+} \mathrm{I} \cup\{0\}\right.$, $\times\} \cup\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Q}^{+} \cup\{0\},+\right\}$ be a pure neutrosophic interval bisemigroup of infinite order.

Example 1.1.5: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{R}^{+} \mathrm{I} \cup\{0\}\right.$, $+\} \cup\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Q}^{+} \mathrm{I} \cup\{0\}, \times\right\}$ be a pure neutrosophic interval bisemigroup of infinite order.

Example 1.1.6: Let $T=T_{1} \cup T_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{5},+\right\} \cup\{[0$, $\left.\mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}_{7}, \times\right\}$ be a pure neutrosophic interval bisemigroup of finite order.

Clearly order of $\mathrm{T} ; \mathrm{o}(\mathrm{T})=5.7=35$.
We can define the notion of pure neutrosophic interval subbisemigroup or pure neutrosophic biinterval subsemigroup or pure neutrosophic interval bisubsemigroup in the usual way. This task is left as an exercise to the reader.

We give only examples of them.
Example 1.1.7: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \mathrm{I} \cup\{0\},+\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Q}^{+} \mathrm{I} \cup\{0\}, \times\right\}$ be a pure neutrosophic interval bisemigroup. Consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in 3 \mathrm{Z}^{+} \mathrm{I} \cup\right.$ $\{0\},+\} \cup\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}^{+} \mathrm{I} \cup\{0\}, \times\right\} \subseteq \mathrm{T}_{1} \cup \mathrm{~T}_{2} ; \mathrm{H}$ is a pure neutrosophic interval bisubsemigroup of T . Infact T has infinitely many such pure neutrosophic interval bisubsemigroups.

Example 1.1.8: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{12}\right\} \cup\{[0, \mathrm{aI}]$ $\left.\mathrm{I} \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\}$ be a pure neutrosophic interval bisemigroup. Consider $S=S_{1} \cup S_{2}=\left\{[0, a I] \mid \mathrm{a} \in\{0,2,4,6,8,10\} \subseteq Z_{12}\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in 5 \mathrm{Z}^{+} \cup\{0\}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$. S is a pure neutrosophic interval bisubsemigroup of V . We see they are pure interval bisemigroup both under addition and multiplication. Of course only one operation will be used at a time.

Example 1.1.9: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40}\right\} \cup\{[0, \mathrm{bI}] \mid$ $\left.\mathrm{b} \in \mathrm{Z}_{28}\right\}$ be a pure neutrosophic interval bisemigroup. Consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{0,10,20,30) \subseteq \mathrm{Z}_{40}\right\} \cup\{[0, \mathrm{bI}] \mid$
$\left.\mathrm{b} \in\{0,2,4, \ldots, 26\} \subseteq \mathrm{Z}_{28}\right\} \subseteq \mathrm{P}_{1} \cup \mathrm{P}_{2}$ is a pure neutrosophic interval bisubsemigroup of P .

Example 1.1.10: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{R}^{+} \cup\{0\},+\right\}$ $\cup\left\{[0, b I] \mid \mathrm{b} \in \mathrm{Q}^{+} \cup\{0\}, \times\right\}$ be a pure neutrosophic interval bisemigroup. $T=T_{1} \cup T_{2}=\left\{[0, a I] \left\lvert\, a \in\left\{\left.\frac{1}{(2)^{n}} \right\rvert\, n=0,1,2, \ldots\right.\right.\right.$, $\infty,+\}\} \cup\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in 13 \mathrm{Z}^{+} \cup\{0\}\right\} \subseteq \mathrm{P}_{1} \cup \mathrm{P}_{2}$ is pure neutrosophic interval bisubsemigroup of P .

We can define ideals in case of these structures also. This is direct and hence left for the reader as an exercise. However we give examples of them.

Example 1.1.11: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right.$, $\times\} \cup\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}_{12}, \times\right\}$ be a pure neutrosophic interval bisemigroup.

Take $\mathrm{P}_{1} \cup \mathrm{P}_{2}=\mathrm{P}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in 3 \mathrm{Z}^{+} \cup\{0\}\right\} \cup\{[0, \mathrm{bI}] \mid \mathrm{b}$ $\left.\in\{0,3,6,9\} \subseteq Z_{12}\right\} \subseteq M_{1} \cup M_{2}$; it is easily verified P is a biideal of M .

It is important to mention here that every pure neutrosophic interval bisubsemigroup of a pure neutrosophic interval bisemigroup need not in general be a pure neutrosophic interval biideal, however every pure neutrosophic interval biideal of a pure neutrosophic interval bisemigroup is a bisubsemigroup. We see the bisubsemigroup given in example 1.1.10 is not a biideal.

Example 1.1.12: Consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{13},+\right\}$ $\cup\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}_{29},+\right\}$ a pure neutrosophic interval bisemigroup. Clearly H has no pure neutrosophic interval bisubsemigroups hence H has no pure neutrosophic biideals.

We call a pure neutrosophic interval bisemigroup S to be bisimple if it has no proper bisubsemigroups. We call S to be biideally simple if it has no biideals.

We will give examples and prove a few results in this direction.

Example 1.1.13: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{Ia} \in \mathrm{Z}_{17}, \times\right\} \cup\{[0$, $\left.\mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}_{23}, \times\right\}$ be a pure neutrosophic interval bisemigroup. Clearly P has no ideals.

However consider $H=H_{1} \cup H_{2}=\{[0, I],[0,16 I], 0\} \cup\{[0$, $I], 0,[0,22 I]\} \subseteq P_{1} \cup P_{2}$ is a pure neutrosophic interval bisubsemigroup of P and is not a biideal of P .

One can just think of for any pure neutrosophic interval bisemigroup $S=S_{1} \cup S_{2} ; H=S_{1} \cup\{0\} \subseteq S_{1} \cup S_{2}$ is a biideal of S. Also $T=\{0\} \cup S_{2} \subseteq S_{1} \cup S_{2}$ is again a biideal we choose to call these biideals as trivial biideals of S .

Theorem 1.1.1: Let $S=S_{l} \cup S_{2}=\left\{[0, a I] \mid a \in Z_{p},+\right\} \cup$ $\left\{[0, b I] \mid b \in Z_{p}\right.$, +\} where p and q are two distinct primes; be a pure neutrosophic interval bisemigroup. S is simple, hence S is biidealy simple.

The proof is direct and hence left as a simple exercise.
THEOREM 1.1.2: Let $S=S_{l} \cup S_{2}=\left\{[0, a I] \mid a \in Z_{p}, x\right\} \cup$ $\left\{[0, b I] \mid a \in Z_{q}, X\right\}$ be a pure neutrosophic interval bisemigroup p and q primes. S is only a biideally simple bisemigroup but is not a simple bisemigroup.

Proof: Follows from the fact that $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\{0, \mathrm{p}-1\}\} \cup\{[0, \mathrm{bI}] \mid \mathrm{b} \in\{0, \mathrm{q}-1\}\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2}$ is a pure neutrosophic interval subbisemigroup of S but is not a biideal of S.

Hence the claim.
However if $S=S_{1} \cup S_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{5},+\right\} \cup\{[0, \mathrm{bI}] \mid$ $\left.b \in Z_{19}, \times\right\}$ be a pure neutrosophic interval bisemigroup still S is both simple and ideally simple. In view of this we have the following corollary, the proof of which is direct.

COROLLARY 1.1.1: Let $T=T_{1} \cup T_{2}=\left\{[0, a \mathrm{al}] \mid \mathrm{a} \in \mathrm{Z}_{\mathrm{p}},+\right\} \cup$ $\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}_{\mathrm{q}}, \times\right\}$, p and q primes be a pure neutrosophic interval bisemigroup.

T is simple and ideally simple it has only trivial or interval quasi bisubsemigroups and ideals. For $P=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{\mathrm{p}},+\right\}$
$\cup\{0\}=\mathrm{P}_{1} \cup \mathrm{P}_{2}, \mathrm{~V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{0\} \cup\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}_{\mathrm{q}}, \times\right\}$ are trivial ideals.
$\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{0\} \cup\{[0, \mathrm{a}] \mid \mathrm{a} \in\{0, \mathrm{q}-1\}, \times\}$ be a pure quasi interval bisubsemigroup of T which is not an ideal.

Now we bring out the fact that Lagrange's theorem in general is not true in case of pure neutrosophic interval bisemigroups.

This is proved by the following examples.
Example 1.1.14: Let $S=S_{1} \cup S_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{17}, \times\right\} \cup\{[0$, $\left.\mathrm{bI}] \| \mathrm{b} \in \mathrm{Z}_{29}, \times\right\}$ be a pure neutrosophic interval semigroup. Take $T=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\{[0, \mathrm{I}],[0,16 \mathrm{I}],[0,0]\} \cup\{[0, \mathrm{I}],[0,28 \mathrm{I}]\}$ $\subseteq S_{1} \cup S_{2}$ be a pure neutrosophic interval bisemigroup of S. o $(\mathrm{S})=17 \times 29$ and $o(\mathrm{~T})=3 \times 2$. Clearly o $(\mathrm{T}) \times$ o (S). Consider $P=P_{1} \cup P_{2}=\{[0, I], 0,[0,16 I]\} \cup\{[0, I], 0,[0,28 I]\}$ $=S_{1} \cup S_{2}$ is again a pure neutrosophic interval bisubsemigroup of S which is not a biideal of S. Further o $(P)=3 \times 3$ and 3×3 $X 17 \times 29$.

Thus in general the Lagrange theorem is not true in case of pure neutrosophic interval bisemigroup of finite order.

Example 1.1.15: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{12}\right\} \cup\{[0, \mathrm{bI}]$ $\left.\mid \mathrm{b} \in \mathrm{Z}_{25}\right\}$ be a pure neutrosophic interval bisemigroup of order 12×25. Consider $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{0,2,4,6,8$, $\left.10\} \subseteq \mathrm{Z}_{12}\right\} \cup\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in\{0,5,10,15,20\} \subseteq \mathrm{Z}_{25}\right\} \subseteq \mathrm{S}=\mathrm{S}_{1} \cup$ $\mathrm{S}_{2} ; \mathrm{M}$ is a pure neutrosophic interval bisubsemigroup of S . Now o $(M)=6 \times 5$ and we see o (M)/o(S). Thus Lagrange's theorem for finite group is true for this bisubsemigroup M of S .

Now we can define the notion of Smarandache pure neutrosophic bisemigroup $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ if S_{1} and S_{2} are Smarandache bisemigroups if only one of S_{1} or S_{2} is a Smarandache bisemigroup then we call S to be a quasi Smarandache pure neutrosophic interval bisemigroup. We give examples of Smarandache pure neutrosophic interval bisemigroup.

Example 1.1.16: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{al}] \mid \mathrm{a} \in \mathrm{Z}_{23}, \mathrm{x}\right\} \cup$ $\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Q}^{+} \cup\{0\}, \times\right\}$ be a pure neutrosophic interval
bisemigroup. $\mathrm{H}=\{[0, \mathrm{I}],[0,22 \mathrm{I}]\} \cup\left\{\left[0,2^{\mathrm{n}} \mathrm{I}\right], \left.\left[0, \frac{1}{2^{\mathrm{m}}} \mathrm{I}\right] \right\rvert\, \mathrm{m}, \mathrm{n}\right.$ $\left.\in \mathrm{Z}^{+}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}$; is a interval group which is pure neutrosophic hence V is a S -pure neutrosophic interval bisemigroup.

Example 1.1.17: Let $\mathrm{V}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a}$ $\left.\in \mathrm{Z}_{7},+\right\}$ be a pure neutrosophic interval bisemigroup. Clearly V is not a Smarandache pure neutrosophic interval bisemigroup.

We have the following interesting theorems the proof of which is left as an exercise.

THEOREM 1.1.3: Let $V=V_{l} \cup V_{2}=\left\{[0, a I] \mid a \in Z_{p},+\right\} \cup\{[0$, bI] | $\left.b \in Z_{q},+\right\}$ (p and q are two distinct primes) be a pure neutrosophic interval bisemigroup. V is not a S-pure neutrosophic interval bisemigroup.

THEOREM 1.1.4: Let $V=V_{l} \cup V_{2}=\left\{[0, a I] \mid a \in Z_{p}, x\right\} \cup\{[0$, bI] | $\left.b \in Z_{q}, x\right\}$ (p and q two distinct primes) be a pure neutrosophic interval bisemigroup. V is a S-pure neutrosophic interval bisemigroup.

Proof: Take $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{1, \mathrm{p}-1\}, \times\} \cup\{[0$, $\mathrm{bI}] \mid \mathrm{b} \in\{1, \mathrm{q}-1\}, \times\} \subseteq \mathrm{V}$ is a pure neutrosophic interval bigroup of V . Also $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{\mathrm{p}} \backslash\{0\}, \times\right\} \cup$ $\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}_{\mathrm{p}} \backslash\{0\}, \times\right\} \subseteq \mathrm{V}$ is a pure neutrosophic interval bigroup. Thus V is a S-pure neutrosophic biinterval semigroup.

We have a class of S-pure neutrosophic biinterval semigroup as well as a pure neutrosophic interval bisemigroup which is not Smarandache.

THEOREM 1.1.5: Let $S=S_{1} \cup S_{2}=\left\{[0, a I] \mid a \in R^{+} \cup\{0\},+\right\}$ $\cup\left\{[0, a I] \mid a \in Z_{p},+\right\}$ (p a prime) be a pure neutrosophic interval bisemigroup. S is not a S-pure neutrosophic interval bisemigroup.

THEOREM 1.1.6: Let $M=M_{1} \cup M_{2}=\left\{[0, a I] \mid a \in Z^{+} \cup\{0\}\right.$, $+\} \cup\left\{[0, b I] \mid b \in Z_{q},+\right\}(q$ a prime $)$ be a pure neutrosophic
interval bisemigroup. M is not a S-pure neutrosophic interval bisemigroup.

Now we proceed onto define the concept of homomorphisms of pure neutrosophic interval bisemigroups using the pure neutrosophic intervals.

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ be any two pure neutrosophic interval bisemigroups. A bimap $\eta=\eta_{1} \cup \eta_{2}=$ $\mathrm{V} \rightarrow \mathrm{S}$ such that $\eta_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~S}_{1}$ and $\eta_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~S}_{2}$ are pure neutrosophic homomorphisms will be known as the pure neutrosophic interval bisemigroup homomorphisms.

Consider $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\},+\right\} \cup\{[0$, $\left.\mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{12}, \times\right\}$ be a pure neutrosophic interval bisemigroup. W $=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\},+\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{24}, \times\right\}$ be a pure neutrosophic interval bisemigroup. $\eta: V \rightarrow W$ defined by $\eta=\eta_{1} \cup \eta_{2}: V_{1} \cup V_{2} \rightarrow W_{1} \cup W_{2}$ given by $\eta_{1}: V_{1}$ $\rightarrow \mathrm{W}_{1}$ and $\eta_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{2}$ such that $\eta_{1}([0, \mathrm{aI}]) \mapsto \quad[0, \mathrm{aI}]$ and $\left.\eta_{2}([0, a I]) \mapsto \quad[0,2 \mathrm{aI}]\right)$.

It is easily verified $\eta=\eta_{1} \cup \eta_{2}$ is a pure neutrosophic interval bisemigroup homomorphism. Interested reader can define bikernel of a pure neutrosophic interval bisemigroup homomorphism. Now we call $S=\left\{\left(\left[0, a_{1} I\right], \ldots,\left[0, a_{n} I\right]\right)\right.$ where $\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{\mathrm{n}}$ or $\mathrm{Z}^{+} \cup\{0\}$ or $\mathrm{Q}^{+} \cup\{0\}$ or $\left.\mathrm{R}^{+} \cup\{0\}\right\}$ as a pure neutrosophic interval row matrix, $1 \leq \mathrm{i} \leq \mathrm{n}$. Clearly $(\mathrm{S},+$) is a semigroup. (S, \times) is also a semigroup.

But if we consider $H=\left\{\left.\left[\begin{array}{c}{\left[0, a_{1} I\right]} \\ {\left[0, a_{2} I\right]} \\ \vdots \\ {\left[0, a_{n} I\right]}\end{array}\right] \right\rvert\,\right.$ where $a_{i} \in Z_{n}$ or $Z^{+} \cup$
$\{0\}$ or $\mathrm{Q}^{+} \cup\{0\}$ or $\left.\mathrm{R}^{+} \cup\{0\} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ then H is only a pure neutrosophic semigroup under addition as multiplication is not compatible.

$$
\text { Suppose } \left.M=\left\{\begin{array}{ccc}
{\left[0, a_{1} I\right]} & \ldots & {\left[0, a_{n} I\right]} \\
{\left[0, b_{1} I\right]} & \ldots & {\left[0, b_{n} I\right]} \\
\vdots & & \vdots \\
{\left[0, m_{1} I\right]} & \ldots & {\left[0, m_{n} I\right]}
\end{array}\right] \right\rvert\, a_{i}, b_{i}, \ldots, m_{i} \in Z_{n}
$$

or $\mathrm{Z}^{+} \cup\{0\}$ or $\mathrm{Q}^{+} \cup\{0\}$ or $\left.\mathrm{R}^{+} \cup\{0\}\right\}$ be a collection of $\mathrm{m} \times \mathrm{n}$ pure neutrosophic interval matrices $m \neq n$ then M is only a interval pure neutrosophic semigroup under addition and under multiplication M is not compatible. If however $\mathrm{m}=\mathrm{n}, \mathrm{M}$ will be a semigroup under addition as well as multiplication.

Let $P=\left\{\sum_{i=0}^{\infty}[0, a I] x^{i} \mid a_{i} \in Z_{n}\right.$ or $Z^{+} \cup\{0\}$ or $Q^{+} \cup\{0\}$ or $\left.\mathrm{R}^{+} \cup\{0\}\right\}, \mathrm{P}$ is a pure neutrosophic interval polynomial semigroup under addition as well as multiplication. Take $\mathrm{K}=$ $\left\{\sum_{\mathrm{i}=0}^{\mathrm{n}}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{n}<\infty, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{\mathrm{n}}\right.$ or $\mathrm{Q}^{+} \cup\{0\}$ or $\mathrm{Z}^{+} \cup\{0\}$ or $\mathrm{R}^{+} \cup$
$\{0\} ; 0 \leq \mathrm{i} \leq \mathrm{n}\} ; \mathrm{K}$ is only a pure neutrosophic interval semigroup under addition. However if we impose the condition $x^{n}=1$ then K is closed under multiplication.

We will be using these types of pure neutrosophic interval semigroups to construct bisemigroups. The definition needs no modification. We give only examples of them.

Example 1.1.18: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right], \ldots,\left[0, \mathrm{a}_{8} \mathrm{I}\right]\right) \mid \mathrm{a}_{\mathrm{i}} \in\right.$ $\left.Z^{+} \cup\{0\}, 1 \leq i \leq 8, x\right\} \cup\left\{\left.\begin{array}{c}{\left[\begin{array}{c}{\left[0, a_{1} I\right]} \\ {\left[0, a_{2} I\right]} \\ \vdots \\ {\left[0, a_{10} I\right]}\end{array}\right]}\end{array} \right\rvert\, a_{i} \in Z_{25}, 1 \leq i \leq 10,+\right\}$ be the pure neutrosophic interval bisemigroup.

Example 1.1.19: Let $\mathrm{K}=\mathrm{K}_{1} \cup \mathrm{~K}_{2}=$

$$
\begin{aligned}
& \left.\left.\left\{\begin{array}{cccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{7} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{10} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{9} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{11} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{12} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{12} ; 1 \leq \mathrm{i} \leq 12,+\right\} \\
& \\
& \left.\cup\left\{\begin{array}{cc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} \\
\vdots & \vdots \\
{\left[0, \mathrm{a}_{17} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{18} \mathrm{I}\right]}
\end{array}\right] \right\rvert\,
\end{aligned}
$$

be a pure neutrosophic interval bisemigroup. Clearly K is commutative and is of finite order.

Example 1.1.20: Let $\mathrm{K}=\mathrm{K}_{1} \cup \mathrm{~K}_{2}=$

$$
\begin{aligned}
& \left\{\sum_{i=0}^{20}\left[0, a_{i} I\right] x^{i} \mid a_{i} \in Q^{+} \cup\{0\} ; 0 \leq i \leq 20,+\right\} \cup \\
& \left\{\left.\left[\begin{array}{c}
{\left[0, a_{1} I\right]} \\
{\left[0, a_{2} I\right]} \\
\vdots \\
{\left[0, a_{25} I\right]}
\end{array}\right] \right\rvert\, a_{i} \in Z^{+} \cup\{0\}, 1 \leq i \leq 25,+\right\}
\end{aligned}
$$

be a pure neutrosophic interval bisemigroup of infinite order.

Example 1.1.21: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=$

$$
\begin{aligned}
& \left\{\left.\begin{array}{lll}
{\left[\begin{array}{ccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{7} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{9} \mathrm{I}\right]}
\end{array}\right]}
\end{array} \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{5} ; 1 \leq \mathrm{i} \leq 9,+\right\} \\
& \\
& \cup\left\{\sum_{\mathrm{i}=0}^{7}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{8}, 0 \leq \mathrm{i} \leq 7,+\right\}
\end{aligned}
$$

be a pure neutrosophic interval bisemigroup. P is of finite order and is commutative.

Example 1.1.22: Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{\sum_{\mathrm{i}=0}^{20}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\right.$ $\{0\},+, 0 \leq \mathrm{i} \leq 20\} \cup\left\{\sum_{\mathrm{i}=0}^{35}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{9} ; 0 \leq \mathrm{i} \leq 35,+\right\}$ be a pure neutrosophic interval bisemigroup of infinite order. We can define substructures. This is a matter of routine and hence is left as an exercise to the reader. However we give examples.

Example 1.1.23: Let $\left.V=\left\{\begin{array}{c}{\left[\begin{array}{c}{\left[0, a_{1} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ \vdots \\ {\left[0, \mathrm{a}_{15} \mathrm{I}\right.}\end{array}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq$ $15,+\} \cup\left\{\left(\left[0, a_{1} I\right],\left[0, a_{2} I\right], \ldots,\left[0, a_{10} I\right]\right) \mid a_{i} \in Q^{+} \cup\{0\}, 1 \leq i \leq\right.$ $10, \times\}$ be a pure neutrosophic interval bisemigroup.

$1 \leq \mathrm{i} \leq 3, \times\} \subseteq \mathrm{V}$ is a pure neutrosophic interval bisubsemigroup of V . Infact M is not a pure neutrosophic interval biideal of V .

$$
P=P_{1} \cup P_{2}=\left\{\left.\left[\begin{array}{c}
{\left[0, a_{1} I\right]} \\
{\left[0, a_{2} I\right]} \\
\vdots \\
{\left[0, a_{15} I\right]}
\end{array}\right] \right\rvert\, a_{i} \in Z^{+} \cup\{0\}, 1 \leq i \leq 15,+\right\} \cup
$$

$\left\{\left(\left[0, a_{1} I\right],\left[0, a_{2} I\right], \ldots,\left[0, a_{10} I\right]\right) \mid a_{i} \in Z^{+} \cup\{0\}, 1 \leq i \leq 10, \times\right\} \subseteq$ V is a pure neutrosophic interval bisubsemigroup of V and is not a biideal of V . Thus we have bisubsemigroups which are not biideals of V.

Example 1.1.24: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=$

neutrosophic interval bisemigroup.
Consider $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=$
$\left\{\left.\left[\begin{array}{cc}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & 0 \\ 0 & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{12}, 1 \leq \mathrm{i} \leq 2, \times\right\} \cup$
$\left\{\left.\left[\begin{array}{ccc}{\left[0, a_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\ 0 & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} \\ 0 & 0 & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in 5 Z^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 6, \times\right\} \subseteq$
$\mathrm{M}_{1} \cup \mathrm{M}_{2}=\mathrm{M}, \mathrm{P}$ is not only a pure neutrosophic interval subsemigroup of M but is also a pure neutrosophic interval biideal of M .

Example 1.1.25: Let $\mathrm{B}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}=$

$$
\begin{aligned}
& \left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\} \cup \\
& \left\{\begin{array}{lll}
\left.\left.\left[\begin{array}{lll}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{7}\right]} & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{9} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{10} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{11} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{12} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{13} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{14} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{15} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{90}, 1 \leq \mathrm{i} \leq 15,+\right\} \text { be a pure }
\end{array}\right\}
\end{aligned}
$$

neutrosophic interval bisemigroup. Take $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=$

$$
\begin{aligned}
& \left\{\sum_{i=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}} I\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in 5 \mathrm{Z}^{+} \cup\{0\}, \times\right\} \cup \\
& \left\{\left.\left[\begin{array}{ccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & 0 & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
0 & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & 0 \\
{\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & 0 & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} \\
0 & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} & 0 \\
{\left[0, \mathrm{a}_{7} \mathrm{I}\right]} & 0 & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{90}, 1 \leq \mathrm{i} \leq 8,+\right\} \subseteq \mathrm{B}=
\end{aligned}
$$

$B_{1} \cup B_{2}$ is only a pure neutrosophic interval subbisemigroup of B. Now we can build quasi interval pure neutrosophic bisemigroup $S=S_{1} \cup S_{2}$ by taking only one of S_{1} or S_{2} to be pure neutrosophic interval semigroup and the other to be just a pure neutrosophic semigroup.

We will give some examples.
Example 1.1.26: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$
$\left\{\left.\left[\begin{array}{ll}{\left[0, a_{1} I\right]} & {\left[0, a_{2} I\right]} \\ {\left[0, a_{3} I\right]} & {\left[0, a_{4} I\right]} \\ {\left[0, a_{6} I\right]} & {\left[0, a_{5} I\right]}\end{array}\right] \right\rvert\, a_{i} \in Z^{+} \cup\{0\}, 1 \leq i \leq 6,+\right\} \cup\left\{\left(a_{1} I, a_{2} I, a_{3} I\right.\right.$,
$\left.\left.\mathrm{a}_{4} \mathrm{I}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 4, \times\right\}$ be a quasi interval pure neutrosophic bisemigroup.

Example 1.1.27: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2} \mathrm{I}\right], \ldots\right.\right.$, $\left.\left[0, a_{9} I\right] \mid a_{i} \in Z_{40}, 1 \leq \mathrm{i} \leq 90, \times\right\} \cup$

$$
\left\{\left.\left[\begin{array}{cccc}
a_{1} \mathrm{I} & a_{2} \mathrm{I} & a_{3} \mathrm{I} & a_{4} \mathrm{I} \\
\mathrm{a}_{5} \mathrm{I} & \mathrm{a}_{6} \mathrm{I} & a_{7} \mathrm{I} & a_{8} \mathrm{I} \\
\mathrm{a}_{9} \mathrm{I} & \mathrm{a}_{10} \mathrm{I} & \mathrm{a}_{11} \mathrm{I} & a_{12} \mathrm{I} \\
\mathrm{a}_{13} \mathrm{I} & \mathrm{a}_{14} \mathrm{I} & \mathrm{a}_{15} \mathrm{I} & a_{16} \mathrm{I} \\
\mathrm{a}_{17} \mathrm{I} & \mathrm{a}_{18} \mathrm{I} & \mathrm{a}_{19} \mathrm{I} & \mathrm{a}_{20} \mathrm{I} \\
\mathrm{a}_{21} \mathrm{I} & \mathrm{a}_{22} \mathrm{I} & \mathrm{a}_{23} \mathrm{I} & \mathrm{a}_{24} \mathrm{I}
\end{array}\right] \right\rvert\, a_{i} \in \mathrm{Z}_{240}, 1 \leq \mathrm{i} \leq 24,+\right\}
$$

be a quasi interval pure neutrosophic bisemigroup.
Example 1.1.28: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=$

$$
\left\{\left.\left[\begin{array}{c}
a_{1} I \\
a_{2} I \\
\vdots \\
a_{12} I
\end{array}\right] \right\rvert\, a_{i} \in Z^{+} \cup\{0\}, 1 \leq i \leq 12,+\right\} \cup\left\{\left(\left[0, a_{1} I\right], \ldots,\left[0, a_{25} I\right]\right) \mid a_{i}\right.
$$

$\left.\in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 25,+\right\}$ be a quasi interval pure neutrosophic bisemigroup.

Example 1.1.29: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{$ all $\mathrm{n} \times \mathrm{n}$ pure neutrosophic matrices with entries from $\mathrm{Z}_{15} \mathrm{I}$ under $\left.\times\right\} \cup\{$ all $\mathrm{n} \times \mathrm{n}$ pure neutrosophic interval matrices with entries from $Z^{+} I \cup\{0\}$ under $\times\}$ be a quasi interval pure neutrosophic bisemigroup.

Example 1.1.30: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\mathrm{Z}_{219} \mathrm{I}, \times\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\left.\mathrm{Z}_{40}, \times\right\}$ be a quasi interval pure neutrosophic bisemigroup of finite order.

Example 1.1.31: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=$

$$
\left\{\sum_{i=0}^{8}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\},+\right\} \cup
$$

$$
\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\}
$$

be a quasi interval pure neutrosophic bisemigroup of infinite order.

Now having seen examples of quasi interval pure neutrosophic bisemigroups we can now proceed onto define substructures in them. This is infact a matter of routine and hence left for the reader. We give a few examples of them.

Example 1.1.32: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
& \left.\left.\left\{\begin{array}{ll}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 4,+\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{25} \mathrm{a}_{\mathrm{i}} \mathrm{Ix}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 0 \leq \mathrm{i} \leq 25,+\right\}
\end{aligned}
$$

be a quasi interval pure neutrosophic bisemigroup of infinite order. Consider

$$
\begin{aligned}
\mathrm{H}= & \mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{\left.\left[\begin{array}{cc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
0 & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in 3 \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 3,+\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{10} \mathrm{a}_{\mathrm{i}} \mathrm{Ix}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in 5 \mathrm{Z}^{+} \cup\{0\}, 0 \leq \mathrm{i} \leq 10,+\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}
\end{aligned}
$$

H is a quasi interval pure neutrosophic bisubsemigroup of V and is not a biideal of V .

Example 1.1.33: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ccc}
{\left[0, a_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{7} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{9} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 9, \times\right\} \cup \\
& \left\{\left.\left[\begin{array}{cccc}
a_{1} I & a_{2} I & a_{3} I & a_{4} I \\
a_{5} I & a_{6} I & a_{7} I & a_{8} I \\
a_{9} I & a_{10} I & a_{11} I & a_{12} I \\
a_{13} I & a_{14} I & a_{15} I & a_{16} I
\end{array}\right] \right\rvert\, a_{i} \in Z_{240}, 1 \leq i \leq 16, \times\right\}
\end{aligned}
$$

be a quasi interval pure neutrosophic bisemigroup. Consider H $=\mathrm{H}_{1} \cup \mathrm{H}_{2}=$

$$
\left\{\left.\left[\begin{array}{ccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & 0 & 0 \\
0 & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & 0 \\
0 & 0 & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 3, \times\right\} \cup
$$

$$
\left\{\left.\left[\begin{array}{cccc}
a_{1} I & a_{2} I & a_{3} I & a_{4} I \\
a_{5} I & a_{6} I & a_{7} I & a_{8} I \\
a_{9} I & a_{10} I & a_{11} I & a_{12} I \\
a_{13} I & a_{14} I & a_{15} I & a_{16} I
\end{array}\right] \right\rvert\, a_{i} \in\{0,2,4,6,8, \ldots, 236,238\} \subseteq\right.
$$

$\left.\mathrm{Z}_{240}, 1 \leq \mathrm{i} \leq 16, x\right\} \subseteq \mathrm{P}_{1} \cup \mathrm{P}_{2}=\mathrm{P}$ be a quasi interval pure neutrosophic bisubsemigroup of P . Infact H is also a quasi interval pure neutrosophic biideal of P .

Now we can define quasi pure neutrosophic interval bisemigroup, $S=S_{1} \cup S_{2}$ to be a bisemigroup in which one of S_{1} or S_{2} is a pure neutrosophic interval semigroup where as the other is just an interval semigroup.

We will illustrate this situation by an example or two.
Example 1.1.34: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\}$ $\cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\},+\right\}$ be a quasi pure neutrosophic interval bisemigroup of infinite order.

Example 1.1.35: Let $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}=\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2} \mathrm{I}\right],\left[0, \mathrm{a}_{3} \mathrm{I}\right]\right)\right.$
$\left.I a_{i} \in Z_{20}, 1 \leq i \leq 30, \times\right\} \cup\left\{\left.\left[\begin{array}{l}{\left[0, a_{1}\right]} \\ {\left[0, a_{2}\right]} \\ {\left[0, a_{3}\right]} \\ {\left[0, a_{4}\right]} \\ {\left[0, a_{5}\right]} \\ {\left[0, a_{6}\right]}\end{array}\right] \right\rvert\,{ }_{a_{i} \in Z_{12}, 1 \leq i \leq 6,+}\right\}$ be a
quasi pure neutrosophic interval bisemigroup of finite order.

Example 1.1.36: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$
$\left.\left\{\begin{array}{llll}{\left[\begin{array}{lll}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]}\end{array}\left[0, \mathrm{a}_{4} \mathrm{I}\right]\right.} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{7} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{9} \mathrm{I}\right]}\end{array}\left[0, \mathrm{a}_{10} \mathrm{I}\right]\right] . \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{40}, 1 \leq \mathrm{i} \leq 10,+\right\}$
$\cup\{5 \times 5$ interval matrices with intervals of the form [0, a] where $a \in Z_{5}$ under multiplication $\}$ be a finite quasi pure neutrosophic interval bisemigroup which is non commutative.

Substructures can be defined and illustrated by any interested reader as it is direct and simple. Now if in a bisemigroup $S=S_{1} \cup S_{2}$ one of S_{1} or S_{2} is a pure neutrosophic interval semigroup and the other is just a semigroup then we call $S=S_{1} \cup S_{2}$ to be a quasi pure neutrosophic quasi interval bisemigroup.

We will illustrate this situation by some examples.
Example 1.1.37: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\}, \times\right\}$ $\cup\left\{\mathrm{Z}^{+} \cup\{0\},+\right\}$ be a quasi pure neutrosophic quasi interval bisemigroup.

Example 1.1.38: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{([0, \mathrm{aI}],[0, \mathrm{bI}],[0, \mathrm{cI}]$,
$\left.[0, d I]) \mid a, b, c, d \in Z_{40}, x\right\} \cup\left\{\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6}\end{array}\right]\right.$ where $a_{i} \in Z_{15}, 1 \leq i \leq 6$,
$+\}$ be a quasi pure neutrosophic quasi interval bisemigroup.
Example 1.1.39: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=$

$$
\left\{\left.\left[\begin{array}{ccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{6} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{10} \mathrm{I}\right]} \\
\vdots & & \vdots \\
{\left[0, \mathrm{a}_{21} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{25} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{40}, 1 \leq \mathrm{i} \leq 25, \times \times\right.
$$

\{All 8×8 matrices with entries from Z_{25} under multiplication\} be a non commutative finite quasi pure neutrosophic quasi interval bisemigroup.

Example 1.1.40: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=$

$$
\left\{\sum_{i=0}^{\infty}[0, a I] x^{i} \mid a \in Q^{+} \cup\{0\}, \times\right\} \cup
$$

$\left\{\right.$ all 8×8 matrices with entries from $\mathrm{Q}^{+} \cup\{0\}$ under product $\}$ be a quasi pure neutrosophic quasi interval bisemigroup of finite order which is non commutative.

Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\sum_{i=0}^{\infty}[0, a I] x^{i} \mid a \in Z^{+} \cup\{0\}, \times\right\}
$$

$\cup\left\{\right.$ all 8×8 matrices with entries from $\left.\mathrm{Z}^{+} \cup\{0\}, \times\right\} \subseteq \mathrm{M}_{1} \cup$ $M_{2}=M$ be a quasi interval quasi pure neutrosophic bisubsemigroup of M , this is also non commutative.

Example 1.1.41: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
& \left\{\sum_{\mathrm{i}=0}^{9} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\{0\}, 0 \leq \mathrm{i} \leq 9,+\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{20}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 0 \leq \mathrm{i} \leq 6,+\right\}
\end{aligned}
$$

be a quasi pure neutrosophic quasi interval bisemigroup.

$$
\begin{aligned}
& \mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}= \\
& \left\{\sum_{\mathrm{i}=0}^{6} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 0 \leq \mathrm{i} \leq 6, \times\right\} \cup \\
& \left\{\sum_{i=0}^{10}\left[0, a_{i} I\right] x^{i} \mid a \in 3 Z^{+} \cup\{0\}, 0 \leq i \leq 20\right\}
\end{aligned}
$$

be a quasi pure neutrosophic quasi interval bisubsemigroup of V. Clearly M is not a quasi pure neutrosophic quasi interval biideal of V .

Example 1.1.42: Let $\mathrm{M}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\},+\right\} \cup\{[0, \mathrm{a}] \mid$ $\left.\mathrm{a} \in \mathrm{R}^{+} \cup\{0\},+\right\}$ be a quasi pure neutrosophic interval
bisemigroup. Clearly M has no biideals but infinitely many subbisemigroups.

We now proceed onto define the notion of mixed neutrosophic interval bisemigroup.

Let $S=S_{1} \cup S_{2}$ if S_{1} and S_{2} are mixed neutrosophic distinct interval semigroups then we call S to be a mixed neutrosophic interval bisemigroup. Even if we do not use the term mixed but say neutrosophic interval bisemigroup still the term will mean only mixed neutrosophic intervals and not pure neutrosophic intervals.

We will illustrate this situation by some examples.

Example 1.1.43: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\right.$ $\{0\}, \times\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{12}, \times\right\}$ be the neutrosophic interval bisemigroup. Clearly V is of infinite order and is commutative.

Example 1.1.44: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\left(\left[0, \mathrm{a}_{1}+\mathrm{b}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2}+\mathrm{b}_{2} \mathrm{I}\right]\right.\right.$, $\left.\left.\left[0, a_{3}+b_{3} I\right]\right) \mid a_{i}, b_{i} \in Z^{+} \cup\{0\}, 1 \leq i \leq 3,+\right\} \cup$

$$
\left\{\left.\left[\begin{array}{c}
{\left[0, a_{1}+b_{1} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{2}+\mathrm{b}_{2} \mathrm{I}\right]} \\
\vdots \\
{\left[0, \mathrm{a}_{9}+\mathrm{b}_{9} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}} \in \mathrm{R}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 9,+\right\}
$$

be an infinite commutative neutrosophic interval bisemigroup.
Example 1.1.45: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=$

$$
\begin{gathered}
\left\{\begin{array}{ll}
\left.\sum_{i=0}^{\infty}[0, a+b I] x^{i} \mid a, b \in Z^{+} \cup\{0\}, \times\right\}
\end{array}\right\} \\
\left\{\left.\begin{array}{cc}
{\left[\begin{array}{ll}
{\left[0, a_{1}+b_{1} I\right]} & {\left[0, a_{2}+b_{2} I\right]} \\
{\left[0, a_{3}+b_{3} I\right]} & {\left[0, a_{4}+b_{4} I\right]} \\
{\left[0, a_{5}+b_{5} I\right]} & {\left[0, a_{6}+b_{6} I\right]} \\
{\left[0, a_{7}+b_{7} I\right]} & {\left[0, a_{8}+b_{8} I\right]}
\end{array}\right]}
\end{array} \right\rvert\, a_{i}, b_{i} \in Z_{90}, 1 \leq i \leq 8,+\right\}
\end{gathered}
$$

be a neutrosophic interval bisemigroup.
We can in case of neutrosophic interval bisemigroups have the concept of 6 types of bisubsemigroups.

Suppose $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ is a neutrosophic interval bisemigroup and if $P=P_{1} \cup P_{2} \subseteq S_{1} \cup S_{2}=S$ where P_{1} and P_{2} are mixed neutrosophic interval semigroups then P is a neutrosophic interval bisubsemigroup of S. If $M=M_{1} \cup M_{2}$ is such that M_{i} $\subseteq \mathrm{S}_{\mathrm{i}}$ is a pure neutrosophic interval subsemigroup for $\mathrm{i}=1,2$ then we call M to be a pseudo pure neutrosophic interval subbisemigroup of S.

Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2} \subseteq \mathrm{~S}_{1} \cup \mathrm{~S}_{2}$ be such that both T_{1} and T_{2} are just interval semigroups then we define T to be a pseudo interval subsemigroup of S. Take $V=V_{1} \cup V_{2} \subseteq S_{1} \cup S_{2}$ where one of V_{1} or V_{2} is a mixed neutrosophic interval semigroup and other a pure neutrosophic interval semigroup then we call V to be a mixed pure neutrosophic interval subbisemigroup.

Consider $B=B_{1} \cup B_{2} \subseteq S_{1} \cup S_{2}$; where B_{1} or B_{2} is a mixed neutrosophic interval semigroup and the other is just a interval semigroup then we call B to be a mixed interval neutrosophic and interval bisubsemigroup of S .

Likewise if $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ where C_{1} is a pure neutrosophic interval semigroup and C_{2} is just a interval semigroup then we call $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}$ to be a pure neutrosophic interval and interval subbisemigroup.

We will illustrate these six types of subbisemigroups by some examples.

Example 1.1.46: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\left(\left[0, \mathrm{a}_{1}+\mathrm{b}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2}+\mathrm{b}_{2} \mathrm{I}\right]\right.\right.$, $\left.\left.\left[0, a_{3}+b_{3} I\right],\left[0, a_{4}+b_{4} I\right],\left[0, a_{5}+b_{5} I\right]\right) \mid a_{i}, b_{i} \in Z_{10}, 1 \leq i \leq 5,+\right\} \cup$

$$
\left.\left\{\begin{array}{ccc}
{\left[0, a_{1}+b_{1} I\right]} & {\left[0, a_{2}+b_{2} I\right]} & {\left[0, a_{3}+b_{3} I\right]} \\
{\left[0, a_{4}+b_{4} I\right]} & {\left[0, a_{5}+b_{5} I\right]} & {\left[0, a_{6}+b_{6} I\right]} \\
{\left[0, a_{7}+b_{7} I\right]} & {\left[0, a_{8}+b_{8} I\right]} & {\left[0, a_{9}+b_{9} I\right]} \\
{\left[0, a_{10}+b_{10} I\right]} & {\left[0, a_{11}+b_{11} I\right]} & {\left[0, a_{12}+b_{12} I\right]}
\end{array}\right] \right\rvert\, a_{i}, b_{i} \in \mathrm{Z}_{15}, 1 \leq i
$$

$\leq 12,+\}$ be a neutrosophic interval bisemigroup.
Consider $H=H_{1} \cup H_{2}=\left\{\left(\left[0, a_{1}+b_{1} I\right],\left[0, a_{2}+b_{2} I\right],[0\right.\right.$, $\left.\left.a_{3}+b_{3} I\right],\left[0, a_{4}+b_{4} I\right],\left[0, a_{5}+b_{5} I\right]\right) \mid a_{i}, b_{i} \in\{0,2,4,6,8\} \subseteq Z_{10}$,
$1 \leq \mathrm{i} \leq 5,+\} \left.\cup\left\{\begin{array}{ccc}{\left[0, a_{1}+\mathrm{b}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2}+\mathrm{b}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3}+\mathrm{b}_{3} \mathrm{I}\right]} \\ \vdots & \vdots & \vdots \\ {\left[0, \mathrm{a}_{10}+\mathrm{b}_{10} \mathrm{I}\right]} & {\left[0, a_{11}+\mathrm{b}_{11} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{12}+\mathrm{b}_{12} \mathrm{I}\right]}\end{array}\right] \right\rvert\,$
$\left.\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}} \in\{0,3,6,9,12\} \subseteq \mathrm{Z}_{15}, 1 \leq \mathrm{i} \leq 12,+\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}$ is a neutrosophic interval bisubsemigroup of V .

Take $\left.T=T_{1} \cup T_{2}=H_{1} \cup\left\{\begin{array}{lll}{\left[0, a_{1} I\right]} & {\left[0, a_{2} I\right]} & {\left[0, a_{3} I\right]} \\ {\left[0, a_{4} I\right]} & {\left[0, a_{5} I\right]} & {\left[0, a_{6} I\right]} \\ {\left[0, a_{7} I\right]} & {\left[0, a_{8} I\right]} & {\left[0, a_{9} I\right]} \\ {\left[0, a_{10} I\right]} & {\left[0, a_{11} I\right]} & {\left[0, a_{12} I\right]}\end{array}\right] \right\rvert\, a_{i}$
$\left.\in \mathrm{Z}_{15}, 1 \leq \mathrm{i} \leq 12,+\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}, \mathrm{T}$ is a mixed pure neutrosophic interval subbisemigroup of V .

Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2} \mathrm{I}\right],\left[0, \mathrm{a}_{3} \mathrm{I}\right],\left[0, \mathrm{a}_{4} \mathrm{I}\right],[0\right.\right.$, $\left.\left.\left.\mathrm{a}_{5} \mathrm{I}\right]\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{10}, 1 \leq \mathrm{i} \leq 5,+\right\} \cup \mathrm{T}_{2} \subseteq \mathrm{~V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}$ be a pseudo pure neutrosophic interval subbisemigroup of V .

Consider $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{\left(\left[0, a_{1}\right],\left[0, \mathrm{a}_{2}\right],\left[0, \mathrm{a}_{3}\right],\left[0, \mathrm{a}_{4}\right]\right.\right.$,

$$
\left.\left.\left[0, a_{5}\right]\right) \mid a_{i} \in Z_{10}, 1 \leq i \leq 5,+\right\} \left.\cup\left\{\begin{array}{lll}
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & {\left[0, a_{3}\right]} \\
{\left[0, a_{4}\right]} & {\left[0, a_{5}\right]} & {\left[0, a_{6}\right]} \\
{\left[0, a_{7}\right]} & {\left[0, a_{8}\right]} & {\left[0, a_{9}\right]} \\
{\left[0, a_{10}\right]} & {\left[0, a_{11}\right]} & {\left[0, a_{12}\right]}
\end{array}\right] \right\rvert\,
$$

$\left.\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{15}, 1 \leq \mathrm{i} \leq 12,+\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}$ is a pseudo neutrosophic interval bisubsemigroup.

Consider $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}=\mathrm{L}_{1} \cup \mathrm{~T}_{2} \subseteq \mathrm{~V}_{1} \cup \mathrm{~V}_{2}$ is a interval pure neutrosophic interval subbisemigroup of V .

Take $R=R_{1} \cup R_{2}=H_{1} \cup L_{2} \subseteq V_{1} \cup V_{2}, R$ is a mixed interval neutrosophic interval subbisemigroup of V .

Example 1.1.47: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\left([0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\right.\right.$ $\{0\},+\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{24},+\right\}$ be a mixed neutrosophic interval bisemigroup.
i) Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in 3 \mathrm{Z}^{+} \cup\{0\},+\right\} \cup$ $\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{0,2,4,6,8,10, \ldots, 22\} \subseteq \mathrm{Z}_{24},+\right\} \subseteq$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a mixed neutrosophic interval bisubsemigroup of V .
ii) Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\},+\right\} \cup\{[0, \mathrm{aI}]$ $\left.\mathrm{I} \mathrm{a} \in \mathrm{Z}_{24} ;+\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a pseudo pure neutrosophic interval bisubsemigroup of V .
iii) Consider $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{Z}^{+} \cup\{0\},+\right\} \cup\{[0, \mathrm{~b}] \mid$ $\left.\mathrm{b} \in \mathrm{Z}_{24} ;+\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}, \mathrm{S}$ is the pseudo neutrosophic interval bisubsemigroup of S .
iv) Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in 5 \mathrm{Z}^{+} \cup\{0\},+\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in\left\{2 \mathrm{Z}_{24}\right\} \subseteq \mathrm{Z}_{24},+\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}, \mathrm{~W}$ is a mixed- pure neutrosophic interval bisubsemigroup.
v) Let $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in 5 \mathrm{Z}^{+} \cup\{0\},+\right\} \cup$ $\left\{[0, a] \mid a \in Z_{24},+\right\} \subseteq V_{1} \cup V_{2}, N$ is a mixed neutrosophic interval interval subbisemigroup.
vi) $\mathrm{D}=\mathrm{D}_{1} \cup \mathrm{D}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in 7 \mathrm{Z}^{+} \cup\{0\},+\right\} \cup\{[0, \mathrm{a}] \mid \mathrm{a}$ $\left.\in \mathrm{Z}_{24},+\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a interval neutrosophic pureinterval bisubsemigroup.
It is pertinent to mention here that all types of neutrosophic interval bisemigroups cannot be biideals.

For instance consider the following types of bisubsemigroup of a mixed neutrosophic interval bisemigroup.
(1) $S=S_{1} \cup S_{2}$ be a mixed neutrosophic interval bisemigroup.
$P=P_{1} \cup P_{2}=\{[0, a] \mid$ a is real $\} \cup\{$ any real interval subsemigroup \} of $S_{1} \cup S_{2}$. P is only a bisubsemigroup and never a biideal of S.
(2) If $T=T_{1} \cup T_{2}=\{$ real interval semigroup $\} \cup\{$ pure neutrosophic interval semigroup\} is a bisubsemigroup, then T is not a biideal.
(3) $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\{$ real interval semigroup $\} \cup\{$ mixed neutrosophic interval semigroup $\} \subseteq S_{1} \cup S_{2}$ is only a bisubsemigroup and never an ideal.

However the mixed neutrosophic interval bisubsemigroup, pseudo pure neutrosophic interval bisubsemigroup and mixed pure interval neutrosophic interval bisubsemigroup can be sometimes biideals.

We will give some examples of them before we proceed onto work with other types of interval bisemigroups.

Example 1.1.48: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\right.$ $\{0\}, x\} \cup\left\{[0, a+b I] \mid a, b \in Z_{40}, \times\right\}$ be a mixed neutrosophic interval bisemigroup. $H=H_{1} \cup H_{2}=\left\{[0, a+b I] \mid a, b \in 5 Z^{+} \cup\right.$ $\{0\}, x\} \cup\left\{[0, \mathrm{aI}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b} \in\{0,4,8, \ldots, 36\} \subseteq \mathrm{Z}_{40}, \mathrm{x}\right\} \subseteq \mathrm{V}_{1} \cup$ V_{2} be a mixed neutrosophic interval bisubsemigroup of V . Clearly H is a biideal of V .
$\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\} \cup\{[0, \mathrm{bI}] \mid \mathrm{b} \in$ $\left.\mathrm{Z}_{40}, \mathrm{x}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a pseudo pure neutrosophic interval bisubsemigroup of V. T is also a biideal of V. Consider $\mathrm{L}=\mathrm{L}_{1}$ $\cup \mathrm{L}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in 3 \mathrm{Z}^{+} \cup\{0\}, \times\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40}, \times\right\}$ $\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a mixed pure neutrosophic interval bisubsemigroup. L is a biideal of V .

Now $R=R_{1} \cup R_{2}=\left\{[0, a] \mid a \in Z^{+} \cup\{0\}, \times\right\} \cup\{[0, a] \mid a$ $\left.\in \mathrm{Z}_{40}, \times\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a bisubsemigroup of V but R is not a biideal. Likewise $D=D_{1} \cup D_{2}=\left\{[0, a] \mid a \in Z^{+} \cup\{0\}, \times\right\} \cup$ $\left\{[0, a+b I] \mid a, b \in 2 Z_{40}, x\right\}$ is a subbisemigroup which is not a biideal of V .

Also $P=P_{1} \cup P_{2}=\left\{[0, a] \mid a \in Z^{+} \cup\{0\}, x\right\} \cup\{[0, a] \mid a \in$ $\left.\mathrm{Z}_{40}, \mathrm{x}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is only a bisubsemigroup of V and is not a biideal of V .

Now we can develop all other properties in case of mixed neutrosophic interval bisemigroup as in case of pure neutrosophic interval bisemigroup.

However we can define mixed - neutrosophic interval - pure neutrosophic interval bisemigroup or mixed - pure neutrosophic interval bisemigroup.

Example 1.1.49: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$ $\left.\left\{\left.\left(\begin{array}{cc}{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} \\ {[0, \mathrm{cI}]} & {[0, \mathrm{dI}]}\end{array}\right) \right\rvert\, a, b, c, d \in \mathrm{Z}_{20}, \times\right\}\right\} \cup\left\{\left(\left[0, \mathrm{a}_{1}+\mathrm{b}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2}+\mathrm{b}_{2} \mathrm{I}\right]\right.\right.$, $\left.\ldots,\left[0, a_{8}+b_{8} I\right]\right)$ where $\left.\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, \times, 1 \leq \mathrm{i} \leq 8\right\}$ be the pure - mixed neutrosophic interval bisemigroup.

Real interval mixed neutrosophic interval bisemigroup is illustrated by the following example.

Example 1.1.50: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=$

$$
\left.\left.\left.\begin{array}{c}
\left\{\left[\begin{array}{cc}
{[0, \mathrm{a}]} & {[0, \mathrm{~b}]} \\
{[0, \mathrm{e}]} & {[0, \mathrm{c}]} \\
{[0, \mathrm{f}]} & {[0, \mathrm{~g}]}
\end{array}[0, \mathrm{~d}]\right.\right.
\end{array}\right] \mid \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h} \in \mathrm{Z}^{+} \cup\{0\},+\right\}\right\}
$$

be the real interval mixed neutrosophic bisemigroup.
We can still have mixed neutrosophic interval pure neutrosophic bisemigroup or quasi interval mixed pure neutrosophic bisemigroup. We have illustrated them by the following examples.

Example 1.1.51: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left.\left\{\begin{array}{cccc}
\left.\begin{array}{ccc}
a_{1} I & a_{2} I & a_{3} I \\
a_{5} I & a_{4} I \\
a_{6} I & a_{7} I & a_{8} I \\
a_{9} I & a_{10} I & a_{11} I \\
a_{12} I \\
a_{13} I & a_{14} I & a_{15} I \\
a_{16}
\end{array}\right] \mid
\end{array}\right\} a_{i} \in Z_{25}, 1 \leq i \leq 16,+\right\} \\
\left\{\begin{array}{c}
{\left[0, a_{1}+b_{1} I\right]} \\
\left.\left.\left[\begin{array}{c}
{\left[a_{2}+b_{2} I\right]} \\
\vdots \\
{\left[0, a_{12}+b_{12} I\right]}
\end{array}\right] \right\rvert\, a_{i}+b_{i} \in Z_{45}, 1 \leq i \leq 12,+\right\}
\end{array}\right.
\end{gathered}
$$

be a quasi interval mixed pure neutrosophic bisemigroup.

Example 1.1.52: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=$

$$
\left\{\begin{array}{c}
\left.\left.\left\{\begin{array}{ccc}
a_{1}+b_{1} I & a_{2}+b_{2} I & a_{3}+b_{3} I \\
a_{4}+b_{4} I & a_{5}+b_{5} I & a_{6}+b_{6} I \\
a_{7}+b_{7} I & a_{8}+b_{8} I & a_{9}+b_{9} I \\
a_{10}+b_{10} I & a_{11}+b_{11} I & a_{12}+b_{12} I \\
a_{13}+b_{13} I & a_{14}+b_{14} I & a_{15}+b_{15} I \\
a_{16}+b_{16} I & a_{17}+b_{17} I & a_{18}+b_{18} I
\end{array}\right] \right\rvert\, a_{i}, b_{i} \in Q^{+} \cup\{0\},+, 1 \leq i \leq 18\right\} \\
\\
\cup\left\{\left[\sum_{i=0}^{\infty}[0, a I] x^{i}\right] \mid a \in Q^{+} \cup\{0\}, \times\right\}
\end{array}\right.
$$

be a quasi interval mixed - pure neutrosophic interval bisemigroup.

