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Neutrosophic logic is a relatively new logic that is a generalization of fuzzy logic. In this paper, for the first 
time, neutrosophic logic is applied to the field of classifiers where a support vector machine (SVM) is adopted 
as the example to validate its feasibility and effectiveness. The proposed neutrosophic set is integrated into a 
reformulated SVM, and the performance of the obtained classifier N-SVM is evaluated under a region-based 
image categorization system. Images are first segmented by a hierarchical two-stage self-organizing map 
(HSOM), using color and texture features. A novel approach is proposed to select the training samples of 
HSOM based on homogeneity properties. A diverse density support vector machine (DD-SVM) framework is 
then applied to viewing an image as a bag of instances corresponding to the regions obtained from image 
segmentation. Each bag is mapped to a point in the new bag space, and the categorization is transformed to a 
classification problem. Then, the proposed N-SVM is used as the classifier in the new bag space. N-SVM treats 
samples differently according to the weighting function, and it helps to reduce the effects of outliers. 
Experimental results have demonstrated the validity and effectiveness of the proposed method which may find 
wide applications in the related areas.   
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1. Introduction

Neutrosophic logic is based on neutrosophy.1 Fuzzy logic extends classical logic by assigning a 
membership between 0 and 1 to variables. As a generalization of fuzzy logic, neutrosophic logic 
introduces a new component called “indeterminacy”, and carries more information than fuzzy 
logic. Each proposition is estimated to have a percentage of truth in subset T, a percentage of 
indeterminacy in subset I, and a percentage of falsity in subset F, where T, I, F are subsets of real 
numbers in [0, 1]. Generally, a neutrosophic set is denoted as <T, I, F>. An element x(t, i, f) 
belongs to the set in the following way: it is t true, i indeterminate, and f false in the set, where t, i, 
and f are real numbers taken from sets T, I, and F with no restriction on T, I, F, nor on their sum 
m=t+i+f. Fig. 1 shows the relationship among classical set, fuzzy set and neutrosophic set. In a 
classical set, i = 0, t and f are either 0 or 1. In a fuzzy set, i = 0,0 , 1t f≤ ≤  and t + f = 1. In a 
neutrosophic set, 0 , , 1t i f≤ ≤ . But for most applications, t + f = 1 and  [ ]0,1i∈ .

Neutrosophic logic has been applied to solve medical image and color image processing 
problems recently. A novel approach for image thresholding is proposed by defining neutrosophic 
set in image domain.2 In Ref. 3, neutrosophy is applied to image processing by defining a 
neutrosophic domain. Image segmentation is then performed in the corresponding domain. A 
region growing algorithm based on neutrosophic logic is implemented for automatic segmentation 
algorithm of breast ultrasound images.4 A novel approach for image denoising based on 
neutrosophic set is proposed in Ref. 5. 

†  Corresponding author 



 

 

Fig. 1: Relationship among classical set, fuzzy set and neutrosophic set. 

Image categorization refers to the process of labeling images into one of some predefined 
categories. The algorithm learns the relationship between the content of an image and its 
associated semantic meaning, and then assigns a class label (keyword) to the image accordingly. 
The machine learning techniques used in image categorization could be grouped into two classes: 
probabilistic modeling based methods, and classification based methods. Probabilistic modeling 
based methods aim to build a relevance model that represents the connection between images and 
labels. A dual cross-media relevance model (DCMRM), which calculates the expectation over 
keywords in a predefined lexicon, has been utilized to solve image categorization problem.6 A 
robust probabilistic latent semantic analysis technique (pLSA) model using rival penalized 
competitive learning is introduced to solve image categorization problem.7 Ref. 8 proposes a 
supervised multi-class labeling method, in which a two-level mixture probabilistic model is built 
to learn the relationship between images and their labels. A hierarchical spatial Markov model for 
image categorization is presented in Ref. 9.  

