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LETTERS TO PROGRESS IN PHYSICS

Book Review: “Inside Stars. A Theory of the Internal Constitution of Stars,
and the Sources of Stellar Energy According to General Relativity”

Pierre A. Millette
Astrophysics research on stellar atmospheres at Department of Physics, University of Ottawa (alumnus),

Ottawa, Canada. E-mail: PierreAMillette@alumni.uottawa.ca

This book provides a general relativistic theory of the internal constitution of liquid
stars. It is a solid contribution to our understanding of stellar structure from a general
relativistic perspective. It raises new ideas on the constitution of stars and planetary
systems, and proposes a new approach to stellar structure and stellar energy generation
which is bound to help us better understand stellar astrophysics.

The book “Inside Stars. A Theory of the Internal Constitu-
tion of Stars, and the Sources of Stellar Energy According to
General Relativity” by Larissa Borissova and Dmitri Raboun-
ski [1] provides a general relativistic theory of the internal
constitution of liquid stars.

The generally accepted model of stellar constitution con-
siders stars to be high-temperature gaseous plasmas obeying
the ideal gas equation of state. However, in the late nine-
teenth and early twentieth centuries, the question of whether
stars are gaseous or liquid was the subject of much debate.
P.-M. Robitaille provides a detailed discussion of this debate
in his work [2, 3]. Recent evidence for liquid stars, in partic-
ular the extensive research performed by P.-M. Robitaille on
the liquid metallic hydrogen model of the Sun, and his pro-
posed liquid plasma model of the Sun [4], have re-opened the
question.

In this book, the authors provide a novel general rela-
tivistic theory of the internal constitution of liquid stars, us-
ing a mathematical formalism first introduced by Abraham
Zelmanov for calculating physically observable quantities in
a four-dimensional pseudo-Riemannian space, known as the
theory of chronometric invariants. This mathematical formal-
ism allows to calculate physically observable chronometric-
invariant tensors of any rank, based on operators of projection
onto the time line and the spatial section of the observer. The
basic idea is that physically observable quantities obtained
by an observer should be the result of a projection of four-
dimensional quantities onto the time line and onto the spatial
section of the observer.

In the book, a star is modelled as a sphere of incompress-
ible liquid described by Schwarzschild’s metric. However,
unlike Schwarzschild’s solution which requires that the met-
ric be free of singularities, space-time singularities arecon-
sidered in this model. The conditions for a spatial singularity,
known as a space break, are derived.

For our Sun, a space break is found to be within the Aster-
oid belt. The theory thus also provides a model of the internal
constitution of our solar system. It provides an explanation

for the presence of the Asteroid belt, the general structureof
the planets inside and outside that orbit, and the net emission
of energy by the planet Jupiter.

There is another space break located within a star’s field.
As a result of their analysis, the authors propose a new clas-
sification of stars based on the location of the space breaking
of a star’s field with respect to its surface. This classifica-
tion of stars results in three main types: regular stars (cov-
ering white dwarfs to super-giants) covered in Chapter 2, of
which Wolf-Rayet stars are a subtype, neutron stars and pul-
sars, covered in Chapter 4 and collapsars (i.e. black holes),
covered in Chapter 5. Chapter 3 examines the properties of
the stellar wind within their liquid star model.

The stellar mass-luminosity relation, which is the main
empirical relation of observational astrophysics, is compared
by the authors to that derived in the framework of the liq-
uid model. From this they obtain the physical characteristics
of the mechanism that produces energy inside the stars. Us-
ing the liquid model, the pressure inside stars can be calcu-
lated as a function of radius, including the central pressure.
As pointed out by the authors, the temperature of the incom-
pressible liquid star does not depend on pressure, only on the
source of stellar energy. The authors match the calculated
energy production of the suggested mechanism of thermonu-
clear fusion of the light atomic nuclei in the Hilbert core (the
“inner sun”) of the stars to the empirical mass-luminosity re-
lation of observational astrophysics, to determine the density
of the liquid stellar substance in the Hilbert core.

In the general relativistic model of liquid stars, the inside
of the star is homogeneous, with a small core (about a few
kilometres in radius) in its centre. The core is separated from
the main mass of the star by the model’s collapse surface with
the radius depending on the star’s mass. Despite almost all the
mass of the star being located outside the core (the core is not
a black hole), the force of gravity approaches to infinity on
the surface of the core due to the inner space breaking of the
star’s field within it. The super-strong force of gravity is suf-
ficient for the transfer of the necessary kinetic energy to the
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lightweight atomic nuclei of the stellar substance, to sustain
the process of thermonuclear fusion. Thus, thermonuclear fu-
sion of the light atomic nuclei is possible in the Hilbert core of
each star. The energy produced by the thermonuclear fusion
is the energy emitted by the stars: the small core of each staris
its luminous “inner sun”, while the generated stellar energy is
transferred to the physical surface of the star by thermal con-
ductivity. Due to the fact that the star’s substance is liquid,
more and more “nuclear fuel” is delivered from other regions
of the star to its luminous Hilbert core, thus supporting the
combustion inside the “nuclear boiler”, until the time when
all the nuclear fuel of the star is spent.

Pulsars and neutron stars are found to be stars whose phy-
sical radius is close to the radius of their Hilbert core. They
are modelled by introducing an electromagnetic field in the
theory to account for their rotation and gravitation. Electro-
magnetic radiation is found to be emitted only from the poles
of those stars, along the axis of rotation of the stars.

Finally, the properties of black holes as derived from the
model are considered. The authors find that regular stars can-
not collapse. They derive the conditions for pulsars and neu-
tron stars to become collapsars. Interestingly, the authors ap-
ply their model to the Universe and, based on their results,
suggest that the Universe can be considered as a sphere of
perfect liquid which is in a state of gravitational collapse(the
liquid model of the Universe). Hence they deduce that the
observable Universe is a collapsar, a huge black hole.

This book represents a solid contribution to our under-
standing of stellar structure from a general relativistic per-
spective. It provides a general relativistic underpinningto the
theory of liquid stars. It raises new ideas on the constitution of
stars and planetary systems, and proposes a new approach to
stellar structure and stellar energy generation which is bound
to generate much new research, and help us better understand
stellar astrophysics.

Submitted on October 24, 2013/ Accepted on October 25, 2013
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Mass-Radius Relations of Z and Higgs-Like Bosons

Bo Lehnert
Alfvén Laboratory, Royal Institute of Technology, SE-10044 Stockholm, Sweden. E-mail: Bo.Lehnert@ee.kth.se

Relations between the rest mass and the effective radius are deduced for the Z boson
and the experimentally discovered Higgs-like boson, in terms of a revised quantum
electrodynamic (RQED) theory. The latter forms an alternative to the Standard Model
of elementary particles. This results in an effective radius of the order of 10−18 m for the
Z boson, in agreement with accepted data. A composite model for the Higgs-like boson
is further deduced from the superposition of solutions represented by two Z bosons.
This model satisfies the basic properties of the observed Higgs-like particle, such as
a vanishing charge and spin, a purely electrostatic and strongly unstable state, and an
effective radius of about 10−18 m for a rest mass of 125 GeV.

1 Introduction

Recently an elementary particle has been discovered at the
projects ATLAS [1] and CMS [2] of CERN, being unstable,
having vanishing net electric charge and spin, and a rest mass
of 125 GeV. This discovery was made in connection with a
search for the Higgs boson and its theoretical base given by
the Standard Model of an empty vacuum state.

Being distinguished from the latter model, a revised quan-
tum electrodynamic (RQED) theory has been elaborated [3],
as founded on the principle of a non-empty vacuum state. It is
supported by the quantum mechanical Zero Point Energy [4]
and the experimentally verified Casimir force [5]. This rel-
ativistic and gauge invariant theory of broken symmetry is
based on a nonzero electric field divergence in the vacuum, in
combination with a vanishing magnetic field divergence due
to the non-existence of observed magnetic monopoles.

Among the subjects being treated by RQED theory, this
report is devoted to the mass-radius relation obtained for the
Z boson, and to that associated with a model of the Higgs-like
boson. This provides an extension of an earlier analysis on a
Higgs-like particle [6].

2 Particle with vanishing net electric charge

Due to the RQED theory of axisymmetric particle-shaped
steady states with rest mass, a separable generating function

F (r, θ) = CA − φ = G0G (ρ, θ) , G = R (ρ) · T (θ) (1)

can be introduced in a spherical frame (r, θ, ϕ) of reference
[3]. There is an electrostatic potential φ and an electric charge
density ρ̄= ε0 div E, a current density j = (0, 0,Cρ̄) with C2

= c2 and C = ± c representing the two spin directions along
ϕ, and a magnetic vector potential A = (0, 0, A). A dimen-
sionless radial coordinate ρ= r/r0 is introduced with a char-
acteristic radius r0, and a dimensionless generating function
G with the characteristic amplitude G0.

As based on the function (1), the general forms of the
potentials and the charge density become

CA = − (sin θ)2 DF , (2)

φ = −
[
1 + (sin θ)2 D

]
F , (3)

ρ̄ = − ε0

r2
0 ρ

2
D

[
1 + (sin θ)2 D

]
F , (4)

where the operators are

D = Dρ + Dθ

Dρ = − ∂
∂ρ

(
ρ2 ∂

∂ρ

)
Dθ = − ∂

2

∂θ2 −
cos θ
sin θ

∂

∂θ
.

(5)

Since the analysis will be applied to the special class of
particles with vanishing net electric charge, such as the Z and
Higgs-like bosons, the radial part R of the function (1) has to
be convergent at the origin ρ= 0, and a polar part T is chosen
having top-bottom symmetry with respect to the equatorial
plane θ= π/2. This is due to earlier performed basic deduc-
tions [3].

Due to the non-zero electric field divergence, there are
local intrinsic charges even when the net integrated charge
vanishes. For a convergent generating function the total inte-
grated energy W can either be expressed in terms of the field
energy density

w f =
1
2
ε0

(
E2 + c2B2

)
(6)

or of the source energy density

ws =
1
2
ρ̄ (φ + CA) (7)

from which
W =

∫
w f dV =

∫
ws dV. (8)

We shall use the option (7) for which the local contribution to
the particle mass becomes

dm0 =
ws

c2 dV (9)

and that related to the angular momentum (spin) becomes

ds0 = Cr (sin θ) dm0 (10)

Bo Lehnert. Mass-Radius Relations of Z and Higgs-Like Bosons 5



Volume 10 (2014) PROGRESS IN PHYSICS Issue 1 (January)

for a volume element dV = 2πr2(sin θ) dθdr in a spherical fra-
me.

A generating function being convergent both at ρ= 0 and
at large ρ, and having top-bottom symmetry, is finally chosen
through the form

R = ργ · e−ρ, T = (sin θ)α , (11)

where γ> 1 and α> 1. The part R then increases to a maxi-
mum at the effective radius r̂ = γr0 after which it drops steeply
towards zero at large ρ.

3 Model of a Z boson

A Z boson is first considered, having zero net electric charge,
spin h/2π, a rest mass of 91 GeV, and an effective radius of
about 10−18 m according to given data [7].

From (1)–(5), (8), (9) and (11) the product of the mass
m0Z and the effective radius r̂Z = γr0Z becomes

r̂Zm0Z = π
(
ε0/c2

)
r2

0ZG2
0γJmZ , (12)

where

JmZ =

∞∫

0

π∫

0

f gZ dρ dθ (13)

and
f = − (sin θ) D

[
1 + (sin θ)2 D

]
G , (14)

gZ = −
[
1 + 2 (sin θ)2 D

]
G . (15)

The spin is further given by

s0Z = πε0

(
C/c2

)
r2

0ZG2
0JsZ = ±h/2π (16)

where

JsZ =

∞∫

0

π∫

0

ρ (sin θ) f gZ dρ dθ . (17)

Combination of (12)–(17) yields

r̂Zm0Z =
h

2πc
γJmZ

JsZ
. (18)

This relates the mass to the effective radius, in a way being
dependent on the profile shape of the generating function:

• A numerical analysis of the 16 γ6 10 and 16α6 10
cases, results in the large ranges 17.76 JmZ 6 9.01 ×
1015 and 39.86 JsZ 6 1.83× 1016 of the amplitudes JmZ

and JsZ . The last factor of the right-hand member in
(18) stays however within the limited range of 0.445 6
(γJmZ/JsZ) 6 0.904.

• In the asymptotic cases γ�α� 1 and α� γ� 1 the
values of (γJmZ/JsZ) become 15/38 and 1, respectively.
This is verified in an earlier analysis [8].

• In spite of the large variations of JmZ and JsZ with the
profile shape, the factor γJmZ/JsZ thus has a limited
variation within a range of about 0.4 to 1.

For the present deduced model, the rest mass of 91 GeV
then results in an effective radius in the range of 0.87× 10−18

to 2.2× 10−18 m. This is consistent with the given value of r̂Z .
For the expressions (2) and (3) combined with the form

(11) can finally be seen that there is a moderately large de-
viation from a state E2 = c2B2 of equipartition between the
electrostatic and magnetostatic particle energies.

4 Model of a Higgs-like boson

One of the important reactions being considered in the exper-
iments at CERN is the decay of the observed Higgs-like bo-
son into two Z bosons, and further into four leptons. Since the
Higgs-like boson was found to have a mass of 125 GeV, and
the Z bosons have masses of 91 GeV each, an extra contribu-
tion of 57 GeV is required for the decay into the Z bosons.
It can then be conceived that this extra energy is “borrowed”
from the Heisenberg uncertainty relation when the entire de-
cay process takes place in a very short time. At least one of
the involved Z bosons then behaves as a virtual particle. In
this connection is also observed that the magnitude of the
Higgs-like boson mass has not been predicted through the
theory by Higgs [9].

With the decay process in mind, a relation will now be
elaborated between the mass and the effective radius of the
Higgs-like boson. Then it has first to be observed that a rela-
tion similar to equation (18) cannot be straightforwardly de-
duced. This is because the Higgs-like boson has no spin, and
its related effective radius can on account of the required extra
energy not become identical with that of a single Z boson.

Solutions for models of massive individual bosons and
leptons are available from RQED theory. The field equations
are linear, and these solutions can be superimposed to form
a model of a Higgs-like particle having vanishing charge and
spin. It can be done in terms of four leptons or two Z bosons.
Choosing the latter option [6], superposition of the potentials
(2) and (3) for two modes with opposite spin directions results
in a composite Higgs-like mode with zero charge and spin but
nonzero rest mass. This mode has no magnetic field, is purely
electrostatic, and is thus expected to be highly unstable. In
analogy with the deductions (1)–(11), the corresponding in-
tegrated mass m0H becomes

r̂Hm0H = π
(
ε0/c2

)
r2

0HG2
0γJmH (19)

with the effective radius r̂H , r̂Z and

JmH =

∞∫

0

π∫

0

f gH dρ dθ . (20)

Here f is still obtained from (14) and

gH = −2
[
1 + (sin θ)2 D

]
G = gZ −G (21)

6 Bo Lehnert. Mass-Radius Relations of Z and Higgs-Like Bosons
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with gZ given by (15). Combination of (19) and (12) yields

r̂H

r̂Z
=

r0H

r0Z
=

m0H

m0Z

JmZ

JmH
. (22)

The dependence on the profile shape of the generating func-
tion is as follows:

• Numerical analysis in the ranges 16 γ6 10 and 16α6
10 results in the amplitude variations 1386 JmZ 6 9.8×
1015 and 2876 JmH 6 1.8× 1016, but their ratio is stron-
gly limited to 2.036 JmH/JmZ 6 2.20.

• From expression (21) at large γ and α can further be
seen that JmH/JmZ approaches the asymptotic value 2.

With these evaluations, and the experimentally determin-
ed masses m0Z = 91 GeV and m0H = 125 GeV, the effective
radius r̂H of the Higgs-like boson comes from (22) out to be
in the range 0.54× 10−18 to 1.5× 10−18 m.

5 Summary

The present model of the Z boson leads to an effective radius
of the order of 10−18 m, in agreement with given data. This
can be taken as support of the present theory.

Concerning the present model of a Higgs-like boson, the
following results should be observed:

• An imagined “reversal” of the decay of a Higgs-like
boson into two Z bosons initiates the idea of superim-
posing two Z boson modes to form a model of such a
particle. The resulting composite particle solution is
consistent with the point made by Quigg [7] that the
Higgs is perhaps not a truly fundamental particle but is
built out of as yet unobserved constituents.

• The present model of a Higgs-like boson satisfies the
basic properties of the particle observed at CERN. It
has a vanishing electric charge and spin, a nonzero rest
mass, and is unstable due to its purely electrostatic na-
ture.

• The present theory finally results in an effective radius
of the order of 10−18 m for the experimentally detected
Higgs-like particle having a rest mass of 125 GeV, and
vice versa.
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Reexamination of Nuclear Shape Transitions in Gadolinium and Dysprosium
Isotopes Chains by Using the Geometric Collective Model

Khalaf A.M.1, Aly H.F.2, Zaki A.A.2 and Ismail A.M.2

1Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt. E-mail: ali khalaf43@hotmail.com
2Hot Laboratories Center, Atomic Energy Authority, P.No. 13759, Cairo, Egypt. E-mail: dr ahmedph@yahoo.com

The geometric collective model proposed in a previous paper in examined to de-
scribe the nuclear shape transitions for Gd and Dy isotopes chains. The optimized
model parameters for each nucleus have been adjusted by fitting procedure using
a computer simulated search program in order to reproduce the excitation energies
(2+1 , 4

+
1 , 6

+
1 , 8

+
1 , 0

+
2 , 2

+
3 , 4

+
3 , 2

+
2 , 3

+
1 and 4+2 ) and the two neutron separation energies in all

nuclei in each isotopic chain. Calculated potential energy surface (PES’S) describing
all deformation effects of each nucleus have been extracted. Our systematic studies
on Gd / Dy chains have revealed a shape transition from spherical vibrator to axially
deformed rotor when moving from the lighter to heavier isotopes.

1 Introduction

Recent developments in nuclear structure have brought con-
siderable focusing on the problems of shape phase transition
and shape coexistence phenomena [1]. For instance, sev-
eral isotopes have been found to undergo shape phase evo-
lution of first order from spherical vibrator to deformed ax-
ially symmetric rotor [2–6] and phase transition of second
order from spherical vibrator to deformed γ - soft [7–9]. The
study of shape phase transitions in nuclei was best done by
using the interacting boson model (IBM) [10]. The original
version of IBM (IBM-1) includes s and d bosons, it defines
six-dimensional space and this leads to a description in terms
of a unitary group U(6). Three dynamical symmetries in the
IBM-1 were shown [11]: the U(5) symmetry corresponding
to spherical oscillator, the SU(3) symmetry corresponding to
deformed axially rotor and the O(6) symmetry corresponding
to the γ - soft asymmetric rotor shapes. These three sym-
metry limits from a triangle known as a Casten triangle that
represents the nuclear phase diagram [12]. The X(5) critical
point symmetry [13] has been found to correspond to the first
order transition between U(5) and SU(3), while the E(5) crit-
ical point symmetry [14] has been found to correspond to the
second order transition between U(5) and O(6).

In the previous paper [3], we used the flexible and power-
ful geometric collective model (GCM) [3, 15–18] to describe
the quantum phase transition between spherical and deformed
shapes for doubly even nuclei in lanthanide and actinide iso-
topes chains. The potential energy surfaces (PES’S) describ-
ing all deformed effects of each nucleus were extracted in
terms of the intrinsic shape parameters β and γ. The pa-
rameter β is related to the axial deformation of the nucleus,
while γ measure the deviation from axial symmetry. In the
present work, it is of interest to examine the GCM in investi-
gating the shape transition from spherical vibrator to axially
deformed rotor for Gd and Dy isotopic chains by analyzing
the PES’S. In section 2, we construct the GCM Hamiltonian

and its eigenfunction. In section 3, we generated the PES’S to
classify shape phase transitions and to decide if a nucleus is
close to criticality. In section 4, we applied our model to the
rare earth Gd / Dy isotopic chains which evolve a rapid struc-
tural charges from spherical to well-deformed nuclei when
moving from lighter to the heavier isotopes.

2 The GCM Hamiltonian and eigenstates

In GCM, the Hamiltonian of the nucleus, in appropriate units,
can be expressed as a series expansion in terms of the sur-
face deformation coordinates α and the conjugate momenta π
as [3]:

H = 1
2B2

[π × π](0) +C2[α × α](2)

+C3[[α × α](2) × α](0)

+C4[α × α](0)[α × α](0)

(1)

The eigenstates of the the Hamiltonian 1 associated with
the number ν of quanta and definite seniority λ, angular mo-
mentum L and projection M can be denoted by the Ket

|νλµLM⟩ = Fλℓ (β)
∑

k

φ
λµL
k (γ)DL∗

Mk(ωi) (2)

where
ℓ =

1
2

(ν − λ) (3)

and µ indicates the remaining quantum numbers required to
fully characterize the states of the Hamiltonian 1. ωi are the
Euler angles, β and γ are the intrinsic coordinates. DL∗

Mk(ωi)
are the Wigner functions that are the irreducible representa-
tion of the O(3) group.

