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PREFACE 

 The innovative notion of neutrosophic triplet groups, 

introduced by Smarandache and Ali in 2014-2016, happens to 

yield the anti-element and neutral element once the element is 

given. It is established that the neutrosophic triplet group 

collection forms the classical group under product for Zn, for 

some specific n. However the collection is not even closed 

under sum. These neutrosophic triplet groups are built using 

only modulo integers or Cayley tables.  

Several interesting properties related with them are defined. 

It is pertinent to record that in Zn, when n is a prime number, 

we cannot get a neutral element which can contribute to 

nontrivial neutrosophic triplet groups. Further, all neutral 

elements in Zn are only nontrivial idempotents. 

Using neutrosophic triplet groups authors have defined the 

notion of neutrosophic triplet group matrices. Further as the 

notion of operation addition or max or min cannot be defined on 
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these triplet groups; authors have overcome this problem by 

defining the new notion of conditionally neutral minimum ( c.n. 

min ) and conditionally neutral maximum ( c.n. max ) for min 

and max operations respectively. However the operation of 

addition can never be compatible.  

We define these new operations mainly to construct 

mathematical models akin to Fuzzy Cognitive Maps (FCMs) 

model, Neutrosophic Cognitive Maps (NCMs) model and Fuzzy 

Relational Maps (FRMs) model. These new models are defined 

in chapter four of this book. These new models can find 

applications in discrete Artificial Neural Networks, soft 

computing, and social network analysis whenever the concept 

of indeterminate is involved.

Further authors have defined algebraic codes in a special 

way as automatically these codes built using Zn lead to 

mutually orthogonal codes or dual codes. Study in this direction 

is open. 

We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  

W.B.VASANTHA KANDASAMY 
ILANTHENRAL K 

FLORENTIN SMARANDACHE 

       The Neutrosophic Duplets were introduced by Smarandache 
in 2016.



 

Chapter One 

 

 

INTRODUCTION TO NEUTROSOPHIC 

TRIPLET GROUPS 

 

 The innovative study of neutrosophic triplet groups was 
first started by Florentin and Ali in [7].  These neutrosophic 
triplet groups satisfy certain algebraic properties. However it is 
recorded in [7] that these triplets collection do not enjoy the 
classical group structure. 

 In fact they have proved the collection of all neutrosophic 
triplet groups form a semigroup under product. We recall all 
definitions from [7]. 

Definition 1.1. Let N be a set together with a binary operation 
*. Then N is called a neutrosophic triplet set if for any a  N 
there exists a neutral ‘a’ called neut(a) different from the 
classical algebraic unitary element and an opposite of ‘a’ 
called anti (a) with neut (a) and anti (a) belonging to N, such 
that  

 a  * neut(a) = neut(a) * a = a 
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and  a * anti (a) = anti (a) * a = neut (a). 

 The elements a, neut (a) and anti(a) are collectively 
called as neutrosophic triplet groups and we denote it by (a, 
neut(a), anti(a)). By neut (a), we mean neutral of a and 
apparently a is just the first coordinate of a neutrosophic triplet 
and not a neutrosophic triplet. 

 For the same element a, 1 in N there may be more 
neutrals to it neut (a) and more opposite of it anti(a). 

Definition 1.2 . The element b in (N, *) is the second component 
denoted by neut (.) of a neutrosophic triplet if there exists other 
elements a and c in N such that a * b = b * a = a and a * c = c 
* a = b. 

 The resultant neutrosophic triplet is (a, b, c). 

Definition 1.3. The element c in (N, *) is the third component 
denoted by anti(.) of a neutrosophic triplet, if there exists other 
elements a and b in N such that a * b = b * a = a and a * c =  
c * a = b. The formed neutrosophic triplet is (a, b, c).  

 We will illustrate this by examples. 

Example 1.1. Let {Z14,} be the semigroup under multiplication 
modulo 14. The only idempotents in Z14 are 7 and 8. We further 
see none of the elements 1 3, 5, 9, 11 and 13 in Z14 contribute to 
neutrosophic triplets as they are units under product in Z14. 

 Only elements 2, 4, 6, 8, 10 and 12 are the probable ones 
in Z14 which can contribute to the neutrosophic triplet groups. 
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 We see 2  Z14 is such that 2  8 = 2 (mod 14) and 8 is 
the neut(2). Further 2  4 = 8 (mod 14) so 4 is the anti (2). Thus 
(2, 8, 4) forms the neutrosophic triplet. neut (2) = 8 and anti (2) 
= 4. 

 Similarly 4  8  4 (mod 14) and 4  2 = 8 (mod 14)      
so (4, 8, 2) is also a neutrosophic triplet neut (4) = 8 and          
anti (4) = 2. 

 Consider 6  Z14, 6  8 = 6 (mod 14) so neut(6) = 8 and   
6  6 = 8 so anti (6) = 6. Thus (6, 8, 6) is a neutrosophic triplet. 

 Now for 10  Z14 10  8 = 10 (mod 14) so neut(10) = 8 
and anti(10) = 8 so (10, 8, 12) is a neutrosophic triplet.  

 For 12  8 = 12 so neut(12) = 8 and anti(12) = 10 hence 
(12, 8, 10) is also a neutrosophic triplet. 

 Clearly 7  7 = 7 (mod 14) but 7 is not a neutral element 
further (0, 0, 0) and (7, 7, 7) are trivial neutrosophic triplets. We 
see K = {2, 4, 6, 8, 10, 12}  Z14 is such that they form a group 
under product modulo 14, with 8 as the identity given by the 
following table. 

 2 4 6 8 10 12 

2 4 8 12 2 6 10 

4 8 2 10 4 12 6 

6 12 10 8 6 4 2 

8 2 4 6 8 10 12 

10 6 12 4 10 2 8 

12 10 6 2 12 8 4 
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However we give yet another example. 

Example 1.2. Let S = {Z15, } be the semigroup under product 
modulo 15. 6 and 10 are the only non-trivial idempotents of Z15, 
6  6 = 6 (mod 15) and 10  10 = 10 (mod 15). 

Let 3  Z15, 3  6 = 3 (mod 15), neut (3) = 6, and anti (3) 
= 12 as 3  12  6 (mod 15). 

Thus (3, 6, 12) is a neutrosophic triplet group. 

For 12  Z15, 12  6 = 12 (mod 15), neut (12) = 6 and 
12  3  6 (mod 15) hence anti (12) = 3. 

Hence (12, 6, 3) is a neutrosophic triplet (6, 6, 6) is also a 
neutrosophic triplet. 

For 5  Z15 we have 5  10  5 (mod 15) and neut (5) = 
10. Now 5  14 = 10 (mod 15) so anti (5) = 14.

However (14, 10, 5) is not a neutrosophic triplet as 14  
10  5 (mod 15) and 14 is a unit of Z15. (9, 6, 9) is a 
neutrosophic triplet. 

For 9  Z15, 9 (mod 15) and 9  14 = 6 (mod 15). 

So (9, 6, 14) is not a neutrosophic triplet and (14, 6, 9) is 
also not a neutrosophic triplet. 

We see {3, 6, 12, 9} forms a semigroup with 6 as the 
neutral element.   
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 We give the table of {3, 6, 12, 9} under . 

 3 6 12 9 

3 9 3 6 12 

6 3 6 12 9 

12 6 12 9 3 

9 12 9 3 6 
 

 Consider the table for {5, 10, 14} 

 5 10 14 

5 10 5 10 

10 5 10 5 

14 10 5 1 
 

 We see {5, 10, 14} is not even closed under product so 
will not form a semigroup so 10  Z15 is not neutral element as 
5  10 = 5 but 5  14 = 10 so this sort of neutrosophic triplets 
behave very differently and we do not in general define them as 
neutrosophic triplet as 14  14 = 1 (mod 15) is a unit in Z15. 

Example 1.3. Let {Z18, } be the semigroup under product 
modulo 18. 9 and 10 are the only idempotents of Z18. 

 2  10 = 2 (mod 18), 

 2  14 = 10 (mod 18) so (2, 10, 14) and (14, 10, 2) are 
neutrosophic triplets of Z18. 3 does not contribute to 
neutrosophic triplets. (4, 10, 16) and (16, 10, 4) are 
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neutrosophic triplets and (8, 10, 8) is again a neutrosophic 
triplet.  

 It is unusual, 3, 6, 12 and 15 do not contribute to any 
neutrosophic triplet (9, 9, 9) is the trivial neutrosophic triplet. 

 So H = {(4, 10, 16), (16, 10, 4), (10, 10, 10), (8, 10, 8), 
(2, 10, 14) (14, 10, 2)} forms the collection of non trivial 
neutrosophic triplets. 

 Clearly (10, 10, 10) acts as the identity element of H. The 
table for H is as follows. 

 (4, 10, 16) (16, 10, 4) (10, 10, 10) 
(4,10,16) (16,10,4) (10,10,10) (4,10,16) 
(16,10,4) (10,10,10) (4,10,16) (16,10,4) 
(10,10,10) (4,10,16) (16,10,4) (10,10,10) 
(8,10,8) (14,10,2) (2,10,14) (8,10,8) 

(2,10,14) (8,10,8) (14,10,2) (2,10,14) 
(14,10,2) (2,10,14) (8,10,8) (14,10,2) 

 

(8, 10, 8) (2,10,14) (14,10,2) 
(14,10,2) (8,10,8) (2,10,14) 
(2,10,14) (14,10,2) (8,10,8) 
(8,10,8) (2,10,14) (14,10,2) 

(10,10,10) (16,10,4) (4,10,16) 
(16,10,4) (4,10,16) (10,10,10) 
(4,10,16) (10,10,10) (16,10,4) 

 

 H is a group of order six. 
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 Clearly (2, 10, 14) generates H as  

 (2, 10, 14)  (2, 10, 14) = (4, 10, 16), 

 (2, 10, 14) (4, 10, 16) = (8, 10, 8), 

 (2, 10, 14) (8, 10, 8) = (16, 10, 4), 

 (2, 10, 14)  (16, 10, 4) = (14, 10, 2), 

and (2, 10, 14)  (14, 10, 2) = (10, 10, 10). 

Thus (2, 10, 14)6 = (10, 10, 10). 

 Hence H is a cyclic group of order six. 

Example 1.4. Let S = {Z50, } be the semigroup under product 
modulo 50. 25 and 26 are the only idempotents of Z50. 

 The neutrosophic triplet groups associated with the 
neutral element 26 are  

H =  {(2, 26, 38), (38, 26, 2), (4, 26, 44),  

 (44, 26, 4), (8, 26, 22), (22, 26, 8) 

 (6, 26, 46) (46, 26, 6) (12, 26, 48) 

 (48, 26, 12), (14, 26, 34), (34, 26, 14) 

 (16, 26, 36), (36, 26, 16), (18, 26, 32), 

 (32, 26, 18), (24, 26, 24), (28, 26, 42) 

 (42, 26, 28), (26, 26, 26)}. 

 We see {(2, 26, 38)} generates the group H and H is a 
cyclic group  of order 20. We see 26 acts as the identity for K = 
{2, 4, 8, 12, 16, 32, 14, 28, 6, 24, 48, 46, 42, 34, 18, 36, 22, 44, 
38, 26} and 220 = 26 that is 2 generates this cyclic group.  
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 We see though 5, 10, 15, 20, 30, 40, 35 and 45 are not 
units still they do not contribute to neutrosophic triplet groups. 

 We see 2  52 = 50. 

 Next we consider another example. 

Example 1.5. Let S = {Z20, } be the semigroup under product 
modulo 20. Here the neutrosophic triplets are formed in a very 
unique way.  

 We see the only idempotents in Z20 are 5 and 16 as 

 5  5 = 5 (mod 20) and 16  16 = 16 (mod 20). 

 We see 2 is not neutral as 2  5 = 10 (mod 20) and  
 2  16 = 12 (mod 20). 
 Consider 4  Z20; 

 4  5 = 0 (mod 20) so 5 is not a neutral of 4 and 

 4  16 = 4 (mod 20) so 16 is the neutral of 4. 

 Now 4  4 = 16 so anti (4) = 4. 

 Thus (4, 16, 4) is a neutrosophic triplet associated with 
Z20. 

 Consider 6  Z20, 6  5 = 10 (mod 20) so 5 is not a 
neutral of 6. 
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 Also 6  16 = 16 (mod 20) so 16 is also not a neutral of 6. 
Thus 6 does not form a neutrosophic triplet group. 

 Consider 8  Z20, 8  5 = 0 (mod 20) so 5 is not a neutral 
of 8. Now 8  16  8 (mod 20) so 16 is a neutral of 8 and anti 8 
is 12. 

 Consider 10  Z20, 10  5 = 10 (mod 5) and there is no 
anti for 10. 

 So 10 cannot contribute to a neutrosophic triplet with 5. 

 10  16  0 (mod 20) so 10 cannot contribute for a 
neutrosophic triplet. 

 Consider 12  Z20 12  10  0 (mod 20) so 10 is not a 
neut (12). 

 12  16 = 12 so neut(12) = 16 and anti(12) is 8. 

 Thus (8, 16, 12) and (12, 16, 8) are neutrosophic triplets. 

 Now 15  Z20; 15  5 = 15 (mod 20) so neut (15) = 5 and 
15  5 = 5 (mod 20) so anti (15) = 15. Hence (15, 5, 15) is a 
neutrosophic triplet. 

 Finally 18  Z20, 18  5 = 10 (mod 20) so 5 is not a 
neutral of 18. 

 18  16  19 (mod 20) so 16 is not the neuter of 18 anti 
18 cannot be 2 or 12 so (18, 16, 2) and (18, 16, 12) are not 
neutrosophic triplets. 
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 Thus we get the following collection of neutrosophic 
triplets {(4, 16, 4), (8, 16, 12), (8, 16, 2), (12, 16, 8), (16, 16, 
16), (15, 5, 15), (5, 5, 5)}. 

 We see (4, 16, 4)  (4, 16, 4) = (16, 16, 16). 

 (4, 16, 4)  (8, 16, 12) = (8, 16, 8). 

 (4, 16, 4)  (12, 16, 8) = (8, 16, 8). 

 However (8, 16, 8) is not a neutrosophic triplet as            
8  16 = 8 (mod 16) but 8  8  16 is not possible hence the 
claim. 

 (4, 16, 4)  (15, 5, 15) = (0, 0, 0) the trivial neutrosophic 
triplet. (8, 16, 12)  (15, 5, 15) = (0, 0, 0) and (12, 16, 12)    
(15, 5, 15) = (0, 0, 0). 

 So the collection is not even closed under product when 
{Z20, } is  used as a semigroup under product modulo 20. 

Example 1.6. Let {Z45, } be the semigroup under product 
modulo 45. Only 10 and 36 are the idempotents of Z45. (9, 36, 9) 
and (36, 36, 36) are neutrosophic triplets of Z45. 

 15  10 = 15 (mod 45). 

 15  x = 10 we cannot get any x such that 15x  10    
(mod 45) that is 15 has no anti (45), only neut (45) = 10. 

 For 18  Z45, 18  36 = 18 (mod 45). 
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 18  26 = 36 (mod 45). 

Hence (18, 36, 27) and (27, 36, 18) are neutrosophic triplets 
associated with 36. (5, 10, 20) and (20, 10, 5) are triplets 
associated with Z45. 30  10  30 (mod 45), however finding 
anti 30 is a difficult task. (10, 10, 10) is also a neutrosophic 
triplet. 

 Interested reader can find all nontrivial neutrosophic 
triplets associated with Z45. 

Example 1.7. Let S = {Z30, } be the semigroup under  
modulo 30.  

  We have mainly considered this example as there are six 
idempotents in Z30, 6, 10, 15, 16, 21 and 25. 

 We see (2, 16, 8) and (8, 16, 2) are neutrosophic triplets 
associated with 16  Z30. (3, 21, 27) and (27, 21, 3) are 
neutrosophic triplets associated with 21  Z30. (4, 16, 4) is a 
neutrosophic triplet. (5, 25, 5) is a neutrosophic triplet. (9, 21, 9) 
is again a neutrosophic triplet. (12, 6, 18) and (18, 6, 12) are 
neutrosophic triplets. (14, 16, 14) is a neutrosophic triplet. (20, 
10, 20) is neutrosophic triplet. 

 We see (22, 16, 28) and (28, 16, 22) are neutrosophic 
triplets associated with 16  Z30 and (24, 6, 24) is a 
neutrosophic triplet. (16, 16, 16), (6, 6, 6), (21, 21, 21), (25, 25, 
25) and (10, 10, 10) are neutrosophic triplets. (26, 16, 26) is 
again a neutrosophic triplet.  
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 Thus we see Z30 is very unique for it has six idempotents 
and 20 neutrosophic triplets. It is important to note 15 does not 
yield any neutrosophic triplet so (15, 15, 15) is only a trivial 
neutrosophic triplet. 

 We are yet to study the structure of the collection of all 
neutrosophic triplets of Z30. 

 We see in the first place it is not closed under product. 

For  (5, 25, 5)  (18, 6, 12) = (0, 0, 0),  
 (2,16,8)  (2, 16, 8) = (4, 16, 4),  
 (2, 16, 8)  (3, 21, 27) = (6, 6, 6), 
 (3, 21, 27)  (6, 6, 6) = (18, 6, 12),  
 (18, 6, 12)  (3 21, 27) = (24, 6, 24),  
 (24, 6, 24)  (3, 21, 27) = (12, 6, 18),  
 (12, 6, 18)  (3, 21, 27) = (6, 6, 6) and  
 (5, 25, 5)  (6  6  6) = (0, 0, 0);  
thus (5, 5, 5) and (5, 25, 5) annuls all neutrosophic triplets 
except (15, 15, 15) for (15, 15, 15)  (5, 5, 5) = (15, 15, 15),  
(15, 15, 15)  (5, 25, 5) = (15, 15, 15) infact (15, 15, 15) acts as 
the identity. 

 Further (25, 25, 25)  (15, 15, 15) = (15, 15, 15). 
 (25, 25, 25)  (5, 25, 5) = (5, 25, 5). 

 (15, 15, 15)  (15, 15, 15) = (15, 15, 15). 

So in Zn, where n = p1 p2 … pt where pi’s are distinct primes 
then the associated neutrosophic triplets behave in a unique 
way. 
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Example 1.8. Let S = {Z35, } be the semigroup under product 
modulo 35. 

 The idempotents in Z35 are 15 and 21. (5, 15, 10) and 

 (10, 15, 5) are neutrosophic triplets associated with 15. 

 (7, 21, 28) and (28, 21, 7) are neutrosophic triplets of the 
neutral element 21. 

 (14, 21, 14) is a neutrosophic triplet. (20, 15, 20) is a 
neutrosophic triplet.  

(25, 15, 30) and (30, 15, 25) are neutrosophic triplets. 

  (15, 15, 15) and (21, 21, 21) are again neutrosophic 
triplet groups. 

 Consider the two tables of neutrosophic triplets under 
product. 

 (20,15,20) (30,15,25) (25,15,30) 

(20,15,20) (15,15,15) (5,15,10) (10,15,5) 

(30,15,25) (5,15,10) (25,15,30) (15,15,15) 

(25,15,30) (10,15,5) (15,15,15) (30,15,25) 

(15,15,15) (20,15,20) (30,15,25) (25,15,30) 

(5,10,10) (30,15,25) (10,15,50) (20,15,20) 

(10,15,5) (25,15,30) (20,15,20) (5,15,10) 
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(15,15,15) (5,15,10) (10,15,5) 

(20,15,20) (30,15,25) (25,15,30) 

(30,15,25) (10,15,5) (0,15,20) 

(25,15,30) (20,15,20) (5,15,10) 

(15,15,15) (5,15,10) (10,15,5) 

(5,15,10) (25,15,30) (15,15,15) 

(10,155) (15,15,15) (30,15,25) 
 

 Clearly H = {(20,15,20), (30,15,25), (25,15,30), 
(15,15,15), (10,15,5), (5,15,10)} is a classical group under  
with (15, 15, 15) as its identity. 

 However (7, 21, 28)  (10, 15, 5) = (0, 0, 0) and so on. 

 Next we consider the second table. 

 (7,21,28) (28,21,7) (21,21,21) (14,21,14) 

(7,21,28) (14,21,14) (21,21,21) (7,27,28) (28,21,7) 

(28,21,7) (21,21,21) (14,21,14) (28,21,7) (7,21,28) 

(21,21,21) (7,21,28) (28,21,7) (21,21,21) (14,21,14) 

(14,21,14) (28,21,7) (7,21,28) (14,21,14) (21,21,21) 
 

 We see K = {(7, 21, 28), (28, 21, 7), (21, 21, 21), (14, 
21,14)} forms a classical group under product with (21, 21, 21) 
as its multiplicative identity. 
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Further  
(7, 21, 28)  (7, 21, 28)  (7, 21, 28)  (7, 21, 28) = (21, 21, 21). 
 
 That is K is a cyclic group of order four generated by  
(7, 21, 28) as (7, 21, 28)4 = (21, 21, 21). 

 Further (5, 15, 10)6 = (15, 15, 15) thus H is generated by 
(5, 15, 10) as a cyclic group of order six. 

 However K  H = (0, 0, 0).  

 Thus the group K annihilates H and vice versa.  

 However K  H generates a semigroup with (0, 0, 0) as 
included element of the generating set K  H                                                                                                                             
under product. 

Example 1.9. Let S = {Z33, } be the semigroup under .  12 
and 22 are the idempotents in S. (3, 12, 15) and (15, 12, 3) are 
neutrosophic triplets associated with the idempotent 12. 

 (6, 12, 24) and (24, 12, 6) are neutrosophic triplets. 

 (9, 12, 27) and (27, 12, 9) are both neutrosophic triplets. 

 (11, 22, 11) is a neutrosophic triplet. 

 (18, 22, 30) and (30, 12, 18) are both neutrosophic triplets 
associated with the neutral element 22. 

 (21, 12, 21) is again a neutrosophic triplet. 

 (12, 12, 12) and (22, 22, 22) are both neutrosophic 
triplets. 
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 H = {(3, 12, 15), (15, 12, 3), (6, 12, 24), (24, 12, 6), (9, 
12, 27), (27, 12, 9), (18, 12, 30), (30, 12, 18), (21, 12, 21), (12, 
12, 12)} is a group under product with (12, 12, 12) as the 
multiplicative identity. 

 Clearly (30, 12, 18)10 = (12, 12, 12) so H is a cyclic group 
of order 10 generated by (30, 12, 18). 

 Now {(11, 22, 11), (22, 22, 22)} = K is also a cyclic 
group of order two with (11, 22, 11)2 = (22, 22, 22) so (22, 22, 
22) is the identity element of K.  

 Further K  H = {(0, 0, 0)}. Thus it is assumed that for  
S = {Z3p, }, p an odd prime under product modulo 3p. S has 
neutrosophic triplets which are p + 1 in number and that p + 1 
neutrosophic triplets can be divided two groups of order p – 1 
and 2 and both are cyclic groups with (p + 1, p + 1, p + 1) as 
identity in case of the group of order p – 1 and (2p, 2p, 2p) as 
identity for the group of order two. 

 The elements of cyclic group of order two are {(p, 2p, p), 
(2p, 2p, 2p)}. 

 In certain cases for 3p, p + 1 and 2p are idempotents in 
some cases p and 2p + 1 are idempotents. 

 First we discuss a few cases to this effect.  

 We see in case of Z15; 6 and 10 are the idempotents  
6 = (5 + 1) and 10 = 5 + 5. 
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 In case of Z21 we see 7 and 15 are the idempotents we see 
7 and 15 = (2  7 + 1). 

 In case of Z33 we see 12 and 22 are the idempotents and 
12 = 11 + 1 and 22 = 2  11. 

 In case of Z39 we see 13 and 27 are idempotents and 27 = 
(2  13) + 1. 

 In case of Z51 the idempotents are 18 and 34 are 
idempotents of Z51, 18 = 17 + 1 and 34 = 2  17. 

Consider Z57, the idempotents are 19 and 39 = (2  19) + 1. 

Now for Z69 we see the idempotents are 24 and 46.   

For Z87 30 = 29 + 1 and 58 = 2  29 are the only idempotents of 
Z69. 

 Consider Z159, the idempotents of Z159 are 54 = 53 + 1 and 
106 = 2  53. 

 Thus we see in case of Z3p p an odd prime the 
idempotents of Z3p are either p and 2p + 1 or p + 1 and 2p. Thus 
we leave it as an open problem the following conjecture. 

Conjecture 1.1. Let S = {Z3p, } be the semigroup under 
product modulo 3p where p is an odd prime (p  3). 

i) Characterize those numbers 3p for which p and 2p 
+ 1 are the only nontrivial idempotents of               
S = {Z3p, }. 
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ii) Characterize those numbers 3p for which p + 1 and 
2p are the only nontrivial idempotents. 

Table of the idempotents in Z3p 

S. No. Z3p p p + 1 2p 2p + 1 
1 Z15 - 6 10 - 
2 Z21 7 - - 15 
3 Z33 - 12 22 - 
4 Z39 13 - - 27 
5 Z51 - 18 34 - 
7 Z57 19 - - 39 
8 Z69 - 24 46 - 
9 Z159 - 54 106 - 

 

 We however wish to make the following observation and 
propose the second conjecture. 

Conjecture 1.2. Let {Z3p, }, p an odd prime, p  3 be the 
semigroup under product modulo 3p. 

i) The sum of digits of 3p when added is either 3 or 
6. 

ii) If the sum  of the digits of 3p is 3 then p and 2p + 
1 in Z3p are the only idempotents. 

iii) If the sum of the digits of 3p is 6 then p + 1 and 
2p are the only idempotents of Z3p. 

 We just illustrate this by some examples.  
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 In Z15, we see 1 + 5 = 6 so p + 1 = 6 = 5 + 1 and 2p = 10 
are the idempotents. 

 In Z219, we see 2 + 1 + 9 = 3 so p = 73 and 2p + 1 = (2  
73) + 1 = 147 are the idempotents. 

 Interested reader can verify for other values of Z3p (p  3 
and p an odd prime). 

 Next we proceed onto describe by examples semigroups 
built using Z4p, p an odd prime. 

Example 1.10. Let {Z12, } be the semigroup under product 
modulo 12. 9 and 4 are the idempotents of S. 

Example 1.11. Let S = {Z20, } be the semigroup under product 
modulo 20. 5 and 16 are idempoents of Z20. 

Example 1.12. Let S = {Z28, } be the semigroup under product 
8  8 = 8 (mod 28) (2  4 = 8).  

21  21 = 21 (mod 28) (3  7 = 21) are the only idempotents. 

Example 1.13. Let S = {Z44, } be the semigroup under product 
12 is an idempotent; 

 12 = 11 + 1 and 33 = 3  11. 

Example 1.14. Let S = {Z52, } be the semigroup under product 
modulo 52, 13 is an idempotent and 40 = 3  13 + 1 is an 
idempotent. 
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Example 1.15. Let S = {Z76, } be the semigroup under product 
modulo 76. 

 20 = 19 + 1 is an idempotent. 

 57 = 3  19 is another idempotent of S. 

Example 1.16. Let S = {Z212, } be the semigroup under 
product. p = 53 is an idempotent and 160 = (3  53) +1 is an 
idempotent of S. 

Example 1.17. Let S = {Z388, } be the semigroup under 
product p = 97 is an idempotent of S. 292 = 3  97 + 1 is an 
idempotent. 

Example  1.18. Let S = {Z332, } be the semigroup under 
product modulo 332. 

 84 = 83 + 1 is an idempotent of S. 

 249 = 3  83 is another idempotent of S. 

 We now table the idempotents to find the form of 
idempotents of Z4p; viz. p + 1 and 3p or p and 3p + 1. 

Here p takes prime values which are odd. Further we see there 
are only two idempotents which is described by the following 
table. 
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S. No. Z4p p p + 1 3p 3p+1 

1 Z12 - 4 9 - 

2 Z20 5 - - 16 

3 Z28 - 8 21 - 

4 Z44 - 12 33 - 

5 Z52 13 - - 40 

6 Z76 - 20 57 - 

7 Z212 53 - - 160 

8 Z388 97 - - 292 

9 Z332 - 84 249 - 
 

 In view of this we put forth the following conjecture.   

Conjecture 1.3. Let S = {Z4p, } be the semigroup under 
product modulo 4p, p an odd prime. 

 The idempotents of S are either of the form p + 1 and 3p 
or of the form p and 3p + 1, prove. 

 Next we study those neutrosophic triplets associated with 
Z2pq where p and q are odd primes p  q, by some examples. 

Example 1.19. Let S = {Z42, } be the semigroup under product 
modulo 42. 

The idempotents of Z42 are 7, 15, 21, 28 and 36. 

(2, 22, 32) and (32, 22, 2) are neutrosophic triplets. 
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(3, 15, 33) and (33, 15, 3) are neutrosophic triplets. 

(4, 22, 16) and (16, 22, 4) are neutrosophic triplets. 

(8, 22, 8) is a neutrosophic triplet. 

(9, 15, 39) and (39, 15, 9) are neutrosophic triplets. 

(10, 22, 40) and (40, 22, 10) are neutrosophic triplets. 

(12, 36, 24) and (24, 36, 12) are neutrosophic triplets of Z42. 

(18, 36, 30) and (30, 36, 18) are neutrosophic triplets. 

(20, 22, 20) is a neutrosophic triplet. 

(38, 22, 26) and (26, 22, 38) are neutrosophic triplets. 

(34, 22, 34) is a neutrosophic triplet. 

(27, 15, 27) is a neutrosophic triplet. (6, 36, 6) is a neutrosophic 
triplet. 

(35, 7, 35) is a neutrosophic triplet. 

(14, 28, 14) is a neutrosophic triplet. 

 This Z42, 42 = 2  3  7 behaves in a very different way. 

 In the first place Z42 has idempotents under product 
modulo 42. They are 7, 15, 21, 22, 28 and 36. 

 Further (7, 7, 7), (15, 15, 15), (21, 21, 21), (22, 22, 22), 
(28, 28, 28) and (36, 36, 36) are also neutrosophic triplets. 

 There are 29 nontrivial neutrosophic triplets. (0, 0, 0) is 
taken as the trivial neutrosophic triplet.  

 Now these 29 neutrosophic triplets forms a semigroup of 
order 29. However the 28 triplet baring the trivial (0, 0, 0) triplet 
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is not even closed under product as (3, 15, 33)  (14, 28, 14) = 
(42 (mod 42), 420 (mod 42), 462 (mod 42)) = (0, 0, 0). Hence 
this is only a semigroup. 

 Now we collect the neutrosophic triplets which has 7 as 
the neutral element. 

 K1 = {(7, 7, 7), (35, 7, 35)} is a neutrosophic group of 
order two given by the following table. 

 (7,7,7) (35,7,35) 
(7, 7, 7) (7, 7, 7) (35, 7, 35) 

(35, 7, 35) (35, 7, 35) (7, 7, 7) 
 

 So K1 is a cyclic group of order two with (7,7,7) as the 
multiplicative identity. 

 Let K2 = {(15, 15, 15), (3, 15, 33), (33, 15, 3), (9, 15, 39), 
(39, 15, 9), (27, 15, 27)} be a group under  associated with the 
neutral element 15.  

 The table of K2 is group of order 6 which is as follows.  

 (3,15,33) (33,15,3) (15,15,15) 
(3,15,33) (9,15,39) (15,15,15) (3,15,33) 
(33,15,3) (15,15,15) (39,15,9) (33,15,3) 
(15,15,15) (3,15,33) (35,15,3) (15,15,15) 
(9,15,39) (27,15,27) (30,15,33) (9,15,39) 
(39,15,9) (33,15,3) (27,15,27) (39,15,9) 
(27,15,27) (39,15,9) (9,15,39) (27,15,27) 
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(9,15,39) (39,15,9) (27,15,27) 

(27,15,27) (33,15,3) (39,15,9) 

(30,15,33) (27,15,27) (9,15,39) 

(9,15,39) (39,15,9) (27,15,27) 

(39,15,9) (15,15,15) (33,15,3) 

(15,15,15) (9,15,39) (3,15,33) 

(33,15,3) (3,15,33) (15,15,15) 
 

 We see (3,15,33) generates K2 as a cyclic group of order 
6. Thus K2 is a cyclic group with (15, 15, 15) as the identity. 
That is (3, 15, 33)6 = (15, 15, 15).  

 Consider K3 = {(21, 21, 21)} this an neutrosophic triplet 
which is such that (7, 7, 7 )  (21, 21, 21) = (21, 21, 21), (15, 
15, 15)  (21, 21, 21) = (21, 21, 21), (22, 22, 22)  (21, 21, 21) 
= (0, 0, 0), (28, 28, 28)  (21, 21, 21) = (0, 0, 0) and (36, 36, 36) 
 (21, 21, 21) = (0, 0, 0). 

 Thus the neutrosophic triplet groups behaves uniquely for it 
does not neutral any of the non units of Z42. 

 Let K4 = {(2, 22, 32), (32, 22, 2), (4, 22 16), (16, 22, 4), 
(22, 22, 22), (8, 22, 8), (10, 22, 40), (40, 22, 10) (20, 22, 20) 
(26, 22, 38), (38 22, 26), (34, 22, 34)} be a group with the 
neutral element 22.  

 The table for K4 is as follows. 
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 (2, 22, 32) (32, 22, 2) (4, 22, 16) 

(2, 22, 32) (4, 22, 16) (22, 22, 22) (8, 22, 8) 

(32, 22, 2) (22, 22, 22) (16,22,4) (2,22,32) 

(4,22,16) (8,22,8) (2,22,32) (16,22,4) 

(16,22,4) (32,22,2) (8,22,8) (22,22,22) 

(22,22,22) (2,22,32) (32,22,2) (4,22,16) 

(8,22,8) (16,22,4) (4,22,16) (32,22,2) 

(10,22,40) (20,22,20) (26,22,38) (40,22,10) 

(40,22,10) (38,22,26) (20,22,20) (34,22,34) 

(20,22,20) (40,22,10) (10,22,40) (38,22,26) 

(26,22,38) (10,22,40) (34,22,34) (20,22,20) 

(38,22,26) (34,22,34) (40,22,10) (26,22,38) 

(34,22,34) (26,22,38) (38,22,26) (10,22,40) 
 

(16, 22, 4) (22, 22, 22) (8,22,8) (10,22,40) (40,22,10) 
(32, 22, 2) (2, 22, 32) (16,22,4) (20,22,30) (38,22,26) 
(8,22,8) (32,22,2) (4,22,16) (26,22,38) (20,22,20) 

(22,22,22) (4,22,16) (32,22,2) (40,22,10) (34,22,34) 
(4,22,16) (16,22,4) (2,22,32) (34,22,34) (10,22,40) 
(16,22,4) (22,22,22) (8,22,8) (10,22,40) (40,22,10) 
(2,22,32) (8,22,8) (22,22,22) (38,22,26) (26,22,38) 
(34,22,34) (10,22,40) (38,22,26) (16,22,4) (22,22,22) 
(10,22,40) (40,22,10) (26,22,38) (22,22,22) (4,22,16) 
(26,22,38) (20,22,20) (34,22,34) (32,22,2) (2,22,32) 
(38,22,26) (38,22,26) (40,22,10) (8,22,8) (32,22,2) 
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(20,22,20) (38,22,26) (10,22,40) (2,22,32) (8,22,8) 
(40,22,10) (34,22,34) (20,22,20) (4,22,16) (16,22,4) 

 

(20,22,20) (26,22,38) (38,22,26) (34,22,34) 
(40,22,10) (10,22,40) (34,22,34) (26,22,38) 
(10,22,40) (34,22,34) (40,22,10) (38,22,26) 
(38,22,26) (20,22,20) (26,22,38) (10,22,40) 
(26,22,38) (38,22,26) (20,22,20) (40,22,10) 
(20,22,20) (26,22,38) (38,22,26) (34,22,34) 
(34,22,34) (40,22,10) (10,22,40) (20,22,20) 
(32,22,2) (8,22,8) (2,22,32) (4,22,16) 
(2,22,32) (32,22,2) (8,22,8) (16,22,4) 
(40,22,10) (16,22,4) (4,22,16) (8,22,8) 
(16,22,4) (4,22,16) (22,22,22) (2,22,32) 
(4,22,16) (22,22,22) (16,22,4) (32,22,2) 
(8,22,8) (2,22,32) (32,22,2) (22,22,22) 

  

This is a group of order 12 with (22, 22, 22) as the identity 
element. 

 Clearly K4 is a cyclic group. 

 Next consider K5 = ({14, 28, 14), (28, 28, 28)} is a cyclic 
subgroup of order 2 with 28 as the neutral element and (28, 28, 
28) as the identity element of K5. 

 Let K6 = {(12, 36, 24), (6, 36, 6), (24, 36, 12), (30, 36, 
18), (18, 36, 30), (36, 36, 36)} be a group of order 6 with 36 as 
the neutral element. The table of K6 is as follows. 
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 (6, 36, 6) (12, 36, 24) 

(6, 36, 6) (36, 36, 36) (30, 36, 18) 

(12, 36, 24) (30, 36, 18) (18, 36, 30) 

(24, 36, 12) (18, 36, 30) (36, 36, 36) 

(36, 36, 36) (6, 36, 6) (12, 36, 24) 

(30, 36, 18) (12, 36, 24) (24, 36, 12) 

(18, 36, 30) (24, 36, 12) (6, 36, 6) 
 

(24,36,12) (36,36,36) (30,36,18) (18,36,30) 

(18,36,30) (6,36,6) (12,36,24) (24,36,12) 

(36,36,36 (12,36,24) (24,36,12) (6,36,6) 

(30,36,18) (24,36,12) (6,36,6) (12,36,24) 

(24,36,12) (36,36,36) (30,36,18) (18,36,30) 

(6,36,6) (30,36,18) (18,36,30) (36,36,36) 

(12,36,24) (18,36,30) (36,36,36) (30,36,18) 
  
It is easily verified this is a cyclic group; for  
 
 (6, 36, 6)2  = (36, 36, 36)  
 (12, 36, 24)2  = (18, 36, 30) 
 (12, 36, 24)3  = (18, 36, 30)  (12, 26, 24) 
    = (6, 36, 6) 
 (12, 36, 24)4 = (6, 36, 6)  (12, 36, 24) = (30, 36, 18) 
 (12,36,24)5 = (30, 36, 18)  (12, 36, 24) 
    = (24, 36, 12) 
and (12, 36,24)6  = (24,36,12)  (12,36,24) 
    = (36, 36, 36). 
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Thus K6 is as a cyclic group generated by (12,36,24). 

 Thus we get several neutral elements and several 
neutrosophic triplets.  

 We will see the probable applications of them in the last 
chapter. 

Example 1.20.  Let S = {Z66, } be the semigroup under product 
modulo 66 = 2  3  11.  12, 22, 33, 34, 45 and 55 are the 
idempotents of Z66. All these 6 idempotents serve as neutral 
elements.  

(2, 34, 50) and (50, 34, 2) are neutrosophic triplets of 34  Z66. 

 (4, 34, 58) and (58, 34, 4) are neutrosophic triplets of Z66. 

 (8, 34, 62) and (62, 34, 8) are neutrosophic triplets. 

 (16, 34, 64) and (64, 34, 16) neutrosophic triplets. 

 (32, 34, 32) is a neutrosophic triplet. 

 (3, 45, 15) and (15, 45, 3) are neutrosophic triplets. 

 (9, 45, 27) and (27, 45, 9) are neutrosophic triplets. 

 (10, 34, 10) is a neutrosophic triplet. 

 (20, 34, 38) and (38, 34, 20) are neutrosophic triplets. 

 (40, 34, 52) and (52, 34, 40) are neutrosophic triplets. 

