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Astrobiological Aspects of Global Scaling

Hartmut Maller
E-mail: hm@interscalar.com
In this paper we apply chain systems of harmonic quantum oscillators as a fractal model

of matter to the analysis of astrophysical and biological metric data. Astrobiological
aspects of global scaling are discussed.

Introduction are common to most mammalian species.

: . . : In this paper we demonstrate how the scale invariance of
Already in [1] we have shown that scale invariance is a funhr fractal model of matter as a chain s A
. . . . ystem of oscillating
damental characteristic of chain systems of harmonic oscﬂ? - .
tors. In [2] we applied this model on chain systems of h rotons and electrons allows us to see a connection between
; PP y . h? metric characteristics of biological organisms and those
monic q“a’?t“m osqllators gnd could show that particle "Bt 'the celestial bodies. This connection could be of astrobio-
masses coincide with the eigenstates of the system. Th'F iS L
. gical signi cance.
valid not only for hadrons, but for mesons and leptons as welt
On this background we proposed scaling as model of Magsinods
emergency [3] and introduced our fractal model of matter as

a chain system of oscillating protons and electrons. André341] we have shown that the set of natural frequencies of a
Ries [4] demonstrated that this model allows for the predie?@in system of similar harmonic oscillators coincides with
tion of the most abundant isotope of a given chemical efeSet of nite continued fractionk , which are natural loga-
ment. rithms:

Our fractal model of matter as a chain system of oscillat- — n (1 =1 4) = njo + Z =
ing protons and electrons provides also a good description of
the mass distribution of large celestial bodies in the Solar Sys- N+ -
tem [5]. Physical properties of celestial bodies such as mass, SRS z 1)
size, rotation and orbital period can be understood as macro- Nk
scopic quantized eigenstates in chain systems of oscillating
protons and electrons [6]. This allows to see a connection = [Znjo;njainz; 2] = F

between the stability of the Solar system and the stability\%ere! i is the set of angular frequencies dngb is the fun-

electron and proton and consider scale invariance as a foElgr'nental frequency of the set. The denominators are integer:

ing factor of the Solar system. Njo; Nj1; Nj2; - 1 - ;Njk 2Z, the cardinalityj 2 N of the set and the

In [7] we have calculated the model masses of unknoWimperk 2N of layers are nite. In the canonical form, the
planets in the Solar system which correspond well with the merator z equals 1.

hypothesis of Batygin and Brown [8] about a new gas giant g pite continued fractiond (1), ranges of high dis-

called planet 9 and with the hypothesis of Volk and Malyip,tion density (nodes) arise near reciprocal integers2l, 1
hotra [9] about an unknown Mars-to-Earth mass planet 19/3 14, ::: which are the attractor points of the distribution.
beyond Pluto. Any nite continued fraction represents a rational num-
In [6] we have proposed a new interpretation of the coger [15]. Therefore, all natural frequencleg, in (1) are irra-
mic microwave background as a stable eigenstate in a ch@fal, because for rational exponents the natural exponential
system of oscillating protons. Therefore, our model may Regnction is transcendental [16]. It is probable that this cir-
of cosmological signi cance as well. cumstance provides for high stability of an oscillating chain
In [10] we applied our model to the domain of biophysicsystem because it prevents resonance interaction between the
and have demonstrated that the frequency ranges of electrg@hents of the system [17]. Already in 1987 we have applied
brain activity and of other cyclical biological processes corrgontinued fractions of the typé (1) as criterion of stability
spond with eigenstates in chain systems of oscillating protangngineering [18, 19].
and electrons. This would indicate that biological cycles may |n the case of harmonic quantum oscillators, the contin-
have a subatomic origin. ued fractionsF (1) not only de ne fractal sets of natural
Scale invariance as a property of the metric characteristiegular frequencies j , oscillation periods j = 1=! j and
of biological organisms is well studied [11, 12] and it is novavelengths j = c=! j of the chain system, but also fractal
an exclusive characteristic of adult physiology. Furthermossts of energies jg=~ ! jx and masses = Ej=c? which
many metric characteristics of human physiology, for examerrespond with the eigenstates of the system. For this rea-
ple, the frequency ranges of electrical brain activity [13, 14pn, we call the continued fractidn (1) the fundamental

Nj1 +
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Fig. 1: The canonical projection & (natural logarithmic representation).

fractal of eigenstates in chain systems of harmonic quantdare, integer logarithms represent the most stable eigenstates
oscillators. (main attractor nodes).

