(14,14,14)

(12,14,12)
(2,14,20)

‘O/ (24,14.6)
(20,14.2)

(8.4.18) (18,48 (6,14,24)

(4,14,10) (10,14.49) T

(16,14,22]




Neutrosophic Triplet
Groups and their
Applications to
Mathematical Modelling

W. B. Vasantha Kandasamy
llanthenral K
Florentin Smarandache




Copyright 2017 by EuropaNova ASBL and the Authors

This book can be ordered from:
EuropaNova ASBL

Clos du Parnasse, 3E

1000, Bruxelles

Belgium

E-mail: info@europanova.be
URL: http://www.europanova.be/

Peer reviewers:

Said Broumi, University of Hassan Il Mohammedia, Hay El Baraka Ben M'sik,
Casablanca B. P. 7951, Morocco.

Chris Platero, University of New Mexico - Gallup, NM 87301, USA.

Xiaohong Zhang, Department of Mathematics, Shaanxi University of Science &
Technology, Xi’an, 710021, P. R. China.

Xinliang Liang, Department of Mathematics, Shanghai Maritime University
Shanghai, 201306, P. R. China.

Many books can be downloaded from the following
UNM Digital Science Library:
http://fs.gallup.unm.edu/ScienceLibrary.htm

ISBN-13: 978-1-59973-533-7
EAN: 9781599735337

Printed in the European Union



CONTENTS

Preface

Chapter One
INTRODUCTION TO NEUTROSOPHIC TRIPLET

GROUPS

Chapter Two

ALGEBRAIC STRUCTURES ON NEUTROSOPHIC
TRIPLET GROUPS

Chapter Three

SPECIAL TYPE OF NEUTROSOPHIC TRIPLET
GROUPS MATRICES

101

143



Chapter Four
APPLICATIONS OF NEUTROSOPHIC TRIPLET

GROUPS TO MATHEMATICAL MODELS
FURTHER READING
INDEX

ABOUT THE AUTHORS

196

261

264

266



PREFACE

The innovative notion of neutrosophic triplet groups,
introduced by Smarandache and Ali in 2014-2016, happens to
yield the anti-element and neutral element once the element is
given. It is established that the neutrosophic triplet group
collection forms the classical group under product for Z,, for
some specific n. However the collection is not even closed
under sum. These neutrosophic triplet groups are built using
only modulo integers or Cayley tables.

Several interesting properties related with them are defined.
It is pertinent to record that in Z,, when n is a prime number,
we cannot get a neutral element which can contribute to
nontrivial neutrosophic triplet groups. Further, all neutral

elements in Z, are only nontrivial idempotents.

Using neutrosophic triplet groups authors have defined the
notion of neutrosophic triplet group matrices. Further as the

notion of operation addition or max or min cannot be defined on



these triplet groups; authors have overcome this problem by
defining the new notion of conditionally neutral minimum ( c.n.
min ) and conditionally neutral maximum ( c.n. max ) for min
and max operations respectively. However the operation of

addition can never be compatible.

We define these new operations mainly to construct
mathematical models akin to Fuzzy Cognitive Maps (FCMs)
model, Neutrosophic Cognitive Maps (NCMs) model and Fuzzy
Relational Maps (FRMs) model. These new models are defined
in chapter four of this book. These new models can find
applications in discrete Artificial Neural Networks, soft
computing, and social network analysis whenever the concept

of indeterminate is involved.

The Neutrosophic Duplets were introduced by Smarandache
in 2016.

Further authors have defined algebraic codes in a special
way as automatically these codes built using Z, lead to
mutually orthogonal codes or dual codes. Study in this direction

is open.

We wish to acknowledge Dr. K Kandasamy for his
sustained support and encouragement in the writing of this
book.

W.B.VASANTHA KANDASAMY

ILANTHENRAL K
FLORENTIN SMARANDACHE



Chapter One

INTRODUCTION TO NEUTROSOPHIC
TRIPLET GROUPS

The innovative study of neutrosophic triplet groups was
first started by Florentin and Ali in [7]. These neutrosophic
triplet groups satisfy certain algebraic properties. However it is
recorded in [7] that these triplets collection do not enjoy the
classical group structure.

In fact they have proved the collection of all neutrosophic
triplet groups form a semigroup under product. We recall all
definitions from [7].

Definition 1.1. Let N be a set together with a binary operation
* Then N is called a neutrosophic triplet set if for any a € N
there exists a neutral ‘a’ called neut(a) different from the
classical algebraic unitary element and an opposite of ‘a’
called anti (a) with neut (a) and anti (a) belonging to N, such
that

a *neut(a) = neut(a) *a =a
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and a * anti (a) = anti (a) * a = neut (a).

The elements a, neut (a) and anti(a) are collectively
called as neutrosophic triplet groups and we denote it by (a,
neut(a), anti(a)). By neut (a), we mean neutral of a and
apparently a is just the first coordinate of a neutrosophic triplet

and not a neutrosophic triplet.

For the same element a, 1 in N there may be more

neutrals to it neut (a) and more opposite of it anti(a).

Definition 1.2 . The element b in (N, *) is the second component
denoted by neut (.) of a neutrosophic triplet if there exists other
elements a and c in N such thata *b=b *a=aanda *c =c

*a=b.
The resultant neutrosophic triplet is (a, b, c).

Definition 1.3. The element c in (N, *) is the third component
denoted by anti(.) of a neutrosophic triplet, if there exists other
elements a and b in N such thata *b =b *a =aand a * c =

¢ *a = b. The formed neutrosophic triplet is (a, b, c).
We will illustrate this by examples.

Example 1.1. Let {Z,4,x} be the semigroup under multiplication
modulo 14. The only idempotents in Z;4 are 7 and 8. We further
see none of the elements 1 3, 5,9, 11 and 13 in Z4 contribute to

neutrosophic triplets as they are units under product in Z4.

Only elements 2, 4, 6, 8, 10 and 12 are the probable ones

in Z;4 which can contribute to the neutrosophic triplet groups.
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We see 2 € Zy4 is such that 2 x 8§ =2 (mod 14) and 8 is
the neut(2). Further 2 x 4 = 8 (mod 14) so 4 is the anti (2). Thus
(2, 8, 4) forms the neutrosophic triplet. neut (2) = 8 and anti (2)
=4,

Similarly 4 x 8 =4 (mod 14) and 4 x 2 = 8 (mod 14)
so (4, 8, 2) is also a neutrosophic triplet neut (4) = 8 and
anti (4) = 2.

Consider 6 € Zy4, 6 x 8 = 6 (mod 14) so neut(6) = 8 and
6 x 6 =8 so anti (6) = 6. Thus (6, 8, 6) is a neutrosophic triplet.

Now for 10 € Z4 10 x 8 = 10 (mod 14) so neut(10) = 8
and anti(10) = 8 so (10, 8, 12) is a neutrosophic triplet.

For 12 x 8 = 12 so neut(12) = 8 and anti(12) = 10 hence
(12, 8, 10) is also a neutrosophic triplet.

Clearly 7 x 7 =7 (mod 14) but 7 is not a neutral element
further (0, 0, 0) and (7, 7, 7) are trivial neutrosophic triplets. We
see K=1{2,4,6,8, 10, 12} < Z,4 is such that they form a group
under product modulo 14, with 8 as the identity given by the

following table.
x 2 4 6 8 10 | 12
2 4 8 12 2 6 10
4 8 2 10 4 12 6
6 12 | 10 8 6 4 2
8 2 4 6 8 10 | 12
10 6 12| 4 10 2 8
12 | 10 6 2 12 8 4
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However we give yet another example.

Example 1.2. Let S = {Z;s, x} be the semigroup under product
modulo 15. 6 and 10 are the only non-trivial idempotents of Zs,
6 x 6=06(mod 15) and 10 x 10 =10 (mod 15).

Let3 € Z;5,3 x 6 =3 (mod 15), neut (3) = 6, and anti (3)
=12as3 x 12=6 (mod 15).

Thus (3, 6, 12) is a neutrosophic triplet group.

For 12 € Z;5, 12 x 6 = 12 (mod 15), neut (12) = 6 and
12 x 3 =6 (mod 15) hence anti (12) = 3.

Hence (12, 6, 3) is a neutrosophic triplet (6, 6, 6) is also a
neutrosophic triplet.

For 5 € Z;5s we have 5 x 10 =5 (mod 15) and neut (5) =
10. Now 5 x 14 = 10 (mod 15) so anti (5) = 14.

However (14, 10, 5) is not a neutrosophic triplet as 14 x
10 = 5 (mod 15) and 14 is a unit of Z;5. (9, 6, 9) is a

neutrosophic triplet.
For9 e Z;5,9x 6 =9 (mod 15) and 9 x 14 = 6 (mod 15).

So (9, 6, 14) is not a neutrosophic triplet and (14, 6, 9) is

also not a neutrosophic triplet.

We see {3, 6, 12, 9} forms a semigroup with 6 as the

neutral element.
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We give the table of {3, 6, 12, 9} under x.

X 3 6 12 9
3 9 3 6 12
6 3 6 12 9
12 6 12 9 3
9 12 9 3 6

Consider the table for {5, 10, 14}

X 5 10 14
5 10 5 10
10 5 10 5
14 10 5 1

We see {5, 10, 14} is not even closed under product so
will not form a semigroup so 10 € Z;5 is not neutral element as
5 x 10 =5 but 5 x 14 = 10 so this sort of neutrosophic triplets
behave very differently and we do not in general define them as

neutrosophic triplet as 14 x 14 =1 (mod 15) is a unit in Z;s.

Example 1.3. Let {Z5, x} be the semigroup under product
modulo 18. 9 and 10 are the only idempotents of Zs.

2 x 10 =2 (mod 18),

2 x 14 =10 (mod 18) so (2, 10, 14) and (14, 10, 2) are
neutrosophic triplets of Z;s. 3 does not contribute to
neutrosophic triplets. (4, 10, 16) and (16, 10, 4) are
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neutrosophic triplets and (8, 10, 8) is again a neutrosophic

triplet.

It is unusual, 3, 6, 12 and 15 do not contribute to any
neutrosophic triplet (9, 9, 9) is the trivial neutrosophic triplet.

So H = {(4, 10, 16), (16, 10, 4), (10, 10, 10), (8, 10, 8),
(2, 10, 14) (14, 10, 2)} forms the collection of non trivial
neutrosophic triplets.

Clearly (10, 10, 10) acts as the identity element of H. The
table for H is as follows.

x (4, 10, 16)

(16, 10, 4)

(10, 10, 10)

(4,10,16)

(16,10,4)

(10,10,10)

(4,10,16)

(16,10,4)

(10,10,10)

(4,10,16)

(16,10,4)

(10,10,10)

(4,10,16)

(16,10,4)

(10,10,10)

(8,10,8)

(14,10,2)

(2,10,14)

(8,10,8)

(2,10,14)

(8,10,8)

(14,10,2)

(2,10,14)

(14,10,2)

(2,10,14)

(8,10,8)

(14,10,2)

(8, 10, 8)

(2,10,14)

(14,10,2)

(14,10,2)

(8,10,8)

(2,10,14)

(2,10,14)

(14,10,2)

(8,10,8)

(8,10,8)

(2,10,14)

(14,10,2)

(10,10,10)

(16,10,4)

(4,10,16)

(16,10,4)

(4,10,16)

(10,10,10)

(4,10,16)

(10,10,10)

(16,10,4)

H is a group of order six.
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Clearly (2, 10, 14) generates H as

(2, 10, 14) x (2, 10, 14) = (4, 10, 16),
(2,10, 14) (4, 10, 16) = (8, 10, 8),
(2,10, 14) (8, 10, 8) = (16, 10, 4),
(2,10, 14) x (16, 10, 4) = (14, 10, 2),
(2, 10, 14) x (14, 10, 2) = (10, 10, 10).

Thus (2, 10, 14)° = (10, 10, 10).

Hence H is a cyclic group of order six.

Example 1.4. Let S = {Zs,, x} be the semigroup under product
modulo 50. 25 and 26 are the only idempotents of Zs.

The neutrosophic triplet groups associated with the

neutral element 26 are

H=

{(2, 26, 38), (38, 26, 2), (4, 26, 44),
(44, 26, 4), (8, 26, 22), (22, 26, 8)

(6, 26, 46) (46, 26, 6) (12, 26, 48)
(48, 26, 12), (14, 26, 34), (34, 26, 14)
(16, 26, 36), (36, 26, 16), (18, 26, 32),
(32, 26, 18), (24, 26, 24), (28, 26, 42)
(42, 26, 28), (26, 26, 26)}.

We see {(2, 26, 38)} generates the group H and H is a

cyclic group of order 20. We see 26 acts as the identity for K =
{2,4,8,12, 16, 32, 14, 28, 6, 24, 48, 46, 42, 34, 18, 36, 22, 44,
38,26} and 2% = 26 that is 2 generates this cyclic group.
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We see though 5, 10, 15, 20, 30, 40, 35 and 45 are not
units still they do not contribute to neutrosophic triplet groups.

We see 2 x 52 = 50.

Next we consider another example.
Example 1.5. Let S = {Z,y, x} be the semigroup under product
modulo 20. Here the neutrosophic triplets are formed in a very
unique way.

We see the only idempotents in Z, are 5 and 16 as

5 x5=5(mod 20) and 16 x 16 = 16 (mod 20).

We see 2 is not neutral as 2 x 5 = 10 (mod 20) and

2 x 16 =12 (mod 20).

Consider 4 € Zy;

4 x 5 =0 (mod 20) so 5 is not a neutral of 4 and

4 x 16 =4 (mod 20) so 16 is the neutral of 4.
Now 4 x 4 =16 so anti (4) = 4.

Thus (4, 16, 4) is a neutrosophic triplet associated with

Consider 6 € Zj, 6 x 5 = 10 (mod 20) so 5 is not a
neutral of 6.
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Also 6 x 16 =16 (mod 20) so 16 is also not a neutral of 6.
Thus 6 does not form a neutrosophic triplet group.

Consider 8 € Zyg, 8 x 5=0 (mod 20) so 5 is not a neutral
of 8. Now 8 x 16 = 8 (mod 20) so 16 is a neutral of 8 and anti 8
is 12.

Consider 10 € Zy, 10 x 5 =10 (mod 5) and there is no
anti for 10.

So 10 cannot contribute to a neutrosophic triplet with 5.

10 x 16 = 0 (mod 20) so 10 cannot contribute for a
neutrosophic triplet.

Consider 12 € Zy 12 x 10 = 0 (mod 20) so 10 is not a
neut (12).

12 x 16 = 12 so neut(12) = 16 and anti(12) is 8.
Thus (8, 16, 12) and (12, 16, 8) are neutrosophic triplets.

Now 15 € Zy; 15 x 5 =15 (mod 20) so neut (15) =5 and
15 x 5 =5 (mod 20) so anti (15) = 15. Hence (15, 5, 15) is a
neutrosophic triplet.

Finally 18 € Z,;, 18 x 5 = 10 (mod 20) so 5 is not a
neutral of 18.

18 x 16 # 19 (mod 20) so 16 is not the neuter of 18 anti
18 cannot be 2 or 12 so (18, 16, 2) and (18, 16, 12) are not
neutrosophic triplets.
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Thus we get the following collection of neutrosophic
triplets {(4, 16, 4), (8, 16, 12), (8, 16, 2), (12, 16, 8), (16, 16,
16), (15, 5, 15), (5, 5, 5)}.

We see (4, 16, 4) x (4, 16, 4) = (16, 16, 16).

(4, 16,4) x (8, 16, 12) = (8, 16, 8).

(4, 16,4) x (12, 16, 8) = (8, 16, 8).

However (8, 16, 8) is not a neutrosophic triplet as

8 x 16 = 8 (mod 16) but 8 x 8 # 16 is not possible hence the
claim.

(4, 16, 4) x (15, 5, 15) = (0, 0, 0) the trivial neutrosophic
triplet. (8, 16, 12) x (15, 5, 15) = (0, 0, 0) and (12, 16, 12) x
(15, 5, 15)=(0, 0, 0).

So the collection is not even closed under product when
{Z50, x} 1s used as a semigroup under product modulo 20.

Example 1.6. Let {Z4s, x} be the semigroup under product
modulo 45. Only 10 and 36 are the idempotents of Zs. (9, 36, 9)
and (36, 36, 36) are neutrosophic triplets of Zys.

15 x 10 =15 (mod 45).

15 x x = 10 we cannot get any x such that 15x = 10
(mod 45) that is 15 has no anti (45), only neut (45) = 10.

For 18 x Zy4s, 18 x 36 = 18 (mod 45).
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18 x 26 =36 (mod 45).

Hence (18, 36, 27) and (27, 36, 18) are neutrosophic triplets
associated with 36. (5, 10, 20) and (20, 10, 5) are triplets
associated with Z4s. 30 x 10 = 30 (mod 45), however finding
anti 30 is a difficult task. (10, 10, 10) is also a neutrosophic
triplet.

Interested reader can find all nontrivial neutrosophic
triplets associated with Zys.

Example 1.7. Let S = {Z3, x} be the semigroup under x
modulo 30.

We have mainly considered this example as there are six
idempotents in Z3, 6, 10, 15, 16, 21 and 25.

We see (2, 16, 8) and (8, 16, 2) are neutrosophic triplets
associated with 16 € Zj,. (3, 21, 27) and (27, 21, 3) are
neutrosophic triplets associated with 21 € Z3. (4, 16, 4) is a
neutrosophic triplet. (5, 25, 5) is a neutrosophic triplet. (9, 21, 9)
is again a neutrosophic triplet. (12, 6, 18) and (18, 6, 12) are
neutrosophic triplets. (14, 16, 14) is a neutrosophic triplet. (20,
10, 20) is neutrosophic triplet.

We see (22, 16, 28) and (28, 16, 22) are neutrosophic
triplets associated with 16 € Z;, and (24, 6, 24) is a
neutrosophic triplet. (16, 16, 16), (6, 6, 6), (21, 21, 21), (25, 25,
25) and (10, 10, 10) are neutrosophic triplets. (26, 16, 26) is
again a neutrosophic triplet.
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Thus we see Zs is very unique for it has six idempotents
and 20 neutrosophic triplets. It is important to note 15 does not
yield any neutrosophic triplet so (15, 15, 15) is only a trivial
neutrosophic triplet.

We are yet to study the structure of the collection of all
neutrosophic triplets of Zs.

We see in the first place it is not closed under product.

For (5,25,5)%x(18,6,12)=(0, 0, 0),

(2,16,8) x (2, 16, 8) = (4, 16, 4),

(2, 16, 8) x (3,21, 27) = (6, 6, 6),

(3, 21, 27) x (6, 6, 6) = (18, 6, 12),

(18, 6, 12) x (3 21, 27) = (24, 6, 24),

(24, 6,24) x (3,21,27)=(12, 6, 18),

(12, 6, 18) x (3,21, 27)= (6, 6, 6) and

(5,25,5)x (6 x 6 x 6)=(0, 0, 0);
thus (5, 5, 5) and (5, 25, 5) annuls all neutrosophic triplets
except (15, 15, 15) for (15, 15, 15) x (5, 5, 5) = (15, 15, 15),
(15, 15, 15) x (5, 25, 5) = (15, 15, 15) infact (15, 15, 15) acts as
the identity.

Further (25, 25, 25) x (15, 15, 15) = (15, 15, 15).
(25, 25, 25) x (5, 25, 5) = (5, 25, 5).

(15, 15, 15) x (15, 15, 15) = (15, 15, 15).
So in Z, where n = p; p, ... pr where p;’s are distinct primes

then the associated neutrosophic triplets behave in a unique
way.
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Example 1.8. Let S = {Z3s, x} be the semigroup under product
modulo 35.

The idempotents in Z35 are 15 and 21. (5, 15, 10) and
(10, 15, 5) are neutrosophic triplets associated with 15.

(7, 21, 28) and (28, 21, 7) are neutrosophic triplets of the
neutral element 21.

(14, 21, 14) is a neutrosophic triplet. (20, 15, 20) is a
neutrosophic triplet.

(25, 15, 30) and (30, 15, 25) are neutrosophic triplets.

(15, 15, 15) and (21, 21, 21) are again neutrosophic
triplet groups.

Consider the two tables of neutrosophic triplets under
product.

x (20,15,20) | (30,15,25) | (25,15,30)
(20,15,20) | (15,15,15) | (5,15,10) | (10,15,5)
(30,15,25) | (5,15,10) | (25,15,30) | (15,15,15)
(25,15,30) | (10,15,5) | (15,15,15) | (30,15,25)
(15,15,15) | (20,15,20) | (30,15,25) | (25,15,30)
(5,10,10) | (30,15,25) | (10,15,50) | (20,15,20)
(10,15,5) | (25,15,30) | (20,15,20) | (5,15,10)
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(15,15,15) (5,15,10) (10,15,5)
(20,15,20) (30,15,25) (25,15,30)
(30,15,25) (10,15,5) (0,15,20)
(25,15,30) (20,15,20) (5,15,10)
(15,15,15) (5,15,10) (10,15,5)
(5,15,10) (25,15,30) (15,15,15)
(10,155) (15,15,15) (30,15,25)

Clearly H = {(20,15,20), (30,15,25),

with (15, 15, 15) as its identity.

However (7, 21, 28) x (10, 15, 5) = (0, 0, 0) and so on.

Next we consider the second table.

X

(7,21,28)

(28,21,7)

(25,15,30),
(15,15,15), (10,15,5), (5,15,10)} is a classical group under x

(21,21,21)

(14,21,14)

(7,21,28)

(14,21,14)

(21,21,21)

(7,27,28)

(28,21,7)

(28,21,7)

(21,21,21)

(14,21,14)

(28,21,7)

(7,21,28)

(21,21,21)

(7,21,28)

(28,21,7)

(21,21,21)

(14,21,14)

(14,21,14)

(28,21,7)

(7,21,28)

(14,21,14)

(21,21,21)

We see K = {(7, 21, 28), (28, 21, 7), (21, 21, 21), (14,
21,14)} forms a classical group under product with (21, 21, 21)

as its multiplicative identity.
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Further
(7,21,28) x (7,21, 28) x (7, 21, 28) x (7, 21, 28) = (21, 21, 21).

That is K is a cyclic group of order four generated by
(7,21, 28) as (7, 21, 28)* = (21, 21, 21).

Further (5, 15, 10)° = (15, 15, 15) thus H is generated by
(5, 15, 10) as a cyclic group of order six.

However K x H= (0, 0, 0).
Thus the group K annihilates H and vice versa.

However (K U H) generates a semigroup with (0, 0, 0) as
included element of the generating set (K w H)
under product.

Example 1.9. Let S = {Z3;, x} be the semigroup under x. 12
and 22 are the idempotents in S. (3, 12, 15) and (15, 12, 3) are
neutrosophic triplets associated with the idempotent 12.

(6, 12, 24) and (24, 12, 6) are neutrosophic triplets.

(9, 12, 27) and (27, 12, 9) are both neutrosophic triplets.
(11, 22, 11) is a neutrosophic triplet.

(18, 22, 30) and (30, 12, 18) are both neutrosophic triplets

associated with the neutral element 22.
(21, 12, 21) is again a neutrosophic triplet.

(12, 12, 12) and (22, 22, 22) are both neutrosophic
triplets.
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H = {(3, 12, 15), (15, 12, 3), (6, 12, 24), (24, 12, 6), (9,
12, 27), (27, 12, 9), (18, 12, 30), (30, 12, 18), (21, 12, 21), (12,
12, 12)} is a group under product with (12, 12, 12) as the
multiplicative identity.

Clearly (30, 12, 18)'° = (12, 12, 12) so H is a cyclic group
of order 10 generated by (30, 12, 18).

Now {(11, 22, 11), (22, 22, 22)} = K is also a cyclic
group of order two with (11, 22, 11)2 = (22, 22, 22) so (22, 22,
22) is the identity element of K.

Further K x H = {(0, 0, 0)}. Thus it is assumed that for
S = {Zs,, x}, p an odd prime under product modulo 3p. S has
neutrosophic triplets which are p + 1 in number and that p + 1
neutrosophic triplets can be divided two groups of order p — 1
and 2 and both are cyclic groups with (p +1,p+ 1, p + 1) as
identity in case of the group of order p — 1 and (2p, 2p, 2p) as
identity for the group of order two.

The elements of cyclic group of order two are {(p, 2p, p),
(2p, 2p, 2p);.

In certain cases for 3p, p + 1 and 2p are idempotents in
some cases p and 2p + 1 are idempotents.

First we discuss a few cases to this effect.

We see in case of Z;s; 6 and 10 are the idempotents
6=(5+1)and 10=5+5.
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In case of Z,; we see 7 and 15 are the idempotents we see
7Jand 15=2x7+1).

In case of Z33 we see 12 and 22 are the idempotents and
12=11+1and22=2x 11.

In case of Z39 we see 13 and 27 are idempotents and 27 =
2x13)+1.

In case of Zs; the idempotents are 18 and 34 are
idempotents of Zs;, 18 =17+ 1 and 34 =2 x 17.

Consider Zs;, the idempotents are 19 and 39 = (2 x 19) + 1.
Now for Z¢ we see the idempotents are 24 and 46.

For Zg; 30 =29 + 1 and 58 = 2 x 29 are the only idempotents of
Zgo.

Consider Z;so, the idempotents of Z;s¢ are 54 = 53 + 1 and
106 =2 x 53.

Thus we see in case of Zs;, p an odd prime the
idempotents of Zs;, are either p and 2p + 1 or p + 1 and 2p. Thus
we leave it as an open problem the following conjecture.

Conjecture 1.1. Let S = {Zs,, x} be the semigroup under
product modulo 3p where p is an odd prime (p # 3).

i)  Characterize those numbers 3p for which p and 2p
+ 1 are the only nontrivial idempotents of
S= {Z3p, X}.
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ii))  Characterize those numbers 3p for which p + 1 and
2p are the only nontrivial idempotents.

Table of the idempotents in Zs,,

S. No. Zs, p pt+1 2p 2p +1
1 Zs - 6 10 -
2 Z 7 - - 15
3 Z3; - 12 22 -
4 Zs9 13 - - 27
5 Zs - 18 34 -
7 Zs; 19 - - 39
8 Zeo - 24 46 -
9 Zso - 54 106 -

We however wish to make the following observation and
propose the second conjecture.

Conjecture 1.2. Let {Z;,, x}, p an odd prime, p # 3 be the
semigroup under product modulo 3p.

1) The sum of digits of 3p when added is either 3 or
6.

i) If the sum of the digits of 3p is 3 then p and 2p +
1 in Z5,, are the only idempotents.

iii) If the sum of the digits of 3p is 6 then p + 1 and
2p are the only idempotents of Z,.

We just illustrate this by some examples.
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InZ;s, weseel +5=6sop+1=6=5+1and2p=10
are the idempotents.

InZy, wesee2+1+9=3sop=73and 2p+1=(2 x
73) + 1 = 147 are the idempotents.

Interested reader can verify for other values of Zs, (p # 3
and p an odd prime).

Next we proceed onto describe by examples semigroups
built using Zs,, p an odd prime.

Example 1.10. Let {Z;, x} be the semigroup under product
modulo 12. 9 and 4 are the idempotents of S.

Example 1.11. Let S = {Zy, x} be the semigroup under product
modulo 20. 5 and 16 are idempoents of Zj.

Example 1.12. Let S = {Zy, x} be the semigroup under product
8 x 8 =8 (mod 28) (2 x 4 =8).

21 x 21 =21 (mod 28) (3 x 7 =21) are the only idempotents.

Example 1.13. Let S = {Z44, x} be the semigroup under product
12 is an idempotent;

12=11+1and33=3x 11.
Example 1.14. Let S = {Zs,, x} be the semigroup under product

modulo 52, 13 is an idempotent and 40 = 3 x 13 + 1 is an
idempotent.
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Example 1.15. Let S = {Z, x} be the semigroup under product
modulo 76.

20 =19 + 1 is an idempotent.

57 =3 x 19 is another idempotent of S.

Example 1.16. Let S = {Z,;, x} be the semigroup under
product. p = 53 is an idempotent and 160 = (3 x 53) +1 is an
idempotent of S.

Example 1.17. Let S = {Zsg, x} be the semigroup under

product p = 97 is an idempotent of S. 292 =3 x 97 + 1 is an
idempotent.

Example 1.18. Let S = {Zs3;, x} be the semigroup under
product modulo 332.

84 =83 + 1 is an idempotent of S.

249 =3 x 83 is another idempotent of S.

We now table the idempotents to find the form of
idempotents of Zs,; viz. p+ 1 and 3p or p and 3p + 1.

Here p takes prime values which are odd. Further we see there
are only two idempotents which is described by the following
table.
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S. No. Zyp p pt+1 3p 3pt+l
1 Z - 4 9 -
2 Zso 5 - - 16
3 Zos - 8 21 -
4 Zy - 12 33 -
5 Zs) 13 - - 40
6 Z16 - 20 57 -
7 Zo1n 53 - - 160
8 Zsss 97 - - 292
9 Z33 - 84 249 -

In view of this we put forth the following conjecture.

Conjecture 1.3. Let S = {Z4, x} be the semigroup under
product modulo 4p, p an odd prime.

The idempotents of S are either of the form p + 1 and 3p
or of the form p and 3p + 1, prove.

Next we study those neutrosophic triplets associated with
Z>yq where p and q are odd primes p # g, by some examples.

Example 1.19. Let S = {Z4, x} be the semigroup under product
modulo 42.

The idempotents of Zy, are 7, 15, 21, 28 and 36.

(2,22, 32) and (32, 22, 2) are neutrosophic triplets.
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(3, 15, 33) and (33, 15, 3) are neutrosophic triplets.

(4, 22, 16) and (16, 22, 4) are neutrosophic triplets.

(8, 22, 8) is a neutrosophic triplet.

(9, 15, 39) and (39, 15, 9) are neutrosophic triplets.

(10, 22, 40) and (40, 22, 10) are neutrosophic triplets.

(12, 36, 24) and (24, 36, 12) are neutrosophic triplets of Zy,.
(18, 36, 30) and (30, 36, 18) are neutrosophic triplets.

(20, 22, 20) is a neutrosophic triplet.

(38, 22, 26) and (26, 22, 38) are neutrosophic triplets.

(34, 22, 34) is a neutrosophic triplet.

(27, 15, 27) is a neutrosophic triplet. (6, 36, 6) is a neutrosophic
triplet.

(35, 7, 35) is a neutrosophic triplet.

(14, 28, 14) is a neutrosophic triplet.
This Z4, 42 =2 x 3 x 7 behaves in a very different way.

In the first place Z4, has idempotents under product
modulo 42. They are 7, 15, 21, 22, 28 and 36.

Further (7, 7, 7), (15, 15, 15), (21, 21, 21), (22, 22, 22),
(28, 28, 28) and (36, 36, 36) are also neutrosophic triplets.

There are 29 nontrivial neutrosophic triplets. (0, 0, 0) is
taken as the trivial neutrosophic triplet.

Now these 29 neutrosophic triplets forms a semigroup of
order 29. However the 28 triplet baring the trivial (0, 0, 0) triplet
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is not even closed under product as (3, 15, 33) x (14, 28, 14) =
(42 (mod 42), 420 (mod 42), 462 (mod 42)) = (0, 0, 0). Hence
this is only a semigroup.

Now we collect the neutrosophic triplets which has 7 as
the neutral element.

Ky = {7, 7, 7), (35 7, 35)} is a neutrosophic group of
order two given by the following table.

x (7,7,7) (35,7,35)
(7,7,7) (7,7,7) (35,7, 35)
(35,7,35) | (35,7,35) (7,7,7)

So K, is a cyclic group of order two with (7,7,7) as the
multiplicative identity.

Let K, = {(15, 15, 15), (3, 15, 33), (33, 15, 3), (9, 15, 39),
(39, 15, 9), (27, 15, 27)} be a group under x associated with the

neutral element 15.

The table of K, is group of order 6 which is as follows.

X (3,15,33) | (33,15,3) | (15,15,15)
(3,15,33) | (9,15,39) [ (15,15,15)] (3,15.,33)
(33,15,3) [(15,15,15)] (39,15,9) | (33,15.3)
(15,15,15)] (3,15,33) | (35,15,3) | (15,15,15)
(9,15,39) [(27,15,27)[(30,15,33)| (9,15,39)
(39,15,9) | (33,15,3) [(27,15.27)| (39,15.9)
(27,15,27)] (39,15,9) | (9,15,39) | (27,15,27)
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9,15,39) | (39,15,9) | (27,15,27)
(27,1527) | (33,153) | (39,15,9)
(30,15,33) | (27,15,27) | (9,15,39)
9,15,39) | (39,15,9) | (27,15,27)
(39,15,9) | (15,15,15) | (33,15,3)
(15,15,15) | (9,15,39) | (3,15,33)
(33,153) | (3,1533) | (15,15,15)

We see (3,15,33) generates K, as a cyclic group of order
6. Thus K, is a cyclic group with (15, 15, 15) as the identity.
That is (3, 15, 33)° = (15, 15, 15).

Consider K; = {(21, 21, 21)} this an neutrosophic triplet
which is such that (7, 7, 7)) x (21, 21, 21) = (21, 21, 21), (15,
15, 15) x (21, 21, 21) = (21, 21, 21), (22, 22, 22) x (21, 21, 21)
=(0, 0, 0), (28, 28, 28) x (21, 21, 21) = (0, 0, 0) and (36, 36, 36)
x (21, 21,21)=(0, 0, 0).

Thus the neutrosophic triplet groups behaves uniquely for it
does not neutral any of the non units of Zy,.

Let Ky = {(2, 22, 32), (32, 22, 2), (4, 22 16), (16, 22, 4),
(22, 22, 22), (8, 22, 8), (10, 22, 40), (40, 22, 10) (20, 22, 20)
(26, 22, 38), (38 22, 26), (34, 22, 34)} be a group with the
neutral element 22.

The table for K4 is as follows.
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x (2,22,32) | (32,22,2) | (4,22, 16)
(2,22,32) | (4,22,16) | (22,22,22) | (8,22, 8)
(32,22,2) | (22,22,22) | (16,22,4) (2,22,32)
(4,22,16) (8,22,8) (2,22,32) (16,22,4)
(16,22,4) (32,22,2) (8,22.8) (22,22,22)
(22,22,22) (2,22,32) (32,22,2) (4,22,16)
(8,22,8) (16,22,4) (4,22,16) (32,22,2)
(10,22,40) | (20,22,20) | (26,22,38) | (40,22,10)
(40,22,10) | (38,22,26) | (20,22,20) | (34,22,34)
(20,22,20) | (40,22,10) | (10,22,40) | (38,22,26)
(26,22,38) | (10,22,40) | (34,22,34) | (20,22,20)
(38,22,26) | (34,22,34) | (4022,10) | (26,22,38)
(34,22,34) | (26,22,38) | (38,22,26) | (10,22,40)

(16,22, 4) |(22,22,22)| (8,22,8) | (10,22,40) | (40,22,10)
(32,22,2) | (2,22,32) | (16,22,4) | (20,22,30) | (38,22,26)
(8,22,8) | (32,22,2) | (4,22,16) | (26,22,38) | (20,22,20)
(22,22,22) | (4,22,16) | (32,22,2) | (40,22,10) | (34,22,34)
(4,22,16) | (16,22,4) | (2,22,32) | (34,22,34) | (10,22,40)
(16,22,4) | (22,22,22) | (8,22,8) | (10,22,40) | (40,22,10)
(2,22,32) | (8,22,8) |(22,22,22) | (38,22,26) | (26,22,38)
(34,22,34) | (10,22,40) | (38,22,26) | (16,22,4) | (22,22,22)
(10,22,40) | (40,22,10) | (26,22,38) | (22,22,22) | (4,22,16)
(26,22,38) | (20,22,20) | (34,22,34) | (32,22,2) | (2,22,32)
(38,22,26) | (38,22,26) | (40,22,10) | (8,22,8) | (32,22,2)
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(20,22,20) | (38,22,26) | (10,22,40) | (2,22,32) | (8,22.8)
(40,22,10) | (34,22,34) | (20,22,20) | (4,22,16) | (16,22,4)
(20,22,20) | (26,22,38) | (38,22,26) | (34,22,34)
(40,22,10) | (10,22,40) | (34,22,34) | (26,22,38)
(10,22,40) | (34,22,34) | (40,22,10) | (38,22,26)
(38,22,26) | (20,22,20) | (26,22,38) | (10,22,40)
(26,22,38) | (38,22,26) | (20,22,20) | (40,22,10)
(20,22,20) | (26,22,38) | (38,22,26) | (34,22,34)
(34,22,34) | (40,22,10) | (10,22,40) | (20,22,20)
(32,22,2) (8,22,8) (2,22,32) (4,22,16)
(2,22,32) (32,22,2) (8,22,8) (16,22,4)
(40,22,10) (16,22,4) (4,22,16) (8,22,8)
(16,22,4) (4,22,16) (22,22,22) (2,22,32)
(4,22,16) (22,22,22) (16,22,4) (32,22,2)
(8,22,8) (2,22,32) (32,22,2) (22,22,22)

This is a group of order 12 with (22, 22, 22) as the identity

element.

Clearly Ky is a cyclic group.

Next consider K5 = ({14, 28, 14), (28, 28, 28)} is a cyclic
subgroup of order 2 with 28 as the neutral element and (28, 28,

28) as the identity element of Ks.

