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A New Method to Measure the Speed of Gravitation

Dmitri Rabounski
E-mail: rabounski@yahoo.com

According to the standard viewpoint the speed of gravitation is the speed of weak
waves of the metrics. This study proposes a new approach, defining the speed as
the speed of travelling waves in the field of gravitational inertial force. D’Alembert’s
equations of the field show that this speed is equal to the velocity of light corrected
by gravitational potential. The approach leads to a new experiment to measure the
speed of gravitation, which, using “detectors” such as planets and their satellites, is not
linked to deviation of geodesic lines and quadrupole mass-detectors with their specific
technical problems.

1 Introduction

Herein we use a pseudo-Riemannian space with the signature
(+−−−), where time is real and spatial coordinates are imag-
inary, because the projection of a four-dimensional impulse
on the spatial section of any given observer is positive
in this case. We also denote space-time indices in Greek,
while spatial indices are Roman. Hence the time term in
d’Alembert’s operator = gαβ∇α∇β will be positive, while
the spatial part (Laplace’s operator) will be negative Δ=
=−gik∇i∇k.

By applying the d’Alembert operator to a tensor field,
we obtain the d’Alembert equations of the field. The non-
zero elements are the d’Alembert equations containing the
field-inducing sources. The zero elements are the equations
without the sources. If there are no sources the field is free,

giving a free wave. There is the time term 1
a2

∂2

∂t2
containing

the linear velocity a of the wave. For this reason, in the
case of gravitational fields, the d’Alembert equations give
rise to a possibility of calculating the speed of propagation
of gravitational attraction (the speed of gravitation). At the
same time the result may be different according to the way
we define the speed as the velocity of waves of the metric,
or something else.

The usual approach sets forth the speed of gravitation as
follows [1, 5]. One considers the space-time metric gαβ =
= g(0)αβ + ζαβ , composed of a Galilean metric g(0)αβ (wherein
g(0)00 =1, g

(0)

0i =0, g
(0)

ik =−δik) and tiny corrections ζαβ de-
fining a weak gravitational field. Because the ζαβ are tiny, we
can raise and lower indices with the Galilean metric tensor
g(0)αβ . The quantities ζαβ are defined by the main property

of the fundamental metric tensor gασgσβ = δ
β
α as follows:

(g(0)ασ + ζασ) g
σβ = δ

β
α. Besides this approach defines gαβ

and g= det ‖gαβ‖ to within higher order terms withheld as
gαβ = g(0)αβ− ζαβ and g= g(0)(1+ ζ), where ζ= ζσσ . Be-
cause ζαβ are tiny we can take Ricci’s tensor Rαβ =R...σασβ
(the Riemann-Christoffel curvature tensor Rαβγδ contracted
on two indices) to within higher order terms withheld. Then

the Ricci tensor for the metric gαβ = g
(0)

αβ + ζαβ is

Rαβ =
1

2
g(0)μν

∂2ζαβ
∂xμ∂xν

=
1

2
ζαβ ,

which simplifies Einstein’s field equations Rαβ − 1
2 gαβ R=

=−κTαβ +λgαβ , where in this case R= g(0)μνRμν . In the
absence of matter and λ-fields (Tαβ =0, λ=0), that is, in
emptiness, the Einstein equations for the metric gαβ = g

(0)

αβ +
+ ζαβ become

ζβα = 0 .

Actually, these are the d’Alembert equations of the cor-
rections ζαβ to the metric gαβ = g

(0)

αβ + ζαβ (weak waves of
the metric). Taking the flat wave travelling in the direction
x1=x, we see

(
1

c2
∂2

∂t2
−

∂2

∂x2

)

ζβα = 0 ,

so weak waves of the metric travel at the velocity of light in
empty space.

This approach leads to an experiment, based on the prin-
ciple that geodesic lines of two infinitesimally close test-
particles will deviate in a field of waves of the metric. A
system of two real particles connected by a spring (a quadru-
pole mass-detector) should react to the waves. Most of these
experiments have since 1968 been linked to Weber’s detector.
The experiments have not been technically decisive until
now, because of problems with precision of measurement
and other technical problems [3] and some purely theoretical
problems [4, 5].

Is the approach given above the best? Really, the result-
ing d’Alembert equations are derived from that form of the
Ricci tensor obtained under the substantial simplifications of
higher order terms withheld (i .e. to first order). Eddington
[1] wrote that a source of this approximation is a specific
reference frame which differs from Galilean reference frames
by the tiny corrections ζαβ , the origin of which could be very
different from gravitation. This argument leads, as Eddington
remarked, to a “vicious circle”. So the standard approach has
inherent drawbacks, as follows:
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(1) The approach gives the Ricci tensor and hence the
d’Alembert equations of the metric to within higher
order terms withheld, so the velocity of waves of the
metric calculated from the equations is not an exact
theoretical result;

(2) A source of this approximation are the tiny corrections
ζαβ to a Galilean metric, the origin of which may be
very different: not only gravitation;

(3) Two bodies attract one another because of the transfer
of gravitational force. A wave travelling in the field
of gravitational force is not the same as a wave of
the metric — these are different tensor fields. When a
quadrupole mass-detector registers a signal, the detec-
tor reacts to a wave of the metric in accordance with
this theory. Therefore it is concluded that quadrupole
mass detectors would be the means by to discovery
of waves of the metric. However, the experiment is
only incidental to the measurement of the speed of
gravitation.

For these reasons we are lead to consider gravitational
waves as waves travelling in the field of gravitational force,
which provides two important advantages:

(1) The mathematical apparatus of chronometric invariants
(physical observable quantities in the General Theory
of Relativity) defines gravitational inertial force Fi
without the Riemann-Christoffel curvature tensor
[1, 2]. Using this method, we can deduce the exact
d’Alembert equations for the force field, giving an
exact formula for the velocity of waves of the force;

(2) Experiments to register waves of the force field, using
“detectors” such as planets or their satellites, does not
involve a quadrupole mass-detector and its specific
technical problems.

2 The new approach

The basis here is the mathematical apparatus of chronometric
invariants, created by Zelmanov in the 1940’s [1, 2]. Its
essence is that if an observer accompanies his reference body,
his observable quantities (chronometric invariants) are pro-
jections of four-dimensional quantities on his time line and

the spatial section, made by projecting operators bα= dxα

ds
and hαβ=−gαβ+bαbβ , which fully define his real reference
space. Thus, chr.inv.-projections of a world-vector Qα are

bαQ
α=

Q0√
g00

and hiαQ
α=Qi, while chr.inv.-projections of

a world-tensor of the 2nd rank Qαβ are bαbβQαβ =
Q00
g00 ,

hiαbβQαβ =
Qi0√
g00

, hiαh
k
βQ

αβ =Qik. Physical observable

properties of the space are derived from the fact that the chr.

inv.-differential operators
∗∂
∂t
= 1√

g00
∂
∂t

and
∗∂
∂xi

= ∂
∂xi

+

+ 1
c2
vi
∗∂
∂t

are non-commutative. They are the chr.inv.-vector

of gravitational inertial force Fi, the chr.inv.-tensor of angular
velocities of the space rotation Aik, and the chr.inv.-tensor
of rates of the space deformations Dik, namely

Fi=
1
√
g00

(
∂w

∂xi
−
∂vi
∂t

)

,

Aik=
1

2

(
∂vk
∂xi
−
∂vi
∂xk

)

+
1

2c2
(Fivk−Fkvi) ,

vi=−c
g0i
√
g00

,
√
g00=1−

w

c2
,

Dik=
1

2

∗∂hik
∂t

, Dik=−
1

2

∗∂hik

∂t
, D=Dk

k=
∗∂ ln
√
h

∂t
,

where w is gravitational potential, vi is the linear velocity
of the space rotation, hik=−gik+ 1

c2
vivk is the chr.inv.-

metric tensor, and also h=det ‖hik‖,
√
−g=

√
h
√
g00 ,

g=det ‖gαβ‖. Observable non-uniformity of the space is
set up by the chr.inv.-Christoffel symbols Δijk=h

imΔjk,m,
which are built just like Christoffel’s usual symbols Γαμν =
= gασΓμν,σ , using hik instead of gαβ .

The four-dimensional generalization of the chr.inv.-quan-
tities Fi, Aik, and Dik had been obtained by Zelmanov [8]
as Fα=−2c2bβaβα, Aαβ = ch

μ
αhνβaμν , Dαβ = ch

μ
αhνβdμν ,

where aαβ = 1
2 (∇α bβ −∇β bα), dαβ =

1
2 (∇α bβ +∇β bα).

Following the study [9], we consider a field of the grav-
itational inertial force Fα=−2c2bβaβα, the chr.inv.-spatial
projection of which is F i, so that Fi=hikF k. The d’Alem-
bert equations of the vector field Fα=−2c2bβa∙αβ∙ in the
absence of sources are

Fα = 0 .

Their chr.inv.-projections (referred to as the chr.inv.-
d’Alembert equations) can be deduced as follows

bσ g
αβ∇α∇βF

σ = 0 , hiσ g
αβ∇α∇βF

σ = 0 .

After some algebra we obtain the chr.inv.-d’Alembert
equations for the field of the gravitational inertial force
Fα=−2c2bβa∙αβ∙ in their final form. They are

1

c2

∗∂

∂t

(
FkF

k
)
+
1

c2
Fi

∗∂F i

∂t
+Dk

m

∗∂Fm

∂xk
+

+hik
∗∂

∂xi
[(Dkn + Akn)F

n]−
2

c2
AikF

iF k+

+
1

c2
FmF

mD +ΔmknD
k
mF

n−

−hikΔmik (Dmn + Amn)F
n = 0 ,
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1

c2

∗∂2F i

∂t2
− hkm

∗∂2F i

∂xk∂xm
+
1

c2
(
Di
k + A

∙i
k∙

) ∗∂F k

∂t
+

+
1

c2

∗∂

∂t

[(
Di
k + A

∙i
k∙

)
F k
]
+
1

c2
D
∗∂F i

∂t
+
1

c2
F k

∗∂F i

∂xk
+

+
1

c2
(
Di
n+A

∙i
n∙

)
FnD+

1

c4
FkF

kF i+
1

c2
ΔikmF

kFm−

−hkm
{ ∗∂

∂xk
(
ΔimnF

n
)
+
(
ΔiknΔ

n
mp −Δ

n
kmΔ

i
np

)
F p+

+Δikn

∗∂Fn

∂xm
−Δnkm

∗∂F i

∂xn

}

= 0 .

Calling upon the formulae for chr.inv.-derivatives, we
transform the first term in the chr.inv.-d’Alembert vector
equations into the form

1

c2

∗∂2F i

∂t2
=

1

c2g00

∂2F i

∂t2
+

1

c4
√
g00

∗∂w

∂t

∗∂F i

∂t
,

so waves of gravitational inertial force travel at a velocity
uk, the square of which is ukuk= c2g00 and the modulus

u =
√
ukuk = c

(
1−

w

c2

)
.

Because waves of the field of gravitational inertial force
transfer gravitational interaction, this wave speed is the speed
of gravitation as well. The speed depends on the scalar
potential w of the field itself, which leads us to the following
conclusions:

(1) In a weak gravitational field, the potential w of which
is negligible but its gradient Fi is non-zero, the speed
of gravitation equals the velocity of light;

(2) According to this formula, the speed of gravitation will
be less than the velocity of light near bulky bodies
like stars or planets, where gravitational potential is
perceptible. On the Earth’s surface slowing gravitation
will be slower than light by 21 cm/sec. Gravitation
near the Sun will be about 6.3×104 cm/sec slower than
light;

(3) Under gravitational collapse (w= c2) the speed of
gravitation becomes zero.

Let us turn now from theory to experiment. An idea as
to how to measure the speed of gravitation as the speed
to transfer of the attracting force between space bodies had
been proposed by the mathematician Dombrowski [10] in
conversation with me more than a decade ago. But in the
absence of theory the idea had not developed to experiment
in that time. Now we have an exact formula for the speed
of waves travelling in the field of gravitational inertial force,
so we can propose an experiment to measure the speed (a
Weber detector reacts to weak waves of the metric, so it does
not apply to this experiment).

The Moon attracts the Earth’s surface, causing the flow
“hump” in the ocean surface that follows the moving Moon,

producing ebbs and flows. An analogous “hump” follows
the Sun: its magnitude is more less. A satellite in an Earth
orbit has the same ebb and flow oscillations — its orbit rises
and falls a little, following the Moon and the Sun as well.
A satellite in space experiences no friction, contrary of the
viscous waters of the oceans. A satellite is a perfect system,
which reacts instantly to the flow. If the speed of gravitation
is limited, the moment of the satellite’s maximum flow rise
should be later than the lunar/solar upper transit by the
amount of time taken by waves of the gravitational force
field to travel from the Moon/Sun to the satellite.

The Earth’s gravitational field is not absolutely symmet-
ric, because of the imperfect form of the terrestrial globe.
A real satellite reacts to the field defects during its orbital
flight around the Earth — the height of its orbit oscillates in
decimetres, giving rise to substantial noise in the experiment.
For this reason a geostationary satellite would be best. Such
a satellite, having an equatorial orbit, requires an angular ve-
locity the same as that of the Earth. As a result, the height of
a geostationary satellite above the Earth does not depend on
non-uniformities of the Earth’s gravitational field. The height
could be measured with high precision by a laser range-
finder, almost without interruption, providing a possibility
of registering the moment of the maximum flow rise of the
satellite, perfectly.

In accordance with our formula the speed of gravita-
tion near the Earth is 21 cm/sec less than the velocity of
light. In this case the maximum of the lunar flow wave in a
satellite orbit will be about 1 sec later than the lunar upper
culmination. The lateness of the flow wave of the Sun will be
about 500 sec after the upper transit of the Sun. The question
is how precisely could the moment of the maximum flow
rise of a satellite in its orbit be determined, because the real
maximum can be “fuzzy” in time.

3 Effect of the curvature

If a space is homogeneous (Δikm=0) and it is free of rotation
and deformation (Aik=0, Dik=0), then the chr.inv.-
d’Alembert equations for the field of gravitational inertial
force take the form

1

c2

∗∂

∂t

(
FkF

k
)
+
1

c2
Fi

∗∂F i

∂t
= 0 ,

1

c2

∗∂2F i

∂t2
−hkm

∗∂2F i

∂xk∂xm
+
1

c2
F k

∗∂F i

∂xk
+
1

c4
FkF

kF i = 0 ,

so waves of gravitational inertial force are permitted even in
this very simple case.

Are waves of the metric possible in this case or not?
As it is known, waves of the metric are linked to the

space-time curvature derived from the Riemann-Christoffel
curvature tensor. If the first derivatives of the metric (the
space deformations) are zero, then its second derivatives

D. Rabounski. A New Method to Measure the Speed of Gravitation 5
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(the curvature) are zero too. Therefore waves of the metric
have no place in a non-deforming space, while waves of
gravitational inertial force are possible there.

In connection with this fact, following the study [9],
another question arises. By how much does the curvature
affect waves of gravitational inertial force?

To answer the question let us recall that Zelmanov, follo-
wing the same procedure by which the Riemann-Christoffel
tensor was introduced, after considering non-commutativity
of the chr.inv.-second derivatives of a vector ∗∇i∗∇kQl−

− ∗∇k∗∇iQl=
2Aik
c2

∗∂Ql
∂t

+H
...j
lkiQj , had obtained the chr.

inv.-tensor H ...j
lki like Schouten’s tensor [11]. Its generaliza-

tion gives the chr.inv.-curvature tensor Clkij = 1
4

(
Hlkij −

−Hjkil+Hklji−Hiljk
)
, which has all the properties of the

Riemann-Christoffel tensor in the observer’s spatial section.
So the chr.inv.-spatial projection Ziklj =−c2Riklj of the
Riemann-Christoffel tensor Rαβγδ , after contraction twice by
hik, is Z =hilZil=DikDik−D2−AikAik− c2C, where
C =C

j
j =h

ljClj and Ckj =C ...ikij∙=h
imCkimj [1].

At the same time, as Synge’s well-known book [12]
shows, in a space of constant four-dimensional curvature,
K = const, we have Rαβγδ =K (gαγ gβδ − gαδgβγ), Rαβ =
=−3Kgαβ ,R=−12K. With these formulae as a basis, after
calculation of the chr.inv.-spatial projection of the Riemann-
Christoffel tensor, we deduce that in a constant curvature
space Z =6c2K. Equating this to the same quantity in an
arbitrary curvature space, we obtain a correlation between
the four-dimensional curvature K and the observable three-
dimensional curvature in the constant curvature space

6c2K = DikD
ik −D2 − AikA

ik − c2C .

If the four-dimensional curvature is zero (K =0), and
the space does no deformations (Dik=0 — its metric is
stationary, hik= const), then no waves of the metric are
possible. In such a space the observable three-dimensional
curvature is

C = −
1

c2
AikA

ik,

which is non-zero (C 6=0), only if the space rotates (Aik 6=0).
If aside of these factors, the space does not rotate, then its
observable curvature also becomes zero; C =0. Even in this
case the chr.inv.- d’Alembert equations show the presence of
waves of gravitational inertial force.

What does this imply? As a matter of fact, gravitational
attraction is an everyday reality in our world, so waves of
gravitational inertial force transferring the attraction shall be
incontrovertible. Therefore we adduce the alternatives:

(1) Waves of gravitational inertial force depend on a cur-
vature of space — then the real space-time is not a
space of constant curvature, or,

(2) Waves of gravitational inertial force do not depend on
the curvature.
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Quantum Quasi-Paradoxes and Quantum Sorites Paradoxes

Florentin Smarandache
Dept. of Mathematics, University of New Mexico, 200 College Road, Gallup, NM 87301, USA

E-mail: fsmarandache@yahoo.com; smarand@unm.edu

There can be generated many paradoxes or quasi-paradoxes that may occur from
the combination of quantum and non-quantum worlds in physics. Even the passage
from the micro-cosmos to the macro-cosmos, and reciprocally, can generate unsolved
questions or counter-intuitive ideas. We define a quasi-paradox as a statement which
has a prima facie self-contradictory support or an explicit contradiction, but which
is not completely proven as a paradox. We present herein four elementary quantum
quasi-paradoxes and their corresponding quantum Sorites paradoxes, which form a
class of quantum quasi-paradoxes.

1 Introduction

According to the Dictionary of Mathematics (Borowski and
Borwein, 1991 [1]), the paradox is “an apparently absurd or
self-contradictory statement for which there is prima facie
support, or an explicit contradiction derived from apparently
unexceptionable premises”. Some paradoxes require the revi-
sion of their intuitive conception (Russell’s paradox, Cantor’s
paradox), others depend on the inadmissibility of their de-
scription (Grelling’s paradox), others show counter-intuitive
features of formal theories (Material implication paradox,
Skolem Paradox), others are self-contradictory — Smarand-
ache Paradox: “All is <A> the <Non-A> too!”, where <A>
is an attribute and <Non-A> its opposite; for example “All
is possible the impossible too!” (Weisstein, 1998 [2]).

Paradoxes are normally true and false in the same time.
The Sorites paradoxes are associated with Eubulides

of Miletus (fourth century B. C.) and they say that there
is not a clear frontier between visible and invisible matter,
determinist and indeterminist principle, stable and unstable
matter, long time living and short time living matter.

Generally, between <A> and <Non-A> there is no clear
distinction, no exact frontier. Where does <A> really end and
<Non-A> begin? One extends Zadeh’s “fuzzy set” concept
to the “neutrosophic set” concept.

Let’s now introduce the notion of quasi-paradox:
A quasi-paradox is a statement which has a prima facia

self-contradictory support or an explicit contradiction, but
which is not completely proven as a paradox. A quasi-
paradox is an informal contradictory statement, while a par-
adox is a formal contradictory statement.

Some of the below quantum quasi-paradoxes can later be
proven as real quantum paradoxes.

2 Quantum Quasi-Paradoxes and Quantum Sorites
Paradoxes

The below quasi-paradoxes and Sorites paradoxes are based
on the antinomies: visible/invisible, determinist/indeterminist,

stable/unstable, long time living/short time living, as well as
on the fact that there is not a clear separation between these
pairs of antinomies.

2.1.1 Invisible Quasi-Paradox: Our visible world is com-
posed of a totality of invisible particles.

2.1.2 Invisible Sorites Paradox: There is not a clear frontier
between visible matter and invisible matter.

(a) An invisible particle does not form a visible ob-
ject, nor do two invisible particles, three invisible
particles, etc. However, at some point, the collec-
tion of invisible particles becomes large enough
to form a visible object, but there is apparently
no definite point where this occurs.

(b) A similar paradox is developed in an opposite
direction. It is always possible to remove a par-
ticle from an object in such a way that what is
left is still a visible object. However, repeating
and repeating this process, at some point, the
visible object is decomposed so that the left part
becomes invisible, but there is no definite point
where this occurs.

2.2.1 Uncertainty Quasi-Paradox: Large matter, which is
at some degree under the “determinist principle”, is
formed by a totality of elementary particles, which are
under Heisenberg’s “indeterminacy principle”.

2.2.2 Uncertainty Sorites Paradox: Similarly, there is not a
clear frontier between the matter under the “determinist
principle” and the matter under “indeterminist prin-
ciple”.

2.3.1 Unstable Quasi-Paradox: “Stable” matter is formed
by “unstable” elementary particles (elementary parti-
cles decay when free).

2.3.2 Unstable Sorites Paradox: Similarly, there is not a
clear frontier between the “stable matter” and the “un-
stable matter”.

2.4.1 Short-Time-Living Quasi-Paradox: “Long-time-
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living” matter is formed by very “short-time-living”
elementary particles.

2.4.2 Short-Time-Living Sorites Paradox: Similarly, there
is not a clear frontier between the “long-time-living”
matter and the “short-time-living” matter.

3 Conclusion

“More such quantum quasi-paradoxes and paradoxes can
be designed, all of them forming a class of Smarandache
quantum quasi-paradoxes.” (Dr. M. Khoshnevisan, Griffith
University, Gold Coast, Queensland, Australia [3])
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Besides matter and antimatter there must exist unmatter (as a new form of matter) in
accordance with the neutrosophy theory that between an entity <A> and its opposite
<AntiA> there exist intermediate entities <NeutA>. Unmatter is neither matter nor
antimatter, but something in between. An atom of unmatter is formed either by (1):
electrons, protons, and antineutrons, or by (2): antielectrons, antiprotons, and neutrons.
At CERN it will be possible to test the production of unmatter. The existence of
unmatter in the universe has a similar chance to that of the antimatter, and its production
also difficult for present technologies.

1 Introduction

This article is an improved version of an old manuscript [1].
This is a theoretical assumption about the possible existence
of a new form of matter. Up to day the unmatter was not
checked in the lab.

According to the neutrosophy theory in philosophy [2],
between an entity <A> and its opposite <AntiA> there exist
intermediate entities <NeutA> which are neither <A> nor
<AntiA>.

Thus, between “matter” and “antimatter” there must exist
something which is neither matter nor antimatter, let’s call it
UNMATTER.

In neutrosophy, <NonA> is what is not <A>, i. e.
<NonA> = <AntiA> ∪ <NeutA>. Then, in physics, NON-
MATTER is what is not matter, i. e. nonmatter means anti-
matter together with unmatter.

2 Classification

A. Matter is made out of electrons, protons, and neutrons.

Each matter atom has electrons, protons, and neutrons,
except the atom of ordinary hydrogen which has no neutron.

The number of electrons is equal to the number of pro-
tons, and thus the matter atom is neutral.

B. Oppositely, the antimatter is made out of antielectrons,
antiprotons, and antineutrons.

Each antimatter atom has antielectrons (positrons), anti-
protons, and antineutrons, except the antiatom of ordinary
hydrogen which has no antineutron.

The number of antielectrons is equal to the number of
antiprotons, and thus the antimatter atom is neutral.

C. Unmatter means neither matter nor antimatter, but in
between, an entity which has common parts from both
of them.

Etymologically “un-matter” comes from [ME<OE, akin
to Gr. an-, a-, Latin in-, and to the negative elements in no,
not, nor] and [ME matière < OFr < Latin material] matter
(see [3]), signifying no/without/off the matter.

There are two types of unmatter atoms, that we call
unatoms:

u1. The first type is derived from matter; and a such
unmatter atom is formed by electrons, protons, and
antineutrons;

u2. The second type is derived from antimatter, and a such
unmatter atom is formed by antielectrons, antiprotons,
and neutrons.

One unmatter type is oppositely charged with respect to
the other, so when they meet they annihilate.

The unmatter nucleus, called unnucleus, is formed either
by protons and antineutrons in the first type, or by antiprotons
and neutrons in the second type.

The charge of unmatter should be neutral, as that of
matter or antimatter.

The charge of un-isotopes will also be neutral, as that
of isotopes and anti-isotopes. But, if we are interested in a
negative or positive charge of un-matter, we can consider
an un-ion. For example an anion is negative, then its cor-
responding unmatter of type 1 will also be negative. While
taking a cation, which is positive, its corresponding unmatter
of type 1 will also be positive.

Sure, it might be the question of how much stable the
unmatter is, as J. Murphy pointed out in a private e-mail. But
Dirac also theoretically supposed the existence of antimatter
in 1928 which resulted from Dirac’s mathematical equation,
and finally the antimatter was discovered/produced in large
accelerators in 1996 when it was created the first atom of
antihydrogen which lasted for 37 nanoseconds only.

There does not exist an unmatter atom of ordinary hydro-
gen, neither an unnucleus of ordinary hydrogen since the
ordinary hydrogen has no neutron. Yet, two isotopes of
the hydrogen, deuterium (2H) which has one neutron, and
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artificially made tritium (3H) which has two neutrons have
corresponding unmatter atoms of both types, un-deuterium
and un-tritium respectively. The isotopes of an element X
differ in the number of neutrons, thus their nuclear mass is
different, but their nuclear charges are the same.

For all other matter atom X, there is corresponding an
antimatter atom and two unmatter atoms

The unmatter atoms are also neutral for the same reason
that either the number of electrons is equal to the number
of protons in the first type, or the number of antielectrons is
equal to the number of antiprotons in the second type.

If antimatter exists then a higher probability would be for
the unmatter to exist, and reciprocally.

Unmatter atoms of the same type stick together form
an unmatter molecule (we call it unmolecule), and so on.
Similarly one has two types of unmatter molecules.

The isotopes of an atom or element X have the same
atomic number (same number of protons in the nucleus)
but different atomic masses because the different number of
neutrons.

Therefore, similarly the un-isotopes of type 1 of X will
be formed by electrons, protons, and antineutrons, while the
un-isotopes of type 2 of X will be formed by antielectrons,
antiprotons, and neutrons.

An ion is an atom (or group of atoms) X which has
last one or more electrons (and as a consequence carries a
negative charge, called anion, or has gained one or more
electrons (and as a consequence carries a positive charge,
called cation).

Similarly to isotopes, the un-ion of type 1 (also called
un-anion 1 or un-cation 1 if resulted from a negatively
or respectively positive charge ion) of X will be formed
by electrons, protons, and antineutrons, while the un-ion of
type 2 of X (also called un-anion 2 or un-cation 2 if resulted
from a negatively or respectively positive charge ion) will be
formed by antielectrons, antiprotons, and neutrons.

The ion and the un-ion of type 1 have the same charges,
while the ion and un-ion of type 2 have opposite charges.

D. Nonmatter means what is not matter, therefore non-
matter actually comprises antimatter and unmatter.
Similarly one defines a nonnucleus.

3 Unmatter propulsion

We think (as a prediction or supposition) it could be possible
at using unmatter as fuel for space rockets or for weapons
platforms because, in a similar way as antimatter is presup-
posed to do [4, 5], its mass converted into energy will be
fuel for propulsion.

It seems to be a little easier to build unmatter than
antimatter because we need say antielectrons and antiprotons
only (no need for antineutrons), but the resulting energy
might be less than in matter-antimatter collision.

We can collide unmatter 1 with unmatter 2, or unmatter
1 with antimatter, or unmatter 2 with matter.

When two, three, or four of them (unmatter 1, unmatter 2,
matter, antimatter) collide together, they annihilate and turn
into energy which can materialize at high energy into new
particles and antiparticles.

4 Existence of unmatter

The existence of unmatter in the universe has a similar chance
to that of the antimatter, and its production also difficult for
present technologies. At CERN it will be possible to test the
production of unmatter.

If antimatter exists then a higher probability would be for
the unmatter to exist, and reciprocally.

The 1998 Alpha Magnetic Spectrometer (AMS) flown on
the International Space Station orbiting the Earth would be
able to detect, besides cosmic antimatter, unmatter if any.

5 Experiments

Besides colliding electrons, or protons, would be interesting
in colliding neutrons. Also, colliding a neutron with an anti-
neutron in accelerators.

We think it might be easier to produce in an experiment
an unmatter atom of deuterium (we can call it un-deuterium
of type 1). The deuterium, which is an isotope of the ordinary
hydrogen, has an electron, a proton, and a neutron. The
idea would be to convert/transform in a deuterium atom the
neutron into an antineutron, then study the properties of the
resulting un-deuterium 1.

Or, similarly for un-deuterium 2, to convert/transform in
a deuterium atom the electron into an antielectron, and the
proton into an antiproton (we can call it un-deuterium of
type 2).

Or maybe choose another chemical element for which
any of the previous conversions/transformations might be
possible.

6 Neutrons and antineutrons

Hadrons consist of baryons and mesons and interact via
strong force.

Protons, neutrons, and many other hadrons are composed
from quarks, which are a class of fermions that possess
a fractional electric charge. For each type of quark there
exists a corresponding antiquark. Quarks are characterized
by properties such as flavor (up, down, charm, strange, top,
or bottom) and color (red, blue, or green).

A neutron is made up of quarks, while an antineutron is
made up of antiquarks.

A neutron (see [9]) has one Up quark (with the charge
of + 2

3
×1.606×1019 C) and two Down quarks (each with the
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charge of − 13×1.606×1019 C), while an antineutron has one
anti Up quark (with the charge of − 23×1.606×1019 C) and
two anti Down quarks (each with the charge of + 1

3
×1.606×

×1019 C).
An antineutron has also a neutral charge, through it is

opposite to a neutron, and they annihilate each other when
meeting.

Both, the neutron and the antineutron, are neither attract-
ed to nor repelling from charges particles.

7 Characteristics of unmatter

Unmatter should look identical to antimatter and matter, also
the gravitation should similarly act on all three of them.
Unmatter may have, analogously to antimatter, utility in
medicine and may be stored in vacuum in traps which have
the required configuration of electric and magnetic fields for
several months.

8 Open Questions

8.a Can a matter atom and an unmatter atom of first type
stick together to form a molecule?

8.b Can an antimatter atom and an unmatter atom of sec-
ond type stick together to form a molecule?

8.c There might be not only a You and an anti-You, but
some versions of an un-You in between You and anti-
You. There might exist un-planets, un-stars, un-
galaxies? There might be, besides our universe, an
anti-universe, and more un-universes?

8.d Could this unmatter explain why we see such an im-
balance between matter and antimatter in our corner
of the universe? (Jeff Farinacci)

8.e If matter is thought to create gravity, is there any way
that antimatter or unmatter can create antigravity or
ungravity? (Mike Shafer from Cornell University)

I assume that since the magnetic field or the gravitons
generate gravitation for the matter, then for antimatter and
unmatter the corresponding magnetic fields or gravitons
would look different since the charges of subatomic particles
are different. . .

I wonder how would the universal law of attraction be
for antimmater and unmatter?
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In the theory of scale relativity, space-time is considered to be a continuum that is not
only curved, but also non-differentiable, and, as a consequence, fractal. The equation
of geodesics in such a space-time can be integrated in terms of quantum mechanical
equations. We show in this paper that the quantum potential is a manifestation of such
a fractality of space-time (in analogy with Newton’s potential being a manifestation of
curvature in the framework of general relativity).

1 Introduction

The theory of scale relativity aims at describing a non-
differentiable continuous manifold by the building of new
tools that implement Einstein’s general relativity concepts
in the new context (in particular, covariant derivative and
geodesics equations). We refer the reader to Refs. [1, 2, 3, 4]
for a detailed description of the construction of these tools.
In the present short research note, we want to address a
specific point of the theory, namely, the emergence of an
additional potential energy which manifests the fractal and
nondifferentiable geometry.

2 Non relativistic quantum mechanics

2.1 Quantum potential

In the scale relativity approach, one decomposes the velocity
field on the geodesics bundle of a nondifferentiable space-
time in terms of a classical, differentiable part, V , and of
a fractal, divergent, nondifferentiable part W of zero mean.
Both velocity fields are complex due to a fundamental two-
valuedness of the classical (differentiable) velocity issued
from the nondifferentiability [1]. Then one builds a complex
covariant total derivative that reads in the simplest case
(spinless particle, nonrelativistic velocities and no external
field) [1, 2, 3]

d

dt
=

∂

∂t
+ V∙∇ − iDΔ . (1)

The constant 2D=<dξ2>/dt (= ~/m in standard quan-
tum mechanics) measures the amplitude of the fractal fluc-
tuations. Note that it is possible to have a more complete
construction in which the full velocity field V +W intervenes
in the covariant derivative [6]. In the same way as in general
relativity, the geodesics equation can therefore be written,
using this covariant derivative, in terms of a free, inertial
motion-like equation,

dV
dt
= 0 . (2)

Let us explicitly introduce the real and imaginary parts
of the complex velocity V =V − iU ,

dV
dt
=

({
∂

∂t
+V ∙∇

}

−i {U ∙∇+DΔ}

)

(V −iU) = 0 .

(3)
We see in this expression that the real part of the covar-

iant derivative, dR/dt= ∂/∂t+V ∙∇, is the standard total
derivative expressed in terms of partial derivatives, while
the new terms are included in the imaginary part, dI/dt=
=−(U ∙∇+DΔ). The field will find its origin in the conse-
quences of these additional terms on the imaginary part of the
velocity −U . Indeed, by separating the real and imaginary
parts, equation (3) reads:

{(
∂

∂t
+ V ∙∇

)

V − (U ∙∇+DΔ)U

}

−

− i

{

(U ∙∇+DΔ)V +

(
∂

∂t
+ V ∙∇

)

U

}

= 0 .

(4)

Therefore the real part of this equation takes the form of
an Euler-Newton equation of dynamics

(
∂

∂t
+ V ∙∇

)

V = (U ∙∇+DΔ)U , (5)

i. e.,
dV

dt
=
F

m
, (6)

where the total derivative of the velocity field V takes its
standard form dV/dt=(∂/∂t+V∇)V and where the force
F is given by F =m(U ∙∇U +DΔU).

Recall that, after one has introduced the wave function
ψ from the complex action S =SR+ iSI , namely, ψ= exp
(iS/2mD)=

√
P exp(iSR/2mD), equation (2) and its gen-

eralization including a scalar field, mdV/dt=−∇φ can be
integrated under the form of a Schrödinger equation [1]

D2Δψ + iD
∂ψ

∂t
−

φ

2m
ψ = 0 . (7)
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Let us now show that the additional force derives from a
potential. Indeed, the imaginary part of the complex velocity
field is given, in terms of the modulus of ψ, by the expression:

U = D∇ lnP . (8)

The force becomes

F = mD2 [(∇ lnP ∙∇)(∇ lnP ) + Δ(∇ lnP )] . (9)

Now, by introducing
√
P in this expression, one makes

explicitly appear the remarkable identity that is already at the
heart of the proof of the Schrödinger equation ([1], p. 151),
namely,

F = 2mD2
[
2(∇ ln

√
P ∙∇)(∇ ln

√
P )+

+Δ(∇ ln
√
P )
]
= 2mD2∇

(
Δ
√
P

√
P

)

.
(10)

Therefore the force F derives from a potential energy

Q = −2mD2
Δ
√
P

√
P

, (11)

which is nothing but the standard “quantum potential”, but
here established as a mere manifestation of the nondifferen-
tiable and fractal geometry instead of being deduced from a
postulated Schrödinger equation.

The real part of the motion equation finally takes the
standard form of the equation of dynamics in presence of a
scalar potential,

dV

dt
=

(
∂

∂t
+ V ∙∇

)

V = −
∇Q
m

, (12)

while the imaginary part is the equation of continuity ∂P/∂t+
+div(PV )= 0. The fact that the field equation is derived
from the same remarkable identity that gives rise to the
Schrödinger equation is also manifest in the similarity of its
form with the free stationary Schrödinger equation, namely,

D2Δ
√
P +

Q

2m

√
P = 0 ←→ D2Δψ+

E

2m
ψ = 0 . (13)

Now, the form (11) of the field equation means that the
field can be known only after having solved the Schrödinger
equation for the wave function. This is a situation somewhat
different from that of general relativity, where, at least for
test-particles, the description is reversed: given the energy-
momentum tensor, one solves the Einstein field (i. e. space-
time geometry) equations for the metric potentials, then one
writes the geodesics equation in the space-time so determined
and solve it for the motion of the particle. However, even in
general relativity this case is an ideally simplified situation,
since already in the two-body problem the motion of the

bodies should be injected in the energy-momentum tensor,
so that this is a looped system which has no exact analytical
solution.

In the case of a quantum mechanical particle considered
in scale relativity, the loop between the motion (geodesics)
equation and the field equation is even more tight. Indeed,
here the concept of test-particle loses its meaning. Even in
the case of only one “particle”, the space-time geometry is
determined by the particle itself and by its motion, so that the
field equation and the geodesics equation now participate of
the same level of description. This explains why the motion/
geodesics equation, in its Hamilton-Jacobi form that takes the
form of the Schrödinger equation, is obtained without having
first written the field equation in an explicit way. Actually,
the potential Q is implicitly contained in the Schrödinger
form of the equations, and it is made explicit only when
coming back to a fluid-like Euler-Newton representation.
In the end, the particle is described by a wave function
(which is constructed, in the scale relativity theory, from
the geodesics), of which only the square of the modulus P
is observable. Therefore one expects the “field” to be given
by a function of P , which is exactly what is found.

2.2 Invariants and energy balance

Let us now make explicit the energy balance by accounting
for this additional potential energy. This question has already
been discussed in [7, 8] and in [9], but we propose here a
different presentation. We shall express the energy equation
in terms of the various equivalent variables which we use in
scale relativity, namely, the wave function ψ, the complex
velocity V or its real and imaginary parts V and −U .

The first and main form of the energy equation is the
Schrödinger equation itself, that we have derived as a prime
integral of the geodesics equation. The Schrödinger equation
is therefore the quantum equivalent of the metric form (i. e.,
of the equation of conservation of the energy). It may be
written in the free case under the form

D2
Δψ

ψ
= −iD

∂ lnψ

∂t
. (14)

In the stationary case with given energy E, it becomes:

E = −2mD2
Δψ

ψ
. (15)

Now we can use the fundamental remarkable identity
Δψ/ψ=(∇ lnψ)2+Δ lnψ. Re-introducing the complex
velocity field V =−2iD∇ lnψ in this expression we finally
obtain the correspondence:

E = −2mD2
Δψ

ψ
=
1

2
m
(
V2 − 2iD∇∙V

)
. (16)

Note that when a potential term is present, all these
relations remain true by replacing E by E−φ.
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This is the non-relativistic equivalent of Pissondes’ rela-
tion [8] in the relativistic case, VμVμ+ iλ∂μVμ=1 (see also
hereafter). Therefore the form of the energy E=(1/2)mV 2

is not conserved: this is precisely due to the existence of the
additional potential energy of geometric origin. Let us prove
this statement.