Normal matter is formed by nucleons and electrons be- In the framework of our model of matter, the correspon-
cause they are exceptionally stable. Furthermore, protoiesice of the Sun-to-electron mass ratio with a main attractor
and neutrons have similar rest masses (thedince being node of the fundamental fractgl (1) is a criterion of high
only 0.14 percent). This allows us to interpret the proton astibility of the chain system of quantum oscillators that ap-
the neutron as similar quantum oscillators with regard to thpiears as the star we call ‘Sun’. Therefore, the current body
rest masses. Therefore, in [3, 6] we have introduced a fra¢tedss of the Sun is not casual, but an essential aspect of its
model of matter as a chain system of oscillating protons astability.
electrons. Also the correspondence of the current radius of the Sun

Table 1 shows the basic set of electron and proton unktéh a main attractor node (integer logarithm) now we can
that can be considered as a fundamental metrology (c is tifglerstand as criterion of its stability:
speed of light in yacuum~, is thg redgced Planck constant). Reun ! 6:96407 108 m

We hypothesize that scale invariance based on the fundan =In 3861502676410 B m 48945
mental fractaF (1), calibrated on the metric properties of the electron '
proton and electron, is a universal characteristic of organizBte angular Compton wavelength of the electron s
matter. This hypothesis we have called ‘global scaling’ [6].= 3:861592676410 **m [20].

The natural logarithm of the proton-to-electron mass ra-
Results tio is approximately 7.5 and consequently, the fundamental

. ) . _ fractal F calibrated on the proton will be shifted by 7.5 log-
Let’s start with the metric characteristics large celestial bo

: &iﬁthmic units relative to thé calibrated on the electron:
ies. The current amount of the Solar mass supports our hy-

!
pothesis of global scaling, because it corresponds to a main | 167262189810 kg 75
attractor node of thé= (1) calibrated on the electron. In 9:10938356 10 31 kg
fact, the natural logarithm of the Sun-to-electron mass ra@fbnsequently,
is close to an integer number:

integer logarithms of the protercorrespond
to half logarithms of the electrdh and vice versa. Therefore,
! _ ! all the most stable eigenstates are connected through division
Msun = 1:9884 10 kg = 138936 of the integer logarithms by 2.
Melectron 9:10938356 10 3 kg As we have seen above, the Solar mass coincides with the
. _ 31 main attractor and stability node [13PB] of the F calibrated
The electron rest mass im 9:10938356 10 * kg [20]. 4, the electron. Dividing the logarithm 128= 695 we re-

In the canonical form of the fundamental fractl(1), ceijve the logarithm of the node [69; 2] that is the main node
shorter continued fractions correspond with more stal g-zz; 1] of the F calibrated on the proton, because$9
eigenstates of a chain system of harmonic oscillators. Therer.g— go.

This main node corresponds to the masg: ®xp (62)=
=1:4 Kg, where m=1:672621 10 27kg is the proton rest
Table 1: The basic set of physical properties of the electron améss [20]. Probably, the mass range around 1.4 kg isn’t no-
proton. Data taken from Particle Data Group [20]. Frequencig¢igeable in astrophysics, but in biophysics it is. This mass
oscillation periods and the proton wavelength are calculated.  range is typical for the adult human brain [21] represented
by 7 billion samples (current terrestrial population of homo

In

[ property [ electron [ proton | sapiens)
restmass m 9:10938356(11)10 3 kg 1:672621898(21)10 %" kg ’ . .
energy E=m& 0.5109989461(31) MeV | 938.2720813(58) MeV At the same time, the Solar mass is near the node [131; 2]
angular frequency| 7:7634407110%° Hz 1:42548624 107% Hz of theF calibrated on the proton, because 1385=1315.
el : : - : - Dividing the logarithm 135=2= 6575 we receive a loga-
oscllation period | 1:2850836710 s 70151510 s rithm that corresponds to the signi cant subnode [68} in
wavelength 3:8615926764(18)10 ¥ m | 2:103089110 ¥m the range of the world statistical average adult human body

= mass: | exp (6575)=60kg [20].

4 Hartmut Maller. Astrobiological Aspects of Global Scaling
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Jupiter's body mass coincides with the main attractdhe angular Compton wavelength of the proton is=
node [1321 ] of the electron-calibrateB (1): =2:103089 10 1 m [20].