Let K¢ = {(12, 36, 24), (6, 36, 6), (24, 36, 12), (30, 36,
18), (18, 36, 30), (36, 36, 36)} be a group of order 6 with 36 as
the neutral element. The table of K¢ is as follows.
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x (6, 36, 6) (12, 36, 24)
(6, 36, 6) (36, 36, 36) (30, 36, 18)

(12, 36, 24) (30, 36, 18) (18, 36, 30)

(24, 36, 12) (18, 36, 30) (36, 36, 36)

(36, 36, 36) (6, 36, 6) (12, 36, 24)

(30, 36, 18) (12, 36, 24) (24, 36, 12)

(18, 36, 30) (24, 36, 12) (6, 36, 6)
(24,36,12) | (36,36,36) | (30,36,18) | (18,36,30)
(18,36,30) (6,36,6) (12,36,24) | (24,36,12)
(36,36,36 (12,36,24) | (24,36,12) (6,36,6)
(30,36,18) | (24,36,12) (6,36,6) (12,36,24)
(24,36,12) | (36,36,36) | (30,36,18) | (18,36,30)

(6,36,6) (30,36,18) | (18,36,30) | (36,36,36)
(12,36,24) | (18,36,30) | (36,36,36) | (30,36,18)

It is easily verified this is a cyclic group; for

(6, 36, 6)° = (36, 36, 36)

(12, 36, 24)* = (18, 36, 30)

(12, 36, 24)° = (18, 36, 30) x (12, 26, 24)
= (6, 36, 6)

(12, 36, 24)*
(12,36,24)°

= (6, 36, 6) x (12, 36, 24) = (30, 36, 18)
= (30, 36, 18) x (12, 36, 24)

= (24, 36, 12)

(24,36,12) x (12,36,24)

= (36, 36, 36).

and (12, 36,24)°
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Thus K is as a cyclic group generated by (12,36,24).

Thus we get several neutral elements and several
neutrosophic triplets.

We will see the probable applications of them in the last
chapter.

Example 1.20. Let S = {Zg, x} be the semigroup under product
modulo 66 = 2 x 3 x 11. 12, 22, 33, 34, 45 and 55 are the
idempotents of Zg. All these 6 idempotents serve as neutral
elements.

(2, 34, 50) and (50, 34, 2) are neutrosophic triplets of 34 € Zg.

(4, 34, 58) and (58, 34, 4) are neutrosophic triplets of Zes.
(8, 34, 62) and (62, 34, 8) are neutrosophic triplets.
(16, 34, 64) and (64, 34, 16) neutrosophic triplets.
(32, 34, 32) is a neutrosophic triplet.

(3, 45, 15) and (15, 45, 3) are neutrosophic triplets.
(9, 45, 27) and (27, 45, 9) are neutrosophic triplets.
(10, 34, 10) is a neutrosophic triplet.

(20, 34, 38) and (38, 34, 20) are neutrosophic triplets.
(40, 34, 52) and (52, 34, 40) are neutrosophic triplets.
(14, 34, 26) and (26 34, 14) are neutrosophic triplets.
(28, 34, 46) and (46, 34, 28) are neutrosophic triplets.
(56, 34, 56) is a neutrosophic triplet.

(30, 12, 18) and (18, 22, 30) are neutrosophic triplets.
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(42, 12,60) and (60, 12, 42) are neutrosophic triplets.
(6, 12, 24) and (24, 12, 6) are neutrosophic triplets.
(48, 12, 36) and (36, 12, 48) are neutrosophic triplets.
(54, 12, 54) is a neutrosophic triplet.

(11, 33, 21) and (21, 33, 11) are neutrosophic triplets.
(45, 33, 45) is a neutrosophic triplet.

(39, 45, 57) and (57, 45, 39) are neutrosophic triplets.
(44, 22, 44) is a neutrosophic triplet.

(51, 45, 63) and (63, 45, 51) is a neutrosophic triplets.

We have (12, 12, 12), (22, 22, 22), (33, 33, 33), (34, 34,
34), (45, 45, 45) and (55, 55, 55) to be neutrosophic triplets
which either act as identity under product or act as annihilator
under product.

We see (22, 22, 22) x (51, 45, 63) = (0, 0, 0).

(34, 34, 34) x (58, 34, 4) = (58, 34, 4) and so on. We see
there are 47 such nontrivial neutrosophic triplets.

We will check which of them form a group under x and
the order of them.

Let K, be the collection of all those neutrosophic triplets
which has 12 as its neutral element.

K, = {(12, 12, 12) (30, 12, 18), (18, 12 30), (42, 12, 60),
(60, 12, 42), (24, 12, 6), (6, 12, 24), (48, 12, 36), (36, 12, 48),
(54, 14, 54)}.
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The table for K, is as follows: (12, 12, 12) acts as the
multiplicative identity of K;. We test whether the group is cyclic
or not.

x (12,12, 12) | (30,12,18)
(12,12,12) | (12,12,12) | (30,12,18)
(30,12,18) | (30,12,18) | (42,12,60)
(18,12,30) | (18,12,30) | (12,12,12)
(42,12,60) | (44,12,60) | (6,12,24)
(60,12,42) | (60,12,42) | (18,12,30)
(24,12,6) (24,12,6) | (60,12,42)
(6,12,24) (6,12,24) | (48,12,36)
(48,12,36) | (48,12,36) | (54,12,54)
(36,12,48) | (36,12,48) | (24,12,6)
(54,12,54) | (54,12,54) | (36,12,48)

(18,12,30) | (42,12,60) | (60,12,42)
(18,12,30) | (42,12,60) | (60,12,42)
(12,12,12) | (6,12,24) | (18,12,30)
(60,12,42) | (30,12,18) | (24,12,6)
(30,12,18) | (48,12,36) | (12,12,12)
(24,12,6) | (12,12,12) | (36,12,48)
(36,12,48) | (18,12,30) | (54,12,54)
(42,12,60) | (54,12,54) | (30,12,18)
(6,12,24) | (36,12,48) | (24,12,6)
(54,12,54) | (60,12,42) | (48,12,36)
(48,12,36) | (24,12,6) | (6,12,24)
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(24,12,6) (6,12,24) | (48,12,36)

(24,12,6) (6,12,24) | (48,12,36)

(60,12,42) | (48,12,36) | (54,12,54)

(36,12,48) | (42,12,60) | (6,12,24)

(18,12,30) | (54,12,54) | (36,12,48)

(54,12,54) | (30,12,18) | (24,12,6)

(48,12,36) | (12,12,12) | (30,12,18)

(12,12,12) | (36,12,48) | (24,12,6)

(30,12,18) (24,12,0) (60,12,42)

(6,12,24) (18,12,36) (12,12,12)

(42,12,60) | (60,12,42) | (18,12,36)

(36,12,48) (54,12,54)
(36,12,48) (54,12,54)
(24,12,6) (36,12,48)
(54,12,54) (48,12,36)
(60,12,42) (24,12,6)
(48,12,36) (6,12,24)
(6,12,24) (42,12,60)
(18,12,36) (60,12,42)
(12,12,12) (18,12,36)
(42,12,60) (30,12,18)
(30,12,18) (12,12,12)
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Clearly (30, 12, 18) generates K; as a cyclic group of order 10

as

(30, 12, 18)"° = (12, 12, 12).

Let K, = {(44, 22, 44), (22, 22, 22)}

be the cyclic group of order 2 with 22 as the neutral element and

(22, 22, 22) as the group identity.

Let K5 = {(11, 33, 21), (21, 33, 11), (33, 33, 33), (55, 33, 45 ),

(45, 33, 55)}.

The table for K3 is as follows.

x (11,33.21) | (21,33,11)
(11,3321) | (55,33,45) | (33,33,33)
(21,33,11) | (33,33,33) | (45,33,55)
(33,33,33) | (11,33.21) | (21,33,11)
4533,55) | (33,33,33) | (21,33,11)
(55,33,45) | (11,33,21) | (33,33,33)
(33,33,33) | (45,33,55) | (55,33,45)
(11,33,21) | (33,33,33) | (11,33,21)
(21,33,11) | (21,33,11) | (33,33,33)
(33,33,33) | (45,33,55) | (55,33,45)
(45,33,55) | (45,33,55) | (33,33,33)
(55,33,45) | (33,33,33) | (55,33,45)
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Clearly K3 is not a group only a semigroup under product.

Consider Ky = {(34, 34, 34), (2, 34, 50), (50, 34, 2), (4,
34, 58), (58, 34, 4), (8, 34, 62), (62, 34, 8), (16, 34, 64), (64, 34,
16), (32, 34, 32), (10, 34, 10), (20, 34, 38), (38, 34, 20), (40, 34,
52), (52, 34, 40), (14, 34, 26), (26, 34, 14), (28,34,46) (46,
34,28), (56,34,56)}.

The reader is left with the task of finding whether the
collection in K4 is a group or not. Finally we have collection
with 45 as the neutral element.

Ks = {(3, 45, 15), (15, 45, 3), (45, 45, 45), (21, 45, 21),
(9, 45, 27), (27, 45, 9), (39, 45, 57), (51, 45, 63), (63, 45, 51),
(57, 45, 39)}.

We find the table under product.

X

(3,45,15)

(15,45,3)

(45,45,45)

(3,45,15)

(9,45,27)

(45,45,45)

(3,45,15)

(15,45,3)

(45,45,45)

(27,47,9)

(15,45,3)

(45,45,45)

(3,45,15)

(15,45.3)

(45,45,45)

(9,45,27)

(27,45.9)

(3,45,15)

(9,45.,27)

(27,45,9)

(15,45,3)

(9,45.,27)

(27,45.9)

(39,45,57)

(51,45,63)

(57,45,39)

(39,45,57)

(57,45,39)

(39,45,57)

(63,45,51)

(57,45,39)

(51,45,63)

(21,45,21)

(39,45,57)

(51,45,63)

(63,45,51)

(57,45,39)

(21,45,21)

(63,45,51)

(21,45.21)

(63,45,51)

(51,45,63)

(21,45,21)
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(9,45,27)

(27,45,9)

(21,45,21)

(39,45,57)

(27,45.9)

(15,45,3)

(63,45,51)

(51,45,63)

(3,45,15)

(9,45,27)

(51,45,63)

(57,45,39)

(9,45.,27)

(27,45,9)

(21,45,21)

(39,45,57)

(15,45,3)

(45,45,45)

(57,45.39)

(21,45.21)

(9,45.,45)

(3,45,15)

(39,45,57)

(63,45,51)

(21,45,21)

(63,45,51)

(27,45.9)

(3,45,15)

(51,45,63)

(21,45,21)

(9,45.,27)

(45,45,45)

(63,45,51)

(57,45,39)

(15,45,3)

(9,45,27)

(39,45,57)

(51,45,63)

(3,45,15)

(15,45,3)

(57,45,39)

(39,45,57)

(45,45,45)

(27,45.9)

(57,45,39)

(51,45,63)

(63,45,51)

(39,45,57)

(21,45,21)

(57,43,39)

(63,45,51)

(39,45,57)

(21,45,21)

(57,45,39)

(51,45,63)

(63,45,51)

(51,45,63)

(63,45,51)

(39,45,57)

(21,45,21)

(57,45,39)

(51,45,63)

(45,45,45)

(9,45,27)

(15,45,3)

(15,45,3)

(3,45,15)

(27,45.9)

(3,45,15)

(27,45.9)

(45,45,45)

(27,45,9)

(45,45,45)

(9,45.,27)

(9,45,27)

(15,45,3)

(3,45,15)
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We see Ks is a group of order 10 with 45 as the neutral
element and (45, 45, 45) as the identity element.

Clearly K5 is a cyclic group of order 10 and (51, 45, 63)
generates K that is (51, 45, 63)10 = (45, 45, 45). (55,55, 55) is
a neutrosophic triplet and there are no nontrivial triplets with 55
as a neutral element.

Thus we see some neutral elements yield the collection of
the neutrosophic triplets associated with that neutral element to
be a cyclic group whereas others result in semigroups.

Here the neutral element 33 yields only a semigroup.
Study in this direction is interesting and innovative.

Example 1.21. Let S = {Zs4, x} be the semigroup under product
modulo 36. The only idempotents of 36 are 9 and 28. (4, 28, 16)
and (16, 28, 4) are neutrosophic triplets. (8, 28, 8) is a
neutrosophic triplet. (28, 28, 28) is also a neutrosophic triplet.

Further (32, 28, 20) and (20, 28, 32) are neutrosophic
triplets.

(21, 9, 21) is a neutrosophic triplet.

However it is difficult to find all neutrosophic triplets.

So the task finding all idempotents and neutrosophic
triplets for elements in Z, where n = 43 =2*3%or in general

n = 2%p where p is an odd prime happens to be a very difficult
problem.
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Next we proceed onto give a open conjecture in this
regard.

Conjecture 1.4. Let S = {Z,, x} where n = 2%p* where p is an
odd prime be the semigroup under product modulo 2%p?.

1) Can S have more than two idempotents?

i) Find all nontrivial idempotents of 2°p>.

iii) Are they of the p® and 4 x q where q is a largest
prime in Zp222 such that 4q < p* 22

Next we proceed onto describe some more Z, for
different n and derive some relations.

Example 1.22. Consider S = {Z,¢5, x} the semigroup under
product modulo 105. 15, 21, 36, 70 and 91 are idempotents of
105.

(3, 36, 12), (9, 36, 39), (27, 36, 48),
(81, 36, 51), (33, 36, 87), (99, 36, 99),
(6, 36, 6), (18, 36, 72), (54, 36, 24),
(57, 36, 78), (66, 36, 96), (93, 36, 102),
(69, 36, 69), (102, 36, 93), (96, 36, 66),
(78, 36, 57), (24, 36, 54), (72, 36, 18),
(87, 36, 33), (51, 36, 81), (48, 36, 27),

(39, 36, 9), (12, 36, 3), (7, 91, 28), (49, 91, 49), (28, 91,
7)

(14,91,14), (91,91,91), (98,91,77), (77,91,98), (35,70,35)
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(70,70,70), (7,70,25), (49,70,100) etc. are some of the
neutrosophic triplet groups.

We see the elements which contribute neutrosophic
triplets happens to be a difficult job. However there are 5
idempotents in Zps, 105 =3 x 5 x 7.

We see finding idempotents and the related neutrosophic
triplets happens to be difficult job if n = pqr where p, q and r are
three distinct odd primes.

Even in case of n= 105 =3 x 5 x 7 we find it difficult to
find the neutrosophic triplets and the corresponding algebraic
structure built on them.

Example 1.23. Let S = {Z¢s, x} be the semigroup under
product modulo 165 = 3.5.11. 45 € Zjs is an idempotent,
45 x 45 =45 (mod 165);

55 x 55 =155 (mod 165), 66 x 66 = 66 (mod 165),

100 x 100 =100 (mod 165), 111 x 111 =111 (mod 165),
121 x 121 =21 (mod 165) and 130 x 130 = 130 (mod 165).
(3, 111, 147) and (147, 111, 3) are neutrosophic triplets of S.
(9, 111, 159) and (159, 111, 9) are neutrosophic triplets of S.
(27,111, 108) and (108, 111, 27) are neutrosophic triplets.
(81, 111, 36) and (36, 111, 81) are neutrosophic triplets.
(111, 111, 111) is a neutrosophic triplet.

(10, 55, 22) and (22, 55, 10) are neutrosophic triplets.

(100, 55, 154) and (154, 55, 100) are neutrosophic triplets.
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(11, 66, 6) and (6, 66, 11) are neutrosophic triplets.

(66, 66, 66), (36, 66, 121) and (121, 66, 36) are neutrosophic
triplets.

(51, 66, 11) and (11, 66, 51) are neutrosophic triplets.
(141, 66, 121) and (121, 66, 141), (12, 111, 78)

and (78, 111, 12) are neutrosophic triplets.

(144, 111, 144) is a neutrosophic triplet.

(21, 111, 21) is a neutrosophic triplet.

(24, 111, 39) and (39, 111, 24) are neutrosophic triplets.

We find it difficult to get all neutrosophic triplets.
We propose the following conjecture.

Conjecture 1.5. Let S = {Z,, x} where n = pqr where p, q and r
are three distinct odd primes.

i)  Find the number of idempotents in Z,,.

ii)  Are these idempotents dependent on p, q and r?

iii) Find the total number of neutrosophic triplets
associated with Z,,.

iv)  Does these number in (iii) dependent on n?

Example 1.24. Let S = {Z,, x} where n = 2.3.5.7 =210 be a
semigroup under product modulo 210.

15%x 15=225=15 (mod 210), 21 x 21 =21 (mod 210),
36 x 36 =36 (mod 210), 70 x70 = 70 (mod 210),
85 x 85 =85 (mod 210), 91 x 91 =91 (mod 210),



Introduction to Neutrosophic Triplet Groups | 45

106 x 106 = 106 (mod 210), 105 x 105 = 105 (mod 210),
120 x 120 = 120 (mod 210), 126 x 126 = 126 (mod 210),
141 x 141 = 141 (mod 210), 175 x 175 = 175 (mod 210),
190 x 190 = 190 (mod 210), 196 x 196 = 196 (mod 210),
and 200 x 200 = 200 (mod 210).

We see there are 15 idempotents in Zy).
But O(Zzl()) =210.

We just give a few neutrosophic triplets. We see if in Z,,,
n is a product of more number of primes and it also includes 2
as a prime there are always a chance of getting more number of
idempotents and neutrosophic triplets.

(2, 106, 158) and (158, 106, 2) are neutrosophic triplets.
(4, 106, 184) and (184, 106, 4) are neutrosophic triplets.
(8, 106, 92) and (92, 106, 8) are neutrosophic triplets.

(16, 106, 46) and (46, 106, 16) are neutrosophic triplets.
(32, 106, 128) and (128, 106, 32) are neutrosophic triplets.
(64, 106, 84) and (84, 106, 64) are neutrosophic triplets.
(3, 141, 117) and (117, 141, 3) are neutrosophic triplets.
(9, 141, 39) and (39, 141, 9) are neutrosophic triplets.

(27, 141, 153) and (153, 141, 27) are neutrosophic triplets.
(81, 141, 51) and (51, 141, 81) are neutrosophic triplets.
(33, 141, 97) and (87, 141, 33) are neutrosophic triplets.
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(99, 141, 117) and (117, 141, 99) are neutrosophic triplets.
(5, 85, 185) and (185, 85, 5) are neutrosophic triplets.

(25, 85, 205) and (205, 85, 25) are neutrosophic triplets.
(125, 85, 125) is a neutrosophic triplet.

(7, 70, 40) and (40, 70, 7) are neutrosophic triplets.

(49, 70, 130) and (130, 70, 49) are neutrosophic triplets.
(133, 70, 160) and (160, 70, 133) are neutrosophic triplets.
(6, 36, 6) and (36, 36, 36) are neutrosophic triplets.

(8, 106, 92) and (92, 106, 8) are neutrosophic triplets.

(64, 106, 64) and (106, 106, 106) are neutrosophic triplets.
(12, 36, 108) and (108, 36, 12) are neutrosophic triplets.
(72, 36, 18) and (18, 36, 72) are neutrosophic triplets.

However even for this small value as Z,y finding all
neutrosophic triplets happens to be a very challenging problem.

We conjecture the following.

Conjecture 1.6. Let {Z,, x} =S be the semigroup under product
modulo n.

Can we say if n is even S has more number of
neutrosophic triplets and idempotents?

Conjecture 1.7. Let S, = {Z,, , x} where m; = 2.pi p> ... py, pi’s

distinct odd primes different from 3.
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Let my = 3pps... py, distinct odd primes as in m; only 2 is
replaced by 3, where S, = {Z,, , x}.

1)  Which of the semigroups S; or S, has more number
of neutrosophic triplets?

ii))  Which of S; or S, has more number of idempotents?

iii) Can we claim only S, has more triplets?

We will give one example and conclude this chapter with
some problems.

Example 1.25. Let S, = {Z, , x} where m; = 2.5.7 and

S, = {Z,, , x} where my, = 3.5.7 be two semigroups under

product modulo 70 and 105 respectively.
The idempotents in Z;, are

75 x 75 =15 (mod 70), 21 x 21 =21 (mod 70)

35 x 35 =35 (mod 70),36 x 36 =36 (mod 70)

46 x 46 =46 (mod 70), 50 x 50 =50 (mod 70) and
56 x 56 =56 (mod 70).

There are 7 idempotents in Z;y= Z

ml'

Now we find the idempotents of Z,os = Z

mz'

15 x 15 =15 (mod 105), 21 x 21 =21 (mod 105),
36 x 36 =36 (mod 105), 70 x 70 =70 (mod 105),
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85 x 85 =85 (mod 105) and 91 x 91 =91 (mod 105).

We see Z79 = Zm] has 7 idempotents where as Z;ps = Z

m,

has only 6 idempotents.

So the number of neutrosophic triplets in case of Z will
be more than that of Z,¢s. To this effect we work out here.

(2, 36, 18) and (18, 36, 2) are neutrosophic triplets.
(4, 36, 44) and (44, 36, 4) are neutrosophic triplets.
(8, 36, 22) and (22, 36, 8) are neutrosophic triplets.
(16, 36, 46) and (46, 36, 16) are neutrosophic triplets.
(32, 36, 58) and (58, 36, 32) are neutrosophic triplets.
(64, 36, 64) and (36, 36, 36) are neutrosophic triplets.
(5, 15, 45) and (45, 15, 5) are neutrosophic triplets.
(25, 15, 65) and (65, 15, 25) are neutrosophic triplets.

(55, 15, 55) and (15, 15, 15) are neutrosophic triplets and
(6, 36, 6) is a neutrosophic triplet.

(7, 21, 63) and (63, 21, 7) are neutrosophic triplets.
(49, 21, 49) and (21, 21, 21) are neutrosophic triplets.

(12, 36, 38) and (38, 36, 12) are neutrosophic triplets.
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(14, 56, 14) and (56, 56, 56) are neutrosophic triplets.
(24, 36, 54) and (54, 36, 24) are neutrosophic triplets.
(48, 36, 62) and (62, 36, 48) are neutrosophic triplets.
(66, 36, 26) and (26, 36, 66) are neutrosophic triplets.
(52, 36, 68) and (68, 36, 52) are neutrosophic triplets.
(34, 36, 34) is a neutrosophic triplet.

(40, 50, 10) and (10, 50, 40) are neutrosophic triplets.
(30, 50, 60) and (60, 50, 30) are neutrosophic triplets.
(20, 50, 20) and (50, 50, 50) are neutrosophic triplets.

We have given over 40 such neutrosophic triplets.
Finding all of them happens to be a difficult one.

Now we find the neutrosophic triplets associated with
ZIOSA

(3, 36, 12) and (12, 36, 3) are neutrosophic triplets.
(9, 36, 39) and (39, 36, 9) are neutrosophic triplets.
(27, 36, 48) and (48, 36, 27) are neutrosophic triplets.
(81, 36,51) and (51, 36, 81) are neutrosophic triplets.
(33, 36, 87) and (87, 36, 33) are neutrosophic triplets.
(99, 36, 99) and (36, 36, 36) are neutrosophic triplets.
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(6, 36, 6) is a neutrosophic triplet.

(18, 36, 72) and (72, 36, 18) are neutrosophic triplets.
(54, 36, 24) and (24, 36, 54) are neutrosophic triplets.
(57, 36, 78) and (78, 36, 57) are neutrosophic triplets.
(66, 36, 96) and (96, 36, 66) are neutrosophic triplets.
(93, 36, 102) and (102, 36, 93) are neutrosophic triplets.
(69, 36, 69) is a neutrosophic triplet.

(7, 91, 28) and (28, 91, 7) are neutrosophic triplets.

(49, 91, 49) and (91, 91, 91) are neutrosophic triplets.
(14, 91, 14) is a neutrosophic triplet.

(98, 91, 77) and (77, 91, 98) are neutrosophic triplets
(56, 91, 56) is a neutrosophic triplet.

(10, 85, 40) and (40, 85, 10) are neutrosophic triplets.
(100, 85, 25) and (25, 85, 100) are neutrosophic triplets.
(55, 85, 55)and (20, 85, 20) are a neutrosophic triplets.
(95, 85, 65) and (65, 85, 95) are neutrosophic triplets.

(5, 85, 80) and (80, 85, 5) are neutrosophic triplets.

(50, 85, 50) is a neutrosophic triplet.

(25, 85, 100) and (100, 85, 25) are neutrosophic triplets.

Thus we see the number can be more in case of Z;os than
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Can we make a conclusion the larger the number the
more number of neutrosophic triplets.

We see Z0s has more neutrosophic triplets than Z,.

Example 1.26. Let {Z43, x} = S be the semigroup under product
modulo 48. 48 = 2*. 3.

The idempotents of Z4g are 16 x 16 = (mod 48) is the only
one idempotent in S.

(32, 16, 32) and (16, 16, 16) are the only neutrosophic
triplets.

So if n = 2%, p a prime, we can say it has only one
nontrivial neutrosophic triplet.

Example 1.27. Let S = {Zs, x} be the semigroup under
product modulo 162.

The idempotent in S is 81 x 81 = (mod 162).
Thus we have the following conjecture.

Conjecture 1.8. Let S = {Z,, x} where n = p*q where p and q

are two different primes then p* is the only idempotent of Zp4q .

We have seen in case of Zs (48 = 2% 3) and Ze
(162 = 3*2) for 16 and 81 are the idempotents respectively.
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Thus if we want more idempotents we need to take n in
Z, to be the product of more number of primes.

We give some more examples.

Example 1.28. Let S = {Z,p, x} be the semigroup under
product modulo 100.

We see the idempotents of Z;qy are 25 x 25 = 25 (mod
100)

76 x 76 = 76 (mod 100) are the only two idempotents.

Thus can we say 2p° where p is an odd prime then Z,,, n =
2%p” has only two idempotents.

Example 1.29. Let S = {Zys, x} be the semigroup under
product modulo 225 =9 x 25 =37 x 5,

To find all the idempotents associated with Z,s
100 x 100 = 100 (mod 225) and

126 x 126 = 126 (mod 225).

Thus Z,s has only two nontrivial idempotents.
Thus we conjecture.

Conjecture 1.9. If {Z,, x} be a semigroup under product
modulo n with n = p* ¢, p and q are two distinct primes than Z,
has only two distinct idempotents.
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When we work with Z,, n = p’ q° where p and q two
distinct primes we study the idempotents in them by some
examples.

Example 1.30. Let S = {Zy5, x} be the semigroup under
product under modulo 216, 216 = 23, 3%

The idempotents of S are 81 x 81 = 81 (mod 215) and
136 x 136 = 136 (momd 216).

Hence we face the same problem as that of Zp2q2 only two

idempotents even in case of p°q’.

Example 1.31. Let S = {Zg, x} be the semigroup under x
modulo 80.

16 x 16 = 16 (mod 80) and 65 x 65 =65 (mod 80).

S has only two idempotents.

In view of this we just conjecture the following,

Conjecture 1.10. Let S = {Z,, x} be the semigroup under
product where n = p' q° where p and q are primes (t and s) are
positive integers greater than or equal to 2).

i)  Can Z, have more than two idempotents?
ii))  Find all neutrosophic triplets associated with S.
iii) Do they form a group under x?
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Example 1.32. Let S = {Zg4, x} be a semigroup under product
modulo 84.

The idempotents in Zg, are

36 x 36 =36 (mod 84), 21 x 21=21 (mod 84)

28 x 28 =28 (mod 84), 49 x 49 = 49 (mod 84)

57 x 57 =157 (mod 84) and 64 x 64 = 64 (mod 84).
(4, 64, 16) and (16, 64, 4) are neutrosophic triplets.
(3, 57, 75) and (75, 57, 3) are neutrosophic triplets.
(9, 57, 81) and (81, 57, 9) are neutrosophic triplets.
(27,57, 27) and (57, 57, 57) are neutrosophic triplets.
(12, 64, 12) is a neutrosophic triplet.

(48, 64, 24) and (24, 64, 48) are neutrosophic triplets.
(12, 36, 24) and (24, 36, 12) are neutrosophic triplets.
(60, 36, 72) and (72, 36, 60) are neutrosophic triplets.
(48, 36, 48) and (36, 36, 36) are neutrosophic triplets.
(20, 64, 20) is a neutrosophic triplet.

(32, 64, 44) and (44, 64, 32) are neutrosophic triplets.
(52, 64, 40) and (40, 64, 52) are neutrosophic triplets.
(56, 64, 76) and (76, 64, 56) are neutrosophic triplets.
(68, 64, 80) and (80, 64, 68) are neutrosophic triplets.

The reader is left with the task of finding all the
neutrosophic triplets.
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We see some idempotents gives more neutrosophic triplet
groups than others.

There must be some number theoretic arguments related
with them.

(7, 49, 7) and (49, 49, 49) are neutrosophic triplets.

(15, 57, 15) is a neutrosophic triplet.

(45, 57, 33) and (33, 57, 45) are neutrosophic triplets.

(35, 49, 35) is a neutrosophic triplet.

(77,49,77) is a neutrosophic triplet.

We are forced to think that there are elements x in Zg,4 for
which there are neutral but has no anti x. Such study happens to

be challenging and innovative.

It is a open problem to find which values will yield more
number neutrosophic triplets.

Example 1.33. Let S = {Zs;, x} be the semigroup under product
modulo 15.

18 x 18 = 18 (mod 51) and 34 x 34 = 34 (mod 51) are the
only idempotents

(3, 18, 6) and (6, 18, 6) are neutrosophic triplets.
(9, 18, 36) and (36, 18, 9) are neutrosophic triplets.

(27, 18, 12) and (12, 18, 27) are neutrosophic triplets.
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(30, 18, 21) and (21, 18, 30) are neutrosophic triplets.

(39, 18, 24) and (24, 18, 39) are neutrosophic triplets.

(15, 18, 42) and (42, 18, 15) are neutrosophic triplets.

(45, 18, 48) and (48, 18, 45) are neutrosophic triplets.

(33, 18, 33) and (18, 18, 18) are neutrosophic triplets.

There are 16 neutrosophic triplets associated with 18.

34 does not induce any neutrosophic triplet.
Example 1.34. Let S = {Z34, x} be the semigroup under product.
The idempotents of S are 17 x 17 =17 (mod 34) and 18 x 18 =
18 (mod 34).

(2, 18, 26) and (26, 18, 2) are neutrosophic triplets.

(4, 18, 30) and (30, 18, 4) are neutrosophic triplets.

(8, 18, 32) and (32, 18, 8) are neutrosophic triplets.

(16, 18, 16) and (18, 18, 18) are neutrosophic triplets.

(6, 18, 20) and (20, 18, 6) are neutrosophic triplets.

(12, 18, 10) and (10, 18, 12) are neutrosophic triplets.

(24, 18, 22) and (22, 18, 24) are neutrosophic triplets.
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(14, 18, 28) and (28, 18, 14) are neutrosophic triplets.
There are exactly 16 neutrosophic triplets for Zs;.

Example 1.35. Let S = {Zys, x} be a semigroup under product
modulo 85, 85=17 x 5.

51 x 51 =51 (mod 85) and 35 x 35 =35 (mod 85) are the
idempotents of Zgs.

(5, 35, 75) and (75, 35, 5) are neutrosophic triplets.

(25, 35, 15) and (15, 35, 25) are neutrosophic triplets.
(40, 35, 20) and (20, 35, 40) are neutrosophic triplets.
(30, 35, 55) and (55, 35, 30) are neutrosophic triplets.
(65, 35, 45) and (45, 35, 65) are neutrosophic triplets.

(70, 35, 60), (60, 35, 70) and (35, 35, 35) are
neutrosophic triplets of 35.

(10, 35, 80) and (80, 35, 10) are neutrosophic triplets.
(50, 35, 50) is a neutrosophic triplet.
(17, 51, 68) and (68, 51, 17) are neutrosophic triplets.

(34, 51, 34) and (51, 51, 51) are neutrosophic triplets.
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There are 20 neutrosophic triplets together with (0, 0, 0) as its
trivial neutrosophic triplet.

We see H= {(5, 35, 75), (75, 35, 5), (25, 35, 15), (15, 35,
25), (40, 35, 20), (20, 35, 40), (30, 35, 55), (55, 35, 30), (65, 35,
45), (45, 35, 65), (70, 35, 60), (60, 35, 70), (10, 35, 80), (80, 35,
10), (50, 35, 50) and (35, 35, 35)} are the neutrosophic triplets
associated with the idempotent 35 which serves as the neutral
elements of this collection.

Infact H under x is a cyclic group of order 16 with (35,
35, 35) as the identity element.

For (5, 35, 75) € H we have (5, 35, 75) x (5, 35, 75) =
(25, 35, 15).

(5, 35, 75)° = (40, 35, 20), (5, 35, 75)* = (30, 35, 55)

(5. 35, 75)° = (65, 35, 45), (5, 35, 75)° = (70, 35, 60)

(5, 35,75)" = (10, 35, 80), (5, 35, 75)* = (50, 35,50)

(5, 35,75)° = (80, 35, 10), (5, 35,75)"" = (60, 35, 70)
(5,35, 75)" = (45, 35, 65), (5, 35,75)"* = (55, 35, 30)

(5, 35, 75)" = (20, 35, 40), (5, 35, 75)"* = (15, 35,40) and
(5,35, 75)" = (75, 35, 5) and (5, 35,75)'° = (35, 35, 35).

Hence the claim.

K= {(17, 51, 68), (68, 51, 17), (51, 51, 51), (34, 51, 34)}
is a cyclic group of order four.

(17, 51, 68)* = (34, 51, 34), (17, 51, 68)’ = (68, 51, 17),
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and (17, 51, 68)* = (51, 51, 51).
We see H x K= {(0, 0, 0)}.
P=HuUK)={HUKuU {0, 0, 0)}}.

Infact P is a semigroup of order 21 and it is not a monoid
but P is a Smarandache semigroup.

Example 1.36. Let S = {Zss, x} be the semigroup under product
modulo 55.

The idempotents of Zss are 11 x 11 = 11 (mod 55) and 45
x 45 =45 (mod 55).

(5, 45, 20) and (20, 45, 5) are neutrosophic triplets.

(25, 45, 15) and (15, 45, 25) are neutrosophic triplets.

(10, 45, 10) and (45, 45, 45) are neutrosophic triplets.

(22, 11, 33) and (33, 11, 22) are neutrosophic triplets
(44, 11,44) and (11, 11, 11) are neutrosophic triplets.

(30, 45, 40) and (40, 45, 30) are neutrosophic triplets.

(35, 45, 50) and (50, 45, 35) are neutrosophic triplets.
There are 14 neutrosophic triplets. We see H = {(5, 45,

20), (20, 45, 5), (25, 45, 15), (15, 45, 25), (30, 45, 40), (40, 45,
30), (35, 45, 50), (50, 45, 35), (10, 45, 10) and (45, 45, 45)} is a
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neutrosophic triplet cyclic group with (45, 45, 45) as the identity
(35, 45, 50)'° = (45, 45 45).

K = {(22, 11, 33), (33, 11 22), (44, 11, 41), (11, 11, 11)}
is a cyclic group of order four (22, 11, 33)* = (11, 11, 11).

H x K= {(0,0, 0)}.
HUK)={HUK U {(0,0,0)}} =W,

W is only a semigroup of order 15 and W is not a monoid but a
Smarandache semigroup.

Example 1.37. Let S = {Zss, x} be the semigroup under product
modulo 15.

The idempotents of Z3s are 15 x 15 = 15 (mod 35) and 21
x 21 =21 (mod 35).

(5, 15, 10) and (10, 15, 5) are neutrosophic triplets.
(25, 15, 30) and (30, 15, 25) are neutrosophic triplets.
(20, 15, 20) and (15, 15, 15) are neutrosophic triplets.
(7,21, 28) and (28, 21, 7) are neutrosophic triplets.
(14, 21, 14) and (21, 21, 21) are neutrosophic triplets.

H = {(5, 15, 10), (10, 15, 15), (25, 25, 30), (30, 15, 25),
(20, 15, 20), (15, 15, 15)} is a cyclic group of order six.

(5, 15, 10)6 = (15, 15, 15) as (15, 15, 15) acts as the
identity element of H.
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K={(7, 21, 28), (28, 21, 7), (14, 21, 14), (21, 21, 21)} is
again a cyclic group of order four with (21, 21, 21) as its
identity. K is also a cyclic group of order four.

Wesee H x K= {(0, 0, 0)}.

HUK)={HUKwU {(0,0, 0)}} is only a semigroup not
even a monoid of order 11.

Example 1.38. Let S = {Z5, x} be the semigroup under
product modulo 143 = 11 x 13.

The idempotents of Z43 are 66 x 66 = 66 (mod 143) and
78 x 78 = 78 (mod 143).

(11, 66, 110) and (110, 66, 11), are neutrosophic triplets.
(121, 66, 88) and (88, 66, 121) are neutrosophic triplets.
(44, 66, 99) and (99, 66, 44) are neutrosophic triplets.
(55, 66, 22) and (22, 66, 55) are neutrosophic triplets.
(33, 66, 132) and (132, 66, 33) are neutrosophic triplets.
(77, 66, 77) and (66, 66, 66) are neutrosophic triplets.
(13, 78, 39) and (39, 78, 13) are neutrosophic triplets.
(26, 78, 91) and (91, 78, 26) are neutrosophic triplets.
(52,78, 117) and (117, 78, 52) are neutrosophic triplets.

(104, 78, 130) and (130, 78, 104) are neutrosophic
triplets.

(65, 78, 65) and (78, 78, 78) are neutrosophic triplets.

Infact we see there are two cyclic groups H and K which
are of order 12 and 10 respectively where
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H = {(11, 66, 110), (110, 66, 11), (121, 66, 88), (88, 66,
121), (44, 66, 99), (99, 66, 44), (55, 66, 22), (22, 66, 55), (33,
66, 132), (132, 66, 33), (77, 66, 77) and (66, 66, 66)} and

K = {(13, 78, 39), (39, 78, 13), (91, 78, 26), (26, 78, 91), (52,78,
117), (117, 78, 52), (104, 78, 130), (130, 78, 104), (65, 78, 65),
(78, 78, 78)}.

Clearly H x K= {(0, 0, 0)} (HuU K)={Huw KU {(0, 0,
0)} = P is only a semigroup infact a Smarandache semigroup
and not a monoid.

