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The Kruskal-Szekeres “Extension”: Counter-Examples

Stephen J. Crothers

Queensland, Australia
thenarmis@gmail.com

The Kruskal-Szekeres “coordinates” are said to “extend” the so-called “Schwarzschild
solution”, to remove an alleged “coordinate singularity” at the event horizon of a black
hole at r = 2m, leaving an infinitely dense point-mass singularity at “the origin” r = 0.
However, the assumption that the point at the centre of spherical symmetry of the
“Schwarzschild solution” is at “the origin” r = 0 is erroneous, and so the Kruskal-
Szekeres “extension” is invalid; demonstrated herein by simple counter-examples.

1 Introduction

According to the astrophysical scientists the solution for Ein-
stein’s static vacuum gravitational field must satisfy the fol-
lowing conditions [1–11]:

(a) It must be static; i.e. all the components of the metric
tensor must be independent of time and the geometry
must be unchanged under time reversal;

(b) It must be spherically symmetric;
(c) It must satisfy the equations Rµν = 0; no matter present;
(d) It must be asymptotically Minkowski spacetime.

The so-called “Schwarzschild solution” (which is not in
fact Schwarzschild’s solution at all) is (using c = 1 and G = 1),

ds2 =

(
1 − 2m

r

)
dt2 −

(
1 − 2m

r

)−1

dr2−

− r2
(
dθ2 + sin2 θ dϕ2

)
.

(1)

The astrophysical scientists merely inspect this line-
element and thereby assert that there are singularities at
r = 2m and at r = 0 [3, 4, 7, 9]; the former they claim to be
a “coordinate” or “removable” singularity which denotes the
“radius” of an event horizon of a black hole of mass m lo-
cated at the “real” or “physical” singularity at r = 0. They call
r = 2m the “Schwarzschild radius” and r = 0 “the origin”.

It is plainly evident that metric (1) changes its signa-
ture from (+,−,−,−) to (−,+,−,−) when 0< r< 2m, despite
the fact that metric (1) is supposed to be a generalisation of
Minkowski spacetime, described by (using c = 1),

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θ dϕ2

)
(2)

0 6 r < ∞,
which has fixed signature (+,−,−,−); and so there is in fact
no possibility for Minkowski spacetime to change signature
from (+,−,−,−) to (−,+,−,−) [5]. Consequently, 06 r< 2m
on Eq. (1) has no counterpart in Minkowski spacetime.
Nonetheless, although the astrophysical scientists
deliberately fix the signature to (+,−,−,−) at the very

outset of their derivation of Eq. (1) [1–9, 11, 12], in or-
der to maintain the signature of Minkowski spacetime,
they nonetheless allow a change of signature to occur
in Eq. (1) to (−,+,−,−) [3, 4, 7, 9, 10, 13, 14] accord-
ing to their assumption that 06 r<∞ applies to Eq. (1);
in direct violation of their initial construction. They
then invoke a complicated “change of coordinates” to
make the singularity at r = 2m disappear; the Kruskal-
Szekeres coordinates [3, 4, 9, 13, 14]. The astrophysical sci-
entists merely assume that the point at the centre of spherical
symmetry of the manifold described by Eq. (1) is located
at “the origin”, r = 0. To justify their assumptions on the
variable r, which they evidently conceive of as radial distance
in “Schwarzschild” spacetime (e.g. “Schwarzschild radius”),
they also claim that because the Riemann tensor scalar
curvature invariant (the “Kretschmann scalar”), given by
f = RαβγδR

αβγδ, is finite at r = 2m and unbounded at r = 0,
there must be a “real” singularity only at r = 0. This argu-
ment they apply post hoc, without any proof that General
Relativity requires such a condition on the Kretschmann
scalar.

The assumption that “the origin” r = 0 marks the point
at the centre of spherical symmetry of the manifold described
by (1) is demonstrably false. Furthermore, a geometry is fully
determined by its line-element [5,15], not by arbitrary values
assigned to any curvature invariant which is calculated from
the line-element itself in the first place. Given a line-element
of the form of Eq. (1) the admissible values of its associated
curvature invariants and the location of its centre of spherical
symmetry are fully fixed by it, and so they cannot be arbitrar-
ily determined by simple inspection and ad hoc assumptions.

To illustrate the inadmissibility of the methods applied by
the astrophysical scientists in their analysis of Eq. (1), I shall
adduce counter-examples that satisfy all the required condi-
tions (a)–(d) and their additional assumptions concerning r
and the Kretschmann scalar, but nevertheless clearly contra-
dict the claims made by the astrophysical scientists in relation
to Eq. (1). By these counter-examples I will demonstrate, by
application of the very same methods the astrophysical scien-
tists apply to Eq. (1), that there are “spacetimes” in which the
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singularity of a “black hole” is encountered before the event
horizon, and that this event horizon can be “removed” by ap-
plication of the Kruskal-Szekeres method. I will also give an
example that not only inverts the locations of the event hori-
zon and the singularity, relative to Eq. (1), but also locates
them both at places other than the “origin” r = 0 at which the
metric is well-defined. It is in fact rather easy to generate
an infinite number of such counter-examples (but just one is
sufficient to invalidate the Kruskal-Szekeres “extension”).

These counter-examples amplify the fact that the usual
assumption on Eq. (1) that “the origin” r = 0, simply by in-
spection, marks the point at the centre of spherical symme-
try of the manifold it describes, is entirely false, and that the
additional assumption that the Kretschmann scalar must be
unbounded at a “real” or “physical” singularity is also false.
This should not really be all that surprising, bearing in mind
that the usual assumptions are just that, for which no proofs
have ever been produced. It follows that there is no black
hole associated with Eq. (1), and that the Kruskal-Szekeres
“extension” is fallacious.

It is easily proven that r in Eq. (1) is the inverse square
root of the Gaussian curvature of the spherically symmetric
geodesic surface in the spatial section [16, 17, 19]. Being di-
rectly related to a curvature invariant, its values are fixed by
the intrinsic geometry, fixed by the form of the line-element
itself, as are all other related curvature invariants.

It must also be remarked that the transition from
Minkowski spacetime to Schwarzschild spacetime involves
no matter whatsoever. Therefore Schwarzschild spacetime is
not in fact a generalisation of the laws of Special Relativity;
only a generalisation of the geometry of Minkowski space-
time. The speed of light in vacuum, c, which appears in the
Minkowski line-element is not a photon; it is a speed, the
maximum speed with which a point is permitted to move in
Minkowski spacetime. Similarly, the appearance of the con-
stant c in Schwarzschild spacetime does not imply the pres-
ence of a photon there either. A photon must be present a pri-
ori to assign the speed c to the photon. Neither photons nor
masses are present, by construction, in the generalisation of
Minkowski spacetime to Schwarzschild spacetime, owing to
the equations Rµν = 0 according to condition (c). Minkowski
spacetime is not Special Relativity — the latter requires the a
priori presence of matter, the former does not. Schwarzschild
spacetime is a spacetime that by construction contains no
matter, and hence no sources.

2 Counter-examples

Consider the metric

ds2 =

(
1 − 2m

2m − r

)
dt2 −

(
1 − 2m

2m − r

)−1

dr2−

− (r − 2m)2
(
dθ2 + sin2 θ dϕ2

)
.

(3)

First, it is clear that Eq. (3) satisfies all the conditions (a)–

(d), and so metric (3) is as good as metric (1). I now apply to
Eq. (3) the very same methods that the astrophysical scientists
apply to Eq. (1) and so assume that 06 r<∞ on Eq. (3), and
that “the origin” r = 0 marks the point at the centre of spher-
ical symmetry of the manifold. By inspection there are two
“singularities”; at r = 2m and at r = 0, just as in the case of
Eq. (1). When r> 2m the signature of (3) is (+,−,−,−), just
as in Eq. (1). When 0< r< 2m the signature is (−,+,−,−),
again just as in Eq. (1). Now when r = 2m, the coefficient of
dt2 in Eq. (1) is zero, but in Eq. (3) it is undefined. Similarly,
when r = 0, the coefficient of dt2 in Eq. (1) is undefined but in
Eq. (3) it is zero. Furthermore, when r = 2m, the Kretschmann
scalar is f = 3/4m4 in Eq. (1) but is undefined in Eq. (3), and
when r = 0, the Kretschmann scalar is f = 3/4m4 in Eq. (3)
but is undefined in Eq. (1). Therefore, according to the meth-
ods of the astrophysical scientists there is an infinitely dense
point-mass singularity at r = 2m and an event horizon at r = 0
in Eq. (3) (or alternatively a singularity of finite density and
radius r = 2m so that the event horizon is within the singu-
larity). Thus the singularity is encountered before the event
horizon, and the “Schwarzschild radius” of the black hole in
Eq. (3) is r = 0. Again, following the very same methods
that the astrophysical scientists apply to Eq. (1), apply the
Kruskal-Szekeres method to remove the “coordinate singu-
larity” at r = 0 in Eq. (3) by setting

u =

(
1 − 2m − r

2m

) 1
2

e
2m−r

4m sinh
t

4m
,

v =

(
1 − 2m − r

2m

) 1
2

e
2m−r

4m cosh
t

4m
.

Then metric (3) becomes,

ds2 =
32m3

r − 2m
e

r−2m
2m

(
du2 − dv2

)
+

+ (r − 2m)2
(
dθ2 + sin2 θ dϕ2

)
,

(4)

where r is a function of u and v, by means of
( r
2m

)
e

2m−r
2m = v2 − u2.

It is now apparent that Eq. (4) is not singular at r = 0. The
singularity at the event horizon with its “Schwarzschild ra-
dius” r = 0 has been removed. The metric is singular only at
r = 2m where according to the astrophysical scientists there
must be an infinitely dense point-mass singularity (or alterna-
tively a singularity of finite density and radius r = 2m so that
the event horizon is within the singularity).

In obtaining Eq. (4) I have done nothing more than that
which the astrophysical scientists do to Eq. (1), and since (1)
and (3) satisfy conditions (a)–(d), the one is as good as the
other, and so Eq. (3) is as valid as Eq. (1) insofar as the meth-
ods of the astrophysical scientists apply. Thus, the methods
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employed by the astrophysical scientists are flawed. To am-
plify this even further, consider the metric,

ds2 =

(
1 − 2m

4m − r

)
dt2 −

(
1 − 2m

4m − r

)−1

dr2−

−(r − 4m)2
(
dθ2 + sin2 θ dϕ2

)
.

(5)

It is clear that this metric also satisfies conditions (a)–(d),
and so Eq. (5) is as good as eqs. (1) and (3). Once again, ap-
plying the very same methods of the astrophysical scientists,
assume that 06 r<∞ and that r = 0 is the “origin”. Then by
inspection there are singularities at r = 4m and at r = 2m. For
r> 4m the signature of (5) is (+,−,−,−); for 2m< r< 4m it is
(−,+,−,−) and for 06 r< 2m it is (+,−,−,−). Now at r = 4m
the coefficient of dt2 is unbounded and at r = 2m it is zero.
But at r = 0 it is neither zero nor unbounded — the metric is
well-defined there. Furthermore, at r = 4m the Kretschmann
scalar is unbounded and at r = 2m it is f = 3/4m4, but at r = 0
it is f = 3/256m4. Thus, according to the methods of the as-
trophysical scientists there is an event horizon at r = 2m with
“Schwarzschild radius” r = 2m, and an infinitely dense point-
mass singularity at r = 4m (or alternatively a singularity of
finite density and radius r = 4m so that the event horizon is
within the singularity). So the singularity is encountered be-
fore the event horizon. The “coordinate” event horizon sin-
gularity at “Schwarzschild radius” r = 2m can be removed by
again applying the Kruskal-Szekeres method, by setting

u =

(
4m − r

2m
− 1

) 1
2

e
4m−r

4m cosh
t

4m

v =

(
4m − r

2m
− 1

) 1
2

e
4m−r

4m sinh
t

4m

for r< 2m, and

u =

(
1 − 4m − r

2m

) 1
2

e
4m−r

4m sinh
t

4m

v =

(
1 − 4m − r

2m

) 1
2

e
4m−r

4m cosh
t

4m

for r> 2m.
Metric (5) then becomes

ds2 =
32m3

r − 4m
e

r−4m
2m

(
du2 − dv2

)
+

(r − 4m)2
(
dθ2 + sin2 θ dϕ2

)
,

(6)

where r is a function of u and v, by means of
(

2m − r
2m

)
e

4m−r
2m = u2 − v2.

It is apparent that Eq. (6) is singular only at r = 4m, where,
according to the astrophysical scientists, there is an infinitely

dense point-mass singularity (or alternatively a singularity
of finite density and radius r = 4m so that the event hori-
zon is within the singularity). At the event horizon with
“Schwarzschild radius” r = 2m, the metric is not singular. At
the “origin”, r = 0 the metric is well-defined, and since Eq.’s
(1), (3) and (5) satisfy conditions (a)–(d), any one is as good
as any other, and so Eq. (5) is as valid as Eq. (1) insofar as
the methods of the astrophysical scientists apply. Since met-
rics (1), (3) and (5) all satisfy conditions (a)-(d) there is no a
priori reason to favour one over the other. Moreover, all the
faults associated with metrics (3) and (5) are shared by metric
(1), insofar as the methods of the astrophysical scientists are
concerned, despite them all satisfying the required conditions
(a)–(d). Those faults lie in the assumptions of the astrophys-
ical scientists, as applied to all the Schwarzschild spacetime
metrics above.

It is of utmost importance to note that Eq. (1) is not in
fact Schwarzschild’s solution. Here is Schwarzschild’s actual
solution.

ds2 =

(
1 − α

R

)
dt2 −

(
1 − α

R

)−1
dR2 − R2

(
dθ2 + sin2 θ dϕ2

)
,

R =
(
r3 + α3

) 1
3 , 0 < r < ∞, α = const.

Here r is not a distance of any kind in the manifold; and it
is not the inverse square root of the Gaussian curvature of the
spherically symmetric geodesic surface in the spatial section
of Schwarzschild’s solution — it is a parameter (and so it is
also in Eq. (1)). Schwarzschild’s solution contains only one
singularity, when r = 0, and so it precludes the black hole.
The so-called “Schwarzschild solution” is a corruption, due
to David Hilbert [22, 23], of Schwarzschild’s solution, and
the solution obtained independently by Johannes Droste [24].

The correct generalised treatment of Schwarzschild ge-
ometry is given in [16–21].

3 The usual derivation of the “Schwarzschild solution”

The astrophysical scientists begin with Eq. (2) and propose a
generalisation of the form (or equivalent thereof),

ds2 = e2λdt2 − e2βdr2 − r2
(
dθ2 + sin2 θ dϕ2

)
, (7)

the exponential functions being introduced to maintain the
signature of Minkowski spacetime, (+,−,−,−), thereby en-
suring that the coordinates r, θ, ϕ remain space-like quantities
and t remains a time-like quantity [1–9, 11, 12]. Both λ and
β are real-valued analytic functions of only the real variable
r. Eq. (1) is then obtained in accordance with conditions
(a)–(d). Despite the fixed signature of Eq. (7), the astrophys-
ical scientists permit a change of signature in their resultant
Eq. (1), in violation of their construction of Eq. (7), by which
they produce a black hole by the Kruskal-Szekeres method.
Note that the change of signature in Eq. (1) to (−,+,−,−),
in violation of the construction of Eq. (7), causes the rôles
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of the quantities t and r to be exchanged, i.e. t becomes a
space-like quantity and r becomes a time-like quantity. This
means that all the components of the metric tensor of Eq. (1)
become functions of the time-like quantity r: but this is then
a non-static metric, in violation of condition (a).

There is no matter present in the derivation of Eq. (1)
from Eq. (7), since all matter, including sources, is eliminated
by construction, according to condition (c), i.e. Rµν = 0, and
since there is no matter present in Eq. (2) either. It is however
claimed by the astrophysical scientists that matter is nonethe-
less present as a source of the alleged gravitational field “out-
side a body”, and that the field caused by this source, perme-
ating the spacetime “outside” it, in the spacetime of Rµν = 0,
is Schwarzschild spacetime, obtained from Eq. (7). The con-
stant appearing in the line-element for the “Schwarzschild so-
lution” the astrophysical scientists arbitrarily assign as mass,
post hoc, by simply inserting Newton’s expression for escape
velocity: a two-body relation into an alleged one-body prob-
lem (their “outside a body”). But it is obviously impossi-
ble for Schwarzschild spacetime, which is alleged by the as-
trophysical scientists by construction to contain one mass in
an otherwise totally empty Universe, to reduce to or other-
wise contain a relation that is defined in terms of the a priori
interaction of two masses. Their invalid resort to Newtonian
theory is amplified by writing Eq. (1) in terms of c and G
explicitly,

ds2 =

(
c2 − 2Gm

r

)
dt2 − c2

(
c2 − 2Gm

r

)−1

dr2−

− r2
(
dθ2 + sin2 θdϕ2

)
.

The term 2Gm/r is now immediately recognised as the
square of the Newtonian escape velocity from a mass m at
radius r. And so the astrophysical scientists assert that for a
black hole the “escape velocity” is that of light in vacuum at
an event horizon (“Schwarzschild radius”) rs = 2Gm/c2. But
escape velocity is a concept that involves two bodies - one
body escapes from another body. Even though one mass ap-
pears in the expression for Newton’s escape velocity, it can-
not be determined without recourse to a fundamental two-
body gravitational interaction by means of Newton’s theory
of gravitation. The post hoc introduction of mass into the
“Schwarzschild solution” is thus, inadmissible. Furthermore,
the quantity r appearing in Newton’s expression for escape
velocity is a radial distance, but it is not radial distance in
Schwarzschild spacetime because it is not even a distance in
Schwarzschild spacetime.

4 Conclusions

The foregoing counter-examples show that the methods used
by the astrophysical scientists in analysing Eq. (1), by which
they construct the black hole, are invalid. Instead of using the
line-element to determine all the intrinsic geometric proper-
ties of the manifold, as they should, they instead make false

assumptions, by mere inspection, as to the “origin”, the geo-
metric identity of the quantity r, the values of the Riemann
tensor scalar curvature invariant (the Kretschmann scalar),
and the presence of matter. The fact is that the quantity
r appearing in all the line-elements discussed herein is not
even a distance, let alone a radial one, in any of the line-
elements. Moreover, in Eq. (1), r = 0 certainly does not mark
the “origin” or point at the centre of spherical symmetry of the
“Schwarzschild” solution, contrary to the arbitrary assertions
of the astrophysical scientists. The identity of the point at
the centre of spherical symmetry is also determined from
the line-element, by calculation. The astrophysical scientists
have never correctly identified the geometric identity of r in
Eq. (1). Without knowing the true identity of r, and by mak-
ing their concomitant additional false assumptions, they have
violated the intrinsic geometry of the line-element. It is from
these violations that the black hole has been constructed by
the astrophysical scientists. There is in truth no solution to
Einstein’s field equations that predicts the black hole.

Minkowski spacetime is not Special Relativity: there is no
matter involved in the transition from Minkowski spacetime
to Schwarzschild spacetime, and so Schwarzschild spacetime
does not generalise the laws of Special Relativity, and so does
not describe Einstein’s gravitational field.
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Is Fundamental Particle Mass 4π Quantized?
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The Standard Model lacks an explanation for the specific mass values of the fundamen-
tal particles. This is to report that a single spin quantized mass formula can produce the
masses of the proton, the W, and the three electron generations. The 4π mass quanti-
zation pattern limits the electron generations to three, while the particle’s generational
property is one of the components of the proposed intra-particle quantization process.
Although the developed relationships are presently phenomenological, so was Bohr’s
atomic quantization proposal that lead to quantum mechanics.

1 Introduction

In an attempt to understand the reason for particle mass
values, several authors have looked for mass relationships
among the known particles.

Nambu [1] suggested that quark composite particle mass
may be quantized, showing a 70 MeV quantization pattern.

Palazzi [2] (2007) revisits this hypothesis for mesons
showing that this quantization pattern is statistically real.

Ne’eman and Sijacki [3] use the SL(4,R) group and spin
(1/2,3/2,5/2, etc.) to produce the Regge trajectory like behav-
ior of quark particle masses suggesting the possibility that
mass may be spin quantized.

What has not been seen is that given the experimen-
tal and theoretical uncertainty, the measured W± mass of
80398 ± 25 MeV [4] is exactly 2mp/me (3672.30534) times
the mass value symmetrically between the electron and the
proton (√mp me = 21.89648319 MeV), i.e. 80410.57 MeV.

2 Fundamental particle mass, a spin quantized process?

Taking a mass symmetric approach to fundamental particle
mass leads to an eloquently simple spin quantized mass rela-
tionship between the stable spin 1/2 electron and proton mass
and the unstable spin 1 W± particle mass given by

mx = Msp
(
2S mp/me

)(S CM)
, (1)

where x is {p,e,W}, the mass symmetry point Msp is
21.89648319 MeV, S is the spin quantum number { 12 ,1}, C
is the charge quantum number {±1}, and M is the matter type
quantum number {matter = +, anti-matter = −}.

Thus equation (1) is both mass and charge up/down sym-
metric, spin quantized and indicates Nature may be funda-
mentally mass symmetric.

As indicated in §9, this mass up/down symmetry is in
keeping with the measured cosmological constant.

3 Nature’s constants, as functions of 4π

Proposing natures coupling constants are a function of 4π and
the fine structure coupling constant and the weak (angle) cou-
pling constant are connected to mass, yields the following 4π
definitions.

The fine structure constant αcs = πς(4π%)−2/(2
√

2), the
charged weak angle αsg = 2

√
2(4π%)−1 (∼.2344 vs .2312

[5]), where “g” is the other force that couples to produce
the weak coupling constant. The relationship to mass is
πme/mp = αcsαsg = αcg = πς(4π%)−3 and thus mp/me =

(4π%)3/ς. The uncharged (neutrino) weak angle αsg(1) =

2
√

2(4π1)−1 (∼.2251 vs .2277 [6]). The new constant % =

αcs αsg(1) mp/(me π) = 0.959973785 and ς = (4π%)3 me/mp =

0.956090324.

4 Fundamental particle mass, a 4π quantized process?

Equation (1) rewritten with the 4π definition of mp/me re-
sults in

mx = Msp
(
2S (4π%)3/ς

)(S CM)
. (2)

In addition to being spin quantized, equation (2) indicates that
the fundamental particle mass quantization process is a func-
tion of (4π)x. For example, the pure theory mp(1,1)/me(1,1) ratio
(% = 1, ς = 1) is exactly (4π)3 where the deviation from the
pure theory 4π quantization process is given by %.

5 Three electron generations, a 4π quantized process?

The electron generational mass ratios also appear to be a func-
tion of (4π%x)x or more precisely (4π%x)(3−x).

The first (x = 1) mass ratio µ to e (i.e me1/me0 ) is√
2(4π%1)(3−1) where %1 = .962220482 while the second (x =

2) mass ratio me2/me1 is
√

2(4π%2)(3−2) with %2 = .946279794.
Note that % and %x are believed to be the deviation from

pure theory for two separate frequency components of the
quantization processes.

Thus the form of the first and second (x=1,2) genera-
tion mass ratios (me(x)/me(x−1)) is

√
2(4π%x)3−x. The deviation

from the generational pure theory 4π quantization process in-
creases (smaller %x) with higher generations.

This
√

2(4π)3−x pattern also results in the x = 3 mass ratio
(me3/me2 ) of (4π)(3−3), i.e. no higher (4π)x quantized mass
states and thus no higher generations.

The similarity of 4π quantization allows the fundamental
particle equation (1) to be combined with the generational re-
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lationship into a single phenomenological equation given by,

mx = Msp(n)
(
2S (4π%)3/ς

)(S CM)
, (3)

where Msp(n) = Msp S −n/2(4π%n)(6S n−S n(n+1)) and %n = 1 −
log(1 + 64.75639 n/S )/(112S ) are used and generation n is
{0,1,2}.

From (3), the me1 (µ) mass is 105.6583668 MeV (µ =

105.6583668 ± .0000038 MeV [4]) and the me2 (τ) mass is
1776.83 MeV (τ = 1776.84 ± .17 MeV [4]).

Remember that even though both %n, and % represent devi-
ations from the pure theory (4π)x quantization nature of these
particles’ masses, their cause is understood to be related to
two separate quantization process components.

6 The Standard Model and quantization

First, the quantization proposition is not in conflict with the
existence of quarks. Rather quantization is an additional
constraint. The quantization proposition is that if there is a
(pseudo-) stable frequency quantized state, then there is an
observed (persistent) massed particle resulting in;

1) a specific stable quantization state energy/mass or
2) a pseudo-stable quantized decay mass value.
Thus the quantization process constrains the stable parti-

cle base mass or unstable particle decay point mass while the
types and symmetries of quarks construct the particle varia-
tions seen in the “particle zoo”.

That quark composite particle masses are quantized was
first suggested by Nambu [1] and recently statistically vali-
dated by Palazzi [2]. The quantization increments cited are
70 (n=integer) and 35 MeV (n=odd or n=even) which are ap-
proximately Msp π and Msp π/2. Thus for example η (547)
has n=16 [2] and using Msp nπ/2 gives mη = Msp 8π ' 550.

A Regge trajectory like spin quantum number based
quantization pattern is given by Ne’eman and Sijacki [3]
where the particle’s measured mass vary about the predicted
points. For the (3/2,1) group the points are approximately
(20, 22, 24) π Msp, for the (5/2,2) group they are approxi-
mately (24, 26, 28, 30, 32) π Msp, and for the (7/2,3) group
they are approximately (28, 30, 32, 34, 36, 38, 40) π Msp.

Second, a quantizing mechanism as fundamental to the
nature of massed particles is a natural explanation given QM’s
quantized nature.

Third, an intra-particle quantization process minimally
needs two intra-particle frequency components. Equation (3)
suggests one component is related to the particle’s “invari-
ant” mass/energy and a second component is related to the
generational mass symmetry point. A generational compo-
nent could be the source for and thus explain the genera-
tional exchange seen in the muon neutrino nucleon interac-
tion νµ + N → P+ + µ−. The generational component’s effect
on the charged particle mass symmetry point is Msp(n).

Is the massed particle a “quantized photon”?

Is the first photonic component of the quantization pro-
cess the underlying reason for the universality of Maxwell’s
equations for both photons and charged particles?

Is the second quantizing component responsible for the
intra-particle mass and charge quantization, for the genera-
tional property, as well as the (inter-particle?) quantization of
QM?

7 Equation 1 and new particles

If quantization is the source of (1) then, quark structure per-
mitting, there may be a second generation proton. From the
phenomenological equation (3), mp2 ' 194 GeV. This second
generation proton is within LHC’s capabilities.

Note that equation (3) is phenomenological and another
option exists for merging the electron generations.

Equation (1) also indicates the possibility of a new “lep-
ton like” (mass down charge down) spin 1 light W± parti-
cle with a mass of ∼ 5.96 KeV (mlW). If such low fre-
quency/energy quantization is possible, the lW±’s decay, like
the W±’s decay, would be instantaneous. At KeV energy,
attempted quantization may only result in enhanced photon
production. At MeV energies, lW± pair production with in-
stantaneous decay would look like an electron positron pair
production but would actually be lW− → e− + ν and lW+ →
e+ + ν decays.

Finally, the super-symmetric (charge and mass symmet-
ric) view that results from equation (1) can make some fun-
damental Standard Model problems go away.

8 The matter only universe problem

The present SM has only a matter anti-matter mass creation
process, yet we appear to have a matter only universe. This
aspect is presently unaccounted for.

The super-symmetric view indicated by the charge and
mass up/down symmetry of (1) and (2) enables the possibility
of an alternate mechanism for fundamental particle creation.

This alternate process symmetrically breaks the electron
and proton of the same mass (for eq. (2), at % = (4π)−1, ς = 1,
me = mp) into a proton of higher mass (up) and an electron of
lower mass (down), yielding a matter only universe.

9 The cosmological constant problem

Given the symmetric mass up/down symmetry breaking of (2)
that produces a matter only universe, the symmetry break-
ing contribution to the cosmological constant can be zero
and thus consistent with the observed cosmological constant
value. Based on the Standard Model’s view, QCD’s contribu-
tion to the cosmological constant produces a value that is off

by 1046, i.e 46 orders of magnitude wrong [7], with no sub-
stantive resolution. Using the Standard Model view for the
electroweak contribution results in an even greater error.

The preciseness of the predicted W± particle mass of
equation (1) and the pattern of quantization shown via (2)
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and (3) call into question many of the Standard Model views
and assumptions about the causality of the observed “invari-
ant mass” values.

However, it is precisely the Standard Model view and
the Standard Model symmetry breaking approach that results
in these fundamental Standard Model problems. Maybe we
should listen to these fundamental problems with more care.

10 Summary

The Standard Model is highly successful in many areas, espe-
cially QM and QED. One of the open questions for the Stan-
dard Model is the cause of the specific invariant mass values
of fundamental particles.

The accepted Standard Model view hides the fact that the
measured W± mass of 80398 ± 25 MeV [4] is exactly 2mp/me
(3672.30534) times the mass value symmetrically between
the electron and the proton (Msp = (mp me)1/2) and the Stan-
dard Model gives no reason for the electron generations nor
their masses.

A mass and charge symmetric, 4π quantized and spin
quantized mass formula is given that produces the exact W±

particle mass. The electron generation mass ratios can be
produced using a 4π related magnitude, i.e me(x)/me(x−1) =√

2(4π%x)3−x for x=(1,2).
The common 4π formulation allows the single mass for-

mula (3) to produce the masses of the proton, the W, and the
three electron generations.

Equations (1), (2) and (3) strongly suggest several new
aspects.

First, in addition to the atomic orbital quantization of QM,
there is an intra-particle quantization mechanism which gives
the fundamental particles and generations their invariant mass
values.

Second, the fundamental particle quantization process is
spin { 12 ,1} and 4π quantized.

Third, equation (1) indicates that nature is actually highly
symmetric, being charge and mass up/down symmetric.

This symmetry allows for the possibility of an alternate
matter creation process for the early universe which results in
creating only matter.

In addition the mass and charge super-symmetric view of
equation (1) should yield a near zero cosmological constant
in keeping with the observed value.

A quantization proposition is not in conflict with the ex-
istence of quarks.

A dual approach is required to explain the 4π and spin
mass pattern of equation (1), the 4π electron generation mass
pattern, and Palazzi’s [2] results.

This dual approach involves a quantizing mechanism as
the source of the stability and mass value of the spin 1/2 par-
ticles, the mass values of the fundamental W± particles, and
the decay point mass of quark composites, while the types

and symmetries of quarks construct the variations seen in the
“particle zoo”.

The quantized view of equation (3) indicates that one of
the intra-particle quantization components can be the source
for the generational identity and a foundation for the gen-
erational exchange seen in the muon neutrino interaction
νµ + N → P+ + µ−.

Is “A quantized form of energy.” the answer to the ques-
tion “What is mass?”.

If relationship (1) and the quantization interpretation of
(1), (2) and (3) are fundamental, then the recognition of an
intra-particle quantization process is required to move the
Standard Model to a massed particle model.

Submitted on August 16, 2009 / Accepted on August 25, 2009
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A theory of gravitation satisfying all experimental results was previously proposed in
this journal. The dynamics was determined by a proposed Lagrangian. In this paper it
is shown how this Lagrangian can be derived heuristically. A Newtonian approach is
used, as well as other methods.

1 Introduction

A theory proposed in previous articles in this journal [1–4]
relied on two postulates, one of which is that the dynamics of
a system is determined by a Lagrangian,

L = −m0

(
c2 + v2

)
exp

R
r
, (1)

where m0 is the gravitational rest mass of a test body moving
at velocity v in the vicinity of a massive, central body of mass
M, γ = 1/

√
1 − v2/c2 and R = 2GM/c2 is the Schwarzschild

radius of the central body.
This Lagrangian leads to equations of motion that satisfy

all experimental observation of gravitational effects. It also
leads to expressions for electromagnetic and nuclear interac-
tions. In this regard it gives the fine spectrum of the hydrogen
atom and the Yukawa potential for the nuclear force.

No explanation was given of how this Lagrangian had
been determined, but only that its validity is confirmed by the
consistency of its resultant equations of motion and agree-
ment with experiment.

It is informative to show how such a Lagrangian can be
derived. The procedure leads to an understanding of the cre-
ation and development of physical theories.

When a Lagrangian embodies the fundamentals of a phys-
ical model it cannot be derived from first principles. What
is needed is an inspired guess to start with. The equations
of motion derived from the initial Lagrangian are compared
with observation. If they do not fit satisfactorily with the first
try, then one adjusts the Lagrangian to conform closer to ex-
perimental results. This modelling cycle is repeated until a
satisfactory agreement is found with observation.

In the case of the above Lagrangian various approaches
are possible. We consider some of them.

2 Newton’s approach

We follow a Gedanken speculation of how Isaac Newton
would have derived a law of gravitation if he had been aware
of the modern classical tests for a theory of gravitation.

The development of theories of gravitation at the begin-
ning of the previous century is well documented [5, 6]. The
essential test for a theory of gravitation at that time was

whether it explained the anomalous perihelion precession of
the orbit of Mercury, first calculated by Leverrier in 1859.
This was satisfactorily explained by Einstein’s theory of gen-
eral relativity. Further predictions of this theory, i.e. the bend-
ing of light by a massive body and of gravitational redshift,
have subsequently become part of the three benchmark tests
for a model of gravitation.

2.1 Modern Newton

It is not generally known that Newton first derived his inverse
square law of gravitation by first considering circular orbits
[7, 8]. He applied Huygens’s law for the acceleration in a
circular orbit,

a =
v2

r
, (2)

and Kepler’s third law to arrive at the inverse-square relation.
He then proceeded to show in his Philosophiae Naturalis
Principia Mathematica (there is some doubt about this [9])
that elliptical motion follows in general from this relation.

We follow a similar procedure by assuming a scenario
along which Newton could have reasoned today to arrive at
a refinement of his law of gravitation.

He would have been aware of the three classical tests for
a theory of gravitation and that particles traveling near the
speed of light obey relativistic mechanics. Following an iter-
ative procedure he would have started with the simple model
of circular orbits, derived the appropriate law of gravity, but
modified to accommodate relativistic effects and then gener-
alised it to include the other conical sections. It would finally
be compared with other experimental results.

2.2 Finding a Lagrangian

For motion in a circular orbit under the gravitational attraction
of a mass M one must have:

v2

r
=

GM
r2 . (3)

Because of relativistic considerations, the ratio v2/c2 must
be compared relative to unity, i.e.

1 − v
2

c2 = 1 − GM
r c2 . (4)

Pieter Wagener. From Inspired Guess to Physical Theory: Finding a Theory of Gravitation 11



Volume 1 PROGRESS IN PHYSICS January, 2010

Note that (4) is not an approximation of (2) for v � c.
If we surmise that the inverse square law is only valid for
r � R, one could incorporate higher order gravitational ef-
fects by generalising the right-hand side of (4) to a polyno-
mial. Furthermore, to allow other motion besides circles, we
multiply the right-hand side by an arbitrary constant K:

1 − v
2

c2 =

(
1 +

a′R
r

+
b′R2

r2 + . . .

)
K ,

= KP′(r) ,
(5)

or (
1 − v

2

c2

)
P(r) = K , (6)

where

P(r) = 1 +
aR
r

+
bR2

r2 . . . , (7)

is the inverse of P′(r).
In order to compare (6) with experiment, we have to con-

vert it to some standard form in physics. To do this we first
rewrite (6) as:

(1 − K)
c2

2
=
v2

2
− GMa

r
− av2R

2r
+ . . . (8)

If we multiply this equation by a constant, m0, with the
dimension of mass, we obtain a conservation equation with
the dimensions of energy:

(1 − K)
m0 c2

2
=

m0 v
2

2
− GMm0a

r
− m0 av2R

2r
+ . . . (9)

For r � R, this equation must approach the Newtonian
limit:

m0 v
2

2
− m0MGa

r
= EN , (10)

where EN is the total Newtonian energy. Comparison of (10)
with the Newtonian expression gives a = 1.

To simplify the notation, we define a constant E with di-
mensions of energy, such that

K =
E

m0c2 . (11)

From (6),

E = m0c2
(
1 − v

2

c2

)
P(r) . (12)

If we consider (12) as the total energy of the system, we
can find a corresponding Lagrangian by separating the poten-
tial and kinetic energies:

T = −m0 v
2P(r) ,

V = m0 c2P (r) .

The corresponding Lagrangian is therefore:

L = T − V = −m0

(
c2 + v2

)
P(r) . (13)

Applying the Euler-Lagrange equations to this Lagran-
gian one can find the equations of motion of the system. The
conservation of energy (12) follows again, while for the con-
servation of angular momentum we find

P (r)r2 θ̇ = constant = h. (14)

The equations of motion for the system can then be de-
rived from (12) and (14) as a generalised Kepler problem.
From these equations one finds a differential equation of mo-
tion of the form

dθ
du

= Au2 + Bu + C , (15)

where

u =
1
r
,

A = bR2 4 − E
2h

− 1 , (16)

B =
R (2 − E)

h2 , (17)

C =
1 − E

h2 . (18)

The convention m0 = c = 1 was used, and terms higher
than R2/r2 were ignored.

2.3 Perihelion precession

In the case of an ellipse, the presence of the coefficient A gives
rise to a precession of the perihelion. For one revolution this
can be calculated as:

6bπcR
ā (1 − e2)

, (19)

where ā is the semi-major axis and e is the eccentricity of
the ellipse. Comparison with the observed value for Mercury
gives b = 1/2. With this result the polynomial of (7) be-
comes:

P (r) = 1 +
R
r

+
R2

2r2 + . . . (20)

Equation (20) could be regarded as simply a fit to experi-
mental data. The theoretical physicist, however, will look for
a pattern or a generalisation of some underlying physical law.
The form of the equation leads one to propose that the above
terms are the first three terms in the Taylor expansion of

P(r) = exp
R
r
. (21)

Confirmation of this form, which is aesthetically more ac-
ceptable, must come from other experimental results, such as
the bending of light by a massive object. This is shown in the
first article referred to above [1].

The Lagrangian of (13) can now be rewritten in the form
of (1):

L = −m0

(
c2 + v2

)
exp

R
r
, (22)
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or in terms of the potential Φ as

L = −m0

(
c2 + v2

)
exp

2Φ

c2 . (23)

The conservation of energy equation (12) can be writ-
ten as

E = m0 c2 eR/r

γ2 . (24)

We define a variable gravitational mass as

m =
m0

γ2 , (25)

so that (24) can also be written as

E = mc2 eR/r. (26)

3 A gravitational redshift approach

We continue with the hypothetical Newton, but starting from
another experimental observation. In the presence of a body
of mass M a photon undergoes a frequency shift relative to its
frequency ν0 in the absence of the body:

ν = ν0

(
1 − R

2r

)
,

where ν0 is an invariant.
In line with our inspired guess approach, we surmise that

the right-hand side of this equation is a first order approxima-
tion to

ν = ν0 e−R/2r, (27)

or
ν0 = νeR/2r. (28)

Substituting time for the frequency, ν = 1/t and rearrang-
ing:

dt = B eR/2rdτ , (29)

where dτ is an invariant time interval, or proper time, and B is
a proportionality constant. Substituting the special relativity
relation dt = γdτ in (29),

1
B

=
eR/2r

γ
. (30)

This is a conservation equation involving the variables r, v
and M. In order to relate this equation to the classical conser-
vation of energy equation and its Newtonian limit, the equa-
tion must be squared and multiplied by m0 c2:

m0 c2

B2 = m0 c2 eR/r

γ2 . (31)

This is the same equation as (24) for E = m0c2/B2.
From (11) we note that B2 = 1/K. Separating the ki-

netic and potential energy terms we again find the Lagrangian
of (1).

4 An Einstein approach

It is understandable that the large corpus of publications on
general relativity (GR) over the past few decades tend to un-
derrate the heuristic approach, or inspired guesses, which are
used to derive the field equations of GR. The classic texts do
not. On page 152 of Weinberg’s Gravitation and Cosmol-
ogy [10] the author emphasises the guesswork that leads to
the field equations. Eddington [11, p.82] mentions that “This
preliminary argument need not be rigorous; the final test is
whether the formulae suggested by it satisfy the equations to
be solved”. This is a classical heuristic argument.

One can therefore wonder why the heuristic derivation
was not continued to generalise the metric of GR,

ds2 =

(
1 − R

r

)
dt2 −

− 1

1 − R
r

dr2 − r2dθ2 − r2 sin2θ dφ2, (32)

to an exponential form:

ds2 = e−R/rdt2 − eR/r(dr2 + r2dθ2 + r2 sin2θ dφ2) . (33)

The equations of motion derived from this metric are the
same as those derived from the Lagrangian of (1), but are con-
ceptually and mathematically simpler [1]. From the resulting
conservation equations one can, similarly to the procedures
above, derive our Lagrangian.

5 Nordström’s first theory

Although not an example of a heuristic derivation, Gunnar
Nordström’s first theory [12, 13] is an intriguing example of
how theories of gravitation could have taken a different direc-
tion in 1912.

Nordström’s theory, a noncovariant one, is based on a La-
grangian,

L = exp
R
2r
. (34)

In the case of a static, spherically symmetrical field the
Lagrangian gives a conservation equation,

γ exp
(
− R

2r

)
= AN . (35)

Comparison with (30) shows that AN = B. Nordström’s
first theory therefore gives the same conservation of energy
equation as our theory.

The absence of the
(
c2 + v2

)
term in Nordström’s Lagran-

gian accounts for its difference from our theory and Nord-
ström’s wrong predictions. This shows up in his conservation
of angular momentum,

r2 dθ
dt

= h , (36)

where h = constant.
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Nordström’s theory [14] also gives a variation of mass,

m = m0 e−R/2r. (37)

From (11) and (26) our theory gives

m = Km0 e−R/r. (38)

The close correlation between our theory and that of
Nordström raises the possibility of Nordström, or anyone else
reading his paper of 1912, deriving the Lagrangian of (1).
If this had happened, and the resultant agreement with Mer-
cury’s perihelion precession were found, then the study of
gravitation could have followed a different direction.

Submitted on September 12, 2009 / Accepted on September 18, 2009
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Modern quantum theory is based on de Broglie’s relation between momentum and
wave-length. In this article we investigate certain inconsistencies in its formulation
and propose a reformulation to resolve them.

1 Inconsistencies in de Broglie’s relation

Edward MacKinnon made a critical analysis [1–3] of Louis
de Broglie’s doctoral thesis of 1924 [4]. With this thesis de
Broglie is credited with deriving the first relationship between
the momentum of a particle and its associated quantum wave-
length. MacKinnon’s discussion draws some remarkable con-
clusions. He points out that the most paradoxical feature of
de Broglie’s thesis is the fact that, although his fundamental
argument is essentially relativistic, the only successful appli-
cations of his ideas were essentially nonrelativistic. It is well
known that his relationship λ = h/mv was applied to the Bohr
atom and later to the derivation of Schrödinger’s equation,
both of which are strictly nonrelativistic models. What is not
so well known is that the arguments leading to λ = h/mv are
very much relativistic. De Broglie’s problem was to find the
relativistic transformation of

hν0 = m̃0 c2, (1)

where the relativistic rest mass m̃0 and the frequency ν0 are
invariant.

His considerations led him to assign three different fre-
quencies to the same particle:

ν0 =
m̃0 c2

h
,

the internal frequency in the rest system;

ν1 = ν0

√
1 − v2/c2 ,

the internal frequency as measured by an external observer
who sees the system moving with velocity v;

ν=
ν0√

1 − v2/c2
,

the frequency this observer would associate with the particle’s
total energy.

MacKinnon further points out that de Broglie emphasized
the frequency associated with an electron, rather than the
wavelength. His wavelength-momentum relationship occurs
only once in the thesis, and then only as an approximate ex-
pression for the length of the stationary phase waves char-
acterizing a gas in equilibrium. Most of MacKinnon’s ar-
ticle is devoted to analyzing the reasons why de Broglie’s

formula proved successful, despite the underlying conceptual
confusion. He finally expresses amazement that this confu-
sion could apparently have gone unnoticed for fifty years.

In addition to MacKinnon’s criticism, one can also have
doubts about some of the applications of de Broglie’s formula
in quantum mechanics, particularly to electron diffraction. In
standard physics texts [5, p. 567], in order to apply the de
Broglie relation, the following assumption is made

Ẽ2 = |p|2c2 + m̃2
0c4 ' |p|2c2. (2)

The notation is in accordance with previous articles by the
author in this journal [6, 8].

From this equation the momentum of the electron is cal-
culated as |p| = Ẽ/c, and from the de Broglie relation it fol-
lows that λ = hc/Ẽ.

Various explanations are given to support the approxi-
mation of (2). The most common is to assume that it is
allowed for Ẽ � m̃0 c2. Although this assumption satisfies
experiment, it is not mathematically or conceptually accept-
able. Electron diffraction becomes measurable at high en-
ergies and velocities, where relativistic equations are appli-
cable. For these equations to be mathematically consistent
all terms must be retained, particularly those in the conser-
vation of energy equation. Another approach is to ignore
(2) and to apply a semi-nonrelativistic result, Ẽ = p2/2m̃ or
T = p2/2m̃ [5, p.147], where m̃ = γm̃0 is the relativistic mass
of a particle and T is its kinetic energy. This is clearly unten-
able because of the high velocities.

Another justification for the approximation is that it works
for “experimental purposes” [9]. These assumptions might
not be serious to verify predictions expeerimentally, but in
the spirit of present attempts to formulate a quantum theory
of gravity, these assumptions warrants closer scrutiny.

The use of the above approximation is sometimes sub-
tle and not so apparent. In a popular textbook [10, Problem
12.10] the following equation is given for the conservation of
energy in Compton scattering:

hc
λ

+ m0 c2 =
hc
λ′

+ mc2, (3)

where m0 and m are respectively the rest and final mass of the
electron.
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The equation is inconsistent since wave and corpuscular
expressions are combined in one equation. The expression

hc/λ is simply a shortcut for
√

p2c2 + m2
ν0

c4, where the rest
mass of the photon mν0 is set to zero and de Broglie’s relation
is then applied to p. In general, the assumption of m̃0 = 0 for
a photon has had an uneasy niche in theoretical physics [1].

In a previous paper [6] we presented a unified theory of
gravitation and electromagnetism. We show below that the
model of that theory resolves the inconsistencies discussed
above.

2 A scalar momentum

In the aforementioned paper the following conservation of en-
ergy equation, derived in an earlier paper [7], was given for
the gravitational model:

E = m0 c2 e2Φ/c2

γ2 = total energy , (4)

where

Φ = gravitational potential,
m0 = gravitational rest mass of a test body

moving about a central mass M.


(5)

We have generalized the exponential term in this paper to
a general potential Φ = Rc2/2r, where R = 2GM/c2 is the
Schwarzschild radius of the central body.

We now define a scalar momentum appropriate to our
model.

A constant P0 with dimensions of linear momentum can
be defined in terms of the energy E as

P2
0 = m0E. (6)

Eq. (4) can then be written as

P0 =
m0 c
γ

exp
Φ

c2 , (7)

or, if the mass constant m0 is not required in the energy equa-
tion, as

E =
P0 c
γ

exp
Φ

c2 , (8)

= Pc exp
Φ

c2 , (9)

where
P =

P0

γ
. (10)

In reference [6] we found the following relationship be-
tween the gravitational and electromagnetic energies:

E = Ẽ eΦ/c2
, (11)

where Ẽ = m̃c2 is the energy function of Special Relativity.
Comparing (9) and (11) we get

Ẽ = Pc . (12)

3 Derivation of de Broglie’s relation

3.1 Preliminaries

Using the relationship between frequency ν and wave-
length λ,

c = λν = σω , (13)

where
σ =

λ

2π
=

c
2πν

=
c
ω
, (14)

we rewrite (12) as
Ẽ = Pσω. (15)

Since time does not appear explicitly in the above equa-
tion for Ẽ, we can write down an equivalent Hamiltonian as

H̃ = Pσω. (16)

This form of the Hamiltonian resembles that of the sim-
ple harmonic oscillator, after a canonical transformation with
generating function F = (m̃0/2) q2 cot Q, where q and Q are
the appropriate canonical variables. The significance of this
transformation was first pointed out by Max Born [11, §7].

Briefly, it states that the Hamiltonian of a simple har-
monic oscillator, given by

H̃ =
p2

2m̃0
+

m̃0ω
2q2

2
, (17)

can, by a canonical transformation with the above generating
function, be expressed as

H̃ = Λω, (18)

where Λ = constant.
If our system behaves as an oscillator it follows from (16)

and (18) that
Pσ = constant. (19)

This result prompts us to provisionally write the constant
in (19) as ~, Planck’s constant divided by 2π. This step is
taken a priori, and its validity will depend on the overall con-
sistency of the subsequent results. Keeping this supposition
in mind, we rewrite (19) as

Pσ = ~, (20)

and (15) as
Ẽ = ~ω = hν. (21)

3.2 The photo-electric effect

Eq. (21), combined with Ẽ = m̃c2, gives the photo-electric
effect, m̃c2 = ~ω = hν. Eq. (21) also confirms the use of the
constant h in the expression for gravitational redshift,

E = Ẽ exp
R
2r

= hν exp
R
2r
. (22)

16 Pieter Wagener. Resolving Inconsistencies in de Broglie’s Relation



January, 2010 PROGRESS IN PHYSICS Volume 1

Eq. (22) is significant in that it contains both h and G in
one relation.

The results of (21) and (22) further confirm the consis-
tency of the derivation of (20).

We emphasize that the ω0, or ω, used above is an inter-
nal property of the test particle; it is not its angular velocity
about a central body. We cannot say with certainty what the
internal physical structure of the test particle should be; only
that if some periodic mechanism exists with respect to the test
particle the frequency of that mechanism is controlled by the
above equations. This, for example, determines the gravita-
tional redshift. As a model for such a type of test particle we
shall simply refer to it as a virtual oscillator.

3.3 Derivation

From (14) and (20),

P =
h
λ
. (23)

Although (23) is similar to the de Broglie relationship be-
tween momentum and wavelength, the momentum P is not
equal to the classical momentum,

p = m̃v . (24)

Nevertheless, we shall see that (23) is consistent with the
application of the de Broglie relation, and actually resolves
some ambiguities in quantum mechanics [1].

3.4 The relationship between p and P

From (12) and Ẽ = m̃c2 we obtain

P = m̃c. (25)

From this we can see that P = Ẽ/c can be regarded as the
fourth component of the relativistic four-vector, pi:

pi =

 p ,
Ẽ
c

 , i = 1, 2, 3, 4, (26)

or
pi = (p , P) , i = 1, 2, 3, 4. (27)

To find a direct relation between p and P we note from
(24) and (25) that

p =
Pv
c

or pc = Pv . (28)

The well-known expression of Special Relativity,

Ẽ2 = p2c2 + m̃2
0c4, (29)

can be rewritten, using (28), as

Ẽ2 = P2v2 + m̃2
0c4. (30)

Initially Finally

-

R

µ

φ
θ

Ẽ0

p0

m̃0 c2

electron

Ẽ1

p1

Ẽ

p

Fig. 1: Compton scattering

4 Applications of de Broglie’s relation

The relation of (23), P = h/λ, is clearly different from the
conventional de Broglie relationship. This form is, however,
not in conflict with either theory or experiment, but actually
simplifies the various formulations.

4.1 Compton scattering

For a photon, v = c, and it follows from (23) and (28) that

P = |p| = h
λ
. (31)

An advantage of (31) is that, when applied to Compton
scattering, it is not necessary to make the assumption m̃0 = 0
in (29). It must also be noted that the assumption m̃0 = 0 for a
photon is not required in our theory; only v = c. The paradox
of the photon rest mass is resolved in reference [6].

The Compton effect is described schematically in Fig. 1.
The equations below follow from this diagram.

Conservation of momentum:

p0 = p1 cos θ + p cos φ , (32)
p1 sin θ = p sin φ . (33)

From (32) and (33),

p2 = p2
0 + p2

1 − 2 p0 p1 cos θ, (34)

and applying (31) gives

p2 =
h2

λ2
0

+
h2

λ2
1

− 2h2 cos θ
λ0λ1

. (35)

Since
Ẽ2 = p2c2 + m̃2

0c4,

it follows that

Ẽ2

c2 − m̃2
0c2 =

h2

λ2
0

+
h2

λ2
1

− 2h2 cos θ
λ0λ1

. (36)

Conservation of energy:

Ẽ0 + m̃0 c2 = Ẽ1 + Ẽ , (37)
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therefore

(Ẽ − m̃0 c2)2 = Ẽ2
0 + Ẽ2

1 − 2 Ẽ0 Ẽ1 .

From (31) and rearranging,

Ẽ2

c2 + m̃2
0 c2 − 2 Ẽ m̃0 =

h2

λ2
0

+
h2

λ2
1

− 2h2

λ0λ1
. (38)

Eq. (38) minus (36), and rearranging:

m̃0 c2 − Ẽ = −h2 (1 − cos θ)
m̃0λ0λ1

. (39)

Subsituting (12) and (31) in (39) gives

λ1 − λ0 =
h(1 − cos θ)

m̃0 c
, (40)

the standard formulation for Compton scattering.

4.2 Electron diffraction

Another advantage of our formulation applies to electron dif-
fraction. From the results P = h/λ and Ẽ = ~ω it follows
directly that Ẽ = Pc. This obviates the approximation used in
standard texts on electron diffraction, i.e. Ẽ2 � p2c2.

5 Conclusion

The above derivation and formulation of de Broglie’s relation
resolves the inconsistencies in de Broglie’s original deriva-
tion. It also obviates the questionable approximations made
in Compton scattering and electron diffraction.
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Events in nature can be described using fields and their associated partial differential
equations, or equivalently, the mechanics of interaction of point particles described by
ordinary differential equations. The field approach can be looked at as the statistical
average of the particle approach and in this sense is more economical for computing.
The particle approach, on the other hand, is more fundamental but requires enormous
computing power as the model has to follow the movements of every individual particle
in the interaction. The present work aims at reducing such computing task by solving
the problem of many particle interactions (under a central force environment) in an
analytical form for one pair of particles using a Kepler type formula- giving the position
of the particle as a function of time only. The resulting (analytical) formula is then used
to write the result of the many-particle interaction using simple vector superposition.
This approach takes less computing time and can give greater numerical stability when
the distances between the particles become small and the force grows as the inverse
square of the separation distance.

1 Introduction

The problems of physics can be equally described using in-
teracting particles or fields. The flow of fluids, for example,
is the result of basic interactions of an enormous number of
small particles moving under an inverse square force system.
Such processes can be described correctly using force fields
that lead to PDE’s like those for fluid mechanics and electro-
dynamics of material media. It is also possible to achieve a
description of the same phenomena using interacting particles
following what truly happens in the real world. In the present
approach, all particles are assumed identical point masses that
may carry charges too. The particles interact under a central
force environment in which only the separation distance is
of any significance. The coupling constants of such interac-
tions can correspond to any of the known forces of nature
— gravitation, electrostatic, or any other similarly behaving
force. The resultant coupling constant is simply the arith-
metic sum of such constants for all the component forces,
with a negative sign to distinguish attractive forces from re-
pulsive forces. The numerical values of the individual con-
stants determine the relative strength of each force. In the
most basic interaction involving say a doublet of two oppo-
sitely charged point masses, the Coulomb force is the most
dominant. When very large groups of particles are consid-
ered, magnetic, and gravitational forces start becoming more
significant.