In equation 2 Fλ
ℓ
(β) are functions of β associated with the

radial part of a five-dimensional oscillator

Fλ
ℓ
(β) =

[
2(ni)

Γ(n+λ+ 5
2 )

]1/2 (
C2
ℏω

) 5
4+
λ
2 βλ

·Lλ+
3
2

n ·
((

C2
ℏω

)
β2

)
e−

1
2

C2
ℏω β

2

(4)
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where Lλ+
3
2

n are the well-known Laguerre polynomials and the
function is normalized for the volume element β4dβ. The γ-
dependent functions φλµLk satisfy the differential equation

Λ2φ
λµL
k = λ(λ + 3)φλµLk (5)

where Λ2 is the seniority operator (Casimir operator of O(5))
which has the form

Λ2 = − 1
sin 3γ

∂

∂γ
+

3∑
k=1

I−1
k L̀2

k(ωi) (6)

with

Ik = 4B2 sin2
(
γ − 2π

3
k
)

(7)

Ik are the moments of inertia with respect to the principle
axes. For arbitrary angular momentum L and λ , φ(γ) reads

φ
λ+2,µ,L+2
k̀

(γ) =
∑

k

φλLL+2
k,k̄

(
γ,
∂

∂γ

)
φ
λµL
k (γ) (8)

φ
λ+2,µ,L+2
k̄

(γ) =

=
∑
L̄k̄k

(√
35(2L̄ + 1)W(L, L + 2, 2, 2, 2L̄) × (9)

Qλ+1,L̄,L+2
k̄,k̀

(
γ,
∂

∂γ

)
Qλ,L,L̄

k,k̄

(
γ,
∂

∂γ

)
φ
λµL
k (γ)

)
where W is a Racah coefficient and Qλ,L,L̄

k,k̄
(γ, d

dγ ) is an operator

function of γ and d
dγ .

3 Potential energy surfaces (PES’S) and critical point
symmetries

The PES depends only upon the shape of the nucleus not
it orientation in space, and can thus be expressed purely in
terms of the shape coordinates β and γ as [3]:

V(β, γ) = C2
1
√

5
β2 −C3

√
2
35
β3 cos 3γ +C4

1
5
β4 (10)

where β ∈ [0,∞] and γ ∈ [0, 2π/3]
The equilibrium shape associated to the GCM Hamilto-

nian can be obtained by determining the minimum of energy
surface with respect to the geometric variables β and γ, i.e
the first derivative vanish. Since the parameter C2 controls
the steepness of the potential, and therefore, the dynamical
fluctuations in γ, it strongly affects the energies of excited in-
trinsic states. The parameter C3 = 0 gives a γ-flat potential
and an increase of C3 introduces a γ-dependence the potential
with a minimum at γ = 0. Changing C3 will indeed induce a
γ-unstable to symmetric rotor transition, it is best to simulta-
neously vary C2 and C4 as well. The shape transition from vi-
brator to rotor is achieved by starting from the vibrator limit,

lowering C2 from positive to negative value, increasing C4 to
large positive value, which gradually increasing C3 (lowering
C2 from positive to negative value, introducing a large posi-
tive C4 and a positive C3).

4 Numerical results applied to Gd and Dy isotopes
chains

The N = 90 isotones 154Gd [15, 16] and 156Dy [17, 18] were
seen to provide good example to transition from spherical to
axially deformed. In our calculation we will examine and sys-
tematically study the lanthanide 148−162Gd and 150−164Dy iso-
topes because of the richness of available experimental data
indicating a transition of nuclear shapes from spherical to de-
formed form. The ground band levels are shown in Figure (1).
We can see that the energy values for each spin states in lan-
thanide change almost linearly for N ≤ 88 and become quite
flat for N ≥ 90. This is consistent with the onset of the Z = 64
sub-shell effect. For actinide the energy levels become flat for
N ≥ 144. The optimized model parameters for each nucleus
was adjusted by fitting procedure using a computer simulated
search program in order to describe the gradual change in the
structure as neutron number varied and to reproduce the prop-
erties of the selected reliable state of positive parity excitation
(2+1 , 4

+
1 , 6

+
1 , 8

+
1 , 0

+
2 , 2

+
3 , 4

+
3 , 2

+
2 , 3

+
1 and 4+2 ) and the two neutron

separation energies of all isotopes in each isotopic chain. The
resulting parameters are listed explicitly in Tables (1).

For the isotopic chains investigated here, the collective
properties are illustrated by represented the calculated poten-
tial energy surface (PES) describing all deformation effects of
the nucleus. We investigated the change of nuclear structure

Table 1: The GCM parameters as derived in fitting procedure used
in the calculation of the Gd and Dy isotopes.

Nucleus C2 C3 C4
148Gd 16.53067 1.48970 -34.76151
150Gd 9.79566 11.28331 -5.21603
152Gd -26.55250 53.24420 138.12500
154Gd -71.41529 104.21630 313.83380
156Gd -91.19133 127.81150 392.95380
158Gd -101.97220 141.63350 437.50440
160Gd -111.19320 153.76500 476.06680
162Gd -120.17800 165.64110 513.72330

150Dy 18.56558 1.70251 -38.99710
152Dy 10.69898 12.69373 -5.14990
154Dy -29.90650 59.16022 154.37500
156Dy -79.02660 114.63790 346.26770
158Dy -99.93424 139.43080 429.68950
160Dy -110.88850 153.43620 474.89930
162Dy -120.13350 165.59310 513.55260
164Dy -129.12150 177.47260 551.221306
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Fig. 1: Systematics of low-lying yrast level energies in even-even
lanthanides Gd/Dy isotopes. The 2+, 4+, ...10+ level energies are
plotted. The states are labeled by Iπ.

within these chains as illustrated in Figures (2, 3). The PES’s
versus the deformation parameter β for lanthanide isotopic
chains of nuclei evolving from spherical to axially symmetric
well deformed nuclei. We remark that for all mentioned nu-
clei, the PES is not flat, exhibiting a deeper minimum in the
prolate (β > 0) region and a shallower minimum in the oblate
(β < 0) region. Relatively flat PES occur for the N = 86 nu-
clei 150Gd and 152Dy. A first order shape phase transition with
change in number of neutrons when moving from the lighter
to heavier isotopes, i.e U(5) - SU(3) transitional region are
observed.

The present result for 154Gd is in good agreement with
Nilsson-Strutinsky BCS calculations [18]. However, the ex-
istence of a bump in the PES is related to the success of the
confined γ-soft (BCS) rotor model [19], employing an infinite
square well potential displaced from zero, as well as to the
relevance of Davidson potentials [20–22]. It also be related

Fig. 2: Potential energy surface (PES) calculated with GCM as
a function of the shape parameter β for shape phase transition
from spherical to prolate deformed for Gadolinium isotope chain
148−162

64Gd.

to the significant five-dimensional centrifugal effect [22–25].

5 Conclusion

In the present paper exact numerical results of GCM Hamil-
tonian along the shape phase transition line from harmonic
spherical vibrator shape to axially deformed rotor shape are
obtained. A systematic study of even-even 148−162Gd and
150−164Dy isotopes chains in the lanthanide region is
presented. For each nucleus the GCM parameters C2, C3, C4
were optimized to fit the energy ratios between selected low-
lying states. The geometric character of the nuclei has been
visualized by plotting the PES’S obtained from the GCM
Hamiltonian. In these chains, nuclei evolve from spherical to
prolate axially deformed rotor when moving from the lighter
to the heavier isotopes. Also we have analyzed the critical
points of the shape phase transition in the space of the GCM
parameters C2, C3 and C4.

Submitted on: July 25, 2013 / Accepted on: August 02, 2013
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Fig. 3: Potential energy surface (PES) calculated with GCM as
a function of the shape parameter β for shape phase transition
from spherical to prolate deformed for Dysprosium isotope chain
150−164

66Dy.
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The critical points of potential energy surface (PES’s) of the limits of nuclear struc-
ture harmonic oscillator, axially symmetric rotor and deformed γ-soft and discussed
in framework of the general geometric collective model (GCM). Also the shape phase
transitions linking the three dynamical symmetries are studied taking into account only
three parameters in the PES’s. The model is tested for the case of 238

92 U , which shows
a more prolate behavior. The optimized model parameters have been adjusted by fit-
ting procedure using a simulated search program in order to reproduce the experimental
excitation energies in the ground state band up to 6+ and the two neutron separation
energies.

1 Introduction

Shape phase transitions from one nuclear shape to another
were first discussed in framework of the interacting boson
model (IBM) [1]. The algebraic structure of this model is
based upon U(6) and three dynamical symmetries arise in-
volving the sub algebras U(5), SU(3) and O(6). There have
been numerous recent studies of shape phase transitions be-
tween the three dynamical symmetries in IBM [2–9]. The
three different phases are separated by lines of first-order
phase transition, with a singular point in the transition from
spherical to deformed γ-unstable shapes, which is second or-
der. In the usual IBM-1 no triaxial shape appears.

Over the years, studies of collective properties in the
framework of geometric collective model (GCM) [3, 10–12]
have focused on lanthanide and actinide nuclei. In GCM the
collective variables β (the ellipsoidal deformation) and γ (a
measure of axial asymmetry) are used. The characteristic nu-
clear shapes occuring in the GCM are shown in three shapes
which are spherical, axially symmetric prolate deformed (ro-
tational) and axial asymmetry (γ -unstable). The shape phase
transitions between the three shapes have been considered by
the introduction of the critical point symmetries E(5) [13] and
X(5) [14]. The dynamical symmetry E(5) describe the phase
transition between a spherical vibrator (U(5)) and γ-soft rotor
(O(6)) and the X(5) for the critical point of the spherical to
axially deformed (SU(3)) transition. Also the critical point in
the phase transition from axially deformed to triaxial nuclei,
called Y(5) has been analyzed [15].

The main objective of this study is to analyze the impor-
tance of the critical points in nuclear shapes changes. The
paper is organized as follows. In sec. 2 we survey the frame-
work of the GCM and the method to analyze the PES’s in
terms of the deformation variables β and γ. In section 3
we study the behavior of the critical point. In section 4 we
present the numerical result for realistic case to even-even

238U nucleus and give some discussions. Finally in section 5,
the conclusions of this work are made.

2 Potential Energy Surfaces in Geometric Collective
Model

We start by writing the GCM Hamiltonian in terms of ir-
reducible tensor operators of collective coordinates α’s and
conjugate momenta π as:

H =
1

2B2
[π × π](0) +C2[α × α](2)

+C3[[α × α](2) × α](0)

+C4[α × α](0)[α × α](0)

(1)

where B2 is the common mass parameter of the kinetic energy
term and C2,C3 and C4 are the three stiffness parameters of
collective potential energy. They are treated as adjustable pa-
rameters which have to be determined from the best fit to the
experimental data, level energies, B(E2) transition strengths
and two-neutron separation energy. The corresponding col-
lective potential energy surface (PES) is obtained by trans-
forming the collective coordinate a2ν into the intrinsic coor-
dinate a2ν. To separate the three rotational degree of freedom
one only has to set

α2µ =
∑
ν

D∗2µν(ω)a2ν. (2)

Since the body axes are principle axes, the products of
inertia are zero, which implies that a21 = a2−1 = 0 and
a22 = a2−2. The two remaining variables a20 and a22, to
gather with Eulerian angles ω, would completely describe the
system replacing the five α2µ. However, there is rather more
direct physical significance in the variables β and γ defined
by

a20 = β cos γ (3)
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a22 =
1
√

2
β sin γ (4)

where β is a measure of the total deformation of the nucleus
and γ indicate the deviations from axial symmetry. In terms
of such intrinsic parameters, we have

[α × α](0) =
β2

√
5

(5)

[[α × α](2) × α](0) = −
√

2
35
β3 cos 3γ. (6)

The PES belonging to the Hamiltonian (1) then reads

E(β, γ) = C2
1
√

5
β2 −C3

√
2
35
β3 cos 3γ +C4

1
5
β4. (7)

The values of β and γ are restricted to the intervals
0 ≤ β ≤ ∞, 0 ≤ γ ≤ π/3. In other words the π/3 sector of
the βγ plane is sufficient for the study of the collective PES’s.

3 Critical Point Symmetries

Minimization of the PES with respect to β gives the equi-
librium value βm defining the phase of the system. βm = 0
corresponding to the symmetric phase and βm , 0 to the bro-
ken symmetry phase. Since γ enters the potential (7) only
through the cos 3γ dependence in the cubic term, the mini-
mization in this variable can be performed separately. The
global minimum is either at γm = 0(2π/3, 4π/3) for C3 > 0
or at γm = π/3(π, 5π/3) for C3 < 0. The second possibility
can be expected via changing the sign of the corresponding
βm and simultaneously setting γm = 0. The phase can be de-
scribed as follows:

1. For C2
3 <

14C2 |C4 |√
5

, phase with βm = 0 interpreted as
spherical shape.

2. For C2
3 <

14C2 |C4 |√
5
,C3 > 0, phase with βm > 0, γm = 0

interpreted as prolate deformed shape.

3. For C2
3 <

14C2 |C4 |√
5
,C3 < 0, phase with βm > 0, γm = π/3

interpreted as oblate deformed shape.

For β non-zero the first derivative of equation (7) must be
zero and the second derivative positive. This gives

4
5

C4β
2 − 3

√
2
35

C3β
3 cos 3γ +

2
√

5
C2 = 0

12
5

C4β
2 − 6

√
2
35

C3β
3 cos 3γ +

2
√

5
C2 > 0 (8)

The solution of equation (8), yields β± = 3
4

√
5
14 (1 ± r)e

with r =
√

1 − d, d = 112
9
√

5
C2C4

C2
3

and e = C3
C4

.

The minimum values of the potential are

E(β) = − 135
50176

(r ± 1)3(3r ∓ 1) f (9)

with f = C4
3

C3
4
.

For d > 1 there is only one minimum located at β = 0.
For 0 < d < 1, minima are present both at non-zero β and at
β = 0, with the deformed minimum lower 0 < d < 8/9 and
the undeformed minimum lower for 8/9 < d < 1. For d < 0,
the potential has both a global minimum and a saddle point at
non-zero β. For harmonic vibrator shape C3 = C4 = 0, this
yields

E(β) =
C2√

5
β2, C2 > 0. (10)

For γ-unstable shape, the solution forβ , 0 are obtained
if we set C3 = 0 in equation (8). Then equation (8) gives

4
5

C4 β
2 +

2
√

5
C2 = 0

or

β = ±

√
−
√

5
2

C2

C4
≃ ±1.057

√
−C2

C4
;

this requires C4 and C2 to have opposite sign. Since C4 must
be positive for bound solutions C2 must be negative in de-
formed γ-unstable shape. That is the spherical — deformed
phase transition is generated by a change in sign of C2, while
the prolate-oblate phase is corresponding to changing the sign
of C3. For symmetric rotor one needs with both a deformed
minimum in β and a minimum in γ, at γ = 0 for prolate or
γ = π/3 for oblate. For prolate shape this requires C3 >
0, such a potential has a minimum in β at β± equation (7).
For γ = 0 ( to study the β-dependence), and providing that
C2 > 0 and C3 > 0, then the critical point is located at
C2

3 < 14C2|C4|/
√

5.
In Fig. (1a) a typical vibrator is given, the minimum of the

PES is at β = 0 and therefore the ground state is spherical. In

Table 1: The GCM parameters for shape-phase transition (a) from
vibrator to rotor (b) from rotor to γ-soft.

C2 C3 C4

set (a) 1 0 0
-0.25 0.7 10

-1 1 20
-2.5 1.7 29

set (b) -3 2 40
-4.2 1.5 80
-4.5 1 120
-5 0 170
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Fig. (1b) a typical axially deformed prolate is given, where
the minimum it as β , 0 and the ground state is deformed.
In Fig. (1c) a case of γ-unstable shape is illustrated. Fig. (2a)
gives the PES’s calculated with GCM as a function of the
shape poor rotor β for shape phase transition from spherical
to prolate deformed and in Fig. (2b) from rotor to γ-soft. The
model parameters are listed in Table (1).

For simplicity we write equation (7) when γ = 0 in form

E(β) = A2β
2 + A3β

3 + A4β
4. (11)

The extremism structure of the PES depends only upon the
value A2 as summarized in Table (2) and Fig. (3). For A2 < 0
the potential has both a global minimum and a saddle point at
non-zero β. For A2 > 0, minima are present at both β , 0 and
β = 0 with the deformed minimum lower for A2 = 109.066
and the undeformed minimum lower for A2 = 161.265. For
A2 = 22.6 there is only one minimum located at β = 0.

4 Application to 238
92 U

We applied the GCM to the doubly even actinide nucleus
238U. The optimized model parameter was adjusted by fit-

Fig. 1: Potential energy surface (PES’s) in framework of GCM for
three different shapes (a) harmonic vibrator shape (C2 = 1, C3 = 0,
C4 = 0) (b) strongly axially deformed prolate shape (C2 = −2.5,
C3 = 1.7, C4 = 29) (c) γ-unstable shape (C2 = −5, C3 = 0, C4 = 17).

Fig. 2: Potential energy surface (PES’s) in framework of GCM for
two different shape transitions (a) from vibrator to rotor (b) from
rotor to γ-soft rotor the set of parameters are listed in Table (1).

Table 2: Set of control parameters of the GCM to describe the nature
of the critical points.

A2 A3 A4

22.600 -1.120 0.234
66.412 -294.869 368.217
161.265 -935.148 1148.890
85.714 -573.709 960.000

109.066 -881.661 1603.589
0.000 -152.991 387.884

-15.581 -48.791 214.854
-22.098 -3.286 137.500

ting procedure using a computer simulated search program
in order to reproduce some selected experimental excitation
energies (2+1 , 4

+
1 , 6

+
1 ) and the two neutron separation energies.

The PES versus the deformation parameter β for 238U is il-
lustrated in Fig. (4). The figure show that 238U exhibit a
deformed prolate shape.

5 Conclusion

In this study we used the GCM to produce the PES’s to inves-
tigate the occurrence of shape phase transitions. The critical
point symmetries are obtained. The validity of the model is
examined for 238U. A fitting procedure was proposed to de-
forming the parameters of the geometric collective Hamilto-
nian for the axially symmetric deformed rotor.
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Dynamical 3-Space: Observing Gravitational Wave Fluctuations
and the Shnoll Effect using a Zener Diode Quantum Detector
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Shnoll has investigated the non-Poisson scatter of measurements in various phenomena
such as biological and chemical reactions, radioactive decay, photodiode current leak-
age and germanium semiconductor noise, and attributed the scatter to cosmophysical
factors. A more recent model of reality leads to a description of space which is dy-
namic and fractal and exhibits reverberation effects, and which offers an explanation for
the scatter anomaly. This paper is a correction to the work presented earlier which used
data from a RF coaxial cable experiment, but had insufficient timing resolution to show
the full effects of what Shnoll observed. Here we report a different way to produce the
effects through studying current fluctuations in reverse biased zener diode gravitational
wave detector with better timing resolution. The current fluctuations have been shown
to be caused by dynamical 3-space fluctuations/turbulence, namely gravitational waves.

1 Introduction — Shnoll effect

For over half a century Simon Shnoll has studied the non-
Poisson scatter anomalies in various phenomena such as bio-
logical and chemical reactions, radioactive decay, photodiode
current leakage and germanium semiconductor noise. An ex-
ample of this is Fig. 1, which shows a layered histogram of
some 352,980 successive measurements of the α decay rate
of a 239Pu source [1] undertaken by Shnoll between May 28
— June 01, 2004. The layer lines taken every 6000 suc-
cessive measurements show a fine structure which builds up
over time instead of cancelling out as in the case of a typical
random or Poisson distribution. This suggests that the ra-
dioactivity of 239Pu takes on discrete (preferred) values, and
is not completely random. It should be clarified here that
the effects Shnoll studied in depth were those concerning the
shapes of histograms taken using fewer measurements (usu-
ally between 60 and 100) instead of that of the non-Poisson
scatter of measurements taken over a much larger data set as
discussed in our previous paper [2]. Shnoll found that the
shapes of histograms from either the same or different ex-
periments correlated via both absolute (same time) and lo-
cal (time delay due to Earth’s rotation) time synchronism and
that the phenomenon causing this had a fractal nature. Shnoll
attributed the cause of this to cosmophysical factors, i.e. in-
homogeneities in the “space-time continuum” [1, 4]. These
inhomogeneities are “caused by the movement of an object
in the inhomogeneous gravitational field”, e.g. as the Earth
rotates/orbits the Sun, as the moon orbits the Earth etc. While
these inhomogeneities were not characterised by Shnoll there
is a remarkable amount of evidence supporting this conclu-
sion [1]. An experiment which studied the phase difference
of two RF signals traveling through two coaxial cables [5]
was reported to show similar non-Poisson characteristics to
that of 239Pu decay shown in Fig. 1.

An alternative model of reality leads to a description of
space which is dynamic and fractal. The RF coaxial cable
propagation experiment can be used to characterise gravita-
tional waves. However the resolution of the data in the coax-
ial cable experiment proved to be insufficient to study changes
in histogram shapes. It is reported here that a newer technique
which studies the non-Poisson characteristics of the current
fluctuations in zener diodes and may be used to study gravi-
tational waves. This technique allows for faster recording of
data (every second instead of every 5 seconds) and used much
higher digital resolution.