In view of all these we propose a conjecture as well as
prove a theorem.

Theorem 1.1. Let S = {Z,,, p and q are two distinct prime, x} be

the semigroup under x modulo pq.

i) S has only two idempotents given by mp and nq (m
and n € Z,, \ {p, q}) such that they are neutrals.

ii) S has two cyclic groups H and K using the neutrals
mp and nq of order q — 1 and p — I respectively.

iii) HxK={0,0, 0)}.

v P={HUKU{0, 0, 0)}}is a only a semigroup
which is not a monoid.

v)  Pis a S-semigroup.
Proof is direct and hence left as an exercise to the reader.

Now we propose the conjecture.
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Conjecture 1.11. Let S = {Z,, %, p and q two distinct primes}
be the semigroup under product modulo pq.

i)  Prove Z,q has only two idempotents.

i) np and mq are two idempotents find m and n in
terms of p or q.

Example 1.39. Let S = {Zy0s, x} be the semigroup under
product modulo 105 =3.5.7.

The idempotents of Z;s are 15 x 15 =15 (mod 105),
21 x 21 =21 (mod 105), 36 x 36 =36 (mod 105)

70 x 70 = 70 (mod 105), 85 x 85 =85 (mod 105)
and 91 x 91 =91 (mod 105).

(3, 36, 12) and (12, 36, 3) are neutrosophic triplets.
(9, 36, 39) and (39, 36, 9) are neutrosophic triplets.
(27, 36, 48) and (48, 36, 27) are neutrosophic triplets.
(81, 36, 51) and (51, 36, 81) are neutrosophic triplets.
(33, 36, 87) and (87, 36, 33) are neutrosophic triplets.
(99, 36, 99) and (36, 36, 36) are neutrosophic triplets.
(6, 36, 6) is a neutrosophic triplet.

(18, 36, 72) and (72, 36, 18) are neutrosophic triplets.
(54, 36, 24) and (24, 36, 54) are neutrosophic triplets.
(57, 36, 78) and (79, 36, 57) are neutrosophic triplets.
(66, 36, 96) and (96, 36, 66) are neutrosophic triplets.
(93, 36, 102) and (102, 36, 93) are neutrosophic triplets.



64 | Neutrosophic Triplets Groups and their Applications ...

(69, 36, 69) is a neutrosophic triplet.

(30, 15, 60) and (60, 15, 30) are neutrosophic triplets.
(42, 21, 63) and (63, 21, 42) are neutrosophic triplets.
(84, 21, 84) and (21, 21, 21) are neutrosophic triplets.
(45, 15, 75) and (75, 15, 45) are neutrosophic triplets.
(90, 15, 90) and (15, 15, 15) are neutrosophic triplets.
(5, 85, 80) and (80, 85, 5) are neutrosophic triplets.
(25, 85, 100) and (100, 85, 25) are neutrosophic triplets.
(20, 85, 20) and (85, 85, 85) are neutrosophic triplets.
(10, 85, 40) and (40, 85, 10) are neutrosophic triplets.
(50, 85, 50) is a neutrosophic triplet.

(95, 85, 65) and (65, 85, 95) are neutrosophic triplets.

(55, 85, 55), (7,91, 28) and (28, 91, 7) are neutrosophic
triplets.

(49, 91, 49) and (91, 91, 91) are neutrosophic triplets

(14, 91, 14) is a neutrosophic triplet. (98, 91, 77) and (77,
91, 98) are neutrosophic triplets.

(56, 91, 56) is a neutrosophic triplet. (70, 70, 70), (35, 70,
50) and (50, 70, 35) are neutrosophic triplets.

There are six idempotents in Z;¢s, leading to six distinct
cyclic groups of neutrosophic triplets given by

K, = {(50, 70, 35), (35, 70, 50), (70, 70, 70)}.

Ko = {(7, 98, 25), (28, 91, 7), (49, 91, 49), (91, 91, 91),
(14,91, 14), (98, 91, 77), (77, 91, 98), (56, 91, 56)}.
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Ks = {(45, 15, 75), (75, 15, 45), (90, 15, 90), (15, 15, 15),
(30, 15, 60), (60, 15, 30)}.

Ki= {(55, 85, 55), (65, 85, 95), (95, 85, 65), (50, 85, 50),
(10, 85, 40), (40, 85, 10), (20, 85, 20), (85, 85, 85), (25, 83,
100), (100, 85, 25), (5, 85, 80), (80, 85, 5)}.

Ks = {(3, 36, 12), (12, 36, 3), (9, 36, 39), (39, 36, 9), (27,
36, 48), (48, 36, 27), (81, 36, 51), (51, 36, 81), (33, 36, 87), (87,
36, 33), (99, 36, 99), (36, 36, 36), (6, 36, 6), (18, 36, 72), (72,
36, 18), (54, 36, 24), (24, 36, 54), (57, 36, 78), (78, 36, 57), (66,
36, 99), (99, 36, 66), (93, 36, 102), (102, 36, 93), (69, 36, 69)}
and

K¢ = {(42, 21, 63), (63, 21, 42), (84, 21, 84), (21, 21, 21)} are
the groups of neutrosophic triplets.

Ks x K3 = {(0, 0, 0)}, Ky x Ks =K;

K; x Ky ={(0, 0, 0)}, K5 x K4 =K; and

K3 X K2 = {(0, 0, 0)}

Ks x K5 = K.

Ke x Ky ={(0, 0, 0)}, K¢ x K, =K and

Ks x K4 ={(0, 0, 0)}.

Ks x K4y =K.

K5 X Kz = K6 and K5 X K1 = {(O, 0 ,0)}

K4XK2:K1K4XK1:K3 andszK1=K1,

These six groups behave only in the way described above.
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Thus if P = (K; UK, U K3 U Ky U Ks U Kg) < {(K; U
Ky VK3 UKy UKs UKgt U {(0,0,0)}} and P will only be a

semigroup and not a monoid.

However P will be a Smarandache semigroup.

If in Z,, n is a product of three distinct odd primes then

we see there are 6 groups of neutrosophic triplets such that

Ki K= {(0,0,0)}, ifi#j, 1<i,j<6,n=105=3.5.7.

Example 1.40. Let S = {Zys, x} be the semigroup under x
modulo 165.

The idempotents of Z;45 are

55 x 55 =55 (mod 165), 45 x 45 =45 (mod 165)

66 x 66 =66 (mod 165), 100 x 100 = 100 (mod 165) and

121 x 121 =121 (mod 165), 111 x 111 =111 (mod 165).

(3, 111, 147) and (147, 111, 3) are neutrosophic triplets.

(9, 111, 159) and (159, 111, 9) are neutrosophic triplets.
(27,111, 108) and (108, 111, 27) are neutrosophic triplets.

(81, 111, 36) and (36, 111, 81) are neutrosophic triplets.

(78, 111, 12) and (12, 111, 78) are neutrosophic triplets.
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(69, 111, 114) and (114, 111, 69) are neutrosophic triplets.
(42, 111, 93) and (93, 111, 42) are neutrosophic triplets.
(126, 111, 141) and (141, 111, 126) are neutrosophic triplets.
(48, 111, 102) and (102, 111, 48) are neutrosophic triplets.
(144, 111, 144) and (111, 111, 111) are neutrosophic triplets.
(6, 111, 156) and (156, 111, 6) are neutrosophic triplets.

(18, 111, 162) and (162, 111, 18) are neutrosophic triplets.
(54, 111, 54) is a neutrosophic triplet.

(5, 100, 20) and (20, 1000, 5) are neutrosophic triplets.

(25, 100, 70) and (70, 100, 25) are neutrosophic triplets.
(125, 100, 80) and (80, 100, 125) are neutrosophic triplets.
(130, 100, 115) and (115, 100, 130) are neutrosophic triplets.
(155, 100, 155) and (100, 100, 100) are neutrosophic triplets.
(10, 100, 10) is a neutrosophic triplet.

(50, 100, 35) and (35, 100, 50) are neutrosophic triplets.

(85, 100, 40) and (40, 100, 85) are neutrosophic triplets.

(95, 100, 140) and (140, 100, 95) are neutrosophic triplets.
(145, 100, 160) and (160, 100, 145) are neutrosophic triplets.

(65, 100, 65) is a neutrosophic triplet.
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(15, 45, 69) and (69, 45, 45) are neutrosophic triplets.
(60, 45, 141) and (141, 45, 60) are neutrosophic triplets.
(75, 45, 159) and (159, 45, 75) are neutrosophic triplets.
(135, 45, 81) and (81, 45, 135) are neutrosophic triplets.
(22, 66, 33) and (33, 66, 22) are neutrosophic triplets.
(99, 66, 154) and (154,66, 99) are neutrosophic triplets.

(132, 66, 88) and (88, 66, 132) are neutrosophic triplets with 66
as the neutral element. (66, 66, 66) is a neutrosophic triplet,
which acts as the identity for all elements with 66 as the

neutrosophic element.
The reader is left with the task of finding whether the set

{(66, 66, 66), (88, 66, 132), (132, 66, 88), (154, 66, 99), (99, 66,
154), (22, 66, 33), (33, 66, 22)}

forms an abelian group with (66, 66, 66) as the multiplicative
identity modulo 165.

Further the reader is left with the task of finding the

largest neutrosophic triplet groups using Zs.

It is conjectured that larger the number idempotents in Z,

the bigger is the neutrosophic triplets collection.

Conjecture 1.12. Let S = {Z,, x} where n = 3m where is of the

form pq where p and q are odd primes different from 3.

Can we say Z, has only six idempotents?
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We see in case of n; = 105 and n, = 165 where
n=3x5x7andn,=3 x5 x 11 has only 6 idempotents.

Now we study the case when one of p and q is also 3 first

by an example.

Example 1.41. Let S = {Z4s5, x} be the semigroup under product
modulo 45.

The idempotents of Z,s are
10 x 10 =10 (mod 45) and 36 x 36 = 36 (mod 45).

Clearly we see if n = 3> x p where p is a prime then Z, has only

two idempotents as 45 = 3% x 5.

The neutrosophic triplets associated with the idempotents

10 and 36 are as follows.

(5, 10, 20) and (20, 10, 5) are neutrosophic triplets
associated with the idempotent 10 of Zys.

(25,10, 40) and (40, 10, 25) are also neutrosophic triplets
associated with the idempotent 10.

(35, 10, 35) and (10, 10, 10) are neutrosophic triplets.

We first find the algebraic structure enjoyed by the set
K = {(10, 10, 10), (35, 10, 35), (25, 10, 40), (40, 10, 25), (5, 10,
20) and (20, 10, 5)} under product modulo 45.

We construct the table of product in the following.
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X

(10,10,10)

(35,10,35)

(25,10,40)

(10,10,10)

(10,10,10)

(35,10,35)

(25,10,40)

(35,10,35)

(35,10,35)

(10,10,10)

(20,10,5)

(25,10,40)

(25,10,40)

(20,10,5)

(40,10,25)

(40,10,25)

(40,10,25)

(5,10,20)

(10,10,10)

(5,10,20)

(5,10,20)

(40,10,25)

(35,10,35)

(20,10,5)

(20,10,5)

(25,10,40)

(5,10,20)

(40,10,25)

(5,10,20)

(20,10,5)

(40,10,25)

(5,10,20)

(20,10,5)

(5,10,20)

(40,10,25)

(25,10,40)

(10,10,10)

(35,10,35)

(5,10,20)

(25,10,40)

(20,10,5)

(35,10,35)

(20,10,5)

(25,10,40)

(10,10,10)

(35,10,35)

(10,10,10)

(40,10,25)

Clearly K is a group of order six and (10, 10, 10) acts as

the identity element.
Now we find the neutrosophic triplets associated with 36.

J={(36, 36, 36), (9, 36, 24), (24, 36, 9), (18, 36, 12), (12,
36, 18)}.

Infact we find it difficult to find for 3, 6, 15, 27, 30, 33,
39 and 42 anti elements however we have in some cases neutral
elements, we shall define for those elements which has neutral

elements but no anti element.
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Such study is very different and difficult from usual
neutrosophic triplet groups so we define only for those elements
which has only neutrals but has no anti element so in case of
these we define them to be duplets. They are called Neutrosophic
Duplets and were introduced by Smarandache [23 - 25] in 2016.

We will illustrate them by some examples.

Example 1.42. Let S = {Zss, x} be the semigroup under
product modulo 45. We see the element 15 is a duplet with

neutral element 10.
Interested reader can find whether such pair exist.
Study in this direction is innovative and interesting.

We define now duplet element of a semigroup.

Definition 1.4 Let S = {Z,, x} be the semigroup under x.

Let n; and n; be any two neutral elements of Z, if there is
an element x € Z, with xn; = n;x = x that is n; is a neutral
element of Z, and if there does exist ay € Z, withx xy =y xx

= ny then we define {x, n;} to be the duplet.

Interested reader can characterize such duplets.

Theorem 1.2. Let S = {Z,, x} be the semigroup under product

modulo 2p, p a prime. S does not contribute to duplets.

Proof. Follows from the very fact that the neutral elements of

Z,, for any p a prime has neutrosophic triplet groups associated
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with it. Hence 7y, has no duplets. The elements p and p + 1

are the neutral elements of Z ,,,.

Now we show if n = 3. 3 or n = 3 x 2 then that %

has non trivial duplets.

Example 1.43. Let S = {Z,,, x} be the semigroup under product

modulo 12.
The neutral elements of Z;, are 4 and 9.

We give the elements which contribute to the
neutrosophic triplet groups; (8, 4, 8), (4,4, 4), (3,9, 3)and (9, 9,
9).

(15,9, 6) and (6, 9, 15) are neutrosophic triplet groups.

Example 1.44. Let S = {Z;3, x} be the semigrouop under
product. 9 and 10 are the only idempotents (2, 10, 4) is a
neutrosophic triplet. (4, 10, 16) is also a triplet. (8, 10, 8) and
(10, 10, 10) are again neutrosophic triplets groups.

3 does not contribute to neutrosophic triplet group for 3 x
10=12 (mod 18) and 3 x 9 =9 (mod 18).

However we define (3, 9, 3) as quasi neutrosophic triplet
group. For 9 does not act as a neutral element of 3 but acts as a

element which converts it to 9 and the anti of 3 is itself.

Now consider 6 € Z;s, (6, 10) is only aduplet for 6x = 10
for and x. (12, 10) is again a duplet.

(15, 9, 15) is again a quasi neutrosophic triplet as
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15 x9=9 (mod 18) and 15 x 15 =9 (mod 18).

Thus the semigroup {Z;s, x} where 18 = 2 x 3” behaves in a

unique way.

This has neutrosophic trplet groups given by the neutral
element 10 which is as follows.

A = {0, 10, 10), (8, 10,8), (2, 10,14), (14,10, 2), (4, 10,
16) and (16, 10, 4)} order of A is 8. This
neutrosophic triplets given by B = {(9, 9, 9), (3, 9, 3) and (15, 9,
15). Order of B is three.

has two quasi

This has duplets given by C = {(12,10) and (6, 10)}. We
will first test whether A forms a group under component wise

multiplication modulo 18.

We construct the table for A in the following.

X (10, 10, 10) | (2, 10, 14) | (14, 10, 2)
(10, 10, 10) | (10, 10, 10) | (2, 10, 14) | (14, 10, 2)
(2,10, 14) | (2, 10, 14) | (4, 10, 16) |(10, 10, 10)
(14,10,2) | (14,10,2) | (10, 10, 10)| (16, 10, 4)
(4,10,16) | (4,10,16) | (8,10,8) | (2,10, 4)
(16, 10, 4) | (16, 10,4) | (14, 10,2) | (8, 10, 8)
(8,10,8) | (8,10,8) | (16, 10,4) | (4, 10, 16)
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(4,10,16)

(16, 10, 4)

(8, 10, 8)

(4, 10, 16)

(16, 10, 4)

(8, 10, 8)

(8, 10, 8)

(14, 10, 2)

(16, 10, 4)

2, 10, 14)

(8, 10, 8)

(4, 10, 16)

(16, 10, 4)

(10, 10, 10)

(14, 10, 2)

(10, 10, 10)

(4, 10, 16)

@, 10, 14)

(14, 10, 2)

2, 10, 14)

(10, 10, 10)

Clearly A is an abelian group under product modulo 18.
We will first test whether A is a cyclic group and if so find the

generator of A.

Consider (2, 10, 14) we first find

(2, 10, 14) x (2, 10, 14) (mod 18)

= (4,10, 16) = (2, 10, 14)~.

We find (2, 10, 14)* = (4, 10, 16) x (2, 10, 14) = (8, 10, 8).
Next we find (2, 10, 14)* = (8, 10, 8) x (2 10, 14) = (16, 10, 4).
Now (2, 10, 14)’ = (16, 10, 4) x (2, 10, 14) = (14, 10, 2).
Finally (2, 10, 14)’ = (14, 10, 2) x (2, 10, 14) = (10, 10, 10).

Thus (2, 10, 14) generates A, hence A is a cyclic group of order
6.
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It is clearly seen that B and C are not even closed under
product.

In view of all these we find the neutrosophic triplet

groups, duplets and quasi neutrosophic triplets of {Zso x}.

Example 1.45. Let S = {Zs, x} be the semigroup under product
modulo 50. Clearly 50 = 2 x 57,

The idempotents of Zs, are 25 and 26.

Now we find the collection of neutrosophic triplet groups
associated with the neutral element 26.

(2, 26, 38) and (38, 26, 2) are neutrosophic triplet groups.
(4, 26, 44) and (44, 26, 4) are neutrosophic triplet groups.
(8, 26, 22) and (22, 26, 8) are neutrosophic triplet groups.

(16, 26, 36) and (36, 26, 16) are neutrosophic triplet
groups.

(32, 26, 18) and (18, 26, 32) are neutrosophic triplet
groups.

(14, 26, 34) nd (34, 26, 14) are neutrosophic triplet
groups.

(28, 26, 42) and (42, 26, 28) are neutrosophic triplet
groups.

(6, 26, 46) and (46, 26, 6) are neutrosophic triplet groups.
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(12, 26, 48) and (48, 26, 12) are neutrosophic triplet
groups.

(24, 26, 24) and (26, 26, 26) are neutrosophic triplet
groups.

(10, 26) is a duplet.
(15, 25, 15) is a quasi neutrosophic triplet group.
(20, 26) is a duplet.
(30, 26) is a duplet.
(40, 26) is a duplet.
(35, 25, 35) is a quasi neutrosophic triplet group.
(45, 25, 45) is a quasi neutrosophic triplet group.

(25, 25, 25) is a trivial neutrosophic triplet group or a

quasi neutrosophic triplet group.

It is pertinent to record all non units of Zs, either form
neutrosophic triplet groups or quasi neutrosophic triplet groups

or duplet.

Now we test the probable algebraic structure enjoyed by
these three groups neutrosophic triplet groups, quasi

neutrosophic triplet groups and duplets.

Let X = {(26, 26, 26), (2, 26, 38), (38, 26, 2), (4, 26, 44),
(44, 26, 4), (8, 26, 22), (22, 26, 8), (16, 26, 36), (36, 26, 16),
(32, 26, 18), (18, 26, 32), (14, 26, 34), (34, 26, 14), (28, 26, 42),
(42, 26, 28), (6, 26, 46), (46, 26, 6), (12, 26, 43), (48, 26, 12)
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and (24, 26, 24)} be the collection of all neutrosophic triplet
group.

Y = {(10, 26), (20, 26), (30, 26) and (40, 26)} be
the collection of all neutrosophic duplets.

Z = {{15, 25, 15), (5, 25, 5), (25, 25, 25), (35, 25, 35) and
(45, 25, 45)} be the collection of all quasi neutrosophic triplet
groups.

We first find the table of Z under product modulo 50.

x (15,25,15) | (25,25,25)
(15,25,25) | (25,25,25) | (25,25,25)
(25,25,25) | (25,25,25) | (25,25,25)
(35,25,35) | (25,25,25) | (25,25,25)
(45,25,45) | (25,25,25) | (25,25,25)

(5,255 | (25,25,25) | (25,25,25)
(35,25, 35 (45, 25, 45) (5, 25, 5)
(25,25,25) | (25,25,25) | (25,25,25)
(25,25,25) | (25,25,25) | (25,25,25)
(25,25,25) | (25,25,25) | (25,25,25)
(25,25,25) | (25,25,25) | (25,25,25)
(25,25,25) | (25,25,25) (25, 25, 25)

This Z forms a unique type of semigroup where all
products lead (25, 25, 25).
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Infact Z is a unique type of monoid under product modulo
50.

Now we find the algebraic structure enjoyed by Y. The
table for Y U (0, 26) is as follows.

x| (10,26) | (20,26) | (30,26) | (40,26) | (0, 26)
(10,26) | (0,26) | (0,26) | (0,26) | (0,26) | (0,26)
(20,26) | (0,26) | (0,26) | (0,26) | (0,26) | (0,26)
(30,26) | (0,26) | (0,26) | (0,26) | (0,26) | (0,26)
(40,26) | (0,26) | (0,26) | (0,26) | (0,26) | (0,26)
0,26) | (0,26) | (0,26) | (0,26) | (0,26) | (0,26)

We see Y U {(0, 26)} the collection of all duplets under
product modulo 50 is again a unique type of monoid which
results in (0, 26). Order of Y U {(0, 26)} is 5.

However if the trivial duplet pair (0, 26) is not added the
set Y will suffer under non closure property under product
modulo 50.

However Z the set of all quasi neutrosophic triple groups

forms a unique type of semigroup under product modulo 50.
Both Y and Z are of order 56.

Now we find the structure enjoyed by X under product
modulo 50. Clearly order of X is 20.

Let us consider (2, 26, 38) € X.
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(2, 26, 38)* = (2, 26, 38) x (2, 26, 38) = (4, 26, 44),

(2, 26, 38)° = (4, 26, 44) x (2, 26, 38) = (8, 26, 22),

(2, 26, 38)* = (8, 26, 22) x (2,26, 38) = (16, 26, 36),
(2, 26, 38)° = (16, 26, 36) x (2, 26, 38) = (32, 26, 18),
(2, 26, 38)° = (2, 26,38) x (32, 26, 18) = (14, 26, 34),
(2, 26, 38)" = (14, 26, 34) x (2, 26, 38) = (28, 26, 42),
(2, 26, 38)% = (28, 26, 42) x (2, 26, 38) = (6, 26, 46),
(2, 26, 38)’= (6, 26, 46) x (2, 26, 38) = (12, 26, 48),
(2, 26, 38)'" = (24, 26, 24) = (2, 26, 38) x (12, 26, 48),
(2, 26, 38)"' = (48, 26, 12) = (2, 26, 38) x (24, 26, 24),
(2, 26, 38)'2 = (48, 26, 12) x (2, 26, 38) = (46, 26, 6),
(2, 26, 38)" = (46, 26, 6) x (2, 26, 38) = (42, 26, 28),
(2, 26, 38)" = (42, 26, 28) x (2, 26, 38) = (34, 26, 14),
(2, 26, 38)"° = (34, 26,14) x (2, 26, 38) = (18, 26,32),
(2, 26, 38)'° = (18, 26, 32) x (2, 26, 38) = (36, 26, 16),
(2, 26, 38)"" = (36, 26, 16) x (2, 26, 38) = (22, 26, 8),
(2, 26, 38)" = (22, 26, 8) x (2, 26, 38) = (44, 26, 4),

(2, 26, 38)"? = (38, 26, 2) = (2, 26, 38) x (44, 26, 4),
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(2, 26, 38)* = (38, 26, 2) x (2, 26, 38) = (26, 26, 26).

Thus X is proved to be a cyclic group of order 20 under product
modulo 50.

In view of all these we first propose only one conjecture.

Conjecture 1.13. Let S = {Z,, x} where n = 2 x p’, p an odd

prime.

i) The collection of all neutrosophic triplet groups
forms a cyclic group of even order under product

modulo n = 2p°.

i) The collection of all duplets forms a special type
of monoid of order p under product modulo n.

iii) The collection of all quasi neutrosophic triplet
groups forms a unique type of semigroup of order
p under product modulo. 2p*.

Before we make one more conjecture we propose another

example.

Example 1.46. Let S = {Zgg, x} be the semigroup under product
modulo 98.

The neutral elements of Zog are 49 and 50.

The neutrosophic triplet groups associated with 50 are (2,
50, 74) and (74, 50, 2) are neutrosophic triplet groups.

(4, 50, 86) and (86, 50, 4) are neutrosophic triplet groups.
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(8, 50, 92) and (92, 50, 8) are neutrosophic triplet groups.

(16, 50, 46) and (46, 50,16) are neutrosophic triplet
groups.

(32, 50, 72) and (72, 50, 32) are neutrosophic triplet
groups.

(64, 50, 36) and (36, 50, 64) are neutrosophic triplet
groups.

(30, 50, 18) and (18, 50, 30) are neutrosophic triplet
groups.

(60, 50, 58) and (58, 50, 60) are neutrosophic triplet
groups.

(22, 50, 78) and (78, 50, 22) are neutrosophic triplet
groups.

(44, 50, 88) and (88, 50, 44) are neutrosophic triplet
groups.

(6, 50, 90) and (90, 50, 6) are neutrosophic triplet groups.

(12, 50, 94) and (94, 50, 12) are neutrosophic triplet
groups.

(24, 50, 96) and (96, 50, 24) are neutrosophic triplet
groups.

(48, 50, 48) and (50, 50, 50) are neutrosophic triplet
groups.
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(10, 50, 54) and (54, 50, 10) are
groups.

(20, 50, 76) and (76, 50, 20) are
groups.

(40, 50, 38) and (38, 50, 40) are
groups.

(80, 50, 68) and (68,50, 80) are
groups.

(62, 50, 34) and (34,50, 62) are
groups.

(26, 50, 66) and (66, 50, 26) are
groups.

(52, 50, 82) and (82, 50, 52) are
groups.

neutrosophic

neutrosophic

neutrosophic

neutrosophic

neutrosophic

neutrosophic

neutrosophic

triplet

triplet

triplet

triplet

triplet

triplet

triplet

We see if A = {(2, 50, 74), (74, 50, 2), (4, 50, 86), (86,
50, 4), (8, 50, 92), (92, 50, 8), (16, 50, 46), (46, 50, 16), (32, 50,
72), (72, 50, 32), (64, 50, 36), (36, 50, 64), (30, 50, 18), (18, 50,
30), (60, 50, 58), (58, 50, 60), (22, 50, 78), (78, 50, 22), (44, 50,
88), (88, 50,44), (6, 50, 90), (90, 50, 6), (12, 50, 94), (94, 50,
12), (24,50, 96), (96, 50, 24), (48, 50, 48), (50, 50, 50), (10, 50,
54), (54, 50, 10), (20, 50, 76), (76, 50,20), (40, 50, 38), (38, 50,
40), (80, 50, 68), (68, 50, 80), (62, 50,34), (34,50,62) (26, 50,
66), (66, 50, 26), (52, 50, 82) and (82, 50,52)} forms a group

under product modulo 98 of order 42.

Now we find the collection of duplets.



Introduction to Neutrosophic Triplet Groups | 83

B={(7,49,7),(21,4,9, 21), (35, 4, 9, 35), (63, 49, 63),
(77, 49, 77), (91, 49, 91) and (49, 49, 49)} are quasi
neutrosophic triplet groups associated with the trivial neutral

element 49.
Clearly o(B) =7

{(14, 50), (28, 50), (56, 50), (70, 50), (42, 50), (84, 50) and (O,
50)} = C is the collection of all duplets which forms a unique

type of semigroup under product modulo 98.

Similarly B the collection of all quasi neutrosophic triplet
groups under product modulo 98 forms a unique type of
semigroup of order 7.

In view of all these we propose yet some open

conjectures.

Conjecture 1.14. Let S = {Z,, x} be the semigroup under
product modulo n, where n = 2p” where p is any odd prime with

only two neutral elements (or idempotents), p* and p™+1.

1) The neutrosophic triplet groups collection A
associated with the neutral element (or

idempotent) p* + 1 is a cyclic group of order (p —
Dp.

i) The set of all quasi neutrosophic triplet groups
associated with p* is a special type of semigroup
under product modulo 2p” is of order p.

iii) The collection of duplets C associated
with the idempotent p* + 1 is again a
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special type of semigroup in which for every x, y
e C.x xy=(0, p> + 1), product operation under
modulo 2p* (x # y) and x* = (0, p> + 1).

It is further pertinent to record that p® is only a trivial
neutral element which can yield non trivial quasi neutrosophic
triplet groups. However p” + 1 cannot yield nontrivial quasi

neutrosophic triplet groups.

Further p + 1 alone has the capacity to yield both
neutrosophic triplet groups as well as duplets.

Next we study {Z,, x} where n = pq” where both p and q
two distinct odd primes for neutrosophic triplet groups, quasi

neutrosophic triplet groups and duplet pairs.

Example 1.47 Let S = {Z4s5, x} be a semigroup under product
modulo 45. 45 =3?x 5.

The neutral elements or idempotents of S are 10 and 36
(5, 10, 20) and (20, 10, 5) are neutrosophic triplet groups of the

neutral element 10.

(25, 10, 40) and (40, 10, 25) are neutrosophic triplet
groups,

(35, 10, 35) and (10, 10, 10) are neutrosophic triplet
groups.

(6, 36, 6) is a neutrosophic triplet group.

(9, 36, 9) is a neutrosophic triplet group.
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(15, 10) is aduplet, (3, 10) is aduplet, (21, 36,
21) is a quasi neutrosophic triplet group.

(27, 36, 18) and (18, 36, 27) are neutrosophic triplet
groups.

Now we see 3, 12, 33 and 39 which are only multiplies of
three though is not a unit in Z4s do not contribute to any
neutrosophic triplet group or duplet or quasi neutrosophic

triplet groups.

However 21 which is a multiple of 3 with 7 is a quasi

neutrosophic triplet group.

Further let A = {(5, 10, 20), (20, 10, 5), (25, 10, 40),
(40, 10, 25), (35, 10, 35), (10, 10, 10)} be the collection of all
neutrosophic triplet group associated with the neutral element
10.

B ={(9, 36, 9), (36, 36, 36), (27, 36, 18), (18, 36, 27)} be
the collection of all neutrosophic triplet groups associated with

the neutral element 36.

{(6, 36, 6), (21, 36, 21), (36, 36, 36)} be the collection of
all quasi neutrosophic triplet groups associated with the neutral

element 36.

{(15, 10), (30, 10), (0, 10)} be the collection of
duplets associated with the neutral element 10.

We see when n = p°q where p and q are two distinct odd
primes we are not in a situation to describe the set of
neutrosophic triplet groups or duplets or quasi neutrosophic

triplet groups.
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Further even the neutral elements of 45 are 10 and 36

which seems to be very different from 2 x p, p an odd prime.

However in case of 45 = 3% x 5 we see 10 =5 x (3 — 1)
and 36 = 3°x (5 — 1). So can we say if n = p°q, p < q; then q x
(p— 1) and p* x (q— 1) are the two neutral elements of Z,.

We now describe another example.

Example 1.48. Let S = {Z, x} where n = 3> x 7 be the
semigroup under product modulo n = 63. The idempotents or

neutrals of Zg; are 28 and 36.

We now find the neutrosophic triplet groups,
duplets and quasi neutrosophic triplet groups.

(7, 28, 49) and (49, 28, 7) are neutrosophic triplet groups.

(14, 28, 56) and (56, 28, 14) are neutrosophic triplet
groups.

(35, 28, 35) and (28, 28, 28) are neutrosophic triplet
groups.

(9, 36, 18) and (18, 36, 9) are neutrosophic triplet groups.

(27, 36, 27) and (36, 36, 36) are neutrosophic triplet
groups.

(45, 36, 54) and (54 36, 45) are neutrosophic triplet
groups.

One can calculate the duplets and quasi
neutrosophic triplet groups.
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However finding them happens to be a difficult task.

The neutrosophic triplet groups associated with Zg; is a
difficult task.

Further it is pertinent to record that 36 and 28 contribute

non trivial neutrosophic triplet groups.

Here let Y ={(7, 28, 49), (49, 28, 7), (14,28, 56), (56, 28,
14), (28, 28, 28), (35, 28, 35)} and

Z = {(9, 36, 18), (18, 36, 9), (27, 36, 27), (36, 36, 36), (45, 36,
54), (54, 36, 45)} be the nontrivial neutrosophic triplet groups
collection associated with the neutral elements 28 and 36

respectively.
We will first find the tables of Y and Z.

Table of Y is as follows:

x (7, 28, 49)

(49, 28, 7)

(14, 28, 56)

(7, 28, 49)

(49,28,7)

(28, 28, 28)

(35, 28, 35)

(49, 28, 7)

(28, 28, 28)

(7, 28, 49)

(56, 28, 14)

(14, 28, 56)

(35, 28, 35)

(56, 28, 14)

(7, 28, 49)

(56, 28, 14)

(14, 28, 56)

(35, 28, 35)

(28, 28, 28)

(28, 28, 28)

(7, 28, 49)

(49, 28, 7)

(14, 28, 56)

(35, 28, 35)

(56, 28, 14)

(14, 28, 56)

(49, 28, 7)
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(56,28, 14) | (28,28,28) | (35,28, 35)
(14,28,56) | (7,28,49) | (56,28, 14)
(35,28,35) | (49,28,7) | (14,28, 56)
(28,28,28) | (14,28,56) | (49,28,7)
(49,28,7) | (56,28,14) | (7,28,49)
(56,28, 14) | (28,28,28) | (35,28, 35)
(7,28,49) | (35,28,35) | (28,28,28)

Clearly Y is a group of order six. We have to check
whether Y is cyclic or not.

Consider (7, 28, 49) we see
(7, 28, 49) x (7, 28, 49) = (49, 28, 7) and
(49, 28, 7) x (7, 28, 49) = (28, 28, 28).
Thus (7, 28, 49)’ = (28, 28, 28) the identity.

Now if we take (14, 28, 56) then (14, 28, 56)2 = (7, 28,
49)

(14, 28, 56)° = (7, 28, 49) x (14, 28, 56) =(35, 28, 35)

(14, 28, 56)* = (35, 28, 35) x (14, 28, 56) = (49, 28, 7)

(14, 28, 56)° = (49, 28, 7) x (14,28, 56) = (56, 28, 14)
Finally (14, 28, 56)° = (56, 28, 14) x (14, 28, 56) = (28, 28,28).

Thus (14, 28, 56) is the generator of the cyclic group Y with
(28, 28, 28) as the identity.
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Now we give the table for Z in the following.

x 9,36, 18) | (18,36,9) |(27,36,27)
9, 36, 18) | (18,36, 9) | (36, 36, 36) | (54, 36, 45)
(18, 36,9) | (36, 36,36) | (9, 36, 18) |(45, 36, 54)
(27, 36, 27)| (54, 36,45) | (45, 36, 54) | (36, 36, 36)
(36,36,36)| (9,36,18) | (18,36,9) |(27, 36, 27)
(45, 36, 54)| (27, 36, 27) | (54, 36, 45) | (18, 36, 9)
(54, 36, 45)| (45, 36, 54) | (27, 36, 27) | (9, 36, 18)

(36,36,36) | (45,36,54) | (54,36,45)

9,36,18) | (27,36,27) | (45,36, 54)

(18,36,9) | (54,36,45) | (27,36,27)

(27,36,27) | (18,36,9) | (9,36, 18)

(36,36,36) | (45,36,54) | (54,36,45)

(45,36,54) | (9,36,18) | (36,36,36)

(54,36,45) | (36,36,36) | (18,36,9)

Thus Z is also a group with (36, 36, 36) as its
multiplicative identity.

We now find out whether Z is cyclic or not under the

product operation modulo 63.

Consider (9, 36, 18) € Z; (9, 36, 18)2 = (18, 36, 9);
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(9, 36, 18)° = (18, 36, 9) x (9, 36, 18) = (36, 36, 36).

Thus the order of (9, 36, 18) is only three and does not generate
Z.

Consider (45, 36, 54) e Z; (45, 36, 54)> = (9, 36, 18),
(45, 36, 54)° = (9, 36, 18) x (45, 36, 54) = (27, 36, 27),
(45, 36, 54)" = (45, 36, 54) x (27, 36, 27) = (18, 36, 9),
(45, 36, 54)° = (18, 36, 9) x (45, 36, 54) = (54, 36, 45)
and (45, 36, 54)° = (54, 36, 45) x (45, 36, 54) = (36, 36, 36).

Thus as order of (45, 36, 54) is six (45, 36, 54) generates the Z
so Z is a cyclic group of order six with (36, 36, 36) as identity.

Now we test for quasi neutrosophic triplet groups

and duplets in Zg; under product modulo 63.
(15, 36, 15) is a quasi neutrosophic triplet group.

(57, 36), (42, 28) and (21, 28) are some of the
duplets.

The reader is left with the task of finding both duplets
associated with 28 and 36 as well as quasi neutrosophic triplet

groups associated with 28 and 36.

We give one more example before we give any of the

related observations.
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Example 1.49. Let S = {Zy, x} be the semigroup under product
modulo 99. Clearly 99 = 3% x 11 s0 99 is of the form 3*p where

p is an odd prime.
First we find the related neutral elements of Zgo.
45 and 55 are the only neutral elements or idempotents of Zg.

We now find the elements which contribute to
neutrosophic triplet groups by 55.

(11, 55, 77) and (77, 55, 11) are neutrosophic triplet

group associated with the neutral element 55.
(22, 55, 88) and (88, 55, 22) are neutrosophic triplet groups.

(44, 55, 44) and (55, 55, 55) are neutrosophic triplet
groups.

(12, 45, 12) and (45, 45, 45) are neutrosophic triplet
groups.

(18, 45,63) and (63, 45, 18) are neutrosophic triplet
groups.

