
Neutrosophic set and Logic 

 

Mumtaz Ali 

Department of Mathematics, Quaid-i-azam University, Islamabad, 45320, Pakistan  

Florentin Smarandache 

University of New Mexico, 705 Gurley Ave., Gallup, New Mexico 87301, USA 
 
Luige Vladareanu 

Institute of Solid Mechanics, Bucharest, Romania 

 

Abstract 
 

     Neutrosophic sets and Logic plays a significant role in approximation theory. It is a generalization of 

fuzzy sets and intuitionistic fuzzy set. Neutrosophic set is based on the neutrosophic philosophy in which 

every idea Z, has opposite denoted as anti(Z) and its neutral which is denoted as neut(Z). This is the main 

feature of neutrosophic sets and logic. This chapter is about the basic concepts of neutrosophic sets as 

well as some of their hybrid structures. This chapter starts with the introduction of fuzzy sets and 

intuitionistic fuzzy sets respectively. The notions of neutrosophic set are defined and studied their basic 

properties in this chapter. Then we studied neutrosophic crisp sets and their associated properties and 

notions. Moreover, interval valued neutrosophic sets are studied with some of their properties. Finally, we 

presented some applications of neutrosophic sets in the real world problems. 

 

1.  Introduction 
 

    The data in real life problems like engineering, social, economic, computer, decision making, medical 

diagnosis etc. are often uncertain and imprecise. This type of data is not necessarily crisp, precise and 

deterministic nature because of their fuzziness and vagueness. To handle this kind of data, Zadeh 

introduced fuzzy set sets (1965). Several types of approaches have been proposed which is based on fuzzy 

sets such as interval valued fuzzy sets (1986), intuitionistic fuzzy sets (1986), and so on. Researchers 

throughout the world have been successfully applied fuzzy sets in several areas like signal processing, 

knowledge representation, decision making, stock markets, pattern recognition, control, data mining, 

artificial intelligence etc.       

    Atanassov (1986), observed that there is some kind of uncertainty in the data which is not handled by 

fuzzy sets. Therefore, intuitionistic fuzzy sets were proposed by Atanassov in (1986), which became the 

generalization of fuzzy sets by inserting the non-membership degree to fuzzy sets. An intuitionistic fuzzy 

set has a membership function as well as a non-membership function. Intuitionistic fuzzy sets define more 

beautifully the fuzzy objects of the real world. A huge amount of research study has been conducted on 

intuitionistic fuzzy sets from different aspects. Intuitionistic fuzzy sets have been successfully applied in 

several fields such as modeling imprecision, decision making problems, pattern recognition, economics, 

computational intelligence, medical diagnosis and so on. 



 

      Smarandache in (1995), coined the theory of neutrosophic sets and logic under the neutrosophy which 

is a new branch of philosophy that study the origin, nature, and scope of  neutralities as well as their 

interactions with ideational spectra. A neutrosophic set can be characterized by a truth membership 

function T, an indeterminacy membership function I and falsity membership function F. Neutrosophic set 

is the generalization of fuzzy sets (1965), intuitionistic fuzzy sets (1986), paraconsistent set (1995) etc. 

Neutrosophic sets can treat uncertain, inconsistent, incomplete, indeterminate and false information. The 

neutrosophic sets and their related set theoretic operators need to be specified from scientific or 

engineering point of view. Indeterminacy are quantified explicitly in neutrosophic sets and T, I, and F 

operators are complementally independent which is very significant in several applications such as 

information fusion, physics, computer, networking, decision making, information theory etc. 

     In this chapter, we present the notions of neutrosophic sets and logic. In section 1, we presented a brief 

introduction. In section 2, we studied neutrosophic sets with some of their basic properties. In the next 

section 3, the hybrid structure neutrosophic crisp sets and their associated properties and notions have 

been studied. In section 4, interval valued neutrosophic sets have been studied. Section 5 is about to study 

some practical life applications of neutrosophic sets. 
 

2. Neutrosophic set, Similarity Measures, Neutrosophic Norms 

In this section the notions of neutrosophic sets, some similarity measures of neutrosophic sets, neutrosophic norms 
respectively. 
 
2.1. Neutrosophic Set 
 
In this subsection the neutrosophic set is presented with their basic properties and notions with illustrative 
examples. 
 

     Definition 2.1.1:  Let X be a universe of discourse and a neutrosophic set A  on X  is defined as 

 

      XxxFxIxTxA AAA   , , , ,  

 

where  ,T  ,I  [1,0]: XF   and       .30   xFxIxT AAA   

From philosophical point of view, neutrosophic set takes the value in the interval   0,1 , because  it is 

difficult to use neutrosophic set with value from real standard or non-standard subsets of  [1,0] 
  in real 

life application like scientific and engineering problems. 

 

      Definition 2.1.2: A neutrosophic set A  is contained in another neutrosophic set B , if 

 

           ,  ,  A B A A A BT x T x I x I x F x F x    for all x X . 

      Definition 2.1.3: An element x of  U is called significant with respect to neutrosophic set A of U if 
the degree  of  truth-membership or falsity-membership or indeterminancy-membership value, i.e.,TA(x) or 
FA(x)or IA(x) ≤ 0.5.  

Otherwise, we call it insignificant. Also, for neutrosophic set the truth-membership, indeterminacy-
membership  and falsity-membership all cannot be significant. We define an intuitionistic neutrosophic 
set by A = {< x: TA(x),I A(x),FA(x) >,x ∈ U},where   min { TA( x ), FA( x ) } ≤ 0.5, min { TA( x ) , IA( x ) } ≤ 0.5,  min 
{ FA( x ) , IA( x ) } ≤ 0.5, for all x ∈ U, with the condition  0  ≤ TA(x) + IA(x) + FA(x) ≤  2. 

 

As an illustration, let us consider the following example. 



 

      Example 2.1.4: Assume that the universe of discourse U={x1,x2,x3},where x1 characterizes the 

capability, x2 characterizes the trustworthiness and x3 indicates  the prices of the objects. It may be further 

assumed that the values of x1, x2 and x3  are in [0,1] and they are obtained from some questionnaires of 

some experts. The experts may impose their opinion in three components viz. the degree of goodness, the 

degree of indeterminacy and that of poorness to explain the characteristics of the objects. Suppose A is an 

intuitionistic neutrosophic set ( IN S ) of U, such that, 

A = {< x1,0.3,0.5,0.4 >,< x2,0.4,0.2,0.6 >,< x3,0.7,0.3,0.5 >}, 

where the degree of goodness of capability is 0.3, degree of indeterminacy of capability is 0.5 and degree 

of falsity of capability is 0.4 etc. 

    Definition 2.1.5: Let X is a space of points (objects) with generic elements in X denoted by x. A 
neutrosophic set A in X is characterized by a truth-membership function TA(x), an indeterminacy 
membership function IA(x), and a falsity membership function FA(x) if the functions 
TA(x), IA(x), FA(x) are singletons subintervals/subsets in the real standard [0, 1], i.e. TA(x): X →
[0, 1], IA(x): X → [0, 1],  FA(x): X → [0, 1]. Then a simplification of the neutrosophic set A is denoted by 
A = {< 𝑥: TA(x), IA(x), FA(x) >, 𝑥 ∈ 𝑋}. 

      Definition 2.1.6: Let X is a space of points (objects) with generic elements in X denoted by x. An 

SVNS A in X is characterized by a truth-membership function 𝑇𝐴(𝑥), an indeterminacy membership 

function 𝐼𝐴(𝑥) and a falsity-membership function𝐹𝐴(𝑥), for each point𝑥 ∈ 𝑋, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1]. 

Therefore, a SVNS A can be written as 𝐴𝑆𝑉𝑁𝑆 = {< 𝑥:  𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >, 𝑥 ∈ 𝑋}. 

For two SVNS, 𝐴𝑆𝑉𝑁𝑆 = {< 𝑥: 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >, 𝑥 ∈ 𝑋} and 𝐵𝑆𝑉𝑁𝑆 = {< 𝑥: 𝑇𝐵(𝑥), 𝐼𝐵(𝑥), 𝐹𝐵(𝑥) >

, 𝑥 ∈ 𝑋}, the following expressions are defined in [2] as follows: 

𝐴𝑁𝑆 ⊆ 𝐵𝑁𝑆 if and only if 𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ≥ 𝐼𝐵(𝑥), 𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥). 𝐴𝑁𝑆 = 𝐵𝑁𝑠 if and only if 

𝑇𝐴(𝑥) = 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) = 𝐼𝐵(𝑥), 𝐹𝐴(𝑥) = 𝐹𝐵(𝑥). 𝐴𝑐 =< 𝑥, 𝐹𝐴(𝑥), 1 − 𝐼𝐴(𝑥), 𝑇𝐴(𝑥) > 

For convenience, a SVNS A is denoted by 𝐴 =< 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) > for any x∈ 𝑋; for two SVNSs A 
and B. Then, 

 
(1) 𝐴 ∪ 𝐵 =< max(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) , 𝑚𝑖𝑛(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)), 𝑚𝑖𝑛(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) > 

 
(2) 𝐴 ∩ 𝐵 =< 𝑚𝑖𝑛(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)), 𝑚𝑎𝑥(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)), 𝑚𝑎𝑥(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) > 

2.2 Jaccard, Dice and Cosine similarity Measures of Neutrosophic Sets 

The vector similarity measure is one of the most important techniques to measure the similarity 

between objects. In this subsection, the Jaccard, Dice and Cosine similarity measures between two vectors 

have been studied. 

