PCR5 and Neutrosophic Probability in Target Identification

F.Smarandache ${ }^{1}$, N.Abbas ${ }^{2}$, Y.Chibani ${ }^{2}$, B.Hadjadji ${ }^{2}$ and Z.A.Omar ${ }^{2}$
${ }^{1}$ Mathematics \& Science Department, University of New Mexico, Gallup, NM, USA.
e-mail: smarand @unm.edu
${ }^{2}$ University of Science and Technology, Algiers, Algeria. e-mails: nabbas @usthb.dz, ychibani@usthb.dz, bhadjadji@usthb.dz, azzouz-omar.zayen. 1 @ens.etsmtl.ca

Received 16 July 2016; accepted 20 July 2016

Abstract

In this paper we use PCR5 in order to fusion the information of two sources providing subjective probabilities of an event A to occur in the following form: chance that A occurs, indeterminate chance of occurrence of A, chance that A does not occur.

Keywords: Target Identification, PCR5, neutrosophic measure, neutrosophic probability, normalized neutrosophic probability.

1. Introduction

Neutrosophic Probability [1] was defined in 1995 and published in 1998, together with neutrosophic set, neutrosophic logic, and neutrosophic probability.

The words "neutrosophy" and "neutrosophic" were introduced by F. Smarandache in his 1998 book. Etymologically, "neutrosophy" (noun) [French neutre < Latin neuter, neutral, and Greek sophia, skill/wisdom] means knowledge of neutral thought. While "neutrosophic" (adjective), means having the nature of, or having the characteristic of Neutrosophy.

Neutrosophy is a new branch of philosophy which studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra.

Zadeh introduced the degree of membership/truth (t) in 1965 and defined the fuzzy set.
Atanassov introduced the degree of nonmembership/ falsehood (f) in 1986 and defined the intuitionistic fuzzy set.

Smarandache introduced the degree of indeterminacy/neutrality (i) as independent component in 1995 (published in 1998) and defined the neutrosophic set. He has coined the words "neutrosophy" and "neutrosophic". In 2013 he refined/split the neutrosophic set to n components: $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots \mathrm{t}_{\mathrm{j}} ; \mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}} ; \mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{1}$, with $\mathrm{j}+\mathrm{k}+\mathrm{l}=\mathrm{n}>3$. And, as particular cases of refined neutrosophic set, he split the fuzzy set truth into t_{1}, t_{2}, \ldots; and the intuitionistic fuzzy set into t_{1}, t_{2}, \ldots and f_{1}, f_{2}, \ldots.

See: http://fs.gallup.unm.edu/neutrosophy.htm.
F.Smarandache, N.Abbas, Y.Chibani, B.Hadjadji and Z.A.Omar

For single valued neutrosophic logic, the sum of the components is:

- $0 \leq \mathrm{t}+\mathrm{i}+\mathrm{f} \leq 3$ when all three components are independent;
- $0 \leq \mathrm{t}+\mathrm{i}+\mathrm{f} \leq 2$ when two components are dependent, while the third one is independent from them;
- $0 \leq \mathrm{t}+\mathrm{i}+\mathrm{f} \leq 1$ when all three components are dependent.

When three or two of the components T, I, F are independent, one leaves room for incomplete information (sum < 1), paraconsistent and contradictory information (sum > 1), or complete information (sum = 1).
If all three components T, I, F are dependent, then similarly one leaves room for incomplete information (sum < 1), or complete information (sum = 1).