(27, 45, 9) and (9, 45, 27) are neutrosophic triplet groups.

(90, 45, 72) and (72, 45, 90) are neutrosophic triplet
groups.

(36, 45, 81) and (81, 45, 36) are neutrosophic triplet
groups.

(54, 45, 54) is a neutrosophic triplet group.
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(33, 55, 33) is a neutrosophic triplet group. The author is
left with the task of finding the group of neutrosophic triplet
groups associated with 45 and 55.

We find some of the neutrosophic triplet groups

associated with 55.

(11, 55, 77), (77, 55, 11), (55, 55, 55), (44, 55, 44),
(22, 55, 88) (88, 55, 22)}.

The reader is left with task of finding quasi

neutrosophic triplet groups and duplets.

We find it a challenging task to the collection of all
duplet pairs, quasi neutrosophic triplet groups and neutrosophic
triplet groups and study the algebraic structure enjoyed by

them.
Finally we give an example where n = 48 = 23,

Example 1.50. Let S = {Zas, x} be the semigroup under product
modulo 48. The neutral elements (idempotents) of Z.s are 16
and 33.

The neutrosophic triplet groups associated with the
neutral element 16 are ({16, 16, 16), (32, 16, 32)}.

We see A is only a cyclic group of order two.

However for the neutral element 33 we give some of the

neutrosophic triplet groups;

((3, 33, 27), (27, 33, 3), (9, 33, 9), (15, 33, 15), (33, 33,
33), (21, 33, 21)1.
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However we are forced to make the following open
conjectures.

Can the collection of neutrosophic triplets associated with
Z,, when n=2'p, t > 2 and p an odd prime for any of the neutral
elements be groups of order greater than 2 when the neutral

element is an even number?

Study the above question analogously for any Z,, n = p"q,

m=>2 pand p two distinct odd primes.
We suggest the following problems for the reader.
Problems

1. Obtain all special features associated with the collection

of neutrosophic triplet groups.
2. When will the number of neutral elements set be large?

3. Can n = 2p for Z, p an odd prime have more than two

nontrivial neutral elements? Justify!
4. Find all the neutral elements of S = {Zsp, x}.
5. Find all the neutral elements of P = {Z,o, x}.

6. Which of the semigroups S or P has more number of

neutral elements?

7. Can one prove the number of neutral elements depends
not on the largeness of n in Z, but the number of prime

factors that can divide n?

8. Find all the neutral elements of Zs.
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10.

11.

12.

13.

Can Z,; have neutral elements?

Find all the neutrosophic triplet groups associated with 54
of S = {Z]()ﬁ, X}.

a) Prove the collection of all neutrosophic triplet
groups associated with the neutral element 54

€ Zyg¢ 1s a group G.

b) Prove the group G is a cyclic group.
c) Find the order of G.
Show S = [Z4, %} has pseudo primitive elements

associated with set P = {2, 4, 6, 8, 10, ..., 42, 44}.

Prove in {Z,, x} where n = 3p, p an odd prime different
from 3 has only two neutral elements. Generalize them
and find its form.

Let S = {Z4s, x} be the semigroup under product modulo
15.

1) Prove 10 and 6 are the only neutral elements of
Z;s.
i) Find the neutrosophic triplet groups associated

with 10 and 6.

iii) Does the collection of neutrosophic triplet groups
associated with the neutral element 10 form a

group?

iv) Find the order of the group in (iii) .



14.

15.

Introduction to Neutrosophic Triplet Groups | 95

V) Can S have duplets?

vi) Does any of the neutral elements of S contribute

to quasi neutrosophic triplet groups?

Let S = {Zs40, x} be the semigroup under product modulo
560.

a) Find all the neutral elements associated with Zsg.

b) Find the neutrosophic triplet groups collection
associated with each of the neutral elements of
Zseo.

c) Does these collections associated with the neutral

element form a group or a semigroup?

d) Can we say if G and H are two neutrosophic
triplet groups collection associated with two
distinct neutral elements then G x H= {(0, 0, 0)}?

e) Obtain any other special feature associated with
S.

Let B = {Zs9, x} be the semigroup under product modulo
510.

1) Study questions (a) to (e) of problem (14) for this
B.

i) Can we say neutral elements of B contribute more
number of neutrosophic triplet groups than that of
S in problem (13)?
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16.

17.

18.

19.

Prove if S = {Z,, x} be a semigroup with n =p; p, ... ps,
pi are distinct primes t > 3, 1 <1 < t, then Z, has larger
number of neutral elements than Z,, where m = p°q > n (p

and q two distinct primes).

Find for the fixed t in problem (16) the total number of

neutral elements.

Let S = {Zogo, x} be the semigroup under product modulo
900.

1) Find all neutral elements of S.

i) Can neutral elements of S contribute
duplets?

iii) Does neutral elements of S contribute to quasi

neutrosophic triplet groups?

iv) Find all the neutrosophic triplet groups associated
with each of the neutral elements.

V) Study the algebraic structure enjoyed by each of
the collection of neutrosophic triplet groups with

every distinct nontrivial neutral element of S.

Let P = {Z4;5, x} be the semigroup under product modulo
418.

1) Study questions (i) to (v) of problem (18) for this
P.

i) Which has more number of neutral elements S or
pP?



20.

21.

22.

23.

24.

25.

26.
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Characterize those numbers n of Z, (n a non prime

composite number) which has duplets.

Characterize those integers n for which Z, contributes
neutral elements which contributes quasi neutrosophic

triplet groups.

Is it always true for a fixed Z, if n has neutrals which
contribute to duplets than it has other neutrals which

contribute to quasi neutrosophic triplet groups?

Prove if S = {Z,, x}, n = pq, p and q two distinct primes
than no neutral element in Z, can contribute to duplets or

quasi neutrosophic triplet groups.

Can we say for M = {Z,, x}, n = p'q, p and q two distinct
primes there are neutrals in Z, which contribute to both

duplets and quasi neutrosophic triplet groups?

Can we say for some n of Z, we can have neutrals which
contribute only to duplets and no neutrals exists in that Z,
which can contribute to quasi neutrosophic triplet groups

or neutrosophic triplet groups?

Can we prove there exists n such that Z, can have
neutrals which contribute only to quasi neutrosophic
triplet groups and not to duplets or neutrosophic triplet

groups?
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27.

28.

29.

30.

31.

32.

33.

Is it mandatory if a neutral in Z, contributes to quasi
neutrosophic triplet groups then n is a product of several
distinct powers of primes?

Prove the converse of problem given in (27) is in general

not true.

Prove in {Z,, x}, the semigroup under product there are
neutrals which contribute to duplets then the collection is a
unique of semigroup in which product of every pair is {(0,
t)}, where t is that special neutral element of Z, which has

contributed duplets.

Let S = {Z,, x} be the semigroup under product modulo
n. If s € Z, i1s a neutral which contributes to a collection
of quasi neutrosophic triplet groups them prove that
collection is a special type of semigroup such that every
pair of elements product in it is (s, s, S).

Can there exist a Z, in which every neutral contributes
only for duplets? (that is all neutrals in Z, has the capacity

only to create neutrosophic pairs)?

Does there exist a Z,, is which all neutrals contribute only
to quasi neutrosophic triplet groups?

Let S = {Zg4s, x} be the semigroup under product modulo
648.

1) Find all neutrals of S.



34.

35.

36.

37.
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i) Can these neutrals contribute to nontrivial
neutrosophic triplet group collection which forms
a cyclic group?

iii) Can the neutrals of Z,g contribute toduplets

alone, which forms a special type of semigroup?

iv) Can the neutral of Zgg contribute only to quasi
neutrosophic triplet groups? Or is it mandatory a
neutral which contribute to quasi neutrosophic
triplet groups necessarily contributes to
neutrosophic triplet groups also.

V) Find all neutrals of Zg4s which contribute only to
one type of neutrosophic triplet groups (does

such neutrals exist in Zggs).

Let S = {Zs;on, x} be the semigroup under product
modulo 392.

1) Study questions (i) to (v) of problem (33) for this
Si.

i) Compare the properties enjoyed by S of problem
in (33) with this S;

Construct a semigroup S such that S x S = {identity} and

S is of finite order.

Let S = {Z,,, x}, p an odd prime. B = {2Z,,\ {0}} < S.

Prove B has atleast one pseudo primitive element.

Can B in problem 36 have more than one pseudo

primitive element?



100 | Neutrosophic Triplets Groups and their Applications ...

38.

39.

Can S = {Z,, x}, p and q different odd primes with
D= {pZ,\ {0}} < S have pseudo primitive elements?

Let S = {Z519, x}, be the semigroup under product
modulo 1219.

1) Py = {53Zy19 \ {0}} < S; can P; have pseudo

primitive elements?

i) Let P, = {23Z1519 \ {0}} < S; can P, have pseudo

primitive elements?



Chapter Two

ALGEBRAIC STRUCTURES ON
NEUTROSOPHIC TRIPLET GROUPS

In this chapter we study the algebraic structure enjoyed
by the neutrosophic triplet groups built using Z,,, p and q are
prime numbers. In the earlier chapter we have studied the

properties of neutrosophic triplets built using Z,.

We see these neutrosophic triplet groups of Z,, behave
and enjoy properties different from Z, when n is not of the

above said form.
We will first illustrate this situation by examples.

Example 2.1. Let S = {Z,,, x} be the semigroup under product
modulo 22. The idempotents of S are 11 and 12.

The elements that contribute for neutrosophic triplets
from Z,, are A= {2,4, 6, 8, 10, 14, 15, 18, 20, 12 and 11}.

We now get the neutrosophic triplets of Z,,.
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Only idempotents can serve as neutral elements from the
set A.

Infact the idempotent 11 cannot contribute to any
nontrivial neutrosophic triplet and infact (11, 11, 11) is the

trivial neutrosophic triplet

(2, 12, 6) and (6, 12, 2) are neutrosophic triplets associated with
the idempotent 12.

(4, 12, 14) and (14, 12, 4) are neutrosophic triplets.
(8, 12, 18) and (18, 12, 8) are neutrosophic triplets.
(16, 12, 20) and (20, 12, 16) are neutrosophic triplets.
(10, 12, 10) and (12, 12, 12) are neutrosophic triplets.

Thus there are 10 nontrivial neutrosophic triplet groups

all of which have only 12 to be the neutral element.
11 is the trivial neutral element of Z,,.

The set B = {(2, 12, 6), (6, 12, 2), (4, 12, 14), (14, 12, 4),
(8, 12, 18), (18, 12, 8), (16, 12, 20), (20, 12, 6), (10, 12, 10),
(12, 12, 12)} forms a group under modulo 22. {B, x} is defined
as the neutrosophic triplet group - group.

In fact B is a cyclic group of order 10 and it is generated
by (2, 12, 6).

For (2, 12, 6)10 = (12, 12, 12) and (12, 12, 12) acts as the
identity of B. (0, 0, 0) and (11, 11, 11) are only trivial

neutrosophic triplets.
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Wesee (11, 11, 11) x (11, 11, 11) = (11, 11, 11) and (0, 0, 0) x
(11,11, 11)= (0, 0, 0).
Finally (11, 11, 11) x x= (0, 0, 0) for all x € B.

Further (B U {(0, 0, 0), (11, 11, 11)}) = P is a semigroup
which is not a monoid. In fact {(0, 0, 0), (11, 11, 11)} x B= {(0
0 0)}. Thus B is annulled by the element (11, 11, 11).

Example 2.2. Let W = {Z;3, x} be the semigroup under product
modulo 18. 9 x 9 = 9 (mod 18), 10 x 10 = 10 (mod 18),
2 x 10 =2 (mod 18);

(2, 10, 14) and (14, 10, 2) are neutrosophic triplets.
(4, 10, 16) and (16, 10, 4) are neutrosophic triplets.
(8, 10, 8) and (10, 10, 10) are neutrosophic triplets.

We see the neutrosophic triplets associated with the
neutral element 10 are K = {(10, 10, 10), (2, 10, 14), (14, 10, 2),
(16, 10, 4), (4, 10, 16), (8, 10, 8)}. The table for K is ;

X

(10, 10, 10)

2, 10, 14)

(14, 10, 2)

(10, 10, 10)

(10, 10, 10)

2, 10, 14)

(14, 10, 2)

2, 10, 14)

2, 10, 14)

(4, 10, 16)

(10, 10, 10)

(14, 10, 2)

(14, 10, 2)

(10, 10, 10)

(16, 10, 4)

(8, 10, 8)

(8, 10, 8)

(16, 10, 4)

(4, 10, 16)

(16, 10, 4)

(16, 10, 4)

(14, 10, 2)

(8, 10, 8)

(4, 10, 16)

(4, 10, 16)

(8, 10, 8)

(4, 10, 16)
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(8,10, 8) | (16, 10,4) | (4, 10, 16)
(8,10, 8) | (16, 10,4) | (4, 10, 16)
(16, 10, 4) | (14, 10,2) | (8, 10, 8)
(4,10,16) | (8,10,8) | (4,10, 16)
(10, 10, 10) | (2, 10, 14) | (14, 10, 2)
2,10, 14) | (4, 10, 16) |(10, 10, 10)
(14, 10,2) | (10, 10, 10) | (16, 10, 4)

In fact this is an abelian group of order six with (10, 10,
10) as the identity with respect to multiplication modulo 18.

It is important to record the following facts as, 18 =9 x 2
= 3% x 2 we see the only neutral elements of Z;5 is 9 and 10,
however 9 does not contribute to any nontrivial neutrosophic
triplet, but 10 contributes 6 neutrosophic triplets which forms a
group - group of neutrosophic triplets.

It is interesting to observe that in fact K is a cyclic group

of order six.

Further we see none of the elements in Z;3 which are
multiples of three; do not contribute to neutrosophic triplets. To
be more exact, 3, 6, 12 and 15 do not contribute to neutrosophic
triplets.

Only 2, 4, 8, 10, 14 and 16 contribute to neutrosophic
triplets with 10 as the neutral element 9 is only a neutral
element which yields the trivial neutrosophic triplet (9, 9, 9).
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Example 2.3. Let S = {Zs4, x} be the semigroup under product
modulo 54. 54 =3*x2,3*=27is only odd.

The idempotents or neutral elements of Zs4 are as follows.
27 x 27 =27 (mod 54) and 28 x 28 = 28 (mod 54)
are the only neutrals (idempotents of Zs4).

Now we find the neutrosophic triplets associated with the
neutral element 27.

The only neutrosophic triplet group contributed by the
neutral element 27 is (27, 27, 27).

Now we find the neutrosophic triplets associated with the
neutral element 28.

(2, 28, 14) and (14, 28, 2) are neutrosophic triplets
associated with the neutral element 28.

(4, 28, 34) and (34, 28, 4) are neutrosophic triplets of 28.
(8, 28, 44) and (44, 28, 8) are neutrosophic triplets of 28.,

(16, 28, 22) and (22, 28, 16) are neutrosophic triplets
associated the neutral element 28.

(32, 28, 38) and (38, 28, 32) are neutrosophic triplets of
28.

(10, 28, 46) and (46, 28, 10) are neutrosophic triplets of
the neutral element 28.
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(20, 28, 50) and (50, 28, 20) are neutrosophic triplets of
28.

(40, 28, 52) and (52, 28, 40) are neutrosophic elements
associated with the idempotents 28.

(26, 28, 26) and (28, 28, 28) are neutrosophic triplets.

Let B = {(28, 28, 28), (26, 28, 26), (40, 28, 52), (52, 28,
40), (20, 28, 50), (50, 28, 20), (10, 28, 46), (46, 28, 10), (32, 28,
38), (38, 28, 32), (22, 28, 16), (16, 28, 22), (8, 28, 44), (44, 28,
8), (4, 28, 34), (34, 28, 4), (2, 28, 14), (14, 28, 2)}.

It is easily verified B is a cyclic group - group

neutrosophic triplet of order 18.

We see {Zs, x} has a cyclic group - group neutrosophic
triplet of order six (18 =2 x 3%).

Further {Zs4, x} has a cyclic group - group neutrosophic
triplet of order 18 (54 =2 x 3°).

We see yet another example before we make some

conjectures.

Example 2.4. Let S = {Z, x} be the semigroup under product
modulo 162. The idempotents of Z¢, are 81 and 82 as

81 x 81 =81 (mod 162) and 82 x 82 =82 (mod 162).

The neutrosophic triplets associated with the neutral element 82
are (2, 82, 122) and (122, 82, 2) are neutrosophic triplets

associated with the idempotent 82.
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(4, 82, 142) and (142, 82, 4) are neutrosophic triplets of
the neutral element 82.
(8, 82, 152) and (152, 82, 8) are neutrosophic triplets.

(16, 82, 76) and (76, 82, 16) are neutrosophic triplets
associated with 82,

(32, 82, 58) and (58, 82, 32) are neutrosophic triplets
associated with 82 are

(64, 82, 110) and (110, 82, 64) are neutrosophic triplets.

(128, 82, 136) and (136, 82, 128) are neutrosophic triplets

related with the neutral element 82.
(94, 82, 94) and (82, 82, 82) are neutrosophic triplets.

(10, 82, 154) and (154, 82, 10) are neutrosophic triplets

associated with the neutral element 82.

(20, 82, 158) and (158, 82, 20) are neutrosophic triplets

associated with the idempotent 82.
(40, 82, 160) and (160, 82, 40) are neutrosophic triplets.
(80, 82, 80) is a neutrosophic triplet.
(14, 82, 14) is a neutrosophic triplet.
(28, 82, 88) and (88, 82, 28) are neutrosophic triplets.

(56, 82, 44) and (44, 82, 56) are neutrosophic triplets

associated with the idempotents 82.

(112, 82, 22) and (22, 82, 112) are neutrosophic triplets.
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(62, 82, 92) and (92, 82, 62) are neutrosophic triplet.
(124, 82, 46) and (46, 82, 124) are neutrosophic triplets.
(86, 82, 104) and (104, 82, 86) are neutrosophic triplets.
(26, 82, 134) and (134, 82, 26) are neutrosophic triplets.
(52, 82, 148) and (148, 82, 52) are neutrosophic triplets.
(34, 82, 34) is a neutrosophic triplet.

(68, 82, 98) and (98, 82, 68) are neutrosophic triplets.
(6, 82, 66) and (66, 82, 6) are neutrosophic triplets.

Clearly (12, 82, 114) and (114, 82, 12) are neutrosophic
triplets.

Further (24, 82, 138) and (138, 82, 24) are neutrosophic
triplets.

(48, 82, 150) and (150, 82, 48) are neutrosophic triplets
associated with the neutral element 82.

(96, 82, 156) and (156, 82, 96) are neutrosophic triplets.
(30, 82, 78) and (78, 82, 30) are neutrosophic triplets.
(60, 82, 120) and (120, 82, 60) are neutrosophic triplets.

The reader is left with the task of finding the total number

of neutrosophic triplets associated with the neutral element 82.
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Conjecture 2.1. Finding the number of neutrosophic triplets in
case of Z, where n = 3' x 2, t > | happens to be a open

conjecture.

Further it is conjectured if m is the number of
D . NS |
neutrosophic triplet associated with (E + 1) then can we say 6
divides m?

Next we proceed onto work with specific order of n is
Zon.

Example 2.5. Let S = {Z,)9, x} be the semigroup. We find the
idempotents of Z,;9. We see 210 =2x 3 x 5x 7.

The idempotents of Z,,o are

15 x 15=15(mod 210), 21 x 21 =21 (mod 210),

36 x 36 =36 (mod 210), 70 x 70 =70 (mod 210),

85 x 85=85 (mod 210), 91 x 91 =91 (mod 210),

106 x 106 = 106 (mod 210), 120 x 120 = 120 (mod 210),
105 x 105 = 105 (mod 210), 126 x 126 = 126 (mod 210),
141 x 141 = 141 (mod 210), 175 x 175 = 175 (mod 210),

190 x 190 = 190 (mod 210) and 196 x 196 = 196 (mod
210).



110 | Neutrosophic Triplets Groups and their Applications ...

There are 14 idempotents. We can have 14 sets of distinct
neutrosophic triplets associated with these 14 neutral elements
of Zzl().

(2, 106, 158) and (158, 106, 2) are neutrosophic triplets

associated with the neutral element 106.
(4, 106, 184) and (184, 106, 4) are neutrosophic triplets.
(8, 106, 92) and (92, 106, 8) are neutrosophic triplets.
(16, 106, 46) and (46, 106, 16) are neutrosophic triplets.

(32, 106, 128) and (128, 106, 32) are neutrosophic
triplets.

(64, 106, 64) and (106, 106, 106) are neutrosophic
triplets.

(3, 141, 1171) and (117, 141, 3) are neutrosophic triplets.
(9, 141, 39) and (39, 141, 9) are neutrosophic triplets.

(27, 141, 153) and (153, 141, 27) are neutrosophic
triplets.

(81, 141, 81) and (141, 141,141) are neutrosophic triplets.
(5, 85, 185) and (185, 85, 5) are neutrosophic triplets.
(25, 85, 205) and (205, 85, 25) are neutrosophic triplets.
(125, 85, 125) and (85, 85, 85) are neutrosophic triplets.

(6, 36, 6) and (36, 36, 36) are neutrosophic triplets.
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(7,91, 133) and (133, 91, 7) are neutrosophic triplets.
(49, 91, 49) and (91, 91, 91) are neutrosophic triplets.
(10, 190, 40) and (40, 190, 10) are neutrosophic triplets.

(100, 190, 130) and (130, 190, 100) are neutrosophic
triplets.

(160, 190, 160) and (190, 190, 190) are neutrosophic
triplets.

(12, 36, 108) and (108, 36, 12) are neutrosophic triplets.

(144, 36, 114) and (114, 36, 144) are neutrosophic
triplets.

(48, 36, 132) and (132, 36, 48) are neutrosophic triplets.

(156, 36, 186) and (186, 36, 156) are neutrosophic
triplets.

(192, 36, 192) and (36, 36, 36) are neutrosophic triplets.

(14, 196, 14) and (196, 196, 196) are neutrosophic
triplets.

(18, 36, 72) and (72, 36, 18) are neutrosophic triplets.
(20, 190, 20) is a neutrosophic triplet.
(24, 36, 54) and (54, 36, 24) are neutrosophic triplets.

(156, 36, 186) and (186, 36, 156) are neutrosophic
triplets.
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(174, 36, 174) is a neutrosophic triplet.

(28,196, 112) and (112, 196, 28) are neutrosophic triplets.
(154, 196, 154) is a neutrosophic triplet.

(30, 120, 60) and (60, 120, 30) are neutrosophic triplets.
(120, 120, 120) is a neutrosophic triplet.

(35, 175, 35) is a neutrosophic triplet.

(200, 190, 170) and (170, 190, 200) are neutrosophic
triplets.

(50, 190, 50) is a neutrosophic triplet.

(150, 120, 180) and (180, 120, 150) are neutrosophic
triplets.

(42, 126, 168) and (168, 126, 42) are neutrosophic triplets
associated with the neutral element 126.

(84, 126, 84) and (126, 126, 126) are neutrosophic triplets
of the idempotent 126.

The reader is left with the task of finding the number of

neutrosophic triplets associated with all the neutral elements of
Zsio.

Further it is pertinent to record that when the number of
primes in the n (of Z,) is large so is the number of neutral
elements (idempotents of Z,).
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We see the Z,, where n is not a prime has several neutral
(idempotents) elements.

But when ‘n’ is an odd prime Z,, has only two

. . n+l1
idempotents or neutral elements viz.

n _ .

and 7 It is further
n . .. S

observed that 5 contributes only to trivial neutrosophic triplet,

n+1 . . .
thus only 5 contributes to several nontrivial neutrosophic

triplets.
The results related with them are obtained.

Now we proceed on to work with elements from Zs,, p
may be a prime or an odd number not divisible by three.

Example 2.6. Let S = {Z33;, x} be the semigroup under product

modulo 33.
The neutral elements or idempotents of Z;; are
12 x 12 =12 (mod 33) and 22 x 22 =22 (mod 33).

The neutrosophic elements associated with 12. That is
(3, 12, 15) and (15, 12 30) are neutrosophic triplets of the
idempotent 12.

(9, 12, 27) and (27, 12, 9) are neutrosophic triplets of the
idempotent 12.

(18, 12, 30) and (30, 12,18) are neutrosophic triplets of

the neutral element 12.
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(21, 12, 21) is a neutrosophic triplet.
(12, 12, 12) is also the trivial neutrosophic triplet.

We see the neural element 22 does not contribute to any

non trivial triplet.

6 is the only non unit which does not contribute to
neutrosophic triplet in Zs;.

The observations are important

1) As in case of Z,,, p an odd prime we see in case
of Zs,, p a prime the number of neutral elements
are only two one of them is just a trivial neutral
element where as the other gives a number of

nontrivial triplets.

i) Incase of Z;; we see the element 6 is a zero
divisor and it does not contribute to any
neutrosophic triplets.

This is a special feature of Z;; however will this type of

observation be true in case of Z3,, p a prime.

We observe in case of Z;s the two neutral elements are 6

and 10 are both non trivial neutral elements.

Here both 6 and 10 non trivial neutral elements for
(5, 10, 5), (10, 10, 10), (3, 6, 12), (12, 6, 3), (9, 6, 9) and (6, 6,
6) are the total number of neutrosophic triplets.

For S = {Zs;, x} the neutral elements are 12 and 22. 22 is

a ftrivial neutral element and 12 gives all the nontrivial
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neutrosophic triplets some of which are (3, 12, 15), (15, 12, 3),
(9, 12, 27), (27, 12,9) and so on.

Likewise we have found the neutrals of Z,,, Zs9, Zs1, Zs7,
Zs9, g7, Z93, Z111 and are tabled in the following.

Zi?lsifl:rlilll:le Neutrals associated with Z,
Zs 6 10
Zs; 12 22
Zso 13 27
Zs 18 34
Zs; 19 39
Zeo 24 46
Zg 30 58
Zos 31 63
Zin 37 75
Zi»s 42 82
Zix9 43 87
Zi41 48 94
Zis 54 106
Zi77 60 119
Ziss 61 123

and so on.

It is interesting to make the following observations.
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1) If the neutral elements are considered for Z;s then
1+ 5 = 6 so the idempotents are (5 + 1) and 2 x 5.

Consider Z33, 3+3 = 6 the neutral elements of Z3; are 12
and22and 11 +1=12and 11 x 2 =22.

For Zsy, 3 + 9 =12, 1 + 2 = 3. The necutral elements of
Zyware 13 and 27 =2 x 13 + 1.

For this Zs;, 5 + 7 = 12; 1 + 2 = 3 and the neutral
elements of Zs; are 19 and 39 =2 x 18 + 1.

For Zy;, 9 + 3 =12, 1 + 2 = 3 and neutral elements of Zy;
are3land 63 =31x2+1.

Thus we see if an Z;, the sum of 3p add up to 3 then the
neutral elements are p and 2p + 1.

If the sum of the elements of 3p adds upto 6 then the
neutral elements are p + 1 and 2p.

Thus it is conjectured as follows.

Conjecture 2.2. Let Zs,, p > 5, p a prime be the semigroup
under product if the sum of all the digits in 3p adds to 3 then the
two neutral elements of Z3, are p and 2p + 1.

If the sum of the digits of 3p adds to 6 then the two
neutral elements of Zs, are p + 1 and 2p.

It is noted the sum of the digits of 3p for all primes p adds
upto either 3 or 6 only.

We give some more examples of this conjecture.
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Example 2.7. Let S = {Z393, x} be the semigroup. Sum of 393 is
3 + 9 + 3 = 6 and the neutral elements of Z3¢; are 132 and 272.

Hence the conjecture is true for Z3o3 = Z3, = Z3 , 131.

Example 2.8. Let S = {Zs97, x} be the semigroup. 597 =5+9 +
7=21;2+1=3.

The neutral elements of Zsq¢; are 199 and 399.
The conjecture is true in case of Zso;.
Now consider with p x q where p is 5 and q is a prime.

Example 2.9. Let S = {Z3s, x} be the semigroup. The neutral

elements of Zss are 15 and 21.

Example 2.10. Consider S = {Zss, x} be the semigroup. The

neutral elements of S are 11 and 45.

We observe in this case when Z,,, p and q two distinct

primes can define the notion of pseudo primitive element.

Recall if {Z,, x,+} be the a field of characteristics p, p a

prime then we can define primitive elements in Z,,.

An element x € Z,\ {0} is called a primitive element of

Z,ifx"=xorx"" =1.
We see some examples of them.
Let S ={Z;3, %, +} be the finite field of order 10.
Zu\ {0} =1{1,2,3,4,5,6,7,8,9, 10}.

We see for 2 € Z;;,2'%=1 or 2'' = 2048 (mod 11)
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=2 (mod 11).
Thus 2 is a primitive element of Z;;.

Consider 3 € Z;;; 3’ = 243 (mod n) = 1 (mod 11) or

3=3s03isnota primitive element of Z;.
Consider 4 € Z,;, we see
$=4x4x4x4x4 =1024=1 (mod 11)

So 4 is not a primitive element of Z;,

Consider 5 € Z;, 5°=3 (mod 11)

5*=9 (mod 11) 5°=5 (mod 11).

So 5 is not a primitive element of Z;;.

Forwesee 5 x5x5x5x5=1(mod 11).

Let6 € Zy,
6X6Xx6X6Xx6XxO6Xx6x6x6x6=1(modll).

That is 6 = 1 and 6'' = 6 so 6 is again a primitive
element of Z;;.

TxTxTxTxTxTxTxTxTx7T=1(mod11).

7' =1 and 7" = 7 so 7 is again a primitive element of
Zy1.

8x8x8x8x8x8x8x8x8x8=8""=1 (mod 11)
and 8'' = 8 (mod 11).
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IXIXxIXxIx9Ix9Ix9Ix9I%x9%x9=9=1 (mod 11) and
9" =9 (mod 11).

10 x 10=1 (mod 11).
We see Z;; has 5 nontrivial primitive elements.

Now we proceed onto describe and define the pseudo

primitive elements of Z,, where n is a prime.

Definition 2.1. Let S = {Z,,, x}; p an odd prime. Let K = {2, 4,
..., 2p — 2} be the collection of all even elements of Z,,. p+ 1 €
K is such that x x (p + 1) = p + 1 for all x € K. Further there
exists ay € K such that y* ' =p + 1.

We call this y as the pseudo primitive element of K < Z,,.
We will first show this by some examples.

Example 2.11. Let S ={Z;, x} be the semigroup under
multiplication modulo 74. 74 = 2 x 37; 37 is the odd prime. K =
{2,4,6,8,10, 12, ..., 36, 38, 40,42, ..., 70, 72} < S.38 € Z14

is such that 38 x x =x for all x € K.
2 e K is such that 2%° = 38.

Consider 4 € K, 4'° = 38. The reader is left with the task

of finding the pseudo primitive element of Z,,.

Example 2.12. Let S = {Zs, x} be the semigroup under product
K=1{2,4}and2 x 4 =2but 2> =4 =2"""'50 2 is the pseudo

primitive element of K.
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Example 2.13. Let S = {Z,y, x} be the semigroup under product
K=1{2,4,6,8} < Z; 2 € Kis the pseudo primitive element of
Kas2x2x2x2=6=2"=2"is the pseudo primitive
element of K is verified 4 x 4 = 6 so 4 is not a pseudo primitive

element of K.

Consider 8 € K, 8 x 8 x 8 x 8 =6 so0 8 is also a pseudo

primitive element of K.

Example 2.14. Let S = {Z,,, x} be the semigroup under product.
K=1{2,4,6,8, 10, 12, 14, 16, 18, 20} < S is a group in fact a
cyclic group of order 10 with 12 as the multiplicative identity.
Clearly 2 € K is such that 2'° = 12. 4 e K is not a pseudo

primitive element of K.
2 is a pseudo primitive element of K.

Interested reader can find other pseudo primitive

elements of this K.

Now a natural question arises; can Zs,, p an odd prime

have the notion of pseudo primitive elements.
To this effect we study the following examples.

Example 2.15. Let S = {Z;s, x} be the semigroup under product
modulo 15. Let P = {3, 6, 9, 12} € S is such that 6 is the

identity element of P.
For 3 x 6 =3 (mod 15), 6 x 6 =6 (mod 15),

9%x6=9(mod 15) and 12 x 6 =12 (mod 15).
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3 e P is such that 3* = 6 = 3>, Thus 3 is the pseudo
primitive element of P. 9 € P is such that 9> = 6 so 9 is not a

pseudo primitive element of P.
12 € P is such that
12 x 12 =9 (mod 22), 9 x 12 =3 (mod 22) and
3 x 12 =16 (mod 22).
So 12*=12°""=6is the pseudo primitive element of P.

Example 2.16. Let S = {Zs5, x} be the semigroup under product
modulo 35. We now find for R = {5, 10, 15, 20, 25, 30} < Zss
has pseudo primitive elements. For T = {7, 4, 21, 28} < Z3s; we
find out whether T has identity. We find the multiplicative
tables of R and T.

X 5 10 15 20 25 30
5 25 15 5 30 20 10
10 15 30 10 25 5 20
15 5 10 15 20 25 30
20 30 25 20 15 10 5
25 20 5 25 10 30 15
30 10 20 30 5 15 25

Clearly 15 is the identity element of R. 5 generates R and
5=15.

The table for T is as follows.
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X 7 14 21 28
7 14 28 7 21
14 28 21 14 7
21 7 14 21 28
28 21 7 28 14

21 is the identity of this cyclic group with 7 as one of the
generators. 28 and 7 are the pseudo primitive elements of T.

For7x7=14.77=14x7=28.7"=28x7=21thus 7 x 7 x 7

x 7=21so 7 is a pseudo primitive element of T.

The pseudo primitive element of R are 5 and 10 are some

of the pseudo primitive elements of R.
For 5 x5=25(mod35)5°=25x5=125 (mod 35) = 20.
5*=20x 5= 100 = 30 (mod 35)
5°=30x 5= 150 (mod 35) = 10.
Thus 5°=10 x 5=50= 15 (mod 35).

So 5 is a proved to be a pseudo primitive element of R as
57 =5 (mod 35).

In view of all the facts we have the following theorem.

Theorem 2.1. Let S = {Z, , x}! be the semigroup under
product; p and q two distinct primes
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i) R =1{p, 2p, ..., (q — Dp} is a cyclic group of
order q — 1 under product modulo pq.

ii) P ={q 2q, .., (p — Dgq} is a cyclic group of
order p — I under product modulo pq.

iii) Both R and P has pseudo primitive elements.
Proof is direct and hence left as an exercise to the reader.

Now we find if S = {Z,0s, x} is taken as a semigroup
under product modulo 105. 105 =3 x 5 x 7 we just test for the

existence of pseudo primitive elements.
The collection S; = {3, 6,9, 12, 15, 18, 21, 24, ..., 102},

S, = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70,
75, 80, 85, 90, 95, 100} and

S; = {7, 14, 21, 28,35, 42, 49, 56, 63, 70, 77, 84, 91, 98}
are subsets of S.

The reader is left with the task of finding the structure of
Sl, SQ and S3.

If P, = {15, 30, 45,60, 75, 90},
P, = {21,42, 63, 84} and

P; = {35, 70} be the collection. Do these form a group or
semigroup under product modulo 105.

The table for P;
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X 35 70
35 70 35
70 35 70

P; is a cyclic group of order two 70 acts as the
multiplication identity. 35 x 35 = 70 (mod 15). The table for P,

1s as follows.

X 21 42 63 &4
21 21 42 63 &4
42 42 84 21 63
63 63 21 84 42
&4 &4 63 42 21

We see P, is again a cyclic group of order 4 with 21 as
the identity. 42* = 21. So 42 is the pseudo primitive element of
P, 42°=42,42°" "= 42" =21.

Now we give the table of P; in the following.

X 15 30 45 60 75 90
15 15 30 45 60 75 90
30 30 60 90 15 45 75
45 45 90 30 75 15 60
60 60 15 75 30 90 45
75 75 45 15 90 60 30
90 90 75 60 45 30 15
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Clearly P, is a group with 15 as the identity under product
modulo 105.

45 € P is such that 45 x 45 x 45 x 45 x 45 x 45 = 15 that

is 457! = 45° = 15 is the pseudo primitive element of P;.
Thus we wish to make the following conjecture.

Conjecture 2.3. Let S = {Z,,,, x} where p, q and r three distinct

primes.
Let Py = {pq, 2pq, .., (t — 1)pq },
P, = {qr, 2qr, ..., (p—1) qr} and
P; = {rp, 2rp, ..., (q— 1) rp} be the collection from S.

1) All the three sets Py, P, and P; are cyclic groups.

i) Every P; has pseudo primitive elements, 1 <1< 3.

We want to find the structure when Z,qs where p, q, r and s are

four distinct primes.
First we illustrate this situation by some examples.

Example 2.17. Let S = {Zy0, x} be the semigroup under
product modulo 210.

Clearly 210 = 2 x 3 x 5 x 7 the product of four distinct

primes.

Consider B, = {6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66,
72,78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150,
156, ..., 204},
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B, = {10, 20, 30, 40, 50,60, 70, 80, 90, ..., 200},
B; = {14, 28, 42, 56, 70, 84, 98, ..., 182, 196},
B4 = {15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195},
Bs= {21, 42, 63, 84, 105, 126, 147, 168, 189}
B¢ = {35, 70, 105,140, 175}
B; = {30, 60, 90, 120, 150, 180},

Bs = {42, 84, 127, 168} and By ={70, 140} are groups under
product modulo 210.

We see By is a cyclic group of order two.

X 70 140
70 70 140
140 140 70

We now find the table for Bg which is as follows.

X 42 84 126 168
42 84 168 42 126
&4 168 126 84 42
126 42 84 126 168
168 126 42 168 &4

Clearly Bg is again a cyclic group under product modulo
210 with 126 as the identity element.
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Bg also has 42 to be its pseudo primitive element.