Definition 2.2.1: Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)  and 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛) be the two vectors of length n 

where all the coordinates are positive. The Jaccard index of these two vectors is defined as 

𝐽(𝑋, 𝑌) =
𝑋.𝑌

‖𝑋‖2
2

+‖𝑌‖2
2

+𝑋.𝑌
=

∑ 𝑥𝑖.𝑦𝑖
𝑛
𝑖=1

∑ 𝑥𝑖
2+∑ 𝑦𝑖

2−∑ 𝑥𝑖.𝑦𝑖
𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

 , 

where 𝑋. 𝑌 = ∑ 𝑥𝑖 . 𝑦𝑖
𝑛
𝑖=1  is the inner product of the vectors 𝑋 𝑎𝑛𝑑 𝑌. 

   

 



       Definition 2.2.2: The Dice similarity measure is defined as 

𝐽(𝑋, 𝑌) =
2𝑋.𝑌

‖𝑋‖2
2

+‖𝑌‖2
2 =

2 ∑ 𝑥𝑖.𝑦𝑖
𝑛
𝑖=1

∑ 𝑥𝑖
2+∑ 𝑦𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

. 

Cosine formula is defined as the inner product of these two vectors divided by the product of their 

lengths. This is the cosine of the angle between the vectors.  

Definition 2.2.3: The cosine similarity measure is defined as 

𝐶(𝑋, 𝑌) =
𝑋.𝑌

‖𝑋‖2
2

.‖𝑌‖2
2 =

∑ 𝑥𝑖.𝑦𝑖
𝑛
𝑖=1

∑ 𝑥𝑖
2.∑ 𝑦𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

. 

It is obvious that the Jaccard, Dice and cosine similarity measures satisfy the following properties              

(P1) 0 ≤ J(X, Y), D(X, Y), C(X, Y) ≤ 1, 

(P2) J(X, Y) = J(Y, X), D(X, Y) = D(Y, X) and C(X, Y) = C(Y, X), 

(P3) J(X, Y) = 1, D(X, Y) = 1 and C(X, Y) = 1 if X = Y. 

i.e., 𝑥𝑖 = 𝑦𝑖(𝑖 = 1, 2, … , 𝑛)for every 𝑥𝑖 ∈ 𝑋 and 𝑦𝑖 ∈ 𝑌. Also Jaccard, Dice, cosine weighted 

similarity measures between two SNSs A and B as discussed in [6] are 

𝑊𝐽(𝐴, 𝐵) = ∑ 𝑤𝑖

𝑇𝐴(𝑥𝑖)𝑇𝐵(𝑥𝑖)

+𝐼𝐴(𝑥𝑖)𝐼𝐵(𝑥𝑖)

+𝐹𝐴(𝑥𝑖)𝐹𝐵(𝑥𝑖)

(𝑇𝐴(𝑥𝑖))
2

+(𝐼𝐴(𝑥𝑖))
2

+(𝐹𝐴(𝑥𝑖))
2

+(𝑇𝐵(𝑥𝑖))
2

+(𝑇𝐴(𝑥𝑖))
2

+(𝑇𝐴(𝑥𝑖))
2

+(𝑇𝐴(𝑥𝑖))
2

−𝑇𝐴(𝑥𝑖)𝑇𝐵(𝑥𝑖)−𝑇𝐵(𝑥𝑖)𝑇𝐶(𝑥𝑖)−𝑇𝐶(𝑥𝑖)𝑇𝐴(𝑥𝑖)

𝑛
𝑖=1 , 

𝑊𝐷(𝐴, 𝐵) = ∑ 𝑤𝑖

2(
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+𝐹𝐴(𝑥𝑖)𝐹𝐵(𝑥𝑖)
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(𝑇𝐴(𝑥𝑖))
2

+(𝐼𝐴(𝑥𝑖))
2

+(𝐹𝐴(𝑥𝑖))
2

+(𝑇𝐵(𝑥𝑖))
2
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2
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2
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𝑛
𝑖=1 , 

𝑊𝐶(𝐴, 𝐵) = ∑ 𝑤𝑖

(

𝑇𝐴(𝑥𝑖)𝑇𝐵(𝑥𝑖)

+𝐼𝐴(𝑥𝑖)𝐼𝐵(𝑥𝑖)
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√(𝑇𝐴(𝑥𝑖))
2
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2

+(𝐹𝐴(𝑥𝑖))
2

√(𝑇𝐵(𝑥𝑖))
2
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2
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2
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2

 

𝑛
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2.3. Neutrosophic N-norms and Neutrosophic N-conorms 

In this subsection 2.3, neutrosophic norms and their related properties discussed by the authors. 

      Definition 2.3.1:                

     

2

1 1 1 2 2 2

:   0,1 0,1 0,1    0,1 0,1 0,1  

( ( , , ),  ( , , ))  ( , ,  , ,  , ),

n

n n n n

N

N x T I F y T I F N T x y N I x y N F x y

              


  where 

     .,. ,  .,. ,  .,.n n nN T N I N F are the truth /membership, indeterminacy, and respectively falsehood 

/nonmembership components. nN have to satisfy, for any ,  ,  x y z in the neutrosophic logic/set M of the 

universe of discourse U , the following axioms: 



a) Boundary Conditions: ( ,0) 0,  ( ,1)  .n nN x N x x   

b) Commutativity:    ,    ,  .n nN x y N y x  

c) Monotonicity: If      ,   ,    ,  .n nx y then N x z N y z   

d) Associativity:       ,  ,    ,  ,  .n n n nN N x y z N x N y z  

nN  represent the and operator in neutrosophic logic, and respectively the intersection operator in 

neutrosophic set theory. 

     Example 2.3.2: A general example of N-norm would be this.  

Let  1 1 1,  ,  x T I F and  1 1 1,  ,  y T I F be in the neutrosophic set/logic M. Then: 

   1 2 1 2 1 2,    ,  ,  .nN x y T T I I F F     

       Definition 2.3.3:  
               

     

2

1 1 1 2 2 2

:   0,1 0,1 0,1    0,1 0,1 0,1  

( ( , , ),  ( , , ))  ( , ,  , ,  , ),

c

c c c c

N

N x T I F y T I F N T x y N I x y N F x y

              


, where 

     .,. ,  .,. ,  .,.c c cN T N I N F are the truth /membership, indeterminacy, and respectively falsehood /non-

membership components. cN have to satisfy, for any ,  ,  x y z in the neutrosophic logic/set M of the 

universe of discourse U , the following axioms: 

a) Boundary Conditions: ( ,0) ,  ( ,1)  1.c cN x x N x   

b) Commutativity:    ,    ,  .c cN x y N y x  

c) Monotonicity: If      ,   ,    ,  .c cx y then N x z N y z   

d) Associativity:       ,  ,    ,  ,  .c c c cN N x y z N x N y z  

   

      Example 2.3.4: A general example of N-conorm would be this. Let  1 1 1,  ,  x T I F and  1 1 1,  ,  y T I F be in 

the neutrosophic set/logic M. Then:     1 2 1 2 1 2,    ,  ,  cN x y T T I I F F     where the “/\” operator, acting 

on two (standard or non-standard) subunitary sets, is a N-norm (verifying the above N-norms axioms); 

while the “\/” operator, also acting on two (standard or non-standard) subunitary sets, is a N-conorm 

(verifying the above N-conorms axioms). For example, /\ can be the Algebraic Product T-norm/N-norm, 

so T1/\T2 = T1·T2; and \/ can be the Algebraic Product T-conorm/N-conorm, so T1\/T2 = T1+T2-T1·T2. 

Or /\ can be any T-norm/N-norm, and \/ any T-conorm/N-conorm from the above and below; for example 

the easiest way would be to consider the min for crisp components (or inf for subset components) and 

respectively max for crisp components (or sup for subset components). 
 
