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dinger’s Cat and Quantum Measurements . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 63

Zhang B. J., Zhang T. X., Guggilia P., and Dohkanian M. Gravitational Field Shield-
ing by Scalar Field and Type II Superconductors . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 69



Information for Authors and Subscribers

Progress in Physics has been created for publications on advanced studies in
theoretical and experimental physics, including related themes from mathe-
matics and astronomy. All submitted papers should be professional, in good
English, containing a brief review of a problem and obtainedresults.

All submissions should be designed in LATEX format usingProgress in
Physics template. This template can be downloaded fromProgress in Physics
home page http://www.ptep-online.com. Abstract and the necessary informa-
tion about author(s) should be included into the papers. To submit a paper,
mail the file(s) to the Editor-in-Chief.

All submitted papers should be as brief as possible. We accept brief pa-
pers, no larger than 8 typeset journal pages. Short articlesare preferable.
Large papers can be considered in exceptional cases to the section Special
Reports intended for such publications in the journal. Letters related to the
publications in the journal or to the events among the science community can
be applied to the sectionLetters to Progress in Physics.

All that has been accepted for the online issue ofProgress in Physics is
printed in the paper version of the journal. To order printedissues, contact
the Editors.

This journal is non-commercial, academic edition. It is printed from pri-
vate donations. (Look for the current author fee in the online version of the
journal.)



January, 2013 PROGRESS IN PHYSICS Volume 1

Some Expressions for Gravity without the Big G and their Possible
Wave-Theoretical-Explanation

Hasmukh K. Tank
Indian Space Research Organization, 22/693, Krishna Dham-2, Vejalpur, Ahmedabad-380015, India

E-mail: tank.hasmukh@rediffmail.com, hasmukh.tank1@gmail.com

This letter presents some new expressions for gravity without the big G and proposes
their possible wave-theoretical-explanation. This attempt leads to some insight that: (i)
We need the proportionality-constant G because we measure masses and distances in
our arbitrarily-chosen units of kg and meters; but if we measure “mass” as a fraction of
“total-mass of the universe” M0 and measure distances as a fraction of “radius-of-the-
universe” R0 then there is no need for the proportionality-constant G. However, large
uncertainties in the M0 and R0 limit the general application of this relation presently.
(ii) The strength of gravity would be different if the total-mass of the universe were
different. Then this possibility is supported with the help of wave-theory. (iii) This
understanding of G leads to an insight that Plancks-length, Planck-mass and Planck’s
unit of time are geometric-mean-values of astrophysical quantities like: total-mass of
the universe and the smallest-possible-mass hH0/c2. (iv) There appears a law followed
by various systems-of-matter, like: the electron, the proton, the nucleus-of-atom, the
globular-clusters, the spiral-galaxies, the galactic-clusters and the whole universe; that
their ratio Mass /Radius2 remains constant. This law seems to be more fundamental
than the fundamental-forces because it is obeyed irrespective of the case, whether the
system is bound by strong-force, electric-force, or gravitational-force.

1 Introduction

Sir Isaac Newton presented the quantitative description of
gravitational attraction between two massive bodies, that the
force of attraction is directly proportional to the product of
two masses, and inversely proportional to the square of
centre-to-centre distance between them; and the value of
proportionality-constant G was found to remain the same
even in the case of planets. But there has been no explana-
tion for why the value of G is this much. Einstein also made
extensive use of G by treating it as a fundamental-physical-
constant. Based on my previous works, [1-5] and the works
of researchers cited in these papers, this paper presents some
alternative expressions for gravity, without the big G, and pro-
poses a wave-theoretical-explanation for gravity.

2 New expressions of gravity without the big G

(i) R.K. Adair, in his book “Concepts in Physics” [6] has
given a derivation, that the sum of “gravitational-potential-
energy” and “energy-of-mass” of the whole universe is, strik-
ingly, zero! i.e.

M0c2 − GM0M0

R0
= 0

where M0 and R0 are total-mass and radius of the universe
respectively, and G is Newton’s gravitational constant; i.e.

GM2
0

R0
= M0c2

i.e.

G =
R0c2

M0
.

So, by substituting R0c2/M0 for G in Newton’s formula,
the gravitational potential energy Ug stored in a system of
masses M and m separated by a distance r can be expressed
as:

Ug =

M
M0

mc2

r/R0
. (1)

Newton’s law when expressed as shown in the expression-1,
shows that: if we measure masses as a fraction of total-mass
of the universe M0 and measure distances as a fraction of ra-
dius of the universe R0 then we do not need the big G.

However, large uncertainties in the M0 and R0 limit the
general application of this relation presently.

A brief discussion will be in order, how the “total-mass-
of-the-universe” and “radius-of-the-universe” are derived;
and what would be the uncertainties of these?
Total-mass-of-the-universe:
E.P. Hubble’s experimental-observations of the “cosmologi-
cal-red-shift”, when interpreted in terms of “recession-of-
galaxies”, gives a linear relation:

v = H0D

where: v is the “velocity-of-recession” of a galaxy, H0 is
Hubble’s constant and D the luminosity-distance of a galaxy.
From this relation we can get an estimate of “sum-total-of-
kinetic-energy-of-the-universe” Ku. This recession-of-gala-
xies, also known as: “expansion-of-the-universe”, can stop if
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and when “kinetic-energy-of-the-universe” Ku becomes equal
to “gravitational-potential-energy-of-the-universe” Uu. By
equating Ku = Uu, cosmologists have derived the value of
“total-mass-of-the-universe” M0.

It has been estimated [7] that the universe would have col-
lapsed to hot-death much sooner than the present-age of the
universe if total-mass of the universe were more than M0; and
it would have cooled down to cold-death much earlier than the
present-age of the universe if its total-mass were less than M0.
The present-age, of 14 billion years, imply that the total-mass
of the universe is indeed M0. M0 = 1082 pion-masses.

It is surprising [8] that cosmologists are so far able to ex-
perimentally detect only the baryonic-matter, which is hardly
4% of the total-mass M0! At least 70% of the total-mass M0
is believed to be in the form of “dark-energy”, and remaining
26% in the form of “dark-matter”. “Dark-matter” is needed
to explain the “flattening-of-galaxies-rotation-curves”. That
is, the estimates of total-mass of the universe depend on 26%
share from “dark-matter”, and 70% share from “dark-energy”
which are yet to be detected.
Radius-of-the-universe:
The distance at which a galaxy can attain the velocity-of-
light, that is, when Hubble’s expression becomes: H0R0 = c,
where c is the speed-of-light, this distance R0 is called: “the-
radius-of-the-universe”. Even if universe-tip may be moving
with speed higher than light-speed, the “visible” horizon will
be limited by the equation c = H0R0 [8]. So, the value of
radius of the universe is taken as 1026 meters, i.e. = 1040

classical-radius of the electron. Here H0 is Hubble’s constant.
As far as accuracy of the values of M0 and R0 are con-

cerned, there must be large amount of uncertainties. We can
not expect to improve current value of G form them. Our
expression of gravity without G can only help us to gain an
insight, that the strength of gravitational-force seems to de-
pend on total-mass and radius of the universe. Similarly, we
can gain some insight in to Planck’s natural units, and Mil-
grom’s new constant of nature a0, termed as the “critical-
acceleration” of Modified Newtonian Dynamics (MOND).
Now, let us move to some more expressions without the
big G.

(ii) Milgrom’s expression for the constant velocity v of the
stars at the out-skirts of a spiral-galaxy of mass M is conven-
tionally expressed as [7]:

v = (GMa0)1/4 . (2)

Since: G = R0c2/M0, and a0 = c2/R0, as discussed in [9],
the expression-2 can be re-expressed without G as:

v =

[
R0c2

M0
M

c2

R0

]1/4
i.e.

v = [M/M0]1/4c. (3)

In the expression-3, c is the speed of light in vacuum, and M0
and R0 are total-mass and radius of the universe respectively.

(iii) We can express the radii of the globular-clusters, the
spiral-galaxies and the galactic-clusters as:

Rglobu =

[
Mglobu

M0

]1/2
R0 = [rGgloR0]1/2, (4)

where rGglo is gravitational-radius of the globular-cluster.

Rgalaxy =

[
Mgalaxy

M0

]1/2
R0 = [rGgalR0]1/2, (5)

where rGgal is gravitational-radius of the galaxy.

Rgal−clust =

[
Mgal−clust

M0

]1/2
R0 = [rGgal−clustR0]1/2, (6)

where rGgal−clust is gravitational-radius of the galactic-cluster.
Even the classical-radius of the electron re = e2/mec2 can

also be expressed as:

re =

[
me

M0

]1/2
R0 = [rG−eR0]1/2, (7)

where rG−e is gravitational-radius of the electron.
Radius of the pi-meson rpi = Ng2/mpic2 can also be ex-

pressed as:

rpi =

[
mpi

M0

]1/2
R0 = [rG−piR0]1/2, (8)

where rG−pi is gravitational-radius of the pi-meson.
And the radius of nucleus of an atom rn can also be ex-

pressed as:

rn =

[
mn

M0

]1/2
R0 = [rG−nR0]1/2, (9)

where rG−n is gravitational-radius of the nucleus-of-atom.
The expressions (4) to (9) can be jointly expressed as [8]:

M0

R2
0

=
mP

r2
P

=
me
r2

e
=

mn

r2
n
=

Mgc
R2
gc
=

Mgal

R2
gal

=
Mcg

R2
cg
=

H0c
G
.

We shall consider a possible “wave-theoretical-explana-
tion” for the expressions (4) to (9) in the section-4.

Since the classical-radius of the electron re = e2/mec2,
radius of the pi-meson rpi = Ng2/mpic2 and the radius of nu-
cleus of an atom rn can also be expressed in the similar man-
ner by inserting the masses of the electron, the pi-meson and
the nucleus in the right-hand-sides of the above expressions,
though they are bound by electric-force, strong-force and the
nuclear-force respectively, it suggests a possibility that the
currently-believed fundamental-forces may not be truly fun-
damental; rather, the law followed by them, as expressed in
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the expressions (4) to (9), may be more fundamental than the
“fundamental-forces”; and the strengths of forces may be get-
ting decided by these expressions (4) to (9). It also suggests
a possibility that when a “black-hole” has some “mass” then
it has to have a “radius”.

(iv) We can express the cosmological red-shift zc smaller
than unity as:

zc =
D
R0
. (10)

And we can express the accelerated-expansion of the uni-
verse, the deceleration of the cosmologically red-shifted
photon, the deceleration of the Pioneer-10, 11, Galileo and
Ulysses space-probes and the “critical-acceleration” of
MOND as [9]:

a0 =
c2

R0
. (11)

3 Some insight into Planck’s units

From the law of equality of gravitational-potential-energy and
energy-of-mass of the universe we found that: G = R0c2/M0.
Now let us make use of this expression to get some insight
into Planck’s units of length, mass and time:
Planck’s-length L∗ = [hG/c3]1/2.

Substituting R0c2/M0 for G in the above expression,
Planck’s-length L∗ = [hR0c2/M0c3]1/2;
i.e. Planck’s-length

L∗ =
[

h
M0c

R0

]1/2
; (12)

i.e. Planck’s-length L∗ is a geometric-mean of: Compton-
wavelength and Gravitational radius of total-mass of the uni-
verse, because R0 = GM0/c2.
Planck-mass M∗ = [hc/G]1/2;
i.e. Planck-mass M∗ = [(h/R0c)(M0)]1/2; i.e. Planck-mass

M∗ =
[
hH0

c2 M0

]1/2
. (13)

That is Planck’s unit of mass is a geometric-mean of:
total-mass of the universe and smallest-possible-mass, corre-
sponding to Hubble’s constant (hH0/c2). Similarly, Planck’s
unit of time T ∗ is a geometric-mean of: age-of-the-universe
T0 and the period (h/M0c2): i.e.

T ∗ =
[
T0

h
M0c2

]1/2
. (14)

4 Possible wave-theoretical explanation for gravity

Let us assume that there are some most-fundamental-parti-
cles, and a long-range fundamental-force. We can take the
mass of the “most-fundamental-particle” as a unity, and think
that all the massive objects are collections of the “most-fun-
damental-particles”.

Now, by a “particle” we mean an entity which is localized
in an extremely small space; so, a “particle” can be math-
ematically represented in the space-domain as an impulse-
function. This impulse-function can be Fourier-transformed
into the “wave-number-domain”. Then assuming a constant
velocity of transmission of these waves, at the velocity of
light, we can represent these waves in the “frequency-
domain” as a wide band of frequencies. A particle of matter
has a wide band of frequency-spectrum and a definite phase-
spectrum. When this wide band of waves travels in space,
then a “particle” becomes manifest only at a place and time
when-and-where all the spectral-components add construc-
tively, and have a particular, definite phase-relation, otherwise
the particle remains dissolved in the un-manifest-state.

Secondly, we can not expect any coherence between the
spectral-components of one and the other “particle”. That
means, that when two or more such fundamental-particles
come close to each-other, the wide bands of their waves add
like the incoherent superimposition of wideband-noise.

We know that the superimposition of n number of wide-
band noise-sources of unit-amplitude is square-root-of n; like
the vector-sum of n mutually orthogonal unit-vectors. That
is:

N(t) =
[
(N1(t))2 + (N2(t))2 + (N3(t))2 · · · + (Nn(t))2

]1/2
.

Now, if the strength of “coupling-constant” of a funda-
mental-force is, say, e2, which is the strength of electric-force
of the proton, then the strength of “coupling-constant” of a
new “fundamental-force”, which is actually due to “incohe-
rent-superimposition”, within the system of n fundamental-
particles will be: (n1/2e2)/n. Since the total-mass of the uni-
verse M0 is 1080 proton-masses, the strength of gravitational-
force between the two protons is expected to be:

GM0mp = (Total−number of protons in the universe)1/2 e2

i.e.

Gm2
p =

√
1080e2

1080

i.e.
Gm2

p = 10−40e2. (15)

[Note: This is just an order-of-magnitude-estimate.]
Now, if the force within a system is stronger than grav-

ity by a multiplication-factor, say, k-times, then the density
of matter within that system is also logically expected to be
k-times higher. That is, in our example of proton and the uni-
verse:

e2

Gm2
p
=

[
M0

mp

]1/2
=

mp
4
3πr

3
p

M0
4
3πR

3
0

i.e.
e2

Gm2
p
=

[
M0

mp

]1/2
=

mpR3
0

M0r3
p

H.K. Tank. Some Expressions for Gravity without the Big G and their Possible Wave-Theoretical-Explanation 5



Volume 1 PROGRESS IN PHYSICS January, 2013

i.e. [
M0

mp

]3/2
=

R3
0

r3
p

i.e. [
M0

mp

]1/2
=

R0

rp
=

e2

Gm2
p

(16)

i.e.
M0

R2
0

=
mp

r2
p
. (17)

The expression-16 was noticed as the “large-number-
coincidence” [LNC], whereas here we derived it with the help
of wave-theory.

Sivaram [10] had noticed a relation between masses and
radii of the electron, the proton the nucleus-of-atoms, the
globular-clusters, the spiral-galaxies, the galactic-clusters and
the universe as shown in the expression-18 below. The ex-
pression-18 is similar to the expression-17 derived by us us-
ing wave-theory. So our derivation based on wave-theory
matches with the observations presented by Sivaram.

M0

R2
0

=
Mgal−clust

R2
gal−clust

=
Mgal

R2
gal

=
Mglobu

R2
globu

=
mn

r2
n

=
mpi

R2
pi

=
me

r2
e
=

H0c
G

(18)

Even the mysterious-looking Weinberg-formula can be
re-written, and explained, as follows: Weinberg’s formula is:
m3

pi = h2H0/c G , which can be re-written as: mpi/(h/mpic)2

= H0c/G. Weinberg’s formula has an imbalance of one order
of magnitude which can be corrected by replacing Compton-
wavelength of the pion by radius of the pion, i.e. mpi/R2

pi =

H0c/G. So the mysterious-looking Weinberg-formula is also
a part of the expression-18.

5 Conclusion

Now we have an explanation for why we need the gravita-
tional constant G. The strength of gravity seems to depend
on the total-mass M0 and radius R0 of the universe. How-
ever, large uncertainties in the M0 and R0 limit the general
application of this relation presently. Secondly, gravity may
not be an independent “fundamental-force”; it may be arising
due to “in-coherent super-imposition” of wave-amplitudes of
very wide-band of waves of total number of fundamental-
particles contained in the universe. The theory also explained
the large-number-coincidence, and the mysterious-looking
Weinberg formula. We also gained some insight into Planck’s
units that: Planck-length, Planck-mass and Planck’s unit of
time are geometric-mean-values of astrophysical quantities
like: total-mass of the universe and the smallest-possible-
mass hH0/c2.

Submitted on: September 20, 2012 / Accepted on: September 28, 2012
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A Theoretical Description of U(5)-SU(3) Nuclear Shape
Transitions in the Interacting Boson Model
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†Department of Physics, Faculty of Girls, Ain Shams University, Egypt. E-mail: tawwad12@hotmail.com

We investigated the evaluation of nuclear shape transition from spherical to axially rota-
tional shapes using the Coherent state formalism of the first version of interacting boson
model (sd IBM). The validity of such model is examined for rare-earth Nd/Sm/Gd/Dy
isotopic chains by analyzing the potential energy surface (PES’s). In this region, a
change from spherical to well-deformed nuclei is observed when moving from the
lighter to heavier isotopes.

1 Introduction

In recent years, the study of quantum phase transition (QPT)
is an important topic in the research of nuclear structure.
Some evidence of nuclear shape transition have been
observed. For instance, several isotopes have been found to
undergo shape phase evolution of first order from spherical
vibrator to deformed axially symmetric rotor and phase tran-
sition of second order from spherical vibrator to deformedγ−
soft [1–3].

The Hamiltonian describing this transition is a repulsive
boson pairing Hamiltonian that has the particularity of be-
ing exactly solvable allowing the study of very large systems.
The study of phase shape transitions in nuclei can be best
done in the interacting boson model (IBM) [4] which repro-
duces well the data in all transition regions [5–11].

The possible phases that can occur in the IBM have been
classified in a triangular Casten diagram [12], the three phases
correspond to the breaking of U(6) into its three subalgebras
U(5), SU(3) and O(6) [13]. TheX(5) critical point symme-
try [14] was developed to describe analytically the structure
of nuclei at the critical point of the transition from vibrational
U(5) to prolate axially symmetric SU(3) shapes. In addition
the symmetry E(5) [15, 16] have been introduced to describe
the nuclei at the critical point corresponding to second or-
der transition, nuclear examples of which were used [17].
Recently, the critical point in the phase transition from ax-
ially deformed to triaxial nuclei called Y(5), has been ana-
lyzed [18]. In all these cases, critical points are defined in the
context of the collective Bohr Hamiltonian [19].

Since the IBM was formulated from the beginning in
terms of creation and annihilation boson operators, its ge-
ometric interpretation in terms of shape variables is usually
done by introducing a boson condensate with two shape pa-
rametersβ and γ. The parameterβ is related to the axial
deformation of the nucleus, whileγ measures the deviation
from axial symmetry. The equilibrium shape of the nucleus
is obtained by minimizing the expectation value of the Hamil-
tonian in the intrinsic state.

In this paper, we discuss some aspects of the nuclear

shape phase transition in even-even nuclei using the IBM with
the intrinsic state formalism. The outline of the present paper
is as follows: In Section 2, we construct the IBM Hamiltonian
in terms of Casimir operators and using coherent state to get
the potential energy surface (PES). In section 3, we check that
results of the IBM with coherent state to agree for dynamical
limits U(5), SU(3) and O(6) in the limit of large N. In sec-
tion 4 we applied our model to the rare earth Nd/Sm/Gd/Dy
isotopic chains which evolve a rapid structural changes from
spherical to well-deformed nuclei when moving from lighter
to the heavier isotopes.

2 Coherent State Potential Energy Surface

We start by considering a general standard two-body sd IBM
Hamiltonian in the Casimir forms as:

H = εC1[U(5)] + K1C2[U(5)]

+K2C2[O(5)] + K3C2[O(3)]

+K4C2[S U(3)] + K5C2[O(6)]

(1)

HereCn[G]is the n-rank Casimir operator of the Lie group
G, with

C1[U (5)] = n̂d (2)

C2[U (5)] = n̂d (n̂d + 4) (3)

C2[O (5)] = 4[
1
10

(L̂ L̂) + T̂3 T̂3] (4)

C2[O (3)] = 2(L̂ L̂) (5)

C2[S U(3)] =
2
3

[

2
(
Q̂ Q̂

)
+

3
4

(L̂ L̂)

]

(6)

C2[O (6)] = 2
[
N(N + 4)− 4(P̂ P̂)

]
(7)

wheren̂d, P̂, L̂, Q̂, T̂3 and T̂4 are the boson number, pairing,
angular momentum, quadrupole, octupole and hexadecapole
operators defined as:

n̂d = (d† d̃)(0) (8)

P̂ =
1
2

(d̃ d̃) −
1
2

(s̃ s̃) (9)

A. M. Khalaf and T. M. Awwad. A Theoretical Description of U(5)-SU(3) Nuclear Shape Transitions in the Interacting Boson Model 7
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L̂ =
√

10
[
d† × d̃

](1)
(10)

T̂3 =
[
d† × d̃

](3)
(11)

T̂4 =
[
d† × d̃

](4)
(12)

where s†(s)and d†(d̃) are monopole and quadrupole boson
creation (annihilation) operators, respectively. The scalar
product is defined as

T̂L T̂L =
∑

M

(−1)MT̂L,M T̂L,−M (13)

whereT̂L,M corresponds to theM component of the operator
T̂L. The operatord̃m(−1)md−m and s̃ = s are introduced to
ensure the correct tensorial character under spatial rotations.

The Connection between the IBM, PES, geometric shapes
and phase transitions can be investigated by introducing a co-
herent, or intrinsic state which is expressed as a boson con-
densate [20]

|N, β, γ〉 =
1
√

N!

(
b†c

)N
|0〉 (14)

with

b†c =
1

√
1+ β2

(

s†+β cosγ d†o +
1
√

2
β sinγ(d†2+d†−2)

)

. (15)

|0〉 is the boson vacuum and the variablesβ andγ deter-
mine the geometry of nuclear surface. Spherical shapes are
characterized byβ = 0 and deformed ones byβ > 0. The
angleγ allows one to distinguish between axially deformed
nucleiγ = 0◦ for prolate andγ = 60◦ for oblate deformation
and triaxial nuclei 0◦ < γ < 60◦.

The expectation values of the Casimir operators equations
(2–7) in the ground state equation (14) is:

〈C1[U (5)]〉 =
N

1+ β2
β2 (16)

〈C2[U (5)]〉 =
5N

1+ β2
β2 +

N (N − 1)
(
1+ β2

)2
β4 (17)

〈C2[O (5)]〉 =
8N

1+ β2
β2 (18)

〈C2[O (3)]〉 =
12N

1+ β2
β2 (19)

〈C2[S U(3)]〉 =
20
3

N +
4
3

N (N − 1)
(
1+ β2

)2
∙

(

4β2 +
1
2
β4 + 2

√
2β3 cos(3γ)

) (20)

〈C2[O (6)]〉 = 2N(N + 4)−
1
2

N (N − 1)
(
1+ β2

)2

(
1− β2

)2
. (21)

The PES associated with the IBM Hamiltonian of equa-
tion (1) is given by its expectation value in the coherent state
and can be written as:

V (β, γ) = a◦
N

1+ β2
β2

+
N (N − 1)
(
1+ β2

)2

(
a1 + a2β

2+

a3β
3 cos(3γ) + a4β

4
)

(22)

where the coefficientsai are linear combinations of the pa-
rameters of the Hamiltonian and terms which do not depend
onβ and/or γ have not been included.

3 Shape Structure of the Dynamical Symmetries

The analysis of the three dynamical symmetry limits of the
IBM provides a good test of the formalism presented in the
previous section.

3.1 The U(5) Symmetry

The Hamiltonian of the vibrational limitU(5) can be written
down by puttingk4 = k5 = 0 in equation (1). This has the
consequence that inH remain only the terms which conserve
both the number of d-bosons and the one of the s-bosons. The
Hamiltonian operator of this approximation reads:

H[U (5)] = εC1[U (5)] + K1C2[U (5)]+

K2C2[O (5)] + K3C2[O (3)].
(23)

This yields the PES

E(N, β) = εd
N

1+ β2
β2 + f

N (N − 1)
(
1+ β2

)2
β4. (24)

This energy functional isγ− independent and has a mini-
mum atβ = 0, Special case forU (5) limit, when

H = εC1[U (5)], (25)

E(N, β) = ε
N

1+ β2
β2. (26)

3.2 The SU(3) Symmetry

In the parametrization equation (1), theS U(3) limit corre-
sponds toε = K1 = K2 = K5 = 0 and the Hamiltonian reads:

H[S U(3)] = K3C2[O(3)] + K4C2[S U(3)]. (27)

This yields the PES

E (N, β, γ) =

3(4k3 + k4)
N

1+ β2
β2 +

4
3

k4

[
N

1+ β2

(

5+
11
4
β2

)

+
N (N − 1)
(
1+ β2

)2

(

4β2 + 2
√

2β3 cos(3γ) +
1
2
β4

)
 .

(28)
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Fig. 1: Calculated PES’s as a function of the deformation parameter
β in U(5)-SU(3) transition for144−154Nd (with Nπ = 5 andNν = 1−6
neutron bosons) isotopic chain. The total number of bosons N=6-11
andχ = −

√
7/2).

Fig. 2: Calculated PES’s as a function of the deformation parameter
β in U(5)-SU(3) transition for146−154Sm (with Nπ = 6 andNν =

1− 5) isotopic chain. The total number of bosons N=6-11 andχ =

−
√

7/2).

This energy functional has a shape minimum atγ = 0 and
at a valueβ , 0.

Special case for SU(3) limit, when

H = aQ̂ Q̂ (29)

and if we eliminate the contribution of the one-body terms of
the quadrupole -quadrupole interaction, then, the PES reads

E (N, β, γ) = a
N (N − 1)
(
1+ β2

)2
(4β2±2

√
2β3 cos(3γ)+

1
2
β4). (30)

The equilibrium values are obtained by solving

∂E
∂β

=
∂E
∂γ

= 0 (31)

Fig. 3: Calculated PES’s as a function of the deformation parameter
β in U(5)-SU(3) transition for148−162Gd (with Nπ = 7 andNν =

1− 8) isotopic chain. The total number of bosons N=6-11 andχ =

−
√

7/2).

to giveβe =
√

2 andγ = 0◦ andγ = 60◦.

3.3 The O(6) Symmetry

For the O(6) limitε = K1 = K2 = 0 and the Hamiltonian
takes the form

H[O(6)] = K2C2[O(5)] + K3C2[O(3)] + K5C2[O(6)]. (32)

One then obtains the PES

E (N, β) = 12(2K2 + K3)
N

1+ β2
β2−

2k5N (N − 1)

(
1− β2

1+ β2

)2

.

(33)

This energy functional isγ−independent and has a min-
imum at a value|β| , 0. For largeN, the minimum is at
|β| = 1.

Special case forO(6) limit, when

H = aQ̂ (χ) Q̂ (χ) (34)

χ = 0 (35)

and if we eliminate the contribution of the one-body term of
the quadrupole-quadrupole interaction, then

E (N, β) = 4aN (N − 1)

(
β

1+ β2

)2

(36)
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Fig. 4: Calculated PES’s as a function of the deformation parameter
β in U(5)-SU(3) transition for150−166Dy (with Nπ = 8 andNν =

1− 9) isptopic chain. The total number of bosons N=6-11 andχ =

−
√

7/2).

the equilibrium value is given byβ = 1 corresponding to a
γ-unstable deformed shape.

4 Application to Rare-Earth Isotope Chains

Nuclei in the region of Sm are well known examples of U(5)-
SU(3) transition going from a vibrational into a rotational be-
havior. The validity of our model is examined for typical var-
ious even-even Nd/Sm/Gd/Dy isotopic chains with total num-
ber of bosons from N=6 to N=17.

The set of parameters of the model for each nucleus are
adjusted by using a computer simulated search program in
order to describe the gradual change in the structure as bo-
son number is varied and to reproduce the properties of the
selected states of positive parity excitation (2+

1 ,4
+
1 ,6

+
1 ,8

+
1 ,0

+
2 ,

2+3 ,4
+
3 ,2

+
2 ,3

+
1 and 4+2) and the two neutron separation energies

of all isotopes in each isotopic chain. The best fitting param-
eters obtained for each nucleus are given explicitly in Tables
(1,2).

The PES’s versus deformation parameterβ for rare earth
isotopic chain of nuclei evolving from spherical to axially
symmetric well deformed nuclei are illustrated in figures
(1-4). A first order shape phase transition with changes in
number of bosons when moving from the lighter to heavier
isotopes i.e. U(5)-SU(3) transitional region are observed. In
our selected region we assumed a valueχ = −

√
7/2 because

someGd isotopes clearly exhibit the character of the SU(3)

dynamical symmetry. AroundN = 90 these seems to be the
X(5)critical point symmetry. Each PES displays a relatively
similar shape with only a small increase in the sharpness of
the potential for increasing boson number.

5 Conclusion

In conclusion, the paper is focused on the properties of quan-
tum phase transition between spherical U(5) and prolate de-
formed SU(3) in framework of the simple version of interact-
ing boson model IBM-1 of nuclear structure.

The Hamiltonian was studied in the three different limits
of the IBM and formed by laking. A systematic study of rare
earth Nd/Sm/ Gd/Dy isotope chains was done using the co-
herent states. Nuclei located at or very close to the first order
transition were the N=90 isotones150Nd, 152Nd, 154Nd and
156Nd. They also follow theX(5) pattern in ground state en-
ergies. The geometric character of the nuclei was visualizes
by plotting the potential energy surface (PES’s). parameters
of our model were adjusted for each nucleus by using a com-
puter simulated search program, while the parameterX in the
quadrupole operator was restricted to fixed valuex = −

√
7/2.
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Fine Structure Constant as a Mirror of Sphere Geometry
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A path is defined as the vector’s sum of the translation and rotation component of the
length unit belonging to the mass entity in motion on the sphere. The fine structure
constant is an irrational number being a mirror of the path complexity as well as the
sphere curvature where the path is made. The inverse value inthe Euclidean plane yields
α−1 =

√
π2 + 1372. The inverse fine structure constant on the elliptic sphere is smaller

and on the hyperbolic sphere is greater. The electron in the Hydrogen atom should
move on the elliptic sphere of the radius of 3679 Compton wavelengths of the electron
according to the CODATA 2012 recommended empirical valueα−1 = 137.035999074.
Such a small sphere radius implies the heterogeneous curvature of the present universe.

