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On the Descriptive Geometric Interpretation of Pauli Principle,

Elements of the Mendeleev Table of Chemical Elements,

and the Newtonian Laminar Current of a Liquid

Alexander V. Yurkin
Puschino, Russia. E-mail: alvl1yurkin@rambler.ru

This work presents a two-dimensional and three-dimensional geometrical research of

a ray system. We consider trajectories of motion of the particles having a half-integer

spin. Interpretation of Pauli Principle showing distribution of electrons on power levels

of the atom is given herein. The number of the electron shells in our model of the

atom doesn’t exceed 8. We give a geometric interpretation of the main, azimuthally,

magnetic and spin numbers in the form of angles and distances. We show forth that the

hyperbolic dependence of energy on the main quantum number n of the hydrogen atom

(En ∼ –1/n2) known from experimental spectral studies, Bohr’s theory and Quantum

Mechanics can also be obtained from our geometrical formulation of Pauli Principle.

Also, in the framework of research of the suggested ray model, the step structure of the

layers at a laminar current of a liquid is deduced.
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Introduction

Descriptive geometric models are used for the evident de-

scription of various phenomena, including quantum phenom-

ena [1].

In works [2, 3], we already introduced a geometric model

on the plane consisting of systems of paraxial rays describing

distribution of light in lasers, turbulent and laminar flows of

a liquid on pipes, and also finding an electron in the infinite

deep potential. In work [3] we noted that the aforementioned

model can be used for a descriptive interpretation of moving

particles with the integer or half-integer spin.

In the works [3, 4] it was devoted to study the integer ray

system (see [3]) by such means that possible to describe mov-

ing particles having the integer spin. However, even in the

works [2, 5] we actually investigated a systems of ray trajec-

tories which can be characterized as a half-integer ray sys-

tem [3] by means of which it is possible to describe moving

particles having a half-integer spin.

We aim, in the present work, to study a half-integer ray

system, two-dimensional and three-dimensional geometric

models of motion of the particles having a half-integer spin.

A geometric interpretation of Pauli Principle showing dis-

tribution of electrons on energy levels of the atom (such as

those described in the physics textbooks [6, 7]) is suggested

herein.

The geometric interpretation of the main, azimuthally,

magnetic and spin numbers is given in the present work in

the form of small angles and distances.

Also, we show a possibility of the existence of the final

number of electron shells in the elements of the Mendeleev

Periodic System of Chemical Elements. The shells and sub-

shells of the atoms are interpreted as a system of the wave

trajectories consisting of direct inclined pieces.

Geometric interpretations of the hydrogen atom and its

power levels respectively are separately given in the work

as well.

So forth, on the basis of the research of the half-integer

ray model, we introduce the step structure of layers in a lam-

inar current of a liquid (such a liquid is described in most

textbooks, see [8]).∗

∗The laminary liquid current was first described long time ago by New-

ton. The Netwon theory was rechecked many times (see [8]).
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Numerical calculations, presented in the present work, as

well as those published in [3], were represented by means of

three-dimensional tables created in Excel.

For the convenience of readers, reference drawings taken

physics textbooks are given in Appendix, while the research

part of our publication contains only originally calculated

drawings and tables.

1 Half-integer system of eight groups of rays

1.1 Two-dimensional projection of Gaussian (paraxial)

rays

In the work [3], we briefly described a paraxial binary (shar-

ing in two) flat system of trajectories. This system consists of

groups of rays, in which the rays are inclined under p angles,

small to an axis, multiple to the angle γ:

p =

(

i +
1

2

)

γ, i = 0,±1,±2, . . . (1)

We called this system of rays: “(i + 1/2)γ-system” or half-

integer ray system [3]. We will describe this system in more

detail in Fig. 1.

This binary system of rays consists of eight groups of the

rays and their links. The rays and links of each of these

groups aren’t imposed on the rays of other groups, but can

cross them.

Branching points of the rays will be spaced from a sym-

metry axis on small distances of q, multiple to 1
2

k length:

q =
jk

2
, j = 0,±1,±2, . . . (2)

Further, we more precisely will refer to “(i + 1/2)γ-system”

as “
[

p = (i + 1/2)γ, q = jk/2
]

-system”.

In this work, as well as in the previous works [2–5] we

assume that the rays extend along the branching links; there-

fore the number of the rays N can be summarized. We also

assume that K is a number of the links generally N > K.

In Fig. 1 (a-d, f-i) eight groups of rays of the aforemen-

tioned
[

p = (i + 1/2)γ, q = jk/2
]

-system are shown: K′′,

L′′, M′′, N′′, O′′, P′′, Q′′, R′′.

This system is placed on a rectangular coordinate grid.

The size of a cell of a grid has height of 1
2

k and length of L,

L ≫ 1
2

k, L≫ 1
2

jk.

Groups in Fig. 1 (a-d) and in Fig. 1 (f-i) are shifted from

each other down on the 1
2

k distance. Groups in Fig. 1 (f-i) are

shifted concerning groups in Fig. 1 (a-d) on distance of L.

In Fig. 1 (e) and Fig. 1 (j) the image of groups of the rays

K′′, L′′, M′′, N′′ and O′′, P′′, Q′′, R′′ respectively, are com-

bined altogether. In Fig. 1 (k) all eight groups of rays are

combined together.

1.2 Three-dimensional projection of Gaussian (para-

xial) rays

In the work [3] we considered the three-dimensional image

of a binary paraxial system of rays in the form of a nonlinear

arithmetic parallelepiped: In a nonlinear arithmetic paral-

lelepiped all numbers are located in the rectangular planes

of identical sizes, and these planes are located layer-by-layer

one under another since parallelepiped top.

In this case, the nonlinear arithmetic parallelepiped [3]

has a NL height, a length of D = 1
2

km′ + 1 and a width Γ =

γm + 1, where L, k are distances, while γ is a small angle

in the two-dimensional binary ray system (Fig. 1) and at the

same time a small distance in a three-dimensional nonlinear

parallelepiped [3], and N, m, m′ are natural numbers or zero.

After a large number of passes (iterations) of N→ ∞ and

NL ≫ L, we write down the rule of consecutive filling with

numbers of a nonlinear arithmetic parallelepiped as well as

in [3]:

A = B +C, (3)

where

A =





















N

p

q





















, B =





















N − 1

p − 1

q + p − 1





















, C =





















N − 1

p + 1

q + p + 1





















.

For creation of various types [3] of nonlinear arithmetic paral-

lelepipeds it is necessary to set various additional boundaries

and initial conditions.

1.3 Periodic and acyclic trajectories

The system
[

p = (i + 1/2)γ, q = jk/2
]

of rays generally

consists of periodic and acyclic trajectories. In Fig. 2, one

of eight groups of the rays of this system are shown for the

case of D = 4k, Γ = 7γ.

We will set the first boundary conditions [3] for number

A in formula (3) for nonzero N-layers:

A = 0 (4)

for q = | qmax|, where qmax =
1
2

D.

Further we will set the first boundary conditions for num-

bers B and C in formula (3) for nonzero N-layers:

B = 0, C = 0 (5)

for | q + p − 1 | > qmax and | q + p + 1 | > qmax rectively.

We now set the initial conditions [3] for the numbers B

and C in formula (3) for the sequence of numbers q of a zero

layer (N = 0):




















0

p

q





















= 1 (6)

for |q| 6 qmax and




















0

p

q





















= 0 (7)

for other q.
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Fig. 1: Periodic trajectories. Eight groups of rays: K′′, L′′, M′′, N′′, O′′, P′′, Q′′, R′′of the
[

p = (i + 1/2) γ, q = jk/2
]

system. k/2, and L are

the minimum distances on a vertical and a horizontal respectively. N is the number of pass of rays (the number of iteration). Dash-dotted

lines with arrows showed axes of a coordinate grid in which trajectories are placed.
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Fig. 2: Periodic and acyclic trajectories. One of eight groups of rays

(K′ group) of the
[

p = (i + 1/2) γ, q = jk/2
]

system is shown here.

Figures about the shown links illustrate the number of the rays of N

and the summation process of number of the rays extending along

the number of the links K for the first five passes (N = 0 − 4).

In Fig. 3, calculation formulas (given in MS Excel) of a

nonlinear arithmetic parallelepiped (Figs. 1, 2) for D = 4k,

Γ = 7γ case for zero, the first and second passes of the ray

system, i.e. N = 0, 1, 2. The calculation was made according

to the rule (3) of the consecutive filling with the numbers of

an arithmetic rectangle taking into account the boundary (4,

5) and the initial (6, 7) conditions. Three rectangles in Fig. 3

are the layers of a nonlinear arithmetic parallelepiped.

Results of numerical calculation for the first five passes of

rays, i.e. N = 0 − 5 are given in Fig. 4. Five rectangles are

layers of a nonlinear arithmetic parallelepiped.

Results of numerical calculations for 32 pass of rays, i.e.

for N = 32 (a) are given in Fig. 5. The envelopes of distribu-

tion of number of rays of K(q) on the section (b) and K ′(p)

at the angle (c) are provided.

1.4 Periodic trajectories and step layers in the laminar

current of a liquid

In a specific case, the [p= (i+ 1/2)γ, q= jk/2] system of rays

consists only of periodic trajectories. Fig. 6 shows one of the

eight groups of rays of this system for the case, where D= 4k,

Γ= 3γ.

In this case, we need to further set special initial and

threshold conditions to create the appropriate nonlinear arith-

metic parallelepiped [3].

Let’s consider here a simple and illustrative (as compared

to the description given in [3]) way (an Excel algorithm) of

setting special initial and threshold conditions for the paral-

lelepiped that describes the system consisting only of periodic

trajectories.

Let’s set the second threshold conditions for A, B, and C

in formula (3) for nonzero N-layers:

A = 0, (8)

if B= 0 and C = 0, and

B= 0 and C = 0, (9)

if A= 0.

Let’s set additional initial conditions for B and C for a

zero layer (N= 0):

B= 0 and C = 0, (10)

if A = 0.

The offered way (the algorithm) can be easily implement-

ed in numerical calculations in Excel.

At first, we completely fill with units a numerical rect-

angle of the zero layer (N= 0) according to formula (6) and

formula (7).

Then we fill with numbers a numerical rectangle of the

first layer (N= 1) according to formulas (3 to 5). Some zeroes

appear in the first layer.

Then we delete numbers (units) from the cells of the zero-

layer rectangle which don’t influence cells of the first-layer

rectangle.

Then we delete numbers from the cells of the first-layer

rectangle which don’t depend on the cells of the zero-layer

rectangle. We have some new zeroes in the first layer again.

Then again we delete numbers (units) from the cells of

the zero-layer rectangle which don’t influence the cells of the

first-layer rectangle.

And so we repeat this process several times. As a result,

we still have cells filled with meaningful numbers which in-

fluence other cells, and the cells which depend on other cells.

The remained cells describe the [p= (i+ 1/2)γ, q= jk/2] sys-

tem consisting only of periodic trajectories.

[p= (i+ 1/2)γ, q= jk/2] is the system of rays consisting

only of periodic trajectories as shown in Fig. 7. The results of

calculation of a nonlinear arithmetic parallelepiped (Figs. 1

and 6) are for D= 4k, Γ= 3γ for the zero, first, and second

passes of the ray system, i.e. (N= 0, 1, 2). The calculation

was made according to the rule (3) of consecutive filling with

numbers of an arithmetic rectangle taking into account the

first and the second threshold (4 and 5; 8 and 9) and initial

(6, 7, and 10) conditions, including the algorithm (8 to 10).

The three rectangles shown in Fig. 7 are the layers of a non-

linear arithmetic parallelepiped.

Fig. 8 shows the images of layers of a nonlinear arith-

metic parallelepiped and a numerical example of calculation

of the [p= (i+ 1/2)γ, q= jk/2] system of periodic trajecto-

ries (Fig. 7) for D= 4k, Γ= 3γ for zero and the subsequent

four passes of rays, i.e. for N= 0− 4.

Fig. 9 shows numerical calculations and graphics made in

Excel. Numerical calculation for the 32nd pass of rays, i.e.

for N= 32, is given in (a). It also shows the envelopes of

distribution of the number of rays of N(q) on the section (b)

andN ′(p) at the angle (c) for D= 4k, Γ= 3γ.
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Fig. 3: Calculation of the filling with the numbers of a nonlinear arithmetic parallelepiped for D = 4k case in Excel. The
[

p = (i + 1/2) γ, q = jk/2
]

system of 8 groups of rays of periodic and acyclic trajectories; the first three pass through the rays. Each

of the eight groups is marked by an own color.
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Fig. 4: Results of numerical calculation in Excel for the first five passes of rays (iterations). Arrows showed dependent cells. Each of eight

groups K′, L′, M′, N′, O′, P′, Q′, R′ of the
[

p = (i + 1/2) γ, q = jk/2
]

system of periodic and acyclic trajectories. Each of the eight

groups is marked by an own color.
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Fig. 5: Results of the numerical calculations for 32 pass of rays, i.e. for N = 32 for periodic and acyclic trajectories of the considered
[

p = (i + 1/2) γ, q = jk/2
]

system (a); each of the eight groups of the system is marked by an own color; a thick framework in the central

part is noted the system of periodic trajectories. The envelopes of distribution of the number of the rays of K(q) on the section (b) and

K ′(p) at the angle (c) are given. We note that for this case, as show our calculations, the form of envelope (b, c) practically doesn’t change

approximately after the 15th pass.

Fig. 6: Periodic trajectories. It shows one of eight groups of rays (K′′ group) of the [p= (i+ 1/2)γ, q= jk/2] system.

Fig. 7: Calculation of filling with numbers of a nonlinear arithmetic parallelepiped for D= 4k in Excel, and the [p= (i+ 1/2)γ, q= jk/2]

system of eight groups of rays of periodic trajectories — the first three passes of rays. Each of the eight groups is marked in a separate

color.
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Fig. 8: Results of numerical calculation in Excel for the first five passes of rays (iterations). The arrows point to dependent cells. Each of

the eight groups — K′′, L′′, M′′, N′′, O′′, P′′, Q′′, and R′′ — of the [p= (i+ 1/2)γ, q= jk/2] system of periodic trajectories is marked in

a separate color.

Fig. 9: Results of numerical calculations for the 32nd pass of rays, i.e. for N= 32, for periodic trajectories of the [p= (i+ 1/2)γ, q= jk/2]

system (a). Each of the eight groups of the system is marked in separate color. It also shows the envelopes of distribution of number N of

rays of N(q) on the section (b) and N ′(p) at the angle (c). Note, according to our calculations, in this case, there is virtually no change in

the form of the envelope, (b) and (c), approximately after the 15th pass.
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Fig. 10: Periodic (wavy) trajectories. It shows one of the eight groups of rays (K′′ group) of the [p= (i+ 1/2)γ, q= jk/2] system. The

group contains 35 links within one pass of N. Crests and troughs of the “waves” are located (attached) between the horizontals marked in

dark color. These horizontals have thickness of 0, 5k and are located at identical distance of 2k from each other.

Fig. 10, similar to Figs. 1 and 6, shows one of the eight

groups of rays of the [p= (i+ 1/2)γ, q= jk/2] system of rays

of periodic trajectories for D= 22k, Γ= 9γ.

In Fig. 10, some of wavy geometric trajectories for the

considered [p= (i+ 1/2)γ, q= jk/2] system of rays are shown

as heavy lines. Wavy trajectories consist of the links inclined

at small angles of p= (i+ 1/2)γ. The D size of the binary ray

system can accommodate one “wave” or packages of “waves”

of different length.

Let’s denote the length of wavy trajectories by λn. With

increasing D this λn is growing discretely:

λn = 2 (2n − 1) L, (11)

where n = 1, 2, . . .

Let’s denote the height of this “wave” by νn. The νn height

is proportional to the squared λn length:

νn =

(

n2 − n + 1
2

)

k
∼ λ2

n . (12)

Wavy trajectories in Fig. 10 can settle down in any part of the

coordinate grid between horizontals within D.

Fig. 11, similar to Fig. 9, shows numerical calculations

and graphs made in Excel. Numerical calculation for the

128th pass of rays, i.e. for N= 128, is given in (a). There are

also envelopes of distribution of number N of rays of N(q)

on the section (b) and N ′(p) at the angle (c) given for the
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Fig. 11: Results of numerical calculations for the 128th pass of rays, i.e., N= 128, for eight periodic trajectories of the [p= (i+ 1/2)γ,

q= jk/2] system. Thirty five cells (corresponding to 35 rays within one pass in Fig. 10) of one of the eight groups of the system (K′′ group)

are highlighted with the darker color and heavy external borders of the cells (a). The figure also shows the envelopes of distribution of

number N of rays of N(q) on the section (b) andN ′(p) at the angle (c). Note, according to our calculations, in this case, there is virtually

no change in the form of the envelopes, (b) and (c), approximately after the 70th pass.
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[p= (i+ 1/2)γ, q= jk/2] system for all the eight groups for

D= 22k, Γ= 9γ.

The darker cells with heavy external borders shown in

Fig. 11 correspond to one of the eight groups of the system

(K′′ group) shown in Fig. 10.

Forms of the envelopes of distribution of the number of

rays for the half-integer system are similar to the forms of

the envelopes for the integer system described in [3]. The

form of the envelope N(q) in Fig. 11(b) on the section after

a large number of passes (Fig. 11b) is close to a parabola of

the fourth degree, and the form of the envelope N ′(p) at the

angle (Fig. 11c) is close to Gaussian distribution.

In [3] we noted that the form of the envelope N(q) on

the section for periodic trajectories corresponds to the form

of the envelopes of speed distribution at zero pass (N= 0) and

volume distribution after a large number of passes (N→∞)

of liquid in pipe section at laminar flow.

In Fig. 11(b) we can see that the envelope N(q) has a

stepped structure compared to the more smooth form of the

envelopeN ′(p) (Fig. 11c). Similar results were received from

numerical calculations for the integer system in [3], but the

half-integer model gives the more accurate image of the

“steps” compared to the integer model.

It can be assumed that such a stepped structure of the en-

velopeN(q) explains the existence of layers of final thickness

in liquid at laminar flow [8]. The speed and volume of liquid

do not change within each of these layers of a certain final

thickness.

2 Gaussian (paraxial) rays and Pauli Principle

2.1 Angles, distances and quantum system

Pauli Principle [6, 7] is correct for electrons and other parti-

cles with half-integer spin in a quantum system.

The condition of each electron in an atom is characterized
by four quantum numbers [6, 7]:

Principal n (n= 1, 2, 3, . . . )

Azimuthal l (l= 0, 1, 2, . . . , n− 1)

Magnetic ml (ml =− l, . . . ,−1, 0,+1, . . . ,+l)

Spin ms

(

ms = +
1
2
, − 1

2

)







































. (13)

Fig. 23 of the Appendix illustrates an example from [6] of

spatial quantization.

In monographs [6] and [7] the spin is also denoted by one

letter “s”:

ms = s = ±
1

2
. (13a)

According to Pauli Principle in a quantum system, for exam-

ple in an atom, there can’t be two electrons possessing iden-

tical quantum numbers: n, l, ml, ms. That is, two electrons

cannot be in the same state simultaneously. No more than

2n2 electrons can be in a state with n value in an atom [6, 7].

If

n = 1 there can be 2 electrons

n = 2 there can be 8 electrons

n = 3 there can be 18 electrons

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



































. (14)

Electrons having identical value of the quantum number n

form a shell. Shells consist of subshells, differing in value

of the quantum number l.

Shells are denoted by characters according to value of
n [6] and [7]:

Value of n 1 2 3 4 5 6 7 . . .

Designation of the shell K L M N O P Q . . .















. (15)

The electron which is in condition of l= 0 is called an s elec-

tron, l= 1 — p electron, l= 2 — d electron, l= 3 — f elec-

tron, followed by g, h, etc. alphabetically. The value of the

principal quantum number n is specified before the symbol of

the azimuthal quantum number l [7].

The division of possible conditions of an electron in an

atom into shells and subshells [7] is presented in the form of

a periodic table of conditions of an electron (see Fig. 24 of

the Appendix).

The process of building electron shells [7] (according to

Pauli Principle) of the first 36 elements of the Mendeleev Pe-

riodic System is presented in the form of a periodic table of

elements (see Fig. 25 of the Appendix).

Now let’s give an algorithm of creation of another specific

case of the binary [p= (i+ 1/2)γ, q= jk/2] system of rays of

periodic trajectories (considered in Section 1.4). We will be-

gin with the minimum quantity of rays consistently passing to

the more complicated configurations of the system. Thus, we

will compare the properties of our system to the data provided

in periodic tables in Figs. 24 and 25 of the Appendix.

We accept that, for our paraxial beams, all the angles of

γn, are small and multiple to the small angle of γ, and the

small distance of k is as follows:

k ≈ γL. (16)

For perfect correspondence between our geometric construc-
tions and expressions (13 and 13a), including the data pro-
vided in periodic tables in Figs. 24 and 25 of the Appendix,
we will enter the following assumptions:

Principal number n∼ γi∼ k j , (17)

(n= 1, 2, . . . ; i= 1, 2, . . . ; j= 1, 2, . . . ),

Azimuthal number l= n− 1∼ γ (n− 1) , (18)

Magnetic number ml =± l∼± k (n− 1) , (19)

Spin number s=±
1

2
∼±
γ

2
and ms =±

1

2
∼±

k

2
. (20)
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Fig. 12: K shell and the first parts of the periodic tables of (a) con-

ditions of an electron, and (b) elements.

Fig. 13: One of the eight groups of rays of the {p= (i+ 1/2)γ ,

q= jk/2} subsystem of periodic trajectories, and K shell. (a) and (b)

correspond to an atom of hydrogen, (c) — to an atom of helium.

n= 1∼ γ∼ k, l= 0, ml = 0, s=± 1/2∼± γ/2, ms =± 1/2∼±k/2.

Dash-dotted lines show axes from which sizes of angles and dis-

tances are counted.

Fig. 14: L shell and the second parts of the periodic tables of (a)

conditions of an electron, and (b) elements.

2.2 Periodic tables and geometrical constructions

2.2.1 Creation of the first shell of a quantum system

Fig. 12(a) shows the first (top) part of the periodic table of

conditions of an electron (Fig. 24 of the Appendix) describ-

ing the first shell of K. Fig. 12(b) shows the top part of the

periodic table of elements (Fig. 25 of the Appendix) describ-

ing the first two elements:

Fig. 13 shows one of the eight similar to (Figs. 1 and 6)

groups of rays of the [p= (i+ 1/2)γ, q= jk/2] system of pe-

riodic trajectories.

These trajectories correspond to the first electron shell of

K shown in Fig. 12(a).

To be specific, let’s call this system of periodic trajecto-

ries an {p= (i + 1/2)γ, q= jk/2} subsystem of periodic tra-

jectories of the [p= (i+ 1/2)γ, q= jk/2] system of periodic

trajectories.

Fig. 13 (a and b) shows two trajectories with opposite

(↑ symbol and ↓ symbol) orientation of a spin (one 1s elec-

tron). These trajectories correspond to an atom of hydrogen

with random orientation of the spin (Fig. 12b).

Fig. 13c shows a trajectory with anti-parallel (↑↓ symbol)

spin orientation (two 1s electrons). This trajectory corre-

sponds to an atom of helium (Fig. 12b).

The atom of helium is closing filling of the K shell.

2.2.2 Creation of the second shell of a quantum system

Fig. 14 (a) shows the second part of the periodic table of con-

ditions of an electron (Fig. 24 of the Appendix) describing the

second cover of L. Fig. 14 (b) shows the second part of the pe-

riodic table of elements (Fig. 25 of the Appendix) describing

the elements number three to ten.

Fig. 15 shows one of the eight similar to (Figs. 1 and 6)

groups of rays of the {p= (i+ 1/2)γ, q= jk/2} subsystem of

periodic trajectories. These trajectories correspond to the sec-

ond electron shell of L in Fig. 14 (a and b).

Fig. 15 (a) shows the L shell in the form of a periodic tra-

jectory consisting of the subshell L1 (one 1s electron) for

Li. The form of this shell is the same as in Fig. 13(a) or

in Fig. 13(b). The form of K shell for Li is the same as in

Fig. 13(c).

Fig. 15 (b, c, d, e, f, g, and h) shows the L shells (L1(2s)

and L2(2p) subshells) for Be, B, C, N, O, F, and Ne respec-

tively (Fig. 14a and b):

The K shell for these elements is the same as that for Li

(see Fig. 13c).

The K shell and L shell of the elements (Figs. 12 to 15)

can settle down in our geometric model similar to arrange-

ment of K′′ group of rays and L′′ group of rays respectively

(Figs. 1, 7 and 8).

The atom of Ne is closing filling the L shell.

2.2.3 Creation of the third and fourth shells of a quan-

tum system

Geometric schemes of Pauli Principle and elements of pe-

riodic table are further constructed in compliance with the

above algorithm. Therefore, we will confine ourselves to giv-

ing specific examples.

The second part of the periodic table of conditions of

an electron (Fig. 24 of the Appendix) describing the third M
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Fig. 15: One of the eight groups of rays of the {p= (i+ 1/2)γ,

q= jk/2} subsystem of periodic trajectories and consecutive pro-

cess of filling L shell according to Fig. 14 (a and b). Designations of

quantum numbers are similar to these in Fig. 13. Dash-dotted lines

show axes from which sizes of angles and distances are counted.

shell and the fourth N shell is given in Fig. 16(a). Eight ele-

ments of the third part of the periodic table of elements (see

Fig. 25 of the Appendix) are given in Fig. 14(b) on a selective

basis (see Fig. 16).

Shells of K and L (Fig. 16a) for all the elements shown in

Fig. 16(b) are the same as in Fig. 13(c) and Fig. 15(h).

The shell of M (3s subshell) for Na is the same as in

Fig. 13(a) or Fig. 13(b).

The subshells 3s and 3p of the shell of M for Ar and K

(Fig. 16b) has the same forms as shown in Fig. 15(h).

The shell of N (4s subshell) for K and Cr (Fig. 16b) is the

same as in Fig. 13(a), Fig. 13(b), and Fig. 15(a).

The shell of N (4s subshell) for Sc and Ni is the same as

Fig. 16: Shells of M and N, and the third parts of the periodic tables

of (a) conditions of an electron, and (b) eight elements.

in Fig. 13(c) and Fig. 15(b).

The shell of N (subshells 4s and 4p) for Ga is the same as

in Fig. 15(c).

The shell of N (subshells 4s and 4p) for Kr is the same as

in Fig. 15(h).

Fig. 17 (a, b, c, and d) shows the shell of M (subshells

3s, 3p, and 3d) for (Sc), (Cr), (Ni), (Ga and Kr) respectively

(Fig. 16a and b):

Three or four shells of K, L, M, and N (Figs. 13 to 17) for

the elements can settle down in our geometric model similar

to the arrangement of groups of rays of K′′, L′′, M′′, and N′′

in Figs. 1, 7 and 8.

The geometric schemes of Pauli Principle and elements of

the periodic table are also further created in compliance with

the above algorithm.

However, our geometric model similar to (Figs. 1 and 6)

of groups of rays of the {p= (i+ 1/2)γ, q= jk/2} subsystem

of periodic trajectories consists only of eight groups of rays.

Therefore, while remaining within the offered model, it is

possible to assume that the number of shells of an atom is

no more than eight either. If we continue increasing the num-

ber of ray groups to more than eight, the rays will overlap,

and the shells will merge.

Thus, if the number of shells does not exceed eight, the

total number of elements of the periodic system (14) cannot

exceed 128.

Deviations from the sequence of filling the periodic sys-

tem (e.g., for the elements such as K, etc.) (Fig. 16b) hypo-

thetically reduce (or increase) the total number of elements of

the periodic system.
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Fig. 17: One of the eight groups of rays of {p= (i+ 1/2)γ, q= jk/2}

subsystem of periodic trajectories and consecutive process of filling

M and N shells for eight elements according to Fig. 16 (a and b).

Designations of quantum numbers are similar to these in Figs. 13

and 15. Dash-dotted lines show axes from which sizes of angles and

distances are counted.

2.2.4 Pauli Principle and the geometric system of the hy-

drogen atom

Monographs on quantum mechanics [6] and [7] consider the

simplest quantum mechanical system of an atom of hydrogen

(Figs. 26 to 28 of the Appendix). Let’s make a review of this

example too.

Fig. 18 shows the fifth shell of O:

Fig. 18: Shell of O of the periodic table of conditions of an electron.

Fig. 19 shows one of the eight groups similar to (Figs. 1

and 6) of rays of the {p= (i+ 1/2)γ, q= jk/2} subsystem of

periodic trajectories. These trajectories correspond to the fifth

electron shell of O shown in Fig. 18. In this example, the O

shell is filled completely and contains five subshells.

The {p= (i+ 1/2)γ, q= jk/2} subsystem for an atom of

hydrogen can be constructed geometrically in accordance

with Pauli Principle and similar to the construction method

described in previous Sections.

The {p= (i+ 1/2)γ, q= jk/2} subsystem shown in Fig. 19

is in many respects similar to the [p= (i+ 1/2)γ, q= jk/2]

system in Fig. 10, but contains the smaller quantity of rays

and the smaller quantity of the wavy trajectories consisting of

these rays.

The wavy trajectories shown in Fig. 19 settle down in the

lower part of the coordinate grid and are “attached” to the

lower horizontal unlike the wavy trajectories in Fig. 10, which

can settle down in any part of the coordinate grid within D

size.

In principle, the creation of the O shell in Fig. 19 does not

differ from creation of other shells shown in Figs. 13, 15, 17.

Upon comparison of angles multiple p in Fig. 10 and mul-

tiple n in Fig. 19, it can be seen that the relationship between

these angles is as follows:

n ∼ |p| +
1

2
. (21)

In Fig. 19 we illustrated the allowed quantum transitions [6]

and [7]:

∆n = ±1 and ∆l = ±1 (22)

in the form of angles, but not distances as in Figs. 26 to 28

of the Appendix. However, considering ratios (16 to 20) for

small angles, sizes (22) can be illustrated (in principle) in the

form of distances as well, since:

∆n = ±1 ∼ ±γ ∼ ±k and ∆l = ±1 ∼ ±γ ∼ ±k . (23)
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Fig. 19: One of the eight groups of rays of the considered {p= (i+ 1/2)γ, q= jk/2} subsystem of periodic (wavy) trajectories. The shell

of O is completely filled according to Fig. 18. This group contains 15 links (K= 15) within one pass of N. Troughs of the “waves” are

located (“attached to”) only on the lower horizontal, while crests of the “waves” are located (“attached to”) on several higher horizontals.

The horizontals are marked in separate color. These horizontals have thickness of 0, 5k and are located at the increasing distance of 2kn

from each other from the bottom upwards. The designations of the quantum numbers are similar to these in Figs. 13 to 17. Dash-dotted

lines show axes from which sizes of angles and distances are counted. Quantum transitions ∆n=± 1 and ∆l=± 1 are shown in the form

of angles between dash-dotted lines. On the right, location of five subshells is indicated by curly braces. Figures put next to links (for

N= 0− 3) show the number of rays of N and the process of summation of rays spreading along the links.

Fig. 20 gives images of layers of a nonlinear arithmetic paral-

lelepiped and a numerical example of calculation of O shell

of the {p= (i+ 1/2)γ, q= jk/2} subsystem of periodic trajec-

tories (Fig. 19) for zero and the subsequent three passes of

rays, i.e. for N= 0− 4. Four rectangles shown in Fig. 20 are

the layers of the nonlinear arithmetic parallelepiped.

n and l values are given on the right in Fig. 20 with taking

into account the ratios (18 and 21).

The calculation was made according to the rule (3) of con-

secutive filling of an arithmetic rectangle with numbers tak-

ing into account the first and the second threshold (4 and 5;

8 and 9) and initial (6, 7, and 10) conditions, including the

algorithm (8 to 10).

Each of the four layers of the arithmetic parallelepiped

shown in Fig. 20 is similar to the layer represented in Fig. 11,

but there are differences as well. Therefore, it is necessary to

set the third threshold conditions. We took these conditions

for our example directly from Fig. 19. As this approach is

illustrative for us, the total number of rays is not that big. All

the wavy trajectories are “attached” to the lower horizontal.

The third threshold conditions can be set in other illustrative

ways, e.g., by means of special nomograms.

Thus, we made calculations in Excel according to expres-

sion (3). The appropriate formulas for the respective p and q

can be taken from Fig. 3 or Fig. 7, for example.

Fig. 21 shows results of numerical calculations of layers

of the nonlinear arithmetic parallelepiped for O shell (Fig. 20)

in Excel are given in the form of envelopes of distribution of

the ray number. In a, c, e, g, and i (the left column), you can

see the envelopes of distribution of the ray number at the an-
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Fig. 20: One of the eight groups of rays of the {p= (i+ 1/2)γ, q= jk/2} subsystem of periodic (wavy) trajectories. The O shell is completely

filled according to Figs. 18 and 19. Numerical calculation in Excel was made for the first four passes of rays (iterations). Arrows show

dependent cells. Fifteen highlighted cells within one pass of N (one layer of a parallelepiped) correspond to fifteen links (K= 15) within

one pass of N shown in Fig. 19. Figures in the highlighted cells correspond to the number of rays of N extending along the links of K.
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Fig. 21: This Figure shows the results of numerical calculations (Fig. 20) for N= 0, 32, 128, 129 (a to h) of the completely filled O shell for

the {p= (i+ 1/2)γ, q= jk/2} subsystem of periodic (wavy) trajectories. The envelopes of distribution of the ray number at the angle K(p)

are given in the left column. The envelopes of distribution of the ray number at the angle K(n) are given in the right column. The shared

envelopes for N= 128, 129 are given in (i and j). Graphs (e to j) are shown in a normalized form. Note, according to our calculations, in

this case, there is virtually no change in the form of the envelope approximately after the 70th pass.
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Fig. 22: This Figure shows results of numerical calculations of the completely filled 8th shell of R for the {p= (i+ 1/2)γ, q= jk/2}

subsystem of periodic (wavy) trajectories. In (a) and (b), you can see the envelopes of distribution of the ray number at the angle K(n)

for passes N= 131, 132. Results of joint calculations for passes N= 131 and N= 132 in the form of the envelope are given in (c) and

these in a form of histograms are given in (d) and (e). Envelopes (a to c) and histograms (d and e) are presented in the normalized form.

Note, according to our calculations, in this case, there is virtually no change in the form of envelopes approximately after the 100th pass

(N= 100). The histogram in (e) is similar to Fig. 28 of the Appendix.

gle K(p). In b, d, f, h, and j (the right column), you can see

the envelopes of distribution of the ray number at the angle

K(n) (taking into account expression (21). The results of nu-

merical calculation for zero pass of rays, i.e. for N= 0, are

given in a and b; for N= 3 — in c and d; for N= 128 — in e

and f; and for N= 129 — in g and h.

Shared graphs of K(p) and K(n) for N = 128 and N =

129 are given in i and j, namely:

K(p)N= 128, N= 129 =
1

2

[

K(p)N= 128 +K(p)
N= 129

]

(24)

and

K(n)N= 128, N= 129 =
1

2

[

K(n)N= 128 +K(n)N= 129

]

, (25)

whereK(p) and K(n) are in the normalized form.

In this work, like in previous works [2] to [5], we assume

that the number of rays of N extending along the number of

multiplicative links of K is proportionate to energy. For neg-

ative energy of an electron — E extending along these rays,
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we have the following:

|En| ∼ K (n) , (26)

|En| ∼ K(n)N, N+1. (27)

If we consider Fig. 21 (f and h) and especially Fig. 21(j),

we will see that the form of the envelope after a large num-

ber of passes resembles more of a hyperbole of the following

type:

En ∼ −1/n2. (28)

This ratio obtained from our geometric constructions corre-

sponds to experimental results in spectroscopy and theoretical

results of Bohr’s theory and quantum mechanics [6] and [7].

Fig. 22 shows the results (similar to those that were shown

in Fig. 21 f, h, and j) of numerical calculations of layers of

the nonlinear arithmetic parallelepiped for the eighth R shell

in the form of envelopes of distribution of the ray number.

In (a) and (b), you can see the envelopes of distribution of

the ray number at the angle K(n) for passes of rays N= 131,

132. Results of joint calculations for passes of N= 131 and

N= 132 in the form of the envelope are given in (c), and these

in a form of histograms are given in (d) and (e).

If we consider Fig. 22 (a and b) and especially Fig. 22 (c

to e), we will see that the form of the envelope after a large

number of passes resembles more of a hyperbole (28).

Fig. 22 (e) similar to Fig. 22 (c and d) should be compared

to Fig. 28 of the Appendix.

Our numerical calculations show that with an increase in

the number of passes of N, and an increase in the number of

subshells of a shell and the main number n, the form of an

envelope, Fig. 21 (j) and Fig. 22 (c), increasingly resembles a

hyperbole of (28) type. If the number of subshells exceeds

eight (e.g., you can construct eleven), eight of eleven sub-

shells can be subsumed to subshells, while the rest three can

be subsumed to a continuous spectrum [6] and [7]. Such cre-

ation of a continuous spectrum does not contradict Pauli Prin-

ciple.

Conclusions

In our illustrative geometric researches, using just one basic

summation formula of A= B+C (3), Excel, and various ini-

tial and threshold conditions set, we have revealed a number

of new regularities like we did in previous works [3] and [4].

It appeared that quantum systems can be geometrically in-

terpreted by means of our model of a half-integer rays system

in an illustrative way.

We have described Pauli Principle, shells and subshells of

atoms of the periodic table. At the same time, the number of

shells and subshells in our model does not exceed eight, and

all the subshells starting with the ninth can be considered a

continuous spectrum.

By means of our model, it is possible to interpret the prin-

ciple, azimuthal, magnetic, and spin quantum numbers in the

form of angles and distances.

By means of our model, we have given a separate geo-

metric interpretation of an atom of hydrogen and its power

levels. We have interpreted transitions of an electron from

one level to another in the form of angles, but not distances

as it is commonly interpreted [6] and [7]. In this work, we

have also shown that the hyperbolic dependence of energy of

a hydrogen atom of En ∼−1/n2 (28) known from experimen-

tal spectral studies, Bohr’s theory and quantum mechanics,

can be also obtained from our geometric constructions on the

basis of Pauli Principle.

Based on the research of a half-integer ray model, we have

illustrated the stepped structure of layers at laminar flow of

liquid [8]. The similar stepped structure was observed in re-

search of integer ray model made by us in [3], but the half-

integer model gives the more accurate image of “steps” in

comparison with our integer model.
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Appendix: reference tables

Fig. 23: Illustration of the principle of spatial quantization. Possible

values of projections of the orbital momentum to the direction of a

magnetic field for l= 3 and l= 2. (Fig. 231 from [6]).

Fig. 24: Division of possible conditions of an electron in an atom

into shells and subshells. (Table 36.1 from [7]).

Fig. 25: The process of building electron shells of the first 36 ele-

ments of the periodic system. (Table 37.1 from [7]).
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Appendix: reference tables (continue)

Fig. 26: Orbits of a hydrogen atom in Bohr’s theory. The radial ar-

rows located between circles show transitions of an electron from

one level to another. (Fig. 228 from [6]).

Fig. 27: Scheme of levels of energy of a hydrogen atom. The ver-

tical arrows located between horizontal lines show transitions of an

electron from one level to another. (Fig. 229 from [6]).

Fig. 28: Scheme of levels of energy of a hydrogen atom. The in-

clined lines located between horizontal lines show transitions of an

electron from one level to another according to the rule of selection

∆l=± 1. It means that only transitions upon which l changes by unit

are possible. (Fig. 28.1 from [7]).
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X(5) Symmetry to 152Sm
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The excited positive and negative parity states, potential energy surfaces, V(β, γ),
electromagnetic transition probabilities, B(E1), B(E2), electric monopole strength
X(E0/E2) and staggering effect, ∆I = 1, were calculated successfully using the inter-
acting boson approximation model IBA-1. The calculated values are compared to the
available experimental data and show reasonable agreement. The energy ratios and
contour plot of the potential energy surfaces show that 152Sm is an X(5) candidate.

1 Introduction

Phase transition is one of the very interesting topic in nuclear
structure physics. The even-even samarium series of isotopes
have encouraged many authors to study that area extensively
experimentally and theoretically.

Experimentally, authors studied levels energy with their
half-lives, transition probabilities, decay schemes, multipole
mixing ratios, internal conversion coefficients, angular corre-
lations and nuclear orientation of γ-rays[1-4].

Theoretically, different theoretical models have been ap-
plied to that chain of isotopes. One of the very interesting
models is the interacting boson approximation model IBA [5-
10]. Iachello [11,12] has made an important contribution by
introducing the new dynamical symmetries E(5) and X(5).

E(5) is the critical point symmetry of phase transition be-
tween U(5) and O(6) while X(5) is between U(5) and S U(3)
nuclei. The aim of the present work is to calculate:

1. The potential energy surfaces, V(β, γ);
2. The levels energy, electromagnetic transition rates

B(E1) and B(E2);
3. The staggering effect, and
4. The electric monopole strength X(E0/E2).

2 IBA-1 model

2.1 Levels energy

The IBA-1 Hamiltonian [13-16] employed on 152Sm in the
present calculation is:

H = EPS · nd + PAIR · (P · P)

+
1
2

ELL · (L · L) +
1
2

QQ · (Q · Q)

+5OCT · (T3 · T3) + 5HEX · (T4 · T4) ,

(1)

where

P · p =
1
2



{
(s†s†)(0)

0 −
√

5(d†d†)(0)
0

}
x

{
(ss)(0)

0 −
√

5(d̃d̃)(0)
0

}


(0)

0

, (2)

L · L = −10
√

3
[
(d†d̃)(1)x (d†d̃)(1)

](0)

0
, (3)

Q · Q =
√

5



{
(S †d̃ + d†s)(2) −

√
7

2
(d†d̃)(2)

}
x

{
(s†d̃ + +d̃s)(2) −

√
7

2
(d†d̃)(2)

}



(0)

0

, (4)

T3 · T3 = −
√

7
[
(d†d̃)(2)x (d†d̃)(2)

](0)

0
, (5)

T4 · T4 = 3
[
(d†d̃)(4)x (d†d̃)(4)

](0)

0
. (6)

In the previous formulas, nd is the number of bosons; P·P,
L·L, Q·Q, T3·T3 and T4·T4 represent pairing, angular momen-
tum, quadrupole, octupole and hexadecupole interactions re-
spectively between the bosons; EPS is the boson energy; and
PAIR, ELL, QQ, OCT , HEX are the strengths of the pairing,
angular momentum, quadrupole, octupole and hexadecupole
interactions respectively (see Table 1).

2.2 Transition rates

The electric quadrupole transition operator employed is:

T (E2) = E2S D · (s†d̃ + d†s)(2) +

+
1√
5

E2DD · (d†d̃)(2) . (7)

E2S D and E2DD are adjustable parameters.
The reduced electric quadrupole transition rates between

Ii → I f states are given by:

B(E2, Ii − I f ) =
[< I f ‖ T (E2) ‖ Ii >]2

2Ii + 1
. (8)

3 Results and discussion

In this section we review and discuss the results.
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nucleus EPS PAIR ELL QQ OCT HEX E2S D(eb) E2DD(eb)
152Sm 0.3840 0.000 0.0084 −0.0244 0.0000 0.0000 0.1450 −0.4289

Table 1: Parameters used in IBA-1 Hamiltonian (all in MeV).

3.1 The potential energy surfaces

The potential energy surfaces [17], V(β, γ), as a function of
the deformation parameters β and γ are calculated using:

ENΠNν
(β, γ) = <NπNν; βγ |Hπν|NπNν; βγ> =

= ζd(NνNπ)β2(1 + β2) + β2(1 + β2)−2×

×
{
kNνNπ[4 − (X̄πX̄ν)β cos 3γ]

}
+

+

{
[X̄πX̄νβ

2] + Nν(Nν − 1)
(

1
10

c0 +
1
7

c2

)
β2

}
,

(9)

where

X̄ρ =

(
2
7

)0.5
Xρ ρ = π or υ . (10)

The calculated potential energy surfaces, V(β, γ), are pre-
sented in Figures 1, 2, 3. 152Sm lies between 150Sm which is
a vibrational like nucleus, U(5), Fig. 1, while 154Sm is a rota-
tional like, S U(3), nucleus, Fig. 3. So, 150Sm can be an X(5)
candidate where levels energy, transition probability ratios as
well as the potential energy surfaces are supporting that as-
sumption (see Table 2).

3.2 Energy spectra and electric transition rates

The energy of the positive and negative parity states of 152Sm
isotope are calculated using computer code PHINT [19]. A
comparison between the experimental spectra [18] and our
calculations, using values of the model parameters given in
Table 1 for the ground state, β1, β2 and γ bands are illustrated
in Fig. 4. The agreement between the calculated levels energy
and their corresponding experimental values are fair, but they
are slightly higher especially for the higher excited states in
β1, β2 and γ bands. We believe this is due to the change of
the projection of the angular momentum which is due mainly
to band crossing. Fig. 5 shows the position of X(5) and E(5)
between the other types of nuclei.

Unfortunately there are no available measurements of el-
ectromagnetic transition rates B(E1) for 152Sm nucleus, Ta-
ble 3, while some of B(E2) are measured. The measured
B(E2, 2+

1 → 0+
1 ) is presented, in Table 4, for comparison with

the calculated values [20]. The parameters E2S D and E2DD
displayed in Table 1 are used in the computer code NPBEM
[19] for calculating the electromagnetic transition rates and
the calculated values are normalized to B(E2, 2+

1 → 0+
1 ). No

new parameters are introduced for calculating electromag-
netic transition rates B(E1) and B(E2) of intraband and in-
terband.

Fig. 1: Potential energy surfaces for 150Sm .

Fig. 2: Potential energy surfaces for 152Sm .

Fig. 3: Potential energy surfaces for 154Sm .
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nucleus E4+
1
/E2+

1
E6+

1
/E2+

1
E8+

1
/E2+

1
E0+

2
/E2+

1
E6+

1
/E0+

2
E0+

3
/E2+

1
BE2(4+

1 − 2+
1 )/BE2(2+

1 − 0+
1 )

152Sm 3.02 5.83 9.29 5.66 1.03 8.92 1.53

X(5) 3.02 5.83 9.29 5.65 1.53 6.03 1.58

Table 2: Energy and transition probability ratios.

Fig. 4: Experimental[18] and calculated levels energy

Fig. 5: Triangle showing the position of X(5) and E(5).

Fig. 6: Staggering effect on 152Sm.

I−i I+
f B(E1)Exp. B(E1)IBA-1

11 01 —- 0.0979
11 02 —- 0.0814
31 21 —- 0.2338
31 22 —- 0.0766
31 23 —- 0.0106
32 21 —- 0.0269
32 22 —- 0.0291
32 23 —- 0.0434
51 41 —- 0.3579
51 42 —- 0.0672
51 43 —- 0.0050
71 61 —- 0.4815
71 62 —- 0.0574
91 81 —- 0.6075
91 82 —- 0.0490
111 101 —- 0.7367
111 102 —- 0.0413

Table 3: Calculated B(E1) in 152Sm.

3.3 Staggering effect

The presence of (+ve) and (−ve) parity states has encouraged
us to study the staggering effect [21-23] for 152Sm isotope
using staggering function equations (11, 12) with the help of
the available experimental data [18].

S t (I) = 6∆E (I)− 4∆E (I − 1)− 4∆E (I + 1) +

+ ∆E (I + 2) + ∆E (I − 2) , (11)
with

∆E (I) = E (I + 1) − E (I) . (12)

The calculated staggering patterns are illustrated in Fig. 6
and show an interaction between the (+ve) and (−ve) parity
states for the ground state band of 152Sm.

3.4 Electric monopole transitions

The electric monopole transitions, E0, are normally occurring
between two states of the same spin and parity by transferring
energy and zero unit of angular momentum. The strength of
the electric monopole transition, Xi f ′ f (E0/E2), [24] can be
calculated using equations (13, 14) and presented in Table 5.

Xi f ′ f (E0/E2) =
B(E0, Ii − I f )
B(E2, Ii − I′ f )

, (13)
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I+
i I+

f B(E2)Exp*. B(E2)IBA-1

21 01 0.670(15) 0.6529
31 21 —- 0.0168
41 21 0.1.017(4) 1.0014
61 41 1.179(33) 1.1304
02 21 0.176(1) 0.3363
22 21 0.0258(26) 0.0610
22 41 0.091(11) 0.1057
42 21 0.0035(35) 0.0003
42 41 0.037(23) 0.0458
23 01 0.0163(11) 0.0141
23 21 0.0417(42) 0.0125
23 41 0.0416(32) 0.0296
43 21 0.0035(13) 0.0038
43 41 0.037(13) 0.0084
43 42 —- 0.1235
43 22 —- 0.0070
43 23 —- 0.3110
42 22 —- 0.6418
81 61 —- 1.1681
81 62 —- 0.0376
101 81 —- 1.1421

Table 4: Calculated B(E2) in 152Sm (* from Ref.[20])

I+
i I+

f X(E0/E2)Exp*. X(E0/E2)IBA-1

02 01 0.7(0.1) 0.85
03 02 —- 3.68
03 01 —- 0.72
04 03 —- 4.39
04 02 —- 0.64
04 01 —- 1.27
22 21 4.5(0.5) 3.52
23 21 —- 12.23
23 22 —- 11.19
43 41 —- 1.76
43 42 —- 1.40
44 41 —- 0.44
44 42 —- 3.15
42 41 6.6(2.10) 2.02
62 61 —- 1.46
82 81 —- 1.20
102 101 —- 1.07

Table 5: Xi f ′ f (E0/E2) ratios in 152Sm (* from Ref [20]).

where Ii =I f =0 , I′ f =2 and Ii= I f , 0 , I f = I′ f .

Xi f ′ f (E0/E2) = (2.54×109) A3/4 ×

×E5
γ(MeV)

ΩKL
α(E2)

Te(E0, Ii − I f )
Te(E2, Ii − I′ f )

. (14)

where:
A : mass number;
Ii : spin of the initial state where E0 and E2 transitions are
depopulating it;
I f : spin of the final state of E0 transition;
I′ f : spin of the final state of E2 transition;
Eγ : gamma ray energy;
ΩKL : electronic factor for K,L shells [25];
α(E2) : conversion coefficient of the E2 transition;
Te(E0, Ii − I f ) : absolute transition probability of the E0 tran-
sition between Ii and I f states, and
Te(E2, Ii − I′ f ) : absolute transition probability of the E2 tran-
sition between Ii and I′ f states.

3.5 Conclusions

The IBA-1 model has been applied successfully to the 152Sm
isotope and:

1. Levels energy are successfully reproduced;
2. Potential energy surfaces are calculated and show X(5)

characters to 152Sm;
3. Electromagnetic transition rates B(E1) and B(E2) are

calculated;
4. Staggering effect has been calculated and beat pattern

observed which show an interaction between the (−ve)
and (+ve) parity states, and

5. Strength of the electric monopole transitions Xi f ′ f (E0/
E2) are calculated.
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A Re-examination of Kirchhoff’s Law of Thermal Radiation

in Relation to Recent Criticisms

Robert J. Johnson
E-mail: bob.johnson1000@gmail.com

This paper investigates claims made by Pierre-Marie Robitaille in a series of papers

from 2003 to 2015 that Kirchhoff’s Law of thermal radiation does not apply to cavities

made of arbitrary materials, and that Planck’s theoretical derivation and apparent proof

of this law in these cases is faulty. Robitaille’s claims are compared to statements in the

original papers by Kirchhoff and Planck. The present paper concludes that Robitaille’s

claims are not sustainable and that Kirchhoff’s Law and Planck’s proof remain valid in

the situations for which they were intended to apply, including in cavities with walls of

any arbitrary materials in thermal equilibrium.

1 Introduction

In a series of papers from 2003 to 2015 [1–10], Pierre-Maire

Robitaille has challenged the validity of Kirchhoff’s Law of

thermal emission and Planck’s derivation of the mathemat-

ical form of the universal function of spectral radiance ab-

sorbed and emitted by a black body. As the consequences of a

failure of Kirchhoff’s Law would, if proven, include the loss

of universality of application of various fundamental physi-

cal constants including ’Planck’s constant, Boltzmann’s con-

stant, . . . “Planck length”, “Planck time”, “Planck mass”,

and “Planck temperature”’ [10, p. 121], Robitaille’s claims

deserve serious consideration.

In this paper, Robitaille’s claims will be compared to the

original works by Kirchhoff [11] and Planck [12] in order to

determine whether his criticisms of these earlier works are

valid. The present paper focuses initially on the arguments

contained in the series of papers by Robitaille from 2003 to

2014 [1–9]; the second part will address the recent paper au-

thored jointly by Robitaille and Crothers [10].

2 Robitaille’s earlier papers [1–9]

2.1 Kirchhoff’s law and Planck’s proof

Kirchhoff’s Law of thermal radiation dating from 1859-1860

may be stated as follows: “For an arbitrary body radiating

and emitting thermal radiation, the ratio E / A between the

emissive spectral radiance, E, and the dimensionless absorp-

tive ratio, A, is one and the same for all bodies at a given

temperature. That ratio E / A is equal to the emissive spectral

radiance I of a perfect black body, a universal function only

of wavelength and temperature”. This radiance, I, is often

referred to simply as black radiation.

The form of the universal function was not known until

Planck derived it theoretically in 1914 in what is now known

as Planck’s Law. Planck’s derivation is seen as proof of

Kirchhoff’s Law. However, Robitaille points out that the

above definition of Kirchhoff’s Law is not complete and fur-

thermore Robitaille maintains that the statement above should

be called Stewart’s Law as it was originally propounded by

Stewart in 1858 [13]: “All too frequently, the simple equiva-

lence between apparent spectral absorbance and emission is

viewed as a full statement of Kirchhoff’s law, . . . Kirchhoff’s

law must always be regarded as extending much beyond this

equivalence. It states that the radiation within all true cavi-

ties made from arbitrary walls is black. The law of equiva-

lence is Stewart’s” [5, p. 11].

According to Robitaille, in deriving his law of equiva-

lence Stewart had considered the case of a cavity made from

perfectly absorbing (i.e. black) material; he had shown that

the radiation in such a cavity at thermal equilibrium must also

be black, of an intensity appropriate to the equilibrium tem-

perature.

Whilst Robitaille agrees with Stewart, he profoundly dis-

agrees with Kirchhoff’s extension of this finding to cavities

made of arbitrary materials, and therefore with Planck’s proof

of Kirchhoff’s result. Planck had based his proof on a con-

sideration of perfectly reflecting cavities containing “an ar-

bitrarily small quantity of matter” [12, § 51], arriving at the

same result that Kirchhoff had obtained for perfectly absorb-

ing cavities. Planck had thereby demonstrated that all cavities

either containing some arbitrary matter, or equivalently hav-

ing walls made of some arbitrary matter, must also contain

black radiation when at thermal equilibrium.

2.2 Black radiation in a perfectly reflecting cavity

In following the reasoning of both sides of this disagreement,

it is important to distinguish between a perfectly reflecting

cavity containing a vacuum and one containing an opaque ob-

ject or a partially-absorbing medium.

In the first case, Planck writes that “Hence in a vacuum
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bounded by totally reflecting walls any state of radiation may

persist” [12, § 51]; Robitaille claims that this statement is a

violation of Kirchhoff’s Law [10, p. 130]. However, Planck’s

statement should perhaps be more properly be viewed as a sit-

uation to which Kirchhoff’s Law does not apply because there

is no matter present which either absorbs or emits radiation.

When considering the case of a perfectly reflecting cavity

containing an arbitrary object, again it is important to distin-

guish between two situations. The first is that the object ab-

sorbs and emits some fraction of all frequencies of radiation;

this situation may be further subdivided into the special case

where the object is itself a black body such as Planck’s par-

ticle of carbon which is a perfect absorber and emitter at all

frequencies; and the general case where the object only ab-

sorbs and emits some fraction above zero but less than unity

of every frequency. The second situation is that the object

only absorbs and emits over part of the spectrum i.e. there

are some frequencies for which the object itself is a perfect

reflector, neither absorbing nor emitting at those frequencies.

The question in both situations is, what is the nature of

the radiation in the perfectly reflecting cavity at thermal equi-

librium?

Starting with the special case of a black body, Robitaille,

Kirchhoff and Planck all agree that the radiation is necessarily

black. The disagreements start over the general case of an

object imperfectly absorbing at all frequencies.

Planck maintains that “. . . the radiation of a medium com-

pletely enclosed by absolutely reflecting walls is, when ther-

modynamic equilibrium has been established for all colors

for which the medium has a finite coefficient of absorption, al-

ways the stable radiation corresponding to the temperature of

the medium such as is represented by the emission of a black

body” [12, § 51], quoted in [1, p. 1263]. Note that the quoted

statement covers both the situation where the object absorbs

and emits over all frequencies, and the situation where some

frequencies are not absorbed or emitted at all.

In contrast, Robitaille claims that “In fact, if an object is

placed within [perfectly reflecting] walls, an equilibrium will

be established, but it will not correspond to that of a black-

body. Indeed, the radiation contained within such a device

will reflect purely the emission profile of the object it con-

tains” [1, p. 1264].

This is Robitaille’s central argument against the univer-

sality claimed by Kirchhoff and Planck i.e. that all cavities

containing an object must, at equilibrium, come to contain

black radiation at all frequencies absorbed and emitted by the

object.

2.3 The approach to equilibrium

In effect, the argument comes down to the quantity of the radi-

ation in the cavity at equilibrium. Both sides agree that there

is some radiation at all frequencies absorbed and emitted by

the object; the disagreement is over the intensity of that ra-

diation. Does it, as Kirchhoff and Planck maintain, equal the

intensity of black radiation which we can now quantify ac-

cording to Planck’s Law of 1914; or does the radiation density

in the cavity fall short of the black body level at some or all

frequencies because of the imperfect absorption and emission

of the object in the cavity, as Robitaille claims?

The role played by the reflected radiation, i.e. that frac-

tion of incident radiation which is not fully absorbed by the

object, is the key. Robitaille maintains that the radiation den-

sity in the cavity cannot be increased to black body levels by

what he terms “driving the reflection” because this would im-

ply a departure from thermal equilibrium which, Robitaille

argues, contravenes the initial assumption that thermal equi-

librium exists.

A simplified numerical example may be helpful here in

order to crystallise the arguments. Suppose an opaque ob-

ject in a perfectly reflecting cavity is in thermal equilibrium

at a certain temperature and has a coefficient of absorption

of 0.8 (i.e. 80%) of all incident radiation at all frequencies.

The remaining 20% of any incident radiation will be reflected.

Suppose further that the radiation density in the cavity is al-

ready at the level at which a black body at the same temper-

ature would be in thermal equilibrium with it, say100 units.

This will represent the incident radiation on the opaque ob-

ject which will then absorb 80 units and reflect 20 units. The

object will also re-emit the same 80 units into the cavity. The

total radiation coming off the surface of the object, consist-

ing of the emitted and reflected components, is 100, therefore

thermal equilibrium will be maintained with the radiation in

the cavity. What’s more, the radiation density is and remains

black according to the initial assumption. This represents the

situation described by Kirchhoff’s Law.

Consider now the situation where the same object at the

same initial temperature is introduced into the perfectly re-

flecting but otherwise empty cavity, i.e. there is no radiation

density in the cavity initially. In this case, the object will emit

80 units appropriate to its temperature; these will be reflected

off the walls and become “incident” radiation on the object.

The object will now absorb 80%, or 64 units, and reflect 16

units. But it is bound by its initial temperature to continue

emitting 80 units. There is therefore a shortfall between the

amount absorbed and the amount emitted and the object will

cool down. The energy lost by the object will be converted to

additional radiation density in the cavity which will increase

until equilibrium is achieved between the object and the radi-

ation density at some new, lower, temperature. At this point,

the radiation will again be black, but at the level appropriate

to the lower temperature, not the initial temperature of the

object.

Robitaille would object to this second example on the

grounds that thermal equilibrium has not been maintained.

This is correct. But Robitaille goes further and maintains

that this proves that the cavity cannot contain black radia-

tion because it is not allowable to “drive the reflection” until
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a new equilibrium is reached – the object must be maintained

at the original temperature throughout and therefore there is

no spare energy available to “drive the reflection” up to black

body densities.

In essence, Robitaille disallows the approach to thermal

equilibrium between the object and the radiation density in

the cavity by the mechanism outlined in the second numeri-

cal example above. As a result, Robitaille maintains that the

cavity cannot contain the black radiation required by Kirch-

hoff’s Law and therefore the law fails.

In support of his argument, Robitaille quotes Stewart [13]

as follows: “Let us suppose we have an enclosure whose

walls are of any shape, or any variety of substances (all at

a uniform temperature), the normal or statical condition will

be, that the heat radiated and reflected together, which leaves

any portion of the surface, shall be equal to the radiated heat

which would have left that same portion of the surface, if it

had been composed of lampblack . . . Let us suppose, for in-

stance, that the walls of this enclosure were of polished metal

then only a very small quantity of heat would be radiated;

but this heat would be bandied backwards and forwards be-

tween the surfaces, until the total amount of radiated and re-

flected heat together became equal to the radiation of lamp-

black” [13, § 32] quoted in [4, p. 45].

Robitaille comments: “These passages are quite similar

to Kirchhoff’s with the distinction that universality is never

invoked. Stewart realizes that the lampblack surface within

the enclosure is essential” [4, p. 45]. But Stewart is quite

specific – the walls may be of any variety of substance includ-

ing polished metal. This implies that Robitaille’s objection to

what he refers to as Kirchhoff’s extension of Stewart’s result

to cavities made of arbitrary material is unfounded; Stewart

had already made the theoretical leap.

How then did Stewart conclude as he did that “the sum of

the radiated and reflected heat together became equal to the

radiation of lampblack?”

2.4 Stewart’s treatment of reflection

In Stewart’s original paper there is a footnote to the section

quoted above which explains the calculation by which he ar-

rived at this conclusion. Stewart considers “two parallel

plates of polished metal of the same description radiating to

one another” [13, § 32-footnote] and investigates what hap-

pens to an initial amount r of radiation emitted by each op-

posing plate and falling perpendicularly on the other plate,

where a proportion is reflected back to the first plate. As an

ever-decreasing part of the original radiation r is “bandied

about” by repeated reflection between the plates, with a pro-

portion α(< 1)∗ of the incident radiation being reflected each

∗Stewart uses α to represent the proportion of reflected radiation; in

Planck’s usage, α represents the coefficient of absorption. To comply with

Planck’s usage, α should be replaced with ρ in the above equation. The

derivation of the equation is unaffected.

time, Stewart shows that the total amount falling on one of

the plates is

r
(

1 + α + α2 + α3 + α4 . . .
)

=
r

1 − α
,

which, Stewart explains, is the same formula as results from

the case where one of the plates is a black body in thermal

equilibrium with the other plate.