        Theorem 2.3.5: For any s-norm s(x, y) and for all 1  , we get the following s-norms and t-norms: 

     1. ( , ) ( , )   sS x y s x y 
  , 

     2. ( , ) 1 ((1 ) ,(1 ) )sT x y s x y 
     . 

 
         Theorem 2.3.6: For any t-norm t(x, y) and for all 1  , we get the following t-norms and s-norms: 

1.  ( , ) ( , )   tT x y t x y 
  , 

2.  ( , ) 1 ((1 ) ,(1 ) )tS x y t x y 
      . 



       Theorem 2.3.7: Let    , : 0,1 0,1f g   be bijective functions such that (0) 0f  , (1) 1f  , (0) 1g   and 
(1) 0g  . For any s-norm ( , )s x y we get the following s-norm and t-norm: 

     1.        s 1, ,fS x y f s f x f y     , 

      2.      s 1( , ) ,gT x y g s g x g y     . 
 

       Corollary 2.3.8: Let  ( )f x  = sin
2

x


and ( )g x  = cos
2

x


 then  

1.    1

sin

2
 , sin sin ,sin

2 2

sS x y s x y
 



  
  

 
 is an s-norm 

2.  1

cos

2
( , ) cos cos ,cos

2 2

sT x y s x y
 



  
  

 
is a t-norm 

 
       Theorem 2.3.9: Let    , : 0,1 0,1f g   be bijective functions such that (0) 0f  , (1) 1f  , (0) 1g   and 

(1) 0g  . For any t-norm ( , )t x y we get the following t-norm and s-norm: 

     1.        1 , ,t

fT x y f t f x f y     , 

     2.        1 , ,t

gS x y g t g x g y       

       Corollary 2.3.10: Let  f(x)= sin
2

x


 and  g(x)= cos
2

x


then  

 1.    1

sin

2
, sin sin ,sin  

2 2

tT x y t x y
 



   
   

  
is a t-norm 

  2.    1

cos

2
, cos cos ,cos

2 2

tS x y t x y
 



   
   

  
is an s-norm. 

      Definition 2.3.11: 
               

        

2
:   0,1 0,1 0,1    0,1 0,1 0,1  

( , , ),  ( , , )  , ,  , ,  , ,

n

n T T I I F F

T

T x T I F y T I F t x y s x y s x y

              


where 

     , ,  , ,  ,T T I I F Ft x y s x y s x y are the truth /membership, indeterminacy, and respectively falsehood 

/nonmembership components and s and t are the fuzzy s-norm and fuzzy t-norm respectively. nT have to 

satisfy, for any ,  ,  x y z in the neutrosophic logic/set M of the universe of discourse U , the following 

axioms: 

a) Boundary Conditions: ( ,0) 0,  ( ,1)  .n nT x T x x   

b) Commutativity:    ,    ,  .n nT x y T y x  

c) Monotonicity: If      ,   ,    ,  .n nx y then T x z T y z   

d) Associativity:       ,  ,    ,  ,  .n n n nT T x y z T x T y z  

 

     Definition 2.3.12:                

        

2
:   0,1 0,1 0,1    0,1 0,1 0,1  

( , , ),  ( , , )  , ,  , ,  , ,

n

n T T I I F F

S

S x T I F y T I F s x y t x y t x y

              



where 

     , ,  , ,  ,T T I I F Fs x y t x y t x y are the truth /membership, indeterminacy, and respectively falsehood 

/nonmembership components and s and t are the fuzzy s-norm and fuzzy t-norm respectively.  nS  have to 

satisfy, for any ,  ,  x y z in the neutrosophic logic/set M of the universe of discourse U , the following 

axioms: 

a) Boundary Conditions: ( ,0) ,  ( ,1)  1.n nS x x S x   

b) Commutativity:    ,    ,  .n nS x y S y x  

c) Monotonicity: If      ,   ,    ,  .n nx y then S x z S y z   

d) Associativity:       ,  ,    ,  ,  .n n n nS S x y z S x S y z  



From now we use the following notation for N-norm and N-conorm respectively  ,nT x y and  , .nS x y  
 

We will use the following border  0 0,1,1 and   1 1,0,0 .  

      Theorem 2.3.13: For any  ,nS x y and for all 1  , by using any fuzzy union s-norm we get the 

following  ,nS x y and  ,nT x y : 

1.
( , ),

( , ) 1 ((1 ) , (1 ) ),   

1 ((1 ) , (1 ) )

T T

n I I
s

F F

s x y

S x y s x y

s x y

 

  

 

   

  

 and  2. 
    

 

 

1 1 , 1 ,

( , ) , ,

,

T T

n I I
s

F F

s x y

T x y s x y

s x y

 

  

 

  


, 

 

where s any s-norm (fuzzy union). 

Proof.  1. 

 Axiom 1.  
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Axiom 2.  
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Axiom 3. Let    1 2 3 1 2 3,  ,  ,   y ,   yx x x x y y  then 1 1 2 2 3 3, y , yx y x x    and    1 1 1 1, ,s x z s y z       which 

implies   

   1 1 2 2, , .s x z s y z                                             (1) 

Also we have 
2 2(1 ) (1 )x y    then 

          2 2 2 21 , 1 1 , 1s x z s y z
   

     , which implies that  

         2 2 2 21 1 , 1 1 1 , 1s x z s y z
   

                (2) 

And we have 
3 3(1 ) (1 )x y    then 

          3 3 3 31 , 1 1 , 1s x z s y z
   

     , which implies that  



         3 3 3 31 1 , 1 1 1 , 1s x z s y z
   

                      (3) 

 

From (1), (2) and (3) we have    , ,n n

s s

S x z S y z  . 

Axiom 4.  
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F F F

s x s y z

s x s y z

s x s y z

  

  

  

    

   

 

  , ,n n

s

S x S y z   

Therefore  ,n

s

S x y  is an N-conorm.  

2.  The proof is similar to Proof 1.  
 

      Theorem 2.3.14: For any  ,nT x y and for all 1  , by using any fuzzy intersection t-norm we get 

the following  ,nS x y and  ,nT x y : 

1.
 

    

 

 

1 1 , 1 ,

, , ,   

,

T T

n I I
t

F F

t x y

S x y t x y

t x y

 

  

 

  


 and 2.  

 

    

    

, ,

, 1 1 , 1 ,

1 1 , 1

T T

n I I
t

F F

t x y

T x y t x y

t x y

 

  

 

   

  

, 

 

where t any t-norm (fuzzy intersection). 



    Proof.  The proof is similar to Proof of theorem 3.3. 

By these theorems we can generate infinitely many N-norms and N-conorms by using two bijective 

functions with certain conditions. 

 

     Theorem 2.3.15: Let    , : 0,1 0,1f g   be bijective functions such that (0) 0f  , (1) 1f  , (0) 1g   and 

(1) 0g  . For any  ,nS x y  and by using any fuzzy union s-norm we get the following  ,nS x y and 

 ,nT x y : 

1.   

    

    

    

1

1

,
1

, ,

, , ,

,

T T

s

n I I
f g

F F

f s f x f y
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g s g x g y
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Proof. 1. 

Axiom 1. 
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Axiom 2.  
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Axiom 3. Let x y . Since f  is bijective on the interval  0,1  and by Axiom s3 we have 

         , ,T T T Ts f x f z s f y f z  then          1 1, ,T T T Tf s f x f z f s f y f z         (1) 

Also since g is bijective on the interval  0,1  and by Axiom t3 we have 



         , ,I I I Is g x g z s g y g z  then          1 1, ,I I I Ig s g x g z g s g y g z         (2) 

And 

         , ,F F F Fs g x g z s g y g z  then          1 1, ,F F F Fg s g x g z g s g y g z         (3) 

From (1), (2) and (3) we have    
, ,

, ,s s

n n
f g f g

S x z S y z   

Axiom 4.  
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,

, ,s s

n n

f g

S x S y z . 

Therefore  
,

,s

n
f g

S x y is an  ,nS x y  

2. The Proof is similar to Proof 1. 

     Corollary 2.3.16: Let  
( )f x

 =
sin

2
x



 and 
( )g x

 = 
cos

2
x



 then  



1.   
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sin,cos
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2
sin sin ,sin ,

2 2
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cos cos ,cos
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  is an  ,nS x y  
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  is a  ,nT x y  

     Theorem 2.3.17: Let    , : 0,1 0,1f g   be bijective functions such that (0) 0f  , (1) 1f  , (0) 1g   and 

(1) 0g  . For any  ,nT x y  and by using any fuzzy intersection t-norm we get the following  ,nS x y

and  ,nT x y : 

1.   
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1
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t

n I I
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Proof.  The proof is similar to Proof of theorem 4.1.  