2 Dynamical 3-space

An alternative explanation of the Shnoll effect has been pro-
posed using the dynamical 3-space theory; see Process Phy-
sics [6]. This arose from modeling time as a non-geometric
process, i.e. keeping space and time as separate phenomena,
and leads to a description of space which is dynamic and frac-
tal. It uses a uniquely determined generalisation of Newto-
nian Gravity expressed in terms of a velocity field v(r, t), de-
fined relative to an observer at space label coordinate r, rather
than the original gravitational acceleration field. The dynam-
ics of space in the absence of vorticity, ∇ × v = 0, becomes∗

∇·
(
∂v
∂t

+ (v·∇)v
)

+
5α
4

(
(trD)2 − tr(D2)

)
+ ... = −4πGρ, (1)

where Di j = ∂vi/∂x j, and ρ = ρ(r, t) is the usual matter den-
sity. The 1st term involves the Euler constituent acceleration,
while the α−term describes the self interaction of space. Lab-
oratory, geophysical and astronomical data suggest that α is

∗The α term in (1) has recently been changed due to a numerical error
found in the analysis of borehole data. All solutions are also altered by these
factors. (1) also contains higher order derivative terms — see [7] .
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Fig. 1: Non-Poisson distribution of 352,980 measurements of 239Pu
α decay by Shnoll performed in 2004 (Fig. 2-2 of [1]). The layered
histograms are taken every 6000 measurements. The x-axis denotes
the number of decay events per second and the y-axis is the fre-
quency of measurements.

the fine structure constant ≈ 1/137. This velocity field corre-
sponds to a space flow which has been detected in numerous
experiments. In the spherically symmetric case and in the ab-
sence of matter ρ = 0, (1) contains solutions for black holes
(spatial inflows) and an expanding universe (Hubble expan-
sion) along with that for black holes embedded in an expand-
ing universe [7]. Eqn.(1) also contains solutions for the inflow
of space into a matter density. Perturbing the spatial inflow
into matter (i.e. simulating gravitational waves) has shown to
produce reverberations in which the wave generates trailing
copies of itself [8]. This reverberation effect is caused by the
non-linear nature of the flow dynamics evident in (1).

3 Zener diode quantum gravitational wave detector

A gravitational wave detector experiment performed in March
2012 measured the travel time difference of two 10MHz radio
frequency (RF) signals propagating through dual coaxial ca-
bles [5]. This technique exploited the absence of the Fresnel
drag effect in RF coaxial cables, at sufficiently low frequen-
cies. This permitted the detection of gravitational waves at
1st order in v/c using one clock. The timing resolution of the
results were however insufficient to study the effects Shnoll
investigated, namely the changes in the histogram shapes over
time.

A more recent experiment uses the current fluctuations in
a reverse biased zener diode circuit. The circuit diagram is
shown in Fig. 3. This detector exploits the discovery that the
electron tunnelling current is not random, but caused by grav-

Fig. 2: Non-Poisson distribution of 376,101 measurements of zener
diode current fluctuation (µA) observed from 20 — 27 Aug. 2013
in Adelaide. The layered histograms are taken every 6100 measure-
ments to show a comparison with that of Fig.1.

itational waves; namely fluctuations/turbulence in the pass-
ing dynamical 3-space [3]. A Fast Fourier Transform of the
zener diode data was taken to remove low frequency artefacts,
and then a histogram taken of the resultant 376,101 measure-
ments (after inverse FFT) to generate the layered histogram
plot shown in Fig. 2. Layer lines are inserted every 6100
measurements to show a comparison with the Shnoll plot in
Fig. 1. Fig. 2 is remarkably comparable to Fig. 1, showng that
the Shnoll effect is also present in zener diode experiments.
The structure observed appears to build up over time instead
of cancelling out and is also found to persist regardless of
the time scale used for the phase difference, suggesting that
the phenomenon causing this has a fractal nature as depicted
in Fig.4. If this is indeed caused by a dynamical and frac-
tal 3-space then the persisting structure observed in Figs. 1
and 2 correspond to regions of space passing the Earth that
have preferred/discrete velocities, and not random ones, as
randomly distributed velocities would result in a Poisson dis-
tribution, i.e. no features. A likely explanation for this is that
the gravitational waves propagating in the 3-space inflow of
the Earth or Sun could become phase locked due to the rel-
ative locations of massive objects [8]. This would cause re-
verberation effects, i.e. regions of space which have the same
speed and direction, which then repeat over time. The re-
verberations would be detectable in many other experiments
such as EM anisotropy, radiation decay, semiconductor noise
generation etc. and could in the future be used to further char-
acterise the dynamics of space.
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Fig. 3: Circuit of Zener Diode Quantum Gravitational Wave De-
tector, showing 1.5 AA battery, 1N4728A zener diode operating in
reverse bias mode, and having a Zener voltage of 3.3 V, and resis-
tor 10KΩ. Voltage V across resistor is measured and used to de-
termine the space driven fluctuating tunneling current through the
zener diode, [3]. Data is shown in Fig.2.

4 Conclusion

The data from a zener diode quantum gravitational wave ex-
periment displays the non-Poisson characteristics Shnoll ob-
served previously in radioactivity experiments. It is suggested
that these two experiments (along with other work by Shnoll)
are caused by the fractal nature of space, together with the
reverberation effect from gravitational waves, as predicted by
the Dynamical 3-Space theory.
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wrt the earth with a speed of 500 km/s.
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Kepler-47 Circumbinary Planets obey Quantization of Angular Momentum
per Unit Mass predicted by Quantum Celestial Mechanics (QCM)

Franklin Potter
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The Kepler-47 circumbinary system has three known planets orbiting its binary star
barycenter and therefore can provide a precision test of the Quantum Celestial Mechan-
ics (QCM) prediction of the quantization of angular momentum per unit mass in all
gravitationally bound systems. Two of the planets are in the Habitable Zone (HZ), so
system stability can be a primary concern. QCM may be a major contributor to the
stability of this system.

1 Introduction

We report another precision test of quantum celestial mechan-
ics (QCM) in the Kepler-47 circumbinary system that has
three planets orbiting its two central stars. QCM, proposed
in 2003 by H.G. Preston and F. Potter [1] as an extension of
Einstein’s general theory of relativity, predicts angular mo-
mentum per unit mass quantization states for bodies orbiting
a central mass in all gravitationally bound systems with the
defining equation in the Schwarzschild metric being

L
µ

= m
LT

MT
. (1)

Here µ is the mass of the orbiting body with orbital angu-
lar momentum L and MT is the total mass of the bound sys-
tem with total angular momentum LT . We determine that the
quantization integers m are 4, 6, and 7, for the three circumbi-
nary planets 47-b, -d, -c, respectively, with a linear regression
fit R2 = 0.9993. Note that in all systems we have considered,
we assume that the orbiting bodies have been in stable orbits
for at least a 100 million years.

In other two-star systems with one or two circumbinary
planets, the two stars contributed more than 95% of the total
angular momentum of the system. In Kepler-47, the three
known planets are contributing at least 25% of the angular
momentum, a significant fraction, so Kepler-47 provides an
additional test of QCM.

As we determined in the paper cited above, in the Solar
System the Oort Cloud dominates the total angular momen-
tum, its contribution being nearly 60 times the angular mo-
mentum of the planets, but the value has large uncertainty. In
the numerous multi-planetary systems around a single star for
which we have checked the QCM angular momentum quan-
tization restriction [2], not only do the planetary orbits con-
tribute much more angular momentum than the star rotation,
but also each was determined to require additional angular
momentum contributions from more planets and/or the equiv-
alent of an Oort Cloud.

We find also that Kepler-47 could have more angular mo-
mentum contributions beyond the angular momentum sum of
the binary stars and the three planets.

Fig. 1: Kepler-47 System m values predicted by QCM.

2 Results

W.F. Welsh, J.A. Orosz, et al. [3,4] have recently reported the
properties of the Kepler-47 system:

• Stars A and B have masses 1.04 ± 0.06 M� and 0.36
M� with orbital period 7.45 days.

• Planet 47-b has mass < 2MJup, orbital period 49.53
days and orbital eccentricity e < 0.035.

• Planet 47-c has mass < 28MJup, orbital period 303.1
days and orbital eccentricity e < 0.2.

• Planet 47-d has orbital period 187.3 days, unknown ec-
centricity, and unknown mass value.

Planet-c is definitely within the Habitable Zone (HZ) and
so is planet 47-d. As the authors state, Kepler-47 establishes
that planetary systems can form and persist in the chaotic en-
vironment close to binary stars as well as have planets in the
HZ around their host stars.

In order to use the angular momentum condition, one as-
sumes that the orbiting body is at or near its QCM equi-
librium orbital radius r and that the orbital eccentricity ε is
low so that our nearly circular orbit approximation leading
to the quantization equation holds true. Therefore, the L of
the orbiting body will agree with its Newtonian value L =

µ
√

GMT r(1 − ε2).
In Fig. 1 is shown a plot of L′ = L/µ versus m for the three

known planets in the Kepler-47 system. The circles about the
data points contain the uncertainty bars for L′. The slope b of
the line in this plot is used to predict the system’s total angular
momentum LT = bMT multiplied by 1015 kg-m2/s.
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The QCM predicted value of 17.7×1044 kg-m2/s is much
larger than the estimated upper value of 12×1044 kg-m2/s
from the five bodies in orbit about the barycenter. Therefore,
QCM predicts additional sources of angular momentum for
this Kepler-47 system.

What are possible additional sources for the QCM pre-
dicted total angular momentum? There could be massive
bodies at m = 3, 5, 8, 9, . . . However, massive bodies with
sufficient orbital angular momentum at either m = 3 or m = 5
would have been detected already by their perturbation effects
on the known planets, so the additional planetary angular mo-
mentum must be exterior to planet 47-c, i.e., will have m > 7.
Perhaps new sources will be detected in the near future to
provide another check on the QCM quantization condition.

3 Conclusions

The Kepler-47 system provides further evidence that angular
momentum has a primary role in gravitationally bound sys-
tems at all scale sizes, particularly in determining the spac-
ings of planetary orbits in solar systems, of satellites of plan-
ets [5], of planets in circumbinary systems, as well as deter-
mining physical properties of galaxies, clusters of galaxies,
and the Universe.

Although the three known planets in Kepler-47 have an
excellent fit to the QCM quantization condition, further orbit-
ing bodies are predicted that could provide an additional test
when they are detected. If they are located at orbital radii that
do not agree with acceptable values, QCM will be challenged
to explain the discrepancies.
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Observed Gravitational Wave Effects: Amaldi 1980 Frascati-Rome
Classical Bar Detectors, 2013 Perth-London Zener-Diode
Quantum Detectors, Earth Oscillation Mode Frequencies
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Amaldi et al in 1981 reported two key discoveries from the Frascati and Rome gravita-
tional wave cryogenic bar detectors: (a) Rome events delayed by within a few seconds to
tens of seconds from the Frascati events, and (b) the Frascati Fourier-analysed data fre-
quency peaks being the same as the earth oscillation frequencies from seismology. The
time delay effects have been dismissed as being inconsistent with gravitational waves
having speed c. However using data from zener diode quantum detectors, from Perth
and London, for January 1-3, 2013, we report the same effects, and in excellent agree-
ment with the Amaldi results. The time delay effects appear to be gravitational wave
reverberations, recently observed, and for gravitational wave speeds of some 500 km/s,
as detected in numerous experiments. We conclude that the Amaldi et al. discoveries
were very significant.

1 Introduction

On the basis of data from the new nanotechnology zener-dio-
de quantum gravitational wave detectors [1] it is argued that
the wave effects detected in 1980 by Amaldi et al [2,3], using
two cryogenic bar detectors, located in Frascati and Rome,
were genuine gravitational wave effects, together with earth
oscillation effects, although not gravitational waves of the ex-
pected form.

The speed and direction of gravitational waves have been
repeatedly detected using a variety of techniques over the last
125 years, and have a speed of some 500 km/s coming from
a direction with RA ∼ 5 hrs, Dec ∼ 800. These waves ap-
pear to be of galactic origin, and associated with the dynam-
ics of the galaxy and perhaps the local cluster. This speed is
that of the dynamical 3-space, which appears to have a frac-
tal structure, and the significant magnitude waves are turbu-
lence/fractal structure in that flowing space. The detection
techniques include gas-mode Michelson interferometers, RF
coaxial cable EM speed measurements, RF coaxial-cable -
optical fiber RF/EM speed measurements, EM speed mea-
surements from spacecraft Earth-flyby Doppler shifts, zener-
diode quantum detectors, within Digital Storage Oscillosco-
pes, and in so-called Random Event Generators (REG) [1,
4, 5]. These zener diode devices have detected correlations
between Adelaide and London, and between Perth and Lon-
don, with travel time delays from 10 to 20 seconds, and with
significant reverberation effects [1, 6]. The speed of some
500 km/s has also been observed as a time delay of some
500 ns in table-top zener-diode quantum detectors, separated
by 25 cm in a S to N direction. The zener-diode gravitational
wave quantum detectors operate by the process of the 3-space
wave turbulence causing the quantum to classical transition,
i.e. spatial localisation of the electron wave functions tunnel-

Fig. 1: Perth zener-diode quantum detector (REG) data, for January
1, 2013. The data points are at 1 s intervals. The data shows strong
peaks at 5 - 30 s intervals, related to the reverberation effect [6]. This
appears to be the time-delay effect detected between the Frascati and
Rome cryogenic gravitational wave bar detectors [2, 3].

ing through a 10 nm quantum barrier, when the diode is oper-
ated in reverse bias. The earlier techniques rely on detecting
EM radiation anisotropy.

2 The Amaldi Frascati Rome gravitational wave detec-
tors

Data was collected with two cryogenic resonant gravitational
wave antennas operated simultaneously in Rome and Fras-
cati. Coincidences were detected with pulses lasting about 1
second, and travel times differing from one second to twenty
seconds (±0.5 s), with the NW Rome signal delayed relative
to the Frascati events. These events were dismissed as gravi-
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Fig. 2: Top: Power spectrum from Zener Diode detector in Perth, Jan 1-3, 2013. Middle: Power spectrum from Zener Diode detector in
London, Jan 1-3, 2013. Bottom: Power spectrum from Frascati bar detector data, May 6-7, 1980, adapted from Amaldi et al [3]. Vertical
lines (red) show various earth vibration periods, determined by seismology [9]. M(T ) = |F(T )|2 is the power spectrum, expressed as a
function of period T , where F(T ) is the Fourier transform of the data time series. A 200 sec interval of the Perth data is shown in Fig.1.
The spectra from all detectors show the same low frequency peaks, but with differing intensities. The peaks at 53.1 and 54.1 min equal the
0S +1

2 and 0S −1
2 Earth vibration modes.
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tational wave events as the travel times, for the 20 km separa-
tion, far exceeded that expected if one assumes that gravita-
tional waves travel at speed c, predicting travel times ∼0.1 ms.
As well frequency analysis of the data revealed strong peaks
at frequencies coinciding with known vibration frequencies
of the earth, see bottom plot of Fig. 2. Amaldi et al. consid-
ered several mechanisms for the detection of such frequen-
cies: (i) various instrumental couplings to the earth vibra-
tions, (ii) gravitational field variations caused by a terrestrial
source. However the very same results are obtained with the
zener-diode quantum gravitational wave detectors.

3 Zener diode detectors

In [1] the discovery of the nanotechnology zener diode detec-
tion effect for gravitational waves was reported. This was
established by detecting times delays between wave forms
of 10-20 seconds for travel times Adelaide to London, and
Perth to London, with that travel time variation following the
earth’s rotation with respect to the RA and Dec that had been
reported in earlier experiments [4,5], and which displayed the
sidereal effect, viz the earth time of the earth rotation phase
was essentially fixed relative to sidereal time, i.e. the flow
direction was fixed relative to the stars.

The zener diode detectors first used are known as Ran-
dom Number Generators (RNG) or Random Event Genera-
tors (REG). There are various designs available from man-
ufacturers, and all claim that these devices manifest hard-
ware random quantum processes, as they involve the quan-
tum to classical transition when a measurement, say, of the
quantum tunneling of electrons through a nanotechnology po-
tential barrier, ∼10 nm thickness, is measured by a classi-
cal/macroscopic system. According to the standard interpre-
tation of quantum theory, the collapse of the electron wave
function to one side or the other of the barrier, after the tun-
neling produces a component on each side, is purely a random
event, internal to the quantum system. However that interpre-
tation had never been tested experimentally, until [1]. Data
from two REGs, located in Perth and London, was examined.
The above mentioned travel times were then observed. The
key features being a speed of ∼500 km/s, and strong reverber-
ation effects, see Fig. 1.

This discovery revealed that current fluctuations through
a zener diode in reverse bias mode are not random, and data
from collocated zener diodes showed almost identical fluctu-
ations [1]. Consequently the zener diode detectors can eas-
ily be increased in sensitivity by using zener diodes in paral-
lel, with the sensitivity being proportional to the number of
diodes used, see circuit diagram in [1]. That the quantum to
classical transition, i.e. “collapse of the wave function”, is in-
duced by 3-space fluctuations, has deep implications for our
understanding of quantum phenomena.

Using data from REG’s located in Perth and London, for
Jan. 1-3, 2013, and then doing a Fourier transform frequency

analysis, we obtain the spectrum in the top two plots in Fig. 2.
The unfiltered power spectra from the two REGs show re-
markable similarity to each other, and to the spectrum from
the Frascati data. Again the dominant frequencies correspond
to known earth vibration frequencies [9], although there are
long-period oscillations, common to all detectors, that are not
known earth frequencies.

This new data shows that the time delays observed be-
tween Frascati and Rome are to be expected, because of the
strong reverberation effects seen in the zener diode detector
data. However the occurrence of the earth vibration frequen-
cies is intriguing, and reveals new physics. Unlike the bar
detectors it is impossible for any physical earth movement
to mechanically affect the zener diodes, and so all detectors
are responding to dynamical space fluctuations caused by the
oscillations of the matter forming the earth. The key ques-
tions are: What causes this ongoing activation of the earth
modes? Are they caused by earthquakes or by the fractal 3-
space waves exciting the earth modes?

4 Conclusions

The discovery of the quantum detection of gravitational wa-
ves, showing correlations between well separated locations,
that permitted the absolute determination of the 3-space ve-
locity of some 500 km/s, in agreement with the speed and di-
rection from a number of previous analyses, including in par-
ticular the NASA spacecraft Earth-flyby Doppler shift effect.
This discovery enables a very simple and cheap nanotechnol-
ogy zener-diode quantum gravitational wave detection tech-
nology, which will permit the study of various associated phe-
nomena, such as solar flares, coronal mass ejections, earth-
quakes, eclipse effects, moon phase effects, non-Poisson fluc-
tuations in radioactivity [7, 8], and other rate processes, and
variations in radioactive decay rates related to distance of the
earth from the Sun, as the 3-space fluctuations are enhanced
by proximity to the sun. As an example of these possibil-
ities we have confirmed that the Amaldi et al bar detectors
did indeed detect gravitational wave events in 1980, but not
of the form commonly expected, in particular gravitational
waves do not travel at speed c, and there is no experimental
or observational evidence supporting that claim.
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LETTERS TO PROGRESS IN PHYSICS

Florentin Smarandache: A Celebration

Dmitri Rabounski
E-mail: rabounski@ptep-online.com

We celebrate Prof. Florentin Smarandache, the Associate Editor and co-founder of
Progress in Physics who is a prominent mathematician of the 20th/21th centuries. Prof.
Smarandache is most known as the founder of neutrosophic logic, which is a modern
extension of fuzzy logics by introducing the neutralities and denials (such as “neutral
A” and “non-A” between “A” and “anti-A”). He is also known dueto his many discov-
eries in the filed of pure mathematics such as number theory, set theory, functions, etc.
(see many items connected with his name inCRC Encyclopedia of Mathematics). As
a multi-talented person, Prof. Smarandache is also known due to his achievements in
the other fields of science, and also as a poet and writer. He still work in science, and
continues his creative research activity.

Florentin Smarandache (born on December 10, 1954) —
polymath, professor of mathematics, scientist, poet and writer
(originally writting in Romanian, French, and English). Heis
a US citizen. He lives in the United States.

Florentin Smarandache was born in Bălceşti, a small vil-
lage in province Vâlcea, Romania. His ancestors from fa-
ther’s side came to Romania from Greece, several generations
before, but saved their Greek family name (which was roman-
ized) over the centuries. He was the only child in the family.

In 1979, Florentin Smarandache was graduated from the
Department of Mathematics at the University of Craiova (Ro-
mania). In 1997, the State University of Moldova at Kishinev
bestowed upon him the PhD degree in mathematics. Then he
continued his post-doctoral studies at various American Uni-
versities (such as University of Texas at Austin, University of
Phoenix, etc.).

In the USA he worked as a software engineer for Honey-
well (1990-1995), then as Adjunct Professor for Pima Com-
munity College (1995-1997). In 1997 he joined to the Univer-
sity of New Mexico, Gallup Campus, as Adjunct Professor.
Then he was promoted to Associate Professor of Mathemat-
ics (2003), and to Full Professor (2008). During 2007-2009
he was the Chair of Department of Mathematics and Sciences.

