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Aims and Scope 

Neutrosophic theory and applications have been expanding in all directions at an 
astonishing rate especially after the introduction the journal entitled “Neutrosophic Sets 
and Systems”. New theories, techniques, algorithms have been rapidly developed. One 
of the most striking trends in the neutrosophic theory is the hybridization of 
neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant 
fuzzy set, etc. The different hybrid structure such as rough neutrosophic set, single 
valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic 
hesitant fuzzy set, etc. are proposed in the literature in a short period of time. 
Neutrosophic set has been a very important tool in all various areas of data mining, 
decision making, e-learning, engineering, medicine, social science, and some more. 

The second volume of “New Trends in Neutrosophic Theories and Applications”
focuses on theories, methods, algorithms for decision making and also applications 
involving neutrosophic information. Some topics deal with data mining, decision 
making, e-learning, graph theory, medical diagnosis, probability theory, topology, and 
some more. 
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Preface 

Neutrosophic set has been derived from a new branch of philosophy, namely 
Neutrosophy. Neutrosophic set is capable of dealing with uncertainty, indeterminacy and 
inconsistent information. Neutrosophic set approaches are suitable to modeling problems with 
uncertainty, indeterminacy and inconsistent information in which human knowledge is 
necessary, and human evaluation is needed. 

Neutrosophic set theory was proposed in 1998 by Florentin Smarandache, who also 
developed the concept of single valued neutrosophic set, oriented towards real world scientific 
and engineering applications. Since then, the single valued neutrosophic set theory has been 
extensively studied in books and monographs introducing neutrosophic sets and its 
applications, by many authors around the world. Also, an international journal - Neutrosophic 
Sets and Systems started its journey in 2013. 

Single valued neutrosophic sets have found their way into several hybrid systems, such 
as neutrosophic soft set, rough neutrosophic set, neutrosophic bipolar set, neutrosophic expert 
set, rough bipolar neutrosophic set, neutrosophic hesitant fuzzy set, etc. Successful 
applications of single valued neutrosophic sets have been developed in multiple criteria and 
multiple attribute decision making. 

This second volume collects original research and application papers from different 
perspectives covering different areas of neutrosophic studies, such as decision making, graph 
theory, image processing, probability theory, topology, and some theoretical papers. 

This volume contains four sections: DECISION MAKING, NEUTROSOPHIC 
GRAPH THEORY, IMAGE PROCESSING, ALGEBRA AND OTHER PAPERS. 

First paper (Pu Ji, Peng-fei Cheng, Hongyu Zhang, Jianqiang Wang. Interval valued
neutrosophic Bonferroni mean operators and the application in the selection of renewable 
energy) aims to construct selection approaches for renewable energy considering the 
interrelationships among criteria. To do that, Bonferroni mean (BM) and geometric BM 
(GBM) are employed.  

Gathering the attitudes of the examined respondents would be very significant in some 
evaluation models. Therefore, an approach to the evaluation of websites based on the use of 
the neutrosophic set is proposed in the second paper (Dragisa Stanujkic, Florentin
Smarandache, Edmundas Kazimieras Zavadskas, Darjan Karabasevic. An approach to 
measuring the website quality based on neutrosophic sets). An example of websites 
evaluation is considered at the end of the paper with the aim to present in detail the proposed 
approach. 

In the third paper (Generalized Single Valued Triangular Neutrosophic Numbers and
Aggregation Operators for Application to Multi-attribute Group Decision Making), the 
authors (Mehmet Şahin, Abdullah Kargın, Florentin Smarandache) define the generalizing 
single valued triangular neutrosophic number. In addition, single valued neutrosophic 
numbers are transformed into single valued triangular neutrosophic numbers according to the 
values of truth, indeterminacy and falsity.  

The fourth paper (Some weighted arithmetic operators and geometric operators with
SVNSs and their application to multi-criteria decision making problems, by Mehmet Şahin, 
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Vakkas Uluçay, Hatice Acıoglu) introduces an approach to handle multi-criteria decision 
making (MCDM) problems under the SVNSs.  

Pranab Biswas, Surapati Pramanik, Bibhas C. Giri present in the fifth paper (Multi-
attribute group decision making based on expected value of neutrosophic trapezoidal 
numbers) an expected value based method for multiple attribute group decision making 
(MAGDM), where the preference values of alternatives and the importance of attributes are 
expressed in terms of neutrosophic trapezoidal numbers (NTrNs).  

Multi-criteria group decision making (MCGDM) strategy, which consists of a group of 
experts acting collectively for best selection among all possible alternatives with respect to 
some criteria, is focused on in the sixth paper (Multi-criteria group decision making based on
linguistic refined neutrosophic strategy, by Kalyan Mondal, Surapati Pramanik, Bibhas C.
Giri).  

Classical TODIM method works on crisp numbers to solve multi-attribute group 
decision making problems. In the seventh paper (TODIM Method for Group Decision Making
under Bipolar Neutrosophic Set Environment), the authors (Surapati Pramanik, Shyamal
Dalapati, Shariful Alam, Tapan Kumar Roy) define TODIM method in bipolar neutrosophic 
set environment to handle multi-attribute group decision making problems, which means they 
combine the TODIM with bipolar neutrosophic number to deal with multi-attribute group 
decision making problems.  

The next paper (Surapati Pramanik, Partha Pratim Dey, Bibhas C. Giri. Hybrid vector
similarity measure of single valued refined neutrosophic sets to multi-attribute decision 
making problems) proposes hybrid vector similarity measures under single valued refined 
neutrosophic sets and proves some of its basic properties. The proposed similarity measure is 
then applied for solving multiple attribute decision making problems. 

In the ninth paper (Multi criteria decision making based on projection and
bidirectional projection measures of rough neutrosophic sets), the authors (Surapati
Pramanik, Rumi Roy, Tapan Kumar Roy) define projection and bidirectional projection 
measures between rough neutrosophic sets. Then two new multi criteria decision making 
methods are proposed based on neutrosophic projection and bidirectional projection measures 
respectively.  

In the tenth paper (Bipolar complex neutrosophic graphs of type 1), the authors (Said
Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache, V. Venkateswara Rao)
introduce a new neutrosophic graphs called bipolar complex neutrosophic graphs of type1 
(BCNG1) and present a matrix representation, studying some properties of this new concept. 

The eleventh paper (Chalapathi, R. V. M. S. S. Kiran Kumar, Florentin Smarandache.
Neutrosophic invertible graphs of neutrosophic rings) begins by considering some properties 
of the self and mutual additive inverse elements of finite Neutrosophic rings, then proceeding 
to determine several properties of Neutrosophic invertible graphs and obtaining an 
interrelation between classical rings, Neutrosophic rings and their Neutrosophic invertible 
graphs. 

In the next article (Interval valued neutrosophic soft graphs), the authors (Said Broumi, 
Assia Bakali, Mohamed Talea, Florentin Smarandache, Faruk Karaaslan) combine the interval 
valued neutrosophic soft set and graph theory. They introduce the notions of interval valued 
neutrosophic soft graphs, strong interval valued neutrosophic graphs, complete interval 
valued neutrosophic graphs, and investigate some of their related properties.  
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The aim of the following paper (A.A. Salama, Mohamed Eisa, Hewayda ElGhawalby,
A. E. Fawzy. Neutrosophic image retrieval with hesitancy degree) is to present texture 
features for images embedded in the neutrosophic domain with Hesitancy degree. The goal is 
to extract a set of features to represent the content of each image in the training database to 
be used for the purpose of retrieving images from the database similar to the image under 
consideration.   

Furthermore, in the Algebra section, R. Dhavaseelan and S. Jafari introduce the 
concept of Generalized neutrosophic closed set (also the title of the paper), and from there 
other concepts, such as: generalized neutrosophic continuous mapping, generalized 
neutrosophic irresolute mapping, strongly neutrosophic continuous mapping, perfectly 
neutrosophic continuous mapping, strongly generalized neutrosophic continuous mapping and 
perfectly generalized neutrosophic continuous mapping. 

In the paper Bipolar neutrosophic soft expert set theory, Mehmet Şahin, Vakkas Uluçay,
and Said Broumi introduce for the first time the concept of bipolar neutrosophic soft expert 
set and its operations; also, the concept of bipolar neutrosophic soft expert set and its basic 
operations, namely complement, union and intersection.  

In the paper On neutrosophic α-supra open sets and neutrosophic α-supra continuous
functions, R. Dhavaseelan, M. Ganster, S. Jafari and M. Parimala introduce and investigate 
a new class of sets and functions between supra topological spaces called neutrosophic α-
supra open set and neutrosophic α-supra continuous function.  

The paper Neutrosophic contra-continuous multi-functions, by S. Jafari and N. Rajesh, 
is devoted to the concepts of neutrosophic upper and neutrosophic lower contra-continuous 
multifunctions; some of their characterizations are considered. 

Generalized neutrosophic set is introduced and applied to BCK/BCI-algebras in the 
paper A novel extension of neutrosophic sets and its application in BCK/BCI-algebras, by 
Seok-Zun Song, Madad Khan, Florentin Smarandache, and Young Bae Jun. Characterizations 
of generalized neutrosophic subalgebra/ideal are considered. Relation between generalized 
neutrosophic subalgebra and generalized neutrosophic ideal is discussed.  

In the following paper (Neutrosophic resolvable and neutrosophic irresolvable
spaces), the concepts of neutrosophic resolvable, neutrosophic irresolvable, neutrosophic 
open hereditarily irresolvable spaces and maximally neutrosophic irresolvable spaces are 
introduced. Also, the autors M. Caldas, R. Dhavaseelan, M. Ganster, S. Jafari study several 
properties of the neutrosophic open hereditarily irresolvable spaces besides giving 
characterization of these spaces by means of somewhat neutrosophic continuous functions 
and somewhat neutrosophic open functions. 

R. Dhavaseelan, S. Jafari, R. M. Latif, F. Smarandache  introduce in another paper 
(Neutrosophic rare α-continuity) the concepts of neutrosophic rare α-continuous, 
neutrosophic rarely continuous, neutrosophic rarely pre-continuous, neutrosophic rarely semi-
continuous, and study them in light of the concept of rare set in neutrosophic setting. 

In the next paper (Neutrosophic semi-continuous multifunctions), the autors R.
Dhavaseelan, S. Jafari, N. Rajesh, F. Smarandache introduce the concepts of neutrosophic 
upper and neutrosophic lower semi-continuous multifunctions and study some of their basic 
properties. 
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The concepts of generalized neutrosophic contra-continuous function, generalized 
neutrosophic contra-irresolute function and strongly generalized neutrosophic contra-
continuous function are introduced, ands ome interesting properties are also studied in the 
paper Generalized neutrosophic contra-continuity, by R. Dhavaseelan, S. Jafari, C. Ozel and
M. A. Al-Shumrani. 

In the paper On neutrosophic supra pre-continuous functions in neutrosophic
topological spaces, M. Parimala, M. Karthika, R. Dhavaseelan, S. Jafari introduce and 
investigate a new class of sets and functions between topological space called neutrosophic 
supra pre- continious functions. Furthermore, the concepts of neutrosophic supra pre-open 
maps and neutrosophic supra pre-closed maps in terms of neutrosophic supra pre-open sets 
and neutrosophic supra pre-closed sets, respectively, are introduced and several properties of 
them are investigated. 

Using single valued neutrosophic set, Tahir Mahmood, Qaisar Khan, Kifayat Ullah,
Naeem Jan introduce in the following paper,  Single valued neutrosophic finite state machine
and switchboard state machine, the notions of single valued neutrosophic finite state machine, 
single valued neutrosophic successor, single valued neutrosophic subsystem and single valued 
submachine, single valued neutrosophic switchboard state machine, homomorphism and 
strong homomorphism between single valued neutrosophic switchboard state machine, and 
discuss some related results and properties. 

In an extensive study, Neutrosophic Sets: An Overview, by Said Broumi, Assia Bakali,
Mohamed Talea, Florentin Smarandache, Vakkas Uluçay, Mehmet Sahin, Arindam Dey, 
Mamouni Dhar, Rui-Pu Tan, Ayoub Bahnasse, and Surapati Pramanik give some concepts 
concerning the neutrosophic sets, single valued neutrosophic sets, interval-valued 
neutrosophic sets, bipolar neutrosophic sets, neutrosophic hesitant fuzzy sets, inter -valued 
neutrosophic hesitant fuzzy sets, refined neutrosophic sets, bipolar neutrosophic refined sets, 
multi-valued neutrosophic sets, simplified neutrosophic linguistic sets, neutrosophic 
over/off/under sets, rough neutrosophic sets, rough bipolar neutrosophic sets, rough 
neutrosophic  hyper-complex set, and their basic operations. Then, they introduce triangular 
neutrosophic numbers, trapezoidal neutrosophic fuzzy number and their basic operations. 
Also some comparative studies between the existing neutrosophic sets and neutrosophic 
number are provided. 

In the article Entropy, neutro-entropy and anti-entropy for neutrosophic information, 
Vasile Patrascu shows a deca-valued representation of neutrosophic information. For this 
representation the following neutrosophic features were defined and used: truth, falsity, weak 
truth, weak falsity, ignorance, contradiction, saturation, neutrality, ambiguity and hesitation.  

In the final article (A lattice theoretic look: a negated approach to adjectival
(intersective, neutrosophic and private) phrases and more), authored by Selçuk Topal and 
Florentin Smarandache, some new negations of intersective adjectival phrases and their set-
theoretic semantics such as non-red non-cars and red non-cars are presented. A lattice 
structure is built on positive and negative nouns and their positive and negative intersective 
adjectival phrases. These lattice classes are called Neutrosophic Linguistic Lattices (NLL).  
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Interval-Valued Neutrosophic Bonferroni Mean Operators 
and the Application in the Selection of Renewable Energy 
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4 School of Business, Central South University, Changsha 410083, China. E-mail: jqwang@csu.edu.cn 
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ABSTRACT 
Renewable energy selection, which is a multi-criteria decision-making (MCDM) problem, is crucial for 
the sustainable development of economy. Criteria are interdependent in the selection problem of 
renewable energy. Moreover, fuzzy and uncertain information exist during the selection processes, and 
information can be comprehensively reflected by interval-valued neutrosophic sets. This chapter aims to 
construct selection approaches for renewable energy considering the interrelationships among criteria. 
To do that, Bonferroni mean (BM) and geometric BM (GBM) are employed. Firstly, the interval-valued 
neutrosophic BM (IVNBM) and the interval-valued neutrosophic GBM (IVNGBM) are propsoed as 
extensions of BM and GBM, respectively. Then, to take into consideration the relative importance of each 
element, the interval-valued neutrosophic weighted BM (IVNWBM) and the interval-valued neutrosophic 
weighted GBM (IVNWGBM) are further defined. Subsequently, the novel MCDM approaches for the 
selection of renewable energy, which are in view of the interrelationships among elements, are explored 
based on the IVNWBM and IVNWGBM operator. Furthermore, the applicability of the proposed 
approaches is demonstrated by a numerical example about the selection of renewable energy. In addition, 
the influence of the parameters is investigated and discussed. Finally, a comparative analysis composed 
of two cases verifies the feasibility of the proposed MCDM approaches. 

KEYWORDS: multi-criteria decision-making; interval-valued neutrosophic set; weighted 
Bonferroni mean; weighted geometric Bonferroni mean; renewable energy selection 

1. INTRODUCTION
Renewable energy has been replacing traditional non-renewable energy owing to the limitation of the 

latter and environmental protection. Renewable energy is energy that can be circularly regenerated in 
nature. It mainly includes solar energy, wind energy, biomass energy, tidal energy and ocean thermal 
energy, just name a few. Many researchers have been studying the selection problem of renewable energy 
(Mardani, Jusoh, Zavadskas, Cavallaro, & Khalifah, 2015; Troldborg, Heslop, & Hough, 2014). Some of 
them pointed out that the selection of renewable energy is a multi-criteria decision-making (MCDM) 
problem (Cristóbal, 2011; Yazdani-Chamzini, Fouladgar, Zavadskas, & Moini, 2013). Experts assess 
renewable energy with regard to several criteria including power of energy, investment ratio and emissions 
of carbon dioxide (CO2) avoided per year and so forth. The most proper renewable energy can be selected 
on the basis of the assessment information provided by experts. Because it becomes difficult for decision-
makers to identify an optimal alternative that maximizes all decision criteria, a multi-objective approach is 
required to examine tradeoffs considering each criterion. Kaya and Kahraman (Kaya & Kahraman, 2010) 
proposed a modified fuzzy VIKOR methodology to make a multi-criteria selection among alternative 
renewable energy options and production sites for Istanbul area using an integrated VIKOR-AHP 
methodology. 
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Fuzziness and uncertainty may exist in the assessment information due to the complexity and limitation 
of human cognition and sometimes the criteria are interdependent. For example, an expert may be 
uncertain about the upper bound of the power of an individual renewable energy. However, fuzzy and 
uncertain information do not be fully utilized in extant approaches of the selection of renewable energy. 
Especially, the interrelationships among criteria are not considered in the extant approaches. Therefore, 
novel MCDM approaches are required. In this paper, we propose selection approaches for renewable 
energy considering the interrelationships among criteria. To do that, Bonferroni mean (BM) and geometric 
BM (GBM) are employed. To take into consideration the relative importance of each element, we further 
define the interval-valued neutrosophic weighted BM (IVNWBM) and the interval-valued neutrosophic 
weighted GBM (IVNWGBM). Subsequently, the novel MCDM approaches for the selection of renewable 
energy, which are in view of the interrelationships among elements, are explored based on the IVNWBM 
and IVNWGBM operator. 

The remainder of this paper is organized as follows. In Section 2, we review the applications of MCDM 
in renewable energy selection. What’s more, neutrosophic set (NS) and BM are reviewed in this section. In 
Section 3, the definition and some properties of IVNGBM and IVNWGBM are investigated, based on 
which, novel MCDM approaches for the selection of renewable energy with interval-valued neutrosophic 
numbers (IVNNs) are presented. In order to demonstrate the application and verify the feasibility of the 
proposed MCDM approaches, a numerical example and a comparative analysis are conducted and 
discussed in Section 4. In addition, it also discusses the influence of parameters in IVNGBM and 
IVNWGBM on the proposed MCDM approaches. Finally, Section 5 concludes this paper and suggests 
several directions for future research. 

2. LITERATURE REVIEW
Since FS was proposed by Zadeh (L. A. Zadeh, 1965) in 1965, it has become a vital tool to construct 

MCDM approaches (Aghdaie, Zolfani, & Zavadskas, 2013; Bellman & Zadeh, 1970; Yager, 1977). After 
that, many researchers have been devoting themselves to handling with the imprecise, incomplete and 
uncertain information and have put forward numerous extensions of FS (Cao, Zhou, & Wang, 2016; H.-g. 
Peng & Wang, 2016; Turksen, 1986; Lotfi Asker Zadeh, 1968). Particularly, Florentin Smarandache 
(Smarandache, 1998, 1999) introduced the neutrosophic logic and the NS. 
2.1 NEUTROSOPHIC SET (NS) 
NS makes use of the functions of truth, indeterminacy and falsity to depict the fuzzy information. And 

the values of these three functions lie in ]0 ,  1 [  , the non-standard unit interval (Rivieccio, 2008), which is 
the extension to the standard interval  0,  1  of IFS. The indeterminacy factor here is impervious to truth
and falsity values while the incorporated uncertainty in IFS rests with the degrees of belongingness and 
non-belongingness (Majumdar & Samanta, 2014). Nevertheless, it is difficult to apply NS in realistic 
problems. Hence, Wang et al. (H. B. Wang, Smarandache, Zhang, & Sunderraman, 2010) defined the 
single-valued neutrosophic set (SVNS) and Ye (Ye, 2014) put forward the notion of the simplified 
neutrosophic set (SNS), which are both instances of NS. In addition, manifold MCDM approaches have 
been developed under single-valued neutrosophic environments and simplified neutrosophic environments 
(Ji, Wang, & Zhang, 2016; Liu & Wang, 2014; J. J. Peng, Wang, Wang, Zhang, & Chen, 2016; J. J. Peng, 
Wang, Zhang, & Chen, 2014; Şahin & Liu, 2016; Wu, Wang, Peng, & Chen, 2016; Ye, 2013). 

In the light of that it is more practicable to utilize interval numbers to describe the degrees of truth, 
falsity and indeterminacy about a certain statement in some circumstances rather than exact numbers, 
Wang et al. (H. B. Wang, Smarandache, Zhang, & Sunderraman, 2005) put forward the concept of the 
interval-valued neutrosophic set (IVNS) and presented the set-theoretic operators of IVNS. Other than NSs, 
the degrees of truth, indeterminacy and falsity of IVNSs are interval numbers. Up to now, plenty of 
MCDM approaches utilizing IVNS have been put forward (Chi & Liu, 2013; Şahin & Karabacak, 2015; Z. 
Tian, Zhang, Wang, Wang, & Chen, 2016; H. Zhang, Ji, Wang, & Chen, 2015; H. Zhang, Wang, & Chen, 
2016) and IVNSs have been applied in addressing practical problems (H. Ma, Hu, Li, & Zhang, 2016). 
Furthermore, studies about other extensions of NSs have been investigated (Z. P. Tian, Wang, Zhang, & 
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Wang, 2016; Hong Yu Zhang, Ji, Wang, & Chen, 2016), like multi-valued neutrosophic sets (Ji, Zhang, & 
Wang, 2016; J.-j. Peng, Wang, Wu, Wang, & Chen, 2015; J. Peng, Wang, & Yang, 2017), single valued 
trapezoidal neutrosophic sets (Liang, Wang, & Li, 2016), n-valued refined neutrosophic sets 
(Smarandache, 2013) and neutrosophic linguistic sets (Y. X. Ma, Wang, Wang, & Wu, 2016; Z. P. Tian, 
Wang, Wang, & Zhang, 2016a, 2016b; J. Q. Wang, Yang, & Li, 2016). 

The score function and accuracy function of IVNNs have been given as well as the comparative method 
of two IVNNs, which make it practical. 
Definition 1 (Şahin, 2014). Let      inf ,sup , inf ,sup , inf ,supA A A A A AA T T I I F F  be an IVNN, a score 
function L of A can be defined by 

 
2 inf sup 2inf 2sup inf sup

4
A A A A A AT T I I F FL A      

     (1) 

where    1,1L A   .

Definition 2 (Şahin, 2014). Let      inf ,sup , inf ,sup , inf ,supA A A A A AA T T I I F F  be an IVNN, an 
accuracy function N of A can be defined by 

     

   

1 inf sup inf 1 inf sup 1 sup
2

inf 1 inf sup 1 sup

A A A A A A

A A A A

N A T T I T I T

F I F I

        

      

,    (2) 

where    1,1N A   .

Definition 3 (Şahin, 2014). Suppose that      inf ,sup , inf ,sup , inf ,supA A A A A AA T T I I F F  and 

inf ,BB T     sup , inf ,sup , inf ,supB B B B BT I I F F  be two IVNNs. The comparative method of A and B 
can be defined as follows: 

(i). When    L A L B , A B ; and
(ii). When    L A L B  and    N A N B , A B .

Definition 4 (H. Y. Zhang, Wang, & Chen, 2014). Let      inf ,sup , inf ,sup , inf ,supA A A A A AA T T I I F F

and  inf ,sup ,B BB T T    inf ,sup , inf ,supB B B BI I F F  be any two IVNNs and 0  . The operations are 
defined as follows: 
(1)  inf inf inf inf ,sup sup sup sup ,A B A B A B A BA B T T T T T T T T       

   inf inf ,sup sup , inf inf ,sup sup ;A B A B A B A BI I I I F F F F     

(2)   inf inf ,sup sup , inf inf inf inf ,A B A B A B A BA B T T T T I I I I      

 sup sup sup sup , inf inf inf inf ,A B A B A B A BI I I I F F F F     

sup sup sup supA B A BF F F F   ; 

(3) 1 (1 inf ) ,1 (1 sup ) , (inf ) ,(sup ) , (inf ) ,(sup )A A A A A AA T T I I F F                     ; 

(4)            inf , sup , 1 1 inf ,1 1 sup , 1 1 inf ,1 1 supA A A A A AA T T I I F F                   
     

; 

and 
(5)        inf ,sup , 1 sup ,1 inf , inf ,supA A A A A Aneg A F F I I T T   . 
2.2 Multi-criteria decision-making (MCDM) 
The applications of the extensions of FSs have attracted considerable researchers’ attention (Joshi & 

Kumar, 2012; J. J. Peng, Wang, Wang, Yang, & Chen, 2015; Shinoj & Sunil, 2012; J. Q. Wang, Han, & 
Zhang, 2014; J. Q. Wang, Wu, Wang, Zhang, & Chen, 2016; X.-Z. Wang et al., 2015), not excepting the 
researchers in energy. Wang et al. (B. Wang, Nistor, Murty, & Wei, 2014) using the TOPSIS (the 
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Technique for Order Preference by Similarity to Ideal Solution) approach, one of the branches of MCDM 
models, assessed the efficiency of hydropower generation in Canada. Khalili-Damghani et al. (Khalili-
Damghani, M., Santos-Arteaga, & Mohtasham, 2015) proposed a dynamic multi-stage approach to 
evaluate the efficiency of cotton production energy consumption by utilizing data envelopment analysis, a 
tool of MCDM. Additionally, critical reviews of MCDM approaches have been done to survey MCDM 
models, techniques and their empirical applications in various fields (Ananda & Herath, 2009; Govindan, 
Rajendran, Sarkis, & Murugesan, 2015; Ho, Xu, & Dey, 2010). 

As an important tool in constructing MCDM approaches, the aggregation operator captures widespread 
attention and some researches about the aggregation operator have been done under interval-valued 
neutrosophic environments. Zhang et al. (H. Y. Zhang et al., 2014) proposed the interval-valued 
neutrosophic weighted average (IVNWA) operator and the interval-valued neutrosophic weighted 
geometric average (IVNWG) operator. Based on these two aggregation operators, Ye (Ye, 2014) defined 
the ordered weighted average operator and the ordered weighted geometric averaging operator for IVNSs. 

All the aggregation operators mentioned above suppose that the elements integrated are mutually 
independent. In theory, the criteria in a MCDM problem should satisfy the requirement of independence. 
However, in some realistic MCDM problems like the selection of renewable energy, the criteria are 
correlative, in which the aggregation operators illustrated above become inapplicable. For instance, power, 
investment ratio, operation and maintenance cost and operating hours are four of the criteria in the 
selection of renewable energy and they are not independent. In the example, as known to all, investment 
ratio may be affected by power, and operation and maintenance cost may be bound up with operating 
hours. In order to overcome this deficiency and take into account the interrelationships among criteria, the 
Bonferroni mean (BM) is introduced. 
2.3 Bonferroni mean (BM) 
BM, firstly put forward by Bonferroni in Ref. (Bonferroni, 1950), has been extended to several kinds of 

FSs. For instance, Xu and Yager (Xu & Yager, 2011) defined the intuitionistic fuzzy BM (IFBM) and the 
intuitionistic fuzzy weighted BM (IFWBM) according to previous studies about BM and the weighted BM 
(WBM). Moreover, Xia et al. (Xia, Xu, & Zhu, 2012) investigated the generalized BM, which is proposed 
by Beliakov (Beliakov, James, Mordelová, Rückschlossová, & Yager, 2010), under intuitionistic fuzzy 
environments and developed the generalized WBM and the generalized intuitionistic fuzzy WBM. 
Furthermore, Zhou and He (Zhou & He, 2012) pointed out some drawbacks of WBM. To conquer these 
drawbacks, they proposed a novel WBM operator, which is called the normal WBM (NWBM). Based on 
BM, Xia et al. (Xia, Xu, & Zhu, 2013) defined geometric BM (GBM) and introduced the intuitionistic 
fuzzy GBM (IFGBM) and the weighted IFGBM (WIFGBM). And they also discussed some properties of 
IFGBM. On the basis of GBM in Ref. (Xia et al., 2013), Zhu et al. (Zhu & Xu, 2013) explored the GBM 
under hesitant fuzzy environments and put forward the hesitant fuzzy GBM (HFGBM) and the hesitant 
fuzzy Choquet GBM (HFCGBM). In addition, Liu and Wang (Liu & Wang, 2014) extended NWBM to 
aggregate single-valued neutrosophic numbers (SVNNs) and defined the single-valued neutrosophic BM 
(SVNBM) and the single-valued neutrosophic NWBM. Besides, many other extensions of BM have been 
developed (Z. P. Tian, Wang, Wang, & Chen, 2015; Z. P. Tian, Wang, Zhang, Chen, & Wang, 2015) and 
applied to tackle practical problems (Hong Yu Zhang, Ji, Wang, & Chen, 2017). 

IVNSs can more comprehensively express fuzzy and uncertain information during the processes of 
selecting renewable energy than other extensions of NSs like SVNSs. Moreover, criteria may be correlative 
in the selection problems of renewable energy. For solving such problems in selecting renewable energy, 
we intend to introduce BM. Nevertheless, to the best of our knowledge, BM has not been studied under 
interval-valued neutrosophic environments. To overcome this deficiency, in the first place, we propose the 
interval-valued neutrosophic BM (IVNBM) and the interval-valued neutrosophic GBM (IVNGBM). 
Considering that IVNBM and IVNGBM do not take into account the relative importance of each element, 
the interval-valued neutrosophic WBM (IVNWBM) and the interval-valued neutrosophic weighted GBM 
(IVNWGBM) are also put forward in this study. Additionally, novel MCDM approaches for the selection 
of renewable energy are constructed based on the proposed aggregation operators. 
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In this section, based on SVNBM in Ref. (Liu & Wang, 2014), the definition of IVNBM and IVNGBM
are put forward based on previous studies about IVIFBM and SVNBM. However, IVNBM and IVNGBM 
do not take into consideration the relative importance of each IVNN. IVNWBM and IVNWGBM are 
proposed in order to conquer this disadvantage. In addition, some properties of IVNBM and IVNGBM are 
investigated. Based on the proposed aggregation operators, novel MCDM approaches for the selection of 
renewable energy are constructed and the procedures are discussed in this section. 
3.1 IVNBM 

Definition 5. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of

IVNNs. IVNBM can be defined as: 

   

1

,
1 2 , 1

1, , ,
( 1)

p qn
p q p q

n i ji j
i j

IVNBM x x x x x
n n






 
   
 
 

.      (3) 

Theorem 1. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of

IVNNs. The aggregated value by IVNBM in (3) is also an IVNN, and 
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1 2
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1 1
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1 1
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F F F F



 

    

 
 

 
 

  
  

  


    
             
    
     

 

 (4) 

Proof. 

According to the operations (2) and (4) in Definition 4, we have      , , 1 1 ,
p p pp

i i i ix T T I      
    

     1 1 , 1 1 ,1 1
p p p

i i iI F F         
    

,        , , 1 1 ,1 1 ,
p p p pq

j j j j jx T T I I          
      

   1 1 ,1 1
p p

j jF F     
  

 and            , , 1 1 1 ,
p q p q p qp q

i j i j i j i jx x T T T T I I             
    

           1 1 1 , 1 1 1 ,1 1 1
p q p q p q

i j i j i jI I F F F F               
    

. Let , , , ,ij ij ij ij ija T T I I          

   ,
qp

ij ij i i j jF F w x w x      ,     
1

,
1 2 , 1

1( , , , )
( 1)

p qn qpp q
n i i j ji j

i j

IVNWBM x x x w x w x
n n






 
    
 
 

 

1

, 1

1
( 1)

p qn

iji j
i j

n n







 
 
 
 

. According to the operational laws (1) and (3) in Definition 4,  
, 1

1
( 1)

n

iji j
i j

n n
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Therefore,        
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Furthermore, the following inequalities are true: 
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which meets the requirements of an IVNN. 
Therefore, Theorem 1 holds. 
In the following part, we investigate some properties of IVNBM: 
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(1) When      1,1 , 0,0 , 0,0ix   1,2, ,i n ,        ,
1 2, , , 1,1 , 0,0 , 0,0p q

nIVNBM x x x  . 

(2) When      0,0 , 1,1 . 1,1ix   1,2, ,i n ,        ,
1 2, , , 0,0 , 1,1 , 1,1p q

nIVNBM x x x  . 

(3) (Idempotency) When all IVNNs ix   1,2, ,i n  are equal, i.e., ix x  for all i , 
 ,

1 2, , ,p q
nIVNBM x x x x .              (5) 

Proof. Since ix x  for all i , we can obtain that    

1

,
1 2 , 1

1, , ,
( 1)

p qn
p q p q

n i ji j
i j

IVNBM x x x x x
n n
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( 1) ( 1)
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n n n n
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(4) (Monotonicity) Let , , , , ,
i i i i i ii x x x x x xx T T I I F F                  1,2, ,i n  and , , , ,

i i i ii y y y yy T T I I            

,
i iy yF F  

   1,2, ,i n  be two collections of IVNNs. When
i ix yT T  , 

i ix yT T  , 
i ix yI I  , 

i ix yI I  , 

i ix yF F   and 
i ix yF F   for all i , 

   , ,
1 2 1 2, , , , , ,p q p q

n nIVNBM x x x IVNBM y y y .           (6) 

(5) (Commutativity) Let  1 2, , , nx x x  be any permutation of  1 2, , , nx x x , 

 ,
1 2, , ,p q

nIVNBM x x x   ,
1 2, , ,p q

nIVNBM x x x . 

(6) (Boundedness) Let , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of IVNNs, and

           min ,min , max ,max , max ,maxi i i i i ii i i i i i
x T T I I F F          

     
,    max ,max ,i ii i

x T T   
 

       min ,min , min ,mini i i ii i i i
I I F F      

   
. We can obtain that  ,

1 2, , ,p q
nx IVNBM x x x x   . 

Proof. Since ix x , according to Equation (5) and Inequality (6), we have  ,
1 2, , ,p q

nIVNBM x x x 

 , , , ,p qIVNBM x x x x    . Likewise, we can obtain that  ,
1 2, , ,p q

nIVNBM x x x 

 , , , ,p qIVNBM x x x x    . Then,  ,
1 2, , ,p q

nx IVNBM x x x x   . 
In the following part, we discuss some special cases of IVNBM. 
1. When 0q  , from Equation (3) and (4), IVNBM reduces to the generalized interval-valued

neutrosophic average (GIVNA) operator as follows: 
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2. When 2p   and 0q  , IVNBM reduces to the interval-valued neutrosophic square average
(IVNSA) operator as follows: 
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3. When 1p   and 0q  , IVNBM reduces to the interval-valued neutrosophic average (IVNA)
operator as follows: 
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4. When 1p q  , IVNBM reduces to the interval-valued neutrosophic interrelated average (IVNIA)
operator as follows: 
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3.2 IVNWBM 
Definition 6. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of 

IVNNs.  1 2, , , T
nw w w w  is the weight vector of ix   1,2, ,i n  where 0iw    1,2, ,i n  and 

1 1n
ii w


 . IVNWBM can be defined as: 

    
1
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1 2 , 1

1( , , , )
( 1)

p qn qpp q
n i i j ji j

i j
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.          (7) 

Theorem 2. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of 

IVNNs.  1 2, , , T
nw w w w  is the weight vector of ix   1,2, ,i n  where 0iw    1,2, ,i n  and 

1 1n
ii w


 . The aggregated value by IVNWBM in Equation (7) is also an IVNN, and 
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Proof is given in appendix. 
3.3 IVNGBM 

Definition 7. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of 

IVNNs. IVNGBM can be defined as: 
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.       (9) 

Theorem 3. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of 

IVNNs, then the aggregated value by IVNGBM in Equation (9) is also an IVNN, and 
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Proof is given in appendix. 
In the following part, we investigate some properties of IVNGBM: 
(1) When      1,1 , 0,0 , 0,0ix    1,2, ,i n ,        ,

1 2, , , 1,1 , 0,0 , 0,0p q
nIVNGBM x x x  . 

(2) When      0,0 , 1,1 , 1,1ix    1,2, ,i n ,        ,
1 2, , , 0,0 , 1,1 , 1,1p q

nIVNGBM x x x  . 

(3) (Idempotency) When all IVNNs ix   1,2, ,i n  are equal, i.e., ix x  for all i , 
 ,

1 2, , ,p q
nIVNGBM x x x x .              (11) 

Proof. Since ix x  for all i , we can obtain that 
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(4) (Monotonicity) Let , , , , ,
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Proof. Since ix x , according to Equation (11) and inequality (12), we have 
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In the following part, we discuss some special cases of IVNGBM. 
1. When 0q  , from Equation (9) and (10), IVNGBM reduces to the generalized interval-valued

neutrosophic geometric average (GIVNGA) operator as follows: 
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2. When 2p   and 0q  , IVNBM reduces to the interval-valued neutrosophic square geometric
average (IVNSGA) operator as follows: 
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3. When 1p   and 0q  , IVNGBM reduces to the interval-valued neutrosophic geometric average
(IVNGA) operator as follows: 
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4. When 1p q  , IVNGBM reduces to the interval-valued neutrosophic interrelated square
geometric average (IVNISGA) operator as follows: 

New Trends in Neutrosophic Theory and Applications. Volume II

23



   

   

     

1
1,1 ( 1)

1 2 , 1

1 1
2 21 1

( 1) ( 1)

, 1 , 1

1
21

( 1)

, 1

1, , ,
2

1 1 1 (1 )(1 ) ,1 1 1 (1 )(1 ) ,

1 1 , 1 1

n
n n

n i ji j
i j

n n
n n n n

i j i j
i j i j
i j i j

n
n n

i j i j
i j
i j

IVNGBM x x x x x

T T T T

I I I I






    

 
 

  




  

 
    
              
    
     

 
    
 
 

 

   

       

1
21

( 1)

, 1

1 1
2 21 1

( 1) ( 1)

, 1 , 1

,

1 1 , 1 1 .

n
n n

i j
i j

n n
n n n n

i j i j
i j i j
i j i j

F F F F

 




    

 
 

 
  
  
  
   


    
       
    
     



 

3.4 IVNWGBM 
Definition 8. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of 

IVNNs.  1 2, , , T
nw w w w  is the weight vector of ix   1,2, ,i n  where 0iw    1,2, ,i n  and 

1 1n
ii w


 . IVNWGBM can be defined as: 
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Theorem 4. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of 

IVNNs.  1 2, , , T
nw w w w  is the weight vector of ix   1,2, ,i n  where 0iw    1,2, ,i n  and 

1 1n
ii w


 . The aggregated value by IVNWGBM in (13) is also an IVNN, and 
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Proof is given in appendix. 
3.5 PROCEDURES OF THE PROPOSED APPROACHES
Here we present our novel MCDM approaches for the selection of renewable energy based on the WBM 

(or the WGBM) for IVNNs. 
Assume there are m alternatives 1{ ,A A 2 ,A , }mA  and n criteria 1{ ,C C 2 ,C , }nC , whose 

subjective weight vector provided by the decision maker is 1 2( , , , )nw w w w , where 0jw 

( 1,2, ,j n ) and 
1

1
n

j
j

w


 . Let  ij m n
U a


  be the interval-valued neutrosophic decision matrix, where 

, ,
ij ij ijij a a aa T I F  is an evaluation value, denoted by IVNN, where inf ,sup

ij ij ija a aT T T 
 

 indicates the 

truth-membership function that the alternative iA  satisfies the criterion jC , inf ,sup
ij ij ija a aI I I 

 
 indicates 

the indeterminacy-membership function that the alternative iA  satisfies the criterion jC  and 

ijaF  inf ,sup
ij ija aF F 

 
 indicates the falsity-membership function that the alternative iA  satisfies the 

criterion jC . 
In the following part, the proposed MCDM approach to rank and select the most desirable alternative(s) 

is based upon IVNWBM (or IVNWGBM) and its procedures are as follows: 
Step 1: Normalize the decision matrix. 
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Criteria can be divided into two types: benefit criterion and cost criterion. The bigger the value of an 
alternative under a benefit criterion is, the better the attribute will be; conversely, the smaller the value of 
an alternative under a cost criterion is, the better the alternative is. 

To unify all criteria, the decision matrix needs to be normalized, and the normalized decision matrix 

 
n m

ijN b


  can be obtained by: 

 

if isa benefit criterion

if isa cost criterion
ij j

ij
ij j

a C
b

neg a C


 


.              (15) 

Step 2: Calculate the overall performance value ir   1,2, ,i m  of alternative iA . 
The overall performance value ir  can be computed by making use of IVNWBM or IVNWGBM. 
Step 3: Calculate the score value is  of the collective IVNN ir   1,2, ,i m .
According to the score function of IVNN defined in Definition 1, we can obtain the score value is  of 

each collective IVNN ir  utilizing Equation (1). 
Step 4: Calculate the accuracy value ia  of the collective IVNN ir   1,2, ,i m .
According to the score function of IVNN defined in Definition 2, we can get the accuracy value ia  of 

each collective IVNN ir  utilizing Equation (2). 
Step 5: Rank the alternatives according to the comparative method of IVNNs. 
According to the comparative method defined in Definition 3, we can derive the final ranking of 

alternatives. 
4. EXAMPLE AND COMPARATIVE ANALYSIS
4.1 NUMERICAL EXAMPLE 
In this subsection, a numerical example for the MCDM problem with IVNNs is used to demonstrate the 

applicability of the proposed decision-making approaches. 
The following example about the selection of renewable energy is adapted from Ref. (Yazdani-Chamzini 

et al., 2013). 
A government intends to select one kind of renewable energy to use for the sustainable development of 

local economy. After preliminary selection, there are three kinds of renewable energy: (1) solar energy 
( 1A ); (2) wind energy ( 2A ); (3) hydraulic energy ( 3A ). These three kinds of renewable energy are assessed 
by experts with respect to seven criteria: (1) power ( 1C ); (2) investment ratio ( 2C ); and (3) implementation 
period ( 3C ); (4) operating hours (C4); (5) useful life (C5); (6) operation and maintenance costs (C6); (7) 
emissions of CO2 avoided per year (C7). The criteria of C1, C4, C5 and C6 are benefit ones while the rest 
three criteria are cost ones. Moreover, these seven criteria are correlative. The weight vector of the criteria 
is calculated by Yazdani-Chamzini (Yazdani-Chamzini et al., 2013) as 

(0.319,0.09,0.026,0.116,0.134,0.042,0.273)w . In order to reflect the reality more accurately and obtain 
more fuzzy and uncertain information, we transform the evaluation values provided by experts into IVNNs, 
as shown in Table 1. 

Table1: The evaluation information 

A1 A2 A3 

C1 [0.7,0.8],[0.3,0.4],[0.4,0.5]   [0.7,0.9],[0.2,0.4],[0.4,0.6]   [0.7,0.9],[0.2,0.3],[0.4,0.5] 

C2 [0.2,0.3],[0.8,0.9],[0.6,0.7]   [0.2,0.3],[0.6,0.7],[0.6,0.7]   [0.3,0.6],[0.3,0.5],[0.8,0.9]   

C3 [0.3,0.4],[0.6,0.9],[0.7,0.8]   [0.3,0.4],[0.6,0.7],[0.5,0.6]   [0.4,0.5],[0.6,0.8],[0.7,0.9] 
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C4 [0.6,0.8],[0.1,0.2],[0.3,0.4]   [0.8,0.9],[0.1,0.3],[0.3,0.4]   [0.8,0.9],[0.3,0.4],[0.1,0.2] 

C5 [0.8,0.9],[0.1,0.2],[0.2,0.3]   [0.8,0.9],[0.3,0.5],[0.4,0.6]   [0.8,0.9],[0.4,0.5],[0.3,0.4] 

C6 [0.8,0.9],[0.5,0.6],[0.1,0.2]   [0.5,0.8],[0.1,0.2],[0.3,0.4]  [0.8,1],[0.1,0.3],[0.1,0.2] 

C7 [0.2,0.3],[0.8,0.9],[0.9,1]  [0.2,0.4],[0.5,0.7],[0.8,0.9]   [0.1,0.2],[0.7,0.9],[0.7,0.8] 

Assume 1p q  , we firstly utilize IVNWBM to solve the above MCDM problem about the selection 
of renewable energy, and the procedure is shown as follows: 

Step 1: Normalize the decision matrix. 
Since the criteria of C1, C4, C5 and C6 are benefit ones while the criteria C2, C3, and C7 are cost ones, the 

decision matrix can be normalized utilizing Equation (15), and the normalized decision information are 
shown in Table 2. 

Table2: Normalized evaluation information 

A1 A2 A3 

C1 [0.7,0.8],[0.3,0.4],[0.4,0.5]   [0.7,0.9],[0.2,0.4],[0.4,0.6]   [0.7,0.9],[0.2,0.3],[0.4,0.5] 

C2 [0.6,0.7],[0.1,0.2],[0.2,0.3]   [0.6,0.7],[0.3,0.4],[0.2,0.3]   [0.8,0.9],[0.5,0.7],[0.3,0.6] 

C3 [0.7,0.8],[0.1,0.4],[0.3,0.4]   [0.5,0.6],[0.3,0.4],[0.3,0.4]   [0.7,0.9],[0.2,0.4],[0.4,0.5] 

C4 [0.6,0.8],[0.1,0.2],[0.3,0.4]   [0.8,0.9],[0.1,0.3],[0.3,0.4]   [0.8,0.9],[0.3,0.4],[0.1,0.2]   
C5 [0.8,0.9],[0.1,0.2],[0.2,0.3]   [0.8,0.9],[0.3,0.5],[0.4,0.6]   [0.8,0.9],[0.4,0.5],[0.3,0.4]   
C6 [0.8,0.9],[0.5,0.6],[0.1,0.2]   [0.5,0.8],[0.1,0.2],[0.3,0.4]  [0.8,1],[0.1,0.3],[0.1,0.2] 

C7 [0.9,1],[0.1,0.2],[0.2,0.3]  [0.8,0.9],[0.3,0.5],[0.2,0.4]  [0.7,0.8],[0.1,0.3],[0.1,0.2] 

Step 2: Calculate the collective overall value ir   1,2, ,i m  of alternative iA . 
Utilizing Equation (8), the collective matrix formed by the collective overall value ir  1,2, ,i m  is

     

     

     

0.1708,0.2791 , 0.7824,0.8406 , 0.8340,0.8723

0.1598,0.2327 , 0.8208,0.8873 , 0.8527,0.9028

0.1668,0.3710 , 0.8225,0.8801 , 0.8179,0.8682

C

 
 

  
 
 
 

. 

Step 3: Calculate the score value is  of the collective IVNN ir   1,2, ,i m .
Utilizing Equation (1), the score vector can be obtained as  0.6256, 0.6948, 0.6384s     .
Step 4: Calculate the accuracy value ia  of the collective IVNN ir   1,2, ,i m .

Utilizing Equation (2), the accuracy vector can be calculated as  0.0521, 0.0339,0.0114a    .
Step 5: Rank the alternatives according to the comparative method of IVNNs. 
Based on the above steps, the final order 1 3 2A A A  is obtained. Obviously, among the four 

alternatives, 1A  is the best one and 2A  is the worst one. 
Then, we utilize IVNWGBM to solve the above MCDM problem, and the ranking result is obtained: 

1 3 2A A A . It is evident that the best alternative is 1A  and the worst one is 2A . 
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4.2 The influence of parameters 
As discussed in Ref. (Zhu & Xu, 2013), the collective IVNN for a certain alternative with IVNWBM or 

IVNWGBM is monotonically increasing with increasing p (or q) and is symmetric about p q . In order to 
demonstrate the influence of the parameters p and q on the final ranking order of this numerical example, 
we calculate the ranking results of alternatives using different values of these two parameters. All referred 
values of p and q can be divided into three categories. In the first category, the value of p is smaller than 
that of q, the values of p and q are equal in the second category, whilst the value of p is bigger than that of 
q in the third category. The significant pairs of p and q and the respective final ranking results of two 
proposed approaches are shown in Table 3 and Table 4, respectively. When the difference between the 
values of p and q is big enough, the ranking result will stay stable. In Tables 1 and 2, we obtain the ranking 
results when the difference between the values of p and q varies to represent the influence of p and q. 

Table3: Ranking results of the approach using IVNWBM with different p and q 

p, q Score value is Ranking result 

0.001p  , 1q   1 0.5042s   , 2 0.6683s   , 3 0.5220s    1 3 2A A A
0.1p  , 1q   1 0.5934s   , 2 0.6839s   , 3 0.6031s    1 3 2A A A
1p  , 2q   1 0.5725s   , 2 0.6568s   , 3 0.5817s   1 3 2A A A
1p  , 5q   1 0.4235s   , 2 0.5546s   , 3 0.4203s    3 1 2A A A
1p  , 10q   1 0.2920s   , 2 0.4662s   , 3 0.2914s    3 1 2A A A

0.1p  , 0.1q   1 0.6936s   , 2 0.7453s   , 3 0.7014s    1 3 2A A A
1p  , 1q   1 0.6256s   , 2 0.6948s   , 3 0.6384s    1 3 2A A A
4p  , 4q   1 0.4684s   , 2 0.5689s   , 3 0.4528s    3 1 2A A A

10p  , 10q   1 0.3688s   , 2 0.5228s   , 3 0.3336s    3 1 2A A A
0.1p  , 0q   1 0.4697s   , 2 0.7182s   , 3 0.5034s    1 3 2A A A
0.5p  , 0q   1 0.4480s   , 2 0.6971s   , 3 0.4812s    1 3 2A A A
1p  , 0q   1 0.4192s   , 2 0.6681s   , 3 0.4489s    1 3 2A A A
5p  , 0q   1 0.2640s   , 2 0.5035s   , 3 0.2597s   3 1 2A A A

As displayed in Table 3, with changeable values of p and q, the ranking result of alternatives may be 
slightly different. Furthermore, all score values shown in Table 1 obtained by the proposed approach using 
IVNWBM are smaller than 0. In addition, two different ranking results exist when the value of p is smaller 
than that of q. 2A  is the worst alternative in both of these two different ranking results. The best alternative 
is 1A  when the value of q is smaller than 2  while the best one is 3A in the when the values of p and q are 
not smaller than 4 . Two different ranking results, which are same with the ranking results in the first 
category, exist in the second category. When the values of p and q are smaller than 1 , the best alternative is 

1A  and the worst one is 3A . In the third category, 1A  is the best alternative and 2A  is the worst one when 
the value of p is not bigger than 1 . There is another ranking result whose best alternative is 3A  and the 
worst one is 2A  in the third category. 
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Table4: Ranking results of the approach using the IVNWGBM with different p and q 

p, q Score value is Ranking result 

0.001p  , 1q   1 0.6016s  , 2 0.5426s  , 3 0.5710s   1 3 2A A A
0.1p  , 1q   1 0.6696s  , 2 0.6142s  , 3 0.6397s   1 3 2A A A
1p  , 2q   1 0.9800s  , 2 0.9690s  , 3 0.9751s   1 3 2A A A
1p  , 6q   1 0.9996s  , 2 0.9992s  , 3 0.9997s  , 3 1 2A A A

0.1p  , 0.1q   1 0.3768s   , 2 0.4375s   , 3 0.4027s   1 3 2A A A
0.5p  , 0.5q   1 0.6495s  , 2 0.5892s  , 3 0.6135s   1 3 2A A A

1p  , 1q   1 0.9254s  , 2 0.8985s  , 3 0.9096s   1 3 2A A A
0.1p  , 0q   1 0.6694s   , 2 0.7020s   , 3 0.6843s    1 3 2A A A
0.5p  , 0q   1 0.1470s  , 2 0.0805s  , 3 0.1093s   1 3 2A A A
1p  , 0q   1 0.5977s  , 2 0.5418s  , 3 0.5672s   1 3 2A A A
2p  , 0q   1 0.8862s  , 2 0.8614s  , 3 0.8792s   1 3 2A A A
5p  , 0q   1 0.9946s  , 2 0.9922s  , 3 0.9954s   3 1 2A A A

As noted in Table 4, like what’s shown in Table 1, when the values of p and q vary, there may be slight 
differences in the ranking results of alternatives. In addition, when the value of p equals to that of q, the 
ranking result are same. The best alternative is 1A  and the worst one is 2A . Two different ranking results 
exist in the first category. When the values of p and q are bigger than 6 , the best alternative is 3A  and the 
worst one is 2A . Another ranking result in the first category is same as the ranking result in the second 
category and that in the third category when the value of p is smaller than 2 . In the third category, there is 
another ranking result whose best alternative is 3A  and the worst one is 4A . 

Moreover, all score values presented in Table 4 obtained by the proposed approach using IVNWGBM 
are bigger than those in Table 1 when the values of p and q are constant. 

According to Tables 3 and 4, we can conclude that as the values of p and q change, the ranking results 
obtained by a certain approach may be different. The reason for this difference is discussed. The values of 
these two parameters, which are determined according to the subjective preference of decision maker, can 
reflect his risk preference. And it is obvious that the ranking result of alternatives may be distinct when the 
decision maker’s risk preference varies. Therefore, the difference mentioned above, which also exists in the 
extant studies about BM, is reasonable. In practical, if the values of p and q are known or can be obtained 
by regression analysis with decision maker’s available data, it is considerable to utilize the proposed 
approaches. Otherwise, the proposed approaches are not suitable since their ranking results may be 
inaccurate and volatile. 
4.3 COMPARATIVE ANALYSIS 
For the sake of validating the feasibility of the proposed decision-making approaches, a comparative 

study is conducted. The study includes two cases. The first case compares the proposed approaches with 
approaches proposed by Liu and Wang (Liu & Wang, 2014) and Şahin (Şahin, 2014) under single-valued 
neutrosophic environments. The second case compares the proposed approaches with two approaches 
proposed by Şahin (Şahin, 2014) and two approaches proposed by Zhang et al. (H. Y. Zhang et al., 2014) 
under interval-valued neutrosophic environments. Since the extant MCDM selection approaches (Cristóbal, 
2011; Yazdani-Chamzini et al., 2013) for renewable energy cannot deal with IVNNs, the proposed 
approaches are not compare with approaches in Ref. (Cristóbal, 2011; Yazdani-Chamzini et al., 2013). The 
detail of the study is described in the following of this subsection. 

Case 1: The comparative analysis under single-valued neutrosophic environments. 
This case is based upon the same numerical example of MCDM problem with SVNNs in Ref. (Şahin, 

2014). The ranking results of the proposed approaches are compared with that of the approaches in Refs. 
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(Liu & Wang, 2014; Şahin, 2014). The approaches in Ref. (Şahin, 2014) are constructed on the basis of the 
proposed single-valued neutrosophic weighted operators and score function. Two single-valued 
neutrosophic weighted operators are developed by Şahin (Şahin, 2014) including the single-valued 
neutrosophic weighted average (SVNWA) operator and the single-valued neutrosophic weighted geometric 
average (SVNWGA) operator. The approach in Ref. (Liu & Wang, 2014) utilizes the proposed single-
valued neutrosophic normalized WBM (SVNNWBM) operator and the score function to rank alternatives. 
The ranking results of the proposed approaches and the approaches in Refs. (Liu & Wang, 2014; Şahin, 
2014) are listed in Table 5. 

Table5: Ranking results under single-valued neutrosophic environments 

Approach The ranking 
result 

The best 
alternative(s) 

The worst 
alternative(s) 

Approach using SVNWA in 
Ref. (Şahin, 2014) 4 2 3 1A A A A 4A 1A

Approach using SVNWGA in 
Ref. (Şahin, 2014) 4 2 3 1A A A A 4A 1A

Approach using SVNNWBM 
in Ref. (Liu & Wang, 2014) 4 2 3 1A A A A 4A 1A

The proposed approach using 
IVNWBM 4 2 3 1A A A A 4A 1A

The proposed approach using 
IVNWGBM 2 3 4 1A A A A 2A 1A

From Table 5, same ranking result is obtained by the approaches proposed by Şahin (Şahin, 2014) and 
Liu and Wang (Liu & Wang, 2014) and the proposed approach using IVNWBM. The best alternative of 
these approaches is 4A  and the worst one is 1A . A different ranking result is obtained by the proposed 
approach using IVNWGBM. The best alternative of this proposed approach is 2A  and the worst one is 1A . 

In this case study, the ranking results of the approach using SVNWA in Ref. (Şahin, 2014), the approach 
in Ref. (Liu & Wang, 2014) and the proposed approach using IVNWBM are the same. And the same 
rankings of these three approaches illustrates that the proposed approach using IVNWBM can be 
effectively utilized to solve MCDM problems under single-valued neutrosophic environments. Different 
ranking results are obtained by the approach using SVNWGA in Ref. (Şahin, 2014) and the proposed 
approach using IVNWGBM. The reason is provided as follows. The proposed approach using IVNWGBM 
takes into account the interrelationships among criteria while the approach using SVNWGA in Ref. (Şahin, 
2014) assumes that the criteria are independent. It is rational that the ranking results of these two 
approaches are different. We also explain why the ranking results of two proposed approaches are 
different. The proposed approach utilizing IVNWBM obtains a pessimistic result, while the proposed 
approach using IVNWGBM calculates an optimistic one. Therefore, the ranking results of the two 
proposed approaches may be different. 

In general, the proposed approaches can be used to tackle MCDM problems with SVNSs while the 
extant SVNS approaches cannot address MCDM problems with IVNSs. From this perspective, the 
proposed approaches are flexible ones. 

Case 2: The comparative analysis with extant interval-valued neutrosophic MCDM approaches. 
This case is based upon the same numerical example of MCDM problem with IVNNs presented in Ref. 

(Şahin, 2014). The ranking results of the proposed approaches are compared with those of the MCDM 
approaches in Refs. (H. Y. Zhang et al., 2014) and (Şahin, 2014). Two approaches in Ref. (Şahin, 2014) 
make use of the IVNWA and IVNWG operators respectively to obtain the integrated value of each 
alternative considering all criteria. Two approaches proposed by Zhang et al. (H. Y. Zhang et al., 2014) 
utilize the novel IVNWA and IVNWG operators which are developed based on improved operations for 
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IVNSs. Additionally, the score value and the accuracy value are calculated to get the ranking list of 
alternatives. The ranking results of the proposed approaches and the approaches in Refs. (Şahin, 2014; H. 
Y. Zhang et al., 2014) are listed in Table 6. 

Table6: Ranking results under interval-valued neutrosophic environments 

Approach The ranking 
result 

The best 
alternative(s) 

The worst 
alternative(s) 

Approach using IVNWA in 
Ref. (Şahin, 2014) 

4 1 2 3A A A A
4A 3A

Approach using IVNWG in 
Ref. (Şahin, 2014) 

1 4 2 3A A A A
1A 3A

Approach using IVNWA in 
Ref. (H. Y. Zhang et al., 2014) 

4 1 2 3A A A A
4A 3A

Approach using IVNWG in 
Ref. (H. Y. Zhang et al., 2014) 

1 4 2 3A A A A
1A 3A

The proposed approach using 
IVNWBM 

4 1 3 2A A A A
4A 2A

The proposed approach using 
IVNWGBM 

1 3 4 2A A A A
1A 2A

As shown in Table 6, the best alternative of the proposed approach using IVNWGBM and approach 
using IVNWG in Refs. (Şahin, 2014; H. Y. Zhang et al., 2014) is 1A  while that of the other three 
approaches is 4A . Moreover, two proposed approaches get the same worst alternative which is different 
from that obtained by the four approaches in Refs. (Şahin, 2014; H. Y. Zhang et al., 2014). The worst 
alternative in the proposed approaches is 2A  while that of the four approaches in Refs. (Şahin, 2014; H. Y. 
Zhang et al., 2014) is 3A . 

The reasons why inconsistencies exist in Table 6 are provided. Firstly, the operations and comparative 
method in approaches in Ref. (H. Y. Zhang et al., 2014) overcome the deficiencies of those in approaches 
proposed by Şahin (Şahin, 2014). The ranking results of approaches in Refs. (Şahin, 2014; H. Y. Zhang et 
al., 2014) may be different when using same aggregation operator. From Table 6, the ranking results 
obtained by the approaches in Refs. (Şahin, 2014; H. Y. Zhang et al., 2014) are same when using same 
aggregation operator. The reason is that the differences between approaches in Refs. (Şahin, 2014; H. Y. 
Zhang et al., 2014) with same aggregation operator do not influence the ranking result in this study. 
Nevertheless, different ranking results may be obtained by the approaches in Refs. (Şahin, 2014; H. Y. 
Zhang et al., 2014) using same aggregation operator when the decision matrix changes. Secondly, the 
approaches in Ref. (Şahin, 2014) assume that criteria are independent while the proposed approaches take 
into account the interrelationships among criteria. What’s more, the operations and comparative method 
utilized in the proposed approaches are different from those in the approaches in Ref. (Şahin, 2014). 
Therefore, it is reasonable that different ranking results can be obtained by the ranking results of the 
proposed approaches and the approaches in Ref. (Şahin, 2014). Thirdly, the two proposed approaches 
investigate the interrelationships among criteria while the two approaches in Ref. (H. Y. Zhang et al., 2014) 
assume criteria independent. However, criteria are usually correlative in practical MCDM problems like 
the selection of renewable energy. Thus, the ranking results obtained by the proposed approaches are in 
accord with decision makers’ preferences than those obtained by the two approaches in Ref. (H. Y. Zhang 
et al., 2014). Fourthly, similar to what’s presented in Case 1, IVNWBM can be thought as a more 
pessimistic operator while IVNWGBM can be thought as a more optimistic one. Thus, difference may exist 
in the ranking results of the two proposed approaches. In addition, it is not necessary to say which 
proposed approach is the best. Utilizing which approach to obtain the ranking result relies on the 
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preference of decision maker, for instance, if a decision maker has a pessimistic nature, it may be more 
appropriate to utilize the proposed approach utilizing IVNWBM. 
Generally speaking, the proposed approaches can be used to solve MCDM problems under single-valued 

neutrosophic environments and interval-valued neutrosophic environments. In addition, the proposed 
approaches take into consideration the interrelationships among criteria, which make them more suitable in 
dealing with practical MCDM problems under interval-valued neutrosophic environments than the extant 
approaches. 
5. CONCLUSION AND FUTURE RESEARCH
In practice, the fuzziness and uncertainty often exist in the decision information provided by decision 

makers when selecting renewable energy, and IVNSs can depict the information. Moreover, the criteria 
may be interdependent in the problems of selecting renewable energy. BM is a valid tool to consider the 
interrelationships among criteria. Therefore, in this study, we extended BM and GBM to interval-valued 
neutrosophic environments, and defined IVNBM and IVNGBM. Some properties of these two operators 
were discussed. As IVNBM and IVNGBM do not take the relative importance of each integrated element 
into account, IVNWBM and IVNWGBM were proposed in this study. As well, two approaches applying 
IVNWBM and IVNWGBM respectively were presented to solve selection problems of renewable energy 
under interval-value neutrosophic environments. In addition, a numerical example about the selection of 
renewable energy is used to demonstrate the application of the proposed approaches. And the influence of 
parameters on final rankings is discussed. Subsequently, we verify the feasibility of the proposed 
approaches by comparing with other existing MCDM approaches. 

The contributions of this paper are concluded as follows: firstly, this paper established novel approaches 
for the selection of renewable energy. Secondly, BM and GBM were extended into interval-valued 
neutrosophic environments. This theoretical extension can provide support for future other application 
researches. Thirdly, the proposed approaches reduce the loss of information during the processes of 
selecting renewable energy by utilizing IVNSs to deal with fuzzy and uncertain information. Fourthly, the 
proposed approaches take into consideration of the interrelationships among criteria, and the ranking 
results obtained by the proposed approaches are closer to decision makers’ preferences than extant 
approaches. The feasibility and effectiveness have been proved by the comparative analysis. 

Two promising directions are provided for future research. First, it is significant to apply IVNWBM and 
the IVMWGBM to solve problems in various other fields, such as purchasing decision-making, commodity 
recommendation and medical diagnosis. Second, the priority levels of criteria are different. It is worth of 
further study to construct a MCDM approach which considers the priority of criteria on the basis of this 
paper. 
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APPENDIX. PROOF OF THEOREMS 
Proof of Theorem 2. 

According to the operations (3) and (4) in Definition 4, we have    1 1 ,1 1 ,i iw w

i i i iw x T T      
  

       , , ,i i i iw w w w

i i i iI I F F      
      

,          1 1 ,1 1 , , , ,j j j j jw w w w w

j j j j j j jw x T T I I F            
        

  jw

jF  
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p p p pw w w wp

i i i i i iw x T T I I      
           

   

     1 1 ,1 1i i
p pw w

i iF F  
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1 2, , ,p q
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1 1
( 1) ( 1)
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. By the operational laws (1) and (3) in 
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In addition, the following inequalities are right: 
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  which meets the requirements of an IVNN. 

Hence, Theorem 2 is true. 
Proof of Theorem 3. 
According to the operations (1) and (3) in Definition 4, we have ipx 
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requirements of an IVNN. 
Therefore, Theorem 3 holds. 

Proof of Theorem 4. 

By the operation (4) in Definition 4, we have      , , 1 1 ,i i ii
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Additionally, the following inequalities are proved to be true: 
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, which meets the requirements of an IVNN. 

Hence, Theorem 4 is true. 
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ABSTRACT 
Gathering the attitudes of the examined respondents would be very significant in some evaluation models. 
Therefore, an approach to the evaluation of websites based on the use of the neutrosophic set is proposed 
in this paper. An example of websites evaluation is considered at the end of this paper with the aim to 
present in detail the proposed approach. 

KEYWORDS:  neutrosophic set; single valued neutrosophic set; website quality; website 
evaluation; multiple criteria decision making. 

1. INTRODUCTION
A company’s website can have a very important role in a competitive environment.  It can be used to 
provide information to its customers, collect new and retain old users and so on. 
A website can be visited by various groups of users that could have different requirements, needs and 
interests. In order to assess the quality of a website, it is necessary to obtain as realistic attitudes of its 
visitors about the fulfillment of their expectations and the perceived reality as possible. 
The evaluation of the quality of websites has been considered in numerous studies, for which reason many 
approaches have been proposed. Some of them have been devoted to determining the impact of the website 
quality on customer satisfaction, such as: Al-Manasra et al. (2016), Bai et al. (2008), Lin (2007) and Kim 
and Stoel (2004).  
Some other studies have been intended to determine the quality of websites and/or define the elements of 
the website that affect its quality, such as: Canziani and Welsh (2016), Salem and Cavlek (2016), Ting et 
al. (2013), Rocha (2012), Chiou et al. (2011) and Kincl and Strach (2012).  
In some of them, the evaluation of websites has been considered as a multiple criteria decision making-
problem, including the FS theory or its extensions, such as: Stanujkic et al. (2015), Chou and Cheng 
(2012), Kaya and Kahraman (2011), and Kaya (2010).  
It is also known that a significant progress in multiple criteria decision making has been made after Zadeh 
(1965) proposed the Fuzzy Sets (FS) theory, thus introducing partial belonging to a set, expressed by using 
the membership function. 
The FS theory has later been extended in order to provide an effective method for solving many complex 
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decision-making problems, often related to uncertainties and predictions. The Interval-Valued Fuzzy Set 
(IVFS) Theory, proposed by Turksen (1986; 1996) and Gorzalczany (1987), the Intuitionistic Fuzzy Sets 
(IFS) Theory, proposed by Atanassov (1986) and the Interval-Valued Intuitionistic Fuzzy Set (IVIFS) 
Theory, proposed by Atanassov and Gargov (1989), can be mentioned as the prominent and widely used 
extensions of the FS theory. 
In the IFS, Atanassov introduced the non-membership function. Smarandache (1998) proposed the 
Neutrosophic Set (NS) and so further generalized the IFS by introducing the indeterminacy-membership 
function, thus providing a general framework generalizing the concepts of the classical, fuzzy, interval-
valued fuzzy and intuitionistic fuzzy sets. 
Compared with the FS and its extensions, the NS can be identified as more flexible, for which reason they 
have been chosen in this approach for collecting the respondents’ attitudes. 
Therefore, this manuscript is organized as follows: in Section 2, the NSs are considered and in Section 3, 
the SWARA method is presented. In Section 4, a procedure for evaluating companies’ websites is 
considered and in Section 5, its usability is demonstrated. Finally, the conclusion is given. 

2. PRELIMINARIES
Definition. Fuzzy sets (FS). Let X be the universe of discourse, with a generic element in X denoted by x. 
Then, the FS A~  in X is as follows: 

}|))(({~ XxxxA A   , (1) 

where: ]1 ,0[: XA is the membership function and )(xA  denotes the degree of the membership of 

the element x in the set A~  (Zadeh, 1965). 
Definition. Intuitionistic fuzzy set (IFS). Let X be the universe of discourse, with a generic element in X 
denoted by x. Then, the IFS A~  in X can be defined as follows: 

}|)(),({~ XxxxxA AA   , (2)

where: )(xA  and )(xA are the truth-membership and the falsity-membership functions of the element x
in the set A, respectively; ]1 ,0[:, XAA   and .1)()(0  xx AA   

In intuitionistic fuzzy sets, indeterminacy )(xA is )()(1 xx AA    by default (Atanassov, 1986). 

Definition. Neutrosophic set (NS). Let X be the universe of discourse, with a generic element in X 
denoted by x. Then, the NS A in X is as follows: 

}|)(),(),({ XxxFxIxTxA AAA  , (3)

where TA(x), IA(x) and FA(x) are the truth-membership function, the indeterminacy-membership function 
and the falsity-membership function, respectively, [1,0]:,, XFIT AAA

and   3)()()(0 xFxIxT AAA  (Smarandache, 1999). 

Definition. Single valued neutrosophic set (SVNS). Let X be the universe of discourse. The SVNS A over 
X is an object having the form 

}|)(),(),({ XxxFxIxTxA AAA  , (4) 

where TA(x), IA(x) and FA(x) are the truth-membership function, the intermediacy-membership function 
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and the falsity-membership function, respectively, ]1,0[:,, XFIT AAA  

and   3)()()(0 xFxIxT AAA  (Wang et al., 2010). 

Definition. Single valued neutrosophic number. For the SVNS A in X the triple  AAA fit ,,  is called the 
single valued neutrosophic number (SVNN) (Smarandache, 1999). 
Definition. Basic operations on SVNNs. Let  1111 , , fitx  and  2222 , , fitx  be two SVNNs, then 
additive and multiplication operations are defined as follows (Smarandache, 1998): 

 2121212121 ,, ffiittttxx , (5) 

 2121,21212121 , ffffiiiittxx . (6) 

Definition. Scalar multiplication. Let  xx fitx , , x be a SVNN and 0 , then scalar multiplication 
is defined as follows (Smarandache, 1998): 

  1111 ,,)1(1 fitx . (7) 

Definition. Power. Let  xx fitx , , x be a SVNN and 0 , then power is defined as follows: 

  )1(1,, 1111 fitx . (8) 

Definition. Score function. Let  xx fitx , , x  be a SVNN, then the score function sx of x can be as 
follows: 

2/)21( xxxx fits  , (9) 

where ]1,1[xs  (Smarandache, 1998). 

Definition. Accuracy function. Let  xx fitx , , x  be a SVNN, then the score function sx of x can be as 
follows: 

3/)2( xxxx fith  , (10) 

where ]1,0[xh  (Smarandache, 1998). 

Definition. Ranking based on score and accuracy functions. Let x1 and x2 be two SVNNs. Then, the 
ranking method can be defined as follows (Mondal & Pramanik, 2014): 

(1) If sx1 > sx2, then x1> x2; 
(2) If sx1 = sx2 and hx1 ≥ hx2, then x1 ≥ x2. 

Definition. Single Valued Neutrosophic Weighted Average Operator. Let  jjj fitA , , j  be a 

collection of SVNSs and T
nwwwW ),...,,( 21  is an associated weighting vector. Then, the Single Valued 

Neutrosophic Weighted Average (SVNWA) operator of Aj is as follows (Sahin, 2014): 
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where: wj is the element j of the weighting vector, ]1 ,0[jw  and 11  
n
j jw . 
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3. The SWARA Method
The Step-wise Weight Assessment Ratio Analysis (SWARA) technique was proposed by Kersuliene et al. 
(2010). The computational procedure of the adapted SWARA method can be shown through the 
following steps (Kersuliene et al., 2010; Stanujkic et al., 2015): 
Step 1. Determine the set of the relevant evaluation criteria and sort them in descending order, based on 
their expected significances. 
Step 2. Starting from the second criterion, determine the relative importance sj of the criterion j (Cj) in 
relation to the previous j-1 Cj-1 criterion, and do so for each particular criterion as follows: 























1

1

1

  1
  1
 1

jj

jj

jj

j
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. (12)

where Cj and Cj-1 denote criteria. 
Using Eq. (11) respondents can more realistically express their opinions compared to the ordinary 
SWARA method, proposed by Kersuliene et al. (2010). 
Step 3. The third step in the adapted SWARA method should be performed as follows: 
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where kj is a coefficient. 
Step 4. Determine the recalculated weight qj as follows: 
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Step 5. Determine the relative weights of the evaluation criteria as follows: 
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1

, (15) 

where wj denotes the relative weight of the criterion j. 

4. PROCEDURE FOR EVALUATING WEBSITES BASED ON THE SINGLE VALUED
NEUTROSOPHIC SET AND THE SWARA METHOD  
In their studies, many authors have identified different phases in the multiple criteria decision-making 
process. In order to precisely define the procedures for evaluating websites, the below phases have 
specially been emphasized: 
 the selection of evaluation criteria 
 the determination of the weights of the criteria 
 the evaluation of alternatives in relation to the criteria 
 the aggregation and analysis of the results 
Selection of Evaluation Criteria 

The choice of an appropriate set of the evaluation selection criteria is very important for the successful 
solving of each MCDM problem. 
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In many published studies, a number of authors have proposed different criteria for the evaluation of 
various websites. For example, Kapoun (1998) has proposed the use of the following criteria: Accuracy, 
Authority, Objectivity, Currency and Coverage. After that, Lydia (2009) has proposed Authority, 
Accuracy, Objectivity, Currency, Coverage and Appearance for evaluating the quality of a website. For 
the evaluation of websites at the California State University at Chico 
(http://www.csuchico.edu/lins/handouts/eval_websites.pdf), the so-called CRAAP test, based on the 
following criteria: Currency, Relevance, Authority, Accuracy and Purpose, has been proposed. 
In this approach, the proven set of the criteria adopted from the Webby Awards 
(http://webbyawards.com/judging-criteria/) is proposed for the evaluation of the quality of websites. This 
set of the evaluation criteria is as follows:  

 Content (C1), 
 Structure and Navigation (C2), 
 Visual Design (C3), 
 Interactivity (C4), 
 Functionality (C5) and 
 Overall Experience (C6). 

The meaning of the proposed evaluation criteria is as follows: 
 Content. The content is the information provided on the website. It is not just a text, but also 

music, a sound, an animation or a video – anything that communicates the website’s body of 
knowledge.  

 Structure and Navigation. The structure and navigation refer to the framework of a website, 
the organization of the content, the prioritization of information and the method in which you 
move through the website. Websites with the good structure and navigation are consistent, 
intuitive, and transparent.  

 Visual Design. A visual design is the appearance of a website. It is more than just a pretty 
homepage and it does not have to be cutting-edge or trendy. A good visual design is high-
quality, appropriate and relevant for the audience and the message it is supportive of. It 
communicates a visual experience and may even take your breath away. 

 Interactivity. Interactivity is the way a site allows a user to perform an action. Good 
interactivity refers to providing opportunities for users to personalize their search and find 
information or perform some action more easily and efficiently. 

 Functionality. Functionality is the use of technology on a website. Good functionality means 
that a website works well. It loads quickly, has live links and any new technology that has 
been used is functional and relevant for the intended audience. 

 Overall Experience. Demonstrating that websites are frequently more or less than just the sum 
of their parts, overall experience encompasses the content, a visual design, functionality, 
interactivity and the structure and navigation, but also includes the intangibles that make one 
stay on the website or leave it. 

Determination of the Weights of the Criteria 
In this approach, the SWARA method is used for determining the weights of the criteria. The SWARA 
method has been chosen because it is relatively simple to use and requires a relatively small number of 
comparisons in pairs. 
The determination of the weights of the criteria is done by using an interactive questionnaire made in a 
spreadsheet file. By using such an approach, the interviewee can see the calculated weights of the criteria 
and can also modify his/her answers if he or she is not satisfied with the calculated weights. 
Evaluation of Alternatives in Relation to the Evaluation Criteria 
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In this phase, there are several sub-phases that can be identified. 
The evaluation of alternatives in relation to the chosen set of the criteria is also done by using an 
interactive questionnaire made in a spreadsheet file.  
For each criterion, declarative sentences are formed. The respondents have a possibility to fill in their 
attitudes about the degree of truth, indeterminacy and the falsehood of the statement. 

For the sake of simplicity, the respondents fill in their attitudes in the percentage form, which are later 
transformed into the corresponding numbers in [0,1] intervals. 

For completing the questionnaire, it is necessary that between 30 and 90 fields should be filled in, which 
can be dissuasive for a significant number of respondents. However, this approach can be good because it 
can distract uninterested respondents from completing the questionnaire, thus reducing the number of the 
completed questionnaires with incorrect information. 
In addition, the Overall Experience criterion has also been used to assess the validity of the data entered. 
Aggregation and Analysis of Results 
In the Aggregation and Analysis phase, several components, sub-phases, could be identified, such as: 

 the determination of the overall ratings and the ranking order of the considered alternatives, 
 the assessment of the validity of the data in the completed questionnaire and 
 the determination of the overall group ratings and the ranking order of the considered 

alternatives etc. 
The first of them – the determination of the overall ratings – is mandatory, whereas the others are 
optional. 
The determination of the overall ratings and the ranking order of the considered alternatives. The process 
of assessing the determination of the overall ratings and the ranking order could be shown through the 
following steps: 

 the calculation of the overall single valued neutrosophic ratings of the alternatives by using 
the SVNWA operator based on the values of the criteria C1-C5; 

 the calculation of the score function by using Eq. (9) for each alternative; and 
 the sorting of the considered alternatives based on the values of the score function and the 

determination of the best one. The alternative with the highest value of the score function is 
the best one. 

The assessment of the validity of the data in the completed questionnaire. The Overall Experience 
criterion is omitted from the calculation of the overall single valued neutrosophic ratings because it plays 
a special role in the proposed approach. More precisely, the ratings filled in for this criterion are used to 
assess the validity of the data in the completed questionnaire.  
The process of assessing the validity of the data could be accounted for through the following steps: 

 Calculate the value of the score function based on the ratings of the Overall Experience 
criterion, and do so for each alternative. 

 Determine the ranking order of the alternatives based on the value of the score function. 
 Calculate the correlation coefficient between the ranking order obtained based on C1-C5 and 

the ranking order obtained based on the Overall Experience criterion. 
Based on the value of the correlation coefficient, the questionnaire could be either accepted or rejected. 
The determination of the overall group ratings and the ranking order of the considered alternatives. In 
the case of real examinations, when more than one respondent is involved in the evaluation, it is 
necessary to determine the overall group ratings, and based on them the final ranking order of the 
alternatives. 
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The process of determining the overall group ratings and the final ranking order of the alternatives is as 
follows: 

 the calculation of the overall group ratings by using the SVNWA operator, based on the 
overall ratings; 

 the calculation of the score function of the overall group rating by using Eq. (9) for each 
alternative, and  

 the sorting of the considered alternatives based on the values of the score function and the 
determination of the best one. The alternative with the highest value of the score function is 
the best one. 

5. A NUMERICAL ILLUSTRATION

In this numerical illustration, one case of selecting websites is considered. The initial set of the 
alternatives has been formed based on the keyword “vinarija”, which is the Serbian word for a “winery”, 
in the Google search engine. 
The list of eight top placed websites is as follows: 

 Vinarija Zvonko Bogdan - http://www.vinarijazvonkobogdan.com/ 
 Vinarija Coka - http://www.vinarijacoka.rs/ 
 Vinarija Dulka - http://www.dulka-vinarija.com/ 
 Vinarija Milosavljevic - http://www.vinarija-milosavljevic.com/ 
 Vinarija Kis - http://www.vinarijakis.com/ 
 Vinarija Vink - http://www.dobrovino.com/ 
 Vinarija Matalj - http://www.mataljvinarija.rs/ 
 Vinarija Aleksandrovic - http://www.vinarijaaleksandrovic.rs/ 

From the above, a set of five alternatives has been formed1, denoted A1 to A5. 
The survey has been conducted by email, with the aim to collect the attitudes from the respondents 
regarding the significance of the criteria and the ratings of the alternatives.  
The interactive questionnaire made in the spreadsheet was used for attitudes gathering, so the participants 
had an opportunity to see the results and possibly change their own attitudes. 
The attitudes obtained from the first of the three examinees are given in Table 1, which also accounts for 
the weights of the criteria calculated based on the examinees’ responses. 

Table 1: The responses and weights of the criteria obtained from one of the evaluated 
respondents 
Criteria sj kj qj wj 
C1 Content 1 1 0.22 
C2 Structure and Navigation 0.90 1.10 0.91 0.20 
C3 Visual Design 1.20 0.80 1.14 0.25 
C4 Interactivity 0.60 1.40 0.81 0.18 
C5 Functionality 0.90 1.10 0.74 0.16 

The attitudes obtained from the three examinees, as well as the appropriate weights, are presented in 
Table 2 as well. 

1 This paper is not intended to promote any of the above-mentioned wineries. 
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Table 2: The attitudes and weights obtained from the three examinees 
E1 E1 E1 

sj wj sj wj sj wj 
C1 0.22 0.20 0.20 
C2 0.90 0.20 1.10 0.22 1.00 0.20 
C3 1.20 0.25 1.10 0.25 1.10 0.22 
C4 0.60 0.18 0.60 0.18 0.90 0.20 
C5 0.90 0.16 0.90 0.16 0.90 0.18 

The following are the responses obtained from the three examinees regarding the evaluation of the 
websites. 

Table 3: The ratings obtained from the first of the three examinees 
C1 C2 C3 C4 C5 C6 

A1 <1.0, 0.0, 0.0> <1.0, 0.2, 0.0> <1.0, 0.0, 0.0> <0.7, 0.3, 0.0> <0.8, 0.2, 0.2> <0.9, 0.1, 0.1> 
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0> <0.7, 0.0, 0.0> 
A3 <0.9, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 2.0, 2.0> 
A4 <0.7, 0.0, 0.3> <0.7, 0.3, 0.3> <0.6, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0> <0.5, 0.0, 0.2> 
A5 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0> <0.9, 0.0, 0.2> 

Table 4: The ratings obtained from the second of the three examinees 
C1 C2 C3 C4 C5 C6 

A1 <0.8, 0.2, 0.2> <1.0, 0.0, 0.0> <0.7, 0.3, 0.1> <0.7, 0.3, 0.2> <1.0, 0.0, 0.0> <0.8, 0.1, 0.1> 
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0> <1.0, 0.1, 0.1> 
A3 <0.7, 0.3, 0.2> <0.9, 0.0, 0.0> <0.7, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 0.2, 0.2> 
A4 <0.7, 0.0, 0.3> <0.7, 0.3, 0.3> <0.6, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0> <0.5, 0.1, 0.2> 
A5 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0> <0.9, 0.0, 0.0> 

Table 5: The ratings obtained from the third of the three examinees 
C1 C2 C3 C4 C5 C6 

A1 <0.9, 1.0, 1.0> <0.9, 0.0, 0.2> <1.0, 0.0, 1.0> <0.7, 0.3, 0.2> <1.0, 0.0, 0.0> <0.9, 0.0, 0.1> 
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0> <1.0, 0.1, 0.1> 
A3 <0.6, 0.3, 0.2> <0.9, 0.0, 0.0> <0.5, 0.2, 0.3> <0.5, 0.3, 0.3> <0.9, 0.3, 0.4> <0.7, 0.0, 0.0> 
A4 <0.6, 0.0, 0.3> <0.5, 0.3, 0.4> <0.4, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.3, 0.3> <0.7, 0.0, 0.2> 
A5 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0> <0.9, 0.0, 0.0> 

The remaining part of the evaluation process is explained on the first of the three examinees. 
The overall SVNN ratings calculated by using the SVNWA, i.e. by using Eq. (11), are shown in Table 4. 
The ranking order obtained based on the values of the score function, calculated by using Eq. (9), is also 
presented in table 6. 
The ranking order obtained based on the Overall Experience criterion is given in table 6, too. 
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Table 6: The ranking orders obtained on the basis of the ratings of the first of the three 
examinees 

C1- C5 Score Rank C6 Score Rank 
A1 <1.000, 0.006, 0.000> 0.9936 3 <0.9, 0.1, 0.1> 0.80 3 
A2 <1.000, 0.000, 0.000> 0.9997 1 <0.7, 0.0, 0.0> 0.85 2 
A3 <0.826, 0.001, 0.001> 0.9118 4 <0.7, 2.0, 2.0> -2.15 5 
A4 <0.695, 0.004, 0.018> 0.8345 5 <0.5, 0.0, 0.2> 0.65 4 
A5 <1.000, 0.000, 0.000> 0.9997 1 <0.9, 0.0, 0.2> 0.85 1 

The Pearson correlation coefficient between the two ranking orders, shown in Table 6, is 0.884, which is 
indicative of the fact that the data in the questionnaire are valid.  
The ranking orders obtained from the three examinees obtained based on the ratings of the criteria C1 to 
C5 are shown in Table 7.  

Table 7: The ranking orders obtained from the three examinees 
I II II 
Score Rank Score Rank Score Rank 

A1 0.99 3 0.98 3 0.93 3 
A2 1.00 1 1.00 1 1.00 1 
A3 0.91 4 0.88 4 0.78 4 
A4 0.83 5 0.83 5 0.75 5 
A5 1.00 1 1.00 1 1.00 1 
R 0.884 0.884 0.795 

The correlation coefficients are also accounted for in Table 7. 
The obtained correlation coefficients indicate that there is no significant difference between the ranking 
orders obtained based on the criteria C1 to C5 and the Overall Experience criterion, which is indicative of 
the fact that the data in the selected questionnaires are valid.  

CONCLUSION 

Obtaining a realistic attitude by surveying could often be related to some difficulties, when the data 
collected in such a manner are then further used in multiple criteria decision making. 
There are two opposite possibilities. The first one is using a greater number of criteria, often organized 
into two or more hierarchical levels. Such an approach should lead to the formation of accurate models. 
However, an increase in the number of criteria could lead to the creation of complex questionnaires, 
which could have a negative impact on the examinee’s response as well as on the verisimilitude of the 
collected data. 
Opposite to the previously said, the usage of a smaller number of criteria could have a positive impact on 
the collection of data, i.e. respondents’ attitudes, on the one hand, but could also lead to the creation of 
less precise decision-making models, on the other. 
The neutrosophic set, or more precisely single valued neutrosophic numbers, could be an adequate basis 
for collecting the examinee’s attitudes by using a smaller number of criteria without losing precision.  
By combining the SWARA method, in order to determine the importance of criteria, on the one hand, and 
Single Valued Neutrosophic Numbers, in order to acquire respondents’ attitudes, on the other, effective 
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and easy-to-use multiple criteria decision-making models can be created, as has been shown in the 
considered numerical illustration. 
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ABSTRACT 

In this study we define the generalizing single valued triangular neutrosophic number. In addition, single valued 
neutrosophic numbers are transformed into single valued triangular neutrosophic numbers according to the 
values of truth, indeterminacy and falsity. Furthermore, we extended the Hamming distance given for triangular 
intuitionistic fuzzy numbers to single valued triangular neutrosophic numbers. We have defined new score 
functions based on the Hamming distance. We then extended some operators given for intuitionistic fuzzy 
numbers to single valued triangular neutrosophic numbers. Finally, we developed a new solution to multi-
attribute group decision making problems for single valued neutrosophic numbers with operators and scoring 
functions and we checked the suitability of our new method by comparing the results we obtained with previously 
obtained results. We have also mentioned for the first time that there is a solution for multi-attribute group 
decision making problems for single valued triangular neutrosophic numbers. 

Keywords: Hamming distance, single valued neutrosophic number, generalized single valued neutrosophic number,   multi-
attribute group decision making 

1. INTRODUCTION

There are many uncertainties in daily life. However, classical mathematical logic is insufficient to account for 
these uncertainties. In order to explain these uncertainties mathematically and to use them in practice, Zadeh 
(1965) first proposed a fuzzy logic theory. Although fuzzy logic is used in many field applications, the lack of 
membership is not explained because it is only a membership function. Then Atanassov (1986) introduced the 
theory of intuitionistic fuzzy logic. In this theory, he states membership, non-membership and indeterminacy, 
and has been used in many fields and applications. Later, Li (2010) defined triangular intuitionistic fuzzy 
numbers. However, in the intuitionistic fuzzy logic, membership, non-membership, and indeterminacy are all 
completely dependent in each other. Finally, Smarandache (1998 and 2016) proposed the neutrosophic set 
theory, which is the more general form of intuitionistic fuzzy logic. Many studies have been done on this theory 
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and have been used in many field applications. In this theory, the values of truth, indeterminacy and falsity of a 
situation are considered and these three values are defined completely independently of each other Smarandache, 
Wang, Zhang, and Sunderraman (2010) defined single valued neutrosophic sets. Subas (2015) defined single 
valued triangular neutrosophic numbers is a special form of single valued neutrosophic numbers. Many 
uncertainties and complex situations arise in decision-making applications. It is impossible to come up with 
these uncertainties and complexities, especially with known numbers. For example, in multi-attribute decision 
making (MADM), multiple objects are evaluated according to more than one property and there is a choice of 
the most suitable one. Particularly in multi-attribute group decision making (MAGDM), the most appropriate 
object selection is made according to the data received from more than one decision maker. Multi - attribute 
decision making group and multi-attribute decision making problems have been found by many researchers 
using various methods using intuitionistic fuzzy numbers. For example; Wan and Dong (2015) studied 
trapezoidal intuitionistic fuzzy numbers and application to multi attribute group decision making. Wan, Wang, Li 
and Dong (2016) studied triangular intuitionistic fuzzy numbers and application to multi attribute group decision 
making. Biswas, Pramanik, and Giri (2016) have studied trapezoidal fuzzy neutrosophic numbers and its 
application to multi-attribute decision making (MADM) and triangular fuzzy neutrosophic set and its application 
to multi-attribute decision making (MADM). 

However, these methods and solutions are not suitable for neutrosophic sets and neutrosophic numbers. 
Therefore, many researchers have tried to find solutions to multi-attribute group decision making and multi-
attribute decision making problems using neutrosophic sets and neutrosophic numbers. Recently, Liu and Luo 
(2017) have proposed multi-attribute group decision making problems using "power aggregation operators of 
simplifield neutrosophic sets"; Sahin, Uluçay, Kargın and Ecemiş (2017) studied centroid single valued 
triangular neutrosophic numbers and their applications in multi-attribute decision making; Sahin and Liu (2017) 
used multi-criteria decision making problems using exponential operations of simplest neutrosophic numbers; 
Liu and Li have produced solutions to multi-criteria decision making problems with "some normal neutrosophic 
Bonferroni mean operators" (2017). Smarandache (2016) have produced neutrosophic overset, neutrosophic 
underset, and neutrosophic offset. Biswas, Pramanik, and Giri (2016) have studied single-valued trapezoidal 
neutrosophic numbers and its application to multi-attribute decision making (MADM). Ye (2015) have studied 
multi-attribute decision making (MADM). 

Subas (2015) defined =   as a positive single valued triangular neutrosophic 

number for ∈  or a negative single valued triangular neutrosophic number for   ∈  . 

However, the condition ∈  -{0} has not been defined. This narrows the applications of single valued 

triangular neutrosophic numbers. In this study we first define the condition of ∈  for single valued 
triangular neutrosophic numbers and gave basic operations on these conditions. These basic operations we have 
given also include operations where ∈  and ∈ . Thus, by generalizing single valued 
triangular neutrosophic numbers, we made it more useful. Then, single valued neutrosophic numbers were 
converted to single valued triangular neutrosophic numbers. Thus, we made single valued neutrosophic numbers 
more useful by carrying single valued triangular neutrosophic numbers, which have rich application fields. We 
then extended the Hamming distance for triangular intuitionistic fuzzy numbers to single valued triangular 
neutrosophic numbers and showed some properties.  Besides, we defined the scoring and certainty functions for 
the single-valued neutrosophic numbers and for the single valued triangular neutrosophic numbers based on the 
Hamming distance according to the truth, indeterminacy and falsity values. We compared the results of the score 
and certainty functions we obtained with the score and certainty functions.  We also made some operators for 
triangular intuitionistic fuzzy numbers available for single valued triangular neutrosophic numbers and showed 
some properties of these operators. We mentioned similarities and differences with the operators. Finally, we 
have found a new solution to the multi-attribute group decision making problems by using the transformation of 
single valued neutrosophic numbers, new scoring functions and using the operators we have obtained. Since the 
transformations and the scoring functions are separate according to the values of truth, indeterminacy and falsity, 
we obtained results separately for each of the three values for multi-attribute group decision making problems. 
We compared our result with the result of a multi-attribute group decision making problem for single valued 
neutrosophic numbers. We have checked the applicability of the method we have achieved. 
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In this study, we gave some definitions of triangular intuitional fuzzy numbers and related definitions about 
neutrosophic sets, single valued neutrosophic sets and numbers, single valued triangular neutrosophic numbers, 
and some related definitions in section 2.  In Section 3, we generalized the single valued triangular neutrosophic 
numbers to make them more usable and described the basic operations. In Section 3, we gave transformations for 
single valued neutrosophic numbers based on their truth, indeterminacy and falsity values.  In section 4, we 
made the Hamming distance for triangular intuitionistic fuzzy numbers available for single valued triangular 
neutrosophic numbers and showed some properties. 

In addition, we have separately defined the score and certainty functions according to the values of truth, 
indeterminacy and falsity depending on the generalized Hamming distance and compared with the score and 
certainty functions given before. In Section 5, we made some operators for triangular intuitionistic fuzzy 
numbers available with single valued triangular neutrosophic numbers, and we showed some properties of these 
operators and discussed the similarities and differences with the previously given operators . In Section 6, we 
gave a new method for solving multi-attribute group decision making problems for single valued neutrosophic 
numbers using the transform functions and operators that we have achieved in this work. In Section 7, we looked 
at the applicability of our method by comparing the result of a previous multi-attribute group decision making 
problem with the result of our method. Finally, in Section 8 we briefly discussed the results of our work. 

2. PRELIMINARIES

Definition 2.1: A triangular intuitionistic fuzzy number  =  is a special intuitionistic fuzzy 

set on the real number set R, whose truth-membership and falsity-membership functions are defined as follows: 

(x) = 

(x) = 

respectively. (Li, 2010) 

Definition 2.2: Let  =  (i=1,2) be two triangular intuitionistic fuzzy numbers. The 

Hamming distance between  and  is 

( , )= [ +

+ ] 

(Wan, Wang, Li and Dang, 2016) 
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Definition 2.3: Let  =   (i = 1,2,3,…,n) be a collection of triangular intuitionistic 

fuzzy numbers. Then triangular intuitionistic fuzzy generalized ordered weighted averaging operator is defined 
as;  

TIFGOWA :  → ℧, TIFGOWA ( ) = (   ) 

Where g is a continuous strictly monotone increasing function,  w =  is a weight vector 

associated with the TIFGOWA operator, with ≥0, j = 1,2,3,…,n and  = 1 and ((1),(2), … , (n)) is a 

permutation of (1,2, …,n) such that  ≥  for all i. (Wan, Wang, Li and Dang, 2016) 

Definition 2.4: Let  =   (i = 1,2,3,…,n) be a collection of triangular intuitionistic 

fuzzy numbers. Then triangular intuitionistic fuzzy generalized hybrid weighted averaging operator is defined as; 

TIFGHWA :  → ℧, TIFGHWA ( ) = (   ) 

Where g is a continuous strictly monotone increasing function,  w =  is a weight vector 

associated with the TIFGHWA operator, with ≥0, i = 1,2,3,…,n   = 1, ω =  is a 

weight vector of  and  = . . (Wan, Wang, Li and Dang, 2016) 

Definition 2.5: Let U be an universe of discourse then the neutrosophic set A is on object having the farm A={ 
(x: , , > , x U} where the functions T,I,F:U 0, [ respectively the degree of membership, 

the degree of indeterminacy and degree of non-membership of the element  x U to the set A with the condition. 

+ + . (Smarandache, 2016) 

Definition2.6: Let U be an universe of discourse then the single valued neutrosophic set A is on object having 
the form A={ (x: , , > , x U} where the functions T,I,F:U [0,1]respectively the degree of 

membership, the degree of indeterminacy and degree of non-membership of the element  x U to the set A with 
the condition. 

     0 + + 3 

For convenience, we can simply use x = (T, I, F) to represent an element x in single valued neutrosophic 
numbers and the element x can be called a single valued neutrosophic number.
(Wang, Smarandache, Zhang, Sunderraman, 2010) 

Definition 2.7: Let x = (T, I, F) be a single valued triangular neutrosophic number and then 

1) sc(x)=T+1-I+1-F;

2) ac(x)=T-F;
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Where sc(x) represents the score function of the single valued neutrosophic number and ac(x) represent certainty 
function of the single valued neutrosophic number. (Liu, Chu, Li and Chen, 2014) 

Definition 2.8: Let x = ( ,  ) and y = ( ,  ) be two single valued neutrosophic numbers, the 
comparison approach can be defined as follows. 

1) If sc(x)>sc(y), then x is greater than y and denoted x ≻y.

2) If sc(x)=sc(y) and ac(x)>ac(y), then x is greater than y and denoted x ≻y.

3) If sc(x)=sc(y) and ac(x)=ac(y), then x is equal to y and denoted by x∼y.

(Liu, Chu, Li and Chen, 2014) 

Definition2.9: Let  ∈ [0, 1]. A single valued  triangular neutrosophic number  = 

 is a special neutrosophic set on the real number set R, whose truth-membership, 
indeterminacy-membership and falsity-membership functions are defined as follows: 

(x) = 

(x) = 

(x) = 

respectively. 

1 

0 

  Fig. 1.  (  =  single valued triangular neutrosophic number) 
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If ≥0 and at least >0, then  = is called a positive triangular 

neutrosophic number, denoted by >0. Likewise, If ≤0 and at least <0, then = 

 is called a negative triangular neutrosophic number, denoted by <0. 

A triangular neutrosophic number  =  may express an ill-known quantity 

about , which is approximately equal to . (Subas, 2017) 

Definition 2.10:  Let   =  and  = , be two single valued 
triangular neutrosophic numbers and ⋎ ≠ 0 be any real number. Then, 

1. +  =

2. -  =

3. =

4. =

5. ⋎  =

6. = .    (Subas, 2017) 

Definition 2.11: We defined a method to compare any two single valued triangular neutrosophic numbers which 
is based on the score function and the certainty function. Let  =  be any single 

valued triangular neutrosophic number, then  

      S(  ) = [ ]x( ) 

and 

A(  ) = [ ]x( ) 

is called the score and certainty degrees of  , respectively. (Subas, 2017) 

Definition2.12: Let  and  be two single valued triangular neutrosophic numbers, 

1. If S(  )< S(  ), then  is smaller then , denoted by . 
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2. If S(  )= S(  );

(a) If A(  )< A(  ), then  is smaller then , denoted by . 

     (b) If A(  )= A(  ), then and are the same, denoted by = . 

(Subas, 2017) 

Definition2.13: Let  =  (j = 1,2,3,…,n) be a collection of single valued 

triangular neutrosophic numbers. Then single valued triangular neutrosophic weight averaging operator 
(SVTNWAO) is defined as; 

SVTNWAO:  →  , SVTNWAO( ) = 

where  w =  is a weight vector associated with the SVTNWAO operator, with ≥0, j = 

1,2,3,…,n and  = 1.    (Subas, 2017) 

Definition2.14: Let  = (j = 1,2,3,…,n) be a collection of single valued 

triangular neutrosophic numbers and w =  is a weight vector associated with ≥0, and 

 = 1.Then single valued triangular neutrosophic ordered averaging operator (SVTNWAO) is defined as; 

SVTNOAO:  →  , SVTNOAO( ) = 

where   =  , k∈{1,2,3, …,n} is the single valued triangular neutrosophic number 

obtained by using the score and certainty function and For ;  =  is the maximum 

value of K . (Subas, 2017) 

3. GENERALIZED SINGLE VALUED TRIANGULAR NEUTROSOPHIC NUMBERS

     In this section we will generalize single valued triangular neutrosophic numbers to make them more usable. 
Because definition 2.9 for a single valued triangular neutrosophic number = ; The 

values  must either be negative real numbers or positive real numbers. However, some of these values 
are not defined as negative real numbers of some of them are positive real numbers. This situation narrows the 
field of use of single valued triangular neutrosophic numbers. We will abolish this limited situation with 
definitions given in this section. 

Definition 3.1: Let  ∈ [0, 1] and ∈ ℝ-{0}. A generalized single valued  triangular 

neutrosophic number  =  is a special neutrosophic set on the real number set R, 
whose truth-membership, indeterminacy-membership and falsity-membership functions are defined as follows: 
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(x) = 

(x) = 

(x) = 

respectively. 

The most important and only difference of this definition from definition 2.9 is that ∈ ℝ-{0}. For 
example ,  cannot be single valued triangular neutrosophic 
numbers according to the previous definition, it is a generalized single valued triangular neutrosophic number 
according to this new definition. In addition, negative single valued triangular neutrosophic numbers and 
positive single valued triangular neutrosophic numbers are covered by single valued triangular neutrosophic 
numbers according to this definition. 

1 

0  =  ; for <0 

Fig. 2: (  =  ;for  <0,    generalized single valued triangular neutrosophic number)  

1 

0 

Fig. 3: (  =   ; <0 generalized single valued triangular neutrosophic number) 
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Now let's define the basic operations for generalized single valued triangular neutrosophic numbers. 

Degrees of membership / indeterminacy / nonmembership > 1 or < 0 have been proposed by Smarandache since 
2007. 

Definition 3.2: Let   =  and  = , be two generalized 
single valued triangular neutrosophic numbers and ⋎ ≠ 0 be any real number. Then, 

1. +  =

2. -  =

3. For the set  ; 

: is the minimum value of 

: be the largest element of  ; 

=  .        

4. For the set  ; 

: is the minimum value of , 

: be the largest element of  ; 

=

5. For the set  ; 

 : is the minimum value of , 

: be the largest element of ; 

  ⋎ =

6. For the set ; 

: is the minimum value of , 

: be the largest element of ; 

=

These operations also give the same results as the operations in definition 2.10. 
Namely, these operations are a generalized description of the operations in Definition 2.10. 
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4. TRANSFORMED SINGLE VALUED TRIANGULAR NEUTROSOPHIC
NUMBERS, HAMMING DISTANCE AND A NEW SCORE FUNCTION BASED ON 
HAMMING DISTANCE FOR GENERALIZED SINGLE VALUED TRIANGULAR 
NEUTROSOPHIC NUMBER 

In this section, we define single valued triangular neutrosophic numbers by transforming single valued 
neutrosophic numbers in the definition 2.6. However, since single valued neutrosophic numbers consist of 
independent truth, falsity, and indeterminacy states, we have defined a separate transformation for each case. 
However, we have generalized the Hamming distance to single valued triangular neutrosophic numbers in the 
definition 2.2 for the triangular intuitionistic fuzzy numbers and gave some properties. We then defined new 
score functions based on the Hamming distance measure. We compared the results obtained with these scoring 
functions to the results of the scoring functions in definition 2.7 and definition 2.11. 

Definition4.1 =( ) conversion to a generalized single valued triangular neutrosophic number 
according to the truth value for a single valued neutrosophic number; 

 = 

= +(1+ ) =1+2 

= +(1+ ) =2+3       and 

 =   ; 

 Transformed 

 =( )  = . Namely 

 = . 

Thus we obtained the number of  generalized single valued triangular neutrosophic number from   single 

valued neutrosophic number. Hence, 1+  ≥0 and 1+  ≥0 for ≤  . Because of this each 

 number obtained from the definition of single valued neutrosophic number is a generalized single valued 
triangular neutrosophic number. 

1 
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0 

      (  (  ( ) 

Fig. 4: (  =  generalized single valued triangular neutrosophic number) 

Definition4.2  =( ) conversion to a generalized single valued triangular neutrosophic number 
according to the indeterminacy value for the single valued neutrosophic number; 

 = 

=  +( 1+ ) =1+ 

= + ( 1+ ) =2+      and 

 =   ; 

 transformed 

 =( )  = . Namely 

 = . 

Thus we obtained the number of  generalized single valued triangular neutrosophic number from   single 

valued neutrosophic number. Hence 1+  ≥0 and 1+  ≥0; ≤ . Because of this each 
number obtained from the definition of single valued neutrosophic number is a generalized single valued 
triangular neutrosophic number. 

1 

0 

        (        (  ( ) 

Fig. 5: (  =  generalized single valued triangular neutrosophic number) 
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Definition4.3 =( ) conversion to a generalized single valued triangular neutrosophic number 
according to the falsity value for the single valued neutrosophic number; 

 = 

=  +( 1+ ) =1+ 

= + ( 1+ ) =2+      and 

 =   ; 

 Transformed 

 =( )  = . Namely 

 = . 

Thus we obtained the number of  generalized single valued triangular neutrosophic number from   single 

valued neutrosophic number. Hence, 1+  ≥0 and 1+  ≥0 for ≤  . Because of this each 

 number obtained from the definition of single valued neutrosophic number is a generalized single valued 
triangular neutrosophic number. 

1 

0 

        (        (  ( ) 

Fig. 6 (  =  generalized single valued triangular neutrosophic number) 

Definition 4.4: 

a) =( )    ideal generalized single valued triangular neutrosophic number according to the truth  value 
for single valued neutrosophic numbers; 

 =1,  and ;  = 

 =  . 

b) =( ) ideal generalized single valued triangular neutrosophic number according to the 
indeterminacy value for single valued neutrosophic numbers; 
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 =1,  and  ;  = 

 =  . 

c) =( )  ideal generalized single valued triangular neutrosophic number according to the falsity 
value for single valued neutrosophic numbers; 

 =1,  and ;  = 

 =  . 

It can be seen from b) and c),  = . 

Definition 4.5: Let  =  and  = be two 

generalized single valued triangular neutrosophic numbers. The Hamming distance between  and  is 

( , )= [ +

+

] 

        This definition is the expansion of the Hamming distance given to the triangular intuitionistic fuzzy 
numbers given in the definition to generalized single valued triangular neutrosophic numbers. 

Proposition 4.6: The Hamming distance ( , ) satisfies the following properties. 

1) ( , ) ≥ 0

2) ( , ) = 0 , if = , for all ,  ∈ 

3) ( , ) = ( , ) 

4) Let  = ,  =  and  = 

be three single valued triangular neutrosophic numbers. 

If ≤ ≤ ,  ≤ ≤  , ≤ ≤ ,   ≤ ≤ ,   ≤ ≤  ,  ≥ ≥ , then; 

( , )≥ ( , )  and ( , )≥ ( , ) 

Proof: The proof of 1), 2), 3) can easily be done by the definition 4.5. Now let's prove 4). 

Let's show that ( , ) ≥ ( , ) . 

( , )= 
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[ +

+

] 

And ≤ ≤ ,  ≤ ≤  , ≤ ≤ ,   ≤ ≤ ,   ≤ ≤  ,  ≥ ≥    hence; 

 ≤  and ≤ ≤ . Hence; 

  . Similarly; 

 ; 

 . From here; 

( , )= 

  -

  - + 

- ] …………………………………………..……(1) 

( , )= 

[ +

+

] 

and ≤ ≤ ,  ≤ ≤  , ≤ ≤ ,,   ≤ ≤ ,,   ≤ ≤  ,  ≥ ≥    hence; 

 ≤  and ≤ ≤  hence; 

. Similarly,

 ; 

. From here; 

( , )= 

  -
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  - + 

- ]  ………………………………………(2) 

From (1) and (2) ( , )- ( , )= 

[ - +

] 

+ - +

] 

+ - - +

= [  - ] 

 + - ] 

+ [  -  . Here; 

 ≤  ≤ ,   ≤  ≤  ,   ≤  ≤ ,,    ≤   ≤ ,,     ≤   ≤  ,    ≥    ≥   . Hence; 

[ - ]≥0 …………………………………………….(3) 

- ]≥0…………….………………….………….(4) 

[ - ………………..……………………….(5) 

From (3), (4) and  (5) ( , )- ( , )  . Namely; ( , ) ≥ ( , ). 

( , )≥ ( , ) can be showed a similar way to the proof of ( , )≥ ( , ). 

Definition 4.7:  =( ) single valued neutrosophic number,  = 

 generalized single valued 

triangular neutrosophic number transformed according to the truth value of  ,    = , ideal 

generalized single valued triangular neutrosophic number transformed according to the truth value of  , and let 
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 be the Hamming distance for generalized single valued triangular neutrosophic number. According to the 
truth value of single valued neutrosophic numbers certainty and score functions are 

( )= ( , ) 

( ) = min{ ,  } respectively. Here; 

( ) = 

[ +

+

] 

[ + +

]. 

Definition 4.8: Let  =( ) be single valued neutrosophic number,  = 

; be generalized single valued triangular 

neutrosophic number transformed according to the indeterminacy value of  ,    = , be ideal 
generalized single valued triangular neutrosophic number transformed according to the indeterminacy value of 

,  and  be hamming distance for generalized single valued triangular neutrosophic number. According to the 
indeterminacy value of single valued neutrosophic numbers certainty and score functions are; 

( )= ( , ) 

=min{ , , } respectively. Here; 

( ) = 

[ +

+

] 

[ + +

] 

Definition 4.9: Let  =( ) be single valued neutrosophic number,  = 

; be generalized single valued triangular 

neutrosophic number transformed according to the falsity value of  ,  = ,be ideal 

generalized single valued triangular neutrosophic number transformed according to the falsity value of , and 

 be Hamming distance for generalized single valued triangular neutrosophic number. According to the falsity 
value of single valued neutrosophic numbers certainty and score functions are; 
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( )= ( , ) 

=min{ , , } respectively. Here; 

( ) = 

[ +

+

] 

[ + +

] 

Definition 4.10: Let =( ) and  =( )  be two single valued neutrosophic numbers and , 

 be score and  certainty functions according to truth value. 

i) If ( ) > ( ), then  is greater than  and denoted by  > . 

ii) If ( ) = ( ) and ( )> ( ), then  is greater than  and denoted by  > . 

iii) If ( ) = ( ) and ( )= ( ), then  is equal to  and denoted by  = . 

This definition can also be done for ,  score and certainty functions in case of indeterminacy and for , 
score and certainty functions in case of falsity. 

Definition 4.11: Let  =  and  be Hamming distance for the generalized single 

valued triangular neutrosophic numbers. 

i) = ,be ideal generalized single valued triangular neutrosophic number according to the 

truth value of ; depending on the Hamming distance  generalized single valued triangular neutrosophic 

numbers according to the truth value  score and certainty functions are; 

( )= ( , ) 

( )= min{ , } respectively. 

ii) = , be ideal generalized single valued triangular neutrosophic number according to the 

indeterminacy value of ; depending on the hamming distance generalized single valued triangular 

neutrosophic numbers according to the indeterminacy value  score and certainty functions are; 

( )= ( , ) 
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( )= min{ , } respectively. 

iii) i)  = , be ideal generalized single valued triangular neutrosophic number according to the 

falsity value of ; depending on the Hamming distance  generalized single valued triangular neutrosophic 

numbers according to the falsity value  score and certainty functions are; 

( )= ( , ) 

( )= min{ , } respectively. 

Thus, for generalized single valued triangular neutrosophic numbers we have also defined a new scoring 
function based on the Hamming distance. 

Definition 4.12: Let  =  and  = be two generalized 

single valued triangular neutrosophic numbers and ,  be score and certainty functions according to truth 
value.  

i) If ( )> ( ), then  is greater than  and denoted by  > . 

ii) If ( )= ( ) and ( )> ( ), then  is greater than  and denoted by  > . 

iii) if ( )= ( ) and ( )= ( ), then  is equal to  and denoted by  = . 

Example 4.13: Now let’s compare the score and certainty function in definition 4.7 with the ,   score 

and certainty function according to the truth value, ,  score and certainty function in definition 4.8 according 

to the indeterminacy value and ,  score and certainty function in definition 4.9 according to the falsity 
value. 

Let  =  ),  =  ) and  =  ) be three single valued neutrosophic 
number. 

i) For score and certainty functions in Definition 2.7;

ac( )=  2.2  sc( )= 0,6 

ac( )=  2.2  sc( )= 0,6 

ac( )=  2.2  sc( )= 0,6    hence;  = = . 

ii) For the score function according to the truth value in Definition 4.7;

( ) = 1.42 ( ) = 1.44 ( ) = 1.46    hence    > > 

iii) For the score function according to the indeterminacy value in Definition 4.8;
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( ) = 0.51 ( ) = 0.49 ( ) = 0.47    hence    > > . 

iv)For the score function according to the falsity value in Definition 4.9;

( ) = 0.51 ( ) = 0.49 ( ) = 0.47  hence   > > . 

Table 1: (Results of scoring functions for single valued triangular neutrosophic numbers) 

The result of the score and certainty function in Definition 2.7  = =
The result of the score function according to the  truth value in definition 4.7  > > 
The result of the score function according to the indeterminacy value in definition 4.8  > > 
The result of the score function according to the falsity value in Definition 4.9  > > 

Example 4.14: Now let’s compare the score and certainty function in definition 4.3 with the , score and 

certainty function in definition 2.1 according to the truth value, ,  score and certainty function according 

to the indeterminacy value and ,  score and certainty function according to the falsity value. 

Let = ,   and  =  be three single valued 
triangular neutrosophic numbers. 

i) For the score and certainty functions in Definition 2.11;

S( )=  3.73  A( )= 3.73 

S( )=  3.73  A( )= 3.73 

S( )=  3.73  A( )= 3.73  hence  = = . 

ii) For the score function according to the truth value in Definition 4.11;

( ) = 0,458 ( ) = 0,450 ( ) = 0,358    hence   >  > . 

iii) For the score function according to the indeterminacy value in Definition 4.8;

( ) = 1,458 ( ) = 1,350 ( ) = 1,358   hence  > > . 

iv) For the score function according to the falsity value in Definition 4.9;

( ) = 1,458 ( ) = 1,350 ( ) = 1,358     hence   >  > . 
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Table 2: (Results of scoring functions for single valued triangular neutrosophic numbers) 

The result of the score and certainty function in Definition 2.11  = =
The result of score function according to the truth value in Definition 4.11  > > 
The result of score function according to the indeterminacy value in Definition 4.11  > > 
The result of score function according to the falsity value in Definition 4.11  > > 

5. SOME NEW GENERALIZED AGGREGATION OPERATORS BASED ON
GENERALIZED SINGLE VALUED TRIANGULAR NEUTROSOPHIC NUMBERS 
FOR APPLICATION TO MULTI-ATTRIBUTE GROUP DECISION MAKING 

In this section we have generalized some operators given for triangular intuitionistic fuzzy numbers in Definition 
2.3 and Definition 2.4 for generalized single valued triangular neutrosophic numbers and showed some 
properties. We have shown that the new operators we have acquired include operators in definitions 2.13 and 
2.14. Additionally, we showed the generalized single valued triangular neutrosophic numbers in this section. 

Definition 5.1: Let  =  (j = 1, 2, 3,…, n) be a collection of generalized single 

valued triangular neutrosophic numbers. Then generalized single valued triangular neutrosophic generalized 
weight averaging operator (SVTNGWAO) is defined as; 

GSVTNGWAO:  →  , GSVTNGWAO( ) = (   ) 

where g is a continuous strictly monotone increasing function, w =  is a weight vector 

associated with the GSVTNGWAO operator, with ≥0, j = 1,2,3,…,n and  = 1 (j = 1,2,3,…,n) . 

Theorem 5.2: Let  = (j = 1, 2, 3, …, n) be a collection of generalized single 

valued triangular neutrosophic numbers and w =  is a weight vector associated with ≥0, 

and  = 1. Then their aggregated value by using SVTNGWAO operator is also a neutrosophic number 

and 

GSVTNGWAO ( ) 

= 

Where, g is a continuous strictly monotone increasing function. 

Proof: We proof this by using the method of mathematical induction. For this; 

i) For n = 2

 = and be two single valued triangular 

neutrosophic numbers by definition; 

+  = 
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+ 

= + 

= ( + ) 

=

 it’s true. 

Let it be true for n = k that is we assumed 

+  + … + 

 = 

 equation is true and let show that it is also true for n+1 .then 

+  + … + 

= 

  +

 Hence the expression is true for n =k+1 as required. 

As a result, the proof of the theorem is completed. 

Lemma 5.3: Let =  and  (j = 1, 2, 3,…,n) be a 

collection of generalized single valued triangular neutrosophic numbers and  =  be a 

generalized single valued triangular neutrosophic number. w =  be a weight vector associated 

with ≥0, and  = 1.  

1) If  =   (j = 1, 2, 3, …, n), then  GSVTNGWAO ( ) = 

2) If  = 

  = 

 Then, 

 ≤ GSVTNGWAO ( ) ≤ 

3) If ≤ ≤ ,  ≤ , ≤ ,  ≥ , ≥  for all j then, 

New Trends in Neutrosophic Theory and Applications. Volume II

71



GSVTNGWAO ( ) ≤ GSVTNGWAO ( ) 

Proof: 

1) From theorem 5.2 GSVTNGWAO ( ) 

= 

= 

 = 1. Hence; 

GSVTNGWAO ( )= = 

The proof of 2) and 3) can easily be done from the proposition 4.6 given for the scoring function according to the 
center of the Hamming distance in the definition 5.1 and section 4. 

Definition 5.4: Let  =  (j = 1, 2, 3, …, n) be a collection of generalized single 

valued triangular neutrosophic numbers. Then generalized single valued triangular neutrosophic generalized 
ordered averaging operator (GSVTNGOAO) is defined as; 

GSVTNGOAO:  →  , GSVTNGOAO ( ) = (   ) 

where g is a continuous strictly monotone increasing function, w =  is a weight vector 

associated with the GSVTNGOAO operator, with ≥0, j = 1,2,3,…,n and  = 1 (j = 1,2,3,…,n) and k is 

the largest generalized single valued triangular neutrosophic number obtained by using the new score function of 
;  =   for k∈{1,2,3, …,n}. 

Theorem5.5 Let  = (j = 1,2,3,…,n) be a collection of single valued triangular 

neutrosophic numbers and w =  is a weight vector associated with ≥0, and  = 1. 

Then their aggregated value by using GSVTNGOAO operator is also a neutrosophic number and 

GSVTNGOAO ( ) 

= (   )= 

where g is a continuous strictly monotone increasing function and k is the largest generalized single valued 
triangular neutrosophic number obtained by using the new score function of  ;  = 

 for  k∈{1,2,3, …,n}. 

Proof: Proof is made similar to Theorem 5.2 using Definition 5.4. 
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Lemma 5.6 Let = and  (j = 1,2,3,…,n) be 

collections of generalized single valued triangular neutrosophic numbers and  =  be a 

generalized single valued triangular neutrosophic number. w =  be a weight vector associated 

with ≥0, and  = 1.  

1) If  =   (j = 1, 2, 3, …,n), then  GSVTNGOAO ( ) = 

2) If  = 

  = 

Then, 

 ≤ GSVTNGOAO ( )≤ 

3) If ≤ ≤ ,  ≤ ,  ≤ ,   ≥  ,   ≥ for all j then, 

GSVTNGOAO ( ) ≤ GSVTNGOAO ( ) 

Proof:  

The prof of 1) can be done similar to the proof of the theorem 5.3. 

The proof of 2) and 3)   can easily be done from proposition 4.6 given for the Hamming distance depending on 
the scoring function in the definition 5.4 and in the section 6.  

Corollary 5.7: If g (x) = x (r = 1) is taken in Definition 5.1, the operator in Definition 2.13 is obtained. 
Similarly, if g (x) = x (r = 1) is taken in 5.2, the operator in Definition 2.14 is obtained. 

Note 5.8:  If g(x)=  is taken in the operators in Definition 5.1 and Definition 5.2; r value should not be taken as 
an odd number. Indeterminacy emerges when any of the values  of a generalized single valued 

triangular neutrosophic number =  takes a negative real number value.  

6. MULTI – ATTRIBUTE GROUP DECISION MAKING METHOD BASED ON THE
SVTNGWAO OPERATOR 

For a multi-attribute group decision making problem, let E = { } be a set of experts (or DMs), A = 

{ } be set of alternatives, X = { } be set of attributes. Assume that the rating of 

alternative  on attribute  given by expert  is represented by single valued neutrosophic number  = 

 (i = 1,2,…,m; j = 1,2,…,p; k = 1,2,…,n ).  Additionally, let g be a continuous strictly monotone 
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increasing function. Now let's take the steps we will follow to solve the multi-attribute group decision making 
problem. 

i) The decision matrices obtained by the decision makers are found as  =  (i = 1,2,…,m; j = 

1,2,…,p; k = 1,2,…,n). 

ii) decision matrices; for   single valued neutrosophic numbers,  matrices are formed that consist of 

converted single valued triangular neutrosophic numbers.

iii) Let ω =  f ; be the weight vector of decision makers with ≥0, and  = 1. 

Accordingly, the weighted decision matrix is  =   (i = 1,2,…,m; j = 1,2,…,p; k = 1,2,…,n ). 

iv) GSVTNGWAO is the operator in the definition 5.1; the unified decision matrix =(  obtained 

from the weighted decision matrices. Here; 

 = GSVTNGWAO( …, ), 

 = GSVTNGWAO( …, ), 

. 

. 

. 

 = GSVTNGWAO( …, ).  Where; (i = 1, 2, 3, …, m). 

Also here, the weight vector to be used for the GSVTNGWAO operator is φ =   with ≥0, 

and  = 1. 

v) =(  be the unified decision matrix; let w =  weight vector of   {

} with ≥0, and = 1. single valued triangular neutrosophic numbers for the 

{ } alternatives  is ; 

 = ( , ,…, ) (t = 1,2,…,m). 

vi) Single valued triangular neutrosophic numbers (t = 1,2,…,m)for the  { } alternatives are 
compared with one of the new score functions in definition 4.7, definition 4.8 or definition 4.9, and the best 
alternative is found. Here; there is a score function according to the truth value in definition 4.7, according to the 
indeterminacy value in definition 4.8 and according to the falsity value in definition 4.9. 

