Applications

Irfan Deli¹, Yunus toktas² and Said Broumi³

^a Muallim Rıfat Faculty of Education, Kilis 7 Aralık University, 79000 Kilis, Turkey, irfandeli@kilis.edu.tr

^b Muallim Rıfat Faculty of Education, Kilis 7 Aralık University, 79000 Kilis, Turkey, yunus_1540@hotmail.com

^c Faculty of Arts and Humanities, Hay El Baraka Ben M'sik Casablanca B.P. 7951, Hassan II Mohammedia-Casablanca University, Morocco, broumisaid78@gmail.com

Abstract. The aim of this paper is to introduce the concept of relation on neutrosophic parameterized soft set (NP- soft sets) theory. We have studied some related properties and also put forward some propositions on neutrosophic parameterized soft relation with proofs and examples. Finally the notions of symmetric, transitive, reflexive, and equivalence neutrosophic parameterized soft set relations have been established in our work. Finally a decision making method on NP-soft sets is presented.

Keywords: Soft set, neutrosophic parameterized soft set, NP-soft relations.

1. Introduction

Neutrosophic set theory was introduced in 1995 with the study of Smarandache [21] as mathematical tool for handling problem involving imprecise, indeterminacy and inconsistent data. The concept of neutrosophic set generalizes the concept of fuzzy sets [22], intuitionistic fuzzy sets [1] and so on. In neutrosophic set, indeterminacy is quantified explicitly and truth-membership, indeterminacy membership and falsity-membership are independent. Neutrosophic set theory has successfully used in logic, economics, computer science, decision making process and so on.

The concept of soft set theory is another mathematical theory dealing with uncertainty and vagueness, developed by Russian researcher [20]. The soft set theory is free from the parameterization inadequacy syndrome of fuzzy set theory, rough set theory, probability theory. Many interesting results of soft set theory have been studied by embedding the ideas of fuzzy sets, intuitionistic fuzzy sets, neutrosophic sets and so on. For example; fuzzy soft sets [3,9,17], on intuitionistic fuzzy soft set theory [10,18], on possibility intuitionistic fuzzy soft set [2], on neutrosophic soft set [19], on intuitionistic neutrosophic soft set [4,7], on generalized neutrosophic soft set [5], on interval-valued neutrosophic soft set [6], on fuzzy parameterized soft set theory [14,15,16], on intuitionistic fuzzy parameterized soft set theory [12], on IFP–fuzzy soft set theory [13], on fuzzy parameterized fuzzy soft set theory [11].

Later on, Broumi et al. [8] defined the neutrosophic parameterized soft sets (NP-soft sets) which is a generalization of fuzzy parameterized soft sets (FP-soft sets) and intuitionistic fuzzy parameterized soft sets (IFP-soft sets).

In this paper our main objective is to extend the concept relations on FP-soft sets[14] to the case of NP-soft sets. The

paper is structured as follows. In Section 2, some basic definition and preliminary results are given which will be used in the rest of the paper. In Section 3, we define relations on NP-soft sets and some of its algebraic properties are studied. In section 4, we present decision making method on NP-soft relations. Finally we conclude the paper.

2. Preliminaries

Throughout this paper, let U be a universal set and E be the set of all possible parameters under consideration with respect to U, usually, parameters are attributes, characteristics, or properties of objects in U.

We now recall some basic notions of neutrosophic set, soft set and neutrosophic parameterized soft set. For more details, the reader could refer to [8,20,21].

Definition 2.1. [21] Let U be a universe of discourse then the neutrosophic set A is an object having the form

$$A = \{ < x: \mu_{A(x)}, \nu_{A(x)}, \omega_{A(x)} >, x \in U \},\$$

where the functions μ , ν , ω : U \rightarrow]^{-0,1+}[define respectively the degree of membership, the degree of indeterminacy, and the degree of non-membership of the element x \in X to the set A with the condition.

$$0 \leq \boldsymbol{\mu}_{A(x)} + \boldsymbol{\nu}_{A(x)} + \boldsymbol{\omega}_{A(x)} \leq 3^{+}$$
(1)

From philosophical point of view, the neutrosophic set takes the value from real standard or non-standard subsets of $]-0,1^+[$. So instead of $]^-0,1^+[$ we need to take the interval [0,1] for technical applications, because $]^-0,1^+[$ will be difficult to apply in the real applications such as in scientific and engineering problems.

For two NS,

$$A_{NS} = \left\{ \left\langle x, \mu_A(x), \nu_A(x), \omega_A(x) \right\rangle \middle| x \in X \right\}$$

And

$$B_{NS} = \left\{ \left\langle x, \mu_B(x), \nu_B(x), \omega_B(x) \right\rangle \middle| x \in X \right\}$$

Then,

1.
$$A_{NS} \subseteq B_{NS}$$
 if and only if
 $\mu_A(x) \le \mu_B(x), \nu_A(x) \ge \nu_B(x)$ and
 $\omega_A(x) \ge \omega_B(x)$.
2. $A_{NS} = B_{NS}$ if and only if,

$$\mu_A(x) = \mu_B(x), v_A(x) = v_B(x), \omega_A(x) = \omega_B(x) \text{ for}$$

any $x \in X$.

The complement of A_{NS} is denoted by A^o_{NS} and is defined by

$$A^{\circ}_{NS} = \left\{ \left\langle x, \omega_A(x), 1 - \nu_A(x), \mu_A(x) \right\rangle \middle| x \in X \right\}$$

4.
$$A \cap B = \left\{ \left\langle x, \min\left\{\mu_A(x), \mu_B(x)\right\}, \\, \max\left\{\nu_A(x), \nu_A(x)\right\}, \\\max\left\{\omega_A(x), \omega_B(x)\right\} \right\rangle : x \in X \right\}$$

5.
$$A \cap B = \left\{ \left\langle x, \min\left\{\mu_A(x), \mu_B(x)\right\}, \max\left\{\nu_A(x), \nu_A(x)\right\}, \max\left\{\omega_A(x), \omega_B(x)\right\} \right\rangle : x \in X \right\}$$

As an illustration, let us consider the following example.

