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Abstract

Recently, F.Smarandache generalized the Atanassov�s intuitionistic fuzzy
sets and other kinds of sets to neutrosophic sets. Also, this author de�ned
the notion of neutrosophic topology on the non-standard interval. One
can expect some relation between the intuitionistic fuzzy topology on an
IFS and the neutrosophic topology. We show in this work that this is
false.
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1 On neutrosophic Topology

1.1. Introduction.

The neutrosophic logic is a formal frame trying to measure the truth, inde-
terminacy, and falsehood.
Smarandache [36] remarks the di¤erences between neutrosophic logic (NL)

and intuitionistic fuzzy logic (IFL) and the corresponding neutrosophic sets and
intuitionistic fuzzy sets. The main di¤erences are:
a) Neutrosophic Logic can distinguish between absolute truth (i.e. that is

an unalterable and permanent fact), and relative truth (where facts may vary
depending on the circumstances), because
NL(absolute truth)=1+ while NL(relative truth)=1. This has obvious ap-

plication in philosophy. That�s why the unitary standard interval [0; 1] used in
IFL has been extended to the unitary non-standard interval ]�0; 1+[ in NL.
Similar distinctions for absolute or relative falsehood, and absolute or rela-

tive indeterminacy are allowed in NL.
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b) In NL there is no restriction on T; I; F other than they are subsets of
]�0; 1+[, thus:

�0 � inf T + inf I + inf F � supT + sup I + supF � 3+:
This non-restriction allows paraconsistent, dialetheist, and incomplete infor-

mation to be characterized in NL (i.e. the sum of all three components if they
are de�ned as points, or sum of superior limits of all three components if they
are de�ned as subsets can be > 1, for paraconsistent information coming from
di¤erent sources, or < 1 for incomplete information), while that information
can not be described in IFL because in IFL the components T (truth), I (in-
determinacy), F (falsehood) are restricted either to t + i + f = 1 if T; I; F are
all reduced to the points t,i; f respectively, or to supT + sup I + supF = 1 if
T; I; F are subsets of [0; 1]:
c) In NL the components T; I; F can also be non-standard subsets included in

the unitary non-standard interval ]�0; 1+[, not only standard subsets, included
in the unitary standard interval [0; 1] as in IFL.
In various recent papers [35,38,39,40], F. Smarandache generalizes intuition-

istic fuzzy sets (IFSs) and other kinds of sets to neutrosophic sets (NSs). In [39]
some distinctions between NSs and IFSs are underlined.
The notion of intuitionistic fuzzy set de�ned by K.T. Atanassov [1] has

been applied by Çoker [8] for study intuitionistic fuzzy topological spaces. This
concept has been developed by many authors (Bayhan and Çoker[6], Çoker,
[7,8], Çoker and Eş [9], Eş and Çoker[12], Gürçay, Çoker and Eş[13], Hanafy
[14], Hur, Kim and Ryou [15], Lee and Lee [16]; Lupiáñez [17-21], Turanh and
Çoker [41]).
A few years ago raised some controversy over whether the term "intuitionistic

fuzzy set" was appropriate or not (see [11] and [4]). At present, it is customary
to speak of "Atanassov�intuitionistic fuzzy set"
F. Smarandache also de�ned the notion of neutrosophic topology on the

non-standard interval [35].
One can expect some relation between the inuitionistic fuzzy topology on

an IFS and the neutrosophic topology. We show in this chapter that this is
false. Indeed, the complement of an IFS A is not the complement of A in the
neutrosophic operation, the union and the intersection of IFSs do not coincide
with the corresponding operations for NSs, and �nally an intuitionistic fuzzy
topology is not necessarily a neutrosophic topology.
Clearly, for their various applications to many areas of knowledge, including

philosophy, religion, sociology, .. (see [5,40,42]), the Atanassov� intuitionistic
fuzzy sets and the neutrosophic sets are notions that use knowledge-based tech-
niques to support human decision-making, learning and action.

