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Abstract— Smarandache initiated neutrosophic sets (NSs) which can be used as a

mathematical tool for dealing with indeterminate and inconsistent information. In order

to apply NSs conveniently, single valued neutrosophic sets (SVNSs) were proposed by

Wang et al. In this paper, we propose single valued neutrosophic relations (SVNRs) and

study their properties. The notions of anti-reflexive kernel, symmetric kernel, reflexive

closure, and symmetric closure of a SVNR are introduced, respectively. Their accurate

calculate formulas and some properties are explored. Finally, single valued neutrosophic

relation mappings and inverse single valued neutrosophic relation mappings are intro-

duced, and some interesting properties are also obtained.
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1 Introduction

Smarandache [7] proposed neutrosophic sets (NSs) by combining the non-standard

analysis, a tri-component logic/set/probability theory and philosophy. “It is a branch

of philosophy which studies the origin, nature and scope of neutralities, as well as their

interactions with different ideational spectra” [7]. A NS has three membership functions:

truth membership function, indeterminacy membership function and falsity membership

function, in which each membership degree is a real standard or non-standard subset of

the nonstandard unit interval ]0−, 1+[ [6, 7].

In order to practice NSs in real-life applications conveniently, Wang et al. [10] intro-

duced single valued neutrosophic sets (SVNSs) which were also called simplified neutro-
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sophic sets in [13]. SVNSs is a generalization of intuitionistic fuzzy sets [1], in which three

membership functions are independent and their values belong to the unit interval [0, 1].

SVNSs have been a new hot research topic. Many researchers have addressed this issue.

Majumdar and Samanta [4] studied similarity and entropy of SVNSs. Ye [11, 12] proposed

correlation coefficients of SVNSs, and applied it to single valued neutrosophic decision-

making problems. Şahin and Küçük [8] introduced a system of axioms for subsethood

measure of SVNSs and presented a subsethood measure for SVNSs. Based on interval

neutrosophic sets [9], Chi et al. [2] extended the TOPSIS method to the multiple at-

tribute decision making problems based on interval neutrosophic sets. Peng [5] developed

some novel operations of SVNSs and proposed an outranking approach for multi-criteria

decision making problems with simplified neutrosophic numbers.

It is worthy pointing out that the research about the theoretic aspect of SVNSs is

not quite a few. In this paper, we attempt to broad the theoretic aspect of SVNSs. In

the literatures, the study of single valued neutrosophic relations (SVNRs) is still blank.

We shall focus on the study of SVNRs in this paper. Concretely, the notions of SVNRs

are introduced based on SVNSs. Several kinds of kernels and closures of a SVNR are

developed. Furthermore, some results on SVNR mappings and inverse SVNR mappings

are also obtained.

The rest of this paper is structured as follows. In Section 2, some notions and op-

erations of NSs and SVNSs are provided. Section 3 introduces the notions of SVNRs

and presents basic properties of SVNRs. Section 4 and Section 5 discuss kernels and

closures of a SVNR, respectively. Their computational formulas and some properties are

obtained. SVNR mappings and inverse SVNR mapping are investigated in Section 6. The

last section summarizes the conclusions.

2 Preliminaries

In this section, we provide some basic notions and operations about NSs and SVNSs.

Definition 2.1([7]). Let U be a space of points (objects), with a generic element in

U denoted by u. A NS A in U is characterized by three membership functions, a

truth-membership function TA, an indeterminacy membership function IA and a falsity-

membership function FA, where ∀u ∈ U , TA(u), IA(u) and FA(u) are real standard or
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non-standard subsets of ]0−, 1+[. There is no restriction on the sum of TA(u), IA(u) and

FA(u), thus 0
− ≤ sup TA(u)+ sup IA(u)+ sup FA(u) ≤ 3+.

Definition 2.2([7]). Let A and B be two NSs in U . If for any u ∈ U , inf TA(u) ≤ inf

TB(u), sup TA(u) ≤ sup TB(u), inf IA(u) ≥ inf IB(u), sup IA(u) ≥ sup IB(u), inf FA(u) ≥

inf FB(u) and sup FA(u) ≥ sup FB(u), then we called A is contained in B, denoted by

A ⊆ B.

To apply NSs conveniently, Wang et al. proposed SVNSs as follows.

Definition 2.3([10]). Let U be a space of points (objects), with a generic element in

U denoted by u. A SVNS A in U is characterized by three membership functions, a

truth-membership function TA, an indeterminacy membership function IA and a falsity-

membership function FA, where ∀u ∈ U , TA(u), IA(u), FA(u) ∈ [0, 1]. That is TA : U −→

[0, 1], IA : U −→ [0, 1] and FA : U −→ [0, 1]. There is no restriction on the sum of TA(u),

IA(u) and FA(u), thus 0 ≤ TA(u) + IA(u) + FA(u) ≤ 3.

Here A can also be denoted by A = {⟨u, TA(u), IA(u), FA(u)⟩ | u ∈ U}. ∀u ∈ U ,

(TA(u), IA(u), FA(u)) is called a single valued neutrosophic number (SVNN).

Definition 2.4([13]). Let A and B be two SVNSs in U . If for any u ∈ U , TA(u) ≤ TB(u),

IA(u) ≥ IB(u) and FA(u) ≥ FB(u), then we called A is contained in B, i.e. A ⊆ B.

If A ⊆ B and B ⊆ A, then we called A is equal to B, denoted by A = B.

It is easy to see that Definition 2.4 is consistent to Definition 2.2, and Definition 2.4

can be regard as a special case of Definition 2.2.

Definition 2.5([10]). Let A be a SVNSs in U . The complement of A is denoted by Ac,

where ∀u ∈ U , TAc(u) = FA(u), IAc(u) = 1− IA(u) and FAc(u) = TA(u).

Definition 2.6. Let A and B be two SVNSs in U .

(1) The union of A and B is a SVNS C, denoted by C = A ∪B, where ∀u ∈ U ,

TC(u) = max {TA(u), TB(u)}, IC(u) = min {IA(u), IB(u)} and FC(u) = min {FA(u), FB(u)}.

(2) The intersection of A and B is a SVNS D, denoted by D = A ∩B, where ∀u ∈ U ,

TD(u) = min {TA(u), TB(u)}, ID(u) = max {IA(u), IB(u)} and FD(u) = max {FA(u), FB(u)}.

Proposition 2.1. Let A and B be two SVNSs in U . The following results hold:

(1) A ⊆ A ∪B and B ⊆ A ∪B.

(2) A ∩B ⊆ A and A ∩B ⊆ B.
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(3) (Ac)c = A ([10]).

(4) (A ∪B)c = Ac ∩Bc.

(5) (A ∩B)c = Ac ∪Bc.

Proof. The proof is straightforward from Definitions 2.4-2.6.

Note that Definition 2.6 is different from correspondence definitions in [10]. The union

and intersection in [10] donot satisfy Proposition 2.1 (1) and (2).