Example 2.2. Assume that the universe of discourse $U = \{x_1, x_2, x_3\}$. It may be further assumed that the values of x_1 , x_2 and x_3 are in [0, 1] Then, A is a neutrosophic set (NS) of U, such that,

$$A = \{ \langle x_1, 0.7, 0.5, 0.2 \rangle, \langle x_2, 0.4, 0.5, 0.5 \rangle, \\ \langle x_3, 0.4, 0.5, 0.6 \rangle \}$$

Definition 2.3.[8] Let U be an initial universe, P(U) be the power set of U, E be a set of all parameters and K be a ne

trosophic set over E. Then a neutrosophic parameterized soft sets

$$\Psi_{K} = \left\{ \left(\left\langle x, \mu_{K}(x), \nu_{K}(x), \omega_{K}(x) \right\rangle, \\ f_{K}(x) \right) : x \in E \right\}$$

where $\mu_{\mathbf{k}}: E \rightarrow [0, 1], \nu_{\mathbf{k}}: E \rightarrow [0, 1], \omega_{\mathbf{k}}: E \rightarrow [0, 1]$ $\mathbf{f}_{\mathbf{F}} : E \rightarrow P(U)$ such that $\mathbf{f}_{\mathbf{F}}(\mathbf{x}) = \Phi$ if and $\mu_{\kappa}(\mathbf{x}) = 0$, $\nu_{\kappa}(\mathbf{x}) = 1$ and $\omega_{\kappa}(\mathbf{x}) = 1$.

Here, the function $\,\mu_{{\scriptscriptstyle \! \! R}}\,$, $\nu_{{\scriptscriptstyle \! \! R}}\,$ and $\omega_{{\scriptscriptstyle \! \! R}}$ called membership function, indeterminacy function and non-membership function of neutrosophic parameterized soft set (NP-soft set), respectively.

Example 2.4. Assume that $U = \{u_1, u_2, u_3\}$ is a universal

set and $E = \{x_1, x_2\}$ is a set of parameters. If

$$K = \left\{ \left\langle x_1, 0.7, 0.3, 0.4 \right\rangle, \left\langle x_2, 0.7, 0.5, 0.4 \right\rangle \right\}$$

and

Where

$$f_K(x_1) = \{u_2, u_5\}, f_K(x_2) = U.$$

Then a neutrosophic parameterized soft set $\Psi_{\mathbf{k}}$ is written be to neutrosophic sets of E. Suppose that by

$$\psi_{K} = \left\{ \left(\langle x_{1}, 0.7, 0.3, 0.4 \rangle, \{ u_{2}, u_{5} \} \right), \left(\langle x_{2}, 0.7, 0.5, 0.4 \rangle, U \right\} \right\}$$

3. Relations on the NP-Soft Sets

In this section, after given the cartesian products of two NP- soft sets, we define a relations on NP- soft sets and study their desired properties.

Definition 3.1. Let $\psi_{\kappa}, \Omega_{L} \in NPS(U)$. Then, a Cartesian product of ψ_{K} and Ω_{L} , denoted by $\psi_{K} \hat{\times} \Omega_{L}$, is defined as;

$$\begin{split} \psi_{\kappa} \stackrel{\sim}{\times} &\Omega_{L} = \left\{ \left\langle (x, y), \mu_{K \stackrel{\sim}{\times} L}(x, y), \nu_{K \stackrel{\sim}{\times} L}(x, y), \right. \\ &\omega_{K \stackrel{\sim}{\times} L}(x, y) \right\rangle, f_{K \stackrel{\sim}{\times} L}(x, y) \colon &(x, y) \in E \stackrel{\sim}{\times} E \right\} \end{split}$$

 $f_{\kappa \hat{\ast} I}(x, y) = f_{\kappa}(x) \cap f_{I}(y)$

and

$$\mu_{K\hat{\mathbf{X}}L}(x, y) = \min \left\{ \mu_{K}(x), \mu_{L}(y) \right\}$$
$$\nu_{K\hat{\mathbf{X}}L}(x, y) = \max \left\{ \nu_{K}(x), \nu_{L}(y) \right\}$$
$$\omega_{K\hat{\mathbf{X}}L}(x, y) = \max \left\{ \omega_{K}(x), \omega_{L}(y) \right\}$$

Here $\mu_{K\hat{X}L}(x, y), \nu_{K\hat{X}L}(x, y), \omega_{K\hat{X}L}(x, y)$ is a t-norm.

$$u_{9}, u_{10}, u_{11}, u_{12}, u_{13}, u_{14}, u_{15} \},$$

$$E = \{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8} \},$$

$$K = \{\langle x_{2}, 0.5, 0.6, 0.3 \rangle, \langle x_{3}, 0.3, 0.2, 0.9 \rangle,$$

$$\langle x_{5}, 0.6, 0.7, 0.3 \rangle, \langle x_{6}, 0.1, 0.4, 0.6 \rangle, \langle x_{7}, 0.7, 0.5, 0.3 \rangle \}$$
and

and

$$L = \{ \langle x_1, 0.5, 0.6, 0.3 \rangle, \langle x_2, 0.5, 0.6, 0.3 \rangle, \\ \langle x_4, 0.9, 0.8, 0.1 \rangle, \langle x_8, 0.3, 0.2, 0.9 \rangle \}$$

$$\begin{split} \psi_{K} &= \left\{ \left(\left\langle x_{2}, 0.5, 0.6, 0.3 \right\rangle, \left\{ u_{1}, u_{2}, u_{4}, u_{5}, u_{7}, u_{8}, u_{10}, u_{12}, u_{14}, u_{15} \right\} \right), \\ &\left(\left\langle x_{3}, 0.3, 0.2, 0.9 \right\rangle, \left\{ u_{2}, u_{5}, u_{8}, u_{11}, u_{15} \right\} \right), \\ &\left(\left\langle x_{5}, 0.6, 0.7, 0.3 \right\rangle, \left\{ u_{2}, u_{3}, u_{4}, u_{7}, u_{8}, u_{11}, u_{12}, u_{15} \right\} \right), \\ &\left(\left\langle x_{6}, 0.1, 0.4, 0.6 \right\rangle, \left\{ u_{2}, u_{4}, u_{6}, u_{7}, u_{10}, u_{12} \right\} \right), \\ &\left(\left\langle x_{7}, 0.7, 0.5, 0.3 \right\rangle, \left\{ u_{2}, u_{5}, u_{6}, u_{8}, u_{9}, u_{13}, u_{15} \right\} \right) \right\} \end{split}$$