1.2. Basic de�nitions.

First, we present some basic de�nitions:

De�nition 1 Let X be a non-empty set. An intuitionistic fuzzy set (IFS for
short) A, is an object having the form A = f< x; �A; 
A > =x 2 Xg where the
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functions �A : X ! I and 
A : X ! I denote the degree of membership (namely
�A(x)) and the degree of nonmembership (namely 
A(x)) of each element x 2 X
to the set A, respectively, and 0 � �A(x) + 
A(x) � 1 for each x 2 X. [1].

De�nition 2 Let X be a non-empty set, and the IFSs A = f< x; �A; 
A > jx 2
Xg, B = f< x; �B ; 
B > jx 2 Xg. Let
A = f< x; 
A; �A > jx 2 Xg
A \B = f< x; �A ^ �B ; 
A _ 
B > jx 2 Xg
A [B = f< x; �A _ �B ; 
A ^ 
B > jx 2 Xg:[3].

De�nition 3 Let X be a non-empty set. Let 0s = f< x; 0; 1 > jx 2 Xg and
1s = f< x; 1; 0 > jx 2 Xg:[8].

De�nition 4 An intuitionistic fuzzy topology (IFT for short) on a non-empty
set X is a family � of IFSs in X satisfying:
(a) 0s,1s 2 � ;
(b) G1 \G2 2 � for any G1; G2 2 � ,
(c) [Gj 2 � for any family fGj jj 2 Jg � � :
In this case the pair (X; �) is called an intuitionistic fuzzy topological space

(IFTS for short) and any IFS in � is called an intuitionistic fuzzy open set
(IFOS for short) in X. [8].

De�nition 5 Let T , I,F be real standard or non-standard subsets of the non-
standard unit interval ]�0; 1+[, with
supT = tsup , inf T = tinf
sup I = isup , inf I = iinf
supF = fsup , inf F = finf and nsup = tsup + isup + fsup ninf =

tinf + iinf + finf ;
T , I,F are called neutrosophic components. Let U be an universe of dis-

course, and M a set included in U . An element x from U is noted with respect
to the set M as x(T; I; F ) and belongs to M in the following way: it is t% true
in the set, i% indeterminate (unknown if it is) in the set, and f% false, where
t varies in T , i varies in I, f varies in F: The set M is called a neutrosophic
set (NS). [40].

Remark. All IFS is a NS.

De�nition 6 Let S
1
and S2 be two (unidimensional) real standard or non-

standard subsets, then we de�ne:
S1 � S2 = fxjx = s1 + s2, where s1 2 S1and s2 2 S2g,
S1 � S2 = fxjx = s1 � s2, where s1 2 S1and s2 2 S2g,
S1 � S2 = fxjx = s1 � s2, where s1 2 S1and s2 2 S2g. [36].
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De�nition 7 One de�nes, with respect to the sets A an B over the universe U :
1. Complement: if x(T1; I1; F1) 2 A, then
x(f1+g� T1; f1+g� I1; f1+g� F1) 2 C(A):
2. Intersection: if x(T1; I1; F1) 2 A, x(T2; I2; F2) 2 B, then
x(T1 � T2; I1 � I2; F1 � F2) 2 A \B:
3.Union: if x(T1; I1; F1) 2 A, x(T2; I2; F2) 2 B, then
x(T1 � T2 � T1 � T2; I1 � I2 � I1 � I2; F1 � F2 � F1 � F2) 2 A [B:
[40].