1 Theoretical background

In motion is an entity having some mass. Respecting Comp-
ton the length unit is attributed to that mass:

λ =
h

mc
= 1 . (1)

The infinite mass and zero length unit are objectively un-
reachable. Nevertheless both can be theoretically approached
arbitrarily close by the sufficiently great finite mass.

A curved motion obeys the path complexity: it has the
translation and rotation component. Describing the curved
path the length unit becomes not only the translation unit but
the rotation unit, too. By the circumference of a circle con-
cluded paths, for instance, only apparently equals the trans-
lation n, actually it is greater for the average rotationπ made
around the start point of the length unit:

π =
0+ 2π × 1

2
. (2)

The actual path is the vectorial sum of both components: the
rotationπ as well as translationn:

−→s = −→π + −→n . (3)

The total rotation of the length unitπ equals the total Berry
phase at spin12 [1].

1.1 Path in the Euclidean plane

By the circumference of a circle concluded paths in the Eu-
clidean plane is calculated with the help of Pythagoras’ theo-
rem:

s2 = π2 + n2. (4)

1.2 Path on the elliptic sphere

By the circumference of a circle concluded paths on the el-
liptic sphere is calculated with the help of the spherical law
of cosines.

On the elliptic sphere of radiusR holds:

cos
s
R
= cos

π

R
cos

n
R
, (5)

cosx =
√

1− sin2x , (6)

1
R2
=

1

k2
1π

2
+

1

k2
2n2
−

k2
3s2

k2
1π

2 × k2
2n2
=

k2
1π

2 + k2
2n2 − k2

3s2

k2
1π

2 × k2
2n2

. (7)

The coefficients are expressed as

k1 =
sin πR
π

R

, k2 =
sin n

R
n
R

and k3 =
sin s

R
s
R

. (8)

They are arranged by size

1 > k1 > k2 > k3 . (9)

In the case ofR2 being a positive number Pythagoras’ theo-
rem holds only exceptionally. The next condition has to be
satisfied:

k2
1π

2 + k2
2n2
> k2

3s2 or
k2

1

k2
3

π2 +
k2

2

k2
3

n2
> s2. (10)

The ratios of coefficients
k2

1

k2
3

and
k2

2

k2
3

are according to (non)

equation (9) greater than 1 or at least equal 1, therefore we
write:

k2
1

k2
3

π2 +
k2

2

k2
3

n2
> π2 + n2

> s2. (11)

At the finite elliptic sphere radiusR Pythagoras’ theorem
fails, because at non-equal coefficients (9) the square area
upon hypotenuse is smaller than the sum of square areas upon
catheters:

s2 < π2 + n2. (12)

At R = ∞ and equal coefficients (9) the elliptic sphere trans-
forms into the Euclidean plane and Pythagoras’ theorem be-
gins to rule again (4).

1.2.1 Approximation for cosx

Hardy’s approximation [2] is close to the function cost
r :

H

(

2t
πR

)

= cos
t
R
≈ 1−

(

2t
πR

)2

2t
πR +

(

1− 2t
πR

)

√

2− 2t
πR

3

. (13)
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At very largeR Hardy’s approximation can be simplified:

H

(

2t
πR

)

= cos
t
R
≈ 1−

(

2t
πR

)2

. (14)

The spherical law of cosines (5) with the help of the simpli-
fied Hardy approximation (14) enables to calculate the ap-
proximate value of the sphere radius in cases of a tiny cur-
vature where Pythagoras’ theorem approximately rules. The
explicit relation is expressed as

R2 ≈
(2n)2

n2 + π2 − s2
. (15)

The similar approximation is obtained with the help of equa-
tion (7) at the assumption of coefficients approximate equal-
ity:

1 ≈ k1 ≈ k2 ≈ k3 . (16)

Then the sphere radius is expressed as

R2 ≈
(πn)2

n2 + π2 − s2
. (17)

1.3 Path on the hyperbolic sphere

By the circumference of a circle concluded paths on the hy-
perbolic sphere is calculated with the help of the hyperbolic
law of cosines.

On the hyperbolic sphere of radiusR holds:

cosh
s
R
= cosh

π

R
cosh

n
R
, (18)

coshx =
√

1+ sinh2x, (19)

1
R2
= −

1

k2
1π

2
−

1

k2
2n2
+

k2
3s2

k2
1π

2 × k2
2n2
=

=
−k2

1π
2 − k2

2n2 + k2
3s2

k2
1π

2 × k2
2n2

. (20)

The coefficients are expressed as

k1 =
sinh πR
π

R

, k2 =
sinh n

R
n
R

and k3 =
sinh s

R
s
R

. (21)

They are arranged by size

1 6 k1 6 k2 6 k3 . (22)

In the case ofR2 being a positive number Pythagoras’ theo-
rem holds only exceptionally.

The next condition has to be satisfied:

k2
3s2
> k2

1π
2
+ k2

2n2 or s2
>

k2
1

k2
3

π2 +
k2

2

k2
3

n2. (23)

The ratios of coefficientsk2
1/k

2
3 and k2

2/k
2
3 are according to

(non)equation (22) smaller than 1 or at most equal 1, therefore

we write:
k2

1

k2
3

π
2 +

k2
2

k2
3

n2
6 π

2 + n2
6 s2
. (24)

At the finite hyperbolic sphere radiusR Pythagoras’ theorem
fails, because at non-equal coefficients (22) the square area
upon hypotenuse is greater than the sum of square areas upon
catheters:

s2 > π2 + n2. (25)

At R = ∞ and equal coefficients (22) the hyperbolic sphere
transforms into the Euclidean plane and Pythagoras’ theorem
begins to rule again (4).

2 Fine structure constant and sphere radius

In the ground state of the Hydrogen atom the electron path
around the nucleus equals the ratio of the Compton wave-
length of the electronλ and the fine structure constantα. The
wavelength equals the unit, so the circular path equals the in-
verse fine structure constant:

s = α−1. (26)

2.1 Inverse fine structure constant on the non-Euclidean
sphere and Euclidean plane

At the finite sphere radiusR two possibilities are allowed ac-
cording the non-equations (12) and (25).

On the elliptic sphere holds:

α
−2
< π

2 + n2
. (27)

On the hyperbolic sphere holds:

α−2 > π2 + n2. (28)

At R = ∞ both non-Euclidean spheres transform into the Eu-
clidean plane and according to the equation (4) holds:

α−2 = π2 + n
2
. (29)

2.2 Calculation of the theoretical inverse fine structure
constant in the Euclidean plane

In the hydrogen atom the numbern = 137 is to the inverse
fine structure constantα−1 the closest natural number which
concludes the start and end point of Bohr orbit. The number
π is the total average rotation component of the length unit.

The theoretical inverse fine structure constant in the Eu-
clidean plane is calculated with the help of the equation (29).
Its value is an irrational number:

α
−1

EUCLID =
√

n2 + π2 ≈ 137.036015720. (30)

2.3 Calculation of the sphere radius on the atomic level

The inverse fine structure constant should be according to the
equations (27) and (28) on the elliptic sphere smaller and on
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the hyperbolic sphere greater thanα−1
EUCLID.

The recommended CODATA 2012 value of the inverse
fine structure constant is smaller than the theoretical value in
the Euclidean plane:

α−1
CODATA = 137.035999074< α−1

EUCLID ≈ 137.036015720. (31)

This implies the elliptic sphere in the Hydrogen atom.
The calculus of the radius of the elliptic sphere with the

help of the equation (5) yields:

R = 3679 Compton wavelengths of the electron. (32)

The estimate of the radius of the elliptic sphere with the help
of the simplified Hardy approximation (15) yields a little bit
greater value:

R ≈
2.137

√

1372 + π2 − α−2
CODATA

= 4057. (33)

2.4 Estimation of the inverse fine structure constant on
the macro level

Let us consider the radius of the observable universe of about
4× 1026m [3] as the sphere radius:

R ≈ 2× 1038 Compton wavelengths of the electron. (34)

This is a huge radius. A common calculator supports the
spherical law of cosines only for radius up to∼ 1015 Compton
wavelengths of the electron.

Fortunately a huge sphere radius is given by the simpli-
fied Hardy approximation (15) in the explicit relation with
the inverse fine structure constant:

R2 ≈
(2.137)2

π2 + 1372 − α−2
, (35)

α−1 ≈

√

π2+1372

(

1−
4

R2

)

=

√

π2+1372
(

1−10−76
)

≈

≈
√
π2 + 1372. (36)

If the sphere curvature on the atomic level equals the curva-
ture of the hypothetical elliptic observable universe, thein-
verse fine structure constant should not significantly differ
from the theoretical constant in the Euclidean plane.

3 Conclusion

If the inverse fine structure constant is a mirror of the path
complexity as well as the curvature of the sphere where the
path is made, its theoretical inverse value in the Euclidean
planeα−1=

√
π2 + 1372 and the recommended empirical CO-

DATA 2012 valueα−1= 137.035999074 express the electron
motion on the elliptic sphere of the radius of 3679 Compton
wavelengths of the electron. This implies a huge curvature of

the atomic world. If the sphere curvatures in the atomic and
the macro-world would be the same, the inverse fine structure
constant should not significantly differ from the theoretical
one in the Euclidean plane.
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The Cosmological ConstantΛ within the modified form of the Einstein Field Equa-
tion (EFE) is now thought to best represent a “dark energy” responsible for a repulsive
gravitational effect, although there is no accepted argument for its magnitude or even
physical presence. In this work we compare the origin of theΛ argument with the
concept of unimodular gravity. A metaphysical interpretation of the Poisson equation
during introduction ofΛ could account for the confusion.

1 Introduction

In 1916, Einstein introduced his general theory of relativity
as a geometrical theory of gravity [4] resulting in the Einstein
field equation (EFE),

Rμν −
1
2
gμνR= Gμν =

8πG
c4

Tμν. (1)

It has been well documented and studied that the EFE did
not predict a stable static universe, as it was theorized to be
at the time [3]. The equation, however, did accurately predict
gravitational redshift, magnitudes of gravitational lensing and
account for Mercury’s precessing orbit, which the Newtonian
equation could not. In order to manufacture an equation that
could account for a static universe, but still be empirically
accurate, it is often stated that Einstein ad hoc threw in an-
other constantΛ which is known as the cosmological con-
stant. This would have been placed back into the EFE with
the metricgμν as

Rμν −
1
2
gμνR+ gμνΛ = Gμν. (2)

Once it was discovered that the universe actually appeared
to be in a decelerating or coasting expansion mode, Einstein
quickly removed theΛ term. Today, though, there is empiri-
cal evidence that a very small magnitudeΛ exists, but some
quantum field theorists estimate it as being over 120 orders
of magnitude smaller than their calculations, “probably the
worst theoretical prediction in the history of physics” [3]. In
addition, the observed small value ofΛ requires an extremely
high level of arbitrary fine tuning “for no good reason” and
is a “cosmologist’s worst nightmare come true” [6]. This
transformation from a minor but rich interest exploded (5000
papers submitted to date [10]) near the end of the past mil-
lennium due to a startling simultaneous discovery of positive
acceleration from two teams [7,8].

The source of this unforeseen positive acceleration has
come to be known as “dark energy”. The lack of progress
in explaining the phenomena led to the creation of a Dark
Energy Task Force in 2006 which stated in a report [1]:

“Most experts believe that nothing short of a rev-
olution in our understanding of fundamental

physics will be required to achieve a full under-
standing of the cosmic acceleration.”

This dark energy is currently expected to contribute over
73.4% [5] of the mass-energy of the universe, and there is no
sound logical theory for what it is. Consider that this leaves
some type of mysterious never-observed particle known as
dark matter to contribute another 22.2%, leaving only 4.4%
for the normal matter we are familiar with. With this in mind,
we propose that it is reasonable to re-examine any argument
that has lead us to our current state of physics.

2 Poisson Equation and Gauss’ Theorem

The Poisson equation,

−∇2u = f, (3)

is well known to relate the functionf as the “source” or
“load” of the effect onu of the left hand side. Let us ex-
amine what this meansexactlymore in depth and what we
can conclude from this tool. As an example, for a functionf
given on a three dimensional domain denoted byΩ ⊂ R3 we
have

αu+ β
∂u
∂n

= g on ∂Ω. (4)

This is a solutionu satisfying boundary conditions on
the boundary∂Ω of Ω. α andβ are constants and∂u

∂n rep-
resents the directional derivative in the direction normaln to
the boundary∂Ω which by convention points outwards. Al-
though ifα = 0 is referred to as a Neumann boundary con-
dition, even withα = constantthe solution is said to only be
unique up to this additive constant. Let us examine whether
this statement is entirely accurate.

2.1 Graphical Meaning of Poisson Equation

Let us take the divergence ofg so that

∇ ∙ αu+ ∇ ∙ β
∂u
∂n

= ∇ ∙ g (5)

and

0+ ∇ ∙ β
∂u
∂n

= ∇ ∙ g. (6)
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We can see that the presence ofαu seems arbitrary since it
has no effect. Let us examine a two dimensional slice of scalar
values inR3 to graphically give a better understanding. In Fig.
1 we have an example of Eq. 4 using a Euclidean coordinate
system.

Fig. 1: Two Dimensional Scalar Field

For any derivative of Eq. 5, the constant term of course
would result in no vector since there is no directional deriva-
tive fromαu.

We note that this equation can also be written as

αu− β
−∂u
∂n

= g, (7)

shown in Fig. 2, which does not mathematically make a dif-
ference but can, however, introduce a question of uniqueness.

Fig. 2: Alternate Two Dimensional Scalar Field

Let us define the previous scalar field u asu1 and a second
scalar field asu2. If ξ andγ are constants, then Eq. 8 and
Fig. 3 present a dilemma. While there may be no directional
derivatives from the constant term, we could also equivalently
model this as orthogonal vectors with the sum of 0.

ξu2 − γ
∂u2

∂n
= g2 (8)

Fig. 3: Second Two Dimensional Scalar Field

From this we can see that there are no unique solutions of
u for g from the Poisson equation, if

αu1 + β
∂u1

∂n
= g1 (9)

and

ξu2 − γ
∂u2

∂n
= g2 (10)

but also

∇ ∙ (αu1 + β
∂u1

∂n
) = ∇ ∙ g1 = ∇ ∙ g (11)

and

∇ ∙ (ξu2 − γ
∂u2

∂n
) = ∇ ∙ g2 = ∇ ∙ g (12)

if

β
∂u1

∂n
= −γ

∂u2

∂n
. (13)

2.2 Gauss Theorem

Like our above illustration of the Poisson equation, a misun-
derstanding of Gauss’ Theorem,

−
∫

∂Ω

∂u
∂n

= −
∫

Ω

∇2u =

∫

Ω

f (14)

could also cause confusion if

−
∫

∂Ω

β
∂u1

∂n
= −

∫

∂Ω

(

ξu2 − γ
∂u2

∂n

)

(15)

and

−
∫

Ω

∇2βu1 = −
∫

Ω

(

∇2ξu2 − ∇ ∙ γ
∂u2

∂n

)

. (16)

Equations 15 and 16 are easily understood graphically as tak-
ing the second derivatives of the plots in Fig. 4.

Fig. 4: Equivalent Areas From Gauss’ Theorem

3 Conclusion

Although we can assume that some functiong is causal to the
appearance of a vector, does the vector appear from nothing
or is it result of a change in what is already at that point? If
auexists, what does it physically represent? Calling any field
“attractive” or “repulsive” is nothing more than a metaphys-
ical convention, i.e. does the load function cause a change
in φ resulting in an attraction or a reduced repulsion, as in
Fig. 5? From this, we can conclude that although we may
possess measurements∇ u and∇2u, we cannot determine the
nature of the scalar field u simply from the Poisson equation
or Gauss’ Theorem.
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Fig. 5: Attraction or Reduced Repulsion?

4 Motivation: Cosmological Constant and General Rel-
ativity

Why is the previous figure important? Although there is a
great deal of literature concerningΛ, in order to start a new
perspective and to utilize the previous section, we re-examine
the first known published physical meaning of the constant.
In Einstein’s 1917 paperCosmological Considerations On
The General Theory of Relativity[2] the first equation Ein-
stein presents is the Poisson equation version of Newton’s
Law of Gravity

∇2φ = 4πκρ. (17)

Citing Newtonian concerns over the limiting value ofφ at
“spatial infinity” he proposes a modification of the equation
to

∇2φ − λφ = 4πκρ. (18)

This was from an early difficulty in that the derivation re-
quiredRμν = 0 when matter or energy was not present. Due
to cosmological observations though, and despite the rigor of
the derivation, this requirement was eventually relaxed [4, see
for relation toGμν = 0, p. 410] allowing the introduction of a
cosmological constant, even if it is not physically understood.

Setting the Poisson equation aside for the moment, it is
also known that one of the interpretations ofΛ or λ in Rie-
mannian geometry is as a four dimensional constant of inte-
gration, through what is referred to as Unimodular Gravity
[9]. This interpretation restricts allowable diffeomorphisms
to only those preserving the four volume, but to date this has
been treated as but a curious equivalent to General Relativity.

5 Introducing the Lorentz Tensor

Let us take a constant multiple of the metricgμν and refer to
it asΩ. We do not utilizeΛ or λ so as not to cause confu-
sion and to allow us to more easily retain a difference in our
understanding. Let us enforceRμν = 0 such that

Ωgμν = Gμν + Lμν (19)

whereGμν is the Einstein tensor andLμν is a tensor we pro-
pose to call the “Lorentz” tensor. We shall expand on our

reasoning for calling it this in subsequent papers. We can
readily see that

Gμν = Ωgμν − Lμν (20)

and that ifΩ = 0 then the Lorentz tensor is simply the nega-
tive of the Einstein tensor,

Gμν = −Lμν, (21)

and should have the same important properties, i.e.

Gμν;μ = −Lμν;μ. (22)

This of course results in

Rμν −
1
2
gμνR= Gμν = Ωgμν − Lμν. (23)

Note that for now cosmological models that rely on only a
multiple of the metric remaining with no matter present, such
as deSitter space, are not possible sinceRμν = 0.

Although there are physical arguments for equating the
Einstein tensor to the energy momentum tensor (Gμν = κTμν),
and thus into analogues for Newton’s Law of Gravity, we
note simply in this paper that Eq. 17 is ultimately arrived
at throughGμν. By the symmetry present in Eq. 23 and our
arguments concerning the Poisson equation and Gauss’ The-
orem, our future objective is to use our understanding of Fig.
6 to obtain a rigorous derivation of Fig. 7.

Fig. 6: Einstein Tensor to Poisson

Fig. 7: Alternate EFE to Reduced Repulsive Poisson

We do this also in order to ask, should matter subject to
the force represented by the vector present in Fig. 7 become
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zero after traveling a certain radius from a massive body, what
occurs at radii larger than this? It is our motivation to deter-
mine whether this is a plausible explanation for phenomena
attributed to positive accelerating expansion.

Submitted on: October 11, 2012/ Accepted on: October 17, 2012
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Sunspots and faculae are related phenomena and constitute regions of elevated magnetic
field intensity on the surface of the Sun. These structures have been extensively studied
in the visible range. In this regard, it has been recognized that the intensity contrast of
faculae, relative to the photosphere, increases considerably as the line of observation
moves from the center to the limb of the Sun. Such center to limb variation (CLV)
suggests that the directional spectral emissivity of the faculae increases at the same
time that photospheric directional emissivity decreases.Since the directional spectral
emissivity of faculae increases towards the limb, these structures, along with sunspots,
provide strong evidence for metallic behavior at the level of the solar surface. This
further strengthens claims that the body of the Sun is not gaseous, but rather, comprised
of condensed matter.

1 Introduction

In his popular work,The Birth and Death of the Sun, George
Gamow justified the gaseous nature of the Sun as follows:
“ . . . at 6000 degrees all the materials from which a furnace
might be constructed, including even such refractory substan-
ces as platinum or carbon, will be not only melted but com-
pletely evaporated. No material can exist at these high tem-
peratures in a state other than gaseous, and this is exactly
what we find on the surface of the Sun, where all elements
are present in vapour form” [1, p. 4–5]. Several prominent
members of the astronomy community, by utilizing similar
logic, had previously laid the foundation for a gaseous Sun
in the mid-1800s [2]. The contention that the Sun was too
hot to be anything but gaseous would persist throughout the
20th century [3]. Conversely, experiments had long indicated
that the phases of matter did not depend solely on tempera-
ture, but on factors such as external pressure, internal atomic
composition, and the nature of the lattice adopted in the con-
densed phase. Yet, using a single justification, the possibility
that certain materials might exist in liquid form within the
Sun continued to be ignored. Gamow’s argument [1, p. 4–5]
would discount Wigner and Huntington’s 1935 proposal [4]
that metallic hydrogen, a material existing in the condensed
phase, could be created at elevated temperatures and pres-
sures [5–7].

2 Metallic hydrogen on the Sun

Liquid metallic hydrogen [4] is a particularly alluring sub-
stance relative to condensed solar models [5–7], especially
given the observation that the Sun appears to be primarily
composed of this element [8–11]. Although metallic hydro-
gen was first proposed nearly eighty years ago [4], it remains
an elusive material in the laboratory [5]. Some claims of
synthesis have received broad international acclaim [12, 13],
often followed, by controversy [14–17] and slow dismissal.

Others, such as claims that certain forms of metallic hydro-
gen can be produced in Rydberg matter, have received less
attention [18].

There has recently been a new flurry of activity in the
quest to produce metallic hydrogen [4] in the laboratory. In
November 2011, Mikhail Eremets and Ivan Troyan published
a provocative report inNature Materials[19] which strongly
suggested that metallic hydrogen had indeed been synthe-
sized for the first time on the Earth. Nonetheless, given the
nature of the quest for metallic hydrogen [5], it seemed cru-
cial that more evidence be acquired [20–22]. Perhaps this
time, the synthesis of metallic hydrogen will be affirmed [5].

Beyond metallic hydrogen itself, dense hydrogen could
play an important role in the Sun, since the photosphere ap-
pears to be less metallic in nature than sunspots [5]. The
author has advanced arguments that the photosphere adopts
a layered lattice resembling graphite (a Type-1 lattice [5]),
while the lattice in sunspots has more metallic character
(a Type 2 lattice [5]). This is presumably due to slightly
decreased inter-atomic distances within the layered lattice of
sunspots. It is noteworthy that a report has recently demon-
strated that dense hydrogen could adopt a graphene-like struc-
ture at 220 GPa and 300 K [23, 24]. The need for emitting a
thermal spectrum provides strong motivation for considering
graphite-like layered structures, which can lead to hydrogen
in the metallic state, within liquid models of the Sun [5].

3 A liquid Sun

The idea that the Sun could be liquid dates back at least to
the days of Gustav Kirchhoff [2] and Sir James Hopwood
Jeans was its last major scientific champion [3]. Jeans was a
distinguished physicist [25] and Physical Sciences Secretary
of the Royal Society from 1919 to 1929 [26]. He was also
Sir Arthur Eddington’s principle antagonist [3]. For much of
his scientific career, Jeans advanced that heavy metals such
as uranium comprised the building blocks for a liquid Sun,
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in opposition to Eddington’s gaseous models [3]. When the
Sun was determined to be principally composed of hydro-
gen [9–11], Jeans was left without a structural material. Ed-
dington’s gaseous Sun went on to be widely accepted by as-
tronomy. Neither Jeans nor Eddington had anticipated the
postulate that metallic hydrogen could be formed at elevated
pressures [4]. For his part, Jeans abandoned the liquid model
[3], apparently without sufficiently considering that the ob-
servational evidence for condensed matter might continue to
mount [5–7, 27–29]. At the time, he had elucidated only
fragmentary proof for a liquid state (see [3] and references
therein).

Today, not a single observational line of evidence sup-
ports the idea that the Sun is gaseous, as simple temperature
arguments are fallacious. Much of the scientific discussion
appears centered on endowing gaseous solar models with the
ability to behave as condensed matter (e.g. [30]). By dis-
missing the facts, the existence of the solar surface has been
discounted [3], precisely because the gaseous models have
no means of accounting for such a structure [29]. All struc-
tural features associated with solar activity (sunspots, faculae,
prominences, flares, spicules, etc. . . ) tend to be explainedus-
ing magnetic fields, as the only means to impart structural fea-
tures to a gaseous entity which, in reality, can support none.

In sharp contrast, observational facts point to a liquid Sun,
including more than one dozen proofs for a condensed mat-
ter [5–7, 27–29]. Though the most convincing line of evi-
dence for a liquid Sun will always remain the thermal appear-
ance of the photospheric spectrum in the visible range [27],
some may not be able to appreciate the power and sufficiency
of this proof. In part, this is due to the introduction of local
thermal equilibrium reasoning in solar science [30]. Local
thermal equilibrium has come to cloud the requirements for
producing a thermal spectrum and mask the need for con-
densed matter [30]. Nonetheless, the arguments which sup-
port a liquid Sun based on its thermal emission are definitive
[30–33]. Thermal evidence will always remain paramount,
because it points to the existence of lattice order on the sur-
face of the Sun [31]. Nothing further is required to demon-
strate the presence of condensed matter, as Kirchhoff himself
indirectly understood in the mid-1800s [2]. For those who re-
quire additional illustrations, sunspots and faculae provide an
interesting proving ground.

4 Directional spectral emissivity of sunspots and faculae

As key structural elements on the surface of the Sun, sunspots
and faculae provide solar physicists ample opportunity forob-
servation and discussion. In the days of Galileo and Scheiner,
even the association of sunspots with the solar body was cause
for extensive debate [34]. Since that time, sunspots and facu-
lae have come to reveal much about the Sun, despite the be-
lief that their visual appearance on the photosphere remains
an optical illusion in modern solar theory [29].

4.1 Sunspots

As early as 1774, Alexander Wilson [35] noted that sunspots
appeared as slight depressions relative to the solar surface.
Wilson reached this conclusion based on geometry [35]. Ac-
cepted solar models currently account for the visual depres-
sion of sunspots, or “Wilson effect”, using optical depth argu-
ments (e.g [36, p. 189–190] and [37, p. 46]). Such complexity
must be invoked because modern theories are built around a
gaseous solar body. Since these models have long deprived
the Sun of a true surface [2,29], they cannot rest upon geomet-
rical arguments to account for the Wilson effect [35] and must
have recourse to explanations based on optical depth (e.g [36,
p. 189–190] and [37, 46]). Conversely, the author has argued
in favor of an authentic solar surface, thereby directly chal-
lenging accepted models [29]. Hence, the Wilson effect [35],
one of the oldest and simplest sunspot observation, has pro-
vided a basis for questioning the established gaseous models
of the Sun.

Modern astrophysics has advanced an understanding of
sunspots which, on cursory examination at least, appears to
be complete. In reality, the true physical nature of these struc-
tures has remained elusive, despite our arsenal of data. Still,
much has been learned about sunspots. The Wilson effect was
established at the end of the 18th century [35]. Schwab dis-
covered the eleven year sunspot cycle in 1843 [38]. In the
same period, Carrington used sunspot observations and out-
lined the differential rotation of the Sun in great detail [39].

In 1908, George Ellery Hale discovered that sunspots are
regions of powerful magnetic activity [40]. The intensity of
magnetic fields at the center of sunspots has been determined
to be primarily vertical and known to increase in the dark nu-
clei of the umbra (e.g. [37, p. 75] and [41, p. 80]). Helioseis-
mic analysis of the Sun has revealed that sound waves travel
faster within sunspots relative to the photosphere [42,43]. All
of these phenomena are highly suggestive of increased den-
sity and metallicity within sunspots and have been utilizedto
support the idea that the Sun is condensed matter [28]. Strong
magnetic fields and the science of seismology are always as-
sociated with condensed matter, not the gaseous state of solar
models.

Sunspots have also been reported to have directional
emissivities that increase with angle of observation, as the
observer follows their movement towards the limb of the Sun
[41, p. 75–77]. One of the earliest reports of increased sun-
spot emissivity relative to the photosphere dates back to 1875
and Samuel Langley∗: “With larger images and an improved
instrument, I found that, in a complete ring of the solar sur-
face, the photosphere, still brilliant, gave near the limb ab-
solutely less heat than the umbra of the spots” [44, p. 748].
Edwin Frost would soon echo Langley: “A rather surprising
result of these observations was that spots are occasionally

∗Translations from French of Langley’s work [44] were executed by the
author, P. M. Robitaille.
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relatively warmer than the surrounding photosphere”
[45, p. 143].

Should the directional emissivity of sunspots truly in-
crease near the limb, such behavior would be highly support-
ive of metallic character [28]. Non-metals usually display
directional spectral emissivities that tend to decrease with in-
creasing angle of observation [46–48]. Metals often pos-
sess lower normal emissivities with respect to their direc-
tional spectral emissivities. The directional spectral emissiv-
ities of metals typically rise with increasing angle, then fall
precipitously with orthogonal viewing [46–48]. Thus, a care-
ful analysis of emissivities can provide important clues asto
whether sunspots (or faculae) are behaving as metals, poten-
tially generating strong evidence for condensed matter on the
surface of the Sun.

Truly gaseous objects should be devoid of emissivities
which are directionally dependent. Thus, the increased direc-
tional spectral emissivity in sunspots could only be explained
with extreme difficulty using gaseous solar models and often
attributed to the effect of “stray light” [41, p. 75–77]. Stray
light arguments have played an important role in the mod-
ern dismissal of increased emissivity in sunspots towards the
solar limb. Thus, despite 100 years of study, the exact direc-
tional emissivity within these objects remains an unresolved
issue in solar physics. The same cannot be said of facular
directional spectral emissivity.

4.2 Faculae

The directional spectral emissivity contrast of faculae, with
respect to the photosphere, has long been known. George
Ellery Hale wrote, relative to the emissivity of the faculae:
“The bright faculae, which rise above the photosphere, are
conspicuous when near the edge of the Sun, but practically in-
visible when they happen to lie near the center of the disk. . .”
[49, p. 85–86]. Hale later re-emphasized the changing emis-
sivity of the faculae as a function of position on the solar disk:
“Mention has already been made of the faculae, which are
simply regions in the photosphere that rise above the ordinary
level. Near the edge of the Sun, their summits lie above the
lower and denser part of that absorbing atmosphere which
so greatly reduced the Sun’s light near the limb, and in this
region the faculae may be seen visibly. At times they may be
traced to considerable distances from the limb, but as a rule
they are inconspicuous or wholly invisible towards the central
part of the solar disk” [49, p. 90].