and

$$\begin{split} \Omega_L &= \left\{ \left(\left\langle x_1, 0.7, 0.4, 0.6 \right\rangle, \left\{ u_1, u_5, u_6, u_9, u_{10}, u_{13} \right\} \right), \\ &\left(\left\langle x_2, 0.5, 0.6, 0.3 \right\rangle, \left\{ u_1, u_2, u_4, u_5, u_7, u_8, u_{10}, u_{12}, u_{14}, u_{15} \right\} \right) \\ &\left(\left\langle x_4, 0.9, 0.8, 0.1 \right\rangle, \left\{ u_2, u_5, u_9, u_{10}, u_{11}, u_{14} \right\} \right), \\ &\left(\left\langle x_8, 0.4, 0.7, 0.2 \right\rangle, \left\{ u_2, u_5, u_8, u_{10}, u_{12}, u_{14} \right\} \right) \right\} \end{split}$$

Then, the Cartesian product of ψ_{K} and Ω_{L} is obtained as follows;

$$\begin{split} \psi_{\kappa} \hat{\mathbf{X}} \Omega_{L} &= \left\{ \left(\langle (x_{2}, x_{1}), 0.5, 0.6, 0.6 \rangle, \{u_{1}, u_{5}, u_{10} \} \right), \\ &\quad \left(\langle (x_{2}, x_{2}), 0.5, 0.6, 0.3 \rangle, \\ &\quad \{u_{1}, u_{2}, u_{4}, u_{5}, u_{7}, u_{8}, u_{10}, u_{12}, u_{14}, u_{15} \} \right) \\ &\quad \left(\langle (x_{2}, x_{4}), 0.5, 0.8, 0.3 \rangle, \{u_{2}, u_{5}, u_{10}, u_{14} \} \right), \\ &\quad \left(\langle (x_{2}, x_{8}), 0.4, 0.7, 0.3 \rangle, \{u_{2}, u_{5}, u_{8}, u_{10}, u_{12}, u_{14} \} \right), \\ &\quad \left(\langle (x_{3}, x_{1}), 0.3, 0.4, 0.9 \rangle, \{u_{5}, \} \right), \\ &\quad \left(\langle (x_{3}, x_{2}), 0.3, 0.6, 0.9 \rangle, \{u_{2}, u_{5}, u_{8}, u_{15} \} \right), \\ &\quad \left(\langle (x_{3}, x_{4}), 0.3, 0.8, 0.9 \rangle, \{u_{2}, u_{5}, u_{8}, u_{15} \} \right), \\ &\quad \left(\langle (x_{5}, x_{4}), 0.6, 0.7, 0.6 \rangle, \varnothing \right), \\ &\quad \left(\langle (x_{5}, x_{4}), 0.6, 0.8, 0.3 \rangle, \{u_{2}, u_{4}, u_{7}, u_{8}, u_{12}, u_{15} \} \right), \\ &\quad \left(\langle (x_{5}, x_{4}), 0.6, 0.8, 0.3 \rangle, \{u_{2}, u_{4}, u_{7}, u_{8}, u_{12}, u_{15} \} \right), \\ &\quad \left(\langle (x_{5}, x_{4}), 0.6, 0.8, 0.3 \rangle, \{u_{2}, u_{4}, u_{7}, u_{10}, u_{12} \} \right), \\ &\quad \left(\langle (x_{6}, x_{1}), 0.1, 0.4, 0.6 \rangle, \{u_{2}, u_{10} \} \right), \\ &\quad \left(\langle (x_{6}, x_{4}), 0.1, 0.8, 0.6 \rangle, \{u_{2}, u_{10} \} \right), \\ &\quad \left(\langle (x_{7}, x_{1}), 0.7, 0.5, 0.6 \rangle, \{u_{2}, u_{2}, u_{8}, u_{12} \} \right), \\ &\quad \left(\langle (x_{7}, x_{4}), 0.7, 0.8, 0.3 \rangle, \{u_{2}, u_{5}, u_{8}, u_{15} \} \right), \\ &\quad \left(\langle (x_{7}, x_{8}), 0.4, 0.7, 0.3 \rangle, \{u_{2}, u_{5}, u_{8} \} \right) \right\} \end{split}$$

Definition 3.3. Let ψ_K , $\Omega_L \in NPS(U)$. Then, a *NP*-soft relation from ψ_K to Ω_L , denoted by R_N , is a *NP*-soft subset of $\psi_K \hat{\mathbf{X}} \Omega_L$. Any *NP*-soft subset of $\psi_K \hat{\mathbf{X}} \Omega_L$ is called a *NP*-soft relation on ψ_K .

Note that if $\alpha = (\langle x, \mu_K(x), \nu_K(x), \omega_K(x) \rangle, f_K(x)) \in \psi_K$

and
$$\beta = (\langle y, \mu_L(y), \nu_L(y), \omega_L(y) \rangle, f_L(y)) \in \Omega_L$$
, then
 $\alpha R_N \beta \Leftrightarrow (\langle (x, y), \mu_{K\hat{X}L}(x, y), \nu_{K\hat{X}L}(x, y), \omega_{K\hat{X}L}(x, y)), f_{K\hat{X}L}(x, y) \rangle, f_{K\hat{X}L}(x, y) \in R_N)$

Where $f_{K \times L}(x, y) = f_K(x) \cap f_L(y)$.