Now we consider the table of B; in the following and test

for its properties.

X 30 60 90 120 150 180
30 60 120 180 30 90 150
60 120 30 150 60 180 90
90 180 150 120 90 60 30
120 30 60 90 120 150 180
150 90 180 60 150 30 120
180 150 90 30 180 120 60

We see B is also a cyclic group of order six generated by
150 as 150° = 120, 120 is the identity of B.

Further the pseudo primitive element of B; is 150. In fact

B; may have other pseudo primitive elements.

Now we find the table of B¢ and enumerate the special

features enjoyed by it.

X 35 70 105 140 175
35 175 140 105 70 35
70 140 70 0 140 70
105 105 0 105 0 105
140 70 140 0 70 140
175 35 70 105 140 175
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We see B¢ is even not closed with respect to product
modulo 210. Infact B¢ U {0} can yield only a monoid with 175

as its multiplicative identity.

The reader is left with the task of finding the algebraic
structure enjoyed by By, B, ..., Bs.

However one is interested in finding the properties
enjoyed by the pseudo primitive elements of sets B; and B; (i #

j) for we know in case i = j they only act as part of a group.

Let us now consider the pseudo primitive elements of B,
and Bs. The pseudo primitive element of By is 42 and that of B
is 150. We see 42 x 150 = 0 (mod 210).

In fact they form orthogonal sets.

At this juncture we are forced to conclude if B;’s form

cyclic groups then B; x B; = {0} if'i#].

We still find it difficult to find the algebraic structure
enjoyed by B, B, and so on for they are generated singly by a
prime number which is a factor of 210.

Such study is both innovative and interesting so left as an

exercise to the reader.

We now find the pseudo primitive elements when in Z,

n=p’ ¢’ r,r, p and q three distinct primes.
This will first be illustrated by some examples.

Example 2.18. Let S = {Zg, x} be the semigroup under
product modulo 180.



Algebraic Structures on Neutrosophic Triplet Groups | 129

Let B,=1{2,4,6,8, ..., 178},
B,= {4, 8,12, 16,20, 24, ..., 176},
B;={3,6,9,12,15,18,..., 177},
B,={9, 18,27, 36,45, 54, ..., 171},
Bs = {12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144,
156, 168},

B = {18, 36, 54, 72, 90, 108, 126, 144, 162},
B, = {36, 72, 108, 14},

Bs = {10, 20, 30,40, 50, ..., 160, 170},

B, = {20, 40, 60, 80, 100, 120, 140, 160},

Bio = {15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165},
By, = {45, 90, 135},

Bi, = {30, 60, 120, 150},

Bi; = {12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144,

156, 168} and

B4 = {60, 120} are the subsets.
We can find the algebraic structure enjoyed by these sets.

The reader is expected to find the algebraic structure

enjoyed by them.

We conjecture the following:
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Conjecture 2.4. Let {Z,, x} =S be the semigroup under product

n, let n= p’p; q where p;, p, and q are distinct primes.

1) Prove only a few of the sets generated by (pi),
(P22, <D, {p7 s (P25 P15 (P2, {P7 D (P30

(Pip29), (p1P; @), (P; P2, (P p2) and (p; pi) are
cyclic groups.

i) Characterize those cyclic groups which contain
pseudo primitive elements.

iii) Prove if x; and x, are two pseudo primitive
elements of two distinct groups then they are

always orthogonal.

Now in the following we propose the probable
applications of these new structures.

Let Z, where n is a composite number be the semigroup

under product modulo n.

We see the groups which have a pseudo primitive
elements can generate algebraic codes in which we need only to
adjoin the zero element. Further it is pertinent to keep on record
that these two codes if we take the same length say a (n, k) code
then they will certainly be orthogonal.

This situation will be exhibited by some examples.

Example 2.19. Let S = {Z,,, x} be the semi group under product

modulo pq where p and q are two distinct odd primes.
To me more specific let us assume p="7and q=11.

We first find the neutrals or idempotents of Z,q = Z;.
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The idempotents or neutrals of Z;; are 56 and 22 are the
only idempotents of Z;;.
Let B, = {7, 14, 21, 28, 35, 42, 49, 56, 63, 70} and
B,= {11, 22, 33, 44, 55, 66} be the two sets.

We describe the tables of them. The table for B, is as

follows.

X 11 22 33 44 55 66
11 44 11 55 22 66 33
22 11 22 33 44 55 66
33 55 33 11 66 44 22
44 22 44 66 11 33 55
55 66 55 44 33 22 11
66 33 66 22 55 11 44

It is easily verified B, is a group under product modulo
77 of order 6 infact a cyclic group with 22 as its identity and 33
€ B, is the generator of B, as (33)6 =22.

Suppose we are interested in finding the algebraic codes
of length 5 built using B, U {0}.

Let C, = (5,2) algebraic codes with entries from B, U

{05.
Clearly o(C,) = 7°.

Any code word x = (a;, a,, a3, a4, as) where
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a e {Bu{0};1<1<5.

Now we give the table for B, in the following.

X 7 14 |21 28|35(42|{49 56|63 |70
7 49 | 21 |70 |42 14|63 35| 7 | 56|28
14 | 21 42 |63 | 7 |28149 |70 | 14|35 |56
21 | 70 63 | 5649423528 (21|14 7
28 | 42 7 49|14 |56 |21 |63 |28 70|35
35 14 | 28 (42|56 |70 | 7 |21 |35]|49 |63
42 | 63 49 35|21 | 7 |70 |56 42|28 |14
49 | 35 70 |28 163 |21 (56|14 (49| 7 |42
56 7 14 |21 |28|35(42|49 56|63 |70
63 | 56 35 |14 17049 28| 7 | 63|42 |21
70 | 28 56 | 7 1356314427021 |49

Clearly By is a cyclic group of order 10 with 56 as its

identity. 7' = 56 is a pseudo primitive element of B;.

Now let C; = (5, 2) be the algebraic code of length n with
3 message symbols and 2 check symbols with entries from (B,

v {0}).
We see o(Cy) = 10°.
Further it is clearly if x € C, and y € C, then

xxy=(0,0,0,0,0).
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Letx=(11,0, 22, 66, 55) € C, and y = (7, 49, 63,70, 14)
e Ciweseex xy=(0,0,0,0, 0).

It is easily proved C,; is a dual code of C, and vice versa.

By this method without any difficulty we can arrive at

dual code from the collection Z;.
In general first we make the following theorem.

Theorem 2.2. Let S = {Z,, x} be the semigroup of order pq

where p and q are two distinct primes;

i) B, ={p;, 2p, ..., (q — Dp, 0} is a field of order q
under + and x modulo pq.

ii) B, =1{q, 2q, 3q, ..., (v — 1)gq, 0} is again a field of
order p under + and x modulo pq.

iii) C; =(n, k) the code of length n with k message

symbols with entries from B,.

iv) C, = (n, k) is the code of length n with k

messages with symbols from B,.
v) C; is orthogonal with C.,.
Proof is left as an exercise for the theorem.

Now we proceed onto test the number of orthogonal
codes in case of Z,, where p, q and r are three distinct primes

by some examples.

Example 2.20. Let S = {Z¢s, x} be the semigroup under

product or a ring of modulo integers.
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165 =3 x 5 x 11 is the product of three primes.

Let B; = {15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 0} is
a field of order 11 under product modulo 165.

B, = {33, 66, 99, 132, 0} is again a field of order 5.

B; = {55, 110, 0} is a field of order 3. All these are
fields. If we build (n, k) codes C;, C, and C; using B;, B, and B;
respectively it can be easily proved C; is orthogonal with C;, 1 #
3, 1<14,j<3.

Example 2.21. Let S = {Zsgs, +, x} be a ring of modulo
integers, clearly 3289 =11 x 13 x 23.

Consider B, = {0, 143, 286, 429, ..., 3146},
B, = {0, 299, 598, 897, ...,2990} and

B; = {0, 253, 506, 759, 1012, ..., 3036} be the fields of
order 23, 11 and 13 respectively.

If Cy, C; and C; are algebraic codes using the fields B,
B, and B; we see these codes are mutually orthogonal.

In view of all these we can put for the following result. If
some researcher is interested in constructing a set of t dual

codes of same length then following procedure can be adopted.

Take F = {Zplpz__p , X, +} be the ring of modulo integers, where

P1, P2, ..., Pt are t distinct primes.

Let By = {p1 p2 .-- Pe1> 2(P1 --- Pe1)y --- Pe— 1) (P1P2 --- Pe-1),
0} is a field with p; number of elements in it.
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By = {(p1p2- .- pr2py)s 2(P1p2 -+ Prapy)s -5 (Pe— 1)(P1P2 - .- PraP)s

B; = {piP2 .-+ Pe3Pets P 2(P1 P2 -+ Pe3 PO s -oor (Pr2- 1) (Pip2
... Pe3 P py) are fields of order p, - ; and p; _ , respectively.
Proceed in the same way

Bi={p2... p» 2(P2 ...P0), ..., (P1 = 1) (P2 ...py), 0} is a field of
order p;.

Now we see using pr , we can build t number of
172...Pt

distinct fields we use these t distinct fields to construct
algebraic codes of same length say C,, C, ,..., C; associated
respectively with B;,B, ,..., B..

It is easily verified that these t codes C;, C,, ..., C;
are such that they are mutually orthogonal, that is C; x C; =
{(0,0,...,0)}ifi=j, 1 <i,j<t.

So this study of modulo integers has led to the
construction of dual codes. Now we make the following

conjecture.
Conjecture 2.5. Let S = {Zplpz---m , +, x} be the ring of modulo
integers, (p1, p2, .., Py t distinct primes)

1) There are atleast t distinct fields in S.

i) These fields has atleast t number of pseudo
primitive elements associated with each field
such that their product is {0}.
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iii) These t number of fields can be used to construct
t number of algebraic codes Cy, ..., C; of same
length and they are mutually orthogonal.

Now we after this simple deviation proceed onto study
neutrosophic triplets and can we have algebraic codes of
neutrosophic triplets. The answer is a big no as the triplets are

only groups under product and under + they are not even closed.
So such notions cannot be established.

Now we proceed onto suggest some problems to the
reader some of which are difficult and some of them are just

exercise.
Problems

1. Let S = {Zsos3, x} be the semigroup under product
modulo 5063.

a) Find the neutral elements of S.

b) Using those neutral elements construct the
neutrosophic triplets.

c) Prove the neutrosophic triplets associated with each
of the neutral element is a cyclic group under
product.

d) Show these collections are such that their product is
{(0, 0, 0)}.

2. Let S = {Zs9, x} be the semigroup under product
modulo 391.
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Study questions (a) to (d) of problem (1) for this S;.

Let S ={Zo361, x} be the semigroup under product modulo
9361.

1) How many idempotents or neutral elements

exist in Zozg?

i) Find the classical group of neutrosophic triplet

groups associated with each of the neutrals.
iii) If G; s are the classical groups.

a) Prove each G; is cyclic.
b) Prove Gi x Gj={(0, 0, 0)}, ifi #].

iv) Obtain any other special features enjoyed by the

classical group of neutrosophic triplets.

Let P = {Z3ss, x} be the semigroup under product modulo
385.

1) How many neutrals or idempotents are in P?

i) How many of these neutrals contribute to

neutrosophic triplet groups which are classical
groups?

iii) Let T = {35, 70, 105, 140, 175, 210, 245, 280,
315, 350} be collection of elements.

a) Is T a group?
b) Find the identity if T is group or a monoid.
¢) Does T contain pseudo primitive elements?
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d) Can T contribute to neutrosophic triplet
groups?
iv) How many cyclic groups exist in P?
V) Compare the S of problem 3 with this T.

5. Let S; = {Zupss, x} be the semigroup under product

modulo 4356.

1) Study questions (i) to (iv) of problem 3 for this
So.

i) Does S; of problem 3 or S, contain more number
neutrals?

iii) Which collection from S; of problem 3 or S, yield

more number of nontrivial neutrosophic triplet
groups?

iv) Obtain the similarities and dissimilarities between
S and S,.

6. Let W= {Z x} be the semigroup under product

243352 9

modulo 2+3°5>

1) Compare this W with S; of problem 4 and S, of
problem 5.

i) Which has maximum number of neutrals W or S;

of problem 4 or S, of problem 5?

iii) Which of the semigroups W or S; or S, has
maximum number of cyclic groups?

7. What are the special features associated with pseudo

primitive elements of Z,.



10.

11.
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Can we claim that all pseudo primitive elements of G <

Z, are idempotents or neutrals of Z,,?

Let S = {Zs30, %, +} be the ring of integers modulo 330.
1) Find all neutrals of S.

i) Find all subsets of S which are finite fields.

iii) Find all pseudo primitive elements of those finite
fields.

iv) If C; are the algebraic codes of the finite fields F;
(fori=1, 2, ..., t) of same length prove they are

orthogonal with each other.

V) Why we cannot build codes using neutrosophic
triplet groups? Justify your claim.
vi) Obtain all special feature associated with this S.

Can we prove, {Z, x, +} will give more number of
orthogonal codes if n =py, ..., p, t distinct primes if t is

large?

Compare the situation in problem (10) for P =
{Zy3571113, %, T} and R = {Zs35313.17.11.75.23.41, T, %} the

ring of modulo integers.

a) Which has more number of orthogonal codes P or
R?

b) Which ring P or R has more number of

idempotents or neutrals?
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12.

13.

14.

c) Which has more number of neutrosophic triplet
groups?

d) Analyse the differences and similarities of P and
R.

Show the number of neutrals which can contribute to

classical groups is of large size in case of S = {Z,, x /n=

pi ...pg than W= {Z, x/m=p; ... p*, t;>1}.

1) Can we say S has more number of classical

groups of neutrosophic triplet groups?

i) Is it true W has more number of classical group of
neutrosophic triplet groups?

iii) Which of the semigroups S or W will produce

more number of finite fields?

iv) Find the similarities and dissimilarities between

them.

Can we build algebraic codes on neutrosophic triplet

groups using max min or max-product operations?.

Let S = {Zy4, x} be the semigroup under product. The

neutrals of S are 7 and 8.

The neutrosophic triplets groups are P, = {(8, 8, 8), (2, 8,
4), (4, 8, 2), (6, 8, 6), (12, 8, 10), (10, 8, 12)} and
PZ = {(77 73 7)3 (03 03 0)}

Now we build codes using max product rule using P; U
{(0, 0, 0)}.
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Let G=

(2,4,8) (0,0,0) (10,8,12) (0,0,0) (8,8,8)
(0,0,0) (12,8,10) (0,0,0) (2,8,4) (0,0,0)
(6,8,6) (2,8,4) (0,0,00 (0,0,0) (4,8,2)],

3 x 5 generator matrix of a (5, 3) linear code with entries
from the set P;.

The code words are those that take its values from P;.

Let x = ((6, 8, 7), (0, 0, 0), (2, 8, 4)) be the input
neutrosophic triplet vector.

We find max product

{x, G} =((12, 8, 10), (4, 8,2), (4.8, 2), (0, 0, 0), (6, 8, 6)),
is the generated code word.

Likewise can we find the code collection?

Note: This part is dealt in the problem session as we have not
yet constructed matrices with entries using the neutrosophic
triplet groups.

The advantages etc. of using this in terms of error

correction etc; can be dealt as a research problem.

However the main advantage of the triple is the middle
term is always fixed but if one of the end terms is wrong it can
be corrected however there is at times ambiguity.

15.  Construct using the classical group of neutrosophic triplet

groups built using {Zs, x} associated with the neutral
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16.

element 24 € Zg4, a (7, 4) code and use the max product
(or max min) operation and develop all classical

properties of this code.
a) How is this code different from the classical one?

b) What are advantages and disadvantages of using
these codes?

c) What are the probable applications of these
codes?

Let S ={Z74, x} be the semigroup under product modulo
74.

a) Find the neutrosophic triplet groups collection W

using 38 € Z4as the neutral element.

b) Construct a (7, 4) code using W under (i) max

product, ii) max min.

c) What are the main advantages of using these

codes?



Chapter Three

SPECIAL TYPE OF NEUTROSOPHIC
TRIPLET GROUPS MATRICES

We have analysed the properties of neutrosophic triplet
groups built over Z,,, Z,q and Z, where n = 2’p or 3°p, p a prime
different from 2 and 3.

We saw in several cases the collection of neutrosophic
triplet groups formed a group, sometimes cyclic under product
modulo n. For special cases of Z,, n not of any form mentioned

above formed a semigroup under product modulo n.

We also defined two special notions, quasi neutrosophic
triplet groups and duplets associated with the idempotents or

the neutral elements of Z,,.

In this chapter we proceed onto define the new notion of
neutrosophic triplet group matrices under natural product x,
modulo n. At the outset we wish to record many a times the
collection of neutrosophic triplet groups in general may not be



Special Type of Neutrosophic Triplet Groups... | 144

even compatible under modulo addition. Keeping all this in

view we define only on matrices natural products x,

However in case of adopting these neutrosophic triplet
groups matrices to mathematical models we can define the
notion of max-product and max-min using them. All these
concepts will be developed, described and defined in this
chapter. The next chapter we will develop the possible

applications of these newly built models.

Before we make any abstract definition of these new
concepts we describe them by appropriate examples in order to

make it easy for the reader.

For the structure of neutrosophic triplet groups classical
groups and the very construction of them the reader is requested
to refer the earlier chapter where these notions are dealt

elaborately.

Example 3.1. Let S = {Zys, x} be the semigroup under product
modulo 26. The idempotents or neutral elements of Z,s are 13
and 14. For 26 = 2.13 then the idempotents are 13 and 13 + 1.

We now find all the neutrosophic triplet groups of Zy
related to the neutral element 14.

(2, 14, 20) and (20, 14, 2) are neutrosophic triplet groups.
(4, 14, 10) and (10, 14, 4) are neutrosophic triplet groups.
(8, 14, 18) and (18, 14, 8) are neutrosophic triplet groups.

(16, 14, 22) and (22, 14, 16) are neutrosophic triplet
groups.
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(6, 14, 24) and (24, 14, 6) are neutrosophic triplet groups.

(12, 14, 12) and (14, 14, 14) are neutrosophic triplet
groups.

Clearly if A = {(2, 14, 20), (20, 14, 2), (4, 14, 10), (10,
14, 4), (8, 14, 18), (18, 14, 8), (16, 14, 22), (22, 14, 16), (6, 14,
24), (24, 14, 6), (12, 14, 12), (14, 14, 14)} is the classical group
of neutrosophic triplet groups with (14, 14, 14) as the identity

element under product modulo 26.

Infact A is a cyclic group of order 12 generated by (2, 14,

20) as it is easily verified

2, 14, 20)2 = (2,14,20)x...x(2,14,20) = (14, 14, 14).

12 times

Now if

x = ((20, 14, 2), (4, 14, 10), (12, 14, 12)) be a 1 x 3 row

matrix with entries from A now we perform operations on them.

x x X =(20, 14, 2), (4, 14, 10), (12, 14, 12)) x ((20, 14, 2),
(4, 14, 10), (12, 14, 12)) = ((10,14, 4), (16, 14, 22), (14, 14,
14)).

We can find x* x x = x° = ((10, 14, 4), (16, 14 22), (14,
14, 14)) x ((20, 14, 2), (4, 14, 10), (12, 14, 12)) = ((18, 14, 8),
(12, 14, 12), (12, 14, 12)) and so on.

However we see this will yield the row matrix identity for some

n as
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X" =((14, 14, 14), (14, 14, 14), (14,14, 14)), n> 3 for this

case and so on.
Let x = ((6, 14, 24), (22, 14, 16), (14, 14, 14)) and

y = ((4, 14, 10), (8, 14, 18), (2, 14, 20)) be two row
matrices of neutrosophic triplet groups.

We find x x y, x x y = ((6, 14, 24), (22, 14, 16), (14, 14,
14)) x ((14, 14, 10), (8, 14, 18), (2, 14, 20) ={(24, 14, 6), (14,
14, 14), (2, 14, 20))!.

It is easily verified that product of two row matrices is

both commutative and associative.

Let B = {collection of all 1 x 3 row matrices with entries
from A} = {(a, b, ¢) / a, b, ¢ € A} be the row matrix of

neutrosophic triplet groups.
Clearly {B, x} is a group under product of finite order.
Infact o(B) = 12°.

If x = ((18, 14, 8), (24, 14, 6), (12, 14, 12)) € B then
inverse of x in B under product modulo 26 is y = {(8, 14, 18),
(6, 14,24), (12, 14 12)} in B.

It is easily verified y is unique and x x y =y x x = ((14,
14, 14), (14, 14, 14)) and this element ((14, 14, 14), (14, 14, 14),
(14, 14, 14)) in B acts as the 1 x 3 row matrix identity.

The following facts about B are important.
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In the first place B is a group only under product modulo
26.
Infact B is not even closed under the sum.

For if x = ((2, 14, 20), (8, 14, 18), (6, 14, 24)) € B thenx + x =
(2, 14, 20), (8, 14, 18), (6, 14, 24)) + ((2, 14, 20), (8, 14, 18),
(6, 14, 4)) = (4, 2, 14), (16, 2, 10), (12, 2, 22)) we see none of
the entries in X + X is an element of A so cannot be an element
of B.

Thus the sum operation cannot be defined on B.

Now we consider

1

w

a
C={ %2 /a; € A; 1 <1i<4} to be the collection of all 4
a
a

4

x 1 column neutrosophic triplet group matrices.

If we define natural product x, on C then we see {C, x,}

is again a group of neutrosophic triplet groups of order 12°,

We will just indicate how the product operation x, is

performed on C.

(6,14,24) (20,14,2)

20,14,2 24,14,6 .
Letx = (20.14,2) andy = ( ) be in C.

(8,14,18) (10,14,4)

(12,14,12) (8,14,18)

We find the natural product x,,.
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(6,14,24) (20,14,2) (16,14,22)
(20,14,2) (24,14,6) (12,14,12)

X Xp V= Xn =
Y (8,14,18) (10,14,4) (2,14,20)

(12,14,12) (8,14,18) (18,14,8)

It is easily verified the product x, on C is both
commutative and associative. Closure exist as A is a group

under product modulo 26.

Now we find inverse of any x in C. We first claim for

every x in C we have a unique y in C such that

(14,14,14)
| (14,14,14)
| (14,14,14)

(14,14,14)

X X, Y the identity matrix of the collection C.

(4,14,10)
(24,14,6) o

Letx = of y in C is as follows.
(16,14,2)

(8,14,18)

(10,14,4)
6,14,24 )
y= ( ) € C s such that
(22,14,16)

(18,14,8)
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(4,14,10) (10,14,4) (14,14,14)
(24,4,6) (6,14,24) (14,14,14) )
X X,y = Xp = which
(16,14,22) (22,14,106) (14,14,14)
(8,14,18) (18,14,8) (14,14,14)
identity matrix of C.

Infact order C is 12* and every element x in C is of finite
order.

Next we consider

al aZ a3
D={|a, a; a,|/aeA 1<i1<9}
a, a, a

7

to be the collection of all 3 x 3 matrices of neutrosophic triplet

groups.

We find the natural product operation x, on D. However

the usual or the classical product cannot be defined on D.

This will also be established in due course of the discussions.

(2,14,20)  (8,14,18) (12,14,12)
Letx = | (14,14,14) (6,14,24) (18,14,8) | and
(4,14,10) (14,14,14) (20,14,20)

(14,14,14) (12,14,12) (16,14,22)
y=1(2,14,20) (14,14,14) (20,14,2) | inD.
(4,14,10)  (16,14,4) (12,14,12)

We first find x x, y.
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(2,14,20) (2,14,20) (10,14,4)
Xx,y=| (2,14,20) (6,14,24) (22,14,16)| € D.
(16,14,22) (10,14,4) (6,14,24)

This is the way the natural product %, is performed on D.

Now we show the classical product cannot be defined on

(2,14,20) (20,14,2) (14,14,14)
Letx =| (10,14,4) (12,14,12) (4,14,10) | and
(6,4,24)  (8,14,18) (12,14,12)

(4,14,10) (12,14,12)  (8,14,8)
y=[(14,14,14) (18,14,8) (2,14,20)| € D
(12,14,12) (14,14,4) (4,14,10)

We find x x y where ‘x’ is the usual product (or classical
product) of x with y.

(2,14,20) (20,14,2) (14,14,14)
xxy =|(10,14,4) (12,14,12) (4,14,10) |x
(6,4,24)  (8,14,18) (12,14,24)

(4,14,10) (12,14,12) (8,14,18)
(14,14,14) (18,14,8) (2,14,20)| =
(12,14,12) (14,14,14) (4,14,10)
(14,16,6)  (8,16,10) (10,16,20)

(22,16,16) (12,16,14) (16,16,22) | & D;
(20,16,12) (16,16,22)  (8,16,2)
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further it is pertinent to note that none of the entries in x x y is
from A.

That is why we cannot define the classical product
operation on D. In fact addition modulo 26 is not defined in A
or in particular A is not closed under the operation + modulo 26
on D.

It is left for the reader to verify that the operation natural

product x, modulo 26 is both associative and commutative.

In fact {D, x,} is a group of order 12° and is defined as

the classical group matrix of neutrosophic triplet groups.

(14,14,14) (14,14,14) (14,14,14)
Further 1 = | (14,14,14) (14,14,14) (14,14,14)| inD
(14,14,14) (14,14,14) (14,14,14)

acts as the multiplicative identity of D, the classical group of
neutrosophic triplet group.

We see every x € D is of finite order in fact x" = I for

some n > 2 such that n/ 12°.
Suppose we take

E = {collection of all 4 x 3 matrices with entries from A}

o

[§]

3

N

S l/aeA;1<i< 12} be the collection of all
9

o o o

N

© o ®
® o
%

o

12
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4 x 3 neutrosophic triplet group matrices with entries from A.
We can define the natural product x, modulo 26 on E.
We just show how product x,, is defined on E.

(14,14,14) (2,14,20)  (8,14,8)

(20,14,2) (18,14,8 (12,14,12)
(4,14,10) (14,14,14) (10,14,4)
(6,14,24) (2,14,20) (8,14,18)

(12,14,12) (14,14,14) (6,14,24)
(6,14,24) (20,14,2) (2,14,20)
(24,14,6)  (18,14,8)  (4,14,10)
(10,14,4) (14,14,14) (12,14,12)

We find out x x,y.

(12,14,12) (2,14,20) (22,14,16)
1(16,14,22) (22,14,16)  (24,14,6
YT 8,148)  (18,14,8) (14,14,14) |

(8,14,18)  (2,14,20) (18,14,8)

This is the way product operation x, is performed on E.

Clearly E is a commutative group of order 12'* with

(14,14,14) (14,14,14) (14,14,14)
(14,14,14) (14,14,14) (14,14,14)
(14,14,14) (14,14,14) (14,14,14)
(14,14,14) (14,14,14) (14,14,14)

as the identity with

respect to the natural product x,.
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Let F = {collection of all 2 x 5 matrices with entries from A}

a a a a a
:{{1 2 3 4 5:|/aieA;lgi§10}bethe

aG a7 ax a‘) a10

collection of all neutrosophic triplet group matrices.

Clearly {F, x,} is an abelian group of order 12'° with

{al a, a, a, a,

aG a7 ax a‘) a10

}/aieA,ISile}

be the collection of all neutrosophic triplet group matrices.
Clearly {F, x,} is an abelian group of order 12'° with

I=
(14,14,14) (14,14,14) (14,14,14) (14,14,14) (14,14,14)
(14,14,14) (14,14,14) (14,14,14) (14,14,14) (14,14,14)

as its multiplicative identity under the natural product x,.

Now we make the abstract definition of the classical
group of neutrosophic triplets group under the natural product

X
Definition 3.1. Let S = {Z,, x} where n = 2p, p an odd prime.

Let A = {collection of all neutrosophic triplet groups).
{A, x} is a classical cyclic group of neutrosophic triplet groups
of order (p — 1).
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B = {collection of all s x t matrices with entries from A}
B is defined as the classical group of neutrosophic triplet

groups under natural product x, of order (s x )~ ".
We have given an example of it.
Now we proceed onto give an example in which
n=2".3=12,

Example 3.2. Let S ={Z,,, x} be the semigroup under product
modulo 12. The idempotents (neutral elements of Z,) are 4 and
9.

The neutrosophic triplet groups are as follows.
(3,9, 3)and (9, 9, 9) are neutrosophic triplet groups.
(8, 4, 8) and (4, 4, 4) are neutrosophic triplet.
Wesee2 x 9 =6 (mod 12).

2 x 4 =8 (mod 12) so 2 cannot contribute to any

neutrosophic triplet groups.
6 x9=06(mod 12) and 6 x 4 =0 (mod12).

We see the neutral of 9 is six but there is no anti 6 which is such
that anti 6 x 9 =9 (mod 12).

10 x 9=6 (mod 12) and 10 x 4 =4 (mod 12).
Thus (10, 4, 10) is a quasi neutrosophic group as

4 x10=4 (mod 12) and 10 x 10 =4 (mod 12) .
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(6, 9) is a neutrosophic duplet (0, 9) is again a
neutrosophic duplet.

Here it is important to note that we do not exhaust all
even elements of Z;; to contribute to neutrosophic triplet

groups.
We see o(Z1,) = 12 but only two elements

A= {3, 9, 3), (9, 9, 9)} are neutrosophic triplet groups
associated with the neutral element 9.

{(4, 4, 4) and (8, 4, 8)} = B are neutrosophic triplet groups
associated with the neutral element 4.

Further A x B = {(0, 0, 0)}, A and B are classical cyclic groups

of order two.

There is only one quasi neutrosophic triplet group which

1S non trivial.

The element 2 € Z;, is not associated with any form of

neutral element set.

Even though 12 is even still the deviant behavior when
compared with 2p, p an odd prime is very striking.

We give one more example to analyse the above

situation.

Example 3.3. Let S = {Z,,, x} be the semigroup under product
modulo 20.
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The neutral elements (idempotents) of Z,, are 5 and 16
neutrosophic triplet groups associated with the neutral element
16 are {(4, 16, 4), (8, 16, 12), (12, 16, 8), (16, 16, 16)}.

The classical group of neutrosophic triplet groups
associated with the neutral element 5 is empty associated with 5
are the group of quasi neutrosophic triplet groups {(15, 5, 15),
(5,5,5)}.

The special semigroup of duplets associated with
16 is as follows;

{(6, 16), (10, 16), (0, 16)}

The elements 10, 14 and 18 do not contribute to any of
the special elements as it is clearly observed.

10 x 16 = 0 (mod 20), 10 x 5 =10 (mod 20).

But these producted with any even elements leads to zero as
only even numbers and multiplies of 5 can contribute to these

special elements.

14 x 5 =10 (mod 20) and 14 x 16 =4 (mod 20).
So 14 does not contribute to any special elements.

18 x 5=10 (mod 20), 18 x 16 = 8 (mod 20).

So 18 also does not contribute to any type of special elements.
The set {18, 14} does not yield any special elements.

Only {6, 10} yields the duplets with 16.
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Hence it is at this juncture we have to keep on record that
Z5 and Z;, may not yield neutrosophic triplet groups as given
by Zss or Zys 01 Zy.

Thus for the sake of completeness we describe the

neutrosophic triplet groups associated with Z,4 and Zy.

Now the neutral elements associated with Z4 are 7 and 8

respectively.
Likewise the neutral elements of Z,, are 5 and 6.

Finally the neutral elements of Z,, (p an odd prime) are p
andp + 1.

In fact all the elements of Z4 (or Z;) which are not units
contribute to neutrosophic triplet groups only associated with
the 8 (or 6) not with 7 (or 5).

The order of the set of all neutrosophic triplet groups of
Z141s 6. {(2, 8, 4), (4,8, 2), (6, 8, 6), (10, 8, 12), (12, 8, 10) and
(8, 8, 8)} are neutrosophic triplets of Z,4 associated with 8.

Similarly {(2, 6, 8), (8, 6, 2), (6, 6, 6), (4, 6, 4)} are
neutrosophic triplet groups associated with Z,.

Hence it is difficult get for all n, n # 2p, p an odd prime.

It is kept on record that for n = 2”p, p any odd prime we
do not have many elements which contribute to neutrosophic
triplet groups.

Let us consider Z;5 where 15 = 3.5 we find the classical

group matrix of neutrosophic triplet groups of Z;s.
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The idempotents of Z;s are 6 and 10. The neutrosophic
triplet groups collection associated with the neutral element 6 is
{(3, 6, 12), (12, 6, 3), (4, 6, 9), (6, 6, 6)} and the neutrosophic
triplet groups associated with the neutral element 10 is {(5, 10,
5), (10, 10, 10)}.

It is interesting to record that if in Z,, n =3 x p, p an odd
prime different from zero that we can say there will be only two
distinct neutrosophic triplet groups associated with the two
neutrals and order of one of them will be p — 1 and that of the

order only two.
We consider the following examples.

Example 3.4. Let S = {Z,;, x} be the semigroup under product
modulo 21. 21 = 3.7 is of the form 3p. The neutral elements of
S are 7 and 15.

The neutrosophic triplet groups associated with 7 are {(7,
7, 7)and (14, 7, 14)} is a group of order two.

The neutrosophic triplet groups associated with 15 are
{(3, 15, 12), (12, 15, 3), (15, 15, 15), (9, 15, 18), (18, 15, 9), (6,
15, 6)}.

Clearly the number of such triplets are 6 in keeping
without prediction.

Consider another example.

Example 3.5. Let S = {Z¢, x} be the semigroup under product
modulo 69.

The neutral elements of S are 24 and 46.
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The neutrosophic triplet groups associated with 46 are
{(46, 46, 46), (23, 46, 23)}. Clearly order of the group is two.

The neutrosophic triplet groups associated with 24 are;

B = {(3, 24, 54), (54, 24, 3), (9, 24, 18), (18, 24, 9), (27,
24, 6), (6, 24, 27), (12, 24, 48), (48, 24, 12), (36, 24, 39), (39,
24, 36), (21, 24,57), (57, 24, 21), (30, 34, 33), (33, 24, 30), (66,
24, 15), (15, 25, 6), (24, 24, 24), (60, 24, 51), (51, 24, 60), (45,
24, 45), (63, 24, 42), (42, 24, 63)}.

Clearly there are 22 neutrosophic triplet groups so o(B) = 22 =
23 — 1. Thus we once again mention that it is a open problem to
prove if in Z,, n = 3p, p an odd prime different from 3 then for

the semigroup {Z,, x} under product modulo n we have the

following.

1) Prove only two neutrals (idempotents) in Zs,,

i) Prove we have only one of the neutrals which
contribute to (p — 1) neutrosophic triplet groups
which forms a group under product modulo 3p.

iii) Prove there is only one cyclic group of order two.

iv) Will the collection of elements in Z, which

contribute for the neutrosophic triplet groups is of
order p and one of them is a pseudo primitive

element of that collection.
Consider yet another example.

Example 3.6. Let S = {Z, x} the semigroup under product

modulo.
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The reader is left with the task of finding neutral elements

and the related neutrosophic triplet groups.

Now having defined matrices of all types using
neutrosophic triplet groups we now proceed on to describe and

develop them for mathematical models.

Before we proceed onto define mathematical models we
describe with some more examples the concept of neutrosophic

triplet groups matrix collection in the following.

Example 3.7. Let S = {Zs;, x} be the semigroup under product

modulo 51.

The neutral elements of Zs; are 34, 18 € Zs; is such that
18 x 18 = (mod 51) and 34 x 34 = 34 (mod 51).

We now find the neutrosophic triplet group sets
associated with 18 and 34, the neutral elements of Zs; under

product modulo 51.

The neutrosophic triplet groups associated with the

neutral element 18 are

A= {@3, 18, 6), (6, 18, 3), (9, 18, 36), (36, 18, 9), (18, 18, 18),
(33, 118, 33), (27, 18, 12), (12, 18, 27), (15, 18, 42), (42, 18,
15), (30, 18, 21), (21, 18, 30), (39, 18,24), (24, 18, 39), (45, 18,
48), (48, 18, 45)}.

The neutrosophic triplet groups associated with 34 are
{(17, 34, 17), (34, 34,34)} =B

both A and B are cyclic groups of order 16 and 2 respectively.
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We can build matrices using A and perform some more

operations on them.

[ (3,18,6) (18,18,18) (42,18,15)]
(9,18,36) (15,18,42) (18,18,18)

Let A= | (18,18,18) (33,8,33) (3,18,6)
(6,18,3)  (18,18,18) (35,18,33)

| (12,18,27) (15,18,42) (42,18,15) |

be a 5 x 3 neutrosophic triplet groups matrix.

We know we can define natural product X, operation on

the collection of all 5 x 3 matrices.
Now we wish to define other types of operations on them.

So in the first place we define operations on the set A and
then we can easily transform them to the matrices of

neutrosophic triplet groups.

It is pertinent in the first place to keep on record A is not
even closed under the modulo addition +.

For if x = (6, 18, 3) and y = (33, 18, 33) are in A, then x + y =
(6, 18, 3) + (33, 18, 33) = (39, 36, 36) ¢ A so addition ‘+’

modulo 51 is not defined on A.

However A under product modulo 51 is a cyclic group of
order 16.

Let x =(33,18,33)and y = (6, 18, 3) € A.

x x y= (33, 18, 33) x (6, 18, 3) = (198, 324, 99) taking
mod 51, x x y = (45, 18, 48) € A.
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Infact we can prove A under product modulo 51 is a

cyclic group of order 16.
Now we proceed onto define max operation on A.
Let x = (39, 18, 24)and y = (15,18,42) € A.

max {x, y} = max {(39, 18, 24), (15, 18, 42)} = {(39,

18,42)} ¢ A so is not even closed under the max operation.

Consider min operation on A, min {X, y} = min {(39, 18,
24), (15, 18, 42)} = (15, 18, 24) ¢ A neither can we define min

operation on A.