 (14, 34, 26) and (26 34, 14) are neutrosophic triplets. 

 (28, 34, 46) and (46, 34, 28) are neutrosophic triplets. 

` (56, 34, 56) is a neutrosophic triplet. 

 (30, 12, 18) and (18, 22, 30) are neutrosophic triplets. 
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 (42, 12,60) and (60, 12, 42) are neutrosophic triplets. 

 (6, 12, 24) and (24, 12, 6) are neutrosophic triplets. 

 (48, 12, 36) and (36, 12, 48) are neutrosophic triplets. 

 (54, 12, 54) is a neutrosophic triplet. 

 (11, 33, 21) and (21, 33, 11) are neutrosophic triplets. 

 (45, 33, 45) is a neutrosophic triplet. 

 (39, 45, 57) and (57, 45, 39) are neutrosophic triplets. 

 (44, 22, 44) is a neutrosophic triplet. 

 (51, 45, 63) and (63, 45, 51) is a neutrosophic triplets. 

 We  have (12, 12, 12), (22, 22, 22), (33, 33, 33), (34, 34, 
34), (45, 45, 45) and (55, 55, 55) to be neutrosophic triplets 
which either act as identity under product or act as annihilator 
under product. 

 We see (22, 22, 22)  (51, 45, 63) = (0, 0, 0).  

 (34, 34, 34)  (58, 34, 4) = (58, 34, 4) and so on. We see 
there are 47 such nontrivial neutrosophic triplets. 

 We will check which of them form a group under  and 
the order of them. 

 Let K1 be the collection of all those neutrosophic triplets 
which has 12 as its neutral element. 

 K1 = {(12, 12, 12) (30, 12, 18), (18, 12 30), (42, 12, 60), 
(60, 12, 42), (24, 12, 6), (6, 12, 24), (48, 12, 36), (36, 12, 48), 
(54, 14, 54)}. 
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 The table for K1 is as follows: (12, 12, 12) acts as the 
multiplicative identity of K1. We test whether the group is cyclic 
or not. 

 (12, 12, 12) (30,12,18) 
(12,12,12) (12,12,12) (30,12,18) 
(30,12,18) (30,12,18) (42,12,60) 
(18,12,30) (18,12,30) (12,12,12) 
(42,12,60) (44,12,60) (6,12,24) 
(60,12,42) (60,12,42) (18,12,30) 
(24,12,6) (24,12,6) (60,12,42) 
(6,12,24) (6,12,24) (48,12,36) 
(48,12,36) (48,12,36) (54,12,54) 
(36,12,48) (36,12,48) (24,12,6) 
(54,12,54) (54,12,54) (36,12,48) 

 

(18,12,30) (42,12,60) (60,12,42) 
(18,12,30) (42,12,60) (60,12,42) 
(12,12,12) (6,12,24) (18,12,30) 
(60,12,42) (30,12,18) (24,12,6) 
(30,12,18) (48,12,36) (12,12,12) 
(24,12,6) (12,12,12) (36,12,48) 
(36,12,48) (18,12,30) (54,12,54) 
(42,12,60) (54,12,54) (30,12,18) 
(6,12,24) (36,12,48) (24,12,6) 
(54,12,54) (60,12,42) (48,12,36) 
(48,12,36) (24,12,6) (6,12,24) 
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(24,12,6) (6,12,24) (48,12,36) 

(24,12,6) (6,12,24) (48,12,36) 

(60,12,42) (48,12,36) (54,12,54) 

(36,12,48) (42,12,60) (6,12,24) 

(18,12,30) (54,12,54) (36,12,48) 

(54,12,54) (30,12,18) (24,12,6) 

(48,12,36) (12,12,12) (30,12,18) 

(12,12,12) (36,12,48) (24,12,6) 

(30,12,18) (24,12,6) (60,12,42) 

(6,12,24) (18,12,36) (12,12,12) 

(42,12,60) (60,12,42) (18,12,36) 
 

(36,12,48) (54,12,54) 

(36,12,48) (54,12,54) 

(24,12,6) (36,12,48) 

(54,12,54) (48,12,36) 

(60,12,42) (24,12,6) 

(48,12,36) (6,12,24) 

(6,12,24) (42,12,60) 

(18,12,36) (60,12,42) 

(12,12,12) (18,12,36) 

(42,12,60) (30,12,18) 

(30,12,18) (12,12,12) 
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Clearly (30, 12, 18) generates K1 as a cyclic group of order 10 
as  

 (30, 12, 18)10 = (12, 12, 12). 

 Let K2 = {(44, 22, 44), (22, 22, 22)}  

be the cyclic group of order 2 with 22 as the neutral element and 
(22, 22, 22) as the group identity. 

Let K3 = {(11, 33, 21), (21, 33, 11), (33, 33, 33), (55, 33, 45 ), 
(45, 33, 55)}.  

 The table for K3 is as follows. 

 (11,33,21) (21,33,11) 

(11,33,21) (55,33,45) (33,33,33) 

(21,33,11) (33,33,33) (45,33,55) 

(33,33,33) (11,33,21) (21,33,11) 

45,33,55) (33,33,33) (21,33,11) 

(55,33,45) (11,33,21) (33,33,33) 
 

(33,33,33) (45,33,55) (55,33,45) 

(11,33,21) (33,33,33) (11,33,21) 

(21,33,11) (21,33,11) (33,33,33) 

(33,33,33) (45,33,55) (55,33,45) 

(45,33,55) (45,33,55) (33,33,33) 

(55,33,45) (33,33,33) (55,33,45) 
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Clearly K3 is not a group only a semigroup under product.  

 Consider K4 = {(34, 34, 34), (2, 34, 50), (50, 34, 2), (4, 
34, 58), (58, 34, 4), (8, 34, 62), (62, 34, 8), (16, 34, 64), (64, 34, 
16), (32, 34, 32), (10, 34, 10), (20, 34, 38), (38, 34, 20), (40, 34, 
52), (52, 34, 40), (14, 34, 26), (26, 34, 14), (28,34,46) (46, 
34,28), (56,34,56)}.  

 The reader is left with the task of finding whether the 
collection in K4 is a group or not. Finally we have collection 
with 45 as the neutral element. 

 K5 = {(3, 45, 15), (15, 45, 3), (45, 45, 45), (21, 45, 21), 
(9, 45, 27), (27, 45, 9), (39, 45, 57), (51, 45, 63), (63, 45, 51), 
(57, 45, 39)}. 

 We find the table under product. 

 (3,45,15) (15,45,3) (45,45,45) 

(3,45,15) (9,45,27) (45,45,45) (3,45,15) 

(15,45,3) (45,45,45) (27,47,9) (15,45,3) 

(45,45,45) (3,45,15) (15,45,3) (45,45,45) 

(9,45,27) (27,45,9) (3,45,15) (9,45,27) 

(27,45,9) (15,45,3) (9,45,27) (27,45,9) 

(39,45,57) (51,45,63) (57,45,39) (39,45,57) 

(57,45,39) (39,45,57) (63,45,51) (57,45,39) 

(51,45,63) (21,45,21) (39,45,57) (51,45,63) 

(63,45,51) (57,45,39) (21,45,21) (63,45,51) 

(21,45,21) (63,45,51) (51,45,63) (21,45,21) 
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(9,45,27) (27,45,9) (21,45,21) (39,45,57) 

(27,45,9) (15,45,3) (63,45,51) (51,45,63) 

(3,45,15) (9,45,27) (51,45,63) (57,45,39) 

(9,45,27) (27,45,9) (21,45,21) (39,45,57) 

(15,45,3) (45,45,45) (57,45.39) (21,45,21) 

(9,45,45) (3,45,15) (39,45,57) (63,45,51) 

(21,45,21) (63,45,51) (27,45,9) (3,45,15) 

(51,45,63) (21,45,21) (9,45,27) (45,45,45) 

(63,45,51) (57,45,39) (15,45,3) (9,45,27) 

(39,45,57) (51,45,63) (3,45,15) (15,45,3) 

(57,45,39) (39,45,57) (45,45,45) (27,45,9) 
 

(57,45,39) (51,45,63) (63,45,51) 

(39,45,57) (21,45,21) (57,43,39) 

(63,45,51) (39,45,57) (21,45,21) 

(57,45,39) (51,45,63) (63,45,51) 

(51,45,63) (63,45,51) (39,45,57) 

(21,45,21) (57,45,39) (51,45,63) 

(45,45,45) (9,45,27) (15,45,3) 

(15,45,3) (3,45,15) (27,45,9) 

(3,45,15) (27,45,9) (45,45,45) 

(27,45,9) (45,45,45) (9,45,27) 

(9,45,27) (15,45,3) (3,45,15) 
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 We see K5 is a group of order 10 with 45 as the neutral 
element and (45, 45, 45) as the identity element. 

 Clearly K5 is a cyclic group of order 10 and (51, 45, 63) 
generates K5 that is (51, 45, 63)10  = (45, 45, 45). (55, 55, 55) is 
a neutrosophic triplet and there are no nontrivial triplets with 55 
as a neutral element. 

 Thus we see some neutral elements yield the collection of 
the neutrosophic triplets associated with that neutral element to 
be a cyclic group whereas others result in semigroups. 

 Here the neutral element 33 yields only a semigroup. 
Study in this direction is interesting and innovative. 

Example 1.21. Let S = {Z36, } be the semigroup under product 
modulo 36. The only idempotents of 36 are 9 and 28. (4, 28, 16) 
and (16, 28, 4) are neutrosophic triplets. (8, 28, 8) is a 
neutrosophic triplet. (28, 28, 28) is also a neutrosophic triplet. 

 Further (32, 28, 20) and (20, 28, 32) are neutrosophic 
triplets. 

 (21, 9, 21) is a neutrosophic triplet. 

 However it is difficult to find all neutrosophic triplets. 

 So the task finding all idempotents and neutrosophic 
triplets for elements in Zn where n = 4.32 = 22 32 or in general    
n = 22p where p is an odd prime happens to be a very difficult 
problem. 
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 Next we proceed onto give a open conjecture in this 
regard. 

Conjecture 1.4. Let S = {Zn, } where n = 22p2 where p is an 
odd prime be the semigroup under product modulo 22p2. 

i) Can S have more than two idempotents? 
ii) Find all nontrivial idempotents of 22p2. 
iii) Are they of the p2 and 4  q where q is a largest 

prime in 2 2p 2Z such that 4q < p2 22? 

 Next we proceed onto describe some more Zn for 
different n and derive some relations. 

Example 1.22.  Consider S = {Z105, } the semigroup under 
product modulo 105. 15, 21, 36, 70 and 91 are idempotents of 
105. 

 (3, 36, 12), (9, 36, 39), (27, 36, 48),  

 (81, 36, 51), (33, 36, 87), (99, 36, 99), 

 (6, 36, 6), (18, 36, 72), (54, 36, 24), 

 (57, 36, 78), (66, 36, 96), (93, 36, 102), 

 (69, 36, 69), (102, 36, 93), (96, 36, 66), 

 (78, 36, 57), (24, 36, 54), (72, 36, 18), 

 (87, 36, 33), (51, 36, 81), (48, 36, 27), 

 (39, 36, 9), (12, 36, 3), (7, 91, 28), (49, 91, 49), (28, 91, 
7) 

 (14,91,14), (91,91,91), (98,91,77), (77,91,98), (35,70,35) 
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 (70,70,70), (7,70,25), (49,70,100) etc. are some of the 
neutrosophic triplet groups. 

 We see the elements which contribute neutrosophic 
triplets happens to be a difficult job. However there are 5 
idempotents in Z105, 105 = 3  5  7. 

 We see finding idempotents and the related neutrosophic 
triplets happens to be difficult job if n = pqr where p, q and r are  
three distinct odd primes. 

 Even in case of n = 105 = 3  5  7 we find it difficult to 
find the neutrosophic triplets and the corresponding algebraic 
structure built on them. 

Example 1.23. Let S = {Z165, } be the semigroup under 
product modulo 165 = 3.5.11. 45  Z165 is an idempotent,        
45  45 = 45 (mod 165); 

55  55 = 55 (mod 165), 66  66 = 66 (mod 165), 

100  100 = 100 (mod 165), 111  111 = 111 (mod 165), 

121  121 = 21 (mod 165) and 130  130 = 130 (mod 165). 

(3, 111, 147) and (147, 111, 3) are neutrosophic triplets of S. 

(9, 111, 159) and (159, 111, 9) are neutrosophic triplets of S. 

(27, 111, 108) and (108, 111, 27) are neutrosophic triplets. 

(81, 111, 36) and (36, 111, 81) are neutrosophic triplets. 

(111, 111, 111) is a neutrosophic triplet. 

(10, 55, 22) and (22, 55, 10) are neutrosophic triplets. 

(100, 55, 154) and (154, 55, 100) are neutrosophic triplets. 
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(11, 66, 6) and (6, 66, 11) are neutrosophic triplets. 

(66, 66, 66), (36, 66, 121) and (121, 66, 36) are neutrosophic 
triplets. 

(51, 66, 11) and (11, 66, 51) are neutrosophic triplets. 

(141, 66, 121) and (121, 66, 141), (12, 111, 78)  

and (78, 111, 12) are neutrosophic triplets. 

(144, 111, 144) is a neutrosophic triplet. 

(21, 111, 21) is a neutrosophic triplet. 

(24, 111, 39) and (39, 111, 24) are neutrosophic triplets. 

We find it difficult to get all neutrosophic triplets. 

We propose the following conjecture. 

Conjecture 1.5. Let S = {Zn, } where n = pqr where p, q and r 
are three distinct odd primes. 

i) Find the number of idempotents in Zn. 
ii) Are these idempotents dependent on p, q and r? 
iii) Find the total number of neutrosophic triplets 

associated with Zn. 
iv) Does these number in (iii) dependent on n? 

Example 1.24. Let S = {Zn, } where n = 2.3.5.7 = 210 be a 
semigroup under product modulo 210. 

 15  15 = 225  15 (mod 210), 21  21  21 (mod 210), 

 36  36  36 (mod 210), 70 70  70 (mod 210), 

 85  85  85 (mod 210), 91  91  91 (mod 210), 
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 106  106  106 (mod 210), 105  105  105 (mod 210), 

 120  120  120 (mod 210), 126  126  126 (mod 210), 

 141  141  141 (mod 210), 175  175  175 (mod 210), 

 190  190  190 (mod 210), 196  196  196 (mod 210), 

 and 200  200  200 (mod 210). 

 We see there are 15 idempotents in Z210. 

 But o(Z210) = 210. 

 We just give a few neutrosophic triplets. We see if in Zn, 
n is a product of more number of primes and it also includes 2 
as a prime there are always a chance of getting more number of 
idempotents and neutrosophic triplets. 

(2, 106, 158) and (158, 106, 2) are neutrosophic triplets. 

(4, 106, 184) and (184, 106, 4) are neutrosophic triplets. 

(8, 106, 92) and (92, 106, 8) are neutrosophic triplets. 

(16, 106, 46) and (46, 106, 16) are neutrosophic triplets. 

(32, 106, 128) and (128, 106, 32) are neutrosophic triplets. 

(64, 106, 84) and (84, 106, 64) are neutrosophic triplets. 

(3, 141, 117) and (117, 141, 3) are neutrosophic triplets. 

(9, 141, 39) and (39, 141, 9) are neutrosophic triplets. 

(27, 141, 153) and (153, 141, 27) are neutrosophic triplets. 

(81, 141, 51) and (51, 141, 81) are neutrosophic triplets. 

(33, 141, 97) and (87, 141, 33) are neutrosophic triplets. 
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(99, 141, 117) and (117, 141, 99) are neutrosophic triplets. 

(5, 85, 185) and (185, 85, 5) are neutrosophic triplets. 

(25, 85, 205) and (205, 85, 25) are neutrosophic triplets. 

(125, 85, 125) is a neutrosophic triplet. 

(7, 70, 40) and (40, 70, 7) are neutrosophic triplets. 

(49, 70, 130) and (130, 70, 49) are neutrosophic triplets. 

(133, 70, 160) and (160, 70, 133) are neutrosophic triplets. 

(6, 36, 6) and (36, 36, 36) are neutrosophic triplets. 

(8, 106, 92) and (92, 106, 8) are neutrosophic triplets. 

(64, 106, 64) and (106, 106, 106) are neutrosophic triplets. 

(12, 36, 108) and (108, 36, 12) are neutrosophic triplets. 

(72, 36, 18) and (18, 36, 72) are neutrosophic triplets. 

 However even for this small value as Z210 finding all 
neutrosophic triplets happens to be a very challenging problem. 

We conjecture the following. 

Conjecture 1.6. Let {Zn, } = S be the semigroup under product 
modulo n. 

 Can we say if n is even S has more number of 
neutrosophic triplets and idempotents? 

Conjecture 1.7. Let S1 = {
1mZ , } where m1 = 2.p1 p2 … pt, pi’s 

distinct odd primes different from 3. 
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 Let m2 = 3p1p2… pt, distinct odd primes as in m1 only 2 is 
replaced by 3, where S2 = {

2mZ , }. 

i) Which of the semigroups S1 or S2 has more number 
of neutrosophic triplets? 

ii) Which of S1 or S2 has more number of idempotents? 
iii) Can we claim only S2 has more triplets? 

 We will give one example and conclude this chapter with 
some problems. 

Example 1.25. Let S1 = {
1mZ , } where m1 = 2.5.7 and           

S2 = {
2mZ , } where m2 = 3.5.7 be two semigroups under 

product modulo 70 and 105 respectively. 

The idempotents in Z70 are 

 75  75 = 15 (mod 70), 21  21 = 21 (mod 70) 

 35  35 = 35 (mod 70),36  36 = 36 (mod 70) 

 46  46 = 46 (mod 70), 50  50 = 50 (mod 70) and 

 56  56 = 56 (mod 70). 

There are 7 idempotents in Z70 = 
1mZ . 

 Now we find the idempotents of Z105 = 
2mZ . 

 15  15  15 (mod 105),  21  21  21 (mod 105), 

 36  36  36 (mod 105),  70  70  70 (mod 105),  
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 85  85  85 (mod 105) and 91  91  91 (mod 105). 

 We see Z70 = 
1mZ  has 7 idempotents where as Z105 = 

2mZ  

has only 6 idempotents. 

 So the number of neutrosophic triplets in case of Z70 will 
be more than that of Z105. To this effect we work out here. 

 (2, 36, 18) and (18, 36, 2) are neutrosophic triplets. 

 (4, 36, 44) and (44, 36, 4) are neutrosophic triplets. 

 (8, 36, 22) and (22, 36, 8) are neutrosophic triplets. 

 (16, 36, 46) and (46, 36, 16) are neutrosophic triplets. 

 (32, 36, 58) and (58, 36, 32) are neutrosophic triplets. 

 (64, 36, 64) and (36, 36, 36) are neutrosophic triplets. 

 (5, 15, 45) and (45, 15, 5) are neutrosophic triplets. 

 (25, 15, 65) and (65, 15, 25) are neutrosophic triplets. 

 (55, 15, 55) and (15, 15, 15) are neutrosophic triplets and 
(6, 36, 6) is a neutrosophic triplet. 

 (7, 21, 63) and (63, 21, 7) are neutrosophic triplets. 

 (49, 21, 49) and (21, 21, 21) are neutrosophic triplets. 

 (12, 36, 38) and (38, 36, 12) are neutrosophic triplets. 
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 (14, 56, 14) and (56, 56, 56) are neutrosophic triplets. 

 (24, 36, 54) and (54, 36, 24) are neutrosophic triplets. 

 (48, 36, 62) and (62, 36, 48) are neutrosophic triplets. 

 (66, 36, 26) and (26, 36, 66) are neutrosophic triplets. 

 (52, 36, 68) and (68, 36, 52) are neutrosophic triplets. 

 (34, 36, 34) is a neutrosophic triplet. 

 (40, 50, 10) and (10, 50, 40) are neutrosophic triplets. 

 (30, 50, 60) and (60, 50, 30) are neutrosophic triplets. 

 (20, 50, 20) and (50, 50, 50) are neutrosophic triplets. 

 We have given over 40 such neutrosophic triplets. 
Finding all of them happens to be a difficult one. 

 Now we find the neutrosophic triplets associated with 
Z105.  

 (3, 36, 12) and (12, 36, 3) are neutrosophic triplets. 

 (9, 36, 39) and (39, 36, 9) are neutrosophic triplets. 

 (27, 36, 48) and (48, 36, 27) are neutrosophic triplets. 

 (81, 36,51) and (51, 36, 81) are neutrosophic triplets. 

 (33, 36, 87) and (87, 36, 33) are neutrosophic triplets. 

 (99, 36, 99) and (36, 36, 36) are neutrosophic triplets. 
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 (6, 36, 6) is a neutrosophic triplet. 

 (18, 36, 72) and (72, 36, 18) are neutrosophic triplets. 

 (54, 36, 24) and (24, 36, 54) are neutrosophic triplets. 

 (57, 36, 78) and (78, 36, 57) are neutrosophic triplets. 

 (66, 36, 96) and (96, 36, 66) are neutrosophic triplets. 

 (93, 36, 102) and (102, 36, 93) are neutrosophic triplets. 

 (69, 36, 69) is a neutrosophic triplet. 

 (7, 91, 28) and (28, 91, 7) are neutrosophic triplets. 

 (49, 91, 49) and (91, 91, 91) are neutrosophic triplets. 

 (14, 91, 14) is a neutrosophic triplet. 

 (98, 91, 77) and (77, 91, 98) are neutrosophic triplets 

 (56, 91, 56) is a neutrosophic triplet. 

 (10, 85, 40) and (40, 85, 10) are neutrosophic triplets. 

 (100, 85, 25) and (25, 85, 100) are neutrosophic triplets. 

 (55, 85, 55) and  (20, 85, 20) are a neutrosophic triplets. 

 (95, 85, 65) and (65, 85, 95) are neutrosophic triplets. 

 (5, 85, 80) and (80, 85, 5) are neutrosophic triplets. 

 (50, 85, 50) is a neutrosophic triplet. 

 (25, 85, 100) and (100, 85, 25) are neutrosophic triplets. 

 Thus we see the number can be more in case of Z105 than 
Z70. 
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 Can we make a conclusion the larger the number the 
more number of neutrosophic triplets. 

 We see Z105
 has more neutrosophic triplets than Z70. 

Example 1.26. Let {Z48, } = S be the semigroup under product 
modulo 48. 48 = 24. 3. 

 The idempotents of Z48 are 16  16  (mod 48) is the only 
one idempotent in S. 

 (32, 16, 32) and (16, 16, 16) are the only neutrosophic 
triplets. 

 So if n = 24p, p a prime, we can say it has only one 
nontrivial neutrosophic triplet. 

Example 1.27. Let S = {Z162, } be the semigroup under 
product modulo 162. 

 The idempotent in S is 81  81  (mod 162). 

 Thus we have the following conjecture. 

Conjecture 1.8. Let S = {Zn, } where n = p4q where p and q 
are two different primes then p4 is the only idempotent of  4p qZ . 

 We have seen in case of Z48 (48 = 24. 3) and Z162          
(162 = 34.2) for 16 and 81 are the idempotents respectively. 
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 Thus if we want more idempotents we need to take n in 
Zn to be the product of more number of primes. 

 We give some more examples. 

Example 1.28. Let S = {Z100, } be the semigroup under 
product modulo 100. 

 We see the idempotents of Z100 are 25  25 = 25 (mod 
100) 

 76  76  76 (mod 100) are the only two idempotents. 

 Thus can we say 2p2 where p is an odd prime then Zn, n = 
22p2 has only two idempotents. 

Example 1.29. Let S = {Z225, } be the semigroup under 
product modulo 225 = 9  25 = 32  52. 

 To find all the idempotents associated with Z225 

 100  100 = 100 (mod 225) and 

 126  126  126 (mod 225). 

 Thus Z225 has only two nontrivial idempotents. 

 Thus we conjecture. 

Conjecture 1.9. If {Zn, } be a semigroup under product 
modulo n with n = p2 q2, p and q are two distinct primes than Zn 
has only two distinct idempotents.  
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 When we work with Zn, n = p3 q3 where p and q two 
distinct primes we study the idempotents in them  by some 
examples. 

Example 1.30. Let S = {Z216, } be the semigroup under 
product under modulo 216, 216 = 23 . 33. 

 The idempotents of S are 81  81  81 (mod 215) and 

 136  136  136 (momd 216). 

Hence we face the same problem as that of 2 2p qZ  only two 

idempotents even in case of p3q3. 

Example 1.31. Let S = {Z80, } be the semigroup under  
modulo 80. 

 16  16 = 16 (mod 80)  and 65  65  65 (mod 80). 

S has only two idempotents. 

 In view of this we just conjecture the following. 

Conjecture 1.10. Let S = {Zn, } be the semigroup under 
product where n = pt qs where p and q are primes (t and s) are 
positive integers greater than or equal to 2). 

i) Can Zn have more than two idempotents? 
ii) Find all neutrosophic triplets associated with S. 
iii) Do they form a group under ? 
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Example 1.32. Let S = {Z84, } be a semigroup under product 
modulo 84. 

The idempotents in Z84 are 

36  36  36 (mod 84), 21   21 21 (mod 84) 

28  28  28 (mod 84), 49  49  49 (mod 84) 

57  57  57 (mod 84) and 64  64  64 (mod 84). 

(4, 64, 16) and (16, 64, 4) are neutrosophic triplets. 

(3, 57, 75) and (75, 57, 3) are neutrosophic triplets. 

(9, 57, 81) and (81, 57, 9) are neutrosophic triplets. 

(27, 57, 27) and (57, 57, 57) are neutrosophic triplets. 

(12, 64, 12) is a neutrosophic triplet. 

(48, 64, 24) and (24, 64, 48) are neutrosophic triplets. 

(12, 36, 24) and (24, 36, 12) are neutrosophic triplets. 

(60, 36, 72) and (72, 36, 60) are neutrosophic triplets. 

(48, 36, 48) and (36, 36, 36) are neutrosophic triplets. 

(20, 64, 20) is a neutrosophic triplet. 

(32, 64, 44) and (44, 64, 32) are neutrosophic triplets. 

(52, 64, 40) and (40, 64, 52) are neutrosophic triplets. 

(56, 64, 76) and (76, 64, 56) are neutrosophic triplets. 

(68, 64, 80) and (80, 64, 68) are neutrosophic triplets. 

The reader is left with the task of finding all the 
neutrosophic triplets. 
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 We see some idempotents gives more neutrosophic triplet 
groups than others. 

 There must be some number theoretic arguments related 
with them. 

 (7, 49, 7) and (49, 49, 49) are neutrosophic triplets. 

 (15, 57, 15) is a neutrosophic triplet. 

 (45, 57, 33) and (33, 57, 45) are neutrosophic triplets. 

 (35, 49, 35) is a neutrosophic triplet. 

 (77,49,77) is a neutrosophic triplet. 

 We are forced to think that there are elements x in Z84 for 
which there are neutral but has no anti x. Such study happens to 
be challenging and innovative. 

 It is a open problem to find which values will yield more 
number neutrosophic triplets. 

Example 1.33. Let S = {Z51, } be the semigroup under product 
modulo 15. 

 18  18  18 (mod 51) and 34  34  34 (mod 51) are the 
only idempotents 

 (3, 18, 6) and (6, 18, 6) are neutrosophic triplets. 

 (9, 18, 36) and (36, 18, 9) are neutrosophic triplets.  

 (27, 18, 12) and (12, 18, 27) are neutrosophic triplets. 
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 (30, 18, 21) and (21, 18, 30) are neutrosophic triplets. 

 (39, 18, 24) and (24, 18, 39) are neutrosophic triplets. 

 (15, 18, 42) and (42, 18, 15) are neutrosophic triplets. 

 (45, 18, 48) and (48, 18, 45) are neutrosophic triplets. 

 (33, 18, 33) and (18, 18, 18) are neutrosophic triplets. 

 There are 16 neutrosophic triplets associated with 18. 

 34 does not induce any neutrosophic triplet. 

Example 1.34. Let S = {Z34, } be the semigroup under product. 
The idempotents of S are 17  17  17 (mod 34) and 18  18  
18 (mod 34). 

 (2, 18, 26) and (26, 18, 2) are neutrosophic triplets. 

 (4, 18, 30) and (30, 18, 4) are neutrosophic triplets. 

 (8, 18, 32) and (32, 18, 8) are neutrosophic triplets. 

 (16, 18, 16) and (18, 18, 18) are neutrosophic triplets. 

 (6, 18, 20) and (20, 18, 6) are neutrosophic triplets. 

 (12, 18, 10) and (10, 18, 12) are neutrosophic triplets. 

 (24, 18, 22) and (22, 18, 24) are neutrosophic triplets. 
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 (14, 18, 28) and (28, 18, 14) are neutrosophic triplets. 

 There are exactly 16 neutrosophic triplets for Z51. 

Example 1.35.  Let S = {Z95, } be a semigroup under product 
modulo 85, 85 = 17  5. 

 51  51  51 (mod 85) and 35  35  35 (mod 85) are the 
idempotents of Z85. 

 (5, 35, 75) and (75, 35, 5) are neutrosophic triplets. 

 (25, 35, 15) and (15, 35, 25) are neutrosophic triplets. 

 (40, 35, 20) and (20, 35, 40) are neutrosophic triplets. 

 (30, 35, 55) and (55, 35, 30) are neutrosophic triplets. 

 (65, 35, 45) and (45, 35, 65) are neutrosophic triplets. 

 (70, 35, 60), (60, 35, 70) and (35, 35, 35) are 
neutrosophic triplets of 35. 

 (10, 35, 80) and (80, 35, 10) are neutrosophic triplets. 

 (50, 35, 50) is a neutrosophic triplet. 

 (17, 51, 68) and (68, 51, 17) are neutrosophic triplets. 

 (34, 51, 34) and (51, 51, 51) are neutrosophic triplets. 
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There are 20 neutrosophic triplets together with (0, 0, 0) as its 
trivial neutrosophic triplet. 

 We see H = {(5, 35, 75), (75, 35, 5), (25, 35, 15), (15, 35, 
25), (40, 35, 20), (20, 35, 40), (30, 35, 55), (55, 35, 30), (65, 35, 
45), (45, 35, 65), (70, 35, 60), (60, 35, 70), (10, 35, 80), (80, 35, 
10), (50, 35, 50) and (35, 35, 35)} are the neutrosophic triplets 
associated with the idempotent 35 which serves as the  neutral 
elements of this collection. 

 Infact H under  is a cyclic group of order 16 with (35, 
35, 35) as the identity element. 

 For (5, 35, 75)  H we have (5, 35, 75)  (5, 35, 75) = 
(25, 35, 15). 

 (5, 35, 75)3 = (40, 35, 20), (5, 35, 75)4 = (30, 35, 55) 

 (5. 35, 75)5 = (65, 35, 45), (5, 35, 75)6 = (70, 35, 60) 

 (5, 35, 75)7 = (10, 35, 80), (5, 35, 75)8 = (50, 35,50) 

 (5, 35,75)9 = (80, 35, 10), (5, 35,75)10 = (60, 35, 70) 

 (5, 35, 75)11 = (45, 35, 65), (5, 35,75)12 = (55, 35, 30) 

 (5, 35, 75)13 = (20, 35, 40), (5, 35, 75)14 = (15, 35,40) and 

 (5, 35, 75)15 = (75, 35, 5) and (5, 35,75)16 = (35, 35, 35). 

Hence the claim. 

 K = {(17, 51, 68), (68, 51, 17), (51, 51, 51), (34, 51, 34)} 
is a cyclic group of order four. 

 (17, 51, 68)2 = (34, 51, 34), (17, 51, 68)3 = (68, 51, 17), 
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and (17, 51, 68)4 = (51, 51, 51). 

We see  H  K = {(0, 0, 0)}. 

  P = H  = {H  K  {(0, 0, 0)}}. 

 Infact P is a semigroup of order 21 and it is not a monoid 
but P is a Smarandache semigroup. 

Example 1.36. Let S = {Z55, } be the semigroup under product 
modulo 55. 

 The idempotents of Z55 are 11  11  11 (mod 55) and 45 
 45  45 (mod 55). 

 (5, 45, 20) and (20, 45, 5) are neutrosophic triplets. 

 (25, 45, 15) and (15, 45, 25) are neutrosophic triplets. 

 (10, 45, 10) and (45, 45, 45) are neutrosophic triplets. 

 (22, 11, 33) and (33, 11, 22) are  neutrosophic triplets 

 (44, 11, 44) and (11, 11, 11) are neutrosophic triplets. 

 (30, 45, 40) and (40, 45, 30) are neutrosophic triplets. 

 (35, 45, 50) and (50, 45, 35) are neutrosophic triplets. 

 There are 14 neutrosophic triplets. We see H = {(5, 45, 
20), (20, 45, 5), (25, 45, 15), (15, 45, 25), (30, 45, 40), (40, 45, 
30), (35, 45, 50), (50, 45, 35), (10, 45, 10) and (45, 45, 45)} is a 
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neutrosophic triplet cyclic group with (45, 45, 45) as the identity 
(35, 45, 50)10 = (45, 45 45). 

 K = {(22, 11, 33), (33, 11 22), (44, 11, 41), (11, 11, 11)} 
is a cyclic group of order four (22, 11, 33)4 = (11, 11, 11). 

 H  K = {(0, 0, 0)}. 

 H  K = {H  K  {(0, 0, 0)}} = W, 

W is only a semigroup of order 15 and W is not a monoid but a 
Smarandache semigroup. 

Example 1.37. Let S = {Z35, } be the semigroup under product 
modulo 15. 

 The idempotents of Z35 are 15  15  15 (mod 35) and 21 
 21  21 (mod 35). 

 (5, 15, 10) and (10, 15, 5) are neutrosophic triplets. 

 (25, 15, 30) and (30, 15, 25) are neutrosophic triplets. 

 (20, 15, 20) and (15, 15, 15) are neutrosophic triplets. 

 (7, 21, 28) and (28, 21, 7) are neutrosophic triplets. 

 (14, 21, 14) and (21, 21, 21) are neutrosophic triplets. 

 H = {(5, 15, 10), (10, 15, 15), (25, 25, 30), (30, 15, 25), 
(20, 15, 20), (15, 15, 15)} is a cyclic group of order six. 

 (5, 15, 10)6 = (15, 15, 15) as (15, 15, 15) acts as the 
identity element of H. 
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 K = {(7, 21, 28), (28, 21, 7), (14, 21, 14), (21, 21, 21)} is 
again a cyclic group of order four with (21, 21, 21) as its 
identity. K is also a cyclic group of order four. 

 We see H  K = {(0, 0, 0)}. 

 H  K = {H  K  {(0, 0, 0)}} is only a semigroup not 
even a monoid of order 11. 

Example 1.38. Let S = {Z143, } be the semigroup under 
product modulo 143 = 11  13. 

 The idempotents of Z143 are 66  66  66 (mod 143) and 
78  78  78 (mod 143). 

 (11, 66, 110) and (110, 66, 11), are neutrosophic triplets. 
 (121, 66, 88) and (88, 66, 121) are neutrosophic triplets. 
 (44, 66, 99) and (99, 66, 44) are neutrosophic triplets. 
 (55, 66, 22) and (22, 66, 55) are neutrosophic triplets. 
 (33, 66, 132) and (132, 66, 33) are neutrosophic triplets. 
 (77, 66, 77) and (66, 66, 66) are neutrosophic triplets. 
 (13, 78, 39) and (39, 78, 13) are neutrosophic triplets. 
 (26, 78, 91) and (91, 78, 26) are neutrosophic triplets. 
 (52, 78, 117) and (117, 78, 52) are neutrosophic triplets. 
 (104, 78, 130) and (130, 78, 104) are neutrosophic 
triplets. 
 (65, 78, 65) and (78, 78, 78) are neutrosophic triplets. 

 Infact we see there are two cyclic groups H and K which 
are of order 12 and 10 respectively where 



62 Neutrosophic Triplets Groups and their Applications … 
 

 H = {(11, 66, 110), (110, 66, 11), (121, 66, 88), (88, 66, 
121), (44, 66, 99), (99, 66, 44), (55, 66, 22), (22, 66, 55), (33, 
66, 132), (132, 66, 33), (77, 66, 77) and (66, 66, 66)} and  

K = {(13, 78, 39), (39, 78, 13), (91, 78, 26), (26, 78, 91), (52,78, 
117), (117, 78, 52), (104, 78, 130), (130, 78, 104), (65, 78, 65), 
(78, 78, 78)}. 

 Clearly H  K = {(0, 0, 0)} H  K = {H  K  {(0, 0, 
0)} = P is only a semigroup infact a Smarandache semigroup 
and not a monoid. 

 In view of all these we propose a conjecture as well as 
prove a theorem. 

Theorem 1.1. Let S = {Zpq, p and q are two distinct prime, } be 
the semigroup under  modulo pq. 

i) S has only two idempotents given by mp and nq (m 
and n  Zpq \ {p, q}) such that they are neutrals. 

ii) S has two cyclic groups H and K using the neutrals 
mp and nq of order q – 1 and p – 1 respectively. 

iii) H  K = {(0, 0, 0)}. 

iv) P = {H  K  {(0, 0, 0)}} is a only a semigroup 
which is not a monoid. 

v) P is a S-semigroup. 

Proof is direct and hence left as an exercise to the reader. 

 Now we propose the conjecture. 
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Conjecture 1.11. Let S = {Zpq, , p and q two distinct primes} 
be the semigroup under product modulo pq. 

i) Prove Zpq has only two idempotents. 

ii) np and mq are two idempotents find m and n in 
terms of p or q. 

Example 1.39. Let S = {Z105, } be the semigroup under 
product modulo 105 = 3.5.7. 

 The idempotents of Z105 are 15  15  = 15 (mod 105), 

 21  21 = 21 (mod 105),  36  36 = 36 (mod 105) 

 70  70  70 (mod 105),  85  85 = 85 (mod 105) 

  and 91  91 = 91 (mod 105). 

 (3, 36, 12) and (12, 36, 3) are neutrosophic triplets. 

 (9, 36, 39) and (39, 36, 9) are neutrosophic triplets. 

 (27, 36, 48) and (48, 36, 27) are neutrosophic triplets. 

 (81, 36, 51) and (51, 36, 81) are neutrosophic triplets. 

 (33, 36, 87) and (87, 36, 33) are neutrosophic triplets. 

 (99, 36, 99) and (36, 36, 36) are neutrosophic triplets. 

 (6, 36, 6) is a neutrosophic triplet. 

 (18, 36, 72) and (72, 36, 18) are neutrosophic triplets. 

 (54, 36, 24) and (24, 36, 54) are neutrosophic triplets. 

 (57, 36, 78) and (79, 36, 57) are neutrosophic triplets. 

 (66, 36, 96) and (96, 36, 66) are neutrosophic triplets. 

 (93, 36, 102) and (102, 36, 93) are neutrosophic triplets. 



64 Neutrosophic Triplets Groups and their Applications … 
 

 (69, 36, 69) is a neutrosophic triplet. 

 (30, 15, 60) and (60, 15, 30) are neutrosophic triplets. 

 (42, 21, 63) and (63, 21, 42) are neutrosophic triplets. 

 (84, 21, 84) and (21, 21, 21) are neutrosophic triplets. 

 (45, 15, 75) and (75, 15, 45) are neutrosophic triplets. 

 (90, 15, 90) and (15, 15, 15) are neutrosophic triplets. 

 (5, 85, 80) and (80, 85, 5) are neutrosophic triplets. 

 (25, 85, 100) and (100, 85, 25) are neutrosophic triplets. 

 (20, 85, 20) and (85, 85, 85) are neutrosophic triplets. 