During Ceausescu’s dictatorship in Romania, Florentin
Smarandache was enrolled into a conflict with the Romanian
authorities. In 1986 he claimed a hungry strike for being re-
fused to attend the International Congress of Mathematicians
at the University of Berkeley. Then he published an open let-
ter in the Notices of the American Mathematical Society, for
the freedom of circulating of scientists. He thus became a po-
litical dissident in Romania. As a consequence, he was faired
from the academic job, and survived during two years from
private tutorship. Dr. Olof G. Tandberg, Foreign Secretary
of Swedish Royal Academy, supported him by phone talking
from Bucharest.

Not being allowed to publish, he tried to get his manu-

Prof. Florentin Smarandache

scripts out of the country through the French School of Buch-
arest and tourists, but for many of them he lost track. Final-
ly, in September 1988, Florentin Smarandache escaped from
Romania, then stayed for almost two years in Turkey, in a
refugee camp. Here he kept in touch with the French Cultural
Institutes that facilitated him the access to books and rencon-
tres with personalities. Before leaving the country he buried
some of his manuscripts in a metal box in his parents vine-
yard, near a peach tree, that he retrieved four years later, after
the 1989 Revolution, when he returned for the first time to
his native country. Other manuscripts, that he tried to mail
to a translator in France, were confiscated by the secret po-
lice and never returned. He wrote hundreds of pages of the
diaries about his life under the Romanian dictatorship, about
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his being as a cooperative teacher in Morocco (“Professor in
Africa”, 1999), in the Turkish refugee camp (“Escaped. . . Di-
ary From the Refugee Camp”, vol.1, vol.2, 1994, 1998). In
March 1990, Florentin Smarandache emigrated to the United
States.

Florentin Smarandache is also known as the founder of
“paradoxism” (established in 1980). This is the literary move-
ment which has many followers in the world. Paradoxism is
based on an excessive use of antitheses, antinomies, contra-
dictions, paradoxes in creation paradoxes — both at the small
level and the entire level of the work — making an interest-
ing connection between mathematics, philosophy, and litera-
ture. He introduced paradoxist distiches, tautologic distiches,
and dualistic distiches, which were inspired by the mathemat-
ical logic. The literary experiments were realized by him in
the dramas: “Country of the Animals”, “An Upside-Down
World”, “MetaHistory”, “Formation of the New Man”, and
the others. Florentin Smarandache did many poetical exper-
iments in the framework of his avant-garde. He published
paradoxist manifestos: “Le Sens du Non-Sens” (1983), “Anti-
chambres, Antipoésies, Bizarreries” (1984, 1989), “NonPo-
ems” (1990), where he changed the French and respectively
English linguistics clichés. While “Paradoxist Distiches”
(1998) introduces new species of poetry with fixed form.
Eventually he edited three International Anthologies on Para-
doxism (2000-2004) with texts from about 350 writers from
around the world in many languages. Twelve books were
published that analyze his literary creation, including “Para-
doxism’s Aesthetics” by Titu Popescu (1995), and “Paradox-
ism and Postmodernism” by Ion Soare (2000).

Florentin Smarandache is also known as an artist working
in the style of modernism. His experimental art albums com-
prises over-paintings, non-paintings, anti-drawings, super-
photos, foreseen with a manifesto: “Ultra-Modernism?” and
“Anti-manifesto”.

In mathematics Prof. Smarandache introduced the degree
of negation of an axiom or of a theorem in geometry: Smaran-
dache geometries (1969), which can be partially Euclidean
and partially non-Euclidean. He also introduced multi-
structures (Smarandache n-structures, where a weak struc-
ture contains an island of a stronger structure), and multi-
spaces (a combination of heterogeneous spaces). He intro-
duced and developed many sequences and functions in num-
ber theory. Florentin Smarandache also generalized fuzzy
logics to “nueutrosophic logic” and, similarly, he generalized
fuzzy set to “neutrosophic set”. Also, he suggested an ex-
tension of the classical probability and imprecise probability
to “neutrosophic probability”. Together with Dr. Jean Dez-
ert (ONERA, France), he generalized Dempster-Shafer the-
ory to a new theory of plausible and paradoxist fusion, which
is now known as Dezert-Smarandache theory (2002). In 2004
he designed an algorithm for the unification of fusion theories
(UFT) used in bioinformatics, robotics, and military.

In physics, Prof. Smarandache introduced a series of

paradoxes (quantum Smarandache paradoxes). On the basis
of neutrosophic logics, he also considered a theoretical pos-
sibility of a third form of matter, called as unmatter, which
is a combination of matter and antimatter (2010). Based on
his early 1972 publication (when he was a student in Roma-
nia), Prof. Smarandache suggested the hypothesis that “there
is no speed barrier in the universe and one can construct any
speed”. This hypothesis was partially validated on September
22, 2011, when researchers at CERN experimentally proved
that the muon neutrino particles travel with a speed greater
than the speed of light. Upon his hypothesis he suggested a
modification of Einstein’s theory of relativity, where the rela-
tivistic paradoxes are only the observable effects registered by
a particular observer, not the true reality. The speed of light
in vacuum is thus considered to be a variable value, which
is dependent on the type of synchronization of the particu-
lar observer. It is a constant for only the observer who uses
light beams as the medium of synchronization. Therefore, the
cosmological redshift and the other relativistic effects are true
only for the social community of the observers whose picture
of the world is “painted” on the basis of information obtained
from the light signals.

In philosophy, Florentin Smarandache introduced neutro-
sophy (1995), which is a new generalization of Hegel’s di-
alectic. Neutrosophy has a basis in his researches in math-
ematics and economics, such as “neutrosophic logic”, “neu-
trosophic set”, “neutrosophic probability”, and “neutrosophic
statistics”. Neutrosophy is a new branch of philosophy that
studies the origin, nature, and scope of neutralities, as well
as their interactions with different ideational spectra. This
theory considers every notion or an idea<A> together with
its opposite or negation<Anti-A> and the spectrum of “neu-
tralities” <Neut-A>. The<Neut-A> and<Anti-A> ideas to-
gether are referred to as<Non-A>. According to this the-
ory every idea<A> tends to be neutralized and balanced by
<Anti-A> and<Non-A> ideas as the state of equilibrium.

International Conference on Neutrosophy and Neutro-
sophic Logics was held in December 2001 at the University
of New Mexico, USA. International Conference on Smaran-
dache Type Notions in Number Theory was held in August
1997 at University of Craiova, Romania. International Con-
ference on Smarandache Geometries was held in May 2003
at Griffith University in Queensland, Australia.International
Conference on Smarandache Algebraic Structures was held
in December 2004 at Loyola College in Madras, India.

Prof. Smarandache authored numeous monographs, and
about 200 research papers published in about 50 scientific
journals. He also was the editor of more than a hundred of
scientific books authored by the other scientists. In addition
to his scientific research, Prof. Smarandache gives lectures
throughout the world for over many years. He was an invited
lecturer at Bloomsburg University (USA, 1995), University
of Berkeley (USA, 2003), NASA Langley Research Center
(USA, 2004), Jadavpur University (India, 2004), NATO Ad-
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vanced Studies Institute (Bulgaria, 2005), Institute of Bio-
physics (Russia, 2005), University Sekolah Tinggi Inform-
atika and University Kristen Satya Wacana Salatiga (Indo-
nesia, 2006), Minufiya University (Egypt, 2007), Universi-
tatea din Craiova (Romania, (2009), Air Force Research Lab
and Griffiss Institute (USA, 2009), Air Force Institute of
Technology at Wright-Patterson AFB (USA, 2009), Air Force
Research Lab of State University of NY Institute of Technol-
ogy in Rome (NY, USA, 2009), COGIS (France, 2009), EN-
SIETA — National Superior School of Engineers and Study
of Armament in Brest (France, 2010), Institute of Solid Me-
chanics and Commission of Acoustics (Romania, 2011),
Guangdong University of Technology in Guangzhou (China,
2012), Okayama University (Japan, 2013), etc.

In 2011, Academia DacoRomana in Bucharest bestowed
upon Prof. Smarandache the Doctor Honoris Causa degree.
In the same year, Beijing Jiaotong University in China be-
stowed the Doctor Honoris Causa degree upon him as well.

We all, who know Prof Florentin Smarandache closely
over decades, point out his benignity, enthusiasm, and scien-
tific creativity. He never rests in mind, but always works on
different fields of science, literature, and art. We wish him to
be always full of energy, pink health, and to have happy life
for many years.

Submitted on December 10, 2013/ Accepted on December 10, 2013
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On Some General Regularities of Formation of the Planetary Systems

Anatoly V. Belyakov

E-mail: belyakov.lih@gmail.com

J. Wheeler’s geometrodynamic concept has been used, in which space continuum is
considered as a topologically non-unitary coherent surface admitting the existence of
transitions of the input-output kind between distant regions of the space in an additional
dimension. This model assumes the existence of closed structures (micro- and macro-
contours) formed due to the balance between main interactions: gravitational, electric,
magnetic, and inertial forces. It is such macrocontours that have been demonstrated
to form — independently of their material basis — the essential structure of objects
at various levels of organization of matter. On the basis of this concept in this paper
basic regularities acting during formation planetary systems have been obtained. The
existence of two sharply different types of planetary systems has been determined. The
dependencies linking the masses of the planets, the diameters of the planets, the orbital
radii of the planet, and the mass of the central body have been deduced. The possibility
of formation of Earth-like planets near brown dwarfs has been grounded. The minimum
mass of the planet, which may arise in the planetary system, has been defined.

1 Introduction

Wheeler’s geometrodynamic concept, in which microparti-
cles are considered as vortical oscillating deformations on a
non-unitary coherent surface and the idea about transitions
between distant regions of space in the form of Wheeler’s
“wormholes”, made it possible to substantiate the existence
of closed structures (micro- and macrocontours) acting at var-
ious levels of organization of matter [1–3].

These contours are material, based on the balance be-
tween main interactions: electrical, magnetic, gravitational,
and inertial forces. They are not associated to the specific
properties of the medium; they determine the important prop-
erties of objects and allow using analogies between objects of
various scales.

Such approach allows using a model that best are inde-
pendent of the properties of an object or medium. In this
paper the concept is used to establish some of the basic laws
of the formation of planetary systems. Here, as in paper [2],
there is no need to consider the nature of the cosmological
medium, i.e. protoplanetary nebula, from which the planets
formed, and other specific features of the process. Idea of
the planetary system consisting of some amount of macro-
contours, from which planets formed, and the contours of a
higher order integrating the planets and a central body was
enough to get the general regularities.

2 Initial assumptions

As was shown earlier [1], from the purely mechanistic point
of view the so-called charge only manifests the degree of the
nonequilibrium state of physical vacuum; it is proportional to
the momentum of physical vacuum in its motion along the
contour of the vortical current tube. Respectively, the spin
is proportional to the angular momentum of the physical vac-
uum with respect to the longitudinal axis of the contour, while

the magnetic interaction of the conductors is analogous to the
forces acting among the current tubes. It is given that the ele-
mentary unit of such tubes is a unit with the radius and mass
equal to those of a classical electron (re and me).

It should be noted that in [1, 2] the expressions for the
electrical and magnetic forces are written in a “Coulombless”
form with charge replaced by electron limiting momentum.

In this case, the electrical and magnetic constants (ε0 and
µ0) are expressed as follows:

ε0 = me/re = 3.33 × 10−16 kg/m, (1)

µ0 = 1/ε0c2 = 0.0344 N−1, (2)

where c is the velocity of light.
Thus, the electric constant ε0 makes sense the linear den-

sity of the vortex tube current, and the magnetic constant µ0
makes sense the reciprocal value of the interaction force be-
tween two elementary charges.

In [2] the relative comparison of various interactions have
been carried out and the basic relationships were obtained,
some of which are necessary for the understanding of this
article.

1. The balance of electric and magnetic forces gives a ge-
ometric mean — a characteristic linear parameter that
is independent of the direction of the vortex tubes and
the number of charges:

Rs = (r0L)1/2 = (2π)1/2 c × [sec] = 7.52 × 108 m (3)

– a magnitude close to the Sun radius and the sizes of
typical stars, where r0, and L are the rotary radius or
the distance between the vortex tubes (thread) and their
length.
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2. The balance of gravitational and inertial (centrifugal)
forces gives the maximum gravitational mass of the ob-
ject satisfying the condition (3):

Mm =
Rsc2

γ
= f Rsε0 = 1.01 × 1036 kg. (4)

3. The balance of magnetic and gravitational forces also
results in a geometrical mean:

(r0L)1/2 =

(
ε

f

)1/2

Rs, (5)

where the ratio of the products ε= (zg1zg2)/(ze1ze2) is an
evolutionary parameter, which characterizes the state
of the medium and its changes, as the mass carriers
become predominant over the electrical ones and, as a
matter of fact, shows how the material medium differs
from vacuum. Here ze and zg are the relative values of
charge and mass in the parameters of electron charge
and mass, f — is the ratio of electrical-to-gravitational
forces, which under the given conditions is expressed
as follows:

f =
c2

ε0γ
= 4.16 × 1042, (6)

where γ is the gravitational constant. In the general
case, expression (5) gives a family of lengthy contours
consisting of contra-directional closed vortex tubes
(mg-contours).

4. The vortex tubes can consist, in their turn, of a number
of parallel unidirectional vortex threads, whose stabil-
ity is ensured by the balance of magnetic and inertial
forces forming mi-zones.

5. Structurizations of the primary medium, where there is
more than one pair of balanced forces, results in com-
plication an originally unstructured mass by forming in
it local mi-zones. In particular, the number of mi-zones
in the object of arbitrary mass Mi will be:

zi =

(
Mm

Mi

)1/4

. (7)

3 Planetary systems

Let us assume there is a cloud of the originally protoplanetary
material having an evolutionary parameter ε, in which a plan-
etary system with a central mass M0 and planets with a mass
mp on a radius rp, with a rotary velocity v0 is being formed.
Let us assume that the central body is a point-like mass, and
the mass of the planet is formed of contours of total number
zp and axis sizes dp × lp. Then the mass of the planet can be
expressed as the total mass of contours:

mp = zpεε0lp. (8)

The characteristic size of the mg-contour by analogy to (5):

(
lpdp

)1/2
=

(
ε

f

)1/2

Rs. (9)

Suppose the number of mg-contours constituting the mass of
the planet is proportional to the distance to the central body,
i.e. a planet contour is a structural unit for the contour of
higher order that integrates planet with the central body:

zp =
rp

dp
. (10)

This is true for a flat homogeneous disk of the initial neb-
ula, where the mg-contour is one-dimensional, but in general,
density of medium may be different and, of course, decrease
toward the periphery. The protoplanetary disk may have a
local rarefaction or condensation, i.e. have sleeves or be flat-
spiral. Therefore, in general, we have:

zp =

(
rp

dp

)n

, (11)

where the coefficient n reflects the “packaging” of contours
in the model object (planet).

The orbital velocity of the planet can be expressed from
the balance of centrifugal and gravitational forces:

v0 =

(
γM0

rp

)1/2

. (12)

On the other hand, we can use the analogy of the Bohr atom,
where in the proton-electron system the orbital velocity of the
electron at the radius of ri is equal to

v0 = c
(

re

ri

)1/2

. (13)

Then for the contour integrating the planet with the central
body, taking the parameter lp as the unit of length, an analo-
gous relation can be written:

v0 = c
(

lp

rp

)1/2

. (14)

The number of mg-contour z0 for the stable state of the object,
as given in [2], should be taken equal to the number of mi-
zones:

zp = zi =

(
Mm

mp

)1/4

. (15)

Share further the dimensionless parameter: M =M0/Mm,
m=mp/Mm, v= v0/c, r= rp/Rs, l= lp/Rs, d = dp/Rs, and
z=m−1/4. Taking into account (8-15), after transformations
we obtain expressions describing the dependence of the pla-
net mass on its orbit radius and mass of the central body:

m =
(
rM2

)4n/(5n−1)
, (16)
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Fig. 1: Dependence of the mass of Type I planets on their orbital ra-
dius at M ≈ 1 s.m. 1 — HD10180, 2 — HD125612, 3 — HD134606,
4 — HD160691, 5 — HD204313, 6 — HD75732, 7 — HD95128,
8 — HD31527, 9, 10 — KOI.

Fig. 2: Dependence of the mass of Type I planets on their orbital
radius at M ≈ 0.7 s.m. 1 — HD20794, 2 — HD40307, 3 — GJ676A,
4 — HD10700, 5 — HD181433, 6 — KOI 701, 7 — HIP57274.

proportions of mg-contour

d =
m5/4

M2 , (17)

l = M, (18)

and the value of the evolutionary parameter

ε =
f m5/4

M
. (19)

However, this model also admits a second case of orien-
tation of mg-contour according to another to its axis. In this
case an expression for zp analogous to (11) can be written:

zp =

(
rp

lp

)k

; (20)

Fig. 3: Dependence of the mass of Type I planets on their orbital
radius at M ≈ 0.3 . . . 0.4 s.m. 1 — GJ, 2 — Gliese, 3 — OGLE.

then relation m(r) taking into account (15), (18), (20) will
look as follows:

m=
( M

r

)4k

. (21)

In this variant the emerging masses of planets quickly de-
crease to the periphery of the protoplanetary disk, and it can
be assumed that such initial nebulae are lenticular in nature.
We call planets corresponding relations of (16) and (20) as
Type I planets and Type II planets, accordingly.

The actual data relating to the planets in extrasolar plane-
tary systems having three or more planets plotted on diagrams
in the coordinates of r — m, where r — the size of the major
semiaxis, (Fig. 1-3).

The results of the site http://www.allplanets.ru/index.htm
have been used. The numbers in the figures correspond to the
position of the experimental points and point to the sections
of the catalog of extrasolar planets.

The calculated dependencies m(r) according with formula
(16) converted to coordinates expressed in the masses of
Jupiter and astronomical units by multiplying m by
Mm/1.87× 1027 and r by Rs/1.5× 1011. These dependencies
correspond to the period of planet formation, but several iso-
lines n are shown, because the conditions of formation of the
planets and their further evolution is unknown. A large scat-
ter in the values is present on this and others diagrams; in this
case it is inevitable. However, the dependence of the masses
of extrasolar planets on their orbital radii and on the masses
of central stars is revealed quite clearly in agreement with the
expression (16). These regularities, i.e. increase in the mass
of planets with increasing distance to the central star and with
increasing the mass of central stars, also confirmed in [4–7]
and others.

Types II planets do not fit into this pattern. In (Fig. 1-3)
they would be located near the dashed line. They have masses
of the order of the mass of Jupiter and greater than one and
are in orbits close to the central star (hot Jupiters).
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Fig. 4: Dependence of the mass of Type II planets on their orbital ra-
dius at M ≈ 1 s.m. 1 — CoRoT, 2 — HAT-P, 3 — WASP, 4 — TrES,
5 — XO, 6 — OGLE, 7 — HD.

Fig. 5: The calculated dependence m(r) on the background of dis-
tribution of all known extrasolar planets in the semimajor axis-mass
parameter spaces. Triangles represent the planets of the system GJ
221. Masses are expressed in the masses of the Earth.

Figure 4 shows the actual data on extrasolar Type II plan-
ets, which are in agreement with the expression (21) at a co-
efficient k, whose value differs very little from 1/3. When
comparing (11) and (20), given that k≈ 1/3, one comes to the
conclusion that in this case mg-contour is a three-dimensional
element. With decreasing the density of medium towards the
periphery of the disc the dimension of mg-contour can be re-
duced.

These planets are mainly found in single-planet systems.
The existence of systems of this type was unexpected for as-
trophysicists. It is supposed that their formation or dynam-
ical history occurred in another way when the planets were
formed on the periphery of the initial disc and then migrated
to closer orbits [8]. In the framework of the proposed model
the existence of such planetary systems is natural. More-

Fig. 6: Dependence of the mass of the solar system planets on their
orbital radius.

over, this situation by Type II occurs in systems of plane-
tary satellites, such as the Earth-Moon, Neptune-Triton, and
Pluto-Charon.

Figure 5, taken from the article [9], shows a large array
of data on extrasolar planets in the coordinates r — m (star
masses are different). In order to confirm these regularities
isolines m(r) by (16) and (21) at M = 1 s.m. superimposed on
the diagram; they just pass through areas, where the planets
are at the most grouped. Moreover, the model allows us to
explain the presence of the large number of massive planets
and indicate the area, where they are concentrated.

In paper [2] it is shown that for the central star there is a
period of evolution when the number of mg-contours is equal
to the number of mi-zones, which should correspond to the
most stable or balanced state. It is this period is most favor-
able for the formation of the most massive planets. In this
case, the evolutionary parameter ε receives the expression:

ε = f M11/12. (22)

Then, as it follows from (19) and (22),

m = M23/15. (23)

For the mass of the Sun M = 2 × 10−6. Then mp =

(2× 10−6)23/15Mm or 1.85× 1027 kg, which is almost exactly
the mass of Jupiter. Depending on the type of planetary sys-
tem this mass can arise in orbit size of 0.038 au (hot Jupiters),
or 2.3 au (cold Jupiter), (Fig. 5). More massive stars give rise
greater mass of the planet.