Example 1.1.53: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=$

$$
\begin{gathered}
\left\{\left[\sum_{i=0}^{\infty}\left[0, a_{i}\right] x^{i}\right] \mid a_{i} \in Z^{+} \cup\{0\}, \times\right\} \cup \\
\left\{\left.\left[\begin{array}{cc}
a_{1}+b_{1} I & a_{2}+b_{2} I \\
a_{3}+b_{3} I & a_{4}+b_{4} I \\
a_{5}+b_{5} I & a_{6}+b_{6} I \\
a_{7}+b_{7} I & a_{8}+b_{8} I \\
a_{9}+b_{9} I & a_{10}+b_{10} I \\
a_{11}+b_{11} I & a_{12}+b_{12} I
\end{array}\right] \right\rvert\, a_{i}, b_{i} \in Q^{+} \cup\{0\},+, 1 \leq i \leq 12,+\right\}
\end{gathered}
$$

be a quasi interval real - mixed neutrosophic bisemigroup.
Example 1.1.54: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{8 \times 8$ matrix with entries from $\left.\mathrm{R}^{+} \cup\{0\}, \times\right\} \cup$

$$
\left\{\left.\left[\begin{array}{cc}
a_{1}+b_{1} I & a_{2}+b_{2} I \\
a_{3}+b_{3} I & a_{4}+b_{4} I \\
a_{5}+b_{5} I & a_{6}+b_{6} I \\
a_{7}+b_{7} I & a_{8}+b_{8} I \\
a_{9}+b_{9} I & a_{10}+b_{10} I \\
a_{11}+b_{11} I & a_{12}+b_{12} I
\end{array}\right] \right\rvert\, a_{i}, b_{i} \in Q^{+} \cup\{0\},+, 1 \leq i \leq 12,+\right\} \quad \text { be } \quad a
$$

quasi interval real - mixed neutrosophic bisemigroup.

Having seen examples of mixed neutrosophic interval bisemigroup and their generalization we proceed onto discuss and define neutrosophic interval bigroups.

1.2 Neutrosophic Interval Bigroups

In this section we proceed onto define the notion of pure neutrosophic interval bigroups and mixed neutrosophic interval bigroups and describe and define their related properties. It is important to mention neutrosophic groups in general need not have a group structure.

DEFINITION 1.2.1: Let $G=G_{1} \cup G_{2}$ where both G_{1} and G_{2} are pure neutrosophic interval groups and $G_{1} \neq G_{2}$ or $G_{1} \nsubseteq G_{2}$ or $G_{2} \nsubseteq G_{1}$. Then we define G to be pure neutrosophic interval bigroup.

We will illustrate this situation by some examples.

Example 1.2.1: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{20},+\right\} \cup\{[0$, bI] $\left.\mid \mathrm{b} \in \mathrm{Q}^{+}, \times\right\}$be a pure neutrosophic interval bigroup of infinite order and is abelian.

Example 1.2.2: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{7} \backslash\{0\}, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{R}^{+}, \times\right\}$be the pure neutrosophic interval bigroup of infinite order.

Example 1.2.3: Let $S=S_{1} \cup S_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{20},+\right\} \cup\{[0$, $\left.\mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{11} \backslash\{0\}, \times\right\}$ be the pure neutrosophic interval bigroup of finite order.

Example 1.2.4: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2} \mathrm{I}\right], \ldots\right.\right.$, $\left.\left.\left[0, ~ a_{12} I\right]\right) \quad \mid \quad a_{i} \in Z_{40}, \quad 1 \leq i \leq 12, \quad+\right\} \cup$ $\left\{\left.\left[\begin{array}{c}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ \vdots \\ {\left[0, \mathrm{a}_{15} \mathrm{I}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{40}, 1 \leq \mathrm{i} \leq 15,+\right\} \quad$ be \quad a \quad pure \quad neutrosophic
interval bisemigroup of finite order.

Example 1.2.5: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$
$\left.\left\{\left[\begin{array}{cc}{\left[0, a_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]}\end{array}\right]|\mathrm{A}| \neq 0, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{19} \backslash\{0\}, 1 \leq \mathrm{i} \leq 4, \times\right\} \cup\{[0, \mathrm{a}]] \right\rvert\,$ $\left.\mathrm{a} \in \mathrm{R}^{+}, \times\right\}$be a pure neutrosophic interval bigroup which is non commutative.

Example 1.2.6: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2}\right]\right], \ldots,[0\right.$, $\left.\left.\mathrm{a}_{25}[]\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{31} \backslash\{0\}, \times, 1 \leq \mathrm{i} \leq 25,+\right\} \cup$
$1 \leq \mathrm{i} \leq 25,+\}$ be a pure neutrosophic interval bigroup of finite order and is commutative.

We can define subbigroups, this is direct and hence left as an exercise to the reader.

We will give examples of them.
Example 1.2.7: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{al}] \mid \mathrm{a} \in \mathrm{Z}_{40},+\right\} \cup$ $\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}_{43} \backslash\{0\}, \times\right\}$ be a pure neutrosophic interval bigroup. Take $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in 2 \mathrm{Z}_{40},+\right\} \cup\{[0, \mathrm{bI}] \mid$ $\mathrm{b} \in\{1,42\}, \times\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2}=\mathrm{G}, \mathrm{P}$ is a pure neutrosophic interval subbigroup of G.

Example 1.2.8: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Q}^{+}, \times\right\}$ $\cup\left\{\left.\begin{array}{l}{\left[\begin{array}{l}{\left[0, a_{1} I\right]} \\ {\left[0, a_{2} I\right]} \\ {\left[0, a_{3} I\right]} \\ {\left[0, a_{4} I\right]} \\ {\left[0, a_{5} I\right]}\end{array}\right]}\end{array} \right\rvert\, a_{i} \in Z_{25}, 1 \leq i \leq 5,++\right.$ be a pure neutrosophic interval bigroup. Take $P=P_{1} \cup P_{2}=\left\{[0, \mathrm{a}] \left\lvert\, \mathrm{a} \in\left\{2^{\mathrm{n}}, \left.\frac{1}{2^{\mathrm{n}}} \right\rvert\, \mathrm{n}=\right.\right.\right.$
$\left.0,1,2, \ldots, \infty\} \subseteq \mathrm{Q}^{+}, \times\right\} \cup\left\{\left.\left[\begin{array}{c}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} \\ 0 \\ {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ 0 \\ {\left[0, \mathrm{a}_{3} \mathrm{I}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{25}, 1 \leq \mathrm{i} \leq 3,+\right\} \subseteq$
$\mathrm{M}_{1} \cup \mathrm{M}_{2}=\mathrm{M}, \mathrm{P}$ is a pure neutrosophic interval subbigroup of M.

Example 1.2.9: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2} \mathrm{I}\right], \ldots\right.\right.$,
$\left.\left.\left[0, a_{24} I\right]\right) \mid a_{i} \in R^{+}, \times\right\} \cup\left\{\left\{\begin{array}{cc}{\left[0, a_{1} I\right]} & {\left[0, a_{2} I\right]} \\ {\left[0, a_{3} I\right]} & {\left[0, a_{4} I\right]} \\ \vdots & \vdots \\ {\left[0, a_{29} I\right]} & {\left[0, a_{30} I\right]}\end{array}\right]\right)$ where $a_{i} \in Z_{45}$,
$1 \leq \mathrm{i} \leq 30,+\}$ be a pure neutrosophic interval bigroup. We take $S=S_{1} \cup S_{2}=\left\{\left(\left[0, a_{1} I\right],\left[0, a_{2} I\right], \ldots,\left[0, a_{24}\right]\right) \mid a_{i} \in Q^{+}, \times\right\}$
$\left.\left.\cup\left\{\begin{array}{cc}{\left[0, a_{1} \mathrm{I}\right]} & 0 \\ 0 & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & 0 \\ 0 & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & 0 \\ \vdots & \vdots \\ 0 & {\left[0, \mathrm{a}_{14} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{15} \mathrm{I}\right]} & 0\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{45} ; 1 \leq \mathrm{i} \leq 15,+\right\} \subseteq \mathrm{M}_{1} \cup \mathrm{M}_{2}=$
M ; S is a pure neutrosophic interval bisubgroup of S .
Example 1.2.10: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2} \mathrm{I}\right],\left[0, \mathrm{a}_{3} \mathrm{I}\right]\right) \mid\right.$ $\left.\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{12} ; 1 \leq \mathrm{i} \leq 3,+\right\} \cup\left\{\left(\left[0, \mathrm{a}_{1} I\right],\left[0, \mathrm{a}_{2} \mathrm{I}\right],\left[0, \mathrm{a}_{3} I\right]\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{13} \backslash\right.$ $\{0\} ; 1 \leq \mathrm{i} \leq 3, \times\}$ be a pure neutrosophic interval bigroup. Consider $M=M_{1} \cup M_{2}=\left\{\left(\left[0, a_{1} I\right],\left[0, a_{2} I\right],\left[0, a_{3} I\right]\right) \mid a_{i} \in 2 Z_{12}\right.$; $1 \leq i \leq 3,+\} \cup\left\{\left(\left[0, a_{1} I\right],\left[0, a_{2} I\right],\left[0, a_{3} I\right]\right) \mid a_{i} \in\{1,12\} \subseteq Z_{13} ;\right.$ $1 \leq \mathrm{i} \leq 3, x\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{M}$ is a pure neutrosophic interval bisubgroup of V .

Now we can define normal bisubgroups as in case of usual bigroup. Let us define the order of a pure neutrosophic interval bigroup $G=G_{1} \cup G_{2}$ to be of finite order if both G_{1} and G_{2} are finite; even if one of G_{1} or G_{2} are of infinite order then we define G to be of infinite order.

If both G_{1} and G_{2} are of finite order we denote the biorder of G by $\left|G_{1}\right|$. $\left|G_{2}\right|$ or o $\left(G_{1}\right) \times o\left(G_{2}\right)$.

It can be easily proved that if $H=H_{1} \cup H_{2} \subseteq G_{1} \cup \mathrm{G}_{2}=\mathrm{G}$ where G is of finite biorder then $\mathrm{o}(\mathrm{H}) / \mathrm{o}(\mathrm{G})$. We can define homomorphism and isomorphism of pure neutrosophic interval bigroups as in case of pure neutrosophic interval bisemigroups.

However in case of pure neutrosophic interval bigroups G we see bikernel of a homomorphism is a pure neutrosophic interval normal subbigroup of G. All these are direct and hence is left as an exercise to the reader. However we see we can define the notion of quasi interval pure neutrosophic bigroup. Suppose $G=G_{1} \cup G_{2}$ where only one of G_{1} or G_{2} is pure neutrosophic interval group and the other is just a pure neutrosophic group then we define G to be a quasi interval pure neutrosophic bigroup. We will give some examples of them.

Example 1.2.11: Let $G=G_{1} \cup G_{2}=\left\{Z_{25} \mathrm{I},+\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\left.\mathrm{Q}^{+}, \times\right\}$be a quasi interval pure neutrosophic bigroup of infinite order.

Example 1.2.12: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{20},+\right\} \cup$ $\left\{\mathrm{Q}^{+} \mathrm{I}, \times\right\}$ be a quasi interval pure neutrosophic bigroup of infinite order.

We can replace in the definition the pure neutrosophic intervals by mixed neutrosophic intervals and study these structures. We will illustrate this situation by some examples.

Example 1.2.13: Let $\mathrm{V}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{90},+\right\} \cup\{[0$, $\left.\mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{45},+\right\}$ be a mixed neutrosophic interval bigroup.

Example 1.2.14: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{24},+\right\}$ $\cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{12},+\right\}$ be a mixed neutrosophic interval bigroup of finite order.

We can find substructures.

Example 1.2.15: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{120}\right.$, $+\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{45},+\right\}$ be a mixed neutrosophic interval bigroup of finite order. Consider $H=H_{1} \cup \mathrm{H}_{2}=$ $\left\{[0, a+b I] \mid a, b \in\{0,10,20, \ldots, 110\} \subseteq \mathrm{Z}_{120},+\right\} \cup\{[0, a+b I] \mid$ $\left.\mathrm{a}, \mathrm{b} \in\{0,5,10,15,20, \ldots, 40\} \subseteq \mathrm{Z}_{45},+\right\} \subseteq \mathrm{M}_{1} \cup \mathrm{M}_{2}, \mathrm{H}$ is a mixed neutrosophic interval subbigroup of finite order.

We cannot construct mixed neutrosophic interval bigroups using R^{+}or Q^{+}for finding inverse of $\mathrm{a}+\mathrm{bI}$ is not a easy task.

Now we can define different types of interval bigroups. The following examples express their properties.

Example 1.2.16: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{R}^{+}, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{20},+\right\}$ be a real-pure neutrosophic interval bigroup of infinite order.

Example 1.2.17: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2} \mathrm{I}\right]\right.\right.$, $\left.\left.\left[0, a_{3} I\right]\right) \mid a_{i} \in Z_{40}, 1 \leq i \leq 3,+\right\} \cup\left\{[0, a] \mid a \in Q^{+}, x\right\}$ be a pure neutrosophic - real interval bigroup of infinite order.

Example 1.2.18: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\mathrm{S}_{5} \cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{40},+\right\}$ be a quasi interval quasi pure neutrosophic bigroup of finite order which is non commutative.

Example 1.2.19: Let $M=M_{1} \cup M_{2}=\left\{\left.A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{6} & a_{7} & a_{8}\end{array}\right]| | A \right\rvert\,\right.$ $\neq 0$ with $\left.\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{25}, 1 \leq \mathrm{i} \leq 9, \times\right\} \cup\left\{[0, \mathrm{al}] \mid \mathrm{a} \in \mathrm{Z}_{25},+\right\}$ be a quasi interval pure neutrosophic bigroup of finite order.

Example 1.2.20: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\mathrm{S}_{12}\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b}$ $\left.\in \mathrm{Z}_{10},+\right\}$ be a quasi interval mixed neutrosophic bigroup of finite order.

Example 1.2.21: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\{\mathrm{ZI},+\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b}$ $\left.\in \mathrm{Z}_{14},+\right\}$ be a quasi interval neutrosophic bigroup of infinite order.

Example 1.2.22: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\mathrm{Q}^{+} \mathrm{I}, \times\right\} \cup\{0, \mathrm{a}+\mathrm{bI}] \mid$ $\left.\mathrm{a}, \mathrm{b} \in \mathrm{Z}_{28},+\right\}$ be the quasi interval neutrosophic bigroup of infinite order.

Example 1.2.23: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Q}^{+}, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Q}^{+}, \times\right\}$be the quasi neutrosophic interval bigroup of infinite order.

Now we can define pure neutrosophic interval group semigroup, mixed neutrosophic interval group - semigroup, quasi interval neutrosophic group - semigroup and so on.

From the very structure one can easily understand the algebraic structure, so we would give only examples of them.

Example 1.2.24: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{20},+\right\}$ be a pure neutrosophic interval semigroup - group of infinite order.

Example 1.2.25: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40}, \times\right\} \cup$ $\left\{\left(\left[0, a_{1} I\right],\left[0, a_{2} I\right],\left[0, a_{3} I\right],\left[0, a_{4} I\right],\left[0, a_{5} I\right]\right) \mid a_{i} \in Z_{5}, 1 \leq i \leq 5\right\}$ be a pure neutrosophic interval semigroup - group of finite order which is commutative.

Example 1.2.26: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Q}^{+}, \times\right\}$be a pure neutrosophic interval semigroup - group of infinite order.

Example 1.2.27: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{45}, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{R}^{+}, \times\right\}$be a pure neutrosophic interval semigroup group of infinite order.

Example 1.2.28: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\mathrm{Z}^{+} \mathrm{I} \cup\{0\}, \times\right\} \cup\{[0, \mathrm{aI}]$ $\left.\mid \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\}, \times\right\}$ be a quasi interval neutrosophic semigroup group of infinite order.

Example 1.2.29: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Q}^{+} \mathrm{I} \cup\{0\},+\right\} \cup\{[0, \mathrm{aI}] \mid$ $\left.\mathrm{a} \in \mathrm{Z}_{25},+\right\}$ be a quasi interval pure neutrosophic semigroup group of infinite order.

Example 1.2.30: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{25} \mathrm{I},+\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\left.\mathrm{Z}_{12}, \times\right\}$ be a quasi interval pure neutrosophic group - semigroup of finite order.

Example 1.2.31: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\mathrm{Z}_{12} \mathrm{I}, \times\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\left.\mathrm{Q}^{+}, \times\right\}$be a quasi interval pure neutrosophic semigroup - group of infinite order.

We can define substructure, if it has no subsemigroup subgroup we call it simple if it has one of subsemigroup or subgroup (or in the mutually exclusive sense) we call it a quasi simple. We will give examples of these concepts.

Example 1.2.32: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{12} \mathrm{I}, \times\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\left.\mathrm{Z}_{30},+\right\}$ be a quasi interval pure neutrosophic semigroup - group of finite order.

Consider $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{2 \mathrm{Z}_{12}, \times\right\} \cup\{[0, \mathrm{a}] \mid \mathrm{a} \in\{0,3$, $\left.6, \ldots, 27\} \subseteq \mathrm{Z}_{30},+\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}, \mathrm{M}$ is a quasi interval pure neutrosophic subsemigroup - subgroup of V .

Example 1.2.33: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right.$, $\times\} \cup\left\{\mathrm{Q}^{+} \mathrm{I}, \times\right\}$ be a quasi interval pure neutrosophic semigroup - group. Consider $S=S_{1} \cup S_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in 5 \mathrm{Z}^{+} \cup\{0\}, \times\right\} \cup$ $\left\{\frac{1}{2^{\mathrm{n}}}, 2^{\mathrm{n}} \mid \mathrm{n}=0,1,2, \ldots, \infty, \times\right\} \subseteq \mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}, \mathrm{M}$ is a quasi interval pure neutrosophic subsemigroup - subgroup of M.

Example 1.2.34: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{11},+\right\} \cup$ $\left\{3 \mathrm{Z}_{6} \mathrm{I}=\{0,3 \mathrm{I}\}, \times\right\}$ be a quasi interval pure neutrosophic group semigroup. Clearly V is simple.

Example 1.2.35: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{al}] \mid \mathrm{a} \in \mathrm{Z}_{23},+\right\} \cup$ $\left\{\mathrm{Z}_{20} \mathrm{I}, \times\right\}$ be a quasi interval pure neutrosophic group semigroup.

Clearly V is a quasi interval pure neutrosophic quasi subgroup - subsemigroup as V has $W=\left\{\mathrm{V}_{1}\right\} \cup\left\{2 \mathrm{Z}_{20} \mathrm{I}, \times\right\} \subseteq$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a quasi group - semigroup.

Example 1.2.36: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\mathrm{Z}_{40} \mathrm{I},+\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\left.\{0,5\} \subseteq \mathrm{Z}_{10}, \times\right\}$ be a quasi interval pure neutrosophic group semigroup. M is only a quasi group-semigroup, for M_{1} has subgroups but M_{2} has no subsemigroups.

Inview of these results we have the following theorems the proof of them are direct.

Theorem 1.2.1: Let $V=\left\{Z_{p} I,+\right\} \cup\left\{[0, a I] \mid a \in Z_{n}, x\right\}$ be a quasi interval pure neutrosophic group - semigroup. V is a quasi interval pure neutrosophic quasi group - semigroup.

Hint: $\left(\mathrm{Z}_{\mathrm{p}} \mathrm{I},+\right)$ has no subgroups.
THEOREM 1.2.2: Let $V=\left\{[0, a I] \mid a \in Z_{p} I,+\right\} \cup\left\{Z_{n} I, x\right\}$ be a interval pure neutrosophic group - semigroup. V is quasi interval pure neutrosophic quasi group - semigroup.

Theorem 1.2.3: Let $V=\left\{Z^{+} I\{0\}, x\right\} \cup\left\{[0, a I] \mid a \in Z_{n},+\right\}$ be a quasi interval pure neutrosophic semigroup-group. V is not simple or quasi simple.

Now we will give examples of quasi neutrosophic interval group.

Example 1.2.37: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}] \mathrm{Ia} \in \mathrm{Z}_{20},+\right\} \cup\{[0$, $\left.\mathrm{aI}] \mid \mathrm{a} \in \mathrm{Q}^{+}, \times\right\}$be a quasi neutrosophic interval bigroup.

Example 1.2.38: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Q}^{+}, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40},+\right\}$ be a quasi neutrosophic interval bigroup.

Example 1.2.39: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{23} \backslash\{0\}, \times\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{47} \backslash\{0\}, \times\right\}$ be a quasi neutrosophic interval bigroup.

Example 1.2.40: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{S}_{5}\right\} \cup\left\{[0, \mathrm{al}] \mid \mathrm{a} \in \mathrm{Q}^{+}\right.$, $\times\}$ be a quasi neutrosophic quasi interval bigroup.

Example 1.2.41: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\{\mathrm{Z},+\} \cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{7} \backslash\right.$ $\{0\}, \times\}$ be a quasi neutrosophic quasi interval group-semigroup.

Example 1.2.42: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\{\mathrm{ZI},+\} \cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Q}^{+}\right.$, $\times\}$ be a quasi interval quasi neutrosophic bigroup.

Example 1.2.43: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{\mathrm{Q}^{+} \mathrm{I}, \times\right\} \cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{45}\right.$, $+\}$ be a quasi interval quasi neutrosophic bigroup.

Example 1.2.44: Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\{\mathrm{S}(20)\} \cup\{[0, \mathrm{aI}] \mid \mathrm{aI} \in$ $\left.\mathrm{Q}^{+}, \times\right\}$be a quasi interval quasi neutrosophic semigroup - group.

Example 1.2.45: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{\mathrm{Z},+\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\left.3 \mathrm{Z}_{120}, \mathrm{x}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}$ be a quasi interval quasi neutrosophic group - semigroup.

Example 1.2.46: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{\mathrm{Z}_{47} \backslash\{0\}, \times\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a}$ $\left.\in \mathrm{Z}_{50}, \times\right\}$ be a quasi interval quasi pure neutrosophic group semigroup of finite order.
$o(T)=46 \times 50$.
Consider W $=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{\{1,46\} \subseteq \mathrm{Z}_{47} \backslash\{0\}, \times\right\} \cup\{[0$, aI] $I \mathrm{a} \in\{0,5,10,15,20, \ldots, 45\}, \times\} \subseteq \mathrm{T}_{1} \cup \mathrm{~T}_{2}=\mathrm{T} ; \mathrm{W}$ is a quasi interval quasi neutrosophic subgroup - subsemigroup of finite order.
$o(W)=2 \times 10$ and $o(W) / o(T)$.
Now having seen examples of a quasi interval quasi pure neutrosophic group - semigroups we proceed onto give examples of quasi interval mixed neutrosophic group semigroups and so on.

Example 1.2.47: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{25},+\right\}$ $\cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\}$ be a neutrosophic interval group - semigroup.

Example 1.2.48: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{50}, \times\right\} \cup$ $\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{29},+\right\}$ be a neutrosophic interval semigroup group.

Example 1.2.49: Let $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Q}^{+} \cup\right.$ $\{0\},+\} \cup\left\{[0, a+b I] \mid a, b \in Z_{15},+\right\}$ be a neutrosophic interval semigroup - group. Consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in$
$\left.\mathrm{Z}^{+} \cup\{0\},+\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{0,3,6,9,12\},+\} \subseteq \mathrm{F}_{1} \cup \mathrm{~F}_{2}$ $=\mathrm{F}, \mathrm{H}$ is a neutrosophic interval subsemigroup - subgroup of F .

Example 1.2.50: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}] \mathrm{I} \mathrm{a} \in \mathrm{Z}_{25},+\right\} \cup$ $\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\}$ be a quasi neutrosophic interval group - semigroup.

Example 1.2.51: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{10},+\right\} \cup$ $\{Z, \times\}$ be a quasi neutrosophic quasi interval group - semigroup.

Example 1.2.52: Let $\mathrm{B}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}=\left\{[0, \mathrm{aI}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Q}^{+} \cup\right.$ $\{0\},+\} \cup\left\{Z_{25} \mathrm{I},+\right\}$ be a quasi interval neutrosophic semigroup - group.

Example 1.2.53: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{S}_{20}\right\} \cup[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in$ $\left.\mathrm{R}^{+} \cup\{0\},+\right\}$ be a quasi neutrosophic quasi interval group semigroup.

Example 1.2.54: Let $M=M_{1} \cup M_{2}=\left\{Z_{45} \mathrm{I}, \times\right\} \cup[0, \mathrm{a}] \mid \mathrm{a} \in$ $\left.\mathrm{Z}_{40},+\right\}$ be a quasi interval quasi neutrosophic semigroup group.

Now having seen examples of neutrosophic interval bistructures using groups, semigroups and group-semigroup, we proceed onto define the notion of biinterval neutrosophic groupoids or neutrosophic interval bigroupoids.

1.3 Neutrosophic Biinterval Groupoids

In this section we introduce the notions of neutrosophic biinterval groupoids or neutrosophic interval bigroupoids and discuss some of their important properties.

DEFINITION 1.3.1: Let $G=G_{1} \cup G_{2}$ where both G_{1} and G_{2} are pure neutrosophic interval bigroupoids such that $G_{I} \neq G_{2} ; G_{I} \nsubseteq$ G_{2} and $G_{2} \nsubseteq G_{1}$. G will also be known as pure neutrosophic biinterval groupoids.

We will illustrate this situation by some examples.

Example 1.3.1: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{aI} \in \mathrm{Z}_{8} \mathrm{I} ; *,(\mathrm{t}, \mathrm{u})=\right.$ $\left.(3,2), \mathrm{t}, \mathrm{u} \in \mathrm{Z}_{8}\right\} \cup\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}_{40},{ }^{*},(8,19)\right\}$ be a pure neutrosophic interval bigroupoid of finite order.

Example 1.3.2: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{aI} \in \mathrm{Z}^{+} \cup\{0\}\right.$, *, $(8,17)\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{14}, *,(0,3)\right\}$ be a pure neutrosophic biinterval groupoid of infinite order.

Example 1.3.3: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{15},(3,7), *\right\}$ $\cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{7},(2,3)\right.$, * $\}$ be a pure neutrosophic interval bigroupoid of finite order.

Example 1.3.4: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{R}^{+} \cup\{0\}\right.$, $(3 / 4, \sqrt{2}), *\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\},(27,4 / 11), *\right\}$ be a pure neutrosophic interval bigroupoid of infinite order. Clearly G is non commutative.

Example 1.3.5: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\}\right.$, *, $(5,8)\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{28},(5,8), *\right\}$ be a pure neutrosophic interval bigroupoid of infinite order.

Example 1.3.6: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{52}\right.$, ${ }^{*}$, (3, $11)\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{25},{ }^{*},(11,3)\right\}$ be a pure neutrosophic interval bigroupoid of finite order.

$$
\mathrm{o}(\mathrm{M})=52 \times 25 .
$$

Example 1.3.7: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{45},(8,9), *\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{45},(9,8) *\right\}$ be a pure neutrosophic interval bigroupoid of order 45×45.

Example 1.3.8: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{7},(3,3), *\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{11},(5,5), *\right\}$ be a pure neutrosophic interval bigroupoid of biorder $7 \times 11=77$.

We can define substructures on them.

DEFINITION 1.3.2: Let $G=G_{1} \cup G_{2}$ be a pure neutrosophic interval bigroupoid and $H=H_{1} \cup H_{2} \subseteq G_{1} \cup G_{2}$ be a proper bisubset of G. If H itself is a pure neutrosophic interval bigroupoid under the operations of G then we define H to be a pure neutrosophic interval subbigroupoid of G.

We will illustrate this situation by an example.
Example 1.3.9: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{9}, *,(5,3)\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{6},(2,4), *\right\}$ be a pure neutrosophic interval bigroupoid. Take $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{1,2,4,5,7,8\}$ $\left.\subseteq \mathrm{Z}_{9}, *,(5,3)\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{0,3\} \subseteq \mathrm{Z}_{6}, *,(2,4)\right\} \subseteq \mathrm{V}_{1} \cup$ V_{2} is a pure neutrosophic interval subbigroupoid of V .

Interested reader can give more examples of them.
We can define Smarandache pure neutrosophic interval bigroupoid as a pure neutrosophic interval bigroupoid as a pure neutrosophic interval bigroupoid $G=G_{1} \cup G_{2}$, were both G_{1} and G_{2} are Smarandache pure neutrosophic interval groupoids.

We will illustrate this situation by some examples.
Example 1.3.10: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{10},(5,6), *\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{12},(3,9), *\right\}$ be a pure neutrosophic interval bigroupoid, clearly G is a S-pure neutrosophic interval bigroupoid.

Example 1.3.11: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{6}\right.$, ${ }^{*}$, $(3,5)\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{4},(2,3), *\right\} ; \mathrm{M}$ is a Smarandache pure neutrosophic interval bigroupoid.

We can define special identities on pure neutrosophic interval bigroupoids.

Example 1.3.12: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{10},(1,2), *\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{8},(1,6), *\right\}$ be a pure neutrosophic interval bigroupoid. V is a S -pure neutrosophic interval bigroupoid.

We can define pure neutrosophic interval biideal of a bigroupoid. We give an example of it. The biideal can be a left - right ideal of a right - left ideal or just a biideal.

Example 1.3.13: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{4}\right.$, *, $\left.(2,3)\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{6}, *,(4,5)\right\}$ be a pure neutrosophic interval bigroupoid. Consider $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{1,3\} \subseteq \mathrm{Z}_{4}\right.$, *, $(2,3)\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{1,3,5\} \subseteq \mathrm{Z}_{6}, *,(4,5)\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}, \mathrm{I}$ is a pure neutrosophic interval left biideal of V .

We will give examples and results of pure neutrosophic interval bigroupoids which satisfy different identities.

Example 1.3.14: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{\left[0, \mathrm{a}[] \mid \mathrm{a} \in \mathrm{Z}_{12},(5,8), *\right\}\right.$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{45},(20,26)\right.$, * $\}$ be a pure neutrosophic interval bigroupoid. G is an idempotent bigroupoid.

Example 1.3.15: Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{15},(6,10)\right.$, * $\} \cup\left\{\left[0\right.\right.$, aI] $\left.\mid \mathrm{a} \in \mathrm{Z}_{21},(15,7),{ }^{*}\right\}$ be a pure neutrosophic interval bigroupoid. W is a idempotent bigroupoid as both W_{1} and W_{2} are idempotent groupoids.

In view of this we have the following theorem.
THEOREM 1.3.1: Let $V=V_{1} \cup V_{2}=\left\{[0, a I] \mid a \in Z_{n},(t, u) ; *\right\}$ $\cup\left\{[0, b I] \mid b \in Z_{m},(r, s) ;{ }^{*}\right\}$ be a pure neutrosophic interval bigroupoid. V is a pure neutrosophic interval idempotent bigroupoid if and only if $t+u \equiv 1(\bmod n)$ and $r+s \equiv 1(\bmod$ m).

Proof is simple and is left as an exercise to the reader [11].
Example 1.3.16: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{6},(4,3), *\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{10},(5,6), *\right\}$ be a pure neutrosophic interval bigroupoid. Infact V is a pure neutrosophic interval bisemigroup.

Example 1.3.17: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{14},(8,7), *\right\}$ $\cup\left\{[0, \mathrm{al}] \mid \mathrm{a} \in \mathrm{Z}_{22},(11,12), *\right\}$ be a pure neutrosophic interval bigroupoid which is a pure neutrosophic interval bisemigroup.

Inview of this we have the following theorem the proof of which is direct [].

Theorem 1.3.2: Let $V=V_{1} \cup V_{2}=\left\{[0, a I] \mid a \in Z_{n},(t, u)\right.$, * $\}$ $\cup\left\{[0, a I] \mid a \in Z_{m},(r, s)\right.$, *\} be a pure neutrosophic interval
bigroupoid. V is a pure neutrosophic interval bisemigroup if and only if $t^{2} \equiv t(\bmod n), u^{2} \equiv u(\bmod n)$ for $t, u \in Z_{n} \backslash\{0\}$ with $(t, u)=1$ and $r^{2} \equiv r(\bmod m), s^{2} \equiv s(\bmod m)(r, s)=1$ and $r, s \in$ $Z_{m} \backslash\{0\}$.

Now we will give examples of pure neutrosophic interval bigroupoids which are bisimple.

Example 1.3.18: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{21}\right.$, (19, 2), $*\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{25},(23,2), *\right\}$ be a pure neutrosophic interval bigroupoid, V is bisimple.

Example 1.3.19: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{19}\right.$, (17, 2), * $\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{29}, *,(22,7)\right\}$ be a pure neutrosophic interval bigroupoid which is bisimple.

THEOREM 1.3.3: Let $V=V_{1} \cup V_{2}=\left\{[0, a I] \mid a \in Z_{n},(t, u)\right.$, * $\}$ $\cup\left\{[0, a I] \mid a \in Z_{m},(r, s)\right.$, *\} be a pure neutrosophic interval bigroupoid. If $n=t+u$ and $m=r+s$ with t, u, r and s primes then V is bisimple.

The proof is direct and uses simple number theoretic techniques only.

THEOREM 1.3.4: Let $V=V_{l} \cup V_{2}=\left\{[0, a I] \mid a \in Z_{p},(t, u)\right.$, *\} $\cup\left\{[0, a I] \mid a \in Z_{q},(r, s), *\right\}$ where p and q are primes be a pure neutrosophic interval bigroupoid. If $t+u=p,(t, u)=1$ and r $+s=q$ and $(s, r)=1$ then V is bisimple .

For proof is simple and direct and hence left as an exercise to the reader.

Example 1.3.20: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{20}\right.$, $(13,7)$, *\} $\cup\left\{[0, b I] \mid a \in \mathrm{Z}_{43},(23,20), *\right\}$ be a pure neutrosophic interval bigroupoid $\{0\} \cup\{0\}$ is not a biideal of V .

Thus we can say if $V=V_{1} \cup V_{2}$ is a pure neutrosophic interval bigroupoid with $\mathrm{V}_{1}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{\mathrm{n}},(\mathrm{t}, \mathrm{u})=1, *\right\}$ and $\mathrm{V}_{2}=\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}_{\mathrm{m}},(\mathrm{r}, \mathrm{s})=1, *\right\}$ then $\{0\} \cup\{0\}$ is not a biideal of V .

We can define notion of normal bigroupoid as follows. If V $=V_{1} \cup V_{2}$ is a pure neutrosophic interval bigroupoid, we say G $=\mathrm{G}_{1} \cup \mathrm{G}_{2} \subseteq \mathrm{~V}_{1} \cup \mathrm{~V}_{2}$ to be a pure neutrosophic interval normal subbigroupoid if
(a) $\left(a_{1} \cup \mathrm{a}_{2}\right)\left(\mathrm{G}_{1} \cup \mathrm{G}_{2}\right)=\mathrm{a}_{1} \mathrm{G}_{1} \cup \mathrm{a}_{2} \mathrm{G}_{2}$
(b) $\left(\left(\mathrm{G}_{1} \cup \mathrm{G}_{2}\right)\left(\mathrm{x}_{1} \cup \mathrm{x}_{2}\right)\right)\left(\mathrm{y}_{1} \cup \mathrm{y}_{2}\right)$ $=\left(G_{1} \cup G_{2}\right)\left[\left(x_{1} \cup x_{2}\right)\left(y_{1} \cup y_{2}\right)\right]$
That is $G_{1}\left(x_{1} y_{1}\right) \cup G_{2}\left(x_{2} y_{2}\right)$ $=\left(\mathrm{G}_{1} \mathrm{x}_{1}\right) \mathrm{y}_{1} \cup\left(\mathrm{G}_{2} \mathrm{x}_{2}\right) \mathrm{y}_{2}$
(c) $\left(\left(\mathrm{x}_{1} \cup \mathrm{x}_{2}\right)\left(\mathrm{y}_{1} \cup \mathrm{y}_{2}\right)\right)\left(\mathrm{G}_{1} \cup \mathrm{G}_{2}\right)$ $=\left(x_{1} \cup x_{2}\right)\left(\left(y_{1} \cup y_{2}\right) G\right)$.
That is $\left(\mathrm{x}_{1} \mathrm{y}_{1}\right) \mathrm{G}_{1} \cup\left(\mathrm{x}_{2} \mathrm{y}_{2}\right) \mathrm{G}_{2}=\mathrm{x}_{1}\left(\mathrm{y}_{1} \mathrm{G}_{1}\right) \cup$ $x_{2}\left(y_{2} G_{2}\right)$ for all $x_{1}, y_{1}, a_{1} \in G_{1}$ and $x_{2}, y_{2}, a_{2} \in G_{2}$.

If $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ the pure neutrosophic interval bigroupoid satisfies (a), (b) and (c) that is if G is replaced by V) then we say the bigroupoid to be binormal.

We give an example of normal bigroupoids.
Example 1.3.21: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{7},(3,3), *\right\}$ $\cup\left\{[0, \mathrm{bI}] \mid \mathrm{a} \in \mathrm{Z}_{19},(11,11), *\right\}$ be a pure neutrosophic interval bigroupoid. V is a normal bigroupoid.

In view of this example we have the following theorem.

Theorem 1.3.5: Let $V=V_{l} \cup V_{2}=\left\{[0, a I] \mid a \in Z_{p},(t, t)\right.$, *, t $<p\} \cup\left\{[0, b I] \mid b \in Z_{q},(s, s), *, s<q\right\}, p$ and q primes be a pure neutrosophic interval bigroupoid. V is a normal interval bigroupoid.

Proof is direct and simple [11]. We can define Pbigroupoids as in case of pure neutrosophic interval bigroupoid if both the interval groupoids are P-groupoids. We will provide some examples.

Example 1.3.22: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{42},(7,7), *\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{12},(5,5), *\right\}$ be a pure neutrosophic interval bigroupoid. G is a P -bigroupoid.

Example 1.3.23: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{19}\right.$, *, (10, $10)\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{43}, *,(8,8)\right\}$ be a pure neutrosophic interval bigroupoid. S is a P -bigroupoid of finite order.

In view of this we have the following theorem the proof of which is direct and hence left as an exercise to the reader.

THEOREM 1.3.6: Let $P=P_{1} \cup P_{2}=\left\{[0, a I] \mid a \in Z_{n},(t, t)\right.$; $0<t<n, *\} \cup\left\{[0, a I] \mid a \in Z_{m},(s, s), 0<s<m\right.$, *\} be a pure neutrosophic interval bigroupoid. P is a pure neutrosophic interval P-bigroupoid of order mn.

Note n can be prime or composite still the conclusions of the theorem is true.

We will now provide examples of alternative bigroupoids and bigroupoids which are not alternative.

Example 1.3.24: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{26}\right.$, , (14, $14)\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{46},{ }^{*},(24,24)\right\}$ be a pure neutrosophic interval bigroupoid. S is a pure neutrosophic interval alternative bigroupoid.

Example 1.3.25: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{22}\right.$, ${ }^{*}$, (12, $12)\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{30}, *,(10,10)\right\}$ be a pure neutrosophic interval bigroupoid. It is easily verified P is a pure neutrosophic interval alternative bigroupoid.

In view of this we have the following theorem.
THEOREM 1.3.7: Let $V=V_{l} \cup V_{2}=\left\{[0, a I] \mid a \in Z_{n},(t, t)\right.$, * $\}$ $\cup\left\{[0, a I] \mid a \in Z_{m},(s, s)\right.$, *\} be a pure neutrosophic interval bigroupoid where m and n are primes. V is a pure neutrosophic interval alternative bigroupoid if and only if $t^{2} \equiv t(\bmod n)$ and $s^{2} \equiv s(\bmod m)$.

Proof is direct however the interested reader can refer [11]. We give now examples of pure neutrosophic interval bigroupoids which are not alternative.

Example 1.3.26: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{43}\right.$, , (8 , $8)\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{53}, *,(12,12)\right\}$ be a pure neutrosophic interval bigroupoid. M is not an alternative bigroupoid.

Example 1.3.27: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{13}\right.$, , , $\left.(5,5)\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{23}, *,(8,8)\right\}$ be a pure neutrosophic interval bigroupoid. P is not an alternative bigroupoid.

Inview of this we have the following theorem which guarantees a non empty class of bigroupoids which are not alternative.

ThEOREM 1.3.8: Let $P=P_{l} \cup P_{2}=\left\{[0, a I] \mid a \in Z_{p}, *,(t, t)\right\}$ $\cup\left\{[0, a I] \mid a \in Z_{q}, *,(s, s)\right\}(l<t<p, l<s<q$ where p and q are primes) be a pure neutrosophic interval bigroupoid. P is not a pure neutrosophic interval alternative bigroupoid.

We just give an hint to the proof of the theorem.
Given $1<\mathrm{t}<\mathrm{p}, 1<\mathrm{s}<\mathrm{q}$. Consider the alternative identity $(x * y) * y=x^{*}(y * y)$, for $x, y \in P$. We see equality can never be achieved.

Let $\mathrm{x}=\left[0, \mathrm{a}_{1} \mathrm{I}\right] \cup\left[0, \mathrm{a}_{2} \mathrm{I}\right]$ and
$y=\left[0, b_{1} I\right] \cup\left[0, b_{2} I\right]$ be in P.
It is simple to show $\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{y}\right) \neq(\mathrm{x} * \mathrm{y}) * \mathrm{y}$
(For refer [11]).
Example 1.3.28: Let $G=G_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{46}\right.$, , , $(0,24)\} \cup\left\{[0, \mathrm{bI}] \mid \mathrm{a} \in \mathrm{Z}_{6}, *,(0,3)\right\}$ be a pure neutrosophic interval bigroupoid. G is both an alternative bigroupoid and P bigroupoid.

Example 1.3.29: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{10}\right.$, *, $\left.(0,6)\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{30},{ }^{*},(0,10)\right\}$ be a pure neutrosophic interval bigroupoid. Clearly S is both an alternative bigroupoid and P bigroupoid.

In view of these examples we have the following theorem the proof of which is left as an exercise to the reader.

TheOrem 1.3.9: Let $P=P_{1} \cup P_{2}=\left\{[0, a I] \mid a \in Z_{n},(0, t), *\right\}$ $\cup\left\{[0, a I] \mid a \in Z_{m},(0, s)\right.$, *\} be a pure neutrosophic interval bigroupoid. P is an alternative bigroupoid and a P-bigroupoid if and only if $t^{2} \equiv t(\bmod n)$ and $s^{2} \equiv s(\bmod m)$.

We still have an interesting theorem which states as follows:

THEOREM 1.3.10: Every interval subbigroupod of a Smarandache pure neutrosophic interval bigroupoid S need not in general be a Smarandache pure neutrosophic interval subbigroupoid of S.

The proof is by counter example.
Example 1.3.30: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{6},{ }^{*},(4,5)\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{6}, *,(2,4)\right\}$ be a pure neutrosophic interval bigroupoid. Consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\{[0, \mathrm{a}] \mid \mathrm{I} \in\{0,2,4\} \subseteq$ $\left.\mathrm{Z}_{6},{ }^{*},(4,5)\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{0,2,4\} \subseteq \mathrm{Z}_{6}, *\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2}=\mathrm{G}$; H is a pure neutrosophic interval subbigroupoid of G but is not a Smarandache pure neutrosophic interval subbigroupoid of G.

The notion of Smarandache conjugate subbigroupoid in case of pure neutrosophic interval bigroupoids can be defined as a matter of routine [11].

We define a pure neutrosophic interval bigroupoid $\mathrm{G}_{1} \cup \mathrm{G}_{2}$ $=\mathrm{G}$ to be a Smarandache Moufang bigroupoid if there exists Smarandache subbigroupiod $H=H_{1} \cup H_{2}$ in $G_{1} \cup G_{2}$ which satisfies the Moufang identity.

If every Smarandache pure neutrosophic interval subbigroupoid satisfies the Moufang identity then we define G to be a Smarandache strong Moufang bigroupoid.

We will illustrate this by some examples.
Example 1.3.31: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{10}\right.$, *, $\left.(5,6)\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{12}, *,(3,9)\right\}$ be a pure neutrosophic interval bigroupoid. G is a Smarandache pure neutrosophic interval Moufang bigroupoid.

On similar lines we can define the notion of Smarandache pure neutrosophic interval Bol bigroupoid, Smarandache strong pure neutrosophic interval Bol bigroupoid, Smarandache pure neutrosophic interval P-bigroupoid and Smarandache strong pure neutrosophic interval P-bigroupoid.

Example 1.3.32: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{al}] \mathrm{I} \in \mathrm{Z}_{12},{ }^{*},(3,4)\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{4}, *,(2,3)\right\}$ be a pure neutrosophic interval
bigroupoid. P is a Smarandache pure neutrosophic interval Bol bigroupoid.

Example 1.3.33: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{6},(4,3), *\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{4},(2,3), *\right\}$ be a pure neutrosophic interval bigroupoid. G is a Smarandache pure neutrosophic interval strong P-bigroupoid of order 6×4.

Example 1.3.34: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{14},(7,8),{ }^{*}\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{12},(1,6), *\right\}$ be a pure neutrosophic interval bigroupoid. G is a Smarandache pure neutrosophic interval strong alternative bigroupoid.

We define a map η from two Smarandache pure neutrosophic interval bigroupoids $V=V_{1} \cup V_{2}$ and $G=G_{1} \cup$ G_{2} if η is a bisemigroup homomorphism or semigroup bihomomorphism from $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2}$ to $\mathrm{B}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}$ where $\mathrm{A} \subseteq$ V and $\mathrm{B} \subseteq \mathrm{G}$ are pure neutrosophic interval bisemigroup of V and G respectively.

That is $\eta: V \rightarrow G$ such that $\eta\left(\left(a_{1} \cup a_{2}\right) *\left(x_{1} \cup x_{2}\right)\right)$
$=\eta\left(a_{1} \cup a_{2}\right) * \eta\left(x_{1} \cup x_{2}\right)$ where $a_{i}, x_{i} \in A_{i} ; i=1,2$.
Clearly a_{i}, x_{i} are neutrosophic intervals of the form [$\left.0, \mathrm{t}_{\mathrm{i}} \mathrm{I}\right]$ and $\left[0, \mathrm{p}_{\mathrm{i}} \mathrm{I}\right]$, $\mathrm{i}=1,2$.

Interested reader can construct such interval; bigroupoid bihomomorphism.

Example 1.3.35: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{5},(1,3), *\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{5},(2,1), *\right\}$ be a pure neutrosophic interval bigroupoid. Clearly G is not a Smarandache pure neutrosophic interval bigroupoid.

Example 1.3.36: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{7},(5,3), *\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{4},(3,2), *\right\}$ be a pure neutrosophic interval bigroupoid. Clearly P is a Smarandache pure neutrosophic interval bigroupoid.

In view of the above examples we have the following theorem.

THEOREM 1.3.11: Let $G=G_{l} \cup G_{2}=\left\{[0, a I] \mid a \in Z_{n},(t, u)\right.$, *\} $\cup\left\{[0, a I] \mid a \in Z_{m},(r, s)\right.$, *\} be a pure neutrosophic interval bigroupoid. G is a Smarandache pure neutrosophic interval bigroupoid if $(t, u)=1, t \neq u, t+u \equiv 1(\bmod n)$ and $(r, s)=1, s \neq$ $r, r+s \equiv 1(\bmod m)$.

The proof is direct uses only simple number theoretic techniques.

THEOREM 1.3.12: Let $G=G_{1} \cup G_{2}=\left\{[0, a I] \mid a \in Z_{2 p},(1,2)\right.$, *\} $\cup\left\{[0, b I] \mid b \in Z_{2 q},(1,2)\right.$, *\} where p and q two distinct odd primes. G is a pure neutrosophic interval bigroupoid which is a Smarandache bigroupoid.

We just give an hint for the proof. Consider $\mathrm{S}=\{[0, \mathrm{pI}]\} \cup$ $\{[0, \mathrm{qI}]\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2} ; \mathrm{G}$ is a pure neutrosophic interval bisemigroup in G. Hence the claim.

COROLLARY 1.3.1: Let $G=G_{I} \cup G_{2}=\left\{[0, a I] \mid a \in Z_{3 p}\right.$, *, $(1,3)\} \cup\left\{[0, b I] \mid b \in Z_{3 q},(1,3)\right.$, *\} (where p and q are odd primes) be a pure neutrosophic interval bigroupoid. Clearly G is a Smarandache bigroupoid.

Corollary 1.3.2: Let $G=G_{l} \cup G_{2}=\left\{[0, a I] \mid a \in Z_{n}{ }^{*},(1\right.$, p); p a prime and $p / n\} \cup\left\{[0, b I] \mid b \in Z_{m}, *,(1, q), q\right.$ a prime and $q / m\}$ be a pure neutrosophic interval bigroupoid. Then G is a Smarandache pure neutrosophic interval bigroupoid.

Theorem 1.3.13: Let $G=G_{l} \cup G_{2}=\left\{[0, a I] \mid a \in Z_{n},(t, u)\right.$, *\} $\cup\left\{[0, b I] \mid b \in Z_{m},(s, r)\right.$, *\} be a pure neutrosophic interval bigroupoid. If $t+u \equiv 1(\bmod n)$ and $r+s \equiv 1(\bmod m)$ then G is a Smarandache pure neutrosophic interval idempotent bigroupoid.

THEOREM 1.3.14: Let $G=G_{l} \cup G_{2}=[0, a I] \mid a \in Z_{n},(t, u)$, *\} $\cup\left\{[0, b I] \mid b \in Z_{m},(r, s)\right.$, *\} with $t+u \equiv 1(\bmod n)$ and $r+s$ $\equiv 1(\bmod m)$ be a Smarandache neutrosophic interval P bigroupoid if and only if $t^{2} \equiv t(\bmod n), r^{2} \equiv r(\bmod m) u^{2} \equiv u$ $(\bmod n), s^{2} \equiv s(\bmod m)$.

Simple number theoretic methods yield the proof of the theorem.

THEOREM 1.3.15: Let $G=G_{l} \cup G_{2}=[0, a I] \mid a \in Z_{n},(t, u)$, *\} $\cup\left\{[0, b I] \mid b \in Z_{m},(r, s), *\right\}$ with $t+u \equiv 1(\bmod n)$ and $r+s \equiv$ 1 (mod m). G is a Smarandache strong pure neutrosophic Bol bigroupoid if and only if $t^{3} \equiv t(\bmod n), u^{2} \equiv u(\bmod n), r^{3} \equiv r$ $(\bmod m)$ and $s^{2} \equiv s(\bmod m)$.

This proof also is direct and the reader is expected to prove the theorem.

Similarly it is easily verified that pure neutrosophic interval bigroupoid satisfying condition of theorem 1.3 .14 is Smarandache strong Moufang interval bigroupoid.

THEOREM 1.3.16: Let $G=G_{l} \cup G_{2}=[0, a I] \mid a \in Z_{n},(m, m)$, *\} $\cup\left\{[0, a I] \mid b \in Z_{t},(u, u), *\right\}$ with $m+m \equiv 1(\bmod n)$ and $u+u$ $\equiv 1(\bmod t)$ with $m^{2} \equiv m(\bmod n)$ and $u^{2} \equiv u(\bmod t)$ be a Smarandache pure neutrosophic interval bigroupoid. Then

1. G is a Smarandache idempotent bigroupoid.
2. G is a Smarandache strong P-bigroupoid.
3. G is a Smarandache strong Bol bigroupoid.
4. G is a Smarandache strong Moufang bigroupoid.
5. G is a Smarandache strong alternative bigroupoid.

The proof is left as an exercise to the reader.
Interested reader can derive more properties in this direction. We can define pure neutrosophic interval groupoid semigroup which is illustrated by some examples.

Example 1.3.37: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40}, \times\right\} \cup$ $\left\{[0, b I] \mid b \in Z_{19},(3,8), *\right\}$ be a pure neutrosophic interval semigroup - groupoid.

Example 1.3.38: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\}$ $\left.\cup[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\},(3,8), *\right\}$ be a pure neutrosophic interval semigroup - groupoid.

Example 1.3.39: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{125}, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{45},(3,7), *\right\}$ be a pure neutrosophic interval semigroup - groupoid.

We can define substructures in them which is a matter of routine.

We can also define Smarandache pure neutrosophic interval groupoid - semigroup $G=G_{1} \cup G_{2}$ as one in which both the groupoid and the semigroup are Smarandache. If only one of them (semigroup or groupoid) is Smarandache then we define that G to be a quasi Smarandache pure neutrosophic interval groupoid - semigroup.

We will now illustrate both the situations by some examples.

Example 1.3.40: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40}, \times\right\} \cup$
 neutrosophic interval semigroup - groupoid.

Example 1.3.41: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{6},(3,4), *\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{48}, \times\right\}$ be a Smarandache pure neutrosophic interval groupoid - semigroup.

Example 1.3.42: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{7},(5,3), *\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{120}, \times\right\}$ be a Smarandache pure neutrosophic interval groupoid - semigroup.

Example 1.3.43: Let $G=G_{1} \cup G_{2}=\left\{[0\right.$, al $\left.] \mid a \in Z_{43}, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{9},(5,3), *\right\} . \mathrm{G}$ is only a quasi Smarandache pure neutrosophic interval groupoid - semigroup. The groupoid is not a Smarandache pure neutrosophic interval groupoid.

Example 1.3.44: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\},+\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{8},(1,6), *\right\}$ be a pure neutrosophic interval semigroup - groupoid. G is only a quasi Smarandache pure neutrosophic interval semigroup - groupoid as the semigroup is not a Smarandache semigroup.

In general all pure neutrosophic interval groupoid semigroup need not be Smarandache pure neutrosophic interval groupoid - semigroup.

This is established by the following examples.
Example 1.3.45: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\},+\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{9},(5,3), *\right\}$ be a pure neutrosophic interval semigroup - groupoid. G is not a Smarandache pure neutrosophic interval semigroup - groupoid.

Example 1.3.46: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{R}^{+} \cup\{0\}\right.$, $+\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{5},(2,1), *\right\}$ be a pure neutrosophic interval semigroup - groupoid. Clearly M is not Smarandache.

Now we can also define pure neutrosophic quasi interval bigroupoid $G=G_{1} \cup G_{2}$ where only one of G_{1} or G_{2} is a pure neutrosophic interval groupoid.

We will illustrate this situation by some examples.
Example 1.3.47: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{9},(5,3), *\right\}$ $\cup\left\{\mathrm{Z}_{10} \mathrm{I},(1,2), *\right\}$ be a pure neutrosophic quasi interval bigroupoid.

Example 1.3.48: Let $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right.$, (9, $\left.4),{ }^{*}\right\} \cup\left\{\mathrm{Z}_{15} \mathrm{I},{ }^{*},(7,11)\right\}$ be a pure neutrosophic quasi interval bigroupoid of infinite order.

Example 1.3.49: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{125} \mathrm{I}\right.$, *, (43, 17) $\} \cup\{[0$, aI] $\left.\mid \mathrm{a} \in \mathrm{Z}_{125}, \times\right\}$ be a pure neutrosophic quasi interval groupoid - semigroup.

We now also define the notion of quasi pure neutrosophic interval bigroupoids etc.

Example 1.3.50: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{120},(1,5), *\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{45},(3,17), *\right\}$ be a quasi pure neutrosophic interval bigroupoid.

Example 1.3.51: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\left[0\right.\right.$, a] $\mid \mathrm{a} \in \mathrm{Z}_{19}$, ${ }^{*}$, $(0$, $7)\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{127},(3,0), *\right\}$ be a quasi pure neutrosophic interval bigroupoid.

Example 1.3.52: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right.$, *, $(6,13)\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40},(3,19), *\right\}$ be a quasi pure neutrosophic interval bigroupoid of infinite order.

Example 1.3.53: Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{19}\right.$, *, (3, 3) $\}$ $\cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{19},(2,13), *\right\}$ be a quasi pure neutrosophic interval bigroupoid.