The question then arises, can this calculation also be ap-

plied to a situation where thermal equilibrium has not yet

been achieved? It turns out that it can. Note that, in mod-

ern parlance, Stewart’s calculation sums the repeated reflec-

tions of the two initial pulses (one from each plate) emitted

in the first interval of time δt over subsequent intervals of

time. It may be supposed without loss of generality that the

interval of time δt corresponds to the transmission time of ra-

diation between the plates. Then the same sum would result

from considering what proportion of a series of identical ini-

tial pulses each of emission duration δt fell on one plate in a

single (later) interval of time δt. This second case represents

continuous emission of radiation in thermal equilibrium. One

of the plates may then be replaced with a black body at the

same equilibrium temperature which emits exactly the same

amount of radiation that it absorbs, or alternatively with a

perfect reflector. Again, the same sum emerges from the cal-

culation, as Stewart explained.

What’s more, exactly the same result is obtained when

one plate is perfectly reflecting and there is no radiation in the

gap between the plates initially, i.e. there is no initial thermal

equilibrium to supply the series of constant pulses prior to the

arrival interval δt under consideration. In this case, all the ra-

diation is emitted by just one of the plates; therefore double

the time is required to achieve the same result that Stewart ob-

tained but, in effect, this result shows that once a steady state

has been achieved then the radiation arriving on the single

partially-absorbing plate is equivalent to that coming from a

black body. The only difference in this case is that during the

initial period the partially-absorbing plate is absorbing less

radiation than it is emitting; it is therefore cooling down and

part of its initial thermal energy is being used to increase the

radiation density between the plates, or, in Robitaille’s terms,

in “driving the reflection”. However, when thermal equilib-

rium is established then the calculation shows that the radia-

tion reflected back on to the emitting plate will be equivalent

to black radiation at the equilibrium temperature.

What this demonstrates is that Stewart’s method of cal-

culation of the reflection being “bandied about” can also be

applied to the approach to equilibrium provided that time is

allowed for a sufficient number of reflections to build up the

radiation density in the cavity to equilibrium levels. The total

time necessary to fill the space with black radiation is likely

to be short because of the extremely short transmission time

δt and the limited number of reflections necessary to achieve

near-perfect black body radiation in most normal situations.
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Only in cases where the plate is nearly a perfect reflector

might an appreciable time be required.

Thus “Stewart’s mechanism”, if we may so call it, should

be interpreted as indicated in the second numerical example

given above, with the walls themselves taking the part of the

opaque object. Stewart’s words “bandied about” can be ap-

plied to the reflected proportions of the continuing emission

which build up the radiation density in the cavity until thermal

equilibrium is achieved. Robitaille calls this “driving the re-

flection”; it may be clearer to think of the effect as “increasing

the radiation energy density in the cavity” at the expense of

the thermal energy of the walls. The important point, though,

is that it occurs on the approach to thermal equilibrium be-

tween the walls and the radiation density in the cavity, not at

the stage where equilibrium has already been achieved. How-

ever, once thermal equilibrium has been established then the

radiation in the cavity will be black.

If an object in a perfectly reflecting cavity absorbs and

emits some radiation at all frequencies it is clear that Stew-

art, Planck and Kirchhoff all held that the full black body

spectrum will by achieved by the mechanism outlined numer-

ically above and described by Stewart in the passage quoted.

In contrast, Robitaille maintains throughout his series of pa-

pers [1–9] that it is necessary to include a black body in the

cavity, whether by making part of the walls black or by inclu-

sion of a black object, in order to achieve black radiation in

accordance with Kirchhoff’s Law.

2.5 Planck’s particle of carbon

Robitaille claims that this is precisely why Planck insisted

on including a carbon particle in his analysis and why Kirch-

hoff included one in his experiments. Robitaille dismisses

Planck’s assertion that the particle merely acts as a catalyst

and insists that the carbon particle is responsible for produc-

ing the black radiation that Kirchhoff s Law requires. For ex-

ample, as recently as 2014 Robitaille stated “[Planck’s] cav-

ities all contained black radiation as a direct result [of plac-

ing a carbon particle in the cavity] . . . Since he was driving

reflection, all cavities contained the same radiation . . . ” [9,

p. 158].

However, it is important to distinguish between the nature

of the black radiation emitted and the quantity of it. Planck

is perfectly clear that the reason for assuming that the car-

bon particle is merely a catalyst is that it may be made as

small as one likes and, most importantly, its thermal energy

can be made so small as to not significantly change the total

energy in the cavity [12, § 52]. By definition, therefore, the

carbon particle cannot increase the radiation density in the

cavity to the level commensurate with the black body temper-

ature; in Robitaille’s terms, the particle cannot “drive the re-

flection”, and therefore this cannot be the reason why Planck

included it.

Furthermore, if the radiation density is being increased

at all frequencies by Stewart’s mechanism then there is no

need for the particle at all; all one needs to do is wait until

thermal equilibrium has been achieved. If the object is a very

poor absorber and emitter then this could take some time. In

adding a carbon particle to his experiments, Kirchhoff may

simply have wanted to accelerate the process.

The situation is somewhat different in the case when the

object is a perfect reflector at one or more frequencies. In

that case, as Planck stated, the spectrum is black for all fre-

quencies at which the object absorbs and emits but it is inde-

terminate at the frequencies for which the object is a perfect

reflector: “Hence in a vacuum bounded by totally reflecting

walls any state of radiation may persist. But as soon as an

arbitrarily small quantity of matter is introduced into the vac-

uum, a stationary state of radiation is gradually established.

In this the radiation of every color which is appreciably ab-

sorbed by the substance has the intensity Kν corresponding

to the temperature of the substance and determined by the

universal function . . . , the intensity of radiation of the other

colors remaining indeterminate” [12, § 51].

However, if the spectrum is indeterminate at any frequen-

cies then it is not possible to properly determine a temperature

which is defined in terms of the black body spectrum. See for

example “. . . the radiation in the new volume V ′ will not any

longer have the character of black radiation, and hence no

definite temperature . . . ” [12, § 70]. It is apparently in order

to avoid this situation that Planck included a particle of car-

bon which guaranteed that the intensity of radiation was de-

terminate at all frequencies. Why Planck considered that this

precaution was necessary is apparent from earlier sections of

his work.

Planck had previously discussed the relationship between

surface roughness and reflection, pointing out that whether a

surface reflected or not was a function of roughness in rela-

tion to the wavelength: “All the distinctions and definitions

mentioned in the two preceding paragraphs refer to rays of

one definite color only. It might very well happen that, e.g.,

a surface which is rough for a certain kind of rays must be

regarded as smooth for a different kind of rays. It is readily

seen that, in general, a surface shows decreasing degrees of

roughness for increasing wave lengths. Now, since smooth

non-reflecting surfaces do not exist (Sec. 10), it follows that

all approximately black surfaces which may be realized in

practice (lamp black, platinum black) show appreciable

reflection for rays of sufficiently long wave lengths”

[12, § 11].

Thus all objects except perfect black bodies will become

reflective at long enough wavelengths. It is apparently in or-

der to avoid this situation that Planck insisted on including

a particle of carbon which ensured that all frequencies were

present in the equilibrium spectrum. The total radiation en-

ergy would not be affected because the particle would not

have sufficient energy to do so, by definition. Thus the parti-

cle merely acted as a catalyst, as Planck insisted, to convert
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the spectrum emitted by the object into a black spectrum as

necessary for a proper temperature measurement to be made

in accordance with the definition.

Interestingly, despite numerous repetitions in Robitaille’s

papers [1–8] of his claim that Planck’s carbon particle was

essential in order to increase the radiation density to the re-

quired black body level, Robitaille [9] hints at a change of

stance, admitting that eventually, the cavity might become

filled with black radiation, provided that emission and re-

flection are Lambertian” [9, p. 160] but then he negates the

possibility by stating “However, for most materials, the in-

troduction of photons into the reflected pool will be ineffi-

cient, and the temperature of the system will simply increase.

That is the primary reason that arbitrary cavities can never

contain black radiation” [9, p. 160]. In 2015, Robitaille &

Crothers [10] return to this theme, stating “Stewart recog-

nized that, if one could “drive the radiation” in a cavity made

from arbitrary materials, by permitting the slow buildup of re-

flected radiation, the interior could eventually contain black

radiation. The argument was true in theory, but not demon-

strated in practice” [10, p. 122].

It appears that Robitaille and Crothers now accept Stew-

art’s mechanism for building up the radiation density by

“bandying about” the reflection, at least in principle. The

authors do not give any explanation for this remarkable volte-

face from Robitaille’s earlier works [1–8], but it now appears

that his previous objections to Planck’s particle of carbon are

unfounded: the particle cannot, by definition, increase the to-

tal radiation density in the cavity, and Robitaille & Crothers

apparently now accept that it is not necessary for the validity

of Kirchhoff’s Law that it does so.

2.6 Experimental evidence against Kirchhoff’s law

Robitaille bases many of his arguments against the validity

of Kirchhoff’s Law on the fact that black body cavities are

never constructed of arbitrary materials; on the contrary, Ro-

bitaille insists that manufacturers go to great lengths to con-

struct cavities from special materials to ensure that the radia-

tion is black. Equally, Robitaille points out that resonant mi-

crowave cavities cannot contain black radiation. Both these

counter-examples are held to demonstrate that Kirchhoff’s

Law must be incorrect.

However, there appear to be alternative explanations

available. In the former case, it may well be that users are

concerned about the efficiency of the approach to equilibrium

and therefore require black materials in order to speed up the

process. It is also likely that manufacturers are concerned,

as Planck himself apparently was, to ensure that there are no

frequencies at which the cavity is a perfect reflector, which

would preclude a proper measurement of temperature.

In the case of microwaves, the cavity is being electro-

magnetically forced to resonate at a particular frequency and

so the radiation cannot be black. Such cases of non-thermal

emission were specifically excluded by Plank in deriving his

proof: “A necessary consequence of this is that the coeffi-

cient of emission ǫ depends, apart from the frequency ν and

the nature of the medium, only on the temperature T . The last

statement excludes from our consideration a number of ra-

diation phenomena, such as fluorescence, phosphorescence,

electrical and chemical luminosity, . . . ” [12, § 7].

Thus it is not logical to conclude that Kirchhoff’s Law

must necessarily fail because of these supposed counter-

examples.

2.7 Challenges to Monte Carlo simulations

Robitaille states that Monte Carlo simulations apparently sup-

port Kirchhoff’s Law but then he objects on the grounds that:

“Monte Carlo simulations introduce black photons into cav-

ities. Hence, they become black. The process is identical

to placing a highly emitting carbon particle, or radiometer,

at the opening of a cavity. No proof is provided by compu-

tational methods that arbitrary cavities contain black radia-

tion. It can be stated that Monte Carlo simulations obtain

similar answers by modeling the repeated emission of pho-

tons directly from the cavity walls. In this case, computational

analysis relies on internal reflection to arrive at a cavity filled

with black radiation” [5, p. 6].

Apparently, Robitaille’s objection to the Monte Carlo

simulations is that they rely on Stewart’s mechanism for

building up the radiation by internal reflection. As Robitaille

and Crothers [10] now accept that this mechanism is valid

in principle, Robitaille’s previous objections to Monte Carlo

simulations supporting Kirchhoff’s Law should also drop

away.

2.8 Super-Planckian emission

Robitaille suggests that recent research into metamaterials

supports his arguments. For example, he states: “Recent re-

sults demonstrating super-Planckian thermal emission from

hyperbolic metamaterials (HMM) in the near field and emis-

sion enhancements in the far field are briefly examined. Such

findings highlight that cavity radiation is absolutely depen-

dent on the nature of the cavity and its walls. As previously

stated, the constants of Planck and Boltzmann can no longer

be viewed as universal” [9, p. 157].

In relation to the near field emissions, Robitaille refers to

three examples from the recent literature [14–16]. All three

papers refer to experiments involving bodies with separation

distances smaller than the thermal wavelength. However, ex-

perimental distances below the thermal wavelength were ex-

pressly excluded by Planck: “Throughout the following dis-

cussion it will be assumed that the linear dimensions of all

parts of space considered, as well as the radii of curvature

of all surfaces under consideration, are large compared with

the wave lengths of the rays considered” [12, § 2].

Planck was concerned about the effects of diffraction at
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small scales, in effect limiting his analysis to what are now

known as far field effects. Near-field effects are not covered

by Kirchhoff’s Law and so these three papers cited by Ro-

bitaille cannot be used as examples of contraventions of the

law. In fact, Guo et al point out that Kirchhoff’s Law still suf-

fices to calculate the thermal emission in the far-field and that

“the high-k waves which are thermally excited in the HMM

are trapped inside and will be evanescent in vacuum (not

reach the far field)” [14, p. 2]. After comparing the behav-

ior of HMM to other near-field phenomena of surface elec-

tromagnetic excitations and photonic crystal structures, Guo

et al “emphasize that in all the above cases including hyper-

bolic metamaterials, the presence of an interface is enough to

guarantee that the far-field emissivity is limited to unity” [14,

p. 5], i.e. that it is Planckian.

The evidence for super-Planckian far-field emissions is

not convincing either. Robitaille cites two papers by Yu et

al [17,18] and Nefedov & Melnikov [19] but he notes that Yu

et al’s claim of emissions in excess of the Stefan-Boltzmann

Law made in their arXiv preprint were withdrawn in the

published version, and that Nefedov & Melnikov’s experi-

ment was not in thermal equilibrium as required by Kirch-

hoff’s Law.

Robitaille’s conclusion that “the universality of black-

body radiation has simply been overstated” [9, p. 161] does

not appear to be warranted on the basis of these recent exper-

iments into metamaterials.

2.9 Robtaille’s thought experiment

In [7], Robitaille postulates a thought experiment which he

claims disproves Kirchhoff’s Law: “Through the use of two

cavities in temperature equilibrium with one another, a

thought experiment is presented . . . which soundly refutes

Kirchhoff’s law of thermal emission” [7, p. 38]. In this

thought experiment, the outer cavity is perfectly absorbing

and emitting; the second cavity, which is contained entirely

within the outer cavity, has perfectly reflecting walls and one

side which can be closed remotely. Starting with this in-

ner side open, the two cavities are brought to 4 K; the inner

side is then closed; the outer cavity is then heated to 300 K.

Robitaille continues: “The inner cavity walls are thus also

brought to 300 K. However, unlike the outer cavity which is

filled with blackbody radiation at 300 K, the inner cavity re-

mains filled with blackbody radiation at 4 K. Thereby, Kirch-

hoff’s law is proven to be false” [7, p. 39].

But by making the inner cavity walls perfectly reflecting

and closing the last side, Robitaille has created two entirely

separate cavities; by definition, the inner cavity walls cannot

emit radiation in either direction, whatever their temperature.

They therefore act as boundary walls to what has become a

“hollow” outer cavity. The outer cavity no longer contains

the inner cavity within itself in the thermal sense; Kirchhoff’s

Law therefore survives this thought experiment.

3 Robitaille and Crothers 2015 paper

Robitaille & Crothers’ paper [10] represents a significant de-

parture from the previous works by Robitaille alone [1–9].

Robitaille and Crothers’ volte-face on the viability of Stew-

art’s mechanism for filling any cavity with black radiation has

been discussed above. However, apart from a re-statement

of many of Robitaille’s previous objections which have also

been discussed above, the thrust of the 2015 jointly-authored

paper is to concentrate on criticising Planck’s proof of Kirch-

hoff’s Law, a matter only touched on briefly in previous

works. Section 4 is titled “Max Planck and Departure from

Objective Reality” and contains the authors’ principal ob-

jections to Planck’s proof. These will now be examined in

detail.

3.1 The meaning of Planck’s term “surface”

A number of Robitaille and Crothers’ objections hinge on

their interpretation of Planck’s term “surface” which Planck

himself had been careful to distinguish from Kirchhoff’s ear-

lier definition. Robitaille and Crothers quote from Planck:

“In defining a blackbody Kirchhoff also assumes that the ab-

sorption of incident rays takes place in a layer “infinitely

thin”. We do not include this in our definition” [10, p. 124]

quoting a footnote from [12, § 10]. In the original text, Planck

later explains why he is diverging from Kirchhoff on this

point: “Heat rays are destroyed by absorption. According

to the principle of the conservation of energy the energy of

heat radiation is thereby changed into other forms of energy

(heat, chemical energy). Thus only material particles can ab-

sorb heat rays, not elements of surfaces, although sometimes

for the sake of brevity the expression absorbing surfaces is

used” [12, § 12]. It appears that Planck could not accept

Kirchhoff’s “infinitely thin” absorbing layer because it could

not include any material particles.

In § 12, Planck is simply being consistent with his earlier

discussion of emission: “The creation of a heat ray is gener-

ally denoted by the word emission. According to the principle

of the conservation of energy, emission always takes place at

the expense of other forms of energy (heat, chemical or elec-

tric energy, etc.) and hence it follows that only material parti-

cles, not geometrical volumes or surfaces, can emit heat rays.

It is true that for the sake of brevity we frequently speak of the

surface of a body as radiating heat to the surroundings, but

this form of expression does not imply that the surface actu-

ally emits heat rays. Strictly speaking, the surface of a body

never emits rays, but rather it allows part of the rays coming

from the interior to pass through. The other part is reflected

inward and according as the fraction transmitted is larger or

smaller the surface seems to emit more or less intense radia-

tions” [12, § 2].

In both § 10 and § 12, it is clear that Planck’s use of the

term “surface” refers to a geometrical surface dividing two

media; the material effects of emission and absorption take
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place within the adjoining media. Planck’s reference to the

surface radiating or absorbing heat is clearly stated as being

no more than a convenient shorthand. In contrast, Robitaille

and Crothers interpret Planck’s term “surface” as being one

composed of material particles; it appears that this misinter-

pretation has led them to a number of erroneous conclusions.

For example, Robitaille and Crothers ask in relation to

an element dσ of the bounding surface: “First, what exactly

was the location of δσ? In reality it must rest in one of the

two media” [10, p. 127]. This is contrary to Planck’s own

description of the bounding surface σ as a “surface separat-

ing the two media” [12, § 35]. Thus Robitaille and Crothers’

first objection, that Planck is being inconsistent as to the lo-

cation of the bounding surface, is unfounded. Similarly, Ro-

bitaille and Crothers’ second objection to Planck’s treatment

of the bounding surface, namely “Planck neglected the fact

that real materials can possess finite and differing absorptiv-

ities” [10, p. 127] cannot be maintained.

Robitaille and Crothers raise a third objection to the anal-

ysis of an element dσ of the bounding surface, namely:

“Third, the simplest means of nullifying the proof leading to

Planck’s Eq. 42, is to use a perfect reflector as the second

medium. In that case, a refractive wave could never enter the

second medium and Planck’s proof fails” [10, p. 127]. How-

ever, if the surface separating the two media is itself a perfect

reflector then the reflectivity on the side of the first medium

is obviously equal to 1 but so is the reflectivity for any rays

coming from the other side. Thus, ρ = ρ′ in accordance with

Planck’s Eq. 40 leading to his Eq. 42 (see also below) and the

proof remains valid. In fact, Planck had already considered

this theoretical possibility as occurring for an instant: “Since

the equilibrium is nowise disturbed, if we think of the surface

separating the two media as being replaced for an instant by

an area entirely impermeable to heat radiation, the laws of

the last paragraphs must hold for each of the two substances

separately” [12, § 35]. Obviously the instantaneous nature

of this theoretical replacement is necessary to preserve the

single system being analysed; a more permanent separation

would create two separate systems to which the analysis did

not apply. Once again it seems that Robitaille and Crothers’

objection is unsustainable.

3.2 Absorption and transmission

Following their quote from Planck’s footnote departing from

Kirchhoff’s definition of an infinitely thin surface in which all

the absorption occurred (see above), Robitaille and Crothers

commented as follows: “With his words, Planck redefined

the meaning of a blackbody. The step, once again, was vital

to his derivation of Kirchhoff’s Law, as he relied on transmis-

sive arguments to arrive at its proof. Yet, blackbody radiation

relates to opaque objects and this is the first indication that

the proofs of Kirchhoff’s Law must not be centered on ar-

guments which rely upon transmission. Planck ignored that

real surface elements must possess absorption, in apparent

contrast with Kirchhoff and without any experimental justifi-

cation” [10, p. 124].

However, as is obvious from the passages quoted above,

Planck did recognize that absorption must be related to mate-

rial particles. Once again, the apparent problem arises from

the fact that Planck’s surface is a geometrical one, whilst Ro-

bitaille and Crothers are obviously referring to a surface layer

in which, they maintain, all absorption must take place be-

cause transmission is not permitted through a black body.

However, Planck also allows for the possibility that ab-

sorption in an opaque medium may take place at some un-

specified depth below the geometrical surface, i.e. not neces-

sarily in the particles immediately adjacent to the surface. Ro-

bitaille and Crothers quote from Planck’s description in § 10

of the dependence of the absorbing power on the thickness

of the black body material which ends “The more absorb-

ing a body is, the smaller the value of this minimum thick-

ness, while in the case of bodies with vanishingly small ab-

sorbing power only a layer of infinite thickness may be re-

garded as black”. Robitaille & Crothers object to this sen-

tence stating that “Now, [Planck] explicitly stated that bod-

ies which are poor absorbers can still be blackbodies. Yet,

we do not make blackbodies from materials which have low

absorptivities, because these objects have elevated reflectiv-

ities, not because they are not infinite” [10, p. 125] quoting

[12, § 10].

But these two objections, about absorptivity and reflectiv-

ity respectively, seem to be missing the points that Planck is

making: firstly, some absorption may take place by particles

situated below the surface. Secondly, Planck had previously

stated: “When a smooth surface completely reflects all inci-

dent rays, as is approximately the case with many metallic

surfaces, it is termed “reflecting”. When a rough surface re-

flects all incident rays completely and uniformly in all direc-

tions, it is called “white”. A rough surface having the prop-

erty of completely transmitting the incident radiation is de-

scribed as “black” [12, § 10]. Note that Planck defines black

materials as those with a rough surface which does not re-

flect; all rays falling on a black material pass through Planck’s

geometrical surface and are subsequently absorbed at some

depth in the interior of the black body. No rays are reflected

from the body even if the material is, in Planck’s terms, a

poor absorber. This immediately undermines Robitaille and

Crothers’ second objection.

Robitaille and Crothers also argue that Planck incorrectly

includes transmission within the material of the black body

when in fact, Robitaille and Crothers claim, absorption must

all occur at the surface: “Blackbodies are opaque objects

without transmission, by definition” [10, p. 125]. Once again,

they are apparently overlooking Planck’s definition of a ge-

ometrical surface and his careful consideration of where any

absorption of radiation passing through that geometrical sur-

face subsequently takes place.
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3.3 Reflection

Robitaille and Crothers’ § 4.2 deals further with Planck’s

treatment of reflection. The authors state: “In the first sec-

tion of his text, leading to his Eq. 27, . . . Planck chose to for-

mally neglect reflection, even though the total energy of the

system included those rays which are both emitted/absorbed

and those which would have been maintained by driving re-

flection. Such an approach was suboptimal” [10, p. 125].

However in the first section of his text, Planck is expressly

dealing with the situation within a medium, not with surface

effects. His § 25 begins: “We shall now, as in the previ-

ous chapter, assume that we are dealing with homogeneous

isotropic media whose condition depends only on the temper-

ature, and we shall inquire what laws the radiation phenom-

ena in them must obey in order to be consistent with the de-

duction from the second principle mentioned in the preceding

section . . . Let us consider, first, points of the medium that are

far away from the surface” [12, § 25]. A mathematical treat-

ment then follows, leading to Planck’s Eq. 27 towards the end

of § 26 which Planck follows with the words “i.e.: in the inte-

rior of a medium in a state of thermodynamic equilibrium the

specific intensity of radiation of a certain frequency is equal

to the coefficient of emission divided by the coefficient of ab-

sorption of the medium for this frequency” [12, § 26].

Note that Planck is still talking about the interior of the

medium where reflection is not applicable because there is no

surface; therefore Robitaille and Crothers’ objection cannot

be maintained.

3.4 Polarization and equality of reflection

Robitaille and Crothers then object to Planck’s analysis based

initially on a plane-polarised ray, stating: “In § 5 Planck ad-

mitted that homogeneous isotropic media emit only natural or

normal, i.e. unpolarized, radiation: “Since the medium was

assumed to be isotropic the emitted rays are unpolarized”.

This statement alone, was sufficient to counter all of the argu-

ments which Planck later utilized to arrive at Kirchhoff’s Law

[Eq. 42]. That is because the important sections of Planck’s

derivation, namely § 35–37 make use of plane-polarized light.

These steps were detached from experimental reality, rela-

tive to heat radiation [Planck, § 35] . . . ” [10, p. 127] quoting

[12, § 35].

Yet Robitaille and Crothers themselves admit that there

was method in Planck’s approach, quoting Planck again: “to

prepare for his use of polarized light in later sections, Planck

resolved, in § 17, the radiation into its two polarized compo-

nents” [10, p. 127], which in itself is unobjectionable. How-

ever, Robitaille and Crothers later state that “such rays could

never exist in the context of heat radiation” [10, p. 129] and

this appears to be their principal objection to this means of

analysis from which Planck derives the equality of the reflec-

tivity on either side of a geometrical surface separating two

different media in his Eq. 40.

But Planck made it clear that an analysis of the special

case of polarised light under consideration leads to a valid

general conclusion because, as he explained at the end of § 36,

the intensity of radiation Kν, the velocity of propagation q,

and the coefficient of reflection ρ at a surface dividing two

different media are related by the equation

Kν

K′ν

q2

q′2
=

1 − ρ′

1 − ρ
,

where the accented quantities refer to the second medium.

Planck continued in §37: “In the last equation the quantity on

the left side is independent of the angle of incidence and of the

particular kind of polarization; hence the same must be true

for the right side. Hence, whenever the value of this quantity

is known for a single angle of incidence and any definite kind

of polarization, this value will remain valid for all angles of

incidence and all kinds of polarization. Now in the special

case when the rays are polarized at right angles to the plane

of incidence and strike the bounding surface at the angle of

polarization, ρ = 0, and ρ′ = 0. The expression on the right

side of the last equation then becomes 1; hence it must always

be 1 and we have the general relations:

ρ = ρ′ (40)

and

q2Kν = q′2K′ν (41)”.

Regarding Planck’s Eq. 40, Robitaille and Crothers state

bluntly that “The result was stunning. Max Planck had de-

termined that the reflectivities of all arbitrary media were

equal” [10, p. 129]. On the contrary, what Planck had in

fact demonstrated is that the reflectivities on each side of a

geometrical surface bounding two different media are equal.

Clearly if a different pair of media are chosen, the value of the

reflectivity of the bounding surface may be different as well.

Planck had previously addressed this point in § 10: “Since, in

general, the properties of a surface depend on both of the

bodies which are in contact, this condition shows that the

property of blackness as applied to a body depends not only

on the nature of the body but also on that of the contiguous

medium. A body which is black relatively to air need not be

so relatively to glass, and vice versa” [12, § 10]. Robitaille &

Crothers’ interpretation that Planck had determined that the

reflectivities of all media were equal is unwarranted.

4 Summary and conclusions

Stewart [13] had shown that the radiation in a cavity made

from perfectly absorbing material at thermal equilibrium

must be black, of an intensity appropriate to the equilibrium

temperature. According to Robitaille, Kirchhoff [11]

extended this finding to cavities made of arbitrary materials.

In a series of papers [1–10], Robitaille has raised various ob-

jections to Kirchhoff’s extension of Stewart’s finding to arbi-

trary cavities, and to Planck’s proof of Kirchhoff’s Law [12].
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Robitaille concludes that the Law can only be applied validly

to cavities containing a black body.

The present paper has investigated Robitaille’s claims in

depth and compared them to the original papers by Stew-

art [13], Kirchhoff [11] and Planck [12]. In no instances have

Robitaille’s objections been found to be sustainable. Further-

more, is has been noted that one of Robitaille’s key and often-

repeated objections to the build-up of black radiation in an

arbitrary cavity according to a mechanism first proposed by

Stewart [13] has now been effectively withdrawn in the recent

paper by Robitaille and Crothers [10].

Robitaille is obviously correct to point out that black body

cavities are never made from reflective materials. However,

this fact appears to be more a question of practicality and the

need to ensure that the walls are not perfectly reflective at any

wavelength so that proper measurements of temperature can

be made. It does not seem to amount to a demonstration that

Kirchhoff’s Law necessarily fails, as Robitaille claims.

This investigation suggests that Kirchhoff’s Law and

Planck’s proof of it remain valid in the situations for which

they were intended to apply, including in cavities with walls

of any arbitrary materials in thermal equilibrium, unless some

other more sustainable objections can be raised in the future.
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Recently, Robert J. Johnson submitted an analysis of my work, relative to Kirchhoff’s

Law of Thermal Emission (R.J. Johnson, A Re-examination of Kirchhoff’s Law of

Thermal Radiation in Relation to Recent Criticisms. Prog. Phys., 2016, v. 12, no. 3,

175–183) in which he reached the conclusion that “Robitaille’s claims are not sus-

tainable and that Kirchhoff’s Law and Planck’s proof remain valid in the situations

for which they were intended to apply, including in cavities with walls of any arbi-

trary materials in thermal equilibrium”. However, even a cursory review of Johnson’s

letter reveals that his conclusions are unjustified. No section constitutes a proper chal-

lenge to my writings. Nonetheless, his letter is important, as it serves to underscore

the impossibility of defending Kirchhoff’s work. At the onset, Kirchhoff formulated

his law, based solely on thought experiments and, without any experimental evidence

(G. Kirchhoff, Über das Verhältnis zwischen dem Emissionsvermögen und dem Ab-

sorptionsvermogen. der Körper fur Wärme und Licht. Pogg. Ann. Phys. Chem., 1860,

v. 109, 275–301). Thought experiments, not laboratory confirmation, remain the ba-

sis on which Kirchhoff’s law is defended, despite the passage of 150 years. For his

part, Max Planck tried to derive Kirchhoff’s Law by redefining the nature of a black

body and relying on the use of polarized radiation, even though he realized that heat

radiation is never polarized (Planck M. The Theory of Heat radiation. P. Blakiston’s

Son & Co., Philadelphia, PA, 1914). In advancing his proof of Kirchhoff’s Law, Max

Planck concluded that the reflectivities of any two arbitrary materials must be equal,

though he argued otherwise (see P.-M. Robitaille and S. J. Crothers, “The Theory of

Heat Radiation” Revisited: A Commentary on the Validity of Kirchhoff’s Law of Ther-

mal Emission and Max Planck’s Claim of Universality. Prog. Phys., 2015, v. 11, no. 2,

120–132). Planck’s Eq. 40 (ρ=ρ’), as presented in his textbook, constituted a violation

of known optics. Planck reached this conclusion, because he did not properly treat ab-

sorption and invoked polarized light in his derivation. Planck also made use of a carbon

particle, which he characterized as a simple catalyst. This conjecture can be shown to

result in a violation of the First Law of Thermodynamics, if indeed, all cavities must

contain black radiation. In the end, while Johnson attempts to defend Planck’s proof,

his arguments fall short. Though the author has argued that Kirchhoff’s law lacks both

proper theoretical and experimental proof, Johnson avoids advancing any experimental

evidence from the literature for his position. It remains the case that experimental data

does not support Kirchhoff’s claims and no valid theoretical proof exists.

If a space be entirely surrounded by bodies of the

same temperature, so that no rays can penetrate

through them, every pencil in the interior of the

space must be so constituted, in regard to its quality

and intensity, as if it had proceeded from a perfectly

black body of the same temperature, and must there-

fore be independent of the form and nature of the

bodies, being determined by temperature alone. . .

In the interior therefore of an opake red-hot body

of any temperature, the illumination is always the

same, whatever be the constitution of the body in

other respects.

Gustav Robert Kirchhoff, 1860 [1]

1 Introduction

Nearly two centuries have elapsed since Gustav Kirchhoff

formulated his Law of Thermal Emission [1, 2]. In that time,

this law has achieved unquestioned acceptance by the physics

community, standing at the very foundation of thermodynam-

ics, condensed matter physics, and astronomy. It constitutes

the central pillar upon which Max Planck built his blackbody

expression and his claims for universal constants [3, 4]. Ed-

dington’s theory of the stars, based on ideal gases, depends

on Kirchhoff’s law, in order to account for stellar spectra [5].

This remains true for stellar physics to this day [6, 7]. Kirch-

hoff’s law constitutes a citadel for modern astronomy, defend-
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ing not only the ideas that stars are gaseous plasmas devoid of

lattice structure [5–7], that white dwarfs and neutron stars are

highly compressed objects, and that black holes exist [8], but

also the concept that a primordial atom once emitted a ther-

mal spectrum and gave rise to the universe [9, 10]. It is pre-

cisely because Planck, Eddington, Chandrashekhar, Penzias,

Wilson, Dicke, Peebles, Roll, and Wilkinson [1–10] relied

on Kirchhoff’s law, that they could ignore the central role of

the structural lattice in helping to define the emissivity of an

object.∗ While this could be understood in the days of Gus-

tav Kirchhoff, it can no longer be permitted, in light of the

tremendous advances made in condensed matter physics and

medicine.

Hence, over the course of the past 15 years, I have turned

my attention to Kirchhoff’s law [13–18, 20–24, 24–26]. My

interest in this law did not arise from any desire to study as-

tronomy, but rather, as a consequence of assembling the first

ultra high field magnetic resonance imaging (UHFMRI) scan-

ner, at The Ohio State University [27–29]. It was as a di-

rect result of questioning what it meant to say that nuclear

magnetic resonance (NMR) and magnetic resonance imaging

(MRI) were thermal processes. This had been highlighted

long ago by Felix Bloch (Nobel Prize, physics, 1952) who

was concerned with thermal processes linking the lattice and

the spins [30].†

The laws of emission [1–4, 31–33], are just beginning to

impact upon human medicine, as MRI scanners continue to

be pushed to ever higher frequencies [27–29]. Thus, there

is much more at stake here than the quest to a better un-

derstanding of the universe. Correcting Kirchhoff involves

moving to a proper description of all thermal processes, not

only in physics and astronomy, but in a field as seemingly re-

mote and unrelated as radiology. I have stated that Planck’s

blackbody law, although valid, remains unlinked to physical

reality [12, 17, 19, 23]. That is precisely because of Kirch-

hoff’s faulty law. The physics community has not provided

for thermal radiation what is evident for every other spectro-

scopic process, namely: 1) the setting under which emission

occurs, 2) the nature of the energy levels involved, and 3)

∗Nowhere is this more evident than when Eddington insisted that white

dwarfs had to possess a small radius, in order to account for their lack of

luminosity [5], given the well-established mass-luminosity relationship. Had

Eddington considered the critical role of structure in defining emissivity, he

would have seen that white dwarfs simply had a different hydrogen based

lattice than the hexagonal planar arrangement shared by the Sun and the stars

of the main-sequence (see [11, 12] and references therein). But deprived of

the use of a lattice, when he stated that all stars could be viewed as ideal

gases, Eddington had no other means of explaining the lower than expected

luminosity of the white dwarf. Therefore, he was forced to reduce their radius

to unreasonable values [5]. This was the first step towards hypothesizing

highly dense objects, including the densities now attributed to neutron stars

and black holes [8].
†Suffice it to say that the cavity experiments discussed later in this letter

have relevance to both blackbody radiation and MRI. Furthermore, any valid

analysis of noise power in MRI will be critically based on properly defining

and modeling the processes responsible for thermal emission.

the nature of the transition species. Only 4) an equation, and

5) the emission of light, have been described [12]. Yet, in ev-

ery other spectroscopic process, equations are related to phys-

ical reality. It takes a hydrogen atom, for instance, to obtain

a Lyman or Balmer line. In that case, the transition species is

the electron and the electronic orbitals constitute the energy

levels. But, for blackbody radiation, spectra are related only

to theory, unrestrained by a particular setting, such as the need

to have a structural lattice.

That is how astronomers can justify the creation of black-

body spectra from any object. For instance, they have summ-

ed a large number of spectroscopic processes to account for

the thermal emission from the Sun (see [34] for a complete

discussion of this problem). Yet, not one of these processes

can be related to the thermal emission from graphite. They

have hypothesized that the Big Bang has generated the mi-

crowave monopole which surrounds the Earth [10], but have

ignored the hydrogen bond from the water which makes up

the oceans bathing our planet [35]. Once again, unrestricted

by the need to describe thermal emission using a physical

mechanism, astronomy has been left to postulate without any

consideration of the central physical question in thermal

emission: what causes a thermal photon to be emitted by

graphite [19]?

Given all that is involved relative to the validity of Kirch-

hoff’s Law [1,2], Robert Johnson is to be commended, as the

first duty of a scientist is to defend established science against

possibly false charges. He has also been forthright in submit-

ting a letter to this journal [36], rather than rely on anonymous

attacks through social media.

At the same time, it would be an injustice to fail in one’s

own defense, when a proper understanding of science rests

on the outcome. Therefore, I have decided to provide a point

by point discussion of Johnson’s letter [36]. I do so with the

hope that some members of the physics community will begin

to take an interest in Kirchhoff’s claims and call into question

many of the ideas which have been hypothesized [5–10], as a

result of concepts which predate the discovery of the atom.

Before I begin analyzing the contents of Johnson’s let-

ter, it is vital to outline the setting under which Max Planck

viewed a blackbody, as described in The Theory of Heat Ra-

diation [4].

Throughout much of his text, Planck make use of per-

fectly reflecting walls to construct blackbody cavities. As

I mentioned previously, this was “an interesting approach”

[17, p. 4], precisely because such walls, in Planck’s context

[4], were “adiabatic, by definition” [17, p. 4]. They could

not participate in generating, or absorbing, a single photon.

Moreover, being adiabatic, they were also immune to all con-

ductive and convective processes.

Conversely, unlike Planck, in thinking about perfectly re-

flecting cavities, I have invoked silver as a nearly ideal reflec-

tor of radiation in the infrared [21, 26]. Furthermore, I have

insisted that cavities, constructed from such a perfect reflec-
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tor, possess a characteristic temperature. They are also sub-

ject to conductive and convective heat transfer in the estab-

lishment of thermal equilibrium. These are important modifi-

cations in properly addressing all thermal processes, includ-

ing radiation, convection, and conduction. For while Planck

properly insists that, at thermal equilibrium, there can be “no

conduction” [4, § 25], no-one maintains that cavities cannot

be subject to conductive processes in reaching thermal equi-

librium. Laboratory blackbodies are usually brought to tem-

perature using conduction. This will be important later in this

letter.

As for adiabatic walls, they could never be characterized

by any temperature, as I recently emphasized [23]. Conse-

quently, they could never be in thermal equilibrium with any-

thing. Planck stated “Hence in a vacuum bounded by per-

fectly reflecting walls any state of radiation may persist” [4,

§ 51]. That was very true. But it is also true that such cavi-

ties are devoid of any radiation, unless it had previously been

injected by some outside means [15–17, 20–23, 26].

In the initial sections of his text, Planck had insisted that

all of the energy could be characterized by the radiation field.

In truth, the energy must have, at some time, been associated

with his oscillators. Otherwise, no photons could have been

produced. Thus, Planck’s oscillators could be used to pro-

duce the field and set thermal equilibrium, but the energy of

the system had to be considered as being irreversibly trans-

fered to the radiation field: “Accordingly we have frequently

. . . pointed out that the simple propagation of free radiation

represents a reversible process. An irreversible element is

introduced by the addition of emitting and absorbing sub-

stances” [4, § 170].

This irreversibility and the need for the oscillators to have

access to energy, in order to produce the photons, was vital to

properly understanding this work. In addition, Planck admit-

ted, in the very last section of his text that “For the oscilla-

tors on which the consideration was based influence only the

intensities of rays which correspond to their natural vibra-

tion, but they are not capable of changing their frequencies,

so long as they exert or suffer no other action than emitting

or absorbing radiant energy” [4, § 190].

Planck insisted that he could place a minute particle of

carbon within his cavities. He viewed this object as a cata-

lyst [4, § 51–52], converting radiation within the cavity from

one form to another: “. . . This change could be brought about

by the introduction of a carbon particle, containing a negligi-

ble amount of heat as compared with the energy of radiation.

This change, of course, refers only to the spectral density of

the radiation uν, whereas the total density of the energy u re-

mains constant” [4, § 71]. Planck’s particle could only act

on the radiation which was already in the cavity. It could not

interact with the walls, introduce new energy into the cavity,

or set the temperature of the system.

But to interact with the radiation, the carbon particle must

have oscillators of its own, functioning over the proper fre-

quency range. Namely, it must be a perfect absorber, charac-

terized by a temperature and part of the thermal equilibrium

problem, not a catalyst uncharacterized by any temperature.

If devoid of a characteristic temperature, Planck’s carbon par-

ticle would not contain the proper vibrations to even interact

with the radiation in the cavity.

Neither the walls of Planck’s perfectly reflecting adiabatic

cavities, nor the catalytic carbon particle, could establish tem-

perature. Planck resorted to placing all of the heat within the

radiation field. None of the energy could be contained in the

walls. He then altered the nature of his walls and removed

the requirement that they could not interact with radiation:

“Since, according to this law, we are free to choose any sys-

tem whatever, we now select from all possible emitting and

absorbing systems the simplest conceivable one, namely, one

consisting of a large number N of similar stationary oscil-

lators. . . ” [4, § 135]. Note from this quotation, that Planck

could advance no mechanism by which oscillators can actu-

ally alter the radiation distribution within the cavity. Planck’s

oscillators cannot convert the radiation from one form to an-

other, as would be required in the action of Planck’s carbon

particle were simply catalytic. It remains the case that the ra-

diation contained within a cavity can only be characterized by

the nature of the oscillators which produced it. For all these

reasons, Planck’s carbon particle could never by considered

as a catalyst. Indeed, if this particle is attributed with only

a catalytic function, it can easily introduce a violation of the

First Law of Thermodynamics, as will be seen in § 9 below.

At this point, it is time to address Johnson’s submission

[36]. In order to maintain the same section numbers, I begin

immediately with a review of his introduction [36, § 1].

Johnson’s first errors occur in his opening statement,

wherein he asserts that I have “. . . challenged the validity of

Kirchhoff’s Law of thermal emission and Planck’s derivation

of the mathematical form of the universal function of spectral

radiance absorbed and emitted by a blackbody”. There are

actually two problems with this statement.

First, I never questioned the mathematical validity of

Planck’s expression, in the context of an actual blackbody.

Rather, I have stated repeatedly that Planck’s solution for

a blackbody was correct (see e.g. [12, 16, 17, 25]). For in-

stance, in [16, § 1] it is explicitly written that “The accuracy

of Planck’s equation has been established beyond question”.

Along with Crothers, I state that “Fortunately, in Planck’s

case, the validity of his equation is preserved, but only within

the strict confines of the laboratory blackbody” [25, § 4].∗

Secondly, the absorbance of a blackbody does not have a

functional form, contrary to Johnson assertion. When Kirch-

∗It is troubling that Johnson has misrepresented my position on this mat-

ter. My concern has been exclusively centered on Kirchhoff’s formulation of

a law extending to objects which are not solids and which are constructed

from materials lacking a good absorber [13–18, 20–24, 24–26]. I have never

questioned the validity of Planck’s equation in the case of proper black-

bodies.
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hoff formulated his law, he defined E/A = e and immediately

set A to 1 [1]. This enables the function “e” to have units.

Johnson failed to understand, at the onset, Kirchhoff’s for-

mulation. Such errors continue throughout his letter [36].

2 Robitaille’s earlier papers

2.1 Kirchhoff’s law and Planck’s proof

Johnson affirms in § 2, relative to Planck’s law, that . . .

“Planck’s derivation is seen as proof of Kirchhoff’s law”.

This is not correct.

There are actually several questions addressed in Planck’s

treatment. This was made clear in the manner in which Planck

wrote his book, The Theory of Heat Radiation [4].

Planck was primarily concerned with two issues. First,

did all arbitrary cavities contain black radiation? This is ad-

dressed in the first two chapters [4, § 1–52]. Secondly, Planck

was focused on providing the functional form for the black-

body spectrum, through much of the remainder of his presen-

tation. He did so by reviewing the laws of emission advanced

by Wein [31] and Stefan [32].∗ He then discussed Boltzmann

and entropy, and presented his oscillators and the blackbody

function. In fact, the derivation of the blackbody function

itself was completely independent of the derivation of Kirch-

hoff’s law, since when setting A = 1, one obtains E = e

from Kirchhoff. The functional form of the blackbody spec-

trum can be obtained, without insisting that all cavities con-

tain black radiation. Planck derived Kirchhoff’s Law in the

first section of his text solely because of his desire to confer,

upon the blackbody expression, universal implications.

If Kirchhoff’s Law would be found invalid, as it will even-

tually become, then Planck does not lose the functional form

he supplied describing the radiation of a blackbody, as I have

stated repeatedly [12,16,17,25]. However, it would imply that

arbitrary cavities are not necessarily blackbodies and that the

universality of the constants h and k does not hold [13–18,

20–24, 24–26].

In the next sentence, Johnson writes [36, § 2]: “However,

Robitaille points out that the above definition of Kirchhoff’s

Law is not complete and furthermore Robtaille maintains that

the statement above should be called Stewart’s Law as it was

originally propounded by Stewart in 1858”. How could John-

son make such claims?

He begins by omitting an important concept when cit-

ing my work. The complete citation is as follows: “All too

frequently, the simple equivalence between apparent spec-

tral absorbance and emission is viewed as a full statement

of Kirchhoff’s law, adding further confusion to the problem.

Kirchhoff’s law must always be regarded as extending much

beyond this equivalence. It states that the radiation within all

true cavities made from arbitrary walls is black. The law of

equivalence is Stewart’s” [17]. Importantly, in this citation,

I had also included references wherein Kirchhoff’s Law was

∗Planck never addressed the contributions of Balfour Stewart [33].

described, solely in the context of the Law of Equivalence,

and not within its full scope relative to claiming that a univer-

sal function existed. In any event, I never claimed that Kirch-

hoff’s Law was not complete. What I did state was that peo-

ple often give credit to Kirchhoff for the Law of Equivalence

which properly belongs to Stewart [33]. As for Kirchhoff’s

Law, it is incorrect. Johnson does not seem to understand

the fundamental differences between Stewart’s Law [33] and

Kirchhoff’s [1].

The Law of Equivalence [33] simply affirms that, at ther-

mal equilibrium, the radiation emitted by a surface will be

equal to the radiation it absorbs, emissivity, ǫ, is equal to

absorptivity, α. Stewart did not insist that the radiation in-

side all cavities was black. That is the reason Kirchhoff’s

Law [1] does not belong to Stewart [33]. This is an im-

portant point, as Johnson falsely asserts, throughout his let-

ter, that Stewart recognized that cavity radiation must always

be black. Rather, Stewart recognized that all cavities could

become black if they could be driven (see [16] for further

discussion). The problem, of course, is that cavities con-

structed from low emissivity materials cannot be properly

driven [15–17, 22–25].

Stewart, while aware of mathematical arguments which

might lead to such a conclusion, left the discussion to a foot-

note [33]. The reason was clear. Stewart recognized, as an

experimentalist, that he was not able to prove, in the labo-

ratory, that all arbitrary cavities were black. The experiments

described in his work dealt with emission from plates and sur-

faces [33], not cavities [36]. That was precisely why he did

not make a law for cavities, as The Laws of Physics must be

experimentally verified. In his rebuke of Kirchhoff, Stewart

had made the point plainly “nor did I omit to obtain the best

possible experimental verification of my views, or to present

this to men of science as the chief feature, grounding the-

ory upon experiment, rather than deducing the experiments

from the theory” (cited in [16]). Stewart never presented any

experiments on cavities and therefore, he never made a law

related to cavities, as Johnson claims I stated [36, § 2.1].

This was a central difference between the work of Stew-

art [32] and Kirchhoff [1,2]. Johnson could have easily come

to learn the distinction had he studied the historical review

by Seigel [37], which I had cited in [16]. Siegel highlighted

that . . . “Kirchhoff himself never performed any experiments

which could be construed as attempts at quantitative exper-

imental verification of his law” [37, p. 588]. Seigel went on

to state what Kirchhoff believed: “. . . Kirchhoff was rightly

pointing out that in this instance neither Stewart’s experi-

ments nor his own experiments sufficed to establish a quanti-

tative law, and the burden of the priority claims would there-

fore have to rest on theoretical proof” [37, p. 588]. Unfortu-

nately, Kirchhoff was not right. Stewart’s experiments were

more than adequate to establish the Law of Equivalence. It

was with the treatment of cavities that experimental confir-

mation was lacking.
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In any event, experiments take precedence over theory

when it comes to formulating a new law, as our theories are

not able to define nature. Furthermore, it is all too easy to

accidentally omit a critical element from a theoretical discus-

sion, as has happened when Kirchhoff and Planck unknow-

ingly ignored the energy trapped within the walls of cavities.

Such energy can remain forever unavailable to thermal emis-

sion. That is why Kirchhoff’s Law is invalid. It also provides

an illustration of the danger of inferring the laws of physics

from theory.

In the end, Seigel also highlighted the difference between

Stewart’s law and Kirchhoff’s claims: “Stewart’s conclusion

was correspondingly restricted and did not embrace the sort

of connection between the emissive and absorptive powers

of different materials, through a universal function of wave-

length and temperature, which Kirchhoff established” [37,

p. 84]. It is clear that Stewart’s Law did not encompass the

universal nature of cavity radiation which Kirchhoff sought,

as Johnson attempts to inappropriately claim throughout his

letter.

This section closes with Johnson quoting from § 51 of

Planck’s text [4] and insisting that by placing an “arbitrary

small quantity of matter” in a perfectly reflecting cavity that

“Planck had thereby demonstrated that all cavities either

containing some arbitrary matter, or equivalently having

walls made of some arbitrary matter, must also contain black

radiation when at thermal equilibrium”. Yet, in § 51, Planck

was placing a small particle of carbon in the cavity. The car-

bon particle was not an arbitrary material. It was acting as a

perfect absorber. I have discussed the inappropriate introduc-

tion of a perfect absorber into cavities in detail [16] and will

return to the question, once again, in § 2.2, § 2.5 and § 2.9 of

this letter.

2.2 Black radiation in a perfectly reflecting cavity

As Johnson opens the third section of his letter, he objects

to my conclusion that Planck’s statement, “Hence in a vac-

uum bounded by perfectly reflecting walls any state of radia-

tion may persist” [4, § 51], constituted an implicit admission

against the validity of Kirchhoff’s law.

In trying to defend Planck, Johnson writes: “However,

Planck’s statement should perhaps be more properly viewed

as a situation to which Kirchhoff’s law does not apply be-

cause there is no matter present which could absorb or emit

radiation.” However, Kirchhoff’s law was meant to be in-

dependent of the nature of the walls, by definition. Planck

associated the temperature of a cavity solely with the radia-

tion it contained, not with any material particles.∗. If Kirch-

hoffwas correct, what difference should it make if matter was

∗“Still, even Planck recognized that material objects were required to

establish a temperature, “But the temperature of a radiation cannot be de-

termined unless it be brought into thermodynamic equilibrium with a system

of molecules or oscillators, the temperature of which is known from other

sources” [4, § 144]

present to absorb or emit radiation? Nothing in Kirchhoff’s

law required this restriction and that was precisely the prob-

lem. Kirchhoff’s law was devoid of all link to actual materials

and nature. It was only concerned with hypothetical cavities.

In considering Kirchhoff’s law, we can simply examine

mathematical limits, as defined by the opaque perfectly ab-

sorbing wall (absortivity, αν = 1; reflectivity, ρν = 0) and the

opaque perfectly reflecting wall (αν = 0; ρν = 1). Yet, the sec-

ond condition led to an undefined expression for Kirchhoff’s

law, as Planck himself recognized [4, § 48]. It was not pos-

sible to claim that a law applies to all materials, when one of

its limits was undefined.

Johnson goes on to cite Planck’s §51 stating that the ra-

diation within all cavities will always be black, even though

Planck, in the very same section, has just introduced a particle

of carbon in this cavity, which Johnson recognizes as being a

“perfect absorber and emitter at all frequencies” [36]. But,

Planck viewed the carbon particle as a catalyst [4, § 51–51].

Johnson then writes, in speaking of Planck: “Note that the

quoted statement covers both the situation where the object

absorbs or emits over all frequencies, and the situation where

some frequencies are not absorbed or emitted at all” [36].

Planck reached his conclusion by inserting a particle of

carbon. This ensured absorption and emission over all fre-

quencies. Planck never demonstrated that this applied to situ-

ations where some frequencies are not absorbed or emitted at

all”, as Johnson claims [36]. Planck placed the carbon parti-

cle within the cavity and then claimed that it acted only as a

catalyst. He sidestepped the fact that this particle was acting

as a perfect absorber, and thereby controlled the entire prob-

lem. I have already demonstrated this fact mathematically

and the reality that arbitrary cavities, at thermal equilibrium,

do not contain black radiation [15]. Importantly, Johnson’s

letter fails to address these simple algebreic proofs that Kirch-

hoff’s Law cannot be valid [15].† Again, I will return to the

question of the carbon particle in § 2.5 and § 2.9.

2.3 The approach to equilibrium

Johnson opens this section by pondering what was correct:

Do all cavities contain black radiation, as Kirchhoff and

Planck held, or do arbitrary cavities contain arbitrary radia-

tion, as Robitaille asserted? The question was simple enough

to answer, as blackbodies are always constructed from good

absorbers.

In fact, had Johnson considered the history of blackbody

radiation, he would have recognized that arbitrary cavities are

never black. That is why those who provided Max Planck

with the data used to verify his equation worked so hard to

†Reference [15] contains a detailed analysis of some of the problems

with Kirchhoff’s logical arguments in advancing his proofs [1,2]. It also con-

tains simple proofs of Stewart’s Law of Equivalence [33] and clear demon-

strations that arbitrary cavities, under conditions of thermal equilibrium, are

not black. Johnson cannot ignore these proofs in his letter, if he wishes to

honestly evaluate my work.
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construct laboratory blackbodies which provided the proper

functional form [38–40]. These papers, especially the review

by Hoffmann [38], are important to study, because they high-

light the complexity of building proper blackbodies.

As a simple example, the problem can be viewed to in-

volve, to some extent, the behavior of graphite itself. In the

visible range, some forms of graphite, which are mined, can

be relatively good absorbers, but others, surprisingly, can be

rather poor, as can be ascertained by examining emissivity ta-

bles [41]. However, as one becomes increasingly interested in

the region towards the infrared, graphite begins to fail. This

has been known since the days of Langley at the end of the

19th century [16, § 2.1]. That is why materials like the metal

blacks are utilized, in this region of the electromagnetic spec-

trum, to assemble blackbodies [42–45].

We already have the experimental proof, but most people

simply ignore these laboratory realities. For, if Kirchhoff’s

Law was valid, there would be no need for metal blacks in

building laboratory blackbodies and German scientists would

not have used rolled platinum and specialized mixtures of

chromium, nickel, and cobalt oxide to blacken the interior

of their cavities [38, p. 57]. Such mixtures indicate that their

was nothing arbitrary in the construction of blackbodies.

This remains a specialized field and such objects are al-

ways sophisticated devices unavailable when Kirchhoff ex-

tended his law to all cavities.∗

In this same section of his letter, Johnson goes on to con-

sider what would happen to the radiation, within an arbitrary

cavity, if the initial radiation was less than the maximal hy-

pothesized by Kirchoff’s law. The arguments he advanced are

flawed at a fundamental level.

Johnson first places an opaque object within a perfectly

reflecting cavity and defines that the intensity of the radia-

tion is 100 within the cavity, the proper value for black ra-

diation. He assumes that the object has an emissivity of 0.8

and then states that when radiation within the cavity interacts

with the object, 80 units will be absorbed/re-emitted and 20

units being reflected. Johnson notes that the radiation within

such a cavity will remain black at 100 units. Of course, the

experiment is false, as an object with an emissivity of only

0.8 could never fill the cavity with black radiation in the first

place. The radiation would have to be increased by some

other means.† Deviations from this case are only permitted

if thermal equilibrium has been violated, after the cavity and

the object reached the temperature of interest, or if the per-

fectly reflecting cavity has otherwise been filled with black

radiation [16, 17]. It is important to recall, that even the sam-

pling of a cavity with a detector can act to fill it with black

radiation [17, § 2]. Therefore, this situation, as described by

Johnson, does not lend any support to Kirchhoff’s claims. It

∗The author has reviewed laboratory blackbodies in [16, 17].
†I have already demonstrated mathematically, that the radiation in the

cavity, in this case, will not be black but will have an intensity appropriate

for the emissivity of the object it contained [15].

was simply ill-conceived.

At this point, Johnson considers another scenario wherein

an object with an emissivity of 0.8 can only emit 80 units

initially into the cavity. These 80 units then strike the wall

and reflect back towards the object, where now he claims that

only 64 units are absorbed (since the emissivity is 0.8), and

16 units are reflected. Johnson notes that the object “. . . was

bound by its initial temperature to continue emitting 80 units”

[36, § 2.3]. He notes the shortfall in the total amount of ra-

diation absorbed by the object, and claims that this can only

be rectified by lowering the temperature of the object. The

errors in logic are striking.

First, Johnson fails to recognize that it is the total radia-

tion coming off the object at thermal equilibrium which mat-

ters. That total radiation is equal to 64 units emitted and 16

units reflected at the onset, because the cavity and the object

are already at thermal equilibrium, by definition. Johnson

does not get to say that the object must emit 80 units to begin

his experiment and then state that only 64 units are absorbed

and re-emitted. He can only sample the total radiation com-

ing off the object. He has no means of distinguishing what

was, in fact, reflected and what was emitted. He only knows

that 80 units came off the object. These are then reflected

off the wall and travel towards the object, where 64 units will

be absorbed, then re-emitted, while 16 units will be reflected.

Johnson also fails to understand that he cannot allow the tem-

perature of the object to drop, as this is a violation of the

zeroth law of thermodynamics. For my part, I would not dis-

allow thermal equilibrium between the cavity and the object,

as Johnson asserts.‡

Relative to the last experiment, it is interesting to note

what Johnson has actually done. At first, he ignored reflec-

tion, stating that all 80 units leaving the object were emitted.

Then, on absorption, he now considered reflection, permit-

ting only 64 units to be absorbed and the remaining 16 to be

reflected. So what has happened?

Note, for instance, that when Max Planck derived the first

section of his proof of Kirchhoff’s Law, he also ignored re-

flection (see [25, § 4.2] for a complete description of what

Planck did in this instance). Robitaille and Crothers note that

Planck was allowed to ignore reflection, as these terms, if

retained, could be canceled out [25, § 4.2]. They also demon-

strate that the full treatment retaining reflection can lead to

additional insight, relative to this problem [25, § 4.2].

If Planck was allowed to ignore reflection, perhaps this

can be most easily explained by examining the Law of Equiv-

alence itself [33]. I have already highlighted that Stewart’s

Law can be written either as, ǫν=αν, or as, ǫν+ρν=αν+ρν [15].

The use of either form will lead to the correct answer. How-

ever, what Johnson has done was to mix the two forms of

Stewart’s law, inventing a scenario wherein he sets ǫν=αν+ρν,

‡I also reject all of Johnson’s other deductions relative to how I would

view an experiment which I never even described in my papers.
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which is clearly false.

At this point, Johnson once again tries to state that I have

attributed Kirchhoff’s Law to Balfour Stewart. In this, he

misses the central point. Stewart’s footnote does not make

a law of physics. It presents a mathematical argument. Stew-

art recognized that, if he wanted a blackbody spectrum from

a cavity, he must have recourse to lampblack. Johnson be-

lieves that Stewart was specific on this point, arguing for a

“theoretical leap” [36]. But in so thinking, he failed to rec-

ognize what Stewart understood: cavities can only be demon-

strated to be black experimentally if they contain a good emit-

ter. Stewart did hypothesize extensively about bandied radi-

ation, well after 1858 (see [16] for a complete discussion),

and conjectured that cavities of low emissivity can be made

to appear black. The thesis was never proven and with good

reason [15–17, 22–25]. Stewart stated a theoretical idea, not

a law. The point has been made clearly by Seigel, as noted

in § 2.1 above [37]. That is why I wrote in my initial paper:

“Stewart realizes that the lampblack surface within the enclo-

sure is essential” [16]. Stewart might have had a theoretical

argument, but he did not have data. It is in this aspect that

he was much more prudent than Kirchhoffwhen he presented

his work [33]. That is why I have always acknowledged this

Scottish scientist. Stewart exercised wisdom in 1858 [33] and

Johnson shall not deprive him of this quality.

2.4 Stewart’s treatment of reflection

Johnson then goes on to describe, in detail, Stewart’s foot-

note, as if this was central to the idea which Stewart was

conveying. Stewart’s paper deals with the Law of Equiva-

lence, not with cavity radiation and universality [33]. The ar-

gument which Johnson resurrects is contained in a footnote,

precisely because this constitutes its proper position in the pa-

per. Stewart makes us aware that he understands a mathemat-

ical argument previously advanced by others (see references

contained in [17]), but he does not raise them to a central part

of this thesis, because these ideas were not supported by lab-

oratory data.

In considering the bandied radiation, Johnson makes the

claim that the energy required to fill the cavity can be ex-

tracted from the walls in order to drive “Stewart’s mecha-

nism”. In this aspect of his letter, Johnson is actually repeat-

ing ideas from my own papers on cavity radiation, wherein

such processes have already been discussed in detail [21, 23,

26].∗ Johnson adds nothing new to this discussion. He also

fails to understand, at a fundamental level, that it is by invok-

ing the energy retained in the wall that Kirchhoff’s Law can

be proven to be false [21, 23, 26]. Planck specifically used an

adiabatic wall which could not be characterized by any tem-

perature to build his perfect reflector, because he wanted all

of the energy to be contained in the field, not in the wall [4].

∗The author published [26] just a few days before Johnson submitted his

letter and he was made aware of this work.

Since adiabatic walls are detached from all thermal processes

(i.e. radiation, conduction, convection), they cannot be char-

acterized by any temperature [21].