3 Single valued neutrosophic relations

In this section, we introduce the notions of single valued neutrosophic relations and

several special single valued neutrosophic relations.

Definition 3.1. A SVNS R in U × U is called a single valued neutrosophic relation

(SVNR) in U , denoted by R = {⟨(u, v), TR(u, v), IR(u, v), FR(u, v)⟩ | (u, v) ∈ U × U},

where TR : U × U −→ [0, 1], IR : U × U −→ [0, 1] and FR : U × U −→ [0, 1] denote the

truth-membership function, indeterminacy membership function and falsity-membership

function of R, respectively.

In what follows, SVNR(U) will denote the family of all single valued neutrosophic

relations in U .

Definition 3.2. Let R be a SVNR in U , the complement and inverse of R are defined as

follows, respectively

Rc = {⟨(u, v), TRc(u, v), IRc(u, v), FRc(u, v)⟩ | (u, v) ∈ U × U},

where ∀(u, v) ∈ U × U , TRc(u, v) = FR(u, v), IRc(u, v) = 1 − IR(u, v) and FRc(u, v) =

TR(u, v).

R−1 = {⟨(u, v), TR−1(u, v), IR−1(u, v), FR−1(u, v)⟩ | (u, v) ∈ U × U},

where ∀(u, v) ∈ U × U , TR−1(u, v) = TR(v, u), IR−1(u, v) = IR(v, u) and FR−1(u, v) =

FR(u, v).

Example 3.1. Let U = {u1, u2, u3, u4, u5}. A SVNR R in U is given in Table 1. By

Definitions 3.2, we can computeRc andR−1 which are given in Tables 2 and 3, respectively.

The union and intersection of two SVNRs are introduced as follows.

Definition 3.3. Let R,S be two SVNRs in U .

(1) The union R ∪ S of R and S is defined by R ∪ S = {⟨(u, v), max {TR(u, v), TS(u, v)},
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Table 1: A SVNR R

R x1 x2 x3 x4 x5

x1 (0.2,0.6,0.4) (0,0.3,0.7) (0.9,0.2,0.4) (0.3,0.9,1) (1,0.2,0)
x2 (0.4,0.5,0.1) (0.1,0.7,0) (1,1,1) (1,0.3,0) (0.5,0.6,1)
x3 (0,1,1) (1,0.5,0) (0,0,0) (0.2,0.8,0.1) (1,0.8,1)
x4 (1,0,0) (0,0,1) (0.5,0.7,0.1) (0.1,0.4,1) (1,0.8,0.8)
x5 (0,1,0) (0.9,0,0) (0,0.1,0.7) (0.8,0.9,1) (0.6,1,0)

Table 2: The complement Rc of R

Rc x1 x2 x3 x4 x5

x1 (0.4,0.4,0.2) (0.7,0.7,0) (0.4,0.8,0.9) (1,0.1,0.3) (0,0.8,1)
x2 (0.1,0.5,0.4) (0,0.3,0.1) (1,0,1) (0,0.7,1) (1,0.4,0.5)
x3 (1,0,0) (0,0.5,1) (0,1,0) (0.1,0.2,0.2) (1,0.2,1)
x4 (0,1,1) (1,1,0) (0.1,0.3,0.5) (1,0.6,0.1) (0.8,0.2,1)
x5 (0,0,0) (0,1,0.9) (0.7,0.9,0) (1,0.1,0.8) (0,0,0.6)

min {IR(u, v), IS(u, v)}, min {FR(u, v), FS(u, v)}⟩ | (u, v) ∈ U × U}.

(2) The intersectionR∩S ofR and S is defined byR∩S = {⟨(u, v),min {TR(u, v), TS(u, v)},

max {IR(u, v), IS(u, v)}, max {FR(u, v), FS(u, v)}⟩ | (u, v) ∈ U × U}.

Next, we give several special SVNRs.

Definition 3.4. Let R be a SVNR in U .

(1) If ∀u, v ∈ U , TR(u, v) = 0 and IR(u, v) = FR(u, v) = 1, then R is called a null SVNR,

denoted by ∅N .

(2) If ∀u, v ∈ U , TR(u, v) = 1, and IR(u, v) = FR(u, v) = 0, then R is called an absolute

SVNR, denoted by UN .

(3) If ∀u, v ∈ U , TR(u, v) =

{
1, u = v
0, u ̸= v

and IR(u, v) = FR(u, v) =

{
0, u = v
1, u ̸= v

, then

R is called an identity SVNR, denoted by IdN .

Table 3: The inverse R−1 of R

R−1 x1 x2 x3 x4 x5

x1 (0.2,0.6,0.4) (0.4,0.5,0.1) (0,1,1) (1,0,0) (0,1,0)
x2 (0,0.3,0.7) (0.1,0.7,0) (1,0.5,0) (0,0,1) (0.9,0,0)
x3 (0.9,0.2,0.4) (1,1,1) (0,0,0) (0.5,0.7,0.1) (0,0.1,0.7)
x4 (0.3,0.9,1) (1,0.3,0) (0.2,0.8,0.1) (0.1,0.4,1) (0.8,0.9,1)
x5 (1,0.2,0) (0.5,0.6,1) (1,0.8,1) (1,0.8,0.8) (0.6,1,0)
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By use of Definitions 3.2 and 3.4, the complement (IdN)
c of IdN is a SVNR satisfying:

∀u, v ∈ U , T(IdN )c(u, v) =

{
0, u = v
1, u ̸= v

and I(IdN )c(u, v) = F(IdN )c(u, v) =

{
1, u = v
0, u ̸= v

.

Definition 3.5. Let R be a SVNR in U .

(1) If ∀u ∈ U , TR(u, u) = 1 and IR(u, u) = FR(u, u) = 0, then R is called a reflexive

SVNR.

(2) If ∀u, v ∈ U , TR(u, v) = TR(v, u), IR(u, v) = IR(v, u) and FR(u, v) = FR(v, u), then

R is called a symmetric SVNR.

(3) If ∀u ∈ U , TR(u, u) = 0 and IR(u, u) = FR(u, u) = 1, then R is called an anti-reflexive

SVNR.

(4) If ∀u, v, w ∈ U , ∨v∈U(TR(u, v) ∧ TR(v, w)) ≤ TR(u,w), ∧v∈U(IR(u, v) ∨ IR(v, w)) ≥

IR(u,w) and ∧v∈U(FR(u, v) ∨ FR(v, w)) ≥ FR(u,w), then R is called a transitive SVNR,

where “ ∨ ” and “ ∧ ” denote maximum and minimum, respectively.

Definition 3.6. Let R, S be two SVNRs in U . If ∀u, v ∈ U , TR(u, v) ≤ TS(u, v),

IR(u, v) ≥ IS(u, v) and FR(u, v) ≥ FS(u, v), then we call R is contained in S (or R is less

than S), denoted by R ⊆ S (or R ≤ S).