We can define quasi pure neutrosophic quasi interval bigroupoid also. We will give examples of them.

Example 1.3.54: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{19},(3,11), *\right\} \cup\{[0, \mathrm{aI}]$ $\mid \mathrm{a} \in \mathrm{Z}_{45}$, *, $\left.(8,23)\right\}$ be a quasi pure neutrosophic quasi interval bigroupoid of finite order.

Example 1.3.55: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\mathrm{Z}_{23} \mathrm{I}, *,(11,13)\right\} \cup\{[0$, a] $\left.I \mathrm{a} \in \mathrm{Z}_{43}, *,(8,11)\right\}$ be a quasi pure neutrosophic quasi interval bigroupoid.

These combined quasi structures can be Smarandache strong Bol bigroupoid, Smarandache strong Moufang bigroupoid, Smarandache strong P-bigroupoid and so on. All properties can be derived with appropriate modifications.

Now we proceed onto give examples of quasi pure neutrosophic quasi interval groupoid - semigroup.

Example 1.3.56: Let $S=S_{1} \cup S_{2}=\left\{[0, \mathrm{al}] \mid \mathrm{a} \in \mathrm{Z}_{40}, \times\right\} \cup$ $\left\{\mathrm{Z}_{19} \mathrm{I},(8,11), *\right\}$ be a quasi pure neutrosophic quasi interval semigroup - groupoid.

Example 1.3.57: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{20}, \times\right\} \cup\left\{\mathrm{Z}_{43}\right.$, $\left.(3,17),{ }^{*}\right\}$ be a quasi pure neutrosophic quasi interval semigroup - groupoid.

Example 1.3.58: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{43},(8,12)\right.$, *\} $\cup\{Z, \times\}$ be a quasi pure neutrosophic quasi interval groupoid - semigroup.

We also state here that we can replace pure neutrosophic intervals $[0, \mathrm{aI}]$ in all these algebraic structures by the mixed neutrosophic algebraic structures $[0, \mathrm{a}+\mathrm{bI}]$ and get all related results with simple, appropriate modifications.

Now we can also define the notion of pure neutrosophic interval group - groupoid and their quasi analogue. We only give illustrative examples and leave the work of defining this structure to the reader.

Example 1.3.59: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40},+\right\} \cup\{[0$, aI] $\mid \mathrm{a} \in \mathrm{Z}_{40}$, *, $\left.(3,7)\right\}$ be a pure neutrosophic interval group groupoid.

Thus by defining this mixed neutrosophic bistructure we get an associative and non associative neutrosophic algebraic structure.

Example 1.3.60: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{R}^{+}, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{43},{ }^{*},(7,11)\right\}$ be a pure neutrosophic interval group - groupoid of infinite order.

Example 1.3.61: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{25},+\right\}$ $\cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{25},(3,7), *\right\}$ be a neutrosophic interval group-groupoid.

This contains $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{[0, \mathrm{aI}] \mathrm{I} \mathrm{a} \in \mathrm{Z}_{25},+\right\} \cup\{[0$, aI] $\left.\mid \mathrm{a} \in \mathrm{Z}_{25},(3,7),+\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}$ the pure neutrosophic interval group - groupoid as well as $S=S_{1} \cup S_{2}=\{[0, a] \mid a \in$ $\left.\mathrm{Z}_{25},+\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{25}, *,(3,7)\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}$ which is a interval group - groupoid as its substructure. Thus one of the advantages of studying these mixed neutrosophic interval bistructures is that they contain both pure neutrosophic interval bistructure as well as interval bistructure as its subbistructure.

Example 1.3.62: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40},+\right\} \cup\{[0$, $\mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{40},(8,5)$, *\} be a neutrosophic interval groupgroupoid. T has pure neutrosophic interval subgroup subgroupoid given by $S=S_{1} \cup S_{2}=\left\{[0, a I] \mid a \in\left\{2 Z_{40}\right\},+\right\} \cup$ $\left\{[0, \mathrm{bI}] \mid \mathrm{a} \in \mathrm{Z}_{40},(8,5), *\right\} \subseteq \mathrm{T}_{1} \cup \mathrm{~T}_{2}$ however T has no interval subgroup - subgroupoid.

Interested reader can derive related results in this direction. We also can have mixed quasi neutrosophic quasi interval groupoid - groups which is illustrated by the following example.

Example 1.3.63: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{43}\right.$, $(7,11), *\} \cup\left\{S_{3}\right\}$ be a quasi mixed neutrosophic quasi interval groupoid - group.

Example 1.3.64: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{120},+\right\}$ $\cup\left\{\mathrm{Z}_{27}(3,8), *\right\}$ be a quasi mixed neutrosophic quasi interval group - groupoid.

Example 1.3.65: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{27}\right.$, $(8$, 14), *\} $\cup\left\{\mathrm{Z}_{144},+\right\}$ be a quasi mixed neutrosophic quasi interval groupoid - group.

1.4 Neutrosophic Interval Biloops

In this section we proceed onto define the notion of neutrosophic interval biloops and their generalization. For loops please refer [9, 13].

DEFINITION 1.4.1: Let $L=\left\{[0, a] \mid a \in Z_{n}\right.$ or $R^{+} \cup\{0\}$ or Q^{+} $\cup\{0\}$ or $\left.Z^{+} \cup\{0\}\right\}$ be the collection of intervals. If a binary operation * on L be defined so that L is a loop; that is * satisfies the following condition.
(a) For every $[0, a],[0, b]$ in L $[0, a] *[0, b] \in L$.
(b) $[0, a] *([0, b] *[0, c]) \neq([0, a] *[0, b]) *[0, c]$ for atleast some $[0, a],[0, b]$ and $[0, c]$ in L.
(c) There exists an element $[0, e]$ in L such that $[0, a] *[0, e]=[0, e] *[0, a]=[0, a]$ for all $[0, a]$ in L called the identity element of L.
(d) For every pair ($[0, a],[0, b]$) in $L \times L$ there exists a unique pair ($[0, x],[0, y]$) in $L \times L$ such that
$[0, a] *[0, x]=[0, b]$ and $[0, y] *[0, a]=[0, b]$.

We will illustrate this situation by some examples.
Example 1.4.1: Let $\mathrm{L}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{L}_{5}(2), *\right\}$ be an interval loop of order five given by the following table.

$*$	$[0, \mathrm{e}]$	$[0,1]$	$[0,2]$	$[0,3]$	$[0,4]$	$[0,5]$
$[0, \mathrm{e}]$	$[0, \mathrm{e}]$	$[0,1]$	$[0,2]$	$[0,3]$	$[0,4]$	$[0,5]$
$[0,1]$	$[0,1]$	$[0, \mathrm{e}]$	$[0,3]$	$[0,5]$	$[0,2]$	$[0,4]$
$[0,2]$	$[0,2]$	$[0,5]$	$[0, \mathrm{e}]$	$[0,4]$	$[0,1]$	$[0,3]$
$[0,3]$	$[0,3]$	$[0,4]$	$[0,1]$	$[0, \mathrm{e}]$	$[0,5]$	$[0,2]$
$[0,4]$	$[0,4]$	$[0,3]$	$[0,5]$	$[0,2]$	$[0, \mathrm{e}]$	$[0,1]$
$[0,5]$	$[0,5]$	$[0,2]$	$[0,4]$	$[0,1]$	$[0,3]$	$[0, \mathrm{e}]$

For more about loop $\mathrm{L}_{\mathrm{n}}(\mathrm{m})$ refer [9, 13].
Example 1.4.2: $L e t \mathrm{~L}=\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 15\}, 7, *\}$ be an interval loop of order 16.

DEFINITION 1.4.2: Let $L=\left\{[0, a I] \mid a \in Z_{n}\right.$ or $Z^{+} \cup\{0\}$ or Q^{+} $\cup\{0\}$ or $R^{+} \cup\{0\}$, * $\}$ be a loop. We define L to be a pure neutrosophic interval loop. If we replace [0, aI] by [0, x+yI] x and y in Z_{n} or $Z^{+} \cup\{0\}$ or $Q^{+} \cup\{0\}$ or $R^{+} \cup\{0\}$ then we call L to be a mixed neutrosophic interval loop.

We will give examples of them.
DEFINITION 1.4.3: Let $L=L_{1} \cup L_{2}$ where L_{1} and L_{2} are neutrosophic interval loops such that $L_{1} \neq L_{2}, L_{1} \nsubseteq L_{2}$ and $L_{2} \underline{(}$ L_{1}. Then we define L to be a neutrosophic interval biloop.

We will for sake of completeness recall the definition of interval loop and neutrosophic interval loop.

Example 1.4.3: Let $\mathrm{V}=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 17\}, 5$, *\} be a mixed neutrosophic interval loop of order 18^{2}.

Example 1.4.4: Let $\mathrm{M}=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 13\}, 8$, *\} be a mixed neutrosophic interval loop of order 14^{2}.

Now we can define the notion of neutrosophic interval biloop, which is a matter of routine [9, 13]. Just like a neutrosophic group does not satisfy all group axioms so also a
neutrosophic loop may not in general satisfy all axioms of a loop.

We will illustrate this situation by some examples.
Example 1.4.5: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $\left.23\},{ }^{*}, 8\right\} \cup\{[0, \mathrm{bI}] \mid \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 19\}, 8, *\}$ be a pure neutrosophic interval biloop of order 24×20.

Example 1.4.6: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $\left.45\},{ }^{*}, 16\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 27\},{ }^{*}, 10\right\}$ be a pure neutrosophic interval biloop of order 46×28.

Example 1.4.7: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $11\}, 8, *\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 13\}, 8, *\}$ be a pure neutrosophic interval biloop of order 12×14.

Inview of this we have the following theorem.
Theorem 1.4.1: Let $L=L_{l} \cup L_{2}=\{[0, a I] \mid a \in\{e, 1,2, \ldots$, $n\}, n$ odd $n>3$ and $*, m,(m, n)=1(m-1, n)=1 m<n\} \cup$ $\{[0, a I] \mid a \in\{e, 1,2, \ldots, s\} ; *, s>3, s$ odd, $t,(t, s)=1,(t-1, s)=$ $1, t<s\}$. L is a pure neutrosophic interval biloop of order $(n+1)(s+1)$.

Proof is direct, if need be refer [9, 13]. We call a pure neutrosophic interval biloop to be a Smarandache pure neutrosophic interval biloop if each of the pure neutrosophic interval loop is Smarandache.

We will give examples of them.
Example 1.4.8: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $13\}, 8, *\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 17\}, 12, *\}$ be a pure neutrosophic interval biloop of order 14×18.

Theorem 1.4.2: Let $L=L_{1} \cup L_{2}=\{[0, a I] \mid a \in\{e, 1,2, \ldots$, $n\} n$ odd $n>3, m, m<n$ with $(m, n)=1=(m-1, n), *\} \cup\{[0$, $a I] \mid a \in\{e, 1,2, \ldots, s\}, s>3$, s odd; $t<s,(t, s)=(t-1, s)=1$, *\} be a pure neutrosophic interval biloop. Then the following are true.

1. L is of even biorder.
2. $|L|=2^{2} N(N$ a positive number $\geq 9)$.
3. L is a Smarandache pure neutrosophic interval biloop.

This proof involves only simple number theoretic techniques $[9,13]$. We say a pure neutrosophic interval biloop is commutative if both the pure neutrosophic interval loops are commutative. If only one of them is commutative we say the interval biloop is quasi commutative. We will give examples of them.

Example 1.4.9: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $17\}, *, 9\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 25\},{ }^{*}, 13\right\}$ be a pure neutrosophic interval biloop. L is a commutative biloop.

Example 1.4.10: $L e t \mathrm{~L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $17\}, *, 7\} \cup\{[0, \mathrm{aI}] \mid \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 25\}, 8, *\}$ be a pure neutrosophic interval biloop. L is a non commutative biloop.

Example 1.4.11: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $23\}, *, 8\} \cup\{[0, \mathrm{aI}] \mid \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 15\}, *, 14\}$ be a pure neutrosophic interval biloop. L is a quasi commutative pure neutrosophic interval biloop.

THEOREM 1.4.3: Let $L=L_{1} \cup L_{2}=\{[0, a I] \mid a \in\{e, 1,2, \ldots$, $\left.n\}, \frac{n+1}{2}, *\right\} \cup\left\{[0, b I] \mid b \in\{e, 1,2, \ldots, m\}, \frac{m+1}{2}\right.$, *\} be a pure neutrosophic interval biloop. L is a commutative.

This proof also requires only simple number theoretic techniques.

We can define several identities in case of pure neutrosophic interval biloops as in case of usual biloops.
$\mathrm{L}_{\mathrm{ns}}(\mathrm{I})=\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, \mathrm{n}\} \mathrm{n}>3, \mathrm{n}$ odd $; \mathrm{m}<\mathrm{n}$ $(m-1, n)=(m, n)=1 \in\{[0, b]] \mid b \in\{e, 1,2, \ldots, s\}, s>3, s$ odd, $\mathrm{t}<\mathrm{s}$, $(\mathrm{t}, \mathrm{s})=(\mathrm{t}-1, \mathrm{~s})=1\}$ denote the class of pure neutrosophic interval biloops each of order $(\mathrm{n}+1) \times(\mathrm{s}+1)$.

Further if $\mathrm{n}=\mathrm{p}_{1}^{\alpha_{1}} \ldots \mathrm{p}_{\mathrm{k}}^{\alpha_{k}}$ and $\mathrm{s}=\mathrm{q}_{1}^{\beta_{1}} \ldots \mathrm{q}_{\mathrm{b}}^{\beta_{b}}$ then the number of pure neutrosophic interval biloops in $\mathrm{L}_{\text {ns }}(\mathrm{I})$ is

$$
\left(\prod_{i=1}^{k}\left(p_{i}-2\right) p_{i}^{\alpha_{i}-1}\right) \times\left(\prod_{j=1}^{b}\left(q_{j}-2\right) q_{j}^{\beta-1}\right) .
$$

Thus we will denote the class of pure neutrosophic biloop by $\mathrm{L}_{\mathrm{ns}}(\mathrm{I}) ; \mathrm{n}$ and s odd greater than three.

Example 1.4.12: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $19\}, 2, *\} \cup\{[0, b I] \mid b \in\{e, 1,2, \ldots, 23\}, 2, *\}$ be a pure neutrosophic interval biloop. L is a pure neutrosophic interval right alternative biloop.

Example 1.4.13: $\mathrm{Let} \mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $\left.47\},{ }^{*}, 46\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 53\},{ }^{*}, 52\right\}$ be a pure neutrosophic interval biloop. L is a left alternative interval biloop which is not right alternative.

Inview of this we have the following theorem.

THEOREM 1.4.4: Let $L=L_{1} \cup L_{2}=\{[0, a I] \mid a \in\{e, 1,2, \ldots$, $n\}, 2, *\} \cup\{[0, b I] \mid b \in\{e, 1,2, \ldots, s\}, *, 2\}$ where $n>3, s>$ $3, n$ and s odd be a pure neutrosophic interval biloop. L is a right alternative pure neutrosophic interval biloop.

The proof is got by using simple number theoretic techniques.

THEOREM 1.4.5: Let $L=L_{l} \cup L_{2}=\{[0, a I] \mid a \in\{e, 1,2, \ldots$, $n\}, n>3 n$-odd, *, $n-1\} \cup\{[0, b I] \mid b \in\{e, 1,2, \ldots, m\}, m>3$, m odd; $m-1\}$ be a pure neutrosophic interval biloop. L is a left alternative pure neutrosophic interval biloop.

This proof is left as an exercise to the reader .
COROLLARY 1.4.1: Let $L_{n s}(I)$ be the class of pure neutrosophic interval biloops $n>3$ and $s>3$, n and s odd. $L_{n s}(I)$ has exactly one left alternative interval biloop and only one right alternative interval biloop and no alternative interval biloop.

Infact the class of pure neutrosophic interval biloops $\mathrm{L}_{\mathrm{ns}}(\mathrm{I})$ does not contain (i) any moufang interval biloop (ii) any Bol interval biloop or Burck biloop.

We can define pure neutrosophic interval bisubloop (subbiloop) $\mathrm{H}_{1} \cup \mathrm{H}_{2}$ Further if this pure neutrosophic interval subbiloop $\mathrm{H}_{1} \cup \mathrm{H}_{2}$ contains a proper subset $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ such that T is a pure neutrosophic interval bigroup then we define $\mathrm{H}_{1} \cup$ H_{2} to be a Samarandache pure neutrosophic interval subbiloop.

We have following theorem the proof of which is direct.
THEOREM 1.4.6: Let $L=L_{1} \cup L_{2}$ be a pure neutrosophic interval biloop. If L has $H=H_{l} \cup H_{2}$ to be a pure neutrosophic interval subbiloop which is Smarandache then L itself is a Smarandache pure neutrosophic interval biloop.

If a pure neutrosophic interval biloop $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ has only pure neutrosophic interval bisubgroups then we define L to be a Smarandache pure neutrosophic interval subbigroup biloop.

Example 1.4.14: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $7\}, 4, *\} \cup\{[0, b I] \mid b \in\{e, 1,2, \ldots, 17\}, 9, *\}$ be a pure neutrosophic interval biloop. L is a Smarandache pure neutrosophic interval subbigroup biloop.

In view of this we have the following theorem.
Theorem 1.4.7: Let $L_{p q}(I)$ be the class of pure neutrosophic interval biloops p and q primes greater than three. The class of biloops $L_{p q}(I)$ is a Smarandache pure neutrosophic interval subbigroup biloop.

Proof follows by using simple number theoretic techniques. We can define the notion of Smarandache pure neutrosophic interval normal subbiloop if the subbiloop is normal. If the pure neutrosophic interval biloop has no normal subbiloop we define them to be Smarandache simple pure neutrosophic interval biloop.

Example 1.4.15: Let $L=L_{1} \cup L_{2}=\{[0, a I] \mid a \in\{e, 1,2, \ldots$, $19\}, 9, *\} \cup\{[0, \mathrm{bI}] \mid \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 19\}, 12, *\}$ be a pure neutrosophic interval biloop. L is S-simple.

Inview of this we have the following theorem which shows the existence of a class of S-simple pure neutrosophic interval biloops.

THEOREM 1.4.8: Let $L_{m n}(I)$ be the class of pure neutrosophic interval biloops; $L_{m n}(I)$ is Smarandache simple.

The proof is direct hence left as an exercise to the reader.
Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ be a S-pure neutrosophic interval biloop.

Let $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2} \subseteq \mathrm{~L}_{1} \cup \mathrm{~L}_{2}$ be a pure neutrosophic interval subbigroup of $L . a=a_{1} \cup a_{2} \in A=A_{1} \cup A_{2}$ is said to be a Smarandache Cauchy bielement of L. $\left(\left[0, a_{1} I\right] \cup\left[0, a_{2} I\right]\right)^{r}=$ $\left(\left[0, \mathrm{a}_{1} I\right]^{\mathrm{r}} \cup\left[0, \mathrm{a}_{2} I\right]^{\mathrm{r}}\right)=[0, \mathrm{eI}] \cup[0, \mathrm{eI}]$; otherwise a in A is not a S-Cauchy bielement of L.

Example 1.4.16: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $\left.11\},{ }^{*} 8\right\} \cup\{[0, \mathrm{bI}] \mid \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 15\}, 8, *\}$ be a S - pure neutrosophic interval biloop. Consider $x=[0,3 I] \cup[0,10 I] \in$ V ; we see $\mathrm{x}^{2}=([0,3 \mathrm{I}] \cup[0,10 \mathrm{I}])^{2}=[0, \mathrm{eI}] \cup[0, \mathrm{eI}]$.

Thus x is a S-Cauchy bielement of V.
Note: If in a S- pure neutrosophic interval biloop every bielement is a S-Cauchy bielement then we define the biloop to be a S-pure neutrosophic Cauchy interval biloop or S-Cauchy pure neutrosophic interval biloop or pure neutrosophic interval S-Cauchy biloop.

We will give an example of a S-pure neutrosophic interval Cauchy biloop.

Example 1.4.17: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 27\}$, $11, *\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 47\}, 12, *\}$ be a pure neutrosophic interval biloop. L is a S-Cauchy pure neutrosophic interval biloop.

Example 1.4.18: $L e t L=L_{1} \cup L_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $29\}, 12, *\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 33\}, *, 17\}$ be a pure neutrosophic interval biloop which is S-Cauchy biloop.

We in the following theorem show there exists a class of pure neutrosophic interval biloops of even order which are SCauchy.

THEOREM.1.4.9: Let $L_{m n}(I)=\{[0, a I] \mid a \in\{e, 1,2, \ldots, m\}, t<m$, m odd and $m<3$; $[t, m]=[t-1, m]=1, *\} \cup\{[0, a I] \mid a$ $\in\{e, 1,2, \ldots, n\} ; s<n, n$ odd and $n<3 ;[s, n]=[s-1, n]=1, *\}$ be the class of pure neutrosophic interval biloops . $L_{m n}(I)$ is a class of S-Cauchy pure neutrosophic interval biloops.

This proof is also simple directly follows from the definition of loops [9,13].

We can as in case of biloops define the notion of Smarandache Lagrange interval biloop and Smarandache weakly Lagrange interval biloop which is direct and hence is left as an exercise to the reader $[9,13]$.

We provide examples of them.
Example 1.4.19: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 19\}$, $8, *\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 53\}, 9, *\}$ be a pure neutrosophic interval biloop. L is a Smarandache pure neutrosophic interval Lagrange biloop or pure neutrosophic interval Smarandache Lagrange biloop.

Example 1.4.20: $L e t \mathrm{~L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 45\}$, $14, *\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 25\}, *, 7\}$ be a pure neutrosophic interval biloop. L is a Smarandache weakly Lagrange pure neutrosophic interval biloop.

We have a class of pure neutrosophic interval biloops which are Smarandache Lagrange and a class of pure neutrosophic interval biloop which is Smarandache weakly Lagrange.

These situations are given by the following theorems.
ThEOREM 1.4.10: Let $L_{p q}(I)=\{[0, a I] \mid a \in\{e, 1,2, \ldots, p\}, s<p, s$; * p an odd prime greater than 3$\} \cup\{[0, a I] \mid a \in\{e, 1,2, \ldots, q\}$, $r<p, r,{ }^{*} ; q$ an odd prime greater than three\} be a class of pure neutrosophic interval biloops. Every biloop in this class of interval biloops $L_{p q}(I)$ is a Smarandache Lagrange pure neutrosophic interval biloop.

The proof follows from the fact the order of every biloop is $(\mathrm{p}+1)(\mathrm{q}+1)=2 \mathrm{~m}(\mathrm{~m}<\mathrm{q})$. Hence these biloops have only subbigroups of order 2.2.

Theorem 1.4.11: Let $L_{m n}(I)=\{[0, a I] \mid a \in\{e, 1,2, \ldots, n\}, *, n$ odd $n>3, t ; t<n,(t-1, n)=(t, n)=1, *\} \cup\{[0, a I] \mid a \in\{e, 1,2, \ldots$, $m\}, *, m$ odd, $m>3$, s $s<m ;(s-1, m)=(s, m)=1, *\}$ be the class of pure neutrosophic interval biloops. Every interval biloop in this class is a Smarandache weakly Lagrange interval biloop.

Proof follows from the fact every $\{[0, \mathrm{aI}] \cup[0, \mathrm{bI}],[0, \mathrm{eI}] \cup$ $[0, \mathrm{eI}]\} \subseteq \mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \in \mathrm{~L}_{\mathrm{mn}}(\mathrm{I})$ is a subbigroup of order four and o $(\mathrm{L})=2^{2} \cdot \mathrm{~m}(\mathrm{~m} \geq 9)$.

Now we can define the notion of Smarandache (p_{1}, p_{2}) Sylow interval subbiloops of a pure neutrosophic interval biloop.

Suppose $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ is a pure neutrosophic interval biloop of finite order. Let p_{1}, p_{2} be two primes (distinct or otherwise) such that $\mathrm{p}_{1} \mathrm{p}_{2} / \mathrm{o}(\mathrm{L})$. Suppose $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2} \subseteq \mathrm{~L}_{1} \cup \mathrm{~L}_{2}$ be a Smarandache pure neutrosophic subbiloop of L of order mm_{1} and if $\mathrm{B}=\mathrm{B}_{1} \cup \mathrm{~B}_{2} \subseteq \mathrm{~A}_{1} \cup \mathrm{~A}_{2}=\mathrm{A}$ is a pure neutrosophic interval subbigroup of A of biorder $p_{1} p_{2}$ and if $p_{1} p_{2} / m_{1} m_{2}$, then we say L is a Smarandache ($\mathrm{p}_{1}, \mathrm{p}_{2}$)- Sylow pure neutrosophic interval bisubgroup.

Example 1.4.21: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 23\}, 8$, *\} $\cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 43\}, 8, *\}$ be a pure neutrosophic interval biloop, L is a Smarandache $(2,2)$ - Sylow biloop.

We say a finite biorder Smarandache strong ($\mathrm{p}_{1}, \mathrm{p}_{2}$)- Sylow biloop if every subbigroup is of a prime power biorder and divides biorder of L . We will give example of it.

Example 1.4.22: Let $L=L_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $11\}, *, 9\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 11\}, *, 10\}$ be a pure neutrosophic interval biloop. L is a Smarandache strong (2, 2) Sylow interval biloop.

In view of this we have the following theorem.
THEOREM 1.4.12: Let $L_{p q}(I)=\{[0, a I] \mid a \in\{e, 1,2, \ldots, p\}, p$ an odd prime greater than $3, t, t<p ;(t, p)=(t-1, p)=1, *\} \cup$ $\{[0, a I] \mid a \in\{e, 1,2, \ldots, q\}, q$ an odd prime greater than $3, s, s<q$, $(s, q)=(s-1, q)=1, *\}$ be the class of pure neutrosophic interval biloops. Every biloop in $L_{p q}(I)$ is a Smarandache strong $(2,2)$ Sylow interval biloop.

We can define as in case of biloops in case of pure neutrosophic interval biloops also the notion biassociator, Smarandache bicyclic and Smarandache strong bicyclic biloops. We call a pure neutrosophic interval biloop to be a

Smarandache cyclic biloop if $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ contains a bisubset A $=A_{1} \cup A_{2}$ such that A is a cyclic bigroup. If every proper bisubset A of L which is a subbigroup is bicyclic then we say the interval biloop is a Smarandache strong pure neutrosophic interval bicyclic loop. We will first provide examples of this concept.

Example 1.4.23: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 27\}$, * 8$\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 30\}, *, 14\}$ be a pure neutrosophic interval biloop. L is a Smarandache cyclic pure neutrosophic interval biloop.

Example 1.4.24: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 47\}$, *, 9$\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 53\},{ }^{*}, 9\right\}$ be a pure neutrosophic interval biloop. P is a Smarandache strong cyclic interval biloop.

In view of this we have the following theorem.
Theorem 1.4.13: Let $L_{p q}(I)=\{[0, a I] \mid a \in\{e, 1,2, \ldots, p\} ; p a$ prime greater than 3 and $n<p ; n, *\} \cup\{[0, a I] \mid a \in\{e, 1,2, \ldots$, $q\}, q$ a prime, $q>3 ; m ; m<q, *\}$ be a class of pure neutrosophic interval biloops. Every pure neutrosophic interval biloop in $L_{p q}(I)$ is a Smarandache strongly cyclic biloop.

The proof is direct follows from the fact that every distinct bipair generates a bisubloop or the whole biloop. We can define for a pure neutrosophic interval biloop $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ the notion of biassociator of L denoted by $A(L)=A\left(L_{1}\right) \cup A\left(L_{2}\right)$.

Example 1.4.25: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 27\}$, $20, *\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 23\}, *, 20\}$ be a pure neutrosophic interval biloop. The associator of L is $A(L)=$ $\mathrm{A}\left(\mathrm{L}_{1}\right) \cup \mathrm{A}\left(\mathrm{L}_{2}\right)=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\mathrm{L}$.

In view of this we have the following theorem.
Theorem 1.4.14: Let $L_{m n}(I)=\{[0, a I] \mid a \in\{e, 1,2, \ldots, m\}, s, s$ $<m, *\} \cup\{[0, a I] \mid a \in\{e, 1,2, \ldots, n\}, t, t<n, *\} m$ and n odd greater than three be the class of pure neutrosophic interval biloops. Every pure neutrosophic interval biloop $L=L_{1} \cup L_{2}$ in
$L_{m n}(I)$ is such that $A(L)=A\left(L_{1} \cup L_{2}\right)=A\left(L_{1}\right) \cup A\left(L_{2}\right)=L_{1} \cup L_{2}$ $=L$.

The proof is direct based on the definition of associator [9, 13]. We can define for these biloops the notion of first and second binormalizers.

In particular the first binormalizer in general is not equal to the second binormalizer. Interested reader can supply with examples. Several interesting properties derived for biloops can also be derived for pure neutrosophic interval biloops with appropriate modifications. Further these properties can be easily extended in case of mixed neutrosophic interval biloops. We will only give examples of them.

Example 1.4.26: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{7}, 3, *\right\}$ $\cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{19},{ }^{*}, 8\right\}$ be a mixed neutrosophic interval biloop of finite order.

Clearly this biloop contains as a subbiloop both pure neutrosopbic interval biloop as well as just interval biloop. We now proceed on to define quasi neutrosophic interval biloop. We call $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ to be a quasi neutrosophic interval biloop if one of L_{1} or L_{2} is a pure neutrosophic or a mixed neutrosophic interval loop and the other is just an interval loop. We will illustrate this situation by some examples.

Example 1.4.27: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{15},{ }^{*}, 8\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{43},{ }^{*}, 8\right\}$ be a quasi neutrosophic interval biloop of finite order.

Example 1.4.28: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{[0, \mathrm{aI}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{47}\right.$, , $\left.{ }^{\text {, }} 9\right\}$ $\cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{19},{ }^{*}, 9\right\}$ be a quasi neutrosophic interval biloop of finite order.

Example 1.4.29: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{17}, *, 8\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{17}, 12\right\}$ be a quasi neutrosophic interval biloop of finite order.

Example 1.4.30: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{29}, * 7\right\} \cup$ $\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{29}, *, 21\right\}$ be a quasi neutrosophic interval biloop of finite order.

For these class of biloops also. We define pure neutrosophic or mixed neutrosophic quasi interval biloops as follows. Let $\mathrm{L}=$ $L_{1} \cup L_{2}$ if only one of L_{1} or L_{2} is a neutrosophic interval loop and the other is just a neutrosophic loop.

We will give examples of this structure .

Example 1.4.31: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{\mathrm{LI}_{25}(9)\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a}$ $\in\left\{e, 1,2, \ldots, 29,{ }^{*}, 9\right\}$ be a neutrosophic quasi interval biloop of finite order where $\mathrm{L}_{1}=\{\mathrm{aI} \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 25\}, 9, *\}$.

Example 1.4.32: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 23\}$, $*, 19\} \cup\{\mathrm{aI} \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 23\}, *, 22\}$ be a neutrosophic quasi interval biloop of order 24×24.

Example 1.4.33: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots$, $26,27\}, 11, *\} \cup\{\mathrm{aI} \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 47\}, 11, *\}$ be a neutrosophic quasi interval biloop of finite order 28×48.

Example 1.4.34: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{\mathrm{aI} \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 13\}$, $9, *\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 13\}, 9, *\}$ be a neutrosophic quasi interval biloop of order $14^{2}=196$.

We can derive almost all the results discussed in this section about pure neutrosophic interval biloops to the class of quasi neutrosophic interval biloops to the class of quasi neutrosophic interval biloops with simple modifications. We can still define another type of biloop which we choose to call as quasi neutrosophic quasi interval biloop if only one of L_{1} or L_{2} is a interval loop other just a loop and only one of them is neutrosophic other just not neutrosophic then we call $L=L_{1} \cup$ L_{2} to be a quasi neutrosophic quasi interval biloop. We will now proceed on to give examples of them.

Example 1.4.35: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{\mathrm{L}_{9}(8)\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}$, $1,2, \ldots, 47\}, 8, *\}$ be a quasi neutrosophic quasi interval biloop.

Example 1.4.36: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $43\}, 10, *\} \cup\{a I \mid a \in\{e, 1,2, \ldots, 23\}, *, 10\}$ be a quasi neutrosophic quasi interval biloop of finite order.

Example 1.4.37: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots$, $11\}, 8, *\} \cup\{\mathrm{a} \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 13\}, 8, *\}$ be a quasi neutrosophic quasi interval biloop.

Consider $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 5\},{ }^{*}, 3\right\}$ $\cup\{\mathrm{a} \mid \mathrm{a} \in\{1,2, \ldots, 5\}, *, 3\}$ is not a quasi neutrosophic quasi interval biloop as $\mathrm{M}_{2} \subseteq \mathrm{M}_{1}$.

However if $P=P_{1} \cup P_{2}=\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots, 5\}, *$, $3\} \cup\{\mathrm{a} \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 5\}, *, 4\}$ is a quasi neutrosophic quasi interval biloop. Now one can define neutrosophic interval loopgroup, quasi neutrosophic interval loop-group and quasi neutrosophic quasi interval loop-group.

We only give examples of them.
Example 1.4.38: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $25\}, *, 12\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{25},+\right\}$ be a neutrosophic interval loop-group of finite order.

Example 1.4.39: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{[0, \mathrm{aI}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots$. 29$\left.\},{ }^{*}, 12\right\} \cup\left\{[0, \mathrm{a}] \mid \mathrm{Ia} \in \mathrm{Z}_{45},+\right\}$ be a neutrosophic interval loop-group of finite order.

Example 1.4.40: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{280}\right.$, $+\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 13\}, 12, *\}$ be a neutrosophic interval group-loop.

Example 1.4.41: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{45},+\right\}$ $\cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 43\}, 8,{ }^{*}\right\}$ be a quasi neutrosophic interval group-loop of finite order.

Example 1.4.42: Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{25},+\right\} \cup$ $\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 47\}, 19, *\}$ be a quasi neutrosophic interval group-loop.

Example 1.4.43: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{5} \mathrm{I} \backslash\{0\}, \times\right\}$ $\cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 43\}, 19,{ }^{*}\right\}$ be a quasi neutrosophic interval group-loop.

Example 1.4.44: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{19} \backslash\{0\}, \times\right\} \cup$ $\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 33\}, 14, *\}$ be a quasi neutrosophic interval group-loop of finite order.

Example 1.4.45: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{40},+\right\} \cup$ $\{\mathrm{aI} \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 43\}, *, 8\}$ be a neutrosophic quasi interval group- loop.

Example 1.4.46: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots$, $43\}, 29, *\} \cup\left\{\mathrm{aI} \mid \mathrm{a} \in \mathrm{Z}_{13} \backslash\{0\}, \times\right\}$ be a neutrosophic quasi interval loop-group of finite order.

Example 1.4.47: Let $\mathrm{B}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in$ $\left.\mathrm{Z}_{425},+\right\} \cup\{[\mathrm{aI} \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 47\}, 9, *\}$ be a neutrosophic quasi interval group-loop of finite order.

Example 1.4.48: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 15\}$, $8, *\} \cup\left\{\mathrm{Z}_{148},+\right\}$ be a quasi neutrosophic quasi interval loopgroup.

Example 1.4.49: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{145},+\right\} \cup$ $\left\{\mathrm{L}_{29}(8), *\right\}$ be a quasi neutrosophic quasi interval group-loop.

Example 1.4.50: Let $P=P_{1} \cup P_{2}=\{[0, a+b I] \mid a, b \in\{e, 1,2$, $\ldots, 29\}, 19, *\} \cup\left\{Z_{19} \backslash\{0\}, \times\right\}$ be a quasi neutrosophic quasi interval loop-group.

Now the notion of substructures can be easily derived and described by any interested reader.

We can define the new notions of neutrosophic interval loop - semigroup, quasi neutrosophic interval loop - semigroup, neutrosophic quasi interval loop - semigroup and quasi neutrosophic quasi interval loop - semigroup, it is left to the reader, however we give examples of them.

Example 1.4.51: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $23\}, 10, *\} \cup\left\{[0, a+b I] \mid a, b \in Z_{40}, \times\right\}$ be a neutrosophic interval loop - semigroup.

Example 1.4.52: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\right.$ $\{0\}, \times\} \cup\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots, 41\}, 8, *\}$ be a neutrosophic interval loop-semigroup.

Example 1.4.53: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2}\right]\right],[0\right.$, $\left.\left.\left.a_{3} I\right],\left[0, a_{4} I\right]\right) \mid a_{i} \in Z^{+} \cup\{0\}, \times ; 1 \leq i \leq 4\right\} \cup\{[0, a+b I] \mid a, b \in$
$\{\mathrm{e}, 1,2, \ldots, 13\}, 8, *\}$ be a neutrosophic interval semigroup loop.
Example 1.4.54: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $19\}, 8, *\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{24}, \times\right\}$ be a quasi neutrosophic interval loop - semigroup.

Example 1.4.55: Let $S=S_{1} \cup S_{2}=\left\{[0, a] \mid a \in Z_{45}, \times\right\} \cup$ $\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 23\}, 18, *\}$ be a quasi neutrosophic interval semigroup - loop.

Example 1.4.56: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{[0, \mathrm{a}+\mathrm{b}] \mid \mathrm{I}, \mathrm{b} \in\{\mathrm{e}, 1,2$, $\ldots, 43\}, 10, *\} \cup\left\{[0, a] \mid a \in Z_{42}, \times\right\}$ be a quasi neutrosophic interval loop - semigroup.

Example 1.4.57: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{40}, \times\right\} \cup$ $\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots, 29\}, 20, *\}$ be a neutrosophic interval semigroup - loop.

Example 1.4.58: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\mathrm{Z}_{45} \mathrm{I}, \times\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}$, $\mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 23\}, *, 8\}$ be a neutrosophic quasi interval semigroup - loop.

Example 1.4.59: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\{[\mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $23\}, 12, *\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{40}, \times\right\}$ be a neutrosophic quasi interval loop - semigroup.

Example 1.4.60: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{\mathrm{Z}_{40} \mathrm{I}, \times\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}$, $1,2, \ldots, 41\}, 9, *\}$ be a neutrosophic quasi interval semigroup loop.

Example 1.4.61: Let $B=B_{1} \cup B_{2}=\left\{Z_{44}, \times\right\} \cup\{[0, a \mathrm{a}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b}$ $\left.\in\{\mathrm{e}, 1,2, \ldots, 47\},{ }^{*}, 12\right\}$ be a quasi neutrosophic quasi interval semigroup - loop.

Example 1.4.62: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\right.$ $\{0\}, \times\} \cup\left\{\mathrm{L}_{27}(8)\right\}$ be a quasi interval semigroup - loop.

Now having seen quasi non associative bistructure we now proceed onto give examples of the non associative bistructures viz. loop - groupoids of various types.

Example 1.4.63: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{25},(3,8)\right.$, * $\} \cup\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots, 45\}, 8, *\}$ be a neutrosophic interval groupoid - loop of finite order.
Example 1.4.64: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{140}\right.$, *, $(8,17)\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 15\}, 8, *\}$ be a neutrosophic interval groupoid - loop.

Example 1.4.65: Let $S=S_{1} \cup S_{2}=\{[0, \mathrm{a}] \mid \mathrm{I} \in\{\mathrm{e}, 1,2, \ldots$, $19\}, 18, *\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{480},(17,11), *\right\}$ be a neutrosophic interval loop - groupoid.

Example 1.4.66: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{42}\right.$, *, (11, 19) $\} \cup\{[0$, a] $\mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 23\}, *, 18\}$ be a quasi neutrosophic interval groupoid - loop.

Example 1.4.67: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{43},{ }^{*}\right.$, (12, 11) $\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 43\}, *, 15\}$ be a quasi neutrosophic interval groupoid - loop.

Example 1.4.68: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $23\}, *, 8\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{41},{ }^{*},(3,8)\right\}$ be a neutrosophic quasi interval loop - groupoid.

Example 1.4.69: Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{48},{ }^{*},(8,1)\right\}$ $\cup\{[\mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 49\}, 9, *\}$ be a neutrosophic quasi interval groupoid - loop.

Example 1.4.70: Let $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{490}\right.$, *, (23, $140\} \cup\{[\mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 29\}, 9, *\}$ be a quasi neutrosophic quasi interval groupoid - loop.

Example 1.4.71: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[\mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{489}\right.$, *, $(19,29\}$ $\cup\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 53\}, 8, *\}$ be a quasi neutrosophic quasi interval groupoid-loop.

Since groupoid - loop is a non associative structure all identities and all properties associated with these structures can be studied with appropriate modifications. We now proceed of to define interval bistructures using matrices and polynomials.

Recall $\sum_{i=0}^{\infty}[0, a I] x^{i}$ is a neutrosophic interval polynomial in the variable x where $a_{i} \in Z_{n}$ or $Z^{+} \cup\{0\}$ or $R^{+} \cup\{0\}$ or $Q^{+} \cup$ $\{0\}$. We can give on the collection of neutrosophic intervals polynomials semigroup structures or group structure or groupoid structure or loop structure when Z_{n} is used only for semigroup - groupoid structure $\mathrm{Z}_{\mathrm{I}}^{+} \cup\{0\}$ or $\mathrm{R}_{\mathrm{I}}^{+} \cup\{0\}$ or $\mathrm{Q}_{\mathrm{I}}^{+} \cup\{0\}$ coefficients are used as the interval coefficients. We will only give examples $[9,13]$.

Example 1.4.72: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left[\begin{array}{c}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
\vdots \\
{\left[0, \mathrm{a}_{8} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{40},+\right\} \cup
$$

$$
\left\{\left.\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right] \right\rvert\, a_{i}=\left[0, x_{i} I\right] \text { where } x_{i} \in\{e, 1,2, \ldots, 43\}, 8, *\right\}
$$

be a neutrosophic interval semigroup - groupoid.
Example 1.4.73: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=$

$$
\begin{gathered}
\left\{\sum_{i=0}^{\infty}[0, a I] x^{i} \mid a \in\{e, 1,2, \ldots, 19\}^{*}, 8\right\} \\
\cup\left\{\left.\left[\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8} \\
a_{9} & a_{10} & a_{11} & a_{12}
\end{array}\right] \right\rvert\, a_{i}=\left[0, x_{i} I\right] ; x_{i} \in Z_{42},+\right\}
\end{gathered}
$$

be a neutrosophic interval groupoid - semigroup.

Example 1.4.74: Let $S=S_{1} \cup S_{2}=$

$$
\begin{gathered}
\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\} \cup \\
\begin{cases}\left.\left.\left[\begin{array}{ll}
\mathrm{a}_{1} & \mathrm{a}_{5} \\
\mathrm{a}_{2} & \mathrm{a}_{6} \\
\mathrm{a}_{3} & \mathrm{a}_{7} \\
\mathrm{a}_{4} & \mathrm{a}_{8}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}}=\left[0, \mathrm{x}_{\mathrm{i}} \mathrm{I}\right] \text { where } \mathrm{x}_{\mathrm{i}} \in \mathrm{Z}_{20},(8,2), *\right\}\end{cases}
\end{gathered}
$$

be a neutrosophic interval semigroup - groupoid.
Example 1.4.75: Let $\mathrm{X}=\mathrm{X}_{1} \cup \mathrm{X}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $31\}, 9, *\} \cup\left\{\sum_{i=0}^{\infty}\left[0, a_{i} I\right] x^{i} \mid a_{i} \in Z_{20}, *,(3,10)\right\}$ be a neutrosophic interval loop - groupoid.

We can build several types of them like quasi neutrosophic or quasi neutrosophic quasi interval bistructures.

Example 1.4.76: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $37\}, 9, *\} \cup\left\{\left.\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right] \right\rvert\, a_{i}=\left[0, x_{i} I\right]\right.$ where $x_{i} \in Z_{40}$, $\left.(3,17),{ }^{*}\right\}$ be a quasi neutrosophic interval loop - groupoid.

Example 1.4.77: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $37\}, 28, *\} \cup\left\{\begin{array}{lll}{\left.\left[\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9} \\ a_{10} & a_{11} & a_{12} \\ a_{13} & a_{14} & a_{15} \\ a_{16} & a_{17} & a_{18}\end{array}\right] \right\rvert\, a_{i}=\left[0, x_{i} I\right] \text { where } x_{i} \in Z_{37}, ~, ~, ~}\end{array}\right]$
$(2,18), *\}$ is a neutrosophic interval loop-groupoid.
We can build bistructures in them and work as in case of other interval bistructures.

Chapter Two

Neutrosophic Interval Birings and Neutrosophic Interval Bisemirings

In this chapter we for the first time introduce the notion of neutrosophic interval birings, neutrosophic interval bisemirings, neutrosophic interval bivector spaces and neutrosophic interval bisemivector spaces study and describe their properties. This chapter has three sections. In section one the notion of neutrosophic interval birings are introduced.

Neutrosophic interval bisemirings are introduced in section two. In section three neutrosophic interval bivector spaces and neutrosophic interval bisemivector spaces are introduced and studied.

2.1 Neutrosophic Interval Birings

In this section we introduce the notion of neutrosophic interval birings and study their properties.

DEFINITION 2.1.1: Let $R=R_{1} \cup R_{2}$ where R_{1} and R_{2} are distinct with R_{i} a collection of neutrosophic intervals of the
special form [0, aI] with $a \in Z_{n_{i}} n_{i}<\infty$ which is a ring for $i=1$, 2. We define $R=R_{l} \cup R_{2}$ to be a pure neutrosophic interval biring.

If instead of $[0, a I]$ we use $[0, a+b I] ; a, b \in Z_{n}$ we call R to be a mixed neutrosophic interval biring or just neutrosophic interval biring. Clearly using $\mathrm{Z}^{+} \cup\{0\}$ or $\mathrm{R}^{+} \cup\{0\}$ or $\mathrm{Q}^{+} \cup$ $\{0\}$ in the place of $Z_{\mathrm{n}_{\mathrm{i}}}$ will not give R a ring structure.

We will illustrate this situation by some examples.

Example 2.1.1: Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{20},+, \times\right\} \cup$ $\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}_{42},+, \times\right\}$ be a pure neutrosophic interval biring of order 20×42.

Clearly R is commutative with $[0, \mathrm{I}] \cup[0, \mathrm{I}]$ as its multiplicative identity.

Example 2.1.2: Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{19},+, \times\right\} \cup$ $\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}_{13},+, \times\right\}$ be a pure neutrosophic interval biring of finite order.

Clearly R has no zero divisors. Infact R has no idempotents. R is a neutrosophic interval bifield of order $19 \times$ 13.

Example 2.1.3: Let $\mathrm{B}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40},+, \times\right\} \cup$ $\left\{[0, \mathrm{bI}] \mid \mathrm{b} \in \mathrm{Z}_{12},+, \times\right\}$ be a neutrosophic interval biring. B has bizero divisors. For take

$$
\begin{aligned}
& =[0,10 \mathrm{I}] \cup[0,3 \mathrm{I}] \\
\text { and } & \mathrm{y} \\
\mathrm{y} & =[0,4 \mathrm{I}] \cup[0,4 \mathrm{I}] \text { in } \mathrm{B} .
\end{aligned}
$$

Clearly x.y $=[0] \cup[0] . \mathrm{B}$ has biunits. For take $\mathrm{x}=[0,39 \mathrm{I}]$ $\cup[0,11 \mathrm{I}]$ in B ; we get $\mathrm{x}^{2}=[0, \mathrm{I}] \cup[0, \mathrm{I}] . \quad \mathrm{B}$ has biidempotents. Consider $x=[0,16 I] \cup[0,4 \mathrm{I}]$ in B, we see x^{2} $=\mathrm{x}$ hence the claim.

Thus these rings have bizero divisors, biunits and biidempotents.

Example 2.1.4: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40},+, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{41},+, \times\right\}$ be a neutrosophic interval biring. M has
no biidempotents but has biidempotents of the form $\mathrm{x}=[0,16 \mathrm{I}]$ $\cup[0, I]$ in M, as $x^{2}=x$. We call this type of biidempotents as quasi biidempotents.
M has also quasi binilpotents, for take $y=[0,20 I] \cup[0,0]$ we see $y^{2}=[0,0] \cup[0,0]$.

We call a neutrosophic interval biring $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ in which one of S_{1} or S_{2} is a neutrosophic interval field as a quasi neutrosophic interval bifield.

Example 2.1.5: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{24},+, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{7},+, \times\right\}$ be a quasi pure neutrosophic interval bifield.

Inview of this we have the following theorem.
THEOREM 2.1.1: Let $R=R_{l} \cup R_{2}=\left\{[0, a I] \mid a \in Z_{n} ; n\right.$ a non prime,,$+ x\} \cup\left\{[0, a I] \mid a \in Z_{p}, p\right.$ a prime,,$\left.+ x\right\}$ be a pure neutrosophic interval biring. R is a pure neutrosophic quasi interval bifield.

The proof is direct from the very definition.
We can define pure neutrosophic interval subbiring and biideal which is simple hence left as an exercise to the reader.

We give examples of them.
Example 2.1.6: Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{12},+, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{10},+, \times\right\}$ be a pure neutrosophic interval biring. Consider $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{0,2,4,6,8,10\} \subseteq \mathrm{Z}_{12}, \times\right.$, $+\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{0,5\} \subseteq \mathrm{Z}_{10}, \times,+\right\} \subseteq \mathrm{R}_{1} \cup \mathrm{R}_{2}$. Clearly P is a pure neutrosophic interval biring and is nothing but P is a pure neutrosophic interval bisubring of R. We can easily verify that P is infact a biideal of R.

Example 2.1.7: Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{23},+, \times\right\} \cup$ $\left\{[0, \mathrm{a}]\left|\mid \mathrm{a} \in \mathrm{Z}_{23},+, \times\right\}\right.$ be a pure neutrosophic interval biring. It is a bifield and hence has no ideals.

We can study the notion of quotient birings in case of neutrosophic interval birings.

Let $R=R_{1} \cup R_{2}$ be a pure neutrosophic interval biring. $J=$ $I_{1} \cup I_{2}$ be a pure neutrosophic interval biideal of $R . R / J=R_{1} / I_{1}$ $\cup \mathrm{R}_{2} / \mathrm{I}_{2}$ is the pure neutrosophic interval quotient biring.

We will illustrate this situation by some examples.
Example 2.1.8: Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{12},+, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{15},+, \times\right\}$ be a pure neutrosophic interval biring. Let $\mathrm{J}=\mathrm{I}_{1} \cup \mathrm{I}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{0,2, \ldots, 10\} \subseteq \mathrm{Z}_{12},+, \times\right\} \cup\{[0$, aI] $\left.\mathrm{I} \mathrm{a} \in\{0,3,6,9,12\} \subseteq \mathrm{Z}_{15},+, \times\right\}$ be a pure neutrosophic interval biideal of R .

Consider $\mathrm{R} / \mathrm{J}=\mathrm{R}_{1} / \mathrm{I}_{1} \cup \mathrm{R}_{2} / \mathrm{I}_{2}$.
$=\left\{\mathrm{I}_{1},[0, \mathrm{I}]+\mathrm{I}_{1}\right\} \cup\left\{\mathrm{I}_{2},[0, \mathrm{I}]+\mathrm{I}_{2},[0,2 \mathrm{I}], \mathrm{I}_{2}\right\}$. We see R / I is a pure neutrosophic interval bifield isomorphic with $\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\left.Z_{2},+, \times\right\} \cup\left\{[0, a \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{3},+, \times\right\}$. We can also have the quotient rings as pure neutrosophic interval birings.

Consider $\mathrm{J}=\mathrm{I}_{1} \cup \mathrm{I}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{0,4,8,12,16,20\}, \times$, $+\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{0,10,20\},+, \times\} \subseteq \mathrm{R}_{1} \cup \mathrm{R}_{2}$, be a pure neutrosophic biideal of R.

Take $\mathrm{R} / \mathrm{J}=\mathrm{R}_{1} / \mathrm{I}_{1} \cup \mathrm{R}_{2} / \mathrm{I}_{2}=\left\{\mathrm{I}_{1},[0, \mathrm{I}]+\mathrm{I}_{1},[0,2 \mathrm{I}]+\mathrm{I}_{1}[0,3 \mathrm{I}]\right.$ $\left.+\mathrm{I}_{1}\right\} \cup\left\{\mathrm{I}_{2},[0, \mathrm{I}]+\mathrm{I}_{2},[0,2 \mathrm{I}]+\mathrm{I}_{2}, \ldots .,[0, \mathrm{aI}]+\mathrm{I}_{2}\right\}$ to be the quotient interval biring.

Clearly $\mathrm{R} / \mathrm{J} \cong \mathrm{Z}_{4} \cup \mathrm{Z}_{10}$ and is not a pure neutrosophic interval bifield only a pure neutrosophic interval biring. We cannot define biring structures using $\mathrm{R}^{+} \cup\{0\}$ or $\mathrm{Q}^{+} \cup\{0\}$ or $Z^{+} \cup\{0\}$.

We define $S=S_{1} \cup S_{2}$ to be a quasi neutrosophic interval biring if S_{1} is a pure neutrosophic interval ring and S_{2} is just an interval ring. We will give examples of them.

Example 2.1.9: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{43},+, \times\right\} \cup$ $\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{42},+, \times\right\}$ be a quasi neutrosophic interval biring.

Example 2.1.10: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{11},+, \times\right\} \cup$ $\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{7},+, \times\right\}$ be a quasi neutrosophic interval bifield.

Example 2.1.11: Let $T=T_{1} \cup T_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{43},+, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{240},+, \times\right\}$ be a quasi neutrosophic interval quasi bifield.

Example 2.1.12: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{24},+, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{23},+, \times\right\}$ be a quasi neutrosophic interval quasi bifield.

Quasi neutrosophic interval birings also contain bizero divisors, biunits biidempotents and quotient birings can be constructed using biideals. This is a matter of routine and hence is left as an exercise to the reader.

We see however we can construct neutrosophic quasi interval birings. We call $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2}$ to be a neutrosophic quasi interval biring if R_{1} is just a neutrosophic ring and R_{2} is a neutrosophic interval ring.

We will give examples of such birings.
Example 2.1.13: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{42},+, \times\right\} \cup$ $\left\{\left[\mathrm{Z}_{15} \mathrm{I},+, \times\right\}\right.$ be a neutrosophic quasi interval biring. V has bizero divisors and biunits. We see biunit element of V is $[0, \mathrm{I}]$ $\cup \mathrm{I}$. Consider $\mathrm{x}=[0,41 \mathrm{I}] \cup 14 \mathrm{I}$ in $\mathrm{V}, \mathrm{x}^{2}=[0, \mathrm{I}] \cup \mathrm{I}$. Take $\mathrm{x}=$ $[0,21 I] \cup 5 \mathrm{I}$ and $\mathrm{y}=[0,2 \mathrm{I}] \cup 3 \mathrm{I}$ in $\mathrm{V} x y=0 \cup 0$.

If $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in 2 \mathrm{Z}_{42},+, \times\right\} \cup\left\{3 \mathrm{Z}_{15} \mathrm{I},+, \times\right\} \subseteq$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}$; P is a neutrosophic quasi interval bisubring of V as well as neutrosophic quasi interval biideal of V .

Example 2.1.14: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{7},+, \times\right\} \cup$ $\left\{\mathrm{Z}_{13} \mathrm{I},+, \times\right\}$ be a pure neutrosophic quasi interval bifield.

M has no biideals or subbirings or bizero divisors.
Example 2.1.15: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{19} \mathrm{I},+, \times\right\} \cup\{[0, \mathrm{aI}] \mid$ $\left.\mathrm{a} \in \mathrm{Z}_{40},+, \times\right\}$ be a neutrosophic quasi interval quasi bifield. This V has only neutrosophic quasi interval quasi biideals, quasi biunits and quasi bizero divisors.