By using the particle approach, it is possible to do away
with the need for closure models (constitutive equations) that
describe the properties of matter - such as the elasticity con-
stants in dynamics and the permittivity and permeability of
electrodynamics. In fact, one can use the particle interaction
model to derive or check the validity of such closure models.
The real difficulty with the particle approach is the comput-

ing burden which involves solving one ODE corresponding to
every single particle in the interaction. We try to address this
problem here by performing an initial integration of the ODE,
then using vector superposition find the answer of the original
many particle interaction problems. In addition to the obvi-
ous gain in computing time, the stability of the solution can be
enhanced as the singularity is shifted from Inverse Square to
simple Inverse of the separation distance. The accumulation
error also reduces as a result in long time predictions.

Predicting the behavior of a single particle is well known-
as in calculating the position of the landing of a projectile be-
fore it is fired for example. The same can be said, at least in
principle, for predicting the behavior of multi-point interac-
tions. The equation of motion tells us that once we fix the
initial states of position and velocity of every participating
point particle, the outcome is determined. The normal way
to solve such problems is to find the velocity of each particle
from the acceleration by integration (after superposition of all
forces) then do a second integration to find the new position
and this is to be performed over a large set of simultaneous
Ode’s since every particle effects every other. In the present
work we instead calculate (analytically) the velocity and po-
sition in terms of time only for every particle then use vector
superposition to find the final picture.

As we are dealing with point particles only, moments of
forces and angular momentum and spin are not considered.
The gain is an enhanced stability and reduced computing time
coming from the fact that we integrate analytically first then
use superposition (simple algebraic operation) for displace-
ment as opposed to affecting the superposition of forces first
then integrating for the displacement for every point particle.
The method can be described as a multi-particle generaliza-
tion of the Kepler method originally put (and still in use) for
the motion of planets.
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2 Theory

In an inverse square interaction (electrostatic/gravitational) of
point masses, the expression for the force (acceleration since
mass is unity) of a pair of such point masses is given by

a =
d2r
dt2 =

k
r2 , (1)

where a = a(t), r = r(t) are the acceleration and separation dis-
tances between an isolated pair of particles as a function of
time t, and k is the coupling constant (negative for attractive
and positive for repulsive forces). The magnitude of k is de-
pendent on the type of interaction and equals the sum of the
k’s of all the forces at play. For example, in the case of re-
pulsive Coulomb forces k = 1

4 πε0 and for gravitational forces
k =−G, where ε0 is the permittivity of empty space and G is
the universal gravitational constant. For a small number of
interacting particles, the Coulomb forces by far dominate all
other forces. All charges and masses of all particles are as-
sumed unity as given above. The actual values can be incor-
porated in the coupling constant. As the interacting masses
are points, there is no need to consider angular velocity, spin,
angular momentum or any form of moments of forces on the
particle. Mass can simply be taken as the number of particles
in any setup.

For a group of interacting particles, the net acceleration
of particle j is given by

aj =
dvj

dt
=

∑

i

ki j ri j

r3
i j

ri j = |ri j| , i, j = 1, 2, . . . N


, (2)

where aj is the resultant acceleration, v is velocity, ki j is
the total coupling constant between particles i and j, and
ri j = rj − ri is the vector from i to j positions and N is the
total number of particles. Equation (2) is a set of simultane-
ous Ode’s that must be integrated once in order to find vj (t)
and twice to find the position rj (t). For a large number of par-
ticles, the task becomes formidable. One way to reduce this
burden is by going back to (1) and performing the integra-
tion for a pair of particles first, then use the resulting closed
form formula to perform superposition of displacements and
find the result of the interaction. Since the function r(t) is not
known before hand, we follow the Kepler route [2].

Assume a solution in the form r = tn, where t is time
and n is an exponent. Substituting in (1) we find that for the
equality to hold for any r, the value of n should be 2

3 , and
hence,

r =
9
4

k t2/3. (3)

This result can be directly checked by differentiating
twice and substituting back to recover the original inverse
square law. We are using scalar quantities because the force,
acceleration and displacement are all along the separation

line. The form of (3) is similar to Kepler’s third law for orbital
motion. In the original Kepler form the distance r refers to the
average radius of the orbit and t refers to the mean time of one
revolution. Formula (3) however, is more general and refers
to motion along the line joining any two interacting particles
under an inverse square relation. It is seen that the same for-
mula is suitable for both types of motions. In fact direct sub-
stitution in the centrifugal force formula v2/r using (3), with
v = dr/dt gives the same relation between r and t as that de-
rived form (3). A similar result is obtained if we substitute for
the Coriolis and the magnetic (Ampere) forces. In fact, such
a substitution in the general acceleration definition d2r/dt2

reduces it to an inverse square relation. Kepler formula is
also shown to be a direct consequence of mechanical similar-
ity [1], and the form 1/rn satisfy similarity for any n, but only
n = (2,−2) produces bounded motion, which corresponds
to the inverse square force and to the space oscillator type
(spring oscillators) interaction forces. The spring type force
is also shown to be a special case of the inverse square law
for small displacements around an equilibrium point. When
(3) is differentiated with respect to time we get

v (t) =
dr
dt

=
2
3

k t−1/3 = kr−1/2 (4)

further differentiation gives

a(t) =
d2r
dt2 =

(
−2

9

)
k t−4/3 =

(
−2

9

)
kr−2 (5)

thus we have recovered the inverse square law. Substituting
from (4) for the centrifugal force gives

v2

r
=

4
9

k2t−4/3 = k2r−2 (6)

which is, apart from a constant, has the same form of depen-
dency of t on r. The velocity is given by

vj = vj0 −
2
3

t1/3
∑

i

rj − ri

|rj − ri| , j, i = 1; n , i , j (7)

and the position rj is given by the vector relation

rj = rj0 + vj0 t +
9
4

t2/3
∑

i

rj − ri

|rj − ri| , (8)

where r is the net position vector of all particles and is given,
for each, as the vector sum of n − 1 vector displacements in
addition to the initial position of the particles r0 and the initial
velocity v0 multiplied by the time t.

The form in (8) is similar to the usual form of the equation
of motion for n interacting particles which can be written as

rj = rj0 + (dt)vj0 + (dt)2
∑

i

rj − ri

|rj − ri|3 (9)

with the obvious difference that (9) involves dt rather than t
and therefore must be advanced in very small steps to reach
the final solution.
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Fig. 1: Four point particles interacting under attractive (top) and re-
pulsive inverse square forces (bottom). Prediction using (8) starts
from time step kk = 1 (left) and kk = 150 (right), showing the capa-
bility of writing the correct solution for many particles at any time
without going through time evolution.

Fig. 2: Predictions using (7) keeping the circular boundary neutral.
T: four point particles interacting under attractive and repulsive in-
verse square forces. B: four point particles interacting under attrac-
tion forces for longer time showing the stability of the velocity solu-
tion at close encounters. Particle paths interweave as a result of the
attraction forces and the (inertia) forces.

Fig. 3: T: interaction using force (9) for five bodies (confined) and
three bodies (not confined). B: interaction using velocity formula
(7) for 20 & 200 particles under attractive forces with and without a
restraining circular boundary.

Fig. 4: Instability in the distance formula (8) at small interaction
distances. Each particle path branches into three but recovers back
to a single path as the particles further separate (top figures). The
path disintegrates to only two branches at the encounter of a particle
and a wall of particles. The minimum separation distance needed
for such behaviour increasing with the increase in the value of the
separation constant.
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Fig. 5: Rotation, stratification and condensation for large numbers
using (8). T: 150 particles under attractive forces only but at different
coupling constants. B: one time step and many time steps results of
the interaction of 500 particles of equal mix of charges.

3 Results

In this section we concentrate on showing that (7) and (8)
give the expected behavior in the case of interacting particles
under attraction or repulsion for the case of free particles and
for the case of particles trapped inside a constraining circular
wall. Comparison is then given with predictions using the
usual integration of the inverse square law (9). The distances
and coupling constants in these tests are arbitrary- chosen to
produce magnified effects of the forces involved. The actual
values used are marked on each figure.

Figure 1 shows four particles moving to the right with
initial velocities mainly in the horizontal direction. The rela-
tive values of initial kinetic energy and the coupling constant
determine the behavior of the interacting particles. When
the initial velocity is large, as expected, the particles do not
change direction appreciably, and when it is small, the re-
pulsion and attraction forces have bigger effect — creating
appreciable changes in the particle path. The trajectories are
calculated using the displacement expression (8). When using
this method it is possible to write the solution at any required
time instant as shown in the right hand side frames, wherein
the solution is now started at an advanced time location (at
the 150th time step kk) and still agreeing with the results of
the previous solutions starting at the first time step (t = 0) —
using the same original set of initial conditions.

Figure 2 shows the results using the velocity expression
(7) for the case of attractive and repulsive forces. The stabil-
ity of the solution is clearly demonstrated by the last frame
showing an interweaving paths forced by the equally effec-
tive inertial and attractive forces. The velocity formula gives
more stable solutions at closer encounters because of the ab-
sence of the inverse square term from (7), being replaced by
a quantity dependent on t. We should note here also that we

still have the direction cosines to consider for the vector su-
perposition. This, however, has a more favorable behavior at
very small separation distances since the quantities xi j/ri j, go
to unity as r goes to zero.

In Figure 3, the top two frames show the results of us-
ing the force formula (9) for the case of four free particles
and five particles respectively confined in a circular bound-
ary. The bottom two frames show the result for large number
of particles, when using the velocity formula (7), in which 20
particles are confined in a circular boundary and 200 particles
under attraction without a restraining boundary.

Problems have been experienced when using the distance
formula (8) when the separation distance is small. As shown
in Figure 4, the particle path divides into 3 branches but re-
covers afterwards as the two bodies separate and the sepa-
ration distance increases depending also on the strength of
the coupling constant. Note the effects on the path even be-
fore the target is reached. At the interaction with a wall of
charges, the path divides instead, into two parts and recovers
back again. This phenomenon requires further investigation
as it is found to occur only at larger separation distances if
the coupling constant is increased. It is numerical in origin,
which is somehow different to what one would expect of this
formula.

Figure 5 shows the results of using (9) for a large num-
ber of particle interactions. Results for 150 and 500 particles
under attractive forces are shown. The results show signs of
rotation and pulsation behavior as well as coagulation to form
separated groups.

4 Conclusion

It has been shown that it is possible to reduce the computa-
tion time and enhance the solution stability for multi-point
particle interactions. As a result it has been possible to follow
the interaction of very large number of particles using mod-
est computer memory and time. In the author opinion the
method shown here is worthy of further development and use
to numerically investigate the fascinating world of particle in-
teractions. Evidence of grouping appears when the number of
interacting particles is large and without the need of retaining
external boundaries or forces.

A consistent phenomenon of path splitting into three and
two branches has been observed. It is a direct result of eval-
uating distances using the square root, as it is treatable by
adding a very small constant value to the inverse of the rooted
quantities. Clearly this phenomenon needs to be corrected
first before the present method acquires its full potential.
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On a Formalization of Cantor Set Theory for Natural Models
of the Physical Phenomena
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This article presents a set theory which is an extension of ZFC. In contrast to ZFC, a
new theory admits absolutely non-denumerable sets. It is feasible that a symbiosis of
the proposed theory and Vdovin set theory will permit to formulate a (presumably) non-
contradictory axiomatic set theory which will represent the core of Cantor set theory in
a maximally full manner as to the essence and the contents of the latter. This is possible
due to the fact that the generalized principle of choice and the generalized continuum
hypothesis are proved in Vdovin theory. The theory, being more complete than ZF and
more natural according to Cantor, will allow to construct and study (in its framework)
only natural models of the real physical phenomena.

This paper is dedicated to the memory of
Alexander M. Vdovin (1949–2007)

I. It is generally accepted that the (presumably) non-contra-
dictory Zermelo-Fraenkel set theory ZF with the axiom of
choice is the most accurate and complete axiomatic represen-
tation of the core of Cantor set theory. However, it is acknowl-
edged [3, p. 109], that “Cantor’s set theory is so copious as
to admit absolutely non-denumerable sets while axiomatic set
theory [in particular, ZFC] is so limited [Skolem’s paradox]
that every non-denumerable set becomes denumerable in a
higher system or in an absolute sense”. An axiomatic set the-
ory defined here and abbreviated as ZFK admits absolutely
non-denumerable sets, as it does Cantor theory.

It is feasible that a symbiosis of the proposed theory and
Vdovin set theory [1, 2] will permit to formulate a (presum-
ably) non-contradictory axiomatic set theory which will rep-
resent the core of Cantor set theory in a maximally full man-
ner as to the essence and the contents. This is possible due to
the fact that the generalized principle of choice and the gen-
eralized continuum hypothesis are proved in Vdovin theory.

II. Our definition of ZFK will be based on the traditional
(classical) concept of formalized theory explained in [4]. But
ZFK is a theory which is axiomatic not completely in the
traditional sense, so the syntactic aspects of this theory will
be described with references to the principal interpretation
of ZFK.

Formulae of ZFK are formulae of the signature 〈∈, S 〉,
where ∈— is a two-place predicate symbol for denoting the
(standard) membership relation on the collection S k of all
Cantor’s (intuitive) sets, and S — is a null-place functional
symbol (a constant) denoting the family of all axiomatized
sets, and in the ZFK formulae containing the symbol “S ”, the
latter symbol is always placed to the right of the symbol “∈”.

In what follows, we use the conventional notation and ab-
breviations of ZF. In particular, the relativization of a for-

mula ϕ to the family S is denoted by [ϕ]S . Besides, depend-
ing on the context, records “∈” and “S ” denote either the sig-
nature symbols or denoted by them the relation and the fam-
ily, respectively. Cantor’s (intuitive) sets of S k will be called
k-sets, and the axiomatized sets of S will be simply called
as sets.

The axioms of ZFK are divided into two groups: G and
Gk. The axioms of group G describe the axiomatized sets, and
the axioms of group Gk characterize the relationship between
Cantor’s (intuitive) sets and the axiomatized sets.

The axioms of group G are the axioms of ZFC (formulae
of the signature 〈∈〉), with exception of the axiom of empty
set, which are relativized to the family S .

The axioms of group Gk:

1) Axiom of embedding S into S k

∀x ∈ S ∃ y (y = x).

2) Axiom of (absolutely) empty set

∃x ∈ S ∀ y (y < x).

3) Axiom of transitivity of S in S k

∀x ∈ S∀ y (y ∈ x→ y ∈ S ).

4) Axiom (schema) of generalization

[ϕ]S → ϕ,

where ϕ — is a formula of ZFK.
5) Axiom (schema) of mappings to S k

∀t (∀v, w1, w2(ϕ(v, w1, t) & ϕ(v, w2, t)→ w1 = w2)→
→ ∀x∃ y∀z(z ∈ y↔∃ v ∈ x∃w(z=〈v, w〉 & ϕ(v, w, t)))),

where ϕ— is a formula of ZFK and the variable y does
not occur free in ϕ.
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6) Axiom of general replacement

∀x (map(x) & dom(x) ∈ S & rang(x) ⊆ S →
→ rang(x) ∈ S & x ∈ S ),

where map(x) is the formula

∀z (z ∈ x→ ∃v, w (z = 〈v, w〉)) &∀v, w1, w2 (〈v, w1〉 ∈
x & 〈v, w2〉 ∈ x→ w1 = w2),

and k-sets dom(x) and rang(x) satisfy

∀v (v ∈ dom(x)↔ ∃w (〈v, w〉 ∈ x))
and

∀w (w ∈ rang(x)↔ ∃ v (〈v, w〉 ∈ x)).

The logic underlying ZFK is the calculus of predicates in
the language of ZFK.

III. It is well known [3, p. 27] that “An axiomatic system is in
general constructed in order to axiomatize a certain scientific
discipline previously given in a pre-systematic, “naive”, or
‘genetic’ form”. ZFK formulated here has been constructed,
like ZFC, to axiomatize the “naive” set theory of G. Cantor,
or more precisely, to axiomatize its non-contradictory core.
But ZFK has a more explicit and tight connection to Cantor
set theory than it does ZFC, since ZFK in its principal inter-
pretation defines the collection of all k-sets of S k (more pre-
cisely, 〈S k; ∈〉) as Cantor pre-axiomatic “world” of sets, and
the family S (more precisely, 〈S ; ∈ ∩(S × S )〉, where S ⊆ S k)
as the axiomatic fragment of Cantor “world” of sets.

It seems natural that ZFK is non-contradictory if ZFC is
non-contradictory. Let us show that it is true.

Suppose that ZFC is a non-contradictory theory. Then,
ZFC has a model and, in particular, a standard transitive
model M = 〈M; ∈ ∩(M × M)〉 such that for any set m ∈ M
absolutely all its subsets belong to the family M. It is clear
that the model M (the family M) includes absolutely denu-
merable sets. We consider the family M as the interpretation
of the signature symbol “S ” and will show that any axiom
of ZFK is either true in the model M or it does not deny the
existence of such a model.

It is natural that all axioms of group G are true in the
model M.

Axioms Gk–1 and Gk–2 affirm an obvious fact: any ZFC-
set (a set of the family M) is also a set of Cantor “world” of
sets S k.

Axiom Gk–3 affirms natural transitivity of the family M.
Axiom Gk–4 affirms an obvious fact: any statement con-

cerning sets of the family M is also true for sets of Cantor
“world” of sets S k due to the fact that ZFC is a formaliza-
tion of the (presumably) non-contradictory core of Cantor set
theory.

Axiom Gk–5) is a natural generalization of ZFC axiom of
replacement which is true in the model M.

Axiom Gk–6), in fact, affirms that the model M is natu-
rally ⊆-complete in the sense that any subset of the family
M belongs to that M if its power is equal to the power of a
certain set of M.

IV. Let x ∈ S . Then, a k-set {y | y ⊆ x & y ∈ S } is denoted
by P(x). It is clear that P(x) ∈ S (P(x) is a set) by axioms of
group G and Gk–1).

THEOREM (ZFK).

∀x ∈ S∀ y (
y ⊆ x→ y ∈ P(x)

)
.

Proof. Let us suppose that the contrary is fulfilled and let k-
sets x0 and y0 be such that x0 ∈ S , y0 ⊆ x0 and y0 < P(x). If
y0 ∈ S , than y0 ∈ P(x) by an axiom of group G. Therefore,
y0 < S . Since ∅ ∈ S , then y0 , ∅. Since y0 ⊆ x0 ∈ S and S
is transitive in S k (the axiom Gk–3)) then y0 ⊆ S .

Denote by z0 some element of a k-set y0. The axiom
Gk–5) says that there is a k-set (k-function) f such that

f =
{〈v, w〉 | v ∈ x0, (v ∈ y0 → w = v), (v < y0 → w = z0)

}
.

Since map( f ), dom( f ) = x0 ∈ S and rang( f ) = y0 ⊆ S , then
y0 ∈ S by the axiom Gk–6). A contradiction.

V. Let x be a k-set (x ∈ S or x < S ). Then Pk(x) denotes k-set
{y | y ⊆ x}. Since x ∈ S k, then Pk(x) ∈ S k (by the axiom
of generalization), i. e. Pk(x) is an element of Cantor pre-
axiomatic “world” of sets, whose power by the theorem of
G. Cantor is absolutely greater than the power of the k-set x.

Letω be a denumerably infinite set in S . Sinceω ∈ S then
ω ∈ S k (the axiom Gk–1)). It is clear that the k-set Pk(ω) is
absolutely non-denumerable. THEOREM says that any k-set
y of S k is such that y ⊆ ω (i. e. y ∈ Pk(ω)) is an element of the
set P(ω) of S . Therefore, the equality P(ω) = Pk(ω) is always
fulfilled. Thus the set P(ω) is absolutely non-denumerable
in any axiomatized model of ZFK, i. e. in any model of the
type 〈S ; ∈ ∩(S × S )〉.

Thus the concept “The set of all subsets of a set X” which
is formalized by the axioms of ZFK is absolute (in view of
the THEOREM) in the sense that it coincides with Cantor
concept “The set of all (absolutely all existing in the Cantor
‘world’ of sets) subsets of a set X”.

VI. Finally it should be noted that a symbiosis of the set the-
ory of Vdovin A. M. and the proposed theory may permit to
formulate an axiomatic non-contradictory (presumably) set
theory, the only standard model of which will be the most
important fragment of Cantor “world”of sets. This is en-
sured by the fact that Vdovin set theory proves the axioms of
ZF, the generalized principle of choice, and the generalized
continuum-hypothesis which are natural for Cantor “world”
of sets, and the theory presented above proves the absolute
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character of the concept “The set of all subsets of a set X”
which is natural for Cantor “world” of sets, as well.

Since ZF is a generally acknowledged theory and it is
applied as a framework for mathematical disciplines used to
describe (study) the real physical world, the natural (Cantor-
like) character of the future set theory will permit to develop
and investigate only natural models of real physical phenom-
ena.
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In our previous paper (Shnoll and Rubinstein, Progress in Physics, 2009, v. 2, 83–95),
we briefly reported about a phenomenon, which can be called the “arrow of time”:
when we compared histograms constructed from the results of 239-Pu alpha-activity
measurements that were obtained using West- and East-directed collimators, daytime
series of the “eastern” histograms were similar to the inverted series of the following
night, whereas daytime series of the “western” histograms resembled the inverted series
of the preceding night. Here we consider this phenomenon in more detail.

1 Introduction

As follows from all our past results, the fine structure of the
spectrum of amplitude fluctuations (the shape of the corre-
sponding histograms) is determined by the motion (orienta-
tion) of the object studied (the laboratory) in relation to spa-
tial inhomogeneities [2]. The spatial pattern (arrangement in
space) of these inhomogeneities is stable: as the Earth ro-
tates about its axis and moves along the circumsolar orbit,
similar histogram shapes are realized repeatedly with the cor-
responding periods (daily, near-monthly, yearly) [3, 4]. The
inhomogeneities themselves are analogous to the “numerals
on the dial of the celestial sphere”, which determine one or
another shape of histograms. In the experiments with ro-
tating collimators, beams of α-particles periodically go in
the direction of the same inhomogeneities, and similar his-
tograms appear with the corresponding periods [5]. Earlier,
when the collimator-equipped devices were immobile (with
one collimator directed West and another East), we showed
that histograms from either of the collimators would have
their analogs (similar shapes) from the other collimator lag-
ging behind by half a day [6] (i.e., by the time needed for
the collimators, rotating with the Earth, to face the same spa-
tial inhomogeneities). In the experiments with “daily palin-
dromes”, however, this periodicity turned out to be asymmet-
rical. Asymmetry manifested itself in the daytime series of
the “eastern” histograms being similar to the inverted series
of the following night and the daytime series of the “western”
histograms being similar to the inverted series of the preced-
ing night [1]. Below we describe this phenomenon in more
detail and discuss its possible nature.

2 Materials and methods

The material for this study was series of histograms construct-
ed from the results of long-term measurements of α-activity
registered from two 239Pu preparations using two indepen-

Fig. 1: Illustration of the “palindrome phenomenon”. A high prob-
ability of histograms of the same order numbers to be similar in the
direct daytime/inverse nighttime sequences (line 1) and the direct
nighttime/inverse daytime ones (line 2). A low probability of his-
tograms to be similar at comparing the direct daytime and nighttime
sequences (line 3). The counter did not contain a collimator. Date
of measurements, September 23, 2005. Every line sums up the re-
sults of approximately 10000 pairwise comparisons. X axis, interval
between the histograms compared (min); Y axis, the number of sim-
ilar pairs.

dent collimator-equipped devices. The collimators were used
to isolate beams of α-particles flying at certain directions.
In this study, one collimator was directed East and another
was directed West. The technical information on the devices,
which were constructed by I. A. Rubinstein and N. N. Ve-
denkin, can be found in [2]. The analysis of histogram series
consists in the estimation of histogram similarity depending
on the interval between them. A detailed description of the
methodology for constructing and comparing histograms, as
well as for obtaining distributions of the number of similar
pairs over the length of the interval between the histograms
compared, is given in [2]. To characterize correlations in
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Fig. 2: Palindrome effects in the simultaneous measurements of
239Pu α-activity with two independent collimator-equipped devices
directed East (A) and West (B). Date of measurements, September
22–23, 2003. The axes as in Fig. 1. (A) “East”: (1) “day” versus
the following inverse “night”; (2) “day” versus the preceding inverse
“night”. (B) “West”: (1) “day” versus the preceding inverse “night”;
(2) “day” versus the following inverse “night”.

the change of the histogram shape over time, we used the
“palindrome phenomenon” [7] — the high probability of a
sequence of histograms constructed from the results of day-
time measurements (from 6:00 to 18:00, by local longitude
time) to be similar to the inverse sequence of histograms con-
structed from the results of nighttime measurements (from
18:00 to 6:00 of the next day). Fig. 1 demonstrates this phe-
nomenon. The source material is series of 239Pu α-activity
measurements registered with a counter without collimator
(frequency of measurement, 1 point per second). From these
data, 1-min histogram sequences were constructed (60 points
per histogram), with the histograms smoothed 7-fold by the
moving summation method (for visual convenience). Two
histogram sequences were compared: (1) from 6:00 to 18:00
by accurate local time (“daytime” sequence) and (2) from
18:00 to 6:00 of the next day (“nighttime” series), each se-
quence consisting of 720 histograms. The sequences could
be direct (from no. 1 to 720) or inverse (from no. 720 to 1).

As seen in Fig. 1, if compared are the direct daytime and
nighttime sequences, the similarity (the probability to be sim-
ilar) of histograms of the same order numbers is low (line 3).
In contrast, the direct daytime/inverse nighttime (line 1) or in-
verse daytime/direct nighttime (line 2) comparisons reveal a
high similarity of the same histogram numbers — the “effect
of palindrome” [7].

3 Results

The phenomenon of palindrome was easily reproduced in
the analysis of measurements performed in different seasons
without a collimator. However, the analysis of data obtained
in the experiments with collimators (western and eastern)
showed varying results; the phenomenon became irregular.
In the experiments with the western collimator, palindromes
were reproduced regularly when a direct daytime sequence

Fig. 3: In the measurements of 239Pu α-activity with the West-
directed collimator, a direct sequence of daytime histograms is sim-
ilar to the reverse histogram sequence of the preceding night; in the
measurements of 239Pu α-activity with the East-directed collimator,
a direct sequence of daytime histograms is similar to the reverse his-
togram sequence of the following night. A sum of four experiments.

was compared with the inverse sequence of the preceding
night; with the eastern collimator, it must have been a direct
daytime sequence versus the inverse sequence of the follow-
ing night. This phenomenon is illustrated in Fig. 2.

Fig. 2 shows that in the measurements with the eastern
collimator, a clear palindrome can be seen when the direct se-
quence of histograms obtained from 6:00 to 18:00 on Septem-
ber 22 (“day”) is compared with the inverse sequence of his-
tograms obtained from 18:00 on September 22 to 6:00 on
September 23 (“night”). At the same time, comparing the
direct sequence of nighttime histograms (measurements from
18:00 on September 22 to 6:00 on September 23) with the
inverse sequence of the following daytime histograms (mea-
surements from 6:00 to 18:00 on September 23) shows no
palindromes.

In the experiments with the “western” collimator, the sit-
uation is opposite. A clear palindrome is seen when the di-
rect sequence of histograms obtained from 6:00 to 18:00 on
September 22 (“day”) is compared with the inverse sequence
of histograms obtained from 18:00 on September 21 to 6:00
on September 22 (“night”). No palindromes is revealed when
the direct sequence of histograms obtained from 6:00 to 18:00
on September 22 (“day”) is compared with the inverse se-
quence of histograms obtained from 18:00 on September 22
to 6:00 on September 23 (“night”). To put it briefly: the
eastern collimator will give palindromes upon the direct-day-
to-following-inverse-night comparing; the western collima-
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Fig. 4: The relation between the directions of motion during the
daily rotation of the Earth, its translocation along the circumsolar
orbit, the rotation of the Sun about its axis and the directions of α-
particles flying through the “western” and “eastern” collimators.

tor will show palindromes upon the direct-day-to-preceding-
inverse-night comparing. Since the regularities found were of
principle importance, we conducted more than 25 analogous
experiments. The regularities were reproduced well and did
not depend on the season. This can be seen in Fig. 3, which
represents a summary result of four independent experiments.

4 Discusion

The phenomenon under discussion concerns regularities re-
vealed in the experiments, in which 239Pu α-activity was
measured with collimator-equipped devices. The collimator
were directed either West or East, and the sequence of his-
tograms obtained with the western collimator from 6:00 to
18:00 by local time (“day”) turned out to be similar to the in-
verse sequence of the preceding night (from 18:00 to 6:00),
whereas the sequence of daytime histograms obtained with
the eastern collimator were similar to the inverse sequence of
the following night.

Here we would remind the reader that the matter does not
concern any “effects on α-decay”; it concerns changes of the
fine structure of amplitude fluctuation spectra (the shape of
the corresponding histograms). The intensity of α-decay, a
mean number of decay acts per time unit, does not depend on
the direction of the collimator; it will fluctuate according to
the Poisson statistics — proportionally to ±√N, where N is
the decay intensity.

Earlier we established that the changes of the histogram
shape would depend on the orientation of collimators in space
[8]. It seems that certain histogram shapes correspond to
certain directions, possibly, to the spatial locations of grav-
itational inhomogeneities. Changes of the histogram shape
are determined by the motion of our objects in relation to
these quite long-living (for more than a year) stable inhomo-

geneities. Now we see that apart from the dependence on
the spatial vector, there is also a dependence on the vector of
time.

Fig. 4 schematically illustrates spatial relations in the ex-
periments described above. There are two devices in the lab-
oratory (on the Earth), which differ only by the orientation
of the collimators: one isolates a beam of α-particles flying
West (i.e., against the direction that the Earth rotates in) and
the other is directed East (i.e., along the Earth rotation). The
Earth rotates about its axis and moves along the circumsolar
orbit. Both these motions, as well as rotation of the Sun, have
the same direction: they are directed counterclockwise. How-
ever, combining the first two motions results in the rotation of
the Earth to be counter-directed to its translocation along the
orbit in the daytime and co-directed in the nighttime [9]. Ac-
cordingly, α-particles from the “eastern” collimator would fly
against the orbital Earth motion in the daytime and along this
motion in the nighttime, this being the opposite for the “west-
ern” collimator. Hence, the collimators alternatively (one dur-
ing the day- and the other during the nighttime) take the same
orientation — either “along” or “against” the orbital motion
of the Earth. Therefore, the phenomenon discussed cannot be
explained by the change of the collimator orientation towards
the Earth motion along the circumsolar orbit.

Thus, the “arrow of time” in our experiments is deter-
mined only by the difference in the orientation of the
collimators in relation to the direction of the Earth ro-
tation about its axis.
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A new sheet of spacetime is isolated and added to the existing sheet, thereby yielding a
pair of co-existing sheets of spacetimes, which are four-dimensional inversions of each
other. The separation of the spacetimes by the special-relativistic event horizon com-
pels an interpretation of the existence of a pair of symmetrical worlds (or universes)
in nature. Further more, a flat two-dimensional intrinsic spacetime that underlies the
flat four-dimensional spacetime in each universe is introduced. The four-dimensional
spacetime is outward manifestation of the two-dimensional intrinsic spacetime, just as
the Special Theory of Relativity (SR) on four-dimensional spacetime is mere outward
manifestation of the intrinsic Special Theory of Relativity (φSR) on two-dimensional
intrinsic spacetime. A new set of diagrams in the two-world picture that involves rela-
tive rotation of the coordinates of the two-dimensional intrinsic spacetime is drawn and
intrinsic Lorentz transformation derived from it. The Lorentz transformation in SR is
then written directly from intrinsic Lorentz transformation in φSR without any need to
draw diagrams involving relative rotation of the coordinates of four-dimensional space-
time, as usually done until now. Indeed every result of SR can be written directly from
the corresponding result of φSR. The non-existence of the light cone concept in the
two-world picture is shown and good prospect for making the Lorentz group SO(3,1)
compact in the two-world picture is highlighted.

1 Introduction

The concept of other universe(s) or world(s) is not new in
physics. In 1898, Schuster contemplated a universe con-
taining negative mass [1]. The discovery in particle physics
of the existence of an anti-particle to every particle after-
wards, led some physicists to suggest the existence of an anti-
atom (composed of anti-particles) to every atom (composed
of particles); an anti-molecule to every molecule and an anti-
macroscopic-object to every macroscopic object. Then in or-
der to explain the preponderance of particles and matter over
anti-particles and anti-matter respectively in this our universe,
the existence of an anti-universe containing a preponderance
of anti-matter over matter was suggested, as discussed in [2,
see p. 695], for instance. However it has remained unknown
until now whether the speculated universe containing nega-
tive mass of Schuster and an anti-universe containing a pre-
ponderance of anti-matter exist or not.

The purpose of this article is to show formally that the
Special Theory of Relativity rests on a background of a two-
world picture, in which an identical partner universe in a dif-
ferent spacetime to this universe of ours in our spacetime co-
exist, and to commence the development of the two-world
picture thus introduced. The placement of the other universe
relative to our universe, as well as the configuration of matter
in it shall be derived. The symmetry of state and symmetry
of laws between the two universes shall be established. The
definite interaction between the two universes in relativistic
phenomena shall also be shown.

This article may be alternatively entitled as Isolating

a Symmetry-Partner Universe to Our Universe in the Context
of the Special Theory of Relativity. Apart from the derivation
of the Lorentz transformation (LT) and its inverse with the
aid of a new set of spacetime/intrinsic spacetime diagrams on
the combined spacetimes/intrinsic spacetimes of the two co-
existing identical “anti-parallel” universes, there are no fur-
ther implications on the other results of SR usually derived
from the LT and its inverse in the existing one-world picture.
However SR must be deemed to be tremendously expanded or
made more complete by exposing its two-world background
and by the addition of a parallel two-dimensional intrinsic
Special Theory of Relativity (φSR) on a flat two-dimensional
intrinsic spacetime that underlies the flat four-dimensional
spacetime of SR in each of the two universes.

There are several new implications of the two-world pic-
ture for SR as well, which include the non-existence of the
light cone concept, good prospect for making SO(3,1) com-
pact, a feat that has proved impossible in the existing one-
world picture and inter-universe transitions of symmetry-
partner particles between the two universes (at super-high en-
ergy regimes), on which the prospect for experimental test
ultimately of the two-world picture rests. This initial arti-
cles goes as far as a single article can on the vast subject of
two-world symmetry that lies at the foundation of the Special
Theory of Relativity and possibly the whole of physics.

2 Two schemes towards the Lorentz boost

As can be easily demonstrated, the two schemes summarized
in Table 1 both lead to the Lorentz boost, (which shall also
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Scheme I Scheme II

x = x′ coshα + ct′ sinhα x = x′secψ + ct′ tanψ
ct = ct′ coshα + x′ sinhα ct = ct′ secψ + x′ tanψ
y = y′ ; z = z′ y = y′ ; z = z′

coshα =
1√

1 − v2/c2
= γ secψ =

1√
1 − v2/c2

= γ

sinhα =
v/c√

1 − v2/c2
= βγ tanψ =

v/c√
1 − v2/c2

= βγ = βγ

tanhα = v/c = β sinψ = v/c = β

Table 1: Two schemes towards the derivation of the Lorentz boost
graphically.

be referred to as the Lorentz transformation (LT)) and the
Lorentz invariance (LI). Although the γ= coshα parametri-
zation of the LT in Scheme I is more familiar, the γ= secψ
parametrization in Scheme II is also known.

Now by letting v/c = 0 in Table 1 we obtain the following:

coshα = 1; sinhα = tanhα = 0 ⇒ α = 0 ,
secψ = 1; tanψ = sinψ = 0 ⇒ ψ = 0 .

By letting v/c = 1 we have

coshα = sinhα = ∞; tanhα = 1 ⇒ α = ∞ ,

secψ = tanψ = ∞; sinψ = 1 ⇒ ψ = π
2 ,

5π
2 ,

9π
2 , . . .

And by letting v/c =−1 we have

coshα = ∞; sinhα = −∞; tanhα = −1 ⇒ α = −∞ ,

secψ = ∞; tanψ = −∞; sinψ = −1 ⇒ ψ = − π2 , 3π
2 ,

7π
2 , . . .

Thus there are the following equivalent ranges of values
of the parameter α and the angle ψ between the two schemes:

0 6 α 6 ∞ (Scheme I) ≡ 0 6 ψ 6 π
2 (Scheme II)

−∞ 6 α 6 ∞ (Scheme I) ≡ − π2 6 ψ 6 π
2 (Scheme II)

The second range, which is −∞6α6∞ (Scheme I) or
− π2 6 ψ 6 π

2 (Scheme II), generates the positive half-plane
shown shaded in Figs. 1a and 1b.

If we consider Scheme I, then clearly there is only the
positive half-plane as illustrated in Fig. 1a. This is so since
the range −∞ 6 α 6 ∞ generates the positive half-plane only,
and there are no other values of α outside this range. Thus
going to the negative half-plane is impossible in the context
of SR in Scheme I.

If we consider Scheme II, on the other hand, then the
range − π2 6 ψ 6 π

2 , which generates the positive half-plane in
Fig. 1b is not exhaustive of the values of angle ψ in the first
cycle. There is also the range π

2 6 ψ 6
3π
2 , which generates

the negative half-plane. Thus going into the negative half-
plane is possible in SR in the context of Scheme II. There

Fig. 1: a) All values of the number α generate the positive half-plane
in Scheme I and b) all values of the angle ψ in the first cycle generate
the positive and negative half-planes in Scheme II.

is actually no gap between the solid line and the broken line
along the vertical as appears in Fig. 1b.

It must quickly be pointed out that there has not seemed
to be any need to consider the second range π

2 6 ψ 6
3π
2 (or

the negative half-plane) in Fig. 1b in physics until now be-
cause the parity inversion and time reversal associated with
it can be achieved by reflection of coordinates of 3-space in
the first range − π2 6 ψ 6 π

2 (or in the positive half-plane) that
also includes time reversal. However we consider it worthy
of investigation whether the range π

2 6 ψ 6
3π
2 and the parity

inversion it implies exist naturally apart from the possibil-
ity of parity inversion by coordinate reflection in the positive
half-plane. Reasoning that parity inversion and time reversal
will not be the only physical significance of the second range
π
2 6 ψ 6 3π

2 (or the negative half-plane) in Fig. 1b, should
it exist in nature, we deem it judicious to carry both ranges
− π2 6 ψ 6 π

2 and π
2 6 ψ 6

3π
2 along in the present develop-

ment with the hope that the theory shall ultimately justify the
existence of the second range or otherwise.

In translating Figs. 1a and 1b into spacetime diagrams, the
positive horizontal lines along which, v= 0, α= 0 and ψ= 0,
in the figure, correspond to the 3-dimensional Euclidean
space Σ with mutually orthogonal dimensions x, y and z in
the Cartesian system of coordinates; the positive vertical lines
along which, v= c, α=∞ and ψ= π

2 , correspond to the posi-
tive time dimension ct, while the negative vertical lines along
which v=−c, α=−∞ and ψ=− π

2 , correspond to the negative
time dimension (or the time reversal dimension) −ct∗. In ad-
dition, the horizontal line in the negative half-plane in Fig. 1b
corresponds to a negative 3-dimensional Euclidean space (not
known in physics until now) to be denoted by −Σ∗ with mutu-
ally orthogonal dimensions −x∗,−y∗ and −z∗ in the rectangu-
lar system. Thus Figs. 1a and 1b translate into the space-time
diagrams of Figs. 2a and 2b respectively. Representation of
the Euclidean 3-spaces by lines along the horizontal and the
time dimensions by vertical normal lines to the “space axes”,
as done in Figs. 2a and 2b, is a well known practice in the
graphical representation of four-dimensional spacetime, ex-
emplified by the modern Minkowski diagrams [3].

Figure 2a pertains to Scheme I in Table 1. The four-
dimensional spacetime with dimensions x, y, z and ct is the
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Fig. 2: The spacetime domains generated by a) all values of the
number α in Scheme I and b) all values of the angle ψ in the first
cycle in Scheme II.

Minkowski space as known. In addition, there is the nega-
tive time dimension −ct∗ that serves the role of time rever-
sal dimension, (which is different from the past time axis in
the past light cone). There are no second and third quad-
rants in Fig. 2a, since the negative half-plane is inaccessible
in Scheme I.

Figure 2b pertains to Scheme II in Table 1. There are
two “anti-parallel” Minkowski spaces in Fig. 2b namely, the
one with positive dimensions, (Σ, ct) ≡ (x, y, z, ct), gener-
ated by the range of angles 0 6 ψ 6 π

2 in the first quadrant in
Fig. 1b, to be referred to as the positive Minkowski space,
and the other with all negative dimensions, (−Σ∗,−ct∗) ≡
(−x∗,−x∗,−y∗,−ct∗), generated by the range of angles
π 6 ψ 6 3π

2 in the third quadrant, to be referred to as the
negative Minkowski space. There are in addition the negative
time dimension −ct∗ that serves the role of the time reversal
dimension to the positive Minkowski space, while the positive
time dimension ct serves the role of time reversal dimension
to the negative Minkowski space.

It shall again be quickly added that the spacetime dimen-
sions of the negative Minkowski space constitute parity inver-
sion and time reversal with respect to the spacetime dimen-
sions of the positive Minkowski space and conversely. Figure
2b says that this situation exists naturally, quite apart from the
fact that parity inversion (by coordinate reflection), x→− x;
y→ y; z→ z or x→− x; y→−y; z→−z and time reversal
t→− t are achievable within the positive half-plane, that is
within the positive Minkowski space (fist quadrant) plus the
fourth quadrant in Figs. 2a and 2b. Schemes I and II have
been known to imply the existence of the positive half plane
only in physics until now. The investigation of the implica-
tions of the existence naturally of the negative half-plane in
parallel with the positive half-plane in Figs. 1b and 2b shall
be started in this paper.

3 Minkowski’s diagrams as graphical representation of
Lorentz transformation in Scheme I

There is essentially nothing new in this section. Its inclusion
is necessary so that the derivation newly of the LT and its
inverse graphically in the context of Scheme II from the next
section can be compared with the known derivation of the LT
and its inverse graphically in the context of Scheme I, which

shall be re-presented in this section.
For the relative motion of two frames, (which involves

positive time dimension), the time reversal dimension −ct∗ is
irrelevant, leaving only the first quadrant in Fig. 2a, (in the
context of Scheme I). Thus relative rotations of the space-
time coordinates of the particle’s (or primed) frame and the
observer’s (or unprimed) frame, for every pair of frames in
relative motion, are limited to the interior of the first quad-
rant in Scheme I, which corresponds to the first quadrant in
Figs. 1a and 2a. As is clear from Fig. 2a, Scheme I pertains to
a one-world picture, including the time reversal dimension.

Now the Lorentz transformation (LT) is usually derived
analytically in the Special Theory of Relativity (SR), follow-
ing Albert Einstein’s 1905 paper [4]. In his paper, Einstein
inferred from two principles of relativity, the LT and its in-
verse for motion along the x′-direction of the coordinate sys-
tem (ct′, x′, y′, z′) attached to a particle moving at speed v
relative to an observer’s frame (ct, x, y, z), where the coor-
dinates x′ and x are taken to be collinear, respectively as fol-
lows:

t′ = γ
(
t − v

c2 x
)

; x′ = γ (x − vt) ; y′ = y; z′ = z (1)

and

t = γ
(
t′ +

v

c2 x′
)

; x = γ
(
x′ + vt′

)
; y = y′; z = z′, (2)

where γ= (1 − v2/c2)−1/2. As demonstrated in Einstein’s pa-
per, each of systems (1) and (2) satisfies the Lorentz invari-
ance,

c2t′2 − x′2 − y′2 − z′2 = c2t2 − x2 − y2 − z2. (3)

Somewhat later, Minkowski explored the graphical (or
coordinate- geometrical) implication of the LT and its in-
verse [5]. In the graphical approach, the first two equations of
the inverse LT, system (2), is interpreted as representing rota-
tions of the coordinates x′ and ct′ of the particle’s (or primed)
frame relative to the coordinates x and ct respectively of the
observer’s (or unprimed) frame, while the last two equations
are interpreted as representing no special-relativistic rotations
of coordinates y′ and z′ relative to y and z respectively (since
relative motion of SR does not occur along these coordinates).

The Minkowski spacetime diagrams from which the LT
and its inverse have sometimes been derived for two frames in
relative motion along their collinear x′- and x-axes, are shown
as Figs. 3a and 3b, where the surface of the future light cone
is shown by the broken lines.

The coordinates y′ and z′ of the particle’s frame, as well as
the coordinates y and z of the observer’s frame remain not ro-
tated from the horizontal, and have not been shown in Figs. 3a
and 3b. The net coordinate projection along the horizontal
in Fig. 3a, which in ordinary Euclidean geometry would be
x′ cos φ + ct′ sin φ, is given in the Minkowski geometry as
x′ coshα + ct′ sinhα. This is the net coordinate projection
to be denoted by x, along the X-axis of the observer’s frame.
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Similarly the net coordinate projection along the vertical in
Fig. 3a is ct′ coshα + x′ sinhα in the Minkowski geometry.
This is the net coordinate projection, to be denoted by ct,
along the cT -axis of the observer’s frame. Thus the following
familiar transformation of coordinates has been derived from
Fig. 3a:

ct = ct′ coshα + x′ sinhα;

x = x′ coshα + ct′ sinhα; y = y′ ; z = z′

 , (4)

where the trivial transformations, y= y′ and z = z′ of the co-
ordinates along which relative motion of SR does not occur
have been added.

The inverse of system (4) that can be similarly derived
from Fig. 3b is the following:

ct′ = ct coshα − x sinhα;

x′ = x coshα − ct sinhα; y′ = y ; z′ = z

 , (5)

System (5) can be presented in a matrix form as follows:


ct′

x′

y′

z′


=



coshα − sinhα 0 0
− sinhα coshα 0 0

0 0 1 0
0 0 0 1





ct
x
y
z


(6)

which of the form x′ = L x.
By considering the spatial origin, x′ = y′ = z′ = 0, of the

primed frame, system (4) reduces as follows:

x = ct′ sinhα and ct = ct′ coshα . (7)

Division of the first into the second equation of system (7)
gives

x
ct

=
v

c
= tanhα , (8)

where, x/t = v, is the speed of the primed frame relative to the
unprimed frame.

Using (8) along with cosh2 α − sinh2 α = 1 gives the fol-
lowing:

coshα =
1√

1 − v2/c2
≡ γ , (9a)

sinhα =
v/c√

1 − v2/c2
≡ βγ . (9b)

Substitution of equations (9a) and (9b) into systems (4)
and (5) gives the LT and its inverse in the usual forms of sys-
tems (1) and (2).

The transformation from the usual trigonometric ratios,
cosine and sine, of the angle φ in Figs. 3a and 3b, where
tan φ= v/c; − π4 < φ < π

4 (the light-cone), to hyperbolic func-
tions, cosh and sinh of a number α in expressing coordinate
projections on spacetime, in order to reproduce the Lorentz
transformation in the Minkowski graphical approach, is com-
pelled by the need for the parameter α to take on values in

Fig. 3: The Minkowski diagrams sometimes used to derive the Lo-
rentz transformation and its inverse in the existing one-world picture.

the unbounded range (−∞,∞) (in Fig. 1a) of Scheme I, as the
speed v of the particle relative to the observer takes on values
in the unbounded range (−c, c). In other words, the need to
transform from the trigonometric ratios, cosine and sine, of
the angle φ in Figs. 3a and 3b to hyperbolic functions, cosh
and sinh, of a number α is compelled by the need to restrict to
the positive half-plane of Fig. 1a or to the one-world picture
in Special Relativity until now.

There is also a known mathematical significance to the LT
system (5) or (6) and its inverse system (4) derived from the
Minkowski diagrams of Figs. 3a and 3b. This is the fact that
the 4× 4 matrix L that generates the Lorentz boost (6), which
contains the parameter α in the unbounded range (−∞,∞), is
a member of the pseudo-orthogonal Lorentz group SO(3,1),
which is a non-compact Lie group with an unbounded pa-
rameter space [6]. Moreover the matrix L is non-singular for
any finite value of α as required for all group SO(3,1) matri-
ces. This implies that non-physical discontinuities do not ap-
pear in the Minkowski space generated. Singularities appear
in systems (4) and (5) for the extreme values of α namely,
α=∞ and α=−∞ only, which are not included in the range
of α. These extreme values of α correspond to speeds v= c
and v=−c respectively, which material particles cannot at-
tain in relative motion.

The Lorentz boost is just a special Lorentz transforma-
tion. The general Lorentz transformation Λ is written in the
factorized form [6] as follows:

Λ = R(γ, β, 0) L3(α) R(φ, θ, ϕ)−1, (10)

where L3(α) is the Lorentz boost along the z-axis with speed
v= c tanhα; 0 6 α < ∞, and the Euler angles for rotation in
the Euclidean 3-space have their usual finite ranges.

Since the group SO(3) matrices are closed and bounded,
and are hence compact, the compactness or otherwise of Λ

is determined by the Lorentz boost. Thus since the Lorentz
boost is non-compact, the Lorentz group SO(3,1) is non-
compact as known. There is no way of making SO(3,1)
compact within the Minkowski one-world picture since the
parameter α naturally lies within the unbounded range
−∞ < α < ∞ in this picture. Thus the Minkowski diagrams
of Figs. 3a and 3b and the LT and its inverse of systems (5)
and (4) or the implied transformation matrix L in Eq. (6) de-
rived from them, have been seen as physical significance of
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the Lorentz group in mathematics, or perhaps the other way
round.

From the point of view of physics, on the other hand, one
observes that the coordinates x′ and ct′ of the primed frame
are non-orthogonal (or are skewed) in Fig. 3a, and the coor-
dinates x and ct of the unprimed frame are skewed in Fig. 3b.
These coordinates are orthogonal in the absence of relative
motion of the frames. Even in relative motion, an observer at
rest relative to the primed frame could not detect the uniform
motion of his frame. Hence the primed frame is stationary
relative to an observer at rest relative to it with or without the
motion of the primed frame relative to the unprimed frame.
Yet Fig. 3a shows that the coordinates of the primed frame are
skewed with respect to an observer at rest relative to it while
it is in uniform motion relative to the unprimed frame. This
skewness of the spacetime coordinates of a frame is then an
effect of the uniform motion of the frame, which an observer
at rest relative to it could detect. This contradicts the fact that
an observer cannot detect any effect of the uniform motion of
his frame. Skewness of rotated coordinates cannot be avoided
in Minkowski’s diagrams because relative rotation of coordi-
nates must be restricted to the first quadrant in Scheme I (or
in the one-world picture), as deduced earlier.

Skewness of spacetime coordinates of frames of reference
is not peculiar to the Minkowski diagrams. It is a general fea-
ture of all the existing spacetime diagrams (in the one-world
picture) in Special Relativity. There are at least two other
spacetime diagrams in Special Relativity, apart from the Min-
kowski diagrams namely, the Loedel diagram [7] and the Bre-
hme diagram [8]. The spacetime coordinates of two frames
in relative motion are skewed in the Loedel and Brehme dia-
grams shown as Figs. 4a and 4b respectively, for two frames
in relative motion along their collinear x′- and x-axes.

Skewness of the coordinates of a frame of reference in
uniform relative motion is undesirable because it is an effect
of uniform motion of a frame which an observer at rest rela-
tive to the frame could detect, which negates the fundamen-
tal principle that no effect of uniform motion is detectable,
as mentioned earlier. Moreover it gives apparent preference
for one of two frames of reference in uniform relative mo-
tion, which, again, is a contradiction of a tenet of Special
Relativity.

4 Geometric representation of Lorentz transformation
in Scheme II

Having discussed the existing geometric representation of the
Lorentz transformation and its inverse in Special Relativity
in the context of Scheme I in Table 1 (or in the one-world
picture) in the preceding section, we shall develop a new set
of spacetime diagrams that are compatible with the Lorentz
transformation and its inverse in the context of Scheme II in
Table 1 in the rest of this paper. We shall, in particular, watch
out for the possibility of making the Lorentz group SO(3,1)

Fig. 4: a) The Loedel diagram and b) the Brehme diagram for two
frames in uniform relative motion.

compact and for removing the skewness of rotated spacetime
coordinates of frames of reference in the existing spacetime
diagrams of Special Relativity (in the one-world picture or in
the context of Scheme I).

4.1 Co-existence of two identical universes in the context
of Scheme II

As shall be sufficiently justified with progress in this arti-
cle, the co-existence of two anti-parallel Minkowski spaces in
Fig. 2b implies the co-existence of two “anti-parallel” worlds
(or universes) in nature. The dimensions x, y, z and ct of the
positive Minkowski space, which are accessible to us by di-
rect experience, are the dimensions of our universe (or world).
The dimensions −x∗,−y∗,−z∗ and −ct∗ of the negative Min-
kowski space, which are inaccessible to us by direct expe-
rience, and hence, which have remained unknown until now,
are the dimensions of another universe. Dummy star label has
been put on the dimensions of the other universe, which are
non-observable to us in our universe, in order to distinguish
them from the dimensions of our universe.

The negative spacetime dimensions −x∗,−y∗,−z∗ and
−ct∗ are inversions in the origin (or four-dimensional inver-
sion) of the positive spacetime dimensions x, y, z and ct. Thus
the spacetime dimensions of the universe with negative dim-
ensions, to be referred to as the negative universe for brevity,
and the spacetime dimensions of our universe, (to sometimes
be referred to as the positive universe), have an inversion-in-
the-origin symmetry. There is a one-to-one mapping of points
in spacetimes between the positive (or our) universe and the
negative universe. In other words, to every point in spacetime
in our universe, there corresponds a unique symmetry-partner
point in spacetime in the negative universe.

In addition to the inversion in the origin relationship be-
tween the spacetime dimensions of the positive and negative
universes, we shall prescribe a reflection symmetry of space-
time geometry between the two universes. In other words, if
we denote the spacetime manifold of the positive universe by
M and that of the negative universe by −M∗, then spacetime
geometry at a point in spacetime in the positive universe shall
be prescribed by M and the metric tensor gµν at that point,
that is, by (M, gµν), while spacetime geometry shall be pre-
scribed at the symmetry-partner point in the negative universe
by (−M∗, gµν), where it must be remembered that the metric
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tensor is invariant with reflections of coordinates. Symmetry
of spacetime geometry between the two universes can only
be prescribed at this point of development of the two-world
picture.

Now Mach’s principle is very fundamental. We shall
make recourse to the principle here for the purpose of ad-
vancing our argument for the symmetry of state between the
positive and negative universes, while knowing that the prin-
ciple in itself has noting to do with Special Relativity. Es-
sentially the Mach’s principle states that the geometry of a
space is determined by the distribution of mass - energy in
that space [9, see p. 400]. It follows from the foregoing para-
graph and Mach’s principle that there is a reflection symmetry
of the distribution of mass-energy in spacetimes between the
two universes. Actually this is also a prescription at this point
since the symmetry of spacetime geometry is a prescription.