In 1961, Rogerson presented an elegant summary of the
increase in facular directional emissivity observed near the
solar limb [50]. This work was complemented with theory
and a few photographs [50]. Rogerson noted that the con-
trast variation between the faculae and photosphere increased
to a maximum of about 64% near the very limb of the Sun
[50]. Today, the center to limb variation (CLV) of facular
emissivity is widely accepted and studied [51–54], as has the

grouping of faculae with sunspots (e.g. [55, p. 42–43] and [56,
p. 248–249]), and the identification of faculae as regions of
intense magnetic activity [57–59].

The association of bright faculae with sunspots can be
traced at least to the middle of the 19th century. According to
de la Rue and his team, in 1865: “It would thus appear as if
the luminous matter being thrown up into a region of greater
absolute velocity of rotation fell behind to the left; and we
have thus reason to suppose that the faculous matter which
accompanies a spot is abstracted from that very portion of
the Sun’s surface which contains the spot, and which has in
this manner been robbed of its luminosity” [60]. This direct
association of sunspot and facular matter has recently been
re-emphasized as a result of studying large flares on the solar
surface [61].

While faculae display CLV with respect to their spectral
emissivity, their emissivity contrast remains highly associated
with the magnetogram signal [59]. Facular contrast, after in-
creasing to a maximum nearµ = 0.2 (whereµ = cosθ and
θ is the heliocentric angle between the pixel of interest and
direction of the Earth;r, the distance from the disk center, is
given byr = Rsinθ, if R represents the solar radius) has been
observed to drop rapidly when moving even closer towards
the limb [52]. This finding [52] appears to be in agreement
with Spruit’s “hot wall” model of facular emissivity [62,63].

Spruit’s “hot wall” model stated that faculae appeared
darker when viewed directly from above because very lit-
tle of the “hot wall” was visible. As the faculae moved to-
wards the limb, the “hot wall” became increasingly visible
and, hence, the structures appeared bright. With increasing
distance towards the limb, the “hot wall” once again fell out
of the line of sight, being obscured by the trailing wall, and
the faculae once again appeared darker (see [53] for addi-
tional detail). Others have reported that facular contrastcon-
tinues to increase towards the limb (e.g. [51]). This behav-
ior would be more consistent with the “hot cloud” model
[50, 64, 65]wherein the faculae are viewed as floating above
the photosphere [53]. Today, Spruit’s “hot wall” model has
gained almost universal acceptance, as more in accordance
with observation (e.g. [66,67]).

Alternatively, it is herein proposed that the directional
spectral emissivity observed in faculae constitutes one ofthe
most elegant proofs that the Sun is comprised of condensed
matter. The reasoning remains that advanced in section 3.1
(see also [28]), with the important distinction that the direc-
tional spectral emissivity changes in faculae, unlike sunspots,
are uncontested [51–54, 57–59, 66, 67]. Moreover, the obser-
vation that directional spectral emissivity contrast in faculae
increase towards the limb, before rapidly subsiding at the very
edge of the Sun [52], strongly supports metallic behavior in
these structures [28,46–48].

On the Earth, the existence of directional spectral emis-
sivity in condensed matter has been established [46–48, 68].
Materials display emissivities which always manifest their

P.-M. Robitaille. Complimentary Evidence of Metallic Behavior on the Surface of the Sun 21



Volume 1 PROGRESS IN PHYSICS January, 2013

atomic nature and structure, in addition to the temperature
of observation [46–48,68]. Every material possesses a unique
signature and this constitutes a powerful lesson from the study
of condensed matter [46–48,68].

The idea that faculae are condensed matter based on di-
rectional emissivities also gains support from the realization
that these objects, like sunspots, are regions of intense mag-
netic activity [57–59]. The ideal means of accounting for
this activity remains the invocation of conduction bands. A
solar body which is comprised of liquid metallic hydrogen
and adopts a layered graphite-like lattice presents a wonderful
material to account both for the directional spectral emissivi-
ties of faculae and the associated high magnetic field [5, 28].
While condensed matter can easily support such fields, there
remains no evidence on the Earth that gases, in isolation,
can generate powerful magnetic fields. While it is true that
gaseous plasmas respond to the presence of magnetic fields,
they certainly do not possess the required structure to create
such phenomena.

5 Conclusion

Despite the wide acceptance of Spruit’s “hot wall” model of
facular emissivity [62] numerous problems exist with such
approaches.

First, modern models of solar emissivity are fundamen-
tally dependent on elemental and ionic opacities within the
Sun. However, the solar spectrum cannot be generated using
the sum of individual opacities. The author has designated
solar opacity as the Achilles’ heel of the gaseous solar mod-
els [30]. It is not reasonable to account for solar emission
with phenomena which cannot explain the simple emissivity
found on the Earth within graphite [30].

Second, a discussion of facular emissivity often focuses
on local thermal equilibrium (LTE) arguments (e.g. [66]) and
such arguments are not applicable to the Sun [30]. The Sun
operates well outside the confines of local thermal equilib-
rium and Milne’s argument in support of such a regimen [69–
72] leads to conduction, not equilibrium [30].

Third, the assignment of temperatures, based on emissiv-
ities on the solar surface, constitutes a direct violation of the
principles associated with thermal emission [30–33], as has
been highlighted by Max Planck himself [73,§101] and dis-
cussed in detail [74].

Finally, the idea that a fully gaseous object can support
structure remains contrary to the known principles of physics.
Objects such as “walls”, even when only considering emis-
sivity, require condensed matter. They cannot be mimicked
by gases with densities approaching that of the best vacuums
achievable on the Earth [27].

In modern solar theory, sunspots are thought to be dark,
as the magnetic fields they contain prevent hot gases from ris-
ing from the interior of the Sun (e.g. [75]). Conversely, the
brightness of faculae are explained when magnetic fields di-

lute the solar material beneath them and causes the light to
escape more easily. These explanations constitute stark con-
trasts with one another, while at the same time discounting
much of what is known on the Earth relative to thermal emis-
sivity. The fact remains that gases are unable to emit photons
in a directionally dependent manner. Astrophysical explana-
tions relative to the causes of directional emissivity, as related
to photospheric limb darkening, solar granulations, sunspots,
and faculae, with their reliance on “optical depth” and “solar
opacities”, remain at a serious disadvantage, relative to solar
models based on condensed matter [27–30].

Irrespective of the mathematical elegance associated with
modern solar models, there is no observational support that
the body of the Sun is a gas. Given the nature of the so-
lar spectrum, seismic activity, and the presence of structural
entities such as sunspots, prominences, and faculae, modern
theory must constantly resort to mathematical arguments, or
the presence of magnetic fields, in order to endow a gaseous
Sun with the properties of condensed matter [8–10]. In real-
ity, while the corona displays features consistent with gaseous
plasma, the photosphere, with its sunspots, faculae, and erup-
tive prominences, strongly manifests the condensed natureof
the solar body. The idea that solar temperatures forbid the
formation of condensed matter in the Sun ignores the reality
that the phases of matter are not solely determined by tem-
perature, but are a manifestation of many factors, including
pressure of formation and the internal physical propertiesof
materials [5–7].

Currently, numerous lines of evidence strongly support
the condensed nature of the Sun. These include:

1) the continuous nature of the thermal spectrum [6, 27–
30],

2) photospheric limb darkening [27,28],

3) the absence of solar collapse [5,6,27],

4) a solar density (1.4 g/cm3) consistent with a hydrogen
lattice [6,27],

5) the presence of seismic activity [6,27],

6) the behavior of mass displacement on the solar surface
[6,27],

7) the chromosphere and critical opalescence [27],

8) the existence of solar oblateness [6,27],

9) the extensive surface activity [6,27,28],

10) the orthogonal nature of photospheric/coronal
flows [27],

11) the ability to image the solar surface [6,27–29],

12) the presence of a powerful solar dynamo [27],

13) the nature and behavior of sunspots, including the Wil-
son effect [27,28], and

14) the structure and dynamic evolution of solar granula-
tion [28].
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Each of these phenomena can be readily incorporated into a
condensed model of the Sun. Conversely, gases can neither
support nor act as structural entities. A striking example rel-
ative to thermal emission and the solar opacity problem in
gaseous models has been addressed in detail [30].

In this work, a fifteenth line of evidence for the condensed
nature of the Sun is presented:

15) the directional spectral emissivity of faculae. Emis-
sivity fundamentally reflects a “Planckian proof” or a
“thermal proof” for condensed matter. Along with
1) the thermal appearence of the solar spectrum,
2) the limb darkening of the photosphere, 3) the di-
rectional spectral emissivity of sunspots, and 4) the di-
rectional spectral emissivity of granulations [28], the
emissivity of faculae constitutes one of the most pow-
erful lines of evidence that the Sun is condensed matter.
It therefore represents the fifth thermal proof for con-
densed matter on the surface of the Sun.

It remains highly likely that the Planckian proofs consti-
tute direct physical evidence for a solar lattice [31]. Through
the study of directional spectral emissivity, they argue for
metallicity both within sunspots and faculae. Such metallicity
represents a manifestation of the lattice and the conduction
bands which it supports. The Planckian proofs also remind
us of the need to properly address and understand complex
emission mechanisms. Driven by a desire to better compre-
hend the solar spectrum, perhaps someday, the physics com-
munity, at last, will link thermal emission to a unique physical
process as the author has suggested [31–33]. In so doing, con-
densed matter and theoretical physicists will finally conclude
the work initiated, but left unfinished, by Max Planck [73].
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The proposed model is based on J. Wheeler’s geometrodynamic concept, in which space
continuum is considered as a topologically non-unitary coherent surface admitting the
existence of transitions of the input-output kind between distant regions of the space in
an additional dimension. The existence of closed structures (macrocontours) formed at
the expense of interbalance of gravitational, electric, magnetic and inertial forces has
been substantiated. It is such macrocontours that have been demonstrated to form — in-
dependently of their material basis — the essential structure of stellar objects (SO) and
to determine the position of these objects on the Hertzsprung-Russell diagram. Mod-
els of the characteristic types of stellar objects: stars and compact bodies emerging in
the end of stellar evolution — have been presented, and their standard parameters at
different stages of evolution have been calculated. The existence of the Hertzsprung-
Russell diagram has been substantiated, and its computational analogue has been given.
Parallels between stellar and microcosmic objects are drawn.

Recognizing the Seeker, Nature
itself will come to meet him.

Rockwell Kent

1 Introduction

Wheeler’s geometrodynamic concept, in which microparti-
cles are considered as vortical oscillating deformations on a
non-unitary coherent surface, was earlier used by the author
to construct model objects of the microcosm [1, 2]. Those
works substantiated the existence of closed structures (con-
tours), determining the properties of microparticles. At the
same time, the idea about transitions between distant regions
of space in the form of Wheeler’s “wormholes” can be ex-
tended to the scale of macrocosm, and some contemporary
astrophysical theories has already made use of it [4]. In this
paper, the existence of closed contours is substantiated at the
cosmological scale, and grounds are given that they make the
basis of stellar objects (SO).

The work does not consider the nature of the cosmologi-
cal medium that forms stellar bodies, nor it does the nature of
mass/charge carriers, force interactions etc., or various phys-
ical manifestationsof the evolutionary behavior of stellar ob-
jects. These tasks are a subject of specific disciplines.

The model presented in the paper has an outline, illustra-
tive character and suggests a new look at the problem. For the
model, the only important thing is theexistenceof the afore-
mentionedentities, forming certain types of stellar structures
and determining their evolution. The work does use specific
SO terms, but only schematic SO models are considered, with
their evolution depending only on a few parameters reflecting
the most important features of the real objects.

The SO models used here are based on the balance be-
tween main interactions: electrical, magnetic, gravitational

and inertial — with no additional coefficients introduced. The
analysis gives good qualitative results and, in a number of
cases, plausible quantitative parameters for the statistically
averaged (typical) stellar objects.

2 Initial premises

As was shown earlier [1], from the purely mechanistic point
of view the so-calledchargeonly manifests the degree of the
nonequilibrium state of physical vacuum; it is proportional to
the momentum of physical vacuum in its motion along the
contour of the vortical current tube. Respectively, thespin
is proportional to the angular momentum of the physical vac-
uum with respect to the longitudinal axis of the contour, while
themagnetic interactionof the conductors is analogous to the
forces acting among the current tubes.

It is given that the elementary unit of such tubes is a unit
with the radius and mass close to those of a classical electron
(re andme).

It should be noted that in [1, 2] the expressions for the
electrical and magnetic forces are written in a “Coulombless”
form, with charge replaced by electron limiting momentum.
In this case, the electrical and magnetic constants (ε0 andμ0)
are expressed as follows:

ε0 =
me

re
= 3.33× 10−16 kg/m, (1)

μ0 =
1
ε0c2

= 0.0344 N−1. (2)

The electrical constant here is, in fact, the linear density
of the vortex tube, with the mass:

m= ε0 l , (3)
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wherel is the length of the vortex tube (thread) or contour.
To combine the interactions, let us express them in a di-

mensionless form with the common force dimension factor
1
μ0

. Taking into account (1) and (2),

Fe =
1
μ0

(
re

r0

)2

ze1ze2, (4)

Fm =
1
μ0

l
2πr0

r2
e

(c× [sec])2
ze1ze2, (5)

Fg =
1
μ0

1
f

(
re

r0

)2

zg1zg2, (6)

Fi =
1
μ0

re

r0

(v0

c

)2
zg, (7)

where v0, r0, ze, zg, f are the rotary velocity and rotary ra-
dius or distance between the vortex tubes, the relative values
of charge and mass in the parameters of electron charge and
mass and the ratio of electrical-to-gravitational forces, which,
under the given conditions, is expressed as follows:

f =
c2

ε0γ
= 4.16× 1042, (8)

whereγ is the gravitational constant.
The balance of electrical and magnetic forces Fe= Fm

gives a geometrical mean, a characteristic linear parameter
that is independent of the direction of the vortex tubes and
the number of charges

R� =
√

r0 l =
√

2π c× [sec]= 7.52× 108 m, (9)

a magnitude close to the Sun radius and the sizes of typical
stars.

Thebalance of magnetic and gravitational forces Fm= Fg
also results in a geometrical mean:

√
r0 l =

√
zg1zg2

ze1ze2

√
2π
f

c× [sec]=
√
ε

f
R� , (10)

where the ratio of the productsε= zg1zg2/ze1ze2 is an
evolutionary parameter, which characterizes the state of the
medium and its changes, as the mass carriers become pre-
dominant over the electrical ones and, as a matter of fact,
shows how the material medium differs from vacuum.

In the general case, expression (10) gives a family of
lengthy contours, consisting of contra-directional closed vor-
tex tubes (mg-contours). The evolutionary parameterε pro-
portionally increases the mass of the vortex tube for themg-
element:

m= εε0 l. (11)

The vortex tubes can consist, in their turn, of a number of
parallel vortex threads, whose stability is ensured by thebal-
ance of magnetic and inertial forces(Fm = Fi ; mi-zones). As
follows from this balance,

v0i =

√
ze1ze2

zg

√
re l
2π
× [sec−1] . (12)

Unidirectional vortex threads of the lengthl rotate, with
the rotary velocity v0i , about the longitudinal axis along an
orbit of indeterminate radius. When they are filled with the
chains of single charges, having the mass of an electron, and
their numberze = zg = l/re (or when the tubes consist of
single vortex threads in the quantity ofl/re), we get the fol-
lowing equation:

v0i =
l
√

2π
× [sec−1] . (13)

The balance of gravitational and inertial (centrifugal)
forces Fg = Fi gives avirial , from which one can derive the
maximal gravitational mass of the object, satisfying condi-
tion (9):

Mm =
R� c2

γ
= f R� ε0 = 1.012× 1036 kg. (14)

3 Structurizations of the primary medium and parame-
ters of stellar objects

Now let us consider objects in which more than one pair of
forces is balanced.

Let us assume that an initially unstructured maximal mass
evolves and becomes more complex — through the emer-
gence ofmi-zones, consisting of single elements of the length
li and massmi . As follows from the constancy ofμ0 in the
general case,

1
μ0

= ε0 c2 =
miv2

i0

ri
(15)

wheremi = ε0 li is the mass of a vortexmi-element. From
(13) and (15), one can obtain, having in mind (9), the ratio
for its geometrical parameters:

l3i
ri

= R2
� . (16)

Driven by gravitation, the single tubes (threads) will com-
bine into a local structure, the mass of which can also be cal-
culated from the virial:

Mi =
riv2

i0

γ
. (17)

Let the object containzi local zones; then its mass will
be M0 = zi Mi . Let us introduce a dimensionless parameter
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M = M0/Mm. Then, making some transformations, one can
eventually obtain uniform equations for all the parameters of
the evolving objects with an arbitrary relative massM:

number of local zones

zi =
1

M1/4
, (18)

zone radius
ri = M3/4R� , (19)

length of the vortex tube (thread)

li = M1/4R� , (20)

rotary velocity in the zone

v0i = M1/4 c, (21)

number of single vortex threads in the zone

n =
Mi

mi
= f M , (22)

and, having in mind (10), one can taken = ε.
Thus, as its mass decreases, theobject simultaneously be-

comes more and more complex, getting subtly structured with
mi-zones.

Let us assume that the initial state of SO is a rotating disk,
which can further develop into larger structures (mg-contours)
of the sizeR0 × d0, where the contour length isR0 = l and
diameter isd0 = r0. With these designations, equation (10)
will look as follows:

√
d0 R0 =

√
ε

f
R� . (23)

Let us accept, quite schematically and roughly, thatmg-
contours in the disk are oriented radially-spirally and are
pulled in towards the center by the radial components of the
gravitational forces. These forces are approximately equal to
(d0/R0)Fg. Then, from the balance of centrifugal and gravi-
tational forces,

v0 =

√
d0

R0

√
γm
R0
, (24)

wherem andR0 are themg-contour mass and the averaged
disk radius respectively.

Let us define the number ofmg-contours as

z0 =
R0

d0
. (25)

With equation (11) in mind, the total mass of the object
will amount to

MMm = z0 m= z0 εε0 R0. (26)

Taking into account equations (8), (9), (23–26) and mak-
ing some transformations, we can find parameters of the
structured disk:

R0 = M1/3 R� , (27)

z0 =
f M2/3

ε
, (28)

v0 =
εc

f M1/3
. (29)

The parameters found are averaged when the disk struc-
tural elements are tightly packed, and they determine the core
of the object. Let us define the object boundaries — under
the condition that, if the system ofmg-contours is rotating as
a rigid disk, the rotary velocity of contours at the periphery
must not exceed the speed of light. In this case, the maximal
radius of the disk will be:

Rm =
R0 c
v0

= z0 R� . (30)

Let us further assume — within the framework of our sim-
plified model — that the mass of the object is concentrated
either in the center (thestate of core) or at the periphery (the
state of outer layer). Obeying the angular momentum conser-
vation law, velocity at the periphery cannot be higher than:

vm =
v0R0

Rm
=

v2
0

c
. (31)

Let the periods of core and outer layer rotation be ex-
pressed asτ0 = R0/v0 and τm = Rm/vm respectively (the
duration of the inner and outer cycles).

Having in mind (27–31) and taking into account that√
2π = 2.51, we obtain

τ0 = 2.51M2/3 f
ε
, (32)

τm = 2.51M4/3

(
f
ε

)3

. (33)

Indeed, star cores rotate much faster that their outer layers
[5]. As the medium condenses and becomes more and more
different from vacuum, the evolutionary parameterε grows.
There are at least two characteristic values of this parameter
satisfying the following conditions:

1. The number ofmg-elementsz0 is equal to the number of
mi-structureszi , which should correspond to the most
stable orbalancedstate of SO in the process of its evo-
lution. In this case (zi = z0) — as it follows from (18)
and (28),

ε = f M11/12 . (34)

2. The number ofmg-elements is reduced to one, which
will include all the mi-structures. This state corres-
ponds to the end of a certain period of object’s evo-
lution, i.e., to thedegeneratestate. Here, from (28),

ε = f M2/3 . (35)
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In the state of degeneration, whenz0 = 1, the period of
core rotation will — as follows from (30), (32), (35) — be
constant for any masses and amount to 2.51 sec, whereas the
size of the outer layer will be equal to the standard radiusR�.
In the general case, one can write, combining (34) and (35):

ε = f Mk , (36)

where the parameterk > 2/3.
Visible dimensions of stars, i.e., radii of their photosphe-

res, depend on many a specific factor; as a rule, they do not
equal to the radiusRm and can be evaluated only roughly. The
same can be said about star temperatures. Let us take the mass
of the Sun as a standard (the validity of such a choice will
be justified later) and consider the radius of the solar photo-
sphere being close toR�. Then, within the limits of the main
sequence for the stable state and taking into account our disk
model, the relative radius of the photosphereRf for a star of
arbitrary mass can be expressed via the mass of the Sun. It is
evident that for atwo-dimensionalmodel,

Rf =

(
M
M�

)1/2

(37)

and in the general case,

Rf =

(
M
M�

)i

, (38)

where i = 1 . . . 1/3 is a coefficient reflecting the density of
packing ofmg-contours in the object.

To evaluate the model object temperature, let us consider
its radiation as that of black body. Let the maximal temper-
ature of radiation be achieved at the Compton wavelength of
electron,k = 2.426× 10−12 m, and let us assume that the
radiation wavelength is inversely proportional to the rotary
velocity of the contour vortex tubes at a given radius. Then,
from Wien’s formula,

T =
b
λ
, (39)

whereb = 0.0029× 106 m× ◦K. Having in mind this propor-
tion, the radiation temperatures at the radii of core and pho-
tosphere (and an arbitrary radius as well) can be expressed
as

T0 = Tk

(v0

c

)
(40)

and

Tf = Tk

(v0

c

) (R0

Rf

)

, (41)

whereas the energy of radiation (here and so forth, in keV) as

E = 511
v0

c
keV, (42)

whereTk is the limiting temperature, corresponding toλk and
equal to 1.19× 109 ◦K.

Parameters Balanced state Degenerate state

ε 2.47× 1037 6.56× 1038

z 26.6 1

The core

R0 0.0126 0.0126

v0 4.7× 10−4 0.0126

τ0, sec 66.9 2.51

T0
◦K 5.6× 105 1.5× 107

The outer layer

Rm 26.6 1

vm 2.21× 10−7 1.57× 10−4

τm, sec 3× 108 = 9.6 years 1.58× 104 = 4.4 hours

Tm
◦K 263 1.89× 105

The photosphere

Rf 1 1

Tf
◦K 7050 1.89× 105

Table 1: Note — radii and velocities are expressed as fractions ofR�
andc.

4 Model adequacy

It seems improbable that such a schematic and simple model
would yield plausible results towards stellar objects. Yet it
does. Let us calculate some parameters of asolar-mass star.
The mass of the Sun equals to 2× 1030 kg; in relative units,
upon division byMm, M� = 2× 10−6.

Table 1 shows the results of calculations according to the
formulas given above.

In our notation,angular momentumof the Sun is equal to

0.4(2× 1030) v0 R0 = 0.4 M23/12
� Mmc R� =

= 1.09× 1042 kg m2/sec, (43)

where the coefficient 0.4 takes account of the spherical shape
of the body.

Comparing the calculated equilibrium-state parameters of
this averaged standard object (a solar-type star) with the ac-
tual parameters of the Sun, one can see a close correspon-
dence between their sizes, surface and core temperatures and
periods of the solar cycle activity. The Sun’s angular momen-
tum is calculated with almostperfect precision.

By the end of evolution, upon reaching the degenerate
state (atz0 = 1), the periods of the inner (τ0) and outer (τm) cy-
cles diminish to their limits (Table 1). In this case, the single-
thread spiral structure would flatten into a disk — thick as the
size of the core (R0) and radiating to the sector of the disk
plane. The period of radiation will beτm = 4.4 h; impulse
duration,τ0 = 2.5 sec; and temperatures of the core and outer
layer correspond to energies, 6.4 and 0.08 keV respectively.
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The presence ofmi-zones in themg-contour will bring un-
certainty into the period of radiation, which will be inversely
proportional to the number ofmi-zones. For an object of
the solar mass, the uncertainty in the period of impulses will
amount toτm/zi = 4.4h/26.6 = 598 sec.

These parameters are typical and correspond well to the
x-ray sources,barsters. For example, they perfectly fit the
parameters of the X-ray source 3U 1820-30 in the globular
cluster NGC6624 [5] etc.

Of course, the model presented here reflects only some
essential features of stellar object structure. A stellar ob-
ject can consist of toroids (balance of magnetic and grav-
itational forces), whose current-conducting elements rotate
above the closed longitudinal axis of the tor (balance of mag-
netic and inertial forces), whereas the toroids themselves are
oriented in the plane of the rotating disk (balance of gravita-
tional and inertial forces). Such a system should hardly be
stable. The core would rotate faster than the periphery, and
themg-contours would coil up, with their kinetic energy trans-
forming into other forms (and then, probably, transforming
back). Describing such a system as a multiturn plane-spiral
mechanical pendulum might be nave, yet in any case, there
should take place anoscillatory process of the object’s gravi-
magnitodynamical structure. Indeed, the paired dark spots in
the equatorial zone of the Sun seem to be the outlet ofmg-
contours — undergoing magnetic reversal and changing their
intensity and polarity with the period of 11 years. Their regis-
tered quantity (from several to a hundred) does not contradict
the calculated meanz0 = 26.6.

Now let us calculate thedensity of the SO core. In the
atoms of stellar matter (hydrogen, for the most part), sub-
stance circulates, according to our model, withinp+− e− —
contours with the massε0 r0, and circulation speed cannot be
higher than that of light [1].

At the same time, the magnitude of the chargee0 is con-
stant at any quantum number and equals to the momentum of
the contour massε0 r0 v0. At v0→ c, r0→ r0min, therefore

r0min =
e0

ε0 c
= 1.65× 10−12 m . (44)

The density of maximally condensed hydrogen atoms will
amount (for a spherical volume) to

ρmax =
3mH

4πr3
0min

= 8.82× 107 kg/m3 , (45)

wheremH is the mass of a hydrogen atom.
Now let us represent the mean density of the core matter

as a ratio of the core mass to its cubic radius. Having in mind
the corresponding expressions, one can see that the density is
invariable and depends only on the gravitational constant:

ρ0 =
MMm

R3
0

=
Mm

R3
�

=
1

2πγ × [sec]2
=

= 2.38× 109 kg/m3 . (46)

Fig. 1: The diagram “evolutionary parameter — mass”.

As follows from the density ratio, a volume equal to that
of a single hydrogen atom should contain 27 atoms of the
initial matter, which corresponds, by the number of protons,
to atoms of the iron group. The density is typical for white
dwarfs, such as the famous Kuiper star.

It is interesting that the parameters obtained:R�, ρ0 and
τ0 = 2.51 sec — practically indistinguishable from the values
that should characterize the neck of a hypothetical magnetic
“wormhole” of the massMm [4].

5 Analogues of the Hertzsprung-Russell (H-R) diagram
and their applications

The Hertzsprung-Russell (H-R) diagram shows the evolution-
ary position of stellar objects on the “spectral class (temper-
ature) — luminosity” coordinate plane. Let us consider its
analogues: diagrams “evolutionary parameter — mass”, and
“temperature — mass”.

5.1 The diagram “evolutionary parameter — mass”

On such a diagram (Fig. 1),ε(M) dependencies would better
be plotted on a logarithmic scale. At anyk, the diagram rays
converge on a point corresponding to the limiting massMm

and limiting evolutionary parameterεmax = f .
Specific parameters of SO will depend on the position of

the object on the diagram. In general, with the converging
point Mm approached then, as follows from (27–33), (40),
(41), the number ofmg-contours will tend to 1; the rotary
velocity, to the speed of light; the core and outer layer radii,
to R�; the periods of the inner and outer cycles, to 2.51 sec;
and the core and outer layer temperatures, toTk.

Evidently, for any given SO, the course of evolution may
go both towards largerε values (condensation of medium),
up toz= 1, and smallerε values (depression of medium), up
to the shedding of the envelope at the end of the evolutionary
process.Using the microcosm analogies, one can compare
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these states to the Bohr and ionized atoms respectively.
Let consider a stellar object which is in the main sequence

and has a value of the evolutionary parameter corresponding
to the line of equilibrium atk = 11/12. At ε = const, the
equilibrium massM0 will correspond to a smaller massMp

on the line of degeneration, for whichk = 2/3 andz0 = 1
(Fig. 1). In this case, one can obtain a mass ratio from (34)
and (35):

Mp = M11/8
0 . (47)

Since the mass of the Sun is considered standard, we shall
take the evolutionary parameter value on the line of equilib-
rium for the solar massεst as standard too.

5.2 Collapsing red giants

At the end of their evolution, stars become red giants and then
shed their envelope (transfer to the state of the core), turning
to white dwarfs, neutron stars or, in the case of the largest
masses, “black holes”.

Let us consider a star of chosen characteristic mass, for
which everymg-contour on the line of equilibrium has the
mass of the Sun, i.e., satisfying the conditionM0 = z0 M�.
Taking into account (28) and (34), we obtainM0 = M4/5

� =

2.76× 10−5 = 13.8 s.m. (masses of the Sun). Let us calculate
the typical mass of a white dwarf forming from the core of
such a star. Let us assume that on the line of star equilibrium,
its core (and, therefore, the massMp as well) are on the line
of degeneration (Fig. 1). Then, having in mind (47),

Mp = M11/8
0 = M11/10

� = 5.38× 10−7 , (48)

which corresponds to 0.27 s.m.
After the envelope and core are separated, they can be

considered discretely. Let the envelope evolve to a standard
parameterεst, and the core delay at the critical stage of the
transformation process. Combining these states, let take the
white dwarf massMp be proportional to the number ofmg-
contourszp — of the total number ofmg-contoursz0 of the
massM0 atεst:

Mp =
M0 zp

z0
. (49)

Having in mind (28), (34) and (48), one can find the num-
ber ofmg-contours in the core:

zp =
f M25/24

0

εst
= M−1/12

� = 2.98. (50)

Therefore, the total mass of the star will be equivalent to
M0/Mp = M−3/8

0 = M−3/10
� = 51.2 white dwarf masses, which

corresponds to the number of nucleons in the nucleus of iron
(more precisely, ifzp = 3, thenM� = 1.9×10−6 and the num-
ber of “nucleons” is equal to 52). Here we see another anal-
ogy with the microcosm:a standard red giant, containing
52 white dwarf masses, and a white dwarf, containing three

Fig. 2: The diagram “temperature-mass”.

mg-contours, will match an atom of iron, containing 52 nu-
cleons, and a nucleon, consisting of three quarks. Later,
other analogies with the microcosm will come into view.