 (10, 85, 40) and (40, 85, 10) are neutrosophic triplets. 

 (50, 85, 50) is a neutrosophic triplet. 

 (95, 85, 65) and (65, 85, 95) are neutrosophic triplets. 

 (55, 85, 55),  (7, 91, 28) and (28, 91, 7) are neutrosophic 
triplets. 

 (49, 91, 49) and (91, 91, 91) are neutrosophic triplets 

 (14, 91, 14) is a neutrosophic triplet. (98, 91, 77) and (77, 
91, 98) are neutrosophic triplets. 

 (56, 91, 56) is a neutrosophic triplet. (70, 70, 70), (35, 70, 
50) and (50, 70, 35) are neutrosophic triplets. 

 There are six idempotents in Z105, leading to six distinct 
cyclic groups of neutrosophic triplets given by 

 K1 = {(50, 70, 35), (35, 70, 50), (70, 70, 70)}. 

 K2 = {(7, 98, 25), (28, 91, 7), (49, 91, 49), (91, 91, 91), 
(14, 91, 14), (98, 91, 77), (77, 91, 98), (56, 91, 56)}. 
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 K3 = {(45, 15, 75), (75, 15, 45), (90, 15, 90), (15, 15, 15), 
(30, 15, 60), (60, 15, 30)}. 

 K4 =  {(55, 85, 55), (65, 85, 95), (95, 85, 65), (50, 85, 50), 
(10, 85, 40), (40, 85, 10), (20, 85, 20), (85, 85,  85), (25, 85, 
100), (100, 85, 25), (5, 85, 80), (80, 85, 5)}. 

 K5 = {(3, 36, 12), (12, 36, 3), (9, 36, 39), (39, 36, 9), (27, 
36, 48), (48, 36, 27), (81, 36, 51), (51, 36, 81), (33, 36, 87), (87, 
36, 33), (99, 36, 99), (36, 36, 36), (6, 36, 6), (18, 36, 72), (72, 
36, 18), (54, 36, 24), (24, 36, 54), (57, 36, 78), (78, 36, 57), (66, 
36, 99), (99, 36, 66), (93, 36, 102), (102, 36, 93), (69, 36, 69)} 
and  

K6 = {(42, 21, 63), (63, 21, 42), (84, 21, 84), (21, 21, 21)} are 
the groups of neutrosophic triplets. 

 K6  K3 = {(0, 0, 0)}, K3  K5 = K3 

 K3 K1 = {(0, 0, 0)}, K3  K4 = K3 and 

 K3  K2 = {(0, 0, 0)}. 

 K6  K5 = K6. 

 K6  K1 = {(0, 0, 0)}, K6  K2 = K6 and 

 K6  K4 = {(0, 0, 0)}. 

 K5  K4 = K3. 

 K5  K2 = K6 and K5  K1 = {(0, 0 ,0)}. 

 K4  K2 = K1 K4  K1 = K3 and K2  K1 = K1. 

These six groups behave only in the way described above. 
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Thus if P = K1 K2  K3  K4  K5  K6  {(K1  

K2   K3  K4  K5 K6} and P will only be a 

semigroup and not a monoid. 

However P will be a Smarandache semigroup. 

If in Zn, n is a product of three distinct odd primes then 

we see there are 6 groups of neutrosophic triplets such that 

K1  Kj = {(0, 0, 0)}, if i  j, 1  i, j  6, n = 105 = 3.5.7. 

Example 1.40. Let S = {Z165, } be the semigroup under  

modulo 165. 

The idempotents of Z165 are 

55  55 = 55 (mod 165), 45  45  45 (mod 165) 

66  66 = 66 (mod 165), 100  100 = 100 (mod 165) and 

121  121 = 121 (mod 165), 111  111 = 111 (mod 165). 

(3, 111, 147) and (147, 111, 3) are neutrosophic triplets. 

(9, 111, 159) and (159, 111, 9) are neutrosophic triplets. 

(27, 111, 108) and (108, 111, 27) are neutrosophic triplets. 

(81, 111, 36) and (36, 111, 81) are neutrosophic triplets. 

(78, 111, 12) and (12, 111, 78) are neutrosophic triplets. 
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(69, 111, 114) and (114, 111, 69) are neutrosophic triplets. 

(42, 111, 93) and (93, 111, 42) are neutrosophic triplets. 

(126, 111, 141) and (141, 111, 126) are neutrosophic triplets. 

(48, 111, 102) and (102, 111, 48) are neutrosophic triplets. 

(144, 111, 144) and (111, 111, 111) are neutrosophic triplets. 

(6, 111, 156) and (156, 111, 6) are neutrosophic triplets. 

(18, 111, 162) and (162, 111, 18) are neutrosophic triplets. 

(54, 111, 54) is a neutrosophic triplet. 

(5, 100, 20) and (20, 1000, 5) are neutrosophic triplets. 

(25, 100, 70) and (70, 100, 25) are neutrosophic triplets. 

(125, 100, 80) and (80, 100, 125) are neutrosophic triplets. 

(130, 100, 115) and (115, 100, 130) are neutrosophic triplets. 

(155, 100, 155) and (100, 100, 100) are neutrosophic triplets. 

(10, 100, 10) is a neutrosophic triplet.  

(50, 100, 35) and (35, 100, 50) are neutrosophic triplets. 

(85, 100, 40) and (40, 100, 85) are neutrosophic triplets. 

(95, 100, 140) and (140, 100, 95) are neutrosophic triplets. 

(145, 100, 160) and (160, 100, 145) are neutrosophic triplets. 

(65, 100, 65) is a neutrosophic triplet. 
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(15, 45, 69) and (69, 45, 45) are neutrosophic triplets. 

(60, 45, 141) and (141, 45, 60) are neutrosophic triplets. 

(75, 45, 159) and (159, 45, 75) are neutrosophic triplets. 

(135, 45, 81) and (81, 45, 135) are neutrosophic triplets. 

(22, 66, 33) and (33, 66, 22) are neutrosophic triplets. 

(99, 66, 154) and (154,66, 99) are neutrosophic triplets. 

(132, 66, 88) and (88, 66, 132) are neutrosophic triplets with 66 
as the neutral element. (66, 66, 66) is a neutrosophic triplet, 
which acts as the identity for all elements with 66 as the 
neutrosophic element. 

The reader is left with the task of finding whether the set  

{(66, 66, 66), (88, 66, 132), (132, 66, 88), (154, 66, 99), (99, 66, 
154), (22, 66, 33), (33, 66, 22)}  

forms an abelian group with (66, 66, 66) as the multiplicative 
identity modulo 165. 

 Further the reader is left with the task of finding the 
largest neutrosophic triplet groups using Z165. 

 It is conjectured that larger the number idempotents in Zn 
the bigger is the neutrosophic triplets collection. 

Conjecture 1.12. Let S = {Zn, } where n = 3m where is of the 
form pq where p and q are odd primes different from 3. 

 Can we say Zn has only six idempotents? 
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 We see in case of n1 = 105 and n2 = 165 where  

n1 = 3  5  7 and n2 = 3  5  11 has only 6 idempotents. 

  Now we study the case when one of p and q is also 3 first 
by an example. 

Example 1.41.  Let S = {Z45, } be the semigroup under product 
modulo 45. 

 The idempotents of Z45 are  

 10  10 = 10 (mod 45) and 36  36  36 (mod 45). 

Clearly we see if n = 32  p where p is a prime then Zn has only 
two idempotents as 45 = 32  5. 

 The neutrosophic triplets associated with the idempotents 
10 and 36 are as follows. 

 (5, 10, 20) and (20, 10, 5) are neutrosophic triplets 
associated with the idempotent 10 of Z45. 

 (25,10, 40) and (40, 10, 25) are also neutrosophic triplets 
associated with the idempotent 10. 

 (35, 10, 35) and (10, 10, 10) are neutrosophic triplets. 

 We first find the algebraic structure enjoyed by the set     
K = {(10, 10, 10), (35, 10, 35), (25, 10, 40), (40, 10, 25), (5, 10, 
20) and (20, 10, 5)} under product modulo 45.  

We construct the table of product in the following. 
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 (10,10,10) (35,10,35) (25,10,40) 

(10,10,10) (10,10,10) (35,10,35) (25,10,40) 

(35,10,35) (35,10,35) (10,10,10) (20,10,5) 

(25,10,40) (25,10,40) (20,10,5) (40,10,25) 

(40,10,25) (40,10,25) (5,10,20) (10,10,10) 

(5,10,20) (5,10,20) (40,10,25) (35,10,35) 

(20,10,5) (20,10,5) (25,10,40) (5,10,20) 

(40,10,25) (5,10,20) (20,10,5) 

(40,10,25) (5,10,20) (20,10,5) 

(5,10,20) (40,10,25) (25,10,40) 

(10,10,10) (35,10,35) (5,10,20) 

(25,10,40) (20,10,5) (35,10,35) 

(20,10,5) (25,10,40) (10,10,10) 

(35,10,35) (10,10,10) (40,10,25) 

Clearly K is a group of order six and (10, 10, 10) acts as 
the identity element. 

Now we find the neutrosophic triplets associated with 36. 

J = {(36, 36, 36), (9, 36, 24), (24, 36, 9), (18, 36, 12), (12, 
36, 18)}. 

Infact we find it difficult to find for 3, 6, 15, 27, 30, 33, 
39 and 42 anti elements however we have in some cases neutral 
elements, we shall define for those elements which  has neutral 
elements but no anti element.  
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Such study is very different and difficult from usual 
neutrosophic triplet groups so we define only for those elements 
which has only neutrals but has no anti element so in case of 
these we define them to be duplets. They are called Neutrosophic 
Duplets and were introduced by Smarandache [23 - 25] in 2016.

We will illustrate them by some examples. 

Example 1.42.  Let S = {Z45, } be the semigroup under 
product modulo 45. We see the element 15 is a duplet with 
neutral element 10. 

Interested reader can find whether such pair exist. 

Study in this direction is innovative and interesting. 

We define now duplet element of a semigroup. 

Definition 1.4 Let S = {Zn, } be the semigroup under . 

Let n1 and n2 be any two neutral elements of Zn if there is 
an element x  Zn with xn1 = n1x = x that is ni is a neutral 
element of Zn and if there does exist a y  Zn with x  y = y  x 
= n1 then we define {x, n1} to be the duplet. 

Interested reader can characterize such duplets. 

Theorem 1.2.  Let S = {Z2p, } be the semigroup under product 

modulo 2p, p a prime. S does not contribute to duplets. 

Proof. Follows from the very fact that the neutral elements of 
Z2p for any p a prime has neutrosophic triplet groups associated 
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with it. Hence Z2p has no duplets. The elements p and p + 1 
are the neutral elements of Z 2p. 

Now we show if n = 22. 3 or n = 32  2 then that Zn 
has non trivial duplets. 

Example 1.43. Let S = {Z12, } be the semigroup under product 
modulo 12. 

The neutral elements of Z12 are 4 and 9. 

We give the elements which contribute to the 
neutrosophic triplet groups; (8, 4, 8), (4, 4, 4), (3, 9, 3) and (9, 9, 
9). 

(15, 9, 6) and (6, 9, 15) are neutrosophic triplet groups. 

Example 1.44. Let S = {Z18, } be the semigrouop under 
product. 9 and 10 are the only idempotents (2, 10, 4) is a 
neutrosophic triplet. (4, 10, 16) is also a triplet. (8, 10, 8) and 
(10, 10, 10) are again neutrosophic triplets groups. 

3 does not contribute to neutrosophic triplet group for 3  
10  12 (mod 18) and 3  9  9 (mod 18). 

However we define (3, 9, 3) as quasi neutrosophic triplet 
group. For 9 does not act as a neutral element of 3 but acts as a 
element which converts it to 9 and the anti of 3 is itself. 

Now consider 6  Z18, (6, 10) is only a duplet for 6x = 10 
for  and x. (12, 10) is again a duplet. 

(15, 9, 15) is again a quasi neutrosophic triplet as 
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15  9  9 (mod 18) and 15  15 = 9 (mod 18). 

Thus the semigroup {Z18, } where 18 = 2  32 behaves in a 
unique way. 

This has neutrosophic trplet groups given by the neutral 
element 10 which is as follows.  

A = {(10, 10, 10), (8, 10,8), (2, 10,14), (14,10, 2), (4, 10, 
16) and (16, 10, 4)} order of A is 8. This  has two quasi
neutrosophic triplets given by B = {(9, 9, 9), (3, 9, 3) and (15, 9, 
15).  Order of B is three. 

This has duplets given by C = {(12,10) and (6, 10)}.  We 
will first test whether A forms a group under component wise 
multiplication modulo 18. 

We construct the table for A in the following. 

 (10, 10, 10) (2, 10, 14) (14, 10, 2) 

(10, 10, 10) (10, 10, 10) (2, 10, 14) (14, 10, 2) 

(2, 10, 14) (2, 10, 14) (4, 10, 16) (10, 10, 10) 

(14, 10, 2) (14,10, 2) (10, 10, 10) (16, 10, 4) 

(4, 10, 16) (4, 10, 16) (8, 10, 8) (2, 10, 4) 

(16, 10, 4) (16, 10, 4) (14, 10, 2) (8, 10, 8) 

(8, 10, 8) (8, 10, 8) (16, 10, 4) (4, 10, 16) 
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(4,10,16) (16, 10, 4) (8, 10, 8) 

(4, 10, 16) (16, 10, 4) (8, 10, 8) 

(8, 10, 8) (14, 10, 2) (16, 10, 4) 

(2, 10, 14) (8, 10, 8) (4, 10, 16) 

(16, 10, 4) (10, 10, 10) (14, 10, 2) 

(10, 10, 10) (4, 10, 16) (2, 10, 14) 

(14, 10, 2) (2, 10, 14) (10, 10, 10) 

Clearly A is an abelian group under product modulo 18. 
We will first test whether A is a cyclic group and if so find the 
generator of A. 

Consider (2, 10, 14) we first  find 

(2, 10, 14)  (2, 10, 14) (mod 18) 

= (4, 10, 16) = (2, 10, 14)2. 

We find (2, 10, 14)3 = (4, 10, 16)  (2, 10, 14) = (8, 10, 8). 

Next we find (2, 10, 14)4 =  (8, 10, 8)  (2 10, 14) = (16, 10, 4). 

Now (2, 10, 14)5 = (16, 10, 4)  (2, 10, 14) = (14, 10, 2). 

Finally (2, 10, 14)5 = (14, 10, 2)  (2, 10, 14) = (10, 10, 10). 

Thus (2, 10, 14) generates A, hence A is a cyclic group of order 
6.
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It is clearly seen that B and C are not even closed under 
product. 

In view of all these we find the neutrosophic triplet 
groups, duplets and quasi neutrosophic triplets of {Z50 }. 

Example 1.45. Let S = {Z50, } be the semigroup under product 
modulo 50. Clearly 50 = 2  52. 

The idempotents of Z50 are 25 and 26. 

Now we find the collection of neutrosophic triplet groups 
associated with the neutral element 26. 

(2, 26, 38) and (38, 26, 2) are neutrosophic triplet groups. 

(4, 26, 44) and (44, 26, 4) are neutrosophic triplet groups. 

(8, 26, 22) and (22, 26, 8) are neutrosophic triplet groups. 

(16, 26, 36) and (36, 26, 16) are neutrosophic triplet 
groups. 

(32, 26, 18) and (18, 26, 32) are neutrosophic triplet 
groups. 

(14, 26, 34) nd (34, 26, 14) are neutrosophic triplet 
groups. 

(28, 26, 42) and (42, 26, 28) are neutrosophic triplet 
groups. 

(6, 26, 46) and (46, 26, 6) are neutrosophic triplet groups. 
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(12, 26, 48) and (48, 26, 12) are neutrosophic triplet 
groups. 

(24, 26, 24) and (26, 26, 26) are neutrosophic triplet 
groups. 

(10, 26) is a duplet. 

(15, 25, 15) is a quasi neutrosophic triplet group. 

(20, 26) is a duplet. 

(30, 26) is a duplet. 

(40, 26) is a duplet. 

(35, 25, 35) is a quasi neutrosophic triplet group. 

(45, 25, 45) is a quasi neutrosophic triplet group. 

(25, 25, 25) is a trivial neutrosophic triplet group or a 
quasi neutrosophic triplet group. 

It is pertinent to record all non units of Z50 either form 
neutrosophic triplet groups or quasi neutrosophic triplet groups 
or duplet. 

Now we test the probable algebraic structure enjoyed by 
these three groups neutrosophic triplet groups, quasi 
neutrosophic triplet groups and duplets. 

Let X = {(26, 26, 26), (2, 26, 38), (38, 26, 2), (4, 26, 44), 
(44, 26, 4), (8, 26, 22), (22, 26, 8), (16, 26, 36), (36, 26, 16), 
(32, 26, 18), (18, 26, 32), (14, 26, 34), (34, 26, 14), (28, 26, 42), 
(42, 26, 28), (6, 26, 46), (46, 26, 6), (12, 26, 48), (48, 26, 12) 
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 and (24, 26, 24)} be the collection of all neutrosophic triplet 
group. 

Y = {(10, 26), (20, 26), (30, 26) and (40, 26)} be 
the  collection of all neutrosophic duplets. 

Z = {{15, 25, 15), (5, 25, 5), (25, 25, 25), (35, 25, 35) and 
(45, 25, 45)} be the collection of all quasi neutrosophic triplet 
groups. 

We first find the table of Z under product modulo 50. 

 (15, 25, 15) (25, 25, 25) 

(15, 25, 25) (25, 25, 25) (25, 25, 25) 

(25, 25, 25) (25, 25, 25) (25, 25, 25) 

(35, 25, 35) (25, 25, 25) (25, 25, 25) 

(45, 25, 45) (25, 25, 25) (25, 25, 25) 

(5, 25, 5) (25, 25, 25) (25, 25, 25) 

(35,25, 35 (45, 25, 45) (5, 25, 5) 

(25, 25, 25) (25, 25, 25) (25, 25, 25) 

(25, 25, 25) (25, 25, 25) (25, 25, 25) 

(25, 25, 25) (25, 25, 25) (25, 25, 25) 

(25, 25, 25) (25, 25, 25) (25, 25, 25) 

(25, 25, 25) (25,25, 25) (25, 25, 25) 

This Z forms a unique type of semigroup where all 
products lead (25, 25, 25). 
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Infact Z is a unique type of monoid under product modulo 
50. 

Now we find the algebraic structure enjoyed by Y. The 
table for Y  (0, 26) is as follows. 

 (10, 26) (20, 26) (30,26) (40,26) (0, 26) 

(10, 26) (0, 26) (0, 26) (0, 26) (0, 26) (0, 26) 

(20, 26) (0, 26) (0, 26) (0, 26) (0, 26) (0, 26) 

(30, 26) (0, 26) (0, 26) (0, 26) (0, 26) (0, 26) 

(40, 26) (0, 26) (0, 26) (0, 26) (0, 26) (0, 26) 

(0, 26) (0, 26) (0, 26) (0, 26) (0, 26) (0, 26) 

We see Y  {(0, 26)} the collection of all duplets under 
product modulo 50 is again a unique type of monoid which 
results in (0, 26).  Order of Y  {(0, 26)} is 5. 

However if the trivial duplet pair (0, 26) is not added the 
set Y will suffer under non closure property under product 
modulo 50. 

However Z the set of all quasi neutrosophic triple groups 
forms a unique type of semigroup under product modulo 50. 

Both Y and Z are of order 56. 

Now we find the structure enjoyed by X under product 
modulo 50. Clearly order of X is 20. 

Let us consider (2, 26, 38)  X. 
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(2, 26, 38)2 = (2, 26, 38)  (2, 26, 38) = (4, 26, 44), 

(2, 26, 38)3 = (4, 26, 44)  (2, 26, 38) = (8, 26, 22), 

(2, 26, 38)4 = (8, 26, 22)  (2,26, 38) = (16, 26, 36), 

(2, 26, 38)5 = (16, 26, 36)  (2, 26, 38) = (32, 26, 18), 

(2, 26, 38)6 = (2, 26,38)  (32, 26, 18) = (14, 26, 34), 

(2, 26, 38)7 = (14, 26, 34)  (2, 26, 38) = (28, 26, 42), 

(2, 26, 38)8 = (28, 26, 42)  (2, 26, 38) = (6, 26, 46), 

(2, 26, 38)9 = (6, 26, 46)  (2, 26, 38) = (12, 26, 48), 

(2, 26, 38)10 = (24, 26, 24) = (2, 26, 38)  (12, 26, 48), 

(2, 26, 38)11 = (48, 26, 12) = (2, 26, 38)  (24, 26, 24), 

(2, 26, 38)12 = (48, 26, 12)  (2, 26, 38) = (46, 26, 6), 

(2, 26, 38)13 = (46, 26, 6)  (2, 26, 38) = (42, 26, 28), 

(2, 26, 38)14 = (42, 26, 28)  (2, 26, 38) = (34, 26, 14), 

(2, 26, 38)15 = (34, 26,14)  (2, 26, 38) = (18, 26,32), 

(2, 26, 38)16 = (18, 26, 32)  (2, 26, 38) = (36, 26, 16), 

(2, 26, 38)17 = (36, 26, 16)  (2, 26, 38) = (22, 26, 8), 

(2, 26, 38)18 = (22, 26, 8)  (2, 26, 38) = (44, 26, 4), 

(2, 26, 38)19 = (38, 26, 2) = (2, 26, 38)  (44, 26, 4), 
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(2, 26, 38)20 = (38, 26, 2)  (2, 26, 38) = (26, 26, 26). 

Thus X is proved to be a cyclic group of order 20 under product 
modulo 50. 

In view of all these we first propose only one conjecture. 

Conjecture 1.13. Let S = {Zn, } where n = 2  p2, p an odd 
prime. 

i) The collection of all neutrosophic triplet groups
forms a cyclic group of even order under product
modulo n = 2p2.

ii) The collection of all duplets forms a special type
of monoid of order p under product modulo n.

iii) The collection of all quasi neutrosophic triplet
groups forms a unique type of semigroup of order
p under product modulo. 2p2.

Before we make one more conjecture we propose another 
example. 

Example 1.46.  Let S = {Z98, } be the semigroup under product 
modulo 98. 

The neutral elements of Z98 are 49 and 50. 

The neutrosophic triplet groups associated with 50 are (2, 
50, 74) and (74, 50, 2) are neutrosophic triplet groups. 

(4, 50, 86) and (86, 50, 4) are neutrosophic triplet groups. 
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 (8, 50, 92) and (92, 50, 8) are neutrosophic triplet groups. 

 (16, 50, 46) and (46, 50,16) are neutrosophic triplet 
groups. 

 (32, 50, 72) and (72, 50, 32) are neutrosophic triplet 
groups. 

 (64, 50, 36) and (36, 50, 64) are neutrosophic triplet 
groups. 

 (30, 50, 18) and (18, 50, 30) are neutrosophic triplet 
groups. 

 (60, 50, 58) and (58, 50, 60) are neutrosophic triplet 
groups. 

 (22, 50, 78) and (78, 50, 22) are neutrosophic triplet 
groups. 

 (44, 50, 88) and (88, 50, 44) are neutrosophic triplet 
groups. 

 (6, 50, 90) and (90, 50, 6) are neutrosophic triplet groups. 

 (12, 50, 94) and (94, 50, 12) are neutrosophic triplet 
groups. 

 (24, 50, 96) and (96, 50, 24) are neutrosophic triplet 
groups. 

 (48, 50, 48) and (50, 50, 50) are neutrosophic triplet 
groups. 
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(10, 50, 54) and (54, 50, 10) are neutrosophic triplet 
groups. 

(20, 50, 76) and (76, 50, 20) are neutrosophic triplet 
groups. 

(40, 50, 38) and (38, 50, 40) are neutrosophic triplet 
groups. 

(80, 50, 68)  and (68,50, 80) are neutrosophic triplet 
groups. 

(62, 50, 34) and (34,50, 62) are neutrosophic triplet 
groups. 

(26, 50, 66) and (66, 50, 26) are neutrosophic triplet 
groups. 

(52, 50, 82) and (82, 50, 52) are neutrosophic triplet 
groups. 

We see if A = {(2, 50, 74), (74, 50, 2), (4, 50, 86), (86, 
50, 4), (8, 50, 92), (92, 50, 8), (16, 50, 46), (46, 50, 16), (32, 50, 
72), (72, 50, 32), (64, 50, 36), (36, 50, 64), (30, 50, 18), (18, 50, 
30), (60, 50, 58), (58, 50, 60), (22, 50, 78), (78, 50, 22), (44, 50, 
88), (88, 50,44), (6, 50, 90), (90, 50, 6), (12, 50, 94), (94, 50, 
12), (24,50, 96), (96, 50, 24), (48, 50, 48), (50, 50, 50), (10, 50, 
54), (54, 50, 10), (20, 50, 76), (76, 50,20), (40, 50, 38), (38, 50, 
40), (80, 50, 68), (68, 50, 80), (62, 50,34), (34,50,62) (26, 50, 
66), (66, 50, 26), (52, 50, 82) and (82, 50,52)} forms a group 
under product modulo 98 of order 42. 

Now we find the collection of duplets. 
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B = {(7, 49, 7), (21, 4, 9, 21), (35, 4, 9, 35), (63, 49, 63), 
(77, 49, 77), (91, 49, 91) and (49, 49, 49)} are quasi 
neutrosophic triplet groups associated with the trivial neutral 
element 49.  

Clearly o(B) = 7 

{(14, 50), (28, 50), (56, 50), (70, 50), (42, 50), (84, 50) and (0, 
50)} = C is the collection of all duplets which forms a unique 
type of semigroup under product modulo 98. 

Similarly B the collection of all quasi neutrosophic triplet 
groups under product modulo 98 forms a unique type of 
semigroup of order 7. 

In view of all these we propose yet some open 
conjectures. 

Conjecture 1.14.  Let S = {Zn, } be the semigroup under 
product modulo n, where n = 2p2 where p is any odd prime with 
only two neutral elements (or idempotents), p2 and p2+1. 

i) The neutrosophic triplet groups collection A
associated with the neutral element (or
idempotent) p2 + 1 is a cyclic group of order (p –
1) p.

ii) The set of all quasi neutrosophic triplet groups
associated with p2 is a special type of semigroup
under product modulo 2p2 is of order p.

iii) The collection of    duplets C   associated
with the idempotent p2 + 1 is again a
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special type of semigroup in which for every x, y 
 C. x  y = (0, p2 + 1), product operation under 
modulo 2p2 (x  y) and x2 = (0, p2 + 1). 

It is further pertinent to record that p2 is only a trivial 
neutral element which can yield non trivial quasi neutrosophic 
triplet groups.  However p2 + 1 cannot yield nontrivial quasi 
neutrosophic triplet groups. 

Further p2 + 1 alone has the capacity to yield both 
neutrosophic triplet groups as well as duplets. 

Next we study {Zn, } where n = pq2 where both p and q 
two distinct odd primes for neutrosophic triplet groups, quasi 
neutrosophic triplet groups and duplet pairs. 

Example 1.47  Let S = {Z45, } be a semigroup under product 
modulo 45. 45 = 32

  5.  

The neutral elements or idempotents of S are 10 and 36 
(5, 10, 20) and (20, 10, 5) are neutrosophic triplet groups of the 
neutral element 10. 

(25, 10, 40) and (40, 10, 25) are neutrosophic triplet 
groups,  

(35, 10, 35) and (10, 10, 10) are neutrosophic triplet 
groups. 

(6, 36, 6) is a neutrosophic triplet group. 

(9, 36, 9) is a neutrosophic triplet group. 
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(15, 10) is a      duplet, (3, 10) is a        duplet, (21, 36, 
21) is a quasi neutrosophic triplet group.

 
(27, 36, 18) and (18, 36, 27) are neutrosophic triplet 

groups. 

Now we see 3, 12, 33 and 39 which are only multiplies of 
three though is not a unit in Z45 do not contribute to any 
neutrosophic triplet group or duplet or quasi neutrosophic 
triplet groups. 

However 21 which is a multiple of 3 with 7 is a quasi 
neutrosophic triplet group. 

Further let A = {(5, 10, 20), (20, 10, 5), (25, 10, 40), 
(40, 10, 25), (35, 10, 35), (10, 10, 10)} be the collection of all 
neutrosophic triplet group associated with the neutral element 
10. 

B = {(9, 36, 9), (36, 36, 36), (27, 36, 18), (18, 36, 27)} be 
the collection of all neutrosophic triplet groups associated with 
the neutral element 36. 

{(6, 36, 6), (21, 36, 21), (36, 36, 36)} be the collection of 
all quasi neutrosophic triplet groups associated with the neutral 
element 36. 

{(15, 10), (30, 10), (0, 10)} be the collection of 
duplets associated with the neutral element 10. 

We see when n = p2q where p and q are two distinct odd 
primes we are not in a situation to describe the set of 
neutrosophic triplet groups or duplets or quasi neutrosophic 
triplet groups. 
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Further even the neutral elements of 45 are 10 and 36 
which seems to be very different from 2  p2, p an odd prime. 

However in case of 45 = 32  5 we see 10 = 5  (3 – 1) 
and 36 = 32

  (5 – 1). So can we say if n = p2q,  p < q; then q  
(p – 1) and p2  (q – 1) are the two neutral elements of Zn. 

We now describe another example. 

Example 1.48. Let S = {Zn, } where n = 32  7 be the 
semigroup under product modulo n = 63. The idempotents or 
neutrals of Z63 are 28 and 36. 

We now find the neutrosophic triplet groups, 
duplets and quasi neutrosophic triplet groups. 

(7, 28, 49) and (49, 28, 7) are neutrosophic triplet groups. 

(14, 28, 56) and (56, 28, 14) are neutrosophic triplet 
groups. 

(35, 28, 35) and (28, 28, 28) are neutrosophic triplet 
groups. 

(9, 36, 18) and (18, 36, 9) are neutrosophic triplet groups. 

(27, 36, 27) and (36, 36, 36) are neutrosophic triplet 
groups. 

(45, 36, 54) and (54 36, 45) are neutrosophic triplet 
groups. 

One can calculate the  duplets and quasi 
neutrosophic triplet groups.  
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 However finding them happens to be a difficult task. 

 The neutrosophic triplet groups associated with Z63 is a 
difficult task. 

 Further it is pertinent to record that 36 and 28 contribute 
non trivial neutrosophic triplet groups. 

 Here let Y ={(7, 28, 49), (49, 28, 7), (14,28, 56), (56, 28, 
14), (28, 28, 28), (35, 28, 35)} and  

Z = {(9, 36, 18), (18, 36, 9), (27, 36, 27), (36, 36, 36), (45, 36, 
54), (54, 36, 45)} be the nontrivial neutrosophic triplet groups 
collection associated with the neutral elements 28 and 36 
respectively.  

 We will first find the tables of Y and Z. 

 Table of Y is as follows: 

 (7, 28, 49) (49, 28, 7) (14, 28, 56) 

(7, 28, 49) (49,28,7) (28, 28, 28) (35, 28, 35) 

(49, 28, 7) (28, 28, 28) (7, 28, 49) (56, 28, 14) 

(14, 28, 56) (35, 28, 35) (56, 28, 14) (7, 28, 49) 

(56, 28, 14) (14, 28, 56) (35, 28, 35) (28, 28, 28) 

(28, 28, 28) (7, 28, 49) (49, 28, 7) (14, 28, 56) 

(35, 28, 35) (56, 28, 14) (14, 28, 56) (49, 28, 7) 
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(56, 28, 14) (28, 28, 28) (35, 28, 35) 

(14, 28, 56) (7, 28, 49) (56, 28, 14) 

(35, 28, 35) (49, 28, 7) (14, 28, 56) 

(28, 28, 28) (14, 28, 56) (49, 28, 7) 

(49, 28, 7) (56, 28, 14) (7, 28, 49) 

(56, 28, 14) (28, 28, 28) (35, 28, 35) 

(7, 28, 49) (35, 28, 35) (28, 28, 28) 
 

   Clearly Y is a group of order six. We have to check 
whether Y is cyclic or not. 

 Consider (7, 28, 49) we see  

(7, 28, 49)  (7, 28, 49) = (49, 28, 7) and  

(49, 28, 7)  (7, 28, 49) = (28, 28, 28). 

 Thus (7, 28, 49)3 = (28, 28, 28) the identity. 

 Now if we take (14, 28, 56) then (14, 28, 56)2 = (7, 28, 
49) 

 (14, 28, 56)3 = (7, 28, 49)  (14, 28, 56) =(35, 28, 35) 

 (14, 28, 56)4 = (35, 28, 35)  (14, 28, 56) = (49, 28, 7) 

 (14, 28, 56)5 = (49, 28, 7)  (14,28, 56) = (56, 28, 14) 

Finally (14, 28, 56)6 = (56, 28, 14)  (14, 28, 56) = (28, 28,28). 

Thus (14, 28, 56) is the generator of the cyclic group Y with 
(28, 28, 28) as the identity. 



Introduction to Neutrosophic Triplet Groups 89 
 

 
 

 
 
 
 

 
 

 Interested reader can find if any other element generates 
Y. 

 Now we give the table for Z in the following. 

 (9, 36, 18) (18, 36,9) (27, 36,27) 

(9, 36, 18) (18, 36, 9) (36, 36, 36) (54, 36, 45) 

(18, 36, 9) (36, 36, 36) (9, 36, 18) (45, 36, 54) 

(27, 36, 27) (54, 36,45) (45, 36, 54) (36, 36, 36) 

(36, 36, 36) (9, 36,18) (18, 36, 9) (27, 36, 27) 

(45, 36, 54) (27, 36, 27) (54, 36, 45) (18, 36, 9) 

(54, 36, 45) (45, 36, 54) (27, 36, 27) (9, 36, 18) 
 

(36, 36, 36) (45, 36,54) (54, 36, 45) 

(9, 36, 18) (27, 36, 27) (45, 36, 54) 

(18, 36, 9) (54, 36, 45) (27, 36, 27) 

(27, 36, 27) (18, 36, 9) (9, 36, 18) 

(36, 36, 36) (45, 36, 54) (54, 36, 45) 

(45, 36, 54) (9, 36, 18) (36, 36, 36) 

(54, 36, 45) (36, 36, 36) (18, 36, 9) 
 

 Thus Z is also a group with (36, 36, 36) as its 
multiplicative identity. 

 We now find out whether Z is cyclic or not under the 
product operation modulo 63. 

 Consider (9, 36, 18)  Z; (9, 36, 18)2 = (18, 36, 9); 
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(9, 36, 18)3 = (18, 36, 9)  (9, 36, 18) = (36, 36, 36). 

Thus the order of (9, 36, 18) is only three and does not generate 
Z. 

Consider (45, 36, 54)  Z; (45, 36, 54)2 = (9, 36, 18), 

(45, 36, 54)3 = (9, 36, 18)  (45, 36, 54) = (27, 36, 27), 

(45, 36, 54)4 = (45, 36, 54)   (27, 36, 27) = (18, 36, 9), 

(45, 36, 54)5 = (18, 36, 9)  (45, 36, 54) = (54, 36, 45) 

and (45, 36, 54)6 = (54, 36, 45)  (45, 36, 54) = (36, 36, 36). 

Thus as order of (45, 36, 54) is six (45, 36, 54) generates the Z 
so Z is a cyclic group of order six with (36, 36, 36) as identity. 

Now we test for quasi neutrosophic triplet groups 
and duplets in Z63 under product modulo 63. 

(15, 36, 15) is a quasi neutrosophic triplet group. 

(57, 36), (42, 28) and (21, 28) are some of the 
duplets. 

The reader is left with the task of finding both duplets 
associated with 28 and 36 as well as quasi neutrosophic triplet 
groups associated with 28 and 36. 

We give one more example before we give any of the 
related observations. 
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Example 1.49. Let S = {Z99, } be the semigroup under product 
modulo 99. Clearly 99 = 32  11 so 99 is of the form 32p where 
p is an odd prime. 

 First we find the related neutral elements of Z99. 

45 and 55 are the only neutral elements or idempotents of Z99. 

 We now find the elements which contribute to 
neutrosophic triplet groups by 55. 

 (11, 55, 77) and (77, 55, 11) are neutrosophic triplet 
group associated with the neutral element 55.  

(22, 55, 88) and (88, 55, 22) are neutrosophic triplet groups. 

 (44, 55, 44) and (55, 55, 55) are neutrosophic triplet 
groups. 

  (12, 45, 12) and (45, 45, 45) are neutrosophic triplet 
groups. 

 (18, 45,63) and (63, 45, 18) are neutrosophic triplet 
groups. 

 (27, 45, 9) and (9, 45, 27) are neutrosophic triplet groups. 

 (90, 45, 72) and (72, 45, 90) are neutrosophic triplet 
groups. 

 (36, 45, 81) and (81, 45, 36) are neutrosophic triplet 
groups. 

 (54, 45, 54) is a neutrosophic triplet group. 
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(33, 55, 33) is a neutrosophic triplet group. The author is 
left with the task of finding the group of neutrosophic triplet 
groups associated with 45 and 55. 

We find some of the neutrosophic triplet groups 
associated with 55. 

{(11, 55, 77), (77, 55, 11), (55, 55, 55), (44, 55, 44), 
(22, 55, 88) (88, 55, 22)}. 

The reader is left with task of finding quasi 
neutrosophic triplet groups and duplets. 

We find it a challenging task to the collection of all 
duplet pairs, quasi neutrosophic triplet groups and neutrosophic 
triplet groups and study the algebraic structure enjoyed by 
them. 

Finally we give an example where n = 48 = 243. 

Example 1.50. Let S = {Z48, } be the semigroup under product 
modulo 48. The neutral elements (idempotents) of Z48 are 16 
and 33. 

The neutrosophic triplet groups associated with the 
neutral element 16 are ({16, 16, 16), (32, 16, 32)}. 

We see A is only a cyclic group of order two. 

However for the neutral element 33 we give some of the 
neutrosophic triplet groups; 

{(3, 33, 27), (27, 33, 3), (9, 33, 9), (15, 33, 15), (33, 33, 
33), (21, 33, 21)}. 
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 However we are forced to make the following open 
conjectures. 

 Can the collection of neutrosophic triplets associated with 
Zn, when n = 2tp, t  2 and p an odd prime for any of the neutral 
elements be groups of order greater than 2 when the neutral 
element is an even number? 

 Study the above question analogously for any Zn, n = pmq, 
m  2  p and p two distinct odd primes. 

 We suggest the following problems for the reader. 

Problems 

1. Obtain all special features associated with the collection 
of neutrosophic triplet groups. 

2. When will the number of neutral elements set be large? 

3. Can n = 2p for Zn, p an odd prime have more than two 
nontrivial neutral elements? Justify! 

4. Find all the neutral elements of S = {Z422, }. 

5. Find all the neutral elements of P = {Z210, }. 

6. Which of the semigroups S or P has more number of 
neutral elements? 

7. Can one prove the number of neutral elements depends 
not on the largeness of n in Zn but the number of prime 
factors that can divide n? 

8. Find all the neutral elements of Z45. 
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9. Can Z101 have neutral elements? 

10. Find all the neutrosophic triplet groups associated with 54 
of S = {Z106, }. 

 a) Prove the collection of all neutrosophic triplet 
groups associated with the neutral element  54 
 Z106 is a group G. 

 b) Prove the group G is a cyclic group. 

 c) Find the order of G. 

11. Show S = [Z46, } has pseudo primitive elements 
associated with set P = {2, 4, 6, 8, 10, …, 42, 44}. 

12. Prove in {Zn, } where n = 3p, p an odd prime different 
from 3 has only two neutral elements. Generalize them 
and find its form. 