Johnson analyzes Stewart’s experiments [33] with low

emissivity plates in obtaining the same functional form as

if the plate had been black. Yet, it is not solely a question

of time elapsed, as he attempts to argue. For instance, he

permits the temperature of one of his plates to drop in clear

violation of the Zeroth Law of thermodynamics “. . . the only

difference in this case is that during the initial period the par-

tially absorbing plates is absorbing less radiation than it is

emitting; it is therefore cooling down and part of its initial en-

ergy is being used to increase the radiation density between

the plates, or, in Robitaille’s terms, in “driving the reflec-

tion” [36, § 2.4]. I never permitted an object temperature to

drop, in order to drive the reflection.

My papers are concerned with a law defined under ther-

mal equilibrium, not the approach to equilibrium. I have high-

lighted that one cannot create photons from nothing. Scien-

tists are not permitted to violate the First Law. What has hap-

pened in this letter is that Johnson permits the temperature to

drop in order to avoid violating the First Law, as he knows

that he must get photons from somewhere. The arguments

are all invalid, as we are concerned with a system in thermal

equilibrium, not the approach to such equilibrium.

While Johnson understands that the idea of driving a cav-

ity is an important concept, he continues to ignore its conse-

quences. For instance, such processes rely on access to a per-

fect absorber, or some temporary violation of thermal equilib-

rium [15–17, 22–25]. They are also prone to introduce a vi-

olation of the First Law of Thermodynamics, as energy must

come from somewhere. Also, energy cannot be destroyed.

The question, relative to thought experiments, relates to

the origin of the energy entering a cavity once it is already

at thermal equilibrium. Provided that the cavity walls are

not adiabatic, but can be represented by graphite, or silver,

then there are three scenarios to consider: 1) energy enters

the system from outside, 2) energy travels reversibly out of

the walls of the cavity to irreversibly fill the cavity [21, 26],

and 3) energy is irreversbilty trapped within the cavity walls

[26]. None of these possibilities have ever been considered

by Planck. They arise from the assembly of work which is

currently being challenged by Johnson.

Let us assume that the energy came from outside the sys-

tem. Then, once it reaches the cavity walls, it must be al-

lowed to either 1) help fill the cavity with additional photons,

or 2) dissipate additional energy into the walls of the cavity.

However, the cavity walls are already at a given temperature.

To permit additional energy to enter would alter this value.

As such, no energy can be allowed to enter the walls, as this

would violate the zeroth law. Thus, if any energy enters the

cavity walls from outside the system, it must simultaneously

leave and produce additional photons in the interior. It is clear

that, with such a scenario, if the walls are fully reversible
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stores of energy, the cavity will become filled with radiation.

The problem becomes, when does one stop? Obviously, the

experimentalist can place any amount of photons in the cav-

ity, given enough available energy from the outside and no

concern for the First Law. If the radiation intensity within the

cavity becomes too great, then he can simply affirm that ther-

mal equilibrium has been violated and that the cavity must

now be represented by a higher temperature.

As for the idea that the energy contained within the walls

can be reversibly used to fill the cavity with even more ra-

diation, I have already considered the concept on two oc-

casions [21, 26]. In reality, such processes are likely to be

physically impossible. Thermodynamically, the concept is

allowed, but the problem is that, if the energy of the walls

if fully available to build up photons in the interior, the cavity

would already be black, unless specialized means are used to

isolate this energy [26]. In reality, every material which is not

a perfect emitter will actually possess at least some energy

which is irreversibly trapped in the walls [26] relative to the

ability to support emission. That is the central reason why

arbitrary cavities are never black. Planck had considered that

only the production of the radiation field was irreversible, as

I discussed in the introduction. This may have been every-

one’s major stumbling block relative to cavity radiation and

Kirchhoff’s Law. Prior to 1906, when Planck’s lectures where

written [4, p. xi], neither he, nor Kirchhoff, understood that

some of the energy which enters a metal will be trapped in its

conduction band electrons and forever remain unavailable to

emission [26].∗ We shall return to “Stewart’s mechanism” in

§ 2.5, § 2.6, § 2.7, and § 2.9.

2.5 Planck’s particle of carbon

Johnson then moves to try to defend Planck’s use of a carbon

particle as a simple catalyst. I have already spoken exten-

sively on this issue: Planck’s carbon particle is not a cata-

lyst [16]. It is a perfect absorber/emitter. Planck uses carbon,

not a particle of some other material, and with good reason.

He needs a perfect absorber. It is not simply a question of hav-

ing a particle which can absorb over all frequencies of inter-

est. In fact, a quick study of emissivity tables would demon-

strate that, if this were the case, Max Planck had many other

materials available to him [41]. He wanted a perfect absorber

and, when he placed it in his cavity, as I have said previously,

it was as if he had coated the entire inner surface with lamp-

black. Otherwise, what does it mean to be “perfect”? As I

stated in the introduction, the reality remains that Planck’s

carbon particle must have access to oscillators, otherwise it

cannot even interact with the radiation. It must also be char-

acterizable with a temperature, such its oscillators could op-

erate over the entire range of frequencies required to make the

cavity radiation black at the proper temperature. The need for

∗The energy can still be removed from the wall through conduction and

convection.

this temperature directly implies that the carbon particle is a

perfect absorber, not a catalyst.

Johnson claims that there is a difference between “the na-

ture of the black radiation and the quantity of it”. He then

argues that Planck has made the particle small such that its

energy content can be neglected relative to filling the cav-

ity with radiation. Planck’s position and Johnson’s defense

are not well-reasoned in that they neglect that the particle

and cavity must be allowed to come to thermal equilibrium.

This is one of the reasons why Planck’s use of an adiabatic

wall to build a perfectly reflecting cavity is not appropriate.

Planck also attempted to deprive the carbon particle of a spe-

cific temperature. In so doing, he was overlooking the very

detail which was critical to obtaining the proper answer (see

also § 2.9). Johnson states, “. . . By definition, therefore, the

carbon particle cannot increase the radiation density in the

cavity to the level commensurate with the black body temper-

ature; in Robitaille’s terms, the particle cannot “drive the re-

flection”, and therefore this cannot be the reason why Planck

included it. Furthermore, if the radiation density is being in-

creased at all frequencies by Stewart’s mechanism then there

is no need to include the carbon particle” [36, § 2.5]. Unfor-

tunately, for Johnson, he cannot resort to “Stewart’s mecha-

nism”, as he cannot practically demonstrate its validity in the

context of a perfect reflector. Even Stewart, cannot generate

photons from a perfectly reflecting cavity. The issue at hand

is the carbon particle, not “Stewart’s mechanism”.

As such, let us first consider the proper way of viewing

the carbon particle, then return to Planck and Johnson, both

in this section and in § 2.9.

The simplest means of addressing this problem is to con-

sider that whatever light is reflected off the walls of a perfectly

reflecting cavity can strike the particle. The particle must then

transform the radiation and return this light back towards the

cavity walls [15]. The temperature of both the cavity and the

particle must be the same and the temperature of the latter

must not be allowed to drop in order to respect the zeroth law.

Under this condition, full equilibrium between the walls and

the particle would exist and the cavity could easily be demon-

strated to contain black radiation [15]. Herein was the power

of equilibrium arguments.

In order to further clarify the point, let us consider what

was physically occurring within the cavity when Planck in-

troduced his small particle of carbon. Since the cavity was

perfectly reflecting, we can assume that it can be best approx-

imated by polished silver [23,26], not by an adiabatic wall [4].

The emissivity of the cavity must be 0 and it initially contains

no photons. Let us surround the cavity with an adiabatic wall,

in order to isolate the system.

As a result, the temperature of the cavity in this case is

defined by the energy content of its walls. When the carbon

particle is introduced into such a system, even if it contains no

appreciable heat on its own, it also comes into thermal contact

with the wall of the perfectly reflecting cavity. At this point,
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thermal energy will become available to the carbon particle

from the cavity wall. This particle can then transform the

energy which would be otherwise irreversibly trapped in the

walls [26] and fill the cavity with radiation. In this sense,

the carbon particle acted as a transformer, converting phonon

energy and/or energy associated with thermal conduction in

the silver wall into photons. It was not a catalyst, as it was

critical to conversion occurring. I have always modeled per-

fect reflectors using silver [23, 26], not using adiabatic walls.

Without the carbon particle, the cavity would remain devoid

of any radiation and all of its energy would remain forever

trapped in its walls.

As for the case considered by Max Planck, an adiabatic

wall contained no energy. Therefore, the carbon particle, de-

void of significant heat, could never fill such a cavity with

radiation at any temperature.

Contrary to Johnson’s claim, neither Crothers, nor I, have

said that the carbon particle cannot increase the radiation in-

side the cavity. Rather, my papers provided the only means

for the carbon particle to fill the perfectly reflecting cavity. As

for Johnson, he must adopt Planck’s position, and remain for-

ever unable to consider the content of the walls and the abil-

ity of the carbon particle to transform this energy into pho-

tons. He cannot be permitted to jump between my model and

Planck’s, as this is the entire basis of this discussion.

If Planck stated that “Hence in a vacuum bounded by to-

tally reflecting walls any state of radiation may persist” [4,

§51], it was because he recognized that Kirchhoff’s law be-

came undefined when A=0. But that does not mean that

the cavity in this case contains forms of radiation which are

blackbody, unless such radiation has been introduced by some

outside mechanism.∗ In fact, the perfectly reflecting cavity

must be considered empty, because it had no means of pro-

ducing a photon and all of its energy content was trapped in

its walls before the introduction of the carbon particle [26].

Johnson argues that, if the spectrum is indeterminate at any

frequency, it is impossible to set a temperature. Again this is

false, as the walls also contain energy [26]. Max Planck also

ignored this fact, a critical error in selecting adiabatic walls.

Johnson then cites Planck’s discussion [4, § 11] that all

objects show significant reflection at sufficiently long wave-

lengths, except perfect blackbodies. He concludes that this

is why Planck introduced the carbon particle [36]. But, if

that was true, then Planck’s introduction of the carbon parti-

cle would be acting to make all cavities perfect blackbodies,

a point which supports my position.

In closing this section, Johnson makes the charge that I

now accept, at least in principle, “Stewart’s mechanism” for

building up the reflection within a cavity. He alleges a re-

markable “volte-face” on my part when I published a paper

with Crothers [25].

Such a conclusion is not reasonable, as my papers have

∗I will return to this issue in § 2.9.

always considered Stewart’s hypothesis (see e.g. [15–17, 22–

24] all of which precede [25]). Furthermore, Crothers and I

have restated, in no uncertain terms, that “Stewart’s mecha-

nism” does not work [25, § 2, 3].

Over the years, I have dealt consistently with the problem

of thermal emission and have always held the position that

arbitrary cavities are not black. I have examined numerous

questions including 1) perfectly absorbing cavities, 2) per-

fectly reflecting cavities, 3) perfectly reflecting cavities con-

taining a carbon particle, 4) perfectly reflecting cavities con-

taining an arbitrary object, 5) perfectly reflecting cavities con-

taining two arbitrary objects, 6) perfectly absorbing cavities

containing a perfectly reflecting cavity, 7) two cavity prob-

lems (both for the reversible and the irreversible cases), 8)

actual laboratory blackbodies, 9) Kirchhoff’s two faulty ini-

tial proofs, 10) Planck’s faulty proof of Kirchhoff’s Law, 11)

proper equations governing cavity radiation and 12) effects of

driving the reflection term. Nowhere have I ever stated that

“Stewart’s mechanism”, as Johnson refers to bandied reflec-

tion, can ever lead to black radiation in all cavities, despite

repeatedly addressing the question [15–17, 22–25]. What I

have stated is that, if one tries to drive a cavity made from

materials with a low emissivity, in order to build up black ra-

diation in its interior, it is likely that the cavity will simply

prefer to move to a higher temperature [23]. That is because

any energy introduced into the cavity must also be available

to the walls. If those walls cannot easily emit a photon, they

will simply increase their temperature. Moreover, I have em-

phasized that the use of bandied radiation, even if possible,

could only lead to filling a cavity with black radiation, in

the ideal that the walls were capable of Lambertian reflec-

tion [23]. No specular reflection must have taken place and all

reflection must have been diffuse. Otherwise, one risks gen-

erating standing waves, as I have previously highlighted [16]

(see also § 2.6). Johnson ignores all these points when he ad-

dresses bandied radiation.

2.6 Experimental evidence against Kirchhoff’s law

This is perhaps the most unusual section of Johnson’s let-

ter [36], as he tries to explain why manufacturers do not build

blackbodies from arbitrary materials. Rather than concede

that this constitutes direct experimental evidence against

Kirchhoff’s law, as I have stated, Johnson reaches for the in-

defensible. He argues: “It is also likely that manufacturers

are concerned, as Planck himself apparently was, to ensure

that there are no frequencies at which the cavity is a perfect

reflector, which would preclude a proper measurement of tem-

perature”.

Kirchhoff’s Law demands that all cavities be black, in-

dependent of the nature of the walls. Manufacturers are not

concerned with materials acting as perfect reflectors, since

most solids emit continuous spectra over a wide range of fre-

quencies. The problem is that many solids are poor emitters,
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not that they are perfect reflectors.

Furthermore, the temperature of a cavity in the laboratory

is determined by temperature sensors in its walls. Cavities

are heated, conductively or otherwise, the temperature on the

sensors in its walls are noted, and thermal equilibrium is de-

fined by those sensors maintaining a stable temperature read-

ing. Establishing the temperature of a laboratory cavity has

nothing to do with measuring its radiation field and it would

be irrelevant, if some frequencies were absent from the spec-

trum. This cannot affect the reading of a sensor in the wall of

the cavity.∗ Even Planck recognized that a proper measure of

temperature depends on the use of sensors or thermometers:

“But the temperature of a radiation cannot be determined un-

less it be brought into thermodynamic equilibrium with a sys-

tem of molecules or oscillators, the temperature of which is

known from other sources” [4, § 144].

Johnson then moves to question any work in microwave

cavities. He launches this new challenge precisely because

these cavities are known not to contain black radiation, as

I have demonstrated experimentally using UHF frequencies

near the microwave region [17]. In attempting to dismiss

microwave cavities, Johnson cites Planck: “The last state-

ment excludes from our consideration a number of radiation

phenomena such as fluorescence, phosphorescence, electri-

cal and chemical luminosity” [4, § 7]. Johnson’s use of such

a quotation relative to microwave cavities demonstrates that

he does not fully understand the experimental problem.

Kirchhoff’s law allows for the presence of any object

within the cavity. Therefore, the resonant elements used in

my own work [17] are allowed, as they do not emit a single

photon. They build up standing waves. Still, it remains clear

that fluorescence, phosphorescence, electrical and chemical

luminosity cannot be considered.†

The microwave cavity is not producing radiation by some

non-thermal means, like fluorescence, phosphorescence,

∗However, for real blackbodies, when the temperature sensors indicate

a certain temperature, one can be assured that the radiation sampled will be

black.
†Surprisingly however, in Kirchhoff’s initial paper [2] he actually insists

that even fluorescent material could be included within the cavity and it will

still be black: “It may be observed, by the way, that the proposition demon-

strated in this section does not cease to hold good even if some of the bodies

are fluorescent. A fluorescent body may be defined as one whose radiating

power depends on the rays incident on it for the time being. The equation

E/A = e cannot generally be true for such a body; but it is true if the body

enclosed in a black covering of the same temperature as itself, since the same

considerations that led to the equation in question on the hypothesis that the

body C was not fluorescent, avail in this case even if the body C be supposed

to be fluorescent.” [2]. These arguments are removed however, without ex-

planation, when Kirchhoff’s work is revised several years later [46]. Still,

this indicates a flaw in Kirchhoff’s initial derivation of his law [2], as he had

thought that his derivation applied to fluorescent bodies, which was not cor-

rect. There are indeed flaws in Kirchhoff’s initial derivation, as the author has

independently ascertained [15]. Moreover, Schirrmacher [47] has reviewed

the proofs of Kirchhoff’s Law before and after Planck [48]. Even in 1912,

Hilbert complained that a valid proof a Kirchhoff’s law still did not exist [47],

even though the Planck’s lectures on the subject were given in 1906 [4, p. xi].

Such a proof is lacking, to this day.

electrical or chemical luminosity. Rather, it is being sub-

jected to sampling by a network analyzer which is sending

microwave energy into the enclosure and noting what energy

returns. If the cavity is able to reflect some of this radiation

internally, then it can build up standing waves. Alternatively,

if the cavity is truly black, then it should be able to absorb

all the energy coming from the network analyzer with no re-

turned energy. In any case, such return-loss measurements

on cavities are routinely done throughout thermometry (see

references cited in [48]).

In the infrared, cavities can be subjected to radiation from

a standard blackbody, for instance, in order to verify their ab-

sorptivity by noting the returned energy.‡ In the microwave,

when testing blackbodies for satellites, the source is often a

network analyzer (see references cited in [48, 49]). This is a

common measurement in testing the quality of blackbodies at

these frequencies.

Johnson must recognize that microwave cavities are uti-

lized on satellites such as COBE [50] and PLANCK [49].

These cavities are tested using return-loss methods, exactly

as I have done in [17], when testing an MRI cavity. Many

of these cavities are not black, including some which have

been claimed as such and launched aboard satellites [49]. Mi-

crowave cavities often contain signs of standing waves, as

radiation from the network analyzer enters the cavity. The

presence of such standing waves provides solid evidence that

not all cavities in the microwave contain blackbody radiation.

This is an important point to recognize, as Johnson would

like to build up arbitrary radiation in cavities with reflec-

tion, using “Stewart’s mechanism”. Standing waves demon-

strate that the presence of specular reflection within a cav-

ity is always counter to the interior containing black radia-

tion [48,49]. This highlights yet another problem with “Stew-

art’s mechanism”. It is critically dependent on any reflection

within a cavity being diffuse and not specular. Otherwise, the

radiation will not be Lambertian, as required of a blackbody.

Contrary to Johnson’s position, experiments with cavities

in MRI provide strong evidence that Kirchhoff’s law does not

hold (see [17] and references therein). This is especially true

given that Kirchhoff’s Law has been generalized to treat ge-

ometries where diffraction becomes important (see [17] and

references therein). Furthermore, microwave studies demon-

strate that small cavities, containing only a few centimeters

of Ecosorb and conductively anchored to a radiation shield,

like the 4K reference loads on the Planck satellite, can never

be black [48, 49]. This presents a serious problem for those

interested in the LFI data produced by this satellite [49].

Once again, the fact remains that Kirchhoff’s Law does

not have any valid experimental support. Arbitrary cavities

are not black and this reality has consequences which must

not be ignored.

‡Note that if Kirchoff’s law was correct, there would be no need to have

standard blackbodies in order to calibrate other cavities, as all cavities would

be black.
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2.7 Challenges to Monte Carlo simulations

Johnson then moves to briefly discuss Monte Carlo simula-

tions in a single paragraph stating: “Apparently, Robitaille’s

objection to the Monte Carlo simulations is that they rely on

Stewart’s mechanism for building up the radiation by inter-

nal reflection. As Robitaille and Crothers now accept that

this mechanism is valid in principle, Robtaille’s previous ob-

jections to Monte Carlo simulations supporting Kirchhoff’s

Law should also drop away”.

Clearly, I have never accepted “Stewart’s mechanism” for

building up radiation within a cavity. First, such a mecha-

nism, under certain circumstances, constitutes a violation of

the First Law of Thermodynamics. Secondly, it is not possi-

ble to place energy into the interior of a cavity without also

potentially placing energy into the walls. This is never con-

sidered by Monte Carlo simulations, and that is why they re-

main invalid. Such simulations agree with Kirchhoff Law,

precisely because they ignore the dynamics going on in the

wall and a priori forbid the temperature of the wall to rise in

lieu of emitting a new photon.

2.8 Super-Planckian emission

Johnson’s letter then examines my treatment of metamate-

rials [23]. He argues that Planck specifically excluded the

near field by quoting: “Throughout the following discussion

it will be assumed that the linear dimensions of all parts of

space considered, as well as the radii of curvature of all sur-

faces under consideration, are large compared with the wave

lengths of the rays considered” [4, § 2]. On the surface, this is

a good point. Planck is clearly allowed to restrict his deriva-

tion. This does not mean, however, that the near field region

cannot be considered today, in order to shed additional light

on thermal emission.

In this regard, Kirchhoff’s law has been generalized to in-

clude the limit initially excluded by both Kirchhoff and

Planck [17, § 3]. The near field behavior can be considered

for additional insight and the point raised by Johnson is weak

at best. Science does get to move forward.

Johnson then goes on to claim that the evidence in the far

field, is not convincing. He notes from Guo et al. [51] that:

“the presence of an interface is enough to guarantee that the

far-field emissivity is limited to 1” [36]. Guo’s statement is

noteworthy. However, Johnson neglects to cite the follow-

ing from Guo’s paper: “The usual upper limit to the black-

body emission is not fundamental and arises since energy is

carried to the far-field only by propagating waves emanating

from the heated source. If one allows for energy transport in

the near-field using evanescent waves, this limit can be over-

come” [51].

It is clear that the study of metamaterials is an area of

science which is just beginning to be explored. It is also

not established that far-field behavior will always adhere to

the limits set forth by Planck’s law. This is why I previ-

ously highlighted [23] the work by Yu et al. [52] and [53].

Yu et al. removed the claim made in the arXiv version of

their paper [53] when they published their Nature Communi-

cations paper [52]. Here is the exact quotation from my paper

on this issue: “In that case, the spatial extent of the black-

body is enhanced by adding a transparent material above

the site of thermal emission. A four-fold enhancement of

the far-field emission could thus be produced.” In their Na-

ture Communications article, the authors argue that this does

not constitute a violation of the Stefan-Boltzmann law, be-

cause the effective “emitting surface” is now governed by the

transmitter, which is essentially transparent. However, this

was not the position advanced when the results were first

announced and the authors wrote: “The aim of our paper

here is to show that a macroscopic blackbody in fact can

emit more thermal radiation to far field vacuum than

P = σT 4” [53].

In Yu’s work, the emission is arising from a small black-

ened disk of material [52, 53]. The photons emitted from this

surface greatly exceed anything predicted by Planck. At issue

is the assignment of the emitting surface, from a theoretical

perspective. Is it the blackened disk, which is the only pos-

sible source of photons, or the transparent shield? The key

difficulty for blackbody radiation science is that blackbodies

were always defined as opaque objects. Hence, it is difficult

to conceive why the blackened disk should not be considered

as the proper emitting surface in this problem. But assigning

the emission to a transparent surface is now the only way of

salvaging Kirchhoff’s law. Once again, note how Kirchhoff

had worded his law in the quotation at the very beginning of

this reply. He was referring to opaque objects.

Then, there is the problem that, during Yu et al’s experi-

ment, the blackened disk is always heated [52, 53]. This im-

plies that thermal equilibrium does not exist, since conduc-

tion of energy, which is heating the disk, must be considered.

However, if this is to be used as an argument against these

findings, then what of the problem of continuously heating

ordinary cavities, in order to maintain their temperature equi-

librium? As I previously stated: “Obviously, modern experi-

ments fall short of the requirements for thermal equilibrium,

as the cavities involved are heated to the temperature of op-

eration. But given that all laboratory blackbodies suffer the

same shortcomings, the production of super-Planckian emis-

sion in the near and far fields cannot be easily dismissed.

After all, in order for Planck to obtain a blackbody spectrum

in every arbitrary cavity, he had to drive the reflection term,

either by injecting a carbon particle or by permitting addi-

tional heat to enter the system, beyond that required at the

onset of thermal equilibrium” [23]. Johnson cannot apply his

arguments to metamaterial experiments and not make them

with regard to regular laboratory cavities. In light of these

many considerations, he has not demonstrated that my posi-

tion, relative to the universality of blackbody radiation, has

been overstated.
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2.9 Robtaille’s thought experiment

In the next section of his paper, Johnson reviews a very sim-

ple thought experiment, which I advanced in 2014, illustrat-

ing that Kirchhoff’s Law cannot be valid [20]. Briefly, the

idea involved two cavities. The larger outer cavity was con-

structed from perfectly emitting and absorbing walls and ini-

tially placed in a helium bath. Within this cavity and in ther-

mal contact with its floor, rested an inner cavity made from

perfectly reflecting walls. Initially, one of the six sides of

this latter cavity remained open. As such, both cavities now

contained black radiation at 4K, which had been produced by

the outer cavity. The open wall of the inner cavity was then

closed. It thus contained blackbody radiation at 4K. Then,

the helium bath was removed and the system was allowed to

rise to room temperature. In that case, the inner cavity still

contained radiation associated with a 4K blackbody and the

outer cavity contained radiation corresponding to room tem-

perature.

Johnson argues that: But by making the inner cavity walls

perfectly reflecting and closing the last side, Robitaille has

created two entirely separate cavities; by definition, the inner

cavity walls cannot emit radiation in either direction, what-

ever the temperature. They therefore act as boundary walls to

what has become a “hollow” outer cavity. The outer cavity

no longer contains the inner cavity within itself in a thermal

sense; Kirchhoff’s Law therefore survives this thought exper-

iment” [36].

There is no validity in this argument. Simply examine

the quotation by Kirchhoff which opens this reply: “. . . In

the interior therefore of an opake red-hot body of any tem-

perature, the illumination is always the same, whatever be

the constitution of the body in other respects”. Obviously,

Kirchhoff’s statement has been violated and Kirchhoff’s law

permits the placement of any object within the cavity interior,

provided that it does not have the ability to emit photons by

non-thermal means. I have not sidestepped the conditions set

forth by Kirchhoff. The inner cavity, having perfectly reflect-

ing walls, is linked to the floor of the outer cavity through

thermal conduction [20]. The inner cavity is not composed

of an adiabatic wall which is unable to contain or transmit

heat, as Planck used. Rather, it is made of a perfect reflector,

best approached by a material such as silver: “Since the inner

cavity is perfectly reflecting, it will also be highly conducting,

as good reflectors tend to be good conductors” [20, p. 38].

Therefore, conductive heat transfer was allowed [23,26]. Sil-

ver is known to be essentially a perfect reflector in the infrared

(ρ > 0.994 [54]), as I previously mentioned in the work under

question [20]. It also possesses one of the highest electrical

conductivities and has a very reasonable thermal conductiv-

ity, on the order of 400 W m−1 K−1 [55]. Johnson cannot

argue that: “The outer cavity no longer contains the inner

cavity within itself in a thermal sense.” [36].

Mathematically, adiabatic walls can act as perfect reflec-

tors, but reflectors themselves are not mathematical walls.

Silver reflectors can be characterized by temperature, pre-

cisely because, though they are ideally immune to captur-

ing radiative energy, they are able to allow energy to enter or

leave either through conduction or, when applicable, convec-

tion. Johnson will not deny that thermal conduction exists.

Conversely, adiabatic walls cannot be characterized by any

temperature, as they are fully immune to energy transfer by

radiation, conduction, and convection.

In the case of a perfect reflector, all of the energy of the

system can be trapped in its walls. In the case of the perfect

absorber, Planck considered that all of the energy was con-

tained in the radiation field. Yet, Planck still needed to allow

his oscillators the opportunity to have some momentary inter-

action with radiative energy. Otherwise, no photons could be

produced or absorbed. Similarly, the perfect reflector must be

allowed to have some momentary interaction with conductive

energy. Johnson can no more deny the presence of thermal

conduction than he can deny the presence of thermal emis-

sion and absorption. Silver, an near perfect reflector in the

infrared, still has access to conductive paths of heat transfer.

Johnson tries to dismiss this thought experiment [20] and

with good reason. It constitutes strong evidence that Kirch-

hoff’s Law could never have been correct. In fact, let us revisit

this setting, as it also helps to dispel Planck’s ill-conceived

claims relative to the carbon particle acting as a catalyst.

First, note that the radiation contained within the inner

cavity depends on its history prior to the cavity being closed

[20]. It will contain whatever radiation was present within the

outer perfectly absorbing cavity at that time. That is, it will

be defined by the temperature of the outer cavity at closure

(i.e. 4 K). The radiation within the inner cavity persists as

Planck claims [4, § 51], but in a state which was well-defined

by history, not just any arbitrary state.

If we place a carbon particle in the perfectly reflecting

cavity and if this particle does not act to transform heat from

the wall into the radiative field, but can only act as a catalyst,

as Planck claimed [4, § 51] (relative to the existing radiation

which initially corresponded to 4 K radiation [20]), the inte-

rior of the cavity could never become black. That is because

the interior of the second cavity lacks sufficient energy in its 4

K photons to adopt the proper blackbody intensity for the new

higher temperature of its walls, when the both cavities have

been brought to room temperature [20]. The carbon particle,

can never act to shift the Wien’s peak to higher frequencies

because Planck denies that it can contain any significant heat

on its own [4, § 51]. The cavity, in this instance, could not

contain black radiation at room temperature, without viola-

tion of the First Law of Thermodynamics. That is the cen-

tral problem in Planck’s notion that the carbon particle was

merely a catalyst. In the example provided, Planck would

stand in violation of the First Law, if he persisted in insisting

that the carbon particle was not transforming the energy con-

tent of the walls and if he maintained his insistence that the
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cavity became filled with blackbody radiation.

Should the carbon particle be characterized with a tem-

perature, but interaction with the walls still prevented, then

it could convert the radiation within the cavity to the proper

Planckian distribution for the higher temperature. But this ra-

diation will always remain gray, as the temperature of the car-

bon particle cannot be allowed to fall and since it has no ac-

cess to other sources of heat. Once again, Planck is restricted

by the First Law. The relative distributions of frequencies

might become correct, but their intensity will always be too

low.

It is only when the carbon particle is allowed to transform

the thermal energy contained within the wall of the perfectly

reflecting cavity that we obtain the correct answer and that the

interior of the second cavity can become black [15]. That is

why the carbon particle was never a catalyst. Planck ignores

its ability to transform thermal energy contained within the

walls. He was only concerned with the radiation field and

this was a crucial error.

3 Robitaille and Crothers’ 2015 paper

This section begins, once again, by claiming that there was

a volte-face relative to my position on Stewart’s mechanism.

As noted previously, such claims are unwarranted. I have

never supported “Stewart’s mechanism” as providing a valid

means of extending Kirchhoff’s claims to all cavities made

from arbitrary materials. Neither has Steve Crothers.

While defending Max Planck, Johnson has failed to rec-

ognize that there can be a substantial difference between 1)

what Planck claims to have done, 2) what he actually did, and

3) what nature permits. For instance, when Planck denied the

absorptivity of the surface layer and inserted only reflectivity,

he made claims which were demonstrably false in the labora-

tory, relative to the nature of a blackbody surface. He inap-

propriately applied polarized light and Brewster’s Law to se-

cure his proof, when such an approach was disallowed based

on the very definition of heat radiation. Finally, he concluded

that his unnumbered equation at the end of section § 36 [4],

Kν

K′ν
·

q2

q′2
=

1 − ρ′

1 − ρ
,

could be satisfied by all values of ρ and ρ′. Yet, when

ρ = 1, this expression became undefined. As such, both

Crothers and I maintain that Planck’s “proof” [4] of Kirch-

hoff’s Law remains fundamentally flawed and invalid. Planck

has, therefore, been deprived of any justification in claiming

universality. In his initial paper [3] and in the latter portion

of his text [4], Planck correctly derived an expression for the

blackbody function. But Planck can never state, based on

§ 35-37, that interiors of all cavities contain black radiation.

This remains a serious crack in the armor of modern physics

and Johnson’s letter has not helped to rectify the problem.

3.1 The meaning of Planck’s term “surface”

Within his classic text, Planck described how he has devi-

ated from Kirchhoff’s definition of a blackbody. For John-

son, Planck’s new definition was permitted, whereas, in truth,

it constituted a rejection of nature itself. As we have high-

lighted [25, p. 124], Planck stated within a footnote “In defin-

ing a blackbody Kirchhoff also assumes that the absorption

of incident rays takes place in a layer “infinitely thin”. We

do not include this in our definition” [4, § 10]. This was not

footnote material, as it constitutes a critical redefinition of

the blackbody. In opposition to Kirchhoff, Planck decided to

write: “The creation of a heat ray is generally denoted by the

word emission. According to the principle of the conservation

of energy, emission always takes place at the expense of other

forms of energy (heat, chemical or electric energy, etc.) and

hence it follows that only material particles, not geometrical

volumes or surfaces, can emit heat rays. It is true that for the

sake of brevity we frequently speak of the surface of a body

as radiating heat to the surroundings, but this form of expres-

sion does not imply that the surface actually emits heat rays.

Strictly speaking, the surface of a body never emits rays, but

rather it allows part of the rays coming from the interior to

pass through. The other part is reflected inward and accord-

ing as the fraction transmitted is larger or smaller the surface

seems to emit more or less intense radiations” [4, § 2].

Was Kirchhoff actually correct? Does the absorption of

incident rays take place in a layer “infinitely thin” [4, § 10]?

Or, did Planck more closely approximate nature:“Strictly

speaking, the surface of a body never emits rays, but rather

it allows part of the rays coming from the interior to pass

through” [4, § 2]. Of course, if a surface, strictly speaking,

cannot emit rays, it also cannot absorb rays.

The answer to this problem has been provided in the lab-

oratory. If one considers the hexagonal planar structure of

graphite and the reality that soot (or lampblack) has always

played an important role relative to the creation of blackbod-

ies (see references within [16,17]), then the answer is readily

apparent. For soot shares, in large measure, the hexagonal

planar structure of graphite, although more breaks exist in the

lattice. The surface of graphite or soot, is well represented by

graphene [56, 57], as this alone constitutes the outer layer of

a sheet of graphite.

Mak et al [58] speak of the absorption of graphene, “In-

deed, it was the strong absorption of single-layer graphene

(with its absorbance of ∼2.3%, . . . that permitted the initial

discovery of exfoliated monolayers by visual inspection under

an optical microscope”. The authors are referring to the work

of Novoselov and Geim [56] (Nobel Prize, Physics, 2010).

Moreover, even a single layer of graphene has been shown

to be an absolutely phenomenal emitter, when driven by cur-

rent [59].

Consequently, Planck’s position that, “Strictly speaking,

the surface of a body never emits rays, but rather it allows
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part of the rays coming from the interior to pass through” [4,

§ 2], simply cannot be upheld. Laboratory evidence is firm

on this point: some of the rays will begin to be absorbed even

by the first mono-layer of atoms and less than 50 hexagonal

planes of atoms should result in near complete absorption.

It is a fact that, even a single layer of graphene, the only

structure which can be associated with the surface of a

graphite blackbody, has powerful absorbance. Max Planck

cannot be permitted to neglect this layer, when discussing

blackbodies. Planck knew Kirchhoff’s definition and chose

to ignore it, even though he recognized that he could make

the entire radiation within a cavity black, by introducing even

the smallest of carbon particles [4, § 51]. Planck’s error was

in not allowing any absorption or emission at all, not in al-

lowing that a single layer did not have 100% absorption. In

this respect, Planck’s statement was imprudent at the time and

laboratory experiments have now demonstrated that, indeed,

it was false. Johnson cannot correct this situation. Yet, as we

shall see below, this was a critical step towards Planck’s faulty

derivation of Kirchhoff’s Law. As for Kirchhoff, given his pe-

riod in history, it is clear that his definition remains valid. For

a single layer of atoms is as “infinitely thin” as nature can

allow and 50 layers of atoms about as “infinitely thin” as a

man could conceive in Kirchhoff’s days. He could have no

concept of the dimensions of atoms in 1860 [1, 2].

In continuing his letter, Johnson then attempts to justify

Planck’s insistence that the term “bounding surface” referred

to a geometrical surface dividing two media, and that “the

material effects of emission and absorption take place within

the adjoining media” [36]. In this respect, we return to the

question of what Planck has said and what he can be permit-

ted to say.

In § 35 of his textbook [4], Planck outlined the notation

relative to primed and unprimed superscripts: “Let the spe-

cific intensity of radiation of frequency ν polarised in an ar-

bitrary plane be Kν in the first substance . . . , and K
′
ν in the

second, and, in general let all quantities referring to the sec-

ond substance be indicated by the addition of an accent” [4].

Planck continued in § 43, “The most adequate method of ac-

quiring more detailed information as to the origin and the

paths of the different rays of which the radiations I1, I2, I3,

. . . In consist, is to pursue the opposite course and to inquire

into the future fate of that pencil, which travels exactly in the

opposite direction to the pencil I and which therefore comes

from the first medium in the cone dΩ and falls on the surface

element dσ of the second medium” [4, § 43]. Here, Planck

clearly assigned to the surface element dσ, properties of the

second medium.

Johnson argues that Planck’s bounding surface did not

have to absorb any light, citing Planck’s claim, “Thus only

material particles can absorb heat rays, not elements of sur-

faces, although sometimes for the sake of brevity the expres-

sion absorbing surfaces is used” [4, § 12]. But what John-

son fails to understand is that, should he argue along these

lines, he would be brought to accept yet another truth from

Robitaille and Crothers which I now state: Only material par-

ticles can reflect light! Thus, Planck cannot be allowed an

imaginary surface which reflects light, while at the same time

denying that this same surface can absorb or emit light.

The truth being that when Planck placed two materials to-

gether, the bounding element, dσ, must be characterized on

one side by the reflectivity and aborptivity of the first material

and on the other side, by the reflectivity and absorptivity of

the second material. That is because, the elements in either

of the materials are not properly characterized only by reflec-

tivity. This is precisely why Crothers and I object to Planck’s

use of a bounding surface which does not fully represent the

materials which it unites.

Planck is welcome to claim that he can place a hypotheti-

cal bounding surface between two materials which considers

only transmission and reflection. As for Crothers and I, we

continue to object. The bounding surface which Planck en-

visioned was completely detached from reality. The issue is

not that Planck cannot place the geometric surface between

two layers. That is self-evident. The issue is that Planck can-

not detach this geometric bounding layer from the material

properties of those substances which he claims it character-

izes. It is impossible to extract only the reflectivity of a par-

ticle, assign it to a geometric bounding surface, and at the

very same time, ignore the absorptivity of this same particle.

Contrary to Johnson, our statement that “Planck neglected

the fact that real materials can possess finite and differing

absorptivities” [25, p. 127] is entirely appropriate and valid.

Planck’s own textbook provides additional insight: “When-

ever absorption takes place, the heat ray passing through the

medium under consideration is weakened by a certain frac-

tion of its intensity for every element of path traversed” [4,

§ 12]. By necessity, the element contained within the bound-

ing section is one of the elements in the path traversed. Planck

cannot ignore its absorption, because its properties can only

be related to the medium to which it is linked.

Johnson then attempts to counter our statement: “Third,

the simplest means of nullifying the proof leading to Planck’s

Eq. 42, is to use a perfect reflector as the second medium.

In that case, a refractive wave could never enter the second

medium and Planck’s proof fails” [25, p. 127]. In order to

counter this argument, Johnson tries to make the bounding

surface perfectly reflecting, but unfortunately, he is not al-

lowed to adopt such an approach, as Planck’s proof intrinsi-

cally depends on the transmissivity of this bounding surface.

Johnson cannot make it a perfect reflector, as in doing so, he

optically isolates the two media. Furthermore, Johnson has

failed to notice what has been mentioned above; namely, if

ρ = 1, then (1 − ρ) = 0 and Planck’s equation, at the bottom

of Planck’s § 36 (see § 3 herein) becomes undefined. Planck

needs this equation to be valid in order to obtain his Eq. 41,

q2Kν= q′2K′ν. But after he obtains Eq. 40, ρ=ρ′, Planck must

return to the equation he lists at the end of § 36 and this ex-
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pression is not always true.

It also remains the case that Planck’s entire proof of

Kirchhoff’s Law collapses, as Crothers and I correctly high-

lighted in our joint paper [25, p. 127], when we replaced the

second medium with a perfect reflector.

At first, it was difficult for me to even understand why

Johnson would have wanted to replace the geometric bound-

ing surface with a perfectly reflective surface. The answer

rests in his use of this quote from Max Planck: “Since the

equilibrium is nowise disturbed, if we think of the surface

separating the two media as being replaced for an instant by

an area entirely impermeable to heat radiation, the laws of

the last paragraphs must hold for each of the two substances

separately” [4, § 35]. However, in that case, Planck was re-

ferring to the treatment he had just outlined when addressing

a single medium. Note that Planck writes in § 32, “that the

total state of radiation of the medium is the same on the sur-

face as in the interior. Then in § 33, Planck writes, “While the

radiation that starts from a surface element and is directed to-

wards the interior of the medium is in every respect equal to

that emanating from an equally large parallel element of area

in the interior, it nevertheless has a different history. That is

to say, since the surface of the medium was assumed to be im-

permeable to heat, it is produced only by reflection at the sur-

face of radiation coming from the interior” [4, § 35]. Planck

had assumed that the surface in this case was impermeable to

heat because this was the only way he could treat the isolated

medium near its surface.

However, when Planck moved to two media, he no longer

used a boundary impermeable to heat, but assumed that the

surface of each medium was “smooth” [4, § 36]. In § 9,

Planck had defined a smooth surface as one which can par-

tially reflect and transmit the incoming radiation [4, § 9].

Planck required transmission for his later proof of Kirchhoff’s

law in § 35 and § 36. This is an essential element, which

Johnson failed to consider in stating that a perfectly reflecting

boundary enabled ρ = ρ′. In that case, as mentioned above,

the equation at the bottom of Planck’s § 36 would become

undefined. It is for this reason that Johnson cannot support

Planck’s position, by making the bounding surface a perfect

reflector.

Robitaille and Crothers remain correct. Planck improp-

erly treated absorption and reflection in his derivation. Fur-

thermore, the use of a perfect reflector for the second medium

was all that was needed to shatter Planck’s proof of Kirch-

hoff’s Law, as we have previously noted [25].

3.2 Absorption and transmission

This section of Johnson’s letter begins by quoting from the

paper by Robitaille and Crothers: “With his words, Planck

redefined the meaning of a blackbody. The step, once again,

was vital to his derivation of Kirchhoff’s Law, as he relied on

transmissive arguments to arrive at its proof. Yet, blackbody

radiation relates to opaque objects and this is the first indica-

tion that the proofs of Kirchhoff’s Law must not be centered

on arguments which rely upon transmission. Planck ignored

that real surface elements must possess absorption, in appar-

ent contrast with Kirchhoff and without any experimental jus-

tification” [25, p. 124].

Strangely, Johnson then concludes from this quotation

that “the apparent problem arises from the fact that Planck’s

surface is a geometrical one, whilst Robitaille and Crothers

are obviously referring to a surface layer in which, they main-

tain, all absorption must take place because transmission is

not permitted through a black body” [36]. But we never

stated that all of the absorption must take place from the sur-

face layer. We stated that “real surface elements must possess

absorption” [25, p. 124]. The surface need not have 100% ab-

sorption, as only a slight absorption is sufficient to invalidate

Planck’s proof. It is obvious, from our treatment of the first

section of Planck’s proof, that we do in fact allow transmis-

sion to take place within the medium and for elements within

the blackbody to absorb, exactly like Max Planck [25, § 4.2].

We caution, however, that blackbodies are opaque objects and

that Planck’s proof cannot rely exclusively on transmission

and reflection. Our point remains valid, as well demonstrated

by the experimental realities outlined relative to graphene in

§ 3.1 above.

Again quoting from our paper, Johnson then attempts to

argue that Planck was correct in inferring that “. . . while in the

case of bodies with vanishingly small absorbing power only

a layer of infinite thickness may be regarded as black” [4,

§ 10]. Once again, it is difficult to understand how Johnson

can come to Planck’s defense in this case. An opaque object

which has a low absorptivity, also has a high reflectivity by

definition. If not, it would not be opaque. As such, most pho-

tons which approach an opaque surface with low absorptivity

are reflected away from the body. For Planck’s argument to

work, one would have to discount the surface reflection from

an opaque object with a low emissivity which is counter to

all laboratory experience. This highlights that Planck’s new

definition of a blackbody is completely outside the laws of

nature. Planck cannot argue that he can neglect surface re-

flection, simply to salvage his derivation of Kirchhoff’s Law.

Our point remains valid “Blackbodies are opaque objects

without transmission, by definition” [25, p. 125]. Still, we

have, in fact, allowed Planck to have some mathematical lati-

tude and some level of transmission within the object, as pre-

sented in our § 4.2 [25]. But we cannot allow Planck to com-

pletely negate the presence of the reflection which is known

to occur at the surface of an opaque object of low emissivity.

Johnson and Planck shall not redefine nature.

3.3 Reflection

Relative to neglecting the reflection which occurs within a

medium, we never stated that such an approach was invalid,
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merely that it was suboptimal. In fact, in § 4.2 of our paper,

we specifically outline the effects of neglecting the reflection

taking place within the medium [25].

Johnson, however, is under the impression that reflection

is strictly a surface phenomenon and cannot take place within

the medium. At the end of this section, Johnson emphasizes

the point when he states “Note that Planck is still talking

about the interior of the medium where reflection is not ap-

plicable because there is no surface; therefore Robitaille and

Crothers’ objection cannot be maintained” [36, § 3.3]. John-

son is confused on this point.

Planck himself explicitly commented on scattering within

media: “The propagation of the radiation in the medium as-

sumed to be homogeneous, isotropic, and at rest takes place

in straight lines and with the same velocity in all directions,

diffraction phenomena being entirely excluded. Yet, in gen-

eral, each ray suffers during its propagation a certain weak-

ening, because a certain fraction of its energy is continuously

deviated from its original direction and scattered in all direc-

tions. This phenomenon of “scattering”, . . . takes place, gen-

erally speaking, in all media differing from absolute vacuum

. . . ” [4, § 8]. Later in the same section, Planck noted that, be-

yond diffraction, scattering also depends on reflection [4, § 8].

Hence, contrary to Johnson’s claims, Planck understood that

reflection is not strictly a surface phenomenon.

Crothers and I have properly considered internal reflec-

tion [25, § 4.2]. We have demonstrated that, when internal re-

flection is considered, powerful new insight is gained. Rather

than simply obtaining Kirchhoff’s formulation, Kν = ǫν/αν,

which is potentially undefined, we can actually extract

ǫν = (1− ρν)Kν, which is never undefined [25, § 4.2]. The in-

sight provided by this treatment is important, contrary to what

Johnson implies when insisting, without justification and in

opposition to Planck’s own statements, that reflection is only

a surface phenomenon.

3.4 Polarization and equality of reflection

In the final section of his letter, Johnson attempts to justify

Planck’s use of polarized light and his assertion that the re-

flectivities of a pair of media at the bounding surface must be

equal. He begins by quoting from our paper: “In § 5 Planck

admitted that homogeneous isotropic media emit only natural

or normal, i.e. unpolarized, radiation: “Since the medium

was assumed to be isotropic the emitted rays are unpolar-

ized”. This statement alone, was sufficient to counter all of

the arguments which Planck later utilized to arrive at Kirch-

hoff’s Law [Eq. 42]. That is because the important sections

of Planck’s derivation, namely § 35–37 make use of plane-

polarized light. These steps were detached from experimental

reality, relative to heat radiation [Planck, § 35] . . . ”.

At this point, Johnson recalls that we have allowed Planck

to resolve heat radiation into two equal orthogonal compo-

nents, each plane-polarized. He objects to our statement that

“such rays could never exist in the context of heat radia-

tion” [25, p. 129]. Apparently, Johnson has failed to grasp

that even though Planck can resolve heat radiation into two

components, he is not allowed to apply only one component

in his derivation. He must always consider both components,

even if he can resolve them into two orthogonal planes.

Johnson apparently does not understand why Planck

wanted to treat only one component, in part, because he seems

unaware of Brewster’s Law. Planck, in his derivation of

Kirchhoff’s Law, invoked plane-polarized radiation, such that

he could set ρ = ρ′ = 0. He could only obtain this expres-

sion, when dealing with a single plane polarized beam of

light. That is because, if he sent such a beam at the proper

angle and with the proper polarization towards his bounding

surface, there would be no reflection, according to Brewster’s

Law.

However, Planck was not right in stating that there could

be no reflection in the context of heat radiation. He could not

obtain the plane-polarized beam of light, which he required,

because the other component of the radiation, which was in-

appropriately ignored in his derivation, was also present.

Moreover, Planck did not even test reflectivity by his argu-

ment from Brewster’s law, as the latter is dependent upon the

presence of a reflected ray as well as a transmitted ray. Thus,

Planck could not conclude that the reflectivities of both ma-

terials were 0. The absence of a reflected ray does not imply

that reflectivity is zero, as the polariscope attests. Just be-

cause Planck can resolve light into two components does not

mean that he can ignore one of these components. This is one

of the most significant flaws in Planck’s derivation of Kirch-

hoff’s Law.

Johnson then tries to defend Planck’s most dramatic

claim. Planck states [4, § 37]: “Now in the special case when

the rays are polarized at right angles to the plane of incidence

and strike the bounding surface at the angle of polarization,

ρ = 0, and ρ′ = 0. The expression on the right side of the last

equation then becomes 1; hence it must always be 1 and we

have the general relations:

ρ = ρ′ (40)

and

q2
Kν = q′2K

′
ν (41)”.

As I have just outlined, Planck cannot refer to this spe-

cial case, because he does not have access to light polarized

in a single plane. He must always simultaneously treat both

components. Secondly, Planck is incorrect in asserting that

the right side of the expression at the end of his § 36 [4] (also

shown in § 3 of this letter), “must always be 1”, because it

becomes undefined when ρ = 1. Planck was making an el-

ementary error in mathematics. We maintain that “The re-

sult was stunning.” [25, p. 129]. We also maintain that “Max

Planck had determined that the reflectivities of all arbitrary

media were equal” [25, p. 129].
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Johnson then tries to defend Planck one last time, by in-

sisting that what the latter “had in fact demonstrated is that

the reflectivities on each side of a geometrical surface bound-

ing two different media are equal. Clearly if a different pair

of media are chosen, the value of the reflectivity of the bound-

ing surface may be different as well” [36, § 3.4]. He then

quoted from The Theory of Heat Radiation, “Since, in gen-

eral, the properties of a surface depend on both of the bodies

which are in contact, this condition shows that the property

of blackness as applied to a body depends not only on the na-

ture of the body but also on that of the contiguous medium. A

body which is black relatively to air need not be so relatively

to glass, and vice versa” [4, § 10].

Both Crothers and I understand what Max Planck

claimed. However, we are properly concerned with what he

has actually done. Planck’s statement that “the properties

of a surface depend on both of the bodies which are in con-

tact” [4, § 10] can never be verified in the context of opaque

media, precisely because his bounding surface is an abstrac-

tion. Snell’s law, for instance, also relies on the interface of

two media, but a bounding surface, or the changes at the sur-

faces, need not be introduced to obtain the proper answer.

The indices of refraction of the two media alone are sufficient

to treat the problem.

Planck’s statements relative to the bounding surface were

subject to two fundamental objections. First, they are justified

by nothing; second, they constitute “une hypothèse gratuite”

(see table presenting arguments against 19th century proofs

of Kirchhoff’s Law in [47, p. 16]). Planck may wish to claim

that “A body which is black relatively to air need not be so

relatively to glass, and vice versa” [4, § 10], but he had abso-

lutely no justification for such a statement.

Rather, what Planck did possess are two isotropic media.

Each of these is characterized by the absorptivity and reflec-

tivity for each of its constitutive elements. Within his bound-

ing surface, Planck could only introduce the reflectivity of

elements contained in the media in question. When he in-

troduced this reflectivity into his bounding surface, he had to

additionally introduce some absorptivity, since this also char-

acterized the media. Planck was not free to ignore the absorp-

tivity. But he did so, as absorptivity in the bounding surface

would prevent him from making use of Brewster’s Law.

In any case, Planck could not invent a new reflectivity,

which now existed only when he places the two media in

contact with one another. After all, the reflectivities of the

bounding surface must somehow be related to the materials

under study. Furthermore, all that Planck could ever know

about these materials are the reflectivities which can be mea-

sured. Neither he, nor Johnson, are allowed to hypothesize

on what can never be measured in opaque media.

Planck recognized that he could not state that reflectivities

of all materials are identical. As such, he postulated, without

any experimental evidence, that his proof actually refers to

something else [4, § 10]. Crothers and I dispute such claims.

Planck’s derivation must be taken on what the setting and the

mathematics demonstrate. If we ignored Planck’s mathemat-

ical errors and experimental oversights, we could much more

convincingly argue that he had demonstrated that the reflec-

tivities of all arbitrary materials were equal, using the same

proof. Planck could measure nothing more than the reflectiv-

ities of each medium. Thus, he remains in violation of known

optics, despite his attempts to introduce a new meaning to

the reflectivity of a surface. Furthermore, Planck is forbidden

from writing Eq. 40, ρ = ρ′, precisely because he has violated

nature’s rule that heat radiation is never polarized. It also re-

mains the case that the unnumbered equation, which Planck

presents at the end of his § 36 [4] (see § 3 herein), is undefined

when ρ = 1.

4 Johnson’s summary and conclusions

In opening this section of his letter, Johnson claims that,

“Stewart [33] had shown that the radiation in a cavity made

from perfectly absorbing material at thermal equilibrium

must be black, of an intensity appropriate to the equilibrium

temperature. According to Robitaille, Kirchhoff [1] extended

this finding to cavities made of arbitrary materials”. Once

again, Johnson has missed the mark.

Stewart considered plates in his experiments and Johnson

is distorting what Stewart has done. It was with plates that

Stewart demonstrated the Law of Equivalence (in modern no-

tation: ǫ = α, or ǫ + ρ = α + ρ). Kirchhoff’s extension to

all arbitrary cavities [1, 2], went well beyond Stewart’s legit-

imate law and has never been demonstrated to be true in the

laboratory.

Johnson’s claim that I have now withdrawn my objections

to “Stewart’s mechanism”, in my paper with Crothers [25],

is without basis. “Stewart’s mechanism” has numerous prob-

lems, including potential violations of the First Law of Ther-

modynamics, depending on the circumstances considered. It

suffers from the reality that cavities made of low emissivity

materials can prefer to increase the temperature of the walls,

rather than emit a photon. Johnson’s letter does nothing to

counter this argument and that is why “Stewart’s mechanism”

cannot be realized in practice, as recognized by Crothers and

myself.

Finally, Johnson admits: “Robitaille is obviously correct

to point out that black body cavities are never made from re-

flective materials.”. However, he then attempts to excuse the

observation, in noting that, “. . . this fact appears to be more a

question of practicality and the need to ensure that the walls

are not perfectly reflective at any wavelength so that proper

measurements of temperature can be made. It does not seem

to amount to a demonstration that Kirchhoff’s Law necessar-

ily fails, as Robitaille claims.”. Again, the arguments are ill-

conceived. The fact that an experiment, required to establish a

law of physics, still remains impractical after 150 years, well

indicates that the law was never valid.
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Some have argued, for instance, that when cavities are

constructed from low emissivity materials, their dimensions

need to be increased. This helps to augment their absorbance

when sampling return losses. But Kirchhoff’s law is explicit.

The dimensions of the walls are irrelevant and, at a given tem-

perature, must remain unrelated to the emissivity of the mate-

rial, provided that the diffraction limit is avoided. The diffrac-

tion limit is not set by the emissivity. Furthermore, Johnson’s

arguments, relative to the ability to properly measure a tem-

perature remain unfounded. Temperature sensors in the walls

of cavities can easily report such information.

5 Conclusions

Throughout his letter, Johnson demonstrates that he has not

carefully considered what Stewart, Kirchhoff, and Planck

have written. He attributes to them positions which they never

adopted. Then, he misinterprets the positions they did take.

He repeatedly makes elementary errors relative to the under-

standing of cavity radiation. His statements on properly mea-

suring the temperature of a cavity are but one example. He ar-

gues for “Stewart’s mechanism”, in building up the radiation

within a cavity, while not recognizing that the introduction of

specular reflection within such objects can easily lead to the

formation of standing waves. He also fails to understand that

a cavity can simply increase the temperature of its walls and

not emit a single photon.

He rejects my experimental work on MRI cavities, as un-

related to the problem of thermal emission and notes that pro-

cesses, like fluorescence, have been excluded by Max Planck.

Yet, the sampling of a cavity with a network analyzer does

not involve such processes. In this respect, he also fails to

note that Kirchhoff had mistakenly included such processes,

in his initial work [1]. This was the only work of Kirchhoff

which Johnson cited.

Furthermore, he fails to recognize that microwave cavities

are utilized aboard modern satellites, wherein such objects are

claimed to be black. Johnson also improperly and unknow-

ingly expresses Stewart’s Law as ǫν = αν + ρν in a thought

experiment, thereby reaching conclusions which were clearly

false. Then, he ignores the very existence of thermal conduc-

tion, when he attempts to invalidate my thought experiment

with two cavities. He misrepresents my statements and those

of Stephen Crothers, when he tries to state that we denied

that the interior of a medium can have absorbance. He failed

to understand the difference between resolving a heat ray into

its two plane-polarized components and making use of a sin-

gle plane-polarized ray, in order to infer something about heat

radiation, which is never polarized. He hypothesized that

replacing Planck’s geometrical bounding surface with a per-

fect reflector could be used to validate Planck’s claims, when

clearly, it leads to an undefined mathematical expression and

an invalid setting.

For all these reasons, Johnson cannot state that he has, in

any way, nullified my objections to Kirchhoff’s Law. Still, he

must not be faulted for trying to defend Kirchhoff and Planck.

As I stated in the introduction, it is the first obligation of a

scientist to defend established science. Moreover, the study of

cavity radiation is not at all simple. In this regard, Johnson’s

efforts are noteworthy and he is to be given credit for the time

he has invested in reviewing these many papers.

Through the exchange prompted by his letter, Johnson has

been indirectly responsible for bringing to the forefront many

aspects of cavity radiation. Progress is often achieved, only

when old ideas are first rejected, even if the process of discov-

ery is not smooth. The process of correction, in itself, leads

to scientific advancement. Hence, through such an exchange,

readers can better come to understand why Kirhchoff’s Law

of thermal emission was never valid. Consequently, Planck’s

claims for universality must be rejected.
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LETTERS TO PROGRESS IN PHYSICS

Errata to “Mansouri-Sexl Test Theory: The Question of Equivalence

between Special Relativity and Ether Theories”

Maciej Rybicki
E-mail: maciej.rybicki@icloud.com

The title paper [1] contains an essential mistake committed by the present author.

Namely, the Mansouri and Sexl generalized transformation of time, as well as the rele-

vant form of the Lorentz transformation of time have been erroneously read and typed.

In consequence, a certain part of the paper (indicated in the table, below) requires re-

placing to conform to the correct equations. The rest of the paper, except for the minor

corrections indicated in the Errata, still remains valid. Let me apologize to the Readers

and Editors for the inconvenience.

Page Written Read

89 (Abstract) “has an erroneous form.” “is incorrectly used.”

89, Eq. (2) t= aT + ǫX t = aT + ǫx

90, Eq. (5) x= γ(X − vt) x= γ(X − vT )

91 (Conclusion) “We have shown that an incorrect notation. . . ” “We have shown that an incorrect use. . . ”

Page 90, left column

Written (part to be replaced, starting from):

“Mansouri and Sexl state that for a=b= 1, ǫ = 0 the Galilean

transformation is obtained, which is correct. . . . ”

(ending with, 33 lines down):

“. . . Consequently, they concluded that only violation of the

two-way isotropy resulting in deviations from the relativistic

values of a and b constitutes a challenge to STR.”

Read (part to be introduced):

“Thus, the difference in the one-way speed of light would be

a sole matter of choice of the synchronization convention.

From M-S theory it follows that for a= b= 1, ǫ = 0, the

Galilean transformation is obtained. If, after employing the

external synchronization, a and b equal to unity, it would

mean that mechanical phenomena are ruled by Newtonian

physics and subject to the Galilean principle of relativity, whi-

le the Maxwell equations (and the relevant constant speed of

light) refer to the ether frame only.

Instead, for 1/a=γ and ǫ = − v/c2, the M-S transforma-

tion of time turns into the Lorentz transformation of time:

t′ =
t

γ
−
vx′

c2
. (E1)

In this form, the “rest-to-observer” coordinates appear on bo-

th sides of equation. Written in the same manner, the inverse

Lorentz transformation is therefore:

t =
t′

γ
+
vx

c2
. (E2)

Consequently, the M-S transformation of time, and the in-

verse transformation are:

t = aT + ǫx ,

T = at − ǫX .
(E3)

Now, assuming 1/a=γ and ǫ = 0, we obtain:

t =
T

γ
=⇒ T = tγ , (E4)

in contradiction with

T =
t

γ
. (E5)

Mansouri and Sexl intended to treat independently the

questions of time dilation and simultaneity. This, however, is

infeasible with respect to the Lorentz transformation in which

relativity of simultaneity and relativistic effects are insepa-

rably connected. In the Lorentz transformation, one cannot

obtain time dilation without taking into account the relativity

of simultaneity. Likewise, the self-consistence of reciprocal

equations in the Lorentz transformation involves the mutual

dependence between γ= 1/
√

1 − v2/c2 and v/c2. The incor-

rect use of Lorentz transformation (in particular, not includ-

ing the inverse transformation) led to a false conclusion as to

the question of equivalence between STR and the postulated

ether theory.”
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Application of the Differential Transform Method to the Advection-Diffusion

Equation in Three-Dimensions
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Advection diffusion equation with constant and variable coefficient has a wide range

of practical, industrial and environmental applications. Due to the importance of at-

mospheric dispersion equation, we present this study which deals analytically with the

atmospheric dispersion equation. The present model is proposed to estimate the con-

centration of an air pollutant in an urban area. The model is based on using Differential

Transform Method (DTM) to solve the atmospheric dispersion equation. The model

assumes 1) the pollutant is released from an elevated continuous point source; 2) there

exist an elevated inversion layer; 3) the dispersion coefficients are parameterized as a

function of downwind distance in a power law dependence. To test the model accuracy,

the model predictions have been applied and compared with the experimental data for

the Inshas research reactor (Egypt). The model predictions are shown to be in good

agreement with the measurement of field data.

1 Introduction

The advection-diffusion equation of air pollution in the atmo-

sphere is essentially a statement of conservation of the sus-

pended material. The concentration of turbulent fluxes are

assumed to be proportional to the mean concentration gradi-

ent which is known as Fick-theory.

This assumption, combined with the continuity equation,

leads to the steady-state advection-diffusion equation, Black-

adar [1]

∂C

∂t
+ u
∂C

∂x
+ v
∂C

∂y
+ w
∂C

∂z
=
∂

∂x

(

kx

∂C

∂x

)

+

+
∂

∂y

(

ky
∂C

∂y

)

+
∂

∂z

(

kz

∂C

∂z

) (1)

where C(x, y, z) denotes the concentration, kx, ky, kz are the

cartesian components of eddy diffusivity and u, v, w are the

cartesian components of wind speed, where x, y are cartesian

horizontal distance and z is the height above ground surface.