Thus, it seems that the mass of the Sun and its evolutional
parameterεst on the line of equilibrium are, indeed, standard.
At z0 = 3, the parameterk ≈ 0.75, and it changes slightly
in a wide range of masses. One can, therefore, expect that
the condition (50) is optimal for other masses as well. Then,
from (50),

εst =
f M25/24

0

3
. (51)

5.3 The diagram “temperature-mass”

Since logarithms of luminosity and mass are approximately
proportional within the limits of the main sequence, it would
be convenient to draw the H-R diagram analog in the coordi-
nates of “temperature — mass”.

From (27–30), (34), (40) and (41), one can obtain ex-
pressions of theT(M) form, corresponding to the equilibrium
temperatures at the radii of the outer layerRm and coreR0 at
k = 11/12. On a logarithmic scale (Fig. 2), they are straight
lines, converging on the pointMm (outside the diagram):

Tm = Tk M7/6 , (52)

T0 = Tk M7/12 . (53)

Stars of the main sequence have photospheres whose radii
are usually smaller thanRm. To construct dependenciesT(M)
for the photosphere, let us use formula (37). Taking into ac-
count (38), one can obtain, in the general case:

Tf = Tk Mi
� Mk−i . (54)
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For the equilibrium state atk = 11/12, we obtain three
lines corresponding to three possible variants of packing of
mg-contours: into one-, two- and three-dimensional structures
— i.e., ati = 1,1/2,1/3 (Fig. 2):

Tf1 = Tk M� M−1/12 , (55)

Tf2 = Tk M1/2
� M5/12 , (56)

Tf3 = Tk M1/3
� M7/12 . (57)

These lines converge on the point with coordinates close
to the real parameters of the Sun, and their crossing with the
outer-layer equilibrium line gives three characteristic masses:
M1, M2 andM3. The massM1 = M4/5

� = 13.8 s.m., i.e., this
mass also satisfies the conditionM1 = z0 M� and is equal to
the mass of a red giant, which was calculated in the previous
section. The massM2 = 79.4 s.m. is the largest possible
mass for a main-sequence star. According to (47), this mass
can give rise to an object whose mass will be 3 s.m., which
corresponds to the maximal mass of a neutron star. The mass
M3 = 277 s.m. is the largest possible mass for a star with the
most condense packing. According to our model, the struc-
ture of SO is two-dimensional; hence, stars of the main se-
quence are on the lineTf2 (bold line). Here, on the diagram
T-M, one can also see isolines of the parameterε, which, fol-
lowing (27–30), (41) and combining the constants, will look
as

Tf = 6.86× 10−77 ε
2

M2/3
. (58)

It should be noted that specific sequences of the globular-
cluster stars formed from a medium with the same evolution-
ary parameter are also located along their ownε isolines.

When stars leave the main sequence and evolve towards
lesserε andT (to the right on the diagram), SO parameters
change; particularly increasing is the envelope radius. Let us
assume that beyond the line of equilibrium,Rf = Rm (actu-
ally, the visible sizes of a star depend on many specific factors
but we shall abstract from them in our model).

When calculating temperatures of the star envelopes (41),
we implied that a part of the core radiation energy is trans-
formed into other forms or spent in the star inner processes.
But for the envelopes of giant stars, which are located to the
right of the equilibrium line on theT-M diagram, formula (41)
gives underrated results. The average density of giant stars is
extremely low, and the energy of hot core radiation will in-
significantly be absorbed by the rarefied atmosphere of these
stars. In this case, to determine temperature of the photo-
sphere, one can use the well-known formula for thermal radi-
ation power, considering core as a radiation source:

N = σT4S , (59)

whereσ is the Stefan-Boltzmann constant equal to 5.67×10−8

W m−2(◦K)−4. Having in mind the evident dependence of

temperature on the linear size, the temperature of the photo-
sphere can be expressed via the temperature of the core:

Tf = T0

(
R0

Rf

)1/2

. (60)

Taking into account (27–30), (40) and acceptingRf = Rm,
one can obtain, by analogy to (58),

Tf = 1.4× 10−55 ε
3/2

M1/2
. (61)

This formula should be used when the star evolves beyond
the equilibrium line and the radius of its envelope greatly in-
creases. It is evident that the formula gives a bit overrated
values ofTf . In Fig. 2, isolines plotted according to (61) are
indicated asεst.

Taking into account (51) and substituting theεst expres-
sion in (61), one can obtain the lineT(M), along which stars
turning into red giants are lined up:

Tfg = 0.192Tk M17/16
0 . (62)

The parameters of stars with the massesM1 andM2 cal-
culated for differentε values are shown in Table 2.

As for the “superstar” object, with the calculated mass
M3 = 277 s.m., its existence has been verified. The recently
discovered star R136a1 has the following parameters:M0 =

265 s.m.,Rf = 63R� andTf >40000◦K [7]. The calculated
parameters of such a star — assuming it to be on the extension
of the main sequence — are as follows:Tf2, according to
(56), is equal to 72500◦K; ε from (61) is equal to 4.8× 1038;
Rf = Rm and, according to (30), is equal to 57R�. In other
words, the object should be somewhere to the right of the
main sequence line.

Located in the bottom part of the diagram are red dwarfs.
Their typical parameters are the following: mass, 0.1, . . . , 0.8
s.m.; radius, 0.1 . . . 0.85R�; temperature, below 3800◦K [8,
9]. Since their radii are approximately proportional to their
masses, they are on the lineTf1, but their temperatures are
lower, so it looks like they are on the extension of the main
sequence. It is supposed that they evolve towards more con-
densed states, i.e., towards higherε andT.

Lying on the lower segment of theTf3 line are brown
dwarfs. Their typical parameters are: mass, 0.012. . . 0.08
s.m.; temperature, 3000. . . 300 ◦K. Their radii change in-
significantly over the range of masses and are approximately
equal to that of Jupiter [10, 11].

At the very bottom of the diagram is the massM4 =

1.95× 10−9 — the giant planet Jupiter. The temperature of
its outer layer on the lineTf3 is equal, according to (57), to
123◦K, i.e., it is close to the temperature of the outer atmo-
sphere layers. The densities of Jupiter, brown dwarfs and the
Sun are approximately equal; all these objects are near the
line Tf3.

Thus, all the types of SO are arranged logically on the
T-M diagram.
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Parameters M1 = 13.8 s.m M2 = 79.4 s.m

ε1 εst1 ε2 εst2 εst1

ε 2.76× 1038 2.47× 1037 1.37× 1039 1.53× 1038 2.47× 1037

v0 0.00219 0.000197 0.0061 0.00068 0.00011

R0 0.0302 0.0302 0.0542 0.0542 0.0542

Rm 13.8 153.4 8.9 80 495

Rf 3.7 153.4 8.9 80 495

τ0, sec 34.5 388 22.3 200 1242

τm, days 83 1.15× 105 7 5037 1.2× 106

τmz, days 6 752 0.78 63 2409

T0, ◦K 2.6× 106 2.34× 105 7.2× 106 8.07× 105 1.3× 105

Tm, ◦K 5710 3290 44000 21000 1370

Tf , ◦K 21200 3290 44000 21000 1370

Table 2: Note — radii and velocities are expressed as fractions ofR� andc.

5.4 Variability of stellar objects

The types of variability of SO radiation are very diverse, and
variability is intrinsic, to some degree, to all SO including the
Sun. The most common type of variability is optical alter-
nating variability (pulsations). According to our model, such
pulsations are a natural result of the existence of oscillatory
processes in the complex SO structure.

The most stable, in terms of amplitude and period of bril-
liancy oscillations, are pulsating stars of high luminosity —
Cepheids, yellow giant stars [12, 13]. On the diagramT-M,
their position would correspond to the massM1 on the equi-
librium line Tm, whereRf = Rm.

Leaving the main sequence, stars become variable upon
crossing the isolineε1 (instability strip), corresponding to the
equilibrium parameterε for the characteristic massM1. As
follows from the diagramT−ε, the parameterε decreases for
masses larger thanM1 and increases for masses smaller than
M1 — until it reaches the isolineε1.

The masses of Cepheids are in the range 4. . . 20 s.m. The
minimal Cepheids mass is defined by the intersection of the
isolineε1 and the lineTf2, giving M = 4.1 s.m. which agrees
with the value indicated in [14]. One should bear in mind that
this intersectionpoint on the diagramT-M corresponds to a
segmenton the diagramε-M — from the line of equilibrium
to ε1. This segment corresponds to the initial period when
the star begins to descend the main sequence. During this
process,Rf → Rm, which results in the star luminosity to
grow. The growth is not reflected on theT-M diagram; on the
diagramH − R, it corresponds to the initial segment of the
star’s evolutionary track.

Going on, stars evolve in the direction of lowerε val-
ues and reach the isolineεst1 (asymptotic branch of giants,
ABG). The isoline corresponds to the equilibrium parame-
ter εst for the standard solar mass (Fig. 1), under which the

sizes of the star envelopes and the periods of their outer cy-
cles reach their maxima. Located on ABG arelong-period
variable stars(with the period of brilliancy oscillations up to
1000 days),semi-regular variable stars(with the period of
brilliancy oscillations up to 2000 days) and so on. Within the
framework of our model, their variability can be explained
not only by the existence of the outer layer period,τm, but
also by a heterogeneity of their outer layer radiance [15, 16].
The heterogeneity results from the passage — along the star
disk perimeter with the intervals ofτmz— of hot (cold) zones,
containingmg-contours.

The calculated parametersRm, Tm and τmz for M1 (Ta-
ble 2) are in a reasonable agreement with the averaged obser-
vation data for Cepheids atε1 and for long-period variables
atεst1 [12, 17].

The parameters of SO of the massM2 on the line of equi-
librium atε2 approximately correspond to those of hot super-
giants PV Tel-type, with the period of pulsations from 0.1 to
1 day. On the lineTfg at εst2, they correspond to the parame-
ters ofα Cyg-type super-giants, with the periods from several
days to several weeks [12]. Further evolution of such stars in
the direction of smallerε values results in the formation of
red super-giants.

6 Compact stellar objects

This group of SO includes white dwarfs, having the maxi-
mally compact packing of atoms, with the densityρ0, and
stellar bodies based on neutron stars, whose matter is com-
pressed to the nuclear densityρ j . Such objects are formed in
the extreme cases, when SO evolve in the direction of either
the largestε values (whenRf → R�; “outer-layer state”) or
the smallest ones (when the envelope is shed; “core state”).
In both cases, the initial oscillatory process is replaced with
the rotation of the final compact object, of the massMp, with
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the rate vp.
At the final stage of evolution, there is, as indicated in

[18], the possibility of a physical “coupling” of the star enve-
lope with the core. Let us assume that there exists aprocess
analogous to the absorption of an electron by the proton;
i.e., the final compact object acquires the momentum of the
outer layer, with the transition to an “excited” state. We
cannot consider the mechanism of this phenomenon within
the framework of our model (moreover, the envelope and the
core are considered here as different states of the same single
object), so let us restrict ourselves to a formal application of
the momentum conservation law:

M0 vm = Mp vp. (63)

6.1 White dwarfs

A white dwarf resulting from the star evolution towards lesser
ε values, should inherit the parameters of the star core by the
moment of the envelope shedding. For a star of the massM1

the parameters will be as follows: core temperature,
234000◦K; period of rotation, 388 sec (Table 2). According
to (47), (27) and (46), the mass, radius and mean density of
white dwarfs are 0.27 s.m., 0.0082R� and 2.38×109 kg/m3 re-
spectively. Indeed, very young white dwarfs can be observed
in the X-ray range; the periods of their pulsations are in the
range of tens to thousands of seconds, and they have typi-
cal sizes and densities being in agreement with the calculated
parameters [12, 19, 20].

A white dwarf resulting from the evolution of a low-mass
star towards largerε values (without shedding of the enve-
lope) should have the massMp ≈ M0. Then, its vp ≈ vm.

Having in mind (29), (31) and (36), let us represent vm as

vm = cM2k−2/3
0 (64)

and the period of rotation as

τm =
R0

vm
= 2.51M1−2k

0 . (65)

At z= 1 andk = 2/3, an object of the mass 0.27 s.m. will
have the following parameters: vm/c = 6.7× 10−5; τm = 308
sec; and the energy of radiation, according to (42), equal to
0.034 keV (T = 79000◦K). Here, the calculated parameters
are, too, typical for a young white dwarf. As the object on
the T-M diagram shifts to the right, the parameterk grows,
which corresponds to the decline of the rotary velocity and
temperature of the white dwarf.

On the diagram“spectrum-luminosity”, the zone of white
dwarfs seems much narrower than that on the diagramT-M,
since their luminosity is determined by the radius, which, ac-
cording to (27), is proportional to cubic root of the object
mass.

6.2 Neutronization

In the context of our model, the process of neutronization can
be represented as a loss of stability of the structure ofmg-
contours and the transition of the structure (through its inver-
sion along the vertical axis) from the plain two-dimensional
into a one-dimensional configuration, which is energetically
more favorable. Let us assume that the result will be a single
mg-contour or just a single vortical tube (neutron object).

Roughly, the parameters of such a primitive object can be
defined as in Chapter 3. Placing the parameterR along the
vertical axis and consideringz= 1, one can obtain:

vn =
f Mn c
ε
, (66)

dn =
ε2R�
f 2Mn

, (67)

Rn =
f Mn R�
ε

, (68)

τn = 2.51
(ε/ f )3

M2
n
. (69)

Rotary velocity cannot exceed the speed of light. There-
fore, at vn 6 c, ε > f Mn. Thus, for compact objects, the
parameterk in (36) should be6 1 (in any event, as follows
from the comparison of the calculated and actual data,k can-
not be much larger than 1). Let us limit ourselves to defining
parameters at vn = c. Expressingε from (66), one can obtain:

dn = Mn R� , (70)

Rn = R� , (71)

τn = 2.51Mn. (72)

It should be noted that a high-frequency modulation with
τn up to 10−6 sec is present on the radiation diagrams of some
neutron stars — pulsars [6].

As the evolutionary parameter grows, the sizes of a neu-
tron object shrink along the axes, and on the line of degener-
ation, atz = 1, one can rewrite expressions (67–69), having
in mind (35), in the following form:

dn = Rn = M1/3
n R� , (73)

τn =
R�
c

= 2.51 sec. (74)

Of course, this scheme is ideal. In reality, the objects
based on neutron stars are in some intermediate state, and in
the general case,

dn = M j
n R�, (75)

where j = 1/3, . . . , 1 is a coefficient taking account of the
object packing (shape).

It seems that the neutron state should be realized, to some
extent, in the core of any star — and this can be proved. Let
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represent the mass of a single vortex tube as that of a cylinder
of the lengthRn and radiusdn. Taking into account (70) and
(71),

Mn Mm = ρn (MnR�)
2 R�, (76)

whereρn is the vortex tube averaged density. Let us assume
thatρn cannot exceed the nuclear densityρ j , which shall be
considered equal tomp/r3

e = 7.47× 1016 kg/m3, wheremp is
the mass of a proton. Then, as follows from (76),

Mmin >
Mm

ρ jR3
�

, (77)

which, upon substitution of values, gives 3.19×10−8Mm. This
mass corresponds to 0.016 solar masses or 17 Jupiter masses
— exactly what the smallest cosmological mass, which is still
considered a star, should be.

6.3 Masses of “black holes”

The diagramsε-M andT-M show the boundary of a critical
mode, where the rotary velocity of a vortex tube reaches that
of light. On the diagramε-M, the ray indicating the critical
situation looks — taking into account thatMn is the mass of
the compact object to be raised — as

ε = f Mn = f M11/8 . (78)

On the diagramT-M, the same ray has — upon substitu-
tion of ε in (61) — the following form:

Tf lim = Tk M25/16. (79)

As follows from this construction, a ray segment is lim-
ited by the ordinates of the massesM2 andM3 and intersec-
tion with the isolinesεst1 and εst2 — there are almost per-
fect ternary points of intersection. It is these masses that give
rise to neutron objects with the masses, according to (47),
3, . . . , 16 s.m., which are the sources of hard X-ray radiation
andcandidates for the star mass “black holes”[18].

Indeed, for giant stars of a massM2−M3, the critical mode
begins before the moment they reach the asymptotic branch
of giants (super-giants). With further decrease of the param-
eterε, a star should release the excess of angular momentum
— probably, by means of dropping the excess mass, which
can be interpreted as shedding of the envelope with the for-
mation ofsupernova. Next, the star core of a massMn < ε/ f
transforms to an object which presently is classified as the
“black hole” candidate. If neutronization of SO occurs far
beyond the critical boundary (at lowε values), the mass of
the emerging object will be very small. The latter might be
one of the causes of the supernova remnants to contain few
compact objects.

6.4 Radio pulsars

In our model, the simplest radio pulsar is a vortex tube which,
by definition, is in the regionY (“boson”). The vortex tube
is a macro-oscillator or radiator, with oscillations forming as
longitudinal vibrations along the entire tube, while propagat-
ing to theX region as a cross wave from their source (the en-
trance of the vortex tube to theY region; orifice) [2]. Presum-
ably, radiation in the observable regionX has a wavelength
λp commensurable with the characteristic size of a single el-
ement of the vortex tube. A vortex tube, according to (22),
consists ofn = ε single vortex threads — therefore, the char-
acteristic linear size of a single element (region of radiation)
will amount, under the condition of maximally compact pack-
ing of vortex threads in three dimensions, to

dp = ε1/3re . (80)

The speed of vortex tube rotation can be expressed as a
proportion of light speed — using the analogies described in
Chapter 3:

vp = c
λk

dp
. (81)

Taking into account (36) and combining the constants,
one can find the period of a pulsar:

τp =
dp

vp
=
ε2/3r2

e

cλk
= 282.5 M2k/3

p sec. (82)

Along the vortex tube of the pulsar, radiation is formed
by mi-zones, the number of which is determined by the pulsar
mass. The averaged profile of the radiation pulse is a result
of random superposition of many single pulses. Therefore
the duration of the generalized pulsar pulseτpi can be in the
range from the duration of a singlemi-zone pulse to the total
duration of pulses of all the zones, i.e. fromri/v0i to zi ri/v0i .
Having in mind (18), (19) and (21),

τpi = 2.51M1/2...1/4
p . (83)

For a pulsar, the standard mass is taken as 1.4 of that of
the Sun. Then the pulsar period atk = 2/3 . . . 1 will be, ac-
cording to (82), in the range from 0.97 to 0.045 sec; and the
duration of the generalized pulse will be, according to (83),
in the range from 0.1 to 0.0042 sec, this corresponding to the
temporal parameters of the majority of radio pulsars [21–23].

Radio radiation of pulsars covers a broad range and is ex-
tremely heterogeneous in time, intensity and frequency. Nev-
ertheless, there are stable averaged spectra of energy distri-
bution over frequency obtained by multiple instant measure-
ments of radiation at different frequencies over large periods
of time.

Let λp = 2πdp, then thefrequency of radiation, taking
into account (80–82), will be as follows:

νp =
c

2πdp
=

c

2πε1/3re
Hz, (84)
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which, having in mind (82), can be reduced to

νp = 1.77τ−1/2
p GHz. (85)

Sincedp is the minimal parameter provided thatmi-zone
are packed most compactly, expression (84) will givemaxi-
mal frequencies. However, the averaged spectrum extends far
in the region of low frequencies and has an energy maximum.
On the basis of our model, this fact can be accounted for by
pulsation of the vortex tube in the limits ofdn, formula (75),
and the existence of its optimal packing, less than 3, which the
pulsar assumes most of the time. As indicated in [3], it may
be the fractal dimensione = 2.72. In this case, the power
of the parameterε will be equal to 1/e, and, as follows from
(84), νp/νm = ε0.0345. Having in mind (82), one can obtain,
for the frequency of the maximum:

νm = 0.0804τ−0.55
p GHz. (86)

Formulas (85) and (86) are virtually identical to the inter-
polation formulas given in [23].

Although radiation of pulsars is not thermal, thepower of
radiation Np can be determined on the basis of a formal use
of the Boltzmann formula for thermal radiation of black body
under the following conditions:

• taken as the area of the radiating surface is the cross-
section of the vortex tube,S = d2

p;

• taken as the effective temperatureTe f is the tempera-
ture corresponding to the radio frequencyTν increased
proportionally to the relative length of the vortex tube
(i.e. proportionally to the ratio of the initial-object∗ ra-
dius to the diameter of the vortex tube,Te f = TνR0/dp).

Since, having in mind (39, 40),Tν = Tkλk/dp, one can ob-
tain, taking into account (36) and (80) and combining the
constants,

Te f = 1.06× 107M1/3−2k/3
p . (87)

Finally, after calculating the constants, we get an expres-
sion forNp:

Np = σT4
e f S = 1.45× 1020M4/3−2k

p W. (88)

Thus, our model predicts that atk → 2/3, a radio pulsar
should have alower limit for radiation power (Nmin), which
the pulsar will be approaching as its rotation is getting slower.
The limit Nmin is equal to 1.45× 1020 W and does not depend
on the pulsar mass. Atk = 1, expression (88) will give an
upper limit Np, which is dependent on the pulsar mass. The
limits do exist [23], and no pulsars has been found at the lu-
minosity belowNmin.

On the basis of (82) and (88), a dependenceN(τp) can
be constructed (Fig. 3), which corresponds to the correlation
given in [23]. To cover the zone of millisecond pulsars, the

∗The object of the initial mass (before neutronization).

Fig. 3: Dependence of the radio pulsar radiation power on its period.
Mp = 3 . . . 0.016 s.m.,k = 0.66. . . 1.

dependence is plotted in the range of masses 3. . . 0.016 s.m.
— i.e. up to the minimal masses still able to neutronize (see
Chapter 6.2). (The question on the range of radio pulsar
masses is still open, since they can be determined only in rare
cases).

6.5 Excited states. Gamma-pulsar

Essentially, pulsar or vortex tube is a lengthy solenoid. In
our model, the full length of a threadzi li does not depend,
according to (18) and (20), from the mass and is equal to
R�; the length of a turn is, in general case,πM j

p R�, and the
number of turns in the initial state is N= M− j/π.

Let us assume that the configuration of the vortex tube
can change — e.g., upon the formation of a secondary spiral
structure. In this case, the initial radius can diminish to the
minimal radius of the vortex tubedp, and the number of turns
can grow to the number Nm = R�/πdp. Then, taking into
account (36) and (80),

Nm

N
= 1.66× 109M j−k/3

p = 105 . . . 109, (89)

which will result in the correspondingly increased magnetic
power and activity of the pulsar.

This state can be considered as an “excited” state of the
radio pulsar. If the effective temperature grows proportion-
ally as well, the energy corresponding to this increase will be
transferred into the gamma range. Multiplying (87) by (89)
and taking into account that for the vortex tubej = 1, one can
obtain

Te f = 1.76× 1016M4/3−k
p . (90)

Thus, at certain combinations of the parameters, formula
(90) will give (upon conversion into electron-volts) values up
to 1013 . . . 1014 eV. This explains, for example, the observed
gamma radiation of the famous pulsar in the Crab Nebula
(more than 1012 eV). Ratio (89) serves estimation purposes,
yet it can be used in other cases as well.
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6.6 X-ray pulsars

Massive stars give rise to neutron objects. Let us assume
that such an object can be formed at any stage of star evolu-
tion, with the envelope momentum transferred to this newly
formed object. Let us also assume that further evolution of
this system as a whole can go both to the right (up to the state
of outer layer) and left (up to the state of core) of the equi-
librium line with the eventual formation of anx-ray pulsar of
the massMp.

As a rule, X-ray pulsars do not radiate in the radio range.
According to the model considered, we can assume this resid-
ual compact object to be already in the neutron state, while its
vortex tube (or a part of the tube) excited at the expense of an
additionally absorbed momentum to be still in theX region
and to radiate in the X-ray range.

Let us determine the pulsar’s parameters. Having in mind
(63) and (64) and substituting, according to (47),M8/11

p for
M0, one can obtain for the pulsar:

vp = cM1.454k−0.7575
p , (91)

Ep = 511M1.454k−0.7575
p keV . (92)

The pulsar perioddn/vp, in the case of arbitrary pulsar
form, will be equal to

τp =
M j

p R�
vp

= 2.51M0.7575−1.454k+ j
p . (93)

It should be noted that atk = 0.75 and j = 1/3, theMp

factor in (93) will be zero andτp = 2.51 sec — the same
period for any mass.

Let us consider the pulsar radiation to be mainly thermal.
Then, one can calculate its power according to the Boltzmann
formula, taking as theradiating surfacethat of the vortex
tube of the lengthR0 (i.e. S = πdp R0). In this case —
analogously to (88), taking into account (27), having in mind
Tp = (Tk Ep)/511 and after transformations — one can ob-
tain, for an X-ray pulsar:

Np = 1.22× 1038M6.15k−2.7
p W . (94)

The parameters of most of the known X-ray pulsars fit
into the intervals calculated according to (92–94) for the stan-
dard mass 1.4 s.m. atk = 2/3 . . . 1 and j = 1/3 . . . 1: τp =

0.002. . . 260 sec,Ep = 0.07. . . 35 keV, Np = 1020 . . . 1030

W. Periods of more than 1000 sec are characteristic for small
masses or for the cases when momentum is not fully trans-
ferred from the outer layer to the emerging compact object.
Thus, there exist restrictions on the magnitudes of periods,
energy and radiation power; and it is them that explain, to a
certain degree, the partially non-thermal form of the pulsars
energy spectrum (a cut-off in its high-energy region) [18, 24].

Radiating in the X-ray region are also some radio pul-
sars. Let us demonstrate the adequacy of our model on these

Fig. 4: Dependence of the radio pulsarx-ray luminosity on the
parameter (dτp/dk)/τ3.5p . Mp = 3 . . . 0.3 s.m., k = 0.66. . . 1,
j = 0.68. . . 0.73. Observation data are taken from [23].

objects — on the example of correlation betweenx-ray lu-
minosity and the parameter (dτ/dt)/τ3.5, given in [23]. The
period derivativedτ/dt, the rate of deceleration of pulsar rota-
tion, is determined from observations. In our model, rotation
slowdown is determined by the general process of evolution
of the object’s medium, i.e., by the parameterk. So let us use
a derivative of the period in respect tok, considering the pa-
rameterj constant and replace the aforementioned expression
by corresponding equivalent. In the end, differentiating (93)
and combining the constants, one can obtain

dτp/dk

τ3.5p
= −3.35 lgMp τ

−2.5
p . (95)

Fig. 4 shows the dependence of X-ray luminosity of a
radio pulsar on the parameter (dτp/dk)/τ3.5p in the range of
masses 3. . . 0.3 s.m. The dependence fits the observation data
at the values of the parameterj = 0.68. . . 0.73. In Fig. 4, the
size of squares is approximately proportional to the number
of observation points (41 points in total according to [23]). In
our case, the derivative does not require a scale coefficient to
satisfy the initial conditions.

It is known that duringoutbursts, the power of radiation
(luminosity) reaches a magnitude of the order of 1032 W and
higher [25]. According to our model, such an increase in lu-
minosity can be explained by periodical excitation of the vor-
tex tube (see Section 6.5). In this case, multiplying (94) by
(89), one can obtain

Npm = 2.03× 1047M5.82k+ j−2.7
p . (96)

Formula (96) gives rational results. For the massM = 1.4
s.m.,Np will reach, depending on the parameters, magnitudes
of 1038 . . . 1039 W, which agrees with the power of the giant
gamma-ray outburst from the source SGR 1900-14, which
was registered in August 1998 (about 1038 W) [27].
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Fig. 5: The solution region: dependence of the radio pulsar radiation
power on its period.Mp = 3 . . . 0.016 s.m.,k = 0.66. . . 1, j =

0.33. . . 1.

It would be interesting to get independent estimates of the
mass of compact objects, which, as one can see, have a sim-
ilar origin. Let us assume that in the process of their possi-
ble inter-transformations, their masses and periods change in-
significantly. Let the X-ray and radio pulsar periods are equal
in the marginal cases — when the initial SO, giving rise to
a compact object, evolves towards the largest or smallestε
values.

Let us consider the case when evolution goes towards
largerε. With ε increasing, the massMp should grow and
at z→ 1 become equal to the original massM0 (Fig. 1). Per-
haps, such a process should be associated withaccretion in
binary star systems. Proceeding to the massM0, let us sub-
stituteM11/8

0 for Mp in (91). Thendn = M j
0 R� and (93) will

take a form of
τp = 2.51M1.042−2k+ j

0 . (97)

Equating (82) to (97) for the periods, combining the con-
stants and making transformations, one can obtain in the end:

lg M0 =
2.052

1.042− 2.667k+ j
. (98)

In the limit, k = 2/3 and j = 1/3 (sphere), thenM0 =

8×10−6 or 4 s.m. This mass can be considered as the total one
of a low-mass binary star systemcontaining an X-ray pulsar,
this being in agreement with the accepted estimate (2.5 s.m.
+ 1.4 s.m.) [18]. Such a pulsar will have a relatively hard
X-ray radiation [25], and, with the growth of the parameters
j, its period will decrease.

The obtained mass value is, in fact, coincides with the
minimal mass of a Cepheids (see Section 5.4). Thus, an SO
with the mass 4 s.m. can evolve both to the right of the equi-
librium line (shedding the envelope) and to the left (forming
a binary star system). In both cases, a compact object will be
formed at the end of evolution, and one can suppose that the

Fig. 6: The solution region: dependence of the X-ray pulsar ra-
diation energy on its period.Mp = 3 . . . 0.3 s.m.,k = 0.66. . . 1,
j = 0.33. . . 1.

stellar mass of 4 s.m. is theminimal massable to give rise to
neutron stars.

Let an X-ray pulsar evolve towards lesserε values. Equat-
ing expressions (82) and (93), one can obtain

lg Mp =
2.052

0.7575− 2.121k+ j
. (99)

In the limit, k = 1 and j = 1 (vortex tube), thenMp =

2.3 × 10−6 or 1.15 s.m. Here, we have got a typical pulsar
mass. Such a pulsar will have a relatively soft X-ray radia-
tion, and with the parameterj growing, the pulsar period will
increase. Such objects can correspond tosingle neutron stars
[26]. Indeed, as follows from the observation data, pulsars of
binary systems will mainly speed up their rotation, whereas
single objects will slow down.