Corollary 6.1: In this method for single valued neutrosophic numbers, starting directly from the second step, 
single valued triangular neutrosophic numbers can be taken and processed. Thus the method we have obtained 
can be used for single valued triangular neutrosophic numbers or generalized single valued triangular 
neutrosophic numbers. 
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Example 6.2: A pharmaceutical company wants to choose the most appropriate diabetes drug from four 
alternatives { }. For this, a decision committee of three pharmacological specialists {𝑒1, 𝑒2, 𝑒3}
was established. This decision commission will review alternative medicines in three qualities. These qualities 
are; the dose rate of the drug is𝑥1, suitable for all ages 𝑥2 and its cost is 𝑥3. For the decision committee {

} weight vector ω = , ( ). Weight vector for qualities are w = 

and φ = ( , , ). Additionally, let g (x) = 𝑥𝑟 is a continuous strictly monotone increasing function. Now let g (x)

= x for r = 1 and then perform the steps in section 5.1 according to the truth value of the transformations and 
scoring function. 

i) The table showing single valued neutrosophic numbers for the alternatives evaluated by the decision makers is
as follows. 

Table 3: (Decision matrix created by 𝑒1 decision maker) 

) ) 

) ) 

) 

Table 4: (decision matrix created by 𝑒2 decision maker) 

) ) 

) ) 

) 
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) ) 

) ) 

) 

ii) Transformed decision-making matrices created by decision makers;

Table 6: (transformed decision matrix created by 𝑒1 decision maker) 

Table 7: (transformed decision matrix created by 𝑒2 decision maker)

Table 5: (decision matrix created by 𝑒3 decision maker) 
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iii) Transformed weighted decision matrices generated by decision makers;

Table 9: (transformed weighted decision matrix created by 𝑒1decision maker) 

Table 10: (transformed weighted decision matrix created by 𝑒2 decision maker) 

Table 8: (transformed decision matrix created by 𝑒3 decision maker) 
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iv)The resulting unified decision matrix;

Table 12: (unified decision matrix) 

v) Generalized single valued triangular neutrosophic numbers obtained from the unified decision matrix for the
alternatives; 

( ) = 

( ) = 

( ) = 

( ) = 

( ) = 

Table 11: (transformed weighted decision matrix created by 𝑒3 decision maker) 
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vi) According to the values in v);

( ) = 2,15 

( ) = 2,11 

( ) = 2,08 

( ) = 2,04 

( )= 1,99 

Hence   . So the best alternative drug is . 

  If g(x) =  is taken in example 6.2 for r = 2; 

( ) = 2,12 

( ) = 2,08 

( ) = 2,06 

( ) = 2,01 

( ) = 1,97 

 Hence,  . So the best alternative drug is . 

If g(x)=  is taken in example 6.2 for  r = 5; 

( ) = 2,14 

( ) = 2,09 

( ) = 2,04 

( ) = 1,97 

( ) = 1,92 

Hence,   . So the best alternative drug is . 

 If g(x)=  is taken in example 6.2 for r = 0.04  ; 

( ) = 2,246 

( ) = 2,240 
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( ) = 2,237 

( ) = 2,234 

( ) = 2,231 

Hence, . So the best alternative drug is . 

Example 6.3:  If the same assumption in Example 6.2 applies to decision making based on indeterminacy; 
i) If g(x)= x is taken for  r = 1;

( ) = 1,185 

( ) = 1,160 

( ) = 1,148 

( ) = 1,113 

( ) = 1,087 
 Hence, . So the best alternative drug is . 

ii) If g(x) =  is taken for r = 2; 

( ) = 1,169 

( ) = 1,140 

( ) = 1,133 

( ) = 1,094 

( )= 1,071 
 Hence, . So the best alternative drug is . 

iii ) If  g(x)=  is taken for  r = 5; 

( ) = 1,195 

( ) = 1,163 

( ) = 1,127 

( ) = 1,072 

( ) = 1,045 
 Hence, . So the best alternative drug is . 
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iv) If g(x)= is taken for  r = 0.04 ; 

( ) = 1,245 

( ) = 1,243 

( ) = 1,242 

( ) = 1,241 

( ) = 1,238 
Hence, . So the best alternative drug is . 

Example 6.4:  If the same assumption in Example 6.2 applies to decision making based on falsity; 

i) If g(x) = x is taken for r = 1;

( ) = 1,173 

( ) = 1,127 

( ) = 1,104 

( ) = 1,094 

( ) = 1,063 
Hence, . So the best alternative drug is . 

ii) If g(x)=  is taken for r = 2; 

( ) = 1,154 

( ) = 1,106 

( ) = 1,087 

( ) = 1,073 

( ) = 1,046 
 Hence,  . So the best alternative drug is . 

iii) If g(x)=  is taken for r = 5  ; 

( ) = 1,179 

( ) = 1,129 

( ) = 1,076 

( ) = 1,055 
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( ) = 1,027 
Hence,  . So the best alternative drug is . 

iv) If g(x) = is taken for r = 0.04; 

( ) = 1,246 

( ) = 1,240 

( ) = 1,238 

( ) = 1,239 

( ) = 1,236   hence   . So the best alternative drug is . 

Table 13: (Results obtained according to r in Example 6.2, example6.3 and example 6.4) 
Value of R The result according to the 

value of truth 
The result according to the 
value of indeterminacy  

The result according to the value 
of falsity 

r=1 
r=2 
r=5 
r=0.04 

7. COMPARISON ANALYSIS AND DISCUSSION

Table 14: (Results obtained from methods) 
r=1 r=2 r=5 

Method 1 

Method 2 

Method 3 

Method 4 

      To be able to see the effect of the method given in section 6; we compared the results of the method with 
those of the method in Section 6. For the same "r" values were comparable a method obtained according to the 
truth value, indeterminacy value and falsity value in section 6. According to Table 14; the best alternative to the 
results from all methods is the same and it is 𝑥4.  Besides; Hamacher aggregation operators are used for single
valued neutrosophic numbers. In the chapter 5, we used generalized single valued triangular neutrosophic 
numbers obtained by transformed single valued neutrosophic numbers.  With these numbers, we used the 
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operators we have generalized to the operators given for intuitionistic fuzzy numbers. These operators include 
previously given operators for single valued triangular neutrosophic numbers. Thus, in section 6 we used single 
valued triangular neutrosophic numbers and more general operators used in many decision making methods. We 
also compared the score and certainty functions used in Table 1 and used in Section 6. In this comparison, the 
values are not equal according to the scoring functions in Section 6 and therefore we have achieved different 
results. In addition, we have the possibility to obtain separate results according to the value of truth, falsity and 
indeterminacy in order to decide on the method in section 6. Thus, we have obtained a more comprehensive 
result. For this reason, the method in section 6 is effective and applicable. 

8. CONCLUSION

       In this study, we generalized single valued triangular neutrosophic numbers. Thus, we have defined a new 
set of numbers that can be more useful and can be very applicable. We have also obtained generalized single 
valued triangular neutrosophic numbers by converting single valued neutrosophic numbers according to their 
truth, indeterminacy and falsity values separately. Thus, single valued neutrosophic numbers are transformed 
into generalized single valued triangular neutrosophic numbers, which are a special case and have a lot of 
application field. We then defined the Hamming distance for single valued triangular neutrosophic numbers and 
gave some properties. We have defined the scoring and certainty functions based on this defined distance. We 
also extended operators for intuitionistic fuzzy numbers to single valued triangular neutrosophic numbers. 
Finally, we compared multi-attribute group decision making with generalized operators and new score functions, 
and compared the results with a previous multi-attribute group decision making application. In addition to this, 
the applied multi-attribute group decision making method can be used in many different scientific researches. 
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ABSTRACT 
As a variation of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to 
represent uncertain, imprecise, incomplete and inconsistent information that exists in the real world. In 
this paper,this article introduces an approach to handle multi-criteria decision making (MCDM) problems 
under the SVNSs. Therefore, we develop some new geometric and arithmetic aggregation operators, such 
as the single valued neutrosophic weighted arithmetic (SVNWA) operator, the single valued neutrosophic 
ordered weighted arithmetic (SVNOWA) operator,the single-valued neutrosophic sets hybrid ordered 
weighted arithmetic (SVNSHOWA) operator, the single-valued neutrosophic weighted geometric 
(SVNWG) operator and the single-valued neutrosophic ordered weighted geometric(SVNOWG) operator 
and the single-valued neutrosophic hybrid ordered weighted geometric (SVNHOG)operator, which extend 
the intuitionistic fuzzy weighted geometric and intuitionistic fuzzy ordered weighted geometric operators 
to accommodate the environment in which the given arguments are single valued neutrosophic sets which 
are characterized by a membership function, an indeterminacy-membership function and a non-
membership function. Some numerical examples are given to illustrate the developed operators. Finally, a 
numerical example is used to demonstrate how to apply the proposed approach. 

KEYWORDS:  Neurosophic set, Single valued neutrosophic weighted geometric (SVNWG) 

operator, Single valued neutrosophic weighted arithmetic (SVNWA) operator. 

Section1. Introduction 

To handle with imprecision and uncertainty, concept of fuzzy sets and intuitionistic fuzzy sets 
originally introduced by Zadeh (Zadeh 1965) and Atanassov (Atanassov 1986), respectively. 
Then, Smarandache (Smarandache 1998) proposed concept of neutrosophic set which is 
generalization of fuzzy set theory and intuitionistic fuzzy sets. The neutrosophic sets may express 
more abundant and flexible information as compared with the fuzzy sets and intuitionistic fuzzy 
sets. Recently, neutrosophic sets have been researched by many scholars in different fields. For 
example; on multi-criteria decision making problems (Liuet al.  2017a, 2017b, 2017c, Lin 2017, 
Kandasamy and Smarandache 2017) etc. Also the notations such as fuzzy sets, intuitionistic fuzzy 
sets and neutrosophic sets have been applied to some different fields in (Broumi et al. 2014a, 
2014b,2015a, 2015b, 2015c, 2016a,2016b,2016c,2016d, He et al. 2014a, 2014b, 2014c, Sahin et al 
2015,2016,Ulucay et al. 2016a, 2016b). 

This paper mainly discusses extension forms of these aggregation operators with intuitionistic 
fuzzy sets, including the intuitionistic fuzzy weighted averaging operator, intuitionistic fuzzy 
OWA operator, intuitionistic fuzzy hybrid weighted averaging operator, intuitionistic fuzzy 
GOWA operator, intuitionistic fuzzy generalized hybrid weighted averaging operator and their 
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applications to multi-attribute decision-making with intuitionistic fuzzy sets (Li 2011,Li 2010, Li 
et al. 2010a Wang et al.2009, Li et al 2010b). 

In this paper, we shall develop some geometric operators andarithmetic operator, such as the 
single-valuedneutrosophicweighted arithmetic operator (SVNWAO), the single valued 
neutrosophic weighted geometric (SVNWG) operator, the intuitionistic fuzzy ordered weighted 
geometric (IFOWG) operator and the intuitionistic fuzzy hybrid geometric (IFHG) operator. To 
do so, this paper is structured as follows. In Section 2, we review the weighted geometric (WG) 
operator and the ordered weighted geometric (OWG) operator. In Section 3, we develop the 
IFWG operator, the IFOWG operator, and the IFHG operator, and study their various properties. 
In Section 4, we give an application of the IFHG operator to multiple attribute decision making 
with intuitionistic fuzzy information. Concluding remarks are made in Section 5. 

Section 2. Preliminaries 

To facilitate the following discussion, some concepts related to neutrosophic set and single valued 
neutrosophic set are briefly introduced in this section. 
Definition 2.1(Smarandache 1998) Let be a space ofpoints (objects), with a generic element in 

, denoted by .An in is characterised by a truth-membership function , an 
indeterminacy-membership function  and a falsity-membership function .
and are standard or non-standard subsets of ,that is, 

,  and .There is no restriction on 
the sumof  and , therefore 

. 

Definition 2.2(Smarandache 1998)The complement of a neutrosphic set is denoted by and is 
defined as 

forevery element in . 

Definition 2.3(Smarandache 1998) A neutrosophic set is contained in the other neutrosophicset 
,  if and only if 

for every in . 

Definition 2.4 (Smarandache 1998) The union of two neutrosophic sets and is a neutrosophic 
set  denoted by , whose truth-membership, indeterminacy-membership and false-
membership functions are related to those of and by  

and 

for any in . 
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Definition 2.5 (Smarandache 1998)The intersection of two neutrosophic sets and is a 
neutrosophicset , denoted by , whose truth-membership, indeterminacy-membership 
and false-membership functions are related to those of and by  

and 

for any in . 

A single valued neutrosophic set (SVNS) is an instance of a neutrosophic set, which can be used 
in real scientific and engineering applications (Ye 2014) 

Note that the set of all SVNSs on R will be denoted by . 

Definition 2.6 (Wang et al. 2010)Let be a universe set, with a generic element in denoted by 
 A single valued neutrosophic set (SVNS) in is characterized by truth-membership 

function , indeterminacy-membership function and falsity-membership function . 
For each element in , . Therefore, a SVNS A can be written as 
follows: 

. 

For two SVNSs A, B, Wang et al. (Wang et al. 2010)presented the following expressions: 

(1) if and only if ,  and for every . 

(2) if and only if   and . 

(3) . 

A SVNS is usually denoted by the simplified symbol for any 

For any two SVNSs and , the operational relations are defined by Wang et al. (Wang et 

al. 2010). 

(1) for every . 

(2) for every . 

(3) for every . 

For a SVNS in , Ye (Ye 2014) called the triplet  single valued 

neutrosophic number (SVNN), which is denoted by . 

Definition 2.7(Ju 2014)Let be a , then the score function and the 

accuracyfunction of are determined by Eqs. (1) and (2), respectively 
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 (1) 

 (2) 

Theorem 2.8(Ju 2014) Let and be two , then the comparison 
laws between them are shown as follows: 

1-If , then ; 

2-If , then ; 

3-If , then: 

(1) If  , then ; 

(2) If  , then ; 

(3) If  , then ; 

Definition 2.9(Chi 2013) Let and be any threesingle 
valued neutrosophic numbers, and , then some operational laws of the 

 are defined as follows. 
(1) ; 
(2) ; 

(3) ; 

(4)
Obviously, the above operational results are still . Some relationships can be further 
established for these operations on . 
Section 3. Arithmetic operators and Geometric operators of the 

3.1 Arithmetic operators of the 

Definition 3.1.1 Let . Then weighted arithmetic 

operator,denoted by , is defined as; 

where, is a weight vector associated with the operator, for 
every such that,  and 

Theorem 3.1.2 Let be a weight vectorof  , for 

every In such that and Then, their aggregated value by using 

operator is also a  and 
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Proof: The proof can be made by using mathematical induction on  as; assume that, 

and be two  then, for n = 2, we have 

If holds for , that is 

then, when ; by the operational laws in Definition 2.9, I have 

Example 3.1.3 , , and 
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Definition 3.1.4 Let .Then ordered 

weighted arithmetic operator denoted by , is defined as; 

, 

where is a weight vector associated with the mapping ; which satisfies the 

normalized conditions:  and  ;  is the k-th largest of the 

n which is determined through using ranking method in Definition 2.7. 

It is not difficult to follows from Definition 3.1.4 that 

which is summarized as in Theorem 3.1.5 

Theorem 3.1.5 Let . Then ordered weighted arithmetic 

operator denoted by , is defined as; 

where and is the k-th largest 

ofthen which is determined through using ranking method in Definition 2.7. 

Proof: Theorem 3.1.5 can be proven in a similar way to that of Theorem 3.1.2 (omitted). 

Example 3.1.6 , ,  and       
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It is obvious that . Hence, according to the above scoring 
function ranking method, it follows that  . Thus, we have: 

Definition 3.1.7 Let .Then hybrid 

ordered weighted arithmetic operator denoted by , is defined as; 

where . and  is a weight vector associated with the 

mapping here n is regarded as a balance factor is a 

weight vector of the is the k-th largest of the n  which are 
determined through using some ranking method such as the above scoring function ranking 
method. 

Note that if  , then  degenerates to the . 

Theorem 3.1.8 Let be a weight vector of 

with  and . Then their aggregated value by using  operator is also a 

 and 
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where  is the k-th largest of the n  which is determined 

through using some ranking method such as the above scoring function ranking method. 

Proof : Theorem 3.1.8 can be proven in a similar way to that of Theorem 3.1.2 (omitted). 

Example 3.1.9 , ,  and       

we obtain the scores of the Simplifiedneutrosophicsets as follows: 

respectively. Obviously, .Thereby, according to the above 
scoring function ranking method, we have: 
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=

3.2. Geometric operators of the 

In this section, three  weighted geometric operator of  is called  weighted 
geometric operator,  ordered weighted geometric operator and hybrid ordered 
weighted geometric operator is given. Some of it is quoted from application in (He 2014a 2014b, 
2014c, Xu and Yager 2006, Wei 2010). 

Definition 3.2.1 Let .Then weighted geometric operator, 

denoted by  , is defined as; 

where, is a weight vector associated with the operator, for 
every such that, and 

Theorem 3.2.2 Let be a weight vectorof  , for 

every In such that and Then, their aggregated value by using 

operator is also a  and 

Proof:The proof can be made by using mathematical induction on n as; assume that, 

and be two  then, 

forn = 2, we have 

If holds for , that is 
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then, when ; by the operational laws in Definition 2.9, I have 

Example3.2.3  and 

Definition 3.2.4Let .Then ordered 

weighted geometric operator denoted by , is defined as; 

where is a weight vector associated with the mapping ; which satisfies the 

normalized conditions:  and ;  is the k-th largest of the 

n which is determined through using ranking method in Definition 2.7. 

It is not difficult to follows from Definition 3.2.4 that 
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which is summarized as in Theorem 3.2.5. 

Theorem 3.2.5 Let . Then orderedweighted geometric 

operator denoted by , is defined as; 

where and is the k-th largest of 

then which is determined through using ranking method in Definition 2.7. 

Proof: Theorem 3.2.5 can be proven in a similar way to that of Theorem 3.2.2 (omitted). 

Example3.2.6  and 

It is obvious that  . Hence, according to the above scoring 
function ranking method, it follows that  . Thus, we have: 
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Definition 3.2.7Let .Then hybrid 

ordered weighted geometric operator denoted by , is defined as; 

where . and  is a weight vector associated with the 

mapping  here n is regarded as a balance factor is a weight 

vector of the is the k-th largest of the n which are 

determined through using some ranking method such as the above scoring function ranking 
method. 

Note that if  , then  degenerates to the : 

Theorem 3.2.8 Let be a weight vector of with 

 and . Then their aggregated value by using  operator is also a 

and 

where  is the k-th largest of the n  which is determined 

through using some ranking method such as the above scoring function ranking method. 

Proof : Theorem 3.2.8 can be proven in a similar way to that of Theorem 3.2.2 (omitted). 

Example 3.2.9 , , and 

we obtain the scores of the single-valuedneutrosophicsets as follows: 

Florentin Smarandache, Surapati Pramanik (Editors)

96



respectively. Obviously, .Thereby, according to the above 
scoring function ranking method, we have: 

=

Section4. Single valued neutrosophic sets and their applications in multi-criteria 
groupdecision-making problems 

There is a panel with four possible alternatives to invest the money (adapted from Herrera 2000): 
(1) is a car company; (2) is a food company; (3) is a computer company; (4) is a 
television company. TheinvestmentCompany must take a decision according to the following 
three criteria: (1) is the risk analysis;(2) is the growth analysis; (3) is the environmental 
impact analysis; (4) social political impactanalysis. The four possible alternatives are to be 
evaluated under the above three criteria by correspondingto linguistic values of SVNSs for 
linguistic terms (adapted from Ye 2011), as shown in Table 1. 
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Definition 4.1 :Let  be a set of alternatives, be the set of 
attributes. If  , then 

is called an SVNS-multi-criteria decision-making matrix of the decision maker. 

Now, we can give an algorithm of the -multi-criteria decision-making method as follows; 

Algorithm: 

Step 1. Construct the decision-making matrix for decision; 

Step 2. Compute the s and write 

the decision-making matrix ; and obtain the scores of the s ; 

Step 3. Compute the s and 

write the decision-making matrix ; and obtain the scores of the s ; 

Step 4. Compute the s and write 

the decision-making matrix ; and obtain the scores of the s ; 

Step 5. Compute the s then, 

write the decision-making matrix ; and obtain the scores of the s ; 

Step 6. Compute the s 

then, write the decision-making matrix ; and obtain the scores of the 

s ; 

Step 7. Compute the s

then, write the decision-making matrix ; and obtain the scores of the s 

; 
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Step 8. Rank all alternatives by using the ranking method of s and determine the best 

alternative. 

Section5. Application 

In this section, we give an application for the s -multi-criteria decision-making method, by 
using the operator. Some of it is quoted from application in (Deli 2015, Herrera 2000, Ye 
2011). 

Example 5.1Let us consider the decision-making problem adapted from (Ye 2015). There is an 
investment company, which wants to invest a sum of money in the best option. There is a panel 
with the set of the four alternatives is denoted by 

to invest the money. The investment company must take a decision according to the set of the four 
attributes is denotedby ={ =risk analysis,  =growth analysis,  =environmental impact analysis, 

= social political impact analysis}.Then, the weight vector of the attributes is 
and the position weight vector is by using the 

weight determination based on the normal distribution. For the evaluation of an alternative 
with respect to a criterion , it is obtained from the questionnaire 

of a domain expert. Then, 

Step 1.The decision maker construct the decision matrix as follows: 

Step 2.The values of are compute with the help of single-valued neutrosophic 
weighted arithmetic operator. 

The score function  values of  are calculated. 
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Step 3.The values of  are compute with the help of single-valued 
neutrosophic ordered weighted arithmetic operator. 

The score function  values of  are calculated. 

Step 4. The values of are compute with the help ofthe Single-valued 
neutrosophic sets hybrid ordered weighted arithmetic operator(SVNSHOWA). 

The score function values of  are calculated. 

Step 5. The values of are compute with the help of single-valued 
neutrosophic weighted geometric operator. 
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The score function  values of  are calculated. 

Step 6.The values of are compute with the help of single-valued 
neutrosophic ordered weighted geometric operator. 

The score function  values of  are calculated. 

Step 7.The values of are compute with the help of single-valued 
neutrosophic hybrid ordered weighted geometric operator. 

The score function values of  are calculated. 
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Step 8. 

Operators 

Section 6.  FUTURE RESEARCH DIRECTIONS 

In this paper, this article introduces an approach to handle multi-criteria decision making 
(MCDM) problems under the SVNSs. Using this concept we can extend our work in (1) More 
effective approaches for SVNSs (2) How to determine the weight vectors for SVNSs (3) An 
approach of multi-criteria decision making with weight expressed by SVNSs. 

Section 7. Conclusion 

This paper proposes six operator are called the single valued neutrosophic weighted geometric 
(SVNWG) operator, the single valued neutrosophic ordered weighted geometric (SVNOWG) 
operator, the single-valued neutrosophic sets hybrid ordered weighted arithmetic (SVNSHOWA) 
operator, the single-valued neutrosophic weighted geometric  (SVNWG) operator , the single-
valued neutrosophic ordered weighted geometric(SVNOWG) operator and the single-valued 
neutrosophic hybrid ordered weighted geometric (SVNHOG)operator. Then an approach is 
developed to solve more general multi-criteria decision making problems as straightforward 
manner. 
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ABSTRACT

We present an expected value based method for multiple attribute group decision making (MAGDM),

where the preference values of alternatives and the importance of attributes are expressed in terms

of neutrosophic trapezoidal numbers (NTrNs). First, we introduce an expected value formula for

NTrNs to be used in MAGDM. Second, we determine the expected values of aggregated rating

values and expected weight values of attributes, which are given by the decision makers. Third,

we determine the weighted expected value of each alternative to rank the given alternatives and

chose the desired alternative. Finally, we provide a numerical example to illustrate the validity and

effectiveness of the proposed approach.

KEYWORDS: Trapezoidal fuzzy number, Neutrosophic trapezoidal number, Expected value of

neutrosophic trapezoidal number, Multi-attribute group decision making

1 INTRODUCTION

Multi-attribute decision making (MADM) is an important part in the theory of decision

making problems. In this method, we determine the best one from the set of possible alter-

natives after considering qualitative or quantitative assessment of finite conflicting attributes.

Several methods for solving MADM such as TOPSIS (Hwang & Yoon, 2012), GRA (Deng,

1989; Li, Yamaguchi, & Nagai, 2007; Olson & Wu, 2006), AHP (Boucher & MacStravic,

1991; Saaty, 1980, 1994), VIKOR (Opricovic, 1998), ELECTREE (Roy, 1991) have been
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developed in crisp environment. However, decision makers cannot always evaluate the per-

formance of alternatives with crisp numbers due to insufficient knowledge of the problem,

or inability to explain directly the performance of one alternative over the others. This

issue has motivated us to extend the MADM problems with imprecise environment. Fuzzy

sets (Zadeh, 1965), intuitionistic fuzzy sets (Atanassov, 1986), interval valued fuzzy sets

(Turksen, 1986), hesitant fuzzy sets (Torra, 2010) have been proved as the effective tools to

model MADM in imprecise or vague environment although these sets cannot represent in-

complete, inconsistent and indeterminate information that we often face in decision making

problems. Neutrosophic set (Smarandache, 1998) captures all these types of information.

This set represents each element of universe with three independent membership functions:

truth membership function, indeterminacy membership function, and falsity membership

function. Single valued neutrosophic set (SVNS) (Wang, Smarandache, Zhang, & Sunder-

raman, 2010), an instance of neutrosophic set, can effectively handle uncertain information

existing in the real world problems.

Recently, researchers have found the potentiality of SVNS and shown an increased in-

terest about MADM problem under neutrosophic environment. Peng, Wang, Zhang, and

Chen (2014) proposed outranking method for solving multi-criteria decision making prob-

lems (MCDM) under simplified neutrosophic environment. Ye (2014b) introduced some vec-

tor similarity measures of simplified neutrosophic sets. Pramanik, Biswas, and Giri (2017)

extended vector similarity measure to hybrid vector similarity measure of single valued and

interval neutrosophic sets to study MADM problem. Mondal and Pramanik (2015) proposed

tangent similarity measure for SVNSs and applied it to MADM. Biswas, Pramanik, and Giri

(2014a) proposed entropy based grey relational analysis method for MADM with SVNSs.

Biswas, Pramanik, and Giri (2014b) further studied grey relational analysis for neutrosophic

MADM problems in which the weight of attribute is partially known or completely unknown.

Biswas, Pramanik, and Giri (2016a) developed a TOPSIS method for neutrosophic MAGDM

problem, where decision maker’s weight, attribute’s weight and rating values of alternatives

are represented in terms of SVNSs. Biswas, Pramanik, and Giri (2017) further developed a

non-linear programming based TOPSIS method for MAGDM problem under SVNS environ-

ment. Şahin and Liu (2015) put forward maximum deviation method to determine weight of

attributes and then solve neutrosophic MADM. In addition, different aggregation operators

of neutrosophic sets (Liu, Chu, Li, & Chen, 2014; Liu & Wang, 2014; Peng, Wang, Wang,

Zhang, & Chen, 2016; Ye, 2014a) have also been developed to solve MADM.

However in MADM, the domain of single-valued neutrosophic set is discrete set. A fuzzy

number (Dubois & Prade, 1987) is expressed with imprecise value rather than exact nu-

merical values. Fuzzy numbers are considered as a connected set of possible values, where

each value is characterized by membership degree, which lies between zero and one. The

main advantage of fuzzy number is that it depicts the physical world more realistically than
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crisp numbers. Therefore to represent the physical universe with a degree of inherent uncer-

tainty, we consider truth, indeterminacy and falsity membership functions of SVNSs with

a triad of connected set of possible values rather than triad of crisp numbers. Recently

neutrosophic numbers has received little attention to the researchers, and several definitions

of single-valued neutrosophic numbers have been proposed. Ye (2015) proposed trapezoidal

neutrosophic sets, and defined score function, accuracy functions, and two aggregation op-

erators for trapezoidal neutrosophic sets. Biswas, Pramanik, and Giri (2015) defined cosine

similarity measure and relative expected value of trapezoidal neutrosophic sets for MADM

problem. Biswas, Pramanik, and Giri (2016b) introduced single-valued neutrosophic trape-

zoidal numbers, where each of truth, indeterminacy and falsity membership functions has

been considered with trapezoidal fuzzy numbers. They (Biswas et al., 2016b) developed a

value and ambiguity index based ranking method to compare neutrosophic trapezoidal num-

bers used in MADM problems. Deli and Şubaş (2017) introduced neutrosophic trapezoidal

number (NTrNs) by assigning a set of four consecutive elements characterized by truth, in-

determinacy and falsity membership degrees. and proposed a value and ambiguity index

based ranking method to compare single-valued neutrosophic trapezoidal numbers.

Furthermore, the method of expected value is also used to rank fuzzy numbers and intu-

itionistic fuzzy numbers. Heilpern (1992) proposed the expected value for fuzzy number, and

thereafter He and Wang (2009) extended expected value method to MADM with fuzzy data.

Grzegrorzewski (2003) put forward the expected value and ordering method for intuitionistic

fuzzy numbers. Ye (2011) extended the method of expected value for intuitionistic trape-

zoidal fuzzy MCDM problems. The intuitionistic trapezoidal fuzzy number (Nehi, 2010) has

two parts: membership function and non-membership functions expressed by trapezoidal

fuzzy numbers. Because indeterminacy is a common issue in decision making problems, ex-

tension of the Ye’s method (Ye, 2011) is required to deal the issue in multi-attribute decision

making problems. There is a little research about neutrosophic trapezoidal number and thus

more research is needed for MADM under NTrNs.

Literature review reflects that no research has been carried out on expected value method

for MADM underNTrNs. To bridge the gap, we first propose expected value of neutrosophic

trapezoidal numbers to order NTrNs. Then we develop an expected value based novel method

for neutrosophic trapezoidal MAGDM. We define formulas to determine the expected weight

values of the attribute and weighted expected value for an alternative to determine the best

alternative.

The remainder of the paper has been organized as follows. In Section 2, we review some

basic notions of fuzzy set, trapezoidal fuzzy numbers, single-valued neutrosophic set, NTrN,

and its some arithmetical operations. In Section 3, we introduce an expected value of NTrN

and a ranking method among NTrNs. In section 4, we put forward expected value method

to derive attribute weights and develop an approach to MAGDM with NTrN information.
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Section 5 provides a numerical example to illustrate the developed approach, and finally, in

Section 6, we conclude the paper with future direction of research.

2 PRELIMINARIES

In this section, we recall some basic notions of fuzzy sets, trapezoidal fuzzy numbers, single-

valued neutrosophic sets, and single-valued neutrosophic trapezoidal numbers.

Definition 1. (Zadeh, 1965) A fuzzy set A in a universe of discourse X is defined by A =

{〈x, µA(x)〉 |x ∈ X}, where, µA(x): X → [0, 1] is called the membership function of A and

the value of µA(x) is called the degree of membership for x ∈ X.

Definition 2. (Dubois & Prade, 1987; Kauffman & Gupta, 1991) A fuzzy number A is

called a trapezoidal fuzzy number(TrFN) if its membership function is defined by

µA(x) =



µLA(x) =
x− a1
a2 − a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3

µUA(x) =
a4 − x
a4 − a3

, a3 ≤ x ≤ a4

0, otherwise.

The TrFN A is denoted by the quadruplet A=(a1, a2, a3, a4), where a1, a2, a3, a4 are the

real numbers and a1 ≤ a2 ≤ a3 ≤ a4.

Definition 3. (Heilpern, 1992) Let A = (a1, a2, a3, a4) be a trapezoidal fuzzy number in the

set of real number R. Then the expected interval and expected value of Ã are respectively

EI(A) = [E(AL), E(AU)] and EI(A) = (E(AL) + E(AU))/2 (1)

where, E(AL) = a2 −
∫ a2
a1
µL
Ã

(x) dx and E(AU) = a4 +
∫ a4
a3
µU
Ã

(x) dx

Definition 4. (Wang et al., 2010) A single valued neutrosophic set Ã in a universe of

discourse X is given by

Ã =
{〈
x, TÃ(x), IÃ(x), FÃ(x)

〉
|x ∈ X

}
,

where, TÃ : X → [0, 1], IÃ : X → [0, 1] and FÃ : X → [0, 1], with the condition

0 ≤ TÃ(x) + IÃ(x) + FÃ(x) ≤ 3, for all x ∈ X.

The numbers TÃ(x), IÃ(x) and FÃ(x) respectively represent the truth membership, inde-

terminacy membership and falsity membership degree of the element x to the set Ã. For

convenience, we take the single valued neutrosophic set A =
〈
TA(x), IA(x), FA(x)

〉
.
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Definition 5. (Biswas et al., 2016b) Let Ã be a neutrosophic trapezoidal number in the set

of real numbers R, then its truth membership function, indeterminacy membership function

and falsity membership function are defined as

TÃ(x) =


TL
Ã

(x), a11 ≤ x ≤ a21,

1, a21 ≤ x ≤ a31,

TU
Ã

(x), a31 ≤ x ≤ a41,

0, otherwise.

IÃ(x) =


IL
Ã

(x), b11 ≤ x ≤ b21,

0, b21 ≤ x ≤ b31,

IU
Ã

(x), b31 ≤ x ≤ b41,

1, otherwise,

FÃ(x) =


FL
Ã

(x), c11 ≤ x ≤ c21,

0, c21 ≤ x ≤ c31,

FU
Ã

(x), c31 ≤ x ≤ c41,

1, otherwise.

The sum of three independent membership degrees of a single-valued neutrosophic set Ã lie

between the interval [0, 3] and a11, a21, a31, a41, b11, b21, b31, b41, c11, c21, c31, and c41 belong

to R such that a11 ≤ a21 ≤ a31 ≤ a41, b11 ≤ b21 ≤ b31 ≤ b41, and c11 ≤ c21 ≤ c31 ≤ c41. The

functions TL
Ã

, IL
Ã

, and FL
Ã

are non-decreasing continuous functions and TU
Ã

, IU
Ã

, and FU
Ã

are

non-increasing continuous functions.

Figure 1: Neutrosophic number

Definition 6. (Biswas et al., 2016b) A neutrosophic trapezoidal number (NTrN) Ã is a set

of twelve parameters satisfying the inequality c11 ≤ b11 ≤ a11 ≤ c21 ≤ b21 ≤ a21 ≤ a31 ≤
b31 ≤ c31 ≤ a41 ≤ b41 ≤ c41 and is denoted by Ã=

〈
(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

in the set of real numbers R. Then the truth membership , the indetermi-
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nacy membership and the falsity membership degree of Ã are defined as

TÃ(x) =



x− a11
a21 − a11

, a11 ≤ x ≤ a21,

1, a21 ≤ x ≤ a31,
a41 − x
a41 − a31

, a31 ≤ x ≤ a41,

0, otherwise.

IÃ(x) =



x− b21
b21 − b11

, b11 ≤ x ≤ b21,

0, b21 ≤ x ≤ b31,
x− b31
b41 − b31

, b31 ≤ x ≤ b41,

1, otherwise.

FÃ(x) =



x− c21
c21 − c11

, c11 ≤ x ≤ c21,

0, c21 ≤ x ≤ c31,
x− c31
c41 − c31

, c31 ≤ x ≤ c41,

1, otherwise.

For a21=a31, b21=b31 , and c21=c31 in a NTrN Ã, we get a new type of neutrosophic

number and call it neutrosophic triangular number.

Figure 2: Neutrosophic trapezoidal number

Definition 7. (Biswas et al., 2016b) Let Ã =
〈
(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)

〉
and B̃ =

〈
(a12, a22, a32, a42), (b12, b22, b32, b42), (c12, c22, c32, c42)

〉
be two NTrNs in the set of

real numbers R, then the following operations are valid:

1. Ã⊕ B̃ =

〈 (a11 + a12, a21 + a22, a31 + a32, a41 + a42),

(b11 + b12, b21 + b22, b31 + b32, b41 + b42),

(c11 + c12, c21 + c22, c31 + c32, c41 + c42)

〉
,

2. Ã⊗ B̃ =

〈 (a11a12, a21a22, a31a32, a41a42),

(b11b12, b21b22, b31b32, b41b42),

(c11c12, c21c22, c31c32, c41c42)

〉
,
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3. λÃ =

〈
(λa11, λa21, λa31, λa41), (λb11, λb21, λb31, λb41),

(λc11, λc21, λc31, λc41)

〉
forλ > 0,

4. Ãλ =

〈
(aλ11, a

λ
21, a

λ
31, a

λ
41), (b

λ
11, b

λ
21, b

λ
31, b

λ
41),

(cλ11, c
λ
21, c

λ
31, c

λ
41)

〉
forλ > 0.

3 EXPECTED VALUE OF NEUTROSOPHIC TRAPEZOIDAL NUMBER

For a NTrN Ã = 〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉, we assume that TL
Ã

(x)

=
x− a11
a21 − a11

and TU
Ã

(x) =
x− a41
a31 − a41

are the two sides of trapezoidal fuzzy number TÃ(x) =

(a11, a21, a31, a41) in Ã. Similarly, IL
Ã

(x) =
x− b21
b11 − b21

and IU
Ã

(x) =
x− a31
a41 − a31

are the two sides

of trapezoidal fuzzy number IÃ(x) = (b11, b21, b31, b41) and FL
Ã

(x) =
x− c21
c11 − c21

and FU
Ã

(x) =

x− c31
c41 − c31

are the two sides of trapezoidal fuzzy number FÃ(x) = (c11, c21, c31, c41).

Definition 8. (Expected interval of a neutrosophic number)

The expected interval of a NTrN Ã=
〈
(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

is defined by

EI(Ã) = [E(ÃL), E(ÃU)]. (2)

Here, the lower limit of expected interval for the functions FL
Ã

(x), IL
Ã

(x) and TL
Ã

(x) is

E(ÃL) =
1

3

(c11 − c11∫
c21

FL
Ã

(x) dx
)

+
(
b11 −

b11∫
b21

IL
Ã

(x) dx
)

+
(
a21 −

a21∫
a11

TL
Ã

(x) dx
)

=
c11 + b11 + a21

3
+

1

3

c21∫
c11

FL
Ã

(x) dx+
1

3

b21∫
b11

IL
Ã

(x) dx− 1

3

a21∫
a11

TL
Ã

(x) dx; (3)

and the upper limit of expected interval for the functions FU
Ã

(x), IU
Ã

(x) and TU
Ã

(x) is

E(ÃU) =
1

3

(c41 +

c31∫
c41

FL
Ã

(x) dx
)

+
(
b41 +

b31∫
b41

IL
Ã

(x) dx
)

+
(
a31 −

a21∫
a11

TL
Ã

(x) dx
)

=
a31 + b41 + c41

3
+

1

3

a41∫
a31

TU
Ã

(x) dx− 1

3

b41∫
b31

IU
Ã

(x) dx− 1

3

c41∫
c31

FU
Ã

(x) dx (4)

Definition 9. Let Ã=〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉
be a neutrosophic number in the set of real numbers R. Then the expected value of Ã is
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determined by taking the mid values of expected interval of Ã and is defined by

EV (Ã) =
E(ÃL) + E(ÃU)

2
(5)

Therefore the expected value of a neutrosophic trapezoidal number can be determined

by the expected interval of neutrosophic numbers with the following theorem.

Theorem 3.1. Let Ã=〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉
be a NTrN in the set of real numbers R satisfying the relation c11 ≤ b11 ≤ a11 ≤ c21 ≤ b21 ≤
a21 ≤ a31 ≤ b31 ≤ c31 ≤ a41 ≤ b41 ≤ c41. Then for TL

Ã
(x)=

x− a11
a21 − a11

, TU
Ã

(x)=
x− a41
a31 − a41

;

IL
Ã

(x)=
x− b21
b11 − b21

, IU
Ã

(x)=
x− a31
a41 − a31

, FL
Ã

(x)=
x− c21
c11 − c21

and FU
Ã

(x)=
x− c31
c41 − c31

, the expected

value of Ã is obtained by

EV (Ã) =

4∑
i=1

ai1 +
4∑
i=1

bi1 +
4∑
i=1

ci1

12
. (6)

Proof. Putting the values of TL
Ã

(x), IL
Ã

(x), and FL
Ã

(x) in Eq.(3), we get

E(ÃL) =
c11 + b11 + a21

3
+

1

3

c21∫
c11

x− c21
c11 − c21

dx+
1

3

b21∫
b11

x− b21
b11 − c21

dx

− 1

3

a21∫
a11

x− a11
a21 − a11

dx

=
c11 + b11 + a21

3
+
c21 − c11

6
+
b21 − b11

6
+
a11 − a21

6

=
c11 + b11 + a21 + c21 + b21 + a11

6
. (7)

Similarly, putting the values of TU
Ã

(x), IU
Ã

(x), and FU
Ã

(x) in Eq.(4), we obtain

E(ÃU) =
a31 + b41 + c41

3
+

1

3

∫ a41

a31

x− a41
a31 − a41

dx− 1

3

∫ b41

b31

x− b31
b41 − b31

dx

− 1

3

∫ c41

c31

x− c31
a41 − a31

dx

=
a31 + b41 + c41

3
+
a41 − a31

6
+
b31 − b41

6
+
c31 − c41

6

=
c11 + b11 + a21 + c21 + b21 + a11

6
. (8)
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Following Eq.(5), we obtain the required expected value of Ã

EV (Ã) =

4∑
i=1

ai1 +
4∑
i=1

bi1 +
4∑
i=1

ci1

12
.

This completes the proof.

Proposition 3.2. Let Ã1=
〈
(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)

〉
and

Ã2=
〈
(a12, a22, a32, a42), (b12, b22, b32, b42), (c12, c22, c32, c42)

〉
be two NTrNs in the set of real

numbers R. Then the following relations are satisfied:

1. EV (Ã1 + Ã2) = EV (Ã1) + EV (Ã2);

2. EV (λÃ1) = λEV (Ã1).

Proof. Following the Eq.(6) about expected value and addition of NTrNs, we have

EV (Ã1 + Ã2) =

4∑
i=1

(ai1 + ai2) +
4∑
i=1

(bi1 + bi2) +
4∑
i=1

(ci1 + ci2)

12

=

( 4∑
i=1

ai1 +
4∑
i=1

bi1 +
4∑
i=1

ci1

)
+
( 4∑
i=1

ai2 +
4∑
i=1

bi2 +
4∑
i=1

ci2

)
12

= EV (Ã1) + EV (Ã2)

Similarly,

EV (λÃ1) =

4∑
i=1

(λai1) +
4∑
i=1

(λbi1) +
4∑
i=1

(λci1)

12

= λ
[ 4∑
i=1

ai1 +
4∑
i=1

bi1 +
4∑
i=1

ci1

12

]
= λEV (Ã1).

This completes the proof.

Definition 10. Let Ã1=
〈
(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)

〉
and

Ã2=
〈
(a12, a22, a32, a42), (b12, b22, b32, b42), (c12, c22, c32, c42)

〉
be two NTrNs. Then the following

relations are satisfied:

1. Ã1 ≺EV Ã2 ⇔ EV (Ã1) < EV (Ã2);

2. Ã1 �EV Ã2 ⇔ EV (Ã1) > EV (Ã2);
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3. Ã1 ∼EV Ã2 ⇔ EV (Ã1) = EV (Ã2).

Example 11. Let Ã1=〈(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9), (0.4, 0.5, 0.8, 0.9)〉
and Ã2 =〈(0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 0.1)〉 be two NTrNs, then by

Definition 3.2 we can calculate

Ã1 + Ã2 = 〈(1.2, 1.4, 1.6, 1.8), (1.1, 1.4, 1.6, 1.9), (1.1, 1.3, 1.7, 1.9)〉;

5Ã1 = 〈(2.5, 3.0, 3.5, 4.0), (2.0, 2.4, 3.5, 4.5), (2.0, 2.5, 4.0, 4.5)〉.

Following Eq. (6), we obtain the results: EV (Ã1) = 0.65, EV (Ã2) = 0.85, EV (Ã1 + Ã2),

and EV ( ˜5A1) = 3.25. It follows that EV (Ã1 + Ã2) = EV (Ã1) + EV (Ã2) = 1.5 and

EV ( ˜5A1) = 5EV (Ã1) = 3.25.

Because EV (Ã2) > EV (Ã1), we can consider that Ã2 �EV Ã1 i.e. Ã2 is greater than Ã1.

4 MADM USING EXPECTED VALUE OF NEUTROSOPHIC TRAPEZOIDAL FUZZY

NUMBER

In this section we develop multi-attribute group decision making with neutrosophic trape-

zoidal number.

Assume that A= {A1, A2, . . . , Am} be the set of m alternatives, C= {C1, C2, . . . , Cn} be

the set of n attributes, D= {D1, D2, . . . , DK} be the set of k decision makers (experts).

We also consider that λk = {λ̃1j , λ̃2j , . . . , λ̃kj} be the k-th decision maker’s weight vector of

jth attribute for j = 1, 2, . . . n, where λ̃2j takes the form on NTrN λ̃kj = 〈(ukj1, ukj2, ukj3, ukj4),
(vkj1, v

k
j2, v

k
j3, v

k
j4), (wkj1, w

k
j2, w

k
j3, w

k
j4)〉. The rating values of kth decision maker of the al-

ternatives Ai for i=1, 2, . . .m with respect to attributes Cj for j=1, 2, . . . n can be concisely

expressed in matrix format. Then we obtain the decision matrix (dkij)m×n for the kth decision

maker as

(dkij)m×n =

C1 C2 · · · Cn

A1 dk11 dk12 · · · dk13

A2 dk21 dk22 · · · dk2n
...

...
...

...
...

Am dkm1 dkm2 · · · dkmn

(9)

where, d̃kij=
〈
T kij, I

k
ij, F

k
ij

〉
is the neutrosophic rating of alternative Ai with respect to at-

tribute Cj. In the rating d̃kij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, the component

T kij=(akij1, a
k
ij2, a

k
ij3, a

k
ij4) represents the truth membership function , Ikij=(bkij1, b

k
ij2, b

k
ij3, b

k
ij4)

represents the indeterminacy membership function, and F k
ij=(ckij1, c

k
ij2, c

k
ij3, c

k
ij4) represents

the falsity membership function. Hence we can consider the NTrN d̃kij = 〈(akij1, akij2, akij3, akij4),
(bkij1, b

k
ij2, b

k
ij3, b

k
ij4),

(ckij1, c
k
ij2, c

k
ij3, c

k
ij4)〉 as the neutrosophic rating of the decision matrix.
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Step 1. Aggregate the rating values of alternatives

In the decision making process, experts provide their different ratings for each alternative.

Therefore, the method of average value can be used to aggregate the neutrosophic ratings〈
T kij, I

k
ij, F

k
ij

〉
of K decision makers.

Thus the aggregated neutrosophic rating d̃ij (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) of the

alternatives are calculated as d̃ij=〈Tij, Iij, Fij〉 where,

Tij =
(∑K

k=1 a
k
ij1

K
,

∑K
k=1 a

k
ij2

K
,

∑K
k=1 a

k
ij3

K
,

∑K
k=1 a

k
ij4

K

)
=(aij1, aij2, aij3, aij4) (10)

Iij =
(∑K

k=1 b
k
ij1

K
,

∑K
k=1 b

k
ij2

K
,

∑K
k=1 b

k
ij3

K
,

∑K
k=1 b

k
ij4

K

)
=(bij1, bij2, bij3, bij4) (11)

Fij =
(∑K

k=1 c
k
ij1

K
,

∑K
k=1 c

k
ij2

K
,

∑K
k=1 c

k
ij3

K
,

∑K
k=1 c

k
ij4

K

)
=(cij1, cij2, cij3, cij4) (12)

Then the aggregated group decision matrix D̃ can be obtained as

(d̃ij)m×n =

C1 C2 · · · Cn

A1 d̃11 d̃12 · · · d̃13

A2 d̃21 d̃22 · · · d̃2n
...

...
...

...
...

Am d̃m1 d̃m2 · · · d̃mn

(13)

and the corresponding expected value based decision matrix of D̃ can be obtained by Eq.(6)

as

(E(d̃ij))m×n =

C1 C2 · · · Cn

A1 EV (d̃11) EV (d̃12) · · · EV (d̃1n)

A2 EV (d̃21) EV (d̃22) · · · EV (d̃2n)
...

...
...

...
...

Am EV (d̃m1) EV (d̃m2) · · · EV (d̃mn)

(14)

Step 2. Aggregate of the weight of attributes

Similarly, using the method of average value, the aggregated neutrosophic weight λ̃j =
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〈uj, vj, wj〉 of Cj(j = 1, 2, . . . , n) can be calculated as follows:

uj =
(∑K

k=1 u
k
j1

K
,

∑K
k=1 u

k
j2

K
,

∑K
k=1 u

k
j3

K
,

∑K
k=1 u

k
j4

K

)
=(uj1, uj2, uj3, uj4) (15)

vj =
(∑K

k=1 v
k
j1

K
,

∑K
k=1 v

k
j2

K
,

∑K
k=1 v

k
j3

K
,

∑K
k=1 v

k
j4

K

)
=(vj1, vj2, vj3, vj4) (16)

wj =
(∑K

k=1w
k
j1

K
,

∑K
k=1w

k
j2

K
,

∑K
k=1w

k
j3

K
,

∑K
k=1w

k
j4

K

)
=(wj1, wj2, wj3, wj4). (17)

Then, the aggregated attribute weight W̃ can be taken as

W = [λ̃1, λ̃2, . . . , λ̃n]. (18)

where, λ̃j =
〈
uj, vj, wj

〉
for j = 1, 2, . . . , n. Now by Eq.(6), we determine the expected value

of weight λ̃j (j = 1, 2, . . . , n) for an attribute Cj and obtain the normalized expected weight

vector

WN = [λN1 , λ
N
2 , . . . , λ

N
n ] (19)

where,

λNj =
EV

(
λ̃j

)
n∑
j=1

EV
(
λ̃j

) j = 1, 2, . . . , n. (20)

Step 3. Determine the weighted expected value of alternative

We now determine the weighted expected value of the alternative Ai for i = 1, 2, . . . ,m by

summing up the multiplicative values of normalized expected weight and expected value of

aggregated rating value for an attribute Cj(j = 1, 2, . . . , n) in the decision matrix (E(d̃ij))m×n

shown in Eq.(14). Therefore, the weighted expected value of alternative Ai(i = 1, 2, . . . ,m)

is

EVw (Ai) =
n∑
j=1

λNj EV (d̃ij). (21)

Step 4. Rank the alternatives

Largest value of the weighted expected value EVw (Ai) of an alternative Ai(i = 1, 2, . . . ,m)

determines the best alternative.
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5 ILLUSTRATIVE EXAMPLE

To illustrate the proposed approach, we provide an illustrative example. Assume that an

organization desires to purchase some cars. After initial choice, four models (i.e. alternatives)

A1, A2, A3 and A4 are considered for further evaluation. A committee of four experts D1,

D2, D3 and D4 is set up to select the most appropriate alternative car. Six attributes are

considered which include:

1. Performance (C1),

2. Style (C2),

3. Comfort (C3),

4. Safety (C4),

5. Specifications (C5),

6. Customer service (C6).

Linguistic variables are generally presented with linguistic terms Zadeh (1975). These terms

play an important role to present uncertain information that are either too complex or too

ill-defined to be described properly with conventional quantitative expressions. For example,

the ratings of alternatives over the qualitative attributes could be expressed with linguistic

variables such as very poor, poor, medium poor, fair, medium good, good, very good, etc.

These linguistic terms can also be represented by NTrNs such as the term “fair” can be

considered with
〈
(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7), (0.2, 0.3, 0.6, 0.7)

〉
. We now define the

following linguistic scales characterizing NTrNs.

Table 1: Linguistic variables for the importance of attributes

Linguistic variables Corresponding NTrNs

Very low(VL) 〈(0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0)〉
Low(L) 〈(0.0, 0.1, 0.2, 0.3), (0.0, 0.1, 0.2, 0.3), (0.0, 0.1, 0.2, 0.3)〉
Medium(M) 〈(0.1, 0.2, 0.3, 0.4), (0.0, 0.2, 0.3, 0.5), (0.0, 0.1, 0.4, 0.5)〉
High(H) 〈(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7), (0.2, 0.3, 0.6, 0.7)〉
Very High(VH) 〈(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9), (0.4, 0.5, 0.8, 0.9)〉

We consider that the four experts describe the importance of the attribute and the rating

of alternatives by linguistic variables such as very good, good, fair, poor, very poor, etc. The

linguistic ratings of four alternatives under the pre-assigned attributes and the weights of the

attributes for k(k = 1, 2, . . . , K) are shown in Table 1. We first convert the assessed rating

values of alternative and weights of each attribute with the help of pre-defined linguistic

variables in the form of NTrNs defined in Table 2. The proposed method is applied to solve

the problem and its computational procedure is summarized as follows:
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Table 2: Linguistic variables for the ratings of alternatives

Linguistic variables Corresponding NTrNs

Very Poor(VP) 〈(0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0)〉
Poor(P) 〈(0.0, 0.1, 0.2, 0.3), (0.0, 0.1, 0.2, 0.3), (0.0, 0.1, 0.2, 0.3)〉
Medium Poor(MP) 〈(0.1, 0.2, 0.3, 0.4), (0.0, 0.2, 0.3, 0.5), (0.0, 0.1, 0.4, 0.5)〉
Fair(F) 〈(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7), (0.2, 0.3, 0.6, 0.7)〉
Good(G) 〈(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9), (0.4, 0.5, 0.8, 0.9)〉
Medium Good(MG) 〈(0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 1.0)〉
Very Good(VG) 〈(1.0, 1.0, 1.0, 1.0), (1.0, 1.0, 1.0, 1.0), (1.0, 1.0, 1.0, 1.0)〉

Table 3: Rating of alternatives and weight of attributes

Alternatives (Ai) Decision Makers C1 C2 C3 C4 C5 C6

A1 DM-1 VG G G G G VG
DM-2 VG VG G G G VG
DM-3 G VG G G VG G
DM-4 G G G G G G

A2 DM-1 F G F G G F
DM-2 G MG G MG G G
DM-3 G F G F VG F
DM-4 F G F F G F

A3 DM-1 VG VG G G VG VG
DM-2 G VG VG G G VG
DM-3 VG G G MG G MG
DM-4 G G G MG G G

A4 DM-1 F VG G G VG F
DM-2 F F G G F G
DM-3 G MG G MG MG G
DM-4 G G F G G G

Weights DM-1 VH VH H M H H
DM-2 H VH H H M M
DM-3 M H M M H M
DM-4 M H M H VH H

Florentin Smarandache, Surapati Pramanik (Editors)

118



Step 1. Determine the aggregated rating values of alternatives

Using Eqs.(10),(11), and (12), we aggregate each of four decision makers’ opinion into a

group opinion ( see Table 4). Then employing expected value of neutrosophic trapezoidal

number defined in Eq.(6), we construct the following expected value matrix:

(d̃ij)m×n =

C1 C2 C3 C4 C5 C6

A1 0.9250 0.9250 0.8500 0.8500 0.8875 0.9250

A2 0.6500 0.7000 0.6500 0.6000 0.8875 0.5500

A3 0.9250 0.9250 0.8875 0.7500 0.8875 0.8750

A4 0.6500 0.7375 0.7500 0.8000 0.7375 0.7500

(22)

Step 2. Aggregate of the weight of attributes

Similarly, we aggregate the weights of attributes by Eqs.(15), (16), and (17). Then the

aggregated weight vector W is

W =


〈
(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.67, 0.82, 0.92)
〉
,

〈
(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.67, 0.82, 0.92)
〉
,〈

(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.67, 0.82, 0.92)
〉
,

〈
(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.67, 0.82, 0.92)
〉
,〈

(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.67, 0.82, 0.92)
〉
,

〈
(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.67, 0.82, 0.92)
〉
 . (23)

Using Eq.(6), we calculate the expected value of each element of the weight vector W :

EV (W ) = (0.40, 0.55, 0.35, 0.35, 0.45, 0.35)T . (24)

Following Eq.(20), we determine the normalized weight vector

WN = (0.1633, 0.2246, 0.1428, 0.1428, 0.1428, 0.1837)T . (25)

Step 3. Determine the weighted expected value of alternative

By Eq.(21), we determine the following weighted expected value of alternativeAi for (i = 1, 2, 3, 4):

EV (A1) = 0.8967, EV (A2) = 0.6834, EV (A1) = 0.8806, EV (A1) = 0.7357.

New Trends in Neutrosophic Theory and Applications. Volume II

119



Table 4: Aggregated rating values of alternatives with NTrNs

(Ai) C1 C2 C3

A1

〈
(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),
〉
〈
(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),
〉
〈
(0.70, 0.80, 0.90, 1.00),

(0.70, 0.80, 0.90, 1.00),

(0.70, 0.80, 0.90, 1.00),
〉

A2

〈
(0.50, 0.60, 0.70, 0.80),

(0.45, 0.60, 0.70, 0.85),

(0.45, 0.55, 0.75, 0.85),
〉
〈
(0.55, 0.65, 0.75, 0.85),

(0.50, 0.65, 0.75, 0.90),

(0.55, 0.60, 0.80, 0.90),
〉
〈
(0.50, 0.60, 0.70, 0.80),

(0.45, 0.60, 0.70, 0.85),

(0.45, 0.55, 0.75, 0.85),
〉

A3

〈
(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),
〉
〈
(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),
〉
〈
(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),
〉

A4

〈
(0.50, 0.60, 0.70, 0.80),

(0.45, 0.60, 0.70, 0.85),

(0.45, 0.55, 0.75, 0.85),
〉
〈
(0.63, 0.70, 0.77, 0.85),

(0.58, 0.70, 0.77, 0.90),

(0.58, 0.65, 0.82, 0.90),
〉
〈
(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.68, 0.82, 0.92),
〉

(Ai) C4 C5 C6

A1

〈
(0.70, 0.80, 0.90, 1.00),

(0.70, 0.80, 0.90, 1.00),

(0.70, 0.80, 0.90, 1.00),
〉
〈
(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),
〉
〈
(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),
〉

A2

〈
(0.45, 0.55, 0.65, 0.75),

(0.38, 0.55, 0.65, 0.82),

(0.38, 0.48, 0.72, 0.82),
〉
〈
(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),
〉
〈
(0.40, 0.50, 0.60, 0.70),

(0.33, 0.50, 0.60, 0.77),

(0.33, 0.43, 0.67, 0.77),
〉

A3

〈
(0.60, 0.70, 0.80, 0.90),

(0.55, 0.70, 0.80, 0.95),

(0.55, 0.65, 0.85, 0.95),
〉
〈
(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),
〉
〈
(0.80, 0.85, 0.90, 0.95),

(0.78, 0.85, 0.90, 0.97),

(0.78, 0.83, 0.92, 0.97),
〉

A4

〈
(0.65, 0.75, 0.85, 0.95),

(0.63, 0.75, 0.85, 0.97),

(0.63, 0.73, 0.87, 0.97),
〉
〈
(0.63, 0.70, 0.77, 0.85),

(0.58, 0.70, 0.77, 0.90),

(0.58, 0.65, 0.82, 0.90),
〉
〈
(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.67, 0.82, 0.92),
〉
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Step 4. Rank the alternatives

We set the following ranking order according to the weighted expected value of alternative

Ai(i = 1, 2, . . . ,m) as

EV (A1) > EV (A3) > EV (A4) > EV (A4).

Thus the ranking order A1 � A3 � A4 � A2 of alternatives reflects that A1 is the best car

for purchasing.

6 CONCLUSIONS

In MAGDM problems, the rating values provided by decision makers are often evaluated

qualitatively and quantitatively due to uncertainty of real world problems. Neutrosophic

trapezoidal number (NTrN) is an alternative tool that can represent incomplete and in-

consistent information. In this paper, we have taken decision maker’s qualitative opinion

in-terms of linguistic variables represented by predefined NTrNs. We have developed an

exact formula of expected value for NTrN. Then we have determined the expected values

of aggregated rating values and expected weight values of attributes. Furthermore, we have

calculated the weighted expected values of alternatives to get the ranking order of alter-

natives. Finally, we have provided a numerical example about MAGDM with NTrNs to

illustrate the proposed method. The developed method is straightforward and effective. We

hope that the proposed method has a great chance of success for dealing with uncertainty

in MAGDM problems such as personal selection, supplier selection, project evaluation, and

manufacturing systems. This method can be extended to MAGDM problems under interval

neutrosophic trapezoidal number information.

REFERENCES

Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy sets and Systems , 20 (1), 87–96.

Biswas, P., Pramanik, S., & Giri, B. C. (2014a). Entropy based grey relational analysis

method for multi-attribute decision-making under single valued neutrosophic assess-

ments. Neutrosophic Sets and Systems , 2 , 102–110.

Biswas, P., Pramanik, S., & Giri, B. C. (2014b). A new methodology for neutrosophic

multi-attribute decision making with unknown weight information. Neutrosophic Sets

and Systems , 3 , 42–52.

Biswas, P., Pramanik, S., & Giri, B. C. (2015). Cosine similarity measure based multi-

attribute decision-making with trapezoidal fuzzy neutrosophic numbers. Neutrosophic

Sets and System, 8 , 47–57.

New Trends in Neutrosophic Theory and Applications. Volume II

121



Biswas, P., Pramanik, S., & Giri, B. C. (2016a). Topsis method for multi-attribute group

decision-making under single-valued neutrosophic environment. Neural Computing and

Applications , 27 (3), 727–737.

Biswas, P., Pramanik, S., & Giri, B. C. (2016b). Value and ambiguity index based ranking

method of single-valued trapezoidal neutrosophic numbers and its application to multi-

attribute decision making. Neutrosophic Sets and Systems , 12 , 127–138.

Biswas, P., Pramanik, S., & Giri, B. C. (2017). Non-linear programming approach for single-

valued neutrosophic topsis method. New Mathematics and Natural Computation. ((In

press))

Boucher, T., & MacStravic, E. (1991). Multiattribute evaluation within a present value

framework and its relation to the analytic hierarchy process. The Engineering

Economist , 37 (1), 1–32.
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ABSTRACT 
Multi-criteria group decision making (MCGDM) strategy, which consists of a group of experts acting 
collectively for best selection among all possible alternatives with respect to some criteria, is focused on 
in this study. To develop the paper, we define linguistic neutrosophic refine set. We also define entropy 
to calculate unknown weights of the criteria and establish basic properties of entropy in linguistic 
neutrosophy refine set environment. In the developed strategy, the rating of all alternatives is expressed 
with linguistic variables. All linguistic variables are expressed as refined neutrosophic numbers which 
are characterized by truth-membership sequences, indeterminacy-membership sequences, and falsity-
membership sequences. Linguistic refined neutrosophic score function (LRNSF) and linguistic refined 
neutrosophic accumulated function (LRNAF) are proposed. Weight of each criterion is unknown to 
decision maker. Finally, an illustrative example is provided to demonstrate the applicability of the 
proposed approach. 

KEYWORDS:  Linguistic variable, Neutrosophic set, Refined neutrosophic set, Linguistic refined 
neutrosophic set, Score function, Group decision making 

1. INTRODUCTION

     To deal uncertainty characterized by indeterminacy, Smarandache (1998) introduced neutrosophic sets. 
The concept of neutrosophic sets is the generalization fuzzy set (Zadeh, 1965) and intuitionistic fuzzy set 
(Atanassov, 1986). Wang et al. (2010) proposed the concept of single valued neutrosophic set (SVNS) to 
deal with practical problems. SVNS has been studied and applied in different fields such as medical 
diagnosis (Ye, 2015a, Ye & Fu, 2016) decision making problems (Sodenkamp, 2013; Kharal, 2014; Biswas 
et al. 2014a, 2014b, 2015a, 2015b, 2016a, 2016b; Mondal & Pramanik, 2014b, 2015a, 2015c; Şahin, 2017; 
Şahin & Liu, 2016; Ye, 2015b, Smarandache & Pramanik, 2016), social problems (Mondal & Pramanik, 
2014; Pramanik & Chackrabarti, 2013), engineering problem (Ye, 2016), conflict resolution (Pramanik & 
Roy, 2014) and so on.   
    Different neutrosophic hybrid sets are proposed in the literature such as neutrosophic soft set (Maji, 
2013), neutrosophic cubic set (Ali, Deli, & Smarandache, 2016), neutrosophic bipolar set (Deli, Ali, M., & 
Smarandache, 2015), rough bipolar neutrosophic set (Pramanik & Mondal, 2016), etc.  Broumi et al. 
(2014a, 2014b) proposed rough neutrosophic set by combining rough set and neutrosophic set. Mondal and 
Pramanik (2015a) proved the basic properties of cosine similarity measure of rough neutrosophic sets and 
provided its application in medical diagnosis. Pramanik & Mondal (2015) proved the basic properties of 
cotangent similarity measure of rough neutrosophic sets and its application to medical diagnosis. Mondal & 
Pramanik (2015d) also proposed new rough neutrosophic multi-attribute decision-making strategy based on 
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grey relational analysis. Mondal, Pramanik and Smarandache (2016a) proposed multi-attribute decision 
making based on rough neutrosophic variational coefficient similarity measure. Mondal, Pramanik and 
Smarandache (2016b) also established rough neutrosophic TOPSIS for multi-attribute group decision 
making.  Pramanik, Roy, Roy and Smarandache (2017) proposed rough multi criteria decision making 
based on correlation coefficient.  
     Smarandache (2013) extended the classical neutrosophic logic to n-valued refined neutrosophic logic, 
by refining each neutrosophic component T, I, F into respectively, T1 ,T2 , ... Tm, and I1 ,I2 , ... Ip and F1 ,F2 , 
... Fr. Broumi & Smarandache (2014) presented an application of cosine similarity measure of neutrosophic 
refined sets in medical diagnosis problems. Ye & Ye (2014) introduced the concept of single valued 
neutrosophic multi-set (SVNM) and proved its basic operational relations.  In the same study, Ye and Ye 
(2014) proposed the Dice similarity measure and the weighted Dice similarity measure for SVNMs and 
investigated their properties and they applied the Dice similarity measure of SVNMs to medical diagnosis. 
Broumi and Deli (2014) proposed correlation measure for neutrosophic refined sets and applied to medical 
diagnosis. Mondal and Pramanik (2015b) proposed neutrosophic refined similarity measure based on 
tangent function and applied it to multi-attribute decision making. In this paper, we propose a new multi-
criteria group decision making method based on linguistic variables and refined neutrosophic sets. The 
proposed method is illustrated by solving an illustrative example.  
    Rest of the paper has been organized as follows: In section 2, some definitions of neutrosophic set, 
single valued neutrosophic set, refined neutrosophic set, refined neutrosophic number, and linguistic 
refined neutrosophic set have been presented briefly. In section 3, a new multi-criteria group decision 
making method has been presented. In section 4, the proposed method has been applied to deal with an 
illustrative example related to suitable spot selection for construction purpose. Section 5 presents the 
concluding remarks and future scope of research. 

2. PRELIMINARIES

2.1 Concepts of neutrosophic sets (Smarandache, 1998) 

A neutrosophic set A in a universal set X, which is characterized independently by a truth-membership 
function TA(x), an indeterminacy-membership function IA(x), and a falsity-membership function FA(x). 
The functions TA(x), IA(x), FA(x) in X are real standard or nonstandard subsets of  ]−0, 1+[, such  that  TA(x): 
X ]−0, 1+[, IA(x): X ]−0, 1+[, and FA(x): X ]−0, 1+[. Then, the sum of TA(x), IA(x) and FA(x) satisfies 
the condition −0 ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+.  

2.2 Some concepts of single valued neutrosophic sets (Wang et al., 2010) 

Definition 1 A single valued neutrosophic set A in a universal set X is characterized by a truth-
membership function TA(x), an indeterminacy-membership function IA(x), and a falsity-membership 
function FA(x). Then, a single valued neutrosophic set A can be denoted by 

A  XxxFxIxTx AAA  /)(),(),(,  where TA(x), IA(x), FA(x) [0, 1] for each x in X. Therefore, the sum of 

TA(x), IA(x) and FA(x) satisfies 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. 

Let A  XxxFxIxTx AAA  /)(),(),(, and B  XxxFxIxTx BBB  /)(),(),(, be two single valued neutrosophic 

sets, and then there are the following relations. 

 Complement:  XxxTxIxFxA AAA
c  /)(),(1),(, ; 

 Inclusion: A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x) for any x in X;
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 Equality: A = B, if and only if A ⊆ B and B ⊆ A;

 Union: A B =  XxxFxFxIxIxTxTx BABABA  /)()(),()(),()(,

 Intersection: A B =  XxxFxFxIxIxTxTx BABABA  /)()(),()(),()(,

 Addition: AB =  XxxFxFxIxIxTxTxTxTx BABABABA  /)().(),().(),().()()(,

 Multiplication: AB =  XxxFxFxFxFxIxIxIxIxTxTx BABABABABA  /)().()()(),().()()(),().(,

2.3 Refined neutrosophic sets (Smarandache, 2013) 

Let A be a refined neutrosophic set in a universal set X. Then A can be expressed as 

A       XxxFxFxFxIxIxIxTxTxTx p
AAA

p
AAA

p
AAA  ,)(,),(),(,)(,),(),(,)(,),(),(, 212121  ,

where, 1)(,),(),(0 21  xTxTxT p
AAA  , 1)(,),(),(0 21  xIxIxI p

AAA  , 1)(,),(),(0 21  xFxFxF p
AAA  such that 

3)(sup)(sup)(sup0  xTxTxT i
A

i
A

i
A for i = 1, 2, …, p, for any Xx . )(,),(),( 21 xTxTxT p

AAA  , 

)(,),(),( 21 xIxIxI p
AAA  and )(,),(),( 21 xFxFxF p

AAA  are the truth-membership sequence, indeterminacy-

membership sequence and falsity-membership sequence of the element x, respectively. Also, ‘p’ is called 
the dimension of neutrosophic refined sets A. 

2.4 Linguistic refined neutrosophic set 

Let X be a universal set and a linguistic term S represented by a refined neutrosophic set A on X. The set 
containing linguistic variables S which is characterized by the truth-membership sequence, 
indeterminacy-membership sequence and falsity-membership sequence respectively is called a linguistic 
refined neutrosophic set. If the dimension of refined neutrosophic set is p, then the dimension of linguistic 
refined neutrosophic set is also p. Some linguistic variables and corresponding refined neutrosophic 
numbers are presented as follows (see Table 1). 
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 Definition 2: Linguistic refined neutrosophic accumulated function (LRNAF) 

Let      c,,c,c,b,,b,b,a,,a,an p
ij

2
ij

1
ij

p
ij

2
ij

1
ij

p
ij

2
ij

1
ijij  i = 1, 2, …, m, j = 1, 2, …, n be a collection of  refined 

neutrosophic  sets of order p. Then linguistic refined neutrosophic accumulated function (LRNAF) is 
defined as follows: 

LRNAF(nij) =  ijijij ,,  =
p

ccc

p

bbb

p

aaa p
ijijij

p
ijijij

p
ijijij   212121

,,  (1) 

i = 1, 2, …, m, j = 1, 2, …, n.       

Definition 3: Linguistic refined neutrosophic score function (LRNSF) 

 Let  ijijij ,,  be a LRNAF, and then a score function of LRNAF can be defined as follows. 

 ijijijS ,, =   ijijij 2
3

1
,  ijijijS ,,  [0, 1]  (2) 

where the larger value of  jjjS ,, indicates the truth value of LRNAF is larger. 

Definition 4: Weighted accumulation score value (WASV) 

Weighted accumulation score value (WASV) of all criteria is presented as: 

WASV(C1, C2, . . ., Cn) =   
n
j jjjj Sw1 ,,   (3) 

11  
n
j jw , j = 1, 2, . . ., n 

3. DECISION MAKING METHODOLOGY

Assume that L1, L2, ..., Lm be a discrete set of alternatives, C1, C2, ..., Cn be the set of criteria and K1, K2, 

Linguistic 
Variables 

Refined neutrosophic set 

Extremely Good 
(EG) 

times)p0.00, 0.00, (0.00,times),p0.00, 0.00, (0.00, times),p 1.00, 1.00, (1.00, 

Very Good(VG) times)p0.08, 0.08, (0.08,times),p0.08, 0.08, (0.08, times),p 0.90, 0.90, (0.90, 

Good (G) times)p0.20, 0.20, (0.20,times),p0.20, 0.20, (0.20, times),p 0.80, 0.80, (0.80, 

Medium Good 
(MG) 

times)p0.30, 0.30, (0.30,times),p0.40, 0.40, (0.40, times),p 0.60, 0.60, (0.60, 

Medium (M) times)p0.40, 0.40, (0.40,times),p0.50, 0.50, (0.50, times),p 0.50, 0.50, (0.50, 

Medium Bad (MB) times)p0.50, 0.50,50, (0.times),p0.40, 0.40, (0.40, times),p 0.40, 0.40, (0.40, 

Bad (G) times)p0.80, 0.80, (0.80,times),p0.80, 0.80, (0.80, times),p 0.20, 0.20, (0.20, 

Very Bad (VB) times)p0.90, 0.90, (0.90,times),p0.80, 0.80, (0.80, times),p 0.10, 0.10, (0.10, 

Very very Bad 
(VVB) 

times)p0.90, 0.90, (0.90,times),p0.90, 0.90, (0.90, times),p 0.05, 0.05, (0.05, 

Table 1: Refined neutrosophic sets corresponding to linguistic variables 
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..., Kk are the decision makers. The decision makers provide the rating of alternatives with respect to all 
criteria. The rating represents the performances of alternative Li (i = 1, 2, ..., m) against the criterion Cj (j 
= 1, 2, ..., n). The values associated with the alternatives for MCGDM problem can be presented in the 
following decision matrix. The relation between alternatives and criteria is given in the Table 2. 

 Table 2: The relation between alternatives and criteria 
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The steps of the group decision making method under linguistic refined neutrosophic environment are 
described as follows:

 Step 1: Construction of the decision matrix with linguistic refined neutrosophic sets 

For MCGDM, the rating of alternative Li (i = 1, 2,…, m ) with respect to criterion Cj (j = 1, 2,…n) is 
taken as refined neutrosophic environment. It can be represented with the following forms: 
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(5)

Here ),,,(),,,,(),,,,( 212121 FFFIIITTT
p
ijijij

p
ijijij

p
ijijij  denotes refined neutrosophic set.

The degrees of truth, indeterminacy and falsity membership of the alternative Li satisfying the criterion Cj, 
respectively where   

,1,,,0 21  p
ijijij TTT  ,1,,,0 21  p

ijijij III  1,,,0 21  p
ijijij FFF 

Step 2: Determination of the linguistic refined neutrosophic accumulated decision matrix

Assume that, a linguistic refined neutrosophic set is of the form 

),,,(),,,,(),,,,( 212121 FFFIIITTT
p
ijijij

p
ijijij

p
ijijij 

The linguistic refined neutrosophic matrix is formed by utilizing equation (1) and it is presented in the 
Table 3. 
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Table3: The linguistic refined neutrosophic accumulated decision matrix for decision 
maker Ki 
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Step 3: Determination of linguistic refined neutrosophic score matrix for decision makers 

Using the equation (2), aggregated transferred neutrosophic score matrix for alternative Li (i = 1, 2, ..., n) 
is defined as follows: 

Table 4: Aggregated transferred neutrosophic score matrix for alternatives 
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 (7) 

 Step 4: Determination of geometric mean of score matrices for decision makers 

To fuse the opinions of all decision makers, we determine geometric mean of all corresponding linguistic 
refined neutrosophic score values (see Table 5). 

Table 5: Geometric mean of score matrix for decision makers 
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 (8) 

 Step 5: Determination of weights criteria 

In practical decision making situation, criteria weights may be unknown to decision makers. Also, the 
importance of the criteria may be different.  

3.1 Method of Entropy in linguistic refined neutrosophic environment

Entropy is an important method to measure uncertain information (Shannon, 1951). Kosko (1986) 
proposed fuzzy entropy and conditioning. Szmidt and Kacprzyk (2001) proposed entropy function for 
intuitionistic fuzzy sets. Majumdar and Samanta (2014) developed entropy measures for SVNSs. Biswas 
et al. (2014a) also studied entropy measures for SVNSs. The entropy measure can be used to calculate the 
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criteria weights when it is completely unknown to decision maker. 

In this paper we propose an entropy method for linguistic refined neutrosophic sets to determining 

unknown criteria weight. Assume that, ),,,(),,,,(),,,,( 1
2
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p
iii  be a refined 

neutrosophic set. We define entropy function in linguistic refined neutrosophic environment as follows.
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The function has the following properties: 
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In order to obtain the entropy value ENTj of the j-th criterion Cj (j = 1, 2,…, n), equation (16) can be 
written as : 
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For i = 1, 2, …, n;  j = 1, 2, …, m 

It is observed that ENTj ∈ [0,1]. The entropy weight of the j-th criterion Cj in refined neutrosophic 
environment is presented as:  

  





n
j j

j
jw

1 ENT1

ENT1
(11)

We have weight vector W= (w1, w2,…,wn)T of n criteria Cj (j = 1, 2, …, n) with  wj ≥ 0 and  11  
n
i jw  

 Step 6: Determination of weighted accumulation score values (WASV) 

Using equation (3), weighted accumulation score values (WASVs) for all alternatives corresponding to 
each criterion are defined as following matrix (see Table 6).  

Table 6: Weighted accumulated score matrix 

mnmmm

n

n

n
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 Step 7: Calculate extreme averaging score values 

We define extreme averaging score values (EASVs) to aggregate all weighted accumulated score values 
as follows.  

EASV(Li) =  
n

1j ijWASV   i = 1, 2, …, n.  (13) 

Step 8: Rank the priority 

The set of alternatives then can be preference ranked according to the descending order of the extreme 
averaging score value EASV(Li). 
The alternative corresponding to the highest extreme averaging score value reflects the best choice. 

Step 9:  End. 

4. AN ILLUSTRATIVE EXAMPLE

A financial grand for Birnagar High School, West Bengal, India has been sanctioned from West Bengal 
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State Government to construct a modern sanitary system. For this purpose, school managing committee 
call for a meeting to select best spot for sanitary system construction. Three decision makers of the school 
are Headmaster (K1), Assistant headmaster (K2) and President (K3). There are three potential spots in 
school boundary (marked as L1, L2, L3) are chosen for final selection. Decision makers intended to select 
the best spot among L1, L2, L3 with respect to six criteria namely,  

 Distance form students (C1),

 Water supply (C2),

 Future maintenance (C3),

 Costs for construction (C4),

 Governmental Regulations and Laws (C5),

 Environmental Impact (C6).

Three alternatives (L1, L2, L3) with respect to the six criteria (C1, C2, C3, C4, C5, C6) are evaluated by three 
decision makers (K1, K2, K3) under the linguistic refined neutrosophic environment, thus we can establish 
the linguistic variables in terms of refined neutrosophic sets (LRNS) (see Table 7): 

Table 7: Assessments of alternatives and criteria given by three decision makers in terms of 
linguistic variables 

Alternatives Decision Makers C1 C2 C3 C4 C5 C6 

L1 K1 EG VG G EG VG G 

K2 VG G G EG G VG 

K3 VG VG G EG VG G 

L2 K1 VG VG VG VG G G 

K2 VG G G VG VG G 

K3 VG G G EG G G 

L3 K1 EG G VG VG VG VG 

K2 VG G G VG G VG 

K3 VG VG G VG G VG 

Step 1: Construction of the decision matrix with linguistic refined neutrosophic sets 

Three decision makers form decision matrix in terms of refined neutrosophic number corresponding to 
each logistic center. The decision matrices are described in Table 4, Table 5, and Table 6. 

Table 8: Decision matrix for K1  
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Table 9: Decision matrix for K2 
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Table 10: Decision matrix for K3 
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Step 2: Determination of the linguistic refined neutrosophic accumulated decision matrix

Form decision matrices (Table 4, Table 5 and Table 6), the aggregated transferred neutrosophic matrix for 
each alternative is formed by utilizing equation (1) and is presented in the Table 7, Table 8 and Table 9. 

Table11: The linguistic refined neutrosophic accumulated decision matrix for decision maker K1 


1
63[LRNAF]K

20.0,20.0,80.008.0,08.0,90.000.0,00.0,00.120.0,20.0,80.008.0,08.0,90.008.0,08.0,90.0

08.0,08.0,90.020.0,20.0,80.000.0,00.0,00.120.0,20.0,80.020.0,20.0,80.008.0,08.0,90.0

20.0,20.0,80.008.0,08.0,90.000.0,00.0,00.120.0,20.0,80.008.0,08.0,90.000.0,00.0,00.1

3

2

1

654321

L

L

L

CCCCCC

Table12: The linguistic refined neutrosophic accumulated decision matrix for decision maker K2 


2
63[LRNAF]K  

20.0,20.0,80.020.0,20.0,80.000.0,00.0,00.120.0,20.0,80.020.0,20.0,80.008.0,08.0,90.0

20.0,20.0,80.008.0,08.0,90.008.0,08.0,90.020.0,20.0,80.020.0,20.0,80.008.0,08.0,90.0

20.0,20.0,80.020.0,20.0,80.008.0,08.0,90.008.0,08.0,90.008.0,08.0,90.008.0,08.0,90.0

3

2

1

654321

L

L

L

CCCCCC

Table13: The linguistic refined neutrosophic accumulated decision matrix for decision maker K3 


3
63[LRNAF]K  

08.0,08.0,90.020.0,20.0,80.008.0,08.0,90.020.0,20.0,80.008.0,08.0,90.008.0,08.0,90.0

08.0,08.0,90.020.0,20.0,80.008.0,08.0,90.020.0,20.0,80.020.0,20.0,80.008.0,08.0,90.0

08.0,08.0,90.008.0,08.0,90.008.0,08.0,90.008.0,08.0,90.020.0,20.0,80.000.0,00.0,00.1

3

2

1

654321

L

L

L

CCCCCC
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Step 3: Determination of linguistic refined neutrosophic score matrix for decision makers 

Using the equation (2), linguistic refined neutrosophic score matrix for alternative Li (i = 1, 2, 3) is 
presented as follows (see Table 10, Table 11, and Table 12): 

Table 14: Linguistic refined neutrosophic score matrix for decision maker K1 

80.091.000.180.091.091.0

91.080.000.180.080.091.0

80.091.000.180.091.000.1

3

2

1

654321

L

L

L

CCCCCC

 

Table15: Linguistic refined neutrosophic score matrix for decision maker K2 

80.080.000.180.080.091.0

80.091.091.080.080.091.0

80.080.091.091.091.091.0

3

2

1

654321

L

L

L

CCCCCC

 

Table 16: Linguistic refined neutrosophic score matrix for decision maker K3 

91.080.091.080.091.091.0

91.080.091.080.080.091.0

91.091.091.091.080.000.1

3

2

1

654321

L

L

L

CCCCCC

 

Step 4: Determination of geometric mean of score matrices for decision makers 

Using equation (8), we calculate geometric mean of score values as follows. 

Table 17: Geometric mean of score matrix for decision makers 

8351.08351.09691.08000.08717.09100.0

8717.08351.09391.08000.08000.09100.0

8351.08717.09391.08717.08717.09691.0

3

2

1

654321

L

L

L

CCCCCC

Step 5: Determination of weights criteria 

Using equation (11), weight structure is calculated as follows: 

w1 = 0.15, w2 = 0.20, w3 = 0.15, w4 = 0.20, w5 = 0.10 and w6 = 0.20 

Step 6: Determination of weighted accumulation score values (WASV) 

Using equation (3), weighted accumulation score values (WASV) of all decision makers corresponding to 
each alternative is presented in Table 18.  

Table 18: Weighted accumulated score matrix 

1670.00835.01938.01200.01740.01365.0

1743.00835.01878.01200.01600.01365.0

1670.00872.01878.01308.01740.01454.0

3

2

1

654321

L

L

L

CCCCCC
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Step 7: Calculate extreme averaging score values 

According to the weighted accumulated score values, extreme averaging score values (EASV) are 
calculated as follows. 

EASV(L1) = 0.8922, EASV(L2) = 0.8548, EASV(L3) = 0.8748; 

Step 8: Rank the priority 

All the extreme averaging score values are arranged in descending order.  Alternatives then can be 
preference ranked as follows: EASV(L1) > EASV(L3) > EASV(L2). 

So, L1 is the best potential spot to construct a modern sanitary system for students for Birnagar High 
School. 

Step 9: End 

5. CONCLUSION

Linguistic values are rational and direct tools for decision makers to express qualitative evaluations under 
uncertainty characterized by indeterminacy. We employed refined neutrosophic set to express linguistic 
variables. Linguistic refined neutrosophic set is proposed. We have developed a multi-criteria decision 
making method based on linguistic refined neutrosophic set. We also proposed an entropy method to 
determine unknown weights of the criteria in linguistic neutrosophic refined set environment. An 
illustrative example of constructional spot selection has also been provided. The proposed concept can be 
used other practical decision making problems such as medical diagnosis, cluster analysis, pattern 
recognition, etc. 
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ABSTRACT 

Classical TODIM (an acronym in Portuguese for Interactive Multi criteria Decision Making) method 
works on crisp numbers to solve multi-attribute group decision making problems. In this paper, we define 
TODIM method in bipolar neutrosophic set environment to handle multi-attribute group decision making 
problems, which means we combine the TODIM with bipolar neutrosophic number to deal with multi-
attribute group decision making problems. We have proposed a new method for solving multi-attribute 
group decision making problems. Finally, we solve multi-attribute group decision making problem using 
our newly proposed TODIM method to show the applicability and effectiveness of the proposed 
method. 

  Keywords: Bipolar neutrosophic sets, TODIM method, Multi attribute group decision making. 

1. INTRODUCTION

There exist many decision making methods (Triantaphyllou, 2000; Hwang & Yoon, 1981; 
Shanian & Savadogo, 2009; Chan & Tong, 2007; Rao & Davim, 2008; Gomes & Lima, 1992) in 
the literature to deal with multi attribute group decision making (MAGDM) problems which are 
frequently meet in many fields such as politics, economy, military, etc. In classical methods for 
MAGDM attribute values are assumed as crisp numbers. In realistic decision making problem 
uncertainty involves due to the complexity of the problem. So crisp numbers are not sufficient to 
characterize attribute values. To handle this type of difficulties, Zadeh (1965) introduced the 
concept of fuzzy set by defining membership function. Atanassov (1986) incorporated non-
membership function as independent component and defined intuitionistic fuzzy set to deal with 
uncertainty. Intuitionistic fuzzy set has been rapidly applied to many MADM fields (Gumus et 
al., 2016; Mondal & Pramanik, 2014c; Mondal & Pramanik, 2015a; Dey et al., 2015; Pramanik & 
Mukhopadhyaya, 2011; Xu, 2007; Xu &Yager, 2008; Atanassov et al., 2005; Wei, 2010).  
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 Smarandache (1998) introduced the notion of neutrosophic set by incorporating indeterminacy 
as independent component to intuitionistic fuzzy set. For dealing with the imperfection 
knowledge received from real world decision making problems, Wang et al. (2010) defined 
single valued neutrosophic set (SVNS), which is an instance of neutrosophic set.  
Neutrosophic sets and SVNSs are essential topics for research in different route of research such 
as conflict resolution (Pramanik & Roy, 2014), clustering analysis (Ye, 2014a, 2014b), decision 
making (Biswas et al., 2014a, 2014b, 2015a, 2015b, 2016a, 2016b; Deli & Subas, 2016;   Ji, 
Wang et al., 2016; Kharal, 2014; Pramanik, Banerjee et el., 2016; Pramanik, Dalapati et al., 
2016; Ye, 2013a, 2013b, 2014c, 2014d, 2015a, 2015b, 2017), educational problem (Mondal & 
Pramanik 2014b, 2015b), medical diagnosis (Ye, 2015c), optimization (Pramanik, 2016a, 2016b; 
Roy & Das, 2015), social problem (Mondal & Pramanik, 2014a; Pramanik & Chakrabarti, 2013), 
and so on.  
Deli et al. (2015) defined bipolar neutrosophic sets and applied it to MCDM problems. Pramanik 
and Mondal (2016) defined bipolar rough neutrosophic set.  Dey et al. (2016) defined TOPSIS 
for solving MADM problems under bipolar neutrosophic set environment.  
Firstly, Gomes and Lima (1992) introduced TODIM method on the basis of the prospect theory 
(Kahneman &Tversky, 1979).  
Krohling & De Souza (2012) developed a generalized version of TODIM called fuzzy TODIM 
to deal with fuzzy information.  Researchers presented fuzzy TODIM methods in varied fuzzy 
MADM or MAGDM problems (Liu & Teng, 2014; Tosun & Akyu, 2015; Gomes et al., 2013). 
Fan et al. (2013) extended TODIM method to deal with the hybrid MADM problems where 
attribute values are crisp numbers, interval numbers and fuzzy information.  
Krohling et al. (2013) studied intuitionistic fuzzy TODIM for MCDM problems. Lourenzutti & 
Krohling (2013) proposed intuitionistic fuzzy random TODIM method which deals intuitionistic 
fuzzy information and an underlying random vector that affects the performance of the 
alternatives. Krohling, R. A., & Pacheco proposed interval-valued intuitionistic fuzzy TODIM to 
tackle MCDM problems involving uncertainty characterized by interval-valued intuitionistic 
fuzzy numbers. 
Wang (2015) extended TODIM method for MCDM in multi-valued neutrosophic set 
environment. Ji, Zhang et al. (2016) define projection based TODIM method under multi-valued 
neutrosophic environment and applied it to personal selection. Zhang et al. (2016) proposed 
TODIM method for group decision making in neutrosophic environment using neutrosophic 
numbers (Smarandache, 1998) in the form a + bI, where ‘a’ denotes real part and ‘bI’ denotes 
indeterminate part. Bipolar neutrosophic numbers are more suitable to deal with the uncertain 
information and the TODIM is a good decision making method based on prospect theory. Our 
objective is to propose an extended TODIM method to deal with multi-criteria group decision 
making problems in which the evaluation information is expressed by bipolar neutrosophic 
numbers. 
Literature review suggests that TODIM method in bipolar neutrosophic set is yet to appear. To 
fill the gap, we develop a novel TODIM method for MAGDM in bipolar neutrosophic 
environment. A numerical example of MAGDM problem in bipolar neutrosophic set 
environment is solved to show the effectiveness of the proposed method.  
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Rest of the paper is presented as follows: Section 2 recalls some basic definitions of neutrosophic 
sets, single valued neutrosophic sets, bipolar neutrosophic set.  Section 3 develops a novel 
MAGDM method based on TODIM method in bipolar neutrosophic set environment. Section 4 
solves an illustrative example of MAGDM based on proposed TODIM method in bipolar 
neutrosophic environment. Finally, section 5 presents concluding remarks and future scope of 
research.   

2. PRELIMINARIES

In this section we recall some basic definitions related to neutrosophic sets, bipolar neutrosophic 
sets and TODIM method.  

Definition 2.1: Neutrosophic Set (Smarandache, 1998) 

 Let U be a space of points (objects), with a generic element in U denoted by u. A neutrosophic 
sets A in U is characterized by a truth-membership function )u(A , an indeterminacy-
membership function )u(A and a falsity-membership function )u(A , 
where, )u(A , )u(A , )u(A : [,0]U 1 . 
Neutrosophic set A can be written as: 
A = {< u, ( )u(A , )u(A , )u(A ) >: u ∈U, )u(A , )u(A , )u(A ∈ [,0] 1 }. There is no restriction on 
the sum of )u(A , )u(A , )u(A so  0 ≤ )u(A  + )u(A + )u(A  ≤ 3 . 

Definition 2.2: Single Valued Neutrosophic Set (Wang et al., 2010) 

Let U be a space of points (objects) with a generic element in U denoted by u. A single valued 
neutrosophic set H in U is characterized by a truth-membership function )u(H , an 
indeterminacy-membership function )u(H and a falsity-membership function )u(H , where, 

)u(H , )u(H , )u(H : ]1,0[U . A single valued neutrosophic set H can be expressed by 
H = {<u, ( )u(H , )u(H , )u(H )>, uU}. Therefore for each uU, )u(H , )u(H , )u(H [0, 1]
the sum of three functions lies between 0 and 1, i.e. 0 )u(H + )u(H + )u(H  3. 

Definition 2.3: Bipolar Neutrosophic Set (Deli et al., 2015)  
Let U be a space of points (objects) with a generic element in U denoted by u. A bipolar 
neutrosophic set B in U is defined as an object of the form 

}Uu:)u(),u(),u(),u(),u(),u(,u{B    , where, ]1,0[U:)u(),u(),u(    and 

]0,1[U:)u(),u(),u(   . We denote }Uu:)u(),u(),u(),u(),u(),u(,u{B   

simply b =    ,,,,, as a bipolar neutrosophic number (BNN). 
Definition 2.4: Containment of Two Bipolar Neutrosophic Sets (Deli et al., 2015) 
Let }Uu:)u(),u(),u(),u(),u(),u(,u{ 1111111B    and 

}Uu:)u(),u(),u(),u(),u(),u(,u{ 2222222B    be any two bipolar neutrosophic sets in U. 
Then BB 21  iff )u()u( 21 

  , )u()u( 21 
  , )u()u( 21 

  and )u()u( 21 
  , )u()u( 21 

  , 

)u()u( 21 
  for all .Uu  
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Definition 2.5: Equality of Two Bipolar Neutrosophic Sets (Deli et al., 2015) 

Let }Uu:)u(),u(),u(),u(),u(),u(,u{ 1111111B    and 
}Uu:)u(),u(),u(),u(),u(),u(,u{ 2222222B    be any two bipolar neutrosophic sets in U. 

Then, 21 BB   iff )u()u( 21 
  , )u()u( 21 

  , )u()u( 21 
  and )u()u( 21 

  , )u()u( 21 
  , 

)u()u( 21 
  for all .Uu  

Definition 2.6: Union of Two Bipolar Neutrosophic Sets (Deli et al., 2015) 
Let }Uu:)u(),u(),u(),u(),u(),u(,u{ 1111111B    and 

}Uu:)u(),u(),u(),u(),u(),u(,u{ 2222222B    be any two bipolar neutrosophic sets in U. 
Then, their union is defined as 

  U.u allfor },Uu:))u(),u((max)),u(),u((min)),u(),u((min
)),u(),u((min)),u(),u((max,))u(),u((max,u{)u(B)u(B)u(B

212121

212121213













Definition 2.7: Intersection of Two Bipolar Neutrosophic Sets (Deli et al., 2015) 

Let }Uu:)u(),u(),u(),u(),u(),u(,u{ 1111111B    and 
}Uu:)u(),u(),u(),u(),u(),u(,u{ 2222222B    be any two bipolar neutrosophic sets in U. 

Then, their intersection is defined as 

 U.u allfor }Uu:))u(),u((min)),u(),u((max)),u(),u((max
)),u(),u((max)),u(),u((min,))u(),u((min,u{)u(B)u(B)u(B

212121

212121214













Definition 2.8: Compliment of a Bipolar Neutrosophic Set (Deli et al., 2015) 

Let }Uu:)u(),u(),u(),u(),u(),u(,u{ 1111111B    be a bipolar neutrosophic set in U. 
Then the compliment of 1B is denoted by c

1B and is defined by 

}Uu:)u(),u(),u(}1{),u(1),u(),u(,u{B }1{}1{11 111111
c
1  

  U.u allfor 

Definition 2.9: Score function of a BNN (Deli et al., 2015) 

The score function of a bipolar neutrosophic number b =    ,,,,,  is denoted by 
)b(Sc and is defined by 

6
)111()b(Sc   

 . (1). 

Definition 2.10: Accuracy function of a BNN (Deli et al., 2015) 

The accuracy function of a bipolar neutrosophic number b =    ,,,,,  is denoted by 
)b(Ac and is defined by 

  )b(Ac .                                                                                      (2). 
Definition 2.11: Certainty function of a BNN (Deli et al., 2015) 
The certainty function of a bipolar neutrosophic number b =    ,,,,,  is denoted by 
C(b) and is defined by C(b) =    (3). 
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Definition 2.12: Comparison procedure of two BNNs (Deli et al., 2015) 

Let   
1111111 ,,,,,b and   

2222222 ,,,,,b be any two bipolar neutrosophic 
numbers in U. The comparison procedure is stated as follows: 

1. If )b(Sc)b(Sc 21  , then b1 is greater than b2, denoted by b1 > b2. 
2. If )b(Sc)b(Sc 21  and )b(Ac)b(Ac 21  , then b1 is greater than b2, denoted by b1 > b2. 
3. If )b(Sc)b(Sc 21  , )b(Ac)b(Ac 21  and )b(C)b(C 21  , then b1 is greater than b2, 

denoted by b1 > b2. 
4. If Sc(b ) = Sc(b ),  Ac (b ) = Ac (b )and )b(C)b(C 21  , then b1 is equal to b2, denoted 

by b1 = b2. 
Definition 2.13: Distance measure between two BNNs 

Let   
1111111 ,,,,,b and   

2222222 ,,,,,b be any two bipolar neutrosophic 
numbers in U. Distance measure between b1 and b2 is denoted by )b,b(d 21H

and defined as

][
6
1)b,b(d 21212121212121H     (4) 

Definition 2.14: Procedure of normalization 

Assume that ijb be a BNN to assess i-th alternative with regarding to j-th criterion. A criterion 

may be benefit type or cost type.  To normalize the BNN ijb , we use the following formula. 

 

ijijijijijij
*

ij
}1{,}1{,}1{,}1{,}1{,}1{b (5) 

3. TODIM METHOD FOR SOLVING MAGDM PROBLEM UNDER BIPOLAR
NEUTROSOPHIC ENVIRONMENT 

In this section, we propose a MAGDM method under bipolar neutrosophic environment. Assume 
that  }p,...,p,p,p{P r321 be a set of r alternatives and }c...,,c,c,c{C s321  be a set of s criteria. 
Assume that }w...,,w,w,w{W s321  be the weight vector of the criteria, where 

kw > 0 and

1w
s

1k
k 


. Let }D...,,D,D,D{D t321   be the set of t decision makers and }...,,,,{ t321  be

the set of weight vector of decision makers, where 
1 > 0 and 1

t

1L L




. 

In the following sub section, we describe the TODIM based MAGDM method under bipolar 
neutrosophic set environment. The proposed method is described using the following steps: 

Step1- Construction of the decision matrix   

Assume that ML = sr
L
ij)(b   (L = 1, 2, 3, …, t) be the L-th decision matrix, where information about

the alternative pi  provided by the decision maker DL with respect to attribute jc (j = 1, 2, 3, …, s). 
The L-th decision matrix denoted by ML (see Equation 6) is constructed as follows: 
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M (6)       

where L = 1, 2, 3,…, t;  i = 1, 2, 3,…, r;  j = 1, 2, 3,…, s. 

Step 2-Normalization of the decision matrix 

In decision making situation cost criteria and benefit criteria play an important role to choose 
the best alternative. Cost criteria and benefit criteria exist together, so the decision matrix 
needs to be normalized. We use Equation 5 to normalize the cost criteria. Benefit criteria 
need not be normalized. Using Equation 5 the normalize decision matrix (see Equation 6) is 
represented below (see Equation 7). 

























L

rs

L

2r

L

r1r

L

s2

L

22

L

212

L

s1

L

12

L

111

s21

L

b~....b~b~p
......

b~b~b~p
b~ ...b~b~p
c...cc

M (7)       

Here L = 1, 2, 3,…, t; i = 1, 2, 3,…, r; j = 1, 2, 3,…, s. 

Step 3- Determination of the relative weight of each criterion 

We find relative weight of each criterion with respect to criterion with maximum weight. 
Relative weight is presented as:  

m

jC

jRC w
w

W  , where 
mw = max }w...,,w,w,w{ s321

. (8) 

Step 4- Calculation of score values 

If the criteria are benefit criteria, then score values of Equation 6 are calculated by Equation 1, 
otherwise score values of Equation 7 are calculated by Equation 1.  

Step 5- Calculation of accuracy values 

If the criteria are benefit type, then accuracy values of Equation 6 are calculated by Equation 2, 
otherwise score values of Equation 7 are calculated by Equation 2.  

Step 6- Construction of the dominance matrix remove 

We construct the dominance matrix of each alternative pi  with respect to the criterion Cj of the 
L-th decision maker DL  (see Equation 9). 
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(For cost criteria) 
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(For benefit criteria) 
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Here, ‘  ’ denotes decay factor of loss and 0 . 

Step 7- Construction of the individual final dominance matrix 
Using the Equation 10, individual final dominance matrix is constructed as follows: 





s

1c
ji

L
cL ),( pp  (10) 

Step 8- Aggregation of all dominance matrix 

Using the Equation 11, the aggregated dominance matrix is obtained as: 

),(),( pppp jiL

t

1L
Lji  


 (11) 

Step 9- Calculation of the global values 

Using Equation 12, the global value pi  is obtained as: 

)),(()),((

)),((),(
s

1j
ji

ri1

s

1j
ji

ri1

s

1j

s

1j
ji

ri1
ji

i
ppminppmax

ppminpp



 





 




  (12) 

Step 10- Ranking of the alternatives 
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Ranking of the alternatives is done based on descending order of global values. The highest 
global value i  reflects the best alternative pi . 

4. ILLUSTRATIVE EXAMPLE

To demonstrate the applicability and effectiveness of the proposed method, we solve a MAGDM 
problem adapted from (Ye, 2014d, Zhang et al., 2016). We assume that an investment company 
wants to invest a sum of money in the best option. The investment company forms a decision 
making board involving of three members (D1, D2, D3) who evaluate the four alternatives to 
invest money. The alternatives are: 

1. Car company (
1p ), 

2. Food company (
2p ), 

3. Company (
3p ), and 

4. Arms company (
4p ). 

Decision makers take decision to evaluate alternatives based on the criteria namely, 
risk factor (

1c ), growth factor (
2c ), environment impact (

3c ). We consider three criteria as 
benefit type based on Zhang et al. (2016). Assume that the weight vector of attributes is 

T)3.,33.,37(.W and weight vector of decision makers is T)3.,32.,38(. . Now, we apply the
proposed MAGDM method to solve the problem using the following steps. 

Step1- Construction of the decision matrix    
We construct the decision matrix based on information provided by the decision makers in terms 
of BNN with respect to the criteria as follows:   

 Decision matrix for D1 

M1 = 


























)7.,4.,3.,4.,3.,6(..1)- .6,- .8,- .2, .7, (.8, .3)- .3,- .6,- .3, .5, (.7,p
.2)-.3,.5,.8,.2,(.4,.3)- .5,- .1,- .4, .2, (.5, .5)- .4,- .6,- .5, .3, (.8,p

)3.,3.,4.,3.,5.,7.(.5)- .3,- .4,- .7, .3, (.6,.3)- .5,- .4,- .2, .2, (.6,p
.5)- .6,- .1,- .6, .4, (.9,.3)- .6,- .4,- .6, .5, (.8, .3)- .6,- .3,- .7, .6, (.5,  p

CCc

4

3

2

1

321
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M2 = 

































)5.,6.,5.,8.,3.,4(..7)- .6,- .3,- .4, .6, (.5, .2)- .5,- .5,- .2, .5, (.3,
.2)-.3,.4,.4,.5,(.7,.4)- .3,- .6,- .1, .2, (.3, .6)- .2,- .5,- .2, .3, (.8,

)9.,2.,5.,7.,2.,6.(.2)- .3,- .7,- .5, .4, (.8,.1)- .2,- .3,-.5, .4, (.7,
.6)- .2,- .5,- .7, .5, (.1,.4)- .3,- .3,- .4, .3, (.5, .7)- .3,- .5,- .4, .3, (.6,  

c

p

p

p

p

CC

4

3

2

1

321

 

 Decision matrix for D3 

M3 = 

































)7.,5.,2.,3.,4.,7(..7)- .6,- .5,- .4, .3, (.9, .3)- .6,- .4,- .5, .5, (.8,
.6)-.3,.2,.4,.2,(.8,.5)- .3,- .2,- .7, .2, (.3, .7)- .5,- .4,- .6, .5, (.2,

)3.,6.,7.,2.,3.,6.(.5)- .2,- .3,- .7, .2, (.5,.1)- .4,- .6,- .2, .3, (.5,
.7)- .5,- .2,- .3, .2, (.4,.5)- .2,- .6,- .3, .5, (.7, .2)- .3,- .7,- .4, .6, (.9,  

c

p

p

p

p

CC

4

3

2

1

321

 

Step 2-Normalization of the decision matrix  

Since all the criteria are considered as benefit type, we do not need to normalize the decision 
matrix (M1, M2, M3). 

Step 3- Determination of the relative weight of each criterion 

Using Equation 8, the relative weights of the criteria are obtained as: 

1W
1RC  , 89.W

2RC  , 81.W
3RC  . 

Step 4- Calculation of score values 

Using Equation 1, we calculate the score values of each alternative with respect to each criterion 
(see Table 1, 2, and 3).

Table 1: Score value for M1   Table 2: Score value for M2        Table 3: Score value for M3

     

























58.50.48.p 
.40.60.55p

 .52.50.60p
 .70.53.47p

CCC

4

3

2

1

321

    

























48.58.46.p 
48..52.60p

 .55.45.47p
 .37.53.60p

CCC

4

3

2

1

321

   

























67.67.55.p 
.65.50.48p

 .55.50.48p
 .55.50.45p

CCC

4

3

2

1

321

 

Step 5-Calculate accuracy values 

Using Equation 2, we calculate the accuracy values of each alternative with respect to each 
criterion (see Table 4, 5, and 6.)     

Decision matrix for D2 
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6.1.1.p 
7..3 .2p
 .30 .3p
 .7   .1.2-p

CCC

4

3

2

1

321

   































4.5.2.p 
.10.7 p

 .3.20p
 5.2..4p

CCC

4

3

2

1

321

     

  Table 6: Accuracy value for M3

  





























9.7.2.p 
.8.1.1p

 00.2p
 .3.30p

CCC

4

3

2

1

321

 

Step 6- Construction of the dominance matrix 

Here, using Equation 9, we construct dominance matrix (Taking  = 1). The dominance matrices 
are represented in Table 7, 8, 9, 10, 11, 12, 13, 14, and 15. 

Table 7: Dominance matrix1
1   Table 8: Dominance matrix1

2


1
1 = 





























059.24.28.p 
.220.26.30p

 .64.700.73p
77.82..270p

pppp

4

3

2

1

4321

  
1
2 =





























01078.p 
.330.26.82 p

 0.780.72p
.26 .27.240p
pppp

4

3

2

1

4321

Table 9: Dominance matrix1
3    Table 10: Dominance matrix2

1


1
3 =



























027.23.25.p 
91.086.1p

 75..260.26p
.82- 31..88-0p
pppp

4

3

2

1

4321

  
2
1 =





























079.79.79.p 
29.027.19.p

 29..730.73p
29.52..270p
pppp

4

3

2

1

4321

 

   Table 4: Accuracy value for M1   Table 5: Accuracy value for M2 
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2
2 =





























031.31.22.p 
95.028.67.p

 95..84074.p
67.22..240p

pppp

4

3

2

1

4321

  
2
3 =





























095.82.23.p 
28.095.27. p

 24.28.0.23p
77.91.77.0p

pppp

4

3

2

1

4321

 Table 13: Dominance matrix3
1  Table 14: Dominance matrix

3
2


3
1 =





























027.29.25.p 
73.033.35.p

 79.90.0.27p
68.94.73.0p

pppp

4

3

2

1

4321

  
3
2 = 





























031.29.26.p 
95.043.91.p

 91.14.078.p
45.30.26.0p

pppp

4

3

2

1

4321

 Table 15: Dominance matrix 
3
3


3
3 = 





























091.26.26.p 
63.028..27p
86.95.088.p
86.91.26.0p

pppp

4

3

2

1

4321

 

Step 7- Construction of the individual final dominance matrix 
Using Equation 10, the individual final dominance matrices are constructed (see Table 16, 17, 
and 18). 

 Table 16: Final dominance matrix
1  Table 17: Final dominance matrix 

2    

1
 = 































032.147.25.p 
36.034.1.52- p

 39.122.1019.1p
33.124.37.0p

pppp

4

3

2

1

4321

     
2

 =































043.13.134.p 
38.040..21-p

 42.29.1024.1p
15.121.126.0p

pppp

4

3

2

1

4321

 

 Table 11: Dominance matrix 
2
2  Table 12: Dominance matrix

2
3
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Table 18: Final dominance matrix
3

     
3

 =





























077.84.77.p 
3.2018..29-p

 6.27.1039.1p
9.15.121.0p

pppp

4

3

2

1

4321

 

Step 8- Aggregation of all dominance matrix 

Using Equation 11, the aggregated dominance matrix is represented in Table 19. 

Table 19: Aggregated dominance matrix  

=

































073.01.03.p 
95.020..73-p

 43.107.1026.1p
47.194.29.0p

pppp

4

3

2

1

4321

 

Step 9- Calculation of the global values 

Using Equation 12, the global values 
i  are calculated as: 

.1,61.,0,34.
4321


Step 10- Ranking of the alternatives 

Here .2134 

Thus the Arm company (
4p ) is the best option to invest money. 

Section 5. CONCLUSION 
In real decision making, the evaluation information of alternatives provided by the decision 
maker is often incomplete, indeterminate and inconsistent. Bipolar neutrosophic set can describe 
this kind of information. In this paper, we have developed a new group decision making method 
based on TODIM under bipolar neutrosophic set environment. Finally, a numerical example is 
shown to demonstrate its practicality and effectiveness. We hope that the proposed method can 
be extended for solving multi criteria group decision making in other neutrosophic hybrid 
environment.  
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ABSTRACT 
This paper proposes hybrid vector similarity measures under single valued refined neutrosophic sets 
and proves some of its basic properties. The proposed similarity measure is then applied for solving 
multiple attribute decision making problems. Lastly, a numerical example of medical diagnosis is 
given on the basis of the proposed hybrid similarity measures and the results are compared with the 
results of other existing methods to validate the applicability, simplicity and effectiveness of the 
proposed method. 

KEYWORDS:  Single valued neutrosophic sets; Single valued refined neutrosophic sets; 
Hybrid vector similarity measures; Multi-attribute decision making. 

1. INTRODUCTION

Smarandache (1998) initiated the theory of neutrosophic sets (NSs) which is characterized by a truth 
membership TA (x), an indeterminacy membership IA (x) and a falsity membership FA (x) to cope with 
indeterminate, incomplete and inconsistent information. However, single valued neutrosophic sets 
(SVNSs) defined by Wang et al. (2010) is useful tool for practical decision making purposes. Multi 
attribute decision making (MADM) under SVNSs attracted many researchers and many methods have 
been proposed for MADM problems such as TOPSIS (Zhang & Wu, 2014, Biswas et al., 2016a), 
grey relational analysis (Biswas et al., 2014a; Biswas et al., 2014b; Mondal & Pramanik, 2015a; 
Mondal & Pramanik, 2015c), outranking approach (Peng et al., 2014), maximizing deviation method 
(Şahin & Liu, 2016), hybrid vector similarity measure (Pramanik et al., 2017), etc. Further theoretical 
development and applications of SVNS can be found in the studies (Biswas et al. 2016a, 22016b, 2016c, 
2016d, 2016e, 2017a, 2017b; Pramanik & Roy, 2104; Sodenkamp, 2102).  

Hanafy et al. (2013) proposed a method to determine the correlation coefficient of NSs by using centroid 
method. Ye (2013a) defined correlation of SVNSs, correlation coefficient of SVNSs, and weighted 
correlation coefficient of SVNSs.  In the same study, Ye (2013a) developed a multi-criteria decision 
making method (MCDM) based on weighted correlation coefficient and the weighted cosine similarity 
measure. Ye (2013b) proposed another form of correlation coefficient between SVNSs and presented a 
MADM method.  Broumi and Smarandache (2013) proposed a new method called extended Hausdroff 
distance for SVNSs and a new series of similarity measures were developed to find the similarity of 
SVNSs. Majumdar and Samanta (2014) presented some similarity measures between SVNSs based on 
distance, a matching function, membership grades and defined the notion of entropy measure for 
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SVNSs. Ye (2014a) proposed cross entropy of SVNSs and solved a MCDM based on the cross entropy 
of SVNSs. Ye and Zhang (2014) formulated three similarity measures between SVNSs by utilizing 
maximum and minimum operators and investigated their characteristics. In the same study, Ye and 
Zhang (2014) developed weighted similarity measures for solving MADM problems under single valued 
neutrosophic setting. Ye (2014b) suggested three similarity measures between simplified NSs as an 
extension of the Jaccard, Dice and cosine similarity measures in vector space for solving MCDM 
problems. Ye (2015) proposed an improved cosine similarity measure for SVNSs and employed the 
concept for medical diagnosis. Mondal and Pramanik (2015b) defined tangent similarity measure due to 
Pramanik and Mondal (2015) and Mondal and Pramanik (2015f) and proved its basic properties. In the 
same study, Mondal and Pramanik (2015b) developed a new MADM method based on tangent 
similarity measure and presented two illustrative MADM problems. Ye and Fu (2016) presented a multi- 
period medical diagnosis method using tangent similarity measure and the weighted aggregation of 
multi-period information for solving multi-period medical diagnosis problems under single valued 
neutrosophic environment. Pramanik et al. (2017) investigated a new hybrid vector similarity measure 
under both single valued neutrosophic and interval neutrosophic assessments by extending the notion of 
variation coefficient similarity method (Xu et al., 2012) with neutrosophic information and proved some 
of their fundamental properties.   

Smarandache (2013) generalized the conventional neutrosophic logic and defined the most n- symbol or 
numerical valued refined neutrosophic logic. Each neutrosophic element T, I, F can be refined into T 1, T 
2, …, T m, and I 1, I 2, …, I p, and F 1, F 2, …, Fq, respectively, where m, p, q ( 1) are integers and m +  p 
+ q = n. Broumi and Smarandache (2014) proposed cosine similarity measure for refined neutrosophic 
sets due to Bhattacharya’s distance (Bhattacharya, 1946). Ye and Ye (2014) introduced the idea of 
single valued neutrosophic multi sets (SVNMSs) (refined sets) by combining SVNSs along with the 
theory of multisets (Yager, 1986) and presented several operational relations of SVNMSs. In the same 
study, Ye and Ye (2014) proposed Dice similarity measure and weighted Dice similarity measure for 
SVNMSs and investigated their properties. Chatterjee et al. (2015) slightly modified the definition of 
SVNMSs (Ye & Ye, 2014) and incorporated few new set-theoretic operators of SVNMSs and their 
properties. Broumi and Deli (2014) defined correlation measure of neutrosophic refined sets and applied 
the proposed model to medical diagnosis and pattern recognition problems. Ye et al. (2015) further 
defined generalized distance and its two similarity measures between SVNMSs and applied the concept 
to medical diagnosis problem. Mondal and Pramanik (2015e) developed a new multi attribute decision 
making method in refined neutrosophic set environment based on tangent function due to Mondal and 
Pramanik (2015b). Mondal and Pramanik (2015d) proposed neutrosophic refined similarity measure 
based on cotangent function and presented an application to suitable educational stream selection 
problem. Deli et al. (2015) studied several operators of neutrosophic refined sets such as union, 
intersection, convex, strongly convex in order to deal with indeterminate and inconsistent information. 
In their paper, Deli et al. (2015) also examined several results of neutrosophic refined sets using the 
proposed operators and defined distance measure of neutrosophic refined sets with properties. Karaaslan 
(2015) developed Jaccard, Dice and cosine similarity based MCDM methods in single valued refined 
neutrosophic set and interval neutrosophic refined set environment.  Broumi and Smarandache (2015) 
proposed a new similarity measure between refined neutrosophic sets based on extended Housdorff 
distance of SVNSs and proved some of their basic properties.   Mondal and Pramanik (2015e) discussed 
refined tangent similarity measure for SVNSs and they applied the proposed similarity measure to 
medical diagnosis problems. Juan-juan and Jian-qiang (2015) defined several multi-valued neutrosophic 
aggregation operators and established a MCDM method based on the proposed operators. Ye and 
Smarandache (2016) presented a MCDM method with single valued refined neutrosophic information 
by extending the concept of similarity method with single valued neutrosophic information of Majumdar 
and Samanta (2014). 
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concept given in (Broumi & Smarandache, 2014a; Rajarajeswari & Uma, 2014) and prove some of its 
basic properties. We propose hybrid vector similarity measure with single valued refined neutrosophic 
information by extending hybrid vector similarity measure of SVNSs (Pramanik et al., 2017) and prove 
some of its basic properties. The proposed similarity measure is a hybridization of Dice and cosine 
similarity measures under single valued refined neutrosophic information. Moreover, we establish 
weighted hybrid vector similarity measure under single valued refined neutrosophic environment and 
prove its basic properties.  The article is structured in the following way. Section 2 presents some 
mathematical preliminaries which are required for the construction of the paper. In Section 3 defines 
hybrid similarity and weighted hybrid similarity measures of SVRNSs and proves some of their 
properties. Section 4 is devoted to develop two algorithms for solving MADM problems involving 
single valued refined neutrosophic information. An illustrative example of medical diagnosis is solved to 
demonstrate the applicability of the proposed procedure in Section 5. Conclusions and future scope of 
research are presented in Section 6. 

2. MATHEMATICAL PRELIMINARIES
In this Section, we recall some basic definitions concerning neutrosophic sets, single valued 
neutrosophic sets, single valued refined neutrosophic sets. 

2.1 Neutrosophic set (Smarandache, 1998) 
Let U be a universal space of objects with a generic element of U denoted by z. Then, a neutrosophic set 
P on U is defined as given below. 

P = {z, )(),((z), zFzIT PPP   zU} 

where, )(zTP , )(zI P , )(zFP : U ]-0, 1+[ stand for the degree of membership, the degree of 

indeterminacy, and the degree of falsity-membership respectively of a point zU to the set P satisfying 
the condition -0 )(zTP + )(zI P + )(zFP  3+. 

2.2 Single valued neutrosophic sets (Wang et al., 2010)  
Consider U be a space of points with a generic element of U denoted by z, then a SVNS Q is defined as 
follows: 

Q = {z, )(),(),( zFzIzT QQQ   zU} 

where, )(xTQ , )(xIQ , )(xFQ : U  [0, 1] denote the degree of membership, the degree of 

indeterminacy, and the degree of falsity-membership respectively of a point zU to the set Q satisfying 
the condition and 0 )(xTQ + )(xIQ + )(xFQ  3 for each point z U. 

2.3 Single valued neutrosophic refined sets (Ye & Ye, 2014) 
A SVNRS R in the universe U = {z1, z2, …, zn} is defined as follows: 
R = { ))(...,),(),(( )),(...,),(),(()),(...,),(),((, 212121 zFzFzFzIzIzIzTzTzTz sRRRsRRRsRRR  zU} 

where )(...,),(),( 21 zTzTzT sRRR :U  [0, 1], )(...,),(),( 21 zIzIzI sRRR : U  [0, 1], 

)(...,),(),( 21 zFzFzF sRRR : U  [0, 1] such that 0 )(zTiR + )(zI iR + )(zFiR  3for i = 1, 2, …, s. where, s 
is said to be the dimension of R. 
Definition 2.1 (Ye & Ye, 2014): Let R1 and R2 be two SVRNSs in U, where 
R1 = { ))(...,),(),(( )),(...,),(),(()),(...,),(),((,

111111111 212121 zFzFzFzIzIzIzTzTzTz sRRRsRRRsRRR
 zU}, 

R2 = { ))(...,),(),(( )),(...,),(),(()),(...,),(),((,
222222222 212121 zFzFzFzIzIzIzTzTzTz sRRRsRRRsRRR

 zU}, then the 

relations between R1 and R2 are presented as follows: 
(1). Containment: 

In this paper, we propose another form of cosine similarity measures under SVRNSs by extending the 
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R1  R2, if and only if )(
1

zTiR  )(
2

zTiR , )(
1

zI iR  )(
2

zI iR , )(
1

zFiR  )(
2

zFiR  for i = 1, 2, …, s. 

(2). Equality: 
R1= R2, if and only if )(

1
zTiR = )(

2
zTiR , )(

1
zI iR = )(

2
zI iR , )(

1
zFiR = )(

2
zFiR  for i = 1, 2, …, s. 

(3). Union: 
R1  R2 = { ))()(( )),()(()),()((,

212121
zFzFzIzIzTzTz iRiRiRiRiRiR   zU} for i = 1, 2, …, s. 

(4). Intersection: 

R1  R2 = { ))()(( )),()(()),()((,
212121

zFzFzIzIzTzTz iRiRiRiRiRiR   zU} for i = 1, 2, …, s. 

3. HYBRID VECTOR SIMILARITY MEASURES OF SVRNSS
Definition 3.1 (Ye, 2014c): Let P = {z, )(),(),(P zFzIzT PP  zU} and Q = {z, )(),(I),( zFzzT QQQ  

zU} be two SVNSs (non-refined) in the universe of discourse U. Then, the Dice similarity measure of 
SVNSs is defined as follows. 

Dice (P, Q) = 


n

in 1

1
 2

Q
2

Q
2

Q
2

P
2

P
2

P ))(())(())(())(())(())((

))().()().()().((2

iiiiii

iQiPiQiPiQiP

zFzIzTzFzIzT

zFzFzIzIzTzT





(1) 

and if wi [0, 1] be the weight of zi for i = 1, 2, …, n such that 


n

i
iw

1
= 1, then the weighted Dice 

similarity measure of SVNSs can be defined as follows. 

Dicew (P, Q) = 


n

i iw
1  2

Q
2

Q
2

Q
2

P
2

P
2

P ))(())(())(())(())(())((

))().()().()().((2

iiiiii

iQiPiQiPiQiP

zFzIzTzFzIzT

zFzFzIzIzTzT





(2) 
Definition 3.2 (Broumi & Smarandache, 2014b): Let P = {z, )(F),(I),(TP zzz PP  zU} and Q = 

{z, )(F),(I),(T zzz QQQ  zU} be two SVNSs (non-refined) in the universe of discourse U = {z1, z2, …, 

zn}. Then, the cosine similarity measure of SVNSs is defined as given below. 

Cos (P, Q) = 


n

in 1

1

 222
Q

222 ))(())(())((.))(())(())((

))().()().()()((

iQiQiiPiPiP

iQiPiQiPiQiP

zFzIzTzFzIzT

zFzFzIzIz.TzT





(3) 

and if wi [0, 1] be the weight of zi for i = 1, 2, …, n satisfying 


n

i iw
1

= 1, then the weighted cosine 

similarity measure of SVNSs can be defined as follows. 