Example 2.1.16: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\mathrm{Z}_{25} \mathrm{I},+, \times\right\} \cup\{[0, \mathrm{aI}] \mid$ $\left.\mathrm{a} \in \mathrm{Z}_{23},+, \times\right\}$ be a neutrosophic quasi interval quasi bifield. M has only quasi biideals given by $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2}=\left\{5 \mathrm{Z}_{25} \mathrm{I},+, \times\right\} \cup$ $\{0\}$. Now we say a biring $S=S_{1} \cup S_{2}$ is a quasi neutrosophic quasi interval biring if one of S_{1} or S_{2} is just a interval ring.

We will give examples of them.

Example 2.1.17: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{40},+, \times\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\left.\mathrm{Z}_{27},+, \times\right\}$ be the quasi neutrosophic quasi interval biring.

This biring has biideals, bizero divisors, bisubrings etc.
Example 2.1.18: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{140} \mathrm{I}, \times,+\right\} \cup\{[0, \mathrm{a}] \mid \mathrm{a}$ $\left.\in \mathrm{Z}_{20},+, \times\right\}$ be a quasi neutrosophic quasi interval biring.

Example 2.1.19: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\mathrm{Z}_{17} \mathrm{I},+, \times\right\} \cup\{[0, \mathrm{a}] \mid \mathrm{a}$ $\left.\in \mathrm{Z}_{43},+, \times\right\}$ be a quasi neutrosophic quasi interval bifield.

Example 2.1.20: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mathrm{I} \mathrm{a} \in \mathrm{Z}_{19},+, \times\right\} \cup$ $\left\{\mathrm{Z}_{23},+, \times\right\}$ be a quasi neutrosophic quasi interval bifield.

Example 2.1.21: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{13},+, \times\right\} \cup$ $\left\{Z_{45},+, \times\right\}$ be a quasi neutrosophic quasi interval quasi bifield. This M has only quasi biideals, quasi biidempotents and quasi biunits.

Example 2.1.22: Let $T=T_{1} \cup T_{2}=\left\{Z_{17},+, \times\right\} \cup\{[0, a] \mid \mathrm{a} \in$ $\left.\mathrm{Z}_{12},+, \times\right\}$ be a quasi neutrosophic quasi interval quasi bifield.

Example 2.1.23: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{\mathrm{Z}_{23} \mathrm{I},+, \times\right\} \cup\{[0, \mathrm{a}] \mid \mathrm{a} \in$ $\left.\mathrm{Z}_{420},+, \times\right\}$ be a quasi neutrosophic quasi interval bifield.

Example 2.1.24: Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{53},+, \times\right\} \cup$ $\left\{\mathrm{Z}_{425} \mathrm{I},+, \times\right\}$ be a quasi neutrosophic quasi interval quasi bifield.

Now we can study the notions by replacing the pure neutrosophic intervals $[0, a \mathrm{a}]$ by $[0, \mathrm{a}+\mathrm{bI}]$ and derive interesting results.

We give examples and indicate how it differ from pure neutrosophic bistructures.

Example 2.1.25: Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{40}, \times\right.$, $+\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{12}, \times,+\right\}$ be a neutrosophic interval biring. Clearly R is not a pure neutrosophic interval biring but R has pure neutrosophic interval subbiring and just interval biring, given by $P=P_{1} \cup P_{2}=\left\{[0, b I] \mid b \in Z_{40},+, \times\right\} \cup\{[0, b I]$
$\left.\mathrm{l} \mathrm{b} \in \mathrm{Z}_{12},+, \mathrm{x}\right\} \subseteq \mathrm{R}$ is a pure neutrosophic interval subbiring which is also a pure neutrosophic interval biideal.

Take $S=S_{1} \cup S_{2}=\left\{[0, a] \mid a \in Z_{40},+, x\right\} \cup\{[0, a] \mid a \in$ $\left.Z_{12},+, \times\right\} \subseteq R, S$ is a interval subbiring which is not an interval biideal.

Apart from this if we take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b}$ $\left.\in 2 \mathrm{Z}_{40},+, x\right\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in 2 \mathrm{Z}_{12},+, \times\right\} \subseteq \mathrm{R}_{1} \cup \mathrm{R}_{2}=\mathrm{R}, \mathrm{W}$ is a neutrosophic interval subbiring which is a biideal of R.

Example 2.1.26: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{246}, \times\right.$, $+\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{9}, \times,+\right\}$ be a neutrosophic interval biring. This has bisubrings which are not biideals and bisubrings which are biideals.

Inview of this we have the following theorem.
THEOREM 2.1.2: Let $M=M_{l} \cup M_{2}=\left\{[0, a+b I] \mid a, b \in Z_{n}, x\right.$, $+\} \cup\left\{[0, a+b I] \mid a, b \in Z_{m}, X,+\right\} m$ and n are distinct non prime numbers. M has $P=P_{I} \cup P_{2}=\left\{[0, a I] \mid a \in Z_{n}, x,+\right\} \cup$ $\left\{[0, b I] \mid b \in Z_{m}, x,+\right\} \subseteq M, P$ is a subbiring as well as subbiideal.

But $T=T_{1} \cup T_{2}=\left\{[0, a] \mid \mathrm{a} \in \mathrm{Z}_{\mathrm{n}}, \times,+\right\} \cup\left\{[0, \mathrm{~b}] \mid \mathrm{b} \in \mathrm{Z}_{\mathrm{m}}\right.$, $\times,+\} \subseteq \mathrm{M}$ is only a subbiring and is not a biideal of M .

Proof is straight forward hence left as an exercise to the reader.

Example 2.1.27: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{9},+, \times\right\}$ $8 \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{12},+, \times\right\}$ be a neutrosophic interval biring.

This has biideals and bisubrings. Take $S=S_{1} \cup S_{2}=\{[0$, $\left.\mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{0,3,6\} \subseteq \mathrm{Z}_{9}, \times,+\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{0,4$, $8\},+, x\} \subseteq P_{1} \cup P_{2} . S$ is a biideal of P.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a}, \mathrm{b} \in\{0,3,6\} \subseteq \mathrm{Z}_{9}, \times,+\right\}$ $\cup\{[0, a] \mid \mathrm{a} \in\{0,4,8\},+, \times\} \subseteq \mathrm{P}_{1} \cup \mathrm{P}_{2}=\mathrm{P} ; \mathrm{W}$ is only a bisubring of P and is not a biideal of P . Thus P has subbirings which are not biideals.

Consider P/S $=\mathrm{P}_{1} / \mathrm{S}_{1} \cup \mathrm{P}_{2} / \mathrm{S}_{2}=\left\{\mathrm{S}_{1},[0, \mathrm{a}+\mathrm{bI}]+\mathrm{S}_{1} \mid \mathrm{a}, \mathrm{b} \in\right.$ $\{0,1,2\},+, \times\} \cup\left\{S_{2},[0, a+b I]+S_{2} \mid a, b \in\{0,1,2,3\},+, \times\right\}$ is a biring. The order of P / S denoted by $|\mathrm{P} / \mathrm{S}|=9 \cup 16$.

Now $B=B_{1} \cup B_{2}=\left\{[0, a]| | a \in Z_{9},+, x\right\} \cup\{[0, b] \mid b \in$ $\left.\mathrm{Z}_{12},+, \times\right\} \subseteq \mathrm{P}_{1} \cup \mathrm{P}_{2}$ is a biideal of P .

Consider P/B $=\mathrm{P}_{1} / \mathrm{B}_{1} \cup \mathrm{P}_{2} / \mathrm{B}_{2}=\left\{\mathrm{B}_{1},[0,1]+\mathrm{B}_{1}, \ldots,[0,8]+\right.$ $\left.B_{1}\right\} \cup\left\{B_{2},[0,1]+B_{2},[0,2]+B_{2}, \ldots,[0,11]+B_{2}\right\}$ is the quotient neutrosophic interval biring or neutrosophic interval quotient biring.

These neutrosophic interval birings also contain zerobidivisors, biunits etc.

Example 2.1.28: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{11},+\right.$, $\times\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{13},+, \times\right\}$ be a neutrosophic interval biring. This has biideals. For take $P=P_{1} \cup P_{2}=\{[0, a I] \mid a \in$ $\left.Z_{11},+, x\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{13},+, \times\right\} \subseteq \mathrm{M}_{1} \cup \mathrm{M}_{2}=\mathrm{M}$ is neutrosophic interval biideal. The quotient biring $\mathrm{M} / \mathrm{P}=\mathrm{M}_{1} / \mathrm{P}_{1}$ $\cup \mathrm{M}_{2} / \mathrm{P}_{2}=\left\{\mathrm{P}_{1},[0,1]+\mathrm{P}_{1}, \ldots,[0,10]+\mathrm{P}_{1},+, \times\right\} \cup\left\{\mathrm{P}_{2},[0,1]+\right.$ $\left.\mathrm{P}_{2}, \ldots,[0,12]+\mathrm{P}_{2},+, \times\right\} \cong \mathrm{Z}_{11} \cup \mathrm{Z}_{13}$.

Studies in this direction can be carried out by the interested reader.

Example 2.1.29: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{12},+\right.$, $\times\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{20},+, \times\right\}$ be a neutrosophic interval biring. M has biideals, bisubrings, which are not biideals, biunits, bizero divisors and biidempotents.

We can also define $S=S_{1} \cup S_{2}$ where S_{1} is pure neutrosophic and S_{2} mixed neutrosophic still we call interval biring.

We will give some examples of them.
Example 2.1.30: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{12},+, \mathrm{x}\right\} \cup$ $\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{12},+, \times\right\}$ be the neutrosophic interval biring.

Consider $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{14},+, \times\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}]$ $\left.\mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{4},+, \times\right\}, \mathrm{S}$ is not a neutrosophic interval biring of $\mathrm{S}_{1} \subseteq$ S_{2}.

Example 2.1.31: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{24},+, \times\right\}$ $\cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{49},+, \times\right\}$ be the neutrosophic interval biring.

This biring has biideals, bisubrings, bizero divisors and so on.

Example 2.1.32: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{\mathrm{Z}_{5} \mathrm{I},+, \times\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}$, $\left.\mathrm{b} \in \mathrm{Z}_{7},+, \times\right\}$ be a neutrosophic quasi interval biring.

Example 2.1.33: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{14},+, \times\right\}$ $\cup\left\{\mathrm{Z}_{15},+, \times\right\}$ be a quasi neutrosophic quasi interval biring.

We can define special type of neutrosophic interval birings.

Example 2.1.34: Let

$$
\begin{aligned}
\mathrm{T}= & \left.\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{7},+, \times\right\}\right\} \cup \\
& \left.\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{a}+\mathrm{bI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}, \mathrm{~b} \in \mathrm{Z}_{10},+, \times\right\}\right\}
\end{aligned}
$$

be a neutrosophic interval polynomial biring.
Example 2.1.35: Let

$$
\begin{aligned}
& S=S_{1} \cup S_{2}=\left\{\sum_{i=0}^{\infty}[0, a] x^{i} \mid a \in Z_{40},+, x\right\} \cup \\
& \left\{\sum_{i=0}^{\infty}[0, a+b I] x^{i} \mid a, b \in Z_{20},+, \times\right\}
\end{aligned}
$$

be a quasi neutrosophic interval polynomial biring.

Example 2.1.36: Let

$$
\begin{aligned}
S= & S_{1} \cup S_{2}=\left\{\sum_{i=0}^{\infty} a \text { Ix }^{i} \mid a \in Z_{26},+, \times\right\} \cup \cup \\
& \left.\left\{\sum_{i=0}^{\infty}[0, a+b I] x^{i} \mid a, b \in Z_{40},+, \times\right\}\right\}
\end{aligned}
$$

be a neutrosophic quasi interval polynomial biring.

Example 2.1.37: Let

$$
\begin{gathered}
A=A_{1} \cup A_{2}=\left\{\sum_{i=0}^{\infty}[0, a+b I] x^{i} \mid a, b \in Z_{28},+, \times\right\} \cup \\
\left.\left\{\sum_{i=0}^{\infty}[0, a+b I] x^{i} \mid a, b \in Z_{48},+, \times\right\}\right\}
\end{gathered}
$$

be a quasi neutrosophic quasi interval polynomial biring.
Now likewise we can define neutrosophic interval matrix birings.

Example 2.1.38: Let

$$
M=M_{1} \cup M_{2}=\left\{\left.\left[\begin{array}{ll}
{\left[0, a_{1} I\right]} & {\left[0, a_{2} I\right]} \\
{\left[0, a_{3} I\right]} & {\left[0, a_{4} I\right]}
\end{array}\right] \right\rvert\, a \in Z_{6},+, \times\right\} \cup
$$

$\left\{\mathrm{P}=\left(\mathrm{p}_{\mathrm{ij}}\right)_{5 \times 5}\right.$ where $\mathrm{p}_{\mathrm{ij}}=\left[0, \mathrm{a}_{\mathrm{ij}} \mathrm{I}\right]$ with $\left.\mathrm{a}_{\mathrm{ij}} \in \mathrm{Z}_{12}, 1 \leq \mathrm{i}, \mathrm{j} \leq 5, \times,+\right\}$ be a neutrosophic interval matrix biring.

Example 2.1.39: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{$ all 3×3 neutrosophic interval matrices with intervals of the form [0, a+bI] where a, b $\left.\in \mathrm{Z}_{120},+, \times\right\} \cup\{$ all 8×8 neutrosophic interval matrices with intervals of the form $[0, \mathrm{aI}]$ with $\left.\mathrm{a} \in \mathrm{Z}_{48},+, \times\right\}$ be a neutrosophic interval matrix biring.

Example 2.1.40: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{$ all 10×10 neutrosophic interval matrices with intervals of the form $[0, a+b I]$ where a, b $\left.\in Z_{27},+, \times\right\} \cup\{$ all 6×6 neutrosophic interval matrices with intervals of the form [0, a] with $\left.a \in Z_{48},+, \times\right\}$ be a quasi neutrosophic interval matrix biring.

Example 2.1.41: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{$ all 3×3 interval matrices with intervals of the form [0, a] where $\left.\mathrm{a} \in \mathrm{Z}_{40},+, \times\right\} \cup\{$ all 10×10 neutrosophic interval matrices with intervals of the form [$0, \mathrm{aI}$] with $\left.\mathrm{a} \in \mathrm{Z}_{12},+, \times\right\}$ be a quasi neutrosophic interval matrix biring.

Example 2.1.42: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\{$ All 5×5 matrices with pure neutrosophic entries from $\left.\mathrm{Z}_{29} \mathrm{I}\right\} \cup\{$ all 20×20 neutrosophic
interval matrices with intervals of the form $[0, a+b I], a, b \in Z_{12}$, $+, \times\}$ be the neutrosophic quasi interval matrix biring.

Example 2.1.43: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{$ All 3×3 matrices with entries form $\left.\mathrm{Z}_{42},+, \times\right\} \cup\{$ all 2×2 neutrosophic interval matrices with intervals of the form $[0, a+b I]$ where $\left.\mathrm{a}, \mathrm{b} \in \mathrm{Z}_{20},+, \times\right\}$ be a quasi neutrosophic quasi interval matrix biring.

For these special type of birings also bisubstructures, bizero divisors, biunits etc can be defined and studied as a matter of routine.

2.2 Neutrosophic Interval Bisemirings

In this section we define the notion of neutrosophic interval bisemirings. It is important to note that in case of neutrosophic interval birings we could not use $\mathrm{Z}^{+} \cup\{0\}$ or $\mathrm{R}^{+} \cup\{0\}$ or $\mathrm{Q}^{+} \cup$ $\{0\}$ as they are not rings but in case of neutrosophic interval bisemirings we can make use of these positive reals, positive rationals and positive integers apart from the modulo integers Z_{n}.

DEFINITION 2.2.1: Let $P=P_{1} \cup P_{2}=\left\{[0, a I] \mid a \in Z_{n}\right.$ or $Z^{+} \cup$ $\{0\}$ or $R^{+} \cup\{0\}$ or $\left.Q^{+} \cup\{0\}\right\} \cup\left\{[0, a I] \mid a \in Z_{n}\right.$ or $Z^{+} \cup\{0\}$ or $Q^{+} \cup\{0\}$ or $\left.R^{+} \cup\{0\}\right\}$ (or used in the mutually exclusive sense).
P_{1} and P_{2} are closed with respect + and x. So P_{1} and P_{2} are interval semirings. If $P_{1} \neq P_{2}$ or $P_{1} \nsubseteq P_{2}$ or $P_{2} \nsubseteq P_{1}$ then we define P to be a neutrosophic interval bisemiring.

In other words $P=P_{1} \cup P_{2}$ where P_{1} and P_{2} are two distinct neutrosophic interval semirings, then P is defined as the neutrosophic interval bisemiring.

We give examples of them.
Example 2.2.1: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\},+\right.$, $\times\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{9},+, \times\right\}$ be a pure neutrosophic interval bisemiring.

Example 2.2.2: Let $T=T_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{R}^{+} \cup\{0\},+\right.$, $\times\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{42},+, \times\right\}$ be a pure neutrosophic interval
bisemiring. Elements in T will be of the form $[0, \mathrm{aI}] \cup[0, \mathrm{bI}]$ where $a \in R^{+} \cup\{0\}$ and $b \in Z_{42}$.

Note: When we use $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{9},+, \times\right\}$ as a semiring ' + ' denotes max and ' x ' denotes min operation.

Example 2.2.3: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{42},+, \times\right\} \cup$ $\left\{[0, \mathrm{bI}]\right.$ । $\left.\mathrm{b} \in \mathrm{Z}_{27},+, \times\right\}$ be the pure neutrosophic interval bisemiring.

Example 2.2.4: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in 3 \mathrm{Z}^{+} \cup\{0\},+\right.$, $\times\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in 5 \mathrm{Z}^{+} \cup\{0\},+, \times\right\}$ be the pure neutrosophic interval bisemiring.

Example 2.2.5: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in 9 \mathrm{Z}^{+} \cup\{0\},+\right.$, $\times\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in 8 \mathrm{Z}^{+} \cup\{0\},+, \times\right\}$ be the neutrosophic interval bisemiring of infinite order.

Now having seen neutrosophic interval bisemiring we can define bisubstructures in them [8].

We see in general the interval bisemirings are interval bisemifields. This is due to the fact that $\mathrm{Z}^{+} \subseteq \mathrm{Q}^{+} \subseteq \mathrm{R}^{+}$so we cannot define bisemifields which are distinct. Further if the entries are from Z_{n} we see they are not strict interval bisemirings hence cannot be bisemifields.

We can of course define mixed neutrosophic interval bisemirings.

We will give only examples of this structure.
Example 2.2.6: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{20},+\right.$, $\times\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{49},+, \times\right\}$ be a neutrosophic interval bisemiring.

Example 2.2.7: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\}\right.$, $+, x\} \cup\left\{[0, a+b I] \mid a, b \in Z_{25},+, \times\right\}$ be the neutrosophic interval bisemiring.

Example 2.2.8: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in 3 \mathrm{Z}^{+} \cup\right.$ $\{0\},+, \times\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{R}^{+} \cup\{0\},+, \times\right\}$ be a neutrosophic interval bisemiring. V is not a bisemifield.
$\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in 9 \mathrm{Z}^{+} \cup\{0\},+, \times\right\} \cup\{[0$, aI] $\left.\mid \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\},+, x\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a neutrosophic interval bisubsemiring.

Take $T=T_{1} \cup T_{2}=\left\{[0, a] \mid \mathrm{a} \in 3 \mathrm{Z}^{+} \cup\{0\},+, \times\right\} \cup\{[0, \mathrm{aI}] \mid$ $\left.\mathrm{a} \in \mathrm{Q}^{+} \cup\{0\},+, \times\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{T}$ is a quasi neutrosophic interval bisubsemiring of $\mathrm{V} . \mathrm{V}$ is not a Smarandache neutrosophic interval bisemiring.

Example 2.2.9: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}, \times,+\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{45},+, \times\right\}$ be a neutrosophic interval bisemiring.

Example 2.2.10: Let $\mathrm{B}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{7},+, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{5},+, \times\right\}$ be a neutrosophic interval bisemiring of finite order which is not a bisemifield.

We can as in case of brings define the notion of quasi neutrosophic interval bisemirings and neutrosophic quasi interval bisemirings.

We give only examples of them.
Example 2.2.11: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup$ $\left\{\left[0\right.\right.$, a] $\left.\mid \mathrm{a} \in \mathrm{R}^{+} \cup\{0\}\right\}$ be a quasi neutrosophic interval bisemiring. Clearly C is a quasi neutrosophic interval bisemifield. $[0, \mathrm{I}] \cup[0,1]$ is the biidentity element of C with respect of multiplication.

Example 2.2.12: Let $\mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\right.$ $\{0\},+, \times\} \cup\left\{[0, a] \mid a \in \mathrm{Q}^{+} \cup\{0\}, \times,+\right\}$ be a quasi neutrosophic interval bisemiring. C is a quasi neutrosophic interval bisemifield.

Example 2.2.13: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{25},+\right.$, $\times\} \cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\},+, \times\right\}$ be a quasi neutrosophic interval bisemiring but is not a bisemifield. Infact M is a quasi neutrosophic interval quasi bifield.

Example 2.2.14: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{al}] \mid \mathrm{a} \in \mathrm{Z}_{20},+, \mathrm{x}\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\},+, \times\right\}$ be a neutrosophic interval bisemiring of finite order. M is a neutrosophic interval quasi bifield.

Example 2.2.15: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{\mathrm{Z}+\cup\{0\},+, \times\} \cup\{[0$, aI] $\left.I \mathrm{a} \in \mathrm{Z}_{45},+, \times\right\}$ be a quasi neutrosophic quasi interval quasi bifield.

Example 2.2.16: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\mathrm{Z}^{+} \mathrm{I} \cup\{0\},+, \times\right\} \cup\{[0$, aI] $\left.\mid \mathrm{a} \in \mathrm{Z}_{20},+, \times\right\}$ be a neutrosophic quasi interval quasi bifield.

Example 2.2.17: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}^{+} \mathrm{I} \cup\{0\},+, \times\right\} \cup$ $\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{40},+, \times\right\}$ be a quasi neutrosophic quasi interval bisemiring. Clearly V is a quasi neutrosophic quasi interval quasi field.

Example 2.2.18: Let $\left.\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{[0, \mathrm{a}]] \mathrm{a} \in \mathrm{Z}_{20},+, \times\right\} \cup$ $\left\{\mathrm{Z}^{+} \cup\{0\}, \times,+\right\}, \mathrm{V}$ is also quasi neutrosophic quasi interval quasi bifield.

Now having seen examples of interval bisemirings and their generalization, we leave it for the reader to prove related results and properties associated with bisemirings [8].

Example 2.2.19: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{\mathrm{Q}^{+} \cup\{0\}, \times,+\right\} \cup\{[0, \mathrm{a}]$ $\left.\mid \mathrm{a} \in \mathrm{R}^{+} \cup\{0\},+, \times\right\}$ be a quasi neutrosophic quasi interval biring. Infact L is a quasi neutrosophic quasi interval bifield which has subbifields.

Example 2.2.20: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\mathrm{Z}^{+} \cup\{0\},+, \times\right\} \cup\{[0$, aI] $\left.I \mathrm{a} \in \mathrm{Z}_{25},+, \times\right\}$ be a quasi interval quasi neutrosophic quasi bifield.

Now we can construct bistructures using neutrosophic interval rings and semirings.

Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ where L_{1} is a neutrosophic interval ring and L_{2} is a neutrosophic interval semiring. We define $L=L_{1} \cup L_{2}$ to be a neutrosophic interval ring-semiring.

We will give some examples of them.
Example 2.2.21: Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right.$, $\times,+\} \cup\left\{\left[0\right.\right.$, aI] $\left.\mid a \in Z_{20},+, \times\right\}$ be a neutrosophic interval semiring - ring of infinite order. (Here $\mathrm{Z}_{20},+, \times$ is modulo addition and multiplication)

Example 2.2.22: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{40},+\right.$, $\times\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{R}^{+} \cup\{0\},+, \times\right\}$ be a neutrosophic interval ring - semiring.

Example 2.2.23: Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{51},+, \times\right\} \cup$ $\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\},+, \times\right\}$ be the neutrosophic interval ring - semiring.

We can use distributive lattices for semirings as all distributive lattices are semirings.

Example 2.2.24: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{aI}]$, aI in chain lattice $\left.\mathrm{C}_{\mathrm{n}}=\left\{0<\mathrm{a}_{1} \mathrm{I}<\mathrm{a}_{2} \mathrm{I} \ldots<\mathrm{a}_{\mathrm{n}} \mathrm{I}\right\}\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40},+, \times\right\}$ be a neutrosophic interval semiring - ring.

Example 2.2.25: Let

$$
\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{\left.\left\{\begin{array}{cc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right.}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{42},+, \mathrm{x} ; 1 \leq \mathrm{i} \leq 4\right\} \cup
$$

$\left\{\left(\left[0, a_{1} I\right], \ldots,\left[0, a_{10} I\right]\right) \mid a_{i} \in Z^{+} \cup\{0\}, 1 \leq i \leq 10,+, \times\right\}$ be a neutrosophic interval semiring - ring.

Example 2.2.26: Let

$$
\begin{gathered}
\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{R}^{+} \cup\{0\}\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17}\right\}
\end{gathered}
$$

be a neutrosophic interval semiring - ring.

Example 2.2.27: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{$ all 10×10 interval matrices with intervals of the form $\left\{[0\right.$, aI $]$ where $\mathrm{a} \in \mathrm{Z}^{+} \cup$ $\{0\}\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{25}\right\}$ be the neutrosophic interval semiring - ring.

Substructures can be defined in these cases which is a matter of routine. We will give one or two examples before we proceed onto give generalized forms of neutrosophic interval ring - semiring.

Example 2.2.28: Let

$$
\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{R}^{+} \cup\{0\},+, \times\right\} \cup
$$

$\left\{([0, \mathrm{aI}],[0, \mathrm{bI}],[0, \mathrm{cI}],[0, \mathrm{dI}]) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Z}_{240},+, \times\right\}$ be a neutrosophic interval semiring - ring. Consider

$$
\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\{0\},+, \times\right\} \cup
$$

$\left\{([0, \mathrm{aI}], 0,0,[0, \mathrm{bI}]) \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{240},+, \times\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} . \mathrm{W}$ is a neutrosophic interval subsemiring - subring of V .

Example 2.2.29: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right], \ldots,\left[0, \mathrm{a}_{12} \mathrm{I}\right]\right) \mid \mathrm{a}_{\mathrm{i}}\right.$ $\left.\in \mathrm{R}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 12,+, \times\right\} \cup\left\{([0, \mathrm{aI}],[0, \mathrm{bI}]) \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{25},+\right.$, $\times\}$ be a neutrosophic interval semiring - ring. Consider $S=S_{1}$ $\cup S_{2}=\left\{\left(\left[0, a_{1} I\right], 0,0,0,0,0,0,\left[0, a_{8} I\right], 0,0,0,\left[0, a_{12} I\right]\right.\right.$, where $\left.a_{i} \in R^{+} \cup\{0\}, i=1,8,12\right\} \cup\{([0, a I),[0, b I] \mid a, b \in\{0,5,10$, $\left.15,20\} \subseteq \mathrm{Z}_{25}\right\} \subseteq \mathrm{M}_{1} \cup \mathrm{M}_{2}$ is a neutrosophic interval subsemiring - subring of M , which is also a biideal of M . In general all subsemiring-subring of M need not be biideals of M .

For take $T=T_{1} \cup T_{2}=\left\{\left(\left[0, a_{1} I\right], \ldots,\left[0, a_{12} I\right]\right) \mid a_{1}, \ldots, a_{12} \in\right.$ $\left.\mathrm{Z}^{+} \cup\{0\}\right\} \cup\left\{([0, \mathrm{aI}], 0) \mid \mathrm{a} \in \mathrm{Z}_{25}\right\} \subseteq \mathrm{M}_{1} \cup \mathrm{M}_{2}=\mathrm{M}$ is only a neutrosophic interval subsemiring - subring and not a biideal of M.

We can define bizero divisor, biidempotents etc in case of neutrosophic interval semiring - ring. We can also define the notion of Smarandache concepts of these bistructures. All of them are direct and hence left as an exercise to the reader. We
now proceed give examples of quasi bistructure which can be easily understood by the reader.

Example 2.2.30: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40}\right\}$ be the quasi neutrosophic interval semiring ring.

Example 2.2.31: Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2}=\left\{\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right], \ldots,\left[0, \mathrm{a}_{9}\right]\right)\right.$ $\left.\mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{420}, 1 \leq \mathrm{i} \leq 9\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\{0\}\right\}$ be a quasi neutrosophic quasi interval ring - semiring.

Example 2.2.32: Let

$$
\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup
$$

$\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{200}\right\}$ be a quasi neutrosophic interval semiring ring.

Example 2.2.33: Let

$$
\begin{aligned}
\mathrm{T}= & \mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{30}\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\}
\end{aligned}
$$

be a quasi neutrosophic quasi interval ring - semiring.
Example 2.2.34: Let

$$
\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup
$$

\{All 10×10 neutrosophic interval matrices with intervals of the form [0, aI] with $\mathrm{a} \in \mathrm{Z}_{100}$ \} be a neutrosophic quasi interval semiring - ring.

Example 2.2.35: Let

$$
\begin{gathered}
\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\}\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{aIx}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{28}\right\}
\end{gathered}
$$

be a neutrosophic quasi interval semiring - ring.
Now having seen examples of these we can define subbistructure, Smarandache notions on them and study them; which can be thought as a matter of routine. We can also define all properties related with rings and semirings on these bistructures with appropriate modifications. We leave all these task to the reader. We will be using these bistructures to build bivector spaces, bisemivector spaces and vector space semivector space.

Example 2.2.36: Let

$$
\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\{0\}\right\} \cup
$$

$\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{24}\right\}$ be a quasi neutrosophic interval semiring ring. This has no bizero divisors but has quasi bizero divisors given by $0 \cup[0,12 I]=x$ and $y=0 \cup[0,2 I] \in V$, we see $x y=0$ $\cup 0$. Likewise quasi biunits given by $\mathrm{x}=[0,1] \cup[0,23 \mathrm{I}] \in \mathrm{V}$ is such that $\mathrm{x}^{2}=[0,1] \cup[0, I]$. It is clearly $[0,1] \cup[0, I]$ is the identity bielement of V .

We see V has only quasi biidempotents for $\mathrm{x}=[0,1] \cup[0$, $16 \mathrm{I}] \in \mathrm{V}$ such that $\mathrm{x}^{2}=\mathrm{x}$. V has also binilpotents. Consider x $=[0,0] \cup[0,12 I]$ in V . We see $\mathrm{x}^{2}=[0,0] \cup[0,0]$ as $[0,12 \mathrm{I}]$ $[0,12 \mathrm{I}]=[0,144 \mathrm{I}]=[0,0](\bmod 24)$.

Thus we can have notion of quasi Smarandache bizero divisors, Smarandache biidempotents, Smarandache biunits and so on.

2.3 Neutrosophic Interval Bivector Spaces and their Generalization

In this section we for the first time we define the notion of neutrosophic interval bivector spaces, neutrosophic interval bisemivector spaces give their generalization. We also describe some of their properties associated with them.

DEFINITION 2.3.1: Let $V=V_{1} \cup V_{2}$ be a neutrosophic interval commutative bigroup under addition. Let F be a field if V_{i} is a vector space over F for $i=1,2$ then, we define V to be neutrosophic interval bivector space over the field F.

It is important to mention here that $\mathrm{F}=\mathrm{Z}_{\mathrm{p}}, \mathrm{p}$ a prime for we see none of our bigroups can take intervals from $\mathrm{Z}^{+} \cup\{0\}$ or Q^{+} $\cup\{0\}$ or $\mathrm{R}^{+} \cup\{0\}$ as they are not groups under addition. Thus when we speak of neutrosophic interval bivector spaces we only take over the field Z_{p}, p a prime.

We give examples of them.
Example 2.3.1: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{5},+\right\} \cup$

$$
\left.\left.\left\{\begin{array}{l}
{[0, \mathrm{aI}]} \\
{[0, \mathrm{bI}]} \\
{[0, \mathrm{cI}]}
\end{array}\right] \right\rvert\, a, b, c \in \mathrm{Z}_{5},+\right\}
$$

be an additive abelian bigroup. V is a pure neutrosophic interval bigroup over the field $\mathrm{Z}_{5}=\mathrm{F}$.

Example 2.3.2: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{7},+\right\}$ $\cup\left\{([0, \mathrm{aI}],[0, \mathrm{bI}],[0, \mathrm{cI}],[0, \mathrm{dI}]) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Z}_{7},+\right\}$ be a neutrosophic interval bigroup; V is a neutrosophic interval bivector space over the field $\mathrm{F}=\mathrm{Z}_{7}$.

Example 2.3.3: Let

$$
\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\sum_{\mathrm{i}=0}^{21}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{13},+\right\} \cup
$$

$$
\left\{\sum_{\mathrm{i}=0}^{40}[0, \mathrm{aI}] \mathrm{x}^{2 \mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{13},+\right\}
$$

be a neutrosophic interval bigroup. V is a neutrosophic interval bivector space over the field Z_{13}.

Example 2.3.4: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=$ $\left.\left\{\begin{array}{llll}{\left[\begin{array}{ccc}{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} & {[0, \mathrm{cI}]}\end{array}\right.} & {[0, \mathrm{dI}]} \\ {[0, \mathrm{eI}]} & {[0, \mathrm{fI}]} & {[0, \mathrm{gI}]} & {[0, \mathrm{hI}]} \\ {[0, \mathrm{jI}]} & {[0, \mathrm{iI}]} & {[0, \mathrm{kI}]} & {[0, \mathrm{II}]}\end{array}\right] \right\rvert\,$ a,b,c,...,k,le $\left.\mathrm{Z}_{23},+\right\} \cup$ $\left\{([0, \mathrm{aI}],[0, \mathrm{bI}], \ldots,[0, \mathrm{tI}]) \mid \mathrm{a}, \mathrm{b}, \ldots, \mathrm{t} \in \mathrm{Z}_{23},+\right\}$ be a pure neutrosophic interval bivector space over Z_{23}.

Example 2.3.5: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{$ all neutrosophic interval 3×7 matrices with intervals of the form [0, aI] where $\left.\mathrm{a} \in \mathrm{Z}_{43}\right\}$ $\cup\left\{\sum_{i=0}^{70}[0, a+b I] x^{i} \mid a, b \in Z_{43}\right\}$ be a neutrosophic interval bivector space over the field Z_{43}.

Example 2.3.6: Let

$$
M=M_{1} \cup M_{2}=\left\{\sum_{i=0}^{20}[0, a I] x^{i} \mid a \in Z_{23}\right\} \cup
$$

$\left\{([0, \mathrm{al}],[0, \mathrm{bI}],[0, \mathrm{cI}]) \mid \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{23}\right\} ; \mathrm{M}$ is a pure neutrosophic interval bivector space over the field $\mathrm{F}=\mathrm{Z}_{23}$.

Infact bidimension of M over F is $(21 \cup 3)$. The bibasis of M over F is given by $\left\{[0, I],[0, I] x,[0, I] \mathrm{x}^{2}, \ldots,[0, I] \mathrm{x}^{20}\right\} \cup$ $\{([0, I], 0,0),(0,[0, I], 0),(0,0,[0, I])\}$. Take

$$
\mathrm{T}=\left\{\sum_{\mathrm{i}=0}^{10}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{23}\right\} \cup
$$

$\left\{([0, \mathrm{aI}],[0, \mathrm{bI}], 0) \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{23}\right\} \subseteq \mathrm{M} ; \mathrm{T}$ is of bidimension $11 \cup$ 2 and a bibasis for T is given by $\mathrm{B}_{1}=\{[0, I],[0, I] \mathrm{x}, \ldots$, $\left.\left.[0, I] x^{10}\right\} \cup\{[0, I], 0,0),(0,[0, I], 0)\right\}$. Thus T is a
neutrosophic interval subbivector space of bidimension $11 \cup 2$ and B_{1} is a bibasis of T.

It is important to note that the basis of interval bivector spaces are intervals and not elements of $\mathrm{Q}^{+} \cup\{0\}$ or $\mathrm{R}^{+} \cup\{0\}$ or Z_{p}. Infact the base elements do not belong to Z_{p}, which is the case of usual bivector spaces.

Example 2.3.7: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
& \left.\left\{\begin{array}{lll}
{\left[\begin{array}{lll}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5}\right]} & {\left[0, \mathrm{a}_{6}\right]} \\
{\left[0, \mathrm{a}_{7} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{9} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{10} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{11} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{12} \mathrm{I}\right]}
\end{array}\right]}
\end{array}\right\} \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{47}, 1 \leq \mathrm{i} \leq 12\right\} \cup \\
& \left\{\left.\left[\begin{array}{ll}
{\left[0, a_{1} I\right]} & {\left[0, a_{2} I\right]} \\
{\left[0, a_{3} I\right]} & {\left[0, a_{4} I\right]}
\end{array}\right] \right\rvert\, a_{i} \in Z_{47}, 1 \leq i \leq 4\right\}
\end{aligned}
$$

be a pure neutrosophic interval vector space over the field Z_{47}. V is a bidimension $12 \cup 4$ and a interval bibasis for V is given by $\mathrm{B}=$

$$
\begin{gathered}
\left\{\left[\begin{array}{ccc}
{[0, \mathrm{I}]} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & {[0, \mathrm{I}]} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & {[0, \mathrm{I}]} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\right. \\
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
{[0, \mathrm{I}]} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & {[0, \mathrm{I}]} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & {[0, \mathrm{I}]} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],} \\
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
{[0, \mathrm{I}]} & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & {[0, \mathrm{I}]} & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & {[0, \mathrm{I}]} \\
0 & 0 & 0
\end{array}\right],}
\end{gathered}
$$

$$
\begin{aligned}
& \left.\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
{[0, \mathrm{I}]} & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & {[0, \mathrm{I}]} & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & {[0, \mathrm{I}]}
\end{array}\right]\right\} \cup \\
& \left\{\left[\begin{array}{cc}
{[0, \mathrm{I}]} & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & {[0, \mathrm{I}]} \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
{[0, \mathrm{I}]} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & {[0, \mathrm{I}]}
\end{array}\right]\right\} \text { is a bibasis }
\end{aligned}
$$

of V over Z_{47}.

$$
\begin{aligned}
& \text { Let } J=\left\{\left.\left[\begin{array}{ccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & 0 & 0 \\
0 & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & 0 \\
0 & 0 & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\
0 & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & 0
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{47}, 1 \leq \mathrm{i} \leq 4\right\} \\
& \left\{\left.\left[\begin{array}{cc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
0 & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{47}, 1 \leq \mathrm{i} \leq 3\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2},
\end{aligned}
$$

J is pure neutrosophic interval bivector subspace of V over the field Z_{43}.

The bidimension of J is $\{4\} \cup\{3\}$. The interval bibasis of J over Z_{43} is given by

$$
\begin{aligned}
& \mathrm{C}=\mathrm{C}_{1} \cup \mathrm{C}_{2}= \\
& \left\{\left[\begin{array}{ccc}
{[0, \mathrm{I}]} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & {[0, \mathrm{I}]} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & {[0, \mathrm{I}]} \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & {[0, \mathrm{I}]} & 0
\end{array}\right]\right\} \\
& \cup\left\{\left\{\left[\begin{array}{cc}
{[0, \mathrm{I}]} & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{lc}
0 & {[0, \mathrm{I}]} \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & {[0, \mathrm{I}]}
\end{array}\right]\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}\right. \text {, is a bibasis } \\
& \text { of } \mathrm{C} \text { over } \mathrm{Z}_{43} \text {. The bidimension of } \mathrm{C} \text { is }\{4\} \cup\{3\} \text {. Here also } \\
& \text { we see the bibase elements of } \mathrm{C} \text { is only intervals. }
\end{aligned}
$$

Example 2.3.8: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left.\left.\begin{array}{l}
\left\{\left[\begin{array}{ll}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{7} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{8} \mathrm{I}\right]}
\end{array}\right]\right.
\end{array} \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{5}, 1 \leq \mathrm{i} \leq 8\right\} \cup \cup\left[\begin{array}{l}
{\left.\left[\begin{array}{l}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{3}\right]} \\
{\left[0, \mathrm{a}_{4} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{5} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{6} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{7} \mathrm{I}\right]}
\end{array}\right] \right\rvert\,}
\end{array}\right\}
$$

be a pure neutrosophic interval bivector space over Z_{5}.

$$
\left.\begin{array}{c}
P=\left\{\left.\left[\begin{array}{cccc}
0 & {\left[0, a_{1} \mathrm{I}\right]} & 0 & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & 0 & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & 0
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{5}, 1 \leq \mathrm{i} \leq 4\right\} \\
\\
\cup\left\{\left.\begin{array}{l}
{\left[\begin{array}{c}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} \\
0 \\
{\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
0 \\
{\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\
0 \\
{\left[0, \mathrm{a}_{4} \mathrm{I}\right]}
\end{array}\right]}
\end{array} \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{5}, 1 \leq \mathrm{i} \leq 4\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}
\end{array}\right\}
$$

is a pure neutrosophic interval bivector subspace of V over Z_{5}.
The bidimension of V is $\{8\} \cup\{7\}$ and a interval bibasis of V is

$$
\begin{aligned}
& \mathrm{B}= \\
& \left\{\left[\begin{array}{cccc}
{[0, \mathrm{I}]} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & {[0, \mathrm{I}]} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & {[0, \mathrm{I}]} \\
0 & 0 & 0 \\
0
\end{array}\right],\right. \\
& {\left[\begin{array}{cccc}
0 & 0 & 0 & {[0, \mathrm{I}]} \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
{[0, \mathrm{I}]} & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & {[0, \mathrm{I}]} & 0 & 0
\end{array}\right],}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & {[0, \mathrm{I}]} & 0
\end{array}\right],\left[\begin{array}{lllc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & {[0, \mathrm{I}]}
\end{array}\right]\right\} \cup \\
& \left\{\left[\begin{array}{c}
{[0, \mathrm{I}]} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
{[0, \mathrm{I}]} \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
{[0, \mathrm{I}]} \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
{[0, \mathrm{I}]} \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
{[0, \mathrm{I}]} \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
{[0, \mathrm{I}]} \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
{[0, \mathrm{I}]}
\end{array}\right]\right\} .
\end{aligned}
$$

Now an interval bibasis of P is as follows:

$$
\begin{gathered}
\mathrm{C}=\left\{\left[\begin{array}{cccc}
0 & {[0, \mathrm{I}]} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & 0 & 0 & {[0, \mathrm{I}]} \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 \\
{[0, \mathrm{I}]} & 0 & 0 \\
0
\end{array}\right],\right. \\
\left.\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & {[0, \mathrm{I}]} & 0
\end{array}\right]\right\} \cup\left\{\left[\begin{array}{c}
{[0, \mathrm{I}]} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
{[0, \mathrm{I}]} \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
{[0, \mathrm{I}]} \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
{[0, \mathrm{I}]}
\end{array}\right]\right\} \subseteq \mathrm{B} \text { is }
\end{gathered}
$$

an interval bibasis of P over Z_{5}.
Now we can define the notion of interval bilinear transformation of neutrosophic interval bivector spaces defined over the same field F .

Let V and W be any two neutrosophic interval bivector spaces defined over the field F . Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}: \mathrm{V} \rightarrow \mathrm{W}$ that is $T=T_{1} \cup T_{2}: V_{1} \cup V_{2} \rightarrow W_{1} \cup W_{2}$ where $T_{i}: V_{i} \rightarrow W_{i}$ is a linear interval vector transformation. The only condition being on T_{i} in case of neutrosophic interval linear transformation is that $\mathrm{T}([0, \mathrm{aI}]) \rightarrow[0, \mathrm{bI}], \mathrm{b} \neq 0$ that $\mathrm{aI} \mapsto \mathrm{bI}$ a can be equal to b but $\mathrm{b} \neq 0$ for every $\mathrm{a} \neq 0 ; \mathrm{i}=1,2$.

We will give some examples of them.
Example 2.3.9: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{([0, \mathrm{aI}],[0, \mathrm{bI}],[0, \mathrm{cI}]$, $\left.[0, d I]) \mid a, b, c, d \in Z_{23}\right\} \cup\left\{\left.\left[\begin{array}{c}{\left[0, a_{1} I\right]} \\ {\left[0, a_{2} I\right]} \\ {\left[0, a_{3} I\right]}\end{array}\right] \right\rvert\, a_{1}, a_{2}, a_{3} \in Z_{23}\right\}$ and $W=$ $\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{\left.\left\{\begin{array}{ll}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{23}, 1 \leq \mathrm{i} \leq 4\right\} \cup\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right]\right.\right.$, $\left.\left.\left[0, a_{2} I\right], \ldots,\left[0, a_{6} I\right]\right) \mid a_{i} \in Z_{23}, 1 \leq i \leq 6\right\}$ be two pure neutrosophic interval bivector spaces over the field $\mathrm{F}=\mathrm{Z}_{23}$. Define $T=T_{1} \cup T_{2}: V=V_{1} \cup V_{2} \rightarrow W=W_{1} \cup W_{2}$ as follows.
$\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{1}$ and
$\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{2}$ is defined by $\mathrm{T}_{1}([0, \mathrm{aI}],[0, \mathrm{bI}],[0, \mathrm{cI}]$,
$[0, \mathrm{dI}])=\left(\left[\begin{array}{ll}{[0, \mathrm{al}]} & {[0, \mathrm{bI}]} \\ {[0, \mathrm{cI}]} & {[0, \mathrm{dI}]}\end{array}\right]\right)$ and $\mathrm{T}_{2}\left(\left[\begin{array}{c}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{3} \mathrm{I}\right]}\end{array}\right]\right)=\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right], 0\right.$, $\left.\left[0, a_{2} I\right], 0,\left[0, a_{3} I\right], 0\right) . T=T_{1} \cup T_{2}$ is a bilinear transformation of V to W .

We can define bikernel etc as in case of usual vector spaces.
The following theorem is simple and direct and hence left as an exercise to the reader.

ThEOREM 2.3.1 : Let $V=V_{1} \cup V_{2}$ and $W=W_{1} \cup W_{2}$ be neutrosophic interval bivector spaces defined over the same field F. Let T be a linear bitransformation from V into W. Suppose V is finite dimensional then
birank $T+$ binullity $T=\operatorname{dim} V_{1} \cup \operatorname{dim} V_{2}=\operatorname{bidim} V$.
that is $\left(\operatorname{rank} T_{1} \cup \operatorname{rank} T_{2}\right)+\left(\right.$ nullity $T_{1} \cup$ nullity $\left.T_{2}\right)=\operatorname{dim} V_{1}$ $\cup \operatorname{dim} V_{2}=\left(\operatorname{rank} T_{1}+\right.$ nullity $\left.T_{1}\right) \cup\left(\operatorname{rank} T_{2}+\right.$ nullity $\left.T_{2}\right)=$ $\operatorname{dim} V_{l} \cup \operatorname{dim} V_{2}$

Further for any two neutrosophic interval bivector spaces V $=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ defined over the field F if T_{1} and T_{2} are linear bitransformations of V into W then
($\mathrm{T}_{1}+\mathrm{T}_{2}$) is again a linear bitransformation of V into W defined by

$$
\begin{aligned}
& \left(T_{1}+T_{2}\right)(\alpha \cup \beta)=T_{1}(\alpha \cup \beta)+T_{2}(\alpha \cup \beta) \\
& \text { where } T_{1}=T_{1}^{1}(\alpha)+T_{1}^{2}(\beta) \cup T_{1}^{2}(\alpha)+T_{2}^{2}(\beta) .
\end{aligned}
$$

Let V and W be neutrosophic interval bivector spaces defined over the same field F . We say $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$, a linear bitransformation from V to W to be invertible if there exists a linear bitransformation U such that UT is the identity linear bitransformation (bifunction) on V and TU is identity linear bifunction (bitransformation) on W .

In other words if $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}: \mathrm{V}_{1} \cup \mathrm{~T}_{2} \rightarrow \mathrm{~W}_{1} \cup \mathrm{~W}_{2}$ and U $=U_{1} \cup U_{2}: V_{1} \cup V_{2} \rightarrow W_{1} \cup W_{2}$ where $T_{1}: V_{1} \rightarrow W_{1}, T_{2}:$ $\mathrm{V}_{2} \rightarrow \mathrm{~W}_{2}$
$\mathrm{U}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{1}$ and $\mathrm{U}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{2}$ with $\mathrm{T}_{1} \mathrm{U}_{1}$ is the identity function on V_{1} and $T_{2} \mathrm{U}_{2}$ is the identity function on V_{2}. That is $T_{1} U_{1} \cup T_{2} U_{2}$ is the identity bifunction on $V=V_{1} \cup V_{2}$ and similarly $U_{1} T_{1} \cup U_{2} T_{2}$ is the identity bifunction on $W=W_{1} \cup$ W_{2}. We denote U by T^{-1} that is $\mathrm{U}=\mathrm{U}_{1} \cup \mathrm{U}_{2}=\mathrm{T}_{1}^{-1} \cup \mathrm{~T}_{2}^{-1}$.

Thus we say a linear bitransformation $T=T_{1} \cup T_{2}$ is invertible if and only if
(i) T is a one to one that is $\mathrm{T}(\alpha \cup \beta)=\left(\mathrm{T}_{1} \cup \mathrm{~T}_{2}\right)(\alpha \cup$ $\beta)=T_{1}(\alpha) \cup T_{2}(\beta)=T(a \cup b)=\left(T_{1} \cup T_{2}\right)(a \cup b)=$ $\mathrm{T}_{1}(\mathrm{a}) \cup \mathrm{T}_{2}(\mathrm{~b})$ implies $\alpha \cup \beta=\mathrm{a} \cup \mathrm{b}$.
(ii) T is onto, that is the range of $\mathrm{T}\left(=\mathrm{T}_{1} \cup \mathrm{~T}_{2}\right)$ is also $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$. We say $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ that is $\mathrm{T}=\mathrm{T}_{1}$ $\cup \mathrm{T}_{2}: \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ is the linear bitransformation for which $\mathrm{T}^{-1}=\mathrm{T}_{1}^{-1} \cup \mathrm{~T}_{2}^{-1}$ exists that is T is non singular if $\mathrm{T} \alpha=\mathrm{T}_{1}\left(\alpha_{1}\right) \cup \mathrm{T}_{2}\left(\alpha_{2}\right)$ $\left(\alpha=\alpha_{1} \cup \alpha_{2}\right)=0 \cup 0$ implies $\alpha=\alpha_{1} \cup \alpha_{2}=0$ $\cup 0$.

Further if both $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ are finite dimensional pure neutrosophic interval bivector spaces over the field F such that bidim $\mathrm{V}=\operatorname{bidim} \mathrm{W}=\operatorname{dim} \mathrm{V}_{1} \cup \operatorname{dim} \mathrm{~V}_{2}=$ $\operatorname{dim} \mathrm{W}_{1} \cup \operatorname{dim} \mathrm{~W}_{2}$. If $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ is a linear bitransformation from V into W , the following are equivalent.
(i) $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ is biinvertible.
(ii) T is non-bisingular (i.e., T_{1} and T_{2} are non singular).
(iii) $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ is onto that is birange of T is $\mathrm{W}=\mathrm{W}_{1} \cup$ W_{2}.

We see all our neutrosophic interval bivector spaces can only be over the field Z_{p}, of prime characteristic p i.e., over finite fields.

Further all results and properties true in case of vector spaces over finite characteristic fields is true and can be proved with simple and appropriate modifications.

Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}: \mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~W}_{1} \cup \mathrm{~W}_{2}$ be a linear bitransformation of the neutrosophic interval bivector spaces V $=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ into the neutrosophic interval bivector space $\mathrm{W}=\mathrm{W}_{1}$ $\cup \mathrm{W}_{2}$ defined over the field F . If we take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ to be the same as $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ that is $\mathrm{V}=\mathrm{W}$ then we define the linear bitransformation T to be a linear bioperator on V .

We will give some examples of linear bioperators.
Example 2.3.10: Let

$$
\begin{gathered}
\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\begin{array}{l}
\left.\left.\left[\begin{array}{ll}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
{\left[0, a_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{29}, 1 \leq \mathrm{i} \leq 6\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{5}\left[0, \mathrm{a}_{\mathrm{i}}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{29} ; 0 \leq \mathrm{i} \leq 5\right\}
\end{array}\right.
\end{gathered}
$$

be a neutrosophic interval bivector space over the field Z_{29}.
Let $T=T_{1} \cup T_{2}: V=V_{1} \cup V_{2} \rightarrow V=V_{1} \cup V_{2}$ defined by $\mathrm{T}(\mathrm{v})=\mathrm{T}\left(\mathrm{v}_{1} \cup \mathrm{v}_{2}\right)=\mathrm{T}_{1}\left(\mathrm{v}_{1}\right) \cup \mathrm{T}_{2}\left(\mathrm{v}_{2}\right)$
where $\mathrm{T}_{1}\left(\left[\begin{array}{cc}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, a_{6} \mathrm{I}\right]}\end{array}\right]\right)=\left[\begin{array}{cc}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & 0 \\ 0 & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & 0\end{array}\right]$ and

$$
\mathrm{T}_{2}\left(\sum_{\mathrm{i}=0}^{5}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}}\right)=\left[0, \mathrm{a}_{0} \mathrm{I}\right]+\left[0, \mathrm{a}_{2} \mathrm{I}\right] \mathrm{x}^{2}+\left[0, \mathrm{a}_{4} \mathrm{I}\right] \mathrm{x}^{4}
$$

is a linear bioperator on $V=V_{1} \cup V_{2}$. We can derive almost all properties regarding bioperators with appropriate modifications. We can define the notion of characteristic bivalue and characteristic bivector. Here it is pertinent to mention that the characteristic value c will be of the form [0, aI] where $\mathrm{a} \in \mathrm{Z}_{\mathrm{p}}$ the field over which $V=V_{1} \cup V_{2}$ is defined.