The properties of SO are determined by the totality of
their parameters; that is why two-parameter diagrams always
have a wide scatter of experimental points. Let us represent
the solution region of the dependenceN(τp) for radio pulsars
more extensively — expressing its period according to (93),
which contains the parameterj, and considering some radio
pulsars evolved from the X-ray ones, with their periods being
approximately the same (Fig. 5). The region of observation
values [23] fits well the solution region.

Analogously, using formulas (92) and (93), one can plot a
solution region of the dependenceE(τp) for the X-ray pulsars
(Fig. 6). Clusters on the images may indicate regions where
pulsars have preferable parameters — e.g., the right bottom
part in Fig. 6 may indicate, by the combination of parameters,
a region of single neutron stars.

There appears a question: can slow X-ray pulsars trans-
form into radio pulsars, whose period will not exceed several
seconds? One can suppose that comparatively to radio pul-
sars, X-ray ones have an excessive angular momentum (since
their radius in the regionX is much larger than that of ra-
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Fig. 7: The solution region: dependence of the radio pulsar radia-
tion power on its magnetic field —N(B) to the left; N(Bm) to the
right. Mp = 2 . . . 0.2 s.m.,τp = 0.003. . . 3 sec,k = 0.66. . . 1,
j = 0.33. . . 1. Observation data are taken from [23].

dio pulsars in the regionY, and as they “submerge” into the
regionY, their period shortens).

Thus, it can be supposed that gamma, X-ray and radio
pulsars are different forms of excited vortex tube or, using
another analogy with the microcosm, three species of neu-
trino. The primary state — radio pulsar — possesses only
the initial angular momentum of the vortex tube or spin.

6.7 Magnetic properties of pulsars

Our model explains the correlation between the magnitude of
the magnetic fieldB and other pulsar parameters. According
to SI definition, for a lengthy solenoid,B = μμ0 nI, wheren is
the number of turns per unit of length,I is the current strength
andμ is the relative magnetic permeability.

The initial solenoid length is equal toR0. Let n = N/R0.
Let us define the coefficientμ as the compactness of the sol-
enoid coil in the initial state Ndp/R0. The current strengthI in
the “Coulombless” form iszeme c(R�/re) × 1/[sec] (see Sec-
tion 2), whereze is the number of single charges per coulomb,
equal to 1/e0.

In our model, SI units forB are m−1. To switch from SI
to the Gaussian system of units, introduction of an additional
factor of 10−4 is needed. Opening the expressions forμ0, ε0
andR�, taking into account that N= M− j/π, as well as (27),
(36) and (80), and making transformations, one can finally
obtain

B = 1.27× 10−4Mk/3−2 j−2/3
p G. (100)

Many radio pulsars have largerB values. For the excited
state, multiplying (100) by (89), we will have

Bm = 2.1× 105M− j−2/3
p G. (101)

Fig. 7 shows the solution regions for the dependences
N(B) (to the left) andN(Bm) (to the right) calculated accord-
ing to formulas (88), (100) and (101) in the range of masses

Fig. 8: The solution region: dependence of the efficiency of transfor-
mation of rotation energy in-to radio radiation on the pulsar period
(initial state).Mp = 3 . . . 0.016 s.m.,k = 0.66. . . 1, j = 0.33. . . 0.55.

2 . . . 0.2 s.m. and periods 0.003. . . 3 sec. The figure also rep-
resents the observation data for the pulsars with smallB val-
ues taken from [23]. Masses and periods are connected using
formula (93), which contains the parameterj. It is known
that according to the strength of their magnetic field, pulsars
are clustered near values of the order of 109 and 1013 G [18],
which agrees, in general, with the distributions obtained.

To analyze pulsar parameters, the functionη(τp) is also
used, which includes the magnetic forceB [23]:

η =
3Np c3τ4p

8π4B2R6
∗
, (102)

whereη is the pulsar efficiency, i.e., the effectiveness of trans-
formation of the pulsar rotation energy into radio radiation.

According to [23], formula (102) takesR∗ = 106 cm. For
more objectiveness, let us replace this constant with the di-
ameter of the vortex tube according to (75). Having in mind
(82), (88) and (100), let us transform (102) to the form (in the
Gaussian system):

lg η = 8.5+ (2.667− 2 j) lg Mp . (103)

Together with formula (82), this gives the region ofη(τ)
solutions for radio pulsars (Fig. 8). Sinceη < 1, there are
limitations for some combinations of the parameters. In the
accepted, according to [23], range ofη values, the parameter
j is limited by the range 0.33. . . 0.55, which is characteristic
for pulsars with smallB values. The orientation of clusters on
the diagram indicates the increase ofη with the growth of the
period.

Analogously, substituting the parameterBm into (102),
one can obtain

lg η = −11.9+ (0.667k− 4 j + 2.667) lgMp. (104)

In this case (Fig. 9), in the accepted range ofη values,
the parameterj is limited by a narrow range of large values,
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Fig. 9: The solution region: dependence of the efficiency of transfor-
mation of rotation energy in-to radio radiation on the pulsar period
(excited state).Mp = 3 . . . 0.016 s.m.,k = 0.66. . . 1, j = 0.94. . . 1.

0.94. . . 1, which corresponds to pulsars with a strong mag-
netic field. In this range of parameters,η will grow as the pe-
riod decreases. These solution ranges complement each other
and agree with the body of the observation data of the dia-
gramη(τ) given in [23]. Thus, there are at least two pulsar
populations, with different magnitudes of their magnetic field
and different form factors (parameterj), which was also indi-
cated in [23].

From (101), one can find that the magnitude of the pulsar
magnetic field can reach 1014 . . . 1015 G. Such a growth of the
magnetic field also explains the phenomenon ofmagnetars
[27, 28].

As follows from our model — and it is getting evidence
now — there are no essential differences between magne-
tars and X-ray pulsars. For example, the sources SWIFT
J1822.31606 [29] and PSR J18460258 [30] possess features
of both objects.

7 Conclusion

Thus, our model, which is built exclusively on the balances of
basic interactions, describes different kinds of stellar objects.
It is shown that SO features are mainly determined by their
masses and the state of the evolving medium that they are
made of. Together with the basic constants, these parameters
(M andε) determine the evolutionary behavior of stellar ob-
jects and the very existence of the well-known Hertzsprung-
Russell diagram. In a number of cases, they are sufficient
for the calculation of basic SO parameters: the mass of the
final compact objects, radiation energy, radiation power and
periods or rotation.

The model reveals analogies between the macro- and mi-
crolevels of matter: cosmological masses and elementary par-
ticles.

Indeed, thegeneral range of stellar masses can be
roughly divided into three subranges — by the analogy with
the three families of elementary particles:

• stars with masses less than 4 s.m., which in the end of
evolution will become white dwarfs;

• giant stars with masses 4. . . 79 s.m., which in the end
of evolution will give raise to neutron stars;

• super-giant stars with masses 79. . . 277 s.m., which in
the end of evolution will give raise to X-ray sources —
candidates for black holes.

It is the stars of small masses and their final states (cold
white dwarfs, “protons”) that are the “first family” of stel-
lar population. They make the majority of it and are stable
on the cosmological scale, since their lifetimes are immeasur-
ably longer than the lifetimes of other stellar objects.

Hopefully, the results obtained and the presented model
can be useful for further theoretical studies in the field.
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Sampling the Hydrogen Atom

Norman Graves
192 Old Woosehill Lane, Wokingham, UK. E-mail: normangraves@btinternet.com

A model is proposed for the hydrogen atom in which the electron is an objectively real
particle orbiting at very near to light speed. The model is based on the postulate that
certain velocity terms associated with orbiting bodies can be considered as being af-
fected by relativity. This leads to a model for the atom in which the stable electron
orbits are associated with orbital velocities where Gamma isn/α, leading to the idea
that it is Gamma that is quantized and not angular momentum as in the Bohr and other
models. The model provides a mechanism which leads to quantization of energy levels
within the atom and also provides a simple mechanical explanation for the Fine Struc-
ture Constant. The mechanism is closely associated with the Sampling theorem and the
related phenomenon of aliasing developed in the mid-20th century by engineers at Bell
labs.

Since the emergence of quantum theory just over a cen-
tury ago every model that has been developed for the hy-
drogen atom incorporates the same basic assumption. From
Niels Bohr through de Broglie and Schrödinger up to and in-
cluding the Standard Model all such theories are based on an
assumption first put forward by John Nicholson.

Nicholson recognised that the units of Planck’s constant
are the same as those of angular momentum and so he rea-
soned that perhaps Planck’s constant was a measure of the
angular momentum of the orbiting electron. But Nicholson
went one step further and argued that Planck’s constant was
the fundamental unit or quantum of angular momentum and
therefore the angular momentum of the orbiting electron
could only take on values which were an integer multiple of
Planck’s constant. This allowed Bohr to develop a model in
which the energy levels of the hydrogen atom matched those
of the empirically developed Rydberg formula [1]. When
the Bohr model was superseded Nicholson’s assumption was
simply carried forward unchallenged into these later models.

Nicholson’s assumption however lacks any mathematical
rigour. It simply takes one variable, angular momentum, and
asserts that if we allow it to have this characteristic quantiza-
tion then we get energy levels which appear to be correct. In
so doing it fails to provide any sort of explanation as to just
why such a quantization should take place.

In the mid-20th century a branch of mathematics emerged
which straddles the boundary between continuous functions
and discrete solutions. It was developed by engineers at Bell
Labs to address problems of capacity in the telephone net-
work. While at first site there appears to be little to connect
problems of network capacity with electrons orbiting atomic
nuclei it is the application of these mathematical ideas which
holds the key to explaining quantization inside the atom.

In the 1930’s and 40’s telecommunications engineers
were concerned to increase the capacity of the telephone
network. One of the ideas that surfaced was called Time
Division Multiplexing. In this each of a number of incoming

telephone lines is sampled by means of a switch, the resulting
samples are sent over a trunk line and are decoded by a
similar switch at the receiving end before being sent on their
way. This allowed the trunk line to carry more telephone
traffic without the expense of increasing the number of cables
or individual lines. The question facing the engineers at the
time was to determine the minimum frequency at which the
incoming lines needed to be sampled in order that the tele-
phone signal can be correctly reconstructed at the receiving
end.

The solution to this problem was arrived at independently
by a number of investigators, but is now largely credited to
two engineers. The so called Nyquist-Shannon sampling the-
orem is named after Harry Nyquist [2] and Claude Shan-
non [3] who were both working at Bell Labs at the time. The
theorem states that in order to reproduce a signal with no loss
of information, then the sampling frequency must be at least
twice the highest frequency of interest in the signal itself. The
theorem forms the basis of modern information theory and
its range of applications extends well beyond transmission of
analogue telephone calls, it underpins much of the digital rev-
olution that has taken place in recent years.

What concerned Shannon and Nyquist was to sample a
signal and then to be able to reproduce that signal at some re-
mote location without any distortion, but a corollary to their
work is to ask what happens if the frequency of interest ex-
tends beyond this Shannon limit? In this condition, some-
times called under sampling, there are frequency components
in the sampled signal that extend beyond the Shannon limit
and maybe even beyond the sampling frequency itself.

A simple example can be used to illustrate the phe-
nomenon. Suppose there is a cannon on top of a hill, some
distance away is an observer equipped with a stopwatch.
The job of the observer is to calculate the distance from his
current location to the cannon. Sound travels in air at roughly
340 m/s. So it is simply a matter of the observer looking for
the flash as the cannon fires and timing the interval until he
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hears the bang. Multiplying the result by 340 will give the
distance to the cannon in metres, let’s call this distanceD.

This is fine if the cannon just fires a single shot, but sup-
pose the cannon is rigged to fire at regular intervals, sayT sec-
onds apart. For the sake of argument and to simplify things,
let’s makeT equal to 1. If the observer knows he is less than
340 m from the cannon there is no problem. He just makes
the measurement as before and calculates the distanceD. If
on the other hand he is free to move anywhere with no re-
striction placed on his distance to the cannon then there is
a problem. There is no way that the observer knows which
bang is associated with which flash, so he might be located
at any one of a number of different discrete distances from
the cannon. Not just any old distance will do however. The
observer must be at a distance ofD or D + 340 orD + 680
and so on, in generalD + 340n. The distance calculated as a
result of measuring the time interval between bang and flash
is ambiguous. In fact there are an infinite number of discrete
distances which could be the result of any particular mea-
sured value. This phenomenon is known as aliasing. The
term comes about because each actual distance is an alias for
the measured distance.

Restricting the observer to be within 340 m of the can-
non is simply a way of imposing Shannon’s sampling limit
and by removing this restriction we open up the possibility of
ambiguity in determining the position of the observer due to
aliasing.

Let’s turn the problem around a little. If instead of mea-
suring the distance to the cannon the position of the observer
is fixed. Once again to make things simpler, let’s choose a
distance of 340m. This time however we are able to adjust
the rate of fire of the cannon until the observer hears the bang
and sees the flash as occurring simultaneously. If the rate of
fire is one shot per second then the time taken for the slower
bang to reach the observer exactly matches the interval be-
tween shots and so the two events, the bang and the flash are
seen as being synchronous. Notice that the bang relates, not
to the current flash, but to the previous flash.

If the rate of fire is increased then at first, for a small in-
crement, the bang and the flash are no longer in sync. They
come back into sync however when the rate of fire is exactly
two shots per second, and again when the rate is three shots
per second. If we had a fast enough machine gun this se-
quence would extend to infinity for a rate of fire which is an
integer number of shots per second. Notice that now the bang
no longer relates to the previous flash, but to a previous flash.
It is interesting to note also that if the rate of fire is reduced
from once per second then the observer will never hear and
see the bang and the flash in sync with one another and so
once per second represents the minimum rate of fire which
will lead to a synchronous bang and flash. In fact what we
have here is a system that has as its solutions a base frequency
and an infinite set of harmonic frequencies.

Suppose now that there is some mechanism which feeds

back from the observer to the cannon to drive the rate of fire
such that bang and flash are in sync, and suppose that this
feedback mechanism is such as to always force the condition
to apply to the nearest rate of fire which produces synchroni-
sation.

We now have a system which can cause a variable, in this
case the rate of fire of the gun, to take on a series of discrete
values even though, in theory at least, the rate of fire can vary
continuously. Equally important is that if the feedback mech-
anism is capable of syncing the system to the lowest such
frequency then all the multiples of this frequency are also so-
lutions, in other words if the base frequency is a solution then
so are harmonics of the base frequency.

This idea that there are multiple discrete solutions which
are harmonics of a base frequency is an interesting one since
it couples the domains of the continuous and the discrete. Fur-
thermore what the example of the cannon shows us is that
any system which produces results which are a harmonic se-
quence must involve some sort of sampling process. This
becomes clear if we consider the Fourier representation of
a harmonic sequence. A harmonic sequence of the type de-
scribed consists of a number of discrete frequencies, spread-
ing up the spectrum and spaced equally in the frequency do-
main with each discrete frequency represented by a so called
Dirac function. Taken together they form what is described
as a Dirac comb, in this case in the frequency domain. The
inverse Fourier transform of such a Dirac comb is itself an-
other Dirac comb, only this time in the time domain, and a
Dirac comb in the time domain is a sampling signal [4].

This link between a Dirac comb in the frequency domain
and a corresponding Dirac comb in the time domain means
that if ever we observe a set of harmonics in some natural
process there must inevitably be some form of sampling pro-
cess taking place in the time domain and vice versa.

One such example, in which this relationship has seem-
ingly been overlooked, is found in the structure of the hydro-
gen atom.

By the beginning of the 20th century it was becoming
evident that the universe was composed of elements which
were not smooth and continuous but were somehow lumpy
or granular in nature. Matter was made up of atoms, atoms
themselves contained electrons and later it emerged that the
atomic nucleus was itself composed of protons and neutrons.

Perhaps even more surprising was that atoms could only
absorb or emit energy at certain discrete levels. These energy
levels are characteristic of the atom species and form the ba-
sis of modern spectroscopy. The issue facing the scientists
of the day was that this discrete behaviour is not associated
with the discrete nature of the structure of the atom; that can
easily be explained by asserting that any atom contains an in-
teger number of constituent particles. Where energy levels
are concerned, the quantization effects involve some sort of
process that is taking place inside the atom.

The atom with the simplest structure is that of hydrogen,
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comprising a single proton surrounded by an orbiting electron
and work began to investigate its structure and to understand
the mechanisms which gave it its characteristic properties.

The first such theoretical model was proposed by Niels
Bohr [5]. Bohr used simple classical mechanics to balance the
centrifugal force of the orbiting electron against the electro-
static force pulling it towards the atomic nucleus. He needed
a second equation in order to solve for the radius and veloc-
ity of the orbiting electron and came upon the idea proposed
by John Nicholson [6]. Nicholson reasoned that the units of
Planck’s constant matched those of angular momentum and
so he proposed that the angular momentum of the orbiting
electron could only take on values which were an integer mul-
tiple of was Planck’s constant.

Bohr’s equations worked, but they threw up a strange
anomaly. In Bohr’s model each energy level is represented
by the orbiting electron having a specific orbit with its own
particular orbital velocity and orbital radius. The really
strange thing was that in order to fit with the conservation
laws, transitions from one energy state to another had to take
place instantly and in such a way that the electron moved
from one orbit to another without ever occupying anywhere
in between, a sort of discontinuity of position. This ability to
jump instantaneously across space was quickly dubbed the
Quantum Leap in the popular media, a phrase which still has
resonance today.

Bohr reasoned that

l = mvnrn = n~ (1)

Kq2

~c
=

mv2n
rn

(2)

which means

vn =
Kq2

n~
(3)

rn =
n2~2

mKq2
. (4)

wherem is the rest mass of the electron,q is the charge on the
electron,rn is the orbital radius for the nth energy level,vn is
the orbital velocity for the nth energy level,l is the angular
momentum,K is the Coulomb force constant,~ is Planck’s
constant.

Equation 1 represents Nicholson’s assumption that angu-
lar momentum can only take on values which are integer mul-
tiples of Planck’s constant.

Equation 2 balances the centrifugal force against the elec-
trostatic force.

Equation 3 shows that the orbital velocity decreases with
increasing energy level.

Equation 4 shows that the orbital radius increases as the
square of the energy level and leads directly to the idea of the
Quantum Leap.

It was widely accepted that the Bohr model contained
substantial flaws. Not only did it throw up the quirky quan-
tum leap, but it took no account of special relativity, it failed
to explain why the electron orbit did not decay due to syn-
chrotron radiation but most important of all it failed to explain
the nature of the quantization of angular momentum∗. The
fact is that the assumption that angular momentum is quan-
tized lacks any mathematical rigour, the assumption is arbi-
trary and expedient and fails to address the underlying ques-
tion as to why and how such quantization occurs but merely
asserts that if we make the assumption then the numbers seem
to fit. Nevertheless, and despite this, the Bohr assumption has
continued to be accepted and forms an integral part of every
theory which has come along since.

In a paper published in 1905 Einstein had shown that
light, which had hitherto been considered a wave, was in fact
a particle [7]. In an effort to explain quantization the French
mathematician Louis de Broglie turned this idea on its head
and suggested that perhaps the electron was not a particle
but should be considered as a wave instead. He calculated
the wavelength of the electron, dividing Planck’s constant by
the electron’s linear momentum and found that when he did
so the orbital path of base energy state contained one wave-
length; that of the second energy state contained two wave-
lengths and so on, in what appeared at first site to be a series
of harmonics†.

On any other scale the wavelength of an object in orbit
is associated with the orbital path length or circumference of
the orbit and can be derived as a result of dividing the an-
gular momentum of the orbiting object by its linear momen-
tum. De Broglie instead chooses to associate the wavelength
of the particle with the value of Planck’s constant divided by
the linear momentum, while at the same time assuming that
the angular momentum of the particle was an integer multi-
ple of Planck’s constant. In choosing to substitute Planck’s
constant in this way instead of the angular momentum when
calculating the wavelength, what de Broglie is doing is to co-
erce the wavelength of the electron to be an integer fraction
of the orbital path length. Viewed in this light de Broglie’s
contribution can be seen as less of an insight and more of a
contrivance.

If you were to observe an object in orbit, say a moon or-
biting Jupiter or the proverbial conker‡ whirling on the end
of a string, what you see is a sine wave. The orbiting object

∗At first site it appears that the energy of the electron in the Bohr atom
decreases with increasing energy level. However since the radius changes
with energy level, the potential energy does also. When these two effects are
combined, the energy levels increase with increasing energy level.

†In fact they are not harmonics of a single fundamental frequency, but
instead each harmonic relates to a different base frequency and these two
effects combine in such a way that they form a sub harmonic or inverse har-
monic sequence

‡A conker is a horse chestnut on a string often used in a children’s game
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subtends a wave to an external observer of the form:

d = Rsin(ωt) (5)

or
d = Rsin(2πFt) . (6)

whered is the displacement about some mean
For such a body we can easily calculate the orbital radius

if we know the angular momentum and the linear momentum.

R=
l
p
=

mvr
mv
. (7)

Furthermore we can identify the wavelength of such a
wave with the orbital circumference which is simply.

λ = 2πR. (8)

This is true for all orbiting objects no matter whether they
are the size of a planet or the size of a conker.

By what rational then does de Broglie identify the wave-
length of the orbiting electron, not with the angular momen-
tum in this way, but with Planck’s constant, which he be-
lieves, according to Bohr’s assumption, to be an integer frac-
tion of the angular momentum?

The alignment of wavelength with Planck’s constant in
this way cannot be justified either mathematically or mechan-
ically. It is a contrivance which leads to the idea that there is
some sort of wavelength which is an integer fraction of the or-
bital circumference. This is no miraculous discovery, not an
insight into the workings of the atom, but an artificial device
which reinforces and sustains the Bohr assumption without
any basis in mechanics.

Other later models, such as that of Schrödinger, are based
directly on the work of de Broglie and therefore inherently
follow Bohr’s assumption, up to and including the currently
proposed Standard Model. Having been adopted by Bohr,
later theorists simply continued with this working assumption
and incorporated it into all subsequent models for the atom,
without ever bothering to go back and justify it, until now
it has become an item of received wisdom and an article of
faith.

The trouble with all of these models is that the assump-
tion proposed by Nicholson and adopted by Bohr is not based
on finding any mechanism that leads to angular momentum
being quantized in this way. The assumption was simply ex-
pedient — it just happens to give the values for the absorption
and emission spectra of the hydrogen atom which match those
of the Rydberg formula.

The year 1905 was an eventful one for Albert Einstein. In
that year, he not only published his paper on the discrete na-
ture of the photon but he also published two further seminal
works as well as submitting his Ph.D. thesis. The most fa-
mous of his other papers concerned the dynamics of moving
bodies [8]. This is the paper whose later editions contained

the equatione = mc2. The paper was based on a thought ex-
periment and concerned the perception of time, distance and
mass as experienced by two observers, one a stationary ob-
server and one moving relative to the stationary observer at
speeds approaching that of light.

What Einstein showed is that time elapses more slowly
for a moving observer, that distances measured by a moving
observer are foreshortened relative to those same distances
measured by a stationary observer and that a stationary ob-
server’s perception of the mass of a moving object is that it
has increased. All three effects occur to the same extent and
are governed by a factorγ (Gamma). The time between two
events observed by the stationary observer as timet is seen by
the moving observer as timeT = t/γ. Similarly the distance
between two point measured by the stationary observer as dis-
tanced is seen by the moving observer as distanceD = d/γ.
As far as the stationary observer is concerned the mass of the
moving object is seen to increase by this same factorγ.

Gamma is referred to as the Lorentz factor and is given
by the formula:

γ =
c

√
c2 − v2

=
1

√
1− v

2

c2

. (9)

Both observers agree on their relative velocity but go
about calculating it in different ways. For the stationary
observer the velocity of the moving observer is the distance
travelled divided by the time taken as measured in his sta-
tionary domain. For the stationary observer the velocity
is:-

v =
d
t
. (10)

For the moving observer the distance as measured in his
own domain is foreshortened by the factor Gamma, but the
time taken to cover that distance reduced by the same factor
Gamma.

v =
D
T

=

d
γ

t
γ

=
d
t
. (11)

There is a great deal of experimental evidence to support
Einstein’s Special Theory. One of the more convincing exper-
iments was carried out at CERN in 1977 and involved mea-
suring the lifetimes of particles called muons in an apparatus
called the muon storage ring [9]. The muon is an atomic par-
ticle which carries an electric charge, much like an electron,
only more massive. It has a short lifetime of around 2.2 mi-
croseconds before it decays into an electron and two neutri-
nos.

In the experiment muons are injected into a 14m diam-
eter ring at a speed close to that of light, in fact at 99.94%
of the speed of light where Gamma has a value of around
29.33. The muons, which should normally live for 2.2 mi-
croseconds, were seen to have an average lifetime of 64.5 mi-
croseconds; that is the lifetime of the muon was increased
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by a factor Gamma. This comes about because the processes
which take place inside the muon and which eventually lead
to its decay are taking place in an environment which is mov-
ing relative to us at 99.94% of the speed of light and in which
time, relative to us, is running 29.33 times slower. Hence the
muon, in its own domain, still has a lifetime of 2.2 microsec-
onds, it’s just that to us, who are not moving, this appears as
64.5 microseconds.

Travelling at almost the speed of light a muon would
normally be expected to cover a distance of 660 metres
or roughly 7.5 times around the CERN ring during its 2.2
microsecond lifetime, but in fact the muons travelled almost
20,000 metres or 220 times around the ring. This is because
distance in the domain of the muon is compressed so what
we stationary observers see as being 20,000 metres the muon
sees as being just 660 metres.

Both parties agree that during its lifetime the muon com-
pletes some 220 turns around the ring. We stationary ob-
servers see this as having taken place in some 64.5 microsec-
onds, corresponding to a frequency of 3.4 MHz, while the
muon sees these 220 turns as having been completed in just
2.2 microseconds, corresponding to a frequency of 100 Mhz.
Hence for the muon and indeed all objects orbiting at close to
light speed orbital frequency is multiplied by a factor Gamma
relative to that of a stationary observer and it is this multipli-
cation of orbital frequency which holds the key to the discrete
energy levels of the atom.

As well as this effect on orbital frequency the muon ring
experiment serves to show that considerations of special rel-
ativity can be applied to objects in orbit, this despite the fact
that object in orbit are subject to a constant acceleration to-
wards the orbital centre. However where the orbital velocity
is constant, it is reasonable and correct to apply considera-
tions of special relativity around the orbital path. In effect
what we are doing is to resolve the orbital velocity into two
components, one tangential component which has a constant
velocity and one radial where there is a constant acceleration.

We have seen that speed is invariant with respect to rel-
ativity. Both the moving object and the stationary observer
agree on their relative speed. This invariance of speed is cen-
tral to the derivation of special relativity and so is deemed to
be axiomatic. There is however one circumstance where it is
reasonable to suggest that this need not be the case. For a sta-
tionary observer we normally require the use of two clocks in
order to measure velocity; one at the point of departure and
one at the point of arrival (at least conceptually). An object
which is in orbit however returns once per cycle to its point of
departure and so we can measure the orbital period of such an
object with a single clock provided we do so over a complete
orbit.

Thus for an object in orbit it is possible to define two ve-
locity terms relating to the tangential or orbital velocity∗. The

∗In fact it is possible to define a further two velocity terms, the relativis-

first of these I have called the Actual Velocity and is sim-
ply the distance around the orbit divided by the orbital period
as measured by the stationary observer. The second veloc-
ity term is the distance around the orbit as measured by the
moving observer divided by the orbital period as measured
by the stationary observer. Such a velocity term straddles or
couples the two domains, that of the orbiting object and that
of the stationary observer and so could sensibly be called the
”Coupling Velocity” or possibly the ”Relativistic Velocity”.
A simple calculation shows that the Relativistic Velocity is
related to the Actual Velocity by the same factor Gamma an
hence:

vR =
D
t
=

d
tγ

=
v

γ
. (12)

Thus far Relativistic Velocity is only a definition. How-
ever there is one set of circumstances where such a velocity
term can indeed be justified and that is when dealing with the
equations of motion relating to objects in orbit. It is consid-
ered here to be meaningful to use this Relativistic Velocity
term when dealing with orbital velocities such as occur when
calculating angular momentum, centripetal and centrifugal
force and acceleration.

Nicholson had suggested that because Planck’s constant
has the units of angular momentum that it was somehow as-
sociated with the angular momentum of the orbiting electron.
Here we take up that idea and suggest that the angular mo-
mentum of the orbiting electron is equal to Planck’s constant,
but reject his other idea that angular momentum is quantized.
Instead we assume that orbital velocity is affected by rela-
tivity and use this to derive the equations of motion of the
orbiting electron.

Planck’s constant is then seen, not as a fundamental quan-
tum of angular momentum but instead as providing a limiting
value for angular momentum. The effect would not be signifi-
cant at low velocities, but if the electron orbiting the hydrogen
atom were to do so at close to light speed then:

l = ~ = (mγ) r

(
c
′

γ

)

. (13)

wherel is the angular momentum,~ is Planck’s constant,m is
the mass of the electron,r is the orbital radius of the electron,
c
′
is the orbital velocity of the electron and is very close toc,

the speed of light.
Both the mass term and the velocity term are affected by

relativity. The mass term because mass increases by factor
Gamma as the object’s velocity approaches the speed of light
and in this case the velocity term is affected because we are
dealing with an object in orbit and it is therefore appropriate

tic distance divided by the relativistic time and the actual distance divided
by the relativistic time. The first of these is the invariant velocity discussed
earlier. As a stationary observer we do not have any direct access to the mov-
ing clock and so these velocities can only be described mathematically and
appear to have no physical significance.
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to use Relativistic Velocity which is the Actual Velocity di-
vided by Gamma. However since we are concerned here with
an orbital velocity very close to the speed of light, to a first
approximation we can substitutec for c

′
in Equation 13.

l = ~ = (mγ) r

(
c
γ

)

. (14)

The two Gamma terms will cancel. The terms for rest mass,
Planck’s constant and the speed of light are all constants,
which must therefore mean that the orbital radius is also a
constant

R=
~

mc
. (15)

This not unfamiliar term is known as the Reduced Comp-
ton Wavelength although here it takes on a new and special
significance as the characteristic radius at which an electron
will orbit at or near light speed. This serves to explain why the
orbiting electron does not emit synchrotron radiation. It does
not do so because it is not driven to orbit the atomic nucleus
by virtue of being accelerated by forces towards the orbital
centre in the normal way, instead it is constrained to orbit at
this radius by the limiting effect of Planck’s constant. It is as
if the electron is orbiting on a very hard surface from which it
cannot depart and which it cannot penetrate. Equation 15 also
means that there is no need to introduce the idea of a quantum
leap or later equivalents. If the electron is constrained to al-
ways orbit at a fixed radius, then changes in energy level have
to take place as a result of changes in orbital velocity, with
no accompanying change of radius. Indeed this idea that the
electron orbits at constant radius is a necessary condition for
the electron to be considered objectively real.