From equation (16) we know that the imaginary part of
(V2− 2iD∇∙V) is zero. By writing its real part in terms of
the real velocities U and V , we find:

E =
1

2
m
(
V2 − 2iD∇∙V

)
=

=
1

2
m (V 2 − U2 − 2D∇∙U) .

(17)

Now we can express the potential energy Q given in
equation (11) in terms of the velocity field U :

Q = −
1

2
m (U2 − 2D∇∙U) , (18)

so that we finally write the energy balance under the three
equivalent forms:

E = −2mD2
Δψ

ψ
=

=
1

2
m
(
V2 − 2iD∇∙V

)
=
1

2
mV 2 + Q .

(19)

More generally, in presence of an external potential en-
ergy φ and in the non-stationary case, it reads:

−
∂SR
∂t

=
1

2
mV 2 +Q+ φ , (20)

where SR is the real part of the complex action (i. e.,
SR/2mD is the phase of the wave function).

3 Relativistic quantum mechanics

3.1 Quantum potential

All the above description can be directly generalized to
relativistic QM and the Klein-Gordon equation [10, 2, 3].
The geodesics equation still reads in this case:

dVα
ds

= 0 , (21)

where the total derivative is given by [10, 3]

d

ds
=

(

Vμ + i
λ

2
∂μ
)

∂μ . (22)

The complex velocity field Vα reads in terms of the wave
function

Vα = iλ ∂α lnψ . (23)

The relation between the non-relativistic fractal param-
eter D and the relativistic one λ is simply 2D=λc. In

particular, in the standard QM case, λ is the Compton length
of the particle, λ= ~/mc, and we recover D= ~/2m.

The calculations are similar to the non-relativistic case.
We decompose the complex velocity in terms of its real
and imaginary parts, Vα=Vα− i Uα, so that the geodesics
equation becomes

{

V μ − i

(

Uμ −
λ

2
∂μ
)}

∂μ (Vα − i Uα) = 0 , (24)

i. e.,
{

V μ∂μVα −

(

Uμ −
λ

2
∂μ
)

∂μUα

}

−

− i

{(

Uμ −
λ

2
∂μ
)

∂μVα + V
μ∂μUα

}

= 0 .

(25)

The real part of this equation takes the form of a relativ-
istic Euler-Newton equation of dynamics:

dVα
ds

= V μ∂μVα =

(

Uμ −
λ

2
∂μ
)

∂μUα . (26)

Therefore the relativistic case is similar to the non-relativ-
istic one, since a generalized force also appears in the right-
hand side of this equation. Let us now prove that it also
derives from a potential. Using the expression for Uα in
terms of the modulus

√
P of the wave function,

Uα = −λ ∂α ln
√
P , (27)

we may write the force under the form

Fα
m
= −λ ∂μ ln

√
P ∂μ(−λ ∂α ln

√
P )+

+
λ2

2
∂μ∂μ∂α ln

√
P =

= λ2
(

∂μ ln
√
P ∂μ∂α ln

√
P +

1

2
∂μ∂μ∂α ln

√
P

)

.

(28)

Since ∂μ∂μ∂α = ∂α∂
μ∂μ commutes and since

∂α(∂
μ ln f ∂μ ln f) = 2 ∂

μ ln f ∂α∂
μ ln f , we obtain

Fα
m
=
1

2
λ2 ∂α

(
∂μ ln

√
P ∂μ ln

√
P +∂μ∂μ ln

√
P
)
. (29)

We can now make use of the remarkable identity (that
generalizes to four dimensions the one which is also at the
heart of the non-relativistic case)

∂μ ln
√
P ∂μ ln

√
P + ∂μ∂μ ln

√
P =

∂μ∂μ
√
P

√
P

, (30)

and we finally obtain

dVα
ds

=
1

2
λ2 ∂α

(
∂μ∂μ

√
P

√
P

)

. (31)
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Therefore, as in the non-relativistic case, the force derives
from a potential energy

QR =
1

2
mc2 λ2

∂μ∂μ
√
P

√
P

, (32)

that can also be expressed in terms of the velocity field U as

QR =
1

2
mc2 (UμUμ − λ ∂

μUμ) . (33)

At the non-relativistic limit (c→∞), the Dalembertian
∂μ∂μ=(∂

2/c2∂t2−Δ) is reduced to −Δ, and since λ=
=2D/c, we recover the nonrelativistic potential energy Q=
=−2mD2Δ

√
P/
√
P . Note the correction to the potential

introduced by Pissondes [7] which is twice this potential and
therefore cannot agree with the nonrelativistic limit.

3.2 Invariants and energy balance

As shown by Pissondes [7, 8], the four-dimensional energy
equation uμuμ=1 is generalized in terms of the complex
velocity under the form VμVμ+ iλ∂μVμ=1. Let us show
that the additional term is a manifestation of the new scalar
field Q which takes its origin in the fractal and nondifferen-
tiable geometry. Start with the geodesics equation

dVα
ds

=

(

Vμ + i
λ

2
∂μ
)

∂μ Vα = 0 . (34)

Then, after introducing the wave function by using the
relation Vα= iλ ∂α lnψ, after calculations similar to the
above ones (now on the full function ψ instead of only its
modulus

√
P ), the geodesics equation becomes:

dVα
ds

= −
λ2

2
∂α (∂

μ lnψ ∂μ lnψ + ∂
μ∂μ lnψ) =

=
1

2
∂α

(

−λ2
∂μ∂μψ

ψ

)

= 0 .

(35)

Under its right-hand form, this equation is integrated in
terms of the Klein-Gordon equation,

λ2 ∂μ∂μψ + ψ = 0 . (36)

Under its left hand form, the integral writes

−λ2(∂μ lnψ ∂μ lnψ + ∂
μ∂μ lnψ) = 1 . (37)

It becomes in terms of the complex velocity [8]

VμVμ + iλ∂
μVμ = 1 , (38)

which is therefore but another form taken by the KG equation
(as expected from the fact that the KG equation is the
quantum equivalent of the Hamilton-Jacobi equation). Let
us now separate the real and imaginary parts of this equation.

One obtains:

V μVμ − (UμUμ − λ ∂μUμ) = 1 ,

2V μUμ − λ ∂μVμ = 0 .
(39)

Then the energy balance writes, in terms of the additional
potential energy QR

V μVμ = 1 + 2
QR
mc2

. (40)

Let us show that we actually expect such a relation for the
quadratic invariant in presence of an external potential φ. The
energy relation writes in this case (E−φ)2= p2c2+m2c4,
i. e. E2− p2c2=m2c4+2Eφ−φ2. Introducing the rest
frame energy by writing E=mc2+E′, we obtain

V μVμ =
E2 − p2c2

m2c4
=

= 1 + 2
φ

mc2
+

[

2
E′

mc2
φ

mc2
−

φ2

m2c4

]

.

(41)

This justifies the relativistic factor 2 in equation (40) and
supports the interpretation of QR in terms of a potential, at
least at the level of the leading terms.

Now, concerning the additional terms, it should remain
clear that this is only an approximate description in terms of
field theory of what are ultimately (in this framework) the
manifestations of the fractal and nondifferentiable geometry
of space-time. Therefore we expect the field theory descript-
ion to be a first order approximation in the same manner as,
in general relativity, the description in terms of Newtonian
potential.

In particular, in the non-relativistic limit c→∞ the last
two terms of equation (41) vanish and we recover the energy
equation (19) which is therefore exact in this case.

4 Conclusion

Placing ourselves in the framework of the scale-relativity
theory, we have shown in a detailed way that the quantum
potential, whose origin remained mysterious in standard
quantum mechanics, is a manifestation of the nondifferen-
tiability and fractality of space-time in the new approach.

This result is expected to have many applications, as
well in physics as in other sciences, including biology [4].
It has been used, in particular, to suggest a new solution to
the problem of “dark matter” in cosmology [11, 5], based
on the proposal that chaotic gravitational system can be
described on long time scales (longer than their horizon of
predictibility) by the scale-relativistic equations and therefore
by a macroscopic Schrödinger equation [12]. In this case
there would be no need for additional non baryonic dark
matter, since the various observed non-Newtonian dynamical
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effects (that the hypothesis of dark matter wants to explain
despite the check of all attempts of detection) would be
readily accounted for by the new scalar field that manifests
the fractality of space.
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On the Possibility of Instant Displacements in the Space-Time
of General Relativity
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Employing the mathematical apparatus of chronometric invariants (physical observable
quantities), this study finds a theoretical possibility for the instant displacement of
particles in the space-time of the General Theory of Relativity. This is to date the sole
theoretical explanation of the well-known phenomenon of photon teleportation, given
by the purely geometrical methods of Einstein’s theory.

As it is known, the basic space-time of the General The-
ory of Relativity is a four-dimensional pseudo-Riemannian
space, which is, in general, inhomogeneous, curved, rotating,
and deformed. There the square of the space-time interval
ds2= gαβ dx

αdxβ , being expressed in the terms of physical
observable quantities — chronometric invariants [1, 2], takes
the form

ds2 = c2dτ 2 − dσ2.

Here the quantity

dτ =
(
1−

w

c2

)
dt−

1

c2
vidx

i

is an interval of physical observable time, w=c2(1−
√
g00) is

the gravitational potential, vi=−c
g0i√
g00

is the linear velocity

of the space rotation, dσ2=hik dxidxk is the square of
a spatial observable interval, hik=−gik+ 1

c2
vivk is the

metric observable tensor, gik are spatial components of the
fundamental metric tensor gαβ (space-time indices are Greek
α, β=0, 1, 2, 3, while spatial indices — Roman i, k=1, 2, 3).

Following this form we consider a particle displaced by
ds in the space-time. We write ds2 as follows

ds2 = c2dτ 2
(

1−
v2

c2

)

,

where v2=hikvivk, and vi=dx
i

dτ
is the three-dimensional

observable velocity of the particle. So ds is: (1) a substantial
quantity under v<c; (2) a zero quantity under v= c; (3) an
imaginary quantity under v>c.

Particles of non-zero rest-masses m0 6=0 (substance) can
be moved: (1) along real world-trajectories cdτ >dσ, having
real relativistic masses m= m0√

1− v2/c2
; (2) along imagin-

ary world-trajectories cdτ <dσ, having imaginary relativistic

masses m= im0√
v2/c2 − 1

(tachyons). World-lines of both

kinds are known as non-isotropic trajectories.
Particles of zero rest-masses m0=0 (massless particles),

having non-zero relativistic massesm 6=0, move along world-
trajectories of zero four-dimensional lengths cdτ = dσ at the
velocity of light. They are known as isotropic trajectories.

Massless particles are related to light-like particles — quanta
of electromagnetic fields (photons).

A condition under which a particle may realize an instant
displacement (teleportation) is equality to zero of the observ-
able time interval dτ =0 so that the teleportation condition is

w+ viu
i = c2,

where ui= dxi

dt
is its three-dimensional coordinate velocity.

From this the square of that space-time interval by which
this particle is instantly displaced takes the form

ds2 = −dσ2 = −
(
1−

w

c2

)2
c2dt2 + gik dx

idxk,

where 1− w
c2
= viu

i

c2
in this case, because dτ =0.

Actually, the signature (+−−−) in the space-time area
of a regular observer becomes (−+++) in that space-time
area where particles may be teleported. So the terms “time”
and “three-dimensional space” are interchanged in that area.
“Time” of teleporting particles is “space” of the regular
observer, and vice versa “space” of teleporting particles is
“time” of the regular observer.

Let us first consider substantial particles. As it easy to
see, instant displacements (teleportation) of such particles
manifests along world-trajectories in which ds2=−dσ2 6=0
is true. So the trajectories represented in the terms of observ-
able quantities are purely spatial lines of imaginary three-
dimensional lengths dσ, although being taken in ideal world-
coordinates t and xi the trajectories are four-dimensional. In
a particular case, where the space is free of rotation (vi=0)
or its rotation velocity vi is orthogonal to the particle’s co-
ordinate velocity ui (so that viui= |vi||ui| cos (vi;ui)= 0),
substantial particles may be teleported only if gravitational
collapse occurs (w= c2). In this case world-trajectories of
teleportation taken in ideal world-coordinates become also
purely spatial ds2= gik dxidxk.

Second, massless light-like particles (photons) may be
teleported along world-trajectories located in a space of the
metric

ds2 = −dσ2 = −
(
1−

w

c2

)2
c2dt2 + gik dx

idxk = 0 ,
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because for photons ds2=0 by definition. So the space of
photon teleportation characterizes itself by the conditions
ds2=0 and dσ2= c2dτ 2=0.

The obtained equation is like the “light cone” equation
c2dτ 2− dσ2=0 (dσ 6=0, dτ 6=0), elements of which are
world-trajectories of light-like particles. But, in contrast to
the light cone equation, the obtained equation is built by
ideal world-coordinates t and xi — not this equation in the
terms of observable quantities. So teleporting photons move
along trajectories which are elements of the world-cone (like
the light cone) in that space-time area where substantial
particles may be teleported (the metric inside that area has
been obtained above).

Considering the photon teleportation cone equation from
the viewpoint of a regular observer, we can see that the spatial
observable metric dσ2=hik dx

idxk becomes degenerate,
h= det ||hik||=0, in the space-time area of that cone. Taking
the relationship g=−hg00 [1, 2] into account, we conclude
that the four-dimensional metric ds2= gαβ dxαdxβ degen-
erates there as well g= det ||gαβ ||=0. The last fact implies
that signature conditions defining pseudo-Riemannian spaces
are broken, so that photon teleportation manifests outside the
basic space-time of the General Theory of Relativity. Such
a fully degenerate space was considered in [3, 4], where it
was referred to as a zero-space because, from viewpoint of
a regular observer, all spatial intervals and time intervals are
zero there.

When dτ =0 and dσ=0 observable relativistic mass m
and the frequency ω become zero. Thus, from the viewpoint
of a regular observer, all particles located in zero-space
(in particular, teleporting photons) having zero rest-masses
m0=0 appear as zero relativistic masses m=0 and the fre-
quencies ω=0. Therefore particles of this kind may be as-
sumed to be the ultimate case of massless light-like particles.

We will refer to all particles located in zero-space as
zero-particles.

In the frames of the particle-wave concept each particle

is given by its own wave world-vector Kα=
∂ψ
∂xα

, where ψ

is the wave phase (eikonal). The eikonal equation KαK
α=0

[5], setting forth that the length of the wave vector Kα re-
mains unchanged∗, for regular massless light-like particles
(regular photons), becomes a travelling wave equation

1

c2

( ∗∂ψ

∂t

)2
− hik

∗∂ψ

∂xi

∗∂ψ

∂xk
= 0 ,

that may be obtained after takingKαK
α= gαβ

∂ψ
∂xα

∂ψ
∂xβ

=0

in the terms of physical observable quantities [1, 2], where we
∗According to Levi-Civita’s rule, in a Riemannian space of n dimen-

sions the length of any n-dimensional vector Qα remains unchanged
in parallel transport, so QαQα= const. So it is also true for the four-
dimensional wave vector Kα in a four-dimensional pseudo-Riemannian
space — the basic space-time of the General Theory of Relativity. Since
ds=0 is true along isotropic trajectories (because cdτ = dσ), the length of
any isotropic vector is zero, so that we have KαKα=0.

formulate regular derivatives through chronometrically in-

variant (physical observable) derivatives
∗∂
∂t
= 1√

g00
∂
∂t

and
∗∂
∂xi

= ∂
∂xi

+ 1
c2
vi
∗∂
∂t

and we use g00= 1
g00

(
1− 1

c2
viv

i
)
,

vk=hikv
i, vi=−cg0i

√
g00, gik=−hik.

The eikonal equation in zero-space takes the form

hik
∗∂ψ

∂xi

∗∂ψ

∂xk
= 0

because there ω=
∗∂ψ
∂t

=0, putting the equation’s time term
into zero. It is a standing wave equation. So, from the view-
point of a regular observer, in the frames of the particle-
wave concept, all particles located in zero-space manifest as
standing light-like waves, so that all zero-space appears filled
with a system of light-like standing waves — a light-like
hologram. This implies that an experiment for discovering
non-quantum teleportation of photons should be linked to
stationary light.

There is no problem in photon teleportation being realised
along fully degenerate world-trajectories (g=0) outside the
basic pseudo-Riemannian space (g < 0), while teleportation
trajectories of substantial particles are strictly non-degenerate
(g < 0) so the lines are located in the pseudo-Riemannian
space†. It presents no problem because at any point of the
pseudo-Riemannian space we can place a tangential space
of g6 0 consisting of the regular pseudo-Riemannian space
(g < 0) and the zero-space (g=0) as two different areas of
the same manifold. A space of g6 0 is a natural general-
ization of the basic space-time of the General Theory of
Relativity, permitting non-quantum ways for teleportation of
both photons and substantial particles (previously achieved
only in quantum fashion — quantum teleportation of photons
in 1998 [6] and of atoms in 2004 [7, 8]).

Until now teleportation has had an explanation given only
by Quantum Mechanics [9]. Now the situation changes: with
our theory we can find physical conditions for the realisation
of teleportation of both photons and substantial particles in
a non-quantum way.

The only difference is that from the viewpoint of a regular
observer the square of any parallely transported vector rem-
ains unchanged. It is also an “observable truth” for vectors
in zero-space, because the observer reasons standards of his
pseudo-Riemannian space anyway. The eikonal equation in
zero-space, expressed in his observable world-coordinates, is
KαK

α=0. But in ideal world-coordinates t and xi the metric

inside zero-space, ds2=−
(
1− w

c2

)
2
c2dt2 + gik dx

idxk=0,

degenerates into a three-dimensional dμ2 which, depending

†Any space of Riemannian geometry has the strictly non-degenerate
metric feature g < 0 by definition. Pseudo-Riemannian spaces are a
particular case of Riemannian spaces, where the metric is sign-alternating.
So the four-dimensional pseudo-Riemannian space of the signature (+−−−)
or (−+++) on which Einstein based the General Theory of Relativity is also
a strictly non-degenerated metric (g < 0).
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on gravitational potential w uncompensated by something

else, is not invariant, dμ2= gik dxidxk =
(
1− w

c2

)
2
c2dt2 6=

6= inv. As a result, within zero-space, the square of a trans-
ported vector, a four-dimensional coordinate velocity vector
Uα for instance, being degenerated into a spatial U i, does
not remain unchanged

UiU
i = gikU

iUk =
(
1−

w

c2

)2
c2 6= const,

so that although the geometry is Riemannian for a regular
observer, the real geometry of zero-space within the space
itself is non-Riemannian.

We conclude from this brief study that instant displace-
ments of particles are naturally permitted in the space-time
of the General Theory of Relativity. As it was shown, tele-
portation of substantial particles and photons realizes itself in
different space-time areas. But it would be a mistake to think
that teleportation requires the acceleration of a substantial
particle to super-light speeds (the tachyons area), while a
photon needs to be accelerated to infinite speed. No — as it
is easy to see from the teleportation condition w+ viui= c2,
if gravitational potential is essential and the space rotates at
a speed close to the velocity of light, substantial particles
may be teleported at regular sub-light speeds. Photons can
reach the teleportation condition easier, because they move
at the velocity of light. From the viewpoint of a regular
observer, as soon as the teleportation condition is realised
in the neighbourhood of a moving particle, such particle
“disappears” although it continues its motion at a sub-light
coordinate velocity ui (or at the velocity of light) in another
space-time area invisible to us. Then, having its velocity
reduced, or by the breaking of the teleportation condition by
something else (lowering gravitational potential or the space
rotation speed), it “appears” at the same observable moment
at another point of our observable space at that distance and
in the direction which it obtained by ui there.

In connection with the results, it is important to re-
member the “Infinity Relativity Principle”, introduced by
Abraham Zelmanov (1913–1987), a prominent cosmologist.
Proceeding from his cosmological studies [1], he concluded
that “. . . in homogeneous isotropic cosmological models spa-
tial infinity of the Universe depends on our choice of that
reference frame from which we observe the Universe (the
observer’s reference frame). If the three-dimensional space
of the Universe, being observed in one reference frame, is
infinite, it may be finite in another reference frame. The
same is as well true for the time during which the Universe
evolves.”

We have come to the “Finite Relativity Principle” here.
As it was shown, because of a difference between phys-
ical observable world-coordinates and ideal ones, the same
space-time areas may be very different, being defined in each
of the frames. Thus, in observable world-coordinates, zero-

space is a point (dτ =0, dσ=0), while dτ =0 and dσ=0

taken in ideal world-coordinates become −
(
1− w

c2

)
2
c2dt2+

+ gik dx
idxk=0, which is a four-dimensional cone equation

like the light cone. Actually here is the “Finite Relativity
Principle” for observed objects — an observed point is the
whole space taken in ideal coordinates.

Conclusions

This research currently is the sole explanation of virtual par-
ticles and virtual interaction given by the purely geometrical
methods of Einstein’s theory. It is possible that this method
will establish a link between Quantum Electrodynamics and
the General Theory of Relativity.

Moreover, this research is currently the sole theoretical
explanation of the observed phenomenon of teleportation
[6, 7, 8] given by the General Theory of Relativity.

This paper was read at the conference “Today’s Take on
Einstein’s Relativity” (Tucson, Arizona), February 18, 2005.
The authors are grateful to Prof. Florentin Smarandache for
his assistance and Stephen J. Crothers for some editing.
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We investigate the consequences of the Mach’s principle of inertia within the context
of the Dual Phase Space Relativity which is compatible with the Eddington-Dirac large
numbers coincidences and may provide with a physical reason behind the observed
anomalous Pioneer acceleration and a solution to the riddle of the cosmological
constant problem. The cosmological implications of Non-Archimedean Geometry by
assigning an upper impossible scale in Nature and the cosmological variations of
the fundamental constants are also discussed. We study the corrections to Newtonian
dynamics resulting from the Dual Phase Space Relativity by analyzing the behavior of a
test particle in a modified Schwarzschild geometry (due to the the effects of the maximal
acceleration) that leads in the weak-field approximation to essential modifications of
the Newtonian dynamics and to violations of the equivalence principle. Finally we
follow another avenue and find modified Newtonian dynamics induced by the Yang’s
Noncommutative Spacetime algebra involving a lower and upper scale in Nature.

1 Introduction

In recent years we have argued that the underlying funda-
mental physical principle behind string theory, not unlike the
principle of equivalence and general covariance in Einstein’s
general relativity, might well be related to the existence of
an invariant minimal length scale (Planck scale) attainable
in nature. A scale relativistic theory involving spacetime
resolutions was developed long ago by Nottale where the
Planck scale was postulated as the minimum observer in-
dependent invariant resolution in Nature [2]. Since “points”
cannot be observed physically with an ultimate resolution,
they are fuzzy and smeared out into fuzzy balls of Planck
radius of arbitrary dimension. For this reason one must con-
struct a theory that includes all dimensions (and signatures)
on the equal footing. Because the notion of dimension is a
topological invariant, and the concept of a fixed dimension
is lost due to the fuzzy nature of points, dimensions are
resolution-dependent, one must also include a theory with
all topologies as well. It turned out that Clifford algebras
contained the appropriate algebro-geometric features to im-
plement this principle of polydimensional transformations
that reshuffle a five-brane history for a membrane history, for
example. For an extensive review of this Extended Relativity
Theory in Clifford Spaces that encompasses the unified dy-
namics of all p-branes, for different values of the dimensions
of the extended objects, and numerous physical conse-
quences, see [1].

A Clifford-space dynamical derivation of the stringy-
minimal length uncertainty relations [11] was furnished in
[45]. The dynamical consequences of the minimal-length in
Newtonian dynamics have been recently reviewed by [44].

The idea of minimal length (the Planck scale LP ) can be
incorporated within the context of the maximal acceleration
Relativity principle [68] amax= c2/LP in Finsler Geom-
etries [56] and [14]. A different approach than the one based
on Finsler Geometries is the pseudo-complex Lorentz group
description by Schuller [61] related to the effects of maximal
acceleration in Born-Infeld models that also maintains Lo-
rentz invariance, in contrast to the approaches of Double
Special Relativity (DSR) [70] where the Lorentz symmetry
is deformed. Quantum group deformations of the Poincaré
symmetry and of Gravity have been analyzed by [69] where
the deformation parameter q could be interpreted in terms
of an upper and lower scale as q= eLP /R such that the
undeformed limit q=1 can be attained when LP → 0 and/or
whenR→∞ [68]. For a discussions on the open problems of
Double Special Relativity theories based on kappa-deformed
Poincaré symmetries [63] and motivated by the anomalous
Lorentz-violating dispersion relations in the ultra high energy
cosmic rays [71, 73], we refer to [70].

An upper limit on the maximal acceleration of particles
was proposed long ago by Caianiello [52]. This idea is a
direct consequence of a suggestion made years earlier by
Max Born on a Dual Relativity principle operating in Phase
Spaces [49], [74] where there is an upper bound on the
four-force (maximal string tension or tidal forces in strings)
acting on a particle as well as an upper bound in the particle’s
velocity given by the speed of light. For a recent status of the
geometries behind maximal-acceleration see [73]; its relation
to the Double Special Relativity programs was studied by
[55] and the possibility that Moyal deformations of Poincaré
algebras could be related to the kappa-deformed Poincaré
algebras was raised in [68]. A thorough study of Finsler
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geometry and Clifford algebras has been undertaken by Va-
caru [81] where Clifford/spinor structures were defined with
respect to Nonlinear connections associated with certain non-
holonomic modifications of Riemann-Cartan gravity. The
study of non-holonomic Clifford-Structures in the construc-
tion of a Noncommutative Riemann-Finsler Geometry has
recently been advanced by [81].

Other implications of the maximal acceleration principle
in Nature, like neutrino oscillations and other phenomena,
have been studied by [54], [67], [22]. Recently, the variations
of the fine structure constant α [64] with the cosmological
accelerated expansion of the Universe was recast as a re-
normalization group-like equation governing the cosmolo-
gical red shift (Universe scale) variations of α based on
this maximal acceleration principle in Nature [68]. The fine
structure constant was smaller in the past. Pushing the cutoff
scale to the minimum Planck scale led to the intriguing result
that the fine structure constant could have been extremely
small (zero) in the early Universe and that all matter in
the Universe could have emerged via the Unruh-Rindler-
Hawking effect (creation of radiation/matter) due to the ac-
celeration w. r. t the vacuum frame of reference. For reviews
on the alleged variations of the fundamental constants in
Nature see [65].

The outline of this work goes as follows. In section 2 we
review the Dual Phase Space Relativity and show why the
Planck areas are invariant under acceleration-boosts trans-
formations.

In 3.1 we investigate the consequences of the Mach’s
principle of inertia within the context of the Dual Phase Space
Relativity Principle which is compatible with the Eddington-
Dirac large numbers coincidence and may provide with a
very plausible physical reason behind the observed anoma-
lous Pioneer acceleration due to the fact that the universe
is in accelerated motion (a non-inertial frame of reference)
w. r. t the vacuum. Our proposal shares similarities with the
previous work of [6], [3]. To our knowledge, the first person
who predicted the Pioneer anomaly in 1978 was P. LaViolette
[5], from an entirely different approach based on the novel
theory of sub-quantum kinetics to explain the vacuum fluctu-
ations, two years prior to the Anderson et al observations [7].
The cosmological implications of Non-Archimedean Geom-
etry [94] by assigning an upper impassible scale in Nature [2]
and the cosmological variations of the fundamental constants
are also discussed.

In 3.2 the crucial modifications to Newtonian dynamics
resulting from the Dual Phase Space Relativity are analyzed
further. In particular, the physical consequences of an upper
and lower bounds in the acceleration and an upper and
lower bounds in the angular velocity. We study the particular
behavior of a test particle living in a modified Schwarzschild
geometry (due to the the effects of the principle of maximal
acceleration) that leads in the weak-field approximation to
essential modifications of the Newtonian dynamics and to

violations of the equivalence principle. For violations of the
equivalence principle in neutrino oscillations see [42], [54].

Finally, in 4 we study another interesting avenue for the
origins of modified Newtonian dynamics based on Yang’s
Noncommutative Spacetime algebra involving a lower and
upper scale [136] that has been revisited recently by us [134]
in the context of holography and area-quantization in C-
spaces (Clifford spaces); in the physics of D-branes and
covariant Matrix models by [137] and within the context of
Lie algebra stability by [48]. A different algebra with two
length scales has been studied by [43] in order to account for
modifications of Newtonian dynamics (that also violates the
equivalence principle).

2 Dual Phase-Space Relativity

In this section we will review in detail the Born’s Dual Phase
Space Relativity and the principle of Maximal-acceleration
Relativity [68] from the perspective of 8D Phase Spaces and
the role of the invariance U(1, 3) Group. We will focus for
simplicity on a flat 8D Phase Space. A curved case scenario
has been analyzed by Brandt [56] within the context of the
Finsler geometry of the 8D tangent bundle of spacetime
and written the generalized 8D gravitational equations that
reduce to the ordinary Einstein-Riemannian gravitational
equations in the infinite acceleration limit. Vacaru [81] has
constructed the Riemann-Finsler geometries endowed with
non-holonomic structures induced by nonlinear connections
and developed the formalism to build a Noncommutative
Riemann-Finsler Geometry by introducing suitable Clifford
structures. A curved momentum space geometry was studied
by [50]. Toller [73] has explored the different possible geom-
etries associated with the maximal acceleration principle and
the physical implications of the meaning of an “observer”,
“measuring device” in the cotangent space.

The U(1, 3)=SU(1, 3) ⊗ U(1) Group transformations,
which leave invariant the phase-space intervals under rota-
tions, velocity and acceleration boosts, were found by Low
[74] and can be simplified drastically when the velocity/ac-
celeration boosts are taken to lie in the z-direction, leaving
the transverse directions x, y, px, py intact; i. e., the U(1, 1)=
=SU(1, 1)⊗U(1) subgroup transformations that leave in-
variant the phase-space interval are given by (in units of
~= c=1)

(dω)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=

= (dτ )2
[

1 +
(dE/dτ )2 − (dP/dτ )2

b2

]

=

= (dτ )2
[

1−
m2g2(τ )

m2
PA

2
max

]

,

(2.1)

where we have factored out the proper time infinitesimal
(dτ )2= dT 2 − dX2 in eq-(2.1) and the maximal proper-

C. Castro. On Dual Phase-Space Relativity, the Machian Principle and Modified Newtonian Dynamics 21



Volume 1 PROGRESS IN PHYSICS April, 2005

force is set to be b≡mPAmax. Here mP is the Planck mass
1/LP so that b=(1/LP )2, may also be interpreted as the
maximal string tension when LP is the Planck scale.

The quantity g(τ ) is the proper four-acceleration of a
particle of mass m in the z-direction which we take to be
defined by the X coordinate. The interval (dω)2 described
by Low [74] is U(1, 3)-invariant for the most general trans-
formations in the 8D phase-space. These transformations
are rather elaborate, so we refer to the references [74] for
details. The appearance of the U(1, 3) group in 8D Phase
Space is not too surprising since it could be seen as the
“complex doubling” version of the Lorentz group SO(1, 3).
Low discussed the irreducible unitary representations of such
U(1, 3) group and the relevance for the strong interactions
of quarks and hadrons since U(1, 3), with 16 generators,
contains the SU(3) group.

The analog of the Lorentz relativistic factor in eq-(2.1)
involves the ratios of two proper forces. One variable force is
given by mg(τ ) and the maximal proper force sustained by
an elementary particle of mass mP (a Planckton) is assumed
to be Fmax=mPlanckc

2/LP . When m=mP , the ratio-
squared of the forces appearing in the relativistic factor of
eq-(2.1) becomes then g2/A2max, and the phase space interval
coincides with the geometric interval discussed by [61], [54],
[67], [22].

The transformations laws of the coordinates in that leave
invariant the interval (2.1) were given by [74]:

T ′ = T cosh ξ +

(
ξvX

c2
+
ξaP

b2

)
sinh ξ

ξ
, (2.2a)

E′ = E cosh ξ + (−ξaX + ξvP )
sinh ξ

ξ
, (2.2b)

X ′ = X cosh ξ +

(

ξvT −
ξaE

b2

)
sinh ξ

ξ
, (2.2c)

P ′ = P cosh ξ +

(
ξvE

c2
+ ξaT

)
sinh ξ

ξ
. (2.2d)

The ξv is velocity-boost rapidity parameter and the ξa is
the force/acceleration-boost rapidity parameter of the
primed-reference frame. They are defined respectively:

tanh

(
ξv
c

)

=
v

c
, tanh

(
ξa
b

)

=
ma

mPAmax
. (2.3)

The effective boost parameter ξ of the U(1, 1) subgroup
transformations appearing in eqs-(2.2a, 2.2d) is defined in
terms of the velocity and acceleration boosts parameters
ξv, ξa respectively as:

ξ ≡

√
ξ2v
c2
+
ξ2a
b2
. (2.4)

Our definition of the rapidity parameters are different
than those in [74].

Straightforward algebra allows us to verify that these
transformations leave the interval of eq-(2.1) in classical
phase space invariant. They are are fully consistent with
Born’s duality Relativity symmetry principle [49] (Q,P )→
→ (P,−Q). By inspection we can see that under Born du-
ality, the transformations in eqs-(2.2a, 2.2d) are rotated into
each other, up to numerical b factors in order to match
units. When on sets ξa=0 in (2.2a, 2.2d) one recovers
automatically the standard Lorentz transformations for the
X,T and E,P variables separately, leaving invariant the
intervals dT 2− dX2=(dτ )2 and (dE2− dP 2)/b2 sepa-
rately.

When one sets ξv =0 we obtain the transformations rules
of the events in Phase space, from one reference-frame into
another uniformly-accelerated frame of reference, a= const,
whose acceleration-rapidity parameter is in this particular
case:

ξ ≡
ξa
b
, tanh(ξ) =

ma

mPAmax
. (2.5)

The transformations for pure acceleration-boosts in Phase
Space are:

T ′ = T cosh ξ +
P

b
sinh ξ , (2.6a)

E′ = E cosh ξ − bX sinh ξ , (2.6b)

X ′ = X cosh ξ −
E

b
sinh ξ , (2.6c)

P ′ = P cosh ξ + bT sinh ξ . (2.6d)

It is straightforward to verify that the transformations
(2.6a, 2.6c) leave invariant the fully phase space interval
(2.1) but does not leave invariant the proper time interval
(dτ )2= dT 2− dX2. Only the combination:

(dω)2 = (dτ )2
(

1−
m2g2

m2
PA

2
max

)

(2.7a)

is truly left invariant under pure acceleration-boosts in Phase
Space. Once again, can verify as well that these transforma-
tions satisfy Born’s duality symmetry principle:

(T,X)→ (E,P ), (E,P )→ (−T,−X) (2.7b)

and b→ 1
b . The latter Born duality transformation is nothing

but a manifestation of the large/small tension duality princi-
ple reminiscent of the T -duality symmetry in string theory;
i. e. namely, a small/large radius duality, a winding modes/
Kaluza-Klein modes duality symmetry in string compacti-
fications and the Ultraviolet/Infrared entanglement in Non-
commutative Field Theories. Hence, Born’s duality principle
in exchanging coordinates for momenta could be the under-
lying physical reason behind T -duality in string theory.

The composition of two successive pure acceleration-
boosts is another pure acceleration-boost with acceleration
rapidity given by ξ′′= ξ + ξ′. The addition of proper
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forces (accelerations) follows the usual relativistic compo-
sition rule:

tanh ξ′′ = tanh(ξ + ξ′) =

=
tanh ξ + tanh ξ′

1 + tanh ξ tanh ξ′
⇒

ma′′

mPA
=

ma
mPA

+ ma′

mPA

1 + m2aa′

m2
PA

2

(2.8)

and in this fashion the upper limiting proper acceleration is
never surpassed like it happens with the ordinary Special
Relativistic addition of velocities.

The group properties of the full combination of velocity
and acceleration boosts eqs-(2.2a, 2.2d) in Phase Space re-
quires much more algebra [68]. A careful study reveals that
the composition rule of two successive full transformations
is given by ξ′′= ξ+ ξ′ and the transformation laws are pre-
served if, and only if, the ξ; ξ′; ξ′′ . . . parameters obeyed the
suitable relations:

ξa
ξ
=
ξ′a
ξ′
=
ξ′′a
ξ′′
=

ξ′′a
ξ + ξ′

, (2.9a)

ξv
ξ
=
ξ′v
ξ′
=
ξ′′v
ξ′′
=

ξ′′v
ξ + ξ′

. (2.9b)

Finally we arrive at the composition law for the effective,
velocity and acceleration boosts parameters ξ′′; ξ′′v ; ξ′′a re-
spectively:

ξ′′v = ξv + ξ
′
v , (2.10a)

ξ′′a = ξa + ξ
′
a , (2.10b)

ξ′′ = ξ + ξ′. (2.10c)

The above relations among the parameters are required
in order to prove the U(1, 1) group composition law of the
transformations in order to have a truly Maximal-Acceleration
Phase Space Relativity theory resulting from a Phase-Space
change of coordinates in the cotangent bundle of spacetime.

2.1 Planck-scale Areas are invariant under acceleration
boosts

Having displayed explicitly the Group transformations rules
of the coordinates in Phase space we will show why infinite
acceleration-boosts (which is not the same as infinite proper
acceleration) preserve Planck-scale Areas [68] as a result of
the fact that b=(1/L2P ) equals the maximal invariant force,
or string tension, if the units of ~= c=1 are used.

At Planck-scale LP intervals/increments in one reference
frame we have by definition (in units of ~= c=1): ΔX =
=ΔT =LP and ΔE=ΔP = 1

LP
where b≡ 1

L2P
is the max-

imal tension. From eqs-(2.6a, 2.6d) we get for the trans-
formation rules of the finite intervals ΔX , ΔT , ΔE, ΔP ,
from one reference frame into another frame, in the infinite
acceleration-boost limit ξ→∞,

ΔT ′ = LP (cosh ξ + sinh ξ)→∞

ΔE′ =
1

LP
(cosh ξ − sinh ξ)→ 0 (2.11b)

by a simple use of L’Hôpital’s rule or by noticing that both
cosh ξ; sinh ξ functions approach infinity at the same rate

ΔX ′ = LP (cosh ξ − sinh ξ)→ 0 , (2.11c)

ΔP ′ =
1

LP
(cosh ξ + sinh ξ)→∞ , (2.11d)

where the discrete displacements of two events in Phase Spa-
ce are defined: ΔX =X2−X1=LP , ΔE=E2−E1= 1

LP
,

ΔT =T2−T1=LP and ΔP =P2−P1= 1
LP
.