13. Let S = {Z45, } be the semigroup under product modulo 
15. 

 i) Prove 10 and 6 are the only neutral elements of 
Z15. 

 ii) Find the neutrosophic triplet groups associated 
with 10 and 6. 

 iii) Does the collection of neutrosophic triplet groups 
associated with the neutral element 10 form a 
group? 

iv) Find the order of the group in (iii) . 
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v) Can S have duplets?

vi) Does any of the neutral elements of S contribute
to quasi neutrosophic triplet groups?

14. Let S = {Z560, } be the semigroup under product modulo
560. 

a) Find all the neutral elements associated with Z560.

b) Find the neutrosophic triplet groups collection
associated with each of the neutral elements of
Z560.

c) Does these collections associated with the neutral
element form a group or a semigroup?

d) Can we say if G and H are two neutrosophic
triplet groups collection associated with two
distinct neutral elements then G  H = {(0, 0, 0)}?

e) Obtain any other special feature associated with
S.

15. Let B = {Z510, } be the semigroup under product modulo
510. 

i) Study questions (a) to (e) of problem (14) for this
B.

ii) Can we say neutral elements of B contribute more
number of neutrosophic triplet groups than that of
S in problem (13)?
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16. Prove if S = {Zn, } be a semigroup with n = p1 p2 … pt,
pi are distinct primes t  3, 1  i  t, then Zn has larger
number of neutral elements than Zm where m = psq > n (p
and q two distinct primes).

17. Find for the fixed t in problem (16) the total number of
neutral elements.

18. Let S = {Z900, } be the semigroup under product modulo
900. 

i) Find all neutral elements of S.

ii) Can neutral elements of S contribute 
duplets?

iii) Does neutral elements of S contribute to quasi
neutrosophic triplet groups?

iv) Find all the neutrosophic triplet groups associated
with each of the neutral elements.

v) Study the algebraic structure enjoyed by each of
the collection of neutrosophic triplet groups with
every distinct nontrivial neutral element of S.

19. Let P = {Z418, } be the semigroup under product modulo
418. 

i) Study questions (i) to (v) of problem (18) for this
P.

ii) Which has more number of neutral elements S or
P?
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20.  Characterize those numbers n of Z      n (n a non prime 
composite number) which has duplets.

21. Characterize those integers n for which Zn contributes
neutral elements which contributes quasi neutrosophic
triplet groups.

22. Is it always true for a fixed Zn if n has neutrals which  
contribute to duplets than it has other neutrals which 
contribute to quasi neutrosophic triplet groups?

23. Prove if S = {Zn, }, n = pq, p and q two distinct primes  
than no neutral element in Zn can contribute to duplets or 
quasi neutrosophic triplet groups.

24. Can we say for M = {Zn, }, n = ptq, p and q two distinct  
primes there are neutrals in Zn which contribute to both  
duplets and quasi neutrosophic triplet groups?

25. Can we say for some n of Zn we can have neutrals which  
contribute only to duplets and no neutrals  exists in that Zn 
which can contribute to quasi neutrosophic triplet groups 
or neutrosophic triplet groups?

26. Can we prove there exists n such that Zn can have  
neutrals which contribute only to quasi neutrosophic  
triplet groups and not to duplets or  neutrosophic triplet 
groups?
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27. Is it mandatory if a neutral in Zn contributes to quasi
neutrosophic triplet groups then n is a product of several
distinct powers of primes?

28. Prove the converse of problem given in (27) is in general
not true.

29. Prove in {Zn, }, the semigroup under product there are  
neutrals which contribute to duplets then  the collection is a
unique of semigroup in which product  of every pair is {(0,
t)}, where t is that special neutral  element of Zn which has
contributed duplets.

30. Let S = {Zn, } be the semigroup under product modulo
n. If s  Zn is a neutral which contributes to a collection
of quasi neutrosophic triplet groups them prove that 
collection is a special type of semigroup such that every 
pair of elements product in it is (s, s, s). 

31. Can there exist a Zn in which every neutral contributes  
only for duplets? (that is all neutrals in Zn  has the capacity
only to create neutrosophic pairs)?

32. Does there exist a Zn is which all neutrals contribute only
to quasi neutrosophic triplet groups?

33. Let S = {Z648, } be the semigroup under product modulo
648. 

i) Find all neutrals of S.
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ii) Can these neutrals contribute to nontrivial
neutrosophic triplet group collection which forms
a cyclic group?

iii) Can the neutrals of Z648 contribute to duplets 
alone, which forms a special type of semigroup?

iv) Can the neutral of Z648 contribute only to quasi
neutrosophic triplet groups? Or is it mandatory a
neutral which contribute to quasi neutrosophic
triplet groups necessarily contributes to
neutrosophic triplet groups also.

v) Find all neutrals of Z648 which contribute only to
one type of neutrosophic triplet groups (does
such neutrals exist in Z648).

34. Let S1 = {Z392, } be the semigroup under product
modulo 392.

i) Study questions (i) to (v) of problem (33) for this
S1.

ii) Compare the properties enjoyed by S of problem
in (33) with this S1

35. Construct a semigroup S such that S  S = {identity} and
S is of finite order.

36. Let S = {Z2p, }, p an odd prime. B = {2Z2p \ {0}}  S.
Prove B has atleast one pseudo primitive element.

37. Can B in problem 36 have more than one pseudo
primitive element?
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38. Can S = {Zpq, }, p and q different odd primes with         
D =  {pZpq \ {0}}  S have pseudo primitive elements? 

39. Let S = {Z1219, }, be the semigroup under product 
modulo 1219. 

 i) P1 = {53Z1219 \ {0}}  S; can P1 have pseudo 
primitive elements? 

 ii) Let P2 = {23Z1219 \ {0}}  S; can P2 have pseudo 
primitive elements? 

 

   



 

Chapter Two 

 

 

ALGEBRAIC STRUCTURES ON 

NEUTROSOPHIC TRIPLET GROUPS 

 

 In this chapter we study the algebraic structure enjoyed 
by the neutrosophic triplet groups built using Zpq, p and q are 
prime numbers. In the earlier chapter we have studied the 
properties of neutrosophic triplets built using Zn. 

 We see these neutrosophic triplet groups of Z2n behave 
and enjoy properties different from Zn when n is not of the 
above said form. 

 We will first illustrate this situation by examples. 

Example 2.1.  Let S = {Z22, } be the semigroup under product 
modulo 22. The idempotents of S are 11 and 12. 

 The elements that contribute for neutrosophic triplets 
from Z22 are A = {2, 4, 6, 8, 10, 14, 15, 18, 20, 12 and 11}. 

 We now get the neutrosophic triplets of Z22. 
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Only idempotents can serve as neutral elements from the 
set A. 

Infact the idempotent 11 cannot contribute to any 
nontrivial neutrosophic triplet and infact (11, 11, 11) is the 
trivial neutrosophic triplet  

(2, 12, 6) and (6, 12, 2) are neutrosophic triplets associated with 
the idempotent 12. 

(4, 12, 14) and (14, 12, 4) are neutrosophic triplets. 

(8, 12, 18) and (18, 12, 8) are neutrosophic triplets. 

(16, 12, 20) and (20, 12, 16) are neutrosophic triplets. 

(10, 12, 10) and (12, 12, 12) are neutrosophic triplets. 

Thus there are 10 nontrivial neutrosophic triplet groups 
all of which have only 12 to be the neutral element. 

11 is the trivial neutral element of Z22. 

The set B = {(2, 12, 6), (6, 12, 2), (4, 12, 14), (14, 12, 4), 
(8, 12, 18), (18, 12, 8), (16, 12, 20), (20, 12, 6), (10, 12, 10), 
(12, 12, 12)} forms a group under modulo 22.  {B, } is defined 
as the neutrosophic triplet group - group. 

In fact B is a cyclic group of order 10 and it is generated 
by (2, 12, 6). 

For (2, 12, 6)10 = (12, 12, 12) and (12, 12, 12) acts as the 
identity of B. (0, 0, 0) and (11, 11, 11) are only trivial 
neutrosophic triplets.  
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We see (11, 11, 11)  (11, 11, 11) = (11, 11, 11) and (0, 0, 0)  
(11, 11, 11) = (0, 0, 0). 

 Finally (11, 11, 11)  x = (0, 0, 0) for all x  B. 

 Further B  {(0, 0, 0), (11, 11, 11)} = P is a semigroup 
which is not a monoid. In fact {(0, 0, 0), (11, 11, 11)}  B = {(0 
0 0)}.  Thus B is annulled by the element (11, 11, 11). 

Example 2.2.  Let W = {Z18, } be the semigroup under product 
modulo 18. 9  9  9 (mod 18), 10  10 = 10 (mod 18),             
2  10 = 2 (mod 18); 

 (2, 10, 14) and (14, 10, 2) are neutrosophic triplets. 

 (4, 10, 16) and (16, 10, 4) are neutrosophic triplets. 

 (8, 10, 8) and (10, 10, 10) are neutrosophic triplets. 

 We see the neutrosophic triplets associated with the 
neutral element 10 are K = {(10, 10, 10), (2, 10, 14), (14, 10, 2), 
(16, 10, 4), (4, 10, 16), (8, 10, 8)}.  The table for K is ; 

 (10, 10, 10) (2, 10, 14) (14, 10, 2) 

(10, 10, 10) (10, 10, 10) (2, 10, 14) (14, 10, 2) 

(2, 10, 14) (2, 10, 14) (4, 10, 16) (10, 10, 10) 

(14, 10, 2) (14, 10, 2) (10, 10, 10) (16, 10, 4) 

(8, 10, 8) (8, 10, 8) (16, 10, 4) (4, 10, 16) 

(16, 10, 4) (16, 10, 4) (14, 10, 2) (8, 10, 8) 

(4, 10, 16) (4, 10, 16) (8, 10, 8) (4, 10, 16) 
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(8, 10, 8) (16, 10, 4) (4, 10, 16) 

(8, 10, 8) (16, 10, 4) (4, 10, 16) 

(16, 10, 4) (14, 10, 2) (8, 10, 8) 

(4, 10, 16) (8, 10, 8) (4, 10, 16) 

(10, 10, 10) (2, 10, 14) (14, 10, 2) 

(2, 10, 14) (4, 10, 16) (10, 10, 10) 

(14, 10, 2) (10, 10, 10) (16, 10, 4) 
 

 In fact this is an abelian group of order six with (10, 10, 
10) as the identity with respect to multiplication modulo 18. 

 It is important to record the following facts as, 18 = 9  2 
= 32  2 we see the only neutral elements of Z18 is 9 and 10, 
however 9 does not contribute to any nontrivial neutrosophic 
triplet, but 10 contributes 6 neutrosophic triplets which forms a 
group - group of neutrosophic triplets. 

 It is interesting to observe that in fact K is a cyclic group 
of order six. 

 Further we see none of the elements in Z18 which are 
multiples of three; do not contribute to neutrosophic triplets. To 
be more exact, 3, 6, 12 and 15 do not contribute to neutrosophic 
triplets. 

 Only 2, 4, 8, 10, 14 and 16 contribute to neutrosophic 
triplets with 10 as the neutral element 9 is only a neutral 
element which yields the trivial neutrosophic triplet (9, 9, 9). 
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Example 2.3. Let S = {Z54, } be the semigroup under product 
modulo 54. 54 = 33  2, 33 = 27 is only odd. 

 The idempotents or neutral elements of Z54 are as follows. 

 27  27 = 27 (mod 54) and 28  28  28 (mod 54) 

are the only neutrals (idempotents of Z54). 

 Now we find the neutrosophic triplets associated with the 
neutral element 27.  

 The only neutrosophic triplet group contributed by the 
neutral element 27 is (27, 27, 27).  

 Now we find the neutrosophic triplets associated with the  
neutral element 28. 

 (2, 28, 14) and (14, 28, 2) are neutrosophic triplets 
associated with the neutral element 28. 

 (4, 28, 34) and (34, 28, 4) are neutrosophic triplets of 28. 

 (8, 28, 44) and (44, 28, 8) are neutrosophic triplets of 28., 

 (16, 28, 22) and (22, 28, 16) are neutrosophic triplets 
associated the neutral element 28. 

 (32, 28, 38) and (38, 28, 32) are neutrosophic triplets of 
28. 

 (10, 28, 46) and (46, 28, 10) are neutrosophic triplets of 
the neutral element 28. 
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 (20, 28, 50) and (50, 28, 20) are neutrosophic triplets of 
28. 

 (40, 28, 52) and (52, 28, 40) are neutrosophic elements 
associated with the idempotents 28. 

 (26, 28, 26) and (28, 28, 28) are neutrosophic triplets. 

 Let B = {(28, 28, 28), (26, 28, 26), (40, 28, 52), (52, 28, 
40), (20, 28, 50), (50, 28, 20), (10, 28, 46), (46, 28, 10), (32, 28, 
38), (38, 28, 32), (22, 28, 16), (16, 28, 22), (8, 28, 44), (44, 28, 
8), (4, 28, 34), (34, 28, 4), (2, 28, 14), (14, 28, 2)}. 

 It is easily verified B is a cyclic group - group 
neutrosophic triplet of order 18. 

 We see {Z18, } has a cyclic group - group neutrosophic 
triplet of order six (18 = 2  32). 

 Further {Z54, } has a cyclic group - group neutrosophic 
triplet of order 18 (54 = 2  33). 

 We see yet another example before we make some 
conjectures. 

Example 2.4. Let S = {Z162, } be the semigroup under product 
modulo 162. The idempotents of Z162 are 81 and 82 as  

 81  81  81 (mod 162) and 82  82  82 (mod 162). 

The neutrosophic triplets associated with the neutral element 82 
are (2, 82, 122) and (122, 82, 2) are neutrosophic triplets 
associated with the idempotent 82. 
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 (4, 82, 142) and (142, 82, 4) are neutrosophic triplets of 
the neutral element 82.  

 (8, 82, 152) and (152, 82, 8) are neutrosophic triplets. 

 (16, 82, 76) and (76, 82, 16) are neutrosophic triplets 
associated with 82. 

 (32, 82, 58) and (58, 82, 32) are neutrosophic triplets 
associated with 82 are  

(64, 82, 110) and (110, 82, 64) are neutrosophic triplets. 

 (128, 82, 136) and (136, 82, 128) are neutrosophic triplets 
related with the neutral element 82. 

 (94, 82, 94) and (82, 82, 82) are neutrosophic triplets. 

 (10, 82, 154) and (154, 82, 10) are neutrosophic triplets 
associated with the neutral element 82. 

 (20, 82, 158) and (158, 82, 20) are neutrosophic triplets 
associated with the idempotent 82. 

 (40, 82, 160) and (160, 82, 40) are neutrosophic triplets. 

 (80, 82, 80) is a neutrosophic triplet. 

 (14, 82, 14) is a neutrosophic triplet. 

 (28, 82, 88) and (88, 82, 28) are neutrosophic triplets. 

 (56, 82, 44) and (44, 82, 56) are neutrosophic triplets 
associated with the idempotents 82. 

 (112, 82, 22) and (22, 82, 112) are neutrosophic triplets. 
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 (62, 82, 92) and (92, 82, 62) are neutrosophic triplet. 

 (124, 82, 46) and (46, 82, 124) are neutrosophic triplets. 

 (86, 82, 104) and (104, 82, 86) are neutrosophic triplets. 

 (26, 82, 134) and (134, 82, 26) are neutrosophic triplets. 

 (52, 82, 148) and (148, 82, 52) are neutrosophic triplets. 

 (34, 82, 34) is a neutrosophic triplet. 

 (68, 82, 98) and (98, 82, 68) are neutrosophic triplets. 

 (6, 82, 66) and (66, 82, 6) are neutrosophic triplets. 

 Clearly (12, 82, 114) and (114, 82, 12) are neutrosophic 
triplets. 

 Further (24, 82, 138) and (138, 82, 24) are neutrosophic 
triplets. 

 (48, 82, 150) and (150, 82, 48) are neutrosophic triplets 
associated with the neutral element 82. 

 (96, 82, 156) and (156, 82, 96) are neutrosophic triplets. 

 (30, 82, 78) and (78, 82, 30) are neutrosophic triplets. 

 (60, 82, 120) and (120, 82, 60) are neutrosophic triplets. 

 The reader is left with the task of finding the total number 
of neutrosophic triplets associated with the neutral element 82. 
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Conjecture 2.1. Finding the number of neutrosophic triplets in 
case of Zn where n = 3t  2, t  1 happens to be a open 
conjecture. 

 Further it is conjectured if m is the number of 

neutrosophic triplet associated with ( n
2

+ 1) then can we say 6 

divides m? 

 Next we proceed onto work with specific order of n is 
Z2n. 

Example 2.5. Let S = {Z210, } be the semigroup. We find the 
idempotents of Z210. We see 210 = 2 3  5  7. 

 The idempotents of Z210 are 

 15  15  15 (mod 210),  21  21 = 21 (mod 210), 

 36  36 = 36 (mod 210),  70 70 (mod 210), 

 85  85  85 (mod 210),  91  91 = 91 (mod 210), 

 106  106 = 106 (mod 210), 120  120 = 120 (mod 210), 

 105  105  105 (mod 210), 126  126  126 (mod 210), 

 141  141  141 (mod 210), 175  175 = 175 (mod 210), 

 190  190 = 190 (mod 210) and 196  196  196 (mod 
210). 
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 There are 14 idempotents. We can have 14 sets of distinct 
neutrosophic triplets associated with these 14 neutral elements 
of Z210. 

 (2, 106, 158) and (158, 106, 2) are neutrosophic triplets 
associated with the neutral element 106. 

 (4, 106, 184) and (184, 106, 4) are neutrosophic triplets. 

 (8, 106, 92) and (92, 106, 8) are neutrosophic triplets. 

 (16, 106, 46) and (46, 106, 16) are neutrosophic triplets. 

 (32, 106, 128) and (128, 106, 32) are neutrosophic 
triplets. 

 (64, 106, 64) and (106, 106, 106) are neutrosophic 
triplets. 

 (3, 141, 1171) and (117, 141, 3) are neutrosophic triplets. 

 (9, 141, 39) and (39, 141, 9) are neutrosophic triplets. 

 (27, 141, 153) and (153, 141, 27) are neutrosophic 
triplets. 

 (81, 141, 81) and (141, 141,141) are neutrosophic triplets. 

 (5, 85, 185) and (185, 85, 5) are neutrosophic triplets. 

 (25, 85, 205) and (205, 85, 25) are neutrosophic triplets. 

 (125, 85, 125) and (85, 85, 85) are neutrosophic triplets. 

 (6, 36, 6) and (36, 36, 36) are neutrosophic triplets. 
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 (7, 91, 133) and (133, 91, 7) are neutrosophic triplets. 

 (49, 91, 49) and (91, 91, 91) are neutrosophic triplets. 

 (10, 190, 40) and (40, 190, 10) are neutrosophic triplets. 

 (100, 190, 130) and (130, 190, 100) are neutrosophic 
triplets. 

 (160, 190, 160) and (190, 190, 190) are neutrosophic 
triplets. 

 (12, 36, 108) and (108, 36, 12) are neutrosophic triplets. 

 (144, 36, 114) and (114, 36, 144) are neutrosophic 
triplets. 

 (48, 36, 132) and (132, 36, 48) are neutrosophic triplets. 

 (156, 36, 186) and (186, 36, 156) are neutrosophic 
triplets. 

 (192, 36, 192) and (36, 36, 36) are neutrosophic triplets. 

 (14, 196, 14) and (196, 196, 196) are neutrosophic 
triplets. 

 (18, 36, 72) and (72, 36, 18) are neutrosophic triplets. 

 (20, 190, 20) is a neutrosophic triplet. 

 (24, 36, 54) and (54, 36, 24) are neutrosophic triplets. 

 (156, 36, 186)  and (186, 36, 156) are neutrosophic 
triplets. 
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(174, 36, 174) is a neutrosophic triplet. 

(28,196, 112) and (112, 196, 28) are neutrosophic triplets. 

(154, 196, 154) is a neutrosophic triplet. 

(30, 120, 60) and (60, 120, 30) are neutrosophic triplets. 

(120, 120, 120) is  a neutrosophic triplet. 

(35, 175, 35) is a neutrosophic triplet. 

(200, 190, 170) and (170, 190, 200) are neutrosophic 
triplets. 

(50, 190, 50) is a neutrosophic triplet. 

(150, 120, 180) and (180, 120, 150) are neutrosophic 
triplets. 

(42, 126, 168) and (168, 126, 42) are neutrosophic triplets 
associated with the neutral element 126. 

(84, 126, 84) and (126, 126, 126) are neutrosophic triplets 
of the idempotent 126. 

The reader is left with the task of finding the number of 
neutrosophic triplets associated with all the neutral elements of 
Z210. 

Further it is pertinent to record that when the number of 
primes in the n (of Zn) is large so is the number of neutral 
elements (idempotents of Zn). 



Algebraic Structures on Neutrosophic Triplet Groups 113 
 

 We see the Z2n where n is not a prime has several neutral 
(idempotents) elements. 

 But when ‘n’ is an odd prime Z2n has only two 

idempotents or neutral elements viz. n 1
2
  and n

2
. It is further 

observed that n
2

 contributes only to trivial neutrosophic triplet, 

thus only n 1
2
  contributes to several nontrivial neutrosophic 

triplets. 

 The results related with them are obtained. 

 Now we proceed on to work with elements from Z3p, p 
may be a prime or an odd number not divisible by three. 

Example 2.6. Let S = {Z33, } be the semigroup under product 
modulo 33. 

 The neutral elements or idempotents of Z33 are 

 12  12  12 (mod 33) and 22  22  22 (mod 33). 

The neutrosophic elements associated with 12. That is              
(3, 12, 15) and (15, 12 30) are neutrosophic triplets of the 
idempotent 12. 

 (9, 12, 27) and (27, 12, 9) are neutrosophic triplets of the 
idempotent 12. 

 (18, 12, 30) and (30, 12,18) are neutrosophic triplets of 
the neutral element 12. 
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 (21, 12, 21) is a neutrosophic triplet. 

 (12, 12, 12) is also the trivial neutrosophic triplet. 

 We see the neural element 22 does not contribute to any 
non trivial triplet. 

 6 is the only non unit which does not contribute to 
neutrosophic triplet in Z33. 

 The observations are important  

i) As in case of Z2p, p an odd prime we see in case 
of Z3p, p a prime the number of neutral elements 
are only two one of them is just a trivial neutral 
element where as the other gives a number of 
nontrivial triplets. 

ii) Incase of Z33 we see the element 6 is a zero 
divisor and it does not contribute to any 
neutrosophic triplets. 

 This is a special feature of Z33 however will this type of 
observation be true in case of Z3p, p a prime. 

 We observe in case of Z15 the two neutral elements are 6 
and 10 are both non trivial neutral elements.  

 Here both 6 and 10 non trivial neutral elements for         
(5, 10, 5), (10, 10, 10), (3, 6, 12), (12, 6, 3), (9, 6, 9) and (6, 6, 
6) are the total number of neutrosophic triplets. 

 For S = {Z33, } the neutral elements are 12 and 22.  22 is 
a trivial neutral element and 12 gives all the nontrivial 



Algebraic Structures on Neutrosophic Triplet Groups 115 
 

neutrosophic triplets some of which are (3, 12, 15), (15, 12, 3), 
(9, 12, 27), (27, 12, 9) and so on. 

 Likewise we have found the neutrals of Z21, Z39, Z51, Z57, 
z69, Z87, Z93, Z111  and are tabled in the following. 

Semigroup 
Z3p, p a prime Neutrals associated with Zp 

Z15 6 10 

Z33 12 22 

Z39 13 27 

Z51 18 34 

Z57 19 39 

Z69 24 46 

Z87 30 58 

Z93 31 63 

Z111 37 75 

Z123 42 82 

Z129 43 87 

Z141 48 94 

Z159 54 106 

Z177 60 119 

Z183 61 123 
 

and so on. 

 It is interesting to make the following observations. 
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i) If the neutral elements are considered for Z15 then 
1+ 5 = 6 so the idempotents are (5 + 1) and 2  5. 

 Consider Z33, 3+3 = 6 the neutral elements of Z33 are 12 
and 22 and 11 + 1 =12 and 11  2 = 22. 

 For Z39, 3 + 9 = 12, 1 + 2 = 3.  The neutral elements of 
Z39 are 13 and 27 =2  13 + 1. 

 For this Z57, 5 + 7 = 12; 1 + 2 = 3 and the neutral 
elements of Z57 are 19 and 39 = 2  18 + 1. 

 For Z93, 9 + 3 = 12, 1 + 2 = 3 and neutral elements of Z93 
are 31 and 63 = 31  2 + 1.  

 Thus we see if an Z3p the sum of 3p add up to 3 then the 
neutral elements are p and 2p + 1. 

 If the sum of the elements of 3p adds upto 6 then the 
neutral elements are p + 1 and 2p. 

 Thus it is conjectured as follows. 

Conjecture 2.2. Let Z3p, p > 5, p a prime be the semigroup 
under product if the sum of all the digits in 3p adds to 3 then the 
two neutral elements of Z3p are p and 2p + 1. 

 If the sum of the digits of 3p adds to 6 then the two 
neutral elements of Z3p are p + 1 and 2p. 

 It is noted the sum of the digits of 3p for all primes p adds 
upto either 3 or 6 only. 

 We give some more examples of this conjecture. 
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Example 2.7. Let S = {Z393, } be the semigroup. Sum of 393 is 
3 + 9 + 3 = 6 and the neutral elements of Z393 are 132 and 272. 
Hence the conjecture is true for Z393 = Z3p = Z3  131. 

Example 2.8. Let S = {Z597, } be the semigroup. 597 = 5 + 9 + 
7 = 21; 2 + 1 = 3. 

 The neutral elements of Z597 are 199 and 399. 

 The conjecture is true in case of Z597. 

 Now consider with p  q where p is 5 and q is a prime. 

Example 2.9. Let S = {Z35, } be the semigroup. The neutral 
elements of Z35 are 15 and 21. 

Example 2.10.  Consider S = {Z55, } be the semigroup. The 
neutral elements of S are 11 and 45. 

  We observe in this case when Zpq, p and q two distinct 
primes can define the notion of pseudo primitive element. 

 Recall if {Zp, ,+} be the a field of characteristics p, p a 
prime then we can define primitive elements in Zp. 

 An element x  Zp \ {0} is called a primitive element of 
Zp if xp = x or xp–1 = 1. 

 We see some examples of them. 

 Let S ={Z11, , +} be the finite field of order 10. 

 Z11 \ {0} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. 

 We see for 2  Z11, 210 = 1 or 211 = 2048 (mod 11) 
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 = 2 (mod 11). 

Thus 2 is a primitive element of Z11. 

 Consider 3  Z11; 35 = 243 (mod n) = 1 (mod 11) or        
36  3 so 3 is not a primitive element of Z11. 

 Consider 4  Z11, we see 

 45 = 4  4  4  4  4  = 1024  1 (mod 11) 

So 4 is not a primitive element of Z11 

 Consider 5  Z1, 52 = 3 (mod 11)  

 54 = 9 (mod 11)  56 = 5 (mod 11). 

 So 5 is not a primitive element of Z11.  

 For we see 5  5  5  5  5 = 1 (mod 11). 

 Let 6  Z11,  

6  6  6  6  6  6  6  6  6  6 = 1 (mod 11). 

 That is 610 = 1 and 611 = 6 so 6 is again a primitive 
element of Z11. 

 7  7  7  7  7  7  7  7  7  7  1 (mod 11). 

 710  1 and 711 = 7 so 7 is again a primitive element of 
Z11. 

 8  8  8  8  8  8  8  8  8  8 = 810  1 (mod 11) 
and 811  8 (mod 11). 
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 9  9  9  9  9  9  9  9  9  9  9 = 1 (mod 11) and 
911  = 9 (mod 11). 

 10  10 = 1 (mod 11). 

 We see Z11 has 5 nontrivial primitive elements. 

 Now we proceed onto describe and define the pseudo 
primitive elements of Z2n where n is a prime. 

Definition 2.1. Let S = {Z2p, }; p an odd prime. Let K = {2, 4, 
…, 2p – 2} be the collection of all even elements of Z2p. p + 1  
K is such that x  (p + 1) =  p + 1 for all x  K. Further there 
exists a y  K such that yp – 1 = p + 1. 

 We call this y as the pseudo primitive element of K  Z2p.  

 We will first show this by some examples. 

Example 2.11.  Let S ={Z74, } be the semigroup under 
multiplication modulo 74. 74 = 2  37; 37 is the odd prime. K = 
{2, 4, 6, 8, 10, 12, …, 36, 38, 40, 42, …, 70, 72}  S. 38  Z74 
is such that 38  x = x for all x  K. 

 2  K is such that 220 = 38. 

 Consider 4  K, 410 = 38. The reader is left with the task 
of finding the pseudo primitive element of Z2p. 

Example 2.12. Let S = {Z6, } be the semigroup under product 
K = {2, 4} and 2  4 = 2 but 22 = 4 = 23 – 1 so 2 is the pseudo 
primitive element of K. 
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Example 2.13. Let S = {Z10, } be the semigroup under product 
K = {2, 4, 6, 8}  Z10; 2  K is the pseudo primitive element of 
K as 2  2  2  2 = 6 = 24 = 25–1 is the pseudo primitive 
element of K is verified 4  4 = 6 so 4 is not a pseudo primitive 
element of K. 

 Consider 8  K, 8  8  8  8 = 6 so 8 is also a pseudo 
primitive element of K. 

Example 2.14. Let S = {Z22, } be the semigroup under product. 
K = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}  S is a group in fact a 
cyclic group of order 10 with 12 as the multiplicative identity. 
Clearly 2  K is such that 210 = 12.  4  K is not a pseudo 
primitive element of K. 

 2 is a pseudo primitive element of K. 

 Interested reader can find other pseudo primitive 
elements of this K. 

 Now a natural question arises; can Z3p, p an odd prime 
have the notion of pseudo primitive elements.  

 To this effect we study the following examples. 

Example 2.15. Let S = {Z15, } be the semigroup under product 
modulo 15. Let P = {3, 6, 9, 12}  S is such that 6 is the 
identity element of P. 

 For 3  6  3 (mod 15), 6  6 = 6 (mod 15), 

 9  6 = 9 (mod 15) and 12  6 = 12 (mod 15). 
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 3  P is such that 34 = 6 = 35–1. Thus 3 is the pseudo 
primitive element of P. 9  P is such that 92 = 6 so 9 is not a 
pseudo primitive element of P.  

 12  P is such that 

 12  12 = 9 (mod 22), 9  12 = 3 (mod 22) and  

 3  12 = 6 (mod 22). 

 So 124 = 12 5 – 1 = 6 is the pseudo primitive element of P. 

Example 2.16. Let S = {Z35, } be the semigroup under product 
modulo 35. We now find for R = {5, 10, 15, 20, 25, 30}  Z35 
has pseudo primitive elements. For T = {7, 4, 21, 28}  Z35; we 
find out whether T has identity. We find the multiplicative 
tables of R and T. 

 5 10 15 20 25 30 

5 25 15 5 30 20 10 

10 15 30 10 25 5 20 

15 5 10 15 20 25 30 

20 30 25 20 15 10 5 

25 20 5 25 10 30 15 

30 10 20 30 5 15 25 
  

 Clearly 15 is the identity element of R. 5 generates R and 
56 = 15. 

 The table for T is as follows. 
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 7 14 21 28 

7 14 28 7 21 

14 28 21 14 7 

21 7 14 21 28 

28 21 7 28 14 
 

 21 is the identity of this cyclic group with 7 as one of the 
generators. 28 and 7 are the pseudo primitive elements of T.  

For 7 7 = 21 thus 7  7   
 7 = 21 so 7 is a pseudo primitive element of T. 

 The pseudo primitive element of R are 5 and 10 are some 
of the pseudo primitive elements of R. 

For   5  5 = 25 (mod 35) 53 = 25  5 = 125 (mod 35) = 20. 

   54 = 20  5 = 100 = 30 (mod 35) 

   55 = 30  5 = 150 (mod 35) = 10. 

 Thus 56 = 10  5 = 50  15 (mod 35). 

 So 5 is a proved to be a pseudo primitive element of R as 
57 = 5 (mod 35). 

 In view of all the facts we have the following theorem. 

Theorem 2.1.  Let S = {Zp q, } be the semigroup under 
product; p and q two distinct primes 
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i) R = {p, 2p, …, (q – 1)p} is a cyclic group of 
order q – 1 under product modulo pq. 

ii) P = {q, 2q, …, (p – 1)q} is a cyclic group of 
order p – 1 under product modulo pq. 

iii) Both R and P has pseudo primitive elements. 

 Proof is direct and hence left as an exercise to the reader. 

 Now we find if S = {Z105, } is taken as a semigroup 
under product modulo 105. 105 = 3  5  7 we just test for the 
existence of pseudo primitive elements. 

 The collection S1 = {3, 6, 9, 12, 15, 18, 21, 24, …, 102}, 

 S2 = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 
75, 80, 85, 90, 95, 100} and  

 S3 = {7, 14, 21, 28,35, 42, 49, 56, 63, 70, 77, 84, 91, 98} 
are subsets of S. 

 The reader is left with the task of finding the structure of 
S1, S2 and S3. 

 If P1 = {15, 30, 45,60, 75, 90},  

 P2 = {21, 42, 63, 84} and  

 P3 = {35, 70} be the collection. Do these form a group or 
semigroup under product modulo 105. 

 The table for P3 
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 35 70 

35 70 35 

70 35 70 
 

 P3 is a cyclic group of order two 70 acts as the 
multiplication identity. 35  35  70 (mod 15). The table for P2 
is as follows. 

 21 42 63 84 

21 21 42 63 84 

42 42 84 21 63 

63 63 21 84 42 

84 84 63 42 21 
 

  We see P2 is again a cyclic group of order 4 with 21 as 
the identity. 424 = 21. So 42 is the pseudo primitive element of 
P2. 425 = 42, 425 – 1 = 424 = 21. 

 Now we give the table of P1 in the following. 

 15 30 45 60 75 90 

15 15 30 45 60 75 90 

30 30 60 90 15 45 75 

45 45 90 30 75 15 60 

60 60 15 75 30 90 45 

75 75 45 15 90 60 30 

90 90 75 60 45 30 15 
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Clearly P1 is a group with 15 as the identity under product 
modulo 105. 

 45  P1 is such that 45  45  45  45  45  45  15 that 
is 457 – 1 = 456 = 15 is the pseudo primitive element of P1. 

 Thus we wish to make the following conjecture. 

Conjecture 2.3. Let S = {Zpqr, } where p, q and r three distinct 
primes.  

 Let P1 = {pq, 2pq, .., (r – 1)pq },  

 P2 = {qr, 2qr, …, (p – 1) qr} and  

 P3 = {rp, 2rp, …, (q – 1) rp} be the collection from S. 

i) All the three sets P1, P2 and P3 are cyclic groups. 
ii) Every Pi has pseudo primitive elements, 1  i  3. 

We want to find the structure when Zpqrs where p, q, r and s are 
four distinct primes. 

 First we illustrate this situation by some examples. 

Example 2.17. Let S = {Z210, } be the semigroup under 
product modulo 210. 

 Clearly 210 =  2  3  5  7 the product of four distinct 
primes. 

 Consider B1 = {6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 
72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 
156, …, 204}. 
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 B2 = {10, 20, 30, 40, 50,60, 70, 80, 90, …, 200},  

B3 = {14, 28, 42, 56, 70, 84, 98, …, 182, 196},  

B4 = {15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195}, 

B5 = {21, 42, 63, 84, 105, 126, 147, 168, 189} 

B6 = {35, 70, 105,140, 175} 

B7 = {30, 60, 90, 120, 150, 180},  

B8 = {42, 84, 127, 168} and B9 ={70, 140} are groups under 
product modulo 210. 

 We see B9 is a cyclic group of order two.  

 70 140 

70 70 140 

140 140 70 
 

  We now find the table for B8 which is as follows. 

 42 84 126 168 

42 84 168 42 126 

84 168 126 84 42 

126 42 84 126 168 

168 126 42 168 84 
 

 Clearly B8 is again a cyclic group under product modulo 
210 with 126 as the identity element. 
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 B8 also has 42 to be its pseudo primitive element. 

 Now we consider the table of B7 in the following and test 
for its properties. 

 30 60 90 120 150 180 

30 60 120 180 30 90 150 

60 120 30 150 60 180 90 

90 180 150 120 90 60 30 

120 30 60 90 120 150 180 

150 90 180 60 150 30 120 

180 150 90 30 180 120 60 
 

 We see B7 is also a cyclic group of order six generated by 
150 as 1506 = 120, 120 is the identity of B7. 

 Further the pseudo primitive element of B7 is 150. In fact 
B7 may have other pseudo primitive elements. 

 Now we find the table of B6 and enumerate the special 
features enjoyed by it. 

 35 70 105 140 175 

35 175 140 105 70 35 

70 140 70 0 140 70 

105 105 0 105 0 105 

140 70 140 0 70 140 

175 35 70 105 140 175 
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 We see B6 is even not closed with respect to product 
modulo 210. Infact B6  {0} can yield only a monoid with 175 
as its multiplicative identity. 

 The reader is left with the task of finding the algebraic 
structure enjoyed by B1, B2, …, B5.  

 However one is interested in finding the properties 
enjoyed by the pseudo primitive elements of sets Bi and Bj (i  
j) for we know in case i  = j they only act as part of a group. 

 Let us now consider the pseudo primitive elements of B7 
and B8.  The pseudo primitive element of B8 is 42 and that of B7 
is 150. We see 42  150  0 (mod 210). 

 In fact they form orthogonal sets. 

 At this juncture we are forced to conclude if Bi’s form 
cyclic groups then Bi  Bj = {0} if i  j. 

 We still find it difficult to find the algebraic structure 
enjoyed by B1, B2 and so on for they are generated singly by a 
prime number which is a factor of 210. 

 Such study is both innovative and interesting so left as an 
exercise to the reader. 

 We now find the pseudo primitive elements when in Zn    
n = p2 q2 r, r, p and q three distinct primes.  

 This will first be illustrated by some examples. 

Example 2.18. Let S = {Z180, } be the semigroup under 
product modulo 180. 
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Let  B1 = {2, 4, 6, 8, …, 178},  

 B2 = {4, 8, 12, 16, 20, 24, …, 176},  

 B3 = {3, 6, 9, 12, 15, 18,…, 177},  

 B4 ={9, 18, 27, 36, 45, 54, …, 171},  

 B5 = {12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 
156, 168},  

 B6 = {18, 36, 54, 72, 90, 108, 126, 144, 162},  

 B7 = {36, 72, 108, 14},  

 B8 = {10, 20, 30,40, 50, …, 160, 170},  

 B9 = {20, 40, 60, 80, 100, 120, 140, 160},  

 B10 = {15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165},  

 B11 = {45, 90, 135},  

 B12 = {30, 60, 120, 150},  

 B13 = {12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 
156, 168} and  

 B14 = {60, 120} are the subsets. 

 We can find the algebraic structure enjoyed by these sets. 

 The reader is expected to find the algebraic structure 
enjoyed by them. 

 We conjecture the following: 
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Conjecture 2.4. Let {Zn, } = S be the semigroup under product 

n, let n = 2 2
1 2p p q where p1, p2 and q are distinct primes. 

i) Prove only a few of the sets generated by p1, 

p2, q,  2
1p ,  2

2p , p1q, p2q,  2
1p q,  2

2p q, 

p1p2q, p1
2
2p q,  2

1p p2q,  2
1p p2 and  2

2p p1 are 

cyclic groups. 
ii) Characterize those cyclic groups which contain 

pseudo primitive elements. 
iii) Prove if x1 and x2 are two pseudo primitive 

elements of two distinct groups then they are 
always orthogonal. 