It is easy to verify that the union and intersection of SVNRs satisfy commutative law,

associative law and distributive law. ∅N is a symmetric and anti-reflexive SVNR. UN and

IdN are two symmetric and reflexive SVNRs. (IdN)
c is an anti-reflexive SVNR. If R is

not an anti-reflexive SVNR, then there is no an anti-reflexive SVNR containing R. If R is

not a reflexive SVNR, then there is no a reflexive SVNR contained in R. Moreover, if R

is a reflexive SVNR, then R ⊇ IdN , and if R is an anti-reflexive SVNR, then R ⊆ (IdN)
c.

Theorem 3.1. Let R, S, P be three SVNRs in U . Then

(1) R is symmetric iff R = R−1.

(2) (Rc)−1 = (R−1)c.

(3) (R−1)−1 = R, (Rc)c = R.

(4) R ∪ S ⊇ R, R ∪ S ⊇ S.

(5) R ∩ S ⊆ R, R ∩ S ⊆ S.

(6) If R ⊆ S, then R−1 ⊆ S−1.

(7) If P ⊇ S and P ⊇ R, then P ⊇ R ∪ S.

(8) If P ⊆ S and P ⊆ R, then P ⊆ R ∩ S.

(9) If R ⊆ S, then R ∪ S = S and R ∩ S = R.
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(10) (R ∪ S)−1 = R−1 ∪ S−1, (R ∩ S)−1 = R−1 ∩ S−1.

(11) (R ∪ S)c = Rc ∩ Sc, (R ∩ S)c = Rc ∪ Sc.

Proof. Clearly, (1) and (3)-(9) hold. We only show (2), (10) and (11).

(2) ∀u, v ∈ U , T(Rc)−1(u, v) = TRc(v, u) = FR(v, u) = FR−1(u, v) = T(R−1)c(u, v),

I(Rc)−1(u, v) = IRc(v, u) = 1− IR(v, u) = 1− IR−1(u, v) = I(R−1)c(u, v),

F(Rc)−1(u, v) = FRc(v, u) = TR(v, u) = TR−1(u, v) = F(R−1)c(u, v).

So (Rc)−1 = (R−1)c.

(10) ∀u, v ∈ U ,

T(R∪S)−1(u, v) = T(R∪S)(v, u) = max {TR(v, u), TS(v, u)} =max {TR−1(u, v), TS−1(u, v)} =

TR−1∪S−1(u, v),

I(R∪S)−1(u, v) = I(R∪S)(v, u) = min {IR(v, u), IS(v, u)} =min {IR−1(u, v), IS−1(u, v)} =

IR−1∪S−1(u, v),

F(R∪S)−1(u, v) = F(R∪S)(v, u) = min {FR(v, u), FS(v, u)} =min {FR−1(u, v), FS−1(u, v)} =

FR−1∪S−1(u, v).

Hence (R ∪ S)−1 = R−1 ∪ S−1. Similarly, we can show (R ∩ S)−1 = R−1 ∩ S−1.

(11) ∀u, v ∈ U ,

T(R∪S)c(u, v) = F(R∪S)(u, v) = min {FR(u, v), FS(u, v)} = min {TRc(u, v), TSc(u, v)} =

TRc∩Sc(u, v),

I(R∪S)c(u, v) = 1− I(R∪S)(u, v) = 1− min {IR(u, v), IS(u, v)} = max {1− IR(u, v), 1−

IS(u, v)} = max {IRc(u, v), ISc(u, v)} = IRc∩Sc(u, v),

F(R∪S)c(u, v) = T(R∪S)(u, v) = max {TR(u, v), TS(u, v)} = max {FRc(u, v), FSc(u, v)} =

FRc∩Sc(u, v).

So (R ∪ S)c = Rc ∩ Sc. Similarly, we can show (R ∩ S)c = Rc ∪ Sc.

Remark 3.1. According to Theorem 3.1 (1) and (2), the complement of a symmetric

SVNR is also a symmetric SVNR.

4 Kernels of SVNRs

In this section, we will define anti-reflexive kernel and symmetric kernel of a SVNR,

then investigate their properties.

Definition 4.1. Let R be a SVNR in U .

(1) The maximal anti-reflexive SVNR contained in R is called anti-reflexive kernel of R,
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Table 4: The anti-reflexive kernel ar(R) of R

ar(R) x1 x2 x3 x4 x5

x1 (0,1,1) (0,0.3,0.7) (0.9,0.2,0.4) (0.3,0.9,1) (1,0.2,0)
x2 (0.4,0.5,0.1) (0,1,1) (1,1,1) (1,0.3,0) (0.5,0.6,1)
x3 (0,1,1) (1,0.5,0) (0,1,1) (0.2,0.8,0.1) (1,0.8,1)
x4 (1,0,0) (0,0,1) (0.5,0.7,0.1) (0,1,1) (1,0.8,0.8)
x5 (0,1,0) (0.9,0,0) (0,0.1,0.7) (0.8,0.9,1) (0,1,1)

denoted by ar(R).

(2) The maximal symmetric SVNR contained in R is called symmetric kernel of R,

denoted by s(R).

Theorem 4.1. Let R be a SVNR in U . Then

(1) ar(R) = R ∩ (IdN)
c.

(2) s(R) = R ∩R−1.

Proof. (1) By Theorem 3.1 (5), R ∩ (IdN)
c ⊆ R. By the definition of IdN , ∀u ∈ U ,

we have TIdN (u, u) = 1 and IIdN (u, u) = FIdN (u, u) = 0, then T(IdN )c(u, u) = 0 and

I(IdN )c(u, u) = F(IdN )c(u, u) = 1. Hence TR∩(IdN )c(u, u) = min {TR(u, u), T(IdN )c(u, u)} =

0, IR∩(IdN )c(u, u) = max {IR(u, u), I(IdN )c(u, u)} = 1 and FR∩(IdN )c(u, u) = max {FR(u, u),

F(IdN )c(u, u)} = 1. By Definition 3.5 (3), R ∩ (IdN)
c is an anti-reflexive SVNR in U .

If K is an anti-reflexive SVNR in U and K ⊆ R. Obviously, K ⊆ (IdN)
c. Hence

K ⊆ R ∩ (IdN)
c. So ar(R) = R ∩ (IdN)

c.

(2) By Theorem 3.1 (9) and (3), (R∩R−1)−1 = R−1∩ (R−1)−1 = R−1∩R = R∩R−1,

which implies that R ∩ R−1 is a symmetric SVNR in U . According to Theorem 3.1 (5),

R ∩R−1 ⊆ R.

If K is a symmetric SVNR in U and K ⊆ R. By Theorem 3.1 (6), K−1 ⊆ R−1. Then

by Theorem 3.1 (1) and (5), K = K−1 ⊆ R ∩R−1. So s(R) = R ∩R−1.

Example 4.1. Consider U and R in Example 3.1. By Theorem 4.1, we can obtain ar(R)

and s(R) which are given in Table 4 and Table 5, respectively.

Next, we discuss the properties of the anti-reflexive kernel operator ar and symmetric

kernel operator s.