Reflection symmetry of geometry of spacetime and of the
distribution of mass-energy in spacetime also imply reflec-
tion symmetry of motions of particles and objects, natural or
caused by animate object, between the two universes. In other
words, corresponding to an event, natural or man-made, tak-
ing place within a local region of spacetime in our universe,
there is an identical event within the symmetry-partner lo-
cal region of spacetime in the negative universe. (This is the
symmetry of state between the two universes). The two uni-
verses are perfectly identical in state at all times. The perfect
symmetry of natural and man-made events (or perfect sym-
metry of state) between the two universes is a prescription at
this point.

There is also a perfect symmetry of laws between the two
universes, which implies that natural laws take on perfectly
identical forms in the two universes. Symmetry of laws be-
tween the two universes is simply the extension of the invari-
ance of laws found in our universe to the negative universe,
which follows partly from the validity of local Lorentz invari-
ance in the negative universe to be demonstrated shortly. The
two universes could not possess symmetry of state if the laws
that guide events and phenomena in them are different. The
perfect symmetry of laws between the two universes shall be
demonstrated with the advancement of the two-world picture.

The negative spacetime dimensions of the negative uni-
verse implies that distance in space, which is a positive scalar
quantity in our (positive) universe, is a negative scalar quan-
tity in the negative universe, and that interval of time, which is
a positive quantity in the positive universe is a negative quan-
tity in the negative universe; (it does not connote going to the
past in our time dimension). This can be easily ascertained
from the definition of distance, which is given in 3-space in
the negative universe as, d =

√
(−x∗)2 + (−y∗)2 + (−z∗)2. If

we consider motion along the dimension −x∗ solely, then we
must let −y∗ =−z∗ = 0, to have d =

√
(−x∗)2 =− x∗. Likewise

the distance element of Special Relativity in the negative uni-
verse is, ds∗ =

√
(−ct∗)2 − (−x∗)2 − (−y∗)2 − (−z∗)2. If we

Fig. 5: Combined positive and negative Minkowski’s spaces of the
positive and negative universes.

let −x∗ =−y∗ =−z∗ = 0, for propagation in time only, then
ds∗ =

√
(−ct∗)2 =−ct∗. Interestingly the negative worldline

element (ds∗ < 0) in the negative universe is the negative root
(−ds) of the quadratic line element ds2, which is usually dis-
carded since it conveys nothing to us from the point of view
of experience in the positive universe.

4.2 Non-separation of symmetry-partner points in
spacetimes in the positive and negative universes

It shall be shown here that a point in spacetime in our (or
positive) universe is effectively not separated in space or in
time dimension from its symmetry-partner point in spacetime
in the negative universe, for every pair of symmetry-partner
points in spacetimes in the two universes. Now let us con-
sider the larger spacetime of combined positive and negative
universes, Fig. 2b, which is re-illustrated as Fig. 5.

Point A* in the negative Euclidean 3-space −Σ∗ of the
negative universe is the symmetry-partner to point A in the
positive Euclidean 3-space Σ of the positive universe. Point
B* in the negative time dimension −ct∗ of the negative uni-
verse is the symmetry-partner to point B in the positive time
dimension ct of the positive universe. Hence points C* and C
are symmetry-partner points on four-dimensional spacetimes
in the two universes.

Now let points A and O in the positive 3-space Σ of the
positive universe be separated by a positive distance d, say,
since distances in space are positive scalar quantities in the
positive universe. Then the symmetry-partner points A* and
O* in the negative 3-space −Σ∗ of the negative universe are
separated by negative distance −d∗, since distances in space
are negative scalar quantities in the negative universe. Hence
the distance in 3-space between point A in the positive uni-
verse and its symmetry-partner point A* in the negative uni-
verse is, d − d∗ = 0, since d and −d∗ are equal in magnitude.
This implies that the symmetry-partner points A and A* are
effectively separated by zero distance in space with respect to
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observers (or people) in the positive and negative universes.
Likewise, if the interval of positive time dimension ct

between point O and point B is the positive quantity c∆t,
then the interval of the negative time dimension −ct∗ between
point O* and point B* is the negative quantity −c∆t∗, since
intervals of time are negative quantities in the negative uni-
verse. Hence the interval of time dimension between point B
in ct in the positive universe and its symmetry-partner point
B* in −ct∗ in the negative universe is, c∆t − c∆t∗ = 0. This
implies that the symmetry-partner points B and B* in the time
dimensions are effectively separated by zero interval of time
dimension with respect to observers (or people) in the positive
and negative universes. It then follows that the time t of an
event in the positive universe is effectively separated by zero
time interval from the time −t∗ of the symmetry-partner event
in the negative universe. Thus an event in the positive uni-
verse and its symmetry-partner in the negative universe occur
simultaneously.

It follows from the foregoing two paragraphs that sym-
metry-partner points C and C* in spacetimes in the positive
and negative universes are not separated in space or time,
and this is true for every pair of symmetry-partner points in
spacetimes in the two universes. Although symmetry-partner
points in spacetimes in the positive and negative universes
coincide at the same point, or are not separated, they do not
touch because they exist in different spacetimes.

One consequence of the foregoing is that local spacetime
coordinates, (Σ, ct) ≡ (x, y, z, ct), originating from a point O
in the positive universe and the symmetry-partner local space-
time coordinates, (−Σ∗,−ct∗) ≡ (−x∗,−y∗,−z∗,−ct∗), orig-
inating from the symmetry-partner point O* in spacetime in
the negative universe can be drawn from the same point on
paper, as done in Fig. 5, and geometrical construction whose
predictions will conform with observation or experiment in
each of the two universes can be based on this in the two-
world picture, as shall be done in the rest of this section.

4.3 Introducing a flat two-dimensional intrinsic space-
time underlying the flat four-dimensional spacetime

Since it is logically required for this article to propagate be-
yond this point and since space limitation in this paper does
not permit the presentation of its derivation, which shall be
presented elsewhere, we shall present (as ansatz) at this point
certain flat two-dimensional intrinsic spacetime with dimen-
sions to be denoted by φρ and φcφt, where φρ is intrinsic
space dimension (actually a one-dimensional intrinsic space)
and φcφt is intrinsic time dimension, which underlies the
flat four-dimensional spacetime (the Minkowski space) of the
Special Relativity, usually denoted by (x0, x1, x2, x3); x0 = ct,
but which shall be denoted by (Σ, ct) in this article for con-
venience, where Σ is the Euclidean 3-space with dimensions
x1, x2 and x3.

Every particle or object with a three-dimensional inertial

Fig. 6: a) The flat 4-dimensional spacetime and its underlying flat
2-dimensional intrinsic spacetime with the inertial masses of three
objects scattered in the Euclidean 3-space and their one-dimensional
intrinsic inertial masses aligned along the isotropic one-dimensional
intrinsic space with respect to observers in spacetime. b) The flat 2-
dimensional intrinsic spacetime with respect to observers in space-
time in a is a flat four-dimensional intrinsic spacetime containing
3-dimensional intrinsic inertial masses of particles and objects in 3-
dimensional intrinsic space with respect to intrinsic-mass-observers
in intrinsic spacetime.

mass m in the Euclidean 3-space Σ has its one-dimensional
intrinsic mass to be denoted by φm underlying it in the one-
dimensional intrinsic space φρ. The one-dimensional intrin-
sic space φρ underlying the Euclidean 3-space Σ is an iso-
tropic dimension with no unique orientation in Σ. This means
that φρ can be considered to be orientated along any direction
in Σ. The straight line intrinsic time dimension φcφt likewise
lies parallel to the straight line time dimension ct along the
vertical in the graphical presentation of the flat spacetime of
SR of Fig. 2 or Fig. 5.

If we temporarily consider the Euclidean 3-space Σ as
an hyper-surface, t = const, represented by a plane-surface
along the horizontal (instead of a line along the horizontal
as in the previous diagrams) and the time dimension ct as a
vertical normal line to the hyper-surface, then the graphical
representation of the flat four-dimensional spacetime (Σ, ct)
and its underlying flat two-dimensional intrinsic spacetime
(φρ, φcφt) in the context of SR described in the foregoing
paragraph is depicted in Fig. 6a.

Figure 6a is valid with respect to observers in the flat
physical four-dimensional spacetime (Σ, ct). The one-dimen-
sional intrinsic masses of all particles and objects are aligned
along the singular isotropic one-dimensional intrinsic space
φρ, whose inertial masses are scattered arbitrarily in the phys-
ical Euclidean 3-space Σ with respect to these observers,
in (Σ, ct), as illustrated for three such particles and objects
in Fig. 6a.

On the other hand, the intrinsic space is actually a flat
three-dimensional domain to be denoted by φΣ, with mutu-
ally orthogonal dimensions φx1, φx2 and φx3, at leat in the
small, with respect to intrinsic-mass-observers in φΣ. The in-
trinsic masses φm of particles and objects are likewise three-
dimensional with respect to the intrinsic-mass-observers in
φΣ. The intrinsic mass φm of a particle or object in the in-
trinsic space φΣ lies directly underneath the inertial mass m
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of the particle or object in the physical Euclidean 3-space Σ,
as illustrated for three such particles or objects in Fig. 6b.

The flat four-dimensional physical spacetime (Σ, ct) con-
taining the three-dimensional inertial masses m of particles
and objects in the Euclidean 3-space Σ is the outward man-
ifestation of the flat four-dimensional intrinsic spacetime
(φΣ, φcφt) containing the three-dimensional intrinsic masses
φm of the particles and objects in φΣ in Fig. 6b. It is due to
the fact that the flat three-dimensional intrinsic space φΣ is
an isotropic space, that is, all directions in φΣ are the same,
with respect to observers in the physical Euclidean 3-space Σ

that the dimensions φx1, φx2 and φx3 of φΣ, which are mutu-
ally orthogonal, at least locally, with respect to the intrinsic-
mass-observers in φΣ, are effectively directed along the same
non-unique direction in φΣ, thereby effectively constituting a
singular one-dimensional intrinsic space (or an intrinsic space
dimension) φρ with no unique orientation in φΣ and conse-
quently with no unique orientation in the physical Euclidean
3-space Σ overlying φΣ with respect to observers on the flat
spacetime (Σ, ct), as illustrated in Fig. 6a.

As follows from the foregoing paragraph, Fig. 6a is the
correct diagram with respect to observers in spacetime (Σ, ct).
It is still valid to say that the flat four-dimensional space-
time (Σ, ct) is the outward (or physical) manifestation of the
flat two-dimensional intrinsic spacetime (φρ, φcφt) and that
three-dimensional inertial mass m in Σ is the outward (or
physical) manifestation of one-dimensional intrinsic mass φm
with respect to observers in (Σ, ct) in Fig. 6a. Observers on
the flat four-dimensional spacetime (Σ, ct) must formulate in-
trinsic physics in intrinsic spacetime as two-dimensional in-
trinsic theories on flat intrinsic spacetime (φρ, φcφt).

It is for convenience that the three-dimensional Euclidean
space Σ shall be represented by a line along the horizontal as
done in Figs. 2a and 2b and Fig. 5 and as shall be done in the
rest of this article, instead of a plane surface along the hor-
izontal in Figs. 6a and 6b. Thus the flat four-dimensional
spacetime and its underlying flat two-dimensional intrinsic
spacetime shall be presented graphically in the two-world pic-
ture as Fig. 7. The origins O and O* are not actually separated
contrary to their separation in Fig. 7.

Figure 7 is Fig. 5 modified by incorporating the flat two-
dimensional intrinsic spacetimes underlying the flat four-
dimensional spacetimes of the positive and negative universes
into Fig. 5. Figure 7 is a fuller diagram than Fig. 5. As men-
tioned earlier, the intrinsic spacetime and intrinsic parameters
in it along with their properties and notations shall be derived
elsewhere.

The intrinsic spacetime dimensions φρ and φcφt and one-
dimensional intrinsic masses φm of particles and objects in
the intrinsic space φρ are hidden (or non-observable) to ob-
servers on the flat four-dimensional spacetime (Σ, ct). The
symbol φ attached to the intrinsic dimensions, intrinsic coor-
dinates and intrinsic masses is used to indicate their intrinsic
(or hidden) natures with respect to observers in spacetime.

Fig. 7: Combined flat four-dimensional spacetimes and combined
underlying flat two-dimensional intrinsic spacetimes of the positive
and negative universes.

When the symbol φ is removed from the flat two-dimensional
intrinsic spacetime (φρ, φcφt) we obtain the observed flat
four-dimensional spacetime (Σ, ct) and when φ is removed
from the one-dimensional intrinsic mass φm in φρ we ob-
tain the observed three-dimensional inertial mass m in the
Euclidean 3-space Σ.

As the inertial mass m moves at velocity~v in the Euclidean
3-space Σ of the flat four-dimensional spacetime (Σ, ct) rela-
tive to an observer in (Σ, ct), the intrinsic mass φm performs
intrinsic motion at intrinsic speed φv in the one-dimensional
intrinsic space φρ of the flat two-dimensional intrinsic space-
time (φρ, φcφt) relative to the observer in (Σ, ct), where
|φv|= |~v|. The inertial mass m of a particle in Σ and its intrinsic
mass φm in φρ are together always in their respective spaces,
irrespective of whether m is in motion or at rest relative to the
observer.

Finally in the ansatz being presented in this sub-section,
the intrinsic motion of the intrinsic rest mass φm0 of a particle
at intrinsic speed φv in an intrinsic particle’s frame (φx̃′, φcφt̃′)
relative to the observer’s intrinsic frame (φx̃, φcφt̃) on flat
two-dimensional intrinsic spacetime (φρ, φcφt) pertains to
two-dimensional intrinsic Special Theory of Relativity to be
denoted by φSR, while the corresponding motion of the rest
mass m0 of the particle at velocity ~v in the particle’s frame
(x̃′, ỹ′, z̃′, ct̃ ′) relative to the observer’s frame (x̃, ỹ, z̃, ct̃)
on the flat four-dimensional spacetime (Σ, ct), pertains to the
Special Theory of Relativity (SR) as usual. The SR on flat
four-dimensional spacetime (Σ, ct) is mere outward manifes-
tation of φSR on the underlying flat two-dimensional intrinsic
spacetime (φρ, φcφt).

The intrinsic motion at intrinsic speed φv of the intrin-
sic rest mass φm0 of a particle in the particle’s intrinsic
frame (φx̃′, φcφt̃ ′) relative to the observer’s intrinsic frame
(φx̃, φcφt̃), gives rise to rotation of the intrinsic coordinates
φx̃′ and φcφt̃ ′ relative to the intrinsic coordinates φx̃ and φcφt̃
on the vertical intrinsic spacetime plane (which are on the
(φρ, φcφt)-plane) in Fig. 7. It must be observed that rotation

Akindele O. J. Adekugbe. Two-World Background of Special Relativity. Part I 37



Volume 1 PROGRESS IN PHYSICS January, 2010

of the intrinsic coordinate φx̃′ can take place on the vertical
intrinsic spacetime plane only in Fig. 6a or Fig. 7.

Two-dimensional intrinsic spacetime diagram and its in-
verse must be drawn on the vertical (φρ, φcφt)-plane in the
two-world picture and intrinsic Lorentz transformation (φLT)
and its inverse derived from them in the context of φSR. The
intrinsic Lorentz invariance (φLI) on the flat two-dimensional
intrinsic spacetime must be validated and every result in the
context of the two-dimensional intrinsic Special Theory of
Relativity (φSR), each of which has its counterpart in SR,
must be derived from the φLT and its inverse in the manner
the results of SR are derived from the LT and its inverse.

Once φSR has been formulated as described above, then
SR being mere outward (or physical) manifestation on the flat
four-dimensional spacetime (Σ, ct) of φSR on the flat two-
dimensional intrinsic spacetime (φρ, φcφt), the results of SR
namely, the LT and its inverse, the Lorentz invariance (LI) on
the flat four-dimensional spacetime and every other results of
SR can be written directly from the corresponding results of
φSR, without having to draw spacetime diagrams involving
the rotation of the coordinates (x̃′, ỹ′, z̃′, ct̃ ′) of the primed
frame relative to the coordinates (x̃, ỹ, z̃, ct̃) of the unprimed
frame on the flat four-dimensional spacetime (Σ, ct) in the
context of SR. This procedure shall be demonstrated in the
next sub-section.

4.4 New spacetime/intrinsic spacetime diagrams for de-
rivation of Lorentz transformation/intrinsic Lorentz
transformation in the two-world picture

Consider two frames of reference with extended unprimed
straight line affine coordinates x̃, ỹ, z̃, ct̃ and extended
primed straight line affine coordinates x̃′, ỹ′, z̃′, ct̃ ′ respec-
tively on the flat metric four-dimensional spacetime (Σ, ct).
Let a three-dimensional observer (or a 3-observer), Peter, say,
be located in 3-space of the unprimed frame and another 3-
observer, Paul, say, be located in 3-space of the primed frame.

Corresponding to the 3-dimensional observer Peter in the
3-space of the unprimed frame, there is the one-dimensional
observer (or 1-observer) in the time dimension of the un-
primed frame to be denoted by P̃eter. Likewise corresponding
to the 3-observer Paul in 3-space of the primed frame is the
one-dimensional observer (or 1-observer) P̃aul in the time di-
mension of the primed frame. Thus there is the 4-observer
(Peter, P̃eter) in the unprimed frame (x̃, ỹ, z̃, ct̃) and the 4-
observer (Paul, P̃aul) in the primed frame (x̃′, ỹ′, z̃′, ct̃ ′)
in the positive universe. There is the symmetry-partner 4-
observer (Peter∗, P̃eter∗) in the symmetry-partner unprimed
frame (−x̃∗,−ỹ∗,−z̃∗,−ct̃∗) and symmetry-partner 4-observer
(Paul∗, P̃aul∗) in the symmetry-partner primed frame
(−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃ ′∗) in the negative universe.

Before proceeding further, let us shine some light on
the concepts of metric spacetime and affine spacetime that
have been introduced in the preceding two paragraphs. As

well known, the metric spacetime (Σ, ct) is the physical four-
dimensional spacetime, which is flat with constant Lorentzian
metric tensor in the context of SR (and is postulated to be
curved with Riemannian metric tensor in the context of the
General Theory of Relativity, GR). The matter (or mass) of
particles and objects are contained in the metric 3-space Σ

(with Euclidean metric tensor in the context of SR). Thus par-
ticles and objects exist and move in the four-dimensional met-
ric spacetime in the theories of relativity. The coordinates or
dimensions of the metric spacetime shall be denoted by x, y, z
and ct without label (in the Cartesian system of coordinates
of 3-space) in this article.

On the other hand, the coordinates of an affine spacetime
shall be differentiated from those of a metric spacetime by an
over-head tilde label as x̃, ỹ, z̃ and ct̃. These are mere math-
ematical entities without physical (or metrical) quality used
to identify the positions and to track the motion of material
points relative to a specified origin in a metric spacetime. The
affine coordinates x̃, ỹ, z̃ and ct̃ are straight line coordinates
that can be of any extensions in the flat metric spacetime of
SR. Just as it is said that “the path of a fish in water can-
not be known”, so is the path (i.e. the locus of the affine
coordinates) of a material point through a metric spacetime
non-discernible or without metrical quality. An affine space-
time can be described as mere mathematical scaffolding with-
out physical (or metrical) significance for identifying possi-
ble positions of material particles in the metric spacetime.
The extended three-dimensional affine space constituted by
the affine coordinates x̃, ỹ and z̃ cannot hold matter (or mass
of particles and objects).

Now corresponding to the unprimed frame (x̃, ỹ, z̃, ct̃)
of the 4-observer (Peter, P̃eter) prescribed on the flat four-
dimensional metric spacetime (Σ, ct) earlier, is the unprimed
intrinsic frame (φx̃, φcφt̃) of intrinsic 2-observer (φPeter,
φP̃eter) in the two-dimensional metric intrinsic spacetime
(φρ, φcφt) underlying (Σ, ct) in the first quadrant in Fig. 7
and corresponding to the primed frame (x̃′, ỹ′, z̃′, ct̃ ′) of the
4-observer (Paul, P̃aul) prescribed in the metric spacetime
(Σ, ct) is the primed intrinsic frame (φx̃′, φcφt̃ ′) of intrinsic
2-observer (φPaul, φP̃aul) in the two-dimensional metric in-
trinsic spacetime (φρ, φcφt) underlying (Σ, ct) in Fig. 7. The
intrinsic coordinates φx̃ and φcφt̃ of the unprimed intrinsic
frame in (φρ, φcφt) are extended straight line affine intrinsic
coordinates like the coordinates x̃, ỹ, x̃ and ct̃ of the unprimed
frame in (Σ, ct). The intrinsic coordinates φx̃′ and φcφt̃ ′ of
the primed intrinsic frame in (φρ, φcφt) are likewise extended
straight line affine intrinsic coordinates like the coordinates
x̃′, ỹ′, x̃′ and ct̃ ′ of the primed frame in (Σ, ct).

The summary of all of the foregoing is that we have pre-
scribed a pair of frames with extended straight line affine
coordinates namely, (x̃, ỹ, z̃, ct̃) of 4-observer (Peter, P̃eter)
and (x̃′, ỹ′, z̃′, ct̃ ′) of 4-observer (Paul, P̃aul) on the flat four-
dimensional metric spacetime (Σ, ct) and underlying pair of
intrinsic frames with extended straight line affine intrinsic co-
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ordinates namely, (φx̃, φcφt̃) of intrinsic 2-observer (φPeter,
φP̃eter) and (φx̃′, φcφt̃ ′) of intrinsic 2-observer (φPaul, φP̃aul)
on the flat two-dimensional metric intrinsic spacetime
(φρ, φcφt) that underlies (Σ, ct) in the first quadrant (or in our
universe) in Fig. 7.

The perfect symmetry of state between the positive and
negative universes requires that there are identical symmetry-
partner pair of frames with extended straight line affine coor-
dinates (−x̃∗,−ỹ∗,−z̃∗,−ct̃∗) of symmetry-partner 4-observer
(Peter∗, P̃eter∗) and (−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃ ′∗) of symmetry-
partner 4-observer (Paul∗, P̃aul∗) on the flat four-dimensional
metric spacetime (−Σ∗,−ct∗) and underlying pair of intrin-
sic frames with extended straight line affine intrinsic coordi-
nates namely, (−φx̃∗,−φcφt̃∗) of intrinsic 2-observer (φPeter∗,
φP̃eter∗) and (−φx̃′∗,−φcφt̃′∗) of intrinsic 2-observer (φPaul∗,
φP̃aul∗) on the flat two-dimensional metric intrinsic space-
time (−φρ∗,−φcφt∗) that underlies (−Σ∗,−ct∗) in the third
quadrant (or in negative universe) in Fig. 7.

As done at the beginning of section 2, let us consider the
propagation at a constant speed v of the rest mass m0 of a par-
ticle along the coordinate x̃′ of the particle (or primed) frame
(x̃′, ỹ′, z̃′, ct̃ ′) relative to the 3-observer Peter in the 3-space
Σ̃ (x̃, ỹ, z̃) of the observer’s frame (x̃, ỹ, z̃, ct̃) in the positive
universe (or our universe), where the coordinates x̃′ and x̃
shall be taken to be collinear. Correspondingly, the intrinsic
rest mass φm0 of the particle is in intrinsic motion at intrinsic
speed φv along the intrinsic coordinate φx̃′ of the particle’s in-
trinsic frame (or the primed intrinsic frame) (φx̃′, φcφt̃ ′) rel-
ative to the intrinsic observer’s frame (φx̃, φcφt̃) with respect
to the intrinsic 1-observer φPeter in the one-dimensional in-
trinsic space (φx̃) of the observer’s frame and hence with re-
spect to the 3-observer Peter in Σ̃(x̃, ỹ, z̃) overlying φx̃, where
the intrinsic coordinates φx̃′ and φx̃ are necessarily collinear
since they are affine intrinsic coordinates in the singular iso-
tropic one-dimensional metric intrinsic space φρ.

The intrinsic motion at intrinsic speed φv of the intrinsic
rest mass φm0 of the particle along the intrinsic coordinate φx̃′

of the particle’s intrinsic frame (φx̃′, φcφt̃ ′) relative to the ob-
server’s intrinsic frame (φx̃, φcφt̃) described in the foregoing
paragraph, will cause the anti-clockwise rotation of the ex-
tended straight line affine intrinsic coordinates φx̃′ and φcφt̃ ′

of the primed intrinsic frame at equal intrinsic angle φψ rel-
ative to the extended straight line affine intrinsic coordinates
φx̃ and φcφt̃ respectively of the unprimed intrinsic frame.

The perfect symmetry of state between the positive and
negative universes discussed earlier, implies that the rest mass
of the symmetry-partner particle (its sign is yet to be deter-
mined), is in simultaneous motion at constant speed v along
the coordinate −x̃′∗ of the particle’s frame (−x̃′∗,−ỹ′∗,−z̃′∗,
−ct̃ ′∗) relative to the symmetry-partner 3-observer∗ Peter∗

in the 3-space −Σ̃∗(−x̃∗,−ỹ∗,−z̃∗) of the observer’s frame
(−x̃∗,−ỹ∗,−z̃∗,−ct̃∗) in the negative universe. Correspond-
ingly, the intrinsic rest mass of the symmetry-partner parti-
cle is in intrinsic motion at constant intrinsic speed φv along

the intrinsic coordinate −φx̃′∗ of the particle’s intrinsic frame
(−φx̃′∗,−φcφt̃ ′∗) relative to the intrinsic observer’s frame
(−φx̃∗,−φcφt̃∗), with respect to the intrinsic 1-observer∗

φPeter∗ in the intrinsic space −φx̃∗ of the intrinsic observer’s
frame and consequently with respect to the 3-observer∗ Peter∗

in the 3-space −Σ̃∗(−x̃∗,−ỹ∗,−z̃∗) of the observer’s frame
overlying −φx̃∗ in the negative universe. Consequently the
extended affine intrinsic coordinates −φx̃′∗ and −φcφt̃ ′∗ of
the particle’s frame will be rotated anti-clockwise at equal
intrinsic angle φψ relative to the extended straight line affine
intrinsic coordinates −φx̃∗ and −φcφt̃∗ respectively of the ob-
server’s intrinsic frame.

Now on the larger spacetime/intrinsic spacetime of com-
bined positive universe and negative universe depicted in
Fig. 7, the extended straight line affine intrinsic time coor-
dinate φcφt̃ ′ of the primed intrinsic frame in the first quad-
rant can rotate into the second quadrant with respect to the 3-
observer (Peter) in the 3-space Σ̃(x̃, ỹ, z̃) along the horizontal
in the first quadrant in Fig. 7. This is so since the intrin-
sic angle φψ has values in the negative half-plane in Fig. 1b,
which correspond to the second and third quadrants in Fig. 7.
Similarly the extended straight line affine intrinsic time co-
ordinate −φcφt̃ ′∗ of the primed intrinsic frame in the third
quadrant can rotate into the fourth quadrant with respect to
3-observer∗ (Peter∗) in the 3-space −Σ̃∗ along the horizontal
in the third quadrant, since φψ has value in the positive half-
plane in Fig. 1b, which corresponds to the fourth and first
quadrants in Fig. 7, with respect to 3-observers∗ in −Σ∗ along
the horizontal in the third quadrant in Fig.7. Thus the rotation
of the intrinsic coordinates φx̃′ and φcφt̃ ′ relative to φx̃ and
φcφt̃ respectively in Fig. 8a is possible (or will ensue) in the
two-world picture.

The intrinsic coordinate φx̃ is the projection along the hor-
izontal of the inclined φx̃′ in Fig. 8a. That is, φx̃ = φx̃′ cos φψ.
Hence we can write,

φx̃′ = φx̃ sec φψ .

This transformation of affine intrinsic space coordinates
is all that should have been possible with respect to the intrin-
sic 1-observer φPeter in the intrinsic space φx̃ of the intrinsic
observer’s frame along the horizontal and consequently with
respect to 3-observer (Peter) in the 3-space Σ̃(x̃, ỹ, z̃) of the
observer’s frame from Fig. 8a, but for the fact that the neg-
ative intrinsic time coordinate −φcφt̃ ′∗ of the negative uni-
verse rotated into the fourth quadrant also projects component
−φcφt̃ ′ sin φψ along the horizontal, which must be added to
the right-hand side of the last displayed equation yielding,

φx̃′ = φx̃ sec φψ − φcφt̃ ′ sin φψ .

The dummy star label used to differentiate the coordi-
nates and parameters of the negative universe from those of
the positive universe has been removed from the component
−φcφt′∗ sin φψ projected along the horizontal by the coordi-
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Fig. 8: a) The diagram used to derive partial intrinsic Lorentz transformations / partial Lorentz transformations with respect to 3-observers
in the 3-spaces in the positive and negative universes. b) The complementary diagram to a used to derive partial intrinsic Lorentz transfor-
mations / partial Lorentz transformations with respect to 1-observers in the time dimensions in the positive and negative universes.

nate −φcφt̃ ′∗ of the negative universe rotated into the fourth
quadrant in Fig. 8a, since the projected component is now an
intrinsic coordinate in the positive universe.

But the intrinsic coordinates φcφt̃ and φcφt̃ ′ are also
related as, φcφt̃ = φcφt̃ ′ cos φψ hence φcφt̃ ′ = φcφt̃ sec φψ,
along the vertical in the same Fig. 8a. By replacing φcφt̃ ′

by φcφt̃ sec φψ in the last displayed equation we have

φx̃′ = φx̃ sec φψ − φcφt̃ tan φψ (11)

(w.r.t. 3-observer Peter in Σ̃).
Likewise the affine intrinsic time coordinate φcφt̃ is the

projection along the vertical of the inclined affine intrinsic
coordinate φcφt̃ ′ in Fig. 8b. Hence φcφt̃ = φcφt̃ ′ cos φψ or

φcφt̃ ′ = φcφt̃ sec φψ .

This affine intrinsic time coordinate transformation is all
that should have been possible with respect to the 1-observer
P̃eter in the time dimension ct̃ of the observer’s frame from
Fig. 8b, but for the fact that the inclined negative intrin-
sic space coordinate −φx̃′∗ of the negative universe rotated
into the second quadrant also projects component −φx̃′ sin φψ
along the vertical, which must be added to the right-hand side
of the last displayed equation yielding,

φcφt̃ ′ = φcφt̃ sec φψ − φx̃′ sin φψ .

The dummy star label has again been removed from the
component −φx̃′∗ sin φψ projected along the vertical in the
second quadrant by the inclined intrinsic coordinate −φx̃′∗ of
the negative universe rotated into the second quadrant, since
the projected component is now an intrinsic coordinate in the
positive universe.

But the intrinsic coordinate φx̃ is related to φx̃′ along the
horizontal in the same Fig. 8b as, φx̃ = φx̃′ cos φψ or φx̃′ =

φx̃ sec φψ along the horizontal in Fig. 8b. Then by replacing
φx̃′ by φx̃ sec φψ in the last displayed equation we have

φcφt̃ ′ = φct̃ sec φψ − φx̃ tan φψ (12)

(w.r.t. 1-observer P̃eter in ct̃).
The concept of 1-observer in the time dimension added to

3-observer in 3-space to have 4-observer in four-dimensional
spacetime introduced above is in agreement with the known
four-dimensionality of particles and bodies in 4-geometry of
relativity. Anti-clockwise (or positive) rotation of the intrin-
sic space coordinate φx̃′ by intrinsic angle φψ towards the
intrinsic time coordinate φcφt̃ along the vertical with respect
to the 3-observer (Peter) in the 3-space Σ̃(x̃, ỹ, z̃) of the ob-
server’s frame in Fig. 8a, corresponds to clockwise (or posi-
tive) rotation of the intrinsic time coordinate φcφt̃ ′ by equal
intrinsic angle φψ towards the intrinsic space coordinate φx̃
along the horizontal with respect to the 1-observer (P̃eter)
in the time dimension ct̃ of the observer’s frame in Fig. 8b.
The explanation of the fact that anti-clockwise rotation of the
primed intrinsic spacetime coordinates relative to unprimed
intrinsic spacetime coordinates is positive rotation with re-
spect to 3-observers in 3-spaces in Fig. 8a, while clockwise
rotation of primed intrinsic spacetime coordinates relative to
unprimed intrinsic spacetime coordinates is positive rotation
with respect to 1-observers in the time dimensions in Fig. 8b,
requires further development of the two-world picture than in
this paper. It shall be presented elsewhere.

The partial intrinsic Lorentz transformation of affine in-
trinsic space coordinates (11) with respect to the 3-observer
Peter in the 3-space Σ̃ (x̃, ỹ, z̃) of the observer’s frame and
the partial intrinsic Lorentz transformation of affine intrinsic
time coordinates (12) with respect to the 1-observer P̃eter in
the time dimension ct̃ of the observer’s frame must be col-
lected to obtain the intrinsic Lorentz transformation of ex-
tended straight line affine intrinsic spacetime coordinates with
respect to 4-observers (Peter, P̃eter) in the observer’s frame as
follows:

φcφt̃ ′ = φcφt̃ sec φψ − φx̃ tan φψ
(w.r.t. 1-observer P̃eter in ct̃)

φx̃′ = φx̃ sec φψ − φcφt̃ tan φψ
(w.r.t. 3-observer Peter in Σ̃)


, (13)
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Fig. 9: The inverse diagrams to Figures 8a and 8b respectively, used to derive inverse intrinsic Lorentz transformations / inverse Lorentz
transformations in the positive and negative universes.

where − π2 < φψ < π
2 (temporarily).

The range − π2 < φψ < π
2 of the intrinsic angles φψ in

system (13) in the positive universe is temporary as indicated.
This temporary range shall be modified later in this section.
The fact that the intrinsic angle φψ can have values in the
range [0, π2 ) in the first quadrant in Figs. 8a and 8b in the
two-world picture, instead of the range [0, π4 ) of the angle φ
in the Minkowski diagrams, (Figs. 3a and 3b in the one-world
picture), is due to the non-existence of light-cones in the two-
world picture, as shall be established shortly.

In order to obtain the inverses of equations (11) and (12)
and hence the inverse to system (13), let us draw the inverses
of Figs. 8a and 8b. The inverse to Fig. 8a obtained by rotating
all intrinsic coordinates clockwise by negative intrinsic angle
−φψ with respect to 3-observer in the 3-spaces Σ̃ and −Σ̃∗ in
Fig. 8a is depicted in Fig. 9a and the the inverse to Fig. 8b
obtained by rotating all intrinsic coordinates anti-clockwise
by negative intrinsic angle −φψ with respect to 1-observer
in the time dimensions ct̃ and −ct̃∗ in Fig. 8b is depicted in
Fig. 9b.

The clockwise sense of negative rotation (i.e. by nega-
tive intrinsic angle) of intrinsic coordinates in Fig. 9a is valid
with respect to the 3-observer (Paul) in the 3-space Σ̃′ of the
primed (or particle’s) frame with respect to whom positive ro-
tation is anti-clockwise. Hence the transformation of intrinsic
coordinates derived from Fig. 9a is valid with respect to the
3-observer (Paul) in Σ̃′. On the other hand, the anti-clockwise
sense of negative rotation of intrinsic coordinates in Fig. 9b
is valid relative to the 1-observer (P̃aul) in the time dimen-
sion ct̃ ′, with respect to whom positive rotation is clockwise.
Hence the intrinsic coordinate transformation derived from
Fig. 9b is valid relative to the 1-observer (Paul) in ct̃ ′.

Again the affine intrinsic time coordinate φcφt̃ ′ is the
projection along the vertical of the inclined φcφt̃ in Fig. 9a.
That is, φcφt̃ ′ = φcφt̃ cos(−φψ) = φcφt̃ cos φψ. Hence we
can write,

φcφt̃ = φcφt̃ ′ sec φψ .

This transformation of affine intrinsic time coordinates is

all that should have been possible along the vertical in Fig. 9a
by the 3-observer (Paul) in Σ̃′ of the particle’s frame, but for
the fact that the unprimed negative intrinsic space coordinate
−φx̃∗ of the negative universe rotated into the second quad-
rant projects component, −φx̃ sin(−φψ) = φx̃ sin φψ, along the
vertical, which must be added to the right-hand side of the
last displayed equation to have as follows:

φcφt̃ = φcφt̃ ′ sec φψ + x̃ sin φψ .

The dummy star label has again been removed from the
component −φx̃∗ sin(−φψ) projected along the vertical in the
second quadrant by the negative intrinsic space coordinate
−φx̃∗ of the negative universe rotated into the second quadrant
in Fig. 9a, since the projected component is now an intrinsic
coordinate in the positive universe.

But φx̃ and φx̃′ are related as φx̃ cos(−φψ) = φx̃′ hence,
φx̃ = φx̃′ sec φψ, along the horizontal in the same Fig. 9a. By
using this in the last displayed equation we have

φcφt̃ = φcφt̃ ′ sec φψ + φx̃′ tan φψ (14)

(w.r.t. 3-observer Paul in Σ̃′).
Likewise the affine intrinsic space coordinate φx̃ is related

to φx̃′ and the component −φcφt̃ sin(−φψ) projected along the
horizontal with respect to the 1-observer P̃aul in the time di-
mension ct̃ ′ of the particle’s frame in Fig. 9b as

φx̃ = x̃′ sec φψ + φcφt̃ sin φψ .

Then by using the relation, φcφt̃ = φcφt̃ ′ sec φψ, which
also holds along the vertical in the same Fig. 9b in the last
displayed equation, we have

φx̃ = φx̃′ sec φψ + φcφt̃ ′ tan φψ (15)

(w.r.t. 1-observer P̃aul in ct̃ ′).
By collecting the partial intrinsic coordinate transforma-

tions (14) and (15) we obtain the inverse intrinsic Lorentz
transformation to system (13) with respect to 4-observer
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(Paul, P̃aul) in the particle’s (or primed) frame as follows:

φcφt̃ = φcφt̃ ′ sec φψ + φx̃′ tan φψ
(w.r.t. 3-observer Paul in Σ̃′)

φx̃ = φx̃′ sec φψ + φcφt̃ ′ tan φψ
(w.r.t. 1-observer P̃aul in ct̃ ′)


, (16)

where − π2 < φψ < π
2 (temporarily).

Again the range − π2 < φψ < π
2 of the intrinsic angles φψ in

system (16) in the positive universe is temporary as indicated.
It shall be modified shortly in this section.

By considering the origin φx̃′ = 0 of the intrinsic space co-
ordinate φx̃′ of the primed intrinsic frame, system (16) sim-
plifies as follows:

φx̃ = φcφt̃ ′ tan φψ and φcφt̃ = φcφt̃ ′ sec φψ . (17)

Then by dividing the first into the second equation of sys-
tem (17) we have

φx̃
φcφt̃

= sin φψ .

But, φx̃/φt̃ = φv, is the intrinsic speed of the primed in-
trinsic frame relative to the unprimed intrinsic frame. Hence,

sin φψ = φv/φc = φβ (18)

sec φψ =
1√

1 − φv2/φc2
= φγ . (19)

By using relations (18) and (19) in systems (13) we have

φcφt̃ ′ =
1√

1 − φv2/φc2

(
φcφt̃ − φv

φc
φx̃

)

(w.r.t. 1-observer P̃eter in ct̃),

φx̃′ =
1√

1 − φv2/φc2

(
φx̃ − φv

φc
φcφt̃

)

(w.r.t. 3-observer Peter in Σ̃), or

φt̃ ′ = φγ

(
φt̃ − φv

φc2 φx̃
)

(w.r.t. 1-observer P̃eter in ct̃)

φx̃′ = φγ
(
φx̃ − φvφt̃

)
(w.r.t. 3-observer Peter in Σ̃)



. (20)

And by using equations (18) and (19) in system (16) we
have

φcφt̃ =
1√

1 − φv2/φc2

(
φcφt̃ ′ +

φv

φc
φx̃′

)

(w.r.t. 3-observer Peter in Σ̃′),

φx̃ =
1√

1 − φv2/φc2

(
φx̃′ +

φv

φc
φcφt̃ ′

)

(w.r.t. 1-observer P̃eter in ct̃ ′), or

φt̃ = φγ

(
φt̃ ′ +

φv

φc2 φx̃′
)

(w.r.t. 3-observer Paul in Σ̃′)

φx̃ = φγ
(
φx̃′ + φvφt̃ ′

)

(w.r.t. 1-observer P̃aul in ct̃ ′)



. (21)

Systems (20) and (21) are the explicit forms of the intrin-
sic Lorentz transformation (φLT) of extended affine intrin-
sic coordinates and its inverse respectively on the flat two-
dimensional metric intrinsic spacetime (φρ, φcφt) that under-
lies the flat four-dimensional metric spacetime (Σ, ct) in the
positive universe in Fig. 7.

As can be easily verified, either system (13) or (16) or its
explicit form (20) or (21) implies intrinsic Lorentz invariance
(φLI) on (φρ, φcφt):

φc2φt̃2 − φx̃2 = φc2φt̃ ′2 − φx̃′2 . (22)

Just as the 4-observer (Peter, P̃eter) in the unprimed frame
(x̃, ỹ, z̃, ct̃) derives system (13) given explicitly as system
(20) from Figs. 8a and 8b and the 4-observer (Paul, P̃aul)
in the primed frame derives the system (16) given explicitly
as system (21) from Figs. 9a and 9b in the positive universe,
the symmetry-partner 4-observer∗ (Peter∗, P̃eter∗) in the un-
primed frame (−x̃∗,−ỹ∗,−z̃∗,−ct̃∗) in the negative universe
derives the φLT and its inverse from Figs. 8a and 8b and
the symmetry-partner observer∗ (Paul∗, P̃aul∗) in the primed
frame (−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃ ′∗) in the the negative universe
derives the inverse φLT from Figs. 9a and 9b, and the 4-
observers (Peter∗, P̃eter∗) and (Paul∗, P̃aul∗) write

−φcφt̃ ′∗ = −φcφt̃∗ sec φψ − (−φx̃∗) tan φψ

(w.r.t. 1-observer∗ P̃eter∗ in −ct̃∗)

−φx̃′∗ = −φx̃∗ sec φψ − (−φcφt̃∗) tan φψ

(w.r.t. 3-observer∗ Peter∗ in −Σ̃∗)



(23)

and

−φcφt̃∗ = −φcφt̃ ′∗ sec φψ + (−φx̃′∗) tan φψ

(w.r.t. 3-observer∗ Paul∗ in −Σ̃′∗)

−φx̃∗ = −φx̃′∗ sec φψ + (−φcφt̃ ′∗) tan φψ

(w.r.t. 1-observer∗ P̃aul∗ in −ct̃ ′∗)



, (24)

where − π2 < φψ < π
2 (temporarily).

The range − π2 < φψ < π
2 of the intrinsic angles φψ in

systems (23) and (24) in the negative universe is temporary
as indicated. It shall be modified shortly in this section.

Systems (23) and (24) can also be put in their explicit
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forms respectively as follows by virtue of Eqs. (18) and (19):

−φt̃ ′∗ = φγ

(
−φt̃∗ − φv

φc2 (−φx̃∗)
)

(w.r.t. 1-observer∗ P̃eter∗ in −ct̃∗)

−φx̃′∗ = φγ
(−φx̃∗ − φv (−φt̃∗)

)
(w.r.t. 3-observer∗ Peter∗ in −Σ̃∗)



(25)

and

−φt̃∗ = φγ

(
−φt̃ ′∗ +

φv

φc2 (−φx̃′∗)
)

(w.r.t. 3-observer∗ Paul∗ in −Σ̃′∗)

−φx̃∗ = φγ
(−φx̃′∗ + φv (−φt̃ ′∗)

)
(w.r.t. 1-observer∗ P̃aul∗ in −ct̃ ′∗)



. (26)

Again system (23) or (24) or the explicit form (25) or
(26) implies intrinsic Lorentz invariance on the flat two-
dimensional intrinsic spacetime (−φρ∗,−φcφt∗) in the neg-
ative universe:

(−φc2φt̃∗)2 − (−φx̃∗)2 = (−φc2φt̃ ′∗)2 − (−φx̃′∗)2. (27)

The intrinsic LT of system (13) and its inverse of system
(16) or their explicit forms of systems (20) and (21) and the
intrinsic Lorentz invariance (22) they imply, pertain to two-
dimensional intrinsic Special Theory of Relativity (φSR) on
the flat two-dimensional metric intrinsic spacetime (φρ, φcφt)
that underlies the flat four-dimensional metric spacetime
(Σ, ct) in the positive universe in Fig. 7. In symmetry, the
intrinsic LT and its inverse of system (23) and (24) or their ex-
plicit forms (25) and (26) and the intrinsic Lorentz invariance
(27) they imply pertain to the intrinsic Special Theory of Rel-
ativity (φSR) on flat two-dimensional metric intrinsic space-
time (−φρ∗,−φcφt∗) that underlies the flat four-dimensional
metric spacetime (−Σ∗,−ct∗) in the negative universe.

Having derived the intrinsic LT of system (13) on page 40
and its inverse of system (16) on page 42 and their explicit
forms of systems (20) and (21) in the context of intrinsic 2-
geometry φSR in the positive universe, we must now obtain
their outward (or physical) manifestations on the flat four-
dimensional spacetime in the context of 4-geometry Special
Theory of Relativity (SR). We do not have to draw a new
set of diagrams in the two-world picture in which extended
straight line affine spacetime coordinates x̃′ and ct̃ ′ of the
primed frame are rotated relative to the extended affine co-
ordinates x̃ and ct̃ respectively of the unprimed frame on the
vertical (x, ct)-plane, while the affine coordinates ỹ′ and z̃′

of the primed frame along which relative motion of SR do
not occur are not rotated on the vertical spacetime plane. In-
deed such diagram does exist. Figures 8a and 8b and their
inverses Figs. 9a and 9b, in which the intrinsic spacetime
coordinates are rotated being the only diagrams of Special
Relativity/intrinsic Special Relativity (SR/φSR) in the two-
world picture.

As discussed earlier, the flat four dimensional metric
spacetime (Σ, ct)≡ (x, y, z, ct) is the outward (or physical)
manifestation of the flat two-dimensional metric intrinsic
spacetime (φρ, φcφt) in Fig. 7. Likewise the extended mu-
tually orthogonal straight line affine coordinates x̃, ỹ and z̃
constitute a flat affine 3-space, shown as a straight line and de-
noted by Σ̃(x̃, ỹ, z̃) along the horizontal in the first quadrant.
It is the outward manifestation of the extended straight line
affine intrinsic coordinate φx̃ underlying it in Figs. 8a and 8b.
And the extended straight line affine time coordinate ct̃ is the
outward (or physical) manifestation of the extended straight
line affine intrinsic time coordinate φcφt̃ along the vertical in
Figs. 8a and 8b. The extended straight line affine spacetime
coordinates x̃′, ỹ′, z̃′ and ct̃ are likewise the outward manifes-
tations of the extended affine intrinsic spacetime coordinates
φx̃′ and φcφt̃ ′ in Figs. 9a and 9b.

It follows by virtue of the foregoing paragraph that the
LT and its inverse in the context of SR are the outward (or
physical) manifestations of the intrinsic Lorentz transforma-
tion (φLT) of system (13) or (20) and its inverse of system
(16) or (21). We must simply remove the symbol φ in systems
(13) and (16) to have the LT and its inverse in SR respectively
as follows:

ct̃ ′ = ct̃ secψ − x̃ tanψ
(w.r.t. P̃eter in ct̃)

x̃′ = x̃ secψ − ct̃ tanψ , ỹ′ = ỹ , z̃′ = z̃
(w.r.t. Peter in Σ̃)


(28)

and
ct̃ = ct̃ ′ secψ + x̃′ tanψ

(w.r.t. Paul in Σ̃′)

x̃ = x̃′ secψ + ct̃ ′ tanψ , ỹ = ỹ′, z̃ = z̃′

(w.r.t. P̃aul in ct̃ ′)


, (29)

where − π2 < ψ < π
2 (temporarily).

The trivial transformations ỹ= ỹ′ and z̃ = z̃′ of the coordi-
nates along which relative motion of SR does not occur have
been added to the first and second equations of systems (28)
obtained by simply removing symbol φ from system (13) on
page 40 and to the first and second equations of system (29)
obtained by simply removing symbol φ from system (16) on
page 42, thereby making the resulting LT of system (28) and
its inverse of system (29) consistent with the 4-geometry of
SR. The angle ψ being the outward manifestation in space-
time of the intrinsic angle φψ in intrinsic spacetime, has the
same temporary range in systems (28) and (29) as does φψ in
systems (13) and (16). This temporary range of ψ shall also
be modified shortly in this section.

System (28) indicates that the affine spacetime coordi-
nates x̃′ and ct̃ ′ are rotated at equal angle ψ relative to the
affine spacetime coordinates x̃ and ct̃ respectively, while ỹ is
not rotated relative ỹ and z̃′ is not rotated relative to z̃ by an-
gle ψ in the context of SR and system (29) indicates that x̃
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and ct̃ are rotated by equal negative angle −ψ relative to x̃′

and ct̃ ′ respectively. However the relative rotations of the
affine coordinates of the four-dimensional spacetime do not
exist in reality, as discussed earlier. The indicated rotations in
systems (28) and (29) may be referred to as intrinsic (i.e. non-
observable or hypothetical) relative rotations of affine space-
time coordinates only, which is what the actual relative rota-
tions of affine intrinsic spacetime coordinates in Figs. 8a and
8b and Figs. 9a and 9b represent.

By considering the spatial origin x̃′ = ỹ′ = z̃′ = 0 of the
primed frame, system (29) reduces as follows:

ct̃ = ct̃ ′ secψ and x̃ = x̃′ tanψ . (30)

And by dividing the second equation into the first equa-
tion of system (30) we have

x̃
ct̃

= sinψ .

But, x̃/t̃=v, is the speed of the primed frame (x̃′, ỹ′, z̃′,
ct̃ ′) frame relative to the unprimed frame (x̃, ỹ, z̃, ct̃), for rel-
ative motion along the collinear x̃ and x̃′ coordinates of the
frames. Hence

sinψ = v/c = β , (31)

secψ =
1√

1 − v2/c2
= γ . (32)

Relations (31) and (32) on flat four-dimensional space-
time corresponds to relations (18) and (19) respectively on
flat two-dimensional intrinsic spacetime. By using Eqs. (31)
and (32) in systems (28) and (29) we obtain the LT and its
inverse in their usual explicit forms respectively as follows:

t̃ ′ = γ
(
t̃ − v

c2 x̃
)

(w.r.t. P̃eter in ct̃)

x̃′ = γ
(
x̃ − vt̃) , ỹ′ = ỹ , z̃′ = z̃
(w.r.t. Peter in Σ̃)



(33)

and
t̃ = γ

(
t̃ ′ +

v

c2 x̃′
)

(w.r.t. Paul in Σ̃′)

x̃ = γ
(
x̃′ + v t̃ ′

)
, ỹ = ỹ′, z̃ = z̃′

(w.r.t. P̃eter in ct̃ ′)



. (34)

Systems (33) and (34) are the outward (or physical) man-
ifestations on flat four-dimensional spacetime (Σ, ct) in the
context of SR of systems (20) and (21) respectively on the flat
two-dimensional intrinsic spacetime (φρ, φcφt) in the context
of φSR in the positive universe.

Systems (28) and (29) or the explicit form (33) or (34)
implies Lorentz invariance (LI) in SR in the positive universe:

c2 t̃2 − x̃2 − ỹ2 − z̃2 = c2 t̃ ′2 − x̃′2 − ỹ′2 − z̃′2. (35)

This is the outward manifestation on flat four-dimensional
spacetime of SR of the intrinsic Lorentz invariance (φLI) (22)
on page 42 on flat two-dimensional intrinsic spacetime of
φSR. Just as the intrinsic LT and its inverse of system (13)
on page 40 and (16) on page 42 in the context of φSR are
made manifest in systems (28) and (29) respectively in SR in
the positive universe, the intrinsic LT and its inverse of sys-
tems (23) and (24) in φSR are made manifest in LT and its
inverse in SR in the negative universe respectively as follows:

−ct̃ ′∗ = −ct̃∗ secψ − (−x̃∗) tanψ

(w.r.t. P̃eter∗ in −ct̃∗)

−x̃′∗ = −x̃∗ secψ − (−ct̃∗) tanψ ,
−ỹ′∗ = −ỹ∗, −z̃′∗ = −z̃∗

(w.r.t. Peter∗ in −Σ̃∗)



(36)

and
−ct̃∗ = −ct̃ ′∗ secψ + (−x̃′∗) tanψ

(w.r.t. Paul∗ in −Σ̃′∗)

−x̃∗ = −x̃′∗ secψ + (−ct̃ ′∗) tanψ ,
−ỹ∗ = −ỹ′∗, −z̃∗ = −z̃′∗

(w.r.t. P̃aul∗ in −ct̃ ′∗)



. (37)

And by using equations (31) and (32) in systems (36) and
(37) we obtain the LT and it inverse in their usual explicit
forms in the negative universe as follows:

−t̃ ′∗ = γ
(
−t̃∗ − v

c2 (−x̃∗)
)

(w.r.t. P̃eter∗ in −ct̃∗)

−x̃′∗ = γ
(−x̃∗ − v (−t̃∗)

)
, −ỹ′∗ = −ỹ∗, −z̃′∗ = −z̃∗

(w.r.t. Peter∗ in −Σ̃∗)



(38)

and

−t̃∗ = γ
(
−t̃ ′∗ +

v

c2 (−x̃′∗)
)

(w.r.t. Paul∗ in −Σ̃′∗)

−x̃∗ = γ
(−x̃′∗ + v (−t̃ ′∗)

)
, −ỹ∗ = −ỹ′∗, −z̃∗ = −z̃′∗

(w.r.t. P̃aul∗ in −ct̃ ′∗)



. (39)

Systems (38) and (39) are the outward manifestations on
flat four-dimensional spacetime (−Σ∗,−ct∗) of SR of systems
(25) and (26) respectively on flat two-dimensional intrinsic
spacetime (−φρ∗,−φcφt∗) of φSR in the negative universe.
Either the LT (36) or its inverse (37) or the explicit form (38)
or (39) implies Lorentz invariance in SR in the negative uni-
verse:

(−ct̃∗)2 − (−x̃∗)2 − (−ỹ∗)2 − (−z̃∗)2 =

= (−ct̃ ′∗)2 − (−x̃′∗)2 − (−ỹ′∗)2 − (−z̃′∗)2. (40)

This is the outward manifestation on the flat four-dimen-
sional spacetime of SR of the intrinsic Lorentz invariance (27)
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Fig. 10: The concurrent open intervals (− π
2 ,

π
2 ) and ( π2 ,

3π
2 ) within which the intrinsic angle φψ could take on values: a) with respect to

3-observers in the positive universe and b) with respect to 3-observers in the negative universe.

on page 43 on flat two-dimensional intrinsic spacetime of
φSR in the negative universe. The restriction of the values of
the intrinsic angle φψ to a half-plane (− π2 < φψ < π

2 ) with re-
spect to observers in the positive universe in systems (13) and
(16) and with respect to observers∗ in the negative universe in
systems (23) and (24) is a temporary measure as indicated in
those systems. The intrinsic angle φψ actually takes on values
on the entire plane [− π2 6 φψ 6 3π

2 ] with respect to observers
in the positive and negative universes, except that certain val-
ues of φψ namely, − π2 , π2 and 3π

2 , must be excluded, as shall
be discussed more fully shortly. The values of φψ in the first
cycle as well as negative senses of rotation (by negative in-
trinsic angle −φψ) with respect to 3-observers in the 3-spaces
in the positive and negative universes are shown in Figs. 10a
and 10b respectively.