For consider the neutrosophic interval bimatrix;

$$
\begin{aligned}
S= & S_{1} \cup S_{2} \\
& =\left[\begin{array}{ccc}
{[0,2 \mathrm{I}]} & 0 & {[0, \mathrm{I}]} \\
{[0,7 \mathrm{I}]} & {[0, \mathrm{I}]} & 0 \\
0 & 0 & {[0,5 \mathrm{I}]}
\end{array}\right] \cup\left[\begin{array}{cc}
{[0, \mathrm{I}]} & 0 \\
{[0,2 \mathrm{I}]} & {[0,4 \mathrm{I}]}
\end{array}\right]
\end{aligned}
$$

if we want to find the characteristic bivalues of S. Consider

$$
\begin{aligned}
& \left|S-\lambda I_{n \times n}\right|=\left|S_{1}-\lambda_{1} I_{3 \times 3}\right| \cup\left|S_{2}-\lambda_{2} I_{2 \times 2}\right| \\
& \left|\left[\begin{array}{ccc}
{[0,2 \mathrm{I}]} & 0 & {[0, \mathrm{I}]} \\
{[0,7 \mathrm{I}]} & {[0, \mathrm{I}]} & 0 \\
0 & 0 & {[0,5 \mathrm{I}]}
\end{array}\right]-\left[\begin{array}{ccc}
\lambda_{1}[0, \mathrm{I}] & 0 & 0 \\
0 & \lambda_{1}[0, \mathrm{I}] & 0 \\
0 & 0 & \lambda_{1}[0, \mathrm{I}]
\end{array}\right]\right| \cup \\
& \left|\left[\begin{array}{cc}
{[0, \mathrm{I}]} & 0 \\
{[0,2 \mathrm{I}]} & {[0,4 \mathrm{I}]}
\end{array}\right]-\left[\begin{array}{cc}
\lambda_{2}[0, \mathrm{I}] & 0 \\
0 & \lambda_{2}[0, \mathrm{I}]
\end{array}\right]\right| \\
& =\left|\begin{array}{ccc}
{\left[0,\left(2-\lambda_{1}\right) \mathrm{I}\right]} & 0 & {[0, \mathrm{I}]} \\
{[0,7 \mathrm{I}]} & {\left[0,\left(1-\lambda_{1}\right) \mathrm{I}\right]} & 0 \\
0 & 0 & {\left[0,\left(5-\lambda_{1}\right) \mathrm{I}\right]}
\end{array}\right| \cup \\
& \left|\begin{array}{cc}
{\left[0,\left(1-\lambda_{2}\right) I\right]} & 0 \\
{[0,2 \mathrm{I}]} & {\left[0,\left(4-\lambda_{2}\right) I\right]}
\end{array}\right| \\
& =\left\{\left[0,\left(2-\lambda_{1}\right) I\right]\left|\begin{array}{cc}
{\left[0,\left(1-\lambda_{1}\right) I\right]} & 0 \\
0 & {\left[0,\left(5-\lambda_{1}\right) I\right]}
\end{array}\right|+\right. \\
& \left.[0, \mathrm{I}] \left\lvert\, \begin{array}{cc}
{[0,7 \mathrm{I}]} & {\left[0,\left(1-\lambda_{1}\right) \mathrm{I}\right]} \\
0 & 0
\end{array}\right.\right\} \cup\left[\left[0,\left(1-\lambda_{2}\right) \mathrm{I}\right] \times\left[0,\left(4-\lambda_{2}\right) \mathrm{I}\right] \mid\right.
\end{aligned}
$$

$=\left[0,\left(2-\lambda_{1}\right) I\right]\left[0,\left(1-\lambda_{1}\right) I\right]\left[0,\left(5-\lambda_{1}\right) I\right] \cup\left[0,\left(1-\lambda_{2}\right)\left(4-\lambda_{2}\right) I\right]$
$=\left[0,\left(2-\lambda_{1}\right)\left(1-\lambda_{1}\right)\left(5-\lambda_{1}\right) I\right] \cup\left[0,\left(1-\lambda_{2}\right)\left(4-\lambda_{2}\right) I\right]$
$=\{0\} \cup\{0\}$ gives the biroots as
$\{[0,2 \mathrm{I}],[0, \mathrm{I}],[0,5 \mathrm{I}]\} \cup\{[0, \mathrm{I}],[0,4 \mathrm{I}]\}$.
So the biroots are
$[0,2 \mathrm{I}] \cup[0, \mathrm{I}],[0,2 \mathrm{I}] \cup[0,4 \mathrm{I}],[0, \mathrm{I}] \cup[0, \mathrm{I}],[0, \mathrm{I}] \cup$ $[0,4 \mathrm{I}],[0,5 \mathrm{I}] \cup[0, \mathrm{I}]$ and $[0,5 \mathrm{I}] \cup[0,4 \mathrm{I}]$.

Thus whenever the biequations are solvable over the finite characteristic field Z_{p} (p a prime) we have the bicharacteristic values associated with the neutrosophic interval bimatrix and the bisolution or the biroot is not in Z_{p} but in the set $\{[0, \mathrm{aI}]$ | a $\left.\in Z_{p}\right\}$; if we assume the bispace is pure neutrosophic otherwise in the set $\left\{[0, a+b I] \mid a, b \in Z_{p}\right\}$; if we assume the bispace is just neutrosophic. If the biroot exists then alone we get the characteristic bivalues. Interested reader can study in this direction. We can derive atmost all results in this direction with simple and appropriate modifications.

If $T: V=V_{1} \cup V_{2} \rightarrow V_{1} \cup V_{2}=V$ is a linear bioperator on $\mathrm{V} ; \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ a neutrosophic interval bivector space over the field $\mathrm{F}=\mathrm{Z}_{\mathrm{p}}$. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \subseteq \mathrm{~V}_{1} \cup \mathrm{~V}_{2}$ be a neutrosophic interval bivector subspace of V . We say W is biinvariant under the bioperator $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ on V if $\mathrm{T}(\mathrm{W}) \subseteq \mathrm{V}$ that is $\mathrm{T}_{1}\left(\mathrm{~W}_{1}\right) \subseteq$ V_{1} and $\mathrm{T}_{2}\left(\mathrm{~W}_{2}\right) \subseteq \mathrm{V}_{2}$.

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a neutrosophic interval bivector space over the field $\mathrm{F}=\mathrm{Z}_{\mathrm{p}}$. Let $\mathrm{W}^{1}, \mathrm{~W}^{2}, \ldots, \mathrm{~W}^{\mathrm{k}}$ be neutrosophic interval bivector subspaces of V over the field $\mathrm{F}=\mathrm{Z}_{\mathrm{p}}$. We say $\mathrm{W}^{1}, \mathrm{~W}^{2}, \ldots, \mathrm{~W}^{\mathrm{k}}$ are biindependent if
$\alpha^{1}+\alpha^{2}+\ldots+\alpha^{k}=0 ; \quad \alpha^{i} \in W^{i}$ that is $\alpha^{i}=$ $\alpha_{1}^{i} \cup \alpha_{2}^{i} \in \mathrm{~W}_{1}^{\mathrm{i}} \cup \mathrm{W}_{2}^{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{k}$ implies $\alpha^{\mathrm{i}}=0 \cup 0$ that is $\alpha_{1}^{\mathrm{i}}=0$ and $\alpha_{2}^{i}=0$. Here $\mathrm{W}^{\mathrm{i}}=\mathrm{W}_{1}^{\mathrm{i}} \cup \mathrm{W}_{2}^{\mathrm{i}} ; \mathrm{i}=1,2, \ldots, \mathrm{k}$.

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a finite dimensional neutrosophic interval bivector space over the field $\mathrm{F}=\mathrm{Z}_{\mathrm{p}}$. Let $\mathrm{W}^{1}, \mathrm{~W}^{2}, \ldots, \mathrm{~W}^{\mathrm{k}}$ $\left(\mathrm{W}^{\mathrm{i}}=\mathrm{W}_{1}^{\mathrm{i}} \cup \mathrm{W}_{2}^{\mathrm{i}} ; \mathrm{i}=1,2, \ldots, \mathrm{k}\right.$) be bisubspaces of V and let $\mathrm{W}=$ $\mathrm{W}^{1}+\ldots+\mathrm{W}^{\mathrm{k}}$ that is $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\mathrm{W}_{1}^{1} \cup \mathrm{~W}_{2}^{1}+\ldots+$
$\mathrm{W}_{1}^{\mathrm{k}} \cup \mathrm{W}_{2}^{\mathrm{k}}=\left(\mathrm{W}_{1}^{1}+\ldots+\mathrm{W}_{1}^{\mathrm{k}}\right) \cup\left(\mathrm{W}_{2}^{1}+\ldots+\mathrm{W}_{2}^{\mathrm{k}}\right)$. Then we have the following three conditions to be equivalent.
(i) $\mathrm{W}^{1}, \quad \mathrm{~W}^{2}, \ldots, \quad \mathrm{~W}^{\mathrm{k}}$ are biindependent; that is $\mathrm{W}_{1}^{1}, \mathrm{~W}_{1}^{2}, \ldots, \mathrm{~W}_{1}^{\mathrm{k}}$ are independent and $\mathrm{W}_{2}^{1}, \mathrm{~W}_{2}^{2}, \ldots, \mathrm{~W}_{2}^{\mathrm{k}}$ are independent.
(ii) For each $\mathrm{j}, 2 \leq \mathrm{j} \leq \mathrm{k}$ we have $\mathrm{W}^{\mathrm{j}} \cap\left(\mathrm{W}^{1}+\ldots+\mathrm{W}^{\mathrm{j}-1}\right)=$ $\{0\}$ that is $\mathrm{W}_{1}^{\mathrm{j}} \cap\left(\mathrm{W}_{1}^{1}+\ldots+\mathrm{W}_{1}^{\mathrm{j}-1}\right)=\{0\}$ and $W_{2}^{j} \cap\left(W_{2}^{1}+\ldots+W_{2}^{j-1}\right)=\{0\}$
(iii) If β^{i} is a bibasis of $W^{i}, 1 \leq i \leq k$ then the bisequence B $=\left(\beta^{1}, \ldots, \beta^{\mathrm{k}}\right)$ is a basis for $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$.

Here $\beta^{i}=\beta_{1}^{i} \cup \beta_{2}^{i}$ where β_{t}^{i} is a basis of $W_{t}^{i} ; t=1,2$.
Thus we say $\mathrm{W}=\mathrm{W}^{1}+\ldots+\mathrm{W}^{\mathrm{k}}$ is the bidirect sum or W is a bidirect sum of $W^{1}, W^{2}, \ldots, W^{k}$ that is W_{1} is the direct sum of $\mathrm{W}_{1}^{1}, \ldots, \mathrm{~W}_{1}^{\mathrm{k}}$, thus
$\mathrm{W}_{1}=\mathrm{W}_{1}^{1} \oplus \ldots \oplus \mathrm{~W}_{1}^{\mathrm{k}}$ and W_{2} is the direct sum of
$\mathrm{W}_{2}^{1}, \ldots, \mathrm{~W}_{2}^{\mathrm{k}}$ and $\mathrm{W}_{2}=\mathrm{W}_{2}^{1} \oplus \ldots \oplus \mathrm{~W}_{2}^{\mathrm{k}}$.
If $\mathrm{W}=\mathrm{V}$ then we say V is the bidirect sum of $\mathrm{W}_{1}, \ldots, \mathrm{~W}_{\mathrm{k}}$ and each $\mathrm{V}_{1}=\mathrm{W}_{1}^{1} \oplus \ldots \oplus \mathrm{~W}_{1}^{\mathrm{k}}$ and $\mathrm{V}_{2}=\mathrm{W}_{2}^{1} \oplus \ldots \oplus \mathrm{~W}_{2}^{\mathrm{k}}$.

Now we will proceed onto define the notion of biprojection. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a neutrosophic interval bivector space, a biprojection of V is a linear bioperator $\mathrm{E}=\mathrm{E}_{1} \cup \mathrm{E}_{2}$ on V such that $E^{2}=E_{1}^{2} \cup E_{2}^{2}=E_{1} \cup E_{2}$. We have $E: V \rightarrow V$ that is $E=E_{1}$ $\cup \mathrm{E}_{2}: V=V_{1} \cup V_{2} \rightarrow V=V_{1} \cup V_{2}$ is a biprojection, with $R=$ $R_{1} \cup R_{2}$ is the birange of E and $B=N_{1} \cup N_{2}$ is the binull space of E.

Thus $\beta=\beta_{1} \cup \beta_{2}$ is in $R_{1} \cup R_{2}$ if and only if $E \beta=$ $\mathrm{E}_{1} \beta_{1} \cup \mathrm{E}_{2} \beta_{2}=\beta_{1} \cup \beta_{2}=\beta$.

Conversely if $\beta=\beta_{1} \cup \beta_{2}=E \beta=E_{1} \beta_{1} \cup E_{2} \beta_{2}$ then β is in the birange of E .

Further $\mathrm{V}=\mathrm{R} \oplus \mathrm{N}$, that is $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{R}_{1} \oplus \mathrm{~N}_{1} \cup \mathrm{R}_{2} \oplus$ N_{2}.

We can write every bivector as

$$
\alpha=\alpha_{1} \cup \alpha_{2}=\mathrm{E}_{1} \alpha_{1}+\left(\alpha_{1}-\mathrm{E}_{1} \alpha_{1}\right) \cup \mathrm{E}_{2} \alpha_{2}+\left(\alpha_{2}-\mathrm{E}_{2} \alpha_{2}\right)
$$

We can derive all the results related with projections.
Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a neutrosophic interval bivector space.
$\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{W}^{1} \oplus \ldots \oplus \mathrm{~W}^{\mathrm{k}}$
$=\mathrm{W}_{1}^{1} \oplus \ldots \oplus \mathrm{~W}_{1}^{\mathrm{k}} \cup \mathrm{W}_{2}^{1} \oplus \ldots \oplus \mathrm{~W}_{2}^{\mathrm{k}}$.
For each j we define $E^{j}=E_{1}^{j} \cup E_{2}^{j}$ on $V=V_{1} \cup V_{2}$ a bioperator on V .

For every $\alpha^{j}=\alpha_{1}^{j} \cup \alpha_{2}^{j}$ in $W^{j}=W_{1}^{j} \cup W_{2}^{j}$ we have $E^{j} \alpha^{j}$ $=E_{1}^{j} \alpha_{1}^{j} \cup E_{2}^{j} \alpha_{2}^{j}=\alpha_{1}^{j} \cup \alpha_{2}^{j}$. Then E^{j} is a well defined rule. Further $\mathrm{E}_{\mathrm{j}} \alpha^{j}=0 \cup 0$ simply means $\alpha^{j}=\alpha_{1}^{j} \cup \alpha_{2}^{j}=0 \cup 0$.

For each $\alpha \in V=V_{1} \cup V_{2}$ we have $\alpha=E^{1} \alpha+\ldots+E^{k} \alpha$
$=\mathrm{E}_{1}^{1} \alpha_{1}^{1} \cup \mathrm{E}_{2}^{1} \alpha_{2}^{1}+\ldots+\mathrm{E}_{1}^{\mathrm{k}} \alpha_{1}^{\mathrm{k}} \cup \mathrm{E}_{2}^{\mathrm{k}} \alpha_{2}^{\mathrm{k}}$.
We have $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2}$.

$$
=\left(\mathrm{E}_{1}^{1}+\ldots+\mathrm{E}_{1}^{\mathrm{k}}\right) \cup\left(\mathrm{E}_{2}^{1}+\ldots+\mathrm{E}_{2}^{\mathrm{k}}\right) .
$$

If $\mathrm{i} \neq \mathrm{j}$ we have $\mathrm{E}^{\mathrm{i}} . \mathrm{E}^{\mathrm{j}}=0 \cup 0$ that is $\mathrm{E}_{1}^{\mathrm{i}} \mathrm{E}_{1}^{j} \cup \mathrm{E}_{2}^{\mathrm{i}} \mathrm{E}_{2}^{\mathrm{j}}=0 \cup 0$.
Thus the birange of E^{j} is the bisubspace $\mathrm{W}^{\mathrm{j}}=\mathrm{W}_{1}^{\mathrm{j}} \cup \mathrm{W}_{2}^{\mathrm{j}}$, which is in the null space of E^{i}.

Theorem 2.3.2: Let $V=V_{1} \cup V_{2}$ be a neutrosophic interval bivector space. Suppose $V=W^{l} \oplus \ldots \oplus W^{k}$.

$$
=V_{1} \cup V_{2}=W_{1}^{l} \cup W_{2}^{I} \oplus \ldots \oplus W_{1}^{k} \cup W_{2}^{k}
$$

$=\left(W_{l}^{l} \oplus \ldots \oplus W_{l}^{k}\right) \cup\left(W_{2}^{l} \oplus \ldots \oplus W_{2}^{k}\right)$ then there exists k linear bioperators $E^{l}, E^{2}, \ldots, E^{k}$ that is $E_{l}^{l} \cup E_{2}^{l}, E_{l}^{2} \cup E_{2}^{2}, \ldots, E_{l}^{k} \cup E_{2}^{k}$ on $V=V_{I} \cup V_{2}$ such that
(i) Each $E^{i}=E_{l}^{i} \cup E_{2}^{i}$ is a biprojection $\left(\left(E^{i}\right)^{2}=E^{i}\right)$; $1 \leq i \leq k$.
(ii) $E^{i} E^{j}=(0)$ if $i \neq j, l \leq j, l \leq i, j \leq k$.
(iii) $I=I_{I} \cup I_{2}=E^{l}+\ldots+E^{k}=E_{I}^{l} \cup E_{2}^{l}+\ldots+E_{l}^{k} \cup E_{2}^{k}$ $=\left(E_{l}^{l}+\ldots+E_{l}^{k}\right) \cup\left(E_{2}^{l}+\ldots+E_{2}^{k}\right)$.
(iv) The birange of $E^{i}=E_{l}^{i} \cup E_{2}^{i}$ is $W^{i}=W_{l}^{i} \cup W_{2}^{i}$; that is birange of E_{t}^{i} is $W_{t}^{i} ; t=1,2$.

Conversely if $E^{l}, E^{2}, \ldots, E^{k}$ are linear bioperators on $V=$ $V_{1} \cup V_{2}$ which satisfy conditions (i), (ii) and (iii) and if W_{i} is the birange of E^{i} then $V=W^{l} \oplus \ldots \oplus W^{k}$ that is $V=V_{1} \cup V_{2}=$ $\left(W_{1}^{1} \oplus \ldots \oplus W_{1}^{k}\right) \cup\left(W_{2}^{1} \oplus \ldots \oplus W_{2}^{k}\right)$.

The proof can be obtained as a matter of routine with appropriate modifications.

Note under the conditions of the above theorem if $V=V_{1} \cup$ V_{2} the neutrosophic interval bivector space where $\mathrm{V}=\mathrm{W}^{1} \oplus \ldots$ $\oplus \mathrm{W}^{\mathrm{k}}=\left(\mathrm{W}_{1}^{1} \oplus \ldots \oplus \mathrm{~W}_{1}^{\mathrm{k}}\right) \cup\left(\mathrm{W}_{2}^{1} \oplus \ldots \oplus \mathrm{~W}_{2}^{\mathrm{k}}\right)$ and for $\mathrm{E}^{1}, \mathrm{E}^{2}, \ldots$, E^{k} given as in the above theorem, the necessary and sufficient condition that each bisubspace W^{i} be invariant under T is that T $=T_{1} \cup T_{2}$ commute with each of the projections $E^{j}=E_{1}^{j} \cup E_{2}^{j}$ that is $T E^{j}=E^{j} T=T_{1} E_{1}^{j} \cup T_{2} E_{2}^{j}=E_{1}^{j} T_{1} \cup E_{2}^{j} T_{2}$ for $j=1,2$, \ldots, k. This can be easily verified.

If $T=T_{1} \cup T_{2}$ is a linear bioperator on a finite dimensional bispace $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{V}$ a neutrosophic interval bivector space then $\operatorname{Hom}_{\mathrm{F}}(\mathrm{V}, \mathrm{V})=\{\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}\}$.

Study the algebraic structure enjoyed by $\operatorname{Hom}_{\mathrm{F}}(\mathrm{V}, \mathrm{V})$.
Now we can proceed onto define the notion of neutrosophic interval linear bialgebra.

DEFINITION 2.3.2: Let $V=V_{l} \cup V_{2}$ be a neutrosophic interval bivector space over the field F. If V is such that V_{i} closed with respect to product and the product is associative then we define V to be neutrosophic interval linear bialgebra over the field $F=$ Z_{p} (p a prime).

We give some examples of them.

Example 2.3.11: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{([0, \mathrm{aI}][0, \mathrm{bI}][0, \mathrm{cI}]) \mid \mathrm{a}$, $\left.b, c \in Z_{7}\right\} \cup\left\{\left.\left[\begin{array}{ll}{[0, a I]} & {[0, b I]} \\ {[0, \mathrm{cI}]} & {[0, \mathrm{dI}]}\end{array}\right] \right\rvert\, a, b, c, d \in \mathrm{Z}_{7}\right\}$ be a pure neutrosophic interval linear bialgebra over the field Z_{7}.

Example 2.3.12: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{23}\right\} \cup$ $\left\{([0, \mathrm{aI}],[0, \mathrm{bI}],[0, \mathrm{cI}]) \mid \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{23}\right\}$ be a pure neutrosophic interval linear bialgebra over the field Z_{23}.

We can as in case of linear bialgebra derive all the properties with appropriate changes or modifications. This work is left as exercise to the reader.

Now we can also define the notion of Special neutrosophic interval bivector space as follows:

DEFINITION 2.3.3: Let $V=V_{1} \cup V_{2}$ be an additive abelian neutrosophic interval bigroup. $F=F_{1} \cup F_{2}$ be a bifield (neutrosophic or otherwise). If V_{i} is a neutrosophic interval vector space over $F_{i} ; i=1,2$, then we define V to be a special neutrosophic interval bivector space over the bifield F.

We will give examples of them.
Example 2.3.13: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{23}\right\} \cup\{[0$, aI] $\left.I \mathrm{a} \in \mathrm{Z}_{43}\right\}$ be a special neutrosophic interval bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{23} \cup \mathrm{Z}_{43}$.

Example 2.3.14: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{([0, \mathrm{al}],[0, \mathrm{bI}],[0, \mathrm{cI}]) \mid$
$\left.a, b, c \in Z_{7}\right\} \cup\left\{\left(\left.\left[\begin{array}{l}{\left[0, a_{1} I\right]} \\ {\left[0, a_{2} I\right]} \\ {\left[0, a_{3}\right]} \\ {\left[0, a_{4}\right]} \\ {\left[0, a_{5}\right]} \\ {\left[0, a_{6}\right]}\end{array}\right] \right\rvert\, a_{i} \in Z_{5}, 1 \leq i \leq 6\right\}\right.$ be a special neutrosophic interval bivector space over the bifield $\mathrm{Z}_{7} \cup \mathrm{Z}_{5}=\mathrm{F}$.

Example 2.3.15: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{53}\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{47}\right\}$ be a special neutrosophic interval bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{53} \cup \mathrm{Z}_{47}$.

We can define bisubstructures, bibasis, bidimension as in case of neutrosophic interval bivector spaces.

We give one or two examples before we proceed to define other new structures.

Examples 2.3.16: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{([0, \mathrm{aI}],[0, \mathrm{bI}],[0, \mathrm{cI}]) \mid$ $\left.\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{53}\right\} \cup\left\{\left.\left(\begin{array}{cc}{[\mathrm{O}, \mathrm{aI}]} & {[0, \mathrm{eI}]} \\ {[0, \mathrm{bI}]} & {[0, \mathrm{fI}]} \\ {[0, \mathrm{cI}]} & {[0, \mathrm{gI}]} \\ {[0, \mathrm{dI}]} & {[0, \mathrm{hI}]}\end{array}\right] \right\rvert\,\right.$ a,b,c,d,e,f,g,h=Z23$\}$ be a special neutrosophic interval bivector space over the bifield $\mathrm{F}=$ $\mathrm{Z}_{53} \cup \mathrm{Z}_{23}$.

Consider $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{([0, \mathrm{aI}], 0,0) \mid \mathrm{a} \in \mathrm{Z}_{53}\right\} \cup$

$$
\left\{\left.\left[\begin{array}{cc}
0 & {[0, \mathrm{aI}]} \\
{[0, \mathrm{bI}]} & 0 \\
& {[0, \mathrm{cI}]} \\
{[0, \mathrm{dI}]} & 0
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{23}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}
$$

M is a special neutrosophic interval bivector subspace of V over the bifield $\mathrm{F}=\mathrm{Z}_{53} \cup \mathrm{Z}_{23}$.

Now B $=\{([0, I], 0,0),(0,[0, I], 0) .(0,0,[0, I])\} \cup$

$$
\begin{aligned}
& \left\{\left[\begin{array}{cc}
{[0, \mathrm{I}]} & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & {[0, \mathrm{I}]} \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
{[0, \mathrm{I}]} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & {[0, \mathrm{I}]} \\
0 & 0 \\
0 & 0
\end{array}\right],\right. \\
& \left.\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
{[0, \mathrm{I}]} & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & {[0, \mathrm{I}]} \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
{[0, \mathrm{I}]} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & 0] \\
0 & 0 \\
0 & {[0, \mathrm{I}]}
\end{array}\right]\right\}=
\end{aligned}
$$

$B_{1} \cup B_{2}$ is a special bibasis of V over the bifield $F=Z_{53} \cup Z_{23}$. Clearly the special bidimension of V over $\mathrm{F}=\mathrm{Z}_{53} \cup \mathrm{Z}_{23}$ is $\{3\}$ $\cup\{8\}$.

We can define special linear bitransformation of two special bivector spaces only if they are defined over the same bifield, otherwise special linear bitransformation cannot be defined.

We will give an example of it.

Example 2.3.17: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{([0, \mathrm{al}],[0, \mathrm{bl}],[0, \mathrm{cl}]$, $\left.[0, \mathrm{dI}]) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Z}_{7}\right\} \cup$
$\left.\left.\left\{\begin{array}{ccc}{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} & {[0, \mathrm{cI}]} \\ {[0, \mathrm{dI}]} & {[0, \mathrm{eI}]} & {[0, \mathrm{nI}]} \\ {[0, \mathrm{mI}]} & {[0, \mathrm{pI}]} & {[0, \mathrm{qI}]} \\ {[0, \mathrm{sI}]} & {[0, \mathrm{tI}]} & {[0, \mathrm{rI}]}\end{array}\right] \right\rvert\, a, b, c, \ldots, t, r \in \mathrm{Z}_{29}\right\}$ be a special neutrosophic interval bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{7} \cup$ Z_{29}. Take $\left.\left.\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{\begin{array}{ll}{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} \\ {[0, \mathrm{cI}]} & {[0, \mathrm{dI}]}\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Z}_{7}\right\} \cup$ $\left.\left\{\begin{array}{llllll}{\left[\begin{array}{llll}{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} & {[0, \mathrm{dI}]} & {[0, \mathrm{cI}]}\end{array}\right.} & {[0, \mathrm{rI}]} & {[0, \mathrm{pI}]} \\ {[0, \mathrm{eI}]} & {[0, \mathrm{tI}]} & {[0, \mathrm{qI}]} & {[0, \mathrm{mI}]} & {[0, \mathrm{nI}]} & {[0, \mathrm{sI}]}\end{array}\right] \right\rvert\,$ a, $\left., \mathrm{c}, \mathrm{c}, \ldots, \mathrm{t}, \mathrm{r} \in \mathrm{Z}_{29}\right\}$
be a special neutrosophic interval bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{7} \cup \mathrm{Z}_{29}$. We can define a special linear bitransformation of V into W .

Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2} ; \mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~W}_{1} \cup \mathrm{~W}_{2}$ where $\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{1}$ and $\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{2}$ given by

$$
\begin{aligned}
& \mathrm{T}_{1}([0, \mathrm{aI}],[0, \mathrm{bI}],[0, \mathrm{cI}],[0, \mathrm{dI}])=\left[\begin{array}{ll}
{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} \\
{[0, \mathrm{cI}]} & {[0, \mathrm{dI}]}
\end{array}\right] \text { and } \\
& \quad \mathrm{T}_{2}\left(\left[\begin{array}{ccc}
{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} & {[0, \mathrm{cI}]} \\
{[0, \mathrm{dI}]} & {[0, \mathrm{eI}]} & {[0, \mathrm{nI}]} \\
{[0, \mathrm{mI}]} & {[0, \mathrm{pI}]} & {[0, \mathrm{qI}]} \\
{[0, \mathrm{sI}]} & {[0, \mathrm{tI}]} & {[0, \mathrm{rI}]}
\end{array}\right]\right)=
\end{aligned}
$$

$$
\left.=\left(\begin{array}{cccccc}
{\left[\begin{array}{ccccc}
{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} & {[0, \mathrm{dI}]} & {[0, \mathrm{cI}]} & {[0, \mathrm{rI}]}
\end{array}[0, \mathrm{pI}]\right.} \\
{[0, \mathrm{eI}]} & {[0, \mathrm{tI}]} & {[0, \mathrm{qI}]} & {[0, \mathrm{mI}]} & {[0, \mathrm{nI}]} & {[0, \mathrm{sI}]}
\end{array}\right]\right)
$$

T is a special linear bioperator from V to W .
Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$, where V is a space of special neutrosophic bivector space defined over the bifield. If T is a
function such that $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ and $\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{1}$ and $\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow$ V_{2} where both T_{1} and T_{2} are linear transformations (operators) then we define T to be a special linear bioperator on V .

Define $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}: \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ where $\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{1}$ and $\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ given by
$\mathrm{T}_{1}(([0, \mathrm{aI}],[0, \mathrm{bI}],[0, \mathrm{cI}],[0, \mathrm{dI}]))=([0, \mathrm{aI}], 0,[0, \mathrm{cI}], 0)$ and

$$
\begin{aligned}
& \mathrm{T}_{2}\left(\left[\begin{array}{ccc}
{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} & {[0, \mathrm{cI}]} \\
{[0, \mathrm{eI}]} & {[0, \mathrm{fI}]} & {[0, \mathrm{sI}]} \\
{[0, \mathrm{mI}]} & {[0, \mathrm{nI}]} & {[0, \mathrm{pI}]} \\
{[0, \mathrm{tI}]} & {[0, \mathrm{rI}]} & {[0, \mathrm{sI}]}
\end{array}\right]\right) \\
& \left(\left[\begin{array}{ccc}
\left.\left[\begin{array}{ccc}
{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} & {[0, \mathrm{cI}]} \\
0 & {[0, \mathrm{dI}]} & {[0, \mathrm{fI}]} \\
0 & 0 & {[0, \mathrm{sI}]} \\
0 & 0 & {[0, \mathrm{tI}]}
\end{array}\right]\right)
\end{array}=.\right.\right.
\end{aligned}
$$

T is a special linear bioperator on $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$.
All properties associated with usual bivector spaces / vector spaces can be derived for special neutrosophic bivector spaces with appropriate modifications.

We give examples of special neutrosophic interval bivector spaces.

Example 2.3.18: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{([0, \mathrm{a}+\mathrm{bI}],[0, \mathrm{c}+\mathrm{dI}][0$, $\left.\mathrm{e}+\mathrm{fI}]) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f} \in \mathrm{Z}_{7}\right\} \cup$

$$
\left\{\left.\left[\begin{array}{c}
{\left[0, a_{1}+b_{1} \mathrm{I}\right]} \\
{\left[0, a_{2}+b_{2} \mathrm{I}\right]} \\
{\left[0, a_{3}+\mathrm{b}_{3} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{4}+\mathrm{b}_{4} \mathrm{I}\right]} \\
\vdots \\
{\left[0, \mathrm{a}_{10}+\mathrm{b}_{10} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}} \in \mathrm{Z}_{11} ; 1 \leq \mathrm{i} \leq 10\right\}
$$

be a special neutrosophic interval bivector space defined over the bifield $\mathrm{F}=\mathrm{Z}_{7} \cup \mathrm{Z}_{11}$.

Thus V has special pure neutrosophic interval bisubspace as well as special interval vector bisubspace given by $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}$ $=\left\{([0, \mathrm{aI}], \quad[0, \mathrm{bI}][0, \mathrm{cI}])\right.$ l a, b, c $\left.\in \mathrm{Z}_{7}\right\} \cup$ $\left\{\left.\left[\begin{array}{c}{\left[0, a_{1} I\right]} \\ {\left[0, a_{2} I\right]} \\ \vdots \\ {\left[0, a_{10} I\right]}\end{array}\right] \right\rvert\, a_{i} \in Z_{11} ; 1 \leq i \leq 10\right\} \subseteq V_{1} \cup V_{2}$ is a special pure neutrosophic interval bisubspace of V .

The bidimension of P is $\{3\} \cup\{10\}$.
Further $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\{([0, \mathrm{aI}],[0, \mathrm{bI}],[0, \mathrm{cI}]) \mid \mathrm{a}, \mathrm{b}, \mathrm{c} \in$ $\left.\mathrm{Z}_{7}\right\} \cup\left\{\left[\begin{array}{c}{\left[\begin{array}{c}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} \\ 0 \\ {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ 0 \\ {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\ 0 \\ {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} \\ 0 \\ {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} \\ 0\end{array}\right]}\end{array}\right] \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{11} ; 1 \leq \mathrm{i} \leq 5\right\} \subseteq \mathrm{V}$ is also special pure neutrosophic interval vector bisubspace of V over the bifield F $=\mathrm{Z}_{7} \cup \mathrm{Z}_{11}$ and the bidimension of T is $\{3\} \cup\{5\}$.

Consider $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2}=\left\{([0, \mathrm{a}],[0, \mathrm{~b}],[0, \mathrm{c}]) \mid \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{7}\right\}$
$\cup\left\{\left.\left[\begin{array}{c}{\left[0, a_{1}\right]} \\ {\left[0, a_{2}\right]} \\ \vdots \\ {\left[0, a_{10}\right]}\end{array}\right]\right|_{a_{i} \in Z_{11} ; 1 \leq i \leq 10}\right\} \subseteq V_{1} \cup V_{2}=V . \quad R$ is a special
interval bivector subspace of V over the bifield $\mathrm{Z}_{7} \cup \mathrm{Z}_{11}=\mathrm{F}$.

Further $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{([0, \mathrm{a}], 0,[0, \mathrm{~b}])\right.$ where $\left.\mathrm{a}, \mathrm{b} \in \mathrm{Z}_{7}\right\} \cup$
$\left\{\left.\left[\begin{array}{c}{[0, \mathrm{a}]} \\ 0 \\ {[0, \mathrm{~b}]} \\ {[0, \mathrm{c}]} \\ 0 \\ 0 \\ 0 \\ 0 \\ {[0, \mathrm{~d}]} \\ 0\end{array}\right] \right\rvert\, a \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Z}_{11}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$
is again a special interval bivector subspace of V over the bifield $\mathrm{F}=\mathrm{Z}_{7} \cup \mathrm{Z}_{11}$.

Clearly bidimension of S is $\{2\} \cup\{4\}$.
Now we define quasi neutrosophic interval bivector space V $=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ as an interval bivector space where V_{1} is a interval vector space and V_{2} is a neutrosophic interval vector space.

We give examples of them.
Example 2.3.19: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}] \mathrm{I} \mathrm{a} \in \mathrm{Z}_{23}\right\} \cup\{([0$, $\left.\mathrm{aI}],[0, \mathrm{bI}],[0, \mathrm{cI}],[0, \mathrm{dI}],[0, \mathrm{eI}]) \mid \mathrm{a}, \mathrm{b}, . \mathrm{c}, \mathrm{d}, \mathrm{e}, \in \mathrm{Z}_{23}\right\}$ be a quasi neutrosophic interval bivector space over the field Z_{23}.

Example 2.3.20: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=$

$$
\left\{\left(\left.\left[\begin{array}{c}
{\left[0, a_{1}\right]} \\
{\left[0, a_{2}\right]} \\
{\left[0, a_{3}\right]} \\
{\left[0, a_{4}\right]} \\
\vdots \\
{\left[0, a_{15}\right]}
\end{array}\right] \right\rvert\, a_{i} \in Z_{43} ; 1 \leq i \leq 15\right\} \cup\right.
$$

$\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{43}\right\}$ be a quasi neutrosophic interval bivector space over Z_{23}. We see bidimension of M is $\{15\} \cup\{1\}$.

Example 2.3.21: Let

$$
\begin{gathered}
\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\sum_{\mathrm{i}=0}^{29}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{53}\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{59} \mathrm{aIx}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{53}\right\}
\end{gathered}
$$

be a neutrosophic quasi interval bivector space over the field Z_{53}. Bidimension of V is $\{30\} \cup\{60\}$.

Example 2.3.22: Let

$$
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\begin{array}{l}
\left.\left.\left[\begin{array}{c}
{[0, \mathrm{aI}]} \\
{[0, \mathrm{bI}]} \\
{[0, \mathrm{cI}]} \\
{[0, \mathrm{dI}]} \\
{[0, \mathrm{eI}]}
\end{array}\right] \right\rvert\, a, b, c, d, e \in \mathrm{Z}_{11}\right\} \cup, ~ \cup ~
\end{array}\right\} \\
& \left\{\left.\left[\begin{array}{ccccc}
a_{1} I & a_{2} I & a_{3} I & a_{4} I & a_{5} I \\
a_{6} I & a_{7} I & a_{8} I & a_{9} I & a_{10} I \\
a_{11} I & a_{12} I & a_{13} I & a_{14} I & a_{15} I \\
a_{16} I & a_{17} I & a_{18} I & a_{19} I & a_{20} I \\
a_{21} I & a_{22} I & a_{23} I & a_{24} I & a_{25} I
\end{array}\right] \right\rvert\,{ }_{i} \in Z_{11} ; 1 \leq i \leq 25\right\}
\end{aligned}
$$

be a neutrosophic quasi interval bivector space over the field Z_{11}.

Example 2.3.23: Let

$$
\begin{aligned}
& M=M_{1} \cup M_{2}=\left\{\sum_{i=0}^{20} a_{i} \mathrm{Ix}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{59}\right\} \cup \\
& \left.\left.\left\{\begin{array}{ccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{7} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{14} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{15} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{21} \mathrm{I}\right]} \\
\vdots & & \vdots \\
{\left[0, \mathrm{a}_{57} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{63} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{59} ; 1 \leq \mathrm{i} \leq 63\right\}
\end{aligned}
$$

be a neutrosophic quasi interval bivector space over Z_{59}. Bidimension of V over Z_{59} is $\{21\} \cup\{63\}$.

Example 2.3.24: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{$ all 10×12 matrices with entries from $\left.\mathrm{Z}_{43}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{12}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{43}\right\}$ be a quasi neutrosophic quasi interval bivector subspace of V over Z_{43}. The bidimension of V is $\{120\} \cup\{13\}$.

Example 2.3.25: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{\sum_{\mathrm{i}=0}^{9} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{13}\right\} \cup\{$ all neutrosophic interval 6×3 matrices with intervals of the form $[0, \mathrm{a}+\mathrm{bI}]$ where $\left.\mathrm{a}, \mathrm{b} \in \mathrm{Z}_{13}\right\}$ be a quasi neutrosophic quasi interval bivector space over the field Z_{13} of finite bidimension.

Example 2.3.26: Let

$$
\begin{gathered}
\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{\begin{array}{c}
\left.\left.\left[\begin{array}{c}
\mathrm{a}_{1} \\
\mathrm{a}_{2} \\
\vdots \\
\mathrm{a}_{15}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{47} ; 1 \leq \mathrm{i} \leq 15\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{9}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{47}\right\}
\end{array}\right.
\end{gathered}
$$

be a quasi neutrosophic quasi interval bivector space over the field Z_{47} of bidimension $\{15\} \cup\{30\}$.

All properties related with bivector spaces / interval bivector spaces/ vector spaces can be derived with simple appropriate modifications.

We can define quasi special neutrosophic interval bistructure also which can be easily understood from the examples.

Example 2.3.27: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\sum_{\mathrm{i}=0}^{8}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{13}\right\} \cup$ $\left\{\left(\left[0, a_{1}\right],\left[0, a_{2}\right], \ldots,\left[0, a_{9}\right]\right) \mid a_{i} \in Z_{43} ; 1 \leq i \leq 9\right\}$ be a special
quasi neutrosophic interval bivector space over the bifield $\mathrm{F}=$ $\mathrm{Z}_{13} \cup \mathrm{Z}_{43}$.

Example 2.3.28: Let $\mathrm{P}=\left\{\left(\left[0, \mathrm{a}_{1}+\mathrm{b}_{1} \mathrm{I}\right], \ldots,\left[0, \mathrm{a}_{15}+\mathrm{b}_{15} \mathrm{I}\right]\right) \mid \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}} \in\right.$ $\left.\mathrm{Z}_{47} .1 \leq \mathrm{i} \leq 15\right\} \cup$

$$
\left\{\left.\left[\begin{array}{ccc}
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & {\left[0, a_{3}\right]} \\
{\left[0, a_{4}\right]} & {\left[0, a_{5}\right]} & {\left[0, a_{6}\right]} \\
\vdots & \vdots & \vdots \\
{\left[0, a_{31}\right]} & {\left[0, a_{32}\right]} & {\left[0, a_{33}\right]}
\end{array}\right] \right\rvert\, a_{i} \in \mathrm{Z}_{23} ; 1 \leq \mathrm{i} \leq 33\right\}
$$

be a special quasi neutrosophic quasi interval bivector space of finite bidimension over the bifield $\mathrm{F}=\mathrm{Z}_{47} \cup \mathrm{Z}_{23}$.

Example 2.3.29: Let

$$
\begin{aligned}
& P= P_{1} \cup P_{2}=\left\{\sum_{i=0}^{25} a_{i} \mathrm{Ix}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7}\right\} \\
&\left\{\begin{array}{c}
\left.\left.\left[\begin{array}{c}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
\vdots \\
{\left[0, \mathrm{a}_{12} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{13} ; 1 \leq \mathrm{i} \leq 12\right\}
\end{array}\right.
\end{aligned}
$$

be a special neutrosophic quasi interval bivector space of bidimension $\{26\} \cup\{12\}$ over the bifield $F=Z_{7} \cup Z_{13}$.

Example 2.3.30: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{$ all 5×5 neutrosophic interval matrices with intervals of the form $[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in$ $\left.\mathrm{Z}_{59}\right\} \cup\{$ all 8×2 matrices with entries from RI, R-reals $\}$ be a special neutrosophic quasi interval bivector space over the bifield $F=Z_{59} \cup R$.

Example 2.3.31: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{13}\right\} \cup$ $\left\{\sum_{i=0}^{40} \mathrm{aIx}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Q}\right\}$ be a special neutrosophic quasi interval bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{13} \cup \mathrm{Q}$.

Example 2.3.32: Let

$$
\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{Ix}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{20}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{43}\right\}
$$

be a special quasi neutrosophic quasi interval bivector space of infinite dimension over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{43}$.

Example 2.3.33: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\sum_{\mathrm{i}=0}^{15}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{13}\right\} \cup$ \{all 10×10 matrices with entries from Q \} be the special quasi neutrosophic quasi interval bivector space of finite bidimension over the bifield $\mathrm{F}=\mathrm{Z}_{13} \cup \mathrm{Q}$.

All properties associated with interval bivector spaces / vector spaces can be derived for the special quasi neutrosophic interval bivector spaces or special neutrosophic quasi interval bivector spaces with simple appropriate modifications which is left as an exercise to the reader.

Also it can be said that without any difficulty special neutrosophic interval linear bialgebras can be defined. We give some examples of special neutrosophic interval linear bialgebras.

Example 2.3.34: Let

$$
\begin{gathered}
\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{II}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{11}\right\} \cup \\
\left.\left.\left\{\begin{array}{cccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{21} \mathrm{I}\right]} \\
\vdots & \vdots & \vdots \\
{\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{10} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{25} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} ; 1 \leq \mathrm{i} \leq 25,+\right\}
\end{gathered}
$$

be a special neutrosophic interval linear bialgebra over the bifield $\mathrm{S}=\mathrm{Z}_{11} \cup \mathrm{Z}_{7}$.

Example 2.3.35: Let $S=S_{1} \cup S_{2}=\left\{[0, a+b I] \mid a, b \in Z_{19}\right\} \cup$ \{All 15×15 neutrosophic intervals with intervals of the form $\left.[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{3}\right\}$ be a special neutrosophic interval linear bialgebra over the bifield $\mathrm{F}=\mathrm{Z}_{19} \cup \mathrm{Z}_{3}$.

Example 2.3.36: Let

$$
\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{Ix}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}\right\} \cup
$$

$\left\{\left(\left[0, a_{1}+b_{1} I\right], \ldots,\left[0, a_{10}+b_{10} I\right]\right) \mid a_{i}, b_{i} \in Z_{17}, 1 \leq i \leq 10\right\}$ be a special neutrosophic quasi interval linear bialgebra of infinite dimension over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{17}$.

Example 2.3.37: Let

$$
S=S_{1} \cup S_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{R}\right\} \cup
$$

\{All 3×3 neutrosophic interval matrices with intervals of the form $[0, \mathrm{a}+\mathrm{bI}]$ with a, b from $\left.\mathrm{Z}_{2}\right\}$ be a special quasi neutrosophic quasi interval linear bialgebra of infinite dimension over the bifield $\mathrm{S}=\mathrm{R} \cup \mathrm{Z}_{2}$.

Now we proceed onto define neutrosophic interval bisemivector spaces.

DEFINITION 2.3.4: Let $V=V_{1} \cup V_{2}$ be an additive abelian neutrosophic interval bisemigroup with $0 \cup 0$ as its identity. Let F be a semifield if V_{i} is a neutrosophic interval semivector space over $F ; i=1,2$, then we define V to be a neutrosophic interval bisemivector space over the semifield F.

We will illustrate this situation by some examples.
Example 2.3.38: Let

$$
V=V_{1} \cup V_{2}=\left\{[0, a+b I] \mid a, b \in Z^{+} \cup\{0\}\right\} \cup
$$

$\left\{\left.\begin{array}{l}{\left[\begin{array}{l}{[0, \mathrm{aI}]} \\ {[0, \mathrm{bI}]} \\ {[0, \mathrm{cI}]} \\ {[0, \mathrm{dI}]}\end{array}\right]}\end{array} \right\rvert\, a, b, b, c, d \in \mathrm{Z}^{+} \cup\{0\}\right\}$
be a neutrosophic interval semibivector space (bisemivector space) over the semifield $\mathrm{S}=\mathrm{Z}^{+} \cup\{0\}$.

Example 2.3.39: Let

$$
\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{\sum_{\mathrm{i}=0}^{25}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\}\right\} \cup
$$

\{All 10×2 neutrosophic interval matrices with intervals of the form $\left\{[0, \mathrm{a}+\mathrm{bI}]\right.$ where $\left.\mathrm{a}, \mathrm{b} \in \mathrm{Q}^{+} \cup\{0\}\right\}$ be a neutrosophic interval bisemivector space over $\mathrm{F}=\mathrm{Z}^{+} \cup\{0\}$, the semifield.

Example 2.3.40: Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\{$ All 8×3 neutrosophic interval matrices with intervals of the form $[0, \mathrm{aI}]$ with $\mathrm{a} \in \mathrm{Z}^{+} \cup$ $\{0\}\} \cup\{$ All 3×3 neutrosophic interval matrices with intervals from $\left.\mathrm{Z}^{+} \cup\{0\}\right\}$ be a neutrosophic interval bisemivector space over the semifield $\mathrm{S}=\mathrm{Z}^{+} \cup\{0\}$.

It is interesting to note W is not a neutrosophic interval bisemivector space over the semifield $\mathrm{Q}^{+} \cup\{0\}$ or $\mathrm{R}^{+} \cup\{0\}$. Further the dimension of a neutrosophic interval bisemivector space also depends on the semifield over which it is defined.

Example 2.3.41: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=$

$$
\left.\left.\left.\begin{array}{l}
\left\{\begin{array}{cc}
{\left[0, a_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{10} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{11} \mathrm{I}\right]} \\
\vdots & \vdots \\
{\left[0, \mathrm{a}_{9} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{18} \mathrm{I}\right]}
\end{array}\right]
\end{array} \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 18\right\} \cup\right\}
$$

be a neutrosophic interval bisemivector space over the semifield $\mathrm{S}=\mathrm{Z}^{+} \cup\{0\}$.

Clearly M is of bidimension $\{18\} \cup\{\infty\}$ over $\mathrm{S}=\mathrm{Z}^{+} \cup$ $\{0\}$.

Further M is not defined over the semifield $\mathrm{Q}^{+} \cup\{0\}$.

Example 2.3.42: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left[\begin{array}{c}
{\left[0, a_{1}+b_{1} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{2}+\mathrm{b}_{2} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{3}+\mathrm{b}_{3} \mathrm{I}\right]} \\
\vdots \\
{\left[0, \mathrm{a}_{10}+\mathrm{b}_{10} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 10\right\} \cup
$$

$\left\{\left([0, a I],\left[0, a_{1}+b_{1} I\right],\left[0, c_{1}+d_{1} I\right],[0, b I],[0, c I]\right) \mid a, b_{1}, c_{1}, d_{1}, c\right.$ $\left.\in \mathrm{Z}^{+} \cup\{0\}\right\}$ be a neutrosophic interval bisemivector space over the semifield $S=Z^{+} \cup\{0\}$.

$\left\{(0,[0, a I], 0,[0, b I],[0, d I]) \mid a, b, d \in Z^{+} \cup\{0\}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}=$ V ; M is a neutrosophic interval bisemivector subspace of V over the semifield $S=Z^{+} \cup\{0\}$.
Example 2.3.43: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{\sum_{\mathrm{i}=0}^{27}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\}\right\}$
$\cup\left\{\begin{array}{cc}{\left[\begin{array}{cc}{[0, \mathrm{aI}]} & {[0, \mathrm{eI}]} \\ {[0, \mathrm{bI}]} & {[0, \mathrm{fI}]} \\ {[0, \mathrm{cI}]} & {[0, \mathrm{mI}]} \\ {[0, \mathrm{dI}]} & {[0, \mathrm{nI}]}\end{array}\right], ~}\end{array}\right.$
where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{m}, \mathrm{n}$ are in $\mathrm{Q}^{+} \cup$
$\{0\}\}$ be a neutrosophic interval bisemivector space over the semifield $\mathrm{F}=\mathrm{Q}^{+} \cup\{0\}$.

We see bidimension of T on F is $\{28\} \cup\{8\}$. If $\mathrm{Q}^{+} \cup\{0\}$ is replaced by $\mathrm{Z}^{+} \cup\{0\}$ the bidimension is infinite. Infact T is not defined over the semifield $\mathrm{R}^{+} \cup\{0\}$.

Example 2.3.44: Now consider $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=$

$$
\begin{aligned}
& \left.\left\{\begin{array}{llll}
{\left[0, a_{1}+b_{1} I\right]} & {\left[0, a_{2}+b_{2} I\right]} & {\left[0, a_{3}+b_{3} I\right]} & {\left[0, a_{4}+b_{4} I\right]} \\
{\left[0, a_{5}+b_{5} I\right]} & {\left[0, a_{6}+b_{6} I\right]} & {\left[0, a_{7}+b_{7} I\right]} & {\left[0, a_{8}+b_{8} I\right]} \\
{\left[0, a_{9}+b_{9} I\right]} & {\left[0, a_{10}+b_{10} I\right]} & {\left[0, a_{11}+b_{11} I\right]} & {\left[0, a_{12}+b_{12} I\right]}
\end{array}\right] \right\rvert\, \\
& \left.\mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 12\right\} \cup \\
& \left\{\left.\left[\begin{array}{cc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{7} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} \\
\vdots & \vdots \\
{\left[0, \mathrm{a}_{6} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{12} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\{0\} ; 1 \leq \mathrm{i} \leq 12\right\}
\end{aligned}
$$

be a neutrosophic interval bisemivector space over the semifield $S=Z^{+} \cup\{0\}$ of infinite bidimension over S.

We can define subbistructures bibasis, linear bitransformation and linear bioperator, which is a matter of routine and left as exercise to the reader.

Example 2.3.45: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{$ all 4×4 neutrosophic interval matrices with intervals of the form $[0, a+b I]$ where a, b $\left.\in \mathrm{Z}^{+} \cup\{0\}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{29}[0, \mathrm{a}+\mathrm{bI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\}\right\} \quad$ be a neutrosophic interval bisemivector space defined over the semifield $\mathrm{S}=\mathrm{Z}^{+} \cup\{0\}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\{$ collection of all upper triangular 4×4 pure neutrosophic interval matrices with intervals of the form $[0, \mathrm{aI}]$ with $\left.\mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup$

$$
\left\{\sum_{\mathrm{i}=0}^{12}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \subseteq \mathrm{M}_{1} \cup \mathrm{M}_{2}
$$

W is a pure neutrosophic interval bisubsemivector space of M over the semifield $S=Z^{+} \cup\{0\}$. Clearly bidimension of W is $\{10\} \cup\{13\}$.

We can define pure neutrosophic interval subbisemivector spaces of M of bidimension less than or equal to $\{16\} \cup\{30\}$.

We can also have pure neutrosophic interval bisemivector subspaces of bidimension $\{1\} \cup\{1\}$. We have several such bisemivector subspaces.

We also can define quasi neutrosophic interval semibivectors spaces over a semifield, this task is left as an exercise to the reader. We however give examples of them.

Example 2.3.46: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\begin{array}{c}{\left[\begin{array}{c}{\left[0, \mathrm{a}_{1}\right]} \\ {\left[0, \mathrm{a}_{2}\right.}\end{array}\right]} \\ \vdots \\ {\left[0, \mathrm{a}_{9}\right]}\end{array}\right]$ where $\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+}$ $\cup\{0\} ; 1 \leq \mathrm{i} \leq 9\} \cup\{$ All 3×3 neutrosophic interval matrices with intervals of the form $\left.[0, \mathrm{a}+\mathrm{bI}], \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\}\right\}$ be a quasi neutrosophic interval bisemivector space over the semifield $\mathrm{S}=$ $Z^{+} \cup\{0\}$.

Example 2.3.47: Let $T=\left\{\left(\left[0, a_{1}\right],\left[0, a_{2}\right], \ldots,\left[0, a_{12}\right]\right) \mid a_{i} \in Z^{+}\right.$ $\cup\{0\} ; 1 \leq \mathrm{i} \leq 12\} \cup\left\{\sum_{\mathrm{i}=0}^{20}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}\right\}$ be a quasi neutrosophic interval bisemivector space over the field $\mathrm{S}=\mathrm{Z}^{+} \cup$ $\{0\}$.

Example 2.3.48: Let

$$
\begin{aligned}
& \mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{\sum_{\mathrm{i}=0}^{21}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup \\
& \left\{\left[\begin{array}{cc}
\mathrm{a}_{1} \mathrm{I} & \mathrm{a}_{2} \mathrm{I} \\
\mathrm{a}_{3} \mathrm{I} & \mathrm{a}_{4} \mathrm{I} \\
\mathrm{a}_{5} \mathrm{I} & \mathrm{a}_{6} \mathrm{I} \\
\mathrm{a}_{7} \mathrm{I} & \mathrm{a}_{8} \mathrm{I}
\end{array}\right] \text { where } \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\} ; 1 \leq \mathrm{i} \leq 8\right\}
\end{aligned}
$$

be neutrosophic quasi interval bisemivector space over the semifield $Z^{+} \cup\{0\}$.

Example 2.3.49: Let

$$
\begin{gathered}
\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{\sum_{\mathrm{i}=0}^{12}[0, \mathrm{aI}] \mathrm{x}^{i} \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup \\
\left\{\left.\left[\begin{array}{lllll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} & \mathrm{a}_{17} \\
\mathrm{a}_{5} & \mathrm{a}_{6} & a_{7} & \mathrm{a}_{8} & a_{18} \\
\mathrm{a}_{9} & \mathrm{a}_{10} & \mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{19} \\
\mathrm{a}_{13} & \mathrm{a}_{14} & \mathrm{a}_{15} & \mathrm{a}_{16} & \mathrm{a}_{20}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\} ; 1 \leq \mathrm{i} \leq 20\right\}
\end{gathered}
$$

be a quasi neutrosophic quasi interval bisemivector space over the semifield $\mathrm{Z}^{+} \cup\{0\}$.

Now having seen the quasi types of bisemivector spaces, the authors leave the task of studying these bistructures to the reader as it is simple and straight forward. Now we define neutrosophic interval semivector space set vector space $V=V_{1}$ $\cup \mathrm{V}_{2}$ over the semifield $\mathrm{S}=\mathrm{Z}^{+} \cup\{0\}$ as follows: V_{1} is a interval semivector space over the semifield $\mathrm{Z}^{+} \cup\{0\}$ and V_{2} is just a set vector space over the same semifield $\mathrm{Z}^{+} \cup\{0\}$ realized as a set we give examples of them.