2. Definition of neutrosophic measure

A neutrosophic space is a set which has some indeterminacy with respect to its elements.
Let X be a neutrosophic space, and Σ a σ-neutrosophic algebra over X. A neutrosophic measure v is defined by for neutrosophic set $A \in \Sigma$ by

$$
\begin{align*}
& v: X \rightarrow R^{3}, \\
& v(A)=(m(A), m(\text { neut } A), m(\text { antiA })), \tag{1}
\end{align*}
$$

with antiA = the opposite of A , and neutA $=$ the neutral (indeterminacy), neither A nor anti A (as defined above); for any $A \subseteq X$ and $A \in \Sigma$,
$m(A)$ means measure of the determinate part of A;
m (neutA) means measure of indeterminate part of A;
and $m($ antiA $)$ means measure of the determinate part of antiA;
where v is a function that satisfies the following two properties:
a) Null empty set: $v(\Phi)=(0,0,0)$.
b) Countable additivity (or σ-additivity): For all countable collections $\left\{A_{n}\right\}_{n \in L}$ of disjoint neutrosophic sets in Σ, one has:

$$
\begin{equation*}
v\left(\bigcup_{n \in L} A_{n}\right)=\left(\sum_{n \in L} m\left(A_{n}\right), \sum_{n \in L} m\left(n e u t A_{n}\right), \sum_{n \in L} m\left(\operatorname{antiA}_{n}\right)-(n-1) m(X)\right) \tag{2}
\end{equation*}
$$

where X is the whole neutrosophic space, and

$$
\begin{equation*}
\sum_{n \in L} m\left(a n t i A_{n}\right)-(n-1) m(X)=m(X)-\sum_{n \in L} m\left(A_{n}\right)=m\left(\cap_{n \in L} a_{n t i A_{n}}\right) . \tag{3}
\end{equation*}
$$

A neutrosophic measure space is a triplet (X, Σ, v).

3. Normalized neutrosophic measure

A neutrosophic measure is called normalized if

$$
\begin{equation*}
v(X)=(m(X), m(\text { neut } X), m(\operatorname{anti} X))=\left(x_{1}, x_{2}, x_{3}\right), \tag{4}
\end{equation*}
$$

with $x_{1}+x_{2}+x_{3}=1$, and $x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0$, where, of course, X is the whole neutrosophic measure space.

PCR5 and Neutrosophic Probability in Target Identification

As a particular case of neutrosophic measure v is the neutrosophic probability measure, i.e. a neutrosophic measure that measures probable/possible propositions

$$
0 \leq v(X) \leq 3,
$$

where X is the whole neutrosophic probability sample space.
For single valued neutrosophic logic, the sum of the components is:

- $0 \leq x_{1}+x_{2}+x_{3} \leq 3$ when all three components are independent;
- $0 \leq x_{1}+x_{2}+x_{3} \leq 2$ when two components are dependent, while the third one is independent from them;
- $0 \leq \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} \leq 1$ when all three components are dependent.

When three or two of the components $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ are independent, one leaves room for incomplete information (sum < 1), paraconsistent and contradictory information (sum > 1), or complete information (sum =1).

If all three components $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ are dependent, then similarly one leaves room for incomplete information (sum <1), or complete information (sum =1).

4. Normalized probability

We consider the case when the sum of the components $m(A)+m(n e u t A)+m(a n t i A)=1$.
We may denote the normalized neutrosophic probability of an event A as $N P(\mathcal{A})=$ (t, i, f), where t is the chance that \mathcal{A} occurs, i is indeterminate chance of occurrence of \mathcal{A}, and f is the chance that \mathcal{A} does not occur.

5. The PCR5 formula

Let the frame of discernment $\Theta=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\}, n \geq 2$. Let $G=(\Theta, \cup, \cap, C)$ be the superpower set, which is Θ closed under union, intersection, and respectively complement.

Let's consider two masses provided by 2 sources:

$$
\mathrm{m}_{1}, \mathrm{~m}_{2}: \mathrm{G} \rightarrow[0,1] .
$$

The conjunctive rule is defined as

$$
\begin{equation*}
m_{12}(X)=\sum_{X_{1}, X_{2} \in G} m_{1}\left(X_{1}\right) m_{2}\left(X_{2}\right) . \tag{5}
\end{equation*}
$$

Then the Proportional Conflict Redistribution Rule (PCR) \#5 formula for 2 sources of information is defined as follows:

$$
\begin{equation*}
\forall X \in G \backslash\{\phi\}, m_{P C R S}(X)=m_{12}(X)+\sum_{Y \in G \backslash X\}}\left[\frac{m_{1}(X)^{2} m_{2}(Y)}{m_{1}(X)+m_{2}(Y)}+\frac{m_{2}(X)^{2} m_{1}(Y)}{m_{1}(X)+m_{2}(Y)}\right] \tag{6}
\end{equation*}
$$

where all denominators are different from zero.
If a denominator is zero, that fraction is discarded.