Due to the identity:

(cosh ξ + sinh ξ)(cosh ξ − sinh ξ) =

= cosh2 ξ − sinh2 ξ = 1
(2.12)

one can see from eqs-(2.11a, 2.11d) that the Planck-scale
Areas are truly invariant under infinite acceleration-boosts
ξ=∞:

ΔX ′ΔP ′ = 0×∞ =

=ΔXΔP (cosh2 ξ− sinh2 ξ)=ΔXΔP=
LP
LP
=1 ,

(2.13a)

ΔT ′ΔE′ =∞× 0 =

=ΔTΔE (cosh2 ξ− sinh2 ξ)=ΔTΔE=
LP
LP
=1 ,

(2.13b)

ΔX ′ΔT ′ = 0×∞ =

=ΔXΔT (cosh2 ξ− sinh2 ξ)=ΔXΔT=(LP )2 ,
(2.13c)

ΔP ′ΔE′ =∞× 0 =

= ΔPΔE (cosh2 ξ − sinh2 ξ) = ΔPΔE = 1
L2P

.
(2.13d)

It is important to emphasize that the invariance property
of the minimal Planck-scale Areas (maximal Tension) is not
an exclusive property of infinite acceleration boosts ξ=∞,
but, as a result of the identity cosh2 ξ− sinh2 ξ=1, for
all values of ξ, the minimal Planck-scale Areas are always
invariant under any acceleration-boosts transformations.
Meaning physically, in units of ~= c=1, that the Maximal
Tension (or maximal Force) b= 1

L2P
is a true physical invar-

iant universal quantity. Also we notice that the Phase-space
areas, or cells, in units of ~, are also invariant! The pure-
acceleration boosts transformations are “symplectic”. It can
be shown also that areas greater (smaller) than the Planck-
area remain greater (smaller) than the invariant Planck-area
under acceleration-boosts transformations.

The infinite acceleration-boosts are closely related to the
infinite red-shift effects when light signals barely escape
Black hole Horizons reaching an asymptotic observer with an
infinite red shift factor. The important fact is that the Planck-
scale Areas are truly maintained invariant under acceleration-
boosts. This could reveal very important information about
Black-holes Entropy and Holography.
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3 Modified Newtonian Dynamics from Phase Space
Relativity

3.1 The Machian Principle and Eddington-Dirac Large
Numbers Coincidence

A natural action associated with the invariant interval in
Phase-Space given by eq-(2.1) is:

S = m

∫
dτ

√

1 +
m2

m2
Pa

2
(d2xμ/dτ 2)(d2xμ/dτ 2) . (3.1)

The proper-acceleration is orthogonal to the proper-
velocity and this can be easily verified by differentiating
the time-like proper-velocity squared:

V 2 =
dxμ

dτ

dxμ
dτ

= V μVμ = 1 > 0⇒

⇒
dV μ

dτ
Vμ =

d2xμ

dτ 2
Vμ = 0 ,

(3.2)

which implies that the proper-acceleration is space-like:

−g2(τ ) =
d2xμ

dτ 2
d2xμ
dτ 2

< 0⇒

⇒ S = m

∫
dτ

√

1−
m2g2

m2
Pa

2
= m

∫
dω ,

(3.3)

where the analog of the Lorentz time-dilation factor in Phase-
space is now given by

dω = dτ

√

1−
m2g2(τ )

m2
Pa

2
, (3.4a)

namely,

(dω)2 = Ω2dτ 2 =

[

1−
m2g2(τ )

m2
Pa

2

]

gμνdx
μdxν . (3.4b)

The invariant proper interval is no longer the standard
proper-time τ but is given by the quantity ω(τ ). The deep
connection between the physics of maximal acceleration and
Finsler geometry has been analyzed by [56]. The action is
real-valued if, and only if,m2g2<m2

Pa
2 in the same fashion

that the action in Minkowski spacetime is real-valued if, and
only if, v2 < c2. This is the physical reason why there is an
upper bound in the proper-four force acting on a fundamental
particle given by (mg)bound=mP (c

2/LP )=m
2
P in natural

units of ~= c=1.
The Eddington-Dirac large numbers coincidence (and an

ultraviolet/infrared entanglement) can be easily implemented
if one equates the upper bound on the proper-four force sus-
tained by a fundamental particle, (mg)bound=mP (c

2/LP ),
with the proper-four force associated with the mass of the
(observed) universe MU , and whose minimal acceleration

c2/R is given in terms of an infrared-cutoff R (the Hubble
horizon radius). Equating these proper-four forces gives

mP c
2

LP
=
MUc

2

R
⇒

MU

mP
=

R

LP
∼ 1061 , (3.5)

from this equality of proper-four forces associated with a
maximal/minimal acceleration one infersMU∼1061mPlanck

∼10611019mproton=10
80mproton which is indeed consis-

tent with observations and agrees with the Eddington-Dirac
number 1080:

N = 1080 = (1040)2 ∼

(
Fe
FG

)2
∼

(
R

re

)2
, (3.6)

where Fe= e2/r2 is the electrostatic force between an elec-
tron and a proton; FG=Gmemproton/r

2 is the correspond-
ing gravitational force and re= e

2/me ∼ 10−13cm is the
classical electron radius (in units ~= c=1).

One may notice that the above equation (3.5) is also
consistent with the Machian postulate that the rest mass of a
particle is determined via the gravitational potential energy
due to the other masses in the universe. In particular, by
equating:

mic
2=Gmi

∑

j

mj

|ri−rj |
=
GmiMU

R
⇒
c2

G
=
MU

R
. (3.7)

Due to the negative binding energy, the composite mass
m12 of a system of two objects of mass m1, m2 is not
equal to the sum m1+m2>m12. We can now arrive at
the conclusion that the minimal acceleration c2/R is also
the same acceleration induced on a test particle of mass
m by a spherical mass distribution MU inside a radius R.
The acceleration felt by a test particle of mass m sitting at
the edge of the observable Universe (at the Hubble horizon
radius R) is:

GMU

R2
= a . (3.8)

From the last two equations (3.7, 3.8) one gets the same
expression for the minimal acceleration:

a = amin =
c2

R
, (3.9)

which is of the same order of magnitude as the anomalous
acceleration of the Pioneer and Galileo spacecrafts a∼ 10−8

cm/s2. A very plausible physical reason behind the observed
anomalous Pioneer acceleration could be due to the fact that
the universe is in accelerated expansion and motion (a non-
inertial frame of reference) w. r. t the vacuum. Our proposal
shares some similarities with the previous work of [6]. To
our knowledge, the first person who predicted the Pioneer
anomaly in 1978 was P. LaViolette [5], from an entirely
different approach based on the novel theory of sub-quantum
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kinetics to explain the vacuum fluctuations, two years prior
to the Anderson et al observations [7]. Nottale has invoked
the Machian principle of inertia [3] adopting a local and
global inertial coordinate system at the scale of the solar
system in order to explain the origins of this Pioneer-Galileo
anomalous constant acceleration. The Dirac-Eddington large
number coincidences from vacuum fluctuations was studied
by [8].

Let us examine closer the equality between the proper-
four forces

mP c
2

LP
=
MUc

2

R
⇒

mP

LP
=
MU

R
=
c2

G
. (3.10)

The last term in eq-(3.10) is directly obtained after im-
plementing the Machian principle in eq-(3.7). Thus, one
concludes from eq-(3.10) that as the universe evolves in
time one must have the conserved ratio of the quantities
MU/R= c

2/G=mP /LP . This interesting possibility, ad-
vocated by Dirac long ago, for the fundamental constants ~,
c, G, . . . to vary over cosmological time is a plausible idea
with the provision that the above ratios satisfy the relations
in eq-(3.10) at any given moment of cosmological time. If
the fundamental constants do not vary over time then the
ratio MU/R= c

2/G must refer then to the asymptotic values
of the Hubble horizon radius R=Rasymptotic. A related
approach to the idea of an impassible upper asymptotic
length R has been advocated by Scale Relativity [2] and in
Khare [94] where a Cosmology based on non-Archimedean
geometry was proposed by recurring to p-adic numbers. For
example, a Non-Archimedean number addition law of two
masses m1, m2 does not follow the naive addition rule
m1+m2 but instead:

m1 • m2 =
m1 +m2

1 + (m1m2/M
2
U )
,

which is similar to the composition law of velocities in
ordinary Relativity in terms of the speed of light. When
the masses m1, m2 are much smaller than the universe
mass MU one recovers the ordinary addition law. Similar
considerations follow in the Non-Archimedean composition
law of lengths such that the upper length Rasym is never
surpassed. For further references on p-adic numbers and
Physics were refer to [40]. A Mersenne prime,Mp=2

p−1=
= prime, for p= prime, p-adic hierarchy of scales in Particle
physics and Cosmology has been discussed by Pitkannen and
Noyes where many of the the fundamental energy scales,
masses and couplings in Physics has been obtained [41],
[42]. For example, the Mersenne prime M127=2

127− 1 ∼
1038∼ (mPlanck/mproton)

2 . The derivation of the Standard
Model parameters from first principle has obtained by Smith
[43] and Beck [47].

In [68] we proposed a plausible explanation of the vari-
able fine structure constant phenomenon based on the

maximal-acceleration relativity principle in phase-space by
modifying the Robertson-Friedmann-Walker metric by a
similar (acceleration-dependent) conformal factor as in eqs-
(3.4). It led us to the conclusion that the universe could have
emerged from the vacuum as a quantum bubble (or “brane-
world”) of Planck mass and Planck radius that expanded
(w. r. t to the vacuum) at the speed of light with a maximal
acceleration a= c2/Lp. Afterwards the acceleration began to
slow down as matter was being created from the vacuum, via
an Unruh-Rindler-Hawking effect, from this initial maximal
value c2/Lp to the value of c2/R∼ 10−8cm/s2 (of the same
order of magnitude as the Pioneer anomalous acceleration).
Namely, as the universe expanded, matter was being created
from the vacuum via the Unruh-Rindler-Hawking effect
(which must not to be confused with Hoyle’s Steady State
Cosmolgy) such that the observable mass of the universe
enclosed within the observed Hubble horizon radius obeys
(at any time) the relation MU ∼R. Such latter relationship is
very similar (up to a factor of 2) to the Schwarzschild black-
hole horizon-radius relation rs=2M (in units of ~= c=
=G=1). As matter is being created out of the vacuum, the
Hubble horizon radius grows accordingly such that MU/R=
= c2/G. Note that the Hubble horizon radius is one-half the
Schwarzchild horizon radius (1/2)(2GMU/c

2)= (1/2)RS .
Lemaı̂tre’s idea of the Universe as a “primordial atom”

(like a brane-world) of Planck size has been also analyzed by
[30] from a very different perspective than Born’s Dual Phase
Space Relativity. These authors have argued that one can
have a compatible picture of the expansion of the Universe
with the Eddington-Dirac large number coincidences if one
invokes a variation of the fundamental constants with the
cosmological evolution time as Dirac advocated long ago.

One of the most salient features of this section is that
it agrees with the findings of [4] where a geometric mean
relationship was found from first principles among the cos-
mological constant ρvacuum, the Planck area λ2 and the
AdS4 throat size squared R2 given by (ρv)−1=(λ)2(R2).
Since the throat size of de Sitter space is the same as that
of Anti de Sitter space, by setting the infrared scale R
equal to the Hubble radius horizon observed today RH and
λ equal to the Planck scale one reproduces precisely the
observed value of the vacuum energy density! [25]: ρ ∼
L−2PlanckR

−2
H =L−4P (LPlanck/RH)

2 ∼ 10−122M4
Planck.

Nottale’s proposal [2] for the resolution to the cosmolo-
gical constant problem is based on taking the Hubble scale
R as an upper impassible scale and implementing the Scale
Relativity principle so that in order to compare the vacuum
energies of the Universe at the Planck scale ρ(LP ) with the
vacuum energy measured at the Hubble scale ρ(R) one needs
to include the Scale Relativistic correction factors which
account for such apparent huge discrepancy: ρ(LP )/ρ(R)=
= (R/LP )

2∼ 10122. In contrast, the results of this work are
based on Born’s Dual Phase-Space Relativity principle. In
the next sections we will review the dynamical consequences
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of the Yang’s Noncommutative spacetime algebra comprised
of two scales, the minimal Planck scale Lp (related to a
minimum distance) and an upper infrared scale R related to a
minimum momentum p= ~/R. Another interesting approach
to dark matter, dark energy and the cosmological constant
based on a vacuum condensate has been undertaken by [25].

We finalize this subsection by pointing out that the
maximal/minimal angular velocity correspond to c/LP and
c/R respectively. A maximum angular velocity has important
consequences in future Thomas-precession experiments [61],
[73] whereas a minimal angular velocity has important con-
sequences in galactic rotation measurements. The role of
the Machian principle in constructing quantum cosmologies,
models of dark energy, etc. . . has been studied in [52] and
its relationship to modified Newtonian dynamics and fractals
by [54], [3].

3.2 Modified Newtonian Dynamics from Phase-Space
Relativity

Having displayed the cosmological features behind the
proper-four forces equality (3.10) that relates the maximal/
minimal acceleration in terms of the minimal/large scales and
which is compatible with Eddington-Dirac’s large number
coincidences we shall derive next the modified Newtonian
dynamics of a test particle which emerges from the Born’s
Dual Phase Space Relativity principle.

The modified Schwarzschild metric is defined in terms
of the non-covariant acceleration as:

(dω)2 = Ω2(dτ )2 =

=

[

1+
m2gμν(d

2xμ/dτ 2)(d2xν/dτ 2)

m2
Pa

2

]

gμνdx
μdxν ,

−g2(τ ) ≡ gμν(d
2xμ/dτ 2)(d2xν/dτ 2) < 0 . (3.11a)

A covariant acceleration in curved space-times is
given by:

Dvμ

dτ
=
d2xμ

dτ 2
+ Γμνρ

dxν

dτ

dxρ

dτ
.

A particle in free fall follows a geodesic with zero co-
variant acceleration. Hence, we shall use the non-covariant
acceleration in order to compute the effects of the maximal
acceleration of a test particle in Schwarzschild spacetimes.

The components of the non-covariant four-acceleration
d2xμ/dτ 2 of a test particle of mass m moving in a Schwarz-
schild spacetime background can be obtained in a straight-
forward fashion after using the on-shell condition
gμνP

μP ν =m2 in spherical coordinates (by solving the rela-
tivistic Hamilton-Jacobi equations). The explict components
of the (space-like) proper-four acceleration can be found in
[22], [36] in terms of two integration constants, the energy
E and angular momentum L. The latter components yields

the final expression for the conformal factor Ω2 in the case
of pure radial motion [22]:

Ω2(m,a,M,E, r) =

= 1−

(
m

mP

)2(
1

a2

){

(1− 2M/r)−1
(
M

r2

)2
−

−
[
4M2(E/m)2r−4(1− 2M/r)−3

]
×

×
[
(E/m)2 − (1− 2M/r)

]
}

.

(3.12)

In the Newtonian limit, to a first order approximation,
we can set 1− 2M/r∼ 1 in eq-(3.12) since we shall be con-
centrating in distances larger than the Schwarzschild radius
r > rs=2M , the conformal factor Ω2 in eq-(3.12) simplifies:

Ω2 ∼ 1−

(
m

mP

)2(
1

a2

){(
M

r2

)2
−

−
[
4M2(E/m)2r−4

] [
(E/m)2 − 1

]
}

,

(3.13)

the modified Schwarzschild metric component g′00=Ω
2g00=

=Ω2(1− 2M/r)= 1+2U ′ yields the modified gravitational
potential U ′ in the weak field approximation

g′00 = 1 + 2U
′ ∼

∼ 1−
2M

r
−

(
m

mP

)2(
1

a2

)(
2M

r2

)2
F (E/m)

(3.14)

with

F (E/m) =

(
E

m

)2
−

(
E

m

)4
+
1

4
, (3.15)

where F (E/m)> 0 in the Newtonian limit E<m. The
modified radial acceleration which encodes the modified
Newtonian dynamics and which violates the equivalence
principle (since the acceleration now depends on the mass of
the test particle m) is

a′ = −
∂U ′

∂r
= −

M

r2

[

1 + 8F

(
E

m

)(
m

mP

)2
×

×

(
M

mP

)
1

m3
P r

3

]

+O (r−6) ,

(3.16)

this result is valid for distances r � rs=2M . We have set
the maximal acceleration a= c2

LP
=mP in units of ~= c=

=G=1. This explains the presence of the mP factors in
the denominators. The first term in eq-(3.16) is the standard
Newtonian gravitational acceleration −M/r2 and the second
terms are the leading corrections of order 1/r5. The higher
order corrections O (r−6) appear when we do not set
1− 2M/r∼ 1 in the expression for the conformal factor Ω2

and when we include the extra term in the product of Ω2

with g00=(1− 2M/r).
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The conformal factor Ω2 when L 6=0 (rotational degrees
of freedom are switched on) such that the test particle moves
in the radial and transverse (angular) directions has been
given in [22]:

Ω2 = 1−
m2

m2
Pa

2

{
1

1− 2M/r
×

×

[

−
3ML2

m2r4
+

L2

m2r3
−
M

r2

]2}

+

+
m2

m2
Pa

2

[

−
4L2

m2r4
+

4E2M2

m2r4(1− 2M/r)3

]

×

×

[
E2

m2
− (1− 2M/r)

(

1 +
L2

m2r2

)]

.

(3.17)

Following the same weak field approximation procedure
g′00=Ω

2(E,L,m)g00=1+2U ′ yields the modified gravi-
tational potential U ′ and modified Newtonian dynamics
a′=−∂rU ′ that leads once again to a violation of the equiv-
alence principle due to the fact that the acceleration depends
on the values of the masses of the test particle.

4 Modified Newtonian Dynamics resulting from Yang’s
Noncommutative Spacetime Algebra

We end this work with some relevant remarks about the
impact of Yang’s Noncommutative spacetime algebra on
modified Newtonian dynamics. Such algebra involves two
length scales, the minimal Planck scale LP =λ and an upper
infrared cutoff scale R.

Recently in [134] an isomorphism between Yang’s Non-
commutative space-time algebra (involving two length sca-
les) [136] and the holographic area coordinates algebra of C-
spaces (Clifford spaces) was constructed via an AdS5 space-
time (embedded in 6D) which is instrumental in explaining
the origins of an extra (infrared) scale R in conjunction to
the (ultraviolet) Planck scale λ characteristic of C-spaces.
Yang’s Noncommutative space-time algebra allowed Tanaka
[137] to explain the origins behind the discrete nature of the
spectrum for the spatial coordinates and spatial momenta
which yields a minimum length-scale λ (ultraviolet cutoff)
and a minimum momentum p= ~/R (maximal length R,
infrared cutoff).

Related to the issue of area-quantization, the norm-
squared A2 of the holographic Area operator XABXAB

in Clifford-spaces has a correspondence with the quadratic
Casimir operator λ4ΣABΣ

AB of the conformal algebra
SO(4, 2) (SO(5, 1) in the Euclideanized AdS5 case). This
holographic area-Casimir relationship does not differ much
from the area-spin relation in Loop Quantum Gravity A2 ∼
λ4
∑
ji(ji+1) in terms of the SU(2) Casimir J2 with

eigenvalues j(j+1), where the sum is taken over the spin

network sites [111] and the minimal Planck scale emerges
from a regularization procedure.

The Yang’s algebra can be written in terms of the 6D
angular momentum operators and a 6D pseudo-Euclidean
metric ηMN :

M̂μν = ~Σμν , M̂56 = ~Σ56 , (4.1)

λΣμ5 = x̂μ,
~
R
Σμ6 = p̂μ , (4.2)

N =
λ

R
Σ56 , (4.3)

as follows:

[p̂μ,N ] = −iη66
~
R2

x̂μ , (4.4)

[x̂μ,N ] = iη55
L2P
~

p̂μ , (4.5)

[x̂μ, x̂ν ] = −iη55L2P Σ
μν , (4.6)

[p̂μ, p̂ν ] = −iη66
~2

R2
Σμν , (4.7)

[x̂μ, p̂μ] = i~ημν N , (4.8)

[x̂μ,Σνρ] = ημρxν − ημνxρ , (4.9)

[p̂μ,Σνρ] = ημρpν − ημνpρ , (4.10)

The dynamical consequences of the Yang’s Noncommu-
tative spacetime algebra can be derived from the quantum/
classical correspondence:

1

i~
[Â, B̂]↔ {A,B }PB , (4.11)

i. e. commutators correspond to Poisson brackets. More pre-
cisely, to Moyal brackets in Phase Space. In the classical limit
~→ 0 Moyal brackets reduce to Poisson brackets. Since the
coordinates and momenta are no longer commuting variables
the classical Newtonian dynamics is going to be modified
since the symplectic two-form ωμν in Phase Space will have
additional non-vanishing elements stemming from these non-
commuting coordinates and momenta.

In particular, the modified brackets read now:

{{A(x, p), B(x, p)}} = ∂μAω
μν∂νB =

= {A(x, p), B(x, p)}PB{x
μ, pν}+

+
∂A

∂xμ
∂B

∂xν
{xμ, xν}+

∂A

∂pμ
∂B

∂pν
{pμ, pν} .

(4.12)

If the coordinates and momenta were commuting vari-
ables the modified bracket will reduce to the first term only:

{{A(x, p), B(x, p)}} =

= {A(x, p), B(x, p)}PB{x
μ, pν} =

=

[
∂A

∂xμ
∂B

∂pν
−
∂A

∂pμ
∂B

∂xν

]

ημνN .

(4.13)
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The ordinary Heisenberg (canonical) algebra is recovered
when N → 1 in eq-(4.13).

In the nonrelativistic limit, the modified dynamical equa-
tions are:

dxi

dt
= {{xi, H}} =

∂H

∂pj
{xi, pj}+

∂H

∂xj
{xi, xj} , (4.14)

dpi

dt
= {{pi, H}} = −

∂H

∂xj
{xi, pj}+

∂H

∂pj
{pi, pj}. (4.15)

The non-relativistic Hamiltonian for a central potential
V (r) is:

H =
pip

i

2m
+ V (r) , r =

[∑

i

xix
i
]1/2

. (4.16)

Defining the magnitude of the central force by F =−∂V∂r
and using ∂r

∂xi
= xi

r one has the modified dynamical equations
of motion (4.14, 4.15):

dxi

dt
= {{xi, H}} =

pj
m
δij − F

xj
r
L2PΣ

ij , (4.16a)

dpi

dt
= {{pi, H}} = F

xj
r
δij +

pj
m

Σij

R2
. (4.16b)

The angular momentum two-vector Σij can be written as
the dual of a vector ~J as follows Σij = εijkJk so that:

dxi

dt
= {{xi, H}} =

pi

m
− L2PF

xj
r
εijkJk , (4.17a)

dpi

dt
= {{pi, H}} = F

xi

r
+
pj
m

εijkJk
R2

. (4.17b)

For planar motion (central forces) the cross-product of ~J
with ~p and ~x is not zero since ~J points in the perpendicular
direction to the plane. Thus, one will have nontrivial correc-
tions to the ordinary Newtonian equations of motion induced
from Yang’s Noncommutative spacetime algebra in the non-
relativistic limit. When ~J =0, pure radial motion, there are
no corrections. This is not the case when we studied the
modified Newtonian dynamics in the previous section of the
modified Schwarzschild field due to the maximal-acceleration
relativistic effects. Therefore, the two routes to obtain modifi-
cations of Newtonian dynamics are very different.

Concluding, eqs-(4.16, 4.17) determine the modified
Newtonian dynamics of a test particle under the influence
of a central potential explicitly in terms of the two LP , R
minimal/maximal scales. When LP → 0 and R→∞ one
recovers the ordinary Newtonian dynamics vi=(pi/m) and
F (xi/r)=m(dvi/dt). The unit vector in the radial direction
has for components r̂=(~r/r)= (x1/r, x2/r, x3/r).

It is warranted to study the full relativistic dynamics
as well, in particular the modified relativistic dynamics of
the de-Sitter rigid top [135] due to the effects of Yang’s
Noncommutative spacetime algebra with a lower and an

upper scale. The de Sitter rigid Top can be generalized
further to Clifford spaces since a Clifford-polyparticle has
more degrees of freedom than a relativistic top in ordinary
spacetimes [46] and, naturally, to study the modified Nambu-
Poisson dynamics of p-branes [49] as well. A different phys-
ical approach to the theory of large distance physics based on
certain two-dim nonlinear sigma models has been advanced
by Friedan [51].

An Extended Relativity theory with both an upper and
lower scale can be formulated in the Clifford extension of
Phase Spaces along similar lines as [1], [68] by adding the
Clifford-valued polymomentum degrees of freedom to the
Clifford-valued holographic coordinates. The Planck scale
LP and the minimum momentum (~/R) are introduced to
match the dimensions in the Clifford-Phase Space interval in
D-dimensions as follows:

dΣ2 = <dX†dX> +
1

F2
<dP †dP> =

=

(
dσ

LD−1P

)2
+ dxμdx

μ +
dxμνdx

μν

L2P
+

+
dxμνρdx

μνρ

L4P
+ . . .+

1

F2

[(
dσ̃

(~/R)D−1

)2
+

+ dpμdp
μ +

dpμνdp
μν

(~/R)2
+
dpμνρdp

μνρ

(~/R)4
+ . . .

]

.

(4.18)

All the terms in eq-(4.18) have dimensions of length2

and the maximal force is:

F =
mP c

2

LP
=
MUc

2

R
=
c4

G
. (4.19)

The relevance of studying this extended Relativity in a
Clifford-extended Phase Space is that it is the proper arena
to construct a Quantum Cosmology compatible with Non-
Archimedean Geometry, Yang’s Noncommutative spacetime
algebra [136] and Scale Relativity [2] with an upper and
lower limiting scales, simultaneously. This clearly deserves
further investigation.
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An introduction to some of the most important features of the Extended Relativity
theory in Clifford-spaces (C-spaces) is presented whose “point” coordinates are
non-commuting Clifford-valued quantities which incorporate lines, areas, volumes,
hyper-volumes. . . degrees of freedom associated with the collective particle, string,
membrane, p-brane. . . dynamics of p-loops (closed p-branes) in target D-dimensional
spacetime backgrounds. C-space Relativity naturally incorporates the ideas of an
invariant length (Planck scale), maximal acceleration, non-commuting coordinates,
supersymmetry, holography, higher derivative gravity with torsion and variable
dimensions/signatures. It permits to study the dynamics of all (closed) p-branes, for
all values of p, on a unified footing. It resolves the ordering ambiguities in QFT,
the problem of time in Cosmology and admits superluminal propagation (tachyons)
without violations of causality. A discussion of the maximal-acceleration Relativity
principle in phase-spaces follows and the study of the invariance group of symmetry
transformations in phase-space allows to show why Planck areas are invariant under
acceleration-boosts transformations. This invariance feature suggests that a maximal-
string tension principle may be operating in Nature. We continue by pointing out
how the relativity of signatures of the underlying n-dimensional spacetime results
from taking different n-dimensional slices through C-space. The conformal group
in spacetime emerges as a natural subgroup of the Clifford group and Relativity in
C-spaces involves natural scale changes in the sizes of physical objects without the
introduction of forces nor Weyl’s gauge field of dilations. We finalize by constructing
the generalization of Maxwell theory of Electrodynamics of point charges to a theory
in C-spaces that involves extended charges coupled to antisymmetric tensor fields
of arbitrary rank. In the concluding remarks we outline briefly the current promising
research programs and their plausible connections with C-space Relativity.
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1 Introduction

In recent years it was argued that the underlying fundamental
physical principle behind string theory, not unlike the prin-
ciple of equivalence and general covariance in Einstein’s
general relativity, might well be related to the existence of
an invariant minimal length scale (Planck scale) attainable
in nature [8]. A theory involving spacetime resolutions was
developed long ago by Nottale [23] where the Planck scale
was postulated as the minimum observer independent invar-
iant resolution [23] in Nature. Since “points” cannot be ob-
served physically with an ultimate resolution, it is reasonable
to postulate that they are smeared out into fuzzy balls. In
refs.[8] it was assumed that those balls have the Planck radius
and arbitrary dimension. For this reason it was argued in
refs. [8] that one should construct a theory which includes
all dimensions (and signatures) on the equal footing. In [8]
this Extended Scale Relativity principle was applied to the
quantum mechanics of p-branes which led to the construction
of Clifford-space (C-space) where all p-branes were taken to
be on the same footing, in the sense that the transformations
in C-space reshuffled a string history for a five-brane history,
a membrane history for a string history, for example.

Clifford algebras contained the appropriate algebraic-
geometric features to implement this principle of polydim-
ensional transformations [14]–[17]. In [14]–[16] it was pro-
posed that every physical quantity is in fact a polyvector, that
is, a Clifford number or a Clifford aggregate. Also, spinors
are the members of left or right minimal ideals of Clifford
algebra, which may provide the framework for a deeper
understanding of sypersymmetries, i. e., the transformations
relating bosons and fermions. The Fock-Stueckelberg theory
of a relativistic particle can be embedded in the Clifford
algebra of spacetime [15, 16]. Many important aspects of
Clifford algebra are described in [1], [6], [7], [3], [15, 16, 17],
[5], [48]. It is our belief that this may lead to the proper
formulation of string and M theory.

A geometric approach to the physics of the Standard
Model in terms of Clifford algebras was advanced by [4]. It
was realized in [43] that the Cl(8) Clifford algebra contains
the 4 fundamental nontrivial representations of Spin(8) that
accommodate the chiral fermions and gauge bosons of the
Standard Model and which also includes gravitons via the
McDowell-Mansouri-Chamseddine-West formulation of
gravity, which permits to construct locally, in D=8, a geom-
etric Lagrangian for the Standard Model plus Gravity. Fur-
thermore, discrete Clifford-algebraic methods based on
hyperdiamond-lattices have been instrumental in construct-
ing E8 lattices and deriving the values of the force-strengths
(coupling constants) and masses of the Standard Model with
remarkable precision by [43]. These results have recently
been corroborated by [46] for Electromagnetism, and by [47],
where all the Standard Model parameters were obtained from
first principles, despite the contrary orthodox belief that it is

senseless to “derive” the values of the fundamental constants
in Nature from first principles, from pure thought alone; i. e.
one must invoke the Cosmological Anthropic Principle to
explain why the constants of Nature have they values they
have.

Using these methods the bosonic p-brane propagator,
in the quenched mini superspace approximation, was con-
structed in [18, 19]; the logarithmic corrections to the black
hole entropy based on the geometry of Clifford space (in
short C-space) were obtained in [21]; the modified nonlinear
de Broglie dispersion relations, the corresponding minimal-
length stringy [11] and p-brane uncertainty relations also
admitted a C-space interpretation [10], [19]. A generalization
of Maxwell theory of electromagnetism in C-spaces com-
prised of extended charges coupled to antisymmetric tensor
fields of arbitrary rank was attained recently in [75]. The
resolution of the ordering ambiguities of QFT in curved
spaces was resolved by using polyvectors, or Clifford-algebra
valued objects [26]. One of the most remarkable features
of the Extended Relativity in C-spaces is that a higher de-
rivative Gravity with Torsion in ordinary spacetime follows
naturally from the analog of the Einstein-Hlbert action in
curved C-space [20].

In this new physical theory the arena for physics is no
longer the ordinary spacetime, but a more general manifold of
Clifford algebra valued objects, noncommuting polyvectors.
Such a manifold has been called a pan-dimensional con-
tinuum [14] or C-space [8]. The latter describes on a unified
basis the objects of various dimensionality: not only points,
but also closed lines, surfaces, volumes, . . . , called 0-loops
(points), 1-loops (closed strings), 2-loops (closed mem-
branes), 3-loops, etc. It is a sort of a dimension category,
where the role of functorial maps is played by C-space
transformations which reshuffles a p-brane history for a p′-
brane history or a mixture of all of them, for example. The
above geometric objects may be considered as to correspond-
ing to the well-known physical objects, namely closed p-
branes. Technically those transformations in C-space that
reshuffle objects of different dimensions are generalizations
of the ordinary Lorentz transformations to C-space.

C-space Relativity involves a generalization of Lorentz
invariance (and not a deformation of such symmetry) in-
volving superpositions of p-branes (p-loops) of all possible
dimensions. The Planck scale is introduced as a natural para-
meter that allows us to bridge extended objects of different
dimensionalities. Like the speed of light was need in Einstein
Relativity to fuse space and time together in the Minkowski
spacetime interval. Another important point is that the Con-
formal Group of four-dimensional spacetime is a conse-
quence of the Clifford algebra in four-dimensions [25] and it
emphasizes the fact why the natural dilations/contractions of
objects in C-space is not the same physical phenomenon than
what occurs in Weyl’s geometry which requires introducing,
by hand, a gauge field of dilations. Objects move dilationally,
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in the absence of forces, for a different physical reasoning
than in Weyl’s geometry: they move dilationally because of
inertia. This was discussed long ago in refs. [27, 28].

This review is organized as follows: section 2 is dedi-
cated to extending ordinary Special Relativity theory, from
Minkowski spacetime to C-spaces, where the introduction
of the invariant Planck scale is required to bridge objects,
p-branes, of different dimensionality.

The generalized dynamics of particles, fields and branes
in C-space is studied in section 3. This formalism allows us
to construct for the first time, to our knowledge, a unified
action which comprises the dynamics of all p-branes in
C-spaces, for all values of p, in one single footing (see
also [15]). In particular, the polyparticle dynamics in C-
space, when reduced to 4-dimensional spacetime leads to the
Stuckelberg formalism and the solution to the problem of
time in Cosmology [15].

In section 4 we begin by discussing the geometric Clif-
ford calculus that allows us to reproduce all the standard
results in differential and projective geometry [41]. The re-
solution of the ordering ambiguities of QFT in curved spaces
follows next when we review how it can be resolved by
using polyvectors, or Clifford-algebra valued objects [26].
Afterwards we construct the Generalized Gravitational The-
ories in Curved C-spaces, in particular it is shown how
Higher derivative Gravity with Torsion in ordinary spacetime
follows naturaly from the Geometry of C-space [20].

In section 5 we discuss the Quantization program in
C-spaces, and write the C-space Klein-Gordon and Dirac
equations [15]. The coresponding bosonic/fermionic p-brane
loop-wave equations were studied by [12], [13] without em-
ploying Clifford algebra and the concept of C-space.

In section 6 we review the Maximal-Acceleration Rel-
ativity in Phase-Spaces [127], starting with the construction
of the submaximally-accelerated particle action of [53] using
Clifford algebras in phase-spaces; the U(1, 3) invariance
transformations [74] associated with an 8-dimensional phase
space, and show why the minimal Planck-Scale areas are
invariant under pure acceleration boosts which suggests that
there could be a principle of maximal-tension (maximal
acceleration) operating in string theory [68].

In section 7 we discuss the important point that the notion
of spacetime signature is relative to a chosen n-dimensional
subspace of 2n-dimensional Clifford space. Different sub-
spaces Vn — different sections through C-space — have in
general different signature [15] We show afterwards how the
Conformal algebra of spacetime emerges from the Clifford
algebra [25] and emphasize the physical differences between
our model and the one based on Weyl geometry. At the end
we show how Clifford algebraic methods permits one to
generalize Maxwell theory of Electrodynamics (associated
with ordinary point-charges) to a generalized Maxwell theory
in Clifford spaces involving extended charges and p-forms
of arbitrary rank [75].

In the concluding remarks, we briefly discuss the possible
avenues of future research in the construction of QFT in C-
spaces, Quantum Gravity, Noncommutative Geometry, and
other lines of current promising research in the literature.

2 Extending Relativity from Minkowski spacetime to
C-space

We embark into the construction of the extended relativity
theory in C-spaces by a natural generalization of the notion
of a spacetime interval in Minkowski space to C-space [8,
14, 16, 15, 17]:

dX2 = dσ2 + dxμdx
μ + dxμνdx

μν + . . . , (1)

where μ1<μ2< . . . . The Clifford valued polyvector:∗

X = XMEM = σ1 + xμγμ + x
μνγμ ∧ γν + . . .+

+ xμ1μ2...μDγμ1 ∧ γμ2 . . . ∧ γμD
(2)

denotes the position of a point in a manifold, called Clifford
space or C-space. The series of terms in (2) terminates at
a finite grade depending on the dimension D. A Clifford
algebra Cl(r, q) with r+ q=D has 2D basis elements. For
simplicity, the gammas γμ correspond to a Clifford algebra
associated with a flat spacetime:

1

2
{γμ, γν} = ημν , (3)

but in general one could extend this formulation to curved
spacetimes with metric gμν (see section 4).

The connection to strings and p-branes can be seen as
follows. In the case of a closed string (a 1-loop) embedded
in a target flat spacetime background of D-dimensions, one
represents the projections of the closed string (1-loop) onto
the embedding spacetime coordinate-planes by the variables
xμν . These variables represent the respective areas enclosed
by the projections of the closed string (1-loop) onto the
corresponding embedding spacetime planes. Similary, one
can embed a closed membrane (a 2-loop) onto a D-dim flat
spacetime, where the projections given by the antisymmetric
variables xμνρ represent the corresponding volumes enclosed
by the projections of the 2-loop along the hyperplanes of the
flat target spacetime background.

This procedure can be carried to all closed p-branes
(p-loops) where the values of p are p=0, 1, 2, 3, . . . . The
p=0 value represents the center of mass and the coordinates
xμν , xμνρ, . . . have been coined in the string-brane literature
[24]. as the holographic areas, volumes, . . . projections of
the nested family of p-loops (closed p-branes) onto the em-
bedding spacetime coordinate planes/hyperplanes. In ref. [17]

∗If we do not restrict indices according to μ1<μ2<μ3< . . . , then
the factors 1/2!, 1/3!, respectively, have to be included in front of every
term in the expansion (1).
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they were interpreted as the generalized centre of mass co-
ordinates of an extended object. Extended objects were thus
modeled in C-space.

The scalar coordinate σ entering a polyvectorX is a mea-
sure associated with the p-brane’s world manifold Vp+1 (e. g.,
the string’s 2-dimensional worldsheet V2): it is proportional
to the (p + 1)-dimensional area/volume of Vp+1. In other
words, σ is proportional to the areal-time parameter of the
Eguchi-Schild formulation of string dynamics [126, 37, 24].

We see in this generalized scheme the objects as observed
in spacetime (which is a section through C-space) need not
be infinitely extended along time-like directions. They need
not be infinitely long world lines, world tubes. They can be
finite world lines, world tubes. The σ coordinate measures
how long are world lines, world tubes. During evolution they
can becomes longer and longer or shorter and shorter.

If we take the differential dX of X and compute the
scalar product among two polyvectors <dX†dX>0 ≡ dX† ∗
dX ≡ |dX|2 we obtain the C-space extension of the particles
proper time in Minkowski space. The symbol X† denotes
the reversion operation and involves reversing the order
of all the basis γμ elements in the expansion of X . It is
the analog of the transpose (Hermitian) conjugation. The
C-space proper time associated with a polyparticle motion
is then the expression (1) which can be written more ex-
plicitly as:

|dX|2 = GMN dXMdXN = dS2 =

= dσ2 + L−2dxμdx
μ + L−4dxμνdx

μν + . . . +

+ L−2Ddxμ1...μD dxμ1...μD ,

(4)

where GMN =E
†
M ∗ EN is the C-space metric.

Here we have introduced the Planck scale L since a
length parameter is needed in order to tie objects of different
dimensionality together: 0-loops, 1-loops, . . . , p-loops. Ein-
stein introduced the speed of light as a universal absolute
invariant in order to “unite” space with time (to match units)
in the Minkowski space interval:

ds2 = c2dt2 + dxidx
i.

A similar unification is needed here to “unite” objects of
different dimensions, such as xμ, xμν , etc. . . . The Planck
scale then emerges as another universal invariant in con-
structing an extended relativity theory in C-spaces [8].