 Now in the following we propose the probable 
applications of these new structures. 

 Let Zn where n is a composite number be the semigroup 
under product modulo n. 

 We see the groups which  have a pseudo primitive 
elements can generate algebraic codes in which we need only to 
adjoin the zero element. Further it is pertinent to keep on record 
that these two codes if we take the same length say a (n, k) code 
then they will certainly be orthogonal. 

 This situation will be exhibited by some examples. 

Example 2.19. Let S = {Zpq, } be the semi group under product 
modulo pq where p and q are two distinct odd primes. 

 To me more specific let us assume p = 7 and q = 11.  

 We first find the neutrals or idempotents of Zpq = Z77. 
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 The idempotents or neutrals of Z77 are 56 and 22 are the 
only idempotents of Z77. 

 Let B1 = {7, 14, 21, 28, 35, 42, 49, 56, 63, 70} and  

 B2 = {11, 22, 33, 44, 55, 66} be the two sets.  

 We describe the tables of them. The table for B2 is as 
follows. 

 11 22 33 44 55 66 

11 44 11 55 22 66 33 

22 11 22 33 44 55 66 

33 55 33 11 66 44 22 

44 22 44 66 11 33 55 

55 66 55 44 33 22 11 

66 33 66 22 55 11 44 
 

 It is easily verified B2 is a group under product modulo 
77 of order 6 infact a cyclic group with 22 as its identity and 33 
 B2 is the  generator of B2 as (33)6 = 22. 

 Suppose we are interested in finding the algebraic codes 
of length 5 built using B2  {0}.  

 Let C2 = (5,2) algebraic codes with entries from B2  
{0}. 

 Clearly o(C2) = 75. 

 Any code word x = (a1, a2, a3, a4, a5) where  
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 ai  {B2  {0}; 1  i  5. 

 Now we give the table for B1 in the following. 

 7 14 21 28 35 42 49 56 63 70 

7 49 21 70 42 14 63 35 7 56 28 

14 21 42 63 7 28 49 70 14 35 56 

21 70 63 56 49 42 35 28 21 14 7 

28 42 7 49 14 56 21 63 28 70 35 

35 14 28 42 56 70 7 21 35 49 63 

42 63 49 35 21 7 70 56 42 28 14 

49 35 70 28 63 21 56 14 49 7 42 

56 7 14 21 28 35 42 49 56 63 70 

63 56 35 14 70 49 28 7 63 42 21 

70 28 56 7 35 63 14 42 70 21 49 
 

 Clearly BL is a cyclic group of order 10 with 56 as its 
identity. 710 = 56 is a pseudo primitive element of B1. 

 Now let C1 = (5, 2) be the algebraic code of length n with 
3 message symbols and 2 check symbols with entries from (B1 
 {0}). 

 We see o(C1) = 105. 

 Further it is clearly if x  C2 and y  C1 then  

 x  y = (0, 0, 0, 0, 0). 



Algebraic Structures on Neutrosophic Triplet Groups 133 
 

 Let x = (11, 0, 22, 66, 55)  C2 and y = (7, 49, 63,70, 14) 
 C1 we see x  y = (0, 0, 0, 0, 0).  

 It is easily proved C1 is a dual code of C2 and vice versa. 

 By this method without any difficulty we can arrive at 
dual code from the collection Z17. 

 In general first we make the following theorem. 

Theorem 2.2. Let S = {Zpq, } be the semigroup of order pq 
where p and q are two distinct primes; 

i) B1 = {p1, 2p, …, (q – 1)p, 0} is a field of order q 
under + and  modulo pq. 

ii) B2 = {q, 2q, 3q, …, (p – 1)q, 0} is again a field of 
order p under + and  modulo pq. 

iii) C1 =(n, k) the code of length n with k message 
symbols with entries from B1. 

iv) C2 = (n, k) is the code of length n with k 
messages with symbols from B2. 

v) C1 is orthogonal with C2. 

Proof is left as an exercise for the theorem. 

 Now we proceed onto test the number of orthogonal 
codes in case of Zpqr where p, q and r are three distinct primes 
by some examples. 

Example 2.20. Let S = {Z165, } be the semigroup under 
product or a ring of modulo integers. 
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 165 = 3  5  11 is the product of three primes.   

 Let B1 = {15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 0} is 
a field of order 11 under product modulo 165.  

 B2 = {33, 66, 99, 132, 0} is again a field of order 5. 

 B3 = {55, 110, 0} is a field of order 3.  All these are 
fields. If we build (n, k) codes C1, C2 and C3 using B1, B2 and B3 
respectively it can be easily proved Ci is orthogonal with Cj, i  
j, 1  i, j  3. 

Example 2.21. Let S = {Z3289, +, } be a ring of modulo 
integers, clearly 3289 = 11  13  23. 

 Consider B1 = {0, 143, 286, 429, …, 3146},  

 B2 = {0, 299, 598, 897, …,2990} and  

 B3 = {0, 253, 506, 759, 1012, …, 3036} be the fields of 
order 23, 11 and 13 respectively. 

 If C1, C2 and C3 are algebraic codes using the fields B1, 
B2 and B3 we see these codes are mutually orthogonal. 

 In view of all these we can put for the following result. If 
some researcher is interested in constructing a set of t dual 
codes of same length then following procedure can be adopted. 

Take F = { p p p1 2 t
Z


, , +} be the ring of modulo integers, where 

p1, p2, …, pt are t distinct primes. 

Let B1 = {p1 p2, … pt-1, 2(p1 ... pt–1), … (pt – 1) (p1 p2 … pt – 1 ), 
0} is a field with pt number of elements in it. 
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B2 = {(p1p2… pt–2 pt), 2(p1p2 … pt-2pt), …, (pt – 1)(p1p2 … pt-2pt),  

B3 = {p1p2 … pt–3 pt–1, pt, 2(p1 p2 … pt–3 pt) , …, (pt-2 - 1)  (p1p2 

… pt-3 pt-1 pt) are fields of order pt – 1 and pt – 2 respectively. 
Proceed in the same way 

Bt = {p2 … pt, 2(p2 …pt), …, (p1 – 1) (p2 …pt), 0} is a field of 
order p1. 

 Now we see using p p p1 2 t
Z


, we can build t number of 

distinct fields we use these t distinct  fields to construct 
algebraic codes of same length say C1, C2 ,…, Ct associated 
respectively with B1,B2 ,…, Bt.  

 It is easily verified that these t codes C1, C2, …, Ct        
are such that they are mutually orthogonal, that is Ci  Cj =    
{(0, 0, …, 0)} if i  j, 1  i, j  t. 

 So this study of modulo integers has led to the 
construction of dual codes. Now we make the following 
conjecture. 

Conjecture 2.5. Let S = { p p p1 2 t
Z


, +, } be the ring of modulo 

integers, (p1, p2, …, pt; t distinct primes) 

i) There are atleast t distinct fields in S. 

ii) These fields has atleast t number of pseudo 
primitive elements associated with each field 
such that their product is {0}. 
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iii) These t number of fields can be used to construct 
t number of algebraic codes C1, …, Ct of same 
length and they are mutually orthogonal. 

 Now we after this simple deviation proceed onto study 
neutrosophic triplets and can we have algebraic codes of 
neutrosophic triplets. The answer is a big no as the triplets are 
only groups under product and under + they are not even closed. 

 So such notions cannot be established. 

 Now we proceed onto suggest some problems to the 
reader some of which are difficult and some of them are just 
exercise. 

Problems 

1. Let S = {Z5063, } be the semigroup under product 
modulo 5063. 

a) Find the neutral elements of S. 

b) Using those neutral elements construct the 
neutrosophic triplets. 

c) Prove the neutrosophic triplets associated with each 
of the neutral element is a cyclic group under 
product. 

d) Show these collections are such that their product is 
{(0, 0, 0)}. 

2. Let S1 = {Z391, } be the semigroup under product 
modulo 391. 
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 Study questions (a) to (d) of problem (1) for this S1. 

3. Let S ={Z9361, } be the semigroup under product modulo 
9361. 

 i) How many idempotents or neutral elements 
exist in Z9361? 

 ii) Find the classical group of neutrosophic triplet 
groups associated with each of the neutrals. 

 iii) If Gi s are the classical groups. 

a) Prove each Gi is cyclic. 
b) Prove Gi  Gj ={(0, 0, 0)}, if i  j. 

 iv) Obtain any other special features enjoyed by the 
classical group of neutrosophic triplets. 

4. Let P = {Z385, } be the semigroup under product modulo 
385. 

 i) How  many neutrals or idempotents are in P? 

 ii) How many of these neutrals contribute to 
neutrosophic triplet groups which are classical 
groups? 

 iii) Let T = {35, 70, 105, 140, 175, 210, 245, 280, 
315, 350} be collection of elements. 

a) Is T a group? 
b) Find the identity if T is group or a monoid. 
c) Does T contain pseudo primitive elements? 
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d) Can T contribute to neutrosophic triplet 
groups? 

iv) How many cyclic groups exist in P? 
v) Compare the S of problem 3 with this T. 

5. Let S2 = {Z4256, } be the semigroup under product 
modulo 4356. 

 i) Study questions (i) to (iv) of problem 3 for this 
S2. 

 ii) Does S1 of problem 3 or S2 contain more number 
neutrals? 

iii) Which collection from S1 of problem 3 or S2 yield 
more number of nontrivial neutrosophic triplet 
groups? 

iv) Obtain the similarities and dissimilarities between 
S1 and S2. 

6. Let W = { 4 3 22 3 5
Z , } be the semigroup under product 

modulo 243352 

 i) Compare this W with S1 of problem 4 and S2 of 
problem 5. 

 ii) Which has maximum number of neutrals W or S1 
of problem 4 or S2 of problem 5? 

 iii) Which of the semigroups W or S1 or S2 has 
maximum number of cyclic groups? 

7. What are the special features associated with pseudo 
primitive elements of Zn. 
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8. Can we claim that all pseudo primitive elements of G  
Zn are idempotents or neutrals of Zn? 

9. Let S = {Z330, , +} be the ring of integers modulo 330. 

 i) Find all neutrals of S. 

 ii) Find all subsets of S which are finite fields. 

 iii) Find all pseudo primitive elements of those finite 
fields. 

 iv) If Ci are the algebraic codes of the finite fields Fi 
(for i = 1, 2, …, t) of same length prove they are 
orthogonal with each other. 

v) Why we cannot build codes using neutrosophic 
triplet groups? Justify your claim. 

vi) Obtain all special feature associated with this S. 

10. Can we prove, {Zn , +} will give more number of 
orthogonal codes if n = p1, … , pt, t distinct primes if t is 
large? 

11. Compare the situation in problem (10) for P = 
{Z2.3.5.7.1.1.13, , +} and R = {Z43.53.13.17.11.7.5.23.41, +, } the 
ring of modulo integers. 

 a) Which has more number of orthogonal codes P or 
R? 

 b) Which ring P or R has more number of 
idempotents or neutrals? 
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 c) Which has more number of neutrosophic triplet 

groups? 

 d) Analyse the differences and similarities of P and 
R. 

12. Show the number of neutrals which can contribute to 
classical groups is of large size in case of S = {Zn,  / n = 

p1  … pt} than W = {Zm,  / m = 1t
1p … stp , ti > 1}. 

 i) Can we say S has more number of classical 
groups of neutrosophic triplet groups? 

 ii) Is it true W has more number of classical group of 
neutrosophic triplet groups? 

 iii) Which of the semigroups S or W will produce 
more number of finite fields? 

iv) Find the similarities and dissimilarities between 
them. 

13. Can we build algebraic codes on neutrosophic triplet 
groups using max min or max-product operations?. 

14. Let S = {Z14, } be the semigroup under product. The 
neutrals of S are 7 and 8. 

 The neutrosophic triplets groups are P1 = {(8, 8, 8), (2, 8, 
4), (4, 8, 2), (6, 8, 6), (12, 8, 10), (10, 8, 12)} and            
P2 = {(7, 7, 7), (0, 0, 0)}. 

 Now we build codes using max product rule using P1  
{(0, 0, 0)}. 
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 Let G =  

 

3 5

(2,4,8) (0,0,0) (10,8,12) (0,0,0) (8,8,8)
(0,0,0) (12,8,10) (0,0,0) (2,8,4) (0,0,0)
(6,8,6) (2, 8, 4) (0,0,0) (0,0,0) (4,8,2)



 
 
 
  

 

 3  5 generator matrix of a (5, 3) linear code with entries 
from the set P1. 

 The code words are those that take its values from P1. 

 Let x = ((6, 8, 7), (0, 0, 0), (2, 8, 4)) be the input 
neutrosophic triplet vector. 

 We find max product  

 {x, G} = ((12, 8, 10), (4, 8, 2), (4,8, 2), (0, 0, 0), (6, 8, 6)), 
is the generated code word. 

 Likewise can we find the code collection? 

Note: This part is dealt in the problem session as we have not 
yet constructed matrices with entries using the neutrosophic 
triplet groups. 

 The advantages etc. of using this in terms of error 
correction etc; can be dealt as a research problem. 

 However the main advantage of the triple is the middle 
term is always fixed but if one of the end terms is wrong it can 
be corrected however there is at times ambiguity. 

15. Construct using the classical group of neutrosophic triplet 
groups built using {Z46, } associated with the neutral 
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element 24  Z46, a (7, 4) code and use the max product 
(or max min) operation and develop all classical 
properties of this code. 

a) How is this code different from the classical one? 

b) What are advantages and disadvantages of using 
these codes?  

c) What are the probable applications of these 
codes? 

16. Let S ={Z74, } be the semigroup under product modulo 
74. 

 a) Find the neutrosophic triplet groups collection W 
using 38  Z74 as the neutral element. 

 b) Construct a (7, 4) code using W under (i) max 
product, ii) max min. 

 c) What are the main advantages of using these 
codes?  



Chapter Three 

SPECIAL TYPE OF NEUTROSOPHIC 

TRIPLET GROUPS MATRICES 

We have analysed the properties of neutrosophic triplet 
groups built over Z2p, Zpq and Zn where n = 22p or 32p, p a prime 
different from 2 and 3. 

We saw in several cases the collection of neutrosophic 
triplet groups formed a group, sometimes cyclic under product 
modulo n. For special cases of Zn, n not of any form mentioned 
above formed a semigroup under product modulo n. 

We also defined two special notions, quasi neutrosophic 
triplet groups and duplets associated with the idempotents or 
the neutral elements of Zn. 

In this chapter we proceed onto define the new notion of 
neutrosophic triplet group matrices under natural product n 
modulo n. At the outset we wish to record many a times the 
collection of neutrosophic triplet groups in general may not be 
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even compatible under modulo addition. Keeping all this in 
view we define only on matrices natural products n    

 However in case of adopting these neutrosophic triplet 
groups matrices to mathematical models we can define the 
notion of max-product and max-min using them. All these 
concepts will be developed, described and defined in this 
chapter. The next chapter we will develop the possible 
applications of these newly built models. 

 Before we make any abstract definition of these new 
concepts we describe them by appropriate examples in order to 
make it easy for the reader. 

 For the structure of neutrosophic triplet groups classical 
groups and the very construction of them the reader is requested 
to refer the earlier chapter where these notions are dealt 
elaborately. 

Example 3.1.  Let S = {Z26, } be the semigroup under product 
modulo 26.  The idempotents or neutral elements of Z26 are 13 
and 14. For 26 = 2.13 then the idempotents are 13 and 13 + 1. 

 We now find all the neutrosophic triplet groups of Z26 
related to the neutral element 14. 

 (2, 14, 20) and (20, 14, 2) are neutrosophic triplet groups. 

 (4, 14, 10) and (10, 14, 4) are neutrosophic triplet groups. 

 (8, 14, 18) and (18, 14, 8) are neutrosophic triplet groups. 

 (16, 14, 22) and (22, 14, 16) are neutrosophic triplet 
groups. 
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 (6, 14, 24) and (24, 14, 6) are neutrosophic triplet groups. 

 (12, 14, 12) and (14, 14, 14) are neutrosophic triplet 
groups. 

 Clearly if A = {(2, 14, 20), (20, 14, 2), (4, 14, 10), (10, 
14, 4), (8, 14, 18), (18, 14, 8), (16, 14, 22), (22, 14, 16), (6, 14, 
24), (24, 14, 6), (12, 14, 12), (14, 14, 14)} is the classical group 
of neutrosophic triplet groups with (14, 14, 14) as the identity 
element under product modulo 26. 

 Infact A is a cyclic group of order 12 generated by (2, 14, 
20) as it is easily verified  

(2, 14, 20)12 = 
12 times

(2,14,20) ... (2,14,20)   = (14, 14, 14). 

Now if 

 x = ((20, 14, 2), (4, 14, 10), (12, 14, 12)) be a 1  3 row 
matrix with entries from A now we perform operations on them. 

 x  x = (20, 14, 2), (4, 14, 10), (12, 14, 12))  ((20, 14, 2), 
(4, 14, 10), (12, 14, 12)) = ((10,14, 4), (16, 14, 22), (14, 14, 
14)). 

 We can find x2  x = x3 = ((10, 14, 4), (16, 14 22), (14, 
14, 14))  ((20, 14, 2), (4, 14, 10), (12, 14, 12)) = ((18, 14, 8), 
(12, 14, 12), (12, 14, 12)) and so on.  

However we see this will yield the row matrix identity for some 
n as 
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 xn  = ((14, 14, 14), (14, 14, 14), (14,14, 14)), n > 3 for this 
case and so on. 

 Let x = ((6, 14, 24), (22, 14, 16), (14, 14, 14)) and  

 y = ((4, 14, 10), (8, 14, 18), (2, 14, 20)) be two row 
matrices of neutrosophic triplet groups. 

 We find x  y, x  y = ((6, 14, 24), (22, 14, 16), (14, 14, 
14))  ((14, 14, 10), (8, 14, 18), (2, 14, 20) ={(24, 14, 6), (14, 
14, 14), (2, 14, 20))}.   

 It is easily verified that product of two row matrices is 
both commutative and associative. 

 Let B = {collection of all 1  3 row matrices with entries 
from A} = {(a, b, c) / a, b, c  A} be the row matrix of 
neutrosophic triplet groups. 

 Clearly {B, } is a group under product of finite order. 

 Infact o(B) = 123. 

 If x = ((18, 14, 8), (24, 14, 6), (12, 14, 12))  B then 
inverse of x in B under product modulo 26 is y = {(8, 14, 18), 
(6, 14, 24), (12, 14 12)} in B. 

 It is easily verified y is unique and x  y = y  x = ((14, 
14, 14), (14, 14, 14)) and this element ((14, 14, 14), (14, 14, 14), 
(14, 14, 14)) in B acts as the 1  3 row matrix identity. 

 The following facts about B are important. 
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 In the first place B is a group only under product modulo 
26. 

 Infact B is not even closed under the sum.  

For if x = ((2, 14, 20), (8, 14, 18), (6, 14, 24))  B then x + x = 
((2, 14, 20), (8, 14, 18), (6, 14, 24)) + ((2, 14, 20), (8, 14, 18), 
(6, 14, 4)) = ((4, 2, 14), (16, 2, 10), (12, 2, 22)) we see none of 
the entries in x + x is an element of A so cannot be an element 
of B. 

 Thus the sum operation cannot be defined on B. 

 Now we consider 

 C = {

1

2

3

4

a
a
a
a

 
 
 
 
 
 

/ ai  A; 1  i  4} to be the collection of all 4 

 1 column neutrosophic triplet group matrices.  

 If we define natural product n on C then we see {C, n} 
is again a group of neutrosophic triplet groups of order 124.  

 We will just indicate how the product operation n is 
performed on C. 

 Let x = 

(6,14,24)
(20,14,2)
(8,14,18)
(12,14,12)

 
 
 
 
 
 

 and y = 

(20,14,2)
(24,14,6)
(10,14,4)
(8,14,18)

 
 
 
 
 
 

 be in C.  

We find the natural product n. 



Special Type of Neutrosophic Triplet Groups… 148 
 
 

x n y = 

(6,14,24)
(20,14,2)
(8,14,18)
(12,14,12)

 
 
 
 
 
 

 n 

(20,14,2)
(24,14,6)
(10,14,4)
(8,14,18)

 
 
 
 
 
 

 = 

(16,14,22)
(12,14,12)
(2,14,20)
(18,14,8)

 
 
 
 
 
 

  C. 

 It is easily verified the product n on C is both 
commutative and associative. Closure exist as A is a group 
under product modulo 26. 

 Now we find inverse of any x in C. We first claim for 
every x in C we have a unique y in C such that         

x n y = 

(14,14,14)
(14,14,14)
(14,14,14)
(14,14,14)

 
 
 
 
 
 

 the identity matrix of the collection C. 

 Let x = 

(4,14,10)
(24,14,6)
(16,14,2)
(8,14,18)

 
 
 
 
 
 

 of y in C is as follows. 

 y = 

(10,14,4)
(6,14,24)
(22,14,16)
(18,14,8)

 
 
 
 
 
 

  C is such that  
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x n y = 

(4,14,10)
(24,4,6)

(16,14,22)
(8,14,18)

 
 
 
 
 
 

 n 

(10,14,4)
(6,14,24)
(22,14,16)
(18,14,8)

 
 
 
 
 
 

 = 

(14,14,14)
(14,14,14)
(14,14,14)
(14,14,14)

 
 
 
 
 
 

 which 

identity matrix of C.   

 Infact order C is 124 and every element x in C is of finite 
order. 

 Next we consider 

 D = {
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 / ai A, 1  i  9}  

to be the collection of all 3  3 matrices of neutrosophic triplet 
groups. 

 We find the natural product operation n on D. However 
the usual or the classical product cannot be defined on D.  

This will also be established in due course of the discussions. 

 Let x = 
(2,14,20) (8,14,18) (12,14,12)
(14,14,14) (6,14,24) (18,14,8)
(4,14,10) (14,14,14) (20,14,20)

 
 
 
  

 and  

      y = 
(14,14,14) (12,14,12) (16,14,22)
(2,14,20) (14,14,14) (20,14,2)
(4,14,10) (16,14,4) (12,14,12)

 
 
 
  

 in D. 

 We first find x n y.  
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x n y = 
(2,14,20) (2,14,20) (10,14,4)
(2,14,20) (6,14,24) (22,14,16)
(16,14,22) (10,14,4) (6,14,24)

 
 
 
  

  D. 

This is the way the natural product n is performed on D. 

Now we show the classical product cannot be defined on 
D. 

Let x = 
(2,14,20) (20,14,2) (14,14,14)
(10,14,4) (12,14,12) (4,14,10)
(6,4,24) (8,14,18) (12,14,12)

 
 
 
  

 and 

 y = 
(4,14,10) (12,14,12) (8,14,8)
(14,14,14) (18,14,8) (2,14,20)
(12,14,12) (14,14,4) (4,14,10)

 
 
 
  

   D 

We find x  y where ‘’ is the usual product (or classical 
product) of x with y. 

x  y  = 
(2,14,20) (20,14,2) (14,14,14)
(10,14,4) (12,14,12) (4,14,10)
(6,4,24) (8,14,18) (12,14,24)

 
 
 
  

 

(4,14,10) (12,14,12) (8,14,18)
(14,14,14) (18,14,8) (2,14,20)
(12,14,12) (14,14,14) (4,14,10)

 
 
 
  

 = 

(14,16,6) (8,16,10) (10,16,20)
(22,16,16) (12,16,14) (16,16,22)
(20,16,12) (16,16,22) (8,16,2)

 
 
 
  

 D; 
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 further it is pertinent to note that none of the entries in x  y is 
from A. 

That is why we cannot define the classical product 
operation on D. In fact addition modulo 26 is not defined in A 
or in particular A is not closed under the operation + modulo 26 
on D. 

It is left for the reader to verify that the operation natural 
product n modulo 26 is both associative and commutative.  

In fact {D, n} is a group of order 129 and is defined as 
the classical group matrix of neutrosophic triplet groups. 

Further I = 
(14,14,14) (14,14,14) (14,14,14)
(14,14,14) (14,14,14) (14,14,14)
(14,14,14) (14,14,14) (14,14,14)

 
 
 
  

 in D 

acts as the multiplicative identity of D, the classical group of 
neutrosophic triplet group. 

We see every x  D is of finite order in fact xn = I for 
some n  2 such that n / 129. 

Suppose we take 

E = {collection of all 4  3 matrices with entries from A} 

= {

1 2 3

4 5 6

7 8 9

10 11 12

a a a
a a a
a a a
a a a

 
 
 
 
 
 

/ ai  A; 1  i  12} be the collection of all 
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4  3 neutrosophic triplet group matrices with entries from A. 

We can define the natural product n modulo 26 on E. 

We just show how product n is defined on E. 

Let x = 

(14,14,14) (2,14,20) (8,14,8)
(20,14,2) (18,14,8 (12,14,12)
(4,14,10) (14,14,14) (10,14,4)
(6,14,24) (2,14,20) (8,14,18)

 
 
 
 
 
 

 and 

y = 

(12,14,12) (14,14,14) (6,14,24)
(6,14,24) (20,14,2) (2,14,20)
(24,14,6) (18,14,8) (4,14,10)
(10,14,4) (14,14,14) (12,14,12)

 
 
 
 
 
 

  E. 

We find out x n y. 

 x n y = 

(12,14,12) (2,14,20) (22,14,16)
(16,14,22) (22,14,16) (24,14,6
(18,14,8) (18,14,8) (14,14,14)
(8,14,18) (2,14,20) (18,14,8)

 
 
 
 
 
 

. 

This is the way product operation n is performed on E. 
Clearly E is a commutative group of order 1212

 with 

I = 

(14,14,14) (14,14,14) (14,14,14)
(14,14,14) (14,14,14) (14,14,14)
(14,14,14) (14,14,14) (14,14,14)
(14,14,14) (14,14,14) (14,14,14)

 
 
 
 
 
 

as the identity with 

respect to the natural product n. 
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 Let F = {collection of all 2  5 matrices with entries from A} 

= { 1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a
 
 
 

/ ai  A; 1  i  10} be the 

collection of all neutrosophic triplet group matrices. 

Clearly {F, n} is an abelian group of order 1210 with 

I = 1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a
 
 
 

 / ai  A, 1  i 10} 

be the collection of all neutrosophic triplet group matrices. 

Clearly {F, n} is an abelian group of order 1210 with 

I = 

(14,14,14) (14,14,14) (14,14,14) (14,14,14) (14,14,14)
(14,14,14) (14,14,14) (14,14,14) (14,14,14) (14,14,14)
 
 
 

as its multiplicative identity under the natural product n. 

Now we make the abstract definition of the classical 
group of neutrosophic triplets group under the natural product 
n. 

Definition 3.1. Let S = {Zn, } where n = 2p, p an odd prime. 

Let A = {collection of all neutrosophic triplet groups}. 
{A, } is a classical cyclic group of neutrosophic triplet groups 
of order (p – 1). 
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B = {collection of all s  t matrices with entries from A} 
B is defined as the classical group of neutrosophic triplet 
groups under natural product n of order (s  t)p – 1. 

We have given an example of it. 

Now we proceed onto give an example in which 

n = 22 . 3 = 12. 

Example 3.2. Let S ={Z12, } be the semigroup under product 
modulo 12. The idempotents (neutral elements of Z12) are 4 and 
9. 

The neutrosophic triplet groups are as follows. 

(3, 9, 3) and (9, 9, 9) are neutrosophic triplet groups. 

(8, 4, 8) and (4, 4, 4) are neutrosophic triplet. 

We see 2  9  6 (mod 12). 

2  4  8 (mod 12) so 2 cannot contribute to any 
neutrosophic triplet groups. 

6  9 = 6 (mod 12) and 6  4  0 (mod12). 

We see the neutral of 9 is six but there is no anti 6 which is such 
that anti 6  9 = 9 (mod 12). 

10  9 = 6 (mod 12) and 10  4  4 (mod 12). 

Thus (10, 4, 10) is a quasi neutrosophic group as  

4  10  4 (mod 12) and 10  10  4 (mod 12) . 
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 (6, 9) is a neutrosophic duplet (0, 9) is again a 
neutrosophic duplet. 

Here it is important to note that we do not exhaust all 
even elements of Z12 to contribute to neutrosophic triplet 
groups. 

We see o(Z12) = 12 but only two elements 

A = {(3, 9, 3), (9, 9, 9)} are neutrosophic triplet groups 
associated with the neutral element 9.  

{(4, 4, 4) and (8, 4, 8)} = B are neutrosophic triplet groups 
associated with the neutral element 4.  

Further A  B = {(0, 0, 0)}, A and B are classical cyclic groups 
of order two. 

There is only one quasi neutrosophic triplet group which 
is non trivial. 

The element 2  Z12 is not associated with any form of 
neutral element set. 

Even though 12 is even still the deviant behavior when 
compared with 2p, p an odd prime is very striking. 

We give one more example to analyse the above 
situation. 

Example 3.3. Let S = {Z20, } be the semigroup under product 
modulo 20. 
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The neutral elements (idempotents) of Z20 are 5 and 16 
neutrosophic triplet groups associated with the neutral element 
16 are {(4, 16, 4), (8, 16, 12), (12, 16, 8), (16, 16, 16)}. 

The classical group of neutrosophic triplet groups 
associated with the neutral element 5 is empty associated with 5 
are the group of quasi neutrosophic triplet groups {(15, 5, 15), 
(5, 5, 5)}. 

The special semigroup of        duplets associated with 
16 is as follows; 

{(6, 16), (10, 16), (0, 16)} 

The elements 10, 14 and 18 do not contribute to any of 
the special elements as it is clearly observed. 

10  16  0 (mod 20), 10  5 = 10 (mod 20). 

But these producted with any even elements leads to zero as 
only even numbers and multiplies of 5 can contribute to these 
special elements. 

14  5 = 10 (mod 20) and 14  16 = 4 (mod 20). 

So 14 does not contribute to any special elements. 

18  5 =10 (mod 20), 18  16 = 8 (mod 20). 

So 18 also does not contribute to any type of special elements. 
The set {18, 14} does not yield any special elements.  

Only {6, 10} yields the duplets with 16. 
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 Hence it is at this juncture we have to keep on record that 
Z20 and Z12 may not yield neutrosophic triplet groups as given 
by Z26 or Z14 or Z10.  

 Thus for the sake of completeness we describe the 
neutrosophic triplet groups associated with Z14 and Z10. 

 Now the neutral elements associated with Z14 are 7 and 8 
respectively. 

 Likewise the neutral elements of Z10 are 5 and 6. 

 Finally the neutral elements of Z2p (p an odd prime) are p 
and p + 1. 

 In fact all the elements of Z14 (or Z10) which are not units 
contribute to neutrosophic triplet groups only associated with 
the 8 (or 6) not with 7 (or 5). 

 The order of the set of all neutrosophic triplet groups of 
Z14 is 6. {(2, 8, 4), (4, 8, 2), (6, 8, 6), (10, 8, 12), (12, 8, 10) and  
(8, 8, 8)} are neutrosophic triplets of Z14 associated with 8. 

 Similarly {(2, 6, 8), (8, 6, 2), (6, 6, 6), (4, 6, 4)} are 
neutrosophic triplet groups associated with Z10. 

 Hence it is difficult get for all n, n  2p, p an odd prime.  

 It is kept on record that for n = 22p,  p any odd prime we 
do not have many elements which contribute to neutrosophic 
triplet groups. 

 Let us consider Z15 where 15 = 3.5 we find the classical 
group matrix of neutrosophic triplet groups of Z15. 
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 The idempotents of Z15 are 6 and 10. The neutrosophic 
triplet groups collection associated with the neutral element 6 is 
{(3, 6, 12), (12, 6, 3), (4, 6, 9), (6, 6, 6)} and the neutrosophic 
triplet groups associated with the neutral element 10 is {(5, 10, 
5), (10, 10, 10)}. 

 It is interesting to record that if in Zn, n = 3  p, p an odd 
prime different from zero that we can say there will be only two 
distinct neutrosophic triplet groups associated with the two 
neutrals and order of one of them will  be p – 1 and that of the 
order only two. 

 We consider the following examples. 

Example 3.4.  Let S = {Z21, } be the semigroup under product 
modulo 21.  21 = 3.7 is of the form 3p.  The neutral elements of 
S are 7 and 15. 

 The neutrosophic triplet groups associated with 7 are {(7, 
7, 7) and (14, 7, 14)} is a group of order two. 

 The neutrosophic triplet groups associated with 15 are 
{(3, 15, 12), (12, 15, 3), (15, 15, 15), (9, 15, 18), (18, 15, 9), (6, 
15, 6)}. 

 Clearly the number of such triplets are 6 in keeping 
without prediction. 

 Consider another example. 

Example 3.5. Let S = {Z69, } be the semigroup under product 
modulo 69. 

 The neutral elements of S are 24 and 46. 
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 The neutrosophic triplet groups associated with 46 are 
{(46, 46, 46), (23, 46, 23)}. Clearly order of the group is two. 

 The neutrosophic triplet groups associated with 24 are; 

 B = {(3, 24, 54), (54, 24, 3), (9, 24, 18), (18, 24, 9), (27, 
24, 6), (6, 24, 27), (12, 24, 48), (48, 24, 12), (36, 24, 39), (39, 
24, 36), (21, 24,57), (57, 24, 21), (30, 34, 33), (33, 24, 30), (66, 
24, 15), (15, 25, 6), (24, 24, 24), (60, 24, 51), (51, 24, 60), (45, 
24, 45), (63, 24, 42), (42, 24, 63)}.  

Clearly there are 22 neutrosophic triplet groups so o(B) = 22 = 
23 – 1. Thus we once again mention that it is a open problem to 
prove if in Zn, n = 3p, p an odd prime different from 3 then for 
the semigroup {Zn, } under product modulo n we have the 
following. 

i) Prove  only two neutrals (idempotents) in Z3p. 
ii) Prove we have only one of the neutrals which 

contribute to (p – 1) neutrosophic triplet groups 
which forms a group under product modulo 3p. 

iii) Prove there is only one cyclic group of order two. 
iv) Will the collection of elements in Zn which 

contribute for the neutrosophic triplet groups is of 
order p and one of them is a pseudo primitive 
element of that collection. 

Consider yet another example. 

Example 3.6. Let S = {Z91, } the semigroup under product 
modulo.  
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 The reader is left with the task of finding neutral elements 
and the related neutrosophic triplet groups. 

 Now having defined matrices of all types using 
neutrosophic triplet groups we now proceed on to describe and 
develop them for mathematical models. 

 Before we proceed onto define mathematical models we 
describe with some more examples the concept of neutrosophic 
triplet groups matrix collection in the following. 

Example 3.7. Let S = {Z51, } be the semigroup under product 
modulo 51. 

 The neutral elements of Z51 are 34, 18  Z51 is such that      
18  18  (mod 51) and 34  34  34 (mod 51). 

 We now find the neutrosophic triplet group sets 
associated with 18 and 34, the neutral elements of Z51 under 
product modulo 51. 

 The neutrosophic triplet groups associated with the 
neutral element 18 are  

A = {(3, 18, 6), (6, 18, 3), (9, 18, 36), (36, 18, 9), (18, 18, 18), 
(33, 118, 33), (27, 18, 12), (12, 18, 27), (15, 18, 42), (42, 18, 
15), (30, 18, 21), (21, 18, 30), (39, 18,24), (24, 18, 39), (45, 18, 
48), (48, 18, 45)}. 

 The neutrosophic triplet groups associated with 34 are 
{(17, 34, 17), (34, 34, 34)} = B  

both A and B are cyclic groups of order 16 and 2 respectively. 
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 We can build matrices using A and perform some more 
operations on them. 

 Let A = 

(3,18,6) (18,18,18) (42,18,15)
(9,18,36) (15,18,42) (18,18,18)
(18,18,18) (33,8,33) (3,18,6)
(6,18,3) (18,18,18) (35,18,33)

(12,18,27) (15,18,42) (42,18,15)

 
 
 
 
 
 
  

  

be a 5  3 neutrosophic triplet groups matrix. 

 We know we can define natural product n operation on 
the collection of all 5  3 matrices. 

 Now we wish to define other types of operations on them. 

 So in the first place we define operations on the set A and 
then we can easily transform them to the matrices of 
neutrosophic triplet groups. 

 It is pertinent in the first place to keep on record A is not 
even closed under the modulo addition +.  

For if x = (6, 18, 3) and y = (33, 18, 33) are in A, then x + y = 
(6, 18, 3) + (33, 18, 33) = (39, 36, 36)  A so addition ‘+’ 
modulo 51 is not defined on A. 

 However A under product modulo 51 is a cyclic group of 
order 16. 

 Let x = (33, 18, 33) and y = (6, 18, 3)  A. 

 x  y = (33, 18, 33)  (6, 18, 3) = (198, 324, 99) taking 
mod 51, x  y = (45, 18, 48)  A. 



Special Type of Neutrosophic Triplet Groups… 162 
 
 
 Infact we can prove A under product modulo 51 is a 
cyclic group of order 16. 

 Now we proceed onto define max operation on A. 

 Let x = (39, 18, 24) and y = (15,18,42)  A. 

 max {x, y} = max {(39, 18, 24), (15, 18, 42)} = {(39, 
18,42)}  A so is not even closed under the max operation. 

 Consider min operation on A, min {x, y} = min {(39, 18, 
24), (15, 18, 42)} = (15, 18, 24)  A neither can we define min 
operation on A. 

 So only the operation  on A can be extended the 
operation of natural product on matrices. 

 So on the class of all neutrosophic triplet group matrices 
we cannot define the operations + or max or min as on A we are 
not in a position to define these operations. 

 Only with these limitations we have to work. 

 We further give other types of  operation on the 
collection of all neutrosophic triplet groups matrices. 

 Let M = {(collection of all 2  4 matrices with entries 
from A = {(18, 18, 18), (6, 18, 3), (3, 18, 6), (9, 18, 36), (36, 18, 
9), (33, 18, 33), (27, 18, 12), (12, 18, 27), (15, 18, 42), (42, 18, 
15), (48, 18, 45), (45, 18, 48), (30, 18, 21), (21, 18, 30), (39, 18, 
24), (24, 18, 39)}} be the collection of all 2  4 matrices. 

 If M  A and x = (9, 18, 36)  A. We x  M where  
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 M = 
(36,18,9), (15,18,42) (48,18,45) (24,18,39)
(33,18,33) (18,18,18) (30,18,21) (27,18,12)
 
 
 

. 

(9, 18, 36) 
(36,18,9), (15,18,42) (48,18,45) (24,18,39)
(33,18,33) (18,18,18) (30,18,21) (27,18,12)
 
 
 

  

= 
(18,18,18) (33,18,33) (24,18,39) (12,18,27)
(42,18,15) (9,18,36) (15,18,42) (39,18,24)
 
 
 

  M.  

This is the way product operation is performed. 

 As we are not in a position to define min or max 
operation and without these two operations on M or for that 
matter on any collection of neutrosophic triplet group matrices 
we are forced to define the new notion of conditionally defined 
neutral property max c.n function conditionally defined neutral 
property min on neutrosophic triplet group matrices. So we first 
define the notion of conditionally defined neutral property      
min (c.n min) on A. 

 Let x = (12, 18, 27) min and y = (42, 18, 15)  A 
conditionally defined neutral min property (c.n min) of {x, y} 
denoted by c.n - min {x, y}} = c.n min {(12, 18, 27), (42, 
18,15)} = {(min {12, 42}, min {18, 18}, anti of min {12, 42})} 
=  (12, 18, 27). 

 It is pertinent to note actually min {27, 15} = 15 and (12, 
18, 15) does not form a neutrosophic group triplet, that is (12, 
18, 15)  A. 