6. Application in information fusion

Suppose an airplane A is detected by the radar. What is the chance that A is friendly, neutrally, or enemy?

Let's have two sources that provide the following information:

$$
N P_{1}^{(A)}\left(t_{1}, i_{1}, f_{1}\right) \text {, and } N P_{2}^{(A)}\left(t_{2}, i_{2}, f_{2}\right) .
$$

Then:

$$
\begin{equation*}
\left[N P_{1} \oplus N P_{2}\right](t)=t_{1} t_{2}+\left(\frac{t_{1}^{2} i_{2}}{t_{1}+i_{2}}+\frac{t_{2}^{2} i_{1}}{t_{2}+i_{1}}\right)+\left(\frac{t_{1}^{2} f_{2}}{t_{1}+f_{2}}+\frac{t_{2}^{2} f_{1}}{t_{2}+f_{1}}\right) \tag{7}
\end{equation*}
$$

Because: $t_{1} i_{2}$ is redistributed back to the truth (t) and indeterminacy proportionally with respect to t_{1} and respectively i_{2} :

$$
\begin{equation*}
\frac{x_{1}}{t_{1}}=\frac{y_{1}}{i_{2}}=\frac{t_{1} i_{2}}{t_{1}+i_{2}}, \tag{8}
\end{equation*}
$$

whence

$$
\begin{equation*}
x_{1}=\frac{t_{1}^{2} i_{2}}{t_{1}+i_{2}}, y_{1}=\frac{t_{1} i_{2}^{2}}{t_{1}+i_{2}} . \tag{9}
\end{equation*}
$$

Similarly, $t_{2} i_{1}$ is redistributed back to t and i proportionally with respect to t_{2} and respectively i_{1} :

$$
\begin{equation*}
\frac{x_{2}}{t_{2}}=\frac{y_{2}}{i_{1}}=\frac{t_{2} i_{1}}{t_{2}+i_{1}}, \tag{10}
\end{equation*}
$$

whence

$$
\begin{equation*}
x_{2}=\frac{t_{2}^{2} i_{1}}{t_{2}+i_{1}}, y_{2}=\frac{t_{2} i_{1}^{2}}{t_{2}+i_{1}} . \tag{11}
\end{equation*}
$$

Similarly, $t_{1} f_{2}$ is redistributed back to t and f (falsehood) proportionally with respect to t_{1} and respectively f_{2} :

$$
\begin{equation*}
\frac{x_{3}}{t_{1}}=\frac{z_{1}}{f_{2}}=\frac{t_{1} f_{2}}{t_{1}+f_{2}}, \tag{12}
\end{equation*}
$$

whence

$$
\begin{equation*}
x_{3}=\frac{t_{1}^{2} f_{2}}{t_{1}+f_{2}}, z_{1}=\frac{t_{1} f_{2}^{2}}{t_{1}+f_{2}} . \tag{13}
\end{equation*}
$$

Again, similarly $t_{2} f_{1}$ is redistributed back to t and f proportionally with respect to t_{2} and respectively f_{1} :

$$
\begin{equation*}
\frac{x_{4}}{t_{2}}=\frac{z_{2}}{f_{1}}=\frac{t_{2} f_{1}}{t_{2}+f_{1}}, \tag{14}
\end{equation*}
$$

whence

$$
\begin{equation*}
x_{4}=\frac{t_{2}^{2} f_{1}}{t_{2}+f_{1}}, z_{2}=\frac{t_{2} f_{1}^{2}}{t_{2}+f_{1}} . \tag{15}
\end{equation*}
$$