1.3. Results.

Proposition 1. Let A be an IFS in X, and j(A) be the corresponding NS.
We have that the complement of j(A) is not necessarily j(A).
Proof. If A =< x; �A; 
A > is x(�A(x); 1� �A(x)� �A(x); �A(x)) 2 j(A):
Then ,
for 0s =< x; 0; 1 > is x(0; 0; 1) 2 j(0s)
for 1s =< x; 1; 0 > is x(1; 0; 0) 2 j(1s)
and for A =< x; 
A; �A > is x(
A(x); 1� �A(x)� �A(x); �A(x)) 2 j(A):
Thus, 1s = 0s and j( 1s) 6= C(j(0s)) because x(1; 0; 0; ) 2 j( 1s) but

x(f1+g; f1+g; f0+g) 2 C(j(0s)):
Proposition 2. Let A and B be two IFSs in X;and j(A) and j(B) be the

corresponding NSs. We have that j(A)[ j(B) is not necessarily j(A [ B); and
j(A)\ j(B) is not necessarily j(A \B) .
Proof. Let A =< x; 1=2; 1=3 > and B =< x; 1=2; 1=2 > (i.e. �A, �A, �B ,

�B are constant maps).
Then, A[B =< x; �A_�B ; 
A^
B >=< x; 1=2; 1=3 > and x(1=2; 1=6; 1=3) 2

j(A[B). On the other hand, x(1=2; 1=6; 1=3) 2 j(A); x(1=2; 0; 1=2) 2 j(B); x(1; 1=6; 5=6) 2
j(A)� j(B); x(1=4; 0; 1=6) 2 j(A)� j(B) and x(3=4; 1=6; 2=3) 2 j(A)[ j(B)
.Thus j(A [B) 6= j(A)[ j(B):
Analogously, A\B =< x; �A^�B ; 
A_
B >=< x; 1=2; 1=2 > and x(1=2; 0; 1=2) 2

j(A \B), but x(1=4; 0; 1=6) 2 j(A) \ j(B).Thus, j(A \B) 6= j(A) \ j(B).

De�nition 8 Let�s construct a neutrosophic topology on NT =]�0; 1+[, consid-
ering the associated family of standard or non-standard subsets included in NT ,
and the empty set which is closed under set union and �nite intersection neu-
trosophic. The interval NT endowed with this topology forms a neutrosophic
topological space. [35].

Proposition 3. Let (X; �) be an intuitionistic fuzy topological space. Then,
the family fj(U)jU 2 �g is not necessarily a neutrosophic topology.
Proof. Let � = f1s; 0s; Ag where A =< x; 1=2; 1=2 > then x(1; 0; 0) 2

j(1s), x 2 (0; 0; 1) 2 j(0s) and x(1=2; 0; 1=2) 2 j(A). Thus fj(1s); j(0s); j(A)g
is not a neutrosophic topology, because this family is not closed by �nite inter-
sections, indeed, x(1=2; 0; 0) 2 j(1s) \ j(A), and this neutrosophic set is not in
the family.
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2 Other neutrophic topologies

2.1. Introduction.

F. Smarandache also de�ned various notions of neutrosophic topologies on
the non-standard interval [35,40].
One can expect some relation between the intuitionistic fuzzy topology on

an IFS and the neutrosophic topology. We show in this chapter that this is
false. Indeed, the union and the intersection of IFSs do not coincide with the
corresponding operations for NSs, and an intuitionistic fuzzy topology is not
necessarilly a neutrosophic topology on the non-standard interval, in the various
senses de�ned by Smarandache.

2.2. Basic de�nitions.
First, we present some basic de�nitions:

De�nition 9 Let J 2 fT; I; Fg be a component. Most known N-norms are:
The algebraic product N-norm: Nn�a lg ebraicJ(x; y) = x � y
The bounded N-norm: Nn�boundedJ(x; y) = max f0; x+ y � 1g
The default (min) N-norm: Nn�minJ(x; y) = min fx; yg
Nn represent the intersection operator in neutrosophic set theory. Indeed

x ^ y = (T^; I^; F^).
[40]