We have thus obtained a (new) set of spacetime/intrinsic
spacetime diagrams namely, Figs. 8a and 8b and their inverses
Figs. 9a and 9b in the context of Scheme II in Table 1 or in
the two-world picture, for deriving intrinsic Lorentz transfor-
mation (φLT) and its inverse in terms of extended straight line
affine intrinsic spacetime coordinates φx̃′, φcφt̃ ′ and φx̃, φcφt̃
on the flat two-dimensional metric intrinsic spacetime
(φρ, φcφt) of the two-dimensional intrinsic Special Theory of
Relativity (φSR) in both the positive and negative universes
and for deriving the Lorentz transformation (LT) and its in-
verse in terms of extended straight line affine spacetime coor-
dinates x̃, ỹ, z̃, ct̃ and x̃′, ỹ′, z̃′, ct̃ ′, as outward (or physical)
manifestations on the flat four-dimensional spacetime of SR
of the intrinsic Lorentz transformation (φLT) and its inverse
of φSR in both the positive and negative universes. Figures
8a and 8b and their inverses Figs. 9a and 9b must replace
the Minkowski diagrams of Figs. 3a and 3b in the context of
Scheme I in Table 1 or in the one-world picture.

The skewness of the rotated spacetime coordinates in the
Minkowski diagrams of Figs. 3a and 3b (and in the Loedel
and Brehme diagrams of Figs. 4a and 4b), from which the
LT and its inverse have sometimes been derived until now in

the existing one-world picture, has been remarked to be unde-
sirable earlier in this paper because the observer at rest with
respect to the frame with rotated spacetime coordinates could
detect the skewness of the coordinates of his frame as an ef-
fect of the uniform motion of his frame. Moreover the skew-
ness of the rotated coordinates of the “moving” frame vis-a-
vis the non-skewed coordinates of the “stationary” frame (in
the Minkowski diagrams) gives apparent preference to one
of two frames in uniform relative motion. On the other hand,
neither the skewness of the rotated intrinsic spacetime coordi-
nates of the “moving” frame nor of the “stationary” frame oc-
curs in Figs. 8a, 8b, 9a and 9b. The diagrams of Figs. 8a, 8b,
9a and 9b in the two-world picture do not give apparent pref-
erence for any one of the pair of intrinsic frames in relative
intrinsic motion and consequently do not give apparent pref-
erence for any one of the pair of frames on four-dimensional
spacetime in relative motion, since both intrinsic frames have
mutually orthogonal intrinsic spacetime coordinates in each
of those figures.

Although the negative universe is totally elusive to peo-
ple in our (or positive) universe, just as our universe is totally
elusive to people in the negative universe, from the point of
view of direct experience, we have now seen in the above
that the intrinsic spacetime coordinates of the two universes
unite in prescribing intrinsic Lorentz transformation and in-
trinsic Lorentz invariance on the flat two-dimensional intrin-
sic spacetime and consequently in prescribing Lorentz trans-
formation and Lorentz invariance on flat four-dimensional
spacetime in each of the two universes. It can thus be said
that there is intrinsic (or non-observable) interaction of four-
dimensional spacetime coordinates of the two universes in
Special Relativity.

The singularities at φψ= π
2 and φψ=− π

2 or φψ= 3π
2 in

systems (13) and (16), (of Scheme II in Table 1 or in the
two-world picture), correspond to the singularities at α=∞
and α=−∞ in the coordinate transformation of systems (4)
and (5) in the Minkowski one-world picture. Being smooth
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for all values of α, except for the extreme values, α=∞ and
α=−∞, at its boundary represented by the vertical line in
Fig. 1a, which corresponds to a line along the ct- and −ct∗-
axes in Fig. 2a, the only (positive) Minkowski space including
the time reversal dimension, (to be denoted by (Σ, ct,−ct∗)),
in Fig. 2a in the one-world picture is usually considered to
be sufficiently smooth. Similarly being smooth for all val-
ues of the intrinsic angle φψ in the first cycle, except for
φψ=− π

2 ,
π
2 and φψ= 3π

2 along their interface in Fig. 2b, the
positive Minkowski space including the time reversal dimen-
sion (Σ, ct,−ct∗) and the negative Minkowski space including
time reversal dimension (−Σ∗,−ct∗, ct) of the two-world pic-
ture in Fig. 2b must be considered to be sufficiently smooth
individually.

An attempt to compose the positive Minkowski space
including the time reversal dimension (Σ, ct,−ct∗) and the
negative Minkowski space including time reversal dimension
(−Σ∗,−ct∗, ct) into a single space, over which φψ has val-
ues within the range [− π2 , 3π

2 ] or [0, 2π], cannot work since
the resultant space possesses interior (and not boundary) dis-
continuities at φψ= π

2 in the case of the range [− π2 , 3π
2 ] and

φψ=− π
2 , φψ= π

2 and φψ= 3π
2 in the case of the range [0, 2π],

thereby making the single space generated non-smooth. This
implies that the larger spacetime domain of combined pos-
itive and and negative universes cannot be considered as a
continuum of event domain or as constituting a single world
or universe. The lines of singularity φψ= π

2 and φψ=− π
2

along the vertical ct- and and −ct∗-axes respectively repre-
sent event horizons, (the special-relativistic event horizons),
to observers in 3-spaces Σ and −Σ∗ in the positive and neg-
ative universes respectively. These event horizons at φψ= π

2
and − π2 show up as singularities in the intrinsic Lorentz trans-
formation (φLT) and its inverse of systems (13) and (16) and
consequently in the LT and its inverse of systems (28) and
(29) in the positive universe and in φLT and its inverse of sys-
tems (23) and (24) and consequently in the LT and its inverse
of systems (36) and (37) in the negative universe.

The observers in 3-space on one side of the event horizons
along the dimensions ct and −ct∗ in Fig. 5 and Fig. 7 cannot
observe events taking place on the other side. This makes
a two-world interpretation of Scheme II in Table 1 with the
spacetime/intrinsic spacetime diagram of Fig. 7 mandatory.

4.5 Reduction of the LT and its inverse to length con-
traction and time dilation formulae from the point
of view of what can be measured with laboratory rod
and clock

Nature makes use of all the terms of the LT, system (28) or
(33), and its inverse, system (29) or (34) to establish Lorentz
invariance. However man could not detect all the terms of the
LT and its inverse with his laboratory rod and clock. First of
all, it is the last three equations of system (28) or (33) writ-
ten by or with respect to the 3-observer (Peter) in 3-space in

the unprimed frame with affine coordinates x̃, ỹ and z̃ and the
first equation of system (29) or (34) written by or with re-
spect to the 3-observer Paul in 3-space in the primed frame
with affine coordinates x̃′, ỹ′ and z̃′ that are relevant for the
measurements of distance in space by a rod in 3-space and
of time duration by a clock kept in 3-space respectively of a
special-relativistic event by 3-observers in 3-space. By col-
lecting those equations we have the following:

x̃′ = x̃ secψ − ct̃ tanψ , ỹ′ = ỹ , z̃′ = z̃ (41a)

(w.r.t. 3-observer Peter in Σ̃), and

ct̃ = ct̃ ′ secψ + x̃′ tanψ (41b)

(w.r.t. 3-observer Paul in Σ̃′).
Now when Peter picks his laboratory rod to measure

length, he will be unable to measure the term −ct̃ tanψ of the
first equation of system (41a) with his laboratory-rod. Like-
wise when Paul picks his clock to measure time duration, he
will be unable to measure the term x̃′ tanψ in (41b) with his
clock. Thus from the point of view of what can be measured
by laboratory rod and clock by observers in 3-space, system
(41a) and Eq. (41b) reduce as follows:

x̃ = x̃′ cosψ , ỹ = ỹ′, z̃ = z̃′, t̃ = t̃ ′ secψ . (42)

System (42) becomes the following explicit form in terms
of particle’s speed relative to the observer by virtue of
Eq. (32) on page 44:

x̃ = x̃′
√

1 − v2/c2 , ỹ = ỹ′, z̃ = z̃′

t̃ =
t̃ ′√

1 − v2/c2


. (43)

These are the well known length contraction and time di-
lation formulae for two frames in relative motion along their
collinear x̃- and x̃′-axes in SR. Showing that they pertain to
the measurable sub-space of the space of SR is the essential
point being made here.

4.6 The generalized form of intrinsic Lorentz transfor-
mation in the two-world picture

Now let us rewrite the intrinsic Lorentz transformation (φLT)
and its inverse of systems (13) on page 40 and (16) on page
42 in the positive universe in the generalized forms in which
they can be applied for all values of φψ in the concurrent open
intervals (− π2 , π2 ) and ( π2 ,

3π
2 ) in Fig. 10a by factorizing out

sec φψ to have respectively as follows:

φcφt̃ ′ = sec φψ
(
φcφt̃ − φx̃ sin φψ

)

φx̃′ = sec φψ
(
φx̃ − φcφt̃ sin φψ

)
 (44)

and
φcφt̃ = sec φψ

(
φcφt̃ ′ + φx̃′ sin φψ

)

φx̃ = sec φψ
(
φx̃′ + φcφt̃ ′ sin φψ

)
 . (45)
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The 3-observers in the Euclidean 3-space Σ of the posi-
tive universe “observe” intrinsic Special Relativity (φSR) and
consequently observe Special Relativity (SR) for intrinsic an-
gles φψ in the range (− π2 , π2 ). However as Fig. 10a shows,
3-observers in the positive universe could construct φSR and
hence SR relative to themselves for all intrinsic angles φψ in
the concurrent open intervals (− π2 , π2 ) and ( π2 ,

3π
2 ), by using

the generalized intrinsic Lorentz transformation (φLT) and its
inverse of systems (44) and (45) and obtaining the LT and
its inverse as outward manifestations on flat four-dimensional
spacetime of the φLT and its inverse so derived, although
they can observe Special Relativity for intrinsic angles φψ in
(− π2 , π2 ) in Fig. 10a only.

Likewise the φLT and its inverse in the negative universe
of systems (25) on page 43 and (26) on page 43, shall be
written in the generalized forms in which they can be applied
for all intrinsic angles φψ in the concurrent open intervals
(− π2 , π2 ) and ( π2 ,

3π
2 ) in Fig. 10b respectively as follows:

−φcφt̃ ′∗ = sec φψ
(−φcφt̃∗ − (−φx̃∗) sin φψ

)
−φx̃′∗ = sec φψ

(−φx̃∗ − (−φcφt̃∗) sin φψ
)

}
(46)

and
−φcφt̃∗ = sec φψ

(−φcφt̃ ′∗ + (−φx̃′∗) sin φψ
)

−φx̃∗ = sec φψ
(−φx̃′∗ + (−φcφt̃ ′∗) sin φψ

)
}
. (47)

The 3-observers∗ in the Euclidean 3-space −Σ∗ of the neg-
ative universe “observe” intrinsic Special Relativity (φSR)
and hence observe Special Relativity (SR) for intrinsic angles
φψ in the open interval (− π2 , π2 ) in Fig. 10b. Again as Fig. 10b
shows, 3-observers∗ in the negative universe could construct
φSR and hence SR relative to themselves for all intrinsic an-
gles φψ in the concurrent open intervals (− π2 , π2 ) and ( π2 ,

3π
2 ),

by using the generalized φLT and its inverse of φSR of sys-
tems (46) and (47) and obtaining LT and its inverse of SR
as outward manifestations on flat four-dimensional spacetime
of the φLT and its inverse so constructed, although they can
observe SR for intrinsic angles φψ in (− π2 , π2 ) in Fig. 10b only.

The fact that the intrinsic Lorentz transformation (φLT)
and its inverse represent continuous rotation of intrinsic spa-
cetime coordinates φx̃′ and φcφt̃ ′ of the primed frame relative
to the intrinsic spacetime coordinates φx̃ and φcφt̃ respec-
tively of the unprimed frame through all intrinsic angles φψ in
the closed range [0, 2π], excluding rotation by φψ=− π

2 ,
π
2 and

φψ= 3π
2 , is clear from the concurrent open intervals (− π2 , π2 )

and ( π2 ,
3π
2 ) of the intrinsic angle φψ in Figs. 10a and 10b over

which the generalized φLT and its inverse of systems (44)
and (45) in the positive universe and systems (46) and (47) in
the negative universe could be applied. We shall not be con-
cerned with the explanation of how the intrinsic coordinates
φx̃′ and φcφt̃ ′ of the particle’s intrinsic frame can be rotated
continuously relative to the intrinsic coordinates x̃ and φcφt̃
of the observer’s intrinsic frame through intrinsic angles φψ
in the range [0, 2π], while avoiding φψ= π

2 and φψ= 3π
2 in

this paper.

4.7 Non-existence of light cones in the two-world picture

The concept of light-cone does not exist in the two-world pic-
ture. This follows from the derived relation, sin φψ= φv/φc,
(Eq. (18) on page 42), which makes the intrinsic speed φv
of relative intrinsic motion of every pair of intrinsic frames
lower than the intrinsic light speed φc, (φv< φc), for all val-
ues of φψ in the concurrent open intervals (− π2 , π2 ) and ( π2 ,

3π
2 )

in Fig. 10a in the context of φSR and consequently speed v of
relative motion of every pair of frames lower than the speed
of light c, (v < c), for all intrinsic angles φψ in the concurrent
open intervals (− π2 , π2 ) and ( π2 ,

3π
2 ) in Fig. 10a. The intrin-

sic angle φψ= π
2 corresponds to intrinsic speed φv= φc and

φψ=− π
2 or φψ= 3π

2 corresponds to φv=−φc, which are ex-
cluded from φSR. They correspond to speed v= c and v=−c
respectively, which are excluded from SR.

We therefore have a situation where all intrinsic angles
φψ in the closed range [0, 2π], except φψ= π

2 and φψ= 3π
2 ,

(in Fig. 10a), are accessible to intrinsic Special Relativity
(φSR) with intrinsic timelike geodesics and consequently to
SR with timelike geodesics with respect to observers in the
positive universe. All intrinsic angles φψ in the closed interval
[0, 2π], except φψ= π

2 and φψ= 3π
2 , (in Fig. 10b), are likewise

accessible to φSR with intrinsic timelike geodesics and hence
to SR with timelike geodesics with respect to observers∗ in
the negative universe.

Intrinsic spacelike geodesics of for which φv> φc and
spacelike geodesics for which v > c do not exist for any value
of the intrinsic angle φψ in the four quadrants, that is, for φψ
in the closed range [0, 2π], on the larger spacetime/intrinsic
spacetime domain of combined positive and negative univer-
ses in Fig. 7. Since the existence of light cones requires re-
gions of spacelike geodesics outside the cones, the concept of
light cones does not exist in the two-world picture.

4.8 Prospect for making the Lorentz group compact in
the two-world picture

The impossibility of making the Lorentz group SO(3,1) com-
pact in the context of the Minkowski geometry in the one-
world picture has been remarked earlier in this paper. It arises
from the fact that the unbounded parameter space −∞<α<∞
of the Lorentz boost (the matrix L in (6) on page 33), in the
one-world picture, is unavoidable. Compactification of the
Lorentz group in the two-world picture would be interesting.

Now the new intrinsic matrix φL∗ that generates the in-
trinsic Lorentz boost, φx → φx′ = φL∗φx, on the flat two-
dimensional intrinsic spacetime in Eq. (13) on page 40 in the
positive universe or (23) on page 42 in the negative universe
in the two-world picture is the following:

φL∗ =

(
sec φψ − tan φψ
− tan φψ sec φψ

)
, (48)

where φψ takes on values in the concurrent open intervals
(− π2 , π2 ) and ( π2 ,

3π
2 ) in the positive and negative universes, as
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explained earlier and illustrated in Figs. 10a and 10b.
The corresponding new matrix L∗ that generates the Lo-

rentz boost, x→ x′ = L∗x, on flat four-dimensional spacetime
in Eq. (28) on page 43 in the positive universe or (36) on
page 44 in the negative universe in the two-world picture is
the following

L∗ =



secψ − tanψ 0 0
− tanψ secψ 0 0

0 0 1 0
0 0 0 1


(49)

where, ψ takes on values in the concurrent open intervals
(− π2 , π2 ) and ( π2 ,

3π
2 ) like φψ, in the positive and negative uni-

verses.
The matrix L∗ can be said to be the outward manifestation

on flat four-dimensional spacetime of SR of the intrinsic ma-
trix φL∗ on flat two-dimensional intrinsic spacetime of φSR.
It must be recalled however that while the intrinsic angle φψ
in (48) measures actual rotation of intrinsic coordinates φx̃′

and φcφt̃ ′ of the primed frame relative to the intrinsic coor-
dinates φx̃ and φcφt̃ of the unprimed frame, (as in Figs. 8a,
8b, 9a and 9b), in the context of φSR, the angle ψ in (49)
represents intrinsic (i.e. non-observable or hypothetical) ro-
tation of spacetime coordinates x̃′ and ct̃ ′ of the primed frame
relative to x̃ and ct̃ of the unprimed frame.

The concurrent open intervals (− π2 , π2 ) and ( π2 , 3π) wherein
the intrinsic angle φψ and the angle ψ take on values in the
positive and negative universes imply that the intrinsic ma-
trix φL∗ (the intrinsic Lorentz boost) and the Lorentz boost
L∗ in the two-world picture are unbounded. It must be re-
called that the matrix L that generates the Lorentz boost in the
Minkowski one-world picture given by Eq. (6) on page 33 is
likewise unbounded because the parameter α in that matrix
takes on values in the unbounded interval (−∞,∞).

Also by letting φψ→ π
2 and φψ→ − π2 or 3π

2 in the intrin-
sic matrix φL∗, we have sec φψ= tan φψ → ∞ and sec φψ=

tan φψ→−∞ respectively, which shows that φL∗ (or the intrin-
sic Lorentz boost) and hence the Lorentz boost L∗ in the two-
world picture are not closed. Whereas α→∞, coshα→∞,
sinhα → ∞, and α → −∞, coshα → ∞, sinhα → −∞
in matrix L, which implies that the Lorentz boost in the Min-
kowski one-world picture is closed (since no entry of L is out-
side the range −∞ < α < ∞ of the parameter α [6]). Thus L is
not bounded but is closed, while φL∗ and L∗ are not bounded
and not closed. The matrices L, L∗ and the intrinsic matrix
φL∗ are therefore non-compact.

It is required that φL∗ be both closed and bounded for it to
be compact. Likewise the matrix L∗. It follows from this and
the foregoing paragraphs that making the the intrinsic Lorentz
boost (48) and consequently the Lorentz boost (49) in the
two-world picture compact has not been achieved in this pa-
per. As deduced in sub-section 1.1, making the Lorentz boost
compact implies making SO(3,1) compact. Thus SO(3,1) has
yet not been made compact in the two-world picture since the

Lorentz boost has yet not been made compact.
There is good prospect for making SO(3,1) compact in

the two-world picture however. This is so since the intrinsic
matrix φL∗ and consequently the matric L∗ (the Lorentz boost
in the two-world picture) will become compact by justifiably
replacing the concurrent open intervals (− π2 , π2 ) and ( π2 ,

3π
2 ), in

which the intrinsic angle φψ and the angle ψ take on values
in φL∗ and L∗ respectively, by the concurrent closed intervals
[−( π2 − ε), π2 − ε] and [ π2 − ε, 3π

2 − ε], where ε is a small non-
zero angle. This will make each of φL∗ and L∗ to be both
closed and bounded and hence to be compact. It will certainly
require further development of the two-world picture than in
this initial paper to make SO(3,1) compact in two-world − if
it will be possible.

This paper shall be ended at this point with a final remark
that although the possibility of the existence of a two-world
picture (or symmetry) in nature has been exposed, there is the
need for further theoretical justification than contained in this
initial paper and experimental confirmation ultimately, in or-
der for any one to conclude the definite existence of the two-
world picture. The next natural step will be to include the
light-axis and the distinguished frame of reference of electro-
magnetic waves in the two-world picture that encompasses
no light cones and to investigate the signs of mass and other
physical parameters, as well as the possibility of invariance
of natural laws in the negative universe.
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The two-world background of the Special Theory of Relativity started in part one of
this article is continued in this second part. Four-dimensional inversion is shown to be
a special Lorentz transformation that transforms the positive spacetime coordinates of a
frame of reference in the positive universe into the negative spacetime coordinates of the
symmetry-partner frame of reference in the negative universe in the two-world picture,
contrary to the conclusion that four-dimensional inversion is impossible as actual trans-
formation of the coordinates of a frame of reference in the existing one-world picture.
By starting with the negative spacetime dimensions in the negative universe derived in
part one, the signs of mass and other physical parameters and physical constants in the
negative universe are derived by application of the symmetry of laws between the pos-
itive and negative universes. The invariance of natural laws in the negative universe is
demonstrated. The derived negative sign of mass in the negative universe is a conclu-
sion of over a century-old effort towards the development of the concept of negative
mass in physics.

1 Introduction

A brief summary of the new geometrical representation of
Lorentz transformation and its inverse in the two-world pic-
ture and the other associated issues presented in part one of
this article [1], is appropriate at the beginning of this sec-
ond part.

Having deduced from the γ= secψ parametrization of the
Lorentz boost that a pair of flat four-dimensional spacetimes
(or a pair of Minkowski’s spaces), which are four-dimension-
al inversions of each other namely, (Σ, ct) ≡ (x1, x2, x3, ct)
and (−Σ∗,−ct∗) ≡ (−x1∗, −x2∗, −x3∗, −ct∗), co-exist in na-
ture and that this implies the co-existence in nature of a pair of
symmetrical worlds (or universes), referred to as our (or posi-
tive) universe and negative universe, a pair of two-dimension-
al intrinsic spacetimes denoted respectively by (φρ, φcφt)
and (−φρ∗,−φcφt∗), which underlie the flat four-dimensional
spacetimes (Σ, ct) of the positive universe and (−Σ∗,−ct∗)
of the negative universe respectively, were introduced (as
ansatz) in [1]. The derived graphical representation of the
larger spacetime/intrinsic spacetime of the co-existing “anti-
parallel” worlds (or universes) was then derived and present-
ed as Fig. 7 of [1].

A new set of intrinsic spacetime diagrams that involve ro-
tations of the primed affine intrinsic spacetime coordinates
φx̃′ and φcφt̃ ′ relative to the unprimed affine intrinsic space-
time coordinates φx̃ and φcφt̃ of a pair of frames in rela-
tive motion in the positive universe, which are united with
the symmetrical rotations of the primed affine intrinsic space-
time coordinates −φx̃′∗ and −φc φt̃ ′∗ relative to the unprimed
affine intrinsic spacetime coordinates −φx̃∗ and −φcφt̃∗ of
the symmetry-partner pair of frames in simultaneous identi-
cal relative motion in the negative universe, are then drawn

on the larger spacetime/intrinsic spacetime of combined pos-
itive and negative universes, as Figs. 8a, 8b, 9a and 9b of [1].
The intrinsic Lorentz transformations (φLT) and its inverse
are derived from the set of intrinsic spacetime diagrams and
intrinsic Lorentz invariance (φLI) validated in the context of
the intrinsic Special Theory of Relativity (φSR) on each of
the flat two-dimensional intrinsic spacetimes (φρ, φcφt) of the
positive universe and (−φρ∗,−φcφt∗) of the negative universe.

The flat four-dimensional spacetimes (Σ, ct) and
(−Σ∗,−ct∗) being the outward (or physical) manifestations
of their underlying flat two-dimensional intrinsic spacetimes
(φρ, φcφt) and (−φρ∗,−φcφt∗) respectively and the Special
Theory of Relativity (SR) on each of the spacetimes (Σ, ct)
and (−Σ∗,−ct∗) being mere outward manifestations of the
intrinsic Special Theory of Relativity (φSR) on each of
(φρ, φcφt) and (−φρ∗,−φcφt∗) respectively, the Lorentz
transformation (LT) and its inverse are written directly and
Lorentz invariance (LI) validated on each of the flat four-
dimensional spacetimes (Σ, ct) and (−Σ∗,−ct∗), as outward
manifestations of intrinsic Lorentz transformation (φLT) and
its inverse and intrinsic Lorentz invariance (φLI) derived
graphically on each of (φρ, φcφt) and (−φρ∗,−φcφt∗).

There is consequently no need to draw spacetime dia-
grams involving relative rotations of the primed affine space-
time coordinates x̃′ and ct̃ ′ relative to the unprimed affine
spacetime coordinates x̃ and ct̃ of a pair of frames in rela-
tive motion along their collinear x̃′− and x̃− axes in the pos-
itive universe, which would be united with the symmetrical
rotations of the primed affine spacetime coordinates −x̃′∗ and
−ct̃ ′∗ relative to the unprimed affine spacetime coordinates
−x̃∗ and −ct̃∗ of the symmetry-partner pair of frames in si-
multaneous identical relative motion in the negative universe,
on the larger spacetime of combined positive and negative
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universes, in deriving LT and its inverse and in validating
LI in the positive and negative universes. Indeed such dia-
grams do not exist and if drawn, they must be understood that
they are intrinsic (that is, non-observable) or hypothetical di-
agrams only, as noted in [1].

The fact that the derived intrinsic Lorentz transformation
represents rotation of intrinsic spacetime coordinates φx̃′ and
φcφt̃ ′ of a particle’s frame relative to intrinsic spacetime co-
ordinates φx̃ and φcφt̃ respectively of the observer’s frame
at intrinsic angle φψ, where φψ can vary continuously in the
entire range [0, 2π], except that φψ= π

2 and φψ= 3π
2 must be

avoided, are shown in [1]. The non-existence of the light cone
concept and good prospect for making SO(3,1) compact in
the two-world picture are also shown in [1].

The next natural step in the theoretical justification of
the two-world background of the Special Theory of Relativ-
ity started in part one of this article, to which this second
part is devoted, is the derivations of the signs of mass and
other physical parameters and physical constants and investi-
gation of Lorentz invariance of natural laws in the negative
universe. The matter arising from [1] namely, the formal
derivation (or isolation) of the flat two-dimensional intrinsic
spacetimes (φρ, φcφt) and (−φρ∗,−φcφt∗) that underlie the
flat four-dimensional spacetimes (Σ, ct) and (−Σ∗,−ct∗) re-
spectively, which were introduced (as ansatz) in [1], requires
further development of the two-world picture than in this sec-
ond part of this article to resolve.

2 Four-dimensional inversion as special Lorentz trans-
formation of the coordinates of a frame of reference in
the two-world picture

The intrinsic Lorentz transformation (φLT) and its inverse in
the two-world picture have been written in the generalized
forms of equations (44) and (45) of part one of this article [1].
They can be applied for all intrinsic angles φψ in the first cy-
cle, while avoiding φψ= − π

2 , φψ= π
2 and φψ= 3π

2 , of relative
rotation of the affine intrinsic spacetime coordinates φx̃′ and
φcφt̃ ′ of the intrinsic particle’s (or primed) frame (φx̃′, φcφt̃ ′)
relative to the affine intrinsic coordinates φx̃ and φcφt̃ of the
intrinsic observer’s (or unprimed) frame (φx̃, φcφt̃) on the
larger two-dimensional intrinsic spacetime of combined pos-
itive and negative universes. They are reproduced here as fol-
lows

φcφt̃ ′ = sec φψ(φcφt̃ − φx̃ sin φψ)

φx̃′ = sec φψ(φx̃ − φcφt̃ sin φψ)

 (1)

and
φcφt̃ = sec φψ(φcφt̃ ′ + φx̃′ sin φψ)

φx̃ = sec φψ(φx̃′ + φcφt̃ ′ sin φψ)

 , (2)

where, as mentioned above, the intrinsic angle φψ can take
on values in the range [0, 2π], while avoiding φψ= π

2 and
φψ= 3π

2 .

Systems (1) and (2) on the flat two-dimensional intrinsic
spacetime (or in the intrinsic Minkowski space) (φρ, φcφt) of
intrinsic Special Theory of Relativity (φSR) are made man-
ifest outwardly (or physically) on the flat four-dimensional
spacetime (the Minkowski space) (Σ, ct) of the Special The-
ory of Relativity (SR) in the positive universe respectively as
follows, as developed in [1]

ct̃ ′ = secψ(ct̃ − x̃ sinψ)

x̃′ = secψ(x̃ − ct̃ sinψ) , ỹ′ = ỹ , z̃′ = z̃

 (3)

and

ct̃ = secψ(ct̃ ′ + x̃′ sinψ) ,

x̃ = secψ(x̃′ + ct̃ ′ sinψ) , ỹ = ỹ′, z̃ = z̃′

 , (4)

where, again, the angle ψ can take on values in [0, 2π], ex-
cluding ψ= π

2 and ψ= 3π
2 .

However, it must be noted, as discussed in [1], that while
the intrinsic angle φψ measures actual rotation of the affine
intrinsic coordinates φx̃′ and φcφt̃ ′ of the intrinsic particle’s
frame (φx̃′, φcφt̃ ′) relative to the intrinsic coordinates φx̃ and
φcφt̃ respectively of the intrinsic observer’s frame (φx̃, φcφt̃)
in system (1), the angle ψ refers to intrinsic (i.e. non-observ-
able) or hypothetical rotation of the coordinates x̃′ and ct̃ ′ of
the particle’s frame (x̃′, ỹ′, z̃′, ct̃ ′) relative to the coordinates
x̃ and ct̃ of the observer’s frame (x̃, ỹ, z̃, ct̃) respectively in
system (3). The affine spacetime coordinates x̃′, ỹ′, z̃′, ct̃ ′

of the particle’s frame are not rotated relative to the coordi-
nates x̃, ỹ, z̃, ct̃ of the observer’s frame and conversely in the
present geometrical representation of Lorentz transformation
and its inverse in the two-world picture started in [1].

We shall for now assume the possibility of continuous ro-
tation of the intrinsic coordinates φx̃′ and φcφt̃ ′ of the intrin-
sic particle’s frame by intrinsic angle φψ= π, while avoiding
φψ= π

2 , relative to the intrinsic coordinates φx̃ and φcφt̃ of the
intrinsic observer’s frame in the two-world picture, as devel-
oped in [1]. As also mentioned in [1], the explanation of how
rotation through all angles ψ in [0, π] while avoiding ψ = π

2
can be achieved shall not be of concern in this paper.

Then by letting φψ= π we have sec φψ= − 1, sin φψ= 0
and system (1) simplifies as follows

φcφt̃ ′ = −φcφt̃ and φx̃′ = −φx̃ . (5)

The meaning of system (5) is that upon rotation through
intrinsic angle φψ= π of the intrinsic coordinates φx̃′ and
φcφt̃ ′ of the intrinsic particle’s frame relative to the intrin-
sic coordinates φx̃ and φcφt̃ respectively of the intrinsic ob-
server’s frame in the positive universe, the rotated intrinsic
coordinates φx̃′ and φcφt̃ ′ transform into (or become) intrin-
sic coordinates of an observer’s frame with negative sign −φx̃
and −φcφt̃ respectively.

The outward manifestation on flat four-dimensional
spacetime of system (5) is the following

ct̃ ′ = −ct̃ , x̃′ = −x̃ , ỹ′ = −ỹ , z̃′ = −z̃ . (6)
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System (6) is valid because the intrinsic space coordinates
φx̃′ and −φx̃ are made manifest in the coordinates x̃′, ỹ′, z̃′

of 3-space Σ̃′ and the coordinates −x̃, −ỹ, −z̃ of 3-space −Σ̃

respectively, as explained in [1].
Although the coordinates ct̃ ′ and x̃′ of the particle’s frame

are not rotated relative to the coordinates ct̃ and x̃ of the ob-
server’s frame, once the intrinsic coordinates φx̃′ and φcφt̃ ′

of the intrinsic particle’s frame are rotated by intrinsic angle
φψ= π relative to the intrinsic coordinates φx̃ and φcφt̃ of the
intrinsic observer’s frame, thereby giving rise to system (5),
then system (6) will arise automatically as the outward man-
ifestation of system (5). It may be observed that system (6)
cannot be derived by letting ψ= π in system (3).

According to system (5), the intrinsic particle’s frame
whose intrinsic coordinates φx̃′ and φcφt̃ ′ are inclined at in-
trinsic angle φψ= π relative to the respective intrinsic coor-
dinates φx̃ and φcφt̃ of the intrinsic observer’s frame in the
positive universe, although is at rest relative to the observer’s
frame, since sin φψ= φv/φc = 0 ⇒ φv= 0 for φψ= π, it pos-
sesses negative intrinsic spacetime coordinates relative to the
intrinsic observer’s frame in the positive universe. This im-
plies that the intrinsic particle’s frame has made transition
into the negative universe. As confirmation of this fact, letting
φψ= π in Fig. 8a of [1] causes the inclined intrinsic coordi-
nate φx̃′ to lie along −φx̃∗ along the horizontal in the third
quadrant and the inclined intrinsic coordinate φcφt̃ ′ to lie
along −φcφt̃∗ along the vertical in the third quadrant in that
figure.

The negative intrinsic coordinates −φx̃ and −φcφt̃ in sys-
tem (5) are clearly the intrinsic coordinates of the symmetry-
partner intrinsic observer’s frame in the negative universe.
Then by putting a dummy star label on the unprimed negative
intrinsic coordinates in system (5) as our conventional way
of denoting the coordinates/intrinsic coordinates and param-
eters/intrinsic parameters of the negative universe, in order to
differentiate them from those of the positive universe we have

φcφt̃ ′ = −φcφt̃∗, φx̃′ = −φx̃∗. (7)

Likewise, by putting dummy star label on the negative
spacetime coordinates in system (6), since they are the coor-
dinates if the symmetry-partner observer’s frame in the nega-
tive universe we have

ct̃ ′ = −ct̃∗, x̃′ = −x̃∗, ỹ′ = −ỹ∗, z̃′ = −z̃∗. (8)

System (8) is the outward manifestation on flat four-
dimensional spacetime of system (7). System (7) is the form
taken by the generalized intrinsic Lorentz transformation (1)
for φψ= π and system (8) is the form taken by the generalized
Lorentz transformation (3) for ψ = π.

Since the intrinsic particle’s frame (φx̃′, φcφt̃ ′) is at rest
relative to the symmetry-partner intrinsic observer’s frame
(−φx̃∗, −φcφt̃∗) in the negative universe in system (7), which
is so since sin φψ= φv/φc = 0 ⇒ φv= 0, as mentioned ear-

lier, the intrinsic coordinates −φx̃∗ and −φcφt̃∗ of the intrin-
sic “stationary” observer’s frame are identical to the coordi-
nates −φx̃′∗ and −φcφt̃ ′∗ of the symmetry-partner intrinsic
particle’s frame in the negative universe. Consequently sys-
tem (7) is equivalent to the following transformation of the
primed intrinsic coordinates of the intrinsic particle’s frame
in the positive universe into the primed intrinsic coordinates
of the symmetry-partner intrinsic particle’s frame in the neg-
ative universe:

φcφt̃ ′ = −φcφt̃ ′∗, φx̃′ = −φx̃′∗
or

φcφt̃ ′ → −φcφt̃ ′∗, φx̃′ → −φx̃′∗. (9)

This is inversions in the origin (or intrinsic two-dimen-
sional inversions) of the intrinsic coordinates φx̃′ and φcφt̃ ′

of the intrinsic particle’s frame (φx̃′, φcφt̃ ′) in the positive
universe, which arises by virtue of actual rotations of the in-
trinsic coordinates φx̃′ and φcφt̃ ′ by intrinsic angle φψ= π
relative to the intrinsic coordinates φx̃ and φcφt̃ respectively
of the intrinsic observer’s frame (φx̃, φcφt̃) in the positive uni-
verse. The intrinsic two-dimensional inversion (9) is still the
generalized intrinsic Lorentz transformation (1) for φψ= π.

The outward manifestation on the flat four-dimensional
spacetime of system (9), which also follows from system (8),
is the following

ct̃ ′ = −ct̃ ′∗, x̃′ = −x̃′∗, ỹ′ = −ỹ′∗, z̃′ = −z̃′∗
or

ct̃ ′ → −ct̃ ′∗, x̃′ → −x̃′∗, ỹ′ → −ỹ′∗, z̃′ → −z̃′∗. (10)

This is the corresponding inversions in the origin (or four-
dimensional inversions) of the coordinates x̃′, ỹ′, z̃′ and ct̃ ′ of
the particle’s frame in the positive universe, which arises as
outward manifestation of system (9). The four-dimensional
inversion (10) is still the generalized Lorentz transformation
of system (3) for ψ= π. It shall be reiterated for emphasis that
the coordinates x̃′, ỹ′, z̃′ and ct̃ ′ of the particle’s frame in the
positive universe are not actually rotated by angle ψ= π rela-
tive to the coordinates x̃, ỹ, z̃ and ct̃ of the observer’s frame
in the positive universe, but that system (10) arises as a con-
sequence of system (9) that arises from actual rotation of in-
trinsic coordinates.

Corresponding to system (9) expressing inversions in the
origin of intrinsic coordinates of the intrinsic particle’s frame,
derived from the intrinsic Lorentz transformation (1) for
φψ= π, is the following inversions in the origin of the un-
primed intrinsic coordinates of the intrinsic observer’s frame,
which can be derived from the inverse intrinsic Lorentz trans-
formation (2) for φψ= π:

φcφt̃ = −φcφt̃∗, φx̃ = −φx̃∗
or

φcφt̃ → −φcφt̃∗, φx̃→ −φx̃∗. (11)

And the outward manifestation on flat four-dimensional
spacetime of system (11) is the following four-dimensional
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inversions of the coordinates of the observer’s frame

ct̃ = −ct̃∗, x̃ = −x̃∗, ỹ = −ỹ∗, z̃ = −z̃∗
or

ct̃ → −ct̃∗, x̃→ −x̃∗, ỹ→ −ỹ∗, z̃→ −z̃∗. (12)

We have thus shown that intrinsic two-dimensional inver-
sion is the special intrinsic Lorentz transformation (1) or its
inverse (2) for φψ= π. It transforms the intrinsic spacetime
coordinates of a frame in the positive universe into the intrin-
sic spacetime coordinates of the symmetry-partner frame in
the negative universe or conversely. Four-dimensional inver-
sion is likewise the special Lorentz transformation (3) or its
inverse (4) for ψ= π, which transforms the spacetime coordi-
nates of a frame in the positive universe into the spacetime
coordinates of the symmetry-partner frame in the negative
universe or conversely.

On the other hand, it has been concluded in the context of
the existing one-world background of the Special Theory of
Relativity (or in the one-world picture) that four-dimensional
inversion in impossible as actual transformation of the coor-
dinates of a frame of reference. This, as discussed in [2, see
p.39], for example, is due to the fact four-dimensional inver-
sion carries the time axis from the future light cone into the
past light cone, which is impossible without going through
regions of spacelike geodesics that requires the introduction
of imaginary spacetime coordinates in the one-world picture.

The light cone concept does not exist in the two-world
picture, as deduced in sub-section 4.7 of [1]. Consequently
continuous relative rotation of intrinsic spacetime coordinates
of two frames through all intrinsic angles φψ in [0, 2π], while
avoiding φψ= π

2 and φψ= 3π
2 , is possible, (granting that how

φψ= π
2 and φψ= 3π

2 are avoided shall be explained,) without
going into regions of spacelike geodesics in the two-world
picture. Four-dimensional inversion, (which does not in-
volve actual relative rotation of spacetime coordinates of two
frames), being mere outward manifestation of intrinsic two-
dimensional inversion that involves actual relative rotation of
intrinsic spacetime coordinates of two frames, is therefore
possible as transformation of the coordinates of a frame of
reference in the two-world picture.

3 Sign of mass in the negative universe derived from
generalized mass expression in Special Relativity in
the two-world picture

Now the intrinsic particle’s frame (φx̃′, φcφt̃ ′) contains the
intrinsic rest mass φm0 of the particle at rest relative to it
and the particle’s frame (x̃′, ỹ′, z̃′, ct̃ ′) contains the rest mass
m0 of the particle at rest relative to it in the positive uni-
verse. The question arises; what are the signs of the intrin-
sic rest mass and rest mass of the symmetry-partner particle
contained in the symmetry-partner intrinsic particle’s frame
(−φx̃′∗,−φcφt̃ ′∗) and symmetry-partner particle’s frame
(−x̃′∗, −ỹ′∗, −z̃′∗, −ct̃ ′∗) respectively in the negative univer-
ses? The answer to this question shall be sought from the the

generalized intrinsic mass relation in the context of the intrin-
sic Special Theory of Relativity (φSR) and from the corre-
sponding generalized mass relation in the context of the Spe-
cial Theory of Relativity (SR) in the two-world picture in this
section and by requiring the symmetry of laws between the
positive and negative universes in the next section.

The well known mass relation on flat four-dimensional
spacetime (Σ, ct) in the context of SR is the following

m =
m0√

1 − v2/c2
. (13)

The corresponding intrinsic mass relation on the flat two-
dimensional intrinsic spacetime (φρ, φcφt) in the context of
the intrinsic Special Theory of Relativity (φSR) is

φm =
φm0√

1 − φv2/φc2
. (14)

The three-dimensional masses m0 and m in the three-
dimensional Euclidean space are the outward manifestation
of the one-dimensional intrinsic masses φm0 and φm respec-
tively in the one-dimensional intrinsic space, as illustrated in
Fig. 6a of [1].

Then by using the relation, sec φψ= (1 − φv2/φc2)−
1
2 and

secψ= (1 − v2/c2)−
1
2 derived and presented as Eqs. (19) and

(32) respectively in [1], Eqs. (14) and (13) can be written re-
spectively as follows

φm = φm0 sec φψ (15)
and

m = m0 secψ . (16)

Eqs. (15) and (16) are the generalized forms in the two-
world picture of the intrinsic mass relation in the context of
φSR and mass relation in the context of SR respectively. They
can be applied for all intrinsic angle φψ and all angles ψ in
the range [0, 2π], except that φψ= π

2 and φψ= 3π
2 must be

avoided.
By letting φψ= π in Eq. (15) and ψ= π in Eq. (16) we

have
φm = −φm0 ≡ −φm∗0 (17)

and
m = −m0 ≡ −m∗0 . (18)

However the intrinsic particle’s frame is stationary rela-
tive to the intrinsic observer’s frame for φψ= π, since then
sin φψ= φv/φc = 0 ⇒ φv= 0, as noted earlier. Consequently
the intrinsic special-relativistic mass φm=φm0(1−φv2/φc2)−

1
2

must be replaced by the intrinsic rest mass φm0 in (17) and the
special-relativistic mass m = m0(1−v2/c2)−

1
2 must be replaced

by the rest mass m0 in (18) to have respectively as follows

φm0 = −φm∗0 or φm0 → −φm∗0 (19)
and

m0 = −m∗0 or m0 → −m∗0 . (20)

Just as the positive intrinsic coordinates φx̃′ and
φcφt̃ ′ of the intrinsic particle’s frame in the positive universe
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transform into the negative intrinsic coordinates −φx̃′∗ and
−φcφt̃ ′∗ of the symmetry-partner intrinsic particle’s frame in
the negative universe expressed by system (9), by virtue of the
generalized intrinsic Lorentz transformation (1) for φψ= π,
the positive intrinsic rest mass φm0 of the particle contained
in the intrinsic particle’s frame (φx̃′, φcφt̃ ′) in the positive
universe, transforms into negative intrinsic rest mass −φm∗0
contained in the intrinsic particle’s frame (−φx̃′∗,−φcφt̃ ′∗) in
the negative universe, by virtue of the generalized intrinsic
mass relation (15) for φψ= π. The negative intrinsic rest mass
−φm∗0 is certainly the intrinsic rest mass of the symmetry-
partner particle in the negative universe.

Likewise as the positive coordinates x̃′, ỹ′, z̃′ and ct̃ ′ of a
particle’s frame in the positive universe transform into nega-
tive coordinates −x̃′∗, −ỹ′∗, −z̃′∗ and −ct̃ ′∗ of the symmetry-
partner particle’s frame in the negative universe, expressed
by system (10), by virtue of the generalized Lorentz transfor-
mation (3) for ψ= π, the positive rest mass m0 of the particle
contained in the particle’s frame (x̃′, ỹ′, z̃′, ct̃ ′) in the positive
universe, transforms into negative rest mass −m∗0 contained in
the symmetry-partner particle’s frame (−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃ ′∗)
in the negative universe, by virtue of the generalized relativis-
tic mass relation (16) for ψ= π. Again the negative rest mass
−m∗0 is certainly the rest mass of the symmetry-partner parti-
cle in the negative universe.

It follows from the foregoing two paragraphs that the in-
trinsic particle’s frame containing positive intrinsic rest mass
of the particle in the positive universe, to be denoted by
(φx̃′, φcφt̃ ′; φm0), corresponds to the symmetry-partner in-
trinsic particle’s frame containing negative intrinsic rest mass
(−φx̃′∗,−φcφt̃ ′∗; −φm∗0) in the negative universe. The parti-
cle’s frame containing the positive rest mass of the particle
(x̃′, ỹ′, z̃′, ct̃ ′; m0) in the positive universe, likewise corre-
sponds to the symmetry-partner particle’s frame containing
negative rest mass (−x̃′, −ỹ′∗, −z̃′∗, −ct̃ ′∗;−m∗0) in the nega-
tive universe.

The conclusion that follows from the foregoing is that
intrinsic rest masses and rest masses of material particles
and objects (that appear in classical, that is, in non-special-
relativistic intrinsic physics and physics) are negative quan-
tities in the negative universe. The special-relativistic in-
trinsic masses φm = γ(φv)φm0 and special-relativistic masses
m = γ(v)m0 of material particles and objects that appear in
special-relativistic intrinsic physics and special-relativistic
physics respectively are therefore negative quantities in the
negative universe.

4 Derivation of the signs of physical parameters and
physical constants in the negative universe by appli-
cation of symmetry of laws between the positive and
negative universes

Four-dimensional inversion is the transformation of the posi-
tive spacetime coordinates of a frame in the positive universe

into the negative spacetime coordinates of the symmetry-
partner frame in the negative universe, as systems (10) and
(12) show. Thus the simultaneous negation of spacetime co-
ordinates in the classical or special-relativistic form of a nat-
ural law amounts to writing that law in the negative universe.

Now the prescribed perfect symmetry of state between
the positive and negative universes discussed in sub-section
4.1 of part one of this article [1], will be impossible unless
there is also a perfect symmetry of laws between the two uni-
verses. That is, unless natural laws take on identical forms in
the two universes. Perfect symmetry of laws between the pos-
itive and negative universes is immutable, as shall be demon-
strated shortly in this article. It must be recalled that Lorentz
invariance in the negative universe, (which is an important
component of the invariance of laws in the negative universe),
has been validated from the derived LT and its inverse in the
negative universe of systems (38) and (39) of [1].

The simultaneous negation of space and time coordinates
in a natural law in the positive universe in the process of writ-
ing it in the negative universe will change the form of that
law in general unless physical quantities and constants, such
as mass, electric charge, temperature, flux, etc, which also
appear in the law (usually as differential coefficients in the in-
stantaneous differential laws) are given the appropriate signs.
By combining the simultaneous negation of space and time
dimensions with the invariance of laws, the signs of physical
quantities and constants in the negative universe can be de-
rived. The derivations of the signs of the fundamental quan-
tities namely, mass, electric charge and absolute temperature
in the negative universe shall be done below. The signs of all
derived (or non-fundamental) physical quantities and physi-
cal constants can then be inferred from their dimensions, as
shall be demonstrated.

Consider a body of constant mass m being accelerated by
a force ~F directed along the positive X-axis of the frame at-
tached to it. In the positive universe, Newton’s second law of
motion for this body is the following

~F =

(
m

d2x
dt2

)
ı̂ . (21)

Since the dimensions of 3-space of the negative uni-
verse is inversion in the origin of the dimensions of 3-space
of the positive universe, the dimensions, unit vector and
force, (x, y, z, t; ı̂; ~F ), in the positive universe correspond to
(−x∗, −y∗, −z∗, −t∗; −ı̂∗; − ~F∗) in the negative universe. Thus
in the negative universe, we must let x → −x∗, t → −t∗,
ı̂ → −ı̂∗ and ~F → − ~F∗, while leaving m unchanged mean-
while in (21) to have as follows

− ~F∗ =

(
m

d2(−x∗)
d(−t∗)2

)
(−ı̂∗) =

(
m

d2x∗

dt∗2

)
ı̂∗. (22)

While Eq. (21) states that a body pushed towards the
positive x-direction by a force ~F, moves along the positive
x-direction, (away from the force), in the positive universe,
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Eq. (22) states that a body pushed in the −x∗-direction in the
negative universe by a force − ~F∗, moves in the +x∗-direction,
with unit vector +ı̂∗, (towards the force), in the negative uni-
verse. This implies that Newton’s second law of motion is
different in the negative universe, contrary to the required in-
variance of natural laws in that universe.

In order for (22) to retain the form of (21), so that New-
ton’s second law of motion remains unchanged in the negative
universe, we must let m→ −m∗ in it to have as follows

− ~F∗ =

(
−m∗

d2x∗

dt∗2

)
(ı̂∗) =

(
m∗

d2x∗

dt∗2

)
(−ı̂∗) , (23)

which is of the form of (21) upon cancelling the signs. The
fact that we must let m→ −m∗ in (22) to arrive at (23) implies
that mass is a negative quantity in the negative universe.

Newton’s second law has been chosen because it involves
spacetime coordinates and mass and no other physical quan-
tity or constant. However the negation of mass in the negative
universe does not depend on the natural law adopted, it fol-
lows from any chosen law once the signs in the negative uni-
verse of other physical quantities and physical constants that
appear in that law have been correctly substituted, in addition
to the simultaneous negation of space and time coordinates in
the law.

The negation of mass also follows from the required in-
variance of the metric tensor with the reflection of spacetime
dimensions. For if we consider the Schwarzschild metric in
empty space at the exterior of a spherically symmetric grav-
itational field source, for example, then the non-trivial com-
ponents of the metric tensor are, g00 =−g−1

11 = 1−2GM/rc2.
By letting r → −r∗, we must also let M → −M∗ in order to
preserve the metric tensor in the negative universe. It can be
verified that this is true for all other metric tensors in General
Relativity.

Thus negative mass in the negative universe has again
been derived from the symmetry of natural laws between the
positive and negative universes, which has been derived from
the generalized mass relation in the Special Theory of Rela-
tivity in the two-world picture in the preceding section.

For electric charge, the electrostatic field ~E emanating
from a particle (assumed spherical in shape) with net electric
charge q in the positive universe is given at radial distance r
from the centre of the particle as follows

~E =
q~r

4πε0 r3
. (24)

The symmetry-partner electrostatic field emanating
from the symmetry-partner particle in the negative universe is
inversion in the origin of the electrostatic field in the positive
universe. Hence the electrostatic field in the negative universe
points in opposite direction in space as its symmetry-partner
field ~E of Eq. (24) in the positive universe. This implies that
the symmetry-partner electrostatic field in the negative uni-
verse is −~E∗. By letting r → −r∗, ~r → −~r ∗ and ~E → −~E∗ in

(24), while retaining q and ε0 meanwhile we have

−~E∗ =
q (−~r ∗)

4πε0 (−r∗)3
=

q~r ∗

4πε0 r∗3
(25)

In order for (25) to retain the form of (24), so that Cou-
lomb’s law remains unchanged in the negative universe, we
must let q/ε0 → − (q∗/ε∗0) to have

−~E∗ = − q∗~r ∗

4πε∗0r∗3
, (26)

which is of the form of Eq. (24) upon cancelling the signs.
The negative sign of −(q∗/ε∗0) is associated with the electric
charge, while the electric permittivity of free space retains its
positive sign in the negative universe. This can be ascertained
from the relation for the divergence of electric field namely,

~∇ · ~E =
ρ

ε0

. (27)

In the negative universe, we must let ~∇→−~∇∗, ~E→− ~E∗,
ρ → ρ∗, (since ρ= q/V → −q∗/(−V∗) = q∗/V∗ = ρ∗), while
retaining ε0 meanwhile in (27) to have

−~∇∗ · (−~E∗) =
ρ∗

ε0

. (28)

In order for (28) to retain the form of (27), we must let
ε0 → ε∗0 , which confirms the positivity of the electric permit-
tivity of free space in the negative universe. The conclusion
then is that the electric charge of a particle in the negative uni-
verse has opposite sign as the electric charge of its symmetry-
partner in the positive universe.

We are now left to determine the sign in the negative uni-
verse of the last fundamental quantity namely, absolute tem-
perature. It has been found impossible to determine the sign
of absolute temperature in the negative universe in a unique
manner from consideration of the equations of thermodynam-
ics, kinetic theory of gases and transport phenomena. It has
been necessary to make recourse to the more fundamental no-
tions of the “arrow of entropy” and “arrow of time” in order
to propagate. These notions have been made tangible by the
works of Prigogine [3].

We know that entropy always increases or always “flows”
along the positive direction of the “entropy axis” S in our
(or the positive) universe, even as time always increases or
always “flows” into the future direction, that is, along the pos-
itive time axis ct in our universe. Thus the arrow of time and
the arrow of entropy lie parallel to each other in our universe.
Or in the words of Prigogine, “a [positively directed] arrow
of time is associated with a [positively directed] arrow of en-
tropy”. Thus absolute entropy is a positive quantity in our
(or positive) universe, just as time is a positive quantity in
our (or positive) universe. The arrow of time and the arrow
of entropy likewise lie parallel to each other in the negative
universe. We then infer from this that entropy is negatively
directed and is hence a negative quantity in the negative uni-
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verse, since time is negatively directed and is hence a negative
quantity in the negative universe.

Having determined the sign of absolute entropy in the
negative universe from the above reasoning, it is now an easy
matter to determine the sign of absolute temperature in the
negative universe. For let us write the following fundamental
relation for absolute entropy in our universe:

S = k ln W , (29)

where k is the Boltzmann constant and W is the number of
micro-states in an ensemble in the quantum-mechanical for-
mulation [4]. In the negative universe, we must let S → −S ∗

and W → W∗ while retaining k meanwhile to have as follows

−S ∗ = k ln W∗. (30)

In order for (30) to retain the form of (29) we must let
k → −k∗, in (30), to have as follows

−S ∗ = − k∗ ln W∗, (31)

which is of the form of (29) upon cancelling the signs. Thus
the Boltzmann constant is a negative quantity in the negative
universe.