Since the D-dimensional Planck scale is given explicitly
in terms of the Newton constant: LD =(GN )1/(D−2), in
natural units of ~= c=1, one can see that when D=∞
the value of LD is then L∞=G

0=1 (assuming a finite
value of G). Hence in D=∞ the Planck scale has the
natural value of unity. However, if one wishes to avoid any
serious algebraic divergence problems in the series of terms
appearing in the expansion of the analog of proper time in
C-spaces, in the extreme case whenD=∞, from now on we

shall focus solely on a finite value of D. In this fashion we
avoid any serious algebraic convergence problems. We shall
not be concerned in this work with the representations of
Clifford algebras in different dimensions and with different
signatures.

The line element dS as defined in (4) is dimensionless.
Alternatively, one can define [8, 9] the line element whose
dimension is that of the D-volume so that:

dΣ2 = L2Ddσ2 + L2D−2dxμdμ+

+ L2D−4dxμνdx
μν + . . .+ dxμ1...μDdxμ1...μD .

(5)

Let us use the relation

γμ1 ∧ . . . ∧ γμD = γεμ1...μD (6)

and write the volume element as

dxμ1...μDγμ1 ∧ . . . ∧ γμD ≡ γdσ̃ , (7)

where
dσ̃ ≡ dxμ1...μDεμ1...μD . (8)

In all expressions we assume the ordering prescription
μ1<μ2< . . . <μr, r=1, 2, . . . , D. The line element can
then be written in the form

dΣ2 = L2Ddσ2 + L2D−2dxμdxμ+

+ L2D−4dxμνdx
μν + . . .+ |γ|2 dσ̃2,

(9)

where
|γ|2 ≡ γ† ∗ γ . (10)

Here γ is the pseudoscalar basis element and can be
written as γ0 ∧ γ1 ∧ . . . γD−1. In flat spacetime MD we
have that |γ|2=+1 or −1, depending on dimension and
signature. In M4 with signature (+−−−) we have γ† ∗ γ=
= γ†γ= γ2=−1 (γ ≡ γ5= γ0γ1γ2γ3), whilst in M5 with
signature (+−−−−) it is γ†γ=1.

The analog of Lorentz transformations in C-spaces which
transform a polyvector X into another poly-vector X ′ is
given by

X ′ = RXR−1 (11)
with

R = eθ
AEA = exp [(θI+θμγμ+θ

μ1μ2γμ1 ∧γμ2 . . .)] (12)

and also

R−1=e−θ
AEA=exp[−(θI+θνγν+θ

ν1ν2γν1∧γν2 . . .)] (13)

where the theta parameters in (12), (13) are the components
of the Clifford-value parameter Θ= θMEM :

θ; θμ; θμν ; . . . (14)

they are the C-space version of the Lorentz rotations/boosts
parameters.
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Since a Clifford algebra admits a matrix representation,
one can write the norm of a poly-vectors in terms of the
trace operation as: ||X||2= TraceX2. Hence under C-space
Lorentz transformation the norms of poly-vectors behave like
follows:

TraceX ′2 = Trace [RX2R−1] =

= Trace [RR−1X2] = TraceX2.
(15)

These norms are invariant under C-space Lorentz trans-
formations due to the cyclic property of the trace operation
and RR−1=1. If one writes the invariant norm in terms
of the reversal operation <X†X>s this will constrain the
explicit form of the terms in the exponential which define
the rotor R so the rotor R obeys the analog condition of
an orthogonal rotation matrix R†=R−1. Hence the appro-
priate poly-rotations of poly-vectors which preserve the norm
must be:

||(X ′)2||=<X ′†X ′>s=

=<(R−1)†X†R†RXR−1>s =

=<RX†XR−1>s=<X
†X>s= ||X2|| ,

(16)

where once again, we made use of the analog of the cyclic
property of the trace, <RX†XR−1>s=<X†X>s.

This way of rewriting the inner product of poly-vectors
by means of the reversal operation that reverses the order of
the Clifford basis generators: (γμ ∧ γν)†= γν ∧ γμ, etc. . .
has some subtleties. The analog of an orthogonal matrix in
Clifford spaces is R†=R−1 such that

<X ′†X ′>s=<(R
−1)†X†R†RXR−1>s=

=<RX†XR−1>s=<X
†X>s= invariant.

This condition R†=R−1, of course, will restrict the type
of terms allowed inside the exponential defining the rotor R
because the reversal of a p-vector obeys

(γμ1 ∧ γμ2 . . . ∧ γμp)
† = γμp ∧ γμp−1 . . . ∧ γμ2 ∧ γμ1 =

= (−1)p(p−1)/2γμ1 ∧ γμ2 . . . ∧ γμp .

Hence only those terms that change sign (under the
reversal operation) are permitted in the exponential defining
R= exp[θAEA].

Another possibility is to complexify the C-space poly-
vector valued coordinates Z =ZAEA=X

AEA+ i Y
AEA

and the boosts/rotation parameters θ allowing the unitary
condition Ū†=U−1 to hold in the generalized Clifford unit-
ary transformations Z ′=UZU † associated with the com-
plexified polyvector Z =ZAEA such that the interval

<dZ̄†dZ>s=dΩ̄dΩ+dz̄
μdzμ+dz̄

μνdzμν+dz̄
μνρdzμνρ+. . .

remains invariant (upon setting the Planck scale Λ=1).

The unitary condition Ū†=U−1 under the combined
reversal and complex-conjugate operation will constrain the
form of the complexified boosts/rotation parameters θA ap-
pearing in the rotor: U = exp

[
θAEA

]
. The theta parameters

θA are either purely real or purely imaginary depending if
the reversal EA

†=±EA, to ensure that an overall change
of sign occurs in the terms θAEA inside the exponential
defining U so that Ū†=U−1 holds and the norm <Z̄†Z>s
remains invariant under the analog of unitary transformations
in complexified C-spaces. These techniques are not very
different from Penrose Twistor spaces. As far as we know
a Clifford-Twistor space construction of C-spaces has not
been performed so far.

Another alternative is to define the polyrotations by R=
= exp(ΘAB [EA, EB ]) where the commutator [EA, EB ] =
=FABCEC is the C-space analog of the i [γμ, γν ] com-
mutator which is the generator of the Lorentz algebra, and
the theta parameters ΘAB are the C-space analogs of the
rotation/boots parameters θμν . The diverse parameters ΘAB

are purely real or purely imaginary depending whether the
reversal [EA, EB ]†= ± [EA, EB ] to ensure that R†=R−1

so that the scalar part <X†X>s remains invariant under the
transformations X ′=RXR−1. This last alternative seems
to be more physical because a poly-rotation should map the
EA direction into the EB direction in C-spaces, hence the
meaning of the generator [EA, EB ] which extends the notion
of the [γμ, γν ] Lorentz generator.

The above transformations are active transformations
since the transformed Clifford number X ′ (polyvector) is
different from the “original” Clifford numberX . Considering
the transformations of components we have

X ′ = X ′MEM = LMN X
NEM . (17)

If we compare (17) with (11) we find

LMNEN = RENR
−1 (18)

from which it follows that

LMN=〈E
MRENR

−1〉0≡E
M∗(RENR

−1)=EM∗E′N , (19)

where we have labelled E′N as new basis element since in
the active interpretation one may perform either a change of
the polyvector components or a change of the basis elements.
The 〈 〉0 means the scalar part of the expression and “∗” the
scalar product. Eq-(19) has been obtained after multiplying
(18) from the left byEJ , taking into account that 〈EJEN 〉0≡
≡EJ ∗EN = δJN , and renamiming the index J into M .

3 Generalized dynamics of particles, fields and branes
in C-space

An immediate application of this theory is that one may
consider “strings” and “branes” in C-spaces as a unifying
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description of all branes of different dimensionality. As we
have already indicated, since spinors are in left/right ideals
of a Clifford algebra, a supersymmetry is then naturally
incorporated into this approach as well. In particular, one
can have world manifold and target space supersymmetry
simultaneously [15]. We hope that the C-space “strings”
and “branes” may lead us towards discovering the physical
foundations of string and M-theory. For other alternatives
to supersymmetry see the work by [50]. In particular, Z3
generalizations of supersymmetry based on ternary algebras
and Clifford algebras have been proposed by Kerner [128]
in what has been called Hypersymmetry.

3.1 The Polyparticle Dynamics in C-space

We will now review the theory [15, 17] in which an extended
object is modeled by the components σ, xμ, xμν , . . . of the
Clifford valued polyvector (2). By assumption the extended
objects, as observed from Minkowski spacetime, can in gen-
eral be localized not only along space-like, but also along
time-like directions [15, 17]. In particular, they can be “in-
stantonic” p-loops with either space-like or time-like orient-
ation. Or they may be long, but finite, tube-like objects.
The theory that we consider here goes beyond the ordinary
relativity in Minkowski spacetime, therefore such localized
objects in Minkowski spacetime pose no problems. They
are postulated to satisfy the dynamical principle which is
formulated in C-space. All conservation laws hold in C-
space where we have infinitely long world “lines” or Clifford
lines. In Minkowski spacetime M4 — which is a subspace of
C-space — we observe the intersections of Clifford lines with
M4. And those intersections appear as localized extended
objects, p-loops, described above.

Let the motion of such an extended object be determined
by the action principle

I = κ

∫
dτ (Ẋ† ∗ Ẋ)1/2 = κ

∫
dτ (ẊAẊA)

1/2 , (20)

where κ is a constant, playing the role of “mass” in C-
space, and τ is an arbitrary parameter. The C-space velocities
ẊA= dXA/dτ =(σ̇, ẋμ, ẋμ nu, . . .) are also called “holo-
graphic” velocities.

The equation of motion resulting from (20) is

d
dτ

(
ẊA

√
ẊBẊB

)

= 0 . (21)

Taking ẊBẊB = constant 6=0 we have that ẌA=0, so
that xA(τ ) is a straight worldline in C-space. The com-
ponents xA then change linearly with the parameter τ . This
means that the extended object position xμ, effective area
xμν , 3-volume xμνα, 4-volume xμναβ , etc., they all change
with time. That is, such object experiences a sort of general-
ized dilational motion [17].

We shall now review the procedure exposed in ref. [17]

according to which in such a generalized dynamics an object
may be accelerated to faster than light speeds as viewed from
a 4-dimensional Minkowski space, which is a subspace of
C-space. For a different explanation of superluminal propa-
gation based on the modified nonlinear de Broglie dispersion
relations see [68].

The canonical momentum belonging to the action (20) is

PA =
κẊA

(ẊBẊB)1/2
. (22)

When the denominator in eq.-(22) is zero the momentum
becomes infinite. We shall now calculate the speed at which
this happens. This will be the maximum speed that an object
accelerating in C-space can reach. Although an initially slow
object cannot accelerate beyond that speed limit, this does
not automatically exclude the possibility that fast objects
traveling at a speed above that limit may exist. Such objects
are C-space analog of tachyons [31, 32]. All the well known
objections against tachyons should be reconsidered for the
case of C-space before we could say for sure that C-space
tachyons do not exist as freely propagating objects. We
will leave aside this interesting possibility, and assume as
a working hypothesis that there is no tachyons in C-space.

Vanishing of ẊBẊB is equivalent to vanishing of the
C-space line element

dXAdXA = dσ2+

(
dx0

L

)2
−

(
dx1

L

)2
−

(
dx01

L2

)2
. . .

. . .+

(
dx12

L2

)2
−

(
dx123

L3

)2
−

(
dx0123

L4

)2
+ . . .=0 ,

(23)

where by “. . .” we mean the terms with the remaining com-
ponents such as x2, x01, x23, . . . , x012, etc. The C-space
line element is associated with a particular choice of C-
space metric, namely GMN =E

†
M ∗ EN . If the basis EM ,

M =1, 2, . . . , 2D is generated by the flat space γμ satisfying
(3), then the C-space has the diagonal metric of eq.-(23)
with +,− signa. In general this is not necessarily so and the
C-space metric is a more complicated expression. We take
now dimension of spacetime being 4, so that x0123 is the
highest grade coordinate. In eq.-(23) we introduce a length
parameter L. This is necessary, since x0= ct has dimension
of length, x12 of length square, x123 of length to the third
power, and x0123 of length to the forth power. It is natural to
assume that L is the Planck length, that is L=1.6×10−35m.

Let us assume that the coordinate time t=x0/c is the
parameter with respect to which we define the speed V in
C-space.

So we have

V 2 = −

(

L
dσ
dt

)2
+

(
dx1

dt

)2
+

(
dx01

L2

)2
. . .

. . .−

(
1

L

dx12

dt

)2
+

(
1

L2
dx123

dt

)2
+

(
1

L3
dx0123

dt

)2
− . . .

(24)
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From eqs.-(23), (24) we find that the maximum speed is
the maximum speed is given by

V 2 = c2 . (25)

First, we see, the maximum speed squared V 2 contains
not only the components of the 1-vector velocity dx1/dt, as it
is the case in the ordinary relativity, but also the multivector
components such as dx12/dt, dx123/dt, etc.

The following special cases when only certain compo-
nents of the velocity in C-space are different from zero, are
of particular interest:

(i) Maximum 1-vector speed

dx1

dt
= c = 3.0×108m/s ;

(ii) Maximum 3-vector speed

dx123

dt
= L2c = 7.7×10−62m3/s ;

d 3
√
x123

dt
= 4.3×10−21m/s (diameter speed) ;

(iii) Maximum 4-vector speed

dx0123

dt
= L3c = 1.2×10−96m4/s

d 4
√
x0123

dt
= 1.05×10−24m/s (diameter speed) .

Above we have also calculated the corresponding dia-
meter speeds for the illustration of how fast the object ex-
pands or contracts.

We see that the maximum multivector speeds are very
small. The diameters of objects change very slowly. There-
fore we normally do not observe the dilatational motion.

Because of the positive sign in front of the σ and x12,
x012, etc., terms in the quadratic form (23) there are no limits
to corresponding 0-vector, 2-vector and 3-vector speeds. But
if we calculate, for instance, the energy necessary to excite
2-vector motion we find that it is very high. Or equivalently,
to the relatively modest energies (available at the surface of
the Earth), the corresponding 2-vector speed is very small.
This can be seen by calculating the energy

p0 =
κc2

√
1− V 2

c2

(26)

(a) for the case of pure 1-vector motion by taking V =
= dx1/dt, and

(b) for the case of pure 2-vector motion by taking V =
= dx12/(Ldt).

By equating the energies belonging to the cases (a) and
(b) we have

p0 =
κc2

√

1−
(
1
c

dx1
dt

)2
=

κc2
√

1−
(
1
Lc

dx12
dt

)2
, (27)

which gives

1

c

dx1

dt
=
1

Lc

dx12

dt
=

√

1−

(
κc2

p0

)2
. (28)

Thus to the energy of an object moving translationally at
dx1/dt=1m/s, there corresponds the 2-vector speed
dx12/dt =L dx1/dt =1.6×10−35 m2/s (diameter speed 4 ×

×10−18 m/s). This would be a typical 2-vector speed of a
macroscopic object. For a microscopic object, such as the
electron, which can be accelerated close to the speed of
light, the corresponding 2-vector speed could be of the order
of 10−26 m2/s (diameter speed 10−13 m/s). In the examples
above we have provided rough estimations of possible 2-
vector speeds. Exact calculations should treat concrete sit-
uations of collisions of two or more objects, assume that
not only 1-vector, but also 2-vector, 3-vector and 4-vector
motions are possible, and take into account the conservation
of the polyvector momentum PA.

Maximum 1-vector speed, i. e., the usual speed, can ex-
ceed the speed of light when the holographic components
such as dσ/dt, dx12/dt, dx012/dt, etc., are different from
zero [17]. This can be immediately verified from eqs.-(23),
(24). The speed of light is no longer such a strict barrier
as it appears in the ordinary theory of relativity in M4. In
C-space a particle has extra degrees of freedom, besides the
translational degrees of freedom. The scalar, σ, the bivector,
x12 (in general, xrs, r, s = 1, 2, 3) and the three vector, x012

(in general, x0rs, r, s = 1, 2, 3), contributions to the C-space
quadratic form (23) have positive sign, which is just opposite
to the contributions of other components, such as xr, x0r,
xrst, xμνρσ . Because some terms in the quadratic form have
+ and some − sign, the absolute value of the 3-velocity
dxr/dx0 can be greater than c.

It is known that when tachyons can induce a breakdown
of causality. The simplest way to see why causality is violated
when tachyons are used to exchange signals is by writing the
temporal displacements δt= tB − tA between two events (in
Minkowski space-time) in two different frames of reference:

(δt)′=(δt) cosh(ξ)+
δx

c
sinh(ξ)=(δt)

[

cosh(ξ)+

+

(
1

c

δx

δt

)

sinh(ξ)

]

=(δt)[cosh(ξ)+(βtach.) sinh(ξ)]

(29)

the boost parameter ξ is defined in terms of the velocity
as βframe= vframe/c= tanh(ξ), where vframe is is the
relative velocity (in the x-direction) of the two reference
frames and can be written in terms of the Lorentz-boost
rapidity parameter ξ by using hyperbolic functions. The Lo-
rentz dilation factor is cosh(ξ)= (1−β2frame)

−1/2; whereas
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βtachyon= vtachyon/c is the beta parameter associated with
the tachyon velocity δx/δt. By emitting a tachyon along the
negative x -direction one has βtachyon< 0 and such that its
velocity exceeds the speed of light |βtachyon|> 1.

A reversal in the sign of (δt)′<0 in the above boost trans-
formations occurs when the tachyon velocity |βtachyon|>1
and the relative velocity of the reference frames |βframe|< 1
obey the inequality condition:

(δt)′ = (δt)[cosh(ξ)− |βtachyon| sinh(ξ)] < 0⇒

⇒ 1 <
1

tanh(ξ)
=

1

βframe
< |βtachyon|

(30)

thereby resulting in a causality violation in the primed refer-
ence frame since the effect (event B) occurs before the cause
(event A) in the primed reference frame.

In the case of subluminal propagation |βparticle|< 1 there
is no causality violation since one would have:

(δt)′ = (δt)[cosh(ξ)− |βparticle| sinh(ξ)] > 0 (31)

due to the hyperbolic trigonometric relation:

cosh2(ξ)− sinh2(ξ) = 1⇒ cosh(ξ)− sinh(ξ) > 0 . (32)

In the theory considered here, there are no tachyons in C-
space, because physical signals in C-space are constrained
to live inside the C-space-light cone, defined by eq.-(23).
However, certain worldlines in C-space, when projected onto
the subspaceM4, can appear as worldlines of ordinary tachy-
ons outside the light-cone in M4. The physical analog of
photons in C-space corresponds to tensionless p-loops, i. e.,
tensionless closed branes, since the analog of mass m in
C-space is the maximal p-loop tension. By “maximal p-
loop” we mean the loop with the maximum value of p
associated with the hierarchy of p-loops (closed p-branes):
p=0, 1, 2, . . . living in the embedding target spacetime. One
must not confuse the Stueckelberg parameter σ with the C-
space Proper-time Σ eq.-(5); so one could have a world line
in C-space such that

dΣ = 0↔ C-space photon↔
Tensionless branes with
a monotonically increasing
Stueckelberg parameter σ.

In C-space the dynamics refers to a larger space. Min-
kowski space is just a subspace of C-space. “Wordlines”
now live in C-space that can be projected onto the Min-
kowski subspace M4. Concerning tachyons and causality
within the framework of the C-space relativity, the authors
of this review propose two different explanations, described
below.

According to one author (C. C.) one has to take into
account the fact that one is enlarging the ordinary Lorentz
group to a larger group of C-space Lorentz transformations
which involve poly-rotations and generalizations of boosts

transformations. In particular, the C-space generalization of
the ordinary boost transformations associated with the boost
rapidity parameter ξ such that tanh(ξ)=βframe will involve
now the family of C-space boost rapidity parameters θt1,
θt12, θt123, . . . θt123..., . . . since boosts are just (poly) rot-
ations along directions involving the time coordinate. Thus,
one is replacing the ordinary boost transformations in Min-
kowski spacetime for the more general C-space boost trans-
formations as we go from one frame of reference to another
frame of reference.

Due to the linkage among the C-space coordinates (poly-
dimensional covariance) when we envision an ordinary boost
along the x1-direction, we must not forget that it is also?
interconnected to the area-boosts in the x12-direction as well,
and, which in turn, is also linked to the x2 direction. Because
the latter direction is transverse to the original tachyonic?
x1-motion? the latter x2-boosts? won’t affect things and we
may concentrate? on the area-boosts along the x12 direction
involving the θt12 parameter that will appear in the C-space
boosts and which contribute to a crucial extra term in the
transformations such that no sign-change in δt′? will occur.

More precisely, let us set all the values of the theta
parameters to zero except the parameters θt1 and θt12 related
to the ordinary boosts in the x1 direction and area-boosts in
the x12 directions of C-space. This requires, for example,
that one has at least one spatial-area component, and one
temporal coordinate, which implies that the dimensions must
be at least D=2+1=3. Thus, we have in this case:

X ′ = RXR−1 = eθ
t1γt∧γ1+θ

t12γt∧γ1∧γ2 ×

×XMEMe
−θt1γt∧γ1−θ

t12γt∧γ1∧γ2⇒X ′N=LNMX
M,

(33)

where as we shown previously LNM =<ENREMR−1>0.
When one concentrates on the transformations of the time
coordinate, we have now that the C-space boosts do not
coincide with ordinary boosts in the x1 direction:

t′=LtMX
M=<EtREMR

−1>0X
M 6=(Ltt)t+(L

t
1)x

1, (34)

because of the extra non-vanishing θ parameter θt12.
This is because the rotor R includes the extra generator

θt12γt ∧ γ1 ∧ γ2 which will bring extra terms into the trans-
formations; i. e. it will rotate the E[12] bivector-basis, that
couples to the holographic coordinates x12, into the Et di-
rection which is being contracted with the Et element in
the definition of LtM . There are extra terms in the C-space
boosts because the poly-particle dynamics is taking place
in C-space and all coordinates XM which contain the t,
x1, x12 directions will contribute to the C-space boosts in
D=3, since one is projecting down the dynamics from C-
space onto the (t, x1) plane when one studies the motion of
the tachyon in M4.

Concluding, in the case when one sets all the θ parameters
to zero, except the θt1 and θt12, the X ′=RXMEMR

−1
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transformations will be:

(δt)′ = LtM (θ
t1; θt12)(δXM ) 6= Ltt(δt) + L

t
1(δx

1) , (35)

due to the presence of the extra term Lt12(δX
12) in the

transformations. In the more general case, when there are
more non-vanishing θ parameters, the indices M of the XM

coordinates must be restricted to those directions in C-space
which involve the t, x1, x12, x123 . . . directions as required
by the C-space poly-particle dynamics. The generalized C-
space boosts involve now the ordinary tachyon velocity com-
ponent of the poly-particle as well as the generalized holo-
graphic areas, volumes, hyper-volumes. . . velocities VM =
=(δXM/δt) associated with the poly-vector components of
the Clifford-valued C-space velocity.

Hence, at the expense of enlarging the ordinary Lorentz
boosts to the C-space Lorentz boosts, and the degrees of
freedom of a point particle into an extended poly-particle by
including the holographic coordinates, in C-space one can
still have ordinary point-particle tachyons without changing
the sign of δt, and without violating causality, due to the
presence of the extra terms in the C-space boosts transfor-
mations which ensure us that the sign of δt> 0 is maintained
as we go from one frame of reference to another one. Natur-
ally, if one were to freeze all the θ parameters to zero except
one θt1 one would end up with the standard Lorentz boosts
along the x1-direction and a violation of causality would
occur for tachyons as a result of the sign-change in δt′.

In future work we shall analyze in more detail if the
condition δt′=LtM (δX

M )> 0 is satisfied for any physical
values of the θ C-space boosts parameters and for any
physical values of the holographic velocities consistent with
the condition that the C-space velocity VMV

M > 0. What
one cannot have is a C-space tachyon; i. e. the physical
signals in C-space must be constrained to live inside the
C-space light-cone. The analog of “photons” in C-space
are tensionless branes. The corresponding analog of C-space
tachyons involve branes with imaginary tensions, not unlike
ordinary tachyons m2 < 0 of imaginary mass.

To sum up: Relativity in C-space demands enlarging
the ordinary Lorentz group (boosts) to a larger symmetry
group of C-space Lorentz group and enlarging the degrees
of freedom by including Clifford-valued coordinates X =
=XMEM . This is the only way one can have a point-
particle tachyonic speed in a Minkowski subspace without
violating causality in C-space. Ordinary Lorentz boosts are
incompatible with tachyons if one wishes to preserve causa-
lity. In C-space one requires to have, at least, two theta
parameters θt1 and θt12 with the inclusion, at least, of the
t, x1, x12 coordinates in a C-space boost, to be able to
enforce the condition δt′> 0 under (combined) boosts along
the x1 direction accompanied by an area-boost along the x12

direction of C-space. It is beyond the scope of this review
to analyze all the further details of the full-fledged C-boosts

transformations in order to check that the condition δt′> 0
is obeyed for any physical values of the θ parameters and
holographic velocities.

According to the other author (M. P.), the problem of
causality could be explained as follows. In the usual theory
of relativity the existence of tachyons is problematic because
one can arrange for situations such that tachyons are sent
into the past. A tachyon T1 is emitted from an apparatus
worldline C at x01 and a second tachyon T2 can arrive to
the same worldline C at an earlier time x′0<x01 and trigger
destruction of the apparatus. The spacetime event E′ at which
the apparatus is destroyed coincides with the event E at
which the apparatus by initial assumption kept on functioning
normally and later emitted T1. So there is a paradox from
the ordinary (constrained) relativistic particle dynamics.

There is no paradox if one invokes the unconstrained
Stueckelberg description of superluminal propagation in M4.
It can be described as follows. A C-space worldline can
be described in terms of five functions xμ(τ ), σ(τ ) (all
other C-space coordinates being kept constant). In C-space
we have the constrained action (20), whilst in Minkowski
space we have a reduced, unconstrained action. A reduction
of variables can be done by choosing a gauge in which
σ(τ )= τ . It was shown in ref. [16, 15, 17] that the latter
unconstrained action is equivalent to the well known Stue-
ckelberg action [33, 34]. In other words, the Stueckelberg
relativistic dynamics is embedded in C-space. In Stueckel-
berg theory all four spacetime coordinates xμ are independ-
ent dynamical degrees of freedom that evolve in terms of
an extra parameter σ which is invariant under Lorentz trans-
formations in M4.

From the C-space point of view, the evolution parameter
σ is just one of the C-space coordintes XM . By assumption,
σ is monotonically increasing along particles’ worldlines.
Certain C-space worldlines may appear tachyonic from the
point of view of M4. If we now repeat the above experiment
with the emission of the first and absorption of the second
tachyon we find out that the second tachyon T2 cannot
reach the aparatus worldline earlier than it was emmitted
from. Namely, T2 can arrive at a C-space event E′ with
x′0<x01, but the latter event does not coincide with the
event E on the aparatus worldline, since although having
the same coordinates x′μ=xμ, the events E and E′ have
different extra coordinates σ′ 6=σ. In other words, E and E′

are different points in C-space. Therefore T2 cannot destroy
the apparatus and there is no paradox.

If nature indeed obeys the dynamics in Clifford space,
then a particle, as observed from the 4-dimensional Minkow-
ski space, can be accelerated beyond the speed of light [17],
provided that its extra degrees of freedom xμν , xμνα, . . . ,
are changing simultaneously with the ordinary position xμ.
But such a particle, although moving faster than light in
the subspace M4, is moving slower than light in C-space,
since its speed V , defined in eq.-(24), is smaller than c. In
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this respect, our particle is not tachyon at all! In C-space
we thus retain all the nice features of relativity, but in the
subspace M4 we have, as a particular case, the unconstrained
Stueckelberg theory in which faster-than-light propagation
is not paradoxical and is consistent with the quantum field
theory as well [15]. This is so, because the unconstrained
Stueckelberg theory is quite different from the ordinary (con-
strained) theory of relativity in M4, and faster than light
motion in the former theory is of totally different nature from
the faster that light motion in the latter theory. The tachyonic
“world lines” in M4 are just projections of trajectories in
C-space onto Minkowski space, however, the true world
lines of M4 must be interpreted always as being embedded
onto a larger C-space, such that they cannot take part in the
paradoxical arrangement in which future could influence the
past. The well known objections against tachyons are not
valid for our particle which moves according to the relativity
in C-space.

We have described how one can obtain faster than light
motion in M4 from the theory of relativity in C-space. There
are other possible ways to achieve superluminal propagation.
One such approach is described in refs. [84]

An alternative procedure In ref. [9] an alternative factor-
ization of the C-space line element has been undertaken.
Starting from the line element dΣ of eq.-(5), instead of fac-
toring out the (dx0)2 element, one may factor out the (dΩ)2≡
≡L2Ddσ2 element, giving rise to the generalized “holo-
graphic” velocities measured w. r. t the Ω parameter, for ex-
ample the areal-time parameter in the Eguchi-Schild formu-
lation of string dynamics [126], [37], [24], instead of the x0

parameter (coordinate clock). One then obtains

dΣ2 = dΩ2
[

1 + L2D−2
dxμ
dΩ

dxμ

dΩ
+

+L2D−4
dxμν
dΩ

dxμν

dΩ
+ . . .+ |γ|2

(
dσ̃
dΩ

)2 ]

.

(36)

The idea of ref. [9] was to restrict the line element (36) to
the non tachyonic values which imposes un upper limit on the
holographic velocities. The motivation was to find a lower
bound of length scale. This upper holographic-velocity bound
does not necessarily translate into a lower bound on the
values of lengths, areas, volumes. . . without the introduction
of quantum mechanical considerations. One possibility could
be that the upper limiting speed of light and the upper bound
of the momentum mpc of a Planck-mass elementary particle
(the so-called Planckton in the literature) generalizes now
to an upper-bound in the p-loop holographic velocities and
the p-loop holographic momenta associated with elementary
closed p-branes whose tensions are given by powers of the
Planck mass. And the latter upper bounds on the holographic
p-loop momenta implies a lower-bound on the holographic
areas, volumes, . . . , resulting from the string/brane uncer-

tainty relations [11], [10], [19]. Thus, Quantum Mechanics
is required to implement the postulated principle of minimal
lengths, areas, volumes. . . and which cannot be derived from
the classical geometry alone. The emergence of minimal
Planck areas occurs also in the Loop Quantum Gravity pro-
gram [111] where the expectation values of the Area operator
are given by multiples of Planck area.

Recently in [134] an isomorphism between Yang’s Non-
commutative space-time algebra (involving two length
scales) [136] and the holographic area coordinates algebra
of C-spaces (Clifford spaces) was constructed via an AdS5
space-time which is instrumental in explaining the origins of
an extra (infrared) scale R in conjunction to the (ultraviolet)
Planck scale λ characteristic of C-spaces. Yang’s Noncom-
mutative space-time algebra allowed Tanaka [137] to explain
the origins behind the discrete nature of the spectrum for
the spatial coordinates and spatial momenta which yields a
minimum length-scale λ (ultraviolet cutoff) and a minimum
momentum p= ~/R (maximal length R, infrared cutoff).
In particular, the norm-squared A2 of the holographic Area
operator XABXAB has a correspondence with the quadratic
Casimir operator ΣABΣ

AB of the conformal algebra
SO(4, 2) (SO(5, 1) in the Euclideanized AdS5 case). This
holographic area-Casimir relationship does not differ much
from the area-spin relation in Loop Quantum Gravity A2 ∼
∼ λ4

∑
ji (ji+1) in terms of the SU (2) Casimir J2 with

eigenvalues j (j+1) and where the sum is taken over the
spin network sites.

3.2 A unified theory of all p-Branes in C-spaces

The generalization to C-spaces of string and p-brane actions
as embeddings of world-manifolds onto target spacetime
backgrounds involves the embeddings of polyvector-valued
world-manifolds (of dimensions 2d) onto polyvector-valued
target spaces (of dimensions 2D), given by the Clifford-
valued maps X =X(Σ) (see [15]). These are maps from the
Clifford-valued world-manifold, parametrized by the poly-
vector-valued variables Σ, onto the Clifford-valued target
space parametrized by the polyvector-valued coordinates X .
Physically one envisions these maps as taking an n-dimen-
sional simplicial cell (n-loop) of the world-manifold onto an
m-dimensional simplicial cell (m-loop) of the target C-space
manifold; i. e. maps from n-dim objects onto m-dim objects
generalizing the old maps of taking points onto points. One is
basically dealing with a dimension-category of objects. The
size of the simplicial cells (p-loops), upon quantization of a
generalized harmonic oscillator, for example, are given by
multiples of the Planck scale, in area, volume, hypervolume
units or Clifford-bits.

In compact multi-index notation X =XMΓM one de-
notes for each one of the components of the target space
polyvector X:

XM ≡ Xμ1μ2...μr , μ1 < μ2 < . . . < μr (37)

40 C. Castro and M. Pavšič. The Extended Relativity Theory in Clifford Spaces



April, 2005 PROGRESS IN PHYSICS Volume 1

and for the world-manifold polyvector Σ=ΣAEA:

ΣA ≡ ξa1a2...as , a1 < a2 < . . . < as , (38)

where ΓM =(1, γμ, γμν , . . .) and EA=(1, ea, eab, . . .) form
the basis of the target manifold and world manifold Clifford
algebra, respectively. It is very important to order the indices
within each multi-index M and A as shown above. The
above Clifford-valued coordinates XM ,ΣA correspond to
antisymmetric tensors of ranks r, s in the target spacetime
background and in the world-manifold, respectively.

There are many different ways to construct C-space brane
actions which are on-shell equivalent to the analogs of the
Dirac-Nambu-Goto action for extended objects and that are
given by the world-volume spanned by the branes in their
motion through the target spacetime background.

One of these actions is the Polyakov-Howe-Tucker one:

I=
T

2

∫
[DΣ]

√
|H|
[
HAB∂AX

M∂BX
NGMN+(2−2

d)
]

(39)

with the 2d-dim world-manifold measure:

[DΣ] = (dξ)(dξa)(dξa1a2)(dξa1a2a3) . . . (40)

Upon the algebraic elimination of the auxiliary world-
manifold metric HAB from the action (39), via the equations
of motion, yields for its on-shell solution the pullback of the
target C-space metric onto the C-space world-manifold:

HAB(on− shell) = GAB = ∂AX
M∂BX

NGMN (41)

upon inserting back the on-shell solutions (41) into (39)
gives the Dirac-Nambu-Goto action for the C-space branes
directly in terms of the C-space determinant, or measure, of
the induced C-space world-manifold metric GAB , as a result
of the embedding:

I = T

∫
[DΣ]

√
Det(∂AXM∂BXNGMN ) . (42)

However in C-space, the Polyakov-Howe-Tucker action
admits an even further generalization that is comprised of
two terms S1+S2. The first term is [15]:

S1 =

∫
[DΣ]|E|EAEB∂AX

M∂BX
NΓMΓN . (43)

Notice that this is a generalized action which is written
in terms of the C-space coordinates XM (Σ) and the C-
space analog of the target-spacetime vielbein/frame one-
forms em= emμdxμ given by the ΓM variables. The auxi-
liary world-manifold vielbein variables ea, are given now by
the Clifford-valued frame EA variables.

In the conventional Polyakov-Howe-Tucker action, the
auxiliary world-manifold metric hab associated with the stan-
dard p-brane actions is given by the usual scalar product

of the frame vectors ea, eb= eaμe
b
νg
μν =hab. Hence, the C-

space world-manifold metric HAB appearing in (41) is given
by scalar product <(EA)†EB>0=HAB , where (EA)† de-
notes the reversal operation of EA which requires reversing
the ordering of the vectors present in the Clifford aggre-
gate EA.

Notice, however, that the form of the action (43) is far
more general than the action in (39). In particular, the S1
itself can be decomposed further into two additional pieces
by rewriting the Clifford product of two basis elements into
a symmetric plus an antisymmetric piece, respectively:

EAEB =
1

2
{EA, EB}+

1

2
[EA, EB ] , (44)

ΓMΓN =
1

2
{ΓM ,ΓN}+

1

2
[ΓM ,ΓN ]. (45)

In this fashion, the S1 component has two kinds of terms.
The first term containing the symmetric combination is just
the analog of the standard non-linear sigma model action, and
the second term is a Wess-Zumino-like term, containing the
antisymmetric combination. To extract the non-linear sigma
model part of the generalized action above, we may simply
take the scalar product of the vielbein-variables as follows:

(S1)sigma =

=
T

2

∫
[DΣ]|E|<(EA∂AX

MΓM )
†(EB∂BX

NΓN )>0
(46)

where once again we have made use of the reversal operation
(the analog of the hermitian adjoint) before contracting multi-
indices. In this fashion we recover again the Clifford-scalar
valued action given by [15].

Actions like the ones presented here in terms of deriva-
tives with respect to quantities with multi-indices can be
mapped to actions involving higher derivatives, in the same
fashion that the C-space scalar curvature, the analog of the
Einstein-Hilbert action, could be recast as a higher derivative
gravity with torsion (reviewed in sec. 4). Higher derivatives
actions are also related to theories of Higher spin fields [117]
and W -geometry, W -algebras [116], [122]. For the role of
Clifford algerbras to higher spin theories see [51].

The S2 (scalar) component of the C-space brane action
is the usual cosmological constant term given by the C-space
determinant |E|= det(HAB) based on the scalar part of the
geometric product <(EA)†EB>0=HAB

S2 =
T

2

∫
[DΣ]|E| , (2− 2d) , (47)

where the C-space determinant |E|=
√
|det(HAB)| of the

2d×2d generalized world-manifold metric HAB is given by:

det(HAB) =
1

(2d)!
εA1A2...A2d εB1B2...B2d×

×HA1B1HA2B2 . . . HA2dB2d .

(48)

C. Castro and M. Pavšič. The Extended Relativity Theory in Clifford Spaces 41



Volume 1 PROGRESS IN PHYSICS April, 2005

The εA1A2...A2d is the totally antisymmetric tensor den-
sity in C-space.

There are many different forms of p-brane actions, with
and without a cosmological constant [123], and based on
a new integration measure by recurring to auxiliary scalar
fields [115], that one could have used to construct their C-
space generalizations. Since all of them are on-shell equiv-
alent to the Dirac-Nambu-Goto p-brane actions, we decided
to focus solely on those actions having the Polyakov-Howe-
Tucker form.

4 Generalized gravitational theories in curved C-spa-
ces: higher derivative gravity and torsion from the
geometry of C-space

4.1 Ordinary space

4.1.1 Clifford algebra based geometric calculus in curv-
ed space(time)

Clifford algebra is a very useful tool for description of ge-
ometry, especially of curved space Vn. Let us first review
how it works in curved space(time). Later we will discuss a
generalization to curved Clifford space [20].

We would like to make those techniques accessible to
a wide audience of physicists who are not so familiar with
the rigorous underlying mathematics, and demonstrate how
Clifford algebra can be straightforwardly employed in the
theory of gravity and its generalization. So we will leave
aside the sophisticated mathematical approach, and rather
follow as simple line of thought as possible, a praxis that
is normally pursued by physicists. For instance, physicists
in their works on general relativity employ a mathematical
formulation and notation which is much simpler from that
of purely mathematical or mathematically oriented works.
For rigorous mathematical treatment the reader is advised to
study, refs. [1, 76, 77, 78, 79].