Theorem 4.2. The anti-reflexive kernel operator ar of the SVNR has the following prop-
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Table 5: The symmetric kernel s(R) of R

s(R) x1 x2 x3 x4 x5

x1 (0.2,0.6,0.4) (0,0.5,0.7) (0,1,1) (0.3,0.9,1) (0,1,0)
x2 (0,0.5,0.7) (0.1,0.7,0) (1,1,1) (0,0.3,1) (0.5,0.6,1)
x3 (0,1,1) (1,1,1) (0,0,0) (0.2,0.8,0.1) (0,0.8,1)
x4 (0.3,0.9,1) (0,0.3,1) (0.2,0.8,0.1) (0.1,0.4,1) (0.8,0.9,1)
x5 (0,1,0) (0.5,0.6,1) (0,0.8,1) (0.8,0.9,1) (0.6,1,0)

erties:

(1) ar(∅N) = ∅N , ar((IdN)c) = (IdN)
c.

(2) ∀R ∈ SVNR(U), ar(R) ⊆ R.

(3) ∀R,S ∈ SVNR(U), ar(R ∪ S) = ar(R) ∪ ar(S), ar(R ∩Q) = ar(R) ∩ ar(S).

(4) ∀R,S ∈ SVNR(U), if R ⊆ S, then ar(R) ⊆ ar(S).

(5) ∀R ∈ SVNR(U), ar(ar(R)) = ar(R).

Proof. (1) By the anti-reflexivity of ∅N and (IdN)
c, obviously, ar(∅N) = ∅N and

ar((IdN)
c) = (IdN)

c.

(2) ∀R ∈ SVNR(U), by Theorems 4.1 (1) and 3.1 (5), ar(R) = R ∩ (IdN)
c ⊆ R.

(3) ∀R,S ∈ SVNR(U), by Theorem 4.1 (1),

ar(R ∪ S) = (R ∪ S) ∩ (IdN)
c = (R ∩ (IdN)

c) ∪ (S ∩ (IdN)
c) = ar(R) ∪ ar(S),

ar(R ∩ S) = (R ∩ S) ∩ (IdN)
c = (R ∩ (IdN)

c) ∩ (S ∩ (IdN)
c) = ar(R) ∩ ar(S).

(4) ∀R,S ∈ SVNR(U), if R ⊆ S, by (3) and Theorem 3.1 (4) and (9),

ar(S) = ar(R ∪ S) = ar(R) ∪ ar(S) ⊇ ar(R).

(5) ∀R ∈ SVNR(U), by Theorem 4.1 (1), ar(R) = R ∩ (IdN)
c. Hence

ar(ar(R)) = ar(R ∩ (IdN)
c) = (R ∩ (IdN)

c) ∩ (IdN)
c = R ∩ (IdN)

c = ar(R).

Theorem 4.3. The symmetric kernel operator s has the following properties:

(1) s(∅N) = ∅N , s(UN) = UN , s(IdN) = IdN .

(2) ∀R ∈ SVNR(U), s(R) ⊆ R.

(3) ∀R,S ∈ SVNR(U), s(R ∩ S) = s(R) ∩ s(S).

(4) ∀R,S ∈ SVNR(U), if R ⊆ S, then s(R) ⊆ s(S).

(5) ∀R ∈ SVNR(U), s(s(R)) = s(R).

Proof. (1) By the symmetry of ∅N , UN and IdN , we have

s(∅N) = ∅N , s(UN) = UN and s(IdN) = IdN .
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(2) ∀R ∈ SVNR(U), by Theorems 4.1 (2) and 3.1 (5), s(R) = R ∩R−1 ⊆ R.

(3) ∀R,S ∈ SVNR(U), by Theorems 4.1 (2) and 3.1 (10), we have

s(R ∩ S) = (R ∩ S) ∩ (R ∩ S)−1 = (R ∩ S) ∩ (R−1 ∩ S−1) = (R ∩R−1) ∩ (S ∩ S−1) =

s(R) ∩ s(S).

(4) ∀R,S ∈ SVNR(U), if R ⊆ S, by (3) and Theorem 3.1 (5) and (9),

s(R) = s(R ∩ S) = s(R) ∩ s(S) ⊆ s(S).

(5) ∀R ∈ SVNR(U), by Theorem 4.1 (2), s(R) = R ∩R−1. Hence

s(s(R)) = s(R∩R−1) = (R∩R−1)∩(R∩R−1)−1 = (R∩R−1)∩(R−1∩R) = R∩R−1 =

s(R).

According to Theorem 4.3 (1)-(3) and (5), the symmetric kernel operator s is an

interior operator in fuzzy topology [3].

5 Closures of SVNRs

In this section, we introduce the concepts of reflexive closure and symmetric closure

of a SVNR, and investigate their properties.

Definition 5.1. Let R be a SVNR in U . The minimal reflexive SVNR containing R is

called reflexive closure of R, denoted by r(R).

Definition 5.2. Let R be a SVNR in U . The minimal symmetric SVNR containing R is

called symmetric closure of R, denoted by s(R).

Theorem 5.1. Let R be a SVNR in U . Then

(1) r(R) = R ∪ IdN .

(2) s(R) = R ∪R−1.

Proof. (1) By Theorem 3.1 (4), R ∪ IdN ⊇ R and R ∪ IdN ⊇ IdN . Then ∀u ∈ U , we

have TR∪IdN (u, u) ≥ TIdN (u, u) = 1, IR∪IdN (u, u) ≤ IIdN (u, u) = 0 and FR∪IdN (u, u) ≤

FIdN (u, u) = 0, so R ∪ IdN is a reflexive SVNR.

If K is a reflexive SVNR in U and K ⊇ R. By the reflexivity of K, K ⊇ IdN . Thus

by Theorem 3.1 (7), we have K ⊇ R ∪ IdN . So r(R) = R ∪ IdN .

(2) By Theorem 3.1 (10), (R∪R−1)−1 = R−1 ∪ (R−1)−1 = R−1 ∪R = R∪R−1, which

implies that R ∪R−1 is a symmetric SVNR in U . By Theorem 3.1 (4), R ∪R−1 ⊇ R.

If K is a symmetric SVNR in U and K ⊇ R. By Theorem 3.1 (6), K−1 ⊇ R−1.
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Table 6: The reflexive closure r(R) of R

r(R) x1 x2 x3 x4 x5

x1 (1,0,0) (0,0.3,0.7) (0.9,0.2,0.4) (0.3,0.9,1) (1,0.2,0)
x2 (0.4,0.5,0.1) (1,0,0) (1,1,1) (1,0.3,0) (0.5,0.6,1)
x3 (0,1,1) (1,0.5,0) (1,0,0) (0.2,0.8,0.1) (1,0.8,1)
x4 (1,0,0) (0,0,1) (0.5,0.7,0.1) (1,0,0) (1,0.8,0.8)
x5 (0,1,0) (0.9,0,0) (0,0.1,0.7) (0.8,0.9,1) (1,0,0)

Table 7: The symmetric closure s(R) of R

s(R) x1 x2 x3 x4 x5

x1 (0.2,0.6,0.4) (0.4,0.3,0.1) (0.9,0.2,0.4) (1,0,0) (1,0.2,0)
x2 (0.4,0.3,0.1) (0.1,0.7,0) (1,0.5,0) (1,0,0) (0.9,0,0)
x3 (0.9,0.2,0.4) (1,0.5,0) (0,0,0) (0.5,0.7,0.1) (1,0.1,0.7)
x4 (1,0,0) (1,0,0) (0.5,0.7,0.1) (0.1,0.4,1) (1,0.8,0.8)
x5 (1,0.2,0) (0.9,0,0) (1,0.1,0.7) (1,0.8,0.8) (0.6,1,0)

According to Theorem 3.1 (1) and (4), K = K−1 ⊇ R ∪R−1.