 Next we proceed onto define the notion of conditionally 
defined neutral max (c.n max) on A as follows. 
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 Let x = (12, 18, 27) and y = (42, 18,15)  

c.n max {(12,18, 27), (42, 18, 15)} = (max {12, 42}, max {18, 
18}, anti max ({12, 42}) = (42, 18, 15). 

 That is in case of conditionally neutral max we only find 
max of {a, b} say it is a then associate with it the anti max {a,b}  
so c.n. max{anti a, anti b} = anti max {a, b}. 

 We will put them in the following way let x = (a neu a, 
anti a) and y = ( b, neut a, anti b )  A. 

 c.n max { x,y } = {(max {a, b}, neut a, anti max {a, b}) 

 Thus if x = (27, 18, 12) and y = (30, 18, 21). 

 Then c.n. max{x, y} = c.n max {(27, 18, 12), (30, 18, 21), 
=      (max (27, 30), 18, anti max {27, 30}) = (30, 18, anti 30) = 
(30, 18, 21)  A. 

 On similar lines we define conditionally neutral min of 
two neutrosophic triplet groups. 

 Let x = (27, 18, 12) and y = (30, 18, 21)  A  

 min {x, y}  = min {(27, 18, 12),(30, 18, 21)} = (min {27, 
30}, 18, anti min {27, 30}) = (27, 18 anti 27) = (27, 18, 12). 

 Now we find c - n - max of x = (9, 18, 36) and y = (30, 
18, 21) in A. 

 c.n max {x, y} = c. n. max {(9, 18, 36), (30, 18, 21)} = 
(max {9, 30}, 18, anti max {9, 30}) = (30, 18, anti 30) =(30, 18, 
21)  A.   
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 It is interesting to observe that max {36, 21} is only 36 
and (30, 18, 36) is not a neutrosophic triplet group with 18 as 
the neutral element. 

 We find c.n min {x, y} = c.n min {(9, 18, 36), (30, 18, 
21)} = (min{9, 30}, 18, anti min {9, 30}) = (9, 18, anti 9) = (9, 
18, 36). However it is clearly observed min {36, 21} = 21 and 
(9, 18, 21) does not form a neutrosophic triple group of the 
neutral element 18. 

 Thus we see A under the operation c.n min is a 
semigroup. That is {A, c.n min} is a semigroup of order 16 or 
equivalently A is closed under c.n-min and {A, c.n. min} is a 
semigroup which is commutative. However {A, c.n min} is not 
a monoid. 

 Now let us consider (9, 18, 36) and (30, 18, 21) in A. 

 c.n max {(9, 18, 36), (30, 18, 21)} = (max {9, 30}, 18 
antimax {9, 30}) = (30, 18, anti 30) = (30, 18, 21)  A. 

 So {A, c.n - max} is a semigroup which is not a monoid. 

 Only by defining these two special type of operations on 
A we can define successfully a semigroup. 

 We will for the sake of better understanding give an 
example. 

Example 3.8. Let S = {Z33, } to be a semigroup under product 
modulo 33. The neutral elements of S are 12 and 22. The 
neutrosophic triplet groups associated with 12 the neutral 
element are  
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A = {(3, 12, 15), (15, 12, 3), (9, 12, 27), (12, 12, 12), (27, 12, 9), 
(6, 12, 24), (24, 12, 6), (18, 12, 30), (30, 12, 18), (21, 12, 21)}. 

 The neutrosophic triplet group associated with 22 are 
{(22, 22, 22), (11, 22, 11)}. 

 Clearly {A, } is a cyclic group of order 9. 

 {A, c.n max} and {A, c.n min} are semigroups which are 
not monoids.  

We now show how c.n max and c.n min operations are 
performed on matrices of neutrosophic triplet groups. 

 Let {3  5 matrices with entries from A} =  

{
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a a
a a a a a
a a a a a

 
 
 
  

 / ai  A; 1  i  15}  

be the collection of all matrix of neutrosophic triplet groups. 

 We show {M, c.n - min} is a semigroup and is not a 
monoid. 

 Let x = 
(3,12,15) (30,12,18) (21,12,21) (6,12,24) (12,12,12)
(12,12,12) (18,12,30) (24,12,6) (12,12,12) (24,12,6)
(3,12,15) (15,12,3) (12,12,12) (18,12,30) (15,12,3)

 
 
 
  

 

 A. 

 If  = (27, 12, 9)  A to find  

c.n - min {,x } =  
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(3,12,15) (27,12,9) (21,12,21) (6,12,24) (12,12,12)
(12,12,12) (18,12,30) (24,12,6) (12,12,12) (24,12,6)
(3,12,15) (15,12,3) (12,12,12) (18,12,30) (15,12,3)

 
 
 
  

. 

 Clearly c.n min {x, x} = x for all x  A. 

 Infact {M, c.n min} is a semigroup under c.n - min 
operation.  However M has no identity. 

 Let T = {Collection of all 5  2 matrices with entries  

from A} = {

1 2

3 4

5 6

7 8

9 10

a a
a a
a a
a a
a a

 
 
 
 
 
 
  

 / ai  A; 1  i 10} = collection of all  

5  2 matrices with entries from A. 

 We now show how a special type of c.n - max operation 
is performed on T using elements from A. 

 Let x = (3, 12, 15)  A and  

 a = 

(12,12,12) (18,12,30)
(15,12,3) (30,12,18)

(21,12,21) (6,12,24)
(9,12,27) (24,12,6)
(18,12,30) (6,12,24)

 
 
 
 
 
 
  

  T. 
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We define c.n - max {x, a} = 

(12,12,12) (18,12,30)
(15,12,3) (30,12,18)

(21,12,21) (6,12,24)
(9,12,27) (24,12,6)
(18,12,30) (6,12,24)

 
 
 
 
 
 
  

 = a  T. 

 In this way {T, c.n max} happens to be only a semigroup 
and not a monoid. 

 Let W = {collection of all 4  4 matrices with entries 
from A}  

  = {

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
 
 
 
 

  

where ai  A, 1  i  16} = collection of all 4  4 matrices with 
entries from A. Let x = (6, 12, 24)  A and  

 = 

(24,12,6) (12,12,12) (3,12,15) (24,12,6)
(15,12,3) (18,12,30) (27,12,9) (9,12,27)

(21,12,21) (12,12,12) (24,12,6) (9,12,27)
(12,12,12) (9,12,27) (6,12,24) (15,12,3)

 
 
 
 
 
 

 be in W.  

 We find x   = (6, 12, 24)   =  

 

(12,12,12) (6,12,24) (18,12,30) (12,12,12)
(24,12,6) (9,12,27) (30,12,18) (24,12,6)
(27,12,9) (6,12,24) (12,12,12) (21,12,21)
(6,12,24) (21,12,21) (3,12,15) (24,12,6)

 
 
 
 
 
 

  T. 
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 This is the way special type of product operation is 
performed from   T and x  A. 

 Now we perform row matrix into a matrix by defining 
either max product or max min operations. 

 Let x = ((3, 12, 15), (12,1 2,12), (15, 12, 3), (30, 12, 18), 
(21, 12, 21)) be a 1  5 matrix. 

 Let a = 

(6,12,24) (24,12,6)
(12,12,12) (6,12,24)
(24,12,6) (15,12,3)
(3,12,15) (21,12,21)

(21,12,21) (6,12,24)

 
 
 
 
 
 
  

  T  

max min {x, a} = ((21, 12, 21),(21, 12, 21)). 

 This is the way max min operation is performed. 

 max - product {x, a} = ((30, 12, 18), (27, 12, 9)). 

We see max product operation is defined in this way. 

 It is pertinent to keep on record that always max product 
will yield a bigger value than max min.  

 Now this sort of product will be used in mathematical 
models which will be constructed in the next chapter. 

 Now we wish to show that these sort of operation will 
after a stage end in a fixed point. To this end we will construct 
another example using both square neutrosophic triplet group 
matrices and rectangular neutrosophic triplet group matrices. 
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Example 3.9.  Let S = {Z21, } be the semigroup under product 
modulo 21, 21 = 3.7.  The neutral elements of S are 7 and 15. 

 The neutrosophic triplet groups associated with 15 are  

A = {(15, 15, 15), (3, 15, 12), (9, 15, 18), (12, 15, 3), (18, 15, 9), 
(6, 15, 6)}. 

 Now we show if M = {collection of all 2  2 matrices 
with entries from A}  

= { 1 2

3 4

a a
a a
 
 
 

/ ai  A; 1  i  4} = Collection of all  

2  2 neutrosophic triplet group matrices with entries from A. 

 Let X = {(a1 , a2) / ai  A; 1  i  2} be the collection of 
all row matrices with entries from A. 

 Now if x  A and N  M then if xN = y1 find y1N = y2 
say then we claim after a finite number of such iterations we get 

N
ty  = yt+1 with yt+1N = yt+1 and so on will yield a fixed point or 

y1  y2  …  yt+1  …  yt+1 a limit cycle. This concept 
will be used in the mathematical models.  

 We will just illustrate this by some examples. 

 Let x = ((3, 15, 12), (6, 15, 6))  X and  

N = 
(12,15,3) (18,15,9)
(9,15,18) (3,15,12)
 
 
 

  M;  

we find c.n max-product {x, N};  
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c.n max-product {x, N} = c.n max-product {((3, 15, 12),             
(6, 15, 6)), N} = ((15, 15, 15), (18, 15, 9)) = y1 say,  

c-n max-product {y1, N} = ((15, 15, 15), (18, 15, 9)) =  

     y2 (say) = y1  I 

 Thus we see at the second iteration itself the term x on N 
with c.n max product converges to ((15, 15, 15), (18, 15, 9)) or 
in technical terms yields a fixed point. 

 Now we find for the same x the c.n max min {(x, N)}. 

 c.n max-min {(x, N)} = ((6, 15, 6), (3, 15, 12)) = z1 (say); 
now c.n maxmin {(z1, N)} = ((6, 15, 6), (6, 15, 6)) = z2 (say) c.n 
max min {z2, N} = ((6, 15, 6), (6, 15, 6)) = z3 (= z2) II 

Thus this row vector or row matrix of neutrosophic triplet 
groups converges to z2 = ((6, 15, 6) (6, 15, 6)) or yield the fixed 
point z2. 

 Hence it is pertinent to record at this juncture that the 
values or converging vector in case of c.n max-product (x, N) is 
different from the c.n max-min (x, N) which clearly evident 
from I and II. 

 Thus we can define in case of matrix of neutrosophic 
triplet groups the notion of special type of fixed points which is 
as follows. 

Definition 3.2. Let S = {Zpq, } be the semigroup under product 
modulo pq (p and q two distinct primes). A = {Collection of all 
neutrosophic triplet groups associated with the neutral elements 
of Zpq} of order p – 1 or (q – 1) depending on the neutral 
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element of Zpq. M = {collection of all n  n matrices with entries 
from A} be the collection of all n  n matrix of neutrosophic 
triplet groups. 

 Let X = {(a1, …, an) / ai A, 1 i  n} be the collection of 
1  n row vector or row matrices of neutrosophic triplet group. 

 Then c.n max-product (x, N) and cn max min (x, N) for 
every x  X and N  M either converges to a fixed point 
defined as the special fixed point or is a limit cycle. 

 We will illustrate this situation by one more example. 

Example 3.10. Let S = {Z55, } be the semigroup under product 
modulo 55. 

 The neutral elements of Z55 are 11 and 45. 

 We see the neutrosophic triplet groups associated with the 
neutral element 45 are as follows; 

 A ={(45, 45, 45), (5, 45, 20), (20, 45, 5), (25, 45, 15), (15, 
45, 25), (10, 45, 10), (30, 45,40), (40, 45, 30), (35, 45, 50), (50, 
45, 30)}.  

 We can for the neutral element 11 find the associated 
collection of all neutrosophic triplet groups. 

 Now using the collection A we construct the following 
matrix group of neutrosophic triplet groups. 
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 M = {

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
 
 
 
 

 / ai  A,  1  i  16} be the 4 

 4 matrix group of neutrosophic triplet groups. 

 X = {(a1, a2, a3, a4) / ai  A, 1  i  4} be the collection of 
all row vector or row matrices of neutrosophic triplet groups. 

 For every  x  X and N  M we find c.n max product {x, 
N} and c-n max min {x, N} and prove the limit converges to a 
fixed point or repeats itself as a limit cycle. 

 We will work out for a particular values of x  X and N 
 M.  

Let x = ((25, 45, 15), (20, 45, 5), (10, 45, 10), (35, 45, 50))  X 

 and N = 

(10,45,10) (45,45,45) (40,45,30) (15,45,25)
(50,45,30) (5,45,20) (20,45,5) (40,45,30)
(45,45,45) (15,45,25) (40,45,30) (35,45,50)
(5,45,20) (15,45,25) (40,45,30) (20,45,5)

 
 
 
 
 
 

  

 M.  We first find c.n  max product {(x, N)} = ((30, 45,50), 
(45, 45, 45), (25,45, 15), (45, 45, 45)) = y1 (say). 

 We see c-n max product {y1, N} = ((50, 45, 35), (45, 45, 
45), (45, 45, 45), (50, 45, 35)) = y2 (say). 

c.n max product {(y2, N)} = ((50, 45, 35), (50, 45, 35), (40, 45, 
30), (40, 35, 30) = y3 (say). 
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 c.n max-product {y3, N} = ((40, 45, 30), (50, 45, 35), (20, 
45, 5), (35, 45, 50) = y4 (say). 

 Now we find c-n max product {y4, N} = ((25, 45, 15), 
(40, 45, 30), (30, 45, 40), (50, 45, 35)) = y5 (say) 

 c-n max product {y5, N} = {(30, 45, 40) (50, 45, 35), (45, 
45, 45), (45, 45, 45)} = y6 (say) 

 c-n max product {y6, N} = ((45, 45, 45), (30, 45, 40), (45, 
45, 45), (35, 45, 50)) = y7 (say). 

 Now c.n max product {y7, N} = ((45, 45, 45), (45, 45, 
45), (50, 45, 35), (45, 45, 45)) = y8 (say). 

 c.n max product {y8, N} = ((50, 45, 35), (45, 45, 45), (40, 
45, 30), (45, 45, 45)) = y9 (say). 

 We find the c.n max prod. {y9, N} = ((50, 45, 35), (50, 
45, 35), (40, 45, 30), (40, 45,30)) = y10 (say). 

 c.n max product {y10, N} = ((40, 45, 30), (50, 45, 35), 
(20, 45, 5) (35, 45, 50)) = y11 (say). 

 We now find c.n max product {y11, N} = (25, 45, 15), 
(40, 45, 30), (30, 45, 40), (50, 45, 35)) = y12 (say). 

 We see y12 = y5. 

 Thus this does not converge to a fixed point however the 
resultant is a limit cycle given by 

 x  y1  y2  y3  y4  y5  y6  …  y12 = y5. 

Thus the product ends in a limit cycle just after 12 iterations. 
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 Now consider  

a = ((15, 45, 25), (25, 45, 15), (5, 45, 20), (20, 45, 5))  X.  

We find c.n max-product {a, N} = ((45, 45, 45), (25, 45, 15), 
(50, 45, 35), (15, 45, 25)) = p1 (say). 

 c.n max-product {p1, N} = ((50, 45, 35) (45, 45, 45) (50, 
45, 35), (45, 45, 45)) = p2 (say). 

 c.n max-product {p2, N} = ((50, 45, 35), (50, 45, 35), (40, 
45, 30), (45, 45, 45)) = p3 (say). 

 c.n max-product {p3, N} = ((40, 45, 30), (50, 45, 35), (40, 
45, 30),(35, 45, 50)) = p4 (say).  

 c.n max-product {p4, N} = ((40, 45, 30), (50, 45, 35), (25, 
45, 15), (40, 45, 30)) = p5 (say). 

 c.n max-product {p5, N} = ((40, 45, 30), (50, 45, 35), (10, 
45,10),(50, 45, 35)} = p6 (say). 

 c.n max-product {p6, N} = ((30, 45, 40), (40, 45, 30), (20, 
45, 5), (50, 45, 35)) = p7 (say). 

 c.n max-product {p7, N} = ((30, 45, 40), (35, 45, 50), (45, 
45, 45), (40, 45, 30) = p8 (say). 

 c.n max-product {p8, N} = ((45, 45,45) (50, 45, 35), (45, 
45, 45), (35, 45, 50)) – p9 (say). 

 Now we find cn max-product {p9, N} = ((45, 45, 45), (45, 
45, 45), (40, 45, 30), (40, 45, 30)) = p10 (say). 
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 The c.n max-product of {p10, N} = ((50, 45,35), (50, 45, 
35), (40, 45, 30), (40, 45, 30)) = p11 say) 

 c.n max product {p11, N} = ((40, 45, 30), (50, 45, 35), 
(20, 45, 5), (35, 45, 50)} = p12 (say) 

 Certainly as both the sets X and M contains only a finite 
number of elements we will after a finite number of iterations 
arrive at a fixed point or a limit cycle. 

 Next we find this type of operations on m  n matrices of 
neutrosophic triplet groups m  n.   

 We show how in this case we will arrive at a fixed point 
pair or a limit cycle pair.  This type of c.n max-product will be 
used in the NtgCMs model which is defined in chapter four. 

Example 3.11. Let S = {Z35, } be the semigroup under product 
modulo 35. 

 The neutral elements (idempotents) of Z35 are 15 and 21. 

 The neutrosophic triplet groups of the neutral element 15 
are  

A = {(5,15, 10), (10, 15, 15), (25, 15, 30), (30, 15, 25), (20, 15, 
20), (15,15,15)}.  The neutrosophic triplet groups of the neutral 
element 21 are  

B = {(7, 21, 28), (28, 21, 7), (14, 21, 14), (21, 21, 21)}. 
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Let M = {

1 2

3 4

5 6

7 8

9 10

a a
a a
a a
a a
a a

 
 
 
 
 
 
  

 / ai  A; 1  i  10} 

be the collection of all 5  2 neutrosophic triplet group matrices 
with entries from A. 

Let X = {(a1, a2, a3, a4, a5) / ai A, 1  i  5} be the set of 
all row vectors or row matrices of neutrosophic triplet groups. 

Y = {(a1, a2) / Ai A; 1  i  2} be the row vector or row 
matrices of neutrosophic triplet groups. 

Now we define both c.n max min and c.n max product 
operations using elements of X, Y and M. 

Let P = 

(5,15,10) (20,15,20)
(15,15,15) (10,15,5)
(30,15,25) (15,15,15)
(25,15,30) (15,15,15)
(15,15,15) (10,15,5)

 
 
 
 
 
 
  

  M. 

Let x = ((15, 15, 15), (5, 15, 10), (30, 15, 25), (10, 15, 5), 
(15, 15, 15))  . 

We find c.n max products {x, P} = ((25, 15, 30), (30, 15, 
25)) = y1 (say). 

Now we define Pt = 
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(5,15,10) (15,15,15) (30,15,25) (25,15,30) (15,15,15)
(20,15,20) (10,15,5) (15,15,15) (15,15,15) (10,15,15)
 
 
 

We calculate c.n max product (y1, Pt) = ((20, 15, 20), (25, 15, 
30), (30, 15, 25), (30, 15, 25), (25, 15, 30)) = x1 (say). 

Now we find c.n max prod {x1, P} 

= ((30, 15, 5), (30, 15, 25)) = y2 (say) 

We get c.n max prod {y2 ,Pt} = ((10,15, 5), (30, 15, 25) 
(30, 15, 25), (30, 15, 25), (30, 15, 25)) = x2 (say) 

c.n max prod {x2 ,P}

= ((30, 15, 25) (30, 15, 25)) = y3 (say). 

We see c.n max product {y3 ,Pt} = x3 (= x2) 

Thus this converges to a fixed point pair given by {((10, 15, 5), 
(30, 15, 25), (30, 15, 25), (30, 15, 25), (30, 15, 25)), ((30, 15, 
25), (30, 15, 25)}}.    I 

Now using the same x and the same P we now calculate 

c.n max min {x, P};

c.n max min {x, P} = ((30, 15, 25), (15, 15, 15)) = y1 (say).

c.n max min {y1,Pt}= ((15, 15,15) (15, 15, 15), (30, 15, 25), (25,
15, 30), (15, 15, 15)) = x1 (say). 

c.n max min {x1, P} = ((30, 15, 25), (15,15, 15)) = y2 (say) = y1

c.n max min {y2  Pt} = c.n max min {y1, Pt} = x1.
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 Thus in this case also we see the row vector converges to 
a fixed point pair given by {(15, 15, 15), (15, 15, 15), (30, 15, 
25), (25, 15, 30), (15, 15,15)), ((30,15, 25), (15, 15, 15))}    II 

 We see I and II are different. That is the fixed point pair 
given by c.n max product is different from the fixed point pair 
given by c.n max min for the same row vector x of X on the 
same matrix P of M. 

 It is left as an open problem for the reader to find  
whether there exist a row vector in X such that for a given fixed 
P in M the row vector converges to the same fixed pair point 
both under the c.n max min as well as under the c.n max prod. 

 We next show some more interesting results on these 
neutrosophic triplet groups matrices. 

Example 3.12 Let S = {Z39, } be the semigroup under product 
modulo 39. The neutral elements (idempotents) associated with 
Z39 are 13 and 27. 

 The neutrosophic triplets associated with the neutral 
element 27 are 

 A = {(3, 27, 9), (9, 27, 3), (6, 27, 24), (24, 27, 6), (18, 27, 
21), (21, 27, 18), (15 27, 33), (33, 27, 15), (27, 27, 27), (12, 27, 
12), (30, 27, 36), (36, 27, 30)}. 

 Clearly A is a group under product modulo 39. 

 Now let M = {
1 2 3 4

5 6 7 8

9 10 11 12

a a a a
a a a a
a a a a

 
 
 
 
 

/ ai A, 1  i  12}  
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be the collection of all matrices of neutrosophic triplet group. 

 Clearly o(M) = 1212. 

 Let X = {(a1, a2, a3) / ai  A, 1  i  3} be the collection 
of all neutrosophic triplet groups row matrices with entries from 
A. X is a finite commutative group of order 123. 

 Let Y = {(a1, a2, a3, a4) / ai  A; 1  i  4} be the row 
vector or row matrices of neutrosophic triplet groups entries 
from A. 

 Clearly o(Y) = 124 and Y is a group. 

 We now find using the matrix of neutrosophic triplet 
groups B from M and a x  X the c.n max min {x, B} and  

c.n max product {x, B} where  

B = 
(30,27,36) (3,27,9) (9,27,3) (27,27,27)

(9,27,3) (27,27,27) (12,27,12) (6,27,24)
(24,27,6) (15,27,33) (30,27,36) (3,27,9)

 
 
 
  

  M. 

 We first find c.n max min (x, B), c.n max min (x, B) = 
((27, 27, 27), (6, 27, 24), (9, 27, 3), (27, 27, 27)) = y1 (say). 

 We see Bt = 

(30,27,36) (9,27,3) (24,27,6)
(3,27,9) (27,27,27) (15,27,33)
(9,27,3) (12,27,12) (30,27,36)

(27,27,27) (6,27,24) (3,27,9)

 
 
 
 
 
 

 . 

 We now find c.n max min {y, Bt} = ((27, 27, 27), (9, 27, 
3), (24, 27, 6)) = x1 (say). 
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 We now calculate c.n max min {x1, B} = ((27, 27, 27), 
(15, 27, 33), (24, 27, 6), (27, 27, 27)) = y2 (say). 

 c.n max min {y2 Bt) = ((27, 27, 27), (15, 27, 33), (24,27, 
6)) = x2 (say). 

 c.n max min {x2 B} = ((27, 27, 27), (15, 27, 33), (24, 26, 
6), (27, 27, 27)) = y3 (say). 

 Clearly y2 = y3 so this yields a fixed point pair given by 
{((27, 27, 27), (15, 27, 33), (24, 27, 6)), ((27, 27, 27), (15,27, 
33), (24, 27, 6), (27, 27, 27))}   I 

 Now for the same x and B we calculate  

c.n max-product {x, B}. 

 c.n max-product {x, B} = ((30, 27, 36), (12, 27, 12), (36, 
27, 30), (27, 27, 27)) = y1 (say). 

 c.n max-product {y1, Bt} = ((36, 27, 30), (36, 27, 30), (27, 
27, 27)) = x1 (say). 

 c.n max-product {x, B} = ((27, 27, 27), (36, 27, 30), (30, 
27, 36), (36, 27, 30)) = y2 (say). 

We now find max product {y2, B} = ((36, 27, 30) (36, 27, 30), 
(33, 27, 15)) = x2 (say). 

 c.n max-product {x2 ,B} = (27, 27, 27), (36, 26, 30), (15, 
27, 33), (36, 27, 30)) = y3 (say). 

 c.n max-product (y3Bt} = ((36, 27, 30), (36, 27, 30), (33, 
27, 15)) x3 (say) . 
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 c.n max-product {x3 ,B}= ((30, 27, 36), (36, 27, 30), (15, 
27, 33), (36, 27, 30)) = y4 (say). 

 c.n max-product (y4 ,Bt) = ((36, 27, 30), (36, 27, 30), 933, 
27, 15)) = x4 (say). 

 c.n max product {x4 ,B}= ((27, 27, 27), (36, 27, 30), (27, 
27, 27), (36, 27, 30)) = y5 (say). 

 c.n max product {y5 ,Bt} = ((36, 27, 30), (36, 27, 30), (33, 
27, 15)) = x5 (say). 

 We see x5  = x4 so the resultant is a fixed point pair given 
by {((27, 27, 27), (36, 27, 30), (27, 27, 27), (36, 27, 30)), (36, 
27, 30), (36, 27, 30), (33, 27, 15))   II 

 Clearly I and II are distinct so the c.n max-min and c.n 
max - product yields different values however in this case both 
the methods yield only fixed point pair. 

 We now show how one can have a different type of 
product using a n  n square matrix and row vector with entries 
from the group of neutrosophic triplet groups. 

 If D is a n  n matrix and x is a 1  n row vector we find 
xD = y1 (say) then find y1Dt = x1 say then x1D = y2(say) next 
find y2Dt so on until we arrive at a fixed point pair or a limit 
cycle pair. 

 We will illustrate this by an example and show how it is 
different from the usual fixed point worked out using the 
procedure xD = y1 (say), y1D = y2 (say) and so on ytD = yt+1 = 
yt. 
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 This procedure will only yield a fixed point or a limit 
cycle not  a fixed point pair or a limit cycle pair. 

Example 3.13. Let S1 = {Z51, } be the semigroup under 
product modulo 51. 

 The neutral elements (or idempotents) of Z51 are 18 and 
34. 

 We first give the neutrosophic triplet groups associated 
with 18. 

 A = {(3,18, 6), (6, 18, 3), (9, 18, 36), (27,18, 12), 
(30,18,21), (36, 18, 9), (12, 18, 27), (21, 18, 30), (39, 18, 24), 
(15, 18, 42),(45, 18, 48), (24, 18, 39), (42, 18, 15), (48, 18, 45), 
(33, 18, 33) (18,18,18)}. 

 Let B denote the collection of all neutrosophic triplet 
groups associated with 34. 

 B = {(34, 34, 34), (17, 34, 17)}. 

 Thus A is a cyclic group of order 16 and B is a cyclic 
group of order two. 

 We now consider M = {collection of all 4  4 matrices  

with entries from A} = {

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
 
 
 
 

 / ai  A,  

1  i  16} be the collection of all 4  4 matrices of 
neutrosophic triplet groups. 
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 Let X = {(a1, a2, a3, a4) / ai  A; 1  i  4} be the 
collection of all  row matrices of neutrosophic triplet groups. 

 Let S =  

(3,18,6) (18,18,18) (33,18,33) (3,18,6)
(6,18,3) (9,18,36) (6,18,3) (18,18,18)

(15,18,42) (3,18,6) (18,18,18) (33,18,33)
(18,18,18) (33,18,33) (9,18,36) (9,18,36)

 
 
 
 
 
 

  M  

and let x = ((3, 18,6), (9, 18, 36), (33, 18, 33),(18, 18, 18))  X. 

 We find c.n max product {x, S} and c.n max min {x, S} 
using the transpose of S also.  

Now c.n max product of {x, S} = ((36, 18, 9), (48, 18, 45), (48, 
18, 45), (18, 18, 18)) = y1 (say). 

St
 = 

(3,18,6) (6,18,3) (15,18,42) (18,18,18)
(18,18,18) (9,18,36) (3,18,6) (33,18,33)
(33,18,33) (6,18,3) (18,18,18) (9,18,36)
(3,18,6) (18,18,18) (33,18,33) (9,18,36)

 
 
 
 
 
 

  M. 

 We find c.n max product {y1, St} = ((48, 18, 45), (33, 18, 
33), (48,18, 45), (36, 18, 9)) = y2 (say). 

 We find c.n max product {y2, S} = ((45,18, 48), (48, 18, 
45), (48, 18, 45), (48, 18, 45)) = y3 (say). 

 c.n max product {y3,  St} = ((48, 18, 45), (48, 18, 45), (48, 
18, 45), (45, 18, 48)) = y4 (say). 

 c.n max product {y4 ,S} = ((45, 18, 48), (48, 18, 45), (48, 
18, 45), (48, 18, 45)) = y5 (say). 
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 Thus we see the value of the row vector x converges 
using M under c.n max product to a pair. 

 {((45, 18, 48), (48, 18,45), (48, 18, 45), (48, 18, 45)), 
((48, 18, 45), (48,18, 45), (48, 18, 45), (45, 18, 48))} I 

 Now using the same pair x and S.  We find the pair of 
resultant vectors using c.n max min operation. 

 c.n. max min {x, S} =((18, 18, 18), (18, 18, 18), (18, 18, 
18), (33, 18, 33)) = y1 (say) 

 c.n max min {y1, St} = ((18, 18, 18), (18, 18, 18), (38, 18, 
33), (18, 18, 18)) = y2 (say). 

 We now find c.n max min (y2S) = ((18, 18, 18) (18, 18, 
18), (18, 18, 18), (33, 18, 33)) = y3 (say). 

 Clearly y3 = y1; hence we see the vector converges or the 
resultant is a fixed point pair given by {((18, 18, 18), (18, 18, 
18), (33, 18, 33), (18, 18, 18)), ((18, 18, 18), (18, 18, 18), (18, 
18, 18), (33, 18, 33))}     II 

 Clearly I and II are distinct. Further the operations c.n 
max product and c.n max min in this case yields only fixed 
point pairs. This type of working will find its applications in 
neutrosophic triplet groups relational maps model or in the 
neutrosophic triplet group Bidirectional Associative memories 
model. 

 The former structure will be defined and described in the 
following chapter. 
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 The main advantage of using these neutrosophic triplet 
groups as entries is that once the element from the set is fixed 
automatically the neutral element and the anti element are fixed 
their by eliminating the arbitrariness present in the choice of 
elements. 

Problems 

 In this section we propose some problems for the reader. 

1. Find the idempotents of {Z226, } = S1 the semigroup 
under modulo product 226. 

 i) Find all neutrosophic triplet groups associated 
with the neutral elements of Z226. 

 ii) Prove the neutrosophic triplet groups associated 
with the neutral elements forms a cyclic group 

 iii) Find the order of them. 

 iv) Find the generators of these cyclic groups. 

2. Let S = {Z339, } be the semigroup under product modulo 
339. 

 i) Study questions (i) to (iv) of problem (1) for 
this S. 

 ii) Compare S1 of problem (1) with S of this 
problem. 

3. Let S = {Z35, } be the semigroup under product . 
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 Let A = {collection of all neutrosophic triplet groups 
associated with the neutral element 15}. 

 M = {collection of all 5  5 matrices with entries from 
A}. X = {(a1, a2, …, a5) / ai  A; 1  i  5} be the row 
matrix of neutrosophic triplet groups. 

If B =  

(5,15,10) (10,15,5) (30,15,25) (15,15,15) (10,15,15)
(15,15,15) (25,15,30) (15,15,15) (20,15,20) (30,15,25)
(10,15,5) (30,15,25) (20,15,20) (25,15,30) (5,15,10)

(25,15,30) (20,15,20) (25,15,30) (25,15,30) (10,15,5)
(20,15,20) (15,15,15) (5,15,10) (30,15,25) (5,15,10)

 
 
 
 
 
 
    

 M. 

 Let x = ((30, 15, 25), (5,15,10), (10, 15, 5) (20, 15, 20), 
(25,15, 30))  X. 

i) Find the fixed point or the limit cycle associated 
with c.n max min {x, B}. 

ii) Find the fixed point or the limit cycle associated 
with c.n max product {x, B}. 

iii) Compare the resultants in (i) and (ii). 
iv) Find all vectors a  X which gives fixed points 

under c.n max product using this B. 
v) Find all vectors x  X which produce fixed 

points and c.n max min using the given B. 
vi) Does the exists vectors b  X which are fixed 

points under both c.n  - max product and c.n max 
min? 
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vii) Can there be a x  X which gives the same fixed 
point both under c.n max min as well S c.n. max 
product? 

viii) Can there be x  X which gives same limit cycles 
under both the c.n max min and cn max product ? 

ix) Enumerate any other special features enjoyed by 
cn max product and cn max min. 

4. Suppose S ={Zn, } be the semigroup under product n = 
2p (p a prime). A the set of neutrosophic triplet groups 
associated with S. 

 M ={collection of all 5  3 matrices with entries from A}; 
Y = {1  5 matrices with entries from A} and X = {1  3 
matrices with entries from A}. If c.n max min and c.n 
max product operations are performed for a fixed point 
pairs {x, P} where x  Y and P  M. 

i) Does there exist any relation between the 
resultant vectors given by c.n max product and 
c.n max min? 

ii) Give a value for x  Y and a B  M such that 
one of c.n max product gives  a fixed point pair 
whereas that of c.n max min yield a limit cycle 
pair or vice versa. 

5. Let S = {Z143, } be the semigroup under product modulo 
143. 

 Let M = {collection of all 5  5 matrices with entries 
from A} where A is the larger of the two groups of 
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neutrosophic triplet groups associated with neutral 
elements of Z1453. 

i) Prove o(A) = 12. 
ii) Prove o(M) = 1225 
iii) Let X = {(a1 a2 a3 a4 a5) ai  A; 1  i  5}, prove 

o(X) = 125 
iv) Using c.n max min {x, P} for x  X and P  M 

and the transpose of P find the limit point pair or 
the fixed point pair. 

v) Give an example by choosing x  X and N  M 
such that the resultant pair of c.n matrix product 
{x, N} is a fixed point pair whereas the resultant 
pair using c.n max min yields a limit cycle pair. 

6. Let S ={ Z194, } be the semigroup under product modulo 
194 and B = { Z291, } be the semigroup under product 
modulo 291. 

 i) Prove S has a neutral element which yields 96 
distinct neutrosophic triplet groups. 

 ii) Prove B also  has a neutral element which yields 
96 distinct  neutrosophic triplet groups. 

iii) Hence or otherwise prove the largest cardinality 
of the collection of all neutrosophic triplet groups 
can be the same even if the cardinality of the 
respective Zn’s may vary. 

iv) Can we prove the conclusion in (iii) is from the 
fact that largest prime which divides 194 and 291 
are the same? 
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v) Hence can we prove the cardinality of the group 
of neutrosophic elements is only dependent on the 
largeness of the prime which divides m and n of 
Zm and Zn and not of the fact m > n or n > m. 

7. Determine a method by which all neutral elements 
(idempotents) can be found in Zn; n = p1 p2 … pt ; t > 3 
and pi are distinct primes; 1  i  t. 

8. Let S ={Z2485, } and B = {Z3995, } be two semigroups 
under modulo product. 

 i) Find all the neutral elements of S and B. 

 ii) Which of the semigroups S or B has more number 
of classical group of neutrosophic triplet groups? 

 iii) Which of the semigroups S or B has larger 
number of neutral elements? 

iv) Find all special and distinct features enjoyed by S 
and B. 

9. Can we say if S is as in problem 8 the collection of all 
neutrosophic triplet groups associated with any neutral 
element will be a group? 

10. Study problem (9) in case of S = {Z2310, } and B = 
{Z4130, } the semigroups under modulo product. 

11. Do these neutral elements of S and B yield to classical 
group structure on the collection of neutrosophic triplet 
groups for any fixed neutral element? 
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 12. Let {Zn, } be the semigroup under product modulo n, n a
composite number. Does the collection of all neutral
elements of Zn form a semigroup or a group?

13. Let S = {Zn, } be a semigroup under product modulo n
(n a composite number);

i) When can we say S has neutral elements which  
contribute to duplets? (give condition on n).

ii) When can we say Zn has neutral elements which
contribute to quasi neutrosophic triplet groups?

iii) Characterize those n for which Zn has quasi
neutrosophic triplets groups.

iv) If r  Zn is a neutral element associated with
quasi neutrosophic triplet groups than can r have
with it some associated neutrosophic triplet
groups? Justify.

14. Study questions (i) to (iv) of problem (13) in case of
S = {Z120, }.

15. Analyse the relation between quasi neutrosophic triplet
groups and neutrosophic triplet groups.

16. If a neutral element in {Zn,x} gives duplets can the same 
neutral element yield quasi  neutrosophic triplet groups 
and neutrosophic triplet groups?
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17. Characterize those S = {Zn, x} which can yield only 
duplets (for which n this  can occur).

18. Characterize those n of S = {Zn, x} for which the neutral
elements can yield only quasi neutrosophic triplet groups.

19. Describe those n of S = {Zn, x} which can yield only  
quasi neutrosophic triplet groups and neutrosophic triplet  
group and not duplets.

20. Characterize those n of S = {Zn, } whose classical group
of neutrosophic triplet groups can yield only fixed points
for any s  s collection of square matrices and 1  s row
matrices with entries from that group.

i) Does such a n exists?

ii) If the collection of neutrosophic triplet groups is
only a semigroup can we say fixed points alone is
possible?

21. Characterize those n of S = {Zn, } for which Zn has
neutrals whose associated collection of neutrosophic
triplet groups forms only a semigroup.

22. Let S = {Zn, }, where n = 28 35 52 73 be the semigroup
under product.

i) Find all neutral elements of Zn.

ii) How many of these neutral elements contribute to
the classical group of neutrosophic triplet groups?
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iii) How many of these neutral elements contribute to
semigroup of neutrosophic triplet groups?

iv) Does there exist neutrals associated with n which  
can contribute to duplets?

v) Does there exist neutrals associated with this n
which can contribute to quasi neutrosophic triplet
groups?

23. Let S = {Zn, x} where n = 72 be the semigroup under
product modulo n.

i) Find the neutral elements of 72.

ii) Which of these neutral elements contribute to
neutrosophic triplet groups.

iii) Which has more number of neutrals which
contribute to neutrosophic triplet group Z72 or
Z69?

iv) Can we say Z74 has more number of neutrosophic
triplet groups than Z72 and Z69?

v) Prove Z74 has only two neutrals 37 and 38.
vi) Show related with the neutral 38 has a collection

of 36 nontrivial neutrosophic triplet groups.
vii) Prove these 36 elements from a cyclic group of

order 36.
viii) Prove Z69 and Z72 has only classical groups of

order certainly less than 36.
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24. Can you show the largest classical group of neutrosophic 

triplet groups exists in Zpq if p > q then there is a cyclic 
group of order (p – 1)? 

25. If in S ={Zpqr, } be the (p, q, r are distinct primes) 
semigroup under product modulo pqr.  If p > q > r then 
will S have a classical cyclic group of order p – 1? 

26. Let S = {Z30, } be the semigroup under product verify 
problem 25 for this Z30. 

27. Let S = {Z385, } be the semigroup under product modulo 
385. 

 a) Verify problem 25 for this Z385. 

 b) How many neutrals of Z385 contributes to 
neutrosophic triplet groups which are classical 
cyclic groups? 