In order to solve (1) we included the following assump-

tions: the pollutants are inert and have no additional sinks or

sources downwind from the point source, the vertical w and

lateral v components of the mean flow are assumed to be zero,

kx is neglected, ky and kz are functions of downwind distance.

The mean horizontal flow is incompressible and horizontally

homogeneous (steady state). Then, (1) is simplified to be:

u
∂C

∂x
= ky

(

∂2C

∂y2

)

+ kz

(

∂2C

∂z2

)

. (2)

Both z and y are confined in the range 0 < z < h and 0 <

y < Ly where h is the height of the planetary boundary layer

(PBL) and Ly is a cross-wind distance faraway from the sour-

ce, while the downwind distance x > 0. The mathematical

description of the dispersion problem (2) is completed by the

following boundary conditions:

u C(x, y, z) = Q δ(z) δ(y) , at x = 0 (3)

C(x, y, z) = 0 , at x, y, z→ ∞ (4)

∂C

∂y
= 0 , at y = 0, Ly (5)

C(x, y, z) = R , at y = 0 (6)

∂C

∂z
= 0 , at z = h (7)

kz

∂C

∂z
= −vd C , at z = 0 (8)

where vd is the deposition velocity, Q is the emission rate and

R(x, z) is a variable.

The modeling of air pollution dispersion, including dry

deposition, was first attempted by modifying the Gaussian

plume equation (Chamberlain [2] and Overcamp [3]) and in-

cluding operative algorithm, as in the surface depletion mod-

els (Horst [4,5]). Ermak [6] found also an analytical solution

but with diffusivity and wind as functions of down distance

only and Berkowicz and Prahm [7] gave a numerical solution

for the dependent time two dimensional equation including

dry deposition. The solutions proposed by Smith [8] and Rao

[9] also retained the framework of invariant wind speed and

eddies with height (as the Gaussian approach). Tsuang [10]

proposed a Gaussian model where the dispersion coefficients

(the so-said “sigma”) are functions of time and height.

Recent analytical solutions of the advection diffusion eq-

uation with dry deposition at the ground have utilized height-

dependent wind speed and eddy diffusivities (Horst and Slinn

[4], Koch [11], Chrysikopoulos et al. [12] and Tirbassi [13]).

However, these solutions are restricted to the specific case in

which the source is located at the ground level and/or with re-

strictions to the wind speed and eddy diffusivity vertical pro-
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files. It is to be noted that the previous works, Moreira et

al. [14, 15] assumed boundary conditions only of the second

type (zero flux to the ground) and also Tirabassi et al. [16],

but Tirabassi et al. [17] assumed boundary conditions of the

the third kind (with deposition to the ground), which encom-

pass the contaminant deposition speed and eddy, where eddy

diffusivity profiles are functions in the z direction only.

The differential transform method is used in many fields

and many mathematical physical problems such as a system

of differential equations [18], a class of time dependent partial

differential equations (PDEs) [19], wave, Laplace and heat

equations [20], the fractional diffusion equations [21], two-

dimensional transient heat flow [22], nonlinear partial dif-

ferential equations [23], diffusion-convection equation [24],

convection-dispersion problem [25], linear transport equation

[26], two-dimension transient atmospheric pollutant disper-

sion [27], Helmholtz equation [28].

The aim of this work is to find the analytical solution de-

veloped for concentration of the pollutant released from an

elevated source in an inversion layer by using the differential

transform method (DTM) [29, 30] with different formulas of

dispersion parameters (σ).

The paper is organized as follows. In section 2, we intro-

duce the analytical solution using the differential transform

method. In section 3, we apply both the standard method,

power law, Briggs formula and other sigma to specific prob-

lems in analytical solution.

The validity of the present model is examined by compar-

ing its results with the data for Cs137 which were performed

around the Atomic Energy Authority (AEA) First Research

Reactor in Egypt. The results are tabulated with the observed

data and clarified in the conclusion.

2 Analytical solution

Applying DTM for (2) with respect to x, we get:

∂Ui(x, y)

∂x
= ky
∂2Ui(x, y)

∂y2
+ (i + 1)(i + 2) kzUi+2(x, y) (9)

where the inverse of the differential transform is defined as:

C(x, y, y, z) =
∑

i=0

ziUi(x, y) ; (10)

from boundary condition (8), we obtain:

U1 =

(

−vg

kz

)

U0 ; (11)

from equations (9) and (11), we find that:

U2 =
1

2kz

(

u
∂U0(x, y)

∂x
− ky
∂2U0(x, y)

∂y2

)

, (12)

U3 =
−vg

6kz

[

u
∂

∂x

(

U0(x, y)

kz

)

−

(

ky

kz

)

∂2U0(x, y)

∂y2

]

; (13)

from boundary condition (7), we obtain:
(

−2kzvg

hky(2kz − hvg)

)

U0(x, y) +

(

u

ky

)

∂U0(x, y)

∂x
−

−

(

2hkzuvg

ky(2kz − hvg)

)

U0(x, y)
∂

∂x

(

1

kz

)

=
∂2U0(x, y)

∂y2
.

(14)

By using separation of variables method for (14), we get:

d2Y

dy2
+ λ2Y = 0 (15)

and
dX

dx
− (A − B)X = 0 (16)

where

A =



















hkzvg
∂
∂x

(

1
kz

)

2kz − hvg



















and

B =
hkzλ

2(2kz − hvg) − 2vgkz

hu(2kz − hvg)
.

The solution of (14) becomes:

U0(x, y) = c1 e
∫

(A−B)dx cos λy (17)

where λ = nπ/ly.

For practical application of solutions, we need to find the

dispersion parameters σy, σz and the wind speed u. The dis-

persion parameters are an important function of downwind

distance and stability. The empirical σy, σz curves suggested

by Pasquill [31], Gifford [32] and Turner [33] have often been

used and are based on the stability. There are different meth-

ods to find these parameters.

The meteorological conditions defining Pasquill turbulen-

ce types are

A- Extremely unstable conditions

B- Moderately unstable conditions

C- Slightly unstable conditions

D- Neutral conditions

E- Slightly stable conditions

F- Moderately stable conditions .

Here, we used four methods for estimating dispersion pa-

rameters:

1. Standard method: This method is based on a single at-

mospheric stability. Analytical expressions based on

Pasquill-Gifford (P-G) curves used for the dispersion

estimates have the forms [34]: .

σy =
rx

(1 + x/a)p , (18)

σz =
sx

(1 + x/a)q , (19)

where r, s, a, p and q are constants depending on the

atmospheric stability. Table 1 shows the values of these

constants for different stability classes [35].
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Table 1: Meteorological data of the eight convective test runs [35]

Pasquil classes A B C D E F

σθ 25◦ 20◦ 15◦ 10◦ 5◦ 2.5◦

a(km) 0.927 0.370 0.283 0.707 1.07 1.17

s(m/km) 102.0 96.2 72.2 47.5 33.5 22.0

q -1.918 -0.101 0.102 0.465 0.624 0.70

r(m/km) 250 202 134 78.7 56.6 37.0

p 0.189 0.162 0.134 0.135 0.137 0.134

2. Power law of sigma: In this methodσz andσy can be cal-

culated from:

σy = cxm (20)

σz = dxn . (21)

The parameters c, d,m, n in Smith’s (1968) [8] are esti-

mated in table 2.

Table 2: Meteorological data of the eight convective test runs [36]

Pasquil classes c m d n

A-B 1.46 0.71 0.01 1.54

C 1.52 0.69 0.04 1.17

D 1.36 0.67 0.09 0.95

E-F 0.79 0.70 0.40 0.67

3. Briggs formulas: Formulas had been recommended by

Briggs 1973 [37]; they should be used in place of the

formulas in Table 3 to estimate σz and σy.

Table 3: Meteorological data of the eight convective test runs [35,37]

stability σy σz

class

A-B 0.32x (1 + 0.0004x)−
1
2 0.24x (1 + 0.001x)

1
2

C 0.22x (1 + 0.0004x)−
1
2 20x

D 0.16x (1 + 0.0004x)−
1
2 0.14x (1 + 0.0003x)−

1
2

E-F 0.11x (1 + 0.0004x)−
1
2 0.08x (1 + 0.00015x)−

1
2

4. Hosker expression: Hosker 1973 [38] well-known ana-

lytical ”best-fit” expression as:

σz =

(

αxβ

1 + γxδ

)

F(z0, x) (22)

where z0 is the roughness length, α, β, γ and δ are con-

stants depending on the stability classes in Table 4 and

F(z0, x) is defined as:

F(z0, x) = ln

(

mxg
[

1 +
(

lx j
)−1

])

, z0 > 0.1m (23)

where m, g, l, j are constants depend on the value of the

roughness length, where our application z0 (roughness

length) = 0.5, so l = 18.6, m = 5.16, j = 0.225 and

g = 0.098.

Table 4: The constant values of the roughness length, α, β, γ and

δ [38]

Pasquil classes α β γ δ

A 0.112 1.06 5.0 × 10−4 0.815

B 0.130 0.950 6.52 × 10−4 0.750

C 0.112 0.920 9.05 × 10−4 0.718

D 0.098 0.889 1.35 × 10−3 0.688

E 0.0609 0.895 1.96 × 10−3 0.684

F 0.0638 0.783 1.36 × 10−3 0.672

On the other hand, Briggs 1973 [37] proposed a series

of algebraic interpolation formulae based on a wide va-

riety of data sources containing surface and elevated

sources with a range of initial buoyancies:

σy = b1(1 + b2x)b3 . (24)

The coefficient values b1, b2 and b3 were derived for

both rural and urban terrain and are given in Table 5

[37].

Table 5: The coefficient values b1, b2 and b3 for equation (24) [37]

PG stability b1 b2 b3

A 0.20 0 –

B 0.12 0 –

C 0.08 0.0002 -0.5

D 0.06 0.0015 -0.5

E 0.03 0.0003 -1

F 0.016 0.0003 -1

3 Results and discussion

Meteorological data provided by Inshas meteorological tower

for four months at a smooth flat site (Inshas area, Egypt) for

the year (2006) are given in Table 6, [39]. Air samples were

collected from 98 m to 186 m around the first and second re-

search reactor in AEA, Egypt. The study area is flat, dom-

inated by sand soil with poor vegetation cover. The study

area was divided into 16 sectors (with 22.5o width for each

sector), beginning from the north direction. Aerosols were

collected at a height of 0.7 m above the ground of 10.3 cm di-

ameter filter paper with a desired collection efficiency (3.4%)
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Table 6: Meteorological Data of the nine Convective test runs at Inshas Site

No. Stability Down Mixing Emission rate Wind Initial wind

distance height Q (Bq) speed velocity

x (m) (m) (m/s) u0(m/s)

1 A 98 600.85 0.555429 4 3.95

2 A 100 801.13 0.567 4 3.7

3 B 106 973.0 0.023143 6 5.1

4 C 106 888.0 0.254577 4 3.95

5 A 135 921.0 0.266143 4 3.1

6 D 136 443.0 0.277714 4 3.95

7 E 154 1271.0 0.543857 4 3.95

8 C 165 1842.0 0.563529 4 3.1

9 A 186 1642 0.558321 4 3.95

Table 7: Observed and calculated concentrations (Bq/m3) for nine experiments

Run no. Observed Calculated concentrations

Con. [39] Standard Power law Briggs Hosker

Model of sigma formulas expression

1 0.002 0.0140799 0.0189143 0.013563 0.01379

2 0.004 0.0153392 0.011873 0.01475 0.014014

3 0.005 0.00448 0.00507518 0.004391 0.04422

4 0.007 0.0062904 0.013799 0.00624019 0.00625

5 0.009 0.00859466 0.00870 0.0081565 0.0081117

6 0.007 0.0070497 0.01596 0.0068969 0.00674

7 0.007 0.0137824 0.015015 0.019399 0.013155

8 0.019 0.0177893 0.019194 0.0171672 0.017135

9 0.006 0.0141444 0.01312 0.0132115 0.01311

using a high volume air sampler with 220 V / 50 Hz bias. The

air sampler had an air flow rate of approximately 0.7 m3/min

(25 ft3/min). Sample collective time was 30 min with an air

volume of 21.2 m3 (750 ft3). This air volume was corrected

to standard conditions (25 Co and 1013 mb) [39].

Table 7 indicates comparison between experimental data

of the nine convective test runs at Inshas site and our calcula-

tion of concentration by Briggs formula, power law variation,

standard method and Hosker’s expression, which shows that

the power law formula for the dispersion coefficients achieves

the best agreement with the experimental results.

3.1 Statistical evaluation

Statistical analysis of the predictions and observations is cen-

tral to the model performance evaluation. The predicted and

the corresponding observed concentrations are treated as pairs

in this evaluation.

The statistical index FB indicates weather the predicted

quantities underestimate or overestimate the observed ones.

The statistical index NMSE represents the quadratic error of

the predicted quantities in relation to the observed ones. Best

results are indicated by values nearest zero in NMSE, FB,

nearest 1 in MG,VG and FAC2 and are factor of two if are

greater than 1 and less than 2. The statistical measures chosen

to compare performances of the models described here [40]:

(i) Fractional bias FB is defined as:

FB =
C̄o − C̄p

0.5(C̄o + C̄p)

where the subscripts o and p refer to the observed and pre-

dicted values, respectively, and the overbars indicate mean

values. A good model should have FB value close to zero.

(ii) Normalized mean square error (NMSE) is defined as:

NMSE =
(Co −Cp)2

C̄oC̄p

.

This provides information on the overall deviations between

predicted and observed concentrations. It is a dimensionless

statistic and its value should be as small as possible for a good

model.

(iii) The geometric mean bias is defined as:

MG = exp
(

ln Co − ln Cp

)

.

(iv) The geometric variance is defined as:

VG = exp
(

(ln Co − ln Cp)2
)

.

208 S. H. Esmail and M. M. Taha. Application of the Differential Transform Method to the Advection-Diffusion Equation



Issue 3 (April–July) PROGRESS IN PHYSICS Volume 12 (2016)

Table 8: Comparison between the Standard method, Power law of sigma, Briggs formulas and Hosker expression in terms of FB, FAC2,

NMSE, MG and VG

Standard method Power law of sigma Briggs formulas Hosker expression

FB -0.42543 -0.65368 -0.445 -0.69646

FAC2 1.540371 1.971068 1.572352 2.068563

NMSE 0.189565 0.478407 0.208342 0.551991

MG 0.605381 0.46362 0.601944 0.490099

VG 1.286468 1.805587 1.293883 1.662927

(v) Fraction within a factor of two (FAC2) is given by:

0.5 6 (Cp/Co) 6 2 .

Statistical evaluation of the models results are given in

Table 8, which compares the Standard method, Power law of

sigma, Briggs formulas and Hosker expression in terms of

FB, FAC2, NMSE, MG and VG.

4 Conclusion

In the present study, an analytical treatment for the dispersion

of air pollutant released from point source is formulated. A

mathematical solution has been obtained for the steady-state

form of the three-dimensional advection-diffusion equation

using the Differential Transform Method. Different realis-

tic formulae for the dispersion coefficients as a function of

downwind distance have been adopted (namely: Briggs for-

mula, power law variation, standard method and Hosker’s ex-

pression). In order to validate and verify our model, and for

the sake of comparison, we apply our obtained mathematical

formulae on the experimental data performed for the release

from the first Research Reactor in Egypt. The comparison

shows that the power law formula for the dispersion coeffi-

cients achieves the best agreement with the experimental re-

sults. Finally, the good agreement between the power law

variation of the dispersion parameter and the experiential data

gives us confidence to extend this work for the case of differ-

ent sources types, namely, line, area and volume sources. In

addition, it is also our intention to perform the mathematical

analysis of this method for the case of high penetrated in-

version layer (i.e. different stability conditions that permits

the pollutant penetration and diffusion through the mixing

height).
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On the Applicability of Bell’s Inequality
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We investigate the applicability of Bell’s inequality based on the assumptions used in its
derivation. We find that it applies to a specific class of hidden variable theories referred
to as Bell theories, but not necessarily to other hidden variable dynamic theories. We
consider examples of quantum dynamical processes that cannot be represented by the
initial representation defined in Bell’s derivation. We highlight two hidden assumptions
identified by Jaynes [11] that limit the applicability of Bell’s inequality, as derived,
to Bell hidden variable theories and that show that there are no superluminal physical
influences, only logical inferences.

1 Introduction

Bell’s inequality [1–3] sets constraints for the existence of lo-
cal hidden variable theories in quantum mechanics. Bohr, of
the Copenhagen probabilistic school, and Einstein, of the ob-
jective reality school, who both contributed to the foundation
of quantum mechanics, did not agree on its interpretation –
their views and correspondence on the topic are well docu-
mented in many books [4–7].

In 1935, Einstein, Podolsky and Rosen published a pa-
per [8] that aimed to show that quantum mechanics was not a
complete description of physical reality. Bohr provided a re-
sponse to the challenge [9], but the EPR paper remained an ar-
gument for hidden variables in quantum mechanics. In 1964,
Bell [1] published an inequality that imposed constraints for
local hidden variable theories to be valid in quantum mechan-
ics. The experiments performed by Aspect et al [10] with
entangled photons confirmed that Bell’s inequality was vi-
olated within experimental errors, taken to mean that local
hidden variable theories are not valid in quantum mechanics.
Only non-local hidden variable theories are possible, based
on these results.

In this paper, we investigate the applicability of Bell’s in-
equality, based on the assumptions used in its derivation.

2 Bell’s inequality

Bell’s derivation [1] considers a pair of spin one-half particles
of spinσ1 andσ2 respectively, formed in the singlet state, and
moving freely in opposite directions. Then σ1 · a is the mea-
surement of the component of σ1 along some vector a, and
similarly for σ2 · b along some vector b. Bell then considers
the possibility of a more complete description using hidden
variable parameters λ.

He writes down the following equation for the expectation
value of the product of the two components σ1 · a and σ2 · b
with parameters λ:

P(a,b) =

∫
dλ ρ(λ) A(a, λ) B(b, λ) (1)

where
A(a, λ) = ±1 and B(b, λ) = ±1 (2)

and ρ(λ) is the probability distribution of parameter λ. This
should equal the quantum mechanical expectation value

<σ1 · a σ2 · b> = −a · b . (3)

Bell says that it does not matter whether λ is “a single
variable or a set, or even a set of functions, and whether the
variables are discrete or continuous” [1]. He uses a single
continuous parameter described by a probability distribution.
In a later paragraph, he states that (1) represents all kinds of
possibilities, such as any number of hidden variables, two sets
of hidden variables dependent on A and B, or even as initial
values of the variables λ at a given time if one wants to assign
“dynamical significance and laws of motion” [1] to it. How-
ever, it is doubtful that the probability distribution ρ(λ) can be
used to represent all possible theories of hidden variables.

Indeed, the basic limitation of (1) with its use of a proba-
bility distribution ρ(λ) is that it imposes a quantum mechani-
cal calculation representation on the analysis. Other quantum
level dynamic theories, which we will refer to as hidden vari-
able dynamic theories, could obey totally different dynamic
principles, in which case, (1) would not be applicable. Equa-
tion (1) is only applicable to a specific class of hidden vari-
able theories that can be represented by that equation, which
Jaynes [11] refers to as Bell theories. In the following sec-
tions, we consider examples of quantum dynamical processes
that cannot be represented by (1) or by the probability distri-
bution ρ(λ) used in (1).

3 Measurement limitations and inherent limitations

It is important to note that Bohr’s responses to Einstein’s ge-
danken experiments were based on measurements arguments,
which acted as a barrier to any further analysis beyond that
consideration. As pointed out by Jaynes [12], Einstein and
Bohr “were both right in the essentials, but just thinking on
different levels. Einstein’s thinking [was] always on the on-
tological level traditional in physics; trying to describe the
realities of Nature. Bohr’s thinking [was] always on the epis-
temological level, describing not reality but only our infor-
mation about reality”.
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As discussed in [13], the Heisenberg Uncertainty Princi-
ple arises because x and p form a Fourier transform pair of
variables at the quantum level due to the momentum p of a
quantum particle being proportional to the de Broglie wave
number k of the particle. It is a characteristic of quantum me-
chanics that conjugate variables are Fourier transform pairs
of variables.

It is thus important to differentiate between the measure-
ment limitations that arise from the properties of Fourier tran-
sform pairs, and any inherent limitations that may or may not
exist at the quantum level for those same variables, indepen-
dently of the measurement process. Conjugate variable mea-
surement limitations affect how we perceive quantum level
events as those can only be perceived by instrumented mea-
surements at that level. However, as shown in [13], conjugate
variable measurement limitations affect only our perception
of the quantum environment, and are not inherent limitations
of the quantum level.

The Nyquist-Shannon Sampling Theorem of Fourier tran-
sform theory allows access to the range of values of variables
below the Heisenberg Uncertainty Principle limit under sam-
pling measurement conditions, as demonstrated by the Bril-
louin zones formulation of solid state physics [13] [14, see
p. 21] [15, see p. 100]. Physically this result can be under-
stood from the sampling measurement operation building up
the momentum information during the sampling process, up
to the Nyquist limit. This shows that there are local hidden
variables at the quantum level, independently of the measure-
ment process. The dynamical process in this case is masked
by the properties of the Fourier transform.

4 Wave-particle duality in STCED

The Elastodynamics of the Spacetime Continuum (STCED)
[16] has similarities to Bohmian mechanics in that the so-
lutions of the STCED wave equations are similar to Louis
de Broglie’s “double solution” [17, 18]. Bohmian mechanics
also known as de Broglie-Bohm theory [19–21] is a theory
of quantum physics developed by David Bohm in 1952 [22],
based on Louis de Broglie’s original work on the pilot wave,
that provides a causal interpretation of quantum mechanics.
It is empirically equivalent to orthodox quantum mechanics,
but is free of the conceptual difficulties and the metaphysical
aspects that plague the interpretation of quantum theory.

Interestingly, Bell was aware of and a proponent of Boh-
mian mechanics when he derived his inequality [23]:

“Bohm showed explicitly how parameters could in-
deed be introduced, into nonrelativistic wave mechan-
ics, with the help of which the indeterministic descrip-
tion could be transformed into a deterministic one.Mo-
re importantly, in my opinion, the subjectivity of the
orthodox version, the necessary reference to the ‘ob-
server,’ could be eliminated... I will try to present the
essential idea... so compactly, so lucidly, that even
some of those who know they will dislike it may go

on reading, rather than set the matter aside for another
day.”

In Bohmian mechanics, a system of particles is described by
a combination of the wavefunction from Schrodinger’s equa-
tion and a guiding equation that specifies the location of the
particles. “Thus, in Bohmian mechanics the configuration
of a system of particles evolves via a deterministic motion
choreographed by the wave function” [21] such as in the two-
slit experiment. We will see a similar behavior in the STCED
wave equations below. Bohmian mechanics is equivalent to a
non-local hidden variables theory.

In the Elastodynamics of the Spacetime Continuum, as
discussed in [24], energy propagates in the spacetime contin-
uum by longitudinal (dilatation) and transverse (distortion)
wave displacements. This provides a natural explanation for
wave-particle duality, with the transverse mode correspond-
ing to the wave aspects of the deformations and the longitu-
dinal mode corresponding to the particle aspects of the defor-
mations.

The displacement uν of a deformation from its undeform-
ed state can be decomposed into a longitudinal component uν

‖

and a transverse component uν⊥. The volume dilatation ε is
given by the relation ε = u‖ µ;µ [16]. The wave equation for
uν
‖

describes the propagation of longitudinal displacements,
while the wave equation for uν⊥ describes the propagation of
transverse displacements in the spacetime continuum. The uν

displacement wave equations can be expressed as a longitu-
dinal wave equation for the dilatation ε and a transverse wave
equation for the rotation tensor ωµν [16].

Particles propagate in the spacetime continuum as lon-
gitudinal wave displacements. Mass is proportional to the
volume dilatation ε of the longitudinal mode of the defor-
mation [16, see (32)]. This longitudinal mode displacement
satisfies a wave equation for ε, different from the transverse
mode displacement wave equation for ωµν. This longitudinal
dilatation wave equation for ε is given by [16, see (204)]

∇2ε = −
k̄0

2µ̄0 + λ̄0
uν⊥ε;ν (4)

where µ̄0 and λ̄0 are the Lamé constants and k̄0 the elastic
volume force constant of the spacetime continuum. It is im-
portant to note that the inhomogeneous term on the R.H.S.
includes a dot product coupling between the transverse dis-
placement and the volume dilatation for the solution of the
longitudinal dilatation wave equation for ε.

The transverse distortion wave equation for ωµν [16, see
(210)]

∇2ωµν +
k̄0

µ̄0
ε (xµ) ωµν =

1
2

k̄0

µ̄0
(ε;µuν⊥ − ε

;νuµ⊥) (5)

also includes a R.H.S. coupling, in this case a cross product,
between the transverse displacement and the volume dilata-
tion for the solution of the transverse distortion wave equa-
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tion for ωµν. The transverse distortion wave ωµν corresponds
to a multi-component wavefunction Ψ.

A deformation propagating in the spacetime continuum
consists of a combination of longitudinal and transverse wa-
ves. The coupling between ε;µ and uν⊥ on the R.H.S. of both
wave equations explains the behavior of electrons in the dou-
ble slit interference experiment. It shows that even though
the transverse wave is the source of the interference pattern
in double slit experiments, the longitudinal dilatation wave,
which behaves as a particle, follows the interference pattern
dictated by the transverse distortion wave as observed ex-
perimentally. The longitudinal dilatation wave behaves as a
particle and goes through one of the slits, even as it follows
the interference pattern dictated by the transverse distortion
wave, as observed experimentally [25, see in particular Fig-
ure 4] and as seen in the coupling between ε;µ and uν⊥ in (4)
and (5) above. This behavior is the same as that in Bohmian
mechanics seen above. These results are in agreement with
the results of the Jánossy-Naray, Clauser, and Dagenais and
Mandel experiments on the self-interference of photons and
the neutron interferometry experiments performed by Bonse
and Rauch [26, see pp. 73-81].

As mentioned previously, the solutions of the STCED wa-
ve equations are similar to Louis de Broglie’s “double so-
lution”. The longitudinal wave is similar to the de Broglie
“singularity-wave function” [17]. In STCED however, the
particle is not a singularity of the wave, but is instead char-
acterized by its mass which arises from the volume dilatation
ε propagating as part of the longitudinal wave. There is no
need for the collapse of the wavefunction Ψ, as the particle
resides in the longitudinal wave, not the transverse one. A
measurement of a particle’s position is a measurement of the
longitudinal wave, not the transverse wave.

In addition, |Ψ|2 represents the physical energy density of
the transverse (distortion) wave. It corresponds to the trans-
verse field energy of the deformation. It is not the same as the
particle, which corresponds to the longitudinal (dilatation)
wave displacement and is localized within the deformation
via the massive volume dilatation. However, |Ψ|2 can be nor-
malized with the system energy and converted into a probabil-
ity density, thus allowing the use of the existing probabilistic
formulation of quantum theory.

The dynamical process, although it has some similarities
to Bohmian mechanics, is also different from it as it is cen-
tered on longitudinal (particle) and transverse (wavefunction)
wave equations derived from the properties of the spacetime
continuum of general relativity. It is thus deterministic and
causal as is general relativity.

5 Physical influence versus logical inference

We have considered two examples of quantum dynamical pro-
cesses where the starting equation (1) and the probability dis-
tribution ρ(λ) used in (1) do not apply to the situation. We

now examine in greater details the probabilistic formulation
of Bell’s inequality derivation of section 2 to better under-
stand its limitations.

Physicist E. T. Jaynes was one of the proponents of the us-
age of probability theory as an extension of deductive logic.
His textbook “Probability Theory: The Logic of Science”
[27] published posthumously is an invaluable resource for sci-
entists looking to understand the scientific use of probability
theory as opposed to the conventional mathematical measure
theory. As he states in [11],

“Many circumstances seem mysterious or paradoxi-
cal to one who thinks that probabilities are real phys-
ical properties existing in Nature. But when we adopt
the “Bayesian Inference” viewpoint of Harold Jeffreys
[28,29], paradoxes often become simple platitudes and
we have a more powerful tool for useful calculations.”

Jaynes clarifies this approach to probability theory and con-
trasts it to frequencies as follows [11]:

“In our system, a probability is a theoretical construct,
on the epistemological level, which we assign in order
to represent a state of knowledge, or that we calcu-
late from other probabilities according to the rules of
probability theory. A frequency is a property of the
real world, on the ontological level, that we measure
or estimate.”

The probability distributions used for inference do not de-
scribe a property of the world, only a certain state of infor-
mation about the world, which provides us with the means to
use prior information for analysis as powerfully demonstrated
in numerous applications in [11, 12, 27].

The Einstein–Podolsky–Rosen (EPR) paradox and Bell
inequality in quantum theory is one of the examples exam-
ined by Jaynes in [11]. In quantum mechanics, the belief
that probabilities are real physical properties leads to quan-
daries such as the EPR paradox which lead some to conclude
that there is no real world and that physical influences travel
faster than the speed of light, or worse (“a spooky kind of
action at a distance” as Einstein called it). As Jaynes points
out, it is important to note that the EPR article did not ques-
tion the existence of the correlations, which were expected,
but rather the need for a physical causation instead of what he
calls “instantaneous psychokinesis”, based on experimenter
decisions, to control distant events.

Jaynes’ analysis of the derivation of Bell’s inequality uses
the following notation for conditional probabilities which cor-
responds to Bell’s notation as follows:

P(AB | ab) = P(a,b) (6)
P(A | aλ) = A(a, λ) , (7)

such that Bell’s equation (1) above becomes

P(AB | ab) =

∫
dλ ρ(λ) P(A | aλ) P(B | bλ) . (8)
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However, as Jaynes notes, the fundamentally correct relation
for P(AB | ab) according to probability theory should be

P(AB | ab) =

∫
dλ P(AB | abλ) P(λ | ab) . (9)

Assuming that knowledge of the experimenters’ choices
gives no information about λ, then one can write

P(λ | ab) = ρ(λ) . (10)

The fundamentally correct factorization of the other probabil-
ity factor of (9), P(AB | abλ), is given by [11]

P(AB | abλ) = P(A | abλ) P(B | Aabλ) . (11)

However, as Jaynes notes, one could argue as Bell did that
EPR demands that A should not influence events at B for
space-like intervals. This requirement then leads to the fac-
torization used by Bell to represent the EPR problem

P(AB | abλ) = P(A | aλ) P(B | bλ) . (12)

Nonetheless, the factorization (12) disagrees with the formal-
ism of quantum mechanics in that the result of the measure-
ment at A must be known before the correlation affects the
measurement at B, i.e. P(B | Aab). Hence it is not surpris-
ing that Bell’s inequality is not satisfied in systems that obey
quantum mechanics.

Two additional hidden assumptions are identified by Jay-
nes in Bell’s derivation, in addition to those mentioned above:

1. Bell assumes that a conditional probability P(X |Y) re-
presents a physical causal influence of Y on X. How-
ever, consistency requires that conditional probabilities
express logical inferences not physical influences.

2. The class of Bell hidden variable theories mentioned
in section 2 does not include all local hidden variable
theories. As mentioned in that section, hidden variable
theories don’t need to satisfy the form of (1) (or alter-
natively (8)), to reproduce quantum mechanical results,
as evidenced in Bohmian mechanics.

Bell’s inequality thus applies to the class of hidden variable
theories that satisfy his relation (1), i.e. Bell hidden variable
theories, but not necessarily to other hidden variable dynamic
theories.

The superluminal communication implication stems from
the first hidden assumption above which shows that what is
thought to travel faster than the speed of light is actually a
logical inference, not a physical causal influence. As summa-
rized by Jaynes [11],

“The measurement at A at time t does not change the
real physical situation at B; but it changes our state of
knowledge about that situation, and therefore it chan-
ges the predictions we are able to make about B at
some time t′. Since this is a matter of logic rather than
physical causation, there is no action at a distance and
no difficulty with relativity.”

There is simply no superluminal communication, as required
by special relativity. Assuming otherwise would be similar
to Pauli assuming that the established law of conservation of
energy mysteriously fails in weak interactions instead of suc-
cessfully postulating a new particle (the neutrino).

6 Discussion and conclusion

In this paper, we have investigated the applicability of Bell’s
inequality, based on the assumptions used in its derivation.
We have considered two examples of hidden variable dyna-
mic theories that do not satisfy Bell’s initial equation (1) used
to derive his inequality, and consequently for which Bell’s in-
equality is not applicable: one based on the Nyquist-Shannon
Sampling Theorem of Fourier transform theory and the other
based on the wave-particle solutions of the STCED wave eq-
uations which are similar to Louis de Broglie’s “double so-
lution”. We highlight two hidden assumptions identified by
Jaynes [11] that limit the applicability of Bell’s inequality, as
derived, to Bell hidden variable theories and that show that
there are no superluminal physical influences, only logical
inferences.

We close with a quote from Jaynes [27, see p. 328] that
captures well the difficulty we are facing:

“What is done in quantum theory today... when no
cause is apparent one simply postulates that no cause
exists – ergo, the laws of physics are indeterministic
and can be expressed only in probability form.”

Thus we encounter paradoxes such as seemingly superlumi-
nal physical influences that contradict special relativity, and
“spooky action at a distance” is considered as an explanation
rather than working to understand the physical root cause of
the problem. This paper shows that, in this case, the root
cause is due to improper assumptions, specifically the first
hidden assumption identified by Jaynes highlighted in section
5 above, that is assuming that a conditional probability rep-
resents a physical influence instead of the physically correct
logical inference. In summary,

“He who confuses reality with his knowledge of real-
ity generates needless artificial mysteries.” [11]
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A century has elapsed since gravitational waves were predicted. Their recent detection

by the LIGO-Virgo collaboration represents another feather in Einstein’s cap and at-

tests to the technological ingenuity of experimentalists. However, the news has been

portrayed as affirmation of the existence of black holes, objects whose defining charac-

teristics are event horizons. Whilst a gravitational wave chirp is indicative of coalescing

bodies and the inferred masses, 29±4M⊙ and 36±5M⊙, rule out neutron stars, a promi-

nent yet overlooked feature in the Hanford and Livingston spectrograms points to a

curious mass ejection during the merger process. The spectral bifurcations, beyond

which down-chirps are clearly discernible, suggest that a considerable quantity of mat-

ter spiralled away from the binary system at the height of the merger. Since accretion

disks cannot survive until the latter stages of coalescence, a black hole model seems un-

tenable, and Einstein’s expectation that black holes can neither form nor ingest matter in

a universe of finite age would appear to be upheld. By virtue of general relativity’s logi-

cal consistency and the fact that gravity propagates at light speed, gravitational collapse

must terminate with the formation of pathology-free temporally suspended objects.

1 The black hole controversy

Einstein realised in 1916 that spacetime could mediate the

propagation of energy-transporting gravitational waves trav-

elling at light speed [1]. This entirely theoretical deduction

was recently confirmed by the LIGO-Virgo collaboration, de-

monstrating once again the impeccable physical insights of

this great scientist. However, the conclusion drawn on the

back of this detection, that coalescing black holes triggered

the waves [2], directly contradicts Einstein’s published stance

[3] regarding the outcome of gravitational collapse.

The first static solution to the field equations of general

relativity was found that same year describing the gravita-

tional influence of an idealised, infinite density point mass on

asymptotically flat space [4]. Due to the Birkhoff theorem,

regions of Schwarzschild’s metric accurately represent the

gravity external to spherically symmetric bodies such as irro-

tational stars and planets. However, Einstein appreciated that

in the immediate vicinity of Schwarzschild’s point mass the

solution was physically unrealistic, being unreachable from

regions outside the event horizon [3].

Einstein’s cogent objection to black holes is easily illus-

trated by a concrete example. If a ray of light moving directly

towards a Schwarzschild black hole can neither arrive at the

event horizon nor penetrate it, then no particle can. For a

lightlike radial trajectory leading towards the event horizon,

the Schwarzschild metric reduces to (dr/dt)2 = (2m/r − 1)2.

Assigning initial coordinates (r, t) = (r0, 0) to a photon, ra-

dius r1 < r0 is attained at time t1 > 0, which can be readily

obtained through integration:

t1 =

∫ r1

r0

dr

2m/r − 1
=

∫ r1

r0

(

− 1 −
2m

r − 2m

)

dr , (1)

t1 = r0 − r1 + 2m ln

(

r0 − 2m

r1 − 2m

)

. (2)

As the photon nears the horizon, r1 → 2m(1 + ǫ) where

0 < ǫ ≪ 1. Since ǫ is a factor in the denominator of the

logarithm, t1 grows without limit as ǫ → 0. Accordingly,

even though proper time does not advance for lightlike par-

ticles, global relationships within the spacetime impose an

insurmountable temporal impediment to their arrival at the

event horizon. For timelike particles the situation is much the

same. As general relativity is a deterministic theory, this cal-

culation has profound implications, despite its brevity. Even

in the most favourable of circumstances a black hole cannot

absorb matter and, hence, a universe initially devoid of black

holes remains forever devoid of black holes. Since general

covariance is integral to this theory, changes of coordinates,

as detailed for example in references 5–6 of [2], cannot alter

this fundamental conclusion.

Although the stationary black hole metrics satisfy the field

equations, they lack a dynamical formation mechanism. It is

known that event horizons never quite form during gravita-

tional collapse in a universe of finite age [6–12]. Some the-

orists claim that infalling matter can arrive at the event hori-

zon of a pre-existing black hole in finite proper time, but in

practice this is forbidden by the existence of inviolable tem-

poral relationships that permeate spacetime [13]. In addition,

a variety of imprecise arguments commonly advanced for the

existence of black holes have been robustly refuted [5].

Some stubborn problems now occupying the time of theo-

retical physicists are symptomatic of misunderstandings. Be-

lief in black holes has given rise to difficulties such as the

information paradox [14], loss of causality within rotating

black holes, singularities of infinite mass density and the fact
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that when matter is trapped within an event horizon, it has

no means of influencing external matter, even gravitationally.

Furthermore, tension has arisen between the observed char-

acteristics of certain astrophysical phenomena and popular

black hole models. In particular, the finite lifetimes and ex-

treme energetics of quasars and active galactic nuclei (AGN)

are difficult to reconcile with nearby galaxy clusters which

have only reprocessed around 10% of their primordial gas re-

serves, yet harbour quiescent galactic nuclei.

The ultrarelativistic emission of charged particles by qua-

sars along biaxial jets alludes to an electromagnetically ac-

tive central engine of some form. Whereas any charge accru-

ing on a spheroidal black hole would be rapidly neutralised,

a gravitationally collapsed object of toroidal topology would

be defended by a magnetosphere whose flux lines run locally

parallel to its surface [13, 15]. This inference clashes with

the “principle of topological censorship”, a theorem that is ir-

relevant if a spacetime has no trapped surfaces [16]. Hence,

the characteristics of quasars and AGN offer empirical evi-

dence that gravitational collapse produces “dark holes” lack-

ing event horizons [13]. Quasar extinction would coincide

with topological collapse and charge nullification.

Appreciation of the impossibility of event horizon forma-

tion inspired the first detailed proposal concerning a future

mechanism for dark energy decay. It involves the discharge

of vacuum energy via the Unruh effect by intense accelera-

tions exposed within the deepest innards of dark holes [17].

The same work also highlights a novel objection to the ex-

istence of black holes relating to their unacceptable influ-

ence on the total entropy of the universe. A single supermas-

sive black hole devouring matter could potentially double the

entropy of the visible universe in the space of a few sec-

onds, despite poor opportunities for interactions of the cap-

tured matter.

2 The dawn of gravitational wave astronomy

Since the announcement that gravitational waves have been

detected it has emerged that the GW150914 event closely co-

incided with a gamma ray burst originating in the same sector

of the sky [19]. Suggesting a common source, the binary sys-

tem must have, as the authors put it, become “unexpectedly

active” during coalescence. The possibility that one or more

neutron stars were involved can be rejected due to the large

masses involved [2,20]. The gamma rays are clearly inconsis-

tent with the no-hair conjecture: any accreting matter should

be ejected well before the merger [21]. It is therefore interest-

ing to revisit the gravitational wave data to look for any other

evidence of unanticipated peculiarities.

Two such examples draw the eye. In the spectrograms

of both laser interferometers a down-chirp can be clearly dis-

cerned, bifurcating from the somewhat stronger up-chirp dur-

ing the final crescendo of the merger (see Figure 1). These ap-

pear to be comfortably above the noise floor of each detector.

The down-chirps are not only present in both spectrograms,

they are identically located and share the same characteris-

tics: important hallmarks of a genuine signal.

For a binary dark hole or binary frozen star model, signif-

icant mass loss is conceivable during a cataclysmic merger

of this kind. The particles held in suspension by time di-

lation would be strongly perturbed by the gravitational rip-

ples, transporting here a total energy estimated at 3M⊙c2 [2].

The combination of this disruption and the violent rotation,

particularly during the non-axisymmetric dumbbell phase of

coalescence, could plausibly give rise to significant expul-

sion of matter at the peripheral fringes of the system. The

spectral traces are consistent with matter being centrifugally

launched with a radial velocity component of approximately

0.04c. There is also a marked acceleration of the chirp fol-

lowing the shedding of mass, as might be anticipated if the

rest mass energy of the ejecta was comparable to the energy

radiated in gravitational waves.

From (2), at late times an infalling photon asymptotically

approaches the radius r = 2m. Why must the photon halt

at the exact radius of the event horizon? Why does general

relativity only marginally forbid the growth and formation of

black holes? Could matters have been any different?

Einstein’s theory of gravitation was built upon special rel-

ativity which insists that nothing can travel faster than the

speed of light in vacuum, prohibiting objects from exerting

any form of superluminal influence. As in Newton’s theory,

gravity has infinite range. This demands that gravitons be

massless, with current experimental constraints providing an

upper limit of 1.2×10−22 eV. Signals from LIGO’s geograph-

ically separated interferometers support the expectation that

gravity travels at the speed of light [2]. Were the speed of

gravity any different, the terminal radius of the photon would

change, and philosophical problems would ensue.

If photons could only asymptotically approach some ra-

dius r > 2m, gravitational time dilation could then grow with-

out limit in relatively moderate circumstances, curbing the

maximum curvature of spacetime irrespective of Planck-scale

limitations. If photons could asymptotically approach some

radius r < 2m then event horizons could form, bringing with

them all the pathologies associated with black holes. Only

if gravity travels at the speed of light can spacetime be arbi-

trarily warped without fear of event horizon formation, points

of infinite mass density, time travel paradoxes or violation of

unitarity. Like gravity, electromagnetism has unlimited range.

Electric fields are mediated by virtual photons. If black holes

did exist then the electric fields of charged particles would

vanish upon capture, creating an ‘electrical paradox’ akin to

the very widely acknowledged information paradox. Fortu-

nately, Einstein appears to have formulated a consistent the-

ory of gravitation in which anomalies are avoided but all else

is permitted. A strongly curved spacetime may be vital for

the timely decay of dark energy [17], a possible requirement

for gravity to propagate no slower than light.
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Fig. 1: The gravitational wave spectrograms for the Hanford (top) and Livingston (bottom) Advanced LIGO detectors [2]. Right column:

spectral traces have been annotated to show the primary up-chirp and a matching pair of bifurcations beyond which the decline in frequency

and amplitude suggests the ejection of mass spiralling away from the merging binary system.

3 Discussion

Gravitational waves have the capability to rectify some long-

standing theoretical misconceptions. With improvements in

sensitivity already scheduled we shall soon know whether

mass-ejections are a generic feature of dark hole coalescence

events. If so, we might in time witness some spectacular

mergers of supermassive dark holes in the aftermath of galac-

tic mergers within galaxy clusters. For coalescing bodies of

large and favourably aligned angular momenta, the resulting

gravitational wave signatures could be morphologically very

distinct from GW150914 due to the formation of a toroid-

al dark hole with an unusually lengthy ringdown phase [15,

17]. The publicity and interest surrounding the announcement

that gravitational waves have been detected is understandable.

However, there has been little or no mention of the fact that

the presence of a black hole event horizon cannot be veri-

fied even in principle [22] or that Einstein had mathematical

grounds for dismissing the notion that black holes exist [3].

Black hole proponents might care to take note that our civil-

isation still awaits evidence that any of Einstein’s predictions

concerning gravity were incorrect.

Submitted on February 23, 2016 / Accepted on February 28, 2016

References

1. Einstein A. Approximative integration of the field equations of gravita-

tion. Sitzungsber. Preuss. Akad. Wiss. Berlin, 1916, v. 1, 688.

2. Abbott B. P. et al., LIGO & VIRGO collaborations. Observation of

gravitational waves from a binary black hole merger. Phys. Rev. Lett.,

2016, v. 116, 061102.

3. Einstein A. On a stationary system with spherical symmetry consisting

of many gravitating masses. Annals of Mathematics, 1939, v. 40, 4.
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Repulsive Gravity in the Oppenheimer-Snyder Collapsar
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The Oppenheimer-Snyder metric for a collapsing dust ball has a well defined equilib-
rium state when the time coordinate goes to plus infinity. The entire ball is contained
within the gravitational radius r0, but half of its content lies within a thin shell between
r0 and 0.94r0. This state has the acausal property that no light ray escapes from it,
but if one boundary condition at the surface, which Oppenheimer and Snyder imposed
without justification, is removed, then all points in the interior remain in causal contact
by null geodesics with the exterior. This modification causes the half shell’s interior
radius to increase to 0.97r0. Together with the results of a previous article on the den-
sity inside a spherosymmetric neutron star, the present results indicate that, in contrast
with the universal attraction of Newtonian gravity, General Relativity gives gravitational
repulsion at high density.

1 Introduction

The modern concept of black hole originates with Chandra-
sekhar’s [1] discovery of an upper bound for the mass of a
Newtonian white dwarf; it has been claimed (see, for exam-
ple [2] section 11.3) that the replacement of Newtonian gravi-
tation by General Relativity (GR) makes no significant differ-
ence. Using GR, Oppenheimer and Volkoff [3] (OV) found a
similar result for neutron stars, the upper bound being some-
what lower than in the white-dwarf case. The OV article, in
its footnote 10, did indicate that the GR field equations allow
for a stable solution having zero density at the origin in place
of the maximum density there of the Newtonian solution, but
gave no further attention to this possibility; there seems to
have been no serious attempt to return to it since, though a
well known text ( [5] after equation 23.20) has described it
as “unphysical”. We showed [4] that solutions of the OV-
footnote variety may easily be obtained. The only new fea-
ture of such solutions which could conceivably qualify for the
“unphysical” label is that the metric has a simple-pole singu-
larity at the origin. This singularity is curiously similar to that
now very widely used to describe a black hole, but with the
crucial difference that its residue is positive, so that instead of
infinite density there we find zero density.

In our previous article we advocated a field, rather than
the geometric interpretation of GR, constructing a field en-
ergy tensor to explain why the stellar material is concentrated
in a spherical shell and not at the origin. Here we shall use
an exclusively geometric description, but will nevetheless be
able to demonstrate, by studying the particle geodesics inside
the shell, that the picture which emerges almost demands that
we accept there is gravitational repulsion in the interior of the
shell. We conclude that the black hole is a Newtonian con-
cept, superseded by GR.

Our geometric investigation is based on what seems to be
the only time-dependent study of a collapsar, namely that of

Oppenheimer and Snyder [6] (OS). In an early stage of black-
hole theory this article’s conclusion was seriously misquoted
by Penrose [7] who stated:

“The general situation with regard to a spherically sym-
metrical body is well known [6]. For a sufficiently great mass,
there is no final equilibrium state (our emphasis). When suf-
ficient thermal energy has been radiated away, the body con-
tracts and continues to contract until a physical singularity is
encountered at r = 0.”

OS did not say anything resembling this assertion of Pen-
rose. Indeed we shall show below that the OS density distri-
bution approaches a stationary distribution, whose diameter
is twice the gravitational radius, as the time goes to plus in-
finity. It is true that OS also found that in this limit there
is a region inside the collapsar from which light may not be
emitted, but we shall show below that this is not a real prop-
erty of the model, and that it may be easily repaired so that
all points of the physical space, exterior and interior, remain
causally connected at all times. Nobody has demonstrated
that any real collapse situation leads to the “trapped surfaces”
of the Penrose article, and I would argue that such surfaces
would violate the kind of causality described in Weinberg’s
text ( [2] section 7.5). This conclusion was also stated re-
cently by Chafin [8].

2 The OS metric

OS used the comoving coordinates (τ,R, θ, φ) with the metric

ds2 = dτ2 −
8m3R

r
dR2 − r2

(
dθ2 + sin2 θdφ2

)
, (1)

r = 2m
(
R3/2 −

3τ
4m

)2/3

,

in the exterior region R > 1 and

ds2 = dτ2 −
r2

R2 dR2 − r2
(
dθ2 + sin2 θdφ2

)
, (2)
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r = 2mR
(
1 −

3τ
4m

)2/3

,

in the interior region 0 < R < 1. By the transformation

t =
4m
3

R3/2 −
2
3

√
r3

2m
− 2
√

2mr + 2m ln
√

r +
√

2m
√

r −
√

2m
, (3)

the exterior metric converts to the Schwarzschild form

ds2 =
r − 2m

r
dt2 −

r
r − 2m

dr2 − r2
(
dθ2 + sin2 θdφ2

)
. (4)

We note that, since R is a comoving coordinate, R =

const. is a freefall geodesic and in particular the surface r1(t),
that is R = 1, satisfies

t =
4m
3
−

2
3

√
r3

1

2m
− 2

√
2mr1 + 2m ln

√
r1 +

√
2m

√
r1 −

√
2m

, (5)

and also any such geodesic, for R > 1, has its speed v in-
creasing up to a maximum v = 2c/(3

√
3) and then decreasing

asymptotically to zero as r approaches 2m. This confirms
the OS statement [6] “. . . an external observer sees the star
asymptotically shrinking to its gravitational radius”.

For 0 < R < 1, OS identified an “internal time” t by
defining a cotime y as

t =
4m
3
−

4m
3

√
y3 − 4m

√
y + 2m ln

√
y + 1
√
y − 1

, (6)

and then putting

y =
r

2mR
+

R2 − 1
2

. (7)

This not only gives a continuous match for the internal and
external t at R = 1, but also the metric in 0 < R < 1 is

ds2 =
2mr2(y − 1)2

Ry3(r − 2mR3)
dt2 −

r
r − 2mR3 dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
, (8)

which is continuous with (4) at R = 1.
From (6) and (7) we now see that the equilibrium state of

the OS model is given by

r = mR(3 − R2) (0 < R < 1) , (9)

which contradicts the conclusion stated by Penrose and
quoted in the previous section of this article. The density ρ is
obtained from the curvature tensor of (1)

ρ =
mR3

4πr3 , (10)

and since
√
−g =

r3

R
sin θ , (11)

it integrates over the volume of the collapsar to give∫
R<1

ρ
√
−g dR dθ dφ = m . (12)

In the remote past, when r ∼ yR, y → ∞, the dust particles
are distributed uniformly over the sphere’s interior, but as col-
lapse proceeds their trajectories, R = const, crowd near the
surface. This may be shown by considering that in the remote
past half of the particles are contained within a shell between
R = 2−1/3 = 0.7937 and R = 1, and that their final positions
are r = mR(3 − R2), so that they end up between r = 1.881m
and r = 2m.

3 A problem with causality

At no time does the entire content of the collapsar go inside
the sphere r = 2m, so Figure 1 of Penrose [7] is an incorrect
picture of the OS collapsar, as is the discussion about trapped
surfaces on which the figure is based. There is, however a
causal anomaly in the OS model, in that, for any R < 1, there
is a value of t beyond which no light signal emerges.

For the region R < 1 we introduce the coordinates
(x,R, θ, φ), where x = r/(2mR). The metric is

1
4m2 ds2 = xdx2 − x2dR2 − x2R2

(
dθ2 + sin2 θdφ2

)
. (13)

A radial light wave or radial null geodesic (RNG) satisfies

dR
dx

= −
1
√

x
, (14)

that is
R = 2

√
x(0) − 2

√
x = 2

√
x0 − 2

√
x . (15)

In order to reach the surface at R = 1 we need x(1) > 1 and
therefore x0 > 9/4, but from (7) we find that the minimum
value of x0 is 3/2, reached at cotime y = 1, that is when t is
plus infinity. It follows that, for y > 7/4, an RNG from the
origin cannot escape.

It is a simple matter to repair this flaw in the OS model;
we replace (7) by

y = 1 + x −
(R − 3)2

4
, (16)

so that all RNGs for y > 1 escape and causality is preserved.
I have established [9] that the metric tensor with these coor-
dinates is again continuous at R = 1. It differs from (8) in
that the tensor component grt is not zero in R < 1, but only
at R = 1. It was the unjustified imposition of the condition
grt = 0 which led OS to claim that the connection (7) between
the (x,R) and the (t, r) coordinates is unique. Our amendment
of the OS metric leads to a more concentrated shell, because
the equilibrium state is now specified by

r =
mR(3 − R)2

2
, (17)

which, putting R = 2−1/3, leaves half of the original dust mat-
ter in a shell between r = 1.932m and r = 2m.
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4 Gravity becomes repulsive at high densities

We have all believed since 1687 that gravity is universally at-
tractive, so it requires some effort to adjust to the idea that
gravity may repel; even the new mode of thought which came
with GR did not change the paradigm of attractive gravity. We
have attempted to show elsewhere [4] how a full appreciation
of the gravitational field may cause us to change our intuition.
However, for the present article we shall stay within the geo-
metric presentation of GR, merely pointing the way towards
an understanding of repulsive gravity.

We consider the motion of a foreign dust particle of small
mass which crashes radially into the surface R = 1 at time t,
that is at the point r = r1(t) given by (5), with a speed greater
than that at which the surface itself is moving. We ignore the
gravitational force exerted by this foreign particle, so it moves
along a radial geodesic of the metric (13). The coordinate R
is cyclic, so we have a conservation equation

x2 dR
ds

= −C , (C > 0) , (18)

and it then follows that
dR
dx

=
C

√
C2x + x3

. (19)

This equation, when integrated with initial conditions (x,R) =

(r1/2m, 1), leads to a relation between the final values x∞ and
R∞ at t equal to plus infinity

R∞ = 1 −
∫ r1/2m

x∞

C
√

C2x + x3
dx . (20)

Now substituting y = 1 in (16) provides a second such rela-
tion, so eliminating x∞ we obtain R∞ in terms of r1 and C.
This is not a difficult process numerically, but in the limiting
ultrarelativistic case C → ∞ – effectively a null geodesic – it
becomes especially simple

R∞ = 2 −
√

r1/(2m) , (r1 < 8m) . (21)

If r1 > 8m such a particle passes through the centre and exits
at the opposite end of the diameter. A particle which crashes
into the collapsar when the latter is close to its final state –
r1 close to 1 – does not penetrate it beyond the surface shell
described in the previous section.

As long as we stay within the constraints of the geometric
interpretation of GR, we are not able to draw inferences about
what causes such a dramatic deceleration; we could, for ex-
ample [10], continue to insist that it results from time dilation
of the metric. I suggest, however, that a return to the lan-
guage of field theory offers us, at the very least, an attractive
alternative; we may claim that the force of repulsive grav-
ity which decelerates the incident particle is the very same as
the one which compresses the particles of the collapsar into
a thin shell. In the context of a collapsar having a more re-
alistic equation of state we pursued this point of view in our
previous article [4].
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This paper argues that the Dirac equation can be interpreted as an interaction between
the electron core and the Planck vacuum state, where the positive and negative solutions
represent respectively the dynamics of the electron core and a vacuum wave propagating
within the vacuum state. Results show that the nonrelativistic positive solution reduces
to the Schrödinger wave equation.

1 Introduction

In its rest frame the massive electron core (−e∗,m) exerts the
two-term coupling force [1, Sec.7-8]

F(r) =
e2
∗

r2 −
mc2

r
=

(−e∗)(−e∗)
r2 −

mm∗G
r∗r

(1)

on the PV quasi-continuum, where e∗ is the massless bare
charge with its derived electron mass m, and G (= e2

∗/m
2
∗) is

Newton’s gravitational constant. The first (−e∗) in (1) be-
longs to the electron and the second to the separate Planck
particles making up the degenerate PV state. The two terms
in (1) represent respectively the Coulomb repulsion between
the electron charge and the separate PV charges, and their
mutual gravitational attraction.

The particle/PV coupling force (1) vanishes at the elec-
tron Compton radius rc (= e2

∗/mc2). In addition, the vanish-
ing of F(rc) is a Lorentz invariant constant [2] that leads to
the important Compton-(de Broglie) relations

rc · mc2 = rd · cp = rL · E = r∗ · m∗c2 = e2
∗ (= c~) (2)

where rd = rc/β0γ0 and rL = rc/γ0, and r∗ (= e2
∗/m∗c

2) and
m∗ are the Compton radius and mass of the Planck particles
within the PV. The ratio of the electron speed v to the speed of
light c is β0 and γ0 = 1/(1 − β2

0)1/2. The relativistic momen-
tum and energy following from the invariance of F(rc) = 0 are
p (= mγ0v) and E (= mγ0c2), from which E = (m2c4+c2 p2)1/2

is the relativistically important energy-momentum relation-
ship.

The results of the previous paragraph show that the im-
portant relativistic energy E and momentum p (or its vector
counterpart p) are determined at the basic core-PV interac-
tion level. Furthermore, since the core is many orders-of-
magnitude smaller than the electron Compton radius, it is
reasonable to assume that this point-core picks up its wave-
particle nature (including its Compton radius and its energy
and momentum operators) from its coupling to the PV con-
tinuum.

2 Dirac equation

The Dirac equation [3, p.79]

i~
∂

∂t

(
φ

χ

)
=

(
c−→σ · p̂χ
c−→σ · p̂φ

)
+ mc2

(
φ

−χ

)
(3)

where p̂ (=−i~∇) is the momentum operator and ~ is the re-
duced Planck constant, can be expressed using (2) as

irc
∂

c∂t

(
φ

χ

)
+

(−→σ · irc∇χ
−→σ · irc∇φ

)
=

(
φ

−χ

)
(4)

where the solutions φ and χ for this electron-vacuum system
are 2x1 Dirac spinors, and −→σ is the Pauli 2x2 vector matrix
derived from the three 2x2 Pauli spin matrices σk (k = 1, 2, 3)
[3, p.12]

σ1 =

( 0 1
1 0

)
, σ2 =

( 0 −i
i 0

)
, σ3 =

( 1 0
0 −1

)
. (5)

The gradient operators ∂/c∂t and ∇ in (4) are normalized
by the electron Compton radius rc

∂

c∂t/rc
and

∂

∂xk/rc
(6)

whose denominators can be looked upon as the normalized
line elements cdt/rc and dx/rc of a spacetime [4, p.27] per-
turbed by the electron core (−e∗,m) in (1). Following from
this viewpoint is the concept that the 2x1 spinors φ and χ
represent, respectively, the PV response to the electron core
(−e∗,m) and some type of vacuum wave. Furthermore, the
vacuum wave cannot be a Planck-particle wave, since the PV
is a degenerate state (where the vacuum eigenstates are fully
occupied). Thus the wave must be of the nature of a percus-
sion wave, analogous to a wave traveling on the head of a
kettle drum.

3 Dirac-Schrödinger reduction

The solution χ in the two simultaneous equations of (4) is
assumed in the PV theory to represent a relativistic vacuum
wave propagating within the PV state. What follows derives
the nonrelativistic version of that wave to add more credence
and understanding the vacuum wave idea.

The Dirac-to-Schrödinger reduction [3, p.79] of (4) be-
gins with the elimination of its mass related, high-
frequency, components by assuming(

φ

χ

)
=

(
φ0

χ0

)
e−i(mc2t/~) =

(
φ0

χ0

)
e−i(ct/rc) (7)

222 William C. Daywitt. The Dirac-Electron Vacuum Wave



Issue 3 (April–July) PROGRESS IN PHYSICS Volume 12 (2016)

where φ0 and χ0 are slowly varying functions of time com-
pared to the exponential. This result implies that the fre-
quency ωc = c/rc � ω0 for any ω0 associated with φ0 or
χ0. Inserting (7) into (4) gives

irc
∂

c∂t

(
φ0

χ0

)
+

(−→σ · irc∇χ0
−→σ · irc∇φ0

)
=

(
0
−2χ0

)
(8)

where the 0 on the right is a 2x1 null spinor. This zero spinor
indicates that the mass energy of the free electron core is be-
ing ignored, while the effective negative mass-energy of the
vacuum wave has doubled (−2χ0). In effect, mass energy
for the core-vacuum system has been conserved by shifting
the mass energy from the free relativistic core to the vacuum
wave.

The lower of the two simultaneous equations in (8) can be
reduced from three to two terms by the assumption∣∣∣∣∣ irc

∂χ0

c∂t

∣∣∣∣∣ � |−2χ0| (9)

if the kinetic energy of the vacuum wave is significantly less
than its effective mass energy. Inserting (9) into (8) then
yields

irc
∂

c∂t

(
φ0

0

)
+

(−→σ · irc∇χ0
−→σ · irc∇φ0

)
=

(
0
−2χ0

)
(10)

as the nonrelativistic version of (4). The mass energy of the
free core, and the kinetic energy of the vacuum wave (asso-
ciated with the lower-left null spinor), are discarded in this
nonrelativistic approximation to (4).

Separating the two equations in (10) produces

irc
∂φ0

c∂t
+ −→σ · irc∇χ0 = 0 (11)

and
−→σ · irc∇φ0 = −2χ0 (12)

where the second term in (11) and the first term in (12) rep-
resent the connection between the free-space core dynamics
(φ0) and the vacuum wave (χ0). Inserting (12) into (11) then
leads to [3, p.80]

irc
∂φ0

c∂t
−

(−→σ · irc∇)2

2
φ0 = 0 . (13)

Finally, using the Pauli-matrix identity [3, p.12]

(−→σ · ∇)2 = I (∇)2 (14)

in (13) yields the free-core Schrödinger equation

irc
∂φ0

c∂t
=

(irc∇)2

2
φ0 or i~

∂φ0

∂t
= −
~2

2m
∇2φ0 (15)

where the two spin components in φ0 are ignored in this non-
relativistic approximation; so φ0 becomes a simple scaler
wavefunction rather than a 2x1 spinor.

4 Conclusions and comments

Although the spin components are missing from the standard
version of the Schrödinger equation [5, p.20], the solutions to
(11) and (12) indicate that those components are still mean-
ingful.