Figure 6 shows the dependencies of m(r) by (16) at dif-
ferent n and by (21) at k= 1/3 as well as the position of the
planets in the solar system. Decrease in the value of index n
with increasing radius and decreasing density of protoplane-
tary disk is interpreted by expression n – (n− 0.4)r/50, as-
suming that the disk was limited of radius 50 au wherein n
was reduced to a value 0.4 at the periphery.
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Fig. 7: Dependence of the diameter of the planets on their mass for
Type I planets. The squares marked planets of the system Kepler-
11. Rectangle roughly bounded region of massive Type II planets at
M ≈ 1. Dash-dot line shows the boundary of the minimum planetary
masses, determined from the condition rp =Rs at n= 1.

In general, the initial protoplanetary cloud of the solar
system would fit the flat model at n≈ 1 if it is assumed that the
small planets were formed close to the Sun, but later moved
to a more distant orbit under the influence of massive plan-
ets that were formed later. Detection of Earth-like planets
that are very close to the central star [10, 16] confirms this
assumption. It is also possible that the initial cloud had a low
density on the orbits where small planets have been formed.

4 On the parameters of planets

For Type I planets calculations show that d≫ l, i.e. a mg-
contour is actually a one-dimensional structure and when
“packaging” it in a volume ratio of its linear dimensions, i.e.
ratio of the diameters of planets averaged over density, taking
into account (17), must meet the relationship:

D = d1/3 = m5/12M−2/3. (24)

These parameters are here dimensionless and can be express-
ed as, for example, the parameters of Jupiter and the Sun.

Figure 7 shows the dimensionless dependence D(m) by
(24) for Type I planets reduced to the parameters of Jupiter
and mass of the Sun. The planets of the solar system are
located along a solid line. It also shows the position of the
six planets of the sistem Kepler-11 having an intermediate
density [11], which generally corresponds to the calculated
dependence.

It is interesting to note that the expression (24) obtained
solely on the basis of general provisions and being adequate
to a wide range for Type I planets, in fact, coincides with the
analogous dimensionless dependence derived by the authors
in the paper [7]. However, this dependence was obtained by

the authors by solving the equation of state, which describes
the relationship between density, pressure, and temperature
for the substance under conditions of thermodynamic equi-
librium. The position of the terrestrial planets corresponds
exactly to the general trend and confirms the assumption that
these planets were formed by Type I near the Sun.

During evolution first planets were formed when the or-
bital angular momentum of the planet is compared to the
rotational angular momentum of the central body. Let us
compare the corresponding expression: to the central body
derived in [2] and, referring to (10), (12), (17), (19), at n= 1,
analogous one to the planet:

M
ε

f
MmcRs =M7/10

(
ε

f

)6/5

MmcRs. (25)

As follows from (25):

ε = f M3/2, (26)

and then one can obtain:

m = M2, (27)

r = 1, (28)

Radius rp =Rs is the natural limit for the minimum masses of
Type I planets. The outer planets, whose mass is greater, have
the orbital angular momentum greater than the rotational an-
gular momentum of the central star. With M = 1 s.m.
mp min = 4× 10−12 Mm = 4× 1024 kg, which just corresponds
to the average mass of the terrestrial planets. Thus, in this
model the existence of Earth-like planets near the central star
is natural.

The size of the planets of type II can be estimated by
the value of the orbital radius, having on a mg-contour, r/z.
Keeping in mind the formula (20) at k= 1/3, and expressing
r from (21), we obtain:

D ∼ M
m1/2 , (29)

There is a need additionally to take account the fact that the
unit mg-contour is in this case not one-dimensional, and the
mass of the model object is proportional to the parameter ε,
formula (8). Thus, the relation (29) should be supplemented.
Using (19) and moving from the mass ratio to the ratio of
linear sizes the final expression gets the following forms:

– in the case of a three-dimensional mg-contour

D =
M

m1/2

(
m5/4M−1

)1/3
=

M2/3

m1/12 ; (30)

– for the less dense medium, in the case of two-dimensional
mg-contour, formula (30) takes the form:

D =
M

m1/2

(
m5/4M−1

)1/2
=

M1/2

m1/8 ; (30a)
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The obtained dimensionless relationships are generally in ag-
reement with the actual laws. Figure 8 shows the dependence
of D(M), and Figure 9 shows the dependence of D(m) cal-
culated from formulas (30) and (30a) at different M, which
are for illustrative purposes superimposed on the chart taken
from the article [12].

In particular, it becomes clear both the existence of plan-
ets with similar sizes but sharply differing masses and hav-
ing the same mass at various sizes. Planets with a relatively
small mass, for example, GJ 1214b [13], Kepler-87c (they
are shown in Figure 8 and 9), and others, formed probably by
type II; their diameters varied greatly and correspond to the
values, which are calculated by the option (30a).

The densities of Type I and Type II planets through their
mass and the mass of a star in dimensionless units (in units
of the Jupiter’s mass and the Sun’s mass), having in mind
that ρ∼mD−3, have radically different character and can be
expressed as follows:

ρ1 = m−1/4M2, (31)

ρ2 = m5/4M−2, (32)

ρ2a = m5/8M−3/2. (32a)

Of course, obtained dependences are not precise or defini-
tive. They only reflect the general trends uniting the diameter
of the planet to its mass and the mass of stars in the period of
the formation of planetary systems. By equating the orbital
angular momentum of the planet and the rotational angular
momentum of the central body one can obtain the relations
similar to (25-28) for Type II planets at k= 1/3:

M
(
ε

f

)
MmcRs = M3/2

(
ε

f

)1/2

MmcRs, (33)

ε = f M, (34)

m = M8/5, (35)

r = M−1/5, (36)

which determine their specific mass and orbital radius. At
M = 1 s.m. mp = 7.6× 10−10Mm = 7.6× 1026 kg or 0.4 Jupi-
ter’s masses, rp = 13.8 Rs = 1.03× 1010 m or 0.07 au. The
inner planets with a greater mass have angular momentum
that is less than that of the central star.

As follows from (21) and (32) Type II planet masses de-
crease with increasing distance from the central star as well
as their density decreases. This is illustrated by the planet Ke-
pler 87c having a very low density with its orbital radius of
136 Rs or 0.68 au. Formation of the planets in more remote
orbits it is unlikely, where the less often they exist, the more
massive major planet [8].

Low-mass rocky planets of type II can not be formed
near Sun’s mass stars and having greater masses, but, as fol-
lows from (32), their formation is possible in the system of

Fig. 8: Dependence of the diameter of the planets on the mass of
the central star (masses of the planets are different). 1 — CoRoT,
2 — HAT-P, 3 — WASP, 4 — KOI, 5 — XO, 6 — TrES, 7 — OGLE,
8 — GJ.

Fig. 9: The calculated dependences D(m) of Type II planet on the
background of distribution of known transit extrasolar planets in the
planet mass-radius spaces. Squares shows the planets in the solar
system. Dotted lines are lines of equal density — 0.1, 0.3, 0.9,
3.0, 9.0, 25.0, and 100 g/cm3. Dash-dotted line limits the maximum
masses of the planets, k= 1/3.

dwarf stars when M < 1 s.m. Indeed, another test of the cor-
rectness of the presented model may serve determination the
masses of stars, at which planets with masses and sizes like
the Earth can be formed. Let their mass is in the range from
0.001 . . . 0.01 Jupiter’s mass and the density is 3 . . . 5 Jupiter’s
density.

Then for the Type I planets formula (31) gives:
M = 0.73 . . . 1.26 s.m. and for Type II planets formulas (32)
and (32a) give: M = 0.006 . . . 0.032 and M = 0.019 . . . 0.07
s.m. The first solution is obvious and corresponds to the stars
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Fig. 10: Dependence of the mass of the planets on their orbital radius
at l= d.

with a mass close to the mass of the Sun and the second so-
lutions just correspond to the very low-mass stars — brown
dwarfs.

This prediction proved to be correct. Indeed, recent ob-
servations have shown that is quite possible the formation of
Earth-like planets around of brown dwarfs and there may be
created suitable conditions for emergence of life [14]. These
types of planetary systems even more preferable since no need
planets to migrate to more distant (as in the case of the Earth)
and the suitable masses of the brown dwarfs vary within a
more wide range. The question arises whether there are con-
ditions under which the formation of planets in the evolution
of both types is equally probable?

It is logical to assume that in the initial period there had
been rarefied initial spherical cloud around the central body,
which is then transformed into or flatspiral disk, or lenticu-
lar in shape, from which Type I planets or Type II planets,
respectively, have been formed. Hypothetically, this would
correspond to the initial state of complete equality of condi-
tions of planets formation in both types, i.e. l= d =M, n= k,
masses of planets by (16) and (21) are equal.

Having in mind (16), (17), (21), we find:

n = k = 0.2

 lg
(
rM2

)
lg (M/r)

+ 1

 , (37)

m = M12/5. (38)

Thus, this mass depending on the coefficient n may occur at
any orbit (Fig. 10). The size of the planet in this case is uncer-
tain since dependences (24) and (30) are here incorrect. One
can specify the maximum size of an object if mg-counters are
packaged in a linear structure, Dmax = zl. Since z=m−1/4 and
l=M, using (38), we obtain:

Dmax = M2/5. (39)

Convergence coefficient values of n and k indicate a decrease
formally in the density of medium in any variant evolution
that, obviously, corresponds to the moust low mass. The av-
erage value of the coefficient equal to 0.5 at M = 1 s.m. corre-
sponds to the orbital radius of 0.07 au, which coincides with
the specific radius for Type II planets.

For the mass of the Sun, mp lim = 2.1× 10−14Mm =

= 2.1× 1022 kg, Dp max = 0.0053 Rs = 3.9× 106 m. It is un-
known whether such planets form in reality. In any case, in
the solar system there are no regular planet’s masses less than
mp lim, except Pluto having a similar mass of 1.3× 1022 kg,
the status of which is uncertain. The same can be said of the
satellite systems of the major planets. Masses less settlement
not observed to date also among extrasolar planets.

The existence of lowest masses for the planets formed
and, accordingly, their lowest diameters explains fact of rapid
decrease of the planets having a small radius as well as exis-
tence of a maximum of the planetary radii specified in [15].

5 Conclusion

Planetary systems can be quite diverse as their structure de-
pends on the initial composition of the protoplanetary cloud,
mass and type of stars, formation history of the planetary sys-
tem, and the random factors. Nevertheless, there are some
general patterns.

There are two types of planetary systems. In the system of
the first type planets are formed from flatspiral protoplanetary
cloud. Masses of Type I planets increase to the periphery
passing through their maximum (cold Jupiters) that occur in
the distance from the center in the local condensations of the
medium (the sleeves, spirals), supposedly, in later periods of
the evolution. Earth-like planets are formed near the central
star and maybe can migrate to the more remote orbits.

In the second type of planetary systems planets are formed
from a protoplanetary cloud lenticular or elliptical type. The
masses and densities of Type II planets decrease to the pe-
riphery of the disc. Massive planets (hot Jupiters) are formed
in condensations near the central star; the formation of other
planets in more distant orbits is unlikely. Low-mass rocky
planets in these systems can be formed only at low-mass stars
(brown dwarfs).

The possibility of the formation of Earth-like planets in
the planetary systems of brown dwarfs has been predicted.

The regularities among the masses, sizes, orbital radii of
the planets and masses of the central stars have been obtained.
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In the liquid metallic hydrogen solar model (LMHSM), the chromosphere is the site of
hydrogen condensation (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the
Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Progr. Phys.,
2013, v. 3, L15–L21). Line emission is associated with the dissipation of energy from
condensed hydrogen structures, CHS. Previously considered reactions resulted in hy-
drogen atom or cluster addition to the site of condensation.In this work, an additional
mechanism is presented, wherein atomic or molecular species interact with CHS, but
do not deposit hydrogen. These reactions channel heat away from CHS, enabling them
to cool even more rapidly. As a result, this new class of processes could complement
true hydrogen condensation reactions by providing an auxiliary mechanism for the re-
moval of heat. Such ‘futile’ reactions lead to the formationof activated atoms, ions, or
molecules and might contribute to line emission from such species. Evidence that com-
plimentary ‘futile’ reactions might be important in the chromosphere can be extracted
from lineshape analysis.

In order to explain the occurrence of the dark lines
in the solar spectrum, we must assume that the solar
atmosphere incloses a luminous nucleus, producing
a continuous spectrum, the brightness of which ex-
ceeds a certain limit. The most probable supposi-
tion which can be made respecting the Sun’s consti-
tution is, that it consists of a solid or liquid nucleus,
heated to a temperature of the brightest whiteness,
surrounded by an atmosphere of somewhat lower
temperature.

Gustav Robert Kirchhoff, 1862 [1]

1 Introduction

During a solar eclipse, the flash spectrum associated with
the chromosphere of the Sun becomes readily visible [2–5].
This spectrum is dominated by emission lines from hydro-
gen, most notably H-α, which gives rise to its characteristic
color. However, the flash spectrum also contains a wide ar-
ray of emission lines generated from neutral atoms, ions, or
molecules [2–5]. Within the context of the Standard Solar
Models (SSM) [6], these emission lines are produced by ran-
dom temperature related excitation processes in this region of
the Sun. Because the SSM adopt a gaseous solar body, the
chromosphere is devoid of function and line emission does
not help to account for structure.

In sharp contrast, within the Liquid Metallic Hydrogen
Solar Model (LMHSM) [7, 8], the chromosphere is a site of
hydrogen and proton capture, while the corona is responsi-
ble for harvesting electrons [8–12]. Condensation reactions
have therefore been advanced to account for the production

of emission lines in the chromosphere. These reactions facil-
itate the deposit of atomic hydrogen onto condensed hydro-
gen structures, CHS [9, 11, 12]. Line emission in the chro-
mosphere is fundamentally linked to the dissipation of heat
associated with exothermic condensation reactions. The role
of condensation reactions in the chromosphere of the Sun has
previously been presented in substantial detail [9,11,12]. For
the sake of clarity, it is briefly readdressed herein.

One can consider an atom, A, reacting with hydrogen, H,
to give rise to a molecular species, AH [8, 9, 11]. It should
be possible for AH and CHS in the chromosphere to form an
activated complex, CHS+AH→CHS-HA∗. This would then
be followed by an exothermic step involving the expulsion of
an activated atom, CHS-HA∗ → CHS–H+ A∗, followed by
the line emission from A∗, A∗ → A + hν. In such a manner, a
viable scheme is presented to account for line emission from
neutral atoms, including those from hydrogen itself.

An analogous process could also be applied to a cation,
A+n, reacting with hydrogen, H, to give rise to a molecu-
lar species, AH+n, where n=1, 2, etc [8, 9, 11]. Reaction
of AH+n with a condensed hydrogen structure (CHS) in the
chromosphere leads to an activated complex, CHS+ AH+n

→

CHS-HA+n∗. This would then be followed by an exothermic
step involving the expulsion of an activated ion, CHS-HA+n∗

→ CHS–H+ A+n∗, followed by the line emission from the
cation, A+n∗, A+n∗

→ A+ + hν. Such reactions have been
postulated to play an important role in the chromosphere and
can explain the HeII lines, if HeH+ triggers the condensa-
tion [8,11]. When Ca+ acts as the initial cation, such a mech-
anism can account for the strong CaII lines in the Sun [9].
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2 ‘Futile’ reactions

There is another class of reactions which may play a role in
the Sun, but has previously been overlooked. It is possible
for interactions to take place with condensed hydrogen struc-
tures, but without the net transfer of a hydrogen atom. This
new set of ‘futile’ reactions is important for three reasons: 1)
it offers new insight relative to line emission arising from neu-
tral atoms and molecules, 2) it adds an important new mecha-
nism, which can complement previous reactions [9,11,12], in
describing spectroscopic linewidths in the chromosphere,and
3) it provides a mechanism which can facilitate condensation
reactions in the chromosphere by offering yet another means
to dissipate heat.

In biochemistry, futile reactions tend to be cyclic in na-
ture. They involve chemical processes which do not lead to
any useful work, but which are exothermic.

A classic example of a futile cycle would involve the reac-
tions of fructose-6-phosphate in glycolysis and gluconeogen-
esis. During glycolysis, we have a reaction catalyzed by phos-
phofructokinase: fructose-6-phosphate+ ATP → fructose-
1,6-bisphosphate+ ADP. The reaction is reversed in gluco-
neogenesis using fructose-1,6-bisphosphatase: fructose-1,6-
bisphosphate+ H2O→ fructose-6-phosphate+ Pi. The over-
all reaction involves the simple wastage of ATP and energy
dissipation without net work: ATP+ H2O→ ADP + Pi +

heat. The cell, of course, had to work to make the ATP and as
a result, such a cycle is truly futile.

Let us consider the simplest futile reaction in the chromo-
sphere. A hydrogen atom, H, interacts directly with a con-
densed hydrogen structure to form a weak activated complex,
CHS+ H→ CHS–H∗. But this time, the reaction is reversed
and no hydrogen is deposited: CHS–H∗ → CHS+ H∗. This
would then be followed by line emission from activated hy-
drogen H∗, H∗ → H + hν, as hydrogen is allowed to relax
back to the ground state. The reaction appears futile, as no
net change has taken place. But on closer examination, it is
noted that heat has been removed from the condensed hydro-
gen structure. As a result, though no additional condensation
has occurred, such a futile process can cool the condensing
structure, thereby facilitating its growth when other truecon-
densation reactions [8–12] are occurring in parallel.

It is now readily apparent that a wide array of ‘futile’ pro-
cesses may exist in the chromosphere. For instance, an atom,
A, could react with hydrogen, H, to give rise to a molecular
species, AH [8, 9, 11]. AH could interact with CHS in the
chromosphere to form an activated complex, CHS+ AH →
CHS–HA∗. The reaction is reversed and no hydrogen is de-
posited: CHS–HA∗ → CHS+ AH∗. This would then be fol-
lowed by line emission from the molecular species AH∗, AH∗

→AH + hν. In such a manner, a viable scheme is presented to
account for line emission from small neutral molecules, such
as H2, CaH, LiH, etc. Similar reactions could also be invoked
which involve small molecules such as H2O or NH3. The

result would be line emission from these molecular species.
The analysis of spectroscopic lineshapes in the Sun is

an area of considerable complexity for current models. The
wings and cores of many lines appear to change with alti-
tude above the solar surface (see [3, 4, 8, 13] and references
therein). Such findings suggest that the mechanism involved
in line production might well involve both true condensation
reactions and futile processes. As previously stated [8], it is
unlikely that Stark mechanisms are truly responsible for the
lineshapes we observe in the Sun.
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Kirchhoff’s law of thermal emission demands that all cavities containblackbody, or
normal, radiation which is dependent solely on the temperature and the frequency of
observation, while remaining independent of the nature of the enclosure. For over 150
years, this law has stood as a great pillar for those who believe that gaseous stars could
emit a blackbody spectrum. However, it is well-known that, under laboratory condi-
tions, gases emit in bands and cannot produce a thermal spectrum. Furthermore, all
laboratory blackbodies are constructed from nearly ideal absorbers. This fact strongly
opposes the validity of Kirchhoff’s formulation. Clearly, if Kirchhoff had been correct,
then laboratory blackbodies could be constructed of any arbitrary material. Through the
use of two cavities in temperature equilibrium with one another, a thought experiment
is presented herein which soundly refutes Kirchhoff’s law of thermal emission.

If a space be entirely surrounded by bodies of the
same temperature, so that no rays can penetrate
through them, every pencil in the interior of the
space must be so constituted, in regard to its qual-
ity and intensity, as if it had proceeded from a per-
fectly black body of the same temperature, and must
therefore be independent of the form and nature of
the bodies, being determined by temperature alone.
. . In the interior therefore of an opake red-hot body
of any temperature, the illumination is always the
same, whatever be the constitution of the body in
other respects.

Gustav Robert Kirchhoff, 1860 [1]

1 Introduction

Kirchhoff’s law [1, 2] is generally considered to be the first
amongst the laws governing thermal emission [3–6]. With
its formulation, blackbody radiation achieved a magical pres-
ence within every cavity. Based on Kirchhoff’s law, Planck
believed that blackbody radiation had universal significance
[6]. It is because of Kirchhoff that Boltzmann’s and Planck’s
constants are viewed as sharing the same quality [5–10]. As
such, the collapse of Kirchhoff’s law [7–10] has great im-
plication throughout physics. It touches not only condensed
matter, but also the very makeup of the stars and our under-
standing of the microwave background (see [11–13] and ref-
erences therein). Consequently, many refuse to accept that
there can be problems with Kirchhoff’s formulation. In so do-
ing, they deny Balfour Stewart proper credit for correctly not-
ing that the emissivity of a material is equal to its absorptivity
at thermal equilibrium [14]. Furthermore,cavity radiation is
actually dependent on the nature of the enclosure[7–10]. As
such, a simple thought experiment is now presented which
elegantly exposes the error in Kirchhoff’s claims.

Cavity radiation revisited

Let us begin with a large perfectly absorbing enclosure - an
ideal blackbody (Emissivity (ǫ)= 1, Reflectivity (ρ)= 0; at all
temperatures and frequencies), as depicted in Fig. 1. The con-
tents of this cavity are kept under vacuum. Within this outer
cavity, let us place a somewhat smaller perfectly reflectingen-
closure with 5 sides closed and 1 open (ǫ = 0,ρ= 1; at all tem-
peratures and frequencies). Guided by Max Planck [6], both
cavities will be large compared to those dimensions which
would require the consideration of diffraction. Since the inner
cavity is perfectly reflecting, it will also be highly conducting,
as good reflectors tend to be good conductors.∗

Throughout his classic text on heat radiation [6], Planck
makes use of perfectly reflecting enclosures. Therefore, itis
appropriate to consider both the perfect emitter (ǫ =1) and the
perfect reflector (ǫ = 0) in this exercise.