In contrast to probabilistic modeling-based methods, each semantic label or keyword is 
regarded as an independent class and corresponds to a classifier in the classification-based 
methods.10 Ref. 11 applies SVMs and Bayes point machines for image annotation, where color, 
shape, and wavelet-based texture features are used. By dividing an image into blocks, methods 
based on sub-images have been proposed to explore the local and spatial properties of images. An 
image is divided into a fixed number of partially overlapping subdivisions, and a multi-class SVM 
is trained to classify an unseen image into one of the predefined categories.12 However, a rigid 
partition of an image into blocks often breaks an object into several blocks. Thus, visual 
information contained in objects that could be helpful to image categorization may be destroyed. 
To address this problem, image segmentation is adopted to extract object information from an 
image and divide an image into regions instead of blocks. In this paper, we focus on solving 
region-based image categorization problem. A hierarchical two-stage self-organizing map 
(HSOM) is used to decompose an image into a collection of regions. A novel method is proposed 
to explore the homogeneity property of the image and select training samples for HSOM. 

Recently, multiple-instance learning (MIL) has been applied to image categorization. MIL is a 
variation of supervised learning, whose task is to learn a concept given positive and negative bags 
of instances. In the context of the region-based image categorization problem, images are viewed 
as bags, and regions are viewed as instances. Diverse density (DD) model is first proposed to 
solve the MIL problem.13 By exploring the distribution of instance feature space, a feature point 
with a large DD value is selected that is close to all instances in the positive bags and far away 
from the instances in the negative bags. DD-SVM algorithm is proposed in Ref. 14, which 



 

assumes that the classification of bags is only related to some properties of the bags. 
Consequently, it solves MIL problem by transforming the original feature space to a new bag 
feature space, and training an SVM in the new space. The framework of DD-SVM proposed in 
Ref. 14 is adopted in this paper and a newly reformulated SVM based on a neutrosophic set is 
proposed. 

In this paper, for the first time, a neutrosophic set is applied to the field of classifiers where an 
SVM is adopted as the example to validate the feasibility and effectiveness of the proposed 
approach. We propose a novel neutrosophic set for SVM inputs and combine it with the 
reformulated SVM which treats samples differently according to the weighting function. The 
proposed classifier helps to reduce the effects of outliers and is applied under a DD-SVM 
framework to solve MIL problem in region-based image categorization. The rest of the paper is 
organized as follows. Section 2 presents the image segmentation method based on homogeneity 
property. DD-SVM framework is introduced as an extension of MIL problem in Section 3. Section 
4 describes the newly reformulated SVM based on neutrosophic set in detail. Experiment results 
are presented in Section 5, and conclusions are drawn in Section 6.  

2. Image Segmentation 

Image segmentation is the process of dividing an image into non-overlapping regions, such that 
each region is homogeneous but the joint of any two neighboring regions is non-homogeneous.15 It 
is essential to image processing and pattern recognition. 

Self-organizing map (SOM), as a kind of neural network based on the idea of preserving the 
topology of the original input dataset, was first proposed by Kohonen.16 Unlike simple competitive 
learning methods where only the winning neurons are updated to learn, the neurons in the 
neighborhood of the winning neurons in SOM are also updated in the learning process and lead to 
an ordered feature-mapping that could be explored in many applications. The limitation of this 
method is that the final number of classes has to be specified a priori. A hierarchical SOM (HSOM) 
is proposed to solve the drawback.17 Arbitrarily complex clusters are formed, and the resultant 
clusters match the desired classes better than that using the conventional SOM.  

In this section, an image segmentation method based on color and texture features using a 
hierarchical two-stage self-organizing map (HSOM) is presented. A novel approach for selecting 
training samples for HSOM, based on homogeneity, is proposed. Fig. 2 shows the outline of the 
proposed segmentation method.  

 

Fig. 2: The outline of the proposed image segmentation method. 
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In the proposed method, both color and texture features are extracted from the image. Each 
pixel in the image is represented by a seven-dimensional vector: {r, g, b, e5l5, e5s5, r5r5, l5s5}. 
The first three components of the feature vector are R, G, and B values for each pixel in the 
original image. The next four components are obtained by applying the Laws’ texture energy 
measures described in Ref. 18.  