Corollary 2.3.18:  Let  ( )f x  = sin
2

x


 and ( )g x  = cos
2

x


 then  

1.   
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  is an  ,nS x y  
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  is a  ,nT x y . 



We now generate some new  ,nS x y and  ,nT x y from existing  ,nS x y and  ,nT x y using the 

Generating Theorems and the Bijective Generating Theorems.  

 
Example 2.3.19: BOUNDED SUM GENERATING CLASSES  

New  ,nS x y and  ,nT x y from the bounded sum s-norm. 
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Example 2.3.20: ALGEBRAIC SUM GENERATING CLASSES 

New  ,nS x y and  ,nT x y from the algebraic sum s-norm. 
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Example 2.3.21: EINSTEIN SUM GENERATING CLASSES 

New  ,nS x y and  ,nT x y from the Einstein sum s-norm. 
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Example 2.3.22: BOUNDED PRODUCT GENERATING CLASSES  
New  ,nS x y and  ,nT x y from the bounded product t-norm. 
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Example 2.3.23:EINSTEIN PRODUCT GENERATING CLASSES 
New  ,nS x y and  ,nT x y from the Einstein product t-norm. 
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Note that for the s-norms max and drastic sum and t-norms min, algebraic product and drastic product we 

get the same norms. 

3. Crisp Neutrosophic Set, Neutrosophic Crisp Neighborhood Systems,  
Neutrosophic Crisp Local Functions 

In this section, crisp neutrosophic sets, neutrosophic crisp neighborhood systems and neutrosophic crisp 

local functions have been discussed. 

3.1. Crisp Neutrosophic Set 

In this subsection, the authors presented crisp neutrosophic sets and their related properties. 

      Definition 3.1.1 :  Let X be a non-empty  fixed set. A  neutrosophic crisp set (NCS for short) A  is an 

object having the form

  
321 ,, AAAA   where 321   and , AAA are  subsets of  X  satisfying  21 AA , 

 31 AA and  32 AA . 

      Definition 3.1.2 : Let  X be a nonempty set and Xp   Then  the neutrosophic crisp point Np  defined    

by    c
N ppp ,, is called  a  neutrosophic crisp point (NCP for short) in X, where NCP is a triple 

({only one element in X}, the empty set,{the complement of the same element in X}).  

      Definition 3.1.3 : Let  X  be  a non-empty set, and Xp a fixed element in X. Then the neutrosophic 

crisp set    c

NN ppp ,,  is called “vanishing neutrosophic crisp point“ (VNCP for short) in X, where 

VNCP is a triple (the empty set,{only one element in X},{the complement of the same element in X}). 

      Definition 3.1.4 : Let    c
N ppp ,, be a NCP in X and 

321
,, AAAA   a neutrosophic crisp set 

in X.  

(a) Np  is said to be contained in A  ( Ap N  for short) iff 1Ap  .  

(b) Let 
NNp  be a VNCP in X, and 

321
,, AAAA  a neutrosophic crisp set in X. Then 

NNp  is said to 

be contained in A  ( Ap
NN  for short ) iff 3Ap . 

      



Definition 3.1.5 : Let X be non-empty set, and L a non–empty family of NCSs. We call L a neutrosophic 

crisp ideal (NCL for short) on  X  if  

i. LBABLA   and  [heredity],  

ii. LL and   BABLA [Finite additivity]. 

A neutrosophic crisp ideal L is called a   - neutrosophic crisp ideal if    LM
jj 


  , implies 
LjM

Jj





(countable additivity).  The smallest and largest neutrosophic crisp ideals on a non-empty set X are  N

and the NSs on X. Also, cf NCL  ,LNC  are denoting the neutrosophic crisp ideals (NCL for short) of 

neutrosophic subsets having finite and countable support of X respectively. Moreover, if A is a nonempty 

NS in X, then  ABNCSB  :  is an NCL on X. This is called the principal NCL of all NCSs,  denoted 

by NCL A . 

    Proposition 3.1.6 : Let  JjL j :  be any non - empty family of neutrosophic crisp ideals on a set X. 

Then 
Jj

jL


 and 
Jj

jL


 are neutrosophic crisp ideals on X, where 
321

,, j
Jj

j
Jj

j
Jj

j
Jj

AAAL

 or

321
,, j

Jj
j

Jj
j

Jj
j

Jj
AAAL


  and 

321
,, j

Jj
j

Jj
j

Jj
j

Jj
AAAL


 or 

.,,
321 j

Jj
j

Jj
j

Jj
j

Jj
AAAL


  

     Remark 3.1.7 : The neutrosophic crisp ideal defined by the single neutrosophic set 
N  is the smallest 

element of the ordered set of all neutrosophic crisp ideals on X. 

    Proposition 3.1.8 : A neutrosophic crisp set
321

,, AAAA    in the neutrosophic crisp ideal L on X is 

a base of L iff every member of L is contained in A. 

3.2.  Neutrosophic  Crisp Neighborhoods System  

 Definition 3.2.1:  Let 
321

,, AAAA  ,  be a neutrosophic crisp set on a set X, then 

      ,,, 321 pppp  321 ppp  X is called a neutrosophic crisp point 

An NCP       ,,, 321 pppp   is said to be belong to a neutrosophic crisp set 
321

,, AAAA  , of X, 

denoted by Ap , if may be defined by two types  

i) Type 1: 2211 }{,}{ ApAp  and 33}{ Ap   

ii) Type 2: 2211 }{,}{ ApAp  and 33}{ Ap   

 

  Theorem 3.2.2:  Let ,,, 321 AAAA  and ,,, 321 BBBB  be neutrosophic crisp subsets of X. Then 

BA  iff Ap implies Bp for any neutrosophic crisp point p in X. 



Proof: Let BA  and Ap . Then two types 

Type 1: 2211 }{,}{ ApAp  and 33}{ Ap  or 

Type 2: 2211 }{,}{ ApAp  and 33}{ Ap  . Thus Bp . Conversely, take any x in X. Let  11 Ap   and 

22 Ap  and 33 Ap  . Then  p  is a neutrosophic crisp point in X. and Ap . By the hypothesis Bp . 

Thus 11 Bp  ,   or Type 1: 2211 }{,}{ BpBp  and 33}{ Bp  or 

     Type 2: 2211 }{,}{ BpBp  and 33}{ Bp  . Hence. BA . 

   Theorem 3.2.3: Let  
321

,, AAAA , be a neutrosophic crisp subset of X. Then  .: AppA  . 

  Proof:  Since  .: App  may be two types  

    Type 1:    333222111 :,:},:{ AppAppApp  or 

   Type 2:       333222111 :,:},:{ AppAppApp  . Hence  

321
,, AAAA  

Proposition 3.2.4 : Let  JjA j :  is a family of   NCSs in X. Then  

)( 1a      321 ,, pppp  j
Jj

A

     iff jAp  for each Jj . 

)( 2a j
Jj

Ap

     iff Jj  such that jAp  . 

 Proposition 3.2.5 : Let  
321

,, AAAA  and 
321

,, BBBB   be two neutrosophic crisp sets in X. Then  

a) BA    iff   for each p  we have BpAp   and for each p  we have BpAp  . 

b)   BA   iff   for each p  we have BpAp   and for each p   we have BpAp  . 

Proposition3.2.6 : Let  
321

,, AAAA  be a neutrosophic crisp set in X. Then 

     333222111 :,:,: AppAppAppA  . 

Definition 3.2.7 :  Let YXf : be a function and p  be a nutrosophic crisp point in X. Then the image 

of p  under f , denoted by )( pf , is defined by      321 ,,)( qqqpf  ,where )(),( 2211 pfqpfq  . 

and )( 33 pfq  . 

It is easy to see that )( pf  is indeed a NCP in Y, namely qpf )( , where )( pfq  , and it is exactly the 

same meaning of the image of a NCP under the function f .  

3.3.  Neutrosophic Crisp Local functions 

 

Here, the author discussed neutrosophic crisp local functions. 

 

Definition 3.3.1: Let p be a neutrosophic crisp point of a neutrosophic crisp topological space  ,X . A 

neutrosophic crisp neighbourhood ( NCNBD for short) of a neutrosophic crisp point p if there is a 

neutrosophic crisp open set( NCOS for short) B in X such that .ABp   

 



Theorem 3.3.2: Let  ,X  be a neutrosophic crisp topological space (NCTS for short) of X. Then the 

neutrosophic crisp set A of X is NCOS iff A is a NCNBD of  p for every neutrosophic crisp set .Ap  

Proof: Let  A be NCOS of  X . Clearly A is a NCBD of any .Ap  Conversely, let .Ap Since A is a 

NCBD of  p, there is a NCOS B in X such that .ABp  So we have  AppA  :   AApB  : and 

hence  ApBA  :  . Since each B is NCOS. 