Let the vector fields γμ, μ=1, 2, . . . , n be a coordinate
basis in Vn satisfying the Clifford algebra relation

γμ ∙ γν ≡
1

2
(γμγν + γνγμ) = gμν , (49)

where gμν is the metric of Vn. In curved space γμ and gμν
cannot be constant but necessarily depend on position xμ.
An arbitrary vector is a linear superposition [1]

a = aμγμ , (50)

where the components aμ are scalars from the geometric
point of view, whilst γμ are vectors.

Besides the basis {γμ} we can introduce the reciprocal
basis∗ {γμ} satisfying

γμ ∙ γν ≡
1

2
(γμγν + γνγμ) = gμν , (51)

∗In Appendix A of the Hesteness book [1] the frame {γμ} is called
dual frame because the duality operation is used in constructing it.

where gμν is the covariant metric tensor such that gμαgαν =
= δμν , γμγν + γνγμ=2δμν and γμ= gμνγν .

Following ref. [1] (see also [15]) we consider the vector
derivative or gradient defined according to

∂ ≡ γμ∂μ , (52)

where ∂μ is an operator whose action depends on the quantity
it acts on [26].

Applying the vector derivative ∂ on a scalar field φ
we have

∂φ = γμ∂μφ , (53)

where ∂μφ≡ (∂/∂xμ)φ coincides with the partial deriva-
tive of φ.

But if we apply it on a vector field a we have

∂a = γμ∂μ(a
νγν) = γμ(∂μa

νγν + a
ν∂μγν) . (54)

In general γν is not constant; it satisfies the relation to
works [1, 15]

∂μγν = Γ
α
μνγα , (55)

where Γαμν is the connection. Similarly, for γν = gναγα we
have

∂μγ
ν = −Γνμαγ

α . (56)

The non commuting operator ∂μ so defined determines
the parallel transport of a basis vector γν . Instead of the
symbol ∂μ Hestenes uses 2μ, whilst Wheeler et. al. [36]
use ∇μ and call it “covariant derivative”. In modern, math-
ematically oriented literature more explicit notation such as
Dγμ or ∇γμ is used. However, such a notation, although
mathematically very relevant, would not be very practical
in long computations. We find it very convenient to keep
the symbol ∂μ for components of the geometric operator
∂= γμ∂μ. When acting on a scalar field the derivative ∂μ
happens to be commuting and thus behaves as the ordinary
partial derivative. When acting on a vector field, ∂μ is a
non commuting operator. In this respect, there can be no
confusion with partial derivative, because the latter normally
acts on scalar fields, and in such a case partial derivative
and ∂μ are one and the same thing. However, when acting
on a vector field, the derivative ∂μ is non commuting. Our
operator ∂μ when acting on γμ or γμ should be distinguished
from the ordinary — commuting — partial derivative, let be
denoted γν,μ , usually used in the literature on the Dirac
equation in curved spacetime. The latter derivative is not
used in the present paper, so there should be no confusion.

Using (55), eq.-(54) becomes

∂a=γμγν(∂μa
ν+Γνμαa

α)≡γμγνDμa
ν=γμγνDμaν (57)

where Dμ is the covariant derivative of tensor analysis.
Decomposing the Clifford product γμγν into its sym-

metric and antisymmetric part [1]

γμγν = γμ ∙ γν + γμ ∧ γν , (58)
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where

γμ ∙ γν ≡
1

2
(γμγν + γνγμ) = gμν (59)

is the inner product and

γμ ∧ γν ≡
1

2
(γμγν − γνγμ) (60)

the outer product, we can write eq.-(57) as

∂a = gμν Dμaν + γ
μ ∧ γνDμaν =

= Dμa
μ +

1

2
γμ ∧ γν(Dμaν − Dνaμ) .

(61)

Without employing the expansion in terms of γμ we have
simply

∂a = ∂ ∙ a+ ∂ ∧ a . (62)

Acting twice on a vector by the operator ∂ we have∗

∂∂a = γμ∂μ(γ
ν∂ν)(a

αγα) = γμγνγαDμDνa
α =

= γαDμDμaα +
1

2
(γμ ∧ γν)γα[Dμ,Dν ]a

α =

= γαDμDμaα + γμ(Rμρa
ρ +Kμα

ρDρa
α) +

+
1

2
(γμ ∧ γν ∧ γα)(Rμνρ

αaρ +Kμν
ρDρa

α) .

(63)

We have used

[Dμ,Dν ]a
α = Rμνρ

αaρ +Kμν
ρDρa

α , (64)

where
Kμν

ρ = Γρμν − Γ
ρ
νμ (65)

is torsion and Rμνρ
α the curvature tensor. Using eq.-(55) we

find

[∂α, ∂β ]γμ = Rαβμ
νγν , (66)

from which we have

Rαβμ
ν = ([[∂α, ∂β ]γμ) ∙ γ

ν . (67)

Thus in general the commutator of derivatives ∂μ acting
on a vector does not give zero, but is given by the curvature
tensor.

In general, for an r-vector A= aα1...αrγα1γα2 . . . γαr we
have

∂∂ . . . ∂A = (γμ1∂μ1)(γ
μ2∂μ2) . . . (γ

μk∂μk)×

× (aα1...αrγα1γα2 . . . γαr ) = γμ1γμ2 . . .

. . . γμkγα1γα2 . . . γαrDμ1Dμ2 . . .Dμka
α1...αr .

(68)

∗We use (a∧ b) c=(a∧ b) ∙ c+ a∧ b∧ c [1] and also (a∧ b) ∙ c=
=(b ∙ c) a− (a ∙ c)b.

4.1.2 Clifford algebra based geometric calculus and re-
solution of the ordering ambiguity for the product
of momentum operators

Clifford algebra is a very useful tool for description of ge-
ometry of curved space. Moreover, as shown in ref. [26] it
provides a resolution of the long standing problem of the
ordering ambiguity of quantum mechanics in curved space.
Namely, eq.-(52) for the vector derivative suggests that the
momentum operator is given by

p = −i ∂ = −i γμ∂μ . (69)

One can consider three distinct models:

(i) The non relativistic particle moving in ndimensional
curved space. Then, μ=1, 2, . . . , n, and signature is
(+ + ++ . . .);

(ii) The relativistic particle in curved spacetime, described
by the Schild action [37]. Then, μ=0, 1, 2, . . . , n− 1
and signature is (+−−− . . .);

(iii) The Stueckelberg unconstrained particle [33, 34, 35,
29].

In all three cases the classical action has the form

I[Xμ] =
1

2Λ

∫
dτ gμν(x)Ẋ

μẊν (70)

and the corresponding Hamiltonian is

H =
Λ

2
gμν(x)pμpν =

Λ

2
p2 . (71)

If, upon quantization we take for the momentum operator
pμ=−i ∂μ, then the ambiguity arises of how to write the
quantum Hamilton operator. The problem occurs because
the expressions gμνpμpν , pμgμνpν and pμpνg

μν are not
equivalent.

But, if we rewrite H as

H =
Λ

2
p2 , (72)

where p= γμpμ is the momentum vector which upon quanti-
zation becomes the momentum vector operator (69), we find
that there is no ambiguity in writing the square p2. When
acting with H on a scalar wave function φ we obtain the
unambiguous expression

Hφ=
Λ

2
p2φ=

Λ

2
(−i)2(γμ∂μ)(γ

ν∂ν)φ=−
Λ

2
DμDμφ (73)

in which there is no curvature term R. We expect that a term
with R will arise upon acting with H on a spinor field ψ.

4.2 C-space

Let us now consider C-space and review the procedure of
ref. [20]. A basis in C-space is given by

EA = {γ, γμ, γμ ∧ γν , γμ ∧ γν ∧ γρ, . . .} , (74)
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where in an r-vector γμ1∧γμ2∧ . . .∧γμr we take the indices
so that μ1<μ2< . . . <μr. An element of C-space is a
Clifford number, called also Polyvector or Clifford aggregate
which we now write in the form

X = XAEA = s γ + xμγμ + x
μνγμ ∧ γν + . . . . (75)

A C-space is parametrized not only by 1-vector coordi-
nates xμ but also by the 2-vector coordinates xμν , 3-vector
coordinates xμνα, etc., called also holographic coordinates,
since they describe the holographic projections of 1-loops,
2-loops, 3-loops, etc., onto the coordinate planes. By p-loop
we mean a closed p-brane; in particular, a 1-loop is closed
string.

In order to avoid using the powers of the Planck scale
length parameter L in the expansion of the polyvector X we
use the dilatationally invariant units [15] in which L is set
to 1. The dilation invariant physics was discussed from a
different perspective also in refs. [23, 21].

In a flat C-space the basis vectors EA are constants. In a
curved C-space this is no longer true. Each EA is a function
of the C-space coordinates

XA = {s, xμ, xμν , . . .} (76)

which include scalar, vector, bivector, . . . , r-vector, . . . , co-
ordinates.

Now we define the connection Γ̃CAB in C-space accord-
ing to

∂AEB = Γ̃
C
ABEC , (77)

where ∂A ≡ ∂/∂XA is the derivative in C-space. This
definition is analogous to the one in ordinary space. Let
us therefore define the C-space curvature as

RABC
D = ([∂A, ∂B ]EC) ∗ E

D , (78)

which is a straightforward generalization of the relation (67).
The “star” means the scalar product between two polyvectors
A and B, defined as

A ∗B = 〈AB〉S , (79)

where “S” means “the scalar part” of the geometric product
AB.

In the following we shall explore the above relation for
curvature and see how it is related to the curvature of the
ordinary space. Before doing that we shall demonstrate that
the derivative with respect to the bivector coordinate xμν is
equal to the commutator of the derivatives with respect to
the vector coordinates xμ.

Returning now to eq.-(77), the differential of a C-space
basis vector is given by

dEA =
∂EA
∂XB

dXB = ΓCAB EC dXB . (80)

In particular, for A=μ and EA= γμ we have

dγμ =
∂γμ
∂Xν

dxν +
∂γμ
∂xαβ

dxαβ + . . . =

= Γ̃AνμEAdxν + Γ̃A[αβ]μEAdxαβ + . . . =

= (Γ̃ανμγα + Γ̃
[ρσ]
νμ γρ ∧ γσ + . . .)dx

ν +

+(Γ̃
ρ
[αβ]μγρ + Γ̃

[ρσ]
[αβ]μγρ ∧ γσ + . . .)dx

αβ + . . . .

(81)

We see that the differential dγμ is in general a polyvector,
i. e., a Clifford aggregate. In eq.-(81) we have used

∂γμ
∂xν

= Γ̃ανμγα + Γ̃
[ρσ]
νμ γρ ∧ γσ + . . . , (82)

∂γμ
∂xαβ

= Γ̃
ρ
[αβ]μγρ + Γ̃

[ρσ]
[αβ]μγρ ∧ γσ + . . . . (83)

Let us now consider a restricted space in which the
derivatives of γμ with respect to xν and xαβ do not contain
higher rank multivectors. Then eqs.-(82), (83) become

∂γμ
∂xν

= Γ̃ανμγα , (84)

∂γμ
∂xαβ

= Γ̃
ρ
[αβ]μγρ . (85)

Further we assume that:

(i) The components Γ̃ανμ of the C-space connection Γ̃CAB
coincide with the connection Γανμ of an ordinary space;

(ii) The components Γ̃ρ[αβ]μ of the C-space connection co-
incide with the curvature tensor Rαβμ

ρ of an ordinary
space.

Hence, eqs.-(84), (85) read

∂γμ
∂xν

= Γανμγα , (86)

∂γμ
∂xαβ

= Rαβμ
ργρ , (87)

and the differential (81) becomes

dγμ =
(
Γραμdxα +

1

2
Rαβμ

ρdxαβ
)
γρ . (88)

The same relation was obtained by Pezzaglia [14] by
using a different method, namely by considering how poly-
vectors change with position. The above relation demon-
strates that a geodesic in C-space is not a geodesic in ordinary
spacetime. Namely, in ordinary spacetime we obtain Papa-
petrou’s equation. This was previously pointed out by Pezza-
glia [14].

Although a C-space connection does not transform like
a C-space tensor, some of its components, i. e., those of eq.-
(85), may have the transformation properties of a tensor in
an ordinary space.
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Under a general coordinate transformation in C-space

XA → X ′A = X ′A(XB) (89)

the connection transforms according to∗

Γ̃′
C
AB=

∂X ′C

∂XE

∂XJ

∂X ′A

∂XK

∂X ′B
Γ̃EJK+

∂X ′C

∂XJ

∂2XJ

∂X ′A∂X ′B
. (90)

In particular, the components which contain the bivector
index A = [αβ] transform as

Γ̃′
ρ
[αβ]μ=

∂X ′ρ

∂XE

∂XJ

∂σ′αβ
∂XK

∂x′μ
Γ̃EJK+

∂x′ρ

∂XJ

∂2XJ

∂σ′αβ∂x′μ
. (91)

Let us now consider a particular class of coordinate
transformations in C-space such that

∂x′ρ

∂xμν
= 0 ,

∂xμν

∂x′α
= 0 . (92)

Then the second term in eq.-(91) vanishes and the trans-
formation becomes

Γ̃′
ρ
[αβ]μ =

∂X ′ρ

∂xε
∂xρσ

∂σ′αβ
∂xγ

∂x′μ
Γ̃ε[ρσ]γ . (93)

Now, for the bivector whose components are dxαβ we
have

dσ′αβγ′α ∧ γ
′
β = dxαβγα ∧ γβ . (94)

Taking into account that in our particular case (92) γα
transforms as a basis vector in an ordinary space

γ′α =
∂xμ

∂x′α
γμ , (95)

we find that (94) and (95) imply

dσ′αβ
∂xμ

∂x′α
∂xν

∂x′β
= dxμν , (96)

which means that

∂xμν

∂σ′αβ
=
1

2

(
∂xμ

∂x′α
∂xν

∂x′β
−
∂xν

∂x′α
∂xμ

∂x′β

)

≡
∂x[μ

∂x′α
∂xν]

∂x′β
. (97)

The transformation of the bivector coordinate xμν is thus
determined by the transformation of the vector coordinates
xμ. This is so because the basis bivectors are the wedge
products of basis vectors γμ.

From (93) and (97) we see that Γ̃ε[ρσ]γ transforms like a
4th-rank tensor in an ordinary space.

Comparing eq.-(87) with the relation (66) we find

∂γμ
∂xαβ

= [∂α, ∂β ]γμ . (98)

∗This can be derived from the relation dE′A =
∂E′A
∂X ′B

dX ′B , where

E′A =
∂XD

∂X ′A
ED and dX ′B =

∂X ′B

∂XC
dXC .

The derivative of a basis vector with respect to the
bivector coordinates xαβ is equal to the commutator of the
derivatives with respect to the vector coordinates xα.

The above relation (98) holds for the basis vectors γμ.
For an arbitrary polyvector

A = AAEA = sγ + aαγα + a
αβγα ∧ γβ + . . . (99)

we will assume the validity of the following relation

DAA

Dxμν
= [Dμ,Dν ]A

A , (100)

where D/Dxμν is the covariant derivative, defined in anal-
ogous way as in eqs. (57):

DAA

DXB
=
∂AA

∂XB
+ Γ̃ABCA

C . (101)

From eq.-(100) we obtain

Ds
Dxμν

= [Dμ,Dν ]s = Kμν
ρ∂ρs , (102)

Daα

Dxμν
= [Dμ,Dν ]a

α = Rμνρ
αaρ +Kμν

ρDρa
α . (103)

Using (101) we have that

Ds
Dxμν

=
∂s

∂xμν
(104)

and also follows

Daα

Dxμν
=

∂aα

∂xμν
+ Γ̃α[μν]ρa

ρ =
∂aα

∂xμν
+Rμνρ

αaρ , (105)

where, according to (ii), Γ̃α[μν]ρ has been identified with
curvature. So we obtain, after inserting (104), (105) into
(102), (103) that:

(a) The partial derivatives of the coefficients s and aα,
which are Clifford scalars†, with respect to xμν are
related to torsion:

∂s

∂xμν
= Kμν

ρ∂ρs , (106)

∂aα

∂xμν
= Kμν

ρDρa
α ; (107)

(b) Whilst the derivative of the basis vectors with respect
to xμν are related to curvature:

∂γα
∂xμν

= Rμνα
βγβ . (108)

In other words, the dependence of coefficients s and aα

on xμν indicates the presence of torsion. On the contrary,
when basis vectors γα depend on xμν this indicates that the
corresponding vector space has non vanishing curvature.

†In the geometric calculus based on Clifford algebra, the coefficients
such as s, aα, aαβ ,. . . , are called scalars (although in tensor calculus
they are called scalars, vectors and tensors, respectively), whilst the objects
γα, γα ∧ γβ , . . . , are called vectors, bivectors, etc.
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4.3 On the relation between the curvature of C-space
and the curvature of an ordinary space

Let us now consider the C-space curvature defined in eq.-
(78). The indices A,B, can be of vector, bivector, etc., type.
It is instructive to consider a particular example.

A= [μν], B= [αβ], C = γ, D= δ
([

∂

∂xμν
,

∂

∂xαβ

]

γγ

)

∙ γδ = R[μν][αβ]γ
δ . (109)

Using (87) we have

∂

∂xμν
∂

∂xαβ
γγ=

∂

∂xμν
(Rαβγ

ργρ)=Rαβγ
ρRμνρ

σγσ (110)

where we have taken

∂

∂xμν
Rαβγ

ρ = 0 , (111)

which is true in the case of vanishing torsion (see also an
explanation that follows after the next paragraph). Inserting
(110) into (109) we find

R[μν][αβ]γ
δ = Rμνγ

ρRαβρ
δ −Rαβγ

ρRμνρ
δ , (112)

which is the product of two usual curvature tensors. We can
proceed in analogous way to calculate the other components
of RABC

D such as R[αβγδ][ρσ]ε
μ, R[αβγδ][ρστκ]ε

[μν], etc.
These contain higher powers of the curvature in an ordinary
space. All this is true in our restricted C-space given by eqs.-
(84), (85) and the assumptions (i), (ii) bellow those equations.
By releasing those restrictions we would have arrived at an
even more involved situation which is beyond the scope of
the present paper.

After performing the contractions of (112) and the corre-
sponding higher order relations we obtain the expansion of
the form

R = R+ α1R
2 + α2RμνR

μν + . . . . (113)

So we have shown that the C-space curvature can be ex-
pressed as the sum of the products of the ordinary spacetime
curvature. This bears a resemblance to the string effective
action in curved spacetimes given by sums of powers of
the curvature tensors based on the quantization of non-linear
sigma models [118].

If one sets aside the algebraic convergence problems
when working with Clifford algebras in infinite dimensions,
one can consider the possibility of studying Quantum Gravity
in a very large number of dimensions which has been revi-
sited recently [83] in connection to a perturbative renorm-
alizable quantum theory of gravity in infinite dimensions.
Another interesting possibility is that an infinite series ex-
pansion of the powers of the scalar curvature could yield the
recently proposed modified Lagrangians R+1/R of gravity
to accommodate the cosmological accelerated expansion of

the Universe [131], after a judicious choice of the algebraic
coefficients is taken. One may notice also that having a
vanishing cosmological constant in C-space,R=Λ=0 does
not necessarily imply that one has a vanishing cosmological
constant in ordinary spacetime. For example, in the very
special case of homogeneous symmetric spacetimes, like
spheres and hyperboloids, where all the curvature tensors
are proportional to suitable combinations of the metric tensor
times the scalar curvature, it is possible to envision that the
net combination of the sum of all the powers of the curvature
tensors may cancel-out giving an overall zero value R=0.
This possibility deserves investigation.

Let us now show that for vanishing torsion the curvature
is independent of the bivector coordinates xμν , as it was
taken in eq.-(111). Consider the basic relation

γμ ∙ γν = gμν . (114)

Differentiating with respect to xαβ we have

∂

∂xαβ
(γμ ∙ γν) =

∂γμ
∂xαβ

∙ γν + γμ ∙
∂γν
∂xαβ

=

= Rαβμν +Rαβνμ = 0 .

(115)

This implies that

∂gμν
∂σαβ

= [∂α, ∂β ]gμν = 0 . (116)

Hence the metric, in this particular case, is independent
of the holographic (bivector) coordinates. Since the curvature
tensor — when torsion is zero — can be written in terms of
the metric tensor and its derivatives, we conclude that not
only the metric, but also the curvature is independent of
xμν . In general, when the metric has a dependence on the
holographic coordinates one expects further corrections to
eq.-(112) that would include torsion.

5 On the quantization in C-spaces

5.1 The momentum constraint in C-space

A detailed discussion of the physical properties of all the
components of the polymomentum P in four dimensions and
the emergence of the physical mass in Minkowski spacetime
has been provided in the book [15]. The polymomentum in
D=4, canonically conjugate to the position polyvector

X = σ + xμγμ + γ
μν γμ ∧ γν + ξ

μγ5γμ + sγ5 (117)

can be written as:

P = μ+ pμγμ + S
μνγμ ∧ γν + π

μγ5γμ +mγ5 , (118)

where besides the vector components pμ we have the scalar
component μ, the 2-vector components Sμν , that are con-
nected to the spin as shown by [14]; the pseudovector com-
ponents πμ and the pseudoscalar component m.
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The most salient feature of the polyparticle dynamics in
C-spaces [15] is that one can start with a constrained action
in C-space and arrive, nevertheless, at an unconstrained
Stuckelberg action in Minkowski space (a subspace of C-
space) in which pμp

μ is a constant of motion. The true
constraint in C-space is:

PAP
A = μ2+pμp

μ−2SμνSμν+πμπ
μ−m2 =M2 , (119)

where M is a fixed constant, the mass in C-space. The
pseudoscalar componentm is a variable, like μ, pμ, Sμν , and
πμ, which altogether are constrained according to eq.-(119).
It becomes the physical mass in Minkowski spacetime in the
special case when other extra components vanish, i. e., when
μ=0, Sμν =0 and πμ=0. This justifies using the notation
m for mass. This is basically the distinction between the mass
in Minkowski space which is a constant of motion pμpμ and
the fixed mass M in C-space. The variable m is canonically
conjugate to s which acquires the role of the Stuckelberg
evolution parameter s that allowed ref. [29, 15] to propose a
natural solution of the problem of time in quantum gravity.
The polyparticle dynamics in C-space is a generalization of
the relativistic Regge top construction which has recently
been studied in de Sitter spaces by [135].

A derivation of a charge, mass, and spin relationship of a
polyparticle can be obtained from the above polymomentum
constraint in C-space if one relates the norm of the axial-
momentum component πμ of the polymomentum P to the
charge [80]. It agrees exactly with the recent charge-mass-
spin relationship obtained by [44] based on the Kerr-
Newman black hole metric solutions of the Einstein-Maxwell
equations. The naked singularity Kerr-Newman solutions
have been interpreted by [45] as Dirac particles. Further
investigation is needed to understand better these relation-
ships, in particular, the deep reasons behind the charge as-
signment to the norm of the axial-vector πμ component of the
polymomentum which suggests that mass has a gravitational,
electromagnetic and rotational aspects to it. In a Kaluza-
Klein reduction from D=5 to D=4 it is well known that
the electric charge is related to the p5 component of the
momentum. Hence, charge bears a connection to an internal
momentum.

5.2 C-space Klein-Gordon and Dirac wave equations

The ordinary Klein-Gordon equation can be easily obtained
by implementing the on-shell constraint p2−m2=0 as an
operator constraint on the physical states after replacing pμ
for −i∂/∂xμ (we use units in which ~=1, c=1):

(
∂2

∂xμ∂xμ
+m2

)

φ = 0. (120)

The C-space generalization follows from the P 2−M2=0

condition by replacing

PA → −i
∂

∂XA
= −i

(
∂

∂σ
,
∂

∂xμ
,

∂

∂xμν
, . . .

)

, (121)

(
∂2

∂σ2
+

∂2

∂xμ∂xμ
+

∂2

∂xμν∂xμν
+ . . .+M2

)

Φ=0, (122)

where we have set L= ~= c=1 for convenience purposes
and the C-space scalar field Φ(σ, xμ, xμν , . . .) is a poly-
vector-valued scalar function of all the C-space variables.
This is the Klein-Gordon equation associated with a free
scalar polyparticle in C-space.

A wave equation for a generalized C-space harmonic
oscillator requires to introduce the potential of the form
V =κX2 that admits straightforward solutions in terms of
Gaussians and Hermite polynomials similar to the ordinary
point-particle oscillator. There are now collective excitations
of the Clifford-oscillator in terms of the number of Clifford-
bits and which represent the quanta of areas, volumes, hyper-
volumes, . . . , associated with the p-loops oscillations in
Planck scale units. The logarithm of the degeneracy of the
first collective state of the C-space oscillator, as a function
of the number of bits, bears the same functional form as the
Bekenstein-Hawking black hole entropy, with the upshot that
one recovers, in a natural way, the logarithmic corrections to
the black-hole entropy as well, if one identifies the number
of Clifford-bits with the number of area-quanta of the black
hole horizon. For further details about this derivation and
the emergence of the Schwarzschild horizon radius relation,
the Hawking temperature, the maximal Planck temperature
condition, etc., we refer to [21]. Perhaps the most important
consequence of this latter view of black hole entropy is the
possibility that there is a ground state of quantum spacetime,
resulting from of a Bose-Einstein condensate of the C-space
harmonic oscillator.

A C-space version of the Dirac Equation, representing
the dynamics of spinning-polyparticles (theories of extended-
spin, extended charges) is obtained via the square-root pro-
cedure of the Klein-Gordon equation:

−i

(
∂

∂σ
+γμ

∂

∂xμ
+γμ∧γν

∂

∂xμν
+ . . .

)

Ψ=MΨ , (123)

where Ψ(σ, xμ, xμν , . . .) is a polyvector-valued function, a
Clifford-number, Ψ=ΨAEA of all the C-space variables.
For simplicity we consider here a flat C-space in which the
metric GAB =E

†
A ∗ EB = ηAB is diagonal, ηAB being the

C-space analog of Minkowski tensor. In curved C-space the
equation (123) should be properly generalized. This goes
beyond the scope of the present paper.

Ordinary spinors are nothing but elements of the left/right
ideals of a Clifford algebra. So they are automatically con-
tained in the polyvector valued wave function Ψ. The ordi-
nary Dirac equation can be obtained when Ψ is independent
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of the extra variables associated with a polyvector-valued
coordinates X (i. e., of xμν , xμνρ, . . . ). For details see [15].

Thus far we have written ordinary wave equations in
C-space, that is, we considered the wave equations for a
“point particle” in C-space. From the perspective of the 4-
dimensional Minkowski spacetime the latter “point particle”
has, of course, a much richer structure then a mere point: it
is an extended object, modeled by coordinates xμ, xμν , . . .
But such modeling does not embrace all the details of an
extended object. In order to provide a description with more
details, one can considere not the “point particles” in C-
space, but branes in C-space. They are described by the
embeddings X =X(Σ), that is XM =XM (ΣA), considered
in sec. 3.2. Quantization of such branes can employ wave
functional equation, or other methods, including the second
quantization formalism. For a more detailed study detailed
study of the second quantization of extended objects using
the tools of Clifford algebra see [15].

Without emplying Clifford algebra a lot of illuminating
work has been done in relation to description of branes in
terms of p-loop coordinates [132]. A bosonic/fermionic p-
brane wave-functional equation was presented in [12], gener-
alizing the closed-string (loop) results in [13] and the the
quantum bosonic p-brane propagator, in the quenched-
reduced minisuperspace approximation, was attained by [18].
In the latter work branes are described in terms of the
collective coordinates which are just the highest grade com-
ponents in the expansion of a poplyvector X given in eq.-(2).
This work thus paved the way for the next logical step, that is,
to consider other multivector components of X in a unified
description of all branes.

Notice that the approach based on eqs.-(122), (123) is
different from that by Hestenes [1] who proposed an equation
which is known as the Dirac-Hestenes equation. Dirac’s
equation using quaternions (related to Clifford algebras) was
first derived by Lanczos [91]. Later on the Dirac-Lanczos
equation was rediscovered by many people, in particular by
Hestenes and Gursey [92] in what became known as the
Dirac-Hestenes equation. The former Dirac-Lanczos equa-
tion is Lorentz covariant despite the fact that it singles out
an arbitrary but unique direction in ordinary space: the spin
quantization axis. Lanczos, without knowing, had anticipated
the existence of isospin as well. The Dirac-Hestenes equation
∂Ψe21=mΨe0 is covariant under a change of frame [133],
[93]. e′μ=UeμU

−1 and Ψ′=ΨU−1 with U an element of
the Spin+(1, 3) yielding ∂Ψ′e′21=mΨ

′e′0. As Lanczos had
anticipated, in a new frame of reference, the spin quantization
axis is also rotated appropriately, thus there is no breakdown
of covariance by introducing bivectors in the Dirac-Hestenes
equation.

However, subtleties still remain. In the Dirac-Hestenes
equation instead of the imaginary unit i there occurs the
bivector γ1γ−2. Its square is −1 and commutes with all the
elements of the Dirac algebra which is just a desired property.

But on the other hand, the introduction of a bivector into an
equation implies a selection of a preferred orientation in
spacetime; i. e. the choice of the spin quantization axis in the
original Dirac-Lanczos quaternionic equation. How is such
preferred orientation (spin quantization axis) determined?
Is there some dynamical symmetry which determines the
preferred orientation (spin quantization axis)? is there an
action which encodes a hidden dynamical principle that se-
lects dynamically a preferred spacetime orientation (spin
quantization axis)?

Many subtleties of the Dirac-Hesteness equation and its
relation to the ordinary Dirac equation and the Seiberg-
Witten equation are investigated from the rigorous mathe-
matical point of view in refs. [93]. The approach in refs. [16,
15, 17, 8], reviewed here, is different. We start from the usual
formulation of quantum theory and extend it to C-space. We
retain the imaginary unit i. Next step is to give a geometric
interpretation to i. Instead of trying to find a geometric origin
of i in spacetime we adopt the interpretation proposed in [15]
according to which the i is the bivector of the 2-dimensional
phase space (whose direct product with the n-dimensional
configuration space gives the 2n-dimensional phase space)∗.
This appears to be a natural assumption due to the fact that
complex valued quantum mechanical wave functions involve
momenta pμ and coordinates xμ (e. g., a plane wave is given
by exp[ipμxμ], and arbitrary wave packet is a superposition
of plane waves).

6 Maximal-acceleration Relativity in phase-spaces

In this section we shall discuss the maximal acceleration
Relativity principle [68] based on Finsler geometry which
does not destroy, nor deform, Lorentz invariance. Our dis-
cussion differs from the pseudo-complex Lorentz group de-
scription by Schuller [61] related to the effects of maximal
acceleration in Born-Infeld models that also maintains Lo-
rentz invariance, in contrast to the approaches of Double
Special Relativity (DSR). In addition one does not need to
modify the energy-momentum addition (conservation) laws
in the scattering of particles which break translational invari-
ance. For a discussions on the open problems of Double Spe-
cial Relativity theories based on kappa-deformed Poincaré
symmetries [63] and motivated by the anomalous Lorentz-
violating dispersion relations in the ultra high energy cosmic
rays [71, 72, 73], we refer to [70].

Related to the minimal Planck scale, an upper limit on the
maximal acceleration principle in Nature was proposed by
long ago Cainello [52]. This idea is a direct consequence of a
suggestion made years earlier by Max Born on a Dual Relati-
vity principle operating in phase spaces [49], [74] wherethere

∗Yet another interpretation of the imaginary unit i present in the
Heisenberg uncertainty relations has been undertaken by Finkelstein and
collaborators [96].
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is an upper bound on the four-force (maximal string tension
or tidal forces in the string case) acting on a particle as well as
an upper bound in the particle velocity. One can combine the
maximum speed of light with a minimum Planck scale into a
maximal proper-acceleration a= c2/L within the framework
of Finsler geometry [56]. For a recent status of the geometries
behind maximal-acceleration see [73]; its relation to the
Double Special Relativity programs was studied by [55] and
the possibility that Moyal deformations of Poincaré algebras
could be related to the kappa-deformed Poincaré algebras
was raised in [68]. A thorough study of Finsler geometry
and Clifford algebras has been undertaken by Vacaru [81]
where Clifford/spinor structures were defined with respect to
Nonlinear connections associated with certain nonholonomic
modifications of Riemann-Cartan gravity.

Other several new physical implications of the maximal
acceleration principle in Nature, like neutrino oscillations
and other phenomena, have been studied by [54], [67], [42].
Recently, the variations of the fine structure constant α [64],
with the cosmological accelerated expansion of the Universe,
was recast as a renormalization group-like equation govern-
ing the cosmological red shift (Universe scale) variations of
α based on this maximal acceleration principle in Nature
[68]. The fine structure constant was smaller in the past.
Pushing the cutoff scale to the minimum Planck scale led
to the intriguing result that the fine structure constant could
have been extremely small (zero) in the early Universe and
that all matter in the Universe could have emerged via the
Unruh-Rindler-Hawking effect (creation of radiation/matter)
due to the acceleration w. r. t the vacuum frame of reference.
For reviews on the alleged variations of the fundamental
constants in Nature see [65] and for more astonishing vari-
ations of αdriven by quintessence see [66].

6.1 Clifford algebras in phase space

We shall employ the procedure described in [15] to construct
the Phase Space Clifford algebra that allowed [127] to repro-
duce the sub-maximally accelerated particle action of [53].

For simplicity we will focus on a two-dim phase space.
Let ep, eq be the Clifford-algebra basis elements in a two-dim
phase space obeying the following relations [15]:

ep ∙ eq ≡
1

2
(eqep + epeq) = 0 (124)

and epep= eqeq =1.
The Clifford product of ep, eq is by definition the sum of

the scalar and the wedge product:

epeq = ep ∙ eq + ep ∧ eq = 0 + ep ∧ eq = i , (125)

such that i2= epeqepeq =−1. Hence, the imaginary unit
i, i2=−1 admits a very natural interpretation in terms of
Clifford algebras, i. e., it is represented by the wedge product

i= ep ∧ eq , a phase-space area element. Such imaginary unit
allows us to express vectors in a C-phase space in the form:

Q = qeq + peq ,

Q ∙ eq = q + pep ∙ eq = q + ip = z ,

eq ∙Q = q + peq ∙ ep = q − ip = z∗ ,

(126)

which reminds us of the creation/annihilation operators used
in the harmonic oscillator.

We shall now review the steps in [127] to reproduce the
sub-maximally accelerated particle action [53]. The phase-
space analog of the spacetime action is:

dQdQ = (dq)2+(dp)2 ⇒ S = m

∫√
(dq)2+(dp)2 . (127)

Introducing the appropriate length/mass scale parameters
in order to have consistent units yields:

S = m

∫ √

(dq)2 +

(
L

m

)2
(dp)2 , (128)

where we have introduced the Planck scale L and have
chosen the natural units ~= c=1. A detailed physical dis-
cussion of the dilational invariant system of units ~= c=
=G=4πε0=1 was presented in ref. [15]. G is the Newton
constant and ε0 is the permittivity of the vacuum.

Extending this two-dim result to a 2n-dim phase space
result requires to have for Clifford basis the elements epμ ,
eqμ , where μ=1, 2, 3, . . . n. The action in the 2n-dim phase
space is:

S = m

∫ √

(dqμdqμ) +

(
L

m

)2
(dpμdpμ) =

= m

∫
dτ

√

1 +

(
L

m

)2
(dpμ/dτ )(dpμ/dτ ) ,

(129)

where we have factored-out of the square-root the infinite-
simal proper-time displacement (dτ )2= dqμdqμ.

One can recognize the action (129), up to a numerical
factor of m/a, where a is the proper acceleration, as the
same action for a sub-maximally accelerated particle given
by Nesterenko [53] by rewriting (dpμ/dτ )=m(d2xμ/dτ 2):

S = m

∫
dτ
√
1 + L2(d2xμ/dτ 2)(d2xμ/dτ 2) . (130)

Postulating that the maximal proper-acceleration is given
in terms of the speed of light and the minimal Planck scale
by a= c2/L=1/L, the action above gives the Nesterenko
action, up to a numerical m/a factor:

S = m

∫
dτ
√
1 + a−2(d2xμ/dτ 2)(d2xμ/dτ 2) . (131)
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The proper-acceleration is orthogonal to the proper-
velocity and this can be easily verified by differentiating
the time-like proper-velocity squared:

V 2 =
dxμ

dτ

dxμ
dτ

= V μVμ = 1 > 0⇒

⇒
dV μ

dτ
Vμ =

d2xμ

dτ 2
Vμ = 0 ,

(132)

which implies that the proper-acceleration is space-like:

g2(τ ) = −
d2xμ

dτ 2
d2xμ
dτ 2

> 0⇒

⇒ S = m

∫
dτ

√

1−
g2

a2
= m

∫
dω ,

(133)

where the analog of the Lorentz time-dilation factor for a
sub-maximally accelerated particle is given by

dω = dτ

√

1−
g2(τ )

a2
. (134)

Therefore the dynamics of a sub-maximally accelerated
particle can be reinterpreted as that of a particle moving in
the spacetime tangent bundle whose Finsler-like metric is

(dω)2=gμν(x
μ, dxμ)dxμdxν=(dτ )2

(

1−
g2(τ )

a2

)

. (135)

The invariant time now is no longer the standard proper-
time τ but is given by the quantity ω(τ ). The deep connection
between the physics of maximal acceleration and Finsler
geometry has been analyzed by [56]. This sort of actions
involving second derivatives have also been studied in the
construction of actions associated with rigid particles
(strings) [57], [58], [59], [60] among others.

The action is real-valued if, and only if, g2<a2 in the
same fashion that the action in Minkowski spacetime is real-
valued if, and only if, v2<c2. This is the physical reason
why there is an upper bound in the proper-acceleration. In
the special case of uniformly-accelerated motion g(τ )= g0=
= constant, the trajectory of the particle in Minkowski space-
time is a hyperbola.

Most recently, an Extended Relativity Theory in Born-
Clifford-Phase spaces with an upper and lower length scales
(infrared/ultraviolet cutoff ) has been constructed [138]. The
invariance symmetry associated with an 8D Phase Space
leads naturally to the real Clifford algebra Cl(2, 6, R) and
complexified Clifford ClC (4) algebra related to Twistors.
The consequences of Mach’s principle of inertia within the
context of Born’s Dual Phase Space Relativity Principle
were also studied in [138] and they were compatible with
the Eddington-Dirac large numbers coincidence and with
the observed values of the anomalous Galileo-Pioneer ac-
celeration. The modified Newtonian dynamics due to the
upper/lower scales and modified Schwarzschild dynamics
due the maximal acceleration were also provided.

6.2 Invariance under the U(1, 3) Group

In this section we will review in detail the principle of
Maximal-acceleration Relativity [68] from the perspective
of 8D Phase Spaces and the U (1, 3) Group. The U (1, 3)=
=SU (1, 3) ⊗ U(1) Group transformations, which leave in-
variant the phase-space intervals under rotations, velocity
and acceleration boosts, were found by Low [74] and can be
simplified drastically when the velocity/acceleration boosts
are taken to lie in the z-direction, leaving the transverse direc-
tions x, y, px, py intact; i. e., the U (1, 1)=SU (1, 1)⊗U (1)
subgroup transformations that leave invariant the phase-
space interval are given by (in units of ~= c=1)

(dσ)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=

= (dτ )2
[

1 +
(dE/dτ )2 − (dP/dτ )2

b2

]

=

= (dτ )2
[

1−
m2g2(τ )

m2
PA

2
max

]

,

(136)

where we have factored out the proper time infinitesimal
(dτ )2= dT 2− dX2 in eq.-(136) and the maximal proper-
force is set to be b≡mPAmax. mP is the Planck mass
1/LP so that b=(1/LP )2, may also be interpreted as the
maximal string tension when LP is the Planck scale.