Literature that discusses the selection of the samples for training HSOM is scarce. Random 
selection is most commonly used to select the training samples for HSOM. While random 
selection ensures an unbiased collection of training samples, it does not always provide the 
optimal set of training samples. In the case of image segmentation, the pixels around the boundary 
of the perceptual segments provide more information and should be emphasized in the training 
procedure. Therefore, a novel approach for selecting training samples is proposed in this paper. 
The selection criterion is based on a definition of homogeneity βij for pixel (i, j) in a gray image 
proposed in Ref. 19. The more uniform the local region surrounding a pixel is, the larger the 
homogeneity value βij for that pixel is. The homogeneity measure βij defined in Ref. 19 holds only 
for grayscale images. In order to be used for a color image, the concept is extended to RGB 
images. Suppose βRij, βGij, and βBij are the homogeneity measures calculated in the R, G, and B 
color spaces, respectively; the homogeneity measure for  pixel (i, j) in the RGB domain can be 
defined as: 

                      0.33 0.33 0.33
ij ij ij ijRGB R G Bβ β β β= × + × + ×                                (2.1) 

The non-homogeneity measure in RGB domain can be calculated as: 

                                        1
ij ijRGB RGBϕ β= −                                                       (2.2) 

The steps of the proposed algorithm are: 
1. A location set Φ  is defined to contain the pixel locations of all training samples and is 
initialized to empty.  
2. The average non-homogeneity value is calculated for the entire image as: 
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3. The image is divided into blocks of size d×d (in this paper, d=15), and the local average 
nonhomogeneity value for each block t is calculated as: 
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4. For each d×d block t of the image, the number of pixels to be chosen for training is decided by 
the threshold: 
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5. Then ntraining pixel locations are randomly selected from that block t and are added to the 
location set Φ . 



 

6. Repeat steps 2-4 for all the blocks in the image.  
7. The vectors corresponding to the locations in set Φ  are then extracted from the HSOM input 
matrix to form the final training set. 

The algorithm ensures that the training dataset contains more pixels representing the diverse 
regions in the image than those representing the homogeneous regions. Therefore, a training 
dataset generated in this way carries more information about the image than the training dataset 
obtained by random selection, and it leads to better results of segmentation. 

The output of the HSOM is often an over-segmented image. Hence, the region-merging 
process in Ref. 20 and Ref. 21 is carried out to combine regions that are similar to each other. 
After this step, the final segmented image is generated. 

Examples of the segmentation results are shown in Fig. 3.          

         

        

Fig. 3: Segmentation results by HSOM based on homogeneity measure.  
First row: Original images; Second row:  Corresponding segmented images. 

 
3. Diverse Density-Support Vector Machine Framework 

Multiple-instance learning (MIL) is a variation of supervised learning, whose task is to learn a 
concept given positive and negative bags of instances. The standard MIL problem assumes that 
bags and instances share the same set of labels. A bag is labeled positive if at least one of its 
instances is positive, and the bag is labeled negative if all of its instances are negative. To view the 
image categorization problem in MIL terms, an image is considered as a bag that contains a 
number of instances corresponding to the regions obtained from image segmentation. Different 
bags may have different numbers of instances. For a particular category, a positive label means 
that the image belongs to it, and a negative label means that the image does not belong to it.  



 

Ref. 14 proposed a diverse density-support vector machine (DD-SVM) algorithm that extends 
the standard MIL, and applied it to the problem of region-based image categorization. DD-SVM 
assumes that a positive bag must contain some number of instances satisfying various properties, 
which are captured by bag features. Each bag feature is defined by an instance in the bag and an 
instance prototype derived from the DD function. The basic idea of the DD-SVM framework is to 
map every bag to a point in a new feature space, named the bag feature space, and to train SVMs 
in the bag feature space.  

Now let us describe the DD-SVM in mathematical representation. After the segmentation 
process in Section 1, the mean of the set of feature vectors belonging to each region is calculated 
and denoted as the region feature vector x, which is also called the instance feature vector in terms 
of the MIL problem. An image Bi, which is segmented into Ni regions{ : 1,..., }j iR j N= , is 

represented by a collection of region feature vectors{ : 1,..., }ij ix j N= . Let D be the labeled dataset, 

which consists of l (bag, label) pairs, i.e.,
1, 1 ,{( ),..., ( )}l lD B y B y= , where {1, 1}iy ∈ − . The diversity 

density (DD) function over the instance feature space is defined as: 
2
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Here, x is a point in the instance feature space, w is a weight vector defining which features 
are considered important and which are considered unimportant.22 .

w
denotes a weighted norm 

defined by:  

           
1

2 2[ ( ) ]T
w

x x Diag w x=                                    (3.2) 
where Diag(w) is a diagonal matrix whose (i, i)-th entry is the i-th component of w.  