The average energy ε of a molecule, for one degree-of-
freedom motion of a diatomic molecule in a gas maintained
at thermal equilibrium at temperature T, is given as follows

ε =
2
3

k T , (32)

where, again, k is the Boltzmann constant. In the negative
universe, we must let ε → −ε∗, (since the kinetic energy
1
2 mv2 of molecules, like mass m, is a negative quantity in the
negative universe), and k → −k∗, in (32) while retaining T
meanwhile to have as follows

−ε∗ =
2
3

(−k∗) T , (33)

which is of the form of (32) upon cancelling the signs. The
transformation, T → T ∗, required to convert Eq. (33) into
Eq. (32) implies that absolute temperature is a positive quan-
tity in the negative universe.

In summary, the fundamental quantities namely, mass
m, electric charge Q and absolute temperature T , transform
between the positive and negative universes as, m→−m∗,
Q→ −Q∗ and T → T ∗.

By writing various natural laws in terms of negative
spacetime dimensions, negative mass, negative electric
charge and positive absolute temperature and requiring the
laws to retain their usual forms in the positive universe, the
signs of other physical quantities and constants in the negative
universe can be derived. However a faster way of deriving the
signs in the negative universe of derived physical quantities
and constants is to check the signs of their dimensions in the
negative universe, as demonstrated for a few quantities and
constants below.

Let us consider the Boltzmann constant k and absolute en-
tropy S , whose negative signs in the negative universe have
been deduced above. They both have the unit, Joule/Kelvin,
or dimension ML2/T 2Θ in the positive universe, where M
represents mass “dimension”, L represents length dimension,
T represents time dimension and Θ represents absolute tem-
perature “dimension”. In the negative universe, we must let
M → −M∗, L→ −L∗,T → −T ∗ and Θ→ Θ∗, to have the di-
mensions of Boltzmann constant and absolute entropy in the
negative universe as−M∗(−L∗)2/(−T ∗)2Θ∗ =−M∗L∗2/T ∗2Θ∗.
The Boltzmann constant and absolute entropy are negative
quantities in the negative universe, since their common di-
mension is negative in the negative universe.

The Planck constant has the unit Joule/second and dimen-
sion ML2/T 3 in the positive universe. In the negative uni-
verse, it has dimension of −M∗(−L∗)2/(−T ∗)3), which is pos-
itive. Hence the Planck constant is a positive quantity in the
negative universe.

The specific heat capacity cp has the unit Joule/kg×Kelvin
and dimension L2/T 2Θ in the positive universe. In the neg-
ative universe it has dimension (−L∗)2/ (−T ∗)2Θ∗, which is
positive. Hence specific heat capacity is a positive quantity in
the negative universe.

The electric permittivity of space ε has the unit of
Joule ×metre/Coulomb2 and dimension ML3/T 2C2 in the
positive universe, where C is used to represent the charge
“dimension”. In the negative universe, it has dimension
(−M∗)(−L∗)3/(−T ∗)2(−C∗)2 = M∗L∗3/T ∗2C∗2, which is pos-
itive. Hence the electric permittivity of space is a positive
quantity in the negative universe. This fact has been derived
earlier in the process of deriving the sign of electric charge
in the negative universe. Likewise magnetic permeability of
space µ has dimension ML/C2 in the positive universe and di-
mension −M∗(−L∗)/(−C∗)2 = M∗L∗/C∗2, in the negative uni-
verse. It is hence a positive quantity in both the positive and
negative universes.

An angular measure in space in the positive universe has
the same sign as the symmetry-partner angular measure in
the negative universe. This follows from the fact that an arc
length, s = rθ [metre], in the positive universe corresponds to
a negative arc length, s∗ = − (r∗θ∗) [−metre∗], in the negative
universe. In other words, an arc length in the positive universe
and its symmetry-partner in the negative universe transform
as, rθ → − (r∗θ∗). But the radii of the symmetry-partner arcs
transform as, r → −r∗. It follows from these two transforma-
tions that an angular measure in space in the positive universe
has the same sign as its symmetry-partner in the negative uni-
verse, that is, ±θ → ±θ∗ and ±ϕ→ ±ϕ∗, etc.

Finally, a dimensionless quantity or constant in the posi-
tive universe necessarily has the same sign as its symmetry-
partner in the negative universe, as follows from the above.
Examples of dimensionless constants are the dielectric con-
stants, εr and µr.

Table 1 gives a summary of the signs of some physical
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Intrinsic Sign

Physical quantity/constant Symbol quantity/ positive negative
constant universe universe

Distance/dimension of space dx ; x dφ x ; φ x + −
Interval/dimension of time dt ; t dφ t ; φ t + −
Mass m φm + −
Electric charge q q + or − − or +

Absolute entropy S φS + −
Absolute temperature T T + +

Energy (total, kinetic) E φE + −
Potential energy U φU + or − − or +

Radiation energy hν hφν + −
Electrostatic potential ΦE φΦE + or − + or −
Gravitational potential Φg φΦg − −
Electric field ~E φE + or − − or +

Magnetic field ~B φB + or − − or +

Planck constant h h + +

Boltzmann constant k φk + −
Thermal conductivity k φk + −
Specific heat capacity cp φcp + +

Speed v φv + +

Electric permittivity ε0 φε0 + +

Magnetic permeability µ0 φµ0 + +

Angle θ, ϕ φθ, φϕ + or − + or −
Parity Π φΠ + or − − or +

...
...

...
...

...

Table 1: The signs of physical parameters/intrinsic parameters and physical constants/intrinsic
constants in the positive and negative universes.

quantities and physical constants in the positive and negative
universes. The signs in the positive and negative universes of
other physical quantities and constants that are not included
in Table 1 can be easily determined from the signs of their
dimensions in the negative universe. The appropriateness of
the names positive universe and negative universe is made
clearer by Table 1.

5 Demonstrating the invariance of the natural laws in
the negative universe

It shall be shown in this section that the simultaneous nega-
tions of spacetime dimensions and mass, along with simulta-
neous reversal of the sign of electric charge, retention of the
positive sign of absolute temperature and substitution of the
signs of other physical quantities and physical constants in
the negative universe summarized in column 5 of Table 1 in
its complete form, render all natural laws unchanged. How-
ever only the invariance of a few laws in the negative universe
namely, mechanics (classical and special-relativistic), quan-
tum mechanics, electromagnetism and propagation of light,
the theory of gravity, cosmology and fundamental interac-
tions in elementary particle physics shall be demonstrated for
examples.

5.1 Further on the invariance of classical mechanics,
classical gravitation and Special Relativity in the
negative universe

Demonstrating the invariance of classical mechanics in the
negative universe consists essentially in showing that New-
ton’s laws of motion for a body under an impressed force and
due to interaction of the body with an external force field are
invariant under the simultaneous operations of inversion of
all coordinates (or dimensions) of 3-space (parity inversion),
time reversal and mass negation. The laws are given respec-
tively as follows in the positive universe:

~Fmech = m
d2r
dt2 r̂ (34)

and
~Ffield = m (−∇Φ) k̂ , (35)

where r̂ and k̂ are unit vectors in the directions of the forces
~Fmech and ~Ffield respectively.

In the negative universe, we must let ~Fmech→− ~F∗mech,
~Ffield→− ~F∗field, m→−m∗, r→−r∗, t→− t∗, ∇→−∇∗,
Φ→Φ∗ (for gravitational and elastic potentials), r̂→− r̂∗ and
k̂→− k̂∗ in (34) and (35) to have as follows

− ~F∗mech = −m∗
d2(−r∗)
d(−t∗)2 (−r̂∗) = m∗

d2r∗

dt∗2
(−r̂∗) (36)
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and
− ~F∗field = −m∗

(− (−∇∗)(Φ∗))(−k̂∗)

= m∗ (−∇∗Φ∗) (−k̂∗) (37)

Equations (36) and (37) are the same as Eqs. (34) and (35)
respectively upon cancelling the signs.

The invariance in the negative universe of the classical
laws of motion (34) and (35) in the positive universe implies
that a body of negative mass −m∗ in the negative universe
moves along a trajectory, when impressed upon by an exter-
nal mechanical force − ~F∗mech, or when it is moving within
a force field with potential function Φ∗ in the negative uni-
verse, which is identical to the trajectory followed by the
symmetry-partner body of positive mass m in the positive
universe, which is impressed upon by an external symmetry-
partner mechanical force ~Fmech or which is moving within a
symmetry-partner force field with potential function Φ in the
positive universe.

The invariance in the negative universe of trajectories of
a body implied by the invariance in the negative universe of
the differential classical laws of motion (34) and (35) for the
body, established above can be alternatively formulated as the
invariance in the negative universe of the variational formula
of Maupertuis. In the positive universe, this is given as fol-
lows

δ

∫ P2

p1

(
2
m

(E − U)
)1/2

dt = 0 . (38)

In the negative universe, we must let m→−m∗, E→−E∗,
U→−U∗ and dt→−dt∗ in (38) to have as follows

δ

∫ p∗2

p∗1

(
2
−m∗

(−E∗ − (−U∗))
)1/2

(−dt∗) =

= δ

∫ p∗2

p∗1

(
2

m∗
(E∗ − U∗)

)1/2

dt∗ = 0 . (39)

The summary of the above is that although inertial mass,
kinetic energy, distances in space and periods of time are
negative in the negative universe, material particles in the
negative universe perform identical motions under impressed
forces and external force fields as their symmetry-partners
perform under symmetry-partner impressed forces and exter-
nal force fields in the positive universe. Thus outward ex-
ternal forces lead to outward motions of bodies both in the
positive and negative universes. Attractive gravitational field
in the positive universe correspond to symmetry-partner re-
pulsive gravitational field in the negative universe, but they
both give rise to attractive motions of particles (towards the
field sources) in both universes. In brief, the transformation of
classical mechanics in the positive universe into the negative
universe does not give rise to strange motions and associated
strange phenomena.

Demonstrating the invariance of classical gravitation (or
classical gravitational interaction) in the negative universe

consists in showing the invariance in the negative universe
of the Newtonian law of gravity in differential form and the
implied Newtonian law of universal gravity,

~∇ · ~g = − 4πG% (40)

or
∇2 Φ = 4πG% (41)

and
~F = m~g = −GMm~r

r3 , (42)

where
% = m/V (mass − density), (43)
Φ = −GM/r , (44)
~g = −GM~r/r3. (45)

In writing equations (43)–(45) in the negative universe,
we must let m → −m∗; M → −M∗; r → −r ∗ and V → −V∗

(volume of m) to have

m
V
→ −m∗

−V∗
=

m∗

V∗
⇒ %→ %∗ (46)

−GM
r
→ −G (−M∗)

−r∗
= −GM∗

r∗
⇒ Φ→ Φ∗ (47)

and

−GM~r
r3 → −G (−M)(−~r ∗)

(−r∗)3 =
GM∗~r ∗

r∗3
⇒ ~g→ −~g ∗. (48)

By using the transformations (46)–(48) along with ~∇ →
−~∇∗ in equations (40)–(42) we have

(−~∇∗) · (−~g ∗) = − 4πG%∗

or
~∇∗ · ~g ∗ = − 4πG%∗, (49)

(−∇∗)2 Φ∗ = 4πG%∗

or
∇∗2 Φ∗ = 4πG%∗ (50)

and
~F∗ = (−m∗)(−~g ∗) = −G (−M∗) (−m∗)(−~r ∗)

(−r∗)3

or
~F∗ = m∗~g∗ = −GM∗m∗~r ∗

r∗3
. (51)

A comparison of equations (40)–(42) in the positive uni-
verse with the corresponding equations (49)–(51) in the neg-
ative universe, shows that the Newtonian law of gravity in
differential form and the implied Newtonian law of universal
gravity are invariant in the negative universe. The invariance
of classical gravitation (or classical gravitational interaction)
in the negative universe has thus been demonstrated. This
is true despite the fact that gravitational potential does not
change sign while gravitational field (or gravitational accel-
eration) changes sign in the negative universe according to
equations (47) and (48).
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Demonstrating the invariance of Special Relativity in the
negative universe consists in showing the invariance of Lo-
rentz transformation, time dilation and length contraction for-
mulae and the special-relativistic expressions for mass and
other quantities in that universe. Now in the positive uni-
verse, for motion at speed v of a particle of rest mass m0
along the x-axis of the coordinate system attached to it rel-
ative to an observer, the Lorentz transformation of the coor-
dinates (x̃′, ỹ′, z̃′, ct̃ ′) of the primed (or particle’s) frame into
the coordinates (x̃, ỹ, z̃, ct̃) of the unprimed (or observer’s)
frame has been written as system (3). The special-relativistic
mass is given in the positive universe by the usual expression
(13), which shall be re-written here as

m = γm0 . (52)

In the negative universe, we must let (x̃′, ỹ′, z̃′, ct̃ ′; m0) →
(−x̃′∗, −ỹ′∗, −z̃′∗, −ct̃ ′∗; −m∗0), and also (x̃, ỹ, z̃, ct̃; m) →
(−x̃∗, −ỹ∗, −z̃∗, −ct̃∗; −m∗), yielding the Lorentz transform-
ation of the coordinates of the frame of reference attached to
the symmetry-partner particle in motion relative to the sym-
metry-partner observer in the negative universe written as sys-
tem (38) in [1], which shall be re-written here as follows

−x̃′∗ = γ
(−x̃∗ − v (−t̃∗)

)

−t̃′∗ = γ
(
−t̃∗− v

c2 (−x̃∗)
)

−ỹ′∗ = −ỹ∗, −z̃′∗ = −z̃∗


, (53)

while the expression for special-relativistic mass in the nega-
tive universe becomes the following

−m∗ = − γm∗0. (54)

The expressions for time dilation and length contraction
in the negative universe are similarly given respectively as
follows

∆(−t̃∗) = γ∆ (−t̃′∗) , (55)

∆(−x̃∗) = γ−1 ∆(−x̃′∗) . (56)

Although the negative signs must be retained in (53),
(54), (55) and (56) in the negative universe, mathematically
the signs cancel, thereby making Lorentz transformation and
the other equations of Special Relativity to retain their usual
forms in the negative universe. Thus Lorentz invariance, (and
local Lorentz invariance in gravitational fields), hold in the
negative universe.

5.2 Invariance of quantum mechanics in the negative
universe

The time-dependent Schrödinger wave equation is the follow-
ing in the positive universe

H(~r, t, m, q) |Ψ(~r, t, m, q)〉 = i~
∂

∂t
|Ψ(~r, t, m, q)〉 . (57)

By writing (57) in the negative universe, while leaving Ψ

unchanged meanwhile, we have

− H∗(−~r ∗, −t∗, −m∗, −q∗) |Ψ(~r, t, m, q)〉
= i~∗

∂

∂(−t∗)
|Ψ(~r, t, m, q)〉 , (58)

where the fact that the Boltzmann constant transforms as
~ → ~∗ between the positive and negative universes in Ta-
ble 1 has been used.

Now the wave function should transform between the pos-
itive and negative universes either as

Ψ(~r, t, m, q)→ Ψ∗(−~r ∗, −t∗, −m∗, −q∗) =

= Ψ∗(~r ∗, t∗, m∗, q∗) (59)
or as

Ψ(~r, t, m, q)→ −Ψ∗(−~r ∗, −t∗, −m∗, −q∗) =

= −Ψ∗(~r ∗, t∗, m∗, q∗) . (60)

The parity of the wave function is conserved in (59) and
inverted in (60).

Let us consider the following wave function in the posi-
tive universe,

Ψ(~r, t) = A sin
(
~k · ~r − ωt

)
(61)

The symmetry-partner wave function in the negative uni-
verse is obtained by letting ~r→−~r ∗, ~k→−~k∗, ω→−ω∗,
t→− t∗ and A→−A∗ in (61) to have

Ψ∗(~r, t) = − A∗ sin
(
−~k∗ · (−~r ∗) − (−ω∗)(−t∗)

)

= − A∗ sin
(
~k∗ · ~r ∗ − ω∗t∗

)
. (62)

The transformation A→ −A∗ is necessary since inversion
in the origin of the coordinates of a Euclidean 3-space inverts
the amplitude of a wave in that space. On the other hand, the
phase of a wave function, being a dimensionless number, does
not change sign in the negative universe. Thus the transfor-
mation (60) and not (59) is the correct transformation of the
wave function between the positive and negative universes.
This is obviously so since (60) is a parity inversion situation,
which is in agreement with the natural parity inversion of a
wave, Π → −Π, between the positive and negative universes
included in Table 1. By incorporating the transformation (60)
into (58) we obtain the following

−H∗(−~r ∗,−t∗,−m∗,−q∗) | − Ψ∗(−~r ∗,−t∗,−m∗,−q∗)〉 =

= − i~∗
∂

∂t∗
| − Ψ∗(−~r ∗,−t∗,−m∗,−q∗)〉

or
H∗(~r ∗, t∗,m∗, q∗) |Ψ∗(~r ∗, t∗,m∗, q∗)〉 =

= i~∗
∂

∂t∗
|Ψ∗(~r ∗, t∗,m∗, q∗)〉 . (63)

This is of the form of Eq. (57). The invariance of the
Schrödinger wave equation in the negative universe has thus
been established. It is straight forward to demonstrate the
invariance in the negative universe of the Dirac’s equation for
the electron and of Gordon’s equation for bosons.
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5.3 Invariance of Maxwell equations in the negative uni-
verse

The Maxwell equations in a medium with electric charge den-
sity ρ and electric current density ~J are given in the positive
universe as follows

~∇ · ~E =
ρ

ε
, ~∇ · ~B = 0

~∇ × ~B = µ~J + ε µ
∂~E
∂t

, ~∇ × ~E = −∂
~B
∂t


. (64)

Now, ρ=
charge
volume , is the electric charge density of the

medium in the positive universe. The charge density of the
symmetry-partner medium in the negative universe is the
positive quantity, − charge∗

− volume∗ =
charge∗

volume∗ = ρ∗. The magnitude of an
electric current is, I =

charge
time or I = ρvA, in the positive uni-

verse and the magnitude of its symmetry-partner in the nega-
tive universe is the positive quantity, − charge∗

− time∗ =
charge∗

time∗ = I∗ or
ρ∗vA∗ = I∗, since speed v and area A do not change sign in the
negative universe. Similarly the magnitude of an electric cur-
rent density of a medium in the positive universe is,
J = current

area , and the magnitude of the current den-
sity of the symmetry-partner medium in the nega-
tive universe is, current∗

area∗ = J∗. Thus in obtaining the
Maxwell equations in the negative universe, we must
let ~E→− ~E∗, ~B→− ~B∗, ρ→ ρ∗, ~J→ ~J ∗, ~∇→−~∇∗,
ε→ ε∗, µ→ µ∗ and t→− t∗ in system (65) to have as follows

−~∇∗ · (−~E∗) =
ρ∗

ε∗
, −~∇∗ · (−~B∗) = 0

−~∇∗ × (−~B∗) = µ∗ ~J ∗ + ε∗µ∗
∂ (−~E∗)
∂(−t∗)

−~∇∗ × (−~E∗) = −∂(−~B∗)
∂(−t∗)



. (65)

System (65) with the negative signs is the form the
Maxwell equations are written by physicists∗ in the negative
universe. The signs cancel mathematically thereby making
system (65) to retain the form of system (64) and thereby es-
tablishing the invariance of Maxwell equations in the negative
universe.

The law of propagation of electromagnetic waves derived
from the Maxwell equations remain invariant in the negative
universe as a consequence of the above. The equations are
given in the positive universe as follows

∇2 ~E =
1
c2

∂2 ~E
∂t2 , ∇2~B =

1
c2

∂2~B
∂t2 , (66)

while in the negative universe, the electromagnetic wave
equations are given as follows

(−∇∗)2 (−~E∗) =
1
c2

∂2(−~E∗)
∂(−t∗)2

(−∇∗)2 (−~B∗) =
1
c2

∂2(−~B∗)
∂(−t∗)2


. (67)

Thus as the perpendicular electric field and magnetic field
~E and ~B propagate as electromagnetic wave at the speed of
light in the positive universe, the symmetry-partner perpen-
dicular fields −~E∗ and −~B∗ propagate as the identical sym-
metry-partner electromagnetic wave at the speed of light in
the negative universe.

The foregoing shows that although electric charge as well
as electric field and magnetic field change signs in the nega-
tive universe, the laws of propagation of electric and magnetic
fields and electromagnetic waves remain invariant in the neg-
ative universe.

5.4 Invariance of General Relativity and cosmology in
the negative universe

Since system of coordinates does not enter the covariant ten-
sor formulation of Einstein’s field equations, the equations
are equally valid for the negative dimensions of the negative
universe. The most general form of Einstein’s field equations
in the positive universe is the following

Rν
µ −

1
2

R gνµ + Λ gνµ = −8πG
c2 T ν

µ , (68)

where the energy-momentum tensor T ν
µ is defined as follows

T ν
µ = (p + ρ) uνuµ − pgνµ , (69)

Λ is the cosmological constant, p and ρ are the pressure and
density of the universe respectively, while the other quantities
in (68) and (69) are as defined in the theory. Λ is usually set
to zero in General Relativity when considering local gravita-
tional problems but retained in cosmological problems.

For the static exterior field of a spherical body, we must
let Λ = T ν

µ = 0 in (68) and require the vanishing of the Ricci
tensor to have as follows

Rµν = 0 (70)

Adopting a metric with signature (+ − −−), the Schwarz-
schild solution to the field equation (70) is the following

ds2 = c2dt2
(
1 − 2GM

rc2

)
− dr2

(
1 − 2GM

rc2

) −

−r2
(
dθ2 + sin2 θ dϕ2

)
. (71)

By letting t→− t∗, r→−r∗, θ→ θ∗, ϕ→ϕ∗ and M→−M∗

in (71) we find that the Schwarzschild line element or metric
tensor remains invariant in the negative universe. Other forms
of exterior line elements or metric tensors, such as Kerr’s line
element, as well as interior metric tensors remain invariant
in the negative universe as well. This is so because ds2 is
quadratic in intervals cdt, dr, rdθ and r sin θdϕ, and the com-
ponents of the metric tensor are dimensionless. This con-
cludes the invariance of general relativity in the negative uni-
verse.
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Now the metric of spatially homogeneous universe in co-
moving coordinates is the Robertson-Walker metric

ds2 = c2dt2 − R(t)2


du2 + u2

(
dθ2 + sin2 θ dϕ2

)
(
1 + k

4 u2
)2

 , (72)

where u = r/r0 and the constant k is −1, 0 or +1, correspond-
ing to spherical space, Euclidean space or pseudo-spherical
space. Assuming that the universe is filled with perfect fluid,
the field equation (68) along with the energy-momentum ten-
sor (69) have been cast in the following forms, from which
various models of the universe have been derived in General
Relativity, as can be found in the standard texts on General
Relativity

8πGρ
c2 = −Λ +

[
3k

R(t)2 +
3Ṙ(t)2

c2R(t)2

]
, (73)

8πG
c2

( p
c2

)
= Λ −

[
k

R(t)2 +
Ṙ(t)2

c2R(t)2 +
2R̈(t)
c2R(t)

]
, (74)

R(t) = R0 exp(Ht) , R0 = R(t = 0) , (75)

where R(t) is the “radius” of the universe, H is the Hubble
constant given by

H =
Ṙ(t)
R(t)

=
1

R(t)
dR(t)

dt
(76)

and the cosmological constant Λ is related to the Hubble con-
stant H as follows

Λ =
3H2

c2 . (77)

The parameters that appear in cosmological model, that
is, in Eqs. (73) through (75), are the global time t, the “ra-
dius” of the universe R(t), the mass-density of the universe
ρ, the pressure of the universe p, the Hubble constant H, and
the cosmological constant Λ. Also the rate of expansion Ṙ(t),
as well as the acceleration R̈(t), of the expanding universe
enter into the equations. In the negative universe, we must
let t→− t∗, R(t)→−R∗(−t∗), p→ p∗, H→−H∗, Λ→Λ∗,
Ṙ(t)→ Ṙ∗(−t∗) and R̈(t)→− R̈∗(−t∗) in (73) through (75). Do-
ing this, we find that the equations remain unchanged, so that
physicists∗ in the negative universe formulate identical cos-
mological models as those in the positive universe. Conse-
quently observers∗ in the negative universe make observation
of that universe that are identical to the observation made of
the positive universe by observers in the positive universe at
all epochs.

It is easy and straight forward to demonstrate the invari-
ance of the kinetic theory of gas, the laws of propagation
of heat (conduction, convection and radiation) in continuous
media, transport phenomena and other macroscopic laws of
physics by following the procedure used to demonstrate the
invariance of some macroscopic natural laws above with the
aid of the complete form of Table 1.

5.5 Invariance of fundamental interactions in the nega-
tive universe

In a formal sense, the invariance in the negative universe
of quantum chromodynamics, quantum electrodynamics, the
electro-weak theory and quantum gravity must be demon-
strated with the aid of the complete form of Table 1 in or-
der to show the invariance in the negative universe of strong,
electromagnetic, weak and gravitational interactions among
elementary particles, as has been done for the macroscopic
natural laws in this section. However we shall not attempt
this. Rather we shall make recourse to the CPT theorem to
demonstrate the invariance of the strong, electromagnetic and
weak interactions in this section.

The CPT theorem, in a simplified form in [5, see p. 712],
for instance, states that any hermitian interaction relativisti-
cally invariant, commutes with all products of the three oper-
ators C (charge conjugation), P (parity inversion), and T (time
reversal) in any order. Even if an interaction is not invariant
under one or two of the three operations, it must be invari-
ant under CPT. The invariance of strong, weak and electro-
magnetic interactions under CPT is a well established fact in
elementary particle physics [5].

Now the spacetime dimensions −x∗, −y∗, −z∗ and −ct∗

(in the Cartesian system of the dimensions of 3-space) of the
third quadrant (or of the negative universe) are the products
of natural parity inversion operation (P) and time reversal op-
eration (T), (or of natural operation PT), on the spacetime
dimensions x, y, z and ct of the first quadrant (or of the pos-
itive universe) in Fig. 5 or Fig. 7 of [1]. This implies, for
instance, that the parity of a Schrodinger wave in the negative
universe is natural inversion of parity of the symmetry-partner
Schrodinger wave in the positive universe. The natural par-
ity inversion of classical quantum-mechanical waves between
the positive and negative universes equally applies to intrinsic
parties of relativistic quantum mechanics and quantum field
theories.

As also derived earlier in this paper and included in Ta-
ble 1, the electric charge Q of a particle in the positive uni-
verse corresponds to an electric charge of equal magnitude
but of opposite sign −Q∗ of the symmetry-partner particle in
the negative universe. Thus the electric charge of a particle in
the negative universe is the product of natural charge conju-
gation operation (C) on the electric charge of its symmetry-
partner particle in the positive universe.

It follows from the foregoing two paragraphs that strong,
weak and electromagnetic interactions among elementary
particles in the negative universe are the products of natu-
ral operations of parity inversion (P), time reversal (T) and
charge conjugation (C), in any order, (or of natural opera-
tion CPT), on strong, weak and electromagnetic interactions
among elementary particles in the positive universe. The
invariance of strong, weak and electromagnetic interactions
among elementary particles in the negative universe follow
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from this and the CPT theorem.
The invariance of classical gravitation and the General

Theory of Relativity (or of gravitational interaction) at the
macroscopic level in the negative universe has been demon-
strated earlier in this section. The invariance in the negative
universe of gravitational interaction among elementary par-
ticles follow from this. This section shall be ended with a
remark that all natural laws, including the fundamental inter-
actions among elementary particles, take on the same forms
in the positive and negative universes and this is perfect sym-
metry of laws between the positive and negative universes.

6 On the concept of negative mass in physics

The concept of negative mass is not new in physics. The earli-
est speculations include the elaborate theory of negative mass
by Föppl in 1897 and Schuster’s contemplation of a universe
with negative mass in 1898 [6] . However, as mentioned
in [6], the fundamental modern paper on negative mass can
be deemed to begin with Bondi [7]. As also stated in [6],
Bondi pointed out that the mass in classical mechanics ac-
tually consists of three concepts namely, inertial mass, mi,
passive gravitational mass mp, and active gravitational mass
ma. In Newton’s theory of gravity, mi = mp = ma. Also in the
General Theory of Relativity, the principle of equivalence re-
quires that, mi = mp = ma. Although all three mass concepts
are usually taken to be positive in physics, the theories do not
compel this, as noted in [6].

Several papers on negative mass listed in [6] have ap-
peared after Bondi’s paper [7]. As noted in [6], most of those
papers investigate the interaction and possible co-existence of
particles with masses of both signs. The paper by Bonnor [6]
is an important reappraisal of the concept of negative mass in
the more recent time. In his analysis, Bonnor starts with the
assumption mi, mp > 0, ma < 0. He arrives at the result that
either mi < 0, mp < 0 and ma < 0 for all particles and bodies or
mi > 0, mp > 0 and ma > 0 for all particles and bodies. He then
chooses to work with the former case, that is, all three mass
concepts negative in an hypothetical universe. He substitutes
negative mass into mechanics, relativity, gravitation as well
as cosmology and finds that observers located in the hypo-
thetical universe would observe strange phenomena, such as
pebbles or sand falling on a stretched membrane producing
tension and not compression of the membrane, and a push
on a trolley causing it to accelerate towards the person who
pushed it, etc. It is certain that this our universe is not the
hypothetical universe containing negative mass in [6].

The hypothetical universe containing negative mass in [6]
is not the negative universe isolated in the two parts of this
article either. This is so because only mass is made negative
while space and time dimensions, as well as other physical
quantities and constants retain their signs (in our universe)
in the hypothetical universe of [6]. This proviso leads to the
deduced observation of strange phenomena in the hypothet-

ical universe. On the other hand, the negative universe of
this article contains negative mass along with the negation
of space and time dimensions, as well as the signs of other
physical quantities and constants summarized in column 5 of
Table 1. As demonstrated in the preceding section, the laws
of physics retain their usual forms in the negative universe,
and observers located in the negative universe observe phe-
nomena in their universe that are identical to the phenomena
observed in our (or positive) universe. There are no strange
phenomena in the negative universe of the two parts of this
article.

This section is perhaps the conclusion of over a
century-old effort towards the development of the concept of
negative mass in physics. Schuster’s speculation one hundred
and ten years ago of a universe containing negative mass must
have now been realized. This second part of this article shall
be ended at this point, while possible further development of
the two-world background of Special Relativity (or the two-
world picture) shall be investigated elsewhere.
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The present paper interprets matter as a chain system of quantum harmonic oscillators.
A fractal spectral model of resonant oscillations in chain systems of protons generates
a scaling mass spectrum, that reproduces the mass distribution of the celestial bodies in
the Solar System.

1 Introduction

Fractal scaling models [1] of natural oscillations in chain sys-
tems of harmonic oscillators are not based on any statements
about the nature of the link or interaction between the ele-
ments of the oscillating chain system. Therefore the model
statements are quite generally, what opens a wide field of pos-
sible applications.

In comparison with empty cosmic space, celestial bodies
(stars, planets, moons, asteroids) are compressed matter and
the contribution of nucleons to the bodies mass is about 99%.
In the framework of the standard particle model, protons and
neutrons are baryons, in which the proton connects to a lower
quantum energy level and a much more stable state than the
neutron. In addition, the proton and neutron have similar rest
masses, what permits us to interpret protons and neutrons as
similar quantum oscillators with regard to their rest masses.

Based on a fractal scaling model [1] of natural oscilla-
tions in this paper we will interpret matter as a chain system
of many oscillating protons and find out spectral ranges where
the oscillation process stability and energy efficiency are rel-
ative high or low.

2 Methods

On the base of continued fraction method [1] we will search
the natural frequencies of a chain system of many vibrating
protons on the lowest energy level (ground stage) in this form:

f = fp exp (S ) , (1)

f is a natural frequency of a chain system of vibrating pro-
tons, fp is the natural oscillation frequency of one proton, S
is a finite continued fraction with integer elements:

S = n0 +
1

n1 +
1

n2 + . . . + 1
nk

= [n0; n1, n2, . . . , nk] , (2)

where n0, n1, n2, . . . , nk ∈ Z. The continued fractions (2) are
in the canonical form and have a discrete spectrum of eigen-
values. With the help of the Lagrange transformation [2] ev-
ery continued fraction with integer partial denominators can

be represented as a continued fraction with natural partial de-
nominators, that’s always convergent. In this paper we will
investigate spectra generated by convergent continued frac-
tions (2). The present paper follows the Terskich [3] defi-
nition of a chain system, where the interaction between the
elements proceeds only in their movement direction.

Model spectra (2) are not only logarithmic-invariant, but
also fractal, because the discrete hyperbolic distribution of
natural frequencies repeats itself on each spectral level k. We
investigate continued fractions (2) with a finite quantity of
layers k, which generate discrete spectra, because in this case
all continued fractions S represent rational numbers. There-
fore the free link n0 and the partial denominators n1 can be
interpreted as “quantum numbers”.

The partial denominators n1 run through positive and neg-
ative integer values. Maximum spectral density areas (spec-
tral nodes) arise automatically on the distance of one loga-
rithmic unit, where |n1|→∞. Fig.1 shows the spectrum on
the first layer k = 1 for |n1|= 2, 3, 4, . . . and |n0|= 0, 1, 2, . . .
(logarithmic representation). Integer S-values are labeled.

Fig. 1: The spectrum (2) on the first layer k = 1, for |n1|= 2, 3, 4, . . .
and |n0|= 0, 1, 2, . . . (logarithmic representation). Integer S-values
are labeled.

Ranges of relative low spectral density (spectral gaps)
and ranges of relative high spectral density (spectral nodes)
arise on each spectral layer. In addition to the first spec-
tral layer, Fig. 2 shows the second spectral layer k = 2 for
|n2|= 2, 3, 4, . . . and |n1|= 2 (logarithmic representation).

Fig. 2: The spectrum (2) on the first layer k = 1, for |n0|= 0, 1, 2, . . .
and |n1|= 2, 3, 4, . . . and, in addition, the second layer k = 2 for
|n1|= 2 and |n2|= 2, 3, 4, . . . (logarithmic representation).

In the spectral node ranges, where the spectral density
reachs local maximum, natural frequencies are distributed
maximum densely, so that near a spectral node almost each
frequency is a natural frequency. The energy efficiency of
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Celestial body Body mass m, kg ln (m/mp) S d, %

15 Eunomia (A) 3.12 × 1019 [8] 106.54 [106; 2] 0.037
Mimas (S) (3.7493 ± 0.0031) × 1019 [7] 106.73 [106; 2] 0.216
Miranda (U) (6.59 ± 0.75) × 1019 [8] 107.29 [107; 2] −0.195
10 Hygiea (A) (8.98 ± 0.01) × 1019 [8] 107.60 [107; 2] 0.093
Enceladus (S) (1.08022 ± 0.00101) × 1020 [7] 107.78 [108] −0.204
2 Pallas (A) (2.11 ± 0.26) × 1020 [8] 108.50 [108; 2] 0.001
4 Vesta (A) (2.67 ± 0.02) × 1020 [8] 108.69 [108; 2] 0.175
Tethys (S) (6.17449 ± 0.00132) × 1020 [7] 109.53 [109; 2] 0.028
1 Ceres (P) (9.43 ± 0.07) × 1020 [8, 9] 109.95 [110] −0.045
Dione (S) (1.095452 ± 0.000168) × 1021 [7] 110.10 [110] 0.091
Umbriel (U) (1.172 ± 0.135) × 1021 [10] 110.10 [110] 0.091
Ariel (U) (1.350 ± 0.120) × 1021 [10] 110.23 [110] 0.209
Charon (P) (1.52 ± 0.06) × 1021 [11] 110.43 [110; 2] −0.064
Iapetus (S) (1.805635 ± 0.000375) × 1021 [7] 110.60 [110; 2] 0.090
Rhea (S) (2.306518 ± 0.000353) × 1021 [7] 110.84 [111] −0.144
Oberon (U) (3.014 ± 0.075) × 1021 [12] 111.12 [111] 0.108
Titania (U) (3.53 ± 0.09) × 1021 [12] 111.28 [111; 2] −0.197
Haumea (P) (4.006 ± 0.040) × 1021 [13] 111.40 [111; 2] −0.090
Pluto (P) (1.305 ± 0.007) × 1022 [11] 112.57 [112; 2] 0.018
Eris (P) (1.67 ± 0.02) × 1022 [14] 112.83 [113] −0.150
Triton (N) 2.14 ± 1022 [15] 113.07 [113] 0.062
Europa (J) 4.80 ± 1022 [16] 113.88 [114] −0.105
Moon (E) 7.3477 ± 1022 114.30 [114; 2] −0.175
Io (J) (8.9319 ± 0.0003) × 1022 [16] 114.50 [114; 2] 0.001
Callisto (J) (1.075938 ± 0.000137) × 1023 [17] 114.69 [114; 2] 0.166
Titan (S) (1.3452 ± 0.0002) × 1023 [7] 114.91 [115] −0.078
Ganymede (J) (1.4819 ± 0.0002) × 1023 [16] 115.00 [115] 0.001
Mercury (3.3022 ± 0.0001) × 1023 115.81 [116] −0.164
Mars (6.4185 ± 0.0001) × 1023 116.47 [116; 2] −0.026
Venus (4.8685 ± 0.0001) × 1024 118.50 [118; 2] 0.001
Earth (5.9722 ± 0.0006) × 1024 [18] 118.69 [118; 2] 0.160
Uranus (8.6810 ± 0.0013) × 1025 [12] 121.38 [121; 2] −0.099
Neptune (1.0243 ± 0.0015) × 1026 121.55 [121; 2] 0.041
Saturn (5.6846 ± 0.0001) × 1026 123.27 [123; 2] −0.186
Jupiter (1.8986 ± 0.0001) × 1027 124.47 [124; 2] −0.024
Sun (1.9884 ± 0.0002) × 1030 [18] 131.42 [131; 2] −0.061

Table 1: The masses of celestial bodies — planets, dwarf planets (P), asteroids (A), moons of Jupiter (J), Saturn (S), Uranus (U), Nep-
tune (N) and Earth (E) and the S-values ( 6) of the nearest spectral nodes. The relative deviation d =

(
ln (m/mp) − S

)
/S is indicated in

percents.

natural oscillations is very high. Therefore, if a frequency
of an oscillation process is located near a node of the fractal
spectrum (2), the process energy efficiency (degree of effec-
tiveness) should be relative high. More detailed this topic is
described in [1].

Let’s assume that the oscillation amplitudes are low, the
oscillations are harmonic and the energy level E f of the vi-
brating protons depends only on their oscillation frequency
(h is the Planck constant):

E f = h f . (3)

Atomic nucleuses arise in the result of high energy pro-
cesses of nucleosynthesis. Einstein’s formula defines not only
the connection between the rest energy and rest mass of nu-
cleons, but also between binding energy and the mass defect
of an atomic nucleus. Therefore we assume that the rest mass
m of our model matter corresponds to the energy Em:

Em = mc2 . (4)

Let’s assume that the basis of nucleosynthesis is har-
monic oscillations of protons and the energy (4) is identically
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Fig. 3: The S-trajectory for S 0 = [106] and p = 1. Logarithmic scaling of Eunomia to Jupiter body mass.

with (3). In this case we can write:

m = f
h
c2 . (5)

In the framework of our oscillation model (1) the equation
(5) means not only that mass can be changed into energy, but
also that quantum oscillations generate the mass spectrum of
our model matter. Under consideration of (1) now we can
create a fractal scaling model of the natural mass spectrum of
our model matter of vibrating protons. This mass spectrum is
described by the same continued fraction (2), for mp = fp

h
c2 :

ln
m
mp

= [n0; n1, n2, . . . , nk] . (6)

Consequently, the frequency spectrum (2) and the mass
spectrum (6) are isomorphic, and mp is the proton rest mass
1.672621637(83) × 10−27 kg [4]. As mentioned already, we
assume that mass generation processes are based on quantum
natural oscillation processes. Celestial bodies are compressed
matter, which consist of nucleons over 99%. Therefore we
expect that the distribution of the celestial bodies in the pro-
ton resonance mass spectrum is not random and near spectral
nodes the formation probability of massive bodies is maxi-
mum. Like in the Kundt’s tube [5], near resonance nodes the
matter accumulation reachs maximum intensity. The mass
spectrum (6) is fractal and consequently it has a clear hierar-
chical structure, in which continued fractions (2) of the form
[n0] and [n0; 2] define main spectral nodes, as Fig. 2 shows.

Fig. 4: The S-trajectory for S 0 = [114] and p = 3. Possibly, the extra-
solar planet Gliese 581d could be a candidate of the node S = [120].

3 Results

In the present paper we will compare the scaling mass spec-
trum (6) of our model matter in the range of 1019 kg to 1030

kg with the mass distribution of well-known celestial bod-
ies. These are asteroids, planetoids, moons and planets of the
Solar System (including the Sun), which masses were mea-
sured precisely enough and which are massive enough to be
rounded by their own gravity.

For example, to locate the mass of the planet Venus in the
scaling mass spectrum (6) of our model matter, one divides
the Venus body mass by the proton rest mass and represents
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Particle Rest mass m, MeV/c2 [20] ln (m/mp) S d, %

electron 0.510998910 ± 0.000000013 −7.515 [−7;−2] −0.206
proton 938.27203 ± 0.00008 0.000 [0] 0.000
W 80398 ± 25 4,451 [4; 2] 1,089
Z 91187.6 ± 2.1 4,577 [4; 2] 1,711

Table 2: The rest masses of the electron, proton and the W-Z-bosons and the S-values (6) of the nearest spectral nodes. The relative
deviation d =

(
ln

(
m/mp

)
− S

)
/S is indicated in percent.

Fig. 5: The electron and W-Z-bosons rest masses lie on the S-
trajectory for S 0 = [0] and p = 3. It’s the same S-trajectory that
shows Fig. 4, but prolonged down to negative N.

the logarithm as a continued fraction:

S venus = ln
mvenus

mp
= ln

(
4.869 × 1024 kg

1.67262 × 10−27 kg

)
�

� 118.50 = 118 +
1
2
.

(7)

The analysis (6) of the Venus body mass takes the result
n0 = 118, n1 = 2. This means, that the Venus body mass cor-
responds to a spectral node on the first layer k = 1 of the spec-
trum (6). The Sun mass is near the spectral node [131; 2].
It’s also correct for the Alpha Centauri A and B masses. The
Alpha Aquilae (Altair) mass is about 1.7 solar masses, that’s
near the node [132]. Table 1 shows the logarithms (6) calcu-
lated from the measured masses m of the celestial bodies and
the S-values of the nearest spectral nodes.

Table 1 shows, that spectral nodes are occupied by bodies
which have maximum mass in a local group or family. For
example, the spectral node [115] is occupied by Ganymede
and Titan, the most massive moons of Jupiter and Saturn, the
spectral node [113] is occupied by Triton, the most massive
moon of Neptune, the body mass of Eris, the largest defined
dwarf planet, is also near the spectral node [113], but the
spectral node [110] is occupied by Ceres, the most massive
body of the asteroid belt. Mercury’s mass is near the node
[116]. Possibly, not Eris, but Mercury is the most massive
dwarf planet in the Solar System. Actually, Mercury behaves
like a dwarf planet, because it has the highest eccentricity of
all the Solar System planets and it has the smallest axial tilt.

Fig. 6: The S-trajectory for S 0 = [0] and p = 3. Logarithmic scaling
of the electron rest mass to the body mass of the Sun.

For the nodes [n0] and [n0; 2] the finite continued fraction
(2) is S = n0+1/n1 and the corresponding discrete mass values
can be defined by linear S-trajectories, in which N∈Z:

S = S 0 +
N
2
. (8)

The prime divisibility of N = pn, in which p is a prime
factor of N, defines sets of S-trajectories which form different
sequences of mass-values m of the discrete spectrum (6).

S-trajectories (8) present the discrete scaling mass dis-
tribution (6) very clear and can be interpreted as exponen-
tial equivalents to linear square-mass trajectories, which are
a well-known systematic feature in the hadrons spectrum
[6]. Fig. 3 shows the S-trajectory for S 0 = [106] and p = 1.
Largest bodies are labeled. Possibly, vacant nodes are occu-
pied by extrasolar bodies or bodies still to be discovered in
the Solar System.

Possibly, the existence of the discrete spectrum (6) in the
range of celestial bodies masses can be interpreted as “macro-
scopic quantization” [19]. The larger the bodies the more dis-
tinctive is this phenomenon. This can be recognized well at
the example of the 8 largest planets in the Solar System, as
Fig. 4 shows.

For S 0 = [0] and every p is m0 = mp, so that every
S-trajectory can be prolonged down to the proton rest mass.
Also the electron and W-Z-bosons rest masses lie on the S-
trajectory for S 0 = [0] and p = 3, as Fig. 5 shows. Already
within the eighties the scaling exponent 3/2 was found in the
distribution of particle masses by Valery A. Kolombet [21].
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Table 2 shows the logarithms (6) calculated from the mea-
sured particle rest masses, and the S-values of the nearest
spectral nodes.

The S-trajectory in Fig. 5 is the same as the S-trajectory
in Fig. 4, but prolonged down to the electron rest mass for
S = [−7;−2]. Possibly, there is a fundamental link between
particle rest masses and the masses of celestial bodies. Fig. 6
shows the S-trajectory for S 0 = [0] and p = 3 in the range of
−9 6 S 6 135, of the electron rest mass to the body mass of
the Sun.

4 Resume

In the framework of the present model discrete scaling distri-
butions arise as result of natural oscillations in chain systems
of harmonic oscillators. Particularly, the observable mass dis-
tribution of celestial bodies arise as result of natural oscilla-
tions in chain systems of protons, that can be understood as
contribution to the fundamental link between quantum- and
astrophysics. Possibly, the high energy efficiency of natural
oscillations is the cause of the fractal scaling distribution of
matter in the universe.
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Dynamical 3-Space Predicts Hotter Early Universe: Resolves CMB-BBN 7Li
and 4He Abundance Anomalies
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The observed abundances of 7Li and 4He are significantly inconsistent with the pre-
dictions from Big Bang Nucleosynthesis (BBN) when using the ΛCDM cosmolog-
ical model together with the value for ΩB h2 = 0.0224 ± 0.0009 from WMAP CMB
fluctuations, with the value from BBN required to fit observed abundances being
0.009<ΩB h2 < 0.013. The dynamical 3-space theory is shown to predict a 20% hot-
ter universe in the radiation-dominated epoch, which then results in a remarkable
parameter-free agreement between the BBN and the WMAP value for ΩB h2. The dy-
namical 3-space also gives a parameter-free fit to the supernova redshift data, and pre-
dicts that the flawed ΛCDM model would require ΩΛ = 0.73 and ΩM = 0.27 to fit the
3-space dynamics Hubble expansion, and independently of the supernova data. These
results amount to the discovery of new physics for the early universe that is matched by
numerous other successful observational and experimental tests.

1 Introduction

Astrophysical observed abundances of 7Li and 4He are sig-
nificantly inconsistent with the predictions from Big Bang
Nucleosynthesis (BBN) when using the ΛCDM cosmolog-
ical model, with the value for∗ ΩB h2 = 0.0224 ± 0.0009
from WMAP CMB fluctuations being considerably different
from the value from BBN required to fit observed abundances
0.009 < ΩB h2 < 0.013 (Coc et al. [1]).

The most significant long-standing discrepancy is that of
7Li because the pre-Galactic lithium abundance inferred from
observations of metal-poor (Population II) stars is at least 2–3
times smaller than predicted by BBN–ΛCDM. The 7Li prob-
lem has been most difficult to understand as its primordial
abundance should be the most reliable, because of the higher
observational statistics and an easier extrapolation to primor-
dial values. Various possible resolutions were discussed in
[2], with the conclusion that the lithium problem most likely
points to new physics.

It is shown herein that the new physics of a dynamical
3-space [4–6] results in a 20% hotter universe during the ra-
diation dominated epoch, and in a parameter-free analysis
the BBN abundances are brought into close agreement with
the WMAP value for the baryonic density ΩB h2 = 0.0224 ±
0.0009. The dynamical 3-space also gives a parameter free
account of the supernova redshift data, and fitting the ΛCDM
to the dynamical 3-space model requires ΩΛ = 0.73 and Ωm =

0.27, independently of the supernova data. There are nu-
merous other experimental and observational confirmations
of the new physics [4, 5], including a recent analysis of the
NASA/JPL spacecraft earth-flyby Doppler-shift anomalies
[7,8]. The conclusion is that the ΛCDM is flawed, with preci-

∗H0 = 100h km/s/Mpc defines h. ΩB is baryon density relative to critical
density ρc.

sion data from the supernova redshifts [10–12], and WMAP
CMB fluctuations [3] in conjunction with BBN computations
finally ruling out this model. As briefly noted below that
ΛCDM is essentially Newtonian gravity, and various data
have indicated the failure of Newtonian gravity.

2 Dynamical 3-space

Newton’s inverse square law of gravity [9] has the differential
form

∇ · g = − 4πGρ , ∇ × g = 0 , (1)

for the matter acceleration field g(r, t). Application of this to
spiral galaxies and the expanding universe has lead to many
problems, including, in part, the need to invent dark energy
and dark matter. However (1) has a unique generalisation that
resolves these problems. In terms of a velocity field v(r, t) (1)
has an equivalent form [4, 5]

∇ ·
(
∂v
∂t

+ (v · ∇) v
)

= − 4πGρ , ∇ × v = 0 , (2)

where now

g =
∂v
∂t

+ (v · ∇) v, (3)

is the Euler acceleration of the substratum that has velocity
v(r, t). Because of the covariance of v under a change of the
spatial coordinates only relative internal velocities have an
ontological existence — the coordinates r then merely define
a mathematical embedding space. In the form (2) Newton’s
law permits a unique generalisation by adding a term of the
same order but which can preserve the inverse square law out-
side of spherical masses,

∇ ·
(
∂v
∂t

+ (v · ∇) v
)

+
α

8

(
(tr D)2 − tr (D2)

)
= − 4πGρ,
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∇ × v = 0 , Di j =
1
2

(
∂vi

∂x j
+
∂v j

∂xi

)
. (4)

Eqn. (4) has two fundamental constants: G and α. Ex-
perimental bore-hole g anomaly data reveals that α is the
fine structure constant ≈ 1/137 to within experimental errors
[4, 5]. Eqn (4) has a rich variety of solutions: (i) black holes
with a non-inverse square law acceleration field that explains
the supermassive black hole mass spectrum and the flat rota-
tion curves of spiral galaxies without the need for dark matter
— these black holes may be primordial as well as induced, (ii)
the bore-hole g-anomaly, (iii) gravitational light bending, (iv)
a parameter free fit to the supernova data [6] without the need
for dark energy or dark matter, and other effects. As well the
3-space field v(r, t) has been directly detected in numerous
laboratory experiments, and now in Doppler shift data from
spacecraft earth-flybys [8].

Eqn (4) gives a different account of the Hubble expan-
sion of the universe, and here we outline a new account of the
thermal history of the universe. The results are very different
from the predictions of the Friedmann equation — the stan-
dard equation of cosmology since its inception (FRW-GR). In
the Friedmann equations the expansion of the universe is de-
termined solely by the presence of matter or energy, as would
be expected since it derives from (1), and it then requires, at
the present epoch, some 73% dark energy, 23% dark matter
and 4% baryonic matter. Eqn (4), in contrast, requires only
the normal matter — this is because (4) has an expanding
3-space solution even in the absence of matter/energy. Fit-
ting the Friedmann Hubble function H(z) to the Hubble func-
tion from (4), using the usual distance-redshift modulus as a
measure, indeed permits these dark energy and dark matter
quantities to be simply predicted, independently of the ob-
served supernova data, for these are the values that best-fit the
ΛCDM to the observed uniformly expanding 3-space Hubble
solution.

3 Expanding universe from dynamical 3-space

Let us now explore the expanding 3-space from (4). Criti-
cally, and unlike the FLRW-GR model, the 3-space expands
even when the energy density is zero. Suppose that we have a
radially symmetric effective density ρ (r, t), modelling normal
matter and EM radiation, and that we look for a radially sym-
metric time-dependent flow v(r, t) = v (r, t) r̂ from (4). Then
v (r, t) satisfies the equation, with v′ =

∂v (r,t)
∂r ,

∂

∂t

(
2v
r

+ v′
)

+ vv′′ + 2
vv′

r
+ (v′)2+

+
α

4

(
v2

r2 +
2vv′

r

)
= − 4πGρ(r, t). (5)

Consider first the zero energy case ρ = 0. Then we have a
Hubble solution v (r, t) = H(t)r, a centreless flow, determined

Fig. 1: Hubble diagram showing the supernovae data using several
data sets, and the Gamma-Ray-Bursts data (with error bars). Upper
curve (green) is ΛCDM “dark energy” only ΩΛ = 1, lower curve
(black) is ΛCDM matter only ΩM = 1. Two middle curves show
best-fit of ΛCDM “dark energy”—“dark-matter” (blue) and dynam-
ical 3-space prediction (red), and are essentially indistinguishable.
We see that the best-fit ΛCDM “dark energy”—“dark-matter” curve
essentially converges on the uniformly-expanding parameter-free
dynamical 3-space prediction. The supernova data shows that the
universe is undergoing a uniform expansion, although not reported
as such in [10–12], wherein a fit to the FRW-GR expansion was
forced, requiring “dark energy”, “dark matter” and a future “expo-
nentially accelerating expansion”.

by

Ḣ +

(
1 +

α

4

)
H2 = 0, (6)

with Ḣ = dH
dt . We also introduce in the usual manner the scale

factor a (t) according to H(t) = ȧ
a . We then obtain the solution

H(t) =
1

(1 + α
4 ) t

= H0
t0
t

; a (t) = a0

(
t
t0

)4/(4+α)

(7)

where H0 = H(t0) and a0 = a (t0) = 1, with t0 the present
age of the universe. Note that we obtain an expanding 3-
space even where the energy density is zero — this is in sharp
contrast to the FLRW-GR model for the expanding universe,
as shown below. The solution (7) is unique — it has one free
parameter — which is essentially the age of the universe t0 =

tH = 1/H0, and clearly this cannot be predicted by physics,
as it is a purely contingent effect — the age of the universe
when it is observed by us. Below we include the small effect
of ordinary matter and EM radiation.

We can write the Hubble function H(t) in terms of a (t)
via the inverse function t(a), i.e. H(t (a)) and finally as H(z),
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where the redshift observed now, relative to the wavelengths
at time t, is z = a0/a − 1. Then we obtain

H(z) = H0(1 + z)1+α/4. (8)

To test this expansion we need to predict the relationship
between the cosmological observables, namely the apparent
photon energy-flux magnitudes and redshifts. This involves
taking account of the reduction in photon count caused by the
expanding 3-space, as well as the accompanying reduction in
photon energy. The result is that the dimensionless “energy-
flux” luminosity effective distance is then given by

dL(z) = (1 + z)
∫ z

0

H0 dz′

H(z′)
(9)

and the distance modulus is defined as usual by

µ(z) = 5 log10 (dL(z)) + m . (10)

Because all the selected supernova have the same abso-
lute magnitude, m is a constant whose value is determined by
fitting the low z data.