In the same way, $i_{1} f_{2}$ is redistributed back to i and f proportionally with respect to i_{1} and respectively f_{2} :

$$
\begin{equation*}
\frac{y_{3}}{i_{1}}=\frac{z_{3}}{f_{2}}=\frac{i_{1} f_{2}}{i_{1}+f_{2}}, \tag{16}
\end{equation*}
$$

whence

$$
\begin{equation*}
y_{3}=\frac{i_{1}^{2} f_{2}}{i_{1}+f_{2}}, z_{3}=\frac{i_{1} f_{2}^{2}}{i_{1}+f_{2}} . \tag{17}
\end{equation*}
$$

While $i_{2} f_{1}$ is redistributed back to i and t proportionally with respect to i_{2} and respectively f_{1} :

$$
\begin{equation*}
\frac{y_{4}}{i_{2}}=\frac{z_{4}}{f_{1}}=\frac{i_{2} f_{1}}{i_{2}+f_{1}}, \tag{18}
\end{equation*}
$$

whence

$$
\begin{equation*}
y_{4}=\frac{i_{2}^{2} f_{1}}{i_{2}+f_{1}}, z_{4}=\frac{i_{2} f_{1}^{2}}{i_{2}+f_{1}} . \tag{19}
\end{equation*}
$$

Then

PCR5 and Neutrosophic Probability in Target Identification

$$
\begin{equation*}
\left[N P_{1} \oplus N P_{2}\right](i)=i_{1} i_{2}+\left(\frac{i_{1}^{2} t_{2}}{i_{11}+t_{2}}+\frac{i_{2}^{2} t_{1}}{i_{2}+t_{1}}\right)+\left(\frac{i_{1}^{2} f_{2}}{i_{1}+f_{2}}+\frac{i_{2}^{2} f_{1}}{i_{2}+f_{1}}\right) \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[N P_{1} \oplus N P_{2}\right](f)=f_{1} f_{2}+\left(\frac{f_{1}^{2} t_{2}}{f_{1}+t_{2}}+\frac{f_{2}^{2} t_{1}}{f_{2}+t_{1}}\right)+\left(\frac{f_{1}^{2} i_{2}}{f_{1}+i_{2}}+\frac{f_{2}^{2} i_{1}}{f_{2}+i_{1}}\right) \tag{21}
\end{equation*}
$$

7. Example

Let's compute: $\quad(0.6,0.1,0.3) \wedge_{N}(0.2,0.3,0.5)$.

$$
\begin{aligned}
& t_{1}=0.6, i_{1}=0.1, f_{1}=0.3, \text { and } \\
& t_{2}=0.2, i_{2}=0.3, f_{2}=0.5
\end{aligned}
$$

are replaced into the three previous neutrosophic logic formulas:

- (using PCR5 rule)

$$
\begin{aligned}
& {\left[N P_{1} \oplus n m_{2}\right](t)=0.6(0.2)+\left(\frac{0.6^{2}(0.3)}{0.6+0.3}+\frac{0.2^{2}(0.1)}{0.2+0.1}\right)+\left(\frac{0.6^{2}(0.5)}{0.6+0.5}+\frac{0.2^{2}(0.3)}{0.2+0.3}\right) \simeq 0.44097 .} \\
& {\left[N P_{1} \oplus N P_{2}\right](i)=0.1(0.3)+\left(\frac{0.1^{2}(0.2)}{0.1+0.2}+\frac{0.3^{2}(0.6)}{0.3+0.6}\right)+\left(\frac{0.1^{2}(0.5)}{0.1+0.5}+\frac{0.3^{2}(0.3)}{0.3+0.3}\right) \simeq 0.15000 .} \\
& {\left[N P_{1} \oplus N P_{2}\right](f)=0.3(0.5)+\left(\frac{0.3^{2}(0.2)}{0.3+0.2}+\frac{0.5^{2}(0.6)}{0.5+0.6}\right)+\left(\frac{0.3^{2}(0.3)}{0.3+0.3}+\frac{0.5^{2}(0.1)}{0.5+0.1}\right) \simeq 0.40903 .}
\end{aligned}
$$

- (using Dempster's rule)

Conj. rule:

0.12	0.03	0.15
Dempster's rule:		
0.40	0.10	0.50

This is actually a PCR5 formula for a frame of discernment $\Omega=\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}$ whose all intersections are empty.

