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Abstract

In this paper we present the concept of neutrosophic quadruple algebraic struc-
tures. Specifically, we study neutrosophic quadruple rings and we present their
elementary properties.
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1 Introduction

The concept of neutrosophic quadruple numbers was introduced by Florentin Smaran-
dache [3]. It was shown in [3] how arithmetic operations of addition, subtraction,
multiplication and scalar multiplication could be performed on the set of neutro-
sophic quadruple numbers. In this paper we studied neutrosophic sets of quadruple
numbers together with binary operations of addition and multiplication and the result-
ing algebraic structures with their elementary properties are presented. Specifically, we
studied neutrosophic quadruple rings and we presented their basic properties.

Definition 1.1. [3] A neutrosophic quadruple number is a number of the form (a, bT, cI, dF )
where T, I, F have their usual neutrosophic logic meanings and a, b, c, d ∈ R or C. The
set NQ defined by

NQ = {(a, bT, cI, dF ) : a, b, c, d ∈ R or C} (1)
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is called a neutrosophic set of quadruple numbers. For a neutrosophic quadruple number
(a, bT, cI, dF ) representing any entity which may be a number, an idea, an object, etc,
a is called the known part and (bT, cI, dF ) is called the unknown part.

Definition 1.2. Let a = (a1, a2T, a3I, a4F ), b = (b1, b2T, b3I, b4F ) ∈ NQ. We define
the following:

a+ b = (a1 + b1, (a2 + b2)T, (a3 + b3)I, (a4 + b4)F ) (2)

a− b = (a1 − b1, (a2 − b2)T, (a3 − b3)I, (a4 − b4)F ) (3)

Definition 1.3. Let a = (a1, a2T, a3I, a4F ) ∈ NQ and let α be any scalar which may
be real or complex, the scalar product α.a is defined by

α.a = α.(a1, a2T, a3I, a4F ) = (αa1, αa2T, αa3I, αa4F ) (4)

If α = 0, then we have 0.a = (0, 0, 0, 0) and for any non-zero scalars m and n and
b = (b1, b2T, b3I, b4F ), we have:

(m+ n)a = ma+ na,

m(a+ b) = ma+mb,

mn(a) = m(na),

−a = (−a1,−a2T,−a3I,−a4F ).

Definition 1.4. [3] [Absorbance Law] Let X be a set endowed with a total order x < y,
named ” x prevailed by y” or ”x less stronger than y” or ”x less preferred than y”.
x ≤ y is considered as ”x prevailed by or equal to y” or ”x less stronger than or equal
to y” or ”x less preferred than or equal to y”.

For any elements x, y ∈ X, with x ≤ y, absorbance law is defined as

x.y = y.x = absorb(x, y) = max{x, y} = y (5)

which means that the bigger element absorbs the smaller element (the big fish eats the
small fish). It is clear from (5) that

x.x = x2 = absorb(x, x) = max{x, x} = x and (6)

x1.x2 · · ·xn = max{x1, x2, · · · , xn}. (7)

Analogously, if x > y, we say that ”x prevails to y” or ”x is stronger than y” or ”x
is preferred to y”. Also, if x ≥ y, we say that ”x prevails or is equal to y” or ”x is
stronger than or equal to y” or ”x is preferred or equal to y”.

Definition 1.5. Consider the set {T, I, F}. Suppose in an optimistic way we consider
the prevalence order T > I > F . Then we have:

TI = IT = max{T, I} = T, (8)

TF = FT = max{T, F} = T, (9)

IF = FI = max{I, F} = I, (10)

TT = T 2 = T, (11)

II = I2 = I, (12)

FF = F 2 = F. (13)
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Analogously, suppose in a pessimistic way we consider the prevalence order T < I < F .
Then we have:

TI = IT = max{T, I} = I, (14)

TF = FT = max{T, F} = F, (15)

IF = FI = max{I, F} = F, (16)

TT = T 2 = T, (17)

II = I2 = I, (18)

FF = F 2 = F. (19)

Except otherwise stated, we will consider only the prevalence order T < I < F in this
paper.