Example 3.4. Let us consider the Example 3.2. Then, we define a *NP*-soft relation, from ψ_K to Ω_L , as follows

$$\alpha R_N \beta \Leftrightarrow \left(\left\langle (x_i, y_j), \mu_{k\hat{\mathbf{X}}L}(x_i, y_j), \nu_{k\hat{\mathbf{X}}L}(x_i, y_j), \right\rangle \\ \omega_{k\hat{\mathbf{X}}L}(x_i, y_j) \right\rangle, f_{k\hat{\mathbf{X}}L}(x_i, y_j) \right) (1 \le i, j \le 8)$$
Such that

Such that

$$\mu_{\hat{kXL}}(x_i, y_j) \ge 0.3$$
$$\nu_{\hat{kXL}}(x_i, y_j) \le 0.5$$
$$\omega_{\hat{kXL}}(x_i, y_j) \le 0.7$$

Then

$$\begin{split} R_N &= \left\{ \left(\left\langle (x_2, x_1), 0.5, 0.6, 0.6 \right\rangle, \left\{ u_1, u_5, u_{10} \right\} \right), \\ &\left(\left\langle (x_2, x_2), 0.5, 0.6, 0.3 \right\rangle, \\ &\left\{ u_1, u_2, u_4, u_5, u_7, u_8, u_{10}, u_{12}, u_{14}, u_{15} \right\} \right) \\ &\left(\left\langle (x_2, x_4), 0.5, 0.8, 0.3 \right\rangle, \left\{ u_2, u_5, u_{10}, u_{14} \right\} \right), \\ &\left(\left\langle (x_2, x_8), 0.4, 0.7, 0.3 \right\rangle, \left\{ u_2, u_5, u_8, u_{10}, u_{12}, u_{14} \right\} \right), \\ &\left(\left\langle (x_5, x_2), 0.5, 0.7, 0.3 \right\rangle, \left\{ u_2, u_4, u_7, u_8, u_{12}, u_{15} \right\} \right), \\ &\left(\left\langle (x_5, x_4), 0.6, 0.8, 0.3 \right\rangle, \left\{ u_2, u_8, u_{12} \right\} \right), \\ &\left(\left\langle (x_7, x_1), 0.7, 0.5, 0.6 \right\rangle, \left\{ u_5, u_6, u_9, u_{13} \right\} \right), \\ &\left(\left\langle (x_7, x_2), 0.5, 0.6, 0.3 \right\rangle, \left\{ u_2, u_5, u_8, u_{15} \right\} \right), \\ &\left(\left\langle (x_7, x_4), 0.7, 0.8, 0.3 \right\rangle, \left\{ u_2, u_5, u_8 \right\} \right) \right\}. \end{split}$$

Definition 3.5. Let ψ_K , $\Omega_L \in NPS(U)$ and R_N be *NP*-soft relation from ψ_K to Ω_L . Then domain and range of R_N respectively is defined as;

$$D(R_N) = \left\{ \alpha \in \psi_K : \alpha R_N \beta \right\}$$
$$R(R_N) = \left\{ \beta \in \Omega_L : \alpha R_N \beta \right\}.$$

Example 3.6. Let us consider the Example 3.4

$$D(R_N) = \left\{ \left(\left\langle x_2, 0.5, 0.6, 0.3 \right\rangle, \\ \left\{ u_1, u_2, u_4, u_5, u_7, u_8, u_{10}, u_{12}, u_{14}, u_{15} \right\} \right), \\ \left(\left\langle x_3, 0.3, 0.2, 0.9 \right\rangle, \left\{ u_2, u_5, u_8, u_{11}, u_{15} \right\} \right), \\ \left(\left\langle x_5, 0.6, 0.7, 0.3 \right\rangle, \left\{ u_2, u_3, u_4, u_7, u_8, u_{11}, u_{12}, u_{15} \right\} \right), \\ \left(\left\langle x_6, 0.1, 0.4, 0.6 \right\rangle, \left\{ u_2, u_4, u_6, u_7, u_{10}, u_{12} \right\} \right), \\ \left(\left\langle x_7, 0.7, 0.5, 0.3 \right\rangle, \left\{ u_2, u_5, u_6, u_8, u_9, u_{13}, u_{15} \right\} \right) \right\}$$

$$R(R_N) = \left\{ \left(\left\langle x_1, 0.7, 0.4, 0.6 \right\rangle, \left\{ u_1, u_5, u_6, u_9, u_{10}, u_{13} \right\} \right), \\ \left(\left\langle x_2, 0.5, 0.6, 0.3 \right\rangle, \\ \left\{ u_1, u_2, u_4, u_5, u_7, u_8, u_{10}, u_{12}, u_{14}, u_{15} \right\} \right), \\ \left(\left\langle x_4, 0.9, 0.8, 0.1 \right\rangle, \left\{ u_2, u_5, u_9, u_{10}, u_{11}, u_{14} \right\} \right), \\ \left(\left\langle x_8, 0.4, 0.7, 0.2 \right\rangle, \left\{ u_2, u_5, u_8, u_{10}, u_{12}, u_{14} \right\} \right) \right\}$$

Definition 3.7. Let R_N be a *NP*-soft relation from ψ_K to Ω_L . Then, inverse of R_N , R_N^{-1} from ψ_K to Ω_L is a *NP*-soft relation defined as; $\alpha R_N^{-1} \beta = \beta R_N \alpha$

Example 3.8. Let us consider the Example 4.4. Then R_N^{-1} is from ψ_K to Ω_L is obtained by

$$\begin{split} R_N^{-1} &= \Big\{ \Big(\big\langle (x_1, x_2), 0.5, 0.6, 0.6 \big\rangle, \big\{ u_1, u_5, u_{10} \big\} \Big), \\ &\quad (\big\langle (x_2, x_2), 0.5, 0.6, 0.3 \big\rangle \\ &\quad , \big\{ u_1, u_2, u_4, u_5, u_7, u_8, u_{10}, u_{12}, u_{14}, u_{15} \big\} \big) \\ &\quad (\big\langle (x_4, x_2), 0.5, 0.8, 0.3 \big\rangle, \big\{ u_2, u_5, u_{10}, u_{14} \big\} \Big), \\ &\quad (\big\langle (x_8, x_2), 0.4, 0.7, 0.3 \big\rangle, \big\{ u_2, u_5, u_8, u_{10}, u_{12}, u_{14} \big\} \big), \\ &\quad (\big\langle (x_2, x_5), 0.5, 0.7, 0.3 \big\rangle, \big\{ u_2, u_4, u_7, u_8, u_{12}, u_{15} \big\} \big), \\ &\quad (\big\langle (x_4, x_5), 0.6, 0.8, 0.3 \big\rangle, \big\{ u_2, u_8, u_{12} \big\} \big), \\ &\quad (\big\langle (x_1, x_7), 0.7, 0.5, 0.6 \big\rangle, \big\{ u_5, u_6, u_9, u_{13} \big\} \big), \\ &\quad (\big\langle (x_4, x_7), 0.7, 0.8, 0.3 \big\rangle, \big\{ u_2, u_5, u_8, u_{15} \big\} \big), \\ &\quad (\big\langle (x_8, x_7), 0.4, 0.7, 0.3 \big\rangle, \big\{ u_2, u_5, u_8 \big\} \big) \Big\}. \end{split}$$