28. Enumerate all special features associated with 
neutrosophic triplet groups. 

29. What are the probable applications of the neutrosophic 
triplet groups? 

30. Calculate all the neutrals of Z2332. 

31. Which of the neutrals in Z2332 contribute to cyclic group 
of neutrosophic triplet groups. 

32. Obtain all special features of np
Z ; p a prime n > 2 in 

terms of neutrals. 
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 33. Find all neutrals of Z256.

34. Find all neutrals of Z251.

35. Prove these group of neutrosophic triplet groups can be
used in the construction of mathematical models.

36. Can these neutrosophic triplet groups for some Zn form
only semigroup?

37. When these neutrosophic triplet groups for some Z      n is  
only a semigroup will these contribute to duplets?

38. Does there exists S = {Zn, } which has only neutrals
which generate quasi neutrosophic triplet groups and not
neutrosophic triplet groups?

39. Can the collection of quasi neutrosophic triplet groups for
some neutrals in Zn, for some n form a classical group?
Justify.



 

Chapter Four 

 

 

APPLICATIONS OF NEUTROSOPHIC 

TRIPLET GROUPS TO MATHEMATICAL 

MODELS 

 

 In this chapter we for the first time introduce the new 
notion of Neutrosophic Triplet Groups Cognitive Maps 
(NTGCMs) models, Neutrosophic Triplet Groups Relational 
Maps (NTGRMs) models and models which use soft computing 
principles like single layer feed forward network, multilayer 
feed forward network, perceptron etc. Instead of using on or off 
state of the Fuzzy Cognitive Maps (FCMs) model we can use 
the off state say (0, 0, 0) however for the on state can take any 
of the values from the neutrosophic triplet groups which will be 
known as the nodes or concepts of the newly built model akin to 
the FCMs model. We first introduce the Neutrosophic Triplet 
Groups Cognitive Maps model. 

 We however make the formal definition of Neutrosophic 
Triplet Groups Cognitive Maps (NTGCMs) model or (NtgCMs) 
model. 
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  Let S = {Z2p, } be the semigroup under product modulo 
2p, p an odd prime. 

 Let p + 1 and p be the neutral elements of Z2p; p + 1 is a 
neutral element which contributes to neutrosophic triplet groups 
which are nontrivial. Infact associated with p + 1 are some p – 1 
number of neutrosophic triplet groups which forms a classical 
group of order p – 1 which is also cyclic with p + 1 as its 
identity. 

 Let C1, C2, …, Cn be the nodes or concepts associated 
with some problem let them take values from the set B = {0, 2, 
4, …, (p – 1) 2}. 

 Let us assume if Ci node is 0 then it is in the off state if it 
takes any of the other values from B \ {0} the node is in the on 
state with appropriate property or that is the value of the node. 

 Here if the nodes Ci to Cj has an impact depending on the 
value of impact (or effect of one node on the other) a weight is 
given from the set B \ {0} if there is no impact of Ci into Cj then 
the weight is 0. If the weight is a non zero then depending on 
the impact a value from B \ {0} is given. 

 Here it is pertinent to make the following two 
observations: 

i) The nodes / concepts can take 0 or any value 
from B \ {0}, however in case of FCMs they can 
take only values on or off in on value 1 and off 
value 0. 

ii) In case of FCMs two Ci has impact on Cj then 1 
is given if increase in Ci increases Cj or decrease 
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in Ci decrease s Cj and –1 increase in Cj decreases 
Cj or decrease in Ci increases Cj. The value 0 is 
given if no effect of Ci is found on Cj. 

iii) At the outset this NtgCMs or (NTGCMs) model 
which will be based on special type of 
MODFCMs model is better than FCMs model as 
we cannot always make an assumption that a 
state is always on state or off state and a on state 
has a value 1 for we can have a partial or a semi 
on state as these are cognitive models.  

 Any unit can function partially and not fully also the term 
partially is not a quantity for it can always have shades of 
values. 

 For instance take an industry if all units are fully 
functioning we can say 1 is the value it may so happen all units 
are closed then 0, however the security unit is always in on state 
so an industry on all days functions partially. Sometimes only 
security unit and dispatch unit may function. In some day (even 
on holidays) security unit and coordination committee unit or 
executive committee units may function and so on.  If we have 
to say some t units and we have some n nodes /concepts we can 
give the on state or partial state or off state of these nodes with 
values from B. 

 In the opinion of the authors this way of defining is more 
appropriate than the usual way by which FCMs are defined. 

 Now we discuss about the weights. We see in case of 
FCMs the weight is 0 or 1 or – 1 but this is not always possible 
their may be a partial impact of a Ci onto a mode Cj how are 
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 going to describe this situation. To this effect we give for 
weights the values from the set B. 

 We see certainly the MODCMs would be more practical 
than FCMs. We are also certain to arrive at a fixed point or a 
limit cycle after a finite number of iterations. This can be clearly 
proved as B is a finite set under modulo product 2q. 

 We can use 3 types of operations usual composition or 
max product or max min under all the three operations they will 
yield different answer.   

 We will illustrate all these facts by some examples. 

Example 4.1. Let C1, C2, C3, C4, C5 and C6 be six nodes / 
concepts which take the node values from B = {0, 2, 4, 6, 8, 10, 
12}  Z14 be the collection. Clearly B \ {0} is a cyclic group of 
order six with 8 as its multiplicative identity. 

 The elements x = (a1, a2, ... ,a6) takes its values from B, 
that is ai  B, 1  i  6. 

 Thus if X = {(a1, a2, a3, a4, a5, a6) / ai B, 1  i  6} are 
the state vectors of MODCMs akin to the state vector in FCMs 
which can take values only 0 or 1 in the case of simple FCMs. 
So we can over come the crisp on or off state to partially on 
state, some what on state, just on state and so on. The weights 
also need not be 0 or 1, it can be any value from B. 
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Figure 4.1 

The directed MOD graph relating the six nodes whose weights 
are given above is described in the above figure. 

 Let M be the connection matrix associated with this 
above graph. 

 M = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C
C 0 0 0 0 2 0
C 0 0 0 0 0 10
C 0 4 0 0 2 0
C 6 12 0 0 0 0
C 0 0 0 0 0 8
C 0 0 4 0 0 0

  . 

M can also be called as the MOD connection matrix of the 
directed MOD graph. 

 Let as consider the initial state vector 

 x = (0 2 0 6 0 0)  X that is C1, C3, C5 and C6 states are 
off and C2 takes the state 2 and C4 has taken its state value as 6. 

 Now we find the effect of x on M. 

C1 

C4 

C2 C3 

C6 C5 

6 

12 

2 
2 

4 

10 4 

8 
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  xM = (8, 2, 0, 0, 0, 6) we do not update the vector xM by 
replacing the original state values of C2 and C4 as in MODCMs 
can come to off state or any other partial state in the due course 
of time. Only xM = (8, 2, 0, 0, 0, 6) = y(say). 

 Now we find the effect of y1 on M. 

 y1M  = (0, 0, 10, 0, 2, 6) = y2 (say) 

 y2M  = (0, 12, 10, 0, 6, 2) = y3 (say) 

 y3M  = (0, 12, 8, 0, 6, 0) = y4 (say) 

 y4M = (0, 4, 0, 0, 2, 0) = y5 (say) 

 y5M = (0, 0, 0, 0, 0, 6) = y6 (say) 

 y6M = (0, 0, 10, 0, 0, 0) = y7 (say) 

 y7M = (0, 12, 0, 0, 6, 0) = y8 (say) 

 y8M = (0, 0, 0, 0, 0, 0) = y9 (say). 

So the partial on state of the nodes C2 and C4 alone can lead to 
the off state of all nodes also if no updating is done. 

 Let x = (2, 0, 2, 0, 0, 4)  X that is nodes C1, C3 and C6 
take some values and the nodes C2, C4 and C5 take only off 
state. 

 The effect of x on M is given by 

 xM = (0, 8, 2, 0, 8, 0) = y1 (say) 

 y1M = (0, 8, 0, 0, 4, 4) = y2 (say) 
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 y2M =(0, 0, 2, 0, 0, 0) = y3 say 

 y3M = (0, 8, 0, 0, 4, 0) = y4 say 

 y4M = (0, 0, 0, 0, 0, 0) = y5  gives only zero state. 

 So a natural question would be will all on state of all 
nodes lead to zero states. If such a thing occurs the matrix and 
the graph can be categorized as special type of graphs and hence 
they can find their applications in special set up. 

 Now let x = (2, 2, 0,4, 2, 6)  X. 

 We find the effect of x on M 

 xM = (10, 6, 10, 0, 4, 8) = y1 (say) 

 y1M = (0, 12, 4, 0, 12, 8) = y2 (say) 

 y2M = (0, 2, 4, 0, 8, 6) = y3 (say) 

 y3M = (0, 2, 10, 0, 8, 0) = y4 (say) 

 y4M = (0, 12, 0, 0, 6, 0) = y5 (say) 

 y5M = (0, 0, 0, 0, 0, 0). 

 So the reader is left with the task of studying such 
structures. 

 Now for the same M we use max product operation and 
find the resultant. 

Max product (x, M) = (8, 2, 0, 0, 0, 0) = y1 

Max product (y1, M) = (0, 0, 0, 0, 4, 6) = y2 (say) 
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 Max product (y2, M) = (0, 0, 10, 0, 0, 4) = y3 (say) 

Max product (y3, M) = (0, 12, 2, 0, 6, 0) = y4 (say) 

Max product (y4, M) = (0, 8,0, 0, 4, 0) = y5 (say) 

Max product (y5, M) = (0, 0, 0, 0, 0, 0). 

 So now we are forced to take some modification in the 
first place the automatic method of updating of the non zero 
state of the nodes can make a chaos so we take up the method in 
which the state vectors at each stage should be updated.  

 Secondly we propose a conjecture or open problem. 

Conjecture 4.1. Let S = {Z2p, } be the semigroup under 
product.  

 Let B = {0, 2, 4, …, 2(p – 1)} be the cyclic group with p 
+ 1 as the identity with respect to product. 

 Suppose M is a n  n square matrix with entries from B 
and if X = {(a1, …, an) / ai  B} 1  i  n can we say every        
x  X is such that xM = y1  X, y1M = y2  X and so on after a 
tth stage ytM = (0, 0, …, 0)?  Further such types are more 
mathematically interesting and happens to be a challenging 
problem. 

 If not under what conditions on M such things happen. 

 If ytM =  (0, 0, …, 0) after that tth iteration can we say 
even under max product we arrive at (0, 0, …, 0). 

 Will this be true in case of max  min {x, M} also. 
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 Characterize those special n  n matrices M. 

 Now we proceed onto discuss the same problem with 
updating of the vectors C2 and C4 at each stage and analyze 
whether the final resultant on M be x itself or a different state 
vectors. 

 Consider 

 xM = (8, 2, 0, 0, 0, 6) updating  (8, 2, 0, 6, 0, 6) = y1 say 

y1M = (8, 2, 10, 0, 2, 6)  (8, 2, 10, 6, 2, 6) = y2 (say) 

y2M = (8, 0, 10, 0, 8, 8)  (8, 2, 10, 6, 8, 8) = y3 (say) 

y3M = (8, 0, 4, 0, 8, 0)  (8, 2, 4, 6, 8, 0) = y4 (say) 

y4M = (8, 4, 0, 0, 10, 0)  (8, 4, 0, 6, 10, 0) = y5 (say) 

y5M = (8, 2, 0,0, 2, 8)  (8, 2, 0, 6, 2, 8) = y6 (say) 

y6M = (8, 2, 4, 0, 2, 8)  (8, 2, 4, 6, 2, 8) = y7 (say) 

y7M = (8, 4, 6, 0, 10, 8)  (8, 4, 6, 6, 10, 8) = y8 (say) 

y8M = (8, 0, 4, 0, 0, 8)  (8, 2, 4, 6, 0, 8) = y9 (say) 

y9M = (8, 4, 4, 0, 10, 6)  (8, 4, 4, 6, 10, 6) = y10 (say) 

y10M = (8, 0, 10, 0, 10, 0)  (8, 2, 10, 6, 10, 0) = y11 (say) 

y11M = (8, 0, 0, 0, 8, 8)  (8, 2, 0, 6, 8, 8) = y12 (say) 

y12M = (8, 2, 4, 0, 2, 0)  (8, 2, 4, 6, 2, 0) = y13 (say) 
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 y13M = (8, 2, 0, 0, 10, 8)  (8, 2, 0, 6, 10, 8) = y14 (say) 

y14M = (8, 2, 4, 0, 2, 2)  (8, 2, 4, 6, 2, 2) = y15 (say) 

y15M = (8, 4, 8, 0, 10, 8)  (8, 4, 8, 6, 10, 8) = y16 (say) 

y16M = (8, 6, 4, 0, 4, 10)  (8, 6, 4, 6, 4, 10) = y17 (say) 

y17M = (8, 4, 12, 0, 10, 8)  (8, 4, 12, 6, 10, 8) = y18 (say) 

y18M = (8, 8, 4, 0, 12, 8)  (8, 8, 4, 6, 12, 8) = y19 (say) 

y19M = (8, 4, 4, 0, 10, 8)  (8, 4, 4, 6, 10, 8) = y20 (say) 

y20M = (8, 4, 4, 0,10, 8)  (8, 4, 4, 6, 10, 8) = y21 (say). 

 Clearly y21 = y20 so the limit point is a fixed point. 

 Hence it has become mandatory to update the nonzero 
state at each and every stage to see to that the resultant does not 
crumble to a zero state. 

 Next we find for the same x and M max product {x, M}. 

 max product {x, M} = (8, 2, 0, 0, 0, 0)  (8, 2, 0, 6, 0, 0)  

      = y1 (say) 

 max product {y1, M} = (8, 2,0, 0, 2, 6)  (8, 2, 0, 6, 2, 6)  

      = y2 (say) 

 max product {y2, M} = (8, 2, 10, 0, 2, 8)   

     (8, 2, 10, 6, 2, 8) = y3 (say) 
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 max product {y3, M} = (8, 0, 4, 0, 8, 8)   

     (8, 2, 4, 6, 8, 8) = y4 (say) 

 max product {y4, M} = (8, 4, 4, 0, 10, 0)   

     (8, 4, 4, 6, 10, 0) = y5 (say) 

 y5 max product {y5, M} = (8, 4, 0, 0, 10, 8)   

     (8, 4, 0, 6, 10, 8) = y6 (say) 

 max product {y6, M} = (8, 2, 4, 0, 2, 8)   

     (8, 2, 4, 6, 2, 8) = y7 

 max product (y7, M) = (8, 4, 4, 0, 10, 8)   

     (8, 4, 4, 6, 10, 8) = y8. 

 max product {y8, M} = (8, 4, 4, 0, 10, 8)   

     (8, 4, 4, 6, 10, 8) = y9 (say)  II 

 It is clear y9 = y8 so the resultant vector is a MOD fixed 
point. 

 It is surprising to see under both operations usual 
multiplication and under max product in this case the resultant 
happens to be the same.  

 We leave it as a problem to the reader to find whether 
there are vectors x  Xsuch that xM gives a resultant state 
vector different from that of max product. 
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  Now we work with the maximum {x, M} for the same x 
and M  

max  min {x, M} = (6, 6, 0, 0, 0, 2)  (6, 6, 0, 6, 0, 2) = y1 

max min {y1, M} = (6, 6, 2, 0, 2, 6)  (6, 6, 2, 6, 2, 6) = y2 

max min {y2, M} = {6, 6, 4, 0, 2, 6)  (6, 6, 4, 6, 2, 6) = y3 

max min {y3, M} = (6, 6, 4, 0, 2, 6)  (6, 6, 4, 6, 2, 6) 

      =  y4 (say) 

 Clearly y4 = y3 thus the resultant vector is a fixed point 
given (6, 6, 4, 6, 2, 6) which is different from other resultant 
state vectors. 

 Thus we see with on state of nodes C2 and C4 leads to the 
non zero state of all other nodes in the resultant to get a non 
zero state. 

 The example is not any real world problem or from any 
real world data. 

 Next we proceed onto describe the notion of neutrosophic 
triplet group cognitive maps model in the following. 

 Let the graph be the same as for the MOD cognitive 
models. 

 Now each edge weight is transformed into a neutrosophic 
triplet group for a = 12, neut 12 = 8 and anti 12 = 10 so in the 
place of weight 12 we replace it by the neutrosophic triplet 
group weight (12, 8, 10). 
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Likewise the weight of the edge 

5 6C C  which is 8 is 

changed to (8, 8, 8) and that of the weight of the edge 
6 3C C  

which is 4 is changed to (4, 8, 2) and so on. 

Thus the MOD directed graph is transformed to 
neutrosophic triplet group graph which is described by the 
following Figure 4.2. 

Figure 4.2 

Let N be the connection neutrosophic triplet group matrix 
N of the directed neutrosophic triplet group graph given in 
Figure 4.2. 

N =  

1 2 3

1

2

3

4

5

6

C C C
C (0,0,0) (0,0,0) (0,0,0)
C (0,0,0) (0,0,0) (0,0,0)
C (0,0,0) (4,8,2) (0,0,0)
C (6,8,6) (12,8,10) (0,0,0)
C (0,0,0) (0,0,0) (0,0,0)
C (0,0,0) (0,0,0) (4,8,2)  

C1 (12,8,10) 

C4 

C2 C3 

C6 

(4,8,2) 

C5 

(6,8,6) 

(2,8,4) 
(2,8,4)

(10,8,12)

(8, 8, 8) 

(4,8,2) 
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 4 5 6C C C

(0,0,0) (2,8,4) (0,0,0)
(0,0,0) (0,0,0) (10,8,12)
(0,0,0) (2,8,4) (0,0,0)
(0,0,0) (0,0,0) (0,0,0)
(0,0,0) (0,0,0) (8,8,8)
(0,0,0) (0,0,0) (0,0,0)

 

 In view of all these we first define the notion of 
neutrosophic triplet groups directed graph in the following. 

Definition 4.1. A simple graph G with {v1, …, vn} as its vertex 
set is defined to be a neutrosophic triplet group graph if the 
edge weights are from the neutrosophic triplet group collection 
associated with one neutral element from Zm, m a composite 
number. 

 We will first illustrate this situation by some examples. 

Example 4.2.  Let G be a graph with vertex set v1, v2, v3, v4 and 
v5. The edge weights are from the set. 

 B = {(0, 0, 0), (18, 18, 18), (2, 18, 26), (26, 18, 2), (4, 18, 
30), (30, 18, 4), (8, 18, 32), (32, 18, 8), (16, 18, 16), (6, 18, 20), 
(20, 18, 6), (12, 18, 10), (10, 18, 12), (24, 18, 22), (22, 18, 24), 
(14, 18, 28), (28, 18, 14)} related to the neutral 18 of Z34. 

 The neutrosophic triplet group graph with edge weights 
from B with v1, v2, v3, v4 and v5 is as follows. 
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Figure 4.3 

 The matrix V related to the graph with neutrosophic 
triplet group edge weight is as follows: 

1 2 3

1

2

3

4

5

v v v
v (0,0,0) (0,0,0) (28,18,14)
v (0,0,0) (0,0,0) (0,0,0)
v (0,0,0) (18,18,32) (0,0,0)
v (18,18,18) (0,0,0) (0,0,0)
v (0,0,0) (0,0,0) (0,0,0)  

    

4 5v v
(0,0,0) (0,0,0)

(2,18,26) (0,0,0)
(0,0,0) (6,18,20)
(0,0,0) (0,0,0)

(22,18,24) (0,0,0)

 

 We see the graph given in Figure 4.3 is a simple directed 
graph. 

 We now given an example of a simple graph with loops. 

v1 (18,18,18) v2 

v2 v4 

v5 

(28,18,14) 

(6,18,20) (22,18,24) 

(8,18,32) 

(2,18,26) 
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 Example 4.3. Let G be a simple graph with loops associated 
with the vertex set v1, v2, …, v7 and edge weights taken from the 
set B given in example 4.2. G is defined as the neutrosophic 
triplet group (simple graph with loops which is given by the 
following Figure 4.4. 

 

 

 

 

 

 

 
 

 

Figure 4.4 

 Now let W be the matrix of neutrosophic triplet group 
associated with the simple neutrosophic triplet group graph with 
loops. 

 Now we find the neutrosophic triplet group matrix M 
associated with this neutrosophic triplet group graph 

v1 
(4,18,30) 

v2 

(20,18,6) 

(4,18,30) 

v3 v4 

(10,18,12) 

(18,18,18) 
(26,18,2)

(24,18,22)

(16,18,16)

(24,18,22)

v6 

(4,18,30) (12,18,10) 

v1 
(14,18,28) 

(8,18,32) 

(20,18,6) v5 

(2,18,26) 
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M = 

1 2 3 4

1

2

3

4

5

6

v v v v
v (0,0,0) (4,18,30) (26,18,2) (0,0,0)
v (0,0,0) (16,18,16) (0,0,0) (0,0,0)
v (0,0,0) (0,0,0) (0,0,0) (18,18,18)
v (0,0,0) (24,18,22) (0,0,0) (28,18,14)
v (0,0,0) (0,0,0) (0,0,0) (0,0,0)
v (0,0,0) (0,0,0) (12,18,10)

7

(0,0,0)
v (0,0,0) (0,0,0) (0,0,0) (0,0,0)

 

   

5 6 7v v v
(10,18,12) (0,0,0) (0,0,0)

(0,0,0) (0,0,0) (0,0,0)
(0,0,0) (0,0,0) (0,0,0)

(20,18,6) (0,0,0) (20,18,6)
(0,0,0) (0,0,0) (0,0,0)

(4,18,30) (4,18,30) (14,18,28)
(8,18,32) (0,0,0) (2,18,26)

 

Thus all the neutrosophic triplet groups graphs given so far are 
only directed one so they are not symmetric about the diagonal. 
We now give an example of the simple neutrosophic triplet 
graphs which are not directed by an example. 

Example 4.4.  Let v1, v2, v3, v4, v5, v6,v7 and v8 be the set of 
vertices of the neutrosophic triplet group graphs with edge 
weights from B of example given by the following Figure 4.5. 
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Figure 4.5 

 Now we give the related neutrosophic triplet groups 
matrix associated with the simple neutrosophic triplet group 
graphs. 

M =  

1 2 3 4

1

2

3

4

5

6

v v v v
v (0,0,0) (28,18,14) (14,18,24) (0,0,0)
v (28,18,14) (0,0,0) (0,0,0) (24,18,6)
v (14,18,28) (0,0,0) (0,0,0) (0,0,0)
v (0,0,0) (20,18,6) (0,0,0) (0,0,0)
v (0,0,0) (0,0,0) (24,18,22) (0,0,0)
v (0,0,0) (0,0,0) (8,18,3

7

8

2) (26,18,2)
v (0,0,0) (22,18,24) (0,0,0) (16,18,16)
v (0,0,0) (0,0,0) (0,0,0) (8,18,32)

 

v1 

(14,18,28) 

v3 

v2 

v6 

v4 

v5 

v8 

v7 

(28, 18, 14) 

(24,18,22) 
(20,18,6) 

(8,18,32) (26,18,2) 

(8,18,32) 

(4,18,30) 

(12,18,16) 

(16,18,16) 

(30,18,4) 

(32,18,8) 

(22,18,24) 
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5 6 7 8v v v v
(0,0,0) (0,0,0) (0,0,0) (0,0,0)
(0,0,0) (0,0,0) (22,18,24) (0,0,0)

(24,18,22) (8,18,32) (0,0,0) (0,0,0)
(0,0,0) (26,18,2) (16,18,16) (8,18,32)
(0,0,0) (0,0,0) (32,18,8) (16,18,16)
(0,0,0) (0,0,0) (0,0,0) (4,18,36)

(32,18,8) (0,0,0) (0,0,0) (30,18,14)
(16,18,16) (4,18,30) (30,18,14) (0,0,0)

 

 We see the matrix M is symmetric about the main 
diagonal so we would be using the neutrosophic triplet groups 
graphs get the related neutrosophic triplet group matrix however 
using the matrix. We cannot define product of matrices only we 
can define the notion of max product or max min operations 
which is a necessity for us to define the notion of neutrosophic 
triplet groups Cognitive maps (ntg CMs) model. 

 We just describe these model in a line or two. 

 Throughout our discussion we may take a directed 
neutrosophic triplet groups graph with entries from a set of 
neutrosophic triplet groups associated with some neutral 
elements p + 1 of Z2p, p an odd prime. 

 Clearly the collection of neutrosophic triplet groups 
forms a cyclic group of order p – 1 with p + 1 as the neutral 
element and p + 1 serves as the multiplicative identity. For the 
directed neutrosophic triplet groups graphs edge weights are 
from the collection of all neutrosophic triplet groups associated 
with neutral element p + 1 of Z2p, p an odd prime. 
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  Now C1, C2, …, Cn are neutrosophic triplet groups nodes 
that is a node Ci takes either the neutrosophic triplet group or is 
0. We do not have the usual notion of on or off state. A state is 
either (a, b, c) = (a, neut(a), anti(a)) or zero yet another 
advantage is that even if a  2Z2p \ {0} is given we can map the 
rest of them viz. neut(a) and antia. Thus any MOD cognitive 
models with entries from 2Z2p \ {0} is such that if a  2Z2p \ {0} 
is known automatically neut (a) and anti a are fixed. 

 Now on similar lines if the edge weights of the directed 
graphs are from 2Z2p \ {0} then also the neutrosophic triplet 
groups graph can be determined. 

 We will assume in a neutrosophic triplet group cognitive 
maps model the nodes C1, C2, …, Cn can take values from the 
neutrosophic triplet groups associated with the neutral element p 
+ 1 of Z2p which are p – 1 in number and we adjoin (0, 0, 0) 
with it. 

 So the state vectors X = {(a1, a2, …, an) / ai  {collection 
of neutrosophic triplet groups associated with p + 1}; 1  i  
n}}. 

 M is the n  n neutrosophic triplet groups matrix with 
entries from the collection of all neutrosophic triplet groups got 
as a connection matrix of the graph of neutrosophic triplet 
groups with C1, C2, …, Cn as nodes or vertices or concepts. 

 It is pertinent to keep on record that in case of 
neutrosophic triplet groups matrices we cannot define the usual 
product only c.n mat-product and c.n max min operation can be 
performed without difficulty.  
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 We will illustrate this situation by some examples. 

Example 4.5. Let C1, C2, C3, C4 and C5 be 5 district nodes or 
concepts. Let G be the directed  neutrosophic triplet graph with 
edge weight from the set  

B = {(0, 0, 0), (2, 14, 20), (20, 14, 2), (4, 4, 10), (10, 14, 4), (8, 
14, 18), (18, 14, 8),(16, 14, 22), (22, 14, 16), (6, 14, 24), (24, 14, 
6), (12, 14, 12), (14, 14, 14)} associated with the neutral 14 of 
Z26. 

 

 

G =  

 

 

 

Figure 4.6 

 Now G is the directed neutrosophic triplet groups graph 
associated with the nodes C1, C2, …,C5. 

 The neutrosophic triplet groups connection matrix M of 
the graph G is as follows. 

C1 
(2,14,20) 

C2 

C5 

C5 C3 

(16,14,22) (12,14,12) 

(10,14,14) 

(4,14,10) 

(8,14,18) 
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 1 2 3 4 5

1

2

3

4

5

C C C C C
C (0,0,0) (2,14,20) (0,0,0) (0,0,0) (8,14,18)
C (0,0,0) (0,0,0) (16,14,22) (0,0,0) (0,0,0)
C (0,0,0) (0,0,0) (0,0,0) (8,14,18) (0,0,0)
C (0,0,0) (12,14,12) (0,0,0) (0,0,0) (0,0,0)
C (0,0,0) (0,0,0) (0,0,0) (10,14,4) (0,0,0)

  . 

Let the collection of all state vectors associated with the 
dynamical system of neutrosophic triplet groups cognitive maps 
(NtgCMs) model be denoted by 

 X = {(x1, x2, x3, x4, x5) / xi  B; 1  i  5}. 

 Let x = (((10, 14, 4), (0, 0, 0), (14, 14, 14), (2, 14, 20), (0, 
0, 0))  . 

 We will find the effect of x on M c.n max product         
{x, M} = {((0, 0, 0), (24, 14, 6), (0, 0, 0), (8, 14, 18), (24, 14, 
20))} after updating  we get ((10, 14, 4), (24, 14, 6), (14, 14, 14), 
(8, 14, 18), (2, 14, 20)) = y1 (say). 

 c.n max product {y1, M} = ((0,0,0), (20, 14, 2), (20, 14, 
2), (20, 14, 2), (2, 14, 20))  ((10, 14, 4), (20, 14, 2), (20, 14, 
2), (20, 14, 2), (2, 14, 20) = y2 (say). 

 c.n max product {y2,M} = ((0, 0, 0), (20, 14, 2), (8, 14, 
18), (20, 14, 2), (2, 14, 20))  ((10, 14,  4), (20, 14, 2), (8, 14, 
18), (20, 14, 2), (2, 14, 20)) = y3 (say). 

 c.n max product {y3, M} = (0, 0, 0),  (26, 14, 2), (8, 14, 
18), (20, 14, 2), (2, 14, 20))  ((10, 14, 4), (20, 14, 2), (8, 14, 
18), (20, 14, 2), (2, 14, 20)) = y4 (say)…   I 
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 It is easily verified that y4 = y3. Thus the resultant 
neutrosophic triplet groups vector is a fixed point.  

 For the same x and M we find max min {x, M} = ((0, 0, 
0), (2, 14, 20), (14, 14, 14), (8, 14, 18), (8, 14, 18))  ((10, 14, 
4), (2, 14, 20), (14, 14, 14), (8, 14, 18), (8, 14, 18)) = y1 (say) 

 c.n max-min {y1, M} = ((0,0, 0), (8, 14, 18), (2, 14, 20), 
(8, 14, 18), (8, 14, 18))  ((10, 14, 4), (8, 14, 18), (2, 14, 20), 
(8, 14, 18), (8, 14, 18)  = y2 (say) 

 c.n max-min {y2, M} = ((0, 0, 0), (8, 14, 18), (8, 14, 18), 
(8, 14, 18), (8, 14, 18))  ((10, 14, 4), (8, 14, 18), (8, 14, 18), 
(8, 14, 18), (8, 14, 18)) = y3 (say) 

 c.n max-min {y3, M} = ((0, 0, 0), (8, 14, 18), (8, 14, 18), 
(8, 14, 18), (8, 14, 18))  ((10, 14, 4), (8, 14, 18), (8,14, 18), (8, 
14, 18), (8, 14,18)) = y4 (say)    II 

It is clear y4 = y3 so the resultant is a fixed point which 
neutrosophic triplet groups row vector. 

 Clearly I and II are different that is c.n. max-product      
{x, M}  c.n max min {x, M}. 

 Thus we can have ntgCMs or NTGCMs model using 
neutrosophic triplet groups when one cannot say the value is 
totally true or partially true and partiality false but an 
indeterminacy also exist. 

 The advantage is this can function akin to SVNs with a 
change given a true value x the indeterminate or neutral of x and 
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 anti x that is how far x is not true are automatically fixed using 
the notion of neutrosophic triplet groups concept. 

 We in view of all these define the notion of a special type 
of transformation defined as the neutrosophic triplet groups 
automatic transformation relating. 2Z2p with neutrosophic triplet 
groups of Z2p associated with the neutral element p + 1 first by 
examples and then make the definition. 

Example 4.6. Let S = {Z106, } be the semigroup under product 
modulo 106. 106 = 2  53 where 53 is the odd prime. 

 Consider the neutral element 54 of S we see the 
neutrosophic triplet groups associated with 54 are  

{(2,54, 80), (80, 54, 2), (4, 54, 40), (40, 54, 4), (8, 54, 20), (20, 
54, 8), (16, 54, 10), (10, 54, 16), (32, 54, 58), (58, 54, 32), (64, 
54,82), (82, 54, 64), (22, 54, 94), (94, 54, 22) and so on}  {(0, 
0, 0) = B. 

 Clearly cardinality of B is 54. 

 Now we define a new type of transformation; 

 Tntg : 2Z106  B by  

Tntg (x) =(x, 54, anti x) for all x  Z106 \ {0}. 

 Clearly Tntg is well defined infact a one to one map. 

 We define Tntg (0) = (0, 0, 0). 

 Conversely we can define 1
ntgT  : B  2Z106 by  
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 1
ntgT {(x, 54, anti x)} = x for all x  0 and 1

ntgT ((0, 0, 0)) = 0. 

Clearly 1
ntgT  is also well defined. 

The main purpose for defining the transformation 1
ntgT

and Tntg is that we want to go from the usual MODCMs model 
to ntgCMs or NTGCM or NtgCMs model and vice versa under 
the max product and max min operations. So according to the 
wishes of the expert we can choose to work with MODCMs or 
ntgCMs depending on the fact whether the author is interested 
in taking up the issue of indeterminacy not. 

We are yet to fix such special type of transformations for 
any arbitrary n of Zn.

We have defined it only for the case n = 2p, p an odd 
prime even for n = 3p we have the formula but should know 
what the sum adds upto. Only knowing the structure is 
dependent on the form of p of n = 3p. 

Here also once the neutral element is fixed given any 
x  3 Z3p \ {0} the neutrosophic triplet group (x, neut x, antix) 
is fixed so the human bias can be totally eliminated by this 
method. 

So one can work with MOD cognitive maps model with 
entries from 2Z2p or 3Z3p only and can easily transform the 
resultant to neutrosophic triplet groups cognitive models.  

To the effect we will supply one example. 
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4 
C1 

C4 

C2 

C3 

8 
6 

20 

16 
22 

Example 4.7. Let C1,C2, C3 and C4 be four concepts / nodes 
associated with some problem. The edge weights are taken from 
2Z26 = {0, 2, 4, 6, 8, 10, …, 22, 24}  Z26.  

 Let G be the  directed MOD graph with vertices C1, C2, 
C3 and C4 and edge weights from 2Z26 be given by the following 
Figure 4.7. 

 

 

 

 

 

Figure 4.7 

 Let M be the connection matrix associated with the 
Figure 4.7 given in the following. 

 M =    

1 2 3 4

1

2

3

4

C C C C
C 0 4 16 0
C 0 0 0 8
C 22 6 0 20
C 0 0 10 0

 

 Let X = {(a1, a2, a3, a4) / ai  2Z26; 1  i  4} be the MOD 
row matrix which serves as the state vector of the dynamical 
system. 

 We will be using only max product operation and max 
min operation on x  X and this M. 
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 Let x = (4, 12, 0, 0)  X be the initial state vector 
associated with the dynamical system. 

 max-product {x, M} = (0, 16, 12, 18)  (4, 16, 12, 18)     
y1 (say) after updating. 

We now find max product {y1, M} = (4, 20, 24, 24) = y2 (say) 

max-product {y2, M} = (8, 16, 12, 12) = y3 (say) 

max-product {y3, M} = (4, 20, 24, 24) = y4 (say) 

 Clearly y2 = y4 so the resultant is a MOD limit cycle. 

 (4, 20, 24, 24)  (8, 16, 12, 12)  (4, 20, 24, 24). 

 Now if we use the same set of x and M and use the max 
min operation on them. 

 max-min {x, M} = (0, 4, 4, 8)  (4, 4, 4, 8) = y1 (say) 

 max-min {y1, M} = (4, 4, 8, 4) =  y2 (say) 

 max-min {y2, M} = (8, 6, 4, 8) = y3 (say) 

 max-min {y3, M} = (4, 4, 8, 6) = y4 (say) 

 max-min {y4, M} = {8, 6, 6, 8} = y5 (say) 

 max-min {y5, M} = (6, 6, 8, 6) = y6 (say) 

 max-min {y6, M} = (8, 6, 6, 8) = y7 (say). 

 Clearly y7 = y5 so the MOD resultant vector is a limit 
cycle given by (8, 6, 6, 8)  (6, 6, 8, 6)  (8, 6, 6, 8). 
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  Now we use the transformation for each graph matrix and 
initial state vectors and arrive at the result. 

 Now the MOD graph G using the Tntg transformation for 
the edge weights of G is transformed to Tntg (G). 

 We first find the neutral elements of Z26.  The neutral 
elements are 13 and 14, of course 13 does not contribute to 
nontrivial triplet groups other than (0, 0, 0) and (13, 13, 13). 

 The neutrosophic triplet groups associated with the 
neutral element 14 are  

B = {(14, 14, 14), (2, 14, 20), (20, 14, 2), (4, 14, 10), (10, 14, 4), 
(8, 14, 18), (18, 14, 8), (16, 14, 22), (22, 14, 16), (6,14, 24), (24, 
14, 6), (12, 14, 12)}. We adjoin (0, 0, 0) with this collection B. 

Now  Tntg (0) = (0, 0, 0), Tntg (2) = (2, 14, 20), 

 Tntg (4) = (4, 14, 10), Tntg = (6) = (6, 14, 24) 

 Tntg (8) = (8, 14, 18), Tntg (10) = (10, 14, 4) 

 Tntg (12) = (12, 14, 12), Tntg (14) = (14,14, 14) 

 Tntg(16) = (16, 14, 22), Tntg (18) = (18, 14, 8) 

 Tntg (20) = (20, 14, 2), Tntg (22) = (22, 14, 16) and 

 Tntg (24) = (24, 14, 6). 

 Now using this special type of transformation we 
transform the MOD graph G into Tntg (G) which is given in the 
following Figure 4.8. 
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(8,14,18) 

C1 

C3 

C2 

C2 
(10,14,4) 

(20,14,2) 

(22,14,16) 

(4,14,10) 

(8,14,22) 

(6,14,24) 

 

Tntg (G) = 

 

 

 

Figure 4.8 

 It is to be noted that only the edge weights gets 
transformed. We see no changes in the vertices they remain as 
C1, C2, C3 and C4.   

However the MOD edge weights is transformed by Tntg into 
neutrosophic triplet groups. 

 This is shown in Figure 4.8. 

 Now it is pertinent to keep on record that we can 
transform a appropriate MOD graph into neutrosophic triplet 
groups graph using the transformation Tntg which is shown in 
Figure 4.8. 

 Now every MOD matrix can be transformed by Tntg into a 
neutrosophic triplet groups matrix, that is if M = (mij) then      
Tntg (M) = Tntg (mij) = (Tntg (mij)). 

 Now we will show how the 4  4 MOD matrix M given 
in this problem is transformed by Tntg. 
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Tntg (M) = 

1 2 3 4

1

2

3

4

C C C C
C (0,0,0) (4,14,10) (16,14,22) (0,0,0)
C (0,0,0) (0,0,0) (0,0,0) (8,14,18)
C (22,14,16) (6,14,24) (0,0,0) (20,14,2)
C (0,0,0) (0,0,0) (10,14,4) (0,0,0)

 

Tntg(M) is the transformed MOD matrix into the neutrosophic 
triplet group matrix. 

 We will now find the effect of Tntg(x) on Tntg (M)  using 
c.n max product operation and c.n max min operation. 

 However we can show the method of max product and 
max min of {x, M} yield a MOD resultant can be transformed 
into neutrosophic triplet groups vector by the special 
transformation Tntg.  

 We first find c.n max-prod {x, M} using x = ((4, 14, 10), 
(12, 14, 12), (0, 0, 0), (0, 0, 0)). 

 c.n max-product {Tntg (x), Tntg (M)} = ((0, 0, 0), (16, 14, 
22), (12, 14, 12), (18, 14, 8) )  ((4, 14, 10), (16, 14, 22), (12, 
14, 12), (18, 14, 18)) = y1 (say) (after updating) 

 (It is important to note at this juncture 1
ntgT (y1) = (4, 16, 

12, 18) which is the value we obtained using the operation max 
product {x, M}). 