Definition 1.6. Let a = (a1, a2T, a3I, a4F ), b = (b1, b2T, b3I, b4F ) ∈ NQ. Then

a.b = (a1, a2T, a3I, a4F ).(b1, b2T, b3I, b4F )

= (a1b1, (a1b2 + a2b1 + a2b2)T, (a1b3 + a2b3 + a3b1 + a3b2 + a3b3)I,

(a1b4 + a2b4, a3b4 + a4b1 + a4b2 + a4b3 + a4b4)F ). (20)

2 Main Results

All neutrosophic quadruple numbers to be considered in this section will be real neu-
trosophic quadruple numbers i.e a, b, c, d ∈ R for any neutrosophic quadruple number
(a, bT, cI, dF ) ∈ NQ.

Theorem 2.1. (NQ,+) is an abelian group.

Proof. Suppose that a = (a1, a2T, a3I, a4F ), b = (b1, b2T, b3I, c = (c1, c2T, c3I, c4F ∈
NQ are arbitrary. It can easily be shown that a+ b = b+ a. a+ (b+ c) = (a+ b) + c.
a+(0, 0, 0, 0) = (0, 0, 0, 0) = a and a+(−a) = −a+a = (0, 0, 0, 0). Thus, 0 = (0, 0, 0, 0)
is the additive identity element in (NQ,+) and for any a ∈ NQ, −a is the additive
inverse. Hence, (NQ,+) is an abelian group.

Theorem 2.2. (NQ, .) is a commutative monoid.

Proof. Let a = (a1, a2T, a3I, a4F ), b = (b1, b2T, b3I, c = (c1, c2T, c3I, c4F be arbitrary
elements in NQ. It can easily be shown that ab = ba. a(bc) = (ab)c. a.(1, 0, 0, 0) = a.
Thus, e = (1, 0, 0, 0) is the multiplicative identity element in (NQ, .). Hence, (NQ, .)
is a commutative monoid.

Theorem 2.3. (NQ, .) is not a group.

Proof. Let x = (a, bT, cI, dF ) be any arbitrary element in NQ. Since we cannot find
any element y = (p, qT, rI, sF ) ∈ NQ such that xy = yx = e = (1, 0, 0, 0), it follows
that x−1 does not exist in NQ for any given a, b, c, d ∈ R and consequently, (NQ, .)
cannot be a group.
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Example 1. Let X = {(a, bT, cI, dF ) : a, b, c, d ∈ Zn}. Then (X,+) is an abelian
group.

Example 2. Let

M2×2 =

{[
(a, bT, cI, dF ) (e, fT, gI, hF )
(i, jT, kI, lF ) (m,nT, pI, qF )

]
: a, b, c, d, e, f, g, h, i, j, k, l,m, n, p, q ∈ R

}
.

Then (M2×2, .) is a non-commutative monoid.

Theorem 2.4. (NQ,+, .) is a commutative ring.

Proof. It is clear that (NQ,+) is an abelian group and (NQ, .) is a semigroup. To com-
plete the proof, suppose that a = (a1, a2T, a3I, a4F ), b = (b1, b2T, b3I, c = (c1, c2T, c3I, c4F ) ∈
NQ are arbitrary. It can easily be shown that a(b + c) = ab + ac, (b + c)a = ba + ca
and ab = ba. Hence, (NQ,+, .) is a commutative ring.

From now on, the ring (NQ,+, .) will be called neutrosophic quadruple ring and it
will be denoted by NQR. The zero element of NQR will be denoted by (0, 0, 0, 0) and
the unity of NQR will be denoted by (1, 0, 0, 0).

Example 3. (i) Let X be as defined in EXAMPLE 1. Then (X,+, .) is a commuta-
tive neutrosophic quadruple ring called a neutrosophic quadruple ring of integers
modulo n.

It should be noted that NQR(Zn) has 4n elements and for NQR(Z2) we have

NQR(Z2) = {(0, 0, 0, 0), (1, 0, 0, 0), (0, T, 0, 0), (0, 0, I, 0), (0, 0, 0, F ), (0, T, I, F ), (0, 0, I, F ),

(0, T, I, 0), (0, T, 0, F ), (1, T, 0, 0), (1, 0, I, 0), (1, 0, 0, F ), (1, T, 0, F ), (1, 0, I, F ),

(1, T, I, 0), (1, T, I, F )}

(ii) Let M2×2 be as defined in EXAMPLE 2. Then (M2×2,+, .) is a non-commutative
neutrosophic quadruple ring.

Definition 2.5. Let NQR be a neutrosophic quadruple ring.

(i) An element a ∈ NQR is called idempotent if a2 = a.

(ii) An element a ∈ NQR is called nilpotent if there exists n ∈ Z+ such that an = 0.