 

 Definition 3.3.3:  Let  ,X be a neutrosophic crisp topological spaces (NCTS for short) and L be 

neutrosophic crisp ideal (NCL, for short) on X. Let A be any NCS of X. Then the neutrosophic crisp local 

function  ,LNCA  of A is the union of all neutrosophic  crisp points( NCP, for short)       ,,, 321 pppP   

such that if  )( pNU   and  N(P) of nbd every Ufor   :),(* LUAXpLNA  , ),( LNCA  is called a 

neutrosophic crisp local function of A with respect to L and    which it will be denoted by ),( LNCA , 

or simply   LNCA . 

 
Example 3.3.4: One may easily verify that. 

If L= )(),(C N then  },{ ANCclLAN   , for any neutrosophic  crisp set NCSsA  on X. 

If    NLA    ),(NC      then  Xon  NCSs all L , for any NCSsA  on X . 

 

Theorem 3.3.5: Let  ,X  be a NCTS and 21, LL be two topological neutrosophic crisp ideals on X. 

Then for any neutrosophic crisp sets A, B  of   X. then the following statements are verified  

i) ),,(),(  LNCBLNCABA    
ii) ),(),( 1221  LNCALNCALL   . 

iii) )()( ANCclANCclNCA   . 

iv)  NCANCA ** . 

v)   
 NCBNCABANC .,  

vi) ).()()()( LNCBLNCALBANC    

vii)    .

 NCAANCL   

viii) ),( LNCA  is neutrosophic  crisp closed set . 

 
Proof: Since BA  , let      321 ,, pppp   1

* LNCA  then LUA   for every  pNU  . By 
hypothesis we get LUB  , then      321 ,, pppp   1

* LNB . 
 

i) Clearly. 21 LL   implies ),(),( 12  LNCALNCA    as there may be other IFSs which belong to 2L  so that 

for GIFP      321 ,, pppp   1
* LNCA  but  P  may not be contained in  2LNCA . 

ii) Since   LN   for any NCL on X, therefore by (ii) and Example 3.1, 

     )(ANCclONCALNCA N    for any NCS A on X. Suppose      3211 ,, pppP 

 )( 1
* LANCcl . So for every  1PNCU  , ,)( NUANC   there exists      3212 ,, qqqP 

  ULNCA  1
*  such that for every V  NCNBD of   .,22 LUAPNP   Since  2pNVU   

then   LVUA   which leads to LUA  , for every )( 1PNU   therefore  )( *
1 LANCP   

and so     NCANANCcl   While, the other inclusion follows directly. Hence 

)(   NCANCclNCA .But the inequality )(   NCANclNCA . 



iii) The inclusion    BANCNCBNCA  follows directly by (i). To show the other implication, 

let   BANCp  then for every ),( pNCU     ,., eiLUBA      .LUBUA   then, we 

have two cases LUA   and LUB   or the converse, this means that exist  PNUU 21 ,  

such that LUA  1 , ,1 LUB  LUA  2  and LUB  2 . Then   LUUA  21  and 

  LUUB  21  this gives     ,21 LUUBA    )(21 PCNUU   which contradicts the 

hypothesis. Hence the equality holds in various cases. 

vi)  By  (iii), we have   )(NCANCclNCA
  NCANCANCcl )(  

Let  ,X  be a NCTS and L be NCL on X . Let us  define the  neutrosophic  crisp closure operator 

)()(   ANCAANCcl  for any NCS A of X. Clearly, let )(ANCcl  is a neutrosophic   crisp operator. Let 

)(LNC    be NCT generated by NCcl   

.i.e    .)(: cc AANCclALNC    now  NL      ANCclANCAAANCcl    for every  

neutrosophic crisp set A. So,     )( NN . Again   Xon  NCSs  allL     ,AANCcl   because

NNCA * , for every neutrosophic  crisp set A so  LNC *  is the neutrosophic crisp discrete topology on 

X. So we can conclude by Theorem 4.1.(ii).    LNCNC N
*)(    i.e.  * NCNC  , for  any neutrosophic   

ideal 1L  on X. In particular, we have for two topological neutrosophic ideals ,1L  and 2L  on X, 

   2
*

1
*

21 LNCLNCLL    . 

 

Theorem 3.3.6: Let 21,  be two neutrosophic  crisp topologies on X. Then for any topological 

neutrosophic crisp ideal L on X, 21    implies ),(),( 12  LNALNA   , for every A L  then 
21

   NCNC  

Proof: Clear. A basis   ,LNC  for )(LNC   can be described as follows: 

   ,LNC  LBABA  ,:  .  

Then we have the following theorem. 

 

Theorem 3.3.7:    ,LNC  LBABA  ,:   Forms a basis for the generated NT of the NCT  ,X  

with topological neutrosophic crisp ideal L on X. 
 
The relationship between NC  and NC )(L established throughout the following result which have an 

immediately   proof . 
 

Theorem 3.3.8: Let 21 ,  be two neutrosophic crisp topologies on X. Then for any topological 

neutrosophic ideal L on X,  21   implies 
21

   NCNC . 

 

Theorem 3.3.9: Let   ,  be a NCTS and 21  , LL  be two neutrosophic crisp ideals on X . Then for any 

neutrosophic crisp set A in X, we have  

i)      .)(,)(,, 221121 LNCLNCALNCLNCALLNCA     ii)     )(()()()( 122121 LLNCLLNCLLNC
    

Proof : Let  ,,21 LLp   this means that there exists  PNCU   such that  21 LLUA p  i.e. There 

exists 11 L  and 22 L  such that  21  UA  because of the heredity of L1, and assuming 

NO 21  .Thus we have   21  UA  and    12   pUA  therefore   221 LAU    

and   112 LAU   . Hence   ,, 12 LNCLNCAp    or   ,, 21 LNCLNCAP    because p  must belong to 

either 1   or 2  but not to both. This gives      .)(,)(,, 221121 LNCLNCALNCLNCALLNCA     .To show 

the second inclusion, let us assume   ,, 21 LNCLNCAP   . This implies that there exist  PNU   and 22 L  



such that   12 LAU p   . By the heredity of 2L ,  if we assume that A2  and define   AU  21   . 

Then we have   2121 LLUA   . Thus,      .)(,)(,, 221121 LNCLNCALNCLNCALLNCA     and 

similarly, we can get    .)(,, 1221 LLNCALLNCA    .  This gives the other inclusion, which complete the 

proof. 

 

Corollary 3.3.10: Let   ,  be a NCTS with topological neutrosophic crisp ideal L on X. Then 

 

i) )())(()(NC and ),(),( LLNCNCLLNCALNCA     

ii)    )()()( 2121 LNCLNCLLNC    . 

 

4 Interval Valued Neutrosophic Sets 

In this section, we studied interval valued neutrosophic sets and their properties. 

Definition 4.1: Let X be a space of points (objects) with generic elements in X denoted by x. An 
interval valued neutrosophic set (for short IVNS) A in X is characterized by truth-membership function 

)(xTA , indeteminacy-membership function )(xI A  and falsity-membership function )(xFA . For each point 
x in X, we have that )(xTA , )(xI A , )(xFA      [0, 1] . 

 

Definition 4.2: For two IVNS,  INSA  ={<x, [ )(xT L
A , )(xT U

A ] , [ )(xI L
A , )(xIU

A ],[ )(xF L
A , )(xFU

A ]> | x X } 

And INSB = {<x, ={<x, [ )(xT L
B , )(xT U

B ] , [ )(xI L
B , )(xI U

B ],[ )(xF L
B , )(xFU

B ]> | x X }>|x X } the two 

relations are defined as follows: 

(1) INSA    INSB if and only if  

)(xT L
A   )(xT L

B , )(xT U
A   )(xT U

B , )(xI L
A   )(xI L

B , )(xF L
A   )(xFB  , )(xFU

A   )(xFU
B .  

(2)   INSA  = INSB  if and only if  ,  

)(xT L
A = )(xT L

B , )(xT U
A = )(xT U

B , )(xI L
A = )(xI L

B , )(xI U
A = )(xI U

B , )(xF L
A = )(xF L

B , )(xFU
A  = )(xFU

B  

 for any  x X. 
  