Example 2.3.50: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left.\left.\left\{\begin{array}{c}
\left.\left\{\begin{array}{cccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{11} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{61} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{12} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{62} \mathrm{I}\right]} \\
\vdots & \vdots & & \vdots \\
{\left[0, \mathrm{a}_{10} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{20} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{70} \mathrm{I}\right]}
\end{array}\right] \right\rvert\,
\end{array}\right\} \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\} ; 1 \leq \mathrm{i} \leq 70\right\} \cup\right\}
$$

$\left.\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{a}_{\mathrm{i}}, \in \mathrm{Z}^{+} \cup\{0\} ; 1 \leq \mathrm{i} \leq 20\right\}$ be a neutrosophic interval semivector space - set vector space over the semifield $S=Z^{+} \cup$ $\{0\}$.

Example 2.3.51: Let

$$
\begin{gathered}
\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\sum_{\mathrm{i}=0}^{45}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\{0\}\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{49}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}},\left[\begin{array}{cc}
{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} \\
{[0, \mathrm{cI}]} & {[0, \mathrm{dI}]} \\
{[0, \mathrm{eI}]} & {[0, \mathrm{fI}]} \\
{[0, \mathrm{gI}]} & {[0, \mathrm{hI}]} \\
{[0, \mathrm{mI}]} & {[0, \mathrm{nI}]}
\end{array}\right],\left(\begin{array}{lll}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{7} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{12} \mathrm{I}\right]}
\end{array}\right]\right) \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+}
\end{gathered}
$$

$\left.\cup\{0\} ; \mathrm{a}_{\mathrm{a}} \mathrm{a}_{\mathrm{i}}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{m}, \mathrm{n}, \in \mathrm{Z}^{+} \cup\{0\} ; 1 \leq \mathrm{i} \leq 12\right\}$ is a neutrosophic interval semivector space - set vector space over the semifield $\mathrm{Z}^{+} \cup\{0\}$.

We can define all properties associated with this bistructure also with appropriate modifications.

We can define all notions related with neutrosophic interval structures in case of neutrosophic interval bistructures which is very simple with straight forward modifications. This task is also left as an exercise to the reader.

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ if V_{1} is a semivector space of neutrosophic intervals over the semifield S and V_{2} is a neutrosophic interval of vector space over the field F_{1} then we define $V=V_{1} \cup V_{2}$ to be a special neutrosophic interval semivector - vector space over the semifield - field.

We will illustrate this situation by some simple examples.

Example 2.3.52: Let

$$
\left.\begin{array}{rl}
\mathrm{V} & =\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\sum_{\mathrm{i}=0}^{120}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup \\
& \left\{\left.\begin{array}{cc}
{\left[\begin{array}{ll}
{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} \\
{[0, \mathrm{cI}]} & {[0, \mathrm{dI}]} \\
{[0, \mathrm{eI}]} & {[0, \mathrm{fI}]}
\end{array}\right]}
\end{array} \right\rvert\, a, b, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{Z}_{43},+\right\}
\end{array}\right\}
$$

be a special neutrosophic interval semivector - vector space defined over the semifield - field; $\mathrm{Z}^{+} \cup\{0\} \cup \mathrm{Z}_{43}$.

Example 2.3.53: Let

$$
\begin{aligned}
M= & M_{1} \cup M_{2}=\left\{\sum_{i=0}^{5}[0, a+b I] \mid a, b \in Z_{23}\right\} \cup \\
& \left\{\sum_{i=0}^{\infty}[0, a+b I] x^{2 i} \mid a, b \in Q^{+} \cup\{0\}\right\}
\end{aligned}
$$

be a special neutrosophic interval vector space - semivector space over the field - semifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{23} \cup \mathrm{Q}^{+} \cup\{0\}$.

Example 2.3.54: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{cccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{9} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{10} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{11} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{18} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{19} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{20} \mathrm{I}\right]} & & {\left[0, \mathrm{a}_{27} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{28} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{29} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{36} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\{0\} ; 1 \leq \mathrm{i} \leq 36\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{12}[0, a \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{7}\right\}
\end{aligned}
$$

be a special neutrosophic interval semivector space - vector space over the semifield - field; $S=S_{1} \cup S_{2}=\left(\mathrm{Q}^{+} \cup\{0\}\right) \cup Z_{7}$.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$
$\left\{\begin{array}{l}{\left[\begin{array}{cccccccc}{\left[0, a_{1} \mathrm{I}\right]} & 0 & 0 & 0 & 0 & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & 0 & 0 \\ {\left[0, \mathrm{a}_{9} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & 0 & 0 & 0 & 0 & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} & 0 & 0 \\ 0 \\ {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & 0 & 0 & 0 & 0 & {\left[0, \mathrm{a}_{7} \mathrm{I}\right]} & 0 & 0 \\ {\left[0, \mathrm{a}_{10} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & 0 & 0 & 0 & 0 & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & 0 & 0 \\ 0\end{array}\right]} \\ \{0\} ; 1 \leq \mathrm{i} \leq 10\} \cup\left\{\mathrm{a}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\right. \\ \left.\sum_{\mathrm{i}=0}^{6}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{7}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V} \text { be a }\end{array}\right.$ special neutrosophic interval subsemivector space - subvector space over the semifield - field $\left(\mathrm{Q}^{+} \cup\{0\}\right) \cup \mathrm{Z}_{7}$.

Example 2.3.55: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{$ All 5×5 interval matrices with intervals of the form [0, a] where a $\left.\in Z_{3}\right\} \cup$ $\left\{\sum_{i=0}^{40}[0, a I] x^{i} \mid a \in Z^{+} \cup\{0\}\right\}$ be a special quasi neutrosophic interval vector space - semivector space over the field semifield $S=Z_{3} \cup Z^{+} \cup\{0\}$.

Example 2.3.56: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\{$ All 5×10 matrices with entries from $\left.\mathrm{Z}^{+} \cup\{0\}\right\} \cup\{$ All 10×5 neutrosophic interval matrices with entries from $\left.Z_{11} I\right\}$ be a special quasi neutrosophic
quasi interval semivector space - vector space over the semifield - field $\left(\mathrm{Z}^{+} \cup\{0\}\right) \cup \mathrm{Z}_{11}$.

Example 2.3.57: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=$

$$
\begin{gathered}
\left.\left.\left\{\begin{array}{cccc}
{\left[\begin{array}{ccc}
a_{1} \mathrm{I} & a_{2} \mathrm{I} & a_{3} \mathrm{I}
\end{array} \mathrm{a}_{4} \mathrm{I}\right.} \\
\mathrm{a}_{5} \mathrm{I} & \mathrm{a}_{6} \mathrm{I} & a_{7} \mathrm{I} & a_{8} \mathrm{I} \\
\mathrm{a}_{9} \mathrm{I} & \mathrm{a}_{10} \mathrm{I} & \mathrm{a}_{11} \mathrm{I} & a_{12} \mathrm{I} \\
\mathrm{a}_{13} \mathrm{I} & \mathrm{a}_{14} \mathrm{I} & \mathrm{a}_{15} \mathrm{I} & a_{16} \mathrm{I}
\end{array}\right] \right\rvert\, a_{i} \in \mathrm{Z}^{+} \cup\{0\} ; 1 \leq \mathrm{i} \leq 16\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{42}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid a \in \mathrm{Z}_{13}\right\}
\end{gathered}
$$

be a special quasi neutrosophic quasi interval semivector space vector space over the semifield - field; $S=S_{1} \cup S_{2}=\left(Z^{+} \cup\{0\}\right)$ $\cup \mathrm{Z}_{13}$.

All other properties can be derived for these bistructures with simple appropriate modifications without any difficulty.

Chapter Three

NEUTROSOPHIC n-INTERVAL Structures (NeUTROSOPHIC INTERVAL n-STRUCTURES)

In this chapter we introduce for the first time the new notion of neutrosophic n-structures and mixed neutrosophic n structures and discuss various properties enjoyed by them.

DEFINITION 3.1: Let $S=S_{l} \cup S_{2} \cup \ldots \cup S_{n}(n \geq 3)$ where each S_{i} is a neutrosophic interval semigroup such that $S_{i} \neq S_{j}$; if $i \neq j$, $S_{i} \nsubseteq S_{j}$ or $S_{j} \nsubseteq S_{i} ; \quad l \leq i, j \leq n$. Then we define S to be a $n-$ neutrosophic interval semigroup or neutrosophic n-interval semigroup or neutrosophic interval n-semigroup.

We will give examples of them.
Just we mention if $\mathrm{n}=3$ we can call them as neutrosophic interval trisemigroup or neutrosophic triinterval semigroup.

Example 3.1: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{5}, \times\right\}$ $\cup\left\{[0, a+b I] \mid a, b \in Z^{+} \cup\{0\},+\right\} \cup\left\{[0, a+b I] \mid a, b \in Z_{6}, x\right\} \cup$

$$
\left\{\left.\left[\begin{array}{c}
{[0, \mathrm{aI}]} \\
{[0, \mathrm{bI}]} \\
{[0, \mathrm{cI}]} \\
{[0, \mathrm{dI}]}
\end{array}\right] \right\rvert\, a, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{24},+\right\}
$$

be a 4-neutrosophic interval semigroup.
Clearly S is commutative but of infinite order.

Example 3.2: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4} \cup \mathrm{M}_{5} \cup \mathrm{M}_{6}=$ $\left\{\sum_{i=0}^{6}[0, a I] x^{i} \mid a \in Z_{3}\right\} \cup\left\{\left.\left[\begin{array}{ll}{[0, a I]} & {[0, c I]} \\ {[0, b I]} & {[0, d I]}\end{array}\right] \right\rvert\, a, b, c, d \in Z_{4}, x\right\} \cup$
$\left\{\left.\left[\begin{array}{c}{[0, \mathrm{aI}]} \\ {[0, \mathrm{bI}]} \\ {[0, \mathrm{cI}]} \\ {[0, \mathrm{dI}]} \\ {[0, \mathrm{eI}]} \\ {[0, \mathrm{fI}]}\end{array}\right] \right\rvert\, a, b, c, d, e, f \in \mathrm{Z}_{6},+\right\} \cup$
$\left\{([0, \mathrm{aI}],[0, \mathrm{bI}+\mathrm{c}],[0, \mathrm{dI}]) \mid \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{8}, \times\right\} \cup\{3 \times 8$ neutrosophic interval matrices with intervals of the form [0, aI$]$ । $\left.a \in Z_{14},+\right\} \cup\left\{\left.\left[\begin{array}{ccc}{[0, a+b I]} & {[0, a I]} & {[0, d I]} \\ {[0, d+e I]} & {[0, b I]} & 0\end{array}\right] \right\rvert\, a, b, c, d, e \in Z_{2},+\right\}$ be a neutrosophic 6-interval semigroup of finite order.

We can define n-substructures like n-ideals and n subsemigroup. Also these n-semigroups can contain n-zero divisors, n-units, n-idempotents and so on. We will give some examples of them as the definition is a matter of routine.

Example 3.3: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \mathrm{~T}_{3}=$

$$
\left\{\left.\left[\begin{array}{cc}
{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} \\
{[0, \mathrm{dI}]} & {[0, \mathrm{cI}]}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{24}, \times\right\} \cup
$$

$\left\{\right.$ All 5×5 neutrosophic interval matrices with entries from Z_{10}, $\times\} \cup\left\{3 \times 3\right.$ neutrosophic interval matrices from $\left.Z_{6}, \times\right\}$ be a
pure neutrosophic triinterval semigroup or pure neutrosophic interval 3 - semigroup. Consider $S=S_{1} \cup S_{2} \cup S_{3}=$

$$
\left\{\begin{array}{cc}
\left.\left.\left.\left[\begin{array}{cc}
{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} \\
{[0, \mathrm{cI}]} & {[0, \mathrm{dI}]}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in 2 \mathrm{Z}_{24}, \times\right\}\right\} \cup, ~ ن ~
\end{array}\right.
$$

$\{$ all 5×5 neutrosophic interval matrices with entries from $\{0$, $\left.5\} \subseteq \mathrm{Z}_{10}, \times\right\} \cup\{$ all 3×3 neutrosophic interval matrices with entries from $\left.\{0,2,4\} \subseteq \mathrm{Z}_{6}, \times\right\} \subseteq \mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \mathrm{~T}_{3}=\mathrm{T}$; S is a neutrosophic interval 3-subsemigroup of T .

Further it is easily verified T has 3-zero divisors and 3 idempotents.

Example 3.4: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{\sum_{\mathrm{i}=0}^{20}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\},+\right\} \cup$ $\left\{([0, a \mathrm{aI}],[0, \mathrm{aI}],[0, \mathrm{aI}],[0, \mathrm{aI}],[0, \mathrm{aI}]) \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\} \cup$
$\left\{\left.\left[\begin{array}{l}{[0, \mathrm{aI}]} \\ {[0, \mathrm{aI}]} \\ {[0, \mathrm{aI}]} \\ {[0, \mathrm{aI}]} \\ {[0, \mathrm{aI}]}\end{array}\right] \right\rvert\, \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\},+\right\} \quad$ be \quad a neutrosophic interval
trisemigroup. P has no zero divisors, no idemponents but has triideals and trisubsemigroup.

Example 3.5: Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}=\{[0, \mathrm{aI}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b}$ $\left.\in \mathrm{Z}_{12},+\right\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{15}, \times\right\} \cup\{([0, \mathrm{aI}],[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b}$ $\left.\in \mathrm{Z}_{8}, \times\right\} \cup\left\{\left.\left[\begin{array}{l}{[0, \mathrm{aI}]} \\ {[0, \mathrm{bI}]} \\ {[0, \mathrm{cI}]}\end{array}\right] \right\rvert\, a, b, c \in \mathrm{Z}_{6},+\right\}$ be a neutrosophic interval 4-semigroup of finite order. W has 4-ideals, 4-subsemigroups, 4-zero divisors and 4 units.

We define a neutrosophic n-interval semigroup to be a Smarandache neutrosophic n-interval semigroup if each semigroup S_{i} in $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ is a Smarandache neutrosophic interval n-semigroup.

We will give examples of them.
Example 3.6: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{12}\right.$, $\times\} \cup\left\{\left.\left[\begin{array}{cc}{\left[0, a_{1} I\right]} & {\left[0, a_{3} I\right]} \\ {\left[0, a_{2} I\right]} & {\left[0, a_{4} I\right]}\end{array}\right] \right\rvert\, a \in Z_{7}, \times ; 1 \leq i \leq 4\right\} \cup\{[0, a I] \mid a \in$ $\left.\mathrm{Z}_{15}, \times\right\} \cup\left\{([0, \mathrm{aI}],[0, \mathrm{bI}]) \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{9}, \times\right\}$ be the neutrosophic interval 4-semigroup.

Consider $\mathrm{P}=\left\{[0, \mathrm{I}],[0,11 \mathrm{I}] \mid 1,11 \in \mathrm{Z}_{12}, \times\right\} \cup$
$\left\{A=\left[\begin{array}{cc}{\left[0, a_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]}\end{array}\right]\left|\mathrm{a}_{\mathrm{i}} \in\{1,14\} \subseteq \mathrm{Z}_{15}, \times ;|\mathrm{A}| \neq(0)\right\} \cup\{[0, \mathrm{aI}]\right.$ $\mid \mathrm{a} \in\{0,1\}$ in $\left.\mathrm{Z}_{15}\right\} \cup\{([0, \mathrm{I}],[0,8 \mathrm{I}]),([0, \mathrm{I}][0, \mathrm{I}]),([0,8 \mathrm{I}],[0$, $8 \mathrm{I}])$, $\left.([0,8 \mathrm{I}],[0, \mathrm{I}]) \mid 1,8 \in \mathrm{Z}_{9}, \times\right\}$ is a neutrosophic 4 -interval group, hence V is a Smarandache neutrosophic interval 4semigroup.

Example 3.7: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}=\left\{[0, \mathrm{al}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\}$ $\cup\left\{\left.\left[\begin{array}{l}{[0, \mathrm{aI}]} \\ {[0, \mathrm{bI}]} \\ {[0, \mathrm{cI}]}\end{array}\right] \right\rvert\, a \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup\left\{\begin{array}{llll}{\left[\begin{array}{lll}{[0, \mathrm{aI}]} & {[0, \mathrm{aI}]} & \ldots\end{array}\right.} & {[0, \mathrm{aI}]} \\ {[0, \mathrm{aI}]} & {[0, \mathrm{aI}]} & \ldots & {[0, \mathrm{aI}]}\end{array}\right]$ be a 2×8 neutrosophic interval matrices with $\left.a \in Z^{+} \cup\{0\},+\right\}$ be a neutrosophic interval trisemigroup. V is not a Smarandache neutrosophic interval trisemigroup.

In view of this we have the following theorem.
THEOREM 3.1: Let $V=V_{l} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-interval semigroup. In general every V need not be a Smarandache neutrosophic n-interval semigroup.

Proof follows from the example 3.7 as that neutrosophic interval 3 -semigroup is not Smarandache. We now proceed on to define quasi n -interval semigroups.

Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$, if only some of V_{i} 's are neutrosophic interval semigroups $\mathrm{i} \leq \mathrm{n}$ and the rest just neutrosophic semigroups, we call V to be a neutrosophic quasi interval n -semigroup.

If in $\mathrm{V}=\mathrm{V}_{1} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ be such that some V_{j} 's are neutrosophic interval semigrousp $\mathrm{j} \leq \mathrm{n}$ and the rest just interval semigroups then we define V to be a quasi neutrosophic n interval semigroup. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ be such that some V_{i} 's are neutrosophic interval semigroups, some V_{j} 's neutrosophic semigroups, some V_{k} 's interval semigroups and the rest semigroups then we call V to be a quasi neutrosophic quasi interval n -semigroup.

We give examples of these situations.
Example 3.8: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\left.\mathrm{Z}_{8}, \times\right\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\},+\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Q}^{+} \cup\right.$ $\{0\},+\} \cup\left\{\left(a_{1} \mathrm{I}, \mathrm{a}_{2} \mathrm{I}, . ., \mathrm{a}_{\mathrm{n}} \mathrm{I}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{R}^{+} \cup\{0\}, \times\right\} \cup$ $\left\{\left.\left[\begin{array}{ccc}a_{1} I & a_{2} I & a_{3} I \\ a_{4} I & a_{6} I & a_{7} I \\ a_{8} I & a_{9} I & a_{5} I\end{array}\right] \right\rvert\, a_{i} \in Z_{45}, \times, 1 \leq i \leq 9\right\}$ be a neutrosophic quasi interval 5 -semigroup.

Example 3.9: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$ $\left\{[0, a] \mid a \in R^{+} \cup\{0\} ; \times\right\} \cup\left\{[0, a I] \mid a \in \mathrm{Q}^{+} \cup\{0\}\right\} \cup$
$\left\{([0, a I],[0, b I])\right.$ where $\left.a, b \in R^{+} \cup\{0\}, x\right\} \cup$

$$
\left\{\left.\left[\begin{array}{cccc}
{\left[0, \mathrm{a}_{1}\right]} & {\left[0, \mathrm{a}_{2}\right]} & \ldots & {\left[0, \mathrm{a}_{10}\right]} \\
{\left[0, \mathrm{a}_{11}\right]} & {\left[0, \mathrm{a}_{12}\right]} & \ldots & {\left[0, \mathrm{a}_{20}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{450}, \times, 1 \leq \mathrm{i} \leq 20,+\right\}
$$

be a quasi neutrosophic interval 4 -semigroup of infinite order.
Example 3.10: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$ $\left\{([0, a+b I],[0, c+d I]) \mid a, b \in R^{+} \cup\{0\},+\right\} \cup$

$$
\left\{\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10} & a_{11} & a_{12}
\end{array}\right] \text { where } a_{i} \in R^{+} \cup\{0\},+; 1 \leq i \leq 12\right\} \cup
$$

$$
\left\{\left.\left[\begin{array}{cccc}
a_{1} I & a_{2} I & \ldots & a_{12} I \\
a_{13} I & a_{14} I & \ldots & a_{24} I \\
a_{25} I & a_{26} I & \ldots & a_{36} I \\
a_{37} I & a_{38} I & \ldots & a_{48} I
\end{array}\right] \right\rvert\, a \in Q^{+} \cup\{0\}, 1 \leq i \leq 48,+\right\}
$$

$\cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{28}, \mathrm{x}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{25}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{47},+\right\}$ be a quasi neutrosophic quasi interval 5 -semigroup.

All properties related with neutrosophic interval nsemigroups, quasi neutrosophic interval n-semigroups and for other related n-structures can be easily extended, studied and defined with simple modifications but with appropriate working.

Now we proceed onto define Neutrosophic interval ngroupoids.

DEFINITION 3.2: Let $G=G_{l} \cup G_{2} \cup \ldots \cup G_{n}$ be such that each G_{i} is a neutrosophic interval groupoid ($1 \leq i \leq n$) and each G_{i} is distinct that is $G_{i} \nsubseteq G_{j}, G_{j} \underline{\subseteq} G_{i}$ if $i \neq j$. We define G to be a neutrosophic interval n-groupoid with the component wise operation is the operation on G.

We will give examples of them.
Example 3.11: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\left\{[0, \mathrm{al}] \mid \mathrm{a} \in \mathrm{Z}_{9}\right.$, *, $(2,7)\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{12}, *,(6,2)\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{43}\right.$, $(11,12), *\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{24},(8,15), *\right\}$ be a neutrosophic interval 4-groupoid of finite order.

Example 3.12: Let $M=M_{1} \cup M_{2} \cup M_{3} \cup M_{4} \cup M_{5}=$ $\left\{\sum_{i=0}^{20}[0, a I] x^{i} \mid a \in Z_{4},{ }^{*},(7,13)\right\} \cup\{([0, a I],[0, d+c I],[0, b I]) \mid a$,
$\left.\left.b, \quad c, \quad d \in Z_{7}, \quad * \quad(3,2)\right\} \cup\left\{\begin{array}{c}{\left[\begin{array}{c}{\left[0, a_{1} I\right]} \\ {\left[0, a_{2}\right]} \\ \vdots \\ {\left[0, a_{8} I\right]}\end{array}\right]}\end{array}\right] a_{i} \in Z_{11}, *,(7,3)\right\}$
$\left.\left.\cup\left\{\begin{array}{lll}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{7} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{9} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{15},(3,7), *\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}]$ ।
a, $\left.b \in Z_{5},(2,3), *\right\}$ be a neutrosophic interval 5-groupoid. We will show how the operation on M is done. Let $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ where $\mathrm{x}=\mathrm{x}_{1} \cup \mathrm{x}_{2} \cup \mathrm{x}_{3} \cup \mathrm{x}_{4} \cup \mathrm{x}_{5}=\left\{[0,5 \mathrm{I}] \mathrm{x}+[0,2 \mathrm{I}] \mathrm{x}^{2}+[0,4 \mathrm{I}]\right\} \cup$
$([0, \quad 2 \mathrm{I}], \quad[0, \quad 2+3 \mathrm{I}], \quad[0, \mathrm{I}]) \quad \cup$
$\left\{\left[\begin{array}{c}{[0, \mathrm{I}]} \\ 0 \\ {[0,2 \mathrm{I}]} \\ 0 \\ {[0,5 \mathrm{I}]} \\ 0 \\ 0 \\ {[0,3 \mathrm{I}]}\end{array}\right]\right\} \quad \cup$
$\left[\begin{array}{ccc}0 & {[0, \mathrm{I}]} & 0 \\ {[0,2 \mathrm{I}]} & 0 & {[0,3 \mathrm{I}]} \\ 0 & {[0,4 \mathrm{I}]} & 0 \\ {[0,5 \mathrm{I}]} & 0 & 0\end{array}\right] \cup\{[0, \mathrm{I}+4]\}$ and
$y=y_{1} \cup y_{2} \cup y_{3} \cup y_{4} \cup y_{5}=\left([0,7 I]+[0,3 I] x^{8}\right) \cup(0,0,[0$,
$6 \mathrm{II}] \cup\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ {[0, \mathrm{I}]} \\ 0 \\ 0 \\ {[0,2 \mathrm{I}]}\end{array}\right] \cup\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & {[0, \mathrm{I}]} \\ {[0,2 \mathrm{I}]} & 0 & 0 \\ 0 & {[0,3 \mathrm{I}]} & 0\end{array}\right] \cup\{[0,3+2 \mathrm{I}]\}$.

Now $\mathrm{x} * \mathrm{y}=\left([0,5 \mathrm{I}] \mathrm{x}=[0,2 \mathrm{I}] \mathrm{x}^{2}+[0,4 \mathrm{I}]\right) \cdot\left([0,7 \mathrm{I}]+[0,3 \mathrm{I}] \mathrm{x}^{8}\right)$
$\cup([0,2 \mathrm{I}],[0,2+3 \mathrm{I}],[0, \mathrm{I}]) \times(0,0,[0,6 \mathrm{I}]) \cup\left[\begin{array}{c}{[0, \mathrm{I}]} \\ 0 \\ {[0,2 \mathrm{I}]} \\ 0 \\ {[0,5 \mathrm{I}]} \\ 0 \\ 0 \\ {[0,3 \mathrm{I}]}\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ {[0, \mathrm{I}]} \\ 0 \\ 0 \\ {[0, \mathrm{I}]}\end{array}\right]$
$\cup\left[\begin{array}{ccc}0 & {[0, \mathrm{I}]} & 0 \\ {[0,2 \mathrm{I}]} & 0 & {[0,3 \mathrm{I}]} \\ 0 & {[0,4 \mathrm{I}]} & 0 \\ {[0,5 \mathrm{I}]} & 0 & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & {[0, \mathrm{I}]} \\ {[0,2 \mathrm{I}]} & 0 & 0 \\ 0 & {[0,3 \mathrm{I}]} & 0\end{array}\right] \cup$
$[0,4+\mathrm{I}] \times[0,3+2 \mathrm{I}]$
$=\left([0,5 \mathrm{I}] *[0,7 \mathrm{I}] \mathrm{x}+[0,2 \mathrm{I}] *[0,7 \mathrm{I}] \mathrm{x}^{2}+[0,4 \mathrm{I}] *[0,7 \mathrm{I}]+[0\right.$,
$\left.5 \mathrm{I}] *[0,3 \mathrm{I}] \mathrm{x}^{9}+[0,2 \mathrm{I}][0,3 \mathrm{I}] \mathrm{x}^{10}+[0,4 \mathrm{I}][0,3 \mathrm{I}] \mathrm{x}^{8}\right) \cup([0,2 \mathrm{I}]$

$\left[\begin{array}{ccc}0 * 0 & {[0, \mathrm{I}] * 0} & 0 * 0 \\ {[0,2 \mathrm{I}] * 0} & 0 * 0 & {[0,3 \mathrm{I}] *[0, \mathrm{I}]} \\ 0 *[0,2 \mathrm{I}] & {[0,4 \mathrm{I}] * 0} & 0 * 0 \\ {[0,5 \mathrm{I}] * 0} & 0 *[0,3 \mathrm{I}] & 0 * 0\end{array}\right] \cup[0 * 0,[4+\mathrm{I}] *(3+2 \mathrm{I})]$
$=[0,6 \mathrm{I}] \mathrm{x}+[0,25 \mathrm{I}] \mathrm{x}^{2}+[0,39 \mathrm{I}]+[0,34 \mathrm{I}] \mathrm{x}^{9}+[0,23 \mathrm{I}] \mathrm{x}^{10}+([0$, $6 \mathrm{I}],[0,6+2 \mathrm{I}],[0, \mathrm{I}])$
$\left[\begin{array}{c}{[0,7 \mathrm{II}]} \\ 0 \\ {[0,3 \mathrm{I}]} \\ 0 \\ {[0,5 \mathrm{I}]} \\ 0 \\ 0 \\ {[0,2 \mathrm{I}]}\end{array}\right] \cup\left[\begin{array}{ccc}0 & {[0,3 \mathrm{I}]} & 0 \\ {[0,6 \mathrm{I}]} & 0 & {[0, \mathrm{I}]} \\ {[0,14 \mathrm{I}]} & {[0,12 \mathrm{I}]} & 0 \\ {[0,0]} & {[0,6 \mathrm{I}]} & 0\end{array}\right] \cup[0,2+3 \mathrm{I}] \in \mathrm{M}_{1} \cup \mathrm{M}_{2}$

$\cup \mathrm{M}_{3} \cup \mathrm{M}_{4} \cup \mathrm{M}_{5}$.

Example 3.13: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}=$

$$
\left\{\sum_{i=0}^{20}[0, a+b I] x^{i} \mid a, b \in Z^{+} \cup\{0\},(3,8), *\right\} \cup\left\{\begin{array}{c}
{\left[0, a_{1}+b_{1} I\right]} \\
{\left[0, a_{2}+b_{2} I\right]} \\
\vdots \\
{\left[0, a_{12}+b_{12} I\right]}
\end{array}\right]
$$

where $\left.\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\} ; 1 \leq \mathrm{i} \leq 40,+,(9,41),{ }^{*}\right\} \cup$
$\left\{\left[\begin{array}{cccc}{\left[0, a_{1}+b_{1} I\right]} & {\left[0, a_{2}+b_{2} I\right]} & \ldots & {\left[0, a_{5}+b_{5} I\right]} \\ {\left[0, a_{6}+b_{6} I\right]} & {\left[0, a_{7}+b_{7} I\right]} & \ldots & {\left[0, a_{10}+b_{10} I\right]} \\ \vdots & \vdots & \vdots & \vdots \\ {\left[0, a_{41}+b_{41} I\right]} & {\left[0, a_{42}+b_{42} I\right]} & \ldots & {\left[0, a_{45}+b_{45} I\right]}\end{array}\right]\right.$ where a_{i}, b_{i}
$\left.\in \mathrm{Z}^{+} \cup\{0\} ; 1 \leq \mathrm{i} \leq 45,(9,41)\right\}$ be a neutrosophic interval 3groupoid\} of infinite order. V contain 3 - subgroups which are not 3 - ideals. V also contains 3-ideals. V has no 3-zero divisors and no 3-units.

Now having defined neutrosophic interval n-groupoid we can proceed onto define quasi structures as in case of n semigroups.

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ where some of the V_{i} 's are neutrosophic interval groupoids and the rest are just interval
groupoids, then we define V to be a quasi neutrosophic interval n-groupoid.

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ where some V_{i} 's are neutrosophic interval groupoids $\mathrm{i}<\mathrm{n}$ and the rest of the groupoids are just neutrosophic groupoids. Then we define V to be a neutrosophic quasi interval groupoid. Take $V=V_{1} \cup V_{2} \cup$ $\ldots \cup \mathrm{V}_{\mathrm{n}}$, where some V_{i} 's are ($\mathrm{i}<\mathrm{n}$) neutrosophic interval groupoids, some V_{j} 's are neutrosophic groupoids ($\mathrm{j}<\mathrm{n}$) some V_{k} 's are interval groupoids $\mathrm{k}<\mathrm{n}$ and the rest are groupoids then we define V to be a quasi neutrosophic quasi interval groupoid.

We will illustrate all these situations by some examples.
Example 3.14: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\left\{\sum_{\mathrm{i}=0}^{8}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{7}, *,(2,5)\right\} \cup
$$

$$
\begin{aligned}
& \left\{\left(\left[0, a_{1}\right],\left[0, a_{2}\right], \ldots,\left[0, a_{12}\right]\right) \mid a \in Z_{9}, *,(6,3)\right\} \cup \\
& \left\{\begin{array}{ccc}
\left\{\begin{array}{ccc}
{\left[0, a_{1}+b_{1} I\right]} & {\left[0, a_{2}+b_{2} I\right]} & {\left[0, a_{3}+b_{3} I\right]} \\
{\left[0, a_{4}+b_{4} I\right]} & {\left[0, a_{5}+b_{5} I\right]} & {\left[0, a_{6}+b_{6} I\right]} \\
\vdots & \vdots & \vdots \\
{\left[0, a_{28}+b_{28} I\right]} & {\left[0, a_{20}+b_{29} I\right]} & {\left[0, a_{30}+b_{30} I\right]}
\end{array}\right] \text { where } a_{i}, b_{i} \in, ~ \\
\left.\mathrm{Z}_{47} *,(40,7)\right\} \cup
\end{array}\right. \\
& \left.\left.\left\{\begin{array}{llll}
{\left[\begin{array}{ccc}
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & {\left[0, a_{3}\right]}
\end{array}\right.} & {\left[0, a_{4}\right]} \\
{\left[0, a_{5}\right]} & {\left[0, a_{6}\right]} & {\left[0, a_{7}\right]} & {\left[0, a_{8}\right]} \\
{\left[0, a_{9}\right]} & {\left[0, a_{10}\right]} & {\left[0, a_{11}\right]} & {\left[0, a_{12}\right]} \\
{\left[0, a_{13}\right]} & {\left[0, a_{14}\right]} & {\left[0, a_{15}\right]} & {\left[0, a_{16}\right]}
\end{array}\right] \right\rvert\, a_{i} \in \mathrm{Z}_{25}, *,(7,11)\right\} \cup \\
& \left\{\left[\begin{array}{c}
{\left[0, a_{1}+b_{1} I\right]} \\
{\left[0, a_{2}+b_{2} I\right]} \\
\vdots \\
{\left[0, a_{9}+b_{9} I\right]}
\end{array}\right] a_{i}, b_{i} \in Z_{50}, *,(2,7)\right\}
\end{aligned}
$$

be a quasi neutrosophic interval 5 -groupoid of finite order.

Example 3.15: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$ $\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{27}, *,(8,11)\right\} \cup$

$$
\left\{\sum_{\mathrm{i}=0}^{7} \mathrm{arx}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{17},{ }^{*},(4,11)\right\} \cup
$$

$$
\left\{\left.\left[\begin{array}{c}
a_{1} \mathrm{I} \\
\mathrm{a}_{2} \mathrm{I} \\
\mathrm{a}_{3} \mathrm{I} \\
\vdots \\
\mathrm{a}_{20} \mathrm{I}
\end{array}\right] \right\rvert\, a_{i} \in \mathrm{Z}_{19}, 1 \leq \mathrm{i} \leq 20, *,(5,14)\right\} \cup
$$

$\left\{\left(\left[0, a_{1}+b_{1} I\right] \ldots\left[0, a_{10}+b_{10} I\right]\right) \mid a_{i}, b_{i} \in Z_{19}, *,(7,11), 1 \leq i \leq\right.$ $10\}$ be a neutrosophic quasi interval 4 -groupoid of finite order.

Example 3.16: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=\{[0$, $\left.\mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{20}, *,(3,13)\right\} \cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{49}, *,(2,17)\right\} \cup$

$$
\left\{\sum_{\mathrm{i}=0}^{20} \mathrm{aIx}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{42}, *,(13,11)\right\} \cup
$$

$$
\left.\left.\begin{array}{c}
\left\{\left.\left\{\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{6} & a_{7} & a_{8} & a_{9} & a_{10} \\
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
a_{16} & a_{17} & a_{18} & a_{19} & a_{20} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25}
\end{array}\right] \right\rvert\, a_{i} \in Z_{21}, *,(3,8), 1 \leq i \leq 25\right\}
\end{array}\right\} \cup\right\}
$$

be a quasi neutrosophic quasi interval 6 -groupoid of finite order.
All properties discussed and described with neutrosophic interval bigroupoids can be derived in case of neutrosophic interval n-groupoids ($n \geq 3$) and obtain a class of neutrosophic interval n-groupoids which are Smarandache strong Bol
(Moufang or P-groupoid or idempotents, alternative and so on). Further all these results can also be extended as in case of quasi n -structures. These are left as exercise to the reader.

We define mixed neutrosophic interval (t, r) groupoid semigroup. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ if t of the V_{i} 's are neutrosophic interval t -groupoid and the rest of the $\mathrm{n}-\mathrm{t}=\mathrm{r}$ of the V_{j} 's are neutrosophic interval r-semigroups then we define V to be a (t, r) mixed neutrosophic interval groupoid - semigroup or mixed neutrosophic interval t - groupoid - r - semigroup or mixed neutrosophic (t, r) groupoid - semigroup. We will give examples of them. We can also define quasi mixed structures.

Example 3.17: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$ $\left\{\sum_{i=0}^{5}[0, a I] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{40},(3,2), *\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{8}, \times\right\} \cup$
$\left\{\begin{array}{cccc}{\left[\begin{array}{cccc}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{10} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{11} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{12} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{20} \mathrm{I}\right]} \\ \vdots & \vdots & & \vdots \\ {\left[0, \mathrm{a}_{91} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{92} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{100} \mathrm{I}\right]}\end{array}\right] \text { where } \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{25} ; 1 \leq \mathrm{i} \leq 100, ~, ~, ~ . ~}\end{array}\right.$
$\times\} \cup\left\{\left(\left[0, a_{1} I\right], \ldots,\left[0, a_{40} I\right]\right) \mid a_{i} \in Z_{7}, *,(3,2)\right\} \cup\{$ All 7×8 neutrosophic interval matrices with intervals of the form [0, aI] with $\left.\mathrm{a} \in \mathrm{Z}_{42}, *,(19,13)\right\} \cup\left\{\left[\begin{array}{c}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ \vdots \\ {\left[0, \mathrm{a}_{20} \mathrm{I}\right]}\end{array}\right] \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{25}, *,(12,13)\right\}$ be a mixed neutrosophic interval $(4,2)$ groupoid - semigroup or mixed neutrosophic interval 4-groupoid-2-semigroup.

Example 3.18: Let $G=G_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=$ $\left\{\sum_{i=0}^{21}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{7}, *,(3,2)\right\} \cup\{([0, \mathrm{aI}],[0, \mathrm{bI}],[0, \mathrm{c}]) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}$
$\left.\in \mathrm{Z}_{19}, *,(3,11)\right\} \cup\left\{\left.\left[\begin{array}{c}{\left[0, a_{1}+\mathrm{b}_{1} \mathrm{I}\right]} \\ {\left[0, a_{2}+\mathrm{b}_{2} \mathrm{I}\right]} \\ \vdots \\ {\left[0, a_{9}+\mathrm{b}_{9} \mathrm{I}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}} \in \mathrm{Z}_{17}, *, 1 \leq \mathrm{i} \leq 9 ;(9,6)\right\}$
$\left.\cup\left\{\begin{array}{lll}{\left[\begin{array}{lll}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{7} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{9} \mathrm{I}\right]}\end{array}\right]}\end{array}\right] \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{12}, *,(5,7)\right\} \quad \cup$ $\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\}$ be a mixed neutrosophic interval
$(4,1)$ - groupoid - semigroup of infinite order.
Now having seen examples of mixed neutrosophic interval (r, t) groupoid - semigroups we can introduce the quasi n structure in them as in case of other n-structures. We will give examples of them which show how they are built and how they function.

Example 3.19: Let $M=M_{1} \cup M_{2} \cup M_{3} \cup M_{4} \cup M_{5} \cup M_{6}=$ $\left\{[0, a] \mid a \in Z_{7}, *,(3,6)\right\} \cup\left\{[0, a \mathrm{a}] \mid a \in Z_{47}, x\right\} \cup$ $\left\{\left.\left[\begin{array}{ll}{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} \\ {\left[0, a_{3}\right]} & {\left[0, a_{4}\right]} \\ {\left[0, a_{5}\right]} & {\left[0, a_{6}\right]} \\ {\left[0, a_{7}\right]} & {\left[0, a_{8}\right]}\end{array}\right] \right\rvert\, a_{i} \in Z_{40},+, 1 \leq i \leq 8\right\} \cup\left\{\left(\left[0, a_{1} I\right],\left[0, a_{2} I\right],[0\right.\right.$, $\left.\left.\left.\mathrm{a}_{3} I\right],\left[0, \mathrm{a}_{4} I\right]\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{19}, *,(3,11), 1 \leq \mathrm{i} \leq 4\right\} \cup$

$$
\left.\left.\begin{array}{l}
\left\{\left.\left[\begin{array}{cc}
{\left[0, a_{1}+b_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2}+\mathrm{b}_{2} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{3}+\mathrm{b}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4}+\mathrm{b}_{4} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}} \in \mathrm{Z}_{12}, \times\right\}
\end{array}\right\} \cup\right\} \text {, }\left\{\begin{array}{c}
\left.\left.\left[\begin{array}{c}
{\left[0, \mathrm{a}_{1}+\mathrm{b}_{1} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{2}+\mathrm{b}_{2} \mathrm{I}\right]} \\
\vdots \\
{\left[0, \mathrm{a}_{12}+\mathrm{b}_{12} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}} \in \mathrm{Z}_{18},(3,11), *, 1 \leq \mathrm{i} \leq 12\right\}
\end{array}\right.
$$

be a mixed quasi neutrosophic interval $(3,3)$ groupoid semigroup of finite order.

Example 3.20: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \ldots \cup \mathrm{~T}_{8}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{12}\right.$, $\times\} \cup\left\{[0, a+b I] \mid a, b \in Z_{12},(3,5), *\right\} \cup\left\{\left.\left[\begin{array}{c}{\left[0, a_{1} I\right]} \\ {\left[0, a_{2} I\right]} \\ \vdots \\ {\left[0, a_{7} I\right]}\end{array}\right] \right\rvert\, a_{i} \in Z_{12},+\right\}$

$$
\cup\left\{\left.\left[\begin{array}{ccc}
{\left[0, a_{1}+b_{1} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{8}+\mathrm{b}_{8} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{9}+\mathrm{b}_{9} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{16}+\mathrm{b}_{16} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, a, b \in \mathrm{Z}_{12}, *,(1,11)\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cccc}
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & {\left[0, a_{3}\right]} & {\left[0, a_{4}\right]} \\
{\left[0, a_{5}\right]} & {\left[0, a_{6}\right]} & {\left[0, a_{7}\right]} & {\left[0, a_{8}\right]} \\
{\left[0, a_{9}\right]} & {\left[0, a_{10}\right]} & {\left[0, a_{11}\right]} & {\left[0, a_{12}\right]} \\
{\left[0, a_{13}\right]} & {\left[0, a_{14}\right]} & {\left[0, a_{15}\right]} & {\left[0, a_{16}\right]}
\end{array}\right] \right\rvert\, a_{i} \in \mathrm{Z}_{12}, \times, 1 \leq \mathrm{i} \leq 16\right\} \cup
$$

$$
\left\{\sum_{\mathrm{i}=0}^{20}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{12},+\right\} \cup\left\{\left(\left[0, \mathrm{a}_{1}+\mathrm{b}_{1} \mathrm{I}\right]\left[0, \mathrm{a}_{2}+\mathrm{b}_{2} \mathrm{I}\right],\left[0, \mathrm{a}_{3}+\mathrm{b}_{3} \mathrm{I}\right]\right) \mid\right.
$$ $\left.a_{i}, b_{i} \in Z_{12},(0,7), *\right\} \cup\left\{\sum_{i=0}^{7}[0, a] x^{i} \mid a \in Z_{12},+\right\}$ be a mixed quasi neutrosophic interval $(5,3)$ semigroup - groupoid of finite order.

Example 3.21: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \ldots \cup \mathrm{~V}_{7}$ $=\left\{\sum_{\mathrm{i}=0}^{12} \mathrm{a}_{\mathrm{i}} \mathrm{Ix}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{24},+\right\} \cup\left\{\sum_{\mathrm{i}=0}^{7}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{24},+\right\} \cup\{[0, \mathrm{aI}+\mathrm{b}]$ $\left.\mid a, b \in Z_{24},(11,0), *\right\} \cup$

$$
\left\{\left.\left[\begin{array}{cc}
{\left[0, a_{1}+b_{1} I\right]} & {\left[0, a_{2}+b_{2} I\right]} \\
{\left[0, a_{3}+b_{3} I\right]} & {\left[0, a_{4}+b_{4} I\right]} \\
\vdots & \vdots \\
{\left[0, a_{11}+b_{11} I\right]} & {\left[0, a_{12}+b_{12} I\right]}
\end{array}\right] \right\rvert\, a_{i}, b_{i} \in Z_{24},(0,5), *\right\} \cup
$$

$$
\left\{\left.\left[\begin{array}{ccc}
a_{1} I & a_{2} I & a_{3} I \\
a_{4} I & a_{5} I & a_{6} I \\
a_{7} I & a_{8} I & a_{9} I
\end{array}\right] \right\rvert\, a \in Z_{20}, \times\right\} \cup\left\{\left(\left[0, a_{1} I\right], \ldots,\left[0, a_{20} I\right]\right) \mid a_{i} \in\right.
$$

$\left.\mathrm{Z}_{12},(11,7), *\right\} \cup\left\{\mathrm{Z}_{20} \mathrm{I}, *,(0,11)\right\}$ be a mixed neutrosophic quasi interval $(3,4)$ semigroup - groupoid of finite order which is non commutative.

Example 3.22: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \ldots \cup \mathrm{M}_{5}=\left\{\mathrm{Z}_{40} \mathrm{I}\right.$, *, (7, 8) $\}$ $\cup\left\{\mathrm{Z}_{40} \mathrm{I}, \times\right\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{40}, *,(3,11)\right\} \cup\{$ all 5×5 matrices with entries from $\mathrm{Z}_{40} \mathrm{I}$ under matrix multiplication $\} \cup$ \{all 3×7 neutrosophic interval matrices with intervals of the form $\left[0\right.$, al] where $a \in Z_{40}$ and $\left.(1,29), *\right\}$ be a mixed neutrosophic quasi interval $(3,2)$ groupoid - semigroup of finite order which is non commutative.

Example 3.23: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2} \cup \ldots \cup \mathrm{P}_{9}=$
$\left\{\sum_{i=0}^{12}[0, a+b I] x^{i} \mid a, b \in Z_{7},+\right\} \cup\left\{\sum_{i=0}^{27}[0, a] \mathrm{x}^{\mathrm{i}} \mid a \in \mathrm{Z}_{15},+\right\} \cup\left\{\mathrm{Z}_{15}\right.$, *, $(3,9)\} \cup\left\{Z_{15} \mathrm{I},(4,0), *\right\} \cup\{7 \times 7$ neutrosophic interval matrices with intervals of the form $[0, a+b I]$ with $a, b \in Z_{7}$ under matrix multiplication $\} \cup\{$ all 3×7 matrices with entries from $\left.\mathrm{Z}_{12}, *,(0,7)\right\} \cup\left\{\left([0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{28},(7,8), *\right\} \cup\{([0\right.$, $\left.\left.\left.a_{1}\right], \ldots,\left[0, a_{10}\right]\right) \mid a_{i} \in Z_{11}, \times\right\} \cup\{$ all 5×5 matrices with entries from $\left.Z_{12}, \times\right\}$ be a mixed quasi neutrosophic quasi interval $(5,4)$ semigroup - groupoid of finite order.

Example 3.24: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \ldots \cup \mathrm{M}_{7}=$ $\left\{\sum_{i=0}^{20}[0, a I] x^{i} \mid a \in Z_{18},+\right\} \cup\left\{\sum_{i=0}^{8} a_{i} \mathrm{x}^{i} \mid a_{i} \in Z_{15},+\right\} \cup\{[0, a+b I] \mid a$, $\left.\mathrm{b} \in \mathrm{Z}_{12},(9,0), *\right\} \cup\left\{\mathrm{Z}_{15},(11,4), *\right\} \cup\{$ all 4×4 interval matrices with intervals of the form [0, a] with $a \in Z_{11}$ under matrix multiplication $\} \cup\{3 \times 6$ interval matrices with intervals of the form $\left.[0, \mathrm{a}] \mathrm{a} \in \mathrm{Z}_{7},(2,5), *\right\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{19}, \times\right\}$ be a mixed quasi neutrosophic quasi interval semigroup groupoid of finite order.

Now having seen examples of these mixed structures one can define Smarandache mixed neutrosophic interval nstructures, sub n -structures, n-ideals, n-units and n-zero divisors and their Smarandache analogoue with simple appropriate modification all these tasks are left to the reader.

Now we proceed onto define neutrosophic interval ngroups, describe their quasi analogue and mixed n -structures.

DEFINITION 3.3: Let $G=G_{l} \cup G_{2} \cup \ldots \cup G_{n}(n \geq 3)$ be such that each G_{i} is a neutrosophic interval group with $G_{i} \nsubseteq G_{j}$ or G_{j} $\nsubseteq G_{i}$ if $i \neq j ; 1 \leq i, j \leq n . G$ with the inherited operations from each G_{i} component wise is defined as the neutrosophic interval n-group or neutrosophic n-interval group.

We will illustrate this situation by some examples.
Example 3.25: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\left\{[0, \mathrm{al}] \mid \mathrm{a} \in \mathrm{Z}_{15}\right.$, $+\} \cup\left\{[0, a+b I] \mid a, b \in Z_{19},+\right\} \cup\left\{[0, a I] \mid a \in Z_{5} \backslash\{0\}, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{43} \backslash\{0\}, \times\right\}$ be the neutrosophic interval 4-group of finite order. We can define 4 order as $15 \times 19 \times 4 \times 42$.

Example 3.26: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Q}^{+}, \times\right\} \cup$ $\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{25},+\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{53} \backslash\{0\}, \times\right\}$ be a neutrosophic interval 3-group or neutrosophic interval trigroup of infinite order.

It is both important interesting to note that all results regarding finite groups are true in case of neutrosophic interval n -groups of finite n -order. That is to be more specific, Lagrange's theorem, Cayley theorem, Cauchy theorem and Sylow theorems are true in case of finite neutrosophic interval n-groups.

The proofs of these theorems are also straight forward and simple and hence left as an exercise to the reader.

Example 3.27: Let $G=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{6}\right.$, $+\} \cup\left\{[0, a I] \mid a \in Z_{7} \backslash\{0\}, \times\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{13} \backslash\{0\}, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{10},+\right\}$ be a neutrosophic interval four group of order 5460.

Consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{0,2,4\}$, $+\} \cup\left\{[0, a I] \mid \mathrm{a} \in\{1,6\} \subseteq \mathrm{Z}_{7} \backslash\{0\}, \times\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{1,12\}$ $\left.\subseteq \mathrm{Z}_{13} \backslash\{0\}, \times\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{0,2,4,6,8\} \subseteq \mathrm{Z}_{10},+\right\} \subseteq \mathrm{G}_{1} \cup$ $\mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}$ be a neutrosophic interval 4-subgroup of G. Clearly o $(\mathrm{H})=3 \times 2 \times 2 \times 5=60$ and $60 / 5460$.

Thus we can say Lagrange's theorem for finite group is true in case this finite interval n-group $G=G_{1} \cup G_{2} \cup G_{3} \cup G_{4}$. Likewise all results can be verified and proved. We say if $\mathrm{G}=$ $\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \ldots \cup \mathrm{G}_{\mathrm{n}}$ is such that some G_{i} 's are neutrosophic interval groups and the rest just neutrosophic groups then we define G to be a neutrosophic quasi interval n -group. Also if G $=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ be a n-group such that some of the $G_{i}{ }^{\prime}$'s are neutrosophic interval group and the rest just interval groups then we define G to be a quasi neutrosophic interval n -group. Suppose $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ be a n-group in which some G_{i} 's are neutrosophic interval group some G_{j} 's are neutrosophic groups the rest interval groups or groups then we define G to be a quasi neutrosophic quasi interval n-group. We give some examples of them.

Example 3.28: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\{[0, \mathrm{aI}] \mid \mathrm{a}$ $\left.\in \mathrm{Z}_{14},+\right\} \cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{15},+\right\} \cup\left\{\mathrm{Z}_{19} \mathrm{I} \backslash\{0\}, \times\right\} \cup\{\mathrm{QI},+\} \cup$ $\{\mathrm{R} \backslash\{0\}, \times\}$ be a quasi neutrosophic quasi interval 5 -group of infinite order.

Example 3.29: Let $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{27}\right.$, $+\} \cup\left\{[0, a] \mid a \in Z_{13} \backslash\{0\}, \times\right\} \cup\left\{Z_{45} \mathrm{I},+\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{28}\right.$, $+\}$ be a quasi neutrosophic quasi interval 4 -group of finite order.

Example 3.30: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \ldots \cup \mathrm{G}_{5}=\left\{[0, \mathrm{al}] \mid \mathrm{a} \in \mathrm{Z}_{15}\right.$, $+\} \cup\left\{\left(\left[0, a_{1} I\right], \ldots,\left[0, a_{5}\right]\right) \mid a_{i} \in Z_{27},+, 1 \leq i \leq 5\right\} \cup\left\{\left(\left[0, a_{1}\right]\right.\right.$, $\left.\left[0, a_{2}\right], \ldots,\left[0, a_{9}\right] \mid a_{i} \in Z_{11} \backslash\{0\}, 1 \leq i \leq 9, \times\right\} \cup$ $\left\{\left[\begin{array}{c}{\left[0, a_{1} \mathrm{I}\right]} \\ \vdots \\ {\left[0, \mathrm{a}_{5} \mathrm{I}\right]}\end{array}\right] \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{40} ; 1 \leq \mathrm{i} \leq 5,+\right\} \cup\left\{\sum\left[0, \mathrm{a}_{\mathrm{i}}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{20},+\right\}$ be a quasi neutrosophic interval 5 -group of finite order.

Example 3.31: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40}\right.$, $+\} \cup\left\{Z_{25} I,+\right\} \cup\left\{\left(a_{1}, \ldots, a_{12}\right) \mid a_{i} \in Z_{29} I \backslash\{0\}, \times\right\} \cup$
$\left\{\sum_{\mathrm{i}=0}^{7}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{11},+\right\}$ be a neutrosophic quasi interval 4-group of finite order.

We can define mixed structures like n-group - groupoid ngroup - semigroup and n-group - groupoid - semigroup. We give only one example of each as it is simple and direct.

Example 3.32: Let $G=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5} \cup \mathrm{G}_{6}=\{[0$, aI] $\left.\mid a \in Z_{15}, \quad \times\right\} \cup\left\{\sum_{i=0}^{10}\left[0, a_{i}\right] x^{i} \mid a_{i} \in Z_{10},+\right\} \cup$ $\left\{\left.\left[\begin{array}{c}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} \\ \vdots \\ {\left[0, \mathrm{a}_{10} \mathrm{I}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{40}, 1 \leq \mathrm{i} \leq 10,+\right\} \cup\{$ all 10×10 neutrosophic interval matrices with intervals of the form $[0, a+b I]$ with $a, b \in$ Z_{6} under matrix multiplication $\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{18}, \times\right\} \cup$ $\left\{\left[\begin{array}{cc}{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} \\ {[0, \mathrm{cI}]} & {[0, \mathrm{dI}]}\end{array}\right]=\mathrm{A}\left|\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Z}_{15}, \mathrm{~A}\right| \neq 0, \times\right\}$ be a mixed neutrosophic interval $(3,3)$ semigroup - group of finite order.

Example 3.33: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=$

$$
\begin{aligned}
& \left\{\sum_{\mathrm{i}=0}^{20}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{45},+\right\} \cup\left\{[0, \mathrm{aI}+\mathrm{b}] \mid \mathrm{a}, \mathrm{~b} \in \mathrm{Z}_{40},{ }^{*},(0,11)\right\} \cup \\
& \left\{\left.\left[\begin{array}{c}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
\vdots \\
{\left[0, \mathrm{a}_{9} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{20},+, 1 \leq \mathrm{i} \leq 9\right\} \cup \\
& \left\{\begin{array}{cc}
\left.\left.\left[\begin{array}{cc}
{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} \\
{[0, \mathrm{cI}]} & {[0, \mathrm{dI}]}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7}, *,(0,5)\right\}
\end{array}\right.
\end{aligned}
$$

be a mixed neutrosophic interval $(2,2)$ group - groupoid of finite order.