The quantity g(τ ) is the proper four-acceleration of a
particle of mass m in the z-direction which we take to be
X . Notice that the invariant interval (dσ)2 in eq.-(136) is
not strictly the same as the interval (dω)2 of the Nesterenko
action eq.-(131), which was invariant under a pseudo-
complexification of the Lorentz group [61]. Only when
m=mP , the two intervals agree. The interval (dσ)2 de-
scribed by Low [74] is U (1, 3)-invariant for the most general
transformations in the 8D phase-space. These transforma-
tions are rather elaborate, so we refer to the references [74]
for details. The analog of the Lorentz relativistic factor in eq.-
(136) involves the ratios of two proper forces. One variable
force is given by ma and the maximal proper force sustained
by an elementary particle of mass mP (a Planckton) is
assumed to be Fmax=mPlanckc

2/LP . When m=mP , the
ratio-squared of the forces appearing in the relativistic factor
of eq.-(136) becomes then g2/A2max, and the phase space
interval (136) coincides with the geometric interval of (131).

The transformations laws of the coordinates in that leave
invariant the interval (136) are [74]:

T ′ = T cosh ξ +

(
ξvX

c2
+
ξaP

b2

)
sinh ξ

ξ
, (137)

E′ = E cosh ξ + (−ξaX + ξvP )
sinh ξ

ξ
, (138)

X ′ = X cosh ξ +

(

ξvT −
ξaE

b2

)
sinh ξ

ξ
, (139)
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P ′ = P cosh ξ +

(
ξvE

c2
+ ξaT

)
sinh ξ

ξ
. (140)

The ξv is velocity-boost rapidity parameter and the ξa
is the force/acceleration-boost rapidity parameter of the
primed-reference frame. They are defined respectively (in
the special case when m=mP ):

tanh

(
ξv
c

)

=
v

c
,

tanh
ξa
b
=

ma

mPAmax
. (141)

The effective boost parameter ξ of the U (1, 1) subgroup
transformations appearing in eqs.-(137)–(140) is defined in
terms of the velocity and acceleration boosts parameters ξv ,
ξa respectively as:

ξ ≡

√
ξ2v
c2
+
ξ2a
b2
. (142)

Our definition of the rapidity parameters are different
than those in [74].

Straightforward algebra allows us to verify that these
transformations leave the interval of eq.-(136) in classical
phase space invariant. They are are fully consistent with
Born’s duality Relativity symmetry principle [49] (Q,P )→
→ (P,−Q). By inspection we can see that under Born dual-
ity, the transformations in eqs.-(137)–(140) are rotated into
each other, up to numerical b factors in order to match
units. When on sets ξa=0 in (137)–(140) one recovers
automatically the standard Lorentz transformations for the
X,T and E,P variables separately, leaving invariant the
intervals dT 2−dX2=(dτ )2 and (dE2−dP 2)/b2 separately.

When one sets ξv =0 we obtain the transformations rules
of the events in Phase space, from one reference-frame into
another uniformly-accelerated frame of reference, a= const,
whose acceleration-rapidity parameter is in this particular
case:

ξ ≡
ξa
b
, tanh ξ =

ma

mPAmax
. (143)

The transformations for pure acceleration-boosts in are:

T ′ = T cosh ξ +
P

b
sinh ξ , (144)

E′ = E cosh ξ − bX sinh ξ , (145)

X ′ = X cosh ξ −
E

b
sinh ξ , (146)

P ′ = P cosh ξ + bT sinh ξ . (147)

It is straightforward to verify that the transformations
(144)–(146) leave invariant the fully phase space interval

(136) but does not leave invariant the proper time interval
(dτ )2= dT 2− dX2. Only the combination:

(dσ)2 = (dτ )2
(

1−
m2g2

m2
PA

2
max

)

(148)

is truly left invariant under pure acceleration-boosts (144)–
(146). One can verify as well that these transformations
satisfy Born’s duality symmetry principle:

(T,X)→ (E,P ) , (E,P )→ (−T,−X) (149)

and b→ 1
b . The latter Born duality transformation is nothing

but a manifestation of the large/small tension duality prin-
ciple reminiscent of the T -duality symmetry in string theory;
i. e. namely, a small/large radius duality, a winding modes/
Kaluza-Klein modes duality symmetry in string compactifi-
cations and the Ultraviolet/Infrared entanglement in Non-
commutative Field Theories. Hence, Born’s duality prin-
ciple in exchanging coordinates for momenta could be the
underlying physical reason behind T -duality in string theory.

The composition of two successive pure acceleration-
boosts is another pure acceleration-boost with acceleration
rapidity given by ξ′′= ξ+ ξ′. The addition of proper four-
forces (accelerations) follows the usual relativistic compo-
sition rule:

tanh ξ′′ = tanh(ξ + ξ′) =
tanh ξ + tanh ξ′

1 + tanh ξ tanh ξ′
⇒

⇒
ma′′

mPA
=

ma
mPA

+ ma′

mPA

1 + m2aa′

m2
PA

2

,

(150)

and in this fashion the upper limiting proper acceleration is
never surpassed like it happens with the ordinary Special
Relativistic addition of velocities.

The group properties of the full combination of velocity
and acceleration boosts (137)–(140) requires much more
algebra [68]. A careful study reveals that the composition
rule of two succesive full transformations is given by ξ′′=
= ξ+ ξ′ and the transformation laws are preserved if, and
only if, the ξ ; ξ′ ; ξ′′ . . . parameters obeyed the suitable
relations:

ξa
ξ
=
ξ′a
ξ′
=
ξ′′a
ξ′′
=

ξ′′a
ξ + ξ′

, (151)

ξv
ξ
=
ξ′v
ξ′
=
ξ′′v
ξ′′
=

ξ′′v
ξ + ξ′

. (152)

Finally we arrive at the composition law for the effective,
velocity and acceleration boosts parameters ξ′′; ξ′′v ; ξ′′a re-
spectively:

ξ′′v = ξv + ξ
′
v , (153)

ξ′′a = ξa + ξ
′
a , (154)

ξ′′ = ξ + ξ′ . (155)
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The relations (151, 152, 153, 154, 155) are required in
order to prove the group composition law of the transfor-
mations of (137)–(140) and, consequently, in order to have
a truly Maximal-Acceleration Phase Space Relativity theory
resulting from a phase-space change of coordinates in the
cotangent bundle of spacetime.

6.3 Planck-Scale Areas are invariant under acceleration
boosts

Having displayed explicitly the Group transformations rules
of the coordinates in Phase space we will show why infinite
acceleration-boosts (which is not the same as infinite proper
acceleration) preserve Planck-Scale Areas [68] as a result of
the fact that b=(1/L2P ) equals the maximal invariant force,
or string tension, if the units of ~= c=1 are used.

At Planck-scale LP intervals/increments in one reference
frame we have by definition (in units of ~= c=1): ΔX =
=ΔT =LP and ΔE=ΔP = 1

LP
where b≡ 1

L2P
is the max-

imal tension. From eqs.-(137)–(140) we get for the trans-
formation rules of the finite intervals ΔX , ΔT , ΔE, ΔP ,
from one reference frame into another frame, in the infinite
acceleration-boost limit ξ→∞,

ΔT ′ = LP (cosh ξ + sinh ξ)→∞ , (156)

ΔE′ =
1

LP
(cosh ξ − sinh ξ)→ 0 (157)

by a simple use of L’Hôpital’s rule or by noticing that both
cosh ξ; sinh ξ functions approach infinity at the same rate

ΔX ′ = LP (cosh ξ − sinh ξ)→ 0 , (158)

ΔP ′ =
1

LP
(cosh ξ + sinh ξ)→∞ , (159)

where the discrete displacements of two events in Phase Spa-
ce are defined: ΔX =X2−X1=LP , ΔE=E2−E1= 1

LP
,

ΔT =T2−T1=LP and ΔP =P2−P1= 1
LP
.

Due to the identity:

(cosh ξ+sinh ξ)(cosh ξ− sinh ξ)= cosh2 ξ− sinh2 ξ=1 (160)

one can see from eqs.-(156)–(159) that the Planck-scale
Areas are truly invariant under infinite acceleration-boosts
ξ=∞:

ΔX ′ΔP ′ = 0×∞ = ΔXΔP (cosh2 ξ− sinh2 ξ) =

= ΔXΔP =
LP
LP

= 1 ,
(161)

ΔT ′ΔE′ =∞×0 = ΔTΔE(cosh2 ξ− sinh2 ξ) =

= ΔTΔE =
LP
LP

= 1 ,
(162)

ΔX ′ΔT ′ = 0×∞ = ΔXΔT (cosh2 ξ− sinh2 ξ) =

= ΔXΔT = (LP )
2 ,

(163)

ΔP ′ΔE′ =∞×0 = ΔPΔE(cosh2 ξ− sinh2 ξ) =

= ΔPΔE =
1

L2P
.

(164)

It is important to emphasize that the invariance property
of the minimal Planck-scale Areas (maximal Tension) is not
an exclusive property of infinite acceleration boosts ξ=∞,
but, as a result of the identity cosh2 ξ− sinh2 ξ=1, for
all values of ξ, the minimal Planck-scale Areas are always
invariant under any acceleration-boosts transformations.
Meaning physically, in units of ~= c=1, that the Maximal
Tension (or maximal Force) b= 1

L2P
is a true physical invar-

iant universal quantity. Also we notice that the Phase-space
areas, or cells, in units of ~, are also invariant! The pure-
acceleration boosts transformations are “symplectic”. It can
be shown also that areas greater (smaller) than the Planck-
area remain greater (smaller) than the invariant Planck-area
under acceleration-boosts transformations.

The infinite acceleration-boosts are closely related to the
infinite red-shift effects when light signals barely escape
Black hole Horizons reaching an asymptotic observer with an
infinite red shift factor. The important fact is that the Planck-
scale Areas are truly maintained invariant under acceleration-
boosts. This could reveal very important information about
Black-holes Entropy and Holography. The logarithmic cor-
rections to the Black-Hole Area-Entropy relation were ob-
tained directly from Clifford-algebraic methods in C-spaces
[21], in addition to the derivation of the maximal Planck
temperature condition and the Schwarzschild radius in terms
of the Thermodynamics of a gas of p-loop-oscillators quanta
represented by area-bits, volume-bits, . . . hyper-volume-bits
in Planck scale units. Minimal loop-areas, in Planck units, is
also one of the most important consequences found in Loop
Quantum Gravity long ago [111].

7 Some further important physical applications related
to the C-space physics

7.1 Relativity of signature

In previous sections we have seen how Clifford algebra can
be used in the formulation of the point particle classical
and quantum theory. The metric of spacetime was assumed,
as usually, to have the Minkowski signature, and we have
used the choice (+ − −−). There were arguments in the
literature of why the spacetime signature is of the Minkowski
type [113, 43]. But there are also studies in which signature
changes are admitted [112]. It has been found out [16, 15, 30]
that within Clifford algebra the signature of the underlying
space is a matter of choice of basis vectors amongst available
Clifford numbers. We are now going to review those impor-
tant topics.

Suppose we have a 4-dimensional space V4 with signature
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(+ + ++). Let eμ, μ=0, 1, 2, 3, be basis vectors satisfying

eμ ∙ eν ≡
1

2
(eμeν + eνeμ) = δμν , (165)

where δμν is the Euclidean signature of V4. The vectors eμ
can be used as generators of Clifford algebra C4 over V4 with
a generic Clifford number (also called polyvector or Clifford
aggregate) expanded in term of eJ=(1,eμ,eμν ,eμνα,eμναβ),
μ<ν <α<β,

A = aJeJ = a+ aμeμ + a
μνeμeν +

+ aμναeμeνeα + a
μναβeμeνeαeβ .

(166)

Let us consider the set of four Clifford numbers (e0, eie0),
i=1, 2, 3, and denote them as

e0 ≡ γ0 ,

eie0 ≡ γi .
(167)

The Clifford numbers γμ, μ=0, 1, 2, 3, satisfy

1

2
(γμγν + γνγμ) = ημν , (168)

where ημν =diag(1,−1,−1,−1) is the Minkowski tensor.
We see that the γμ behave as basis vectors in a 4-dimensional
space V1,3 with signature (+−−−). We can form a Clifford
aggregate

α = αμγμ , (169)

which has the properties of a vector in V1,3. From the point
of view of the space V4 the same object α is a linear
combination of a vector and bivector:

α = α0e0 + α
ieie0 . (170)

We may use γμ as generators of the Clifford al-
gebra C1,3 defined over the pseudo-Euclidean space V1,3. The
basis elements of C1,3 are γJ =(1, γμ, γμν , γμνα, γμναβ),
with μ<ν <α<β. A generic Clifford aggregate in C1,3 is
given by

B = bJγJ = b+ bμγμ + b
μνγμγν +

+ bμναγμγνγα + b
μναβγμγνγαγβ .

(171)

With suitable choice of the coefficients bJ =(b, bμ, bμν ,
bμνα, bμναβ) we have that B of eq.-(171) is equal to A of
eq.-(166). Thus the same number A can be described either
with eμ which generate C4, or with γμ which generate C1,3.
The expansions (171) and (166) exhaust all possible numbers
of the Clifford algebras C1,3 and C4. Those expansions are
just two different representations of the same set of Clifford
numbers (also being called polyvectors or Clifford ag-
gregates).

As an alternative to (167) we can choose

e0e3 ≡ γ̃0 ,

ei ≡ γ̃i ,
(172)

from which we have

1

2
(γ̃μγ̃ν + γ̃ν γ̃μ) = η̃μν (173)

with η̃μν =diag(−1, 1, 1, 1). Obviously γ̃μ are basis vectors
of a pseudo-Euclidean space Ṽ1,3 and they generate the
Clifford algebra over Ṽ1,3 which is yet another representation
of the same set of objects (i. e., polyvectors). The spaces V4,
V1,3 and Ṽ1,3 are different slices through C-space, and they
span different subsets of polyvectors. In a similar way we can
obtain spaces with signatures (+ − ++), (+ + −+), (+ +
+−), (−+−−), (−−+−), (−−−+) and corresponding
higher dimensional analogs. But we cannot obtain signatures
of the type (+ + −−), (+ − +−), etc. In order to obtain
such signatures we proceed as follows.

4-space. First we observe that the bivector Ī4-space.
e3e4 satisfies Ī2=−1, commutes with e1, e2 and anticom-
mutes with e3, e4. So we obtain that the set of Clifford
numbers γμ=(e1Ī , e2Ī , e3, e3) satisfies

γμ ∙ γν = η̄μν , (174)

where η̄=diag(−1,−1, 1, 1).
8-space. Let eA be basis vectors of 8-dimensional

vector space with signature (+ + + + + + + +). Let us
decompose

eA = (eμ, eμ̄) , μ = 0, 1, 2, 3 ,

μ̄ = 0̄, 1̄, 2̄, 3̄ .
(175)

The inner product of two basis vectors

eA ∙ eB = δAB , (176)

then splits into the following set of equations:

eμ ∙ eν = δμν ,

eμ̄ ∙ eν̄ = δμ̄ν̄ ,

eμ ∙ eν̄ = 0 .

(177)

The number Ī = e0̄e1̄e2̄e3̄ has the properties

Ī2 = 1 ,

Īeμ = eμĪ ,

Īeμ̄ = −eμ̄Ī .

(178)

The set of numbers

γμ = eμ ,

γμ̄ = eμ̄Ī
(179)
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satisfies
γμ ∙ γν = δμν ,

γμ̄ ∙ γν̄ = −δμν ,

γμ ∙ γμ̄ = 0 .

(180)

The numbers (γμ, γμ̄) thus form a set of basis vectors of
a vector space V4,4 with signature (+ + ++−−−−).

10-space. Let eA = (eμ, eμ̄), μ = 1, 2, 3, 4, 5; μ̄ =
= 1̄, 2̄, 3̄, 4̄, 5̄ be basis vectors of a 10-dimensional Euclid-
ean space V10 with signature (+++ . . .). We introduce Ī =
= e1̄e2̄e3̄e4̄e5̄ which satisfies

Ī2 = 1 ,

eμĪ = −Īeμ ,

eμ̄Ī = Īeμ̄ .

(181)

Then the Clifford numbers

γμ = eμĪ ,

γμ̄ = eμ
(182)

satisfy
γμ ∙ γν = −δμν ,

γμ̄ ∙ γν̄ = δμ̄ν̄ ,

γμ ∙ γμ̄ = 0 .

(183)

The set γA=(γμ, γμ̄) therefore spans the vector space of
signature (−−−−−+++++).

The examples above demonstrate how vector spaces of
various signatures are obtained within a given set of poly-
vectors. Namely, vector spaces of different signature are
different subsets of polyvectors within the same Clifford
algebra. In other words, vector spaces of different signature
are different subspaces of C-space, i. e., different sections
through C-space∗.

This has important physical implications. We have argued
that physical quantities are polyvectors (Clifford numbers or
Clifford aggregates). Physical space is then not simply a vec-
tor space (e.g., Minkowski space), but a space of polyvectors,
called C-space, a pandimensional continuum of points, lines,
planes, volumes, etc., altogether. Minkowski space is then
just a subspace with pseudo-Euclidean signature. Other sub-
spaces with other signatures also exist within the pandimen-
sional continuum C and they all have physical significance.
If we describe a particle as moving in Minkowski spacetime
V1,3 we consider only certain physical aspects of the object
considered. We have omitted its other physical properties like
spin, charge, magnetic moment, etc. We can as well describe
the same object as moving in an Euclidean space V4. Again
such a description would reflect only a part of the underlying
physical situation described by Clifford algebra.

∗What we consider here should not be confused with the well known
fact that Clifford algebras associated with vector spaces of different
signatures (p, q), with p+ q = n, are not all isomorphic.

7.2 Clifford space and the conformal group

7.2.1 Line element in C-space of Minkowski spacetime

In 4-dimensional spacetime a polyvector and its square (1)
can be written as

dX = dσ+dxμγμ+
1

2
dxμνγμ∧γν+dx̃μ Iγμ+dσ̃I , (184)

|dX|2= dσ2+dxμdxμ+
1

2
dxμνdxμν−dx̃μdx̃μ−dσ̃2. (185)

The minus sign in the last two terms of the above quad-
ratic form occurs because in 4-dimensional spacetime with
signature (+−−−) we have I2=(γ0γ1γ2γ3)(γ0γ1γ2γ3)=
=−1, and I†I =(γ3γ2γ1γ0)(γ0γ1γ2γ3)=−1.

In eq.-(185) the line element dxμdxμ of the ordinary
special or general relativity is replaced by the line element
in Clifford space. A “square root” of such a generalized line
element is dX of eq.-(184). The latter object is a polyvector,
a differential of the coordinate polyvector field

X = σ + xμγμ +
1

2
xμνγμ ∧ γν + x̃

μIγμ + σ̃I , (186)

whose square is

|X|2 = σ2 + xμxμ +
1

2
xμνxμν − x̃

μx̃μ − σ̃
2 . (187)

The polyvectorX contains not only the vector part xμγμ,
but also a scalar part σ, tensor part xμνγμ∧γν , pseudovector
part x̃μ Iγμ and pseudoscalar part σ̃I . Similarly for the
differential dX .

When calculating the quadratic forms |X|2 and |dX|2 one
obtains in 4-dimensional spacetime with pseudo euclidean
signature (+−−−) the minus sign in front of the squares of
the pseudovector and pseudoscalar terms. This is so, because
in such a case the pseudoscalar unit square in flat spacetime
is I2= I†I =−1. In 4-dimensions I†= I regardless of the
signature.

Instead of Lorentz transformations — pseudo rotations
in spacetime — which preserve xμxμ and dxμdxμ we have
now more general rotations — rotations in C-space — which
preserve |X|2 and |dX|2.

7.2.2 C-space and conformal transformations

From (185) and (187) we see [25] that a subgroup of the Clif-
ford Group, or rotations in C-space is the group SO(4, 2).
The transformations of the latter group rotate xμ, σ, σ̃, but
leave xμν and x̃μ unchanged. Although according to our
assumption physics takes place in full C-space, it is very
instructive to consider a subspace of C-space, that we shall
call conformal space whose isometry group is SO(4, 2).

Coordinates can be given arbitrary symbols. Let us now
use the symbol ημ instead of xμ, and η5,η6 instead of σ̃, σ. In
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other words, instead of (xμ, σ̃, σ) we write (ημ, η5, η6)≡ ηa,
μ=0, 1, 2, 3, a=0, 1, 2, 3, 5, 6. The quadratic form reads

ηaηa = gabη
aηb (188)

with
gab = diag(1,−1,−1,−1,−1, 1) (189)

being the diagonal metric of the flat 6-dimensional space, a
subspace of C-space, parametrized by coordinates ηa. The
transformations which preserve the quadratic form (188)
belong to the group SO(4, 2). It is well known [38, 39]
that the latter group, when taken on the cone

ηaηa = 0 (190)

is isomorphic to the 15-parameter group of conformal trans-
formations in 4-dimensional spacetime [40].

Let us consider first the rotations of η5 and η6 which
leave coordinates ημ unchanged. The transformations that
leave −(η5)2+(η6)2 invariant are

η′5 = η5 coshα+ η6 sinhα

η′6 = η5 sinhα+ η6 coshα ,
(191)

where α is a parameter of such pseudo rotations.
Instead of the coordinates η5, η6 we can introduce [38,

39] new coordinates κ, λ according to

κ = η5 − η6 ,

λ = η5 + η6 .
(192)

In the new coordinates the quadratic form (188) reads

ηaηa = ημημ − (η
5)2 − (η6)2 = ημημ − κλ . (193)

The transformation (191) becomes

κ′ = ρ−1κ , (194)

λ′ = ρλ , (195)

where ρ= eα. This is just a dilation of κ and the inverse
dilation of λ.

Let us now introduce new coordinates xμ∗

ημ = κxμ . (196)

Under the transformation (196) we have

η′μ = ημ , (197)

but
x′μ = ρxμ , (198)

the latter transformation is dilatation of coordinates xμ.
∗These new coordinates xμ should not be confused with coordinate xμ

used in section 2.

Considering now a line element

dηadηa = dημdημ − dκd , λ (199)

we find that on the cone ηaηa=0 it is

dηadηa = κ2 dxμdxμ (200)

even if κ is not constant. Under the transformation (194) we
have

dη′adη′a = dηadηa , (201)

dx′μdx′μ = ρ2 dxμdxμ . (202)

The last relation is a dilatation of the 4-dimensional line
element related to coordinates xμ. In a similar way also other
transformations of the group SO(4, 2) that preserve (190)
and (201) we can rewrite in terms of of the coordinates xμ.
So we obtain — besides dilations — translations, Lorentz
transformations, and special conformal transformations; al-
together they are called conformal transformations. This is a
well known old observation [38, 39] and we shall not discuss
it further. What we wanted to point out here is that conformal
group SO (4, 2) is a subgroup of the Clifford group.

7.2.3 On the physical interpretation of the conformal
group SO(4, 2)

In order to understand the physical meaning of the transfor-
mations (196) from the coordinates ημ to the coordinates xμ

let us consider the following transformation in 6-dimensional
space V6:

xμ = κ−1ημ ,

α = −κ−1 ,

Λ = λ− κ−1ημημ .

(203)

This is a transformation from the coordinates ηa=
=(ημ, κ, λ) to the new coordinates xa=(xμ, α,Λ). No extra
condition on coordinates, such as (190), is assumed now. If
we calculate the line element in the coordinates ηa and xa,
respectively, we find the the following relation [27]

dημdην gμν − dκ dλ = α−2(dxμdxν gμν − dαdΛ) . (204)

We can interpret a transformation of coordinates pass-
ively or actively. Geometric calculus clarifies significantly
the meaning of passive and active transformations. Under
a passive transformation a vector remains the same, but
its components and basis vector change. For a vector dη=
= dηaγa we have

dη′ = dη′aγ′a = dηaγa = dη (205)

with

dη′a =
∂η′a

∂ηb
dηb (206)
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and

γ′a =
∂ηb

∂η′a
γb . (207)

Since the vector is invariant, so it is its square:

dη′2 = dη′aγ′a dη′bγ′b = dη′adη′bg′ab = dηadηbgab . (208)

From (207) we read that the well known relation between
new and old coordinates:

g′ab =
∂ηc

∂η′a
∂ηd

∂η′b
gcd . (209)

Under an active transformation a vector changes. This
means that in a fixed basis the components of a vector
change:

dη′ = dη′aγa (210)

with

dη′a =
∂η′a

∂ηb
dηb . (211)

The transformed vector dη′ is different from the original
vector dη = dηaγa. For the square we find

dη′2 = dη′adη′bgab =
∂η′a

∂ηc
∂η′b

∂ηd
dηcdηdgab , (212)

i. e., the transformed line element dη′2 is different from the
original line element.

Returning now to the coordinate transformation (203)
with the identification η′a=xa, we can interpret eq.-(204)
passively or actively.

In the passive interpretation the metric tensor and the
components dηa change under a transformation, so that in
our particular case the relation (208) becomes

dxa dxb g′ab = α−2(dxμdxν gμν − dα dΛ) =

= dηadηbgab = dημdηνgμν − dκ dλ
(213)

with

g′ab = α−2




gμν 0 0
0 0 − 12
0 − 12 0



 ,

gab =




gμν 0 0
0 0 − 12
0 − 12 0



 .

(214)

In the above equation the same infinitesimal distance
squared is expressed in two different coordinates ηa or xa.

In active interpretation, only dηa change, whilst the
metric remains the same, so that the transformed element is

dxa dxb gab = dxμdxν gμν − dα dΛ =

= κ−2 dηadηbgab = κ−2(dημdηνgμν − dκ dλ) .
(215)

The transformed line element dxadxa is physically dif-
ferent from the original line element dηadηa by a factor
α2=κ−2.

A rotation (191) in the plane (η5, η6) i. e. the transforma-
tion (194), (195) of (κ, λ) manifests in the new coordinates
xa as a dilatation of the line element dxadxa=κ−2 dηaηa:

dx′adx′a = ρ2dxadxa . (216)

All this is true in the full space V6. On the cone ηaηa=0
we have Λ=λ−κημημ=0, dΛ=0 so that dxadxa=
= dxμdxμ and we reproduce the relations (202) which is
a dilatation of the 4-dimensional line element. It can be
interpreted either passively or actively. In general, the pseudo
rotations in V6, that is, the transformations of the 15-param-
eter group SO (4, 2) when expressed in terms of coordinates
xa, assume on the cone ηaηa=0 the form of the ordinary
conformal transformations. They all can be given the active
interpretation [27, 28].

We started from the new paradigm that physical phe-
nomena actually occur not in spacetime, but in a larger
space, the so called Clifford space or C-space which is a
manifold associated with the Clifford algebra generated by
the basis vectors γμ of spacetime. An arbitrary element of
Clifford algebra can be expanded in terms of the objects EA,
A=1, 2, . . . , 2D, which include, when D=4, the scalar unit
1, vectors γμ, bivectors γμ ∧ γν , pseudovectors Iγμ and the
pseudoscalar unit I ≡ γ5. C-space contains 6-dimensional
subspace V6 spanned∗ by 1, γμ, and γ5. The metric of
V6 has the signature (+ − − − −+). It is well known
that the rotations in V6, when taken on the conformal cone
ηaηa=0, are isomorphic to the non linear transformations of
the conformal group in spacetime. Thus we have found out
that C-space contains — as a subspace — the 6-dimensional
space V6 in which the conformal group acts linearly. From the
physical point of view this is an important and, as far as we
know, a novel finding, although it might look mathematically
trivial. So far it has not been clear what could be a physical
interpretation of the 6 dimensional conformal space. Now we
see that it is just a subspace of Clifford space. The two extra
dimensions, parameterized by κ and λ, are not the ordinary
extra dimensions; they are coordinates of Clifford space C4
of the 4-dimensional Minkowski spacetime V4.

We take C-space seriously as an arena in which physics
takes place. The theory is a very natural, although not trivial,
extension of the special relativity in spacetime. In special
relativity the transformations that preserve the quadratic form

∗It is a well known observation that the generators Lab of SO (4, 2)
can be realized in terms of 1, γμ, and γ5. Lorentz generators are
Mμν =− i

4
[γμ, γν ], dilatations are generated by D=L65=− 1

2
γ5,

translations by Pμ=L5μ+L6μ= 1
2
γμ(1− iγ5) and the special conform-

al transformations by L5μ−L6μ= 1
2
γμ(1+ iγ5). This essentially means

that the generators are Lab=−
i
4
[ea, eb] with ea=(γμ, γ5,1), where care

must be taken to replace commutators [1, γ5] and [1, γμ] with 2γ5 and 2γμ.
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are given an active interpretation: they relate the objects or
the systems of reference in relative translational motion.
Analogously also the transformations that preserve the qua-
dratic form (185) or (187) in C-space should be given an
active interpretation. We have found that among such trans-
formations (rotations in C-space) there exist the transform-
ations of the group SO (4, 2). Those transformations also
should be given an active interpretation as the transforma-
tions that relate different physical objects or reference frames.
Since in the ordinary relativity we do not impose any con-
straint on the coordinates of a freely moving object so we
should not impose any constraint in C-space, or in the sub-
space V6. However, by using the projective coordinate trans-
formation (203), without any constraint such as ηaηa=0,
we arrived at the relation (215) for the line elements. If
in the coordinates ηa the line element is constant, then
in the coordinates xa the line element is changing by a
scale factor κ which, in general, depends on the evolution
parameter τ . The line element need not be one associated
between two events along a point particle’s worldline: it can
be between two arbitrary (space-like or time-like) events
within an extended object. We may consider the line element
(≡ distance squared) between two infinitesimally separated
events within an extended object such that both events have
the same coordinate label Λ so that dΛ=0. Then the 6-
dimensional line element dxμdxν gμν − dα dΛ becomes the
4-dimensional line element dxμdxν gμν and, because of
(215) it changes with τ when κ does change. This means that
the object changes its size, it is moving dilatationally [27, 28].
We have thus arrived at a very far reaching observation that
the relativity in C-space implies scale changes of physical
objects as a result of free motion, without presence of any
forces or such fields as assumed in Weyl theory. This was
advocated long time ago [27, 28], but without recurse to C-
space. However, if we consider the full Clifford space C and
not only the Minkowski spacetime section through C, then
we arrive at a more general dilatational motion [17] related
to the polyvector coordinates xμν , xμνα and x0123≡ σ̃ (also
denoted s) as reviewed in section 3.

7.3 C-space Maxwell Electrodynamics

Finally, in this section we will review and complement the
proposal of ref. [75] to generalize Maxwell Electrodynamics
to C-spaces, namely, construct the Clifford algebra-valued
extension of the Abelian field strength F = dA associated
with ordinary vectors Aμ. Using Clifford algebraic methods
we shall describe how to generalize Maxwell’s theory of
Electrodynamics associated with ordinary point-charges to
a generalized Maxwell theory in Clifford spaces involving
extended charges and p-forms of arbitrary rank, not unlike
the couplings of p-branes to antisymmetric tensor fields.

Based on the standard definition of the Abelian field
strength F = dA we shall use the same definition in terms

of polyvector-valued quantities and differential operators in
C-space

A = ANE
N = φ1 + Aμγ

μ + Aμνγ
μ ∧ γν + . . . . (217)

The first component in the expansion φ is a scalar field;
Aμ is the standard Maxwell field Aμ, the third component
Aμν is a rank two antisymmetric tensor field. . . and the
last component of the expansion is a pseudo-scalar. The fact
that a scalar and pseudo-scalar field appear very naturally
in the expansion of the C-space polyvector valued field AN
suggests that one could attempt to identify the latter fields
with a dilaton-like and axion-like field, respectively. Once
again, in order to match units in the expansion (217), it
requires the introduction of suitable powers of a length scale
parameter, the Planck scale which is conveniently set to unity.

The differential operator is the generalized Dirac operator

d = EM∂M = 1∂σ + γ
μ∂xμ + γ

μ ∧ γν∂xμν + . . . (218)

the polyvector-valued indicesM,N, . . . range from 1,2 . . . 2D

since a Clifford algebra in D-dim has 2D basis elements. The
generalized Maxwell field strength in C-space is

F = dA = EM∂M (E
NAN ) = EMEN∂MAN =

=
1

2
{EM , EN}∂MAN +

1

2
[EM , EN ]∂MAN =

=
1

2
F(MN){E

M , EN}+
1

2
F[MN ][E

M , EN ] ,

(219)

where one has decomposed the Field strength components
into a symmetric plus antisymmetric piece by simply writing
the Clifford geometric product of two polyvectors EMEN

as the sum of an anticommutator plus a commutator piece
respectively,

F(MN) =
1

2
(∂MAN + ∂NAM ) , (220)

F[MN ] =
1

2
(∂MAN − ∂NAM ) . (221)

Let the C-space Maxwell action (up to a numerical
factor) be given in terms of the antisymmetric part of the
field strength:

I[A] =

∫
[DX]F[MN ]F

[MN ] , (222)

where [DX] is a C-space measure comprised of all the
(holographic) coordinates degrees of freedom

[DX] ≡ (dσ)(dx0dx1 . . .)(dx01dx02 . . .) . . .

. . . (dx012...D) .
(223)

Action (222) is invariant under the gauge transformations

A′M = AM + ∂MΛ . (224)
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The matter-field minimal coupling (interaction term) is:
∫
AMdX

M =

∫
[DX]JMA

M , (225)

where one has reabsorbed the coupling constant, the C-space
analog of the electric charge, within the expression for the
A field itself. Notice that this term (225) has the same form
as the coupling of p-branes (whose world volume is (p+1)-
dimensional) to antisymmetric tensor fields of rank p+ 1.

The open line integral in C-space of the matter-field
interaction term in the action is taken from the polyparticle’s
proper time interval S ranging from −∞ to +∞ and can be
recast via the Stokes law solely in terms of the antisymmetric
part of the field strength. This requires closing off the integ-
ration contour by a semi-circle that starts at S=+∞, goes
all the way to C-space infinity, and comes back to the point
S=−∞. The field strength vanishes along the points of the
semi-circle at infinity, and for this reason the net contribution
to the contour integral is given by the open-line integral.
Therefore, by rewriting the

∫
AMdX

M via the Stokes law
relation, it yields
∫
AMdX

M=

∫
F[MN ]dS

[MN ]=

∫
F[MN ]X

MdXN=

=

∫
dSF[MN ]X

M (dXN/dS) ,
(226)

where in order to go from the second term to the third
term in the above equation we have integrated by parts and
then used the Bianchi identity for the antisymmetric compo-
nent F[MN ].

The integration by parts permits us to go from a C-space
domain integral, represented by the Clifford-value hyper-
surface SMN , to a C-space boundary-line integral

∫
dSMN =

1

2

∫
(XMdXN −XNdXM ) . (227)

The pure matter terms in the action are given by the
analog of the proper time integral spanned by the motion of
a particle in spacetime:

κ

∫
dS = κ

∫
dS

√
dXM

dS

dXM
dS

, (228)

where κ is a parameter whose dimensions are massp+1 and
S is the polyparticle proper time in C-space.

The Lorentz force relation in C-space is directly obtained
from a variation of

∫
dSF[MN ]X

M (dXN/dS) , (229)

and

κ

∫
dS = κ

∫ √
dXMdXM (230)

with respect to the XM variables:

κ
d2XM
dS2

= eF[MN ]
dXN

dS
, (231)

where we have re-introduced the C-space charge e back into
the Lorentz force equation in C-space. A variation of the
terms in the action w. r. t the AM field furnishes the following
equation of motion for the A fields:

∂MF
[MN ] = JN . (232)

By taking derivatives on both sides of the last equation
with respect to the XN coordinate, one obtains due to the
symmetry condition of ∂M∂N versus the antisymmetry of
F [MN ] that

∂N∂MF
[MN ] = 0 = ∂NJ

N = 0 , (233)

which is precisely the continuity equation for the current.
The continuity equation is essential to ensure that the

matter-field coupling term of the action
∫
AMdX

M =
=
∫
[DX]JMAM is also gauge invariant, which can be read-

ily verified after an integration by parts and setting the
boundary terms to zero:

δ

∫
[DX]JMAM =

∫
[DX]JM∂MΛ =

= −
∫
[DX](∂MJ

M )Λ = 0.
(234)

Gauge invariance also ensures the conservation of the
energy-momentum (via Noether’s theorem) defined in terms
of the Lagrangian density variation. We refer to [75] for
further details.

The gauge invariant C-space Maxwell action as given in
eq.-(222) is in fact only a part of a more general action given
by the expression

I[A] =

∫
[DX]F † ∗F =

∫
[DX] < F †F >scalar . (235)

This action can also be written in terms of components,
up to dimension-dependent numerical coefficients, as [75]:

I[A] =

∫
[DX] (F(MN)F

(MN) + F[MN ]F
[MN ]) . (236)

For rigor, one should introduce the numerical coefficients
in front of the F terms, noticing that the symmetric combina-
tion should have a different dimension-dependent coefficient
than the anti-symmetric combination since the former in-
volves contractions of {EM , EN}∗{EM , EN} and the latter
contractions of [EM , EN ]∗[EM , EN ].

The latter action is strictly speaking not gauge invariant,
since it contains not only the antisymmetric but also the
symmetric part of F . It is invariant under a restricted gauge
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symmetry transformations. It is invariant (up to total deriva-
tives) under infinitesimal gauge transformations provided the
symmetric part of F is divergence-free ∂MF (MN)=0 [75].
This divergence-free condition has the same effects as if one
were fixing a gauge leaving a residual symmetry of restricted
gauge transformations such that the gauge symmetry pa-
rameter obeys the Laplace-like equation ∂M∂MΛ=0. Such
residual (restricted) symmetries are precisely those that leave
invariant the divergence-free condition on the symmetric part
of F . Residual, restricted symmetries occur, for example, in
the light-cone gauge of p-brane actions leaving a residual
symmetry of volume-preserving diffs. They also occur in
string theory when the conformal gauge is chosen leaving
a residual symmetry under conformal reparametrizations;
i. e. the so-called Virasoro algebras whose symmetry trans-
formations are given by holomorphic and anti-holomorphic
reparametrizations of the string world-sheet.

This Laplace-like condition on the gauge parameter is
also the one required such that the action in [75] is invariant
under finite (restricted) gauge transformations since under
such restricted finite transformations the Lagrangian changes
by second-order terms of the form (∂M∂NΛ)

2, which are
total derivatives if, and only if, the gauge parameter is re-
stricted to obey the analog of Laplace equation ∂M∂MΛ=0

Therefore the action of eq-(233) is invariant under a
restricted gauge transformation which bears a resemblance
to volume-preserving diffeomorphisms of the p-branes action
in the light-cone gauge. A lesson that we have from these
considerations is that the C-space Maxwell action written in
the form (235) automatically contains a gauge fixing term.
Analogous result for ordinary Maxwell field is known from
Hestenes work [1], although formulated in a slightly different
way, namely by directlty considering the field equations
without employing the action.