    Definition 4.3: Assume that there are two interval neutrosophic sets A and B in X  ={ 1x , 2x ,…, nx } 

Based on the extension measure for fuzzy sets, a cosine similarity measure between interval valued 

neutrosophic sets A and B is proposed as  follows: 

.
)()()()()()(1

),(
222222 ))(())(())(())(())(())((1 iBiBiBiAiAiA xFxIxTxFxIxT

iBiAiBiAiBiA
n

i
N

xFxFxIxIxTxT

n
BAC




      

Where 

)( iA xT = )( i
L
A xT + )( i

U
A xT  , )( iB xT = )( i

L
B xT + )( i

U
B xT  

)( iA xI = )( i
L
A xI + )( i

U
A xI  , )( iB xI = )( i

L
B xI + )( i

U
B xI  

 

)( iA xF = )( i
L
A xF + )( i

U
A xF , )( iB xF = )( i

U
B xF + )( i

U
B xF . 

 

And  

)( i
L
A xT + )( i

U
A xT  , )( iB xT = )( i

L
B xT + )( i

U
B xT  

)( iA xI = )( i
L
A xI + )( i

U
A xI  , )( iB xI = )( i

L
B xI + )( i

U
B xI  

 



 )( iA xF = )( i
L
A xF + )( i

U
A xF , )( iB xF = )( i

U
B xF + )( i

U
B xF . 

 

   Proposition 4.4:  Let A and B be interval valued neutrosophic sets then  

i. 0  ),( BACN    1 

ii. ),( BACN  = ),( ABCN  

iii. ),( BACN  = 1  if A= B i.e  

)( i
L

A xT = )( i
L

B xT , )( i
U
A xT = )( i

U
B xT , )( i

L
A xI = )( i

L
B xI , )( i

U
A xI = )( i

U
B xI  and )( i

L
A xF = )( i

L
B xF , )( i

U
A xF = )( i

U
B xF  

for  i=1,2,…., n. 
Proof : (i) it is obvious that the proposition is true according to the cosine valued 
 
(ii) it is obvious that the proposition is true. 
 
(iii) When A =B, there are )( i

L
A xT = )( i

L
B xT , )( i

U
A xT = )( i

U
B xT , )( i

L
A xI = )( i

L
B xI , )( i

U
A xI = )( i

U
B xI and 

)( i
L

A xF = )( i
L

B xF , )( i
U
A xF = )( i

U
B xF  for  i=1,2,…., n, So there is ),( BACN  = 1   

 
If we consider the weights of each element ix , a weighted  cosine similarity measure between IVNSs A 
and B is given as follows: 
                                                                                                                                                

.
)()()()()()(1

),(
222222 ))(())(())(())(())(())((1 iBiBiBiAiAiA xFxIxTxFxIxT

iBiAiBiAiBiA
n

i
iWN

xFxFxIxIxTxT
w

n
BAC




   

Where iw  ∈ [0.1] ,i =1,2,…,n ,and  


n

i
iw

1

 =1. 

If we take iw  = 
n

1
 , i =1,2,…,n , then there is  ),( BACWN  = ),( BACN . 

Definition 4.5: The weighted cosine similarity measure between two IVNSs A and B also satisfies the 
following properties: 

i. 0   ),( BACWN    1 

ii. ),( BACWN  = ),( ABCWN  

iii. ),( BACWN  = 1  if A= B i.e  

 )( i
L

A xT = )( i
L

B xT , )( i
U
A xT = )( i

U
B xT . )( i

L
A xI = )( i

L
B xI , )( i

U
A xI = )( i

U
B xI  and )( i

L
A xF = )( i

L
B xF , )( i

U
A xF = )( i

U
B xF  

for  i=1,2,…., n 
 
Proposition 4.6:  Let the distance measure of the angle as d(A,B)= arcos ),( BACN ,then it satisfies the 
following properties. 

i. d(A, B)     0,  if  0   ),( BACN    1 

ii. d(A, B) = arcos(𝟏) = 0,  if ),( BACN = 1 

iii. d(A, B) = d( B, A) if  ),( BACN  =  ),( ABCN  

iv. d(A, C)    d(A, B) + d( B, C)  if  A   B   C for any interval valued neutrosophic sets C. 

Proof : obviously, d(A,B) satisfies the (i) – (iii). In the following , d(A,B) will be proved to satisfy the 

(iv). 

For any  C = { ix }, A   B   C since Eq (7) is the sum of terms. Let us consider the distance measure of 

the angle between vectors: 

id (A( ix ), B( ix )) = arcos( NC (A( ix ), B( ix )), 

id (B( ix ), C( ix )) = arcos( NC (B( ix ), C( ix )), and  

id (A( ix ), C( ix )) = arcos( NC (A( ix ), C( ix )),, for  i=1, 2, .., n, where 



.
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5. Applications of Neutrosophic Sets 

In this section, the author gave some applications of neutrosophic sets in real life problems. 

 

5.1. Multi-criteria group decision-making methods based on hybrid score-accuracy 

functions 

In a multi-criteria group decision-making problem, let A= {A1, A2, …, Am} be a set of alternatives and let 

C= {C1, C2, …, Cn} be a set of attributes. Then, the weights of decision makers and attributes are not 

assigned previously, where the information about the weights of the decision makers is completely 

unknown and the information about the weights of the attributes is incompletely known in the group 

decision-making problem. In such a case, we develop two methods based on the hybrid score-accuracy 

functions for multiple attribute group decision-making problems with unknown weights under single 

valued neutrosophic and interval neutrosophic environments.  

Multi-criteria group decision-making method in single valued neutrosophic setting 

In the group decision process under single valued neutrosophic environment, if a group of t decision 

makers or experts is required in the evaluation process, then the kth decision maker can provide the 

evaluation information of the alternative Ai (i= 1, 2, …, m) on the attribute Cj (j= 1, 2, …, n), which is 

represented by the form of a SVNS:  

{ }C∈C/)C(F,)C(I,)C(T,C=A jj
k
Aij

k
Aij

k
Aij

k
i  . Here, 3≤)C(F+)C(I+)C(T≤0 j

k
Aij

k
Aij

k
Ai

, 

[ ]1,0∈)C(T j
k
Ai

, [ ]1,0∈)C(I j
k
Ai

, [ ]1,0∈)C(F j
k
Ai

,  for k = 1, 2, …., t, j=1, 2, …., n, i=1, 2, ….,m 

For convenience, F,I,T=a k
ij

k
ij

k
ij

k
ij   is denoted as a SVNN in the SVNS. Ak

i (k= 1, 2, …t; i= 1, 2, …, m;  j= 

1, 2, …, n). Therefore, we can get the k-th single valued neutrosophic decision matrix  n×m
k
ij

k )A(=D  (k= 1, 

2, …, t).  

Then, the group decision-making method is described as follows. 

 

 



    Step1: Calculate hybrid score-accuracy matrix 

The hybrid score-accuracy matrix n×m
k
ij

k )Y(=Y (k= 1, 2, …, t; i= 1, 2, …, m; j= 1, 2, …, n) is obtained 

from the decision matrix  n×m
k
ij

k )A(=D  by the following formula:  

)F-I-T+2)(α-1(
3

1
+)F-T+1(α

2

1
=Y k

ij
k
ij

k
ij

k
ij

k
ij

k
ij  

    Step2: Calculate the average matrix   

From the obtained hybrid score-accuracy matrices, the average matrix  n×m
*
ij

* )Y(=Y (k= 1, 2, …, t; i= 1, 2, 

…, m; j= 1, 2, …, n) is calculated by ∑ )Y(
t

1
=Y

t
1=k

k
ij

*
ij .                                               

The collective correlation coefficient between Y
k (k= 1, 2, …, t) and Y

* represents as follows:  

∑ .

∑ )Y(∑ )Y(

∑ YY
=e

m
1=i

n
1=j

2*
ij

2
n

1=j
k
ij

n
1=j

*
ij

k
ij

k  

    Step3: Determination decision maker’s weights 

In practical decision-making problems, the decision makers may have personal biases and some 

individuals may give unduly high or unduly low preference values with respect to their preferred or 

repugnant objects. In this case, we will assign very low weights to these false or biased opinions. Since 

the ‘‘mean value’’ is the ‘‘distributing center’’ of all elements in a set, the average matrix Y
* is the 

maximum compromise among all individual decisions of the group. In mean sense, a hybrid score-

accuracy matrix Yk  is closer to the average one  Y*. Then, the preference value (hybrid score-accuracy 

value) of the k-th decision maker is closer to the average value and his/her evaluation is more reasonable 

and more important, thus the weight of the k-th decision maker is bigger. Hence, a weight model for 

decision makers can be defined as: 

∑ e

e
=λ

t
1=k k

k
k , where 1≤λ≤0 k , 1=∑ λt

1=k k  for k=1, 2, ….,t. 