Cosw (P, Q) = 


n

i iw
1  222

Q
222 ))(())(())((.))(())(())((

))().()().()()((

iQiQiiPiPiP

iQiPiQiPiQiP

zFzIzTzFzIzT

zFzFzIzIz.TzT





(4) 
Definition 3.3 (Pramanik et al., 2017): Hybrid vector similarity measure of SVNSs 

Consider Q1 = {z, )(),(),(
111

zFzIzT QQQ  zU} and Q2 = {z, )(),(),(
222

zFzIzT QQQ  zU} be two 

SVNSs in U. Then, the hybrid vector similarity measure of Q1 and Q2 is defined as follows: 

Hyb (Q1, Q2) = 
n

1  

 

































n

i
iQiQiQiPiPiP

iQiQiQiQiQiQ

iiiiii

iQiQiQiQiQiQn

i

zFzIzTzFzIzT

zFzFzIzIzTzT
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(5) 
where  [0, 1]. 
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Definition 3.4 (Pramanik et al., 2017): Weighted hybrid vector similarity measure of SVNSs 

The weighted hybrid vector similarity measure of Q1 = {z, )(F),(I),(T
111

zzz QQQ  zU} and Q2 = 

{z, )(F),(I),(T
222

zzz QQQ  zU} can be defined as follows: 

WHyb (Q1, Q2) =  

 

































n

i
iiiiii

iQiQiQiQiQiQ
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iiiiii

iQiQiQiQiQiQn

i i
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(6) 

where wi [0, 1] be the weight of zi for i = 1, 2, …, n such that 


n

i iw
1

= 1, and  [0, 1]. 

Definition 3.5 (Ye & Ye, 2014): Dice similarity measure between two SVNRSs Q1, Q2 is defined as 
follows. 
DiceSVRNS (Q1, Q2) 

= 


p

jp 1

1
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n

(7) 
Definition 3.6 (Ye & Ye, 2014): Weighted Dice similarity measure between two SVNRSs Q1, Q2 is 
presented as follows. 
WDiceSVRNS (Q1, Q2) 

= 


p

jp 1

1
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(8) 
Definition 3.7: Cosine similarity measure between two SVNRSs Q1, Q2 can be defined in the following 
way: 
CosSVRNS (Q1, Q2) 

= 


p

jp 1

1
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(9) 
Proposition 3.1 The defined cosine similarity measure CosSVNRS (Q1, Q2) between SVRNSs Q1and Q2 
satisfies the following properties: 

P1. 0  CosSVRNS (Q1, Q2)  1 
P2. CosSVRNS (Q1, Q2) = 1, if and only if Q1 = Q2 
P3. CosSVRNS (Q1, Q2) = CosSVRNS (Q2, Q1).  

Proof. 
 P1: According to Cauchy-Schwarz inequality: 

)...).(...()......( 22
2

2
1

22
2

2
1

2
2211 nnnn   , where n

n ),...,,( 21 
and n

n ),...,,( 21  , we have 
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P ))(())(())((.))(())(())(( iQiQiQiii zFzIzTzFzIzT 
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n
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So, CosSVRNS  (Q1, Q2) = 
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Definition 3.8: Weighted cosine similarity measure between SVNRSs Q1, Q2 can be defined as follows: 
WCosSVRNS (Q1, Q2) 

= 


p

jp 1

1

 















n

i
i

j
Qi

j
Qi

j
Qi

j
Qi

j
Qi

j
Q

i
j

Qi
j

Qi
j

Qi
j

Qi
j

Qi
j

Q

i

zFzIzTzFzIzT

zFzFzIzIzTzT
w

1 222222 )))(())(())(().))(())(())(((

))().()().()().((

222111

212121

(10) 
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Q1and Q2 satisfies the following properties:  
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where wi [0, 1] be the weight of zi for i = 1, 2, …, n such that 
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Next, we have defined hybrid vector similarity methods between SVRNSs by extending the concept of 
Pramanik et al. (2017) as given below. 

Definition 3.9: Hybrid vector similarity measure between SVNRSs Q1, Q2 can be defined as follows: 
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= 


p

jp 1

1  

 



































n

i
i

j
Qi

j
Qi

j
Qi

j
Qi

j
Qi

j
Q

i
j

Qi
j

Qi
j

Qi
j

Qi
j

Qi
j

Q

i
j

Qi
j

Qi
j

Qi
j

Qi
j

Qi
j

Q

i
j

Qi
j

Qi
j

Qi
j

Qi
j

Qi
j

Qn

i

zFzIzTzFzIzT

zFzFzIzIzTzT

zFzIzTzFzIzT

zFzFzIzIzTzT

n
1 222222

2222221

)))(())(())(().))(())(())(((

))().()().()().((
)1(

)))(())(())((()))(())(())(((

))().()().()().((2

1

222111

212121

222111

212121





(11) 
where  [0, 1]. 
Proposition 3.3 The defined single valued refined hybrid vector similarity measure HybSVNRS (Q1, Q2) 
between two SVRNSs Q1and Q2 satisfies the following properties:  

P1. 0  HybSVRNS (Q1, Q2)  1 
P2. HybSVRNS (Q1, Q2) = 1, if and only if Q1 = Q2. 
P3. HybSVRNS (Q1, Q2) = HybSVRNS (Q2, Q1).  

Proof. 
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for j = 1, 2, …, p. 
Therefore, HybSVRNS (Q1, Q2) 
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Definition 10: Weighted hybrid vector similarity measure between SVRNSs can be defined as follows. 
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(12) 

Here, wi [0, 1] represents the weight of zi for i = 1, 2, …, n such that 
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= 1, where  [0, 1], and 

WHybw (Q1, Q2) should satisfy the following properties. 
Proposition 3.4 

P1. 0  WHybw (Q1, Q2)  1. 
P2. WHybw (Q1, Q2) = 1, if and only if Q1 = Q2. 
P3. WHybw (Q1, Q2) = WHybw (Q2, Q1).  
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Proof. 
P1. Using Dice and cosine measures of SVRNSs, we have 0 DiceSVRNS (Q1, Q2)  1, 0CosSVRNS (Q1, 
Q2)  1. 
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= WHybw (Q2, Q1). 

4. MADM WITH SINGLE VALUED REFINED NEUTROSOPHIC INFORMATION
BASED ON HYBRID SIMILARITY MEASURE 

Assume that P = {P1, P2, …, Pm} (m  2) be a discrete set of m candidates,  C = {C1, C2, …, Cn}, (n  2) 
be the set of attributes of each candidates, and  A = {A1, A2, …, Ak}, (k  2) be the set of alternatives of 
each candidate. The decision maker or expert presents the ranking of alternatives with regard to each 
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candidate. The ranking represents the performances of Pi, i = 1, 2, …, m against the attributes Cj, j = 1, 
2, …, n and w = (w1, w2, …, wn)T be the weight vector of the attributes Cj, j = 1, 2, …, n with 0 wj 1 

and 


n
w

1j j = 1. The relation between candidates and attributes, and the relation between attributes and

alternatives can be presented as follows (see Table 1 and Table 2 respectively). 

Table 1. The relation between candidates and pre-defined attributes 

where t
11β = t

ij
t
ij

t
ij ,, FIT represents single valued neutrosophic numbers (SVNNs), i = 1, 2, …, m; j = 1, 

2, …, n; t = 1, 2, …, s. 

Table 2. The relation between attributes and alternatives 
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Here, j =  jjj ,, FIT denotes SVNNs, j = 1, 2, …, n;  = 1, 2, …, k.

We now develop two algorithms for MADM problems based on hybrid similarity measure with single 
valued refined neutrosophic information as given below. 

Algorithm 1 
Step 1. Calculate the single valued refined hybrid similarity measures between Table 1, and 2 by using 
Equation 11. 
Step 2. Rank the alternatives based on the descending order of hybrid similarity measures. The biggest 
value reflects the best alternative. 
Step 3. Stop. 

Algorithm 2 
Step 1. Compute the single valued refined weighted hybrid similarity measure between Table 1 and 2 by 
means of Equation 12. 
Step 2. The alternatives are ranked in descending order of the refined weighted hybrid similarity 
measures. The highest value of refined weighted hybrid similarity measures indicates the best 
alternative. 

Step 3. Stop. 
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5. APPLICATION OF THE PROPOSED METHOD TO MEDICAL DIAGNOSIS
PROBLEM 

We consider the illustrative example of medical diagnosis with single valued refined neutrosophic 
information studied in (Mondal & Pramanik, 2015e). Medical diagnosis has to deal with a large amount 
of uncertainties and huge amount of information available to the medical practitioners using new and 
advanced technologies. The procedure of classifying dissimilar set of symptoms under a single name of 
diseases is not easy (Broumi & Smarandache, 2014). Also, it is possible that every object has different 
truth, indeterminate and false membership functions and the proposed similarity measures among the 
patients versus symptoms and symptoms versus diseases will provide the appropriate medical diagnosis. 
In practical situation, there may occur errors in diagnosis if we consider data from single (one time) 
observation and therefore multi time inspection, by considering the samples of same patient at different 
times will provide best medical diagnosis (Rajarajeswari & Uma, 2014). 

Consider P = {P1, P2, P3, P4} be the set of four patients, C = {viral fever, malaria, typhoid, stomach 
problem, chest problem} be the set of five diseases, A = {temperature, headache, stomach pain, cough, 
chest pain} be the set of six symptoms. Now our objective is to examine the patient at different time 
intervals and we will obtain different truth, indeterminate and false membership functions for every 
patient. Let three observations are taken in a day: 7 am, 1 pm and 6 pm (see Table 3) (Mondal & 
Pramanik, 2015e). 

Table 3. The relation between patients and symptoms 

Temperature Headache Stomach  pain Cough Chest pain 
P1 (0.8, 0.1, 0.1) 

(0.6, 0.3, 0.3) 
(0.6, 0.3, 0.1) 

(0.6, 0.1, 0.3) 
(0.5, 0.2, 0.4) 
(0.5, 0.1, 0.2) 

(0.2, 0.8, 0.0) 
(0.3, 0.5, 0.2) 
(0.2, 0.3, 0.4) 

(0.6, 0.1, 0.3) 
(0.4, 0.4, 0.4) 
(0.4, 0.3, 0.3) 

(0.1, 0.6, 0.3) 
(0.3, 0.4, 0.5) 
(0.2, 0.5, 0.4) 

P2 (0.0, 0.8, 0.2) 
(0.2, 0.6, 0.4) 
(0.1, 0.6, 0.4) 

(0.4, 0.4, 0.2) 
(0.5, 0.4, 0.1) 
(0.4, 0.6, 0.3) 

(0.6, 0.1, 0.3) 
(0.4, 0.2, 0.5) 
(0.3, 0.2, 0.4) 

(0.1, 0.7, 0.2) 
(0.2, 0.7, 0.5) 
(0.3, 0.5, 0.4) 

(0.1, 0.8, 0.1) 
(0.3, 0.6, 0.4) 
(0.3, 0.6, 0.3) 

P3 (0.8, 0.1, 0.1) 
(0.6, 0.4, 0.1) 
(0.5, 0.3, 0.3) 

(0.8, 0.1, 0.1) 
(0.6, 0.2, 0.4) 
(0.6, 0.1, 0.3) 

(0.0, 0.6, 0.4) 
(0.2, 0.5, 0.5) 
(0.3, 0.4, 0.6) 

(0.2, 0.7, 0.1) 
(0.2, 0.5, 0.5) 
(0.1, 0.6, 0.3) 

(0.0, 0.5, 0.5) 
(0.2, 0.5, 0.3) 
(0.3, 0.3, 0.4) 

P4 (0.6, 0.1, 0.3) 
(0.4, 0.3, 0.2) 
(0.5, 0.2, 0.3) 

(0.5, 0.4, 0.1) 
(0.4, 0.4, 0.4) 
(0.5, 0.2, 0.4) 

(0.3, 0.4, 0.3) 
(0.2, 0.4, 0.5) 
(0.1, 0.5, 0.4) 

(0.7, 0.2, 0.1) 
(0.5, 0.2, 0.4) 
(0.6, 0.4, 0.1) 

(0.3, 0.4, 0.3) 
(0.4, 0.3, 0.4) 
(0.3, 0.5, 0.5) 

The relation between symptoms and diseases in the form single valued neutrosophic assessments is 
given in Table 4 below. 
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Temperature (0.6, 0.3, 0.3) (0.2, 0.5, 0.3) (0.2, 0.6, 0.4) (0.1, 0.6, 0.6) (0.1, 0.6, 
0.4) 

Headache (0.4, 0.5, 0.3) (0.2, 0.6, 0.4) (0.1, 0.5, 0.4) (0.2, 0.4, 0.6) (0.1, 0.6, 
0.4) 

Stomach 
pain 

(0.1, 0.6, 0.3) (0.0, 0.6, 0.4) (0.2, 0.5, 0.5) (0.8, 0.2, 0.2) (0.1, 0.7, 
0.1) 

Cough (0.4, 0.4, 0.4) (0.4, 0.1, 0.5) (0.2, 0.5, 0.5) (0.1, 0.7, 0.4) (0.4, 0.5, 
0.4) 

Chest pain (0.1, 0.7, 0.4) (0.1, 0.6, 0.3) (0.1, 0.6, 0.4) (0.1, 0.7, 0.4) (0.8, 0.2, 
0.2) 

Now using Equation (11), Hybrid vector refined similarity measures (HVRSM) by considering = 0.5 
between Relation 1,  and  2 are presented as given below (see Table 5). 

Table 5. HVRSM between Relation 1 and Relation 2 

Viral fever Malaria Typhoid Stomach 
problem 

Chest 
problem 

P1 0.9033 0.7953 0.7676 0.6809 0.6809 

P2 0.8135 0.7981 0.8892 0.8880 0.7446 

P3 0.8846 0.7418 0.7959 0.7074 0.6535 

P4 0.9116 0.8231 0.8031 0.6898 0.7526 

The maximal HVRSM from Table 5 determines the proper medical diagnosis. Therefore, from Table 5, 
we observe that P1, P3, P4 suffer from viral fever, and P2 suffers from typhoid. 

Also, using Equation (12), weighted hybrid vector refined similarity measures (WHVRSM) with known 
weight information w = (0.3, 0.2, 0.15, 0.2, 0.15) and  = 0.5 between Relation 1, and 2 are presented 
as given below (see the Table 6). 

Table 4. The relation between symptoms and diseases 

Viral fever Malaria Typhoid Stomach 
problem 

Chest 
problem 
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1 and Relation 2 

Viral fever Malaria Typhoid Stomach 
problem 

Chest problem 

P1 0.9078 0.7721 0.7383 0.6533 0.6607 

P2 0.7994 0.8165 0.8989 0.8919 0.7909 

P3 0.8879 0.7189 0.7664 0.6886 0.6423 

P4 0.9189 0.8030 0.7814 0.6788 0.7326 

Here, we also see that P1, P3, P4 suffer from viral fever, and P2 suffers from typhoid. By using Equation. 
11, and 12, HVRSMs and WHVRSMs with different values of between Relation 1, 2 are presented in 
the following Tables 7, 8, 9, 10, 11, 12, 13, and 14 and which patient suffers from which disease is 
indicated by  mark below the Tables. 

Table 7. HVRSM between Relation 1 and Relation 2 when  = 0.1 
Viral fever Malaria Typhoid Stomach problem Chest problem 

P1 0.9059 0.7987 0.7706 0.6904 0.6849 

P2 0.8156 0.8033 0.8917 0.8931 0.7467 

P3 0.8880 0.7434 0.7976 0.7118 0.6562 

P4 0.9157 0.8301 0.8066 0.6979 0.7571 

P1  Viral fever, P2  Stomach problem, P3  Viral fever, P4  Viral fever 

Table 8. HVRSM between Relation 1 and Relation 2 when  = 0.25 

Viral fever Malaria Typhoid Stomach 
problem 

Chest problem 

P1 0.9049 0.7974 0.7695 0.6868 0.6834 

P2 0.8148 0.8014 0.8908 0.8912 0.7459 

P3 0.8867 0.7428 0.7970 0.7102 0.6552 

P4 0.9142 0.8274 0.8053 0.6949 0.7554 

P1  Viral fever, P2  Stomach problem, P3  Viral fever, P4  Viral fever 

Table 6. Weighted hybrid vector refined similarity measure (WHVRSM) between Relation 
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P1 0.9016 0.7931 0.7658 0.6750 0.6784 

P2 0.8122 0.7948 0.8876 0.8848 0.7434 

P3 0.8825 0.7408 0.7949 0.7047 0.6517 

P4 0.9090 0.8187 0.8009 0.6847 0.7498 

P1  Viral fever, P2  Typhoid, P3  Viral fever, P4  Viral fever 

Table 10. HVRSM between Relation 1 and Relation 2 when  = 0.90 

Viral fever Malaria Typhoid Stomach 
problem 

Chest problem 

P1 0.9006 0.7918 0.7647 0.6714 0.6769 

P2 0.8114 0.7928 0.8867 0.8829 0.7426 

P3 0.8813 0.7401 0.7942 0.7030 0.6507 

P4 0.9075 0.8161 0.7996 0.6816 0.7482 

P1  Viral fever, P2  Typhoid, P3  Viral fever, P4  Viral fever 

Table 11. WHVRSM between Relation 1 and Relation 2 when  = 0.1 

Viral fever Malaria Typhoid Stomach 
problem 

Chest problem 

P1 0.9136 0.7756 0.7409 0.6616 0.6641 

P2 0.8014 0.8224 0.9012 0.8966 0.7890 

P3 0.8907 0.7208 0.7679 0.6926 0.6448 

P4 0.9233 0.8170 0.7852 0.6875 0.7408 

P1  Viral fever, P2  Typhoid, P3  Viral fever, P4  Viral fever 

Table 9. HVRSM between Relation 1 and Relation 2 when  = 0.75 

Viral fever Malaria Typhoid Stomach 
problem 

Chest problem 
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Viral fever Malaria Typhoid Stomach 
problem 

Chest problem 

P1 0.9114 0.7743 0.7399 0.6585 0.6628 

P2 0.8006 0.8202 0.9003 0.8948 0.7920 

P3 0.8397 0.7201 0.7673 0.6911 0.6438 

P4 0.9217 0.8162 0.7838 0.6842 0.7378 

P1  Viral fever, P2  Typhoid, P3  Viral fever, P4  Viral fever 

Table 13. WHVRSM between Relation 1, and 2 when  = 0.75 

Viral fever Malaria Typhoid Stomach 
problem 

Chest problem 

P1 0.9041 0.7698 0.7366 0.6482 0.6585 

P2 0.7981 0.8128 0.8975 0.8890 0.7897 

P3 0.8695 0.7178 0.7655 0.6861 0.6408 

P4 0.9162 0.8138 0.7790 0.6734 0.7274 

P1  Viral fever, P2  Typhoid, P3  Viral fever, P4  Viral fever 

Table 14. WHVRSM between Relation 1, and  2 when  = 0.90 

Viral fever Malaria Typhoid Stomach 
problem 

Chest problem 

P1 0.9019 0.7685 0.7356 0.6451 0.6572 

P2 0.7974 0.8106 0.8967 0.8873 0.7890 

P3 0.8785 0.7171 0.7649 0.6846 0.6400 

P4 0.9145 0.8130 0.7775 0.6702 0.7243 

P1  Viral fever, P2  Typhoid, P3  Viral fever, P4  Viral fever 

Table 12. WHVRSM between Relation 1 and Relation 2 when  = 0.25 
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Note 1. Using neutrosophic refined tangent similarity measure, Mondal and Pramanik (2015e) obtained 
the results as shown in Table 15. 

Table 15. The tangent refined similarity measure between Relation 1, and 2  (Mandal 
&Pramanik, 2015e) 

Viral fever Malaria Typhoid Stomach 
problem 

Chest problem 

P1 0.8963 0.8312 0.8237 0.8015 0.7778 

P2 0.8404 0.8386 0.8877 0.8768 0.8049 

P3 0.8643 0.8091 0.8393 0.7620 0.7540 

P4 0.8893 0.8465 0.8335 0.7565 0.7959 

P1  Viral fever, P2  Typhoid, P3  Viral fever, P4  Viral fever 

From the  Table 15, we observe that P1, P3, P4 suffer from viral fever, and P2 suffers from typhoid. 

6. CONCLUSION

We have investigated hybrid vector similarity and weighted hybrid vector similarity measures 
with single valued refined neutrosophic assessments and proved some of their basic properties. 
Then, the proposed hybrid similarity measures have been used to solve a medical diagnosis 
problem. We have compared the obtained results with different values of the parameter and 
with the results of other existing method in order to verify the effectiveness of the proposed 
method. We hope that the proposed hybrid vector similarity measure can be applied to solve 
decision making problems in refined neutrosophic environment such as fault diagnosis, cluster 
analysis, data mining, investment, etc. 
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ABSTRACT 
In this paper, we define projection and bidirectional projection measures between rough neutrosophic sets. 
Then two new multi criteria decision making methods are proposed based on neutrosophic projection and 
bidirectional projection measures respectively. Then the proposed methods are applied for solving multiple 
criteria group decision making problems. Finally, two numerical examples are provided to demonstrate the 
applicability and effectiveness of the proposed methods. 

KEYWORDS:  Rough neutrosophic set; projection measure; bidirectional projection measure. 

1. INTRODUCTION

       The concept of fuzzy set theory made its first appearance in the literature in two nearly 
simultaneous publications by Zadeh (1965) and Klaua (1965). Zadeh’s work caught much more 
attention of the researchers than Klau’s pure mathematical treatment.  Zadeh (1965) defined fuzzy 
set by introducing membership function to deal non-statistical uncertainty. Atanassov (1983, 
1986) defined intuitionistic fuzzy sets by introducing non-membership function as independent 
component. Smarandache (1998, 1999, 2002, 2005, 2010) introduced indeterminacy membership 
function as independent component and defined neutrosophic set.  Smarandache (1998) paved the 
way to define single valued neutrosophic set (SVNS) (Wang et al., 2010) to deal realistic 
problems. SVNSs (Wang et al.,2010) have been widely studied and applied in different fields such 
as medical diagnosis (Ye, 2015b), multi criteria/multi attribute decision making (Sodenkamp, 
2013; Ye, 2013a, 2013b, 2014a, 2014b, 2015a,; Biswas et al. 2014a, 2014b, 2015a, 2015b, 2016a, 
2016b, 2017a, 2017b; Kharal, 2014; Liu et al., 2014; Liu & Li, 2017; Liu & Wang, 2014; Sahin & 
Liu, 2015; Peng et al., 2016; Pramanik et al., 2015, 2016; Broumi & Smarandache, 2013; Mondal 
& Pramanik, 2015d, 2015e), educational problem (Mondal & Pramanik, 2014b, 2015a), conflict 
resolution (Pramanik & Roy 2014), social problem (Pramanik & Chakrabarti, 2013, Mondal & 
Pramanik, 2014a), optimization (Das & Roy, 2015; Hezam et al, 2015; Abdel-Baset et al., 2016; 
Pramanik, 2016a, 2016b; Sarkar et al., 2016), clustering analysis (Ye, 2014a, 2014b), image 
processing (Cheng & Guo, 2008; Guo & Cheng, 2009; Guo et al., 2014), etc. 

Pawlak (1982) proposed the concept of rough set. Rough set is an extension of the classical set 
theory (Cantor, 1874). It is very useful in dealing with incompleteness.   
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 Broumi et al. (2014a, 2014b) proposed the concept of rough neutrosophic set (RNS) by 
combining the concept of rough set (Pawlak, 1982) and neutrosophic set (Smarandache, 1998). 
Rough neutrosophic set is very useful to deal with uncertain, inconsistent and incomplete 
information. Yang et al. (2016) introduced single valued neutrosophic rough sets on two-universes 
and presented an algorithm for multi criteria decision making (MCDM).  Mondal and Pramanik 
(2015b) presented rough multi-attribute decision making based on grey relational analysis. 
Pramanik and Mondal (2015a) defined cosine similarity measure of rough neutrosophic sets and 
presented a MCDM approach in medical diagnosis. Mondal and Pramanik (2015c) presented 
MADM method using rough accuracy score function. Pramanik and Mondal (2015c) proposed 
cotangent similarity measure under rough neutrosophic environment. Pramanik and Mondal 
(2015b) further proposed some similarity measures namely, Dice similarity measure and Jaccard 
similarity measure in rough neutrosophic environment and their applications in MADM problems. 
Mondal et al. (2016a) defined several trigonometric Hamming similarity measures such as cosine, 
sine, cotangent similarity measures and proved some of their properties. In the same study 
(Mondal et al., 2016a) also presented MADM models based on Hamming similarity measures. 
Mondal et al. (2016b) proposed rough neutrosophic variational coefficient similarity measure and 
presented its application in multi attribute decision making. Mondal et al. (2016c) presented rough 
neutrosophic TOPSIS for multi-attribute group decision making problems.  

Pramanik and Mondal (2015d) studied interval neutrosophic multi-attribute decision-making 
method based on GRA. Mondal and Pramanik (2015f) developed MADM methods based on 
cosine similarity measure, Dice similarity measure and Jaccard similarity measures under interval 
rough neutrosophic environment.  

Mondal and Pramanik (2015g) proposed tri-complex rough neutrosophic similarity measure and 
presented its application in multi-attribute decision making problems. Mondal, Pramanik, 
Smarandache (2016d) defined rough neutrosophic hyper-complex set and presented its application 
to multi-attribute decision making problem. 

Yue & Jia (2015) proposed a method for multi attribute group decision making (MAGDM) 
problems based on normalized projection measure, in which the attribute values are offered by 
decision makers in hybrid form with crisp values and interval data. Yue (2012a) studied a new 
method for MAGDM based on determining the weights of decision makers using an extended 
projection method with interval data. Yue (2012a) Xu and Da (2004) and Xu (2005) studied 
projection method for decision making in uncertain environment with preference information. Yue 
(2012b) described a model to obtain the weights of DMs with crisp values using a projection 
method. Yue (2017) defined new projection measures in real number and interval settings and 
proposed group decision-making with hybrid decision information, including real numbers and 
interval data. Zheng et al. (2010) proposed an improved grey relational projection method by 
combining grey relational analysis (GRA) and technique for order of preference by similarity to 
ideal solution (TOPSIS) to select the optimum building envelope.   

 Yang et al. (2014) develop projection method for material selection problem in fuzzy 
environment. Xu and Hu (2010) developed two projection based models for MADM in 
intuitionistic fuzzy and interval valued intuitionistic fuzzy environment. Zeng et al. (2013) 
provided weighted projection algorithm for intuitionistic fuzzy MADM problems and interval-
valued intuitionistic fuzzy MADM problems.  
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Chen and Ye (2016) developed the projection based model for solving neutrosophic MADM 
problem and applied it to select clay-bricks in construction field.  

Dey et al. (2016b) defined weighted projection measure with interval neutrosophic environment 
and applied it to solve MADM problems with interval valued neutrosophic information. Ye 
(2015c) developed a projection measure-based multiple attribute decision making method with 
interval neutrosophic information and credibility information.  

To overcome the shortcomings of the general projection measure, Ye (2016) introduced a 
bidirectional projection measure between single valued neutrosophic numbers and developed 
MADM method for selecting problems of mechanical design schemes under a single valued 
neutrosophic environment. Ye (2015d) also presented the bidirectional projection method for 
multiple attribute group decision making with neutrosophic numbers.  
Dey et al. (2016a) proposed a new approach to neutrosophic soft MADM using grey relational 
projection method. Yue (2012b) presented a projection method to obtain weights of the experts in 
a group decision making problem. Yue (2013) proposed a projection based approach for partner 
selection in a group decision making problem with linguistic value and intuitionistic fuzzy 
information.  

Dey et al. (2017) defined projection, bidirectional projection and hybrid projection measures 
between bipolar neutrosophic sets and presented bipolar neutrosophic projection based models for 
multi-attribute decision making problems.  

Literature review reflects that no studies have been made on multi-attribute decision making using 
projection and bidirectional projection measures under rough neutrosophic environment. In this 
paper, we propose projection and bidirectional projection measures under rough neutrosophic 
environment. We also present two numerical examples to show the effectiveness and applicability 
of the proposed measures. 

 Rest of the paper is organized as follows: Section 2 describes preliminaries of neutrosophic number, 
SVNS and rough neutrosophic set (RNS). Section 3 describes projection and bidirectional projection 
measures of rough neutrosophic sets. Section 4 presents projection and bidirectional projection based 
decision making methods for MCDM problems with rough neutrosophic information. Section 5 solves a 
numerical example. Finally, section 6 presents the conclusion and future scope of research. 

2. PRELIMINARIES
In this Section, we provide some basic definitions regarding SVNSs, RNSs which are useful for 
developing the paper. 

2.1 Neutrosophic set 
Smarandache (1998) offered the following definition of neutrosophic set. 
Definition 2.1.1. Let X be a space of points (objects) with generic element in X denoted by x. A 
neutrosophic set A in X is characterized by a truth-membership function TA, an indeterminacy 
membership function IA and a falsity membership function FA. The functions TA , IA  and FA are 
real standard or non-standard subsets of ]  1,0 [that is TA:X  ]  1,0 [, IA:X  ]  1,0 [and 
FA:X  ]  1,0 [.  It should be noted that there is no restriction on the sum of TA(x) , IA(x)  and 

FA(x)i.e. .3)X(F)X(I)X(T0 AAA
   

 Definition 2.1.2: (complement) The complement of a neutrosophic set A is denoted by c(A) and 
is defined by Tc(A)(x) = {1+}-TA(x), Ic(A)(x) ={1+}-IA(x), Fc(A)(x) ={1+}-FA(x). 
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Definition 2.1.3: (Containment) A neutrosophic set A is contained in the other neutrosophic set B, 
denoted by A  B iff 

Xx (x)F sup(x)F sup(x),F inf (x)F inf   and

(x)I sup (x)I sup(x),I inf  (x)I inf(x),T sup (x)T sup(x),T inf  (x)T inf

BABA

BABABABA


  

Definition 2.1.4: (Single-valued neutrosophic set). Let X be a universal space of points (objects) 
with a generic element of X denoted by x. A single valued neutrosophic set A is characterized by 
a truth membership function TA(x), a falsity membership function FA(x) and indeterminacy 
function IA(x) with 

Xin  x   [0,1]   (x)F  and  (x)I(x),T AAA  . 

When X is continuous, a SNVS S can be written as follows: 

 
x

AAA Xxx/)x(I),x(F),x(TA

 and when X is discrete, a SVNS S can be written as follows: 

Xxx/)x(I),x(F),x(TA AAA 
For a SVNS S, 0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3. 

Definition2.1.5: The complement of a single valued neutrosophic set A is denoted by c(A) and is 
defined by Tc(A)(x) = FA(x), Ic(A)(x) = 1-IA(x), Fc(A)(x) = TA(x). 
Definition 2.1.6: A SVNS A is contained in the other SVNS B, denoted as AB iff, 

.Xx),x(F)x(Fand)x(I)x(I),x(T)x(T BABABA   

 2.2 Rough neutrosophic set (Broumi et al., 2014a, 2014b) 

Broumi et al., (2014a, 2014b) defined hybrid intelligent structure called Rough neutrosophic set. 

Definition 2.2.1: Let Y be a non-null set and R be an equivalence relation on Y. Let P be a 
neutrosophic set in Y with the membership function TP, indeterminacy membership function IP 
and falsity membership function FP. The lower and the upper approximations of P in the 

approximation space (Y, R) denoted by )P(N  and )P(N  are respectively defined as:

Yx,]x[y/)x(F),x(I),x(T,x)P(N R)P(N)P(N)P(N 

 and 

Yx,]x[y/)x(F),x(I),x(T,x)P(N R)P(N)P(N)P(N


where, 
)Y(F]x[z)x(F),Y(I]x[z)x(I),Y(T]x[z)x(T PR)P(NPR)P(NPR)P(N  and 

)Y(F]x[z)x(F),Y(I]x[z)x(I),Y(T]x[z)x(T PR)P(NPR)P(NPR)P(N
 . 

So, 
3)x(F)x(I)x(T0 )P(N)P(N)P(N   

 and
 3)x(F)x(I)x(T0

)P(N)P(N)P(N
 . 
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Here  and denote “max” and “min” operators respectively. TP(y), IP(y) and FP(y) are the membership, 
indeterminacy and non-membership of Y with respect to P. 
Thus NS mappings N  , : N(Y)-> N(Y) are, respectively, referred to as the lower and upper rough NS 

approximation operators, and the pair ( )P(N , )P(N ) is called the rough neutrosophic set in (Y, R). 

Definition 2.2.2  If N(P) = ( )P(N , )P(N ) is a rough neutrosophic set in (Y, R) , the rough complement of 

N(P) is the rough neutrosophic set denoted by ~(N(P))  and defined as: ~(N(P)) = (( )P(N  c), ( )P(N )c), 

where ( )P(N )c  and ( c)P(N ) are  the  complements of neutrosophic sets )P(N  and )P(N  respectively.

3. PROJECTION AND BIDIRECTIONAL PROJECTION MEASURE OF ROUGH
NEUTROSOPHIC SETS 
Existing projection and bidirectional projection measure are not capable of dealing with MCDM problems 
in rough neutrosophic environment.  Therefore, new projection and bidirectional projection measures 
between RNSs are proposed. 
Assume that M and N are two RNSs represented by 

M={<( )x(F,)x(I,)x(T iMiMiM ),( )x(F,)x(I),x(T iMiMiM )>:i = 1, 2, …, n}

and 

N={<( )x(F,)x(I,)x(T iNiNiN ),( )x(F,)x(I),x(T iNiNiN )>:i = 1, 2, …, n}.

Then, the inner product of M and N denoted by M.N can be defined as: 

].)x(F.)x(F)x(I.)x(I)x(T.)x(T)x(F.)x(F)x(I.)x(I)x(T.)x(T[N.M i2i1i2i1i2i1i2i1i2i1

n

1i
i2i1 



 The modulus of M can be defined as 

])x(F)x(I)x(T)x(F)x(I)x(T[M
2

i1
2

i1
2

i1
n

1i

2
i1

2
i1

2
i1  


 

 and the modulus of N can be defined as 

.])x(F)x(I)x(T)x(F)x(I)x(T[N
2

i2

2

i2

2

i2

n

1i

2

i2

2

i2

2

i2  


 

Definition4.1. The projection of M on N can be defined as: 

                     

.N.M
N

1
)M(ojPr N   

Definition4.2.The bidirectional projection measure between the RNSs M and N is defined as: 

N.MNMNM

NM

N.MNM1

1
)N,M(ojPrB





 . 

Here also the bidirectional projection measure satisfies the following properties: 
(1) BProj(M, N) = BProj(N, M);  

  (2) ;1N)BProj(M,0   
  (3) BProj(M, N) = 1, if M = N.   

Proof: 

(i) )M,N(ojPrB
M.NMN1

1

N.MNM1

1
)N,M(ojPrB 
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(ii)As 1
N.MNM1

1
and0

N.MNM1

1






 so, 1N)BProj(M,0   

(iii)If M = N then 1
M.MMM1

1
)M,M(ojPrB)N,M(ojPrB 


  

4. PROJECTION AND BIDIRECTIONAL PROJECTION BASED DECISION MAKING
METHODS FOR MCDM PROBLEMS WITH ROUGH NEUTROSOPHIC 
INFORMATION 

    In this section, we develop projection and bidirectional projection based MCDM models to 
solve MCDM problems with rough neutrosophic information. Consider E={E1, ….., En} be a set 
of alternatives and A={A1,……, Am} be a set of attributes. Now we present two algorithms for 
MCDM problems involving rough neutrosophic information. 
4.1 PROJECTION BASED DECISION MAKING METHODS FOR MCDM PROBLEMS 
WITH ROUGH NEUTROSOPHIC INFORMATION 
Algorithm 1. 
Step 1. The value of alternative Ei(i = 1, 2, ….., n) for the attribute Aj(j = 1, 2, ……, m) is 
evaluated by the decision maker in terms of RNSs and the rough neutrosophic decision matrix is 
constructed as:  

Z = <Zij>nxm = 



























nm2m1n

m22221

m11211

Z...ZZ

............

............

............

Z...ZZ

Z...ZZ

where >)F,I,T( ),F,I ,T(< = Zij ijijijijijij with 

3.F,I,T0 and 3 FI T0 ijijijijijij   

Step 2. Determine the ideal solution S*= {S1, S2, …, Sm}. 

If Ai is benefit type attribute then Si = )}Fmin,Imin,T(max),Fmax,Imax,T{(min jijjijjijjijjijjij . 

If Ai is cost type attribute then Si = )}Fmax,Imax,T(min),Fmin,Imin,T{(max jijjijjijjijjijjij . 

Step 3. Compute the projection measure between S* and Zi = <Zij>nxm for all i = 1, ….., n and j = 
1, ….., m. According to the descending order of projection measure Proj(Zi)S

* for i = 1, …., n
alternatives are ranked and highest value of Proj(Zi)S

* reflects the best option.

4.2. BIDIRECTIONAL PROJECTION BASED DECISION MAKING METHODS FOR 
MCDM PROBLEMS WITH ROUGH NEUTROSOPHIC INFORMATION 

Algorithm 2. 
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Step 1. The value of alternative Ei(i = 1, 2, ….., n) for the attribute Aj(j = 1, 2, ……, m) is 
evaluated by the decision maker in terms of RNSs and the rough neutrosophic decision matrix is 
constructed as:  

Z = <Zij>nxm = 



























nm2m1n

m22221

m11211

Z...ZZ

............

............

............

Z...ZZ

Z...ZZ

where >)F,I,T( ),F,I ,T(< = Zij ijijijijijij with 

3.F,I,T0 and 3 FI T0 ijijijijijij   

Step 2. Determine the ideal solution S*= {S1, S2, …, Sm}. 

If Ai is benefit type attribute then Si = )}Fmin,Imin,T(max),Fmax,Imax,T{(min jijjijjijjijjijjij . 

If Ai is cost type attribute then Si = )}Fmax,Imax,T(min),Fmin,Imin,T{(max jijjijjijjijjijjij . 

Step 3. Compute the bidirectional projection measure between S* and Zi = <Zij>nxm for all i = 1, 
….., n and j = 1, 2, ….., m. According to the descending order of bidirectional projection measure 
BProj(Zi, S*) for i = 1, 2, …., n alternatives are ranked and highest value of BProj(Zi, S*) reflects 
the best option. 

Section 5.  NUMERICAL EXAMPLES 

 Example 1: Assume that a decision maker intends to select the most suitable smartphone from the three 
initially chosen smartphones (S1, S2, S3) by considering four attributes namely: feature A1, price A2, 
customer care A3, and risk factor A4.  

Step1: The decision maker forms the following decision matrix: 

A1 A2 A3 A4

 S1 <(.6,.3,.3), 
(.8,.1,.1)> 

<(.6,.4,.4), 
(.8,.2,.2)> 

<(.6,.4,.4), 
(.8,.2,.2)> 

<(.7,.4,.4), 
(.9,.2,.2)> 

S2 <(.7,.3,.3), 
(.9,.1,.3)> 

<(.6,.3,.3), 
(.8,.3,.3)> 

<(.6,.2,.2), 
(.8,.4,.2)> 

<(.7,.3,.3), 
(.9,.3,.3)> 

S3 <(.6,.2,.2), 
(.8,.0,.2)> 

<(.7,.3,.3), 
(.9,.1,.1)> 

<(.7,.4,.6), 
(.9,.2,.4)> 

<(.6,.3,.2), 
(.8,.1,.2)> 

Step2: Here A2 and A4 are the cost type attributes. 
So, the ideal solution is: 
S*= [<(.6,.3,.3), (.9,.0,.1)>, <(.7,.3,.3), (.8,.3,.3)>, <(.6,.4,.6), (.9,.2,.2)>, <(.7,.3,.2), (.8,.3,.3)>]. 
Step3: Determination of the projection and bidirectional projection measure: 
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.SSS

)S,S(ojPrB)S,S(ojPrB)S,S(ojPrB

.407818.0)S,S(ojPrB,410714.0)S,S(ojPrB,405320.0)S,S(ojPrB

.SSS

)S(ojPr)S(ojPr)S(ojPr

.960396.0)S(ojPr,957095.0)S(ojPr,953795.0)S(ojPr

.82.5S.S,80.5S.S,78.5S.S

412468.2S,424871.2S,387467.2S,06.6S

132

*

1

*

3

*

2

*

3

*

2

*

1

123

*S1*S2*S3

*S3*S2*S1

*

3

*

2

*

1

321

*















Here S3 is the best alternative according to projection measure and S2 is the best alternative 
according to bidirectional projection measure. As bidirectional projection measure is better than 
projection measure so the decision maker selects the smartphone S2. 

Example 2: Assume that a decision maker intends to select the most suitable location of modern 
logistic centre from the three initially chosen locations (K1, K2, K3) by considering six attributes 
namely: cost L1, distance to suppliers L2, distance to customers L3, conformance to government 
and law L4, quality of service L5, environmental impact L6. 
Step1: The decision maker forms the following decision matrix: 

L1 L2 L3 L4 L5 L6

K1 <(.85,.05
,.05), 
(.95,.15,.
15)> 

<(.75,.15
,.10), 
(.85,.25,.
20)> 

<(.75,.1
5,.10), 
(.85,.25
,.20)> 

<(.75,.1
5,.10), 
(.85,.25
,.20)> 

<(.75,.15,.10)
, 
(.85,.25,.20)> 

<(.85,.05,.05)
,(.95,.15,.15)
> 

K2 <(.45,.45
,.35),(.55
,.55,.55)
> 

<(.75,.15
,.10), 
(.85,.25,.
20)> 

<(.45,.4
5,.35), 
(.55,.55
,.55)> 

<(.75,.1
5,.10), 
(.85,.25
,.20)> 

<(.75,.15,.10)
, 
(.85,.25,.20)> 

<(.45,.45,.35)
,  
(.55,.55,.55)> 

K3 <(.45,.45
,.35), 
(.55,.55,.
55)> 

<(.85,.05
,.05), 
(.95,.15,.
15)> 

<(.75,.1
5,.10), 
(.85,.25
,.20)> 

<(.75,.1
5,.10), 
(.85,.25
,.20)> 

<(.85,.05,.05)
, 
(.95,.15,.15)> 

<(.45,.45,.35)
, 
(.55,.55,.55)> 

Step2: Here L1, L2, L3 are cost type attributes  
So, the ideal solution is: 
S*= [ < (.85,.05,.05), (.55,.55,.55)>, < (.85,.05,.05), (.85,.25,.20)>, <(.75,.15,.10), (.55,.55,.55)>, 
<(.55,.30,.25), (.85,.25,.20)>, <(.75,.15,.10), (.95,.15,.15)>, <(.45,.45,.35), (.95,.15,.15)>]. 
Step3: Determination of the projection and bidirectional projection measure: 
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.KKK

)S,K(ojPrB)S,K(ojPrB)S,K(ojPrB

.971721.0)S,K(ojPrB,937908.0)S,K(ojPrB,993481.0)S,K(ojPrB

.KKK

)K(ojPr)K(ojPr)K(ojPr

.746074.2)K(ojPr,716897.2)K(ojPr,784434.2)K(ojPr

.2325.8S.K,1450.8S.K,3475.8S.K

966479.2K,926602.2K,004995.3K

997916.2S

231

*

2

*

3

*

1

*

3

*

2

*

1

231

*S2*S3*S1

*S3*S2*S1

*

3

*

2

*

1

321

*

















Hence, K1 is the best alternative. 

6. CONCLUSION
This paper defines projection measure and bidirectional projection measure between rough neutrosophic 
sets. Two new multi criteria decision making methods have been proposed based on the proposed 
neutrosophic projection and bidirectional projection measures respectively. Finally, two numerical 
examples are provided to demonstrate the applicability and effectiveness of the proposed methods. The 
proposed methods can be extended for solving multi criteria decision making in interval neutrosophic 
rough environments.  
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ABSTRACT 
In this paper, we introduced a new neutrosophic graphs called bipolar complex neutrosophic graphs of type1 
(BCNG1) and presented a matrix representation for it and studied some properties of this new concept. The concept 
of BCNG1 is an extension of generalized fuzzy graphs of type 1 (GFG1), generalized single valued neutrosophic 
graphs of type 1 (GSVNG1), Generalized bipolar neutrosophic graphs of type 1(GBNG1) and complex neutrosophic 
graph of type 1(CNG1). 

KEYWORDS: Bipolar complex neutrosophic set; Bipolar complex neutrosophic graph of type1; 
Matrix representation. 

1. INTRODUCTION
In 1998, (Smarandache, 1998), introduced a new theory called Neutrosophy, which is basically a 
branch of philosophy that focus on the origin, nature, and scope of neutralities and their 
interactions with different ideational spectra. Based on the neutrosophy, Smarandache defined the 
concept of neutrosophic set which is characterized by a degree of truth membership T, a degree of 
indeterminate- membership I and a degree false-membership F. The concept of neutrosophic set 
theory is a generalization of  the concept of classical sets, fuzzy sets (Zadeh, 1965), intuitionistic 
fuzzy sets (Atanassov, 1986), interval-valued fuzzy sets (Turksen, 1986). Neutrosophic sets is 
mathematical tool used to handle problems like imprecision, indeterminacy and inconsistency of 
data. Specially, the indeterminacy presented in the neutrosophic sets is independent on the truth 
and falsity values. To easily apply the neutrosophic sets to real scientific and engineering areas, 
(Smarandache, 1998) proposed the single valued neutrosophic sets as subclass of neutrosophic 
sets. Later on, (Wang et al., 2010) provided the set-theoretic operators and various properties of 
single valued neutrosophic sets. The concept of neutrosophic sets and their extensions  such as 
bipolar neutrosophic sets, complex neutrosophic sets, bipolar complex neutrosophic sets (Broumi 
et al.2017) and so on have been applied successfully in several fields 
(http://fs.gallup.unm.edu/NSS/).  
Graphs are the most powerful tool used in representing information involving relationship between 
objects and concepts. In a crisp graphs two vertices are either related or not related to each other, 
mathematically, the degree of relationship is either 0 or 1. While in fuzzy graphs, the degree of 
relationship takes values from [0, 1]. In (Shannon and Atanassov, 1994) introduced the concept of 
intuitionistic fuzzy graphs (IFGs) using five types of Cartesian products. The concept fuzzy graphs 
and their extensions have a common property that each edge must have a membership value less 
than or equal to the minimum membership of the nodes it connects. 
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When description of the object or their relations or both is indeterminate and inconsistent, it cannot 
be handled by fuzzy graphs and their particular types (Sharma et al., 2013; Arindam et al., 2012, 
2013). So, for this reason, (Smarandache, 2015) proposed the concept of neutrosophic graphs 
based on literal indeterminacy (I) to deal with such situations. Then, (Smarandache, 2015, 2015a) 
introduced another version of neutrosophic graph theory using the neutrosophic truth-values (T, I, 
F) and proposed three structures of neutrosophic graphs: neutrosophic edge graphs, neutrosophic
vertex graphs and neutrosophic vertex-edge graphs. Later on (Smarandache, 2016) proposed new 
version of neutrosophic graphs such as neutrosophic offgraph, neutrosophic bipolar/tripola/ 
multipolar graph. Presently, works on neutrosophic vertex-edge graphs and neutrosophic edge 
graphs are progressing rapidly. (Broumi et al., 2016) combined the concept of single valued 
neutrosophic sets and graph theory, and introduced certain types of single valued neutrosophic 
graphs (SVNG) such as strong single valued neutrosophic graph, constant single valued 
neutrosophic graph, complete single valued neutrosophic graph and investigate some of their 
properties with proofs and examples.Also, (Broumi et al., 2016a) also introduced neighborhood 
degree of a vertex and closed neighborhood degree of vertex in single valued neutrosophic graph 
as a generalization of neighborhood degree of a vertex and closed neighborhood degree of vertex 
in fuzzy graph and intuitionistic fuzzy graph. In addition, (Broumi et al., 2016b) proved a necessary 
and sufficient condition for a single valued neutrosophic graph to be an isolated single valued 
neutrosophic graph. After Broumi, the studies on the single valued neutrosophic graph theory have 
been studied increasingly(Broumi et al., 2016c, 2016d, 2016e, 2016g, 2016h, 2016i; Samanta et 
al.,2016; Mehra,2017; Ashraf et al.,2016; Fathi et al.,2016) 
Recently, (Smarandache, 2017) initiated the idea of removal of the edge degree restriction of fuzzy 
graphs, intuitionistic fuzzy graphs and single valued neutrosophic graphs. (Samanta et al,2016) 
introduced a new concept named the generalized fuzzy graphs (GFG) and defined two types of 
GFG, also the authors studied some major properties such as completeness and regularity with 
proved results. In this paper, the authors claims that fuzzy graphs and their extension defined by 
many researches are limited to represent for some systems such as social network. Later on 
(Broumi et al., 2017) have discussed the removal of the edge degree restriction of single valued 
neutrosophic graphs and defined a new class of single valued neutrosophic graph called 
generalized single valued neutrosophic graph of type1, which is a is an extension of generalized 
fuzzy graph of type1 (Samanta et al, 2016). Later on (Broumi et al., 2017a) introduced the concept 
of generalized bipolar neutrosophic of type 1. In addition, (Broumi et al., 2017b) combined the 
concept of complex neutrosophic sets with generalized single valued neutrosophic of type1 
(GSVNG1) and introduced the complex neutrosophic graph of type1(CNG1). Up to day, to our 
best knowledge, there is no research on bipolar complex neutrosophic graphs. 
The main objective of this paper is to extended the concept of complex neutrosophic graph of type 
1 (CNG1) introduced in (Broumi et al., 2017b) to bipolar complex neutrosophic graphs of type1 
and showed a matrix representation of BCNG1. 

The remainder of this paper is organized as follows. In Section 2, we review some basic 
concepts about neutrosophic sets, single valued neutrosophic sets, complex neutrosophic sets, 
bipolar complex neutrosophic sets, generalized fuzzy graph, generalized single valued 
neutrosophic graphs of type 1, generalized bipolar neutrosophic graphs of type 1 and complex 
neutrosophic graph of type 1. In Section 3, the concept of complex neutrosophic graphs of type 1 
is proposed with an illustrative example.  In section 4 a representation matrix of complex 
neutrosophic graphs of type 1 is introduced. Finally, Section 5outlines the conclusion of this paper 
and suggests several directions for future research. 
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2. PRELIMINARIES

In this section, we mainly recall some notions related to neutrosophic sets, single valued 
neutrosophic sets, complex neutrosophic sets, bipolar complex neutrosophic sets, generalized fuzzy 
graph, generalized single valued neutrosophic graphs of type 1,generalized bipolar neutrosophic 
graphs of type 1 and complex neutrosophic graph of type 1 relevant to the present work. See 
especially (Smarandache, 1998; Wang et al. 2010; Deli et al., 2015; Ali and Smarandache, 2015; 
Broumi et al., 2017, 2017b,2017c; Samanta et al.2016) for further details and background. 
Definition 2.1 (Smarandache, 1998). Let X  be a space of points  and let x X. A neutrosophic 
set A in X is characterized by a truth membership function T, an indeterminacy membership 
function I, and a falsity membership function F. T, I, F are real standard or nonstandard subsets of 
]−0,1+[, and T, I, F: X→]−0,1+[. The neutrosophic set can be represented as 

A={(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋} (1)

There is no restriction on the sum of T, I, F, So 
−0 ≤TA(x)+ IA(x)+FA(x)≤ 3+.  (2) 

From philosophical point of view, the neutrosophic set takes the value from real standard or non-
standard subsets of ]−0,1+[. Thus it is necessary to take the interval [0, 1] instead of ]−0,1+[. For 
technical applications. It is difficult to apply ]−0,1+[ in the real life applications such as engineering 
and scientific problems. 
Definition 2.2 (Wang et al. 2010). Let X be a space of points (objects) with generic elements in 
X denoted by x. A single valued neutrosophic set A (SVNS A) is characterized by truth-
membership function TA(x) , an indeterminate-membership function IA(x) , and a false-
membership function FA(x). For each point x in X, TA(x), IA(x), FA(x)∈[0, 1]. A SVNS A can be
written as 

A={(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋}(3)
Definition 2.3 (Deli et al., 2015). A bipolar neutrosophic set A in X is defined as an object of the 
form 
A={<x, (𝑇𝐴

+(𝑥),𝐼𝐴
+(𝑥),𝐹𝐴

+(𝑥),𝑇𝐴
−(𝑥),𝐼𝐴

−(𝑥),𝐹𝐴
−(𝑥))>: x  X}, where TA

+, 𝐼𝐴
+,FA

+:X  [1, 0] and
TA

- , 𝐼𝐴
−,FA

- :: X  [-1, 0] .The positive membership degree 𝑇𝐴
+(𝑥),𝐼𝐴

+(𝑥),𝐹𝐴
+(𝑥) denotes the truth

membership, indeterminate membership and false membership of an element  X corresponding 
to a bipolar neutrosophic set A and the negative membership degree 𝑇𝐴

−(𝑥), 𝐼𝐴
−(𝑥),𝐹𝐴

−(𝑥) denotes
the truth membership, indeterminate membership and false membership of an element  X to some 
implicit counter-property corresponding to a bipolar neutrosophic set A. For convenience a bipolar 
neutrosophic number is represented by  

A= <(𝑇𝐴
+,𝐼𝐴

+,𝐹𝐴
+,𝑇𝐴

−,𝐼𝐴
−,𝐹𝐴

−> (4)

Definition 2.4 (Ali and Smarandache, 2015) 
A complex neutrosophic set A defined on a universe of discourse X, which is characterized by a 
truth membership functionTA(x) , an indeterminacy membership function IA(x) , and a falsity 
membership functionFA(x) that assigns a complex-valued grade of TA(x), IA(x), and FA(x) in A 
for any x X. The valuesTA(x), IA(x), andFA(x)and their sum may all within the unit circle in the 
complex plane and so is of the following form, 
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TA(x)=pA(x).ejμA(x),
IA(x)=qA(x).ejvA(x)and
FA(x)=rA(x).ejωA(x)

Where, pA(x),qA(x),rA(x) and μ
A

(x), vA(x),ωA(x) are respectively, real valued and
pA(x),qA(x),rA(x) ∈[0, 1] such that  
  0 ≤ pA(x)+ qA(x) + rA(x)≤ 3     
   The complex neutrosophic set A can be represented in set form as 

  , ( ) , ( ) , ( ) :A T A I A FA x T x a I x a F x a x X    

where  𝑇𝐴: 𝑋 → {𝑎𝑇: 𝑎𝑇 ∈ 𝐶, |𝑎𝑇| ≤ 1},
𝐼𝐴: 𝑋 → {𝑎𝐼: 𝑎𝐼 ∈ 𝐶, |𝑎𝐼| ≤ 1},
𝐹𝐴: 𝑋 → {𝑎𝐹: 𝑎𝐹 ∈ 𝐶, |𝑎𝐹| ≤ 1}and
|𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥)| ≤ 3.
Definition 2.5 (Ali and Smarandache, 2015) The union of two complex neutrosophic sets as 
follows: 
Let A and B be two complex neutrosophic sets in X, where   A={(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈

𝑋}and      
B={(𝑥, 𝑇𝐵(𝑥), 𝐼𝐵(𝑥), 𝐹𝐵(𝑥)): 𝑥 ∈ 𝑋}.
Then, the union of A and B is denoted as 𝐴 ∪𝑁 𝐵 and is given as  

𝐴 ∪𝑁 𝐵={(𝑥, TA∪B(x), IA∪B(x), FA∪B(x)): 𝑥 ∈ 𝑋}

Where the truth membership functionTA∪B(x), the indeterminacy membership function IA∪B(x) 
and the falsehood membership function FA∪B(x) is defined by  

TA∪B(x)=[(pA(x) ∨ pB(x))].ej.μTA∪B
(x), 

IA∪B(x)=[(qA(x) ∧ qB(x))].ej.νIA∪B
(x),

FA∪B(x)=[(rA(x) ∧ rB(x))].ej.ωFA∪B
(x)

Where∨ and ∧denotes the max and min operators respectively.  
The phase term of complex truth membership function, complex indeterminacy membership 
function and complex falsity membership function belongs to (0,2 )  and, they are defined as 
follows: 

a) Sum:
μ

A∪B
(x) = μ

A
(x) + μ

B
(x),

νA∪B(x) = νA(x) + νB(x),
ωA∪B(x) = ωA(x) + ωB(x).
b) Max:

μ
A∪B

(x) = max (μ
A

(x), μ
B

(x)),
νA∪B(x) = max(νA(x), νB(x)),
ωA∪B(x) = max(ωA(x), ωB(x)).

c) Min:
μ

A∪B
(x) = min (μ

A
(x), μ

B
(x)),
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νA∪B(x) = min(νA(x), νB(x)),
ωA∪B(x) = min(ωA(x), ωB(x)).

d) “The game of winner, neutral, and loser”:

 
( )
( )

A A B
A B

B B A

x if p p
x

x if p p








 


, 

 
( )
( )

A A B
A B

B B A

x if q q
x

x if q q








 


, 

 
( )
( )

A A B
A B

B B A

x if r r
x

x if r r








 


. 

The game of winner, neutral, and loser is the generalization of the concept “winner take all” 
introduced by Ramot et al. in (2002) for the union of phase terms. 
Definition 2.6 (Ali and Smarandache, 2015) Intersection of complex neutrosophic sets 
Let A and B be two complex neutrosophic sets in X, A={(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋}and
B={(𝑥, 𝑇𝐵(𝑥), 𝐼𝐵(𝑥), 𝐹𝐵(𝑥)): 𝑥 ∈ 𝑋}.
Then the intersection of A and B is denoted as 𝐴 ∩𝑁 𝐵 and is define as 

𝐴 ∩𝑁 𝐵={(𝑥, TA∩B(x), IA∩B(x), FA∩B(x)): 𝑥 ∈ 𝑋}

Where the truth membership functionTA∩B(x), the indeterminacy membership function IA∩B(x) 
and the falsehood membership function FA∩B(x) is given as:  

TA∩B(x)=[(pA(x) ∧ pB(x))].ej.μTA∩B
(x),

IA∩B(x)=[(qA(x) ∨ qB(x))].ej.νIA∩B
(x),

FA∩B(x)=[(rA(x) ∨ rB(x))].ej.ωFA∩B
(x)

Where∨ and ∧ denotes denotes the max and min operators respectively 
The phase terms ej.μTA∩B

(x), ej.νIA∩B
(x) and ej.ωFA∩B

(x) was calculated on the same lines by winner,
neutral, and loser game. 
Definition 2.7(Broumi et al., 2017c). A bipolar complex neutrosophic set A in X is defined as an 
object of the form 
A={<x, 𝑇1

+𝑒𝑖𝑇2
+ ,𝐼1

+𝑒𝑖𝐼2
+ ,𝐹1

+𝑒𝑖𝐹2
+ ,𝑇1

−𝑒𝑖𝑇2
− ,𝐼1

−𝑒𝑖𝐼2
− ,𝐹1

−𝑒𝑖𝐹2
− >: x   X}, where T1

+ , 𝐼1
+ , F1

+:X  [1, 0]
and T1

- , 𝐼1
− , F1

- : X  [-1, 0] .The positive membership degree 𝑇1
+(𝑥),𝐼1

+(𝑥),𝐹1
+(𝑥) denotes the

truth membership, indeterminate membership and false membership of an element 𝑥 ∈ 𝑋 
corresponding to a bipolar complex neutrosophic set A and the negative membership degree 
𝑇1

−(𝑥) , 𝐼1
−(𝑥) , 𝐹1

−(𝑥) denotes the truth membership, indeterminate membership and false
membership of an element 𝑥 ∈ 𝑋to some implicit counter-property corresponding to a bipolar 
complex neutrosophic set A. For convenience a bipolar complex neutrosophic number is 
represented by  

A= <𝑇1
+𝑒𝑖𝑇2

+,𝐼1
+𝑒𝑖𝐼2

+,𝐹1
+𝑒𝑖𝐹2

+ ,𝑇1
−𝑒𝑖𝑇2

−,𝐼1
−𝑒𝑖𝐼2

−,𝐹1
−𝑒𝑖𝐹2

−>
Definition 2.8 (Broumi et al., 2017c). The union of two bipolar complex neutrosophic sets as 
follows: 
Let A  and B  be two bipolar complex neutrosophic sets in X , where 
A= (𝑇1

+𝑒𝑖𝑇2
+,𝐼1

+𝑒𝑖𝐼2
+,𝐹1

+𝑒𝑖𝐹2
+ ,𝑇1

−𝑒𝑖𝑇2
−,𝐼1

−𝑒𝑖𝐼2
−,𝐹1

−𝑒𝑖𝐹2
−)  and
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B= (𝑇3
+𝑒𝑖𝑇4

+,𝐼3
+𝑒𝑖𝐼4

+,𝐹3
+𝑒𝑖𝐹4

+,𝑇3
−𝑒𝑖𝑇4

−,𝐼3
−𝑒𝑖𝐼4

−,𝐹3
−𝑒𝑖𝐹4

−)
Then the union of A  and B  is denoted as BNA B  and is given as

             , , , , , , :BN A B A B A B A B A B A BA B x T x I x F x T x I x F x x X     

       

Where positive the truth membership function  A BT x

 , positive the indeterminacy membership 

function  A BI x

 and positive the falsehood membership function  A BF x

 , negative the truth 

membership function  A BT x

 , negative the indeterminacy membership function  A BI x

  and 

negative the falsehood membership function  A BF x

  is defined by 

𝑇𝐴⋃𝐵
+ (𝑥)= (𝑇1

+ ∨ 𝑇3
+)𝑒𝑖(𝑇2

+∪𝑇4
+) ,

𝑇𝐴⋃𝐵
− (𝑥)= (𝑇1

− ∧ 𝑇3
−)𝑒𝑖(𝑇2

−∪𝑇4
−),

𝐼𝐴⋃𝐵
+ (𝑥)= (𝐼1

+ ∧ 𝐼3
+)𝑒𝑖(𝐼2

+∪𝐼4
+) ,

𝑇𝐴⋃𝐵
− (𝑥)= (𝐼1

− ∨ 𝐼3
−)𝑒𝑖(𝐼2

−∪𝐼4
−),

𝐹𝐴⋃𝐵
+ (𝑥)= (𝐹1

+ ∧ 𝐹3
+)𝑒𝑖(𝐹2

+∪𝐹4
+) ,

𝐹𝐴⋃𝐵
− (𝑥)= (𝐹1

− ∨ 𝐹3
−)𝑒𝑖(𝐹2

−∪𝐹4
−)

Where  and  denotes the max and min operators respectively 
The phase term of bipolar complex truth membership function, bipolar complex indeterminate 
membership function and bipolar complex false -membership function belongs to (0,2 )  and, 
they are defined as follows: 
e) Sum:
𝑇𝐴⋃𝐵

+ (𝑥)=𝑇𝐴
+(𝑥)+𝑇𝐵

+(𝑥)
𝑇𝐴⋃𝐵

− (𝑥)=𝑇𝐴
−(𝑥)+𝑇𝐵

−(𝑥)
𝐼𝐴⋃𝐵

+ (𝑥)=𝐼𝐴
+(𝑥)+𝐼𝐵

+(𝑥)
𝐼𝐴⋃𝐵

− (𝑥)=𝐼𝐴
−(𝑥)+𝐼𝐵

−(𝑥)
𝐹𝐴⋃𝐵

+ (𝑥)=𝐹𝐴
+(𝑥)+𝐹𝐵

+(𝑥)
𝐹𝐴⋃𝐵

− (𝑥)=𝐹𝐴
−(𝑥)+𝐹𝐵

−(𝑥)
f) Max and min:
𝑇𝐴⋃𝐵

+ (𝑥)=max(𝑇𝐴
+(𝑥),𝑇𝐵

+(𝑥))
𝑇𝐴⋃𝐵

− (𝑥)= min (𝑇𝐴
−(𝑥),𝑇𝐵

−(𝑥))
𝐼𝐴⋃𝐵

+ (𝑥)=min (𝐼𝐴
+(𝑥),𝐼𝐵

+(𝑥))
𝐼𝐴⋃𝐵

− (𝑥)=max(𝐼𝐴
−(𝑥),𝐼𝐵

−(𝑥))
𝐹𝐴⋃𝐵

+ (𝑥)=min (𝐹𝐴
+(𝑥),𝐹𝐵

+(𝑥))
𝐹𝐴⋃𝐵

− (𝑥)=𝑚𝑎𝑥𝐹𝐴
−(𝑥),𝐹𝐵

−(𝑥))
g) “The game of winner, neutral, and loser”:

 
( )
( )

A A B
A B

B B A

T x if p p
T x

T x if p p





 

 
 


, 

 
( )
( )

A A B
A B

B B A

T x if p p
T x

T x if p p





 

 
 



 
( )
( )

A A B
A B

B B A

I x if q q
I x

I x if q q





 

 
 


, 
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( )
( )

A A B
A B

B B A

I x if q q
I x

I x if q q





 

 
 



 
( )
( )

A A B
A B

B B A

F x if r r
F x

F x if r r





 

 
 



 
( )
( )

A A B
A B

B B A

F x if r r
F x

F x if r r





 

 
 



Example 2.9: Let 𝑋 = {𝑥1, 𝑥2} be a universe of discourse. Let 𝐴 and 𝐵 be two bipolar complex
neutrosophic  sets in 𝑋 as shown below: 

𝐴 = (
0.5𝑒𝑖.0.7, 0.2𝑒𝑖.𝜋, 0.4𝑒𝑖.0.1, −0.7𝑒𝑖.−0.4, −0.3𝑒𝑖.

−𝜋

3 , −0.2𝑒𝑖.0

𝑥1
) 

, (
0.6𝑒𝑖.0.8, 0.3𝑒𝑖.

𝜋

3 , 0.1𝑒𝑖.0.3, −0.8𝑒𝑖.−0.5, −0.4𝑒𝑖.
−2𝜋

3 , −0.1𝑒𝑖.−0.1

𝑥2
) 

And 

𝐵 = (
0.9𝑒𝑖.0.6, 0.3𝑒𝑖.𝜋, 0.1𝑒𝑖.0.3, −0.6𝑒𝑖.−0.6, −0.2𝑒𝑖.−2𝜋, −0.3𝑒𝑖.−0.3

𝑥1
) 

, (
0.8𝑒𝑖.0.9, 0.4𝑒𝑖.

3𝜋

4 , 0.2𝑒𝑖.0.2, −0.5𝑒𝑖.−0.6, −0.1𝑒𝑖.
−𝜋

3 , −0.2𝑒𝑖.−0.1

𝑥2
) 

Then 

𝐴 ∪𝐵𝑁 𝐵 = (
0.9𝑒𝑖.0.7, 0.2𝑒𝑖.𝜋, 0.1𝑒𝑖.0.1, −0.7𝑒𝑖.−0.6, −0.2𝑒𝑖.

−𝜋

3 , −0.2𝑒𝑖.0

𝑥1
) 

, (
0.8𝑒𝑖.0.9, 0.3𝑒𝑖.

𝜋

3 , 0.1𝑒𝑖.0.2, −0.8𝑒𝑖.−0.6, −0.1𝑒𝑖.
−𝜋

3 , −0.1𝑒𝑖.−0.1

𝑥2
) 

Definition 2.10(Broumi et al., 2017c) The intersection of two bipolar complex neutrosophic sets 
as follows: 
Let A  and B  be two bipolar complex neutrosophic sets in X , where  
A= (𝑇1

+𝑒𝑖𝑇2
+,𝐼1

+𝑒𝑖𝐼2
+,𝐹1

+𝑒𝑖𝐹2
+ ,𝑇1

−𝑒𝑖𝑇2
−,𝐼1

−𝑒𝑖𝐼2
−,𝐹1

−𝑒𝑖𝐹2
−)  and

B= (𝑇3
+𝑒𝑖𝑇4

+,𝐼3
+𝑒𝑖𝐼4

+,𝐹3
+𝑒𝑖𝐹4

+,𝑇3
−𝑒𝑖𝑇4

−,𝐼3
−𝑒𝑖𝐼4

−,𝐹3
−𝑒𝑖𝐹4

−)
Then the intersection of A  and B  is denoted as BNA B  and is given as

             , , , , , , :BN A B A B A B A B A B A BA B x T x I x F x T x I x F x x X     

       

Where positive the truth membership function  A BT x

 , positive the indeterminacy membership

function  A BI x

  and positive the falsehood membership function  A BF x

 , negative the truth membership 

function  A BT x

 , negative the indeterminacy membership function  A BI x

  and negative the falsehood

membership function  A BF x

   is defined by 

𝑇𝐴∩𝐵
+ (𝑥)= (𝑇1

+ ∧ 𝑇3
+)𝑒𝑖(𝑇2

+∩𝑇4
+) ,

𝑇𝐴∩𝐵
− (𝑥)= (𝑇1

− ∨ 𝑇3
−)𝑒𝑖(𝑇2

−∩𝑇4
−),
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𝐼𝐴∩𝐵
+ (𝑥)= (𝐼1

+ ∨ 𝐼3
+)𝑒𝑖(𝐼2

+∩𝐼4
+) ,

𝑇𝐴∩𝐵
− (𝑥)= (𝐼1

− ∧ 𝐼3
−)𝑒𝑖(𝐼2

−∩𝐼4
−),

𝐹𝐴∩𝐵
+ (𝑥)= (𝐹1

+ ∨ 𝐹3
+)𝑒𝑖(𝐹2

+∩𝐹4
+) ,

𝐹𝐴∩𝐵
− (𝑥)= (𝐹1

− ∧ 𝐹3
−)𝑒𝑖(𝐹2

−∩𝐹4
−)

Where  and  denotes the max and min operators respectively 
The phase term of bipolar complex truth membership function, bipolar complex indeterminacy 
membership function and bipolar complex falsity membership function belongs to (0,2 )  and, 
they are defined as follows: 

h) Sum:
𝑇𝐴∩𝐵

+ (𝑥)=𝑇𝐴
+(𝑥)+𝑇𝐵

+(𝑥)
𝑇𝐴∩𝐵

− (𝑥)=𝑇𝐴
−(𝑥)+𝑇𝐵

−(𝑥)
𝐼𝐴∩𝐵

+ (𝑥)=𝐼𝐴
+(𝑥)+𝐼𝐵

+(𝑥)
𝐼𝐴∩𝐵

− (𝑥)=𝐼𝐴
−(𝑥)+𝐼𝐵

−(𝑥)
𝐹𝐴∩𝐵

+ (𝑥)=𝐹𝐴
+(𝑥)+𝐹𝐵

+(𝑥)
𝐹𝐴∩𝐵

− (𝑥)=𝐹𝐴
−(𝑥)+𝐹𝐵

−(𝑥)
i) Max and min:
𝑇𝐴∩𝐵

+ (𝑥)=min(𝑇𝐴
+(𝑥),𝑇𝐵

+(𝑥))
𝑇𝐴∩𝐵

− (𝑥)= max (𝑇𝐴
−(𝑥),𝑇𝐵

−(𝑥))
𝐼𝐴∩𝐵

+ (𝑥)=max(𝐼𝐴
+(𝑥),𝐼𝐵

+(𝑥))
𝐼𝐴∩𝐵

− (𝑥)=min(𝐼𝐴
−(𝑥),𝐼𝐵

−(𝑥))
𝐹𝐴∩𝐵

+ (𝑥)=max (𝐹𝐴
+(𝑥),𝐹𝐵

+(𝑥))
𝐹𝐴∩𝐵

− (𝑥)=𝑚𝑖𝑛𝐹𝐴
−(𝑥),𝐹𝐵

−(𝑥))
j) “The game of winner, neutral, and loser”:

 
( )
( )

A A B
A B

B B A

T x if p p
T x

T x if p p





 

 
 


, 

 
( )
( )

A A B
A B

B B A

T x if p p
T x

T x if p p





 

 
 



 
( )
( )

A A B
A B

B B A

I x if q q
I x

I x if q q





 

 
 


, 

 
( )
( )

A A B
A B

B B A

I x if q q
I x

I x if q q





 

 
 



 
( )
( )

A A B
A B

B B A

F x if r r
F x

F x if r r





 

 
 



 
( )
( )

A A B
A B

B B A

F x if r r
F x

F x if r r





 

 
 



Example 2.11: Let 𝑋 = {𝑥1, 𝑥2} be a universe of discourse. Let 𝐴 and 𝐵  be two bipolar complex
neutrosophic  sets in 𝑋 as shown below: 

𝐴 = (
0.5𝑒𝑖.0.7, 0.2𝑒𝑖.𝜋, 0.4𝑒𝑖.0.1, −0.7𝑒𝑖.−0.4, −0.3𝑒𝑖.

−𝜋

3 , −0.2𝑒𝑖.0

𝑥1
) 
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, (
0.6𝑒𝑖.0.8, 0.3𝑒𝑖.

𝜋

3 , 0.1𝑒𝑖.0.3, −0.8𝑒𝑖.−0.5, −0.4𝑒𝑖.
−2𝜋

3 , −0.1𝑒𝑖.−0.1

𝑥2
) 

And 

𝐵 = (
0.9𝑒𝑖.0.6, 0.3𝑒𝑖.𝜋, 0.1𝑒𝑖.0.3, −0.6𝑒𝑖.−0.6, −0.2𝑒𝑖.−2𝜋, −0.3𝑒𝑖.−0.3

𝑥1
) 

, (
0.8𝑒𝑖.0.9, 0.4𝑒𝑖.

3𝜋

4 , 0.2𝑒𝑖.0.2, −0.5𝑒𝑖.−0.6, −0.1𝑒𝑖.
−𝜋

3 , −0.2𝑒𝑖.−0.1

𝑥2
) 

Then 

𝐴 ∩𝐵𝑁 𝐵 = (
0.5𝑒𝑖.0.6, 0.3𝑒𝑖.𝜋, 0.4𝑒𝑖.0.3, −0.6𝑒𝑖.−0.4, −0.3𝑒𝑖−2𝜋, −0.3𝑒𝑖.−0.3

𝑥1
) 

, (
0.6𝑒𝑖.0.8, 0.4𝑒𝑖.

3𝜋

4 , 0.2𝑒𝑖.0.3, −0.5𝑒𝑖.−0.5, −0.4𝑒𝑖.
−2𝜋

3 , −0.2𝑒𝑖.−0.1

𝑥2
) 

Definition 2.12 (Samanta et al.2016). Let V be a non-void set. Two function are considered as 
follows: 
 𝜌:V → [ 0, 1]and  𝜔:VxV → [ 0, 1] . We suppose 
 A= {(𝜌(𝑥), 𝜌(𝑦)) | 𝜔(x, y)> 0}, 
We have considered  𝜔𝑇, > 0 for all set A 
The triad (V, 𝜌, 𝜔) is defined to be generalized fuzzy graph of first type (GFG1) if there is function 
𝛼:A→ [ 0, 1]  such that  𝜔(𝑥, 𝑦) = 𝛼((𝜌(𝑥), 𝜌(𝑦))) Where x, y∈ V.   
The  𝜌(𝑥), x∈ V are the membership of the vertex x and 𝜔(𝑥, 𝑦), x, y∈ V are the membership, 
values of the edge (x, y). 
Definition 2.13 (Broumi et al., 2017). Let V be a non-void set. Two function are considered as 
follows: 
𝜌=(𝜌𝑇, 𝜌𝐼, 𝜌𝐹):V → [ 0, 1]3and
𝜔= (𝜔𝑇, 𝜔𝐼, 𝜔𝐹):VxV → [ 0, 1]3 . Suppose
 A= {(𝜌𝑇(𝑥),𝜌𝑇(𝑦)) |𝜔𝑇(x, y) ≥ 0}, 
B= {(𝜌𝐼(𝑥),𝜌𝐼(𝑦)) |𝜔𝐼(x, y) ≥ 0}, 
 C= {(𝜌𝐹(𝑥),𝜌𝐹(𝑦)) |𝜔𝐹(x, y) ≥ 0}, 
We have considered 𝜔𝑇,  𝜔𝐼 and  𝜔𝐹 ≥ 0 for all set A,B, C , since its is possible to have edge 
degree = 0 (for T, or I, or F). 
The triad (V, 𝜌, 𝜔) is defined to be generalized single valued neutrosophic graph of  type 1 
(GSVNG1) if there are functions 
𝛼:A→ [ 0, 1] , 𝛽:B→ [ 0, 1] and 𝛿:C→ [ 0, 1] such that  
𝜔𝑇(𝑥, 𝑦) = 𝛼((𝜌𝑇(𝑥),𝜌𝑇(𝑦))) 
𝜔𝐼(𝑥, 𝑦) = 𝛽((𝜌𝐼(𝑥),𝜌𝐼(𝑦)))  
𝜔𝐹(𝑥, 𝑦)= 𝛿((𝜌𝐹(𝑥),𝜌𝐹(𝑦)))  where x, y∈ V.   
Here 𝜌(𝑥)= (𝜌𝑇(𝑥), 𝜌𝐼(𝑥), 𝜌𝐹(𝑥)), x∈ V are the truth- membership, indeterminate-membership 
and false-membership of the vertex x and 𝜔(𝑥, 𝑦)=(𝜔𝑇(𝑥, 𝑦), 𝜔𝐼(𝑥, 𝑦), 𝜔𝐹(𝑥, 𝑦)), x, y∈ V are the 
truth-membership, indeterminate-membership and false-membership values of the edge (x, y). 
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Definition 2.14 (Broumi et al., 2017b) Let V be a non-void set. Two functions are considered as 
follows: 
𝜌=(𝜌𝑇, 𝜌𝐼, 𝜌𝐹):V → [ 0, 1]3and
𝜔=(𝜔𝑇, 𝜔𝐼, 𝜔𝐹):VxV → [ 0, 1]3 . Suppose
A= {(𝜌𝑇(𝑥),𝜌𝑇(𝑦)) |𝜔𝑇(x, y) ≥ 0}, 
B= {(𝜌𝐼(𝑥),𝜌𝐼(𝑦)) |𝜔𝐼(x, y) ≥ 0}, 
 C= {(𝜌𝐹(𝑥),𝜌𝐹(𝑦)) |𝜔𝐹(x, y) ≥ 0}, 
We have considered 𝜔𝑇,  𝜔𝐼 and  𝜔𝐹 ≥ 0 for all set A,B, C , since its is possible to have edge 
degree = 0 (for T, or I, or F). 
The triad (V, 𝜌, 𝜔) is defined to be complex neutrosophic graph of type 1 (CNG1) if there are 
functions 
𝛼:A→ [ 0, 1] , 𝛽:B→ [ 0, 1] and𝛿:C→ [ 0, 1] such that  
𝜔𝑇(𝑥, 𝑦) = 𝛼((𝜌𝑇(𝑥),𝜌𝑇(𝑦))) 
𝜔𝐼(𝑥, 𝑦) = 𝛽((𝜌𝐼(𝑥),𝜌𝐼(𝑦)))  
𝜔𝐹(𝑥, 𝑦) = 𝛿((𝜌𝐹(𝑥),𝜌𝐹(𝑦))) 
Where x, y∈ V.   
Here 𝜌(𝑥) =( 𝜌𝑇(𝑥) , 𝜌𝐼(𝑥) , 𝜌𝐹(𝑥) ), x ∈  V are the complex truth-membership, complex 
indeterminate-membership and complex false-membership of the vertex x and 𝜔(𝑥, 𝑦)=(𝜔𝑇(𝑥, 𝑦), 
𝜔𝐼(𝑥, 𝑦) , 𝜔𝐹(𝑥, 𝑦) ), x, y ∈  V are the complex truth-membership, complex indeterminate-
membership and complex false-membership values of the edge (x, y). 
Definition 2.15 (Broumi et al., 2017b). Let V be a non-void set. Two function are considered as 
follows: 
ρ=(ρT

+,ρI
+, ρF

+,ρT
−, ρI

−,ρF
−):V → [ 0, 1]3 × [ −1, 0]3and

ω=(ωT
+,ωI

+, ωF
+,ωT

−, ωI
−,ωF

−):VxV → [ 0, 1]3 × [ −1, 0]3 . We suppose
A= {(ρT

+(x),ρT
+(y)) |ωT

+(x, y) ≥ 0},
B= {(ρI

+(x),ρI
+(y)) |ωI

+(x, y) ≥ 0},
C= {(ρF

+(x),ρF
+(y)) |ωF

+(x, y) ≥ 0},
D= {(ρT

−(x),ρT
−(y)) |ωT

−(x, y) ≤ 0},
E= {(ρI

−(x),ρI
−(y)) |ωI

−(x, y) ≤ 0},
F= {(ρF

−(x),ρF
−(y)) |ωF

−(x, y) ≤ 0},
We have considered ωT

+, ωI
+,ωF

+ ≥  0 and ωT
−, ωI

−, ωF
− ≤ 0 for all set A, B, C , D, E, F since its

is possible to have edge degree = 0 (for T+ or I+ or F+,T− or I− or F−).
The triad (V, ρ, ω) is defined to be generalized bipolar neutrosophic graph of first type (GBNG1) 
if there are functions 
α :A → [ 0, 1]  , β :B → [ 0, 1]  , δ :C → [ 0, 1]  and ξ :D → [ −1, 0]  , σ :E → [ −1, 0]  , ψ :F →
[ −1, 0]such that  
ωT

+(x, y) = α((ρT
+(x),ρT

+(y))),
ωT

−(x, y) = ξ((ρT
−(x),ρT

−(y))),
ωI

+(x, y) = β((ρI
+(x),ρI

+(y))),
ωI

−(x, y) = σ((ρI
−(x),ρI

−(y))),
ωF

+(x, y) = δ((ρF
+(x),ρF

+(y))),
ωF

−(x, y) = ψ((ρF
−(x),ρF

−(y)))
Where x, y ∈ V.   
Here ρ(x)=(ρT

+(x) , ρI
+(x) , ρF

+(x), ρT
−(x), ρI

−(x), ρF
−(x)), x∈  V are the  positive and negative

membership, indeterminacy and  non-membership of the vertex x and ω(x, y) =( ωT
+(x, y) ,
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ωI
+(x, y) , ωF

+(x, y) , ωT
−(x, y) , ωI

−(x, y) , ωF
−(x, y) ), x, y ∈  V are the positive and negative

membership, indeterminacy membership and non-membership values of the edge (x, y). 

3. Bipolar Complex Neutrosophic Graph of Type 1

In this section, based on  the concept of bipolar complex neutrosophic sets (Broumi et al., 2017c) 
and the concept of generalized single valued neutrosophic graph of type 1 (Broumi et al., 2017), 
we define the concept of bipolar complex neutrosophic graph of type 1 as follows:  
Definition 3.1. Let V be a non-void set. Two function are considered as follows: 
ρ=(ρT

+,ρI
+, ρF

+,ρT
−, ρI

−,ρF
−):V → [ −1, 1]6and

ω=(ωT
+,ωI

+, ωF
+,ωT

−, ωI
−,ωF

−):VxV → [ −1, 1]6 . We suppose
A= {(ρT

+(x),ρT
+(y)) |ωT

+(x, y) ≥ 0},
B= {(ρI

+(x),ρI
+(y)) |ωI

+(x, y) ≥ 0},
C= {(ρF

+(x),ρF
+(y)) |ωF

+(x, y) ≥ 0},
D= {(ρT

−(x),ρT
−(y)) |ωT

−(x, y) ≤ 0},
E= {(ρI

−(x),ρI
−(y)) |ωI

−(x, y) ≤ 0},
F= {(ρF

−(x),ρF
−(y)) |ωF

−(x, y) ≤ 0},
We have considered ωT

+, ωI
+,ωF

+ ≥  0 and ωT
−, ωI

−, ωF
− ≤ 0 for all set A, B, C , D, E, F since its

is possible to have edge degree = 0 (for T+ or I+ or F+,T− or I− or F−).
The triad (V, ρ, ω) is defined to be bipolar complex neutrosophic graph of first type (BCNG1) if 
there are functions 
α :A → [ 0, 1]  , β :B → [ 0, 1]  , δ :C → [ 0, 1]  and ξ :D → [ −1, 0]  , σ :E → [ −1, 0]  , ψ :F →
[ −1, 0]such that  
ωT

+(x, y) = α((ρT
+(x),ρT

+(y))),
ωT

−(x, y) = ξ((ρT
−(x),ρT

−(y))),
ωI

+(x, y) = β((ρI
+(x),ρI

+(y))),
ωI

−(x, y) = σ((ρI
−(x),ρI

−(y))),
ωF

+(x, y) = δ((ρF
+(x),ρF

+(y))),
ωF

−(x, y) = ψ((ρF
−(x),ρF

−(y)))
Where x, y ∈ V.   
Here ρ(x)=(ρT

+(x) , ρI
+(x) , ρF

+(x), ρT
−(x), ρI

−(x), ρF
−(x)), x∈  V are the  positive and negative

complex truth-membership, indeterminate and  false-membership of the vertex x and 
ω(x, y)=(ωT

+(x, y), ωI
+(x, y), ωF

+(x, y), ωT
−(x, y),ωI

−(x, y),ωF
−(x, y)), x, y∈ V are the positive and

negative complex truth-membership, indeterminate and  false-membership values of the edge (x, 
y). 
Example 3.2: Let the vertex set be V={x, y, z, t} and edge set be E={(x, y),(x, z),(x, t),(y, t) 

x y z t 
𝜌𝑇

+ 0.5𝑒𝑖.0.8 0.9𝑒𝑖.0.9 0.3𝑒𝑖.0.3 0.8𝑒𝑖.0.1

𝜌𝐼
+

0.3𝑒𝑖.
3𝜋

4 0.2𝑒𝑖.
𝜋

4 0.1𝑒𝑖.2𝜋 0.5𝑒𝑖.𝜋

𝜌𝐹
+ 0.1𝑒𝑖.0.3 0.6𝑒𝑖.0.5 0.8𝑒𝑖.0.5 0.4𝑒𝑖.0.7

𝜌𝑇
− -0.6𝑒𝑖.−0.6 -1𝑒𝑖.−𝜋 -0.4𝑒𝑖.−0.1 -0.9𝑒𝑖.−0.1

𝜌𝐼
− -0.4𝑒𝑖.−2𝜋 -0.3𝑒𝑖.0 -0.2𝑒𝑖.−0.3 -0.6𝑒𝑖.−0.2

𝜌𝐹
− -0.2𝑒𝑖.−0.3 -0.7𝑒𝑖.−0.6 -0.9𝑒𝑖.−2𝜋 -0.5𝑒𝑖.−𝜋

New Trends in Neutrosophic Theory and Applications. Volume II

199



    Table 1: Bipolar complex truth-membership, bipolar complex indeterminate-membership and bipolar 
complex false-membership of the vertex set. 
Let us consider the function 
𝛼(𝑚, 𝑛)=(𝑚𝑇

+ ∨ 𝑛𝑇
+). ej.μTm∪n ,

𝛽(𝑚, 𝑛)=( 𝑚𝐼
+ ∧ 𝑛𝐼

+). ej.μIm∪n

𝛿(𝑚, 𝑛)= ( 𝑚𝐹
+ ∧ 𝑛𝐹

+). ej.μFm∪n .
𝜉(m ,n)= (𝑚𝑇

− ∧ 𝑛𝑇
−).ej.μTm∪n

𝜎(m ,n)= (𝑚𝐼
− ∨ 𝑛𝐼

−). ej.μTm∪n  and
𝜓(m ,n )= (𝑚𝐹

− ∨ 𝑛𝐹
−) . ej.μTm∪n ,

Here, 
A={(0.5𝑒𝑖.0.8, 0.9 𝑒𝑖.0.9), (0.5 𝑒𝑖.0.8, 0.3 𝑒𝑖.0.3), (0.5 𝑒𝑖.0.8, 0.8 𝑒𝑖.0.1), (0.9 𝑒𝑖.0.9, 0.8 𝑒𝑖.0.1)}

3π π 3π 3π π

B = {(0.3ei. 
4 , 0.2ej.

4 ), (0.3 ei. 
4 , 0.1ei.2π), (0.3 ei. 

4 , 0.5ej.π), (0.2ei.
4 , 0.5ei.π)}

C = {(0.1ei.0.3, 0.6ei.0.5), (0.1ei.0.3, 0.8ei.0.5), (0.1ei.0.3, 0.4ei.0.7), (0.6ei.0.5, 0.4ei.0.7)} 
D={(-0.6𝑒𝑖.−0.6, -1𝑒𝑖.−𝜋), (-0.6𝑒𝑖.−0.6, -0.4𝑒𝑖.−0.1), (-0.6𝑒𝑖.−0.6, -0.9𝑒𝑖.−0.1), (-1𝑒𝑖.−𝜋, -0.9𝑒𝑖.−0.1)} 
E = {(-0.4𝑒𝑖.−2𝜋, -0.3𝑒𝑖.0), (-0.4𝑒𝑖.−2𝜋, -0.2𝑒𝑖.−0.3), (-0.4𝑒𝑖.−2𝜋, -0.6𝑒𝑖.−0.2), (-0.3𝑒𝑖.0, -0.6𝑒𝑖.−0.2)} 
F = {(-0.2𝑒𝑖.−0.3, -0.7𝑒𝑖.−0.6), (-0.2𝑒𝑖.−0.3, -0.9𝑒𝑖.−2𝜋), (-0.2𝑒𝑖.−0.3, -0.5𝑒𝑖.−𝜋), (-0.7𝑒𝑖.−0.6, -0.5𝑒𝑖.−𝜋)} 
Then 

𝜔 (𝑥, 𝑦) (𝑥, 𝑧) (𝑥, 𝑡) (𝑦, 𝑡) 
𝜔𝑇

+(x, y) 0.9𝑒𝑖.0.9 0.5𝑒𝑖.0.8 0.8𝑒𝑖.0.8 0.9𝑒𝑖.0.9

𝜔𝐼
+(x, y) 0.2𝑒𝑖.

𝜋

4 0.1𝑒𝑖.
3π

4 0.3𝑒𝑖
3π

4 0.2𝑒𝑖.
π

4

𝜔𝐹
+(x, y) 0.1𝑒𝑖.0.3 0.1𝑒𝑖.0.3 0.1𝑒𝑖.0.3 0.4𝑒𝑖.0.5

𝜔𝑇
−(x, y) -1𝑒𝑖.−𝜋 -0.6𝑒𝑖.−0.6 -0.9𝑒𝑖.−0.6 -1𝑒𝑖.−𝜋

𝜔𝐼
−(x, y) -0.3𝑒𝑖.0 -0.2𝑒𝑖.−2𝜋 -0.4𝑒𝑖.−2𝜋 -0.3𝑒𝑖.0

𝜔𝐹
−(x, y) -0.2𝑒𝑖.−0.3 -0.2𝑒𝑖.−0.3 -0.2𝑒𝑖.−0.3 -0.5𝑒𝑖.−0.6

Table 2: Bipolar complex truth-membership, bipolar complex indeterminate-membership and bipolar 
complex false-membership of the edge set. 
The corresponding complex neutrosophic graph is shown in Fig.2 

Fig 2. BCNG of type 1. 

<0.5𝒆𝒋.𝟎.𝟖,0.1 𝒆𝒊.
𝟑𝛑

𝟒 , 0.1𝒆𝒊.𝟎.𝟑,-0.6𝒆𝒊.−𝟎.𝟔, 0.2𝐞𝐢.−𝟐𝛑, -0.2𝐞𝐢.−𝟎.𝟑> 

<0
.9

𝒆
𝒋.

𝟎
.𝟗

, 0
.2

𝒆
𝒋.

𝝅 𝟒
, 0

.1
𝒆

𝒋.
𝟎

.𝟓
,

-1
𝒆

𝒊.
−

𝝅
, -

0.
3𝒆

𝒊.
𝟎
, -

0.
2𝒆

𝒊.
−

𝟎
.𝟑

>

y<0.9𝒆𝒋.𝟎.𝟗, 0.2𝒆𝒋.
𝝅

𝟒, 0.6𝒆𝒋.𝟎.𝟓, 
-1𝒆𝒊.−𝝅, -0.3𝒆𝒊.𝟎, -0.7𝒆𝒊.−𝟎.𝟔>

<0.9𝒆𝒋.𝟎.𝟗, 0.2𝒆𝒊.
𝛑

𝟒, 0.4𝒆𝒊.𝟎.𝟓,
-1𝒆𝒊.−𝝅, -0.3𝒆𝒊.𝟎, -0.5𝒆𝒊.−𝟎.𝟔>

<0.8𝒆𝒋.𝟎.𝟖, 0.3𝒆𝒊,
𝟑𝛑

𝟒 , 0.1𝒆𝒋.𝟎.𝟑,
-0.9𝒆𝒋.−𝟎.𝟔, -0.4𝒆𝒊.−𝟐𝝅, -0.2𝒆𝒋.𝟎𝒊.−𝟎.𝟑.>

x<0.5 𝒆𝒋.𝟎.𝟖, 0.3 𝒆𝒋.
3𝜋

4 , 0.1 𝒆𝒋.𝟎.𝟑, -0.6𝑒𝑖.−0.6,-0.4𝑒𝑖.−2𝜋,-0.2𝑒𝑖.−0.3> 
> 

t<0.8𝒆𝒋.𝟎.𝟏, 0.5𝒆𝒋.𝝅, 0.4𝒆𝒋.𝟎.𝟕,
-0.9𝒆𝒊.−𝟎.𝟏,-0.6𝒆𝒊.−𝟎.𝟐,-0.5𝒆𝒊.−𝝅

z   <0.3 𝒆𝒋.𝟎.𝟑, 0.1 𝒆𝒋.𝟐𝝅, 0.8𝒆𝒋.𝟎.𝟓,
-0.4𝒆𝒊.−𝟎.𝟏,-0.2𝒆𝒊.−𝟎.𝟑, -0.9𝒆𝒊.−𝟐𝝅>

Florentin Smarandache, Surapati Pramanik (Editors)

200



4. Matrix Representation of Bipolar Complex Neutrosophic Graph of Type 1

In this section, bipolar complex truth-membership, bipolar complex indeterminate-membership, 
and bipolar complex false-membership are considered independent. So, we adopted the 
representation matrix of complex neutrosophic graphs of type 1 presented in (Broumi et al., 
2017b). 
The bipolar complex neutrosophic graph (BCNG1) has one property that edge membership values 
(𝑇+, 𝐼+, 𝐹+, 𝑇−, 𝐼−, 𝐹−) depends on the membership values(𝑇+, 𝐼+, 𝐹+, 𝑇−, 𝐼−, 𝐹−) of adjacent
vertices. Suppose 𝜁=(V, 𝜌,𝜔) is a BCNG1 where vertex set V={𝑣1,𝑣2,…,𝑣𝑛}. The functions 

𝛼 :A → [ 0, 1]  is taken such that 𝜔𝑇
+(𝑥, 𝑦)  = 𝛼 (( 𝜌𝑇

+(𝑥) , 𝜌𝑇
+(𝑦) )),  where x, y ∈  V and A=

{(𝜌𝑇
+(𝑥),𝜌𝑇

+(𝑦)) |𝜔𝑇
+(x, y) ≥ 0},

𝛽 :B → [ 0, 1]  is taken such that 𝜔𝐼
+(𝑥, 𝑦)  = 𝛽 (( 𝜌𝐼

+(𝑥) , 𝜌𝐼
+(𝑦) )),  where x, y ∈  V and B=

{(𝜌𝐼
+(𝑥),𝜌𝐼

+(𝑦)) |𝜔𝐼
+(x, y) ≥ 0},

𝛿 :C → [ 0, 1]  is taken such that 𝜔𝐹
+(𝑥, 𝑦)  = 𝛿 (( 𝜌𝐹

+(𝑥) , 𝜌𝐹
+(𝑦) )),  where x, y ∈  V and C =

{(𝜌𝐹
+(𝑥),𝜌𝐹

+(𝑦)) |𝜔𝐹
+(x, y) ≥ 0},

𝜉 :D → [ −1, 0]  is taken such that 𝜔𝑇
−(𝑥, 𝑦)  = 𝜉 (( 𝜌𝑇

−(𝑥) , 𝜌𝑇
−(𝑦) )),  where x, y ∈  V and D=

{(𝜌𝑇
−(𝑥),𝜌𝑇

−(𝑦)) |𝜔𝑇
−(x, y) ≤0},

𝜎 :E → [ −1, 0]  is taken such that 𝜔𝐼
−(𝑥, 𝑦)  = 𝜎 (( 𝜌𝐼

−(𝑥) , 𝜌𝐼
−(𝑦) )),  where x, y ∈  V and E=

{(𝜌𝐼
−(𝑥),𝜌𝐼

−(𝑦)) |𝜔𝐼
−(x, y) ≤ 0}, and

𝜓 :F → [ −1, 0]  is taken such that 𝜔𝐹
−(𝑥, 𝑦)  = 𝜓 (( 𝜌𝐹

−(𝑥) , 𝜌𝐹
−(𝑦) )),  where x, y ∈  V and F =

{(𝜌𝐹
−(𝑥),𝜌𝐹

−(𝑦)) |𝜔𝐹
−(x, y) ≤ 0},

The BCNG1 can be represented by (n+1) x (n+1) matrix 𝑀𝐺1

𝑇,𝐼,𝐹=[𝑎𝑇,𝐼,𝐹(i,j)] as follows:
The positive and negative  bipolar complex truth-membership(𝑇+,𝑇−), indeterminate-membership
(𝐼+, 𝐼−) and false-membership (𝐹+, 𝐹−), values of the vertices are provided in the first row and
first column. The (i+1, j+1)-th-entry are the bipolar complex truth -membership ( 𝑇+ , 𝑇−) ,
indeterminate-membership (𝐼+, 𝐼−)and the false-membership (𝐹+, 𝐹−) values of the edge (𝑥𝑖,𝑥𝑗),
i, j=1,…,n if i≠j. 
The (i, i)-th entry is 𝜌(𝑥𝑖)=(𝜌𝑇

+(𝑥𝑖), 𝜌𝐼
+(𝑥𝑖), 𝜌𝐹

+(𝑥𝑖), 𝜌𝑇
−(𝑥𝑖), 𝜌𝐼

−(𝑥𝑖), 𝜌𝐹
−(𝑥𝑖)) where i=1,2,…,n.

The positive and negative bipolar complex truth-membership ( 𝑇+ , 𝑇−) , indeterminate-
membership (𝐼+, 𝐼−) and false-membership (𝐹+, 𝐹−), values of the edge can be computed easily
using the functions 𝛼, 𝛽, 𝛿 , 𝜉  , 𝜎 and  𝜓 which are in (1,1)-position of the matrix. The matrix 
representation of BCNG1, denoted by𝑀𝐺1

𝑇,𝐼,𝐹, can be written as sixth matrix representation 𝑀𝐺1

𝑇+ ,
𝑀𝐺1

𝐼+,𝑀𝐺1

𝐹+ ,𝑀𝐺1

𝑇−, 𝑀𝐺1

𝐼−, 𝑀𝐺1

𝐹− .

The  𝑀𝐺1

𝑇+ is represented in Table 3.
Table 3.     Matrix representation  of𝑇+-BCNG1

𝛼 𝑣1(𝜌𝑇
+(𝑣1)) 𝑣2(𝜌𝑇

+(𝑣2)) 𝑣𝑛(𝜌𝑇
+(𝑣𝑛))

𝑣1(𝜌𝑇
+(𝑣1)) 𝜌𝑇

+(𝑣1) 𝛼(𝜌𝑇
+(𝑣1),𝜌𝑇

+(𝑣2)) 𝛼(𝜌𝑇
+(𝑣1),𝜌𝑇

+(𝑣𝑛))
𝑣2(𝜌𝑇

+(𝑣2)) 𝛼(𝜌𝑇
+(𝑣2),𝜌𝑇

+(𝑣1)) 𝜌𝑇
+(𝑣2) 𝛼(𝜌𝑇

+(𝑣2),𝜌𝑇
+(𝑣2))

… …. … … 
𝑣𝑛(𝜌𝑇

+(𝑣𝑛)) 𝛼(𝜌𝑇
+(𝑣𝑛),𝜌𝑇

+(𝑣1)) 𝛼(𝜌𝑇
+(𝑣𝑛),𝜌𝑇

+(𝑣2)) 𝜌𝑇
+(𝑣𝑛)
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The  𝑀𝐺1

𝐼+ is presented in Table 4.Table4.  Matrix representation of𝐼+- BCNG
𝛽 𝑣1(𝜌𝐼

+(𝑣1)) 𝑣2(𝜌𝐼
+(𝑣2)) 𝑣𝑛(𝜌𝐼

+(𝑣𝑛))
𝑣1(𝜌𝐼

+(𝑣1)) 𝜌𝐼
+(𝑣1) β(𝜌𝐼

+(𝑣1),𝜌𝐼
+(𝑣2)) β(𝜌𝐼

+(𝑣1),𝜌𝐼
+(𝑣𝑛))

𝑣2(𝜌𝐼
+(𝑣2)) β(𝜌𝐼

+(𝑣2),𝜌𝐼
+(𝑣1)) 𝜌𝐼

+(𝑣2) β(𝜌𝐼
+(𝑣2),𝜌𝐼

+(𝑣2))

… …. … … 
𝑣𝑛(𝜌𝐼

+(𝑣𝑛)) β(𝜌𝐼
+(𝑣𝑛),𝜌𝐼

+(𝑣1)) β(𝜌𝐼
+(𝑣𝑛),𝜌𝐼

+(𝑣2)) 𝜌𝐼
+(𝑣𝑛)

1 

The  𝑀𝐺1

𝐹+ is presented in Table 5.
Table5.  Matrix representation of 𝐹+- BCNG1

𝛿 𝑣1(𝜌𝐹
+(𝑣1)) 𝑣2(𝜌𝐹

+(𝑣2)) 𝑣𝑛(𝜌𝐹
+(𝑣𝑛))

𝑣1(𝜌𝐹
+(𝑣1)) 𝜌𝐹

+(𝑣1) 𝛿(𝜌𝐹
+(𝑣1),𝜌𝐹

+(𝑣2)) 𝛿(𝜌𝐹
+(𝑣1),𝜌𝐹

+(𝑣𝑛))
𝑣2(𝜌𝐹

+(𝑣2)) 𝛿 ( 𝜌𝐹
+(𝑣2) , 𝜌𝐹

+(𝑣1) ) 𝜌𝐹
+(𝑣2) 𝛿(𝜌𝐹

+(𝑣2),𝜌𝐹
+(𝑣2))

… …. … … 
𝑣𝑛(𝜌𝐹

+(𝑣𝑛)) 𝛿(𝜌𝐹
+(𝑣𝑛),𝜌𝐹

+(𝑣1)) 𝛿(𝜌𝐹
+(𝑣𝑛),𝜌𝐹

+(𝑣2)) 𝜌𝐹
+(𝑣𝑛)

The  𝑀𝐺1

𝑇− is shown in table 6.
Table 6.    Matrix representation of 𝑇−- BCNG1

𝜉 𝑣1(𝜌𝑇
−(𝑣1)) 𝑣2(𝜌𝑇

−(𝑣2)) 𝑣𝑛(𝜌𝑇
−(𝑣𝑛))

𝑣1(𝜌𝑇
−(𝑣1)) 𝜌𝑇

−(𝑣1) 𝜉(𝜌𝑇
−(𝑣1),𝜌𝑇

−(𝑣2)) 𝜉(𝜌𝑇
−(𝑣1),𝜌𝑇

−(𝑣𝑛))
𝑣2(𝜌𝑇

−(𝑣2)) 𝜉(𝜌𝑇
−(𝑣2),𝜌𝑇

−(𝑣1)) 𝜌𝑇
−(𝑣2) 𝜉(𝜌𝑇

−(𝑣2),𝜌𝑇
−(𝑣2))

… …. … … 
𝑣𝑛(𝜌𝑇

−(𝑣𝑛)) 𝜉(𝜌𝑇
−(𝑣𝑛),𝜌𝑇

−(𝑣1)) 𝜉(𝜌𝑇
−(𝑣𝑛),𝜌𝑇

−(𝑣2)) 𝜌𝑇
−(𝑣𝑛)

The  𝑀𝐺1

𝐼− is shown in Table 7.
Table 7.   Matrix representation of 𝐼−- BCNG1

𝜎 𝑣1(𝜌𝐼
−(𝑣1)) 𝑣2(𝜌𝐼

−(𝑣2)) 𝑣𝑛(𝜌𝐼
−(𝑣𝑛))

𝑣1(𝜌𝐼
−(𝑣1)) 𝜌𝐼

−(𝑣1) 𝜎(𝜌𝐼
−(𝑣1),

𝜌𝐼
−(𝑣2))

𝜎(𝜌𝐼
−(𝑣1),𝜌𝐼

−(𝑣𝑛))

𝑣2(𝜌𝐼
−(𝑣2)) 𝜎(𝜌𝐼

−(𝑣2),𝜌𝐼
−(𝑣1)) 𝜌𝐼

+(𝑣2) 𝜎(𝜌𝐼
−(𝑣2),𝜌𝐼

−(𝑣2))

… …. … … 
𝑣𝑛(𝜌𝐼

−(𝑣𝑛)) 𝜎(𝜌𝐼
−(𝑣𝑛),𝜌𝐼

−(𝑣1)) 𝜎(𝜌𝐼
−(𝑣𝑛),

𝜌𝐼
−(𝑣2))

𝜌𝐼
−(𝑣𝑛)

The  𝑀𝐺1

𝐹− is presented in Table 8.
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Table8.  Matrix representation of 𝐹−- BCNG1
𝜓 𝑣1(𝜌𝐹

−(𝑣1)) 𝑣2(𝜌𝐹
−(𝑣2)) 𝑣𝑛(𝜌𝐹

−(𝑣𝑛))

𝑣1(𝜌𝐹
−(𝑣1)) 𝜌𝐹

−(𝑣1) 𝜓(𝜌𝐹
−(𝑣1),𝜌𝐹

−(𝑣2)) 𝜓(𝜌𝐹
−(𝑣1),𝜌𝐹

−(𝑣𝑛))

𝑣2(𝜌𝐹
−(𝑣2)) ψ(𝜌𝐹

−(𝑣2),𝜌𝐹
−(𝑣1) 𝜌𝐹

−(𝑣2) 𝜓(𝜌𝐹
−(𝑣2),𝜌𝐹

−(𝑣2))

… …. … … 
𝑣𝑛(𝜌𝐹

−(𝑣𝑛)) 𝜓(𝜌𝐹
−(𝑣𝑛),𝜌𝐹

−(𝑣1)) 𝜓(𝜌𝐹
−(𝑣𝑛),𝜌𝐹

−(𝑣2)) 𝜌𝐹
−(𝑣𝑛)

Remark1:if 𝜌𝑇
−(𝑥)=𝜌𝐼

−(𝑥)=𝜌𝐹
−(𝑥)0,the bipolar complex neutrosophic graphs of type 1 is reduced

to complex neutrosophic graph of type 1 (CNG1). 
Remark2:if𝜌𝑇

−(𝑥)=𝜌𝐼
−(𝑥)=𝜌𝐹

−(𝑥)0, and𝜌𝐼
+(𝑥)=𝜌𝐹

+(𝑥) =0 , the bipolar complex neutrosophic
graphs of type 1is reduced to generalized fuzzy graph of  type 1 (GFG1). 
Remark3:if the phase terms of bipolar complex neutrosophic values of the vertices equals 0, the 
bipolar complex neutrosophic graphs of type 1is reduced to generalized bipolar neutrosophic graph 
of  type 1 (GBNG1). 
Remark4:if 𝜌𝑇

−(𝑥) = 𝜌𝐼
−(𝑥) = 𝜌𝐹

−(𝑥) 0, and the phase terms of positive truth-membership,
indeterminate-membership and false-membership of the vertices equals 0, the bipolar complex 
neutrosophic graphs of type 1is reduced to generalized single valued neutrosophic graph of  type 
1 (GSVNG1). 

Here the bipolar complex neutrosophic graph of type 1 (BCNG1) can be represented by the matrix 
representation depicted in table 15.The matrix representation can be written as sixth matrices one 
containing the entries as𝑇+, 𝐼+ , 𝐹+,𝑇− , 𝐼− , 𝐹− (see table 9, 10,11,12,13 and 14).

Table 9. 𝑇+- matrix representation of BCNG1

𝛼 x(0.5 𝑒𝑗.0.8) y(0.9 𝑒𝑗.0.9) z(0.3 𝑒𝑗.0.3) t(0.8 𝑒𝑗.0.1)
x(0.5 𝑒𝑖.0.8) 0.5 𝑒𝑗.0.8 0.9 𝑒𝑗.0.9 0.5 𝑒𝑗.0.8 0.8 𝑒𝑖.0.8

y(0.9 𝑒𝑖.0.9) 0.9 𝑒𝑗.0.9 0.9 𝑒𝑗.0.9 0 0.9 𝑒𝑗.0.9

z(0.3 𝑒𝑖.0.3) 0.5 𝑒𝑗.0.8 0 0.3 𝑒𝑗.0.3 0 
t(0.8 𝑒𝑖.0.1) 0.8 𝑒𝑗.0.8 0.9 𝑒𝑗.0.9 0 0.8 𝑒𝑗.0.1

Table 10. 𝐼+- matrix representation of BCNG1

β x(0.3 ej.
3π

4 ) y(0.2 ej.
π

4) z(0.1 ej.2π) t(0.5 ej.π) 

x(0.3 ej.
3π

4 ) 0.3 ej.
3π

4 0.2 ej.
π

4 0.1 ej.
3π

4 0.1 ej.
3π

4

y(0.2 ej.
π

4) 0.2 ej.
π

4 0.2 ej.
π

4 0 0.2 ej.
π

4

z(0.1 ej.2π) 0.1 ej.
3π

4
0 0.1 ej.2π 0 

t(0.5 ej.π) 0.3 ej.2π 0.2 ej.
π

4 0 0.5 ej.π 
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Table 11:𝐹+- matrix representation of BCNG1

𝛿 x(0.1 𝑒𝑖.0.3) y(0.6 𝑒𝑗.0.5) z(0.8 𝑒𝑗.0.5) t(0.4𝑒𝑗.0.7) 

x(0.1 𝑒𝑗.0.3) 0.1 𝑒𝑖.0.3 0.1 𝑒𝑖.0.3 0.1 𝑒𝑗.0.3 0.1 𝑒𝑗.0.3 

y(0.6 𝑒𝑗.0.5) 0.1 𝑒𝑖.0.3 0.6 𝑒𝑗.0.5 0 0.4𝑒𝑗.0.5 

z(0.8 𝑒𝑗.0.5) 0.1 𝑒𝑖.0.3 0 0.8 𝑒𝑗.0.5 0 

t(0.4𝑒𝑗.0.7) 0.1 𝑒𝑖.0.3 0.4𝑒𝑗.0.5 0 0.4𝑒𝑗.0.7 

Table 12:𝑇−- matrix representation of BCNG1

𝜉 x(-0.6 𝑒𝑖.−0.6) y(-1 𝑒𝑖.−𝝅) z(-0.4 𝑒𝑖.−0.1) t(-0.9𝑒𝑖.−0.1)
x(-0.6 𝑒𝑖.−0.6) -0.6 𝑒𝑖.−0.6 -1 𝑒𝑖.−𝝅 -0.6 𝑒𝑖.−𝟎.𝟔 -0.9 𝑒𝑖.−𝟎.𝟔

y(-1 𝑒𝑖.−𝝅) -1 𝑒𝑖.−𝝅 -1 𝑒𝑖.−𝝅 0 -1 𝑒𝑖.−𝝅

z(-0.4 𝑒𝑖.−0.1) -0.6 𝑒𝑖.−𝟎.𝟔 0 -0.4 𝑒𝑖.−0.1 0 
t(-0.9𝑒𝑖.−0.1) -0.9 𝑒𝑖.−𝟎.𝟔 -1 𝑒𝑖.−𝝅 0 -0.9𝑒𝑖.−0.1

Table 13:𝐼−- matrix representation of BCNG1

𝜎 x(-0.4 𝑒𝑖.−2𝝅) y(-0.3 𝑒𝑖.0) z(-0.2 𝑒𝑖.−0.3) t(-0.6𝑒𝑖.−0.2)
x(-0.4𝑒𝑖.−2𝝅) -0.4 𝑒𝑖.−2𝝅 -0.3𝑒𝑖.0 -0.2𝑒𝑖.−2𝝅 -0.4𝑒𝑖.−2𝝅

y(-0.3𝑒𝑖.0) -0.3 𝑒𝑖.0 -0.3 𝑒𝑖.0 0 -0.3 𝑒𝑖.0

z(-0.2 𝑒𝑖.−0.3) -0.2 𝑒𝑖.−2𝝅 0 -0.2 𝑒𝑖.−0.3 0 
t(-0.6𝑒𝑖.−0.2) -0.4 𝑒𝑖.−2𝝅 -0.3 𝑒𝑖.0 0 -0.6𝑒𝑖.−0.2

Table 14:𝐹−- matrix representation of BCNG1

𝜓 x(-0.2 𝑒𝑖.−2𝝅) y(-0.7 𝑒𝑖.−0.6) z(-0.9 𝑒𝑖.−2𝝅) t(-0.5𝑒𝑖.−𝝅)
x(-0.2𝑒𝑖.−2𝝅) -0.2 𝑒𝑖.−2𝝅 -0.2𝑒𝑖.−0.3 -0.2 𝑒𝑖.−0.3 -0.2𝑒𝑖.−0.3

y(-0.7 𝑒𝑖.−0.6) -0.2 𝑒𝑖.−0.3 -0.7 𝑒𝑖.−0.6 0 -0.5𝑒𝑖.−0.6

z(-0.9 𝑒𝑖.−2𝝅) -0.2 𝑒𝑖.−0.3 0 -0.9 𝑒𝑖.−2𝝅 0 
t(-0.5𝑒𝑖.−𝝅) -0.2 𝑒𝑖.−0.3 -0.3 𝑒𝑖.0 0 -0.5𝑒𝑖.−𝝅

The matrix representation of GBNG1 is shown in Table 15. 
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Table 15. Matrix representation of BCNG1. 

(𝛼,𝛽,𝛿,𝜉,𝜎,𝜓) x<0.5 𝒆𝒋.𝟎.𝟖, 0.3 𝒆𝒋.
𝟑𝝅

𝟒 , 
0.1 𝒆𝒋.𝟎.𝟑, -
0.6𝒆𝒊.−𝟎.𝟔,-0.4𝒆𝒊.−𝟐𝝅,-
0.2𝒆𝒊.−𝟎.𝟑>

y<0.9𝐞𝐣.𝟎.𝟗, 0.2𝐞𝐣.
𝛑

𝟒, 
0.6𝐞𝐣.𝟎.𝟓, -1𝐞𝐢.−𝛑, -
0.3𝐞𝐢.𝟎, -0.7𝐞𝐢.−𝟎.𝟔> 

z   <0.3 𝐞𝐣.𝟎.𝟑, 0.1 
𝐞𝐣.𝟐𝛑, 0.8𝐞𝐣.𝟎.𝟓,-
0.4𝐞𝐢.−𝟎.𝟏,-
0.2𝐞𝐢.−𝟎.𝟑, -
0.9𝐞𝐢.−𝟐𝛑> 

t<0.8𝐞𝐣.𝟎.𝟏, 0.5𝐞𝐣.𝛑, 
0.4𝐞𝐣.𝟎.𝟕, -0.9𝐞𝐢.−𝟎.𝟏,-
0.6𝐞𝐢.−𝟎.𝟐,-0.5𝐞𝐢.−𝛑, -
0.7𝐞𝐢.−𝟎.𝟔> 

x<0.5 𝒆𝒋.𝟎.𝟖, 0.3

𝒆𝒋.
𝟑𝝅

𝟒 , 0.1 𝒆𝒋.𝟎.𝟑, -
0.6𝒆𝒊.−𝟎.𝟔,-
0.4𝒆𝒊.−𝟐𝝅,-
0.2𝒆𝒊.−𝟎.𝟑>

<0.5 𝒆𝒋.𝟎.𝟖, 0.3 𝒆𝒋.
𝟑𝝅

𝟒 , 
0.1 𝒆𝒋.𝟎.𝟑, -
0.6𝒆𝒊.−𝟎.𝟔,-0.4𝒆𝒊.−𝟐𝝅,-
0.2𝒆𝒊.−𝟎.𝟑> 

<0.9𝐞𝐣.𝟎.𝟗, 0.2𝐞𝐣.
𝛑

𝟒, 
0.1𝐞𝐣.𝟎.𝟓,
-1𝐞𝐢.−𝛑, -0.3𝐞𝐢.𝟎, -
0.2𝐞𝐢.−𝟎.𝟑 >

<0.5𝐞𝐣.𝟎.𝟖,0.1 

𝐞𝐢.
𝟑𝛑

𝟒 , 0.1𝐞𝐢.𝟎.𝟑,-
0.6𝐞𝐢.−𝟎.𝟔, 

0.2𝐞𝐢.−𝟐𝛑, -
0.2𝐞𝐢.−𝟎.𝟑> 

<0.8𝐞𝐣.𝟎.𝟖, 0.3𝐞𝐢,
𝟑𝛑

𝟒 , 
0.1𝐞𝐣.𝟎.𝟑,  
-0.9𝐞𝐣.−𝟎.𝟔, -
0.4𝐞𝐢.−𝟐𝛑, -
0.2𝐞𝐣.𝟎𝐢.−𝟎.𝟑.> 

y<0.9𝐞𝐣.𝟎.𝟗, 0.2𝐞𝐣.
𝛑

𝟒, 
0.6𝐞𝐣.𝟎.𝟓, -1𝐞𝐢.−𝛑, -
0.3𝐞𝐢.𝟎, -0.7𝐞𝐢.−𝟎.𝟔> 

<0.9𝐞𝐣.𝟎.𝟗, 0.2𝐞𝐣.
𝛑

𝟒, 
0.1𝐞𝐣.𝟎.𝟓,
-1𝐞𝐢.−𝛑, -0.3𝐞𝐢.𝟎, -
0.2𝐞𝐢.−𝟎.𝟑 >

<0.9𝐞𝐣.𝟎.𝟗, 0.2𝐞𝐣.
𝛑

𝟒, 
0.6𝐞𝐣.𝟎.𝟓, -1𝐞𝐢.−𝛑, -
0.3𝐞𝐢.𝟎, -0.7𝐞𝐢.−𝟎.𝟔> 

(0,  0 ,  0 , 0 ,0,  0) <0.9𝐞𝐣.𝟎.𝟗, 0.2𝐞𝐢.
𝛑

𝟒, 
0.4𝐞𝐢.𝟎.𝟓, -1𝐞𝐢.−𝛑, -

0.3𝐞𝐢.𝟎, -0.5𝐞𝐢.−𝟎.𝟔> 

z   <0.3 𝐞𝐣.𝟎.𝟑, 0.1 
𝐞𝐣.𝟐𝛑, 0.8𝐞𝐣.𝟎.𝟓,-
0.4𝐞𝐢.−𝟎.𝟏,-0.2𝐞𝐢.−𝟎.𝟑, 
-0.9𝐞𝐢.−𝟐𝛑> 

<0.5𝐞𝐣.𝟎.𝟖,0.1 𝐞𝐢.
𝟑𝛑

𝟒 , 
0.1𝐞𝐢.𝟎.𝟑,-0.6𝐞𝐢.−𝟎.𝟔, 

0.2𝐞𝐢.−𝟐𝛑, -
0.2𝐞𝐢.−𝟎.𝟑> 

(0,  0 ,  0 , 0 ,0,  
0) 

z <0.3 𝐞𝐣.𝟎.𝟑, 0.1 
𝐞𝐣.𝟐𝛑, 0.8𝐞𝐣.𝟎.𝟓,-
0.4𝐞𝐢.−𝟎.𝟏,-
0.2𝐞𝐢.−𝟎.𝟑, -
0.9𝐞𝐢.−𝟐𝛑> 

(0,  0 ,  0 , 0 ,0,  
0) 

t<0.8𝐞𝐣.𝟎.𝟏, 0.5𝐞𝐣.𝛑, 
0.4𝐞𝐣.𝟎.𝟕, -0.9𝐞𝐢.−𝟎.𝟏,-
0.6𝐞𝐢.−𝟎.𝟐,-0.5𝐞𝐢.−𝛑, -
0.7𝐞𝐢.−𝟎.𝟔> 

<0.8𝐞𝐣.𝟎.𝟖, 0.3𝐞𝐢,
𝟑𝛑

𝟒 , 
0.1𝐞𝐣.𝟎.𝟑,  
-0.9𝐞𝐣.−𝟎.𝟔, -
0.4𝐞𝐢.−𝟐𝛑, -
0.2𝐞𝐣.𝟎𝐢.−𝟎.𝟑.> 

<0.9𝐞𝐣.𝟎.𝟗, 0.2𝐞𝐢.
𝛑

𝟒, 
0.4𝐞𝐢.𝟎.𝟓, -1𝐞𝐢.−𝛑, -

0.3𝐞𝐢.𝟎, -0.5𝐞𝐢.−𝟎.𝟔> 

(0,  0 ,  0 , 0 ,0,  
0) 

<0.8𝐞𝐣.𝟎.𝟏, 0.5𝐞𝐣.𝛑, 
0.4𝐞𝐣.𝟎.𝟕, -0.9𝐞𝐢.−𝟎.𝟏,-
0.6𝐞𝐢.−𝟎.𝟐,-0.5𝐞𝐢.−𝛑, -
0.7𝐞𝐢.−𝟎.𝟔>   

Table 15: Matrix representation of BCNG1. 

Theorem 1. Let 𝑀𝐺1
𝑇+be matrix representation of 𝑇+-BCNG1, then the degree of vertex

𝐷𝑇+(𝑥𝑘)=∑ 𝑎𝑇+(𝑘 + 1, 𝑗 + 1)𝑛
𝑗=1,𝑗≠𝑘 ,𝑥𝑘 ∈ V or 

𝐷𝑇+(𝑥𝑝)=∑ 𝑎𝑇+(𝑖 + 1, 𝑝 + 1)𝑛
𝑖=1,𝑖≠𝑝 , 𝑥𝑝 ∈ V. 

Proof: It is similar as in theorem 1  of (Broumi et al., 2017b). 

Theorem 2. Let 𝑀𝐺1
𝐼+ be matrix representation of 𝐼+- BCNG1, then the degree of vertex

𝐷𝐼+(𝑥𝑘) =∑ 𝑎𝐼+(𝑘 + 1, 𝑗 + 1)𝑛
𝑗=1,𝑗≠𝑘 ,𝑥𝑘 ∈ V or 

𝐷𝐼+(𝑥𝑝) =∑ 𝑎𝐼+(𝑖 + 1, 𝑝 + 1)𝑛
𝑖=1,𝑖≠𝑝 , 𝑥𝑝 ∈ V. 

Proof: It is similar as in theorem 1 of (Broumi et al., 2017b). 

New Trends in Neutrosophic Theory and Applications. Volume II

205



Theorem 3. Let 𝑀𝐺1
𝐹+  be matrix representation of 𝐹+- BCNG1, then the degree of vertex

𝐷𝐹+(𝑥𝑘) =∑ 𝑎𝐹+(𝑘 + 1, 𝑗 + 1)𝑛
𝑗=1,𝑗≠𝑘 ,𝑥𝑘 ∈ V or 

𝐷𝐹+(𝑥𝑝) =∑ 𝑎𝐹+(𝑖 + 1, 𝑝 + 1)𝑛
𝑖=1,𝑖≠𝑝 , 𝑥𝑝 ∈ V. 