It remains to be seen if this construction of C-space
generalized Maxwell Electrodynamics of p-forms can be
generalized to the non-Abelian case when we replace or-
dinary derivatives by gauge-covariant ones:

F = dA→ F = DA = (dA+ A • A). (237)

For example, one could define the graded-symmetric
product EM •EN based on the graded commutator of Super-
algebras:

[A,B] = AB − (−1)sAsBBA , (238)

sA, sB is the grade of A and B respectively. For bosons
the grade is even and for fermions is odd. In this fashion
the graded commutator captures both the anti-commutator
of two fermions and the commutator of two bosons in one
stroke. One may extend this graded bracket definition to the
graded structure present in Clifford algebras, and define

EM • EN = EMEN − (−1)
sMsNENEM , (239)

sM , sN is the grade of EM and EN respectively. Even or
odd depending on the grade of the basis elements.

One may generalize Maxwell’s theory to Born-Infeld
nonlinear Electrodynamics in C-spacesbased on this exten-
sion of Maxwell Electrodynamics in C-spaces and to couple
a C-space version of a Yang-Mills theory to C-space gravity,
a higher derivative gravity with torsion, this will be left for
a future publication. Clifford algebras have been used in
the past [62] to study the Born-Infeld model in ordinary
spacetime and to write a nonlinear version of the Dirac eq-
uation. The natural incorporation of monopoles in Maxwell’s
theory was investigated by [89] and a recent critical analysis
of “unified” theories of gravity with electromagnetism has
been presented by [90]. Most recently [22] has studied the
covariance of Maxwell’s theory from a Clifford algebraic
point of view.

8 Concluding remarks

We have presented a brief review of some of the most im-
portant features of the Extended Relativity theory in Clifford-
spaces (C-spaces). The “coordinates” X are non-commutat-
ing Clifford-valued quantities which incorporate the lines,
areas, volumes, . . . degrees of freedom associated with the
collective particle, string, membrane, . . . dynamics under-
lying the center-of-mass motion and holographic projections
of the p-loops onto the embedding target spacetime back-
grounds. C-space Relativity incorporates the idea of an in-
variant length, which upon quantization, should lead to the
notion of minimal Planck scale [23]. Other relevant features
are those of maximal acceleration [52], [49]; the invariance
of Planck-areas under acceleration boosts; the resolution of
ordering ambiguities in QFT; supersymmetry; holography
[119]; the emergence of higher derivative gravity with tor-
sion; and the inclusion of variable dimensions/signatures that
allows to study the dynamics of all (closed) p-branes, for all
values of p, in one single unified footing, by starting with
the C-space brane action constructed in this work.

The Conformal group construction presented in sect. 7, as
a natural subgroup of the Clifford group in four-dimensions,
needs to be generalized to other dimensions, in particular
to two dimensions where the Conformal group is infinite-
dimensional. Kinani [130] has shown that the Virasoro al-
gebra can be obtained from generalized Clifford algebras.
The construction of area-preserving diffs algebras, like w∞
and su(∞), from Clifford algebras remains an open problem.
Area-preserving diffs algebras are very important in the study
of membranes and gravity since Higher-dim Gravity in
(m+n)-dim has been shown a while ago to be equivalent
to a lower m-dim Yang-Mills-like gauge theory of diffs of
an internal n-dim space [120] and that amounts to another
explanation of the holographic principle behind the AdS/
CFT duality conjecture [121]. We have shown how C-space
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Relativity involves scale changes in the sizes of physical
objects, in the absence of forces and Weyl’gauge field of
dilations. The introduction of scale-motion degrees of free-
dom has recently been implemented in the wavelet-based
regularization procedure of QFT by [87]. The connection
to Penrose’s Twistors program is another interesting project
worthy of investigation.

The quantization and construction of QFTs in C-spaces
remains a very daunting task since it may involve the con-
struction of QM in Noncommutative spacetimes [136], braid-
ed Hopf quantum Clifford algebras [86], hypercomplex ex-
tensions of QM like quaternionic and octonionic QM [99],
[97], [98], exceptional group extensions of the Standard
Model [85], hyper-matrices and hyper-determinants [88],
multi-symplectic mechanics, the de Donde-Weyl formula-
tions of QFT [82], to cite a few, for example. The quantiza-
tion program inC-spaces should share similar results as those
in Loop Quantum Gravity [111], in particular the minimal
Planck areas of the expectation values of the area-operator.

Spacetime at the Planck scale may be discrete, fractal,
fuzzy, noncommutative. . . The original Scale Relativity the-
ory in fractal spacetime [23] needs to be extended further
to incorporate the notion of fractal “manifolds”. A scale-
fractal calculus and a fractal-analysis construction that are
esential in building the notion of a fractal “manifold” has
been initiated in the past years by [129]. It remains yet to be
proven that a scale-fractal calculus in fractal spacetimes is
another realization of a Connes Noncommutative Geometry.
Fractal strings/branes and their spectrum have been studied
by [104] that may require generalized Statistics beyond the
Boltzmann-Gibbs, Bose-Einstein and Fermi-Dirac, investi-
gated by [105], [103], among others.

Non-Archimedean geometry has been recognized long
ago as the natural one operating at the minimal Planck scale
and requires the use p-adic numbers instead of ordinary
numbers [101]. By implementing the small/large scale,
ultraviolet/infrared duality principle associated with QFTs in
Noncommutative spaces, see [125] for a review, one would
expect an upper maximum scale [23] and a maximum tem-
perature [21] to be operating in Nature. Non-Archimedean
Cosmologies based on an upper scale has been investigated
by [94].

An upper/lower scale can be accomodated simultane-
ously and very naturally in the q-Gravity theory of [114],
[69] based on bicovariant quantum group extensions of the
Poincaré, Conformal group, where the q deformation param-
eter could be equated to the quantity eΛ/L, such that both
Λ=0 and L=∞, yield the same classical q=1 limit. For
a review of q-deformations of Clifford algebras and their
generalizations see [86], [128].

It was advocated long ago by Wheeler and others, that
information theory [106], set theory and number theory,
may be the ultimate physical theory. The important role of
Clifford algebras in information theory have been known

for some time [95]. Wheeler’s spacetime foam at the Planck
scale may be the background source generation of Noise
in the Parisi-Wu stochastic quantization [47] that is very
relevant in Number theory [100]. The pre-geometry cellular-
networks approach of [107] and the quantum-topos views
based on gravitational quantum causal sets, noncommutative
topology and category theory [109], [110], [124] deserves
a further study within the C-space Relativity framework,
since the latter theory also invokes a Category point of view
to the notion of dimensions. C-space is a pandimensional
continuum [14], [8]. Dimensions are topological invariants
and, since the dimensions of the extended objects change in
C-space, topology-change is another ingredient that needs
to be addressed in C-space Relativity and which may shed
some light into the physical foundations of string/M theory
[118]. It has been speculated that the universal symmetries
of string theory [108] may be linked to Borcherds Vertex
operator algebras (the Monstruous moonshine) that underline
the deep interplay between Conformal Field Theories and
Number theory. A lot remains to be done to bridge together
these numerous branches of physics and mathematics. Many
surprises may lie ahead of us. For a most recent discussion on
the path towards a Clifford-Geometric Unified Field theory
of all forces see [138], [140]. The notion of a Generalized
Supersymmetry in Clifford Superspaces as extensions of
M,F theory algebras was recently advanced in [139].
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60 C. Castro and M. Pavšič. The Extended Relativity Theory in Clifford Spaces



April, 2005 PROGRESS IN PHYSICS Volume 1

8. Castro C. Chaos, Solitons and Fractals, v. 10, 1999, 295.
Chaos, Solitons and Fractals, v. 12, 2001, 1585. The
search for the origins of M Theory: Loop Quantum
Mechanics, loops/strings and bulk/boundary dualities. arXiv:
hep-th/9809102.

9. Castro C. The programs of the Extended Relativity in
C-spaces, towards physical foundations of String Theory.
Advance NATO Workshop on the Nature of Time, Geometry
and the Physics of Perception, Tatranksa Lomnica, Slovakia,
May 2001, Kluwer Publishers, 2003.

10. Castro C. Chaos, Solitons and Fractals, v. 11, 2000, 1663.
Foundations of Physics, v. 30, 2000, 1301.

11. Amati D., Ciafaloni M. and Veneziano G. Phys. Letters,
v. B197, 1987, 81. Gross D., Mende P. Phys. Letters, v. B197,
1987, 129. Maggiore M. Phys. Letters, v. B304, 1993, 65.

12. Ansoldi S., Castro C. and Spallucci E. Class. Quant. Grav.,
v. 18, 1999, 1833. Castro C. Chaos, Solitons and Fractals,
v. 11, 2000, 1721.

13. Hosotani Y. Phys. Rev. Letters, v. 55, 1985, 1719. Carson L.,
Ho C. H. and Hosotani Y. Phys. Rev., v. D37, 1988, 1519.
Ho C. H. Jour. Math. Phys., v. 30, 1989, 2168.

14. Pezzaglia W. Physical applications of a generalized geometric
calculus. arXiv: gr-qc/9710027. Dimensionally democratic
calculus and principles of polydimensional physics. arXiv:
gr-qc/9912025. Classification of multivector theories and
modifications of the postulates of physics. arXiv: gr-
qc/9306006. Physical applications of generalized Clifford
Calculus: Papatetrou equations and metamorphic curvature.
arXiv: gr-qc/9710027. Classification of multivector theories
and modification of the postulates of physics. arXiv: gr-
qc/9306006.
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Rational Numbers Distribution and Resonance

Kyril Dombrowski∗

This study solves a problem on the distribution of rational numbers along the number
plane and number line. It is shown that the distribution is linked to resonance
phenomena and also to stability of oscillating systems.

“God created numbers, all the rest has been created
by Man. . . ”. With greatest esteem to Leopold Kronecker,
one of the founders of the contemporary theory of numbers,
it is impossible to agree with him in both the divine origin
of number and Man’s creation of mathematics. I propound
herein the idea that numbers, their relations, and all mathem-
atics in general are objective realities of our world. A part of
science is not only understanding things, but also studying
the relations that are objective realities in nature.

In this work I am going to consider a problem concerning
the distribution of rational numbers along the number line
and also in the number plane, and the relation of this distrib-
ution to resonance phenomena and stability of oscillating
systems in low linear perturbations.

Any oscillating process involving at least two interacting
oscillators is necessarily linked to abstract numbers — ratios
between the oscillation periods. This fact displays a close
relationship between such sections of science as the physical
theory of oscillations and the abstract theory of numbers.

As is well known, the rational numbers are distributed
on the number line everywhere compactly, so this problem
statement that a function of their distribution exists might
be thought false, as the case of prime numbers. But, as
we will see below, it is not false — a rational numbers
distribution function has an objective reality, manifest in
numerous physical phenomena of Nature. This thesis will be-
come clearer if we consider the “number lattice” introduced
by Minkowski (Fig. 1). Therein are given all points of coord-
inates p and q which are related to numerators and denomina-
tors, respectively. If we exclude all points of the Minkowski
lattice with coordinates have a common divisor different
from unity, this plane will contain only “rational points”
p/q (the non-cancelled fractions). Their distribution in the
plane is defined by a sequence of numbers forming a rational
series (Fig. 1).

This simplest drawing shows that rational numbers are di-
stributed inhomogeneously in the Minkowski number plane.
It is easy to see that this distribution is symmetric with respect
to the axis p=q. Numbers of columns (and rows) in intervals,
limited by this axis and one of the coordinate axes, are equal
to Euler functions — the numbers less than m and relatively
prime with m. Therefore, if we expand the number lattice
infinitely, the average density of rational numbers in the plane
(the ratio between the number of rational numbers and the

∗Translated from the Russian by D. Rabounski and S. J. Crothers.
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Fig. 1: The lattice of numbers (Minkowski’s lattice).

number of all possible pairs of natural numbers the points of
the lattice) approaches the limit

lim
N→∞

Ra
(
N2
)

N2
= lim
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2
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m=1

ϕ (m) =

=
1

ζ (2)
=
6

π2
=
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m=1

1

n2

)−1
,

where N is the number of rational numbers, Ra
(
N2
)

is
the number of rational numbers located inside the square
whose elements are of length equal to N , ϕ (m) is Euler’s
function, ζ (n) is Riemann’s zeta function, m and n are
natural numbers. In particular, we can conclude from this
that when N <∞ the average density of rational numbers
located in the plane is restricted to a very narrow interval of
numerical values. It is possible to this verify by very simple
calculations.

To study the problem of what is common to the rational
number distribution and resonance phenomena it is necessary
to have a one-dimensional picture of the function Ra (x) on
the number line. In this problem, because the set of rational
numbers is infinitely dense, we need to give a criterion for
selecting a finite number of rational numbers which could
give an objective picture of their distribution on the number
line. We can do this in two ways. First, we can study, for
instance, the distribution of rational number rays, drawn
from the origin of coordinates in the Minkowski lattice. This
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is a contemporary development of the method created by
Klein [1]. Second, we can employ continued fractions, taking
into account Khinchin’s remark that “continued fractions. . .
in their pure form display properties of the numbers they
represent” [2]. So we can employ the mathematical appar-
atus of continued fractions as a systematic ground in order
to find an analogous result that had been previously obtained
by a purely arithmetical way.

We will use the second option because it is easier (alt-
hough it is more difficult to imagine). So, let us plot points by
writing a single-term continued fraction 1/n (so these are the
numbers 1/1, 1/2, 1/3, . . . ) inside an interval of unit length.
We obtain thereby the best approximations of these numbers.
This could be done inside every interval 1/ (n+1)<x< 1/n
by plotting points which are numerical values of a two-term
continued fraction

1

m+ 1
n

=
n

mn+ 1
.

These points, according to the theory of continued fractions,
are the best approximations of the numbers 1/n from the
left side.We then get the best approximations of the numbers
1/n from the right side, expressed by the fractions

1

l+ 1

1+ 1
n

=
n+ 1

l (n+ 1) + n
, l, n,m = 1, 2, 3 . . . .

We will call the approximation obtained the first order
approximation (the second and third rank approximation in
Khinchin’s terminology). It is evident that every rational
point of k-th order obtained in this way has analogous se-
quences of the (k+1)-th rank and higher. Such sequences
fill the whole set of rational numbers.

To consider the simplest cases of resonance it would be
enough to take the first order approximation, but to consider
numerous processes such as colour vision, musical harmony,
or Bohr’s orbit distribution in atoms, requires a high order
distribution function for rational numbers.

To obtain the function Ra (x) as a regular diagram we
define this function (meaning the finite approximation order,
the first order in this case) as a quantity in reverse to the
interval between the neighbouring rational points located on
the number line, where the points are plotted in the fashion
of Khinchin, mentioned above. If the numerical values of
the numbers l, m, n are limited, this interval is finite (see
Fig. 2a). Such a drawing gives a possibility for estimating the
structure of rational number distribution along the number
line. In Fig. 2a we consider the distribution structure of
rational numbers derived from a three-component continued
fraction. For the purpose of comparison, Fig. 2b depicts a
voltage function dependent on the stimulating frequency in
an oscillating contour (drawn in the same scale as that in
Fig. 2a). In this case an alternating signal frequency at a
constant voltage was applied to the input of a resonance

1
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5−1/2
2
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0
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1501
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1000618414
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236

Fig. 2: The rational numbers distribution.

amplifier (an active LC-filter having a frequency of 1 kHz
and the quality Q= 17). The frequency at the input was
varied within the interval 200–1000 Hz through steps of
25 Hz. The average numerical value of the outgoing voltage
was measured for two different voltages of the incoming
signal — 0.75V and 1.25V.

The apexes of both functions shown in the diagrams
are located at the points plotted by the fractions 1/n. This
fact is trivial, because both apexes are actually analogous to
Fourier-series expansions of white noise. Such experimental
diagrams could be obtained in a purely theoretical way.

Much more interesting is the problem of the minimum
numerical values of both functions. The classical theory of
oscillations predicts that the minimum points should coincide
with the minimum amplitude of forced oscillations, while
according to the theory of continued fractions the minimum
points should coincide with irrational numbers which, being
the roots of the equation x2± px− 1=0 for all p, are ap-
proximated by rational numbers less accurately than by other
numbers [2].

Direct calculations give the following numbers

M1 =
1

1 + 1

1+ 1

1+...

=

√
5∓ 1
2

= (0.6180339. . . )±1,

M2 =
1

2 + 1

2+ 1

2+...

=

√
8∓ 1
2

= (0.4142135. . . )±1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mn =
1

n+ 1

n+ 1

n+...

=

√
n2 + 4∓ n

2
.

In other words, the first conclusion is that the distribution
of rational numbers, represented by continued fractions with
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Table 1: Orbital radii of planets in the solar system in comparison
with the calculated values of the radii Rk=

(√
n2 + 4∓n

)
/2

Planet Real Rk Calculated Rk n
Rk(calc)
Rk(real)

Mercury 0.0744 0.0765 −13 1.0282
Venus 0.1390 0.1401 −7 1.0079
Earth 0.1922 0.1926 −5 1.0021
Mars 0.2929 0.3028 −3 1.0338
Asteroids 0.6180 0.6180 −1 1.0000
Jupiter 1.0000 1.0000 0 1.0000
Saturn 1.8334 1.6180 1 0.8825
Uranus 3.6883 3.3028 3 0.8955
Neptune 5.7774 5.1926 5 0.8988
Pluto 7.6398 7.1401 7 0.9346

Table 2: Orbital periods of planets in the solar system
in comparison with the calculated values of the periods
Tk=

(√
n2 + 4∓n

)
/2

Planet Real Tk Calculated Tk n
Tk(calc)
Tk(real)

Mercury 0.0203 0.0203 −49 1.0000
Venus 0.0519 0.0524 −19 1.0096
Earth 0.0843 0.0828 −12 0.9822
Mars 0.1586 0.1623 −6 1.0233
Asteroids 0.4877 0.4142 −2 0.8493
Jupiter 1.0000 1.0000 0 1.0000
Saturn 2.4834 2.4142 2 0.9721
Uranus 7.0827 7.1378 7 1.0077
Neptune 13.8922 14.0711 13 1.0129
Pluto 21.1166 21.0475 21 0.9967

Note: Here the measurement units are the orbital radius and
period of Jupiter. For asteroids the overall average orbit is taken,
its radius 3.215 astronomical units and period 5.75 years are the
average values between asteroids.

a limited number of elements, takes its minimum density
at the points of a unit interval on number line as shown by
the aforementioned numbers. The second conclusion is that if
these numbers express ratios between interacting frequencies,
the amplitude of the forced oscillations takes its minimum
numerical value.

It is evident that an oscillating system, where the oscil-
lation parameters undergo changes due to interactions inside
the system, will be maximally stable in that case where the
forced oscillation amplitude will be a minimum.

The simplest verification of this thesis is given by the
solar system. As we know it Laplace’s classic works, the
whole solar system (the planet orbits on the average) are
stable under periodic gravitational perturbations only if the
ratios between the orbital parameters are expressed by ir-
rational numbers. If we will take this problem forward,
proceeding from the viewpoint proposed above, the ratios

between the orbital periods Tk/T0 or, alternatively, the ratios
between their functions (the average orbital radii Rk/R0)
will be close to those numbers that correspond to the minima
of the rational numbers density on number line

Tk
T0
;
Rk
R0
≈Mn =

(√
n2 + 4∓ n

)

2
.

The truth or falsity of this can be decided by using Table 1
and Table 2.

As a matter of fact, all that has been said on the distribut-
ion of rational numbers on a unit interval could be extrapol-
ated for the entire number line (proceeding from the above
mentioned concept).

All that has been said gives a possibility to formulate the
next conclusions:

1. Rational numbers having limited numerator and de-
nominator are distributed inhomogeneously along the
number line;

2. Oscillating systems, having a peculiarity to change
their own parameters because of interactions inside the
systems, have a tendency to reach a stable state where
the separate oscillators frequencies are interrelated by
specific numbers — minima of the rational number
density on number line.
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The general solution to Einstein’s vacuum field equations for the point-mass in all
its configurations must be determined in such a way as to provide a means by which
an infinite sequence of particular solutions can be readily constructed. It is from
such a solution that the underlying geometry of Einstein’s universe can be rightly
explored. I report here on the determination of the general solution and its consequences
for the theoretical basis of relativistic degeneracy, i. e. gravitational collapse and the
black hole.

1 Introduction

Aserious misconception prevails that the so-called “Schwarz-
schild solution” is a solution for the vacuum field. Not only
is this incorrect, it is not even Schwarzschild’s solution.
The aforesaid solution was obtained by David Hilbert [1],
a full year after Karl Schwarzschild [2] obtained his original
solution. Moreover, Hilbert’s metric is a corruption of the
solution first found by Johannes Droste [3], and subsequently
by Hermann Weyl [4] by a different method.

The orthodox concepts of gravitational collapse and the
black hole owe their existence to a confusion as to the
true nature of the r-parameter in the metric tensor for the
gravitational field.

The error in the conventional analysis of Hilbert’s solu-
tion is twofold in that two tacit and invalid assumptions are
made:

(a) r is a coordinate and radius (of some kind) in the
gravitational field;

(b) The regions 0<r<α=2m and α<r<∞ are valid.

Contrary to the conventional analysis the nature and
range or the r-parameter must be determined by rigorous
mathematical means, not by mere assumption, tacit or other-
wise. When the required mathematical rigour is applied it
is revealed that r0 =α denotes a point, not a 2-sphere,
and that 0<r<α is undefined on the Hilbert metric. The
consequence of this is that gravitational collapse, if it occurs
in Nature at all, cannot produce a relativistic black hole
under any circumstances. Since the Michell-Laplace dark
body is not a black hole either, there is no theoretical basis
for it whatsoever. Furthermore, the conventional conception
of gravitational collapse is demonstrably false.

The sought for general solution must not only result in a
means for construction of an infinite sequence of particular
solutions, it must also naturally produce the solutions due
to Schwarzschild, Droste and Weyl, and M. Brillouin [5]. To
obtain the general solution the general conditions that the

required solution must satisfy must be established. Abrams
[9] has determined these conditions. I obtain them by other
arguments, and therefrom construct the general solution,
from which the original Schwarzschild solution, the Droste/
Weyl solution, and the Brillouin solution all arise quite nat-
urally. It will be evident that the black hole is theoretically
unsound. Indeed, it never arose in the solutions of Schwarz-
schild, Droste and Weyl, and Brillouin. It comes solely from
the mathematically inadmissible assumptions conventionally
imposed upon the Hilbert metric.

I provide herein a derivation of the general solution
for the simple point-mass and briefly discuss its geometry.
Although I have obtained the complete solution up to the
rotating point-charge I reserve its derivation to a subsequent
paper and similarly a full discussion of the geometry to a
third paper. However, I include the expression for the overall
general solution as a prelude to my following papers.

2 The general solution for the simple point-mass and
its basic geometry

A general metric for the static, time-symmetric,
cento-symmetric configuration of energy or matter in quasi-
Cartesian coordinates is,

ds2 = L(r)dt2 −M(r)(dx2 + dy2 + dz2)−

− N(r)(xdx+ ydy + zdz)2,

r =
√
x2 + y2 + z2 ,

(1)

where, ∀ t, L,M,N are analytic functions such that,

L,M,N > 0 . (2)

In polar coordinates (1) becomes,

ds2 = A(r)dt2 −B(r)dr2 − C(r)(dθ2 + sin2 θdϕ2) , (3)

where analytic A,B,C > 0 owing to (2).
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Transform (3) by setting

r∗ =
√
C(r) , (4)

then
ds2 = A∗(r∗)dt2 −B∗(r∗)dr∗2−

− r∗2(dθ2 + sin2 θdϕ2) ,
(5)

from which one obtains in the usual way,

ds2 =

(
r∗ − α
r∗

)

dt2 −

(
r∗

r∗ − α

)

dr∗2−

− r∗2(dθ2 + sin2 θdϕ2) .

(6)

Substituting (4) gives

ds2 =

(√
C − α
√
C

)

dt2 −

( √
C

√
C − α

)
C ′2

4C
dr2−

−C(dθ2 + sin2 θdϕ2) .

(7)

Thus, (7) is a general metric in terms of one unknown
function C(r). The following arguments are coordinate in-
dependent since C(r) in (7) is an arbitrary function.

The general metric for Special Relativity is,

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 dϕ2

)
, (8)

and the radial distance (the proper distance) between two
points is,

d =

∫ r

r0

dr = r − r0 . (9)

Let a test particle be located at each of the points r0 and
r > r0 (owing to the isotropy of space there is no loss of
generality in taking r > r0 > 0). Then by (9) the distance
between them is given by

d = r − r0 ,

and if r0 =0, d ≡ r in which case the distance from r0 =0
is the same as the radius (the curvature radius) of a great
circle, the circumference χ of which is from (8),

χ = 2π
√
r2 = 2πr . (10)

In other words, the curvature radius and the proper radius
are identical, owing to the pseudo-Euclidean nature of (8).
Furthermore, d gives the radius of a sphere centred at the
point r0 . Let the test particle at r0 acquire mass. This pro-
duces a gravitational field centred at the point r0 > 0. The
geometrical relations between the components of the metric
tensor of General Relativity must be precisely the same
in the metric of Special Relativity. Therefore the distance
between r0 and r > r0 is no longer given by (9) and the
curvature radius no longer by (10). Indeed, the proper radius

Rp, in keeping with the geometrical relations on (8), is
now given by,

Rp =

∫ r

r0

√
−g11dr , (11)

where from (7),

−g11 =

(

1−
α

√
C(r)

)−1
[C ′(r)]2

4C(r)
. (12)

Equation (11) with (12) gives the mapping of d from the
flat spacetime of Special Relativity into the curved spacetime
of General Relativity, thus,

Rp(r) =

∫ √ √
C

√
C − α

C ′

2
√
C
dr =

=

√
√
C(r)

(√
C(r)− α

)
+

+ α ln

∣
∣
∣
∣
∣
∣

√√
C(r) +

√√
C(r)− α

K

∣
∣
∣
∣
∣
∣
,

K = const .

(13)

The relationship between r and Rp is

r → r0⇒Rp → 0 ,

so from (13) it follows,

r → r0 ⇒ C(r0) = α2, K =
√
α .

So (13) becomes,

Rp(r) =

√
√
C(r)

(√
C(r)− α

)
+

+ α ln

∣
∣
∣
∣
∣
∣

√√
C(r) +

√√
C(r)− α

√
α

∣
∣
∣
∣
∣
∣
.

(14)

Therefore (7) is singular only at r= r0 , where C(r0)=
=α2 and g00=0 ∀ r0 , irrespective of the value of r0 .
C(r0)=α

2 emphasizes the true meaning of α, viz., α is
a scalar invariant which fixes the spacetime for the point-
mass from an infinite number of mathematically possible
forms, as pointed out by Abrams. Moreover, α embodies
the effective gravitational mass of the source of the field,
and fixes a boundary to an otherwise incomplete spacetime.
Furthermore, one can see from (13) and (14) that r0 is
arbitrary, i. e. the point-mass can be located at any point
and its location has no intrinsic meaning. Furthermore, the
condition g00=0 is clearly equivalent to the boundary con-
dition r→ r0⇒Rp→ 0, from which it follows that g00=0
is the end result of gravitational collapse. There exists no
value of r making g11=0.
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If C ′=0 for r > r0 the structure of (7) is destroyed:
g11=0 for r > r0⇒B(r)= 0 for r > r0 in violation of (3).
Therefore C ′ 6=0. For (7) to be spatially asymptotically flat,

lim
r→∞

C(r)
(
r − r0

)2 = 1 . (15)

Since C(r) must behave like (r − ro)
2 and make (7)

singular only at r= r0 ,C(r)must be a strictly monotonically
increasing function. Then by virtue of (15) and the fact that
C ′ 6=0, it follows that C ′> 0 for r > r0 . Thus the necessary
conditions that must be imposed upon C(r) to render a
solution to (3) are:

1. C ′(r)> 0 for r > r0;

2. lim
r→∞

C(r)
(
r − r0

)2 =1;

3. C(r0)=α
2.

I call the foregoing the Metric Conditions of Abrams for
the point-mass (MCA) since when r0 =0 they are precisely
the conditions he determined by his use of (3) and the field
equations. In addition to MCA any admissible function C(r)
must reduce (7) to the metric of Special Relativity when
α=2m=0.

The invalid conventional assumptions that 0<r<α and
that r is a radius of sorts in the gravitational field lead
to the incorrect conclusion that r=α is a 2-sphere in the
gravitational field of the point-mass. The quantity r=α does
not describe a 2-sphere; it does not yield a Schwarzschild
sphere; it is actually a point. Stavroulakis [10, 8, 9] has also
remarked upon the true nature of the r-parameter (coordinate
radius). Since MCA must be satisfied, admissible systems of
coordinates are restricted to a particular (infinite) class. To
satisfy MCA, and therefore (3), and (7), the form that C(r)
can take must be restricted to,

Cn(r) =
[
(r − r0)

n + αn
] 2
n , (16)

r0 ∈ (<− <
−), n ∈ <+,

where n and r0 are arbitrary. I call equations (16) Schwarz-
schild forms. The value of n in (16) fixes a set of coordinates,
and the infinitude of such reflects the fact that no set of
coordinates is privileged in General Relativity.

The general solution for the simple point-mass is there-
fore,

ds2 =

(√
Cn−α√
Cn

)

dt2−

( √
Cn√

Cn−α

)
C ′n

2

4Cn
dr2−

−Cn(dθ2 + sin
2 θdϕ2) ,

(17)

Cn(r) =
[
(r − r0)

n + αn
] 2
n , n ∈ <+,

r0 ∈ (<− <
−) ,

r0 < r <∞ ,

where n and r0 are arbitrary. Therefore with r0 arbitrary, (17)
reduces to the metric of Special Relativity when α=2m=0.

From (17), with r0 =0 and n taking integer values, the
following infinite sequence obtains:

C1(r) = (r + α)
2 (Brillouin’s solution)

C2(r) = (r
2 + α2)

C3(r) = (r
3 + α3)

2
3 (Schwarzschild’s solution)

C4(r) = (r
4 + α4)

1
2 , etc.

Hilbert’s solution is rightly obtained when r0 =α, i. e.
when r0 =α and the values of n take integers, the infinite
sequence of particular solutions is then given by,

C1(r) = r2 [Droste/Weyl/(Hilbert) solution]

C2(r) = (r − α)2 + α2,

C3(r) =
[
(r − α)3 + α3

] 2
3 ,

C4(r) =
[
(r − α)4 + α4

] 1
2 , etc.

The curvature f =RijkmRijkm is finite everywhere, in-
cluding r= r0 . Indeed, for metric (17) the Kretschmann
scalar is,

f =
12α2

C3n
=

12α2

[(
r − r0

)n
+ αn

] 6
n

. (18)

Gravitational collapse does not produce a curvature sin-
gularity in the gravitational field of the point-mass. The scalar
invariance of f(r0)=

12
α4 is evident from (18).

All the particular solutions of (17) are inextendible, since
the singularity when r= r0 is quasiregular, irrespective of the
values of n and r0 . Indeed, the circumference χ of a great
circle becomes,

χ = 2π
√
C(r). (19)

Then the ratio

lim
r→r0

χ

Rp
→∞, (20)

shows that Rp(r0)≡ 0 is a quasiregular singularity and can-
not be extended.

Equation (19) shows that χ=2πα is also a scalar invar-
iant for the point-mass.

It is plain from the foregoing that the Kruskal-Szekeres
extension is meaningless, that the “Schwarzschild radius” is
meaningless, that the orthodox conception of gravitational
collapse is incorrect, and that the black hole is not consistent
at all with General Relativity. All arise wholely from a
bungled analysis of Hilbert’s solution.

3 Implications for gravitational collapse

As is well known the gravitational potential Φ for an arbitrary
metric is

g00 = (1− Φ)
2
, (21)
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from which it is concluded that gravitational collapse occurs
at Φ=1. Physically, the conventional process of collapse
involves Newtonian gravitation down to the so-called “grav-
itational radius”. Far from the source, the alleged weak field
potential is,

Φ =
m

r
,

and so
g00 = 1−

α

r
, (22)

α = 2m.

The scalar α is conventionally called the “gravitational
radius”, or the “Schwarzschild radius”, or the “event hori-
zon”. However, as I have shown, neither α nor the coordinate
radius r are radii in the gravitational field. In the case of the
Hilbert metric, r0 =α is a point, not a 2-sphere. It is the
location of the point-mass. In consequence of this g00=0 is
the end result of gravitational collapse. It therefore follows
that in the vacuum field,

0 < g00 < 1 , 1 < |g11| <∞ ,

α <
√
C(r) .

In the case of the Hilbert metric, C(r)= r2, so

0 < g00 < 1, 1 < |g11| <∞ ,

α < r .

In the case of Schwarzschild’s metric we have C(r)=

=
(
r3+α3

) 2
3 , so

0 < g00 < 1, 1 < |g11| <∞ ,

0 < r .

It is unreasonable to expect the weak field potential
function to be strictly Newtonian. Only in the infinitely
far field is Newton’s potential function to be recovered.
Consequently, the conventional weak field expression (22)
cannot be admitted with the conventional interpretation there-
of. The correct potential function must contain the arbitrary
location of the point-mass. From (21),

Φ = 1−
√
g00 = 1−

√

1−
α

√
C(r)

,

so in the weak far field,

Φ ≈ 1−

(

1−
α

2
√
C

)

=
m
√
C
,

and so

g00 = 1−
α

√
C(r)

= 1−
α

[
(r − r0)n + αn

] 1
n

, (23)

r0 ∈ (<− <
−), n ∈ <+ .

Then
as r →∞, g00 → 1−

α

r − r0
,

and Newton is recovered at infinity.
According to (23), at r= r0 , g00=0 and Φ= 1

2 . The
weak field potential approaches a finite maximum of 1

2
(i. e. 1

2c
2), in contrast to Newton’s potential. The conven-

tional concept of gravitational collapse at rs=α is therefore
meaningless.

Similarly, it is unreasonable to expect Kepler’s 3rd Law
to be unaffected by general relativity, contrary to the con-
ventional analysis. Consider the Lagrangian,

L =
1

2

[(

1−
α
√
Cn

)(
dt

dτ

)2]

−

−
1

2

[(

1−
α
√
Cn

)−1(
d
√
Cn
dτ

)2]

−

−
1

2

[

Cn

((
dθ

dτ

)2
+ sin2 θ

(
dϕ

dτ

)2)]

,

Cn(r) =
[(
r − r0

)n
+ αn

] 2
n

, n ∈ <+ ,

r0 ∈ (<− <
−), r0 < r <∞ ,

(24)

where τ is the proper time.
Restricting motion, without loss of generality, to the

equatorial plane, θ= π
2 , the Euler-Lagrange equations for

(24) are,

(

1−
α
√
Cn

)−1
d2
√
Cn

dτ 2
+

α

2Cn

(
dt

dτ

)2
−

−

(

1−
α
√
Cn

)−2
α

2Cn

(
d
√
Cn
dτ

)2
−
√
Cn

(
dϕ

dτ

)2
=0 ,

(25)

(

1−
α
√
Cn

)
dt

dτ
= const = k , (26)

Cn
dϕ

dτ
= const = h , (27)

and ds2= gμνdxμdxν becomes,

(

1−
α
√
Cn

)(
dt

dτ

)2
−

−

(

1−
α
√
Cn

)−1(
d
√
Cn
dτ

)2
− Cn

(
dϕ

dτ

)2
= 1 .

(28)

Using the foregoing equations it readily follows that the
angular velocity is,

ω =

√
α

2C
3
2
n

. (29)
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Then,

lim
r→r0

ω =
1

α
√
2

(30)

is a scalar invariant which shows that the angular velocity
approaches a finite limit, in contrast to Newton’s theory
where it becomes unbounded. Schwarzschild obtained this
result for his particular solution. Equation (29) is the General
Relativistic modification of Kepler’s 3rd Law.

For a falling particle in a true Schwarzschild field,

dτ =
√
g00 dt =

√

1−
α

√
C(r)

dt .

Therefore, as a neutral test particle approaches the field
source at r0 along a radial geodesic, dτ→ 0. Thus, according
to an external observer, it takes an infinite amount of coor-
dinate time for a test particle to reach the source. Time stops
at the Schwarzschild point-mass. The conventional concepts
of the Schwarzschild sphere and its interior are meaningless.

Doughty [10] has shown that the acceleration of a test
particle approaching the point-mass along a radial geodesic
is given by,

a =

√
−g11

(
−g11

)
|g00,1|

2g00
. (31)

By (17),

a =
α

2C
3
4

(√
C − α

) 1
2

.

Clearly, as r→ r0 , a→∞, independently of the value of
r0 . In the case of C(r)= r2, where r0 =α,

a =
α

2r
3
2

√
r − α

, (32)

so a→∞ as r→ r0 =α.
Applying (31) to the Kruskal-Szekeres extension gives

rise to the absurdity of an infinite acceleration at r=α
where it is conventionally claimed that there is no matter
and no singularity. It is plainly evident that gravitational
collapse terminates at a Schwarzschild simple point-mass,
not in a black hole. Also, one can readily see that the alleged
interchange of the spatial and time coordinates “inside” the
“Schwarzschild sphere” is nonsensical. To amplify this, in
(17), suppose

√
C(r)<α, then

ds2 = −

(
α
√
C
−1

)

dt2 +

(
α
√
C
−1

)−1
C ′2

4C
dr2−

−C
(
dθ2 + sin2 dϕ2

)
.

(33)

Let r= t̃ and t= r̃, then

ds2 =

(
α−
√
C

√
C

)−1
Ċ2

4C
dt̃2−

(
α−
√
C

√
C

)

dr̃2−

−C(t̃)
(
dθ2 + sin2 dϕ2

)
.

(34)

This is a time dependent metric which does not have any
relationship to the original static problem. It does not extend
(17) at all, as also noted by Brillouin in the particular solution
given by him. Equation (34) is meaningless.

It is noteworthy that Hagihara [11] has shown that all
geodesics that do not run into the Hilbert boundary at r0 =α
are complete. His result is easily extended to any r0 > 0
in (17).

The correct conclusion is that gravitational collapse ter-
minates at the point-mass without the formation of a black
hole in all general relativistic circumstances.

4 Generalization of the vacuum solution for charge and
angular momentum

The foregoing analysis can be readily extended to include the
charged and rotating point-mass. In similar fashion it follows
that the Reissner-Nordstrom, Carter, Graves-Brill, Kerr, and
Kerr-Newman black holes are all inconsistent with General
Relativity.

In a subsequent paper I shall derive the following overall
general solution for the point-mass when Λ=0,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
Cn + a

2
)
dϕ− adt

]2
−
ρ2

Δ

C ′n
2

4Cn
dr2 − ρ2dθ2 ,

Cn(r) =
[(
r − r0

)n
+ βn

] 2
n

, r0 ∈ (<− <
−) ,

n ∈ <+, a =
L

m
, ρ2 = Cn + a

2 cos2 θ ,

Δ = Cn − α
√
Cn + q

2 + a2 ,

β = m+
√
m2 − q2 − a2 cos2 θ, a2 + q2 < m2,

r0 < r <∞ .

The different configurations for the point-mass are easily
extracted from this set of equations by the setting of the
values of the parameters in the obvious way.