     Step4: Calculate collective hybrid score-accuracy matrix 

For the weight vector T
k21 )λ,,λ,λ(=λ  of decision makers obtained from eqation.(6), we accumulate all 

individual hybrid score-accuracy matrices of n×m
k
ij

k )Y(=Y (k= 1, 2, …, t; i= 1, 2, …, m; j= 1, 2, …, n) into 

a collective hybrid score-accuracy matrix nmij)Y(Y  by the following formula: 

YY k
ij

t
1k kij     

     Step5: Weight model for attributes 

For a specific decision problem, the weights of the attributes can be given in advance by a partially 

known subset corresponding to the weight information of the attributes, which is denoted by W. 

Reasonable weight values of the attributes should make the overall averaging value of all alternatives as 

large as possible because they can enhance the obvious differences and identification of various 



alternatives under the attributes to easily rank the alternatives. To determine the weight vector of the 

attributes Ye introduced the following optimization model: 

ij
m

1=i
n

1=j jY∑ ∑ W
m

1
=Wmax

 

Subject to, 

1=∑ Wn
1=j j  

where Wj >0                                                                                                                                                                

This is a linear programming problem, which can be easily solved to determine the weight vector of the 

attributes W= (W1,W2,…,Wn)
T
 

     Step6: Ranking alternatives  

To rank alternatives, we can sum all values in each row of the collective hybrid score-accuracy matrix 

corresponding to the attribute weights by the overall weighted hybrid score-accuracy value of each 

alternative Ai (i= 1, 2, …, m): 

ij
n

1=j ji Y∑ W=)A(M
 

According to the overall hybrid score-accuracy values of M(Ai) (i= 1, 2, …, m), we can rank alternatives 

Ai (i= 1, 2, …, m) in descending order and choose the best one. 

Step7: End 

 

5.2. Example of Teacher Recruitment Process 

    Suppose  that  a  university  is  going  to  recruit  in  the  post  of  an assistant  professor for a particular 

subject..  After initial screening, five  candidates  (i.e. alternatives) A1, A2, A3, A4, A5  remain for further 

evaluation. A committee of four decision makers or experts, D1, D2, D3, D4 has  been  formed  to  conduct  

the  interview  and  select  the  most appropriate  candidate.  Eight  criteria  obtained  from  expert 

opinions,  namely,  academic  performances  (C1),  subject knowledge  (C2),  teaching  aptitude  (C3),  

research-  experiences (C4),  leadership  quality  (C5),  personality  (C6), management capacity  (C7) and 

values  (C8)  are  considered  for  recruitment  criteria. If four experts are required in the evaluation 

process, then the five possible alternatives Ai (i= 1, 2, 3, 4, 5) are evaluated by the form of SVNNs under 

the above eight attributes on the fuzzy concept "excellence". Thus the four single valued neutrosophic 

decision matrices can be obtained from the four experts and expressed, respectively, as follows:(see Table 

1, 2, 3, 4). 

Table1: Single valued neutrosophic decision matrix  

D1= 

3.,1.,7.2.,1.,7.1.,1.,7.3.,1.,7.2.,2.,7.4.,3.,7.3.,3.,8.2.,2.,8.A

4.,2.,7.3.,2.,7.2.,2,.7.2.,2.,7.2.,1.,7.4.,3.,7.3.,2.,8.0.,1.,8.A

3.,3.,7.3.,1.,7.3.,3.,6.3.,2.,7.1.,3.,7.3.,4.,7.2.,3.,8.2.,1.,8.A

4.,3.,7.2.,2.,7.2.,4.,6.2.,3.,7.3.,3.,7.2.,3.,7.1.,2.,8.2.,2.,8.A

3.,4.,7.1.,3.,7.2.,4.,7.1.,4.,7.2.,2.,7.1.,2.,7.1.,1.,8.1.,1.,8.A

CCCCCCCC.

5

4

3

2

1

87654321

 



 

Table2: Single valued neutrosophic decision matrix  

D2=

3.,2.,7.2.,2.,7.2.,1.,7.3.,2.,7.2.,2.,7.3.,3.,7.3.,2.,8.2.,1,.8.A

4.,3.,7.3.,3.,7.2.,2.,7.2,.3.,7.2.,1.,7.4.,3.,7.2.,2.,8.0.,1.,8.A

3.,2.,7.3.,2.,7.3.,3.,6.3.,3.,7.2.,3.,7.3.,3.,7.3.,3.,8.2.,2.,8.A

4.,4.,7.2.,3.,7.3.,4.,6.2.,2.,7.3.,3.,7.3.,3.,7.2.,2.,8.2.,2.,8.A

3.,3.,7.2.,3.,7.2.,4.,7.2.,4.,7.2.,1.,7.2.,2.,7.1.,1.,8.1.,2.,8.A

CCCCCCCC.

5

4

3

2

1

87654321

 

Table3: Single valued neutrosophic decision matrix  

D3= 

3.,2.,7.2.,2.,7.2.,1.,7.3.,1.,7.2.,1.,7.4.,2.,7.3.,2.,8.2.,1.,8.A

3.,2.,7.3.,2.,7.2.,2.,7.2.,2.,7.2.,1.,7.2.,3.,7.2,.2.,8.0.,1.,8.A

4.,3.,7.3.,2.,7.3.,2.,6.2.,2.,7.2.,3.,7.3.,3.,7.2.,2.,8.2.,2.,8.A

3.,3.,7.2.,3.,7.4.,4.,6.2.,3.,7.3.,2.,7.2.,3.,7.1.,2.,8.1.,2.,8.A

3.,3.,7.2.,3.,7.2.,3.,7.1.,3.,7.1.,2.,7.2.,2.,7.1.,1.,8.0.,1.,8.A

CCCCCCCC.

5

4

3

2

1

87654321

 

Table4: Single valued neutrosophic decision matrix  

D4=

3.,2.,7.2.,1.,7.1.,1.,7.3.,1.,7.2.,2.,7.3.,3.,7.0.,3.,8.2.,2.,8.A

4.,2.,7.3.,2.,7.2.,2.,7.2.,2.,7.2.,1.,7.3.,3.,7.3.,2.,8.0.,1.,8.A

3.,3.,7.3.,3.,7.2.,3.,6.2.,2.,7.2.,3.,7.3.,3.,7.2.,2.,8.2.,1.,8.A

3.,3.,7.2.,2.,7.3.,4.,6.2.,3.,7.3.,1.,7.2.,3.,7.1.,2.,8.0.,2.,8.A

3.,4.,7.1.,2.,7.2.,2.,7.1.,3.,7.2.,2.,7.1.,2.,7.1.,2.,8.1.,2.,8.A

CCCCCCCC.

5

4

3

2

1

87654321

 

Thus, we use the proposed method for single valued neutrosophic group decision-making to get the most 

suitable teacher. We take  = 0.5 for demonstrating the computing procedure of the proposed method. 

For the above four decision matrices, the following hybrid score-accuracy matrices are obtained by 

equation(3):(see Table 5, 6, 7, 8) 

Table5: Hybrid score accuracy matrix for D1 

Y1=

4667.15500.16333.14667.15167.13167.14833.16000.1A

3500.14333.15167.15167.15500.13167.15167.18000.1A

4000.14667.13167.14333.15667.13667.16500.16333.1A

3167.15167.13667.14833.14000.14833.16833.16000.1A

3667.15667.14500.15333.15167.16000.17167.17667.1A

CCCCCCCC.

5

4

3

2

1

87654321

 

Table6: Hybrid score accuracy matrix for D2 

Y2=

4333.15167.15500.14333.15167.14000.15167.16333.1A

3167.14000.15167.14833.15500.13167.16000.18000.1A

4333.14333.13167.14000.14833.14000.14833.16000.1A

2833.14833.12833.15167.14000.14000.16000.16000.1A

4000.14833.14500.14500.15500.15167.17167.16833.1A

CCCCCCCC.

5

4

3

2

1

87654321

 

 

 



Table7: Hybrid score accuracy matrix for D3 

Y3=

4333.15167.15500.14667.15500.13500.15167.16333.1A

4333.14333.15167.15167.15500.14833.16000.18000.1A

3167.14333.13500.15167.14833.14000.16000.16000.1A

4000.14833.12000.14833.14333.14833.16833.16833.1A

4000.14833.14833.15667.16000.15167.17167.18000.1A

CCCCCCCC.

5

4

3

2

1

87654321

 

Table8: Hybrid score accuracy matrix for D4 

Y4=

4333.15500.16333.14667.15167.14000.17333.16000.1A

3500.14333.15167.15167.15500.14000.15167.18000.1A

4000.14000.14000.15167.14833.14000.16000.16333.1A

4000.15167.12833.14833.14667.14833.16833.17333.1A

3667.16000.15167.15667.15167.16000.16833.16833.1A

CCCCCCCC.