Therefore s(R) = R ∪R−1.

Example 5.1. Consider U and R given in Example 3.1 again. By Theorem 5.1, we can

compute r(R) and s(R) which are given in Table 6 and Table 7, respectively.

Theorem 5.2. The reflexive closure operator r has the following properties:

(1) r(UN) = UN , r(IdN) = IdN .

(2) ∀R ∈ SVNR(U), R ⊆ r(R).

(3) ∀R,S ∈ SVNR(U), r(R ∪ S) = r(R) ∪ r(S), r(R ∩ S) = r(R) ∩ r(S).

(4) ∀R,S ∈ SVNR(U), if R ⊆ S, then r(R) ⊆ r(S).

(5) ∀R ∈ SVNR(U), r(r(R)) = r(R).

Proof. (1) By the reflexivity of UN and IdN , r(UN) = UN , r(IdN) = IdN .

(2) ∀R ∈ SVNR(U), by Theorems 5.1 (1) and 3.1 (4), r(R) = R ∪ IdN ⊇ R.

(3) ∀R,S ∈ SVNR(U), by Theorem 5.1 (1),

r(R ∪ S) = (R ∪ S) ∪ IdN = (R ∪ IdN) ∪ (S ∪ IdN) = r(R) ∪ r(S),

r(R ∩ S) = (R ∩ S) ∪ IdN = (R ∪ IdN) ∩ (S ∪ IdN) = r(R) ∩ r(S).

(4) ∀R,S ∈ SVNR(U), R ⊆ S, by (3) and Theorem 3.1 (4) and (9), we have

r(S) = r(R ∪ S) = r(R) ∪ r(S) ⊇ r(R).
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(5) ∀R ∈ SVNR(U), by Theorem 5.1 (1), r(R) = R ∪ IdN . It follows that

r(r(R)) = r(R ∪ IdN) = (R ∪ IdN) ∪ IdN = R ∪ IdN = r(R).

Theorem 5.3. The symmetric closure operator s has the following properties:

(1) s(∅N) = ∅N , s(UN) = UN , s(IdN) = IdN .

(2) ∀R ∈ SVNR(U), s(R) ⊇ R.

(3) ∀R,S ∈ SVNR(U), s(R ∪ S) = s(R) ∪ s(S).

(4) ∀R,S ∈ SVNR(U), if R ⊆ S, then s(R) ⊆ s(S).

(5) ∀R ∈ SVNR(U), s(s(R)) = s(R).

Proof. (1) By the symmetry of ∅N , UN and IdN , we have s(∅N) = ∅N , s(UN) = UN and

s(IdN) = IdN .

(2) ∀R ∈ SVNR(U), by Theorem 5.1 (2), s(R) = R ∪R−1 ⊇ R.

(3) ∀R,S ∈ SVNR(U), by Theorems 5.1 (2) and 3.1 (10), we have

s(R ∪ S) = (R ∪ S) ∪ (R ∪ S)−1 = (R ∪ S) ∪ (R−1 ∪ S−1) = (R ∪R−1) ∪ (S ∪ S−1) =

s(R) ∪ s(S).

(4) ∀R,S ∈ SVNR(U), if R ⊆ S, by (3) and Theorem 3.1 (4) and (9), s(S) =

s(R ∪ S) = s(R) ∪ s(S) ⊇ s(S).

(5) ∀R ∈ SVNR(U), by Theorem 5.1 (2), s(R) = R ∪R−1. Hence

s(s(R)) = s(R∪R−1) = (R∪R−1)∪(R∪R−1)−1 = (R∪R−1)∪(R−1∪R) = R∪R−1 =

s(R).

According to Theorem 5.3 (1)-(3) and (5), the symmetric closure operator s is a closure

operator in fuzzy topology [3].

Lemma 5.1. ∀R ∈ SVNR(U), we have

(1) (r(Rc))c = ar(R).

(2) r(ar(R)) = r(R).

(3) ar(r(R)) = ar(R).

Proof. (1) By Theorem 5.1 (1), r(Rc) = Rc ∪ IdN . By Theorems 3.1 (11) and 4.1 (1),

(r(Rc))c = (Rc ∪ IdN)
c = (Rc)c ∩ (IdN)

c = R ∩ (IdN)
c = ar(R).

(2) By Theorems 4.1 (1) and 5.1 (1), r(ar(R)) = r(R∩(IdN)c) = (R∩(IdN)c)∪IdN =

(R ∪ IdN) ∩ ((IdN)
c ∪ IdN) = (R ∪ IdN) ∩ UN = r(R).

(3) By Theorems 4.1 (1) and 5.1 (1), ar(r(R)) = ar(R∪ IdN) = (R∪ IdN)∩ (IdN)
c =

(R ∩ (IdN)
c) ∪ (IdN ∩ (IdN)

c) = (R ∩ (IdN)
c) ∪ ∅N = ar(R).
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Theorem 5.4. ∀R ∈ SVNR(U), at most six different SVNRs can be obtained by using

anti-reflexive kernel operator, reflexive closure operator and complement operator.

Proof. ∀R ∈ SVNR(U), by Lemma 5.1 (1), (r(Rc))c = ar(R). Thus, we can replace

anti-reflexive kernel operator with complement operator and reflexive closure operator.

(1) Take complement operator first, then reflexive closure operator on R. One can

obtain only the following five SVNRs:

Rc, r(Rc), (r(Rc))c, r((r(Rc))c), (r((r(Rc))c))c.

It is because that by Lemma 5.1 and Theorem 3.1 (3),

r((r((r(Rc))c))c) = r((r(ar(R)))c) = r((r(R))c) = r(ar(Rc)) = r(Rc),

which implies that the sixth is the same as the second. The results of the latter steps will

be repeated.

(2) Take reflexive closure operator first, then complement operator on R. By Lemma

5.1 (1) and (2), r(R) = r(ar(R)) = r((r(Rc))c), which implies that the first is the same

as the fourth in (1). Hence it will be repeated.

(3) Take reflexive closure operator successively or complement operator successively

on R. By Theorems 3.1 (3) and 5.2 (5), (Rc)c = R, r(r(R)) = r(R). This is repeated

emergence. The proof is complete.