Proof: It is similar as in theorem 1 of (Broumi et al., 2017b) 

Theorem 4. Let 𝑀𝐺1
𝑇− be matrix representation of 𝑇−- BCNG1, then the degree of vertex

𝐷𝑇−(𝑥𝑘) =∑ 𝑎𝑇−(𝑘 + 1, 𝑗 + 1)𝑛
𝑗=1,𝑗≠𝑘 ,𝑥𝑘 ∈ V or 

𝐷𝑇−(𝑥𝑝) =∑ 𝑎𝑇−(𝑖 + 1, 𝑝 + 1)𝑛
𝑖=1,𝑖≠𝑝 , 𝑥𝑝 ∈ V. 

Proof: It is similar as in theorem 1 of (Broumi et al., 2017b). 

Theorem 5. Let 𝑀𝐺1
𝐼− be matrix representation of 𝐼−- BCNG1, then the degree of vertex

𝐷𝐼−(𝑥𝑘) =∑ 𝑎𝐼−(𝑘 + 1, 𝑗 + 1)𝑛
𝑗=1,𝑗≠𝑘 ,𝑥𝑘 ∈ V or 

𝐷𝐼−(𝑥𝑝) =∑ 𝑎𝐼−(𝑖 + 1, 𝑝 + 1)𝑛
𝑖=1,𝑖≠𝑝 , 𝑥𝑝 ∈ V. 

Proof: It is similar as in theorem 1 of (Broumi et al., 2017b). 

Theorem 6. Let 𝑀𝐺1
𝐹−  be matrix representation of 𝐹−- BCNG1, then the degree of vertex

𝐷𝐹−(𝑥𝑘) =∑ 𝑎𝐹−(𝑘 + 1, 𝑗 + 1)𝑛
𝑗=1,𝑗≠𝑘 ,𝑥𝑘 ∈ V or 

𝐷𝐹−(𝑥𝑝) =∑ 𝑎𝐹−(𝑖 + 1, 𝑝 + 1)𝑛
𝑖=1,𝑖≠𝑝 , 𝑥𝑝 ∈ V. 

Proof: It is similar as in theorem 1 of (Broumi et al., 2017b) 

5. CONCLUSION
In this article, we have extended the concept of complex neutrosophic graph of type 1 (CNG1) to 
bipolar complex neutrosophic graph of type 1(BCNG1) and presented a matrix representation of 
it.  The concept of BCNG1 is a generalization of Generalized fuzzy graph of type 1 (GFG1), 
generalized bipolar neutrosophic graph of type 1 (GBNG1), generalized single valued 
neutrosophic graph of type 1 (GSVNG1) and complex neutrosophic graph of type 1(CNG1). This 
concept can be applied to the case of tri-polar neutrosophic graphs and multi-polar neutrosophic 
graphs. In the future works, we plan to study the concept of completeness, the concept of regularity 
and to define the concept of bipolar complex neutrosophic graphs of type 2. 
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ABSTRACT 

Let ( , I)N R be a Neutrosophic ring of a finite commutative classical ring R with non-

zero identity. Then the Neutrosophic invertible graph of ( , I)N R , denoted by ℐG(N(R, I)) and 

defined as  an undirected simple graph whose vertex set is ( , I)N R and two vertices Ia b  and 

Ic d are adjacent in ℐG(N(R, I)) if and only Ia b is different from - ( I)c d which is 

equivalent to Ic d  is different from - ( I)a b . We begin by considering some properties of the 

self and mutual additive inverse elements of finite Neutrosophic rings. We then proceed to 

determine several properties of Neutrosophic invertible graphs and we obtain an interrelation 

between classical rings, Neutrosophic rings and their Neutrosophic invertible graphs.  

KEYWORDS: Classical ring, Neutrosophic ring, Neutrosophic invertible graphs, Neutrosophic  

Isomorphism,self and additive inverse elements. 

1. INTRODUCTION

The investigation of simple undirected graphs associated to finite algebraic structures, 

namely, rings and fields which are very important in the theory of algebraic graphs. In recent 

years the interplay between Neutrosophic algebraic structure and graph structure is studied by 

few researchers. For such kind of study, researchers define a Neutrosophic graph whose 

vertices are set of elements of a Neutrosophic algebraic structure and edges are defined with 

respect to a well-defined condition on the pre-defined vertex set. Kandasami and Smarandache 

(2006) introduced the notion and structure of the Neutrosophic graphs. Also, the authors 

Kandasami and Smarandache (2006) and Kandasamy, Ilanthenral, & Smarandache (2015) 

studied the notion and structure of the Neutrosophic graphs of several finite algebraic structures 

and exhibited them with various examples. Later, Chalapathi and Kiran (2017a) introduced 

another Neutrosophic graph of a finite group and this work was specifically concerned with 

finite Neutrosophic multiplicative groups only. 
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Throughout this paper, we will write ( , I)N R be a finite Neutrosophic commutative 

ring with identity 1  and indeterminacy I . For this Neutrosophic algebraic structure, we denote 

 ( , I)S N R and  ( , I)M N R be the set of self and respectively mutual additive Neutrosophic

inverse elements. We may construct a new type of graphs associated with Neutrosophic rings. 

Our primary goal is to introduce Neutrosophic invertible graphs of finite rings and to study 

properties of these graphs. Further, we determine the diameter of Neutrosophic invertible 

graphs and introduce an isomorphic relation between classical rings, Neutrosophic rings and 

their invertible graphs. 

2. BASIC PROPERTIES OF NEUTROSOPHIC RINGS

In this section, for all terminology and notations in graph theory, classical ring theory and

Neutrosophic ring theory, we refer (Vitaly & Voloshin, 2009), (Lanski, 2004). and (Agboola, 

Akinola, & Oyebola. (2011); Agboola, Adeleke, & Akinleye, 2012) respectively. Chalapathi 

and Kiran (2017b) introduced and studied self and mutual additive inverse elements of finite 

Neutrosophic rings and illustrated them with few examples in different cases and proposed 

various results regarding the characterization of the Neutrosophic rings with identity 1 0 . We 

will restate some of the results as follows (Chalapathi & Kiran, 2017a; 2017b).  

Definition 2.1. Let  , ,R   be a finite ring. The set ( , )N R I R I   : ,a bI a b R   is

called a Neutrosophic finite ring generated by R and I , where I is the Neutrosophic element 

with the properties 2I I , 0 0I  , 2I I I  and 1I  does not exist. 

Theorem 2.2. Let R  be a finite ring with unity. Then ( )S R R if and only if  ( , I)S N R

( , I)N R . 

Theorem 2.3. Let R  be a finite Boolean ring with unity. Then ( )S R R and  ( , I)S N R

( , I)N R . 

Theorem2.4. Let R  and R  be two finite commutative rings with unity. If R R , then 

 ( , I)S N R   ( , I)S N R .

Theorem 2.5. Let R  and R  be two finite commutative rings with unity. Then R R  if and 

only if ( , I)N R  ( , I)N R . 

Theorem 2.6. Let  R  be a finite Boolean ring with unity and 1R  . Then 4 ( , I)N R
2R

Proof. Since R  {0} if and only if ( , I)N R {0} . It is clear that R  {0} implies that 1R  . 

Suppose 2R  . Then, obviously, R 2Z . This implies that ( , I)N R 2( , I)N Z
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{0, 1, I, 1+ I} , and hence ( , I)N R 4 . It is one extremity of the inequality. For another 

extremity of the inequality, we set *IR *{ I: a R }a  , * *R R I *{ I: a,b R }a b   where *R

{0}R  . These sets imply that R , *IR and * *R R I are mutually non-empty disjoint subsets 

of ( , I)N R . Thus, ( , I)N R *IR R  * *( I)R R  , and clearly the cardinality of ( , I)N R is 

( , I)N R *IR R  * *IR R  R ( 1)R  2( 1)R 
2R . 

Theorem 2.7.For any finite ring R with 1R  , we have ( , I)N R is the disjoint union of 

 ( , I)S N R and  ( , I)M N R .

Proof. By the definition of self and mutual additive inverse elements of the Neutrosophic ring, 

 ( , I)S N R  I :a b  2 0, 2 0a b 

and   ( , I)M N R  I :c d  2 0, 2 0c d  .

Clearly,  ( , I)S N R  ( , I)M N R  , and thus  ( , I)S N R  ( , I)M N R ( , I)N R .

3. NEUTROSOPHIC INVERTIBLE GRAPHS

In this section, we introduced Neutrosophic invertible graphs and characterized its 

structural concepts. 

Definition3.1.Let R  be a finite commutative ring with identity1 0 . A graph with its vertex 

set as ( , I)N R and two distinct vertices Ia b  and Ic d are adjacent if and only Ia b is 

different from - ( I)c d which is equivalent to Ic d  is different from - ( I)a b and we denote 

it by ℐG (N(R, I)). 

The following theorem is a consequence of the Definition [3.1].  

Theorem3.2. For each ( , I)N R {0} , there exist Neutrosophic invertible graph ℐG(N(𝑅, I)). 

Further, the aim of this section is to show how Neutrosophic algebraic representation 

of some philosophical concepts and some real world problems in the society can be modified 

to the study of algebraic Neutrosophic graphs. So, we shall investigate some important concrete 

properties of Neutrosophic invertible graphs, and also establish results of these graphs, which 

we required in the subsequent sections. 

We begin with the algebraic graph theoretical properties of ℐG (N(R, I)) , 1R  . Note 

that 1R  if and only if 4 ( , I)N R
2R . 

Theorem 3.3. The Neutrosophic invertible graph ℐG (N(R, I)) is connected. 
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Proof. Since 0 0I   ( , I)S N R for any ( , I)N R , ( , I) 4N R  . So,    I 0 0Ia b  

I 0 0Ia b    , for any non-zero element in Ia b in  ( , I)S N R .This implies that the vertex

0 0I  is adjacent with remaining all the vertices inℐG(N(𝑅, I)).  It is clear that there is a 

pathbetween the vertices 0 0I and Ia b  inℐG(N(𝑅, I)).Hence ℐG(N(𝑅, I))is connected.

The next few results provide a characterization for all Neutrosophic rings whose 

invertible graphs are complete.  

Theorem3.4. The Neutrosophic invertible graph ℐG(N(𝑅, I)) is complete if and only if 

 ( , I)S N R ( , I)N R .

Proof. Necessity. Suppose that ℐG(N(𝑅, I))is complete. Then any two vertices Ia b and

Ic d are adjacent in ℐG(N(𝑅, I)). Consequently,

( I)+( I)a b c d  0 0I  2( I)a b  0 and 2( I) 0c d   

I, c Ia b d    ( , I)S N R .

This implies that each and every element in ( , I)N R is an element of  ( , I)S N R . This shows

that ( , I)N R  ( , I)S N R . Further, by the Theorem [4.2] (Chalapathi & Kiran, 2017b),

 ( , I)S N R is a Neutrosophic subring of ( , I)N R . So,  ( , I)S N R ( , I)N R . Hence,

 ( , I)S N R ( , I)N R .

Sufficient. Let  ( , I)S N R ( , I)N R . Then we have to prove that ℐG(N(𝑅, I)) is complete.

Suppose ℐG(N(𝑅, I)) is not complete. Then there exist at least two vertices Ia b  and Ic d 

in ( , I)N R  such that ( I)+( I)=0+0Ia b c d     . Therefore,  

I = -( I)a b c d     I, Ia b c d       ( , I)M N R

I, Ia b c d       ( , I)S N R , by the Theorem [2.7]

 ( , I) ( , I)S N R N R  , this is a contradiction to our hypothesis, and hence  ℐG(N(𝑅, I)) is

complete. 

Corollary3.5. The Neutrosophic invertible graph of ( , I)N R is complete if and only if ( , I)N R

is a finite Neutrosophic Boolean ring. 

Proof. In view of the Theorem [2.5] and Theorem [3.4], ( , I)N R is a Neutrosophic Boolean 

ring if and only if  ( , I)S N R ( , I)N R if and only ifℐG(N(𝑅, I)) is complete.

Corollary 3.6.  For 1n  , ℐG(N(𝑍2
𝑛, I)) is complete.
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Proof. Since N(𝑍2
𝑛, I)  is a Neutrosophic Boolean ring with 22 n elements; (0, 0,..., 0) ,

(1, 0,..., 0) ,..., (1, 1,..., 1) , (I, 0,..., 0) ,..., (I, I,..., I) . Clearly, it is the vertex set of the 

graphℐG(N(𝑍2
𝑛, I)), and the sum of any two vertices in ℐG(N(𝑍2

𝑛, I))is non-zero. This implies

that  2( , I)nS N Z 2( , I)nN Z . So, by the Theorem [3.4], ℐG(N(𝑍2
𝑛, I))is complete.

Example3.7. By the definition of Neutrosophic ring, the Neutrosophic ring of Gaussian 

integers 2( [ ], I)N Z i of modulo 2 is defined as 0, 1, , 1 , I ,i i I, (1 )I, 1 I, I,i i i  

(1 ) I, (1 ) I, 1 I, I,i i i i i i      (1 )I, 1 (1 )I, (1 ) (1 )Ii i i i i       . The Neutrosophic

invertible graph of 2( [ ], I)N Z i is a complete graph because  2( [ ], I)S N Z i 2( [ ], I)N Z i , but 

it is not a  Neutrosophic Boolean ring, since 2( I) ( I)i i   ,where 2 1i    and 2I I . 

The Example [3.7] explains that the completeness property of the Neutrosophic 

invertible graph depends on the  ( , I)S N R ( , I)N R , but not the Boolean property.

Theorem 3.8. The graphℐG(N(𝑅, I)) is not complete if and only if  ( , I)S N R ( , I)N R .

Proof.  Follows from the Theorem [3.4]. 

Theorem3.9. Let p be an odd prime. Then, the Neutrosophic invertible graph of a 

Neutrosophic field of order 2np is never complete. 

Proof. Let ( )x be an irreducible polynomial of degree n over the classical field pZ . Then, the 

Neutrosophic field of order 2np is isomorphic to 
[ ]

, I
( )
pZ x

N
x

 
  
 

. Now to show that its 

invertible graph is never complete. For this let 1 1 I
2 2

p pu x x 
  , 1 1 I

2 2
p pv x x 

  be 

two vertices in 
[ ]

, I
( )
pZ x

N
x

 
  
 

, then clearly, u v  Ipx px 0(mod p) .This means that u

and v are not adjacent. Hence the proof. 

Again we recall that the result 4 ( , I)N R
2R for each 1R  . So the immediate 

results ensures that the Neutrosophic invertible graph has at least one 3 cycle when 

( , I) 4N R  . 

Theorem3.10. Let ( , I) 4N R  . Then, ℐG(N(𝑅, I)) has at least one cycle of length 3 . 

Proof. Let ( , I)N R be a finite Neutrosophic ring with 1 0 and ( , I) 4N R  . Then clearly 

( , I)N R 2( , I)N Z , and its invertible graph has a cycle 1 I (1+I) 1   of length 3 because 
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1 I0 , I ( 1 I)  0 and (1+I) 10 so in this case the result is true. 

Now consider ( , I) 4N R  . Then there exist the following two cases. 

Case. (i) Suppose  ( , I)S N R ( , I)N R . Then, by the Theorem [3.4], the result is trivial.

Case. (ii) Suppose  ( , I)S N R ( , I)N R . There is at least one element Is t in  ( , I)S N R

and Im n in  ( , I)M N R such that ( I) +s t ( I)m n 0 . It is clear that there is a cycle

0 ( I) ( I) 0s t m n     of length 3 in ℐG(N(𝑅, I)). 

In the area of graph theory, a simple graph G is bipartite if its vertex set ( )V G can be 

partitioned into two disjoint subsets 1V and 2V such that no vertices both in 1V or both   in 2V are 

connected. In 1931, the Kőnig’s theorem provided by KőnigDénes (Dénes, 1931), it describes 

the relation between bipartite graph and its odd cycles. 

Theorem 3.11. A simple graph is bipartite if and only if it does not have an odd length cycle. 

Now we are in a position to determine precisely when  ℐG(N(𝑅, I)) is bipartite or not. 

Note that ( , I)N R 2( , I)N Z if and only if the graph ℐG(N(𝑍2, I))  is isomorphic to the 

complete graph 4K of order 4 . It is clear that the following result is hold in view of the 

Theorem [3.10]. 

Theorem3.12. Every Neutrosophic invertible graph is never a bipartite graph. 

Already we proved that the graph ℐG(N(𝑅, I)) is connected for any finite Neutrosophic 

ring ( , I)N R . Therefore, ℐG(N(𝑅, I)) has a diameter. Now, we immediate compute the diameter 

of ℐG(N(𝑅, I)) for any ( , I)N R such that 4 ( , I)N R
2R . 

Theorem 3.13.  The diameter of ℐG(N(𝑅, I)) is at most 2 . 

Proof. Let ( , I)N R  be a finite Neutrosophic ring with unity 1and indeterminacy I . Then we 

consider the following two cases for finding diameter of ℐG(N(𝑅, I)). Note that,  

diam(ℐG(N(𝑅, I))) = min  ( , )d u v : , ( , I)u v N R ,

where ( , )d u v is the length of the shortest path between the vertices u and v . 

Case. (i)Suppose  ( , I)S N R ( , I)N R . Then, by the Theorem [3.4], ℐG(N(𝑅, I)) is complete,

so in this case diam(ℐG(N(𝑅, I))) = 1. 

Case. (ii) Suppose  ( , I)S N R ( , I)N R .Then, by the Theorem [3.8],ℐG(N(𝑅, I)) is never a

complete graph. Therefore,  diam(ℐG(N(𝑅, I))) ≠ 1. This implies that  diam(ℐG(N(𝑅, I))) >
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1. So, there exist a path ( I) 0 ( I)s t m n    in ℐG(N(𝑅, I)), which is smallest. Therefore,

 I , I 2d s t m n   , this implies that  diam(ℐG(N(𝑅, I))) = 2.

From case (i) and (ii) we conclude that the diameter of ℐG(N(𝑅, I)) is at most 2 . 

4.ISOMORPHIC PROPERTIES OF NEUTROSOPHIC INVERTIBLE GRAPHS

In this section, we compute an interrelation between classical rings, their Neutrosophic 

rings and their Neutrosophic invertible graphs. Refer the definitions of isomorphism of two 

classical rings, two Neutrosophic rings and two simple graphs from (Chalapathi &Kiran,  

(2017b). 

Theorem 4.1. Let R and Rbe two finite rings with unities. Then the following implications 

holds. 

R R  ( , I) ( , I)N R N R  ℐG(N(𝑅, I)) ℐG(N(𝑅′, I)).

Proof. The implication R R  ( , I) ( , I)N R N R follows from Theorem [2.4]. To 

complete the proof, it is enough to show that the second implication of the result. For any finite 

rings R and R , suppose ( , I) ( , I)N R N R . Then by the definition of Neutrosophic 

isomorphism, there exist a bijection f from ( , I)N R onto ( , I)N R  such that R R and 

(I) If   where 2I I .Now to show that ℐG(N(𝑅, I)) ℐG(N(𝑅′, I)). For this we define a map

: ℐG(N(𝑅, I)) ℐG(N(𝑅′, I))as

(i). ( I) ( I)a b f a b    and 

(ii).  ( I, c+dI)a b   ( I), (c+dI)f a b f  .

Trivially,  is a bijection since f is bijection. Further, we claim that each edge ofℐG(N(𝑅, I)) 

with end vertices Ia b and Ic d is mapped to an edge in ℐG(N(𝑅′, I)) with end vertices

( I)f a b and ( c+dI)f . So, we have 

 I, Ia b c d  𝐸 (ℐG(N(𝑅, I))) ( I) ( I)a b c d    0  ( I) ( I)a b c d    (0)

 ( ) ( )Ia c b d    0  ( ) ( )If a c b d    0 (( )) (( )I)f a c f b d    0

( ) ( ) ( )I ( )If a f c f b f d    0    ( ) ( )I ( ) ( )If a f b f c f d    0

( I) ( I)f a b f c d    0  ( I), ( I)f a b f c d   𝐸(ℐG(N(𝑅′, I))).

Similarly we can show that  maps non-adjacent vertices in ℐG(N(𝑅, I))to non-adjacent

vertices in ℐG(N(𝑅′, I)). Thus,  is a graph isomorphism from ℐG(N(𝑅, I)) onto ℐG(N(𝑅′, I)),

and hence ℐG(N(𝑅, I)) ℐG(N(𝑅′, I)).
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By the Theorem [2.4], two classical rings are isomorphic, so their Neutrosophic rings 

are isomorphic and consequently their Neutrosophic invertible graphs are also isomorphic, but 

converse of these implication, in general, not true. The next results provide such a class. First 

we state the following results due to isomorphism of two simple graphs. The proof of the 

following results is essentially contained in Bondy and Murty (2008). 

Theorem 4.2. Two simple graphs G and Gare isomorphic if and only if their complement 

graphs G and G .  

Recall from Mullen and Panario (2013) that np
F is a field of order np  and np

Z is a com 

mutative ring of order np , where p is a prime and 1n  .  Note that np
F is not isomorphic to 

np
Z because the characteristic of np

F is p and the characteristic of np
Z is np . 

Theorem 4.3. Let 2p  be a prime. Then the Neutrosophic invertible graphs of order 2np are 

isomorphic. 

Proof. For each odd prime p , we have ( , I)np
N F is a Neutrosophic field of modulo p .

( , I)np
N Z is a Neutrosophic commutative ring of modulo np , clearly these Neutrosophic rings 

not isomorphic.  Now it remains to show that the graphsℐG (N(𝐹𝑝𝑛 , I))and ℐG (N(𝑍𝑝𝑛 , I))are 

isomorphic. For this we shall show that their complement graphs are isomorphic. By the 

definition of complement graph,  ℐG̅ (N(𝐹𝑝𝑛 , I))   2( , I)np
M N F K   1( , I)np

S N F K

2

2
1

2

np K
 

  
 

1K  ℐG̅ (N(𝑍𝑝𝑛 , I)), so due to Theorem [4.2], we get the required result.

Corollary 4.4. For each 1n  , the Neutrosophic invertible graphs of order 22 n are isomorphic. 

Proof. Follows fromℐG(N(𝐹2𝑛 , I))   12
( , I)nS N F K 

22 n
1K  2nN  ℐG(N(𝑍2𝑛 , I)), where

2nN is totally disconnected graph of order 22 n . It is clear that
2nF ≇

2nZ and ( , I)np
N F ≇

( , I)np
N Z but their Neutrosophic invertible graphs are isomorphic. 
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ABSTRACT 

In this article, we combine the interval valued neutrosophic soft set and graph theory. We introduce the 
notions of interval valued neutrosophic soft graphs, strong interval valued neutrosophic graphs, 
complete interval valued neutrosophic graphs, and investigate some of their related properties. We study 
some operations on interval valued neutrosophic soft graphs. We also give an application of interval 
valued neutrosophic soft graphs into a decision making problem. We hold forth an algorithm to solve 
decision making problems by using interval valued neutrosophic soft graphs. 

KEYWORDS: interval valued neutrosophic soft sets, interval valued neutrosophic soft sets, 

interval valued neutrosophic soft graphs, strong interval valued neutrosophic soft graphs, 

complete interval valued neutrosophic soft graphs, decision making. 

1. INTRODUCTION
The neutrosophic set (NSs), proposed by (Smarandache, 2006, 2011), is a powerful 
mathematical tool for dealing with incomplete, indeterminate and inconsistent information in 
real world. Itis a generalization of the theory of fuzzy sets (Zadeh, 1965), intuitionistic fuzzy 
sets (Atanassov, 1986,1999) and interval-valued intuitionistic fuzzy sets (Atanassov, 1989). 
The neutrosophic sets are characterized by a truth-membership function (t), an indeterminacy-
membership function (i) and a falsity-membership function (f) independently, which are within 
the real standard or nonstandard unit interval ]−0, 1+[. In order to conveniently employ NS in 
real life applications, (Wang et al., 2010) introduced the concept of single-valued neutrosophic 
set (SVNS), a subclass of the neutrosophic sets. The same authors (Wang,  Zhang, & 
Sunderraman, 2005) introduced the concept of interval valued neutrosophic set (IVNS), which 
is more precise and flexible than single valued neutrosophic set. The IVNS is a generalization 
of single valued neutrosophic set, in which three membership functions are independent and 
their value belong to the unit interval [0, 1]. Some more work on single valued neutrosophic 
set, interval valued neutrosophic set and their applications may be found in (Aydoğdu, 2015; 
Ansari et a.l, 2012; Ansari et al. 2013; Ansari et al. 2013a; Zhang et al., 2015; Zhang et al., 
2015b; Deli et al.  ,2015; Ye, 2014, 2014a; Şahin, 2015; Aggarwal et al.,2010;  Broumi and   
Smarandache, 2014; Karaaslan and Davvaz, 2018). 

Graph theory has now become a major branch of applied mathematics and it is generally 
regarded as a branch of combinatorics. Graph is a widely used tool for solving a combinatorial 
problem in different areas, such as geometry, algebra, number theory, topology, optimization 
and computer science. Most important thing to be noted is that, when we have uncertainty 
regarding either the set of vertices or edges, or both, the model becomes a fuzzy graph. The 
extension of fuzzy graph theory (Nagoor and Basheer, 2003; Nagoor & Latha,2012; 
Bhattacharya,1987) have been developed by several researchers. Intuitionistic fuzzy graphs 
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(Nagoor & Shajitha, 2010; Akram, 2012) considered the vertex sets and edge sets as 
intuitionistic fuzzy sets. Interval valued fuzzy graphs (Akram & Dudek, 2011; Akram, 2012a) 
considered the vertex sets and edge sets as interval valued fuzzy sets. Interval valued 
intuitionistic fuzzy graphs (Akram, 2014; Hai-Long et.,2016) considered the vertex sets and 
edge sets as interval valued intuitionistic fuzzy sets. Bipolar fuzzy graphs (Akram, 2011, 2013) 
considered the vertex sets and edge sets as bipolar fuzzy sets. M-polar fuzzy graphs (Akram, 
2016) considered the vertex sets and edge sets as m-polar fuzzy sets. But, when the relations 
between nodes (or vertices) in problems are indeterminate, the fuzzy graphs and their extensions 
fail. For this purpose, (Smarandache, 2015,2015a,2015b; Vasantha and Smarandache,2013) 
defined four main categories of neutrosophic graphs. Two of them are based on literal 
indeterminacy (I), which are called I-edge neutrosophic graph and I-vertex neutrosophic graph; 
these concepts are studied deeply and gained popularity among the researchers due to their 
applications via real world problems (Devadoss et al., 2013, Jiang et al., 2010;  Vasantha et al., 

2015) The two others graphs arebased on (t, i, f) components and are called:(t, i, f)-edge 
neutrosophic graph and (t, i, f)-vertex neutrosophic graph; these concepts are not developed at 
all. 
Later on, (Broumi et al., 2016a) introduced a third neutrosophic graph model, and investigated 
some of its properties. This model allows the attachment of truth-membership (t), 
indeterminacy–membership (i) and falsity- membership degrees (f) both to vertices and edges. 
The third neutrosophic graph model is called single valued neutrosophic graph (SVNG for 
short). The single valued neutrosophic graph is the generalization of fuzzy graph and 
intuitionistic fuzzy graph. Also, the same authors (Broumi et al., 2016a, 2016e) introduced 
neighborhood degree of a vertex and closed neighborhood degree of a vertex in single valued 
neutrosophic graph as a generalization of neighborhood degree of a vertex and closed 
neighborhood degree of a vertex in fuzzy graph and intuitionistic fuzzy graph. Also, (Broumi et 
al., 2016b) introduced the concept of interval valued neutrosophic graph as a generalization of 
fuzzy graph, intuitionistic fuzzy graph, interval valued fuzzy graph, interval valued 
intuitionistic fuzzy graph and single valued neutrosophic graph, and have discussed some of 
their properties with proofs and examples. In addition, (Broumi et al., 2016c) have introduced 
some operations, such as Cartesian product, composition, union and join on interval valued 
neutrosophic graphs, and investigate some their properties. On the other hand, (Broumi et al., 
2016d) discussed a subclass of interval valued neutrosophic graph, called strong interval valued 
neutrosophic graph, and introduced some operations such as, Cartesian product, composition 
and join of two strong interval valued neutrosophic graph with proofs. Interval valued 
neutrosophic soft sets are the generalization of fuzzy soft sets (Maji, 2001), intuitionistic fuzzy 
soft sets (Maji, 2001a), interval valued intuitionistic fuzzy soft sets (Jiang, et al., 2010) and 
(Maji, 2013). (Thumbakara and George,2014) combined the concept of soft set theory with 
graph theory. (Irfan et al, 2016) proposed a method to represent a graph, which is based on 
adjacency of vertices and soft set theory and introduced some operations such as restricted 
intersection, restricted union, extended intersection and extended union for graphs. In addition, 
the authors defined a metric to find distances between graphs represented by soft sets. Later on, 
Mohinta (2015) extended the concept of soft graph to the case of fuzzy soft graph. Also, Akram 
et al. (2015) studied more properties on fuzzy soft graphs and some operations. Shahzadi and 
Akram (2016) presented different types of new concepts, including intuitionistic fuzzy soft 
graphs, complete intuitionistic fuzzy soft graph, strong intuitionistic fuzzy soft graph and self- 
complement of intuitionistic fuzzy soft graph. And described various methods of their 
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construction, and investigated some of their related properties and discussed the applications of 
intuitionistic fuzzy soft graphs in communication network and decision making. 

Recently, the notion of neutrosophic soft set has been extended in the graph theory and the 
concept of neutrosophic soft graph was provided by (Shah and Hussain, 2016) Later on, 
Shahzadi and Akram (2016) have applied the concept of neutrosophic soft sets to graphs and 
discussed various methods of construction of neutrosophic soft graphs. In the literature, the 
study of interval valued neutrosophic soft graphs (IVNS-graph) is still blank. 

In the present paper, interval valued neutrosophic soft sets (Deli, 2015). are employed 
to study graphs and give rise to a new class of graphs called interval valued neutrosophic soft 
graphs. We have discussed different operations defined on neutrosophic soft graphs such as 
Cartesian product, composition, union and join with examples and proofs. The concepts of 
strong interval valued neutrosophic soft graphs, complete interval valued neutrosophic soft 
graphs and the complement of strong interval valued neutrosophic soft graphs a real so 
discussed. Interval valued neutrosophic soft graphs are pictorial representation in which each 
vertex and each edge is an element of interval valued neutrosophic soft sets.  

This paper is organized as follows. In section 2, we give all the basic definitions related 
to interval valued neutrosophic graphs and interval valued neutrosophic soft sets which will be 
employed in later sections. In section 3, we introduce certain notions including interval valued 
neutrosophic soft graphs, strong interval valued neutrosophic soft graphs, complete interval 
valued neutrosophic soft graphs, the complement of strong interval valued neutrosophic soft 
graphs, and illustrate these notions by several examples, then we present some operations such 
as Cartesian product, composition, intersection, union and join on an interval valued 
neutrosophic soft graphs and investigate some of their related properties. In section 4, we 
present an application of interval valued neutrosophic soft graphs in decision making.  
2. PRELIMINARIES
In this section, we mainly recall some notions related to neutrosophic sets, single valued 
neutrosophic sets, interval valued neutrosophic sets, neutrosophic soft sets, interval valued, soft 
sets, neutrosophic soft sets, single valued neutrosophic graphs, fuzzy graph, intuitionistic fuzzy 
graph, interval valued intuitionistic fuzzy graphs and interval valued neutrosophic graphs, 
relevant to the present work. See especially (Mohamed et al, 2014; Nagoor and Basheer, 2003; 
Nagoor and Shajitha2010; Molodtsov, 1999; Smarandache, 2006; Wang et al., 2005;  Wang et 
al., 2010; Deli, 2015; Broumi et al., 2016a, 2016b) for further details and background. 

Definition 2.1 (Smarandache, 2006). Let X be a space of points (objects) with generic elements 
in X denoted by x; then the neutrosophic set A (NS A) is an object having the form A = {< x: 
TA(x), IA(x), FA(x)>, x ∈ X}, where the functions T, I, F: X→]−0,1+[define respectively the a
truth-membership function, an indeterminacy-membership function, and a falsity-membership 
function of the element x ∈ X to the set A, with the condition: 

−0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3+. (1) 

The functions TA(x), IA(x) and FA(x) are real standard or nonstandard subsets of ]−0,1+[.
Since it is difficult to apply NSs to practical problems, (Wang et al., 2010). introduced 

the concept of a SVNS, which is an instance of a NS and can be used in real scientific and 
engineering applications. 
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Definition 2.2 (Wang et al., 2010). Let Xbe a space of points (objects) with generic elements 
in X denoted by x. A single valued neutrosophic set A (SVNS A) is characterized by truth-
membership function TA(x), an indeterminacy-membership function IA(x), and a falsity-
membership function FA(x). For each point x in XTA(x), IA(x), FA(x) ∈ [0, 1]. A SVNS A can 
be written as  

A = {< x: TA(x), IA(x), FA(x)>, x ∈ X}. (2) 

Definition2.3 (Nagoor and Basheer, 2003)A fuzzy graph is a pair of functions G = (σ, µ) where 
σ is a fuzzy subset of a non-empty set V andμis a symmetric fuzzy relation on σ. i.eσ : V → [ 
0,1] and  μ:VxV→[0,1] such thatμ(uv) ≤ σ(u) ⋀ σ(v)for all u, v ∈ V, where uv denotes the edge 
between u and v and σ(u) ⋀ σ(v) denotes the minimum of σ(u) and σ(v). σ is called the fuzzy 
vertex set of V andμ is called the fuzzy edge set of E. 

Fig.1:FuzzyGraph 

Definition2.4 (Nagoor and Basheer, 2003) The fuzzy subgraph   H = (τ, ρ)  is called a fuzzy 
subgraph of G = (σ, µ) 
If τ(u) ≤ σ(u) for all u ∈ V and ρ(u, v) ≤μ(u, v)for all u, v ∈ V. 

Definition2.5 (Nagoor and Shajitha2010) An Intuitionistic fuzzy graph is of the form G = (V,E) 
where: 

i. V={v1,v2,….,vn} such that 𝜇1:V→ [0,1] and𝛾1:V→ [0,1] denote the degree of
membership and non-membership of the element vi ∈ V, respectively, and 0 ≤
𝜇1(vi)+𝛾1(vi))≤ 1for everyvi ∈ V,(i=1, 2,……. n),

ii. E⊆ VxV where𝜇2:VxV→[0,1]and𝛾2:VxV→ [0,1] are such that 𝜇2(vi,
vj)≤min[𝜇1(vi),𝜇1(vj)]and 𝛾2(vi, vj)≥max[𝛾1(vi),𝛾1(vj)]and 0 ≤𝜇2(vi, vj)+𝛾2(vi,
vj)≤ 1 for every(vi, vj) ∈E,(i,j =1,2,……. n)

Fig.2: Intuitionistic Fuzzy Graph 
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Definition 2.6 (Broumi et al., 2016a).Let A = (𝑇𝐴,𝐼𝐴, 𝐹𝐴) and B = (𝑇𝐵,𝐼𝐵, 𝐹𝐵)be single valued 
neutrosophic sets on a set X. If A = (𝑇𝐴,𝐼𝐴, 𝐹𝐴) is a single valued neutrosophic relation on a set
X, then A =(𝑇𝐴,𝐼𝐴, 𝐹𝐴) is called a single valued neutrosophic relation on B = (𝑇𝐵,𝐼𝐵, 𝐹𝐵) if 

TB(x, y) ≤ min(TA(x),TA(y))  
IB(x, y) ≥ max(IA(x),IA(y)) and 
FB(x, y) ≥ max(FAx),FA(y)) for all x, y ∈ X. 

A single valued neutrosophic relation A on X is called symmetric if 𝑇𝐴(x, y) = 𝑇𝐴(y, x), 
𝐼𝐴(x, y) = 𝐼𝐴(y, x), 𝐹𝐴(x, y) = 𝐹𝐴(y, x) and 𝑇𝐵(x, y) = 𝑇𝐵(y, x), 𝐼𝐵(x, y) = 𝐼𝐵(y, x) and 𝐹𝐵(x, y) = 
𝐹𝐵(y, x), for all x, y ∈X. 

Definition 2.7 (Broumi et al., 2016a). A single valued neutrosophic graph (SVN-graph) with 
underlying set V is defined to be a pair G= (A, B) where: 
1.The functions 𝑇𝐴:V→[0, 1], 𝐼𝐴:V→[0, 1] and 𝐹𝐴:V→[0, 1] denote the degree of truth-
membership, degree of indeterminacy-membership and falsity-membership of the element 𝑣𝑖 ∈ 
V, respectively,and 

0≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3 for all𝑣𝑖 ∈ V (i=1, 2, …,n) 
2. The functions𝑇𝐵: E ⊆ V x V →[0, 1],𝐼𝐵:E ⊆ V x V →[0, 1] and 𝐹𝐵: E ⊆ V x V →[0, 1] are
defined by 

𝑇𝐵({𝑣𝑖, 𝑣𝑗}) ≤min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], 
𝐼𝐵({𝑣𝑖, 𝑣𝑗}) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)], and 
𝐹𝐵({𝑣𝑖, 𝑣𝑗}) ≥max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)], 

Denoting the degree of truth-membership, indeterminacy-membership and falsity-membership 
of the edge (𝑣𝑖,𝑣𝑗) ∈ E respectively, where: 

 0≤ 𝑇𝐵({𝑣𝑖, 𝑣𝑗}) + 𝐼𝐵({𝑣𝑖, 𝑣𝑗})+ 𝐹𝐵({𝑣𝑖, 𝑣𝑗}) ≤3for all{𝑣𝑖, 𝑣𝑗} ∈ E (i, j = 1, 2,…, n) 
We call A the single valued neutrosophic vertex set of V, B the single valued 

neutrosophic edge set of E, respectively. Note that B is a symmetric single valued neutrosophic 
relation on A. We use the notation (𝑣𝑖, 𝑣𝑗) for an element of E. Thus, G = (A, B) is a single 
valued neutrosophic graph of G∗= (V, E) if:

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], 
𝐼𝐵(𝑣𝑖, 𝑣𝑗) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)] and 
𝐹𝐵(𝑣𝑖, 𝑣𝑗) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)], for all(𝑣𝑖, 𝑣𝑗) ∈ E. 

Fig.3: Single valued neutrosophic graph 

Definition 2.9 (Broumi et al., 2016a).A partial SVN-subgraph of SVN-graph G= (A, B)is a 
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𝑭𝑩(𝒗𝒊, 𝒗𝒋),for all (𝒗𝒊𝒗𝒋) ∈ 𝑬. 

Definition 2.10 (Broumi et al., 2016a). ASVN-subgraph of SVN-graph G= (V, E)is a SVN-
graph H=(𝑽′,𝑬′)such that

(i) 𝑽′ = 𝑽, where𝑻𝑨
′ (𝒗𝒊) = 𝑻𝑨(𝒗𝒊),𝑰𝑨

′ (𝒗𝒊) = 𝑰𝑨(𝒗𝒊),𝑭𝑨
′ (𝒗𝒊) = 𝑭𝑨(𝒗𝒊)for all𝒗𝒊in the

vertex set of𝑽′.
(ii) 𝑬′ = 𝑬, where𝑻𝑩

′ (𝒗𝒊, 𝒗𝒋) = 𝑻𝑩(𝒗𝒊, 𝒗𝒋),𝑰𝑩
′ (𝒗𝒊, 𝒗𝒋) = 𝑰𝑩(𝒗𝒊, 𝒗𝒋),𝑭𝑩

′ (𝒗𝒊, 𝒗𝒋) =

𝑭𝑩(𝒗𝒊, 𝒗𝒋)for every (𝒗𝒊𝒗𝒋) ∈ 𝑬 in the edge set of𝑬′.

Definition 2.10 (Broumi et al., 2016a). Let G= (A, B) be a single valued neutrosophic graph. 
Then the degree of any vertex v is sum of degree of truth-membership, sum of degree of 
indeterminacy-membership and sum of degree of falsity-membership of all those edges which 
are incident on vertex v denoted by d(v)= (𝑑𝑇(𝑣), 𝑑𝐼(𝑣),𝑑𝐹(𝑣)) where: 

𝑑𝑇(𝑣)=∑ 𝑇𝐵(𝑢, 𝑣)𝑢≠𝑣  denotesdegree of truth-membership vertex.

𝑑𝐼(𝑣)=∑ 𝐼𝐵(𝑢, 𝑣)𝑢≠𝑣  denotes degree of indeterminacy-membership vertex.

𝑑𝐹(𝑣)=∑ 𝐹𝐵(𝑢, 𝑣)𝑢≠𝑣  denotes degree of falsity-membership vertex.

Definition 2.11(Broumi et al., 2016a). A single valued neutrosophic graph G = (A, B) of 𝐺∗=
(V, E) is calledstrong single valued neutrosophic graph if: 

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) =min [𝑇𝐴(𝑣𝑖),𝑇𝐴(𝑣𝑗)] 

𝐼𝐵(𝑣𝑖, 𝑣𝑗) =max [𝐼𝐴(𝑣𝑖),𝐼𝐴(𝑣𝑗)] 

𝐹𝐵(𝑣𝑖, 𝑣𝑗) =max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)], for all (𝑣𝑖, 𝑣𝑗) ∈ E. 

Definition 2.12(Broumi et al., 2016a). A single valued neutrosophic graph G= (A, B) is called 
complete if 

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) =min [𝑇𝐴(𝑣𝑖),𝑇𝐴(𝑣𝑗)] 

𝐼𝐵(𝑣𝑖, 𝑣𝑗) =max [𝐼𝐴(𝑣𝑖),𝐼𝐴(𝑣𝑗)] 

𝐹𝐵(𝑣𝑖, 𝑣𝑗) =max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)], for all 𝑣𝑖, 𝑣𝑗 ∈ V. 

Definition 2.13(Broumi et al., 2016a)The complement of a single valued neutrosophic graph G 
(A, B) on𝐺∗ is a single valued neutrosophic graph �̅� on 𝐺∗ where:

1.�̅� =A

2.𝑇𝐴
̅̅ ̅(𝑣𝑖)= 𝑇𝐴(𝑣𝑖),𝐼�̅�(𝑣𝑖)= 𝐼𝐴(𝑣𝑖),𝐹𝐴

̅̅ ̅(𝑣𝑖) = 𝐹𝐴(𝑣𝑖), for all 𝑣𝑗 ∈ V.

3.𝑇𝐵
̅̅ ̅(𝑣𝑖, 𝑣𝑗)= min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)]-𝑇𝐵(𝑣𝑖 , 𝑣𝑗)

𝐼�̅�(𝑣𝑖 , 𝑣𝑗)= max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)]-𝐼𝐵(𝑣𝑖, 𝑣𝑗) and

𝐹𝐵
̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)]-𝐹𝐵(𝑣𝑖 , 𝑣𝑗),for all (𝑣𝑖, 𝑣𝑗) ∈ E.
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Definition 2.14 (Mohamed et al, 2014). An interval valued intuitionistic fuzzy graph with 
underlying set V is defined to be a pair G= (A, B) where  

1)The functions 𝑀𝐴 : V→ D [0, 1]and 𝑁𝐴 : V→ D [0, 1] denote the degree of membership and
non-membership of the element x ∈ V, respectively, such that 0 such that0≤𝑀𝐴(x)+ 𝑁𝐴(x) ≤ 1 
for all x ∈ V. 

2) The functions 𝑀𝐵 : E ⊆ 𝑉 × 𝑉 → D [0, 1]and 𝑁𝐵 : : E ⊆ 𝑉 × 𝑉 → D [0, 1] are defined by

𝑀𝐵𝐿(𝑥, 𝑦))≤min (𝑀𝐴𝐿(𝑥), 𝑀𝐴𝐿(𝑦)) and 𝑁𝐵𝐿(𝑥, 𝑦)) ≥max (𝑁𝐴𝐿(𝑥), 𝑁𝐴𝐿(𝑦)) 

𝑀𝐵𝑈(𝑥, 𝑦))≤min (𝑀𝐴𝑈(𝑥), 𝑀𝐴𝑈(𝑦)) and 𝑁𝐵𝑈(𝑥, 𝑦)) ≥max (𝑁𝐴𝑈(𝑥), 𝑁𝐴𝑈(𝑦)), 

such that 

0≤𝑀𝐵𝑈(𝑥, 𝑦))+ 𝑁𝐵𝑈(𝑥, 𝑦)) ≤ 1 for all (𝑥, 𝑦) ∈ E. 

Définition 2.15 (Broumi et al., 2016b). By an interval-valued neutrosophic graph of a graph G∗

= (V, E) we mean a pair G = (A,B), where A =< [TAL, TAU], [IAL, IAU], [FAL, FAU]> is an 
interval-valued neutrosophic set on V and B =< [TBL, TBU], [IBL, IBU], [FBL, FBU]> is an interval-
valued neutrosophic relation on E satisfies the following condition: 

1. V= {𝑣1,𝑣2 ,…,𝑣𝑛} such that 𝑇𝐴𝐿:V→[0, 1],𝑇𝐴𝑈:V→[0, 1], 𝐼𝐴𝐿:V→[0, 1],𝐼𝐴𝑈:V→[0, 1]and
𝐹𝐴𝐿:V→[0, 1],𝐹𝐴𝑈:V→[0, 1] denote the degree of truth-membership, the degree
ofindeterminacy- membership and falsity-membership of the element 𝑦 ∈ V,
respectively,and0≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3 for all𝑣𝑖 ∈ V (i=1, 2, …,n).

2. The functions𝑇𝐵𝐿:V x V →[0, 1],𝑇𝐵𝑈:V x V →[0, 1],𝐼𝐵𝐿:V x V →[0, 1],𝐼𝐵𝑈:V x V →[0, 1]and
𝐹𝐵𝐿:V x V →[0,1],𝐹𝐵𝑈:V x V →[0, 1] are such that:

𝑇𝐵𝐿({𝑣
𝑖
, 𝑣𝑗}) ≤min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)]

𝑇𝐵𝑈({𝑣
𝑖
, 𝑣𝑗}) ≤min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)]

𝐼𝐵𝐿({𝑣
𝑖
, 𝑣𝑗}) ≥max[𝐼𝐵𝐿(𝑣𝑖), 𝐼𝐵𝐿(𝑣𝑗)]

𝐼𝐵𝑈({𝑣
𝑖
, 𝑣𝑗}) ≥max[𝐼𝐵𝑈(𝑣𝑖), 𝐼𝐵𝑈(𝑣𝑗)]

𝐹𝐵𝐿({𝑣
𝑖
, 𝑣𝑗}) ≥max[𝐹𝐵𝐿(𝑣𝑖), 𝐹𝐵𝐿(𝑣𝑗)]

𝐹𝐵𝑈({𝑣
𝑖
, 𝑣𝑗}) ≥max[𝐹𝐵𝑈(𝑣𝑖), 𝐹𝐵𝑈(𝑣𝑗)],

Denoting the degree of truth-membership, indeterminacy-membership and falsity-membership 
of the edge (𝑣𝑖,𝑣𝑗) ∈ E respectively, where 

 0≤ 𝑇𝐵({𝑣𝑖, 𝑣𝑗}) + 𝐼𝐵({𝑣𝑖, 𝑣𝑗})+ 𝐹𝐵({𝑣𝑖, 𝑣𝑗}) ≤3for all{𝑣𝑖, 𝑣𝑗} ∈ E (i, j = 1, 2, ., n). 

they call A the interval valued neutrosophic vertex set of V, B the interval valued 
neutrosophic edge set of E, respectively, Note that B is a symmetric interval valued 
neutrosophic relation on A. We use the notation (𝑣𝑖, 𝑣𝑗) for an element of E Thus, G = (A, B) 
is an interval valued neutrosophic graph of G∗= (V, E) if

𝑇𝐵𝐿(𝑣𝑖, 𝑣𝑗) ≤min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)] 
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𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗) ≤min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)] 

𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≥max[𝐼𝐵𝐿(𝑣𝑖), 𝐼𝐵𝐿(𝑣𝑗)]  

𝐼𝐵𝑈(𝑣𝑖, 𝑣𝑗) ≥max[𝐼𝐵𝑈(𝑣𝑖), 𝐼𝐵𝑈(𝑣𝑗)]And 

𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≥max[𝐹𝐵𝐿(𝑣𝑖), 𝐹𝐵𝐿(𝑣𝑗)]  

𝐹𝐵𝑈(𝑣𝑖, 𝑣𝑗) ≥max[𝐹𝐵𝑈(𝑣𝑖), 𝐹𝐵𝑈(𝑣𝑗)],for all(𝑣𝑖, 𝑣𝑗) ∈ E. 

Fig. 4: G: Interval valued neutrosophic graph. 

Definition 2.16 (Molodtsov, 1999). Let U be an initial universe set and E be a set of parameters. 
Let P(U) denotes the power set of U. Consider a nonempty set A, A ⊂ E. A pair (K, A) is called 
a soft set over U, where K is a mapping given by K: A → P(U). 

As an illustration, let us consider the following example. 

Example 2.Suppose that U is the set of houses under consideration, say U = {ℎ1, ℎ2. . .,ℎ5}.
Let E be the set of some attributes of such houses, say E = {𝑒1, 𝑒2, . . ., 𝑒5}, where 𝑒1, 𝑒2, . . ., 
𝑒5 stand for the attributes “beautiful”, “costly”, “in the green surroundings’”, “moderate”, 
respectively.  

In this case, to define a soft set means to point out expensive houses, beautiful houses, 
and so on. For example, the soft set (K, A) that describes the “attractiveness of the houses” in 
the opinion of a buyer, say Thomas, may be defined like this:  

A={𝑒1, 𝑒2,𝑒3, 𝑒4,𝑒5};  
K(𝑒1) = {ℎ2, ℎ3, ℎ5}, K(𝑒2) = {ℎ2, ℎ4}, K(𝑒3) = {ℎ1}, K(𝑒4) = U, K(𝑒5) = {ℎ3, ℎ5}. 

Definition 2.17 (Wang et al., 2005).Let IVNS(X) denote the family of all the interval valued 
neutrosophic sets in universe X, assume A, B ∈ IVNS(X) such that 

A = {〈x, [TA
L(x), TA

U(x)], [IA
L(x), IA

U(x)], [FA
L(x), FA

U(x)]〉: x ∈ X}

B = {〈x, [TB
L(x), TB

U(x)], [IB
L(x), IB

U(x)], [FB
L(x), FB

U(x)]〉: x ∈ X}

then some operations can be defined as follows: 

(1) A ∪ B = {⟨x, [max{TA
L(x), TB

L(x)} , max{TA
U(x), TB

U(x)}],

[min{IA
L(x), IB

L(x)} , min{IA
U(x), IB

U(x)}], [min{FA
L(x), FB

L(x)} , min{FA
U(x), FB

U(x)}]⟩: x

∈ X}; 
(2) A ∩ B = {⟨x, [min{TA

L(x), TB
L(x)} , min{TA

U(x), TB
U(x)}],

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 
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[max{IA
L(x), IB

L(x)} , max{IA
U(x), IB

U(x)}], [max{FA
L(x), FB

L(x)} , max{FA
U(x), FB

U(x)}]⟩: x

∈ X}; 
(3) Ac = {〈x, [FA

L(x), FA
U(x)], [1 − IA

U(x), 1 − IA
L(x)], [TA

L(x), TA
U(x)]〉: x ∈ X};

(4) A ⊆ B, iff TA
L(x) ≤ TB

L(x), TA
U(x) ≤ TB

U(x),IA
L(x) ≥ IB

L(x), IA
U(x) ≥ IB

U(x) and FA
L(x) ≥

FB
L(x), FA

U(x) ≥ FB
U(x) for all x ∈ X.

A = B, iff A ⊆ Band B ⊆A. 

As an illustration, let us consider the following example. 

Example 2.18.Assume that the universe of discourse U= {x1, x2, x3, x4}. Then, A is an interval 
valued neutrosophic set (IVNS) of U such that: 

A = {<x1, [0.1, 0.8], [0.2, 0.6], [0.8, 0.9] >, <x2, [0.2, 0.5], [0.3, 0.5], [0.6, 0.8]>,
<x3, [0.5, 0.8], [0.4, 0.5], [0.5, 0.6] >, <x4, [0.1, 0.4], [0.1, 0.5], [0.4, 0.8] >}. 

Definition 2.19 (Deli et  al., 2015).Let U be an initial universe set and A ⊂ E be a set of 
parameters. Let IVNS (U) denote the set of all interval valued neutrosophic subsets of U. The 
collection (K, A) is termed to be the soft interval valued neutrosophic set over U, where K is a 
mapping given by K: A → IVNS(U).  

The interval valued neutrosophic soft set defined over a universe is denoted by INSS. 
Here, 

1. Υ is an ivn-soft subset of Ψ, denoted by Υ ⋐ Ψ, if K(e) ⊆L(e) for all e∈E.
2. Υ is an ivn-soft equals toΨ, denoted by Υ = Ψ, if K(e)=L(e) for all e∈E.
3. The complement of Υ is denoted by Υc , and is defined by Υc = {(x, Ko (x)): x∈E}
4. The union of Υ and Ψ is denoted by Υ ∪" Ψ, if K(e) ∪L(e) for all e∈E.
5. The intersection of Υand Ψ is denoted by Υ ∩" Ψ,if K(e) ∪L(e) for all e∈E.

To illustrate let us consider the following example: 
Let U be the set of houses under consideration and E is the set of parameters (or 

qualities). Each parameter is an interval valued neutrosophic word or sentence involving 
interval valued neutrosophic words. Consider E= {beautiful, costly, in the green surroundings, 
moderate, expensive}. In this case, to define an interval valued neutrosophic soft set means to 
point out beautiful houses, costly houses, and so on.  

Suppose that there are five houses in the universe U, given by U = {h1,ℎ2,ℎ3,ℎ4,ℎ5} and 
the set of parameters A = {e1,𝑒2,𝑒3,𝑒4}, where each𝑒𝑖is a specific criterion for houses: 

e1 stands for ‘beautiful’, 
e2 stands for ‘costly’,
e3 stands for ‘in the green surroundings’, 
e4 stands for ‘moderate’. 

Suppose that, 

K(beautiful)={<ℎ1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,<ℎ2,[0.4, 0.5], [0.7 ,0.8], [0.2, 0.3] >, 
<h3,[0.6, 0.7],[0.2 ,0.3],[0.3, 0.5] >,<ℎ4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >,<h5,[ 0.8, 0.4] ,[0.2 
,0.6],[0.3, 0.4] >}. 
K(costly)={<ℎ1,[0.5, 0.6], [0.3, 0.7], [0.1, 0.4]>,<ℎ2,[0.3, 0.5], [0.6 ,0.8], [0.1, 0.3] >, <ℎ3,[0.3, 
0.5],[0.2 ,0.6],[0.3, 0.4] >,<ℎ4,[0.2 ,0.5],[0.1, 0.2],[0.2, 0.4] >,<ℎ5,[ 0.2, 0.4] ,[0.1 ,0.5],[0.1, 
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0.4] >}. 
K(in the green surroundings)= {<ℎ1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,<ℎ2,[0.4, 0.5], [0.7 ,0.8],
[0.2, 0.5]>, <ℎ3,[0.2, 0.4],[0.2 ,0.3],[0.3, 0.5]>,<ℎ4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >,<ℎ5,[ 0.8, 
0.4] ,[0.2 ,0.6],[0.2, 0.3] >}, 
K(moderate)={<ℎ1,[0.1, 0.6], [0.6, 0.7], [0.3, 0.4]>,<ℎ2,[0.2, 0.5], [0.4,0.8], [0.2, 0.4] >, 
<ℎ3,[0.3, 0.7],[0.2 ,0.4],[0.2, 0.5] >,<ℎ4,[0.7 ,0.8],[0.3, 0.4],[0.1, 0.2] >,<ℎ5,[ 0.3, 0.4] 
,[0.2,0.6],[0.1, 0.2] >}. 

3. INTERVAL VALUED NEUTROSOPHIC SOFT GRAPHS
Let U be an initial universe and P the set of all parameters, P(U) denoting the set of all interval 
neutrosophic sets of U. Let A be a subset of P. A pair (K, A) is called an interval valued 
neutrosophic soft set over U. Let P(V) denote the set of all interval valued neutrosophic sets of 
V and P(E) denote the set of all interval valued neutrosophic sets of E. 

Definition3.1 An interval valued neutrosophics of the graph G=(G∗,K, M,A) is a 4-tuple
such that 

a) 𝐺∗= (V, E) is a simple graph,
b) A is a nonempty set of parameters,
c) (K, A) is an interval valued neutrosophic soft set over V,
d) (M, A) is an interval valued neutrosophic over E,
e) (𝐾(e), 𝑀(e)) is an interval valued neutrosophic (sub)graph of 𝐺∗for all e∈A.

That is, 
𝑇𝑀(𝑒)

𝐿 (𝑥𝑦) ≤min [𝑇𝐾(𝑒)
𝐿 (𝑥), 𝑇𝐾(𝑒)

𝐿 (𝑦)], 𝑇𝑀(𝑒)
𝑈 (𝑥𝑦) ≤ min [𝑇𝐾(𝑒)

𝑈 (𝑥), 𝑇𝐾(𝑒)
𝑈 (𝑦)],

𝐼𝑀(𝑒)
𝐿 (𝑥𝑦) ≥max [𝐼𝐾(𝑒)

𝐿 (𝑥), 𝐼𝐾(𝑒)
𝐿 (𝑦)], 𝐼𝑀(𝑒)

𝑈 (𝑥𝑦) ≥ max [𝑇𝐾(𝑒)
𝑈 (𝑥), 𝑇𝐾(𝑒)

𝑈 (𝑦)]
and𝐹𝑀(𝑒)

𝐿 (𝑥𝑦) ≥max [𝐹𝐾(𝑒)
𝐿 (𝑥), 𝐹𝐾(𝑒)

𝐿 (𝑦)], 𝐹𝑀(𝑒)
𝑈 (𝑥𝑦) ≥ max [𝑇𝐾(𝑒)

𝑈 (𝑥), 𝑇𝐾(𝑒)
𝑈 (𝑦)],

such that 

0≤ 𝑇𝑀(𝑒)(𝑥𝑦) + 𝐼𝑀(𝑒)(𝑥𝑦)+ 𝐹(𝑥𝑦) ≤3 for all e∈ A and x, y ∈ V. 

The interval valued neutrosophic graph (𝐾(e), 𝑀 (e)) is denoted by H(e) for convenience. An 
interval valued neutrosophic graph is a parametrized family of interval valued neutrosophic graphs. The 
class of all interval valued neutrosophic soft graphs of 𝐺∗ is denoted by IVN(𝐺∗). Note that

𝑇𝑀(𝑒)
𝐿 (𝑥𝑦)= 𝑇𝑀(𝑒)

𝑈 (𝑥𝑦) =𝐼𝑀(𝑒)
𝐿 (𝑥𝑦)= 𝐼𝑀(𝑒)

𝑈 (𝑥𝑦) = 0 and 𝐹𝑀(𝑒)
𝐿 (𝑥𝑦)= 𝐹𝑀(𝑒)

𝑈 (𝑥𝑦) = 0 for
all xy ∈ V− E, e ∉ A. 

Definition 3.2Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic 
graphs of G∗. Then 𝐺1 is an interval valued neutrosophic soft subgraph of 𝐺2 if

(i) A⊆ B 
(ii) 𝐻1(e) is a partial subgraph of 𝐻2(e) for all e ∈ A. 

Example 3.3.Consider a simple graph𝐺∗=(V, E) such that V={𝑣1, 𝑣2,𝑣3} and E={𝑣1𝑣2,
𝑣2𝑣3,𝑣3𝑣1}. 

Let A= {𝑒1, 𝑒2} be a set of parameter and let(K, A)bean interval valued neutrosophic 
soft set over V with its interval valued neutrosophic approximate function 𝐾 : A →P(V) defined 
by 
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𝐾(𝑒1)={𝑣1|([0.3, 0.5],[0.2, 0.3], [0.3, 0.4]), 𝑣2|([0.2, 0.3], [0.2, 0.3], [0.1, 0.4]), 
𝑣3|([0.1, 0.3], [0.2, 0.4], [0.3, 0.5])}, 

𝐾(𝑒2)={𝑣1|([0.1, 0.4], [0.1, 0.3], [0.2, 0.3]), 𝑣2|([0.1, 0.3], [0.1, 0.2], [0.1, 0.4]), 
𝑣3|([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}. 

Let (𝑀, A)be an interval valued neutrosophic soft set over E with its interval valued 
neutrosophic approximate function𝑀 : A →P(E) defined by 

𝑀(𝑒1)={𝑣1𝑣2|([0.1, 0.2], [0.3, 0.4], [0.4, 0.5]), 𝑣2𝑣3|([0.1, 0.3], [0.4, 0.5], [0.4, 
0.5]),𝑣3𝑣1 |([0.1, 0.2], [0.3, 0.5], [0.5, 0.6])}, 

𝑀(𝑒2)= {𝑣1𝑣2|([0.1, 0.2], [0.2, 0.3], [0.3, 0.4]), 𝑣2𝑣3|([0.1, 0.2], [0.3, 0.4], [0.2, 
0.5]),, 𝑣3𝑣1 |([0.1, 0.2], [0.2, 0.4], [0.3, 0.5])}. 

Thus, 𝐻(𝑒1)=( 𝐾(𝑒1), 𝑀(𝑒1)), 𝐻(𝑒2)=( 𝐾(𝑒2), 𝑀(𝑒2)) are interval valued neutrosophic 
graphs corresponding to the parameters 𝑒1and 𝑒1as shown below. 

𝐻(𝑒1) 

𝐻(𝑒2) 

Fig. 3.1:Interval valued neutrosophic soft graph G= {𝐻(𝑒1), 𝐻(𝑒2)}. 

Hence G= { 𝐻(𝑒1), 𝐻(𝑒2)} is an interval valued neutrosophic soft graph of 𝐺∗.

Tabular representation of an interval valued neutrosophic soft graph is given in Table 
below. 

Table 1: Tabular representation of an interval valued neutrosophic soft graph. 

𝐾 𝑣1 𝑣2 𝑣3 
𝑒1 <[0.3,0.5],[0.2, 0.3][0.3, 0.4]> <[0.2,0.3],[0.2, 0.3][0.1, 0.4]> <[0.1,0.3],[0.2, 0.4][0.3, 0.5]> 

𝑒2 <[0.1,0.4],[0.1, 0.3][0.2, 0.3]> <[0.1,0.3],[0.1, 0.2][0.1, 0.4]> <[0.1,0.2],[0.2, 0.3][0.2, 0.5]> 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 

𝑣3 

<[0.1, 0.4],[ 0.1, 0.3],[0.2, 0.3]> 
<[0.1, 0.3],[ 0.1, 0.2],[0.1, 0.4]> 

<[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> 

<[0.1, 0.2],[ 0.2, 0.3],[0.3, 0.4]> 

𝑣1 
𝑣2 

<[0.1, 0.2],[ 0.3, 0.4],[0.2, 0.5]> <[0.1, 0.2],[ 0.2, 04],[0.3, 0.5]> 
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𝑀 (𝑣1, 𝑣2) (𝑣2, 𝑣3) (𝑣1, 𝑣3) 
𝑒1 <[0.1,0.2],[0.3, 0.4][0.4, 0.5]> <[0.1,0.3],[0.4, 0.5][0.4, 0.5]> <[0.1,0.2],[0.3, 0.5][0.4, 0.6]> 

𝑒2 <[0.1,0.2],[0.2, 0.3][0.3, 0.4]> <[0.1,0.2],[0.3, 0.4][0.2, 0.5]> <[0.1,0.2],[0.2, 0.4][0.3, 0.5]> 

Definition 3.4Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic 
graphs of 𝐺1

∗ = (𝑉1, 𝐸1) and𝐺1
∗ = (𝑉2, 𝐸2) respectively. The Cartesian product of two

graphs𝐺1and 𝐺2 is an interval valued neutrosophic soft graph G= 𝐺1×𝐺2 = (K,M, 𝐴×𝐵), where 
(K=𝐾1×𝐾2, 𝐴×𝐵) is an interval valued neutrosophic soft set over V= 𝑉1×𝑉2, (M=𝑀1×𝑀2, 𝐴×𝐵) is 
an interval valued neutrosophic soft set over E= {(𝑥, 𝑥2) (𝑥, 𝑦2) /𝑥 ∈ 𝑉1, 𝑥2𝑦2 ∈ 𝐸2} ∪{(𝑥1,𝑧) 
(𝑦1, 𝑧) /𝑧 ∈ 𝑉2, 𝑥1𝑦1 ∈ 𝐸1}and(K, M, 𝐴×𝐵) are interval valued neutrosophic soft graphs such 
that: 

1) (𝑇𝐾1(𝑎)
𝐿 × 𝑇𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥1), 𝑇𝐾2(𝑏)

𝐿 (𝑥2)) 
(𝑇𝐾1(𝑎)

𝑈 × 𝑇𝐾2(𝑏)
𝑈 ) (𝑥1, 𝑥2) = min (𝑇𝐾1(𝑎)

𝑈 (𝑥1), 𝑇𝐾2(𝑏)
𝑈 (𝑥2)) 

(𝐼𝐾1(𝑎)
𝐿 × 𝐼𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = max (𝐼𝐾1(𝑎)
𝐿 (𝑥1), 𝐼𝐾2(𝑏)

𝐿 (𝑥2)) 
(𝐼𝐾1(𝑎)

𝑈 × 𝐼𝐾2(𝑏)
𝑈 ) (𝑥1, 𝑥2) = max (𝐼𝐾1(𝑎)

𝑈 (𝑥1), 𝐼𝐾2(𝑏)
𝑈 (𝑥2)) 

(𝐹𝐾1(𝑎)
𝐿 × 𝐹𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥1), 𝐹𝐾2(𝑏)

𝐿 (𝑥2)) 

(𝐹𝐾1(𝑎)
𝑈 × 𝐹𝐾2(𝑏)

𝑈 ) (𝑥1, 𝑥2) = max (𝐹𝐾1(𝑎)
𝑈 (𝑥1), 𝐹𝐾2(𝑏)

𝑈 (𝑥2)) for all ( 𝑥1, 𝑥2) ∈ 𝐴×𝐵 

2) (𝑇𝑀1(𝑎)
𝐿 × 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥), 𝑇𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝑇𝑀1(𝑎)

𝑈 × 𝑇𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎)

𝑈 (𝑥), 𝑇𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐼𝑀1(𝑎)
𝐿 × 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) =max (𝐼𝐾1(𝑎)
𝐿 (𝑥), 𝐼𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐼𝑀1(𝑎)

𝑈 × 𝐼𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐾1(𝑎)

𝑈 (𝑥), 𝐼𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐹𝑀1(𝑎)
𝐿 × 𝐹𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥), 𝐹𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐹𝑀1(𝑎)

𝑈 × 𝐹𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max(𝐹𝐾1(𝑎)

𝑈 (𝑥), 𝐹𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) ∀ x ∈ 𝑉1 

and ∀𝑥2𝑦2 ∈ 𝐸2 

3) (𝑇𝑀1(𝑎)
𝐿 × 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝑀1(𝑎)
𝐿 (𝑥1𝑦1), 𝑇𝐾2(𝑏)

𝐿 (𝑧)) 
(𝑇𝑀1(𝑎)

𝑈 × 𝑇𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝑇𝐾2(𝑏)
𝑈 (𝑧)) 

(𝐼𝑀1(𝑎)
𝐿 × 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥1,𝑧) (𝑦1, 𝑧)) = max (𝐼𝑀1(𝑎)
𝐿 (𝑥1𝑦

1
), 𝐼𝐾2(𝑏)

𝐿 (𝑧)) 
(𝐼𝑀1(𝑎)

𝑈 × 𝐼𝑀2(𝑏)
𝑈 ) ((𝑥1,𝑧) (𝑦1,𝑧)) = max (𝐼𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝐼𝐾2(𝑏)
𝑈 (𝑧)) 

(𝐹𝑀1(𝑎)
𝐿 × 𝐹𝑀2(𝑏)

𝐿 )((𝑥1,𝑧) (𝑦1, 𝑧)) = max (𝐹𝑀1(𝑎)
𝐿 (𝑥1𝑦1), 𝐹𝐾2(𝑏)

𝐿 (𝑧)) 
(𝐹𝑀1(𝑎)

𝑈 × 𝐹𝑀2(𝑏)
𝑈 ) ((𝑥1,𝑧) (𝑦1, 𝑧)) = max (𝐹𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝐹𝐾2(𝑏)
𝑈 (𝑧)) ∀ z ∈ 𝑉2 

and ∀𝑥1𝑦1 ∈ 𝐸1 

H(a, b) = 𝐻1(𝑎) × 𝐻2(𝑏) for all ( 𝑎, 𝑏) ∈ 𝐴×𝐵 are interval valued neutrosophic graphs
of G. 

Example 3.5.Let A= {𝑒1, 𝑒2} and B= {𝑒3, 𝑒4} be a set ofparameters. Consider two interval 
valued neutrosophic soft graphs 𝐺1=(𝐻1, A) ={𝐻(𝑒1), 𝐻(𝑒2)}and 𝐺2=(𝐻2, B) = 
{𝐻(𝑒3), 𝐻(𝑒4)}such that  
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𝐻1(𝑒1)=({𝑢1|([0.3, 0.5], [0.2, 0.3], [0.3, 0.4]), 𝑢2|([0.6, 0.7], [0.2, 0.4], [0.1, 0.3])}, 
{𝑢1𝑢2|([0.3, 0.6], [0.2, 0.4], [0.2, 0.5])}). 

𝐻1(𝑒2)=({𝑢1|([0.3, 0.5], [0.2, 0.3], [0.3, 0.4]), 𝑢2|([0.2, 0.3], [0.2, 0.3], [0.1, 0.4]), 
𝑢3|([0.1, 0.3], [0.2, 0.4], [0.3, 0.5])}, {𝑢1𝑢2|([0.1, 0.2], [0.3, 0.4], [0.4, 0.5]), 
𝑢2𝑢3|([0.1, 0.3], [0.4, 0.5], [0.4, 0.5]), 𝑢3𝑢1 |([0.1, 0.2], [0.3, 0.5], [0.5, 0.6])}). 

𝐻2(𝑒3)=({𝑣1|([0.4, 0.6], [0.2, 0.3], [0.1, 0.3]), 𝑣2|([0.4, 0.7], [0.2, 0.4], [0.1, 0.3])}, 
{𝑣1𝑣2|([0.3, 0.5], [0.4, 0.5], [0.3, 0.5])}). 

𝐻2(𝑒4)=({𝑣1|([0.1, 0.4], [0.1, 0.3], [0.2, 0.3]), 𝑣2|([0.1, 0.3], [0.1, 0.2], [0.1, 0.4]), 
𝑣3|([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}, {𝑣1𝑣2|([0.1, 0.2], [0.2, 0.3], [0.3, 0.4]), 
𝑣2𝑣3|([0.1, 0.2], [0.3, 0.4], [0.2, 0.5]),𝑣3𝑣1 |([0.1, 0.2], [0.2, 0.4], [0.3, 0.5])}) 

𝐻1(𝑒1) 

𝐻1(𝑒2) 

𝐻2(𝑒3) 

𝐻2(𝑒4) 

Fig. 3.2: Interval valued neutrosophic soft graph 𝐺1= {𝐻1(𝑒1),𝐻1(𝑒2)} and 𝐺2=

{𝐻2(𝑒3),𝐻2(𝑒4)} 

The Cartesian product of𝐺1 and 𝐺2 is 𝐺1×𝐺2 = (H,𝐴×𝐵), where A×𝐵= {(𝑒1, 𝑒3), (𝑒1, 𝑒4), (𝑒2, 

𝑒3), (𝑒2, 𝑒4)}, H(𝑒1, 𝑒3) = 𝐻1(𝑒1) ×𝐻2(𝑒3), H(𝑒1, 𝑒4) = 𝐻1(𝑒1) ×𝐻2(𝑒4), H(𝑒2, 𝑒3) = 𝐻1(𝑒2) ×

𝐻2(𝑒3) and H(𝑒2, 𝑒4) = 𝐻1(𝑒2) ×𝐻2(𝑒4) are interval valued neutrosophic graphs of G = 𝐺1×𝐺2.

H(𝑒1, 𝑒3) = 𝐻1(𝑒1) ×𝐻2(𝑒3) is shown in Fig. 3.3. 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑢1 
𝑢2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 

𝑢1 

<[0.5, 0.7],[ 0.2, 0.3],[0.1, 0.3]> <[0.6, 0.7],[ 0.2, 0.4],[0.1, 0.3]> 

<[0.3, 0.6],[ 0.2, 0.4],[0.2, 0.4]> 

𝑢2 

𝑣3 

<[0.1, 0.4],[ 0.1, 0.3],[0.2, 0.3]> 
<[0.1, 0.3],[ 0.1, 0.2],[0.1, 0.4]> 

<[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> 

<[0.1, 0.2],[ 0.2, 0.3],[0.3, 0.4]> 

𝑣1 
𝑣2 

<[0.1, 0.2],[ 0.3, 0.4],[0.2, 0.5]> <[0.1, 0.2],[ 0.2, 0.4],[0.3, 0.5]> 
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Fig. 3.3: Cartesian product 

In the similar way, Cartesian product of H(𝑒1, 𝑒4) = 𝐻1(𝑒1) ×𝐻2(𝑒4), H(𝑒2, 𝑒3) = 𝐻1(𝑒2) ×

𝐻2(𝑒3) and H(𝑒2, 𝑒4) = 𝐻1(𝑒2) ×𝐻2(𝑒4) can be drawn. 

Hence G =𝐺1×𝐺2= {H(𝑒1, 𝑒3), H(𝑒1, 𝑒4), H(𝑒2, 𝑒3), H(𝑒2, 𝑒4)} is an interval valued neutrosophic 
soft graph. 

Theorem 3.6. The Cartesian product of two interval valued neutrosophic soft graph is an 
interval valued neutrosophic soft graph. 

Proof. Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic graphs of 
𝐺1

∗ = (𝑉1, 𝐸1) and 𝐺1
∗ = (𝑉2, 𝐸2) respectively. Let G= 𝐺1×𝐺2 = (K,M, 𝐴×𝐵) be the Cartesian product

of two graphs𝐺1and 𝐺2. We claim that G= 𝐺1×𝐺2 = (K,M, 𝐴×𝐵)is an interval valued neutrosophic 

soft graph G= 𝐺1×𝐺2 = (K,M, 𝐴×𝐵), where (K=𝐾1×𝐾2, 𝐴×𝐵) is an interval valued neutrosophic soft 

graph and (H, 𝐴×𝐵) = { (𝐾1×𝐾2) (𝑎𝑖 , 𝑏𝑗), (𝑀1×𝑀2)(𝑎𝑖 , 𝑏𝑗)} for all 𝑎𝑖 ∈ A,𝑏𝑖 ∈ B for i= 1, 2,…, m, 
j= 1, 2,…,n are interval valued neutrosophic graphs of G. 

Consider, (𝑥, 𝑥2) (𝑥, 𝑦2) ∈ 𝐸, we have

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎𝑖)

𝐿 (𝑥), 𝑇𝑀2(𝑏𝑗)
𝐿 (𝑥2𝑦2)), for i= 1, 2,…, m, j= 1, 

2,…,n 

≤min {𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥), min{𝑇𝐾2(𝑏𝑗)

𝐿 (𝑥2),𝑇𝐾2(𝑏𝑗)
𝐿 (𝑦2)}} 

= min {min{𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥),𝑇𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, min{𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥),𝑇𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝐿 × 𝑇𝐾2(𝑏𝑗)
𝐿 ) (x, 𝑥2), ( 𝑇𝐾1(𝑎𝑖)

𝐿 × 𝑇𝐾2(𝑏𝑗)
𝐿 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, we prove that 

<[.4, .7], [.2, .4], [.1, .3]> 

𝐮𝟐𝐯𝟐

𝐮𝟐𝐯𝟏

<(
𝐮

𝟐
𝐯 𝟐

,𝐮
𝟐

𝐯 𝟏
), 

[.3
, .

5]
, [

.4
, .

.5
], 

[.3
, .

5]
> 

<(𝐮𝟏𝐯𝟏,𝐮𝟐𝐯𝟏), [.3, .6], [.2, .4], [.2, .4]> 

<[.4, .6], [.2, .4], [.1, .3]> <[.4, .6], [.2, .3], [.1, 
.3]>

𝐮𝟏𝐯𝟏

<(
𝐮

𝟏
𝐯 𝟏

,𝐮
𝟏

𝐯 𝟐
), 

[.3
, .

5]
, [

.4
, .

5]
, [

.3
, .

5
]>

 

<(𝐮𝟏𝐯𝟐,𝐮𝟐𝐯𝟐), [.3, .6], [.2, .4], [.2, .4]> 

𝐮𝟏𝐯𝟐

<[4, .7], [.2, .4], [.1, .3]> 
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𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝑈 × 𝑇𝐾2(𝑏𝑗)
𝑈 ) (x, 𝑥2), ( 𝑇𝐾1(𝑎𝑖)

𝑈 × 𝑇𝐾2(𝑏𝑗)
𝑈 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n. 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐾1(𝑎𝑖)

𝐿 (𝑥), 𝐼𝑀2(𝑏𝑗)
𝐿 (𝑥2𝑦2)), for i= 1, 2,…, m, j= 1, 

2,…,n 

≥max {𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥), max{𝐼𝐾2(𝑏𝑗)

𝐿 (𝑥2),𝐼𝐾2(𝑏𝑗)
𝐿 (𝑦2)}} 

= max {max{𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐼𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, max{𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐼𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥max {( 𝐼𝐾1(𝑎𝑖)

𝐿 × 𝐼𝐾2(𝑏𝑗)
𝐿 ) (x, 𝑥2), ( 𝐼𝐾1(𝑎𝑖)

𝐿 × 𝐼𝐾2(𝑏𝑗)
𝐿 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, we prove that 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥max {( 𝐼𝐾1(𝑎𝑖)

𝑈 × 𝐼𝐾2(𝑏𝑗)
𝑈 ) (x, 𝑥2), ( 𝐼𝐾1(𝑎𝑖)

𝑈 × 𝐼𝐾2(𝑏𝑗)
𝑈 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐹𝐾1(𝑎𝑖)

𝐿 (𝑥), 𝐹𝑀2(𝑏𝑗)
𝐿 (𝑥2𝑦2)), for i= 1, 2,…, m, j= 1, 

2,…,n 

≥ max {𝐹𝐾1(𝑎𝑖)
𝐿 (𝑥), max {𝐹𝐾2(𝑏𝑗)

𝐿 (𝑥2),𝐹𝐾2(𝑏𝑗)
𝐿 (𝑦2)}} 

= max{ max {𝐹𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐹𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, max {𝐹𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐹𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝐿 × 𝐹𝐾2(𝑏𝑗)
𝐿 ) (x, 𝑥2), ( 𝐹𝐾1(𝑎𝑖)

𝐿 × 𝐹𝐾2(𝑏𝑗)
𝐿 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, we prove that 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝑈 × 𝐹𝐾2(𝑏𝑗)
𝑈 ) (x, 𝑥2), ( 𝐹𝐾1(𝑎𝑖)

𝑈 × 𝐹𝐾2(𝑏𝑗)
𝑈 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, for (𝑥1,𝑧) (𝑦1, 𝑧)∈ 𝐸, we have

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝐿 × 𝑇𝐾2(𝑏𝑗)
𝐿 ) (𝑥1, 𝑧), ( 𝑇𝐾1(𝑎𝑖)

𝐿 × 𝑇𝐾2(𝑏𝑗)
𝐿 ) (𝑦1, 𝑧), 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝑈 × 𝑇𝐾2(𝑏𝑗)
𝑈 ) (𝑥1, 𝑧), ( 𝑇𝐾1(𝑎𝑖)

𝑈 × 𝑇𝐾2(𝑏𝑗)
𝑈 ) (𝑦1, 𝑧), 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐼𝐾1(𝑎𝑖)

𝐿 × 𝐼𝐾2(𝑏𝑗)
𝐿 ) (𝑥1, 𝑧), ( 𝐼𝐾1(𝑎𝑖)

𝐿 × 𝐼𝐾2(𝑏𝑗)
𝐿 ) (𝑦1, 𝑧), 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐼𝐾1(𝑎𝑖)

𝑈 × 𝐼𝐾2(𝑏𝑗)
𝑈 ) (𝑥1, 𝑧), ( 𝐼𝐾1(𝑎𝑖)

𝑈 × 𝐼𝐾2(𝑏𝑗)
𝑈 ) (𝑦1, 𝑧), 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝐿 × 𝐹𝐾2(𝑏𝑗)
𝐿 ) (𝑥1, 𝑧), ( 𝐹𝐾1(𝑎𝑖)

𝐿 × 𝐹𝐾2(𝑏𝑗)
𝐿 ) (𝑦1, 

𝑧), 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝑈 × 𝐹𝐾2(𝑏𝑗)
𝑈 ) (𝑥1, 𝑧), ( 𝐹𝐾1(𝑎𝑖)

𝑈 × 𝐹𝐾2(𝑏𝑗)
𝑈 ) (𝑦1, 

𝑧),for i= 1, 2,…, m, j= 1, 2,…,n 

Hence G = (K, M, 𝐴×𝐵) is an interval valued neutrosophic soft graph. 

Florentin Smarandache, Surapati Pramanik (Editors)
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Definition 3.7Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic 
graphs of 𝐺1

∗ = (𝑉1, 𝐸1) and 𝐺1
∗ = (𝑉2, 𝐸2) respectively. The strong product of two graphs𝐺1and 𝐺2 is

an interval valued neutrosophic soft graph G= 𝐺1 ⊗ 𝐺2 = (K,M, 𝐴×𝐵), where (K=𝐾1×𝐾2, 𝐴×𝐵) is an

interval valued neutrosophic soft set over V= 𝑉1×𝑉2, (M, 𝐴×𝐵) is an interval valued neutrosophic soft 
set over E= {(𝑥, 𝑥2) (𝑥, 𝑦2) /𝑥 ∈ 𝑉1, 𝑥2𝑦2 ∈ 𝐸2} ∪{(𝑥1,𝑧) (𝑦1, 𝑧) /𝑧 ∈ 𝑉2, 𝑥1𝑦1 ∈ 𝐸1} ∪{(𝑥1,𝑥2) (𝑦1,𝑦2)

/𝑥1𝑦1 ∈ 𝐸1, 𝑥2𝑦2 ∈ 𝐸2} and(K, M, 𝐴×𝐵) are interval valued neutrosophic soft graphs such that: 

1) (𝑇𝐾1(𝑎)
𝐿 × 𝑇𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥1), 𝑇𝐾2(𝑏)

𝐿 (𝑥2)) 
(𝑇𝐾1(𝑎)

𝑈 × 𝑇𝐾2(𝑏)
𝑈 ) (𝑥1, 𝑥2) = min (𝑇𝐾1(𝑎)

𝑈 (𝑥1), 𝑇𝐾2(𝑏)
𝑈 (𝑥2)) 

(𝐼𝐾1(𝑎)
𝐿 × 𝐼𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = max (𝐼𝐾1(𝑎)
𝐿 (𝑥1), 𝐼𝐾2(𝑏)

𝐿 (𝑥2)) 
(𝐼𝐾1(𝑎)

𝑈 × 𝐼𝐾2(𝑏)
𝑈 ) (𝑥1, 𝑥2) = max (𝐼𝐾1(𝑎)

𝑈 (𝑥1), 𝐼𝐾2(𝑏)
𝑈 (𝑥2)) 

(𝐹𝐾1(𝑎)
𝐿 × 𝐹𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥1), 𝐹𝐾2(𝑏)

𝐿 (𝑥2)) 

(𝐹𝐾1(𝑎)
𝑈 × 𝐹𝐾2(𝑏)

𝑈 ) (𝑥1, 𝑥2) = max (𝐹𝐾1(𝑎)
𝑈 (𝑥1), 𝐹𝐾2(𝑏)

𝑈 (𝑥2)) for all ( 𝑥1, 𝑥2) ∈ 𝐴×𝐵 

2) (𝑇𝑀1(𝑎)
𝐿 × 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥), 𝑇𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝑇𝑀1(𝑎)

𝑈 × 𝑇𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎)

𝑈 (𝑥), 𝑇𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐼𝑀1(𝑎)
𝐿 × 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) =max (𝐼𝐾1(𝑎)
𝐿 (𝑥), 𝐼𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐼𝑀1(𝑎)

𝑈 × 𝐼𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐾1(𝑎)

𝑈 (𝑥), 𝐼𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐹𝑀1(𝑎)
𝐿 × 𝐹𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥), 𝐹𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐹𝑀1(𝑎)

𝑈 × 𝐹𝑀2(𝑏)
𝑈 ) ((𝑥,𝑥2)(𝑥, 𝑦2))= max(𝐹𝐾1(𝑎)

𝑈 (𝑥), 𝐹𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) ∀ x ∈ 𝑉1and 

∀𝑥2𝑦2 ∈ 𝐸2. 

3) (𝑇𝑀1(𝑎)
𝐿 × 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝑀1(𝑎)
𝐿 (𝑥1𝑦1), 𝑇𝐾2(𝑏)

𝐿 (𝑧)) 
(𝑇𝑀1(𝑎)

𝑈 × 𝑇𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝑇𝐾2(𝑏)
𝑈 (𝑧)) 

(𝐼𝑀1(𝑎)
𝐿 × 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐼𝑀1(𝑎)
𝐿 (𝑥1𝑦

1
), 𝐼𝐾2(𝑏)

𝐿 (𝑧)) 
(𝐼𝑀1(𝑎)

𝑈 × 𝐼𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑧) (𝑦1,𝑧)) = max (𝐼𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝐼𝐾2(𝑏)
𝑈 (𝑧)) 

(𝐹𝑀1(𝑎)
𝐿 × 𝐹𝑀2(𝑏)

𝐿 )((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐹𝑀1(𝑎)
𝐿 (𝑥1𝑦1), 𝐹𝐾2(𝑏)

𝐿 (𝑧)) 
(𝐹𝑀1(𝑎)

𝑈 × 𝐹𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐹𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝐹𝐾2(𝑏)
𝑈 (𝑧)) ∀ z ∈ 𝑉2 and 

∀𝑥1𝑦1 ∈ 𝐸1. 

4) (𝑇𝑀1(𝑎)
𝐿 × 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥1𝑦1), 𝑇𝐾2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝑇𝑀1(𝑎)

𝑈 × 𝑇𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = min (𝑇𝐾1(𝑎)

𝑈 (𝑥1𝑦1), 𝑇𝐾2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐼𝑀1(𝑎)
𝐿 × 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐼𝐾1(𝑎)
𝐿 (𝑥1𝑦1), 𝐼𝐾2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐼𝑀1(𝑎)

𝑈 × 𝐼𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐼𝐾1(𝑎)

𝑈 (𝑥1𝑦1), 𝐼𝐾2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐹𝑀1(𝑎)
𝐿 × 𝐹𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥1𝑦1), 𝐹𝐾2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐹𝑀1(𝑎)

𝑈 × 𝐹𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐹𝐾1(𝑎)

𝑈 (𝑥1𝑦1), 𝐹𝐾2(𝑏)
𝑈 (𝑥2𝑦2)) for all ( 𝑥1, 

𝑦1) ∈ 𝐸1, ( (𝑥2, 𝑦2) ∈ 𝐸2. 

H(a, b) = 𝐻1(𝑎) ⊗ 𝐻2(𝑏) for all ( 𝑎, 𝑏) ∈ 𝐴×𝐵 are interval valued neutrosophic graphs of G. 
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Theorem 3.8. The strong product of two interval valued neutrosophic soft graph is an interval 
valued neutrosophic soft graph. 

Definition 3.9Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic 
graphs of 𝐺1

∗ = (𝑉1, 𝐸1) and 𝐺1
∗ = (𝑉2, 𝐸2) respectively. The composition of two graphs𝐺1and 𝐺2 is

an interval valued neutrosophic soft graph G= 𝐺1[𝐺2] = (K,M, 𝐴 ∘ 𝐵), where (K=𝐾1 ∘ 𝐾2, 𝐴 ∘ 𝐵) is an

interval valued neutrosophic soft set over V= 𝑉1×𝑉2, (M, 𝐴 ∘ 𝐵) is an interval valued neutrosophic soft 
set over E= {(𝑥, 𝑥2) (𝑥, 𝑦2) /𝑥 ∈ 𝑉1, 𝑥2𝑦2 ∈ 𝐸2} ∪{(𝑥1,𝑧) (𝑦1, 𝑧) /𝑧 ∈ 𝑉2, 𝑥1𝑦1 ∈ 𝐸1} ∪{(𝑥1,𝑥2) (𝑦1,𝑦2)
/𝑥1𝑦1 ∈ 𝐸1, 𝑥2  ≠ 𝑦2}and(K, M, 𝐴 ∘ 𝐵) are interval valued neutrosophic soft graphs such that: 

1) (𝑇𝐾1(𝑎)
𝐿 ∘ 𝑇𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥1), 𝑇𝐾2(𝑏)

𝐿 (𝑥2)) 
(𝑇𝐾1(𝑎)

𝑈 ∘ 𝑇𝐾2(𝑏)
𝑈 ) (𝑥1, 𝑥2) = min (𝑇𝐾1(𝑎)

𝑈 (𝑥1), 𝑇𝐾2(𝑏)
𝑈 (𝑥2)) 

(𝐼𝐾1(𝑎)
𝐿 ∘ 𝐼𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = max (𝐼𝐾1(𝑎)
𝐿 (𝑥1), 𝐼𝐾2(𝑏)

𝐿 (𝑥2))
(𝐼𝐾1(𝑎)

𝑈 ∘ 𝐼𝐾2(𝑏)
𝑈 ) (𝑥1, 𝑥2) = max (𝐼𝐾1(𝑎)

𝑈 (𝑥1), 𝐼𝐾2(𝑏)
𝑈 (𝑥2)) 

(𝐹𝐾1(𝑎)
𝐿 ∘ 𝐹𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥1), 𝐹𝐾2(𝑏)

𝐿 (𝑥2)) 

(𝐹𝐾1(𝑎)
𝑈 ∘ 𝐹𝐾2(𝑏)

𝑈 ) (𝑥1, 𝑥2) = max (𝐹𝐾1(𝑎)
𝑈 (𝑥1), 𝐹𝐾2(𝑏)

𝑈 (𝑥2)) for all ( 𝑥1, 𝑥2) ∈ 𝐴×𝐵 

2) (𝑇𝑀1(𝑎)
𝐿 ∘ 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥), 𝑇𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝑇𝑀1(𝑎)

𝑈 ∘ 𝑇𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎)

𝑈 (𝑥), 𝑇𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐼𝑀1(𝑎)
𝐿 ∘ 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) =max (𝐼𝐾1(𝑎)
𝐿 (𝑥), 𝐼𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐼𝑀1(𝑎)

𝑈 ∘ 𝐼𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐾1(𝑎)

𝑈 (𝑥), 𝐼𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐹𝑀1(𝑎)
𝐿 ∘ 𝐹𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥), 𝐹𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐹𝑀1(𝑎)

𝑈 ∘ 𝐹𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2))= max(𝐹𝐾1(𝑎)

𝑈 (𝑥), 𝐹𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) ∀ x ∈ 𝑉1and 

∀𝑥2𝑦2 ∈ 𝐸2. 

3) (𝑇𝑀1(𝑎)
𝐿 ∘ 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝑀1(𝑎)
𝐿 (𝑥1𝑦1), 𝑇𝐾2(𝑏)

𝐿 (𝑧)) 
(𝑇𝑀1(𝑎)

𝑈 ∘ 𝑇𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝑇𝐾2(𝑏)
𝑈 (𝑧)) 

(𝐼𝑀1(𝑎)
𝐿 ∘ 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐼𝑀1(𝑎)
𝐿 (𝑥1𝑦

1
), 𝐼𝐾2(𝑏)

𝐿 (𝑧)) 
(𝐼𝑀1(𝑎)

𝑈 ∘ 𝐼𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑧) (𝑦1,𝑧)) = max (𝐼𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝐼𝐾2(𝑏)
𝑈 (𝑧)) 

(𝐹𝑀1(𝑎)
𝐿 ∘ 𝐹𝑀2(𝑏)

𝐿 )((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐹𝑀1(𝑎)
𝐿 (𝑥1𝑦1), 𝐹𝐾2(𝑏)

𝐿 (𝑧)) 
(𝐹𝑀1(𝑎)

𝑈 ∘ 𝐹𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐹𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝐹𝐾2(𝑏)
𝑈 (𝑧)) ∀ z ∈ 𝑉2 and 

∀𝑥1𝑦1 ∈ 𝐸1. 

4) (𝑇𝑀1(𝑎)
𝐿 ∘ 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥1𝑦1), 𝑇𝐾2(𝑏)

𝐿 (𝑥2),𝑇𝐾2(𝑏)
𝐿 (𝑦2)) 

(𝑇𝑀1(𝑎)
𝑈 ∘ 𝑇𝑀2(𝑏)

𝑈 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = min (𝑇𝐾1(𝑎)
𝑈 (𝑥1𝑦1), 𝑇𝐾2(𝑏)

𝑈 (𝑥2), 𝑇𝐾2(𝑏)
𝑈 (𝑦2)) 

(𝐼𝑀1(𝑎)
𝐿 ∘ 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐼𝐾1(𝑎)
𝐿 (𝑥1𝑦1), 𝐼𝐾2(𝑏)

𝐿 (𝑥2),𝐼𝐾2(𝑏)
𝐿 (𝑦2)) 

(𝐼𝑀1(𝑎)
𝑈 ∘ 𝐼𝑀2(𝑏)

𝑈 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐼𝐾1(𝑎)
𝑈 (𝑥1𝑦1), 𝐼𝐾2(𝑏)

𝑈 (𝑥2), 𝐼𝐾2(𝑏)
𝑈 (𝑦2)) 

(𝐹𝑀1(𝑎)
𝐿 ∘ 𝐹𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥1𝑦1), 𝐹𝐾2(𝑏)

𝐿 (𝑥2),𝐹𝐾2(𝑏)
𝐿 (𝑦2)) 

(𝐹𝑀1(𝑎)
𝑈 ∘ 𝐹𝑀2(𝑏)

𝑈 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐹𝐾1(𝑎)
𝑈 (𝑥1𝑦1), 𝐹𝐾2(𝑏)

𝑈 (𝑥2), 𝐹𝐾2(𝑏)
𝑈 (𝑦2)) for 

all ( 𝑥1, 𝑦1) ∈ 𝐸1, and 𝑥2 ≠ 𝑦2. 
H(a, b) = 𝐻1(𝑎)[𝐻2(𝑏)] for all ( 𝑎, 𝑏) ∈ 𝐴×𝐵 are interval valued neutrosophic graphs of G. 
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Example 3.10.Let A= {𝑒1} A= {𝑒2, 𝑒3} be the parameters sets. Consider two interval valued 
neutrosophic soft graphs 𝐺1=(𝐻1, A) ={𝐻1(𝑒1)}and 𝐺2=(𝐻2, B) = {𝐻2(𝑒2),𝐻2(𝑒3)} such that  

𝐻1(𝑒1)=({𝑢1|([0.5, 0.7], [0.2, 0.3], [0.1, 0.3]), 𝑢2|([0.6, 0.7], [0.2, 0.4], [0.1, 
0.3])},{𝑢1𝑢2|([0.3, 0.6], [0.2, 0.4], [0.2, 0.4])}) 

𝐻2(𝑒2)=({𝑣1|([0.1, 0.4], [0.1, 0.3], [0.2, 0.3]), 𝑣2|([0.1, 0.3], [0.1, 0.2], [0.1, 0.4]), 
𝑣3|([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}, {𝑣1𝑣2|([0.1, 0.2], [0.2, 0.3], [0.3, 0.4]), 
𝑣2𝑣3|([0.1, 0.2], [0.3, 0.4], [0.2, 0.5]),𝑣3𝑣1 |([0.1, 0.2], [0.2, 0.4], [0.3, 0.5])}) 

𝐻2(𝑒3)=({𝑣1|([0.4, 0.6], [0.2, 0.3], [0.1, 0.3]), 𝑣2|([0.4, 0.7], [0.2, 0.4], [0.1, 
0.3])},{𝑣1𝑣2|([0.3, 0.5], [0.2, 0.5], [0.3, 0.5])}) 

Fig.3.4:Interval valued neutrosophic soft graph corresponding to 𝐻1(𝑒1)

 

Fig. 3.5: Interval valued neutrosophic soft graph corresponding to𝐻2(𝑒3).

The composition of𝐺1 and 𝐺2 is 𝐺1[𝐺2] = (H,𝐴×𝐵), where A×𝐵= {(𝑒1, 𝑒2), (𝑒1, 𝑒3), (𝑒2, 
𝑒3)}, H(𝑒1, 𝑒2) = 𝐻1(𝑒1) [𝐻2(𝑒2)] and H(𝑒1, 𝑒3) = 𝐻1(𝑒1) [𝐻2(𝑒3)] are interval valued 
neutrosophic graphs of 𝐺1[𝐺2]. 𝐻1(𝑒1) [𝐻2(𝑒3)] is shown in Fig. 3.6. 

Fig. 3.6:Composition𝐻1(𝑒1)[ 𝐻2(𝑒3)] 

Hence G=𝐺1[𝐺2] ={𝐻1(𝑒1) [𝐻2(𝑒2)], 𝐻1(𝑒1) [𝐻2(𝑒3)]}is an interval valued neutrosophic 
soft graph. 

Theorem 3.11. The composition of two interval valued neutrosophic soft graph is an interval 
valued neutrosophic soft graph 

𝑢1 

<[0.5, 0.7],[ 0.2, 0.3],[0.1, 0.3]> <[0.6, 0.7],[ 0.2, 0.4],[0.1, 0.3]> 

<[0.3, 0.6],[ 0.2, 0.4],[0.2, 0.4]> 

𝑢2 

𝑣1 

<[0.4, 0.6],[ 0.2, 0.3],[0.1, 0.3]> <[0.4, 0.7],[ 0.2, 0.4],[0.1, 0.3]>

<[0.3, 0.5],[ 0.2, 0.5],[0.3, 0.5]> 

𝑣2 

<[.4, .7], [.2, .4], [.1, .3]> 

𝐮𝟐𝐯𝟐

𝐮𝟐𝐯𝟏

<(
𝐮

𝟐
𝐯 𝟐

,𝐮
𝟐

𝐯 𝟏
), 

[.6
, .

7]
, [

.2
, .

.4
], 

[.1
, 

..
3]

> 

<(𝐮𝟏𝐯𝟏,𝐮𝟐𝐯𝟏), [.3, .6], [.2, .4], [.3, .4]> 

<[.4, .6], [.2, .4], [.1, .3]> <[.4, .6], [.2, .3], [.1, .3]> 

𝐮𝟏𝐯𝟏 

<(
𝐮

𝟏
𝐯 𝟏

,𝐮
𝟏

𝐯 𝟐
), 

[.3
, .

5]
, [

.2
, .

5]
, 

[.3
, .

5]
> 

<(𝐮𝟏𝐯𝟐,𝐮𝟐𝐯𝟐), [.3, .6], [.2, .4], [.2, .4]> 

𝐮𝟏𝐯𝟐

<[4, .7], [.2, .3], [.1, .3]> 

< [.3, .6], [.2, .4],[.2, .4]>

< [.3, .6], [.2, .4],[.2, .4]>
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Proof. Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic graphs of 
𝐺1

∗ = (𝑉1, 𝐸1) and 𝐺1
∗ = (𝑉2, 𝐸2) respectively. Let G= 𝐺1[𝐺2] = (K,M, 𝐴×𝐵) be the Cartesian

composition of two graphs𝐺1and 𝐺2. We claim that G= 𝐺1[𝐺2] = (K,M, 𝐴 ∘ 𝐵)I s an interval valued 
neutrosophic soft graph and (H, 𝐴 ∘ 𝐵) = {𝐾1(𝑎𝑖)[𝐾2(𝑏𝑗)], 𝑀1(𝑎𝑖)[𝑀2(𝑏𝑗)]} for all 𝑎𝑖 ∈ A,𝑏𝑖 ∈ B for 
i= 1, 2,…, m, j= 1, 2,…,n are interval valued neutrosophic graphs of G. 

Consider, (𝑥, 𝑥2) (𝑥, 𝑦2) ∈ 𝐸, we have

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎𝑖)

𝐿 (𝑥), 𝑇𝑀2(𝑏𝑗)
𝐿 (𝑥2𝑦2)), for i= 1, 2,…, m, j= 1, 

2,…,n 

≤min {𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥), min{𝑇𝐾2(𝑏𝑗)

𝐿 (𝑥2),𝑇𝐾2(𝑏𝑗)
𝐿 (𝑦2)}} 

= min { min{𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥),𝑇𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, min{𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥),𝑇𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝐿 ∘ 𝑇𝐾2(𝑏𝑗)
𝐿 ) (x, 𝑥2), ( 𝑇𝐾1(𝑎𝑖)

𝐿 ∘ 𝑇𝐾2(𝑏𝑗)
𝐿 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, we prove that 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝑈 ∘ 𝑇𝐾2(𝑏𝑗)
𝑈 ) (x, 𝑥2), ( 𝑇𝐾1(𝑎𝑖)

𝑈 ∘ 𝑇𝐾2(𝑏𝑗)
𝑈 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n. 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐾1(𝑎𝑖)

𝐿 (𝑥), 𝐼𝑀2(𝑏𝑗)
𝐿 (𝑥2𝑦2)), for i= 1, 2,…, m, j= 1, 

2,…,n 

≥ max {𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥), max {𝐼𝐾2(𝑏𝑗)

𝐿 (𝑥2),𝐼𝐾2(𝑏𝑗)
𝐿 (𝑦2)}} 

= max{ max {𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐼𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, max {𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐼𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥ max {( 𝐼𝐾1(𝑎𝑖)

𝐿 ∘ 𝐼𝐾2(𝑏𝑗)
𝐿 ) (x, 𝑥2), ( 𝐼𝐾1(𝑎𝑖)

𝐿 ∘ 𝐼𝐾2(𝑏𝑗)
𝐿 ) (x, 𝑦2),for 

i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, we prove that 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥ max {( 𝐼𝐾1(𝑎𝑖)

𝑈 ∘ 𝐼𝐾2(𝑏𝑗)
𝑈 ) (x, 𝑥2), ( 𝐼𝐾1(𝑎𝑖)

𝑈 ∘ 𝐼𝐾2(𝑏𝑗)
𝑈 ) (x, 𝑦2),for 

i= 1, 2,…, m, j= 1, 2,…,n 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐹𝐾1(𝑎𝑖)

𝐿 (𝑥), 𝐹𝑀2(𝑏𝑗)
𝐿 (𝑥2𝑦2)), for i= 1, 2,…, m, j= 1, 

2,…,n 

≥ max {𝐹𝐾1(𝑎𝑖)
𝐿 (𝑥), max {𝐹𝐾2(𝑏𝑗)

𝐿 (𝑥2),𝐹𝐾2(𝑏𝑗)
𝐿 (𝑦2)}} 

= max{ max {𝐹𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐹𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, max {𝐹𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐹𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝐿 ∘ 𝐹𝐾2(𝑏𝑗)
𝐿 ) (x, 𝑥2), ( 𝐹𝐾1(𝑎𝑖)

𝐿 ∘ 𝐹𝐾2(𝑏𝑗)
𝐿 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, we prove that 
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𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝑈 ∘ 𝐹𝐾2(𝑏𝑗)
𝑈 ) (x, 𝑥2), ( 𝐹𝐾1(𝑎𝑖)

𝑈 ∘ 𝐹𝐾2(𝑏𝑗)
𝑈 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, for (𝑥1,𝑧) (𝑦1, 𝑧) ∈ 𝐸, we have

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝐿 ∘ 𝑇𝐾2(𝑏𝑗)
𝐿 ) (𝑥1, 𝑧), ( 𝑇𝐾1(𝑎𝑖)

𝐿 ∘ 𝑇𝐾2(𝑏𝑗)
𝐿 ) (𝑦1, 𝑧), 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝑈 ∘ 𝑇𝐾2(𝑏𝑗)
𝑈 ) (𝑥1, 𝑧), ( 𝑇𝐾1(𝑎𝑖)

𝑈 ∘ 𝑇𝐾2(𝑏𝑗)
𝑈 ) (𝑦1, 𝑧), 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐼𝐾1(𝑎𝑖)

𝐿 ∘ 𝐼𝐾2(𝑏𝑗)
𝐿 ) (𝑥1, 𝑧), ( 𝐼𝐾1(𝑎𝑖)

𝐿 ∘ 𝐼𝐾2(𝑏𝑗)
𝐿 ) (𝑦1, 𝑧), 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐼𝐾1(𝑎𝑖)

𝑈 ∘ 𝐼𝐾2(𝑏𝑗)
𝑈 ) (𝑥1, 𝑧), ( 𝐼𝐾1(𝑎𝑖)

𝑈 ∘ 𝐼𝐾2(𝑏𝑗)
𝑈 ) (𝑦1, 𝑧), 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝐿 ∘ 𝐹𝐾2(𝑏𝑗)
𝐿 ) (𝑥1, 𝑧), ( 𝐹𝐾1(𝑎𝑖)

𝐿 ∘ 𝐹𝐾2(𝑏𝑗)
𝐿 ) (𝑦1, 

𝑧), 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝑈 ∘ 𝐹𝐾2(𝑏𝑗)
𝑈 ) (𝑥1, 𝑧), ( 𝐹𝐾1(𝑎𝑖)

𝑈 ∘ 𝐹𝐾2(𝑏𝑗)
𝑈 ) (𝑦1, 

𝑧),for i= 1, 2,…, m, j= 1, 2,…,n 

Let (𝑥1, 𝑥2) (𝑦1, 𝑦2) ∈ 𝐸, (𝑥1, 𝑦1) ∈ 𝐸1and 𝑥2 ≠ 𝑦2. Then we have 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = min (𝑇𝐾1(𝑎𝑖)

𝐿 (𝑥1𝑦1), 𝑇𝐾2(𝑏𝑗)
𝐿 (𝑥2),𝑇𝐾2(𝑏𝑗)

𝐿 (𝑦2)) 

≤min{min{𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥1),𝑇𝐾1(𝑎𝑖)

𝐿 (𝑦1)},𝑇𝐾2(𝑏𝑗)
𝐿 (𝑥2),𝑇𝐾2(𝑏𝑗)

𝐿 (𝑦2))} 

=min { min{𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥1), 𝑇𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, min{𝑇𝐾1(𝑎𝑖)
𝐿 (𝑦1), 𝑇𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ≤min{𝑇𝐾(𝑎𝑖,𝑏𝑗)

𝐿 (𝑥1, 𝑥2), 𝑇𝐾(𝑎𝑖,𝑏𝑗)
𝐿 (𝑦1, 𝑦2)} 

We prove also that, 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ≥max{𝑇𝐾(𝑎𝑖,𝑏𝑗)

𝑈 (𝑥1, 𝑥2), 𝑇𝐾(𝑎𝑖,𝑏𝑗)
𝑈 (𝑦1, 𝑦2)}. 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐼𝐾1(𝑎𝑖)

𝐿 (𝑥1𝑦1), 𝐼𝐾2(𝑏𝑗)
𝐿 (𝑥2),𝐼𝐾2(𝑏𝑗)

𝐿 (𝑦2)) 

≥max{max{𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥1),𝐼𝐾1(𝑎𝑖)

𝐿 (𝑦1)},𝐼𝐾2(𝑏𝑗)
𝐿 (𝑥2),𝐼𝐾2(𝑏𝑗)

𝐿 (𝑦2))} 

=max{ max{𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥1), 𝐼𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, max{𝐼𝐾1(𝑎𝑖)
𝐿 (𝑦1), 𝐼𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ≥max{𝐼𝐾(𝑎𝑖,𝑏𝑗)

𝐿 (𝑥1, 𝑥2), 𝐼𝐾(𝑎𝑖,𝑏𝑗)
𝐿 (𝑦1, 𝑦2)} 

We prove also that, 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ≥max{𝐼𝐾(𝑎𝑖,𝑏𝑗)

𝑈 (𝑥1, 𝑥2), 𝐼𝐾(𝑎𝑖,𝑏𝑗)
𝑈 (𝑦1, 𝑦2)} 

Similarly, we prove also that 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ≥max{𝐹𝐾(𝑎𝑖,𝑏𝑗)

𝐿 (𝑥1, 𝑥2), 𝐹𝐾(𝑎𝑖,𝑏𝑗)
𝐿 (𝑦1, 𝑦2)} 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ≥max{𝐹𝐾(𝑎𝑖,𝑏𝑗)

𝑈 (𝑥1, 𝑥2), 𝐹𝐾(𝑎𝑖,𝑏𝑗)
𝑈 (𝑦1, 𝑦2)} 

Hence G= (K, M, A∘ B) is an interval valued neutrosophic graph. 
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Definition 3.12Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic 
graphs of 𝐺1

∗ = (𝑉1, 𝐸1) and 𝐺1
∗ = (𝑉2, 𝐸2) respectively. The intersection of two graphs𝐺1and 𝐺2

is an interval valued neutrosophic soft graph G= 𝐺1 ∩ 𝐺2 = (K,M, 𝐴 ∪ 𝐵), where (K, 𝐴 ∪ 𝐵) is an 
interval valued neutrosophic soft set over V= 𝑉1 ∩ 𝑉2, (M, 𝐴 ∪ 𝐵) is an interval valued neutrosophic 
soft set over E= 𝐸1 ∩ 𝐸2, truth-membership, indeterminacy–membership, and falsity-
membership function of G for all x, z ∈V defined by 

1) 𝑇𝐾(𝑒)
𝐿 (𝑥) ={

𝑇𝐾1(𝑒)
𝐿 (𝑥)       if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝐾2(𝑒)
𝐿 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝑇𝐾1(𝑒)
𝐿 (𝑥), 𝑇𝐾2(𝑒)

𝐿 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝑇𝐾(𝑒)
𝑈 (𝑥) ={

𝑇𝐾1(𝑒)
𝑈 (𝑥)  if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝐾2(𝑒)
𝑈 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝑇𝐾1(𝑒)
𝑈 (𝑥), 𝑇𝐾2(𝑒)

𝑈 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐼𝐾(𝑒)
𝐿 (𝑥) ={

𝐼𝐾1(𝑒)
𝐿 (𝑥)       if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝐾2(𝑒)
𝐿 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐼𝐾1(𝑒)
𝐿 (𝑥), 𝐼𝐾2(𝑒)

𝐿 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐼𝐾(𝑒)
𝑈 (𝑥) ={

𝐼𝐾1(𝑒)
𝑈 (𝑥)  if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝐾2(𝑒)
𝑈 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐼𝐾1(𝑒)
𝐿 (𝑥), 𝐼𝐾2(𝑒)

𝑈 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝐾(𝑒)
𝐿 (𝑥) ={

𝐹𝐾1(𝑒)
𝐿 (𝑥)       if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝐾2(𝑒)
𝐿 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐹𝐾1(𝑒)
𝐿 (𝑥), 𝐹𝐾2(𝑒)

𝐿 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝐾(𝑒)
𝑈 (𝑥) ={

𝐹𝐾1(𝑒)
𝑈 (𝑥)  if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝐾2(𝑒)
𝑈 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐹𝐾1(𝑒)
𝐿 (𝑥), 𝐹𝐾2(𝑒)

𝑈 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

2) 𝑇𝑀(𝑒)
𝐿 (𝑥𝑧) ={

𝑇𝑀1(𝑒)
𝐿 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝑀2(𝑒)
𝐿 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝑇𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝑇𝑀2(𝑒)

𝐿 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝑇𝑀(𝑒)
𝑈 (𝑥𝑧) ={

𝑇𝑀1(𝑒)
𝑈 (𝑥𝑧)  if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝑀2(𝑒)
𝑈 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝑇𝑀1(𝑒)
𝑈 (𝑥𝑧), 𝑇𝑀2(𝑒)

𝑈 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵
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𝐼𝑀(𝑒)
𝐿 (𝑥𝑧) ={

𝐼𝑀1(𝑒)
𝐿 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝑀2(𝑒)
𝐿 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐼𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐼𝑀2(𝑒)

𝐿 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐼𝑀(𝑒)
𝑈 (𝑥𝑧) ={

𝐼𝑀1(𝑒)
𝑈 (𝑥𝑧)  if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝑀2(𝑒)
𝑈 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐼𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐼𝐾2(𝑒)

𝑈 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝑀(𝑒)
𝐿 (𝑥) ={

𝐹𝑀1(𝑒)
𝐿 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝑀2(𝑒)
𝐿 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐹𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐹𝑀2(𝑒)

𝐿 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝑀(𝑒)
𝑈 (𝑥𝑧) ={

𝐹𝑀1(𝑒)
𝑈 (𝑥𝑧)  if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝑀2(𝑒)
𝑈 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐹𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐹𝑀2(𝑒)

𝑈 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

Example 3.13.Let A= {𝑒1, 𝑒2} and B= {𝑒1, 𝑒4} be a set ofparameters. Consider two interval 
valued neutrosophic soft graphs 𝐺1=(𝐻1, A) ={𝐻1(𝑒1),𝐻1(𝑒2)} and 𝐺2=(𝐻2, B) = 
{𝐻2(𝑒1),𝐻2(𝑒4)}such that  

𝐻1(𝑒1)=({𝑣1|([0.4, 0.5], [0.1, 0.3], [0.1, 0.4]), 𝑣2|([0.4, 0.6], [0.1, 0.2], [0.2, 0.3]), 
𝑣3|([0.2, 0.3], [0.2, 0.4], [0.1, 0.2]), 𝑣4|([0.3, 0.6], [0.2, 0.3], [0.2, 0.3])}, 
{𝑣1𝑣2|([0.4, 0.5], [0.2, 0.3], [0.3, 0.4]), 𝑣2𝑣3|([0.2, 0.3], [0.2, 0.4], [0.4, 0.5]), 𝑣3𝑣4 
|([0.2, 0.4], [0.2, 0.4], [0.4, 0.5]), 𝑣1𝑣4 |([0.3, 0.5], [0.2, 0.3], [0.3, 0.4]),𝑣1𝑣3 
|([0.2, 0.3], [0.2, 0.5], [0.3, 0.4])}). 

𝐻1(𝑒2)=({𝑣1|([0.4, 0.6], [0.2, 0.3], [0.1, 0.3]), 𝑣2|([0.4, 0.7], [0.2, 0.4], [0.1, 0.3])}, 
{𝑣1𝑣2|([0.3, 0.5], [0.4, 0.5], [0.3, 0.5])}). 

𝐻2(𝑒1)=({𝑣1|([0.3, 0.5], [0.2, 0.3], [0.3, 0.4]), 𝑣2|([0.2, 0.3], [0.2, 0.3], [0.1, 0.4]), 
𝑣3|([0.1, 0.3], [0.2, 0.4], [0.3, 0.5])}, {𝑣1𝑣2|([0.1, 0.2], [0.3, 0.4], [0.4, 0.5]), 
𝑣2𝑣3|([0.1, 0.3], [0.4, 0.5], [0.4, 0.5]), 𝑣3𝑣1 |([0.1, 0.2], [0.3, 0.5], [0.5, 0.6])}). 

𝐻2(𝑒4)=({𝑢1|([0.4, 0.6], [0.2, 0.3], [0.2, 0.4]), 𝑢2|([0.4, 0.5], [0.1, 0.4], [0.2, 0.3])}, 
{𝑢1𝑢2|([0.3, 0.5], [0.4, 0.5], [0.3, 0.5])}). 

𝐻1(𝑒1) 

𝑣4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.4],[ 0.2, 0.4],[0.4, 0.5]> 

𝑣3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0

.3
, 0

.5
],

[ 
0

.2
, 0

.3
],

[0
.3

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑣1 

<[0.4, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 

𝑣2 

<[
0.

2,
 0

.3
],

[ 
0

.2
, 0

.4
,[

0.
2

, 0
.3

]>
 

𝑣4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.4],[ 0.2, 0.4],[0.4, 0.5]> 

𝑣3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0

.3
, 0

.5
],

[ 
0

.2
, 0

.3
],

[0
.3

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑣1 

<[0.4, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 

𝑣2 

<[
0.

2,
 0

.3
],

[ 
0

.2
, 0

.4
,[

0.
2

, 0
.3

]>
 

<[0.2, 0.3],[ 0.2, 0.5],[0.3, 0.4]> 
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𝐻1(𝑒2) 

𝐻2(𝑒1) 

𝐻2(𝑒4) 

Fig. 3.7: Interval valued neutrosophic soft graph 𝐺1= {𝐻1(𝑒1),𝐻1(𝑒2)} and 𝐺2= 
{𝐻2(𝑒1),𝐻2(𝑒4)} 

The intersection of𝐺1 and 𝐺2 is 𝐺1 ∩ 𝐺2 = (H,𝐴 ∪ 𝐵), whereA∪ 𝐵= {𝑒1, 𝑒2, 𝑒3,𝑒4 }, H(𝑒1) 
= 𝐻1(𝑒1) ∩ 𝐻2(𝑒1), H(𝑒2) and H(𝑒4) are interval valued neutrosophic graphs of G = 𝐺1 ∩ 𝐺2. are 
shown in Fig. 3.8. 

𝐻(𝑒1) 

𝐻(𝑒2) 

𝐻(𝑒4) 

Fig. 3.8: Interval valued neutrosophic soft graph G = 𝐺1 ∩ 𝐺2. 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 

𝑣1 

<[0.4, 0.6],[ 0.2, 0.3],[0.1, 0.3]> <[0.4, 0.7],[ 0.2, 0.4],[0.1, 0.3]> 

<[0.3, 0.5],[ 0.4, 0.5],[0.3, 0.5]> 

𝑣2 

<[0.4, 0.6],[ 0.2, 0.3],[0.2, 0.4]> 

𝑢1 

<[0.3, 0.5],[ 0.4, 0.5],[0.3, 0.5]> 

𝑢2 

<[0.4, 0.5],[ 0.1, 0.4],[0.2, 0.3]> 

𝑣1 

<[0.4, 0.6],[ 0.2, 0.3],[0.1, 0.3]> <[0.4, 0.7],[ 0.2, 0.4],[0.1, 0.3]> 

<[0.3, 0.5],[ 0.4, 0.5],[0.3, 0.5]> 

𝑣2 

<[0.4, 0.6],[ 0.2, 0.3],[0.2, 0.4]> 

𝑢1 

<[0.3, 0.5],[ 0.4, 0.5],[0.3, 0.5]> 

𝑢2 

<[0.4, 0.5],[ 0.1, 0.4],[0.2, 0.3]> 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.2, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 
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Definition 3.14Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic 
graphs of 𝐺1

∗ = (𝑉1, 𝐸1) and 𝐺1
∗ = (𝑉2, 𝐸2) respectively. The union of two graphs𝐺1and 𝐺2 is an

interval valued neutrosophic soft graph G= 𝐺1 ∪ 𝐺2 = (K,M, 𝐴 ∪ 𝐵), where (K, 𝐴 ∪ 𝐵) is an 
interval valued neutrosophic soft set over V= 𝑉1 ∪ 𝑉2, (M, 𝐴 ∪ 𝐵) is an interval valued neutrosophic 
soft set over E= 𝐸1 ∩ 𝐸2, truth-membership, indeterminacy-membership, and falsity-
membership function of G for all x, z ∈V defined by: 

1) 𝑇𝐾(𝑒)
𝐿 (𝑥) ={

𝑇𝐾1(𝑒)
𝐿 (𝑥)       if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝐾2(𝑒)
𝐿 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝑇𝐾1(𝑒)
𝐿 (𝑥), 𝑇𝐾2(𝑒)

𝐿 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝑇𝐾(𝑒)
𝑈 (𝑥) ={

𝑇𝐾1(𝑒)
𝑈 (𝑥)  if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝐾2(𝑒)
𝑈 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝑇𝐾1(𝑒)
𝑈 (𝑥), 𝑇𝐾2(𝑒)

𝑈 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐼𝐾(𝑒)
𝐿 (𝑥) ={

𝐼𝐾1(𝑒)
𝐿 (𝑥)       if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝐾2(𝑒)
𝐿 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐼𝐾1(𝑒)
𝐿 (𝑥), 𝐼𝐾2(𝑒)

𝐿 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐼𝐾(𝑒)
𝑈 (𝑥) ={

𝐼𝐾1(𝑒)
𝑈 (𝑥)  if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝐾2(𝑒)
𝑈 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐼𝐾1(𝑒)
𝐿 (𝑥), 𝐼𝐾2(𝑒)

𝑈 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝐾(𝑒)
𝐿 (𝑥) ={

𝐹𝐾1(𝑒)
𝐿 (𝑥)       if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝐾2(𝑒)
𝐿 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐹𝐾1(𝑒)
𝐿 (𝑥), 𝐹𝐾2(𝑒)

𝐿 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝐾(𝑒)
𝑈 (𝑥) ={

𝐹𝐾1(𝑒)
𝑈 (𝑥)  if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝐾2(𝑒)
𝑈 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐹𝐾1(𝑒)
𝐿 (𝑥), 𝐹𝐾2(𝑒)

𝑈 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

2) 𝑇𝑀(𝑒)
𝐿 (𝑥𝑧) ={

𝑇𝑀1(𝑒)
𝐿 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝑀2(𝑒)
𝐿 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝑇𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝑇𝑀2(𝑒)

𝐿 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝑇𝑀(𝑒)
𝑈 (𝑥𝑧) ={

𝑇𝑀1(𝑒)
𝑈 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝑀2(𝑒)
𝑈 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝑇𝑀1(𝑒)
𝑈 (𝑥𝑧), 𝑇𝑀2(𝑒)

𝑈 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵
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𝐼𝑀(𝑒)
𝐿 (𝑥𝑧) ={

𝐼𝑀1(𝑒)
𝐿 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝑀2(𝑒)
𝐿 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐼𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐼𝑀2(𝑒)

𝐿 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐼𝑀(𝑒)
𝑈 (𝑥𝑧) ={

𝐼𝑀1(𝑒)
𝑈 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝑀2(𝑒)
𝑈 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐼𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐼𝐾2(𝑒)

𝑈 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝑀(𝑒)
𝐿 (𝑥) ={

𝐹𝑀1(𝑒)
𝐿 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝑀2(𝑒)
𝐿 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐹𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐹𝑀2(𝑒)

𝐿 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝑀(𝑒)
𝑈 (𝑥𝑧) ={

𝐹𝑀1(𝑒)
𝑈 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝑀2(𝑒)
𝑈 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐹𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐹𝑀2(𝑒)

𝑈 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

Definition 3.16. Let 𝐺1 and 𝐺2 be two interval valued neutrosophic soft graphs denoted by𝐺1 
+ 𝐺2 =( 𝐾1 + 𝐾2, 𝑀1 + 𝑀2,A ⋃B), Where ( 𝐾1 + 𝐾2, A ⋃ B ) is an interval valued neutrosophic 
soft set over𝑉1⋃ 𝑉2 , ( 𝑀1 + 𝑀2 , A ⋃ B ) is an interval valued neutrosophic soft set 
over𝐸1⋃𝐸2⋃𝐸′ defined by

( 𝐾1 + 𝐾2 , A ⋃B ) =(𝐾1, A) ⋃ (𝐾2, B) 

( 𝑀1 + 𝑀2 , A ⋃B ) =(𝑀1, A) ⋃ (𝑀2, B) if xz ∈ 𝐸1⋃𝐸2, 

when e ∈ A ∩ B, xz∈ 𝐸′, where 𝐸′ is the set of all edge joining the vertices of 𝑉1 and 𝑉2.