Dedication

I dedicate this paper to the memory of Dr. Leonard S.
Abrams: (27 Nov. 1924 — 28 Dec. 2001).

Epilogue

My interest in the problem of the black hole was aroused by
coming across the papers of the American physicist Leonard
S. Abrams, and subsequently to the original papers of
Schwarzschild, Droste, Weyl, Hilbert, and Brillouin. I was
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drawn to the logic of Abrams’ approach in his determination
of the required metric in terms of a single generalised func-
tion and the conditions that this function must satisfy to
render a solution for the point-mass. It was not until I read
Abrams that I became aware of the startling facts that the
“Schwarzschild solution” is not due to Schwarzschild, that
Schwarzschild did not predict the black hole and made none
of the claims about black holes that are invariably attributed
to him in the textbooks and almost invariably in the literature.
These facts alone give cause for disquiet and reading of the
original papers gives cause for serious concern about how
modern science is reported.

Dr. Leonard S. Abrams was born in Chicago in 1924
and died on December 28, 2001, in Los Angeles at the
age of 77. He received a B. S. in Mathematics from the
California Institute of Technology and a Ph. D. in physics
from the University of California at Los Angeles at the
age of 45. He spent almost all of his career working in the
private sector, although he taught at a variety of institutions
including California State University at Dominguez Hills and
at the University of Southern California. He was a pioneer
in applying game theory to business problems and was an
expert in noise theory, but his first love always was general
relativity. His principle theoretical contributions focused on
non-black hole solutions to Einstein’s equations and on the
inextendability of the “Schwarzschild” solution. Dr. Abrams
is survived by his wife and two children.

Dr. Abrams encountered great resistance to publication
of his work on General Relativity. Nonetheless he continued
with his work and managed to publish several important
papers despite the obstacles placed in his way by the main-
stream authorities.

I extend my thanks to Diana Abrams for providing me
with information about her late husband.
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In a previous paper I derived the general solution for the simple point-mass in a true
Schwarzschild space. I extend that solution to the point-charge, the rotating point-
mass, and the rotating point-charge, culminating in a single expression for the general
solution for the point-mass in all its configurations when Λ = 0. The general exact
solution is proved regular everywhere except at the arbitrary location of the source
of the gravitational field. In no case does the black hole manifest. The conventional
solutions giving rise to various black holes are shown to be inconsistent with General
Relativity.

1 Introduction

In a previous paper [1] I showed that the general solution
of the vacuum field for the simple point-mass is regular
everywhere except at the arbitrary location of the source
of the field, r = r0 , r0 ∈ (<−<−), where there is a
quasiregular singularity. I extend herein the general solution
to the rotating and charged configurations of the point-mass
and show that they too are regular everywhere except at
r= r0 , obviating the formation of the Reissner-Nordstrom,
Kerr, and Kerr-Newman black holes. Consequently, there is
no basis in General Relativity for the black hole.

The sought for complete solution for the point-mass
must reduce to the general solution for the simple point-
mass in a natural way, give rise to an infinite sequence
of particular solutions in each particular configuration, and
contain a scalar invariant which embodies all the factors that
contribute to the effective gravitational mass of the field’s
source for the respective configurations.

2 The vacuum field of the point-charge

The general metric, in polar coordinates, for the vacuum field
is, in relativistic units,

ds2 = A(r)dt2 −B(r)dr2 −C(r)(dθ2 + sin2 θdϕ2) , (1)

where analytic A,B,C > 0. The general solution to (1) for
the simple point-mass is,

ds2=

[
(
√
Cn−α)√
Cn

]

dt2−

[ √
Cn

(
√
Cn−α)

]
C ′n

2

4Cn
dr2−

−Cn(dθ
2 + sin2 θdϕ2) ,

(2)

Cn(r) =
[(
r − r0

)n
+ αn

] 2
n

, α = 2m, r0 ∈ (<− <
−) ,

n ∈ <+ , r0 < r <∞ ,

where Cn(r) satisfies the Metric conditions of Abrams
(MCA) [2]∗ for the simple point-mass,

1. C ′n(r) > 0, r > r0;

2. lim
r→∞

Cn(r)(
r − r0

)2 = 1;

3. Cn(r0) = α2 .

The Reissner-Nordstrom [3] solution is,

ds2=

(

1−
α

r
+
q2

r2

)

dt2 −

(

1−
α

r
+
q2

r2

)−1
dr2−

− r2(dθ2 + sin2 θdϕ2) ,

(3)

which is conventionally taken to be valid for all q2

m2
. It is

also alleged that (3) can be extended down to r=0, giving
rise to the so-called Reissner-Nordstrom black hole. These
conventional allegations are demonstrably false.

The conventional analysis simply looks at (3) and makes
two mathematically invalid assumptions, viz.,

1. The parameter r is a radius of some kind in the grav-
itational field;

2. r down to r=0 is valid.

The nature and range of the r-parameter must be estab-
lished by mathematical rigour, not by mere assumption.

Transform (1) by the substitution

r∗ =
√
C(r). (4)

∗Abrams’ equation (A.1) should read:

−8πT 11 =
−1

C
+

C′2

4BC2
+

A′C′

2ABC
= 0 ,

and his equation (A.6),

2C′′

C′
− [ln (ABC)]′ = 0 .

The errors are apparently escapees from the proof reading.
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Equation (4) carries (1) into

ds2=A∗(r∗)dt2−B∗(r∗)dr∗2−r∗2(dθ2+sin2 θdϕ2) . (5)

Using (5) to determine the Maxwell stress-energy tensor,
and substituting the latter into the Einstein-Maxwell field
equations in the usual way, yields,

ds2 =

(

1−
α

r∗
+
q2

r∗2

)

dt2−

−

(

1−
α

r∗
+
q2

r∗2

)−1
dr∗2 − r∗2(dθ2 + sin2 θdϕ2) .

(6)

Substituting (4) into (6),

ds2 =

(

1−
α
√
C
+
q2

C

)

dt2 −

(

1−
α
√
C
+
q2

C

)−1
×

×
C ′

2

4C
dr2 − C(dθ2 + sin2 θdϕ2) .

(7)

The proper radius Rp on (1) is,

Rp(r) =

∫ √
B(r) dr . (8)

The parameter r therefore does not lie in the spacetime
Mq of the point-charge.

Taking B(r) from (7) into (8) gives the proper distance
in Mq ,

Rp(r) =

∫ (

1−
α

√
C(r)

+
q2

C(r)

)− 1
2 C ′(r)

2
√
C(r)

dr =

=

√
C(r)− α

√
C(r) + q2 +

+ m ln

∣
∣
∣
∣
∣
∣

√
C(r)−m+

√
C(r)− α

√
C(r) + q2

K

∣
∣
∣
∣
∣
∣
,

(9)

K = const.

The valid relationship between r and Rp(r) is,

as r → r0 , Rp(r)→ 0 ,

so by (9),

r → r0 ⇒
√
C(r0) = m±

√
m2 − q2 ,

K = ±
√
m2 − q2 .

When q = 0, (9) must reduce to the Droste/Weyl [4, 5]
solution, so it requires,

√
C(r0) = m+

√
m2 − q2 . (10)

Then by (9),

K =
√
m2 − q2, q2 < m2 . (11)

Clearly, r0 is the lower bound on r.
Putting (11) into (9) gives,

Rp(r) =

√
C(r)− α

√
C(r) + q2 +

+ m ln

∣
∣
∣
∣
∣
∣

√
C(r)−m+

√
C(r)−α

√
C(r)+q2

√
m2−q2

∣
∣
∣
∣
∣
∣
.

(12)

Equation (7) is therefore singular only when r= r0 in
which case g00=0. Hence, the condition r→ r0⇒Rp→ 0
is equivalent to r= r0⇒ g00=0.

If C ′=0 the structure of (7) is destroyed, since g11=0 ∀
r > r0⇒B(r)= 0 ∀ r > r0 in violation of (1). Therefore
C ′(r) 6=0 for r > r0 .

For (7) to be asymptotically flat,

r →∞⇒
C(r)

(
r − r0

)2 → 1 . (13)

Therefore,

lim
r→∞

C(r)
(
r − r0

)2 = 1 . (14)

Since C(r) behaves like
(
r − r0

)2
, must make (7) sin-

gular only at r= r0 , and C ′(r) 6=0 for r > r0 , C(r) is strictly
monotonically increasing, therefore, C ′(r)> 0 for r > r0 .
Thus, to satisfy (1) and (7), C(r) must satisfy,

1. C ′(r) > 0, r > r0;

2. lim
r→∞

C(r)
(
r − r0

)2 = 1;

3.
√
C(r0) = β = m+

√
m2 − q2, q2 < m2.

I call the foregoing the Metric Conditions of Abrams
(MCA) for the point-charge. Abrams [6] obtained them by a
different method — using (1) and the field equations directly.

In the absence of charge (7) must reduce to the general
Schwarzschild solution for the simple point-mass (2). The
only functions that satisfy this requirement and MCA are,

Cn(r) =
[(
r − r0

)n
+ βn

] 2
n

,

β = m+
√
m2 − q2, q2 < m2,

n ∈ <+, r0 ∈ (<− <
−) ,

where n and r0 are arbitrary. Therefore, the general solution
for the point-charge is,

ds2 =

(

1−
α
√
C
+
q2

C

)

dt2−

(

1−
α
√
C
+
q2

C

)−1
×

×
C ′

2

4C
dr2 − C(dθ2 + sin2 θdϕ2) ,

(15)
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Cn(r) =
[(
r − r0

)n
+ βn

] 2
n

,

β = m+
√
m2 − q2 , q2 < m2 ,

n ∈ <+, r0 ∈ (<− <
−) ,

r0 < r <∞ .

When n=1 and r0 =0, Abrams’ [6] solution for the
point-charge results.

Equation (15) is regular ∀ r > r0 . There is no event
horizon and therefore no Reissner-Nordstrom black hole.
Furthermore, the Graves-Brill black hole and the Carter black
hole are also invalid.

By (15) the correct rendering of (3) is,

ds2 =

(

1−
α

r
+
q2

r2

)

dt2−

(

1−
α

r
+
q2

r2

)−1
dr2−

− r2(dθ2 + sin2 θdϕ2) ,

(16)

q2 < m2, m+
√
m2 − q2 < r <∞ ,

so Nordstrom’s assumption that
√
C(0)= 0 is invalid.

The scalar curvature f =RijkmRijkm for (1) with charge
included is,

f =

8

[

6
(
m
√
C − q2

)2
+ q4

]

C4
.

Using (15) the curvature is,

f =

8

[

6

(

m
[(
r − r0

)n
+ βn

] 1
n

− q2
)2
+ q4

]

[(
r − r0

)n
+ βn

] 8
n

.

The curvature is always finite, even at r0 . No curvature
singularity can arise in the gravitational field of the point-
charge. Furthermore,

f(r0) =
8
[
6
(
mβ − q2

)2
+ q4

]

β8
,

where β=m+
√
m2− q2. Thus, f(r0) is a scalar invariant

for the point-charge. When q=0, f(r0)=
12
α4 , which is the

scalar curvature invariant for the simple point-mass.
From (15) the circumference χ of a great circle is

given by,
χ=2π

√
C(r) .

The proper radius is given by (12). Then the ratio χ
Rp
>2π

for finite r and,

lim
r→∞

χ

Rp
= 2π ,

lim
r→r0

χ

Rp
→∞ ,

which shows that Rp(r0) is a quasiregular singularity and
cannot be extended.

Consider the Lagrangian,

L =
1

2

[(

1−
α
√
Cn

+
q2

Cn

)(
dt

dτ

)2]

−

−
1

2

[(

1−
α
√
Cn

+
q2

Cn

)−1(
d
√
Cn
dτ

)2]

−

−
1

2

[

Cn

((
dθ

dτ

)2
+ sin2 θ

(
dϕ

dτ

)2)]

.

(17)

Restricting motion to the equatorial plane without loss of
generality, the Euler-Lagrange equations from (17) are,
(

1−
α
√
Cn
+
q2

Cn

)
d2
√
Cn

dτ 2
+

(
α

2Cn
−
q2

C
3
2
n

)(
dt

dτ

)2
−

−

(
α

2Cn
−
q2

C
3
2
n

)(

1−
α
√
Cn
+
q2

Cn

)−2(
d
√
Cn
dτ

)2
−

−
√
Cn

(
dϕ

dτ

)2
= 0 ,

(18)

(

1−
α
√
Cn

+
q2

Cn

)
dt

dτ
= k = const , (19)

Cn
dϕ

dτ
= h = const . (20)

Also, ds2= gμνdxμdxν becomes,
(

1−
α
√
Cn

+
q2

Cn

)(
dt

dτ

)2
−

−

(

1−
α
√
Cn

+
q2

Cn

)−1(
d
√
Cn
dτ

)2
−

−Cn

(
dϕ

dτ

)2
= 1 .

(21)

It follows from these equations that the angular velocity
ω of a test particle is,

ω2 =

(
α

2C
3
2
n

−
q2

C2n

)

=

=






α

2
[(
r−r0

)n
+βn

] 3
n

−
q2

[(
r−r0

)n
+βn

] 4
n




.

(22)

Then,

lim
r→r0

ω =

√
α

2β3
−
q2

β4
, (23)
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where β=m+
√
m2− q2, q2<m2.

Equation (22) is Kepler’s 3rd Law for the point-charge.
It obtains the finite limit given in (23), which is a scalar
invariant for the point-charge. When q=0, equations (22)
and (23) reduce to those for the simple point-mass,

ω =

√
α

2C
3
2
n

,

lim
r→r0

ω =
1

α
√
2
.

In the case of a photon in circular orbit about the point-
charge, (21) yields,

ω2 =
1

Cn

(

1−
α
√
Cn

+
q2

Cn

)

, (24)

and (18) yields,

ω2 =
1
√
Cn

(
α

2Cn
−

q2

C
3
2
n

)

. (25)

Equating the two, denoting the stable photon radial coor-
dinate by rph, and solving for the curvature radius

√
Cph =

=
√
Cn(r(ph)), gives (since when q=0,

√
Cph 6= 0),

√
Cph =

√
Cn(r(ph)) =

3α+
√
9α2 − 32q2

4
, (26)

which is a scalar invariant. In terms of coordinate radii,

rph =






(
3α+

√
9α2 − 32q2

)n

4n
− βn






1
n

+ r0 , (27)

which depends upon the values of n and r0 .
When q=0 equations (26) and (27) reduce to the corres-

ponding equations for the simple point-mass,
√
Cn(rph) =

3α

2
, (28)

rph =

[(
3α

2

)n
− αn

] 1
n

+ r0 . (29)

The proper radius associated with (28) and (29) is,

Rp(ph) =
α
√
3

2
+ α ln

(
1 +
√
3

√
2

)

, (30)

which is a scalar invariant for the simple point-mass. Putting
(26) into (12) gives the invariant proper radius for a stable
photon orbit about the point-charge.

3 The vacuum field of the rotating point-mass

The Kerr solution, in Boyer-Lindquist coordinates and rela-
tivistic units is,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
r2+a2

)
dϕ−adt

]2
−
ρ2

Δ
dr2−ρ2dθ2,

(31)

a =
L

m
, ρ2 = r2 + a2 cos2 θ ,

Δ = r2 − rα+ a2, 0 < r <∞ ,

where L is the angular momentum.
If a=0, equation (31) reduces to Hilbert’s [7] solution

for the simple point-mass,

ds2 =
(
1−

α

r

)
dt2 −

(
1−

α

r

)−1
dr2−

− r2(dθ2 + sin2 θdϕ2) ,

(32)

0 < r <∞ .

However, according to the general formula (2) the correct
range for r in (32) is,

√
C(r0) < r <∞ ,

where
√
C(r0)=α. Therefore (32) should be,

ds2 =
(
1−

α

r

)
dt2 −

(
1−

α

r

)−1
dr2−

− r2(dθ2 + sin2 θdϕ2) ,

(33)

α < r <∞ .

Equation (33) is the Droste/Weyl solution.
Since the r that appears in (32) is the same r appearing

in (31) and (33), taking (4) into account, the correct general
form of (31) is,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
C + a2

)
dϕ− adt

]2
−

−
ρ2

Δ

C ′2

4C
dr2 − ρ2dθ2 ,

(34)

a =
L

m
, ρ2 = C + a2 cos2 θ ,

Δ = C − α
√
C + a2 , r0 < r <∞ .

When a=0, (34) must reduce to (2).
If C ′=0 the structure of (34) is destroyed, since then

g11=0 ∀ r > r0⇒B(r)= 0 in violation of (1). Therefore
C ′ 6=0. Equation (34) must have a global arrow for time,
whereupon g00(r0 =0, so

Δ(r0) = C(r0)− α
√
C(r0) + a

2 = a2 sin2 θ . (35)
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Solving (35) for
√
C(r0) gives,

β =
√
C(r0) = m±

√
m2 − a2 cos2 θ , (36)

having used α=2m. When a=0 (36) must reduce to the va-
lue for Schwarzschild’s [8] original solution, i. e.

√
C(r0)=

=α=2m, therefore the plus sign must be taken in (36).
Since the angular momentum increases the gravitational
mass, and since there can be no angular momentum without
mass, a2<m2. Thus, there exists no spacetime for a2>m2.
To reduce to (2) equation (36) becomes,

β =
√
C(r0) = m+

√
m2 − a2 cos2 , (37)

a2 < m2 .

Equation (34) must be asymptotically flat, so

r →∞⇒
C(r)

(
r − r0

)2 → 1 . (38)

Therefore,
lim
r→∞

C(r)
(
r − r0

)2 = 1 . (39)

Since C(r) behaves like
(
r − r0

)2
, must make (34)

singular only at r = r0 , and C ′(r)> 0 ∀ r > r0 , C(r) is
strictly monotonically increasing, so

C ′(r) > 0, r > r0 . (40)

Consequently, the conditions that C(r) must satisfy to
render a solution to (34) are:

1. C ′(r) > 0, r > r0;

2. lim
r→∞

C(r)
(
r − r0

)2 = 1;

3.
√
C(r0) = β = m+

√
m2 − a2 cos2 θ, a2 < m2.

I call the foregoing the Metric Conditions of Abrams
(MCA) for the rotating point-mass.

The only form admissible for C(r) in (34) that satisfies
MCA and is reducible to (2) is,

Cn(r) =
[(
r − r0

)n
+ βn

] 2
n

, (41)

β = m+
√
m2 − a2 cos2 θ , a2 < m2 ,

r0 ∈ (<− <
−) n ∈ <+ .

Associated with (31) are the so-called “horizons” and
“static limits” given respectively by,

rh = m±
√
m2−a2 , rb = m±

√
m2−a2 cos2 θ , (42)

where rh is obtained from (31) by setting its Δ=0, and
rb by setting its g00=0. Conventionally equations (42) are
rather arbitrarily restricted to,

rh = m+
√
m2−a2 , rb = m+

√
m2−a2 cos2 θ , (43)

a2 < m2 .

For (34), Δ≥ 0 and so there is no static limit, since
by (41),

Cn(r0)=β
2⇒ , (44)

⇒Δ(r0)=β
2 − αβ + a2 .

Solving (41) i .e .

√
Cn(r) =

[(
r−r0

)n
+βn

] 1
n

, (45)

gives the r-parameter location of a spacetime event,

r=
[
Cn(r)

1
2n − βn

] 1
n

+ r0 . (46)

When a=0, equation (46) reduces to r0 =α, as expected
for the non-rotating point-mass.

From (46) it is concluded that there exists no spacetime
drag effect for the rotating point-mass and no ergosphere.

The generalisation of equation (34) is then,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
C + a2

)
dϕ− adt

]2
−

−
ρ2

Δ

C ′2

4C
dr2 − ρ2dθ2 ,

(47)

Cn(r) =
[(
r − r0

)n
+βn

] 2
n

, n ∈ <+,

r0 ∈ (<−<
−) , β = m+

√
m2 − a2 cos2 θ , a2 < m2 ,

a =
L

m
, ρ2 = Cn + a

2 cos2 θ ,

Δ = Cn − α
√
Cn + a

2 ,

r0 < r <∞ .

Equation (47) is regular ∀ r > r0 , and g00=0 only when
r= r0 . There is no event horizon and therefore no Kerr black
hole.

By (47) the correct expression for the Kerr solution
(31) is,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
r2+a2

)
dϕ−adt

]2
−
ρ2

Δ
dr2−ρ2dθ2 ,

(48)
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Δ = r2 − rα+ a2, a =
L

m
, ρ2 = r2 + a2 cos2 θ ,

a2 < m2 , m+
√
m2 − a2 cos2 θ < r <∞ .

When a=0 in (48) the Droste/Weyl solution (33) is
recovered.

4 The vacuum field of the rotating point-charge

The Kerr-Newman solution is, in relativistic units,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
r2+a2

)
dϕ−adt

]2
−
ρ2

Δ
dr2−ρ2dθ2 ,

(49)

a =
L

m
, ρ2 = r2+a2 cos2 θ , Δ = r2−rα+a2+q2,

0 < r <∞ .

By applying the analytic technique of section 3, the
general solution for the rotating point-charge is found to be,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
Cn + a

2
)
dϕ− adt

]2
−
ρ2

Δ

C ′n
2

4Cn
dr2 − ρ2dθ2 ,

Cn(r) =
[(
r − r0

)n
+ βn

] 2
n

, n ∈ <+ ,

r0 ∈ (<− <
−), β = m+

√
m2 − (q2 + a2 cos2 θ) ,

a2 + q2 < m2, a =
L

m
, ρ2 = Cn + a

2 cos2 θ ,

Δ = Cn − α
√
Cn + q

2 + a2 ,

r0 < r <∞ .

(50)

Equations (50) give the overall general solution to Ein-
stein’s vacuum field when Λ=0. The associated Metric
Conditions of Abrams (MCA) for the rotating point-
charge are,

1. C ′n(r) > 0, r > r0;

2. lim
r→∞

Cn(r)(
r − r0

)2 = 1;

3.
√
Cn(r0)=β=m+

√
m2− (q2+a2 cos2 θ),

a2+q2<m2.

From (50) it is concluded that there exists no spacetime
drag effect for the rotating point-charge, and no ergosphere.

Equation (50) is regular ∀ r > r0 , and g00=0 only when
r= r0; rh≡r0 . When a=0 in (50) the general solution for
the point-charge (15) is recovered. If both a=0 and q=0
in (50) the general solution (2) for the simple Schwarzschild
point-mass is recovered. There is no event horizon and there-
fore no Kerr-Newman black hole.

By (50) the correct expression for the Kerr-Newman
solution (49) is,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
r2+ a2

)
dϕ− adt

]2
−
ρ2

Δ
dr2− ρ2dθ2 ,

a=
L

m
, ρ2=r2+a2 cos2 θ, Δ=r2−rα+a2+q2,

q2+a2<m2, m+
√
m2− (q2+a2 cos2 θ)<r<∞ .

(51)

If a=0 in (51) the correct expression for the Reissner-
Nordstrom solution (16) is recovered. If q=0 in (51) the
correct expression for the Kerr solution (48) is recovered.
If both a=0 and q=0 in (51) the correct expression for
Hilbert’s (i. e. the Droste/Weyl) solution (33) is recovered.

5 The Einstein-Rosen Bridge

The Einstein-Rosen Bridge [9] is obtained by substituting
into the Droste/Weyl solution (33) the transformation,

u2 + α = r , (52)

which carries (33) into,

ds2 =

[
u2

(u2 + α)

]

dt2−

− 4
(
u2+α

)
du2−

(
u2+α

)2 (
dθ2+sin2 θdϕ2

)
,

(53)

−∞ < u <∞ .

Metric (53) is singular nowhere, and as u runs −∞ to
0 and 0 to +∞, r runs +∞ to α then α to +∞, thereby
allegedly removing the singularity at r=α. However, (53)
is inadmissible by (2): (52) is not a valid form for Cn(r)
for the simple point-mass. This manifests in a violation of
MCA. Indeed,

lim
u→∞

C(u)

u2
= lim

u→∞

(
u2 + α

)2

u2
→∞ , (54)

so the far field is not flat. The Einstein-Rosen Bridge is
therefore invalid.

6 Interacting black holes and the Michell-Laplace dark
body

It is quite commonplace for black holes to be posited as
members of binary systems, either as a hole and a star,
or as two holes. Even colliding black holes are frequently
alleged (see e. g. [10]). Such ideas are inadmissible, even
if the existence of black holes were allowed. All solutions
to the Einstein field equations involve a single gravitating
body and a test particle. No solutions are known that address
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two bodies of comparable mass. It is not even known if
solutions to such configurations exist. One simply cannot talk
of black hole binaries or colliding black holes unless it can
be shown, as pointed out by McVittie [11], that Einstein’s
field equations admit of solutions for such configurations.
Without such an existence theorem these ideas are without
any theoretical basis. McVittie’s existence theorem however,
does not exist, because the black hole does not exist in the
formalism of General Relativity. It is also commonly claimed
that the Michell-Laplace dark body is a kind of black hole
or an anticipation of the black hole [10, 12]. This claim
is utterly false as there always exists a class of observers
who can see a Michell-Laplace dark body [11]: ipso facto,
it is not a black hole. Consequently, there is no theoretical
basis whatsoever for the existence of black holes. If such an
object is ever detected then both Newton and Einstein would
be invalidated.

Dedication

I dedicate this paper to the memory of Dr. Leonard S.
Abrams: (27 Nov. 1924 — 28 Dec. 2001).
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As shown in our previous experiments fine structure of histograms of α-activity
measurements serve as a sensitive tool for investigation of cosmo-physical influences.
Particularly, the histograms structure is changed with the period equal to sidereal (1436
min) and solar (1440) day. It is similar with the high probability in different geographic
points at the same local (longitude) time. More recently investigations were carried out
with collimators, cutting out separate flows of total α-particles flying out at radioactive
decay of 239Pu. These experiments revealed sharp dependence the histogram structure
on the direction of α-particles flow.
In the presented work measurements were made with collimators rotating in the plane
of sky equator. It was shown that during rotation the shape of histograms changes
with periods determined by number of revolution. These results correspond to the
assumption that the histogram shapes are determined by a picture of the celestial
sphere, and also by interposition of the Earth, the Sun and the Moon.

1 Introduction

It has been earlier shown, that the fine structure of statistical
distributions of measurement results of processes of various
nature depends on cosmo-physical factors. The shape of
corresponding histograms changes with the period equal to
sidereal and solar day, i. e. 1436 and 1440 minutes [1, 2, 3, 4].

These periods disappeared at measurements of alpha-
activity of 239Pu samples near the North Pole [5]. These
results corresponded to the assumption of association of the
histogram shapes with a picture of the celestial sphere, and
also with interposition of the Earth, the Sun and the Moon.

However, at measurements at latitude 54◦ N (in Pushchi-
no), absence of the daily period [9] also was revealed when
using collimators restricting a flow of the alpha particles of
radioactive decay at the direction to the north celestial pole.
This result meant, that the question is not about dependence
on a picture of the celestial sphere above a place of measure-
ments, but about a direction of alpha particles flow.

In experiments with two collimators, directed one to the
East and another to the West, it was revealed, that histograms
of the similar shape at measurements with west collimator
appear at 718 minutes (half of sidereal day) later then ones
registered with East collimator [9]. Therefore, as acquired,
the space surrounding the Earth is highly anisotropic, and this
anisotropy is connected basically to a picture of the celestial
sphere (sphere of distant stars).

This suggestion has been confirmed in experiments with

collimators, rotated counter-clockwise, west to east (i. e. in
a direction of rotation of the Earth), as well as clockwise
(east to west). The description of these experiments is given
further.

2 Methods

As well as earlier, the basic object of these of research was
a set of histograms constructed by results of measurements
of alpha-activity of samples 239Pu.

Experimental methods, the devices for alpha-radioactivity
measurements of 239Pu samples with collimators, and also
construction of histograms and analysis of its shapes, are
described in details in the earlier publications [2, 3, 8].
Measurements of number of events of radioactive decay were
completed by device designed by one of the authors (I. A. R.).
In this device the semi-conductor detector (photo diode)
is placed after collimator, restricting a flow of the alpha
particles in a certain direction. Results of measurements,
consecutive numbers of events of the decay registered by
the detector in 1-second intervals, are stored in computer
archive.

Depending on specific targets, a time sequence of 1-
second measurements was summarized to consecutive values
of activity for 6, 15 or 60 seconds. Obtained time series
were separated into consecutive pieces of 60 numbers in
each. A histogram was built for each piece of 60 numbers.
Histograms were smoothed using the method of moving
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averages for the greater convenience of a visual estimation
of similarity of their shapes (more details see in [8, 9]).
Comparison of histograms was performed using auxiliary
computer program by Edwin Pozharski [8].

A mechanical device designed by one of the authors
(V. A. Sh.) was used in experiments with rotation of collima-
tors. In this device the measuring piece of equipment with
collimator was attached to the platform rotated in a plane of
Celestial Equator.

3 Results

Three revolutions of collimator counter-clockwise in a day.
The diurnal period of increase in frequency of histograms

with similar shape means dependence of an observable pic-
ture on rotation of the Earth.

The period of approximately 24 hours or with higher
resolution 1436 minutes is also observed at measurements
using collimators restricting a flow of alpha particles in
a certain direction [9, 10]. Therefore, the fine structure of
distribution of results of measurements depends on what site
of celestial sphere the flow of alpha particles is directed to.
Studies of shapes of histograms constructed by results of
measurements using rotated collimators testify to the benefit
of this assumption.

The number of the “diurnal” cycles at clockwise rotation
should be one less then numbers of collimator revolutions
because of compensation of the Earth rotation.

At May 28 through June 10, 2004, we have performed
measurements of alpha-activity of a sample 239Pu at 3 col-
limator revolutions a day, and also, for the control, simul-
taneous measurements with motionless collimator, directed
to the West. Results of these measurements are presented
on Fig. 1– 4. At these figures a dependence of frequency
histograms of the same shape on size of time interval between
similar histograms is shown.

Fig.1 shows results of comparison of 60-minute histo-
grams, constructed at measurements with motionless colli-
mator. A typical dependence repeatedly obtained in earlier
studies is visible at the Fig. 1: histograms of the same shape
most likely appear at the nearest intervals of time (“effect of
a near zone”) and in one day (24 hours).

Fig. 2 presents the result of comparison of 60-minute
histograms constructed at measurements with collimator ro-
tated 3 times a day counter-clockwise in a plane of celestial
equator.

As you can see at the Fig. 2, at three revolutions of
collimator counter-clockwise, the frequency of similar histo-
grams fluctuates with the period of 6 hours: peaks correspond
to the intervals of 6, 12, 18 and 24 hours.

24-hour period at a higher resolution consists of two
components. It is visible by comparison of one-minute his-
tograms shown at Fig. 3 for measurements with motionless
collimator and at Fig. 4 for measurements at 3 collimator
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Fig. 1: Frequency of similar 60-minute histograms against the time
interval between histograms. Measurements of alpha-activity of a
239Pu sample by detector with motionless collimator directed to the
West, June 8 –30, 2004.
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Fig. 2: Frequency of similar 60-minute histograms against the time
interval between histograms. Measurements of alphaactivity of a
239Pu sample by detector with collimator, making three revolutions
counter-clockwise (west to east) in a day.

revolutions counter-clockwise. At measurements with mo-
tionless collimator (Fig. 3) there are two peaks — one cor-
responds to sidereal day (1436 minutes), the second, which
is less expressed, corresponds to solar day (1440 minutes).

You can see at Fig. 4 that 6-hour period at measurements
with three revolutions of collimator also has two components.
The first 6-hour maximum has two joint peaks of 359 and
360 minutes. The second 12-hour maximum has two peaks
of 718 and 720 minutes. The third maximum (18 hours) has
two peaks of 1077 and 1080 minutes. And the fourth one (24
hours) has two peaks of 1436 and 1440 minutes.

Results of these experiments confirm a conclusion ac-
cording to which a change in histogram shape is caused
by change in direction of alpha particles flow in relation
to distant stars and the Sun (and other space objects). This
conclusion is supported also by results of experiments with
rotation of collimator clockwise.

In these experiments collimator made one revolution a
day clockwise, east to west, i. e. against daily rotation of the
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Earth. As a result, the flow of alpha particles all the time was
directed to the same point of celestial sphere. We expected
in this case disappearance the diurnal period of frequency of
similar histograms. This expectation was proved to be true.
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Fig. 3: 24-hour period of frequency of similar histograms with the
one-minute resolution. Measurements of May 29 — June 1, 2004
by detector with motionless collimator directed to the West.
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Fig. 4: Experiments with rotated collimators. Frequency of similar
1-minute histograms by time interval between them. Three revo-
lutions a day counter-clockwise. Two components of the 6-hour
period: sidereal and solar.

Time intervals, hours

6 12 18 24

24
1

1

6 12 18 24

24

0

20

40

60

80

100

120

140

Fig. 5: 60-minutes histograms. Left: 1 revolution clockwise. Right:
control, motionless collimator.
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Fig. 6: One-minute histograms. Left: control, motionless collimator.
Right: rotation 1 revolution clockwise (east to west).

On Fig. 5 and 6 one can see that in such experiments
frequency of appearance of similar 60 minute and 1-minute
histograms does not depend on time. At the same time at
synchronous measurements with motionless collimator the
usual dependence with the diurnal period and near zone effect
is observed.

4 Discussion

Results of measurements with rotated collimator confirm a
conclusion about dependence of fine structure of statistical
distributions on a direction in space. This fine structure
is defined by a spectrum of amplitudes of fluctuations of
measured values. Presence of “peaks” and “hollows” at cor-
responding histograms suggests presence of the primary,
allocated, “forbidden” and “permissible” values of ampli-
tudes of fluctuations in each given moment [4]. Thus, a fine
structure of statistical distributions presents a spectrum of the
permissible amplitudes of fluctuations, and dependence of it
on a direction in space shows sharp anisotropy of space.

It is necessary to emphasize, that the question is not
about influence on the subject of measurement (in this case
on radioactive decay). With accuracy of traditional statistical
criteria, overall characteristics of distribution of radioactive
decay measurements compliant with Poisson distribution [3].
Only the shape of histogram constructed for small sample
size varies regularly. This regularity emerges in precise si-
dereal and solar periods of increase of frequency of similar
histograms.

As shown above, the shape of histograms constructed by
results of measurements of alpha-activity of samples 239Pu,
varies with the period determined by number of revolutions in
relation to celestial sphere and the Sun. In experiments with
collimator, which made three revolutions counter-clockwise,
the “diurnal” period was equal to 6 hours (three revolutions
of collimator and one revolution of the Earth was observed
— in total 4 revolutions in relation to celestial sphere and the
Sun give the period equal 24/4 = 6 hours).

The result obtained in experiments with one revolution of
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collimator clockwise is not less important. The Earth rotation
is compensated and a flow of alpha particles is directed
all the time to the same point of celestial sphere. In these
experiments the diurnal period was not observed at all.

The obtained results, though very clear ones, cause nat-
ural bewilderment.

Really, it is completely not obvious, by virtue of what
reasons the spectrum of amplitudes of fluctuations of number
of alpha particles, may depend on a direction of their flow
in relation to celestial sphere and the Sun. The explanation
of these phenomena probably demands essential change in
general physical conceptions.

In such situation a dominant problem is to validate a
reliability of the discussed phenomena. In aggregate of per-
formed studies, we believe this task was completed .
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In this short paper, as an extension and consequence of Einstein-Podolski-Rosen
paradox and Bell’s inequality, one promotes the hypothesis (it has been called the
Smarandache Hypothesis [1, 2, 3]) that: There is no speed barrier in the Universe
and one can construct arbitrary speeds, and also one asks if it is possible to have an
infinite speed (instantaneous transmission)? Future research: to study the composition
of faster-than-light velocities and what happens with the laws of physics at faster-than-
light velocities?

This is the new version of an early article. That early version,
based on a 1972 paper [4], was presented at the Universidad
de Blumenau, Brazil, May–June 1993, in the Conference
on “Paradoxism in Literature and Science”; and at the Uni-
versity of Kishinev, in December 1994. See that early ver-
sion in [5].

1 Introduction

What is new in science (physics)?
According to researchers from the common group of the

University of Innsbruck in Austria and US National Institute
of Standards and Technology (starting from December 1997,
Rainer Blatt, David Wineland et al.):

• Photon is a bit of light, the quantum of electromagnetic
radiation (quantum is the smallest amount of energy
that a system can gain or lose);

• Polarization refers to the direction and characteristics
of the light wave vibration;

• If one uses the entanglement phenomenon, in order to
transfer the polarization between two photons, then:
whatever happens to one is the opposite of what hap-
pens to the other; hence, their polarizations are oppos-
ite of each other;

• In quantum mechanics, objects such as subatomic par-
ticles do not have specific, fixed characteristic at any
given instant in time until they are measured;

• Suppose a certain physical process produces a pair
of entangled particles A and B (having opposite or
complementary characteristics), which fly off into spa-
ce in the opposite direction and, when they are billions
of miles apart, one measures particle A; because B is
the opposite, the act of measuring A instantaneously
tells B what to be; therefore those instructions would
somehow have to travel between A and B faster than
the speed of light; hence, one can extend the Einstein-
Podolsky-Rosen paradox and Bell’s inequality and as-

sert that the light speed is not a speed barrier in the
Universe.

Such results were also obtained by: Nicolas Gisin at
the University of Geneva, Switzerland, who successfully
teleported quantum bits, or qubits, between two labs over
2 km of coiled cable. But the actual distance between the
two labs was about 55 m; researchers from the University of
Vienna and the Austrian Academy of Science (Rupert Ursin
et al. have carried out successful teleportation with particles
of light over a distance of 600 m across the River Danube in
Austria); researchers from Australia National University and
many others [6, 7, 8].

2 Scientific hypothesis

We even promote the hypothesis that:

There is no speed barrier in the Universe, which would
theoretically be proved by increasing, in the previous
example, the distance between particles A and B as
much as the Universe allows it, and then measuring
particle A.

It has been called the Smarandache Hypotesis [1, 2, 3].

3 An open question now

If the space is infinite, is the maximum speed infinite?
“This Smarandache hypothesis is controversially inter-

preted by scientists. Some say that it violates the theory of
relativity and the principle of causality, others support the
ideas that this hypothesis works for particles with no mass
or imaginary mass, in non-locality, through tunneling effect,
or in other (extra-) dimension(s).” Kamla John, [9].

Scott Owens’ answer [10] to Hans Gunter in an e-mail
from January 22, 2001 (the last one forwarded it to the
author): “It appears that the only things the Smarandache
hypothesis can be applied to are entities that do not have real
mass or energy or information. The best example I can come
up with is the difference between the wavefront velocity of
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a photon and the phase velocity. It is common for the phase
velocity to exceed the wavefront velocity c, but that does
not mean that any real energy is traveling faster than c. So,
while it is possible to construct arbitrary speeds from zero
in infinite, the superluminal speeds can only apply to purely
imaginary entities or components.”

Would be possible to accelerate a photon (or another
particle traveling at, say, 0.99c and thus to get speed greater
than c (where c is the speed of light)?

4 Future possible research

It would be interesting to study the composition of two
velocities v and u in the cases when:

v < c and u = c;

v = c and u = c;

v > c and u = c;

v > c and u > c;

v < c and u =∞;

v = c and u =∞;

v > c and u =∞;

v =∞ and u =∞.

What happens with the laws of physics in each of these
cases?
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