Using rc (= e2
∗/mc2 = ~/mc) from (2) in (11) and (12)

yields

irc
∂φ0

c∂t
= −→σ · (̂p/mc) χ0 (16)

and
χ0 = −→σ · (̂p/2) φ0 (17)

where p̂ (= −i~∇) is the vector momentum operator.
Equations (16) and (17) from the perturbed spacetime can

be understood as follows: the free-space energy from φ0 in the
first term of (16) drives the vacuum energy associated with
the second term; this χ0 energy of the second term in (17)
then feeds back into the φ0 term in (16), leading to a circu-
lar simultaneity between the two equations that represent the
coupled nonrelativistic behavior of the core-PV system. Fur-
thermore, the fact that there is no kinetic-energy term in (17)
suggests that the localized energy in the PV travels as a per-
cussion wave through that vacuum state. This scenario repre-
sents the PV view of the Dirac electron equation (4): that is,
the dynamics of the free-space electron core (−e∗,m) lead to
a vacuum wave propagating within the PV state, in step with
the free electron core.
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Mass of a Charged Particle with Complex Structure in Zeropoint Field
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A charged particle immersed in the fluctuating zeropoint field may be visualized as an
oscillator and such an oscillating particle is considered to possess an extended structure
with center of mass and center of charge separated by radius of rotation in a complex
vector space. Considering stochastic electrodynamics with spin, the zeropoint energy
absorbed by the particle due to its internal motion has been derived. One may initially
assume a massless charged particle with complex structure and after interaction with
zeropoint field, the absorbed energy of the particle may correspond to the particle mass.
This gives an idea that an elementary particle may acquire mass from the interaction of
zeropoint field. When the particle moves as a whole, there appears to be a small energy
correction of the order of fine structure constant and it may be attributed to the mass
correction due to particle motion in the zeropoint field.

1 Introduction
The Dirac electron executes rapid oscillations superimposed
on its normal average translational motion and this oscillatory
motion is known as zitterbewegung and it was first shown by
Schrödinger. In the zitterbewegung motion, the electron ap-
pears vibrating rapidly with a very high frequency equal to
2mc2~−1 and with internal velocity equal to the velocity of
light. These oscillations are confined to a region of the order
of Compton wavelength of the particle. It has been shown
by several authors over decades that the center of charge and
center of mass of charged particle are not one and the same
but they are separated by a distance of the order of Compton
wavelength of the particle. The approach of extended particle
structure was developed by Wyssenhoff and Raabe [1], Barut
and Zhanghi [2], Salesi and Recami [3] and others. The list
of references connected with the validity of the extended or
internal structure of charged particle are too many and some
of them are mentioned in the reference [4]. Thus the struc-
ture of an elementary charged particle is not definitely a point
particle with charge and mass or a spherical rigid body with
charge distribution. The structure of electron may be visu-
alized as the point charge in a circular motion with spin an-
gular momentum. The frequency of rotation is equal to the
zitterbewegung frequency and the radius of rotation is equal
to half the average Compton wavelength. The circular mo-
tion is observed from the rest frame positioned at the centre
of rotation which is the centre of mass point. Thus the centre
of mass point and the centre of charge point are separated by
the radius of rotation. The electron spin generated from the
circular motion of zitterbewegung was advocated by several
researchers. Holten [5] discussed the classical and quantum
electrodynamics of spinning particles. In the Holten theory,
the spinning particle emerges as a modification of relativis-
tic time dilation by a spin dependent term and the zitterbewe-
gung appears as a circular motion and the angular momentum
of such circular motion represents the spin. In the Hestene
model of Dirac electron [6], the spin was considered as a dy-

namical property of the electron motion. In the approach of
geometric algebra, using multivector valued Lagrangian, the
angular momentum of this internal rotation represents parti-
cle spin and it has been explicitly shown as a bivector quantity
representing the orientation of the plane of rotation [7, 8]. In
quantum theories, the internal oscillations of the particle are
attributed due to vacuum fluctuations. However, in stochastic
electrodynamics, the internal oscillatory motion of the parti-
cle is attributed to the presence of zeropoint field throughout
space [9]. The mass of the particle is seen as the energy of os-
cillations confined to a region of space of dimensions of the
order of Compton wavelength [10].

The classical concept of space is an infinite void and fea-
tureless. However, it has been replaced by the vacuum field
or the zeropoint random electromagnetic field when the quan-
tum oscillator energy was found to contain certain zeropoint
energy and with the substitution of the quantum oscillator
energy into the Planck’s radiation formula yields the energy
density of zeropoint field at absolute zero temperature [11].
In a classical approach to the radiation problem, Einstein and
Stern obtained blackbody radiation spectrum and suggested
that a dipole oscillator possessed zeropoint energy. In 1916,
Nernst proposed that the universe might actually contain ubi-
quitous zeropoint field without any presence of external elec-
tromagnetic sources [12, 13]. Thus the origin of zeropoint
field is presumed to be purely a quantum mechanical effect
and considered to be uniformly present throughout space in
the form of stochastic fluctuating electromagnetic field. The
zeropoint radiation is found to be homogeneous and isotropic
in space. The spectral density of zeropoint radiation is pro-
portional to ω3 and it is therefore Lorentz invariant. The elec-
tromagnetic zeropoint field consists of fluctuating radiation
that can be expressed as a superposition of polarised plane
waves. Because of the random impulses from fluctuating ze-
ropoint field, a free particle cannot remain at rest but oscil-
lates about its equilibrium position.

The Planck’s idea of zeropoint radiation field was revis-
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ited by Marshall and explicitly showed that the equivalence
between classical and quantum oscillators in the ground state
[14]. This has inspired interesting modifications to classical
electrodynamics and the developed subject is called stochas-
tic electrodynamics. Stochastic electrodynamics deals with
the movement of charged particles in the classical electro-
magnetic fluctuating zeropint field. The presence of classical,
isotropic, homogeneous and Lorentz invariant zeropoint field
in the universe is an important constituent of stochastic elec-
trodynamics. The stochastic electrodynamics approach was
used to explain classically several important fundamental re-
sults and problems of quantum mechanics [15–20]. Boyer
[15] showed that for a harmonic oscillator, the fluctuations
produced by zeropint field are exactly in agreement with the
quantum theory and as a consequence the Heisenberg min-
imum uncertainty relation is satisfied for the oscillator im-
mersed in the zeropoint field. Stochastic electrodynamics was
used to explain the long standing problems of quantum me-
chanics, namely the stability of an atom, Van der Walls force
between molecules [16], Casimir force [17], etc. All these
studies reveal the fact that the conventional concept of space
has been changed by the emergence of zeropoint field. A de-
tailed account of stochastic electrodynamics as a real classical
electromagnetic field and a phenomenological stochastic ap-
proach to the fundamental aspects of quantum mechanics was
given by de La Pena et al., [13, 21]. In the stochastic electro-
dynamics, if the upper cut-off frequency to the spectrum of
zeropoint field is not imposed, the energy of the oscillator
would be divergent. Despite of its success in explaining sev-
eral quantum phenomena, the results obtained in the stochas-
tic electrodynamics have certain drawbacks [20]; it neglects
Lorentz force due to zeropoint magnetic field, it fails in the
case of nonlinear forces, explanation of sharp spectral lines is
not possible, diffraction of electrons cannot be explained and
further the Schrödinger equation can be derived in particular
cases only.

A charged point particle immersed in the fluctuating elec-
tromagnetic zeropoint field is considered as an oscillator. In
the stochastic electrodynamics approach, the equation of mo-
tion of the charged particle in the zeropoint field is known
as Brafford-Marshall equation [13] which is simply the Abra-
ham-Lorentz [22] equation of motion of a charged particle of
mass m and charge e and it is given by

mẍ − Γamv̈ + mω2
0x = eEz(x, t), (1)

where Γa = 2e2/3mc3, ω0 is the frequency of oscillations of
the particle, v is the velocity of the particle, c is the velocity
of light, Ez(x, t) is the external electric zeropoint field and an
over dot denotes differentiation with respect to time. In the
above equation, the force term contains three parts; the bind-
ing force mω2

0x, damping force Γamv̈ and external electric
zeropoint field force eEz(x, t). In the case of point particles,

the strength of these forces follows the relation

mω2
0x < Γamv̈ < eEz(x, t). (2)

The energy absorbed by the particle oscillator in the zero-
point field was given by several authors by introducing cer-
tain approximations. There are two main approaches found
in the literature; one is due to Boyer [6] and the other is
due to Rueda [19]. In addition to these main approaches, re-
cently Cavalleri et al., [20] introduced stochastic electrody-
namics with spin and explained several interesting phenom-
ena for example, stability of elliptical orbits in an atom, the
origin of special relativity and the explanation for diffraction
of electrons. It has been shown that the drawbacks of stochas-
tic electrodynamics can be removed with the introduction of
spin into the problem. The particle has a natural cut-off fre-
quency equal to the spin frequency which is the maximum
frequency radiated by the electron in the zitterbewegung in-
terpretation. This eliminates the problem of divergence in
stochastic electrodynamics. These recent advancements in
the field of stochastic electrodynamics fully support the as-
sumption that the stochastic electromagnetic field represents
the zeropoint field and renew the interest in studying the fun-
damental aspects of quantum systems and in particular the
charged particle oscillator in zeropoint fields.

In Boyer’s extensive studies, the harmonic oscillator was
developed under the dipole approximation and the charged
particle was considered as a point particle without any inter-
nal structure. The point particle limit is endowed with two
assumptions; i) when the particle size tends to zero, ωcτ � 1,
where ωc is the cut-off frequency and τ is the characteristic
time and ii) when the radiation damping term is very small
compared to the external force, Γaωc � 1. In Boyer’s process
of finding the zeropoint energy associated with the charged
particle, an integral under narrow line width approximation
was solved and finally the zeropoint energy per mode of the
oscillator was obtained [16]. This energy has been shown to
be equal to the zeropoint energy of the quantum oscillator.

In Rueda’s approach, the classical particle was consid-
ered as a homogeneously charged rigid sphere and to find the
energy absorbed by the particle, the radiation damping and
binding terms were neglected when compared to the force
term in the Lorentz Abraham equation of motion. The in-
tegration was performed over a range 0 to τ, where τ is the
characteristic time taken by the electromagnetic wave to tra-
verse a distance equal to the diameter of the particle. The
main difference from Boyer’s approach is that Rueda assumed
ωcτ � 1 and this condition means the cut-off wavelength is
much smaller than the particle size. Further, Rueda intro-
duced a convergence factor η(ω) in the zeropoint energy of
the particle oscillator. The average zeropint energy of the os-
cillator is given by [19]

〈E0〉 =
Γa~ω

2
c

π
η(ωc). (3)
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In the later studies, Haitch, Rueda and Puthoff [23] studied an
accelerated charged particle under the influence of zeropint
field and obtained a relation for inertial mass of a charged
particle which is similar to (3). Recently, Haitch et al. [9]
suggested that the radiation damping constant in the zeropoint
field as Γz which is not necessarily equal to the damping con-
stant Γa of Larmor formula for power radiated by an accel-
erated charged particle. If we set η(ω)Γzωc ∼ 1, the ground
state energy of the particle oscillator in the zeropoint field is
written as (~ωc)/π. In the case the cut-off frequency is simlar
to the resonant frequency of the particle oscillator in the elec-
tromagnetic zeropoint field, the ground state energy is equal
to the zitterbewegung energy of the Dirac electron. Here, the
frequency ωc is not generally equal to the frequency of oscil-
lation of the particle and it differs by a fraction of fine struc-
ture constant. However, the reason for assuming Γa as Γz is
obscure. It may be understood that the energy in (3) corre-
sponds only to a mass correction but not to the mass of the
charged particle.

In the stochastic electrodynamics with spin, the particle
is considered to possess an extended internal structure and
the particle spin is sensitive to the zeropoint frequency that
is equal to the frequency of gyration. The particle gyration
motion explains the spin properties and refers to a circular
motion at the speed of light [20]. The velocity of the parti-
cle is not the real velocity of gyrating particle, but centre of
mass point around which the particle revolves. The special
relativity is not present at the particle level and arises mainly
because of the helical motion of the particle when observed
from an arbitrary inertial frame of reference [24]. The cen-
tre of circular motion responds only to the force parallel to
the spin direction. The equation of motion of centre of mass
point can be expressed by (1) provided the external force is
parallel to the spin direction.

Clifford algebra or Geometric algebra has been consid-
ered to be a superior mathematical tool to express many of the
physical concepts and proved to provide simpler and straight-
forward description to the mathematical and physical prob-
lems. The geometric algebra was rediscovered by Hestenes
[25] in 1960’s and it is being used by a growing number of
physicists today. In Geometric algebra, a complex vector
is defined as a sum of a vector and a bivector. In the com-
plex vector algebra, the oscillations of a charged particle im-
mersed in zeropoint field have been studied recently by the
author [26]. The oscillations of the particle in the zeropoint
field may be considered as complex rotations in complex vec-
tor space. The local particle harmonic oscillator is analysed
in the complex vector formalism considering the algebra of
complex null vectors. It has been shown that the average ze-
ropoint energy of the particle is proportional to particle bivec-
tor spin and the mass of the particle may be interpreted as a
local spatial complex rotation in the rest frame.

In the electromagnetic world, the particle mass originates
from the electromagnetic field and it is purely electromag-

netic in nature [27]. In the classical Lorentz theory of
electron, the self-energy is closely connected to the electro-
magnetic mass of the electron. The self-energy problem in
classical theory or quantum theory is essentially connected
to the structure of electron and it may not be correct to as-
sign the structure to the electron as a form factor [28]. Fur-
ther the classical electromagnetic field may be only respon-
sible for the interaction and gives the particle mass as purely
electromagnetic in nature. In quantum field theories, the en-
ergy, momentum and charge of a particle appear as a con-
sequence of field quantisation and leads to natural classifi-
cation of particles depending on their spin values. In the
renormalization procedure of quantum field theory with finite
cut-off for the radiatively induced mass, it has been shown
that mass depends on particle spin in the limit when the bare
mass tends to zero [29]. However, in the quantum electro-
dynamics it is well known that the sum of bare mass and the
mass correction equals the electron mass and the mass cor-
rection is due to the interaction of the particle with vacuum
fluctuations [11]. Recently, Pollock interpreted particle mass
(fermion or boson) arising from the zeropoint vacuum oscil-
lations by introducing a matrix mass term in the Dirac equa-
tion [30]. The standard model deals with the fundamental
particles through interaction of bosons, and at a deeper level
one may consider the particles as field excitations. Though
the vacuum fluctuations have been treated in a different man-
ner in quantum theory and in quantum electrodynamics, the
particle oscillations considered either in the vacuum field or
in the classical stochastic electrodynamics with spin, are at-
tributed to the fluctuations of the zeropoint field. The idea
that the mass arises from the external electromagnetic inter-
action may lead to the conclusion that charge retains intrinsic
masslessness [31]. It has been argued that for there to be cor-
respondence with the particle mass, perhaps at pre-quantum
level, inertial mass must originate from external electromag-
netic interaction [32].

The aim of this article is to find the energy absorbed by
the particle due to its intrinsic motion in the presence of ze-
ropoint field and to discuss the possible origin of mass gen-
eration. In section 2, we have explained the modalities of the
extended structure of the charged particle in the complex vec-
tor algebra. In the present extended particle structure, since
we have considered the center of mass point and center of
charge separated by radius of rotation in the complex plane,
the equation of motion of the particle as a whole is considered
as a combination of equation of motion of center of charge
and the equation of motion of center of mass. These equa-
tions of motion of center of charge and center of mass are
derived in section 3. Considering the equation of motion of
center of charge in the zeropoint field, the energy absorbed by
an extended charged particle is obtained in section 4, and the
possible origin of mass generation is discussed in section 5.
Finally, conclusions are presented in section 6. Throughout
this article a charged particle implies a particle like electron.
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2 The complex structure of a charged particle

In the extended particle structure, the centre of mass and the
centre of charge positions are considered as separate. De-
noting the centre of local complex rotations by the position
vector x and the radius of rotation by the vector ξ , a complex
vector connected with both the motion of the centre of mass
point and internal complex rotation is expressed as [26]

X(t) = x(t) + i ξ(t). (4)

In the geometric algebra, a bivector represents an oriented
plane and i is a pseudoscalar which represents an oriented
volume [33]. Differentiating (4) with respect to time gives
the velocity complex vector.

U(t) = v(t) + i u(t). (5)

Here, the velocity of centre of mass point is v and the internal
particle velocity is u. A reversion operation on U gives Ū =

v − i u and the product

UŪ = v2 + u2. (6)

In the particle rest frame v = 0 and UŪ = u2. Since the par-
ticle internal velocity in the particle rest frame u = c the ve-
locity of light, |U | = u = c. However, when the particle is ob-
served from an arbitrary frame different from the rest frame of
the particle centre of mass, as the centre of mass moves with
velocity v, the particle motion contains both translational and
internal rotational motion of the particle. Then the particle
internal velocity can be seen as

u2 = c2 − v2 (7)

or
u = c(1 − β2)1/2 = cγ−1, (8)

where β= v/c and the factor γ is the usual Lorentz factor. The
angular frequency of rotation of the particle internal motion is
equal to the ratio between the velocity c and radius of rotation
ξ, ωs = c/ξ. When observed from an arbitrary frame, the
angular frequency ω would be equal to the ratio between u
and ξ

ω =
u
ξ

= ωsγ
−1. (9)

Thus the angular frequency of rotation decreases when ob-
served from an arbitrary frame and the decrease depends on
the velocity of the centre of mass. Considering the helical
motion of the particle, this method of calculation for time di-
lation was first shown in a simple manner by Cavelleri [24].
The above analysis shows that the basic reason for the rela-
tivistic effects that we observe is due to the internal rotation
which is a consequence of fluctuating zeropoint field and elu-
cidates a deeper understanding of relativity at particle level in
addition to the constancy of velocity of light postulate. The

difference between ω and ωs corresponds to the particle ve-
locity. In other words, when the particle moves with velocity
v, an important consequence is that the particle itself induces
certain modification in the field to take place at a lower fre-
quency ωB. Thus the motion of a free particle is conveniently
visualized as a superposition of frequencies ω0 and ωB such
that the particle motion as observed from an arbitrary frame
appears to be a modulated wave containing internal high fre-
quency ω0 and an envelope frequency ωB. The ratio between
the envelop frequency and the internal frequency is then ex-
pressed as

ωB

ω0
=
v

c
. (10)

This result is simply a consequence of superposition of inter-
nal complex rotations on translational motion of the particle.
The relativistic momentum of the center of mass point can be
expressed as p = γmv and in the complex vector formalism
momentum complex vector is given by [26]

P = p + i π, (11)

where π = mu. The total energy of the particle is now ex-
pressed as

E2 = PP̄c2 = (p + i π)(p − i π) = p2c2 + m2c4. (12)

However, in the presence of external electromagnetic field we
normally replace the momentum by p − eA/c in the minimal
coupling prescription. Now, using p → p − eA/c in (12)
and equating the scalar parts, the total energy of the particle
becomes

E2 = p2c2 − 2ecp.A + e2A2 + m2c4. (13)

Here, A represents the zeropoint electromagnetic field vec-
tor potential. In the rest frame of the particle, i.e., when the
velocity v = 0, the above expression reduces to

E0 ∼ mc2 +
e2A2

2mc2 , (14)

where the higher order terms are neglected. Thus, under the
influence of zeropoint field, the term e2A2/2mc2 in the above
equation gives a correction to mass. Expanding the vector
potential in terms of its creation and annihilation operators
and averaging in the standard form, it can be shown that the
correction term [23]

e2

2mc2 〈A
2〉 =

α

2π
(~ωc)2

mc2 , (15)

where ωc is the cut-off frequency and α is the fine struc-
ture constant. When the cut-off frequency is equal to the
frequency of oscillation of the particle, ωc = ω0 and using
Einstein-de Broglie formula ~ω0 = mc2, the mass correction
can be expressed in the following form

〈∆E0〉 = δmc2 =
α

2π
mc2. (16)
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Thus in the presence of zeropoint field, the vector potential
term in (15) gives the mass correction and it was obtained by
Schwinger in quantum electrodynamics. The particle mass
which arises due to local complex rotations in the zeropoint
field is regarded as the so called bare mass and when the par-
ticle is observed from an arbitrary frame, the particle mass
has some mass correction due to the presence of external ze-
ropoint field.

3 Equation of motion of the particle with complex struc-
ture

It should be noted that, (1) contains the so called runaway and
causal problems. In the Landau approximation, the damping
term is written as a derivative of external force. In this case,
the runaway and causal problems are eliminated and the exact
equation of motion of a charged particle was recently given
by Rohlrich [34] and Yaghjian [35]. In the equation of mo-
tion of the charged particle, centre of mass appears as if the
total charge is at that point. In other words, there is no dis-
tinction between centre of mass and centre of charge points.
In the case of extended particle structure, it has been clari-
fied in the previous sections that the external zeropoint field
must be responsible for the internal complex rotations and at
the same time for the deviations in the path of the particle
when it is moving with certain velocity. The external zero-
point field is then expressed as a function of complex vector
X, Ez = Ez(X, t) and expanding it gives

Ez(X, t) = Ez(x, t) + i ξ
∣∣∣∣∣∂Ez(x, t)

∂x

∣∣∣∣∣
x→0

+ O(ξ2). (17)

The second term on right hand side of the above equation is
independent of x and it is a function of ξ only. Neglecting
higher order terms in (17) and representing the second term
on right by i Ez(ξ, t), the external zeropoint field Ez(X, t) can
be decomposed into a vector and a bivector parts

Ez(X, t) = Ez(x, t) + i Ez(ξ, t). (18)

The random fluctuations produce kicks in all directions and
leads to random fluctuations of the centre of mass point and
at the same time random fluctuations also produce internal
complex oscillations or rotations. Thus the force acting on
the charged particle can be decomposed into two terms, the
force acting on the centre of mass and the force acting on the
centre of charge. For the field acting on the centre of mass,
the particle mass and charge appear as if they are at the centre
of mass point and we treat the equation of motion of the parti-
cle in the point particle limit. However, for the field acting on
the centre of charge, the effective mass seen by the zeropoint
field is the mass due to the potential Uz ∼ e2/2R ∼ mzc2 . The
magnitude of R is of the order of Compton wavelength. Then
the effective mass mz in the zeropoint field is approximately
equal to the electromagnetic mass which is proportional to
the electromagnetic potential due to charge e at the center of

mass position. Replacing the position vector x by the com-
plex vector X and Ez(x, t) by the complex field vector Ez(X, t)
in (1) and separating vector and bivector parts gives the equa-
tions of motion of the centre of mass and the centre of charge
respectively. The equation of motion of center of mass is the
Abraham-Lorentz equation of motion of a charged point par-
ticle in the external electromagnetic zeropoint field given by
(1) and the motion of the centre of mass of the particle is ob-
served from an arbitrary frame of reference. In the rest frame
of the particle, the equation of motion represents the equation
of motion of center of charge

mzξ̈ − Γzmzü + mzω
2
0ξ = eEz(ξ, t). (19)

The terms Γzmzü and mzω
2
0ξ are radiation damping and bind-

ing terms respectively. The damping constant in the above
equation is defined as Γz = (2e2)/(3mzc3).

4 Average zeropoint energy associated with the particle
in its rest frame

The zeropoint field and particle interaction takes place at res-
onance and the particle oscillates at resonant frequency ω0.
In other words, the particle oscillator absorbs energy from the
zeropoint field at a single frequency which is the characteris-
tic frequency of oscillation. Since, both radiation damping
and binding terms are much smaller than the force term in
(19) one can neglect these terms and integrating with respect
to time t gives the internal velocity of rotation of the particle

u(t) =
e

mz

∫ τ

0
Ez(ξ, t)dt. (20)

Here, the upper limit of integration is chosen as the charac-
teristic time τ required by the electromagnetic wave to tra-
verse a distance equal to the size of the particle. The electric
field vector Ez(ξ, t) is expressed in the same form as that of
Rueda [19],

Ez(ξ, t) =

2∑
λ=1

∫
d3kε(k, λ)

H(ω)
2
×[

aei(k.ξ−ωt) + a∗ei(k.ξ−ωt)
]
,

(21)

where a = exp (−iθ(k, λ)), a∗ = exp (iθ(k, λ)) and ε(k, λ) is
the polarization vector and the normalization constant is set
equal to unity. The phase angle θ(k, λ) is a set of random vari-
ables uniformly distributed between 0 and 2π and are mutu-
ally independent for each choice of wave vector k and λ. The
stochastic nature of the field lies in these phase angles and
a statistical average of these phase angles gives an effective
value of the field. For point particles, because the size is zero,
we find the spectral divergence of zeropoint field. However,
for particles with extended structure, one can discern a natural
cut-off wavelength associated with the particle size. The con-
vergence factor gives an upper bound to the energy available
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from the electromagnetic zeropoint field and it is associated
with the characteristic function H(ω) of the zeropoint field.
The function H(ω) is given by 2π2H2(ω) = η(ω)~ω. In (21),
integrating the electric field vector with respect to time gives

I =

2∑
λ=1

∫ ∞

0
d3k

H(ω)
2

[
ε(k, λ) aeik.ξ

(
e−iωτ − 1
−iω

)
+ε(k, λ) aeik.ξ

(
e−iωτ − 1
−iω

) ]
.

The charge current in the rest frame of the particle is the
charge times the internal velocity of the particle. The inter-
action energy of the charged particle with the zeropoint field
is expressed as the charge current times the vector potential
of the zeropoint field. However, one can express the vector
potential as the integral of the zeropoint electric field vector.
Then the average zeropoint energy acquired by the particle is
expressed as

〈E0〉 =
e2

m
〈II∗〉. (22)

The averages of random phase and the polarization vector are
expressed as follows

〈aa∗〉 = δ(λ − λ′) δ3(k − k′) ; 〈aa〉 = 0 ; 〈a∗a∗〉 = 0

〈ε(k, λ)ε∗(k, λ)〉 = δi j −
k1
k2∑2

λ=1

∫
d3k 〈ε(k, λ)ε∗(k, λ)〉 = 8π

3

∫
ω2 dω .

Using these stochastic averages, replacing the convergen-
ce factor by η(ω0) and setting the upperlimit of integration to
the frequency of oscillations in (22) gives

〈E0〉 =
4e2~

3πmzc3 η(ω0)
∫ ω0

0
ω(1 − cosωτ) dω. (23)

For an extended particle structure ω0τ = 2π and the above
equation after integration reduces to

〈E0〉 = η(ω0)
Γz~ω

2
0

π
. (24)

This result is similar to the result obtained by Reuda [19] and
Puthoff [36]. However, the difference is that the damping
constant is now replaced by Γz and cut-off frequency ωc is
replaced by the resonant internal frequency of oscillation of
the particle. In (24), both the values for mz and η(ω0) are not
known exactly and must be approximated. Instead, one can
approximate η(ω0)Γzω0 ∼ 1 for the particle with extended
structure. Then the average zeropoint energy acquired by the
particle in its rest frame is

〈E0〉 =
~ω0

π
. (25)

This energy is similar to the zitterbewegung energy of Dirac
electron in quantum mechanics.

5 Equation of motion of the particle with complex struc-
ture

In the above procedure, initially we have considered the char-
ged particle without any mass. Such particle interacting with
zeropoint field acquires mass due to particle resonant oscil-
lations and gains energy from the electromagnetic zeropoint
field. This average zeropoint energy of the particle appears
as the mass of the particle. In the complex vector formal-
ism of internal harmonic oscillator in zeropoint field, it has
been shown by the author that the average energy 〈E0〉 is re-
lated to the mass through particle spin and represents the mass
generated from the local complex rotations produced by the
interaction of zeropoint field with the particle. The relation
between average zeropoint energy and particle spin is given
by the expression [26]

〈E0〉 − ω0〈s〉 = 0. (26)

Let us denote ωs = 2ω0 and write the angular velocity bivec-
tor as Ωs = −iσsωs, where σs is a unit vector along the direc-
tion of spin. The average value of spin is obtained by taking
the average over a half cycle, 〈s〉 = 2

π
s. Substituting this aver-

age value of spin and 〈E0〉 from (25) in (26) gives the relation
between particle mass and spin

mc2 = σsΩs.S , (27)

where the relation ~ω0 = mc2 is used and the bivector spin
S = iσs~/2. The unit vector σs acting on an idempotent
J+ = (1 + σS )/2 gives an eigenvalue +1. This statement is
represented by an equation σsJ+ = +1J+ . When (27) is
multiplied from right by an idempotent J+ on both sides the
unit vector is absorbed by the idempotent and equating the
scalar parts gives

mc2 = Ωs.S . (28)

Thus the mass of the particle turns out to be the local internal
rotational energy given by the term Ωs.S . Since, the mag-
nitude of spin and velocity of light are constants, the value
of particle mass depends on the frequency of spin rotation
and the different particles may have different frequencies of
spin rotation. The above analysis shows that the internal com-
plex rotation is responsible for the existence of particle mass.
Then, one may initially consider a massless charged particle
and it may acquire mass from zeropoint field through a local
complex rotation.

When the particle is observed from an arbitrary frame of
reference, the center of mass point moves with velocity v.
The equation of motion of centre of mass point is given by (1)
and solving it by assuming the radiation damping and binding
terms as small when compared to the force term, one can ob-
tain the zeropoint energy absorbed by the point particle and
it is given by (3). The cut-off frequency ωc is the limiting
frequency in the integration. When we assume the cut-off
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frequency ωc = ω0 [37, 38] and after introducing the conver-
gence factor η(ω0) ∼ 3/4 in (3), the average energy represent-
ing the mass correction of the particle in the zeropoint field
can be expressed as

δm =
α

2π
mc2. (29)

This mass correction is too small and found to be similar to
the expression found in quantum electrodynamics to the first
order in the fine structure constant α.

6 Conclusions

In the stochastic electrodynamics with spin, it has been shown
that the average zeropoint energy absorbed by the particle due
to its internal motion gives the particle mass. When the parti-
cle center of mass point moves with certain velocity, we find
the average energy absorbed by the particle gives the mass
correction. In deriving both particle mass and mass correc-
tion, a convergence factor has been introduced for an ex-
tended particle. To understand the mechanism of mass gen-
eration of an elementary particle, one may initially assume a
massless charged particle with complex structure and such a
particle can be visualized as an oscillator in the fluctuating
zeropoint field. Then the average energy absorbed by the os-
cillator refers to the particle mass. Finally, we conceive the
idea that an elementary particle acquires mass from the inter-
action of ubiquitous zeropoint field.
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The Relationship Between the Possibility of a Hidden Variable in Time
and the Uncertainty Principle
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In this paper we will discuss the relationship between the possibility of a hidden variable
in time and the uncertainty principle. The discussion consists in a fundamental look at
the decay time processes of unstable elementary particles. As will be argued, the hid-
den variable in time possibility may result in a possible way to bypass the energy-time
uncertainty principle. Therefore energy and time information may be known simulta-
neously in the decay time process. A fundamental and general experimental way to test
the above is suggested.

1 Introduction

In this paper we investigate the connection between the pos-
sibility of a hidden variable in time and the uncertainty prin-
ciple. In [1] the process of e+e− → µ+µ− was discussed and it
was questioned how come under what appears to be identical
local initial conditions we get a distribution of decay time val-
ues for the µ+ and the µ−. In[1] there was no discussion about
the muon mass width that in fact means that the muons are
in principle not completely identical to each other and there-
fore the local initial conditions are not completely identical
between the different events. In [1] it was assumed that the
muon mass width could not explain (at least not by itself) the
exponential decay time distribution of the muons. Therefore
the suggestion was that there exists another internal property
within the muons that is responsible for generating the muon
decay time distribution.

However this could not be the complete explanation as
the muons do have a narrow distribution of mass values and
therefore there are slightly different local initial conditions
in this process between different events. This fact has to be
taken into account in a complete explanation for the decay
time distribution in this process. As the muon mass width is
part of the uncertainty principle, in this paper we will discuss
the connection of the uncertainty principle to the hidden vari-
able in time possibility and attempt to incorporate the two.
Moreover we will discuss how the existence of a hidden vari-
able in time could help to bypass the energy-time aspect of
the uncertainty principle. Finally an experimental way to test
the above is discussed.

This paper is organized as follows. Section 2 discusses the
theoretical background. Section 3 describes a possible exper-
imental way to bypass the energy-time uncertainty principle
in case a hidden variable in time do exist. The conclusions
are presented in section 4.

2 Theoretical discussion

2.1 Background

In this paper we investigate the connection between the possi-
bility of a hidden variable in time and the uncertainty princi-

ple. The hidden variable in time possibility first presented in
[1] gives a deterministic approach that attempts to explain the
distribution in decay time as a result of a compatible distri-
bution in an additional internal property within the particles.
The suggestion was that this additional internal property is
related to the frequency of the virtual boson emission and ab-
sorption and therefore as it is related to time and affects the
decay time of particles it was termed a hidden variable in time
( fr). However even if the above is correct this could not be a
complete explanation as we have to take into account a known
distribution in the initial decaying particles which is the dis-
tribution in their mass.

In [1] it was assumed that this mass distribution of for
example the muon particles can not solely explain the muon
exponential decay time distribution. More specifically it was
assumed that the Breit-Wigner distribution of the mass value
could not be translated in a deterministic, unique and logical
way, using the Standard Model, into the exponential decay
time distribution that we observe. One could convince oneself
intuitively that this is the case by considering the peaks of
the two distributions which are at m = Mmean for the Breit-
Wigner case and t = 0 for the exponential decay case and also
the tails which are for the mass Breit-Wigner case at m = 0,
and at m = ∞ (two tails) and for decay time case at t = ∞.

Therefore one can not get a logical connection between
the two distributions because one could not associate the pro-
cess initial and final condition logically considering what we
know from the Standard Model. That is if we start from the
two peaks as the most common and popular initial conditions
where most of the events are then we get two different initial
conditions for the mass value at the tails (m = 0, m = ∞) that
give a single final condition which is the tail of the exponen-
tial at t = ∞.

This does not give a logical and deterministic explanation
as logically under different initial conditions we should get
different final conditions considering the dependence of the
decay time on the mass as described in the Standard Model
and the experimental decay time results, i.e the higher the
mass is the shorter the decay time is. Therefore the mass
distribution could not generate deterministically and logically
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using the Standard Model, the observed muon decay time dis-
tribution, and we need an alternative explanation. Perhaps in
the form of the hidden variable fr.

The standard model does however, give a general link be-
tween the Breit-Wigner shape and the exponential decay time
shape for a given particle which narrows down the uncertainty
by telling us the favorite mass value of the particles is Mmean

and that an enhanced fraction of them will decay almost in-
stantly after they are born. For example if 40% of the masses
are at a bin around Mmean then 40 ∗ 40 = 16% of them will
decay in the first decay time bin in the decay time distribution.

That is if we measure a specific mass to be on the mean
value then we know that there is a 16% probability that the
particle would decay in the first decay time bin. This is com-
pared to what we know from the uncertainty principle, where
knowing exactly the mass value yields a complete uncertainty
on the decay time. Therefore the Standard Model reduces the
uncertainty with respect to the uncertainty principle by allow-
ing us to calculate the Breit-Wigner and the exponential decay
time distributions.

2.2 ∆m, ∆t and fr

The distribution of ∆m is known from the Breit-Wigner but
the distribution of ∆t is experimentally unknown (we do not
know how to deduce it from the exponential decay distribu-
tion), we only know the maximum value of it from the knowl-
edge of ∆m and the boundaries given by the uncertainty prin-
ciple.

According to [1], if one knows the true particle decay T1,
time then one may know fr1 from Fig. 1. In this case this
particular fr1 has two possible mass value M1,M2 as shown
in Fig. 2. These two mass values may have the same value of
fr1 but with very different mean lifetimes given for example
in the muon case, from the known Standard Model formula:

τµ(1,2) =
192 π3h7

G f M(1, 2)5
µ c4

. (1)

where G f is the Fermi coupling constant. In the case when fr
exists, one may have a deterministic link between ∆m,∆t, fr
and t which may cancel the uncertainty limitations as will be
discussed later on. Without fr there is no deterministic link
between a specific mass M1 and a specific decay time T1.

If fr exists the exponential shape is the slope of the fr
depending on the mean lifetime which gives a deterministic
description for a specific event using extra information in the
form of fr.

2.3 Mathematical relationship between fr and the expo-
nential and Breit-Wigner distributions

Putting the above into a mathematical form gives us two ex-
pressions for fr:

fr(i) = f (mi) Ai = f (mi) exp
(
−

ti
τi

)
(2)

Fig. 1: fr versus the distribution of the particles decay time.

fr(i) = f (mi) f (Ei) = f (mi)
k1

(E2
i − M2

mean)2 + M2
mean Γ2

i

(3)

where f (mi) is the mass amplitude and Ei = mi c2. One pos-
sibility for f (mi) may be: f (mi) = Mmean + (mi − Mmean) k2
where k1 and k2 are parameters with yet unknown values. The
above relationship suggests the following:

For mass measured close to the muon mean mass values
∆m is small and ∆t is large (but we cannot be sure at this stage
how large as we do not know how to deduce the uncertainty
∆t from the exponential muon decay time distribution). We
can only get the maximum value for ∆t for small ∆m using
the uncertainty principle. From Fig. 2 we can see that small
∆m values correspond to high fr values and therefore, as can
be seen from Fig. 1 to short decay time values.

For mass measured far from the mean muon mass value
(lower or bigger), we know that ∆m is large and ∆t is small.
Again we cannot be sure for a particular event how small
is ∆t, however we only know that it has to be small as ∆m
is large in order to satisfy the uncertainty principle. From
Fig. 2 we can see that large ∆m corresponds to low fr values
and therefore, as can be seen from Fig. 1, to long decay time
values.

Therefore the effect of the uncertainty principle assuming
the existence of fr, on the decay process is that it associates
a particular and different uncertainty on each decay time and
mass values. This is where masses around Mmean are assumed
to have short decay times and have small ∆m and large ∆t,
and masses that are away from Mmean (smaller or greater)
are assumed to have larger decay times and larger ∆m and
smaller ∆t.

This is where the limitation associated by the uncertainty
principle of knowing simultaneously the exact mass and de-
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Fig. 2: fr versus the distributions in the particles mass.

cay time of a particle still remains. In the next section we will
discuss how this limitation could be bypassed.

3 Possible bypass of the energy-time uncertainty prin-
ciple

The possibility of a hidden variable in time opens up a new
way to fundamentally bypass the above limitation on the si-
multaneous knowledge of the muon mass and decay time val-
ues. This could be expressed by the following measurement
that may be done by known detectors [2]:

As measuring the muon mass exactly is experimentally
difficult due to the missing energy of the neutrino involved,
we may turn to measuring exactly its decay time.

Therefore, if we measure a specific muon decay time t1,
we know its fr from Fig. 1. Therefore we could know its two
associated masses m1 and m2 from Fig. 2 and its mass uncer-
tainty ∆m. From the uncertainty principle we could then also
know its maximum ∆t uncertainty. Therefore this gives us
three possible decay time t1, t1 − ∆t, t1 + ∆t and six possible
masses that are associated to these three decay times. Now
we need to decide which pair of decay time and mass values
is the correct one for that particular event. We can attempt to
do that by measuring exactly the muon electric charge Q in
that event from:

M V2

r
= QVB (4)

where B is the external magnetic field, M is the muon mass
and we can measure the momentum from the curvature r and
the velocity V from the Cherenkov detector. Therefore after
knowing the charge we may deduce the factor A = exp(−t/τ)
according to [3]. This A value corresponds to a part of the
particles fr in that particular event where fr(i) = f (mi) Ai as
shown in (2). Now all we need to do is to see which pair of
mass and decay time values is closest in value to the mea-
surement of the factor A and find the correct initial mass and
final decay time in that particular event, thereby bypassing
the uncertainty principle.

4 Conclusion

The implication of a hidden variable in time on the energy-
time uncertainty principle was discussed. A fundamental way
was presented to bypass the uncertainty principle through me-
asuring the decay time and charge value in a specific e+e− →
µ+µ− event, thereby knowing the exact value of the initial
muon mass and decay time.
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This paper re-derives the Dirac continuity equation for the electron from the viewpoint
of the Planck vacuum (PV) theory. Results show the equation to be a spacetime equation
(whose line elements are cdt and dxk) that equates the normalized ct-gradient of the
probability density (ψ†ψ) to the normalized negative divergence of the quantity (ψ†ααψ).

1 Introduction

The Dirac equation that defines the free-electron spinor field
ψ = ψ(r, t) [1, p.74]

icℏ
∂ψ

c∂t
= (cαα · p̂ + mc2β)ψ (1)

where p̂ (=−iℏ∇) is the vector momentum operator, can be
expressed as

icℏ
(
∂

c∂t
+ αα · ∇

)
ψ = mc2βψ (2)

where c is the speed of light, ℏ is the reduced Planck constant,
and m is the electron mass. The spinor field ψ is the 4×1
column vector

ψ =


ψ1
ψ2
ψ3
ψ4

 . (3)

The two 4x4 matrices in (1) and (2) are defined by

αk =

(
0 σk

σk 0

)
and β =

(
I 0
0 −I

)
(4)

where k = (1, 2, 3) and I is the 2×2 unit matrix. The three
2×2 Pauli spin matrices σk are [1, p. 12]

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(5)

and the operator on the left side of (2) reduces to(
∂

c∂t
+ αα · ∇

)
=

 ∂

c∂t
+

3∑
k=1

αk
∂

∂xk

 . (6)

In its rest frame the massive electron core (−e∗,m), with
its zero-point derived mass m [2], exerts the two-term cou-
pling force [3, Sec. 7-8]

F(r) =
e2
∗

r2 −
mc2

r
=

(−e∗)(−e∗)
r2 − mm∗G

r∗r
(7)

on the PV quasi-continuum, where e∗ is the massless bare
charge and G (= e2

∗/m
2
∗) is Newton’s gravitational constant.

The first (−e∗) in (7) belongs to the electron and the sec-
ond to the separate Planck particles making up the degener-
ate PV state. The two terms in (7) represent respectively the
Coulomb repulsion between the electron charge and the sep-
arate PV charges, and the second their mutual gravitational
attraction.

The particle/PV coupling force (7) vanishes at the elec-
tron Compton radius rc (= e2

∗/mc2). In addition, the vanish-
ing of F(rc) is a Lorentz invariant constant [4] that leads to
the important Compton-(de Broglie) relations

rc · mc2 = rd · cp = rL · E = r∗ · m∗c2 = e2
∗ (= cℏ) (8)

where rd = rc/β0γ0 and rL = rc/γ0, and r∗ (= e2
∗/m∗c

2) and
m∗ are the Compton radius and mass of the Planck particles
within the PV state. The ratio of the electron speed v to
the speed of light c is β0 and γ0 = 1/(1 − β2

0)1/2. The rela-
tivistic momentum and energy following from the invariance
of F(rc) = 0 are p (= mγ0v) and E (= mγ0c2), from which
E = (m2c4 + c2 p2)1/2 is the relativistically important energy-
momentum relationship.

Using (8), (2) can be expressed as

ie2
∗

(
∂

c∂t
+ αα · ∇

)
ψ = mc2βψ (9)

or

irc

(
∂

c∂t
+ αα · ∇

)
ψ = βψ (10)

where the partial derivatives within the parentheses are nor-
malized by the Compton radius rc. The spinor field that is
the hermitian conjugate of ψ is the 1×4 row vector ψ† =
(ψ†1, ψ

†
2, ψ

†
3, ψ

†
4). Then, pre-multiplying (10) by ψ† leads to

ircψ
†
(
∂

c∂t
+ αα · ∇

)
ψ = ψ†βψ . (11)

Taking the hermitian conjugate of (10), post-multiplying by
ψ, then yields [1, p. 76]

−irc

(
∂

c∂t
+ αα · ∇

)
ψ†ψ = ψ†βψ . (12)

Subtracting (12) from (11) finally leads to the continuity
equations [1, p. 76]

irc

[
∂(ψ†ψ)

c∂t
+ ∇ · (ψ†ααψ)

]
= 0 (13)
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or
∂(ψ†ψ)
c∂t/rc

+

3∑
k=1

∂(ψ†αkψ)
∂xk/rc

= 0 (14)

for the electron. From (8), the presence of rc in these two
equations connects the electron core dynamics to a wave trav-
eling within the vacuum state [5].

2 Comments and Conclusions

Dividing (13) by irc yields the equation

∂(ψ†ψ)
∂t

+ ∇ · (ψ†cααψ) = 0 (15)

where the 4×4 matrix cαα looks like a velocity operator be-
cause of the speed of light c. This observation then leads
intuitively to the standard continuity equation [1, p. 76]

∂ρ

∂t
+ ∇ · j = 0 (16)

where ρ = ψ†ψ is the probability density and jk = ψ†cαkψ
is the kth component of the probability current density. Inte-
grating (16) over the volume V (assumed to contain the elec-
tron core (−e∗,m)), and using the divergence theorem, leads
to [1, p. 77]

∂

∂t

∫
V

dρ d3x +
∫

S
j · dS⃗ = 0 . (17)

where the surface S surrounds the volume V .
So far, so good. But there is a problem: treating cαα as a

free-space matrix velocity leads to a tortured interpretation of
that operator that cries out for a better explanation. From the
PV perspective, that explanation is apparent from equation
(14)

∂(ψ†ψ)
c∂t/rc

+

3∑
k=1

∂(ψ†αkψ)
∂xk/rc

= 0

where the Minkowski-like line elements, cdt and dxk associ-
ated with the partial derivatives, are normalized by the elec-
tron Compton radius rc. The form of this equation suggests
that it is associated with a distorted spacetime [6, p. 27] (the
distortion coming from the rc and the αk), rather than a free-
space velocity dynamic. Furthermore, the absence of the dy-
namical electron parameters p and E from (8), and the fact
that cαα is not a recognizable free-space operator, suggest that
(14) refers to a PV substructure dynamic [7] (driven by the
electron core dynamic), where the normalized ct-gradient of
(ψ†ψ) equals the normalized negative divergence of (ψ†ααψ).

Finally, the assumption that the PV is a degenerate state
implies that the Planck-particle energy eigenstates are full. So
if there is a current wave propagating within the PV, it cannot
involve a Planck particle current (because the Planck particles
are not free to move macroscopically). Thus cαα must refer,
in part, to a localized percussion-like spinor wave within that

vacuum state, analogous to a wave traveling on the surface of
a kettle drum.

Equations (13) and (14) and the previous two paragraphs
represent the PV view of the Dirac-electron continuity equa-
tion.
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It is suggested in this article that part of the signal in the 1.3 mm range from Sagittarius
A* originates inside the central collapsar, rather than coming entirely from its accretion
disc. The suggestion has its origin in the discovery that the classic article of Oppen-
heimer and Snyder contains a basic error in its assertion that the light, from a collapsing
object lying entirely within its own photonsphere, is progressively cut off as the object
shrinks towards its gravitational radius, where a large part of the Oppenheimer-Snyder
collapsar’s material is concentrated. The signal from the collapsar has certain features
which may make it possible to distinguish its image from that of the accretion disc.

1 Introduction

At the centre of our galaxy, 8 kp distant from us, there is an
object named Sagittarius A* whose mass is 4.1 megasuns. It
is popularly classified as a black hole, with a spherical∗ region
of radius 1.2 × 107 km around it bounded by an “event hori-
zon”; according to black-hole theory no light from Sagittarius
A* can cross this horizon.

In two recent articles [1, 2] it was shown that there is a
solution of the field equations of General Relativity for such
a supermassive object, which has no singularity at r = 0,
and which allows light signals to cross the horizon. The latter
property of the solution was demonstrated for the case of rays
which are normal to the event horizon, and the present article
demonstrates that it may be extended to all orientations. In
addition we consider the range of angles for which light orig-
inating at the surface of such a collapsar crosses the photon-
sphere, at 1.5 times the gravitational radius, and consequently
may reach a terrestrial telescope. There is currently a project
called the Event-Horizon Telescope [3] (EHT) designed to
look at the signal from the neighbourhood of Sagittarius A*
in the 1.3 mm range.

Central to the widespread belief in the validity of black-
hole theory is the article of Oppenheimer and Snyder (OS)
[4]. This reported, without giving details, an investigation of
the light signal from a supermassive object, arriving at the
following conclusion

All energy from the surface of the star will be
reduced very much in escaping . . . by the gravi-
tational deflection of light which will prevent the
escape of radiation except through a cone about
the outward normal of progressively shrinking
aperture as the star contracts. The star thus tends
to close itself off from any communication with
a distant observer.

The property of the OS metric claimed by Penrose, which
he needed as a prerequisite for his singularity theorem [5],

∗For the purposes of this article we ignore its spin.

was the stronger one known as the trapped surface. The pub-
lications cited above show that neither of these properties in
fact holds for the OS metric.

In the following two sections we shall use precisely the
OS metric to show that the progressively shrinking aperture
of the emission cone has no effect on the size of the image of
the collapsing object, and only a marginal effect on its total
luminosity. This result leads us to suggest that the signal from
Sagittarius A* comes partly from the surface of the collapsar
itself, and not entirely from the accretion disc, as is assumed
in most current analyses. The accretion disc may well have
a substantially higher temperature than the collapsar, but that
is probably offset by the vastly greater area of the latter. Note
also that the millimetre range of wavelength investigated by
the EHT corresponds to the maximum of a Planck spectrum
of just a few degrees Kelvin; to support our analysis, the col-
lapsar must retain only the merest relic of its thermal energy.

The OS article reached another conclusion, stated in their
Abstract, namely

. . . an external observer sees the star asymptoti-
cally shrinking to its gravitational radius.

This result contradicts directly Penrose’s description of the
OS results and was verified by me in [1]. The point is that
OS showed that there is a common system of coordinates ap-
plicable to both the exterior and interior of the collapsar. My
article [1] demonstrated that the density distribution of the
OS “dust cloud” becomes concentrated near the surface as it
shrinks to the gravitational radius; no exotic process like the
modern black-hole one of “spaghettification” [6] occurs when
a notional spaceship crosses the event horizon. OS should be
considered responsible for the notion that further shrinkage
occurs within the gravitational radius only in so far as they
gave their article the misleading title “On continued gravita-
tional contraction”.

It should be noted that in the exterior, and hence in what
should now be recognized as the universal, time frame the
collapsar’s shrinkage to the gravitational radius takes an in-
finite lapse of time. We shall show in the following section
that in the limit there is an underlying infinite red shift, which
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causes not only the surface itself, but also all light signals ap-
proaching it, to be infinitely slowed down. This is the real
significance of the event horizon, but it is my contention that
a real collapsar, with an internal pressure resulting from the
intervention of forces other than gravitational, stops shrink-
ing before it reaches the gravitational radius. For example,
we have investigated [7] a collapsar whose equation of state
is an idealized form of neutron fluid∗, and for which, above
a certain mass, its maximum density lies between the event
horizon and the photonsphere.

2 The exterior light orbits

Darwin [9, 10] described the null geodesics of the Schwarz-
schild metric

ds2 =
r − 2m

r
dt2 − r

r − 2m
dr2 − r2dθ2 − r2 sin2 θ dϕ2, (1)

where 2m is the gravitational radius. He extended the stan-
dard theory of light deflection, his method being equivalent to
minimising the action integral for a light ray with small im-
pact parameter starting from infinity; for orbits in the plane
θ = π/2,

δ

∫
Ldϕ = 0, (2)

with the lagrangian

L =
[
r − 2m

r
t′2 − r

r − 2m
r′2 − r2

]1/2

, (3)

where a prime denotes differentiation with respect to ϕ. The
Lagrange equation for the cyclic coordinate t is[

d
dϕ
− L′

L

]
r − 2m

r
t′ = 0. (4)

The corresponding conservation integral for ϕ enables us to
put L′/L = 2r′/r, so we obtain

t′ =
r3

p(r − 2m)
, (5)

the constant p being the impact parameter

p = lim
r→∞

r2 dϕ
dt

. (6)

The ray orbit is then obtained by substituting for t′ and then
putting L = 0, that is

r′2 =
r4

p2 − r2 + 2mr . (7)

Darwin deduced that a ray with impact parameter p
greater than 3m

√
3 returns to r = ∞; the deflection angle may

∗This model is simply that of Oppenheimer and Volkoff [8] with a dif-
ferent boundary condition at the origin.

be many multiples of 2π as p approaches 3m
√

3, and in the
limiting case p = 3m

√
3 the ray circles indefinitely at r = 3m,

which is nowadays called the photonsphere. For p less than
this, the ray is captured, and it goes to what Darwin termed
the “barrier”, nowadays called the event horizon, at r = 2m.
He also repeated the point previously made by OS, that the
journey from r = 3m to r = 2m takes an infinite time. When
the collapse is incomplete, the surface being at r = r1 > 2m,
a ray arrives there making an angle with the normal of

ξ = tan−1

 r2
1

p2 − 1 +
2m
r1

−1/2 , (8)

and in the limiting case r1 = 2m this becomes

ξ = tan−1
( p
2m

)
. (9)

We may deduce directly the orbits of rays exiting from
the barrier; those falling within a cone of semiangle
tan−1(3

√
3/2) = 68.9 degrees go to our telescope at “infin-

ity”, forming an image of parallax 6m
√

3. Any collapsar with
2m < r1 < 3m has this same parallax, but at 3m the cone has
opened up fully to 90 degrees. A collapsar bigger than 3m
has a parallax bigger than 6m

√
3, while for much larger col-

lapsars, like white dwarfs of solar mass, light deflection is
negligible, and the parallax is then simply twice the surface
radius. In Figure 1 a number of rays have been plotted, leav-
ing various points in the surface, when r1 = 2.2m, and going
towards our telescope; we note that the rays going to the edge
of the image come from points on the “invisible face” of the
collapsar.

Fig. 1: The light rays issuing from the surface of a collapsar at 1.1
times the gravitational radius, collimated towards a distant telescope.
The outer rays are close to the edge of the image, which has a diame-
ter of 5.2 times the gravitational radius; these rays have their sources
on what, in the absence of gravitational lensing, would be the invis-
ible part of the surface. The unit of distance is the gravitational
radius.
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For Sagittarius A* the minimum parallax, according to
the above analysis, and with the distance of EHT from the
galactic centre equal to 2.4×1017 km, is 52 arc microseconds,
which exceeds the best available current value [3] by about 50
percent. The image profile, that is its intensity C(p) as p goes
from zero to 3m

√
3, is given by

C(p) =
∣∣∣∣∣ r1 sin ϕ0 cos ξ

p
dϕ0

dp

∣∣∣∣∣ , (10)

where ξ is given by (8), that is

cos ξ =

√
r3

1 − p2r1 + 2p2m

r3
1 + 2p2m

, (11)

and ϕ0 is the angle between the outward normal at the surface
and the ray’s final direction, that is

ϕ0 =

∫ ∞

r1

pdr√
r4 − p2r2 + 2mp2r

, (12)

leading to

dϕ0

dp
=

∫ ∞

r1

r4dr(
r4 − p2r2 + 2mp2r

)3/2 . (13)

Note that, for r1 ≫ 2m, ξ = ϕ0, p = r1 sin ϕ0, and C(p) =
1/r1 = const. with ϕ0 going from −π/2 to π/2, giving a uni-
form circular image of radius r1; for our case ϕ0 takes all real
values. In Figure 2 the image profile C(p) is plotted. The
edge of the image is at p = 3m

√
3 = 2.598 r0, where r0 is the

gravitational radius. Note that, though C(p) drops to zero at
p = 2.388r0, there is a bright fringe between that value and
p = 2.588 r0; though not shown in the Figure, there is a series
of narrower fringes between the latter value and the edge of
the image at p = 2.598 r0. The fringes result from light rays
circling close to the photonsphere before finally escaping to
reach the telescope, their minima occurring at p-values for
which ϕ0 are integer multiples of π.

A ray which leaves the surface in a direction falling out-
side the limiting cone, that is with an orbit described by p >
3m
√

3, turns round before reaching the photonsphere, and re-
turns to the barrier after an infinite time.

None of this accords with the OS description, in which
the cone closes down to zero at r = 2m.

3 The interior light orbits

According to the OS [4] model, the surface of the collapsar
completely contracts to the barrier only at t = ∞; in the words
of that article

. . . an external observer sees the star asymptoti-
cally shrinking to its gravitational radius.

Specifically r1(t) is given by

t = −2
3

√
r3

1

2m
− 2

√
2mr1 + 2m ln

√
r1 +

√
2m

√
r1 −

√
2m

. (14)

Fig. 2: The image profile C(p) formed by the rays in Figure 1. Again
the gravitational radius is the distance unit on the horizontal axis p,
and C(p) is normalized to C(0) = 1.

For r < r1 the OS metric is

ds2 =
r3

2mR3

(
dr
r
− dR

R

)2

− r2

R2 dR2 −

− r2dθ2 − r2 sin2 θ dϕ2 , (15)

where the coordinate R lies between 0 and 1, and is related
to t in a manner to be determined by matching conditions
imposed at the surface.

The interior null geodesics in the plane θ = π/2 are con-
structed from the Lagrangian

L =

 r3

2mR3

(
r′

r
− R′

R

)2

− r2

R2 R′2 − r2

1/2

. (16)

The Lagrange equations for r and R are, putting L′/L = 2r′/r
as in the exterior case,

2rr′′

R3 −
2r2R′′

R4 − 3r′2

R3 −
2rr′R′

R4 +
5r2R′2

R5 +

+
4mrR′2

R2 + 4mr = 0 (17)

and

2r2r′′

R4 − 2r3R′′

R5 − 3rr′2

R4 −
2r2r′R′

R5 +
5r3R′2

R6 +

+
4mr2R′′

R2 − 4mr2R′2

R3 = 0 . (18)

Combining these to eliminate r′′, we obtain

R′′ = R +
2R′2

R
, (19)

for which a sufficiently general solution, for 0 < R < 1, is

R = sin ϕ0 csc ϕ (ϕ0 < ϕ < π − ϕ0) . (20)
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Then, as in the exterior case, we obtain a first order equation
for r by substituting this in L and putting L = 0, namely

r′ =

√
2mr sin3 ϕ0

sin5 ϕ
− r cot ϕ , (21)

with the solution

r =
m sin ϕ0

2 sin ϕ
(A − sin ϕ0 cot ϕ)2. (22)

A ray which arrives at R = 1, that is ϕ = ϕ0, with r = r1 has
A = 2

√
r1/(2m) + cos ϕ0; the special case ϕ0 = 0 was given

in eq (14) of [1]. At this point the ray has gradient

r′ = csc ϕ0

√
2mr1 − r1 cot ϕ0 . (23)

4 Matching at the surface

OS [4] matched their metric with the exterior (1) by defining
the cotime y(r,R) related to t by

t
2m
= −2

3
y3/2 − 2

√
y + ln

√
y + 1
√
y − 1

; (24)

this they required to satisfy y(r1, 1) = r1/(2m). To match the
two metric tensors at R = 1 they then put

y =
r

2Rm
+

R2 − 1
2

. (25)

With the metrics matched at the surface, that means the
refractive indices are also matched, so the corresponding light
rays should join smoothly there. Eq (23) for the interior ray
gives, at r = r1,

r′2 + r2 − 2mr =
(
r1 csc ϕ0 −

√
2mr1 cot ϕ0

)2
, (26)

so the value

p =
r2

1 sin ϕ0

r1 −
√

2mr1 cos ϕ0
(27)

gives a smooth connection between the interior (23) and exte-
rior (7) rays at r = r1. Differentiating (24) and (25), we then
find that the values of t′ also match at r1, which confirms that
the light speed r′/t′ is continuous there.

It may now be seen that, as r1 approaches 2m, the speed
of light at the surface goes to zero, which generalizes the par-
ticular case treated in [1], where the light ray was normal to
the surface. Such behaviour may be understood as resulting
from the infinite “dust” density there (see below). This be-
haviour will be modified by the intervention of nongravita-
tional forces; in particular we have studied the effect of the
Fermi degeneracy pressure in a neutron star [7], for which
the density has a finite maximum well separated from both
the surface and r = 0. Thus, for a collapsar made of real stel-
lar matter, it makes sense to consider a state of equilibrium

whose radius exceeds the gravitational, and for which light
leaves the surface with a finite speed; this was the situation
depicted in Figure 1.

I add that the matching relation (25) is not unique, though
OS stated that it was. In my previous articles [1, 2] the alter-
native

y =
r

2Rm
− (1 − R)(5 − R)

4
(28)

was given. This is part of a wider family of matching rela-
tions, and, for this particular choice, has certain advantages
in respect of causality.

The infinite surface density of the OS final state may be
seen in their calculation of the scalar density ρ, namely

ρ =
3R3

8πr3 . (29)

Multiplying this by their three-volume element, we obtain

ρ
√−g dR dθ dϕ =

3R2 sin θ
8π

dR dθ dϕ , (30)

which, in terms of r, gives the density

ρ
√−g dr dθ dϕ =

3R2 sin θ
8π

(
∂R
∂r

)
t

dr dθ dϕ . (31)

The partial derivative is given, at cotime y = 1, by(
∂R
∂r

)
t
=

(
∂R
∂r

)
y

=
1

3m(1 − R2)
, (32)

giving infinite density at R = 1.
Actually we have found that the density in the shell just

inside r1 is very much reduced for a supermassive object like
Sagittarius A*, and I propose that the material there is an
electron gas with a nearly stationary nucleonic background∗

which should have broadly similar optical properties to both
the OS dust cloud and the neutron star. In these cases the light
speed will still be considerably reduced near the surface, but
will remain finite.

5 Discussion

The suggestion about the origin of the EHT image of Sagittar-
ius A*, namely that part of the light we receive comes from
the collapsar itself, has implications for the direction future
observations with the telescope should take. A central prob-
lem is to explain the present-day value of the parallax, which
is 37µas as opposed to the 52µas we obtained in Section 2. We
note that the size of this image is not at all well defined, be-
cause of the need to separate the signal from the background
noise of nearby objects; this is reflected by the wide error bar
in the above parallax. It should be noted also that the image
of the accretion disc has almost the same diameter as the one

∗This entails classifying Sagittarius A* as a supermassive white giant.
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described in Section 2 if the disc is inside the photonsphere,
and that its image is larger if it lies outside the photonsphere.

The fringes of the image, described in Section 2, do not
seem to have been noticed previously, though they are surely
present also in the image of the accretion disc. To distinguish
between the two images, arising, as they do, from two su-
perimposed sources of almost the same diameter, will require
further analysis along the lines of Section 2; the principal dif-
ference is the three-dimensional form of the collapsar, as op-
posed to the flat, effectively two-dimensional form of the disc.
Some progress, both in image enhancement and in theoretical
modelling, would help to clarify matters.