To illustrate the idea developed in Theorem 5.4, we give the following example.

Example 5.2. Let U = {u1, u2}. A SVNR R in U is given as follows.

R = {⟨(u1, u1), 0.3, 0.2, 0.9⟩, ⟨(u1, u2), 1, 0, 0.2⟩, ⟨(u2, u1), 0, 0.4, 0.3⟩, ⟨(u2, u2), 0.5, 0.3, 1⟩}.

By using anti-reflexive kernel operator, reflexive closure operator and complement

operator, the following six different SVNRs can be obtained:

Rc = {⟨(u1, u1), 0.9, 0.8, 0.3⟩, ⟨(u1, u2), 0.2, 1, 1⟩, ⟨(u2, u1), 0.3, 0.6, 0⟩, ⟨(u2, u2), 1, 0.7, 0.5⟩},

r(Rc) = {⟨(u1, u1), 1, 0, 0⟩, ⟨(u1, u2), 0.2, 1, 1⟩, ⟨(u2, u1), 0.3, 0.6, 0⟩, ⟨(u2, u2), 1, 0, 0⟩},

(r(Rc))c = {⟨(u1, u1), 0, 1, 1⟩, ⟨(u1, u2), 1, 0, 0.2⟩, ⟨(u2, u1), 0, 0.4, 0.3⟩, ⟨(u2, u2), 0, 1, 1⟩},

r((r(Rc))c) = {⟨(u1, u1), 1, 0, 0⟩, ⟨(u1, u2), 1, 0, 0.2⟩, ⟨(u2, u1), 0, 0.4, 0.3⟩, ⟨(u2, u2), 1, 0, 0⟩},

(r((r(Rc))c))c = {⟨(u1, u1), 0, 1, 1⟩, ⟨(u1, u2), 0.2, 1, 1⟩, ⟨(u2, u1), 0.3, 0.6, 0⟩, ⟨(u2, u2), 0, 1, 1⟩},

R = (Rc)c = {⟨(u1, u1), 0.3, 0.2, 0.9⟩, ⟨(u1, u2), 1, 0, 0.2⟩, ⟨(u2, u1), 0, 0.4, 0.3⟩, ⟨(u2, u2), 0.5, 0.3, 1⟩}.

Lemma 5.2. ∀R ∈ SVNR(U), we have

(1) (s(Rc))c = s(R).

(2) s(s(R)) = s(R).
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(3) s(s(R)) = s(R).

Proof. (1) By Theorem 5.1 (2), s(Rc) = Rc ∪ (Rc)−1. By Theorems 3.1 and 4.1 (2),

(s(Rc))c = (Rc ∪ (Rc)−1)c = (Rc)c ∩ ((R−1)c)c = R ∩R−1 = s(R).

(2) and (3) The proofs are straightforward and follow from the definitions of symmetric

kernel and symmetric closure.

Theorem 5.5. ∀R ∈ SVNR(U), at most six different SVNRs can be obtained by using

symmetric kernel operator, symmetric closure operator and complement operator.

Proof. ∀R ∈ U , by Lemma 5.2 (1), (s(Rc))c = s(R). Then we can replace symmetric

kernel operator with complement operator and symmetric closure operator.

(1) Take complement operator first, then symmetric closure operator on R. One can

only obtain the following three SVNRs:

Rc, s(Rc), (s(Rc))c.

It is because that by Theorem 3.1 (3) and Lemma 5.2, we have

s((s(Rc))c) = s(s(R)) = s(R) = (s(Rc))c, i.e. the fourth is the same as the third.

(s((s(Rc))c))c = (s(R))c = s(Rc), i.e. the fifth is the same as the second. The results of

the latter steps will be repeated.

(2) Take symmetric closure operator first, then complement operator on R. Only the

following two SVNRs can be constructed:

s(R), (s(R))c.

It is because that by Theorem 3.1 (3) and Lemma 5.2, we have

s((s(R))c) = s(s(Rc)) = s(Rc) = (s(R))c, which means that the third is the same as

the second.

(s((s(R))c))c = ((s(R))c)c = s(R), which means that the fourth is the same as the

first. It will be repeated.

(3) Take symmetric closure operator successively or complement operator successively

on R. By Theorems 3.1 (3) and 5.3 (5), (Rc)c = R and s(s(R)) = s(R). This is repeated

emergence. The proof is complete.

The following example is given to illustrate the idea developed in Theorem 5.5.

Example 5.3. Consider U and R in Example 5.2. By using symmetric kernel operator,

symmetric closure operator and complement operator, the following six different SVNRs

can be obtained:
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Rc = {⟨(u1, u1), 0.9, 0.8, 0.3⟩, ⟨(u1, u2), 0.2, 1, 1⟩, ⟨(u2, u1), 0.3, 0.6, 0⟩, ⟨(u2, u2), 1, 0.7, 0.5⟩},

s(Rc) = {⟨(u1, u1), 0.9, 0.8, 0.3⟩, ⟨(u1, u2), 0.3, 0.6, 0⟩, ⟨(u2, u1), 0.3, 0.6, 0⟩, ⟨(u2, u2), 1, 0.7, 0.5⟩},

(s(Rc))c = {⟨(u1, u1), 0.3, 0.2, 0.9⟩, ⟨(u1, u2), 0, 0.4, 0.3⟩, ⟨(u2, u1), 0, 0.4, 0.3⟩, ⟨(u2, u2), 0.5, 0.3, 1⟩},

s(R) = {⟨(u1, u1), 0.3, 0.2, 0.9⟩, ⟨(u1, u2), 1, 0, 0.2⟩, ⟨(u2, u1), 1, 0, 0.2⟩, ⟨(u2, u2), 0.5, 0.3, 1⟩},

(s(R))c = {⟨(u1, u1), 0.9, 0.8, 0.3⟩, ⟨(u1, u2), 0.2, 1, 1⟩, ⟨(u2, u1), 0.2, 1, 1⟩, ⟨(u2, u2), 1, 0.7, 0.5⟩},

R = (Rc)c = {⟨(u1, u1), 0.3, 0.2, 0.9⟩, ⟨(u1, u2), 1, 0, 0.2⟩, ⟨(u2, u1), 0, 0.4, 0.3⟩, ⟨(u2, u2), 0.5, 0.3, 1⟩}.

6 SVNR mappings

In this section, we introduce the notions of single valued neutrosophic relation map-

pings and inverse single valued neutrosophic relation mappings, then study some related

properties.

Definition 6.1. Let U, V be two spaces of points (objects). f is a mapping from U to V .

(1) f→ is called a SVNR mapping from SVNR(U) to SVNR(V ) induced by f . Con-

cretely, ∀R ∈ SVNR(U), f→(R) = {⟨(v1, v2), Tf→(R)(v1, v2), If→(R)(v1, v2), Ff→(R)(v1, v2)⟩ |

(v1, v2) ∈ V × V }, where Tf→(R)(v1, v2) = ∨{TR(u1, u2) | ui ∈ U, f(ui) = vi, i =

1, 2}, If→(R)(v1, v2) = ∧{IR(u1, u2) | ui ∈ U, f(ui) = vi, i = 1, 2}, Ff→(R)(v1, v2) =

∧{FR(u1, u2) | ui ∈ U, f(ui) = vi, i = 1, 2}.