De�nition 10 Let J 2 fT; I; Fg be a component. Most known N-conorms are:
The algebraic product N-conorm: Nc�a lg ebraicJ(x; y) = x+ y � x � y
The bounded N-conorm: Nc�boundedJ(x; y) = min f1; x+ yg
The default (max) N-conorm: Nc�maxJ(x; y) = max fx; yg
Nc represent the union operator in neutrosophic set theory.Indeed x _ y =

(T_; IV ; F_)
[40]

2.3. Results.

Proposition 1. Let A and B be two IFSs in X; and j(A) and j(B) be the

corresponding NSs. We have that j(A)[ j(B) is not necessarily j(A [ B); and
j(A)\ j(B) is not necessarily j(A\B), for any of three de�nitions of intersection
of NSs.
Proof. Let A =< x; 1=2; 1=3 > and B =< x; 1=2; 1=2 > (i.e. �A, �A, �B ,

�B are constant maps).
Then, A[B =< x; �A_�B ; 
A^
B >=< x; 1=2; 1=3 > and x(1=2; 1=6; 1=3) 2

j(A [B). On the other hand, x(1=2; 1=6; 1=3) 2 j(A); x(1=2; 0; 1=2) 2 j(B).
Then, we have that:
1) for the union operator de�ned by the algebraic product N-conorm x(3=4; 1=6; 2=3) 2

j(A)[ j(B) .
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2) for the union operator de�ned by the bounded N-conorm x(1; 1=6; 5=6) 2
j(A)[ j(B) .
3) for the union operator de�ned by the default (max) N-conorm x(1=2; 1=6; 1=2) 2

j(A)[ j(B) .
Thus j(A [B) 6= j(A)[ j(B);with the three de�nitions.
Analogously, A\B =< x; �A^�B ; 
A_
B >=< x; 1=2; 1=2 > and x(1=2; 0; 1=2) 2

j(A \B).
And, we have that:
1) for the intersection operator de�ned by the algebraic product N-norm

x(1=4; 0; 1=6) 2 j(A)\ j(B) .
2) for the intersection operator de�ned by the bounded N-norm x(0; 0; 0) 2

j(A)\ j(B) .
3) for the intersection operator de�ned by the default (min) N-norm x(1=2; 0; 1=3) 2

j(A)\ j(B) .
Thus j(A \B) 6= j(A)\ j(B);with the three de�nitions.

De�nition 11 Let�s construct a neutrosophic topology on NT =]�0; 1+[, con-
sidering the associated family of standard or non-standard subsets included in
NT , and the empty set which is closed under set union and �nite intersection
neutrosophic. The interval NT endowed with this topology forms a neutrosophic
topological space. There exist various notions of neutrosophic topologies on NT
, de�ned by using various N-norm/N-conorm operators. [35, 40].

Proposition 2. Let (X; �) be an intuitionistic fuzzy topological space.
Then, the family fj(U)jU 2 �g is not necessarily a neutrosophic topology on
NT (in the three de�ned senses).
Proof. Let � = f1s; 0s; Ag where A =< x; 1=2; 1=2 > then x(1; 0; 0) 2

j(1s), x 2 (0; 0; 1) 2 j(0s) and x(1=2; 0; 1=2) 2 j(A). Thus �� = fj(1s); j(0s); j(A)g
is not a neutrosophic topology, because this family is not closed by �nite inter-
sections, for any neutrosophic topology on NT . Indeed,
1) For the intersection de�ned by the algebraic product N-norm, we have

that x(1=2; 0; 0) 2 j(1s) \ j(A), and this neutrosophic set is not in the family
��.
2) For the intersection de�ned by the bounded N-norm, we have also that

x(1=2; 0; 0) 2 j(1s) \ j(A), and this neutrosophic set is not in the family ��.
3) For the intersection de�ned by the default (min) N-norm, we have also

that x(1=2; 0; 0) 2 j(1s) \ j(A), and this neutrosophic set is not in the family
��.