Example 3.34: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \ldots \cup \mathrm{G}_{7}=\{([0, \mathrm{aI}] \mid \mathrm{a}$ $\left.\in \mathrm{Z}_{22},+\right\} \cup\left\{\left[0, \mathrm{a}_{1} \mathrm{I}\right], \ldots,\left[0, \mathrm{a}_{12} \mathrm{I}\right]\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{40},{ }^{*},(3,7), 1 \leq \mathrm{i} \leq$ $12\} \cup\left\{[0, a+b I] \mid a, b \in Z_{12}, \times\right\} \cup\left\{\left(\left[0, a_{1} I\right], \ldots,\left[0, a_{15} I\right]\right) \mid a_{i} \in\right.$ $\left.\mathrm{Z}_{43} \backslash\{0\} ; 1 \leq \mathrm{i} \leq 15, \times\right\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{29}, *,(8,11)\right\} \cup$ $\{$ All 15×15 neutrosophic interval matrices with intervals of the form [$0, \mathrm{aI}$] with $a \in \mathrm{Z}_{42}$ under matrix multiplication $\} \cup$
$\left\{\left.\left[\begin{array}{c}{\left[0, a_{1} \mathrm{I}\right]} \\ {\left[0, a_{2} \mathrm{I}\right]} \\ \vdots \\ {\left[0, \mathrm{a}_{12} \mathrm{I}\right]}\end{array}\right]\right|_{a_{i} \in \mathrm{Z}_{25},+, 1 \leq \mathrm{i} \leq 12}\right\}$ be a mixed neutrosophic interval (3, 2, 2) group - groupoid - semigroup.

Quasi n-structures can also be defined and analysed by the interested reader. Also all results can be proved with direct and simple modifications some of these mixed structures are also non associative . We now define n -loops using neutrosophic intervals and give examples of mixed n -structures using loops.

DEFINITION 3.4: Let $L=L_{l} \cup L_{2} \cup \ldots \cup L_{n}$, be such that each L_{i} is a neutrosophic interval loop where $L_{i} \nsubseteq L_{j}, L_{j} \nsubseteq L_{i}, i \neq j, 1$ $\leq i, j \leq n$; on L with the inherited operation from each $L_{i} ; 1 \leq i \leq$ n. We define L to be a neutrosophic interval n-loop.

Example 3.35: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\{e, 1,2, \ldots, 29\}, *, 9\} \cup\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots, 31\}, 8$, * $\} \cup\{[0, a I] \mid a \in\{e, 1,2, \ldots, 29\}, 19, *\} \cup\{[0, a+b I] \mid a \in\{e$, $1,2, \ldots, 49\}, 9, *\} \cup\left\{[0, a+b I] \mid a, b \in Z_{5}, *, 3\right\}$ be a neutrosophic interval 5-loop of finite order.

Example 3.36: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3}=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1$, $2, \ldots, 17\}, 9, *\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 45\}, 23, *\} \cup\{[0$, $\mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 57\}, 29, *\}$ be a neutrosophic interval 3-loop.

Clearly L is a commutative 3-loop.
It is pertinent to mention here that all properties studied and described on neutrosophic interval biloops can be extended to n loop without any difficulty. We can define quasi n-structures as
in case of groups, semigroups etc. This task is also left for the reader as an exercise.

However we supply a few examples.
Example 3.37: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \ldots \cup \mathrm{~L}_{6}=\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}$, $1,2, \ldots, 27\}, 8, *\} \cup\{[0, a \mathrm{a}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 43\}, 25, *\}$ $\cup\{[0, a] \mid a \in\{e, 1,2, \ldots, 25\}, 8, *\} \cup\{[0, a I] \mid a \in\{e, 1,2$, $\ldots, 53\}, 28, *\} \cup\{[0, a \mathrm{a}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 29\}, *, 12\} \cup$ $\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 23\}, 8, *\}$ be a quasi neutrosophic interval 6-loop of finite order.

Example 3.38: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \ldots \cup \mathrm{~L}_{7}=\{[0$, $\mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 23\}, 9, *\} \cup\{\mathrm{aI} \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $29\}, *, 23\} \cup\{a I \mid a \in\{e, 1,2, \ldots, 49\}, 9, *\} \cup\{[0, a I] \mid a \in$ $\{\mathrm{e}, 1,2, \ldots, 81\}, 41, *\} \cup\{\mathrm{aI} \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 25\}, 13, *\} \cup$ $\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots, 7\}, 3, *\} \cup\{[0, a I] \mid a \in\{e, 1,2$, $\ldots, 17\}, 9, *\}$ be a neutrosophic quasi interval 7 -loop of finite order.

Example 3.39: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \ldots \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1$, $2, \ldots, 29\}, 23, *\} \cup\left\{\mathrm{L}_{27}^{(8)}\right\} \cup\{[0, \mathrm{aI}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots$, $57\}, *, 5\} \cup\{a I \mid a \in\{e, 1,2, \ldots, 19\}, *, 8\} \cup\{[0, a+b I] \mid a, b$ $\left.\in\{e, 1,2, \ldots, 21\},{ }^{*}, 11\right\}$ be a quasi neutrosophic quasi interval 5 -loop of finite order.

We can also define mixed n-structures. We only give examples of them.

Example 3.40: L Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5} \cup \mathrm{~L}_{6}=\{[0$, aI $]$ $\left.\mid \mathrm{a} \in \mathrm{Z}_{240},+\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 23\}, *, 9\} \cup\{[0$, $\left.\mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{25},+\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 27\}$, *, $11\} \cup\left\{[0, a I] \mid a \in Z_{23} \backslash\{0\}, \times\right\} \cup\{[0, a I] \mid a \in\{e, 1,2, \ldots$, $65\}, *, 3\}$ be a mixed neutrosophic interval $(3,3)$ loop-group of finite order.

Example 3.41: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \ldots \cup \mathrm{M}_{5}=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}$, $\mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 23\}, 8, *\} \cup\left\{[0, \mathrm{a}+\mathrm{b}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{23}, \times\right\} \cup\{[0$, aI] $\mid a \in\{e, 1,2, \ldots, 17\}, 9, *\} \cup\left\{\left[0, a_{1}+b_{1} I\right], \ldots,\left[0, a_{8}+b_{8} I\right] \mid\right.$ $\left.\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}} \in \mathrm{Z}_{49}, *, 9\right\} \cup\{$ all 6×6 neutrosophic interval matrices
with intervals of the form $[0, \mathrm{a}+\mathrm{bI}]$ where $\mathrm{a}, \mathrm{b} \in \mathrm{Z}_{8}$ under matrix multiplication be the mixed neutrosophic interval $(3,2)$ loop - semigroup.

Example 3.42: Let $T=T_{1} \cup \mathrm{~T}_{2} \cup \ldots \cup \mathrm{~T}_{5}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}$, $1,2, \ldots, 27\}, 8, *\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{45}, *,(9,8)\right\} \cup\{[0, \mathrm{aI}+\mathrm{b}] \mid$ $a, b \in\{e, 1,2, \ldots, 43\}, *, 9\} \cup\left\{\left[0, a_{1} I\right], \ldots,\left[0, a_{12} I\right] \mid a_{i} \in Z_{20}\right.$, $(3,7), *, 1 \leq i \leq 12\} \cup\left\{\left(\left[0, a_{1} I\right], \ldots,\left[0, a_{6} I\right]\right) \mid a_{i} \in\{e, 1,2, \ldots\right.$, $23\}, *, 8,1 \leq \mathrm{i} \leq 6\}$ be a neutrosophic interval $(3,2)$ loop groupoid of finite order.

Example 3.43: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \ldots \cup \mathrm{~L}_{9}=\{[0, \mathrm{a}+\mathrm{bI}] \mid$ $a, b \in\{e, 1,2, \ldots, 29\}, 9, *\} \cup\left\{\sum_{i=0}^{10}[0, a I] x^{i} \mid a \in Z_{10},+\right\} \cup\{([0$, $\left.\left.\left.a_{1} I\right], \ldots,\left[0, a_{10} I\right]\right) \mid a_{i} \in Z_{15}, 1 \leq i \leq 10, \times\right\} \cup\left\{\left(\left[0, a_{1} I\right], \ldots,[0\right.\right.$, $\left.\left.a_{12} I\right]\right)$ where $\left.a_{i} \in Z_{17},(8,9), *\right) \cup\left\{\left(\left[0, a_{1} I\right], \ldots,\left[0, a_{20} I\right]\right) \mid a_{i} \in\right.$ $\left.Z_{17} \backslash\{0\}, \times\right\} \cup\left\{\left(\left[0, a_{1} I\right], \ldots,\left[0, a_{12} I\right]\right)^{t} \mid a_{i} \in\{e, 1,2, \ldots, 23\}, 9\right.$, *\} $\cup\{$ all 3×3 neutrosophic interval matrices of the form [0 , $\mathrm{a}+\mathrm{bI}$] where $\mathrm{a}, \mathrm{b} \in \mathrm{Z}_{12}$ under matrix multiplication $\} \cup$ $\left\{\sum_{i=0}^{\infty}[0, a+b I] x^{i} \mid a, b \in Z^{+} \cup\{0\}, \times\right\} \cup\{[0, a I] \mid a \in\{e, 1,2, \ldots$, $47\}, 25$, *\} be a mixed neutrosophic interval $(3,2,3,1)$ loop group - semigroup - groupoid of infinite order.

Now we can study the substructures of these mixed nstructures. Further quasi n-structures can be defined and described by the reader.

Now we can define n -rings.
DEFINITION 3.5: Let $R=R_{l} \cup R_{2} \cup \ldots \cup R_{n}$, where each R_{i} is a neutrosophic interval ring such that $R_{i} \nsubseteq R_{j}$ or $R_{j} \nsubseteq R_{i}$, if $i \neq j$, $1 \leq i, j \leq n . R$ inherits the operation from each R_{i} carried out componentwise. R is defined as the neutrosophic interval n ring.

We give examples of them.
Example 3.44: Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2} \cup \mathrm{R}_{3} \cup \mathrm{R}_{4} \cup \mathrm{R}_{5}=\{[0, \mathrm{aI}] \mid \mathrm{a}$ $\left.\in Z_{25},+, \times\right\} \cup\left\{[0, a+b I] \mid a, b \in Z_{47},+, x\right\} \cup\left\{\left(\left[0, a_{1} I\right],\left[0, a_{2} I\right]\right.\right.$,
$\left.\left.\ldots,\left[0, a_{8} I\right]\right) \mid a_{i} \in Z_{50},+, \times, 1 \leq i \leq 8\right\} \cup\left\{\left(\left[0, a_{1}+b_{1} I\right],\left[0, a_{2}+\right.\right.\right.$ $\left.\left.\left.\mathrm{b}_{2} \mathrm{I}\right], \quad\left[0, \mathrm{a}_{3}+\mathrm{b}_{3} \mathrm{I}\right]\right) \quad \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{220},+, \times ; 1 \leq \mathrm{i} \leq 3\right\} \cup$ $\left\{\sum_{i=0}^{\infty}[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40},+, \times\right\}$ be a neutrosophic interval 5-ring.

Example 3.45: Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2} \cup \mathrm{R}_{3} \cup \mathrm{R}_{4}=$ $\left\{\left.\left[\begin{array}{ccc}{\left[0, a_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{7} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{9} \mathrm{I}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{12}, 1 \leq \mathrm{i} \leq 9,+, \times\right\} \quad \cup \quad\{([0$, $\left.\left.a_{1} I+b_{1}\right],\left[0, a_{2} I+b_{2}\right],\left[0, a_{3} I+b_{3}\right],\left[0, a_{4} I, b_{4}\right],\left[0, a_{5} I+b_{5}\right]\right) \mid a_{i}, b_{i}$ $\left.\in \mathrm{Z}_{15}, 1 \leq \mathrm{i} \leq 5,+, \times\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}}\right] \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{20},+, \times\right\} \cup\{[0, \mathrm{aI}+\mathrm{b}] \mid$
$\left.\mathrm{a}, \mathrm{b} \in \mathrm{Z}_{18},+, \times\right\}$ be a neutrosophic interval 4-ring. R has zero divisors. R is a Smarandache 4-ring. R has idempotents and units.

Example 3.46: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\left.\mathrm{Z}_{19}, \times,+\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{17},+, \times\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{11},+, \times\right\}$ $\cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{7},+, \times\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{43},+, \times\right\}$ be a neutrosophic interval 5-ring. S has no 5-zero divisors or 5idemponents. Infact we call S a neutrosophic 5-field.

THEOREM 3.2: Let $R=R_{1} \cup R_{2} \cup R_{3} \cup \ldots \cup R_{n}=\{[0, a] \mid a \in$ $\left.Z_{p_{1}},+, x\right\} \cup\left\{[0, a I] \mid a \in Z_{p_{2}},+, x\right\} \cup \ldots \cup\{[0, a I] \mid a \in$ $\left.Z_{p_{n}},+, x\right\}$ where $p_{1}, p_{2}, \ldots, p_{n}$ are n-distinct primes. R is a neutrosophic interval n-field.

The proof is direct and hence left as an exercise to the reader.

THEOREM 3.3: Let $R=R_{1} \cup R_{2} \cup R_{3} \cup \ldots \cup R_{n}=\{[0, a] \mid a \in$ $\left.Z_{n_{1}},+, x\right\} \cup\left\{[0, a I] \mid a \in Z_{n_{2}},+, x\right\} \cup \ldots \cup\left\{[0, a I] \mid a \in Z_{n_{n}}\right.$, $+, x\}$ where n_{l}, \ldots, n_{n} are n-distinct composite numbers of the form $2 p_{i}=n_{i} ; i=1,2, \ldots, n . R$ is a Smarandache neutrosophic interval n-ring.

This proof is also direct and hence left as an exercise to the reader.

Note $\mathrm{T}=\left\{\left[0, \mathrm{p}_{1}\right],[0,0]\right\} \cup \ldots \cup\left\{\left[0, \mathrm{p}_{\mathrm{n}}\right],[0,0]\right\} \subseteq \mathrm{R}$ is a neutrosophic interval n-field hence T is a Smarandache neutrosophic n-ring.

Example 3.47: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=\{[0, a I] \mid a \in$ $\left.\mathrm{Z}_{6}, \times,+\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{10},+, \times\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{14},+, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{22},+, \times\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{26},+, \times\right\}$ be a neutrosophic interval 5-ring. S is a Smarandache neutrosophic interval 5-ring. $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2} \cup \mathrm{P}_{3} \cup \mathrm{P}_{4} \cup \mathrm{P}_{5}=\{[0,3 \mathrm{I}], 0,+, \times\}$ $\cup\{0,[0,3 \mathrm{I}],+, \times\} \cup\{[0,7 \mathrm{I}], 0,+, \times\} \cup\{[0,11 \mathrm{I}], 0,+, \times\} \cup$ $\{[0,13 \mathrm{I}], 0,+, \times\} \subseteq \mathrm{S}$ is a neutrosophic interval 5-field; hence S is a Smarandache neutrosophic interval 5-ring.

Example 3.48: Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2} \cup \mathrm{R}_{3} \cup \mathrm{R}_{4}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{12}\right.$, $+, \times\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{30},+, \times\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{42},+, \times\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{66},+, \times\right\}$ be a neutrosophic interval 4-ring. R is a Smarandache neutrosophic interval 4-ring. For $T=T_{1} \cup T_{2} \cup$ $\mathrm{T}_{3} \cup \mathrm{~T}_{4}=\{[0,4 \mathrm{I}],[0,8 \mathrm{I}], 0,+, \times\} \cup\{[0,10 \mathrm{I}],[0,20 \mathrm{I}], 0,+, \times\}$ $\cup\{[0,14 \mathrm{I}],[0,28 \mathrm{I}], 0,+, \times\} \cup\{[0,22 \mathrm{I}],[0,44 \mathrm{I}], 0,+, \times\} \subseteq \mathrm{R}$ $=R_{1} \cup R_{2} \cup R_{3} \cup R_{4}$ is a neutrosophic interval 4-field. So R is a Smarandache neutrosophic interval 4-ring.

We can define in case of neutrosophic interval n-rings the notion of n-subrings and n-ideals. This task is simple and hence left as an exercise to the reader.

THEOREM 3.4: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup \ldots \cup S_{n}=\{[0, a I] \mid a \in$ $\left.Z_{p_{1}},+, x\right\} \cup\left\{[0, a I] \mid a \in Z_{p_{2}},+, x\right\} \cup \ldots \cup\{[0, a I] \mid a \in$ $Z_{p_{n}},+, x j$ be a neutrosophic interval n-ring where p_{j} 's are primes for $j=1,2, \ldots, n$. S has no n-ideal and no n-subrings.

The proof is direct and hence is left as an exercise to the reader.

The major hint to be taken is that each $S_{i} \cong Z_{p_{i}}$ so is a field.
We cannot get using these types of neutrosophic intervals a ring of characteristic zero.

However we can find polynomial neutrosophic interval rings of the form $\sum_{i=0}^{\infty}\left[0, a_{i} I\right] x^{i}$ or $\sum_{i=0}^{\infty}\left[0, a_{i}+b_{i} I\right] x^{i}$ where $a_{i}, b_{i} \in$ $\mathrm{Z}_{\mathrm{n}}, \mathrm{n}<\infty$. We also can get the neutrosophic interval matrix ring using square neutrosophic interval matrices, the later ring is non commutative. Almost all properties can be derived without any difficulty in case of these neutrosophic interval n-rings.

Example 3.49: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5} \cup S_{6}$
$=\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}} \in \mathrm{Z}_{25},+, \times\right\} \cup\{$ All 2×2 neutrosophic intervals of the form $[0, a+b I]$ where $\left.a, b \in Z_{10},+, \times\right\} \cup\{([0$, $\left.\left.\mathrm{a}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2} \mathrm{I}\right], \ldots,\left[0, \mathrm{a}_{12} \mathrm{I}\right] \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{15},+, \times ; 1 \leq \mathrm{i} \leq 12\right\} \cup$ $\left\{\sum_{i=0}^{\infty}\left[0, a_{i} I\right] x^{i} \mid a_{i} \in Z_{30},+, \times\right\} \cup\left\{[0, a+b I] \mid a, b \in Z_{35},+, \times\right\} \cup\{5$ $\times 5$ upper triangular neutrosophic interval matrices with intervals of the form $[0, \mathrm{a}+\mathrm{bI}]$ with a, b in $\left.\mathrm{Z}_{40},+, \times\right\}$ is also a neutrosophic interval 6 -ring of infinite order. This ring has 6 ideals, 6-subrings, 6-zero divisors and 6-units.

We can also define quasi n-rings as in case of other nstructures. We give one of two examples before we proceed to define n -semirings.

Example 3.50: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=$

$$
\begin{gathered}
\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}} \in \mathrm{Z}_{12},+, \times\right\} \cup \cup \\
\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{40},+, \times\right\} \cup \cup
\end{gathered}
$$

\{all 5×5 neutrosophic interval matrices with intervals of the form $[0, \mathrm{a}+\mathrm{bI}] ; \mathrm{a}, \mathrm{b} \subseteq \mathrm{Z}_{120}$ under matrix addition and multiplication $\} \cup\{$ all 7×7 lower triangular interval matrices with intervals of the form $[0, \mathrm{a}]$ with $\left.\mathrm{a} \in \mathrm{Z}_{48},+, \times\right\}$ be a quasi neutrosophic interval 4-ring.

Example 3.51: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4} \cup \mathrm{M}_{5}=$

$$
\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{8}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{Ix}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{12}\right\} \cup
$$

$\left\{\right.$ All 5×5 neutrosophic interval matrices with entries from Z_{15}, $+, \times\} \cup\left\{\left[\begin{array}{ll}a_{1} \mathrm{I} & \mathrm{a}_{2} \mathrm{I} \\ \mathrm{a}_{3} \mathrm{I} & \mathrm{a}_{4} \mathrm{I}\end{array}\right]\right.$ where $\left.\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{18}, 1 \leq \mathrm{i} \leq 4,+, \times\right\} \cup\{([0$, $\left.\left.\left.\mathrm{a}_{1}+\mathrm{b}_{1} \mathrm{I}\right]\left[0, \mathrm{a}_{2}+\mathrm{b}_{2} \mathrm{I}\right], \ldots,\left[0, \mathrm{a}_{9}+\mathrm{b}_{9} \mathrm{I}\right]\right) \mid \mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}} \in \mathrm{Z}_{30},+, \times\right\}$ be the neutrosophic quasi interval 5-ring of infinite order which is not commutative.

Example 3.52: Let $M=M_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4} \cup \mathrm{M}_{5} \cup \mathrm{M}_{6} \cup$ $M_{7}=\left\{\left(\left[0, a_{1}\right],\left[0, a_{2}\right], \ldots,\left[0, a_{12}\right]\right) \mid a_{i} \in Z_{45}, 1 \leq i \leq 12,+, \times\right\} \cup$ $\left\{\sum_{i=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{Ix}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{28},+, \times\right\} \cup$
$\left\{\left.\left[\begin{array}{cc}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7}, 1 \leq \mathrm{i} \leq 4,+, \times\right\} \cup$
$\left\{\left.\left[\begin{array}{cccc}a_{1} & a_{2} & a_{3} & a_{4} \\ a_{5} & a_{6} & a_{7} & a_{8} \\ a_{9} & a_{10} & a_{11} & a_{12} \\ a_{13} & a_{14} & a_{15} & a_{16}\end{array}\right] \right\rvert\, a_{i} \in Z_{28}, 1 \leq i \leq 16,+, \times\right\} \cup$

$$
\begin{aligned}
& \left\{\left(\left[0, a_{1}+b_{1} I\right],\left[0, a_{2}+b_{2} I\right], \ldots,\left[0, a_{11}+b_{11} I\right]\right) \mid a_{i}, b_{i} \in Z_{48}, 1 \leq i\right. \\
& \leq 11 ;+, \times\} \cup\left\{\left(a_{1} I, a_{2} I, \ldots, a_{8} I\right) \mid a_{i} \in Z_{248},+, \times, 1 \leq i \leq 8\right\} \cup \\
& \left\{\sum_{i=0}^{\infty}\left[0, a_{i}\right] x^{i} \mid a_{i} \in Z_{28},+, \times\right\}
\end{aligned}
$$

be the quasi neutrosophic quasi interval 7-ring.
It is important and interesting to note that all results on ring theory using Z_{n} 's can be easily extended and studied with simple appropriate modifications. This task is left to the reader [8].

Now we proceed onto define neutrosophic interval nsemiring ($n \geq 3$).

DEFINITION 3.6: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$, where each S_{i} is a neutrosophic interval semiring such that $S_{i} \nsubseteq S_{j}$ or $S_{j} \nsubseteq S_{i}$, if $i \neq$ $j, 1 \leq i, j \leq n$. S inherits the operation componentwise from each $S_{i}, i=1,2, \ldots, n$. We define S to be a neutrosophic interval n semiring.

We give examples of them.
Example 3.53: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\right.$ $\{0\},+, \times\} \cup\left\{\left(\left[0, a_{1}+b_{1} I\right], \ldots,\left[0, a_{9}+b_{9} I\right]\right) \mid a_{i}, b_{i} \in Q^{+} \cup\{0\}, 1\right.$ $\leq \mathrm{i} \leq 9,+, \times\} \cup\left\{\left.\left[\begin{array}{ll}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{R}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 4,+, \times\right\}$
$\cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in 5 \mathrm{Z}^{+} \cup\{0\}\right\}$ be a neutrosophic interval 4semiring.

Example 3.54: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=\{[0, a+b I] \mid a$, $\left.\mathrm{b} \in \mathrm{Q}^{+} \cup\{0\}, \times,+\right\} \cup$

$$
\left.\left.\left\{\begin{array}{cc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 4,+, \times\right\} \cup
$$

$\left\{\left(\left[0, a_{1}+b_{1} I\right],\left[0, a_{2}+b_{2} I\right],\left[0, a_{3}+b_{3} I\right]\right) \mid a_{i}, b_{i} \in Z^{+} \cup\{0\}, 1 \leq i \leq\right.$ $3,+, \times\} \cup\{$ All 10×10 upper triangular matrices with neutrosophic intervals $[0, a+b I]$ where $\left.a, b \in R^{+} \cup\{0\},+, \times\right\} \cup$ \{all 6×6 lower triangular neutrosophic intervals matrices with intervals of the form $[0, \mathrm{aI}]$ where $\left.\mathrm{a} \in \mathrm{Q}^{+} \cup\{0\},+, \times\right\}$ be a neutrosophic interval 5-semiring.

We can define as in case of usual semirings the notion of Smarandache n-semirings, n-subsemirings and so on with simple modifications. Further in case of neutrosophic interval n -semirings we can define the quasi structure.

Example 3.55: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\left\{[0, a I] \mid a \in R^{+} \cup\right.$ $\{0\}\} \cup\left\{\left(\left[0, a_{1} I\right],\left[0, a_{2} I\right], \ldots,\left[0, a_{7} I\right]\right),(0,0, \ldots, 0) \mid a_{i} \in Z^{+} ; 1\right.$ $\leq \mathrm{i} \leq 7,+, \times\} \cup\left\{(0,0,0,0),\left(\left[0, a_{1}+b_{1} I\right],\left[0, a_{2}+b_{2} I\right],[0\right.\right.$, $\left.\left.\left.\mathrm{a}_{3}+\mathrm{b}_{3} \mathrm{I}\right],\left[0, \mathrm{a}_{4}+\mathrm{b}_{4} \mathrm{I}\right]\right) \mid \mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}} \in \mathrm{Q}^{+}, 1 \leq \mathrm{i} \leq 4,+, \times\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}]$ $\left.\mathrm{l} \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\}\right\}$ be a neutrosophic interval 4 -semiring which is also a neutrosophic interval 4-semifield.

We can also define the notion of quasi n-structures and mixed n-structures using these semirings. We only give examples of them as the definition is routine and direct.

Example 3.56: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\left\{[0, a I] \mid a \in Z^{+} \cup\right.$ $\{0\},+, \times\} \cup\left\{\left([0, a+b I] \mid a, b \in Z^{+} \cup\{0\},+, \times\right\} \cup\{[0, a+b I]\right.$ $\left.\mid \mathrm{a}, \mathrm{b} \in \mathrm{Q}^{+} \cup\{0\},+, \times\right\} \cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{R}^{+} \cup\{0\}\right\} \cup\left\{\left(\left[0, \mathrm{a}_{1}\right]\right.\right.$, $\left.\left.\left.\left[0, a_{2}\right], \ldots,\left[0, a_{12}\right]\right)\right) \mid a_{i} \in \mathrm{Q}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 12\right\}$ be a quasi neutrosophic interval 4 -semiring.

Example 3.57: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=$

$$
\begin{gathered}
\left\{\left.\left[\begin{array}{cc}
{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} \\
{[0, \mathrm{cI}]} & {[0, \mathrm{dI}]}
\end{array}\right] \right\rvert\, a, b, \mathrm{c}, \mathrm{~d} \in \mathrm{R}^{+} \cup\{0\},+, \times\right\} \cup \\
\left\{([0, \mathrm{aI}],[0, \mathrm{bI}],[0, \mathrm{cI}]) \mid \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{Q}^{+} \cup\{0\},+, \times\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a}_{1} \mathrm{I} & \mathrm{a}_{2} \mathrm{I} & \mathrm{a}_{3} \mathrm{I} \\
\mathrm{a}_{4} \mathrm{I} & \mathrm{a}_{5} \mathrm{I} & \mathrm{a}_{6} \mathrm{I} \\
\mathrm{a}_{7} \mathrm{I} & \mathrm{a}_{8} \mathrm{I} & \mathrm{a}_{9} \mathrm{I}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 9,+, \times\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\{0\},+, \times\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{Ix}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}\right\}
\end{gathered}
$$

be a neutrosophic quasi interval 5 -semiring.

Example 3.58: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\begin{aligned}
& \left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\{0\}\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{R}^{+} \cup\{0\}\right\} \cup
\end{aligned}
$$

$$
\left\{\left(\left[0, a_{1}+b_{1} I\right], \ldots,\left[0, a_{9}+b_{9} I\right]\right) \mid a_{i}, b_{i} \in Z^{+} \cup\{0\} ; 1 \leq i \leq 9,+, \times\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cccc}
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & {\left[0, a_{3}\right]} & {\left[0, a_{4}\right]} \\
{\left[0, a_{5}\right]} & {\left[0, a_{6}\right]} & {\left[0, a_{7}\right]} & {\left[0, a_{8}\right]} \\
{\left[0, a_{9}\right]} & {\left[0, a_{10}\right]} & {\left[0, a_{11}\right]} & {\left[0, a_{12}\right]} \\
{\left[0, a_{13}\right]} & {\left[0, a_{14}\right]} & {\left[0, a_{15}\right]} & {\left[0, a_{16}\right]}
\end{array}\right] \right\rvert\, a_{i} \in \mathrm{Q}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 16,+, \times\right\}
$$

$$
\begin{aligned}
& \cup\left\{\left.\left(\begin{array}{ccc}
a_{1} I & a_{2} I & a_{3} I \\
a_{4} I & a_{6} I & a_{5} I \\
a_{7} I & a_{8} I & a_{9} I
\end{array}\right) \right\rvert\, a_{i} \in R^{+} \cup\{0\}, 1 \leq i \leq 9,+, \times\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & a_{4} & a_{5} \\
0 & 0 & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z^{+} \cup\{0\}, 1 \leq i \leq 6,+, \times\right\}
\end{aligned}
$$

be a quasi neutrosophic quasi interval 6-semiring of infinite order.

All properties related with semirings can be derived for n semirings without any difficulty.

Now we proceed onto define mixed n-structure with two binary operations.

DEFINITION 3.7: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ where some of the V_{i} 's are neutrosophic interval rings and the rest are neutrosophic interval semirings. We call V the mixed neutrosophic interval ring - semiring.

We illustrate this situation by some examples.

Example 3.59: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=$

$$
\begin{gathered}
\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}} \in \mathrm{Z}_{20},+, \times\right\} \cup \\
\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{~b} \in \mathrm{R}^{+} \cup\{0\},+, \times\right\} \cup \\
\left.\left\{\left.\begin{array}{l}
\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid
\end{array} \right\rvert\, \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\},+, \times\right\}\right\} \\
\begin{cases}\left.\left.\left[\begin{array}{ll}
{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} \\
{[0, \mathrm{cI}]} & {[0, \mathrm{dI}]}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{45},+, \times\right\}\end{cases}
\end{gathered}
$$

\{all 9×9 upper triangular neutrosophic interval matrices with intervals of the form $[0, a+b I]$ where $\left.a, b \in Z^{+} \cup\{0\},+, \times\right\}$ be a mixed neutrosophic interval $(2,3)$ ring - semiring.

Example 3.60: Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\left.Z_{30}, \times,+\right\} \cup\left\{\left.\left[\begin{array}{cc}{\left[0, a_{1} I\right]} & {\left[0, a_{2} I\right]} \\ {\left[0, a_{3} I\right]} & {\left[0, a_{4} I\right]}\end{array}\right] \right\rvert\, a_{i} \in Z^{+} \cup\{0\}, 1 \leq i \leq 4,+, \times\right\} \cup$

$$
\left\{\left.\left\{\begin{array}{ccc}
{\left[0, a_{1}+b_{1} I\right]} & {\left[0, a_{4}+b_{4} I\right]} & {\left[0, a_{7}+b_{7} I\right]} \\
{\left[0, a_{2}+b_{2} I\right]} & {\left[0, a_{5}+b_{5} I\right]} & {\left[0, a_{8}+b_{8} I\right]} \\
{\left[0, a_{3}+b_{3} I\right]} & {\left[0, a_{6}+b_{6} I\right]} & {\left[0, a_{9}+b_{9} I\right]}
\end{array}\right] \right\rvert\, a_{i}, b_{i} \in Q^{+} \cup\{0\}, 1 \leq i \leq 9\right\}
$$

$\cup\{4 \times 4$ upper triangular interval matrices with intervals of the form $[0, a+b I]$ with $\left.a, b \in Z_{320}\right\}$ be a mixed neutrosophic interval ring - semiring.

Quasi mixed neutrosophic interval semiring - ring and other quasi types of semiring - ring are described by the following examples.

Example 3.61: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{aligned}
& \left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\},+, \times\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{a}+\mathrm{bI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}, \mathrm{~b} \in \mathrm{Z}_{45},+, \times x\right\} \cup
\end{aligned}
$$

 $\left.\mathrm{Z}_{20},+, \times\right\} \cup\left\{([0, \mathrm{a}],[0, \mathrm{~b}],[0, \mathrm{c}],[0, \mathrm{~d}]) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Z}_{42},+, \times\right\}$ $\left.\cup\left\{\sum_{i=0}^{\infty}\left[0, a_{i}+b_{i}\right]\right] x^{i} \mid a_{i}, b_{i} \in R^{+} \cup\{0\},+, \times\right\}$ be a mixed quasi neutrosophic interval $(2,3)$ semiring - ring.

Example 3.62: Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2} \cup \mathrm{P}_{3} \cup \mathrm{P}_{4} \cup \mathrm{P}_{5}=$

$$
\left.\left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\{0\},+, \times\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{Ix} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{42},+, \times\right\}\right\}
$$

$$
\left\{\left.\left[\begin{array}{ccc}
a_{1} I & a_{2} I & a_{3} I \\
a_{4} I & a_{5} I & a_{6} I \\
a_{7} I & a_{8} I & a_{9} I
\end{array}\right] \right\rvert\, a_{i} \in Z^{+} \cup\{0\},+, \times\right\} \cup\left\{\left(\left[0, a_{1} I+b_{1}\right], \ldots,\right.\right.
$$

$\left.\left.\left[0, a_{5} I+b_{5}\right]\right) \mid a_{i}, b_{i} \in Z_{40},+, x\right\} \cup\left\{\left(a_{1} I, a_{2} I, \ldots, a_{12} I\right) \mid a_{i} \in Z_{25}\right.$, $+, \times ; 1 \leq \mathrm{i} \leq 12\}$ be a neutrosophic quasi interval $(2,3)$ semiring - ring.

Example 3.63: Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \mathrm{~T}_{3} \cup \mathrm{~T}_{4} \cup \mathrm{~T}_{5} \cup \mathrm{~T}_{6}=$

$$
\begin{aligned}
& \left\{\left.\left[\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8} \\
a_{9} & a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15} & a_{16}
\end{array}\right] \right\rvert\, a_{i} \in Z_{144}, 1 \leq i \leq 16,+, \times\right\} \cup \\
& \left\{\left.\left[\begin{array}{ll}
{\left[0, a_{1}+b_{1} I\right]} & {\left[0, a_{2}+b_{2} I\right]} \\
{\left[0, a_{3}+b_{3} I\right]} & {\left[0, a_{4}+b_{4} I\right]}
\end{array}\right] \right\rvert\, a_{i}, b_{i} \in Z^{+} \cup\{0\}, 1 \leq i \leq 4,+, \times\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{\infty}\left[0, \mathrm{a}_{\mathrm{i}}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{244},+, \times\right\} \cup \\
& \left\{\sum_{i=0}^{\infty}\left[0, a_{i}+b_{i} I\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}} \in \mathrm{Z}_{42},+, \times\right\} \cup\left\{\left(\left[0, \mathrm{a}_{1}+\mathrm{b}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2}+\mathrm{b}_{2} \mathrm{I}\right],\right.\right. \\
& \left.\ldots,\left[0, a_{10}+b_{10} I\right] \text { where } a_{i}, b_{i} \in Z^{+} \cup\{0\}, 1 \leq i \leq 10,+, \times\right\} \cup \\
& \left\{\left.\left[\begin{array}{ccccc}
a_{1} I & a_{2} I & a_{3} I & a_{4} I & a_{5} I \\
0 & a_{6} I & a_{7} I & a_{8} I & a_{9} I \\
0 & 0 & a_{10} I & a_{11} I & a_{12} I \\
0 & 0 & 0 & a_{13} I & a_{14} \\
0 & 0 & 0 & 0 & a_{15} I
\end{array}\right] \right\rvert\, a_{i} \in Q^{+} \cup\{0\}, 1 \leq i \leq 15,+, \times\right\}
\end{aligned}
$$

be a quasi neutrosophic quasi interval $(3,3)$ ring - semiring.
Now on similar lines we can define neutrosophic interval nvector spaces, neutrosophic interval n-semivector spaces and their quasi structure and mixed structure. We give one or two examples of them. Further all results worked in case of bivector spaces and bisemivector spaces are true in case of n-vector spaces and n-semivector spaces.

Example 3.64: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left.\begin{array}{l}
\left\{\sum_{\mathrm{i}=0}^{20}\left[0, \mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}} \in \mathrm{Z}_{19},+\right\} \cup \\
\left.\left\{\begin{array}{l}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{3} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{19}, 1 \leq \mathrm{i} \leq 3,+
\end{array}\right\} \cup \mathrm{U}
$$

$\left\{\left(\left[0, a_{1}+b_{1} I\right],\left[0, a_{2}+b_{2} I\right],\left[0, a_{3}+b_{3} I\right],\left[0, a_{4}+b_{4} I\right],\left[0, a_{5}+b_{5} I\right]\right) \mid a_{i}\right.$, $\left.b_{i} \in Z_{19},+\right\} \cup\left\{\left(\begin{array}{llll}{\left[0, a_{1} I\right]} & {\left[0, a_{2} I\right]} & \ldots & {\left[0, a_{10} I\right]} \\ {\left[0, a_{11} I\right]} & {\left[0, a_{12} I\right]} & \ldots & {\left[0, a_{20} I\right]}\end{array}\right)\right.$ where $a_{i} \in$ $\left.\mathrm{Z}_{19}, 1 \leq \mathrm{i} \leq 20,+\right\}$ be a neutrosophic interval 4-vector space over the field Z_{19}.

Example 3.65: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}=$

$$
\left\{\sum_{\mathrm{i}=0}^{7}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7},+\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{9} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{10} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{16} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{17} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{18} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{24} \mathrm{I}\right]}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{23}, 1 \leq \mathrm{i} \leq 24,+\right\}
$$

$\left\{\left(\left[0, a_{1}+b_{1} I\right],\left[0, a_{2}+b_{2} I\right], \ldots,\left[0, a_{7}+b_{7}\right]\right) \mid a_{i}, b_{i} \in Z_{53}, 1 \leq i \leq 7\right.$, + \} be a special neutrosophic interval 3 -vector space over the 3field $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup \mathrm{~F}_{3}=\mathrm{Z}_{7} \cup \mathrm{Z}_{23} \cup \mathrm{Z}_{53}$.

Example 3.66: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3}=$

$$
\begin{gathered}
\left\{\sum_{i=0}^{20}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\},+\right\} \cup \\
\left\{\left.\left[\begin{array}{ll}
{\left[0, \mathrm{a}_{1}+\mathrm{b}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2}+\mathrm{b}_{2} \mathrm{I}\right]\left[0, \mathrm{a}_{3}+\mathrm{b}_{3} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{4}+\mathrm{b}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5}+\mathrm{b}_{5} \mathrm{I}\right]\left[0, \mathrm{a}_{6}+\mathrm{b}_{6} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{7}+\mathrm{b}_{7} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{8}+\mathrm{b}_{8} \mathrm{I}\right]\left[0, \mathrm{a}_{9}+\mathrm{b}_{9} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 9,+\right\}
\end{gathered}
$$

$$
\cup\left\{\left.\left[\begin{array}{c}
{\left[0, a_{1}+b_{1} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{2}+\mathrm{b}_{2} \mathrm{I}\right]} \\
\vdots \\
{\left[0, \mathrm{a}_{12}+\mathrm{b}_{12} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 12,+\right\}
$$

be a neutrosophic interval 3-semivector space over the semifield $\mathrm{F}=\mathrm{Z}^{+} \cup\{0\}$. Clearly in case of n-semivector spaces we cannot define over finite semifields except over chain lattices.

Example 3.67: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\left\{\sum_{\mathrm{i}=0}^{24}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7},+\right\} \cup
$$

$\left\{\right.$ All 10×19 neutrosophic interval matrices with entries from Z_{7} under addition $\} \cup$

$$
\left\{\left.\left[\begin{array}{c}
{\left[0, \mathrm{a}_{1} \mathrm{II}\right]} \\
{\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
\vdots \\
{\left[0, \mathrm{a}_{20} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7}, 1 \leq \mathrm{i} \leq 20,+\right\} \cup
$$

$\left\{\left(\left[0, a_{1}+b_{1} I\right],\left[0, a_{2}+b_{2} I\right], \ldots,\left[0, a_{7}+b_{7} I\right]\right) \mid a_{i}, b_{i} \in Q^{+} \cup\{0\}\right.$, $1 \leq \mathrm{i} \leq 7\} \cup\left\{\sum_{\mathrm{i}=0}^{27}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\},+\right\} \cup \cup$ all 8×3 neutrosophic interval matrices with entries from $\left.\mathrm{Z}^{+} \cup\{0\},+\right\}$ be a mixed neutrosophic interval $(3,3)$ vector space semivector space over the field - semifield $F=Z_{7} \cup\left(Z^{+} \cup\{0\}\right)$.

All properties related with bivector spaces, bisemivector spaces can be derived and proved in case of n-vector spaces and n -semivector spaces built using neutrosophic intervals.

We can replace $\mathrm{N}\left(\mathrm{Z}_{\mathrm{n}}\right)$ or $\mathrm{N}\left(\mathrm{Z}^{+} \cup\{0\}\right)$ or $\mathrm{N}\left(\mathrm{R}^{+} \cup\{0\}\right)$ or $\mathrm{N}\left(\mathrm{Q}^{+} \cup\{0\}\right)$ by $\langle[0,1] \cup[0, \mathrm{I}]\rangle$ and derive results which will be defined as algebraic structures using fuzzy neutrosophic intervals: In many cases min or max operations can be used. This is also a matter of routine and left for the reader to develop them.

Chapter Four

Applications of Neutrosophic Interval Algebraic Structures

Neutrosophic interval algebraic structures can find applications in places / models where an element of indeterminacy is present. For instance in mathematical models we can use these structures. Also in finite element analysis if indeterminacy is present in those models we can use them so that caution can be applied in places where indeterminacy is present.

Neutrosophic interval matrices can be used in real world problems in the field of medicine or engineering or social issues when the data in hand is an unsupervised one.

When the study of eigen values or eigen vectors are expected to be an unsupervised one we can use these neutrosophic interval matrices or fuzzy - neutrosophic interval matrices. Further when n sets of simultaneous values are expected as the estimated / predicted values these n neutrosophic interval matrices can be used. Also when the expert expects to study or obtain results in an interval one can use these interval models.

Since the research and the subject happens to be new and use new notions of neutrosophic intervals the authors are sure in due course of time these will find more and more applications.

Chapter Five

Suggested Problems

In this chapter we suggest over hundred problems of which some are simple, some of them are difficult and some of them are research problems.

1. Give an example of a pure neutrosophic interval bisemigroup which is not commutative but of finite order.
2. Give some interesting properties related with pure neutrosophic interval bisemigroups of infinite order.
3. Give an example of a interval neutrosophic bigroup $\mathrm{G}=$ $\mathrm{G}_{1} \cup \mathrm{G}_{2}$ of finite biorder and show the Lagrange theorem for G is true.
4. Let $\mathrm{G}=\mathrm{S}_{3} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{17},+\right\}$ be a quasi interval quasi neutrosophic bigroup.
a) Find the biorder of G.
b) Can G have bisubgroups?
c) Is G simple?
5. Let $V=V_{1} \cup V_{2}=S(5) \cup\left\{[0, a I] \mid a \in Z_{45}, \times\right\}$ be a quasi interval quasi neutrosophic bisemigroup
a) Find biorder of V.
b) Can V have bisubsemigroups?
c) Does every biideal's biorder divide biorder of V?
d) Is every bisubsemigroup a biideal in V?
e) Is V a S-Lagrange bisemigroup?
6. Obtain some special properties enjoyed by pure neutrosophic interval bigroups of finite order.
7. Is all the classical theorems true in case of finite groups true in case of finite pure neutrosophic interval bigroup?
8. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{43} \backslash\{0\}, \times\right\} \cup\{[0, \mathrm{aI}] \mid$ $\left.a \in Z_{40},+\right\}$ be a pure neutrosophic interval bigroup.
a) Find biorder of G.
b) Prove all classical theorems for finite groups are true in case of G.
c) Find quotient interval bigroups of G.
d) Find the order of $[0,25 \mathrm{I}] \cup[0,8 \mathrm{I}]$ in G .
9. Obtain some interesting properties about quasi interval quasi neutrosophic bigroupoids.
10. Prove every pure neutrosophic bigroupoid need not be a S-bigroupoid.
11. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{41}, *,(2,21)\right\} \cup\{[0, \mathrm{aI}]$ $\left.\mid \mathrm{a} \in \mathrm{Z}_{41}, *,(3,12)\right\}$ be a pure neutrosophic interval bigroupoid.
i) Find the biorder of G.
ii) Is G a S-bigroupoid?
iii) Is G S-Moufang?
iv) Does G satisfy Bol identity?
12. Obtain some interesting properties enjoyed by pure neutrosophic interval bisemirings of finite order.
13. Is every pure neutrosophic interval bisemiring built using $\mathrm{R}^{+} \cup\{0\}$ or $\mathrm{Q}^{+} \cup\{0\}$ or $\mathrm{Z}^{+} \cup\{0\}$ a pure neutrosophic interval bisemifield?
14. Does there exist a pure neutrosophic interval bifield?
15. Define neutrosophic interval birings.
16. Give examples of S-neutrosophic interval bisemirings.
17. Is every pure neutrosophic interval bisemiring a Smarandache neutrosophic interval bisemiring?
18. Can neutrosophic interval birings be built using $\mathrm{Z}^{+} \cup\{0\}$ or $\mathrm{Q}^{+} \cup\{0\}$ or $\mathrm{R}^{+} \cup\{0\}$? Justify your answer.
19. Can we have a neutrosophic interval biring of prime biorder? Justify!
20. Prove we have neutrosophic interval birings of biorder 24.
21. How many neutrosophic interval birings of biorder 24 can be constructed.
22. Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{5},+, \times\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid$ $\left.\mathrm{a}, \mathrm{b} \in \mathrm{Z}_{6},+, \times\right\}$ be a neutrosophic interval biring.
i) Find biorder of M .
ii) Find quasi biideals in M .
iii) Can M have bisubrings?
iv) Find quasi bizero divisors of M .
v) Is M a S -biring?
23. Let $R=R_{1} \cup R_{2}=\left\{[0, a I] \mid a \in Z_{45},+, \times\right\} \cup\{[0, a+b I] \mid a$, $\left.b \in Z_{24},+, \times\right\}$ be a neutrosophic interval biring.
a) Find the biorder of R.
b) Find biideals in R.
c) Does R have bisubrings which are not biideals?
d) Find bizero divisors in R.
e) Find biidempotents in R.
f) Find biunits in R.
g) Find a biisomorphism of R to R with nontrivial bikernel.
24. Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{9}, *,(3,4)\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a}$ $\in \mathrm{Z}_{9}$, *, $\left.(2,1)\right\}$ be a neutrosophic interval bigroupoid?
i) Find biorder of P .
ii) Is P a S-bigroupoid?
iii) Does P have S -subbigroupoid?
iv) Does P satisfy any of the special identities?
v) Find biideals in P.
vi) Does P have subbigroupoids which are not Smarandache?
25. Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{12}, *,(7,5)\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}]$ where $\left.\mathrm{a}, \mathrm{b} \in \mathrm{Z}_{17}, *,(8,9)\right\}$ be a neutrosophic interval bigroupiod.
i) Find biorder of T .
ii) Is T a S-bigroupoid?
iii) Does T have subbigroupodids?
iv) Can T have S-biideals?
v) Is every right biideal of T a left biideal of T ?
vi) Is T a P-bigroupoid?
vii) Is T a S-Bol bigroupoid?
viii) Can T be a S -strong Moufang bigroupoid?
ix) Can T be a S -idempotent bigroupoid?
26. Let $P=P_{1} \cup P_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 29\}, *, 8\} \cup$ $\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots, 29\} *, 12\}$ be a neutrosophic interval biloop.
i) Find biorder of P .
ii) Find S-biloops of any?
iii) Is P a S-biloop?
iv) Does P satisfy any of the special identities?
v) Is P a S-strongly Lagrange biloop?
vi) Is P-S-strong Moufang?
27. Does there exist an interval biloop of biorder n ; n a composite odd number?
28. Give an example of a Moufang neutrosophic interval biloop.
29. Construct a neutrosophic interval biloop which is a Bol biloop.
30. Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 33\}, 14, *\}$ $\cup\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots, 37\} *, 14\}$ be a neutrosophic interval biloop.
i) Find biorder of M .
ii) Is M S-strong Moufang?
iii) Is M a S-biloop?
iv) Is M simple?
v) Can M have bisubloops?
vi) Can M have S-bisubloops?
vii) Can M have bisubloops which are not Smarandache?
viii) Does M satisfy any of the special identities?
ix) Find the biisotope of M.
x) Is M a S-Lagrange biloop?
31. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{15}, \times\right\} \cup\{[0$, $\left.\mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{15},(7,8), *\right\}$ be a neutrosophic interval semigroup - groupoid.
i) Find biorder of V.
ii) Find substructures of V.
iii) Does V have bizerodivisors?
iv) Is V a Smarandache semigroup-groupoid?
32. Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{14}, \times\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}$, $\left.b \in Z_{12}, \times\right\}$ be a neutrosophic interval bisemigroup.
i) Find biorder of V.
ii) Is M a S-bisemigroup?
iii) Does M contain S-biideals?
iv) Can M have S - bizerodivisors?
v) Can M have bisubsemigroups which are not biideals?
33. Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{7}, \times\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid$ $\left.a, b \in Z_{5}, x\right\}$ be a neutrosophic interval bisemigroup.
i) Find biorder of S .
ii) Is S a S-bisemigroup?
iii) Can S have bizero divisors?
iv) Can S have S -bizero divisors?
v) Can S have biideals?
vi) Can S have bisubsemigroups which are not biideals?
vii) Can S have biidempotents?
viii) Is S bisimple?
34. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{40}, \times\right\} \cup\{[0$, $\left.a+b I] \mid a, b \in Z_{40},(3,17), *\right\}$ be a neutrosophic interval semigroup - groupoid.
i) Find biorder of V.
ii) Is V a Smarandache semigroup - groupoid?
iii) Can V have biideals?
iv) Can V have bizero divisors?
35. Let $S=S_{1} \cup S_{2}=\{[0, a I] \mid a \in\{e, 1,2, \ldots, 23\}, 9, *\} \cup$ $\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots, 11\}, 9, *\}$ be a neutrosophic interval biloop.
i) Find biorder of S .
ii) Prove S is Smarandache.
iii) Prove S is S-simple.
iv) Is S simple?
36. Let $\mathrm{L}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{28}, *,(3,2)\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in$ $\left.\mathrm{Z}_{27},{ }^{*}, 8\right\}$ be a neutrosophic interval groupoid - loop.
i) Does L satisfy any one of the standard identities?
ii) Find biorder of L.
iii) Is L Smarandache?
iv) Can L have Smarandache substructures?
v) Find any other interesting property associated with L.
37. Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{48}, \times\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}$, $\left.\mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 47\},{ }^{*}, 9\right\}$ be the neutrosophic interval semigroup - loop.
i) Find biorder of M .
ii) Find substructures of M.
iii) Is M Smarandache?
iv) Can M have Smarandache substructures?
38. Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 43\}$, *, $8\} \cup\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots, 43\}, *, 9\}$ be a neutrosophic interval biloop.
i) Is T a Smarandache biloop?
ii) Does T satisfy any of the special identities?
iii) Is T simple?
iv) Can T have nontrivial bisubloops?
v) Is T a S-strongly Lagrange biloop?
vi) What is the biorder of T ?
vii) Find $\mathrm{f}: \mathrm{T} \rightarrow \mathrm{T}$, a bihomomorphism such that bikernel of f is nontrivial.
39. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 81\}$, *, 17\} $\cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 81\}, *, 23\}$ be a neutrosophic interval biloop.
i) Find biorder of W.
ii) Is W a S-biloop?
iii) Does W contain S-subbiloops?
iv) Is W simple?
v) Does W satisfy any of the special identities?
vi) Find the biisotope of W .
40. Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{16}, *,(3,5)\right\} \cup$ $\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 15\}, 8$, * $\}$ be a neutrosophic interval groupoid - loop.
i) Find the biorder of M
ii) Is M a Smarandache structure?
iii) Does M contain Smarandache substructure?
iv) Does M satisfy any of the special identities?
v) Does M contain a neutrosophic interval normal subgroupoid - normal subloop?
41. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{90}\right.$, *, $\left.(3,7)\right\} \cup\{[0$, $\left.a+b I] \mid a, b \in Z_{90}, \times\right\}$ be a neutrosophic interval groupoid semigroup.
a) Find the biorder of V .
b) Is V Smarandache?
c) Can V have Smarandache substructures?
d) Prove V has pure neutrosophic interval subgroupoid subsemigroup and interval subgroupoid S-ideals?
e) Does V contain S-biideals?
42. Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{41}, \times\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\{\mathrm{e}, 1,2, \ldots, 41\}, 9, *\}$ be a neutrosophic interval semigroup - loop.
a) Find the biorder of M .
b) Is M Smarandache?
c) Is $S=S_{1} \cup S_{2}=\{[0, I],[0,40 I], \times\} \cup\{[0, e I]$, $[0,9 I]\} \subseteq \mathrm{M}_{1} \cup \mathrm{M}_{2}$ a neutrosophic interval bigroup?
d) Is M a simple bistructure?
43. Obtain some interesting properties enjoyed by neutrosophic interval semiring - ring.
44. Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 29\}, 9, *\}$ $\cup\left\{[0, a \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{29},(3,20)\right.$, * $\}$ be a neutrosophic interval loop-groupoid.
i) Find biorder of M .
ii) Does M satisfy any of the special identities?
iii) Is M a Smarandache bistructure?
iv) Can M have S -bisubstructures?
v) Give a bisubstructure which is not a Smarandache subbistructure.
45. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{\mathrm{Z}_{40},+\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40}, \times\right\}$ be a quasi neutrosophic quasi interval group - loop.
i) Find biorder of W .
ii) Is W a Smarandache bistructure?
iii) Find subbistructures in S.
46. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{25}, \times\right\} \cup\left\{[0, \mathrm{al}] \mid \mathrm{a} \in \mathrm{Z}_{25}\right.$, ${ }^{*}$, (3, 22) $\}$ be a pure neutrosophic interval semigroup-groupoid.
i) Find biorder of V.
ii) Is V a Smarandache bistructure?
iii) Can V have S -zero divisors?
iv) Find S-units in V (if it exists).
v) Can V have idempotents which are not Sidempotents?
47. Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{47}, *,(3,14)\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{47}, *,(0,14)\right\}$ be a neutrosophic interval bigroupoid.
i) Find biorder of P .
ii) Can P have bizerodivisors?
iii) Can P have S -subbigroupoids?
iv) Can P have S-biideals?
v) Find S-quasi bisubstructures in P.
vi) Does P satisfy any of the special identities?
vii) Does P satisfy any of the Smarandache strong special identities like Bol, Moufang etc?
48. Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{40},(3,0), *\right\} \cup\{[0, \mathrm{a}] \mid \mathrm{a}$ $\left.\in Z_{25},(0,3), *\right\}$ be a pure neutrosophic interval bigroupoid.
i) Find biorder of P .
ii) Is P Smarandache?
iii) Is P a Smarandache strong Bol bigroupoid?
iv) Is P a Smarandache strong P -bigroupoid?
v) Can P have Smarandache bisubgroupoids?
vi) Does P contain S-bizero divisors?
49. Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{25}, \times,+\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a}$ $\left.\in \mathrm{Z}^{+} \cup\{0\},+, \times\right\}$ be a pure neutrosophic interval ring semiring.
i) Is M a Smarandache bistructure?
ii) Can M have S-bizero divisors?
iii) Can M have S-biidempotents?
iv) Can M have S -subring - subsemiring?
v) Can M be a quasi Smarandache bistructure?
vi) Find any other property associated with M.
50. Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left[[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{20}, \times,+\right\} \cup\{[0$, $\left.\mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{24}, \times,+\right\}$ be a neutrosophic interval biring.
i) Find biorder of T .
ii) Is T a S-biring?
iii) Can T be a quasi bifield?
iv) Find bizero divisors and S-bizero divisors in T .
v) Can T have S-biidempotents?
vi) Find S-biunits in T.
vii) Find a biideal $I=I_{1} \cup I_{2}$ and find T / I.
51. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{43},+\right\} \cup$ $\left.\left\{\left.\left[\begin{array}{l}{[0, \mathrm{aI}]} \\ {[0, \mathrm{bI}]} \\ {[0, \mathrm{cI}]}\end{array}\right] \right\rvert\,\right) a, b, c \in \mathrm{Z}_{43},+\right\} \quad$ be a neutrosophic interval
bivector space over the field $\mathrm{F}=\mathrm{Z}_{43}$.
i) What is the bidimension of V ?
ii) Find bivector subspaces of V.
iii) Can V be a Smarandache bivector space?
iv) Write V as a direct sum.
v) Find linear bioperator T on V such that T^{-1} exists.
52. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left[\begin{array}{cccc}{[0,5 \mathrm{I}]} & 0 & {[0, \mathrm{I}]} & 0 \\ 0 & {[0,2 \mathrm{I}]} & 0 & 0 \\ 0 & {[0, \mathrm{I}]} & 0 & {[0,5 \mathrm{I}]} \\ {[0,2 \mathrm{I}]} & 0 & {[0, \mathrm{I}]} & 0\end{array}\right] \cup$ $\left[\begin{array}{ccc}{[0, \mathrm{I}]} & {[0,2 \mathrm{I}]} & 0 \\ 0 & {[0, \mathrm{I}]} & 0 \\ {[0, \mathrm{I}]} & 0 & {[0,3 \mathrm{I}]}\end{array}\right]$ be a pure neutrosophic interval bimatrix with entries from Z_{11}.
i) Find the characteristic bivalues.
ii) Find the characteristic bivector.
iii) Is V bidiagonalizable?
53. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a pure neutrosophic bivector space where $\mathrm{V}_{1}=$

$$
\begin{aligned}
& \left\{\begin{array}{ccc}
\left.\left.\left[\begin{array}{ccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{7}\right]} & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{9} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{10} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{11} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{12} \mathrm{I}\right]}
\end{array}\right]\right|_{\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{29}, 1 \leq \mathrm{i} \leq 12}\right\} \cup \\
\left\{([0, \mathrm{a}+\mathrm{bI}],[0, \mathrm{c}+\mathrm{dI}],[0, \mathrm{e}+\mathrm{fI}]) \mid \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \in \mathrm{Z}_{29}\right\} ;
\end{array}\right.
\end{aligned}
$$

a) Find a bibasis for V .
b) What is the bidimension of V ?
c) Find a linear bioperator T on V so that T^{-1} does not exist.
d) Write V as a bidirect sum.
e) Define a biprojection on V.
f) Is V a Smarandache bivector space?
g) Does V contain subbivector spaces which are not Smarandache?
54. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\sum_{\mathrm{i}=0}^{8}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{43},+\right\} \cup\{([0, \mathrm{aI}]$, $\left.[0, \mathrm{bI}],[0, \mathrm{cI}]) \mid \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{43},+\right\}$ be a neutrosophic interval bivector space over the field Z_{43}.
i) Find a bibasis for V .
ii) What is the bidimesnion of V ?
iii) Is V Smarandache?
iv) Write V as a direct sum.
v) Find a Smarandache subbivector space if any in V.
vi) Find T a linear bioperator with nontrivial bikernel.
55. Let $V=V_{1} \cup V_{2}=\left\{\left[\begin{array}{c}{[0, a+b I]} \\ {[0, c+d I]} \\ \vdots \\ {[0, r+s I]}\end{array}\right]\right.$ be the collection of all 9
$\times 1$ neutrosophic interval matrices with entries from $\left.\mathrm{Z}_{7}\right\}$ $\left.\cup\{([0, a I],[0, b]],[0, c I],[0, d I]) \mid a, b, c, d \in Z_{7}\right\}$ be a neutrosophic interval bimatrix.
i) Find the number of elements in V .
ii) What is the bidimension of V ?
iii) Find a bibasis for V.
56. Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{\sum_{\mathrm{i}=0}^{5}[0, \mathrm{aI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{7},+\right\} \cup$ $\left\{\left(\left[0, a_{1} I\right],\left[0, a_{2} I\right], \ldots,\left[0, a_{9} I\right) \mid a_{i} \in Z_{9}, x\right\} \cup\right.$

$$
\left\{\left.\left[\begin{array}{cc}
{\left[0, a_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} \\
\vdots & \vdots \\
{\left[0, \mathrm{a}_{11} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{12} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{1} \in \mathrm{Z}_{10},+\right\} \cup\{([0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{~b} \in
$$