At the onset, the experiment requires a mechanical means
of closing the inner enclosure. This can be achieved with a
mechanism which crosses the walls of the outer cavity while
preserving the vacuum. The mechanism is allowed, because
laboratory blackbodies are known to possess a small hole in
their outer walls through which radiation is typically sampled.

Once this has been accomplished, place the perfectly ab-
sorbing enclosure (ǫ = 1,ρ=0), which contains the inner per-
fectly reflecting cavity (ǫ = 0, ρ= 1), in a large helium bath
at 4 K. The inner open cavity, is permitted to rest directly on
the floor of the outer perfectly absorbing cavity (see Fig. 1).
Under these conditions, the inner cavity will achieve temper-
ature equilibrium with the outer cavity using conduction. Ra-
diation inside the perfectly absorbing cavity will correspond

∗For example, silver is amongst the best conductors with a resistivity of
only ∼1.6 x 10−8 Ω m at 300 K and of∼0.001 x 10−8 Ω m at 4 K [15]. It is
also an excellent reflector in the infrared, our frequency range of interest.
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Fig. 1: Schematic representation of our thought experiment. A large
outer cavity acts as an ideal blackbody (ǫ = 1, ρ= 0) and is initially
immersed in a helium bath at 4 K. Within this cavity, a perfectly
reflecting enclosure (ǫ = 0, ρ= 1) rests of the floor with one of its
sides initially remaining open.

to black radiation at 4 K. It will fill both the large cavity and
the smaller open cavity.

When temperature equilibrium has been reached, permit
the inner cavity to be sealed mechanically. At that moment,
4 K blackbody radiation has been trapped inside the smaller
perfectly reflecting enclosure.

One can then permit the outer perfectly absorbing enclo-
sure to rise in temperature to 300 K. It will now contain black
radiation at that temperature. As for the perfectly reflecting
enclosure, it will also move to 300 K, because it can reach
temperature equilibrium through conduction (we can use any
of 3 mechanisms to reach equilibrium - radiation, conduction,
and convection). The inner cavity walls are thus also brought
to 300 K. However, unlike the outer cavity which is filled with
blackbody radiation at 300 K, the inner cavity remains filled
with blackbody radiation at 4 K. Thereby, Kirchhoff’s law is
proven to be false.

Under these conditions, the only way to enable the inner
cavity to hold 300 K blackbody radiation would be to per-
mit a violation of the first and zeroth laws of thermodynam-
ics. Namely, once temperature equilibrium has been reached
through conduction, the inner cavity will not be allowed to
spontaneously emit photons in search of a new radiative con-
dition, while denying the zeroth law. Photons will not be cre-
ated where no mechanism exists for their generation.∗

∗The emissivity of a material is defined relative to the emissivity of a
blackbody at the temperature in question. Selecting an emissivity value for
the surface of a cavity therefore implies thermal equilibrium by definition.
Yet, in modeling the blackbody problem, computer simulations often perpet-
ually pump photons into cavities, invoke reflection, and build up radiation
until they achieve the blackbody spectrum. But real materials cannot act as
perpetual sources of photons without dropping in temperature. Obviously,
the temperature of a cavity which is already at equilibrium,by definition,

In addition, the zeroth law of thermodynamics defines
the conditions under which temperature equilibrium exists.
These conditions refer to real objects. As long as the outer
cavity is in temperature equilibrium with the bath/room and
is in temperature equilibrium with the inner cavity; then by
definition, the inner cavity is in temperature equilibrium with
the bath/room. The nature of the field contained within the
inner cavity is not covered by the zeroth law of thermody-
namics. As is appropriate, the zeroth and first laws of ther-
modynamics must guide our judgment relative to Kirchhoff’s
formulation. Thermal equilibrium is defined as that condition
which prevails in the absence of all net changes in conduc-
tion, convection, and radiation. Thus, thermal equilibrium
has been met when the inner cavity reaches 300 K, despite
the fact that it contains 4 K radiation, as there can no longerbe
any change in net conduction, convection, or radiation, across
cavity walls. To argue otherwise implies that the temperature
of an object depends on the radiation field it contains. This
constitutes a direct violation of the zeroth law of thermody-
namics which is independent of radiation fields.

Summary

In this thought experiment, two cavities have been consid-
ered and temperature equilibrium between them ensured us-
ing conduction. The perfectly absorbing cavity ends up hold-
ing perfectly black radiation at all temperatures because its
emissivity is 1. But the situation is not the same for the inner
cavity, as its emissivity is 0 at all temperatures.

Max Planck previously noted in his classic text on heat
radiation that:“. . . in a vacuum bounded by totally reflecting
walls any state of radiation may persist”[6, §51]. In order
to ensure that a perfectly reflecting cavity could contain black
radiation, he inserted a small particle of carbon (see [9] for
a detailed discussion). However, when Planck does so, it is
as if he had lined the entire cavity with an excellent absorber,
because the carbon particle was identical to graphite, anearly
perfect absorber, almost by definition [9]. Planck remains
incapable of demonstrating that cavity radiation will always
be black, independent of the nature of the walls [7–10].

When the temperature was brought to 300 K, the two cav-
ities responded in different ways as a result of their inherent
emissivities. The outer cavity has a perfect emissivity (ǫ =1)
and is able to pump out additional photons, as required by
Stefan’s law [4]. Since Stefan’s law has a fourth power de-
pendence on temperature (T4), the outer cavity now contains
3.2 x 107 times more photons than it did when its tempera-
ture was a 4 K. However, the radiation within the inner cavity
persists, just as Max Planck stated. That is because this cav-
ity lacks the physical mechanism to emit a photon. Until it is
opened, it will forever contain black radiation which had cor-

cannot be allowed to drop. The pumping of ever more photons into an arbi-
trary cavity while invoking reflection as a means to justify the buildup of the
blackbody spectrum is forbidden by the first law of thermodynamics [10].
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responded to that initially produced by the outer cavity when
it was at 4 K.

The perfectly absorbing cavity ends up holding perfect
black radiation at all temperatures because its emissivityis
1. The perfectly reflecting cavity maintains 4 K radiation, be-
cause its emissivity is zero. There is no violation of the first
law and the zeroth law guarantees the equilibrium arguments.
It is permitted to utilize a perfectly reflecting (ǫ = 0) cavity
in this work using the same logic which allows the physics
community to hypothesize that perfectly absorbing cavities
(ǫ =1) exist. In reality, both objects cannot be found either in
nature, or in the laboratory, over the range of frequencies and
temperatures which might be of interest.

The discussion can be extended further to hypothesize,
of course, that initial conditions (before the inner cavitywas
sealed) were at absolute zero. In that case, the inner cavity
will always be devoid of radiation once it is closed. Should
another initial condition be selected, then, when it is sealed,
the inner cavity will contain black radiation at that tempera-
ture.

What becomes clear is that the radiation contained in the
inner cavity can be made to be absolutely dependent on ini-
tial conditions (unrelated to final temperature) and dependent
on the nature of the cavity walls. Stewart’s law [8, 14] and
not Kirchhoff’s [1, 2] properly describes the relationship be-
tween emission and absorption under conditions of thermal
equilibrium.

At the same time, it should be recognized that tempera-
ture equilibrium can be achieved without a detailed balance
between emission and absorption. This can occur if there is
net conduction, convection, or radiation into, or out of, anob-
ject whose temperature does not change. For instance, heat
could enter through radiation and leave through conduction,
while the temperature remains constant. Under these con-
ditions, the object is under temperature equilibrium, but not
under thermal equilibrium. Namely, its emission can be much
less than its absorption, even if the temperature is not chang-
ing. When considering thermal equilibrium and the laws of
emissionthere must be no net conduction, convection, or ra-
diation.

This should sufficiently address, in the simplest form, the
truth of Kirchhoff’s formulation. Based on this presentation,
Kirchhoff’s law is not valid and the constants of Planck and
Boltzmann are not universal.
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A four parameters model including collective rotational energies to fourth order is ap-
plied to reproduce the∆I=2 staggering in transition energies in four selected super
deformed rotational bands, namely,148Gd (SD6),194Hg (SD1, SD2, SD3). The model
parameters and the spin of the bandhead have been extracted assuming various val-
ues to the lowest spin of the bandhead at nearest integer, in order to obtain a minimum
root mean square deviation between calculated and the experimental transition energies.
This allows us to suggest the spin values for the energy levels which are experimentally
unknown. For each band a staggering parameter represent thedeviation of the transition
energies from a smooth reference has been determined by calculating the fourth order
derivative of the transition energies at a given spin. The staggering parameter contains
five consecutive transition energies which is denoted here as the five-point formula.
In order to get information about the dynamical moment of inertia, the two point for-
mula which contains only two consecutive transition energies has been also considered.
The dynamical moment of inertia decreasing with increasingrotational frequency for
A ∼ 150, while increasing forA ∼ 190 mass regions.

1 Introduction

The observation [1] of a very regular pattern of closely spaced
γ-transitions in the spectrum of152Dy, which assigned to a
rotational cascade between levels of spin ranging from 60~

to 24~ and excitation energy varying from∼ 30 to 12 MeV
may adopt a superdeformed (SD) at high angular momen-
tum. The moment of inertia of the associated band was found
to be close to that of a rigid rotor with a 2:1 axis rotation.
Now more than 350 settled superdeformed rotational bands
(SDRB’s), in more than 100 nuclei have been studied in nu-
clei of mass A∼ 30, 60, 80, 130, 150, 160, 190 [2, 3]. Such
nuclei are associated with extremely large quadrupole
β2 = 0.6 in the mass A∼ 150 region andβ2 = 0.47 in the
mass A∼ 190 region. Hence, they are expected to have a
different structures to normal deformed nuclei.

Unfortunately, despite the rather large amount of exper-
imental information on SDRB’s, there are still a number of
very interesting properties, which have not yet been mea-
sured. For example, the spin, parity and excitation energy
relative to the ground state of the SD bands. The difficulty lies
with observing the very weak discrete transitions which link
SD levels with levels of normal deformation (ND).
Several related approaches to assign the spins of SDRB’s in
terms of their observedγ-ray transition energies were pro-
posed [4–10]. For all approaches an extrapolation fitting pro-
cedure was used.

It was found that some SDRB’s show an unexpected∆I=2
staggering in theirγ-ray transition energies [11–20]. The SD
energy levels are consequently separated into two sequences
with spin values I, I+4, I+8, . . . and I+2, I+6, I+10, . . .
respectively. The magnitude of splitting is found to be of
some hundred eV to a few keV. Several theoretical explana-
tion have been made. One of the earliest ones being based on

the assumption of a C4 symmetry [21]. Also it was suggested
that [22] the staggering is associated with the alignment of
the total angular momentum along the axis perpendicular to
the long deformation axis of a prolate nucleus. The stagger-
ing phenomenon was interpreted also as due to the mixing of
a series of rotational bands differ by∆I=4 [23] or arise from
the mixing of two bands near yrast line [24] or by proposing
phenomenological model [25, 26]. The main purpose of the
present paper is to predict the spins of the bandhead of four
SDRB’s in A∼ 150 and A∼ 190 mass regions, and to exam-
ine the∆I=2 staggering and the properties of the dynamical
moments of inertia in framework of proposed four parameters
collective rotational model.

2 Nuclear SDRB’s in Framework of Four Parameters
Collective Rotational Model

On the basis of collective rotational model [27] in adiabatic
approximation, the rotational energy E for an axial symmetric
nucleus can be expanded in powers of I(I+1), where I is the
spin of state:

E(I) = A[I(I+1)]+B[I(I+1)]2+C[I(I+1)]3+D[I(I+1)]4 (1)

where A is the well-known rotational parameter for suffi-
ciently small values of I and B, C, D are the corresponding
higher order parameters. In the view of the above mentioned,
it seems that the ground state energy bands of deformed even-
even nucleus have quantum number K=0 (K is the projec-
tion of I along the symmetry axis), together with even parity
and angular momentum. In SD nuclei, the experimentally
determined quantities are the gamma ray transition energies
between levels differing by two units of angular momentum,
then we could obtain the reference transition energy

Ere f
γ = E(I)−E(I − 2) (2)
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Table 1: The calculated adopted best parameters and the bandhead spins for the selected SD nuclei to investigate the∆I = 2 staggering.

SD-Band A (keV) B (keV) C (keV) D (keV) I (~) Eγ (MeV)
×104 ×108 ×1012

148Gd (SD-6) 4.33360 1.17108 0.001135 -0.04435 41 802.200
194Hg (SD-1) 5.40524 -1.86747 0.000338 -0.00213 8 211.700
194Hg (SD-2) 5.24253 -1.577380 0.003991 -0.00269 8 200.790
194Hg (SD-3) 5.21638 -1.48121 0.0006129 -0.006501 9 222.000

Ere f
γ = 2(2I−1)[A+2(I2−I+1)B

+ (3I4−6I3+13I2−10I + 4)C (3)

+ 4(I6−3I5+10I4−15I3+15I2−8I+2)D].

The rotational frequency is not directly measurable but it is
related to the observed excitation energy E.

Let us define the angular velocity of nuclear rotation as
the derivative of the energy E with respect to the angular mo-
mentum I in analogy with classical mechanics. Instead of
I it is convenient to use the quantum mechanical analogies√

(I(I + 1))

~ω =
dE

d
(√

(I(I + 1))
) (4)

= 2A[I(I + 1)]1/2 + B[I(I + 1)]3/2

+ 6C[I(I + 1)]5/2 + 8D[I(I + 1)]7/2. (5)

The rotational energy spectra can be discussed in terms of the
dynamical moment of inertia calculated from the reciprocal
second order derivative:
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=
(

[2A + 12B[I(I + 1)]

+ 30C[I(I + 1)]2 + 56D[I(I + 1)]3]
)−1
. (7)

The experimental~ω andJ(2) for the SDRB’s are usually ex-
tracted from the observed energies of gamma transition be-
tween two consecutive transitions within the band from the
following formulae:

~ω = [Eγ(I) + Eγ(I + 2)]/4, (8)

J(2) =
4

Eγ(I + 2)− Eγ(I)
. (9)

We notice that~ω andJ(2) does not depend on the knowledge
of the spin I, but only on the measured gamma ray energies.

In order to see the variation in the experimental transition
energiesEγ(I) in a band, we subtract from them a calculated
reference. The corresponding five-point formula is the fourth

order derivative of the transition energies at a given spin

∆4Eγ(I) =
1
16

[Eγ(I + 4)− 4Eγ(I + 2)

+ 6Eγ(I) − 4Eγ(I − 2)+ Eγ(I − 4)].
(10)

One can easily see that∆4Eγ(I) vanishes if our model
contains two parameters A and B, due to the fact that the five-
point formula is a normalized discrete approximation of the
fourth derivatives of the functionEγ(I). We define the stag-
gering parameterS (4)(I) as the difference between the exper-
imental transition energies and the auxiliary reference.

S (4)(I) = 24[∆4Eexp
γ (I) − ∆4Ere f

γ (I)] (11)

3 Numerical Calculations and Discussions

The transition energiesEγ(I) of equation (2) is used to fit the
observed transition energies for our selected SDRB’s with A,
B, C, D and spin value of the bandheadI0 as free parameters.
I0 is taken to the nearest integer of the fitting, the another fit is
made to determine A, B, C and D by using a simulated search
program [9] in order to obtain a minimum root mean square
deviation
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of the calculated transition energiesECal
γ from the measured

energiesEexp
γ , where N is the number of data points consid-

ered, and∆Eexp
γ is the uncertainty of theγ-transition energies.

The experimental data for transition energies are taken from
ref. [2]. Table (1) summarize the model parameters A, B,
C, D and the correct bandhead lowest level spinI0 and also
the lowestγ- transition energiesEγ(I0 + 2 → I0) for our 4
SDRB’s.

To investigate the appearance of staggering effects in the
γ-transition energies of our selected SDRB’s, for each band,
the deviation of theγ-transition energiesEγ(I) from a smooth
reference (rigid rotor) was determined by calculating fourth-
derivatives ofEγ(I) (d4Eγ/dI4) at a given spin I by using the
finite difference approximation. The resulting staggering pa-
rameters values against spin are presented in Figure (1). A
significant∆I=2 staggering was observed. At high spins the
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Fig. 1: The calculated∆I = 2 staggering parametersS (4)(I) obtained
by five-point formula versus nuclear spin I for the SDRB’s in148Gd
and194Hg.

Fig. 2: The dynamical moment of inertiaJ(2) plotted as a function
of the rotational frequency~ω for the SDRB’s in148Gd and194Hg
nuclei. The solid curve represents the calculated results extracted
from the proposed four parameters model. The experimental solid
circles with error bars are presented for comparison.
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∆I=2 rotational band is perturbed and two∆I=4 rotational se-
quences emerge with an energy splitting of some hundred eV.
That is the E2 cascades obtained from our model exhibit for
spins I, I+4, I+8, . . . and I+2, I+6, I+10, . . . staggering behav-
ior.

The systematic behavior of the dynamic moment of iner-
tia J(2) is very useful to understand the properties and struc-
ture of SDRB’s. Our best fitted parameters were used to cal-
culate the theoreticalJ(2). The evolution of the dynamical
moment of inertiaJ(2) against rotational frequency~ω are il-
lustrated in Figure (2). It is seen that the agreement between
the calculated (solid lines) and the values extracted from the
observed data (closed circles) are excellent. For A∼190, the
SDRB’s have nearly the sameJ(2) which typically increase
smoothly as rotational frequency increases due to gradual an-
gular momentum alignment of a pair of nucleons occupy-
ing specific high-N intruder orbitals and the disappearance
of pairing correlations. For A∼150 a smooth decrease ofJ(2)

with increasing~ω is reproduced well.
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Lorentzian Type Force on a Charge at Rest
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A remarkable achievement of theoretical physics is the explanation of magnetic effects,
described by the Lorentz force, to be corollaries of charge invariance, Coulombs Law
and the Lorentz transformation. The relativistic explanation of magnetism is based
essentially on the calculation of Coulomb forces between moving charges in the labo-
ratory reference system. We will show presently that the ideas used for the relativistic
explanation of magnetism also lead to a force on a charge at rest by moving charges,
which we dub “Lorentzian type force on a charge at rest”.

1 Introduction

1.1 Miscellaneous

We will follow very closely the chain of thought taken by Ed-
ward Mills Purcell in [1]. We will use the Gaussian CGS units
in order to underline the close relationship between electric
field E(x, y, z, t) and magnetic fieldB(x, y, z, t). We will use
as our reference frameF[x, y, z, t], the idealized laboratory
inertial frame, abbreviated to lab, to describe the location of
particles and fields at timet. We will use other reference sys-
tems likeF′[x′, y′, z′, t′] with axes parallel with respect toF,
with the origins of these systems coinciding att = t′ = 0 and
with F′ being in uniform relative motion with respect toF in
either the positive or negativex direction.

Table 1: Definition of symbols

symbol description

F inertial frame/system
F also for force
p momentum
q charge
B magnetic field
E electric field
a surface
S surface
(x, y, z) space coordinates
t time
c speed of light in vacuum
v velocity
I current
l length
β v

c
γ 1√

1−β2

m rest mass
x̂, ŷ, ẑ, r̂ unit vector in the indicated direction

1.2 The charge and the mass of moving charged part-
icles

The conclusion of the experimental findings is that charge is
quantized and invariant in all stages of relative motion, and
can be calculated by Gauss’s Law [1]

q′ = q . (1)

Mass changes with velocity, charge does not. The fact
that mass changes with velocity finds its mathematical formu-
lation through the introduction of relativistic momentum [2]

p = mvγ (2)

and relativistic energyE = mc2γ. Eq. 2 is the starting point
for the derivation of forces in inertial systems connected by
the Lorentz transformation.

1.3 The electric fields E in F arising from a point
chargeq at rest in F′ and moving with v in F

The electric fieldE in F of a charge moving uniformly inF, at
a given instant of time, is generally directed radially outward
from its instantaneous position and given by [1]

E(R, ϑ) =
q
(

1− β2
)

R2
(

1− β2 sin2 ϑ
)

3
2

R̂ . (3)

R is the length ofR, the radius vector from the instantaneous
position of the charge to the point of observation;ϑ is the
angle between the direction of motion of the chargeq v∆t
andR. Eq. 3, multiplied byQ, tells us the force on a charge
Q at rest inF caused by a chargeq moving in F (q is at rest
in F′).

1.4 The relativistic explanation of magnetism

In Fig. 1 we have sketched the model given in [1] to explain
magnetic effects by relativistic arguments. The calculation of
the force on q gives

F′y =
dp′y
dt′
= qE′ =

2q
γ0r′

(

γ′+λ+ + γ
′
−λ−

)

=
γ4qλvv0

r′c2
. (4)
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Fig. 1: We show a positive line charge distributionλ+, stationary in
reference frameF′0+, moving inF in the positive x-direction withv0,
and a negative line charge distributionλ− at rest inF′0−, moving in
F in the negative x-direction withv0. A positive chargeq, at rest in
F′, moves withv in F in the positive x-direction InF the electric
fields sum up to0 because by definitionλ+ + λ− = 0. In F′, the
rest frame of chargeq, there is an electric fieldE’ , 0 due to fields
transformed from the rest frame ofλ+ andλ− to F′. The resulting
force in F′ on q, dp′/dt′, is then transformed toF, the lab frame,
where we observe the chargeq.