Proposition 3.9. Let R_{N_1} and R_{N_2} be two NP-soft relation. Then

1.
$$\left(R_{N_{1}}^{-1}\right)^{-1} = R_{N_{1}}$$

2. $R_{N_{1}} \subseteq R_{N_{2}} \Longrightarrow R_{N_{1}}^{-1} \subseteq R_{N_{2}}^{-1}$

Proof:

1.
$$\alpha \left(R_{N_1}^{-1} \right)^{-1} \beta = \beta R_{N_1}^{-1} \alpha = \alpha R_{N_1}^{-1} \beta$$

2. $\alpha R_{N_1}^{-1} \beta \subseteq \alpha R_{N_2}^{-1} \beta \Rightarrow \beta R_{N_1}^{-1} \alpha \subseteq \beta R_{N_2}^{-1} \alpha$
 $\Rightarrow R_{N_1}^{-1} \subseteq R_{N_2}^{-1}$

Definition 3.10. If R_{N_1} and R_{N_2} are two NP- soft rela-

tion from ψ_K to Ω_L , then a composition of two *NP*-soft relations R_{N_1} and R_{N_2} is defined by

$$\alpha \left(R_{N_1} O R_{N_2} \right) \gamma = \left(a R_{N_1} \beta \right) \wedge \left(\beta R_{N_2} \gamma \right)$$

Proposition 3.11. Let R_{N_1} and R_{N_2} be two *NP*-soft rela- If $\alpha R_N \alpha$, $\forall \alpha \in \psi_K$.

tion from ψ_{K} to Ω_{L} .

Then,
$$\left(R_{N_1} O R_{N_2}\right)^{-1} = R_{N_2}^{-1} O R_{N_1}^{-1}$$

Proof:

$$\alpha \left(R_{N_{1}} \circ R_{N_{2}} \right)^{-1} \gamma = \gamma \left(R_{N_{1}} \circ R_{N_{2}} \right) \alpha$$
$$= \left(\gamma R_{N_{1}} \beta \right) \wedge \left(\beta R_{N_{2}} \alpha \right)$$
$$= \left(\beta R_{N_{2}} \alpha \right) \wedge \left(\gamma R_{N_{1}} \beta \right)$$
$$= \left(\alpha R_{N_{2}}^{-1} \beta \right) \wedge \left(\beta R_{N_{1}}^{-1} \gamma \right)$$
$$= \alpha \left(R_{N_{2}}^{-1} \circ R_{N_{1}}^{-1} \right) \gamma$$

Therefore we obtain

$$\left(R_{N_{1}}OR_{N_{2}}\right)^{-1} = R_{N_{2}}^{-1}OR_{N_{1}}^{-1}$$

Definition 3.12. A NP-soft relation R_N on ψ_K is

said to be a NP-soft symmetric relation

If
$$\alpha R_{N_1} \beta \Rightarrow \beta R_{N_1} \alpha, \forall \alpha, \beta \in \psi_K$$
.

Definition 3.13. A NP-soft relation R_N on ψ_K is

said to be a NP-soft transitive relation

if $R_N O R_N \subseteq R_N$, that is, $\alpha R_N \beta$ and $\beta R_N \gamma \Longrightarrow \alpha R_N \gamma, \forall \alpha, \beta, \gamma \in \psi_K$.

Definition 3.14. A *NP*-soft relation R_N on ψ_K

is said to be a NP-soft reflexive relation

Definition 3.15. A *NP*-soft relation R_N on ψ_K is said to be a NP-soft equivalence relation if it is symmetric, transitive and reflexive.

Example 3.16. Let

$$U = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8\},\$$

$$E = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\} \text{ and}\$$

$$X = \{\langle x_1, 0.5, 0.4, 0.7 \rangle, \langle x_2, 0.6, 0.8, 0.4 \rangle,\$$

$$\langle x_3 0.2, 0.5, 0.1 \rangle\}.$$

Suppose that

$$\psi_{K} = \left\{ \left(\langle x_{1}, 0.5, 0.4, 0.7 \rangle, \{u_{2}, u_{3}, u_{5}, u_{6}, u_{7}, u_{8} \} \right), \\ \left(\langle x_{2}0.6, 0.8, 0.4 \rangle, \{u_{2}, u_{6}, u_{8} \} \right), \\ \left(\langle x_{3}, 0.2, 0.5, 0.1 \rangle, \{u_{1}, u_{2}, u_{4}, u_{5}, u_{7}, u_{8} \} \right) \right\}$$

Then, a cartesian product on Ψ_K is obtained as follows.

$$\begin{split} \psi_{\kappa} \hat{\mathbf{x}} \psi_{\kappa} &= \left\{ \left(\left\langle (x_{1}, x_{1}), 0.5, 0.4, 0.7 \right\rangle, \left\{ u_{2}, u_{3}, u_{5}, u_{6}, u_{7}, u_{8} \right\} \right), \\ &\left(\left\langle (x_{1}, x_{2}), 0.5, 0.8, 0.7 \right\rangle, \left\{ u_{2}, u_{6}, u_{8} \right\} \right), \\ &\left(\left\langle (x_{1}, x_{3}), 0.2, 0.5, 0.7 \right\rangle, \left\{ u_{2}, u_{5}, u_{7}, u_{8} \right\} \right), \\ &\left(\left\langle (x_{2}, x_{1}), 0.5, 0.8, 0.7 \right\rangle, \left\{ u_{2}, u_{6}, u_{8} \right\} \right), \\ &\left(\left\langle (x_{2}, x_{2}), 0.6, 0.8, 0.4 \right\rangle, \left\{ u_{2}, u_{6}, u_{8} \right\} \right), \\ &\left(\left\langle (x_{3}, x_{1}), 0.2, 0.5, 0.7 \right\rangle, \left\{ u_{2}, u_{5}, u_{7}, u_{8} \right\} \right), \\ &\left(\left\langle (x_{3}, x_{1}), 0.2, 0.5, 0.7 \right\rangle, \left\{ u_{2}, u_{5}, u_{7}, u_{8} \right\} \right), \\ &\left(\left\langle (x_{3}, x_{2}), 0.2, 0.8, 0.4 \right\rangle, \left\{ u_{2}, u_{8} \right\} \right), \\ &\left(\left\langle (x_{3}, x_{3}), 0.2, 0.5, 0.1 \right\rangle, \left\{ u_{1}, u_{2}, u_{4}, u_{5}, u_{7}, u_{8} \right\} \right) \right\} \end{split}$$