The DD function defined above is a continuous and highly nonlinear function with multiple 
local maximums and minimums. A larger value of the DD function at a point indicates a higher 
probability that the point fits better with the instances from positive bags than with those from 
negative bags. Thus, the local maximums of the DD function could be selected as instance 
prototypes that represent a class of instances that is more likely to appear in positive bags than in 
negative bags. A bag feature space is then constructed using the instance prototypes, each of 
which defines one dimension of the bag feature space. Let * *{( , ) : 1,..., }k kx w k n=  be the collection 
of instance prototypes, the bag feature ( )iBφ  is defined as: 
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Using the definition in Eq. (3.3), every bag is mapped to a point in the bag feature space.14 

The region-based image categorization problem is now transformed into a classification problem. 
SVMs are trained in the bag feature space to serve as classifiers. 



 

4. Novel Reformulated Support Vector Machine Based on Neutrosophic Set 

In this paper, we use the same DD-SVM framework as presented in Section 3, except that instead 
of using standard SVMs in the bag feature space, a novel reformulated SVM based on a 
neutrosophic set is proposed and employed.  

4.1 Background of SVM and Fuzzy SVM 

Given a training set S containing n labeled points (x1, y1),…, (xn, yn), where xj∈RN and yj∈{-1, 
1}, j=1, …, n. Suppose the positive and negative samples can be separated by a  hyperplane. SVM 
aims to find an optimal solution by maximizing the margin M around the separating hyperplane, 
which is equivalent to minimize w  with the constraint which can be described as: 

                                      ( ) 1j jy w x b⋅ + ≥                                       (4.1) 

In the case that the original samples could not be separated by any hyperplane, SVM will 
transform the original samples into a higher dimensional space by using a nonlinear mapping. Let 
Φ(x) denote the mapping from RN to a higher dimensional space Z. A hyperplane needs to be 
found in the higher dimensional space with maximum margin as:  

                                                    0=+⋅ bzw                                                     (4.2) 

such that for each point (zj, yj), where zj =Φ(xj):  
                                      ( ) 1, 1, , .j jy w z b j n⋅ + ≥ = K                                 (4.3) 

When the dataset is not linearly separable, the soft margin is allowed by introduction of n 
non-negative variables, denoted by 1, 2,( ... )nξ ξ ξ ξ= , such that the constraint for each sample in 

Eq. (4.3) is rewritten as: 
                                  ( ) 1 , 1, , .j j jy w z b j nξ⋅ + ≥ − = K                              (4.4) 

The optimal hyperplane  is the solution:  
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k
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                          subject to   ( ) 1 , 1, , .j j jy w z b j nξ⋅ + ≥ − = K                        (4.6) 

where the first term in Eq. (4.5) measures the margin between support vectors, and the second 
term measures the amount of misclassifications. C is a constant parameter that tunes the balance 
between the maximum margin and the minimum classification error. Then, for a test point x̂which 
is mapped to ẑ in the feature space, the classification result ŷ is given as: 

                                             ˆ ˆ( )y sign w z b= ⋅ +                                            (4.7) 
Fuzzy support vector machine is proposed in Ref. 25. A membership sj is assigned for each 

input sample (xj, yj), where 0< sj <1. Since the membership sj is the attitude of the corresponding 
point xj toward one class, and the parameter jξ  is a measure of error in the SVM, the term sj jξ  is 
a measure of error with different weighting. The optimal hyperplane problem is then regarded as 
the solution to: 



 

                            minimize 
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1
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k
j ji

w w C s ξ
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⋅ + ∑                                      (4.8) 

                      subject to ( ) 1 , 1, , .j j jy w z b j nξ⋅ + ≥ − = K                          (4.9) 

In order to use FSVM, a membership function needs to be defined for each input sample. 

4.2 Reformulated SVM 

A similar idea as the fuzzy SVM introduced in Section 4.1 is adopted in the reformulated SVM. 
The difference is that the membership sj is substituted by weighting function gj where gj >0. 
Different inputs contribute to the training procedure differently, and the weighting function gj is 
used to evaluate the degree of importance for each input. The value of gj is a positive number, and 
it does not necessarily need to be smaller than 1. Now, the optimal hyperplane problem in the 
reformulated SVM is the solution to: 
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4.3 Neutrosophic Set 

The neutrosophic set is a generalization of the classical set and fuzzy set.1 The degree of 
neutralities <Neut-A> is introduced and added in neutrosophic theory. Generally, a neutrosophic 
set is denoted as <T, I, F>. An element x(t, i, f) belongs to the set in the following way: it is t true 
in the set, i indeterminate in the set, and f false, where t, i, and f are real numbers taken from the 
sets T, I, and F. 