(2) f← is called an inverse SVNR mapping from SVNR(V ) to SVNR(U) induced by f .

Concretely, ∀Q ∈ SVNR(V ), f←(Q) = {⟨(u1, u2), Tf←(Q)(u1, u2), If←(Q)(u1, u2), Ff←(Q)(u1, u2)⟩ |

(u1, u2) ∈ U×U}, where Tf←(Q)(u1, u2) = TQ(f(u1), f(u2)), If←(Q)(u1, u2) = IQ(f(u1), f(u2)),

Ff←(Q)(u1, u2) = FQ(f(u1), f(u2)).

Next, we discuss some properties of SVNR mappings and inverse SVNR mappings.

Theorem 6.1. Let f be a mapping from U to V , ∀R ∈ SVNR(U), ∀T ∈ SVNR(V ).

Then

(1) f←(f→(R)) ⊇ R. If f is one-one, then f←(f→(R)) = R.

(2) f→(f←(Q)) ⊆ Q. If f is surjective, then f→(f←(Q)) = Q.

Proof. (1) ∀u1, u2 ∈ U , by Definition 6.1, we have

Tf←(f→(R))(u1, u2) = Tf→(R)(f(u1), f(u2))

= ∨{TR(u
′
1, u
′
2) | u′i ∈ U, f(u′i) = f(ui), i = 1, 2} ≥ TR(u1, u2),

If←(f→(R))(u1, u2) = If→(R)(f(u1), f(u2))

= ∧{IR(u′1, u′2) | u′i ∈ U, f(u′i) = f(ui), i = 1, 2} ≤ IR(u1, u2),
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Ff←(f→(R))(u1, u2) = Ff→(R)(f(u1), f(u2))

= ∧{FR(u
′
1, u
′
2) | u′i ∈ U, f(u′i) = f(ui), i = 1, 2} ≤ FR(u1, u2).

So f←(f→(R)) ⊇ R. By the proof procedure, it is easy to see that if f is one-one,

then f←(f→(R)) = R.

(2) ∀v1, v2 ∈ V ,

(i) If v1 × v2 ∈ f(U)× f(U), we have

Tf→(f←(Q))(v1, v2) = ∨{Tf←(Q)(u1, u2) | ui ∈ U, f(ui) = vi, i = 1, 2}

= ∨{TQ(f(u1), f(u2)) | ui ∈ U, f(ui) = vi, i = 1, 2}

= TQ(v1, v2),

If→(f←(Q))(v1, v2) = ∧{If←(Q)(u1, u2) | ui ∈ U, f(ui) = vi, i = 1, 2}

= ∧{IQ(f(u1), f(u2)) | ui ∈ U, f(ui) = vi, i = 1, 2}

= IQ(v1, v2),

Ff→(f←(Q))(v1, v2) = ∧{Ff←(Q)(u1, u2) | ui ∈ U, f(ui) = vi, i = 1, 2}

= ∧{FQ(f(u1), f(u2)) | ui ∈ U, f(ui) = vi, i = 1, 2}

= FQ(v1, v2).

(ii) If v1 × v2 ̸∈ f(U)× f(U), we have

Tf→(f←(Q))(v1, v2) = ∨{Tf←(Q)(u1, u2) | ui ∈ U, f(ui) = vi, i = 1, 2}

= ∨∅ = 0 ≤ TQ(v1, v2),

If→(f←(Q))(v1, v2) = ∧{If←(Q)(u1, u2) | ui ∈ U, f(ui) = vi, i = 1, 2}

= ∧∅ = 1 ≥ IQ(v1, v2),

Ff→(f←(Q))(v1, v2) = ∧{Ff←(Q)(u1, u2) | ui ∈ U, f(ui) = vi, i = 1, 2}

= ∧∅ = 1 ≥ FQ(v1, v2).

So f→(f←(Q)) ⊆ Q. By the proof procedure, it is easy to see that if f is surjective,

then f→(f←(Q)) = Q.

Theorem 6.2. Let f be a mapping from U to V , ∀R ∈ SVNR(U).

(1) If f is surjective and R is reflexive, then f→(R) is a reflexive SVNR in V .

(2) If f is one-one and R is anti-reflexive, then f→(R) is an anti-reflexive SVNR in V .

(3) If R is symmetric, then f→(R) is a symmetric SVNR in V .

Proof. (1) If f is surjective, then ∀v ∈ V there exists u ∈ U such that f(u) = v. By

the reflexivity of R, we have TR(u, u) = 1 and IR(u, u) = FR(u, u) = 0. Hence ∀v ∈ V ,

we have
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Tf→(R)(v, v) = ∨{TR(u1, u2) | ui ∈ U, f(ui) = v, i = 1, 2} ≥ TR(u, u) = 1,

If→(R)(v, v) = ∧{IR(u1, u2) | ui ∈ U, f(ui) = v, i = 1, 2} ≤ IR(u, u) = 0,

Ff→(R)(v, v) = ∧{FR(u1, u2) | ui ∈ U, f(ui) = v, i = 1, 2} ≤ FR(u, u) = 0.

Thus f→(R) is a reflexive SVNR in V .

(2) If R is anti-reflexive, then ∀u ∈ U , TR(u, u) = 0 and IR(u, u) = FR(u, u) = 1. Thus

∀v ∈ V , (i) If v ̸∈ f(U), then Tf→(R)(v, v) = 0 and If→(R)(v, v) = Ff→(R)(v, v) = 1. (ii)

If v ∈ f(U), then there exists unique u ∈ U such that f(u) = v since f is one-one. Hence

∀v ∈ V , we have

Tf→(R)(v, v) = ∨{TR(u1, u2) | ui ∈ U, f(ui) = v, i = 1, 2} = TR(u, u) = 0,

If→(R)(v, v) = ∧{IR(u1, u2) | ui ∈ U, f(ui) = v, i = 1, 2} = IR(u, u) = 1,

Ff→(R)(v, v) = ∧{FR(u1, u2) | ui ∈ U, f(ui) = v, i = 1, 2} = FR(u, u) = 1.

Therefore f→(R) is an anti-reflexive SVNR in V .