$\left.Z_{12}, \times\right\}$ be a neutrosophic interval 4-semigroup.
i) Find the 4 -order S.
ii) Find 4-subsemigroups.
iii) Can S have 4-ideals?
iv) Can S have 4-zero divisors?
v) Can S have 4-units?
vi) Is S a Smarandache 4 -semigroup?
57. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a}$ $\left.\in \mathrm{Z}_{7}\right\}$ be a neutrosophic interval semivector space vector space over the semifield - field $\left(\mathrm{Z}^{+} \cup\{0\}\right) \cup \mathrm{Z}_{7}=$ S.
i) Find a bibasis of V over S .
ii) Can V have neutrosophic subsemivector space vector subspace of V over S ?
iii) What the bidimension of V over S ?
58. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{19}\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}]$ $\left.\mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{23}\right\}$ be a special interval bivector space over the bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{19} \cup \mathrm{Z}_{23}$.
i) Find a bibasis of W .
ii) Is W a finite bidimensional?
iii) Find bivector subspace of W.
iv) Find a special linear bioperator of W , which is invertible.
v) Prove W has both.
a) Pure special neutrosophic interval subbivector space of W.
b) Find special interval bivector subspace of W.
59. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2} \mathrm{I}\right],\left[0, \mathrm{a}_{3} \mathrm{I}\right],\left[0, \mathrm{a}_{4} \mathrm{I}\right]\right) \mid\right.$
$\left.\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{19}, 1 \leq \mathrm{i} \leq 4\right\} \cup\left\{\begin{array}{lll}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{7} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{9} \mathrm{I}\right]}\end{array}\right]$ where
$\left.\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{19} ; 1 \leq \mathrm{i} \leq 9\right\}$ be a neutrosophic interval bivector space over the field $S=Z_{19}$.
i) Find a bibasis of W .
ii) What is a bidimension of W ?
iii) Find a subbivector space of W.
iv) Define a linear bioperator T on W so that T^{-1} exists.
v) Define $\mathrm{T}: \mathrm{W} \rightarrow \mathrm{W}$ so that bikernel is nontrivial.
60. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{7}\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid$ $\left.\mathrm{a}, \mathrm{b} \in \mathrm{Z}_{11}\right\}$ be a special neutrosophic interval bivector space over the bifield $F=F_{1} \cup F_{2}=Z_{7} \cup Z_{11}$.
i) Find bidimension of W.
ii) Find a bibasis of W.
iii) Find a special neutrosophic interval bivector subspace of V.
iv) Write W as a bidirect sum.
v) Find a bioperator T so that T^{-1} does not exist.
vi) Write W as a pseudo direct sum.
61. Let $\left.\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=\left\{\begin{array}{cc}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ \vdots & \vdots \\ {\left[0, \mathrm{a}_{9} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{10} \mathrm{I}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in$
$\left.\mathrm{Z}_{43}, 1 \leq \mathrm{i} \leq 10\right\} \cup\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2} \mathrm{I}\right],\left[0, \mathrm{a}_{3}\right]\right]\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} ;$
$1 \leq i \leq 3\} \cup\left\{\sum_{i=0}^{7}[0, a I] x^{i} \mid a \in Z_{11}\right\} \cup$
$\left\{\left\{\left.\left[\begin{array}{ll}{\left[0, a_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17},+\right\} \quad\right.$ be \quad a \quad neutrosophic
interval 4-group.
i) Find the 4 -order of V.
ii) Find neutrosophic interval four subgroups.
62. Let $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$ be a neutrosophic interval 4-
semigroup where $\mathrm{V}_{1}=\left\{\begin{array}{ccc}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} \\ \vdots & \vdots & \vdots \\ {\left[0, \mathrm{a}_{28} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{29} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{30} \mathrm{I}\right]}\end{array}\right]$
where $\left.\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{20}, 1 \leq \mathrm{i} \leq 30,+\right\}, \mathrm{V}_{2}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{40}\right.$, $\times\}, \quad \mathrm{V}_{3}=\left\{\sum_{\mathrm{i}=0}^{6}[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{14},+\right\} \quad$ and $\quad \mathrm{V}_{4} \quad=$
$\left\{\left.\left[\begin{array}{ll}{[0, \mathrm{aI}]} & {[0, \mathrm{bI}]} \\ {[0, \mathrm{cl}]} & {[0, \mathrm{dI}]}\end{array}\right] \right\rvert\, a, b, c, d \in \mathrm{Z}_{12}\right\} \quad$ be \quad a \quad neutrosophic interval 4 -semigroup.
i) Is V a Smarandache 4-interval semigroup?
ii) Prove V is of finite order.
iii) Find neutrosophic interval 4-subsemigroup.
iv) Does V contain 4-zero divisor?
v) Does V contain Smarandache 4-units?
vi) Is V a S-weakly Lagrange 4 -semigroup?
vii) Can V have S-4-ideals?
viii) Does V contain S-4-subsemigroups which are not S-4-ideals?
63. Let $R=R_{1} \cup R_{2} \cup R_{3} \cup R_{4} \cup R_{5}=\left\{[0, a+b I] \mid a, b \in Z_{8}\right.$,
$\times,+\} \cup\left\{\left.\begin{array}{lll}{\left[\begin{array}{ccc}{\left[0, a_{1} I\right]} & {\left[0, a_{2} I\right]} & {\left[0, a_{3} I\right]} \\ {\left[0, a_{4} I\right]} & {\left[0, a_{5} I\right]} & {\left[0, a_{6} I\right]} \\ {\left[0, a_{7} I\right]} & {\left[0, a_{8} I\right]} & {\left[0, a_{9} I\right]}\end{array}\right]}\end{array} \right\rvert\, a_{i} \in Z_{27}, 1 \leq i \leq 9\right.$,
$+, \times\} \cup\left\{\left(\left[0, a_{1} I\right],\left[0, a_{2} I\right], \ldots,\left[0, a_{8} I\right]\right) \mid a_{i} \in Z_{20}, 1 \leq i \leq 8\right.$,
$+, \quad \times\} \cup\left\{\left.\left[\begin{array}{ll}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{42} ; 1 \leq \mathrm{i} \leq 4\right\} \cup$
$\left\{\sum_{i=0}^{\infty}\left[0, a_{i}+b_{i} I\right] x^{i} \mid a_{i}, b_{i} \in Z_{40}\right\}$ be a neutrosophic interval
5 -ring.
i) Find S-5-subring of R.
ii) Is R a S-5-ring?
iii) Is R a Smarandache commutative 5 -ring?
iv) Does R contain S -zero divisors?
v) Can R have zero divisors which are not S -zero divisors?
vi) Can R have ideals which are not S-ideals?
vii) Can R have a principal 5-ideal?
64. Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\left\{[0, a+b I] \mid a, b \in Z_{8}\right.$, * (2, 6) $\} \cup\left\{[0, a+b I] \mid a, b \in Z_{8}, *(3,5)\right\} \cup\{[0, a+b I] \mid a, b \in$ $\left.\mathrm{Z}_{8}, *(1,7)\right\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{8}, *(4,4)\right\}$ be a neutrosophic interval 4-groupoid.
i) Is S a S-4-groupoid?
ii) Can S have Smarandache 4-subgroupoid?
iii) Does S satisfy any of the Smarandache identities?
iv) Is S a S-P-4-groupoid?
65. Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \mathrm{~T}_{3} \cup \mathrm{~T}_{4} \cup \mathrm{~T}_{5}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{7}\right.$, * $(3,4)\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}$, , * $(2,7)\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}$, $\left.\mathrm{b} \in \mathrm{Z}_{8}, *(1,7)\right\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{11}, *(3,8)\right\} \cup\{[0$, $\left.\mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{13}, *(12,1)\right\}$ be a neutrosophic interval 5groupoid.
i) Is T a S- neutrosophic interval 5-groupoid?
ii) Can T have S-sub 5 - groupoid?
iii) What is the order of T ?
iv) Is T a S-strong P-5-groupoid?
v) Is T a S-Bol 5-groupoid?
vi) Find 5-zero divisors and S-zero divisors if any in T.
66. Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4} \cup \mathrm{M}_{5}=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in$ $\{e, 1,2, \ldots, 33\}, 14, *\} \cup\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots$, $29\}, 20, *\} \cup\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots, 31\}, 15, *\}$ $\cup\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots, 53\}, 27, *\} \cup\{[0, a+b I]$ $\mid \mathrm{a}, \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 47\}, 23, *\}$ be a neutrosophic interval 5-loop.
i) Find the order of M.
ii) Find S-5 subloops of M.
iii) Is M a S-5 loop?
iv) Is M a S-strong Bol 5-loop?
v) Is M a S-Moufang 5-loop?
vi) Is M a S -strong alternative 5 -loop?
vii) Find S-strong P-5-loop.
viii) Obtain some interesting properties enjoyed by M.
ix) Prove $x=x_{1} \cup x_{2} \cup x_{3} \cup x_{4} \cup x_{5}$ in M is such that x^{2} $=$ identity.
67. Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2} \cup \mathrm{P}_{3} \cup \mathrm{P}_{4} \cup \mathrm{P}_{5} \cup \mathrm{P}_{6}=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in$ $\left.\mathrm{Z}_{7}, \times\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{15},+\right\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{20}\right.$, $(3,8), *\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{19},+\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2$, $\ldots, 19\} 9, *\} \cup\left\{[0, a+b I] \mid a, b \in Z_{12}, * .(3,9)\right\}$ be a mixed neutrosophic interval ($1,2,2,1$) - (semigroup group - groupoid - loop).
i) Find order of P .
ii) Find substructures in P.
iii) Is every element in P of finite order?
68. Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=\left\{[0, a I] \mid a \in Z_{9},+\right\} \cup$ $\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{9}, \times\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{9},(2,7), *\right\} \cup\{[0$, aI] $\mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 9\}, 5, *\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{9},(0,4)\right.$, *\} be a mixed neutrosophic interval $(1,1,2,1)$ - group semigroup - groupoid - loop.
i) Find order of S.
ii) Obtain substructures in S .
iii) Determine some interesting properties enjoyed by S.
iv) Does the order of 5-substructures divide the order of S ?
v) Let $\mathrm{x}=[0,3 \mathrm{I}] \cup[0,2 \mathrm{I}] \cup[0,4 \mathrm{I}] \cup[0,5 \mathrm{I}] \cup[0,7 \mathrm{I}]$ $\in S$. What is the order of the element x in S ?
69. Let $S=S_{1} \cup S_{2} \cup S_{3}=\left\{\left[0\right.\right.$, aI] where $\left.a \in Z_{24},+, \times\right\} \cup$ $\left\{[0, a I] \mid a \in Z^{+} \cup\{0\}, \times,+\right\} \cup\left\{\left(\left[0, a_{1}+b_{1} I\right],\left[0, a_{2}+b_{2} I\right]\right.\right.$, $\left.\left.\left[0, a_{3}+b_{3} I\right]\right) \mid a_{i}, b_{i} \in Z_{10}, 1 \leq i \leq 3,+, \times\right\}$ be a mixed neutrosophic interval $(2,1)$ ring - semiring.
i) Is S a Smarandache structure?
ii) Can S have 3-ideals?
iii) Find substructures in S.
iv) Can S have 3-zero divisors?
v) Can S have $S-3$ units?
vi) Is S a commutative 3 -structure?
70. Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4}=\left[\begin{array}{ccc}{[0,6 \mathrm{I}]} & 0 & {[0,2 \mathrm{I}]} \\ 0 & {[0,3 \mathrm{I}]} & 0 \\ {[0,7 \mathrm{I}]} & 0 & 0\end{array}\right]$
$\cup\left[\begin{array}{cc}{[0,4 \mathrm{I}]} & 0 \\ 0 & {[0,2 \mathrm{I}]}\end{array}\right] \cup\left[\begin{array}{cccc}{[0,2 \mathrm{I}]} & 0 & {[0,3 \mathrm{I}]} & 0 \\ 0 & {[0,4 \mathrm{I}]} & {[0, \mathrm{I}]} & 0 \\ {[0, \mathrm{I}]} & 0 & 0 & {[0,7 \mathrm{I}]} \\ 0 & {[0,8 \mathrm{I}]} & 0 & {[0, \mathrm{I}]}\end{array}\right]$
$\cup\left[\begin{array}{ccccc}{[0,2 \mathrm{I}]} & {[0,3 \mathrm{I}]} & 0 & {[0, \mathrm{I}]} & {[0,7 \mathrm{I}]} \\ 0 & {[0, \mathrm{I}]} & {[0,2 \mathrm{I}]} & 0 & 0 \\ 0 & 0 & {[0,4 \mathrm{I}]} & {[0, \mathrm{I}]} & {[0,2 \mathrm{I}]} \\ 0 & 0 & 0 & {[0,5 \mathrm{I}]} & 0 \\ 0 & 0 & 0 & 0 & {[0,7 \mathrm{I}]}\end{array}\right] \quad$ be \quad a
neutrosophic interval 4-matrix with entries from $\mathrm{R}^{+} \cup$ $\{0\}$.
i) Find characteristic 4-values associated with M.
ii) Is the characteristic 4-values associated with Mneutrosophic intervals?
iii) Can the characteristic 4 -values be in $\mathrm{R}^{+} \cup\{0\}$?
iv) Obtain some interesting results associated with M.
v) Does M^{-1} exist?
71. Obtain some interesting properties related with neutrosophic interval n -vector spaces.
72. Find some properties enjoyed by special neutrosophic interval n -vector spaces.
73. Study the difference between the structures described problems (71) and (72).
74. Let $M=M_{1} \cup M_{2} \cup M_{3} \cup M_{4} \cup M_{5}=\left\{\left(\left[0, a_{1} I\right],\left[0, a_{2} I\right]\right.\right.$, $\left.\left.\ldots,\left[0, a_{12} I\right]\right) \mid a_{i} \in Z_{7} ; 1 \leq i \leq 7\right\} \cup$

$$
\begin{aligned}
& \left\{\sum_{i=0}^{12}\left[0, a_{i}+b_{i} I\right] x^{i} \mid a_{i}, b_{i} \in Z_{13},+\right\} \cup \\
& \left.\left.\left\{\begin{array}{lll}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{7} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{9} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17}, 1 \leq \mathrm{i} \leq 9,+\right\} \cup \\
& \left\{\left.\left[\begin{array}{cc}
{\left[0, a_{1}+b_{1} \mathrm{I}\right]} & {\left[0, a_{2}+b_{2} \mathrm{I}\right]} \\
{\left[0, a_{3}+b_{3} \mathrm{I}\right]} & {\left[0, a_{4}+b_{4} \mathrm{I}\right]} \\
\vdots & \vdots \\
{\left[0, \mathrm{a}_{13}+\mathrm{b}_{13} \mathrm{I}\right]} & {\left[0, a_{14}+\mathrm{b}_{14} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, a_{i}, \mathrm{~b}_{\mathrm{i}} \in \mathrm{Z}_{3}, 1 \leq \mathrm{i} \leq 14\right\} \\
& \cup\left\{\left.\left(\begin{array}{cccc}
{\left[0, a_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{9} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{10} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{16} \mathrm{I}\right]}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{Z}_{5}, 1 \leq \mathrm{i} \leq 16,+\right\} \quad \text { be }
\end{aligned}
$$

a special neutrosophic interval 5-vector space over the 5field $F=F_{1} \cup F_{2} \cup F_{3} \cup F_{4} \cup F_{5}=Z_{7} \cup Z_{13} \cup Z_{17} \cup Z_{3} \cup$ Z_{5}.
i) Find a special 5-basis of M over F .
ii) What is the special 5-dimension of M over F ?
iii) Can M be written as a direct union of special neutrosophic interval 5-subspaces over F ?
iv) Find a special linear 5-operator $T=T_{1} \cup T_{2} \cup T_{3} \cup$ $\mathrm{T}_{4} \cup \mathrm{~T}_{5}$ so that T^{-1} exists.
75. Let $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}=\left\{\left(\left[0, a_{1}+b_{1} I\right], \ldots,\left[0, a_{8}+\right.\right.\right.$ $\left.\left.\left.b_{8} I\right]\right) \mid a_{i}, b_{i} \in Z^{+} \cup\{0\},+\right\} \cup\left\{\left[\begin{array}{c}{\left[0, a_{1} I\right]} \\ {\left[0, a_{2} I\right]} \\ \vdots \\ {\left[0, a_{10} I\right]}\end{array}\right]\right.$ where $a_{i} \in Z^{+}$ $\cup\{0\} ; 1 \leq \mathrm{i} \leq 10\} \cup\left\{\sum_{\mathrm{i}=0}^{9}[0, \mathrm{a}+\mathrm{bI}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup$ $\left\{\left.\left(\begin{array}{cc}{[0, a+b I]} & {[0, c+d I]} \\ {[0, c+d I]} & {[0, a+b I]}\end{array}\right) \right\rvert\, a, b, c, d \in Z^{+} \cup\{0\},+\right\} \quad$ be \quad a
neutrosophic interval 4-semivector space over the semifield $S=Z^{+} \cup\{0\}$.
i) Find a 4-basis of V over $\mathrm{Z}^{+} \cup\{0\}$.
ii) What is the 4-dimesnion of V over $\mathrm{Z}^{+} \cup\{0\}$
iii) Find 4-subspaces of V over $\mathrm{S}=\mathrm{Z}^{+} \cup\{0\}$
iv) Is V a Smarandache 4 -semivector space over $\mathrm{Z}^{+} \cup$ $\{0\}$?
v) Find a linear 4-operator $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4}$ on V so that T^{-1} does not exist.
vi) Is 4-kerT $=\operatorname{ker} \mathrm{T}_{1} \cup \operatorname{ker} \mathrm{~T}_{2} \cup \operatorname{ker} \mathrm{~T}_{3} \cup \operatorname{ker} \mathrm{~T}_{4}$ a 4subspace?
76. Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=$

$$
\left.\left.\left.\begin{array}{l}
\left\{\sum_{i=0}^{\infty}[0, a I] x^{i} \mid a \in Z^{+} \cup\{0\},+, \times\right\} \cup\left\{\left(\left[0, a_{1} I\right],\left[0, a_{2} I\right], \ldots,[0,\right.\right. \\
\left.\left.\left.\mathrm{a}_{8} I\right]\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\},+, \times\right\} \cup \\
\left\{\left.\left[\begin{array}{ccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4} \in \mathrm{Z}^{+} \cup\{0\},+, \times\right\} \cup \\
\left\{\left(\begin{array}{ccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\
0 & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} \\
0 & 0 & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]}
\end{array}\right)\right.
\end{array} \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 6,+, \times\right\}\right\}
$$

$$
\cup
$$

$$
\left\{\left.\left(\begin{array}{cccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & 0 & 0 & 0 \\
{\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} & 0 & 0 \\
0 & {\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & 0 \\
0 & 0 & 0 & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 6,+, \times\right\}
$$

be a neutrosophic interval 5-semiring.
i) Is S -a S -5-semiring?
ii) Does S contain a S-5-subsemiring which is not Smarandache?
iii) Can S have 5-zero divisors?
iv) Obtain some stricking properties about S.
v) Can S have S-5-ideals?
77. Give some special properties about quasi neutrosophic quasi interval n -groups ($\mathrm{n} \geq 3$).
78. Prove Lagrange's theorem is true for quasi neutrosophic quasi interval n -group of finite n -order.
79. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2} \mathrm{I}\right],[0\right.\right.$, $\left.\left.a_{3} I\right] \quad \mid \quad a_{i} \quad \in \quad Z_{11} \quad \backslash \quad\{0\}\right\} \quad \cup$
$\left.\left\{\begin{array}{lll}{\left[0, a_{1} I\right]} & {\left[0, a_{2} I\right]} & {\left[0, a_{3} I\right]} \\ {\left[0, a_{4} I\right]} & {\left[0, a_{5} I\right]} & {\left[0, a_{6} I\right]} \\ {\left[0, a_{7} I\right]} & {\left[0, a_{8} I\right]} & {\left[0, a_{9} I\right]} \\ {\left[0, a_{10} I\right]} & {\left[0, a_{11} I\right]} & {\left[0, a_{12} I\right]} \\ {\left[0, a_{13} I\right]} & {\left[0, a_{14} I\right]} & {\left[0, a_{15} I\right]}\end{array}\right] a_{i} \in Z_{12},+, 1 \leq i \leq 15\right\}$
$\left\{\left.\left(\begin{array}{ccc}{\left[0, a_{1}+b_{1} I\right]} & \ldots & {\left[0, a_{7}+b_{7} I\right]} \\ {\left[0, a_{8}+b_{8} I\right]} & \ldots & {\left[0, a_{14}+b_{14} I\right]}\end{array}\right) \right\rvert\, a_{i}, b_{i} \in Z_{24},+; 1 \leq i \leq 14\right\}$
$\cup\left\{[0, \quad \mathrm{a}+\mathrm{bI}] \quad\right.$ I $\left.\mathrm{a}, \quad \mathrm{b} \quad \in \quad \mathrm{Z}_{25}, \quad+\right\}$
$\left.\cup\left\{\begin{array}{l}{\left[0, a_{1} I\right]} \\ {\left[0, a_{2} I\right]} \\ {\left[0, a_{3} I\right]} \\ {\left[0, a_{4} I\right]}\end{array}\right] a_{i} \in Z_{15}, 1 \leq i \leq 14 ;+\right\} \quad$ be \quad a \quad neutrosophic
interval 5-group.
i) Find the 5 -order of G.
ii) Prove Lagrange's theorem is true for G.
iii) Find all p-sylow 5 -subgroups of G.
iv) Prove Cauchy theorem is true for G.
v) If $x \in G$; does there exists an integer such that

$$
\begin{aligned}
& x^{n}=x_{1}^{n_{1}} \cup x_{2}^{n_{2}} \cup x_{3}^{n_{3}} \cup x_{4}^{n_{4}} \cup x_{5}^{n_{5}} \\
& =([0, I],[0, I],[0, I]) \cup(0) \cup\left(\begin{array}{llll}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0
\end{array}\right) \cup
\end{aligned}
$$

$$
[0,0] \cup\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

80. Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{\sum_{\mathrm{i}=0}^{20}\left[0, \mathrm{a}_{\mathrm{i}} \mathrm{I}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}\right\}$

$$
\cup\left\{\begin{array}{ccc}
{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{3} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{4} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{5} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{6} \mathrm{I}\right]} \\
{\left[0, \mathrm{a}_{7} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{8} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{9} \mathrm{I}\right]}
\end{array}\right]\left|\left.\right|_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 9\right\} \cup
$$

$$
\left\{\left.\left[\begin{array}{cc}
{\left[0, a_{1}+b_{1} I\right]} & {\left[0, a_{2}+b_{2} I\right]} \\
\vdots & \vdots \\
{\left[0, a_{7}+b_{7} I\right]} & {\left[0, a_{8}+b_{8} I\right]}
\end{array}\right] \right\rvert\, a_{i}, b_{i} \in Z^{+} \cup\{0\}, 1 \leq i \leq 8\right\}
$$

$$
\cup\left\{\left(\left[0, a_{1}+b_{1} I\right], \ldots,\left[0, a_{11}+b_{11} I\right]\right) \mid a_{i}, b_{i} \in Z^{+} \cup\{0\} ; 1 \leq\right.
$$ $\mathrm{i} \leq 11\}$ be a neutrosophic interval 4 - semivector space over the semifield $=\mathrm{Z}^{+} \cup\{0\}$.

i) What is the 4-dimension of S over F ?
ii) Find a 4-basis of S over F.
iii) Find atleast 34 -subsemivector spaces of S over F.
iv) Write S as a direct sum.
v) Is S a 4 -semilinear algebra over $\mathrm{Z}^{+} \cup\{0\}$?
vi) Is S a Smarandache 4 -semivector space over F ?
vii) Define a 4-linear operator T on S so that T^{-1} exists.
81. Give an example of a neutrosophic fuzzy interval 4semigroup of infinite order.
82. Give an example of a fuzzy neutrosophic interval 8semiring which is not Smarandache.
83. Derive any interesting property about fuzzy neutrosophic interval n-rings.
84. Can the concept of principal ideal domain be extended to the fuzzy neutrosophic interval n-rings?
85. Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2} \cup \mathrm{P}_{3} \cup \mathrm{P}_{4} \cup \mathrm{P}_{5}=\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{12}\right.$, $\times\} \cup\left\{\left[\begin{array}{c}{\left[0, a_{1} I\right]} \\ {\left[0, a_{2} I\right]} \\ \vdots \\ {\left[0, a_{9} I\right]}\end{array}\right] a_{i} \in Z_{12}, \times, 1 \leq i \leq 9\right\} \cup\left\{\left(\left[0, a_{1} I\right], \ldots,[0\right.\right.$, $\left.\left.\left.\mathrm{a}_{10} \mathrm{I}\right]\right) \quad \mid \quad \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\} ; 1 \leq \mathrm{i} \leq 10, \times\right\} \cup$ $\left\{\sum_{i=0}^{25}\left[0, a_{i}+b_{i} I\right] x^{i} \mid a_{i}, b_{i} \in Z^{+} \cup\{0\}, 0 \leq i \leq 25,+\right\}$
$\left\{\left.\left[\begin{array}{cc}{\left[0, a_{1} I\right]} & {\left[0, a_{2} I\right]} \\ {\left[0, a_{3} I\right]} & {\left[0, a_{4} I\right]}\end{array}\right] \right\rvert\, a_{i} \in Z^{+} \cup\{0\}, \times\right\}$ be a neutrosophic interval 5-semigroup.
i) Define a map $\eta: \mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2} \cup \mathrm{P}_{3} \cup \mathrm{P}_{4} \cup \mathrm{P}_{5} \rightarrow\langle[0$, $\mathrm{I}] \cup[0,1]\rangle \cup\langle[0, \mathrm{I}] \cup[0,1]\rangle \cup\langle[0, \mathrm{I}] \cup[0,1]\rangle\langle[0$, $I],[0,1]\rangle \cup\langle[0, I],[0,1]\rangle$, so that (p, η) is a special neutrosophic fuzzy interval fuzzy 5-semigroup.
ii) How many such special fuzzy 5-semigroup can be constructed?
86. Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\{[0, a I] \mid a \in\{e, 1,2, \ldots$, $23\}, 9, *\} \cup\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots, 29\}, 20, *\}$ $\cup\left\{\left(\left[0, a_{1} I\right],\left[0, a_{2} I\right] \ldots\left[0, a_{7} I\right]\right) \mid a \in\{e, 1,2, \ldots, 33\}, 14\right.$, * $\} \cup\{[0, a+b I] \mid a, b \in\{e, 1,2, \ldots, 53\}, 29, *\}$ be a neutrosophic interval 4-loop.
i) Define a map $\eta: S \rightarrow\langle[0,1] \cup[0, I]\rangle \cup\langle[0,1] \cup[0$, $\mathrm{I}]\rangle \cup[0,1] \cup[0, \mathrm{I}]\rangle \cup\langle[0,1] \cup[0, \mathrm{I}]\rangle$ so that (S, η) is a special neutrosophic fuzzy interval fuzzy 4-loop.
ii) Derive some of the properties enjoyed by (S, η).
87. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in$ $\left.\mathrm{Z}_{45},+\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{220},+\right\} \in\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{53} \backslash\{0\}\right.$, $\times\} \cup\left\{\left(\left[0, a_{1} I\right], \ldots,\left[0, a_{8} I\right]\right) \mid a_{i} \in Z_{13} \backslash\{0\}, \times\right\} \cup\{[0$, $\left.\mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{28},+\right\}$ be a neutrosophic interval 5-group.
i) Define $\eta: \mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5} \rightarrow\langle[0, \mathrm{I}] \cup$ $[0,1]\rangle \cup\langle[0, \mathrm{I}] \cup[0,1]\rangle \cup\langle[0, \mathrm{I}] \cup[0,1]\rangle \cup\langle[0, \mathrm{I}]$ $\cup[0,1]\rangle \cup\langle[0, I] \cup[0,1]\rangle$ so that (G, η) is a special fuzzy neutrosophic interval fuzzy 5-group.
ii) Find fuzzy 5 -subgroups of (G, η).
88. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in$ $\left.\mathrm{Z}_{9},{ }^{*},(2,7)\right\} \cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{48},{ }^{*},(9,0)\right\} \cup\{[0, \mathrm{a}+\mathrm{bI}] \mid$ $\left.\mathrm{a}, \mathrm{b} \in \mathrm{Z}_{270}, *,(2,8)\right\} \cup\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right],\left[0, \mathrm{a}_{2} \mathrm{I}\right], \ldots,\left[0, \mathrm{a}_{20} \mathrm{I}\right]\right) \mid \mathrm{a}\right.$ $\left.\in \mathrm{Z}_{27}, \quad 1 \leq \mathrm{i} \leq 20,{ }^{*},(11,0)\right\} \cup\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{48},{ }^{*},(25\right.$, 23) $\} \cup\left\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{420},{ }^{*},(29,0)\right\}$ be a quasi neutrosophic interval 6-groupoid.
i) Define $\eta: \mathrm{V} \rightarrow\langle[0, \mathrm{I}] \cup[0,1]\rangle \cup\langle[0, \mathrm{I}] \cup[0,1]\rangle \cup$ $\langle[0, \mathrm{I}] \cup[0,1]\rangle \cup\langle[0, \mathrm{I}] \cup[0,1]\rangle \cup\langle[0, \mathrm{I}] \cup[0,1]\rangle$ $\cup\langle[0, \mathrm{I}] \cup[0,1]\rangle$ so that (V, η) is a special fuzzy quasi neutrosophic interval fuzzy 6-groupoid.
ii) Does (V, η) satisfy any of the special identities?
iii) How many (V, η)'s can be constructed using V ?
89. Let $\mathrm{M}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \ldots \cup \mathrm{M}_{5}=\left\{[0, \mathrm{aI}] \mid \mathrm{a} \in \mathrm{Z}_{40},+\right\} \cup$ $\{$ all 5×5 neutrosophic interval matrices with entries from $\mathrm{Z}^{+} \cup\{0\}$ under matrix multiplication $\} \cup\left\{\left(\left[0, \mathrm{a}_{1} \mathrm{I}\right], \ldots\right.\right.$, $\left.\left.\left[0, a_{8} I\right]\right) \mid a_{i} \in Z_{47},(8,9), *, 1 \leq i \leq 8\right\} \cup\{[0, a I] \mid a \in\{e$, $\left.1,2, \ldots, 43\},{ }^{*}, 9\right\} \cup\left\{\left.\left[\begin{array}{l}{\left[0, a_{1} I\right]} \\ {\left[0, a_{2} I\right]} \\ {\left[0, a_{3} I\right]} \\ {\left[0, a_{4} I\right]}\end{array}\right] \right\rvert\, a_{i} \in Z^{+} \cup\{0\}, 1 \leq i \leq 4,+\right\}$
be a mixed neutrosophic interval (1, 2, 1, 1) group semigroup - groupoid - loop.
i) Define $\eta: M=M_{1} \cup M_{2} \cup \mathrm{M}_{3} \cup \mathrm{M}_{4} \cup \mathrm{M}_{5} \rightarrow\langle[0, \mathrm{I}]$ $\cup[0,1]\rangle \cup\langle[0, I] \cup[0,1]\rangle \cup\langle[0, I] \cup[0,1]\rangle \cup\langle[0$, $I] \cup[0,1]\rangle \cup\langle[0, I] \cup[0,1]\rangle$ so that (M, η) is a special mixed fuzzy neutrosophic interval $(1,2,1,1)$ fuzzy grouped - fuzzy semigroup - fuzzy groupoid fuzzy loop.
ii) Find substructures of (M, η).
iii) Obtain some interesting results about (M, η).
90. Determine some interesting properties about special fuzzy n-structures.
91. Compare the special fuzzy neutrosophic n -structures with fuzzy neutrosophic n -structures.
92. What is the advantage of defining directly fuzzy neutrosophic n-structures using the fuzzy neutrosophic interval $\langle[0, \mathrm{I}]\} \cup[0,1]\rangle=\{[0, \mathrm{a}+\mathrm{bI}] \mid \mathrm{a}, \mathrm{b} \in[0,1]\}$?
93. Give some applications of these new n-structures.
94. What is the advantage of using intervals / neutrosophic intervals instead of real values in mathematical models.
95. Find the uses and advantages of using neutrosophic interval n-matrices in stiffness n-matrices.
96. Describe some real mathematical models which function better if real values are replaced by intervals.
97. Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{\sum_{\mathrm{i}=0}^{28}\left[0, \mathrm{a}_{\mathrm{i}}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7}\right\} \cup$ $\left\{\left(\left[0, a_{1}+b_{1} I\right], \ldots,\left[0, a_{8}+b_{8} I\right]\right) \mid a_{i}, b_{i} \in Z_{7},+\right\} \cup$ $\left\{\left.\left[\begin{array}{c}{\left[0, a_{1} I\right]} \\ {\left[0, a_{2} I\right]} \\ \vdots \\ {\left[0, a_{20} I\right]}\end{array}\right] \right\rvert\, a_{i} \in Z_{7}, 1 \leq i \leq 20\right\} \cup$
$\left\{\left[\begin{array}{cccc}{\left[0, \mathrm{a}_{1} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{2} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{11} \mathrm{I}\right]} \\ {\left[0, \mathrm{a}_{12} \mathrm{I}\right]} & {\left[0, \mathrm{a}_{13} \mathrm{I}\right]} & \ldots & {\left[0, \mathrm{a}_{22} \mathrm{I}\right]}\end{array}\right] \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7}, 1 \leq \mathrm{i} \leq 22\right\}$ be a
neutrosophic interval 4 - vector space over the field Z_{7}.
i) Find η so that (S, η) is a fuzzy neutrosophic interval 4 -vector space.
ii) What is the 4-dimension of S ?
iii) Obtain a linear 4-operator T on S so that T^{-1} does not exist.
iv) What is the advantage of studying fuzzy neutrosophic interval 4 -vector space?
v) Find fuzzy neutrosophic interval 4-vector subspaces of S.
98. Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $23\}, *, 8\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 29\}, *, 11\} \cup\{[0$, $\left.\mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 37\},{ }^{*}, 12\right\} \cup\{[0, \mathrm{aI}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2$, $\ldots, 43\}, *, 14\}$ be a neutrosophic interval 4-loop.
i) Is L a S-strong Bol 4-loop?
ii) Find (L, η) the fuzzy neutrosophic interval 4-loop.
iii) Is L S-commutative?
99. Give a class of S-commutative neutrosophic interval nloop.
100. Does there exist a class of neutrosophic interval n-loop which is neutrosophic interval Moufang n -loop?
101. Find a class of S-strong neutrosophic interval Bol n-loop.
102. Find a class of S-strong neutrosophic interval alternative n-loop.
103. Find a class of S-strong neutrosophic interval Bol ngroupoid.
104. Does there exist a S-strong commutative neutrosophic interval n-groupoid?
105. Does there exist a S-strong Moufang neutrosophic fuzzy interval 8-groupoid?
106. Find a class of S-Moufang fuzzy neutrosophic interval 6groupoid.
107. Find a class of S-strong neutrosophic fuzzy interval P-ngroupoid.
108. Give an example of a S-neutrosophic fuzzy interval idempotent 8 -groupoid.
109. Give an example of a S-neutrosophic fuzzy interval Moufang 12-groupoid.
110. Give an example of a S-neutrosophic fuzzy interval Bol 3-groupoid which is not a S -strong neutrosophic fuzzy interval Bol 3-groupoid.
111. Give an example of a S-neutrosophic fuzzy interval alternative 5-groupoid.
112. Give an example of a S-neutrosophic fuzzy interval 5semigroup which is a S-Lagrange neutrosophic fuzzy interval 5 -semigroup (can such structure exist?)
113. Give an example of a S-neutrosophic fuzzy interval 9loop, which is right alternative but not left alternative.

Further Readings

1. Bruck, R. H., A survey of binary systems, Springer-Verlag, (1958).
2. Bruck, R.H, Some theorems on Moufang loops, Math. Z., 73, 59-78 (1960).
3. Raul, Padilla, Smarandache Algebraic Structures, Smarandache Notions Journal, 9, 36-38 (1998).
4. Smarandache, F. (editor), Proceedings of the First International Conference on Neutrosophy, Neutrosophic Logic, Neutrosophic set, Neutrosophic probability and Statistics, December 1-3, 2001 held at the University of New Mexico, published by Xiquan, Phoenix, 2002.
5. Smarandache, F. A Unifying field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic set, Neutrosophic probability, second edition, American Research Press, Rehoboth, 1999.
6. Smarandache, F. An Introduction to Neutrosophy, http://gallup.unm.edu/~smarandache/Introduction.pdf
7. Smarandache, Florentin, Special Algebraic Structures, in Collected Papers, Abaddaba, Oradea, 3, 78-81 (2000).
8. Vasantha Kandasamy, W. B., Bialgebraic Strucutures and Smarandache Bialgebraic Strucutures, American Research Press, Rehoboth, NM, (2003).
9. Vasantha Kandasamy, W. B., Biloops, U. Sci. Phy. Sci., 14, 127-130 (2002).
10. Vasantha Kandasamy, W. B., Groupoids and Smarandache groupoids, American Research Press, Rehoboth, (2002). http://www.gallup.unm.edu/~smarandache/VasanthaBook2.pdf
11. Vasantha Kandasamy, W. B., Smarandache groupoids, (2002). http://www.gallup.unm.edu/~smarandache/Groupoids.pdf
12. Vasantha Kandasamy, W. B., Smarandache Loops, American Research Press, Rehoboth, NM, (2002). http://www.gallup.unm.edu/~smarandache/VasanthaBook4.pdf
13. Vasantha Kandasamy, W. B., Smarandache loops, Smarandache Notions Journal, 13, 252-258 (2002). http://www.gallup.unm.edu/~smarandache/Loops.pdf
14. Vasantha Kandasamy, W. B., Smarandache Semigroups, American Research Press, Rehoboth, NM, (2002). http://www.gallup.unm.edu/~smarandache/VasanthaBook1.pdf
15. Vasantha Kandasamy, W.B., and Smarandache, Florentin, Fuzzy Interval Matrices, Neutrosophic Interval matrices and their application, Hexis, Arizona, (2006).
16. Vasantha Kandasamy, W.B., and Smarandache, Florentin, Interval Semigroups, Kappa and Omega, Glendale, (2011).
17. Vasantha Kandasamy, W.B., Smarandache, Florentin and Moon Kumar Chetry, Interval Groupoids, Infolearnquest, Ann Arbor, (2010).
18. Zoltan, Esik, Free De Morgan Bisemigroups and Bisemilattices, Basic Research in Computer Science (BRICS) http://www.brics.dk

INDEX

B

Biideally simple pure neutrosophic bisemigroup, 10-4
Bikernel of homomorphism, 14-6

F

Fuzzy neutrosophic intervals, 158

I

Intervals of pure neutrosophic integers, 7-9

M

Mixed neutrosophic interval bigroup, 36-8
Mixed neutrosophic interval bisemigroup, 25-7
Mixed neutrosophic interval group-semigroup, 37-9
Mixed neutrosophic interval loop, 58
Mixed neutrosophic interval ring-semiring, 154-5
Mixed neutrosophic interval semiring-ring, 154-5
Mixed-neutrosophic interval pure neutrosophic interval
bisemigroup, 29-31

N

Neutrosophic interval (r, s) group-semigroup, 144-6
Neutrosophic interval (r, s) semigroup-group, 144-6
Neutrosophic interval (r, t) semigroup-groupoid, 138-9
Neutrosophic interval (t , r) groupoid-semigroup, 138-9
Neutrosophic interval (t , u) group-groupoid, 144-7
Neutrosophic interval (t, u) loop-groupoid, 146-7

Neutrosophic interval (u, t) groupoid-group, 144-7.
Neutrosophic interval (u, t) groupoid-loop, 146-7
Neutrosophic interval bigroup, 32-5
Neutrosophic interval bigroupoid bihomomorphism, 50-2
Neutrosophic interval bigroupoids, 41-5
Neutrosophic interval bilinear transformation, 98-9
Neutrosophic interval biloop, 57-60
Neutrosophic interval biprojection of a bivector space, 104-5
Neutrosophic interval bisemigroups, 8-10
Neutrosophic interval bisemirings, 85-7
Neutrosophic interval bisemivector space, 117-9
Neutrosophic interval bisemivector subspace, 119-120
Neutrosophic interval bisubsemigroup, 10-3
Neutrosophic interval bivector spaces, 92-4
Neutrosophic interval bivector subspaces, 94-6
Neutrosophic interval groupoid, 71-3
Neutrosophic interval groupoid-loop, 74
Neutrosophic interval groupoid-semigroup, 73-5
Neutrosophic interval group-semigroup, 40-1
Neutrosophic interval linear bioperators, 100-2
Neutrosophic interval linear bitransformation, 99-100
Neutrosophic interval loop-groupoid,
Neutrosophic interval loop-semigroup, 70-2
Neutrosophic interval matrix biring, 84-5
Neutrosophic interval n-groupoid, 132-4
Neutrosophic interval n-loop, 145-6
Neutrosophic interval n-ring, 147-8
Neutrosophic interval n-semigroup, 127-9
Neutrosophic interval n-semiring, 151-2
Neutrosophic interval n-subring, 149
Neutrosophic interval n-vector spaces, 156-7
Neutrosophic interval of integers, 7-9
Neutrosophic interval of reals, 7-9
Neutrosophic interval polynomial biring, 83-5
Neutrosophic interval ring-semiring, 88-9
Neutrosophic interval semigroup-groupoid, 73-5
Neutrosophic interval semigroup-loop, 70-2
Neutrosophic interval semiring - ring, 88-9
Neutrosophic interval semivector space-set vector space, 122-4

Neutrosophic interval set vector space-semivector space, 122-4
Neutrosophic linear bialgebra, 106-8
Neutrosophic n-interval group, 142-4
Neutrosophic n-interval semigroup, 127-9
Neutrosophic quasi interval (t, u) semiring - ring, 155-6
Neutrosophic quasi interval (u, t) ring-semiring, 155-6
Neutrosophic quasi interval bisemiring, 87-9
Neutrosophic quasi interval n-semigroup, 130-3
Neutrosophic quasi interval polynomial biring, 83-5
Neutrosophic quasi interval quasi bifield, 79-81
Neutrosophic quasi interval ring - semiring, 91-2
Neutrosophic quasi interval semiring-ring, 91-2
n-neutrosophic interval semigroup, 127-9

P

Pseudo pure neutrosophic interval subbisemigroup, 26-8
Pure neutrosophic biinterval groupoids, 41-3
Pure neutrosophic biinterval semigroup, 8-10
Pure neutrosophic interval alternative bigroupoid, 47-9
Pure neutrosophic interval bigroup, 32-5
Pure neutrosophic interval biideal of a bigroupoid, 43-7
Pure neutrosophic interval biideal, 80-2
Pure neutrosophic interval birings, 74-7
Pure neutrosophic interval bisemigroup homomorphism, 14-6
Pure neutrosophic interval bisemigroup, 44-6
Pure neutrosophic interval bisimple bigroupoid, 45-7
Pure neutrosophic interval group-groupoid, 56-8
Pure neutrosophic interval groupoid-group, 56-8
Pure neutrosophic interval groupoid-semigroup, 53-5
Pure neutrosophic interval group-semigroup, 37-9
Pure neutrosophic interval idempotent bigroupoid, 44-6
Pure neutrosophic interval normal bigroupoid, 46-8
Pure neutrosophic interval quotient biring, 81-4
Pure neutrosophic interval right alternative biloop, 61-4
Pure neutrosophic interval S-Cauchy biloop, 63-4
Pure neutrosophic interval semigroup-groupoid, 53-6
Pure neutrosophic interval subbigroupoids, 43-5
Pure neutrosophic interval subbiring, 80-3

Pure neutrosophic interval subbisemigroup, 10-3
Pure neutrosophic interval subgroupoid-subgroup, 56-9
Pure neutrosophic interval subgroup-subgroupoid, 56-9
Pure neutrosophic interval; P-bigroupoid, 46-8
Pure neutrosophic intervals of rationals, 7-9
Pure neutrosophic intervals of reals, 7-9
Pure neutrosophic left alternative biloop, 61-4
Pure neutrosophic quasi interval bigroupoid, 54-5

Q

Quasi commutative pure neutrosophic interval biloop, 60-3
Quasi interval mixed neutrosophic group-semigroup, 40-1
Quasi interval mixed-pure neutrosophic interval bisemigroup, 31-3
Quasi interval neutrosophic bifield, 75-8
Quasi interval neutrosophic group-semigroup, 37-9
Quasi interval pure neutrosophic bigroup, 35-7
Quasi interval pure neutrosophic biideal, 22-5
Quasi interval pure neutrosophic bisemigroup, 19-22
Quasi interval pure neutrosophic bisubsemigroup, 21-3
Quasi interval pure neutrosophic semigroup-group, 37-9
Quasi interval quasi neutrosophic bisubsemigroup, 24-7
Quasi interval quasi neutrosophic subgroup-subsemigroup, 40-1
Quasi interval quasi pure neutrosophic group-semigroup, 40-1
Quasi mixed neutrosophic quasi interval group-groupoid, 57-9
Quasi mixed neutrosophic quasi interval groupoid-group, 57-9
Quasi neutrosophic-quasi interval semigroup - groupoid, 141-3
Quasi neutrosophic interval (r, t) semigroup - groupoid, 140-2
Quasi neutrosophic interval bisemifield, 87-9
Quasi neutrosophic interval bisemivector space, 121-3
Quasi neutrosophic interval bivector space, 111-3
Quasi neutrosophic interval group-loop, 69-72
Quasi neutrosophic interval loop-group, 69-72
Quasi neutrosophic interval matrix biring, 84-5
Quasi neutrosophic interval n-ring, 150
Quasi neutrosophic interval quasi bifield, 75-8
Quasi neutrosophic interval ring - semiring, 91-2
Quasi neutrosophic interval semiring - ring, 91-2

Quasi neutrosophic quasi interval bifield, 78-9
Quasi neutrosophic quasi interval bisemivector space, 122-3
Quasi neutrosophic quasi interval group-loop, 70-2
Quasi neutrosophic quasi interval groupoid, 136-7
Quasi neutrosophic quasi interval loop-group, 70-2
Quasi neutrosophic quasi interval loop-semigroup, 70-3
Quasi neutrosophic quasi interval n-semigroup, 131-3
Quasi neutrosophic quasi interval quasi field, 88-9
Quasi pure neutrosophic interval bigroupoid, 54-5
Quasi pure neutrosophic quasi interval bisemigroup, 23-7
Quasi pure neutrosophic quasi interval groupoid-semigroup, 55
Quasi pure neutrosophic quasi-interval semigroup-groupoid, 55
Quasi Smarandache pure neutrosophic groupoid-semigroup, 53
Quasi special neutrosophic interval bivector space, 114-6

R

Rational neutrosophic intervals, 7-9
Real - pure neutrosophic interval bigroup, 36-8

S

S-Cauchy pure neutrosophic interval biloop, 63-4
Smarandache ($\mathrm{p}_{1}, \mathrm{p}_{2}$) Sylow interval subbiloop, 65-7
Smarandache Lagrange interval biloop, 64-6
Smarandache neutrosophic interval bisemiring, 87-8
Smarandache neutrosophic interval n-ring, 148-9
Smarandache neutrosophic n-interval semigroup, 128-130
Smarandache pure neutrosophic interval bicyclic loop, 66-8
Smarandache pure neutrosophic interval bigroupoids, 43-5
Smarandache pure neutrosophic interval biloop, 59-62
Smarandache pure neutrosophic interval bisemigroup, 13-5
Smarandache pure neutrosophic interval idempotent bigroupoid, 51-3
Smarandache pure neutrosophic interval subbigroup-biloop, 62-5
Smarandache pure neutrosophic interval subbigroupoid, 48-9
Smarandache strong (2, 2) Sylow interval biloop, 65-7
Smarandache strong Bol bigroupoid, 50-3

Smarandache strong cyclic pure neutrosophic interval biloop, 66-8
Smarandache strong Moufang bigroupoid, 49-51
Smarandache strong P-bigroupoid, 50-3
Smarandache strong pure neutrosophic interval P-bigroupoid, 49-51
Smarandache weakly Lagrange interval biloop, 64-6
Special neutrosophic interval bivector space, 107-8
Special neutrosophic interval bivector subspace, 108-9
Special neutrosophic interval linear bialgebra, 116-7
Special neutrosophic interval semivector space - vector space, 124-5
Special neutrosophic interval subvector space-subsemivector space, 125-6
Special neutrosophic interval vector space-semivector space, 124-6
Special neutrosophic linear bitransformation, 108-9
S-simple neutrosophic interval biloop, 62-5

AbOUT THE AUTHORS

Dr.W.B.Vasantha Kandasamy is an Associate Professor in the Department of Mathematics, Indian Institute of Technology Madras, Chennai. In the past decade she has guided 13 Ph.D. scholars in the different fields of non-associative algebras, algebraic coding theory, transportation theory, fuzzy groups, and applications of fuzzy theory of the problems faced in chemical industries and cement industries. She has to her credit 646 research papers. She has guided over 68 M.Sc. and M.Tech. projects. She has worked in collaboration projects with the Indian Space Research Organization and with the Tamil Nadu State AIDS Control Society. She is presently working on a research project funded by the Board of Research in Nuclear Sciences, Government of India. This is her $59^{\text {th }}$ book.

On India's 60th Independence Day, Dr.Vasantha was conferred the Kalpana Chawla Award for Courage and Daring Enterprise by the State Government of Tamil Nadu in recognition of her sustained fight for social justice in the Indian Institute of Technology (IIT) Madras and for her contribution to mathematics. The award, instituted in the memory of Indian-American astronaut Kalpana Chawla who died aboard Space Shuttle Columbia, carried a cash prize of five lakh rupees (the highest prize-money for any Indian award) and a gold medal.
She can be contacted at vasanthakandasamy@gmail.com Web Site: http://mat.iitm.ac.in/home/wbv/public html/ or http://www.vasantha.in

Dr. Florentin Smarandache is a Professor of Mathematics at the University of New Mexico in USA. He published over 75 books and 200 articles and notes in mathematics, physics, philosophy, psychology, rebus, literature.

In mathematics his research is in number theory, nonEuclidean geometry, synthetic geometry, algebraic structures, statistics, neutrosophic logic and set (generalizations of fuzzy logic and set respectively), neutrosophic probability (generalization of classical and imprecise probability). Also, small contributions to nuclear and particle physics, information fusion, neutrosophy (a generalization of dialectics), law of sensations and stimuli, etc. He can be contacted at smarand@unm.edu

The authors in this book introduce the notion of neutrosophic interval bialgebraic structures. Some research level problems are also given. Using these neutrosophic biintervals several new interval bialgebraic structures are introduced and studied.
These concepts are generalized to neutrosophic n-interval algebraic structures.