Many research results have shown that the standard SVM is very sensitive to outliers. Here, 
we propose a neutrosophic set for the input samples of SVM based on the distances between the 
sample and the class centers. The neutrosophic set explores the spatial distribution of the training 
samples and can help to solve the problems of outliers when integrated into the reformulated SVM.  

Using the same notations as in Section 4.1, input samples associated with the defined 
neutrosophic set are denoted as a set of points ( , , , , ), 1,..., .j j j j jx y t i f j n= . For input sample 

xj belonging to class yj, it is tj true, ij indeterminate, and fj false. The center of positive samples C+, 
the center of negative samples C-, and the center of all samples Call are defined as the following: 
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where n+ is the number of positive samples and n- is the number of negative samples.  
We denote U as the entire input samples set, P as the positive samples subset, and N as the 

negative samples subset. For positive samples, yj = 1, the neutrosophic components are defined as: 
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where ||x|| denotes the Euclidean distance of variable x. For negative samples, yj = -1, the 
neutrosophic components are defined as: 
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With the above definition, every input sample is associated with a triple <tj, ij, fj> as its 
neutrosophic components. The larger tj it has, the higher the probability it belongs to the labeled 
class. The larger ij it has, the higher the probability it is indeterminate. The larger fj it has, the 
higher the probability it belongs to the opposite of the labeled class. The triple contains valuable 
information extracted from the spatial distribution of the training samples, and provides helpful 
clues in classifier design. 

For image categorization problem, there are usually more than two categories in the dataset. 
Since SVM can only classify the inputs as positive or negative, an appropriate multi-class 
approach is needed to handle several categories here. Two common methods are “one-against-
one” and “one-against-the-rest.” For one-against-one, an SVM is trained for each pair of two 
classes, i.e., ( 1)

2
m m× −  SVMs are generated for m categories to accomplish the task. For one-

against-the-rest, an SVM is trained to classify one category against all the others together, i.e., m 
SVMs are needed for m categories. Clearly one-against-one is more time-consuming; thus the one-
against-the-rest strategy is applied more widely to categorization problems.  

Using one-against-the-rest strategy, one category is selected as the positive class, and all the 
other categories together are regarded as the negative class. Usually, the number of images in each 
category is roughly the same. Thus, the number of samples in the negative class is m-1 times of 
the number of samples in the positive class for m categories. This makes an unbalanced dataset for 
the SVM to train. If we still use the definitions in Eq. (4.12), the center of all samples Call is very 
near to the center of negative samples C- due to the unbalance property of the dataset. But what we 
really expect is that Call represents the center of the samples in view of data distribution. That is, 
the distance between Call and the positive group is roughly the same as the distance between Call 



 

and the negative group. In terms of mathematics representation, Call is actually the mean of the 
center of negative samples C-, and the center of positive samples C+. Generally speaking, to 
eliminate the effect of an unbalanced dataset, a simple but effective modification could be made to 
Eq. (4.12) as:  
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If the dataset is balanced such that the number of positive samples is roughly the same as the 
number of negative samples, Call defined in Eq. (4.15) is almost the same as the result calculated 
using Eq. (4.12). For an unbalanced dataset, the modified formula eliminates the effect of 
unbalance, and the resulting Call represents the center of all the samples. 

4.4 Integrating Neutrosophic Set with Reformulated SVM 

In order to use the reformulated SVM, a weighting function for input samples should be defined. 
Following the steps in Section 4.3, every sample has been associated with a triple <tj, ij, fj> as its 
neutrosophic components. A larger tj means that the sample is nearer to the center of the labeled 
class and is less likely being an outlier.  Therefore, tj should be emphasized in the weighting 
function. A larger ij means that the sample is harder to be discriminated between two classes. This 
factor should also be emphasized in the weighting function in order to classify the indeterminate 
samples more accurately. A larger fj means that the sample is more likely being an outlier. This 
sample should be treated less importantly in the training procedure. Based on these analyses, the 
weighting function gj is defined as: 

                                           j j j jg t i f= + −                                                        (4.16) 

After integrating the proposed weighting function into the reformulated SVM introduced in 
Section 4.2, training samples are utilized differently in the training procedure according to their 
spatial distribution. Thus, the proposed classifier, denoted as neutrosophic-support vector machine 
(N-SVM), reduces the effects of outliers in the training samples, and improves the performance 
when compared to a standard SVM. 