Substituting Relativistic Velocity into the force balance
equation that Bohr himself used, but at an orbital velocity
very close to that of light yields another interesting result∗

Kq2

~c
=

(mγ)
r

(
c
γ

)2

. (16)

Which combines with Equation 15 and simplifies to give:

Kq2

~c
=

1
γ
. (17)

Readers may be familiar with the term on the left of this
equation which is known as the Fine Structure Constant often
written asα (Alpha). So for the base energy state of the atom

γ =
1
α
. (18)

α has a value of 7.2973525698× 10−3

∗Once again since the orbital velocity is very close to the speed of light
we can, to a first approximation, substitute c as the Actual Velocity

From this and Equation 9 we can easily calculate the cor-
responding orbital velocity and frequency as measured by the
stationary observer.

v

c
=
√

1− α2 = 0.999973371. (19)

The orbital velocity turns out to be 99.9973% of the speed
of light c, thus vindicating the first approximation made in
Equation 14 and the frequency (in the domain of the station-
ary observer)

ω1 =
v

R
= 7.76324511× 1020 . (20)

The physicist Richard Feynman [10] once said of Alpha
that:

”It has been a mystery ever since it was discovered more
than fifty years ago, and all good theoretical physicists put
this number up on their wall and worry about it. Immediately
you would like to know where this number for acoupling†

comes from: is it related to pi or perhaps to the base of natu-
ral logarithms? Nobody knows. It’s one of the greatest damn
mysteries of physics: a magic number that comes to us with
no understanding by man. You might say the ”hand of God”
wrote that number, and ”we don’t know how He pushed his
pencil.” We know what kind of a dance to do experimentally
to measure this number very accurately, but we don’t know
what kind of dance to do on the computer to make this num-
ber come out, without putting it in secretly!”

Equation 18 effectively solves the mystery, providing an
explanation for the physical significance of the Fine Structure
Constant. It is seen simply as the ratio of two velocities, the
Relativistic Velocity and the Actual Velocity of the orbiting
electron. Since these two velocities share the same orbital pe-
riod, it can also be seen as the ratio of two orbital path lengths,
the one traversed at non-relativistic speeds to that traversed
by the orbiting electron at near light speed. The Fine Struc-
ture Constant is seen to be dynamic in nature. Its value relies
on the fact that the electron is in motion, orbiting at near light
speed; it does so at a speed that is necessary to maintain struc-
tural equilibrium within the hydrogen atom, since it is only by
travelling at this speed that the structural integrity of the atom
can be maintained. In the world of the atom, where there is no
friction and in the absence of any sort of external input, the
atom remains stable and, unless disturbed in some way, the
electron will continue in this state indefinitely. In this sense it
defines the speed at which the electron has to travel in order
to achieve a stable orbit.

So far we have only considered the lowest or base energy
state of the atom. We have seen that one of the effects of
relativity is to multiply frequency in the domain of a mov-
ing object by Gamma. The frequency in the domain of the

†My emphasis — the term Coupling Velocity resonates with the idea of
Alpha as a coupling constant.
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electron which corresponds to this stable state is simply cal-
culated by multiplying by Gamma — equivalent to dividing
by Alpha – to give.

Ω =
ω1

γ
= 1.06378925× 1023 . (21)

But just as was the case with the observer and the cannon if
there is a frequencyΩ at which the atom is stable then fre-
quencies ofnΩ must also be stable for alln = integer which
in turn means that there are stable states for all

γn =
n
α

(22)

and so

rn = R=
~

mc
(23)

and
vn
c

=

√
n2 − α2

n2
. (24)

Equation 23 shows that the orbital radius remains the
same for all energy levels, while Equation 24 describes the
orbital velocity for the nth energy state∗. Table 1 shows the
resulting orbital velocities for the first 13 energy states and
the theoretically infinite state of the hydrogen atom and as
you might expect they match the absorption and emission
spectra of the hydrogen atom perfectly.

During the 1930’s and 40’s Einstein and Bohr disagreed
over the nature of reality, with Bohr arguing that the laws of
physics were different on the scale of the atom and that as
a consequence reality becomes subjective in nature. Parti-
cles are not considered to discrete point particles in the clas-
sical sense, but instead are considered to be nebulous wave-
particles which manifest themselves as either particles or as
waves when subjected to some sort of observing process. Ein-
stein on the other hand took the view that reality had to be
objective and that particles must therefore be discrete point
particles having deterministic position and velocity.

In the end the debate was largely resolved by default.
Bohr simply outlived Einstein and so his ideas prevailed and
form the basis of today’s Standard Model. Einstein is nowa-
days often described as being an old man, set in his ways and
unable to accept the new ways of thinking. But this is to mis-
construe Einstein’s position, which was one of principle.

Einstein had argued that the laws of physics are the same
for all reference frames, while Bohr reasoned that the laws
of physics are different on the scale of the atom. Einstein
was concerned with reference frames of comparable scale that
were in motion with respect to one another but it is logical to
extend his idea to reference frames of differing scales. If we
start from this position and pursue the idea that particles are

∗Notice that since the orbital radius remains substantially the same for
all energy levels, there is no change in potential energy between the various
different energy levels, only a change in kinetic energy.

objectively real and that the laws of physics are the same in-
dependent of scale then it is necessary to question our current
understanding of the laws of physics. They must be deficient
in some way and it is necessary to find a way in which the
laws must be modified to describe the atom but which does
not affect our understanding on all other scales.

The idea of relativistic velocity postulated here does just
that. It provides a model for the structure and dynamics of
the hydrogen atom which is consistent with particles which
are objectively real. At the same time it does what all pre-
vious models have failed to do and provides a mechanism to
explain exactly why the energy levels of the atom are quan-
tized without the need of resorting to arbitrary assumptions.
The idea of a Relativistic Velocity or Coupling Velocity, a ve-
locity term which is affected by relativity, solves all of the
problems that faced Niels Bohr with his model and produces
a model for the hydrogen atom which matches the emission
and absorption spectra of the atom.

Here quantization takes place with respect to the variable
Gamma as the orbital velocity of the electron gets ever closer
to the speed of light with increasing energy level, and not with
respect to angular momentum as postulated by Bohr. Angu-
lar momentum for the orbiting electron remains substantially
constant and equal to Planck’s constant over all of its energy
levels as the orbital velocity varies from 99.99733% ofc for
the base energy state upwards as energy levels increase, al-
though never quite achieving the theoretical limit of 100%,
while Gamma is constrained to take on values which are inte-
ger multiples of a base value, that value being the reciprocal
of the Fine Structure Constant. Planck’s constant takes on a
new and special significance, not as the quantum of angular
momentum of the existing models, but as a lower limit for
angular momentum below which it cannot exist.

The orbital radius of the electron remains substantially
constant irrespective of the energy level of the atom, a neces-
sary condition for an objectively real electron, and so transi-
tions from one energy state to another take place without the
need to introduce the idea of discontinuity of position, inher-
ent in the Bohr model, or its equivalent probability density
functions and wave particle duality found in other more re-
cent models. Such transitions are easily explained as simple
changes in the orbital velocity of the electron over a dynamic
range which lies very close to the speed of light. With no
changes in orbital radius, changes in energy level involve no
change in potential energy, only the kinetic energy of the or-
biting electron changes between energy states.

Thus the morphology of the atom remains substantially
unaltered for all energy levels. This is consistent with the
atom having the same physical and chemical properties irre-
spective of energy level. The Bohr model, and indeed the
standard model, would have us believe that the morphology
of the atom changes substantially with energy level, with the
orbital radius increasing as the square of the energy level with
no theoretical upper limit. Such changes are difficult to rec-
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n vn/c 1/γn Energy eV ΔEnergy eV
1 0.999973371 0.007297559 7.76324511E+20 255485.925 13.607
2 0.999993343 0.003648853 7.76340016E+20 255496.130 3.402
3 0.999997041 0.002432577 7.76342887E+20 255498.020 1.512
4 0.999998336 0.001824435 7.76343892E+20 255498.682 0.850
5 0.999998935 0.001459549 7.76344357E+20 255498.988 0.544
6 0.999999260 0.001216291 7.76344610E+20 255499.154 0.378
7 0.999999457 0.001042536 7.76344762E+20 255499.255 0.278
8 0.999999584 0.000912219 7.76344861E+20 255499.320 0.213
9 0.999999671 0.000810861 7.76344929E+20 255499.364 0.168

10 0.999999734 0.000729775 7.76344977E+20 255499.396 0.136
11 0.999999780 0.000663432 7.76345013E+20 255499.420 0.112
12 0.999999815 0.000608146 7.76345040E+20 255499.438 0.094
13 0.999999842 0.000561366 7.76345061E+20 255499.452 0.081

∞ 1.000000000 0.000000000 7.76345184E+20 255499.532 0.000

Table 1:

oncile with an atom who’s physical and chemical properties
remain the same for all energy levels.

The model explains all of the shortcomings found in the
Bohr model, the absence of orbital decay due to synchrotron
radiation and the need for a quantum leap. Bohr had ignored
the effects of special relativity on the energy levels of the
atom, even though they should have been small but signifi-
cant at the velocities predicted by his model. Here they are
fully integrated into the model.

The model sheds a new light on the nature of the wave
particle duality. The electron is seen as a point particle in the
classical sense, having deterministic position and velocity∗.
Electrons are thus objectively real. The electron has wave-
like properties, but these derive from the orbital motion of an
objectively real particle. The waves are seen as the projec-
tion of the circular orbit of the objectively real electron onto
an external observer, in much the same way that we can de-
scribe the orbit of the moons of distant planets as having a
wavelike nature. There is no need to invent the ether or what
has more recently passed for the ether, the so called fabric of
space time, as a medium in which these waves exist. In the fi-
nal analysis where vacuum contains absolutely nothing, there
is nothing to wave except the particle and that is precisely
what the model provides.

The introduction of Relativistic Velocity has another ma-
jor implication. It extends the laws of physics down to the
scale of the atom and possibly beyond. With its introduction
the same set of physical laws extends from a scale of approx-
imately 10−20 m to 1020 m thus doing away with the notion
that a different set of physical law applies on the scale of the
atom. It is quite likely therefore that a single set of physical

∗This is not to say that uncertainty does not exist, it does, but it is seen
as a practical issue of measurement when the scale of the measurement tools
is similar to that of the measured object and not as being an intrinsic property
of the particle.

laws exists for all scales and throughout the universe.
Finally it provides a simple mechanical explanation for

the existence and the value of the hitherto mysterious Fine
Structure Constant.

Appendix 1 Derivation of Centripetal Acceleration under
relativistic conditions

The idea that orbital velocity is affected by relativity is central
to the theory presented here, so it is perhaps worthwhile ex-
amining this idea in a little more detail. Before doing so how-
ever it is necessary to restate that the use of Special Relativity
in dealing with objects which have constant orbital velocity is
entirely appropriate, this despite the fact that such objects are
subject to acceleration. The velocity of an object which is in
orbit can be considered as having two components, a tangen-
tial component and a radial component. For constant orbital
velocity, the tangential component is itself constant and there-
fore can be dealt with using Special Relativity which affects
the time and distance measured along the orbital path. Direct
evidence to support this comes in the form of the Muon ring
experiment described earlier.

Such an orbiting object is subject to constant acceleration
towards the orbital centre and it is this acceleration which in
effect maintains the circular path. Conventional wisdom has
it that this centripetal acceleration is not affected by relativity,
since it acts in a direction which is normal to the velocity of
the object. Here it is argued that this cannot be the case since
the distances involved in calculating centripetal acceleration
derive directly from the distances travelled around the orbital
path and that these distances are themselves affected by rel-
ativity. It can then be shown that this is equivalent to substi-
tuting Relativistic Velocity in place of Actual Velocity in the
standard formula for calculating centripetal acceleration.

Einstein showed that objects which are travelling at close
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to light speed are affected in three ways, time in the domain
of the moving observer advances at a slower rate than it does
for a stationary observer, distance for the moving object is
foreshortened in the direction of travel relative to that same
distance as measured by the stationary observer. The mass of
a moving object appears increased as far as the stationary ob-
server is concerned. All three effects occur to the same extent
by the factor Gamma (γ). Gamma is named after the Dutch
physicist Hendrik Antoon Lorentz (1853 — 1928). Gamma
is given by the formula

γ =
1

√
1− v

2

c2

. (25)

Examination of the effect of relativity on an object mov-
ing at close to the speed of light however reveals that both
time and distance are scaled by a factor 1/γ and so from
Equation 25

1
γ
=

√

1−
v2

c2
. (26)

It can be seen that this is the equation of a circle, more
specifically a quadrant of a unit circle, sincev is constrained
to lie between 0 andc as shown in Figure 1.

Fig. 1:

If the object under consideration is in circular orbit, then
this quadrant can be superimposed on the orbital path to form
a hemisphere. Objects orbiting at non-relativistic speeds see
the path length around the orbit as being equal in length to
the equator, while objects orbiting at higher speeds follow a
path length described by a line of latitude on the hemisphere.
An object orbiting at the theoretical maximum speed of light
would then be pirouetting at the pole. We can consider the
length of the orbital path as being represented by the line
of latitude formed by a slicing plane which cuts through the
hemisphere parallel to the equatorial plane. In Figure this is
at approximately 15% of the speed of lightc and so the orbital

path length is just a little less than the equatorial path length,
around 99%.

Fig. 2:

In Figure 3 the orbital velocity is approximately 80% of
the speed of light and so the orbital path length as seen by
the moving object is approximately 60% that for an object
moving at non-relativistic speed

Fig. 3:

In Figure 4 the orbital velocity is around 98% of the speed
of light and the corresponding orbital path length is approxi-
mately 20% of that for non-relativistic motion.

Fig. 4:

This hemispheric model of the motion of an orbiting ob-
ject is useful because it allows us to visualise the orbital path
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length as being foreshortened by relativity while at the same
time the radius of the orbit is unaffected by relativity. The or-
bital geometry is non-Euclidean and in reality all takes place
in just one plane. The introduction of this third dimension is
just a device to allow us to visualise what is going on. The
orbiting object sees the distance it travels around one orbit as
being reduced by a factor Gamma, but nevertheless sees the
orbital radius as being unaffected by relativity since this is at
right angles to the direction of travel. Thus we can represent
the radius of the orbit as being the distance from a point on
the relativistic orbit to the centre of the hemisphere.

The term Actual Velocity has been adopted to describe the
velocity of the orbiting object as seen by a stationary observer.
This is easily calculated as the circumference of the orbital
path, the equator of the hemisphere (d), divided by the orbital
period (t), both measured by the stationary observer.

The theory postulates that there is a velocity term which
is affected by Gamma. This is termed the Relativistic Veloc-
ity, but only becomes significant when the Actual Velocity
is close to the speed of light. This velocity term can be cal-
culated by taking the foreshortened distance around the line
of latitude, which represents the orbital path as seen by the
moving observer, divided by the orbital period as measured
by a stationary observer. The foreshortened distance around
the orbit is calculated asd/γ and the orbital period remains
the same as for Actual Velocity (t) and hence this Relativistic
Velocity is then easily calculated asvR = d/tγ.

We can use this term directly in calculating the angular
momentum of the orbiting object. This is simply a restate-
ment of the argument used earlier. Angular momentum is the
product of the mass, the velocity and the radius of an orbiting
point object. However the mass of the object is affected by
relativity, appearing to increase the mass by a factor Gamma
(γ) and so:

l = (mγ) r

(
vR
γ

)

. (27)

However since for Gamma to take on a significant valuevR
must be very close toc, the speed of light and so we can sub-
stitutec for vR. Also since the angular momentum of an elec-
tron in orbit around an atomic nucleus is given by Planck’s
constant we can substitute this forl in Equation 27 to give:

l = ~ = mcr . (28)

In effect we are simply substituting Relativistic Velocity
for Actual Velocity in the standard textbook formula for cal-
culating angular momentum. This is recognising that the or-
bital velocity is the distance around the orbit as measured by
the moving object divided by the orbital period as measured
by a stationary observer.

We can of course use this same argument to substitute
Relativistic Velocity for Actual Velocity in the formula for
centripetal acceleration and hence derive expressions for cen-
tripetal and centrifugal forces. However in the case of cen-

Fig. 5:

tripetal acceleration it is also useful to derive an expression
for the relativistic case from first principles.

The formula for centripetal force was first derived by
Christian Huygens in 1659 and describes a constant force
acting on a body in circular motion towards the centre of
the circle. When combined with Newton’s second law this
leads to the idea that a body in circular motion is subject to
a constant acceleration towards the centre called centripetal
acceleration.

It is customary when deriving the formula for centripetal
acceleration to use velocity vectors directly. Here we take
a slightly different approach and use the distance vectors in-
stead. This is because in the proposed theory only the dis-
tance component of velocity is affected by relativity and not
the time component. In other respects the derivation is the
same as that found in many standard texts.

Consider an object in orbit around a point C at radius R.
At a particular instantt the object is at point A and some short
interval of time laterΔt it is at point P, having moved through
an angle subtended at the centre of the circle ofΔθ.

The vector representing the distance moved in timeΔt is
AB and has lengthd and is tangential to the circle, hence CAB
is a right angle. Att + Δt the object is at P and has a distance
vector PQ, also of lengthd. We can translate the vector PQ
to A forming AD. The vector BD then represents the distance
moved towards the centre of the circle in timeΔt. Note that
for asΔθ tends to 0 the line BD tends to a straight line.

Then
d = RΔθ . (29)

Since APC and ABD are similar triangles (for smallΔθ)

e= dΔθ (30)

and the acceleration towards the centre of the circle is

a =
e
Δt2
. (31)
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Fig. 6:

Therefore

a =
RΔθ2

Δt2
. (32)

Multiplying both top and bottom byRgives

a =
R2Δθ2

RΔt2
. (33)

But since

v =
d
Δt

=
RΔθ
Δt
. (34)

Then

a =
v2

R
. (35)

When we take into consideration the effects of special rel-
ativity, the situation becomes a little more complicated. Al-
though the orbital path is foreshortened, as represented by
the line of latitude in Figure 6, and hence the circumference
of this circle is reduced by a factor Gamma, the radius of
the circle is not affected and remains the same as that for the
equatorial orbital path.

Figure 6 attempts to show this by introducing a third di-
mension and using the hemispherical representation devel-
oped above. In reality however the radius and the orbital path
are co-planar. It can be seen from Figure 6 that the angle
subtended by a short segment of the circumference is less for
the relativistic path than for the non-relativistic path. From
Figure 6 it is evident that

Δφ =
Δθ

γ
(36)

and

RΔφ =
RΔθ
γ
. (37)

Figure 7 shows the foreshortened orbital path in plan
view. The dashed circle represents the non-relativistic orbital

Fig. 7:

path while the radii are shown dotted to indicate that they are
not to scale in this representation.

The distance travelled during timeΔt is foreshortened by
relativity, instead of travelling a distance AB the object only
travels a distance A’B’=D in Figure 7.

D = RΔφ . (38)

Once again the triangles CA’B’ and A’B’D’ are similar
and so the distance travelled towards the centre of the orbit E
is

E = DΔφ . (39)

Once again the triangles CA’B’ and A’B’D’ are similar
and so the distance travelled towards the centre of the orbit E
is

A =
E
Δt2
. (40)

Which is also

A =
RΔφ2

Δt2
(41)

Again we can multiply both denominator and numerator
by R to give

A =
R2Δφ2

RΔt2
. (42)

Which gives

A =
R2Δθ2

RΔt2γ2
(43)

and so

A =
v2

Rγ2
. (44)

Equation 44 represents a more general case for calculat-
ing centripetal acceleration. When the orbital velocity is low,
under non-relativistic conditions, the value of Gamma is unity
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and the formula can be simplified to the more familiar one
shown in Equation 35. Effectively therefore the formula for
centripetal acceleration under relativity substitutes Relativis-
tic Velocity for Actual Velocity in the standard textbook for-
mula.

It is the geometry of the triangle AB’D’ which lies at the
heart of the argument. Here it is argued that the length B’D’
is affected by relativity even though it is measured in a di-
rection at right angles to the direction of travel. This comes
about because the lengths of the two sides AB’ and AD’ are
both themselves affected by relativity and the triangle must
have geometric integrity and so B’D’ must also be scaled by
relativity. If it was not then the triangle AB’D’ would be a
very strange triangle indeed. It would have to be an isosceles
triangle in which the third side could be longer than the sum
of the two other sides. The direction of the vectors AB’ and
AD’ could not be preserved. Even in non-Euclidian geome-
try such a triangle would not be possible and so B’D’ must be
scaled by Gamma.

The measurement of time on the other hand can only take
place in the domain of the observer, so the moving observer
sees his time in his own domain and the stationary observer
sees time in his domain. The two domains are related by a fac-
tor Gamma, but from the point of view of direct measurement
this is a theoretical connection. In other words the stationary
observer has no direct access to the moving clock and, vice
versa, the moving observer has no direct access to the station-
ary clock.

Appendix 2 An Analytical Method for calculating Actual
Velocity

A more analytical approach for calculating the value for c’
can be found without the first approximation used above:

The equation for the value of gamma

γ =
1

√
1− v

2

c2

. (45)

From which

v = c

√
γ2 − 1
γ2

. (46)

Substituting this into the force balance equation gives

m0c2(γ2 − 1)
Rγ3

=
Kq2

R2
. (47)

Recognising that~ = m0Rcand simplifying gives

γ2 − 1
γ3

=
Kq2

~c
. (48)

The term on the right hand side is the Fine Structure Con-
stant which is denoted byα. Substituting and rearranging
gives the following equation forγ.

αγ3 − γ2 + 1 = 0 . (49)

The numerical value forα∗ is 7.2973525698×10−3. Sub-
stituting this and calculating the three roots gives:
γ = 137.028700944403
γ = −0.996384222264
γ = 1.0036823521665
Only the first of these three values is significant. This cu-

bic equation gives a more precise value for Gamma. By rec-
ognizing thatv is very close toc in the force balance equation
the value of Gamma can be calculated as:

Substituting in the equation forγ gives a value forv:

v = c

√
γ2 − 1
γ2

= 0.999973371c . (50)

v is the Actual Velocity of the electron around its orbit and
as can be seen it is very close toc, the velocity of light, be-
ing some 99.9973371% ofc, which is in agreement with the
method of first approximation to the first 8 significant figures.

Appendix 3 The Rydberg Formula

Joseph Jakob Balmer (1825–1898) was a Swiss mathemati-
cian and numerologist who, after his studies in Germany, took
up a post teaching mathematics at a girls’ school in Basel. A
colleague in Basel suggested that he take a look at the spectral
lines of hydrogen to see if he could find a mathematical re-
lationship between them. Eventually Balmer did find a com-
mon factor† h = 3.6456× 10−7 which led him to a formula
for the wavelength of the various spectral lines.

λ =
hm2

m2 − 4
, (51)

wherem is an integer with value 3 or higher.
Balmer originally matched his formula form = 3,4,5,6

and based on this he predicted an absorption line form = 7.
Balmer’s seventh line was subsequently found to match a new
line in the hydrogen spectrum that had been discovered by
Ångstr̈om.

Balmer’s formula dealt with a particular set of spectral
lines in the hydrogen atom and was later found to be a special
case of a more general result which was formulated by the
Swedish physicist Johannes Rydberg.

1
λ
= RH




1

n2
1

−
1

n2
2


 , (52)

whereλ is the wavelength of the spectral line,RH is the Ryd-
berg constant for hydrogen,n1 andn2 are integers andn1< n2.

By settingn1 to 1 and allowingn2 to take on values of
2,3,4 . . .∞ the lines take in a series of values known as the
Lyman series. Balmer’s series is obtained by settingn1 = 2
and allowingn2 to take on values of 3,4,5 . . .∞. Similarly
for other values ofn1 series of spectral lines have been named
according to the person who first discovered them and so:

∗CODATA - http://physics.nist.gov/cgi-bin/cuu/Value?alph
†h here is not to be confused with Planck’s constant.
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n1 n2 Series

1 2. . .∞ Lyman series
2 3. . .∞ Balmer series
3 4. . .∞ Paschen series
4 5. . .∞ Brackett series
5 6. . .∞ Pfund series
6 7. . .∞ Humfreys series

Other series beyond these do exist, but they are not
named.

By substituting different values forR, it was found that
Rydberg’s formula worked for all so calledhydrogenic∗

atoms.
The value ofRH can be found by considering the case

wheren1 = 1 andn2 = ∞, a condition which represents the
maximum possible change in energy level within the hydro-
gen atom.RH is then the wavelength of the absorption line
associated with such an energy change and was calculated to
have a value of 1.097× 107

This was subsequently found to be given by the formula:

RH =
1
4π

m0cα2

~
. (53)

The highest possible energy level for the atom occurs
when n, the energy level, equals the theoretical value of
infinity. The corresponding value for the Actual Velocity
would then bec, the speed of light.

The equation for the energy of an orbiting body of mass
m with velocity v is easily obtained in any standard text and
is given by:

e=
1
2

mv2 . (54)

If we assume that the electron is orbiting at near light
speed then the maximum possible energy† of an electron or-
biting the hydrogen nucleus where the orbital velocity has a
theoretical value ofc, the speed of light and the mass of the
electron ism0 is

e=
1
2

m0c2 . (55)

The energy potential for a hydrogen atom in any arbitrary
energy staten is the difference between this maximum energy
value and the energy of thenth state

en =
1
2

m0c2 −
1
2

m0v
2
n =

1
2

m0(c2 − v2n) . (56)

∗A hydrogenic atom is one which is ionized such that it has only one
orbiting electron. In theory, at least, any atom can be ionized so as to become
hydrogenic.

†Note that the electron is orbiting at the same radius for all energy lev-
els, the potential energy of the electron therefore remains the same and all
changes in energy level which are then associated with changes in kinetic
energy and hence with the velocity of the electron.

We saw earlier that gamma could be expressed in terms
of c, the velocity of light andv, the Actual Velocity using
Einstein’s equation for special relativity and thatγn = nγ0

γn =
c

√
c2 − v2n

. (57)

This is easily rearranged to give an expression forc2 − v2

c2 − v2n =
c2

γ2
n

(58)

In the base energy staten = 0 andγ0 = 1/α

c2 − v20 = c2α2 (59)

Hence the maximum energy potential for the atom is

ep =
1
2

m0c2α2 . (60)

Substituting numerical values form0, c andα gives the
maximum energy potential of the atom as
ep = 2.18009839× 1018 Joules
or
ep = 13.6071 eV.

The energy potential for any arbitrary energy leveln is
given by

epn =
1
2

m0c2α2

n2
. (61)

Hence the difference between any two energy levelsn and
m is

en,m =
1
2

m0c2α2

(
1
n2
−

1
m2

)

. (62)

and the difference in orbital frequency is

ωn,m =
1
2

m0cα2

~

(
1
n2
−

1
m2

)

(63)

This can be expressed in terms of wavelength, similar to
the Rydberg formula, by dividing both sides by 2π to give

1
λn,m

=
1
4π

m0cα2

~

(
1
n2
−

1
m2

)

(64)

and

RH =
1
4π

m0cα2

~
. (65)
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The Elastodynamics of the Spacetime Continuum
as a Framework for Strained Spacetime

Pierre A. Millette
University of Ottawa (alumnus), K4A 2C3 747, Ottawa, Canada. E-mail: PierreAMillette@alumni.uottawa.ca

We derive the elastodynamics of the spacetime continuum by applying continuum me-
chanical results to strained spacetime. Based on this model, a stress-strain relation is
derived for the spacetime continuum. From the kinematic relations and the equilibrium
dynamic equation of the spacetime continuum, we derive a series of wave equations: the
displacement, dilatational, rotational and strain wave equations. Hence energy propa-
gates in the spacetime continuum as wave-like deformations which can be decomposed
into dilatations and distortions. Dilatations involve an invariant change in volume of
the spacetime continuum which is the source of the associated rest-mass energy density
of the deformation, while distortions correspond to a change of shape of the space-
time continuum without a change in volume and are thus massless. The deformations
propagate in the continuum by longitudinal and transverse wave displacements. This is
somewhat reminiscent of wave-particle duality, with the transverse mode correspond-
ing to the wave aspects and the longitudinal mode corresponding to the particle aspects.
A continuity equation for deformations of the spacetime continuum is derived, where
the gradient of the massive volume dilatation acts as a source term. The nature of the
spacetime continuum volume force and the inhomogeneous wave equations need further
investigation.

1 Introduction

Strained spacetime has been explored recently by Millette [1]
from a continuum mechanical and general relativistic per-
spective, and by Tartagliaet al in the cosmological context,
as an extension of the spacetime Lagrangian, to obtain a gen-
eralized Einstein equation [2,3].

As shown in [1], the applied stresses from the energy-
momentum stress tensor result in strains in the spacetime con-
tinuum. The presence of strains as a result of applied stresses
is an expected continuum mechanical result. The strains re-
sult in a deformation of the continuum which can be modeled
as a change in the underlying geometry of the continuum. The
geometry of the spacetime continuum of General Relativity
resulting from the energy-momentum stress tensor can thus
be seen as a representation of the deformation of the space-
time continuum resulting from the strains generated by the
energy-momentum stress tensor.

In this paper, we examine in greater details the elastody-
namics of the spacetime continuum as a framework for de-
scribing strained spacetime.

2 Elastodynamics of the Spacetime Continuum

2.1 Model of the Elastodynamics of the Spacetime Con-
tinuum

The spacetime continuum (STC) is modelled as a four-dimen-
sional differentiable manifold endowed with a metricgμν. It
is a continuum that can undergo deformations and support
the propagation of such deformations. A continuum that is
deformed is strained.