Example 4. (i) In NQR(Z2), (1, T, I, F ) and (1, T, I, 0) are idempotent elements.

(i) In NQR(Z4), (2, 2T, 2I, 2F ) is a nilpotent element.

Definition 2.6. Let NQR be a neutrosophic quadruple ring. NQR is called a neu-
trosophic quadruple integral domain if for x, y ∈ NQR, xy = 0 implies that x = 0 or
y = 0.

Example 5. NQR(Z) the neutrosophic quadruple ring of integers is a neutrosophic quadru-
ple integral domain.
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Definition 2.7. Let NQR be a neutrosophic quadruple ring. An element x ∈ NQR is
called a zero divisor if there exists a nonzero element y ∈ NQR such that xy = 0. For
example in NQR(Z2), (0, 0, I, F ) and (0, T, I, 0) are zero divisors even though Z2 has no
zero divisors. This is one of the distinct features that characterize neutrosophic quadru-
ple rings.

Definition 2.8. Let NQR be a neutrosophic quadruple ring and let NQS be a
nonempty subset of NQR. Then NQS is called a neutrosophic quadruple subring
of NQR if (NQS,+, .) is itself a neutrosophic quadruple ring. For example, NQR(nZ)
is a neutrosophic quadruple subring of NQR(Z) for n = 1, 2, 3, · · · .

Theorem 2.9. Let NQS be a nonempty subset of a neutrosophic quadruple ring NQR.
Then NQS is a neutrosophic quadruple subring if and only if for all x, y ∈ NQS, the
following conditions hold:

(i) x− y ∈ NQS and

(ii) xy ∈ NQS.

Proof. Same as the classical case and so omitted.

Definition 2.10. Let NQR be a neutrosophic quadruple ring. Then the set

Z(NQR) = {x ∈ NQR : xy = yx ∀ y ∈ NQR}

is called the centre of NQR.

Theorem 2.11. Let NQR be a neutrosophic quadruple ring. Then Z(NQR) is a
neutrosophic quadruple subring of NQR.

Proof. Same as the classical case and so omitted.

Theorem 2.12. Let NQR be a neutrosophic quadruple ring and let NQSj be famlies of
neutrosophic quadruple subrings of NQR. Then

⋂n
j=1NQSj is a neutrosophic quadru-

ple subring of NQR.

Definition 2.13. Let NQR be a neutrosophic quadruple ring. If there exists a positive
integer n such that nx = 0 for each x ∈ NQR, then the smallest such positive integer
is called the characteristic of NQR. If no such positive integer exists, then NQR is
said to have characteristic zero. For example, NQR(Z) has characteristic zero and
NQR(Zn) has characteristic n.

Definition 2.14. Let NQJ be a nonempty subset of a neutrosophic quadruple ring
NQR. NQJ is called a neutrosophic quadruple ideal of NQR if for all x, y ∈ NQJ, r ∈
NQR, the following conditions hold:

(i) x− y ∈ NQJ .

(ii) xr ∈ NQJ and rx ∈ NQJ .

Example 6. (i) NQR(3Z) is a neutrosophic quadruple ideal of NQR(Z).
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(ii) Let NQJ = {(0, 0, 0, 0), (2, 0, 0, 0), (0, 2T, 2I, 2F ), (2, 2T, 2I, 2F )} be a subset of
NQR(Z4). Then NQJ is a neutrosophic quadruple ideal.

Theorem 2.15. Let NQJ and NQS be neutrosophic quadruple ideals of NQR and let
{NQJj}nj=1 be a family of neutrosophic quadruple ideals of NQR. Then:

(i) NQJ +NQJ = NQJ .

(ii) x+NQJ = NQJ for all x ∈ NQJ .

(iii)
⋂n

j=1NQJj is a neutrosophic quadruple ideal of NQR.

(iv) NQJ +NQS is a neutrosophic quadruple ideal of NQR.

Definition 2.16. Let NQJ be a neutrosophic quadruple ideal of NQR. The set

NQR/NQJ = {x+NQJ : x ∈ NQR}

is called a neutrosophic quadruple quotient ring.
If x+NQJ and y +NQJ are two arbitrary elements of NQR/NQJ and if ⊕ and

� are two binary operations on NQR/NQJ defined by:

(x+NQJ)⊕ (y +NQJ) = (x+ y) +NQJ,

(x+NQJ)� (y +NQJ) = (xy) +NQJ,

it can be shown that ⊕ and � are well defined and that (NQR/NQJ,⊕,�) is a neu-
trosophic quadruple ring.