So only the operation x on A can be extended the

operation of natural product on matrices.

So on the class of all neutrosophic triplet group matrices
we cannot define the operations + or max or min as on A we are

not in a position to define these operations.
Only with these limitations we have to work.

We further give other types of x operation on the

collection of all neutrosophic triplet groups matrices.

Let M = {(collection of all 2 x 4 matrices with entries
from A = {(18, 18, 18), (6, 18, 3), (3, 18, 6), (9, 18, 36), (36, 18,
9), (33, 18, 33), (27, 18, 12), (12, 18, 27), (15, 18, 42), (42, 18,
15), (48, 18, 45), (45, 18, 48), (30, 18, 21), (21, 18, 30), (39, 18,
24), (24, 18, 39)} } be the collection of all 2 x 4 matrices.

IfM e Aandx = (9, 18, 36) € A. We x x M where
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[(36,18,9), (15,18,42) (48,18,45) (24,18,39)
(33,18,33) (18,18,18) (30,18,21) (27,18,12)|

0. 18, 36 (36,18,9), (15,18,42) (48,18,45) (24,18,39)
b b X
(33,18,33) (18,18,18) (30,18,21) (27,18,12)

(B1818) (33.1833) (241839) (21827)]
= (S
(42,18,15)  (9,18,36) (15,18,42) (39,18,24)

This is the way product operation is performed.

As we are not in a position to define min or max
operation and without these two operations on M or for that
matter on any collection of neutrosophic triplet group matrices
we are forced to define the new notion of conditionally defined
neutral property max c.n function conditionally defined neutral
property min on neutrosophic triplet group matrices. So we first
define the notion of conditionally defined neutral property

min (c.n min) on A.

Let x = (12, 18, 27) min and y = (42, 18, 15) € A
conditionally defined neutral min property (c.n min) of {x, y}
denoted by c.n - min {x, y}} = c.n min {(12, 18, 27), (42,
18,15)} = {(min {12, 42}, min {18, 18}, anti of min {12, 42})}
= (12, 18,27).

It is pertinent to note actually min {27, 15} = 15 and (12,
18, 15) does not form a neutrosophic group triplet, that is (12,
18, 15) ¢ A.

Next we proceed onto define the notion of conditionally

defined neutral max (c.n max) on A as follows.
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Let x = (12, 18, 27) and y = (42, 18,15)

c.n max {(12,18, 27), (42, 18, 15)} = (max {12, 42}, max {18,
18}, anti max ({12, 42}) = (42, 18, 15).

That is in case of conditionally neutral max we only find
max of {a, b} say it is a then associate with it the anti max {a,b}

so c.n. max {anti a, anti b} = anti max {a, b}.

We will put them in the following way let x = (a neu a,

antia)andy = (b, neuta, antib ) € A.
cnmax { X,y } = {(max {a, b}, neut a, anti max {a, b})
Thus if x = (27, 18, 12) and y = (30, 18, 21).

Then c.n. max{x, y} = c.n max {(27, 18, 12), (30, 18, 21),
= (max (27, 30), 18, anti max {27, 30}) = (30, 18, anti 30) =
(30, 18, 21) € A.

On similar lines we define conditionally neutral min of

two neutrosophic triplet groups.
Letx=(27,18,12)and y = (30, 18,21) € A

min {x, y} =min {(27, 18, 12),(30, 18, 21)} = (min {27,
30}, 18, anti min {27, 30}) = (27, 18 anti 27) = (27, 18, 12).

Now we find ¢ - n - max of x = (9, 18, 36) and y = (30,
18,21) in A.

c.n max {x, y} =c. n. max {(9, 18, 36), (30, 18, 21)} =
(max {9, 30}, 18, anti max {9, 30}) = (30, 18, anti 30) =(30, 18,
21) € A.
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It is interesting to observe that max {36, 21} is only 36
and (30, 18, 36) is not a neutrosophic triplet group with 18 as

the neutral element.

We find c¢.n min {x, y} = c.n min {(9, 18, 36), (30, 18,
21)} = (min{9, 30}, 18, anti min {9, 30}) = (9, 18, anti 9) = (9,
18, 36). However it is clearly observed min {36, 21} =21 and
(9, 18, 21) does not form a neutrosophic triple group of the

neutral element 18.

Thus we see A under the operation c.n min is a
semigroup. That is {A, c.n min} is a semigroup of order 16 or
equivalently A is closed under c.n-min and {A, c.n. min} is a
semigroup which is commutative. However {A, c.n min} is not

a monoid.
Now let us consider (9, 18, 36) and (30, 18, 21) in A.

c.n max {(9, 18, 36), (30, 18, 21)} = (max {9, 30}, 18
antimax {9, 30}) = (30, 18, anti 30) = (30, 18, 21) € A.

So {A, c.n - max} is a semigroup which is not a monoid.

Only by defining these two special type of operations on

A we can define successfully a semigroup.

We will for the sake of better understanding give an

example.

Example 3.8. Let S = {Z33, x} to be a semigroup under product
modulo 33. The neutral elements of S are 12 and 22. The
neutrosophic triplet groups associated with 12 the neutral

element are
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A=1{(3,12,15),(15,12,3),(9, 12, 27), (12, 12, 12), (27, 12, 9),
(6, 12, 24), (24, 12, 6), (18, 12, 30), (30, 12, 18), (21, 12, 21)}.

The neutrosophic triplet group associated with 22 are
{(22, 22, 22), (11, 22, 11)}.

Clearly {A, x} is a cyclic group of order 9.

{A, c.n max} and {A, c.n min} are semigroups which are

not monoids.

We now show how c.n max and c.n min operations are

performed on matrices of neutrosophic triplet groups.

Let {3 x 5 matrices with entries from A} =

a, a, a, a, ag
{la, a, a; a, a,|/aeA 1<i<15}
a, a, a, a, a

be the collection of all matrix of neutrosophic triplet groups.

We show {M, c.n - min} is a semigroup and is not a

monoid.

Letx=
(3,12,15) (30,12,18) (21,12,21) (6,12,24) (12,12,12)
(12,12,12) (18,12,30) (24,12,6) (12,12,12) (24,12,6)
(3,12,15)  (15,12,3) (12,12,12) (18,12,30) (15,12,3)

€ A.
Ifa=(27,12,9) € A to find

c.n-min {o,X } =
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(3,12,15)  (27,12,9) (21,12,21) (6,12,24) (12,12,12)
(12,12,12) (18,12,30) (24,12,6) (12,12,12) (24,12,6)
(3,12,15)  (15,12,3) (12,12,12) (18,12,30) (15,12,3)

Clearly c.n min {x, x} =x for all x € A.

Infact {M, c.n min} is a semigroup under c.n - min

operation. However M has no identity.

Let T = {Collection of all 5 x 2 matrices with entries

2

3

N

v

N
o0

a
a
from A} = {|a
a
a

a
a
a, | /ai € A; 1 <1<10} = collection of all
a
a

9 10

5 x 2 matrices with entries from A.

We now show how a special type of c.n - max operation

is performed on T using elements from A.
Letx=(3,12,15) € A and

[(12,12,12) (18,12,30)]
(15,12,3)  (30,12,18)
a=|[(21,12,21) (6,12,24) | e T.
(9,12,27)  (24,12,6)
| (18,12,30)  (6,12,24) |
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[(12,12,12) (18,12,30)]
(15,12,3)  (30,12,18)
We define c.n - max {x,a} = (21,12,21) (6,12,24) | =a e T.

(9,12,27)  (24,12,6)
| (18,12,30)  (6,12,24) |

In this way {T, c.n max} happens to be only a semigroup

and not a monoid.

Let W = {collection of all 4 x 4 matrices with entries
from A}

a, a, a, a,
_y a, a, a, ag

a’9 a'10 all a’lZ

a, a, a5 a

16

where a; € A, 1 <1< 16} = collection of all 4 x 4 matrices with
entries from A. Let x = (6, 12, 24) € A and

(24,12,6) (12,12,12) (3,12,15) (24,12,6)
(15,12,3) (18,12,30) (27,12,9) (9,12,27) )

o= bein W.
(21,12,21) (12,12,12) (24,12,6) (9,12,27)

(12,12,12)  (9,12,27) (6,12,24) (15,12,3)

We find x x o = (6, 12, 24) x o0 =

(12,12,12) (6,12,24) (18,12,30) (12,12,12)
(24,12,6)  (9,12,27) (30,12,18) (24,12,6)
(27,12,9)  (6,12,24) (12,12,12) (21,12,21)
(6,12,24) (21,12,21) (3,12,15)  (24,12,6)
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This is the way special type of product operation is

performed from o € T and x € A.

Now we perform row matrix into a matrix by defining

either max product or max min operations.

Let x = ((3, 12, 15), (12,1 2,12), (15, 12, 3), (30, 12, 18),
(21, 12,21)) be a 1 x 5 matrix.

[(6,12,24)  (24,12,6) |
(12,12,12)  (6,12,24)
Leta=| (24,12,6) (15,12,3) | eT
(3,12,15) (21,12,21)
| (21,12,21)  (6,12,24) |

max min {x, a} = ((21, 12, 21),(21, 12, 21)).
This is the way max min operation is performed.
max - product {x, a} =((30, 12, 18), (27, 12, 9)).
We see max product operation is defined in this way.

It is pertinent to keep on record that always max product

will yield a bigger value than max min.

Now this sort of product will be used in mathematical
models which will be constructed in the next chapter.

Now we wish to show that these sort of operation will
after a stage end in a fixed point. To this end we will construct
another example using both square neutrosophic triplet group
matrices and rectangular neutrosophic triplet group matrices.
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Example 3.9. Let S = {Z,,, x} be the semigroup under product
modulo 21, 21 = 3.7. The neutral elements of S are 7 and 15.

The neutrosophic triplet groups associated with 15 are

A=1{(15,15,15), (3, 15, 12), (9, 15, 18), (12, 15, 3), (18, 15, 9),
(6, 15, 6)}.

Now we show if M = {collection of all 2 x 2 matrices

with entries from A}

a, a, ) )
={ /a;e A; 1 <1<4} =Collection of all
a

3 9y

2 x 2 neutrosophic triplet group matrices with entries from A.

Let X ={(a;, ay)/a; € A; 1 <1< 2} be the collection of

all row matrices with entries from A.

Now if x € A and N € M then if xN =y, find y;)N =y,

say then we claim after a finite number of such iterations we get
y? = yir1 With y N =y and so on will yield a fixed point or

Vi = V2= ... > Y1 = ... = V1 a limit cycle. This concept

will be used in the mathematical models.
We will just illustrate this by some examples.

Let x =((3, 15, 12), (6, 15, 6)) € X and

12,15,3) (18,15,9
N (02153 8159)
(9,15,18) (3,15,12)

we find c.n max-product {x, N};
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c.n max-product {x, N} = c.n max-product {((3, 15, 12),
(6, 15, 6)), N} =((15, 15, 15), (18, 15, 9)) =y, say,

c-n max-product {y;, N} = ((15, 15, 15), (18, 15, 9)) =

ya (say) =y I

Thus we see at the second iteration itself the term x on N
with ¢.n max product converges to ((15, 15, 15), (18, 15, 9)) or
in technical terms yields a fixed point.

Now we find for the same x the c.n max min {(x, N)}.

c.n max-min {(x, N)} = ((6, 15, 6), (3, 15, 12)) = 7, (say);
now c¢.n maxmin {(z;, N)} = ((6, 15, 6), (6, 15, 6)) =z, (say) c.n
max min {z,, N} = ((6, 15, 6), (6, 15, 6)) =73 (= z) II

Thus this row vector or row matrix of neutrosophic triplet
groups converges to z, = ((6, 15, 6) (6, 15, 6)) or yield the fixed

point z,.

Hence it is pertinent to record at this juncture that the
values or converging vector in case of c.n max-product (x, N) is
different from the c.n max-min (x, N) which clearly evident
from I and II.

Thus we can define in case of matrix of neutrosophic
triplet groups the notion of special type of fixed points which is
as follows.

Definition 3.2. Let S = {Z,,, x} be the semigroup under product
modulo pq (p and q two distinct primes). A = {Collection of all
neutrosophic triplet groups associated with the neutral elements

of Z,,} of order p — 1 or (q — 1) depending on the neutral
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element of Z,,. M = {collection of all n x n matrices with entries
from A} be the collection of all n x n matrix of neutrosophic

triplet groups.

Let X = {(ay, ..., ay) / a;€ A, 1<1 < n} be the collection of

1 x n row vector or row matrices of neutrosophic triplet group.

Then c.n max-product (x, N) and cn max min (x, N) for
every x € X and N € M either converges to a fixed point

defined as the special fixed point or is a limit cycle.
We will illustrate this situation by one more example.

Example 3.10. Let S = {Zss, x} be the semigroup under product
modulo 55.

The neutral elements of Zss are 11 and 45.

We see the neutrosophic triplet groups associated with the

neutral element 45 are as follows;

A ={(45, 45, 45), (5, 45, 20), (20, 45, 5), (25, 45, 15), (15,
45, 25), (10, 45, 10), (30, 45,40), (40, 45, 30), (35, 45, 50), (50,
45, 30)}.

We can for the neutral element 11 find the associated
collection of all neutrosophic triplet groups.

Now using the collection A we construct the following
matrix group of neutrosophic triplet groups.
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1

(S ]

M={|

9

*|/ajeA 1<i<16} bethe4

&

13

x 4 matrix group of neutrosophic triplet groups.

X ={(ay, ay, a3, a4) / a; € A, 1 <1< 4} be the collection of

all row vector or row matrices of neutrosophic triplet groups.

For every x € X and N € M we find c.n max product {x,
N} and c-n max min {x, N} and prove the limit converges to a

fixed point or repeats itself as a limit cycle.

We will work out for a particular values of x € X and N
e M.

Let x = (25, 45, 15), (20, 45, 5), (10, 45, 10), (35, 45, 50)) € X

(10,45,10) (45,45,45) (40,45,30) (15,45,25)
(50,45,30) (5,45,20)  (20,45,5) (40,45,30)
(45,45,45) (15,45,25) (40,45,30) (35,45,50)
(5,45,20)  (15,45,25) (40,45,30) (20,45,5)

€ M. We first find c.n max product {(x, N)} = ((30, 45,50),
(45, 45, 45), (25,45, 15), (45, 45, 45)) = yi (say).

We see c-n max product {y;, N} = ((50, 45, 35), (45, 45,
45), (45, 45, 45), (50, 45, 35)) =y, (say).

c.n max product {(y2, N)} = ((50, 45, 35), (50, 45, 35), (40, 45,
30), (40, 35, 30) = y; (say).
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c.n max-product {y;, N} = ((40, 45, 30), (50, 45, 35), (20,
45, 5), (35, 45, 50) = y4 (say).

Now we find c-n max product {ys, N} = ((25, 45, 15),
(40, 45, 30), (30, 45, 40), (50, 45, 35)) =ys (say)

c-n max product {ys, N} = {(30, 45, 40) (50, 45, 35), (45,
45, 45), (45, 45, 45)} = ys (say)

c-n max product {ys, N} = ((45, 45, 45), (30, 45, 40), (45,
45, 45), (35, 45, 50)) = y7 (say).

Now c.n max product {y;, N} = ((45, 45, 45), (45, 45,
45), (50, 45, 35), (45, 45, 45)) = ys (say).

c.n max product {ys, N} = ((50, 45, 35), (45, 45, 45), (40,
45, 30), (45, 45, 45)) =y, (say).

We find the c.n max prod. {yy, N} = ((50, 45, 35), (50,
45, 35), (40, 45, 30), (40, 45,30)) = y1o (say).

c.n max product {y;o, N} = ((40, 45, 30), (50, 45, 35),
(20, 45, 5) (35, 45, 50)) = y1; (say).

We now find c.n max product {y;;, N} = (25, 45, 15),
(40, 45, 30), (30, 45, 40), (50, 45, 35)) = y12 (say).

We see yi =ys.

Thus this does not converge to a fixed point however the

resultant is a limit cycle given by
X=2>2V1i=2>V22>Y32Y4—2>Y 2>V ... > Y27 Ys.

Thus the product ends in a limit cycle just after 12 iterations.
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Now consider
a=1((15, 45, 25), (25, 45, 15), (5, 45, 20), (20, 45, 5)) € X.

We find c¢.n max-product {a, N} = ((45, 45, 45), (25, 45, 15),
(50, 45, 35), (15, 45, 25)) = p; (say).

c.n max-product {p;, N} = ((50, 45, 35) (45, 45, 45) (50,
45, 35), (45, 45, 45)) = p, (say).

c.n max-product {p,, N} = ((50, 45, 35), (50, 45, 35), (40,
45, 30), (45, 45, 45)) = p; (say).

c.n max-product {p;, N} = ((40, 45, 30), (50, 45, 35), (40,
45, 30),(35, 45, 50)) = p4 (say).

c.n max-product {ps, N} = ((40, 45, 30), (50, 45, 35), (25,
45, 15), (40, 45, 30)) = ps (say).

c.n max-product {ps, N} = ((40, 45, 30), (50, 45, 35), (10,
45,10),(50, 45, 35)} = ps (say).

c.n max-product {ps, N} = ((30, 45, 40), (40, 45, 30), (20,
45, 5), (50, 45, 35)) = p; (say).

c.n max-product {p7, N} = ((30, 45, 40), (35, 45, 50), (45,
45, 45), (40, 45, 30) = ps (say).

c.n max-product {ps, N} = ((45, 45,45) (50, 45, 35), (45,
45, 45), (35, 45, 50)) — po (say).

Now we find cn max-product {py, N} = ((45, 45, 45), (45,
45, 45), (40, 45, 30), (40, 45, 30)) = pio (say).
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The c.n max-product of {pio, N} = ((50, 45,35), (50, 45,
35), (40, 45, 30), (40, 45, 30)) = py; say)

c.n max product {p;;, N} = ((40, 45, 30), (50, 45, 35),
(20, 45, 5), (35, 45, 50)} =p1» (say)

Certainly as both the sets X and M contains only a finite
number of elements we will after a finite number of iterations

arrive at a fixed point or a limit cycle.

Next we find this type of operations on m x n matrices of

neutrosophic triplet groups m # n.

We show how in this case we will arrive at a fixed point
pair or a limit cycle pair. This type of c.n max-product will be
used in the NtgCMs model which is defined in chapter four.

Example 3.11. Let S = {Zs5, x} be the semigroup under product

modulo 35.
The neutral elements (idempotents) of Zss are 15 and 21.

The neutrosophic triplet groups of the neutral element 15

arc

A = {(5,15, 10), (10, 15, 15), (25, 15, 30), (30, 15, 25), (20, 15,
20), (15,15,15)}. The neutrosophic triplet groups of the neutral

element 21 are

B={(7,21,28), (28,21, 7), (14, 21, 14), (21, 21, 21)}.
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[S]

N

o0

a, a
a, a
LetM={|la;, a,|/aieA;1<i<10}
a, a
a

)
jov)
S

be the collection of all 5 x 2 neutrosophic triplet group matrices

with entries from A.

Let X = {(ay, ay, a3, a4, as) / a;€ A, 1 <1< 5} be the set of

all row vectors or row matrices of neutrosophic triplet groups.

Y = {(a;, a2) / Aje A; 1 <1< 2} be the row vector or row

matrices of neutrosophic triplet groups.

Now we define both c.n max min and c.n max product

operations using elements of X, Y and M.

[ (5,15,10) (20,15,20) |
(15,15,15)  (10,15,5)
Let P = [ (30,15,25) (15,15,15) | e M
(25,15,30) (15,15,15)
| (15,15,15)  (10,15,5) |

Let x = (15, 15, 15), (5, 15, 10), (30, 15, 25), (10, 15, 5),
(15, 15, 15)) € x.

We find ¢.n max products {x, P} = ((25, 15, 30), (30, 15,
25)) = y1 (say).

Now we define P' =
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(5,15,10) (15,15,15) (30,15,25) (25,15,30) (15,15,15)
(20,15,20) (10,15,5) (15,15,15) (15,15,15) (10,15,15)

We calculate ¢.n max product (y;, P') = ((20, 15, 20), (25, 15,
30), (30, 15, 25), (30, 15, 25), (25, 15, 30)) = x, (say).

Now we find c¢.n max prod {x;, P}
= ((3Oa 15: 5)7 (30: 15: 25)) =) (saY)

We get c.n max prod {y, P'} = ((10,15, 5), (30, 15, 25)
(30, 15, 25), (30, 15, 25), (30, 15, 25)) = x, (say)

c.n max prod {x, P}
=((30, 15, 25) (30, 15, 25)) = y3 (say).
We see ¢c.n max product {y; ,P'} = X3 (=x,)

Thus this converges to a fixed point pair given by {((10, 15, 5),
(30, 15, 25), (30, 15, 25), (30, 15, 25), (30, 15, 25)), ((30, 15,
25), (30, 15, 25)} }. I

Now using the same x and the same P we now calculate
c.n max min {x, P};
c.n max min {x, P} =((30, 15, 25), (15, 15, 15)) =y, (say).

c.n max min {y;,P'}=((15, 15,15) (15, 15, 15), (30, 15, 25), (25,
15, 30), (15, 15, 15)) = x, (say).

c.n max min {x;, P} =((30, 15, 25), (15,15, 15)) =y, (say) =y,

c.n max min {y, P'} = c.n max min {y,;, P} = x.



179 | Neutrosophic Triplets Groups and their Applications ...

Thus in this case also we see the row vector converges to
a fixed point pair given by {(15, 15, 15), (15, 15, 15), (30, 15,
25), (25, 15, 30), (15, 15,15)), ((30,15, 25), (15, 15, 15))} 1I

We see I and II are different. That is the fixed point pair
given by c.n max product is different from the fixed point pair
given by c.n max min for the same row vector x of X on the

same matrix P of M.

It is left as an open problem for the reader to find
whether there exist a row vector in X such that for a given fixed
P in M the row vector converges to the same fixed pair point

both under the c.n max min as well as under the c.n max prod.

We next show some more interesting results on these
neutrosophic triplet groups matrices.

Example 3.12 Let S = {Z3, x} be the semigroup under product
modulo 39. The neutral elements (idempotents) associated with
Zs9 are 13 and 27.

The neutrosophic triplets associated with the neutral

element 27 are

A={(3,27,9), 9,27, 3), (6, 27, 24), (24, 27, 6), (18, 27,
21), (21, 27, 18), (15 27, 33), (33, 27, 15), (27, 27, 27), (12, 27,
12), (30, 27, 36), (36, 27, 30)!.

Clearly A is a group under product modulo 39.

NowletM={|a, a, a, a, |/acA 1<1<12}

a,
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be the collection of all matrices of neutrosophic triplet group.
Clearly o(M) = 12",

Let X = {(a;, a, a3) / a; € A, 1 <1< 3} be the collection
of all neutrosophic triplet groups row matrices with entries from

A. X is a finite commutative group of order 12°.

Let Y = {(a, a5, a3, ag) / a; € A; 1 <1 < 4} be the row
vector or row matrices of neutrosophic triplet groups entries
from A.

Clearly o(Y) = 12* and Y is a group.

We now find using the matrix of neutrosophic triplet

groups B from M and a x € X the c.n max min {x, B} and
c.n max product {x, B} where

(30,27,36)  (3,27,9)  (9,27.3) (27,27,27)
B=| (9,27.3) (27,27,27) (12,27,12) (6,27,24) | € M.
(24,27,6) (15,27,33) (30,27,36)  (3,27,9)

We first find c.n max min (x, B), c.n max min (x, B) =
(27, 27, 27), (6, 27, 24), (9, 27, 3), (27, 27, 27)) = yi (say).

(30,27,36)  (9,27,3)  (24,27,6)
(3,27,9)  (27,27,27) (15,27,33)
9,27,3)  (12,27,12) (30,27,36)
(27,27,27)  (6,27,24)  (3,27,9)

We see B' =

We now find c.n max min {y, Bt} =((27, 27, 27), (9, 27,
3), (24, 27, 6)) = x; (say).
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We now calculate c.n max min {x;, B} = ((27, 27, 27),
(15, 27, 33), (24, 27, 6), (27, 27, 27)) = y» (say).

c.n max min {y, Bt) =((27, 27, 27), (15, 27, 33), (24,27,
6)) = X, (say).

c.n max min {X, B} = ((27, 27, 27), (15, 27, 33), (24, 26,
6)7 (273 277 27)) =Y (SaY)'

Clearly y, = y3 so this yields a fixed point pair given by
{((27, 27, 27), (15, 27, 33), (24, 27, 6)), ((27, 27, 27), (15,27,
33), (24, 27, 6), (27, 27, 27))} I

Now for the same x and B we calculate
c.n max-product {x, B}.

c.n max-product {x, B} = ((30, 27, 36), (12, 27, 12), (36,
27, 30), (27, 27, 27)) =y, (say).

c.n max-product {y;, B'} = ((36, 27, 30), (36, 27, 30), (27,
27, 27)) = x; (say).

c.n max-product {x, B} = ((27, 27, 27), (36, 27, 30), (30,
27, 36), (36, 27, 30)) = y, (say).

We now find max product {y,, B} = ((36, 27, 30) (36, 27, 30),
(33, 27, 15)) = x; (say).

c.n max-product {x, ,B} = (27, 27, 27), (36, 26, 30), (15,
27, 33), (36, 27, 30)) = y; (say).

c.n max-product (y:B'} = ((36, 27, 30), (36, 27, 30), (33,
27, 15)) x5 (say) .
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c.n max-product {x; ,B}= ((30, 27, 36), (36, 27, 30), (15,
27, 33), (36, 27, 30)) = y4 (say).

c.n max-product (y, ,BY) = ((36, 27, 30), (36, 27, 30), 933,
27, 15)) = x4 (say).

c.n max product {x4 ,B}=((27, 27, 27), (36, 27, 30), (27,
27,27), (36, 27, 30)) = ys (say).

c.n max product {ys ,B"} = ((36, 27, 30), (36, 27, 30), (33,
27, 15)) = X5 (say).

We see x5 = X4 so the resultant is a fixed point pair given
by {((27, 27, 27), (36, 27, 30), (27, 27, 27), (36, 27, 30)), (36,
27, 30), (36, 27, 30), (33, 27, 15)) I

Clearly I and II are distinct so the c¢.n max-min and c.n
max - product yields different values however in this case both
the methods yield only fixed point pair.

We now show how one can have a different type of
product using a n x n square matrix and row vector with entries

from the group of neutrosophic triplet groups.

If D is a n x n matrix and x is a 1 x n row vector we find
xD =y, (say) then find y;D' = x; say then x;D = y,(say) next
find y,D' so on until we arrive at a fixed point pair or a limit

cycle pair.

We will illustrate this by an example and show how it is
different from the usual fixed point worked out using the
procedure xD =y, (say), yiD =y, (say) and so on y;D =y =
Yt
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This procedure will only yield a fixed point or a limit

cycle not a fixed point pair or a limit cycle pair.

Example 3.13. Let S| = {Zs, x} be the semigroup under

product modulo 51.

The neutral elements (or idempotents) of Zs; are 18 and
34,

We first give the neutrosophic triplet groups associated
with 18.

A = {(3,18, 6), (6, 18, 3), (9, 18, 36), (27,18, 12),
(30,18,21), (36, 18, 9), (12, 18, 27), (21, 18, 30), (39, 18, 24),
(15, 18, 42),(45, 18, 48), (24, 18, 39), (42, 18, 15), (48, 18, 45),
(33, 18, 33) (18,18,18)}.

Let B denote the collection of all neutrosophic triplet
groups associated with 34,

B = {(34, 34, 34), (17, 34, 17)}.

Thus A is a cyclic group of order 16 and B is a cyclic

group of order two.

We now consider M = {collection of all 4 x 4 matrices

1 aZ 3 a'4
, a a

>N

| /a €A,

9 1 12

S

1

a a

) ) a a,
with entries from A} = {

a, a, a, a

a13 a'l4 a a

15 16

1 <1 < 16} be the collection of all 4 x 4 matrices of

neutrosophic triplet groups.
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Let X = {(aj, az, a3, ag) / a; € A; 1 <1 <4} be the

collection of all row matrices of neutrosophic triplet groups.

LetS=

(3,18,6)  (18,18,18) (33,18,33) (3,18,6)
(6,18,3)  (9,18,36) (6,18,3) (18,18,18)
(15,18,42)  (3,18,6) (18,18,18) (33,18,33)
(18,18,18) (33,18,33) (9,18,36)  (9,18,36)

and let x = (3, 18,6), (9, 18, 36), (33, 18, 33),(18, 18, 18)) € X.

We find c.n max product {x, S} and c.n max min {x, S}
using the transpose of S also.

Now c.n max product of {x, S} = ((36, 18, 9), (48, 18, 45), (48,
18, 45), (18, 18, 18)) =y (say).

(3,18,6)  (6,183) (15,18,42) (18,18,18)
g | (81818) (©.1836)  (.18.6) (33.18.33)
(33,18,33)  (6,18,3) (18,18,18) (9,18,36)
(3,18,6) (18,18,18) (33,18,33) (9,18,36)

We find c.n max product {y;, S'} = ((48, 18, 45), (33, 18,
33)7 (48318: 45)a (36: 18: 9)) =¥ (saY)'

We find c¢.n max product {y,, S} = ((45,18, 48), (48, 18,
45), (48, 18, 45), (48, 18, 45)) = y; (say).

c.n max product {ys, S} = ((48, 18, 45), (48, 18, 45), (48,
18, 45), (45, 18, 48)) = y4 (say).

c.n max product {ys,S} = ((45, 18, 48), (48, 18, 45), (48,
18, 45), (48, 18, 45)) = y; (say).
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Thus we see the value of the row vector x converges

using M under c.n max product to a pair.

(((45, 18, 48), (48, 18,45), (48, 18, 45), (48, 18, 45)),
(48, 18, 45), (48,18, 45), (48, 18, 45), (45, 18, 48))} 1

Now using the same pair x and S. We find the pair of

resultant vectors using c.n max min operation.

c.n. max min {x, S} =((18, 18, 18), (18, 18, 18), (18, 18,
18), (33, 18, 33)) =y (say)

c.n max min {y;, S'} = ((18, 18, 18), (18, 18, 18), (38, 18,
33), (18, 18, 18)) =y, (say).

We now find ¢.n max min (y,S) = ((18, 18, 18) (18, 18,
18), (18, 18, 18), (33, 18, 33)) =y; (say).

Clearly y; = y;; hence we see the vector converges or the
resultant is a fixed point pair given by {((18, 18, 18), (18, 18,
18), (33, 18, 33), (18, 18, 18)), ((18, 18, 18), (18, 18, 18), (18,
18, 18), (33, 18, 33))} I

Clearly I and II are distinct. Further the operations c.n
max product and c.n max min in this case yields only fixed
point pairs. This type of working will find its applications in
neutrosophic triplet groups relational maps model or in the
neutrosophic triplet group Bidirectional Associative memories
model.

The former structure will be defined and described in the
following chapter.
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The main advantage of using these neutrosophic triplet
groups as entries is that once the element from the set is fixed
automatically the neutral element and the anti element are fixed
their by eliminating the arbitrariness present in the choice of

elements.
Problems
In this section we propose some problems for the reader.

1. Find the idempotents of {Z,y, x} = S; the semigroup

under modulo product 226.

1) Find all neutrosophic triplet groups associated
with the neutral elements of Z .

i) Prove the neutrosophic triplet groups associated

with the neutral elements forms a cyclic group
iii) Find the order of them.
iv) Find the generators of these cyclic groups.

2. Let S = {Z339, x} be the semigroup under product modulo

339.

1) Study questions (i) to (iv) of problem (1) for
this S.

i) Compare S; of problem (1) with S of this
problem.

3. Let S = {Z3s, x} be the semigroup under product .
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Let A = {collection of all neutrosophic triplet groups

associated with the neutral element 15}.

M = {collection of all 5 x 5 matrices with entries from
A}. X={(a;, az, ..., as5) / a; € A; 1 <1< 5} be the row

matrix of neutrosophic triplet groups.

IfB=

[ (5,15,10)
(15,15,15)
(10,15,5)
(25,15,30)

| (20,15,20)

e M.

(10,15,5)  (30,15,25) (15,15,15) (10,15,15)]
(25,15,30) (15,15,15) (20,15,20) (30,15,25)
(30,15,25) (20,15,20) (25,15,30) (5,15,10)
(20,15,20) (25,15,30) (25,15,30) (10,15,5)
(15,15,15)  (5,15,10) (30,15,25) (5,15,10) |

Let x = ((30, 15, 25), (5,15,10), (10, 15, 5) (20, 15, 20),
(25,15, 30)) € X.

Find the fixed point or the limit cycle associated
with c.n max min {x, B}.

Find the fixed point or the limit cycle associated
with c.n max product {x, B}.

Compare the resultants in (i) and (ii).

Find all vectors a € X which gives fixed points
under c.n max product using this B.

Find all vectors x € X which produce fixed
points and c.n max min using the given B.

Does the exists vectors b € X which are fixed
points under both c.n - max product and c.n max

min?



Special Type of Neutrosophic Triplet Groups... | 188

vii) Can there be a x € X which gives the same fixed
point both under c¢.n max min as well S c.n. max
product?

viii)  Can there be x € X which gives same limit cycles
under both the c.n max min and cn max product ?

ix) Enumerate any other special features enjoyed by

cn max product and cn max min.

Suppose S ={Z,, x} be the semigroup under product n =
2p (p a prime). A the set of neutrosophic triplet groups

associated with S.

M ={collection of all 5 x 3 matrices with entries from A};
Y = {I x 5 matrices with entries from A} and X = {I x 3
matrices with entries from A}. If c.n max min and c.n
max product operations are performed for a fixed point

pairs {x, P} wherex € Yand P € M.

1) Does there exist any relation between the
resultant vectors given by c.n max product and
c.n max min?

i) Give a value for x € Y and a B € M such that
one of c.n max product gives a fixed point pair
whereas that of c.n max min yield a limit cycle

pair or vice versa.

Let S = {Z,43, x} be the semigroup under product modulo
143.

Let M = {collection of all 5 x 5 matrices with entries

from A} where A is the larger of the two groups of
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neutrosophic triplet groups associated with neutral

elements of Z4s3.

Prove o(A) = 12.

Prove o(M) = 127

Let X = {(a; a; a3 ag a5) a; € A; 1 <1< 5}, prove
o(X) =12’

Using c.n max min {x, P} forx € Xand P € M
and the transpose of P find the limit point pair or
the fixed point pair.

Give an example by choosing x € X and N e M
such that the resultant pair of c.n matrix product
{x, N} is a fixed point pair whereas the resultant

pair using c.n max min yields a limit cycle pair.

6. Let S ={ Z,94, x} be the semigroup under product modulo

194 and B = { Z,91, x} be the semigroup under product

modulo 291.

1) Prove S has a neutral element which yields 96
distinct neutrosophic triplet groups.

i) Prove B also has a neutral element which yields
96 distinct neutrosophic triplet groups.

iii) Hence or otherwise prove the largest cardinality
of the collection of all neutrosophic triplet groups
can be the same even if the cardinality of the
respective Z,’s may vary.

iv) Can we prove the conclusion in (iii) is from the

fact that largest prime which divides 194 and 291

are the same?
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11.
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V) Hence can we prove the cardinality of the group
of neutrosophic elements is only dependent on the
largeness of the prime which divides m and n of

Z. and Z, and not of the fact m>n orn>m.

Determine a method by which all neutral elements
(idempotents) can be found in Z,; n =p; py ... pr; t>3

and p; are distinct primes; 1 <1 <t.

Let S ={Zy4ss5, x} and B = {Z3995, X} be two semigroups

under modulo product.
1) Find all the neutral elements of S and B.

i) Which of the semigroups S or B has more number
of classical group of neutrosophic triplet groups?

iii) Which of the semigroups S or B has larger

number of neutral elements?

iv) Find all special and distinct features enjoyed by S
and B.

Can we say if S is as in problem 8 the collection of all
neutrosophic triplet groups associated with any neutral

element will be a group?

Study problem (9) in case of S = {Zy319, X} and B =

{Z4130, x} the semigroups under modulo product.

Do these neutral elements of S and B yield to classical
group structure on the collection of neutrosophic triplet

groups for any fixed neutral element?
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12.  Let {Z,, x} be the semigroup under product modulo n, n a
composite number. Does the collection of all neutral

elements of Z, form a semigroup or a group?

13.  Let S = {Z,, x} be a semigroup under product modulo n

(n a composite number);

1) When can we say S has neutral elements which

contribute to duplets? (give condition on n).

i) When can we say Z, has neutral elements which

contribute to quasi neutrosophic triplet groups?

iii) Characterize those n for which Z, has quasi

neutrosophic triplets groups.

iv) If r € Z, is a neutral element associated with
quasi neutrosophic triplet groups than can r have
with it some associated neutrosophic triplet
groups? Justify.

14. Study questions (i) to (iv) of problem (13) in case of
S = {ZIZOa X}-

15. Analyse the relation between quasi neutrosophic triplet

groups and neutrosophic triplet groups.

16. If a neutral element in {Z,,x} gives duplets can the same
neutral element yield quasi neutrosophic triplet groups
and neutrosophic triplet groups?



17.

18.

19.

20.

21.

22.
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Characterize those S = {Z,, x} which can yield only

duplets (for which n this can occur).

Characterize those n of S = {Z,, x} for which the neutral

elements can yield only quasi neutrosophic triplet groups.

Describe those n of S = {Z,, x} which can yield only
quasi neutrosophic triplet groups and neutrosophic triplet

group and not duplets.

Characterize those n of S = {Z,, x} whose classical group
of neutrosophic triplet groups can yield only fixed points
for any s x s collection of square matrices and 1 x s row

matrices with entries from that group.
1) Does such a n exists?

i) If the collection of neutrosophic triplet groups is
only a semigroup can we say fixed points alone is

possible?