Definition 3.17The complement of an interval valued neutrosophic soft graph𝐺=(𝐾, 𝑀, A) 
denoted by �̅�=(�̅�, �̅�, �̅�).

1. �̅� =A
2. 𝐾(𝑒)̅̅ ̅̅ ̅̅  =K(e),
3. 𝑇𝑀(𝑒)̅̅ ̅̅ ̅̅ ̅

𝐿 (x, z) = min(𝑇𝐾(𝑒)
𝐿 (x) ,𝑇𝐾(𝑒)

𝐿 (z)) −𝑇𝑀(𝑒)
𝐿 (x,z), 

𝑇𝑀(𝑒)̅̅ ̅̅ ̅̅ ̅
𝑈 (x, z) = min(𝑇𝐾(𝑒)

𝐿 (x) ,𝑇𝐾(𝑒)
𝐿 (z)) −𝑇𝑀(𝑒)

𝑈 (x,z), 

𝐼𝑀(𝑒)̅̅ ̅̅ ̅̅ ̅
𝐿 (x, z) = min(𝐼𝐾(𝑒)

𝐿 (x) ,𝐼𝐾(𝑒)
𝐿 (z)) −𝐼𝑀(𝑒)

𝐿 (x,z), 

𝐼𝑀(𝑒)̅̅ ̅̅ ̅̅ ̅
𝑈 (x, z) = min(𝑇𝐾(𝑒)

𝐿 (x) ,𝐼𝐾(𝑒)
𝐿 (z)) −𝐼𝑀(𝑒)

𝑈 (x,z), 

𝐹𝑀(𝑒)̅̅ ̅̅ ̅̅ ̅
𝐿 (x, z) = min(𝐹𝐾(𝑒)

𝐿 (x) ,𝐹𝐾(𝑒)
𝐿 (z)) −𝐹𝑀(𝑒)

𝐿 (x,z), 

𝐹𝑀(𝑒)̅̅ ̅̅ ̅̅ ̅
𝑈 (x, z) = min(𝑇𝐾(𝑒)

𝐿 (x) ,𝐹𝐾(𝑒)
𝐿 (z)) −𝐹𝑀(𝑒)

𝑈 (x,z), for all 𝑥, 𝑧 ∈V,e ∈ A. 

Definition 3.18 An interval valued neutrosophic soft graph G is a complete interval valued 
neutrosophic soft graph if H(e) is a complete interval valued neutrosophic graph of G for all e 
∈A, i.e. 

𝑇𝑀(𝑒)
𝐿 (x,z)= min(𝑇𝐾(𝑒)

𝐿 (x) ,𝑇𝐾(𝑒)
𝐿 (z)) 

𝑇𝑀(𝑒)
𝑈 (x,z)= min(𝑇𝐾(𝑒)

𝐿 (x) ,𝑇𝐾(𝑒)
𝐿 (z)) 
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𝐼𝑀(𝑒)
𝐿 (x,z)= min(𝐼𝐾(𝑒)

𝐿 (x) ,𝐼𝐾(𝑒)
𝐿 (z))  

𝐼𝑀(𝑒)
𝑈 (x,z)= min(𝑇𝐾(𝑒)

𝐿 (x) ,𝐼𝐾(𝑒)
𝐿 (z)) 

𝐹𝑀(𝑒)
𝐿 (x,z) = min(𝐹𝐾(𝑒)

𝐿 (x) ,𝐹𝐾(𝑒)
𝐿 (z)) 

𝐹𝑀(𝑒)
𝑈 (x,z) = min(𝑇𝐾(𝑒)

𝐿 (x) ,𝐹𝐾(𝑒)
𝐿 (z)), For all 𝑥, 𝑧 ∈V, e ∈ A. 

Example 3.19.Consider a simple graph𝐺∗=(V, E) such that V={𝑢1, 𝑢2,𝑢3, 𝑢4} and E={𝑢1𝑢2,
𝑢2𝑢3,𝑢3𝑢1}. 

Let A= {𝑒1, 𝑒2, 𝑒3}be a set ofparameters. Let (K, A) be an interval valued neutrosophic graph 
soft sets over V with its approximation function. K:A ⟶P(V) defined by 

𝐾(𝑒1)=({𝑢1|([0.1, 0.4], [0.1, 0.3], [0.2, 0.3]), 𝑢2|([0.1, 0.3], [0.1, 0.2], [0.1, 0.4]), 
𝑢3|([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}. 

𝐾(𝑒2)=({𝑢1|([0.3, 0.5], [0.2, 0.3], [0.3, 0.4]), 𝑢2|([0.2, 0.3], [0.2, 0.3], [0.1, 0.4]), 
𝑢3|([0.1, 0.3], [0.2, 0.4], [0.3, 0.5])}. 

𝐾(𝑒3)=({𝑢1|([0.4, 0.5], [0.1, 0.3], [0.1, 0.4]), 𝑢2|([0.4, 0.6], [0.1, 0.2], [0.2 0.3]), 
𝑢3|([0.2, 0.3], [0.2, 0.4], [0.1, 0.2]), 𝑢4|([0.3, 0.6], [0.2, 0.3], [0.2, 0.3])}. 

Let (M, A) be an interval valued neutrosophic graph soft sets over E with its approximation 
function. M:A⟶P(E) defined by 

𝑀(𝑒1)={𝑢1𝑢2|([0.1, 0.3], [0.1, 0.3], [0.2, 0.4]), 𝑢2𝑢3|([0.1, 0.2], [0.2, 0.3], [0.2, 
0.5]), 𝑢3𝑢1 |([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}. 

𝑀(𝑒2)={𝑢1𝑢2|([0.1, 0.3], [0.2, 0.3], [0.3, 0.4]), 𝑢2𝑢3|([0.1, 0.3], [0.2, 0.4], [0.3 
0.5]), 𝑢3𝑢1 |([0.1, 0.3], [0.2, 0.4], [0.3, 0.5])}. 

𝑀(𝑒3)={𝑢1𝑢2|([0.4, 0.5], [0.1, 0.3], [0.2, 0.4]), 𝑢2𝑢3|([0.2, 0.3], [0.2, 0.4], [0.2, 
0.3]),𝑢3𝑢4|([0.2, 0.3], [0.2, 0.4], [0.2, 0.3]), 𝑢4𝑢1|([0.3, 0.5], [0.2, 0.3], [0.2, 
0.4]),𝑢1𝑢3|([0.2, 0.3], [0.2, 0.4], [0.1, 0.4]), 𝑢2𝑢4|([0.2, 0.6], [0.2, 0.4], [0.2, 0.3])} 

It is easy to see that 𝐻(𝑒1), 𝐻(𝑒2), 𝐻(𝑒3) are complete interval valued neutrosophic graphs of G 
corresponding to the parameters𝑒1, 𝑒2, 𝑒3 respectively as shown in Fig. 3.9. 

𝐻(𝑒1) 𝑢3 

<[0.1, 0.4],[ 0.1, 0.3],[0.2, 0.3]> 
<[0.1, 0.3],[ 0.1, 0.2],[0.1, 0.4]> 

<[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> 

<[0.1, 0.3],[ 0.1, 0.3],[0.2, 0.4]> 

𝑢1 
𝑢2 

<[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> <[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> 
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𝐻(𝑒2) 

𝐻(𝑒3) 

Fig. 3.9: Complete interval valued neutrosophic soft graph G={ 𝐻(𝑒1), 𝐻(𝑒2), 𝐻(𝑒3)}. 

Definition 3.20: An interval valued neutrosophic soft graph G is a strong interval valued 
neutrosophic soft graph if H(e) is a strong interval valued neutrosophic graph of G for all e ∈A, 
i.e. 

𝑇𝑀(𝑒)
𝐿 (x, z)= min(𝑇𝐾(𝑒)

𝐿 (x) ,𝑇𝐾(𝑒)
𝐿 (z)) 

𝑇𝑀(𝑒)
𝑈 (x, z)= min(𝑇𝐾(𝑒)

𝐿 (x) ,𝑇𝐾(𝑒)
𝐿 (z)) 

𝐼𝑀(𝑒)
𝐿 (x, z)= min(𝐼𝐾(𝑒)

𝐿 (x) ,𝐼𝐾(𝑒)
𝐿 (z))  

𝐼𝑀(𝑒)
𝑈 (x, z)= min(𝑇𝐾(𝑒)

𝐿 (x) ,𝐼𝐾(𝑒)
𝐿 (z)) 

𝐹𝑀(𝑒)
𝐿 (x, z) = min(𝐹𝐾(𝑒)

𝐿 (x) ,𝐹𝐾(𝑒)
𝐿 (z)) 

𝐹𝑀(𝑒)
𝑈 (x, z) = min(𝑇𝐾(𝑒)

𝐿 (x) ,𝐹𝐾(𝑒)
𝐿 (z)), for all 𝑥, 𝑧 ∈V, e ∈ A. 

Example 3.21.Consider a simple graph𝐺∗=(V, E) such that V={𝑢1, 𝑢2,𝑢3, 𝑢4} and E={𝑢1𝑢2,
𝑢2𝑢3,𝑢3𝑢1}. 

Let A= {𝑒1, 𝑒2, 𝑒3}be a set ofparameters. Let (K, A) be an interval valued neutrosophic 
graph soft sets over V with its approximation function. K:A⟶P(V) defined by 

𝐾(𝑒1)=({𝑢1|([0.1, 0.4], [0.1, 0.3], [0.2, 0.3]), 𝑢2|([0.1, 0.3], [0.1, 0.2], [0.1, 0.4]), 
𝑢3|([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}. 

𝐾(𝑒2)=({𝑢1|([0.3, 0.5], [0.2, 0.3], [0.3, 0.4]), 𝑢2|([0.2, 0.3], [0.2, 0.3], [0.1, 0.4]), 
𝑢3|([0.1, 0.3], [0.2, 0.4], [0.3, 0.5])}. 

𝑢3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.3,[ 0.2, 0.3],[0.3, 0.4]> 

𝑢1 
𝑢2 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> <[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.4]>

𝑢4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

𝑢3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0.

3,
 0

.5
],

[ 
0

.2
, 0

.3
],

[0
.2

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑢1 

<[0.4, 0.5],[ 0.1, 0.3],[0.2, 0.4]> 

𝑢2 

<[
0.

2,
 0

.3
],

[ 
0

.2
, 0

.4
,[

0.
2

, 0
.3

]>
 

<[0.2, 0.3],[ 0.2, 0.4],[0.2, 0.3]>
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𝐾(𝑒3)=({𝑢1|([0.4, 0.5], [0.1, 0.3], [0.1, 0.4]), 𝑢2|([0.4, 0.6], [0.1, 0.2], [0.2 0.3]), 
𝑢3|([0.2, 0.3], [0.2, 0.4], [0.1, 0.2]), 𝑢4|([0.3, 0.6], [0.2, 0.3], [0.2, 0.3])}.

Let (M, A) be an interval valued neutrosophic graph soft sets over E with its 
approximation function. M:A⟶P(E) defined by 

𝑀(𝑒1)={𝑢1𝑢2|([0.1, 0.3], [0.1, 0.3], [0.2, 0.4]), 𝑢2𝑢3|([0.1, 0.2], [0.2, 0.3], [0.2, 
0.5]), 𝑢3𝑢1 |([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}. 
𝑀(𝑒2)={𝑢1𝑢2|([0.1, 0.3], [0.2, 0.3], [0.3, 0.4]), 𝑢2𝑢3|([0.1, 0.3], [0.2, 0.4], [0.3 
0.5]), 𝑢3𝑢1 |([0.1, 0.3], [0.2, 0.4], [0.3, 0.5])}. 
𝑀(𝑒3)={𝑢1𝑢2|([0.4, 0.6], [0.1, 0.3], [0.2, 0.4]), 𝑢2𝑢3|([0.2, 0.3], [0.2, 0.4], [0.2, 
0.3]),𝑢3𝑢4|([0.2, 0.3], [0.2, 0.4], [0.2, 0.3]), 𝑢4𝑢1|([0.3, 0.5], [0.2, 0.3], [0.2, 0.4])} 

It is easy to see that 𝐻(𝑒1), 𝐻(𝑒2), 𝐻(𝑒3) are strong interval valued neutrosophic graphs 
of G corresponding to the parameters𝑒1, 𝑒2, 𝑒3 respectively as shown in Fig. 3.10. 

𝐻(𝑒1) 

𝐻(𝑒2) 

𝐻(𝑒3) 

Fig. 3.10: Strong interval valued neutrosophic soft graph G={ 𝐻(𝑒1), 𝐻(𝑒2), 𝐻(𝑒3)}. 

4. APPLICATION
Interval valued neutrosophic soft set has several applications in decision making problems and 
can be used to deal with uncertainties from our different daily life problems. In this section, we 

𝑢3 

<[0.1, 0.4],[ 0.1, 0.3],[0.2, 0.3]> 
<[0.1, 0.3],[ 0.1, 0.2],[0.1, 0.4]> 

<[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> 

<[0.1, 0.3],[ 0.1, 0.3],[0.2, 0.4]> 

𝑢1 
𝑢2 

<[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> <[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> 

𝑢3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.3,[ 0.2, 0.3],[0.3, 0.4]> 

𝑢1 
𝑢2 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> <[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

𝑣4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.2, 0.4],[0.2, 0.3]> 

𝑣3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0

.3
, 0

.5
],

[ 
0.

2
, 0

.3
],

[0
.2

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑣1 

<[0.4, 0.6],[ 0.1, 0.3],[0.2, 0.4]> 

𝑣2 

<[
0.

2,
 0

.3
],

[ 
0

.2
, 0

.4
,[

0.
2

, 0
.3

]>
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apply the concept of interval valued neutrosophic soft sets in a decision making problem and 
then give an algorithm for the selection of optimal object based upon given sets of information. 

Suppose that V={ℎ1,ℎ2,ℎ3,ℎ4,ℎ5} is the set of five houses under consideration. Mr. X 
is going to buy one of the houses on the basis of wishing parameters or attributes set A={𝑒1= 
large,𝑒2= beautiful, 𝑒3= green surrounding}.(K, A) is the interval valued neutrosophic soft set 
on V which describes the value of the houses based upon the given parameters 𝑒1= large,𝑒2= 
beautiful, 𝑒3= green surrounding, respectively. 

𝐾(𝑒1)=({ℎ1|([0.3, 0.4], [0.2, 0.3], [0.3, 0.4]), ℎ3|([0.2, 0.3], [0.2, 0.3], [0.1, 0.4]), 
ℎ4|([0.2, 0.3], [0.2, 0.4], [0.3, 0.5])}. 

𝐾(𝑒2)=( {ℎ1|([0.2, 0.5], [0.1, 0.3], [0.1, 0.3]), ℎ2|([0.3, 0.4], [0.1, 0.2], [0.2, 0.3]), 
ℎ3|([0.2, 0.3], [0.2, 0.3], [0.3, 0.4]),ℎ4|([0.3, 0.4], [0.2, 0.3], [0.1, 0.2]), ℎ5|([0.3, 
0.4], [0.1, 0.2], [0.2, 0.4])}. 

𝐾(𝑒3) =( {ℎ1|([0.4, 0.5], [0.1, 0.3], [0.1, 0.4]), ℎ2|([0.4, 0.6], [0.1, 0.2], [0.2, 0.3]), 
ℎ3|([0.2, 0.3], [0.2, 0.4], [0.1, 0.2]),ℎ4|([0.3, 0.6], [0.2, 0.3], [0.2, 0.3]), ℎ5|([0.2, 
0.3], [0.2, 0.3], [0.2, 0.4])}. 

(M, A) is an interval valued neutrosophic soft sets on E= {ℎ1ℎ2, ℎ1ℎ3, 
ℎ1ℎ4,ℎ1ℎ5,ℎ2ℎ3,ℎ2ℎ4, ℎ2ℎ5, ℎ3ℎ4,ℎ4ℎ5} which describe the value of two houses 
corresponding to the given parameters 𝑒1, 𝑒2 and 𝑒3. 

𝑀(𝑒1)={ℎ1ℎ3|([0.1, 0.2], [0.2, 0.3], [0.3, 0.4]), ℎ3ℎ4|([0.1, 0.2], [0.2, 0.5], [0.3, 
0.5]), ℎ1ℎ4 |([0.2, 0.3], [0.3, 0.4], [0.3, 0.5])}. 

𝑀(𝑒2)={ℎ1ℎ2|([0.2, 0.3], [0.2, 0.3], [0.2, 0.4]), ℎ1ℎ4|([0.2, 0.3], [0.2, 0.4], [0.2, 
0.4]), ℎ1ℎ5 |([0.1, 0.3], [0.3, 0.4], [0.3, 0.5]), ℎ2ℎ4|([0.2, 0.3], [0.2, 0.4], [0.4, 
0.5]), ℎ4ℎ5|([0.1, 0.2], [0.2, 0.4], [0.2, 0.5]), ℎ4ℎ3 |([0.2, 0.3], [0.2, 0.3], [0.3, 
0.4])}. 

𝑀(𝑒3)= {ℎ1ℎ2|([0.4, 0.6], [0.2, 0.3], [0.3, 0.4]), ℎ1ℎ4|([0.3, 0.5], [0.3, 0.4], [0.2, 
0.4]), ℎ2ℎ3 |([0.2, 0.3], [0.2, 0.5], [0.3, 0.4]), ℎ2ℎ5|([0.1, 0.2], [0.3, 0.4], [0.4, 
0.5]), ℎ2ℎ4|([0.2, 0.4], [0.3, 0.4], [0.5, 0.6]), ℎ3ℎ4 |([0.2, 0.3], [0.4, 0.5], [0.2, 
0.3])}. 

The interval valued neutrosophic soft sets𝐻(𝑒1), 𝐻(𝑒2), 𝐻(𝑒3)of interval valued 
neutrosophic graphs of G =(K, M, A) corresponding to the parameters𝑒1, 𝑒2, 𝑒3 respectively, 
as shown in Fig. 3.11. 

ℎ4 

<[0.3, 0.4],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.2, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2,[ 0.2, 0.3],[0.3, 0.4]> 

ℎ1 
ℎ3 

<[0.1, 0.2],[ 0.2, 0.5],[0.3, 0.5]> <[0.2, 0.3],[ 0.3, 0.4],[0.3, 0.5]> 
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𝐻(𝑒1) 

𝐻(𝑒2) 

𝐻(𝑒3) 

Fig. 3.11: Interval valued neutrosophic soft graph G={ 𝐻(𝑒1), 𝐻(𝑒2), 𝐻(𝑒3)}. 

The interval valued neutrosophic graphs 𝐻(𝑒1), 𝐻(𝑒2), 𝐻(𝑒3) corresponding to the 
parameters “large”, “beautiful” and “green surrounding”, respectively are represented by the 
following incidence matrix. 

𝐻(𝑒1)=

⟦

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.2, 0.3 ], [0.3, 0.4 ] >

< [0.2, 0.3 ], [0.3, 0.4 ], [0.3, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.2, 0.3 ], [0.3, 0.4 ] > < [0.2, 0.3 ], [0.3, 0.4 ], [0.3, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.2, 0.5 ], [0.3, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.2, 0.5 ], [0.3, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

 

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

⟧ 

<[0.2, 0.3>, [0.2, 0.3], [0.3, 0.4] 

<[0.1, 0.2>, [0.3, 04], [0.4, 0.5] 

ℎ4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.4, 0.5],[0.2, 0.3]> 

ℎ3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0.

3,
 0

.5
],

[ 
0.

3
, 0

.4
],

[0
.2

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

ℎ1 

<[0.4, 0.6],[ 0.2, 0.3],[0.3, 0.4]> 

ℎ2 

<[
0.

2,
 0

.3
],

[ 
0.

2
, 0

.5
,[

0.
3,

 0
.4

]>
 

<[0.2 0.4>, [0.3, 0.4], [0.5, 0.6] 

ℎ5

<[0.3, 0.4],[ 0.1, 0.2],[0.2, 0.4]> 

ℎ5 

<[
0

.1
, 0

.2
],

[ 
0

.3
, 0

.4
],

[0
.3

, 0
.5

]>
 

<[0.3, 0.4],[ 0.1, 0.2],[0.2, 0.3]> <[0.2, 0.5],[ 0.1, 0.3],[0.1, 0.3]> 

ℎ1 

<[0.2, 0.3],[ 0.2, 0.3],[0.2, 0.4]> 

ℎ2 

<[
0

.2
, 0

.3
],

[ 
0

.2
, 0

.4
],

[0
.4

, 0
.5

]>
 

<[0.3, 0.4],[ 0.2, 0.3],[0.1, 0.2]> 

<[0.1, 0.2],[ 0.2, 0.4],[0.2, 0.5]> 

ℎ4 

<[0.2, 0.3],[ 0.2, 0.4],[0.2, 0.4]> 

ℎ3 

<[0.2, 0.3],[ 0.2, 0.3],[0.3, 0.4]> 

<[0.2, 0.3],[ 0.2, 0.3],[0.3, 0.4]> 
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⟦

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0.2, 0.3 ], [0.2, 0.3 ], [0.2, 0.4 ] >

< [0.2, 0.3 ], [0.2, 0.3 ], [0.2, 0.4 ] > < [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.2, 0.3 ], [0.2, 0.4 ], [0.2, 0.4 ] >

< [0.1, 0.3 ], [0.3, 0.4 ], [0.3, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.2, 0.3 ], [0.2, 0.4 ], [0.4, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0.2, 0.3 ], [0.2, 0.4 ], [0.2, 0.4 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0.2, 0.3 ], [0.2, 0.4 ], [0.4, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.2, 0.3 ], [0.2, 0.3 ], [0.3, 0.4 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.2, 0.3 ], [0.2, 0.3 ], [0.3, 0.4 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.2, 0.4 ], [0.2, 0.5 ] >

 

< [0.1, 0.3 ], [0.3, 0.4 ], [0.3, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.2, 0.4 ], [0.2, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

⟧ 

 And 𝐻(𝑒3)=

⟦

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0.4, 0.6 ], [0.2, 0.3 ], [0.3, 0.4 ] >

< [0.4, 0.6 ], [0.2, 0.3 ], [0.3, 0.4 ] > < [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.3, 0.5 ], [0.3, 0.4 ], [0.2, 0.4 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.2, 0.3 ], [0.2, 0.5 ], [0.3, 0.4 ] >

< [0.2, 0.4 ], [0.3, 0.4 ], [0.5, 0.6 ] >

< [0.1, 0.2 ], [0.3, 0.4 ], [0.4, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0.3, 0.5 ], [0.3, 0.4 ], [0.2, 0.4 ] >

< [0.2, 0.3 ], [0.2, 0.5 ], [0.3, 0.4 ] > < [0.2, 0.4 ], [0.3, 0.4 ], [0.5, 0.6 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.2, 0.3 ], [0.4, 0.5 ], [0.2, 0.3 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.2, 0.3 ], [0.4, 0.5 ], [0.2, 0.3 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

 

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.3, 0.4 ], [0.4, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

⟧ 

After performing some operation (AND or OR); we obtain the resultant interval valued 
neutrosophic graph H(e), where e= e1 ∧ e2 ∧ e3. The incidence matrix of resultant interval 
neutrosophic soft graph is  
𝐻(𝑒3)=

⟦

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0.2, 0.3 ], [0.2, 0.3 ], [0.3, 0.4 ] >

< [0, 0 ], [0.3, 0.4 ], [0.4, 0.5 ] > < [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0.2, 0.3 ], [0.3, 0.4] >

< [0, 0 ], [0.3, 0.4 ], [0.3, 0.5 ] >

< [0, 0 ], [0.3, 0.4 ], [0.3, 0.5 ] >

< [0, 0 ], [0.2, 0.5 ], [0.3, 0.4 ] >

< [0.2, 0.3 ], [0.3, 0.4 ], [0.5, 0.6 ] >

< [0, 0 ], [0.3, 0.4 ], [0.4, 0.5 ] >

< [0, 0 ], [0.2, 0.3 ], [0.3, 0.4 ] > < [0.2, 0.3 ], [0.3, 0.4 ], [0.3, 0.5 ] >

< [0, 0 ], [0.2, 0.5 ], [0.3, 0.4 ] > < [0, 0 ], [0.3, 0.4 ], [0.5, 0.6 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.4, 0.5 ], [0.3, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.4, 0.5 ], [0.2, 0.3 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0.2, 0.4 ], [0.2, 0.5 ] >

 

< [0, 0 ], [0.3, 0.4 ], [0.4, 0.5 ] >

< [0, 0 ], [0.3, 0.4 ], [0.4, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0.2, 0.4 ], [0.2, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

⟧ 

Sahin (2015) defined the average possible membership degree of element x to interval valued 
neutrosophic set𝐴 = 〈[𝑇𝐴

𝐿(𝑥), 𝑇𝐴
𝑈(𝑥)], [𝐼𝐴

𝐿(𝑥), 𝐼𝐴
𝑈(𝑥)], [𝐹𝐴

𝐿(𝑥), 𝐹𝐴
𝑈(𝑥)]〉 as follows:

𝑆𝑘(𝑥) =
1

3
[
𝑇𝐴

𝐿 (𝑥) + 𝑇𝐴
𝑈(𝑥)

2
+ 1 −

𝐼𝐴
𝐿 (𝑥) + 𝐼𝐴

𝑈(𝑥)

2
+ 1 −

𝐹𝐴
𝐿 (𝑥) + 𝐹𝑣𝐴

𝑈(𝑥)

2
] 

=
𝑇𝐴

𝐿(𝑥) + 𝑇𝐴
𝑈(𝑥) + 4 − 𝐼𝐴

𝐿(𝑥) − 𝐼𝐴
𝑈(𝑥) − 𝐹𝐴

𝐿(𝑥) − 𝐹𝐴
𝑈(𝑥)

6

Based on 𝑆𝑘(𝑥) we depictedthe Tabular representation of score value of incidence 
matrix of resultant interval valued neutrosophic graph H(e)with 𝑆𝑘andchoice valuefor each 
house ℎ𝑘 for k= 1, 2, 3, 4. 

 Table 2. Tabular representation of score values with choice values. 

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ𝑘
′

ℎ1 0.666 0.55 0.466 0.5 0.4 2,582 
ℎ2 0.4 0.666 0.433 0.366 0.4 2,265 
ℎ3 0.466 0.433 0.666 0.483 0.666 2,714 
ℎ4 0.416 0.45 0.433 0.666 0.45 2,415 
ℎ5 0.416 0.383 0.666 0.45 0.666 2,581 

𝐻(𝑒2)=
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Clearly, the maximum score value is 2,714, scored by the ℎ3 Mr. X, will buy the house 
ℎ3.

We present our method as an algorithm that is used in our application. 
Algorithm 

1. Input the set P of choice of parameters of Mr. X, A is subset of P.
2. Input the interval valued neutrosophic soft sets (K, A) and (M, A).
3. Construct the interval valued neutrosophic soft graph G = (K, M, A).
4. Compute the resultant interval valued neutrosophic soft graph

H(e) =⋂ 𝐻(𝑒𝑘 )𝑘  fore = ⋀ 𝑒𝑘𝑘 ∀ k.
5. Consider the interval valued neutrosophic graph H(e) and its incidence matrix form.
6. Compute the score 𝑆𝑘 of ℎ𝑘∀ k.
7. The decision is ℎ𝑘if ℎ𝑘

′ = max
𝑖

ℎ𝑘. 
8. If k has more than one value then any one of ℎ𝑘may be chosen.

5. CONCLUSION
Interval valued neutrosophic soft sets is a generalization of fuzzy soft sets, intuitionistic fuzzy 
soft sets and neutrosophic soft sets. The neutrosophic set model is an important tool for dealing 
with real scientific and engineering applications; it can handle not only incomplete information, 
but also the inconsistent information and indeterminate information which exists in real 
situations. Interval valued neutrosophic models give more precisions, flexibility and 
compatibility to the system as compared to the classical, fuzzy and/or intuitionistic fuzzy and 
single valued neutrosophic models. In this paper, we have introduced certain types of interval 
valued neutrosophic soft graphs, such as strong interval valued neutrosophic soft graph, 
complete interval valued neutrosophic soft graphs and complement of strong interval valued 
neutrosophic soft graphs. We introduced some operations such as Cartesian product, 
composition, intersection, union and join on an interval valued neutrosophic soft graphs. We 
presented an application of interval valued neutrosophic soft graphs in decision making. In 
future studies, we plan to extend our research to regular interval valued neutrosophic soft graphs 
and irregular interval valued neutrosophic soft graphs. 
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ABSTRACT 
The aim of this paper is to present texture features for images embedded in the 
neutrosophic domain with Hesitancy degree. Hesitancy degree is the fourth component of 
Neutrosophic set. The goal is to extract a set of features to represent the content of each 
image in the training database to be used for the purpose of retrieving images from the 
database similar to the image under consideration.  

KEYWORDS: Content-Based Image Retrieval (CBIR), Hesitancy Degree, Text-based 
Image Retrieval (TBIR), Neutrosophic Domain, Neutrosophic Entropy, Neutrosophic 
Contrast, Neutrosophic Energy, Neutrosophic Homogeneity. 

1 INTRODUCTION 

With an explosive growth of digital image collections, content-based image retrieval (CBIR) 
has been emerged as one of the most active problems in computer vision as well as 
multimedia applications. The target of content-based image retrieval (CBIR) (Datta & Wang, 
2005) is to retrieve images relevant to a query of a user, which can be expressed by example. 
In CBIR, an image is described by automatically extracted low-level visual features, such as 
color, texture and shape (Ionescu et al., 2007; Ma & Zhang, 1999; Rui et al., 1999). When a user 
submits one or more query images as examples, a criterion based on this image description 
ranks the images of an image database according to their similarity with the examples of the 
query and, finally, the most similar are returned to the Digital image retrieval systems. Since 
1990’s, Content Based Image Retrieval (CBIR) has attracted great research attention (Jing et 

al., 2004; Tong & Chang, 2001). Early research was focused on finding the best representation for 
image features. The current work primarily focuses on using Neutrosophic sets with 
Hesitancy degrees Transformation methods for CBIR. 
The Neutrosophic logic which proposed by Smarandache (2005) is a generalization of fuzzy 
sets which introduced by Zada (1965).  The fundamental concepts of neutrosophic set which 
are the degree of membership (T), Indeterminacy (I) and the degree of non-membership (F) 
of each element have been introduced by Smarandache (2002, 1999) and (Albowi et al., 2013; 
Hanafy et al., 2012; Salama, Eisa et al., 2015; Salama & Elagamy, 2013; Salama, 2015; Salama, Smarandache et 
al. 2014; Salama, El-Ghareeb et al., 2014; Salama, Abdelfattah et al., 2014; Salama, Eisa et al. 2014; Salama & 
Broumi, 2014; Salama, El-Ghareeb, Manie, 2014; Salama & Alagamy, 2013. We will now extend the 
concepts of distances to the case of neutrosophic hesitancy degree. By taking into account the 
four parameters characterization of neutrosophic sets (Salama & Smarandache, 2014).  
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2 IMAGE RETRIEVAL TECHNIQUE 

2.1 Content-Based Image Retrieval (CBIR) 

       Content Based Image Retrieval is one of the important methods for image retrieval 
system. It enhances the accuracy of the image being retrieved. It is applicable for efficient 
query processing, automatically extract the low-level features such as texture, intensity, shape 
and color in order to classify the query and retrieve the similar images from the huge scale 
image collection of database. In CBIR, each image that is stored in the database has its 
features extracted and compared to the query image features (Ramamurthy et al., 2012). Eakins 
(Hwang et al., 2012) has divided image features into three levels: 
Level 1 - This level deals with primitive features like color, texture, shape or some spatial 
information about the objects in the picture. This way we can filter images on a more global 
scale based on form or color. This can be used for finding images that are visually similar to 
the query image. 
Level 2 - This level introduces the logical features or derived attributes which involve some 
degree of inference about the identity of the objects depicted in the image. So, a typical query 
in a medical scope would be “Find images of a kidney”. 
Level 3 - Most complex of all levels, as it requires complex reasoning about the significance of 
the objects depicted. In this case the query would look like “Find image of an infected kidney”. 

2.1.1 Color features for image retrieval 

       Color is widely used low-level visual features and it is invariant to image size and orientation 
(Danish et al., 2013). 

 Color Histogram: In CBIR, one of the most popular features is the color histogram in HSV
color space, which used in MPEG-7 descriptor. At first, the images converted to the HSV 
color space, and uniformly quantizing H, S, and V components into 16, 2, and 2 regions 
respectively generates the 64-bit color histogram (Danish et al., 2013). 

 Color moments: To form a 9-dimensional feature vector, the mean µ, standard deviation σ,
and skew g are extracted from the R, G, B color spaces. The best-known space color and 
commonly used for visualization is the RGB space color. It can be depicted as a cube where 
the horizontal x-axis as red values increasing to the left, y-axis as blue increasing to the lower 
right and the vertical z-axis as green increasing towards the top (Lee et al., 1996). 

2.1.2 Texture feature for image retrieval 

       In the texture feature extraction, using the gray level co-occurrence matrix for the 
query image and the first image in the database to extract the texture feature vector (Kong, 

2009). The co-occurrence matrix representation is a technique used to give the intensity values 
and the distribution of the intensities. The features which selected for retrieving texture 
properties are Energy, Entropy, Inverse difference, Moment of inertia, Mean, Variance, 
Skewness, Distribution uniformity, Local stationary and Homogeneity (Ingle & Bhatia, 2012). 

2.1.3 Shape features for image retrieval 

       The shape defined as the characteristic surface configuration of an object: an outline or 
contour. The object can be distinguished from its surroundings by its outline (Danish et al., 

2013). 
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We can divide the shape representations into two categories: 
1- Boundary-based shape representation: it uses only the outer boundary of the shape. It 

works by describing the considered region by using its external characteristics. For 
example, the pixels along the object boundary (Sifuzzaman et al., 2009). 

2- Region-based shape representation: it uses the entire shape region. It works by 
describing the considered region using its internal characteristics. For example, the 
pixels which the region contained (Sifuzzaman et al., 2009). 

3 HESITANCY DEGREE 

We will now extend the concepts of distances to the case of neutrosophic hesitancy degree. 
By taking into account the four parameters characterization of neutrosophic sets 

 (Salama, Smarandache et al., 2014). 

Definition 3.1 (Salama, Smarandache et al., 2014) : 

Let  and  on 
For a Neutrosophic set in X, we call 

, the Neutrosophic index of x in A, it is a hesitancy degree of 
x to A it is obvious that . 

4 IMAGES IN THE NEUTROSOPHIC DOMAIN WITH HESITANCY DEGREE 

       The image in the Neutrosophic Domain (ND) is considered as an array of 
neutrosophic singletons (Salama, Smarandache et al., 2014). Let U be a universe of discourse and 
W is a set in U which composed of bright pixels. A neutrosophic images  is characterized 
by three sub sets T, I, and F. which can be defined as T is the degree of membership, I is the 
degree of indeterminacy, and F is the degree of non-membership. In the image, a pixel P is 
described as P(T, I, F) which belongs to W by it is t% is true in the bright pixel, i% is the 
indeterminate and f% is false where t varies in T, i varies in I, and f varies in F. In the image 
domain, the pixel p(i, j) is transformed to . Where, 
belongs to white set,  belongs to indeterminate set and  belongs to non-white set. 

The image in ND can be defined as [2]: 

 (5) 
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Where  can be defined as the local mean value of the pixels of window size, and 
can be defined as the homogeneity value of T at (i, j). is the absolute value of 
difference between intensity  and its local mean value . 
The second transformation for 
Where  in (Salama, Smarandache et al., 2014). 

5 TEXTURE FEATURES IN NEUTROSOPHIC DOMAIN 

5.1 Neutrosophic Entropy with Hesitancy degree: 

       Shannon entropy provides an absolute limit on the best possible average length of 
lossless encoding or compression of an information source. 
Conversely, rare events provide more information when observed. Since observation of less 
probable events occurs more rarely, the net effect is that the entropy received from non-
uniformly distributed data is . Entropy is zero when one outcome is certain. Shannon 
entropy quantifies all these considerations exactly when a probability distribution of the 
source is known. Entropy only takes into account the probability of observing a specific 
event, so the information which encapsulates is information about the underlying probability 
distribution, not the meaning of the events themselves (Shannon, 1948).     
Entropy is defined as (Fan et al., 2008): 

Although, the Neutrosophic Set Entropy was defined in one dimension which presented in 
(Eisa, 2014), We will define it in two dimensions to be as follows: 

Where P contains the histogram counts. 
Because, we used the interval between 0 and 1,  may have negative values. 
So, we use the absolute of 

5.2 Neutrosophic Contrast with Hesitancy degree: 

       Contrast is the difference in luminance or color that makes an object distinguishable. In 
visual perception of the real world, contrast is determined by the difference in the color and 
brightness of the object and other objects within the same field of view. The human visual 
system is more sensitive to contrast than absolute luminance. The maximum contrast of an 
image is the contrast ratio or dynamic range.    
It is the measure of the intensity contrast between a pixel and its neighbor over the whole 
image, it can be defined as (Sinha & Udai, 2009): 
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We will define the Neutrosophic set Contrast to be as follows: 

5.3 Neutrosophic Energy with Hesitancy degree: 

 It is the sum of squared elements. Which defined as (Hearn & Baker, 1994): 

We will define the Neutrosophic set Energy to be as follows: 

5.4 Neutrosophic homogeneity with hesitancy degree: 

       Homogeneity describes the properties of a data set, or several datasets. Homogeneity 
can be studied to several degrees of complexity. For example, considerations of 
homoscedasticity examine how much the variability of data-values changes throughout a 
dataset. However, questions of homogeneity apply to all aspects of the statistical 
distributions, including the location parameter. Homogeneity relates to the validity of the 
often-convenient assumption that the statistical properties of any one part of an overall 
dataset are the same as any other part. In meta-analysis, which combines the data from 
several studies, homogeneity measures the difference or similarities between the several 
studies. 
That is a value which measures the closeness of the distribution of elements. Which defined 
as (Kuijk, 1991): 

We will define the Neutrosophic set Homogeneity to be as follows: 
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Recently, the Euclidean distance is calculated between the query image and the first image in 
the database and stored in an array. This process is repeated for the remaining images in the 
database followed by storing their values respectively. The array is stored now in ascending 
order and displayed the first 8 closest matches. 

6. CONCLUSION AND FUTURE WORK

       In this paper we introduced a survey of the Text-Based Image Retrieval (TBIR) and the Content-Based 
Image Retrieval (CBIR). We also introduced the image in neutrosophic domain with hesitancy degree and the 
texture feature in neutrosophic domain. In future, we plan to introduce some similarity measurement which may 
be used to determine the distance between the image under consideration and each image in the database using 
the features we introduced in this paper. Hence, the images similar to the image under consideration can be 
retrieved. 
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ABSTRACT

In this paper, the concept of generalized neutrosophic closed set is introduced. Further,

generalized neutrosophic continuous mapping, generalized neutrosophic irresolute mapping,

strongly neutrosophic continuous mapping, perfectly neutrosophic continuous mapping, strongly

generalized neutrosophic continuous mapping and perfectly generalized neutrosophic contin-

uous mapping are introduced. Several interesting properties and characterizations are also

discussed.

KEYWORDS: Generalized neutrosophic closed sets; generalized neutrosophic continuity;

strongly generalized neutrosophic continuity; generalized neutrosophic irresolute; strongly

neutrosophic continuity; perfectly neutrosophic continuity.

1 INTRODUCTION AND PRELIMINARIES

The notion of fuzzy set has invaded almost all branches of mathematics since its introduction

by Zadeh (1965). Fuzzy sets have applications in many fields such as information theory

(Smets (1981)) and control theory (Sugeno (1985)). The notion of fuzzy topological space

was introduced and developed by Chang (1968) and since then various notions in classical

topology have been extended to fuzzy topological spaces. The idea of ”intuitionistic fuzzy

set” was first published by Krassimir Atanassov (1983) and developed further by him and

his colleagues (Atanassov (1986, 1988); Atanassov and Stoeva (1983)). Intuitionistic fuzzy

set is an extension of Zadeh’s notion of fuzzy set which itself has extended the classical

notion of a set. Later, this concept was generalized to ”intuitionistic L - fuzzy sets” by

Atanassov and Stoeva (1984). The concept of generalized intuitionistic fuzzy closed set was
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first introduced and investigated by Thakur and Chaturvedi (2006) and later independently

by Dhavaseelan et al. (2010). After the introduction of the concepts of neutrosophy and

neutrosophic set by Smarandache Smarandache (1999, 2000), the concepts of neutrosophic

crisp set and neutrosophic crisp topological spaces were introduced by Salama and Alblowi

(2012).

In this paper, the concept of generalized neutrosophic closed set is introduced. Fur-

ther, generalized neutrosophic continuous mapping, generalized neutrosophic irresolute map-

ping, strongly neutrosophic continuous mapping, perfectly neutrosophic continuous map-

ping, strongly generalized neutrosophic continuous mapping and perfectly generalized neu-

trosophic continuous mapping are introduced. Several interesting properties and character-

izations are also discussed.

Definition 1.1. Let T , I and F be real standard or non standard subsets of ]0−, 1+[, with

supT = tsup, infT = tinf

supI = isup, infI = iinf

supF = fsup, infF = finf

n− sup = tsup + isup + fsup

n− inf = tinf + iinf + finf . T , I and F are neutrosophic components.

Definition 1.2. Let X be a nonempty fixed set. A neutrosophic set [briefly NS] A is an

object having the form A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}, where µ
A

(x), σ
A

(x) and

γ
A

(x) represent the degree of membership function (namely µ
A

(x)), the degree of indetermi-

nacy (namely σ
A

(x)) and the degree of nonmembership (namely γ
A

(x)) respectively of each

element x ∈ X to the set A.

Remark 1.1. (1) A neutrosophic set A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X} can be

identified to an ordered triple 〈µ
A
, σ

A
, γ

A
〉 in ]0−, 1+[ on X.

(2) For the sake of simplicity, we shall use the symbol A = 〈µ
A
, σ

A
, γ

A
〉 for the neutrosophic

set A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 1.3. Let X be a nonempty set and the neutrosophic sets A and B in the form

A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}, B = {〈x, µ
B

(x), σ
B

(x), γ
B

(x)〉 : x ∈ X}. Then

(a) A ⊆ B iff µ
A

(x) ≤ µ
B

(x), σ
A

(x) ≤ σ
B

(x) and γ
A

(x) ≥ γ
B

(x) for all x ∈ X;

(b) A = B iff A ⊆ B and B ⊆ A;

(c) Ā = {〈x, γ
A

(x), σ
A

(x), µ
A

(x)〉 : x ∈ X}; [Complement of A]

(d) A ∩B = {〈x, µ
A

(x) ∧ µ
B

(x), σ
A

(x) ∧ σ
B

(x), γ
A

(x) ∨ γ
B

(x)〉 : x ∈ X};

(e) A ∪B = {〈x, µ
A

(x) ∨ µ
B

(x), σ
A

(x) ∨ σ
B

(x), γ
A

(x) ∧ γ
B

(x)〉 : x ∈ X};

(f) [ ]A = {〈x, µ
A

(x), σ
A

(x), 1− µ
A

(x)〉 : x ∈ X};
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(g) 〈〉A = {〈x, 1− γ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 1.4. Let {Ai : i ∈ J} be an arbitrary family of neutrosophic sets in X. Then

(a)
⋂
Ai = {〈x,∧µ

Ai
(x),∧σ

Ai
(x),∨γ

Ai
(x)〉 : x ∈ X};

(b)
⋃
Ai = {〈x,∨µ

Ai
(x),∨σ

Ai
(x),∧γ

Ai
(x)〉 : x ∈ X}.

Since our main purpose is to construct the tools for developing neutrosophic topological

spaces, we must introduce the neutrosophic sets 0
N

and 1
N

in X as follows:

Definition 1.5. 0
N

= {〈x, 0, 0, 1〉 : x ∈ X} and 1
N

= {〈x, 1, 1, 0〉 : x ∈ X}.

2 NEUTROSOPHIC TOPOLOGY

Definition 2.1. A neutrosophic topology (NT) on a nonempty set X is a family T of

neutrosophic sets in X satisfying the following axioms:

(i) 0
N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case the ordered pair (X,T ) or simply X is called a neutrosophic topological space

(NTS) and each neutrosophic set in T is called a neutrosophic open set (NOS). The comple-

ment A of a NOS A in X is called a neutrosophic closed set (NCS) in X.

Definition 2.2. Let A be a neutrosophic set in a neutrosophic topological space X. Then

Nint(A) =
⋃
{G | G is a neutrosophic open set in X and G ⊆ A} is called the neutro-

sophic interior of A;

Ncl(A) =
⋂
{G | G is a neutrosophic closed set in X and G ⊇ A} is called the neutro-

sophic closure of A.

Corollary 2.1. Let A, B and C be neutrosophic sets in X. Then the basic properties of

inclusion and complementation:

(a) A ⊆ B and C ⊆ D ⇒ A ∪ C ⊆ B ∪D and A ∩ C ⊆ B ∩D,

(b) A ⊆ B and A ⊆ C ⇒ A ⊆ B ∩ C,

(c) A ⊆ C and B ⊆ C ⇒ A ∪B ⊆ C,

(d) A ⊆ B and B ⊆ C ⇒ A ⊆ C,

(e) A ∪B = A ∩B,

(f) A ∩B = A ∪B,
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(g) A ⊆ B ⇒ B ⊆ A,

(h) (A) = A,

(i) 1
N

= 0
N

,

(j) 0
N

= 1
N

.

Now we introduce the notions of image and preimage of neutrosophic sets. Let X and Y

be two nonempty sets and f : X → Y be a function.

Definition 2.3. (a) If B = {〈y, µ
B

(y), σ
B

(y), γ
B

(y)〉 : y ∈ Y } is a neutrosophic set in Y ,

then the preimage of B under f , denoted by f−1(B), is the neutrosophic set in X

defined by

f−1(B) = {〈x, f−1(µ
B

)(x), f−1(σ
B

)(x), f−1(γ
B

)(x)〉 : x ∈ X}.

(b) If A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X} is a neutrosophic set in X, then the image

of A under f , denoted by f(A), is the neutrosophic set in Y defined by

f(A) = {〈y, f(µ
A

)(y), f(σ
A

)(y), (1− f(1− γ
A

))(y)〉 : y ∈ Y }. where

f(µ
A

)(y) =

supx∈f−1(y) µA
(x), if f−1(y) 6= ∅,

0, otherwise,

f(σ
A

)(y) =

supx∈f−1(y) σA
(x), if f−1(y) 6= ∅,

0, otherwise,

(1− f(1− γ
A

))(y) =

infx∈f−1(y) γA
(x), if f−1(y) 6= ∅,

1, otherwise,

For the sake of simplicity, let us use the symbol f−(γ
A

) for 1− f(1− γ
A

).

Corollary 2.2. Let A , Ai(i ∈ J) be neutrosophic sets in X, B, Bi(i ∈ K) be neutrosophic

sets in Y and f : X → Y a function. Then

(a) A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2),

(b) B1 ⊆ B2 ⇒ f−1(B1) ⊆ f−1(B2),

(c) A ⊆ f−1(f(A)) { If f is injective, then A = f−1(f(A)) } ,

(d) f(f−1(B)) ⊆ B { If f is surjective, then f(f−1(B)) = B },

(e) f−1(
⋃
Bj) =

⋃
f−1(Bj),

(f) f−1(
⋂
Bj) =

⋂
f−1(Bj),

(g) f(
⋃
Ai) =

⋃
f(Ai),
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(h) f(
⋂
Ai) ⊆

⋂
f(Ai) { If f is injective, then f(

⋂
Ai) =

⋂
f(Ai)},

(i) f−1(1
N

) = 1
N

,

(j) f−1(0
N

) = 0
N

,

(k) f(1
N

) = 1
N

, if f is surjective,

(l) f(0
N

) = 0
N

,

(m) f(A) ⊆ f(A), if f is surjective,

(n) f−1(B) = f−1(B).

3 GENERALIZED NEUTROSOPHIC CLOSED SETS AND GENERALIZED NEUTRO-

SOPHIC CONTINUOUS FUNCTIONS

Definition 3.1. Let (X,T ) be a neutrosophic topological space. A neutrosophic set A in

(X,T ) is said to be a generalized neutrosophic closed set if Ncl (A) ⊆ G whenever A ⊆ G

and G is a neutrosophic open set. The complement of a generalized neutrosophic closed set

is called a generalized neutrosophic open set.

Definition 3.2. Let (X,T ) be a neutrosophic topological space and A be a neutrosophic

set in X. Then the neutrosophic generalized closure and neutrosophic generalized interior

of A are defined by,

(i)NGcl(A) =
⋂
{G: G is a generalized neutrosophic closed

set in X and A ⊆ G}.
(ii)NGint(A) =

⋃
{G: G is a generalized neutrosophic open

set in X and A ⊇ G}.

Proposition 3.1. Let (X,T ) be any neutrosophic topological space and let A and B be

neutrosophic sets in (X,T ) . Then the neutrosophic generalized closure operator satisfy the

following properties:

(i) A ⊆ NGcl(A).

(ii) NGint(A) ⊆ A.

(iii) A ⊆ B ⇒ NGcl(A) ⊆ NGcl(B).

(iv) A ⊆ B ⇒ NGint(A) ⊆ NGint(B).

(v) NGcl(A ∪B) = NGcl(A) ∪NGcl(B).

(vi) NGint(A ∩B) = NGint(A) ∩NGint(B).

(vii) NGcl(A) = NGint(A).
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(viii) NGint(A) = NGcl(A).

Proof. (i) NGcl(A)=
⋂
{G: G is a generalized neutrosophic closed set in X and A ⊆ G}.

Thus, A ⊆ NGcl(A).

(ii) NGint(A)=
⋃
{G: G is a generalized neutrosophic open set in X and A ⊇ G}. Thus,

NGint(A) ⊆ A.

(iii) NGcl(B)=
⋂
{G: G is a generalized neutrosophic closed set in X and B ⊆ G},

⊇
⋂
{G : G is a generalized neutrosophic closed set in X and A ⊆ G},

⊇ NGcl(A).

Thus, NGcl(A) ⊆ NGcl(B).

(iv) NGint(B)=
⋃
{G: G is a generalized neutrosophic open set in X and B ⊇ G},

⊇
⋃
{G: G is a generalized neutrosophic open set in X and A ⊇ G},

⊇ NGint(A).

Thus, NGint(A) ⊆ NGint(B).

(v) NGcl(A∪B) =
⋂
{G: G is a generalized neutrosophic closed set in X and A∪B ⊆ G},

(
⋂
{G: G is a generalized neutrosophic closed set in X and A ⊆ G}) ∪ (

⋂
{G: G is a

generalized neutrosophic closed set in X and B ⊆ G}),
= NGcl(A) ∪NGcl(B).

Thus, NGcl(A ∪B)=NGcl(A) ∪NGcl(B).

(vi) NGint(A∩B)=
⋃
{G: G is a generalized neutrosophic open set in X and A∩B ⊇ G},

(
⋃
{G : G is a generalized neutrosophic open set in X and A ⊇ G}) ∩ (

⋃
{G: G is a

generalized neutrosophic open set in X and B ⊇ G} ),

= NGint(A) ∩NGint(B).

Thus, NGint(A ∩B) = NGint(A) ∩NGint(B).

(vii) NGcl(A) =
⋂
{G: G is a generalized neutrosophic closed set in X and A ⊆ G},

NGcl(A) = ∪{G : G is a generalized neutrosophic open set in X and A ⊇ G},
= NGint(A).

Thus, NGcl(A) = NGint(A).

(viii) NGint(A)=
⋃
{G: G is a generalized neutrosophic open set in X and A ⊇ G},

NGint(A) =
⋂
{G : G is a generalized neutrosophic closed set in X and A ⊆ G},

= NGcl(A). Thus,NGint(A) = NGcl(A).
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Proposition 3.2. Let (X,T ) be a neutrosophic topological space. If B is a generalized

neutrosophic closed set and B ⊆ A ⊆ Ncl(B), then A is a generalized neutrosophic closed

set.

Proof. Let G be a neutrosophic open set in (X,T ), such that A ⊆ G. Since B ⊆ A, B ⊆ G.

Now, B is a generalized neutrosophic closed set and Ncl(B) ⊆ G. But Ncl(A) ⊆ Ncl(B).

Since Ncl(A) ⊆ Ncl(B) ⊆ G, Ncl(A) ⊆ G. Hence, A is a generalized neutrosophic closed

set.

Proposition 3.3. Let (X,T ) be a neutrosophic topological space. An neutrosophic set

A is a generalized neutrosophic open set if and only if B ⊆ Nint(A), whenever B is an

neutrosophic closed set and B ⊆ A.

Proof. Let A be a generalized neutrosophic open set and B be a neutrosophic closed set such

that B ⊆ A. Now, B ⊆ A ⇒ A ⊆ B and since A is a generalized neutrosophic closed set,

then Ncl(A) ⊆ B. This means that B = (B) ⊆ Ncl(A). But Ncl(A) = Nint(A). Hence,

B ⊆ Nint(A).

Conversely, suppose that A is a neutrosophic set such that B ⊆ Nint(A), whenever B

is a neutrosophic closed set and B ⊆ A. Let A ⊆ B whenever B is a neutrosophic open set.

Now, A ⊆ B ⇒ B ⊆ A. Hence by assumption, B ⊆ Nint(A). That is, Nint(A) ⊆ B. But

Nint(A) = Ncl(A). Hence, Ncl(A) ⊆ B. This means that A is a generalized neutrosophic

closed set. Therefore, A is a generalized neutrosophic open set.

Proposition 3.4. If Nint(A) ⊆ B ⊆ A and if A is a generalized neutrosophic open set,

then B is also a generalized neutrosophic open set.

Proof. Now, A ⊆ B ⊆ Nint(A) = Ncl(A). Since A is a generalized neutrosophic open

set, then A is a generalized neutrosophic closed set. By Proposition 3.2, B is a generalized

neutrosophic closed set. That is, B is a generalized neutrosophic open set.

Definition 3.3. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces.

(i) A map f : (X,T ) → (Y, S) is said to be generalized neutrosophic continuous if the

inverse image of every neutrosophic closed set in (Y, S) is a generalized neutrosophic

closed set in (X,T ).

Equivalently if the inverse image of every neutrosophic open set in (Y, S) is a generalized

neutrosophic open set in (X,T ).

(ii) A map f : (X,T ) → (Y, S) is said to be generalized neutrosophic irresolute if the

inverse image of every generalized neutrosophic closed set in (Y, S) is a generalized

neutrosophic closed set in (X,T ).

Equivalently if the inverse image of every generalized neutrosophic open set in (Y, S)

is a generalized neutrosophic open set in (X,T ).
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(iii) A map f : (X,T )→ (Y, S) is said to be strongly neutrosophic continuous if f−1(A) is

both neutrosophic open and neutrosophic closed in (X,T ) for each neutrosophic set A

in (Y, S).

(iv) A map f : (X,T )→ (Y, S) is said to be perfectly neutrosophic continuous if f−1(A) is

both neutrosophic open and neutrosophic closed in (X,T ) for each neutrosophic open

set A in (Y, S).

(v) A map f : (X,T )→ (Y, S) is said to be strongly generalized neutrosophic continuous if

the inverse image of every generalized neutrosophic open set in (Y, S) is an neutrosophic

open set in (X,T ).

(vi) A map f : (X,T ) → (Y, S) is said to be perfectly generalized neutrosophic continu-

ous if the inverse image of every generalized neutrosophic open set in (Y, S) is both

neutrosophic open and neutrosophic closed in (X,T ).

Proposition 3.5. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. Let

f : (X,T ) → (Y, S) be a generalized neutrosophic continuous mapping. Then for every

neutrosophic set A in X, f(NGcl(A)) ⊆ Ncl(f(A)).

Proof. Let A be an neutrosophic set in (X,T ). Since Ncl(f(A)) is a neutrosophic closed

set and f is a generalized neutrosophic continuous mapping, f−1(Ncl(f(A)) is a general-

ized neutrosophic closed set and f−1(Ncl(f(A))) ⊇ A. Now, NGcl(A) ⊆ f−1(Ncl(f(A))).

Therefore, f(NGcl(A)) ⊆ Ncl(f(A)).

Proposition 3.6. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. Let

f : (X,T ) → (Y, S) be a generalized neutrosophic continuous mapping. Then for every

neutrosophic set A in Y , NGcl(f−1(A)) ⊆ f−1(Ncl(A)).

Proof. Let A be a neutrosophic set in (Y, S). Let B = f−1(A). Then, f(B) = f(f−1(A)) ⊆
A. By Proposition 3.5., f(NGcl(f−1(A))) ⊆ Ncl(f(f−1(A))). Thus, NGcl(f−1(A)) ⊆
f−1(Ncl(A)).

Proposition 3.7. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If A

is a generalized neutrosophic closed set in (X,T ) and if f : (X,T )→ (Y, S) is neutrosophic

continuous and neutrosophic closed mapping then f(A) is a generalized neutrosophic closed

set in (Y, S).

Proof. Let G be a neutrosophic open set in (Y, S). If f(A) ⊆ G then A ⊆ f−1(G) in (X,T ).

Since A is a generalized neutrosophic closed set and f−1(G) is a neutrosophic open set in

(X,T ), Ncl(A) ⊆ f−1(G). That is, f(Ncl(A)) ⊆ G. Now, by assumption, f(Ncl(A)) is

a neutrosophic closed set in (Y, S) and Ncl(f(A)) ⊆ Ncl(f(Ncl(A))) = f(Ncl(A)) ⊆ G.

Hence, f(A) is a generalized neutrosophic closed set.

Florentin Smarandache, Surapati Pramanik (Editors)

268



Proposition 3.8. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If f :

(X,T )→ (Y, S) is a neutrosophic continuous mapping then it is a generalized neutrosophic

continuous mapping.

Proof. Let A be a neutrosophic open set in (Y, S). Since f is a neutrosophic continuous

mapping, f−1(A) is a neutrosophic open set in (X,T ). Every neutrosophic open set is a

generalized neutrosophic open set. Now, f−1(A) is a generalized neutrosophic open set in

(X,T ). Hence, f is a generalized neutrosophic continuous mapping.

The converse of Proposition 3.8., need not be true as shown in Example

3.1.

Example 3.1. Let X = {a, b, c}. Define the neutrosophic sets A and B in X as follows:

A = 〈x, ( a
0.4
, b
0.4
, c
0.5

), ( a
0.4
, b
0.4
, c
0.5

), ( a
0.2
, b
0.4
, c
0.3

)〉, B = 〈x, ( a
0.4
, b
0.5
, c
0.6

), ( a
0.4
, b
0.5
, c
0.6

), ( a
0.3
, b
0.2
, c
0.3

)〉.
Then the families T = {0

N
, 1

N
, A} and S = {0

N
, 1

N
, B} are neutrosophic topologies on X.

Thus, (X,T ) and (X,S) are neutrosophic topological spaces. Define f : (X,T ) → (X,S)

as f(a) = b, f(b) = a, f(c) = c. Then f is a generalized neutrosophic continuous

mapping. But, f−1(B) is not a neutrosophic open set in (X,T ) for B ∈ S. Hence, f is

not a neutrosophic continuous mapping.

Proposition 3.9. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If

f : (X,T )→ (Y, S) is a generalized neutrosophic irresolute mapping then it is a generalized

neutrosophic continuous mapping.

Proof. Let A be a neutrosophic open set in (Y, S). Every neutrosophic open set is a gener-

alized neutrosophic open set. Now, A is a generalized neutrosophic open set. Since f is a

generalized neutrosophic irresolute mapping, f−1(A) is a generalized neutrosophic open set

in (X,T ). Thus, f is a generalized neutrosophic continuous mapping.

The converse of Proposition 3.9., need not be true as shown in Example

3.2.

Example 3.2. Let X = {a, b, c}. Define the neutrosophic sets A, B and C in X as follows:

A = 〈x, ( a
0.4
, b
0.5
, c
0.5

), ( a
0.4
, b
0.5
, c
0.5

), ( a
0.5
, b
0.5
, c
0.5

)〉, B = 〈x, ( a
0.7
, b
0.6
, c
0.5

), ( a
0.7
, b
0.6
, c
0.5

), ( a
0.3
, b
0.4
, c
0.5

)〉
and C = 〈x, ( a

0.5
, b
0.5
, c
0.5

), ( a
0.5
, b
0.5
, c
0.5

), ( a
0.4
, b
0.5
, c
0.5

)〉. Then the families T = {0
N
, 1

N
, A,B}

and S = {0
N
, 1

N
, C} are neutrosophic topologies on X. Thus, (X,T ) and (X,S) are neutro-

sophic topological spaces. Define f : (X,T )→ (X,S) as follows: f(a) = c, f(b) = c, f(c) = c.

Then f is a generalized neutrosophic continuous mapping. But for a generalized neu-

trosophic open set D = 〈x, ( a
0.5
, b
0.6
, c
0.5

), ( a
0.5
, b
0.6
, c
0.5

), ( a
0.4
, b
0.4
, c
0.4

)〉 in (X,S), f−1(D) is not a

generalized neutrosophic open set in (X,T ). Thus, f is not a generalized neutrosophic

irresolute mapping.

Proposition 3.10. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If

f : (X,T ) → (Y, S) is a strongly generalized neutrosophic continuous mapping then f is a

neutrosophic continuous mapping.
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Proof. Let A be a neutrosophic open set in (Y, S). Every neutrosophic open set is a gen-

eralized neutrosophic open set. Now, A be a generalized neutrosophic open set in (Y, S).

Since f is strongly generalized neutrosophic continuous, f−1(A) is a neutrosophic open set

in (X,T ). Hence, f is a neutrosophic continuous mapping.

The converse of Proposition 3.10., need not be true as shown in Example

3.3

Example 3.3. Let X = {a, b, c}. Define the neutrosophic sets A, B and C in X as follows:

A = 〈x, ( a
0.9
, b
0.9
, c
0.9

), ( a
0.9
, b
0.9
, c
0.9

), ( a
0.1
, b
0.1
, c
0.1

)〉, B = 〈x, ( a
0.9
, b
0.9
, c
0.9

), ( a
0.9
, b
0.9
, c
0.9

), ( a
0.1
, b
0.1
, c
0
)〉

and C = 〈x, ( a
0.9
, b
0.9
, c
0.9

), ( a
0.9
, b
0.9
, c
0.9

), ( a
0.1
, b
0
, c
0.1

)〉. Then the families T = {0
N
, 1

N
, A,B} and

S = {0
N
, 1

N
, C} are neutrosophic topologies on X. Thus, (X,T ) and (X,S) are neutrosophic

topological spaces. Define f : (X,T ) → (X,S) as follows: f(a) = a, f(b) = c, f(c) = b.

Then f is a neutrosophic continuous mapping.

Let D = 〈x, ( a
0.9
, b
0.9
, c
0.99

), ( a
0.9
, b
0.9
, c
0.99

), ( a
0.05

, b
0
, c
0.01

)〉 be a generalized neutrosophic open set

in (X,S). Now, f−1(D) is not a neutrosophic open set in (X,T ). Thus, f is not a Strongly

generalized neutrosophic continuous mapping.

Proposition 3.11. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If

f : (X,T ) → (Y, S) is a perfectly generalized neutrosophic continuous mapping then f is a

strongly generalized neutrosophic continuous mapping.

Proof. Let A be a generalized neutrosophic open set in (Y, S). Since f is a perfectly gener-

alized neutrosophic continuous mapping, f−1(A) is a neutrosophic open set in (X,T ). Thus,

f is a strongly generalized neutrosophic continuous mapping.

The converse of Proposition 3.11., need not be true as shown in Example

3.4.

Example 3.4. Let X = {a, b, c}. Define the neutrosophic sets An and B in X as follows:

An = 〈x, µ
An
, σ

An
, γ

An
: n = 0, 1, 2, ...〉 where

µ
An

=


(a
0
, b
0
, c
0
), α = 0;

( a
1−α ,

b
1−α ,

c
1−α), 0 < α ≤ 4n

10n+1
;

(a
1
, b
1
, c
1
), 4n

10n+1
< α ≤ 1.

σ
An

=


(a
0
, b
0
, c
0
), α = 0;

( a
1−α ,

b
1−α ,

c
1−α), 0 < α ≤ 4n

10n+1
;

(a
1
, b
1
, c
1
), 4n

10n+1
< α ≤ 1.

and

γ
An

=


(a
1
, b
1
, c
1
), α = 0;

( a
α
, b
α
, c
α

), 0 < α ≤ 4n
10n+1

;

(a
0
, b
0
, c
0
), 4n

10n+1
< α ≤ 1.

and B = 〈x, ( a
0.6
, b
0.6
, c
0.6

), ( a
0.6
, b
0.6
, c
0.5

), ( a
0.4
, b
0.4
, c
0.4

)〉.

Then the families T = {0
N
, 1

N
, An, n = 0, 1, 2, ...} and S = {0

N
, 1

N
, B} are neutrosophic

topologies on X. Thus, (X,T ) and (X,S) are neutrosophic topological spaces. Define f :

(X,T )→ (X,S) as follows: f(a) = c, f(b) = c, f(c) = c. Then f is a strongly generalized

neutrosophic continuous mapping.

Let C = 〈x, ( a
0.7
, b
0.7
, c
0.7

), ( a
0.7
, b
0.7
, c
0.7

), ( a
0.3
, b
0.3
, c
0.3

)〉 be a generalized neutrosophic open set in

(X,S). Now, f−1(D) is neutrosophic open and not neutrosophic closed in (X,T ). Hence,

f is not a perfectly generalized neutrosophic continuous mapping.
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Proposition 3.12. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If

f : (X,T ) → (Y, S) is a strongly neutrosophic continuous mapping then f is a strongly

generalized neutrosophic continuous mapping.

Proof. Let A be a generalized neutrosophic open set in (Y, S). Since f is a strongly neutro-

sophic continuous mapping, f−1(A) is neutrosophic open and neutrosophic closed in (X,T ).

Hence, f is a strongly generalized neutrosophic continuous mapping.

The converse of Proposition 3.12., need not be true as shown in Example

3.5.

Example 3.5. Let X = {a, b, c}. Define the neutrosophic sets An and B in X as follows:

An = 〈x, µ
An
, σ

An
, γ

An
: n = 0, 1, 2, ...〉 where

µ
An

=


(a
0
, b
0
, c
0
), α = 0;

( a
1−α ,

b
1−α ,

c
1−α), 0 < α ≤ 4n

10n+1
;

(a
1
, b
1
, c
1
), 4n

10n+1
< α ≤ 1.

; σ
An

=


(a
0
, b
0
, c
0
), α = 0;

( a
1−α ,

b
1−α ,

c
1−α), 0 < α ≤ 4n

10n+1
;

(a
1
, b
1
, c
1
), 4n

10n+1
< α ≤ 1.

and

γ
An

=


(a
1
, b
1
, c
1
), α = 0;

( a
α
, b
α
, c
α

), 0 < α ≤ 4n
10n+1

;

(a
0
, b
0
, c
0
), 4n

10n+1
< α ≤ 1.

and B = 〈x, ( a
0.6
, b
0.6
, c
0.6

), ( a
0.6
, b
0.6
, c
0.6

), ( a
0.4
, b
0.4
, c
0.4

)〉.

Then the families T = {0
N
, 1

N
, An, n = 0, 1, 2, ...} and S = {0

N
, 1

N
, B} are neutrosophic

topologies on X. Thus, (X,T ) and (X,S) are neutrosophic topological spaces. Define f :

(X,T )→ (X,S) as follows: f(a) = c, f(b) = c, f(c) = c. Then f is a strongly generalized

neutrosophic continuous mapping.

Let D = 〈x, ( a
0.9
, b
0.9
, c
0.9

), ( a
0.9
, b
0.9
, c
0.9

), ( a
0.1
, b
0.1
, c
0.1

)〉 be a neutrosophic set in (X,S). Then

f−1(D) is a neutrosophic open set and but not a neutrosophic closed set in (X,T ). Hence,

f is not a strongly neutrosophic continuous mapping.

Proposition 3.13. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If

f : (X,T ) → (Y, S) is a strongly neutrosophic continuous mapping then f is a generalized

neutrosophic irresolute mapping.

Proof. Let A be a generalized neutrosophic open set in (Y, S). Since f is a strongly neutro-

sophic continuous mapping, f−1(A) is neutrosophic open and neutrosophic closed in (X,T ).

Since every neutrosophic open set is a generalized neutrosophic open set, f−1(A) is a gen-

eralized neutrosophic open set in (X,T ). Hence, f is a generalized neutrosophic irresolute

mapping.

The converse of Proposition 3.13., need not be true as shown in Example

3.6.

Example 3.6. Let X = {a, b, c}. Define the neutrosophic sets An and B in X as follows:

An = 〈x, µ
An
, σ

An
, γ

An
: n = 0, 1, 2, ...〉 where

µ
An

=


(a
0
, b
0
, c
0
), α = 0;

( a
1−α ,

b
1−α ,

c
1−α), 0 < α ≤ 4n

10n+1
;

(a
1
, b
1
, c
1
), 4n

10n+1
< α ≤ 1.

; σ
An

=


(a
0
, b
0
, c
0
), α = 0;

( a
1−α ,

b
1−α ,

c
1−α), 0 < α ≤ 4n

10n+1
;

(a
1
, b
1
, c
1
), 4n

10n+1
< α ≤ 1.

and
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γ
An

=


(a
1
, b
1
, c
1
), α = 0;

( a
α
, b
α
, c
α

), 0 < α ≤ 4n
10n+1

;

(a
0
, b
0
, c
0
), 4n

10n+1
< α ≤ 1.

andB = 〈x, ( a
0.6
, b
0.6
, c
0.6

), ( a
0.6
, b
0.6
, c
0.6

), ( a
0.4
, b
0.4
, c
0.4

)〉.Then

the families T = {0
N
, 1

N
, An, n = 0, 1, 2, ...} and S = {0

N
, 1

N
, B} are neutrosophic topologies

on X. Thus, (X,T ) and (X,S) are neutrosophic topological spaces. Define f : (X,T ) →
(X,S) as follows: f(a) = c, f(b) = c, f(c) = c. Then f is a generalized neutrosophic

irresolute mapping.

Let D = 〈x, ( a
0.9
, b
0.9
, c
0.9

), ( a
0.9
, b
0.9
, c
0.9

), ( a
0.1
, b
0.1
, c
0.1

)〉 be a neutrosophic set in (X,S). Then

f−1(D) is neutrosophic open and not neutrosophic closed in (X,T ). Hence, f is not a

strongly neutrosophic continuous mapping.

Proposition 3.14. Let (X,T ),(Y, S) and (Z,R) be any three neutrosophic topological

spaces. Let f : (X,T ) → (Y, S) be a generalized neutrosophic irresolute mapping and

g : (Y, S) → (Z,R) be a generalized neutrosophic continuous mapping. Then g ◦ f is a

generalized neutrosophic continuous mapping.

Proof. Let A be a neutrosophic open set in (Z,R). Since g is a generalized neutrosophic

continuous mapping, g−1(A) is a generalized neutrosophic open set in (Y, S). Since f is a

generalized neutrosophic irresolute mapping, f−1(g−1(A)) is a generalized neutrosophic open

set in (X,T ). Thus, g ◦ f is a generalized neutrosophic continuous mapping.

Proposition 3.15. Let (X,T ),(Y, S) and (Z,R) be any three neutrosophic topological

spaces. Let f : (X,T ) → (Y, S) be a strongly generalized neutrosophic continuous map-

ping and g : (Y, S)→ (Z,R) be a generalized neutrosophic continuous mapping. Then g ◦ f
is a neutrosophic continuous mapping.

Proof. Let A be a neutrosophic closed set in (Z,R). Since g is a generalized neutrosophic

continuous mapping. g−1(A) is a generalized neutrosophic closed set in (Y, S). Since f is a

strongly generalized neutrosophic continuous mapping, f−1(g−1(A))is a neutrosophic closed

set in (X,T ). Thus, g ◦ f is a neutrosophic continuous mapping.

Definition 3.4. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. Let

f : (X,T ) → (Y, S) be a mapping. The graph g : X → X × Y of f is defined by g(x) =

(x, f(x)),∀x ∈ X

Proposition 3.16. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. Let

f : (X,T )→ (Y, S) be a mapping. If the graph g : X → X×Y of f is a strongly neutrosophic

continuous mapping then f is also a strongly neutrosophic continuous mapping.

Proof. Let A be a neutrosophic set in (Y, S). By Definition 3.4., f−1(A) = 1∼ ∩ f−1(A) =

g−1(1∼ × A). Since g is a strongly neutrosophic continuous mapping, g−1(1∼ × A) is both

neutrosophic open and neutrosophic closed in (X,T ). Now, f−1(A) is both neutrosophic

open and neutrosophic closed in (X,T ). Hence, f is a strongly neutrosophic continuous

mapping.
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Proposition 3.17. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. Let

f : (X,T )→ (Y, S) be a mapping. If the graph g : X → X×Y of f is a perfectly neutrosophic

continuous mapping then f is also a perfectly neutrosophic continuous mapping.

Proof. Let A be a neutrosophic set in (Y, S). By Definition 3.4., f−1(A) = 1∼ ∩ f−1(A) =

g−1(1∼ × A). Since g is a perfectly neutrosophic continuous mapping, g−1(1∼ × A) is both

neutrosophic open and neutrosophic closed in (X,T ). Hence, f is a perfectly neutrosophic

continuous mapping.
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ABSTRACT 
In this paper, we introduce for the first time the concept of bipolar neutrosophic soft expert set and its 
some operations. Also, the concept of bipolar neutrosophic soft expert set and its basic operations, 
namely complement, union and intersection. We give examples for these concepts. 

KEYWORDS:  Soft expert set, neutrosophic soft set, neutrosophic soft expert set, bipolar 
neutrosophic soft expert set. 

Section1. Introduction 

In some real life problems in expert system, belief system, information fusion and so on, we 
must consider the truth-membership as well as the falsity- membership for proper description of 
an object in uncertain, ambiguous environment. Intuitionistic fuzzy sets introduced by Atanassov 
(1986). After Atanassov’s work, Smarandache (1998) introduced the concept of neutrosophic set 
which is a mathematical tool for handling problems involving imprecise, indeterminacy and 
inconsistent data. These sets models have been studied by many authors; on application 
(Molodtsov1999, Maji 2003, Cheng 2008, Gua 2009, Kharal 2013, Kang 2012, Liu 2014, Liu 
2015, Majumdar 2014, Peng 2015, Sahin 2014, Broumi, & Smarandache 2015a, 2015b, Broumi, Ali 
& Smarandache 2015; Broumi, Talea, Bakali, & Smarandache 2016a,2016b; Broumi, Smarandache, 
Talea,  & Bakali, 2016;  Broumi, Talea, Smarandache, & Bakali 2016;  Karaaslan 2016, Guo 
2015), and so on.  
Bosc and Pivert (2013) said that “Bipolarity refers to the propensity of the human mind to reason 
and make decisions on the basis of positive and negative effects. Positive information states what 
is possible, satisfactory, permitted, desired, or considered as being acceptable. On the other hand, 
negative statements express what is impossible, rejected, or forbidden. Negative preferences 
correspond to constraints, since they specify which values or objects have to be rejected (i.e., 
those that do not satisfy the constraints), while positive preferences correspond to wishes, as they 
specify which objects are more desirable than others (i.e., satisfy user wishes) without rejecting 
those that do not meet the wishes.” Therefore, Lee (Lee 2000,2009) introduced the concept of 
bipolar fuzzy sets which is a generalization of the fuzzy sets. Recently, bipolar fuzzy models 
have been studied by many authors on algebraic structures such as; Majumder (2012) proposed 
bipolar valued fuzzy subsemigroup, bipolar valued fuzzy bi-ideal, bipolar valued fuzzy (1, 2) - 
ideal and bipolar valued fuzzy ideal. Manemaran and Chellappa (2010) gave some applications 
of bipolar fuzzy sets in groups are called the bipolar fuzzy groups, fuzzy d-ideals of groups under 
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(T-S) norm. Chen et al. (2014) studied of m-polar fuzzy set and illustrates how many concepts 
have been defined based on bipolar fuzzy sets.  
Alkhazaleh et al. (2011) where the mapping in which the approximate function is defined from 
fuzzy parameters set, and gave an application of this concept in decision making. Alkhazaleh and 
Salleh (2011) introduced the concept soft expert sets where user can know the opinion of all 
expert sets. Sahin et al. (2015) firstly proposed neutrosophic soft expert sets with operations. 
Until now, there is no study on soft experts in bipolar neutrosophic environment, so there is a 
need to develop a new mathematical tool called “bipolar neutrosophic soft expert sets. So 
motivated by the work of Sahin in et al. (2015) and Deli et al (2015), we introduced the concept 
of bipolar neutrosophic soft expert sets which is an extension of the fuzzy soft expert sets, 
bipolar fuzzy soft expert sets, intuitionistic fuzzy sets soft expert and neutrosophic soft expert 
sets. 

The paper is organized as follows. In section2, we first recall the necessary background on 
neutrosophic sets, single valued neutrosophic sets, neutrosophic soft expert sets and bipolar 
neutrosophic soft set. In section3, we introduce the concept of bipolar neutrosophic soft expert 
set and its basic operations, namely complement, union and intersection. Finally, we conclude 
the paper. 

Section 2. Preliminaries 

In this section we recall some related definitions. 

Definition 2.1: (Smarandache 1998) Let U be a space of points (objects), with a generic element 
in U denoted by u. A neutrosophic sets(N-sets) A in U is characterized by atruth-membership 
function , a indeterminacy-membership function and a falsity-membership function . 

(u); (u) and (u) are real standard or nonstandard subsets of [0, 1]. It can be written as 
A = {< u, ( (u), (u), (u)) >: u ∈U, (u), (u), (u) ∈[0, 1]}.There is no restriction 
on the sum of (u); (u) and (u), so 

0 ≤sup (u) + sup (u) + sup (u) ≤ 3. 

Definition 2.2: (Maji, 2013) A neutrosophic set A is contained in another neutrosophic set B i.e. 
if . 

Let U be a universe, E a set of parameters, and X a soft experts (agents). Let O be a set of 
opinion,  and . 

Definition 2.3: (Sahin et al., 2015) A pair  is called a neutrosophic soft expert set over U, 
where F is mapping given by 

Where  denotes the power neutrosophic set of U. 

Set- theoretic operations, for two neutrosophic soft expert sets, 
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= {<x, , > | } and = {<x, , 
> |  } are given as; 

1. The subset; if and only if 

. 

2. , 

. 

3. The complement of  is denoted by  and is defined by 

= {<x, |  } 

4. The intersection

= {<x, min max , 
max >:  } 

5. The union

= {<x, max min , 
min >:  } 

Definition 2.4: [Deli et a., 2015]  A bipolar neutrosophic set A  in X  is defined as an object of 
the form 

    , ( ), ( ), ( ), , , ( ) :A x T x I x F x T x I x F x x X       , 

where  , , : 1,0T I F X    and  , , : 1,0T I F X     .
Definition 2.5: (Deli et al. 2015) Let  and 

 be two bipolar neutrosophic  number . Then the operations for 
NNs are defined as below; 

i. 
ii. 
iii. 
iv. 

where 0  .
Definition 2.6: (Deli et al. 2015) Let  be a bipolar neutrosophic 
number. Then, the score function s( ), accuracy function a( ) and certainty function c( ) of 
an NBN are defined as follows:  

i. ( = ( )/6 
ii. ( ) =
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iii. ( ) =

Definition 2.7: (Deli et al. 2015) and ,
be two bipolar neutrosophic  number. The comparison method can be defined as follows: 

i. if ( ) > ( ), then is greater than , that is, is superior to , denoted by >
ii. ( ) = ( ) and ( )  > ( ), then is greater than , that is, is superior to ,

denoted by ; 
iii. if ( ) = ( ), ( ) = ( ) and ( ) > ( ), then is greater than , that is, is

superior to , denoted by > ; 
iv. if ( ) = ( ), ( ) = ( )) and ( ) = ( ), then is equal to , that is, is 

indifferent to , denoted by = . 

Section 3. Bipolar Neutrosophic Soft Expert Set 

In this section, using the concept of bipolar neutrosophic set now we introduce the 
concept of bipolar neutrosophic soft expert set and we also give basic properties of this concept. 

Let U be a universe, E a set of parameters, X a set of experts (agents), and 
a set of opinions. Let  and . 

Definition 3.1:A pair  is called a bipolar neutrosophic soft expert set over U, where H is 
mapping given by 

where  denotes the power bipolar neutrosophic set of U and 

                , ( ), ( ), ( ), , ( ), ( ) :, ,H e H e H e H e H e H eu T u I u F u T u I u F uH A A ue U         , 

where        , , : 1,0H e H e H eT I F U     and        , , : 1,0H e H e H eT I F U     . 
For definition we consider an example. 

Example 3.2: Suppose the following  is the set of notebook under consideration  is the set of 
parameters. Each parameter is a neutrosophic word or sentence involving neutrosophic words. 

be a set of experts. Suppose that 
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The bipolar neutrosophic soft expert set  is a parameterized family  of 
all neutrosophic sets of  and describes a collection of approximation of an object. 

Definition 3.3: Let  and be two bipolar neutrosophic soft expert sets over the 
common universe U. is said to be bipolar neutrosophic soft expert subset of if 

 if and only if 

   
( ) ( )H e G eT u T u 

   
( ) ( )H e G eI u I u  ,    

( ) ( )H e G eF u F u  , 

and 

   
( ) ( )H e G eT u T u  ,    

( ) ( )H e G eI u I u  ,    
( ) ( )H e G eF u F u   

is said to be bipolar neutrosophic soft expert superset of  if is a neutrosophic 
soft expert subset of . We denote by .  

Example 3.4: Suppose that a company produced new types of its products and wishes to take the 
opinion of some experts about price of these products. Let be a set of 
product,  a set of decision parameters where  denotes the decision “cheap 
“, “expensive” respectively and let  be a set of experts. Suppose  and be 
defined as follows: 
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Therefore 

. 

Definition 3.5:Let  and be two bipolar neutrosophic soft expert sets over the 
common universe U. is said to be bipolar neutrosophic soft expert equal , if 

if and only if 

   
( ) ( )H e G eT u T u 

   
( ) ( )H e G eI u I u  ,    

( ) ( )H e G eF u F u  , 

and 

   
( ) ( )H e G eT u T u  ,    

( ) ( )H e G eI u I u  ,    
( ) ( )H e G eF u F u 

Definition 3.6: NOT set of set parameters. Let  be a set of parameters. The 
NOT set of E is denoted by￢E = {￢ , ￢ ,…,￢ }where  ￢ei= not ei, ∀i=1,2,...,n. 

Example 3.7: Consider example 3.2. Here ￢E={not cheap, not expensive} 

Definition 3.8: Complement of a bipolar neutrosophic soft expert set. The complement of a 
bipolar neutrosophic soft expert set  denoted by  and is defined as 

=  where  is mapping given by = neutrosophic soft 
expert complement with  

and 

Example 3.9: Consider the Example 3.2. Then  describes the “not price of the notebook” 
we have  
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. 

Definition 3.10: Empty or Null bipolar neutrosophic soft expert set with respect to parameter. A 
bipolar neutrosophic soft expert set over the universe  is termed to be empty or null 
bipolar neutrosophic soft expert set with respect to the parameter  if 

   
( ) ( ) 0H e G eT u T u  

   
( ) ( ) 0H e G eI u I u   ,    

( ) ( ) 0H e G eF u F u   , 

and 

   
( ) ( ) 0H e G eT u T u   ,    

( ) ( ) 0H e G eI u I u   ,    
( ) ( ) 0H e G eF u F u    

In this case the null bipolar neutrosophic soft expert set (NBNSES) is denoted by

Example 3.11: Let  the set of three handbags be considered as universal set 
be the set of parameters that characterizes the handbag and let 

be a set of experts. 

Here the (NBNSES) (H, ) is the null bipolar neutrosophic soft expert sets. 

Definition 3.12: An agree-bipolar neutrosophic soft expert set over is a bipolar 
neutrosophic soft expert subset of defined as follow  

. 

Example 3.13: Consider Example 3.2. Then the agree-bipolar neutrosophic soft expert set 
 over  is 
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. 

Definition 3.14: A disagree-bipolar neutrosophic soft expert set over U is a bipolar 
neutrosophic soft expert subset of defined as follow  

. 

Example 3.15: Consider Example 3.2. Then the disagree-bipolar neutrosophic soft expert set 
 over  is 

Definition 3.16:  Union of two bipolar neutrosophic soft expert sets. Let 

                , ( ), ( ), ( ), , ( ), ( ) :, ,H e H e H e H e H e H eu T u I u F u T u I u F uH A A ue U         and

                , ( ), ( ), ( ), , ( ), ( ) :, ,G e G e G e G e G e G eu T u I u F u T u I u F uG B B ue U         be two bipolar 

neutrosophic soft expert  sets.  Then their union is defined as: 

   

   

   

   

   

   

( ) ( )
max( ( ), ( )), ,min(( ( ), ( )),

2(( ( )( )
( ) (

,
)

min( ( ), ( )), ,max(( ( ), ( )

)

2

, )

)

H e G e
H e G e H e G e

H e G e
H e G e H e G e

I u I u
T u T u F u F u

u
I u I u

T u T u F u

H B

F

G

u

A

 

   

 

   

 

  
 
 
 

, .e UA u    
Example 3.17: Let   and  be two BNSESs over the common universe 
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Therefore

Definition 3.18: Intersection of two bipolar neutrosophic soft expert 

sets.                 , ( ), ( ), ( ), , ( ), ( ) :, ,H e H e H e H e H e H eu T u I u F u T u I u F uH A A ue U         and

                , ( ), ( ), ( ), , ( ), ( ) :, ,G e G e G e G e G e G eu T u I u F u T u I u F uG B B ue U         be two bipolar 

neutrosophic soft expert  sets.  Then their intersection is defined as: 

   

   

   

   

   

   

( ) ( )
min( ( ), ( )), ,max(( ( ), ( )),

2(( ( )( )
( ) (

,
)

max( ( ), ( )), ,min(( ( ), ( )

)

2

, )

)

H e G e
H e G e H e G e

H e G e
H e G e H e G e

I u I u
T u T u F u F u

u
I u I u

T u T u F u

A G

F

B

u

H

 

   

 

   



 

 
 
 
 

, .e UA u    

Example 3.19: Let  and  be two BNSESs over the common universe 

Therefore

Proposition 3.20: If   and  are bipolar neutrosophic soft expert sets over . Then 

i.

ii.

iii.

iv.

Proof: The proof is straightforward. 
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In this section, we present an application of bipolar neutrosophic soft expert set theory in a 
decision-making problem which demonstrates that this method can be successfully applied to 
problems of many fields that contain uncertainty. We suggest the following algorithm to solving 
bipolar neutrosophic soft expert based decision making method as follows:  

1. Input the bipolar neutrosophic soft expert set
2. Find an agree-multibipolarneutrosophicsoftexpert set and a disagree-

bipolarneutrosophicsoftexpert set.
3. Now calculate the  bipolar neutrosophic soft expert set [27] the score function

s(  of agree  and
for agree- bipolar neutrosophic soft expert set.

4. Now calculate the bipolar neutrosophic soft expert set the score function 
s( of disagree 

and  for disagree- bipolar neutrosophic soft expert set. 
5. Find
6. Find , for which  = max , where  is the optimal choice object. If  has more 

than one value, then any one of them could be chosen by the school using its option.
Assume that a School wants to fill a position to be chosen by an expert committee. There are 
three alternatives ,and there are three parameters  where the 
parameters stand for “education,” “age,” and “experience” respectively. Let 

 be the set of two expert committee members. From those findings we can find the 
most suitable choice for the decision. After a serious discussion, the experts construct the 
following bipolar neutrosophic soft expert set: 

Step1- 

4. AN APPLICATION OF BIPOLAR NEUTROSOPHIC SOFT EXPERT SET
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Step 2-Construct the bipolar neutrosophic soft expert tables for each opinion (agree, disagree) of expert. 

Table 1. Agree-bipolar neutrosophic soft expert set. 

Table 2. Disagree-bipolar neutrosophic soft expert set. 

Step3-Now calculate the scores of agree   by using the data in Table 1 to obtain values in 
Table 3. 

Table 3: Agree-bipolar neutrosophic soft expert set. 
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Step4-Now calculate the scores of disagree   by using the data in Table 2 to obtain values in 
Table 4. 

Table 4: Disagree-bipolar neutrosophic soft expert set. 

3.2667 

Step5-

Table 5:

1 
2 
3 

From Tables 3and 4 we are able to calculate the values of   as in Table 5. 

Step 6- Clearly, the maximum score is the score 0.1667, shown in the above for the  Hence 
the best decision for experts are to select , followed by 

4. FUTURE RESEARCH DIRECTIONS
In this paper, we have introduced the concept of bipolar neutrosophic soft expert set and its basic 
operations, namely complement, union and intersection of them has been explained with example 
which has wider application in the field of modern sciences and technology, especially in research 
areas of computer science including database theory, data mining, neural networks, expert 
systems, cluster analysis, control theory, and image capturing. Using this concept, we can extend 
our work in (1) bipolar interval-valued neutrosophic soft expert set (2) On mapping bipolar 
neutrosophic soft expert sets. 

5. CONCLUSION
In this paper, we have introduced the concept of bipolar neutrosophic soft expert set which is 
more effective and useful and studied some of its properties. Also the basic operations on 
neutrosophic soft expert set namely complement, union and intersection have been defined. 
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ABSTRACT

In this paper, we introduce and investigate a new class of sets and functions between supra

topological spaces called neutrosophic α-supra open set and neutrosophic α-supra continuous

function.

KEYWORDS AND PHRASES: Neutrosophic Supra topological spaces, Neutrosophic α-

supra open set, Neutrosophic semi-supraopen set, Neutrosophic α-supraopen set, Neutro-

sophic pre-supraopen set.

1 INTRODUCTION AND PRELIMINARIES

Zadeh (1965) introduced the concept of a fuzzy set and since its advent invaded almost all

branches of mathematics and proved to have applications in many fields such as information

theory (Smets (1981)) and control theory (Sugeno (1985)). The theory of fuzzy topological

space was introduced and developed by Chang (1968) and since then various notions in

classical topology have been extended to fuzzy topological spaces. The idea of “intuitionistic

fuzzy set” was first published by Atanassov (1983) and many works by the same author

∗e-mail : dhavaseelan.r@gmail.com, ganster@weyl.math.tu-graz.ac.at, jafaripersia@gmail.com, rishwan-
thpari@gmail.com
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and his colleagues appeared in the literature (Atanassov (1986, 1988); Atanassov and Stoeva

(1983)). Later, this concept was generalized to “intuitionistic L - fuzzy sets” by Atanassov

and Stoeva (1984). Utilizing the notion of intuitionistic fuzzy sets, Coker (1997) introduced

the notion of intuitionistic fuzzy topological spaces. In 1983, Mashhour et al. introduced

the supra topological spaces and studied s-continuous functions and s∗-continuous functions.

In 1987, Abd El-Monsef et al. introduced the fuzzy supra topological spaces and studied

fuzzy supra-continuous functions and obtained some properties and characterizations. In

1996, Keun Min introduced fuzzy s-continuous, fuzzy s-open and fuzzy s-closed maps and

established a number of characterizations. In 2008, Devi et al. introduced the concept of

supra α-open set, sα-continuous functions and studied some of the basic properties for this

class of functions. In 1999 and 2003, Turanl introduced the concept of intuitionistic fuzzy

supra topological space. The concepts of neutrosophy and neutrosophic set are introduced by

Smarandache (1999, 2000). Afterwards Salama and Alblowi (2012), introduced the concepts

of neutrosophic crisp set and neutrosophic crisp topological spaces.

In this paper, we introduce and investigate a new class of sets and functions between

supra topological spaces called neutrosophic α-supra open set and neutrosophic α-supra

continuous functions.

Definition 1.1. (Salama and Alblowi (2012)) Let X be a nonempty fixed set. A neutrosophic

set [NS for short] A is an object having the form A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}
where µ

A
(x), σ

A
(x) and γ

A
(x) which represents the degree of membership function (namely

µ
A

(x)), the degree of indeterminacy (namely σ
A

(x)) and the degree of nonmembership

(namely γ
A

(x)) respectively of each element x ∈ X to the set A.

Remark 1.1. (Salama and Alblowi (2012))

(1) A neutrosophic set A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X} can be identified to an

ordered triple 〈µ
A
, σ

A
, γ

A
〉 in ]0−, 1+[ on X.

(2) For the sake of simplicity, we shall use the symbol A = 〈µ
A
, σ

A
, γ

A
〉 for the neutrosophic

set A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 1.2. (Salama and Alblowi (2012)) Let X be a nonempty set and the neutrosophic

sets A and B in the form

A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}, B = {〈x, µ
B

(x), σ
B

(x), γ
B

(x)〉 : x ∈ X}. Then

(a) A ⊆ B iff µ
A

(x) ≤ µ
B

(x), σ
A

(x) ≤ σ
B

(x) and γ
A

(x) ≥ γ
B

(x) for all x ∈ X;

(b) A = B iff A ⊆ B and B ⊆ A;

(c) Ā = {〈x, γ
A

(x), σ
A

(x), µ
A

(x)〉 : x ∈ X}; [complement of A]

(d) A ∩B = {〈x, µ
A

(x) ∧ µ
B

(x), σ
A

(x) ∧ σ
B

(x), γ
A

(x) ∨ γ
B

(x)〉 : x ∈ X};
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(e) A ∪B = {〈x, µ
A

(x) ∨ µ
B

(x), σ
A

(x) ∨ σ
B

(x), γ
A

(x) ∧ γ
B

(x)〉 : x ∈ X};

(f) [ ]A = {〈x, µ
A

(x), σ
A

(x), 1− µ
A

(x)〉 : x ∈ X};

(g) 〈〉A = {〈x, 1− γ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 1.3. (Salama and Alblowi (2012)) Let {Ai : i ∈ J} be an arbitrary family of

neutrosophic sets in X. Then

(a)
⋂
Ai = {〈x,∧µ

Ai
(x),∧σ

Ai
(x),∨γ

Ai
(x)〉 : x ∈ X};

(b)
⋃
Ai = {〈x,∨µ

Ai
(x),∨σ

Ai
(x),∧γ

Ai
(x)〉 : x ∈ X}.

Since our main purpose is to construct the tools for developing neutrosophic topological

spaces, we must introduce the neutrosophic sets 0
N

and 1
N

in X as follows:

Definition 1.4. (Salama and Alblowi (2012)) 0
N

= {〈x, 0, 0, 1〉 : x ∈ X} and 1
N

=

{〈x, 1, 1, 0〉 : x ∈ X}.

Definition 1.5. [10] A neutrosophic topology (NT) on a nonempty set X is a family T of

neutrosophic sets in X satisfying the following axioms:

(i) 0
N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case the ordered pair (X,T ) or simply X is called a neutrosophic topological space

(briefly NTS) and each neutrosophic set in T is called a neutrosophic open set (briefly NOS).

The complement A of a NOS A in X is called a neutrosophic closed set (briefly NCS) in X.

Each neutrosophic supra set (briefly, NS) which belongs to (X,T ) is called a neutrosophic

supra open set (briefly, NSOS) in X. The complement A of a NSOS A in X is called a

neutrosophic supra closed set (briefly IFSCS) in X.

Definition 1.6. (Dhavaseelan, & Jafari (submitted) Let A be a neutrosophic set in a neu-

trosophic topological space X. Then

Nint(A) =
⋃
{G | G is a neutrosophic open set in X and G ⊆ A} is called the neutro-

sophic interior of A;

Ncl(A) =
⋂
{G | G is a neutrosophic closed set in X and G ⊇ A} is called the neutro-

sophic closure of A.

Definition 1.7. (Dhavaseelan, & Jafari (submitted) Let X be a nonempty set. If r, t, s be

real standard or non standard subsets of ]0−, 1+[ then the neutrosophic set xr,t,s is called a

neutrosophic point (briefly NP ) in X given by

xr,t,s(xp) =

(r, t, s), if x = xp

(0, 0, 1), if x 6= xp
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for xp ∈ X is called the support of xr,t,s, where r denotes the degree of membership value, t

denotes the degree of indeterminacy and s is the degree of non-membership value of xr,t,s.

2 NEUTROSOPHIC α-SUPRA OPEN SETS

Definition 2.1. A family T of neutrosophic sets on X is called a neutrosophic supratopology

(briefly NST) on X if 0N ∈ T , 1N ∈ T and T is closed under arbitrary suprema. Then we

call the pair (X,T ) a neutrosophic supratopological space (briefly NSTS).

Each member of T is called a neutrosophic supraopen set and the complement of a

neutrosophic supraopen set is called a neutrosophic supraclosed set. The neutrosophic supr-

aclosure of a neutrosophic set A is denoted by s-Ncl(A). Here s-Ncl(A) is the intersection

of all neutrosophic supraclosed sets containing A. The neutrosophic suprainterior of A will

be denoted by s-Nint(A). Here, s-Nint(A) is the union of all neutrosophic supraopen sets

contained in A.

Definition 2.2. Let A be a neutrosophic set in a neutrosophic supratopological space X is

called

(a) neutrosophic semi-supraopen set iff A ⊆ s−Ncl(s−Nint(A)),

(b) neutrosophic α-supraopen set iff A ⊆ s−Nint(s−Ncl(s−Nint(A))),

(c) neutrosophic pre-supraopen set iff A ⊆ s−Nint(s−Ncl(A)).

Definition 2.3. Let f be a function from an ordinary set X into an ordinary set Y .

If B = {〈y, µB(y), σB(y), γB(y)〉 : y ∈ Y } is a neutrosophic supratopology in Y , then

the inverse image of B under f is a neutrosophic supratopology defined by f−1(B) =

{〈x, f−1(µB)(x), f−1(σB)(x), f−1(γB)(x)〉 : x ∈ X}.
The image of neutrosophic supratopology A = {〈y, µA(y), σA(y), γA(y)〉 : y ∈ Y } under f

is a neutrosophic supratopology defined by f(A) = {〈y, f(µA)(y), f(σA)(y), f(γA)(y)〉 : y ∈
Y }.

Definition 2.4. Let (X,T ) be a neutrosophic supra topological space. a neutrosophic set

A is called a neutrosophic α-supra open set (briefly, NαSOS) if A ⊆ s − Nint(s − Ncl(s −
Nint(A))). The complement of a neutrosophic α-supra open set is called a neutrosophic

α-supra closed set.

Theorem 2.1. Every neutrosophic supra open set is neutrosophic α-supra open.

Proof. Let A be a neutrosophic supra open set in (X,T ). Since A ⊆ s − Ncl(A), we get

A ⊆ s −Ncl(s −Nint(A)). Then s −Nint(A) ⊆ s −Nint(s −Ncl(s −Nint(A))). Hence

A ⊆ s−Nint(s−Ncl(s−Nint(A))).
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The converse of the above theorem need not be true as shown by the following example.

Example 2.1. Let X = {a, b}. Define the neutrosophic sets A and B in X as follows:

A = 〈x, ( a
0.3
, b

0.4
), ( a

0.3
, b

0.4
), ( a

0.4
, b

0.5
)〉, B = 〈x, ( a

0.4
, b

0.2
), ( a

0.4
, b

0.2
), ( a

0.5
, b

0.3
)〉.

We have T = {0N , 1N , A,B,A ∪ B}. Let C = 〈x, ( a
0.4
, b

0.6
), ( a

0.4
, b

0.6
), ( a

0.3
, b

0.4
)〉. Then C is

neutrosophic α-supra open but not neutrosophic supra open.

Theorem 2.2. Every neutrosophic α-supra open set is neutrosophic semi-supra open.

Proof. Let A be a neutrosophic α-supra open set in (X,T ). Then, A ⊆ s-Nint(s-Ncl(s-

Nint(A))). It is obvious that s-Nint(s-Ncl(s-Nint(A))) ⊆ s-Ncl(s-Nint(A)). Hence A ⊆ s-

Ncl(s-Nint(A)).

The converse of the above theorem need not be true as shown by the following example.

Example 2.2. Let X = {a, b}. Define the neutrosophic sets A and B in X as follows:

A = 〈x, ( a
0.3
, b

0.5
), ( a

0.3
, b

0.5
), ( a

0.4
, b

0.5
)〉, B = 〈x, ( a

0.4
, b

0.3
), ( a

0.4
, b

0.3
), ( a

0.5
, b

0.4
)〉. We have T =

{0N , 1N , A,B,A ∪ B}. Let C = 〈x, ( a
0.4
, b

0.4
), ( a

0.4
, b

0.4
), ( a

0.5
, b

0.4
)〉. Then C is neutrosophic

semi-supra open but not neutrosophic α-supra open.

Theorem 2.3. Every neutrosophic α-supra open set is neutrosophic pre-supra open.

Proof. Let A be a neutrosophic α-supra open set in (X,T ). Then, A ⊆ s-Nint(s-Ncl(s-

Nint(A))). It is obvious that A ⊆ s-Nint(s-Ncl((A))).

The converse of the above theorem need not be true as shown by the following example.

Example 2.3. In Example 2.2, let C = 〈x, ( a
0.4
, b

0.5
), ( a

0.4
, b

0.5
), ( a

0.5
, b

0.4
)〉. Here C is neutro-

sophic pre-supra open but not neutrosophic α-supra open.

Theorem 2.4. (i) Arbitrary union of neutrosophic α-supra open sets is always neutro-

sophic α-supra open set.

(ii) Finite intersection of neutrosophic α-supra open sets may fail to be neutrosophic α-

supra open set.

Proof. (i) Let {Aλ : λ ∈ Λ} be a family of neutrosophic α-supra open set in a topological

space X. Then for any λ ∈ Λ, we have Aλ ⊆ s-Nint(s-Ncl(s-Nint(Aλ))). Hence

∪λ∈ΛAλ ⊆ ∪λ∈Λ(s-Nint(s-Ncl(s-Nint(Aλ)))) ⊆ s-Nint(∪λ∈Λ(s-Ncl(s-Nint(Aλ)))) ⊆
s-Nint(s-Ncl(s-Nint(∪λ∈ΛAλ))). Therefore, ∪λ∈ΛAλ is a neutrosophic α-supra open

set.
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(ii) Let X = {a, b}. Define the neutrosophic sets A and B in X as follows:

A = 〈x, ( a
0.3
, b

0.4
), ( a

0.3
, b

0.4
), ( a

0.4
, b

0.5
)〉, B = 〈x, ( a

0.2
, b

0.4
), ( a

0.2
, b

0.4
), ( a

0.5
, b

0.3
)〉 and T =

{0N , 1N , A,B,A ∪ B}. Let C = 〈x, ( a
0.4
, b

0.6
), ( a

0.4
, b

0.6
), ( a

0.3
, b

0.4
)〉. Here B and C are

neutrosophic α-supra open but B ∩ C is not neutrosophic α-supra open.

Theorem 2.5. (i) Arbitrary intersection of neutrosophic α-supra closed sets is always

neutrosophic α-supra closed set.

(ii) Finite union of neutrosophic α-supra closed sets may fail to be neutrosophic α-supra

closed set.

Proof. (i) The proof follows immediately from Theorem 2.4

(ii) Let X = {a, b}. Define the neutrosophic sets A and B in X as follows:

A = 〈x, ( a
0.3
, b

0.5
), ( a

0.3
, b

0.5
), ( a

0.6
, b

0.5
)〉, B = 〈x, ( a

0.6
, b

0.3
), ( a

0.6
, b

0.3
), ( a

0.3
, b

0.4
)〉

and T = {0N , 1N , A,B,A ∪ B}. Let C = 〈x, ( a
0.3
, b

0.5
), ( a

0.3
, b

0.5
), ( a

0.4
, b

0.5
)〉 and D =

〈x, ( a
0.3
, b

0.4
), ( a

0.3
, b

0.4
), ( a

0.6
, b

0.2
)〉. Here C and D are neutrosophic α-supra closed but

C ∪D is not neutrosophic α-supra closed.

Definition 2.5. The neutrosophic α-supra-closure of a set A is denoted by

αs-Ncl(A) = ∪{G : G is a NαSOS in X and G ⊆ A}.
The neutrosophic α-supra-interior of a set A is denoted by αs-Nint(A) = ∩{G : G is a

NαSCS in X and G ⊇ A}.

Remark 2.1. It is clear that αs-Nint(A) is a neutrosophic α-supra open set and αs-Ncl(A)

is a neutrosophic α-supra closed set.

Theorem 2.6. Let X be a neutrosophic supratopological spaces. If A and B are two subsets

of X, then

(i) αs−Nint(A)=αs-Ncl(A)

(ii) αs−Ncl(A)=αs-Nint(A)

(iii) If A ⊆ B, then αs-Ncl(A) ⊆ αs-Ncl(B) and αs-Nint(A) ⊆ αs-Nint(B)

Proof. It is obvious.

Theorem 2.7. Let X be a neutrosophic supratopological spaces. If A and B are two

neutrosophic subsets of X, then

(i) αs-Nint(A) ∪ αs-Nint(B) ⊆ αs-Nint(A ∪B)

(ii) αs-Nint(A ∩B) ⊆ αs-Nint(A) ∩ αs-Nint(B)
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(iii) If A ⊆ B, then αs-Ncl(A) ⊆ αs-Ncl(B) and αs-Nint(A) ⊆ αs-Nint(B)

Proof. It is obvious.

Theorem 2.8. (i) The intersection of a neutrosophic -supra open set and a neutrosophic

α-supra open set is neutrosophic α-supra open.

(ii) The intersection of a neutrosophic α-supra open set and a neutrosophic pre-supra open

set is neutrosophic pre-supra open.

Proof. It is obvious.

3 NEUTROSOPHIC α-SUPRA CONTINUOUS FUNCTIONS

Definition 3.1. Let (X,T ) and (Y, S) be two neutrosophic α-supra topological spaces. A

map f : (X,T ) → (Y, S) is called neutrosophic α-supra continuous function if the inverse

image of each neutrosophic open set in Y is a neutrosophic α-supra open set in X.

Theorem 3.1. Every neutrosophic supra continuous function is neutrosophic α-supra con-

tinuous function.

Proof. Let f : (X,T ) → (Y, S) be a neutrosophic supra continuous function and A is a

neutrosophic open set in Y . Then f−1(A) is a neutrosophic open set in X. Therefore,

f−1(A) is a neutrosophic supra open set in X which is a neutrosophic α supra open set in

X. Hence f is a neutrosophic α-supra continuous function.

Remark 3.1. Every neutrosophic α-supra continuous function need not be neutrosophic

supra continuous function.

Theorem 3.2. Let (X,T ) and (Y, S) be two neutrosophic supra topological spaces. Let f

be a map from X into Y . Then the following are equivalent:

(i) f is a neutrosophic supra α-continuous function.

(ii) the inverse image of a closed sets in Y is a neutrosophic supra α-closed set in X.

(iii) αs-Ncl(f−1(A)) ⊆ f−1(Ncl(A)) for every neutrosophic set A in Y .

(iv) f(αs-Ncl(A)) ⊆ Ncl(f(A)) for every neutrosophic set A in X.

(v) f−1(Nint(B)) ⊆ αs-Nint(f−1(B)) for every neutrosophic set B in Y .

Proof. (i) ⇒ (ii) : Let A be a neutrosophic closed set in Y , then A is neutrosophic open

in Y . Thus, f−1(A) = f−1(A) is neutrosophic αs-open in X. It follows that f−1(A) is a

neutrosophic αs-closed set of X.

(ii) ⇒ (iii): Let A be any subset of X. Since Ncl(A) is closed in Y , then it follows that
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f−1(Ncl(A)) is neutrosophic αs-closed in X.

Therefore, f−1(Ncl(A)) = αs-Ncl(f−1(Ncl(A))) ⊇ αs-Ncl(f−1(A)).

(iii)⇒ (iv) : Let A be any neutrosophic subset of X. By (iii) we obtain, f−1(Ncl(f(A))) ⊇
αs-Ncl(f−1(f(A))) ⊇ αs-Ncl(A) and hence f(αs-Ncl(A)) ⊆ Ncl(f(A)).

(iv)⇒ (v) : Let f(αs-Ncl(A)) ⊆ Ncl(f(A)) for every neutrosophic set A in X.

Then αs-Ncl(A) ⊆ f−1(Ncl(f(A))), X − αs-Ncl(A) ⊇ f−1(Ncl(f(A))) and αs-Nint(A) ⊇
f−1(Nint(f(A))). Then αs-Nint(f−1(B)) ⊇ f−1(Nint(B)). Therefore f−1(Nint(B)) ⊆ s-

Nint(f−1(B)), for every B in Y .

(v) ⇒ (i) : Let A be a neutrosophic open set in Y . Therefore, f−1(Nint(A)) ⊆ αs-

Nint(f−1(A)), hence f−1(A) ⊆ αs-Nint(f−1(A)). But by other hand, we know that, αs-

Nint(f−1(A)) ⊆ f−1(A). Then f−1(A) = αs-Nint(f−1(A)). Therefore, f−1(A) is a neutro-

sophic αs-open set.

Theorem 3.3. If a function f : (X,T ) → (Y, S) is neutrosophic αs-continuous and g :

(Y, S)→ (Z,R) is continuous, then (g ◦ f) is αs-continuous.

Proof. Obvious.

Theorem 3.4. Let f : (X,T )→ (Y, S) be a neutrosophic αs-continuous function, if one of

the following holds:

(i) f−1(αs-Nint(A)) ⊆ Nint(f−1(A)) for every neutrosophic set A in Y .

(ii) Ncl(f−1(A)) ⊆ f−1(αs-Ncl(A)) for every neutrosophic set A in Y .

(iii) f(Ncl(B)) ⊆ αs-Ncl(f(B)) for every neutrosophic set B in X.

Proof. Let A be any open set of Y . If condition (i) is satisfied, then f−1(αs-Nint(A)) ⊆
Nint(f−1(A)). We have f−1(A) ⊆ Nint(f−1(A)). Therefore f−1(A) is a neutrosophic supra

open set. Every neutrosophic supra open set is neutrosophic supra α-open set. Hence f

is a neutrosophic αs-continuous function. If condition (ii) is satisfied, then we can easily

prove that f is a neutrosophic αs-continuous function. If condition (iii) is satisfied, and A

is any open set of Y . Then f−1(A) is a set in X and f(Ncl(f−1(A))) ⊆ αs-Ncl(f(f−1(A))).

This implies f(Ncl(f−1(A))) ⊆ αs-Ncl(A). This is nothing but condition (ii). Hence f is a

neutrosophic αs-continuous function.
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ABSTRACT

This paper is devoted to the concepts of neutrosophic upper and neutrosophic lower contra-

continuous multifunctions and also some of their characterizations are considered..

1 INTRODUCTION

In the last three decades, the theory of multifunctions has advanced in a variety of ways

and applications of this theory can be found, specially in functional analysis and fixed point

theory. In recent years, several authors have studied some new forms of contra-continuity

for functions and multifunctions. In the present paper, we study the notions of neutrosophic

upper and neutrosophic lower contra-continuous multifunctions. Also, some characteriza-

tions and properties of such notions are discussed. Since initiation of the theory of neutro-

sophic sets by Smarandache (1999), this theory has found wide applications in economics,

engineering, medicine, information sciences, programming, optimization, graphs etc. Also,

neutrosophic multifunctions arise in many applications, for example, the budget multifunc-

tions accurs in decision theory, noncooperative games, artificial intelligence, economic theory,

medicine, information sciences, fixed point theory. In this paper, we present the concepts of

neutrosophic upper and neutrosophic lower contra-continuous multifunctions and also some

characterizations of them are given.

2 Preliminaries

Definition 2.1. (Smarandache (1999)) Let X be a non-empty fixed set. A neutrosophic

set A is an object having the form A =< x, µA(x), σA(x), γA(x) >, where µA(x), σA(x) and
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γA(x) which represent the degree of member ship function, the degree of indeterminacy, and

the degree of non-membership, respectively of each element x ∈ X to the set A.

Definition 2.2. (Salama and Alblowi (2012)) A neutrosophic topology on a nonempty set

X is a family τ of neutrosophic subsets of X which satisfies the following three conditions:

1. 0, 1 ∈ τ ,

2. If g, h ∈ τ , their g ∧ h ∈ τ ,

3. If fi ∈ τ for each i ∈ I, then ∨i∈Ifi ∈ τ .

The pair (X, τ) is called a neutrosophic topological space.

Definition 2.3. Members of τ are called neutrosophic open sets and complement of neutro-

sophic open sets are called neutrosophic closed sets, where the complement of a neutrosophic

set A, denoted by Ac, is 1− A.

3 NEUTROSOPHIC UPPER AND LOWER CONTRA-CONTINUOUS MULTIFUNC-

TIONS

Definition 3.1. Let (X, τ) be a topological space in the classical sense and (Y, σ) be a neu-

trosophic topological space. Then F : (X, τ)→ (Y, σ) is called a neutrosophic multifunction

if and only if for each x ∈ X,F (x) is a neutrosophic set in Y .

Definition 3.2. For a neutrosophic multifunction F : (X, τ) → (Y, σ), the upper inverse

F+(λ) and lower inverse F−(λ) of a neutrosophic set λ in Y are defined as follows:

F+(λ) = {x ∈ X : F (x) ⊂ λ} and F−(λ) = {x ∈ X : F (x)qλ}.

Lemma 3.3. For a fuzzy multifunction F : (X, τ)→ (Y, σ), we have F−(1−λ) = X−F+(λ)

for any neutrosophic set λ in Y .

Definition 3.4. A neutrosophic multifunction F : (X, τ) → (Y, σ) is called neutrosophic

lower contra-continuous if for any neutrosophic closed set A in Y with x ∈ F−(A), there

exists an open set B in X containing x such that B ⊂ F−(A).

Definition 3.5. A neutrosophic multifunction F : (X, τ) → (Y, σ) is called neutrosophic

upper contra-continuous if for each neutrosophic closed set A in Y with x ∈ F+(A), there

exists an open set B in X containing x such that B ⊂ F+(A).

Theorem 3.6. The following are equivalent for a neutrosophic multifunction F : (X, τ) →
(Y, σ):

1. F is neutrosophic upper contra-continuous,

2. For each neutrosophic closed set A and x ∈ X such that F (x) ⊂ A, there exists an

open set B containing x such that if y ∈ B, then F (y) ⊂ A,
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3. F+(A) is open for any neutrosophic closed set A in Y ,

4. F−(B) is closed for any neutrosophic open set B in Y .

Proof. (1)⇒ (2): Obvious.

(1)⇒ (3): Let A be any neutrosophic closed set in Y and x ∈ F+(A). By (1), there exists an

open set Ax containing x such that Ax ⊂ F+(A). Thus, x ∈ Int(F+(A)) and hence F+(A)

is an open set in X.

(3) ⇒ (4): Let A be a neutrosophic open set in Y . Then Y \A is a neutrosophic closed set

in Y . By (3), F+(Y \A) is open. Since F+(1\A) = X\F−(A), then F−(A) is closed in X.

(4)⇒ (3): It is similar to that of (3)⇒ (4).

(3) ⇒ (1): Let A be any neutrosophic closed set in Y and x ∈ F+(A). By (3), F+(A) is

an open set in X. Take B = F+(A). Then, B ⊂ F+(A). Thus, F is neutrosophic upper

contra-continuous.

Definition 3.7. The set ∧{A ∈ τ : B ⊂ A} is called the neutrosophic kernel of a neutro-

sophic set A in a neutrosophic topological space (X, τ) and is denoted by Ker(A).

Lemma 3.8. If A ∈ τ rfor a neutrosophic set A in a neutrosophic topological space (X, τ),

then A = Ker(A).

Theorem 3.9. Let F : (X, τ) → (Y, σ) be a neutrosophic multifunction. If Cl(F−(A)) ⊂
F−(Ker(A)) for any neutrosophic set A in Y , then F is neutrosophic upper contra-continuous.

Proof. Suppose that Cl(F−(A)) ⊂ F−(Ker(A)) for every neutrosophic set A in Y . Let B ∈
σ. By Lemma 3.8, Cl(F−(B)) ⊂ F−(Ker(B)) = F−(B). This implies that Cl((F−(B)) =

F−(B) and hence F−(B) is closed in X. Thus, by Theorem 3.6, F is neutrosophic upper

contra-continuous.

Definition 3.10. A neutrosophic multifunction F : (X, τ)→ (Y, σ) is called

1. neutrosophic lower semi-continuous if for any neutrosophic open subset A ⊂ Y with

x ∈ F−(A), there exists an open set B in X containing x such that B ⊂ F−(A).

2. neutrosophic upper semi-continuous if for any neutrosophic open subset A ⊂ Y with

x ∈ F+(A), there exists an open set B in X containing x such that B ⊂ F+(A).

Remark 3.11. The notions of neutrosophic upper contra-continuous multifunctions and

neutrosophic upper semi-continuous multifunctions are independent as shown in the following

examples.

Example 3.12. Let X = {a, b, c}, τ = {X, ∅, {a}} and Y = [0, 1], σ = {Y, 0, A,B,C},
where A(y) =< 0.5, 0, 0.5 >, B(y) =< 0.6, 0, 0.4 > and C(y) =< 0.7, 0, 0.3 > for y ∈ Y .

Define a neutrosophic multifunction as follows: F (a) = A, F (b) = B, F (c) = C. Then the

neutrosophic multifunction F : (X, τ) → (Y, σ) is neutrosophic upper contra-continuous but

it is not neutrosophic upper semi-continuous.
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Example 3.13. Let X = {a, b, c}, τ = {X, ∅, {b, c}} and Y = [0, 1], σ = {Y, 0, A,B,C},
where A(y) =< 0.3, 0, 0.7 >, B(y) =< 0.2, 0, 0.8 >, C(y) =< 0.6, 0, 0.4 >, D(y) =<

0.4, 0, 0.6 >, and E(y) =< 0.5, 0, 0.5 > for y ∈ Y . Define a neutrosophic multifunction

as follows: F (a) = D, F (b) = E, F (c) = C. Then the neutrosophic multifunction F :

(X, τ) → (Y, σ) is neutrosophic upper semi-continuous, but it is not neutrosophic upper

contra-continuous.

Theorem 3.14. The following are equivalent for a neutrosophic multifunction F : (X, τ)→
(Y, σ):

1. F is neutrosophic lower contra-continuous,

2. For each neutrosophic closed set A and x ∈ X such that F (x)qA, there exists an open

set B containing x such that if y ∈ B, then F (y)qA,

3. F−(A) is open for any neutrosophic closed set A in Y ,

4. F+(B) is closed for any neutrosophic open set B in Y .

Proof. It is similar to that of Theorem 3.6.

Theorem 3.15. For a neutrosophic multifunction F : (X, τ) → (Y, σ), if Cl(F+(A)) ⊂
F+(Ker(A)) for every neutrosophic set A in Y , then F is neutrosophic lower contra-continuous.

Proof. Suppose that Cl(F+(A)) ⊂ F+(Ker(A)) for every neutrosophic set A in Y . Let

A ∈ σ. We have Cl(F+(A)) ⊂ F+(Ker(A)) = F+(A). Thus, Cl(F+(A)) = F+(A) and

hence F+(A) is closed in X. Then F is neutrosophic lower contra-continuous.

Definition 3.16. Given a family {Fi : (X, τ) → (Y, σ) : i ∈ I} of neutrosophic multifunc-

tions, we define the union ∨
i∈I
Fi and the intersection ∧

i∈I
Fi as follows: ∨

i∈I
Fi : (X, τ)→ (Y, σ),

( ∨
i∈I
Fi)(x) = ∨

i∈I
Fi(x) and ∧

i∈I
Fi : (X, τ)→ (Y, σ), ( ∧

i∈I
Fi)(x) = ∧

i∈I
Fi(x).

Theorem 3.17. If Fi : X → Y are neutrosophic upper contra-continuous multifunctions for

i = 1, 2, ..., n, then
n
∨
i∈I
Fi is a neutrosophic upper contra-continuous multifunction.

Proof. Let A be a neutrosophic closed set of Y . We will show that (
n
∨
i∈I
Fi)

+(A) = {x ∈ X :

n
∨
i∈I
Fi(x) ⊂ A} is open in X. Let x ∈ (

n
∨
i∈I
Fi)

+(A). Then Fi(x) ⊂ A for i = 1, 2, ..., n. Since

Fi : X → Y is neutrosophic upper contra-continuous multifunction for i = 1, 2, ..., n, then

there exists an open set Ux containing x such that for all z ∈ Ux, Fi(z) ⊂ A. Let U =
n
∪
i∈I
Ux.

Then U ⊂ (
n
∨
i∈I
Fi)

+(A). Thus, (
n
∨
i∈I
Fi)

+(A) is open and hence
n
∨
i∈I
Fi is a neutrosophic upper

contra-continuous multifunction.

Lemma 3.18. Let {Ai}i∈I be a family of neutrosophic sets in a neutrosophic topological

space X. Then a neutrosophic point x is quasi-coincident with ∨Ai if and only if there exists

an i0 ∈ I such that xqAi0.
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Theorem 3.19. If Fi : X → Y are neutrosophic lower contra-continuous multifunctions for

i = 1, 2, ..., n, then
n
∨
i∈I
Fi is a neutrosophic lower contra-continuous multifunction.

Proof. Let A be a neutrosophic closed set of Y . We will show that (
n
∨
i∈I
Fi)
−(A) = {x ∈ X :

(
n
∨
i∈I
Fi)(x)qA} is open in X. Let x ∈ (

n
∨
i∈I
Fi)
−(A). Then (

n
∨
i∈I
Fi)(x)qA and hence Fi0(x)qA

for an i0. Since Fi : X → Y is neutrosophic lower contra-continuous multifunction, there

exists an open set Ux containing x such that for all z ∈ U , Fi0(z)qA. Then (
n
∨
i∈I
Fi)(z)qA and

hence U ⊂ (
n
∨
i∈I
Fi)
−(A). Thus, (

n
∨
i∈I
Fi)
−(A) is open and hence

n
∨
i∈I
Fi is a neutrosophic lower

contra-continuous multifunction.