3 Interval neutrosophic sets and Topology

3.1. Introduction.
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Also, Wang, Smarandache, Zhang, and Sunderraman [42] introduced the
notion of interval neutrosophic set, which is an instance of neutrosophic set
and studied various properties. We study in this chapter relations between
interval neutrosophic sets and topology.

3.2. Basic de�nitions.
First, we present some basic de�nitions. For de�nitions on non-standard

Analysis, see [33] :

De�nition 12 Let X be a space of points (objects) with generic elements in
X denoted by x. An interval neutrosophic set (INS) A in X is characterized
by thuth-membership function TA, indeteminacy-membership function IA and
falsity-membership function FA. For each point x in X, we have that TA(x),
IA(x), FA(x) 2 [0; 1]. [42].
Remark. All INS is clearly a NS.

When X is continuous, an INS A can be written as

A =

Z
X

hT (x); I(x); F (x)i =x; x 2 X

When X is discrete, an INS A can be written as

A =

nX
i=1

hT (xi); I(xi)F (xi)i =xi , xi 2 X

De�nition 13 a) An interval neutrosophic set A is empty if inf TA(x) =
supTA(x) = 0, inf IA(x) = sup IA(x) = 1, inf FA(x) = supFA(x) = 0 for
all x in X:
b) Let 0 =< 0; 1; 1 > and 1 =< 1; 0; 0 > :[42].

De�nition 14 (Complement) Let CN denote a neutrosophic complement of A:
Then CN is a function CN : N ! N and CN must satisfy at least the

following three axiomatic requirements:
1. CN (0) = 1 and CN (1) = 0 (boundary conditions).
2. Let A and B be two interval neutrosophic sets de�ned on X, if A(x) �

B(x), then CN (A(x)) � CN (B(x)), for all x in X. (monotonicity).
3. Let A be an interval neutrosophic set de�ned on X, then CN (CN (A(x))) =

A(x), for all x in X. (involutivity).[42].
Remark. There are many functions which satisfy the requirement to be

the complement operator of interval
neutrosophic sets. Here we give one example.

De�nition 15 (Complement CN1
) The complement of an interval neutrosophic

set A is denoted by
_
A and is de�ned by

T_
A
(x) = FA(x);

inf I_
A
(x) = 1� sup IA(x);

sup I_
A
(x) = 1� inf IA(x);

F_
A
(x) = TA(x); for all x in X.
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De�nition 16 (N-norm) Let IN denote a neutrosophic intersection of two in-
terval neutrosophic sets A and B. Then IN is a function IN : N �N ! N and
IN must satisfy at least the following four axiomatic requirements:
1. IN (A(x); 1) = A(x), for all x in X. (boundary condition).
2. B(x) � C(x) implies IN (A(x); B(x)) � IN (A(x); C(x)), for all x in X.

(monotonicity).
3. IN (A(x); B(x)) = IN (B(x); A(x)), for all x in X. (commutativity).
4. IN (A(x); IN (B(x); C(x))) = IN (IN (A(x); B(x)); C(x)), for all x in X.

(associativity).[42].
Remark. Here we give one example of intersection of two interval neutro-

sophic sets which satis es above N-norm axiomatic requirements. Other diferent
de�nitions can be given for di¤erent applications

De�nition 17 (Intersection IN1
) The intersection of two interval neutrosophic

sets A and B is an interval neutrosophic set C, written as C = A \ B, whose
truth-membership, indeterminacy-membership, and false-membership are related
to those of A and B by
inf TC(x) = min(inf TA(x); inf TB(x));
supTC(x) = min(supTA(x); supTB(x));
inf IC(x) = max(inf IA(x); inf IB(x));
sup IC(x) = max(sup IA(x); sup IB(x));
inf FC(x) = max(inf FA(x); inf FB(x));
supFC(x) = max(supFA(x); supFB(x)); for all x in X:

De�nition 18 (N-conorm) Let UN denote a neutrosophic union of two interval
neutrosophic sets A and B. Then UN is a function UN : N �N ! N
and UN must satisfy at least the following four axiomatic requirements:
1. UN (A(x); 0) = A(x), for all x in X. (boundary condition).
2. B(x) � C(x) implies UN (A(x); B(x)) � UN (A(x); C(x)), for all x in X.