 We find c.n max product {y1, Tntg(M)} = ((4, 14, 10), (20, 
14, 2), (24, 14, 6), (24, 14, 6)) = y2 (say) 

 c.n max product {y2, Tntg(M)} = ((8, 14, 18), (16, 14, 22), 
(12, 14, 12), (12, 14, 12)) = y3 (say). 
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 c.n max product {y3, M} = ((4, 14, 10), (20, 14, 2), (24, 
14, 6), (24, 14, 6)) = y4 (say). 

We see y2 = y4 thus the neutrosophic triplet groups resultant 
vector is a limit cycle given by ((4, 14, 10), (20, 14, 2), (24, 12, 
6), (24, 14, 6))  ((8, 14, 18), (16, 14, 22), (12, 14, 12), (12, 14, 
12))  ((4, 14, 10), (20, 14, 2), (24, 14, 6), (24, 14, 6)). 

 Now for the same Tntg (x) and Tntg (M) we obtain the  

c.n max-min {Tntg(x), Tntg(M)} = ((0, 0, 0), (4, 14, 10), (4, 14, 
10), (8, 14,18))  

 ((4, 14, 10), (4, 14, 10), (4, 14,10), (8, 14 18)) = y1 (say). 

 c.n max min {y1 Tntg (M)} = ((4, 14, 10), (4, 14, 10), (8, 
14, 18), (4, 14, 10)) = y2 (say) 

 c.n max min {y2, Tntg (M)} = ((8, 14, 18), (6, 12, 24), (4, 
14, 10), (8, 14, 18)) = y3 (say) 

 c.n max min {y3, Tntg(M)} = ((4, 14, 10), (4, 14, 10), (8, 
14, 18), (6, 14, 24)) = y4 (say) 

 c. n max min {y4, Tntg (M) = ((8, 14, 18), (6, 14, 24), (6, 
14, 24), (8, 14, 18)) = y5 (say) 

 c.n max min {y5, Tntg (M)} =((6, 14, 24), (6, 14, 24), (8, 
14, 18), (6, 14, 24)) = y6 (say) 

 c.n max min {y6, Tntg (M)} =((8, 14, 18), (6, 14, 24), (6, 
14, 24), (8, 14, 18)) = y7 (say). 

 It is clearly y5 = y7 is a limit cycle given by 
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 ((8, 14, 18), (6, 14, 24), (6, 14, 24), (8, 14, 18))  ((6, 14, 24), 
(6, 14, 24), (8, 1,4 18), (6, 14, 24))  ((8, 14, 18), (6, 14, 24), 
(6, 14, 24), (8, 14, 18)). 

 We see 1
ntgT  ((y5)) = (8, 6, 6, 8). 

 It is pertinent to observe that the limit cycle of max 
product (x, M) is c.n max product (Tntg(x),Tntg(M)) and vice 
versa. So according to convenience one can work with either 
MOD max product or c.n max product and convert from one 
another using the special transformation Tntg(x) or 1

ntgT (x). 

 Next we proceed onto describe neutrosophic triplet 
groups relational maps (ntgRMs) model.  It is pertinent to keep 
on record MOD relational maps model was developed, defined 
and described in [21]. Here we define and describe the 
neutrosophic triplet groups relational maps (NTGRMs or 
NtgRMs) model. 

 Let S ={Z2p, } be semigroup under product modulo 2p. 

 B = {2, 4, …, (p – 1)2} be the cyclic group of order p – 1 
with p + 1 as the identity. 

 Let D  {(0, 0, 0)} = {collection of all neutrosophic 
triplet groups associated with the neutral element p +1}  {(0, 
0, 0)}. 

 Now if we have a bipartite graph G with edge weights 
from D then we define G to be a neutrosophic triplet groups 
bipartite graph which takes edge weights from D.  
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 We will describe this by some examples. 

Example 4.8. Let S = {Z38, } be the semigroup under product 
modulo 38. The neutral elements of Z38 are 19 and 20. 

  19 does not yield any nontrivial neutrosophic triplet 
groups. Only the neutral 20 contributes to nontrivial 
neutrosophic triplet groups given by  

A = {(20, 20, 20), (2, 20, 10), (10, 20, 2), (4, 20, 24), (24, 20, 4), 
(8, 20, 12), (12,20, 8), (16, 20, 6), (6, 20, 16), (32, 20, 22), (22, 
20, 32), (14, 20, 14), (28, 20, 26), (26, 20, 28), (18, 20, 18), (30, 
20, 30), (34, 20, 34), (36, 20, 36)}. They are 18 in number we 
define A  {(0, 0,0)} = B.   

We will be using values this B as edge weights and obtain the 
bipartite graphs. 

 

 

 

 

 

 

Figure 4.9 

 Clearly G is a neutrosophic triplet groups bipartite graph 
with edge weights from B. 

x1 

(18,20,18) y1 

y2 

y3 

y4 

y5 

x2 

x3 

x4 

(14,20,14) 

(28,20,26) 

(2,20,10) 
(8,20,12) 

(6,20,16) 

(12,20,8) 
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The relational matrix R which is also known as the 
neutrosophic triplet groups relational matrix associated with G 
is as follows. 

1 2 3

1

2

3

4

y y y
x (0,0,0) (14,20,14) (28,20,26)
x (18,20,18) (0,0,0) (0,0,0)
x (0,0,0) (0,0,0) (2,20,10)
x (0,0,0) (0,0,0) (0,0,0)

5 6y y
(0,0,0) (0,0,0)
(0,0,0) (0,0,0)

(8,20,12) (0,0,0)
(6,20,16) (12,20,8)

We can perform only two types of operations using R. 

c.n max-product {x, R} or c.n max min {x, R} where

x  X = {(a1, a2, a3, a4) / ai  A, 1  i  4} and  

y  Y = {(b1, b2, b3, b4, b5)  /bi  A; 1  i  5}. 

We will describe this situation in the following 

Let x = ((2, 20, 10), (6, 20, 16), (36, 20, 36), (0, 0, 0))  X. 

We  find c.n max-product (x, R). 

c.n max-product (x, R) = ((32, 24, 22), (28, 20, 26), (18,
20, 18), (34, 20, 34), (0, 0, 0)) = y1 (say) 

c.n max-product ({ t
1y , R} = (y, Rt))
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 ((12, 20, 8), (6, 20, 16), (36, 20, 36), (14, 20, 14)) = x1 
(say) 

 c.n max-product {x1, R} = ((32, 20, 22), (16, 20, 6), (34, 
20, 34), (22, 20, 32), (16, 20, 6)) = y2 (say) 

 c.n max-product ({ t
2y , R} = (y2Rt)) = ((34, 20, 34), (6, 

20, 16), (30, 20, 30), (18, 20,18)) = x2 (say). 

 c.n max-product {x2, R} = ((32, 20, 22), (30, 20, 30), (22, 
20, 32), (32, 20, 22) (26, 20, 28)) = y2 (say). 

 We find c.n max-product {y2 Rt} = ((8, 20, 12), (6, 20, 
16), (28, 20, 26), (8, 20, 12)) = x3 (say) 

 c.n max-product {x3, R} = ((32, 20, 22), (36, 20, 36), (34, 
20, 34), (34, 20, 34), (20, 20, 20)) = y3 (say). 

 c.n max-product {y3, Rt} = ((10, 20, 2), (30, 20, 30), (30, 
20, 30), (14, 20, 14)) = x4 (say) 

 c.n max-product {x4, R} = ((8, 20, 12), (26, 20, 28), (22, 
20, 32), (12, 20,8), (16, 20, 6)) = y4 (say). 

 c.n max-product {y4, Rt) = ((16, 20, 6), (30, 20, 30), (20, 
20, 20), (34, 20, 34)) = x5 (say) 

 c.n max-product (x5, R) = ((8, 20, 12), (34, 20, 34), 
(30,20, 30), (14, 20, 14), (28, 20, 26)) = y5 (say) 

 We find c.n max-product ((y5, Rt) = ( t
5y , R)) = ((18, 20, 

18), (30,20, 30), (36, 20, 36), (32, 20, 22)) = x6 (say) 
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  c.n max-product {x6, R} = ((8, 20, 12), (24, 20, 4), (16, 
20, 6), (12, 20, 8), (4, 20, 24)) = y6 (say) 

 c.n max-product {y6, Rt} = ((32, 20, 22), (30, 20, 30), (32, 
20, 22), (34, 20, 34)) = x7 (say) 

 c.n max-product {x7, R} = ((8, 20, 12), (30, 20, 30), (26, 
20, 28), (28, 20, 26), (28, 20, 26)) = y8 (say) 

 c.n max-product {y8, Rt} = ((2, 20, 10), (30, 20, 30), (34, 
20, 34), (32, 20, 22)) = x8 (say) 

 c.n max-product {x8, R} = ((16, 20, 6), (26, 20, 28), (30, 
20, 30), (10, 20, 2), (4, 20, 24)) = y9 (say) 

 We find c.n max-product (y9 Rt} = ((28, 20, 26),(22, 20, 
32), (22, 20, 32), (22, 20, 32)) = x9 (say) 

 c.n max-product {x9, R} = ((16, 20, 6), (12, 20, 8), (24, 
20, 4), (24, 20, 4), (36, 20, 36)) = y10 (say) 

 c.n. max-product {y10, Rt} = ((26, 20, 28), (22, 20, 32), 
(10, 20, 2), (30, 20, 30)) = x10 (say). 

 The reader is left with the task of finding the resultant 
neutrosophic triplet groups state vectors pair. This will end 
either in  a fixed point pair or a limit cycle pair as the dynamical 
system is built only on finite collection of neutrosophic triplet 
groups. 

 Thus we see the neutrosophic triplet groups relational 
maps model under max product can be used in need especially 
when the concept of indeterminacy is also present. 
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 Now for the some x  X and for this R we use. The c.n 
max-min operation and determine the neutrosophic triplet 
groups resultant vector pair which may be a fixed point pair or a 
limit cycle pair in the following. 

 Let x = ((4, 20, 24), (2, 20, 10), (0, 0, 0), (0, 0, 0) )  X. 

 c.n max min {x, R} = ((2, 20, 10), (4, 20, 14), (4, 20, 14), 
(0, 0, 0), (0, 0, 0)) = y(say) 

 c.n max min {y1 Rt} = ((4, 20, 14), (2, 20, 10), (4, 20, 14), 
(0, 0, 0) = x1 (say) 

 c.n max min {x1, R} = ((2, 20, 10), (4, 20, 14), (2, 20, 
10), (4, 20, 14), (0, 0, 0)) = y2 (say) 

 c.n max min {y2, Rt} = ((4, 20, 14), (2, 20, 10), (4, 20, 
14), (4, 20, 14)) = x2 (say) 

 c.n max min {x2, R} = ((2, 20, 10), (4, 20, 14), (2, 20, 
10), (4, 20, 14), (4, 20, 14)) = y3 (say) 

 c.n max min {y3, Rt} = ((4, 20, 14), (2, 20, 10), (4, 20, 
14), (4, 20, 14)) = x3 (say) 

 It is clear x2 = x3 so we get the neutrosophic triplet groups 
resultant as a fixed pair given by  

{((4, 20, 14), (2, 20, 10), (4, 20, 14), (4, 20, 14)), ((2, 20, 10), 
(4, 20, 14), (2, 20, 10), (4, 20, 14), (4, 20, 14))}. 

 We suggest the following open problem. 
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  Suppose we have a m  n neutrosophic triplet group 
relational matrix R with entries from neutral element p + 1 of 
Z2p.   

 Let X = {(a1, a2, …, am) / ai  {collection of neutrosophic 
triplet group of the neutral element p + 1}; 1  i  m} and  

Y = {(b1, b2, …, bn) / bi  {collection of all neutrosophic triplet 
groups associated with the neutral element p+1}; 1  i  n}. 

 Can we say c.n max min {x, R} converges to a limit cycle 
pair or a fixed point pair faster than the operator c.n. max 
product {x, R} in general for x  X and the given R? 

 Obtain any other special features enjoyed by this model. 

 Now we suggest how this can be used to build algebraic 
codes. However some information in this regard has been 
described and defined in chapter II of this book. 

 We only restrain ourselves to the semigroup {Z2p, } 
where p is an odd prime. 

 B = {(0, 0, 0) and the collection of all neutrosophic triplet 
groups associated with the neutral element p + 1}. 

 We cannot define + operation B.  

 B is compatible with respect to only product modulo 2p, 
min operation and max binary operation where we use the 
special type of ordering called face value ordering which in 
general is not compatible with sum or product operations. 
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 So when building the notion of parity check matrix or 
generator matrix we do not have the notion of linear 
independence either of the row elements of the matrix or the 
column elements of the matrix. However the algebraic codes 
built using the elements of B happens to be similar to the usual 
or classical codes built using finite fields Zp. 

 We have the limitations for B cannot be converted into 
the classical field finite order as it is impossible to define the 
operation of addition as the set B is not closed under + ; that is 
if x, y  B clearly x + y  B for every or any x, y  B. 

 We have discussed elaborately about these codes in 
chapter II. 

 Further {B, max, min} and {B, max, product} is only a 
semiring or a semifield. It is impossible to define or make {B, + 
} into a finite field. 

 With these limitations we build the algebraic codes of 
neutrosophic triplet groups. 

 Finally it is pertinent to keep on record that throughout 
our discussion we restrain and in this book only {Z2p, } is 
used. 

 We will  illustrate by examples. 

Example 4.9.  Let S = {Z26, } be the semigroup under product 
modulo 26.  The neutral elements of S are 13 and 14. 

 The neutrosophic triplet groups associated with 14 are  
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 B = {(14, 14, 14), (2, 14, 20), (20, 14, 2), (4, 14, 10), (10, 14, 4), 
(8, 14, 18), (18, 14, 8), (16, 14, 22), (22, 14, 16), (6, 14, 24), 
(24, 14, 6), (12, 14, 12)}. 

 A = B  {(0, 0, 0)}. 

 We now build a (7, 3) neutrosophic triplet group code 
using the neutrosophic triplet group generator matrix G where 

G = 
(6,14,24) (0,0,0) (12,14,12) (4,14,10)
(0,0,0) (10,14,4) (0,0,0) (0,0,0)

(2,14,20) (0,0,0) (0,0,0) (14,14,14)






 

   
(0,0,0) (0,0,0) (20,14,2)

(2,14,20) (0,0,0) (0,0,0)
(0,0,0) (16,14,22) (0,0,0)






. 

We see x = ((2, 14, 20), (8, 14, 18), (2, 14, 20)) 

max-min {x, G} = ((12, 14, 12), (2, 14, 20), (24, 14, 6), (8, 14, 
18), (16, 14, 22), (6, 14, 24), (14, 14, 14)) 

 So x = ((2, 14, 20), (8, 14, 18), (2, 14, 20)) generates the 
code ((12, 14, 12), (2, 14, 20), (24, 14, 6), (8, 14, 18), (16, 14, 
22), (6, 14, 24),(14, 14,14)) 

 This is the way we arrive at the neutrosophic triplet group 
code word. 

 Now we define the Hamming distance between two 
neutrosophic triplet groups state vectors as the number of places 
in which they differ as triplets. 

 We will illustrate this by some examples. 
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 Let X = {(a1, a2, a3, a4) / ai  A, 1  i  4} be the 
neutrosophic triplet groups row vector. 

 Let x = ((2, 14, 20), (10, 14, 4), (8, 14, 8), (16, 14, 22)) 
and y = ((10, 0, 0), (14, 14, 14), (8, 14, 8), (16, 14, 22))  X. 

 The Hamming distance between x and y denoted by      
dntg (x, y) = 2; that is the first and the second entries of x and y 
are different where as the 3rd and 4th coordinates of x and y are 
the same. 

 Now we are not in a position to apply coset leaders 
method as we cannot define sum of two vector, however if we 
define min operation then we will always have the coset leader 
to the needed vector which cannot be practical but we need to 
see whether product can be defined for max operation will have 
no effect on it as it will between so no correction can be made. 

 Hence we have to try for the some other method this 
cannot be easily achieved so we have to seek after some other 
method to find error correction but error detection can be 
achieved by the Hamming distance method. 

 Now we try to define the algebra neutrosophic triplet 
groups code in the standard form. First we enlist the short 
comings. 

 The identity with respect to product is (p + 1, p + 1, p + 
1), but this is not the identity with respect max or min for in 
case of max or min we cannot have identity except in that case 
largest element and least element respectively will serve the 
purpose.  
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  Hence we use only max product and max min we see the 
largest element will be chosen. 

 Suppose we have a parity check matrix say 

H = 

(2,14,20) (0,0,0) (0,0,0) (14,14,14)
(0,0,0) (4,14,10) (2,14,20) (0,0,0)
(0,0,0) (0,0,0) (16,14,22) (0,0,0)

(20,14,2) (0,0,0) (0,0,0) (0,0,0)








 

   

(0,0,0) (0,0,0) (0,0,0)
(14,14,14) (0,0,0) (0,0,0)

(0,0,0) (14,14,14) (0,0,0)
(0,0,0) (0,0,0) (14,14,14)








 

Where H is the neutrosophic triplet group matrix. 

 Let us construct the G using this H. 

G = 
(2,14,20) (0,0,0) (0,0,0) (20,14,2)
(0,0,0) (4,14,10) (0,0,0) (0,0,0)
(0,0,0) (0,0,0) (16,14,22) (0,0,0)






 

   

(14,14,14) (0,0,0) (0,0,0)
(0,0,0) (14,14,14) (0,0,0)
(0,0,0) (0,0,0) (14,14,14)






 

We now calculate the G  Ht using first c.n max product then 
we use the c.n max min and find out GHt. 

c.n max-product {G, Ht} =  
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(2,14,20) (0,0,0) (0,0,0) (14,14,14)
(0,0,0) (4,14,10) (2,14,20) (0,0,0)
(0,0,0) (0,0,0) (16,14,22) (0,0,0)

(20,14,2) (0,0,0) (0,0,0) (0,0,0)






 

 

We see c.n max min (G, Ht) = 
(14,14,14) (14,14,14) (0,0,0) (0,0,0)

(0,0,0) (4,14,10) (14,14,14) (0,0,0)
(0,0,0) (2,14,20) (16,14,22) (14,14,14)

 
 
 
  

 

We see both yield different matrices so we are sure in general 
both the c.n max min and c.n max product operations take 
different values so while working with them appropriate 
modifications ought to be used in the place of need. 

 One can define with appropriate modifications the notion 
of Hamming code, Parity check code etc. The main short 
coming in developing these codes is under c.n max product and 
c.n min product we do not have the concept of identity barring 
the domination of the largest element and the least element 
respectively. 

 Next we proceed onto show how these collection of 
neutrosophic triplet groups can be given a semiring structure. 
Infact they are finite semifields. 

 Now one is in a position to solve the open problems 
proposed in giving examples of finite semifields under the 
operation max, product or max, min of order p, p any odd 
prime. 
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  Infact these semirings which are semifields can be 
constructed to any prime order and can infact be generated by 
product operation by a single elements. 

 We can this semirings can be given also the ring structure 
in a very queer way. 

 B = {collection of neutrosophic triplet groups associated 
with the neutral element p + 1 of Z2p, p an odd prime}  {(0, 0, 
0)}, {B, } is a group barring {(0, 0, 0)} and {B, max} is a 
semigroup. 

 So {B, , max} is a ring we call it in  a queer way for 
while defining product B \ {(0, 0, 0)} is a group under .  If {(0, 
0, 0)} is taken with B, {B, } is only a semigroup. So B is only 
a semi field under {max-product} or {max min}. 

 Once again we wish to keep on record that when we 
define max {(a, neut(a), anti(a), (b, neut(b)), anti(b))} = (max 
{a, b}, neut (max {a, b}), anti (max {a, b)). 

 This order defined as face value ordering which is not 
compatible under product likewise min {(a, neut(a), anti(a)), (b, 
neut(b), anti(b)} = (min {a, b}, neut (min {a,b}), anti (min {a, 
b})), min {a, b} and max {a, b} are found face compatible 
under ordering. 

 If 20 and 28  2Zp \ {0} by face value ordering max 
value {20, 28} = 28 and min {20, 28} = 20. 

 This form of study has already been discussed [20-21]. 
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 So {B, max product} is a finite semifield with p number 
of elements in it. 

 Interested reader can find special type of coding theory 
using these semifields. 

 Are these lattices under max, min operation? We will test 
whether first the form semi lattices under product. 

 We see under both max or min operation they form a 
totally ordered set hence will be a chain lattice. In case of this B 
we see using max min we get a chain lattice of order 13 given 
by the following Figure 4.10. 

 

  

 

  

 

 

 

 

 
Figure 4.10 

(24, 14, 6) 

(22, 14, 16) 

(20, 14, 2) 

(18, 14, 8) 

(16, 14, 22) 

(8, 14, 18) 

(6, 14, 24) 
(4, 14, 10) 

(2, 14, 20) 

(0, 0, 0) 
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  However product cannot be defined on B to yield a lattice 
or semilattice. Only B \ {(0, 0, 0)} is a cyclic group of order 12. 

 We first give examples of the group of neutrosophic 
triplet groups of graphs. 

Example 4.10.  Let S = {Z14, } be the semigroup under product 
modulo 14. 

 The neutral elements of Z14 are 7 and 8. 

 7 contributes only for trivial neutrosophic triplet groups. 

 8 alone contributes for non trivial neutrosophic triplet 
groups given by the following set B. 

 B = {(8, 8, 8), (2, 8, 4), (6, 8, 6), (4, 8, 2), (10, 8, 10), (12, 
8, 12)}; B is clearly a cyclic group with (8, 8, 8) as its 
multiplicative identity.  

 We now give the graph of B in the following. 

 

 

 

 

Figure 4.11 

We will give yet another example. 

 

  
 

 

 (6,8,6) 

(12,8,12) 
(10,8,10) 

(4,8,2) (2,8,4) 

(8,8,8) 
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Example 4.11  Let S = {Z26, } be the semigroup under product 
modulo 26.  The neutral elements of Z26 are 13 and 14. 13 
contributes only for neutrosophic triplet group. 

 The neutrosophic triplet groups associated with 14 are  

B = {(14, 14, 14), (2, 14, 20), (20, 14, 2), (4, 14, 10), (10, 14, 
14), (8, 4, 18), (18, 4, 8), (16, 14, 22), (22, 14, 16), (6, 14, 24), 
(24, 14, 6), (12, 14, 12)}.    

Clearly B is a cyclic group of order 12 with (14, 14, 14) as the 
identity. 

 Now we give the neutrosophic triplet group graph 
associated with B the classical group of neutrosophic triplet 
groups in the following. 

  

 

 

 

 

 

Figure 4.12 

We can say by looking at the figure there is one elements of 
order two where are 5 pairs of elements which are inverses of 
each other. 

(14,14,14) 

    

    

    

  

  

  
  

  
  

(24,14,6) 

(6,14,24) 

(22,14,16) 

(16,14,22) 

(12,14,12) 

(18,4,8) 

(8,4,18) 

(10,14,4) (4,14,10) 

(20,14,2) (2,14,20)
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 Example 4.12.  Let S ={Z39, } be the semigroup under product. 
The neutrals of Z39 are 13 and 27. However the neutrosophic 
triplet groups associated with 13 are trivial. So we have to work 
only with the neutral element 27. The neutrosophic tripletgroups 
associated with 27 are  

B =  {(27, 27, 27), (3, 27, 9), (9, 27, 3), (6, 27, 24), (24, 27, 6), 
(18, 27, 21), (21, 27, 18), (15, 27, 33), (33, 27, 15), (12, 27, 12), 
(30, 27, 36), (36, 27, 30)}.   

Clearly B is a cyclic group neutrosophic triplet groups of order 
12.  We now give neutrosophic triplet group graph of the group 
B as follows. 

 

 

 

 

 

Figure 4.13 

 We see the two groups of neutrosophic triplet groups 
graph are the same so it goes without any saying  both are just 
isomorphic however one is a group associated with Z26 and the 
other with Z30. 

 Now we proceed onto study the classical group of 
neutrosophic triplet groups associated with Z65 where                
65 = 13  5. 

  

(30,26,36) 

    

(24,27,6) 

(6,27,24) 

    
(36,26,30) 

    

  

(6,27,24) (24,27,6) 

(12,27,12) 

  
  

(18,27,21) 
(21,27,18) 

(15,27,33) 
  

  

(33,27,15) 

(27,27,27) 
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Example 4.13. Let S = {Z65, } be the semigroup under product 
modulo 65. Clearly 26 is a neutral element of Z65. 40 is another 
neutral element of Z65. The neutral element 26 gives four 
neutrosophic triplet groups given by  

A ={(26, 26, 26), (13, 26, 52), (52, 26, 13), (39, 26, 39)} is a 
classical group of neutrosophic triplet groups of order four. A 
has the following neutrosophic triplet groups graph. 

 

 

 

 

 

Figure 4.14 

 Now we enumerate the neutrosophic triplet groups 
associated with the neutral element 40. 

 B = {(40, 40, 40), (5, 40, 60), (60,40,5), (25, 40, 25), (10, 
40, 30), (30, 40, 10), (50, 40, 45), (45, 40, 50), (20, 40, 15), (15, 
40, 20), (35, 40, 55), (55, 40, 35)}.  

 The graph of the classical group of neutrosophic triplet 
graphs is as follows. 

 

 

 

 

(13,26,52) 
  

 
(52, 26,13) 

(39, 26, 39) 

(26, 26,26) 
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Figure 4.15 

In view of all these we make the following conjecture. 

Conjecture 4.2.   Let {Zpq, } be the semigroup under product 
modulo pq,  p and q two distinct prime 

i) For all primes p < q (p = 2, 3, 5, … and p < q) we 
see there is a neutral element which is a multiple 
of p such that associated with p there are q – 1 
number of neutrosophic triplet groups which 
forms a classical group and the graphs of all these 
groups for varying are the same for any fixed q 
such that p < q. 

 We see in case of {Zpq, } with q = 13 all neutrosophic 
triplets groups associated with tp; t > 0 for a classical group of 
order (q – 1) and the graphs of all these groups has only 12 
elements and all of them have the same graph verified for p = 2, 
3 and 5 in this book.  The reader is left with the task of finding 
when p = 7 and 11. 

 

(25,40,25) 

 

 

 

(5,40,60) 

(60,40,5) 
  

  

(30,40,10) (10,40,30) 

(15,40,20) (20,40,15) 

 (45,40,50) 

 

(35,40,55)  

 (55,40,35) (40,40,40) 

(50,40,45) 
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It is pertinent to keep on record that for any S = {Zpq, } 

distinct where p and q are two distinct primes we have two 
distinct neutrals and they contribute neutrosophic triplet groups 
collection of orders p – 1 and q = 1 and they are or classical 
groups with a  b = identity or a2 = identity. 

That is they enjoy only this special feature as they are 
cyclic groups of even order.  

We will briefly discuss about the neutral elements and the 
neutrosophic groups of Zpqr, p, q and r are three distinct primes. 

Let S = {Z105, } be the semigroup under product. The 
neutrals of Z105 are 15, 21, 36, 70, 85 and 91. 

The neutrosophic triplet groups associated with 36 are \ 

B = {(36, 36, 36), (3, 36, 12), (12, 36, 3), (9, 36, 39), (39, 36, 9), 
(27, 36, 48), (48, 36, 27), (81, 36, 51), (51, 36, 81), (33, 36, 87), 
(87, 36, 33), (99, 36, 99), (6, 36, 6), (18, 36, 72), (72, 36, 18), 
(54, 36, 24), (24, 36, 54), (57, 36, 78), (78, 36, 57), (66, 36, 96), 
(96, 36, 66), (93, 36, 102), (102, 36, 93), (69, 36, 69) and on.  

The reader is expected to find out all those neutral elements 
which only contribute to neutrosophic triplet groups which are 
trivial. 

We just define the graphs whose groups are such that 
either x  y = identity or a2 = identity as line-triangle centered 
graphs. We record at this juncture all classical graph 
neutrosophic triplet groups graphs are only triangle line 
centered graphs. 
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The only open problem we propose is that can  when will 
(that is for what values of p and q of Zpq, p and q two distinct 
primes); the line-triangle graph have only one line and rest 
triangles? 

When will they have more than one line in the line-
triangle graphs of these classical group of neutrosophic triplet 
groups. 

Problems 

1. Let S = {Z158, } be the semigroup under product.

i) Prove 80 is the neutral element of Z158.

ii) Prove B = {Neutrosophic triplet groups
collection associated with the neutral elements
158}  {(0, 0, 0)} is a semigroup.

iii) Let A = {

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
 
 
 
 

/ ai  B; 

1  i  16} be the collection of all 4  4 
matrices of neutrosophic triplet groups. 

X = {(x1, x2, x3, x4) / xi B; 1  i  4} be the 
neutrosophic triplet groups of row matrices. 

a) Find the number of fixed points of c.n max-product
= {x, M}; x  X and M  A.

b) Find the number of fixed points of  c.n. max min
{x, M} for x  X and M  A
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c) How many limit cycles exist in  
c.n max product {x, M}, x  X and M  A? 

d) How many limit cycles exists in  
c.n max min {x, M} for x  X and M  A? 

e) Prove usual xM is not possible? 
f) Find the maximum number of iterations required to 

arrive at a fixed point or limit cycle using              
c.n max  product {x, M}, x  X, M  A. 

g) Find the maximum number of iterations required to 
arrive at a fixed point or limit cycle using             
c.n max min {x, M}, x  X and M  A. 

h) Does max product {x, M} takes more iterations or 
max min {x, M} takes more iterations in general for 
x  X and M  A? 

i) How does the neutrosophic triplet group differ from 
usual MOD data? 

2. Let S = {Z279, } be the semigroup under product 
modulo 279. 

 i) Enumerate the neutral elements of Z279. 

 ii) Which of the neutral elements contribute to 
nontrivial cyclic groups of neutrosophic triplet 
groups or atleast a classical group B. 

 iii) Let A = {collection of all 5  5 matrices of 
neutrosophic triplet groups using B  {(0, 0, 
0)}  
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   Let X  = {(a1, a2, a3, a4, a5) / ai  B  {(0, 0, 0)} 

1  i  5} be the row matrix of neutrosophic 
triplet groups. 

 Study questions (a) to (g) of (iii) of problem (1) 
for this Q and . 

3. Let S = {Z202, } be the semigroup under product 
modulo 202. 

 A = {collection of all 6  6 matrices with entries from 
2Z202} be the collection of MOD matrices.  

 Let X = {(a1, a2, …, a6) / ai  2Z202, 1  i  6} be the 
collection of MOD row matrices. 

 i) Using the X  M operation find the fixed point 

or limit cycle of the system for x  X and     m 
 A. 

 ii) Find the maximum number of iterations 
required to arrive at a fixed point or limit cycle 
of xM for the particular x  X and M  A. 

 iii) Use the max-product {x,M} and find the 
maximum number of iterations required to 
arrive at a fixed point or a limit cycle. 

 iv) Can we say in general xM takes more number 
of iterations to arrive at a fixed point than max 
product {x, M} for all x X and M  A. 
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v) Using max min {x, M} and test for the
maximum number of iterations to arrive at a
fixed point or a limit cycle for x  X and M 
A.

vi) Which of xM or max min {x, M} will need in
general more number of iterations to arrive at a
fixed point for x  X and M  A?

vii) Which of max min {x, M} or max product {x,
M} in general need more number of iterations
to arrive at a fixed point or a limit cycle?

viii) Compare all the three operations max product,
max min and x  M and test out which of the

operations is sensitive or each is suitable
depending on the problem on which they are
applied.

4. Let P = {Z309, } be the semigroup under product
modulo 309.

B = {collection of all 7  7 matrices with entries from
3Z309 be the MOD matrix collection.

X = {(a1, a2, …,a7) / ai 3Z309, 1  i  7} be the MOD
row matrix collection.

Study questions (i) to (viii) of problem (3) for this P, B
and X.

5. Let S = {Z106, } be the semigroup under product
modulo 106.
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  i) Prove 54 and 53 are the only neutrals of Z106. 

 ii) Prove 53 can only contribute to trivial 
neutrosophic triplet group collection. 

 iii) Find the classical group of neutrosophic triplet 
groups associated with the neutral element. 

iv) Let A = 

1 2 3

1 1 2 3

2 4 5 6

3 7 8 9

4 10 11 12

5 13 14 15

6 16 17 18

7 19 20 21

y y y
x a a a
x a a a
x a a a
x a a a
x a a a
x a a a
x a a a

 be the dynamical 

system associated with the ntg. Relational 

(ntgRMs or NtgRMs or NTGRMs) maps ai  

{collection of all neutrosophic triplet groups 

associated with the neutral element 54}  {(0, 0 

0)} = B; 1  i  21. 

a) Draw the neutrosophic triplet group bipartite 
graph by giving some values to ai  B. 

b) Transform using 1
ntgT  to get the MOD relational 

maps matrix. 

c) Let Y = {(d1, d2, d3, … d7} / di  B; 1  i  7} 
and X ={(a1, a2, a3) / ai  B; 1  i  3} be the 
neutrosophic triplet groups row matrices. 
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 d) Using some fixed values of x (or y) find the 
fixed point or limit cycle of the system. 

6. Let R = 

(36,36,36) (8,36,51) (0,0,0)
(0,0,0) (0,0,0) (18,36,72)

(3,36,12) (0,0,0) (96,36,66)
(0,0,0) (6,36,6) (0,0,0)
(6,36,6) (0,0,0) (0,0,0)

(51,36,81) (0,0,0) (36,36,36)
(0,0,0) (8,16,51) (0,0,0)
(0,0,0) (0,0,0) (69,36,69)















 
 
 
 
 
 
 

 be the 

neutrosophic triplet groups matrix from the semigroup S 
= {Z105, } associated with the neutral element 36. 

 Let x = ((9, 36, 39), (0, 0, 0), (39, 36, 9), (36, 36, 36), 
(0, 0, 0), (0, 0, 0), (27, 36, 48), (0, 0, 0)) and                  
y = ((18, 36, 72), (0, 0, 0), (27, 36, 48)) be neutrosophic 
triplet groups row matrices. 

a) Using x as the initial neutrosophic triplet group row 
matrix find its effect on the neutrosophic triplet 
group relational dynamical system R and find the 
neutrosophic triplet group fixed point pair or a limit 
cycle pair on x. 

b) Find the neutrosophic triplet group fixed point pair 
or a limit cycle pair using the neutrosophic triplet 
group row matrix y on R. 

c) Transform the resultants pairs in (b) and (c) using 
1

ntgT  into MOD vector pairs. 

d) Obtain any other special features associated with 
this R. 
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 7. Build orthogonal neutrosophic triplet group codes using
Z3289 of length 8 with 5 number of message symbols.

a) How many sets of such dual pairs can be got.

8. Find the neutrosophic triplet groups graphs associated
with A = {collection of all neutrosophic triplet groups
associated with the neutral element 30 of Z58}, the
group of neutrosophic triplet groups.

9. Find the graph associated with D58.

10. Characterize all groups whose graph are triangle line
graph.

11. Can we have classical groups of neutrosophic triplet
groups whose associated graphs are not triangle line
graphs?

12. Find the classical groups of the neutrosophic triplet
groups associated with Z638.

a) Which of the classical groups of neutrosophic
triplet groups contribute to triangle line graphs.

b) How many such classical groups of the
neutrosophic triplet groups exist?

13. Let S = {Z247, } be the semigroup under product
modulo 247.

a) Find all the neutrosophic triplet groups
associated with each of the neutrals of Z243.
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b) Find the respective classical groups of
neutrosophic triplet groups and their related
graphs.

14. Given {Zn, } the semigroup under product    modulo
n; n = p  q; p and q two distinct primes.

Can the line - triangle graphs of the classical groups of
neutrosophic triplet groups have more number of lines
than triangles? Justify

15. Given G is a line - triangle graph given by the following
Figure 4.16.

G  = 

Figure 4.16 

Can we have a classical group of neutrosophic triplet 
groups graph identical with G or isomorphic with G? 

16. Can their be a classical group of neutrosophic triplet
groups whose graph which is isomorphic with G?

v11

v10

v9
v8

v7
v4

v3

v1

v2

v0

v5 v6
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                  = G 

 

 

Figure 4.17 

17. Can we say all triangle - line graph of order 12 must 
only be the form given in Figure 4.17 if they are to be 
associated with the classical group of neutrosophic 
triplet groups? 

 

 

 

 

 

 

Figure 4.18 

18. Characterize all those semigroups {Zn, } which can 
yield at least one new line triangle graph for the graph 
of the classical group of neutrosophic triplet groups. 
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v11
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19. Can we say there exists only triangle graphs that is no 

lines associated with the classical group of neutrosophic 
triplet groups related to {Zn, }? 

20. Let G be the triangle graph given by the following 
figure. 

 

 

 

 

 
 

Figure 4.19 

 Justify your claim! 

 (Hint use the fact in Zpq the classical group of 
neutrosophic triplet groups can be of order p – 1 or q – 
1 both even we have a group whose graph is of the form 
given below. 

 

 

 

 

Figure 4.20 

  

v9 

  

  
  

  
        

  

v8 v7 v6 v5 
v4 

v3 v2 

v1 

v0 

 
v0 

 

 

  

 

 

 

 

v8 

v7 

v6 

v5 

v4 v3 

v1 

v2 



Applications of Neutrosophic Triplet Groups… 257 

 21. Let S ={Z100, } be the semigroup under product
modulo 100.

i) Find all neutral elements of S.

ii) Can any of the neutral of Z100 contribute to
classical group of neutrosophic triplet groups
which is cyclic?

iii) How many nontrivial neutrosophic triplet
graphs are possible associated with these
neutral element of Z100?

v) Is every neutrosophic triplet group trivial?
Justify.

22. Let S = {Z432, } be the semigroup under product.

i) Find all the neutrals of Z432.

ii) Find all those neutrals which contribute to
nontrivial neutrosophic triplet groups
collection.

iii) Can any one of the nontrivial neutrosophic
triplet groups form a classical cyclic group?

iv) Does any of the neutrals give only nontrivial
quasi neutrosophic triplet pairs?

vi) Enumerate any of the special features associated
with this Z432.
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 23. Let S ={Z1280, } be the semigroup under product
modulo 1280.

i) Find all the neutral elements of Z1280.

ii) Find nontrivial neutrosophic trivial groups
associated with neutrals of Z1280.

iii) Does any of the neutrals contribute to classical
group of neutrosophic triplet groups?

iv) Obtain any other special feature associated with
Z1280.

24. Can there be classical groups of neutrosophic triplet
groups whose graph are isomorphic with the following
graphs for any appropriate n of Zn.

Figure 4.21 
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v2 

v3 
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Figure 4.22 

Figure 4.23 

Figure 4.24 
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25. Prove for the S = {Z2p, } p and odd prime the classical 

group of neutrosophic triplet groups G associated with p 
+ 1 becomes a semiring under max and product 
operation. 

 i) Prove  G is a semifield. 

 ii) Can G be a S-semifield? 

 iii) Enumerate all special features associated with 
G. 

26. Let M = {collection of all m  m matrices with entries 
from G  {(0, 0, 0)}} be  the neutrosophic triplet 
groups of matrices. 

 i) Show for all x  X = {(a1, …,am) where ai G 
 {(0, 0, 0)}; 1  i m} be the neutrosophic 
triplet group row matrix, we have c.n max 
product {x, A}; A  M converges either to a 
fixed point or a limit cycle. 

 ii) What is the maximum number of iterations to 
arrive at a fixed point at a resultant? 
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