I I Dividing the logarithm 56&=2= 28:25 we receive the log-
Maupiter _ 1:8986 107" kg — 13198 arithm of the signi cant subnode [28; 4] that corresponds to
9:10938356 10 31 kg the wavelength , exp (2825)= 0:39 mm that coincides with
o . ) . the second focal length [26] behind the retina of the human
Dividing the logarithm 1322 =66 we receive the Iogarlthmeye‘
of the main node [6@L ] that corresponds to the mass:” ajready in 1981 Leonid Chislenko [27] did demonstrate
me exp (66)= 42 g. This mass range coincides with the ayyat ranges of body masses and sizes preferred by the most
erage mass of the human spinal cord [23]. quantity of biological species show an equidistant distribu-

At the same time, Jupiter's body mass is near the noggh on a logarithmic scale with a scaling factor close to 3.
[124; 5] of the proton-calibrated (1): Probably, this is a consequence of global scaling, if we con-
! ! sider that the scaling fact@=2:718::: connects the main

. . 7
Mupiter = 1:8986 107" kg attractor nodes of stability in the fundamental fractal
1:672621 10 27 kg

In

Melectron

In =12447

mproton
) ) Conclusion
The half value of this logarithm 1247=2 = 62:24 corresponds . )
Applying our fractal model of matter as chain system of os-

to the mass: m exp (6224)= 1.78 kg that is the range of the” ™ . .
adult human liver [21]. It is remarkable that the most massigl/ating protons and electrons to the analysis of astrophysi-

planet of the Solar System corresponds with the most masﬁ%and b|_op.hyS|caI_metr_|c data We can assume that the metric
organ of the human organism the liver. characteristics of biological organisms and those of the Solar

Saturn’s body mass is near the subnode [123; 4] of stem have a common subatomic origin. However, there is
proton-calibrated (1): ' a huge eld of research where various discoveries are still to
| ’ be expected.

MSaturn. - I 56836 1023 kg

= 12326
1:672621 10 27 kg
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Modi ed Standard Einstein’s Field Equations and the Cosmological Constant

Faisal A. Y. Abdelmohssin

IMAM, University of Gezira, P.O. BOX: 526, Wad-Medani, Gezira State, Sudan
Sudan Institute for Natural Sciences, P.O. BOX: 3045, Khartoum, Sudan
E-mail: f.a.y.abdelmohssin@gmail.com

The standard Einstein’s eld equations have been modi ed by introducing a general
function that depends on Ricci’s scalar without a prior assumption of the mathemat-
ical form of the function. By demanding that the covariant derivative of the energy-
momentum tensor should vanish and with application of Bianchi’s identity a rst order
ordinary di erential equation in the Ricci scalar has emerged. A constant resulting
from integrating the dierential equation is interpreted as the cosmological constant
introduced by Einstein. The form of the function on Ricci’s scalar and the cosmologi-
cal constant corresponds to the form of Einstein-Hilbert's Lagrangian appearing in the
gravitational action. On the other hand, when energy-momentum is not conserved, a
new modi ed eld equations emerged, one type of these eld equations are Rastall’s
gravity equations.

1 Introduction termin his standard eld equations to represent a kind of anti

In the early development of the general theory of relativitg(,;‘\”ty to balance the eect of gravitational attractions of

Einstein proposed a tensor equation to mathematically _tte_:r n '_t' ) ) ) ) ]
scribe the mutual interaction between matter-energy and EiNstéin modied his standard equations by introducing
spacetime as [13] a term to his standard eld equations including a constant

Ri= Tap (1.1) which is called the cosmological constant[7] to become

where is the Einstein constant,,, is the energy-momen-

tum, andRyy is the Ricci curvature tensor which represents

geometry of the spacetime in presence of energy-momentum. . .
Einstein demanded that conservation of energy-mom 1ere isthe cosm_ologlcal constant (a_ssumed to have a very

tum should be valid in the general theory of relativity sinacéma” value). Equation (1.6) may be written as

energy-momentum is a tensor quantity. This was represented 1

as R 3 (R 2 )Gab= Tap (1.7)

Tab;b =0 (1.2)

1
Rab EgabR"' Oab = Tap (1.6)

But Einstein rejected the cosmological constant for two rea-
sons:

where semicolon (;) represents covariant derivatives.
equation (1.2) requires
The universe described by this theory was unstable.

Rapp = 0 (1.3) Observations by Edwin Hubble con rmed that the uni-

too which is not always true. verse is expanding.

Finally, Einstein presented his standard eld equations Recently, it has been believed that this cosmological con-
(EFEs) describing gravity in the tensor equations formtant might be one of the causes of the accelerated expansion
namely, [2 5,8 12] of the Universe [15].

Gab= Tap (1.4) Einstein has never justi ed mathematically introduction
of his cosmological constant in his eld equations.