Using the Hubble expansion (8) in (9) and (10) we obtain
the middle curve (red) in Fig. 1, yielding an excellent agree-
ment with the supernovae and GRB data. Note that because
α/4 is so small it actually has negligible effect on these plots.
But that is only the case for the homogeneous expansion —
the α dynamics can result in large effects such as black holes
and large spiral galaxy rotation effects when the 3-space is
inhomogeneous, and particularly precocious galaxy forma-
tion. Hence the dynamical 3-space gives an immediate ac-
count of the universe expansion data, and does not require the
introduction of a cosmological constant or “dark energy” nor
“dark matter”.

4 Expanding universe — matter and radiation only

When the energy density is not zero we need to take account
of the dependence of ρ (r, t) on the scale factor of the universe.
In the usual manner we thus write

ρ (r, t) =
ρm

a (t)3 +
ρr

a (t)4 , (11)

for ordinary matter and EM radiation. Then (5) becomes
for a(t)

ä
a

+
α

4
ȧ2

a2 = −4πG
3

(
ρm

a3 +
ρr

a4

)
, (12)

giving

ȧ2 =
8πG

3

(
ρm

a
+

ρr

2a2

)
− α

2

∫
ȧ2

a
da + f , (13)

where f is the integration constant. In terms of ȧ2 this has the
solution

ȧ2 =
8πG

3

(
ρm

(1 − α
2 ) a

+
ρr

(1 − α
4 ) 2a2 + ba−α/2

)
, (14)

Fig. 2: Shows the Big Bang nucleosynthesis (BBN) number abun-
dances for: the4He mass fraction (top), D and 3He (middle) and 7Li
(bottom) relative to hydrogen vs ΩBh2, as blue curves, from Coc
et al. [1]. Horizontal (red) bar-graphs show astrophysical abundance
observations. The vertical (yellow) bar-graphs show the values ΩBh2

= 0.0224± 0.0009 from WMAP CMB fluctuations, while the (blue)
bar-graph 0.009 < ΩBh2 < 0.013 shows the best-fit at 68% CL from
the BBN for the observed abundances [1]. We see that the WMAP
data is in significant disagreement with the BBN results for ΩBh2,
giving, in particular, the 7Li abundance anomaly within the ΛCDM
model. The dynamical 3-space model has a different and hotter ther-
mal history in the radiation dominated epoch, and the corresponding
BBN predictions are easily obtained by a re-scaling of the WMAP
value ΩBh2 to ΩBh2/2. The resultant ΩBh2 = 0.0112 ± 0.0005 val-
ues are shown by the vertical (red) bar-graphs that center on the BBN
0.009 < ΩBh2 < 0.013 range, and which is now in remarkable agree-
ment with BBN computations. So while the BBN — WMAP incon-
sistency indicates a failure of the Friedmann FRW-GR Big Bang
model, it is another success for the new physics entailed in the dy-
namical 3-space model. Plots adapted from [1].
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which is easily checked by substitution into (13), and where b
is the integration constant. We have written an overall factor
of 8πG/3 even though b, in principle, is independent of G.
This gives b convenient units of matter density, but which
does not correspond to any actual energy. From now on we
shall put α = 0. Finally we obtain from (14)

t(a) =

∫ a

0

da√
8πG

3

(
ρm

a
+

ρr

2a2 + b
) . (15)

When ρm = ρr = 0, (15) reproduces the expansion in
(7), and so the density terms in (14) give the modifications to
the dominant purely-spatial expansion, which we have noted
above already gives an excellent account of the red-shift data.
Having b , 0 simply asserts that the 3-space can expand even
when the energy density is zero — an effect missing from
FLRW-GR cosmology. From (14) we obtain∗

H(z)2 = H0
2
Ωm(1 + z)3 +

Ωr (1 + z)4

2
+ Ωs(1 + z)2

 , (16)

Ωm ≡ ρm/ρc , Ωr ≡ ρr/ρc , Ωs ≡ b/ρc , (17)

Ωm +
Ωr

2
+ Ωs = 1 , (18)

H0 =

(
8πG

3

(
ρm +

ρr

2
+ b

))1/2

≡
(

8πG
3

ρc

)1/2

, (19)

which defines the usual critical energy density ρc, but which
here is merely a form for H0 — it has no interpretation as
an actual energy density, unlike in FRW-GR. Note the factor
of 2 for Ωr, which is a key effect in this paper, and is not in
FRW-GR. In the dynamical 3-space model these Ω’s do not
correspond to the composition of the universe, rather to the
relative dynamical effects of the matter and radiation on the
intrinsic 3-space expansion dynamics. H0 = 73 km/s/Mpc
with Ωm ≈ ΩB = 0.04 and Ωs = 0.96 gives an age for the
universe of t0 = 12.6 Gyrs, while (22) with ΩM = 0.27 and
ΩΛ = 0.73 gives t0 = 13.3 Gyrs, Ωr = Ωr = 8.24 × 10−5.

5 Friedmann-GR standard ΛCDM cosmology model

We now discuss the strange feature of the standard model dy-
namics which requires a non-zero energy density for the uni-
verse to expand. The well known Friedmann equation is

( ȧ
a

)2
=

4πG
3

(
ρM

a3 +
ρr

a4 + Λ

)
, (20)

where now ρM = ρm + ρDM is the matter composition of the
universe, and includes ordinary matter and dark matter, and
Λ is the cosmological constant or dark energy, expressed in
mass density units. The differences between (13) and (20)

∗From now-on an “overline” is used to denote the 3-space values. Note
that H0 ≡ H0 — the current observable value.

need to be noted: apart from the α term (20) has no integra-
tion constant which corresponds to a purely spatial expansion,
and in compensation requires the ad hoc dark matter and dark
energy terms, whose best-fit values are easily predicted; see
below. It is worth noting how (20) arises from Newtonian
gravity. For radially expanding homogeneous matter (1) gives
for the total energy E of a test mass (a galaxy) of mass m

1
2

mv2 − GmM(r)
r

= E , (21)

where M(r) is the time-independent amount of matter within
a sphere of radius r. With E = 0 and M(r) = 4

3 πr3ρ (t) and
ρ (t) ∼ 1/r (t)3 (21) has the Hubble form v = H(t)r. In terms
of a(t) this gives (20) after an ad hoc and invalid inclusion of
the radiation and dark energy terms, as for these terms M(r)
is not independent of time, as assumed above. These terms
are usually included on the basis of the stress-energy tensor
within GR. Eqn. (20) leads to the analogue of (15),

t(a) =

∫ a

0

da√
8πG

3

(
ρM

a
+
ρr

a2 + Λa2
) , (22)

H(z)2 = H2
0

(
ΩM(1 + z)3 + Ωr (1 + z)4 + ΩΛ (1 + z)2

)
, (23)

ΩM ≡ ρM/ρc, Ωr ≡ ρr/ρc, ΩΛ ≡ Λ/ρc , (24)

ΩM + Ωr + ΩΛ = 1 , (25)

H0 =

(
8πG

3
(ρM + ρr + Λ)

)1/2

≡
(

8πG
3

ρc

)1/2

. (26)

This has the same value of ρc as in (19), but now inter-
preted as an actual energy density. Note that Ωr = Ωr, but
that Ωm , ΩM , as ΩM includes the spurious “dark matter”.

6 Predicting the ΛCDM parameters ΩΛ and ΩDM

The “dark energy” and “dark matter” arise in the FLRW-GR
cosmology because in that model space cannot expand un-
less there is an energy density present in the space, if that
space is flat and the energy density is pressure-less. Then
essentially fitting the Friedmann model µ(z) to the dynam-
ical 3-space cosmology µ(z) we obtain ΩΛ = 0.73, and so
ΩM = 1 − ΩΛ = 0.27. These values arise from a best fit for
z ∈ {0, 14} [6]. The actual values for ΩΛ depend on the red-
shift range used, as the Hubble functions for the FLRW-GR
and dynamical 3-space have different functional dependence
on z. These values are of course independent of the actual ob-
served redshift data. Essentially the current standard model of
cosmology ΛCDM is excluded from modelling a uniformly
expanding dynamical 3-space, but by choice of the parameter
ΩΛ the ΛCDM Hubble function H(z) can be made to best-fit
the data. However H(z) has the wrong functional form; when
applied to the future expansion of the universe the Friedmann
dynamics produces a spurious exponentially expanding uni-
verse.
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7 Dynamical 3-space and hotter early universe

The 3-space dynamics and the ΛCDM dynamics give differ-
ent accounts of the expansion of the universe, particularly the
thermal history and density during the radiation dominated
epoch. ΛCDM gives in that epoch from (22)

a (t) =

√
2H0 t

√
Ωr ,

while (15) gives

a (t) =

√
2H0 t

√
Ωr/2 .

Because the CMB is thermal radiation its temperature
varies as T (t) = (2.725 ± 0.001)/a (t) ◦K, and so the 3-space
dynamics predicts an early thermal history that is 20% hotter.
This means that a re-analysis of the BBN is required. How-
ever this is easily achieved by a scaling analysis. Essentially
we can do this by effectively using H0/

√
2 in place of H0 in

the radiation-dominated epoch, as this takes account of the
Ωr/2 effect. In terms of ΩB h2, which determines the BBN,
this amounts to the re-scaling ΩB h2 → ΩB h2/2. This imme-
diately brings the WMAP ΩB h2 = 0.0224±0.0009 down to,
effectively, ΩB h2 = 0.0112±0.0005, and into excellent agree-
ment with the BBN value 0.009<ΩB h2 < 0.013, as shown in
Fig. 2, and discussed in detail in the figure caption.

8 Conclusions

It has been shown that the significant inconsistency between
observed abundances of 7Li and 4He with the predictions
from Big Bang Nucleosynthesis (BBN) when using the
ΛCDM cosmological model together with the value for
ΩB h2 = 0.0224 ± 0.0009 from WMAP CMB fluctuations,
with the value from BBN required to fit observed abundances
being 0.009 < ΩB h2 < 0.013, are resolved with remarkable
precision by using the dynamical 3-space theory. This theory
is shown to predict a 20% hotter universe in the radiation-
dominated epoch, which then results in a remarkable agree-
ment between the BBN and the WMAP value for ΩB h2. The
dynamical 3-space also gives a parameter-free fit to the su-
pernova redshift data, and predicts that the flawed ΛCDM
model would require ΩΛ = 0.73 and ΩM = 0.27 to fit the
3-space dynamics Hubble expansion, and independently of
the supernova data. These results amount to the discovery of
new physics for the early universe. This new physics has also
explained (i) the bore-hole g anomaly, (ii) black-hole mass
spectrum, (iii) flat rotation curves in spiral galaxies, (iv) en-
hanced light bending by galaxies, (v) anomalies in laboratory
measurements of G, (vi) light speed anisotropy experiments
including the explanation of the Doppler shift anomalies in
spacecraft earth-flybys, and (vii) the detection of so-called
gravitational waves. As well because (4) is non-local it can
overcome the horizon problem. The new physics unifies cos-
mology with laboratory based phenomena, indicating a new
era of precision studies of the cosmos.
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Non scaling Fixed-Field Alternating Gradient (FFAG) accelerators have an unprece-
dented potential for muon acceleration, as well as for medical purposes based on car-
bon and proton hadron therapy. They also represent a possible active element for an
Accelerator Driven Subcritical Reactor (ADSR). Starting from first principle the Hamil-
tonian formalism for the description of the dynamics of particles in non-scaling FFAG
machines has been developed. The stationary reference (closed) orbit has been found
within the Hamiltonian framework. The dependence of the path length on the energy
deviation has been described in terms of higher order dispersion functions. The latter
have been used subsequently to specify the longitudinal part of the Hamiltonian. It
has been shown that higher order phase slip coefficients should be taken into account
to adequately describe the acceleration in non-scaling FFAG accelerators. A complete
theory of the fast (serpentine) acceleration in non-scaling FFAGs has been developed.
An example of the theory is presented for the parameters of the Electron Machine with
Many Applications (EMMA), a prototype electron non-scaling FFAG to be hosted at
Daresbury Laboratory.

1 Introduction

Fixed-Field Alternating Gradient (FFAG) accelerators were
proposed half century ago [1–4], when acceleration of elec-
trons was first demonstrated. These machines, which were in-
tensively studied in the 1950s and 1960s but never progressed
beyond the model stage, have in recent years become the fo-
cus of renewed attention. Acceleration of protons has been
recently achieved at the KEK Proof-of-Principle (PoP) pro-
ton FFAG [5].

To avoid the slow crossing of betatron resonances associ-
ated with a typical low energy-gain per turn, the first FFAGs
designed and constructed so far have been based on the ”scal-
ing” principle. The latter implies that the orbit shape and be-
tatron tunes must be kept fixed during the acceleration pro-
cess. Thus, magnets must be built with constant field in-
dex, while in the case of spiral-sector designs the spiral an-
gle must be constant as well. Machines of this type use con-
ventional magnets with the bending and focusing field be-
ing kept constant during acceleration. The latter alternate in
sign, providing a more compact radial extension and conse-
quently smaller aperture as compared to the AVF cyclotrons.
The ring essentially consists of a sequence of short cells with
very large periodicity.

Non scaling FFAG machines have until recently been con-
sidered as an alternative. The bending and the focusing is pro-
vided simultaneously by focusing and defocusing quadrupole
magnets repeating in an alternating sequence. There is a num-
ber of advantages of the non-scaling FFAG lattice as com-

pared to the scaling one, among which are the relatively small
transverse magnet aperture (tending to be much smaller than
the one for scaling machines) and the lower field strength.
Unfortunately this lattice leads to a large betatron tune varia-
tion across the required energy range for acceleration as op-
posed to the scaling lattice. As a consequence several res-
onances are crossed during the acceleration cycle, some of
them nonlinear created by the magnetic field imperfections,
as well as half-integer and integer ones. A possible bypass to
this problem is the rapid acceleration (of utmost importance
for muons), which allows betatron resonances no time to es-
sentially damage beam quality.

Because non-scaling FFAG accelerators have otherwise
very desirable features, it is important to investigate analyti-
cally and numerically some of the peculiarities of the beam
dynamics, the new type of fast acceleration regime (so-called
serpentine acceleration) and the effects of crossing of linear
as well as nonlinear resonances. Moreover, it is important to
examine the most favorable phase at which the cavities need
to be set for the optimal acceleration. Some of these problems
will be discussed in the present paper.

An example of the theory developed here is presented for
the parameters of the Electron Machine with Many Applica-
tions (EMMA) [6], a prototype electron non-scaling FFAG
to be hosted at Daresbury Laboratory. The Accelerators and
Lasers In Combined Experiments (ALICE) accelerator [7] is
used as an injector to the EMMA ring. The energy delivered
by this injector can vary from a 10 to 20 MeV single bunch
train with a bunch charge of 16 to 32 pC at a rate of 1 to 20
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Hz. ALICE is presently designed to deliver bunches which
are around 4 ps and 8.35 MeV from the exit of the booster
of its injector line. These are then accelerated to 10 or 20
MeV in the main ALICE linac after which they are sent to the
EMMA injection line. The EMMA injection line ends with a
septum for injection into the EMMA ring itself followed by
two kickers so as to direct the beam onto the correct, energy
dependent, trajectory. After circulation in the EMMA ring,
the electron bunches are extracted using what is almost a mir-
ror image of the injection setup with two kickers followed by
an extraction septum. The beam is then transported to a di-
agnostic line whose purpose it is to analyze in as much detail
as possible the effect the non-scaling FFAG has had on the
bunch.

The paper is organized as follows. Firstly, we review
some generalities and first principles of the Hamiltonian for-
malism [8–10] suitably modified to cover the case of a non-
scaling FFAG lattice. Firstly, a sequence of canonical trans-
formations within the synchrobetatron framework is applied
to determine the energy dependent reference orbit. Stability
of motion about the stationary reference orbit is described in
terms of betatron oscillations with energy dependent Twiss
parameters and betatron tunes. Dispersion, measuring the ef-
fect of energy variation on the path length along the reference
orbit is an essential feature of non-scaling FFAGs. Within the
developed synchrobetatron formalism higher order dispersion
functions have been introduced and their contribution to the
longitudinal dynamics has been further analyzed. Finally, a
complete description of the so-called serpentine acceleration
in non-scaling lepton FFAGs is given together with conclu-
sions. The calculations of the reference orbit and phase sta-
bility are detailed in the appendices.

2 Generalities and first principles

Let the ideal (design) trajectory of a particle in an accelerator
be a planar curve with curvature K. The Hamiltonian describ-
ing the motion of a particle in a natural coordinate system
attached to the orbit thus defined is [8]:

H = − (1 + Kx) ×

×
√

(H − qϕ)2

c2 − m2
p0

c2 − (Px − qAx)2 − (Pz − qAz)2 −

− q (1 + Kx) As , (1)

where mp0 is the rest mass of the particle. The guiding mag-
netic field can be represented as a gradient of a certain func-
tion ψ(x, z; s)

B = ∇ψ , (2)

where the latter satisfies the Laplace equation

∇2ψ = 0 . (3)

Using the median symmetry of the machine, it is straight-
forward to show that ψ can be written in the form

ψ =

(
a0 + a1x +

a2x2

2!
+ . . .

)
z −

−
(
b0 + b1x +

b2x2

2!
+ . . .

)
z3

3!
+ (c0 + c1x + . . . )

z5

5!
+ . . . .(4)

Inserting the above expression into the Laplace equation
(3), one readily finds relations between the coefficients bk and
ck on one hand and ak on the other

b0 = a′′0 + Ka1 + a2 , (5)

b1 = −2Ka′′0 − K′a′0 + a′′1 − K2a1 + Ka2 + a3 , (6)

b2 = 6K2a′′0 + 6KK′a′0 − 4Ka′′1 − 2K′a′1 +

+a′′2 + 2K3a1 − 2K2a2 + Ka3 + a4 , (7)

c0 = b′′0 + Kb1 + b2 . (8)

Prime in the above expressions implies differentiation
with respect to the longitudinal coordinate s. The coefficients
ak have a very simple meaning

a0 = (Bz)x,z=0, a1 =

(
∂Bz

∂x

)

x,z=0
,

a2 =

(
∂2Bz

∂x2

)

x,z=0
. (9)

In other words, this implies that, provided the vertical
component Bz of the magnetic field and its derivatives with
respect to the horizontal coordinate x are known in the me-
dian plane, one can in principle reconstruct the entire field
chart.

The vector potential A can be represented as

Ax = − z F (x, z; s) , Az = x F (x, z; s) , As = G (x, z; s) , (10)

where the Poincaré gauge condition

xAx + zAz = 0 , (11)

written in the natural coordinate system has been used. From
Maxwell’s equation

B = ∇ × A , (12)
we obtain

2F + (x ∂x + z ∂z) F = Bs , (13)
Kx

1 + Kx
G + (x ∂x + z ∂z) G = z Bx − x Bz . (14)

Applying Euler’s theorem for homogeneous functions, we
can write

F =
1
2

B(0)
s +

1
3

B(1)
s +

1
4

B(2)
s + . . . , (15)
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Gu =

(
1 +

Kx
2

)
B(0)

u +

(
1
2

+
Kx
3

)
B(1)

u +

+

(
1
3

+
Kx
4

)
B(2)

u + . . . , (16)

G =
z Gx − x Gz

1 + Kx
. (17)

Here u = (x, z) and B(k)
α denotes homogeneous polyno-

mials in x and z of order k, representing the corresponding
parts of the components of the magnetic field B = (Bx, Bz, Bs).
Thus, having found the magnetic field represented by equa-
tion (4), it is straightforward to calculate the vector poten-
tial A.

The accelerating field in AVF cyclotrons and FFAG ma-
chines can be represented by a scalar potential ϕ (the corre-
sponding vector potential A = 0). Due to the median symme-
try, we have

ϕ = A0 + A1x +
A2x2

2!
+ · · · −

(
B0 + B1x +

B2x2

2!
+ . . .

)
z2

2!
+

+ (C0 + C1x + . . . )
z4

4!
+ . . . . (18)

Inserting the above expansion into the Laplace equation
for ϕ, we obtain similar relations between Bk and Ck on one
hand and Ak on the other, which are analogous to those relat-
ing bk, ck and ak.

We consider the canonical transformation, specified by
the generating function

S 2

(
x, z, T , P̂x, P̂z, E; s

)
= x P̂x + z P̂z + TE +

+ q
∫

dTϕ(x, z,T ; s) , (19)

where T = − t (20)

is a canonical variable canonically conjugate toH . The rela-
tions between the new and the old variables are

û =
∂S 2

∂P̂u

= u, u = (x, z), T̂ =
∂S 2

∂E
= T , (21)

Pu =
∂S 2

∂u
= P̂u − q

∫
dTEu(x, z, T ; s) =

= P̂u − qẼu(x, z, T ; s), Eu = −∂ϕ
∂u

, (22)

H =
∂S 2

∂T = E + qϕ (x, z, T ; s) =

= mp0γc2 + qϕ(x, z,T ; s) . (23)

The new Hamiltonian acquires now the form

Ĥ = − (1 + Kx)×

×
√

E2

c2 − m2
p0

c2 −
(
P̂x − qẼx − qAx

)2 −
(
P̂z − qẼz − qAz

)2−

− q (1 + Kx)
(
As + Ẽs

)
, (24)

where

Ẽs =

∫
dTEs(x, z, T ; s) =

= − 1
1 + Kx

∫
dT ∂ϕ (x, z, T ; s)

∂s
. (25)

We introduce the new scaled variables

P̃u =
P̂u

p0
=

P̂u

mp0 c
, Θ = cT , γ =

E
Ep

=
E

mp0 c2 . (26)

The new scaled Hamiltonian can be expressed as

H̃ =
Ĥ
p0

= − (1 + Kx) ×

×
√
γ2 − 1 −

(
P̃x − q̃ Ẽx − q̃Ax

)2 −
(
P̃z − q̃ Ẽz − q̃Az

)2 −

− q̃ (1 + Kx)
(
As + Ẽs

)
, (27)

where
q̃ =

q
p0
. (28)

The quantities Ẽx and Ẽz can be neglected as compared to
the components of the vector potential A, so that

H̃ = βγ (1 + Kx) ×

×
−

√
1 −

(
Px − qAx

)2 −
(
Pz − qAz

)2 − qAs

 −

− q̃ (1 + Kx) Ẽs , (29)

where now

q =
q
p

=
q

βγp0
, Pu =

P̂u

p
=

P̂u

βγp0
, u = (x, z) . (30)

Since Pu and u are small deviations, we can expand the
square root in power series in the canonical variables x, Px

and z, Pz. Tedious algebra yields

H̃ = H̃0 + H̃1 + H̃2 + H̃3 + H̃4 + . . . , (31)

H̃0 = −βγ − q̃(1 + Kx) Ẽs , (32)

H̃1 = βγ (qa0 − K) x , (33)

H̃2 =
βγ

2

(
P

2
x + P

2
z

)
+

q̃
2

[
(Ka0 + a1)x2 − a1z2

]
, (34)

H̃3 =
βγ

2
K x

(
P

2
x + P

2
z

)
+

q̃a′0z
3

(
z Px − x Pz

)
+
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+
q̃
3

[(
Ka1 +

a2

2

)
x3 −

(
Ka1 + a2 +

b0

2

)
xz2

]
, (35)

H̃4 =
βγ

8

(
P

2
x + P

2
z

)2
+

q̃xz
12

(
Ka′0 + 3a′1

)(
zPx − xPz

)
+

+
q 2βγa′20 z2

18

(
x2 + z2

)
+ +

q̃
4

[(Ka2

2
+

a3

6

)
x4 −

−
(
Ka2 +

a3

3
+

Kb0

2
+

b1

2

)
x2z2 +

b1

6
z4

]
. (36)

The Hamiltonian decomposition (31) represents the mile-
stone of the synchrobetatron formalism. For instance, H̃0
governs the longitudinal motion, H̃1 describes linear coupling
between longitudinal and transverse degrees of freedom and
is the basic source of dispersion. The part H̃2 is responsible
for linear betatron motion and chromaticity, while the remain-
der describes higher order contributions.

3 The synchro-betatron formalism and the reference
orbit

In the present paper we consider a FFAG lattice with polyg-
onal structure. To define and subsequently calculate the sta-
tionary reference orbit, it is convenient to use a global Carte-
sian coordinate system whose origin is located in the center of
the polygon. To describe step by step the fraction of the refer-
ence orbit related to a particular side of the polygon, we rotate
each time the axes of the coordinate system by the polygon
angle Θp = 2π/NL, where NL is the number of sides of the
polygon.

Let Xe and Pe denote the reference orbit and the reference
momentum, respectively. The vertical component of the mag-
netic field in the median plane of a perfectly linear machine
can be written as

Bz(Xe; s) = a1(s)[Xe − Xc − d(s)] ,

a0(Xe; s) = Bz(Xe; s) , (37)

where s is the distance along the polygon side, and Xc is the
distance of the side of the polygon from the center of the ma-
chine

Xc =
Lp

2 tan(Θp/2)
. (38)

Here Lp is the length of the polygon side which actually
represents the periodicity parameter of the lattice. Usually Xc

is related to an arbitrary energy in the range from injection to
extraction energy. In the case of EMMA it is related to the 15
MeV orbit. The quantity d(s) in equation (37) is the relative
offset of the magnetic center in the quadrupoles with respect
to the corresponding side of the polygon. In what follows
[see equations (47) and (50)] dF corresponds to the offset in
the focusing quadrupoles and dD corresponds to the one in
the defocusing quadrupoles. Similarly, aF and aD stand for

the particular value of a1 in the focusing and the defocusing
quadrupoles, respectively.

A design (reference) orbit corresponding to a local curva-
ture K(Xe; s) can be defined according to the relation

K(Xe; s) =
q

p0βeγe
Bz(Xe; s) , (39)

where γe is the energy of the reference particle. In terms of
the reference orbit position Xe(s) the equation for the curva-
ture can be written as

X′′e =
q

p0βeγe

(
1 + X′2e

)3/2
Bz(Xe; s) , (40)

where the prime implies differentiation with respect to s.
To proceed further, we notice that equation (40) parame-

terizing the local curvature can be derived from an equivalent
Hamiltonian

He(Xe, Pe; s) = −
√
β2

e γ
2
e − P2

e − q̃
∫

dXeBz(Xe; s) . (41)

Taking into account Hamilton’s equations of motion

X′e =
Pe√

β2
e γ

2
e − P2

e

, P′e = q̃Bz(Xe; s) , (42)

and using the relation

Pe =
βeγeX′e√
1 + X′2e

, (43)

we readily obtain equation (40). Note also that the Hamilto-
nian (41) follows directly from the scaled Hamiltonian (27)
with x = 0, P̃x = Pe, P̃z = 0, Ax = Az = 0 and the accelerating
cavities being switched off respectively.

Hamilton’s equations of motion (42) can be linearized and
subsequently solved approximately by assuming that

Pe � βeγe . (44)

Thus, assuming electrons (q =−e), we have

Pe = βeγeX′e , X′′e = − ea1(s)
p0βeγe

(
Xe − Xc − d(s)

)
. (45)

The three types of solutions to equations (45) are as fol-
lows:

Drift Space

Xe = X0 +
P0

βeγe
(s − s0) , Pe = P0 , (46)

where X0 and P0 are the initial position and reference mo-
mentum and s is the distance in longitudinal direction.

Focusing Quadrupole

Xe = Xc + dF + (X0 − Xc − dF) cosωF(s − s0) +

+
P0

βeγeωF
sinωF(s − s0) , (47)
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Pe = − βeγeωF(X0 − Xc − dF) sinωF(s − s0) +

+ P0 cosωF(s − s0) , (48)

where
ω2

F =
eaF

p0βeγe
. (49)

Defocusing Quadrupole

Xe = Xc + dD + (X0 − Xc − dD) coshωD(s − s0) +

+
P0

βeγeωD
sinhωD(s − s0) , (50)

Pe = βeγeωD(X0 − Xc − dD) sinhωD(s − s0) +

+ P0 coshωD(s − s0) , (51)

where
ω2

D =
eaD

p0βeγe
. (52)

In addition to the above, the coordinate transformation at
the polygon bend when passing to the new rotated coordinate
system needs to be specified. The latter can be written as

Xe = Xc +
X0 − Xc

cos Θp − P0 sin Θp/βeγe
,

Pe = βeγe tan
[
Θp + arctan

(
P0

βeγe

)]
. (53)

Once the reference trajectory has been found the corre-
sponding contributions to the total Hamiltonian (31) can be
written as follows

H̃0 = − βγ +
Z

AEp

(
d∆E
ds

) ∫
dΘ sin φ(Θ) , (54)

H̃1 = − (βγ − βeγe)Kx̃ , (55)

H̃2 =
1

2βγ

(
P̃ 2

x + P̃ 2
z

)
+

1
2

[(
g + βeγe K2

)
x̃2 − g z̃2

]
, (56)

H̃3 =
Kx̃

2βγ

(
P̃ 2

x + P̃ 2
z

)
+

Kg
6

(
2x̃3 − 3x̃z̃2

)
, (57)

H̃4 =

(
P̃ 2

x + P̃ 2
z

)2

8β3γ3 − K2g

24
z̃4. (58)

Here, we have introduced the following notation

g =
qa1

p0
. (59)

Moreover, Z is the charge state of the accelerated parti-
cle, A is the mass ratio with respect to the proton mass in the
case of ions, and φ(Θ) is the phase of the RF. For a lepton
accelerator like EMMA, A = Z = 1. In addition, (d∆E/ds) is
the energy gain per unit longitudinal distance s, which in thin
lens approximation scales as ∆E/∆s, where ∆s is the length

of the cavity. It is convenient to pass to new scaled variables
as follows

p̃u =
P̃u

βeγe
, h =

γ

β2
eγe

, (60)

τ = βeΘ , Γe =
βγ

βeγe
=

√
β2

eh2 − 1
β2

eγ
2
e
. (61)

Thus, expressions (54)–(58) become

H̃0 = − Γe +
Z

Aβ2
e Ee

(
d∆E
ds

) ∫
dτ sin φ(τ) , (62)

H̃1 = −(Γe − 1) Kx̃ , (63)

H̃2 =
1

2Γe

(
p̃2

x + p̃2
z

)
+

1
2

[(
ge + K2

)
x̃2 − gez̃2

]
, (64)

H̃3 =
Kx̃
2Γe

(
p̃2

x + p̃2
z

)
+

Kge

6

(
2x̃3 − 3x̃z̃2

)
, (65)

H̃4 =

(
p̃2

x + p̃2
z

)2

8Γ3
e

− K2ge

24
z̃4, (66)

Ep = mp0 c2, ge =
g

βeγe
. (67)

The longitudinal part of the reference orbit can be isolated
via a canonical transformation

F2

(
x̃, ˜̃px, z̃, ˜̃pz, τ, η; s

)
= x̃ ˜̃px + z̃ ˜̃pz + (τ + s)

(
η +

1
β2

e

)
, (68)

σ = τ + s , η = h − 1
β2

e
, (69)

where σ is the new longitudinal variable and η is the en-
ergy deviation with respect to the energy γe of the reference
particle.

4 Dispersion and betatron motion

The (linear and higher order) dispersion can be introduced via
a canonical transformation aimed at canceling the first order
Hamiltonian H̃1 in all orders of η. The explicit form of the
generating function is

G2
(
x̃, p̂x, z̃, p̂z, σ, η̂; s

)
= ση̂ + z̃ p̂z + x̃ p̂x +

+

∞∑

k=1

η̂k[x̃Xk(s) − p̂xPk(s) + Sk(s)
]
, (70)

x̃ = x̂ +

∞∑

k=1

η̂kPk , p̃x = p̂x +

∞∑

k=1

η̂kXk , (71)

σ = σ̂ +

∞∑

k=1

k η̂ k−1(Pk p̂x − Xk x̂
) −

−
∞∑

k=1

k η̂ k−1

Sk + Xk

∞∑

m=1

η̂mPm

 . (72)
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Equating terms of the form x̂̂ηn and p̂xη̂
n in the new trans-

formed Hamiltonian, we determine order by order the con-
ventional (first order) and higher order dispersions. The first
order in η̂ (terms proportional to x̂̂η and p̂xη̂) yields the well-
known result

P′1 = X1 , X′1 +
(
ge + K2

)
P1 = K . (73)

Since in the case, where betatron motion
(
x̂ = 0, p̂x = 0

)
can be neglected the new longitudinal coordinate σ̂ should
not depend on the new longitudinal canonical conjugate vari-
able η̂, the second sum in equation (72) must be identically
zero. We readily obtain S1 = 0, and

S2 = −X1P1

2
. (74)

In second order we have

P′2 = X2 − X1 + KX1P1 , (75)

X′2 +
(
ge + K2

)
P2 = −KgeP2

1 −
KX2

1

2
− K

2γ2
e
, (76)

and in addition the function S3(s) is expressed as

S3 = −1
3

(X1P2 + 2X2P1) . (77)

Close inspection of equations (73), (75) and (76) shows
thatP1 is the well-known linear dispersion function, whileP2
stands for a second order dispersion and so on. Up to third
order in η̂ the new Hamiltonian describing the longitudinal
motion and the linear transverse motion acquires the form

Ĥ0 = −K̃1η̂
2

2
+
K̃2η̂

3

3
+

Z
Aβ2

e Ee

(
d∆E
ds

) ∫
dτ sin φ(τ) , (78)

Ĥ2 =
1
2

(
p̂2

x + p̂2
z

)
+

1
2

[(
ge + K2

)
x̂2 − gêz2

]
, (79)

where

K̃1 = KP1 − 1
γ2

e
, K̃2 =

KP1

γ2
e
− KP2 −

X2
1

2
− 3

2γ2
e
. (80)

For the sake of generality, let us consider a Hamiltonian
of the type

Ĥb =
∑

u=(x,z)

[Fu

2
p̂2

u + Ruû p̂u +
Gu

2
û2

]
. (81)

A generic Hamiltonian of the type (81) can be transform-
ed to the normal form

Hb =
∑

u=(x,z)

χ′u
2

(
P

2
u + U

2
)
, (82)

Fig. 1: Horizontal betatron tune for the EMMA ring as a function of
energy.

by means of a canonical transformation specified by the gen-
erating function

F2

(
x̂, Px, ẑ, Pz; s

)
=

∑

u=(x,z)

 ûPu√
βu
− αuû2

2βu

 . (83)

Here the prime implies differentiation with respect to the
longitudinal variable s. The old and the new canonical vari-
ables are related through the expressions

û = U
√
βu, p̂u =

1√
βu

(
Pu − αuU

)
. (84)

The phase advance χu(s) and the generalized Twiss pa-
rameters αu(s), βu(s) and γu(s) are defined as

χ′u =
dχu

ds
=
Fu

βu
, (85)

α′u =
dαu

ds
= Gu βu − Fuγu, (86)

β′u =
dβu

ds
= −2Fuαu + 2Ruβu . (87)

The third Twiss parameter γu(s) is introduced via the
well-known expression

βuγu − α2
u = 1 . (88)

The corresponding betatron tunes are determined accord-
ing to the expression

νu =
Np

2π

s+Lp∫

s

dθFu(θ)
βu(θ)

. (89)

Typical dependence of the horizontal and vertical betatron
tunes on energy in the EMMA non-scaling FFAG is shown in
Figures 1 and 2.
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Fig. 2: Vertical betatron tune for the EMMA ring as a function of
energy.

It is worthwhile noting that the canonical transformation
specified by the generating function (70) allowed us to can-
cel terms linear in the transverse canonical coordinates x̂ and
p̂x. In order to take a due account of the dependence of the
longitudinal dynamics on the transverse one it is necessary to
retain terms in the resulting Hamiltonian that are proportional
to higher powers in η̂, x̂, p̂x and p̂z. Up to first order in η̂, this
gives rise to additional terms in the longitudinal Hamiltonian
of the form

Ĥ0ad = − η̂
2

(
p̂2

x + p̂2
z

)
− Kη̂x̂

2

(
p̂2

x + p̂2
z

)
+ . . . . (90)

The lengthening of the time of flight for one period of the
machine due to betatron oscillations can be expressed as

∆Θ = − 1
2βe

s+Lp∫

s

dθ
[
1 + K(θ) x̂(θ)

][
p̂2

x(θ) + p̂2
z (θ)

]
. (91)

5 Acceleration in a non-scaling FFAG accelerator

The process of acceleration in a non-scaling FFAG acceler-
ator can be studied by solving Hamilton’s equations of mo-
tion for the longitudinal degree of freedom. The latter are
obtained from the Hamiltonian (41) supplemented by an ad-
ditional term [similar to that in equation (54)], which takes
into account the electric field of the RF cavities. They read as

dΘ

ds
= − γ√

β2γ2 − P2
, (92)

dγ
ds

= −ZeUc

2AEp

Nc∑

k=1

δp(s − sk) sin
(
ωcΘ

c
− ϕk

)
. (93)

Here Uc is the cavity voltage, ωc is the RF frequency, Nc

is the number of cavities and ϕk is the corresponding cavity
phase.

Fig. 3: Time of flight as a function of energy for a single 0.394481
meter EMMA cell.

One could use the results obtained in the previous section
with the additional requirement that the phase slip coefficient
K̃1 averaged over one period vanishes. Instead, we shall use
an equivalent but more illustrative approach. The path length
in a FFAG arc and therefore the time of flight Θ is often well
approximated as a quadratic function of energy. The acceler-
ation process is then described by a longitudinal Hamiltonian,
which contains terms proportional to the zero-order (conven-
tional phase slip) factor and first-order phase slip factor. It
usually suffices to take into account only terms to second or-
der in the energy deviation

Θ = Θ0 + 2Aγmγ −Aγ2, (94)

as suggested by Figure 3.
Here γm corresponds to the reference energy with a mini-

mum time of flight. Provided the time of flight Θi at injection
energy γi and the time of flight Θm at reference energy γm are
known, the constants entering equation (94) can be express-
ed as

A =
Θm − Θi

(γm − γi)2 , Θ0 = Θm −Aγ2
m . (95)

Next, we pass to a new variable

γ̂ = γ − γm , Θ = Θm −Aγ̂2, (96)

similar to the variable η̂ introduced in the previous section.
Then, Hamilton’s equation of motion (92) can be rewritten in
an equivalent form

dΘ

ds
=

Θm

Lp
− Aγ̂

2

Lp
. (97)

In what follows, it is convenient to introduce a new phase
ϕ̃ and the azimuthal angle θ along the machine circumference
as an independent variable according to the relations

ds = Rdθ , ϕ̃ =
ωcΘ

c
, R =

NLLp

2π
. (98)
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It is straightforward to verify (see the averaging procedure
below) that the necessary condition to have acceleration is

ωcNL|Θm|
2πc

= h , (99)

where h is an integer (a harmonic number). Averaging Hamil-
ton’s equations of motion

dϕ̃
dθ

= −h − hâγ2, a =
A
|Θm| , (100)

d̂γ
dθ

= −ZeUc

2AEp

Nc∑

k=1

δp(θ − θk) sin (ϕ̃ − ϕk) , (101)

we rewrite them in a simpler form as

dϕ
dθ

= hâγ2,
d̂γ
dθ

= λ sinϕ , (102)

where
ϕ = − ϕ̃ − hθ + ψ0, λ =

ZeUcD
4πAEp

, (103)

D =

√
A2

c +A2
s , ψ0 = arctan

(As

Ac

)
, (104)

Ac =

Nc∑

k=1

cos (hθk + ϕk) , As =

Nc∑

k=1

sin (hθk + ϕk) . (105)

The effective longitudinal Hamiltonian, which governs
the equations of motion (102) can be written as

H0 =
ha
3
γ̂3 + λ cosϕ . (106)

Since the Hamiltonian (106) is a constant of motion, the
second Hamilton equation (102) can be written as

d̂γ
dθ

= ±λ
√

1 − 1
λ2

(
H0 − ha

3
γ̂3

)2

. (107)

Let us first consider the case of the central trajectory, for
which H0 = 0. It is of utmost importance for the so called gut-
ter (or serpentine) acceleration. Equation (107) can be solved
in a straightforward manner to give

θ =
J
b 2F1

(
1
6
,

1
2

;
7
6

; J6
)
− C

b
, (108)

where

J = γ̂
3

√
ha
3λ

, b = λ
3

√
ha
3λ

, (109)

C = 2F1

(
1
6
,

1
2

;
7
6

; J6
i

)
Ji . (110)

In the above expressions 2F1(α, β; γ; x) denotes the Gauss
hypergeometric function of the argument x. This case is il-
lustrated in Figure 4.

Fig. 4: An example of the so-called serpentine acceleration for
the EMMA ring for the central trajectory, where the longitudinal
H0 = 0. The harmonic number is assumed to be 11, with the RF
wavelength 0.405m. The parameter a from Eq. (100) is taken to be
2.686310−5.

In the general case where H0 , 0, we have

θ =
J

b
√

a1c
F1

(
1
3

;
1
2
,

1
2

;
4
3

;
J3

a1
, − J3

c

)
− C1

b
, (111)

where
a1 = 1 +

H0

λ
, c = 1 − H0

λ
, (112)

C1 =
Ji√
a1c

F1

1
3

;
1
2
,

1
2

;
4
3

;
J3

i

a1
, − J3

i

c

 . (113)

Here now, F1(α; β, γ; δ; x, y) denotes the Appell hyperge-
ometric function of the arguments x and y. The phase por-
trait corresponding to the general case for a variety of values
of the longitudinal Hamiltonian H0 is illustrated in Figure 5.
The important question on whether the serpentine accelera-
tion along the separatrix H0 = 0 is stable is addressed in Ap-
pendix B.

A qualitative analysis of the fast serpentine acceleration
has been presented earlier [11, 12]. However, to the best of
our knowledge the results presented here comprise the first
attempt to describe the process quantitatively. Although the
exact solution is expressed in the form of standard and gener-
alized hypergeometric functions, it can be easily incorporated
in modern computational environments like Mathematica.

6 Concluding remarks

Based on the Hamiltonian formalism, the synchro-betatron
approach for the description of the dynamics of particles in
non-scaling FFAG machines has been developed. Its starting
point is the specification of the static reference (closed) orbit
for a fixed energy as a solution of the equations of motion
in the machine reference frame. The problem of dynamical
stability and acceleration is sequentially studied in the natu-
ral coordinate system associated with the reference orbit thus
determined.
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Fig. 5: Examples of serpentine acceleration for the EMMA ring,
with varying value of the longitudinal Hamiltonian. The limits
of stability are given at values of the longitudinal Hamiltonian of
±0.31272, corresponding to either a 0 phase at 10MeV, or a π phase
at 20MeV.

It has been further shown that the dependence of the path
length on the energy deviation can be described in terms of
higher order (nonlinear) dispersion functions. The method
provides a systematic tool to determine the dispersion func-
tions and their derivatives to every desired order, and repre-
sents a natural definition through constitutive equations for
the resulting Twiss parameters.

The formulation thus developed has been applied to the
electron FFAG machine EMMA. The transverse and longitu-
dinal dynamics have been explored and an initial attempt is
made at understanding the limits of longitudinal stability of
such a machine.

Unlike the conventional synchronous acceleration, the ac-
celeration process in FFAG accelerators is an asynchronous
one in which the reference particle performs nonlinear os-
cillations around the crest of the RF waveform. To the best
of our knowledge, it is the first time that such a fully ana-
lytic (quantitative) theory describing the acceleration in non-
scaling FFAGs has been developed.

A Calculation of the reference orbit

The explicit solutions of the linearized equations of motion
(45) can be used to calculate approximately the reference or-
bit. To do so, we introduce a state vector

Ze =

(
Xe

Pe

)
. (114)

The effect of each lattice element can be represented in a
simple form as

Zout = M̂elZin + Ael . (115)

Here Zin is the initial value of the state vector, while Zout

is its final value at the exit of the corresponding element. The
transfer matrix M̂el and the shift vector Ael for various lattice
elements are given as follows:

1. Polygon Bend.
Within the approximation (44) considered here we can

linearize the second of equations (53) and write

M̂p =


1/ cos Θp −Xc tan Θp/

(
βeγe cos Θp

)

0 1/ cos2 Θp

 ,

Ap =


Xc

(
1 − 1/ cos Θp

)

βeγe tan Θp

 . (116)

2. Drift Space.

M̂O =


1 LO/βeγe

0 1

 , AO = 0 , (117)

where LO is the length of the drift. Every cell of the EMMA
lattice includes a short drift of length L0 and a long one of
length L1.

3. Focusing Quadrupole.
The transfer matrix can be written in a straightforward

manner as

M̂F =


cos (ωF LF) sin (ωF LF)/(βeγeωF)

−βeγeωF sin (ωF LF) cos (ωF LF)

 , (118)

AF =


(Xc + dF)[1 − cos (ωF LF)]

βeγeωF(Xc + dF) sin (ωF LF)

 , (119)

where LF is the length of the focusing quadrupole.

4. Defocusing Quadrupole.
The transfer matrix in this case can be written in analogy

to the above one as

M̂D =


cosh (ωDLD) sinh (ωDLD)/(βeγeωD)

βeγeωD sinh (ωDLD) cosh (ωDLD)

 , (120)

AD =


(Xc + dD)[1 − cosh (ωDLD)]

−βeγeωD(Xc + dD) sinh (ωDLD)

 , (121)

where LD is the length of the defocusing quadrupole.
Since the reference orbit must be a periodic function of s

with period Lp, it clearly satisfies the condition

Zout = Zin = Ze . (122)

Thus, the equation for determining the reference orbit be-
comes

Ze = M̂Ze + A, or Ze =
(
1 − M̂

)−1
A . (123)

Here M̂ and A are the transfer matrix and the shift vector
for one period, respectively. The inverse of the matrix 1 − M̂
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can be expressed as

(
1 − M̂

)−1
=

cos3 Θp

1 +
(
1 − SpM̂

)
cos3 Θp

×

×


1 −M22 M12

M21 1 −M11

 . (124)

For the EMMA lattice in particular, the components of
the one period transfer matrix and shift vector can be written
explicitly as

M11 =
1
cp

[
cFcD +

(
ωD

ωF
− L0L1ωFωD

)
sF sD +

+ (L0 + L1)ωDcF sD − L1ωF sFcD

]
, (125)

M12 =
1

βeγecp

{(L0 + L1

cp
− Xctp

)
cFcD +

+

[(
L0L1ωFωD − ωD

ωF

)
Xctp − ωF L1

ωDcp

]
sF sD +

+

[
1

ωDcp
− (L0 + L1)ωDXctp

]
cF sD +

+

(
1

ωFcp
+ L1ωF Xctp − L0L1ωF

cp

)
sFcD

}
, (126)

M21 = −βeγe

cp
(ωF sFcD + L0ωFωDsF sD − ωDcF sD) , (127)

M22 =
1
cp

[
cFcD

cp
+

(
L0ωFωDXctp − ωF

ωDcp

)
sF sD +

+ ωF

(
Xctp − L0

cp

)
sFcD − ωDXctpcF sD

]
, (128)

A1 = Xc + dF + (dD − dF)(cF − L1ωF sF) +

(
Xc

cp
+ dD

)
×

×
[
L1ωF sFcD − cFcD − (L0 + L1)ωDcF sD −

− ωDsF sD

ωF
+ L0L1ωFωDsF sD

]
+

+ tp

[
(L0 + L1)cFcD +

cF sD

ωD
+

+
sFcD

ωF
− L1ωF sF sD

ωD
− L0L1ωF sFcD

]
, (129)

A2 = − βeγeωF (dD − dF)sF + βeγe

(
Xc

cp
+ dD

)
×

× (
ωF sFcD + ωFωDL0sF sD − ωDcF sD

)
+

+ βeγetp

(
cFcD − ωF sF sD

ωD
− ωF L0sFcD

)
. (130)

Fig. 6: Phase stability of the standard EMMA ring, for the central
trajectory at H0 = 0. The errors are given as 0.1MeV in energy and
1.3o in phase.

For the sake of brevity, the following notations

cp = cos Θp , cF = cos (ωF LF) , cD = cosh (ωDLD) , (131)

tp = tan Θp , sF = sin (ωF LF) , sD = sinh (ωDLD) , (132)

have been introduced in the final expressions for the compo-
nents of the one period transfer matrix and shift vector.

B Phase stability in FFAGs

To study the stability of the serpentine acceleration in FFAG
accelerators, we write the longitudinal Hamiltonian (106) in
an equivalent form

H0 = λ
(
J3 + cosϕ

)
. (133)

Hamilton’s equations of motion can be written as

dϕ
dθ

= 3bJ2,
dJ
dθ

= b sinϕ . (134)

Let ϕa(θ) and Ja(θ) be the exact solution of equations
(134) described already in Section V. Let us further denote
by ϕ1 and J1 a small deviation about this solution such that
ϕ = ϕa + ϕ1 and J = Ja + J1. Then, the linearized equations
of motion governing the evolution of ϕ1 and J1 are

dϕ1

dθ
= 6bJaJ1 ,

dJ1

dθ
= bϕ1 cosϕa . (135)

The latter should be solved provided the constraint

3J2
a J1 − ϕ1 sinϕa = 0 , (136)

following from the Hamiltonian (133) holds. Differentiating
the second of equations (135) with respect to θ and eliminat-
ing ϕ1, we obtain

d2J1

dθ2 −
6b2H0

λ
JaJ1 + 15b2J4

a J1 = 0 . (137)
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Next, we examine the case of separatrix acceleration with
H0 = 0. In Section V we showed that to a good accuracy the
energy gain [Ja(θ) = bθ + Ji] is linear in the azimuthal vari-
able θ. Therefore, equation (137) can be written as

d2J1

dJ2
a

+ 15J4
a J1 = 0 . (138)

The latter possesses a simple solution of the form

J1 =
√
|Ja|

C1J1/6


√

5
3
|Ja|3

 + C2Y1/6


√

5
3
|Ja|3


 , (139)

where Jα(z) and Yα(z) stand for the Bessel functions of the
first and second kind, respectively. In addition the constants
C1 and C2 should be determined taking into account the initial
conditions

dJ1(Ji)
dJa

= ϕ1(Ji) cosϕi , J1(Ji) = J1i . (140)
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We shortly review a series of novel ideas on the physics of hadrons and nuclear mat-
ter. Despite being vastly different in scope and content, these models share a common
attribute, in that they offer unconventional viewpoints on infrared QCD and nuclear phe-
nomena. In a sense, they are reminiscent of the plethora of formulations that have been
developed over the years on classical gravitation: many seemingly disparate approaches
can be effectively used to describe and explore the same physics.

1 Introduction

Given the extent and complexity of hadron and nuclear phe-
nomena, any attempt for an exhaustive review of new ideas is
outright unpractical. We survey here only a limited number
of models and guide the reader to appropriate references for
further information. The paper is divided in several sections
according to the following plan:

1. The first section discusses the Brightsen model and the
Nuclear String hypothesis;

2. Models inspired by Kerr-Newman twistor model and
the AdS/CFT conjecture are introduced in the second
section;

3. The last section discusses CGLE model of hadron
masses and non-equilibrium phase transitions in infra-
red QCD.

The selection of topics is clearly incomplete and subjec-
tive. As such, it may not necessarily reflect the prevalent
opinion of theorists working in this field. Our intent is to
simply stimulate a constructive exchange of ideas in this ac-
tive area of research.

2 Brightsen mdodel and the nuclear string hypothesis

In this hadron model, developed by M.Pitkanen [1] based on
his TGD theory, it is supposed that 4He nuclei and A < 4
nuclei and possibly also nucleons appear as basic building
blocks of nuclear strings. This seems like some kind of im-
provement of the Close Packed Spheron model of L. Pauling
in 1960s, which asserts that nuclei is composite form of small
numbers of interacting boson-fermion nucleon clusters, i.e.
3He (PNP), triton (NPN) and deuteron (NP). Another exten-
sion of Pauling model is known as Brightsen’s cluster nuclei
model, which has been presented and discussed by F. Smaran-
dache and D. Rabounski [2].

Interestingly, it can be shown that the Close Packed model
of nuclei may explain naturally why all the upper quarks have
fractional electric charge at the order of Q =+ 2√

3
. So far this

is one of the most mysterious enigma in the hadron physics.
But as described by Thompson [4], in a closed-packed crystal

sheet model, the displacement coefficients would be given by
a matrix where the 1-1 component is:

c11 =
2ρ√

3
− 1 , (1)

where the deformation can be described by the resolved dis-
tance between columns, written as ρd. Here d represents
diameter of the nuclei entity. Now it seems interesting to
point out here that if we supposed that ρ= 1 +

√
3

2
, then c

from equation (3) yields exactly the same value with the up-
per quark’s electric charge mentioned above. In other words,
this seems to suggest plausible deep link between QCD/quark
charges and the close-packed nuclei picture [3].

Interestingly, the origin of such fractional quark charge
can also be described by a geometric icosahedron model [4].
In this model, the concept of quark generation and electro-
weak charge values are connected with (and interpreted as)
the discrete symmetries of icosahedron geometry at its 12
vertices. Theoretical basis of this analog came from the fact
that the gauge model of electroweak interactions is based on
SU(2)×U(1) symmetry group of internal space. Meanwhile,
it is known that SU(2) group corresponds to the O(3) group
of 3D space rotations, hence it appears quite natural to con-
nect particle properties with the discrete symmetries of the
icosahedron polygon.

It is worth to mention here that there are some recent
articles discussing plausible theoretical links between icosa-
hedron model and close-packed model of nuclei entities,
for instance by the virtue of Baxter theory [5]. Further-
more, there are other articles mentioning theoretical link be-
tween the close-packed model and Ginzburg-Landau theory.
There is also link between Yang-Baxter theory and Ginzburg-
Landau theory [6]. In this regards, it is well known that
cluster hydrogen or cluster helium exhibit superfluidity [7,8],
therefore it suggests deep link between cluster model of Paul-
ing or Brightsen and condensed matter physics (Ginzburg-
Landau theory).

The Brightsen model supports a hypothesis that antimat-
ter nucleon clusters are present as a parton (sensu Feynman)
superposition within the spatial confinement of the proton
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(1H1), the neutron, and the deuteron (1H2). If model pre-
dictions can be confirmed both mathematically and experi-
mentally, a new physics is suggested. A proposed experi-
ment is connected to orthopositronium annihilation anoma-
lies, which, being related to one of known unmatter entity, or-
thopositronium (built on electron and positron), opens a way
to expand the Standard Model.

Furthermore, the fact that the proposed Nuclear String hy-
pothesis is derived from a theory which consists of many-
sheeted spacetime framework called TGD seems to suggest
a plausible link between this model and Kerr-Schild twistor
model as described below.

3 Multiparticle Kerr-Schild twistor model and AdS/

CFT Light-Front Holography model

Kerr’s multiparticle solution can be obtained on the basis of
the Kerr theorem, which yields a many-sheeted multi-twistor-
ial spacetime over M4 with some unusual properties. Gravita-
tional and electromagnetic interaction of the particles occurs
with a singular twistor line, which is common for twistorial
structures of interacting particles [6].

In this regards the Kerr-Newman solution can be repre-
sented in the Kerr-Schild form [9]:

gµν = ηµν + 2hkµkν , (2)

where ηµν is the metric of auxiliary Minkowski spacetime.
Then the Kerr theorem allows one to describe the Kerr

geometry in twistor terms. And using the Kerr-Schild for-
malism, one can obtain exact asymptotically flat multiparticle
solutions of the Einstein-Maxwell field equations. But how
this model can yield a prediction of hadron masses remain to
be seen. Nonetheless the axial stringy system corresponds to
the Kerr-Schild null tetrad can be associated with supercon-
ducting strings. Interestingly one can find an interpretation of
Dirac equation from this picture, and it is known that Dirac
equation with an effective QCD potential can describe hadron
masses.