The classic article of Oppenheimer and Snyder [4], based
in turn on the equally classic one of Tolman [11], was essen-
tial for the construction of the matched orbits. In particular
these articles (see also [12]) enable us to identify the comov-
ing coordinate R used in Section 3. But the step required
to describe fully the orbits of particles of “dust”, that is the
stellar material, and of light rays near the surface, is the iden-
tification of the time coordinate t(r,R) made in our earlier ar-
ticle [1] and in Section 4 of this one.
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We modify the propagator of the quantum fields for the quarks and gluons. With that
we have finite results (without ultraviolet divergence) in the perturbation theory. Then
we search for a2 p2 → 0 and a2k2 → 0 with fixing the Lagrangian parameters Zi, there-
fore we can ignore our modification. We find the situation a2 p2 → 0 and a2k2 → 0
associates with the free particles situation g → 0 (g is the coupling constant) and the
situation a , 0 associates with the perturbation breaking. We try to give the modifi-
cation terms a2 p2/(1 + a2 p2) and a2k2/(1 + a2k2) physical aspects, for that we find the
corresponding terms in the Lagrangian. To do that we find the role of those terms in
the Feynman diagrams, in self energies, quarks gluons vertex, . . . We see we can relate
the propagator modification to fields dual behavior, pairing particle-antiparticle appears
as scalar particles with mass 1/a. For the quarks we can interrupt these particles as
pions with charges (−1, 0,+1). If we used the propagator modification for deriving the
quarks static potential U(r) of exchanged gluons and pions we find U(0) ∼ 1/a if we
compare this with the Coulomb potential we find the length a equivalent to the smallest
distance between the interacting quarks. We use the static potential in quarks plasma
study. We find the free and confinement quarks phases. We suggest a nuclear compres-
sion. We find there is a decrease in the global pressure due to the nuclear condensation.
We use this decrease in the Friedman equations solutions, we find we can control the
dark matter and dark energy, we can cancel them.

1 Quarks and gluons propagator modification

To remove the ultraviolet (UV) divergences in the quarks and
gluons perturbed interaction, we modify the propagator like:

∆
ab
µν(k

2) =
gµν δ

ab

k2 − iε

(
1 −

a2k2

1 + a2k2

)
for gluons (1.1)

S̄ i j(/p) =
−/pδi j

p2 − iε

(
1 −

a2 p2

1 + a2 p2

)
for quarks (1.2)

the indexes a and b are gluons indexes, i and j color indexes
and a is critical length, ~ = c = 1. We use this modification
in calculating the quarks self-energy for the perturbation in-
teraction with the gluons, then we renormalize the interaction
and search for the condition a2 p2 → 0 and a2k2 → 0. We
have

Fig. 1: The quarks self energy in strong interaction.

iΣi j(/p) =

∫
d4`

(2π)4

[
igsγ

µT a
ik

S kl(/p + /̀)
i

igsγ
νT b

l j

] ∆
ab
µν(`

2)

i

= g2
sT a

ikT b
l j

∫
d4`

(2π)4

[
γµ

(−/p − /̀)δkl

(p + `)2 γν
] gµνδab

`2 .

So

iΣi j(/p) = g2
sT a

ikT a
k j

∫
d4`

(2π)4

[
γµ

(−/p − /̀)
(p + `)2 γ

ν
] gµν
`2

= g2
sC(R)δi j

∫
d4`

(2π)4

[
γµ

(−/p − /̀)
(p + `)2 γµ

] 1
`2

using γµ(−/p − /̀)γµ = 2(−/p − /̀), it becomes

iΣi j(/p) = 2g2
sC(R)δi j

∫
d4`

(2π)4

(−/p − /̀)
(p + `)2

1
`2 .

Now we use the gluon modified propagator

∆
ab
µν(k

2) =
gµνδ

ab

k2 − iε

(
1 −

a2k2

1 + a2k2

)
we get

iΣi j(/p) = 2g2
sC(R)δi j∫

d4`

(2π)4

(−/p − /̀)
(p + `)2

1
`2

(
1 −

a2`2

1 + a2`2

)
(1.3)

= 2g2
sC(R)δi j

∫
d4`

(2π)4

(−/p − /̀)
(p + `)2

1
`2

1
1 + a2`2 . (1.4)

For massive quarks, the self-energy becomes:

iΣi j(/p) = g2
sC(R)δi j

∫
d4`

(2π)4

N
(p + `)2 + m2

q

1
`2 + m2

γ

1
1 + a2`2
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with N = γµ(−/p − /̀ + m)γµ, using the Feynman formula:

1
((p + `)2+m2) · (`2+m2

γ) · (1/a2 + `2)

=

∫
dF3

1[
((p + `)2+m2)x1 + (`2+m2

γ)x2 + (1/a2 + `2)x3

]3

with
∫

dF3 = 2
∫ 1

0 dx1dx2dx3 δ(x1 + x2 + x3 − 1) and setting
the transformation q = ` + x1 p with changing the integral to
be over q and making transformation to Euclidean space, the
self-energy becomes [2]

iΣi j(/p) = g2
sC(R)δi ji

∫
d4q̄

(2π)4

1
a2

∫
dF3

N
[q̄2 + D]3

with D = −x2
1 p2 + x1 p2 + x1m2 + x2 + m2

γ + (1− x1 − x2)1/a2.
The linear term in q integrates to zero, using q = ` + x1 p, N
is replaced with [2]

N → −2(1 − x1)/p − 4m .

Using the relation∫
ddq̄

(2π)d

(q̄2)a

(q̄2 + D)b =
Γ(b − a − d

2 )Γ(a+ d
2 )

(4π)
d
2 Γ(b)Γ( d

2 )
D−(b−a− d

2 ) ,

the integral over q in Euclidean space becomes:

Σi j(/p) = g2
sC(R)δi j

1
a2

∫
dF3N

Γ(3−2)Γ(2)
(4π)2Γ(3)Γ(2)

D−(3−2)

= g2
sC(R)δi j

1
a2

∫
dF3

N
16π2 × 2

D−1 .

The self-energy becomes

Σi j(/p) = g2
sC(R)δi j

1
a2

∫ 1

0
dx1

∫ 1−x1

0
dx2

N
16π2

1
D

=
g2

sC(R)δi j

16π2

∫ 1

0
dx1

∫ 1−x1

0
dx2

−2(1 − x1)/p − 4m

a2
[
−x2

1 p2 + x1 p2 + x1m2 + x2m2
γ + (1 − x1 − x2)/a2

] .
We write

Σi j(/p) = C(R)δi j
g2

s

8π2

∫ 1

0
dx1

∫ 1−x1

0
dx2

−(1 − x1)/p − 2m[
a2 f + (1 − x1 − x2)

] (1.5)

with f = −x2
1 p2 + x1 p2 + x1m2 + x2m2

γ this is a finite result
(without divergences).

Now we renormalize the fermions propagator to give the
real states and let a → 0. The interacting quarks propagator
becomes [2]:

S (/p)−1 = /p + m − Σ(/p) . (1.6)

To renormalize the interacting field, we write it as

S (/p)−1 = /p + m − Σ(/p) = Z2/p + Zmm . (1.7)

The parameters Z2 and Zm are the renormalization parameters,
later we try to make them constants. For the interacting field
ψ we have:

〈0|ψ(/p)ψ̄(−/p) |0〉 =
1
i

1
/p + m − Σ(/p)

=
1
i

1
Z2/p + Zmm

=
1

iZ2

1

/p + Z−1
2 Zmm

.

We can rewrite as

〈0|
√

Z2ψ(/p)
√

Z2ψ̄(−/p) |0〉 =
1
i

1

/p + Z−1
2 Zmm

and make m0 = Z−1
2 Zmm and ψ0=

√
Z2ψ with that we have

bare fields ψ0 that are like the free fields and like the classical
fields, so we can make them independent of the interaction, so
∂ψ0/∂p2 = ∂m0/∂p2 = 0 for a→ 0 and by that we renormal-
ize the interaction. We make ψ the interacting field with mass
m the physical mass, but we have to make < [Σ(−m)] = 0 in
(1.6) but with m2

γ < 0. From (1.5) and (1.7) we have

Z2 = 1 + C(R)
g2

s

8π2

∫ 1

0
dx1

∫ 1−x1

0
dx2

1 − x1[
a2 f + (1 − x1 − x2)

]
Zm = 1 + C(R)

g2
s

8π2

∫ 1

0
dx1

∫ 1−x1

0
dx2

2[
a2 f + (1 − x1 − x2)

]
and f = −x2

1 p2 + x1 p2 + x1m2
q + x2m2

γ.

By that we remove the self-energy of the interacting qu-
ark and make the mass variable. For easiness we ignore mq

and mγ so

Z2 = 1 + C(R)
αs

2π

∫ 1

0
(1 − x) ln

(
1 +

1
a2 p2x

)
dx

= 1 +
C(R)αs

4π(a2 p2)2

[
(a2 p2)2 ln

(
1 +

1
a2 p2

)
−

− a2 p2 + (2a2 p2 + 1) ln(a2 p2 + 1)
]
.

Now we fix Z2 = constant and search for the situations −a2 p2

→ 0 for timelike and a2 p2 → 0 for spacelike, we have

αs

(a2 p2)2

[
(a2 p2)2 ln

(
1 +

1
a2 p2

)
−

−a2 p2 + (2a2 p2 + 1) ln
(
a2 p2 + 1

) ]
= c .

For spacelike p2 > 0, we have Fig. 2. According to this figure,
we have a2 p2 = exp(−c/αs) → 0 when αs → 0 this is the
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Fig. 2: The behavior of the length a with fixing Z2.

decoupling; p2 � Λ2
QCD. It is the free quarks and gluons

situation; αs → 0 occurs at high energy for the free quarks
phase. Because ap → 0 so p � 1/a this gives r � a →
0, therefore the propagator modification is ignored. So the
behavior of the length a is like the behavior of the coupling
constant αs and the modification terms are removed ap � 1
at high energy (free quarks phase).

For the limited low energy we fix αs/a2 = constant×σ, σ
is string tension that appears in the low energy static potential
U(r) as we will see, for a→ 0 we have

Z2 = 1+C(R)
αs

4π

(
3
2
− ln

(
p2a2

)
+ O(p2a2)

)
→ 1,when a→ 0

Zm = 1 +C(R)
αs

π

(
1 − ln

(
p2a2

)
+ O(p2a2)

)
→ 1,when a→ 0

We know the strong interaction coupling constant αs in-
creases extremely at low limited energy, therefore, according
to the figure, we can’t let a→ 0, so we assume when the per-
turbation breaks down the length a could not be removed and
takes non-zero value, let it be a0, so the propagator modifica-
tion takes place.

1.1 The confinement situation

According to Fig. 2 it is possible to have ap > 1 (the coupling
constant αs increases extremely at low energy), therefore p >
1/a → r < a which is the quarks confinement phase at low
energy.

To study the quarks confinement, we use the modified glu-
ons propagator in deriving the static potential of the quark-
quark gluons exchange. We define this potential in momen-
tum space using M matrix elements for quark-quark (glu-
ons exchange) interaction, with ω0 = k0 = 0 (like the Born
approximation to the scattering amplitude in non-relativistic

quantum mechanics [1])

iM = −iṼ(k)Jµ(p′2, p2)Jµ(p′1, p1)

with the transferred current Jµ(p′, p) = ū(p′)γµu(p) where
spinor states u(p) include the helicity states.

We find M matrix elements using the Feynman diagrams
for quark-quark gluons exchange using color representation
for one quark like

u(p)color⊗spinor =
1
√

3

 1
1
1

 u(p)spinor .

For distinguishable quarks (only one diagram), we have

iM = ūi(p′2)igsγ
µ(T a) j

i u j(p2)
∆ab
µν(k

2)

i
ūk(p′1)igsγ

ν(T b)`ku`(p1)

with k = p′2 − p2 = p1 − p′1.
Using Gell-Mann matrices, we consider the matrices T a =

λa; λ1, . . . , λ8 as SU(3) generators, and using the modified
gluons propagator we have

iM =
∑
i jk`

ig2
s ūi(p′2)γµ(T a) j

i u j(p2)
gµνδ

ab

k2

(
1 −

a2k2

1 + a2k2

)
ūk(p′1)γν(T b)`ku`(p1)

to sum over the color indexes i, j with the color representation
like above and over gluon index a we write∑

i j

ūi(p′2)γµ(T a) j
i u j(p2)

= ū(p′2)γµ
1
√

3

(
1 1 1

)
(T a)

1
√

3

 1
1
1

 u(p2)

and

1
√

3

(
1 1 1

)
(T a)

1
√

3

 1
1
1

 =
1
3

∑
i j

(T a) j
i .

Therefore the M matrix elements become

M =
1
9

∑
a

∑
i j

(T a) j
i

2

g2
s ū(p′2)γµu(p2)

1
k2

(
1 −

a2k2

1 + a2k2

)
ū(p′1)γµu(p1) .

The Gell-Mann matrices with nonzero sum of the elements
are

λ1 =

0 1 0
1 0 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 and λ6 =

0 0 0
0 0 1
0 1 0

 .
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So ∑
a

∑
i j

(T a) j
i

2

= 3 (2)2 = 12.

Therefore we have

M =
12g2

s

9
1
k2

(
1 −

a2k2

1 + a2k2

)
ū(p′2)γµu(p2)ū(p′1)γµu(p1) .

We have the potential Ṽ(k) in momentum space as we defined

iM = −iṼ(k)Jµ(p′2, p2)Jµ(p′1, p1)

= i
12g2

s

9
g2

s ū(p′2)γµu(p2)
1
k2

(
1 −

k2

k2 + 1/a2

)
ū(p′1)γµu(p1)

with the transferred currents Jµ(p′2, p2) = ū(p′2)γµu(p2) and
Jµ(p′1, p1) = ū(p′1)γµu(p1). So we have

Ṽ(k) = −
4g2

s

3
1
k2

(
1 −

k2

k2 + 1/a2

)
.

Making the Fourier transformation to the space XYZ, we have
the static potential U(x) (k0 = 0) like the electric potential [1]

U (x) =

∫
d3k

(2π)3 Ṽ(k) eik·x

= −
4g2

s

3

∫
d3k

(2π)3

1
k2

(
1 −

k2

k2 + 1/a2

)
eik·x

= −
4g2

s

3 × 4πr

(
1 − exp

(
−

r
a

))
with r =

√
x2 + y2 + z2 .

For low limited energy we have ap > 1 (Fig. 2) so r < a, the
static potential becomes

U (r) = −
4g2

s

3 × 4πr

[
1 − exp

(
−

r
a

)]
= −u0 + a1r − a2r2 + . . .

with

u0 =
4
3
g2

s

4πa
=

4αs

3a
,

a1 = σ =
g2

s

3 × 2πa2 =
2αs

3a2 ,

a2 =
4αs

3 × 6a3 .

To fix u0 = 4αs/3a we write it as

u0 =
4αs

3a
=

4αs

3a2 a = 2σa

fixing the string tension σ and the length a → a0 at low en-
ergy.

This potential appears at low limited energy and prevents
the quarks from spreading away, r < a so it holds the quarks
inside the hadrons. But starting from the high energies a →

0, although the quarks masses are small but they are created
only at high energies where they are free and by dropping the
energy the situation r < a appears, the length a would run and
becomes higher at low energies, so have −a2k2 > 1 for r < a
which is the confinement. The confinement (at low limited
energy) means when r → a the two interacting quarks kinetic
energy becomes zero (ignore the quark mass), therefore the
highest kinetic energy that the quark can get equals σa which
relates to the potential U(r) = −u0 + σr + . . . for r < a.

We can make U(r) the potential for all quarks in r < a
so σ →

∑
σ and consider r as average distance between the

interacting quarks, so the energy σa becomes the highest ki-
netic energy of all quarks. When r → a the potential becomes
U(0) = −u0 = −4αs/3a = −σa < 0 therefore the total quarks
energy becomes negative.

In this situation the free quarks disappear, they become
condensed in the hadrons. So the role of the potential is re-
ducing the number of free quarks. Therefore the potential
u0 = σa leads to decrease of the free quarks chemical poten-
tial µ0, and we have

µ0 → µ0 + U(r) = µ0 −
αs

r

(
1 − e−r/a

)
= µ(r)

≈ µ0 − u0 + σr for r < a

where we replaced 4αs/3 with αs. We renormalize this step
at high energy for the free quarks, quarks plasma.

2 The quarks field dual behavior

To have finite results in the perturbation interaction, we mod-
ified the propagator like

∆
ab
µν(k

2) =
gµνδ

ab

k2 − iε

(
1 −

a2k2

1 + a2k2

)
for gluons

S̄ i j(/p) =
−/pδi j

p2 − iε

(
1 −

a2 p2

1 + a2 p2

)
for quarks .

We saw we can ignore the modification terms a2 p2/(1+a2 p2)
and a2k2/(1 + a2k2) at high energy, but when the energy drops
down to limited energy, those terms take place, we can give
them a physical meaning, for that we search for the corre-
sponding terms in the Lagrangian.

To do this, we find the role of those terms in the Feynman
diagrams, in self energies, quarks-gluons vertex, . . . We find
that the terms a2 p2/(1 + a2 p2) and a2k2/(1 + a2k2) can be re-
lated to pairing quark-antiquark that appear as scalar particles
with mass 1/a and charges (−1, 0,+1) and we can interpret
these particles as pions.

That appears in the particles-antiparticles composition in
Feynman diagrams which mean for the fields, there is fields
dual behavior, free fields and composite fields, this behavior
leads to the possibility of separating the particles and possi-
bility for their composition, so the dual behavior of the fields
is elementary behavior. In general, for any particle A and its
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antiparticle A, in pertubation interaction, they pair and have a
scalar particle AA, this leads to reduce the currents (charges)
of particles and antiparticles.

That is, for each outcoming particle, in Feynman dia-
grams, there is incoming antiparticle with positive energy and
negative mass, depending on the coupling constant behavior
(this is at high energy for the electromagnetic interaction and
at low energy for the strong interaction, quarks and gluons).
Therefore reducing their interactions with the charges in a
way leads to finite results in the perturbation results.

Using the gluons modified propagator, the quark self-en-
ergy becomes (1.3)

iΣi j(/p) = 2g2
sC(R)δi j

∫
d4`

(2π)4

(−/p − /̀)
(p + `)2

1
`2

(
1 −

a2`2

1 + a2`2

)
.

We can separate it into two parts

1. Quark−gluon part:

iΣi j(/p) = 2g2
sC(R)δi j

∫
d4`

(2π)4

(−/p − /̀)
(p + `)2

1
`2 ;

2. pairing quarks part:

iΣi j(/p) = 2g2
sC(R)

∫
d4`

(2π)4

(−/p − /̀)δi j

(p + `)2

1
`2

(
−

a2`2

1 + a2`2

)
.

It appears that in the pairing part there is a scalar field ϕ prop-
agator:

1
i

1
`2 + 1/a2

which is real scalar particles field propagator with mass 1/a,
to preserve the charges, spin, . . ., this particle must be con-
densed of quark-antiquark |qq〉 (particle-antiparticle in gen-
eral) so we have new diagram (Fig. 3), we rewrite

Fig. 3: Representation the dual behavior, joined particle−antiparticle
with opposite momentum−energy.

iΣi j(/p) = 2(−gs)2C(R)
∫

d4`

(2π)4

(−/p − /̀)δi j

i(p + `)2

−i
(`)2 + 1/a2 .

Therefore we must add new interaction terms to the quarks
Lagrangian, the possible terms are:

∆L = −igϕqϕQ̄Q with gϕq = gs
√

2C(R)

or
∆L = gϕqϕQ̄γ5Q .

We expect the pairing particles-antiparticles preserve the fla-
vor symmetry, so the real scalar field ϕ becomes |qiq j〉. For
two flavors qi and q j we write the quarks field like Q =(
qi q j

)T
so

∆L = −igϕqϕ
aQ̄T a

2 Q or ∆L = gϕqϕ
aQ̄T a

2γ5Q .

The real scalar fields ϕa could interact with itself and have
real non-zero ground value υ then 〈ϕ〉 = υ so we can renor-
malize it like

ϕaT a
2 → ν − iνπaT a

2 + ...

then we have

∆L = −igϕqQ̄ (ν − iνπaT a
2 + ...) Q

= −igϕqνQ̄Q − gϕππQ̄Q + ... Chiral symmetry breaking

or

∆L = gϕqQ̄(ν− iνπaT a
2 + ...)γ5Q→ gπqQ̄γ5Q− igπqπQ̄γ5Q+ ...

Here the particles πaT a
2 → π = (π0, π−, π+) are the pions.

The unusual terms −igϕaνQ̄Q and gπqQ̄γ5Q are not hermitian
and violate the symmetries, so they let the quarks disappear,
damping at low energy r < a :

ei∆Et |Q〉 = e−i∆Lt |Q〉 = e−gϕqνq̄qt |Q〉

=
∑

n

e−gϕqν(q̄q)t |En〉 〈En |Q〉 → |0〉 〈0 |Q〉 .

En is the energy of the quarks in state |n〉 and eiĤt |Q〉 is the
eigenstate of the quarks field operator Q̂(t) in Heisenberg pic-
ture, Q̂(t) = eiĤtQ̂e−iĤt.

Fig. 4: The quarks interaction with pions as a result of dual behavior.

That damping in the states is because of the pairing quark-
antiquark at low energy a , 0, this pairing reduces the charges
(currents) of free quarks (Fig. 5). We can see that if we relate
the minus sign in −a2`2/(1 + a2`2) to the fermions propaga-
tor:

S (x − y) =

∫
d4 p

(2π)4

−/p
p2 eip(x−y) (propagator from y to x)

so

−S (x − y) = −

∫
d4 p

(2π)4

−/p
p2 eip(x−y) =

∫
d4 p

(2π)4

+/p
p2 eip(x−y)
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change p→ −p (propagator from x to y)

−S (x − y) =

∫
d4 p

(2π)4

−/p
p2 e−ip(x−y) =

∫
d4 p

(2π)4

−/p
p2 eip(y−x) .

So it is equivalent to invert the propagator y→x to x→y with
positive energy and negative mass. Therefore it reduces the
charges, currents, energies, . . . of the particles and antiparti-
cles, we have

Fig. 5: Omitting the distance x-y from the propagator.

(p + `) + (−p − `) = 0 and (−`) + (`) = 0

so incoming with p and outcoming with p, it is like to say
the particles jump from y to x, in other words the distance
y − x is removed from the interaction. We expect the fields
dual behavior takes place in negative potential. If there is
no negative potential the paired particles would not survive
(never condense). For the quarks, the case 0 < r < a must
associate with negative potential u and E + u < 0. Because
the behavior of the strong interaction coupling constant at low
energy αs is high, we expect negative potential at low energy
E + u < 0 (E > 0, u < 0), so the quarks condense.

Because of the dual behavior of the quarks field which
leads to quarks composite in scalar charged particles like the
pions (π−, π0, π+) and because of their quantized charges (−1,
0,+1) we expect the hadrons charges to be also quantized
(−Q,−Q+1, . . . 0,+1, . . . ,+Q) this quantization relates to the
dual behavior of the quarks field in different hadrons, pairing
quarks of different hadrons, so these condensed quarks; pions,
kaons, . . . are shared between the hadrons, so we put them to-
gether with the hadrons in groups, like the pions (−1, 0,+1)
which can be inserted in SU(2) generators which can repre-
sent the proton-neutron pairing. Therefore the protons and
neutrons Lagrangian contains the terms −igπNπ

αN̄Tα
2 N with

the nucleon field N =

(
p
n

)
.

3 The quarks plasma

We tried before to explain how the quarks are confined, for
the strong interaction, we have the condition r < a , 0 at
low limited energy and the condition r > a → 0 at high en-
ergies for free quarks where the length a is removed from the
propagators. But it appears to be fixed at low limited energy.
In the last section we showed there is dual behavior for the
quarks field, but when the length a is fixed, the result is scalar

particles (pions) with mass 1/a0 at low limited energy and the
result is the chiral symmetry breaking. We found the length
a appears in the quark-quark strong interaction (gluons ex-
changing) potential U(r)r<a < 0, so it relates to interaction
strength. That is because the behavior of the length a is like
the behavior of the coupling constant αs. The confinement
(at low energy r < a) means when r → a the two interacting
quarks kinetic energy becomes zero (ignore the quark mass),
therefore the highest kinetic energy the quark can get equals
σa which relates to the potential U(r) = −u0 + σr + . . . for
r < a (at low limited energy). When r → a the potential be-
comes U(0) = −u0 = −4αs/3a < 0 therefore the total quarks
energy becomes negative. In this situation the free quarks
disappear (µ0 → 0), they become condensed in the hadrons.

We try here to use statistical thermodynamics to show
how the free quarks disappear at low energies (low tempera-
tures) where the length a becomes fixed, so the chiral symme-
try breaking and the quarks condensation. One of the results
is that the confinement phase (3.14) not necessarily associates
with chiral symmetry breaking, that is, the chiral symmetry
breaking appears at the end of the cooling process when the
expanding and cooling are ended and the length a becomes
fixed, therefore the chiral symmetry breaking occurs and the
pions become massive m = 1/a0.

We start with the massless quarks, their energy in volume
V is

E = c
∫

a3
d3r

∫ ∞

0
dε g(ε) ε

1
eβ(ε−µ(r)) + 1

: g(ε) = gq
V

2π2 ε
2

(3.1)

where µ(r) = µ0 + u(r) with u(r) = −
4αs
3r

(
1 − e−r/a

)
.

Here we inserted the quark-quark strong interaction po-
tential U(r) in the chemical potential (for decreasing the free
quarks energy, as we think, the quarks potential reduces the
free quarks chemical potential and make them condense at
low energy) and because r < a we integrate over the volume
a3: r is the distance between the interacting quarks. We can
replace 4αs/3→ αs.

The constant c is determined by comparing with free qu-
arks high energy where the potential U(r) → 0 and αs → 0
(decoupling) at high energies, so the length a → 0 that is as
we said before, the behavior of the length a is like the behav-
ior of the coupling constant gs therefore the quarks become
free at high energies.

By integrating over the energy (Maple program) we have:

E = cgq
V

2π2

∫
a3

d3r
∫ ∞

0
dε

ε3

eβ(ε−µ(r)) + 1

= cgq
V

2π2β4

∫
a3

d3r
[
7π4

60
+
π2

2
u0(r)2 +

1
4

u0(r)4+

+ 6
∞∑

k=1

(−1)ke−kβµ(r)

k4

]
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with u0(r) = βµ(r) = β(µ0 + u(r)). By integrating over r (the
distance between the interacting quarks) we have

E = cgq
2Va3

πx4

[
3.78 + 2 (βµ0)2

(
0.82 − 1.16

αs

aµ0
+

+ 0.41
(
αs

aµ0

)2 )
+ (βµ0)4

(
0.08 − 0.23

αs

aµ0
+

+ 0.25
(
αs

aµ0

)2

− 0.12
(
αs

aµ0

)3

+ 0.02
(
αs

aµ0

)4 )
+

+ 6
∞∑

k=1

∫ 1

0
x2dx

(−1)ke−kβµ(x)

k4

]
.

gq is the quarks degeneracy number and x = βµ0. For eas-
iness we write αs/aµ0 = 2σa/µ0 = y in the energy relation.
So it becomes

E = cgq
2Va3

πx4

[
3.78 + 2(βµ0)2

(
0.82 − 1.16y + 0.41y2

)
+ (βµ0)4

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

)
+ 6

∞∑
k=1

∫ 1

0
x2dx

(−1)ke−kβµ(x)

k4

]
. (3.2)

at high energy: x = βµ0 = µ0/T → 0. To find the constant
c we compare with quarks high energy where they are free
massless particles:

Ehigh = gqV
7π2

240
T 4 .

When T is high, x = (µ0/T ) → 0 and y → 0 therefore
βµ(x)→ 0 so we expand e−kβµ(x) near βµ(x) = 0, we have:

Ehigh = cgq
2a3V
πx4

[
3.78 − 1.88 + O(x, y)

]
→ cgq

2a3V
πx4 1.9

→ gq
7π2V
240

T 4 = cgq
2a3V
πx4 1.9→ c =

π

2a31.9
7π2

240
µ4

0 (3.3)

The energy becomes:

E =
1

1.9
7π2

240
µ4

0gq
V

(βµ0)4

[
3.78 + 2(βµ0)2(0.82 − 1.16y +

+ 0.41y2) + (βµ0)4(0.08 − 0.23y + 0.25y2 − 0.12y3 +

+ 0.02y4) + 6
∞∑

k=1

∫ 1

0
x2dx

(−1)ke−ku0(x)

k4

]
.

Now we see the effects of the length a on the energy, at
high energy, by fixing x = µ0/T and varying y = σa/2µ0 < 1:

Ehigh =
1

1.9
7π2

240
gqVµ4

0 x−4
[
1.9 + x(1.8 − 1.24y) +

+ x2(0.82 − 1.18y + 0.42y2) + x3(0.23 − 0.47y +

+ 0.33y2 − 0.08y3) + x4(0.04 − 0.12y + (3.4)

+ 0.13y2 − 0.07y3 + 0.01y4) + . . .
]

x=βµ0→0
.

We expanded e−kβµ(x) near βµ(x) = 0 and fixed the tension σ
as we assumed before, so we have Fig. 6.

Fig. 6: Decreasing the high energy with increasing y.

It appears in the figure that the high energy quarks lose en-
ergy when the length a increases although the temperature is
fixed. That means, when the length a increases the number of
the excited quarks decreases. That is because of the attractive
linear potential σr . . . between the quarks, that potential ab-
sorbs an energy (r < a confinement, section 1), so the quarks
are cooled faster by the expansion. As we said before, the be-
havior of length a is like the behavior of the coupling constant
αs so when the energy dropped to lowest energy, the length
a increased extremely and this is fast cooling (extreme cool-
ing). That occurs when the particles spread away, the length
a, as a distance between the quarks, increases.

To determine the end, we search for the balance situa-
tions, such as zero pressure, confinement condition, ... First
we find the high energy pressure including the effects of the
potential σa. Starting from the general pressure relation:

p = −
∂

∂V
F where F = −T ln Z = −

1
β

ln Z

here we use the relation:

ln Z = c
∫

a3
d3r

∫ ∞

0
dε g(ε) ln

(
e−β(ε−µ(r)) + 1

)
: g(ε) = gq

V
2π2 ε

2

and the pressure becomes

P =
1
3

∂

∂V
E
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so for high energy x = βµ0 → 0 we have the pressure:

Phigh =
1
3

∂

∂V
Ehigh

=
∂

∂V
1

3 × 1.9
7π2

240
gqVµ4

0 x−4
[
1.9 + x(1.8 − 1.24y) +

+ x2(0.82 − 1.18y + 0.42y2) + x3(0.23 − 0.47y +

+ 0.33y2 − 0.08y3) + x4(0.04 − 0.12y +

+ 0.13y2 − 0.07y3 + 0.01y4) + . . .
]
.

Now the key point is, we want to include the potential
effect on the pressure so we replace the volume V with the
volume a3 ∼ y3 so

Phigh →
∂

∂y3 y
3 1

3 × 1.9
7π2

240
gq µ

4
0 x−4

[
1.9 + x(1.8 − 1.24y) +

+ x2(0.82 − 1.18y + 0.42y2) + x3(0.23 − 0.47y +

+ 0.33y2 − 0.08y3) + x4(0.04 − 0.12y + (3.5)

+ 0.13y2 − 0.07y3 + 0.01y4) + . . .
]

which is represented in Fig. 7, without conditions on y or on
the length a.

Fig. 7: The effects of potential σa on the pressure.

It is clear (without conditions on y) the pressure decreases
with increasing the length a (decreasing the quarks energy
−p2) until it becomes zero, then negative. That becomes clear
at low energy where there are conditions on y and so on the
length a.

For the low energy quarks, T → 0 so βµ(x) → ∞ so
e−kβµ(x) → 0. The energy becomes:

Elow =
1

1.9
7π2

240
µ4

0 gq
V

(βµ0)4

[
3.78 +

+ 2 (βµ0)2
(
0.82 − 1.16y + 0.41y2

)
+ (3.6)

+ (βµ0)4
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
.

Making x = T/µ0 so

Elow =
1

1.9
7π2

240
µ4

0 gqV x4
[
3.78 + 2x−2

(
0.82 − 1.16y + 0.41y2

)
+ x−4

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
.

Now the key point, we want to show the effect of the potential
σa on the energy so we see the behavior of the energy in the
volume a3 with respect to y = 2σa/µ0 the diagram is given
in Fig. 8. That is extreme behavior after y = 0.6 where the

Fig. 8: The extremely decreasing in quarks low energy in the strong
interaction.

energy (E/V) a3 decreases when the volume a3 increases, the
end in y = 1 where the free quarks disappear for y > 1.

Now we can distinguish between the confinement and the
chiral symmetry breaking, when y > 0.6 there is confine-
ment: extreme cooling, negative pressure. But when reach
y = 1 there is chiral symmetry breaking where the length a
becomes fixed, and from the quarks field dual behavior there
are scalar charged particles with mass 1/a appear when the
length a is fixed with non-zero value a0. Here the evidence for
fixing the length a is the lowest limited quarks energy, that is
as we said before, the behavior of the length a is like the be-
havior of the coupling constant αs so when the quarks energy
dropped (extreme cooling) the length a increases extremely
to reach the highest value when y = 1 which is equivalent to
smallest energy E = 0 (the cooling end). Another evidence
for fixing the length a (chiral symmetry breaking) is the low
energy pressure:

Plow =
1
3

∂

∂V
Elow →

1
3

∂

∂y3

Elow

V
y3 .

To include the potential effect we study the pressure using the
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volume a3 ∼ y3 therefore

Plow →
1
3

∂

∂y3

1
1.9

7π2

240
gq µ

4
0 y

3 x4
[
3.78 +

+ 2x−2
(
0.82 − 1.16y + 0.41y2

)
+ x−4

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
and therefore

Plow

µ4
0

=
1

9 × 1.9
7π2

240
gq

[
3 × 3.78 x4 +

+ 3 × 2 × x2
(
0.82 − 1.16y + 0.41y2

)
(3.7)

+ 3 × (0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4) +

+ 2yx2 (−1.16 + 0.82y) +

+ y
(
−0.23 + 0.5y − 0.36y2 + 0.08y3

) ]
.

We see its behavior in Fig. 9 below

Fig. 9: The extremely decreasing in the pressure at low energy.

It is clear from the figure, when y > 0.6 the quarks pres-
sure becomes negative. We expect the condensed quarks pha-
se (confinement quarks) has positive pressure, so the pre-
ferred phase is the condensed quarks phase. So when y > 0.6
the quarks condense until y = 1 : a → a0 ≈ 1/(135 −
140 Mev) the quarks disappear, the scalar charged particles
(pions) appear instead of them, that is because of the quarks
dual behavior (free-condensed quarks), but at low limited en-
ergy the condensed phase has a big chance instead the free
phase.

3.1 The confinement phase

In this paper we study two quarks (up and down) conden-
sation in the pions (π0, π+, π−) and baryons (n, p+, p−), so the
degeneracy number is gq = 2 f lavor×2charge×2spin×3color = 24.

We need more clarifying for determining if the quarks
could stay free particles or they condense in hadrons. We

can think they could be free if their energy is enough for cov-
ering the strong interaction potential and stay free particles
with least possible energy (at 0 temperature). Unless they
condense in the hadrons.

To cover the strong interaction potential means to lose an
energy Eu which is transferred to the exchanged static gluons
and pions which are created between the low energy quarks.
So the remaining energy in the volume 4πa3/3 is

Eq,low

V
4π
3

a3 −
Eu

V
4π
3

a3 . (3.8)

This energy must be enough for the least possible free quarks.
Therefore we must determine the chemical potential µ0 of the
free quarks with smallest possible density at 0 temperature.

According to the quarks confinement r < a at low limited
energy, which means the highest possible distance between
the two interacting quarks is a, we expect the least quarks
density is two quarks in the volume 4π (a/2)3/3.

Fig. 10: The quarks confinement at low energy.

From this view we can calculate the least quarks chemical
potential µ0 of free quarks:

2
(

4π
3

( a
2

)3
)−1

=
1
V

∫ µ0

0
g(ε) dε = gq

µ3
0

6π2

→

(
µ0

a
2

)3
=

9π
gq

→ (µ0a)3 =
8 × 9π
gq

1/a is the pion mass when a → a0 in the end of free quarks
phase so 1/a → (135 − 140) Mev. So the least free quarks
energy density in 0 temperature is

ε f ree

V
=

1
V

∫ µ0

0
g(ε) ε dε = gq

µ4
0

4 × 2π2 .

The smallest energy of the free quarks in the volume 4πa3/3
is

ε f ree,a3 = gq
µ4

0

4 × 2π2

4πa3

3
=

4π
3
gq

µ0

4 × 2π2 (µ0a)3

=
4π
3
gq

µ0

4 × 2π2

8 × 9π
gq

=
4π
3

9
π
µ0 (3.9)
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therefore
ε f ree,a3

2µ0
=

4π
3

9
2π

=
4π
3
× 1.43 .

Because the chemical potential µ ∼ 1/a and µ → µ0 when
a→ a0 and because y ∼ a so we modified µ0 → µ0/y so

4π
3
× 1.43→

4π
3
×

1.43
y

. (3.10)

Now we find the least energy Eu which is transferred to the
static exchanged gluons and pions according to the potential

u(r) = −
4αs

3r

(
1 − e−r/a

)
≈ −u0 + σr : r < a .

We absorbed 4/3 to αs so and made αs/aµ0 = 2σa/µ0 = y the
constant σ is the string tension. This potential is inserted to
reduce the chemical potential µ0 and the energy is renormal-
ized at high energy. So we have µ0 → µ0 + u(r) :

µ(r) = µ0 −
αs

r

(
1 − e−r/a

)
≈ µ0 − u0 + σr : r < a .

Therefore we can calculate the least absorbed energy by this
potential, by calculating the changes on the energy density at
0 temperature

ε(αs/a)
V

=
ε(y)
V

=
1
V

c
∫ a

0
4πr2dr

∫ µ(r)

0
g(ε) ε dε

= c
∫ a

0
4πr2dr gq

µ(r)4

4 × 2π2 .

The constant c is determined

c =
π

2a31.9
7π2

240

so the interaction energy is

ε(αs/a)
V

=
ε(y)
V

= gq
π

2a31.9
7π2

240
4π

4 × 2π2

∫ a

0
r2drµ(r)4

= gq
7π2

4 × 1.9 × 240a3

∫ a

0
r2drµ(r)4 .

This becomes

ε(y)
V

= gq
7π2

4 × 1.9 × 240a3

∫ a

0
r2dr

[
µ0 −

αs

r

(
1 − e−r/a

)]4

= gq
7π2

4 × 1.9 × 240a3 (µ0)4
∫ a

0
r2dr

[
1 −

αs

µ0r

(
1 − e−r/a

)]4

Using the change r = ax so

ε(y)
V

= gq
7π2

4 × 1.9 × 240a3 (µ0)4∫ 1

0
a3x2dx

[
1 −

αs

µ0ax
(
1 − e−x)]4

therefore

ε(y)
V

= gq
7π2

4 × 1.9 × 240
(µ0)4

∫ 1

0
x2dx

[
1 −

y

x
(
1 − e−x)]4

.

The spent energy for the interaction in the volume 4πa3/3 is

εu,a3 =
ε(1) − ε(0)

V
4πa3

3

=
4π
3
gq

7π2(µ0a)3µ0

4 × 1.9 × 240
(3.11)∫ 1

0
x2dx

[
1 −

1
x
(
1 − e−x)]4

−

∫ 1

0
x2dx


and it becomes

εu,a3 = −
4π
3
gq

7π2

4 × 1.9 × 240
(µ0a)3µ0 0.33

= −
4π
3
gq

7π2

4 × 1.9 × 240
8 × 9π
gq

µ0 × 0.33 .

Therefore

εu,a3 = −
4π
3
gq

7π2

4 × 1.9 × 240
(µ0a)3µ0 × 0.33 (3.12)

= −
4π
3

7 × 8 × 9 × 0.33π3

4 × 1.9 × 240
µ0 = −

4π
3
× 2.82 µ0 .

So we have
εu,a3

2µ0
= −

4π
3
× 1.41 .

As for E f ree we replace

4π
3
× 1.41→

4π
3
×

1.41
y

.

Now we find the confinement condition at any temperature,
if the quarks energy is not enough to cover the interaction
energy Eu and give free quarks with smallest density, at 0
temperature, then they become confinement (r < a), so the
confinement condition

E(T, y) − εu − ε f ree ≺ 0 . (3.13)

Then

E(T, y)
V

4πa3

3
−
εu

V
4πa3

3
−
ε f ree

V
4πa3

3
≺ 0

or

E(T, y)
2µ0V

4πa3

3
−

εu

2µ0V
4πa3

3
−
ε f ree

2µ0V
4πa3

3
≺ 0 .

We consider

σa3 a =
ε f ree

V
4πa3

3
as critical energy of free quarks for lowest energy, the tension
σa3 here is the volume tension. Therefore this critical energy
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is transferred to the produced hadrons and photons. Using the
quarks low energy

Elow =
1

1.9
7π2

240
gq µ

4
0 V x4

[
3.78 +

+ 2 x−2
(
0.82 − 1.16y + 0.41y2

)
+

+ x−4
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
.

With x = T/µ0 � 1, the confinement condition becomes

1
2

1
1.9

7π2

240
µ3

0 gq x4 4πa3

3

[
3.78 +

+ 2x−2
(
0.82 − 1.16y + 0.41y2

)
+

+ x−4
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
−

−
εu

2µ0V
4πa3

3
−
ε f ree

2µ0V
4πa3

3
≺ 0 .

It becomes

1
2

1
1.9

7π2

240
gq

4π(µ0a)3

3

[
3.78x4 +

+ 2x2
(
0.82 − 1.16y + 0.41y2

)
+

+
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
−

−
4π
3
×

1.41
y
−

4π
3
×

1.43
y
≺ 0 .

We had the relation

(µ0a)3 =
8 × 9π
gq

,

therefore, the condition becomes

1
2

1
1.9

7π2

240
4 × 8 × 9π2

3

[
3.78x4 +

+ 2 x2
(
0.82 − 1.16y + 0.41y2

)
+

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
−

−
4π
3
×

1.41
y
−

4π
3
×

1.43
y
≺ 0 .

It becomes

3.78x4 + 2x2
(
0.82 − 1.16y + 0.41y2

)
+

+
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

)
− (3.14)

− 0.16y−1 ≺ 0

with the curve of Fig. 11.
The critical situation xc with y → 1 (the end of the ex-

treme cooling)

3.78x4
c + 2 × 0.07x2

c − 0.16574 = 0→ xc = 0.438 .

Fig. 11: The critical x2
cyc curve separates the free and confinement

quarks phases.

So the critical temperature of the confinement condition when
y → 1 from xc = Tc/µ0 is Tc = 0.438µ0. We determine µ0
from

(µ0a)3 =
8 × 9π
gq

when y → 1 so a → a0 we set 1/a0 = pion mass = (135 −
140) Mev so therefore, the condition becomes

µ0 =
1
a

(
8 × 9π
gq

) 1
3

→ 135
(

8 × 9π
24

) 1
3

= 285.15 Mev for
1
a0

= 135 Mev.
(3.15)

Hence the critical temperature is Tc = 0.438 × 285.15 =

124.9 Mev.
Now we try to find the produced hadrons, after cover-

ing the potential (3.12), the quarks critical energy (possible
smallest energy) E f ree (3.9) is transferred to the produced
hadrons and photons. The key idea here is: because the cool-
ing is an extreme cooling, it is expanding a : 0 → a0 =

1/(135 − 140 Mev) so this process is thermally isolated from
the other fields (adiabatic change), therefore the produced
particles are in Tc = 124.9 Mev. We assume that the pro-
duced particles are hadrons (fermions and bosons) and pho-
tons. When a : 0 → a0 : y → 1 the pions become massive
m = 1/a0 so we expect the other hadrons become massive at
this stage, we assume that is in T → Tc.

Therefore we assume when T > Tc massless hadrons and
T < Tc massive hadrons. Anyway in xcyc curve we find the
confinement is possible at high energy (T � Tc : a → 0).
First we write using (3.9)

ε f ree

V
=
ε f ree,a3

4πa3/3
= gq

µ4
0

4 · 2π2 (3.16)

=
σa3 a

4πa3/3
→

Ehadrons + Ephotons

V
below xcyc curve
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or
σa3 a

4πa3/3
= gq

µ4
0

4 · 2π2 → ε f + εb + εph .

With the densities

ε f =
E f

V
, εb =

Eb

V
and εph =

Eph

V

for spin 1/2 hadrons (fermions p+, p−, n), spin 0 hadrons (bo-
sons π0, π−, π+) and photons densities. For massless phase
T � Tc and yc ≈ 0 ignoring the chemical potential we have

n f =
N f

V
= g f

3ζ(3)
4π2 T 3 ,

nb =
Nb

V
= gb

ζ(3)
π2 T 3 and (3.17)

εph =
Eph

V
= gph

π2

30
T 4 .

Now the key point, because the cooling is extreme cooling,
to take all the particles (quarks) from high temperature and
put them at low temperature, so the same structure at high
energy will be at low energies, like the charges ratios, energy
distribution over the particles, spins, . . . At T → Tc and yc =

1 the hadrons become massive, we approximate: for bosons
(pions with mass 1/a0 = 135 − 140 Mev) the energy density
becomes:

εb = gb
π2

30
T 4 → εb = gb

π2

30
T 4 + mpionnb

with nb =
Nb

V
= gb

ζ(3)
π2 T 3 and mpion =

1
a0
.

And for fermions (let them be p+, p−, n) we approximate (ig-
noring the chemical potential)

ε f = g f
7
8
π2

30
T 4 → ε f = g f

7
8
π2

30
T 4 + m f n f

with n f =
N f

V
= g f

3ζ(3)
4π2 T 3 .

So (3.15) becomes

σa3 a
4πa3/3

= gq
µ4

0

4 · 2π2 = ε f + εb + εph (3.18)

= g f
7
8
π2

30
T 4

c + m f n f + gb
π2

30
T 4

c +
1
a0

nb + gph
π2

30
T 4

c .

with gquarks = 2 f lavor×2charge×2spin×3color, g f = 3charge×2spin,
gb = 3charge and gph = 2polarization.

Now we calculate (3.17) for 1/a0 = 135 Mev (π0), µ0 =

285.15 Mev, and Tc = 124.9 Mev we have

2.0096 × 109 Mev4 = 6 ×
7
8
π2

30
(124.9)4+

+ m f 6 ×
3ζ(3)
4π2 (124.9)3 + 3 ×

π2

30
(124.9)4+

+ 135 × 3 ×
ζ(3)
π2 (124.9)3 + 2 ×

π2

30
(124.9)4 .

Its solution is m f = 1023 Mev. We keep 2.0096 × 109 Mev4

as smallest possible energy density.
For 1/a0 = 140 Mev, µ0 = 295.7 Mev so Tc = 129.5 Mev

the mass m f becomes m f = 798.4 Mev. Therefore it must be
135 Mev < 1/a0 < 140 Mev.

For 1/a0 = 136.8 Mev we have Tc = 126.56 Mev then the
mass m f becomes m f ≈ 938 Mev so the fermions (hadrons)
are the baryons (p+, p−, n).

Therefore we fix it 1/a0 = 136.8 Mev, we use it to cancel
the dark matter. Maybe there is an external pressure −Pex so
the lost energy is Pex 4πa3/3.

Now we try to calculate the ratio Nq/Nh. From the con-
densation relation

Nqδµq + Nhδµh = 0

Nh is the hadrons (consider only the fermions) and µh is their
chemical potential.

We assumed before the relation for the quarks chemical
potential

µ(r) = µ0 + u(r) with u(r) = −
αs

r

(
1 − e−r/a

)
so δµq(r) = u(r) = −

αs

r

(
1 − e−r/a

)
.

The effect of this changing appeared in y = αs/aµ0 in the
results. For the hadrons we have

δµh = −
Nq

Nh
δµq = −

Nq

Nh
u(r) .

That is right if we consider the hadrons are massless, that is
when T � Tc and y � 1 (in the condensation phase, be-
low the curve xcyc) so we have the chemical potential for the
hadrons

µh(r) = µ0h − u(r) with u(r) = −
αs

r

(
1 − e−r/a

)
therefore we replace y→ (−Nqµ0q/Nhµ0h) y in the quarks en-
ergy to get the hadrons energy. The energy of the hadrons
becomes

EH,low =
1

1.9
7π2

240
µ4

0h gh V x4
[
3.78 +

+ 2x−2
(
0.82 + 1.16

(
Nqµ0q

Nhµ0h

)
y + 0.41

(
Nqµ0q

Nhµ0h

)2

y2
)

+

+ x−4
(
0.08 + 0.23

(
Nqµ0q

Nhµ0h

)
y + 0.25

(
Nqµ0q

Nhµ0h

)2

y2 +

+ 0.12
(

Nqµ0q

Nhµ0h

)3

y3 + 0.02
(

Nqµ0q

Nhµ0h

)4

y4
)]
.
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Assume µ0h = µ0q and y = 1 so

EH,low =
1

1.9
7π2

240
µ4

0q gh V
[
3.78x4 + 2x2

(
0.82 +

+1.16
(

Nq

Nh

)
+ 0.41

(
Nq

Nh

)2 )
+

(
0.08 + 0.23

(
Nq

Nh

)
+

+ 0.25
(

Nq

Nh

)2

+ 0.12
(

Nq

Nh

)3

+ 0.02
(

Nq

Nh

)4 )]
.

So the chemical potential µh of the hadrons becomes

µ4
h = µ4

0q

(
1 +

0.23
0.08

(
Nq

Nh

)
+

0.25
0.08

(
Nq

Nh

)2

+

+
0.12
0.08

(
Nq

Nh

)3

+
0.02
0.08

(
Nq

Nh

)4 )
.

When T < Tc the hadrons become massive, as we assumed
before, so for massive hadrons with m f = 938 Mev we expect
µh = m f = 938 Mev when they cooled with small densities.
Therefore

(938)4 = (285.15)4
(
1 +

0.23
0.08

(
Nq

Nh

)
+

0.25
0.08

(
Nq

Nh

)2

+

+
0.12
0.08

(
Nq

Nh

)3

+
0.02
0.08

(
Nq

Nh

)4 )
.

Its positive solution is Nq/Nh = 3.1 so they are the baryons
(fermions with three quarks). For 0 temperature fermions the
chemical potential is approximated by

µ2
0 = m2 +

(
N
V

6π2

g f

)2/3

.

For low hadrons density we ignored the term(
N
V

6π2

g f

)2/3

.

4 The nuclear compression

The cooled hadrons have high density, so there is hidden high
pressure, that pressure makes influence δa so δy near y = 1
or it makes y = 1 + δy: δy ≈ 0.005 so the cooled quarks
inside the hadrons fluctuate, this depends on the energy, if the
energy is high then there are new hadrons. These processes
let the interacting hadrons lose kinetic energy and form the
pions.

Because the number of quarks increases although the ha-
drons are fixed, therefore the hadrons energy decreases and
they cannot spread away. We can see how the chemical poten-
tial of the interacting hadrons changes under the fluctuation
δy ∼ δa (due to the quarks interaction) from the condensation

relation Nqδµq + Nhδµh = 0 we have δµh = −Nqδµq/Nh for
the fluctuation δy we have

δµh = −
Nq

Nh

∂µq

∂y
δy

from quarks chemical potential (4.4), we find

∂µq

∂y
≺ 0 so −

∂µq

∂y
� 0

therefore we have

δµh =
Nq

Nh

(
−
∂µq

∂y

)
δy ≺ 0 when δy ≺ 0

which is the quarks compressing, when the hadrons collide
together this leads to δy < 0 (compression) so the hadrons
lose energy and new hadrons are created. And when they try
to extend (spread away) δy > 0 so δµh > 0, there will be a
negative potential.

For the interacting hadrons pressure we have the phase
changing relation VqδPq + VhδPh = 0 : V volume, we have

δPh = −
Vq

Vh
δPq = −

Vq

Vh

∂Pq

∂y
δy

because ∂Pq/∂y < 0 → −∂Pq/∂y > 0 therefore when the
hadrons collide together δy < 0 so their pressure decreases,
they lose energy, so new hadrons are created.

We have

δy =

(
−

Vq

Vh

∂Pq

∂y

)−1

δPh at y = 1 .

So the hadrons chemical potential becomes

δµh =
Nq

Nh

(
−
∂µq

∂y

) (
−

Vq

Vh

∂Pq

∂y

)−1

δPh : y = 1 .

It becomes

δµh =
NqVh

NhVq

(
∂µq

∂y

) (
∂Pq

∂y

)−1

δPh : y = 1 . (4.1)

We can relate this changing to a constant nuclear potential.
Like to write

δµh = −V0 . (4.2)

V0 is the potential for each hadron.
So when the hadron (fermions, like protons or neutrons)

join, their density increases δµh > 0 so their pressure rises
δPh > 0, therefore there is a negative potential V0 < 0. At low
energies this potential prevents them from spreading away.

Now we calculate

δµh =
NqVh

NhVq

(
∂µq

∂y

) (
∂Pq

∂y

)−1

δPh : y = 1 .
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We use the pressure at low energy (3.7)

Plow/µ
4
0 = (9 × 1.9 × 240)−1 7π2gq

[
3 × 3.78x4+

+ 3 × 2 × x2
(
0.82 − 1.16y + 0.41y2

)
+ 3 (0.08 − 0.23y+

+ 0.25y2 − 0.12y3 + 0.02y4) + 2yx2 (−1.16 + 0.82y) +

+y
(
−0.23 + 0.5y − 0.36y2 + 0.08y3

) ]
and we get

∂Pq

∂y
= −

0.076 × 7 × π2 × gqµ
4
0

240 × 3 × 1.9
: xc = 0.438 , y = 1 . (4.3)

Using the relation

µ0 =
1
a0

(
8 × 9π
gq

) 1
3

we have

µ0 = 285.15 Mev for gq = 24 and 1/a0 = 135 Mev for π0

µ0 = 295.7 Mev for 1/a0 = 140 Mev for π− and π+ .

So the chemical potential µ0 is in the range from 285.15 Mev
to 295.7 Mev therefore

∂Pq

∂y
= −6.06 × 108 Mev4 for µ0 = 285.15 Mev

∂Pq

∂y
= −7.01 × 108 Mev4 for µ0 = 295.7 Mev .

Now we try to calculate ∂µq/∂y, according to low energy

Elow = (1.9 × 240)−1 7π2 µ4
0 gq V x4

[
3.78+

+ 2x−2
(
0.82 − 1.16y + 0.41y2

)
+ x−4

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
we can equivalence

µ4 = µ4
0

(
1 −

0.23
0.08

y +
0.25
0.08

y2 −
0.12
0.08

y3 +
0.02
0.08

y4
)
. (4.4)

But ∂µ/∂y→ ∞ when y→ 1 so we replace

∂µq

∂y
→

µy=1 − µy=0

1 − 0
=

0 − µy=0

1 − 0
= −µy=0 = −µ0 .

Therefore we have

δµh =
NqVh

NhVq

(
∂µq

∂y

) (
∂Pq

∂y

)−1

δPh

=
NqVh

NhVq
µ0

(
0.09µ4

0

)−1
δPh

=
NqVh

NhVq

(
0.09µ3

0

)−1
δPh .

So we have

δµh =
NqVh

NhVq

(
0.09 µ3

0

)−1
δPh

= 4.7 × 10−7 NqVh

NhVq
δPh for µ0 = 285.15 Mev

and

δµh = 4.2 × 10−7 NqVh

NhVq
δPh for µ0 = 295.7 Mev . (4.5)

We use them to cancel the dark matter and dark energy.

5 The Big Bang

We assume there were two universal phases, high energies
massless particles phase (let them be the quarks plasma) and
then the massive low energies particles (let them be the ha-
drons).

The first phase associated with high energy density (drops
from infinity to finite), the time of that stage is τ : 0 → a0 =

1/(135−140) Mev then the massive hadrons phase begins (the
time t : 0→ ∞).

In both stages the highest universal expansion must not
exceed the light speed, for the first phase, high energies mass-
less quarks phase, the density of the energy is the same in all
space points so the universal expansion is the same in every
point in the space, we let the speed of that expansion equal
the light speed, therefore the Hubble parameter H(t < a0) of
this stage t < a0 is given by (5.2).

To find the Hubble parameter for the massive hadrons
phase H(t > a0), we suggest the geometry transformation
(5.3) in which the time τ : 0→ a0 for the quarks corresponds
to the time t : 0→ ∞ for the massive hadrons phase. We can
relate that change in the geometry to the high differences in
the energy densities of the two phases. The phase τ : 0 → a0
high quarks energy, uniform high energy density, massless,
. . . The phase t : 0 → ∞ the massive hadrons, low energy
density, separated particles, . . .

Now we try to explain how the universe exploded and ex-
panded, we start from our assumptions we made before and
find the Hubble parameter and try to find the dark energy
and matter. We found that the quarks expand to the length
a0 = 1/(135 − 140) Mev then the hadrons appear instead.

We assume that the universe was created in every point in
two dimensional space XY then the explosion in the Z direc-
tion. That is by the quarks, in each point in the XY plane the
quarks were created and then they expanded in each point XY
to the length a0 then the explosion in the Z direction, the result
is the universe in the space XYZ. There was no universal ex-
plosion in the XY plane, the universal explosion was only in
the Z direction, in the plane XY there was extension due to the
quarks expanding from r = 0 to r = a0 = 1/(135 − 140) Mev
the plane XY was infinity before the quarks expansion and it
is infinity after that expansion, what happened is an increase
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in the number of the XY points, then the explosion in the Z
direction. We assume both expansion (XY and Z) occurred
with the light speed c.

To find the lost matter, dark matter and dark energy, we
use the relation (4.5) we found before:

δµh =
NqVh

NhVq

(
0.09 µ3

0

)−1
δPh

= 4.7 × 10−7 NqVh

NhVq
δPh for µ0 = 285.15 Mev

and

δµh = 4.2 × 10−7 NqVh

NhVq
δPh for µ0 = 295.7 Mev .

Here we relate this changing in the pressure δP (indepen-
dent of time) to the hadrons condensation process to form
the nucleuses, where the global pressure δP = δPh dropped
extremely due to the nuclear attractive potential (make it the
nuclear binding energy) V0 = (−7−8) Mev [3]. This pressure
δPh remains contained in the nucleuses, but globally is not
visible.

So there is hidden global pressure δPh and we have to
include that problem in the Friedman equations solutions, we
notice that the nuclear attractive potential leads to increasing
in the cooled hadrons densities. Therefore the decreasing in
the hadrons pressure associated with the increasing of their
densities (inside the nucleuses). The result is excess in the
local energy density, that effects appear in the equations, that
is, the matter density appears to be larger than the right energy
density. So there is neither dark matter nor dark energy, it is
just global and local densities.

We start from the definition of the scale parameter R(t) for
the universe expansion, we write [6]

ds2 = −dt2 + R2(t)
(

dr2

1 − kr2 + r2dΩ2
)
. (5.1)

We set k = 0 flat Universe. Now we try to find the Hubble
parameter

H(t) =
1

R(t)
dR(t)

dt
=

Ṙ(t)
R(t)

.

There are two phases t < a0 free quarks phase and t > a0
hadrons phase which is the expansion in the Z direction. That
means there are two different spacetime geometry, t < a0 and
t > a0.

In the first phase τ = t < a0 the expansion is the same in
all space points, so the expansion velocity

dR1

dt
= Ṙ(t) r

is the same in all space points and equals the light speed c =

~ = 1 here, so
1 = Ṙ(t)r : t < a = a0 .

Therefore
Ṙ(t) =

1
r

: t < a = a0 .

So we can write

R(t) =
t
r

: t < a = a0 .

So the Hubble parameter becomes

H(t) =
Ṙ(t)
R(t)

=
1/r
t/r

=
1
t

: t < a = a0 . (5.2)

Now we want to find the Hubble parameter in the phase t > a0
low energy phase. Actually when the quarks expand from
r = 0 to r = a → a0 there will be infinity points expanding,
so infinity expanding distance in XY space, but the expansion
cannot exceed the light speed c = 1 therefore an explosion
occurs in the Z direction, so the universal explosion. There-
fore the time t = τ : 0 → a0 for the free quarks phase will
associate with t : 0 → ∞ for the universal expansion, so we
make the geometry transformation

t =
−c0

τ − a0
: τ < a0 . (5.3)

c0 is constant, we can relate that relation to a difference in
spacetime geometry. That means if the quarks space r < a0 =

1/(135 − 140) Mev is flat, so the hadrons space is not, it is
curved space, where we live. It is convenient to consider the
quarks space (r < a0 large energy density) is curved not our
space (low energy density).

Now we can find the Hubble parameter for the universe
t : 0 → ∞. We can find the Hubble parameter H(t > a0) for
the geometry t : 0→ ∞ from H(t < a0) :

H(τ < a) =
1

R(τ < a)
dR(τ < a)

dτ

=
1

f (r, θ, ϕ)R(t > a)
d
dτ

f (r, θ, ϕ)R(t > a) .

We set the geometry transformation

R(τ < a) = f (r, θ, ϕ) R(t > a)

so

1
τ

=
1

f (r, θ, ϕ)R(t > a)
d
dτ

f (r, θ, ϕ)R(t > a)

=
1

R(t > a)
d
dτ

R(t > a) (5.4)

or

1
τ

=
1

R(t > a)
dt
dτ

d
dt

R(t > a)

=
dt
dτ

1
R(t > a)

d
dt

R(t > a) =
dt
dτ

H(t > a) .
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Using the geometry transformation

t =
−c0

τ − a0
: τ < a→ a0 ,

we have the Hubble parameter of the low energy density of
the cold Universe

H(t > a0) =
1

R(t > a0)
d
dt

R(t > a0)

=
c0

t(a0t − c0)
=

1

t
(

a0
c0

t − 1
) =

1

t
(
c′0t − 1

)
where c′0 is constant.