Example 7. Consider the neutrosophic quadruple ringNQR(Z) and its neutrosophic quadru-
ple ideal NQR(2Z). Then

NQR(Z)/NQR(2Z) = {NQR(2Z), (1, 0, 0, 0) +NQR(2Z), (0, T, 0, 0) +NQR(2Z), (0, 0, I, 0) +NQR(2Z),

(0, 0, 0, F ) +NQR(2Z), (0, T, I, F ) +NQR(2Z), (0, 0, I, F ) +NQR(2Z),

(0, T, I, 0) +NQR(2Z), (0, T, 0, F ) +NQR(2Z), (1, T, 0, 0) +NQR(2Z),

(1, 0, I, 0) +NQR(2Z), (1, 0, 0, F ) +NQR(2Z), (1, T, 0, F ) +NQR(2Z),

(1, 0, I, F ) +NQR(2Z), (1, T, I, 0) +NQR(2Z), (1, T, I, F ) +NQR(2Z)}

which is clearly a neutrosophic quadruple ring.

Definition 2.17. Let NQR and NQS be two neutrosophic quadruple rings and let
φ : NQR→ NQS be a mapping defined for all x, y ∈ NQR as follows:

(i) φ(x+ y) = φ(x) + φ(y).

(ii) φ(xy) = φ(x)φ(y).

(iii) φ(T ) = T , φ(I) = I and φ(F ) = F .

(iv) φ(1, 0, 0, 0) = (1, 0, 0, 0).
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Then φ is called a neutrosophic quadruple homomorphism. Neutrosophic quadruple
monomorphism, endomorphism, isomorphism, and other morphisms can be defined in
the usual way.

Definition 2.18. Let φ : NQR → NQS be a neutrosophic quadruple ring homomor-
phism.

(i) The image of φ denoted by Imφ is defined by the set

Imφ = {y ∈ NQS : y = φ(x), for some x ∈ NQR}.

(ii) The kernel of φ denoted by Kerφ is defined by the set

Kerφ = {x ∈ NQR : φ(x) = (0, 0, 0, 0)}.

Theorem 2.19. Let φ : NQR → NQS be a neutrosophic quadruple ring homomor-
phism. Then:

(i) Imφ is a neutrosophic quadruple subring of NQS.

(ii) Kerφ is not a neutrosophic quadruple ideal of NQR.

Proof. (i) Clear.
(ii) Since T, I, F cannot have image (0, 0, 0, 0) under φ, it follows that the elements
(0, T, 0, 0), (0, 0, I, 0), (0, 0, 0, F ) cannot be in the Kerφ. Hence, Kerφ cannot be a
neutrosophic quadruple ideal of NQR.

Example 8. Consider the projection map φ : NQR(Z2)×NQR(Z2)→ NQR(Z2) de-
fined by φ(x, y) = x for all x, y ∈ NQR(Z2). It is clear that φ is a neutrosophic quadru-
ple homomorphism and its kernel is given as

Kerφ = {{((0, 0, 0, 0), (0, 0, 0, 0)), ((0, 0, 0, 0), (1, 0, 0, 0)), ((0, 0, 0, 0), (0, T, 0, 0)), ((0, 0, 0, 0), (0, 0, I, 0)),

((0, 0, 0, 0), (0, 0, 0, F )), ((0, 0, 0, 0), (0, T, I, F )), ((0, 0, 0, 0), (0, 0, I, F )), ((0, 0, 0, 0), (0, T, I, 0)),

((0, 0, 0, 0), (0, T, 0, F )), ((0, 0, 0, 0), (1, T, 0, 0)), ((0, 0, 0, 0), (1, 0, I, 0)), ((0, 0, 0, 0), (1, 0, 0, F )),

((0, 0, 0, 0), (1, T, 0, F )), ((0, 0, 0, 0), (1, 0, I, F )), ((0, 0, 0, 0), (1, T, I, 0)), ((0, 0, 0, 0), (1, T, I, F ))}.

Theorem 2.20. Let φ : NQR(Z) → NQR(Z)/NQR(nZ) be a mapping defined by
φ(x) = x + NQR(nZ) for all x ∈ NQR(Z) and n = 1, 2, 3, . . .. Then φ is not a
neutrosophic quadruple ring homomorphism.
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