What seems interesting from this Kerr-Schild twistor
model, is that one can expect to give some visual interpre-
tation of the electromagnetic string right from the solution
of Einstein-Maxwell field equations. This would give an in-
teresting clue toward making the string theory a somewhat
testable result. Another approach to connect the superstring
theory to hadron description will be discussed below, called
Light-Front Holography model.

Brodsky et al. [10, 11] were able to prove that there are
theoretical links, such that the Superstring theory reduces
to AdS/CFT theory, and Ads/CFT theory reduces to the so-
called Light Front Holography, which in turn this model can
serve as first approximation to the Quantum Chromodynam-
ics theory.

Starting from the equation of motion in QCD, they iden-
tify an invariant light front coordinate which allows separa-
tion of the dynamics of quark and gluon binding from the

kinematics of constituent spin and internal orbital angular
momentum. Of most interesting here is that this method gives
results in the from of 1-parameter light-front Schrödinger eq-
uation for QCD which determines the eigenspectrum and the
light-front wavefunctions of hadrons for general spin and or-
bital angular momentum.

The light-front wave equation can be written as [8]:
(
− d2

dζ2 −
1 − 4L2

4ζ2 + U(ζ)
)
φ(ζ) = M2φ(ζ) , (3)

which is an effective single-variable light-front Schrödinger
equation which is relativistic, covariant, and analytically
tractable; here M represents the mass spectra.

Nonetheless, whether this Light-Front Holography pic-
ture will yield some quantitative and testable predictions of
hadron masses, remains to be seen.

4 Concluding note

We shortly review a series of novel ideas on the physics of
hadrons and nuclear matter. Despite being vastly different in
scope and content, these models share a common attribute, in
that they offer unconventional viewpoints on hadron, nuclear
phenomena, and infrared QCD. In a sense, they are reminis-
cent of the plethora of formulations that have been developed
over the years on classical gravitation: many seemingly dis-
parate approaches can be effectively used to describe and ex-
plore the same physics.

These very interesting new approaches, therefore, seem
to suggest that there is a hitherto hidden theoretical links be-
tween different approaches.

In our opinion, these theoretical links worth to discuss
further to prove whether they provide a consistent picture, in
particular toward explanation of the hadron mass generation
mechanism and spontaneous symmetry breaking process.

The present article is a first part of our series of review of
hadron physics. Another part is under preparation.
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The concept of coordinate transformation is fundamental to the theory of differentiable
manifolds, which in turn plays a central role in many modern physical theories. The
notion of metric extension is also important in these respects. In this short note we
provide some simple examples illustrating these concepts, with the intent of alleviating
the confusion that often arises in their use. While the examples themselves can be
considered unrelated to the theory of general relativity, they have clear implications for
the results cited in a number of recent publications dealing with the subject. These
implications are discussed.

1 Introduction
Differentiable manifolds play a central role in modern phys-
ical theories. Roughly speaking, a differentiable manifold
(hereafter manifold) is a topological space whose local equiv-
alence to Euclidean space permits a global calculus. In more
precise mathematical terms, a manifold is a topological space
M with a collection of coordinate systems that cover all of M.
Thus the concept of a coordinate system is fundamental to the
notion of manifold.

A coordinate system is defined as a mapping φ (with cer-
tain properties) from an open set U of a topological space
onto an open set φ(U) of Euclidean space. The open set U
is called the coordinate neighborhood of φ and the functions
x1, . . . , xn on U such that φ =

(
x1, . . . , xn

)
, are the coordinate

functions, or more simply the coordinates. A manifold can
have an infinite number of equally valid coordinates defined
on it.

As an example consider the topological space S 2 (the unit
sphere). Further consider the northern and southern hemi-
spheres of the sphere, which are both open subsets of S 2. On
each of the hemispheres we can define stereographic coor-
dinates by projecting the respective hemispheres onto two-
dimensional Euclidean space. Each of the projections defines
a coordinate system, which when taken together cover all of
S 2. Thus S 2 is a manifold.

The notion of a metric tensor g on a manifold M is funda-
mental to the theory of differential geometry (indeed, the met-
ric tensor is alternatively called the first fundamental form).
Explicitly, g is a type-(0,2) tensor that defines a scalar prod-
uct g(p) on the tangent space Tp(M), for each point p ∈ M.
On a domain U, corresponding to a particular coordinate
system {x1, . . . , xn}, the components of the metric tensor are
gi j = g(∂i, ∂ j). It is important to note that the metric compo-
nents gi j are functions, not tensors. The metric tensor itself is
given by g = gi j dxi ⊗ dx j, where summation over the indices
is implied. It must be stressed that a metric, by virtue of the

fact that it is a tensor, is independent of the coordinate system
which is used to express the component functions gi j.

The metric tensor can be represented by its line-element
ds2, which gives the associated quadratic form of g(p). We
stress that a line-element is not a tensor. A line-element can
be expressed in terms of a coordinate system as

ds2 = gi j dxi dx j.

Representing the metric in a particular coordinate system
by the associated quadratic form is equivalent to expressing
it as a square matrix with respect to the coordinate basis. For
example, on the unit sphere the metric σ is often written in
terms of the line-element with respect to spherical coordi-
nates {θ, ϕ} as

ds2 = dθ2 + sin2 θ dϕ2,

or equivalently as the matrix

[σ]{θ,ϕ} =

(
1 0
0 sin2 θ

)
.

It is important when practicing differential geometry to
distinguish between coordinate dependent quantities and co-
ordinate invariant quantities. We have already seen some ex-
amples of these: the metric tensor is coordinate invariant (as
is any tensor), while the line-element is coordinate dependent.
Another example of a coordinate dependent quantity are the
Christoffel symbols

Γi
jk = gim

(
∂kgm j + ∂ jgmk − ∂mg jk

)

while the scalar curvature (Kretschmann scalar), which is de-
rived from them as

f = gab
(
∂cΓ

c
ab − ∂bΓc

ac + Γd
abΓc

cd − Γd
acΓ

c
bd

)
,

is coordinate invariant. Another example of a coordinate in-
variant quantity is the metric length of a path in a manifold.
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Suppose now that we have two different sets of coordi-
nates defined on an open set U ⊂ M. That is to say that we
have two mappings φ1 and φ2 that act from U onto two (pos-
sibly different) open sets V1 and V2 in Euclidean space. It
is apparent that we can change from one coordinate system
to the other with the maps φ2 ◦ φ−1

1 or φ1 ◦ φ−1
2 . Such maps

define a change of coordinates or coordinate transformation.
Alternatively if we have a mapping ζ from V1 into V2 and a
coordinate system (mapping) φ from U onto V1, then the map-
ping ζ ◦ φ also defines a coordinate system. In this context ζ
is the coordinate transformation. Coordinate invariant quan-
tities, such as the metric, the scalar curvature and lengths, do
not change under the action of a coordinate transformation

In what follows we illustrate these concepts by means of
some simple examples and discuss some of their implications.

2 Some simple examples

We begin by illustrating the concept of coordinate transfor-
mation with a simple example in ordinary Euclidean 3-space
(E3). Suppose that (r, θ, ϕ) are the usual spherical coordinates
on E3 and consider the spherically symmetric line-element

ds2 = r2 dr2 + r2 dΩ2, (1)

where dΩ2 = dθ2 + sin2 θ dϕ2 is the usual shorthand for the
line-element on the unit sphere S 2.

Defining a new radial coodinate ρ by 2ρ = r2, the line-
element can be written in terms of the coordinates (ρ, θ, ϕ) as

ds2 = dρ2 + 2ρ dΩ2. (2)

Note that if ρ is held constant then the line-element re-
duces to the standard line-element for a sphere of radius√

2ρ = r.
Note that the coordinate transformation has changed noth-

ing. The metrics corresponding to the line-elements given by
(1) and (2) are exactly the same tensor, they have just been ex-
pressed in two different sets of coordinates. To illustrate this
consider calculating metric length along a radial line. Specif-
ically, consider the path defined in terms of the (r, θ, φ) coor-
dinates by

γa = {(r, θ, ϕ) : r ∈ (0, a), θ = π/4, ϕ = 0}.
Equivalently, we can define the path in terms of the

(ρ, θ, ϕ) coordinates as

γa = {(ρ, θ, ϕ) : ρ ∈ (0, a2/2), θ = π/4, ϕ = 0}.
Thus calculating the metric length of the path γa with re-

spect to the line-element (1) we find

L(γa) =

∫ r=a

r=0
r dr =

a2

2
,

while if we calculate it with respect to the line-element (2) we
find that

L(γa) =

∫ ρ=a2/2

ρ=0
dρ =

a2

2
.

This confirms that the metric length does not depend on
the particular coordinate expression (line-element) represent-
ing the metric.

This example also illustrates another interesting property
of the metric corresponding to (1) or (2). If we set ρ = b,
where b is a constant, the line-element (2) reduces to the 2D
line-element:

ds2 = 2b dΩ2.

This is the line-element of a 2-sphere with a radius of cur-
vature of

√
2b, i.e. the Gaussian curvature is 1/2b. However,

calculating the metric distance d from the origin (ρ = 0) to
this sperical shell (ρ = b), we find that

d =

∫ b

0
dρ = b.

Hence, the metric radius and the radius of curvature are
not equal in general. Repeating the calulation with (1) yields
the same result.

As another example consider the two-dimensional, non-
Euclidean metric

ds2
1 = −x2 dt2 + dx2, (3)

where it is assumed that t ∈ (−∞,∞) and x ∈ (0,∞). In terms
of the coordinates {t, x} the metric tensor g1 can therefore be
represented as

[g1]{t,x} =

( −x2 0
0 1

)
, (4)

with a metric determinant of |g1| = −x2, which suggests that
as x→ 0 the metric becomes singular.

However, calculating the scalar curvature of the metric we
find that Rg1 = 0, which is independent of x. The metric g1
therefore defines a flat manifold (N, g1). The fact that the sin-
gularity arises in the coordinate dependent form of the metric,
but not in the coordinate invariant scalar curvature, indicates
that the apparent singularity may in fact be due solely to a
breakdown in the coordinate system {t, x} that was chosen to
represent the metric, i.e. it may merely be a coordinate singu-
larity rather than a true singularity of the manifold described
by g1. A coordinate singularity can be removed by a good
choice of coordinates, whereas a true singularity cannot.

Introducing new coordinates {T, X}, which are defined in
terms of the old coordinates {t, x} by

X = x cosh t

T = x sinh t,

the line-element ds2
1 may be written as

ds2
1 = −dT 2 + dX2. (5)

Note that t ∈ (−∞,∞) and x ∈ (0,∞) implies that T ∈
(−∞,∞) and X ∈ (0,∞) also.
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In terms of the {T, X} coordinates, the metric tensor g1 is
represented by

[g1]{T,X} =

( −1 0
0 1

)
. (6)

and so the metric determinant is |g1| = −1. The apparent
singularity has been removed by invoking a good choice of
coordinates.

We note further that even though the line-element (5) was
only defined for X ∈ (0,∞) there is now nothing stopping us
from extending the definition to include X ∈ (−∞,∞). We
thus make the distinction between the line-element ds2

1, de-
fined above, and the line-element ds2

2 defined as

ds2
1 = −dτ2 + dξ2, (7)

with coordinates τ, ξ ∈ (−∞,∞). The metric corresponding
to the line-element (7), denoted by g2, defines a manifold
(M, g2) that can be thought of as 2D Minkowski space. By
restricting the coordinate ξ to the semi-finite interval (0,∞)
we recover the metric g1, that is

g2|ξ>0 = g1.

It follows that the manifold (N, g1) is a submanifold of the
Minkowski space (M, g2). Alternatively we say that (M, g2) is
a coordinate extension of the manifold (N, g1). The manifold
(N, g1) is known as the Rindler wedge and corresponds to that
part of (M, g2) defined by |τ| < ξ.
3 Implications

In [1] the author notes that the line-element written in terms
of coordinates {t, r, θ, ϕ} as

ds2 = A(r) dt2 + B(r) dr2 + C(r) dΩ2 (8)

corresponds to the most general spacetime metric that is static
and spherically symmetric. He then goes on to claim that the
line-element written in terms of coordinates {t, ρ, θ, φ} as

ds2 = A∗(ρ) dt2 + B∗(ρ) dρ2 + ρ2 dΩ2 (9)

does not correspond to the most general metric that is static
and spherically symmetric∗. This claim is false, as we will
now demonstrate.

Consider the line-element (9) and define the coordinate
transformation ρ =

√
C(r), where C is some function inde-

pendent of the functions A∗ and B∗. Taking the differential
we find that

dρ =
C′(r)

2
√

C(r)
dr

and so the line-element (9) can be written in terms of the co-
ordinates {t, r, θ, ϕ} as

ds2 = E(r) dt2 + D(r) dr2 + C(r) dΩ2, (10)
∗Note that in [1] the author has used r again instead of ρ. We use the

different symbol ρ to avoid confusion.

where

E(r) = A∗
(√

C(r)
)

and D(r) =
B∗

(√
C(r)

)
C′(r)2

4C(r)
.

Since the functions A∗ and B∗ are independent of the func-
tion C, the functions E and D are also independent of the
function C. The line-element (10) is identical to (8) and it fol-
lows that the metrics represented by (8) and (9) are the same
metric (just expressed in terms of different coordinates), and
therefore that both line-elements represent the most general
static, sperically symmetric spacetime metric.

Based on the claim of [1], just shown is false, the author
goes on to conclude that solutions of the gravitational field
equations that are derived from the metric ansatz (9) are par-
ticular solutions rather than general solutions. These claims
are also false for the same reasons as illustrated above.

The foregoing considerations therefore have bearing on
the relativistic arguments contained in [1] and subsequent pa-
pers by the author. For example, in [1–8] the author repeat-
edly makes the following claims:

1. The coordinate ρ, appearing in (9), is not a proper ra-
dius;

2. The “Schwarzschild” solution, as espoused by Hilbert
and others is different to the Schwarzschild solution ob-
tained originally by Schwarzschild [9];

3. The original Schwarzschild solution is a complete (i.e.
inextendible) metric;

4. There are an infinite number of solutions to the static,
spherically symmetric solutions to the field equations
correponding to a point mass;

5. For line-elements of Schwarzschild form†, the scalar
curvature f remains bounded everywhere, and hence
there is no “black hole”.

We will now address and dismiss each of these claims.

Claim 1. The claim that ρ is not a proper radius stems from a
calculation in [1]. The author defines the proper radius as

Rp =

∫ √
B(r) dr (11)

where B is the function appearing in (8). Strictly speaking
this is not a radius, per se, but a function of the coordinate r.
In more precise terms, the proper radius should be defined as
the metric length of the radial path γa defined by‡

γa = {(t, r, θ, ϕ) : r ∈ (a1, a2), t, θ, ϕ = constant}.
This then implies that the proper radius is defined as

Rp = L1(γa) =

∫ a2

a1

√
B(r) dr . (12)

†Line-elements of “Schwarzschild form” are defined in [2].
‡We believe that this is what the definition in [1] was actually aiming at.
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The claim in [1] relates to the fact that Rp, as defined by
(11), is equal to r only if B(r) = 1. This conclusion is based
on an imprecise definition of the proper radius and does not
take into account the effect of coordinate transformation. If
we work in terms of the coordinates appearing in the line-
element (9), which we have already shown represents the
same metric as (8), then the path γa is defined as

γa = {(t, ρ, θ, ϕ) : ρ ∈ (ρ1, ρ2), t, θ, ϕ = constant},
with ρ1 =

√
C(a1) and ρ2 =

√
C(a2). In terms of the line-

element (9) the metric length of γa is given by

L2(γa) =

∫ √
C(a2)

√
C(a1)

√
B∗(ρ) dρ.

Noting the effect of the coordinate transformation, that
was established earlier, we then find that

Rp = L1(γa) =

∫ a2

a1

√
B(r) dr

=

∫ a2

a1

[
B∗(

√
C(r)

]1/2 C′(r)
2
√

C(r)
dr

=

∫ √
C(a2)

√
C(a1)

√
B∗(ρ) dρ

= L2(γa) .

Hence the proper radius does not depend on the form of
the line-element. Proper radius (i.e. a metric length) can be
equivalently defined in terms of either of the “radial” coordi-
nates r or ρ.

Claims 2 and 3. The original Schwarzschild solution ob-
tained in [9] is given as the line-element

ds2 = A(R)dt2 − A(R)−1dR2 − R2dΩ2, (13)

where
A(R) = 1 − α

R
and R = (r3 + α3)1/3.

The coordinate r ∈ (0,∞) that appears is the standard
spherical radial coordinate. The expression R = (r3 + α3)1/3

defines a transformation of the radial coordinate r into the
auxilliary radial coordinate R. The constant α is related to
the value of the mass at the origin [9]. Indeed, by imposing
the additional boundary condition at infinity, that the solution
be consistent with the predictions of Newtonian gravitational
theory, it is found that the constant α = 2m, where m is the
mass at the origin. The line-element (13) can therefore be
written as

ds2 =

(
1 − 2m

R

)
dt2 −

(
1 − 2m

R

)−1

dR2 − R2dΩ2, (14)

with R ∈ (2m,∞). Note that if R and t are held constant
(say R = a and t = t0) the line-element reduces to that of a

2-sphere with radius a > 2m. The line-element therefore de-
fines a manifold that is foliated by 2-spheres with radii greater
than 2m.

The line-element is of precisely the same form as the line-
element derived by Hilbert [10], i.e.

ds2 =

(
1 − 2m

ρ

)
dt2 −

(
1 − 2m

ρ

)−1

dρ2 − ρ2dΩ2, (15)

where ρ ∈ (0, 2m) ∪ (2m,∞). The only difference is that (14)
is defined over a subset of the domain over which (15) is de-
fined. To obtain the line-element (15) the radial coordinate
has been extended to values less than 2m in much the same
way that the metric corresponding to (5) was extended to the
metric corresponding to (7). The only real difference is that
in the case at hand there remains a coordinate singularity at
R = 2m, and so in terms of the coordinates used, the extended
manifold must be viewed as a disjoint union of the regions
corresponding to R < 2m and R > 2m. Both of the disjoint re-
gions satisfy the static, spherically symmetric field equations.
In fact it is well-known that there exist coordinates in which
the difficulty at R = 2m can be removed, resulting in a single
manifold that satisfies the field equations. As a point of his-
torical interest we note that the extended metric is also known
as the “Schwarzschild” metric in honour of Schwarzschild’s
contribution to the field, despite the fact that his original so-
lution is only a subset of the complete solution.

From the above considerations it clear that the manifold
corresponding to the line-element (13) is incomplete. Indeed,
in deriving this form of the line-element, Schwarzschild im-
posed a very specific boundary condition, namely that the
line-element is continuous everywhere except at r = 0, where
r ∈ (0,∞) is the standard spherical radial coordinate. Impo-
sition of this boundary condition has significant implications
for the solution obtained. In particular, as a consequence of
the boundary condtion the coordinate R is shifted away from
the origin. Indeed, if r ∈ (0,∞) then R ∈ (α,∞). Hence the
manifold represented by (13) is foliated by 2-spheres of ra-
dius greater than α = 2m — the spacetime has a hole in its
centre!

Claim 4. In [2] the author derives the general solution for the
static, spherically symmetric field due to a point mass as

ds2 =

( √
Cn − α√

Cn

)
dt2 −

( √
Cn√

Cn − α

)
C′n

2

4Cn
dr2 −Cn dΩ2, (16)

where r is the standard radial spherical coordinate and

Cn(r) =
[
(r − r0)n + αn]2/n (17)

with r0 > 0 and n > 0 arbitrary constants. The author also
notes that (16) is only defined for r > r0.

Let us now see the effect of transforming coordinates.
Firstly, let ρ = r−r0 so that the coordinate ρ is simply a shifted
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version of the coordinate r. Taking differentials implies that
dρ = dr and so we may equivalently write the line-element
(16) as

ds2 =

( √
Cn − α√

Cn

)
dt2 −

( √
Cn√

Cn − α

)
C′n

2

4Cn
dρ2 −Cn dΩ2, (18)

where now
Cn(ρ) =

[
ρn + αn]2/n

and the line-element is defined for ρ > 0.
Secondly, define another change of coordinates by R =√

Cn(ρ). This is essentially a rescaling of the radial coordinate
ρ. Taking differentials we find that

dR =
C′n

2
√

Cn
dρ .

Thus in terms of the coordinate R the line-element may
be written as

ds2 =

(R − α
R

)
dt2 −

( R
R − α

)
dR2 − R2 dΩ2, (19)

where the coordinate R > α.
Hence we have shown that what appeared to be an infini-

tude of particular solutions are actually just different coordi-
nate expressions of the same solution, which without loss of
generality can be expressed in “Schwarzschild coordinates”
{t,R, θ, ϕ} by (19). This solution is incomplete, as we have
already seen, since the line-element and the corresponding
metric are only defined when the coordinate R > α. The so-
lution is known as the exterior Schwarzschild solution.

Another way of seeing that the metrics corresponding to
the line-elements defined by (16) are all the same, is by invok-
ing Birkoff’s Theorem [11]. This theorem establishes, with
mathematical certainty, that the Schwarzschild solution (ex-
terior, interior or both) is the only solution of the spherically
symmetric vacuum field equations∗.

Claim 5. In [2] the author notes that the scalar curvature of
the metric corresponding to (16) is given by

f =
12α2

C3
n

=
12α2

[(r − r0)n + αn]6/n

and that as r → r0 there is no curvature singularity. He then
concludes that a “black hole” singularity cannot exist.

In fact, as we have just seen, the line-element (16) only
corresponds to the exterior Schwarzschild solution, which is
a manifold foliated by 2-spheres with radial coordinate R > α.
The calculation in [2] therefore only proves that the exterior
solution has no curvature singularity. This is a well known
fact. Writing (16) in its equivalent form (19) and extending

∗The assumption of staticity is not actually required, hence all spheri-
cally symmetric spacetimes satisfying the vacuum field equations are static.

the coordinate R to obtain the interior Schwarzschild solution
(0 < R < α), the scalar curvature is given by

f =
12α2

R3 ,

from which it is clear that

lim
R→0

f = ∞ .

Hence there is a curvature singularity at R = 0. Since the
vector ∂R is timelike for 0 < R < α, the singularity corre-
sponds to a black hole.

4 Conclusions

We have presented a number of simple examples which hope-
fully elucidate the concepts of coordinate transformation and
metric extension in differential geometry. Implications of the
concepts were also discussed, with particular focus on a num-
ber of the relativistic claims of [1–8]. It was proven that each
of these claims was false. The claims appear to arise from a
lack of understanding of the notions of coordinate transfor-
mation and metric (coordinate) extension. Any conclusions
contained in [1–8] that are based on such claims should there-
fore be considered as unproven. In particular, the claim that
the black hole “is not consistent at all with general relativity”
is completely false.

General relativity is a difficult topic, which is grounded
in advanced mathematics (indeed, Einstein himself is quoted
as saying something along the lines of “Ever since the math-
ematicians took hold of relativity, I no longer understand it
myself!”). A sound understanding of differential geometry
is a prerequisite for understanding the theory in its modern
form. Thus to paraphrase Lao Tzu [12] — beware of the half-
enlightened master.

Postscript

The article by Stephen J. Crothers in the current issue [13]
provides a good illustration of the problems discussed above.
For example, in his first “counter-example” he considers a
metric which is easily seen to be the Schwarzschild metric
written in terms of an ‘inverted’ radial coordinate. Using x to
denote the inverted radial coordinate (denoted by r in [13]),
and R to denote the usual Schwarzschild radius, the transfor-
mation is R = 2m − x. In particular, R = 0 corresponds to
x = 2m, and R = 2m corresponds to x = 0. It is thus not
surprising that the coordinate singualrity is at x = 0 and the
point singularity is at x = 2m. The other counter-examples
in [13] can be dismissed through similar arguments.

The author is grateful to S. J. Crothers for a number of discus-
sion that resulted in the writing of this paper.

Submitted on August 06, 2009 / Accepted on August 14, 2009
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On Crothers’ Assessment of the Kruskal-Szekeres “Extension”

Ulrich E. Bruchholz
Wurzen, Germany. E-mail: Ulrich.Bruchholz@t-online.de; http://www.bruchholz-acoustics.de

I agree with Crothers in it that any introduction of Kruskal-Szekeres coordinates is
unnecessary. The solution of problems from so-called Schwarzschild solutions appears
amazingly simpler than discussed in Crothers’ paper.

S. J. Crothers [1] discusses the introduction of Kruskal-
Szekeres coordinates, which pursue the target to avoid certain
forms of singularity and the change of signature. Crothers ar-
gues that this measure is off target. — Let me note following:

1. The Kruskal-Szekeres coordinates as quoted with the equa-
tions before Eq. (4) of [1] mingle time and length. That
is physically self-defeating. Moreover, any real coordinate
transformation does not change the situation with the original
coordinates.

2. The solution according to Eq. (1) of [1] is physically dif-
ficult for the coordinate singularity. We should take notice of
this fact instead of doing inept tries, see item 1.

3. The general central symmetric and time-independent so-
lution of Rµν = 0 is the first part of Schwarzschild’s actual
solution

ds2 =
(
1 − α

R

)
dt2 −

(
1 − α

R

)−1
dR2 −

− R2(dθ2 + sin2θ dϕ2) ,

in which R is an arbitrary function of r within the limit that
metrics must be asymptotically Minkowski spacetime, i.e.
R ⇒ r for great r. α is an integration constant related to
the mass,

α =
κm
4π

.

This solution is based on “virtual” coordinate transfor-
mation, which is possible for the degrees of freedom from
Bianchi identities.

4. Above solution implies also an isotropic solution without
singularity at the event horizon

ds2 =
( r − rg
r + rg

)2
dt2 −

−
(
1 +

rg
r

)4 (
dr2 + r2(dθ2 + sin2θ dϕ2)

)

with
rg =

α

4
=
κm
16π

.

The event horizon (at r = rg) turns up to be a geometric
boundary with g= 0.

5. Any change of signature is physically irrelevant, because
areas with different signature (from normal, according to ob-
server’s coordinates) are not locally imaged. Therefore, any
singularity in such an area is absolutely irrelevant.

6. It is deduced from the geometric theory of fields [2]
that particles do not follow any analytic solution, no mat-
ter whether obtained from General Relativity or any quantum
theory. One can specify the field only numerically. It has to
do with chaos. — It was interesting to see if the discussed an-
alytic solutions are possible at all, or if macroscopic solutions
are decided by chaos too.

Submitted on October 17, 2009 / Accepted on November 09, 2009
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LETTERS TO PROGRESS IN PHYSICS

An Einstein-Cartan Fine Structure Constant Definition

Robert A. Stone Jr
1313 Connecticut Ave, Bridgeport, CT 06607 (USA). E-mail: robert.a.stone.jr@gmail.com

The fine structure constant definition given in Stone R. A. Jr. Progress in Physics, 2010,
v.1, 11–13 [1] is compared to an Einstein-Cartan fine structure constant definition. It
is shown that the Einstein-Cartan definition produces the correct pure theory value, just
not the measure value. To produce the measured value, the pure theory Einstein-Cartan
fine structure constant requires only the new variables and spin coupling of the fine
structure constant definition in [1].

1 Introduction

Stone in [1] gives Nature’s coupling constants, the fine struc-
ture constant and the weak angle, and a single mass formula
for the W, the proton, the electron and electron generations
all as functions of (4π)n.

If these 4π coupling constant definitions are correct, then
if a literature search found another theoretical definition, one
would expect a similar form for the two definitions.

In [1] the fine structure constant (FSC), designated as
αcs (α charge to spin), is defined as πς (4π%)−2/(2

√
2) with

%=αcsαsg (1) mp/(meπ) = 0.959973785 where αsg (1)=2
√

2/4π
and ς = (4π%)3 me/mp = 0.956090324.

2 An Einstein-Cartan model

Many Einstein-Cartan models are scale independent models
where the force magnitude (scale) is related to some internal
variable like a length, e.g. l0. The pure theory scale is l0 while
potential deviation from the pure theory is represented by l.
The Einstein-Cartan model of Horie’s [2] is such a model.

Equation (4.2) in Horie’s paper [2] gives the Einstein-
Cartan theoretical definition for the FSC as

αcs =
1

64π
l20
l2
, (1)

where l assumed to be less than and approximately l0.
When l = l0, (1) gives the FSC value of approximately

4.97 × 10−3. To match the measured FSC value requires l0/l
to equal about 1.2113 (l20/l

2 ' 1.4672), a value for l not ap-
proximately l0.

The 4π definition of the fine structure coupling constant
is given in [1] as αcs = πς (4π%)−2/(2

√
2) and the charged

particle weak angle coupling constant as αsg = 2
√

2(4π%)−1.
Noting that the

√
2 appears with both spin couplings sug-

gests that the origin of the
√

2 is related to the coupling of the
other force in the coupling constant to spin.

From the underlying approach, this is true. However the√
2 is mathematically on the side of the other force because

the coupling of spin to charge (and g) is larger than expected
by present approaches.

Thus in order to reflect the underlying approach of the 4π

definitions, αcs is better written as

αcs =
1

16π
1
4

√
2

1
%2 ς. (2)

Rewriting Horie’s equation (1) in a similar form yields

αcs =
1

16π
1
4

1
1

(l/l0)2 1. (3)

Where as Horie’s pure theory Einstein-Cartan model as-
sumes 1 for the coupling, the underlying source coupling
value in αcs (and αsg) is larger by

√
2.

Where as Horie’s pure theory Einstein-Cartan model can
not give a value for l/l0 for αcs, the definition in [1] gives the
value as %. Note that using the correct spin coupling (

√
2) now

results in l / l0 as expected.
Lastly, Horie’s pure theory Einstein-Cartan model simply

lacks an additional factor ς that appears on the charge side of
the coupling constants αcs and αcg [1].

Thus, as a pure theory model, Horie’s result is correct. To
produce the measured FSC value, Horie’s pure theory model
only needs the correct spin coupling (

√
2), the correct l/l0

value (%) and the ς adjustment that come from the approach
that produced the 4π definition of Nature’s constants.

3 Summary

In [1], several 4π coupling constant definitions were given
including the fine structure constant.

It is shown that the 4π fine structure constant definition
of [1] is in keeping with Horie’s complex connection pure
theory Einstein-Cartan fine structure constant definition [2].

Thus not only does the 4π definitions in [1] produce the
two weak angle values as experimentally observed, the fine
structure constant definition has the three missing constants
required by a pure theory Einstein-Cartan fine structure con-
stant definition to produce the measured value.
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Valery N. Smirnov (1939–2009) and His Detector
Victor A. Panchelyuga

Research Institute of Hypercomplex Systems in Geometry and Physics, Friazino, Russia
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sscience, Pushchino, Russia

E-mail: panvic333@yahoo.com

Dr. Valery N. Smirnov who passed away recently, was an experimental physicist work-
ing on accelerator physics. Despite this fact, the main achievement of his scientific
creation was the detector for measurement of perturbations in gravitational fields. This
detector, having originally construction suggested by Smirnov, was launched at Moscow
Engineer Physical Institute, Russia. Valery N. Smirnov continued his observations with
the detector until his last days. We therefore refer to this device as Smirnov’s detector.

Dr. Valery N. Smirnov. Pictured in the last decade.

Valery N. Smirnov was born in October 6, 1939, in Magadan,
Russia, where his parents worked as reporters. In 1945, his
family returned to Moscow, where he lived all his life.

After high school, in 1958, he was employed at the Insti-
tute of Radio Engineering. In 1960 he entered to Moscow En-
gineer Physical Institute, where was gaduated in 1966. Then
he returned to the Institute of Radio Engineering. In 1975
he was employed at Kurchatov Institute of Atomic Energy, as
an experimental physicist in the field of accelerator physics.
Smirnov designed “Fakel” (tourch), the linear accelerator,
and also numerous other accelerators for Kurchatov Institute.
In 1983, he awarded Kurchatov Prize for the best engineering
work done in the field. As one of the stuff of Kurchatov In-
stitute, Smirnov produced some studies at Chernobyl Nuclear

Power Station, in 1987 and 1989, after the catastroph. He was
gratituded by the Government for this job.

Some persons work in order only to earn money for live.
In contrast, Smirnov spent all his life for scientific studies. He
found the main task of his scientific creation when read the
papers, published by Prof. Nikolai A. Kozyrev, the famous
astronomer and physicist of Pulkovo Observatory, Leningrad.
Kozyrev pointed out that, in his regular experiments with gy-
poscopes, the devices experienced small fluctuations at the
moments connected to the dynamics of celestial bodies, e.g.
the planets. This effect remained unexplained.

Smirnov supposed that the source of this effect is hidden
in the imperfect suspension of Kozyrev’s gyroscope. Thus,
every period of revolution may be broken due to an external
influence. In aim to study his supposition, Smirnov designed
a special device, containing a gyroscope which was rotating
in a special regime of braking (different braking regimes were
ruled by special control electronics). Experiments conducted
by him confirmed his initially supposition: the device showed
steady sensitivity to the specific moments of celestial bodies
dynamics, exact according to Kozyrev.

During the years and until his last days, Smirnov con-
ducted regular observations with the device. He also im-
proved its contruction, making it more sensitive. The exper-
imental results and the technical descriptions were presented
by him in the publication [1]. Complete review of the experi-
ments will be submitted to Progress in Physics later.

Dr. Valery N. Smirnov passed away in November 4, 2009,
being full of new plans for research and creative ideas. In our
memory he is still live amongst us, with his device we refer
to as Smirnov’s detector.
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References
1. Smirnov V. N., Egorov N. V., Schedrin I. S. A new detector for pertur-

bations in gravitational field. Progress in physics, 2008, v. 2, 129–133.

Victor A. Panchelyuga. Valery N. Smirnov (1939–2009) and His Detector L9



Volume 1 PROGRESS IN PHYSICS January, 2010

NEW PARADIGMS IN PHYSICS

A New Paradigm: From Quantum Fields to the Planck Vacuum

William C. Daywitt

National Institute for Standards and Technology (retired), Boulder, Colorado, USA E-mail: wcdaywitt@earthlink.net

The current paradigm in fundamental physics assumes that Newton’s gravitational con-
stant G, Planck’s (reduced) constant ~, and the fine structure constant α are primary
constants — i.e., these constants are associated with something basic in nature and are
thus not reducible to something more fundamental. This assumption leads, for exam-
ple, to the conclusion [1] that quantum fields are the fundamental building blocks out
of which the visible universe is constructed.

The Planck vacuum (PV) theory [2] derives the three con-
stants

G =
e2
∗

m2∗
, (1)

~ =
e2
∗
c
, (2)

α =
e2

e2∗
, (3)

where e∗ is the bare electronic charge, m∗ is the Planck
mass, c is the speed of light, and e is the experimentally ob-
served electronic charge. In effect, then, a new paradigm∗ has
emerged where the PV is the source of the visible universe
and its properties.

What follows is a brief survey of some equations that
demonstrate how the current and new paradigms are related.
The details leading to the equations are unimportant here and
are left to the references. What is important is how the current
primary constants on the left side of (1)–(3) are replaced by
the new primary constants e∗ and m∗ on the right and in the
equations to follow.

The Compton relation [3, p.433]

λc =
h

mc
or rc mc = ~ (4)

associates a Compton wavelength λc (or a Compton radius
rc = λc/2π) with the particle mass m, while the de Broglie
relation [3, p.81]

p =
~

rd
(5)

relates the particle’s relativistic momentum (p = mγv) to
its de Broglie radius rd = rc/βγ, where β = v/c and γ =

1/
√

1 − β2 . The PV theory explains these relations [2] [4] in
terms of the magnitudes, mc2/r and e2

∗/r
2, of the two distor-

tion forces the particle exerts on the PV, the radius at which

∗Merriam-Webster Online Dictionary, 2009. Paradigm: a philosophical
and theoretical framework of a scientific school or discipline within which
theories, laws, and generalizations and the experiments performed in support
of them are formulated.

these two forces are equal being the Compton radius rc. The
calculations lead to the string of Compton relations

r∗m∗ c = rc mc = e2
∗/c , (6)

where rc is the Compton radius of any of the elementary par-
ticles, m is the particle mass, and r∗ and m∗ are the Compton
radius and mass of the individual Planck particles making up
the negative-energy PV state.

The Compton relations (6) yield the free-space permittiv-
ities [2]

ε =
1
µ

=
e2
∗

r∗m∗ c2 = 1 , (7)

while the static electric force between two charges e becomes

Fel =
e2

r2 = α
e2
∗

r2 (8)

showing the fine structure constant α to be closely related to
the PV polarizability.

The Heisenberg uncertainty relations

∆p · ∆q >
~

2
=

e2
∗/c
2

(9)

where p and q correspond to any two canonically conjugate
operators, remain a wave-particle-duality mystery in the cur-
rent paradigm. The PV theory explains these relations in the
following manner: the so-called free particle interacts con-
tinually with the invisible PV continuum; as this continuum,
like any continuum, can support wavelike disturbances, the
reaction of the PV to the particle perturbations produces a
wavelike reaction in the particle; then (9), which is currently
ascribed to the particle, is actually a straightforward mathe-
matical property of the perturbed continuum [3, p.105].

The gravitational equations of Newton and Einstein trans-
form from the current paradigm to the new paradigm in the
following way [5]:

Fgr = −mMG
r2 =

(−mc2/r)(−Mc2/r)
−m∗c2/r∗

(10)

and

Gµν =
8πG
c4 Tµν → Gµν/6

1/r2∗
=

Tµν
ρ∗c2 , (11)
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where c4/G (= m∗c2/r∗) and 1/r2
∗ are the ultimate curvature

force and Gaussian curvature sustainable by the PV, and ρ∗
(= m∗/(4πr3

∗/3)) is the Planck-particle mass density of the PV.
Finally, the quantum vacuum consists of an electromag-

netic (photon) component and a massive-particle (kc = 1/rc)
component [4]. The energy densities of the two transform as

c~
2π2

∫
k3dk → 1

8
e2
∗/r∗
r3∗

(12)

and
c~
4π2

∫
k2

(
k2

c + k2
)1/2

dk → 1
16

e2
∗/r∗
r3∗

(13)

from the current to the new paradigm respectively.
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As geometry is constructed from points and their separating distances, physics may
be similarly constructed using identical material points and their separating distances
with the additional requirement that all points have infinitesimal masses and move all
the time at the speed of light. Pairs of such points can get locked together in circles
to make doublet particles that can have any speed from zero to that of light, at which
point the doublet disintegrates. Using this construct together with the rich mathematical
properties of a 3D space, a mechanical definition of time, and simple symmetry rule for
displacement, it is possible to derive many of the fundamental laws of physics such
as the inverse square laws of gravitation and static electricity, many of the relativistic
and quantum mechanical results such as the mass-energy conversion of Einstein and
the quantized energy levels of Planck and Bohr. In addition, a better understanding of
some illusive terms like inertia and force becomes possible. No arbitrary constants are
needed in the process. Extra dimensions (variables that are not a distance) are created
as a result of this setup — but they are all found to be discrete. Mass, charge, spin, and
time are some notable examples.

1 Introduction

We use common ideas, simple constructs and simple mathe-
matics to shed light on the origin of the grand laws of physics
that have hitherto remained untied together. That this is pos-
sible was a big astonishment to the author having spent years
of search to achieve the same using fields and waves ex-
cluding discrete masses. We first postulate the existence of
a 3D Euclidian space containing a large number of material
points (point masses). The distance between the points is to
be a continuous function, which goes well with our intuition,
as we never observed material objects jump without passing
through all joining points in between. We then realize that this
postulate endows the space with an enormously rich struc-
ture [1] due to the fact that the distance becomes analytic and
infinitely differentiable. The masses must be infinitesimal in
order to move continuously at the speed of light without vio-
lating Einstein’s and other results in this regard. We are tac-
itly assuming that no space can be defined without material
points. As to what is a material point is left undefined.

Material points can acquire other properties like electric
charge etc which we will come to meet later. When the
separating distance between two material points of suitable
attributes is small, they trap each other to make a doublet
particle. This combined structure can have any speed —
from zero to that of light, in which case it disintegrates into
two point particles. Bound states of equal masses do exist in
physics as in the case of the exotic particle “positronium” [2].
The normal mass of a material body, composed of a large
number of such doublet particles, is simply the total number
of doublets and hence it is discrete. We note that an immedi-
ate benefit of this setup is a simple mechanism for converting

mass into energy and visa versa if we associate energy flux
with point particle flux. In fact it amounts to an ultimate
unification of the of mass and energy concepts. We also note
that a space with continuously moving material points may
be an alternative and fairly convincing way of interpreting
Einstein’s space time continuum ideas. This becomes even
more apparent as we arrive at the same relativistic results
using the simple doublet structure.

To reach to the more fundamental laws of physics, we
shall put a simple mechanical definition for time and a sym-
metry rule that governs the displacement of point particles
(and doublets as a result) in space. We shall consider such
grand ideas with the simplicity they deserve, as Einstein have
suggested in more than one occasion — what is needed is
simple physical interpretations rather than complicated math-
ematical descriptions [3]. The transformation between point
and doublet particles may be looked at as a process of equi-
librium or a continuous forward and backward transformation
— an evaporation condensation process if you like, and one
that can be observed on larger and larger scales in nature. The
trapping and escape of photons in matter(radiation), of elec-
trons out and into the nucleus of different materials, of whole
molecules from the surfaces of any liquid and the trapping
and escape of large masses in volcano eruptions on planets
and stars are few such examples.

Doublet particles are to be taken to represent the simplest
form of condensed matter, whereas singlet particles are to
represent energy flux. Singlet particles may also combine
(along their flight path) in any number and remain as different
energy fluxes as long as they do not take the form of circularly
bound doublets. Doublets can also come together(condense)
and combine to form massive particles. In [4] the doublet
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structure is examined further and it is shown that the geo-
metrical rules for the combination(packing) of doublets seem
to fit well measured values of different forms of condensed
matter.

2 Theory

2.1 Space and Time

Intuitively, it is not possible to define space when it is de-
void of matter [6,7]. Our starting point therefore is to assume
the existence of material points with infinitesimal masses that
move all the time at the characteristic speed of the space —
the speed of light c. The numerical value of c = 2.99×108

comes from our arbitrary choice for the units of distance and
of time. A 3D Euclidean space may(at one instance) be struc-
tured out of all such material points and the distances that
separate them. This space is continuous to go with our in-
tuition — that is to say when material points move, they do
not jump, but pass by all the joining points along the path of
motion as given earlier.

We then note that time itself can not be defined in a space
devoid of motion. Just imagine one is at night in a desert with
nothing moving — no moon, no stars and not even a heart
beat. In this setup there is no way to see time flowing. So we
are led to say that time must be connected with the motion of
material points. To get a sense of time we need an observer
point and a moving point, since if we move along a straight
line without being able to observe anything else moving, we
will not be able to see time flowing either. The problem now
is that any observation over a distance must rely on light prop-
agation and will introduce the well known complication of a
finite value of c.

A simple case however, where this is not a problem is the
case of two material points moving on a circle in a doublet
formation and the observer point is sitting on the path of this
doublet. We can then define time as the number of visits of
the doublet members. This number has all the characteristics
of time since it is an ever increasing variable (pointing in one
direction- hence the arrow of time expression) and it is sym-
metric in the sense that the zero of count (zero of time) can
be placed anywhere. It is, however, discrete according to this
picture. It is also an independent variable in the sense that it
can have any integral value for any value of the other three
spatial coordinates. This is well in tune with our intuition
of the variable “time”, as we always rely in our time mea-
surements on some sort of oscillation and count the number
of such oscillations to measure time. If light can be sent to
come back in a straight line to a distant point, the distance
to that point can be judged from the knowledge of the period
taken as given by the number of rotations(visits) of our local
doublet members and the assumption that the characteristic
speed c is constant all the time. Time can thus be looked at as
a measure of the distance travelled by any material object to
the distance travelled by a material point as given by the cir-

cumference and the number of rotations of our local doublet.
A mathematical fact is that if a particle in an isolated sys-

tem follows one path exactly more than once, it will continue
to do so for ever. We can convince ourselves with this if we
remembered that the number of points along an even a dif-
ferential line segment of such path is more than enough to
fix any number of constants in the solution of the differential
equation of motion — thus ensuring that the path is fixed and
unchanged in subsequent visits. This conclusion is possible
only if the line of motion is continuous and analytic (infinitely
differentiable) which is the reason for our original assump-
tion. The emergence of such eternal stability can prove useful
in explaining the eternal stability of some of the elementary
particles like the photon and the electron when in isolation.

We also note that the rich mathematical properties of the
path of motion in space lead to new variables or dimensions
that are independent of the original three spatial dimensions.
Any extra dimension derivable this way appears to be not a
distance and only discrete however. We notice also that the
creation of such extra variables comes out of a process of a
closure or folding in the path of motion and turning it into
a multi-valued variable in which every point is described not
only by its three space coordinates, but also by other numbers
derived from the multiplicity at that space point. We mention
angle measurement as one more example of such multiplicity.

Since the velocity of a moving point is a mathematical
derivative with respect to time, and as time is represented by
a number, we conclude that the process of determining the
velocity and acceleration, (or the process of going from static
to kinematic and dynamic), is a process of comparison (ra-
tio) of the motion of a larger system with that of a simpler
and standard one like a doublet. In other words, the motion
of the simple doublet is effectively being used as a yardstick
to gauge the velocity and acceleration of more complicated
systems. This definition of time breaks down of course for
periods that are smaller than one unit of measurement (deter-
mined by the smallest possible doublet) whatever that may be.
Since time is discrete, velocity, acceleration, force, momen-
tum and any similarly related variable are all discrete. This
will later lead to the Heisenberg uncertainty principle.

2.2 Laws of motion — action and reaction

We put here a simple rule for the displacement of material
points that goes with the state of natural symmetry possessed
by two material points (in isolation) in the form; “The dis-
placement of any material point must be accompanied by the
displacement of another point by the same amount in an op-
posite direction”. For two isolated points it might be argued
that it does not matter if one point made the entire move and
the other stays a foot, as the outcome would be the same. This
is clearly not the case, since in reality we will have many more
points and our rule should apply to every pair of them.

Since mass is composed of many material points of the
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same value, and motion is to be discrete, the displacement of
ten points one distance can be compensated for by the dis-
placement of one point ten times that distance in the opposite
direction, and our equivalent statement of action and reaction
becomes; “The sum of mass times displacement is zero at any
point and along any direction”. In other words, the center of
mass of an isolated system of points never moves. We can
also see that as time is now just a number, differentiation of
the displacement with respect to time gives; “The sum of mass
times velocity (linear momentum) is zero at any point and
along any direction”, and differentiating again gives; “The
sum of mass times acceleration (force) is zero at any point
and along any direction”. Thus we see that it is possible to
recover both the second and third Laws of motion of New-
ton from a simple rule of displacement. We take this to be a
strong support of the correctness of this postulate as a rule of
displacement.

Our rule of displacement, which we shall call the “bal-
anced displacement” (BD) rule, may be considered as the
equivalent of Newton’s first law of motion since it tells that
points can not change their state of motion independently. . .
if a material point moves, another must also move by the same
amount and in the opposite direction, and things can then stay
like this forever as long as the BD rule is true. The BD rule
also provides a neat explanation of the source of inertia of
massive bodies. It is simply a balanced displacement require-
ment. As if the world is sitting on a knife edge and moving
anything must be done symmetrically to keep the balance .

Displacement can be resolved into three directions, the
first along the separation distance between two moving points
plus two components normal to this direction. The two nor-
mal components combine to define the spin direction of the
doublet. The doublet particle can have left or right hand spin
property. Such spin, once initiated, will continue unchanged
since the BD rule works correctly all the time– that is until an
interaction occurs with another group of points.

The displacement along a radial line separating two mov-
ing points can have two directions; to the inward and to the
outward directions. This produces the attraction and repul-
sion type effects. The probability for material points to take
any one of six possible motions along three perpendicular di-
rections is presumably equal, this provides a plausible reason
for the existence of antiparticles, and the fact that antiparti-
cles can be anti in all their attributes and have the same mass.
Thus we have by now two types of coupling constants and
two different spins — all new variables and all discrete, since
they can only take the values (+/− a constant) representing
each of the two opposing directions. Larger values of charge,
spin etc must now be in multiples of this constant value.

An interesting conclusion of all this is that the sum of
displacements of all material points in the universe is zero at
any time and hence the center of mass in the universe never
moves. It is also not hard to see that as a result of the BD rule
being applicable to every two points separated by a distance,

there is a universal entanglement situation of every single
point mass in the universe. If we now imagine doing a back
play of all the events of displacements that has occurred since
the start of time, we may reach the original point start(the big
bang point!). The clear impossibility of such undoing, should
tell us that it is impossible to go back in time. We could also
say here that time must have started with the first motion and
will only stop when everything else stops moving.

As pointed above, the BD rule can give us a neat expla-
nation of inertia which some believed it to be a property of
matter and others to be due to the effect of distant masses (the
Mach principle). In the present setup we see that it is a result
of the symmetry of displacement — i.e. a property of space
and matter together with distant and near masses all involved.
One interesting example to make the picture clear is the case
of the rotation of a thin disc in isolation. Every two diamet-
rically opposed points of the disc follow happily the BD rule
and, as such, constitute a self contended system that will, if
not disturbed, remain as it is for ever. If we move the disc
along the axis of rotation, we must create a movement of other
masses equivalent to that of the disc in the opposite direction
— as in propelling it with the gases of a rocket for example.
The rotational motion of the disc remains unaffected in this
case. If we now try to move the disk on a curved path, we
need to provide an equivalent opposite motion to the curving
and rotating material points of the disc in its new complex
motion, and it is this that shows as the gyroscopic effect.

2.3 The inverse square laws

The interaction between two isolated material points can only
be a function of the separation distance — because of isola-
tion. Such interaction, as a result, becomes homogenous in
the coordinates — that is to say there can be no preference of
one coordinate to the other. For such cases we quote few lines
from [8] “. . . the multiplication of a Lagrangian by a constant
does not effect the equation of motion. This fact makes it
possible, in a number of important cases, some useful infer-
ences concerning the properties of the motion without the ne-
cessity of actually integrating the equation of motion. Such
cases include those where the potential energy is a homoge-
nous function of the coordinates, i.e. satisfying the condition
U(ar1, ar2, . . . , arn) = akU(r1, r2, . . . rn), where a is a scaling
constant, k is the order of the potential function and n is the
number of coordinates”. This then lead the reference to the
following conclusion “If the potential energy of the system is
a homogenous function of degree k in the (Cartesian) coor-
dinates, the equation of motion permits a series of geometri-
cally similar paths and the times of the motion between cor-
responding points are in the ratio t′/t = (l ′/l)1−k/2, where l ′/l
is the ratio of the linear dimensions of the two paths”. To
follow our notations, put r for l ′, t′ for t to get r = Kt2/(2−k),
where K = l ′/(t′)2/3 is a coupling constant and is made up of
the values of the radius and the time of one rotation “of a
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standard doublet in our case” and r is the separation distance
between the two points.

There are only two values for k [8] that result in a bound
motion. These are k = (−1, 2). The first gives r = Kt2/3 and
the second leads to a spring type force or what is known as
a “space oscillator”. The space oscillator case can be shown
to be not a new case and occurs in a field of inverse square
when the displacement is small, the region is small with a
large number of interacting particles [8]. The first case (the
two third power formula) is one form of the famous Kepler
third law of motion and if differentiated twice gives the in-
verse square law d2r/dt2 = (−2/9)K/r2 in confirmation of our
starting assumption. In [5] this form of the inverse square law
(involving time only) was used to predict the motion of many
point particles with a notable gain on computing time. The
quantity (−2/9)K is the coupling constant of the interaction
which takes the value of the universal gravitational constant
Kg = (−2/9)K = G for gravity forces or the Coulomb coupling
constant Ke = 1/4πε0 for electrostatic forces. The value of G
is therefore calculable(in principle) from the dimensions of
the doublet used in the dynamic scaling of the problem —
when this is known.

The values of the coupling constant for the gravitation and
electrostatic forces come from our arbitrary definitions of the
units of mass and charge. By now we had four constants;
the speed of light c, the Planck’s constant h, the gravitational
constant G and the permittivity of free space ε0 . Our arbitrary
physical units from which these are derived are the meter, the
second, the kilogram and the Coulomb.

When we have more than two material points, vector su-
perposition of forces, velocities and displacements must be
used, with the force (= acceleration since we have equal
mass) for each pair calculated separately then added for the
lot. For N material points, there are N − 1 interacting pairs
of points as we exclude the interaction of a point with itself.
If N is large, N − 1 can be replaced with N. For the case
of a large collection of points that are effectively sitting at
the same point, the center of mass of any such body obeys
the same rules of motion given above, since mathematically
the two are equivalent. The final interaction force is a resul-
tant of the interaction of all pairs in each collection and will
thus be a multiple of the total number of interacting pairs, or
equivalently by the product of the masses of any two interact-
ing groups having the same center of mass. This reproduces
Newton’s law for gravitational interaction and the Coulomb
charge interaction and the product of the two masses/charges
will appear in the coupling constant.

2.4 The size of a doublet

Take the case of pairs of points with an attractive force locked
in doublets to form particles. These doublets will have fixed
masses(by assumption) and also fixed spin velocity since the
tangential speed of all the material points making a doublet

is fixed at c at all times. It has a fixed radius also since the
speed of the constituents are fixed and the coupling constant is
also fixed. This creates a particle with fixed and well defined
properties. Since the product of the mass of two point masses
2δm, the speed v, and the radius of the doublet r is given
by; 2δmcr = δmcd, where d = 2r; has the units of energy and
time (or that of angular momentum) and is the same as that of
the Planck’s constant, we conclude that a limit must be placed
on the smallest allowable doublet, giving δmd = ~/c, where ~
is the reduced Planck constant. This also suggests that (δmd)
is a new fundamental physical unit involving mass and dis-
tance combined together (= 3.5177×10−43 kg m). The numer-
ical value of this constant (or equivalently of the Planck’s con-
stant) comes from our arbitrary choice for the unit of mass in
addition to that of distance and time used earlier. The quan-
tity (δmcd = ~) is the angular momentum and also the spin of
our doublet particle and it is the unit of measurement of spin.
As we have now a lower bound on spin, the orbital momen-
tum of any one or more particles can only be a multiple of
this value ~.

3 Further results

3.1 Heisenberg uncertainty

Since δmvd = ~ can be rewritten as pd = ~, where p = δmv
is momentum for one material point, we get (putting ∆x for
d) the uncertainty principle of Heisenberg usually written as
∆p∆x = ~. Accordingly, the uncertainty principle refers to the
smallest possible angular momentum in nature. As material
points always move at c and must have some effective size,
it is only natural that there is a minimum radius for the cir-
cle of rotation of a doublet. For larger masses, ∆x is smaller
according to this principle. This need not cause any contra-
diction. It can be taken in this setup to represent the region
inside which the center of mass of all doublets is likely to be
located. It becomes smaller as the mass increases, very much
like the uncertainty (scatter) in the average of a large number
of collected data growing smaller and smaller as the number
of data points is larger. Interestingly when this is extended to
take the mass of the entire universe, it becomes equivalent to
saying that the center of mass of the universe is firmly fixed
at a point.