Theorem 3.20. Let F : (X, τ) → (Y, σ) be a neutrosophic multifunction and {Ui : i ∈ I}
be an open cover for X. Then the following are equivalent:

1. Fi = F|Ui
is a neutrosophic lower contra-continuous multifunction for all i ∈ I,

2. F is neutrosophic lower contra-continuous.

Proof. (1) ⇒ (2): Let x ∈ X and A be a neutrosophic closed set in Y with x ∈ F−(A).

Since {Ui : i ∈ I} is an open cover for X, then x ∈ Ui0 for an i0 ∈ I. We have F (x) = Fi0(x)

and hence x ∈ F−i0 (A). Since F|Ui0 is neutrosophic lower contra-continuous, there exists an

open set B = G ∩ Ui0 in Ui0 such that x ∈ B and F−(A) ∩ Ui0 = F|Ui
(A) ⊃ B = G ∩ Ui0,

where G is open in X. We have x ∈ B = G ∩ Ui0 ⊂ F−|Ui0
(A) = F−(A) ∩ Ui0 ⊂ F−(A).

Hence, F is neutrosophic lower contra-continuous.

(2) ⇒ (1): Let x ∈ X and x ∈ Ui. Let A be a neutrosophic closed set in Y with Fi(x)qA.

Since F is lower contra-continuous and F (x) = Fi(x), there exists an open set U containing

x such that U ⊂ F−(A). Take B = Ui ∩ U . Then B is open in Ui containing x. We have

B ⊂ F−i(A). Thus Fi is a neutrosophic lower contra-continuous.

Theorem 3.21. Let F : (X, τ) → (Y, σ) be a neutrosophic multifunction and {Ui : i ∈ I}
be an open cover for X. Then the following are equivalent:

1. Fi = F|Ui
is a neutrosophic upper contra-continuous multifunction for all i ∈ I,

2. F is neutrosophic upper contra-continuous.

Proof. It is similar to that of Theorem 3.20.

Recall that for a multifunction F1 : (X, τ) → (Y, σ) and a neutrosophic multifunction F2 :

(Y, σ) → (Z, η), the neutrosophic multifunction F2 ◦ F1 : (X, τ) → (Z, η) is defined by

(F2 ◦ F1)(x) = F2(F1(x)) for x ∈ X.

Definition 3.22. Let X and Y be topological spaces. A multifunction F : (X, τ) → (Y, σ)

is called
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1. lower semi-continuous if for any open subset A ⊂ Y with x ∈ F−(A), there exists an

open set B in X containing x such that B ⊂ F−(A).

2. upper semi-continuous if for any open subset A ⊂ Y with x ∈ F+(A), there exists an

open set B in X containing x such that B ⊂ F+(A).

Theorem 3.23. If F1 : X → Y is an upper semi-continuous multifunction, where X and

Y are topological spaces and F2 : Y → Z is a neutrosophic upper contra-continuous mul-

tifunction, where Z is a neutrosophic topological space, then F2 ◦ F1 is neutrosophic upper

contra-continuous.

Proof. Let x ∈ X and A be a neutrosophic closed set in Z. We have (F2 ◦ F1)
+(A) =

F+
1 (F+

2 (A)). Since F2 is neutrosophic upper contra-continuous, F+
2 (A) is open in Y . Since

F1 is upper semi-continuous, F+
1 (F+

2 (A)) = (F2 ◦ F1)
+(A) is open in X. Thus, F2 ◦ F1 is

neutrosophic upper contra-continuous.

Definition 3.24. A neutrosophic set A in a neutrosophic topological space X is called:

1. a neutrosophic cl-neighbourhood of a neutrosophic point x in X if there exists a neu-

trosophic closed set B in X such that x ∈ B ⊂ A.

2. a neutrosophic cl-neighbourhood of a neutrosophic set B in X if there exists a neutro-

sophic closed set C in X such that B ⊂ C ⊂ A.

Theorem 3.25. If F : (X, τ)→ (Y, σ) is a neutrosophic upper contra-continuous multifunc-

tion, then for each point x of X and each neutrosophic cl-neighbourhood A of F (x), F+(A)

is a neighbourhood of x.

Proof. Let x ∈ X and A be a neutrosophic cl-neighbourhood of F (x). There exists a

neutrosophic closed set B in Y such that F (x) ⊂ B ⊂ A. We have x ∈ F+(B) ⊂ F+(A).

Since F+(B) is an open set, F+(A) is a neighbourhood of x.

Remark 3.26. A subset A of a topological space (X, τ) can be considered as a neutrosophic

set with characteristic function defined by

A(x) =

{
1 if x ∈ A

0 if x /∈ A.

Let (Y, σ) be a neutrosophic topological space. The neutrosophic sets of the form A×B with

A ∈ τ and B ∈ σ form a basis for the product neutrosophic topology τ × σ on X × Y , where

for any (x, y) ∈ X × Y , (A×B)(x, y) = min{A(x), B(y)}.

Definition 3.27. For a neutrosophic multifunction F : (X, τ) → (Y, σ), the neutrosophic

graph multifunction GF : X → X×Y of F is defined by GF (x) = x1×F (x) for every x ∈ X.
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Theorem 3.28. If the neutrosophic graph multifunction GF of a neutrosophic multifunction

F : (X, τ) → (Y, σ) is neutrosophic lower contra-continuous, then F is neutrosophic lower

contra-continuous.

Proof. Suppose that GF is neutrosophic lower contra-continuous and x ∈ X. Let A be

a neutrosophic closed set in Y such that F (x)qA. Then there exists y ∈ Y such that

(F (x))(y) + A(y) > 1. Then (GF (x))(x, y) + (X × A)(x, y) = (F (x))(y) + A(y) > 1.

Hence, GF (x)q(X × A). Since GF is neutrosophic lower contra-continuous, there exists an

open set B in X such that x ∈ B and GF (b)q(X × A) for all b ∈ B. Let there exists

b0 ∈ B such that F (b0)qA. Then for all y ∈ Y , (F (b0))(y) + A(y) < 1. For any (a, c) ∈
X × Y , we have (GF (b0))(a, c) ⊂ (F (b0))(c) and (X × A)(a, c) ⊂ A(c). Since for all y ∈ Y ,

(F (b0))(y) + A(y) < 1, (GF (b0))(a, c) + (X × A)(a, c) < 1. Thus, GF (b0)q(X × A), where

b0 ∈ B. This is a contradiction since GF (b)q(X ×A) for all b ∈ B. Hence, F is neutrosophic

lower contra-continuous.

Theorem 3.29. If the neutrosophic graph multifunction GF of a neutrosophic multifunction

F : X → Y is neutrosophic upper contra-continuous, then F is neutrosophic upper contra-

continuous.

Proof. Suppose that GF is neutrosophic upper contra-continuous and let x ∈ X. Let A be

neutrosophic closed in Y with F (x) ⊂ A. Then GF (x) ⊂ X × A. Since GF is neutrosophic

upper contra-continuous, there exists an open set B containing x such that GF (B) ⊂ X×A.

For any b ∈ B and y ∈ Y , we have (F (b))(y) = (GF (b))(b, y) ⊂ (X ×A)(b, y) = A(y). Then

(F (b))(y) ⊂ A(y) for all y ∈ Y . Thus, F (b) ⊂ A for any b ∈ B. Hence, F is neutrosophic

upper contra-continuous.

Theorem 3.30. Let F : (X, τ)→ (Y, σ) be a neutrosophic multifunction. Then the following

are equivalent:

1. F is neutrosophic lower contra-continuous,

2. For any x ∈ X and any net (xi)i∈I converging to x in X and each neutrosophic closed

set B in Y with x ∈ F−(B), the net (xi)i∈I is eventually in F−(B).

Proof. (1)⇒ (2): Let (xi) be a net converging to x in X and B be any neutrosophic closed

set in Y with x ∈ F−(B). Since F is neutrosophic lower contra-continuous, there exists an

open set A ⊂ X containing x such that A ⊂ F−(B). Since xi → x, there exists an index

i0 ∈ I such that xi ∈ A for every i ≥ i0. We have xi ∈ A ⊂ F−(B) for all i ≥ i0. Hence,

(xi)i∈I is eventually in F−(B).

(2)⇒ (1): Suppose that F is not neutrosophic lower contra-continuous. There exists a point

x and a neutrosophic closed set A with x ∈ F−(A) such that B * F−(A) for any open set

B ⊂ X containing x. Let xi ∈ B and xi /∈ F−(A) for each open set B ⊂ X containing x.

Then the neighborhood net (xi) converges to x but (xi)i∈I is not eventually in F−(A). This

is a contradiction.
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Theorem 3.31. Let F : (X, τ)→ (Y, σ) be a neutrosophic multifunction. Then the following

are equivalent:

1. F is neutrosophic upper contra-continuous,

2. For any x ∈ X and any net (xi) converging to x in X and any neutrosophic closed set

B in Y with x ∈ F+(B), the net (xi) is eventually in F+(B).

Proof. The proof is similar to that of Theorem 3.30.

Theorem 3.32. The set of all points of X at which a neutrosophic multifunction F :

(X, τ) → (Y, σ) is not neutrosophic upper contra-continuous is identical with the union

of the frontier of the upper inverse image of neutrosophic closed sets containing F (x).

Proof. Suppose F is not neutrosophic upper contra-continuous at x ∈ X. Then there exists

a neutrosophic closed set A in Y containing F (x) such that A ∩ (X\F+(B)) 6= ∅ for every

open set A containing x. We have x ∈ Cl(X\F+(B)) = X\ Int(F+(B)) and x ∈ F+(B).

Thus, x ∈ Fr(F+(B)). Conversely, let B be a neutrosophic closed set in Y containing F (x)

with x ∈ Fr(F+(B)). Suppose that F is neutrosophic upper contra-continuous at x. There

exists an open set A containing x such that A ⊂ F+(B). We have x ∈ Int(F+(B)). This is

a contradiction. Thus, F is not neutrosophic upper contra-continuous at x.

Theorem 3.33. The set of all points of X at which a neutrosophic multifunction F :

(X, τ) → (Y, σ) is not neutrosophic lower contra-continuous is identical with the union of

the frontier of the lower inverse image of neutrosophic closed sets which are quasi-coincident

with F (x).

Proof. It is similar to that of Theorem 3.32.

Definition 3.34. A neutrosophic topological space X is called neutrosophic strongly S-closed

if every neutrosophic closed cover of X has a finite subcover.

Theorem 3.35. Let F : (X, τ) → (Y, σ) be a neutrosophic upper contra-continuous surjec-

tive multifunction. Suppose that F (x) is neutrosophic strongly S-closed for each x ∈ X. If

X is compact, then Y is neutrosophic strongly S-closed.

Proof. Let {Ak}k∈I be a neutrosophic closed cover of Y . Since F (x) is neutrosophic strongly

S-closed for any x ∈ X, there exists a finite subset Ix of I such that F (x) ⊂ ∨
k∈Ix

Ak. Take

Ax = ∨
k∈Ix

Ak. Since F is neutrosophic upper contra-continuous, there exists a neutrosophic

open set Ux of X containing x such that F (Ux) ⊂ Ax. Then {Ux}x∈X is an open cover of

X. Since X is compact, there exist x1, x2, x3, ...,xn in X such that X =
n
∪
i=1

Uxi
. We have

Y = F (X) = F (
n
∪
i=1

Uxi
) ≤

n
∨
i=1

F (Uxi
) ≤

n
∨
i=1

Uxi
Axi

=
n
∨
i=1
∨

k∈Ixi
Uk. Thus, Y is neutrosophic

strongly S-closed.
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ABSTRACT

Generalized neutrosophic set is introduced, and applied it to BCK/BCI-algebras. The notions of

generalized neutrosophic subalgebras and generalized neutrosophic ideals in BCK/BCI-algebras

are introduced, and related properties are investigated. Characterizations of generalized neu-

trosophic subalgebra/ideal are considered. Relation between generalized neutrosophic subalgebra

and generalized neutrosophic ideal is discussed. In a BCK-algebra, conditions for a generalized

neutrosophic subalgebra to be a generalized neutrosophic ideal are provided. Conditions for a gen-

eralized neutrosophic set to be a generalized neutrosophic ideal are also provided. Homomorphic

image and preimage of generalized neutrosophic ideal are considered.

KEYWORDS: Generalized neutrosophic set, generalized neutrosophic subalgebra, generalized

neutrosophic ideal.

1 Introduction

Zadeh (1965) introduced the degree of membership/truth (t) in 1965 and defined the fuzzy

set. As a generalization of fuzzy sets, Atanassov (1986) introduced the degree of nonmember-

ship/falsehood (f) in 1986 and defined the intuitionistic fuzzy set. Smarandache introduced the

degree of indeterminacy/neutrality (i) as independent component in 1995 (published in 1998)

and defined the neutrosophic set on three components

(t, i, f) = (truth, indeterminacy, falsehood).

For more detail, refer to the site

http://fs.gallup.unm.edu/FlorentinSmarandache.htm.
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The concept of neutrosophic set (NS) developed by Smarandache (1999) and Smarandache

(2005) is a more general platform which extends the concepts of the classic set and fuzzy set,

intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. Neutrosophic set theory is

applied to various part (refer to the site http://fs.gallup.unm.edu/neutrosophy.htm). Agboola

and Davvaz (2015) introduced the concept of neutrosophic BCI/BCK-algebras, and presented

elementary properties of neutrosophic BCI/BCK-algebras. Saeid and Jun (2017) gave relations

between an (∈, ∈ ∨ q)-neutrosophic subalgebra and a (q, ∈ ∨ q)-neutrosophic subalgebra, and

discussed characterization of an (∈, ∈ ∨ q)-neutrosophic subalgebra by using neutrosophic ∈-

subsets. They provided conditions for an (∈, ∈∨ q)-neutrosophic subalgebra to be a (q, ∈∨ q)-
neutrosophic subalgebra, and investigated properties on neutrosophic q-subsets and neutrosophic

∈∨ q-subsets. Jun (2017) considered neutrosophic subalgebras of several types in BCK/BCI-

algebras.

In this paper, we consider a generalization of Smarandache’s neutrosophic sets. We in-

troduce the notion of generalized neutrosophic sets and apply it to BCK/BCI-algebras. We

introduce the notions of generalized neutrosophic subalgebras and generalized neutrosophic ide-

als in BCK/BCI-algebras, and investigate related properties. We consider characterizations of

generalized neutrosophic subalgebra/ideal, and discussed relation between generalized neutro-

sophic subalgebra and generalized neutrosophic ideal. We provide conditions for a generalized

neutrosophic subalgebra to be a generalized neutrosophic ideal in a BCK-algebra. We also

provide conditions for a generalized neutrosophic set to be a generalized neutrosophic ideal, and

consider homomorphic image and preimage of generalized neutrosophic ideal.

2 PRELIMINARIES

By a BCI-algebra we mean an algebra (X, ∗, 0) of type (2, 0) satisfying the conditions:

(a1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(a2) (x ∗ (x ∗ y)) ∗ y = 0,

(a3) x ∗ x = 0,

(a4) x ∗ y = y ∗ x = 0 ⇒ x = y,

for all x, y, z ∈ X. If a BCI-algebra X satisfies the condition

(a5) 0 ∗ x = 0 for all x ∈ X,

then we say that X is a BCK-algebra. A partial ordering “≤” on X is defined by

(∀x, y ∈ X) (x ≤ y ⇐⇒ x ∗ y = 0) .

In a BCK/BCI-algebra X, the following properties are satisfied:

(∀x ∈ X) (x ∗ 0 = x) , (2.1)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) . (2.2)
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A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S for

all x, y ∈ S. A nonempty subset I of a BCK/BCI-algebra X is called an ideal of X if

0 ∈ I, (2.3)

(∀x, y ∈ X) (x ∗ y ∈ I, y ∈ I ⇒ x ∈ I) . (2.4)

We refer the reader to the books (Meng & Jun, 1994) and(Huang, 2006) for further infor-

mation regarding BCK/BCI-algebras.

For any family {ai | i ∈ Λ} of real numbers, we define

∨
{ai | i ∈ Λ} :=

{
max{ai | i ∈ Λ} if Λ is finite,

sup{ai | i ∈ Λ} otherwise.

∧
{ai | i ∈ Λ} :=

{
min{ai | i ∈ Λ} if Λ is finite,

inf{ai | i ∈ Λ} otherwise.

If Λ = {1, 2}, we will also use a1 ∨ a2 and a1 ∧ a2 instead of
∨
{ai | i ∈ Λ} and

∧
{ai | i ∈ Λ},

respectively.

By a fuzzy set in a nonempty set X we mean a function µ : X → [0, 1], and the complement

of µ, denoted by µc, is the fuzzy set in X given by µc(x) = 1− µ(x) for all x ∈ X. A fuzzy set

µ in a BCK/BCI-algebra X is called a fuzzy subalgebra of X if µ(x ∗ y) ≥ µ(x) ∧ µ(y) for all

x, y ∈ X. A fuzzy set µ in a BCK/BCI-algebra X is called a fuzzy ideal of X if

(∀x ∈ X)(µ(0) ≥ µ(x)), (2.5)

(∀x, y ∈ X)(µ(x) ≥ µ(x ∗ y) ∧ µ(y)). (2.6)

Let X be a non-empty set. A neutrosophic set (NS) in X (Smarandache, 1999) is a structure

of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1] is an indeterminate

membership function, and AF : X → [0, 1] is a false membership function. For the sake of

simplicity, we shall use the symbol A = (AT , AI , AF ) for the neutrosophic set

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.

3 GENERALIZED NEUTROSOPHIC SETS

Definition 3.1. A generalized neutrosophic set (GNS) in a non-empty set X is a structure of

the form:

A := {〈x;AT (x), AIT (x), AIF (x), AF (x)〉 | x ∈ X,AIT (x) +AIF (x) ≤ 1}

Florentin Smarandache, Surapati Pramanik (Editors)

310



where AT : X → [0, 1] is a truth membership function, AF : X → [0, 1] is a false membership

function, AIT : X → [0, 1] is an indeterminate membership function which is familiar with truth

membership function, and AIF : X → [0, 1] is an indeterminate membership function which is

familiar with false membership function.

Example 3.2. Let X = {a, b, c} be a set. Then

A = {〈a; 0.4, 0.6, 0.3, 0.7〉, 〈b; 0.6, 0.2, 0.5, 0.7〉, 〈c; 0.1, 0.3, 0.5, 0.6〉〉}

is a GNS in X. But

B = {〈a; 0.4, 0.6, 0.3, 0.7〉, 〈b; 0.6, 0.3, 0.9, 0.7〉, 〈c; 0.1, 0.3, 0.5, 0.6〉〉}

is not a GNS in X since BIT (b) +BIF (b) = 0.3 + 0.9 = 1.2 > 1.

For the sake of simplicity, we shall use the symbol A = (AT , AIT , AIF , AF ) for the generalized

neutrosophic set

A := {〈x;AT (x), AIT (x), AIF (x), AF (x)〉 | x ∈ X,AIT (x) +AIF (x) ≤ 1}.

Note that every GNS A = (AT , AIT , AIF , AF ) in X satisfies the condition:

(∀x ∈ X) (0 ≤ AT (x) +AIT (x) +AIF (x) +AF (x) ≤ 3) .

If A = (AT , AIT , AIF , AF ) is a GNS in X, then �A = (AT , AIT , A
c
IT , A

c
T ) and ♦A = (AcF ,

AcIF , AIF , AF ) are also GNSs in X.

Example 3.3. Given a set X = {0, 1, 2, 3, 4}, we know that

A = {〈0; 0.4, 0.6, 0.3, 0.7〉, 〈1; 0.6, 0.2, 0.5, 0.7〉, 〈2; 0.1, 0.3, 0.5, 0.6〉,
〈3; 0.9, 0.1, 0.8, 0.6〉, 〈4; 0.3, 0.6, 0.2, 0.9〉}

is a GNS in X. Then

�A = {〈0; 0.4, 0.6, 0.4, 0.6〉, 〈1; 0.6, 0.2, 0.8, 0.4〉, 〈2; 0.1, 0.3, 0.7, 0.9〉,
〈3; 0.9, 0.1, 0.9, 0.1〉, 〈4; 0.3, 0.6, 0.4, 0.7〉}

and

♦A = {〈0; 0.3, 0.7, 0.3, 0.7〉, 〈1; 0.3, 0.5, 0.5, 0.7〉, 〈2; 0.4, 0.5, 0.5, 0.6〉,
〈3; 0.4, 0.2, 0.8, 0.6〉, 〈4; 0.1, 0.8, 0.2, 0.9〉}

are GNSs in X.
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4 APPLICATIONS IN BCK/BCI-ALGEBRAS

In what follows, let X denote a BCK/BCI-algebra unless otherwise specified.

Definition 4.1. A GNS A = (AT , AIT , AIF , AF ) in X is called a generalized neutrosophic

subalgebra of X if the following conditions are valid.

(∀x, y ∈ X)


AT (x ∗ y) ≥ AT (x) ∧AT (y)

AIT (x ∗ y) ≥ AIT (x) ∧AIT (y)

AIF (x ∗ y) ≤ AIF (x) ∨AIF (y)

AF (x ∗ y) ≤ AF (x) ∨AF (y)

 . (4.1)

Example 4.2. Consider a BCK-algebra X = {0, 1, 2, 3} with the Cayley table which is given

in Table 1.

Table 1: Cayley table for the binary operation “∗”

∗ 0 1 2 3

0 0 0 0 0

1 1 0 0 1

2 2 1 0 2

3 3 3 3 0

Then the GNS

A = {〈0; 0.6, 0.7, 0.2, 0.3〉, 〈1; 0.6, 0.6, 0.3, 0.3〉,
〈2; 0.4, 0.5, 0.4, 0.7〉, 〈3; 0.6, 0.3, 0.6, 0.5〉}

in X is a generalized neutrosophic subalgebra of X.

Given a GNS A = (AT , AIT , AIF , AF ) in X and αT , αIT , βF , βIF ∈ [0, 1], consider the

following sets.

U(T, αT ) := {x ∈ X | AT (x) ≥ αT },
U(IT, αIT ) := {x ∈ X | AIT (x) ≥ αIT },
L(F, βF ) := {x ∈ X | AF (x) ≤ βF },
L(IF, βIF ) := {x ∈ X | AIF (x) ≤ βIF }.

Theorem 4.3. If a GNS A = (AT , AIT , AIF , AF ) is a generalized neutrosophic subalgebra of

X, then the set U(T, αT ), U(IT, αIT ), L(F, βF ) and L(IF, βIF ) are subalgebras of X for all αT ,

αIT , βF , βIF ∈ [0, 1] whenever they are non-empty.
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Proof. Assume that U(T, αT ), U(IT, αIT ), L(F, βF ) and L(IF, βIF ) are nonempty for all αT ,

αIT , βF , βIF ∈ [0, 1]. Let x, y ∈ X. If x, y ∈ U(T, αT ), then AT (x) ≥ αT and AT (y) ≥ αT . It

follows that

AT (x ∗ y) ≥ AT (x) ∧AT (y) ≥ αT

and so that x ∗ y ∈ U(T, αT ). Hence U(T, αT ) is a subalgebra of X. Similarly, if x, y ∈
U(IT, αIT ), then x ∗ y ∈ U(IT, αIT ), that is, U(IT, αIT ) is a subalgebra of X. Suppose that

x, y ∈ L(F, βF ). Then AF (x) ≤ βF and AF (y) ≤ βF , which imply that

AF (x ∗ y) ≤ AF (x) ∨AF (y) ≤ βF ,

that is, x ∗ y ∈ L(F, βF ). Hence L(F, βF ) is a subalgebra of X. Similarly we can verify that

L(IF, βIF ) is a subalgebra of X.

Corollary 4.4. If a GNS A = (AT , AIT , AIF , AF ) is a generalized neutrosophic subalgebra of

X, then the set

A(αT , αIT , βF , βIF ) := {x ∈ X | AT (x) ≥ αT , AIT (x) ≥ αIT , AF (x) ≤ βF , AIF (x) ≤ βIF }

is a subalgebra of X for all αT , αIT , βF , βIF ∈ [0, 1].

Proof. Straightforward.

Theorem 4.5. Let A = (AT , AIT , AIF , AF ) be a GNS in X such that U(T, αT ), U(IT, αIT ),

L(F, βF ) and L(IF, βIF ) are subalgebras of X for all αT , αIT , βF , βIF ∈ [0, 1] whenever they

are non-empty. Then A = (AT , AIT , AIF , AF ) is a generalized neutrosophic subalgebra of X.

Proof. Assume that U(T, αT ), U(IT, αIT ), L(F, βF ) and L(IF, βIF ) are subalgebras for all αT ,

αIT , βF , βIF ∈ [0, 1]. If there exist x, y ∈ X such that

AT (x ∗ y) < AT (x) ∧AT (y),

then x, y ∈ U(T, tα) and x ∗ y /∈ U(T, tα) for tα = AT (x) ∧ AT (y). This is a contradiction, and

so

AT (x ∗ y) ≥ AT (x) ∧AT (y)

for all x, y ∈ X. Similarly, we can prove

AIT (x ∗ y) ≥ AIT (x) ∧AIT (y)

for all x, y ∈ X. Suppose that

AIF (x ∗ y) > AIF (x) ∨AIF (y)
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for some x, y ∈ X. Then there exists fβ ∈ [0, 1) such that

AIF (x ∗ y) > fβ ≥ AIF (x) ∨AIF (y),

which induces a contradiction since x, y ∈ L(IF, fβ) and x ∗ y /∈ L(IF, fβ). Thus

AIF (x ∗ y) ≤ AIF (x) ∨AIF (y)

for all x, y ∈ X. Similar way shows that

AF (x ∗ y) ≤ AF (x) ∨AF (y)

for all x, y ∈ X. Therefore A = (AT , AIT , AIF , AF ) is a generalized neutrosophic subalgebra of

X.

Since [0, 1] is a completely distributive lattice under the usual ordering, we have the following

theorem.

Theorem 4.6. The family of generalized neutrosophic subalgebras of X forms a complete dis-

tributive lattice under the inclusion.

Proposition 4.7. Every generalized neutrosophic subalgebra A = (AT , AIT , AIF , AF ) of X

satisfies the following assertions:

(1) (∀x ∈ X) (AT (0) ≥ AT (x), AIT (0) ≥ AIT (x)),

(2) (∀x ∈ X) (AIF (0) ≤ AIF (x), AF (0) ≤ AF (x)).

Proof. Since x ∗ x = 0 for all x ∈ X, it is straightforward.

Theorem 4.8. Let A = (AT , AIT , AIF , AF ) be a GNS in X. If there exists a sequence {an}
in X such that lim

n→∞
AT (an) = 1 = lim

n→∞
AIT (an) and lim

n→∞
AF (an) = 0 = lim

n→∞
AIF (an), then

AT (0) = 1 = AIT (0) and AF (0) = 0 = AIF (0).

Proof. Using Proposition 4.7, we know that AT (0) ≥ AT (an), AIT (0) ≥ AIT (an), AIF (0) ≤
AIF (an) and AF (0) ≤ AF (an) for every positive integer n. It follows that

1 ≥ AT (0) ≥ lim
n→∞

AT (an) = 1,

1 ≥ AIT (0) ≥ lim
n→∞

AIT (an) = 1,

0 ≤ AIF (0) ≤ lim
n→∞

AIF (an) = 0,

0 ≤ AF (0) ≤ lim
n→∞

AF (an) = 0.

Thus AT (0) = 1 = AIT (0) and AF (0) = 0 = AIF (0).
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Proposition 4.9. If every GNS A = (AT , AIT , AIF , AF ) in X satisfies:

(∀x, y ∈ X)

(
AT (x ∗ y) ≥ AT (y), AIT (x ∗ y) ≥ AIT (y)

AIF (x ∗ y) ≤ AIF (y), AF (x ∗ y) ≤ AF (y)

)
, (4.2)

then A = (AT , AIT , AIF , AF ) is constant on X.

Proof. Using (2.1) and (4.2), we have AT (x) = AT (x∗0) ≥ AT (0), AIT (x) = AIT (x∗0) ≥ AIT (0),

AIF (x) = AIF (x ∗ 0) ≤ AIF (0), and AF (x) = AF (x ∗ 0) ≤ AF (0). It follows from Proposition

4.7 that AT (x) = AT (0), AIT (x) = AIT (0), AIF (x) = AIF (0) and AF (x) = AF (0) for all x ∈ X.

Hence A = (AT , AIT , AIF , AF ) is constant on X.

A mapping f : X → Y of BCK/BCI-algebras is called a homomorphism (?) if f(x ∗ y) =

f(x) ∗ f(y) for all x, y ∈ X. Note that if f : X → Y is a homomorphism, then f(0) = 0. Let

f : X → Y be a homomorphism of BCK/BCI-algebras. For any GNS A = (AT , AIT , AIF ,

AF ) in Y , we define a new GNS Af = (AfT , A
f
IT , A

f
IF , A

f
F ) in X, which is called the induced

GNS, by

(∀x ∈ X)

(
AfT (x) = AT (f(x)), AfIT (x) = AIT (f(x))

AfIF (x) = AIF (f(x)), AfF (x) = AF (f(x))

)
. (4.3)

Theorem 4.10. Let f : X → Y be a homomorphism of BCK/BCI-algebras. If a GNS A =

(AT , AIT , AIF , AF ) in Y is a generalized neutrosophic subalgebra of Y , then the induced GNS

Af = (AfT , A
f
IT , A

f
IF , A

f
F ) in X is a generalized neutrosophic subalgebra of X.

Proof. For any x, y ∈ X, we have

AfT (x ∗ y) = AT (f(x ∗ y)) = AT (f(x) ∗ f(y))

≥ AT (f(x)) ∧AT (f(y)) = AfT (x) ∧AfT (y),

AfIT (x ∗ y) = AIT (f(x ∗ y)) = AIT (f(x) ∗ f(y))

≥ AIT (f(x)) ∧AIT (f(y)) = AfIT (x) ∧AfIT (y),

AfIF (x ∗ y) = AIF (f(x ∗ y)) = AIF (f(x) ∗ f(y))

≤ AIF (f(x)) ∨AIF (f(y)) = AfIF (x) ∨AfIF (y),

and

AfF (x ∗ y) = AF (f(x ∗ y)) = AF (f(x) ∗ f(y))

≤ AF (f(x)) ∨AF (f(y)) = AfF (x) ∨AfF (y).

Therefore Af = (AfT , A
f
IT , A

f
IF , A

f
F ) is a generalized neutrosophic subalgebra of X.
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Theorem 4.11. Let f : X → Y be an onto homomorphism of BCK/BCI-algebras and let

A = (AT , AIT , AIF , AF ) be a GNS in Y . If the induced GNS Af = (AfT , A
f
IT , A

f
IF , A

f
F ) in

X is a generalized neutrosophic subalgebra of X, then A = (AT , AIT , AIF , AF ) is a generalized

neutrosophic subalgebra of Y .

Proof. Let x, y ∈ Y . Then f(a) = x and f(b) = y for some a, b ∈ X. Then

AT (x ∗ y) = AT (f(a) ∗ f(b)) = AT (f(a ∗ b)) = AfT (a ∗ b)

≥ AfT (a) ∧AfT (b) = AT (f(a)) ∧AT (f(b))

= AT (x) ∧AT (y),

AIT (x ∗ y) = AIT (f(a) ∗ f(b)) = AIT (f(a ∗ b)) = AfIT (a ∗ b)

≥ AfIT (a) ∧AfIT (b) = AIT (f(a)) ∧AIT (f(b))

= AIT (x) ∧AIT (y),

AIF (x ∗ y) = AIF (f(a) ∗ f(b)) = AIF (f(a ∗ b)) = AfIF (a ∗ b)

≤ AfIF (a) ∨AfIF (b) = AIF (f(a)) ∨AIF (f(b))

= AIF (x) ∨AIF (y),

and

AF (x ∗ y) = AF (f(a) ∗ f(b)) = AF (f(a ∗ b)) = AfF (a ∗ b)

≤ AfF (a) ∨AfF (b) = AF (f(a)) ∨AF (f(b))

= AF (x) ∨AF (y).

Hence A = (AT , AIT , AIF , AF ) is a generalized neutrosophic subalgebra of Y .

Definition 4.12. A GNS A = (AT , AIT , AIF , AF ) in X is called a generalized neutrosophic

ideal of X if the following conditions are valid.

(∀x ∈ X)

(
AT (0) ≥ AT (x), AIT (0) ≥ AIT (x)

AIF (0) ≤ AIF (x), AF (0) ≤ AF (x)

)
, (4.4)

(∀x, y ∈ X)


AT (x) ≥ AT (x ∗ y) ∧AT (y)

AIT (x) ≥ AIT (x ∗ y) ∧AIT (y)

AIF (x) ≤ AIF (x ∗ y) ∨AIF (y)

AF (x) ≤ AF (x ∗ y) ∨AF (y)

 . (4.5)

Example 4.13. Consider a BCK-algebra X = {0, 1, 2, 3} with the Cayley table which is given

in Table 2.
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Table 2: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 3 3 0 0

4 4 3 4 1 0

Let

A = {〈0; 0.8, 0.7, 0.2, 0.1〉, 〈1; 0.3, 0.6, 0.2, 0.6〉, 〈2; 0.8, 0.4, 0.5, 0.3〉,
〈3; 0.3, 0.2, 0.7, 0.8〉, 〈4; 0.3, 0.2, 0.7, 0.8〉}.

be a GNS in X. By routine calculations, we know that A is a generalized neutrosophic ideal of

X.

Lemma 4.14. Every generalized neutrosophic ideal A = (AT , AIT , AIF , AF ) of X satisfies:

(∀x, y ∈ X)

(
x ≤ y ⇒

{
AT (x) ≥ AT (y), AIT (x) ≥ AIT (y)

AIF (x) ≤ AIF (y), AF (x) ≤ AF (y)

)
. (4.6)

Proof. Let x, y ∈ X be such that x ≤ y. Then x ∗ y = 0, and so

AT (x) ≥ AT (x ∗ y) ∧AT (y) = AT (0) ∧AT (y) = AT (y),

AIT (x) ≥ AIT (x ∗ y) ∧AIT (y)AIT (0) ∧AIT (y) = AIT (y),

AIF (x) ≤ AIF (x ∗ y) ∨AIF (y)AIF (0) ∨AIF (y) = AIF (y),

AF (x) ≤ AF (x ∗ y) ∨AF (y)AF (0) ∨AF (y) = AF (y).

This completes the proof.

Lemma 4.15. Let A = (AT , AIT , AIF , AF ) be a generalized neutrosophic ideal of X. If the

inequality x ∗ y ≤ z holds in X, then AT (x) ≥ AT (y) ∧ AT (z), AIT (x) ≥ AIT (y) ∧ AIT (z),

AIF (x) ≤ AIF (y) ∨AIF (z) and AF (x) ≤ AF (y) ∨AF (z).

Proof. Let x, y, z ∈ X be such that x ∗ y ≤ z, Then (x ∗ y) ∗ z = 0, and so

AT (x) ≥
∧
{AT (x ∗ y), AT (y)}

≥
∧{∧

{AT ((x ∗ y) ∗ z), AT (z)}, AT (y)
}

=
∧{∧

{AT (0), AT (z)}, AT (y)
}

=
∧
{AT (y), AT (z)} ,
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AIT (x) ≥
∧
{AIT (x ∗ y), AIT (y)}

≥
∧{∧

{AIT ((x ∗ y) ∗ z), AIT (z)}, AIT (y)
}

=
∧{∧

{AIT (0), AIT (z)}, AIT (y)
}

=
∧
{AIT (y), AIT (z)} ,

AIF (x) ≤
∨
{AIF (x ∗ y), AIF (y)}

≤
∨{∨

{AIF ((x ∗ y) ∗ z), AIF (z)}, AIF (y)
}

=
∨{∨

{AIF (0), AIF (z)}, AIF (y)
}

=
∨
{AIF (y), AIF (z)} ,

and

AF (x) ≤
∨
{AF (x ∗ y), AF (y)}

≤
∨{∨

{AF ((x ∗ y) ∗ z), AF (z)}, AF (y)
}

=
∨{∨

{AF (0), AF (z)}, AF (y)
}

=
∨
{AF (y), AF (z)} .

This completes the proof.

Proposition 4.16. Let A = (AT , AIT , AIF , AF ) be a generalized neutrosophic ideal of X. If

the inequality

(· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0

holds in X, then

AT (x) ≥
∧
{AT (ai) | i = 1, 2, · · · , n} ,

AIT (x) ≥
∧
{AIT (ai) | i = 1, 2, · · · , n} ,

AIF (x) ≤
∨
{AIF (ai) | i = 1, 2, · · · , n} ,

AF (x) ≤
∨
{AF (ai) | i = 1, 2, · · · , n} .

Proof. It is straightforward by using induction on n and Lemmas 4.14 and 4.15.

Theorem 4.17. In a BCK-algebra X, every generalized neutrosophic ideal is a generalized

neutrosophic subalgebra.
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Proof. Let A = (AT , AIT , AIF , AF ) be a generalized neutrosophic ideal of a BCK-algebra

X. Since x ∗ y ≤ x for all x, y ∈ X, we have AT (x ∗ y) ≥ AT (x), AIT (x ∗ y) ≥ AIT (x),

AIF (x ∗ y) ≤ AIF (x) and AF (x ∗ y) ≤ AF (x) by Lemma 4.14. It follows from (4.5) that

AT (x ∗ y) ≥ AT (x) ≥ AT (x ∗ y) ∧AT (y) ≥ AT (x) ∧AT (y),

AIT (x ∗ y) ≥ AIT (x) ≥ AIT (x ∗ y) ∧AIT (y) ≥ AIT (x) ∧AIT (y),

AIF (x ∗ y) ≤ AIF (x) ≤ AIF (x ∗ y) ∨AIF (y) ≤ AIF (x) ∨AIF (y),

and

AF (x ∗ y) ≤ AF (x) ≤ AF (x ∗ y) ∨AF (y) ≤ AF (x) ∨AF (y).

Therefore A = (AT , AIT , AIF , AF ) is a generalized neutrosophic subalgebra of X.

The converse of Theorem 4.17 is not true. For example, the generalized neutrosophic subal-

gebra A in Example 4.2 is not a generalized neutrosophic ideal of X since

AT (2) = 0.4 � 0.6 = AT (2 ∗ 1) ∧AT (1)

and/or

AF (2) = 0.7 � 0.3 = AF (2 ∗ 1) ∨AF (1).

We give a condition for a generalized neutrosophic subalgebra to be a generalized neutro-

sophic ideal.

Theorem 4.18. Let A = (AT , AIT , AIF , AF ) be a generalized neutrosophic subalgebra of X

such that

AT (x) ≥ AT (y) ∧AT (z),

AIT (x) ≥ AIT (y) ∧AIT (z),

AIF (x) ≤ AIF (y) ∨AIF (z),

AF (x) ≤ AF (y) ∨AF (z)

for all x, y, z ∈ X satisfying the inequality x ∗ y ≤ z. Then A = (AT , AIT , AIF , AF ) is a

generalized neutrosophic ideal of X.

Proof. Recall that AT (0) ≥ AT (x), AIT (0) ≥ AIT (x), AIF (0) ≤ AIF (x) and AF (0) ≤ AF (x) for

all x ∈ X by Proposition 4.7. Let x, y ∈ X. Since x ∗ (x ∗ y) ≤ y, it follows from the hypothesis

that

AT (x) ≥ AT (x ∗ y) ∧AT (y),

AIT (x) ≥ AIT (x ∗ y) ∧AIT (y),

AIF (x) ≤ AIF (x ∗ y) ∨AIF (y),

AF (x) ≤ AF (x ∗ y) ∨AF (y).

Hence A = (AT , AIT , AIF , AF ) is a generalized neutrosophic ideal of X.
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Theorem 4.19. A GNS A = (AT , AIT , AIF , AF ) in X is a generalized neutrosophic ideal of

X if and only if the fuzzy sets AT , AIT , AcIF and AcF are fuzzy ideals of X.

Proof. Assume that A = (AT , AIT , AIF , AF ) is a generalized neutrosophic ideal of X. Clearly,

AT and AIT are fuzzy ideals of X. For every x, y ∈ X, we have

AcIF (0) = 1−AIF (0) ≥ 1−AIF (x) = AcIF (x),

AcF (0) = 1−AF (0) ≥ 1−AF (x) = AcF (x),

AcIF (x) = 1−AIF (x) ≥ 1−AIF (x ∗ y) ∨AIF (y)

=
∧
{1−AIF (x ∗ y), 1−AIF (y)}

=
∧
{AcIF (x ∗ y), AcIF (y)}

and

AcF (x) = 1−AF (x) ≥ 1−AF (x ∗ y) ∨AF (y)

=
∧
{1−AF (x ∗ y), 1−AF (y)}

=
∧
{AcF (x ∗ y), AcF (y)}.

Therefore AT , AIT , AcIF and AcF are fuzzy ideals of X.

Conversely, let A = (AT , AIT , AIF , AF ) be a GNS in X for which AT , AIT , AcIF and AcF
are fuzzy ideals of X. For every x ∈ X, we have AT (0) ≥ AT (x), AIT (0) ≥ AIT (x),

1−AIF (0) = AcIF (0) ≥ AcIF (x) = 1−AIF (x), that is, AIF (0) ≤ AIF (x)

and

1−AF (0) = AcF (0) ≥ AcF (x) = 1−AF (x), that is, AF (0) ≤ AF (x).

Let x, y ∈ X. Then

AT (x) ≥ AT (x ∗ y) ∧AT (y),

AIT (x) ≥ AIT (x ∗ y) ∧AIT (y),

1−AIF (x) = AcIF (x) ≥ AcIF (x ∗ y) ∧AcIF (y)

=
∧
{1−AIF (x ∗ y), 1−AIF (y)}

= 1−
∨
{AIF (x ∗ y), AIF (y)},
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and

1−AF (x) = AcF (x) ≥ AcF (x ∗ y) ∧AcF (y)

=
∧
{1−AF (x ∗ y), 1−AF (y)}

= 1−
∨
{AF (x ∗ y), AF (y)},

that is, AIF (x) ≤ AIF (x ∗ y) ∨ AIF (y) and AF (x) ≤ AF (x ∗ y) ∨ AF (y). Hence A = (AT , AIT ,

AIF , AF ) is a generalized neutrosophic ideal of X.

Theorem 4.20. If a GNS A = (AT , AIT , AIF , AF ) in X is a generalized neutrosophic ideal of

X, then �A = (AT , AIT , A
c
IT , A

c
T ) and ♦A = (AcIF , A

c
F , AF , AIF ) are generalized neutrosophic

ideals of X.

Proof. Assume that A = (AT , AIT , AIF , AF ) is a generalized neutrosophic ideal of X and let

x, y ∈ X. Note that �A = (AT , AIT , A
c
IT , A

c
T ) and ♦A = (AcIF , A

c
F , AF , AIF ) are GNSs in X.

Let x, y ∈ X. Then

AcIT (x ∗ y) = 1−AIT (x ∗ y) ≤ 1−
∧
{AIT (x), AIT (y)}

=
∨
{1−AIT (x), 1−AIT (y)}

=
∨
{AcIT (x), AcIT (y)},

AcT (x ∗ y) = 1−AT (x ∗ y) ≤ 1−
∧
{AT (x), AT (y)}

=
∨
{1−AT (x), 1−AT (y)}

=
∨
{AcT (x), AcT (y)},

AcIF (x ∗ y) = 1−AIF (x ∗ y) ≥ 1−
∨
{AIF (x), AIF (y)}

=
∧
{1−AIF (x), 1−AIF (y)}

=
∧
{AcIF (x), AcIF (y)}

and

AcF (x ∗ y) = 1−AF (x ∗ y) ≥ 1−
∨
{AF (x), AF (y)}

=
∧
{1−AF (x), 1−AF (y)}

=
∧
{AcF (x), AcF (y)}.

Therefore �A = (AT , AIT , A
c
IT , A

c
T ) and ♦A = (AcIF , A

c
F , AF , AIF ) are generalized neutro-

sophic ideals of X.
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Theorem 4.21. If a GNS A = (AT , AIT , AIF , AF ) is a generalized neutrosophic ideal of X,

then the set U(T, αT ), U(IT, αIT ), L(F, βF ) and L(IF, βIF ) are ideals of X for all αT , αIT ,

βF , βIF ∈ [0, 1] whenever they are non-empty.

Proof. Assume that U(T, αT ), U(IT, αIT ), L(F, βF ) and L(IF, βIF ) are nonempty for all αT ,

αIT , βF , βIF ∈ [0, 1]. It is clear that 0 ∈ U(T, αT ), 0 ∈ U(IT, αIT ), 0 ∈ L(F, βF ) and 0 ∈
L(IF, βIF ). Let x, y ∈ X. If x ∗ y ∈ U(T, αT ) and y ∈ U(T, αT ), then AT (x ∗ y) ≥ αT and

AT (y) ≥ αT . Hence

AT (x) ≥ AT (x ∗ y) ∧AT (y) ≥ αT ,

and so x ∈ U(T, αT ). Similarly, if x ∗ y ∈ U(IT, αT ) and y ∈ U(IT, αT ), then x ∈ U(IT, αT ). If

x ∗ y ∈ L(F, βF ) and y ∈ L(F, βF ), then AF (x ∗ y) ≤ βF and AF (y) ≤ βF . Hence

AF (x) ≤ AF (x ∗ y) ∨AF (y) ≤ βF ,

and so x ∈ L(F, βF ). Similarly, if x ∗ y ∈ L(IF, βIF ) and y ∈ L(IF, βIF ), then x ∈ L(IF, βIF ).

This completes the proof.

Theorem 4.22. Let A = (AT , AIT , AIF , AF ) be a GNS in X such that U(T, αT ), U(IT, αIT ),

L(F, βF ) and L(IF, βIF ) are ideals of X for all αT , αIT , βF , βIF ∈ [0, 1]. Then A = (AT , AIT ,

AIF , AF ) is a generalized neutrosophic ideal of X.

Proof. Let αT , αIT , βF , βIF ∈ [0, 1] be such that U(T, αT ), U(IT, αIT ), L(F, βF ) and L(IF, βIF )

are ideals of X. For any x ∈ X, let AT (x) = αT , AIT (x) = αIT , AIF (x) = βIF and AF (x) = βF .

Since 0 ∈ U(T, αT ), 0 ∈ U(IT, αIT ), 0 ∈ L(F, βF ) and 0 ∈ L(IF, βIF ), we have AT (0) ≥ αT =

AT (x), AIT (0) ≥ αIT = AIT (x), AIF (0) ≤ βIF = AIF (x) and AF (0) ≤ βF = AF (x). If there

exist a, b ∈ X such that AT (a ∗ b) < AT (a) ∧ AT (b), then a, b ∈ U(T, α0) and a ∗ b /∈ U(T, α0)

where α0 := AT (a) ∧ AT (b). This is a contradiction, and hence AT (x ∗ y) ≥ AT (x) ∧ AT (y) for

all x, y ∈ X. Similarly, we can verify AIT (x ∗ y) ≥ AIT (x) ∧ AIT (y) for all x, y ∈ X. Suppose

that AIF (a ∗ b) > AIF (a) ∨ AIF (b) for some a, b ∈ X. Taking β0 := AIF (a) ∨ AIF (b) induces

a, b ∈ L(IF, βIF ) and a ∗ b /∈ L(IF, βIF ), a contradiction. Thus AIF (x ∗ y) ≤ AIF (x) ∨ AIF (y)

for all x, y ∈ X. Similarly we have AF (x ∗ y) ≤ AF (x) ∨ AF (y) for all x, y ∈ X. Consequently,

A = (AT , AIT , AIF , AF ) is a generalized neutrosophic ideal of X.

Let Λ be a nonempty subset of [0, 1].

Theorem 4.23. Let {It | t ∈ Λ} be a collection of ideals of X such that

(1) X =
⋃
t∈Λ

It,

(2) (∀s, t ∈ Λ) (s > t ⇐⇒ Is ⊂ It).

Let A = (AT , AIT , AIF , AF ) be a GNS in X given as follows:

(∀x ∈ X)

(
AT (x) =

∨
{t ∈ Λ | x ∈ It} = AIT (x)

AIF (x) =
∧
{t ∈ Λ | x ∈ It} = AF (x)

)
. (4.7)

Then A = (AT , AIT , AIF , AF ) is a generalized neutrosophic ideal of X.
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Proof. According to Theorem 4.22, it is sufficient to show that U(T, t), U(IT, t), L(F, s) and

L(IF, s) are ideals of X for every t ∈ [0, AT (0) = AIT (0)] and s ∈ [AIF (0) = AF (0), 1]. In order

to prove U(T, t) and U(IT, t) are ideals of X, we consider two cases:

(i) t =
∨
{q ∈ Λ | q < t},

(ii) t 6=
∨
{q ∈ Λ | q < t}.

For the first case, we have

x ∈ U(T, t)⇐⇒ (∀q < t)(x ∈ Iq)⇐⇒ x ∈
⋂
q<t

Iq,

x ∈ U(IT, t)⇐⇒ (∀q < t)(x ∈ Iq)⇐⇒ x ∈
⋂
q<t

Iq.

Hence U(T, t) =
⋂
q<t
Iq = U(IT, t), and so U(T, t) and U(IT, t) are ideals of X. For the second

case, we claim that U(T, t) =
⋃
q≥t
Iq = U(IT, t). If x ∈

⋃
q≥t
Iq, then x ∈ Iq for some q ≥ t. It

follows that AIT (x) = AT (x) ≥ q ≥ t and so that x ∈ U(T, t) and x ∈ U(IT, t). This shows

that
⋃
q≥t
Iq ⊆ U(T, t) = U(IT, t). Now, assume that x /∈

⋃
q≥t
Iq. Then x /∈ Iq for all q ≥ t. Since

t 6=
∨
{q ∈ Λ | q < t}, there exists ε > 0 such that (t − ε, t) ∩ Λ = ∅. Hence x /∈ Iq for all

q > t − ε, which means that if x ∈ Iq, then q ≤ t − ε. Thus AIT (x) = AT (x) ≤ t − ε < t,

and so x /∈ U(T, t) = U(IT, t). Therefore U(T, t) = U(IT, t) ⊆
⋃
q≥t
Iq. Consequently, U(T, t) =

U(IT, t) =
⋃
q≥t
Iq which is an ideal of X. Next we show that L(F, s) and L(IF, s) are ideals of

X. We consider two cases as follows:

(iii) s =
∧
{r ∈ Λ | s < r},

(iv) s 6=
∧
{r ∈ Λ | s < r}.

Case (iii) implies that

x ∈ L(IF, s)⇐⇒ (∀s < r)(x ∈ Ir)⇐⇒ x ∈
⋂
s<r

Ir,

x ∈ U(F, s)⇐⇒ (∀s < r)(x ∈ Ir)⇐⇒ x ∈
⋂
s<r

Ir.

It follows that L(IF, s) = L(F, s) =
⋂
s<r

Ir, which is an ideal of X. Case (iv) induces (s, s+ε)∩Λ =

∅ for some ε > 0. If x ∈
⋃
s≥r

Ir, then x ∈ Ir for some r ≤ s, and so AIF (x) = AF (x) ≤ r ≤ s,

that is, x ∈ L(IF, s) and x ∈ L(F, s). Hence
⋃
s≥r

Ir ⊆ L(IF, s) = L(F, s). If x /∈
⋃
s≥r

Ir, then

x /∈ Ir for all r ≤ s which implies that x /∈ Ir for all r ≤ s + ε, that is, if x ∈ Ir then

r ≥ s + ε. Hence AIF (x) = AF (x) ≥ s + ε > s, and so x /∈ L(AIF , s) = L(AF , s). Hence

L(AIF , s) = L(AF , s) =
⋃
s≥r

Ir which is an ideal of X. This completes the proof.
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Theorem 4.24. Let f : X → Y be a homomorphism of BCK/BCI-algebras. If a GNS A =

(AT , AIT , AIF , AF ) in Y is a generalized neutrosophic ideal of Y , then the new GNS Af = (AfT ,

AfIT , A
f
IF , A

f
F ) in X is a generalized neutrosophic ideal of X.

Proof. We first have

AfT (0) = AT (f(0)) = AT (0) ≥ AT (f(x)) = AfT (x),

AfIT (0) = AIT (f(0)) = AIT (0) ≥ AIT (f(x)) = AfIT (x),

AfIF (0) = AIF (f(0)) = AIF (0) ≤ AIF (f(x)) = AfIF (x),

AfF (0) = AF (f(0)) = AF (0) ≤ AF (f(x)) = AfF (x)

for all x ∈ X. Let x, y ∈ X. Then

AfT (x) = AT (f(x)) ≥ AT (f(x) ∗ f(y)) ∧AT (f(y))

= AT (f(x ∗ y)) ∧AT (f(y))

= AfT (x ∗ y) ∧AfT (y),

AfIT (x) = AIT (f(x)) ≥ AIT (f(x) ∗ f(y)) ∧AIT (f(y))

= AIT (f(x ∗ y)) ∧AIT (f(y))

= AfIT (x ∗ y) ∧AfIT (y),

AfIF (x) = AIF (f(x)) ≤ AIF (f(x) ∗ f(y)) ∨AIF (f(y))

= AIF (f(x ∗ y)) ∨AIF (f(y))

= AfIF (x ∗ y) ∨AfIF (y)

and

AfF (x) = AF (f(x)) ≤ AF (f(x) ∗ f(y)) ∨AF (f(y))

= AF (f(x ∗ y)) ∨AF (f(y))

= AfF (x ∗ y) ∨AfF (y).

Therefore Af = (AfT , A
f
IT , A

f
IF , A

f
F ) in X is a generalized neutrosophic ideal of X.

Theorem 4.25. Let f : X → Y be an onto homomorphism of BCK/BCI-algebras and let

A = (AT , AIT , AIF , AF ) be a GNS in Y . If the induced GNS Af = (AfT , A
f
IT , A

f
IF , A

f
F )

in X is a generalized neutrosophic ideal of X, then A = (AT , AIT , AIF , AF ) is a generalized

neutrosophic ideal of Y .
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Proof. For any x ∈ Y , there exists a ∈ X such that f(a) = x. Then

AT (0) = AT (f(0)) = AfT (0) ≥ AfT (a) = AT (f(a)) = AT (x),

AIT (0) = AIT (f(0)) = AfIT (0) ≥ AfIT (a) = AIT (f(a)) = AIT (x),

AIF (0) = AIF (f(0)) = AfIF (0) ≤ AfIF (a) = AIF (f(a)) = AIF (x),

AF (0) = AF (f(0)) = AfF (0) ≤ AfF (a) = AF (f(a)) = AF (x).

Let x, y ∈ Y . Then f(a) = x and f(b) = y for some a, b ∈ X. It follows that

AT (x) = AT (f(a)) = AfT (a)

≥ AfT (a ∗ b) ∧AfT (b)

= AT (f(a ∗ b)) ∧AT (f(b))

= AT (f(a) ∗ f(b)) ∧AT (f(b))

= AT (x ∗ y) ∧AT (y),

AIT (x) = AIT (f(a)) = AfIT (a)

≥ AfIT (a ∗ b) ∧AfIT (b)

= AIT (f(a ∗ b)) ∧AIT (f(b))

= AIT (f(a) ∗ f(b)) ∧AIT (f(b))

= AIT (x ∗ y) ∧AIT (y),

AIF (x) = AIF (f(a)) = AfIF (a)

≤ AfIF (a ∗ b) ∨AfIF (b)

= AIF (f(a ∗ b)) ∨AIF (f(b))

= AIF (f(a) ∗ f(b)) ∨AIF (f(b))

= AIF (x ∗ y) ∨AIF (y),

and

AF (x) = AF (f(a)) = AfF (a)

≤ AfF (a ∗ b) ∨AfF (b)

= AF (f(a ∗ b)) ∨AF (f(b))

= AF (f(a) ∗ f(b)) ∨AF (f(b))

= AF (x ∗ y) ∨AF (y).

Therefore A = (AT , AIT , AIF , AF ) is a generalized neutrosophic ideal of Y .
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ABSTRACT

In this paper, the concepts of neutrosophic resolvable, neutrosophic irresolvable, neutrosophic open hered-

itarily irresolvable spaces and maximally neutrosophic irresolvable spaces are introduced. Also we study

several properties of the neutrosophic open hereditarily irresolvable spaces besides giving characterization

of these spaces by means of somewhat neutrosophic continuous functions and somewhat neutrosophic open

functions.

KEYWORDS: Neutrosophic resolvable, neutrosophic irresolvable, neutrosophic submaximal, neutrosophic

open hereditarily irresolvable space, somewhat neutrosophic continuous and somewhat neutrosophic open

functions.

1 INTRODUCTION

Zadeh (1965) introduced the important and useful concept of a fuzzy set which has invaded almost all

branches of mathematics. The theory of fuzzy topological spaces was introduced and developed by Chang

(1968) and since then various notions in classical topology have been extended to fuzzy topological spaces.

The idea of “intuitionistic fuzzy set” was first published by Atanasov (1983) and some research works ap-

peared in the literature (Atanassov (1986, 1988); Atanassov and Stoeva (1983)). Smarandache introduced

the concepts of neutrosophy and neutrosophic set (Smarandache, (1999, 2002)). The concepts of neutro-

sophic crisp sets and neutrosophic crisp topological spaces were introduced by Salama and Alblowi (2012).

The concept of fuzzy resolvable and fuzzy irresolvable spaces were introduced by G. Thangaraj and G.
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Balasubramanian (2009). The concepts of resolvability and irresolvability in intuitionistic fuzzy topological

spaces were introduced by Dhavaseelan et al. (2011).

In this paper, the concepts of neutrosophic resolvable, neutrosophic irresolvable, neutrosophic open hered-

itarily irresolvable spaces and maximally neutrosophic irresolvable spaces are introduced. Further, we study

several interesting properties of the neutrosophic open hereditarily irresolvable spaces and present characteri-

zations of these spaces by means of somewhat neutrosophic continuous functions and somewhat neutrosophic

open functions. Some basic properties and related examples are given.

2 PRELIMINARIES

Definition 2.1. (Smarandache, (1999, 2002)) Let T, I, F be real standard or non standard subsets of

]0−, 1+[, with supT = tsup, infT = tinf

supI = isup, infI = iinf

supF = fsup, infF = finf

n− sup = tsup + isup + fsup

n− inf = tinf + iinf + finf . T, I, F are neutrosophic components.

Definition 2.2. (Smarandache, (1999, 2002)) Let X be a nonempty fixed set. A neutrosophic set A is an

object having the form A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}, where µ
A

(x), σ
A

(x) and γ
A

(x) represents the

degree of membership function (i.e., µ
A

(x)), the degree of indeterminacy (namely σ
A

(x)) and the degree of

nonmembership (i.e., γ
A

(x)) of each element x ∈ X to the set A, respectively.

Remark 2.1. (Smarandache, (1999, 2002))

(1) A neutrosophic set A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X} can be identified to an ordered triple

〈µ
A
, σ

A
, γ

A
〉 in ]0−, 1+[ on X.

(2) For the sake of simplicity, we shall use the symbol A = 〈µ
A
, σ

A
, γ

A
〉 for the neutrosophic set A =

{〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 2.3. (Salama and Alblowi (2012)) Let X be a nonempty set and the neutrosophic sets A and B

be in the form

A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}, B = {〈x, µ
B

(x), σ
B

(x), γ
B

(x)〉 : x ∈ X}. Then

(a) A ⊆ B iff µ
A

(x) ≤ µ
B

(x), σ
A

(x) ≤ σ
B

(x) and γ
A

(x) ≥ γ
B

(x) for all x ∈ X;

(b) A = B iff A ⊆ B and B ⊆ A;

(c) Ā = {〈x, γ
A

(x), σ
A

(x), µ
A

(x)〉 : x ∈ X}; [Complement of A]

(d) A ∩B = {〈x, µ
A

(x) ∧ µ
B

(x), σ
A

(x) ∧ σ
B

(x), γ
A

(x) ∨ γ
B

(x)〉 : x ∈ X};

(e) A ∪B = {〈x, µ
A

(x) ∨ µ
B

(x), σ
A

(x) ∨ σ
B

(x), γ
A

(x) ∧ γ
B

(x)〉 : x ∈ X};

(f) [ ]A = {〈x, µ
A

(x), σ
A

(x), 1− µ
A

(x)〉 : x ∈ X};

(g) 〈〉A = {〈x, 1− γ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.
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Definition 2.4. (Salama and Alblowi (2012)) Let {Ai : i ∈ J} be an arbitrary family of neutrosophic sets

in X. Then

(a)
⋂
Ai = {〈x,∧µ

Ai
(x),∧σ

Ai
(x),∨γ

Ai
(x)〉 : x ∈ X}.

(b)
⋃
Ai = {〈x,∨µ

Ai
(x),∨σ

Ai
(x),∧γ

Ai
(x)〉 : x ∈ X}.

Definition 2.5. (Salama and Alblowi (2012)) 0
N

= {〈x, 0, 0, 1〉 : x ∈ X} and 1
N

= {〈x, 1, 1, 0〉 : x ∈ X}.

Definition 2.6. (Dhavaseelan and S. Jafari (20xx)) A neutrosophic topology (NT) on a nonempty set X is

a family T of neutrosophic sets in X satisfying the following axioms:

(i) 0
N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case, the ordered pair (X,T ) or simply X is called a neutrosophic topological space and each neutro-

sophic set in T is called a neutrosophic open set. The complement A of a neutrosophic open set A in X is

called a neutrosophic closed set in X.

Definition 2.7. [8] Let A be a neutrosophic set in a neutrosophic topological space X. Then

Nint(A) =
⋃
{G | G is a neutrosophic open set in X and G ⊆ A} is called the neutrosophic interior of A;

Ncl(A) =
⋂
{G | G is a neutrosophic closed set in X and G ⊇ A} is called the neutrosophic closure of A.

Definition 2.8. [7] An intuitionistic fuzzy topological space (X,T ) is called intuitionistic fuzzy resolvable

if there exists an intuitionistic fuzzy dense set A in (X,T ) such that IFcl(A) = 1∼. Otherwise (X,T ) is

called intuitionistic fuzzy irresolvable.

3 NEUTROSOPHIC RESOLVABLE AND NEUTROSOPHIC IRRESOLVABLE

Definition 3.1. A neutrosophic set A in neutrosophic topological space (X,T ) is called neutrosophic dense

if there exists no neutrosophic closed set B in (X,T ) such that A ⊂ B ⊂ 1N

Definition 3.2. A neutrosophic topological space (X,T ) is called neutrosophic resolvable if there exists

a neutrosophic dense set A in (X,T ) such that Ncl(A) = 1N . Otherwise (X,T ) is called neutrosophic

irresolvable.

Example 3.1. Let X = {a, b, c}. Define the neutrosophic sets A, B and C as follows.

A = 〈x, ( a
0.6 ,

b
0.6 ,

c
0.5 ), ( a

0.6 ,
b
0.6 ,

c
0.5 ), ( a

0.3 ,
b
0.3 ,

c
0.5 )〉,

B = 〈x, ( a
0.4 ,

b
0.4 ,

c
0.5 ), ( a

0.4 ,
b
0.4 ,

c
0.5 ), ( a

0.5 ,
b
0.5 ,

c
0.4 )〉,

and

C = 〈x, ( a
0.3 ,

b
0.3 ,

c
0.4 ), ( a

0.3 ,
b
0.3 ,

c
0.4 ), ( a

0.7 ,
b
0.7 ,

c
0.6 )〉.
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Observe that T = {0N , 1N , A} is a neutrosophic topology on X. Thus (X,T ) is a neutrosophic topolog-

ical space. Now Nint(B) = 0N , Nint(C) = 0N , Nint(B) = 0N , Nint(C) = A,Ncl(B) = 1N , Ncl(C) =

1N , Ncl(B) = 1N and Ncl(C) = A. Hence there exists a neutrosophic dense set B in (X,T ) such that

Ncl(B) = 1N . Therefore the neutrosophic topological space (X,T ) is called a neutrosophic resolvable.

Example 3.2. Let X = {a, b, c}. Define the neutrosophic sets A, B and C as follows.

A = 〈x, ( a
0.6 ,

b
0.5 ,

c
0.5 ), ( a

0.6 ,
b
0.5 ,

c
0.5 ), ( a

0.4 ,
b
0.5 ,

c
0.5 )〉,

B = 〈x, ( a
0.7 ,

b
0.8 ,

c
0.6 ), ( a

0.7 ,
b
0.8 ,

c
0.6 ), ( a

0.3 ,
b
0.1 ,

c
0.3 )〉,

and

C = 〈x, ( a
0.6 ,

b
0.5 ,

c
0.5 ), ( a

0.6 ,
b
0.5 ,

c
0.5 ), ( a

0.4 ,
b
0.4 ,

c
0.4 )〉.

It can be seen that T = {0N , 1N , A} is a neutrosophic topology on X. Thus (X,T ) is a neutrosophic

topological space. Now Nint(B) = A,Nint(C) = A,Ncl(B) = 1N , Ncl(C) = 1N and Ncl(B) = 1N . Thus B

and C are neutrosophic dense set in (X,T ) such that Ncl(B) = A and Ncl(C) = A. Hence the neutrosophic

topological space (X,T ) is called a neutrosophic irresolvable.

Proposition 3.1. A neutrosophic topological space (X,T ) is a neutrosophic resolvable space iff (X,T ) has

a pair of neutrosophic dense set A1 and A2 such that A1 ⊆ A2.

Proof. Let (X,T ) be a neutrosophic topological space and (X,T ) a neutrosophic resolvable space. Suppose

that for all neutrosophic dense sets Ai and Aj , we have Ai 6⊆ Aj . Then Ai ⊃ Aj . Then Ncl(Ai) ⊃ Ncl(Aj)

which implies that 1N ⊃ Ncl(Aj). Then Ncl(Aj) 6= 1N . Also Aj ⊃ Ai, then Ncl(Aj) ⊃ Ncl(Ai) which

implies that 1N ⊃ Ncl(Ai). Therefore Ncl(Ai) 6= 1N . Hence Ncl(Ai) = 1N , but Ncl(Ai) 6= 1N for all

neutrosophic set Ai in (X,T ) which is a contradiction. Hence (X,T ) has a pair of neutrosophic dense set

A1 and A2 such that A1 ⊆ A2.

Conversely, suppose that the neutrosophic topological space (X,T ) has a pair of neutrosophic dense set

A1 and A2 such that A1 ⊆ A2. Suppose that (X,T ) is a neutrosophic irresolvable space. Then for all

neutrosophic dense sets A1 and A2 in (X,T ), we have Ncl(A1) 6= 1N . Then Ncl(A2) 6= 1N implies that

there exists a neutrosophic closed set B in (X,T ) such that A2 ⊂ B ⊂ 1N .Then A1 ⊆ A2 ⊂ B ⊂ 1N implies

that A1 ⊂ B ⊂ 1N . But this is a contradiction. Hence (X,T ) is a neutrosophic resolvable space.

Proposition 3.2. If (X,T ) is neutrosophic irresolvable iff Nint(A) 6= 0N for all neutrosophic dense set A

in (X,T ).

Proof. Since (X,T ) is a neutrosophic irresolvable space for all neutrosophic dense set A in (X,T ), Ncl(A) 6=
1N . Then Nint(A) 6= 1N which implies Nint(A) 6= 0N .

Conversely Nint(A) 6= 0N , for all neutrosophic dense set A in (X,T ). Suppose that (X,T ) is neutrosophic

resolvable. Then there exists a neutrosophic dense set A in (X,T ) such that Ncl(A) = 1N . This implies that

Nint(A) = 1N which again implies Nint(A) = 0N . But this is a contradiction. Hence (X,T ) is neutrosophic

irresolvable space.
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Definition 3.3. A neutrosophic topological space (X,T ) is called a neutrosophic submaximal space if for

each neutrosophic set A in (X,T ), Ncl(A) = 1N .

Proposition 3.3. If the neutrosophic topological space (X,T ) is neutrosophic submaximal, then (X,T ) is

neutrosophic irresolvable.

Proof. Let (X,T ) be a neutrosophic submaximal space. Assume that (X,T ) is a neutrosophic resolvable

space. Let A be a neutrosophic dense set in (X,T ). Then Ncl(A) = 1N . Hence Nint(A) = 1N which implies

that Nint(A) = 0N . Then A 6∈ T . This is a contradiction. Hence (X,T ) is neutrosophic irresolvable space.

The converse of Proposition 3.3 is not true. See Example 3.2.

Definition 3.4. A neutrosophic topological space (X,T ) is called a maximal neutrosophic irresolvable space

if (X,T ) is neutrosophic irresolvable and every neutrosophic dense set A of (X,T ) is neutrosophic open.

Example 3.3. Let X = {a, b, c}. Define the neutrosophic sets A,B,A ∩B and A ∪B as follows.

A = 〈x, ( a
0.5 ,

b
0.4 ,

c
0.5 ), ( a

0.5 ,
b
0.4 ,

c
0.5 ), ( a

0.4 ,
b
0.4 ,

c
0.4 )〉,

B = 〈x, ( a
0.4 ,

b
0.5 ,

c
0.5 ), ( a

0.4 ,
b
0.5 ,

c
0.5 ), ( a

0.5 ,
b
0.5 ,

c
0.5 )〉,

A ∩B = 〈x, ( a
0.4 ,

b
0.4 ,

c
0.5 ), ( a

0.4 ,
b
0.4 ,

c
0.5 ), ( a

0.5 ,
b
0.5 ,

c
0.5 )〉,

and

A ∪B = 〈x, ( a
0.5 ,

b
0.5 ,

c
0.5 ), ( a

0.5 ,
b
0.5 ,

c
0.5 ), ( a

0.4 ,
b
0.4 ,

c
0.4 )〉.

It is obvious that T = {0N , 1N , A,B,A ∩ B,A ∪ B} is a neutrosophic topology on X. Thus (X,T ) is a

neutrosophic topological space. Now Nint(A) = 0N , Nint(B) =
⋃
{0N , B,A∩B} = B, Nint(A ∪B) = 0N ,

Nint(A ∩B) =
⋃
{0N , B,A ∩ B} = B and Ncl(A) = 1N ,Ncl(B) = B, Ncl(A ∪ B) = 1N , Ncl(A ∩ B) =

B, Ncl(A ∪B) =
⋂
{1N , A ∪B,B,A ∩B} = A ∪B, Ncl(A) =

⋂
{1N , A,A ∩B} = A, Ncl(0N ) 6= 1N .

Hence (X,T ) is a neutrosophic irresolvable and every neutrosophic dense set of (X,T ) is neutrosophic open.

Therefore, (X,T ) is a maximally neutrosophic irresolvable space.

4 NEUTROSOPHIC OPEN HEREDITARILY IRRESOLVABLE

Definition 4.1. (X,T ) is said to be neutrosophic open hereditarily irresolvable if Nint(Ncl(A)) 6= 0N and

Nint(A) 6= 0N , for any neutrosophic set A in (X,T ).

Example 4.1. Let X = {a, b, c}. Define the neutrosophic sets A1, A2 and A3 as follows.

A = 〈x, ( a
0.4 ,

b
0.4 ,

c
0.4 ), ( a

0.4 ,
b
0.4 ,

c
0.4 ), ( a

0.5 ,
b
0.5 ,

c
0.5 )〉,

A = 〈x, ( a
0.6 ,

b
0.5 ,

c
0.4 ), ( a

0.6 ,
b
0.5 ,

c
0.4 ), ( a

0.4 ,
b
0.5 ,

c
0.4 )〉,

and

A = 〈x, ( a
0.4 ,

b
0.4 ,

c
0.5 ), ( a

0.4 ,
b
0.4 ,

c
0.5 ), ( a

0.4 ,
b
0.4 ,

c
0.5 )〉.
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Clearly T = {0N , 1N , A1, A2} is a neutrosophic topology on X. Thus (X,T ) is a neutrosophic topological

space. Now Ncl(A1) = A1;Ncl(A2) = 1N and Nint(A3) = A1. Also Nint(Ncl(A1)) = Nint(A1) =

A1 6= 0N and Nint(A1) = A1 6= 0N , Nint(Ncl(A2)) = Nint(1N ) = 1N 6= 0N and Nint(A2) = A2 6= 0N ,

Nint(Ncl(A3)) = Nint(A1) = A1 6= 0N and Nint(A3) = A1 6= 0N and Nint(Ncl(A3)) = Nint(A1) =

A1 6= 0N and Nint(A3) = A1 6= 0N . Hence if Nint(Ncl(A)) 6= 0N , then Nint(A) 6= 0N for any non zero

neutrosophic set A in (X,T ). Thus, (X,T ) is a neutrosophic open hereditarily irresolvable space.

Proposition 4.1. Let (X,T ) be a neutrosophic topological space. If (X,T ) is neutrosophic open hereditarily

irresolvable, then (X,T ) is neutrosophic irresolvable

Proof. Let A be a neutrosophic dense set in (X,T ). Then Ncl(A) = 1N which implies that Nint(Ncl(A)) =

1N 6= 0N . Since (X,T ) is neutrosophic open hereditarily irresolvable, we have Nint(A) 6= 0N . Therefore by

Proposition 3.2 Nint(A) 6= 0N for all neutrosophic dense set in (X,T ) implies that (X,T ) is neutrosophic

irresolvable.

The converse of Proposition 4.1 is not true. See Example 4.2

Example 4.2. Let X = {a, b, c}. Define the neutrosophic sets A, B and C as follows.

A = 〈x, ( a
0.3 ,

b
0.3 ,

c
0.4 ), ( a

0.3 ,
b
0.3 ,

c
0.4 ), ( a

0.5 ,
b
0.5 ,

c
0.5 )〉,

B = 〈x, ( a
0.4 ,

b
0.5 ,

c
0.4 ), ( a

0.4 ,
b
0.5 ,

c
0.4 ), ( a

0.4 ,
b
0.4 ,

c
0.4 )〉,

and

C = 〈x, ( a
0.4 ,

b
0.4 ,

c
0.4 ), ( a

0.4 ,
b
0.4 ,

c
0.4 ), ( a

0.3 ,
b
0.3 ,

c
0.3 )〉.

It is obvious that T = {0N , 1N , A,B} is a neutrosophic topology on X. Thus (X,T ) is a neutrosophic

topological space. Now C and 1N are neutrosophic dense sets in (X,T ). Then Nint(C) = A 6= 0N and

Nint(1N ) 6= 0N . Hence (X,T ) is a neutrosophic irresolvable. But Nint(Ncl(C)) = Nint(A) = A 6= 0N and

Nint(C) = 0N . Therefore, (X,T ) is not a neutrosophic open hereditarily irresolvable space.

Proposition 4.2. Let (X,T ) be a neutrosophic open hereditarily irresolvable. Then Nint(A) 6⊆ Nint(B)

for any two neutrosophic dense sets A and B in (X,T ).

Proof. Let A and B be any two neutrosophic dense sets in (X,T ). Then Ncl(A) = 1N and Ncl(B) = 1N

implies that Nint(Ncl(A)) 6= 0N and Nint(Ncl(B)) 6= 0N . Since (X,T ) is neutrosophic open hereditarily

irresolvable, Nint(A) 6= 0N and Nint(B) 6= 0N . Hence by Proposition 3.1, A 6⊆ B. Therefore Nint(A) ⊆
A 6⊆ B ⊆ Nint(B). Hence we have Nint(A) ⊆ Nint(B) for any two neutrosophic dense sets A and B in

(X,T ).

Proposition 4.3. Let (X,T ) be a neutrosophic topological space. If (X,T ) is neutrosophic open hereditarily

irresolvable, then Nint(A) = 0N for any nonzero neutrosophic dense set A in (X,T ) which implies that

Nint(Ncl(A)) = 0N .

Proof. Let A be a neutrosophic set in (X,T ) such that Nint(A) = 0N . We claim that Nint(Ncl(A)) = 0N .

Suppose that Nint(Ncl(A)) = 0N . Since (X,T ) is neutrosophic open hereditarily irresolvable, we have

Nint(A) 6= 0N which is a contradiction to Nint(A) = 0N . Hence Nint(Ncl(A)) = 0N .
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Proposition 4.4. Let (X,T ) be a neutrosophic topological space. If (X,T ) is neutrosophic open hereditarily

irresolvable, then Ncl(A) = 1N for any nonzero neutrosophic dense set A in (X,T ) which implies that

Ncl(Nint(A)) = 0N .

Proof. Let A be a neutrosophic set in (X,T ) such that Ncl(A) = 1N . Then we have Ncl(A) = 0N which

implies that Nint(A) = 0N . Since (X,T ) is neutrosophic open hereditarily irresolvable by Proposition 4.3.

We have Nint(Ncl(A)) = 0N . Therefore Ncl(Nint(A)) = 0N implies that Ncl(Nint(A)) = 1N .

5 SOMEWHAT NEUTROSOPHIC CONTINUOUS AND SOMEWHAT NEUTROSOPHIC

OPEN

Definition 5.1. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. A function f : (X,T )→
(Y, S) is called somewhat neutrosophic continuous if for A ∈ S and f−1(A) 6= 0N , there exists a B ∈ T such

that B 6= 0N and B ⊆ f−1(A).

Definition 5.2. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. A function f : (X,T )→
(Y, S) is called somewhat neutrosophic open if for A ∈ T and A 6= 0N , there exists a B ∈ S such that B 6= 0N

and B ⊆ f(A).

Proposition 5.1. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If the function f :

(X,T ) → (Y, S) is somewhat neutrosophic continuous and injective. If Nint(A) = 0N for any nonzero

neutrosophic set A in (X,T ), then Nint(f(A)) = 0N in (Y, S).

Proof. Let A be a nonzero neutrosophic set in (X,T ) such that Nint(A) = 0N . Now we prove that

Nint(f(A)) = 0N . Suppose that Nint(f(A)) 6= 0N in (Y, S). Then there exists a nonzero neutrosophic

set B in (Y, S) such that B ⊆ f(A). Thus, we have f−1(B) ⊆ f−1(f(A)). Since f is somewhat neutrosophic

continuous, there exists a C ∈ T such that C 6= 0N and C ⊆ f−1(B). Hence C ⊆ f−1(B) ⊆ A which implies

that Nint(A) 6= 0N . This is a contradiction. Hence Nint(f(A)) = 0N in (Y, S).

Proposition 5.2. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If the function f :

(X,T ) → (Y, S) is somewhat neutrosophic continuous, injective and Nint(Ncl(A)) = 0N for any nonzero

neutrosophic set A in (X,T ), then Nint(Ncl(f(A))) = 0N in (Y, S).

Proof. Let A be a nonzero neutrosophic set in (X,T ) such that Nint(Ncl(A)) = 0N . We claim that

Nint(Ncl(f(A))) = 0N in (Y, S). Suppose that Nint(Ncl(f(A))) 6= 0N in (Y, S). Then Ncl(f(A)) 6= 0N

and Ncl(f(A)) 6= 0N . Now Ncl(f(A)) 6= 0N ∈ S. Since f is somewhat neutrosophic continuous, there exists

a B ∈ T , such that B 6= 0N and B ⊆ f−1(Ncl(f(A))). Observe that B ⊆ f−1(Ncl(f(A))) which implies

that f−1(Ncl(f(A))) ⊆ B. Since f is injective, thus A ⊆ f−1(f(A) ⊆ f−1(Ncl(f(A))) ⊆ B which implies

that A ⊆ B. Therefore B ⊆ A. This implies that Nint(A) 6= 0N . Let Nint(A) = C 6= 0N . Then we have

Ncl(Nint(A)) = Ncl(C) 6= 1N which implies that Nint(Ncl(A)) 6= 0N . But this is a contradiction. Hence

Nint(Ncl(f(A))) = 0N in (Y, S).
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Proposition 5.3. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If the function f :

(X,T ) → (Y, S) is somewhat neutrosophic open and Nint(A) = 0N for any nonzero neutrosophic set A in

(Y, S), then Nint(f−1(A)) = 0N in (X,T ).

Proof. Let A be a nonzero neutrosophic set in (Y, S) such thatNint(A) = 0N . We claim thatNint(f−1(A)) =

0N in (X,T ). Suppose that Nint(f−1(A)) 6= 0N in (X,T ). Then there exists a nonzero neutrosophic open

set B in (X,T ) such that B ⊆ f−1(A). Thus, we have f(B) ⊆ f(f−1(A)) ⊆ A. This implies that f(B) ⊆ A.

Since f is somewhat neutrosophic open, there exists a C ∈ S such that C 6= 0N and C ⊆ f(B). There-

fore C ⊆ f(B) ⊆ A which implies that C ⊆ A. Hence Nint(A) 6= 0N which is a contradiction. Hence

Nint(f−1(A)) = 0N in (X,T ).

Proposition 5.4. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. Let (X,T ) be a

neutrosophic open hereditarily irresolvable space. If f : (X,T ) → (Y, S) is somewhat neutrosophic open,

somewhat neutrosophic continuous and a bijective function, then (Y, S) is a neutrosophic open hereditarily

space.

Proof. Let A be a nonzero neutrosophic set in (Y, S) such that Nint(A) = 0N . Now Nint(A) = 0N

and f is somewhat neutrosophic open which implies Nint(f−1(A)) = 0N in (X,T ) by Proposition 5.3.

Since (X,T ) is a neutrosophic open hereditarily irresolvable space, we have Nint(Ncl(f−1(A))) = 0N in

(X,T ) by Proposition 4.3. Since Nint(Ncl(f−1(A))) = 0N and f is somewhat neutrosophic continuous by

Proposition 5.2, we have that Nint(Ncl(f(f−1(A)))) = 0N . Since f is onto, thus NintNcl(A) = 0N . Hence

by Proposition 4.3. (Y, S) is a neutrosophic open hereditarily irresolvable space.
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ABSTRACT

In this paper, we introduce the concepts of neutrosophic rare α-continuous, neutrosophic

rarely continuous, neutrosophic rarely pre-continuous, neutrosophic rarely semi-continuous

are introduced and studied in light of the concept of rare set in neutrosophic setting.

KEYWORDS: Neutrosophic rare set; neutrosophic rarely α-continuous; neutrosophic rarely

pre-continuous; neutrosophic almost α-continuous; neutrosophic weekly α-continuous; neu-

trosophic rarely semi-continuous.

1 INTRODUCTION AND PRELIMINARIES

The study of fuzzy sets was initiated by Zadeh (1965). Thereafter the paper of Chang (1968)

paved the way for the subsequent tremendous growth of the numerous fuzzy topological

concepts. Currently Fuzzy Topology has been observed to be very beneficial in fixing many

realistic problems. Several mathematicians have tried almost all the pivotal concepts of

General Topology for extension to the fuzzy settings. In 1981, Azad gave fuzzy version of

the concepts given by Levine 1961; 1963 and thus initiated the study of weak forms of several

notions in fuzzy topological spaces. Popa (1979) introduced the notion of rare continuity

as a generalization of weak continuity (Levine, 1961) which has been further investigated

by Long and Herrington (1982) and Jafari (1995; 1997). Noiri (1987) introduced and
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investigated weakly α-continuity as a generalization of weak continuity. He also introduced

and investigated almost α-continuity (Noiri, 1988). The concepts of Rarely α-continuity

was introduced by Jafari (2005). The concepts of fuzzy rare α-continuity and intuitionistic

fuzzy rare α-continuity were introduced by Dhavaseelan and Jafari (n.d.-b, n.d.-c). After the

advent of the concepts of neutrosophy and neutrosophic set introduced by Smarandachethe

(1999; 2002), the concepts of neutrosophic crisp set and neutrosophic crisp topological spaces

were introduced by Salama and Alblowi (2012).

The purpose of the present paper is to introduce and study the concepts of neutrosophic

rare α-continuous functions, neutrosophic rarely continuous functions, neutrosophic rarely

pre-continuous functions and neutrosophic rarely semi-continuous functions in light of the

concept of rare set in a neutrosophic setting.

Definition 1.1. Let X be a nonempty fixed set. A neutrosophic set [briefly NS] A is an object

having the form A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}, where µ
A

(x), σ
A

(x) and γ
A

(x) which

represents the degree of membership function (µ
A

(x)), the degree of indeterminacy (namely

σ
A

(x)) and the degree of nonmembership (γ
A

(x)), respectively, of each element x ∈ X to the

set A.

Remark 1.1. (1) A neutrosophic set A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X} can be

identified to an ordered triple 〈µ
A
, σ

A
, γ

A
〉 in ]0−, 1+[ on X.

(2) For the sake of simplicity, we shall use the symbol A = 〈µ
A
, σ

A
, γ

A
〉 for the neutrosophic

set A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 1.2. Let X be a nonempty set and the neutrosophic sets A and B in the form

A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}, B = {〈x, µ
B

(x), σ
B

(x), γ
B

(x)〉 : x ∈ X}. Then

(a) A ⊆ B iff µ
A

(x) ≤ µ
B

(x), σ
A

(x) ≤ σ
B

(x) and γ
A

(x) ≥ γ
B

(x) for all x ∈ X;

(b) A = B iff A ⊆ B and B ⊆ A;

(c) Ā = {〈x, γ
A

(x), σ
A

(x), µ
A

(x)〉 : x ∈ X}; [complement of A]

(d) A ∩B = {〈x, µ
A

(x) ∧ µ
B

(x), σ
A

(x) ∧ σ
B

(x), γ
A

(x) ∨ γ
B

(x)〉 : x ∈ X};

(e) A ∪B = {〈x, µ
A

(x) ∨ µ
B

(x), σ
A

(x) ∨ σ
B

(x), γ
A

(x) ∧ γ
B

(x)〉 : x ∈ X};

(f) [ ]A = {〈x, µ
A

(x), σ
A

(x), 1− µ
A

(x)〉 : x ∈ X};

(g) 〈〉A = {〈x, 1− γ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 1.3. Let {Ai : i ∈ J} be an arbitrary family of neutrosophic sets in X. Then

(a)
⋂
Ai = {〈x,∧µ

Ai
(x),∧σ

Ai
(x),∨γ

Ai
(x)〉 : x ∈ X};

(b)
⋃
Ai = {〈x,∨µ

Ai
(x),∨σ

Ai
(x),∧γ

Ai
(x)〉 : x ∈ X}.
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Since our main purpose is to construct the tools for developing neutrosophic topological

spaces, we must introduce the neutrosophic sets 0
N

and 1
N

in X as follows:

Definition 1.4. 0
N

= {〈x, 0, 0, 1〉 : x ∈ X} and 1
N

= {〈x, 1, 1, 0〉 : x ∈ X}.

Definition 1.5. (Dhavaseelan & Jafari, n.d.-a) A neutrosophic topology (briefly NT) on a

nonempty set X is a family T of neutrosophic sets in X satisfying the following axioms:

(i) 0
N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case the ordered pair (X,T ) or simply X is called a neutrosophic topological space

(briefly NTS) and each neutrosophic set in T is called a neutrosophic open set (briefly NOS).

The complement A of a NOS A in X is called a neutrosophic closed set (briefly NCS) in X.

Definition 1.6. (Dhavaseelan & Jafari, n.d.-a) Let A be a neutrosophic set in a neutro-

sophic topological space X. Then

Nint(A) =
⋃
{G | G is a neutrosophic open set in X and G ⊆ A} is called the neutro-

sophic interior of A;

Ncl(A) =
⋂
{G | G is a neutrosophic closed set in X and G ⊇ A} is called the neutro-

sophic closure of A.

Definition 1.7. (Dhavaseelan & Jafari, n.d.-a) Let X be a nonempty set. If r, t, s be

real standard or non standard subsets of ]0−, 1+[, then the neutrosophic set xr,t,s is called a

neutrosophic point(briefly NP )in X given by

xr,t,s(xp) =

(r, t, s), if x = xp

(0, 0, 1), if x 6= xp

for xp ∈ X is called the support of xr,t,s, where r denotes the degree of membership value ,

t the degree of indeterminacy and s the degree of non-membership value of xr,t,s.

Definition 1.8. (Dhavaseelan & Jafari, n.d.-b) An intuitionistic fuzzy set R is called intu-

itionistic fuzzy rare set if IF int(R) = 0∼.

Definition 1.9. (Dhavaseelan & Jafari, n.d.-b) An intuitionistic fuzzy set R is called intu-

itionistic fuzzy nowhere dense set if IF int(IFcl(R)) = 0∼.

2 MAIN RESULTS

Definition 2.1. A neutrosophic set A in a neutrosophic topological space (X,T ) is called
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1) a neutrosophic semiopen set (briefly NSOS) if A ⊆ Ncl(Nint(A)).

2) a neutrosophic α open set (briefly NαOS) if A ⊆ Nint(Ncl(Nint(A))).

3) a neutrosophic preopen set (briefly NPOS) if A ⊆ Nint(Ncl(A)).

4) a neutrosophic regular open set (briefly NROS) if A = Nint(Ncl(A)).

5) a neutrosophic semipreopen or β open set (briefly NβOS) if A ⊆ Ncl(Nint(Ncl(A))).

A neutrosophic set A is called a neutrosophic semiclosed set, neutrosophic α-closed set, neu-

trosophic preclosed set, neutrosophic regular closed set and neutrosophic β-closed set (briefly

NSCS, NαCS, NPCS, NRCS and NβCS, resp.), if the complement of A is a neutrosophic

semiopen set, neutrosophic α-open set, neutrosophic preopen set, neutrosophic regular open

set, and neutrosophic β-open set, respectively.

Definition 2.2. Let a neutrosophic set A of a neutrosophic topological space (X,T ). Then

neutrosophic α-closure of A (briefly Nclα(A)) is defined as Nclα(A) =
⋂
{K| K is a neutro-

sophic α closed set in X and A ⊆ K}.

Definition 2.3. (Jun & Song, 2005) Let a neutrosophic set A of a neutrosophic topological

space (X,T ). Then neutrosophic α interior of A (briefly Nintα(A)) is defined as Nintα(A) =⋃
{K| K is a neutrosophic α open set in X and K ⊆ A}.

Definition 2.4. A neutrosophic set R is called neutrosophic rare set if Nint(R) = 0
N

.

Definition 2.5. A neutrosophic set R is called neutrosophic nowhere dense set if

Nint(Ncl(R)) = 0
N

.

Definition 2.6. Let (X,T ) and (Y, S) be two neutrosophic topological spaces. A function

f : (X,T )→ (Y, S) is called

(i) neutrosophic α-continuous if for each neutrosophic point xr,t,s in X and each neutro-

sophic open set G in Y containing f(xr,t,s), there exists a neutrosophic α open set U

in X such that f(U) ≤ G.

(ii) neutrosophic almost α-continuous if for each neutrosophic point xr,t,s in X and each

neutrosophic open set G containing f(xr,t,s), there exists a neutrosophic α open set U

such that f(U) ≤ Nint(Ncl(G)).

(iii) neutrosophic weakly α-continuous if for each neutrosophic point xr,t,s in X and each

neutrosophic open set G containing f(xr,t,s), there exists a neutrosophic α open set U

such that f(U) ≤ Ncl(G).

Definition 2.7. Let (X,T ) and (Y, S) be two neutrosophic topological spaces. A function

f : (X,T )→ (Y, S) is called
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(i) neutrosophic rarely α-continuous if for each neutrosophic point xr,t,s in X and each

neutrosophic open set G in (Y, S) containing f(xr,t,s), there exist a neutrosophic rare

set R with G ∩ Ncl(R) = 0
N

and neutrosophic α open set U in (X,T ) such that

f(U) ≤ G ∪R.

(ii) neutrosophic rarely continuous if for each neutrosophic point xr,t,s in X and each

neutrosophic open set G in (Y, S) containing f(xr,t,s), there exist a neutrosophic rare set

R with G∩Ncl(R) = 0
N

and neutrosophic open set U in (X,T ) such that f(U) ≤ G∪R.

(iii) neutrosophic rarely precontinuous if for each neutrosophic point xr,t,s in X and each

neutrosophic open set G in (Y, S) containing f(xr,t,s), there exist a neutrosophic rare

set R with G ∩ Ncl(R) = 0
N

and neutrosophic preopen set U in (X,T ) such that

f(U) ≤ G ∪R.

(iv) neutrosophic rarely semi-continuous if for each neutrosophic point xr,t,s in X and each

neutrosophic open set G in (Y, S) containing f(xr,t,s), there exist a neutrosophic rare

set R with G ∩ Ncl(R) = 0
N

and neutrosophic semiopen set U in (X,T ) such that

f(U) ≤ G ∪R.

Example 2.1. Let X = {a, b, c}. Define the neutrosophic sets A, B and C as follows:

A = 〈x, (a
0
, b
0
, c
1
), (a

0
, b
0
, c
1
), (a

1
, b
1
, c
0
)〉, B = 〈x, (a

1
, b
0
, c
0
), (a

1
, b
0
, c
0
), (a

0
, b
1
, c
1
)〉 and

C = 〈x, (a
0
, b
1
, c
0
), (a

0
, b
1
, c
0
), (a

1
, b
0
, c
1
)〉. Then T = {0

N
, 1

N
, C} and S = {0

N
, 1

N
, A,B,A ∪ B}

are neutrosophic topologies on X. Let (X,T ) and (X,S) be neutrosophic topological spaces.

Define f : (X,T ) → (X,S) as a identity function. Clearly f is neutrosophic rarely α-

continuous.

Proposition 2.1. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. For a

function f : (X,T )→ (Y, S) the following statements are equivalents:

(i) The function f is neutrosophic rarely α-continuous at xr,t,s in (X,T ).

(ii) For each neutrosophic open set G containing f(xr,t,s), there exists a neutrosophic α

open set U in (X,T ) such that Nint(f(U) ∩G) = 0
N

.

(iii) For each neutrosophic open set G containing f(xr,t,s), there exists a neutrosophic α

open set U in (X,T ) such that Nint(f(U)) ≤ Ncl(G).

(iv) For each neutrosophic open set G in (Y, S) containing f(xr,t,s), there exists a neutro-

sophic rare set R with G ∩Ncl(R) = 0
N

such that xr,t,s ∈ Nintα(f−1(G ∪R)).

(v) For each neutrosophic open set G in (Y, S) containing f(xr,t,s), there exists a neutro-

sophic rare set R with Ncl(G) ∩R = 0
N

such that xr,t,s ∈ Nintα(f−1(Ncl(G) ∪R))

(vi) For each neutrosophic regular open set G in (Y, S) containing f(xr,t,s), there exists a

neutrosophic rare set R with Ncl(G) ∩R = 0
N

such that xr,t,s ∈ Nintα(f−1(G ∪R))
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Proof. (i) ⇒ (ii) Let G be a neutrosophic open set in (Y, S) containing f(xr,t,s). By

f(xr,t,s) ∈ G ≤ Nint(Ncl(G)) and Nint(Ncl(G)) containing f(xr,t,s), there exists a neu-

trosophic rare set R with Nint(Ncl(G)) ∩ Ncl(R) = 0
N

and a neutrosophic α open set

U in (X,T ) containing xr,t,s such that f(U) ≤ Nint(Ncl(G)) ∪ R. We have Nint(f(U) ∩
G)Nint(G) ≤ Nint(Ncl(G) ∪R) ∩ (Ncl(G)) ≤ Ncl(G) ∪Nint(R) ∩ (Ncl(G)) = 0

N
.

(ii)⇒ (iii) Obvious.

(iii)⇒ (i) Let G be a neutrosophic open set in (Y, S) containing f(xr,t,s). Then by (iii),

there exists a neutrosophic α-open set U containing xr,t,s such that Nint(f(U) ≤ Ncl(G).

We have f(U) = (f(U)∩ (Nint(f(U))))∪Nint(f(U)) < (f(U)∩ (Nint(f(U))))∪Ncl(G) =

(f(U)∩(Nint(f(U))))∪G∪(Ncl(G)∩G) = (f(U)∩(Nint(f(U)))∩G)∪G∪(Ncl(G)∩G). Set

R1 = f(U)∩(Nint(f(U)))∩G and R2 = Ncl(G)∩G. Then R1 and R2 are neutrosophic rare

sets. More R = R1∪R2 is a neutrosophic set such that Ncl(R)∩G = 0
N

and f(U) ≤ G∪R.

This show that f is neutrosophic rarely α-continuous.

(i)⇒ (iv) Suppose that G be a neutrosophic open set in (Y, S) containing f(xr,t,s). Then

there exists a neutrosophic rare set R with G∩Ncl(R) = 0
N

and U be a neutrosophic α-open

set in (X,T ) containing xr,t,s such that f(U) ≤ G∪R. It follows that xr,t,s ∈ U ≤ f−1(G∪R).

This implies that xr,t,s ∈ Nintα(f−1(G ∪R)).

(iv) ⇒ (v) Suppose that G be a neutrosophic open set in (Y, S) containing f(xr,t,s).

Then there exists a neutrosophic rare set R with G ∩ Ncl(R) = 0
N

such that xr,t,s ∈
Nintα(f−1(G ∪ R)). Since G ∩Ncl(R) = 0

N
,R ≤ G, where G = (Ncl(G)) ∪ (Ncl(G) ∩G).

Now, we have R ≤ R∪(Ncl(G))∪(Ncl(G)∩G). Now, R1 = R∩(Ncl(G)). It follows that R1

is a neutrosophic rare set with Ncl(G) ∩ R1 = 0
N

. Therefore xr,t,s ∈ Nintα(f−1(G ∪ R)) ≤
Nintα(f−1(G ∪R1)).

(v)⇒ (vi) Assume thatG be a neutrosophic regular open set in (Y, S) containing f(xr,t,s).

Then there exists a neutrosophic rare set R with Ncl(G) ∩ R = 0
N

such that xr,t,s ∈
Nintα(f−1(Ncl(G)∪R)). Now R1 = R∪ (Ncl(G)∪G). It follows that R1 is a neutrosophic

rare set and (G∩Ncl(R1)) = 0
N

. Hence xr,t,s ∈ Nintα(f−1(Ncl(G)∪R)) = Nintα(f−1(G∪
(Ncl(G) ∩G)) ∪R) = Nintα(f−1(G ∪R1)). Therefore xr,t,s ∈ Nintα(f−1(G ∪R1)).

(vi)⇒ (ii) Let G be a neutrosophic open set in (Y, S) containing f(xr,t,s). By f(xr,t,s) ∈
G ≤ Nint(Ncl(G)) and the fact that Nint(Ncl(G)) is a neutrosophic regular open in (Y, S),

there exists a neutrosophic rare set R and Nint(Ncl(G)) ∩Ncl(R) = 0
N

, such that xr,t,s ∈
Nintα(f−1(Nint(Ncl(G)) ∪ R). Let U = Nintα(f−1(Nint(Ncl(G)) ∪ R). Hence U is a

neutrosophic α-open set in (X,T ) containing xr,t,s and therefore f(U) ≤ Nint(Ncl(G))∪R.

Hence, we have Nint(f(U) ∩G) = 0
N
.

Proposition 2.2. Let (X,T ) and (Y, S) be any two neutrosophic topological space. Then

a function f : (X,T )→ (Y, S) is a neutrosophic rarely α-continuous if and only if f−1(G) ≤
Nintα(f−1(G ∪ R)) for every neutrosophic open set G in (Y, S), where R is a neutrosophic

rare set with Ncl(R) ∩G = 0
N

.

New Trends in Neutrosophic Theory and Applications. Volume II

341



Proof. Suppose that G be a neutrosophic rarely α-open set in (Y, S) containing f(xr,t,s).

Then G ∩ Ncl(R) = 0
N

and U be a neutrosophic α-open set in (X,T ) containing xr,t,s,

such that f(U) ≤ G ∪ R. It follows that xr,t,s ∈ U ≤ f−1(G ∪ R). This implies that

f−1(G) ≤ Nintα(f−1(G ∪R)).

Definition 2.8. A function f : (X,T ) → (Y, S) is neutrosophic Iα-continuous at xr,t,s

in (X,T ) if for each neutrosophic open set G in (Y, S) containing f(xr,t,s), there exists a

neutrosophic α-open set U containing xr,t,s, such that Nint(f(U)) ≤ G.

If f has this property at each neutrosophic point xr,t,s in (X,T ), then we say that f is

neutrosophic Iα-continuous on (X,T ).

Example 2.2. Let X = {a, b, c}. Define the neutrosophic sets A and B as follows:

A = 〈x, (a
0
, b
1
, c
0
), (a

0
, b
1
, c
0
), (a

1
, b
0
, c
1
)〉 and B = 〈x, (a

1
, b
0
, c
0
), (a

1
, b
0
, c
0
), (a

0
, b
1
, c
1
)〉. Then T =

{0
N
, 1

N
, A} and S = {0

N
, 1

N
, B} are neutrosophic topologies on X. Let (X,T ) and (X,S)

be neutrosophic topological spaces. Let f : (X,T ) → (X,S) as defined by f(a) = f(b) = b

and f(c) = c is neutrosophic Iα-continuous.

Proposition 2.3. Let (Y, S) be a neutrosophic regular space. Then the function f :

(X,T ) → (Y, S) is neutrosophic Iα continuous on X if and only if f is neutrosophic rarely

α-continuous on X.

Proof. ⇒ It is obvious.

⇐ Let f be neutrosophic rarely α-continuous on (X,T ). Suppose that f(xr,t,s) ∈ G, where

G is a neutrosophic open set in (Y, S) and a neutrosophic point xr,t,s in X. By the neu-

trosophic regularity of (Y, S), there exists a neutrosophic open set G1 in (Y, S) such that

G1 containing f(xr,t,s) and Ncl(G1) ≤ G. Since f is neutrosophic rarely α-continuous, then

there exists a neutrosophic α open set U, such that Nint(f(U)) ≤ Ncl(G1). This implies

that Nint(f(U)) ≤ G which means that f is neutrosophic Iα-continuous on X.

Definition 2.9. A function f : (X,T ) → (Y, S) is called neutrosophic pre-α-open if for

every neutrosophic α-open set U in X such that f(U) is a neutrosophic α-open in Y .

Proposition 2.4. If a function f : (X,T ) → (Y, S) is a neutrosophic pre-α-open and

neutrosophic rarely α-continuous then f is neutrosophic almost α-continuous.

Proof. suppose that a neutrosophic point xr,t,s in X and a neutrosophic open set G in Y ,

containing f(xr,t,s). Since f is neutrosophic rarely α-continuous at xr,t,s, then there exists a

neutrosophic α-open set U in X such that Nint(f(U)) ⊂ Ncl(G). Since f is neutrosophic

pre-α-open, we have f(U) in Y . This implies that f(U) ⊂ Nint(Ncl(Nint(f(U)))) ⊂
Nint(Ncl(G)). Hence f is neutrosophic almost α-continuous.

For a function f : X → Y , the graph g : X → X × Y of f is defined by g(x) = (x, f(x)),

for each x ∈ X.
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Proposition 2.5. Let f : (X,T ) → (Y, S) be any function. If the g : X → X × Y of f is

neutrosophic rarely α-continuous then f is also neutrosophic rarely α-continuous.

Proof. Suppose that a neutrosophic point xr,t,s in X and a neutrosophic open set W in

Y , containing g(xr,t,s). It follows that there exists neutrosophic open sets 1X and V in X

and Y respectively, such that (xr,t,s, f(xr,t,s)) ∈ 1X × V ⊂ W . Since f is neutrosophic

rarely α-continuous, there exists a neutrosophic α-open set G such that Nint(f(G)) ⊂
Ncl(V ). Let E = 1X ∩G. It follows that E be a neutrosophic α-open set in X and we have

Nint(g(E)) ⊂ Nint(1X × f(G)) ⊂ 1X × Ncl(V ) ⊂ Ncl(W ). Therefore g is neutrosophic

rarely α-continuous.
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ABSTRACT

In this paper we introduce the concepts of neutrosophic upper and neutrosophic lower semi-continuous

multifunctions and study some of their basic properties.

KEYWORDS: Neutrosophic topological space, semi-continuous multifunctions.

1 INTRODUCTION

There is no doubt that the theory of multifunctions plays an important role in functional

analysis and fixed point theory. It also has a wide range of applications in economic theory,

decision theory, non-cooperative games, artificial intelligence, medicine and information sci-

ences. Inspired by the research works of Smarandache (1999; 2001; 2007), we introduce

and study the notions of neutrosophic upper and neutrosophic lower semi-continuous mul-

tifunctions in this paper. Further, we present some characterizations and properties of such

notions.
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2 PRELIMINARIES

Throughout this paper, by (X, τ) or simply by X we will mean a topological space in the

classical sense, and (Y, τ1) or simply Y will stand for a neutrosophic topological space as

defined by Salama and Alblowi (2012).

Definition 1. Smarandache (1999, 2001, 2007) Let X be a non-empty fixed set. A neutro-

sophic set A is an object having the form A =< x, µA(x), σA(x), γA(x) >, where µA(x), σA(x)

and γA(x) are represent the degree of member ship function, the degree of indeterminacy, and

the degree of non-membership, respectively of each element x ∈ X to the set A.

Definition 2. (Salama & Alblowi, 2012) A neutrosophic topology on a nonempty set X is

a family τ of neutrosophic subsets of X which satisfies the following three conditions:

1. 0, 1 ∈ τ ,

2. If g, h ∈ τ , their g ∧ h ∈ τ ,

3. If fi ∈ τ for each i ∈ I, then ∨i∈Ifi ∈ τ .

The pair (X, τ) is called a neutrosophic topological space.

Definition 3. Members of τ are called neutrosophic open sets, denoted by NO(X), and com-

plement of neutrosophic open sets are called neutrosophic closed sets, where the complement

of a neutrosophic set A, denoted by Ac, is 1− A.

Neutrosophic sets in Y will be denoted by λ, γ, δ, ρ, etc., and although subsets of X will

be denoted by A,B, U, V , etc. A neutrosophic point in Y with support y ∈ Y and value

α(0 < α ≤ 1) is denoted by yα. A neutrosophic set λ in Y is said to be quasi-coincident

(q-coincident) with a neutrosophic set µ, denoted by λqµ, if and only if there exists y ∈ Y
such that λ(y)+µ(y) > 1. A neutrosophic set λ of Y is called a neutrosophic neighbourhood

of a fuzy point yα in Y if there exists a neutrosophic open set µ in Y such that yα ∈ µ ≤ λ.

The intersection of all neutrosophic closed sets of Y containing λ is called the neutrosophic

closure of λ and is denoted by Cl(λ). The union of all neutrosophic open sets contained

in λ is called the neutrosophic interior of λ and is denoted by Int(λ). The family of all

open sets of a topological space X is denoted by O(X) and O(X, x) denoted the family

{A ∈ O(X)|x ∈ A}, where x is a point of X.

Definition 4. Let (X, τ) be a topological space in the classical sense and (Y, τ1) be an neu-

trosophic topological space. F : (X, τ)→ (Y, τ1) is called a neutrosophic multifunction if and

only if for each x ∈ X,F (x) is a neutrosophic set in Y .
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Definition 5. For a neutrosophic multifunction F : (X, τ) → (Y, τ1), the upper inverse

F+(λ) and lower inverse F−(λ) of a neutrosophic set λ in Y are defined as follows:

F+(λ) = {x ∈ X|F (x) ≤ λ} and F−(λ) = {x ∈ X|F (x)qλ}.

Lemma 1. For a neutrosophic multifunction F : (X, τ) → (Y, τ1), we have F−(1 − λ) =

X − F+(λ), for any neutrosophic set λ in Y .

3 NEUTROSOPHIC SEMICONTINUOUS MULTI–

FUNCTIONS

Definition 6. A neutrosophic multifunction F : (X, τ)→ (Y, τ1) is said to be

1. neutrosophic upper semicontinuous at a point x ∈ X if for each λ ∈ NO(Y ) containing

F (x) (therefore, F (x) ≤ λ), there exists U ∈ O(X, x) such that F (U) ≤ λ (therefore

U ⊂ F+(λ)).

2. neutrosophic lower semicontinuous at a point x ∈ X if for each λ ∈ NO(Y ) with

F (x)qλ, there exists U ∈ O(X, x) such that U ⊆ F−(λ).

3. neutrosophic upper semicontinuous (neutrosophic lower semicontinuous) if it is neutro-

sophic upper semicontinuous (neutrosophic lower semicontinuous) at each point x ∈ X.

Theorem 1. The following assertions are equivalent for a neutrosophic multifunction F :

(X, τ)→ (Y, τ1):

1. F is neutrosophic upper semicontinuous;

2. For each point x of X and each neutrosophic neighbourhood λ of F (x), F+(λ) is a

neighbourhood of x;

3. For each point x of X and each neutrosophic neighbourhood λ of F (x), there exists a

neighbourhood U of x such that F (U) ≤ λ;

4. F+(λ) ∈ O(X) for oeach λ ∈ NO(Y );

5. F−(δ) is a closed set in X for each neutrosophic closed set δ of Y ;

6. Cl(F−(µ)) ⊆ F−(Cl(µ)) for each neutrosophic set µ of Y .

Proof. (1)⇒(2) Let x ∈ X and µ be a neutrosophic neighbourhood of F (x). Then there

exists λ ∈ NO(Y ) such that F (x) ≤ λ ≤ µ, By (1), there exists U ∈ O(X, x) such that

F (U) ≤ λ. Therefore x ∈ U ⊆ F+(µ) and hence F+(µ) is a neighbourhood of x.

(2)⇒(3) Let x ∈ X and λ be a neutrosophic neighbourhood of F (x). Put U = F+(λ). Then
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by (2), U is neighbourhood of x and F (U) =
∨
x∈U

F (x) ≤ λ.

(3)⇒(4) Let λ ∈ NO(Y ), we want to show that F+(λ) ∈ O(X). So let x ∈ F+(λ).

Then there exists a neighbourhood G of x such that F (G) ≤ λ. Therefore for some U ∈
O(X, x), U ⊆ G and F (U) ≤ λ. Therefore we get x ∈ U ⊆ F+(λ) and hence F+(λ) ∈ O(X).

(4)⇒(5) Let δ be a neutrosophic closed set in Y . So, we have X\F−(δ) = F+(1−δ) ∈ O(X)

and hence F−(δ) is closed set in X.

(5)⇒(6) Let µ be any neutrosophic set in Y . Since Cl(µ) is neutrosophic closed set in Y ,

F−(Cl(µ)) is closed set in X and F−(µ) ⊆ F−(Cl(µ)). Therefore, we obtain Cl(F−(µ)) ⊆
F−(Cl(µ)).

(6)⇒(1) Let x ∈ X and λ ∈ NO(Y ) with F (x) ≤ λ. Now F−(1−λ) = {x ∈ X|F (x)q(1−λ)}.
So, for x not belongs to F−(1−λ). Then, we must have F (x)~(1−λ) and this implies F (x) ≤
1− (1− λ) = λ which is true. Therefore x /∈ F−(1− λ) by (6), x /∈ Cl(F−(1− λ)) and there

exists U ∈ O(X, x) such that U∩F−(1−λ) = ∅. Therefore, we obtain F (U) =
∨
x∈U

F (x) ≤ λ.

This proves F is neutrosophic upper semicontinuous.

Theorem 2. The following statements are equivalent for a neutrosophic multifunction F :

(X, τ)→ (Y, τ1):

1. F is neutrosophic lower semicontinuous;

2. For each λ ∈ NO(Y ) and each x ∈ F−(λ), there exists U ∈ O(X, x) such that U ⊆
F−(λ);

3. F−(λ) ∈ O(X) for every λ ∈ NO(Y ).

4. F+(δ) is a closed set in X for every neutrosophic closed set δ of Y ;

5. Cl(F+(µ)) ⊆ F+(Cl(µ)) for every neutrosophic set µ of Y ;

6. F (Cl(A)) ≤ Cl(F (A)) for every subset A of X;

Proof. (1)⇒(2) Let λ ∈ NO(Y ) and x ∈ F−(λ) with F (x)qλ. Then by properties–1, there

exists U ∈ O(X, x) such that U ⊆ F−(λ).

(2)⇒(3) Let λ ∈ NO(Y ) adn x ∈ F−(λ). Then by (2), there exists U ∈ O(X, x) such

that U ⊆ F−(λ). Therefore, we have x ∈ U ⊆ Cl Int(U) ⊆ Cl Int(F−(λ)) and hence

F−(λ) ∈ O(X).

(3)⇒(4) Let δ be a neutrosophic closed in Y . So we have X\F+(δ) = F−(1 − δ) ∈ O(X)

and hence F+(δ) is closed set in X.

(4)⇒(5) Let µ be any neutrosophic set in Y . Since Cl(µ) is neutrosophic closed set in Y ,

then by (4), we have F+(Cl(µ)) is closed set in X and F+(µ) ⊆ F+(Cl(µ)). Therefore, we

obtain Cl(F+(µ)) ⊆ F+(Cl(µ)).

(5)⇒(6) Let A be any subset of X. By (5), Cl(A) ⊆ ClF+(F (A)) ⊆ F+(Cl(F (A))).
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Therefore we obtain Cl(A) ⊆ F+(ClF (A)). This implies that F (Cl(A)) ≤ ClF (A).

(6)⇒(5) Let µ be any neutrosophic set in Y . By (6), F (ClF+(µ)) ≤ Cl(F (F+(µ))) and

hence Cl(F+(µ)) ⊆ F+(Cl(F (F+(µ)))) ⊆ F+(Cl(µ)). Therefore Cl(F+(µ)) ⊆ F+(Cl(µ)).

(5)⇒(1) Let x ∈ X and λ ∈ NO(Y ) with F (x)qλ. Now, F+(1−λ) = {x ∈ X|F (x) ≤ 1−λ}.
So, for x not belongs to F+(1−λ), then we have F (x) � 1−λ and this implies that F (x)qλ.

Therefore, x /∈ F+(1−λ). Since 1−λ is neutrosophic closed set in Y , by (5), x /∈ Cl(F+(1−λ))

and there exists U ∈ O(X, x) such that ∅ = U ∩ F+(1 − λ) = U ∩ (X\F−(λ)). Therefore,

we obtain U ⊆ F−(λ). This proves F is neutrosophic lower semicontinuous.

Definition 7. For a given neutrosophic multifunction F : (X, τ) → (Y, τ1), a neutrosophic

multifunction Cl(F ) : (X, τ)→ (Y, τ1) is defined as (ClF )(x) = ClF (x) for each x ∈ X.

We use ClF and the following Lemma to obtain a characterization of lower neutrosophic

semicontinuous multifunction.

Lemma 2. If F : (X, τ)→ (Y, τ1) is a neutrosophic multifunction, then (ClF )−(λ) = F−(λ)

for each λ ∈ NO(Y ).

Proof. Let λ ∈ NO(Y ) and x ∈ (ClF )−(λ). This means that (ClF )(x)qλ. Since λ ∈
NO(Y ), we have F (x)qλ and hence x ∈ F−(λ). Therefore (ClF )−(λ) ⊆ F−(λ)−−− (∗).

Conversely, let x ∈ F−(λ) since λ ∈ NO(Y ) then F (x)qλ ⊆ (ClF )(x)qλ and hence

x ∈ (ClF )−(λ). Therefore F−(λ) ⊆ (ClF )−(λ)−−−−(∗∗).
From (∗) and (∗∗), we get (ClF )−(λ) = F−(λ).

Theorem 3. A neutrosophic multifunction F : (X, τ)→ (Y, τ1) is neutrosophic lower semi-

continuous if and only if ClF : (X, τ)→ (Y, τ1) is neutrosophic lower semicontinuous.

Proof. Suppose F is neutrosophic lower semicontinuous. Let λ ∈ NO(Y ) and F (x)qλ. This

means that x ∈ F−(λ). Then there exists U ∈ O(X, x) such that U ⊆ F−(λ). Therefore, we

have x ∈ U ⊆ Int(U) ⊆ IntF−(λ) and hence F−(λ) ∈ O(X). Then by Lemma 2, we have

U ⊆ F−(λ) = (ClF )−(λ) and (ClF )−(λ) ∈ O(X), and hence (ClF )(x)qλ. Therefore ClF is

fuzy lower semicontinuous. Conversely, suppose ClF is neutrosophic lower semicontinuous.

If for each λ ∈ NO(Y ) with (ClF )(x)qλ and x ∈ (ClF )−(λ) then there exists U ∈ O(X, x)

such that U ⊆ (ClF )−(λ). By Lemma 2 and Theorem 2, we have U ⊆ (ClF−(λ)) = F−(λ)

and F−(λ) ∈ O(X). Therefore F is neutrosophic lower semicontinuous.

Definition 8. Given a family {Fi : (X, τ)→ (Y, σ) : i ∈ I} of neutrosophic multifunctions,

we define the union ∨
i∈I
Fi and the intersection ∧

i∈I
Fi as follows: ∨

i∈I
Fi : (X, τ) → (Y, σ),

( ∨
i∈I
Fi)(x) = ∨

i∈I
Fi(x) and ∧

i∈I
Fi : (X, τ)→ (Y, σ), ( ∧

i∈I
Fi)(x) = ∧

i∈I
Fi(x).

Theorem 4. If Fi : X → Y are neutrosophic upper semi-continuous multifunctions for

i = 1, 2, ..., n, then
n
∨
i∈I
Fi is a neutrosophic upper semi-continuous multifunction.
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Proof. Let A be a neutrosophic open set of Y . We will show that (
n
∨
i∈I
Fi)

+(A) = {x ∈ X :

n
∨
i∈I
Fi(x) ⊂ A} is open in X. Let x ∈ (

n
∨
i∈I
Fi)

+(A). Then Fi(x) ⊂ A for i = 1, 2, ..., n. Since

Fi : X → Y is neutrosophic upper semi-continuous multifunction for i = 1, 2, ..., n, then

there exists an open set Ux containing x such that for all z ∈ Ux, Fi(z) ⊂ A. Let U =
n
∪
i∈I
Ux.

Then U ⊂ (
n
∨
i∈I
Fi)

+(A). Thus, (
n
∨
i∈I
Fi)

+(A) is open and hence
n
∨
i∈I
Fi is a neutrosophic upper

semi-continuous multifunction.

Lemma 3. Let {Ai}i∈I be a family of neutrosophic sets in a neutrosophic topological space

X. Then a neutrosophic point x is quasi-coincident with ∨Ai if and only if there exists an

i0 ∈ I such that xqAi0.

Theorem 5. If Fi : X → Y are neutrosophic lower semi-continuous multifunctions for

i = 1, 2, ..., n, then
n
∨
i∈I
Fi is a neutrosophic lower semi-continuous multifunction.

Proof. Let A be a neutrosophic open set of Y . We will show that (
n
∨
i∈I
Fi)
−(A) = {x ∈ X :

(
n
∨
i∈I
Fi)(x)qA} is open in X. Let x ∈ (

n
∨
i∈I
Fi)
−(A). Then (

n
∨
i∈I
Fi)(x)qA and hence Fi0(x)qA

for an i0. Since Fi : X → Y is neutrosophic lower semi-continuous multifunction, there

exists an open set Ux containing x such that for all z ∈ U , Fi0(z)qA. Then (
n
∨
i∈I
Fi)(z)qA and

hence U ⊂ (
n
∨
i∈I
Fi)
−(A). Thus, (

n
∨
i∈I
Fi)
−(A) is open and hence

n
∨
i∈I
Fi is a neutrosophic lower

semi-continuous multifunction.

Theorem 6. Let F : (X, τ)→ (Y, σ) be a neutrosophic multifunction and {Ui : i ∈ I} be an

open cover for X. Then the following are equivalent:

1. Fi = F|Ui
is a neutrosophic lower semi-continuous multifunction for all i ∈ I,

2. F is neutrosophic lower semi-continuous.

Proof. (1)⇒ (2): Let x ∈ X and A be a neutrosophic open set in Y with x ∈ F−(A). Since

{Ui : i ∈ I} is an open cover for X, then x ∈ Ui0 for an i0 ∈ I. We have F (x) = Fi0(x) and

hence x ∈ F−i0 (A). Since F|Ui0 is neutrosophic lower semi-continuous, there exists an open

set B = G ∩ Ui0 in Ui0 such that x ∈ B and F−(A) ∩ Ui0 = F|Ui
(A) ⊃ B = G ∩ Ui0, where

G is open in X. We have x ∈ B = G∩Ui0 ⊂ F−|Ui0
(A) = F−(A)∩Ui0 ⊂ F−(A). Hence, F is

neutrosophic lower semi-continuous.

(2) ⇒ (1): Let x ∈ X and x ∈ Ui. Let A be a neutrosophic open set in Y with Fi(x)qA.

Since F is lower semi-continuous and F (x) = Fi(x), there exists an open set U containing

x such that U ⊂ F−(A). Take B = Ui ∩ U . Then B is open in Ui containing x. We have

B ⊂ F−i(A). Thus Fi is a neutrosophic lower semi-continuous.

Theorem 7. Let F : (X, τ)→ (Y, σ) be a neutrosophic multifunction and {Ui : i ∈ I} be an

open cover for X. Then the following are equivalent:
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1. Fi = F|Ui
is a neutrosophic upper semi-continuous multifunction for all i ∈ I,

2. F is neutrosophic upper semi-continuous.

Proof. It is similar to that of Theorem 6.

Remark 8. A subset A of a topological space (X, τ) can be considered as a neutrosophic set

with characteristic function defined by

A(x) =

{
1 if x ∈ A

0 if x /∈ A.

Let (Y, σ) be a neutrosophic topological space. The neutrosophic sets of the form A×B with

A ∈ τ and B ∈ σ form a basis for the product neutrosophic topology τ × σ on X × Y , where

for any (x, y) ∈ X × Y , (A×B)(x, y) = min{A(x), B(y)}.

Definition 9. For a neutrosophic multifunction F : (X, τ)→ (Y, σ), the neutrosophic graph

multifunction GF : X → X × Y of F is defined by GF (x) = x1 × F (x) for every x ∈ X.

Theorem 9. If the neutrosophic graph multifunction GF of a neutrosophic multifunction

F : (X, τ) → (Y, σ) is neutrosophic lower semi-continuous, then F is neutrosophic lower

semi-continuous.

Proof. Suppose that GF is neutrosophic lower semi-continuous and x ∈ X. Let A be a

neutrosophic open set in Y such that F (x)qA. Then there exists y ∈ Y such that (F (x))(y)+

A(y) > 1. Then (GF (x))(x, y) + (X ×A)(x, y) = (F (x))(y) +A(y) > 1. Hence, GF (x)q(X ×
A). SinceGF is neutrosophic lower semi-continuous, there exists an open setB inX such that

x ∈ B and GF (b)q(X×A) for all b ∈ B. Let there exists b0 ∈ B such that F (b0)qA. Then for

all y ∈ Y , (F (b0))(y)+A(y) < 1. For any (a, c) ∈ X×Y , we have (GF (b0))(a, c) ⊂ (F (b0))(c)

and (X × A)(a, c) ⊂ A(c). Since for all y ∈ Y , (F (b0))(y) + A(y) < 1, (GF (b0))(a, c) +

(X × A)(a, c) < 1. Thus, GF (b0)q(X × A), where b0 ∈ B. This is a contradiction since

GF (b)q(X × A) for all b ∈ B. Hence, F is neutrosophic lower semi-continuous.