5

4

3

2

1

87654321

 

From the above hybrid score-accuracy matrices, by using equation (4) we can yield the average matrix 

Y*.(see Table 9) 

Table 9: The average matrix 

Y*=

4417.15334.15917.14584.13450.13667.15625.16167.1A

3625.14250.15167.15084.15500.13792.15584.18000.1A

3875.14333.13459.14792.15042.13917.15833.16167.1A

3625.15000.12833.14917.14375.14625.16500.16417.1A

3834.15333.14750.15292.15459.15584.17084.17208.1A

CCCCCCCC.

5

4

3

2

1

87654321

 

  From the  equations. (5) and (6), we determine the weights of the three decision makers as follows:

2505.01  2510.02  2491.03  2494.03   

Hence, the hybrid score-accuracy values of the different decision makers' evaluations are aggregated[48]  

by equation (7) and the following collective hybrid score-accuracy matrix can be obtain as follows(see 

Table 10): 

Table10: Collective hybrid score accuracy- matrix 

Y=

4417.15334.15918.14584.13451.13667.15626.16167.1A

3626.14250.15167.15085.15500.13793.15584.18001.1A

3875.14332.13458.14792.15043.13917.15834.16168.1A

3624.15000.12833.14918.14375.14624.16500.16417.1A

3834.15334.14751.15292.15459.15584.17085.17209.1A

CCCCCCCC.

5

4

3

2

1

87654321

 

Assume that the information about attribute weights is incompletely known weight vectors, 
,2.0W1.0 1  ,2.0W1.0 2   ,2.0W1.0 3  ,2.0W1.0 4  ,2.0W1.0 5  ,2.0W1.0 6 

,2.0W1.0 7  2.0W1.0 8   given by the decision makers,  

By using the linear programming model (8), we obtain the weight vector of the attributes as: 

[ ]T1.0,1.0,1.0,1.0,1.0,1.0,2.0,2.0=W . 



Wcan calculate the overall hybrid score-accuracy values )A(M i (i=1, 2, 3, 4, 5): 

58842.1=)A(M 1 , 51208.1=)A(M 2 , 49421.1=)A(M 3 , 54591.1=)A(M 4 , 50957.1=)A(M 5  

According to the above values of M(Ai) (i= 1, 2, 3, 4, 5), the ranking order of the alternatives is  

A1 > A4 > A2 > A5 > A3. Then, the alternative A1 is the best teacher.  

 5.3. Application of Cosine Similarity Measure for Interval Valued Neutrosophic Numbers 

to Pattern Recognition 

 In order to demonstrate the application of the proposed cosine similarity measure for  interval valued  
neutrosophic numbers to pattern recognition, we discuss the medical diagnosis problem as follows: 
For example the patient reported temperature claiming that the patient has temperature between 0.5 and 
0.7  severity /certainty, some how it is between 0.2 and 0.4  indeterminable if temperature is cause or the 
effect of his current  disease. And it between 0.1 and 0.2 sure that temperature has no relation with his 
main disease.  
 
This piece of information about one patient  and one symptom may be written as: 

(patient,Temperature) = <[0.5, 0.7], [0.2 ,0.4], [0.1, 0.2]>, 
(patient, Headache)  = < [0.2, 0.3], [0.3 ,0.5], [0.3, 0.6]>, 

(patient, Cough)  =  <[0.4, 0.5], [0.6 ,0.7], [0.3, 0.4]>. 
Then,   

P = {< 1x ,  [0.5, 0.7], [0.2 ,0.4], [0.1, 0.2] >, < 2x 𝑥2, [0.2, 0.3], [0.3, 0.5], [0.3, 0.6] > ,< 3x , [0.4, 0.5], [0.6 

,0.7], [0.3, 0.4]>}. 

And each diagnosis iA  ( i=1, 2, 3)   can  also be represented by interval valued neutrosophic numbers with 

respect to all the symptoms as follows: 

𝐴1= {< 1x , [0.5, 0.6], [0.2 ,0.3], [0.4, 0.5] >, < 2x , [0.2 , 0.6 ], [0.3 ,0.4 ], [0.6 , 0.7]>,< 3x , [0.1, 0.2 ], 

[0.3 ,0.6 ], [0.7, 0.8]>}, 

𝐴2= {< 1x , [0.4, 0.5], [0.3, 0.4], [0.5, 0.6] >, < 2x  , [0.3, 0.5 ], [0.4 ,0.6 ], [0.2, 0.4]> , < 3x , [0.3, 0.6 ], 

[0.1, 0.2], [0.5, 0.6]>}. 

𝐴3= {< 1x , [0.6, 0.8], [0.4 ,0.5], [0.3, 0.4]>, < 2x  , [0.3, 0.7 ], [0.2, 0.3], [0.4, 0.7]> ,< 3x , [0.3, 0.5 ], [0.4, 

0.7 ], [0.2, 0.6]>}. 

Our aim is to classify the pattern P in one of the classes 1A , 2A , 3A .According to the recognition principle 

of maximum degree of similarity measure between interval valued neutrosophic numbers, the process of 
diagnosis  kA  to patient P is derived according to k =  arg Max{ ),( PAC iN )}.  

We can compute the cosine similarity between iA  (i=1, 2, 3) and P as follows; 

),( 1 PACN =0.8988, ),( 2 PACN =0.8560,  ),( 3 PACN  =0.9654 

Then, we can assign the patient to diagnosis  3A  (Typoid) according to recognition of principal. 

6.  Conclusion 

       Neutrosophic set is a mathematical framework which handles uncertain, incomplete, inconsistent, 

false, indeterminate information. Several hybrid structures have been proposed which based on 

neutrosophic sets. In this chapter, the authors presented the study on neutrosophic sets which is a 

generalization of fuzzy sets and intuitionistic fuzzy sets. Some set theoretic operations and properties are 



studied in this chapter. The authors also studied the hybrid structures associated with neutrosophic sets 

such as neutrosophic crisp sets and their related properties. Further, interval valued neutrosophic sets have 

been presented under discussion in this chapter. At the end, some applications of neutrosophic sets 

presented to show the applicability of neutrosophic sets in the real life problems. 
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KEY TERMS AND DEFINITIONS 

     Fuzzy Set: Let X  be a non-empty collection of objects denoted by x. Then a fuzzy set A  in X is a set of 

ordered pairs having the form    , :AA x x x X   ,  where the function  : 0,1A X   is called the 



membership function or grade of membership (also degree of compatibility or degree of truth) of x in A . 

The interval M =  0,1
 
is called membership space. 

      Interval Valued Fuzzy Set: Let D[0, 1] be the set of closed sub-intervals of the interval [0, 1]. An 

interval-valued fuzzy set in X, X   and Card(X) = n, is an expression A given by 

 ( , ( )) :AA x M x x X  , where  : 0,1AM X D . 

      Intuitionistic Fuzzy Set: Let X be a non-empty set. Then an intuitionistic fuzzy set A is a set having 

the form  A={(x, A(x), A(x)): xX}  where the functions A: X[0,1] and A: X[0,1] represents the 

degree ofmembership and the degree of non-membership respectively of each element xX and 

0A(x)+A(x)1 for each xX. 

     s-norm: The function      : 0,1 0,1 0,1s    is called an s-norm if it satisfies the following four axioms: 

Axiom 1.     ,  ,s x y s y x (commutative condition). 
Axiom 2. s(s(x, y), z) = s(x, s(y, z)) (associative condition). 
Axiom 3. If 1 2x x  and 1 2y y , then 1 1 2 2( , ) ( , )s x y s x y  (nondecreasing condition). 
Axiom 4.  s(1, 1) = 1, s(x, 0) = s(0, x) = x (boundary condition). 

t-norm: The function      : 0,1 0,1 0,1t    is called a t-norm if it satisfies the following four axioms: 

Axiom t1.  t(x, y) = t(y, x) (commutative condition). 
Axiom t2.  t(t(x, y), z) = t(x, t(y, z)) (associative condition). 
Axiom t3.  If 1 2x x  and 1 2y y , then 1 1 2 2( , ) ( , )t x y t x y  (nondecreasing condition). 
Axiom t4  t(x, 1) = x (boundary condition). 
 

Cosine Similarity Measure. Given two vectors of attributes, X=  ( 1x , 2x ,…, nx ) and Y= ( 1y , 2y ,…, ny ), 
the cosine similarity, cosθ, is represented using a dot product and magnitude as 

Cosθ=
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In vector space, a cosine similarity measure between two fuzzy set  )( iA x  and )( iB x  defined as 

follows: 

),( BACF  = 
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The cosine of the angle between the vectors is within the values between 0 and 1. 

In 2-D vector space, cosine similarity measure between IFS as follows: 

 

),( BACIFS  =
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