5. Experimental Results and Discussions 

5.1 Image Dataset and Training Strategy 

The proposed region-based image categorization method was evaluated using two datasets: 
COREL 1000 dataset and Caltech 101 dataset. The COREL dataset used in this paper consists of 
1000 general-purpose images.23 All the images are in JPEG format with a size of either 256 × 384 
or 384 × 256. There are ten diverse image categories in the dataset, each containing 100 images. 
The categories are: African people and villages, beach, historical buildings, buses, dinosaurs, 
elephants, flowers, horses, mountains and glaciers, and food. Caltech 101 dataset contains 9146 
images, split between 101 distinct objects (including faces, watches, ants, pianos, etc.) and a 
background category (totally 102 categories). The background category is not used in this paper. 
The number of images per category varies from 31 to 800. In order to make effective and robust 
comparison, we discard 15 categories that contain fewer than 40 samples.  

To evaluate the performance of the proposed N-SVM, a traditional SVM and a fuzzy SVM 
were also trained and applied to the region-based image categorization problem for comparison. 



 

The differences among these classifiers are the restriction for finding the optimal hyperplane. In a 
fuzzy SVM, membership function sj is introduced and multiplied to the error parameter jξ  in Eq. 
(4.8). Membership function sj is substituted by weighting function gj in N-SVM, as shown in Eq. 
(4.10). After the optimal hyperplane is solved, the same classification criterion is applied to all 
classifiers, as shown in Eq. (4.7). In our experiments, all the classifiers (SVM, fuzzy SVM, and N-
SVM) are trained using the same strategy. The one-against-the-rest method is used to solve the 
multi-class problem: (a) for each category, a classifier is trained to separate that category from all 
other categories; (b) the final predicted class label is decided by the winner of all classifiers, that is, 
the one with the maximum value inside the ( )sign ⋅  function in Eq. (4.7). For the COREL dataset, 
images within each category are randomly divided into a training set (50 images) and a test set (50 
images). For each category in the Caltech 101 dataset, 30 images are randomly selected as a 
training set and 50 (or fewer if they are the remainder) different images are randomly selected as 
test set. For each SVM designed for category i as positive samples, the training sets of all the 
categories other than category i are put together as the negative samples. Each experiment is 
repeated for five random splits, and the average of the classification results obtained over five 
different test sets is reported.  

5.2 Comparison of the Proposed N-SVM with Traditional SVM and Fuzzy SVM  

The proposed N-SVM is designed to reduce the effects of outliers in the training samples. Since 
neutrosophic logic is a generalization of classic logic and fuzzy logic, it is very meaningful to 
compare the performance of the proposed N-SVM with traditional SVM and fuzzy SVM. For 
fuzzy SVM, we use the membership function proposed in Ref. 24. To evaluate the performance, 
all classifiers are trained using the strategy described in Section 5.1. Thus, ten SVMs, ten fuzzy 
SVMs, and ten N-SVMs are generated, respectively. For each random split of the images, the 
same set of training data and test data is used for the corresponding SVMs, fuzzy SVMs, and N-
SVMs. Since the dataset is unbalanced, Eq. (4.15) is used to calculate the parameters of the 
weighting function gj in N-SVM. The classification results are presented in Table 5.1.  

Table 5.1: Average Classification Accuracy of the Proposed N-SVM, Standard SVM, and Fuzzy SVM on COREL 
1000 Dataset, Respectively. 

Classifier Average Classification Accuracy 

N-SVM 87.7% 

SVM 82.2% 

fuzzy SVM 84.3% 

 

The results clearly show that the proposed N-SVM performs the best. It outperforms both the 
traditional SVM and fuzzy SVM in terms of the average classification accuracy by 5.5% and 3.4%, 
respectively. The weighting function of the N-SVM successfully reduces the effect of outliers and 
leads to a higher classification accuracy compared to the traditional SVM. As a generalization of a 
fuzzy set, a neutrosophic set introduces one more property “neutrality” to be associated with the 
inputs. Thus, the proposed N-SVM contains more information in the weighting function and 
achieves better results compared to the fuzzy SVM.  