Characterize those n of S = {Z,, x} for which Z, has
neutrals whose associated collection of neutrosophic

triplet groups forms only a semigroup.

Let S = {Z,, x}, where n = 2* 3% 5° 7° be the semigroup

under product.
1) Find all neutral elements of Z,,.

i) How many of these neutral elements contribute to

the classical group of neutrosophic triplet groups?
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23.

iii)

How many of these neutral elements contribute to

semigroup of neutrosophic triplet groups?

Does there exist neutrals associated with n which
can contribute to duplets?

Does there exist neutrals associated with this n

which can contribute to quasi neutrosophic triplet
groups?

Let S = {Z,, x} where n = 72 be the semigroup under

product modulo n.

i)

vii)

viii)

Find the neutral elements of 72.

Which of these neutral elements contribute to

neutrosophic triplet groups.

Which has more number of neutrals which
contribute to neutrosophic triplet group Z; or
797

Can we say Z74 has more number of neutrosophic
triplet groups than Z;, and Zg?

Prove Z;4 has only two neutrals 37 and 38.

Show related with the neutral 38 has a collection
of 36 nontrivial neutrosophic triplet groups.

Prove these 36 elements from a cyclic group of
order 36.

Prove Zg and Z;, has only classical groups of
order certainly less than 36.



24.

25.

26.

27.

28.

29.

30.

31.

32.
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Can you show the largest classical group of neutrosophic
triplet groups exists in Z,q if p > q then there is a cyclic
group of order (p — 1)?

If in S ={Z,, x} be the (p, q, r are distinct primes)
semigroup under product modulo pqr. If p > q > r then

will S have a classical cyclic group of order p — 1?

Let S = {Zs, x} be the semigroup under product verify
problem 25 for this Zs.

Let S = {Z3ss, x} be the semigroup under product modulo
385.

a) Verify problem 25 for this Zsgs.

b) How many neutrals of Zigs contributes to
neutrosophic triplet groups which are classical
cyclic groups?

Enumerate all special features associated with
neutrosophic triplet groups.

What are the probable applications of the neutrosophic
triplet groups?

Calculate all the neutrals of Zs3».

Which of the neutrals in Zy33, contribute to cyclic group

of neutrosophic triplet groups.

Obtain all special features of Zp,, ; p aprimen> 2 in

terms of neutrals.
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33.

34.

35.

36.

37.

38.

39.

Find all neutrals of Z,sg.
Find all neutrals of Z,s;.

Prove these group of neutrosophic triplet groups can be

used in the construction of mathematical models.

Can these neutrosophic triplet groups for some Z, form

only semigroup?

When these neutrosophic triplet groups for some Z, is

only a semigroup will these contribute to duplets?

Does there exists S = {Z,, x} which has only neutrals
which generate quasi neutrosophic triplet groups and not
neutrosophic triplet groups?

Can the collection of quasi neutrosophic triplet groups for
some neutrals in Z,, for some n form a classical group?
Justify.



Chapter Four

APPLICATIONS OF NEUTROSOPHIC
TRIPLET GROUPS TO MATHEMATICAL
MODELS

In this chapter we for the first time introduce the new
notion of Neutrosophic Triplet Groups Cognitive Maps
(NTGCMs) models, Neutrosophic Triplet Groups Relational
Maps (NTGRMs) models and models which use soft computing
principles like single layer feed forward network, multilayer
feed forward network, perceptron etc. Instead of using on or off
state of the Fuzzy Cognitive Maps (FCMs) model we can use
the off state say (0, 0, 0) however for the on state can take any
of the values from the neutrosophic triplet groups which will be
known as the nodes or concepts of the newly built model akin to
the FCMs model. We first introduce the Neutrosophic Triplet
Groups Cognitive Maps model.

We however make the formal definition of Neutrosophic
Triplet Groups Cognitive Maps (NTGCMs) model or (NtgCMs)

model.
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Let S = {Z,,, x} be the semigroup under product modulo
2p, p an odd prime.

Let p + 1 and p be the neutral elements of Z,,; p+ 1 is a
neutral element which contributes to neutrosophic triplet groups
which are nontrivial. Infact associated with p + 1 are some p — 1
number of neutrosophic triplet groups which forms a classical
group of order p — 1 which is also cyclic with p + 1 as its
identity.

Let Cy, C,, ..., C, be the nodes or concepts associated
with some problem let them take values from the set B = {0, 2,

4, .., (p-1)2}.

Let us assume if C; node is 0 then it is in the off state if it
takes any of the other values from B \ {0} the node is in the on
state with appropriate property or that is the value of the node.

Here if the nodes C; to C; has an impact depending on the
value of impact (or effect of one node on the other) a weight is
given from the set B \ {0} if there is no impact of C; into C; then
the weight is 0. If the weight is a non zero then depending on
the impact a value from B\ {0} is given.

Here it is pertinent to make the following two

observations:

i) The nodes / concepts can take 0 or any value
from B \ {0}, however in case of FCMs they can
take only values on or off in on value 1 and off
value 0.

ii) In case of FCMs two C; has impact on C; then 1

is given if increase in C; increases C; or decrease
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in C; decrease s Cj and —1 increase in C; decreases
Cj or decrease in C; increases C;. The value 0 is
given if no effect of C; is found on C;.

iii) At the outset this NtgCMs or (NTGCMs) model
which will be based on special type of
MODFCMs model is better than FCMs model as
we cannot always make an assumption that a
state is always on state or off state and a on state
has a value 1 for we can have a partial or a semi

on state as these are cognitive models.

Any unit can function partially and not fully also the term
partially is not a quantity for it can always have shades of

values.

For instance take an industry if all units are fully
functioning we can say 1 is the value it may so happen all units
are closed then 0, however the security unit is always in on state
so an industry on all days functions partially. Sometimes only
security unit and dispatch unit may function. In some day (even
on holidays) security unit and coordination committee unit or
executive committee units may function and so on. If we have
to say some t units and we have some n nodes /concepts we can
give the on state or partial state or off state of these nodes with

values from B.

In the opinion of the authors this way of defining is more
appropriate than the usual way by which FCMs are defined.

Now we discuss about the weights. We see in case of
FCMs the weight is 0 or 1 or — 1 but this is not always possible

their may be a partial impact of a C; onto a mode C; how are
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going to describe this situation. To this effect we give for
weights the values from the set B.

We see certainly the MODCMs would be more practical
than FCMs. We are also certain to arrive at a fixed point or a
limit cycle after a finite number of iterations. This can be clearly
proved as B is a finite set under modulo product 2q.

We can use 3 types of operations usual composition or
max product or max min under all the three operations they will
yield different answer.

We will illustrate all these facts by some examples.

Example 4.1. Let C,, C,, C;, C4, Cs and C4 be six nodes /
concepts which take the node values from B = {0, 2, 4, 6, 8, 10,
12} < Zy4 be the collection. Clearly B \ {0} is a cyclic group of

order six with 8 as its multiplicative identity.

The elements x = (a;, a,, ... ,ac) takes its values from B,
thatisa; e B, 1<i1<6.

Thus if X = {(a, a,, a3, a4, a5, ag) / a;,€ B, 1 <1< 6} are
the state vectors of MODCMs akin to the state vector in FCMs
which can take values only 0 or 1 in the case of simple FCMs.
So we can over come the crisp on or off state to partially on
state, some what on state, just on state and so on. The weights
also need not be 0 or 1, it can be any value from B.
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Figure 4.1

The directed MOD graph relating the six nodes whose weights

are given above is described in the above figure.

Let M be the connection matrix associated with this

above graph.

c, C, C, C, C, C,

c,[o o o 0o 2 0]

¢,|0 0 0 0 0 10

M=¢C, |0 4 0 0 2 O
c,|6 12 0 0 0 O

¢G|o 0o 0 0 0 8

C,l0 0 4 0 0 0

M can also be called as the MOD connection matrix of the
directed MOD graph.

Let as consider the initial state vector

x=(020600) € X that is Cy, C3, Cs and Cg states are
off and C, takes the state 2 and C, has taken its state value as 6.

Now we find the effect of x on M.
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xM = (8, 2,0, 0, 0, 6) we do not update the vector xM by
replacing the original state values of C, and C4 as in MODCMs
can come to off state or any other partial state in the due course
of time. Only xM = (8, 2, 0, 0, 0, 6) = y(say).

Now we find the effect of y; on M.
yiM =(0,0, 10, 0, 2, 6) =y, (say)
M =(0, 12, 10, 0, 6, 2) = y; (say)
ysM =(0, 12, 8, 0, 6, 0) = y4 (say)
yaM =(0, 4,0, 0, 2, 0) = ys (say)
ysM =(0, 0, 0,0, 0, 6) = ys(say)
yeM =(0, 0, 10, 0, 0, 0) = y; (say)
y:M =(0,12,0, 0, 6, 0) =ys(say)
ysM =(0, 0,0, 0, 0, 0) = yo (say).

So the partial on state of the nodes C, and C, alone can lead to

the off state of all nodes also if no updating is done.

Letx=(2,0, 2,0, 0, 4) € X that is nodes C;, C; and Cg
take some values and the nodes C,, C4 and Cs take only off
state.

The effect of x on M is given by
xM =(0,8,2,0,8, 0)=y (say)

yiM=(0, 8, 0,0, 4,4) =y, (say)
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M =(0,0,2,0,0,0)=y;say
Y3M = (03 83 07 09 4, O) = Y4 Say
ysM = (0, 0, 0, 0, 0, 0) =ys gives only zero state.

So a natural question would be will all on state of all
nodes lead to zero states. If such a thing occurs the matrix and
the graph can be categorized as special type of graphs and hence
they can find their applications in special set up.

Now letx =(2,2,0,4,2,6) € X.
We find the effect of x on M

xM = (10, 6, 10, 0, 4, 8) =y, (say)
yiM = (0, 12, 4, 0, 12, 8) =y (say)
y2M=(0,2, 4,0, 8, 6) =y; (say)
ysM = (0, 2, 10, 0, 8, 0) = y4 (say)
yaM = (0, 12, 0, 0, 6, 0) = ys (say)
ysM = (0, 0, 0, 0, 0, 0).

So the reader is left with the task of studying such

structures.

Now for the same M we use max product operation and

find the resultant.
Max product (x, M) = (8, 2, 0,0, 0, 0) =y,

Max product (y;, M) =(0, 0, 0, 0, 4, 6) =y, (say)
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Max product (y,, M) = (0, 0, 10, 0, 0, 4) = y; (say)
Max product (y3;, M) = (0, 12, 2, 0, 6, 0) = y4 (say)
Max product (ys, M) = (0, 8,0, 0, 4, 0) = ys (say)
Max product (ys, M) = (0, 0, 0, 0, 0, 0).

So now we are forced to take some modification in the
first place the automatic method of updating of the non zero
state of the nodes can make a chaos so we take up the method in
which the state vectors at each stage should be updated.

Secondly we propose a conjecture or open problem.

Conjecture 4.1. Let S = {Z,,, x} be the semigroup under
product.

Let B={0, 2,4, ..., 2(p — 1)} be the cyclic group with p
+ 1 as the identity with respect to product.

Suppose M is a n x n square matrix with entries from B
and if X = {(a;, ..., a,) / a; € B} 1 <1< n can we say every
x € X is such that xM =y, € X, y;M =y, € X and so on after a
t" stage yM = (0, 0, ..., 0)? Further such types are more
mathematically interesting and happens to be a challenging

problem.
If not under what conditions on M such things happen.

If yM = (0, 0, ..., 0) after that t™ iteration can we say
even under max product we arrive at (0, 0, ..., 0).

Will this be true in case of max min {x, M} also.
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Characterize those special n x n matrices M.

Now we proceed onto discuss the same problem with
updating of the vectors C, and C,4 at each stage and analyze
whether the final resultant on M be x itself or a different state

vectors.
Consider

xM=(8,2,0,0,0,6) —— (8,2,0, 6,0, 6)=y,say

updating
yM=(8,2,10,0,2,6)—(8,2,10,6,2, 6)=y,(say)
yM=(8,0,10,0,8,8) — (8,2, 10,6, 8, 8) =y; (say)
ysM=(8,0,4,0,8,0)—> (8, 2,4, 6,8, 0) =y, (say)

yaM =(8,4,0,0,10,0)— (8, 4,0, 6, 10, 0) =ys (say)
ysM = (8, 2, 0,0, 2, 8) > (8,2,0,06, 2, 8) =y (say)

yeM =(8,2,4,0,2,8) > (8, 2,4, 6,2, 8) =y, (say)
yM=(8,4,6,0,10,8) — (8, 4,06, 6, 10, 8) = ys (say)
ysM=(8,0,4,0,0,8) — (8, 2,4,6,0, 8) =y (say)

yoM = (8, 4,4, 0, 10, 6) —> (8, 4, 4, 6, 10, 6) =y (say)
yioM = (8, 0, 10, 0, 10, 0) — (8, 2, 10, 6, 10, 0) = y;; (say)
yiM=(8,0,0,0,8,8)—(8,2,0, 6, 8, 8) =y, (say)

yi2M=(8,2,4,0,2,0) > (8, 2,4, 6, 2, 0)=y3 (say)
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yisM=(8,2,0,0, 10, 8) > (8, 2,0, 6, 10, 8) = y4 (say)
yviaM =(8,2,4,0,2,2) > (8,2,4,6, 2, 2) =y5 (say)
yisM=(8,4,8,0, 10, 8) > (8, 4, 8, 6, 10, 8) = yi4 (say)
yisM = (8, 6,4,0,4,10) > (8, 6,4, 6,4, 10) =y;;(say)
yirM = (8, 4, 12,0, 10, 8) —> (8, 4, 12, 6, 10, 8) = y5 (say)
yisM=(8,8,4,0, 12, 8) > (8, 8, 4, 6, 12, 8) = yiq (say)
yioM = (8, 4,4, 0, 10, 8) > (8, 4, 4, 6, 10, 8) =y, (say)
y20M = (8, 4, 4, 0,10, 8) — (8, 4, 4, 6, 10, 8) =y (say).
Clearly y2; = y20 so the limit point is a fixed point.

Hence it has become mandatory to update the nonzero
state at each and every stage to see to that the resultant does not

crumble to a zero state.
Next we find for the same x and M max product {x, M}.
max product {x, M} =(8,2,0,0,0,0)—> (8, 2,0,6,0,0)
= Y1 (say)
max product {y;, M} = (8, 2,0,0, 2,6)— (8,2,0,6,2,6)
= y2 (say)
max product {y,, M} = (8, 2, 10, 0, 2, 8) —>

(8,2, 10, 6,2, 8) =ys (say)
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max product {y;, M} =(8,0,4,0,8,8) >
(8,2, 4,6, 8, 8) =y (say)
max product {ys;, M} = (8, 4, 4,0, 10,0) >
(8,4, 4,6, 10, 0) =ys (say)
ys max product {ys, M} = (8, 4, 0, 0, 10, 8) —>
(8,4, 0,6, 10, 8) =y (say)
max product {ys, M} =(8,2,4,0,2,8) >
(8,2,4,6,2,8)=y;
max product (y;, M) =(8, 4, 4, 0, 10, 8) —>
(8,4,4,6,10,8)=ys.
max product {ys, M} = (8, 4, 4,0, 10, 8) >
(8,4,4,6,10, 8) =yy (say) 1I

It is clear yy = ys so the resultant vector is a MOD fixed

point.

It is surprising to see under both operations usual
multiplication and under max product in this case the resultant

happens to be the same.

We leave it as a problem to the reader to find whether
there are vectors x € X such that XM gives a resultant state

vector different from that of max product.
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Now we work with the maximum {x, M} for the same x
and M
max min {x, M} =(6,6,0,0,0,2)—(6,6,0,6,0,2)=y,
max min {y;, M} =(6,6,2,0,2,6) —>(6,6,2,6,2,6)=y,
max min {y,, M} = {6,6,4,0,2,6) —> (6,6,4,6,2,6)=y;
max min {y3;, M} =(6, 6,4, 0,2, 6) —> (6, 6,4, 6,2, 6)

= s (say)

Clearly y4 = y; thus the resultant vector is a fixed point
given (6, 6, 4, 6, 2, 6) which is different from other resultant

state vectors.

Thus we see with on state of nodes C, and C, leads to the
non zero state of all other nodes in the resultant to get a non

Zero state.

The example is not any real world problem or from any

real world data.

Next we proceed onto describe the notion of neutrosophic

triplet group cognitive maps model in the following.

Let the graph be the same as for the MOD cognitive

models.

Now each edge weight is transformed into a neutrosophic
triplet group for a = 12, neut 12 = 8 and anti 12 = 10 so in the
place of weight 12 we replace it by the neutrosophic triplet
group weight (12, 8, 10).
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Likewise the weight of the edge —— which is 8 is
changed to (8, 8, 8) and that of the weight of the edge —<
which is 4 is changed to (4, 8, 2) and so on.

Thus the MOD directed graph is transformed to

neutrosophic triplet group graph which is described by the
following Figure 4.2.

Figure 4.2

Let N be the connection neutrosophic triplet group matrix

N of the directed neutrosophic triplet group graph given in

Figure 4.2.
_ Cl Cz C3
C, |(0,0,0) (0,0,0) (0,0,0)
C, | (0,0,0) (0,0,0) (0,0,0)
N= C, |(0,0,0) (4,8,2) (0,0,0)
C, | (6,8,6) (12,8,10) (0,0,0)
C, | (0,0,0) (0,0,0) (0,0,0)
Cs [(0,0,0) (0,0,0) (4,8,2)
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C,
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)

CS
(2,8,4)
(0,0,0)
(2,8,4)
(0,0,0)
(0,0,0)
(0,0,0)

C(y
(0,0,0) |
(10,8,12)
(0,0,0)
(0,0,0)
(8,8,8)
(0,0,0) |

In view of all these we first define the notion of

neutrosophic triplet groups directed graph in the following.

Definition 4.1. A simple graph G with {v,, ..., v,} as its vertex

set is defined to be a neutrosophic triplet group graph if the

edge weights are from the neutrosophic triplet group collection

associated with one neutral element from Z,, m a composite

number.

We will first illustrate this situation by some examples.

Example 4.2. Let G be a graph with vertex set vy, v,, v3, v4 and

vs. The edge weights are from the set.

B={(0,0,0), (18, 18, 18), (2, 18, 26), (26, 18, 2), (4, 18,
30), (30, 18, 4), (8, 18, 32), (32, 18, 8), (16, 18, 16), (6, 18, 20),
(20, 18, 6), (12, 18, 10), (10, 18, 12), (24, 18, 22), (22, 18, 24),
(14, 18, 28), (28, 18, 14)} related to the neutral 18 of Z;4.

The neutrosophic triplet group graph with edge weights

from B with v, v», v3, v4 and vs is as follows.
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(2,18,26)
(28,18,14)

(6,18,20) (22,18,24)

Figure 4.3

The matrix V related to the graph with neutrosophic
triplet group edge weight is as follows:

Vl V2 V3
v, [ 0,0,00 (0,000 (28,18,14)
v, | (0,000 (0,000  (0,0,0)
v, | (0,000 (1818,32) (0,0,0)
v, | 18,18,18)  (0,0,0)  (0,0,0)
v. | (0,0,00 (0,000  (0,0,0)

v, Vs
(0,0,0) (0,0,0)

(2,18,26)  (0,0,0)
(0,0,0)  (6,18,20)
(0,0,0) (0,0,0)

(22,18,24)  (0,0,0)

We see the graph given in Figure 4.3 is a simple directed
graph.

We now given an example of a simple graph with loops.
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Example 4.3. Let G be a simple graph with loops associated
with the vertex set vy, v, ..., v; and edge weights taken from the
set B given in example 4.2. G is defined as the neutrosophic
triplet group (simple graph with loops which is given by the
following Figure 4.4.

(4,18,30) (16,18,16)

(8,18,32)

(14,18,28)

(4,18,30)
(2,18,26)

Figure 4.4

Now let W be the matrix of neutrosophic triplet group
associated with the simple neutrosophic triplet group graph with
loops.

Now we find the neutrosophic triplet group matrix M
associated with this neutrosophic triplet group graph
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\'4 v, v, \

v, [(0,0,0) (4,18,30) (26,18,2)  (0,0,0)
v, (0,0,0) (16,18,16)  (0,0,0) (0,0,0)
v, | (0,0,0)  (0,0,0) (0,0,0)  (18,18,18)
v, [ (0,0,0) (24,18,22) (0,0,0) (28,18,14)
vs | (0,0,0)  (0,0,0) (0,0,0) (0,0,0)
v, 1(0,0,0)  (0,0,0) (12,18,10)  (0,0,0)
v, [(0,0,0)  (0,0,0) (0,0,0) (0,0,0)

VS V6 V7
(10,18,12)  (0,0,0) (0,0,0) ]
0,0,0)  (0,0,0) (0,0,0)
0,0,0)  (0,0,0) (0,0,0)
(20,18,6)  (0,0,0)  (20,18,6)
(0,0,0)  (0,0,0) (0,0,0)
(4,18,30) (4,18,30) (14,18,28)
(8,18,32)  (0,0,0)  (2,18,26) |

Thus all the neutrosophic triplet groups graphs given so far are
only directed one so they are not symmetric about the diagonal.
We now give an example of the simple neutrosophic triplet
graphs which are not directed by an example.

Example 4.4. Let vi, vy, V3, V4, Vs, Vs,v7 and vg be the set of
vertices of the neutrosophic triplet group graphs with edge
weights from B of example given by the following Figure 4.5.
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(28, 18, 14)

(22,18,24)

(14,18,28) (20,18,6)

(8,18,32)

(4,18,30) (30,18,4)

Figure 4.5

Now we give the related neutrosophic triplet groups

matrix associated with the simple neutrosophic triplet group
graphs.

Y, Vv, v, Vv,
v, | (0,0,0)0 (2818,14) (14,18,24)  (0,0,0)
v, [ (28,18,14)  (0,0,00  (0,0,0) (24,18,6)
v, | (14,18,28)  (0,0,0)  (0,0,0)  (0,0,0)
(0,0,0)  (20,18,6)  (0,0,0)  (0,0,0)
(0,0,00  (0,0,0) (24,18,22)  (0,0,0)
(0,0,0)  (0,0,0)  (8,18,32) (26,18,2)
(0,0,0) (22,18,24)  (0,0,0)  (16,18,16)
| (0,0,00  (0,0,00  (0,0,0) (8,18,32)

IS

[}

N

< < < < <
(=2}

o0
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Vs Vi v, \'A
(0,0,00  (0,0,0)  (0,0,00  (0,0,0) |
(0,0,0)  (0,0,0) (22,18,24)  (0,0,0)
(24,18,22) (8,18,32)  (0,0,0)  (0,0,0)
(0,0,0)  (26,18,2) (16,18,16) (8,18,32)
(0,0,0)  (0,0,0) (32,18,8) (16,18,16)
(0,0,0)  (0,0,0)  (0,0,0) (4,18,36)
(32,18,8)  (0,0,0)  (0,0,0) (30,18,14)
(16,18,16) (4,18,30) (30,18,14)  (0,0,0)

We see the matrix M is symmetric about the main
diagonal so we would be using the neutrosophic triplet groups
graphs get the related neutrosophic triplet group matrix however
using the matrix. We cannot define product of matrices only we
can define the notion of max product or max min operations
which is a necessity for us to define the notion of neutrosophic

triplet groups Cognitive maps (ntg CMs) model.
We just describe these model in a line or two.

Throughout our discussion we may take a directed
neutrosophic triplet groups graph with entries from a set of
neutrosophic triplet groups associated with some neutral

elements p + 1 of Zy,, p an odd prime.

Clearly the collection of neutrosophic triplet groups
forms a cyclic group of order p — 1 with p + 1 as the neutral
element and p + 1 serves as the multiplicative identity. For the
directed neutrosophic triplet groups graphs edge weights are
from the collection of all neutrosophic triplet groups associated

with neutral element p + 1 of Z,,, p an odd prime.
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Now C,, C,, ..., C, are neutrosophic triplet groups nodes
that is a node C; takes either the neutrosophic triplet group or is
0. We do not have the usual notion of on or off state. A state is
either (a, b, c) = (a, neut(a), anti(a)) or zero yet another
advantage is that even if a € 27, \ {0} is given we can map the
rest of them viz. neut(a) and antia. Thus any MOD cognitive
models with entries from 27, \ {0} is such that ifa € 2Z,,\ {0}

is known automatically neut (a) and anti a are fixed.

Now on similar lines if the edge weights of the directed
graphs are from 2Z,, \ {0} then also the neutrosophic triplet
groups graph can be determined.

We will assume in a neutrosophic triplet group cognitive
maps model the nodes C;, C,, ..., C, can take values from the
neutrosophic triplet groups associated with the neutral element p
+ 1 of Z,, which are p — 1 in number and we adjoin (0, 0, 0)
with it.

So the state vectors X = {(ay, a,, ..., a,) / a; € {collection

of neutrosophic triplet groups associated with p + 1}; 1 <1 <

n}}.

M is the n x n neutrosophic triplet groups matrix with
entries from the collection of all neutrosophic triplet groups got
as a connection matrix of the graph of neutrosophic triplet
groups with Cy, C,, ..., C, as nodes or vertices or concepts.

It is pertinent to keep on record that in case of
neutrosophic triplet groups matrices we cannot define the usual
product only c.n mat-product and ¢.n max min operation can be

performed without difficulty.
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We will illustrate this situation by some examples.

Example 4.5. Let C,, C,, C;, C4and Cs be 5 district nodes or
concepts. Let G be the directed neutrosophic triplet graph with
edge weight from the set

B = {(0, 0, 0), (2, 14, 20), (20, 14, 2), (4, 4, 10), (10, 14, 4), (8,
14, 18), (18, 14, 8),(16, 14, 22), (22, 14, 16), (6, 14, 24), (24, 14,
6), (12, 14, 12), (14, 14, 14)} associated with the neutral 14 of
Z .

(2,14,20)

(16,14,22) X (12,14,12)

(8,14,18)
(4,14,10)

(10,14,14)

Figure 4.6

Now G is the directed neutrosophic triplet groups graph
associated with the nodes C,, C,, ...,Cs.

The neutrosophic triplet groups connection matrix M of
the graph G is as follows.
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L O C, C, C, C, _
(0,0,0) (2,14,20)  (0,0,0) (0,0,0) (8,14,18)
(0,0,0) (0,0,0) (16,14,22) (0,0,0)  (0,0,0)
(0,0,0)  (0,0,0) (0,0,0)  (8,14,18) (0,0,0)
(0,0,0) (12,14,12)  (0,0,0) (0,0,0)  (0,0,0)
1(0,0,0)  (0,0,0) (0,0,0)  (10,14,4)  (0,0,0) |

()

N

el eNeNMeNe!

()

Let the collection of all state vectors associated with the
dynamical system of neutrosophic triplet groups cognitive maps
(NtgCMs) model be denoted by

X = {(x1, X2, X3, X4, X5) / X; € B; 1 <1 < 5},

Let x = (((10, 14, 4), (0, 0, 0), (14, 14, 14), (2, 14, 20), (0,
0, 0)) € x.

We will find the effect of x on M c.n max product
{x, M} = {((0, 0, 0), (24, 14, 6), (0, 0, 0), (8, 14, 18), (24, 14,
20))} —fewdtive 5 we get (10, 14, 4), (24, 14, 6), (14, 14, 14),
(8, 14, 18), (2, 14, 20)) =y, (say).

c.n max product {y;, M} = ((0,0,0), (20, 14, 2), (20, 14,
2), (20, 14, 2), (2, 14, 20)) — ((10, 14, 4), (20, 14, 2), (20, 14,
2)a (203 14: 2)a (23 143 20) =y (saY)'

c.n max product {y,,M} = ((0, 0, 0), (20, 14, 2), (8, 14,
18), (20, 14, 2), (2, 14, 20)) — ((10, 14, 4), (20, 14, 2), (8, 14,
18)7 (203 14: 2)a (23 143 20)) =Yy (saY)'

c.n max product {ys;, M} = (0, 0, 0), (26, 14, 2), (8, 14,
18), (20, 14, 2), (2, 14, 20)) — ((10, 14, 4), (20, 14, 2), (8, 14,
18), (20, 14, 2), (2, 14, 20)) = y4 (say)... I
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It is easily verified that y; = y;. Thus the resultant

neutrosophic triplet groups vector is a fixed point.

For the same x and M we find max min {x, M} = ((0, 0,
0), (2, 14, 20), (14, 14, 14), (8, 14, 18), (8, 14, 18)) — ((10, 14,
4), (2, 14, 20), (14, 14, 14), (8, 14, 18), (8, 14, 18)) =y, (say)

c.n max-min {y;, M} = ((0,0, 0), (8, 14, 18), (2, 14, 20),
(8, 14, 18), (8, 14, 18)) — ((10, 14, 4), (8, 14, 18), (2, 14, 20),
(8, 14, 18), (8, 14, 18) =1y, (say)

c.n max-min {y,, M} = ((0, 0, 0), (8, 14, 18), (8, 14, 18),
(8, 14, 18), (8, 14, 18)) — ((10, 14, 4), (8, 14, 18), (8, 14, 18),
(8, 14, 18), (8, 14, 18)) = y3 (say)

c.n max-min {y;, M} = ((0, 0, 0), (8, 14, 18), (8, 14, 18),
(8, 14, 18), (8, 14, 18)) — ((10, 14, 4), (8, 14, 18), (8,14, 18), (8,
14, 18), (8, 14,18)) = y4 (say) 11

It is clear y4 = y; so the resultant is a fixed point which

neutrosophic triplet groups row vector.

Clearly I and II are different that is c.n. max-product

{x, M} # c.n max min {x, M}.

Thus we can have ntgCMs or NTGCMs model using
neutrosophic triplet groups when one cannot say the value is
totally true or partially true and partiality false but an

indeterminacy also exist.

The advantage is this can function akin to SVNs with a

change given a true value x the indeterminate or neutral of x and
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anti x that is how far x is not true are automatically fixed using

the notion of neutrosophic triplet groups concept.

We in view of all these define the notion of a special type
of transformation defined as the neutrosophic triplet groups
automatic transformation relating. 2Z,, with neutrosophic triplet
groups of Z,, associated with the neutral element p + 1 first by
examples and then make the definition.

Example 4.6. Let S = {Z,(6, x} be the semigroup under product
modulo 106. 106 = 2 x 53 where 53 is the odd prime.

Consider the neutral element 54 of S we see the

neutrosophic triplet groups associated with 54 are

{(2,54, 80), (80, 54, 2), (4, 54, 40), (40, 54, 4), (8, 54, 20), (20,
54, 8), (16, 54, 10), (10, 54, 16), (32, 54, 58), (58, 54, 32), (64,
54,82), (82, 54, 64), (22, 54, 94), (94, 54, 22) and so on} U {(0,
0, 0) = B.

Clearly cardinality of B is 54.
Now we define a new type of transformation;
Tue : 2Z106 = B by
T (X) =(x, 54, anti x) for all x € Zp6 \ {0}.
Clearly T, is well defined infact a one to one map.
We define T, (0) = (0, 0, 0).

Conversely we can define T[;;; :B > 27,46 by



220 | Neutrosophic Triplets Groups and their Applications ...

T.! {(x, 54, anti x)} = x for all x # 0 and T_! ((0, 0, 0)) = 0.

ntg ntg

Clearly T, is also well defined.

The main purpose for defining the transformation T[;;;

and T, is that we want to go from the usual MODCMs model
to ntgCMs or NTGCM or NtgCMs model and vice versa under
the max product and max min operations. So according to the
wishes of the expert we can choose to work with MODCMs or
ntgCMs depending on the fact whether the author is interested

in taking up the issue of indeterminacy not.

We are yet to fix such special type of transformations for

any arbitrary n of Z,,

We have defined it only for the case n = 2p, p an odd
prime even for n = 3p we have the formula but should know
what the sum adds upto. Only knowing the structure is
dependent on the form of p of n = 3p.

Here also once the neutral element is fixed given any
X € 3 Z3, \ {0} the neutrosophic triplet group (X, neut x, antix)
is fixed so the human bias can be totally eliminated by this
method.

So one can work with MOD cognitive maps model with
entries from 27, or 3Z;, only and can easily transform the

resultant to neutrosophic triplet groups cognitive models.

To the effect we will supply one example.
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Example 4.7. Let C;,C,, C; and C4 be four concepts / nodes
associated with some problem. The edge weights are taken from

27,5=10,2,4,6,8, 10, ...,22, 24} < Zx.

Let G be the directed MOD graph with vertices C;, C,,
C; and C, and edge weights from 27,4 be given by the following

Figure 4.7.

Figure 4.7

Let M be the connection matrix associated with the

Figure 4.7 given in the following.

C, C, C, C,

Clo 4 16 0

M= C,|0 0 0 8
C,|22 6 0 20
c,l|0 o 10 0

Let X = {(aj, ay, a3, a4) / a; € 2Z; 1 <1 <4} be the MOD
row matrix which serves as the state vector of the dynamical

system.

We will be using only max product operation and max

min operation on x € X and this M.
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Let x = (4, 12, 0, 0) € X be the initial state vector
associated with the dynamical system.

max-product {x, M} = (0, 16, 12, 18) — (4, 16, 12, 18)
y1 (say) after updating,

We now find max product {y;, M} = (4, 20, 24, 24) = y, (say)
max-product {y,, M} = (8, 16, 12, 12) = y; (say)
max-product {ys;, M} = (4, 20, 24, 24) =y, (say)
Clearly y, = y4 so the resultant is a MOD limit cycle.
(4, 20, 24, 24) —> (8, 16, 12, 12) — (4, 20, 24, 24).

Now if we use the same set of x and M and use the max

min operation on them.
max-min {x, M} =(0, 4, 4, 8) - (4, 4, 4, 8) = y; (say)
max-min {y;, M} = (4, 4, 8, 4) = y, (say)
max-min {y,, M} = (8, 6, 4, 8) =y; (say)
max-min {y;, M} = (4, 4, 8, 6) = y4 (say)
max-min {ys, M} = {8, 6, 6, 8} = ys (say)
max-min {ys, M} = (6, 6, 8, 6) = y; (say)
max-min {ys, M} = (8, 6, 6, 8) =y (say).

Clearly y; = ys so the MOD resultant vector is a limit
cycle given by (8, 6, 6, 8) — (6, 6, 8, 6) > (8, 6, 6, 8).
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Now we use the transformation for each graph matrix and
initial state vectors and arrive at the result.

Now the MOD graph G using the T, transformation for
the edge weights of G is transformed to Ty, (G).

We first find the neutral elements of Z,s. The neutral
elements are 13 and 14, of course 13 does not contribute to
nontrivial triplet groups other than (0, 0, 0) and (13, 13, 13).

The neutrosophic triplet groups associated with the

neutral element 14 are

B = {(14, 14, 14), (2, 14, 20), (20, 14, 2), (4, 14, 10), (10, 14, 4),
(8, 14, 18), (18, 14, 8), (16, 14, 22), (22, 14, 16), (6,14, 24), (24,
14, 6), (12, 14, 12)}. We adjoin (0, 0, 0) with this collection B.

Now T (0) = (0, 0, 0), Tue (2) = (2, 14, 20),
Tug (4) = (4, 14, 10), Toe = (6) = (6, 14, 24)
Tue (8) = (8, 14, 18), Toe (10) = (10, 14, 4)
Tue (12) = (12, 14, 12), Toe (14) = (14,14, 14)
Tue(16) = (16, 14, 22), Toy, (18) = (18, 14, 8)
Tue (20) = (20, 14, 2), Toe (22) = (22, 14, 16) and
Tue (24) = (24, 14, 6).

Now using this special type of transformation we
transform the MOD graph G into T, (G) which is given in the
following Figure 4.8.
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(8,14,18)

(10,14.,4)

{ G

20014.2)
Figure 4.8

It is to be noted that only the edge weights gets
transformed. We see no changes in the vertices they remain as
C], Cz, C3 and C4.

However the MOD edge weights is transformed by T, into
neutrosophic triplet groups.

This is shown in Figure 4.8.

Now it is pertinent to keep on record that we can
transform a appropriate MOD graph into neutrosophic triplet
groups graph using the transformation Ty, which is shown in
Figure 4.8.

Now every MOD matrix can be transformed by T, into a
neutrosophic triplet groups matrix, that is if M = (m;) then
Tutg (M) = T (M) = (Tigg (my)).

Now we will show how the 4 x 4 MOD matrix M given

in this problem is transformed by T,.
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C, C, C, C,
C, | (0,0,0) (4,14,10) (16,14,22) (0,0,0)
TueM)=C, | (0,0,00  (0,0,00  (0,0,0) (8,14,18)
C, [(22,14,16) (6,14,24)  (0,0,0)  (20,14,2)
C, | (0,0,00  (0,0,0) (10,14,4) (0,0,0)

The(M) is the transformed MOD matrix into the neutrosophic
triplet group matrix.

We will now find the effect of Tyu(x) on Ty (M) using

c.n max product operation and c.n max min operation.

However we can show the method of max product and
max min of {x, M} yield a MOD resultant can be transformed
into neutrosophic ftriplet groups vector by the special

transformation T .

We first find c¢.n max-prod {x, M} using x = ((4, 14, 10),
(12, 14, 12), (0, 0, 0), (0, 0, 0)).

c.n max-product {Ty, (X), Tue (M)} = ((0, 0, 0), (16, 14,
22), (12, 14, 12), (18, 14, 8) ) — ((4, 14, 10), (16, 14, 22), (12,
14, 12), (18, 14, 18)) =y, (say) (after updating)

(It is important to note at this juncture T[;;; (y1) = (4, 16,
12, 18) which is the value we obtained using the operation max

product {x, M}).