Then, we get a neutrosophic parameterized soft relation R_N on ψ_K as follows

$$\alpha R_N \beta \Leftrightarrow \left(\left\langle (x_i, y_j), \mu_{K\hat{X}L}(x_i, y_j), \nu_{K\hat{X}L}(x_i, y_j), \right\rangle \right)$$
Conversely, if $R_N^{-1} = R_N$, then
$$\omega_{K\hat{X}L}(x_i, y_j) \left\rangle, f_{K\hat{X}L}(x_i, y_j) \right) (1 \le i, j \le 8)$$
Conversely, if $R_N^{-1} = R_N$, then
$$\alpha R_N \beta = \alpha R_N^{-1} \beta = \beta R_N \alpha.$$
 So, R_N is symmetric.

Where

$$\mu_{\hat{K}XL}(x_i, y_j) \ge 0.3$$

$$\nu_{\hat{K}XL}(x_i, y_j) \le 0.5$$

$$\omega_{\hat{K}XL}(x_i, y_j) \le 0.7$$

Then

$$R_{N} = \left\{ \left(\left\langle (x_{1}, x_{1}), 0.5, 0.4, 0.7 \right\rangle, \left\{ u_{2}, u_{3}, u_{5}, u_{6}, u_{7}, u_{8} \right\} \right) \\ \left(\left\langle (x_{1}, x_{2}), 0.5, 0.8, 0.7 \right\rangle, \left\{ u_{2}, u_{6}, u_{8} \right\} \right), \\ \left(\left\langle (x_{2}, x_{1}), 0.5, 0.8, 0.7 \right\rangle, \left\{ u_{2}, u_{6}, u_{8} \right\} \right), \\ \left(\left\langle (x_{2}, x_{2}), 0.6, 0.8, 0.4 \right\rangle, \left\{ u_{2}, u_{6}, u_{8} \right\} \right) \right\}.$$

 R_N on ψ_K is an NP-soft equivalence relation because it is symmetric, transitive and reflexive.

Proposition 3.17. If R_N is symmetric, if and only if R_N^{-1} is so.

Proof: If R_N is symmetric, then

$$aR_N^{-1}\beta = \beta R_N \alpha = \alpha R_N \beta = \beta R_N^{-1} \alpha$$
. So, R_N^{-1} is

symmetric.

Conversely, if R_N^{-1} is symmetric,

then

 $\alpha R_N^{-1} \beta = \alpha (R_N^{-1})^{-1} \beta = \beta (R_N^{-1}) \alpha = \alpha (R_N^{-1}) \beta = \beta R_N \alpha$ So, R_N is symmetric.

Proposition 3.18. R_N is symmetric if and only

$$\text{if } \boldsymbol{R}_N^{-1} = \boldsymbol{R}_N.$$

Proof: If R_N is symmetric, then

$$\alpha R_N^{-1}\beta = \beta R_N \alpha = \alpha R_N \beta$$
. So, $R_N^{-1} = R_N$

Proposition 3.19. If R_{N_1} and R_{N_2} are symmetric relations on ψ_K , then $R_{N_1} \circ R_{N_2}$ is symmetric on ψ_K if and only if $R_{N_1} \circ R_{N_2} = R_{N_2} \circ R_{N_1}$

Proof: If R_{N_1} and R_{N_2} are symmetric, then it implies $R_{N_1}^{-1} = R_{N_1}$ and $R_{N_2}^{-1} = R_{N_2}$. We have $\left(R_{N_1}OR_{N_2}\right)^{-1} = R_{N_2}^{-1}OR_{N_1}^{-1}.$ Then $R_{N_1}OR_{N_2}$ is symmetric. It implies

$$R_{N_1} O R_{N_2} = \left(R_{N_1} O R_{N_2} \right)^{-1} = R_{N_2}^{-1} O R_{N_1}^{-1} = R_{N_2} O R_{N_1}$$

Conversely,

$$(R_{N_1} O R_{N_2})^{-1} = R_{N_2}^{-1} O R_{N_1}^{-1} = R_{N_2} O R_{N_1} = R_{N_1} O R_{N_2}$$

So, $R_{N_1} O R_{N_2}$ is symmetric.

Corollary 3.20. If R_N is symmetric, then R_N^n is symmetric for all positive integer n, where $R_N^n = \underbrace{R_N o R_N o \dots o R_N}_{n \text{ times}}.$

Proposition 3.21. If R_N is transitive, then R_N^{-1} is also transitive.

Proof:

$$\begin{aligned} \alpha R_N^{-1} \beta &= \beta R_N \alpha \supseteq \beta \left(R_N o R_N \right) \alpha \\ &= \left(\beta R_N \alpha \right) \wedge \left(\gamma R_N \alpha \right) \\ &= \left(\gamma R_N \alpha \right) \wedge \left(\beta R_N \alpha \right) \\ &= \left(\alpha R_N^{-1} \gamma \right) \wedge \left(\gamma R_N^{-1} \beta \right) \\ &= \alpha \left(R_N^{-1} o R_N^{-1} \right) \beta \end{aligned}$$

So, $R_N^{-1} O R_N^{-1} \subseteq R_N^{-1}$. The proof is completed.

Proposition 3.22. If R_N is reflexive, then R_N^{-1} is so.

Proof: $aR_N^{-1}\beta = \beta R_N \alpha \subseteq \alpha R_N \alpha = \alpha R_N^{-1}\alpha$ and $\beta R_N^{-1}\alpha = aR_N\beta \subseteq \alpha R_N \alpha = \alpha R_N^{-1}\alpha$. The proof is completed.