Based on that fact | have mathematically done that using
simple mathematics.

whereGgp, is the Einstein tensor given by

1
Gab = Rap > OabR (1.5)

. o . 2 Modi ed standard Einstein’s eld equations
where,R, is the Ricci scalar curvature, agg, is the funda-

mental metric tensor. I modi ed the (EFESs) by introducing a general functib(R)

In his search for analytical solution to his eld equation8f Ricci’s scalar into the standard (EFEs). | do not assume
he turned to cosmology and proposed a model of static @ngoncrete form of the function. The modi ed (EFEs), then
homogenous universe lled with matter. Because he believegcomes
of the static model for the Universe, he introduced a constant Rab Gal(R) = Tap (2.1)

Faisal A.Y. Abdelmohssin. Modi ed Standard Einstein’s Field Equations 7
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Taking covariant derivative denoted by semicolon (;) & The Modi ed Equations and the Einstein Spaces

both sides of equation (2.1) yields In absence of energy-momentum i.e. in a region of spacetime

Rapp  [GabL(R)]:b = Tapp (2.2) where is there no energy, a state which isestent from vac-

. . . . .__uum state everywhere in spacetime, equation (2.1) becomes
Since covariant divergence of the metric tensor vanishes, Y P g (1)

equation (2.2) may be wntter; as Rib GaL(R) =0 (3.1)
dL
Raop  Gab g5 Ro = Tano (2.3) Contacting equation (3.1) with?®, we get
Substituting the Bianchi identity R NL(R =0 (3.2)
— ab
Re = 20" Racp (2.4) whereN is the dimension of the spacetime. Equation (3.2)

in equation (2.3) and requiring the covariant divergence of tields

energy-momentum tensor to vanish (i.e. energy-momentum 1

is conserved), namely, equation (1.2), we arrive at L(R) = N R (33)
|

d Substituting equation (3.3) in equation (3.1), we get
Rab;b Oab ﬁ 2g&mRab;c =0 (2-5)
1
Rearranging equation (2.|5) we get Rap = 1y 9eoR (3.4)
Rabb 2 g_:; (9ab9°) Rapc = 0 (2.6) Equation (3.4) is the Einstein equation for Einstein spaces in

di erential geometry [1,2];
Substituting the following identity equation

Gang™° = § (2.7)
in equation (2.6), we get

Rab = | Gab (3.5)

wherel is an invariant. This implies that the function | pro-
posedl (R), is exactly the same as the invarianh Einstein

Rih 2 d_'- ¢ Rype=0 (2.8) Spaces equation when contacted vgjth
’ dR ’ A 2D sections of the 4D spacetime of Einstein spaces
By changing the dummy indices, we arrive at are geometrically one of the geometries of spacetime which
! satis es the standard Einstein’s eld equations in absence of
Ragp 1 2% =0 (2.9) energy-momentum.
dR A naive substitution oN = 4 into equation (3.4) would
We have either, lead to an identity from which Ricci scalar could not be cal-
Rapb = 0; (2.10) culated, because it becomes a non-useful equation, it gives
or d|_! R=R
1 2 R 0 (2.11) 4 The modi ed equations and gravity equations with

. . . . non-conserved energy-momentum
Equation (2.10) is not always satis ed as mentioned be- %y

fore. Whilst, equation (2.11) yields Because in general relativity spactime itself is changing, the
energy is not conserved, because it can give energy to the

d—L = 1 (2.12) particles and absorb it from them [2].
] ] d 2 In cosmology the notion of dark energy represented by
This has a solution term introduced by Einstein and dark matter is a sort of
L(R) = 1 R C (2.13) sources of energy of_unknown origin. o
2 It is possible to incorporate the possibility of non-con-
whereC is a constant. served energy-momentum tensor in the modi ed equations.

Interpreting the constant of integrati@h as the cosmo- In this case equation (2.9) should become
logical constant , the functional dependence &{R) on !

Ricci scalar may be written as Rapb 1 2% = Tabb (4.1)
dJ dR h
1
LR=5R 2) (2.14) . . .
2 whereTanp , 0. SinceRayp is Not always equals to zero, this

Equation (2.14) is the well known Lagrangian functionanplies that the bracket in the LHS of equation (4.1) is not
of the Einstein-Hilbert action with the cosmological constargero in any case.
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1
Rab 5(1 D)GabR+ Qab= Tap (4.6)

5 The modi ed equations and the Rastall gravity
equations

Rastall [14] introduced a modi cation to the Einstein eld
equations, in which the covariant conservation condition
Rapp = 0 is no longer valid.

In his theory he introduced a modi cation to the Einstein
eld equations without the cosmological constant which read

1
Rab 5(1 2 )0aR= Tap (5.1)

where is a free parameter. When= 0, we recover the stan-
dard Einstein’s eld equations. Comparing Rastall's equa-
tions in equation (5.1) with equation (4.6) without the cos-
mological constant, we deduce

D=2 (5.2)
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