Theorem 10. If the neutrosophic graph multifunction GF of a neutrosophic multifunction

F : X → Y is neutrosophic upper semi-continuous, then F is neutrosophic upper semi-

continuous.

Proof. Suppose that GF is neutrosophic upper semi-continuous and let x ∈ X. Let A be

neutrosophic open in Y with F (x) ⊂ A. Then GF (x) ⊂ X × A. Since GF is neutrosophic

upper semi-continuous, there exists an open set B containing x such that GF (B) ⊂ X × A.

For any b ∈ B and y ∈ Y , we have (F (b))(y) = (GF (b))(b, y) ⊂ (X ×A)(b, y) = A(y). Then

(F (b))(y) ⊂ A(y) for all y ∈ Y . Thus, F (b) ⊂ A for any b ∈ B. Hence, F is neutrosophic

upper semi-continuous.
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Theorem 11. Let F : (X, τ)→ (Y, σ) be a neutrosophic multifunction. Then the following

are equivalent:

1. F is neutrosophic lower semi-continuous,

2. For any x ∈ X and any net (xi)i∈I converging to x in X and each neutrosophic open

set B in Y with x ∈ F−(B), the net (xi)i∈I is eventually in F−(B).

Proof. (1) ⇒ (2): Let (xi) be a net converging to x in X and B be any neutrosophic open

set in Y with x ∈ F−(B). Since F is neutrosophic lower semi-continuous, there exists an

open set A ⊂ X containing x such that A ⊂ F−(B). Since xi → x, there exists an index

i0 ∈ I such that xi ∈ A for every i ≥ i0. We have xi ∈ A ⊂ F−(B) for all i ≥ i0. Hence,

(xi)i∈I is eventually in F−(B).

(2)⇒ (1): Suppose that F is not neutrosophic lower semi-continuous. There exists a point

x and a neutrosophic open set A with x ∈ F−(A) such that B * F−(A) for any open set

B ⊂ X containing x. Let xi ∈ B and xi /∈ F−(A) for each open set B ⊂ X containing x.

Then the neighborhood net (xi) converges to x but (xi)i∈I is not eventually in F−(A). This

is a contradiction.

Theorem 12. Let F : (X, τ)→ (Y, σ) be a neutrosophic multifunction. Then the following

are equivalent:

1. F is neutrosophic upper semi-continuous,

2. For any x ∈ X and any net (xi) converging to x in X and any neutrosophic open set

B in Y with x ∈ F+(B), the net (xi) is eventually in F+(B).

Proof. The proof is similar to that of Theorem 11.

Theorem 13. The set of all points of X at which a neutrosophic multifunction F : (X, τ)→
(Y, σ) is not neutrosophic upper semi-continuous is identical with the union of the frontier

of the upper inverse image of neutrosophic open sets containing F (x).

Proof. Suppose F is not neutrosophic upper semi-continuous at x ∈ X. Then there exists

a neutrosophic open set A in Y containing F (x) such that A ∩ (X\F+(B)) 6= ∅ for every

open set A containing x. We have x ∈ Cl(X\F+(B)) = X\ Int(F+(B)) and x ∈ F+(B).

Thus, x ∈ Fr(F+(B)). Conversely, let B be a neutrosophic open set in Y containing F (x)

with x ∈ Fr(F+(B)). Suppose that F is neutrosophic upper semi-continuous at x. There

exists an open set A containing x such that A ⊂ F+(B). We have x ∈ Int(F+(B)). This is

a contradiction. Thus, F is not neutrosophic upper semi-continuous at x.

Theorem 14. The set of all points of X at which a neutrosophic multifunction F : (X, τ)→
(Y, σ) is not neutrosophic lower semi-continuous is identical with the union of the frontier

of the lower inverse image of neutrosophic closed sets which are quasi-coincident with F (x).
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Proof. It is similar to that of Theorem 13.

Definition 10. A neutrosophic set λ of a neutrosophic topological space Y is said to be

neutrosophic compact relative to Y if every cover {λα}α∈∆ of λ by neutrosophic open sets of

Y has a finite subcover {λi}ni=1 of λ.

Definition 11. A neutrosophic set λ of a neutrosophic topological space Y is said to be

neutrosophic Lindelof relative to Y if every cover {λα}α∈∆ of λ by neutrosophic open sets of

Y has a countable subcover {λn}n∈N of λ.

Definition 12. A neutrosophic topological space Y is said to be neutrosophic compact if χY

(characteristic function of Y ) is neutrosophic compact relative to Y .

Definition 13. A neutrosophic topological space Y is said to be neutrosophic Lindelof if χY

(characteristic function of Y ) is neutrosophic Lindelof relative to Y .

Definition 14. A neutrosophic multifunction F : (X, τ) → (Y, τ1) is said to be punctually

neutrosophic compact (resp. punctually neutrosophic Lindelof) if for each x ∈ X,F (x) is

neutrosophic compact (resp. neutrosophic Lindelof).

Theorem 15. Let the neutrosophic multifunction F : (X, τ) → (Y, τ1) be a neutrosophic

upper semicontinuous and F is punctually neutrosophic compact. If A is compact relative to

X, then F (A) is neutrosophic compact relative to Y .

Proof. Let {λα|α ∈ ∆} be any cover of F (Z) by neutrosophic copen sets of Y . We claim

that F (A) is neutrosophic compact relative to Y . For each x ∈ A, there exists a finite subset

∆(x) of ∆ such that F (x) ≤ ∪{λα|α ∈ ∆(x)}. Put λ(x) = ∪{λα|α ∈ ∆(x)}. Then F (x) ≤
λ(x) ∈ NO(Y ) and there exists U(x) ∈ O(X, x) such that F (U(x)) ≤ λ(x). Since {U(x)|x ∈
A} is an open cover of A there exists a finite number of A, say, x1, x2, .., xn such that

A ⊆ ∪{U(xi)|i = 1, 2, .., n}. Therefore we obtain F (A) ≤ F (
n
∪
i=1

U(xi)) ≤
n
∪
i=1

F (U(xi)) ≤
n
∪
i=1

λ(xi) ≤
n
∪
i=1

( ∪
α∈∆(xi)

λα). This shows that F (A) is neutrosophic compact relative to Y .

Theorem 16. Let the neutrosophic multifunction F : (X, τ) → (Y, τ1) be a neutrosophic

upper semicontinuous and F is punctually neutrosophic Lindelof. If A is Lindelof relative to

X, then F (A) is neutrosophic Lindelof relative to Y .

Proof. The proof is similar to that of Theorem 15
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ABSTRACT

In this paper, the concepts of generalized neutrosophic contra-continuous function, gen-

eralized neutrosophic contra-irresolute function and strongly generalized neutrosophic

contra-continuous function are introduced. Some interesting properties are also studied.

KEYWORDS: Generalized neutrosophic contra-continuity, strongly generalized neutro-

sophic contra-continuity, generalized neutrosophic contra-irresolute.

1 INTRODUCTION

The notion of a fuzzy set has influenced almost all branches of mathematics since its

introduction by Zadeh (1965). Fuzzy sets have applications in many fields such as in-

formation theory (Smets, 1981) and control theory (Sugeno, 1985). The theory of fuzzy

topological space was introduced and developed by Chang (1968) and since then vari-

ous notions in classical topology have been extended to fuzzy topological space. The

idea of “intuitionistic fuzzy set” was first published by Atanassov (1983) and many
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works by the same author and his colleagues appeared in the literature (Atanassov

(1986, 1988); Atanassov and Stoeva (1983)). Later, this concept was generalized to

”intuitionistic L–fuzzy sets” by Atanassov and Stoeva (1984). The concepts of “fuzzy

contra-continuity” was introduced by Ekici and Kerre (2006). The concepts of gener-

alized intuitionistic fuzzy closed set was introduced by Dhavaseelan et al. (2010) and

also discussed contra-continuity (Dhavaseelan et al. (2012)). After the introduction

of the concepts of neutrosophy and neutrosophic set by Smarandache (1999, 2000),

the concepts of neutrosophic crisp sets and neutrosophic crisp topological spaces were

introduced by Salama and Alblowi (2012).

In this paper, the concepts of generalized neutrosophic contra-continuous func-

tion, generalized neutrosophic contra-irresolute function and strongly generalized neut-

rosophic contra-continuous function are introduced by using the concept studied in

(Dhavaseelan et al. (20xx)). Several interesting properties and characterizations are

discussed. Further, interrelations among the concepts introduced are established with

interesting counter examples.

2 NEUTROSOPHIC TOPOLOGY

Definition 2.1. Let T,I,F be real standard or non standard subsets of ]0−, 1+[, with

supT = tsup, infT = tinf

supI = isup, infI = iinf

supF = fsup, infF = finf

n− sup = tsup + isup + fsup

n− inf = tinf + iinf + finf . T,I,F are neutrosophic components.

Definition 2.2. Let X be a nonempty fixed set. A neutrosophic set [NS for short] A is

an object having the form A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}, where µ
A

(x), σ
A

(x)

and γ
A

(x) which represents the degree of membership function (namely µ
A

(x)), the

degree of indeterminacy (namely σ
A

(x)) and the degree of nonmembership (namely

γ
A

(x)) respectively of each element x ∈ X to the set A.

Remark 2.1. (1) A neutrosophic set A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X} can be

identified to an ordered triple 〈µ
A
, σ

A
, γ

A
〉 in ]0−, 1+[ on X.

(2) For the sake of simplicity, we shall use the symbol A = 〈µ
A
, σ

A
, γ

A
〉 for the

neutrosophic set A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.
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Definition 2.3. Let X be a nonempty set and the neutrosophic sets A and B in the

form

A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}, B = {〈x, µ
B

(x), σ
B

(x), γ
B

(x)〉 : x ∈ X}. Then

(a) A ⊆ B iff µ
A

(x) ≤ µ
B

(x), σ
A

(x) ≤ σ
B

(x) and γ
A

(x) ≥ γ
B

(x) for all x ∈ X;

(b) A = B iff A ⊆ B and B ⊆ A;

(c) Ā = {〈x, γ
A

(x), σ
A

(x), µ
A

(x)〉 : x ∈ X}; [Complement of A]

(d) A ∩B = {〈x, µ
A

(x) ∧ µ
B

(x), σ
A

(x) ∧ σ
B

(x), γ
A

(x) ∨ γ
B

(x)〉 : x ∈ X};

(e) A ∪B = {〈x, µ
A

(x) ∨ µ
B

(x), σ
A

(x) ∨ σ
B

(x), γ
A

(x) ∧ γ
B

(x)〉 : x ∈ X};

(f) [ ]A = {〈x, µ
A

(x), σ
A

(x), 1− µ
A

(x)〉 : x ∈ X};

(g) 〈〉A = {〈x, 1− γ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 2.4. Let {Ai : i ∈ J} be an arbitrary family of neutrosophic sets in X.

Then

(a)
⋂
Ai = {〈x,∧µ

Ai
(x),∧σ

Ai
(x),∨γ

Ai
(x)〉 : x ∈ X};

(b)
⋃
Ai = {〈x,∨µ

Ai
(x),∨σ

Ai
(x),∧γ

Ai
(x)〉 : x ∈ X}.

Since our main purpose is to construct the tools for developing neutrosophic topo-

logical spaces, we must introduce the neutrosophic sets 0
N

and 1
N

in X as follows:

Definition 2.5. 0
N

= {〈x, 0, 0, 1〉 : x ∈ X} and 1
N

= {〈x, 1, 1, 0〉 : x ∈ X}.

Definition 2.6. [9] A neutrosophic topology (NT) on a nonempty set X is a family

T of neutrosophic sets in X satisfying the following axioms:

(i) 0
N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case the ordered pair (X,T ) or simply X is called a neutrosophic topological

space (NTS) and each neutrosophic set in T is called a neutrosophic open set (NOS).

The complement A of a NOS A in X is called a neutrosophic closed set (NCS) in X.
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Definition 2.7. [9] Let A be a neutrosophic set in a neutrosophic topological space

X. Then

Nint(A) =
⋃
{G | G is a neutrosophic open set in X and G ⊆ A} is called the

neutrosophic interior of A;

Ncl(A) =
⋂
{G | G is a neutrosophic closed set in X and G ⊇ A} is called the

neutrosophic closure of A.

Definition 2.8. Let X be a nonempty set. If r, t, s are real standard or non standard

subsets of ]0−, 1+[ then the neutrosophic set xr,t,s is called a neutrosophic point(in short

NP )in X given by

xr,t,s(xp) =

(r, t, s), if x = xp

(0, 0, 1), if x 6= xp

For xp ∈ X, it is called the support of xr,t,s, where r denotes the degree of membership

value , t denotes the degree of indeterminacy and s is the degree of non-membership

value of xr,t,s.

3 GENERALIZED NEUTROSOPHIC CONTRA-CONTINUOUS FUNCTIONS

Definition 3.1. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces.

(i) A function f : (X,T ) → (Y, S) is called neutrosophic contra-continuous if the

inverse image of every neutrosophic open set in (Y, S) is a neutrosophic closed

set in (X,T ) .

Equivalently if the inverse image of every neutrosophic closed set in (Y, S) is a

neutrosophic open set in (X,T ) .

(ii) A function f : (X,T )→ (Y, S) is called generalized neutrosophic contra-continuous

if the inverse image of every neutrosophic open set in (Y, S) is a generalized neut-

rosophic closed set in (X,T ) .

Equivalently if the inverse image of every neutrosophic closed set in (Y, S) is a

generalized neutrosophic open set in (X,T ) .

(iii) A function f : (X,T )→ (Y, S) is called generalized neutrosophic contra-irresolute

if the inverse image of every generalized neutrosophic closed set in (Y, S) is a
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generalized neutrosophic open set in (X,T ) .

Equivalently if the inverse image of every generalized neutrosophic open set in

(Y, S) is a generalized neutrosophic closed set in (X,T ) .

(iv) A function f : (X,T )→ (Y, S) is called strongly generalized neutrosophic contra-

continuous if the inverse image of every generalized neutrosophic open set in (Y, S)

is a neutrosophic closed set in (X,T ) .

Equivalently if the inverse image of every generalized neutrosophic closed set in

(Y, S) is a neutrosophic open set in (X,T ) .

Proposition 3.1. Let f : (X,T ) → (Y, S) be a bijective function. Then f is a gener-

alized neutrosophic contra-continuous function if Ncl(f(A)) ⊆ f(NGint(A)) for every

neutrosophic set A in (X,T ).

Proof. Let A be a neutrosophic closed set in (Y, S). Then Ncl(A) = A and f−1(A) is a

neutrosophic set in (X,T ). By hypothesis, Ncl(f(f−1(A))) ⊆ f(NGint(f−1(A))).

Since f is onto, f(f−1(A)) = A. Therefore, A = Ncl(A) = Ncl(f(f−1(A))) ⊆
f(NGint(f−1(A))). Now, A ⊆ f(NGint(f−1(A))), f−1(A) ⊆ f−1(f (NGint(f−1(A)))) =

NGint(f−1(A)) ⊆ f−1(A). Hence, f−1(A) is a generalized neutrosophic open set in

(X,T ). Thus, f is a generalized neutrosophic contra-continuous function.

Proposition 3.2. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces.

Let f : (X,T ) → (Y, S) be a function. Suppose that one of the following properties

hold.

(i) f(NGcl(A)) ⊆ Nint(f(A)), for each neutrosophic set A in (X,T ).

(ii) NGcl(f−1(B)) ⊆ f−1(Nint(B)), for each neutrosophic set B in (Y, S).

(iii) f−1(Ncl(B)) ⊆ NGint(f−1(B)), for each neutrosophic set B in (Y, S).

Then f is a generalized neutrosophic contra-continuous function.

Proof. (i)⇒ (ii) Let B be a neutrosophic set in (Y, S), then A = f−1(B) is a neut-

rosophic set in (X,T ). By hypothesis, f(NGcl(A)) ⊆ Nint(f(A)), f(NGcl(f−1(B)) ⊆
Nint(f(f−1(B))) ⊆ Nint(B). Now, f(NGcl(f−1(B))) ⊆ Nint(B). Therefore, NGcl(f−1(B)) ⊆
f−1(Nint(B)).
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(ii)⇒ (iii) Let B be a neutrosophic set in (Y, S), then f−1(B) is a neutrosophic

set in (X,T ). By hypothesis, NGcl(f−1(B)) ⊆ f−1(Nint(B)). Taking complement

NGcl(f−1(B)) ⊇ f−1(Nint(B)), NGint(f−1(B)) ⊇ f−1(Nint(B)), NGint(f−1(B)) ⊇
f−1(Ncl(B)).

Suppose that (iii) holds. Let A be a neutrosophic closed set in (Y, S).

Then Ncl(A) = A and f−1(A) is a neutrosophic set in (X,T ). Now, f−1(A) =

f−1(Ncl(A)) ⊆ NGint(f−1(A)) ⊆ f−1(A). Therefore, f−1(A) is a generalized neut-

rosophic open set in (X,T ). Thus, f is a generalized neutrosophic contra-continuous

function.

Proposition 3.3. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces.

Let f : (X,T ) → (Y, S) be a function. Suppose that one of the following properties

hold.

(i) f−1(NGcl(B)) ⊆ NGint(NGcl(f−1(B)) for each neutrosophic set B in (Y, S).

(ii) NGcl(NGint(f−1(B))) ⊆ f−1(NGint(B)) for each neutrosophic set B in (Y, S).

(iii) f(NGcl(NGint(A))) ⊆ NGint(f(A)) for each neutrosophic set A in (X,T ).

(iv) f(NGcl(A)) ⊆ NGint(f(A)) for each neutrosophic set A in (X,T ).

Then f is a generalized neutrosophic contra-continuous function.

Proof. (i)⇒ (ii) Let B be a neutrosophic set in (Y, S). Then f−1(B) is a neutrosophic

set in (X,T ). By hypothesis,f−1(NGcl(B)) ⊆ NGint( NGcl(f−1(B))). Taking com-

plement f−1(NGcl(B)) ⊇ NGint(NGcl(f−1(B))), f−1(NGcl(B)) ⊇NGcl(NGcl(f−1(B))),

f−1(NGint(B)) ⊇ NGcl(NGint( f−1(B))), f−1(NGint(B)) ⊇ NGcl(NGint(f−1(B))).

Thus, NGcl(NGint(f−1(B))) ⊆ f−1(NGint(B)).

(ii)⇒ (iii)Let A be a neutrosophic set in (X, T ). Put B = f(A), then A ⊆ f−1(B).

By hypothesis, NGcl(NGint(A)) ⊆
NGcl(NGint(f−1(B))) ⊆ f−1(NGint(B)), NGcl(NGint(A)) ⊆ f−1(NGint(B)). There-

fore, f(NGcl( NGint(A))) ⊆ NGint(B) = NGint(f(A)). This means that f(NGcl(NGint(A)))

⊆ NGint(f(A)).

(iii)⇒ (iv) Let A be any generalized neutrosophic open set of (X,T ). Then

NGint(A) = A. By hypothesis, f(NGcl(A)) = f(NGcl(NGint(A))) ⊆ NGint(f(A)).

Thus, f(NGcl(A)) ⊆ NGint(f(A)).
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Suppose that (iv) holds. Let B be a neutrosophic open set in (Y, S). Then,

f−1(B) = A is a neutrosophic set in (X,T ). By hypothesis, f(NGcl(A)) ⊆ NGint(f(A)).

Now, f(NGcl(A)) ⊆ NGint(f(A)) ⊆ f(A), f(NGcl(A)) ⊆ f(A), NGcl(A) ⊆ f−1(f(A)) =

A. This means that NGcl(A) ⊆ A. But A ⊆ NGcl(A). Hence A = NGcl(A). Thus,

A is a generalized neutrosophic closed set in (X,T ). Hence, f is a generalized neutro-

sophic contra-continuous function.

Proposition 3.4. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If

f : (X,T )→ (Y, S) is a neutrosophic contra-continuous function then it is a generalized

neutrosophic contra-continuous function.

Proof. Let A be a neutrosophic open set in (Y, S). Since f is a neutrosophic contra-

continuous function, f−1(A) is a neutrosophic closed set in (X,T ). Every neutrosophic

closed set is a generalized neutrosophic closed set. Now, f−1(A) is a generalized neut-

rosophic closed set. Hence, f is a generalized neutrosophic contra-continuous function.

The converse of Proposition 3.4., need not be true. See Example 3.1.

Example 3.1. Let X = {a, b, c}. Define the neutrosophic sets A and B in X as follows:

A = 〈x, ( a
0.4
, b
0.5
, c
0.4

), ( a
0.4
, b
0.5
, c
0.4

), ( a
0.4
, b
0.4
, c
0.4

)〉, and

B = 〈x, ( a
0.3
, b
0.4
, c
0.3

), ( a
0.3
, b
0.4
, c
0.3

), ( a
0.5
, b
0.6
, c
0.7

)〉.
Then the families T = {0

N
, 1

N
, A} and S = {0

N
, 1

N
, B} are neutrosophic topologies on

X. Thus, (X,T ) and (X,S) are neutrosophic topological spaces. Define f : (X,T ) →
(X,S) by f(a) = b, f(b) = a, f(c) = c. Then f is a generalized neutrosophic contra-

continuous function. Now, f−1(B) is not a neutrosophic closed set in (X,T ) for B ∈ S.

Hence, f is not a neutrosophic contra-continuous function.

Proposition 3.5. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces.

If f : (X,T ) → (Y, S) is a generalized neutrosophic contra-irresolute function then it

is a generalized neutrosophic contra-continuous function.

Proof. Let A be a neutrosophic open set in (Y, S). Every neutrosophic open set is

a generalized neutrosophic open set. Since f is a generalized neutrosophic contra-

irresolute function, f−1(A) is a generalized neutrosophic closed set in (X,T ). Thus, f

is a generalized neutrosophic contra-continuous function.

The converse of Proposition 3.5 need not be true as shown in Example 3.2.
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Example 3.2. Let X = {a, b, c}. Define the neutrosophic sets A,B and C in X as

follows: A = 〈x, ( a
0.4
, b
0.4
, c
0.5

), ( a
0.4
, b
0.4
, c
0.5

), ( a
0.5
, b
0.5
, c
0.5

)〉,
B = 〈x, ( a

0.7
, b
0.6
, c
0.5

), ( a
0.7
, b
0.6
, c
0.5

), ( a
0.3
, b
0.4
, c
0.5

)〉 and

C = 〈x, ( a
0.4
, b
0.5
, c
0.5

), ( a
0.4
, b
0.5
, c
0.5

), ( a
0.4
, b
0.5
, c
0.5

)〉.
Then the families T = {0

N
, 1

N
, A,B} and S = {0

N
, 1

N
, C} are neutrosophic topologies

on X. Thus, (X,T ) and (X,S) are neutrosophic topological spaces. Define f : (X,T )→
(X,S) as follows: f(a) = b, f(b) = a, f(c) = c. Then f is a generalized neutrosophic

contra-continuous function. Let D = 〈x, ( a
0.3
, b
0.4
, c
0.5

), ( a
0.3
, b
0.4
, c
0.5

), ( a
0.5
, b
0.5
, c
0.5

)〉 be a

generalized neutrosophic closed set in (X,S), f−1(D) is not a generalized neutrosophic

open set in (X,T ). Hence, f is not a generalized neutrosophic contra-irresolute function.

Proposition 3.6. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces.

If f : (X,T )→ (Y, S) is a strongly generalized neutrosophic contra-continuous function

then f is a neutrosophic contra-continuous function.

Proof. Let A be a neutrosophic open set in (Y, S). Every neutrosophic open set is

a generalized neutrosophic open set. Thus A is a generalized neutrosophic open set

in (Y, S). Since f is a strongly generalized neutrosophic contra-continuous function,

f−1(A) is a neutrosophic closed set in (X,T ). Hence, f is a neutrosophic contra-

continuous function.

The converse of Proposition 3.6 need not be true as it is shown in Example 3.3.

Example 3.3. Let X = {a, b, c}. Define the neutrosophic sets A,B and C as follows:

A = 〈x, ( a
0.3
, b
0.2
, c
0.2

), ( a
0.3
, b
0.2
, c
0.2

), ( a
0.4
, b
0.5
, c
0.5

)〉,
B = 〈x, ( a

0.1
, b
0.1
, c
0.1

), ( a
0.1
, b
0.1
, c
0.1

), ( a
0.9
, b
0.9
, c
0.9

)〉 and

C = 〈x, ( a
0.9
, b
0.9
, c
0.9

), ( a
0.9
, b
0.9
, c
0.9

), ( a
0.1
, b
0.1
, c
0.1

)〉.
The families T = {0

N
, 1

N
, A,B} and S = {0

N
, 1

N
, C} are neutrosophic topologies on

X. Thus, (X,T ) and (X,S) are neutrosophic topological spaces. Define f : (X,T ) →
(X,S) as follows: f(a) = a, f(b) = b, f(c) = b. Then f is a neutrosophic contra-

continuous function. But, for a generalized neutrosophic open setD = 〈x, ( a
0.9
, b
0.99

, c
0.9

), ( a
0.9
, b
0.99

, c
0.9

), ( a
0.1
, b
0
, c
0.1

)〉
in (X,S), f−1(D) is not a neutrosophic closed set in (X,T ). Hence, f is not a strongly

generalized neutrosophic contra-continuous function.

Proposition 3.7. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces.

If f : (X,T )→ (Y, S) is a strongly generalized neutrosophic contra-continuous function

then f is a generalized neutrosophic contra-continuous function.
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Proof. Let A be a neutrosophic open set in (Y, S). Every neutrosophic open set is a

generalized neutrosophic open set. Therefore A is a generalized neutrosophic open set

in (Y, S). Since f is a strongly generalized neutrosophic contra-continuous function,

f−1(A) is a neutrosophic closed set in (X,T ). Every neutrosophic closed set is a

generalized neutrosophic closed set. Hence, f is a generalized neutrosophic contra-

continuous function.

The converse of Proposition 3.7 need not be true. See Example 3.4.

Example 3.4. Let X = {a, b, c}. Define the neutrosophic sets A,B and C as follows:

A = 〈x, ( a
0.4
, b
0.5
, c
0.5

), ( a
0.4
, b
0.5
, c
0.5

), ( a
0.5
, b
0.5
, c
0.5

)〉,
B = 〈x, ( a

0.6
, b
0.7
, c
0.5

), ( a
0.6
, b
0.7
, c
0.5

), ( a
0.4
, b
0.3
, c
0.5

)〉 and

C = 〈x, ( a
0.4
, b
0.4
, c
0.5

), ( a
0.4
, b
0.4
, c
0.5

), ( a
0.4
, b
0.4
, c
0.5

)〉.
The families T = {0

N
, 1

N
, A,B} and S = {0

N
, 1

N
, C} are neutrosophic topologies on

X. Thus, (X,T ) and (X,S) are neutrosophic topological spaces. Define f : (X,T ) →
(X,S) as follows: f(a) = c, f(b) = c, f(c) = c. Then f is a generalized neutrosophic

contra-continuous function. Let D = 〈x, ( a
0.4
, b
0.5
, c
0.5

), ( a
0.4
, b
0.5
, c
0.5

), ( a
0.4
, b
0.4
, c
0.3

)〉 be a

generalized neutrosophic open set in (X,S), then f−1(D) is not a neutrosophic closed

set in (X,T ). Hence, f is not a strongly generalized neutrosophic contra-continuous

function.

Proposition 3.8. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If

f : (X,T )→ (Y, S) is a strongly generalized neutrosophic contra-continuous function,

then f is a generalized neutrosophic contra-irresolute function.

Proof. Let A be a generalized neutrosophic open set in (Y, S). Since f is a strongly

generalized neutrosophic contra-continuous function, f−1(A) is a neutrosophic closed

set in (X,T ). Every neutrosophic closed set is a generalized neutrosophic closed set.

Now, f−1(A) is a generalized neutrosophic closed set in (X,T ). Hence, f is a generalized

neutrosophic contra-irresolute function.

The converse of Proposition 3.8 need not be true as it is shown in Example 3.5.

Example 3.5. Let X = {a, b, c}. Define the neutrosophic sets A,B and C as follows:

A = 〈x, ( a
0.4
, b
0.4
, c
0.5

), ( a
0.4
, b
0.4
, c
0.5

), ( a
0.5
, b
0.5
, c
0.5

)〉,
B = 〈x, ( a

0.7
, b
0.6
, c
0.5

), ( a
0.7
, b
0.6
, c
0.5

), ( a
0.3
, b
0.4
, c
0.5

)〉 and

C = 〈x, ( a
0.4
, b
0.5
, c
0.5

), ( a
0.4
, b
0.5
, c
0.5

), ( a
0.4
, b
0.5
, c
0.5

)〉.
The families T = {0

N
, 1

N
, A,B} and S = {0

N
, 1

N
, C} are neutrosophic topologies on
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X. Thus, (X,T ) and (X,S) are neutrosophic topological spaces. Define f : (X,T ) →
(X,S) as follows: f(a) = b, f(b) = a, f(c) = c. Then f is a generalized neut-

rosophic contra-irresolute function. But, for a generalized neutrosophic closed set

D = 〈x, ( a
0.3
, b
0.4
, c
0.5

), ( a
0.3
, b
0.4
, c
0.5

), ( a
0.5
, b
0.5
, c
0.5

)〉 in (X,S). f−1(D) is not a neutro-

sophic open set in (X,T ). Hence, f is not a strongly generalized neutrosophic contra-

continuous function.

Proposition 3.9. Let (X,T ),(Y, S) and (Z,R) be any three neutrosophic topological

spaces. Let f : (X,T ) → (Y, S) and g : (Y, S) → (Z,R) be functions. If f is a

generalized neutrosophic contra-irresolute function and g is a generalized neutrosophic

contra-continuous function, then g◦f is a generalized neutrosophic continuous function.

Proof. Let A be a neutrosophic open set in (Z,R). Since g is a generalized neutro-

sophic contra-continuous function, g−1(A) is a generalized neutrosophic closed set in

(Y, S). Since f is a generalized neutrosophic contra-irresolute function, f−1(g−1(A)) is

a generalized neutrosophic open set in (X,T ). Hence, g◦f is a generalized neutrosophic

continuous function.

Proposition 3.10. Let (X,T ),(Y, S) and (Z,R) be any three neutrosophic topological

spaces. Let f : (X,T ) → (Y, S) and g : (Y, S) → (Z,R) be functions. If f is a

generalized neutrosophic contra-irresolute function and g is a generalized neutrosophic

continuous function, then g◦f is a generalized neutrosophic contra-continuous function.

Proof. Let A be a neutrosophic open set in (Z,R). Since g is a generalized neutrosophic

continuous function, g−1(A) is a generalized neutrosophic open set in (Y, S). Since f

is a generalized neutrosophic contra-irresolute function, f−1(g−1(A)) is a generalized

neutrosophic closed set in (X,T ). Hence, g ◦ f is a generalized neutrosophic contra-

continuous function.

Proposition 3.11. Let (X,T ) ,(Y, S) and (Z,R) be any three neutrosophic topological

spaces. Let f : (X,T ) → (Y, S) and g : (Y, S) → (Z,R) be functions. If f is a

generalized neutrosophic irresolute function and g is a generalized neutrosophic contra-

continuous function, then g◦f is a generalized neutrosophic contra-continuous function.

Proof. Let A be a neutrosophic open set in (Z,R). Since g is a generalized neutrosophic

contra-continuous function, g−1(A) is a generalized neutrosophic closed set in (Y, S).

Since f is a generalized neutrosophic irresolute function, f−1(g−1(A)) is a generalized
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neutrosophic closed set in (X,T ). Hence, g ◦ f is a generalized neutrosophic contra-

continuous function.

Proposition 3.12. Let (X,T ) ,(Y, S) and (Z,R) be any three neutrosophic topological

spaces. Let f : (X,T )→ (Y, S) and g : (Y, S)→ (Z,R) be functions. If f is a strongly

generalized neutrosophic contra-continuous function and g is a generalized neutrosophic

contra-continuous function, then g ◦ f is a neutrosophic continuous function.

Proof. Let A be a neutrosophic open set in (Z,R). Since g is a generalized neutrosophic

contra-continuous function, g−1(A) is a generalized neutrosophic closed set in (Y, S).

Since f is a strongly generalized neutrosophic contra-continuous function, f−1(g−1(A))

is a neutrosophic open set in (X,T ). Hence, g◦f is a neutrosophic continuous function.

Proposition 3.13. Let (X,T ) ,(Y, S) and (Z,R) be any three neutrosophic topological

spaces. Let f : (X,T )→ (Y, S) and g : (Y, S)→ (Z,R) be functions. If f is a strongly

generalized neutrosophic contra-continuous function and g is a generalized neutrosophic

continuous function, then g ◦ f is a neutrosophic contra-continuous function.

Proof. Let A be a neutrosophic open set in (Z,R). Since g is a generalized neutrosophic

continuous function, g−1(A) is a generalized neutrosophic open set in (Y, S). Since f

is a strongly generalized neutrosophic contra-continuous function, f−1(g−1(A)) is a

neutrosophic closed set in (X,T ). Hence, g ◦ f is a neutrosophic contra-continuous

function.

Proposition 3.14. Let (X,T ) ,(Y, S) and (Z,R) be any three neutrosophic topological

spaces. Let f : (X,T )→ (Y, S) and g : (Y, S)→ (Z,R) be functions. If f is a strongly

generalized neutrosophic continuous function and g is generalized neutrosophic contra-

continuous function, then g ◦ f is a neutrosophic contra-continuous function.

Proof. Let A be a neutrosophic open set in (Z,R). Since g is a generalized neutrosophic

contra-continuous function, g−1(A) is a generalized neutrosophic closed set in (Y, S).

Since f is a strongly generalized neutrosophic continuous function, f−1(g−1(A)) is a

neutrosophic closed set in (X,T ). Hence, g ◦ f is a neutrosophic contra-continuous

function.

Proposition 3.15. Let (X,T ) ,(Y, S) and (Z,R) be any three neutrosophic topological

spaces. Let f : (X,T ) → (Y, S) and g : (Y, S) → (Z,R) be functions and (Y, S)
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be a neutrosophic T 1
2

space if f and g are generalized neutrosophic contra-continuous

functions, then g ◦ f is a generalized neutrosophic continuous function.

Proof. Let A be a neutrosophic open set in (Z,R). Since g is a generalized neutrosophic

contra-continuous function, g−1(A) is a generalized neutrosophic closed set in (Y, S).

Since (Y, S) is a neutrosophic T 1
2

space, g−1(A) is a neutrosophic closed set in (Y, S).

Since f is a generalized neutrosophic contra-continuous function, f−1(g−1(A)) is a

generalized neutrosophic open set in (X,T ). Hence, g ◦ f is a generalized neutrosophic

continuous function.

The Proposition 3.15., need not be true, if (Y, S) is not a neutrosophic T 1
2

as shown

in Example 3.6.

Example 3.6. Let X = {a, b, c}. Define the neutrosophic sets A,B,C and D as follows:

A = 〈x, ( a
0.3
, b
0.3
, c
0.4

), ( a
0.3
, b
0.3
, c
0.4

), ( a
0.4
, b
0.5
, c
0.5

)〉,
B = 〈x, ( a

0.6
, b
0.6
, c
0.6

), ( a
0.6
, b
0.6
, c
0.6

), ( a
0.3
, b
0.3
, c
0.3

)〉,
C = 〈x, ( a

0.4
, b
0.5
, c
0.4

), ( a
0.4
, b
0.5
, c
0.4

), ( a
0.4
, b
0.4
, c
0.4

)〉 and

D = 〈x, ( a
0.3
, b
0.4
, c
0.3

), ( a
0.3
, b
0.4
, c
0.3

), ( a
0.5
, b
0.6
, c
0.7

)〉.
Observe that the families T = {0

N
, 1

N
, A,B} ,S = {0

N
, 1

N
, C} and R = {0

N
, 1

N
, D}

are neutrosophic topologies on X. Thus, (X,T ) ,(X,S) and (X,R) are neutrosophic

topological spaces. Define f : (X,T ) → (X,S) by f(a) = a, f(b) = b, f(c) = b and

g : (X,S) → (X,R) by g(a) = b, g(b) = a, g(c) = c. Then f and g are generalized

neutrosophic contra-continuous functions. Let D be a neutrosophic open set in (X,R).

f−1(g−1(D)) is not a generalized neutrosophic open set in (X,T ). Therefore, g ◦ f is

not a generalized neutrosophic continuous function. Further (X,S) is not neutrosophic

T 1
2
.

Proposition 3.16. Let (X,T ),(Y, S) and (Z,R) be any three neutrosophic topological

spaces. Let f : (X,T ) → (Y, S) and g : (Y, S) → (Z,R) be functions and (Y, S) be

neutrosophic T 1
2
. If f is a neutrosophic contra-continuous function and g is a generalized

neutrosophic contra-irresolute function, then g◦f is a strongly generalized neutrosophic

continuous function.

Proof. Let A be a generalized neutrosophic open in (Z,R). Since g is a generalized

neutrosophic contra-irresolute function, g−1(A) is a generalized neutrosophic closed set

in (Y, S). Since (Y, S) is a neutrosophic T 1
2

space, g−1(A) is a neutrosophic closed

set in (Y, S). Since f is a neutrosophic contra-continuous function, f−1(g−1(A)) is a
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neutrosophic open set in (X,T ). Hence, g ◦ f is a strongly generalized neutrosophic

continuous function.

If (Y, S) is not a neutrosophic T 1
2

space, then Proposition 3.16 need not be true as

it is shown in Example 3.7.

Example 3.7. Let X = {a, b, c}. Define the neutrosophic sets A,B,C and D as follows:

A = 〈x, ( a
0.9
, b
0.9
, c
0.9

), ( a
0.9
, b
0.9
, c
0.9

), ( a
0.1
, b
0.1
, c
0.1

)〉,
B = 〈x, ( a

0.4
, b
0.4
, c
0.4

), ( a
0.4
, b
0.4
, c
0.4

), ( a
0.4
, b
0.4
, c
0.5

)〉,
C = 〈x, ( a

0.4
, b
0.5
, c
0.5

), ( a
0.4
, b
0.5
, c
0.5

), ( a
0.4
, b
0.4
, c
0.5

)〉 and

D = 〈x, ( a
0.4
, b
0.2
, c
0.3

), ( a
0.4
, b
0.2
, c
0.3

), ( a
0.6
, b
0.8
, c
0.7

)〉.
The families T = {0

N
, 1

N
, A,B}, S = {0

N
, 1

N
, C} and R = {0

N
, 1

N
, D} are neut-

rosophic topologies on X. Thus, (X,T ), (X,S) and (X,R) are neutrosophic topo-

logical spaces. Define f : (X,T ) → (X,S) as f(a) = a, f(b) = a, f(c) = b and

g : (X,S) → (X,R) by g(a) = c, g(b) = a, g(c) = b. Then f is neutrosophic contra-

continuous function and g is a generalized neutrosophic contra-irresolute function. But,

for the generalized neutrosophic open set D in (X,R), f−1(g−1(D)) is not a neutro-

sophic open set in (X,T ). Hence g ◦ f is not a strongly generalized neutrosophic

continuous function. Moreover, (X,S) is not a neutrosophic T 1
2

space.

Proposition 3.17. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces.

For a function f : (X,T )→ (Y, S), the following statements are equivalent:

(i) f is a generalized neutrosophic contra-continuous function;

(ii) For each neutrosophic point xr,t,s of X and for each neutrosophic closed set B of

(Y, S) containing f(xr,t,s), there exists a generalized neutrosophic open set A of

(X,T ) containing xr,t,s, such that A ⊆ f−1(B);

(iii) For each neutrosophic point xr,t,s of X and for each neutrosophic closed set B of

(Y, S) containing f(xr,t,s), there exists a generalized neutrosophic open set A of

(X,T ) containing xr,t,s, such that f(A) ⊆ B.

Proof. (i)⇒ (ii) Let f be a generalized neutrosophic contra-continuous function. Let

B be a neutrosophic closed set in (Y, S) and xr,t,s a neutrosophic point of X such that

f(xr,t,s) ∈ B. Then xr,t,s ∈ f−1(B) = NGint(f−1(B)). Let A = NGint(f−1(B)), then

A is a generalized neutrosophic open set and A = NGint(f−1(B)) ⊆ f−1(B). This

implies that A ⊆ f−1(B).
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(ii)⇒ (iii) Let B be a neutrosophic closed set in (Y, S) and let xr,t,s be a neut-

rosophic point in X, such that f(xr,t,s) ∈ B. Then xr,t,s ∈ f−1(B). By hypothesis,

f−1(B) is a generalized neutrosophic open set in (X,T ) and A ⊆ f−1(B). This implies

that f(A) ⊆ f(f−1(B)) ⊆ B. Thus, f(A) ⊆ B

(iii)⇒ (i) Let B be a neutrosophic closed set in (Y, S) and let xr,t,s be a neut-

rosophic point in X, such that f(xr,t,s) ∈ B. Then xr,t,s ∈ f−1(B). By hypothesis,

there exists a generalized neutrosophic open set A of (X,T ), such that xr,t,s ∈ A and

f(A) ⊆ B. This implies, xr,t,s ∈ A ⊆ f−1(f(A)) ⊆ f−1(B). Since A is generalized neut-

rosophic open, A = NGint(A) ⊆ NGint(f−1(B)). Therefore, xr,t,s ∈ NGint(f−1(B)),

f−1(B) =
⋃

xr,t,s∈f−1(B)(xr,t,s) ⊆ NGint(f−1(B) ⊆ f−1(B). Hence, f−1(B) is a gen-

eralized neutrosophic open set in (X,T ). Thus, f is generalized neutrosophic contra-

continuous function.

Proposition 3.18. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces.

Let f : (X,T )→ (Y, S) be any function. If the graph g : X → X × Y of f is a general-

ized neutrosophic contra-continuous function, then f is also a generalized neutrosophic

contra-continuous function.

Proof. LetA be a neutrosophic open set in (Y, S). By definition f−1(A) = 1
N

⋂
f−1(A) =

g−1(1
N
×A). Since g is a generalized neutrosophic contra-continuous function, g−1(1

N
×

A) is a generalized neutrosophic closed set in (X,T ). Now, f−1(A) is a generalized neut-

rosophic closed set in (X,T ). Thus, f is a generalized neutrosophic contra-continuous

function.

Proposition 3.19. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces.

Let f : (X,T ) → (Y, S) be any function. If the graph g : X → X × Y of f is a

strongly generalized neutrosophic contra-continuous function, then f is also a strongly

generalized neutrosophic contra-continuous function.

Proof. Let A be a generalized neutrosophic open set in (Y, S). By definition f−1(A) =

1
N

⋂
f−1(A) = g−1(1

N
× A). Since g is strongly generalized neutrosophic contra-

continuous, g−1(1
N
× A) is a neutrosophic closed set in (X,T ). Now, f−1(A) is a

neutrosophic closed set in (X,T ). Thus, f is a strongly generalized neutrosophic contra-

continuous function.
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Proposition 3.20. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces.

Let f : (X,T )→ (Y, S) be any function. If the graph g : X → X×Y of f is a generalized

neutrosophic contra-irresolute function, then f is also a generalized neutrosophic contra-

irresolute function.

Proof. Let A be a generalized neutrosophic open set in (Y, S). By definition f−1(A) =

1
N

⋂
f−1(A) = g−1(1

N
× A). Since g is a generalized neutrosophic contra-irresolute

function, g−1(1
N
×A) is a generalized neutrosophic closed set in (X,T ). Now, f−1(A)

is a generalized neutrosophic closed set in (X,T ). Thus, f is a generalized neutrosophic

contra-irresolute function.

4 INTERRELATION

From the above results proved, we have a diagram of implications as shown below.

In the diagram A , B , C and D denote a neutrosophic contra-continuous func-

tion, generalized neutrosophic contra-continuous function, generalized neutrosophic

contra-irresolute function and strongly generalized neutrosophic contra-continuous func-

tion respectively.

D

��

//

��

C|oo

��

A

\

OO

// B
|oo

|

__

\

OO
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ABSTRACT

In this paper, we introduce and investigate a new class of sets and functions between topological

space called neutrosophic supra pre- continious functions. Furthermore, the concepts of neutro-

sophic supra pre-open maps and neutrosophic supra pre-closed maps in terms of neutrosophic supra

pre-open sets and neutrosophic supra pre-closed sets, respectively, are introduced and several prop-

erties of them are investigated.

KEYWORDS: Neutrosophic supra topological spaces,neutrosophic supra pre-open sets and neu-

trosophic supra pre-continuous maps.

1 INTRODUCTION AND PRELIMINARIES

Intuitionistic fuzzy set is defined by Atanassov (1986) as a generalization of the concept

of fuzzy set given by Zadeh (1965). Using the notation of intuitionistic fuzzy sets, Çoker
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(1997) introduced the notation of intuitionistic fuzzy topological spaces. The supra topolog-

ical spaces and studied s-continuous functions and s∗- continuous functions were introduced

by Mashhour, Allam, Mahmoud, and Khedr (1983). El-Monsef and Ramadan (1987) intro-

duced the fuzzy supra topological spaces and studied fuzzy supra continuous functions and

obtained some properties and characterizations. Min (1996) introduced fuzzy s-continuous,

fuzzy s-open and fuzzy s-closed maps and established a number of characterizations. Devi,

Sampathkumar, and Caldas (2008) introduced the concept of supra α-open set, and Mash-

hour et al. (1983) introduced, the notion of supra- semi open set, supra semi-continuous

functions and studied some of the basic properties for this class of functions. Turnal (2003)

introduced the concept of intuitionistic fuzzy supra topological space. After the introduction

of the neutrosophic set concept (Salama & Alblowi, 2012; Smarandache, 1999). The con-

cepts of Neutrosophic Set and Neutrosophic Topological Spaces was introduced by (Salama

& Alblowi, 2012).

In this paper, we introduce and investigate a new class of sets and functions between

topological space called neutrosophic supra semi-open set and neutrosophic supra semi-open

continuous functions respectively.

Definition 1. Let T,I,F be real standard or non standard subsets of ]0−, 1+[, with supT =

tsup, infT = tinf

supI = isup, infI = iinf

supF = fsup, infF = finf

n− sup = tsup + isup + fsup

n− inf = tinf + iinf + finf . T,I,F are neutrosophic components.

Definition 2. Let X be a nonempty fixed set. A neutrosophic set [NS for short] A is an

object having the form A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X} where µ
A

(x), σ
A

(x) and

γ
A

(x) which represents the degree of membership function (namely µ
A

(x)), the degree of

indeterminacy (namely σ
A

(x)) and the degree of nonmembership (namely γ
A

(x)) respectively

of each element x ∈ X to the set A.

Remark 1. (1) A neutrosophic set A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X} can be identi-

fied to an ordered triple 〈µ
A
, σ

A
, γ

A
〉 in ]0−, 1+[ on X.

(2) For the sake of simplicity, we shall use the symbol A = 〈µ
A
, σ

A
, γ

A
〉 for the neutrosophic

set A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 3. Let X be a nonempty set and the neutrosophic sets A and B in the form

A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}, B = {〈x, µ
B

(x), σ
B

(x), γ
B

(x)〉 : x ∈ X}. Then

(a) A ⊆ B iff µ
A

(x) ≤ µ
B

(x), σ
A

(x) ≤ σ
B

(x) and γ
A

(x) ≥ γ
B

(x) for all x ∈ X;

(b) A = B iff A ⊆ B and B ⊆ A;
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(c) Ā = {〈x, γ
A

(x), σ
A

(x), µ
A

(x)〉 : x ∈ X}; [Complement of A]

(d) A ∩B = {〈x, µ
A

(x) ∧ µ
B

(x), σ
A

(x) ∧ σ
B

(x), γ
A

(x) ∨ γ
B

(x)〉 : x ∈ X};

(e) A ∪B = {〈x, µ
A

(x) ∨ µ
B

(x), σ
A

(x) ∨ σ
B

(x), γ
A

(x) ∧ γ
B

(x)〉 : x ∈ X};

(f) [ ]A = {〈x, µ
A

(x), σ
A

(x), 1− µ
A

(x)〉 : x ∈ X};

(g) 〈〉A = {〈x, 1− γ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 4. Let {Ai : i ∈ J} be an arbitrary family of neutrosophic sets in X. Then

(a)
⋂
Ai = {〈x,∧µ

Ai
(x),∧σ

Ai
(x),∨γ

Ai
(x)〉 : x ∈ X};

(b)
⋃
Ai = {〈x,∨µ

Ai
(x),∨σ

Ai
(x),∧γ

Ai
(x)〉 : x ∈ X}.

Since our main purpose is to construct the tools for developing neutrosophic topological

spaces, we must introduce the neutrosophic sets 0
N

and 1
N

in X as follows:

Definition 5. (Dhavaseelan & Jafari, in press) 0
N

= {〈x, 0, 0, 1〉 : x ∈ X} and 1
N

=

{〈x, 1, 1, 0〉 : x ∈ X}.

Definition 6. (Dhavaseelan & Jafari, in press) A neutrosophic topology (NT) on a nonempty

set X is a family T of neutrosophic sets in X satisfying the following axioms:

(i) 0
N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case the ordered pair (X,T ) or simply X is called a neutrosophic topological space

(NTS) and each neutrosophic set in T is called a neutrosophic open set (NOS). The comple-

ment A of a NOS A in X is called a neutrosophic closed set (NCS) in X.

Definition 7. (Dhavaseelan & Jafari, in press) Let A be a neutrosophic set in a neutro-

sophic topological space X. Then

Nint(A) =
⋃
{G | G is a neutrosophic open set in X and G ⊆ A} is called the neutro-

sophic interior of A;

Ncl(A) =
⋂
{G | G is a neutrosophic closed set in X and G ⊇ A} is called the neutro-

sophic closure of A.

Definition 8. Let X be a nonempty set. If r, t, s be real standard or non standard subsets

of ]0−, 1+[ then the neutrosophic set xr,t,s is called a neutrosophic point(in short NP )in X

given by

xr,t,s(xp) =

(r, t, s), if x = xp

(0, 0, 1), if x 6= xp
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for xp ∈ X is called the support of xr,t,s.where r denotes the degree of membership value ,t

denotes the degree of indeterminacy and s is the degree of non-membership value of xr,t,s.

Now we shall define the image and preimage of neutrosophic sets. Let X and Y be two

nonempty sets and f : X → Y be a function.

Definition 9. (Dhavaseelan & Jafari, in press)

(a) If B = {〈y, µ
B

(y), σ
B

(y), γ
B

(y)〉 : y ∈ Y } is a neutrosophic set in Y,then the preimage

of B under f, denoted by f−1(B), is the neutrosophic set in X defined by

f−1(B) = {〈x, f−1(µ
B

)(x), f−1(σ
B

)(x), f−1(γ
B

)(x)〉 : x ∈ X}.

(b) If A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X} is a neutrosophic set in X,then the image of

A under f, denoted by f(A), is the neutrosophic set in Y defined by

f(A) = {〈y, f(µ
A

)(y), f(σ
A

)(y), (1− f(1− γ
A

))(y)〉 : y ∈ Y }. where

f(µ
A

)(y) =

supx∈f−1(y) µA
(x), if f−1(y) 6= ∅,

0, otherwise,

f(σ
A

)(y) =

supx∈f−1(y) σA
(x), if f−1(y) 6= ∅,

0, otherwise,

(1− f(1− γ
A

))(y) =

infx∈f−1(y) γA
(x), if f−1(y) 6= ∅,

1, otherwise,

For the sake of simplicity, let us use the symbol f−(γ
A

) for 1− f(1− γ
A

).

Corollary 1. (Dhavaseelan & Jafari, in press) Let A , Ai(i ∈ J) be neutrosophic sets in X,

B, Bi(i ∈ K) be neutrosophic sets in Y and f : X → Y a function. Then

(a) A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2),

(b) B1 ⊆ B2 ⇒ f−1(B1) ⊆ f−1(B2),

(c) A ⊆ f−1(f(A)) { If f is injective,then A = f−1(f(A)) } ,

(d) f(f−1(B)) ⊆ B { If f is surjective,then f(f−1(B)) = B },

(e) f−1(
⋃
Bj) =

⋃
f−1(Bj),

(f) f−1(
⋂
Bj) =

⋂
f−1(Bj),

(g) f(
⋃
Ai) =

⋃
f(Ai),

(h) f(
⋂
Ai) ⊆

⋂
f(Ai) { If f is injective,then f(

⋂
Ai) =

⋂
f(Ai)},
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(i) f−1(1
N

) = 1
N

,

(j) f−1(0
N

) = 0
N

,

(k) f(1
N

) = 1
N

, if f is surjective

(l) f(0
N

) = 0
N

,

(m) f(A) ⊆ f(A), if f is surjective,

(n) f−1(B) = f−1(B).

2 NEUTROSOPHIC SUPRA PRE-OPEN SET.

In this section, we introduce a new class of open sets called neutrosophic supra pre-open sets

and study some of their basic properties.

Definition 2.1. Let (X, τ) be an neutrosophic supra topological space. A set A is called

an neutrosophic supra pre-open set (briefly NSPOS) if A ⊆ s-Nint(s-Ncl(A)). The com-

plement of an neutrosophic supra pre-open set is called an neutrosophic supra pre-closed set

(briefly NSPCS).

Theorem 2.2. Every neutrosophic supra-open set is neutrosophic supra pre-open.

Proof. Let A be an neutrosophic supra-open set in (X, τ). Then A ⊆ s-Nint(A)), we

get A ⊆ s-Nint(s-Ncl(A)) then s-Nint(A)) ⊆ s-Nint(s-Ncl(A)) . Hence A is neutrosophic

supra pre-open in (X, τ).

The converse of the above theorem need not be true as shown by the following example.

Example 2.3.

Let

X = {a, b} , A = {x, 〈0.5, 0.2〉 , 〈0.5, 0.2〉 , 〈0.3, 0.4〉} , B = {x, 〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.6, 0.5〉}
and C = {x, 〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.2, 0.5〉}, τ = {0∼, 1∼, A,B,A ∪B}. Then C is called

neutrosophic supra pre-open set but it is not neutrosophic supra -open set.

Theorem 2.4. Every neutrosophic supra α-open set is neutrosophic supra pre-open

Proof. Let A be an neutrosophic supra α-open set in (X, τ). Then

A ⊆ s-Nint(s-Ncl(s-Nint(A)), it is obvious that

s-Nint(s-Ncl(s-Nint(A)) ⊆ s-Nint(s-Ncl(A)) and A ⊆ s-Nint(s-Ncl(A)). Hence A is

neutrosophic supra pre-open in (X, τ).

The converse of the above theorem need not be true as shown by the following example.

Example 2.5.

Let X = {a, b} , A = {x, 〈0.3, 0.5〉 , 〈0.3, 0.5〉 , 〈0.4, 0.5〉} ,
B = {x, 〈0.4, 0.3〉 , 〈0.4, 0.3〉 , 〈0.5, 0.4〉} and C = {x, 〈0.4, 0.5〉 , 〈0.4, 0.5〉 , 〈0.5, 0.4〉},
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τ = {0∼, 1∼, A,B,A ∪B}. Then C is called neutrosophic supra pre-open set but it is not

neutrosophic supra α-open set.

Theorem 2.6. Every neutrosophic supra pre-open set is neutrosophic supra β-open

Proof. Let A be an neutrosophic supra pre-open set in (X, τ). It is obvious that s-Nint(s-

Ncl(A)) ⊆ s-Ncl(s-Nint(s-Ncl(A)). Then A ⊆ s-Nint(s-Ncl(A)). Hence A ⊆ s-Ncl(s-

Nint(s-Ncl(A)).

The converse of the above theorem need not be true as shown by the following example.

Example 2.7.

Let X = {a, b} , A = {x, 〈0.2, 0.3〉 , 〈0.2, 0.3〉 , 〈0.5, 0.3〉} ,
B = {x, 〈0.1, 0.2〉 , 〈0.1, 0.2〉 , 〈0.6, 0.5〉} and C = {x, 〈0.2, 0.3〉 , 〈0.2, 0.3〉 , 〈0.2, 0.3〉},
τ = {0∼, 1∼, A,B,A ∪B}. Then C is called neutrosophic supra pre-open set but it is not

neutrosophic supra pre-open set.

Theorem 2.8. Every neutrosophic supra pre-open set is neutrosophic supra b-open

Proof. Let A be an neutrosophic supra pre-open set in (X, τ). It is obvious that s-Nint(s-

Ncl(A)) ⊆ s-Nint(s-Ncl(A)) ∪ s-Ncl(s-Nint(A))). Then A ⊆ s-Nint(s-Ncl(A))Then A ⊆
s-Nint(s-Ncl(A)). Hence A ⊆ s-Nint(s-Ncl(A)) ∪ s-Ncl(s-Nint(A))).

The converse of the above theorem need not be true as shown by the following example.

Example 2.9.

Let

X = {a, b} , A = {x, 〈0.5, 0.2〉 , 〈0.5, 0.4〉 , 〈0.3, 0.4〉} , B = {x, 〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.6, 0.5〉}
and C = {x, 〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.4, 0.4〉}, τ = {0∼, 1∼, A,B,A ∪B}. Then C is called

neutrosophic supra pre-open set but it is not neutrosophic supra pre-open set.

Theorem 2.10.

(i) Arbitrary union of neutrosophic supra pre-open sets is always neutrosophic supra pre-

open.

(ii) Finite intersection of neutrosophic supra pre-open sets may fail to be neutrosophic

supra pre-open.

Proof.

(i) Let A and B to be neutrosophic supra pre-open sets. Then A ⊆ s-Nint(s-Ncl(A))

and B ⊆ s-Nint(s-Ncl(B)). Then A ∪ B ⊆ s-Nint(s-Ncl(A)). Therefore, A ∪ B is

neutrosophic supra pre-open sets.

(ii) Let X = {a, b}, A = {x, 〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.2, 0.5〉} ,

B = {x, 〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.4, 0.4〉}
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and τ = {0∼, 1∼, A, B, A ∪B}.

Hence A and B are neutrosophic supra pre-open but A ∩B is not neutrosophic supra

pre-open set.

Theorem 2.11.

(i) Arbitrary intersection of neutrosophic supra pre-closed sets is always neutrosophic

supra pre-closed.

(ii) Finite union of neutrosophic supra pre-closed sets may fail to be neutrosophic supra

pre-closed.

Proof.

(i) This proof immediately from Theorem 2.10

(ii) LetX = {a, b}, A = {x, 〈0.2, 0.3〉 , 〈0.2, 0.3〉 , 〈0.2, 0.4〉} , B = {x, 〈0.5, 0.4〉 , 〈0.5, 0.4〉 , 〈0.4, 0.5〉}
and τ = {0∼, 1∼, A,B,A ∪B}. Hence A and B are neutrosophic supra pre-closed but

A ∪B is not neutrosophic supra pre-closed set.

Definition 2.12. The neutrosophic supra pre-closure of a set A, denoted by s-pre-Ncl(A),

is the intersection of neutrosophic supra pre-closed sets including A. The neutrosophic supra

pre-interior of a set A, denoted by s-pre-Nint(A), is the union of neutrosophic supra pre-

open sets included in A.

Remark 2. It is clear that s-pre-Nint(A) is an neutrosophic supra pre-open set and s-pre-

Ncl(A) is an neutrosophic supra pre-closed set.

Theorem 2.14.

(i) A ⊆ s-pre-Ncl(A); and A =s-pre-Ncl(A) iff A is an neutrosophic supra pre-closed set;

(ii) s-pre-Nint(A) ⊆ A; and s-pre-Nint(A) = A iff A is an neutrosophic supra pre-open

set;

(iii) X − s-pre-Nint(A) = s-pre-Ncl(X − A);

(iv) X − s-pre-Ncl(A) = s-pre-Nint(X − A).

Proof. It is obvious.

Theorem 2.15.
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(i) s-pre-Nint(A) ∪ s-pre-Nint(B) ⊆ s-pre-Nint(A ∪B);

(i) s-pre-Ncl(A ∩B) ⊆ s-pre-Ncl(A) ∩ s-pre-Ncl(B).

Proof It is obvious.

The inclusions in (i) and (ii) in Theorem 2.15 can not replaced by equalities by let X =

{a, b}, A = {x, 〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.2, 0.5〉} , B = {x, 〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.4, 0.4〉} and

τ = {0∼, 1∼, A,B,A ∪B}, where

s-pre-Nint(A) = {x, 〈0.2, 0.5〉 , 〈0.2, 0.5〉 , 〈0.3, 0.4〉},
s-pre-Nint(B) = {x, 〈0.5, 0.4〉 , 〈0.5, 0.4〉 , 〈0.4, 0.5〉} and

s-pre-Nint(A ∪B) = {x, 〈0.5, 0.5〉 , 〈0.5, 0.5〉 , 〈0.3, 0.4〉}.
Then s-pre-Ncl(A) ∩ s-pre-
Ncl(B) = {x, 〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.2, 0.5〉} and s-pre-Ncl(A)=s-pre-Ncl(B)=1∼.

Proposition 2.16.

(i) The intersection of an neutrosophic supra open set and an neutrosophic supra pre-open

set is an neutrosophic supra pre-open set

(ii) The intersection of an neutrosophic supra α-open set and an neutrosophic supra pre-

open set is an neutrosophic supra pre-open set

3 NEUTROSOPHIC SUPRA PRE-CONTINIOUS MAP-

PINGS.

In this section, we introduce a new type of continuous mapings called a neutrosophic supra

pre-continuous mappings and obtain some of their properties and characterizations.

Definition 3.1. Let (X, τ) and (Y, σ) be the two topological sets and µ be an associated

neutrosophic supra topology with τ . A map f : (X, τ) → (Y, σ) is called an neutrosophic

supra pre-continuous mapping if the inverse image of each open set in Y is an neutrosophic

supra pre-open set in X.

Theorem 3.2. Every neutrosophic supra continuous map is an neutrosophic supra pre-

continuous map .

Proof. Let f : (X, τ)→ (Y, σ) is called neutrosophic continuous map and A is an open set

in Y . Then f−1(A) is an open set in X . Since µ is associated with τ , then τ ⊆ µ. Therefore,

f−1(A) is an neutrosophic supra open set in X which is an neutrosophic supra pre-open set

in X . Hence f is an neutrosophic supra pre-continuous map.

The converse of the above theorm is not true as shown in the following example.

Example 3.3. Let X = {a, b}, Y = {u, v} and

A = {〈0.5, 0.2〉 , 〈0.5, 0.2〉 , 〈0.3, 0.4〉},
B = {〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.6, 0.5〉},
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C = {〈0.5, 0.4〉 , 〈0.5, 0.4〉 , 〈0.3, 0.4〉},
D = {〈0.5, 0.4〉 , 〈0.5, 0.4〉 , 〈0.6, 0.5〉}. Then τ = {0∼, 1∼, A, B, A ∪B} be an neutrosophic

supra topology on X.

Then the neutrosophic supra topology σ on Y is defined as follows:

σ = {0 ∼, 1 ∼, C,D,C ∪D}. Define a mapping f(X, τ) −→ (Y, σ) by f(a) = u and f(b) =

v. The inverse image of the open set in Y is not an neutrosophic supra open in X but it is

an neutrosophic supra pre-open. Then f is an neutrosophic supra pre-continuous map but

may not be an neutrosophic supra continuous map.

The following example shows that neutrosophic supra pre-continuous map but may not be

an neutrosophic supra α-continuous map.

Example 3.4. Let X = {a, b} and Y = {u, v},
τ = {0∼, 1∼, {〈0.5, 0.2〉 , 〈05, 0.2〉 , 〈0.3, 0.4〉}},
{〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.6, 0.5〉} , {〈0.5, 0.4〉 , 〈0.5, 0.4〉 , 〈0.3, 0.4〉} be a neutrosophic supra topol-

ogy on X.

Then the neutrosophic supra topology σ on Y is defined as follows:

σ = {0∼, 1∼, {〈0.5, 0.4〉 , 〈0.5, 0.4〉 , 〈0.3, 0.4〉} , {〈0.5, 0.4〉 , 〈0.5, 0.4〉 , 〈0.6, 0.5〉} ,
{〈0.5, 0.4〉 , 〈0.5, 0.4〉 , 〈0.3, 0.4〉}.

Define a mapping f : (X, τ) −→ (Y, σ) by f(a) = u and f(b) = v.The inverse image

of the open set in Y is not an neutrosophic supra α-open in X but it is an neutrosophic

supra pre-open. Then f is an neutrosophic supra pre-continuous map but may not be an

neutrosophic supra α-continuous map.

The following example shows that neutrosophic supra b-continuous map but may not be an

neutrosophic supra pre-continuous map.

Example 3.5. Let X = {a, b} and Y = {u, v},
τ = {0∼, 1∼, {〈0.5, 0.2〉 , 〈0.5, 0.2〉 , 〈0.3, 0.4〉} , {〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.6, 0.5〉}},
{〈0.5, 0.4〉 , 〈0.5, 0.4〉 , 〈0.3, 0.4〉} be a neutrosophic supra topology on X. Then the neutro-

sophic supra topology σ on Y is defined as follows:

σ = {0∼, 1∼, {, 〈0.5, 0.2〉 , 〈0.5, 0.2〉 , 〈0.3, 0.4〉} , {〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.6, 0.5〉}},
{〈0.5, 0.4〉 , 〈0.5, 0.4〉 , 〈0.3, 0.4〉}.
Define a mapping f : (X, τ) −→ (Y, σ) by f(a) = u and f(b) = v. The inverse image of the

open set in Y is not an neutrosophic supra pre-open in X but it is an neutrosophic supra

b-open. Then f is an neutrosophic supra b-continuous map but may not be an neutrosophic

supra pre-continuous map.

The following example shows that neutrosophic supra β-continuous map but may not be an

neutrosophic supra pre-continuous map.

Example 3.6. Let X = {a, b} and Y = {u, v},
τ = {0∼, 1∼, {〈0.5, 0.2〉 , 〈0.5, 0.2〉 , 〈0.3, 0.4〉} , {〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.6, 0.5〉}},
{〈0.5, 0.4〉 , 〈0.5, 0.4〉 , 〈0.3, 0.4〉} be a neutrosophic supra topology on X. Then the neutro-
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sophic supra topology σ on Y is defined as follows:

σ = {0∼, 1∼, {〈0.5, 0.2〉 , 〈0.5, 0.2〉 , 〈0.3, 0.4〉} , {〈0.3, 0.4〉 , 〈0.3, 0.4〉 , 〈0.6, 0.5〉}},
{〈0.5, 0.4〉 , 〈0.5, 0.4〉 , 〈0.3, 0.4〉}. Define a mapping f : (X, τ) −→ (Y, σ) by f(a) = u and f(b)

= v. The inverse image of the open set in Y is not an neutrosophic supra pre-open in X but

it is an neutrosophic supra β-open. Then f is an neutrosophic supra β-continuous map but

may not be an neutrosophic supra pre-continuous map.

From the above discussion we have the following diagram in which the converses of the im-

plications need not be true (cts. is the abbrevation of continuity).

Theorem 3.7. Let (X, τ) and (Y, σ) be the two topological spaces and µ be an associated

neutrosophic supra topology with τ . Let f be a map from X into Y . Then the following are

equivalent:

(i) f is an neutrosophic supra pre-continuous map.

(ii) The inverse image of a closed sets in Y is an neutrosophic supra pre-closed set in X;

(iii) s-pre-Ncl(f−1(A)) ⊆ f−1(Ncl(A)) for every set A in Y ;

(iv) f(s-pre-Ncl(A)) ⊆ Ncl(f(A)) for every set A in X;

(v) f−1(Nint(B)) ⊆ s-pre-Nint(f−1(B)) for every set B in Y .

Proof. (i)⇒(ii): Let A be a closed set in Y , then Y −A is open set in Y . Then f−1(Y −A)

= X − f−1(A) is s-pre-open set in X. It follows that f−1(A) is a supra pre-closed subset of

X.

(ii)⇒(iii): Let A be any subset of Y . Since Ncl(A) is closed in Y , then it follows that

f−1(Ncl(A)) is supra pre-closed set in X. Therefore s-pre-Ncl(f−1(A)) ⊆ (f−1(Ncl(A))).

(iii)⇒(iv): LetA be any subset ofX. By (iii) we have f−1(Ncl(f(A))) ⊇ s-pre-Ncl(f−1(f(A))) ⊇
s-pre-Ncl(A) and hence f(s-pre-Ncl(A)) ⊆ Ncl(f(A)).

(iv)⇒(v): Let B be any subset of Y. By (4) we have f−1(s-pre-Ncl(X − f−1(B))) ⊆
Ncl(f(X−f−1(B))) and f(X−s-pre-Nint(f−1(B))) ⊆ Ncl(Y −B) = Y −Nint(B)). There-

fore we have X − s-pre-Nint(f−1(B)) ⊆ f−1(Y − Nint(B)) and hence f−1(Nint(B)) ⊆ s-

pre-Nint(f−1(B)).

(v)⇒(i): Let B be a open set in Y and f−1(Nint(B)) ⊆ s-pre-Nint(f−1(B)), hence

f−1(B) ⊆ s-pre-Nint(f−1(B)). Then f−1(B) = s-pre-Nint(f−1(B)). But, s-pre-Nint(f−1(B)) ⊆
f−1(B). Hence f−1(B) = s-pre-Nint(f−1(B)). Therefore f−1(B) is an neutrosophic supra

pre-open set in Y .

Theorem 3.8. If a map f : (X, τ)→ (Y, σ) is a s-pre-continuous and g : (Y, σ)→ (Z, η) is

continuous, then (g ◦ f) is s-pre-continuous.

Proof. It is Obvious.

Theorem 3.9. Let f : (X, τ) → (Y, σ) be an neutrosophic s-pre-continuous map if one of

the following holds:
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(i) f−1(s-pre-Nint(B)) ⊆ Nint(f−1(B)) for every set B in Y ,

(ii) Ncl(f−1(A)) ⊆ f−1(s-pre-Ncl(B)) for every set B in Y ,

(iii) f(Ncl(A)) ⊆ s-pre-Ncl(f(B)) for every A in X.

Proof. Let B be any open set of Y , if the condition (i) is satisfied, then f−1(s-pre-

Nint(B)) ⊆ Nint(f−1(B)). We get, f−1(B) ⊆ Nint(f−1(B)). Therefore f−1(B) is an

neutrosophic open set. Every neutrosophic open set is neutrosophic supra pre-open set.

Hence f is an neutrosophic s-pre-continuous .

If condition (ii) is satisfied, then we can easily prove that f is an neutrosophic supra pre-

continuous.

Let condition (iii) is satisfied and B be any open set in Y . Then f−1(B) is a set in X and then

we can easily prove that f is an neutrosophic s-pre-continuous function. If condition (iii) is

satisfied, and B is any open set of Y . Then f−1(B) is a set in X and f(Ncl(f−1(B))) ⊆ s-

pre-Ncl(f(f−1(B))). This implies f(Ncl(f−1(B))) ⊆ s-pre-Ncl(B). This is nothing but

condition (ii). Hence f is an neutrosophic s-pre-continuous.

4 NEUTROSOPHIC SUPRA PRE-OPEN MAPS AND

NEUTROSOPHIC SUPRA PRE-CLOSED MAPS.

Definition 4.1.

A map f : X −→ Y is called neutrosophic supra pre-open (res.neutrosophic supra pre-closed)

if the image of each open (resp.closed) set in X, is neutrosophic supra pre-open(resp.neutrosophic

supra pre-closed)in Y.

Theorem 4.2.

A map f : X −→ Y is called an neutrosophic supra pre-open if and only if f(Nint(A)) ⊆
s-pre-Nint(A) for every set A in X.

Proof. Suppose that f is an neutrosophic supra pre-open map. Since Nint(A) ⊆ f(A).

By hypothesis f(Nint(A)) is a neutrosophic supra pre-open set and s-pre-Nint(f(A)) is

the largest neutrosophic supra pre-open set contained in f(A), then f(Nint(A))⊆s-pre-
Nint(f(A))

Conversely, let A be a open set in X. Then f(Nint(A)) ⊆ s-pre-Nint(f(A)). Since Nint(A)

= A,then f(A) ⊆ s-pre-Nint(f(A)). Therefore f(A) is an neutrosophic supra pre-open set

in Y and f is an neutrosophic supra pre-open.

Theorem 4.3. A map f : X −→ Y is called a neutrosophic supra pre-closed if and only if

f(Ncl(A)) ⊆ s-pre-Ncl(A) for every set A in X.

Proof. Suppose that f is an neutrosophic supra pre-closed map. Since for each set A in

X, Ncl(A) is closed set in X, then f(Ncl(A) is an neutrosophic supra pre-closed set in Y .
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Also, since f(A) ⊆f(Ncl(A)), then s-pre-Ncl(f(A))⊆ f(Ncl(A)).

Conversely, let A be a closed set in X. Since s-pre-Ncl(f(A)) is the smallest neutrosophic

supra pre-closed set containing f(A), then f(A) ⊆ s-pre-Ncl(f(A)) ⊆ f(Ncl(A)) = f(A).

Thus f(A) = s-pre-Ncl(f(A)). Hence f(A) is an neutrosophic supra pre-closed set in Y .

Therefore f is a neutrosophic supra pre-closed map.

Theorem 4.4. Let f : X −→ Y and g : y −→ Z be two maps.

(i) If g ◦ f is an neutrosophic supra pre-open and f is continuous surjective, then g is an

neutrosophic semi-supra pre-open.

(ii) If g ◦ f is open and g is an neutrosophic supra precontinuous injective, then f is

neutrosophic supra pre-open.

Theorem 4.5 Let f : X −→ Y be a map. Then the following are equivalent;

(i) f is an neutrosophic supra pre-open map;

(ii) f is an neutrosophic supra pre-closed map;

(iii) f is an neutrosophic supra pre-continuous map.

Proof. (i)=⇒ (ii). Suppose B is a closed set in X. Then X−B is an open set in an open set

in X. By (1), f(X−B) is an neutrosophic supra pre-open set in X. Since f is bijective, then

f(X −B) = Y − f(B). Hence f(B) is an neutrosophic supra pre-closed set in Y . Therefore

f is an neutrosophic supra pre-closed map.

(ii)=⇒(iii). Let f is an neutrosophic supra pre-closed map and B be closed set X. Since f is

bijective, then (f−1)−1(B)=f(B) is an neutrosophic supra pre-closed set in Y . By Theorem

3.7 f is an neutrosophic supra pre-continuous map.

(iii)=⇒(i). Let A be an open set in X. Since f−1 is an neutrosophic supra pre-continuous

map, then (f−1)−1(A)=f(A) is an neutrosophic supra pre-open set in Y . Hence f is an

neutrosophic supra pre-open.
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Çoker, D. (1997). An introduction to intuitionistic fuzzy topological spaces. Fuzzy sets and

systems , 88 (1), 81–89.

Devi, R., Sampathkumar, S., & Caldas, M. (2008). On supra α-open sets and sα-continuous

maps. General Mathematics , 16 (2), 77–84.

Florentin Smarandache, Surapati Pramanik (Editors)

382



Dhavaseelan, R., & Jafari, S. (in press). Generalized neutrosophic closed sets. In S. Florentin

& S. Pramanik (Eds.), New trends in neutrosophy theory and applications (Vol. 2). Pons

asbl.

El-Monsef, M. A., & Ramadan, A. (1987). On fuzzy supratopological spaces. Indian Journal

of Pure and Applied Mathematics , 18 (4), 322–329.

Mashhour, A., Allam, A., Mahmoud, F., & Khedr, F. (1983). On supratopological spaces.

Indian Journal of Pure and Applied Mathematics , 14 (4), 502–510.

Min, W. K. (1996). On fuzzy s- continuous functions. Korean Journal of Mathematics , 4 (1),

77-82.

Salama, A., & Alblowi, S. (2012). Neutrosophic set and neutrosophic topological spaces.

IOSR Journal of Mathematics (IOSR-JM), 3 (4), 31–35.

Smarandache, F. (1999). Neutrosophy: A unifying field in logics: Neutrosophic logic. neu-

trosophy, neutrosophic set, neutrosophic probability. Rehoboth: American Research

Press.

Turnal, N. (2003). An over view of intuitionstic fuzzy supra topological spaces. Hacettepe

Journal of Mathematics and Statistics , 32 , 17-26.

Zadeh, L. (1965). Fuzzy sets. Information and Control , 8 (3), 338 - 353.

New Trends in Neutrosophic Theory and Applications. Volume II

383



Single Valued Neutrosophic Finite State Machine and 
Switchboard State Machine 

Tahir Mahmood
1
, Qaisar Khan

1,*
 , Kifayat Ullah

2 
, Naeem Jan

3 

1,1, *,2,3 Department of Mathematics, International Islamic University, Islamabad, Pakistan 
     E-mail: tahirbakhat@yahoo.com  

E-mail: qaisarkan421@gmail.com 
E-mail: kifayat.phdma72@iiu.edu.pk 

Corresponding author’s email
1*

: qaisarkan421@gmail.com 

ABSTRACT 
Using single valued neutrosophic set we introduced the notion of single valued neutrosophic finite state 
machine, single valued neutrosophic successor, single valued neutrosophic subsystem and single valued 
submachine, single valued neutrosophic switchboard state machine, homomorphism and strong 
homomorphism between single valued neutrosophic switchboard state machine and discussed some related 
results and properties. 

KEYWORDS:  Single valued neutrosophic set, single valued neutrosophic state machine, single valued 
neutrosophic switchboard state machine, homomorphism and strong homomorphism. 

1. INTRODUCTION
Fuzzy set was introduced by Zadeh (1965) which is the generalization of mathematical logic. Fuzzy set is a 
new mathematical tool to describe the uncertainty. There was so many generalizations of fuzzy set namely 
interval valued fuzzy set (Turksen, 1986), intuitionistic fuzzy set (Atanassov, 1986, 1989), vague set (Gau, 
& Buehrer, 1993) etc. Interval valued fuzzy was introduced by Turksons in 1986. Intuitionistic fuzzy set 
was introduced by Attanasov in 1986. Intuitionistic fuzzy set was the generalization of Zadeh fuzzy set and 
is provably equivalent to interval valued fuzzy where the lower bound of the interval is called membership 
degree and upper bound of the interval is non-membership degree. The concept of vague set was given by 
Gua and Buehrer. Butillo and Bustince show that vague set are intuitionistic fuzzy set (Bustince, & Burillo, 
1996). Bipolar fuzzy set was introduced by W. R. Zhang (1998). Jun et al. (2012) introduced the concept of 
cubic set. Cubic set is an ordered pair of interval-valued fuzzy set and fuzzy set. These all are mathematical 
modeling to solve the problems in our daily life. These tools have its own inherent problems to solve these 
types of uncertainty while the cubic set is more informative tool to solve this uncertainty. After the 
introduction of all fuzzy set extensions Florentin Smarandache (Smarandache, 1998, 1999) introduced the 
concept of neutrosophy and neutrosophic sets which was the generalization of fuzzy sets, intuitionistic 
fuzzy sets, interval valued fuzzy set and all extensions of fuzzy sets defined above. The words 
"neutrosophy" Etymologically, "neutro-sophy" (noun) comes from French neuter Latin neuter, neutral, and 
Greek sophia, skill/wisdom means knowledge of neutral thought. Neutrosophy is a branch of philosophy 
introduced by which studies the origin and scope of neutralities, as well as thier interaction with ideational 
spectra. This theory considers every notion or idea <A> together with its opposite or negation <anti A> and 
with their spectrum of neutralities <neut A> in between them (i.e. notions or ideas supporting neither < A> 
nor <anti A>). The <neutA> and <anti A> ideas together are referred to as <nonA>. Neutrosophy is a 
generalization of Hegel's dialectics (the last one is based on <A> and <antiA> only). While a 
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"neutrosophic" (adjective), means having the nature of, or having the characteristic of Neutrosophy. A 

neutrosophic set  A   is characterized by a truth membership function AT , Indeterminacy membership

function AI and Falsity membership function AF . Where ,A AT I   and 𝐹𝐴  are real standard and nonstandard

subsets of ] 0,1 [ 
. The neutrosophic sets is suitable for real life problem, but it is difficult to apply in 

scientific problems. The difference between neutrosophic sets and intuitionistic fuzzy sets is that in 
neutrosophic sets the degree of indeterminacy is defined independently. To apply neutrosophic set in real 
life and in scientific problems Wang et al. introduced the concept of single valued neutrosophic set and 
interval neutrosophic set (Wang et al., 2005, 2010) which are subclasses of neutrosophic set. In which 
membership function, indeterminacy membership function, falsity membership was taken in the closed 
interval [0, 1] rather than the nonstandard unit interval. Malik et al. (1994a. 1994b, 1994c, 1997) given the 
concept and notion of fuzzy finite state machine, submachine of fuzzy finite state machine, subsystem of 
fuzzy finite state machine, product of fuzzy finite state machine and discussed some related properties. 
Kumbhojkar & Chaudhari (2002) introduced covering of fuzzy finite state machine. Sato & Kuroki (2002) 
introduced fuzzy finite switchboard state machine. Jun (2005) generalized the concept of malik et al. 
(1994a, 1994b, 1994c, 1997) and introduced the concept of intuitionistic fuzzy finite state machine, 
submachines of intuitionistic fuzzy finite state machine (2006), intuitionistic successor and discussed some 
related properties (Jun, 2005). Jun (2006) introduced the concept of intuitionistic fuzzy finite switchboard 
state machine, commutative intuitionistic fuzzy finite state machine and strong homomorphism (Jun, 
2006). Jun & Kavikumar (2011) also introduced the concept of bipolar fuzzy finite state machine. 

The paper is arranged as follows, section 2 contains preliminaries, section 3 contains the main result single 
valued neutrosophic finite state machine and related results, section 4 contained Single valued finite 
switchboard state machine homomorphism, strong homomorphism and related properties. At the end 
conclusion and references are given.  

Section 2.  PRELIMINARIES 
For basic definition and results the reader should refer to study [10-13, 18]. 

Definition 1: (Malik et al., 1994a) 
  A fuzzy finite state machine is a triple  ( , , )F M U   . Where  M   and  U   are finite non-empty sets 
called the set of states and the set of input symbols respectively,  is a fuzzy function in  M U M   into 
[0, 1]. 

Definition 2: (Jun, 2005) 
 An intuitionistic fuzzy finite state machine is a triple  ( , , )F M U C  . Where M  and U  are finite non-

empty sets called the set of states and the set of input symbols respectively,  ( , )C CC    is an
intuitionistic fuzzy set in M U M  into [0, 1]. 
Definition 3: (Malik et al., 1994b) 
 Let  ( , , )F M U  be a fuzzy finite state machine and  ,r s M . Then r is called an immediate 
successor of  s M   if there exists  x U   such that  ( , , ) 0s x r    . We say that  r   is called fuzzy 

successor of s  , if there exists  
*( , , ) 0s x r  .

Definition 4: (Wang et al., 2010) 
 A single valued neutrosophic set N   in X  is an object of the form 

{( ( ), ( ), ( )) }.N N NN x x x x X    
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Where ( ), ( ), ( )N N Nx x x   are functions from X  into [0,1] .
3. SINGLE VALUED NEUTROSOPHIC FINITE STATE MACHINE

Definition 5. A triple  ( , , )F M U N   is called single valued neutrosophic finite state machine 
(SVNFSM) for short), where  M   and  U   are finite sets. The elements of  M   is called states and the 
elements of  U   is called input symbols. Where is  N   is a single valued neutrosophic set in  .M U M   
Let the set of all words of finite length of the elements of  U   is denoted by *U . The empty word in  *U  is 
donated by   and  | |a   denote the length of  a   for every *a U . 

Definition 6. Let  ( , , )F M U N   be a SVNFSM. Define a SVNS  * * *
* ( , , )

N N N
N      in  

*M U M    by 

 *

1       
, ,

0       N

if u v
u v

if u v



  



 *

0       
, ,

1        N

if u v
u v

if u v



  



 *

0        
, ,

1     N

if u v
u v

if u v



  



     * *, , , , , ,w M NN N
u ab v u a w w b v      

     * *, , , , , ,w M NN N
u ab v u a w w b v        

     * *, , , , , ,w M NN N
u ab v u a w w b v      

for all  ,u v M   and  *a U   and  .b U  
Lemma 1. Let  ( , , )F M U N   be SVNFSM. Then 

     * * *, , , , , ,w MN N N
u ab v u a w w b v      

     * * *, , , , , ,w MN N N
u ab v u a w w b v      

     * * *, , , , , ,w MN N N
u ab v u a w w b v      

for all  ,u v M   and  
*, .a b U

Proof. Let  ,u v M   and  
*, .a b U  Suppose  | | .b n  We prove the result by induction. If  0,n    then

b    and so  .ab a a   

   * *, , , ,w M N N
u a w w b v       

   * *, , , ,w M N N
u a w w v        

   * *, , , ,  
N N

u a v u ab v   

and 

   * *, , , ,w M N N
u a w w b v       

   * *, , , ,w M N N
u a w w v        
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   * *, , , ,  
N N

u a v u ab v   

and 

   * *, ,  , ,w M N N
u a w w b v       

   * *, ,  , ,w M N N
u a w w v        

   * *, , , ,  
N N

u a v u ab v   

Hence the result is true for  0.n    Let us assume that the result is true for all  *c U   such that  
| | 1, 0.c n n     Then  ,b cd   where  *c U   and  ,| | 1, 0.d U c n n      Then 

       * * *, , , , , , , ,w M NN N N
u ab v u acd v u ac w w d v        

      * *, ,  , , , ,w M z M NN N
u a z z c w w d v         

 

     * *, , ,  , , , ,w z M NN N
u a z z c w w d v          

      * *, ,  ( , , , ,z M w M NN N
u a z z c w w d v        

 
 

   * *, , , ,z M N N
u a z z cd v        

   * *, , , ,z M N N
u a z z b v        

and 

       * * *, , , , , , , ,w M NN N N
u ab v u acd v u ac w w d v        

      * *, , , , , ,w M z M NN N
u a z z c w w d v         

 

     * *, , , , , , ,w z M NN N
u a z z c w w d v          

     * *, , ( , , , , )z M w M NN N
u a z z c w w d v         

   * *, , , ,z M N N
u a z z cd v      

   * *, , , ,z M N N
u a z z b v        

and 

       * * *, , , , , , , ,w M NN N N
u ab v u acd v u ac w w d v        

      * *, , , , , ,w M z M NN N
u a z z c w w d v         

 

     * *, , , , , , ,w z M NN N
u a z z c w w d v        

     * *, , ( ( , , , , )z M w M NN N
u a z z c w w d v         

   * *, ,  , ,z M N N
u a z z cd v        

   * *, ,  , ,z M N N
u a z z b v        

Therefore, the result is true for  | | , 0.b n n    

Definition 7. Let  ( , , )F M U N   be a SVNFSM and  , .u v M   Then  v   is called single valued 
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neutrosophic immediate successor of  u   if there exists  x U   such that     , , 0, , , 1N Nu x v u x v     

and   , , 1.N u x v    We say that  v   is called single valued neutrosophic successor of  u   if there exists  

x U   such that     *
*, , 0, , , 1NN

u x v u x v     and  * , , 1.
N

u x v    The set of all single valued 

neutrosophic successor of  u   is denoted by  ( )SVNS u  . The set of all single valued neutrosophic 
successor of  N   is denote by  

( ) { ( ) | }SVNS N SNS u u N    
where  N   is any subset of  .M  

Proposition 1. Let  ( , , )F M U N   be a SVNFSM. For any  , ,u v M  the following hold: 
(i) ( )u SVNS u   
(ii) if  ( )u SVNS v   and  ( ),w SVNS u   then  ( ).r SVNS v   

Proof.  (i)  Since   * , , 1 0
N

u u      ,  * , , 0 1
N

u u      and   * , , 0 1
N

u u     

(ii) Let  ( )v SVNS u   and  ( ).w SVNS v  Then there exists  ?,a b U   such that  

   * *, , 0, , , 1,
N N

u a v u a v    and       * * *, , 1, , , 0, , , 1
N N N

u a v v b w v b w       and

 * , , 1.
N

v b w    Using lemma (1), we have 

     * * *, , , , , ,z MN N N
u ab w u a z z b w      

   * *, , , , 0
N N

u a v v b w     

And 

     * * *, , , , , ,z MN N N
u ab w u a z z b w      

   * *, , , , 1
N N

u a v v b w     

and 

     * * *, , , , , ,z MN N N
u ab w u a z z b w      

   * *, ,  , , 1
N N

u a v v b w     

Hence  ( ).w SVNS v  

Proposition 2. Let  ( , , )F M U N   be SVNFSM. For any subsets  C   and  D  the following assertions 
hold. 
(i)    If  ,C D   then  ( ) ( ).SVNS C SVNS D   
(ii)    ( ).C SVNS C   
(iii)     ( ( )) ( ).SVNS SVNS C SVNS C   
(iv)   ( ) ( ) ( ).SVNS C D SVNS C SVNS D     
(v)   ( ) ( ) ( )SVNS C D SVNS C SVNS D     
 Proof.  The proofs of (i),(ii),(iv), and (v) are simple and straightforward. 
(iii) Obviously  ( ) ( ( )).SVNS C SVNS SVNS C   If  ( ( )),u SVNS SVNS C   then  ( )u SVNS v   for 
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some  ( ).v SVNS C   From  ( ),v SVNS C   there exists  w C   such that  ( ).v SVNS w   it follows 
from proposition (1) that  ( ) ( )u SVNS w SVNS C    so that  ( ( )) ( ).SVNS SVNS C SVNS C   Hence 
(iii) is valid. 
Definition 8. Let  ( , , )F M U N   be SVNFSM. We say that  ?   satisfies the single valued neutrosophic 
exchange property if , for all  ,u v M   and  ,G M   whenever  ( { })v SVNS G u    and  

( )v SVNS G   then  ( { }).u SVNS G v    
Theorem 1. Let  ( , , )F M U N   be a SVNFSM. Then the following assertions are equivalent. 
(i)   F  satisfies the single valued neutrosophic exchange property. 
(ii)   ( for    all    , )( ( )) ( ).u v M v SVNS u u VNS v     
 Proof. Suppose that  ?   satisfies the Single valued neutrosophic exchange property. Let  ,u v M   be 
such that  ( ) ( { }).v SVNS u SVNS u     Note that  ( )v SVNS    and so  

( { }) ( ).u SVNS v SVNS v     Similarly if  ( )u SVNS v   then  ( ).v SVNS u   Conversely assume 
that (ii) is valid. Let  ,u v M   and  .G M   If  ( { }),v SVNS G u    then  ( ).v SVNS u   It follows 
from (ii) that 

( ) ( { }).u SVNS v SVNS G v    
Therefore  ?   satisfies the single valued exchange property. 

Definition 9. Let  ( , , )F M U N   be a SVNFSM. Let  * * *
* ( , , )

M M M
M      be a single valued 

neutrosophic set in  M.   Then  *( , , , )M M U N   is called single valued neutrosophic submachine of  F   if 
for all  ,u v M   and  ,x U  

* *( ) ( ) ( , , ),NM M
u v v x u   

* *( ) ( ) ( , , ),NM M
u v v x u   

* *( ) ( ) ( , , )NM M
u v v x u   

Example 1. Let  { , },M u v    { },U x    ( , , ) 0.75, ( , , )N Nu x v u x v    and  ( , , ) 0.5N u x v    for all  

, .u v M   Let  * * *
* ( , , )

M M M
M      be given by  * *( ) 0.5 ( ),

M M
u u     

? ( ) 0.15.
M

u    Then 

* *( ) ( , , ) 0.5 0.75 0.5 ( )NM M
u u x v v      

* *( ) ( , , ) 0.5 0.75 0.75 ( )NM M
u u x v v      

* *( ) ( , , ) 0.15 0.5 0.5 ( )NM M
u u x v v      

Therefore  *M   is a single valued neutrosophic subsystem. 

Theorem 2. Let  ( , , )F M U N   be a SVNFSM and let  * * *
* ( , , )

M M M
M      be a single valued 

neutrosophic set in  .M   Then  *M   is a single valued neutrosophic subsystem of  M   iff 

? ? ?( ) ( ) ( , , )
M M N

u v v x u   

? ? ?( ) ( ) ( , , )
M M N

u v v x u   
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? ? ?( ) ( ) ( , , )
M M N

u v v x u   

for all  ,u v M   and  ?.x M   
 Proof.  Let us assume that ?M   is a single valued neutrosophic subsystem of  F  . Let  ,u v M   and  

*.x M  We prove the result by induction on | x  | .n   If  0,n   we have  .x     Now if  ,v u  then

* * *( ) ( , , ) ( )
M N M

u u u u    

* * *( ) ( , , ) ( )
M N M

u u u u    

and 

* * *( ) ( , , ) ( )
M N M

u u u u    

If  ,u v   then 

* * *( ) ( , , ) 0 ( )
M N M

v v x u u    

* * *( ) ( , , ) 1 ( )
M N M

v v x u u    

and 

* * *( ) ( , , ) 1 ( )
M N M

u u u u     

Hence for  0n    the result is true. Now let us assume that the result is true for all  *b M   with  
| | 1, 0.b n n     Let  x bc   with  .c M   Then 

* * * *( ) ( , , ) ( ) ( , , )
M N M N

v v x u v v bc u     

    * *( ) , , , ,w M NM N
v v b w w c u       

    * *( ) , , , ,w M NM N
v v b w w c u      

 * *[ ( ) , , ] ( )w M NM M
w w c u v      

and 

* * * *( ) ( , , ) ( ) ( , , )
M N M N

v v x u v v bc u     

    * *( ) , , , ,w M NM N
v v b w w c u       

    * *( ) , , , ,w M NM N
v v b w w c u      

 * *[ ( ) , , ] ( )w M NM M
w w c u v        

and 

* * * *( ) ( , , ) ( ) ( , , )
M N M N

v v x u v v bc u     

    * *( ) , , , ,w M NM N
v v b w w c u       

    * *( ) , , , ,w M NM N
v v b w w c u      

 * *[ ( ) , , ] ( )w M NM M
w w c u v      

the converse of the above theorem is trivial. 
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Definition 10. Let  ( , , )F M U N   be a SVNFSM. Let  .G M   Let  ( , , )C C CC      be a single 
valued neutrosophic set in  G U G    and let  ( , , )G U C   be a SVNFSM. Then    is called single 
valued neutrosophic submachine of  ,F   if 

(i)     |G U GN C     that is  
|G U GN C 
 

  ,   
|G U GN C 
 

   and  
|G U GN C 
 

   

(ii)    ( )SVNS G G  

We assume that  ( , , )U C    is a single valued neutrosophic submachine of  .F   Obviously, if     is a 
single valued neutrosophic submachine of    and    is single valued submachine of  ,F   Then    is a 
single valued submachine of  .F   
Definition 11. Let  ( , , )F M U N   be a SVNFSM. Then it is said to be strongly single valued 
neutrosophic connected if  ( )v SVNS u   for every  , .u v M   A single valued neutrosophic submachine  

( , , )G U C   of a  SVNfsm   is said to be proper if     and  .M  
Theorem 3. Let  ( , , )F M U N   be a SVNFSM and let  ( , , ), ,i i iG U C i I   be a family of single 
valued neutrosophic submachine of  .F   Then we have the following, 
(i)   ( , , )i i ii I i I i I

G U C
 



      is a single valued neutrosophic submachine of  .F  

(ii)   ( , , )i ii I i I
G U D

 
     is a single valued neutrosophic submachine of  F  , where 

( , , )D D DD      is given by 

 D     
|

,
G U Gi I i IN    

   D     
| G U Gi I i IN
   

  and D     
| G U Gi I i IN
   

 Proof (i)    Let  ( , , ) .i ii I i I
u a v G U G




    Then, 

 ( )( , , ) ( , , ) ( , , ) ( , , )
i iC C N Ni I i I i I

u a v u a v u a v u a v   
  
       

 ( )( , , ) ( , , ) ( , , ) ( , , )
i iC C N Ni I i I i I

u a v u a v u a v u a v   
  
       

and 
 ( )( , , ) ( , , ) ( , , ) ( , , )

i iC C N Ni I i I i I
u a v u a v u a v u a v   

  
       

Therefore  
| .

i I i i I iG U G i
i I

N C
   



    Now 

 ( ) ( ) .i i ii I i I i I
SVNS G SVNS G G

  
    

Hence  ii I
   is a single valued neutrosophic submachine of  .F

(ii)  Since  ( ) ( ) ,i i ii I i I i I
SVNS G SVNS G G

  
    ii I

   is a submachine of  .F  

Theorem 4. A  SVNFSM   ( , , )F M U N   is strongly single valved neutrosophic connected  iff  F
has no proper single valued neutrosophic submachine. 
 Proof.  Assume that  ( , , )F M U N   is strongly single valued neutrosophic connected. Let  

( , , )G U C   be a single valued neutrosophic submachine of   F   such that  .G    Then there exists  
u G  . If  ( )v SVNS u    since   F   is strongly single valued neutrosophic connected. It follows that  

( ) ( )v SVNS u SVNS G G     so that  .G M   Hence   ,F   that is   F   has no proper single 
valued neutrosophic submachine. Conveersely assume that   F   has no poper single valued neutrosophic 
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submachines. Let  ,u v M   nad let ( ( ), , )SVNS u U C  , where  ( , , )C C CC      is given by 

 
| ( ) ( )

,
SVNS u U SVNS uC N 

 
    

| ( ) ( )
,

SVNS u U SVNS uC N 
 

   and  
| ( ) ( )SVNS u U SVNS uC N 

 


Then    is a single valued neutrosophic submachine of  F   and  ( ) ,SVNS u    and so  
( ) .SVNS u M   Thus  ( ),v SVNS u   and therefore  F   is strongly single valued neutrosophic 

connected. 

4. SINGLE VALUED NEUTROSOPHIC FINITE SWITCHBOARD STATE MACHINE
Definition 12. An SVNFSM   ( , , )M N U S   is said to be switching if it satisfies: 

( , , ) ( , , ), ( , , ) ( , , )S S S Sr a s s a r r a s s a r      

and 
( , , ) ( , , )S Sr a s s a r   

for all  ,r s N   and  .a U   
An SVNFSM   ( , , )M N U S   is said to be commutative if it satisfies: 

( , , ) ( , , ), ( , , ) ( , , )S S S Sr ab s r ba s r ab s r ba s      

and 
( , , ) ( , , )S Sr ab s r ba s   

for all  ,r s N   and  , .a b U   
If an SVNFSM  ( , , )M N U S   is both switching and commutative, then it is called single valued 
neutrosophic finite switchboard state machine (SVNFSSM for short). 
Proposition 3. If  ( , , )M N U S   is a commutative SVNFSM, then 

( , , ) ( , , ), ( , , ) ( , , )
S S S S

r ba s r ab s r ba s r ab s         

and 

( , , ) ( , , ).
S S

r ba s r ab s    

for all  ,r s N   and  , .a U b U     
 Proof.  Let  ,r s N   and  ,a b U   . We prove the result by induction on  | | .b k   If  0,k    then  

,b    hence 

( , , ) ( , , ) ( , , ) ( , , ) ( , , ),

( , , ) ( , , ) ( , , ) ( , , ) ( , , )
S S S S S

S S S S S

r ba s r a s r a s r a s r ab s

r ba s r a s r a s r a s r ab s

      

      

    

    

   

   

and 

( , , ) ( , , ) ( , , ) ( , , ) ( , , )
S S S S S

r ba s r a s r a s r a s r ab s             

Therefore the result is true for  0.k    Suppose that the result is true for  | | 1.c k   That is for all  
c U    with  | | 1, 0.c k k    Let  d U   be such that  .b cd   Then 
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( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , ),

( , , )

v NS S S S

v N S S

S

v N SS

v N SS

S S

S S

r ba s r cda s r c v v da s

r c v v ad s

r cad s

r ca v v d s

r ac v v d s

r acd s r ab s

r ba s

   

 



 

 

 

 

   

 







 

 









     

    



    

    

 

 ( , , ) ( , , ) ( , , )

( , , ) ( , , )

( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

v N S S

v N S S

S

v N SS

v N SS

S S

r cda s r c v v da s

r c v v ad s

r cad s

r ca v v d s

r ac v v d s

r acd s r ab s

 

 



 

 

 

 

 







 









    

    



    

    

 

and 

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

v NS S S S

v N S S

S

v N SS

v N SS

S S

r ba s r cda s r c v v da s

r c v v ad s

r cad s

r ca v v d s

r ac v v d s

r acd s r ab s

   

 



 

 

 

   

 







 









     

    



    

    

 

Hence the result is true for  | | .b k   Thus completes the proof. 
Proposition 4. If  ( , , )M N U S   is an SVNFSSM, then 

( , , ) ( , , ), ( , , ) ( , , )
S S S S

r a s s a r r a s s a r         

and 

( , , ) ( , , ).
S S

r a s s a r    

for all  ,r s N   and  .a U    

 Proof.  Let  ,r s N   and  a U   . We prove the result by induction on  | | .a k   If  0,k    then  
,b    hence 

( , , ) ( , , ) ( , , ) ( , , ),

( , , ) ( , , ) ( , , ) ( , , )
S S S S

S S S S

r a s r s s r s a r

r a s r s s r s a r

     

     

   

   

  

  

and 
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( , , ) ( , , ) ( , , ) ( , , )
S S S S

r a s r s s r s a r            

Therefore the result is true for  0.k    Assume that the result is true for  | | 1.b k    That is for all  
b U    with  | | 1, 0,b k k     we have 

( , , ) ( , , ), ( , , ) ( , , )
S S S S

r b s s b r r b s s b r         

and 

( , , ) ( , , ).
S S

r b s s b r    

Let  x U   and  b U    be such that  .a bx   Then 

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , ) ( , , ),

( , , ) ( , , )

v N SS S S

v N SS

v N S S

v N S S

S S S

S S

r a s r bx s r b v v x s

v b r s x r

v b r s x r

s x r r b v

s xb r s bx r s a r

r a s r bx s

   

 

 

 

  

 

  



 

 

  

 









     

    

    

    

  

   ( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , ) ( , , )

v N SS

v N SS

v N S S

v N S S

S S S

r b v v x s

v b r s x r

v b r s x r

s x r r b v

s xb r s bx r s a r

 

 

 

 

  





 

 

  









  

    

    

    

  

and 

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , ) ( , , )

v N SS S S

v N SS

v N S S

v N S S

S S S

r a s r bx s r b v v x s

v b r s x r

v b r s x r

s x r r b v

s xb r s bx r s a r

   

 

 

 

  

  



 

 

  









     

    

    

    

  

 

This shows that the result is true for  .b k   

Proposition 5.If  ( , , )M N U S   is an SVNFSSM, then 

( , , ) ( , , ), ( , , ) ( , , )
S S S S

r ab s r ba s r ab s r ba s         

and 

( , , ) ( , , ).
S S

r ab s r ba s    

for all  c  and  , .a b U    
 Proof. Let  ,r s N   and  ,a b U   . We prove the result by induction on  | | .b k   If  0,k    then  

Florentin Smarandache, Surapati Pramanik (Editors)

394



,b    hence 

( , , ) ( , , ) ( , , ) ( , , ) ( , , ),

( , , ) ( , , ) ( , , ) ( , , ) ( , , )
S S S S S

S S S S S

r ab s r a s r a s r a s r ba s

r ab s r a s r a s r a s r ba s

      

      

    

    

   

   

and 

( , , ) ( , , ) ( , , ) ( , , ) ( , , )
S S S S S

r ab s r a s r a s r a s r ba s             

Therefore the result is true for  0.k    Suppose that the result is true for  | | 1.c k   That is for all  
c U    with  | | 1, 0.c k k    Let  d U   be such that  .b cd   Then 

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , ) ( , , )

( ,

v N SS S S

v N SS

v N SS

v N S S

v NS S S

v N S

r ab s r acd s r ac v v d s

r ca v v d s

v ca r s d v

s d v v ca r

s dca r s dc v v a r

s c

   

 

 

 

  



  







  















     

    

    

    

     

  , ) ( , , ) ( , , )

( , , ) ( , , ),

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

S S

S S

v N SS S S

v N SS

v N SS

v N S S

d v v a r s cda r

r cda s r ba s

r ab s r acd s r ac v v d s

r ca v v d s

v ca r s d v

s d v v ca r

 

 

   

 

 

 

 

 

  















   

 

     

    

    

  

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

( , , ) ( , , )

v NS S S

v N S S S

S S

s dca r s dc v v a r

s cd v v a r s cda r

r cda s r ba s

  

  

 

  

  

 








     

     

 

 

and 
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( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , ) ( , , )

( ,

v N SS S S

v N SS

v N SS

v N S S

v NS S S

v N S

r ab s r acd s r ac v v d s

r ca v v d s

v ca r s d v

s d v v ca r

s dca r s dc v v a r

s c

   

 

 

 

  



  







  















     

    

    

    

     

  , ) ( , , ) ( , , )

( , , ) ( , , )
S S

S S

d v v a r s cda r

r cda s r ba s

 

 

 

 

   

 

 

This shows that the result is true for  | | .b k   
Definition 13. Let  

1 1( , , )SM N U S   and  
2 2( , , )TM N U T   be two SVNFSMs. A pair  ( , )    of 

mappings  
1 2: N N    and  

1 2: U U    is called homomorphism, written as  ( , ) : ,S TM M    
if it satisfies: 

( , , ) ( ( ), ( ), ( )), ( , , ) ( ( ), ( ), ( ))S T S Tr a s r a s r a s r a s            

and 
( , , ) ( ( ), ( ), ( ))S Tr a s r a s    

for all  
1,r s N   and  

1.a U   

Definition 14. Let  1 1( , , )SM N U S   and  2 2( , , )TM N U T   be two SVNFSMs. A pair  ( , )    of 
mappings  

1 2: N N    and  
1 2: U U    is called a strong homomorphism, written as  

( , ) : ,S TM M    if it satisfies: 

1

1

( ( ), ( ), ( )) { ( , , ) | , ( ) ( )},
( ( ), ( ), ( )) { ( , , ) | , ( ) ( )}

T S

T S

r a s r a v v N v s
r a s r a v v N v s

      

      

   

   

and 
1( ( ), ( ), ( )) { ( , , ) | , ( ) ( )}T Sr a s r a v v N v s           

for all  1,r s N   and  1.a U   If  1 2U U   and    is the identity map, then we simply write  

: S TM M    and say that     is a homomorphism or strong homomorphism accordingly. If  ( , ) 

is a strong homorphism with     is one-one, then
( ( ), ( ), ( )) ( , , ), ( ( ), ( ), ( )) ( , , )T S T Sr a s r a s r a s r a s            

and 
( ( ), ( ), ( )) ( , , )T Sr a s r a s    

for all  1,r s N   and  1.a U   

Theorem 5. Let  1 1( , , )SM N U S   and  2 2( , , )TM N U T   be two SVNFSMs. Let  

( , ) : S TM M     be an onto strong homomorphism. If  MS   is a commutative, then so is  MT.

 Proof.  Let  2 2 2, .r s N   Then there are  1 1 1,r s N   such that  1 2( )r r    and  1 2( ) .s s    Let 

2 2 2, .x y U   Then there exists  1 1 1,x y U   such that  1 2( )x x    and  1 2( ) .y y   Since  MS   is 
commutative , we have 

Florentin Smarandache, Surapati Pramanik (Editors)

396



2 2 2 2 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

( , , ) ( ( ), ( ) ( ), ( ))

( ( ), ( , ), ( ))

{ ( , , ) | , ( ) ( )}

{ ( , , ) | , ( ) ( )}

( ( ), ( ), ( ))

( , , ),

( , , )

T T

T

S

S

T

T

T

r x y s r x y s

r x y s

r x y v v N v s

r y x v v N v s

r y x s

r y x s

r x y s

     

   

  

  

   





 

















   

   





1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

2 2 2 2

( ( ), ( ) ( ), ( ))

( ( ), ( , ), ( ))

{ ( , , ) | , ( ) ( )}

{ ( , , ) | , ( ) ( )}

( ( ), ( ), ( ))

( ( ), ( ) ( ), ( ))

( , , )

T

T

S

S

T

T

T

r x y s

r x y s

r x y v v N v s

r y x v v N v s

r y x s

r y x s

r y x s

    

   

  

  

   

    





















   

   







and 

2 2 2 2 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

( , , ) ( ( ), ( ) ( ), ( ))

( ( ), ( , ), ( ))

{ ( , , ) | , ( ) ( )}

{ ( , , ) | , ( ) ( )}

( ( ), ( ), ( ))

( ( ), ( ) ( ), ( ))

T T

T

S

S

T

T

T

r x y s r x y s

r x y s

r x y v v N v s

r y x v v N v v s

r y x s

r y x s

     

   

  

 

   

    



 

















   

   





 2 2 2 2( , , )r y x s

 

Hence  MT   is a commutative SVNFSM. This completes the proof. 
Proposition 6. Let  1 1( , , )SM N U S   and  2 2( , , )TM N U T   be two SVNFSMs. Let  
( , ) : S TM M     be a strong homomorphism. Then 

1 1

1

1 1

1

( , )( )( ( ( ), ( ), ( )) 0
( )( ( , , ) 0, ( ) ( )),

( , )( )( ( ( ), ( ), ( )) 1
( )( ( , , ) 1, ( ) ( )),

T

S

T

S

u v N a U u a v
w N u a v w v v

u v N a U u a v
w N u a v w v v

   

 

   

 

    

    

    

    

and 

1 1

1

( , )( )( ( ( ), ( ), ( )) 1
( )( ( , , ) 1, ( ) ( )).

T

S

u v N a U u a v
w N u a v v w v

   

 

    

    

Moreover, 

1( )( ( ) ( ) ( , , ) ( , , ),
( , , ) ( , , ) ( , , ) ( , , ).

S S

S S S S

z N z v u u a w z a r
u a w z a r and u a w z a r
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 Proof. Let  
1, ,u v z N   and  

1.a U   Assume that  ( ( ), ( ), ( )) 0,T u a v        
( ( ( ), ( ), ( )) 1T u a v       and  ( ( ( ), ( ), ( )) 1.T u a v      Then 

1 1 1 1

1 1 1 1

{ ( , , ) | , ( ) ( )} 0
{ ( , , ) | , ( ) ( )} 1

S

S

u a v v N v v v
u a v v N v v v

 

 

   

   

and 
1 1 1 1{ ( , , ) | , ( ) ( )} 1S u a v v N v v       

Since  N1   is finite , it follows that there exists  
1w N   such that  ( ) ( ),w v    

1 1 1 1

1 1 1 1

( , , ) { ( , , ) | , ( ) ( )} 0,
( , , ) { ( , , ) | , ( ) ( )} 1

S S

S S

u a w u a v v N v w
u a v u a v v N v w

   

   

    

    

and 
1 1 1 1( , , ) { ( , , ) | , ( ) ( )} 1S Su a v u a v v N v w         

Now suppose that  ( ) ( )z u    for every  1.z N   Then 

1 1 1 1

( , , ) ( ( ), ( ), ( )) ( ( ), ( ), ( ))
{ ( , , ) | , ( ) ( )} ( , , ),

S T T

S S

u a w u a v z a v
z a v v N v v z a v

        

   

 

    

1 1 1 1

( , , ) ( ( ), ( ), ( )) ( ( ), ( ), ( ))
{ ( , , ) | , ( ) ( )} ( , , )

S T T

S S

u a w u a v z a v
z a v v N v v z a v

        

   

 

    

and 

1 1 1 1

( , , ) ( ( ), ( ), ( )) ( ( ), ( ), ( ))
{ ( , , ) | , ( ) ( )} ( , , )

S T T

S S

u a w u a v v z a v
z a v v N v v z a v

       

   

 

    

Which is the required proof. 
Lemma 2. Let  1 1( , , )SM N U S   and  2 2( , , )TM N U T   be two SVNFSMs. Let  ( , ) : S TM M     

be a homomorphism. Define a mapping  1 2: U U      by  ( )      and  ( ) ( ) ( )xy x y    

for all  1x U    and 1.y U  Then  ( ) ( ) ( )ab a b       for all  1, .a b U    

 Proof Let  1, .a b U    We prove the result by induction on  | | .b k   If  0,k    then  .b    Therefore  
ab a a   . Hence 

( ) ( ) ( ) ( ) ( ) ( ) ( )ab a a a a b                 

Which shows that the result is true for  0.k    Let us assume that the result is true for each  1c U    such 
that  | | 1.c k    That is 

( ) ( ) ( )ab a b    

Let  ,b cd   where  1c U    and  1d U   be such that  | | 1, 0.c k k     Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).ab acd ac d a c d a cd a b                        
Therefore, the result is true for  | | .b k   
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Theorem 6. Let  
1 1( , , )SM N U S   and  

2 2( , , )TM N U T   be two SVNFSMs. Let  
( , ) : S TM M     be a homomorphism. Then 

( , , ) ( ( ), ( ), ( )), ( , , ) ( ( ), ( ), ( ))
S T S T

r a s r a s r a s r a s            

    

and 

( , , ) ( ( ), ( ), ( ))
S T

r a s r a s     

  

for all  
1,r s N   and  1 .a U    

 Proof.  Let  
1,r s N   and  1 .a U    We prove the result by induction on  | | .a k   If  0,k    then  

a    and so  ( ) ( ) .a        If  ,r s   then

( , , ) ( , , ) 1 ( ( ), , ( )) ( ( ), ( ), ( )),

( , , ) ( , , ) 0 ( ( ), , ( )) ( ( ), ( ), ( ))
S S T T

S S T T

r a s r s r s r a s

r a s r s r s r a s

          

          

   

   





   

   

and 

( , , ) ( , , ) 0 ( ( ), , ( )) ( ( ), ( ), ( ))
S S T T

r a s r s r s r a s             

   

If  ,r s   then 

( , , ) ( , , ) 0 ( ( ), ( ), ( )),

( , , ) ( , , ) 1 ( ( ), ( ), ( ))
S S T

S S T

r a s r s r a s

r a s r s r a s

      

      

  

  





  

  

and 

( , , ) ( , , ) 1 ( ( ), ( ), ( ))
S S T

r a s r s r a s        

  

Therefore the result is true for  0.k    Let us assume that the result is true for all  1b U    such that  
| | 1, 0.b k k     Let  a bc  where  1 1,b U c U    and  | | 1.b k    Then 

1

1

1

( , , ) ( , , ) [ ( , , ) ( , , )]

[ ( ( ), ( ), ( )) ( ( ), ( ), ( ))]

[ ( ( ), ( ), ) ( , ( ), ( ))]

( ( ), ( ) ( ), ( ))

( ( ), ( ), ( ))

( ( )

v NS S S S

v N T T

v N T T

T

T

T

r a s r bc s r b v v c s

r b v v c s

r b v v c s

r b c s

r bc s

r

   

       

     

    

   

 

   

 

 





















   

  

  







1

1

1

, ( ), ( )),

( , , ) ( , , ) [ ( , , ) ( , , )]

[ ( ( ), ( ), ( )) ( ( ), ( ), ( ))]

[ ( ( ), ( ), ) ( , ( ), ( ))]

( ( ), ( ) ( ), ( ))

( ( ), ( ),

v NS S S S

v N T T

v N T T

T

T

a s

r a s r bc s r b v v c s

r b v v c s

r b v v c v s

r b c s

r bc

 

   

       

    

    

   

   

 

 





















   

  

  



 ( ))

( ( ), ( ), ( ))
T

s

r a s   
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and 

1

1

1

( , , ) ( , , ) [ ( , , ) ( , , )]

[ ( ( ), ( ), ( )) ( ( ), ( ), ( ))]

[ ( ( ), ( ), ) ( , ( ), ( ))]

( ( ), ( ) ( ), ( ))

( ( ), ( ), ( ))

( ( )

v NS S S S

v N T T

v N T T

T

T

T

r a s r bc s r b v v c s

r b v v c s

r b v v c s

r b c s

r bc s

r

   

       

     

    

   

 

   

 

 





















   

  

  





 , ( ), ( ))a s 

Which is the required proof. 
Theorem 7. Let  1 1( , , )SM N U S   and  2 2( , , )TM N U T   be two SVNFSMs. Let  ( , ) : S TM M     
be a strong homomorphism. If    is one-one, then 

( , , ) ( ( ), ( ), ( )), ( , , ) ( ( ), ( ), ( ))
S T S T

r a s r a s r a s r a s            

    

and 
( , , ) ( ( ), ( ), ( ))

S T
r a s r a s     

  

for all  1,r s N   and  1 .a U    

 Proof.  Let us assume that     is 1-1 and for  1,r s N   and  1 .a U    Let  | | .a k   We prove the result 
by induction on  | | .a k   If  0,k    then  a    and  ( ) .      Since  ( ) ( )r s    if and only if  

,r s   we get 

( , , ) ( , , ) 1
S S

r a s r s      

if and only if 

( ( ), ( ), ( )) ( ( ), ( ), ( )) 1,

( , , ) ( , , ) 0
T T

S S

r a s r s

r a s r s

        

  

 

 

  

 

if and only if 
( ( ), ( ), ( )) ( ( ), ( ), ( )) 0,

T T
r a s r s         

    

and 
( , , ) ( , , ) 0

S S
r a s r s      

if and only if 
( ( ), ( ), ( )) ( ( ), ( ), ( )) 0

T T
r a s r s         

    

Let us assume that the result is true for all  1b U    such that  | | 1, 0.b k k     Let  a bc  , where 
| | 1, 0b k k     and  1 1, .b U c U    Then 
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1

1

( ( ), ( ), ( )) ( ( ), ( ), ( )) ( ( ), ( ) ( ), ( ))

[ ( ( ), ( ), ( )) ( ( ), ( ), ( ))]

[ ( , , ) ( , , )]

( , , ) ( , , ),

( ( ), ( ), ( )) ( ( ), (

T T T

v N TT

v N SS

S S

T T

r a s r bc s r b c s

r b v v c s

r b v v c s

r bc s r a s

r a s r b

            

       

 

 

      

  





 

 

  







 

 

  

  

 



1

1

), ( )) ( ( ), ( ) ( ), ( ))

[ ( ( ), ( ), ( )) ( ( ), ( ), ( ))]

[ ( , , ) ( , , )]

( , , ) ( , , )

T

v N TT

v N SS

S S

c s r b c s

r b v v c s

r b v v c s

r bc s r a s

     

       

 

 







 











  

  

 

and 

1

1

( ( ), ( ), ( )) ( ( ), ( ), ( )) ( ( ), ( ) ( ), ( ))

[ ( ( ), ( ), ( )) ( ( ), ( ), ( ))]

[ ( , , ) ( , , )]

( , , ) ( , , )

T T T

v N TT

v N SS

S S

r a s r bc s r b c s

r b v v c s

r b v v c s

r bc s r a s

            

       

 

 

  





 

  







 

  

  

 

Which is the required proof. 

CONCLUSION 
Using the notion of single valued neutrosophic set we introduced the notion of single valued neutrosophic 
finite state machine, single valued neutrosophic successors, single valued neutrosophic subsystem, and 
single valued neutrosophic submachines. which are the generalization of fuzzy finite state machine and 
intuitionistic fuzzy finite state machine. We also defined single valued neutrosophic switchboard state 
machine, homomorphism and strong homomorphism between single valued neutrosophic switchboard state 
machine and discussed some related results and properties. 
In future we shall apply the concept of neutrosophic set to automata theory. 

REFERENCES 
Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87-96. 

Atanassov, K. T. (1989). More on intuitionistic fuzzy sets. Fuzzy sets and systems, 33(1), 37-45. 

Bustince, H., & Burillo, P. (1996). Vague sets are intuitionistic fuzzy sets. Fuzzy sets and systems, 79 (3), 
403-405. 

Gau, W. L., & Buehrer, D. J. (1993). Vague sets. IEEE transactions on systems, man, and cybernetics, 
23(2), 610-614. 

Jun, Y. B. (2005). Intuitionistic fuzzy finite state machines. Journal of Applied Mathematics and 
Computing, 17(1-2), 109-120. 

 Jun, Y. B. (2006). Intuitionistic fuzzy finite switchboard state machines. Journal of Applied Mathematics 
and Computing, 20(1-2), 315-325. 

Jun, Y. B., & Kavikumar, J. (2011). Bipolar fuzzy finite state machines. Bull. Malays. Math. Sci. Soc, 
34(1), 181-188. 

New Trends in Neutrosophic Theory and Applications. Volume II

401



 Jun, Y. B., Kim, C. S., & Yang, K. O. (2012). Cubic sets. Annals of Fuzzy Mathematics and Informatics, 
4(1), 83-98. 

Kumbhojkar, H. V., & Chaudhari, S. R. (2002). On covering of products of fuzzy finite state machines. 
Fuzzy Sets and Systems, 125(2), 215-222. 

 Malik, D. S., Mordeson, J. N., & Sen, M. K. (1994a). Semigroups of fuzzy finite state machines. 
Advances in fuzzy theory and technology, 2, 87-98. 

 Malik, D. S., Mordeson, J. N., & Sen, M. K. (1994b). Submachines of fuzzy finite state machines. The 
Journal of fuzzy mathematics, 2 (4), 781-792. 

 Malik, D. S., Mordeson, J. N., & Sen, M. K. (1994c). On subsystems of a fuzzy finite state machine. 
Fuzzy Sets and Systems, 68(1), 83-92. 

 Malik, D. S., Mordeson, J. N., & Sen, M. K. (1997). Products of fuzzy finite state machines. Fuzzy Sets 
and Systems, 92(1), 95-102. 

 Smarandache, F. (1998). Neutrosophy: neutrosophic probability set and logic: analytic synthesis & 
synthetic analysis. 

 Smarandache, F. (1999). A Unifying Field in Logics: Neutrosophic Logic. In Philosophy (pp. 1-141). 
American Research Press. 

 Sato, Y., & Kuroki, N. (2002). Fuzzy finite switchboard state machines. Journal of Fuzzy Mathematics, 
10(4), 863-874. 

 Turksen, I. B. (1986). Interval valued fuzzy sets based on normal forms. Fuzzy sets and systems, 20 (2), 
191-210. 

Wang, H., Smarandache, F., Zhang, Y. Q., & Sunderraman, R. (2010). Single valued neutrosophic sets. 
Multispace and Multistructure, 4, 410–413. 

Wang, H., Smarandache, F., Sunderraman, R., & Zhang, Y. Q. (2005). Interval Neutrosophic Sets and 
Logic: Theory and Applications in Computing: Theory and Applications in Computing (Vol. 5). 

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. 

Zhang, W. R. (1998, May). (Yin)(Yang) bipolar fuzzy sets. In Fuzzy Systems Proceedings, 1998. IEEE 
World Congress on Computational Intelligence., The 1998 IEEE International Conference on 
(Vol. 1, pp. 835-840). IEEE. 