(3) If R is symmetric, then R = R−1. Hence ∀v1, v2 ∈ V ,

Tf→(R)(v1, v2) = ∨{TR(u1, u2) | ui ∈ U, f(ui) = vi, i = 1, 2}

= ∨{TR−1(u1, u2) | ui ∈ U, f(ui) = vi, i = 1, 2}

= ∨{TR(u2, u1) | ui ∈ U, f(ui) = vi, i = 1, 2}

= Tf→(R)(v2, v1),

If→(R)(v1, v2) = ∧{IR(u1, u2) | ui ∈ U, f(ui) = vi, i = 1, 2}

= ∧{IR−1(u1, u2) | ui ∈ U, f(ui) = vi, i = 1, 2}

= ∧{IR(u2, u1) | ui ∈ U, f(ui) = vi, i = 1, 2}

= If→(R)(v2, v1),

Ff→(R)(v1, v2) = ∧{FR(u1, u2) | ui ∈ U, f(ui) = vi, i = 1, 2}

= ∧{FR−1(u1, u2) | ui ∈ U, f(ui) = vi, i = 1, 2}

= ∧{FR(u2, u1) | ui ∈ U, f(ui) = vi, i = 1, 2}

= Ff→(R)(v2, v1).

So f→(R) is a symmetric SVNR in V .

Theorem 6.3. Let f be a mapping from U to V , ∀Q ∈ SVNR(V ).

(1) If Q is reflexive, then f←(Q) is a reflexive SVNR in U .

(2) If Q is anti-reflexive, then f←(Q) is an anti-reflexive SVNR in U .

(3) If Q is symmetric, then f←(Q) is a symmetric SVNR in U .

Proof. (1) If Q is reflexive, then ∀v ∈ V , TQ(v, v) = 1 and IQ(v, v) = FQ(v, v) = 0.
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Then ∀u ∈ U , Tf←(Q)(u, u) = TQ(f(u), f(u)) = 1, If←(Q)(u, u) = IQ(f(u), f(u)) = 0

and Ff←(Q)(u, u) = FQ(f(u), f(u)) = 0. So f←(T ) is a reflexive SVNR in U .

(2) The proof is similar to (1).

(3) If Q is symmetric, then Q = Q−1. Thus ∀u1, u2 ∈ U ,

Tf←(Q)(u1, u2) = TQ(f(u1), f(u2)) = TQ−1(f(u1), f(u2)) = TQ(f(u2), f(u1)) = Tf←(Q)(u2, u1),

If←(Q)(u1, u2) = IQ(f(u1), f(u2)) = IQ−1(f(u1), f(u2)) = IQ(f(u2), f(u1)) = If←(Q)(u2, u1),

Ff←(Q)(u1, u2) = FQ(f(u1), f(u2)) = FQ−1(f(u1), f(u2)) = FQ(f(u2), f(u1)) = Ff←(Q)(u2, u1).

So f←(Q) is a symmetric SVNR in U .

Lemma 6.1. Let f be a mapping from U to V .

(1) If R,S ∈ SVNR(U) and R ⊆ S, then f→(R) ⊆ f→(S).

(2) If Q,P ∈ SVNR(V ) and Q ⊆ P , then f←(Q) ⊆ f←(P ).

Proof. The proof is straightforward from Definition 6.1.

Next, we give two main results of this section.

Theorem 6.4. Let f be a mapping from U to V , ∀R ∈ SVNR(U). Then

(1) If f is surjective, then f→(r(R)) = r(f→(R)).

(2) f→(s(R)) = s(f→(R)).

(3) If f is bijective, then f→(s(R)) = s(f→(R)).

(4) If f is bijective, then f→(ar(R)) = ar(f→(R)).

Proof. (1) By Definition 5.1 and Theorem 6.2, f→(r(R)) is a reflexive SVNR in V .

By Theorem 5.1, r(R) = R ∪ IdN ⊇ R. According to Lemma 6.1, f→(r(R)) ⊇ f→(R).

If H is a reflexive SVNR in V and f→(R) ⊆ H. By Lemma 6.1 and Theorem 6.1,

R ⊆ f←(f→(R)) ⊆ f←(H). By Theorem 6.3, f←(H) is a reflexive SVNR in U . Then

r(R) ⊆ f←(H). According to Lemma 6.1 and Theorem 6.1, f→(r(R)) ⊆ f→(f←(H)) ⊆

H. Therefore f→(r(R)) = r(f→(R)).

(2) The proof is similar to (1).

(3) By Definition 4.1 and Theorem 6.2, f→(s(R)) is a symmetric SVNR in V . By

Theorem 4.1, s(R) = R ∩ R−1 ⊆ R. According to Lemma 6.1, f→(s(R)) ⊆ f→(R).

If H is a symmetric SVNR in V and f→(R) ⊇ H. By Theorem 6.1 and Lemma 6.1,

R = f←(f→(R)) ⊇ f←(H). On the other hand, by Theorem 6.3, f←(H) is a symmetric

SVNR in U . Then s(R) ⊇ f←(H). According to Theorem 6.1 and Lemma 6.1, then

f→(s(R)) ⊇ f→(f←(H)) = H. So f→(s(R)) = s(f→(R)).
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(4) The proof is similar to (3).

Theorem 6.5. Let f be a mapping from U to V , ∀Q ∈ SVNR(V ).

(1) If f is bijective, then f←(r(Q)) = r(f←(Q)).

(2) If f is bijective, then f←(s(Q)) = s(f←(Q)).

(3) If f is one-one, then f←(ar(Q)) = ar(f←(Q)).

(4) f←(s(Q)) = s(f←(Q)).

Proof. (1) By Definition 5.1 and Theorem 6.3, f←(r(Q)) is a reflexive SVNR on U .

By Theorem 5.1, r(Q) = Q ∪ IdN ⊇ Q. According to Lemma 6.1, f←(r(Q)) ⊇ f←(Q).

If K is a reflexive SVNR in U and f←(Q) ⊆ K. By Theorem 6.1 and Lemma 6.1,

Q = f→(f←(Q)) ⊆ f→(K). By Theorem 6.2, f→(K) is a reflexive SVNR in V . Then

r(Q) ⊆ f→(K). According to Theorem 6.1 and Lemma 6.1, f←(r(Q)) ⊆ f←(f→(K)) =

K. So f←(r(Q)) = r(f←(Q)).

(2) The proof is similar to (1).

(3) By Definition 4.1 and Theorem 6.3, f←(ar(Q)) is an anti-reflexive SVNR in U .

By Theorem 4.1, ar(Q) = Q ∩ Qc ⊆ Q. According to Lemma 6.1, f←(ar(Q)) ⊆ f←(Q).

If K is an anti-reflexive SVNR in U and f←(Q) ⊇ K. By Theorem 6.1 and Lemma

6.1, K ⊇ f→(f←(Q)) ⊇ f→(K). By Theorem 6.2, f→(K) is an anti-reflexive SVNR in

V . Then ar(Q) ⊇ f→(K). According to Lemma 6.1 and Theorem 6.1, f←(ar(Q)) ⊇

f←(f→(K)) ⊇ K. So f←(ar(Q)) = ar(f←(Q)).

(4) The proof is similar to (3).

7 Conclusion

In this paper, the theoretical point of view of SVNRs is investigated. We systematically

study SVNRs, kernels and closures of a SVNR, and SVNR mappings. Some interesting

properties are discussed. Based on these results, one can further probe the applications

in real life situations of SVNRs.
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