Proposition 3.23. If R_N is symmetric and transitive, then

 R_N is reflexive.

Proof: Its clearly.

Definition 3.24. Let $\psi_K \in NPS(U)$, R_N be an NP - soft equivalence relation on ψ_K and $\alpha \in R_N$. Then, an equivalence class of α , denoted by $[\alpha]_{R_N}$, is defined as

 $[\alpha]_{R_N} = \{\beta : \alpha R_N \beta\}.$

Example 3.25. Let us consider the Example 3. 16 Then an equivalence class of

$$(\langle x_1, 0.5, 0.4, 0.7 \rangle, \{u_2, u_3, u_5, u_6, u_7, u_8\})$$
 will be as fol-

lows.

$$\begin{split} & \left[\left(\langle x_1, 0.5, 0.4, 0.7 \rangle, \{ u_2, u_3, u_5, u_6, u_7, u_8 \} \right) \right]_{R_N} = \\ & \left\{ \left(\langle x_1, 0.5, 0.4, 0.7 \rangle, \{ u_2, u_3, u_5, u_6, u_7, u_8 \} \right), \\ & \left(\langle x_2 0.6, 0.8, 0.4 \rangle, \{ u_2, u_6, u_8 \} \right), \\ & \left(\langle x_3, 0.2, 0.5, 0.1 \rangle, \{ u_1, u_2, u_4, u_5, u_7, u_8 \} \right) \right\} \end{split}$$

4. Decision Making Method

In this section, we construct a soft neutrosophication operator and a decision making method on NP-soft relations.

Definition 4.1. Let $\psi_K \in NPS(U)$ and R_N be a NPsoft relation on ψ_K . The neutrosophication operator, denoted by sR_N , is defined by

$$sR_{N}: R_{N} \to F(U), \ sR_{N}(X \times X, U) = \left\{ \left\langle u, \mu_{R_{N}}(u), v_{R_{N}}(u), \\ \omega_{R_{N}}(u) \right\rangle, u \in U \right\}$$

Where

$$\mu_{R_N}(u) = \frac{1}{|X \times X|} \sum_{i} \sum_{j} \mu_{R_N}(x_i, x_j) \chi(u)$$
$$\nu_{R_N}(u) = \frac{1}{|X \times X|} \sum_{i} \sum_{j} \nu_{R_N}(x_i, x_j) \chi(u)$$
$$\omega_{R_N}(u) = \frac{1}{|X \times X|} \sum_{i} \sum_{j} \omega_{R_N}(x_i, x_j) \chi(u)$$

and where

$$\chi(u) = \begin{cases} 1, & u \in f_{R_N}(x_i, x_j) \\ 0, & u \notin f_{R_N}(x_i, x_j) \end{cases}$$

Note that $|X \times X|$ is the cardinality of $X \times X$.

Definition 4.2. Let $\Psi_{\mathbb{K}} \in \mathbb{NP}$ -soft set and sR_N a neutrosophication operator, then a reduced fuzzy set of $\tilde{\psi}_K$ is a *fuzzy* set over U denoted by

$$\tilde{\psi}_{K}(u) = \left\{ \frac{\mu_{SR_{N}}(u)}{u} : u \in U \right\}$$

Where
$$\mu_{sR_N} : U \to [0,1]$$
 and

$$\mu_{sR_N}(u) = \frac{|\mu_K(u) + \nu_K(u) - \omega_K(u)|}{2}$$

Now; we can construct a decision making method on NP-soft relation by the following algorithem;

- 1. construct a feasible neutrosophic subset X over E,
- 2. construct a NP soft set ψ_K over U,
- 3. construct a NP soft relation R_N over ψ_K according to the requests,
- 4. calculate the neutrosophication operator sR_N over R_N ,
- 5. calculate the reduced fuzzy set $\tilde{\psi}_{K}$
- 6. select the objects from $\tilde{\psi}_K$, which have the largest membership value.

Example 4.3. A customer, Mr. *X*, comes to the auto gallery agent to buy a car which is over middle class. Assume that an auto gallery agent has a set of different types of car $U = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8\}$, which may be characterized by a set of parameters $E = \{x_1, x_2, x_3, x_4\}$. For i = 1, 2, 3, 4 the parameters x_i stand for ty", "cheap", "modern" and "large", respectively. If Mr. *X* has to consider own set of parameters, then we select a car on the basis of the set of customer parameters by using the algorithm as follows.

- Mr. *X* constructs a neutrosophic set *X* over *E*,
 X= {<x₁,0.5, 0.4 ,0.7>,<x₂,0.6, 0.8 ,0.4>,<x₃,0.2, 0.5 ,0.1>}
- 2. Mr. X constructs a NP-soft set ψ_K over U,

$$\begin{split} \psi_{\kappa} &= \left\{ \left(\left\langle x_{1}, 0.5, 0.4, 0.7 \right\rangle, \left\{ u_{2}, u_{3}, u_{5}, u_{6}, u_{7}, u_{8} \right\} \right), \\ \left(\left\langle x_{2}, 0.6, 0.8, 0.4 \right\rangle, \left\{ u_{2}, u_{6}, u_{8} \right\} \right), \\ \left(\left\langle x_{3}, 0.2, 0.5, 0.1 \right\rangle, \left\{ u_{1}, u_{2}, u_{4}, u_{5}, u_{7}, u_{8} \right\} \right) \right\} \end{split}$$