We find c.n max product {y;, Tug(M)} = ((4, 14, 10), (20,
14, 2), (24, 14, 6), (24, 14, 6)) =y, (say)

c.n max product {y,, Twe(M)} = ((8, 14, 18), (16, 14, 22),
(12, 14, 12), (12, 14, 12)) = y; (say).
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c.n max product {y;, M} = ((4, 14, 10), (20, 14, 2), (24,
14, 6), (24, 14, 6)) = y4 (say).

We see y» = ya thus the neutrosophic triplet groups resultant
vector is a limit cycle given by ((4, 14, 10), (20, 14, 2), (24, 12,
6), (24, 14, 6)) —> ((8, 14, 18), (16, 14, 22), (12, 14, 12), (12, 14,
12)) = ((4, 14, 10), (20, 14, 2), (24, 14, 6), (24, 14, 6)).

Now for the same T, (x) and Ty, (M) we obtain the

c.n max-min {Tug(X), Tue(M)} = ((0, 0, 0), (4, 14, 10), (4, 14,
10), (8, 14,18))

— ((4, 14, 10), (4, 14, 10), (4, 14,10), (8, 14 18)) =y, (say).

c.n max min {y; Tne M)} = ((4, 14, 10), (4, 14, 10), (8,
14, 18), (4, 14, 10)) =y, (say)

c.n max min {y,, Tne M)} = ((8, 14, 18), (6, 12, 24), (4,
14, 10), (8, 14, 18)) =y (say)

c.n max min {y;, Toe(M)} = ((4, 14, 10), (4, 14, 10), (8,
14, 18), (6, 14, 24)) = y4(say)

c. n max min {ys, Tne (M) = ((8, 14, 18), (6, 14, 24), (6,
14, 24), (8, 14, 18)) = ys (say)

C.n max min {yS, ng (M)} :((6: 143 24)3 (69 149 24)a (8a
14, 18), (6, 14, 24)) = y (say)

c.n max min {ys, Tne (M)} =((8, 14, 18), (6, 14, 24), (6,
14, 24), (8, 14, 18)) = y; (say).

It is clearly ys= y7 is a limit cycle given by
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((8, 14, 18), (6, 14, 24), (6, 14, 24), (8, 14, 18)) — ((6, 14, 24),
(6, 14, 24), (8, 1,4 18), (6, 14, 24)) — ((8, 14, 18), (6, 14, 24),
(6, 14, 24), (8, 14, 18)).

Wesee T, ((v5) = (8, 6, 6, 8).

It is pertinent to observe that the limit cycle of max
product (x, M) is c.n max product (Tpe(x),Tne(M)) and vice
versa. So according to convenience one can work with either

MOD max product or c.n max product and convert from one

another using the special transformation T,(X) or T[;;; (x).

Next we proceed onto describe neutrosophic triplet
groups relational maps (ntgRMs) model. It is pertinent to keep
on record MOD relational maps model was developed, defined
and described in [21]. Here we define and describe the
neutrosophic triplet groups relational maps (NTGRMs or
NtgRMs) model.

Let S ={Z,,, x} be semigroup under product modulo 2p.

B={2,4, ..., (p—1)2} be the cyclic group of order p — 1
with p + 1 as the identity.

Let D U {(0, 0, 0)} = {collection of all neutrosophic

triplet groups associated with the neutral element p +1} U {(0,
0, 0)}.

Now if we have a bipartite graph G with edge weights
from D then we define G to be a neutrosophic triplet groups
bipartite graph which takes edge weights from D.
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We will describe this by some examples.

Example 4.8. Let S = {Z35, x} be the semigroup under product

modulo 38. The neutral elements of Z;z are 19 and 20.

19 does not yield any nontrivial neutrosophic triplet
groups. Only the neutral 20 contributes to nontrivial
neutrosophic triplet groups given by

A = {(20, 20, 20), (2, 20, 10), (10, 20, 2), (4, 20, 24), (24, 20, 4),
(8, 20, 12), (12,20, 8), (16, 20, 6), (6, 20, 16), (32, 20, 22), (22,
20, 32), (14, 20, 14), (28, 20, 26), (26, 20, 28), (18, 20, 18), (30,
20, 30), (34, 20, 34), (36, 20, 36)}. They are 18 in number we
define A U {(0, 0,0)} = B.

We will be using values this B as edge weights and obtain the

(18,20,18) @

(14,20,14)

bipartite graphs.

Figure 4.9

Clearly G is a neutrosophic triplet groups bipartite graph
with edge weights from B.
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The relational matrix R which is also known as the

neutrosophic triplet groups relational matrix associated with G
is as follows.

yl y2 y3
| 0,000 (14,20,14) (28,20,26)
. 1(18,20,18)  (0,0,0) (0,0,0)
.| (0,0,00  (0,0,0)  (2,20,10)
. L 0,000  (0,0,0) (0,0,0)

T T B

y5 y6
(0,0,0)  (0,0,0)
(0,0,0)  (0,0,0)
(8,20,12)  (0,0,0)
(6,20,16) (12,20,8)

We can perform only two types of operations using R.
c.n max-product {x, R} or c.n max min {x, R} where
x e X={(a, ap,a3,a4)/a; € A, 1 <i<4} and
y € Y= {(by, by, bs, by, bs) /bi € A; 1 <i<5}.
We will describe this situation in the following
Let x = ((2, 20, 10), (6, 20, 16), (36, 20, 36), (0, 0, 0)) € X.
We find c.n max-product (x, R).

c.n max-product (x, R) = ((32, 24, 22), (28, 20, 26), (18,
20, 18), (34, 20, 34), (0, 0, 0)) =y, (say)

c.n max-product ({y!, R} = (y, R'))
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((12, 20, 8), (6, 20, 16), (36, 20, 36), (14, 20, 14)) = x,
(say)

c.n max-product {x;, R} = ((32, 20, 22), (16, 20, 6), (34,
20, 34), (22, 20, 32), (16, 20, 6)) =y, (say)

c.n max-product ({y,, R} = (yth)) = ((34, 20, 34), (6,
20, 16), (30, 20, 30), (18, 20,18)) = x, (say).

c.n max-product {x,, R} =((32, 20, 22), (30, 20, 30), (22,
20, 32), (32, 20, 22) (26, 20, 28)) =y, (say).

We find c.n max-product {y, R} = ((8, 20, 12), (6, 20,
16), (28, 20, 26), (8, 20, 12)) = x; (say)

c.n max-product {x;, R} =((32, 20, 22), (36, 20, 36), (34,
20, 34), (34, 20, 34), (20, 20, 20)) = y; (say).

c.n max-product {ys, R} = ((10, 20, 2), (30, 20, 30), (30,
20, 30), (14, 20, 14)) = x4 (say)

c.n max-product {x4, R} = ((8, 20, 12), (26, 20, 28), (22,
20, 32), (12, 20,8), (16, 20, 6)) =y, (say).

c.n max-product {y4, R") = ((16, 20, 6), (30, 20, 30), (20,
20, 20), (34, 20, 34)) = x5 (say)

c.n max-product (x5, R) = ((8, 20, 12), (34, 20, 34),
(30,20, 30), (14, 20, 14), (28, 20, 26)) = ys (say)

We find c¢.n max-product ((ys, R") = (y%, R)) = ((18, 20,
18), (30,20, 30), (36, 20, 36), (32, 20, 22)) = x¢ (say)
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c.n max-product {x¢, R} = ((8, 20, 12), (24, 20, 4), (16,
20, 6), (12, 20, 8), (4, 20, 24)) = y (say)

c.n max-product {ye, R'} = ((32, 20, 22), (30, 20, 30), (32,
20, 22), (34, 20, 34)) = x; (say)

c.n max-product {x;, R} = ((8, 20, 12), (30, 20, 30), (26,
20, 28), (28, 20, 26), (28, 20, 26)) = y; (say)

c.n max-product {ys, R} = ((2, 20, 10), (30, 20, 30), (34,
20, 34), (32, 20, 22)) = xg (say)

c.n max-product {xg, R} = ((16, 20, 6), (26, 20, 28), (30,
20, 30), (10, 20, 2), (4, 20, 24)) =y (say)

We find c.n max-product (yo R} = ((28, 20, 26),(22, 20,
32), (22, 20, 32), (22, 20, 32)) = x, (say)

c.n max-product {xe, R} = ((16, 20, 6), (12, 20, 8), (24,
20: 4)a (243 20a 4)a (363 20a 36)) =Y (SaY)

c.n. max-product {yjo, Rt} = ((26, 20, 28), (22, 20, 32),
(10: 20a 2)a (303 203 30)) = X10 (SaY)'

The reader is left with the task of finding the resultant
neutrosophic triplet groups state vectors pair. This will end
either in a fixed point pair or a limit cycle pair as the dynamical

system is built only on finite collection of neutrosophic triplet

groups.

Thus we see the neutrosophic triplet groups relational
maps model under max product can be used in need especially

when the concept of indeterminacy is also present.
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Now for the some x € X and for this R we use. The c.n
max-min operation and determine the neutrosophic triplet
groups resultant vector pair which may be a fixed point pair or a
limit cycle pair in the following.

Let x = ((4, 20, 24), (2, 20, 10), (0, 0, 0), (0, 0, 0) ) € X.

c.n max min {x, R} =((2, 20, 10), (4, 20, 14), (4, 20, 14),
(0, 0, 0), (0, 0, 0)) = y(say)

c.n max min {y; Rt} =((4, 20, 14), (2, 20, 10), (4, 20, 14),
(0, 0, 0) =x (say)

c.n max min {x;, R} = ((2, 20, 10), (4, 20, 14), (2, 20,
10)7 (43 20: 14): (03 Oa 0)) =y (SaY)

c.n max min {y,, R} = ((4, 20, 14), (2, 20, 10), (4, 20,
14), (4, 20, 14)) = x, (say)

c.n max min {X;, R} = ((2, 20, 10), (4, 20, 14), (2, 20,
10)7 (43 20: 14): (43 203 14)) =Yy3 (SaY)

c.n max min {ys;, Rt} = ((4, 20, 14), (2, 20, 10), (4, 20,
14)1 (43 207 14)) =X3 (SaY)

It is clear x, = X3 so we get the neutrosophic triplet groups
resultant as a fixed pair given by

{((4, 20, 14), (2, 20, 10), (4, 20, 14), (4, 20, 14)), ((2, 20, 10),
(4, 20, 14), (2, 20, 10), (4, 20, 14), (4, 20, 14))}.

We suggest the following open problem.
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Suppose we have a m x n neutrosophic triplet group
relational matrix R with entries from neutral element p + 1 of
ZZpA

Let X = {(ay, a3, ..., an) / a; € {collection of neutrosophic

triplet group of the neutral element p + 1}; 1 <i<m} and

Y = {(by, by, ..., b,) / b; € {collection of all neutrosophic triplet

groups associated with the neutral element p+1}; 1 <i<n}.

Can we say c.n max min {X, R} converges to a limit cycle
pair or a fixed point pair faster than the operator c.n. max

product {x, R} in general for x € X and the given R?
Obtain any other special features enjoyed by this model.

Now we suggest how this can be used to build algebraic
codes. However some information in this regard has been
described and defined in chapter II of this book.

We only restrain ourselves to the semigroup {Z,, x}

where p is an odd prime.

B = {(0, 0, 0) and the collection of all neutrosophic triplet

groups associated with the neutral element p + 1}.
We cannot define + operation B.

B is compatible with respect to only product modulo 2p,
min operation and max binary operation where we use the
special type of ordering called face value ordering which in

general is not compatible with sum or product operations.
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So when building the notion of parity check matrix or
generator matrix we do not have the notion of linear
independence either of the row elements of the matrix or the
column elements of the matrix. However the algebraic codes
built using the elements of B happens to be similar to the usual

or classical codes built using finite fields Z,.

We have the limitations for B cannot be converted into
the classical field finite order as it is impossible to define the
operation of addition as the set B is not closed under + ; that is

ifx, y € Bclearly x +y ¢ B for every or any x, y € B.

We have discussed elaborately about these codes in
chapter II.

Further {B, max, min} and {B, max, product} is only a
semiring or a semifield. It is impossible to define or make {B, +

x} into a finite field.

With these limitations we build the algebraic codes of

neutrosophic triplet groups.

Finally it is pertinent to keep on record that throughout
our discussion we restrain and in this book only {Z,, x} is

used.
We will illustrate by examples.

Example 4.9. Let S = {Zys, x} be the semigroup under product

modulo 26. The neutral elements of S are 13 and 14.

The neutrosophic triplet groups associated with 14 are
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B = {(14, 14, 14), (2, 14, 20), (20, 14, 2), (4, 14, 10), (10, 14, 4),
(8, 14, 18), (18, 14, 8), (16, 14, 22), (22, 14, 16), (6, 14, 24),
(24, 14, 6), (12, 14, 12)}.

A=BuU {(0,0,0)}.

We now build a (7, 3) neutrosophic triplet group code
using the neutrosophic triplet group generator matrix G where

(6,14,24)  (0,0,0) (12,14,12) (4,14,10)
G=| (0,0,0) (10,14,4) (0,0,0)  (0,0,0)
(2,14,20)  (0,0,0)  (0,0,0) (14,14,14)

(0,0,0)  (0,0,0) (20,14,2)
(2,14,20)  (0,0,0)  (0,0,0)
(0,0,0) (16,14,22)  (0,0,0)

We see x = ((2, 14, 20), (8, 14, 18), (2, 14, 20))

max-min {x, G} = ((12, 14, 12), (2, 14, 20), (24, 14, 6), (8, 14,
18), (16, 14, 22), (6, 14, 24), (14, 14, 14))

So x = ((2, 14, 20), (8, 14, 18), (2, 14, 20)) generates the
code ((12, 14, 12), (2, 14, 20), (24, 14, 6), (8, 14, 18), (16, 14,
22), (6, 14, 24),(14, 14,14))

This is the way we arrive at the neutrosophic triplet group
code word.

Now we define the Hamming distance between two
neutrosophic triplet groups state vectors as the number of places
in which they differ as triplets.

We will illustrate this by some examples.
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Let X = {(a, az, a3, a5) / a; € A, 1 <1 < 4} be the

neutrosophic triplet groups row vector.

Let x = ((2, 14, 20), (10, 14, 4), (8, 14, 8), (16, 14, 22))
and y = ((10, 0, 0), (14, 14, 14), (8, 14, 8), (16, 14, 22)) € X.

The Hamming distance between x and y denoted by
dnte (X, y) = 2; that is the first and the second entries of x and y
are different where as the 3™ and 4™ coordinates of x and y are

the same.

Now we are not in a position to apply coset leaders
method as we cannot define sum of two vector, however if we
define min operation then we will always have the coset leader
to the needed vector which cannot be practical but we need to
see whether product can be defined for max operation will have

no effect on it as it will between so no correction can be made.

Hence we have to try for the some other method this
cannot be easily achieved so we have to seek after some other
method to find error correction but error detection can be
achieved by the Hamming distance method.

Now we try to define the algebra neutrosophic triplet
groups code in the standard form. First we enlist the short

comings.

The identity with respect to productis (p + 1,p+ 1,p +
1), but this is not the identity with respect max or min for in
case of max or min we cannot have identity except in that case

largest element and least element respectively will serve the

purpose.
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Hence we use only max product and max min we see the

largest element will be chosen.

Suppose we have a parity check matrix say

(2,14,20)  (0,0,0) (0,0,0) (14,14,14)
(0,0,0) (4,14,10) (2,14,20)  (0,0,0)
(0,0,0) (0,0,0) (16,14,22)  (0,0,0)

(20,14,2)  (0,0,0) (0,0,0) (0,0,0)

(0,0,0) (0,0,0) (0,0,0)
(14,14,14)  (0,0,0) (0,0,0)

(0,0,0) (14,14,14)  (0,0,0)

(0,0,0) (0,0,0) (14,14,14)

Where H is the neutrosophic triplet group matrix.

Let us construct the G using this H.

(2,14,20)  (0,0,0)  (0,0,0) (20,14,2)
G=| (0,0,0) (4,14,10) (0,0,0)  (0,0,0)
(0,0,0)  (0,0,0) (16,14,22)  (0,0,0)

(14,14,14)  (0,0,0)  (0,0,0)
(0,0,0) (14,14,14)  (0,0,0)
0,0,0)  (0,0,0) (14,14,14)

We now calculate the G x H' using first c.n max product then

we use the ¢.n max min and find out GH".

c.n max-product {G, H'} =
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(2,14,20)  (0,0,0)  (0,0,0) (14,14,14)
(0,0,0) (4,14,10) (2,14,20)  (0,0,0)
(0,0,0)  (0,0,0) (16,14,22)  (0,0,0)

(20,14,2)  (0,0,0)  (0,0,0)  (0,0,0)

We see ¢.n max min (G, H) =
(14,14,14) (14,14,14)  (0,0,0)  (0,0,0)
0,0,0) (4,1410) (14,14,14)  (0,0,0)
(0,0,0)  (2,14,20) (16,14,22) (14,14,14)

We see both yield different matrices so we are sure in general
both the c.n max min and c.n max product operations take
different values so while working with them appropriate
modifications ought to be used in the place of need.

One can define with appropriate modifications the notion
of Hamming code, Parity check code etc. The main short
coming in developing these codes is under c¢.n max product and
c.n min product we do not have the concept of identity barring
the domination of the largest element and the least element

respectively.

Next we proceed onto show how these collection of
neutrosophic triplet groups can be given a semiring structure.

Infact they are finite semifields.

Now one is in a position to solve the open problems
proposed in giving examples of finite semifields under the
operation max, product or max, min of order p, p any odd

prime.
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Infact these semirings which are semifields can be
constructed to any prime order and can infact be generated by
product operation by a single elements.

We can this semirings can be given also the ring structure

in a very queer way.

B = {collection of neutrosophic triplet groups associated
with the neutral element p + 1 of Z,,, p an odd prime} U {(0, 0,
0)}, {B, x} is a group barring {(0, 0, 0)} and {B, max} is a

semigroup.

So {B, x, max} is a ring we call it in a queer way for
while defining product B\ {(0, 0, 0)} is a group under x. If {(0,
0, 0)} is taken with B, {B, x} is only a semigroup. So B is only

a semi field under {max-product} or {max min}.

Once again we wish to keep on record that when we
define max {(a, neut(a), anti(a), (b, neut(b)), anti(b))} = (max
{a, b}, neut (max {a, b}), anti (max {a, b)).

This order defined as face value ordering which is not
compatible under product likewise min {(a, neut(a), anti(a)), (b,
neut(b), anti(b)} = (min {a, b}, neut (min {a,b}), anti (min {a,
b})), min {a, b} and max {a, b} are found face compatible

under ordering.

If 20 and 28 € 2Z, \ {0} by face value ordering max
value {20, 28} =28 and min {20, 28} = 20.

This form of study has already been discussed [20-21].
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So {B, max product} is a finite semifield with p number

of elements in it.

Interested reader can find special type of coding theory
using these semifields.

Are these lattices under max, min operation? We will test

whether first the form semi lattices under product.

We see under both max or min operation they form a
totally ordered set hence will be a chain lattice. In case of this B
we see using max min we get a chain lattice of order 13 given

by the following Figure 4.10.

(24, 14,6) O

A\

(22, 14, 16) C

(20,14,2) Q@

(18,14,8) O

(16, 14,22) O

(8, 14,18) O

(6, 14, 24)
(4, 14, 10) i

2,14,20) @

0,0,00 ©O

Figure 4.10
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However product cannot be defined on B to yield a lattice
or semilattice. Only B\ {(0, 0, 0)} is a cyclic group of order 12.

We first give examples of the group of neutrosophic
triplet groups of graphs.

Example 4.10. Let S = {Z4, x} be the semigroup under product

modulo 14.
The neutral elements of Z4 are 7 and 8.
7 contributes only for trivial neutrosophic triplet groups.

8 alone contributes for non trivial neutrosophic triplet

groups given by the following set B.

B=1{(8,8,8),(2,8,4),(6,8,06),(48,2),(10, 8, 10), (12,
8, 12)}; B is clearly a cyclic group with (8, 8, 8) as its

multiplicative identity.

We now give the graph of B in the following.
(8,8,8)

(6,8,6)

(12,8,12)
(10,8,10)

(2,8,4) (4,8,2)

Figure 4.11

We will give yet another example.
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Example 4.11 Let S = {Zy, x} be the semigroup under product
modulo 26. The neutral elements of Z,s are 13 and 14. 13

contributes only for neutrosophic triplet group.
The neutrosophic triplet groups associated with 14 are

B = {(14, 14, 14), (2, 14, 20), (20, 14, 2), (4, 14, 10), (10, 14,
14), (8, 4, 18), (18, 4, 8), (16, 14, 22), (22, 14, 16), (6, 14, 24),
(24, 14, 6), (12, 14, 12)}.

Clearly B is a cyclic group of order 12 with (14, 14, 14) as the
identity.

Now we give the neutrosophic triplet group graph
associated with B the classical group of neutrosophic triplet
groups in the following.

(14,14,14)

) (24,14.6)

J(6,14,24)

O
(4,14,10) (10,144)  (12,14,12)

N O (22,14,16)
(16,14,22)

Figure 4.12

We can say by looking at the figure there is one elements of
order two where are 5 pairs of elements which are inverses of
each other.
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Example 4.12. Let S ={Z3, x} be the semigroup under product.
The neutrals of Z;y are 13 and 27. However the neutrosophic
triplet groups associated with 13 are trivial. So we have to work
only with the neutral element 27. The neutrosophic tripletgroups
associated with 27 are

B= {(27,27,27), (3,27, 9), (9, 27, 3), (6, 27, 24), (24, 27, 6),
(18,27, 21), (21, 27, 18), (15, 27, 33), (33, 27, 15), (12, 27, 12),
(30, 27, 36), (36, 27, 30)}.

Clearly B is a cyclic group neutrosophic triplet groups of order
12. We now give neutrosophic triplet group graph of the group

B as follows.
(27,27,27)

(24,27,6)

(33,27,15)

(6,27,24)

(21,27,18)

(30,26,36) 62720 (18,27.21)  (15,27,33)
(36,26,30) ~ 77 (24,27\6)

(12,27,12)
Figure 4.13

We see the two groups of neutrosophic triplet groups
graph are the same so it goes without any saying both are just
isomorphic however one is a group associated with Z,s and the
other with Zo.

Now we proceed onto study the classical group of
neutrosophic triplet groups associated with Zg where
65=13x5.
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Example 4.13. Let S = {Zgs, x} be the semigroup under product
modulo 65. Clearly 26 is a neutral element of Z¢s. 40 is another
neutral element of Zg. The neutral element 26 gives four
neutrosophic triplet groups given by

A ={(26, 26, 26), (13, 26, 52), (52, 26, 13), (39, 26, 39)} is a
classical group of neutrosophic triplet groups of order four. A

has the following neutrosophic triplet groups graph.
(26, 26,26)

(13,26,52)

(52, 26,13)

(39, 26, 39)

Figure 4.14

Now we enumerate the neutrosophic triplet groups
associated with the neutral element 40.

B = {(40, 40, 40), (5, 40, 60), (60,40,5), (25, 40, 25), (10,
40, 30), (30, 40, 10), (50, 40, 45), (45, 40, 50), (20, 40, 15), (15,
40, 20), (35, 40, 55), (55, 40, 35)}.

The graph of the classical group of neutrosophic triplet
graphs is as follows.
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(40,40,40)

(5,40,60)

T (45,40,50)

25,40,25 O
( ) (20.40.13) (15,40,20)

Figure 4.15
In view of all these we make the following conjecture.

Conjecture 4.2. Let {Z,,, x} be the semigroup under product

modulo pq, p and q two distinct prime

1) For all primesp<q(p=2,3,5, ... and p <q) we
see there is a neutral element which is a multiple
of p such that associated with p there are q — 1
number of neutrosophic triplet groups which
forms a classical group and the graphs of all these
groups for varying are the same for any fixed q
such that p <gq.

We see in case of {Z,q, x} with q = 13 all neutrosophic
triplets groups associated with tp; t > 0 for a classical group of
order (q — 1) and the graphs of all these groups has only 12
elements and all of them have the same graph verified for p = 2,
3 and 5 in this book. The reader is left with the task of finding
whenp=7and 11.
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It is pertinent to keep on record that for any S = {Z,,, x}
distinct where p and q are two distinct primes we have two
distinct neutrals and they contribute neutrosophic triplet groups
collection of orders p — 1 and q = 1 and they are or classical

groups with a x b = identity or a* = identity.

That is they enjoy only this special feature as they are
cyclic groups of even order.

We will briefly discuss about the neutral elements and the
neutrosophic groups of Z,,, p, q and r are three distinct primes.

Let S = {Z¢s, x} be the semigroup under product. The
neutrals of Zys are 15, 21, 36, 70, 85 and 91.

The neutrosophic triplet groups associated with 36 are \

B = {(36, 36, 36), (3, 36, 12), (12, 36, 3), (9, 36, 39), (39, 36, 9),
(27, 36, 48), (48, 36, 27), (81, 36, 51), (51, 36, 81), (33, 36, 87),
(87, 36, 33), (99, 36, 99), (6, 36, 6), (18, 36, 72), (72, 36, 18),
(54, 36, 24), (24, 36, 54), (57, 36, 78), (78, 36, 57), (66, 36, 96),
(96, 36, 66), (93, 36, 102), (102, 36, 93), (69, 36, 69) and on.

The reader is expected to find out all those neutral elements
which only contribute to neutrosophic triplet groups which are

trivial.

We just define the graphs whose groups are such that
either x x y = identity or a’ = identity as line-triangle centered
graphs. We record at this juncture all classical graph
neutrosophic triplet groups graphs are only triangle line
centered graphs.
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The only open problem we propose is that can when will

(that is for what values of p and q of Z,,, p and q two distinct

primes); the line-triangle graph have only one line and rest

triangles?

When will they have more than one line in the line-

triangle graphs of these classical group of neutrosophic triplet

groups.
Problems
1. Let S = {Zs5, x} be the semigroup under product.
1) Prove 80 is the neutral element of Z;ss.
i) Prove B = {Neutrosophic triplet groups
collection associated with the neutral elements
158} U {(0, 0, 0)} is a semigroup.
a, a, a, a,
a, a, a, a
iii) Let A = {| ° ¢ ! *1 / a e B;
a9 a10 all a12
alS a14 alS a’l6
1 <1 < 16} be the collection of all 4 x 4
matrices of neutrosophic triplet groups.
X = {(x1, X2, X3, X4) / x;€ B; 1 <1< 4} be the
neutrosophic triplet groups of row matrices.
a) Find the number of fixed points of c¢.n max-product
={x,M};x e Xand M € A.
b) Find the number of fixed points of c.n. max min

{x, M} forx e XandM € A
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c¢) How many limit cycles exist in
c.n max product {x, M}, x € Xand M € A?

d) How many limit cycles exists in
c.n max min {x, M} forx € Xand M € A?

e) Prove usual xM is not possible?

f) Find the maximum number of iterations required to
arrive at a fixed point or limit cycle using
c.nmax product {x, M},x € X, M € A.

g) Find the maximum number of iterations required to
arrive at a fixed point or limit cycle using
c.n max min {x, M}, x € Xand M € A.

h) Does max product {x, M} takes more iterations or
max min {x, M} takes more iterations in general for
x e Xand M € A?

i) How does the neutrosophic triplet group differ from
usual MOD data?

2. Let S = {Z,7, x} be the semigroup under product

modulo 279.

1) Enumerate the neutral elements of Z,7.

i) Which of the neutral elements contribute to

nontrivial cyclic groups of neutrosophic triplet
groups or atleast a classical group B.
iii) Let A = {collection of all 5 x 5 matrices of

neutrosophic triplet groups using B U {(0, 0,

0)}
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Let X = {(ay, a5, a3, a4, a5) / a; € B U {(0, 0, 0)}
1 <1 < 5} be the row matrix of neutrosophic

triplet groups.

Study questions (a) to (g) of (iii) of problem (1)
for this Q and x.

Let S = {Z,n, x} be the semigroup under product
modulo 202.

A = {collection of all 6 x 6 matrices with entries from
2750} be the collection of MOD matrices.

Let X = {(ay, ay, ..., ag) / a; € 2Zyp, 1 <1 < 6} be the

collection of MOD row matrices.

i)

iii)

Using the X o M operation find the fixed point

or limit cycle of the system for x € Xand m
€A

Find the maximum number of iterations
required to arrive at a fixed point or limit cycle
of xM for the particular x € X and M € A.

Use the max-product {x,M} and find the
maximum number of iterations required to

arrive at a fixed point or a limit cycle.

Can we say in general xM takes more number
of iterations to arrive at a fixed point than max
product {x, M} for all xe X and M € A.
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v)

vi)

vii)

viii)

Using max min {x, M} and test for the
maximum number of iterations to arrive at a

fixed point or a limit cycle for x € X and M €
A.

Which of xM or max min {x, M} will need in
general more number of iterations to arrive at a
fixed point for x € X and M € A?

Which of max min {x, M} or max product {x,
M} in general need more number of iterations

to arrive at a fixed point or a limit cycle?

Compare all the three operations max product,
max min and x o M and test out which of the
operations is sensitive or each is suitable
depending on the problem on which they are
applied.

4. Let P = {Z;09, x} be the semigroup under product
modulo 309.

B = {collection of all 7 x 7 matrices with entries from
37309 be the MOD matrix collection.

X = {(ay, ay, ...,a7) / a;€ 3Z3p9, 1 <1< 7} be the MOD

row matrix collection.

Study questions (i) to (viii) of problem (3) for this P, B

and X.

5. Let S = {Zy06, x} be the semigroup under product
modulo 106.
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Prove 54 and 53 are the only neutrals of Z;s.

Prove 53 can only contribute to trivial

neutrosophic triplet group collection.

Find the classical group of neutrosophic triplet
groups associated with the neutral element.

i Y2 Ys
Xl _al a2 aS_
X2 a4 a5 a’6
X3 a7 aS a’9 .
Let A = be the dynamical
X4 a'10 a'll a’lZ
X5 alS a'14 a’lS
X6 al6 al7 alx
X7 _al9 a'20 a'21_

system associated with the ntg. Relational
(ntgRMs or NtgRMs or NTGRMs) maps a; €
{collection of all neutrosophic triplet groups
associated with the neutral element 54} U {(0, 0

0)} =B; 1<i<2l.

Draw the neutrosophic triplet group bipartite

graph by giving some values to a; € B.

Transform using T[;;; to get the MOD relational
maps matrix.

LetY={(d, d, ds, ... d7} /die B; 1 <i<7}
and X ={(a;, a5, a3) / a; € B; 1 <1 < 3} be the

neutrosophic triplet groups row matrices.
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d) Using some fixed values of x (or y) find the
fixed point or limit cycle of the system.
[(36,36,36) (8,36,51)  (0,0,0) |
(0,0,0) (0,0,0) (18,36,72)
(3,36,12)  (0,0,0) (96,36,66)
6. Let R = (0.0.0) (6,36,6) 0,0,0) be the
(6,36,06) (0,0,0) (0,0,0)
(51,36,81)  (0,0,0) (36,36,36)
(0,0,0)  (8,16,51)  (0,0,0)
L (0,0,0) (0,0,0)  (69,36,69) |

neutrosophic triplet groups matrix from the semigroup S

= {Z¢s, %} associated with the neutral element 36.

Let x = ((9, 36, 39), (0, 0, 0), (39, 36, 9), (36, 36, 36),

(0,
y=

0, 0), (0, 0, 0), (27, 36, 48), (0, 0, 0)) and
((18, 36, 72), (0, 0, 0), (27, 36, 48)) be neutrosophic

triplet groups row matrices.

a)

b)

d)

Using x as the initial neutrosophic triplet group row
matrix find its effect on the neutrosophic triplet
group relational dynamical system R and find the
neutrosophic triplet group fixed point pair or a limit
cycle pair on x.

Find the neutrosophic triplet group fixed point pair
or a limit cycle pair using the neutrosophic triplet
group row matrix y on R.

Transform the resultants pairs in (b) and (c) using
Tfl

ntg

into MOD vector pairs.

Obtain any other special features associated with
this R.
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11.

12.

13.
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Build orthogonal neutrosophic triplet group codes using

Z3yg9 of length 8 with 5 number of message symbols.
a) How many sets of such dual pairs can be got.

Find the neutrosophic triplet groups graphs associated
with A = {collection of all neutrosophic triplet groups
associated with the neutral element 30 of Zsg}, the

group of neutrosophic triplet groups.
Find the graph associated with Dss.

Characterize all groups whose graph are triangle line
graph.

Can we have classical groups of neutrosophic triplet

groups whose associated graphs are not triangle line
graphs?

Find the classical groups of the neutrosophic triplet
groups associated with Zg;s.

a) Which of the classical groups of neutrosophic
triplet groups contribute to triangle line graphs.

b) How many such classical groups of the

neutrosophic triplet groups exist?

Let S = {Z,47;, x} be the semigroup under product
modulo 247.

a) Find all the neutrosophic triplet groups
associated with each of the neutrals of Z,4;.
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b) Find the respective classical groups of
neutrosophic triplet groups and their related
graphs.

14. Given {Z,, x} the semigroup under product  modulo

n;n=7p - q; p and q two distinct primes.

Can the line - triangle graphs of the classical groups of
neutrosophic triplet groups have more number of lines

than triangles? Justify

15. Given G is a line - triangle graph given by the following

Figure 4.16.
Vo
Vi
Vi1
Va
Vio
G =
Vo
\Y%
V4 8
V3 V7
Vs Vs
Figure 4.16

Can we have a classical group of neutrosophic triplet

groups graph identical with G or isomorphic with G?

16. Can their be a classical group of neutrosophic triplet

groups whose graph which is isomorphic with G?
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Vo

Vio

Vi1

V] V8

V7

A\ A\

Vi Vi Vs
Figure 4.17
17. Can we say all triangle - line graph of order 12 must

only be the form given in Figure 4.17 if they are to be
associated with the classical group of neutrosophic

triplet groups?
Vo
Vi1
Vi
V1o
Vo
A%
2 v, ve
V3
V4 Vs Vo
Figure 4.18
18. Characterize all those semigroups {Z,, x} which can

yield at least one new line triangle graph for the graph

of the classical group of neutrosophic triplet groups.



256 | Neutrosophic Triplets Groups and their Applications ...

19. Can we say there exists only triangle graphs that is no
lines associated with the classical group of neutrosophic

triplet groups related to {Z,, x}?

20. Let G be the triangle graph given by the following

figure.
Vo Vg

Vi V7

Ve

Vs
V2

V3 V4
Figure 4.19
Justify your claim!

(Hint use the fact in Z,, the classical group of
neutrosophic triplet groups can be of order p— 1 or q —
1 both even we have a group whose graph is of the form

iven below.
given below Vo

Vi

Vo
V2 V3

Vs Vg

Vg V7
V4

Figure 4.20
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22.
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Let S ={Zjp, x} be the semigroup under product
modulo 100.

1) Find all neutral elements of S.

i) Can any of the neutral of Z;q contribute to
classical group of neutrosophic triplet groups
which is cyclic?

iii) How many nontrivial neutrosophic triplet
graphs are possible associated with these

neutral element of Z,?

v) Is every neutrosophic triplet group trivial?
Justify.

Let S = {Z435, x} be the semigroup under product.
1) Find all the neutrals of Z43,.

i) Find all those neutrals which contribute to
nontrivial ~ neutrosophic  triplet  groups
collection.

iii) Can any one of the nontrivial neutrosophic
triplet groups form a classical cyclic group?

iv) Does any of the neutrals give only nontrivial

quasi neutrosophic triplet pairs?

vi)  Enumerate any of the special features associated
Wlth thiS Z432.
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23.

24.

Let S ={Zs, x} be the semigroup under product
modulo 1280.

i) Find all the neutral elements of Zso.

i) Find nontrivial neutrosophic trivial groups

associated with neutrals of Z2g.

iii) Does any of the neutrals contribute to classical

group of neutrosophic triplet groups?

iv) Obtain any other special feature associated with

ZlZSO-

Can there be classical groups of neutrosophic triplet
groups whose graph are isomorphic with the following
graphs for any appropriate n of Z,.

Vi

Ve
V2

V3 V5

V4
Vg

Figure 4.21
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V2 Vi Vi3

Vi2
Via
Vio
A% Vg
Ve Vi
Figure 4.22
Vi
O Vi1
Vio
V2
Vo
V3 V8
Vs V7
V4 Vs
Figure 4.23
Vi
Vi3
v ~  ——Ow

V3

Vie

Ve \'%i Vg

Vs

Figure 4.24
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25.

26.

Prove for the S = {Z,,, x} p and odd prime the classical
group of neutrosophic triplet groups G associated with p
+ 1 becomes a semiring under max and product

operation.
1) Prove G is a semifield.
i) Can G be a S-semifield?

iii) Enumerate all special features associated with
G.

Let M = {collection of all m x m matrices with entries
from G U {(0, 0, 0)}} be the neutrosophic triplet

groups of matrices.

1) Show for all x € X = {(aj, ...,an) where a;e G
v {(0, 0, 0)}; 1 <1 <m} be the neutrosophic
triplet group row matrix, we have c.n max
product {x, A}; A € M converges either to a

fixed point or a limit cycle.

i) What is the maximum number of iterations to

arrive at a fixed point at a resultant?
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In this book authors mainly study the conditions
under which the collection of neutrosophic triplet
groups associated with a neutral element forms a
classical group. Using their properties neutrosophic
triplet group codes are defined and the corresponding
dual codes occur naturally. The number of dual
codes are defined and described.

The graphs of the classical group of neutrosophic
triplet groups are given. Finally akin to FCMs model,
NCMs model, FRMs model and NRMs model,
Neutrosophic Triplet groups Cognitive Maps model
and Neutrosophic Triplet groups Relational Maps

model are developed and described.
Several open problems are also proposed.