3.2 Einstein mass and energy conversion

As all points making a doublet particle move at the speed of
light, the kinetic energy in any doublet must be a function of
c2 and accordingly we can write E = mc2, with m defined as
the number of doublets in any larger particle. As we have
two point masses in any doublet particle, the more general
formula E = 0.5mv2 for kinetic energy is still valid if applied
to a single point constituent of a doublet.
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3.3 Planck’s energy of radiation

For points moving with a speed c around a circle or escap-
ing out of it, we have c =ωr, and mvr = mc(c/ω) = h/2π us-
ing the results above. Using ω= 2π f , we have f h = mc2 or
E = h f . This is Planck relation for the energy of radiation of
frequency f . Also if we put p = mc, we get E = cp for points
moving at c. This is the momentum-energy relation for a par-
ticle with infinitesimal mass (zero mass in the literature).

3.4 Einstein’s relativistic mass

Since points forming a doublet can have two motions — one
along a circle with velocity c and one along the center line
with velocity v (less than c), the ratio of the kinetic energy
of the doublet particle to its total energy must be like (v/c)2,
i.e. Ek/E = (v/c)2 since both quantities refer to the same set
of masses. Also, as we had E = mc2, we get E2

k = E2(v2/c2) =

= (E2/c2)v2 = p2c2, which then gives the relation for the total
energy as E2 = E2

0 + c2 p2. This is the well known relativistic
formula for the total energy of a particle in terms of its rest
energy and kinetic energy. Here it is derived using the simple
doublet structure alone.

3.5 Bohr’s energy levels

For a group containing n doublet particles bound together, the
single doublet formula given above in the form; mvd = ~ be-
comes mnvd = n~ giving the well known Bohr formula for the
spin of bound electrons. This formula, despite its success in
being very close to experiment, has been criticized as not be-
ing based on a model. The doublet model as explained above
can be given in support of this very useful, simple and ex-
perimentally correct formula. The Bohr formula is normally
combined with the centrifugal force expression Fc = mv2/r
and static electric force Fe = e2/4πε0r2 [9] to derive another
expression for the energy levels in an atom (and other bound
structures) in the form rb = (n2/Z)(4πε0h2/mee2), where Z is
the total charge of an atom and n is an integer multiple of the
spin of the atom. For a single charge atom like hydrogen and
lowest spin level corresponding to n = 1, we get the Bohr ra-
dius r = rb = ε0h2/πmee2 = 5.2917×10−11 m. This formula has
been declared wrong, in some of the literature, because it pre-
dicts the spin squared as n2~2 rather n (n−1)~2 as predicted by
the wave function theory of quantum mechanics (which has a
better agreement with experiment). In the author opinion this
is an unfair conclusion, since in any n discrete interactions, a
particle does not interact with itself(as given above), leaving
only n(n − 1) interactions that should replace the n2 term in
the Bohr formula and bring it inline with the corresponding
quantum formula.

When a group of doublets form a larger structure, the vol-
ume of the new structure will intuitively depend on the num-
ber of doublets if these happen to occupy different volumes
and not share the same center of rotation. This fits well with
the observations about the nucleus of any atom being a func-

tion of the number of the nucleons only. The application of
this fact lead to the one third power law for the radius of an
atom R in terms of the atomic number A [9] giving R = r0 A1/3;
where r0 = 1.4×10−15 m is an experimental constant. For the
nucleus of hydrogen A = 1 and r0 becomes the diameter of a
proton. We shall compare this value with that of the electron
as calculated in the next section.

3.6 The fine structure constant

When the gravitational and magnetic forces are small, the
electrical Coulomb forces Fe = e2/4πε0r2 for electrons are
nearly equal to the centrifugal forces Fc = mev

2/r. In the case
v= c; re = e2/4πε0mec2 = 2.817×10−15, giving the classic ra-
dius of the electron. This formula is normally derived in the
literature (see [10]) from the potential distribution around the
electron due to its charge using energy conservation. The
present derivation relies on the doublet model alone. In a
doublet however, we have two material points (two masses)
contributing to the force which seems to suggest a different
value for re, giving re = 1.4010×10−15 instead. This is prob-
ably more plausible as an electron radius, and it is to one’s
surprise, exactly the same as that for the proton as we found
from the hydrogen nucleus in the previous paragraph. If this
is correct, it indicates a similarity in the packing in both the
electron and the proton despite the large difference in mass.
One possible explanation is that this is the result of many dou-
blets occupying the same volume and sharing the same center
of rotation — increasing the energy content but not the size.
Experimentally, the electron has, so far, behaved as a point
charge with no internal details apparent. The proton on the
other do have an internal structure.

If in the expressions for the centrifugal and static forces
above, the velocity v is less than c, we could calculate v us-
ing mvd = ~ and obtain; v2 = e2/2ε0h, and v/c = e2/2ε0hc =

= 1/137.036. This is the fine structure constant and it now
points to the relative velocity of the electron in an orbit to
that of light (or that of the material points in a doublet), and
can therefore be looked at as a form of a packing factor. If
the expression for the doublet radius is divided by the radius
of the electron using mvdc = ~; we get de/dc = e2/4πε0~c =

= 1/137.036, giving the “fine structure constant” again —
now it is a clear packing factor. The quantity dc is the Comp-
ton wavelength of the electron. The ratio of the Compton
diameter dc and the Bohr diameter db as found above gives
dc/db = e2/2ε0hc, that is the fine structure constant again —
now representing the next level of particle packing. All these
are well known results, but now we have a clearer reasoning
for their existence– using expressions derived from the struc-
ture of the doublet alone.

3.7 Planck’s length scale

The Coulomb force between two point charges is given by
Fe = q2/4πε0r2; and the magnetic force between two moving
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point charges is given by Ampere’s law Fm = µ0 q2v2/4πr2.
This can be modified using the identity c2 = 1/ε0µ0 to give
Fm = (q2/4πε0r2)(v/c)2. Thus if v= c the electric and mag-
netic forces between two point charges are equal regardless of
the value of the separation distance r or charge q, since they
cancel out. This is very interesting because it allows the pack-
ing of doublets without having to overcome the huge electro-
static repulsion forces. This is an asymptotic freedom type
condition. Such equality is normally broken as the particles
go to form a doublet and the electric forces between different
doublets become much stronger than the magnetic forces be-
tween them, since the speed of the center of a particle doublet
is small and the magnetic forces between two doublets, be-
coming small compared to the electrostatic forces. The situa-
tion changes again for a very large collection of moving dou-
blets wherein the magnetic forces become important again
because of the shear number of participants (when correctly
oriented) rather than the result of very high velocity. We ob-
serve this in our daily usage of the magnetic force wherein
currents are the result of the orderly movement of a very large
number of particles.We note here that Ampere’s law is also
derivable from the inverse square law when the charges are in
motion.

When the electric and the magnetic forces are balanced
at the velocity limit c, only gravity and centrifugal forces are
left in play. Gravity force is given by Fg = Gm2/r2 and cen-
trifugal forces by Fc = mv2/r; equating the two and taking
into account the Planck formula mvr = ~ with v= c, we ob-
tain rp =

√
G~/c3 = 1.616×10−35 m. This is the Planck length

scale and it gives the smallest possible dimension of any dou-
blet structure. When the separation distance increases beyond
this length, the equality changes and the centrifugal force be-
comes more dominant over gravity as in normal interactions.
For large astronomical masses the picture changes again and
gravity becomes strong and dominant because of the shear
number of participating particles.

3.8 Spin and space quantization

In the presence of more than one doublet contained inside a
larger particle, it is not unreasonable to think that space and
size limitations allow the compaction of only a limited inte-
gral number of doublets. This leads to an angle quantization,
if doublets shared the same spherical space and to volume
quantization if doublets are in separate spheres. Angle quan-
tization leads to the well known quantization of angular mo-
mentum and volume quantization gives the nucleus a size that
is dependent only on the number of nucleons [9].

4 Final remarks

We have started with identical material points together with
the continuous distances separating them and formed a 3D
Euclidean space for any point in time. We have assumed that
all material points have infinitesimal masses and move all the

time at the characteristic speed of space and that of light c.
The value of c comes from our arbitrary choice of the ratio
of the units of mass and time. We formed doublet particles
that have a (center of mass) speed from zero to that of light
from every two point particles of suitable attributes. This sim-
ple construct produced a simple mechanism for the transfor-
mation between mass and energy and when further analyzed,
produced the correct relativistic energy and quantum mechan-
ical relations too.

Extra dimensions — all discrete are derived from the
properties of the 3D space and the differentiable distances ex-
isting between any two material points in it — using the fact
that through a single point in space one can have multiple
paths of motion. The dimension of time is found to corre-
spond to one such multiplicity– the number of rotations of a
standard doublet counted at any one space point.

Velocity, acceleration, force, momentum and any variable
dependent on time are found to be discrete as a result of the
discreteness of time. This naturally lead to the Heisenberg
uncertainty principle and the discrete energy and some other
ideas associated with quantum mechanics. The need for dis-
crete description of some of the basic variables of physics can
be traced as far back as the Greek philosopher Zeno, who put
paradoxes that threatened the rational basis of science till very
recently. These were only recently resolved using arguments
from calculus in which infinitesimal quantities can integrate
to finite quantities in a limiting process. Making time discrete
is another neat way to clear Zeno’s paradoxes.

The process of timing is found to represent a gauging pro-
cess of the dynamics of larger systems by those of a simpler
system like a doublet. The dimensions of spin etc are cre-
ated in connection with movements in the directions normal
to the line joining any two material points. The inverse square
laws are only the result of similarity in the motion of different
size systems. The coupling constants in the two opposite di-
rections along the line joining two material points can be ±1
for repulsion and attraction. To work with individual charges,
rather than the resultant outcome, is the square root of this
giving;

√−1 = ± i, to produce the desired effect of repulsion
for similar charges and attraction for different charges, and√

1 = 1 to represent attraction only in the case of gravitational
forces — since we do not have negative masses in nature as
far as we know. Again if we are only concerned with the com-
bined effect of two charges or two masses, then we only need
to consider the real quantities ±1 for the coupling constant for
the gravitational and electrostatic forces.

Only four different forces are needed in the present setup.
Two of the forces, the magnetic force and the centrifugal force
result from the motion of the sources of the other two — that
is masses and charges. The last two types of forces disappear
at zero velocity. As we have identical point masses, the word
“force” becomes not essential and can be replaced with just
“acceleration”. The mathematical ideas of superposition and
center of mass are very useful and should be used for all vec-
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tor quantities. Four numerical constants appear in the present
formulation. At the same time, we have four arbitrary units
to fix. Therefore we could assume that the two make two
equivalent sets of values or figures.

A transformation from a singlet particle to doublet parti-
cle was taken to occur when two material points are locked in
a circular motion to form a doublet. In the absence of exter-
nal factors, this system is self preserving and eternal, since the
two rotating points observe the rule of balanced displacement
BD all the time and the linear speed is fixed at that of light
all time by assumption. Further the coupling constant is fixed
and this fixes the radius of the doublet. This made one doublet
exactly similar to any other doublet in size, mass, magnitude
of spin, but may differ in the other attributes like the sign of
spin, sign of charge etc. This allows for creating antiparticles
that are identical in mass, but have anti other attributes. The
rule of motion in the form of balanced displacement BD is a
generator of the three laws of motion of Newton as it leads
directly by differentiation to the conservation of momentum
and to the usual action reaction for forces. As the measure of
time is discrete, all the quantities connected to time are dis-
crete leading naturally to the Heisenberg uncertainty principle
and Planck’s discrete energy quanta.

The method of using fields rather than particles is not es-
sentially different. Water is composed of particles, but it is
describable in terms of a continuous field of pressure. Also
a large number of particles with suitable coupling constants
can be described using waves, and a group of waves can be-
come concentrated to resemble a particle(the soliton). Parti-
cles however, constitute the simples and more natural model
for construction of matter. The phenomenon of interference
and others have been sighted in the past as arguments against
the particle picture. The Newton’s corpuscular theory of light,
for example, was rejected by simply asking where the corpus-
cles go at points of zero amplitude in the interference pattern
(the dark spots in the interference pattern). These and other
objections, have long been shown to be false since interfer-
ences happen only at the surfaces of matter and the energy or
photons or corpuscles are readily absorbed by matter itself —
very much like hitting a body with two bullets from two op-
posite directions produces no apparent kinetic energy — it is
simply transferred to the molecules in each of the two bodies.

Another problem of interest is that when all particles at
sight are connected via deterministic laws, as in the present
case, one may suspect the disappearance of the free will con-
cept. It is a fact that at this moment I can stop writing this
article if I wanted to. How a decision like this can be made
if the destiny is decided by the fact that all material points
in the world are entangled together by the balanced displace-
ment rule and the motion of any material point as a result is
decided by the fate of every other one. The author believes
this problem is closely related to an earlier situation we met
above, wherein material points can “decide” whether to have
a left handed or right handed spin or some of the other op-

posing attributes. At the point of branching or multiplicity of
choices of paths that are equally likely, it takes nearly “zero”
energy to change ones mind, and this could be why we feel
free to take decisions at a moment where more than one ac-
tion route is possible. In other words, our free will decisions
are mainly done on branching and cross roads situations.

Reference [4], considers further the idea of a doublet par-
ticle and the geometry of aggregate of doublets, and show that
it is possible to use such building blocks to make more com-
plicated pieces of condensed matter and that there is good
evidence that the masses of the elements in the periodic ta-
ble and those of the elementary particles of physics are well
correlated with assumptions given for simple doublets.

The Pauli Exclusion Principle, which is a corner stones of
modern physics, has not been considered here. This principle
is also derivable from the geometry of space and symmetry.
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Some major problems of physics, which remained unsolved within classical and rel-
ativistic gravitation theories, are explained adopting the quantum gravity interaction
descending from the micro-quanta paradigm. The energy source of the gravitational
power Pgr, which heats and contracts the Bok’s gas globules harbouring the future stars,
is identified and defined as well as the gravitational power generated on the solid/fluid
planets. Calculations are carried out to make the comparison between Pgr predicted for
the solar giant planets and the measured infrared radiation power Pint coming from the
interior. The case of planets with solid crust (Earth, etc.) requires a particular attention
due to the threat to stability produced by the thermal dilatation. An analysis is done
of the Earth’s planetary equilibrium which may be attained eliminating the temperature
rise through the migration of hot internal magma across the crust fractured by earth-
quakes. The temperatures observed up to 420,000 years ago in Antartica through Vostok
and Epica ice cores suggest the possibility that the Earth gravitational power Pgr may be
radiated in space through these temperature cycles (Glacial Eras). In this general frame
the Earth’s high seismicity and the dynamics of Plate tectonics may find their origin.

1 Introduction

A preceding paper showed that some fundamental forces, i.e.
the Gravitational, the relativistic Inertial forces and the Strong
force between nucleons and other particles, have the com-
mon origin from the interaction of particles with the uniform
flux of micro-quanta [1]. The paradigm is characterised by
a very high flux of very small quanta (wavelength equal to
the Planck’s lengh) which collide with particles determining
their motion according to the Relativistic Mechanics. Micro-
quanta easily penetrate any large mass, generating the Grav-
itational and the Strong forces on each particle. Travelling
with the speed of light, these quanta explain why all princi-
pal interactions travel with this velocity. For these reasons
the micro-quanta paradigm represents the underlying real-
ity which supports Special Relativity, a fundameental the-
ory which comes out reinforced by this physical paradigm.
The supposed frailty of SR was denounced through several
scratching paradoxes, such as the twins paradox, etc. Now the
uncertainty on the inertial frames vanishes because the par-
ticle kinetic energy depends on the physical collisions with
the micro-quanta flux. Some new results has been already
analised [1], for instance the congruence of the Strong force
between nucleons (an explicit expression is given for the first
time) with the dynamical structure of the Deuterium nucleus.
Here we try to explain some gravitational problems which
did not find solution in the frame of the classical and the GR
gravitation theories.

2 The quantum gravitational pushing force. Some fun-
damental concepts

In the last decades some quantum gravitational theories have
been proposed, but they found difficulties. All these theo-

ries assume, like classical gravitation and General Relativity,
that the gravitational mass is the source of the gravitational
force, directly or indirectly through the space curvature. The
present theory assumes that two masses are not attracted, but
are pushed towards each other by the gravitational force, be-
cause the interaction between two particles is due to collisions
with the micro-quanta flux φ0. The cross section σi = A0mi

of any particle is proportional to its inertial mass mi through
the fundamental constant [1] A0 ≈ 4.7×10−11 (units SI system).
This simple origin of the most general characteristic of parti-
cles (i.e. the mass) depends on the fact that cross sections
are the measure of the particle interaction with the micro-
quanta flux filling the Universe. For the sake of simplicity
we consider in the following only nucleons since they rep-
resent in practice the total mass of any gravitational body.
Let’s summarise some fundamental concepts. Particles are
made of electromagnetic energy supporting a spherical sym-
metric field which scatters the incident quanta. Due to the
very little Compton ratio K0 ≈ E0/mc2 = 3.93×10−51 between
quantum and nucleon rest energy, the colliding quanta fol-
low the optical reflection law. This fact prevents between a
pair of particles the beam of quanta directed along the join-
ing line and delimited by the small fractional cross section
∆σ= K0σ(σ/2πr2) centered on each particle. Due to the lack
of the quantum beam ψ(r) = ∆σφ0, each particle feels a force
due to an equal beam ψ(r) colliding on the diametrically op-
posite ∆σ. Since each recoiling quantum leaves the momen-
tum 2E0/c, the beam ψ(r) gives rise to the radial pushing
force

f (r) =
2E0

c
ψ(r) =

2E0

c
K0σφ0

σ

2πr2 , (1)

where E0 � 5.9×10−61 is the quantum of energy and σ �
7.85×10−38 is the nucleon cross section. This equation must
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be compared with the inertial model of particles [1]

mc2 = σφ0E0τ0 (2)

where τ0 = 2λ0/c is the simultaneous collision time of the
micro-quanta, whose wavelength derived from Eq. (2)

λ0 = c3/2A0φ0E0 ≈ 4×10−35 (3)

results very close to the Planck’s length. In the time τ0 a
nucleon scatters a high number of quanta

σφ0τ0 = 1/K0 � 2.54×1050 (4)

which press uni f ormly any f ree particle, without changing
its state of motion or rest (Principle of Inertia). The force
f (r) which pushes the particles towards each other is just the
experienced gravitational force. This may be described rear-
ranging Eq. (1) and imposing that the term in brackets equals
the gravitational constant G

f (r) =
E0 K0φ0 A2

0

πc
m2

r2 =
Gm2

r2 . (5)

The rihgt side is the newtonian law, but now G cannot in
principle be considered constant and uniform throughout the
Universe, although within the solar system it is. The newto-
nian law gives a simple notation of the pushing gravitational
force.

It is largely believed that the newtonian gravitation sup-
ports the paradigm of the gravitational mass. Let’s put a
question : Who defined this paradigm? In his famous words
“Ipotheses non fingo” Newton did not make assumptions on
the mechanism of interaction. Many years ago I was im-
pressed by the fact that Newton never declared that masses
generate the force drawing them. He said that massive bod-
ies show between them an “action at a distance” requiring that
the mutual forces are aligned. This feature has been verified
by the astronomers of the XIX century.

For some centuries the physicists found natural that the
mass of bodies was the source of the gravitational force mea-
sured between them, as the experience about the new elec-
trical phenomena taught us. However it has been recognised
that the concept of mass as a field source is inappropriate,
since it does not produce the “action at a distance”condition.
Let’s notice that this condition is satisfied by the gravitational
pushing force.

The history of science taught us that when in the long
run physics stagnates, then some old paradigm obstructs the
development. In 1939 some difficulties were recognised with
the GR theory. For instance it was found that stars of adequate
mass undergo an unlimited gravitational collapse. The final
product of this collapse was named “black hole”, but this con-
cept soon appeared unphysical. To be short, the enourmous
stellar body vanishes but the great gravitational field remains.
Contrary to the common conviction, the unlimited gravita-
tional collapse is not linked to the GR theory, which is a rig-
orous logical construction excepting one point: the arbitrary

incorporation in the theory of the (not necessarily universal)
gravitational constant introducing the empirical gravitational
force between the masses.

The unlimited collapse depends in fact on the gravita-
tional mass paradigm, which arbitrarily considers the grav-
itational force as a property of the mass. Recent theoretical
studies within the GR mathematical frame [2] esclude the ex-
istence of black holes, never really observed. This comes in
favour of the new class of observed neutron stars originating
from the collapse of large stars with enormous emission of
radiation (supernovae).

In the frame of the micro-quanta pushing gravity the mass
of particles is not the source of the gravitational force, but is
simply a duplicate of the inertial mass. This explains why
the Equivalence principle is perfectly verified up to 1 part on
1012 by the experiments. As a consequence the large star bod-
ies undergo limited collapses, because the increasing gravita-
tional pushing force does not exceed a maximum linked to
the micro-quanta flux constants. These collapses originate
the neutron stars.

Finally let’s recall that in [1] a strong force between nu-
cleons is defined, which is accurate at distances lower than the
nuclear diametre. At the usual distances between atomic nu-
clei, the gravitational force largely exceeds the strong force,
giving rise to the concept of gravitational power. In the fol-
lowing paragraphs we shall examine the implications of the
gravitational power on the evolution of celestial bodies. For
instance : i) H2 galactic gas clouds (Bok globules), ii) dense
cold planets, iii) neutron stars. The case of neutron stars will
be dealt with subsequently.

3 Gravitational power on the contracting Bok globules

Before considering the solid and liquid aggregation state, let’s
consider the case of free atoms in gas clouds which inter-
act emitting radiation. The astronomer Bart Bok, observing
in 1947 some dark galactic gas globules with low tempera-
ture about 8◦K and radius around 1015 metres, predicted that
they might be the forge of the stars. After 43 years J. L. Yun
and D. P. Clemens [3] found that practically all Bok globules
they observed through CO spectroscopy resulted associated
with IR emission, so they could affirm that “almost every Bok
globule harbours a young star”. They examined a total of 248
globules having an average mass of 11 M� and an average
infrared radiation power Prad ≈ 0.5M(L�/M�) [4].

At the end of XIX century lord Kelvin and Helmholtz
studied a physical mechanism which could explain why the
Sun shines from billions years without reducing its luminos-
ity. But they correctly recognised that the gravitational con-
traction of the outer solar layers cannot explain quantitatively
the star luminosity. Only after the advent of Special relativ-
ity it was recognised that the solar energy comes from the
high temperature fusion of light nuclei through the Einstein’s
mass-energy equivalence.
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To day we don’t know which source of energy heats the
core of gas globules up to the temperature of star ignition.
Of course the gravitational force accelerates the atoms which
colliding emit infrared radiation and tend to aggregate to-
wards the cloud centre. The infrared power is generated re-
ducing the atomic kinetic energy, but the average gas temper-
ature, instead of reducing, increases. From which physical
source comes the energy which heats the mass and produces
radiation? It cannot come from the Einstein’s mass-energy
equivalence, considering the low gas temperature within the
Bok globules.

The problem of correctly defining the source of the grav-
itational power heating the Bok globules remained unsolved
in absence of a theory of the gravitational interaction able
to specify the rate at which the gravitational waves hit the
particles. During the last century the GR theory, which pre-
dicts correctly the astronomical observations, didn’t solve this
problem. The non-existence in GR theory of the standard
gravitational waves has been theoretically guessed by several
authors and recently shown by A. Loinger [5]. As a matter
of fact several groups of physicists are searching for the stan-
dard GW’s throughout the Universe, but they didn’t find a
definite result. To define the gravitational power we need to
know the collision rate of known waves. It has been shown
that each particle of a pair undergoes a pushing force f (r)
given by Eq. (1), which recalling Eq. (4) can be written as
f (r) = (2E0/cτ0)(σ/2πr2), a form expressing clearly the mo-
mentum variation in the time τ0 of the bouncing quantum
beam. Assuming that the particle velocity v � c, which
holds up to temperatures of 108 ◦K within the star core, this
force originates during the time τ0 of the beam reflection, so
the energy released to the particle by the force along the dis-
tance of reflection lr = cτ0 is ∆L � f (r) × lr = 2E0(σ/2πr2).
Then the power given up to the particle in the time τ0 is
pi = ∆L/τ0 = f (r)× c [1]. Using for the sake of simplicity the
newtonian notation (Eq. 5), the gravitational power received
by each nucleus of a pair at a distance xi becomes

pi = G cm2
i /x2

i , (6)

where mi is the mass of nuclei, xi = (mi/δ)1/3 is the average
distance between nuclei within a body of local density δ(r)
where r is the distance along the body radius. Summing up
to all nuclei mi of a celestial body with radius R, the gravita-
tional power released to the body is defined

Pgr =

R∫

0

pi(r)
4πr2δ(r)

mi(r)
dr . (7)

First let’s assume the limiting case where the atoms are at
rest. From Eq. (6) one gets

pi(r) = Gcm4/3
i δ2/3(r) (8)

which, substituted in Eq. (7) and considering that the molec-
ular mass (mostly Hydrogen) does not vary along r, gives the

gravitational power of a gas cloud at absolute zero tempera-
ture

Pgr = Gcm1/3
i

R∫

0

4πr2δ5/3(r) dr . (9)

This situation looks like the atoms of very cold gas clouds.
However Eq. (9) is inaccurate because does not consider the
high temperature reached in the core of galactic gas glob-
ules made of free molecules having velocity v= (2kT/mi)1/2.
When the distance xi (t) between two close molecules some-
times reduces to the molecule diametre, there is a collision
with probable emission of a visible photon. More in general,
putting x0 the minimun distance, the two atomic nuclei graze
with angular velocity

ω ≈ v

x0
=

(2kT/mi)1/2

x0
. (10)

For a very small time, the charged nuclei oscillate with
amplitude x(t) = x0/ cos(ωt) = 2x0 cos(ωt)/(1 + cos(2ωt)).
Since gas oscillators at temperature T produce radiation with
wavelength λ= 2.89×10−3/T (Wien’s law) the corresponding
radiation emitted from a gas cloud is linked to

ω = (2πc/λ) = 6.52×1011 T . (11)

Substituting ω in Eq. (10) one has

x2
0 = 6.49×10−47/Tmi. (12)

Putting in Eq. (6) the distance xi = x0, the gravitational
power of a pair just emitting an infrared photon at a distance
r along the radius of the body is

pi(r) = 1.54×1046 Gcm3
i (r) T (r) . (13)

Susbstituting in Eq. (7) and integrating to all nuclei of a
gas globule made of equal molecules one obtains

Pgr = 1.54×1046 Gcm2
i

R∫

0

4πr2δ(r) T (r) dr . (14)

Assuming the H2 molecules of the Bok globules, quick
calculations can be made recognising that Eq. (14) contains
just the definition of the average temperature Tav of a body of
mass M. So we have

Pgr ≈ 3.42×10−9 MTav . (15)

To calculate the average temperature through the ideal gas
equation of state, we need to calculate the average radius Rav

of the 248 observed globules, which emit infrared radiation
corresponding to an external temperature T0 comprised be-
tween 26◦ and 254◦K [3]. This may be obtained putting the
radiation power Prad = 4πR2

avκsT 4
0 equal to the observed radi-

ation Prad ≈ 10−4 M which, substituting the average globule
mass, gives Prad ≈ 2.2×1027 Watt. The resulting Rav ≈ 2×1012
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gives an average temperature Tav ≈ 5×104 ◦K leading to a
gravitational power Pgr ≈ 3.8×1027 Watt.

The observed Bok globules denounced an inner hot core.
As appearing in Eq. (14), the inner gravitational power is pro-
portional to the high central temperature, which explains why
the inner core temperature increases so rapidly.

Part of the gravitational power escapes as radiation ac-
cording to the energy balance of the globule

CH M(dTav/dt) = Pgr − Prad (16)

where CH = 1.44×104 J/kg×K is the specific heat of the molec-
ular Hydrogen. Since it has been found that Pgr > Prad,
Eq. (16) states that the globule temperature increases.

Had the theory predicted Pgr less than the experimental
Prad, it should be considered wrong.

Now we have to proof that this inequality holds during
the globule lifetime. The micro-quanta paradigm shows that
within the gas clouds Pgr increments the molecular kinetic
energy and produces photons which undergo many Compton
scattering with reduction of their energy before escaping from
the globule. In fact the photon mean free path results 1011–
1012 metres in the periphery of a cold large globule (R = 1015)
whereas takes a figure of 102–104 metres within the observed
Bok globules (R = 2×1012). Since the last case shows an op-
tical thickness much greater than the first case, this means
that the fraction Y = Prad/Pgr of the infrared radiation escap-
ing from the cold large globule is higher than the fraction
Y = 2.2×1027/3.8×1027 ≈ 0.55 escaping from the observed Bok
globules. The fraction Y(R) is a function of the globule radius
and reduces when the globule contracts, increasing the opti-
cal thickness. To evaluate the temporal trend of the globule
temperature from Eq. (16) we substitute the definition of Pgr

and put Prad = Y(R)Pgr

CH M (dTav/dt) = 3.42×10−9MTav (1 − Y(R)) . (17)

It appears that Tav depends slowly on the mass through the
factor Y(R). If one assumes that the observed value Y ≈ 0.55
does not vary much during the globule lifetime, the solution is

Tav(t) ≈ Tin exp
(
9.96×10−14 t

)
, (18)

where Tin is the average temperature of the Bok globule at
the initial stage t = 0. For instance one may put the initial
stage when the radius R≈ 1015 corresponds to the cold large
globule. In this case the average temperature, calculating the
right average gravitational pressure, results Tin ≈ 3.2×104 ◦K,
showing that even the cold globule has a hot core. From this
initial stage one can calculate the time a Bok globule needs to
heat the mass at a temperature Tav

∆tB ≈ 1013 ln
Tav

3.2×104 . (19)

The most important event in the life of Bok globules is
the ignition of the nuclear reactions which takes place when

the inner core attains a temperature of the order of 107 ◦K.
Assuming the corresponding average temperature Tav ≈
8×105 ◦K, the star ignition occurs after the time

∆tF ≈ 106 years. (20)

This result agrees with the computation of the star incuba-
tion time given by some classical methods. However Herbig’s
method predicted that globules producing small stars required
an increasing incubation time. For instance a star of 0.2M�
would require more than 109 years before it begins to shine.
This implies that these small stars would be only a little frac-
tion in the celestial vault, contrary to the common observa-
tion.

Conversely, the gravitational power concept satisfies the
experimental evidence because the incubation time depends
on the firing temperature of fusion reactions, which is the
same for the Hydrogen gas globules. Since the ideal gas equa-
tion holds in the case of gas globules (escluding the inner core
where the high temperature determines plasma conditions),
the thermal energy of the body equals substantially the gravi-
tational energy

GM2/2R � CH MTav (21)

from which the radius R corresponding to a globule of mass
M and average temperature Tav can be calculated. The high
power generated by the nuclear reactions in the inner core
(protostar) gives rise to a radiation wind able to sweep away
the external globule layers, revealing a young bright star. It
may be useful to recall that the fire of nuclear reactions lim-
its, through the radiation wind, the size of the star mass. The
different masses of the stars depend probably on the differ-
ent increasing rate of the inner core temperature at the mo-
ment of the nuclear ignition. This very complex phenomenon
has been recently observed and described by an equipe of
astronomers which observed the formation of a star group
within an infrared dark cloud in the G327.3-0.6 region [6].

4 A new dynamical principle in the Universe

Cosmologists have long debated between the expanding uni-
verse described by various GR models and the stationary uni-
verse described by the Hoyle-Bondi model, where new matter
continuosly emerges apparently from the void space.

The micro-quanta flux is the physical reality underlying
the Relativistic Mechanics which rules the motion of parti-
cles. The gravitational power on the bodies heats cosmic
cold gas clouds at different places in the Universe, which
become observable at different times when their electromag-
netic emissions come within the sensitivity of the astronomi-
cal and astrophysical instruments. The energy heating small
and large masses in the Universe is drawn from the collisions
of particles with the micro-quanta flux filling the space, giv-
ing up to each particle a gravitational power produced by the
gravitational force due to the mutual screening of masses. Is
this the “creation of matter” mentioned by Hoyle? Strictly
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speaking, the gravitational power concept implies only the
drawing of energy from the underlying reality. Being the en-
ergy equivalent to mass, the answer might be yes.

The new dynamical principle describes, more likely, the
model of the Universe depicted by the astronomer H. Arp [7]:
the Universe has no origin and is in continuous transforma-
tion, drawing locally from its interior the possibility of evo-
lution. Any large gas cloud at temperature near the abso-
lute zero may give rise to crowded star clusters or to new
galaxies thanks to the gravitational power, which acts also in
many other astrophysical situations. For instance influencing
even the behaviour of modest astrophysical bodies, such as
the planets.

5 Gravitational power on the planets

In the so-called “inert” celestial bodies, such as the planets,
atoms are bound to each other by the forces of the Lennard-
Jones potential, which determine the equilibrium distance be-
tween them. A planet forms when the density of a contract-
ing small cloud takes values corresponding to the solid or
liquid state. Obviously this fact stops the contraction and
makes largely inaccurate the ideal gas equation, so the equiv-
alence between the gravitational and thermal energy vanishes.
Around their rest-place the atomic nuclei oscillate with am-
plitude and frequency depending on the temperature. Any
nucleus of mass mi and average velocity v shows an absolute
temperature given by

kT =
1
2

mi v
2. (22)

The instanteneous velocity v(t) is bound to the oscillation
amplitude x(t) = a sin(ωt + α) through the relationship

v2(t) = (dx/dt)2 = a2ω2 cos2(ωt + α) (23)

whose average value is v2 = 1
2 a2ω2.Then the oscillation am-

plitude is given by

a =
(4kT/mi)1/2

ω
(24)

which is a little different from Eq. (10). The frequency of the
emitted photon is linked to the temperature of the gas through
the Wien’s law which leads to ω given by Eq. (11). Substitut-
ing ω and mi = Am0 into Eq. (24) and putting the numerical
values, one gets the radial behaviour of the amplitude depend-
ing on T (r) and A(r)

a(r) =
2.79×10−10

[T (r) A(r)]1/2 . (25)

The electrical forces rule the motion of the oscillating
atoms in thermal equilibrium. But the kinetic energy of the
atoms came from the same source that heated the ancient Bok
globule which produced our Sun and planets. The primeval
planets were hot bodies with outer temperature around
950◦ K, which lose their energy early by radiating in space,

thus allowing life on the Earth during nearly 4 billion years.
Abstracting from the heating of solar radiation, all planet sur-
faces should be presently near the absolute zero. But the as-
tronomers found a sensible infrared radiation which comes
from the interior of the giant solar planets [see Table 1]. As
explained for the gas globules, also the atoms in the planets
receive new kinetic energy from the micro-quanta flux. Each
atom receives the major fraction of the gravitational power
from the nearest nuclei. The work done on each oscillating
atom by the resultant gravitational force always increments
its kinetic energy. Let’s consider the resultant gravitational
force on a nucleus of mass mi oscillating with amplitude x(t)
along the straight line joining some nuclei placed on both
sides at equal distance xi. Pairs of adjacent nuclei are alterna-
tively approaching and removing of a displacement 2x(t) due
to the thermal motion. Thus the nearest two nuclei gives the
greatest contribute, whereas the nuclei at distance 2xi do not
contribute and the nuclei at distance 3xi contribute for a few
percent, as shown by Eq. (26). Multiplying the resultant force
by the velocity c of the colliding quanta gives us (considering
that x � xi) the released power

pi(t) = Gcm2
i

[ 1
(xi − 2x)2 −

1
(xi + 2x)2 +

+
1

(3xi − 2x)2 −
1

(3xi + 2x)2

]
� 8.3 Gcmi xδ .

(26)

To obtain the time averaged power when the amplitude
varies from 0 to a we have to multiply by 2

π
, so one gets

the radial power distribution pi(r) � 16.6
π

Gcmi a(r)δ(r) to
be substituted in Eq. (7). As a consequence the gravitational
power released to a planet results

Pgr �
16.6
π

Gc

R∫

0

4πr2δ2(r) a(r) dr (27)

which, substituting the amplitude a(r) from Eq. (25), gives

Pgr � 2.95×10−9 Gc

R∫

0

4πr2δ2(r)
[T (r) A(r)]1/2 dr . (28)

If the internal parameters were known, Eq. (28) might be
simply computed by numerical integration. But the trends of
the internal density, nuclear mass and temperature are in gen-
eral not known (excepting perhaps the Earth) with an accu-
racy better than 20%. To the aim of doing some quick calcu-
lations we observed that the ratio B = δ(r)/T (r)A(r) results to
be, referring to the Earth’s internal parameters recently cal-
culated by D. Alphe et al. [8], independent from the radial
coordinate and about equal to B≈ 4×10−2 (SI system). Let’s
recall that Earth is the unique planet whose internal structure
is known with an accuracy better than 10%. Substituting B in
Eq. (28) one may obtain the approximate formula

Pgr ≈ 2.9×10−11M (δavB)1/2. (29)

Maurizio Michelini. Major Gravitational Phenomena Explained by the Micro-Quanta Paradigm L23



Volume 1 PROGRESS IN PHYSICS January, 2010

Planet

Predicted
gravi-
tational
power
Pgr (W)

Measured
infrared
flux φir

(W/m2)

Internal
infrared
flux ∆φir

(W/m2)

Measured
internal
power
Pint (W)

Jupiter 4.3×1017 13.89 5.57 3.5×1017

S aturn 9.1×1016 4.40 1.93 8.6×1016

Uranus 9.8×1015 0.69 0.04 3.2×1014

Neptune 1.7×1016 0.72 0.45 3.5×1015

Earth 2.6×1015 ? ? ?

Table 1: Predicted gravitational power Pgr compared with the mea-
sured internal power Pint observed for the solar giant planets, ac-
cording to [10].

5.1 Calculation of the gravitational power on Earth and
the giant solar planets

When applied to the Earth, Eq. (29) gives a gravitational
power Pgr ≈ 2.6×1015 Watt. This approximate formula shows
an accuracy comparable to that we would obtain introducing
the Earth internal parameters directly in the exact Eq. (28).
The predicted Pgr is 60 times higher than the classical heat
flow (4.4×1013 Watt) calculated by laborious evaluation of the
geothermal gradient measured throughout the continents and
adopting an average thermal conductivity κ measured in lab-
oratory for the principal rocks [9]. Of course the value of the
geothermal gradient and of κ for the remaining 70% of the
planet surface (under the oceans) had to be inferred, due to
the difficulties of making measurements. Because the clas-
sical heat flow is likely not affected by a computational error
higher than 30%, the discrepancy with Pgr has to be attributed
to the lack of other forms of heat flow across the crust. The
contribution of the radioactive isotopes in the rocks to the
total power generated inside the planet becomes negligible
when compared to Pgr. Useful verifications of the computa-
tional formula for Pgr (Eq. 29) may be done searching for the
constant Bi of the giant planets of the solar system for which
the infrared radiation coming from the interior has been mea-
sured. A recent book by P. G. Irwin [10] analyses the data
collected from various interplanetary spacecrafts launched in
the last decades towards Jupiter, Saturn, Uranus and Neptune.
A draft of the internal structure of these planets is given from
which only rough values of Bi may be obtained. However
for Jupiter and Saturn the values of Bi are not much differ-
ent from the Earth’s value, whereas lower values were ob-
tained for Uranus and Neptune, whose structure is dominated
by H2O ice instead of molecular Hydrogen.

In Table 1 the gravitational power Pgr computed for the
giant planets is compared with the internal infrared power
Pint = 4πR2(φir − φS un) derived from the measured infrared
flux φir minus the infrared contribution φS un due to the so-
lar absorbed/emitted radiation. The difference ∆φir appears
to be numerically accurate for Jupiter, Saturn and Neptune
because it amounts to a large fraction of the observed flux
φir. Only for Uranus ∆φir is a small fraction (5.8%) of the

observed flux, so some inaccuracy on the related Pint is un-
avoidable. The agreement between Pgr and Pint for Jupiter
and Saturn confirm that the experimental Pint appears to be
the gravitational power theoretically predicted. The discrep-
ancy found for Neptune may be likely due to the uncertain
factor B. However the high discrepancy between Pgr and Pint

of Uranus has to be attributed to some profound reason. For
instance, the fact that the internally generated Pgr does not
entirely reach the external surface due to the particular pe-
ripheral structure of the planet. Let’s recall that specific stud-
ies suggest that Uranus presents a discontinuity of the inter-
nal structure, probably near the surface [11]. As we know,
a similar discontinuity (Mohorovich’s one) is present also on
the Earth. Observing Table 1 one wonders if an experimental
method may be adopted (as for the giant planets) to measure
the IR flux radiating from the Earth interior. This would give
an independent check of the gravitational power generated on
the planets.

5.2 The emergent problem of the Earth dilatation

We have seen that the gravitational power discharged on the
Earth largely exceeds the classical heat flow by conduction
through the crust. The classical method does not consider
the heat flow through other ways, for instance the cooling
of magma escaping from the Mid Ocean Ridges, from the
seismic fractures linked to the Plate tectonics [12] and from
volcanic activities on the ocean seafloor. Let’s recall that the
U.S. Geological Service data show a frequency of about 8
earthquakes per day, Richter magnitude > 4, mostly under
the ocean seafloor.

The gravitational power is the physical agent heating and
contracting the galactic gas globules. In the case of planets
— where the atoms are tightly packaged — Pgr can no longer
induce a contraction. On the contrary it may induce a thermal
expansion which increases the Earth radius. Let’s consider
the energy balance of the core + mantle mass

CavM(dTav/dt) = 0.966Pgr − Pex(t) , (30)

where Cav = 708 J/kg×K is the average specific heat. It is
taken into account that about 3.4% of Pgr is generated into
the lithosphere. Pex(t) is the power exiting from the mantle
towards the lithosphere. To a first approximation, it equals
the classical heat flow by conduction across the solid crust
4.4×1013 W plus the heat flow of hot magma which cools pen-
etrating the seismic fractures produced through the crust

Pex(t) = Q0(dV/dt) + 4.4×1013, (31)

where Q0 is the heat released by 1 m3 of hot magma which
enters the crust at a temperature around 1800◦ K and (dV/dt)
is the volume rate of hot magma entering the crust (Eq. 33).
Correspondingly the power entering the crust and accumulat-
ing before to be radiated into space, obey the energy balance

Ccr Mcr(dTcr/dt) = 0.034 Pgr + Pex(t) − Pint(t) , (32)
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where Ccr ≈ 1200 J/kg×K is the average specific heat of the
rocks and Pint is the infrared radiation power coming from the
interior.

Eqs. (30, 31, 32) contain the unknown temperature deriva-
tives of the Earth interior and of the crust. Pex(t) and Pint(t)
are physical quantities to be found. To a first approximation
the exiting power Pex may be evaluated assuming that the
expansion rate of the core + mantle exceeds the expansion
rate allowed by the solid crust, which consequently under-
goes seismic fractures incorporating the increased volume of
hot magma. The volume rate of magma entering the crust
(and partially escaping from the ocean seafloor and volcanic
activity) is given by

dV
dt
≈ 4πR2

(
dRm

dt
− dRcr

dt

)
. (33)

The temperature derivative dTav/dt produces a dilatation
of the mantle radius

dRm/dt = Riαav (dTav/dt) (34)

where it has been considered an average core + mantle linear
expansion coefficient αav = 1.12×10−5 ◦K−1 based on the usual
data at normal temperature. It is not clear how much α might
change at temperature > 2000◦ K (mantle) and > 5000◦ K
(FeNi-core). The core + mantle expansion originates a radial
compression on the solid crust (spherical shell) whose inner
radius Rcr shows an annual dilatation

dRcr/dt = Riαcr (dTcr/dt) , (35)

where the assumed expansion coefficient of the rocks is αcr ≈
1.3×10−5 ◦K−1.

Let’s recall that the 1 m3 of hot magma at a temperature
around 1800◦ K releases to the crust the heat which is Q0 =

= δ(c∆T + H f ) ≈ 6.9×109 J/m3, where H f us ≈ 3.7×105 J/kg is
the average heat of fusion/solification of the rocks. Multiply-
ing by Q0 the magma flow of Eq. (33), one obtains the heat
flow due to the cooling of magma entering the crust fractures,
to which is added the classical heat flow by conduction. Part
of the magma flow escapes from the Mid ocean Ridges, thus
removing the tectonic plates [12] which undergo subduction.
Rough estimates of the plate dynamics show an amount of
new formed crust of the order of 1.3×1010 m3/y, that is proba-
bly a little fraction of the total.

This scheme gives values of Pex(t) depending on the two
unknown temperature derivatives.

The infrared radiation Pint(t) coming from the interior re-
mains up to now unspecified. A simple equation comes out
summing Eq. (30) and Eq. (32)

CavM(dTav/dt) + Ccr Mcr(dTcr/dt) = Pgr − Pint(t) (36)

which does no longer need to know Pex(t). When the infrared
radiation power Pint(t) is less than the gravitational power,
this equation states that the Earth temperature increases sen-

sibly along some million years, thus producing the dilatation
threat.

5.3 Comparison between the effects on Earth and the
giant solar planets

Some points of the present analysis about the Earth thermal
dilatation require further specification. The lithosphere began
to form upon the fluid planet about 4 billion years ago, to ac-
count for the evolution of primeval life on the Earth. If the
magma estimated by Eq. (33) escaped during 4 billion years,
the volume of the lithosphere would be about 16 times the
present value. This requires an explanation. One may won-
der which fraction of time the tectonic process was operating.
A recent hypothesis [13] suggests that plate dynamics was in-
termittent along the geological periods. As a matter of fact the
process of the magma escaping through seismic fractures has
just the characteristics of discontinuity. However this does
not match with the continuous feeding of heat to the Earth by
the gravitational power.

To this aim it is necessary to make reference to the fluid
planets, such as the giant solar planets (namely Jupiter and
Saturn) where the mass expands freely and the gravitational
power generated in the interior flows up to the outer surface
where it is radiated in space. For these planets the energy
balance

CavM(dTav/dt) = Pgr − Pint(t) (37)

indicates that, when Pgr = Pint, the internal temperature of the
planet is constant. No thermal expansion stresses arise be-
cause the solid crust is lacking. Let’s now return to the Earth.
The major problems are:

1. If in Eq. (30) we neglect Pex, the increase of the av-
erage temperature dTav/dt ≈ (Pgr/CavM) would be of
the order of 10−5 ◦K/y). Lasting for 10 million years
this would increase the internal temperaure of about
100◦ C. Conversely the sur f ace temperature would ex-
perience a little increment because an increase of 1◦ C
is sufficient to radiate in space an infrared power equal
to the whole Pgr. This can be proved recalling that
the Earth effective temperature T0 = 255◦ K, calculated
by P. G. Irwin [10] considering the bond albedo, ra-
diates an infrared power equal to the absorbed solar
light. If the planet surface were radiating in addition the
predicted power Pgr, the surface effective temperature
would increase from 255◦ K to 256◦ K only;

2. If the duration of the Earth increasing temperature is
assumed to be 1 billion years, the resulting temperature
would have evaporised the planet. Because this din’t
happen, there was some mechanism which braked the
increasing temperature;

3. At the boundary between astenosphere and lithosphere
a modest increase of temperature (for instance 100◦ C)
makes fluid some solid rocks, so reducing the mass of
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the solid crust. This explains why the volume of the
present solid crust is many times smaller than the vol-
ume of the total magma escaped during 4 billion years.
Let’s assume that the escaping magma that annually so-
lidifies within the crust is counterbalanced by an equal
volume of liquefied rocks at the boundary with the as-
tenosphere. This requires that the Earth should give up
to the crust some heat flow which can be easily fur-
nished by the gravitational power;

4. The risk still remains of the increasing Earth tempera-
ture. Up to now we have assumed that the transfer of
the internally generated power towards the outer sur-
face depends on the fact that the expanding volume
(dilatation) of the hot interior produces many fractures
(deep earthquakes) on the solid crust, which are rapidly
filled by hot fluid magma. In this frame the Earth ap-
pears to be an intrinsically seismic planet.

In a recent work, the pressure exerted by the expanded
core + mantle on the elastic solid crust has been assumed
to produce a continuous passage of some hot fluid miner-
als through a complex physical-chemical process conveying
some thermal power. A plain description of such a process
by P. B. Kelemen may be found in Scientific American [13],
whereas the fundamental concepts may be found in a previ-
ous paper [14]. However the potentiality of the process in
transferring internal power towards the outer surface does not
appear to have been evaluated.

5.4 The ice core data recording the Glacial Eras

The cycles of the temperature (Fig.1) observed from ice cores
in Antartica by two independent teams, Vostok [15] and Epica
[16], show an impressive result: the most recent four cycles
may be nearly placed one upon other. The cycle durations are
between 85–122 ky. Each peak is preceded by a temperature
strong rise with slope around 1.8◦ C/ky and is followed by a
partial descent with about the same slope. This fact is worth
receiving an explanation. The descent continues with a se-
ries of small alternated rises and descents characteristics of
each cycle. The Antarctica temperature behaviour has been
observed together with the concentrations of CO2 and CH4
greenhouse gases and of the local insolation.

Deciphering this lot of data is the main trouble of many
scientists. Since the peaks of the greenhouse gases are con-
siderably less than their present concentration, the tempera-
ture rising in Antarctica could not be due to the greenhous
gas effect. In any case the slope of the present climate effect
by greenhouse gases (more than 10◦ C/ky) is not comparable
with the antartic cycling phenomena. Most likely, since there
is simultaneity between the temperature peaks and the green-
house gas peaks, the antartic CO2 and CH4 concentrations
could be due to the increase of temperature in the equatorial
and temperate regions, where the decomposition of organic
matter in CO2 and CH4 was enhanced, so the greenhouse

gases migrate rapidly through winds towards the poles.
The cycling temperature amplitude ∆T (t) in Antartica is

notable (each cycle shows an amplitude comprised between
10◦ C and 13◦ C). Here it is considered as the increase, over
the undisturbed average antartic temperature TA, due to some
thermal power Pint(t) coming from the planet interior and ra-
diated to space. Since the average temperature measured at
the Vostok site is −64◦ C, it follows that the minimum temper-
ature of the ice core record (see Fig.1) results TA ≈ 200◦ K.
Let’s consider 1 m2 of surface in Antartica where, in absence
of the internal power, the radiation balance is

κε (TA)4 ≈ 110ε (W/m2) = psun + patm (38)

where κ is the Stephan-Boltzmann constant, ε is the snow
emissivity, psun is the specific power from sunlight and patm

is the power released on 1 m2 by the atmospheric precipita-
tions transported by winds from the oceans. By consequence,
in the energy balance the internal power pint(t) = Pint(t)/4πR2

radiates in space through the temperature increment ∆T (t)

pint(t) = κε
[
(TA + ∆T (t))4 − T 4

A

]
� 4κεT 3

A∆T (t) . (39)

Substituting TA ≈ 200◦ K in this equation one gets

pint(t) ≈ 1.81ε∆T (t) (40)

which shows an internal power rising from 0 up to the maxi-
mum pint ≈ 19ε W/m2 and subsequently descending to 0 with
a particular series of descents and risings.

We assume that the Earth gravitational power Pgr goes
beyond the solid crust via the hot magma entering the seismic
fractures in the crust. The longest duration of magma flow
produces the strongest ∆T (t) rise up to the interglacial peak,
which occurs due to the stop of the magma flow consequent
to the stop of earthquakes. The seismicity depends on the
crust ruptures consequent to the dilatation of the Earth interior
(Eq. 33). Resuming, each rising of the ∆T (t) cycle occurs
in presence of the seismic activity. Conversely, when ∆T (t)
descends (due to the radiative emission cooling) the seismic
activity should vanish. In this frame each temperature cycle
is made of seismic periods alternated with quiet periods.

Some considerations on the nearly equal slopes (except-
ing the sign) of ∆T (t) before and after the peak. The con-
stant slope of the strong ascent is due to the increasing magma
flow entering the superficial crust. The slope of the descent is
linked to the radiative cooling of the superficial mass.

In any case the ice core data imply that the temperatures
of the crust Tcr(t) and of the Earth interior Tav(t) undergo cy-
cles. Assuming in Eq. (36) these temperature cycles, we ob-
serve that integrating of the left side along the cycle period
gives zero. By consequence the integration of the right side
gives

Pgr ≈ (pint)av 4πR2, (41)

where (pint)av is uniform on the Earth surface since the gravi-
tational power flows outside isotropically.
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Fig. 1: 420,000 years of ice core data recorded from Vostok, Antartica research station. From bottom to top: Solar variation at 65◦N due
to Milankovitch cycles; 18O isotope of oxygen; levels of methane CH4; relative temperature respect to local annual temperature; levels of
carbon dioxide CO2.

In particular (pint)av may be calculated in Antartica mak-
ing in Eq. (40) the graphic integration of ∆T (t), which gives
the average (∆T )av ≈ 3.9◦ C.

Substituting (pint)av in Eq. (41) one gets

Pgr ≈ 1.81ε (∆T )av 4πR2 (42)

which, considering the snow emissivity ε= 0.82, gives an in-
dependent value of the Earth gravitational power through the
ice core data from Antartica

Pgr ≈ 2.9×1015 Watt. (43)

This empirical value of Pgr is higher than the approximate
value 2.6×1015 derived from the theoretical Eq. (28), where
the numerical uncertainties on the Earth internal structure,
currently discussed in the literature, are present.

6 Some final considerations

After the conceptual default of classical physics about the en-
ergetic mechanism of the contracting gas globules leading to
the star birth, the introduction of the gravitational power con-
cept permits us to explain the genesis of several celestial bod-
ies from the primeval Hydrogen cold clouds. The new dy-
namical principle describes an Universe (somewhat similar
to the Hoyle-Bondi stationary model) putting light on new
phenomena such as the discordant redshifts of quasars stud-
ied by the astronomer H. Arp. The fluid giant planets do not

feel heavy troubles from the gravitational power they receive.
Conversely the gravitational power produces on the Earth and
any planet or satellite with solid crust, dangerous physical ef-
fects through heating and dilatation. Firstly, the internal di-
latation stresses the solid crust producing the planetary seis-
micity originating fractures rapidly filled by the mantle fluid
magma. The process presents periods of emphasis followed
by stasis, as confirmed by the periodic changes of the temper-
ature slope derived from the ice core data, which show that
Glacial and Interglacial Eras depend on the variable rate of
the internally generated heat flowing up to the planet surface.

The present contribution to the unsatisfying knowledge of
geodynamics is aimed at finding the common origin of differ-
ent phenomena: the high planet seismicity, the surface ther-
mal cycles around 100.000 years (Glacial Eras) and the Tec-
tonic dynamics (around some ten million years). Much work
needs to be done.
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