The resulting forcedp′/dt′ on chargeq in F′ is transferred
to F, the lab system, where we do the experiments, giving

Fy =
dpy
dt =

dp′y
γdt′ , and has the value [1]

F =
4qλvv0

rc2
ŷ =

2qvI
rc2

ŷ =
qv
c

2I
rc

ŷ (5)

with λ = |λ+| = |λ−|.
As was discovered well before the advent of relativity, the

overall effect of currents on a moving charge can also be de-
scribed completely by introducing the magnetic fieldB in the
lab frame F and equating the Lorentz force todp/dt. The
magnetic fieldB is calculated with Biot-Savart’s Law. The
main purpose of the derivation, which results in Eq. 5, is to
explain how nature works, and to demonstrate how the phys-
ical entity “magnetic field” can be revealed using more fun-
damental physical laws, specifically Coulomb’s law and the
laws of special relativity [1].

2 Lorentzian type force on a test chargeQ at rest

We consider now two very narrow wires isolated along their
length, but connected at the ends, each having length 2a and
lying in lab coaxial to the x-axis ofF from x = −a to x = a.
In addition the system has a source of electromotive force
applied so that a currentI is flowing through the wires: in one
of the wiresI flows in the positivex direction and in the other
wire I flows in the negativex direction. We also have in mind
two wires forming a thermocouple or two superconducting
wires. On the z-axis ofF fixed (at rest) at (0, 0, h) a test
chargeQ is located.

The system is sketched in Fig. 2. We will now calculate
the forceFLt on the stationary test chargeQ fixed at (0, 0, h)

Fig. 2: (a) (b) (c): We show in Fig. 2(a) the two wires carryingthe
current I extended along thex axis ofF from x=− a to x= a and the
chargeQ at rest inF at (0, 0, h). Additionally on the right-hand side
a magnification of a small element∆x containing the two wires and
labeled Fig. 2(b) can be seen. Fig. 2(b) shows some moving elec-
trons and for each of these the nearest neighboring proton situated
in the tiny element. We calculate the force onQ by precisely these
pairs of charges. The effects of the other immobile electrons and
protons of element∆x sum up to0. On the left-hand side another
magnification of element∆x labeled Fig. 2(c) can be seen, showing
some geometrical relations useful for integration.

due to the electrons of currentI and their nearest stationary
protons.

The two wires are electrically neutral before the current
is switched on. Therefore after the current is switched on we
have an equal number ofN electrons andN protons in the
system — the same numberN, as with the current switched
off. We look at the system at one instant of lab timet0, after
the currentI is switched on and is stationary. We divide the
wires into sections having lengths∆xi. In each such element
we consider theki electrons that make up the currentI. For
each of theseki electronsei j with j = 1, 2, . . . ki, having veloc-
ity ±vx, which are defining the currentI in ∆xi, we select the
nearest neighboring stationary protonpi j with j = 1, 2, . . . ki,
with the restriction that the proton must lie in∆xi. “Station-
ary” means that the charges retain their mean position over
time. The effects onQ by the residualKi stationary protons
and Ki stationary electrons present in this element∆xi sum
up to0. The number of electrons and protons in the system
is given byN =

∑

i (Ki + ki). For each charge of the mo-
bile electron-stationary proton pairs present in∆xi, we use
the samer i as the vector from each of the charges toQ. We
useϑi = arcsinh

ri
, the angle between the x-axis andr i, for

each charge of the pairs of charges present in∆xi. In Fig.3
we have sketched the situation for one pair of charges.

Referring to Fig. 2 we conclude that the line charge den-
sity λ andki, the number of current electrons moving with
|vx| in ∆xi, and the line charge densityλ and theki immobile
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FQ =
d
(

mvQγQ
)

dt
=

− qQ

r2

























(

1− β2
)

(

1− β2 sin2 ϑ
)

3
2

− 1

























r̂ + Fspring = 0

q v = 0 at rest in laboratory

−q v , 0 moving in laboratory

Q vQ = 0 at rest in laboratory

β = v
2

c2 γQ =

(

1−
vQ

2

c2

)− 1
2

Fig. 3: We show a positive immobile charge q at rest inlab and a
negative moving charge−q moving inlab and the resulting electrical
force on a positive chargeQ at rest inlab. q and−q are one of the
pairs of charges that we select at timet0 in ∆x to calculate the effects
of the currentI on chargeQ at rest inlab.

protons of∆xi are both related by

ki =
|λ|∆xi

e
(6)

with e = 4.803−10[esu]. By doing so we replace the use of
the relativistic length contraction by counting charges. We
use the same distanceri(t0) from Q to theki moving electrons
and fromQ to the ki immobile protons. We now calculate
the force onQ from exactly these charges, i.e.ki electrons
moving with |vx| andki immobile protons. In Figure 2(c) we
sketched the model and some geometrical relations which are
used below.

With

∆x = − r∆ϑ
sinϑ

(7)

and with

r =
h

sinϑ
(8)

we get

∆Ez =
λ
(

1− β2
)

sinϑ∆ϑ

h
(

1− β2 sin2 ϑ
)

3
2

−
λ sinϑ∆ϑ

h
. (9)

Now we have to sum up over all elements∆xi (or ∆ϑi).
We do this by multiplying Eq. 9 by 4 and by integrating from
ϑ = π

2 to ϑmin = arctanh
a . For the first term we substitute

u = β cosϑ and use
∫

du

(a2+u2)
3
2
= u

a2(a2+u2)
1
2

and finally obtain

Ez =
4λ cosϑmin

h























1− 1
(

1− β2 sin2 ϑmin

)
1
2























≈

−2Ivx cosϑmin sin2 ϑmin

hc2
.

The force onQ, — the “Lorentzian type force on a charge
at rest” — is then

FLt = −
Q 2Ivx cosϑmin sin2 ϑmin

hc2
ẑ; (10)

q.e.d.
The force described by Eq. 10 is of the same order (e.g.

for ϑmin =
π
3) of magnitude as magnetic forces, as can be seen

by comparing it to Eq. 5 (repeated below), but it acts on a
chargeQ which has zero velocity. Find Eq. 5 written again
below

F =
4qλvv0

rc2
ŷ =

2qvI
rc2

ŷ =
qv
c

2I
rc

ŷ (5 repeated) (11)

for easier comparison with Eq. 10.

Discussion

Whenever new concepts and ideas are introduced in physics,
it is to be expected that they not only adequately explain the
existing findings, but also enable new predictions that are fal-
sifiable by experimental means. The Lorentz force leaves no
room for a force on a charge at rest caused by moving charges,
because the velocity of the charge at rest is, of course, zero.
But the ideas and methods of special relativity, when used
to explain magnetism, show that such a force — a force of
moving charges which are part of a neutral piece of matter
containing the same number of electrons and protons — ex-
erted on a charge at rest, a certain distance away of the above
mentioned piece of matter, is possible. We have shown this by
reproducing the derivation of magnetism by relativistic argu-
ments given in [1] step-by-step and applying it to our system
of wires and charges. We could have calculated the fields and
forces onQ in a reference systemF′ whereQ is at rest and
transformed the result toF or lab to formally and completely
reproduce the derivation of magnetism using relativity, result-
ing in Eq. 5 as shown in [1] and section 1.4. But asQ is at
rest in lab, and therefore at rest in reference frameF, we have
calculated the effects onQ due to moving charges directly in
F using Eq. 3. Of course we then no longer need to transfer
the rate of change of momentum toF because it is directly
given in the frameF in which Q is at rest. In addition we
have replaced the line charge variations in different reference
frames due to the Lorentz-Fitzgerald length contraction used
in [1] by defining pairs of moving current electrons and their
nearest neighbor immobile protons to calculate the effects on
the chargeQ. In other words we have replaced the use of
the Lorentz-Fitzgerald contraction by counting charges, and
counting is relativistically invariant. The basic idea forthe
calculation ofFLt manifestations is the use of pairs of mov-
ing and immobile charges. If the Lorentzian type force on a
charge at rest cannot be found by experiment, and we have
no hint that it exists, at least the derivation leading to Eq.3,
written down in [1], should be subject to a revision.
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This paper deals with the problem of steady laminar flow of viscous incompressible
fluid between two parallel porous plates with bottom injection and top suction. The
flow is driven by a pressure gradient ∂p

∂x and uniform vertical flow is generated i.e. the
vertical velocity is constant everywhere in the field flow i.e. v = vw = constant. Also a
solution for the small and large Reynold number is discussed and the graph of velocity
profile for flow between parallel plates with the bottom injection and top suction for
different values of Reynold numbers is drawn.

1 Introduction

The two dimensional steady laminar flow in channels with
porous walls has numerous application in field of Science
and Engineering through boundary layer control, transpira-
tion cooling and biomedical enginering.

Berman (1953) was the first reasercher who studied the
problem of steady flow in an incompressible viscous fluid
through a porous channel with rectangular cross section,
when the Reynold number is low and the pertubation solution
assuming normal wall velocity to be equal was obtained [1].

Sellars (1955), extended problem studied by Berman by
using very high Reynold numbers [2].

Yuan (1956) [3] and Terill (1964) [4] analysed the same
problem assuming different normal velocity at the wall.

Terrill and Shrestha (1965) analysed the problem for a
flow in a channel with walls of different permeabilities [5].

Green (1979) studied the flow in a channel with one
porous wall [7].

In this paper, we considered the flow of an incompressible
viscous fluid between two parallel porous plates with bottom
injection and top suction and assume that the wall velocity is
uniform.

2 Formulation of the problem

The study laminar flow of an incompressible viscous fluid be-
tween two parallel porous plates with bottom injection and
top suction at walls and uniform cross flow velocity is con-
sidered. The well known governing equations of the flow are:

Continuity equation:

∂u
∂x
+
∂v

∂y
= 0. (1)

Momentum equations (without body force):

u
∂u
∂x
+ v
∂u
∂y
= −1
ρ

∂p
∂x
+ ν

(
∂2u
∂x2 +

∂2u
∂y2

)
, (2)

u
∂v

∂x
+ v
∂v

∂y
= −1
ρ

∂p
∂y
+ ν

(
∂2v

∂x2 +
∂2v

∂y2

)
. (3)

The flow between two porous plates at y=+h and y=-h,
respectively is considered.THe flow is deriven by a pressure
gradient ∂p

∂x . It is assumeed that a uniform vertical flow is
generated i.e the vertical velocity component is constant ev-
erywhere in the flow field i.e v = vw = constant. Again the
continuity equation shows that u = u(y) only, the momentum
equation (2) becomes:

vw
du
dy
= −1
ρ

dp
dx
+ ν

d2u
dy2 . (4)

Re-arranging eqn. (4), we have

d2u
dy2 −

vw
ν

du
dy
=

1
µ

dp
dx
. (5)

Homogeneous part of eqn. (5) becomes

d2u
dy2 −

vw
ν

du
dy
= 0. (6)

Eqn. (6) is differential equation, with auxiliary equation of

p2 − vw
ν

p = 0

with roots
p1 = 0, p2 =

vw
ν
.

The solution of eqn. (6) is of the form

u(y) = Aep1y + Bep2y,

where A and B are constant.

u(y) = A + Be
vw
ν y (7)

For particular integral of eqn. (5), we set

u(y) = ay2 + by + c, (8)

where a, b, and c are constants.
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du
dy
= 2ay + b,⇒ d2u

dy2 = 2a (9)

Substituting eqn. (9) in eqn. (5) we get(
2a − vw

ν
b
)
− 2a
vw
ν
y =

1
µ

dp
dx
.

Comparing the co-efficients, we get

a = 0⇒ b = − ν
vw

1
µ

dp
dx
. (10)

Now, eqn. (8) becomes

u(y) = − ν
vw

1
µ

dp
dx
y + c. (11)

The final solution formes by adding eqn. (7) and eqn. (11)

u(y) = D + Be
vw
ν y − ν

vw

1
µ

dp
dx
y. (12)

Since vw is constant, the equation is linear. We retain the
no-slip condition for the main flow.

u(+h) = u(−h) = 0

u(h) = D + Be
vw
ν

h
− ν
vw

1
µ

dp
dx

h (13)

u(−h) = D + Be
−
vw
ν

h
+
ν

vw

1
µ

dp
dx

h. (14)

Subtracting eqn. (14) from eqn. (13), we get

B =
2 ν
vw

h
µ

dp
dx

e
vw
ν h − e−

vw
ν h
=

2 ν
vw

h
µ

dp
dx

2 sinh
(
vw
ν

h
) = ν

vw
h
µ

dp
dx

sinh
(
vw
ν

h
) . (15)

Substituting eqn. (15) into eqn. (13), we get

D = −
ν
vw

h
µ

dp
dx e

vw
ν h

sinh
(
vw
ν

h
) + ν
vw

h
µ

dp
dx
. (16)

Eqn. (12) reduces to

u(y) = −
ν
vw

h
µ

dp
dx e

vw
ν h

sinh
(
vw
ν

h
) + ν
vw

h
µ

dp
dx
+

ν
vw

h
µ

dp
dx e

vw
ν y

sinh
(
vw
ν

h
) − ν
vw

y

µ

dp
dx
. (17)

But wall Reynold number is Re = vw
ν

h, Re
h =

vw
ν
⇒ h

Re =
ν
vw

.
Re-arranging eqn. (17), we get

u(y) = − h2

Re
1
µ

dp
dx

yh − 1 +
eRe − eRe yh

sinh(Re)

 . (18)

The final solution of eqn. (5),

u(y)
umax

=
2

Re

yh − 1 +
eRe − eRe yh

sinh Re

 . (19)

Where umax =
h2

2µ (− dp
dy ) is the centerline velocity for imporous

or poiseuille.
For very small Re (or small vertical velocity), then the last

terms in the parentheses of of eqn. (19) can be expanded in a
power series and sinh Re ≈ Re i.e.

u(y)
umax
=

2
Re

yh−1+
1+Re+ (Re)2

2 + ..−
(
1+Re yh+

(Re)2

2
y2

h2+..
)

Re

 ,
u(y)
umax

=
2

Re

yh − 1 +
Re

(
1 + Re

2 −
y
h −

Re
2
y2

h2

)
Re

 ,
u(y)
umax

= 1 − y
2

h2 . (20)

Eqn. (20) shows that, the poiseuille solution recovered.
For very large Re (or large vertical velocity), eqn. (19)

can be written as

u(y)
umax

=
2

Re

yh − 1 + 2
eRe − eRe yh

eRe − e−Re

 ,
u(y)
umax

=
2

Re

yh − 1 + 2
1 − e−Re(1− yh )

1 − e−2Re

 .
For Re→ ∞ and yh > 1, except for y = +h, we get

u(y)
umax

=
2

Re

[
y

h
− 1 + 2

]
,

u(y)
umax

=
2

Re

[
1 +
y

h

]
, (21)

so that a straight line variation which suddenly drops to zero
at the upper wall.

3 Discussion

The velocity profiles have been drawn for different values of
Reynold numbers (i.e. Re= 0, 3, 5, 10). From Fig. (1), its ob-
served that for Re ≥ 0 in the region −1 ≤ y∗ ≤ 1, the shapes
change smoothly with Reynold numbers and the average ve-
locity is decreasing and Reynold number increases; i.e. the
friction factor increases as we apply more cross flow through
the wall.

4 Conclussion

In the above analysis a class of solution of flow of viscous
fluid between two parallel porous plates with bottom injection
and top suction is presented when a cross flow velocity along
the boundary is uniform, the convective acceleration is linear
and the flow is deriven from pressure gradient.
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Fig. 1: Velocity profiles for flow between parallel plates with bottom
injection and top suction for different values of Re.

Nomenclature

A,B,C,D: Constants
h: Height of the channel
P: Pressure
x: Axial distance
y:Lateral distance
vw: Lateral wall velocity
u(x,y): Axial velocity component
v(x,y): Lateral velocity component
y∗ = yh : Dimensionless lateral distance
Re = vwh

ν
: Wall Reynold number

Greek Symbols

µ: Shear viscosity
ν: Kinematic viscosity
ρ: Fluid density
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Orbits in Homogeneous Time Varying Spherical Spacetime
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The solution to Einstein’s gravitational field equations exterior to time varying distribu-
tions of mass within regions of spherical geometry is used to study the behaviour of test
particles and photons in the vicinity of the mass distribution. Equations of motion are
derived and an expression for deflection of light in this gravitational field is obtained.
The expresion obtained differs from that in Schwarzschild’s field by a multiplicative
time dependent factor. The concept of gravitational lens in this gravitational field is
also studied.

1 Introduction

In [1], the covariant metric tensor exterior to a homogeneous
time varying distribution of mass within regions of spherical
geometry is defined as:

g00 = −
[
1 +

2
c2 f (t, r)

]
(1)

g11 =

[
1 +

2
c2 f (t, r)

]−1

(2)

g22 = r2 (3)

g33 = r2 sin2 θ (4)

where f (t, r) is a function dependent on the mass distribution
within the sphere that experiences radial displacement. Ein-
stein’s gravitational field equations were constructed in [1]
and an approximate expression for the analytical solution of
the lone field equation was obtained as

f (t, r) ≈ −k
r

exp iω
(
t − r

c

)
(5)

where k = GM0 with G being the universal gravitational con-
stant and M0 the total mass of the spherical body. ω is the
angular frequency of the radial displacement of mass within
the sphere.

In this article, we use this solution of Einstein’s field equa-
tions to study the behaviour of light in the vicinity of a time
varying spherical mass distribution.

2 Orbits in Time Varying Spherical Spacetime

In order to study the motion of planets and light rays in a
homogeneous time varying spherical spacetime, there is need
to derive the geodesic equations [2]. The Lagrangian (L) for
this gravitational field can be defined using the metric tensor
as:

L=
1
c

−g00

(
dt
dτ

)2

−g11

(
dr
dτ

)2

−g22

(
dθ
dτ

)2

−g33

(
dϕ
dτ

)2
1
2

(6)

Assuming that the orbits remain permanently in the equato-
rial plane (as in Newtonian Theory), then θ = π

2 and the La-
grangian reduces to

L =
1
c

−g00

(
dt
dτ

)2

− g11

(
dr
dτ

)2

− g33

(
dϕ
dτ

)2
1
2

(7)

or more explicitly as

L =
1
c

(1 + 2
c2 f (t, r)

)
ṫ2 −

(
1 +

2
c2 f (t, r)

)−1

ṙ2 − r2ϕ̇2


1
2

(8)

where the dot denotes differentiation with respect to proper
time (τ).

Now, using the Euler-Lagrange equations and considering
the fact that in a gravitational field is a conservative field, it
can be shown that the law of conservation of energy in this
field is given as(

1 +
2
c2 f (t, r)

)
ṫ = d (constant) (9)

or more explicitly as[
1 − 2GM

rc2 exp iω
(
t − r

c

)]
ṫ = d (10)

which differs from that in Schwarzschild’s field by the expo-
nential factor that describes the radial displacement of mass
with time.

It can also be shown that the law of conservation of angu-
lar momemtum in this gravitational field is given as

r2ϕ̇ = h (constant) (11)

which is the same as that in Schwarzschild’s field.
Let L = ε, and equation (8) becomes

ε2=

(
1+

2
c2 f (t, r)

)
ṫ2− 1

c2

(1+ 2
c2 f (t, r)

)−1

ṙ2−r2ϕ̇2

 . (12)

Substituting equation (10) in (12) yields

1
2

[
ṙ2+r2ϕ̇2

(
1+

2
c2 f (t, r)

)]
+ε2 f (t, r)=

1
2

c2
(
d2−ε2

)
. (13)
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This is the Newtonian energy equation with a modification to
the ϕ̇2 term. It is similar to that obtained in Schwarzschild’s
field except for the time dependent radial diplacement. Also,
using equation (11), it can be shown that

ṙ =
dr
dϕ

dϕ
dτ
= ϕ̇

dr
dϕ
=

h
r2

dr
dϕ
. (14)

Now, let u(ϕ) = 1
r(ϕ) then

ṙ = −h
du
dϕ
. (15)

Substituting equation (5) and (15) into equation (13) yields

(
du
dϕ

)2

+ u2
[
1 − 2k

c2 u exp iω
(
t − 1

uc

)]
+

2ε2k
h2 u exp iω

(
t − 1

uc

)
=

c2

h2

(
d2 − ε2

)
(16)

It is worthnoting that integrating equation (16) directly leads
to elliptical integrals which are ackward to handle; thus differ-
entiating yields the following second order differential equa-
tion

d2u
dϕ2 + u

[
1 − 2k

c2 u exp iω
(
t − 1

uc

)]
−

2k
c2 u2

(
1 − 1

u

)
exp iω

(
t − 1

uc

)
+

2kε2

h2

(
1 +

1
u2

)
exp iω

(
t − 1

uc

)
= 0. (17)

This equation has additional terms not found in Schwarz-
schild’s field.