Florentin Smarandache, Surapati Pramanik (Editors)

402



Neutrosophic Sets: An Overview 

Said Broumi1,* Assia Bakali2, Mohamed Talea3 , Florentin Smarandache4, Vakkas Uluçay5, Mehmet Sahin6,

Arindam Dey7, Mamouni Dhar8, Rui-Pu Tan9, Ayoub Bahnasse 10, Surapati Pramanik11 

1,3 Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, B.P 7955, Sidi 
Othman, Casablanca, Morocco. 

Email: broumisaid78@gmail.com,  taleamohamed@yahoo.fr 
2Ecole Royale Navale, Boulevard Sour Jdid, B.P 16303 Casablanca, Morocco. 

Email: assiabakali@yahoo.fr 
4Department of Mathematics, University of New Mexico,705 Gurley Avenue, Gallup, NM 87301, USA 

Email: fsmarandache@gmail.com 
5,6Department of Mathematics, Gaziantep University, Gaziantep27310-Turkey 

Email: vulucay27@gmail.com, mesahin@gantep.edu.tr. 
7Saroj Mohan Institute of Technology, West Bengal, India 

 Email: arindam84nit@gmail.com 
8Department of Mathematics Science CollegeKokrajhar-783370, Assam,India 

E-mail: mamonidhar@gmail.com 
9School of Economics and Management of Fuzhou University, China. 

E-mail: tanruipu@fjjxu.edu.cn, tanruipu123@163.com 
10 Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, B.P 7955, Sidi 

Othman, Casablanca, Morocco.Email: a.bahnasse@gmail.com 

11Department of Mathematics, Nandalal Ghosh B.T. College, Panpur, P.O.-Narayanpur, District –North 24 
Parganas, Pin code-743126, West Bengal, India. 1*E-mail: sura_pati@yahoo.co.in

ABSTRACT 

In this study, we give some concepts concerning the neutrosophic sets, single valued neutrosophic sets, interval-valued 
neutrosophic sets, bipolar neutrosophic sets, neutrosophic hesitant fuzzy sets, inter-valued neutrosophic hesitant fuzzy 
sets, refined neutrosophic sets, bipolar neutrosophic refined sets, multi-valued neutrosophic sets, simplified 
neutrosophic linguistic sets, neutrosophic over/off/under sets, rough neutrosophic sets, rough bipolar neutrosophic 
sets, rough neutrosophic  hyper-complex set, and their basic operations. Then we introduce triangular neutrosophic 
numbers, trapezoidal neutrosophic fuzzy number and their basic operations. Also some comparative studies between 
the existing neutrosophic sets and neutrosophic number are provided. 

KEYWORDS: Neutrosophic sets (NSs), Single valued neutrosophic sets (SVNSs), Interval-valued 
neutrosophic sets (IVNSs), Bipolar neutrosophic sets (BNSs), Neutrosophic hesitant fuzzy sets 
(NHFSs), Interval valued neutrosophic hesitant fuzzy sets (IVNHFSs), Refined neutrosophic sets 
(RNSs), Bipolar neutrosophic refined sets (BNRSs), Multi-valued neutrosophic sets (MVNSs), 
Simplified neutrosophic linguistic sets, Neutrosophic numbers, Neutrosophic over/off/under sets, 
Rough neutrosophic sets, Bipolar rough neutrosophic sets, Rough neutrosophic sets,  Bipolar 
rough neutrosophic sets, Rough neutrosophic hyper-complex set 

1. INTRODUCTION

The concept of fuzzy sets was introduced by L. Zadeh (1965). Since then the fuzzy sets and fuzzy logic are 
used widely in many applications involving uncertainty. But it is observed that there still remain some 
situations which cannot be covered by fuzzy sets and so the concept of interval valued fuzzy sets (Zadeh, 
1975) came into force to capture those situations, Although Fuzzy set theory is very successful in handling 
uncertainties arising from vagueness or partial belongingness of an element in a set, it cannot model all 
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sorts of uncertainties prevailing in different real physical problems such as problems involving incomplete 
information. Further generalization of the fuzzy set was made by Atanassov (1986), which is known as 
intuitionistic fuzzy sets (IFs). In IFS, instead of one membership grade, there is also a non-membership 
grade attached with each element. Further there is a restriction that the sum of these two grades is less or 
equal to unity. The conception of IFS can be viewed as an appropriate/ alternative approach in case where 
available information is not sufficient to define the impreciseness by the conventional fuzzy sets. Later on 
intuitionistic fuzzy sets were extended to interval valued intuitionistic fuzzy sets (Atanassov & Gargov, 
1989). Neutrosophic sets (NSs) proposed by (Smarandache, 1998, 1999, 2002, 2005, 2006, 2010) which is 
a generalization of fuzzy sets and intuitionistic fuzzy set, is a powerful tool to deal with incomplete, 
indeterminate and inconsistent information which exist in the real world. Neutrosophic sets are 
characterized by truth membership function (T), indeterminacy membership function (I) and falsity 
membership function (F). This theory is very important in many application areas since indeterminacy is 
quantified explicitly and the truth membership function, indeterminacy membership function and falsity 
membership functions are independent. Wang, Smarandache, Zhang, & Sunderraman (2010) introduced 
the concept of single valued neutrosophic set. The single-valued neutrosophic set can independently express 
truth-membership degree, indeterminacy-membership degree and falsity-membership degree and deals 
with incomplete, indeterminate and inconsistent information. All the factors described by the single-valued 
neutrosophic set are very suitable for human thinking due to the imperfection of knowledge that human 
receives or observes from the external world. 

Single valued neutrosophic set has been developing rapidly due to its wide range of theoretical elegance 
and application areas; see for examples (Sodenkamp, 2013; Kharal, 2014; Broumi & Smarandache, 2014; 
Broumi & Smarandache, 2013; Hai-Long, Zhi-Lian, Yanhong, & Xiuwu, 2016; Biswas, Pramanik, & Giri, 
2016a, 2016b, 2016c; 2017; Ye, 2014a, 2014b, 2014c, 2015a, 2016).  
Wang, Smarandache, Zhang, & Sunderraman (2005) proposed the concept of interval neutrosophic set 
(INS) which is an extension of neutrosophic set. The interval neutrosophic set (INS) can represent uncertain, 
imprecise, incomplete and inconsistent information which exists in real world. 
Single valued neutrosophic number is an extension of fuzzy numbers and intuitionistic fuzzy numbers. 
Single valued fuzzy number is a special case of single valued neutrosophic set and is of importance for 
decision making problems.  Ye (2015b) and Biswas, Pramanik, and Giri (2014) studied the concept of 
trapezoidal neutrosophic fuzzy number as a generalized representation of trapezoidal fuzzy numbers, 
trapezoidal intuitionistic fuzzy numbers, triangular fuzzy numbers and triangular intuitionistic fuzzy 
numbers and applied them for dealing with multi-attribute decision making (MADM) problems. Deli & 
Subas  (2017) and Biswas et al. (2016b) studied the ranking of single valued neutrosophic trapezoidal 
numbers and applied the concept to solve MADM problems. Liang, Wang, & Zhang (2017) presented a 
multi-criteria decision-making method based on single-valued trapezoidal neutrosophic preference 
relations with complete weight information.  

Ye (2014b) proposed the concept of single valued neutrosophic hesitant fuzzy sets (SVNHFS). As a 
combination of hesitant fuzzy sets (HFS) and singled valued neutrosophic sets (SVNs), the single valued 
neutrosophic hesitant fuzzy set (SVNHF) is an important concept to handle uncertainty and vague 
information existing in real life which consists of three membership functions and encompass the fuzzy set 
(FS), intuitionistic fuzzy sets (IFS), hesitant fuzzy set (HFs), dual hesitant fuzzy set (DHFs) and single 
valued neutrosophic set (SVNS). Theoretical development and applications of such concepts can be found 
in (Wang & Li, 2016; Ye, 2016). Peng, Wang, Wu,  Wang, & Chen, 2014;  Peng &Wang, 2015) introduced 
the concept of multi-valued neutrosophic set as a new branch of NSs which is the same concept of 
neutrosophic hesitant fuzzy set. Multi-valued neutrosophic sets can be applied in addressing problems with 
uncertain, imprecise, incomplete and inconsistent information existing in real scientific and engineering 
applications. 

Tian, Wang, Zhang, Chen, & Wang (2016) defined the concept of simplified neutrosophic linguistic sets 
which combine the concept of simplified neutrosophic sets and linguistic term sets. Simplified neutrosophic 
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linguistic sets have enabled great progress in describing linguistic information to some extent. It may be 
considered to be an innovative construct.  

Deli, Ali, and Smarandache (2015a)  defined the concept of bipolar neutrosophic set and its score, certainty 
and accuracy functions. In the same study, Deli et al. (2015a) proposed the A  and G  operators to 
aggregate the bipolar neutrosophic information. Furthermore, based on the A  and G  operators and the 
score, certainty and accuracy functions, Deli et al. (2015a) developed a bipolar neutrosophic  multiple 
criteria decision-making approach, in which the evaluation values of alternatives on the attributes assume 
the form of bipolar neutrosophic  numbers. Some theoretical and applications using bipolar neutrosophic 
sets are studied by several authors (Uluçay, Deli, & Şahin,2016; Dey, Pramanik, & Giri, 2016a; Pramanik, 
Dey, Giri, & Smarandache, 2017;).   

Maji (2013) defined neutrosophic soft set. The development of decision making algorithms using 
neutrosophic soft set theory has been reported in the literature (Deli & Broumi, 2015; Dey, Pramanik, & 
Giri, 2015, 2016b, 2016c; Pramanik & Dalapati (2016), Das, Kumar, Kar, & Pal, 2017).  

Broumi, Smarandache, and Dhar (2014a, 2014b) defined rough neutrosophic set and proved its basic 
properties. Some theoretical advancement and applications have been reported in the literature (Mondal & 
Pramanik, 2014, 2015a, 2015b, 2015c, 2015d, 2015e, 2015f, 2015g, 2015h); Mondal, Pramanik, and 
Smarandache (2016a, 2016b, 2016c, 2016d); Pramanik & Mondal (2015a, 2015b, 2015c); Pramanik, Roy, 
Roy, &Smarandache (2017); Pramanik, Roy, & Roy (2017).   

Ali, Deli, and Smarandache (2016) and Jun, Smarandache, and Kim (2017) proposed neutrosophic cubic 
set by extending the concept of cubic set. Some studies in neutrosophic cubic set environment have been 
reported in the literature (Banerjee, Giri, Pramanik, & Smarandache (2017); Pramanik, Dey, Giri, & 
Smarandache (2017b); Pramanik, Dalapati, Alam, & Roy (2017a, 2017b); Pramanik, Dalapati, Alam, Roy 
& Smarandache (2017); Ye (2017); Lu & Ye (2017). 

Another extension of neutrosophic set namely, neutrosophic refined set and its appilication was studied by 
several researchers ( Deli, Broumi,  & Smarandache, 2015b;  Broumi & Smarandache, 2014b; Broumi,& 
Deli,2014;. Uluçay, Deli, & Şahin, 2016, Pramanik, S., Banerjee, D., & Giri, 2016a, 2016b; Mondal & 
Pramanik, 2015h, 2015i.; Ye & Smarandache, 2016., Chen, Ye, & Du, 2017). 

Later on, several extensions of neutrosophic set have been proposed in the literature by researchers to deal 
with different type of problems such as bipolar neutrosophic refined sets (Deli & Şubaş, 2016), tri-complex 
rough neutrosophic set (Mondal & Pramanik, 2015g), rough neutrosophic hyper-complex set (Mondal, 
Pramanik & Smarandache, 2016d), rough bipolar neutrosophic set.(Pramanik a& Mondal, 2016)  simplified 
neutrosophic linguistic sets (SNLS) (Tian, Wang, Zhang, Chen, & Wang, 2016), quadripartitioned single 
valued neutrosophic sets (Chatterjee, Majumdar, Samanta, 2016). Smarandache (2016a. 2016b) proposed 
new version of neutrosophic sets such as  neutrosophic off/under/over sets. To have a glimpse of new trends 
of neutrosophic theory and applications, readers can see the latest editorial book (Smarandache & Pramanik, 
2016). Interested readers can find a variety of applications of single valued neutrosophic sets and their 
hybrid extensions in the website of the Journal “Neutrosophic Sets and Systems” namely, 
http://fs.gallup.unm.edu/nss. 

BASIC AND FUNDAMENTAL CONCEPTS 
2.1. Neutrosophic sets (Smarandache, 1998) 

Let 𝜉 be the universe. A neutrosophic set (NS) A in 𝜉 is characterized by a truth membership function AT , 

an indeterminacy membership function AI  and a falsity membership function AF where AT , AI and AF are 

real standard elements of [0,1]. It can be written as 
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{ , ( ( ), ( ), ( )) : , , , 0,1 }A A A A A AA x T x I x F x x E T I F         

There is no restriction on the sum of AT (x), AI  (x)and AF (x) and so 0 ( ) ( ) ( )) 3A A AT x I x F x    

2.2 Single valued neutrosophic sets (Wang et al., 2010) 

Let X be a space of points (objects) with generic elements in 𝜉 denoted by x. A single valued neutrosophic 

set A (SVNS ) is characterized by truth-membership function ( )AT x , an indeterminacy-membership 

function ( )AI x , and a falsity-membership function ( )AF x . For each point x in 𝜉, ( )AT x , ( )AI x , ( )AF x
[0, 1]. A SVNS A can be written as 

A = {< x: ( )AT x , ( )AI x , ( )AF x >, x   𝜉} 

2.3 Interval valued neutrosophic sets (Wang et al., 2005) 

Let 𝜉  be a space of points (objects) with generic elements in X denoted by x. An interval valued 

neutrosophic set A (IVNS A) is characterized by an interval truth-membership function ( ) ,L U
A A AT x T T   

, an interval indeterminacy-membership function ( ) , IL U
A A AI x I    , and an interval falsity-membership

function ( ) , FL U
A A AF x F    . For each point x ∈ 𝑋 ( )AT x , ( )AI x , ( )AF x  [0, 1]. An IVNS A can be 

written as 

 A = {< x: ( )AT x , ( )AI x , ( )AF x >, x   𝜉} 

Numerical Example: Assume that 1 2 3{ , , }X x x x , 1x is capability, 2x trustworthiness, 3x price. The 

values of 1x , 2x  and 3x  are in [0,1].They are obtained from questionnaire of some domain experts and the 

result can be obtained as the degree of good, degree of indeterminacy and the degree of poor. Then an 
interval neutrosophic set can be obtained as  

1

2

3

,[0.5,0.3],[0.1,0.6],[0.4,0.2] ,

,[0.3,0.2],[0.4,0.3],[0.4,0.5] ,

,[0.6,0.3],[0.4,0.1],[0.5,0.4]

x

A x

x

 
  
  

2.3 Bipolar neutrosophic sets (Deli et al., 2015) 

A bipolar neutrosophic set A in 𝜉 is defined as an object of the form 

A={<x, ( )pT x , ( )pI x , ( )pF x , ( )nT x , ( )nI x , ( )nF x >: x 𝜉}, where pT , pI , pF : 𝜉  [1, 0] and nT , nI ,
nF : 𝜉  [-1, 0] .The positive membership degree ( )pT x , ( )pI x , ( )pF x  denote the truth membership,

indeterminate membership and false membership of an element 𝜉  corresponding to a bipolar 

neutrosophic set A and the negative membership degree ( )nT x , ( )nI x , ( )nF x denotes the truth membership,
indeterminate membership and false membership of an element 𝜉  to some implicit counter-property 
corresponding to a bipolar neutrosophic set A. 
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An empty bipolar  neutrosophic set 1 1 1 11 1 1, I ,F , , I ,Fp p p n n nA T T   is defined as 1 1 10, I 0,F 1p p pT     and 

1 1 11, I 0, F 0n n nT     . 

Numerical Example: Let 1 2 3{ , , }X x x x then

1

2

3

,0.5,0.3,0.1, 0.6, 0.4, 0.01 ,

,0.3,0.2,0.4, 0.03, 0.004, 0.05 ,

,0.6,0.5,0.4, 0.1, 0.5, 0.004

x

A x

x

    
     
     

 

is a bipolar neutrosophic number. 

2.4 Neutrosophich hesitant fuzzy set (Ye, 2014) 

Let  𝜉 be a non-empty fixed set, a neutrosophic hesitant fuzzy set (NHFS) on X is expressed by:𝑁 =

〈𝑥, �̃�(𝑥), 𝚤̃(𝑥), 𝑓(𝑥)〉 𝑥 ∈ 𝜉 ,  where �̃�(𝑥) = {𝛾|𝛾 ∈ �̃�(𝑥)}, 𝚤̃(𝑥) = 𝛿 𝛿 ∈ 𝚤̃(𝑥) and𝑓(𝑥) = 𝜗 𝜗 ∈

𝑓(𝑥)  are three sets with some values in interval [0,1], which represents the possible truth-membership 
hesitant degrees,indeterminacy-membership hesitant degrees, and falsity-membership hesitant degrees of 
the element  𝑥 ∈ 𝜉 to the set N , and satisfies these limits : 

𝛾 ∈ [0,1], 𝛿 ∈ [0,1], 𝜗 ∈ [0,1]and 0 ≤ 𝑠𝑢𝑝𝛾 + 𝑠𝑢𝑝𝛿 + 𝑠𝑢𝑝𝜗 ≤ 3 

where𝛾 = ⋃ 𝑚𝑎𝑥{𝛾}∈ ( ) , 𝛿 = ⋃ 𝑚𝑎𝑥 𝛿∈ ̃( ) and 𝜗 = ⋃ 𝑚𝑎𝑥 𝜗∈ ̃( ) for𝑥 ∈ 𝑋. 

The𝑛 = �̃�(𝑥), 𝚤(̃𝑥), 𝑓(𝑥)  is called a neutrosophic hesitant fuzzy element (NHFE) which is the 

basic unit of the NHFS and is denoted by the symbol 𝑛 = �̃�, 𝚤,̃ 𝑓 . 

2.5 Interval neutrosophic hesitant fuzzy set (Ye, 2016) 

Let 𝜉 be a fixed set, an INHFS on 𝜉 is defined as 

𝑁 = 〈𝑥, �̃�(𝑥), 𝚤(̃𝑥), 𝑓(𝑥)〉 𝑥 ∈ 𝜉 . 

Here �̃�(𝑥), 𝚤̃(𝑥) and𝑓(𝑥) are sets of some different interval values in [0, 1], representing the possible truth-
membership hesitant degrees, indeterminacy-membership hesitant degrees, and falsity-membership 
hesitant degrees of the element  𝑥 ∈ 𝜉  to the set N, respectively. Then �̃�(𝑥)  reads  �̃�(𝑥) = {𝛾|𝛾 ∈
�̃�(𝑥)}, 𝑤here 𝛾 = [𝛾 , 𝛾 ]  is an interval number,  𝛾 = 𝑖𝑛𝑓𝛾  and 𝛾 = 𝑠𝑢𝑝𝛾  represent the lower and 
upper limits of  𝛾,  respectively; 𝚤̃(𝑥) reads  𝚤̃(𝑥) = 𝛿 𝛿 ∈ �̃�(𝑥) , 𝑤here𝛿 = 𝛿 , 𝛿  is an interval number, 
𝛿 = 𝑖𝑛𝑓𝛿 and 𝛿 = 𝑠𝑢𝑝𝛿 represent the lower and upper limits of  𝛿,  respectively;𝑓(𝑥) reads  𝑓(𝑥) =

𝜗 𝜗 ∈ �̃�(𝑥) , 𝑤here𝜗 = 𝜗 , 𝜗  is an interval number,  𝜗 = 𝑖𝑛𝑓𝜗 and 𝜗 = 𝑠𝑢𝑝𝜗represent the lower 
and upper limits of  𝜗,  respectively. Hence, there is the condition 

0 ≤ 𝑠𝑢𝑝𝛾 + 𝑠𝑢𝑝𝛿 + 𝑠𝑢𝑝𝜗 ≤ 3 

where𝛾 = ⋃ 𝑚𝑎𝑥{𝛾}∈ ( ) , 𝛿 = ⋃ 𝑚𝑎𝑥 𝛿∈ ̃( ) and𝜗 = ⋃ 𝑚𝑎𝑥 𝜗∈ ̃( ) for𝑥 ∈ 𝑋. 

For convenience,  𝑛 = �̃�(𝑥), 𝚤(̃𝑥), 𝑓(𝑥)  is called an interval neutrosophic hesitant fuzzy element (INHFE), 
which is denoted by the simplified symbol 𝑛 = �̃�, 𝚤,̃ 𝑓 . 
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2.6 Multi-valued neutrosophic sets (Wang & Li, 2015; Peng & Wang, 2015) 

Let X  be a space of points (objects) with generic elements in X denoted by x, then multi-valued 

neutrosophic sets A in X is characterized by a truth-membership function ( )AT x , a indeterminacy-

membership function ( )AI x , and a falsity-membership function ( )AF x . Multi-valued neutrosophic sets

can be defined as the following form: 

{ , ( ), ( ), ( ) },A A AA x T x I x F x x X   

where ( ) [0,1]AT x  , ( ) [0,1]AI x  , ( ) [0,1]AF x  , are sets of finite discrete values, and satisfies the

condition 0 , , 1    , 0 3        , ( )AT x   , ( )AI x  , ( )AF x   , sup ( )AT x    ,

sup ( )AI x   , sup ( )AF x    . For the sake of simplicity, , ,A A AA T I F     is called as multi-valued

neutrosophic number. 

If ( )AT x , ( )AI x , ( )AF x  has only one value, the multi-valued neutrosophic sets is single valued

neutrosophic sets. If ( )AT x  , the multi-valued neutrosophic sets is double hesitant fuzzy sets. If

( ) ( )A AT x F x   , the multi-valued neutrosophic sets is hesitant fuzzy sets.

Numerical example: Investment company have four options (to invest): the car company, the food 
company, the computer company, and the arms company, and it considers three criteria: the risk control 
capability, the growth potential, and the environmental impact. Then the decision matrix based on the multi-
valued neutrosophic numbers is R. 

{0.4,0.5},{0.2},{0.3} {0.4},{0.2,0.3},{0.3} {0.2},{0.2},{0.5}

{0.6},{0.1,0.2},{0.2} {0.6},{0.1},{0.2} {0.5},{0.2},{0.1,0.2}

{0.3,0.4},{0.2},{0.3} {0.5},{0.2},{0.3} {0.5},{0.2,0.3},{0.2}

{0.7},{0.1,0.2},{0.1}

R 

{0.6},{0.2},{0.3} {0.4},{0.3},{0.2}

 
 
 
 
 
  

. 

2.7 Neutrosophic overset/ underset/offset (Smarandache, 2016a) 

2.7.1. Definition of neutrosophic overset: Let 𝜉 be a universe of discourse and 

the neutrosophic set A ⊂  𝜉 . Let T (x) , I (x) , F (x)  be the functions that describe the degree of 
membership, indterminate membership and non-membership respectively of a generic element x ∈ 𝜉 with 
respect to the neutrosophic set A. A neutrosophic overset (NOVs) A on the universe of discourse 𝜉 is 
defined as: 

A= x, T (x), I (x), F (x) , x ∈ 𝜉 and T(x), I(x), F(x) ∈ [0, Ω ] , where  

T(x), I(x), F(x): 𝜉 → [0, Ω ],     0 < 1< Ω and  Ω is called over limit. Then there exist at least one element in 
A such that it has at least one neutrosophic  component > 1, and no element has neutrosophic component < 
0.
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2.7.2 Definition of neutrosophic underset: Let 𝜉 be a universe of discourse and 

the neutrosophic set A ⊂  𝜉 . Let T (x) , I (x) , F (x)  be the functions that describe the degree of 
membership, indterminate membership and non-membership respectively of a generic element x ∈ 𝜉 with 
respect to the neutrosophic set A. A neutrosophic under set (NUs) A on the universe of discourse 𝜉 is 
defined as: 

A= x, T (x), I (x), F (x) , x ∈ 𝜉 and T(x), I(x), F(x) ∈ [Ψ, 1 ]  

Where 

T(x), I(x), F(x): 𝜉 → [Ψ, 1 ],     Ψ<0<1 and  Ψ is called lowerlimit.Then there exist at least one element in 
A such that it has at least one neutrosophic  component < 0, and no element has neutrosophic component > 
1. 

 2.7.3 Definition of neutrosophic offset: Let 𝜉 be a universe of discourse and 

the neutrosophic set A ⊂  𝜉 . Let T (x) , I (x) , F (x)  be the functions that describe the degree of 
membership, indterminate membership and non-membership respectively of a generic element x ∈ 𝜉 with 
respect to the neutrosophic set A. A neutrosophic offset (NOFFs) A on the universe of discourse 𝜉 is defined 
as: 

A= x, T (x), I (x), F (x) , x ∈ 𝜉 and T(x), I(x), F(x) ∈ [Ψ, Ω ] , where 

T(x), I(x), F(x): 𝜉 → [Ψ, 1 ],     Ψ <0< 1<  Ω    and  Ψ is called underlimit while Ω is called overlimit. Then 
there existe some elments in A such that at least one neutrosophic component > 1, and at least another 
neutrosophic component < 0. 

Numerical example: A={(𝑥 ,<1.2, 0.4,0.1>),(𝑥 ,<0.2, 0.3,-0.7>)}, since T(𝑥 ) = 1.2 >1 , F(𝑥 ) = 

- 0.7 < 0. 

2.7.4 Some operations of neutrosophic over/off/under sets 

Definition 1: The complement of a neutrosophic overset/ underset/offset A is denoted by C(A) 

and is defined by 

C(A) ={(x,<𝐹 (𝑥), Ψ + Ω-𝐼 (𝑥),𝑇 (𝑥)), x∈ 𝜉}. 

Definition 2: The intersection of two neutrosophic overset/ underset/offset A and B is a 

neutrosophic overset/ underset/offset denoted C and is denoted by  

 C= A∩ B and is defined by 

 C= A∩ B ={(x,<min (𝑇 (𝑥), 𝑇 (𝑥)), max (𝐼 (𝑥), 𝐼 (𝑥)), max (𝐹 (𝑥), 𝐹 (𝑥))),x∈ 𝜉}. 

Definition 3: The union of two overset/ underset/offset A and B is a neutrosophic overset/ 

underset/offset denoted C and is denoted by  

 C= A∪ B and is defined by 
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 C= A∪ B ={(x,<max (𝑇 (𝑥), 𝑇 (𝑥)), min(𝐼 (𝑥), 𝐼 (𝑥)), min (𝐹 (𝑥), 𝐹 (𝑥))), x∈ 𝜉}. 

Let 𝜉 be a universe of discourse and A the neutrosophic set A⊂U. Let T (x), I (x),F (x) be the functions 
that describe the degree of membership, indterminate membership and non-membership respectively of a 
generic element x ∈ 𝜉with respect to the neutrosophic set A. A neutrosophic overset (NOV) A on the 
universe of discourse U is defined as: 

A= x, T (x), I (x), F (x) , x ∈ 𝜉 and T(x), I(x), F(x) ∈ [0, Ω ] , where 

T(x), I(x), F(x): 𝜉U→ [0, Ω ],     0 < 1 < Ω and  Ω is called overlimit.Then there exist at least one element 
in A such that it has at least one neutrosophic  component >1, and no element has neutrosophic component 
<0. 

2. OPERATIONS ON SOME NEUTROSOPHIC NUMBERS AND NEUTROSOPHIC
SETS

2.1 Single valued neutrosophic number 

Let 1 1 1 1( , I , F )A T and 2 2 2 2( , I ,F )A T be two single valued neutrosophic number. Then, the operations
for SVNNs are defined as below; 

i. 1 2 1 2 1 2 1 2 1 2, I I , F FA A T T T T     

ii. 1 2 1 2 1 2 1 2 1 2 1 2, I I I I , F F F F )A A T T       

iii. 1 1 1 11 (1 ) ), I , )A T F      

iv. 1 1 1 1( ,1 (1 ) ,1 (1 ) )A T I F        where 0 
It is to be noted here that 0n may be defined as follow: 

0 { x, (0,1,1) : x X}n     . 

2.2 Neutrosophic hesitant fuzzy set (Ye, 2014) 

For two NHFEs 𝑛 = �̃� , 𝚤̃ , 𝑓  , 𝑛 = �̃� , 𝚤̃ , 𝑓 and a positivescale > 0  , the operations 

operations can be defined as follows:  

(1) 𝑛 ⊕ 𝑛 = �̃� ⊕ �̃� , 𝚤̃ ⊗ 𝚤̃ , 𝑓 ⊗ 𝑓 = ⋃ 𝛾 + 𝛾 −∈ , ∈ ̃ , ∈ , ∈ , ∈ ̃ , ∈

𝛾 . 𝛾 , 𝛿 . 𝛿 , 𝜗 . 𝜗  

(2) 𝑛 ⊗ 𝑛 = �̃� ⊗ �̃� , 𝚤̃ ⊕ 𝚤̃ , 𝑓 ⊕ 𝑓 = ⋃ 𝛾 . 𝛾 −, 𝛿 +∈ , ∈ ̃ , ∈ , ∈ , ∈ ̃ , ∈

𝛿 − 𝛿 . 𝛿 , 𝜗 + 𝜗 − 𝜗 . 𝜗  

(3) 𝑘𝑛 = ⋃ 1 − (1 − 𝛾 ) , 𝛿 , 𝜗∈ , ∈ ̃ , ∈

(4) 𝑛 = ⋃ 𝛾 , 1 − 1 − 𝛿 , 1 − 1 − 𝜗∈ , ∈ ̃ , ∈ . 

2.3 Interval neutrosophic hesitant fuzzy set [Ye, 2016] 

For two INHFEs 𝑛 = �̃� , 𝚤̃ , 𝑓  , 𝑛 = �̃� , 𝚤̃ , 𝑓   and a positive scale > 0 , the follwing operations can 
be given as follows: 
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(1) 𝑛 ⊕ 𝑛 = �̃� ⊕ �̃� , 𝚤̃ ⊗ 𝚤̃ , 𝑓 ⊗ 𝑓 = ⋃ 𝛾 + 𝛾 −∈ , ∈ ̃ , ∈ , ∈ , ∈ ̃ , ∈

𝛾 . 𝛾 , 𝛾 + 𝛾 − 𝛾 . 𝛾 , 𝛿 . 𝛿 , 𝛿 . 𝛿 , 𝜗 . 𝜗 , 𝜗 . 𝜗  

(2) 𝑛 ⊗ 𝑛 = �̃� ⊗ �̃� , 𝚤̃ ⊕ 𝚤̃ , 𝑓 ⊕ 𝑓 =

⋃ 𝛾 . 𝛾 , 𝛾 . 𝛾 −, 𝛿 + 𝛿 − 𝛿 . 𝛿 , 𝛿 + 𝛿 −∈ , ∈ ̃ , ∈ , ∈ , ∈ ̃ , ∈

𝛿 . 𝛿 , 𝜗 + 𝜗 − 𝜗 . 𝜗 , 𝜗 + 𝜗 − 𝜗 . 𝜗  

(3) 𝑘𝑛 = ⋃ 1 − 1 − 𝛾 , 1 − 1 − 𝛾 , 𝛿 , 𝛿 ,∈ , ∈ ̃ , ∈

𝜗 , 𝜗  

(4) 𝑛 = ⋃ 𝛾 , 𝛾 , 1 − 1 − 𝛿 , 1 − 1 − 𝛿 , 1 − 1 −∈ , ∈ ̃ , ∈

𝜗 , 1 − 1 − 𝜗 . 

4. SCORE FUNCTION, ACCURACY FUNCTION AND CERTAINTY FUNCTION
OF NEUTROSOPHIC NUMBERS

A convenient method for comparing of single valued neutrosophic number is described as follows: 

Let 1 1 1 1( , I , F )A T  be a single valued neutrosophic number. Then, the score function 1( )s A , accuracy function

1( )a A and certainty function 1( )c A of a SVNN are defined as follows:

(i) 1 1 1
1

2
( )

3

T I F
s A

  


(ii) 1 1 1( )a A T F 

(iii) 1 1c( )A T .

5. RANKING OF NEUTROSOPHIC NUMBERS

Suppose that 1 1 1 1( , I , F )A T  and 2 2 2 2( , I , F )A T   are two single valued neutrosophic numbers. Then, the
ranking method is defiend as follows:  

i. If 1 2( ) ( )s A s A  , then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A 
ii. If  1 2( ) ( )s A s A  ,and  1 2( ) ( )a A a A  then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted

by 1 2A A 
iii. If  1 2( ) ( )s A s A  , 1 2( ) ( )a A a A  , and 1 2c( ) ( )A c A   then 1A  is greater than 2A , that is, 1A is superior

to 2A , denoted by 1 2A A 
iv. If  1 2( ) ( )s A s A  , 1 2( ) ( )a A a A  , and 1 2c( ) ( )A c A   then 1A  is equal to 2A , that is, 1A is indifferent

to 2A , denoted by 1 2A A 
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A single valued triangular neutrosophic number (SVTrN-number) 1 1 1(a , , ); ,I ,Fa a aa b c T  is a special
neutrosophic set on the real number set R, whose truth membership, indeterminacy-membership, and a 
falsity-membership are given as follows: 

1
1 1

1 1

1

1
1 1

1 1

( ) ( )( )

( )
( )

( ) ( )( )

0

a

a
a

a

x a T a x bb a

T x b
T x

c x T b x cc b

otherwise

   


    



1 1
1 1

1 1

1

1 1
1 1

1 1

( ( )) ( )( )

( )
( )

(x ( )) ( )( )

1

a

a
a

a

b x I x a a x bb a

I x b
I x

b I c x b x cc b

otherwise

     


      



1 1
1 1

1 1

1

1 1
1 1

1 1

( ( )) ( )( )

( )
( )

(x ( )) ( )( )

1

a

a
a

a

b x F x a a x bb a

F x b
F x

c F c x b x cc b

otherwise

     


 
    




where  0≤ aT ≤ 1;    0≤ aI ≤ 1; 0≤ aF ≤ 1  and  0≤ aT + aI + aF ≤ 3; 1 1 1a , ,b c R

Numerical Example: 

Let (2, 4, 6); 0.3, 0.4, 0.5a    be a single valued triangular neutrosophic number, then the truth 
membership, indeterminacy membership and falsity membership are expressed as follows 

0.3( 2)
, 2 4

2
0.3, 4( )

0.3(5 ), 4 5

0,

a

x
x

xT x
x x

otherwise

  
  
   



4 0.3( 2)
,2 4

2
0.4, 4( )

4 0.4(5 ),4 5

1,

a

x x
x

xI x
x x x

otherwise

    
  
     



6. DIFFERENT TYPES OF NEUTROSOPHIC NUMBERS AND RELATED TERMS
ASSOCIATED WITH THEM 

6.1 Single valued-triangular neutrosophic numbers (Ye 2015b) 
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4 0.5( 2)
, 2 4

2
0.5, 4( )

4 0.4(5 ),4 5

1,

a

x x
x

xF x
x x x

otherwise

    
  
     



6.1.1 Operations on singled valued triangular neutrosophic numbers 

Let 1 1 2 3 1 1 1(a , , ); , I , FA a a T  and 2 1 2 3 2 2 2( , , ); , I , FA b b b T  be two single valued triangular neutrosophic
numbers. Then, the operations for SVTrN-numbers are defined as below; 

(i) 1 2 1 1 2 2 3 3 1 2 1 2 1 2(a , a , a ); min( , ), max(I , I ), max(F , F )A A b b b T T      

(ii) 1 2 1 1 2 2 3 3 1 2 1 2 1 2(a , a , a ); min( , ), max(I , I ), max(F , F ))A A b b b T T  

(iii) 1 1 2 3 1 2 1 2 1 2( a , a , a ); m in( , ), m ax(I , I ), m ax(F , F )A T T    

6.1.2 Score function and accuracy function of single valued triangular neutrosophic numbers 

The convenient method for comparing of two single valued triangular neutrosophic numbers is described 
as follows: 

Let 1 1 2 3 1 1 1(a , , ); , I , FA a a T   be a single valued triangular neutrosophic number. Then, the score function

1( )s A and accuracy function 1( )a A  of a SVTrN-numbers are defined as follows:

(i)  1 1 2 3 1 1 1
1

( ) 2 2
12

s A a a a T I F
           
 



(ii)  1 1 2 3 1 1 1
1

( ) 2 2
12

a A a a a T I F
          
 



 6.1.3 Ranking of single valued triangular neutrosophic numbers 

Let 1A  and 2A be two SVTrN-numbers. The ranking of 1A  and 2A by score function and accuracy function
is defined as follows: 

(i) If 1 2( ) ( )s A s A  , then     1 2A A 

(ii) If 1 2( ) ( )s A s A   and if

(1) 1 2a( ) ( )A a A  , then 1 2A A 

(2) 1 2a( ) ( )A a A  , then 1 2A A 

(3) 1 2a( ) ( )A a A  , then 1 2A A  .
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A single valued trapezoidal neutrosophic number (SVTN-number) 1 1 1 1(a , , , ); ,I ,Fa a aa b c d T  is a special
neutrosophic set on the real number set R, whose truth membership, indeterminacy-membership, and a 
falsity-membership are given as follows 

1
1 1

1 1

1 1

1
1 1

1 1

( ) ( )( )

( )
( )

( ) (c )( )

0

a

a
a

a

x a T a x bb a

T b x c
T x

d x T x dd c

otherwise

   


     



1 1
1 1

1 1

1 1

1 1
1 1

1 1

( ( )) ( )( )

( )
( )

(x ( )) (c )( )

1

a

a
a

a

b x I x a a x bb a

I b x c
I x

c I d x x dd c

otherwise

     


       



1 1
1 1

1 1

1 1

1 1
1 1

1 1

( ( )) ( )( )

( )
( )

(x ( )) (c )( )

1

a

a
a

a

b x F x a a x bb a

F b x c
F x

c F d x x dd c

otherwise

     


  
    




where  0≤ aT ≤ 1; 0≤ aI ≤ 1; 0≤ aF ≤ 1 and   0≤ aT + aI + aF ≤ 3; 1 1 1 1a , , ,b c d R .

Numerical example: 

Let (1, 2, 5, 6); 0.8, 0.6, 0.4a    be a single valued trapezoidal neutrosophic  number. Then the truth 
membership, indeterminacy membership and falsity membership are expressed as follows: 

0.8( 1),1 2

0.8,2 5
( )

0.8(6 ),5 6

0,

a

x x

x
T x

x x

otherwise

  
      


1.4 0.4 ,1 2

0.6,2 5
( )

0.8 1.4,5 6

1,

a

x x

x
I x

x x

otherwise

  
      


1.6 0.6 ,1 2

0.4,2 5
( )

0.6 2.6,5 6

1,

a

x x

x
F x

x x

otherwise

  
      


. 

6.2.1 Operation on single valued trapezoidal neutrosophic numbers. 

Let 1 1 2 3 4 1 1 1(a , , , ); , I ,FA a a a T  and 2 1 2 3 4 2 2 2( , , , ); , I , FA b b b b T  be two single valued trapezoidal neutrosophic
numbers. Then, the operations for SVTN-numbers are defined as below; 

6.2 Single valued-trapezoidal neutrosophic numbers (Deli & Subas, 2017) 
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(i) 1 2 1 1 2 2 3 3 4 4 1 2 1 2 1 2(a , a , a , a ); min( , ), max(I , I ), max(F , F )A A b b b b T T       

(ii) 1 2 1 1 2 2 3 3 4 4 1 2 1 2 1 2(a , a , a , a ); min( , ), max(I , I ), max(F , F ))A A b b b b T T  

(iii) 1 1 2 3 4 1 2 1 2 1 2( a , a , a , a ); m in( , ), m ax(I , I ), m ax(F , F )A T T     

6.2.2Score function and accuracy function of single valued trapezoidal neutrosophic 
numbers 

The convenient method for comparing of two single valued trapezoidal neutrosophic numbers is described 
as follows: 

Let 1 1 2 3 4 1 1 1(a , , , ); , I ,FA a a a T   be a single valued trapezoidal neutrosophic number. Then, the score function

1( )s A and accuracy function 1( )a A  of a SVTN-numbers are defined as follows:

(i)  1 1 2 3 4 1 1 1
1

( ) 2
12

s A a a a a T I F
            
 



(ii)  1 1 2 3 4 1 1 1
1

( ) 2
12

a A a a a a T I F
            
 



6.2.3 Ranking of single valued trapezoidal neutrosophic numbers 

Let 1A  and 2A be two SVTN-numbers. The ranking of 1A  and 2A by score function is defined as follows:

(i) If 1 2( ) ( )s A s A  then     1 2A A 

(ii) If 1 2( ) ( )s A s A   and if

(1) 1 2a( ) ( )A a A  then 1 2A A 

(2) 1 2a( ) ( )A a A  then 1 2A A 

(3) 1 2a( ) ( )A a A  then 1 2A A 

Later on, Liang et al. (2017) redefined the score function, accuracy function and certainty function as 
follows:  

Let a = < [a ,a ,a ,a ], (T  , I  , F ) > be a SVTNN. Then, the score function, accuracy function, and 
certainty function of SVTNN a are defined, respectively, as: 

E(a) = COG(K) ×
(   )

 

A(a)= COG(K) × (T  - F ) 

C(a)= COG(K) × T  

where (COG) denotes  the center of gravity  of  K and can be defined as follows: 
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COG(K)=
a  if      a = a = a = a

a + a + a + a − , otherwise

6.3 Interval valued neutrosophic number 

6.3.1Operations on interval valued neutrosophic number 

Let 1 1 1 1 1 1 1, , , I , ,FL U L U L UA T T I F           
 and 2 2 2 2 2 2 2, , , I , ,FL U L U L UA T T I F           

  be two interval valued 

neutrosophic numbers. Then, the operations for IVNNs are defined as below; 

(i) , , ,I , ,1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
L L L L U U U U L L U U L L U UA A T T T T T T T T I I I F F F F                     

   

(ii) 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 , , , I ,

, F

L L U U L L L L U U U U

L L L L U U U U

T T T T I I I I I I I

F F F F F F F

A A     

    

        
 
 

 

(iii) 1 1 1 1 1 11 (1 ) ,1 (1 ) ) , (I ) ,(I ) , ( ) ,( )L U L U L UA T T F F                          
  

(iv) ( ) ,( ) ) , 1 (1 ) ,1 (1 ) ) , 1 (1 ) ,1 (1 ) )1 1 1 1 1 1 1
L U L U L UA T T I I F F                              

 where 0  

An interval valued neutrosophic number 1 1 1 1 1 1 1, , , I , ,FL U L U L UA T T I F           
  is said to be empty if and only if 

1 1 1 10, 0, 1, 1,L U L UT T I I     and  
UL FF

11
 and is denoted by

     0,  0 ,  1,  1 ,  1,  0 { x, : x X}1n     

6.3.2 Score function and accuracy functions of interval valued neutrosophic number 

The convenient method for comparing of interval valued neutrosophic numbers is described as follows: 

Let 1 1 1 1 1 1 1, , , I , ,FL U L U L UA T T I F           
 be a single valued neutrosophic number. Then, the score function 1( )s A

and accuracy function 1H ( )A  of an IVNN are defined as follows:

(i) 1 1 1 1 1 1 1
1

( ) 2 2 2
4

L U L U L Us A T T I I F F
              



(ii) 1 1 1 1 1 1 1 1 1 1
1

(1 ) (1 ) (1 ) (1 )
H ( )

2

L U U U L L U U L LT T I T I T F I F I
A

        


6.3.3 Ranking of interval valued neutrosophic numbers 

Let 1 1 1 1 1 1 1, , , I , ,FL U L U L UA T T I F           
 and 2 2 2 2 2 2 2, , , I , ,FL U L U L UA T T I F           

  are two interval valued 

neutrosophic numbers. Then, the  ranking method for comparing two IVNS is defiend as follows: 

v. If 1 2( ) ( )s A s A  , then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A 
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vi. If  1 2( ) ( )s A s A  ,and 1 2( ) ( )H A H A  then 1A  is greater than 2A , that is, 1A is superior to 2A ,
denoted by 1 2A A  .

6.4 Bipolar neutrosophic Number 

6.4.1Operation on bipolar neutrosophic numbers 

Let 1 1 1 11 1 1, I , F , , I , Fp p p n n nA T T   and 2 2 2 22 2 2, I , F , , I , Fp p p n n nA T T  be two bipolar neutrosophic numbers and

0  . Then, the operations of these numbers defined as below; 

(i) 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

, I ,F

, ( I ), ( F )

p p p p p p p p

p p p p p p p pn n

A A T T T T I F

T T I I I F F F

   

         

 

(ii) 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, I ,F

( ), ,

p p p p p p p p p p

n n n n n n n n

A A T T I I I F F F

T T T T I I F F

     

      

 

(iii) 1 1 1 11 1 11 (1 ) ,(I ) ,( ) , ( ) , ( ) , (1 (1 ( F )) )p p p n n nA T F T I                 

(iv) ( ) ,1 (1 ) ,1 (1 ) , (1 (1 ( )) ), ( ) , ( F )) )1 1 1 1 1 1 1
p p p n n nA T I F T I                    where 0 . 

6.4.2 Score function, accuracy function and certainty function of bipolar neutrosophic 
number 

In order to make comparison between two BNNs. Deli et al. (2015) introduced a concept of score function. 
The score function is applied to compare the grades of BNS. This function shows that greater is the value, 
the greater is the bipolar neutrosophic sets and by using this concept paths can be ranked. Let 

,I ,F , ,I ,Fp p p n n nA T T   be a bipolar neutrosophic number. Then, the score function ( )s A , accuracy

function ( )a A and certainty function ( )c A of an BNN are defined as follows: 

(i) 1
( ) 1 1 1

6
p p p n n ns A T I F T I F

                


(ii) ( ) p p n na A T F T F   

(iii) ( ) p nc A T F 

6.4.3 Comparison of bipolar neutrosophic numbers 

Let 1 1 1 11 1 1, I , F , , I , Fp p p n n nA T T   and 2 2 2 22 2 2, I , F , , I , Fp p p n n nA T T  be two bipolar  neutrosophic numbers. 
then 

vii. If 1 2( ) ( )s A s A  , then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A 
viii. If  1 2( ) ( )s A s A  ,and  1 2( ) ( )a A a A  then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted

by 1 2A A 
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ix. If  1 2( ) ( )s A s A  , 1 2( ) ( )a A a A  , and 1 2c( ) ( )A c A   then 1A  is greater than 2A , that is, 1A is superior
to 2A , denoted by 1 2A A 

x. If  1 2( ) ( )s A s A  , 1 2( ) ( )a A a A  , and 1 2c( ) ( )A c A   then 1A  is equal to 2A , that is, 1A is indifferent

to 2A , denoted by 1 2A A  .

7. TRAPEZOIDAL NEUTROSOPHIC SETS (Ye, 2015b; Biswas et al., 2014)

Assume that X be the finite universe of discourse and F [0, 1] be the set of all trapezoidal fuzzy numbers 
on [ 0, 1]. A trapezoidal fuzzy neutrosophic  set (TrFNS) A in X is represented as:

A  = {< x: ( )AT x , ( )AI x , ( )AF x >, x X}, where  ( ):X 0,1AT x F ,   ( ):X 0,1AI x F   and

 ( ):X 0,1AF x F .

The trapezoidal  fuzzy numbers ( )AT x = (
1T ( )A x ,

2T ( )A x ,
3T ( )A x ,

4T ( )A x ), ( )AI x = (
1 ( )AI x ,

2( )AI x ,
3( )AI x ,

4( )AI x ) and   ( )AF x = (
1( )AF x ,

2 ( )AF x ,
3( )AF x ,

4 ( )AF x ) ,   respectively , denote the truth-membership,

indeterminacy-membership and a falsity-membership degree of x in A  and for every xX, 0 ≤ 
4T ( )A x +

4( )AI x + 
4 ( )AF x ≤ 3.

For notational convenience, the trapezoidal fuzzy  neutrosophic value (TrFNV) A  is denoted by

1 2 3 4 1 2 3 4 1 2 3 4( , , , ),( , ,b ,b ),( , , , )A a a a a b b c c c c where,

( 1T ( )A x , 2T ( )A x , 3T ( )A x ,
4T ( )A x ) = 1 2 3 4( , , , )a a a a , 

( 1 ( )AI x , 2 ( )AI x , 3 ( )AI x ,
4( )AI x ) = 1 2 3 4( , , b , b )b b , and 

( 1 ( )AF x , 2 ( )AF x , 3 ( )AF x ,
4 ( )AF x ) = 1 2 3 4( , , , )c c c c

The parameters satisfy the  following relations  1 2 3 4a a a a   ,  1 2 3 4b b b b    and 1 2 3 4c c c c   . 

The truth membership function is defined as follows 

1
1 2

2 1

2 3

1
3 4

2 1

,

1,
( )

,

0,

   
 

    
 




A

x a
a x a

a a

a x a
T x

x a
a x a

a a

otherwise

The indeterminacy membership function is defined as follows: 
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1
1 2

2 1

2 3

4
3 4

4 3

,

1,
( )

,

0,

   
 

    
 




A

x b
b x b

b b

b x b
I x

b x
b x b

b b

otherwise

and the falsity membership function is defined as follows: 

1
1 2

2 1

2 3

4
3 4

4 3

,

1,
( )

,

0,

   
 

    
 




A

x c
c x c

c c

c x c
F x

c x
c x c

c c

otherwise

A trapezoidal neutrosophic number 1 2 3 4 1 2 3 4 1 2 3 4( , , , ),( , ,b ,b ),( , , , )A a a a a b b c c c c  is said to be zero

triangular fuzzy neutrosophic number if and only if 

1 2 3 4( , , , )a a a a =( 0, 0, 0, 0), 1 2 3 4( , , b , b )b b  =( 1, 1, 1, 1) and 1 2 3 4( , , , )c c c c =( 1, 1, 1, 1). 

Remark: The trapezoidal fuzzy neutrosophic number is a particular case of trapezoidal neutrosophic 
number when all the three vector are equal: 1 2 3 4( , , , )a a a a = 1 2 3 4( , , b ,b )b b = 1 2 3 4( , , , )c c c c . 

7.1 Operation on trapezoidal fuzzy neutrosophic value 

Let 1 1 2 3 4 1 2 3 4 1 2 3 4( ,a ,a ,a ),(b ,b ,b ,b ),(c ,c ,c ,c )A a  and 2 1 2 3 4 1 2 3 4 1 2 3 4(e ,e ,e ,e ),(f ,f ,f ,f ),(g ,g ,g ,g )A  be two

TrFNVs in the set of real numbers,  and 0  . Then, the operational rules are defined as follows; 

(i) 

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

1 2 1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

, ,
,

,

(b , b , b , b ),

( , , , )

a e a e a e a e

a e a e a e a e

A A f f f f

c g c g c g c g

    
     

  

(ii) 

1 1 2 2 3 3 4 4

1 1 1 1 2 2 2 2
1 2

3 3 3 3 4 4 4 4

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

( , , , ),

, b ,
,

, b

,c ,

, c

a e a e a e a e

b f b f f b f
A A

b f b f f b f

c g c g g c g

c g c g g c g
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(iii) 
1 2

3 4

1 2 3 4 1 2 3 4

(1 (1 ) ,1 (1 ) ,

1 (1 ) ),1 (1 ) )

( , , , ), ( , c , c , c )

a a

A a a

b b b b c

 

 

       



     
      



(iv)  
 

1 2 3 4

1 1 2 3 4

1 2 3 4

( , , , ),

(1 (1 ) ,1 (1 ) ,1 (1 ) ),1 (1 ) ) ,

(1 (1 ) ,1 (1 ) ,1 (1 ) ),1 (1 ) )

a a a a

A b b b b

c c c c

   

    

   

        

       

 where 0 . 

Ye (2015b) presented the following definitions of score function and accuracy function. The score function 
S and the accuracy function H are applied to compare the grades of TrFNSs. These functions show that 
greater is the value, the greater is the TrFNS. 

7.2 Score function and accuracy function of trapezoidal fuzzy neutrosophic value 

Let 1 1 2 3 4 1 2 3 4 1 2 3 4( ,a ,a ,a ),(b ,b ,b ,b ),(c ,c ,c ,c )A a  be a TrFNV. Then, the score function 1( )S A  and an

accuracy function 1( )H A  of TrFNV are defined as follows:

(i) 1 1 2 3 4 1 2 3 4 1 2 3 4
1

( ) 8 ( a a a ) (b b b b ) (c c c c )
12

s A a              

(ii) 1 1 2 3 4 1 2 3 4
1

( ) ( a a a ) (c c c c )
4

H A a          .

In order to make a comparison between two TrFNV, Ye (2015b) presented the order relations between two 
TrFNVs.  

7.3 Ranking of trapezoidal fuzzy neutrosophic value 

Let 1 1 2 3 4 1 2 3 4 1 2 3 4( ,a ,a ,a ),(b ,b ,b ,b ),(c ,c ,c ,c )A a  and 2 1 2 3 4 1 2 3 4 1 2 3 4(e ,e ,e ,e ),(f ,f ,f ,f ),(g ,g ,g ,g )A  be two

TrFNVs in the set of real numbers. Then, we define a ranking method as follows:  

xi. If 1 2( ) ( )s A s A  , then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A 
xii. If  1 2( ) ( )s A s A  , and  1 2( ) ( )H A H A  then 1A  is greater than 2A , that is, 1A is superior to 2A ,

denoted by 1 2A A  .

8. TRIANGULAR FUZZY NEUTROSOPHIC SETS (Biswas et al., 2014)

Assume that X be the finite universe of discourse and F [0, 1] be the set of all triangular fuzzy numbers on 
[ 0, 1]. A triangular fuzzy neutrosophic  set (TFNS) A in X is represented

A  = {< x: ( )AT x , ( )AI x , ( )AF x >, x X} ,

where  ( ):X 0,1AT x F ,   ( ):X 0,1AI x F   and  ( ):X 0,1AF x F . The triangular fuzzy numbers
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( )AT x = (
1T ( )A x ,

2T ( )A x ,
3T ( )A x ),      ( )AI x = (

1 ( )AI x ,
2( )AI x ,

3( )AI x ) and

( )AF x = (
1( )AF x ,

2 ( )AF x ,
3( )AF x ) , respectively, denote the truth-membership, indeterminacy-

membership and a falsity-membership degree of x in A  and for every xX

0 ≤ 
3T ( )A x + 

3( )AI x + 
3( )AF x ≤ 3.

For notational convenience, the triangular fuzzy neutrosophic value (TFNV) A  is denoted by

( , , ),( , , ),( , , )A a b c e f g r s t where,( 1T ( )A x , 2T ( )A x , 3T ( )A x ) = (a, b, c),

( 1 ( )AI x , 2 ( )AI x , 3 ( )AI x ) = (e, f, g), and  ( 1 ( )AF x , 2 ( )AF x , 3 ( )AF x ) = (r, s, t). 

8.1 Zero triangular fuzzy neutrosophic number 

A triangular fuzzy neutrosophic number ( , , ),( , , ),( , , )A a b c e f g r s t  is said to be zero triangular

fuzzy neutrosophic number if and only if  

 (a, b, c) = (0, 0, 0), (e, f, g) = (1, 1, 1) and (r, s, t) = (1, 1, 1) 

8.2 Operation on triangular fuzzy neutrosophic value 

Let 1 1 1 1 1 1 1 1 1 1( , , ),( , , ),( , , )A a b c e f g r s t  and 2 2 2 2 2 2 2 2 2 2( , , ),( , , ),( , , )A a b c e f g r s t be two TFNVs in the set

of real numbers, and 0  . Then, the operational rules are defined as follows; 

(i) 1 2 1 2 1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2 1 2 1 2

( ,b , ),

( , , ),( , , )

a a a a b b b c c c c
A A

e e f f g g r r s s t t

     
  

(ii) 
1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

( , , ),

( , , ),

( , , )

a a b b c c

A A e e e e f f f f g g g g

r r r r s s s s t t t t

       
     

 

(iii)  1 1 1

1 1 1 1 1 1

(1 (1 ) ,1 (1 ) ,1 (1 ) ) ,

(e , , ), ( , s , )

a b c
A

f g r t

  

     


     


(iv)  
 

1 1 1

1 1 1 1

1 1 1

( , , ),

(1 (1 ) ,1 (1 ) ,1 (1 ) ) ,

(1 (1 ) ,1 (1 ) ,1 (1 ) )

a b c

A e f g

r s t

  

   

  

      

     

 where 0 . 

Ye (2015b) introduced the concept of score function and accuracy function TFNS. The score function S 
and the accuracy function H are applied to compare the grades of TFNS. These functions show that greater 
is the value, the greater is the TFNS. 
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8.3 Score function and accuracy function of triangular fuzzy neutrosophic value 

Let 1 1 1 1 1 1 1 1 1 1( , , ),( , , ),( , , )A a b c e f g r s t  be a TFNV. Then, the score function 1( )S A  and an accuracy function

1( )H A  of TFNV are defined as follows:

(i)  1 1 1 1 1 1 1 1 1 1
1

( ) 8 ( 2 ) ( 2 ) ( 2 )
12

s A a b c e f g r s t         

(ii)  1 1 1 1 1 1 1
1

( ) ( 2 ) ( 2 )
4

H A a b c r s t     

In order to make a comparison between two TFNVs, Ye (2015b) presented the order relations between two 
TFNVs. 

8.4 Ranking of triangular fuzzy neutrosophic values 

Let 1 1 1 1 1 1 1 1 1 1( , , ),( , , ),( , , )A a b c e f g r s t  and 2 2 2 2 2 2 2 2 2 2( , , ),( , , ),( , , )A a b c e f g r s t be two TFNVs in the set

of real numbers. Then, the ranking method is defined as follows:  

i. If 1 2( ) ( )s A s A  , then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A 
ii. If  1 2( ) ( )s A s A  ,and 1 2( ) ( )H A H A  then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted

by 1 2A A  .

9. DIFFERENCE BETWEEN TRAPEZOIDAL INTUITIONISTIC FUZZY NUMBER AND
TRAPEZOIDAL NEUTROSOPHIC FUZZY NUMBER 

9.1 Trapezoidal intuitionistic fuzzy number (Nayagam, Jeevaraj,& Sivaraman, 2016) 

Definition 1.  A trapezoidal intuitionistic fuzzy number 1 2( , , , ); ,a aa a a a a w u    is a convex

intuitionistic fuzzy set on the set   of real numbers, whose membership and non-membership functions 
are follows 

1 1

1 2

2 2

( ) / ( ) ( )

( )
( )

( ) / ( ) ( )

0 ( , ),

a

a
a

a

x a w a a a x a

w a x a
x

a x w a a a a a

x a x a



   
   

   
  








 

1 1 1

1 2

2 2 2

[ ( )]/( ) ( )

( )
( )

[ ( )]/( ) ( )

1 ( , ).

a

a
a

a

a x u x a a a a x a

u a x a
x

x a u a x a a a x a

x a x a
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where 0 1aw  ， 0 1au   and 0 1a aw u    , aw  and au  respectively represent the maximum

membership degree and the minimum membership degree of a, ( ) 1 ( ) ( )a a ax x x        is called as the

intuitionistic fuzzy index of an element xin a . 1a and 2a  respectively represent the minimum and

maximum values of the most probable value of the fuzzy number a, a represents the minimum value of

the a, and a  represents the maximum value of the a.

9.2 Trapezoidal neutrosophic fuzzy number 

Definition 2.  Let X be a universe of discourse, then a trapezoidal fuzzy neutrosophic set N in X is defined
as the following form: 

{ , ( ), ( ), ( ) },
N N N

N x T x I x F x x X   


where ( ) [0,1]
N

T x  , ( ) [0,1]
N

I x  and ( ) [0,1]
N

F x  are three trapezoidal fuzzy neutrosophic numbers,

        1 2 3 4( ) , , , : [0,1]
N N N N N

T x t x t x t x t x X      ,         1 2 3 4( ) , , , : [0,1]
N N N N N

I x i x i x i x i x X     

, 

and         1 2 3 4( ) , , , : [0,1]
N N N N N

F x f x f x f x f x X      with the condition 

     4 4 40 3,
N N N

t x i x f x x X       .

9.3 Difference and comparison between trapezoidal intuitionistic fuzzy number and 
trapezoidal neutrosophic fuzzy number 

The difference and comparison between the trapezoidal intuitionistic fuzzy number and trapezoidal 
neutrosophic fuzzy number are represented in the following way: 

First, we give the graphical representation of trapezoidal neutrosophic fuzzy number (TrNFN) and 
trapezoidal intuitionistic fuzzy number (TrIFN), as shown in Figure 1, 

(a) Graphical representation of TrNFN (b) Graphical representation of TrIFN 

5

1 

0 

Fig.1 Graphical representation of trapezoidal neutrosophic fuzzy number and trapezoidal intuitionistic 
fuzzy number 
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It can be observed from the Fig. 1, there are some differences between trapezoidal intuitionistic fuzzy 
number and trapezoidal neutrosophic fuzzy number. On one hand, the membership degree, non-membership 
degree and hesitancy of trapezoidal intuitionistic fuzzy number are mutually constrained, and the maximum 
value of the sum of them is not more than 1. However, the truth membership, indeterminacy membership 
and falsity membership functions of trapezoidal neutrosophic fuzzy number are independent, and their 
values are between 0 and 3. And the maximum value of their sum is not more than 3. On the other hand, 
trapezoidal neutrosophic fuzzy number is a generalized representation of trapezoidal fuzzy number and 
trapezoidal intuitionistic fuzzy number, and trapezoidal intuitionistic fuzzy number is a special case of 
trapezoidal neutrosophic fuzzy number.  

10. DIFFERENCE BETWEEN TRIANGULAR FUZZY NUMBERS, INTUITIONISTIC
TRIANGULAR FUZZY NUMBER AND SINGLED VALUED NEUTROSOPHIC SET 

Fuzzy sets have been introduced by Zadeh (1965) in order to deal with imprecise numerical quantities in a 
practical way. A fuzzy number  (Kaufmann& Gupta, 1988) is a generalization of a regular, real number in 
the sense that it does not refer to one single value but rather to a connected set of possible values, where 
each possible value has its own weight between 0 and 1. This weight is called the membership function. A 
fuzzy number is thus a special case of a convex, normalized fuzzy set of the real line . 

10.1 Triangular fuzzy number (Lee, 2005) 

A triangular fuzzy number 1 2 3[ , , ]A a a a is expressed by the following membership function

1
1 2

2 1

3
2 3

3 2

,

( ) ,

0,

A

x a
a x a

a a

a x
x a x a

a a

otherwise



   


   




10.2 Triangular intuitionistic fuzzy number (Li, Nan, & Zhang, 2012) 

A TIFN (See Fig. 2) A is a subset of IFS in R with the following membership functions and non-membership function as follows 

1
1 2

2 1

3
2 3

3 2

,

( ) ,

0,

A

x a
a x a

a a

a x
x a x a

a a

otherwise



   


   




2
1 2

2 1

2
2 3

3 2

,

( ) ,

1,

A

a x
a x a

a a

x a
x a x a

a a

otherwise
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where 1 1 2 3 3a a a a a    

Fig.2. Graphical representation of triangular intuitionistic fuzzy number 

It can be observed from the membership functions that in case of triangular intuitionistic fuzzy number, 
membership and non-membership degrees are triangular fuzzy numbers. Further it can be noted that the 
neutrosophic components are best suited in the presentation of indeterminacy and inconsistent information 
whereas intuitionistic fuzzy sets cannot handle indeterminacy and inconsistent information.  
The difference between the fuzzy numbers and singled valued neutrosophic set can be understood clearly 
with the help of an example. Suppose it is raining continuously for few days in a locality. Then one can 
guess whether there would be a flood like situation in that area. Observing the rainfall of this year and 
recalling the incidents of previous years one can only give his judgment on the basis of guess in terms of 
yes or no but still there remains an indeterminate situation and that indeterminate situation is expressed 
nicely by the single valued neutrosophic set. 

Triangular fuzzy numbers (TFNs) and single valued neutrosophic numbers (SVNNs) are both 
generalizations of fuzzy numbers that are each characterized by three components. TFNs and SVNNs have 
been widely used to represent uncertain and vague information in various areas such as engineering, 
medicine, communication science and decision science. However, SVNNs are far more accurate and 
convenient to be used to represent the uncertainty and hesitancy that exists in information, as compared to 
TFNs. SVNNs are characterized by three components, each of which clearly represents the degree of truth 
membership, indeterminacy membership and falsity membership of a the SVNNs with respect to a an 
attribute. Therefore, we are able to tell the belongingness of a SVNN to the set of attributes that are being 
studied, by just looking at the structure of the SVNN. This provides a clear, concise and comprehensive 
method of representation of the different components of the membership of the number. This is in contrast 
to the structure of the TFN which only provides us with the maximum, minimum and initial values of the 
TFN, all of which can only tell us the path of the TFN, but does not tell us anything about the degree of 
non-belongingness of the TFN with respect to the set of attributes that are being studied. Furthermore, the 

0.

1

0
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structure of the TFN is not able to capture the hesitancy that naturally exists within the user in the process 

of assigning membership values. These reasons clearly show the advantages of SVNNs compared to TFNs. 

11. REFINED NEUTROSOPHIC SETS (Smarandache, 2013; Deli et al., 2015b)

Refined neutrosophic sets can be expressed as follows: 

Let E be a universe.  A neutrosophic refined set (NRS) A on E can be defined as follows 

1 2 1 2

1 2

, ( (x), (x), ..., (x)), ( (x), (x),..., (x)),

( (x), (x), ..., (x))

p p
A A A AA A

p
A A A

x T T T I I I
A

F F F

    
  

 

Where 1 2(x), (x), ..., (x)p
A A AT T T : E  [ 0, 1], 1 2(x), (x), ..., (x)p

A A AI I I : E  [ 0, 1] and 1 2(x), (x), ..., (x)p
A A AF F F : E 

 [ 0, 1] 

12. BIPOLAR NEUTROSOPHIC REFINED SETS

Bipolar neutrosophic refined sets (Deli et al., 2015a) can be described as follows: 

Let E be a universe.  A bipolar neutrosophic refined set (BNRS) A on E can be defined as follows: 

1 2 1 2

1 2 1 2

1 2 1 2

, ( (x), (x),..., (x), (x), (x),..., (x)),

(I (x), I (x),..., I (x), I (x), I (x),..., I (x)),

(F (x),F (x),...,F (x),F (x),F (x),...,F (x)) :

p p
A A A AA A

p p
A A A AA A

p p
A A A AA A

x T T T T T T

A

x X

    

    

    

 
    
 

   

, where 

1 2 1 2( (x), (x),..., (x), (x), (x),..., (x))p p
A A A AA AT T T T T T    

: E  [0, 1],

1 2 1 2(I (x), I (x), ..., I (x), I (x), I (x), ..., I (x))p p
A A A AA A

     : E  [0, 1] and  

1 2 1 2(F (x), F (x), ..., F (x), F (x), F (x), ..., F (x))p p
A A A AA A

     : E  [0, 1] such that   0 ≤ ( )i
AT x + ( )i

AI x + ( )i
AF x ≤ 3  (i 

=1,2,3,…,p) 

1 2 1 2( (x), (x),..., (x), (x), (x),..., (x))p p
A A A AA AT T T T T T    

1 2 1 2(I (x), I (x), ..., I (x), I (x), I (x), ..., I (x))p p
A A A AA A

    

1 2 1 2(F (x), F (x), ..., F (x), F (x), F (x), ..., F (x))p p
A A A AA A

      is respectively the truth membership sequence, 

indeterminacy membership sequence and falsity membership sequence of the element x. Also, P is called 
the dimension of BNRS. 

The set of all bipolar neutrosophic refined sets on E is denoted by BNRS(E). 

13 MULTI-VALUED NEUTROSOPHIC SETS (Peng & Wang, 2015) 

13.1 Operation on multi-valued neutrosophic numbers 

Let ( ), ( ), ( )A A AA T x I x F x    , ( ), ( ), ( )B B BB T x I x F x    are two multi-valued neutrosophic numbers. If

,a
A AT T   b

B BT T   , a
A AI I   , b

B BI I   , a
A AF F   , b

B BF F   , and a b
A BI I  , a b

A BF F  , a b
A BT T  , then B is

superior to A, denoted as A B .
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Let ( ), ( ), ( )A A AA T x I x F x    , ( ), ( ), ( )B B BB T x I x F x    are any two MVNNs, and 0 . The operations for
MVNNs are defined as follows. 
(1) {1 (1 ) }, {( ) }, {( ) }

A AA A A AA A
AT I FA   

               ; 

(2) {( ) }, {1 (1 ) }, {1 (1 ) }
A AA A A AA A

AT I FA   
                ; 

(3) 
, , ,{ }, { }, { }

A B A BA A B B A B A BA B A B
A B A BT T I I F FA B                                 ; 

(4) 
, , ,{ }, { }, { }

A B A B A B A BA A B B A B A BA B A B
A BT T I I F FA B                                     ; 

13.2 Score function, accuracy function and certainty function of multi-valued neutrosophic 
number 

(1) 
, ,

1
( ) ( 1 1 ) / 3

k
i A A Aj k

A A A

i jT I F
T I F

s A
l l l   

  
  

     
     

  
;

(2) 
,

1
( ) ( )

k
i A Ak

A A

iT F
T F

a A
l l  

 
 

  
   

 
 ; 

(3) 
1

( )
i A

A

iT
T

c A
l 




  


 ; 

13.3 Comparison of multi-valued neutrosophic numbers 

Let ( ), ( ), ( )A A AA T x I x F x    , ( ), ( ), ( )B B BB T x I x F x    are two multi-valued neutrosophic numbers. Then
the comparision method can be defined as follows: 

i. If ( ) ( )s A s B , then A  is greater than B , that is, A is superior to B , denoted by A B .

ii. If ( ) ( )s A s B  and ( ) ( )a A a B , then A  is greater than B , that is, A is superior to B , denoted by

A B .
iii. If ( ) ( )s A s B ,  ( ) ( )a A a B  and ( ) ( )c A c B , then A  is greater than B , that is, A is superior to B

, denoted by A B .
iv. If ( ) ( )s A s B ,  ( ) ( )a A a B  and ( ) ( )c A c B , then A  is equal to B , that is, A is indifferent to B

, denoted by A B .

14. Simplified neutrosophic linguistic sets (SNLSs)  (Tian et al., 2016)

14.1 SNLSs 

Definition 1. Let X be a space of points (objects) with a generic element in X, denoted by x and

0 1 2 2{ , , , , }tH h h h h   be a finite and totally ordered discrete term set, where t is a nonnegative real number.
A SNLS A in X is characterized as 

( ){ , ,( ( ), ( ), ( )) }xA x h t x i x f x x X    ,

where 
( )xh H  , ( ) [0,1]t x  , ( ) [0,1]i x  , ( ) [0,1]f x  , with the condition 0 ( ) ( ) ( ) 3t x i x f x     for any 

x X . And ( )At x , ( )Ai x  and ( )Af x represent, respectively, the degree of truth-membership, indeterminacy-
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membership and falsity-membership of the element x in X to the linguistic term 
( )xh . In addition, if 1X 

, a SNLS will be degenerated to a SNLN, denoted by , ( , , )A h t i f  . And A will be degenerated to a 

linguistic term if 1,t  0i  , and 0f  . 

14.2 Operations of SNLNs 
Let , ( , , )

ii i i ia h t i f  and ,( , , )
jj j j ja h t i f   be two SNLNs, *f  be a linguistic scale function

and 0 . Then the following operations of SNLNs can be defined. 

(1) 

* * * * * *
* 1 * *

* * * * * *

( ) ( ) ( ) ( ) ( ) ( )
( ( ) ( )),( , , )

( ) ( ) ( ) ( ) ( ) ( )

i j i j i j

i j

i j i j i j

i j i j i j
i j

f h t f h t f h i f h i f h f f h f
a a f f h f h

f h f h f h f h f h f h

     
 

     


  

  
  

 ; 

(2) * 1 * *( ( ) ( )), ( , , )
i ji j i j i j i j i j i ja a f f h f h t t i i i i f f f f 

       ; 

(3) * 1 *( ( )), ( , , )
ii i i ia f f h t i f   ;

(4) * 1 *(( ( )) ), ( ,1 (1 ) ,1 (1 ) )
ii i i ia f f h t i f    


      ; 

(5) * 1 * *
2( ) ( ( ) ( )), ( ,1 , )

ii t i i ineg a f f h f h f i t
    ; 

15. COMPARISON ANALYSIS

Refined neutrosophic set is a generalization of fuzzy set, intuitionistic fuzzy set, neutrosophic set, interval- 
valued neutrosophic set, neutrosophic hesitant fuzzy set and interval-valued neutrosophic hesitant fuzzy 
set. Also differences and similarities between these sets are given in Table 1. 

Table 1. Comparison of fuzzy set anditsextensive set theory 

Fuzzy 
intuitionstic 

fuzzy  

Interval- 
Valued 

neutrosophi
c 

Interval- Valued 
neutrosophic 

HesitantFuzzy Set 
Neutro
sophic 

Neutrosophic 
HesitantFuzzy 

Set 
Neutrosophicre

fined 

Domain 
Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Universe of discourse 

Univer
se of 

discour
se 

Universe of 
discourse 

Universe of 
discourse 

Co-domain 
Single-value 

in [0,1] 
Two-value 

in [0,1] 

Unipolar 
interval in 

[0,1] 
Unipolar interval in [0,1] [0,1]3 [0,1]3 [0,1]3 

Number Yes Yes Yes Yes Yes No No  

Membershipf
unction 

regular regular Regular irregular regular irregular Regular 

Uncertainty Yes Yes Yes Yes Yes Yes Yes 

True Yes Yes Yes Yes Yes Yes Yes 

Falsity No Yes Yes Yes Yes Yes Yes 

Indeterminac
y 

No No Yes Yes Yes Yes Yes 

Negativity No  No  No  No  
Yes in 
[0,1] 

No No 

Membership
valued 

Membershipv
alued 

Singlevalue
d 

İnterv-
valued 

Singlevalued 
Singlev
alued 

Singlevalued Multi- valued 
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Bosc and Pivert (2013) said that “Bipolarity refers to the propensity of the human mind to reason and make 
decisions on the basis of positive and negative effects. Positive information states what is possible, 
satisfactory, permitted, desired, or considered as being acceptable. On the other hand, negative statements 
express what is impossible, rejected, or forbidden. Negative preferences correspond to constraints, since 
they specify which values or objects have to be rejected (i.e., those that do not satisfy the constraints), while 
positive preferences correspond to wishes, as they specify which objects are more desirable than others 
(i.e., satisfy user wishes) without rejecting those that do not meet the wishes.”  Therefore, Lee (2000, 2009) 
introduced the concept of bipolar fuzzy sets which is a generalization of the fuzzy sets. Bipolar neutrosophic 
refined sets which is an extension of the fuzzy sets, bipolar fuzzy sets, intuitionistic fuzzy sets and bipolar 
neutrosophic sets. Also differences and similarities between these sets are given in Table 2. 

Table 2. Comparison of bipolar fuzzy set and its  various extensions 

Bipolar Fuzzy 

Bipolar 
Intuitionistic 

fuzzy 

Bipolar 
İnterval- Valued 

neutrosophic 

Bipolar 
 Neutrosophic 

Bipolar 
neutrosophic 

refined 

Domain 
Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Co-domain 
Single-value in 

[-1,1] 
Two-value in [-

1,1] 
Unipolar interval in 

[-1,1] 
Bipolar [-1,1]3 Bipolar 

 [-1,1]3 

Number Yes Yes Yes Yes Yes 

Uncertainty Yes Yes Yes Yes Yes 

True Yes Yes Yes Yes Yes 

Falsity No Yes Yes Yes Yes 

Membership 
valued 

Singlevalued Singlevalued Singlevalued Singlevalued Multi valued 

Table 3. Comparison of different types of neutrosophic sets 

SVNS IVNS BNSs 
Multi-valued 
neutrosophic 
sets 

Trapezoidal 
Neutrosophic 
sets 

Triangular 
Fuzzy 
Neutrosophic 
sets 

SNLSs 

Domain 

Universe 
of 
discourse 

Universe 
of 
discourse 

Universe 
of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Universe 
of 
 iscourse 

Co-domain [0,1]3 
Unipolar 
İnterval 
in [0,1] 

Bipolar 
[-1,1]3 

[0,1]3 [0,1]3 [0,1]3 
[0, 2t] or 
[-t, t] 

Number Yes Yes Yes Yes Yes Yes No 

Uncertainty Yes Yes Yes Yes Yes Yes Yes 

True Yes Yes Yes Yes Yes Yes Yes 

Falsity Yes Yes Yes Yes Yes Yes Yes 

Indeterminacy Yes Yes Yes Yes Yes Yes Yes 
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CONCLUSIONS 

NSs are characterized by truth, indeterminacy, and falsity membership functions which are independent in 
nature. NSs can handle incomplete, indeterminate, and inconsistent information quite well, whereas IFSs 
and FSs can only handle incomplete or partial information. However, SVNS, subclass of NSs gain much 
popularity to apply in concrete areas such as real engineering and scientific problems. Many extensions of 
NSs have been appeared in the literature. Some of them are discussed in the paper. New hybrid sets derived 
from neutrosophic sets gain popularity as new research topics. Extensions of neutrosophic sets have been 
developed by many researchers. This paper presents some of their basic operations. Then, we investigate 
their properties and the relation between defined numbers and function on neutrosophic sets. We present 
comparison between bipolar fuzzy sets and its various extensions. We also present the comparison between 
different types of neutrosophic sets and numbers. The paper can be extended to review different types of 
neutrosophic hybrid sets and their theoretical development and applications in real world problems.   
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ABSTRACT 

This article shows a deca-valued representation of neutrosophic information. For this 
representation the following neutrosophic features were defined and used: truth, falsity, weak truth, 
weak falsity, ignorance, contradiction, saturation, neutrality, ambiguity and hesitation. In the context 
created by these ten features emerged the possibility but also the necessity of defining three 
neutrosophic concepts: entropy, neutro-entropy and anti-entropy. Possibility appeared due to the 
refining of neutrosophic representation. The necessity appeared because all of these features cannot 
be classified by taking into account only certainty (entropy) and uncertainty (anti-entropy). There is a 
requirement for a third concept (neutro-entropy) that refers to neutrality.   

KEYWORDS: Neutrosophic information, entropy, neutro-entropy, anti-entropy, non-entropy. 

1. INTRODUCTION

The neutrosophic representation of information was proposed by Smarandache (1999, 2002, 2005, 
2007, 2009, 2010, 2013) and represents a generalization for the fuzzy representation proposed by 
Zadeh (1965) and in the same time, it represents an extension for intuitionistic fuzzy one proposed by 
Atanassov (1983, 1986). The neutrosophic representation is defined by three parameters: degree of 
truth 𝜇, degree of falsity 𝜈 and degree of indeterminacy or neutrality 𝜔. In this paper, we present two 
deca-valued representations for neutrosophic information. There will be shown computing formulas 
for the following ten features of neutrosophic information: truth, falsity, weak truth, weak falsity, 
ignorance, contradiction, saturation, neutrality, ambiguity and hesitation. With these features we will 
then construct the entropy, the neutro-entropy and the anti-entropy. These are equivalent to 
Smarandache’s refinement (2013), and in this case one has: T1, T2; I1, I2, I3, I4, I5, I6; F1, F2 
respectively. Further, the paper has the following structure: Section 2 presents two variants for penta-
valued representation of bifuzzy information. These representations are later developed in two 
variants for deca-valued representation of neutrosophic information. Also, there are presented 
formulae for bifuzzy entropy and non-entropy. Section 3 presents two deca-valued representation of 
neutrosophic information and underlines three concepts for neutrosophic information: entropy, neutro-
entropy and anti-entropy. If the entropy and non-entropy are already known, the neutro-entropy and 
anti-entropy are new concepts and were defined as sub-components of the non-entropy. For this 
definition there were used four components of the neutrosophic information, namely the pair weak 
truth with weak falsity and the pair truth with falsity. In other words, non-entropy is divided in anti-
entropy and neutro-entropy. Section 4 presents some conclusions while the section 5 is the references 
section. 
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2. THE PENTA-VALUED REPRESENTATION OF BIFUZZY INFORMATION

The bifuzzy information is defined by the degree of truth 𝜇  and degree of falsity 𝜈. This is the 
primary representation.  Starting from the primary representation, we can construct other derived 
forms (Patrascu, 2008, 2012). In the next we will present two variants. 

2.1 Variant (I) for penta-valued representation of bifuzzy information 

For the penta-valued construction, we need to define two auxiliary parameters. 

The net truth: 

𝜏 = 𝜇 − 𝜈      (1) 

The definedness: 

𝛿 = 𝜇 + 𝜈 − 1       (2) 

In the next we will define the main indexes. 

The bifuzzy index of ignorance: 

𝜋 = 𝑚𝑎𝑥(−𝛿, 0)    (3) 

The bifuzzy index of contradiction: 

𝜅 = 𝑚𝑎𝑥(𝛿, 0)     (4) 

The bifuzzy index of ambiguity: 

𝛼 = 1 − |𝜏| − |𝛿|    (5) 

The bifuzzy index of truth: 

𝜏 = 𝑚𝑎𝑥(𝜏, 0)   (6) 

The bifuzzy index of falsity: 

𝜏 = 𝑚𝑎𝑥(−𝜏, 0)   (7) 

Fig. 1. The five features of bifuzzy information. 

On this way, we obtained the first variant for penta-valued representation of bifuzzy information. 
There exist the following equalities: 

𝜋 ∙ 𝜅 = 0   (8) 

𝜏 ∙ 𝜏 = 0    (9) 
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The five indexes defined by formulae (3), (4), (5), (6), (7) verify the condition of partition of unity, 
namely: 

𝜏 + 𝜏 + 𝛼 + 𝜋 + 𝜅 = 1   (10) 

Fig. 2. The five prototypes of bifuzzy information. 

From (10) it results the bifuzzy entropy (uncertainty) and bifuzzy non-entropy (certainty) formulae. 

The bifuzzy entropy: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝛼 + 𝜋 + 𝜅                                                    (11) 

The ambiguity, ignorance and contradiction are components of entropy (see figure 1). 
The non-entropy is obtained by negation of entropy, namely: 

𝑛𝑜𝑛_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 1 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦   (12) 

From (10), (11) and (12) it results that the bifuzzy non-entropy is defined by: 

𝑛𝑜𝑛_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝜏 + 𝜏     (13) 

The truth and falsity are components of the non-entropy (certainty). The graphic of the constructed 
structure can be seen in figure 3. 

The formulae (3), (4), (5), (6), (7) represent the transformation of the primary space into a penta-
valued one. The next formulae defined the inverse transform from the penta-valued space to the 
bivalued one (𝜇, 𝜈). 

𝜇 = 𝜏 + 𝜅 +
𝛼

2
 (14) 

𝜈 = 𝜏 + 𝜅 +
𝛼

2
 (15) 

The two formulae (14) and (15) are equivalent with the following: 

𝜇
𝜈

= 𝜏
1
0

+ 𝜏
0
1

+ 𝜅
1
1

+ 𝛼
0.5
0.5

+ π
0
0

      (16) 

𝜇
𝜈

= 𝜏 ∙ T + 𝜏 ∙ F + 𝜅 ∙ C + 𝛼 ∙ A + π ∙ U   (17) 

where 𝑇, 𝐹, 𝐶, 𝐴, 𝑈 are the prototypes shown in figure 2. 
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Fig. 3. The structure of the bifuzzy information. 

2.2 Variant (II) for penta-valued representation of bifuzzy information 

We will trace the same steps that we have used for the variant (I). We will use the same two 
auxiliary parameters: 

The net truth: 

𝜏 = 𝜇 − 𝜈  (18) 

The definedness: 

𝛿 = 𝜇 + 𝜈 − 1            (19) 

In the next, we will define the main indexes. 
The bifuzzy index of ignorance: 

𝜋 = 𝑚𝑎𝑥(−𝛿, 0) 1 −
|𝜏|

2
    (20) 

The bifuzzy index of contradiction: 

𝜅 = 𝑚𝑎𝑥(𝛿, 0) 1 −
|𝜏|

2
     (21) 

The bifuzzy index of ambiguity: 

𝛼 = 1 − |𝜏| − |𝛿| + |𝜏| ∙ |𝛿| = (1 − |𝜏|) ∙ (1 − |𝛿|)    (22) 

The bifuzzy index of truth: 

𝜏 = 𝑚𝑎𝑥(𝜏, 0) 1 −
|𝛿|

2
   (23) 

The bifuzzy index of falsity: 

𝜏 = 𝑚𝑎𝑥(−𝜏, 0) 1 −
|𝛿|

2
      (24) 

bifuzzy 
information

non-entropy

truth

falsity

entropy

ambiguity

ignorance

contradiction
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On this way, we obtained the second variant for penta-valued representation of bifuzzy information. 
There exist the following equalities: 

𝜋 ∙ 𝜅 = 0  (25) 

𝜏 ∙ 𝜏 = 0  (26) 

The five indexes defined by formulae (23), (24), (22), (20) and (21) verify the condition of partition of 
unity, namely: 

  𝜏 1 −
|𝛿|

2
+ 𝜏 1 −

|𝛿|

2
+ 𝛼 + 𝜋 1 −

|𝜏|

2
+ 𝜅 1 −

|𝜏|

2
= 1   (27) 

From (27) it results the bifuzzy entropy (uncertainty) and bifuzzy non-entropy (certainty) formulae. 

The bifuzzy entropy: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝛼 + 𝜋 1 −
|𝜏|

2
+ 𝜅 1 −

|𝜏|

2
  (28) 

The non-entropy is obtained by negation of entropy, namely: 

𝑛𝑜𝑛_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 1 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦           (29) 

From (27), (28) and (29) it results that the bifuzzy non-entropy is defined by: 

𝑛𝑜𝑛_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝜏 1 −
|𝛿|

2
+ 𝜏 1 −

|𝛿|

2
    (30) 

The truth and falsity are components of the non-entropy (certainty). 

The formulae (20), (21), (22), (23), (24) represent the second variant for transformation of the primary 
space into a penta-valued one.  

3. THE DECA-VALUED REPRESENTATION OF NEUTROSOPHIC
INFORMATION

In this section we present a deca-valued representation of neutrosophic information having as primary 
source the triplet (𝜇, 𝜔, 𝜈). This triplet defined the degree of truth, the degree of indeterminacy and 
the degree of falsity. We start with the penta-valued partion of the bifuzzy information and we divide 
each term in a sum with two other terms. For this, we will use the following formula (Patrascu, 2008): 

𝑥 = 𝑥 ∘ 𝜔 + 𝑥⦁𝜔 

where “ ∘ ” and  “ ⦁ “ are two conjugate Frank t_norm (Frank, 1979), (Patrascu, 2008). In this paper 
we will use the Godel t-norm and Lukasiewicz t-norm (Moisil, 1965, 1972, 1975), namely: 

x ∘ y = min (x, y) 

x⦁y = max (x + y − 1,0) 

Having two variants for penta-valued representation of bifuzzy information, we will obtain two 
variants for deca-valued representation for neutrosophic one. 
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3.1 Variant (I) for deca-valued representation of neutrosophic information 

In this subsection, we will use the formulae (3), (4), (5), (6) and (7) that belong to the variant (I) of the 
bifuzzy information representation.  
We decompose the bifuzzy index of truth given by (6) into the next two terms: 

𝜏 = 𝜏 ∘ 𝜔 + 𝜏 ⦁𝜔 

that is equivalent with: 

𝜏 = min(𝜏 , 𝜔) + 𝜏 − min(𝜏 , 𝜔)    (31) 

and we obtain: 

 the neutrosophic index of truth

𝑡 = min(𝜏 , 𝜔)   (32) 

 the neutrosophic index of weak truth

𝑡 = 𝜏 − min(𝜏 , 𝜔)         (33) 

We decompose the bifuzzy index of falsity given by (7) into the next two terms: 

𝜏 = 𝜏 ∘ 𝜔 + 𝜏 ⦁𝜔 

that is equivalent with: 

𝜏 = min(𝜏 , 𝜔) + 𝜏 − min(𝜏 , 𝜔)   (34) 

and we obtain: 

 the neutrosophic index of falsity:

𝑓 = min(𝜏 , 𝜔)   (35) 

 the neutrosophic index of weak falsity

𝑓 = 𝜏 − min(𝜏 , 𝜔)    (36) 

where 

𝜔 = 1 − ω        (37) 

We decompose the bifuzzy index of ignorance given by (3) into the next two terms: 

𝜋 = 𝜋 ∘ 𝜔 + 𝜋⦁𝜔 

that is equivalent with: 

𝜋 = min(𝜋, ω) + 𝜋 − min(𝜋, ω)   (38) 

and we obtain: 

 the neutrosophic index of neutrality

𝑛 = min(𝜋, ω)   (39) 

 the neutrosophic index of ignorance

𝑢 = 𝜋 − min(𝜋, ω)     (40) 

We decompose the bifuzzy index of contradiction given by (4) into the next two terms: 
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𝜅 = 𝜅 ∘ 𝜔 + 𝜅⦁𝜔 

that is equivalent with: 

𝜅 = min(𝜅, ω) + 𝜅 − min(𝜅, ω)   (41) 

and we obtain: 

 the neutrosophic index of saturation

𝑠 = min(𝜅, ω)     (42) 

 the neutrosophic index of contradiction

𝑐 = 𝜅 − min(𝜅, ω)                                                                                                  (43) 

We decompose the bifuzy index of ambiguity into the two terms using the formula (5), namely: 

𝛼 = 2 − |𝜏| − 𝜔 − |𝛿| − ω                                                                                   (44) 

It results, immediately: 

𝛼 = 2 − min(|𝜏|, 𝜔) − max(|𝜏|, 𝜔) − min(|𝛿|, ω) − max(|𝛿|, ω)           (45) 

and we obtain: 

 the neutrosophic index of ambiguity

𝑎 = 1 − min(|𝜏|, 𝜔) − max(|𝛿|, ω)         (46) 

 the neutrosophic index of hesitation

ℎ = 1 − max(|𝜏|, 𝜔) − min(|𝛿|, ω)         (47) 

For ambiguity and hesitation we have the following equivalent formulae: 

𝑎 = min(𝛼 + |𝜏|, 𝜔) − min(|𝜏|, 𝜔) 

ℎ = min(𝛼 + |𝛿|, ω) − min(|𝛿|, ω) 

Finally, we constructed the first variant for deca-valued representation for neutrosophic information. 
The ten parameters define a partition of unity, namely: 

𝑡 + 𝑡 + 𝑓 + 𝑓 + 𝑐 + 𝑢 + 𝑛 + 𝑠 + 𝑎 + ℎ = 1          (48) 

After how we constructed the ten indexes we learn there exist the following relations: 

𝑡 + 𝑡 + 𝑓 + 𝑓 = |𝜏|      (49) 

𝑐 + 𝑢 + 𝑛 + 𝑠 = |𝛿|    (50) 

𝑎 + ℎ = 𝛼      (51) 

(𝑡 + 𝑡 ) ∙ (𝑓 + 𝑓 ) = 0  (52) 

(𝑢 + 𝑛) ∙ (c + 𝑠) = 0  (53) 

From the ten parameters, only four of them can be different from zero while at least six of them are 
zero. The formulae (32), (33), (35), (36), (39), (40) (42), (43), (46), (47) define the first variant of the 
transformation from the ternary space to the deca-valued one. The next formulae define the inverse 
transform: 
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Fig. 4. The bottom square of the neutrosophic cube. 

Fig. 5. The top square of the neutrosophic cube. 

𝜇 = 𝑡 + 𝑡 + 𝑐 + 𝑠 +
𝑎

2
+

ℎ

2
  (54) 

𝜔 = 𝑛 + 𝑡 + 𝑓 + 𝑠 + ℎ      (55) 

𝜈 = 𝑓 + 𝑓 + 𝑐 + 𝑠 +
𝑎

2
+

ℎ

2
    (56) 

There exist the following equivalent formulae: 

𝜇
𝜔
𝜈

= 𝑡
1
0
0

+ 𝑡
1
1
0

+ 𝑓
0
0
1

+ 𝑓
0
1
1

+ 𝑐
1
0
1

+ 𝑛
0
1
0

+ 𝑠
1
1
1

+ 𝑎
0.5
0

0.5
+ ℎ

0.5
1

0.5

+ 𝑢
0
0
0

         (57) 

𝜇
𝜔
𝜈

= 𝑡 ∙ T + 𝑡 ∙ T + 𝑓 ∙ F + 𝑓 ∙ F + 𝑐 ∙ C + 𝑛 ∙ N + 𝑠 ∙ S + 𝑎 ∙ A + ℎ ∙ H + 

+𝑢 ∙ U    (58) 
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where  𝑇, 𝑇 , 𝐹, 𝐹 , 𝐶, 𝑁, 𝑆, 𝐴, 𝐻, 𝑈  are the prototypes that can be seen in figure 7. 

Forwards, as for the bifuzzy sets, firstly, we identify among the ten components, those related to 
uncertainty: ignorance 𝑢, contradiction 𝑐, neutrality 𝑛, saturation 𝑠, ambiguity 𝑎 and hesitation ℎ (see 
figures 4, 5, 6). These are the components of the neutrosophic uncertainty, and, in other words, the 
components of the neutrosophic entropy. Hence, it results the following formula for neutrosophic 
entropy calculation: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑢 + 𝑐 + 𝑛 + 𝑠 + 𝑎 + ℎ  (59) 

Further, as for the bifuzzy sets, the negation of entropy leads to the neutrosophic non-entropy, 
namely: 

𝑛𝑜𝑛_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 1 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦   (60) 

Fig. 6. The neutrosophic cube and the ten features distribution. 

From (48), (59) and (60) it results the following formula for non-entropy calculation: 

𝑛𝑜𝑛_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑡 + 𝑓 + 𝑡 + 𝑓     (61) 

Now, analyzing formula (61), it is seen that non-entropy is not identified with the neutrosophic 
certainty because weak truth and weak falsity cannot be components of certainty. These two 
components, 𝑡  and 𝑓  not belong to certainty and in the same time not belong to uncertainty. These 
components are found somewhere between certainty and uncertainty, namely in a middle zone. In 
fact, the two components define a new entity, the neutro-entropy or simply neutropy: 

𝑛𝑒𝑢𝑡𝑟𝑜_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑡 + 𝑓     (62) 

Fig. 7.  The neutrosophic cube and the ten prototypes distribution. 

Consequently, the only certainty components are  𝑡 and 𝑓 and in other words, these will be 
components of the neutrosophic anti-entropy. 
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𝑎𝑛𝑡𝑖_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑡 + 𝑓   (63) 

Finally, we come to decompose the non-entropy in two parts, non-entropy and anti-entropy, existing 
the next formula: 

𝑛𝑜𝑛_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑎𝑛𝑡𝑖_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 𝑛𝑒𝑢𝑡𝑟𝑜_𝑒𝑛𝑡𝑟𝑜𝑝𝑦              (64) 

In figure 8, we can see the detailed structure of the neutrosophic information. 

Fig. 8. The structure of the neutrosophic information 

Once again, it highlights the principle laid down by Smarandache (1999), principle that led to the 
development theory of neutrosophy, namely,  for each entity 𝐴 there is an opposite entity 𝑎𝑛𝑡𝑖_𝐴 and 
between these two, there exists the third entity, more precisely, one situated in the middle,  𝑛𝑒𝑢𝑡_𝐴. In 
addition, 𝑎𝑛𝑡𝑖_𝐴 and 𝑛𝑒𝑢𝑡_𝐴 together form 𝑛𝑜𝑛_𝐴. In the particular case of the neutrosophic entropy, 
among these three components exists the partition of unity, namely: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 𝑛𝑒𝑢𝑡𝑟𝑜_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 𝑎𝑛𝑡𝑖_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 1   (65) 

3.3 Variant (II) for deca-valued representation of neutrosophic information 

In this subsection we will use the formulae (20), (21), (22), (23) and (24) that belong to the  variant 
(II) of bifuzzy information representation.  
We decompose the bifuzzy index of truth, given by (23) into the next two terms: 

neutrosophic
information

non-entropy

anti-entropy
truth

falsity

neutro-entropy
weak truth

weak falsity

entropy

ambiguity

ignorance

contradiction

neutrality

saturation

hesitation
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𝜏 = 𝜏 ∘ 𝜔 + 𝜏 ⦁𝜔 

that is equivalent with: 

𝜏 = min(𝜏 , 𝜔) + 𝜏 − min(𝜏 , 𝜔)   (66) 

and we obtain: 

 the neutrosophic index of truth

𝑡 = min(𝜏 , 𝜔) 1 −
|𝛿|

2
     (67) 

 the neutrosophic index of weak truth

𝑡 = 𝜏 − min(𝜏 , 𝜔) 1 −
|𝛿|

2
    (68) 

We decompose the bifuzzy index of falsity given by (24) into the next two terms: 

𝜏 = 𝜏 ∘ 𝜔 + 𝜏 ⦁𝜔 

that is equivalent with: 

𝜏 = min(𝜏 , 𝜔) + 𝜏 − min(𝜏 , 𝜔)   (69) 

and we obtain: 

 the neutrosophic index of falsity:

𝑓 = min(𝜏 , 𝜔) 1 −
|𝛿|

2
   (70) 

 the neutrosophic index of weak falsity

𝑓 = 𝜏 − min(𝜏 , 𝜔) 1 −
|𝛿|

2
   (71) 

where 

𝜔 = 1 − ω        (72) 

We decompose the bifuzzy index of ignorance given by (20) into the next two terms: 

𝜋 = 𝜋 ∘ 𝜔 + 𝜋⦁𝜔 

that is equivalent with: 

𝜋 = min(𝜋, ω) + 𝜋 − min(𝜋, ω)    (73) 

and we obtain: 

 the neutrosophic index of neutrality

𝑛 = min(𝜋, ω) 1 −
|𝜏|

2
   (74) 

 the neutrosophic index of ignorance
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𝑢 = 𝜋 − min(𝜋, ω) 1 −
|𝜏|

2
   (75) 

We decompose the bifuzzy index of contradiction given by (21) into the next two terms: 

𝜅 = 𝜅 ∘ 𝜔 + 𝜅⦁𝜔 

that is equivalent with: 

𝜅 = min(𝜅, ω) + 𝜅 − min(𝜅, ω)     (76) 

and we obtain: 

 the neutrosophic index of saturation

𝑠 = min(𝜅, ω) 1 −
|𝜏|

2
    (77) 

 the neutrosophic index of contradiction

𝑐 = 𝜅 − min(𝜅, ω) 1 −
|𝜏|

2
   (78) 

We decompose the bifuzzy index of ambiguity given by (22) into two terms. Firstly, using formula 
(22) we obtain the following equivalent form: 

𝛼 = 2 − |𝜏| 1 −
|𝛿|

2
− 𝜔 − |𝛿| 1 −

|𝜏|

2
− ω  (79) 

Then, it results, immediately: 

𝛼 = 2 − min |𝜏| 1 −
|𝛿|

2
, 𝜔 − max |𝜏| 1 −

|𝛿|

2
, 𝜔 − min |𝛿| 1 −

|𝜏|

2
, ω

− max |𝛿| 1 −
|𝜏|

2
, ω     (80) 

and we obtain: 

 the neutrosophic index of ambiguity

𝑎 = 1 − min |𝜏| 1 −
|𝛿|

2
, 𝜔 − max |𝛿| 1 −

|𝜏|

2
, ω      (81) 

 the neutrosophic index of hesitation

ℎ = 1 − max |𝜏| 1 −
|𝛿|

2
, 𝜔 − min |𝛿| 1 −

|𝜏|

2
, ω      (82) 

For ambiguity and hesitation we have the following equivalent formulae: 

𝑎 = min 𝛼 + |𝜏| 1 −
|𝛿|

2
, 𝜔 − min |𝜏| 1 −

|𝛿|

2
, 𝜔  

ℎ = min 𝛼 + |𝛿| 1 −
|𝜏|

2
, ω − min |𝛿| 1 −

|𝜏|

2
, ω  
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Finally, we constructed the second variant for deca-valued representation of neutrosophic information. 
The ten parameters define a partition of unity. 

𝑡 + 𝑡 + 𝑓 + 𝑓 + 𝑐 + 𝑢 + 𝑛 + 𝑠 + 𝑎 + ℎ = 1   (83) 

After how we constructed the ten indexes we learn there exist the following relations: 

𝑡 + 𝑡 + 𝑓 + 𝑓 = |𝜏| 1 −
|𝛿|

2
  (84) 

𝑛 + 𝑠 + 𝑐 + 𝑢 = 𝛿 1 −
|𝜏|

2
   (85) 

𝑎 + ℎ = 𝛼       (86) 

(𝑡 + 𝑡 ) ∙ (𝑓 + 𝑓 ) = 0  (87) 

(𝑢 + 𝑛) ∙ (c + 𝑠) = 0   (88) 

From the ten parameters only four of them can be different from zero while at least six of them are 
zero. 
The formulae (67), (68), (70), (71), (74), (75) (77), (78), (81), (82) define another transformation from 
the ternary primary space to the deca-valued one. Hence, it results the following formulae for entropy, 
non-entropy, neutro-entropy and anti-entropy:   

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 1 − |𝜏| 1 −
|𝛿|

2
      (89) 

𝑛𝑜𝑛_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = |𝜏| 1 −
|𝛿|

2
    (90) 

𝑛𝑒𝑢𝑡𝑟𝑜_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = |𝜏| − min(|𝜏|, 𝜔) 1 −
|𝛿|

2
     (91) 

𝑎𝑛𝑡𝑖_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = min(|𝜏|, 𝜔) 1 −
|𝛿|

2
     (92) 

And again there exist the following relation: 

𝑛𝑜𝑛_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑎𝑛𝑡𝑖_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 𝑛𝑒𝑢𝑡𝑟𝑜_𝑒𝑛𝑡𝑟𝑜𝑝𝑦      (93) 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 𝑛𝑒𝑢𝑡𝑟𝑜_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 𝑎𝑛𝑡𝑖_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 1   (94) 

4. CONCLUSION

This approach presents a multi-valued representation of the neutrosophic information. It highlights the 
link between the bifuzzy information and neutrosophic one.  The constructed deca-valued structures 
show the neutrosophic information complexity. These deca-valued structures led to construction of 
two new concepts for the neutrosophic information: neutro-entropy and anti-entropy. These two 
concepts are added to the two existing: entropy and non-entropy. Thus, we obtained the following 
triad: entropy, neutro-entropy and anti-entropy. For the moment, neutro-entropy was defined for 
neutrosophic information but it is possible that in the future this concept will be defined for other 
research fields such as biology. For now, in biology, it was defined anti-entropy and from the start 
was stated that this is different from non-entropy (Bailly & Longo, 2009), (Longo & Montevil, 2011). 
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ABSTRACT 

This paper is an extended version of “A Lattice Theoretic Look: A Negated Approach to Adjectival 
(Intersective, Neutrosophic and Private) Phrases’’ in INISTA 2017.  Firstly, some new negations of 
intersective adjectival phrases and their set-theoretic semantics such as non-red non-cars and red non-cars 
are presented. Secondly, a lattice structure is built on positive and negative nouns and their positive and 
negative intersective adjectival phrases. Thirdly, a richer lattice is obtained from previous one by adding 
neutrosophic prefixes neut and anti to intersective adjectival phrases. Finally, the richest lattice is 
constructed via extending the previous lattice structures by private adjectives (fake, counterfeit). These 
lattice classes are called Neutrosophic Linguistic Lattices (NLL). In the last part of the paper (Section 4 
does not take place in the paper introduced in INISTA 2017), noun and adjective based positive and 
negative sub-lattices of NLL are introduced. 

KEYWORDS: Logic of natural languages; neutrosophy; pre-orders, orders and lattices; adjectives; noun 
phrases; negation 

1. INTRODUCTION
Lattice theory, one of the fundamental sub-fields of the foundations of mathematics and mathematical 
logic, is a powerful tool of many areas such as Linguistics, Chemistry, Physics, and Information Science. 
In information science, it is essential to make data understandable and meaningful. Mathematical structures 
are the most effective tools for transferring human natural phrases and sentences to computer environment 
as meaningful data. Especially, with a set theoretical view, lattice applications of mathematical models in 
linguistics are a common occurrence. Fundamentally, Natural Logic (Moss, 2010), (van Benthem, 2008) is 
a human reasoning discipline that explores inference patterns and logics in natural language. These patterns 
and logics are constructed on relations between syntax and semantics of sentences and phrases. In order to 
explore and identify the entailment relations among sentences by mathematical structures, it is first 
necessary to determine the relations between words and clauses themselves. We would like to find new 
connections between natural logic and neutrosophic by discovering the phrases and neutrosophic clauses. 
In this sense, we will associate phrases and negated phrases to neutrosophic concepts. Recently, a theory 
called Neutrosophy, introduced by Smarandache (Smarandache, 1998, 2004,2015) has widespread 
mathematics, philosophy and applied sciences coverage. Mathematically, it offers a system which is an 
extension of intuitionistic fuzzy system. Neutrosophy considers an entity, A in relation to its opposite, anti-
A and that which is not A, non-A, and that which is neither A nor anti-A, denoted by neut-A. Up to section 
3.3, we will obtain various negated versions of phrases (intersective adjectival) because Neutrosophy 
considers opposite property of concepts and we would like to associate the phrases and Neutrosophic 
phrases. We will present the first NLL in section 3.3. Notice that all models and interpretations of phrases 
will be finite throughout the paper. The research problem of this paper is to put forth lattice structures of 
neutrosophic phrases for purpose of exploring relations between the phrases on the mathematical level. The 
results of the paper may help to prove soundness and completeness theorems of possible logics obtained by 
sentences formed by neutrosophic phrases. The original contribution of this paper is that none of the 
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lattices and sub-lattices of such phrases have never been studied. Relevant studies have not gone beyond 
simple names and adjectives (intersective and private).  The phrases allow us to study the details of lattice 
theory, in addition to lattices such as sub-lattices and even ideals and filters because the expressive power 
of neutrosophic phrases present much richer structures. 

2. NEGATING INTERSECTIVE ADJECTIVAL PHRASES
Phrases such as red cars can be interpreted the intersection of the set of red things with the set of cars and 
get the set of red cars. In the sense of model-theoretic semantics, the interpretation of a phrase such as red 
cars would be the intersection of the interpretation of cars with a set of red individuals (the region b in 
Figure 1). Such adjectives are called intersective adjectives or intersecting adjectives. As to negational 
interpretation, Keenan and Faltz told that “similarly, intersective adjectives, like common nouns, are 
negatable by non-: non-Albanian (cf. non-student) “in their book (Keenan & Faltz, 2012). In this sense, 
non-red cars would interpret the intersection of the of non-red things and the set of cars. Negating 
intersective adjectives without nouns (red things) would be complements of the set of red things, in other 
words, non-red things. We mean by “non-red things”: the things are which are not red. Remark that the 
conceptual field of “non-red things” does not guarantee that these individuals have to have a color property 
or something else. It is changeable under incorporating situations, but we will might say something about it 
in another paper. On the other hand, negating nouns (cars) would be complements of the set of cars, in 
other words, non-cars. We mean by non-cars that the things are which are not cars. Adhering to the spirit 
of intersective adjectivity, we can explore new meanings and their interpretations from negated intersective 
adjectival phrases by intersecting negated (or not) adjectives with negated (or not) nouns. As was in the 
book, non-red cars is the intersection the set of things that are not red with cars. In other words, non-red 
cars are the cars but not red (the region c in Figure 1). Another candidate for the negated case, non-red 
non-cars refers to intersect the set of non-red things (things that are not red) with non-cars (the region d in 
Figure 1). The last one, red non-cars has meaning that is the set of intersection of the set of red things and 
the set of non-cars (the region a in Figure 1). red x  is called noun level partially semantic complement.  
red x is called adjective level partially semantic complement. red x is called full phrasal semantic 
complement. In summary, we obtain non-red cars, red non-cars and non-red non-cars from red cars we 
already had. 

Fig. 1: An example of cars and red in a discourse universe 
The intersective theory and conjunctives suit well into Boolean semantics (Keenan & Faltz,  2012), 
(Roelofsen, 2013) which proposes very close relationship between and and or in natural language, as 
conjunction and disjunction in propositional and predicate logics that have been applied to natural language 
semantics. In these logics, the relationship between conjunction and disjunction corresponds to the 
relationship between the set-theoretic notions of intersection and union (Champollion, 2016), (Hardegree, 
1994). On the other hand, correlative conjunctions might help to interpret negated intersective adjectival 
phrases within Boolean semantics because the conjunctions are paired conjunctions (neither/nor, either/or, 
both/and,) that link words, phrases, and clauses. We might reassessment those negated intersective 
adjectival phrases in perspective of correlative conjunctions. “neither A nor B “and “both non-A and non-
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B” can be used interchangeably where A is an intersective adjective and B is a noun. Therefore, we say 
“neither red (things) nor pencils” and “both non-red (things) and non-pencils” equivalent sentences. An 
evidence for the interchangeability comes from equivalent statements in propositional logic, that is, 

( )R C   is logically equivalent to R C   (Champollion, 2016). Other negated statements would be
R C  and R C . Semantically, R C  is full phrasal semantic complement of R C , and also
R C   and R C are partially semantic complements of R C . We will explore full and partially

semantic complements of several adjectival phrases. We will generally negate the phrases and nouns by 
adding prefix ''non'', ''anti'' and ''neut''. We will use interpretation function [[]] from set of phrases (Ph) to 
power set of universe (P(M)) (set of individuals) to express phrases with understanding of a set-theoretic 
viewpoint. Hence, [[ ]]p M   for every p Ph . For an adjective (negated or not) and a plural noun n 
(negated or not, a n will be interpreted as [[ ]] [[ ]]a n . If n is a positive plural noun, non-n is interpreted 

as [[ ]] [[ ]] [[ ]]non n n M n


   and, similarly, if a is a positive adjective, non-a is interpreted as  

[[ ]] [[ ]] [[ ]]non a a M a


   . When we will add non-to both nouns and adjectives as prefix, ''anti'' and 
''neut'' will be added in front of only adjectives. Some adjectives themselves have negational meaning such 
as fake. Semantics of phrases with anti, neut and fake will be mentioned in next sections. 

3. LATTICE THEORETIC LOOK
We will give some fundamental definitions before we start to construct lattice structures from these 
adjectival phrases. A lattice is an algebraic structure that consists of a partially ordered set in which every 
two elements have a unique supremum (a least upper bound or join) and a unique infimum (a greatest 
lower bound or meet) (Davey & Priestley, 2002). The most classical example is on sets by interpreting set 
intersection as meet and union as join.  For any set A, the power set of A can be ordered via subset 
inclusion to obtain a lattice bounded by A and the empty set. We will give two new definitions in 
subsection 3.2 to begin constructing lattice structures. 
Remark 1. We will use the letter a and red for intersective adjectives, and the letter x, n and cars for 
common plural nouns in the name of abbreviation and space saving throughout the paper. 

3.1 Individuals 

Each element of   a x      and [[ ]] a x


 is a distinct individual and belongs to [[ ]]x . It is already known 

that [[  ]] [[  ]]a x a x


   and [[  ]] [[ ]] [[ ] ] a x a x x


 . It means that no common elements exist in 

 a x     and [[ ]] a x


. Hence, every element of these sets can be considered as individual objects such as 
Larry, John, Meg, … etc. Uchida and Cassimatis (Uchida & Cassimatis, 2014) already gave a lattice 
structure on power set of all of individuals (a domain or a universe). 
3.2. Lattice IA

Intersective adjectives (red) provide some properties for nouns (cars). Excluding (complementing) a 
property from an intersective adjective phrase also provide another property for nouns. In this direction, 
''red'' is a property for a noun, ''non-red '' is another property for the noun as well. red and non-red have 
discrete meaning and sets as can be seen in Figure 1. Naturally, every set of restricted objects with a 

property (red cars) is a subset of those objects without the properties (cars). [[  ]] red x and [[  ]]red x


are 

always subsets of  x   . Neither [[  ]] [[  ]]red x red x


 nor [[  ]] [[  ]]red x red x


 since 

[[  ]] [[  ]]red x red x


  by assuming [[  ]]red x


 and [[  ]]red x   . Without loss of generality, for 
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negative (complement) of the noun x and the intersective adjective red  (positive and negative) are 

,  x red x
 

and  red x
 

.  [[  ]]red x


and [[  ]]red x
 

are always subsets of [[ ]]x


. Neither [[  ]] [[  ]]red x red x
  

  

nor [[  ] [[  ]]red x red x
  

  since [[  ]] [[  ]] red x red x
  

 by assuming [[  ]]red x
 

  and [[  ]]red x


 . On 

the other hand, [[ ]] [[ ]]x x


   and [[ ]] [[ ]]x x M


  ( M  is the universe of discourse) and also  

[[  ]]red x , [[  ]]red x


, [[  ]]red x


 and [[  ]]red x
 

 are by two discrete. We do not allow  [[  ]] [[  ]]red x red x


  

and [[  ]] [[  ]]red x red x
 

 and  [[  ]] [[  ]]red x red x
 

  and [[  ]] [[  ]]red x red x
  

  to take places in the 
lattice in Figure 2 because we try to build the lattice  from   phrases only in our language. To do this, we 

define a set operation  and an order relation   as follows:

Definition 2. We define a binary set operator   for our languages as the follow:  Let S be a set of sets

and , A B S .     :A B C C   is the smallest set which includes both A and B , and also  C S .
Definition 3. We define a partial order  on sets as the follow: 

A B  if    B A B 
A B  if   A A B  

Example 4. Let {1,2}, {2,3}, {1,2,4}, {1,2,3,4}A B C D    and { , , , }S A B C D . 

  ,    ,    ,    ,    ,  ,  , ,  ,   .A A A A C C A B D B C D C D D C C A C A D B D C D             

Notice that  is a reflexive, transitive relation (pre-order) and  is a reflexive, symmetric relation.
Figure 3 illustrates a diagram on cars and red. The diagram does not contain sets { , },{ , },{ , }b d a b a c and 
{ , }c d because the sets do not represent linguistically any phrases in the language. Because of this reason, 

{ } { }a c and { } { }a b and { } { }d c and  a,b,c,d M.  This structure builds a lattice up by   and
  that is the classical set intersection operation.
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Fig. 2: Lattice on cars and red 

( , , , )L    is a lattice where { , , ,  ,  ,  ,  }L M x x red x red x red x red x
    

 . Remark that 

( , , , ) ( , , )L L     .  We call this lattice briefly .

Fig. 3: Hasse Diagram of lattice of ( , , , )L  

3.3 Lattice N
IA

In this section, we present first NLL. [4] Let A be the color white. Then, 
{ , , , ,...}non A black red yellow blue  , 

anti-A points at black, and 
{ , , ,...}neut A red yellow blue  . 

In our interpretation base, anti-black cars (  )
a

black cars ) is a specific set of cars which is a subset of set  

non-black cars (  black cars


). neut-black cars (  
n

black cars ) is a subset of  black cars


 which is obtained by 

excluding sets  black cars  and  
a

black cars  from  black cars


. Similarly, anti-black cars (  
a

black cars


) is a 

specific set of  cars


  which is a subset of set non-black non-cars (  )black cars
 

.  neut black cars


  

(  )
n

black cars


 is a subset of  black cars
 

 which is obtained by excluding sets of  black cars


 and 

  from  
a

black cars black cars
  

.  The new structure represents an extended lattice equipped with   as can 

be seen in Figure 4. We call this lattice N
IA . 
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Fig. 4: The Lattice N
IA

3.4 Lattice ( )N
IA F

Another NLL is an extended version of N
IA  by private adjectives. Those adjectives have negative effects on 

nouns such fake and counterfeit. The adjectives are representative elements of, called private, a special 
class of adjectives (Chatzikyriakidis & Luo, 2013), (Partee, 2007), (Hoffher & Matushansky 2010). 
Chatzikyriakidis and Luo (Chatzikyriakidis & Luo, 2013),  treated transition from the adjectival phrase to 
noun as  ( )Private Adj N N  in inferential base. Furthermore, they gave an equivalence: “

( )real gun g  if and only if "  ( )fake gun g  where[|     |] ( )g isareal gun real gun g and 
[|      |]  ( )f isnot areal gun real gun f  in order to constitute a modern type-theoretical setting. 
Considering these facts, fake car is not a car (real) and plural form: fake cars are not cars. Hence, set of 
fake cars is a subset of set of non-cars in our treatment. On the one hand, compositions with private 
adjectives and intersective adjectival phrases do not affect the intersective adjectives negatively but nouns 
as usual. Then, interpretation of “fake red cars" would be intersection of set of red things and set of non-
cars. Applying “non'' to private adjectival phrases, 
non-fake cars are cars(real),  [[  ]] [[ ]]non fakecars cars   whereas [[  ]] [[ ]]fakecars non cars  . 
non-fake cars will be not given a place in the lattice. Remark that phrase “non-fake non-cars" is ambiguous 

since fake is not a intersective adjective. We will not consider this phrase in our lattice. 
f
x  is incomparable 

both   black x


 and   except black x x
  

  as can be seen in Figure 5. So, we cannot determine that set of fake 
cars is a subset or superset of a set of any adjectival phrases. But we know that 
[[  ]] [[ ]]fakecars non cars  .  Then, we can see easily [[   ]]] [[  ]]fakeblack cars blacks non cars   by 

using[[  ]] [ [  ]] [[ ]]  [[  ]]fakecars black things cars black things


 . Without loss of generality, set of 
fake black cars is a subset of set black non-cars and also set of fake non-black cars is a subset of set non-
black non-cars. Continuing with neut and anti, set of fake neut black cars is a subset of set of neut black 
non-cars and also fake anti-black cars is a subset of set of anti-black non-cars. These phrases build the 
lattice ( )N

IA F  in Fig. 5. 
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Fig. 5: The lattice ( )N
IA F

Notice that if M and empty set are removed from the structures, the structures will lose of the feature of 
lattice. The structures will be hold neither join nor meet semi-lattice property as well. On the other hand, 

set of  { , , , }
f fn n

black x black x black x black x
   

 equipped with   is the only one sub-lattice of ( )N
IA F

without using M and empty set. 

4. NOUN AND ADJECTIVE BASED POSITIVE AND NEGATIVE SUB-LATTICES
In this section, we introduce some new concepts and definitions of sub-lattices of ( )N

IA F . 

Definition 5. Noun based positive sub-lattice (NBPSL): An NBPSL is a sub-lattice of ( )N
IA F  which 

consists of positive noun phrases, and M  and   only. 
Remark 6. As can be seen in Fig. 6, elements of the biggest NBPSL lattice  of  ( )N

IA F  consists of 

, ,  ,  M x black x black x


,   ,  
n a

black x black x  and   . 

Fig. 6: The biggest NBNSL sub-lattice of ( )N
IA F
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Definition 7. Noun based negative sub-lattice (NBPSL): An NBPSL is a sub-lattice of ( )N
IA F  which 

consists of negative noun phrases, and M  and   only. 

Remark 8.  x   is a positive noun and both
f
x  and  x



 are negative nouns. 
Remark 9. As can be seen in Fig. 7, elements of the biggest NBNSL sub-lattice of  ( )N

IA F  consists of   

, , , , , , , , , 
f f f fn n

M x x black x black x black x black x black x black x
     

 and .  

Fig. 7: The biggest NBNSL sub-lattice of  ( )N
IA F

Definition 10. Adjective based positive sub-lattice (ABPSL): An ABPSL is a sub-lattice of ( )N
IA F  which 

consists of noun phrases with positive adjectives, and M and   only. 

Remark 11. black is a positive adjective. black


, 
a

black  and 
n

black   are negative adjectives. 
Remark 12. As can be seen in Fig. 8, elements of the biggest ABPSL sub-lattice of ( )N

IA F  consists of  

,  , , , 
f a

M black x black x black x black x


 and  . 

Fig. 8: The biggest ABPSL sub-lattice of ( )N
IA F
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Definition 13. Adjective based negative sub-lattice (ABNSL): An ABNSL is a sub-lattice of ( )N
IA F

which consists of noun phrases with negative adjectives, and M and   only. 
Remark 14. As can be seen in Fig. 9 elements of the biggest ABNSL lattice  of  ( )N

IA F  consists of 

,  ,  
n

M black x black x


,  ,   ,   
f fa n

black x black x black x


,  
fa

black x ,  ,  ,   and 
n a

black x black x black x
   

 . 
Remark 15: Both NBPSL and NBNSL are both an ideal and a filter of ( )N

IA F . 

Remark 16: Both ABPSL and ABNSL are both an ideal of  ( )N
IA F but not the filters. 

Fig. 9: The biggest ABNSL sub-lattice of ( )N
IA F

5. CONCLUSION AND FUTURE WORK
In this paper, we have proposed some new negated versions of set and model theoretical semantics of 
intersective adjectival phrases (plural). After we first have obtained the lattice structure IA , two lattices 

N
IA  and ( )N

IA F   have been built from the proposed phrases by adding “neut”, “anti” and “fake” step by 

step. We also have introduced some sub-lattices of ( )N
IA F . Some of these sub-lattices are ideals and (or) 

filters of ( )N
IA F . It might be interesting that lattices in this paper can be extended with incorporating 

coordinates such as light red cars and red cars. Some decidable logics might be investigated by extending 
syllogistic logics with the phrases (Moss, 2010), (van Benthem, 2008), (van Rooij, 2010). Another possible 
work in future, this idea can be extended to complex neutrosophic set, bipolar neutrosophic set, interval 
neutrosophic set (Ali & Smarandache, 2017), (Deli,  Ali & Smarandache, 2015), (Ali, Deli & 
Smarandache, 2015), (Thanh, Ali & Son, 2017). Another application of this paper could be on lattices of 
computable infinite sets (Çevik, 2016, 2013a, 2013b, 2012) if one considers domains on infinite sets. We 
hope that linguists, computer scientists and logicians might be interested in results in this paper and the 
results will help with other results in several areas. 
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Neutrosophic theory and applications have been expanding in 

all directions at an astonishing rate especially after the 

introduction the journal entitled “Neutrosophic Sets and 

Systems”. New theories, techniques, algorithms have been 

rapidly developed. One of the most striking trends in the 

neutrosophic theory is the hybridization of neutrosophic set with 

other potential sets such as rough set, bipolar set, soft set, 

hesitant fuzzy set, etc. The different hybrid structure such as 

rough neutrosophic set, single valued neutrosophic rough set, 

bipolar neutrosophic set, single valued neutrosophic hesitant 

fuzzy set, etc. are proposed in the literature in a short period of 

time. Neutrosophic set has been a very important tool in all 

various areas of data mining, decision making, engineering, 

social sciences, and some more. 

The second volume of “New Trends in Neutrosophic Theories 

and Applications” focuses on theories, methods, algorithms for 

decision making and also applications involving neutrosophic 

information. Some topics deal with data mining, decision 

making, graph theory, probability theory, topology, and some 

more.  
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