An infinitesimal element of the unstrained continuum is
characterized by a four-vectorxμ, whereμ = 0,1,2,3. The
time coordinate isx0 ≡ ct.

A deformationof the spacetime continuum corresponds
to a state of theSTC in which its infinitesimal elements are
displaced from their unstrained position. Under deformation,
the infinitesimal elementxμ is displaced to a new positionxμ+
uμ, whereuμ is the displacement of the infinitesimal element
from its unstrained positionxμ.

The spacetime continuum is approximated by a deforma-
ble linear elastic medium that obeys Hooke’s law. For a gen-
eral anisotropic continuum in four dimensions [4, see pp. 50–
53],

Eμναβεαβ = Tμν (1)

whereεαβ is the strain tensor,Tμν is the energy-momentum
stress tensor, andEμναβ is the elastic moduli tensor.

The spacetime continuum is further assumed to be isotro-
pic and homogeneous. This assumption is in agreement with
the conservation laws of energy-momentum and angular mo-
mentum as expressed by Noether’s theorem [5, see pp. 23–
30]. For an isotropic medium, the elastic moduli tensor sim-
plifies to [4]:

Eμναβ = λ0(gμνgαβ) + μ0(gμαgνβ + gμβgνα) (2)

whereλ0 andμ0 are the Laḿe elastic constants of the space-
time continuum.μ0 is the shear modulus (the resistance of
the continuum todistortions) andλ0 is expressed in terms of
κ0, the bulk modulus (the resistance of the continuum todi-
latations) according to

λ0 = κ0 − μ0/2 (3)
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in a four-dimensional continuum. Adilatation corresponds
to a change of volume of the spacetime continuum without a
change of shape while adistortion corresponds to a change
of shape of the spacetime continuum without a change in vol-
ume.

2.2 Stress-Strain Relation of the Spacetime Continuum

Substituting Eq.(2) into Eq.(1), we obtain the stress-strain re-
lation for an isotropic and homogeneous spacetime contin-
uum

2μ0ε
μν + λ0g

μνε = Tμν (4)

where
ε = εαα (5)

is the trace of the strain tensor obtained by contraction. The
volume dilatationε is defined as the change in volume per
original volume [6, see pp. 149–152] and is an invariant of
the strain tensor.

It is interesting to note that the structure of Eq.(4) is sim-
ilar to that of the field equations of General Relativity, viz.

Rμν −
1
2
gμνR= −KTμν (6)

whereK = 8πG/c4 andG is the gravitational constant. This
strengthens our conjecture that the geometry of the spacetime
continuum can be seen as a representation of the deformation
of the spacetime continuum resulting from the strains gener-
ated by the energy-momentum stress tensor.

Rest-Mass Energy Relation

As shown in [1], the contraction of Eq.(4) yields the rela-
tion

2(μ0 + 2λ0)ε = Tαα ≡ T (7)

whereTαα corresponds to the invariant rest-mass energy den-
sity

Tαα = T = ρc2 (8)

whereρ is the rest-mass density. The relation between the in-
variant volume dilatationε and the invariant rest-mass energy
density is thus given by

2(μ0 + 2λ0)ε = ρc2 (9)

or, in terms of the bulk modulusκ0,

4κ0ε = ρc
2. (10)

As we noted in [1], this equation demonstrates that rest-
mass energy density arises from the volume dilatation of the
spacetime continuum. The rest-mass energy is equivalent to
the energy required to dilate the volume of the spacetime con-
tinuum, and is a measure of the energy stored in the spacetime
continuum as volume dilatation. The volume dilatation is an
invariant, as is the rest-mass energy density.

Decomposition into Distortions and Dilatations

As also shown in [1], when the strain tensorεμν and the
energy-momentum stress tensorTμν are decomposed into a
deviation tensor (thedistortion) and a scalar (thedilatation),
the strain-stress relation then becomes separated into dilata-
tion and distortion relations:

dilatation :t = 2(μ0 + 2λ0)e= 4κ0e= κ0ε

distortion :tμν = 2μ0eμν
(11)

where
εμν = eμν + egμν (12)

with
eμν = ε

μ
ν − eδμν (13)

e=
1
4
εαα =

1
4
ε (14)

and similarly
Tμν = tμν + tgμν (15)

with
tμν = Tμν − tδμν (16)

t =
1
4

Tαα. (17)

The distortion-dilatation decomposition is evident in the
dependence of the dilatation relation on the bulk modulusκ0
and of the distortion relation on the shear modulusμ0. The di-
latation relation of Eq.(11) corresponds to rest-mass energy,
while the distortion relation is traceless and thus massless,
and corresponds to shear transverse waves. We also noted
in [1] that this decomposition of spacetime continuum defor-
mations into a massive dilatation and a massless transverse
wave distortion is somewhat reminiscent of wave-particle du-
ality.

3 Kinematic Relations

The strainεμν can be expressed in terms of the displacement
uμ through the kinematic relation [6, see pp. 149–152]:

εμν =
1
2

(uμ;ν + uν;μ + uα;μuα
;ν) (18)

where the semicolon (;) denotes covariant differentiation. For
small displacements, this expression can be linearized to give
the symmetric tensor

εμν =
1
2

(uμ;ν + uν;μ) = u(μ;ν). (19)

We use the small displacement approximation in this analysis.
An antisymmetric tensorωμν can also be defined from the

displacementuμ. This tensor is called the rotation tensor and
is defined as [6]:

ωμν =
1
2

(uμ;ν − uν;μ) = u[μ;ν] . (20)
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Where needed, displacements in expressions derived from
Eq.(19) will be written asu‖ while displacements in expres-
sions derived from Eq.(20) will be written asu⊥. Using differ-
ent symbolic subscripts for these displacements provides a re-
minder that symmetric displacements are along the direction
of motion (longitudinal), while antisymmetric displacements
are perpendicular to the direction of motion (transverse).

In general, we have [6]

uμ;ν = εμν + ωμν (21)

where the tensoruμ;ν is a combination of symmetric and anti-
symmetric tensors. Lowering indexν and contracting, we get
the volume dilatation of the spacetime continuum

uμ;μ = ε
μ
μ = u‖

μ
;μ = ε (22)

where the relation

ωμμ = u⊥
μ

;μ = 0 (23)

has been used.

4 Dynamic Equation

4.1 Equilibrium Condition

Under equilibrium conditions, the dynamics of the spacetime
continuum is described by the equation [4, see pp. 88–89],

Tμν;μ = −Xν (24)

whereXν is the volume (or body) force. As Wald [7, see
p. 286] points out, in General Relativity the local energy den-
sity of matter as measured by a given observer is well-defined,
and the relation

Tμν;μ = 0 (25)

can be taken as expressing local conservation of the energy-
momentum of matter. However, it does not in general lead to
a global conservation law. The valueXν = 0 is thus taken to
represent the macroscopic local case, while Eq.(24) provides
a more general expression.

At the microscopic level, energy is conserved within the
limits of the Heisenberg Uncertainty Principle. The volume
force may thus be very small, but not exactly zero. It again
makes sense to retain the volume force in the equation, and
use Eq.(24) in the general case, while Eq.(25) can be used at
the macroscopic local level, obtained by setting the volume
forceXν equal to zero.

4.2 Displacement Wave Equation

Substituting forTμν from Eq.(4), Eq.(24) becomes

2μ0ε
μν

;μ + λ0g
μνε;μ = −Xν (26)

and, using Eq.(19),

μ0(uμ;νμ + uν;μμ) + λ0ε
;ν = −Xν. (27)

Interchanging the order of differentiation in the first term and
using Eq.(22) to expressε in terms ofu, this equation simpli-
fies to

μ0uν;μμ + (μ0 + λ0)uμ;μ
ν = −Xν (28)

which can also be written as

μ0∇
2uν + (μ0 + λ0)ε;ν = −Xν. (29)

This is thedisplacement wave equation.
SettingXν equal to zero, we obtain the macroscopic dis-

placement wave equation

∇2uν = −
μ0 + λ0

μ0
ε;ν. (30)

4.3 Continuity Equation

Taking the divergence of Eq.(21), we obtain

uμ;νμ = ε
μν

;μ + ω
μν

;μ. (31)

Interchanging the order of partial differentiation in the first
term, and using Eq.(22) to expressu in terms ofε, this equa-
tion simplifies to

εμν;μ + ω
μν

;μ = ε
;ν. (32)

Hence the divergence of the strain and rotation tensors equals
the gradient of the massive volume dilatation, which acts as a
source term. This is the continuity equation for deformations
of the spacetime continuum.

5 Wave Equations

5.1 Dilatational (Longitudinal) Wave Equation

Taking the divergence of Eq.(28) and interchanging the order
of partial differentiation in the first term, we obtain

(2μ0 + λ0)uμ;μ
ν
ν = −Xν;ν. (33)

Using Eq.(22) to expressu in terms ofε, this equation sim-
plifies to

(2μ0 + λ0)ε;νν = −Xν;ν (34)

or
(2μ0 + λ0)∇2ε = −Xν;ν. (35)

SettingXν equal to zero, we obtain the macroscopic lon-
gitudinal wave equation

(2μ0 + λ0)∇2ε = 0. (36)

The volume dilatationε satisfies a wave equation known as
the dilatational wave equation [6, see p. 260]. The solutions
of the homogeneous equation are dilatational waves which
are longitudinal waves, propagating along the direction of
motion. Dilatations thus propagate in the spacetime contin-
uum as longitudinal waves.
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5.2 Rotational (Transverse) Wave Equation

Differentiating Eq.(28) with respect toxα, we obtain

μ0uν;μμ
α + (μ0 + λ0)uμ;μ

να = −Xν;α. (37)

Interchanging the dummy indicesν andα, and subtracting the
resulting equation from Eq.(37), we obtain the relation

μ0(uν;μμ
α − uα;μμ

ν) = −(Xν;α − Xα;ν). (38)

Interchanging the order of partial differentiations and using
the definition of the rotation tensorωνα of Eq.(20), the fol-
lowing wave equation is obtained:

μ0∇
2ωμν = −X[μ;ν] (39)

whereX[μ;ν] is the antisymmetrical component of the gradient
of the volume force defined as

X[μ;ν] =
1
2

(Xμ;ν − Xν;μ). (40)

SettingXν equal to zero, we obtain the macroscopic trans-
verse wave equation

μ0∇
2ωμν = 0. (41)

The rotation tensorωμν satisfies a wave equation known as
the rotational wave equation [6, see p. 260]. The solutions
of the homogeneous equation are rotational waves which are
transverse waves, propagating perpendicular to the direction
of motion. Massless waves thus propagate in the spacetime
continuum as transverse waves.

5.3 Strain (Symmetric) Wave Equation

A corresponding symmetric wave equation can also be de-
rived for the strainεμν. Starting from Eq.(37), interchanging
the dummy indicesν andα, adding the resulting equation to
Eq.(37), and interchanging the order of partial differentiation,
the following wave equation is obtained:

μ0∇
2εμν + (μ0 + λ0)ε;μν = −X(μ;ν) (42)

whereX(μ;ν) is the symmetrical component of the gradient of
the volume force defined as

X(μ;ν) =
1
2

(Xμ;ν + Xν;μ). (43)

SettingXν equal to zero, we obtain the macroscopic sym-
metric wave equation

∇2εμν = −
μ0 + λ0

μ0
ε;μν. (44)

This strain wave equation is similar to the displacement wave
equation Eq.(30).

6 Discussion and Conclusion

In this paper, we have proposed a framework for the analy-
sis of strained spacetime based on the elastodynamics of the
spacetime continuum (STCED). In this model, the emphasis
is on the displacements of the spacetime continuum infinites-
imal elements from their unstrained configuration as a result
of the strains applied on theSTCby the energy-momentum
stress tensor, rather than on the geometry of theSTCdue to
the energy-momentum stress tensor.

We postulate that this description based on the deforma-
tion of the continuum is a description complementary to that
of General Relativity which is concerned with modeling the
resulting geometry of the spacetime continuum. Interestingly,
the structure of the resulting stress-strain relation is similar to
that of the field equations of General Relativity. This streng-
thens our conjecture that the geometry of the spacetime con-
tinuum can be seen as a representation of the deformation of
the spacetime continuum resulting from the strains generated
by the energy-momentum stress tensor. The equivalency of
the strain description and of the geometrical description still
remains to be demonstrated.

The equilibrium dynamic equation of the spacetime con-
tinuum is described byTμν;μ = −Xν. In General Relativity,
the relationTμν;μ = 0 is taken as expressing local conserva-
tion of the energy-momentum of matter. The valueXν = 0
is thus taken to represent the macroscopic local case, while
in the general case, the volume forceXν is retained in the
equation. This dynamic equation leads to a series of wave
equations as derived in this paper: the displacement (uν), di-
latational (ε), rotational (ωμν) and strain (εμν) wave equations.

Hence energy is seen to propagate in the spacetime con-
tinuum as deformations of theSTC that satisfy wave equa-
tions of propagation. Deformations can be decomposed into
dilatations and distortions.Dilatations involve an invariant
change in volume of the spacetime continuum which is the
source of the associated rest-mass energy density of the de-
formation. Distortions correspond to a change of shape of
the spacetime continuum without a change in volume and
are thus massless. Dilatations correspond to longitudinal dis-
placements and distortions correspond to transverse displace-
ments of the spacetime continuum.

Hence, every excitation of the spacetime continuum can
be decomposed into a transverse and a longitudinal mode of
propagation. We have noted that this decomposition into a
dilatation with rest-mass energy density and a massless trans-
verse wave distortion, is somewhat reminiscent of wave-parti-
cle duality, with the transverse mode corresponding to the
wave aspects and the longitudinal mode corresponding to the
particle aspects.

A continuity equation for deformations of the spacetime
continuum is derived; we find that the divergence of the strain
and rotation tensors equals the gradient of the massive volume
dilatation, which acts as a source term.
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The nature of the spacetime continuum volume force re-
mains to be investigated. In addition, the displacement, di-
latational, rotational and strain inhomogeneous wave equa-
tions need further investigation.
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In this paper one generalizes the Lorentz Contraction Factor for the case when the
lengths are moving at an oblique angle with respect to the motion direction. One shows
that the angles of the moving relativistic objects are distorted.

1 Introduction

According to the Special Theory of Relativity, the Lorentz
Contraction Factor is referred to the lengths moving along
the motion direction. The lengths which are perpendicular on
the direction motion do not contract at all [1].

In this paper one investigates the lengths that are oblique
to the motion direction and one finds their Oblique-Length
Contraction Factor [3], which is a generalization of the
Lorentz Contraction Factor (forθ = 0) and of the perpen-
dicular lengths (forθ = π/2). We also calculate the distorted
angles of lengths of the moving object.

2 Length-Contraction Factor

Length-Contraction FactorC(v) is just Lorentz Factor:

C(v) =

√

1−
v2

c2
∈ [0,1] f or v ∈ [0,1] (1)

L = L′ ∙C(v) (2)

whereL = non-proper length (length contracted),L′ = proper
length.C(0) = 1, meaning no space contraction [as in Abso-
lute Theory of Relativity (ATR)].

C(c) = 0, which means according to the Special Theory
of Relativity (STR) that if the rocket moves at speed ‘c’ then
the rocket length and laying down astronaut shrink to zero!
This is unrealistic.

Fig. 1: The graph of the Time-Dilation Factor

3 Time-Dilation Factor

Time-Dilation Factor D(v) is the inverse of Lorentz Factor:

D(v) =
1

√

1−
v2

c2

∈ [1,+∞] f or v ∈ [0, c] (3)

Δt = Δt′ ∙ D(v) (4)

whereΔt = non-proper time and,Δt′ = proper time.D(0) = 1,
meaning no time dilation [as in Absolute Theory of Relativity
(ATR)]; D(c) = limv→c D(v) = +∞, which means according
to the Special Theory of Relativity (STR) that if the rocket
moves at speed ‘c’ then the observer on earth measures the
elapsed non-proper time as infinite, which is unrealistic.v = c
is the equation of the vertical asymptote to the curve ofD(v).

4 Oblique-Length Contraction Factor

The Special Theory of Relativity asserts that all lengths in the
direction of motion are contracted, while the lengths at right
angles to the motion are unaffected. But it didn’t say anything
about lengths at oblique angle to the motion (i.e. neither per-
pendicular to, nor along the motion direction), how would
they behave? This is a generalization of Galilean Relativity,
i.e. we consider the oblique lengths. The length contraction
factor in the motion direction is:

C(v) =

√

1−
v2

c2
. (5)

Suppose we have a rectangular object with widthW and
lengthL that travels at a constant speedv with respect to an
observer on Earth.

Fig. 2: A rectangular object moving along thex-axis
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Fig. 3: Contracted lengths of the rectangular object moving along
thex-axis

Then its lengths contract and its new dimensions will be
L′ andW′: whereL′ = L ∙ C(v) andW′ = W. The initial
diagonal of the rectangle ABCD is:

δ = |AC| = |BD| =
√

L2 + W2

=
√

L2 + L2 tan2 θ = L
√

1+ tan2 θ
(6)

while the contracted diagonal of the rectangleA′B′C′D′ is:

δ′ = |A′C′| = |B′D′|

=
√

(L′)2 + (W′)2 =
√

L2 ∙C(v)2 + W2

=
√

L2C(v)2 + L2 tan2 θ = L
√

C(v)2 + tan2 θ.

(7)

Therefore the lengths at oblique angle to the motion are
contracted with the oblique factor

OC(v, θ) =
δ′

δ
=

L
√

C(v)2 + tan2 θ

L
√

1+ tan2 θ

=

√
C(v)2 + tan2 θ

1+ tan2 θ
=

√
C(v)2 cos2 θ + sin2 θ

(8)

which is different from C(v).

δ′ = δ ∙OC(v, θ) (9)

where 0≤ OC(v, θ) ≤ 1.
For unchanged constant speedv, the greater isθ in

(
0, π2

)

the larger gets the oblique-length contradiction factor, and re-
ciprocally. By oblique length contraction, the angle

θ ∈
(
0,
π

2

)
∪

(
π

2
, π

)
(10)

is not conserved.
In Fig. 4 the horizontal axis represents the angleθ, while

the vertical axis represents the values of the Oblique-Length
Contraction FactorOC(v, θ) for a fixed speedv. HenceC(v)
is thus a constant in this graph. The graph, forv fixed, is

Fig. 4: The graph of the Oblique-Length Contraction FactorOC(v, θ)

periodic of periodπ, since:

OC(v, π + θ) =

√
C(v)2 cos2(π + θ) + sin2(π + θ)

=
√

C(v)2[− cosθ]2 + [− sinθ]2

=

√
C(v)2 cos2 θ + sin2 θ

= OC(v, θ).

(11)

More exactly about theOC(v, θ) range:

OC(v, θ) ∈ [C(v),1] (12)

but sinceC(v) ∈ [0,1] , one has:

OC(v, θ) ∈ [0,1]. (13)

The Oblique-Length Contractor

OC(v, θ) =
√

C(v)2 cos2 θ + sin2 θ (14)

is a generalization of Lorentz ContractorC(v), because: when
θ = 0 or the length is moving along the motion direction, then
OC(v, 0) = C(v). Similarly

OC(v, π) = OC(v, 2π) = C(v). (15)

Also, if θ = π
2, or the length is perpendicular on the mo-

tion direction, thenOC(v, π/2) = 1, i.e. no contraction oc-
curs. SimilarlyOC(v, 3π

2 ) = 1.

5 Angle Distortion

Except for the right angles (π/2,3π/2) and for the 0,π, and
2π, all other angles are distorted by the Lorentz transform.

Let’s consider an object of triangular form moving in the
direction of its bottom base (on thex-axis), with speedv, as
in Fig. 5:

θ ∈
(
0,
π

2

)
∪

(
π

2
, π

)
(16)

is not conserved.
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Fig. 5:

Fig. 6:

The side|BC| = α is contracted with the contraction fac-
torC(v) sinceBC is moving along the motion direction, there-
fore |B′C′| = α ∙ C(v). But the oblique sidesAB andCA are
contracted respectively with the oblique-contraction factors
OC(v, ]B) andOC(v, ]π −C), where]B means angle B:

∣∣∣A′B′
∣∣∣ = γ ∙OC(v, ]B) (17)

and
∣∣∣C′A′

∣∣∣ = β ∙OC(v, ]π −C) = β ∙OC(v, ]A+ B) (18)

since
]A+ ]B+ ]C = π. (19)

Triangle ABC is shrunk and distorted toA′B′C′ as in
Fig. 6.

Hence one gets:

α′ = α ∙C(v)

β′ = β ∙OC(v, ]A+ B)

γ′ = γ ∙OC(v, ] B)

(20)

In the resulting triangleA′B′C′, since one knows all its
side lengths, one applies the Law of Cosine in order to find
each angle]A′, ]B′, and]C′. Therefore:

]A′ = arccos
−α2 ∙C(v)2 + β2 ∙OC(v, ]A+ B)2 + γ2 ∙OC(v, ] B)2

2β ∙ γ ∙OC(v, ] B) ∙OC(v, ]A+ B)

]B′ = arccos
α2 ∙C(v)2 − β2 ∙OC(v, ]A+ B)2 + γ2 ∙OC(v, ] B)2

2α ∙ γ ∙OC(v) ∙OC(v, ] B)

]C′ = arccos
α2 ∙C(v)2 + β2 ∙OC(v, ]A+ B)2 − γ2 ∙OC(v, ] B)2

2α ∙ β ∙OC(v) ∙OC(v, ]A+ B)
.

As we can see, the angles]A′, ]B′, and]C′ are, in gen-
eral, different from the original anglesA, B, andC respec-
tively.

The distortion of an angle is, in general, different from the
distortion of another angle.
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Investigated idea was actuated by the old opinion that a measurement of a quantum ob-
servable should be regarded a as a single deterministic sampling. But, according to the
last decades studies, such observables are veritable random variables and their measure-
ments must imply significant sets of statistical samplings. So one finds the indubitable
caducity of the approached idea. Contiguously the respective finding allows to put into
a new light the controversial questions like the Schrödinger cat thought experiment or
description of quantum measurements.

1 Introduction

A recent highly authorized opinion [1] points out the exist-
ing deadlock that: “There is now . . . no entirely satisfac-
tory interpretation of Quantum Mechanics (QM)”. As major
question of that deadlock is recognized as being [2] the prob-
lem of Quantum Measurements (QMS), in whose center still
stands [3] the Idea about Wave Function Collapse (IWFC).
For IWFC, demarcated as above, the most known debates and
mainstream publications are reported in [1–3].

Here, in discussing the IWFC question, we try to present
a somewhat “unconventional” strategy based on viewpoints
promoted in our modest researches about QM, developed
over last few decades (see [4,5] and references).

Firstly we note the fact that, historically, IWFC emerged
at the same time with the inaugural ideas regarding the Con-
ventional Interpretation of Uncertainty Relations (CIUR). In
the main CIUR started [4, 5] by mixing the theoretical rep-
resentation (modeling) of a a physical quantity regarding a
quantum state/system with a “fictitious observation” (done
through some thought (gedanken) measuring experiment) of
the respective quantity. The mentioned mixing invented and
promoted the widespread term of “observable” for such a
quantity. Below, similarly to the nowadays publications, we
will use also the respective term.

After the alluded start CIUR coagulates in a form of an
apparent doctrine centered on two main pieces:

(i) Heisenberg’s thought-experimental formula and

(ii) Robertson- Schr̈odinger theoretical relation.

The respective doctrine can be incorporated [4,5] in few basic
items (presumptions/ assertions). A deep analysis shows [4,
5] that the respective items, considered as single or grouped
pieces, are incriminated by indubitable facts which are un-
surmountable within the framework of CIUR. Then CIUR
proves oneself to be deprived of necessary qualities for a valid
scientific construction. Consequently, in spite of its apology
in many modern texts (see references from [4]), CIUR must
be abandoned as a wrong conception without any real value
or scientific significance.

In its turn, IWFC continued to be present in important
publications (see [1–3] and references), with explicit or im-
plicit references to CIUR. It was aroused by the conflict be-
tween two items:

(i) The old opinion that a measurement of a quantum ob-
servable should be regarded a as a single deterministic
sampling and

(ii) The agreement, enforced by theoretical practice, that
studies of quantum systems use probabilistic (non-
deterministic) entities (wave functions and observ-
ables/operators).

For avoiding conflict and breaking a deadlock it was devised
the IWFC which, in different readings, was assumed in a large
number of publications. But, as a rule, such assumptions were
(and still are) not associated with adequate investigations re-
garding the truthfulness of the respective idea in relation with
the QM questions. A modest investigation of that kind we
will try to present below in the next sections.

Firstly, in Section 2, we point out the fact that in the main
(i.e. irrespectively of its readings) IWFC is nothing but an
useless fiction. Such a fact certainly shows the caducity and
failure of the respective idea. In Section 3 we discuss the
some aspects contiguous between failure of IWFC and fa-
mous subject of Schrödinger’s cat thought experiment. Then
within Section 4 we argue that alternatively to the IWFC we
have to reconsider our views about QM theory in relation with
QMS. So, for the readings of the respective theory, we must
to consider either a restricted-QM (r-QM) or an extended-QM
(e-QM) form. On the one hand the r-QM is essentially the
version promoted by usual QM textbooks [6, 7] and it deals
exclusively only with the modeling of intrinsic properties for
the studied systems. On the other hand e-QM must to contain
also obligatorily some additional elements regarding QMS
descriptions (i.e. theoretical models about characteristics of
measuring devices/procedures). Figuratively speaking e-QM
consists in r-QM united with QMS descriptions. An simple
exemplification of a QMS description, regarded in the men-
tioned sense, is presented in the end of the same Section 4. Fi-
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nally, in Section 5, are given some concluding remarks about
the views from this article.

2 Uselessness of IWFC

Now let us try to estimate the usefulness and truthfulness de-
grees of IWFC. Such an estimation can be obtained if IWFC
is regarded through the details of its constituent elements.
The before mentioned regard must be opened by observation
that the starting purpose of IWFC was to harmonize the fol-
lowing two conflicting Items (I ):

I 1 The old opinion (of the same time as CIUR) that a
measurement of a quantum observableA, specific to
a state/system at atomic scale, should be regarded as
a single sampling which gives an unique deterministic
result, sayai ;

I 2 The theoretical agreement that, due to the probabilis-
tic character of wave functionΨ describing the alluded
state/system, the observableA is endowed with a spec-
trum (set) of distinct values.

So came into an equivocal sight IWFC knew a lot of debates
(see [1–3] and references). In essence, the solution promoted
by the respective debates can be summarized within the fol-
lowing Subterfuge (S):

S The unique resultai and wave functionΨ, mentioned in
itemsI 1 andI 2, should be seen ( and described) through
the wave function collapseΨ 7−→ ψi , whereΨ depicts
the considered quantum state/system in its wholeness
while ψi is theai-eigenfunction of the operator̂A (as-
sociated to the observableA) — i.e Âψi = aiψi .

For a proper judgment of such a subterfuge we have to re-
consider the correctness of the itemsI 1 andI 2. In the light of
such a reason it must to note that studies from the last decades
(see [4–7] and references) consolidated beyond doubt the fact
that, mathematically, a quantum observableA (through of the
operatorÂ) is a true random variable. In a theoretical view-
point, for a given quantum state/system, such a variable is
regarded as endowed with a spectra of values associated with
corresponding probabilities (more exactly probability ampli-
tudes). Then, from an experimental perspective, a measure-
ment of a quantum observable requires an adequate number
of samplings finished through a significant statistical group of
data (outcomes).

Previous opinions about the randomness of quantum ob-
servables can be consolidated indirectly by mentioning the
quantum-classical probabilistic similarity (see [4, 8]) among
the respective observables and macroscopic variables stud-
ied within phenomenolgical (thermodynamic) theory of fluc-
tuations [4, 9–14]. In this way let us refer to such a macro-
scopic random observablêA. Its intrinsic (in) characteristics
are given in details by a continuous spectra of valuesA in-
side of spectra (range)Ωin (i.e. A ∈ Ωin), associated with a
probability densitywin = win(A). Then forÂ, in its fullness,

a single experimental sampling delivering an unique (individ-
ual) result, sayAi , is worthlessly. Such a sampling is not de-
scribed as a collapse of the probability densitywin(A). More-
over a true experimental evaluation ofÂ, in its wholeness and
regarded equivalently with a stationary random process, re-
quires [15] an adequate lot of samplings finished through a
significant statistical set of individual recordings. In a plausi-
ble modeling [16, 17] the mentioned recordings (rec) can be
described by another probability densitywrec = wrec(A).

The above notifications about quantum observables point
out clearly the complete incorrectness of itemI 1. Conse-
quently, even if in the main the itemI 2 is a true assertion,
the subterfugeS supporting IWFC proves oneself to be noth-
ing but an useless recommendation. Additionally note that,
in the mainstream of publications ( see [1–3] and references),
the respective subterfuge is not fortified with thorough (and
genuine) descriptions regarding the collapseΨ 7−→ ψi . Ev-
idently that the above revealed factspoint out the caducity
and failure of IWFC.

The previous discussions about IWFC lead us also to the
following more general Remark (R)

R A random variable should not be assessed (measured)
by an unique deterministic sampling (trial) but by a sta-
tistical ensemble of samplings.

3 Contiguities with the Schrödinger’s cat thought exper-
iment

As it is well known [18] the famous Schrödinger’s cat thought
experiment is a subject often displayed in debates (more or
less scientifically) about the significance/interpretations of
QM constituents. The essential element in the respective ex-
periment is represented by a killing single decay of a radioac-
tive atom. But the radioactive decays are random (probabilis-
tic) events. Then the mentioned killing decay is in fact a twin
analogue of the single sampling noted above in itemI 1 in
connection with IWFC.

The mentioned analogy motivates us to discuss on some
contiguities among questions specific to the alluded experi-
ment and those regarding IWFC. We think that, according to
the above remarkR, the main point of such motivated discus-
sions is to mark down the following Notification (N)

N When the variable of interest has random characteris-
tics it is useless (even forbidden) to design experiences
or actions that relies solely on a single deterministic
sampling of that variable.

In the light of such notification the Schrödinger experi-
ment appears to be noting but just a fiction (figment) without
any scientific value. That is why the statements like: “the
Schrödinger cat thought experiment remains a topical touch-
stone for all interpretations of quantum mechanics”, must be
regarded as being worthlessly. (Note that such statements are
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present in many science popularization texts, e.g. in the ones
disseminated via the internet.)