3 Timelike Orbits and Precession

For timelike orbits ε = 1 and equation (17) becomes

d2u
dϕ2 + u

[
1 − 2k

c2 u exp iω
(
t − 1

uc

)]
−

2k
c2 u2

(
1 − 1

u

)
exp iω

(
t − 1

uc

)
+

2k
h2

(
1 +

1
u2

)
exp iω

(
t − 1

uc

)
= 0. (18)

Now as a first approximation, suppose uc ≫ 1 and k ≪
h2u2 then equation (8) reduces to

d2u
dϕ2 + u = k

[
3
c2 u2 +

1
c2 u − 1

h2

]
exp iωt. (19)

The Newtonian equation for a spherical mass is

d2u
dϕ2 + u =

k
h2 (20)

and that obtained in Schwarzschild’s field is

d2u
dϕ2 + u =

k
h2 +

3k
c2 u2. (21)

Apart from the first and second terms of equation (19) that
are similar to Newton’s equation and that in Schwarzschild’s
field, the other terms have terms dependent on the time rate
of rotation of the mass content within the sphere [3].

Solution of the Newtonian equation (20) yields the well
known conics

u0 =
1
l

(1 + e cos θ) (22)

where l = h2

GM and e is the eccentricity of the orbit. Attempt-
ing an approximate solution for equation (19) by substituting
the Newtonian solution into the quadratic term in u on the
right hand side and neglecting the term in u, a particular inte-
gral u1 satisfies equation (19) such that

d2u1

dϕ2 + u1 = k
[

3
l2c2 (1 + e cos θ)2 − 1

h2

]
exp iωt. (23)

Now suppose u1 takes the form:

u1 = A + Bϕ sin ϕ + C cos 2ϕ (24)

where A, B and C are constants, then it can be shown that

u1 =
k
c2

(
3
l2
− 1

l
− 1

h2

)
exp iωt

+
keϕ
2c2

(
3
l2
− 1

2l

)
sin 2ϕ exp iωt +

ke2

l2c2 cos 2ϕ. (25)

Then the approximate solution for u can be given as

u = u0 + u1 (26)

or

u =
1
l

(1 + e cos θ) +
k
c2

(
3
l2
− 1

l
− 1

h2

)
exp iωt

+
keϕ
2c2

(
3
l2
− 1

2l

)
sin 2ϕ exp iωt +

ke2

l2c2 cos 2ϕ. (27)

Hence, this approximate solution introduces corrections to u0
and hence depicts that the orbits of massive objects is only
approximately elliptical and also accounts for the perihelion
precession of planetary orbits in this gravitational field.

4 The Bending of Light

For null geodesics, ε = 0 and equation (17) yields

d2u
dϕ2 + u =

[
3k
c2 exp iω

(
t − 1

uc

)]
u2

+

[
k
c2 exp iω

(
t − 1

uc

)]
u. (28)
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In the limit of Special Relativity, equation (28) reduces to

d2u
dϕ2 + u = 0. (29)

The general solution of equation (29) is given as

u =
1
b

sin (ϕ − ϕ0) (30)

where b is the closest approach to the origin (or impact pa-
rameter). This is the equation of a straight line as ϕ goes from
ϕ0 to ϕ0 + π. The straight line motion of light is the same as
that predicted by Newtonian theory.

Now, solving the General Relativity problem (equation
28) by taking the general solution (u) to be a pertubation of
the Newtonian solution, and setting ϕ0 = 0, then

u = u0 + u1 (31)

where u0 =
1
b sin ϕ. Thus, u1 satisfies the equation

d2u1

dϕ2 + u1 =
3k

b2c2 sin2 ϕ exp iω
(
t − b

c sin ϕ

)
+

k
bc2 sin ϕ exp iω

(
t − b

c sin ϕ

)
. (32)

Now, by considering a particular integral of the form

u1 = A + B sin2 ϕ (33)

and substituting in equation (32), it can be shown that

u1 =
2k

b2c2

(
1 − 1

2
sin2 ϕ

)
exp iω

(
t − b

c sin ϕ

)
(34)

and thus

u =
1
b

sin ϕ+
2k

b2c2

(
1 − 1

2
sin2 ϕ

)
exp iω

(
t − b

c sin ϕ

)
. (35)

Now, consider the deflection of a light ray from a star
which just grazes the time varying homogeneous spherical
mass (such as the Sun approximately); as in Fig. 1, then as
r → ±∞, u→ 0, so

0 =
1
b

sin ϕ+
2k

b2c2

(
1 − 1

2
sin2 ϕ

)
exp iω

(
t − b

c sin ϕ

)
. (36)

At the asymptotes, ϕ = −ψ1 and ϕ = ψ2 + π and taking ϕ ≪ 1
then equation (36) reduces to

0 =
1
b
ψ1 +

2k
b2c2 exp iω

(
t +

b
cψ1

)
(37)

and

0 =
1
b
ψ2 +

2k
b2c2 exp iω

(
t +

b
cψ2

)
. (38)

Fig. 1: Diagram showing the total deflection of light.

Fig. 2: Einstein’s Ring.

The total deflection of light (σ) is given as

σ = ψ1 + ψ2

or

σ =
2k
bc2

[
exp iω

(
t +

b
cψ1

)
+ exp iω

(
t +

b
cψ2

)]
. (39)

Thus, the introduction of varying mass distribution with time
introduces an exponential term in the deflection of light equa-
tion not found in static homogeneous spherical gravitational
fields.

Now, as an example of the bending of light, let us consider
a gravitational lens.

Consider a quasar directly behind a galaxy in our line of
sight as shown in Fig. 2.

The distance of closest approach to the time varying
spherical mass distribution corresponds to an angle (σ) given
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as equation (39). From Fig. 2, considering that both α and β
are small, it can be deduced that

σ =
α

2
+ β =

b
d
+

b
D

(40)

and substituting equation (39) yields the impact parameter as

b =
{

2k
c2

(
Dd

D + d

) [
exp iω

(
t +

b
cψ1

)
+ exp iω

(
t +

b
cψ2

)]} 1
2

.

Hence, the image of the quasar appears as a ring which
subtends an angle

α =
2b
d

or

α =
2
c

{
Dd

d(D + d)

[
exp iω

(
t +

b
cψ1

)
+ exp iω

(
t +

b
cψ2

)]} 1
2

.

5 Conclusion

The results obtained in this study has paved the way for the
theoretical study of homogeneous spherical mass distribu-
tions in which the mass content is varying with time. This will
introduce correction terms found in Schwarzschild’s static
field. It is hoped that using this approach experimentally and
astrophysically more satisfactory expressions and values will
be obtained for gravitational phenomena in the universe.
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Exogenous Mechanism of the Time Sensor of Biological Clock
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The problem of time sensor of a biological clock attracts interest of many scientists, and
a great number of experiments are being conducted to study the influence of various
physical and chemical factors on functioning of a biological clock. Analyzing publi-
cations and considering our own original results a physicalexogenous mechanism of
biological clock is formulated that adequately explains the obtained experimental data.

The problem of biological rhythms i.e. biorhythms (BR) with
periodicity close to the periodicity of geophysical phenomena
has been attracting interest of scientists for centuries. And a
great number of experiments carried out on different organ-
isms beginning from single-cell creatures and plants to an-
imals and human beings confirm that biological organisms
have the ability to measure time [1–6] and biological clocks
(BC) really exist.

The central problem in this matter is explanation of how
time sensor (TS) of a BC functions and of the very basic
mechanism of TS. Attempts had been made to study the in-
fluence of different chemical and physical factors on the pa-
rameters of BC.

The most thoroughly studied rhythms are those with a pe-
riod close to 24 hours. These are so called circadian rhythms
(CR). Fewer works are devoted to lunar rhythms (LR) which
are of periods around 29.53 and 14.77 days. A few works in-
volve yearly rhythms, and there is information about a period
of about 180 million years of the Earth‘s biosphere produc-
tivity [4].

In an attempt to determine the mechanism of TS influ-
ences of the following factors have been studied on the pa-
rameters of CR: illumination [7], light/darkness cycles [8],
electrical and magnetic fields of the Earth [9, 10], and ab-
sence of such [11], temperature variations [12, 13], chemi-
cals [14,15]. There were experiments in constant pressure and
temperature environments [17].

The main properties of BC obtained from experiments are
presented in [16]. The noteworthy fact is that the study of BC
had been carried out on biological objects using parameters,
which are the last stages of long chains of complex biochemi-
cal reactions and processes. In fact, in biological experiments
researchers observe the motion of the “hands” of BC. Nat-
urally, such observations do not allow revealing the mecha-
nism of BCTS that controls the “hands” of the clock. Thus,
the study of biological objects makes it impossible to draw
conclusions about the specific stages where one or another
factor begins to affect the biochemical chain of reaction. This
means, it is difficult to come to a single conclusion, that the
observed effects were the result of the action of a single factor
on the mechanism of time BCTS. And, as J. Gustings noticed
it is impossible to give an example of an isolated and stud-
ied biochemical system, which possesses the properties that

would reveal the factor and the location of such factor’s influ-
ence on CR [14].

The summarized conclusion coming from broad experi-
mental data is that physical and chemical factors, whose in-
fluence on BC have been studied, do not have any relationship
with the mechanism of BCTS, but only play a synchronizing
role. Namely, the factor whose influence is studied only af-
fects the “hand” of the clock by force shifting it one way or
another without affecting the actual mechanism behind the
“face” of the clock, i.e. without changing the period of CR.

As a result the conclusion is drawn that the period of BC,
particularly of CR, is independent from external factors. And
thus this period of the rhythms must be defined by organisms
independently from external factors, periodic or non-periodic,
of physical or chemical nature. This hypothesis is based on
three well known facts:

i. The difference of the period from 24 hours in experiments
in constant conditions;

ii. Easiness of shifting the phase of the rhythms;

iii. Stability of the rhythm period during latitudinal shifts,
that followed by the change of all geophysical factors
determined by place and time.

But none of these facts can be accepted as a definite proof as
it is established in scientific world [17].

Overall experimental data from studies of BCTS mech-
anism do not permit to arrive to a single conclusion regard-
ing the physical foundation of BCTS. Therefore, presently the
hypothesis of endogenous mechanism of BCTS is generally
accepted. Though there are facts that may support a com-
bined exogenous-endogenous mechanism [7]. Such attempts
encourage search for processes (of physical or simple chemi-
cal nature) that would allow identifying possibly a single sim-
ple mechanism of BCTS.

Circadian periodicity of evaporation of water from a ther-
mostated essel∗

Initial experiments were carried out in 1974. During one of
experiments (see the footnote) it became necessary to obtain
a stable flow of water vapor of low intensity (1.4×10−5 kg/s).

∗These experimental data had been obtained in 1974 by a group of physi-
cists headed by Prof. M. A. Asimov. The author of the present article was a
responsible leader for the experiments.
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Fig. 1: (1) Container filled with distilled water; (2) Thermostated
chamber with inside temperature of 103± 0.1◦C; (3) Cooling sys-
tem; (4) Container where the water condensate was collected

For this, the experimental setup, schematics plotted on Fig. 1,
had been assembled.

Container (1) with distilled water was placed into the
thermostated chamber (2), where stable temperature at
103±0.1◦C was maintained. Water was boiling inside the
container (1). The water vapor went through the cooling sys-
tem (3) and precipitated into the container (4). The mass of
the evaporated/precipitated water was measured every 15 min
and a set of 4 measurements had been plotted on the Fig. 2a
and 2b. The experiments were carried out uninterruptedly by
a number of series of 1 to 7 days of duration.

In order to thoroughly investigate the rate of water va-
porization power supply of the thermostat was carefully sta-
bilized, all containers and tubes and connections were ther-
mally insulated, mass was carefully measured and stability
of the temperature was closely monitored. The data coming
from the measurements strongly suggested the existence of
CR in the physical process of distilled water evaporation from
a thermostated container.

Measurements were repeated 2001. Due to the limited
resources and financial restrictions, the measurements were
conducted for only 24 hours. The data collected in 2001 is
plotted on Fig. 2b.

Simultaneously, external parameters were monitored. In
the Fig. 3, these parameters were plotted vs. time of the day.
Namely, temperature of the thermostated chamber Thot, tem-
perature of the liquid in cooling system Tcold, ambient tem-
perature Tamb, atmospheric pressure p in mm Hg, relative hu-
midity η, and voltage of the power supply were plotted vs.
time. As it is clear from Fig. 3, no significant correlation was
observed between external parameters and the mass of the
evaporated/precipitated water∗.

Lunar rhythm in the reaction of vapor conversion of
methanol

The stable vapor flow of low intensity was necessary for
studying of chemical reaction of vapor conversion of metha-

∗Experiment conducted in 2001 was made possible by generous techni-
cal assistance of Abdulaev Khikmat at the Biology Department of Tashkent
State University.

(a)

(b)

Fig. 2: Variation of the mass of collected water condensate vs. time
of the day

nol. The reaction used in chemical industry to produce hydro-
gen is described by a formula:

CH4 + 2H2O
450◦C
−→ CO2 + 4H2 (1)

To investigate time dependence of the reaction speed there
were provided stable flows of gaseous CH4 and water vapor
(deviations were± 0.3% and± 3%, respectively).

The experiment had been carried out for 540 hours in Oc-
tober and November of 1974. In Fig. 4 the experimental mea-
surements were plotted, y axis shows the fraction of residual
methane in the converted dry gas at the output of the reactor.

Composition of the gas at the output was analyzed by
the method of gas chromatography. Every 15 min three chro-
matographs were collected; results of 2-4 hour measurements
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Fig. 3: Monitoring of external parameters of temperature ofthe ther-
mostated chamber Thot, temperature of the liquid in cooling system
Tcold, ambient temperature Tamb, atmospheric pressurep in mm
Hg, relative humidityη, and voltage of the power supply were plot-
ted vs. time. Experiments were conducted in summer of 2001.

were averaged and then plotted on the Fig. 4.
Results of these studies indicated on the existence of a

lunar rhythm in the chemical reaction of vapor conversion of
methanol at T= 450◦C. This temperature is noticeably higher
than temperature of any known living organism.

Discussion

A sum total of published experimental data and mentioned
above original results of revealing of CR in water evaporation
from a thermostated vessel (at T= 103◦C), and LR in chem-
ical reaction of vapor conversion of methanol (at T=450◦C)
allowed to conclude that the mechanism of BCTS has exoge-
nous nature.

Let’s analyze changing of kinetic and potential energy of
atoms/molecule on the surface of the Earth. An atom/mole-
cule on the surface of the Earth takes part in following mo-
tions:

1. Spinning of the Earth around its own axis with the surface
speed V1= 465× cosα m/s, whereα – is latitude;

2. Revolving with the Earth around the Sun with a linear
speed of V2= 3×104 m/s;

3. Moving with the Solar system around the center of the
Galaxy with a linear speed of aboutV3=2.5×105 m/s;

4. Moving with the Galaxy from the center of the Universe
with a linear speed of about V4= 6×105 m/s [18];

It’s known that total mechanical energy is the sum of kinetic
energy KE and potential energy U:

Etotal = KE + U (2)

Fig. 4: Concentration of residual CH4 in % in vapor conver-
sion reaction output. (Experimental data presented in thisfigure
were obtained in Tashkent State University, Uzbekistan by Do-
cent M. A. Azimov’s group, headed by Mr. Takhir R. Akhmedov in
1972–75)

And, if any of these components or both of them change ac-
cording to a law, then the total energy will change according
to the same law. And the change can be potentially affecting
any physical, chemical or biological process.

The factors 1-3 cause changing of kinetic energy of
atoms/molecules on the surface of the Earth with periods,
respectively, 24 hours (CR), a year (year rhythm), 180 mil-
lion years (the Galaxy “year” rhythm). The existence of the
rhythms has been mentioned above. Analysis of the kinetic
energy changing leads us to the following formula:

Emax− Emin = 2m× VT × VE × cosα (3)

where m – mass of an atom/molecule, VT – thermodynamic
speed of an atom/molecule, VE – the orbital speed of the
Earth’s surface on the equator,α – latitude.

Formula (3) evaluates the change of kinetic energy of
H2O molecule caused by orbital spinning of the Earth. Cal-
culations show that the change of the kinetic energy is equiv-
alent to the temperature change in the order of 1◦C, which in
turn explains the existence of a minimum/maximum of wa-
ter evaporation from a thermostated vessel at 6 a.m./6 p.m. of
the local time. Similar changes of energy in biological objects
naturally lead to emerging of CR in them.

It should be underlined, that the argument I (differ of CR
period from 24 hours), interpreted in the favor of endogenous
mechanism of BCTS, actually proves exogenous character of
the BCTS mechanism [15]. The argument II – easiness of
shifting of CR phase in biological objects is not related to the
mechanism of functioning of BC, but is the result of response
of bio-objects to the external environmental factors, and the
response is of biochemical nature.
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The argument III – conservation of the rhythm during lat-
itudinal shift – naturally follows from the above offered in-
terpretation of the mechanism of BCTS. As the speed of an
atom/molecule on the surface of the Earth is described by a
formula:

V = VT + VE cosα (4)

And for a given time zone during latitudinal shifting the BC
of a studied object conserves circadian periodicity. But the
shifting can be followed by a change of the amplitude. CR of
bio-objects should disappear on the Poles of the Earth and in
space (space stations).

As it’s known, an atom/molecule besides kinetic energy
possesses potential energy. Epoten in (2) for atoms/molecules
on the surface of the Earth changes with a period equal to lu-
nar rhythm, that is caused by displacement of celestial bodies
in the system Sun-Earth-Moon. And temperature equivalent
of the effect is of order of 10-20◦C for the researched chem-
ical reaction. The same mechanism of the energy changing
may cause changing of daily global temperature [19].

Conclusions

1. The rhythms with periods close to geophysical rhythms
(circadian rhythm, lunar rhythm, a year rhythm, and
a rhythm of Earth’s biosphere productivity-the Galaxy
rhythm) have fundamental nature and take place not
only in bio-objects, but also in physical and chemi-
cal processes at temperatures significantly higher then
temperature of bio-objects.

2. The mechanism of time sensor of biological clock has ex-
ogenous nature.

3. The time sensor of biological clock is the changing of to-
tal energy Etotal = KE + U of atoms/molecules on the
surface of the Earth, caused by moving of the Earth in
Space.

4. For global prove of the results and theoretical interpreta-
tion, experiments may be held to study the process of
water evaporation from a thermostated vessel simulta-
neously in different places of the same latitude and/or
longitude.
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On the Effect of Lengthening Circadian Rhythm by Heavy Water

Takhir R. Akhmedov
333 S. Webster Ave, Suite 4, Norman, OK 73069. E-mail: TakhirAkhmedov@yandex.com

The problem of time sensor of biological clock (BC) attractsinterest of many scientists,
and a great number of experiments are being conducted to study the influence of vari-
ous physical and chemical factors on functioning of BC. Special attention is drawn to
studying the influence of heavy water (D2O) on functioning of BC that always leads to
lengthening of circadian rhythms (CR). This work presents theoretical consideration of
lengthening of CR, when hydrogen (H2) in water is replaced by deuterium (D2), that is
based on spacial difference of energy levels with similar principle quantum numbers.

The problem of the mechanism of time sensor (TS) of bio-
logical clock (BC), or biorhythms of periods close to peri-
ods of geophysical factors, attracts attention of scientists for
a long time. The most thoroughly experimentally studied are
circadian rhythms (CR) i.e. rhythms with a period close to 24
hours. And in a range of data about physical and chemical
factors unfluence on CR there is a special case for the effects
of D2O on the rhythms. In [3, 4] it is noticed “that at present
D2O is the only matter, which always leads to lengthening
of endogenous rhythms”, and it is underlined, that theoreti-
cal interpretation of “the effect of heavy water” is based on
the theory of reactions’ absolute speeds, neglecting mass ef-
fects. However, the principle difference of H2O and D2O is
the difference of masses of hydrogen and deuterium nuclei.

Consideration of the mass difference permits qualitave
explanation of the lengthening of CR in biological objects,
where H2O is partially or completely replaced by D2O.

Let’s consider spacial distribution of energy levels of the
same principle quantum number in atoms of hydrogen and
deuterium. Taking into account the masses of the nuclei en-
ergy levels are separated by the distance.

rnH =
α

4π
×

1
RH
× n2 in a hydrogen atom, and

rnH =
α

4π
×

1
RD
× n2 in a deuterium atom

whereα is fine structure constant,RH andRD are Rydberg
constants for hydrogen and deuterium, respectively,n – the
main quantum number [4].

In comparison with the similar levels of hydrogen atom
in an atom of deuterium energy levels of the same principle
quantum number are spatially shifted towards the nucleus by
the value of

∆r = n2
×

α

4π
×















1
RH
−

1
RD















Accepting thatα= 7.397535×10−3, RH = 109677.576 cm−1

andRD = 109707.419 cm−1, for n=1, we haver1= 1.3937×
10−12 cm. For example forn=10,r10= 1.3937× 10−10 cm.

It is natural to assume, that the lower the energy thresh-
old through which biochemical processes run in bio-objects

the higher the sensitivity of the objects to the spatial shift of
energy levels caused by the replacement of H2 by D2.

Thus, from above mentioned it follows that lengthening
of CR by adding D2O is caused by decreasing the possibility
of biochemical processes running through the appropriate en-
ergy levels in deuterium atoms, which, being caused by mass
difference, are spatially shifted towards the nucleus in com-
parison with analogous levels in hydrogen.
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