(monotonicity).
3. UN (A(x); B(x)) = UN (B(x); A(x)), for all x in X. (commutativity).
4. UN (A(x); UN (B(x); C(x))) = UN (UN (A(x); B(x)); C(x)), for all x in X.

(associativity). [42].
Remark. Here we give one example of union of two interval neutrosophic

sets which satis es above N-conorm axiomatic requirements. Other di¤erent
de�nitions can be given for di¤erent applications.

De�nition 19 (Union UN1
) The union of two interval neutrosophic sets A

and B is an interval neutrosophic set C, written as C = A [ B, whose truth-
membership, indeterminacy-membership, and false-membership are related to
those of A and B by
inf TC(x) = max(inf TA(x); inf TB(x));
supTC(x) = max(supTA(x); supTB(x));
inf IC(x) = min(inf IA(x); inf IB(x));
sup IC(x) = min(sup IA(x); sup IB(x));
inf FC(x) = min(inf FA(x); inf FB(x));
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supFC(x) = min(supFA(x); supFB(x)); for all x in X:

3.3. Results.

Proposition 1. Let A be an IFS in X, and j(A) be the corresponding INS.
We have that the complement of j(A) is not necessarily j(A).
Proof. If A =< x; �A; 
A > is j(A) =< �A; 0; 
A > :
Then ,
for 0s =< x; 0; 1 > is j(0s) = j(< x; 0; 1 >) =< 0; 0; 1 >6= 0 =< 0; 1; 1 >
for 1s =< x; 1; 0 > is j(1s) = j(< x; 1; 0 > ) =< 1; 0; 0 >= 1
Thus, 1s = 0s and j( 1s) = 1 6= CN (j(0s)) because CN (1) = 0 6= j(0s):

De�nition 20 Let�s construct a neutrosophic topology on NT =]�0; 1+[, con-
sidering the associated family of standard or non-standard subsets included in
NT , and the empty set which is closed under set union and �nite intersection
neutrosophic. The interval NT endowed with this topology forms a neutrosophic
topological space. [35].

Proposition 2. Let (X; �) be an intuitionistic fuzzy topological space.
Then, the family of INSs fj(U)jU 2 �g is not necessarily a neutrosophic topol-
ogy.
Proof. Let � = f1s; 0s; Ag where A =< x; 1=2; 1=2 > then j(1s) = 1,

j(0s) =< 0; 0; 1 >6= ? and j(A) =< 1=2; 0; 1=2 >. Thus fj(1s); j(0s); j(A)g
is not a neutrosophic topology, because the empty INS is not in this family.

4 Neutrosophic paraconsistent Topology

The history of paraconsistent logic is not very long. It was designed by S.
Jaskowski in 1948. Without knowing the work of this author, N.C. A. da Costa,
from 1958, using di¤erent methods and ideas, began to make statements about
this type of logic. After other logicians have developed independently, new sys-
tems of paraconsistent logic, as Routley, Meyer, Priest, Asenjo, Sette, Anderson
and Benalp, Wolf (with da Costa himself), .... At present there is a thriving
movement dedicated to the study of paraconsistent logic in several countries. In
the philosophical aspect has meant, in some cases, a real opening of horizons, for
example, in the treatment of the paradoxes, in e¤orts to treat rigorously dialec-
tical thinking, in fact possible to develop a set theory inconsistent. .. Because
of this, there is growing interest in understanding the nature and scope.
Jaskowski deductive logic led her to refer to several problems that caused

the need for paraconsistent logic:
1) The problem of organizing deductive theories that contain contradictions,