The above notificationN, argued for quantum level, can
be also of non-trivial significance (interest) at macroscopic
scale. For illustrating such a significance let us refer to the
thought experimental situation of a classical (macroscopic)
cousin of the Schr̈odinger cat. The regarded situation can be
depicted as follows. The cousin is placed in a sealed box to-
gether a flask of poison and an internal macroscopic hammer.
The hammer is connected to an macroscopic uncontrollable
(unobservable) sensor located within the circular error proba-
ble (CEP) of a ballistic projectile trajectory. Note that a ballis-
tic projectile is a missile whose flight is governed by the laws
of classical mechanics. CEP is defined as the radius of a cir-
cle, centered about the mean, whose boundary is expected to
include the landing points of 50% of the launching rounds (for
more details about ballistic terminology see [19]). The exper-
iment consists in launching of a single projectile, without any
possibility to observe the point where it hits the ground. Also
the projectile is equipped with a radio transmitter which sig-
nals the flight time. If the sensor is smitten by projectile the
hammer is activated releasing the poison that kills the cousin.
But as the projectile trajectory has a probabilistic character
(mainly due to the external ballistic factors) the hitting point
is placed with the probability of 50% within the surface of
CEP where the sensor is located. That is why, after the pro-
jectile time of flight and without opening the box, one can not
know the state of living for the cousin. So the whole situation
of the classical cousin is completely analogous with the one
of quantum Schr̈odinger’s cat. Therefore the thought experi-
ment with classical cousin makes evident oneself as another
fiction without any real significance.

We can add here another circumstance where the above
notificationN is taken into account (and put in practice) in a
classical context. Namely we think that, in the last analysis,
the respective notification is the deep reason of the fact that in
practice of the traditional artillery (operating only with ballis-
tic projectiles but not with propelled missiles) for destroying
a military objective one uses a considerable (statistical) num-
ber of projectiles but not a single one.

4 Contiguities with descriptions of quantum measure-
ments

It is easy to see the fact that the considerations from Section 2
are contiguous with the question of QMS descriptions. Such
a fact require directly certain additional comments which we
try to present here below. In our opinion the mentioned ques-
tion must be regarded within a context marked by the follow-
ing set of Topics (T):

T1 In its plenitude the QM theory must be considered in a
r-QM respectively in an e-QM reading. Fundamentally,
on the one hand, r-QM deals with theoretical models
regarding intrinsic properties of quantum (atomically

sized) systems. On the other hand e-QM has to take
into account both the characteristics of measured ob-
servable/system and the peculiarities of measuring de-
vices/procedures;

T2 Within r-QM a situation (state/system) is described
completely by its intrinsic (in) wave functionΨin and
operatorŝAk (k = 1,2, . . . , f ), associated to its specific
observablesAk. Expression ofΨin is distinct for each
situation while the operatorŝAk have the same math-
ematical representation in many situations. The con-
crete mathematical expression forΨin may be obtained
either from theoretical studies (e.g. by solving the ad-
equate Schr̈odinger equation) or from a priori consid-
erations (not supported by factual studies). For a given
state/system the observablesAk can be put into sight
through a small number of globalin-descriptors such
are: in-mean values,in-deviations or second or higher
order in-moments and correlations (for few examples
see below);

T3 A true experimental evaluation of quantum observables
can be obtained by means of an adequate numbers of
samplings finished through significant statistical sets of
individual recordings. For an observable the samplings
must be done on the same occurrences (i.e. practi-
cally on very images of the investigated observable and
state/system). As regards a lot of observables a global
and easy sight of the mentioned evaluation can be done
by computing from the alluded recordings some (ex-
perimental) exp-quantifiers (of global significance)
such are:exp-mean,exp-deviation respectivelyexp-
higher order moments;

T4 Usually, a first confrontation of theory versus experi-
ence, is done by comparing side by side thein-descrip-
tors andexp-quantifiers mentioned above inT2 andT3.
Then, if the confrontation is confirmatory, the investi-
gations about the studied observable/system can be no-
ticed as a fulfilled task. If the alluded confirmation does
not appear the study may be continued by resorting to
one or groups of the following upgradings (u):
u1) An amendment for expression ofΨin, e.g. through
solving a more complete Schrödinger equation or using
the quantum perturbation theory;
u2) Improvements of experimental devices and proced-
ures;
u3) Addition of a theoretical description for the consid-
ered QMS;

T5 Through the extension suggested in above upgrading
u3 the study changes its reading from a r-QM into an
e-QM vision, in the sense mentioned in topicT1. Such
an extension needs to be conceived as a stylized rep-
resentation through a mathematic modeling so that it
to include both intrinsic elements (regarding observ-
ables/states/systems) and measuring details. Also if the
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upgradingu3 is adopted then a true confrontation of
theory versus experience must be done not as it was
mentioned inT4 but by putting face to face the predic-
tions of QMS description with the experimental data.

For an illustration of the topicsT1–T5 let us regard as a
QM system a spin-less quantum particle in a rectilinear and
stationary movement along theOx axis. The QMS problems
will be reported to the orbital observables momentumpx and
energyE, denoted generically byA.

In terms ofT2 the probabilistic intrinsic (in) character-
istics of such particle are depicted by orbital wave function
Ψin = Ψin(x) (where coordinatex covers the rangeΩ). The
observablesA are described by the associated operatorsÂ ac-
cording the QM rules [6,7] (i.e. bŷpx = − i~ ∂

∂x respectively

by the HamiltonianĤ). Then from the class of globalin-
descriptors regarding such an observableA can be mentioned
the in-mean-value〈A〉in and in- deviationσin (A) defined as
follows

〈A〉in =
(
Ψin, Â Ψin

)

σin (A) =
√(
δinÂ Ψin, δinÂ Ψin

)




, (1)

where (f , g) denotes the scalar product of functionsf andg,
while δinÂ = Â− 〈A〉in.

An actual experimental measurement of observableA in
sense ofT3 must be done through a set of statistical sam-
plings. The mentioned set gives forA as recordings a collec-
tion of distinct values {α1 , α2, α3 , . . . , αr } associated
with the empirical probabilities (or relative frequencies)
{ν1 , ν2, ν3 , . . . , νr }. Usually, for a lower synthesized sight
about the mentioned measurement, as experimental (exp)
quantifiers are chosen theexp-mean〈A〉expandexp-deviation
σexp(A) given through the formulas:

〈A〉exp=

r∑

j=1

ν j ∙ α j

σexp(A) =

√√ r∑

j=1

ν j ∙
(
α j − 〈A〉exp

)2





. (2)

The above considerations about an experimental QMS
must be supplemented with the following Observations (O):

O1 Note that due to the inaccuracies of experimental de-
vices some of the recorded values{α1 , α2, α3 , . . . , αr }
can differ from the eigenvalues{a1 ,a2,a3 , . . . , as } of
the operator̂A.

O2 A comparison at first sight between theory and exper-
iment can be done by putting side by side the corre-
sponding aggregate (global) entities (1) and (2). When
one finds that the values of compared entities are in
near equalities, usually is admitted the following cou-
ple of linked beliefs (b):

b1) Theory is pretty correct and
b2) Measuring devices/procedures are almost ideal.
Thus, practically, the survey of debated QMS can be
regarded as a finished task.

O3 If instead of the mentioned equalities one detects (one
or two) flagrant differences at least one of the alluded
beliefs (b1) and (b2) is deficient (and unsustainable).
Such a deadlock can be avoided by one or groups of the
upgradings u1–u3 mentioned above within the
topicT4.

Generally speaking the the upgradingsu1–u2 are appreci-
ated and worked (explicitly or implicitly) in mainstream liter-
ature (see [1–3] and references). But note that, as far as know,
for u3 such an appreciation was neither taken into account nor
developed in details in the respective literature. It is our mod-
est task to present below a brief exemplification of upgrad-
ing u3 in relationship with the QMS question. The presenta-
tion is done in some simple terms of information transmission
theory.

An information theory modeling for QMS description

In a QMS process the input information regarding the in-
trinsic (in) properties of the measured system is converted
in predicted (pd) or output information incorporated within
the data received on a device recorder. That is why a QMS
appears as aninformation transmission processin which the
measuring device plays the role of ainformation transmis-
sion channel. So the QMS considered above can be symbol-
ized asΨin ⇒ Ψpd for the wave function while the operator
Â remains invariant. Such symbolization is motivated by the
facts that, on the one hand the wave functionΨ is specific
for each considered situation (state/system) whereas, on the
other hand the operator̂A preserves the same mathematical
expression in all (or at least in many) situations. Note that the
(quantity of) information is connected with probability den-
sitiesρη(x) and currents (fluxes)jη(x) (η = in, pd) defined in
terms ofΨη(x) as in usual QM [4–7]. Add here the fact that
ρη (x) and jη (x) refer to the positional respectively the mo-
tional kinds of probabilities. Experimentally the two kinds
of probabilities can be regarded as measurable by distinct de-
vices and procedures. Besides, as in practice, one can sup-
pose that the alluded devices are stationary and linear. Then,
similarly with the case of measurements regarding classical
random observables [4, 16, 17], in an informational reading,
the essence of here discussed QMS description can be com-
pressed [4,17] through the relations:

ρpd (x) =
∫

Γ
(
x, x′

)
ρin

(
x′
)
dx′

j pd (x) =
∫

Λ
(
x, x′

)
jin (x) dx′





. (3)

66 S. Dumitru. Caducity of Idea about Wave Function Collapse as well New Views on Schrödinger’s Cat and Quantum Measurements



January, 2013 PROGRESS IN PHYSICS Volume 1

Here the kernelsΓ(x, x′) andΛ(x, x′) include as noticeable
parts some elements about the peculiarities of measuring de-
vices/procedures. Mathematically,Γ(x, x′) andΛ(x, x′) are
normalized in respect with bothx and x′. Note that QMS
becomes nearly ideal when bothΓ(x, x′) → δ(x − x′) and
Λ(x, x′)→ δ(x− x′), (δ(x− x′) being the Dirac’sδ function).
In all other cases QMS appear as non-ideal.

By means of the probability densityρpd(x) and current
j pd(x) can be computed [4] some useful expressions like
Ψ∗pd (x) ÂΨpd (x). Then, for observableA, it is possible to
evaluate global indicators of predicted (pd) nature such are
pd-mean〈A〉pd and pd-deviationσpd (A) defined, similarly
with (1), as follows

〈A〉pd =
(
Ψpd, ÂΨpd

)

σpd (A) =
√(
δpdÂΨpd, δpdÂΨpd

)




. (4)

If as regards a quantum observableA, besides a true ex-
perimental evaluation, for its measuring process one resorts
to a (theoretical/informational) QMS description of the above
kind thepd-indicators (4) must be tested by comparing them
with their experimental (factual) correspondents (i.e.exp-
quantifiers) given in (2).

When the test is confirmatory both theoretical descrip-
tions, of r-QM intrinsic properties of system respectively of
QMS, can be considered as adequate and therefore the scien-
tific task can be accepted as finished. But, if the alluded test
is of invalidating type, at least one of the mentioned descrip-
tions must be regarded as inadequate and the whole question
requires further investigations.

For an impressive illustration of the above presented in-
formational QMS description we consider as observable of
interest the energyA = E = H regarding a QM harmonic
oscillator. The operator̂H associated to the respective ob-
servable is the Hamiltonian̂H = − ~

2

2m
d2

dx2 + 1
2mω2x2 (m and

ω denote the mass respectively the angular frequency of os-
cillator). The oscillator is considered to be in its lower en-
ergetic level, whose intrinsic state is described by the wave

functionΨin (x) ∝ exp
{
− x2

4σ2

}
(hereσ = σin (x) =

√
~

2mω de-
note thein-deviation of coordinatex). Then, becauseΨin is a
real function, for the considered state one findsj in = 0 — i.e.
the probability current is absent.

So for the regarded QMS description in (3) remains of in-
terest only first relation dealing with the changeρin → ρpd of
the probability density through the kernelΓ(x, x′). If the sup-
posed measuring device has high performancesΓ(x, x′) can

be taken [4] of Gaussian form i.e.Γ (x, x′) ∝ exp
{
− (x−x′)2

2γ2

}
, γ

being the error characteristic of the respective device. It can
been seen that in the case whenγ → 0 the kernelΓ(x, x′) de-
generates into the Dirac functionδ(x − x′). Thenρpd = ρin.
Such a case corresponds to an ideal measurement. Differ-
ently, whenγ , 0 one speaks of non-ideal measurements.

In the above modeling of QMS description for the energy
A = E = H one obtains [4] the followingin respectivelypd
means and deviations

〈H〉in =
~ω

2
; σin (H) = 0 , (5)

〈H〉pd =

ω
[
~2 +

(
~ + 2mωγ2

)2
]

4
(
~ + 2mωγ2

) , (6)

σpd (H) =

√
2mω2γ2

(
~ + mωγ2

)

(
~ + 2mωγ2

) . (7)

Relations (5) and (7) show that even ifΨin has the quality of
an eigenfunction for̂H (asσin(H) = 0), due to the measure-
mentΨpd is deprived of such a quality (becauseσpd(H) , 0).

5 Concluding remarks

We point out, on the one hand, the historical emergence of
the IWFC from the conflict between the itemsI 1 andI 2 men-
tioned in Section 2. Then we remind the fact that, on the other
hand, the modern studies certify the random characteristics of
quantum observables. Therefore a true measurement of such
an observable requires a whole set of statistically significant
samplings. The respective requirement invalidate indubitably
the alluded itemI 1. So IWFC is proved as a caducous and
useless recommendation.

Contiguously the respective proof allows to put into a new
light the famous Schrödinger’s cat thought experiment. We
argue in Section 3 that Schrödinger’s experiment is noting but
just a fiction without any scientific value. The argumentation
relies on the notification that: “When the variable of inter-
est has random characteristics it is useless (even forbidden)
to design experiences or actions that relies solely on a single
deterministic sampling of that variable”. The same notifica-
tion is useful in appreciating of some non-quantum problems
such are a Schrödinger’s-type experiment with a classical cat
or statistical practices in traditional artillery.

The question of IWFC caducity is contiguous also with
the problem of QMS descriptions. That is why in Section 4
we present some brief considerations about the respective
problem. Thus we propose that QM theory to be regarded
either in a r-QM or in an e-QM reading, as it refers to the
studied observables and systems without or with taking into
account the QMS descriptions. The proposal is consolidated
with simple illustration regarding a spin-less quantum oscil-
lator in a rectiliniar and stationary movement along theOx
axis. Particularly we suggest an approach of QMS descrip-
tions based on information transmission theory.

Of course that other different approaches about QMS de-
scriptions can be imagined. They can be taken into account
for extending QM theory towards an e-QM reading, as com-
plete/convincing as possible.
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The gravitational field shielding by scalar field and type II superconductors are theoret-
ically investigated. In accord with the well-developed five-dimensional fully covariant
Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity
and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space
as shown previously, but also flatten the space as indicated recently. The polariza-
tion of space decreases the electromagnetic field by increasing the equivalent vacuum
permittivity constant, while the flattening of space decreases the gravitational field by
decreasing the equivalent gravitational constant. In other words, the scalar field can
be also employed to shield the gravitational field. A strong scalar field significantly
shield the gravitational field by largely decreasing the equivalent gravitational constant.
According to the theory of gravitational field shielding by scalar field, the weight loss
experimentally detected for a sample near a rotating ceramic disk at very low tempera-
ture can be explained as the shielding of the Earth gravitational field by the Ginzburg-
Landau scalar field, which is produced by the type II superconductors. The significant
shielding of gravitational field by scalar field produced by superconductors may lead to
a new spaceflight technology in future.

1 Introduction

Gravitation is one of the four fundamental interactions of na-
ture. According to the Newtonian universal law of gravita-
tion, any two objects in the universe attract each other with
a force that is directly proportional to the product of their
masses and inversely proportional to the square of the dis-
tance between them. According to the Einsteinian general
theory of relativity, gravitation is directly related to the curva-
ture of spacetime. The Schwarzschild solution of the general
relativity for a static spherically symmetric body predicts the
perihelion precession of planets, the deflection of distant star
light by the Sun, the gravitational redshift of Sun’s light, and
the time delay of radar echoes, which have been well tested
by the measurements [1-4].

To study the shielding of the gravitational field in analo-
gous to the shielding of the electromagnetic field, Majorana
[5] in 1920 modified the Newtonian gravitational field of an
object with a nonzero extinction coefficienth , 0 as

g = gN exp

[

−h
∫

ρ(r)dr

]

, (1)

wheregN ≡ G0M/r2 is the Newtonian gravitational field with
G0 the gravitational constant,M the mass of the object, andr
the radial distance from the object center;ρ is the mass den-
sity of the object;h is the extinction coefficient. For a spheri-
cal object with a constant mass density and radiusR, Eq. (1)
after integrated becomes

g = gN exp

(

−
3hM
4πR2

)

. (2)

Laboratory measurements constrainedh . 10−15 m2/kg [6-
7]. Space measurements gaveh . 10−19 m2/kg [8-9]. These
measurements indicated that the gravitational field shielding
is negligible or undetectable in the case of weak fields.

On the other hand, Kaluza [10] in 1921 proposed a five-
dimensional (5D) theory to unify the Einsteinian general rela-
tivity and Maxwellian electromagnetic theory. The geometric
structure and property of the 5D spacetime were then stud-
ied by Klein [11-12]. The early Kaluza-Klein (K-K) theory
of unification was further developed with a scalar field [13],
which can modify both the electromagnetic and gravitational
fields. Some previous studies have shown that the scalar field
can reduce the electromagnetic field of a charged object and
thus polarize the space around the charged object or shield
the electromagnetic field from the charged object [14-15].
It is equivalent to increase the free space permittivity con-
stant. Recently, we has shown, in accord with a 5D fully
covariant K-K theory, that the scalar field can also reduce the
gravitational field of a body and thus flatten the space around
the body or shield the gravitational field from the body [16].
It is equivalent to decrease the gravitational constant in and
around the body [17].

The scalar field that was introduced to the cosmology in
various models has also been considered as a candidate of
dark energy for the acceleration of the universe. As the cos-
mic expansion, the scalar field of the universe changes over
time and became repulsive about many years ago and then
overcome the gravitational force to accelerate the expansion
of the universe. In addition, we have recently shown that a
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massive and compact neutron star can generate a strong scalar
field, which can significantly shield or reduce its gravitational
field, and thus can be more massive and more compact. The
mass-radius relation developed under this type of modified
gravity with a scalar field can be consistent with the measure-
ments of neutron stars [18].

In this paper, we will investigate the gravitational field
shielding by scalar field and type II superconductors. We sug-
gest that the scalar field generated by the type II superconduc-
tors has the same physics and thus addable to the scalar field
generated by any other types of matter. According to the five-
dimensional fully covariant K-K theory with a scalar field,
the scalar field of an object can shield its gravity or decrease
the equivalent gravitational constant in or around the object.
Therefore, the Ginzburg-Lanadu scalar field [19-20] gener-
ated by type II superconductors, if it has a similar physics and
thus addable to the scalar field of the Earth, can cause a sam-
ple to lose a few percent of its weight or the Earth’s gravity
as detected by [21]. This study will quantitatively analyze the
gravitational field shielding due to the scalar field generated
by type II superconductors.

2 Gravitational Shielding by Scalar Field

In the 5D fully covariant K-K theory with a scalar field that
has successfully unified the 4D Einsteinian general relativ-
ity and Maxwellian electromagnetic theory, the gravitational
field of a static spherically symmetric object in the Einstein
frame was obtained from the 5D equation of motion of matter
as [16, 22]

g =
c2

2Φ2

(
dΦ
dr

+ Φ
dν
dr

)

eν−λ, (3)

where the metric and scalar field solutions of the 5D fully
covariant K-K theory are given by [23]

eν = Ψ2Φ−2, (4)

eλ =

(

1−
B2

r2

)2

Ψ−2, (5)

Φ2 = −α2Ψ4 + (1+ α2)Ψ−2, (6)

with

Ψ =

( r − B
r + B

)1/
√

3

, (7)

B =
G0M

√
3(1+ α2)c2

, (8)

α =
Q

2
√

G0M
. (9)

HereM andQ are the mass and electric charge of the object.
For a neutral object (i.e.,α = 0 or Q = 0), the gravita-

tional field Eq. (3) obtained from the 5D fully covariant K-K
theory with a scalar field can be simplified to [17]

g = gN

(

1−
B2

r2

)−3

Φ−7 =
1
64

(
Φ
√

3 + 1
)6
Φ−7−3

√
3, (10)

where the scalar fieldΦ and the critical or singular radiusB
of the K-K solution are simplified as

Φ = Ψ−1, B =
G0M
√

3c2
. (11)

The singular radiusB of the K-K solution is a factor of
√

3/6
times smaller than the Schwarzschild radius. Eq. (10) indi-
cates that the gravitational field obtained from the 5D fully
covariant K-K theory with a scalar field is influenced by the
scalar fieldΦ. This type of influence can be understood as the
gravitational field shielding by scalar field.

In the case of weak fields (i.e.,B � r or in other words,
when the gravitational potential energy of a particle is much
smaller than the rest energy of the particle), we can approxi-
mately simplifyg as

g = gN

(

1−
14G0M

3c2r

)

= 1− 7δΦ. (12)

Here we have replacedΦ = 1 + δΦ. Comparing the field at
the surface of object between Eq. (2) and Eq. (12), we obtain
the extinction coefficient as

h =
56πG0R

9c2
∼ 1.5× 10−26R, (13)

which is abouth ∼ 1.5 × 10−26 m2/kg for an object with ra-
dius of one meter and abouth ∼ 10−19 m2/kg for an object
with the size of Earth. It is seen that the gravitational field
shielding by scalar field is undetectable in a laboratory ex-
periment since the extinction coefficient is very small for an
object with laboratory scale size. For an object with Earth’s
radiusR∼ 6.4×106 m, the extinction coefficient ish ∼ 10−19,
the order of the space measurements. This analysis is valid
only for the case of weak fields.

The reason for the gravitational field to be shed is the sig-
nificance of the scalar field, which rapidly increases as the
radial distance approaches to the singular radius, i.e.,r → B
(Top panel of Figure 1). The gravitational field is inversely
proportional to the scalar field with a power of 7−3

√
3 ∼ 1.8

if Φ � 1 as shown in Eq. (10). By writing Eq. (10) as the
Newtonian form of the gravitational field

g =
GM
r2

, (14)

where theG is defined as an equivalent gravitational constant

G = G0

(

1−
B2

r2

)−3

Φ−7 =
1
64

(
Φ
√

3 + 1
)6
Φ−7−3

√
3. (15)

This suggests that the gravitational field shielding occurs be-
cause the strong scalar field significantly varies or decreases
the equivalent gravitational constant around the object.

To investigate the gravitational shielding by scalar field in
the case of strong fields, we plot in the bottom panel of Fig-
ure 1 the gravitational field or constant ratio (g/gN or G/G0)
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Fig. 1: Scalar field and gravitational field shielding by scalar field.
Top panel: the scalar field (Φ) and bottom panel: the ratio be-
tween the K-K and Newtonian gravitational field or constant (g/gN

or G/G0) of a neutral object vs. the normalized radial distance
r/B [17].

as a function of the radius distance (r/B) [17]. It is seen that
the gravitational field is significantly reduced (or shed) by the
scalar field whenr is comparable toB. For instances, the
gravitational field is shed by∼ 10% (or the percentage of
weight loss for a sample object) atr = 100B, by ∼ 20% at
r = 35B, by ∼ 40% atr = 15B, by ∼ 80% atr = 5B, and
∼ 100% atr = B. Therefore, for a weak field, the relative
difference of the field is small and thus the shielding effect is
negligible. For a strong field, however, the gravitational field
or constant ratio is small or the relative difference of the field
is large so that the shielding effect is significant. The gravi-
tational field of an object, whenr = B or its mass-to-radius
ratio is aboutM/r ' 2×1027 kg/m, is completely shed by the
strong scalar field or by the huge amount of mass enclosed.
As shown in the top panel of Figure 1, the scalar field in-
creases asr approachesB. The scalar field is∼ 1.4 atr = 4B,
∼ 4 atr = 1.6B, and tends to infinity whenr → B. When the
scalar field is unity (i.e.,Φ = 1), we haveg/gN = 1, which
refers to that the gravitational field is not shed. When the

scalar field significantly departs from the unity, for instance,
atΦ = 1.2 or δΦ = 0.2, we haveg/gN ' 0.3, which refers to
that a 70% of gravitational field is shed by the scalar field.

3 Gravitational Shielding by Type II Superconductors

About two decades ago, Podkletnov and Nieminen [21] ex-
perimentally discovered that a bulk sintered ceramic (type II
superconductor) disk of YBa2Cu3O7−x can have a moderate
shielding effect against the gravitational field. This effect in-
creases with the speed of disk rotation and also depends on
the temperature. It was suggested that the shielding effect is
the result of a certain state of energy that exists inside the
crystal structure of the superconductor at low temperature.
This state of energy changes the interactions between electro-
magnetic, nuclear, and gravitational fields inside a supercon-
ductor, and is responsible for the observational phenomena.
But a shielding physics has not yet been developed.

Here, we propose a possible shielding physics to explain
this phenomena. According to the Ginzburg-Landau theory,
a rotating disk of type II superconductor at the phase transi-
tion with low temperature (e.g., 70K) generates a scalar field
[19-20, 24-30] that varies the equivalent gravitational con-
stant along with the Earth scalar field in and around the su-
perconductor and thus shields the gravitational field of the
Earth. According to the 5D fully covariant K-K theory and
solution, the scalar field of the Earth at the surface is about
the unity becauseB� r. Now, in the Podkletnov and Niemi-
nen’s experiment, the ceramic (or type II) superconductor can
produce an extra scalar fieldδΦ, which is responsible for the
small weight loss of the sample.

Based on the previously-developed Landau theory of the
second-order phase transition, Ginzburg and Landau [19, 30]
showed that the free energyF of a superconductor per unit
volume near the transition can be expressed in terms of a com-
plex order parameter fieldψ by

F = Fn + a|ψ|2 +
b
2
|ψ|4 +

1
2m
|(−i~ 5 −2e~A)ψ|2 +

|~B|2

2μ0
, (16)

where Fn is the free energy in the normal phase,a and b
are phenomenological parameters,m is an effective mass,e
is the charge of electron,~A is the magnetic vector poten-
tial and ~B is the magnetic field. The absolute value of the
complex order parameter field|ψ| can be considered as a real
scalar field called Ginzburd-Landau scalar field denoted here
by ΦGL ≡ |ψ|. Then, in Eq. (16), the second and third terms
are the scalar field potential energy; the first part of the fourth
term is the scalar field kinetic energy; and the other parts of
the fourth term give the energy that couples the scalar field
and magnetic field; and the last term is the energy of mag-
netic field.

By minimizing F with respect to fluctuations ofψ and ~A,
one can derive the Ginzburg-Landau equations [30-31]

aψ + b|ψ|2ψ +
1

2m
(−i~ 5 −2e~A)2ψ = 0, (17)
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Fig. 2: Gravitational field shielding by scalar field associated with
type II superconductor disk. The percentage of weight loss of the
sample is plotted as a function of the temperature of the type II su-
perconductors [17].

~j =
2e
m

Re[ψ∗(−i~ 5 −2e~A)ψ], (18)

where~j is the electrical current density, which is real.
For a homogeneous superconductor, in which~j = 0, Eq.

(17) can be simplified to

aψ + b|ψ|2ψ = 0. (19)

The solutionψ = 0 is trivial and corresponds to the normal
state of the superconductor above the superconducting tran-
sition temperatureTc. The non-trivial solution of Eq. (19)
determines the Ginzburg-Landau scalar field

ΦGL ≡ |ψ| =

√

−
a
b
=

√

−
a0

b
(T − Tc). (20)

Here, we have assumed the temperature dependence ofa to
be a = a0(T − Tc) with positive ratioa0/b. For the YBCO
superconductor,Tc ∼ 93 K. Suggesting all types of scalar
fields to be similar in physics and addable, we obtain the total
scalar field in or around a type II superconductor,

Φtotal = ΦEarth+ ΦGL

= 1+
2G0ME

3c2RE
+

√

−
a0

b
(T − Tc), (21)

whereME andRE are Earth’s mass and radius.
To quantitatively study the gravitational field shielding by

the Ginzburg-Landau scalar field along with the Earth scalar
field, we plot in Figure 2 the weight relative loss of the sam-
ple or the gravitational field relative change at the sample as
a function of the temperature of the type II superconductor.
It is seen that the weight relative loss of the sample or the
gravitational field relative change increases as the tempera-
ture decreases or as the ratioa0/b increases. AtT ∼ 70 K

anda0/b ∼ 10−8 − 10−6, the weight relative loss or the gravi-
tational field relative change is∼ 0.5− 3%, which can be the
order of measurements [21].

4 Discussion and Conclusion

For a rotating disk of type II superconductor, the accelera-
tion of inertially moving cooper pairs in the superconductor
is equivalent to a gravitational field, which may couple with
the Ginzburg-Landau scalar field to produce an extra shield-
ing effect on gravity as shown in [21]. In future study, we will
quantitatively analyze the rotation dependence for the gravi-
tational field shielding by the Ginzburg-Landau scalar field of
type II superconductors.

As a consequence, we have analytically studied the gravi-
tational field shielding by scalar field and type II supercon-
ductors, in accord with the 5D fully covariant K-K theory
with a scalar field and the Ginzburg-Landau theory for su-
perconductors. The results have indicated that the gravita-
tional field shielding by the scalar field of a body is very small
at an undetectable level if the field is weak. The extinction
coefficient derived from the comparison with the Majorana’s
gravitational field shielding theory is consistent with labora-
tory and space measurements. In the case of strong fields,
however, the gravitational field shielding effect can be signif-
icant. This will have important applications in strong-field
astrophysics and greatly impact the physics of supernova ex-
plosions, the models of neutron stars for their mass-radius
relations, and the theory of black hole formations.

Detection of the gravitational field shielding is a challenge
to a laboratory experiment, but possible especially when the
object becomes a superconductor. A type II superconduc-
tor may produce a significant Ginzburg-Landau scalar field at
the phase transition and thus may be used to shield gravity as
claimed by [21]. The result obtained from this study can be
consistent with the measurements. The significant shielding
of gravitational field by scalar field produced by supercon-
ductors may lead to a new spaceflight technology in future.
The gravitational field shielding by type II superconductors
still need further experimentally confirmed.
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