 

Next, a closer analysis of the performance is made by looking at classification results on 
every category in terms of the confusion matrix. The classification results are listed in Table 5.2.  

Table 5.2: Confusion Matrix of the Proposed N-SVM Using Eq. (4.23). 

 Africa Beach Building Bus Dinosaur Elephant Flower Horse Mountain Food 

Africa 0.812 0.008 0.036 0.016 0.008 0.056 0.004 0.016 0.024 0.020 

Beach 0.028 0.756 0.024 0.016 0.008 0.020 0.008 0.012 0.120 0.008 

Building 0.036 0.040 0.836 0.008 0.004 0.016 0.012 0.008 0.016 0.024 

Bus 0.004 0.008 0 0.980 0 0 0 0 0.004 0.004 

Dinosaur 0 0 0 0 0.996 0 0 0 0 0.004 

Elephant 0.024 0.004 0.008 0.004 0 0.880 0 0.012 0.036 0.032 

Flower 0.008 0.004 0 0.008 0 0.004 0.936 0.008 0.008 0.024 

Horse 0.008 0.008 0 0 0 0.008 0 0.964 0.004 0.008 

Mountain 0.008 0.148 0.032 0.016 0.004 0.040 0.004 0.008 0.736 0.004 

Food 0.032 0.016 0.008 0.012 0.008 0.020 0.012 0.008 0.008 0.876 

 
Each row in Table 5.2 gives the average percentage of images in one category classified to 

each of the 10 categories by N-SVM using Eq. (4.15). The numbers on the diagonal (shaded) show 
the classification accuracy for each category, and off-diagonal entries indicate classification errors. 
According to the confusion matrix, the two largest errors (the underlined and italic numbers in 
Table 5.2) are the errors between the categories of “beach” and “mountains and glaciers.” Twelve 
percent of the “beach” images are misclassified as “mountains and glaciers,” while 14.8% of the 
“mountains and glaciers” images are misclassified as “beach.”   

 

    

    

Fig. 4: Misclassified images from “beach” and “mountains and glaciers” categories. 

Fig. 4 presents 8 misclassified images from both categories. All four “beach” images contain 
mountain-like regions, and all “mountains and glaciers” images contain regions corresponding to a 
lake or ocean. This may be the reason for misclassification.  

To further evaluate the performance of the proposed method, the same set of experiments was 
tested on Caltech 101 dataset. The results are given in Table 5.3. 



 

Table 5.3: Average Classification Accuracy of the Proposed N-SVM, Standard SVM, and Fuzzy SVM on Caltech 
101 Dataset, Respectively. 

Classifier Average Classification Accuracy 

N-SVM 65.9% 

SVM 61.6% 

fuzzy SVM 63.5% 

 

The results demonstrate that the proposed method performs the best on a larger scale dataset 
as well. It outperforms both the traditional SVM and fuzzy SVM in terms of the average 
classification accuracy by 4.3% and 2.4%, respectively.    

In summary, the experimental results demonstrate that the improvement of the classification 
accuracy is significant and adequately validates the correctness and effectiveness of the proposed 
approach.  

6. Conclusions 

Neutrosophic logic is a relatively new logic which is a generalization of fuzzy logic. In this paper, 
for the first time, it is applied to the field of classifiers. A novel reformulated SVM based on a 
neutrosophic set is proposed. Each input sample is associated with three neutrosophic components. 
A weighting function is designed based on the neutrosophic components to evaluate the degree of 
importance for each input in the training procedure. The novel classifier N-SVM helps to reduce 
the effects of outliers in training samples. The proposed N-SVM is evaluated under a region-based 
image categorization system, where a novel approach for selecting training samples of HSOM is 
adopted to improve the segmentation performance.  Experimental results show that the proposed 
classifier outperforms both traditional SVM and fuzzy SVM in terms of classification accuracy. 
Moreover the proposed N-SVM is independent of application. It can be applied to almost all 
classification problems wherein traditional SVM or fuzzy SVM is used, and theoretically, it could 
obtain better results than traditional or fuzzy SVMs.  
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