as in the dialectic: "The principle that no two contradictory statements are
both true and false is the safest of all."
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2) To study theories that there are contradictions engendered by vagueness:
"The contemporary formal approach to logic increases the accuracy of research
in many �elds, but it would be inappropriate to formulate the principle of con-
tradiction of Aristotle thus:"Two contradictory propositions are not true". We
need to add:"in the same language"or "if the words that are part of those have
the same meaning". This restriction is not always found in daily use, and also
science, we often use terms that are more or less vague.
3) To study directly some postulates or empirical theories whose basic mean-

ings are contradictory. This applies, for example, the physics at the present
stage.

Objectives and method of construction of paraconsistent logics can be men-
tioned, besides those mentioned by Jaskowski:
1) To study directly the logical and semantic paradoxes, for example, if we

directly study the paradoxes of set theory (without trying to avoid them, as it
normally is), we need to construct theories of sets of such paradoxes arising, but
without being formal antinomies. In this case we need a paraconsistent logic.
2) Better understand the concept of negation.
3) Have logic systems on which to base the paraconsistent theories. For

example, set up logical systems for di¤erent versions and possibly stronger than
standard theories of sets, of dialectics, and of certain physical theories that ,
perhaps, are inconsistent (some versions of quantum mechanics).
Various authors [31] worked on "paraconsistent Logics", that is, logics where

some contradiction is admissible. We remark the theories exposed by Da Costa
[10], Routley and other [34], and Peña [29,30].
Smarandache de�ned also the neutrosophic paraconsistent sets [Sm5] and he

proposed a natural de�nition of neutrosophic paraconsistent topology.
A problem that we consider is the possible relation between this concept

of neutrosophic paraconsistent topology and the previous notions of general
neutrosophic topology and intuitionistic fuzzy topology. We show in this chapter
that neutrosophic paraconsistent topology is not an extension of intuitionistic
fuzzy topology.

First, we present some basic de�nitions:

De�nition 21 LetM be a non-empty set. A general neutrosophic topology
on M is a family 	 of neutrosophic sets in M satisfying the following axioms:
(a) 0s = x(0; 0; 1) ,1s = x(1; 0; 0) 2 	
(b) If A;B 2 	 , then A \B 2 	
(c) If a family fAj jj 2 Jg � 	;then [Aj 2 	:
[40]

De�nition 22 A neutrosophic set x(T; I; F ) is called paraconsistent if inf(T )+
inf(I) + inf(F ) > 1:[39]

De�nition 23 For neutrosophic paraconsistent sets 0_ = x(0; 1; 1) and 1_ =
x(1; 1; 0):(Smarandache).
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Remark. If we use the unary neutrosophic negation operator for neutro-
sophic sets [40], nN (x(T; I; F )) = x(F; I; T ) by interchanging the thuth T and
falsehood F components, we have that nN (0_) = 1_ .

De�nition 24 Let X be a non-empty set. A family � of neutrosophic paracon-
sistent sets in X will called a neutrosophic paraconsistent topology if:
(a) 0_ and 1_ 2 �
(b) If A;B 2 �, then A \B 2 �
(c) Any union of a subfamily of paraconsistent sets of � is also in �:
(Smarandache).
Results.

Proposition 1. The neutrosophic paraconsistent topology is not an exten-

sion of intuitionistic fuzzy topology.
Proof. We have that 0s =< x; 0; 1 > and 1s =< x; 1; 0 > are members of

all intuitionistic fuzzy topology, but
x(0; 0; 1) 2 j(0s) 6= 0_, and, x(1; 0; 0) 2 j(1s) 6= 1_:

Proposition 2. A neutrosophic paraconsistent topology is not a general
neutrosophic topology.
Proof. Let the family f1_; 0_g . Clearly it is a neutrosophic paraconsistent

topology, but 0s,1s are not in this family.
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