The Friedman equations can be written, for k = 0, like [6]

3
Ṙ2(t)
R2(t)

= 8πGNρ + Λ (1)

−
R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

= 4πGN(ρ + p) (2) (5.5)

d
dt

(ρ + δp) = −3(ρ + p)
Ṙ(t)
R(t)

. (3)

To control (or cancel) the dark matter and energy, we make
the transformations in the Friedman equations which keep the
Hubble parameter unchanged

3
Ṙ2(t)
R2(t)

= 8πGN(ρ + δP) + Λ − 8πGNδP (1′)

−
R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

= 4πGN(ρ + δP + p − δP) (2′) (5.6)

d
dt

(ρ + δp) = −3(ρ + δP + p − δP)
Ṙ(t)
R(t)

. (3′)

So we have (for same Hubble parameter we had before)

ρ′ = ρ + δph

p′ = p − δph

Λ′ = Λ − 8πGNδph = 0 .

For the universal nuclear condensation, we assume the uni-
versal change δρ = δP = δph > 0 is independent of the time.

We can say ρ′, p′ and Λ′ = 0, P′ = 0 are for the located
matter, when the hadrons are cooled, they condense and lo-
cate in small volumes with high matter density, because of
the strong nuclear attractive interaction, so their pressure de-
creases extremely P′ ≈ 0. That pressure is contained (hidden)
in the nucleus. It is like to condense a gas with certain mass m
and fixed volume V , the density m/V is the same before and
after the condensation, but the real density of the produced
liquid is not. Like that we consider ρ the right matter ρmatter

and the problems; the increasing ρ′ = ρ + δph and Λ , 0 are
because of the phase changing.

We set ρ′ = ρ(t) and solve the two equations:

−
R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

= 4πGNρ(t) (2′)

d
dt

(ρ + δp) = ρ̇(t) = −3ρ(t)
Ṙ(t)
R(t)

(3′)

using the Hubble parameter

H(t) =
1
R

dR
dt

=
1

t
(
c′0t − 1

) : t > a0 .

From (3’) we have

−
1
3

R(t)
Ṙ(t)

ρ̇(t) = ρ(t)

so (2’) becomes

−
R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

= −
4πGN

3
R(t)
Ṙ(t)

ρ̇(t) .

This equation becomes

Ṙ(t)
R(t)

(
−

R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

)
= −

4πGN

3
ρ̇(t)

or

H(t)
(
−

R̈(t)
R(t)

+ H2(t)
)

= −
4πGN

3
ρ̇(t) .

Using
d
dt

Ṙ(t)
R(t)

=
R̈(t)
R(t)
−

Ṙ2(t)
R2(t)

we get

H(t)
d
dt

H(t) =
4πGN

3
ρ̇(t)→

1
2

H(t)2 =
4πGN

3
(ρ(t) − ρ0) .

For finite results we put ρ0 = 0 so

1
2

H(t)2 =
4πGN

3
ρ(t) .

Now we calculate the contributions of the vacuum energy to
the total energy using the cosmological constant Λ′ from (1’)

ΩΛ′ =
ρ′

Λ

ρc
=

Λ′

3H2 =
3H2 − 8πGNρ(t)

3H2

= 1 − 2
4πGN

3H2 ρ(t) = 1 − 2
1

H2

1
2

H(t)2 = 0

with the critical energy density

ρc =
3H2

8πGN
.

So the vacuum energy density is canceled, and the total en-
ergy is the matter energy Ωmatter = 1 so ρ(t)/ρc = 1. Here
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ρ(t) = ρc is ρ(t) = ρ′ = ρmatter + δph, so ρ(t) is higher than the
right matter ρmatter.

Now we see if this relation is satisfied or not. We use the
global change on the pressure δp = δph > 0 which we derived
in (4.5):

δµh =
NqVh

NhVq

(
0.09µ3

0

)−1
δPh

= 4.7 × 10−7 NqVh

NhVq
δPh for µ0 = 285.15 Mev

and

δµh = 4.2 × 10−7 NqVh

NhVq
δPh for µ0 = 295.7 Mev .

Now we try to find Vq/Vh the quarks volume Vq = S dq and
the hadrons volume Vh = S dh as shown in Fig. 12 where the

Fig. 12: The universal explosion in Z direction starting from XY flat.

universal explosion is in the Z = d direction. If we assume
the explosion speed is the same for both hadrons and quarks,
light speed ν = c = 1, so for the quarks

Hq(t) =
Ṙ(t)q

R(t)q
=
νq

dq
=

1
dq
.

For the hadrons

Hh(t) =
Ṙ(t)h

R(t)h
=
νh

dh
=

1
dh

therefore
Vq

Vh
=

S dq

S dh
=

dq

dh
=

Hh

Hq
,

Hh is the universal Hubble parameter, today is

H = 71 km/s/mpc = 2.3 × 10−18 s−1

= 2.3 × 10−18 × 6.58 × 10−22 Mev = 151.34 × 10−41 Mev .

The quarks Hubble parameter Hq = 1/τ→1/a0 = (135 −
140) Mev. So we have (for 135 Mev)

Hh

Hq
=

151.34 × 10−41 Mev
135 Mev

= 1.127 × 10−41 .

Therefore
Vq

Vh
=

Hh

Hq
= 1.127 × 10−41 .

We set δµh = −V0 = (7 − 8) Mev the nuclear potential (nu-
cleon binding energy). Therefore, from (4.5), we have

δρ = δPh = −
Nh

Nq
× 1.127 × 10−41 ×

−V0

47
× 108 Mev4

for
1
a0

= 135 Mev : µ0= 285.15 Mev

and

δρ = δPh = −
Nh

Nq
× 1.087 × 10−41 ×

−V0

42
× 108 Mev4

for
1
a0

= 140 Mev : µ0= 295.7 Mev .

For Nh/Nq = 1/5, like the interaction P++π− → n the neutron
n appears to have five quarks, that is acceptable according to
the fields dual behavior. Therefore

δρ = δPh = −
1
5
× 1.127 × 10−41 ×

−7
47
× 108 Mev4

= 335.7 × 10−37 Mev4

for µ0= 285.15 Mev and V0 = −7 Mev

and

δρ = δPh = −
1
5
× 1.087 × 10−41 ×

−8
42
× 108 Mev4

= 414 × 10−37 Mev4

for µ0= 295.7 Mev and V0 = −8 Mev.

So the change δρ = δPh is in the range:

from 335.7 × 10−37 Mev4 to 414 × 10−37 Mev4 .

Therefore the visible matter is in the range

from ρmatter = ρc − δph = 335.7 × 10−37 Mev4

to ρmatter = ρc − δph = 414 × 10−37 Mev4 .

For the critical energy ρc = 406×10−37 Mev4 the visible mat-
ter is in the range

from ρmatter = 0 to ρmatter = 70 × 10−37 Mev4 .

The right baryonic matter energy density is

ρb = 4.19 × 10−31g/cm3 ≈ 17.97 × 10−37 Mev4

which belongs to the range 0 to 70 × 10−37 Mev4. We can
control this and have

ρmatter=ρc − δPh = 406 × 10−37 − δPh = 17.97 × 10−37 Mev4
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by finding r:

140r + 135(1 − r) =
1
a0

where 1/a0 satisfies

406 × 10−37 Mev4 − δPh = 17.97 × 10−37 Mev4.

For 1/a0 = 136.8 Mev (we used it in (3.17) to have m f ≈

938 Mev), the chemical potential becomes µ0 = 288.95 Mev.
And with V0 = 7.776 Mev we get

δρ = δPh = 335.7 × 10−37 ×

(
288.95
285.15

)3

×
7.776

7
Mev4

= 388 × 10−37 Mev4 .

The matter density becomes

ρmatter = 406 × 10−37 Mev4 − 388 × 10−37 Mev4

= 17.9 × 10−37 Mev4 .

which is the right matter (global visible matter density). The-
refore we can control the dark matter and dark energy. We
can cancel them.
Note that not all of those ideas are contained in the references.
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We use a mass-resonance equation to analyze the known elementary particles mass

spectrum; we first show that masses and charges are quantized together and all couplings

are geometry of movement. Next, the long-expected connection between gravitation

and the rest of physics appears as we deduce and compute from the equation parameters

the resonance corresponding to the reduced Planck mass. In this way, quantum fields

and general relativity can be emergent theories where the natural law is unique.

It is in the admission of ignorance and the admission of

uncertainty that there is a hope for the continuous motion

of human beings in some direction that doesn’t get confined,

permanently blocked, as it has so many times before in vari-

ous periods in the history of man. R.P. Feynman.

1 Introduction

In a celebrated paper, Dirac [8] showed that the existence of

magnetic poles and quantum mechanics imply symmetrical

quantization of magnetic and electric charges. This is the very

first attempt to explain the observation of a universal charge

quantum. Since then other theories were produced in which

the magnetic charge differs. But even though charges have

definite symmetry nothing imposes the charge ratio; namely

the fine structure constant α.

It is often believed that the standard model (SM) of par-

ticles physics is part of a wider theory in which its free pa-

rameters are calculable — but possibly free in essence or ac-

cepting multiple solutions. One can see the seeds of this line

of thoughts in Dirac’s quantization: once the idea is extended

to all fields, it may structure the logical constraints in such

a manner that the full set of equations can be solved. Such

result is expected in super-symmetry and string theory.

However, we must remind that we discuss the parameters

of a theory, not a-priori of nature. At the other extreme, as-

sume quantum theory incomplete or not fully understood, a

possibility exists that all known parameters are already cal-

culable from known physics. If so, it may be possible to de-

code some field characteristics directly from known data. At

present time, the only rich group of parameters is the elemen-

tary particles mass spectrum as we know 12 samples, and it

may be enough to understand its underlying structure.

In short, and in a general manner:

• Assume the 12 known masses correspond to solutions

of a set of unknown equations.

• In the most favorable case, if no other mass exists (or

close enough) all degrees of freedom are used.

• Hence it may be possible to find or approach the equa-

tions and the structure of the solution.

The approach is subtler and a lot more risky than any other

since instead of building on theoretical knowledge we assume

ignorance — and we do not know what we do ignore.

The object of this paper is to prove the existence of a solu-

tion, probably unique, and one of the equations in which the

solution is visible. One can infer its validity in two manners;

firstly by its agreement with phenomenology, and secondly,

by its logical coherence, compactness and simplicity.

In a suite of papers [3, 4], we showed how the mass spec-

trum is structured. We found firstly that the elementary par-

ticles mass obey a simple equation, which is geometrical and

based on integral resonances; secondly, two coupling con-

stants (including α) are used in the equation while we find no

specific couplings related to the SM weak and Higgs fields

as they use only specific geometrical degrees of freedom;

thirdly, all calculi and equations are compatible with a sim-

ple form of compositeness. On this basis, we showed [5] that

the electron and muon magnetic moment anomalies can be

computed from the equation parameters with no use of QED.

In the next sections, we first repeat the main demonstra-

tions, fix some errors, and then discuss the results and impli-

cations; since the mass equation is geometrical, its use of cou-

pling constants and the manner they combine imply that they

are also geometrical; we deduce that they correspond to reso-

nance paths and find or approach the related equations. In this

way, the field is geometrically self-quantized and has no free

parameter related to energy. The same applies to gravitation

since, using Wheeler-Feynman absorber equations, we de-

duce and compute its coupling (and the reduced Planck mass)

from the constants and integral resonances used in the mass

equation. In this way this mass-resonance theory is linked to

gravitation and cosmology; it needs no dark matter and no big

bang but comes with a constant linear expansion and energy

creation.

We shall use measurement data and constants from CO-

DATA 2014 or the Particle Data Group 2014 except where

mentioned. The point is of importance considering the pre-

cision reached with leptons masses, anomalies, and α. The

reader should keep in mind that the initial study used older

values which imposed no difference to the model.
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2 Deriving a mass equation

De Broglie [2] imagined a stationary wave of length h c/E

which relativistic transformation gives a phase wave of length

h/p. This is the origin of the wave equations of quantum

mechanics. The question of the nature of those waves is still

open; in this section, we imagine how a stationary wave can

be born and ring; then we predict some characteristics of the

resonances that we shall later use as verification.

We assume that the wave is the physical exchange at the

origin of mass. Energy exchange is momentum, and it gives

a pressure field that “cages” the particle charges and some as-

sociated self-energy. The initial idea is similar to the Poincaré

stress [11] though not identical as we split the particle.

Roughly speaking, we cage a permanent photon-like cur-

rent in a box also made of currents and we guess that the box

and the charge quantize each other. Assume the box size uni-

versal, it is sufficient to use a length 1. In the one dimensional

case, the pressure is a simple force, and resonance implies an

integral number M such that we have:

m = µ + X M,

where m is the particle mass and X is a universal constant.

The quantity µ represents a massless self-energy that neces-

sarily propagates, and it implies a double resonance. Hence

the resonance corresponds to a product M = N P:

m = µ + X N P.

In the 1-dimensional case, we should have N = P correspond-

ing to identical inbound and outbound currents, but we shall

need a more general equation and then we use a product. In a

wave representation, it represents the number of times the in-

bound and outbound wave crests hit each other in a universal

period of time or within a definite length.

Caging a massless particle requires symmetry, a force that

opposes the particle charge to the pressure field, that is pre-

cisely the resonance N P and the self-energy µ. There must

be a residual distance d , 0 between the first resonance wall

and the current µ at which the force applies. It gives:

m = µ +
X

d +
1

N P

.

Now the distance d should also depend on N and P because

energy comes from the distance (d + 1/NP) which is equiv-

alent to a potential. A potential is quantized and 1/NP is

already quantized as it comes from XNP = XM. Then we

use d = KD, with K an integral number and D a length. Last,

in three dimensions we get a cube:

m = µ +
X

(

K D +
1

N P

)3
. (2.1)

The equation has 6 degrees of freedom that can be reduced to

5 by division by X or µ and give unit-less quantities.

Now let us discuss the equation geometry; contrary to the

one-dimensional case, we have more degrees of freedom in

the resonance and the paths associated to N and P can be ra-

dial or circular; here we can use group theory arguments:

— Case 1: A double radial resonance. It needs identical

inbound and outbound waves, then N = P, giving a stationary

wave. Except for the cube, it is identical to the 1-dimensional

case then it should address leptons and U(1), and also the

Poincare stress in which case we should have KD > 0, with

K increasing with mass as 1/NP reduces since the leptons

charges are identical.

— Case 2: A double circular resonance: The resonance

geometry is conserved when we invert rotation axis; hence it

must be identified to SU(2) and by symmetry N = P. But

we must change (2.1) with X → X/k π with k a constant in-

tegral number; this is because compared to the first case even

though the resonance is circular the pressure is still applied to

its geometrical center. The equation becomes:

m = µ +
X

k π

(

K D +
1

N P

)3
.

It addresses massive bosons, which role in nature is to carry

interactions. They are similar to a photon and we must inte-

grate to X the term µ (that would be an intrinsic mass). There-

fore we will compute their masses (index b) comparatively to

the full electron mass (index e) as follows:

mb

me

=

(

1

NePe

+ KeDe

)3

k π

(

1

NbPb

+ KbDb

)3
. (2.2)

- Case 3: A mixed resonance. It includes both symme-

tries U(1) and SU(2), it is then SU(3) and this case addresses

quarks. If D is related to the strong force and asymptotic

freedom (≈ inverse to the Poincare stress) we should have

KD < 0, ideally constant. It implies N , P with a geometri-

cal constraint between π, N and P since a phase lock between

the two paths must exist; it requires to squaring a circle, then

logically we should get approximate relations like:

N P π ≈ an integral number, (2.3)

If the logic above is valid, it follows that particles distant

interactions are a manifestation of the resonance; hence we

should find relations between the resonance numbers (N, P)

and the known symmetries, and also between some coupling

constants and the non-integral values of D, X, and µ. De

facto, and most importantly, we cannot understand mass and

charge quantization separately.
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3 Massive elementary particles resonances

In this section, we shall fit the equation parameters to all

known elementary particles masses; since the equation is re-

lated to symmetry, the natural strategy is to proceed by groups

(leptons, quarks, massive bosons). We shall assume X univer-

sal and µ specific to leptons (where enough precision exists)

and, since D addresses forces, it must be group-dependent.

Recall also that a number of relations must be verified

by the fit; they can be used as verification of the geometrical

constraints imposed by symmetry and by the equation.

3.1 Leptons

The Table 1 shows charged leptons resonances. It uses very

small numbers, we get N = P as expected. The equation

parameters are given hereafter:

µ = 241.67661953 eV,

De = 0.0008532218937, (3.1)

X = 8.1451213299073 KeV.

Table 1: Electron, muon, tau in MeV/c2.

– P = N K Computed Measured

e 2 2 0.510 998 9461 0.510 998 9461(31)

µ 5 3 105.658 3752 105.658 3745(24)

τ 9 5 1 776.84 1 776.82(16)

Using α, the fine structure constant, we define a new con-

stant that will be used later:

AS = De/α ≈ 0.11692, (3.2)

which name AS is chosen for its value is reminiscent of the

strong force coupling.

The values in (3.1) can be tuned so that all masses match

exactly regardless of uncertainty; instead those values have

been chosen to compute exactly the electron mass and mag-

netic moment anomaly (assuming the related equations de-

veloped later are good-enough for such precision).

3.2 Quarks

Using X and µ constant from (3.1) the quarks resonances are

shown Table 2 (masses in the natural scheme) where a regular

pattern is obvious.

As expected, the parameter D is slightly different from

(3.1) to compute those masses:

Dq = De(1 + α) = AS (α + α2). (3.3)

Using De like for leptons gives the top mass out of range

≈ 167 GeV, and then a difference with leptons exists. Quarks

masses are no more published in the natural scheme; the esti-

mates used in Table 2 are dated 2011 except for the top [18],

see also [19].

We get N , P as expected; P and K are constant which

is surprisingly simple. The constancy of K = −6 < 0 is

reminiscent of asymptotic freedom and then also agrees with

a connection between De and αs. Note that varying K by ±1

gives computed quarks masses out of uncertainty range for

the four heaviest.

Table 2: Quarks resonances in MeV/c2.

– P N K Computed Estimate

u 3 2 –6 1.93 1.7 – 3.1

d 3 19/7 –6 5.00 4.1 – 5.7

s 3 7 –6 106.4 80 – 130

c 3 14 –6 1,255 1,180 – 1,340

b 3 19 –6 4,285 4,130 – 4,370

t 3 38 –6 172,380 172,040±190 ± 750

The approximate relations with N P π (2.3) are verified

for the second and third generations; they are:

c, s : 7 × 3π ≈ 65.97 ≈ 66/1.0004025,

t, b : 19 × 3π ≈ 179.07 ≈ 179 × 1.0003954.

We also notice that between 1 and 19 no other integral num-

bers come close to verifying (2.3).

It is interesting that the multiplication of N by 2 in the

second and third generations corresponds to the difference in

electric charges (1/3, 2/3) as it links mass and charge quanti-

zation. For the first generation the down quark needs a frac-

tion N = 19/7 which is barely acceptable, and we notice that

the relations with (2.3) match with 2 π for the d and also indi-

rectly for the u instead of 3 π for the four heavier quarks.

Those particularities may relate to quarks mixing, which

we see in the fraction 19/7 = 38/14, and the same logic for u

also holds since 2 = 38/19 = 14/7.

u : 2 × 3π ≈ 19/1.008,

d : (19/7) × 2π ≈ 17 × 1.0032.

Hence something unique happens to the u and d.

3.3 Massive Bosons

We assume that the W±, Z0 and H0 acquire their masses from

the same geometry; recall that we only have three geometries

(or mechanisms) and then we cannot address the weak force

bosons and the H0 separately. Using (2.2), it corresponds to

the same resonance, that is on the circular path we must have

N = P = constant, and only the radial K varies (though this

is not exact since we shall later find a slight difference).
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A factor k π at the denominator of (2.2) is needed since the

resonance is supposed circular, but we do not find a perfect

fit with k integral. We need a factor k ≈ 1; it seems at first

that we add a degree of freedom but we shall show that it is a

geometrical constraint.

The analysis of those masses is iterative and leads to im-

portant reasoning which is repeated hereafter in details. In

practice:

• The empirical fit gives the resonances, which are N =

P = 12, and K = −2,−7,−19 for the W±, Z0 and H0

respectively. The weak force bosons come in range but

the error on the H0 is 1 GeV. Those numbers immedi-

ately suggests the same underlying geometry as quarks

and maybe leptons, then the same field combining po-

tentials expressed by De and α.

• The empirical value of D for massive bosons is first ap-

proximated as Db ≈ α
2(1+AS/2−A2

S
/6); it suggests an

interaction term that depends on α and De; the former

is known and the later estimated with precision.

• The expression [De(1+α)]2 = α2(1+2 AS +A2
S

) is sim-

ilar and may give Db ≈ α
2(1+AS /2−A2

S
/6) depending

on the effective algebra. (Doubling the forces divides

the distance, then 2AS → AS /2, and the term −A2
S
/6

fits with the K = −6 in table 2.) .

On this basis we may have enough information to model

the interaction; the equations (3.2 – 3.3) suggest:

• Two types of charges corresponding to the mass µ : E

and C (≈ electric and color) on which D depends.

• A free field (charges X), and the pressure is given by

interactions: X×X, E×X, and C×X, hence Db includes

3 terms, but its expression is incomplete as we do not

yet compute all masses with precision.

Now we shall complete the reasoning, compute the predicted

bosons masses, and compare to experimental data.

Classification and immediate identification gives Table 3.

It shows that each individual interaction adds a piece of coef-

ficient in Db — like simple potentials adding or subtracting.

But we can only compute a radial distance (which gives a ra-

dial strength), not the orientation of the force which can be

symmetry-dependent as we discuss rotations.

Table 3: Classification and minimal interpretation of the coefficients.

– D Coeff Interaction Interpretation/logic

1 De αAS X × E Leptons

2 Dq αAS X × E Leptons→ Quarks

3 Dq α(αAS ) X ×C Quarks Charge

4 Db α2 X × X –

5 Db α(αAS )/2 X ×C Quarks→ Bosons

6 Db (αAS )2/6 (X × E)2 Leptons→ Bosons

The important point in this table is that quarks charges re-

sume to X × C = X × (X × E), and the coefficient 1/2 line 5

implies two distinct charges (augmenting the force and then

reducing the distance). Interpretation details are given here-

after (referring to the line of the Table 3) and lead to under-

standing.

Leptons — Line 1; charge E.

• X × E → α AS : There is only one elementary interac-

tion; it just gives us its coefficient.

Quarks — Lines 2 and 3; charges E and C.

• X × E → α AS : Same as electrons, and independent of

the quark electric charge.

• X × C = X × (X × E) → α(α AS ): This is a different

interaction; it is not a new kind of charge but it has the

same nature and quantum as X.

Massive Bosons — Lines 4, 5, and 6: charges E and C.

We found the same coefficients for the W± and the Z0.

One is electrically neutral but not the other. Still, we find

coefficients related to electricity and color charge, and then

those bosons are made of two fractional electric charges and

their two color charges (as we shall see the term charge is

abusive here). Then it is:

• X × X → α2: The interaction of two charges X gives

a distance α2. This is the main force on the circular

path that other interactions will impact — they are sec-

ondary forces or loops impacting this path.

• X × C = X × (X × E) → α(α AS )/2: The coefficient

α(αAS ) comes with quarks color charge; it also shows

that the charges of a weak force boson are equivalent

to that of two quarks, and different of that of a lepton.

Increasing the force by a factor 2 reduces the length

proportionally; thus the factor 1/2.

• (X×E)× (X×E)→ −(αAS )2/6: This coefficient corre-

sponds to the effect of the main resonance on separate

electric charges. We recognize De = αAS from lep-

tons, but 1/6 is new; it is only associated to D2
e and this

interaction is not present in Tables 1 and 2.

At this point, we understand how the interaction works

and we can logically deduce all missing terms in the expres-

sion of Db using α and AS . For this, we need to complete the

series of interaction loops with the field X:

X×X×X → −α4: Since X×X → α2 positive, and K < 0,

the force in X × X is compressive and then this coefficient is

scalar (and positive), it increases the compression and then

reduces the length: the coefficient is then negative −α4. The

next coefficient is positive as it reduces −α4. Similarly, we

must add loops indefinitely (X × X × X × X etc.); it gives a

simple series converging to α2/(1 + α2).
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Last, each interaction must be augmented with any num-

ber of X where the corresponding length is modified depend-

ing on its sign; then the coefficient −A2
S
/6 is multiplied by

1/(1 + α2) and the coefficient AS /2 by 1/(1 − α2). The series

make a small difference in Db which is far from negligible

when it comes to computing masses. The coefficient Db for

the W± and Z0 is then:

DWZ = α
2













1

1 + α2
+

AS

2(1 − α2)
−

A2
S

6(1 + α2)













,

DWZ = 5.62404904× 10−5. (3.4)

It also reads:

DWZ =
α2

1 + α2
+

De

2(1 − α2)
−

D2
e

6(1 + α2)
.

But it cannot be identical for the H0, firstly because its spin is

not 1. Assuming it holds four charges organized in a tetrahe-

dral manner, a tetrahedron has 6 lines of forces, and the last

interaction term is six times stronger:

DH = α
2













1

1 + α2
+

AS

2(1 − α2)
−

A2
S

1 + α2













,

DH = 5.56338664× 10−5. (3.5)

Or, alternately,

DH =
α2

1 + α2
+

De

2(1 − α2)
−

D2
e

1 + α2
.

It may also include additional loops thru the tetrahedron. The

strength of a line linking two charges is 1/6, it gives the first

term A2
S

in (3.5), but for the H0 it propagates thru 6 lines of

a tetrahedron and it gives 6 A4
S

. But it is not a free field, and

then it may not need an infinite number of loops. We shall

use a one-loop approximation since additional loops makes a

small difference (≈ −10 MeV):

DH = α
2
(

1

1 + α2
+

AS

2(1 − α2)
−

A2
S

(1 + 6A2
S

)

1 + α2

)

,

DH = 5.55741566× 10−5. (3.6)

This expression is the only reason here for AS to be physical

since all others uses of this coefficient reduce to De.

Now let us come back to the coefficient k in (2.2). In

Table 4, we have N = P, and then those two resonances have

the same orientation with opposite paths, but we find K in

(−2,−7,−19) the same numbers as for the quarks N which

resonance is mixed.

Consequently, there is, like for quarks (2.3), a geometrical

constraint which here is between the length Db and the circu-

lar path π/NP. Taking only the circular path into account and

keeping the constraint coming from the radius, Db should be

a divisor of π/NP = π/144, a division that must hold with

any K in −2,−7,−19. Since all Ks are primes numbers the

constraint applies to their product. In this simplified picture

(that cannot hold yet) we should have:

(π/144)/Db = 2 × 7 × 19→ π/144 = 266 Db

Now Db is radial and a 3-sphere volume depends on the cube

of its radius. Then we must use Dbπ
1/3 on the right hand side;

it gives a modified equation that is close to hold:

π/144 = 266 Dbπ
1/3.

This equation is equivalent to squaring the circle, then we

miss the coefficient k which is now a logical geometrical con-

straint related to phase lock. In (2.2), π is multiplied by k

and this equation addresses a volume; hence we must use its

cube on the left hand side, and reduce π accordingly on the

right-hand side; in this way we get comparable quantities and

it gives the geometrical resonance constraint:

k3 π/144 = 266 Db (π/k)1/3. (3.7)

Here the interaction term Db constrains k thru geometry. The

two sides of (3.7) represent lengths, and then taking their cube

we get volumes verifying:

(266 Db)3 = k10 π2 (1/144)3. (3.8)

It equates the volume of a 3-cube of edge 266 Db on the left

hand-side to that of a 4-ball (V4 = π2 R4/2) divided by half its

radius on the right-hand side, where a correction k is needed

for cubing the sphere. Here Db is an interaction term in 4D,

k a geometrical wave coherence constraint, and (3.8) links a

radial and a circular path in 4D. Now compute from (3.8):

(3.4)→ kWZ = 1.00128565, (3.9.1)

(3.5)→ kH = 0.998033312, (3.9.2)

(3.6)→ kH = 0.997711845. (3.9.3)

Using the coefficients above and (2.2), gives the masses in

Table 4, where precision is impressive.

Table 4: Bosons resonances in MeV/c2 , H0 mass in [17].

– P = N K Computed Measured

W± 12 −2 80, 384.9 80, 385± 15

Z0 12 −7 91, 187.56 91, 187.6± 2.1

H0 12 −19 125, 206 125.090± 240

H0 12 −19 125, 094 125.090± 240

After modeling the interaction we compute the weak force

bosons masses in perfect agreement with measurement and it

and confirms the validity of our reasoning. We get an effective
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unified theory of resonances where the forces compositeness

decays from leptons and quarks and this is truly unexpected.

In this table, the last two lines correspond to the equations

(3.5 – 3.9.2) and (3.6 – 3.9.3) respectively for DH and kH .

We can now better analyze the resonance in Table 4. Con-

sider the length 2 × 7 × 19 = 266. A phase lock between the

radial and circular paths and the K = −7 and −19 imply two

circular path lengths which are L1 = 2 π (1 − 7/266), and

L2 = 2 π (1 − 19/266). Those are compatible if and only if

A L1 = B L2, with A and B integral numbers. We must solve

the following equation which solution is trivial:

A × 2 π (266− 7)

266
=

B × 2 π (266− 19)

266
,

A = 266−19 = 247, B = 266−7 = 259, B − A = 12. (3.10)

The resonance number, 12, appears on the left hand side of

(3.10); it comes from phase coherence between the circular

path and the spots on the radius and we naturally get N =

P = A − B = 12 which then depends only on K (we use only

−7 and −19, but K = −2 is not a problem since 12 is even).

Finally all numbers and parameters used in Table 4 ap-

pear constrained; the specific degree of freedom used here is

just geometry. We have two forces coefficients (α and De) and

no specific coupling in this sector which is then emergent; this

result disagrees with the SM concept and requires unification

from below (as opposed to distinct fields).

3.4 Bosons widths

The expression (2.2) is a resonance equation and the com-

puted masses correspond to the poles of the resonances. Then

it should be possible to compute widths and then lifetimes;

at best, the widths are the size of some working resonance

“spots”; it would show that this theory gives the SM weak

field. For this we have to understand the phase coherence

between multiple paths. Recall that the bosons charges are

found interacting and organized in a minimal manner; in 3D,

it is a tetrahedron for the H0 and a simple straight line for the

Z0 and W±. For the weak force bosons:

With two circular phases the symmetry is loose, it has

some freedom, and on the circular path it suffices that N and

P hold on 1/2 phase to stabilize the resonance. It authorizes

a circular phase shift ±π/12 which extends or reduces the

sphere; with two charges, it gives on the radial part ∆K =

(±1/2)(1/12) = ±1/24.

In the radial direction, we have 266 slots, and the same

reasoning applies; it adds ∆K = ±1.

For the H0, with 4 charges, the symmetry is fully con-

strained in 3D; N and P hold together: ∆K = 1/144. A tetra-

hedron has 6 lines of force that can break; hence the width is

reduced accordingly∆K = 1/144/6. Other loops add nothing

since a tetrahedron is fully constrained in 3D.

On this basis, the resonance width is the difference in

mass ∆M given by (2.2) with respect to the pole in Table 4

when we use K + ∆K in (2.2) to compute the particle mass

M + ∆M. We get:

W± → ∆K = (1 + 1/24) → ΓW = 2.0857 GeV, a perfect

match with experiment (2.085 ± 0.042 GeV).

Z0 → ∆K = (1+ 1/24)→ ΓZ = 2.468 GeV, 1% less than

expected (2.4952 ± 0.0023 GeV).

H0 → ∆K = 1/(144 × 6) → ΓH = 4.10 MeV, which

agrees with the SM prediction at 125.09 GeV.

Hence, the widths come straightforwardly from geometry.

But the Z0 width is out of range and this can only be due to

the difference in charges with the W± that we have ignored.

Reasoning simply:

W±: The charges e/3 and 2e/3 (or opposite) repel each

other with a force coefficient 2e2/9.

Z0: The charges e/3 and -e/3 (or 2e/3 and -2e/3) attract

each other, the force coefficient is e2/9 or 4e2/9.

The difference in inner charges between the Z0 and the

W± gives a difference in forces which is:

2e2

9
+

e2

9
=

e2

3
Or :

2e2

9
+

4e2

9
=

2e2

3
.

It implies that the forces cannot be balanced in the same man-

ner for the two bosons. Assuming the W± width computed

value is exact, we need an additional term to compute the

Z0 width. Since the forces in the calculus of Db depend on

charges, from the equations above the missing coefficient is

1.5/137 or 1.5α. It gives:

Z0 → ∆K = (1 + 1/24 + 1.5/137)→ ΓZ = 2.4946 GeV,

which agrees with the SM prediction and experimental

data. However the experimental precision for the W± and Z0

widths differ by one order of magnitude; hence this reasoning,

which is differential, is risky and non conclusive.

3.5 Resonance terms, analysis and reduction

The resonance terms found in the previous tables (all N and

P) reduce to 2, 3, 7, and 19 in the following manner:

Leptons: 2, 7 – 2, and 7 + 2.

Quarks: 3, 7, 2 × 7, 19, and 2 × 19, if we omit the u and d

where we know from the CKM matrix that mixing is large as

compared to the other angles.

Massive bosons: 12 = 19 – 7.

It is remarkable that 7 = 23 − 13, and 19 = 33 − 23; here it

reduces to the three “symmetry numbers” of U(1), SU(2) and

SU(3), and their cubes differences. Moreover for all quarks

we get P = 3, including the u and d, where the polarity ap-

pears, meanwhile for leptons it seems that we have the polar-

ity 2 in a mixed manner. In this way the radial paths are based

on 2 and 3, while 7 and 19 only come with circular paths (and

unstable or mixing particles).

Moreover, the difference in resonance between the elec-

tron and the muon and tau relate to the K = −7 of the Z0,

while the heavy quarks decays include a factor 2 in charge

and resonance which fit the K = −2 of the W±.
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Therefore we get the strong impression that the equation

relates to an intricate resonance scheme based only on the SM

symmetries — or something close. The simplicity of the rea-

soning and numerical results suggest that the mass spectrum

may be unavoidable, and since it relies on charges it also sug-

gests the absence of free parameters in nature.

3.6 Charges ratios

The results in this section suggest a single field “below” and

it is interesting to estimate charges ratios, but we can only

compute their radial effect, not the forces orientation; from

the analysis of Table 3 the distances building the Ds are in

reverse proportions of charges. Then for the electron, K = 2,

and for quarks, K = −6, and De ≈ Dq.

From Table 3 and the different parameters D, taking into

account the differences in K, since we have X × E → 2 × De

for the electron and for quarks X×C → −6αDe; we estimate:

C

E
=

2 De

6αDe

→ C =
E

3α
,

which has a clear scent of monopole; importantly, it does not

depend on the quark electric charge since the coefficient 3

(from K = −6) is constant in Table 2.

In Table 3, we also have X×X → α2 and X×C → 6αDe,

and then we estimate:

C

X
=
α2

6αDe

= 1.4254503 ≈
√

2,

which is in the range of 1 and then the same type of charges

(≈
√

2 suggests geometry of the force orientation).

4 Coupling constants

4.1 Introduction

We found two real constants in the expression of the param-

eters D which represents a length in the equation. In the ex-

pressions (3.4 – 3.5 – 3.6) used for Db those two constants

stand on equal grounds. Hence since α is the coupling con-

stant of QED, then De is also a coupling constant. It then

relates directly to the strong and weak forces couplings (re-

call that we also have AS = De/α in the range of αS (MZ))

and since K appears constant for quarks, Dq should be related

to asymptotic freedom. Therefore it seems that the equation

addresses a field below with two and only two couplings (ne-

glecting gravitation for now).

Since all resonances are integral (N, P, K) and reduce to a

few numbers, it is minimal and elegant to generalize the con-

cept and assume that the field is entirely self-quantizing (or

self-constraining) and that quantization is entirely based on

geometry and integral numbers; in this way, those two cou-

pling correspond to some counter-resonances (1/N → N or

N → N) and then to constant path lengths (or relative path

lengths).

In practice the only known constant integral path length

is that of photons for which r2 − c2t2 = 0. At the opposite, in

special relativity, massive particles obey r2−c2t2 = const , 0

which we write r2−c2t2−const = 0. But now the paths of the

resonance define the massive particles — we mean entirely; it

is a repeat pattern that fits into this equation and it first implies

that the path includes a rotation which is around the time axis.

Then we guess that De (as a length) must be computed from

a pseudo-norm like expression of the form:

n2 + m π2 − p2 = D−2
e

where the central term introduces a rotation and n, m, and

p are expressions based on the resonance terms. Now of

course, αmust obey a similar pattern and, since α and De have

distinct but complimentary roles, the expressions giving De

and α should use resonance terms in a complimentary man-

ner. Last, the bosons resonances are based on 4-dimensional

paths; then n, m, and p must be seen as the coordinates of

a 4-path which projection on 3-dimensional space gives real

numbers.

Because of 4D resonances, we shall suppose that there

is no punctual particle or 1D string and that the field is en-

tirely fluid. It implies that some currents propagating in a

direction orthogonal to the observable 3-space (possibly back

and/or forth in time) are preserving and propagating the char-

acteristics of the particle and we shall abusively denote those

“time-currents”. In this way the electric field of the electron

is seen similar to the effect of a magnetic current propagating

forward and/or backward in time with respect to the present.

Here the present is seen as the surface of an expanding 4-

sphere, but 4D space is assumed preexisting and permanent.

It results in an interesting minimal model where all known

massive particles are composites of time-currents:

Leptons:

• e− : [↑−↓+],

• µ− : [↑−↓+ ↓−↓+],

• τ− : [↑−↓+ ↑−↑+].

Quarks:

• t+ : [↑+↓−↓+↑−↑+],

• b− : [↓+↑−↑+],

• c+ : [↑+↓−↓+],

• s− : [↓+].

Bosons:

• Z0: [↓+↓−],

• W±: [↑+↓−] and [↑−↓+],

• H0 : [↑+↑−↓+↓−].

where the notations are trivial for up-time and down-time cur-

rents sign and directions (the sign is the current, not the elec-

tric charge which, by convention, is inverted for down cur-

rents); the apparent electric charge is 2/3 for an up-time cur-
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rent and 1/3 for a down-current (still by convention). Several

aspects of the model are of interest:

• The model is based on 4 dimensions of space; it is then

coherent with the calculus of the coefficient k used for

bosons, but it is also reminiscent of QCD where quarks

live in 4 dimensions.

• The difference between the H0 and the weak bosons is

consistent with the calculus of DWZ and DH .

• All quarks decays consist in a separation of currents

where the sum of the produced W± boson’s current and

quark is equal to the currents of the original quark (and

of course the picture is reversible).

• The same is valid for leptons decay, but with a Z0.

• There is no room to make a d quark except by mixing

(and the d comes with resonances ratios).

• The notion of time-currents removes the need for par-

ticles “inhabiting space”. In this way, the concept is

minimalist and particularly elegant since, eventually, it

must result in self-quantizing movement where we do

not need to distinguish space and matter.

• All particles include a down-type current (taking this

as strict rule implies mixing for the u and d, and the

absence of FCNC). The model agree with Cramer’s in-

terpretation of quantum mechanics — though in an al-

most classical 4-dimensional manner. All particles are

connected to and can send information to their past or

receive some from their future because a communica-

tion channel exists which is the particle itself.

4.2 Coincidences

In this sub-section we discuss three numerical coincidences

involving the numerical values found in section 3. In this

way, we seek coherence with known but older theory.

4.2.1 Lamb shift, Bethe’s equation

Bethe [1] computes the hydrogen Lamb shift; he gets:

∆E =
α5 me c2

6 π
ln

(

m2
e c2

8.9α2 m2
e c2

)

, (4.1)

where me is the electron mass; the expression in the logarithm

depends on the cutoff and gives a ratio between the electron

absorption and self-interaction and then in our model µ and

(me−µ) respectively (though according to the mass-equation,

self-interaction and absorption may be reversed with respect

to QED,) we find:

(me − µ)

µ
=

1

8.8857α2
. (4.2)

The relative difference with respect to Bethe’s result is

1.6×10−3 (or 2×10−4 for ∆E) and then µ seems relevant with

respect to Bethe’s analysis. We notice a similar coincidence:

(me − µ)

µ
≈

√
2

4π α2
. (4.3)

The relative error in (4.3) is ≈ 1.25 × 10−5. Consequently,

since Bethe’s paper is seen as the very first step to QED, X and

µ should be fundamental quantities directly linked to QED.

4.2.2 The electron mass and spin, rough analysis of the

coincidences

A physical action is a product of charges or currents; then

we analyze action and not energy. Accordingly, the electron

mass comes as a repeated action (E = hν).

Action is a product that we first write in complex form:

(

G +
i e

2

) (

G −
i e

2

)

= G2 +
e2

4
→ me, (4.4)

where e/2 represents the currents, not the apparent charges,

and G the resonant component. Now we write (4.4) in quater-

nion form:

(

G +
i e

2

)

(

G +
k e

2

)

= G2 −
j e2

4
+ (k + i)

e G

2
. (4.5)

Those equations may approach the natural algebra, but the

result seems wrong. Still, assume the algebra is broken, (4.4)

gives the mass and (4.5) angular momentum:

G2 +
e2

4
→ me; (k + i)

e G

2
→ angular momenta. (4.6)

The angular momentum splits into two components on or-

thogonal axis — which agrees with the idea of time-currents.

Then one is the magnetic moment and the other is along the

time axis; we will denote the latter “spin”. Now we identify

the squared charges in (4.6) with the masses in (4.3); it gives:

4π α2G2 ≈ e2

√
2

4
.

Substituting G with a Dirac charge, we get 1 ≈
√

(2)/4π;

now multiply each side of this ridiculous result by the Planck

constant we get the following correspondence:

h↔
√

2
~

2
=

∣

∣

∣

∣

∣

(k + i)
e G

2

∣

∣

∣

∣

∣

, (4.7)

which interpretation is obvious: a repeated action h is energy

(E = hν) and it makes the leptons spin and magnetic moment.

4.2.3 The Dirac condition and the parameters X and µ

Dirac [8] analyzes the possibility of existence of magnetic

monopoles using quantum mechanics. Based on the mathe-

matical properties of the electron wave function interpreted
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as a density of probability of presence, he shows that a mag-

netic monopole is compatible with the existence of quantum

mechanics in Hamiltonian form if and only if the so called

Dirac condition is respected:

e g =
(n ~ c)

2
→ g =

n e

2α
. (4.8)

It results in the elegant idea that the existence of magnetic

poles fixes the electric charge and conversely.

Now let us assume that the electron wave is a magnetic

current; since Dirac’s demonstration is based on the “fields

of force” acting on the electron wave then magnetic currents

acting on electric charges must obey the same condition. But

in our model e is an apparent charge (say ee) and also a sum

of time-currents (say em) and its monopole (denoted gm).

Both must be taken into account in the condition as part

of the total current; then the condition is:

ee(gm + em) =
(n ~ c)

2
. (4.9)

Now compare with our data and use em = ee. The fundamen-

tal resonance in equation (2.1) corresponds to a theoretical

half electron, that is N = P = 1,K = 0, and a self-energy µ/2

that we shall ignore. It gives, as per (1 – 3.3):

m = X/1 = 8.1451213299073 keV/c2. (4.10)

This mass must be compared to µ as it comes from the in-

teraction of the time-currents (not the apparent charges) and

then, for an electron, as the product e2/4. The rest of the elec-

tron mass (N = P = K = 2) is given by the resonance; then in

(4.10) the numbers (N = P = 1) correspond to a hypothetical

particle where a current G is interacting with e/2 which mass

is given by an action corresponding to Ge/2.

Now we analyze how action comes as a product of cur-

rents, but not energy for which we rely on resonances. In the

hypothetical resonance above, it corresponds to the products

e G and e2/4, where G2 is absent. It leads to a correspondence

between action and energy:

e G

2
↔ m;

e2

4
↔ µ. (4.11)

We divide the two expressions in (4.11) and in light of (4.9)

we add µ/2 that we initially ignored; we find:

2 G

e
=

m

µ
→ 4 G + e = 68.4051246306057 e ≈

e

2α
. (4.12)

We want to recognize here the modified Dirac condition in

(4.5), because the fine structure constant appears linked to

the equation parameters.

But the result seems approximate; at first the relative dis-

crepancy (−1.65×10−3) seems acceptable since we analyze a

hypothetical particle but we shall see that this numerical value

holds precisely.

There is a second aspect related to the Dirac condition

which comes from the time-currents model and the apparent

electric charges e/3 and 2e/3 going respectively down and up

the time; assume their individual self interactions are squared

charges. Once again, we can link action and energy:

(e/3)2 + (2e/3)2 → µ(1/3)2 + µ(2/3)2 = 5µ/9. (4.13)

Now from (4.10):

4(m + 5µ/9)/µ = 137.032471483434 ≈ 1/α (4.14)

The relative discrepancy with respect to α is ≈ 2.26 × 10−5.

The coincidence can, at first sight, be seen redundant with the

equation (4.12) as it is almost identical, but it comes from a

different interaction and we shall see now that this value also

holds.

4.3 Leptons magnetic moment anomaly

We assumed that the resonances in the previous section “con-

struct” the leptons waves; unlike the classical wave equa-

tions the geometrical construction is not unique but lepton-

dependent. Thus, even for the electron it seems hardly pos-

sible to make an exact link with the Dirac equation which,

according to (2.1), should be too general; consequently we

go back to de Broglie’s thesis which is fully relativistic.

4.3.1 De Broglie wave geometry

In his thesis, de Broglie uses a standing wave, that we will de-

note the Compton wave and finds a phase wave as a result of

the relativistic transformation of the former. The agreement

of the stationary wave assumption with the results in Table 1

is straightforward since we get N = P for all leptons.

The change in phase of the de Broglie wave over the first

Bohr orbit of a hydrogen atom is 2 π, while the Compton

wavelength change in phase over this orbit is 2 π/α. Then

over any number of Compton wavelengths, we have:

∆φD = α∆φC , (4.15)

where∆φD and∆φC are the changes in phase of the de Broglie

and Compton waves over any length. On the nth orbit we find:

∆φD =
α∆φC

n
, (4.16)

There are n de Broglie wavelengths around the nth Bohr

orbit and we get a constant angular differential term α. The

same reasoning applies in the case of a nucleus of charge

Z e and gives the same value. Hence, considering that the

de Broglie wave defines the motion of the electron this term

is universal in the Bohr model. As a result, and taking into ac-

count simultaneously the motion of the electron and the phase

velocity of the de Broglie wave going around the proton, the
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Fig. 1: Left, the electron classical Bohr orbit; right, the same cylin-

der unfolded (the angle is ≈ α).

phases of the two waves at any location of the electron clas-

sical trajectory are permanently identical.

Assume α is a path length based on integral and geomet-

rical numbers. On the cylinder Figure 1, and using a system

of unit where the radius of the cylinder is 1, the length of the

unfolded tangent is approximated with L ≈
√

1372 + (2 π)2.

Now we know that the electron spin is 1/2, and then the rota-

tion of the resonance is reduced to π when the electron runs

one turn; we get the well-known
√

1372 + π2 ≈ α.

Consider now the de Broglie wave as a shortcut perma-

nently joining the electron with itself, but one (or n) Comp-

ton wavelength later, with an action 1/137/2 (taking again the

spin 1/2 into account), it gives:

α−1 ≈

√

1372 + π2 −
1

137
×

1

2

which holds with a relative precision ≈ 3 × 10−8. Last, con-

sider that the electron progresses in time, but that its waves

are composed of two currents going up and down. If the up-

time part of the waves gives a factor 1/2, the down-time part

sees the electron with a charge twice lesser since in the case

of quarks the down-time and up-time currents manifest fields

1/3 and 2/3 respectively. It must be augmented with a reso-

nance length dependent on the time-velocity of the electron;

twice longer for the same reason (charges 1/3, 2/3); finally it

gives a factor 1/8 for the down-time part and we get:

α−1 =

√

1372 + π2 −
1

137

(

1

2
+

1

8

)

→ α = 72 973 525 698 × 10−13

which is exactly the value of α given in CODATA 2012! Con-

sidering precision together with the simplicity of this geome-

try, it looks pretty much like time-currents exist.

In special relativity, one would consider the so called ra-

pidity of the electron defined as a hyperbolic angle. How-

ever, the path length α can also be seen as a simple angle in

the Euclidean coordinates (x, y, z, i ct) as originally used by

Minkowski. Moreover, one must consider this angle univer-

sal, and it implies a complimentary angle π/2 − α. At first

the existence of those angles can be checked numerically as

it must also correspond to the coincidence (4.3); after appro-

priate replacements of α2 by two coefficients corresponding

to the two angles α and (π/2 − α), the equation (4.3) gives:

4π (me − µ) sin(α)

[

(

π

2
− α

)

sin

(

α

π/2 − α

)]

= µ
√

2,

which holds with a relative precision of 2.9 × 10−8 instead of

1.25 × 10−5 for (4.3).

4.3.2 Other resonance coefficients and action

When the electron is on the first orbit there is a rotation of

the time-current of a hyperbolic angle α which ratio to the

space current changes in proportion of the hyperbolic tangent

of this angle. As stated, the impact is a phase differential and

considering resonances, a simple angle gives tan(α); it runs

around the full Bohr orbit and then the instantaneous action

term is tan(α)/2π. The action given by tan(α) is that of a

resonance going around the full orbit.

It must cycle on 1/2 quantum; hence the first correction

term to the electron magnetic moment anomaly is:

ae
0 =

tan(α)

2π
≈
g − 2

2
(4.17)

where we denote a0 and g the correction and the g-factor

respectively. Compare to the first order QED correction by

Schwinger [12], the well known α/2π. The difference comes

from a different manner to taking into account relativistic

effects. Here it suggests that taking into account together

the particle resonances and special relativity in the original

Minkowski manner could give an analytic solution. In facts,

the difference is that we consider the electron as a 4D gyro-

scope which axis is bent by velocity. This axis is shown with

the orientation of the resonances N, P,K in Figure 2.

Therefore in (2.1) the resonance N P corresponds to G2 in

(4.13) while K corresponds to e2/4. The product N P makes

and “absorbs” the spin and the full space-resonance cycle is

then (N P − 2) K which is a product G2e2 while the spin is

given by G e. Action depends on the number of currents C

(which, according to the model, is lepton-dependent) while

the mass µ is constant; then we divide this coefficient by the

number of currents.
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We get a spin-dependent coefficient where the spin relates

to the interaction of the G-currents and the apparent electric

charges — which is logical. It is:

E =

√

NP − 2

C
K. (4.18)

In the direction of time (K in Figure 2), the same reasoning

gives NK2 for a product e2/4. But we get a spin indepen-

dent coefficient which relates only to the currents and does

not need a square root; it is:

F =
N K2

4
. (4.19)

The coefficients above are valid for an electron but for the

muon and tau the coefficient a0 corresponding to the time

current rotation is not α like in (4.17), it depends on the res-

onance numbers. The electron is the special case because all

resonance numbers are identical and even (N = P = K = 2)

and then all phases are identical.

For the muon and the tau, N = P and K are odd and prime

with each other, and then the action cycle is N K. Using (4.18)

for an electron, the cycle uses N = K = 2 and its angle should

be written 2α/2. Then for a muon and a tau the correspond-

ing coefficient is:

φ =
tan(N K α/2)

NK/2
, a0 =

φ

2 π
. (4.20)

The expression mixes angles and resonance and fits with the

interaction of current where action is angle-dependent; it will

be the geometric form used in this section. We introduce α/2

which we now consider as the physical angle of each time-

current — it gives α for two currents of opposite directions

taken together.

4.3.3 The electron

Now we want to compute the anomaly from the following

picture: the electron is seen as a 4D rotation which (in all

cases) has the following mathematical property: two orthog-

onal planes exist which are conserved by the rotation. The

identifications are then obvious; the angles in the previous

Fig. 2: Resonance geometry on N, P, and K. Left: an electron seen

at rest, K on the time axis, N and P in 3-space. Right: an angle ≈ α

appears as a relativistic shift on the first Bohr orbit where axes are

bent by velocity.

section define the two planes rotations and correspond to the

resonances. The rotation is said double since we find distinct

angles α and (π/2 − α). The planes intersect at a single point

(a mathematical property of any 4D rotation) where the res-

onances apply, and it defines the punctual particle — but we

do not need to introduce anything material at this place (no

particle). The planes intersection point also moves in space

and in the direction of time defining a classical trajectory.

One plane is orthogonal to the time axis and hosts the

leptons resonances N = P, and K is on the other one which in-

cludes the “time translation” of the particle. Finally those two

planes are lepton-independent and then their translation and

the associated angles define entirely the seemingly anoma-

lous values in (4.8 – 4.10) as they are also lepton-independent.

Consequently, the lepton-dependent resonances imply differ-

ent magnetic moment anomalies. Therefore we can reverse-

compute the anomaly from those two quantities. In this way,

we define:

From (4.8): 4(X/µ + 1/2) = β−1
1
= 136.810249261211,

From (4.10): 4(X/µ + 5/9) = β−1
2
= 137.032471483434.

The Dirac equation gives g = 2 and it is known that

the correction is entirely related to relativistic shifts. The

quantities above correspond to distinct interactions and then

distinct types of charges; hence the correction is a product

aT = a0 a1 a2 where a0 is geometrical and corresponds to the

angle α in (4.17) or φ in (4.20), a1 to the action of the appar-

ent electric charges (4.10), and a2 to the action of (magnetic)

currents (4.8).

Since β1 and β2 are deduced from the leptons masses, they

are related to the tangent of some angles part of the resonance

geometry (in the same manner as tan(α)/2π). The anomaly is

angular and differential and then a1 and a2 must be computed

as ratios involving α and the arctangents of some angles in-

volving respectively β2 or β1, and resonance numbers. The

electron correction term ae
1

is then given by an expression of

following form:

tan(α)Y

tan−1(β2Y)
→ ae

1.

It links an action given by the angle α and another one given

by β2 and the anomaly relates to their ratio. Now β2 relates to

the apparent electric charges giving the spin; then Y = E as

defined in (4.18). The angle α/2 also impacts the coefficient

and subtracts from K.

Then we write:

E →

√

NP − 2

C

(

K +
α

2

)

(4.21)

ae
1 =

tan(α)
√

2 + α/2

tan−1
(

β2

√
2 + α/2

) (4.21.1)

Now β1 comes from the time-currents of the electron; we

must make a similar reasoning involving F defined in (4.19).
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Naturally, this correction will be similar in form to the equa-

tion above. The logic is:

• The first order effect is null; it is second order where

the cross-products cancel.

• The angle must be α instead of α/2 since the two angles

α/2 on the axis of K sum up.

It gives, for an electron:

ae
2 =

tan(α)F
(

1 − α2
)

tan−1
(

β1F
(

1 − α2
)) , (4.22)

ae
2 =

tan(α)
(

2 − 2α2
)

tan−1
(

β1

(

2 − 2α2
)) . (4.22.1)

Note that in the equations (4.21 – 4.22) the angle α/2 affects

K and −α2 affects K2; it is the same geometry where only K

is impacted. Now from (4.17 – 4.21.1 – 4.22.1) and using the

value of α in CODATA 1014 we find:

ge
T/2 = 1 + a0 a1 a2 = 1.00115965218091. (4.23)

The values of X and µ in (3.1) were tuned to fit with CODATA

2014 which gives:

ge/2 = 1.00115965218091 (26). (4.24)

The relative error on ge
T

in (4.23) with respect to (4.24) is less

than 10−14, but it can be down to ≈ 10−8 − 10−9 without ad-

hoc tuning and keeping all leptons masses within uncertainty

— the result would still be very significant.

4.3.4 The muon and tau

We get the equations needed to compute the muon anomaly

in the same manner as for the electron but using (4.20) and

including in (4.21) the four currents given by the model, and

the resonance numbers in Table 1. We get:

g
µ

T
/2 = 1.00116592081. (4.25)

The CODATA 2014 experimental value is:

gµ/2 = 1.00116592089 (63). (4.26)

The result is well within experimental uncertainty and inde-

pendent of the adjustments of (3.1) since the precision is in

the range 10−9. The SM prediction disagrees with a 2 − 4σ

discrepancy. Typically:

a
µ

S M
− a
µ

experiment
= (2.8 ± 0.8) × 10−9. (4.27)

The very short lifetime of the tau makes impossible at present

to measure its (g − 2). The SM prediction is:

gτS M/2 = 1.00117721 (5). (4.28)

Using the tau resonances in Table 1 we get:

gτT/2 = 1.00125789. (4.29)

But on the other hand, in the tau resonance, N = P = 9 is not a

prime number, it is a square and then, perhaps, we should use

3 instead of 9 in the equations to compute its anomaly (we

find a second reason later). It gives:

gτT/2 = 1.00117037, (4.30)

where the difference with the SM prediction is more coherent

with that of muons.

4.4 The fine structure constant

We made a first calculus of α as a simple path length. Now we

shall first show that the shortcuts in this path length, namely

1/2 and 1/8, also defines the leptons resonances, and then find

an immediate origin to the number 137.

4.4.1 A second view on leptons resonances

Our analysis of the resonances in Table 1 fits with the sup-

posed geometry, and complimentary angles α and (π/2 − α).

It is a quasi-symmetrical picture that suggests the existence

of a second view on the leptons resonances agreeing with the

equation (2.1). In this equation we use three resonance terms

(N, P, and K), but the rotation is in 4 dimensions; then the

resonance terms correspond to one rotation plane used com-

pletely (N, and P), while K lives in the other plane but we only

use an axis (not the full plane). The second view should split

oppositely; it cannot hold with N = P but it must with P = K

because of phase coherence. Then using angular ratios, we

should have a different mass: µ′ ≈ µ π/2 ≈ 380 eV/c2. Start-

ing with this value, imposing P = K, and using the equation

(2.1), an empirical fit to the same decimal as shown in Table

1 gives Table 5 and the coefficients in (4.31).

Table 5: Second view on electron, muon, tau in MeV/c2.

– P=K N Computed Measured

e 2 2 0.510 998 9461 0.510 998 9461(31)

µ 3 8 105.658 3752 105.658 3745(24)

τ 4 16 1 776.84 1 776.82(16)

µ′ = 385.6750521055 eV/c2,

D′ = 0.0002255984538, (4.31)

X′ = 8.02160795579 keV/c2.

P = K is verified, and we can estimate:

µ′ = µ
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which was used to compute (4.31); it uses 1/137 and no sim-

ple fit was found with α.

The remarkable point in Table 5 is that we find for N the

numbers 2 and 8, and their product 16 for the tau. Those num-

bers show that, in the EM field, the resonance is tachyonic and

the shortcuts can ring independently or in a combined man-

ner. The product 16 also justifies our doubts for the tau (g−2)

in (4.29).

4.4.2 Alpha and 137

Following the first equation giving α, assuming time-currents

exist and correspond to e/2→ 1/274 we find an empirical fit

compatible with CODATA 2014:

α−1 =

√

1372 + π2 +
1

2742
−

1

137

(

1

2
+

1

8

)

→ α = 72 973 525 672 × 10−13, (4.32)

where the difference with CODATA 2014 is about half the

standard deviation:

αCODAT A 2014 = 72 973 525 664 (17)× 10−13.

But now, why 137? A straightforward calculus gives a possi-

ble origin; taking all integral N and P from all tables, we get

a seemingly absurd suite of numbers that sums to:

ΣNP = 2 + 3 + 4 + 5 + 7 + 8 + 9 + 12 + 14 + 16 + 19 + 38

= 137. (4.33)

Is that a coincidence, or rather the signature of a discrete wave

packet? If one thinks of exponentiation, each term of the sum

corresponds to a different piece of the phase of a unique sig-

nal which includes all symmetries and all the manners they

combine, interact and condense (or ring). Since N and P are

space currents, ΣNP defines a universal oscillator. With re-

spect to field theory, it is straightforward that such a wave

includes or represents all virtual particles fields.

A complimentary result on K → 274 seems doubtful;

however, taking 266 from bosons instead of (-2, -7, -19), and

the distinct values of K from leptons and quarks, we notice:

ΣK = (2 × 7 × 19) + 2 + 3 + 4 + 5 − 6 = 274. (4.34)

The interpretation is less obvious and the link with known

theory is nil, because this quantity addresses the effect in

space of vibrations or rotations along the time axis and their

participation to particles mass and interactions; there is no

such concept in known theory.

In any case, those relations are complimentary to each

other and provide with numerical coherence linked to the con-

cepts developed before.

4.4.3 Splitting De and D′

Now, α is a 4D path length as seen in 3+1D, then the cou-

plings D′ (4.31) and De (3.1) should have a similar form

but in a complimentary manner with respect to the resonance

terms; hence they should also be expressed with similar ex-

pressions but using 3, 7, and 19 (the resonances of quarks)

and ΣK = 274; we find the following empirical fit which terms

show an obvious symmetry:

D−1
e =

√

((7 − 3) × (274 + 19))2 + 7π2 −
19π

19 − 1
, (4.35.1)

D′−1 =

√

((19 − 3)(274 + 3))2
+ 22 × 3 × 7π2 −

3

3 − 1
. (4.35.2)

Those expressions were used to compute the values in (3.1 –

4.31) and then all masses.

Several aspects are remarkable in those expressions:

• We notice that 274 + 3 = 277 and 274 + 19 = 293

are also prime numbers; hence those are not reducible.

Their difference is 16 which is also (7 − 3)2 in De and

(19 – 3) in D′.

• The rotation term 7π2 in (4.36.1) is a perfect fit with the

µ and τ resonances (5 = 7 – 2, and 9 = 7 + 2), where 7

was inferred a rotation.

• D′ includes a factor 2, which can be inserted in K in

Table 5, but not in P; then P and K act on the time

and magnetic moment axis respectively and it must be

identical to the classical g-factor = 2. This is necessary

since Table 5 is in the symmetry of QED.

Importantly, the expressions above are obtained by simple

divisions based on the initial empirical fit of the De and D′.

The left term is the closest square to the empirical value of

D−2 from which it is subtracted; the middle integral term is

the division of the rest by π2 that gives a small residual term.

Then we search to express all terms with integral numbers —

preferably those we expect.

5 Gravitation, the keystone

The mass equation and the time-current model are coherent

with Cramer’s transactional interpretation of quantum me-

chanics which fills the gap of non-locality (the true signature

of quantum physics) but without spooky action in 3-space.