We can design a PCR6 formula too for the same frame.
Another method will be to use the neutrosophic N - norm, which is a generalization of fuzzy T - norm.

If we have two neutrosophic probabilities

	Friend	Neutral	Enemy
$N P_{1}$	t_{1}	i_{1}	f_{1}
$N P_{2}$	t_{2}	i_{2}	f_{2}

then

$$
\begin{gathered}
N P_{1} \oplus N P_{2}=\left(t_{1}+i_{1}+f_{1}\right) \cdot\left(t_{2}+i_{2}+f_{2}\right)= \\
\left(t_{1} t_{2}\right)+t_{1} i_{2}+t_{2} i_{1}+\left(i_{1} i_{2}\right)+t_{1} f_{1}+ \\
\left.t_{1} f_{2}+t_{2} f_{1}+i_{1} f_{2}+t_{2} f_{1}+f_{1} f_{2}\right)
\end{gathered}
$$

Of course, the quantity of $t_{1} t_{2}$ will go to Friend, the quantity of $i_{1} i_{2}$ will go to Neutral, and the quantity of $f_{1} f_{2}$ will go to Enemy.

The other quantities will go depending on the pessimistic or optimistic way:
a) In the pessimistic way (lower bound) $t_{1} i_{2}+t_{2} i_{1}$ will go to Neutral, and $t_{1} f_{2}+$ $t_{2} f_{1}+i_{1} f_{2}+i_{2} f_{1}$ to Enemy.
b) In the optimistic way (upper bound) $t_{1} i_{2}+t_{2} i_{1}$ will go to Friend, and $t_{1} f_{2}+$ $t_{2} f_{1}+i_{1} f_{2}+i_{2} f_{1}$ to Neutral.
About $t_{1} f_{2}+t_{2} f_{1}$, we can split it half-half to Friend and respectively Enemy. We afterwards put together the pessimistic and optimistic ways as an interval neutrosophic probability.
c) Of course, the reader or expert can use different transfers of intermediate mixed quantities $t_{1} i_{2}+t_{2} i_{1}$, and respectively $t_{1} f_{2}+t_{2} f_{1}+i_{1} f_{2}+i_{2} f_{1}$ to Friend, Neutral, and Enemy.

8. Conclusion

We have introduced the application of neutrosophic probability into information fusion, using the combination of information provided by two sources using the PCR5.

Other approaches can be done, for example the combination of the information could be done using the N -norm and N -conorm, which are generalizations of the T -norm and T conorm from the fuzzy theory to the neutrosophic theory.

More research is needed to be done in this direction.

REFERENCES

1. F.Smarandache, Neutrosophy. Neutrosophic Probability, Set, and Logic, Amer. Res. Press, Rehoboth, USA, pp. 105 1998; http://fs.gallup.unm.edu/eBookneutrosophics6.pdf (6th edition).
2. W.B.Vasantha Kandasamy, F.Smarandache, Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps, Xiquan, Phoenix, 211 p., 2003; http://fs.gallup.unm.edu/NCMs.pdf
3. F.Smarandache, Introduction of Neutrosophic Measure, Neutrosophic Integral, and Neutrosophic Probability, Sytech, Craiova, 2013.
4. F.Smarandache, n-valued refined neutrosophic logic and its applications in physics, Progress in Physics, 4 (2013) 143-146.
5. F.Smarandache, (t,i,f)-neutrosophic structures and I-neutrosophic structures, Neutrosophic Sets and Systems, 8 (2015) 3-10.
6. F.Smarandache and J.Dezert, Information fusion based on new proportional conflict redistribution rules, Proceedings of the 8th International Conference on Information Fusion, Philadelphia, 25-29 July, 2005; IEEE Catalog Number: 05EX1120C.