3. The neutrosophic parameterized soft relation R_N over ψ_K is calculated according to the Mr X's request

(The car must be a over middle class, it means the membership degrees are over 0.5),

$$\begin{split} R_N &= \left\{ \left(\left\langle (x_1, x_1), 0.4, 0.6, 0.7 \right\rangle, \left\{ u_2, u_3, u_5, u_6, u_7, u_8 \right\} \right), \\ &\left(\left\langle (x_1, x_2), 0.4, 0.6, 0.7 \right\rangle, \left\{ u_2, u_6, u_8 \right\} \right), \\ &\left(\left\langle (x_1, x_3), 0.2, 0.5, 0.7 \right\rangle, \left\{ u_2, u_5, u_7, u_8 \right\} \right), \\ &\left(\left\langle (x_2, x_1), 0.4, 0.6, 0.7 \right\rangle, \left\{ u_2, u_6, u_8 \right\} \right) \\ &\left(\left\langle (x_2, x_2), 0.6, 0.8, 0.4 \right\rangle, \left\{ u_2, u_6, u_8 \right\} \right), \\ &\left(\left\langle (x_3, x_1), 0.2, 0.5, 0.7 \right\rangle, \left\{ u_2, u_5, u_7, u_8 \right\} \right), \\ &\left(\left\langle (x_3, x_2), 0.2, 0.8, 0.4 \right\rangle, \left\{ u_2, u_8 \right\} \right), \\ &\left(\left\langle (x_3, x_3), 0.2, 0.5, 0.1 \right\rangle, \left\{ u_1, u_2, u_4, u_5, u_7, u_8 \right\} \right) \right\} \end{split}$$

4. The soft neutrosophication operator S_{R_N} over R_N calculated as follows

$$sR_{N} = \{ \langle u_{1}, 0.022, 0.055, 0.011 \rangle, \\ \langle u_{2}, 0.311, 0.633, 0.533 \rangle, \langle u_{3}, 0.044, 0.066, 0.077 \rangle, \\ \langle u_{4}, 0.022, 0.055, 0.011 \rangle, \langle u_{5}, 0.111, 0.233, 0.244 \rangle, \\ \langle u_{6}, 0.2, 0.288, 0.277 \rangle, \langle u_{7}, 0.133, 0.322, 0.288 \rangle, \\ \langle u_{8}, 0.311, 0.633, 0.533 \rangle \}$$

5. Reduced fuzzy set $\tilde{\psi}_{K}$ calculated as follows

$$\tilde{\psi}_{K}(u) = \left\{ \frac{0.033}{u_{1}}, \frac{0.205}{u_{2}}, \frac{0.016}{u_{3}}, \frac{0.033}{u_{4}}, \frac{0.05}{u_{5}}, \frac{0.105}{u_{6}}, \frac{0.083}{u_{7}}, \frac{0.205}{u_{8}}; u \in U \right\}$$

6. Now, Mr. *X* select the optimum car u_2 and u_8 which have the biggest membership degree 0.205 among the other cars.

5. Conclusion

In this work, we have defined relation on NP-soft sets and studied some of their properties. We also defined symmetric, transitive, reflexive and equivalence relations on the

I. Deli, Y. Toktaş and S. Broumi, Neutrosophic Parameterized Soft Relations and Their Applications

NP-soft sets. Finally, we construct a decision making method and gave an application which shows that this method successfully works. In future work, we will extend this concept to interval valued neutrosophic parameterized soft sets.

3. References

- K. Atanassov. Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- [2] M. Bashir, A. R. Salleh, and S. Alkhazaleh, Possibility Intuitionistic Fuzzy Soft Set, Advances in Decision Sciences, doi:10.1155/2012/404325.
- [3] M. Borah, T. J. Neog and D. K. Sut, A Study on Some Operations of Fuzzy Soft Sets, International Journal of Modern Engineering Research, 2/ 2 (2012) 157-168.
- [4] S. Broumi and F. Smarandache, Intuitionistic Neutrosophic Soft Set, Journal of Information and Computing Science 8/ 2 (2013) 130-140.
- [5] S. Broumi, Generalized Neutrosophic Soft Set, International Journal of Computer Science, Engineering and Information Technology 3/2 (2013) 17-30.
- [6] S. Broumi, I. Deli, and F. Smarandache, Relations on Interval Valued Neutrosophic Soft Sets, Journal of New Results in Science 5 (2014) 1-20.
- [7] S. Broumi, F. Smarandache, More on Intuitionistic Neutrosophic Soft Sets, Computer Science and Information Technology 1/4 (2013) 257-268.
- [8] S. Broumi, I. Deli, F. Smarandache, Neutrosophic Parameterized Soft Set theory and its decision making problem, Italian Journal of Pure and Applied Mathematics 32 (2014) 1-12.
- [9] N. Çağman, S. Enginoğlu, F. Çıtak, Fuzzy Soft Set Theory and Its Applications. Iran J. Fuzzy Syst. 8/3 (2011) 137-147.
- [10] N. Çağman, S. Karataş, Intuitionistic fuzzy soft set theory and its decision making, Journal of Intelligent and Fuzzy Systems DOI:10.3233/IFS-2012-0601.
- [11] N. Çağman, F Çıtak, S. Enginoğlu, Fuzzy parameterized fuzzy soft set theory and its applications, Turkish Journal of Fuzzy System 1/1 (2010) 21-35.
- [12] N. Çağman, I. Deli, Intuitionistic fuzzy parameterized soft set theory and its decision making, Submitted.
- [13] N. Çağman, F. Karaaslan, IFP –fuzzy soft set theory and its applications, Submitted.
- [14] N. Çağman, I. Deli, Relations on FP-Soft Sets Applied to Decision Making Problems, Submitted.
- [15] N. Çağman, I. Deli, Product of FP-Soft Sets and its Applications, Hacettepe Journal of Mathematics and Statistics, 41/3 (2012) 365 - 374.

- [16] N. Çağman, I. Deli, Means of FP-Soft Sets and its Applications, Hacettepe Journal of Mathematics and Statistics, 41/5 (2012) 615–625.
- [17] P. K. Maji, A. R. Roy and R. Biswas, Fuzzy soft sets, Journal of Fuzzy Mathematics, 9/3 (2001) 589-602.
- [18] P. K. Maji, R. Biswas and A. R. Roy, Intuitionistic fuzzy soft sets, The Journal of Fuzzy Mathematics, 9/3 (2001) 677-692.
- [19] P. K. Maji, Neutrosophic Soft Set, Annals of Fuzzy Mathematics and Informatics, 5/ 1 (2013) 2287-623.
- [20] D. A. Molodtsov, Soft Set Theory First Result, Computers and Mathematics with Applications 37 (1999) 19-31.
- [21] F. Smarandache, A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic. Rehoboth: American Research Press, 1999.
- [22] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.

Received: June 20, 2014. Accepted: July 2, 2014.