Since the reasoning to the mass equation (thru N and P)

and Cramer’s interpretation are relevant in absorber theory

and uses a pressure field, gravity must be analyzed in a shield-

ing manner using Wheeler-Feynman equations [13, 14]; in

this way, it was shown compatible with gravitation in a recent

paper [6]. It does not require the existence of dark matter to

explain the observations at the origin of this hypothesis and it

also explains the cosmos energy densities (visible, dark, and

visible + dark). In this section, we shall not restate the piece

of theory in [6] but only the logic and main results.
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The absorber free energy equivalent mass MA is given by

symmetry of the absorber process in gravitation; we first write

the energetic part of the Schwarzshild metric:

c2 dτ2 = (c2 − 2 G m/r) dt2 −
c2

c2 − 2 G m/r
(dx2 + dy2 + dz2)

Then, in the spirit of absorber theory, we symmetrize the

equation in geometry and mass terms:

2 G m

r
=

m Ru

MA r
→

RU

2 MA

=
G

c2
, (5.1)

→ MA =
RU c2

2 G
=

Pp T

2 c2
= 9.790 × 1052 kg (5.2)

where RU = cT , T = 1/H is the age of the event horizon

while H is the Hubble factor and Pp is the Planck power.

Concerning visible energies MV c2, the ratio MV/MA is

a geometrical constant. This constant links a 4-volume and

a linear interaction in 3-space; the surface of a 4-sphere is

2 π2 R3, and then the factor 2 in (5.2) becomes 4 π2 in 3 + 1D

where visible energies interact thru the light cone. It gives:

MA

MV

= 2π2 → MV = 4.453 × 1051 kg. (5.3)

Summing, we get the total energy MU of the visible universe:

MU = MA + MV = 9.236 × 1052 kg. (5.4)

It gives to a total density ρ = 9.91 × 10−27 kg/m3 and the

visible energy (5.3) is 4.82% of the total. The benchmark

at this time is the Planck mission results [20] which gives

ρ = 9.90 (6) × 10−27 kg/m3 and 4.86 (10)% of visible matter.

Hence according to the standard model of cosmology we get

valid quantities. The equation (5.1) also means that the rate

of dark energy creation (MA) since the initial bang is constant

and half the non-reduced Planck power: the universe energy

is identical to its expansion and we do not find a big bang

but a permanent process. Next, using the Wheeler-Feynman

equations or Newtonian gravity this creation gives an accel-

eration excess up to H c at the galaxy borders, meaning the

absence of dark matter.

But now what is the relation with our analysis of mass?

According to (4.34 – 4.35), the numbers 137 and 266 address

space and time respectively. They interfere at the point of

origin which is visible thru the solid angle 4π, and we should

find there the reduced Planck mass giving the Planck power:

Mp =

√

hc

G
×

1

4π
= 2.43536 (6)× 1018 GeV/c2.

Using the mass equation (2.1) with the parameters in (3.1)

and taking N = P = 1372, and K = +1/2662 gives a mass:

M = 2.464 × 1018 GeV/c2,

which is very close to Mp.

Looking at (4.36.1), we find 7π2 in the expression of De

while 19 has a role similar to 7 in the case of quarks (N, Table

2) and bosons (K, and N = P = 19 – 7 in Table 4); then in order

to symmetrize the equation we take:

N = P = 1372 − 19 π2; K = +1/2662,

M = 2.43526× 1018 GeV/c2.

Finally, the next two decimals are given by addition of ≈ 2/3

to N = P; a small empirical term which is expected as it

makes this expression homogeneous to coupling:

N = P = 1372 − 19 π2 + 2/3; K = +1/2662, (5.5)

M = 2.43536× 1018 GeV/c2. (5.6)

Since 1/(N P) < K D this resonance is not permitted in 3+1D.

Considering that we now discuss reconciliation of quan-

tum theory and general relativity through a common origin

this result is keystone on top of the study. It shows that the

same field also leads gravitation.

Here we can define a unit-less quantum gravitational cou-

pling constant which reads:

αG =
X2

M2
p

=

(

1

(1372 − 19π2 + 2/3)2
+

De

2662

)6

, (5.7)

αG = 1.1186 × 10−47,

where we see that the rest of quantization lives in and from a

single oscillator defining gravity; it is “below” quantum the-

ory and it does not need the existence of a graviton particle.

Unlike the classical definitions of αG, since X is universal

and represents the pressure field, (5.7) is unique and does not

depend on an arbitrary choice of mass.

But now the ratio of the electron mass to the Planck mass

is constant, which seems a contradiction with (5.1). On the

other hand, the observable cosmos has constant atomic physic

and chemistry and then its laws use relative constants varying

in time and not absolute ones. Thus, only unit-less quantities

are constant; since G is used with constant masses in classical

theories, then hc and G vary together in the same manner as

α = e2/~c is constant.

Therefore, here is the big picture, the minimal interpreta-

tion of all results in this paper (no doubt it can be made more

complex and elegant):

• A Planck particle exists at the origin; it emits a wave

of Planck length and time. This resonance exists in 4

dimensions, it is not energy but its wave defines the

quantum of action.

• This wave interacts thru the light cone (and gives 137

in α), and thru a radial line (giving 266 and 274). In a

symmetric absorber concept, it means that the universe

and its origin are quantizing each other.
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• The emission is constant and corresponds to the Planck

power; it builds MA, and the visible energies field MV

is the absorber. It creates a deficit which is gravitation

(see the absorber equations in [6]).

• For complete quantization thru time-currents, 137 is

the sum of all resonances in space, and 266 is the prod-

uct of the bottom space-type resonances, radial or cir-

cular (2, 7, 19).

• Increasing masses and the constancy of e2/~c and hc/G

are equivalent to and interpreted as time dilation. It de-

notes the emergence of the observable time in a frame

where it does not exist. The observable time is seen as

a radial progression in 4D space.

6 Discussion

Firstly, what have we been discussing all along? Essentially,

the reasoning to the mass equations (2.1 – 2.2) is based on the

existence of a stationary wave in a universe where:

a) everything propagates,

b) mass and charges do not have a proper existence,

c) the field is self-quantizing, and consequently a unique

field and mechanism exists.

We end-up with a wide picture where all (free) parame-

ters of the SM related to energy are self-quantizing geome-

try of movement (at this stage, and taking all results above,

only the SM parameters expressed as phases or angles are not

computed); the same is valid in gravitation and cosmology.

Hence we discuss the very nature of energy, of its forms and

formation on top of a unique field; something looking like the

natural reductionist path of science.

Secondly, what does it means with respect to the standard

theories? In its present form QFT neither considers de f inite

rotations nor signals going up and down the time. Therefore

no true comparison with our results is possible. Still, we find

a number of connections like coupling constants and other

aspects which will be discussed in the next paragraph.

In cosmology and using general relativity, a permanent

energy creation is not even envisioned. Still, energy conser-

vation comes from time-translation invariance and Neuter’s

theorem; but we know that the background (RU) increases and

then there is no mathematical reason that energy is conserved

in cosmology.

The third point to discuss is the possibility of a different

universe (a fashion question). But it seems unlikely because,

as shown before, all resonances decay from 2, 3, 7 = 23 − 1,

and 19 = 33 − 23; then probably only 2 and 3. It leads to

conjecturing further the role of symmetry in the mass equa-

tion; essentially how do we get 2, 3, 7 and 19, and what is the

limiting factor if any? Now let us reason on this aspect.

In the mass equations, the resonances N and P should

come straight from the equation geometry and group theory.

We shall use 1, 2, 3 to denote U(1), SU(2) and SU(3) respec-

tively and discuss field polarization in the resonance equation.

With field polarization p we mean dipoles or tri-poles where

summing p charges makes a neutral. In the following, one

must just keep in mind that U(1) ⊂ S U(2) ⊂ S U(3).

• At the core of a particle resonance, time currents give

a charge Q constant; its polarity is p (in 2, 3). In any

sphere centered on Q the sum of charges is Q. Then

except for Q, the total charge separation in a scale-

independent 3-sphere depends on a cube, say n3 (since

the resonance radius is arbitrary) and it is neutral.

• In the radial case, with resonance P, on each layer of

the resonance the radial action is layer independent,

then the radial coefficient of polarization in 1/n2 for

each layer, with 1 6 n 6 P; then P = n. The polarity of

Q is p and defines the interaction of the particle which

is also radial, then on the radial path n = p = P. Here P

defines simultaneously a radial exchange of action and

polarity (the symmetry). This is immediately verified

for quarks (P = 3), and for leptons if we decompose P

as shown before.

• On a circular path, a resonance N gives N circular sec-

tors with identical action and action coefficients. Then

N = n3 on this path. Since this number does not define

the radial interaction of the particle, any subgroup of p

is acceptable, then 1 6 n 6 p.

We get the following suites of numbers:

• On a radial path the polarity is p, and P = p = 2 or 3;

• On a circular path the polarity is n with 1 6 n 6 p →

N = n3; limited to 2→ 8, 3→ 27.

But the latter is a rotation, not a resonance as needed, and we

need to complete the reasoning.

With geometry and currents (and nothing else), the logi-

cal manner is to combine symmetries. Say in the resonance

volume we have two symmetries at work; a structural point

of equilibrium needs a transformation. Therefore, on the cir-

cular path a resonance is seen as a transformer in n ≤ p

and the subgroups of n, where coefficients are the same for

n and its subgroup. Hence, on circular paths we get cubes

differences 7 and 19; those come like transformer of charges

or currents between a group and its sub-group. That is to

say that the field polarization n → n3 is always balanced by

(n − 1) → (n − 1)3. Importantly, there is nothing in this

reasoning preventing more complex oscillators, for instance

19 − 7 = 12.

This discussion leads to introduce U(1) which is a very

special case; since 13 − 03 = 1 it seems to be a massless field

with any oscillator; the same reasoning on 0 suggests a con-

tinuous current — an amplitude according to which masses

and then the observable lengths and the rate of time vary in

reverse proportions.

Now why only 0, 1, 2, and 3? Within the logic above,

the first mathematical explanation is Hurwitz theorem [10].

Consider two charges or currents x and y, we may need to
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compute the impact of y on the self-interaction of x; it is equal

to the action on x of the interaction of x and y (conservation

and symmetry), then:

(x x) y = x (x y).

This is the definition of alternative algebra; according to Hur-

witz theorem [10], only four exist which are R real numbers,

C complex numbers ∼ U(1), H quaternions ∼ SU(2), and O

octonions ∼ SU(3). One can consider this as limiting either

the symmetry spectrum, or just our ability to model with par-

ticles and charges — or both.

A peculiar case arises with x X = 1 or unitary; the im-

pact of x X on any other quantity of the same group does not

change its amplitude. Then x X addresses structural conserva-

tion and we find simultaneously 137, 1/137, and 274, 1/274

in the expression of couplings.

In this way those quantities are related to the monopole

as quantized rotational 4D paths, like α and De, where only

couplings can be measured in 3+1D as seemingly arbitrary

real numbers.

7 Conclusions

The breakthrough to wave equations was the assumption of a

stationary wave pervading all space. But how can such a wave

exist in relativity without a mass of its own? How could it be

distinct from the mass of the particle or system it describes?

Then how could it be distinct from gravitation?

Those naive but unsolved questions are almost a century

old as they address the nature of the wave, wave-particle dual-

ity, the completeness of quantum mechanics, and the physical

link between gravitation and quantum physics.

The novelty here is that those questions are justified by

the existence of a solution to the free parameters problem,

including and linking particles physics, gravitation, and cos-

mology, not only by conceptual disagreements or theoretical

incompatibilities.

As stated in introduction, we do not solve any equation;

the existence of a solution is first seen when the mass equation

is fit to phenomenology, and then extended to couplings. We

find logical coherence, a reductionist concept and fantastic

precision. Of course it does not look like the usual manner in

modern physics where theory and principles reign; but, con-

sidering the difficulty of solving this problem from theory, it

might be the only practicable way — at least at present time.

As a matter of conclusion, it looks as though the solution

shown here can be found only as a whole and provided that

we do not build on existing concepts (and maybe even princi-

ples); but one must first recognize the existence of a problem

together with its ramifications. This situation is fantastic and

terrible; if that solution exists, physics could remain stuck

endlessly in its present conceptual state because of this con-

ceptual state: whatever new particles discovered in collision

machines modeled with ad-hoc SM extensions, its framework

may never be contradicted by experiment.

8 Addendum

As for the 750 GeV resonance possibly detected at CERN

[21], since it decays to two photons we assume the same equa-

tion and parameters as the H0 and only K can be fit; it gives

K = −133/2 which is immediately remarkable. However,

since K is not integral the width must be reconsidered, logi-

cally to ∆K = 1/4, giving from (2.2 – 3.6 – 3.9.3):

N = P = 12,K = −133/2→ m ≈ 744.9 GeV/c2,

∆K = 1/4→ Γ ≈ 9.6 GeV/c2.

Using (3.9.2) instead of (3.9.3) adds +3 GeV/c2 to the mass.

The other candidate with ∆K ≈ 1 gives Γ ≈ 40 GeV/c2.

At this scale, the equation (2.2) is very sensitive to D and

the model in time-currents must be identical to the H0 other-

wise the computed mass is far from the estimate. It would be

very similar, but it leads to remark that there are two manners

to put four distinct charges at the corners of a tetrahedron;

there may be a chiral difference with the H0, justifying dis-

tinct masses and a probable impact on the particle decays.

Last, the number 133/2 verifies (2.3) like 7 and 19, but

with P = 1 instead of P = 3, since 133 π/2 ≈ 209/1.0004. It

is even doubly remarkable since 209 is multiple of 19.

Hence the existence of this particle, if confirmed, should

not change the values of ΣNP and ΣK ; it fits well and naturally

with the logic and results in this paper.
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On the Nature of Ball Lightning

Anatoly V. Belyakov
E-mail: belyakov.lih@gmail.com

The author proposes a model of ball lightning based on a mechanistic interpretation

of John Wheeler’s ideas. It is assumed that ball lightning is a quasi-particle that has

the Planck mass and consists of closed contours, which in turn are based on the mag-

netic and gravity force balance. These contours are hard packed in a small volume of

ball lightning, forming a multilayer capacitor containing a substantial charge and elec-

trostatic energy. This paper provides calculations of characteristic parameters of ball

lightning, which are well consistent with its phenomenology.

1 Introduction

There are many theories about ball lightning. However, the

nature of this mysterious phenomenon remains unclear. This

paper proposes a model of ball lightning based on a mecha-

nistic interpretation of John Wheeler’s concept. Previously,

such an approach has been successfully applied to construct

both micro-world and space models (see [1–4], etc.).

To some extent, the model proposed is similar to the quan-

tum model by Geert Dijkhuis, Professor at Eindhoven Univer-

sity of Technology and Secretary of the International Com-

mittee on Ball Lightning. His model suggests that ball light-

ning is a macroscopic quantum object. Earlier, a similar hy-

pothesis was proposed by Boris Ignatov [4]. Nevertheless, it

must be noted that there is no complete understanding of the

nature of such objects. It is assumed that a quasiparticle can-

not carry a substance. It only carries energy, pulse, and mo-

mentum, while the electrons inside such an object are com-

pletely coherent and make up a single wave function. Energy

of such a quasiparticle is gradually dissipating, in the visible

range in particular. Therefore, ball lightning can be observed

as an optical object.

2 Presuppositions

Recall that (according to Wheeler) there are original primary

elements of space and matter, which have different names —

wormholes, appendices, current tubes, threads or force lines

of a field. If they are real objects and not just mathemati-

cal abstractions, in physical terms, they must be some kind

of vortex structures resting on the phase boundary (surface).

In particular, Wheeler treats charges as singular points on the

surface source-drain connected by current tubes in an addi-

tional dimension forming a closed contour.

Paper [1] shows that, from a purely mechanistic point of

view, the charge is proportional to its momentum about the

contour of the vortical tube and reflects the extent of non-

equilibrium of physical vacuum; spin is proportional to the

angular momentum relative to the longitudinal axis of the

contour, respectively; and the magnetic interaction between

the conductors is similar to forces existing between the cur-

rent tubes. It is customary that a single element of such a tube

is an element with the size of a classical electron radius re and

its mass me.

The model of ball lightning was only built using the ratio

of fundamental interactions as in the above-mentioned papers

of the author. The mechanistic interpretation of Wheeler’s

ideas makes it possible to record formulae for electric and

magnetic forces in a Coulomb-free form, where the charge is

replaced with the ultimate electron momentum. In this case,

the electric and magnetic constants, ε0 and µ0, are as follows:

ε0 =
me

re

= 3.33 × 10−16 kg/m, (1)

µ0 =
1

ε0c2
= 0.0344 N−1, (2)

where the electric constant becomes linear density of the vor-

tical tube, and the reciprocal of the magnetic constant is the

centrifugal force produced by rotation of the vortical tube ele-

ment with me mass with the velocity of light c along re radius.

This value is also equivalent to the force existing between two

elementary charges at the given radius.

For the purpose of mutual comparison of interactions, for-

mulae for the electric, magnetic, gravity, and inertial forces

are written in a dimensionless form with a single dimension

factor of force 1/µ0. With (1) and (2) in mind, we have the

following:

Fe =
1

µ0

(

re

r0

)2

ze1
ze2
, (3)

Fm =
1

µ0

(

l

2πr0

) (

re

c × [sec]

)2

ze1
ze2
, (4)

Fg =
1

µ0

1

f

(

re

r0

)2

zg1
zg2
, (5)

Fi =
1

µ0

re

r0

(

V0

c

)2

zg , (6)

where V0, r0, l, ze, zg, and f stand for circumferential veloc-

ity, circumferential radius or distance between vortical tubes,

length of the vortex tube (thread) or contour, relative values of

the charge and mass of the electron charge and mass, and the
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electric-gravity force ratio, respectively, with the latter having

the following formula with the same designations:

f =
c2

ε0 γ
= 4.16 × 1042, (7)

where γ is the gravitational constant.

3 Calculation of characteristic parameters of ball light-

ning

Ball lightning often originates from streak one. Imagine

streak lightning as a bundle of vortex threads, which (under

certain conditions) form vortical current tubes. The latter, in

turn, are closed into contours. It is obvious that there must

be balances of some pairs of interactions for ball lightning to

exist. They are the following:

1. Ball lightning mass M satisfies the condition of equal-

ity of electric and gravity forces, so with unit charges we have

the following:

M = f 1/2me = 1.86 × 10−9 kg, (8)

which is in agreement with the Plank mass by order of mag-

nitude.

2. Closed contour branches with opposed currents satisfy

the balance of magnetic and gravity forces resulting in a linear

geometric mean dimension of the contour:

lk = (r0 l)1/2 =

(

zg1
zg2

ze1
ze2

)1/2 (

2π

f

)1/2

c × [sec], (9)

where the ratio of the product ε = (zg1
zg2

)/(ze1
ze2

) is an evo-

lutionary parameter that characterizes the state of the envi-

ronment and its changes as the mass carriers dominate over

electric ones, and in fact shows the distinction between ma-

terial medium and vacuum. Hereinafter, we shall take it as

being close to the unit in our case, while lk = 3.68× 10−13 m,

and the vortical tube’s mass is

mk = ε0lk = 1.19 × 10−28 kg. (10)

In addition, if we express vortical tubes’ masses in (9) —

zgme as ε0l, then we shall get the following relation between

the contour axes for unit charges with (7) in mind:

r0

l
= 2πρeγ × [c2] = 17070 ≈ a2, (11)

where ρe is the electron density equal to me/r
3
e = 4.071×1013

kg/m3; and a is the reverse fine structure constant equal to

137.036. Thus, the individual contour is most likely to have

axes equal to the size of an electron re and Bohr atom rea2.

3. Vortical tubes of a contour consist of a number of unidi-

rectional parallel individual vortex threads spinning about the

longitudinal axis of the contour with circumferential velocity

V0i. Their stability is ensured by the balance of magnetic and

inertial forces, which give rise to the following formula:

V0i =

(

ze1
ze2

zg

)1/2 (

rel

2π

)1/2
1

[sec]
. (12)

Individual vortex filaments having length l and mass car-

riers in the number of zg = l/re are spinning about the lon-

gitudinal axis along an indefinite radius. In the case of unit

charges, we have the following minimum circumferential ve-

locity about the longitudinal axis:

V0i =
re

(2π)1/2 × [c]
= 1.124 × 10−15 m/sec. (13)

The total number of contours (and the same of unit

charges, respectively) may be as follows:

z =
M

mk

= 1.56 × 1019. (14)

The way these contours are packed in the volume of ball

lightning is unclear. Possibly, a contour may be one-dimen-

sional with the total length of z × lk. It can be expected that

with transformation into the more energetically favourable

structure the contour (folding repeatedly) forms a large num-

ber of loops or cells, which are enclosed in a spherical vol-

ume with a bright centre (nucleus). In both cases, with the

elements being the most densely packed in the volume, the

reduced minimum linear dimension of the outer spherical sur-

face will be as follows:

lmin = z1/2lk = 0.00145 m, (15)

However, if we consider the ratio in (11) and take one

of the axes of the Bohr radius instead of lk for individual

contours, then we can estimate the maximum size of such

a sphere as lmax ≈ 0.00145× a ≈ 0.2 m.

Let us calculate the rest limit parameters of ball lightning

— energy, charge, electric potential of streak lightning re-

quired for generation of ball lightning, and its ultimate den-

sity:

Elim = Mc2 = 1.67 × 108 J, (16)

qlim = ze0 = 2.50 K, (17)

Ulim =
Elim

qlim

= 6.68 × 107 V. (18)

The density will be calculated taking lmin as the sphere’s

diameter:

ρlim =
M

4
3
π
(

lmin

2

)3
= 1.17 kg/m3, (19)

which corresponds to the air density.

Contour branches with parallel unidirectional currents

have to twist, so ball lightning contours are gradually open-

ing losing the charge. Therefore, ball lightning has a sort of
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an electrostatic tail behind. The maximum lifetime of ball

lightning can be determined in a similar way as the neutron

lifetime [2], i.e., as the time constant of the contour deforma-

tion (the ratio of the contour’s characteristic dimension to the

circumferential velocity):

τlim =
lk

V0i

= 327 sec. (20)

When crossing the initial surface of our world, an open

contour (vortical tube) actually forms an elementary charge

(according to Wheeler). It can be assumed that the physical

basis of ball lightning is formed by electrons. Their fermionic

part is arranged into corresponding structures observable in

the form of a fireball, while their bosonic parts converge in

the centre of the ball going to the additional dimension (Y

area) [2].

Let us also determine the capacity, electrostatic energy,

and size required for ball lightning with qlim charge. Pa-

per [?] found a connection between new electrical units in a

Coulomb-free form and SI-system units. It was shown that the

mass of electrons 2.90×10−6 kg on the capacitor plates corre-

sponded to one Farad. Velocity of 587 m/sec corresponded to

1 Volt, with the electrostatic capacity of the surface at which

the charge begins to flow spontaneously into the external en-

vironment being Um = 511, 000 V.

Thus, ball lightning has the following capacity:

C =
zme

2.90 × 10−6
= 4.89 × 10−6 F, (21)

with the same result in the SI system:

C =
qlim

511, 000
= 4.89 × 10−6 F, (22)

and the maximum electrostatic energy of ball lightning being

Em =
1

2
CU2

m = 6.39 × 105 J. (23)

To have such a capacity, ball lightning must have a mul-

tilayer structure, e.g., the structure of a multilayer spherical

capacitor. Paper [5] shows that the average distance between

unit charges of a charged sphere with R radius is π (Rre)
1/2.

Let us assume that the average linear dimension between the

charges in the volume of ball lightning is the same. Then we

can determine the size of ball lightning through the following

equation:














4
3
πR3

z















1/3

= π (Rre)
1/2 , (24)

therefore

R =

(

3π2z

4

)2/3

re = 0.067 m. (25)

Let us determine the temperatures of the nucleus and the

outer shell with the assumption that the radiation of ball light-

ning is the radiation of a blackbody. If the total energy is

evenly lost over the lifetime of ball lightning, the average ra-

diation power shall be as follows:

N =
Em

τlim

= 1950 W, (26)

then

T =

(

N

σ S

)1/4

, (27)

where σ is a Stefan-Boltzmann constant equal to 5.67 × 10−8

Wm−2 (◦K)−4; and S is the area of the spherical surface of

ball lightning. Taking lmin as the nucleus diameter and lmax as

the diameter of the outer shell, we calculate the respective ar-

eas S and determine their temperatures using formula (27) —

8.500◦K and 724◦K. External appearance of ball lightning, its

behaviour, and results of its effect on the environment are ex-

tremely varied. Given its unpredictability, it is rarely possible

to obtain objective instrumental data on ball lightning.

In his paper [6], Mikhail Dmitriev — a chemist having

vast experience in working with low-temperature plasma —

describes an encounter with ball lightning and an attempt to

make a chemical analysis of ionized air behind it. Based on

the analysis results, the author estimated the potential of ball

lightning discharge at 300–400 kV. The temperature, degree

of ionization, and concentration of charged particles in ball

lightning was estimated at 1.14 × 1017 per cm3 judging on its

glow. It is easy to calculate that, in accordance with the pro-

posed model and given such a concentration, the estimated

diameter of ball lightning with z unit charges shall be 6.4

cm, which corresponds to its typical size. This means that

the discharge potential and charge concentration of real ball

lightning encountered by Dmitriev are consistent with the es-

timated model.

Since ball lightning does not consist of atoms and mole-

cules, it does not interact with molecules of other media. This

explains its ability to penetrate through obstacles and move

against the wind, but actively respond to electric and mag-

netic fields at the same time.

Finally, it should be noted that people often associate ball

lightning with a living being. Let us assume that life can be

organized on another material basis. Then, indeed, given the

number of unit elements (z = 1.56 × 1019) and complexity

of their packing in the volume of ball lightning, it is appro-

priate to draw an analogy with a DNA strand, which is two

meters long, packed in a microscopic cell nucleus, and con-

tains information about the structure and behaviour of a living

organism.

4 Conclusion

Thus, model ball lightning is a ball with its size ranging from

0.14 to 20 cm (its typical diameter is 13.4 cm), having density

of no more than 1.17 kg per m3, glow temperature of 724 to

8,500◦K, and energy of 639 kJ concentrated in a small volume

in the form of an electrostatic charge with 511 kV potential.
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During the lifetime of ball lightning (up to 6.5 minutes), it is

constantly losing the charge leaving an ionised trail behind.

Ball lightning is able to penetrate obstacles.

In general, eyewitness accounts are in good agreement

with the calculated characteristic parameters of the model ob-

ject. Of course, some phenomena of real ball lightning fall

outside the scope of the obtained characteristic parameters.

At least this is due to the fact that its charge can be formed

by not only electrons, but also by ions, and the evolutionary

parameter ε may exceed the unit.

The ball lightning phenomenon and its complete internal

organization can only be understood on the basis of an appro-

priate theory. However, from a phenomenological point of

view, this model of ball lightning is in good agreement with

the real object by its appearance and its basic aspects, and can

serve as the basis for such a theory.
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LETTERS TO PROGRESS IN PHYSICS

Dialogue Concerning the Two Chief World Views

Craig Alan Feinstein
2712 Willow Glen Drive, Baltimore, MD 21209, USA. E-mail: cafeinst@msn.com

In 1632, Galileo Galilei wrote a book called Dialogue Concerning the Two Chief World

Systems which compared the new Copernican model of the universe with the old Ptole-

maic model. His book took the form of a dialogue between three philosophers, Salviati,

a proponent of the Copernican model, Simplicio, a proponent of the Ptolemaic model,

and Sagredo, who was initially open-minded and neutral. In this paper, I am going to

use Galileo’s idea to present a dialogue between three modern philosophers, Mr. Spock,

a proponent of the view that P , NP, Professor Simpson, a proponent of the view that

P = NP, and Judge Wapner, who is initially open-minded and neutral.

Since 2006, I have published four proofs that P , NP [5–8].

Yet at the present time, if one asks the average mathematician

or computer scientist the status of the famous P versus NP

problem, he or she will say that it is still open. In my opinion,

the main reason for this is because most people, whether they

realize it or not, believe in their hearts that P = NP, since this

statement essentially means that problems which are easy to

state and have solutions which are easy to verify must also

be easy to solve. For instance, as a professional magician, I

have observed that most laymen who are baffled by an illu-

sion are usually convinced that the secret to the illusion either

involves extraordinary dexterity or high technology, when in

fact magicians are usually no more dexterous than the av-

erage layman and the secrets to illusions are almost always

very simple and low-tech; as the famous designer of illusions,

Jim Steinmeyer, said, “Magicians guard an empty safe” [13].

The thinking that extraordinary dexterity or high technology

is involved in a magician’s secret is, in my opinion, due to

a subconscious belief that P = NP, that problems which are

difficult to solve and easy to state, in this case “how did the

magician do it?”, must have complex solutions.

I have had many conversations in which I have tried to

convince all types of people, from Usenet trolls to graduate

students to professors to famous world-class mathematicians,

that P , NP with very little success; however, I predict that

there will soon come a day when the mainstream mathematics

and computer science community will consider people who

believe that P = NP to be in the same league as those who be-

lieve it is possible to trisect an angle with only a straightedge

and compass (which has been proven to be impossible) [14].

I got the idea to write this paper after I learned of Galileo’s

book Dialogue Concerning the Two Chief World Systems [4],

which presents a dialogue between three philosophers, Sal-

viati, a proponent of the new Copernican model, Simplicio, a

proponent of the old Ptolemaic model, and Sagredo, who was

initially open-minded and neutral. The dialogue that follows

is a dialogue between three modern philosophers, Mr. Spock,

a proponent of the view that P , NP, Professor Simpson, a

proponent of the view that P = NP, and Judge Wapner, who

is initially open-minded and neutral. Professor Simpson, who

is a fictitious anglicized straw man character like Simplicio,

is a composite of many of the people whom I have had dis-

cussions with over the years about the P versus NP problem.

He presents many challenges and questions, all of which have

been raised before by real people, that Mr. Spock, the epitome

of truth and logic, attempts to answer. And Judge Wapner,

the epitome of open-mindedness and fairness, always listens

to both sides of their arguments before drawing conclusions.

Spock: Yesterday we discussed the P versus NP problem

[2, 3] and agreed that it is a problem of not only great philo-

sophical importance, but also it has practical implications.

We decided to look at a proof that P , NP offered by Craig

Alan Feinstein in a letter entitled “A more elegant argument

that P , NP” [8]. The proof is surprisingly short and simple:

Proof: Consider the following problem: Let {s1, . . . , sn} be a

set of n integers and t be another integer. Suppose we want

to determine whether there exists a subset of {s1, . . . , sn} such

that the sum of its elements equals t, where the sum of the el-

ements of the empty set is considered to be zero. This famous

problem is known as the SUBSET-SUM problem.

Let k ∈ {1, . . . , n}. Then the SUBSET-SUM problem is

equivalent to the problem of determining whether there exist

sets I+ ⊆ {1, . . . , k} and I− ⊆ {k + 1, . . . , n} such that
∑

i∈I+

si = t −
∑

i∈I−

si.

There is nothing that can be done to make this equation sim-

pler. Then since there are 2k possible expressions on the left-

hand side of this equation and 2n−k possible expressions on

the right-hand side of this equation, we can find a lower-

bound for the worst-case running-time of an algorithm that

solves the SUBSET-SUM problem by minimizing 2k + 2n−k

subject to k ∈ {1, . . . , n}.
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When we do this, we find that 2k+2n−k = 2⌊n/2⌋+2n−⌊n/2⌋ =

Θ(
√

2n) is the solution, so it is impossible to solve the

SUBSET-SUM problem in o(
√

2n) time; thus, because the

Meet-in-the-Middle algorithm [10,11,15] achieves a running-

time of Θ(
√

2n), we can conclude that Θ(
√

2n) is a tight

lower-bound for the worst-case running-time of any deter-

ministic and exact algorithm which solves SUBSET-SUM.

And this conclusion implies that P , NP. �

To me, Feinstein’s proof is not only logical but elegant too.

Also, his conclusion is confirmed by history; just as Fein-

stein’s theorem retrodicts, no deterministic and exact algo-

rithm that solves SUBSET-SUM has ever been found to run

faster than the Meet-in-the-Middle algorithm, which was dis-

covered in 1974 [10, 15].

Simpson: But there is an obvious flaw in Feinstein’s “proof”:

Feinstein’s “proof” only considers a very specialized type of

algorithm that works in the same way as the Meet-in-the-

Middle algorithm, except that instead of sorting two sets of

size Θ(
√

2n), it sorts one 2k-size set and one 2n−k-size set.

Under these restrictions, I would agree that the Meet-in-the-

Middle algorithm is the fastest deterministic and exact algo-

rithm that solves SUBSET-SUM, but there are still many pos-

sible algorithms which could solve the SUBSET-SUM prob-

lem that the “proof” does not even consider.

Wapner: Professor Simpson, where in Feinstein’s proof does

he say that he is restricting the algorithms to the class of al-

gorithms that you mention?

Simpson: He does not say so explicitly, but it is obviously

implied, since there could be algorithms that get around his

assertion that the minimum number of possible expressions

on both sides is Θ(
√

2n).

Spock: How do you know that there could be such algo-

rithms?

Simpson: I do not know, but the burden of proof is not on

me; it is on Feinstein. And he never considers these types of

algorithms.

Wapner: It is true that Feinstein never explicitly considers al-

gorithms which work differently than the Meet-in-the-Middle

algorithm, and the burden of proof is on Feinstein to show that

these types of algorithms cannot run any faster than Θ(
√

2n)

time.

Spock: Professor Simpson, is the burden of proof on Fe-

instein to consider in his proof algorithms which work by

magic?

Simpson: No, only algorithms that are realistic.

Spock: Then why would you think that algorithms that get

around the assertion that the minimum total number of possi-

ble expressions on both sides is Θ(
√

2n) are realistic?

Simpson: I do not know, but the burden of proof is not on

me; it is on Feinstein.

Spock: Have you considered the fact that an algorithm which

determines in o(
√

2n)-time whether two sets of size Θ(
√

2n)

have a nonempty intersection must work by magic, unless

there is a way to mathematically reduce the two sets into

something simpler?

Wapner: Yes, I see your point; the minimum total number

of possible expressions on each side of the SUBSET-SUM

equation puts a natural restriction on the time that an algo-

rithm must take to solve the SUBSET-SUM problem.

Simpson: But how do you know it is impossible to reduce

the SUBSET-SUM problem into something simpler, so that

the number of possible expressions on both sides is o(
√

2n)?

Spock: Simple algebra. Try to simplify the SUBSET-SUM

equation above. You cannot do it. The best you can do is

manipulate the equation to get Θ(
√

2n) expressions on each

side.

Simpson: I’ll agree that you cannot do it algebraically, but

what about reducing the SUBSET-SUM problem to the 3-

SAT problem in polynomial-time? This can be done since

3-SAT is NP-complete. If there is an algorithm that can solve

3-SAT in polynomial-time, then it would also be able to solve

SUBSET-SUM in polynomial-time, contradicting Feinstein’s

lower-bound claim of Θ(
√

2n).

Spock: But this is magical thinking. If a problem is shown

to be impossible to solve in polynomial time, then reducing

the problem to another problem in polynomial-time will not

change the fact that it is impossible to solve the first problem

in polynomial time; it will only imply that the second problem

cannot be solved in polynomial time.

Wapner: Spock is right about this. Do you have any other

objections to Feinstein’s argument?

Simpson: I have many objections. For instance, Feinstein’s

argument can be applied when the magnitudes of the integers

in the set {s1, . . . , sn} and also t are assumed to be bounded

by a polynomial to “prove” that it is impossible to solve this

modified problem in polynomial-time. But it is well-known

that one can solve this modified problem in polynomial-time.

Spock: But Feinstein’s argument in fact cannot be applied in

such a circumstance, because there would only be a polyno-

mial number of possible values on each side of the equation,
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even though the total number of possible expressions on each

side is exponential. Feinstein’s argument implicitly uses the

fact that the total number of possible values on each side of

the SUBSET-SUM equation is usually of the same order as

the total number of possible expressions on each side, when

there is no restriction on the magnitude of the integers in the

set {s1, . . . , sn} and also t.

Simpson: Then here is a better objection: Suppose the set

{s1, . . . , sn} and also t consist of vectors in Zm
2

for some pos-

itive integer m, instead of integers. Then one could use the

same argument that Feinstein uses to “prove” that it is im-

possible to determine in polynomial-time whether this modi-

fied SUBSET-SUM equation has a solution, when in fact one

can use Gaussian elimination to determine this information in

polynomial-time.

Spock: Feinstein’s argument would not apply to this situation

precisely because one can reduce the equation

∑

i∈I+

si = t −
∑

i∈I−

si.

to a simpler set of equations through Gaussian elimination.

But when the set {s1, . . . , sn} and also t consist of integers,

nothing can be done to make the above equation simpler, so

Feinstein’s argument is applicable.

Simpson: OK, then how would you answer this? Consider

the Diophantine equation:

s1 x1 + . . . + sn xn = t,

where xi is an unknown integer, for i = 1, . . . , n. One could

use the same argument that Feinstein uses to “prove” that it

is impossible to determine in polynomial-time whether this

equation has a solution, when in fact one can use the Euclid-

ean algorithm to determine this information in polynomial-

time.

Spock: But again Feinstein’s argument would not apply to

this Diophantine equation, precisely because this Diophantine

equation can be reduced via the Euclidean algorithm to the

equation,

gcd(s1, . . . , sn) · z = t,

where z is an unknown integer. And it is easy to determine in

polynomial-time whether this equation has an integer solution

by simply testing whether t is divisible by gcd(s1, . . . , sn). No

such reduction is possible with the SUBSET-SUM equation.

Simpson: The Euclidean algorithm is a clever trick that has

been known since ancient times. But how do I know that

another clever trick cannot be found to reduce the SUBSET-

SUM equation to something simpler? Like for instance, if

I take the greatest common denominator of any subset of

{s1, . . . , sn} and it does not divide t, then I can automatically

rule out many solutions to SUBSET-SUM, all at once.

Spock: But such a clever trick does not always work; what if

the gcd does divide t? The P versus NP problem is a prob-

lem about the worst-case running-time of an algorithm, not

whether there are clever tricks that can be used to speed up

the running-time of an algorithm in some instances. Fein-

stein’s proof only considers the worst-case running-time of

algorithms which solve SUBSET-SUM.

Wapner: Also, it is simple high school algebra that it is im-

possible to make the SUBSET-SUM equation simpler than it

is: Whenever one decreases the number of possible expres-

sions on one side of the equation, the number of possible ex-

pressions on the other side increases. Mathematicians can be

clever, but they cannot be clever enough to get around this

fact.

Simpson: OK, but what about the fact that Feinstein never

mentions in his proof the model of computation that he is

considering? To be an valid proof, this has to be mentioned.

Spock: Feinstein’s proof is valid in any model of computa-

tion that is realistic enough so that the computer cannot solve

an equation with an exponential number of possible expres-

sions in polynomial-time, unless it is possible to reduce the

equation to something simpler.

Simpson: Or what about the fact that Feinstein never men-

tions in his paper the important results that one cannot prove

that P , NP through an argument that relativizes [1] or

through a natural proof [12]?

Spock: Feinstein’s proof does not relativize, because it im-

plicitly assumes that the algorithms that it considers do not

have access to oracles, and Feinstein’s proof is not a natural

proof, since it never even deals with the circuit complexity of

boolean functions.

Simpson: What about the 2010 breakthrough by Howgrave-

Graham and Joux [9] which gives a probabilistic algorithm

that solves SUBSET-SUM in o(
√

2n) time? I realize that the

P versus NP problem is not about probabilistic algorithms,

but what if their algorithm can be derandomized and solved

in o(
√

2n) time?

Spock: The algorithm by Howgrave-Graham and Joux does

not in fact solve SUBSET-SUM, because it cannot determine

for certain when there is no solution to a given instance of

SUBSET-SUM; it can only output a solution to SUBSET-

SUM in o(
√

2n) time with high probability when a solution
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exists. Furthermore, even if their algorithm can be derandom-

ized, this does not guarantee that it will run in o(
√

2n) time.

And Feinstein has already proven that such a deterministic

and exact algorithm is impossible.

Wapner: Are there any more objections to Feinstein’s argu-

ment?

Simpson: I have no more specific objections. But the fact

that the P versus NP problem has been universally acknowl-

edged as a problem that is very difficult to solve and Fein-

stein’s “proof” is so short and simple makes it almost certain

that it is flawed. The fact that I could not give satisfactory

responses to Spock’s arguments does not mean that Feinstein

is correct; Feinstein’s proof has been out on the internet for a

few years now, and still the math and computer science com-

munity as a whole does not accept it as valid. Hence, I believe

that they are right and that Feinstein is wrong.

Wapner: Professor Simpson, isn’t your reason for not be-

lieving Feinstein’s proof the same reason Feinstein suggested

for why most people do not believe his proof? Because most

people believe in their hearts that P=NP, that problems which

are difficult to solve and easy to state, in this case the P versus

NP problem, cannot have short and simple solutions?

Spock: Indeed it is.

Wapner: And yes indeed, I am convinced that Feinstein’s

proof is valid and that P , NP.

Submitted on May 22, 2016 / Accepted on May 24, 2016

References

1. Baker T.P., Gill J., and Solovay R. Relativizations of the P , NP Ques-

tion. SIAM Journal on Computing, 1975, v. 4(4), 431–442.

2. Bovet P.B. and Crescenzi P. Introduction to the Theory of Complexity.

Prentice Hall, 1994.

3. Cormen T.H., Leiserson C.E., and Rivest R.L. Introduction to Algo-

rithms. McGraw-Hill, 1990.

4. Galilei G. Dialogue Concerning the Two Chief World Systems. Univer-

sity of California Press, 1953.

5. Feinstein C.A. Complexity science for simpletons. Progress in Physics,

2006, v. 2, issue 3, 35–42.

6. Feinstein C.A. An elegant argument that P , NP. Progress in Physics,

2011, v. 7, issue 2, 30–31.

7. Feinstein C.A. The computational complexity of the traveling Salesman

Problem. Global Journal of Computer Science and Technology, 2011,

v. 11, issue 23, 1–2.

8. Feinstein C.A. A more elegant argument that P , NP. Progress in

Physics, 2012, v. 8, issue 1, L10.

9. Howgrave-Graham N., and Joux A. New generic algorithms for hard

knapsacks. IACR Cryptology ePrint Archive, 2010, 189.

10. Horowitz E. and Sahni S. Computing partitions with applications to the

Knapsack Problem. Journal of the ACM, 1974, v. 2l, no. 2, 277–292.

11. Menezes A., van Oorschot P., and Vanstone S. Handbook of Applied

Cryptography. CRC Press, 1996.

12. Razborov A. and Rudich S. Natural proofs. Journal of Computer and

System Sciences, 1997, v. 55, issue 1, 24–35.

13. Steinmeyer J. Hiding the Elephant: How Magicians Invented the Im-

possible and Learned to Disappear. Da Capo Press, 2004.

14. Angle Trisection. From MathWorld — A Wolfram Web Resource.

http://mathworld.wolfram.com/AngleTrisection.html

15. Woeginger G.J. Exact algorithms for NP-hard problems. In: Lecture

Notes in Computer Science, Springer-Verlag Heidelberg, 2003, v. 2570,

185–207.

Craig Alan Feinstein. Dialogue Concerning the Two Chief World Views 283



Volume 12 (2016) PROGRESS IN PHYSICS Issue 3 (April–July)

Criteria for Aerial Locomotion in Exoplanetary Atmospheres:
Revisiting the Habitable Zone for Flying Lifeforms

Robin James Spivey

Bangor University, Deiniol Road, Bangor, Gwynedd, Great Britain
E-mail: y.gofod@gmail.com

Liquid water is widely regarded as a hallmark of planetary habitability but, whilst its
presence may be a prerequisite for life, aerial locomotion imposes additional constraints
on the somewhat over-simplistic concept of a circumstellar habitable zone. Could an-
imals of comparable physiology to birds be envisaged sustaining flight without envi-
ronmental assistance on super-Earth planets of terrestrial density? A quantitative eval-
uation of flight athleticism in avian species provides the basis for extrapolation here.
At constant atmospheric fraction, assuming a plentiful supply of combustible gas, the
“aerial locomotion zone” would be restricted to planets .6.86 M⊕. However, due to the
inevitable thermal impediments at higher altitudes, it is conceivable that the majority
of the Earth’s avian species could evolve sufficient athleticism for flight on temperate
isoatmospheric planets of up to 15 M⊕, without adjustments in body mass.

1 Introduction

Birds, bats, insects and pterosaurs have independently sur-
mounted the challenges of actively-powered flight [1], per-
haps during hyperoxic episodes in the Earth’s history [2].
Avian species span some four orders of magnitude in body
mass [3] yet birds of all sizes undertake arduous seasonal mi-
grations [4,5]. Flight is a complex and intrinsically dangerous
activity especially in arboreal environments, over mountain-
ous terrain, in regions where birds of prey are prevalent or
during unfavourable weather [6]. Thus, there is a need for
sophisticated neural control [7]. Exoplanet discoveries con-
tinue apace [8,9] and NASA’s Kepler mission has already es-
tablished that those of 1–2 Earth radii (“super-Earths”) are re-
markably abundant [10]. Neutrally buoyant aquatic animals
are immune to changes in gravity and land animals can evolve
sturdier bones or additional legs to cope with conditions on
more massive planets. However, the feasibility of environ-
mentally unassisted flight in stronger gravitational fields is
clearly an intricate issue meriting more detailed scrutiny.

The Earth’s oxygenated air provides birds not only with
a breathable atmosphere but also a medium for generating
propulsion and weight support during flight [11]. Conse-
quently, gravity, atmospheric density and the chemical com-
position of an atmosphere influence the prospects for aerial
locomotion. There is no evidence that the laws of physics
vary either with time or location, so animals that are as anato-
mically and physiologically well-adapted to flight as any liv-
ing here could have evolved elsewhere in the universe. This
analysis therefore commences by evaluating the athleticism
of Earth’s avian species during environmentally unassisted
horizontal flight. The limits of flight athleticism on Earth are
then used as a basis for extrapolation to different planetary
environments, leading to criteria that are likely to be satisfied
if circumplanetary atmospheres are compatible with flight.

2 Flight power and athleticism

The following analysis concerns flying animals capable of
supporting their own weight in still air conditions, building
upon an established result from aerodynamic theory pertain-
ing to hovering flight [12]. If a bird’s wings have combined
area Awing and the air they sweep is on average accelerated to
a downward velocity va then the volume of air being swept in
unit time is vaAwing. In an atmosphere of density ρ, the mass
of this parcel of air is ma = ρvaAwing and so the rate of change
of momentum in the air is mava = ρv2

aAwing. For a bird of
body mass mb, Newton’s second law requires that this equals
the bird’s weight mbg which allows the downward velocity of
the air to be obtained as va =

√
mbg/ρAwing. The power re-

quired during hovering is the rate at which kinetic energy is
imparted to the air

Phov =
mav

2
a

2
=
ρAwingv

3
a

2
=

1
2

√
m3

bg
3

ρAwing
. (1)

Providing only a small fraction of the power relating to
forward horizontal flight, P f , is required to overcome the drag
associated with forward motion, it can be argued that P f and
Phov should scale almost identically. If, furthermore, avian
anatomy scales isometrically then Awing ∝ m2/3

b and

P f ∝

m7
bg

9

ρ3

1/6

. (2)

For an individual animal this simplifies to P f ∝
√
g3/ρ,

a term which concisely encapsulates environmental condi-
tions. Thus, flight becomes more challenging on planets with
stronger gravitational fields and reduced atmospheric densi-
ties [13]. On Earth, flying birds and flightless birds are de-
lineated by the boundary

√
g3/ρ =27.7 m3 s−3 kg−1/2. De-

partures from isometry are likely [14] and the allometrically
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neutral relationship Awing ∝ m2/3
b is only marginally compat-

ible with empirical data – actual wing measurements suggest
Awing ∝ m0.780±0.112

b [15] . This implies the following modi-
fication involving an exponent α = 0.110 ± 0.056,

P f ∝ m1+α
b

√
g3

ρ
. (3)

Since α > 0, mass-specific flight power, P f /mb, gener-
ally increases with body mass [12]. A quantity χ is now in-
troduced which is directly proportional to the mass-specific
flight power needed to fly horizontally in still air. It is adopted
as a proxy for flight athleticism and defined as

χ =

(
mb

m̃

)α √
g3

ρ
(4)

where m̃ is a fiducial mass term used for normalisation and
can be arbitrarily chosen. In particular, heavier animals capa-
ble of flight in hypodense air would score well on this mea-
sure. At a similar airspeed, aerodynamic drag is of less con-
cern to large birds, in keeping with the earlier assumption that
P f ∝ Phov.

3 Aeronautical limits

Avian lungs utilise a cross-current airflow assisted by a com-
plementary vasculature allowing for efficient gas exchange
[16], advantageous during high altitude flight where the par-
tial pressure of oxygen is reduced. At least three species ap-
pear to be capable of entirely self-powered flight 7000 m or
more above sea level. An iconic example is the bar-headed
goose, Anser indicus, whose seasonal migrations involve nav-
igating the Himalaya [17] and the prominent obstacle of the
Tibetan plateau. Having been satellite-tracked at 7290 m [18]
they are more tolerant of hypoxia than brent geese, Branta
bernicla, which have difficulty crossing the Greenland ice-
caps at altitudes of 2500 m [19]. Despite a body mass plac-
ing them in the 98th percentile of bird species [3], they have
also been observed flying in formation at almost 8000 m by
mountaineers climbing the Annapurna massif [20]. A number
of cardiovascular, pulmonary, morphological and biochemi-
cal adaptation mechanisms could be responsible for this strik-
ing athleticism including high ventilation rates [21], relative
immunity to respiratory alkalosis and haemoglobin of supe-
rior O2 affinity, higher cardiac output [17] and tissue enhance-
ments such as cardiac hypertrophy, greater capillary density
and mitochondrial abundance [22].

Alpine choughs, Pyrrhocorax graculus also inhabit the
Himalaya. Nesting as high as 6500 m [17], they have been
known to follow climbers on Everest at altitudes approach-
ing 8200 m – within the mountaineering “death zone”. Small
birds such as choughs readily take to the air but swans are
much larger and typically require 15–20 wingbeats to become
aloft when taking off from water, even though they can obtain

some acceleration and weight support from webbed feet. On
becoming airborne they continue to gain speed and gradually
start to ascend, necessitating continued effort [23]. Thus, un-
like smaller birds for which a short period of anaerobic exer-
tion is adequate for take-off, swans must demonstrate aerobic
athleticism at the commencement of each flight. This applies
also to juveniles – cygnets only start to fly at 4–5 months of
age. The athleticism demanded by take-off may confer upon
swans an ability to sustain high altitude flight, even if they are
not ecologically coerced to do so. Lowland species may be
incapable of take-off in hypodense air but that does not pre-
clude, per se, an ability to fly high – even though swans tend
not to during migration [24]. In still air conditions, flying
low in dense air facilitates flight – in accordance with (4).
However, strong tailwinds capable of drastically curtailing
migration times and total energy expenditure are sometimes
available, especially at higher altitudes. During lengthier mi-
gratory flights, the additional costs of ascent and high altitude
cruising can easily be fully recovered. In the cold and feature-
less seascape of the north Atlantic, which is neither conducive
to the generation of strong thermals nor orographic updrafts,
a flock of some 30 whooper swans, Cygnus cygnus, was de-
tected in 1967 by radar then visually identified by a pilot to be
flying at 8200 m with a ground-speed of 38 m s−1 towards the
end of a ∼1000 km migration from Iceland to the UK [25].

The air density at 8200 m is 0.513 kg m−3. Setting m̃ =

mw = 11 kg, the mass of a whooper swan, and making al-
lowances for variations in α, the maximum value of χ at whi-
ch flight is possible at this altitude is 42.8 m3 s−3 kg−1/2 for
whooper swans, 34.1–39.8 m3 s−3 kg−1/2 for bar-headed geese
and 22.4–34.6 m3 s−3 kg−1/2 for Alpine choughs. Results for
various species are presented in Fig. 1. Whooper swans ap-
pear to top the list for avian athleticism making them well-
suited for astrobiological extrapolations. To compete, bar-
headed geese, would need to be capable of flight at altitudes
of 9.4–11.7 km, which seems unrealistically high [18].

4 Planetary environments

The radii, R, of terrestrial super-Earths are expected to scale
with M, the planet mass, as R ∝ M0.274 [26]. Hence, surface
gravity, gs, should scale as gs ∝ M0.452. The effective increase
in sea level on a super-Earth planet with a similar water con-
tent to Earth can be estimated from the relationship plotted
in Fig. 2. It is also relevant to mention that enhanced grav-
ity tends to attenuate topographical features such as moun-
tains and ridges. Super-Earth planets are variously taken to
have a mass of 1–10 M⊕ or a radius of 1–2 R⊕ (1–12 M⊕)
where the subscript ⊕ denotes the Earth. This analysis consid-
ers the slightly expanded range 1–15 M⊕ in order to encom-
pass the largest planets capable of possessing hexagonally
close-packed iron at their core [27, 28]. On Earth, a whooper
swan can fly in air of density as low as ρw = 0.513 kg m−3.
Since athleticism is not an environmental variable, the min-
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Fig. 1: Flight athleticism, χ, for various species. Estimated max-
imum altitudes are given in km (in parentheses) for unassisted
flight. Selected results are also provided for flightless birds assum-
ing (mostly with undue optimism) that they might be capable of
flying in air slightly denser than that of sea level. Lightly shaded
areas represent the uncertainty in the allometric scaling exponent,
0.054 < α < 0.166, using a fiducial mass m̃=11 kg.

imum air density required by whooper swans on other plan-
ets is ρmin = ρw(M/M⊕)1.356. For a 15 Earth-mass planet,
ρmin=20.18 kg m−3.

As with discussions of circumstellar habitable zones, so-
me simplifying assumptions are helpful. Due to uncertain-
ties such as cloud cover, humidity levels and fluctuations in
atmospheric heating due to planetary rotation, an isothermal
model atmosphere is adopted. In hydrostatic equilibrium the
ideal gas law predicts that air density, ρ, is proportional to air
pressure, p = βρ. According to the International Standard
Atmosphere, β has a value of about 82714 m2 s−2 for a tem-
perature of 15◦C at sea level where ρ =1.225 kg m−3. Gravity
is taken to be insensitive to changes in altitude, z. By consid-
ering the weight of a thin horizontal layer of air,

dp
dz

=
dp
dρ
×

dρ
dz

= β
dρ
dz

= −ρgs. (5)

The air density at height h is obtained by integrating from
z = 0 to z = h,

β (ln ρ − ln ρs) = −gsh, (6)

where ρs represents the air density at the surface. Thus, ρ =

ρs exp (−gsh/β) and the total mass contained by the atmo-
sphere below height h is

Mh = 4πR2
∫ h

0
ρ(z) dz =

4πβρsR2

gs

[
1 − exp

(
−gsh
β

)]
. (7)

Mh converges as h → ∞ to yield the total mass of the
entire atmosphere,

Matm =
4πβρsR2

gs
. (8)

Fig. 2: Planets more massive than Earth but with an identical water
fraction (VH2O ∝ M) would have somewhat deeper oceans, the addi-
tional depth (in km) being at least 2.6 [(M/M⊕)0.452 − 1] depending
on topography. However, if planetary water is exclusively delivered
from space via comets and asteroids whose spatial distribution varies
little with galactic location, one would anticipate ocean depths to be
largely independent of planet mass.

For an isothermal atmosphere, under the assumption of
spherical symmetry, half the air mass lies below a scale height
ĥ given by

ĥ =
β ln 2
gs

=
β ln 2
g⊕

( M⊕
M

)0.452

. (9)

This expression is entirely independent of ρs. Plots of
surface gravity, planetary radius and atmospheric scale height
against planetary mass are provided in Fig. 3.

5 Criteria for aerial locomotion

From (8) we have ρs = gsMatm/4πβR2. Recalling that gs ∝

M0.452 and R ∝ M0.274,

ρs =
g⊕Matm(M/M⊕)0.452

4πβR2
⊕(M/M⊕)0.548

∝ M0.904
( Matm

M

)
. (10)

Since gs = g⊕(M/M⊕)0.452, the quantity
√
g3

s/ρs, a factor
previously found to be proportional to the power required by
flight, can be expressed as follows

g3
s

ρs
=

4πβR2
⊕(M/M⊕)0.096

g⊕Matm

[
g⊕(M/M⊕)0.452

]3

=
4πβR2

⊕g
2
⊕

Matm

(
M
M⊕

)1.452

,

(11)

√
g3

s

ρs
= γ

(
M
M⊕

)0.226 √
M

Matm
(12)

where γ = 2g⊕R⊕
√
πβ/M⊕ = 0.026 m3 s−3 kg−1/2. The max-

imum mass of an isoatmospheric planet (i.e. having a ratio
Matm/M identical to Earth’s) that is compatible with flight for
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Fig. 3: Upper panel: planetary radius and surface gravity obey sim-
ple power law relationships according to planetary mass, R ∝ M0.274

and gs ∝ M0.452 respectively. Lower panel: the scale height of the
atmosphere, ĥ = β ln 2/gs, is independent of the surface air den-
sity and hence total mass of the atmosphere. It decreases for larger
planets since a higher surface gravity is better able to confine the
atmosphere close to the surface.

a whooper swan can be obtained by requiring that ρs = ρmin.
This implies that ρw(M/M⊕)1.356 = ρ⊕(M/M⊕)0.904, and

M = M⊕ ×
(
ρ⊕
ρw

)1/0.452

≈ 6.86M⊕. (13)

The surface gravity of this planet of 6.86 M⊕ would be
2.388g. The maximum range and minimum power airspeeds
of flying birds are expected to vary as ρ−0.5 [12]. The sur-
face air density of an isoatmospheric 6.86 Earth-mass planet
would be ∼ 5.68ρ⊕ so a typical airspeed of 21 m s−1 for a
swan [24] might decline to 8.8 m s−1, roughly the pace of an
elite 400 m runner. In this same 2.385g environment, how-
ever, most people would struggle to walk at all and horses
would be incapable of standing.

Since P f ∝ m1+α
b

√
g3/ρ and ρs ∝ M0.904, the flight power

at zero altitude on isoatmospheric planets scales as P f ∝

M0.226. Because M/M⊕ = (gs/g⊕)1/0.452, it is apparent from
(13) that gs/g⊕ = ρ⊕/ρs for the limiting planet mass. There-
fore, a particularly simple inverse relationship exists, ρeq ∝

Fig. 4: For isoatmospheric planets the Earth-equivalent air density,
ρeq, at the athleticism of zero-altitude flight, is inversely related to
the surface gravity of a planet, ρeq ∝ 1/gs.

1/gs, allowing translation of the surface gravity of an isoat-
mospheric planet to the Earth-equivalent air density (and hen-
ce also equivalent maximum flight altitude via the Interna-
tional Standard Atmosphere). Results are presented in Fig. 4.

Might smaller birds be capable of flight on an isoatmo-
spheric planet of 15 Earth masses? The surface air density
would be 1.225 (M/M⊕)0.904 = 14.17 kg m−3, lower than the
minimum air density required by whooper swans for the same
planet mass, ρmin = 20.18 kg m−3. Since χ ∝ ρ−1/2

s , flight ath-
leticism would have to be boosted by a factor of 1.1934. To
achieve this, body mass could be reduced so that mb < mw

and flight would become feasible on a 15 Earth-mass planet
if mb = mw×1.1934−1/α. Hence, flying animals of 0.42–3.8 kg
or less (according to the value of α) may be capable of aerial
locomotion on a 15 Earth-mass planet if they can match the
flight athleticism of a whooper swan. Some ∼88% of species
have a body mass below 0.42 kg and ∼99% have a body mass
below 3.8 kg [3].

For an isoatmospheric 15-Earth mass planet one finds that√
g3

s/ρs > 51.1 m3 s−3 kg−1/2. On Earth this is equivalent to
ρ < 0.36 kg m−3 or flight at altitudes & 11 km. Even if
smaller birds lack the athleticism of whooper swans, some
may be able to fly in such rarefied air. The possibility could
be investigated using a hypobaric wind tunnel operated at
a comfortable flight temperature. Ruby-throated humming-
birds, which have a body mass of only 2–6 grams, can sus-
tain hovering at densities down to 47% that of sea level air
(0.576 kg m−3) [29,30]. In forward flight, this species is likely
to be capable of flying in yet more rarefied air. However,
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Fig. 5: Flight power (effort increases from blue to red) is a function of planet mass (or surface gravity) and atmospheric density. Conditions
compatible with aerial locomotion lie upward of the solid contours. An 11 kg whooper swan appears capable of unassisted horizontal
flight on isoatmospheric planets up to 6.86 M⊕. The influence of doubling or halving body mass relative to the whooper swan is shown for
α=0.11. The trace marked dwarf swan corresponds to a hypothetical flying animal of the same flight athleticism as a whooper swan but of
body mass 0.04–0.34mw (corresponding to 0.054 < α < 0.166). Dashed contours represent atmospheric mass content relative to the Earth’s
fraction (862 parts per billion).

even then, due to its relatively small body mass, it is unlikely
to challenge whooper swans for flight athleticism. The same
argument applies also to flying insects.

Sufficient information has now been collected to describe
circumstances compatible with environmentally unassisted
circumplanetary flight in which buoyancy effects can be safe-
ly ignored. A planet would ideally occupy an orbit within
the conventional circumstellar habitable zone [31] and, based
upon the flight athleticism of whooper swans, the following
criterion should also be satisfied:(

mb

mw

)α √
g3

s

ρs
. 42.8 m3 s−3 kg−1/2. (14)

By virtue of (12), an equivalent formulation involving
only normalised mass terms is possible(

mb

mw

)α (
M
M⊕

)0.226 √
M

Matm
. 1646. (15)

Limitations in respiration or gas perfusion could poten-
tially impinge upon the present analysis but oxygen delivery
is not constrained in birds by the pulmonary system [23] and,
in more inert atmospheres, flow-through breathing arrange-
ments requiring little or no biomechanical effort can be imag-
ined. Changes in atmospheric composition are likely over
geological timescales [2]. Thus, it would ideally be useful
to know whether an exoplanetary atmosphere has remained
breathable and non-toxic for sufficient time to support the
evolution of complex organisms.

Another factor which might well impact on these results is
a change in atmospheric temperature, Tatm. The molar mass
of the air, Mair = 0.029 kg mol−1, the air temperature, Tair,
and the universal gas constant, Rair = 8, 314 N m mol−1 K−1,
obey the relationship β = RairTair/Mair. Since both γ and
Matm are linearly dependent on β, the value of

√
g3

s/ρs is pro-
portional to

√
β. Since the value of β adopted here corre-

sponds to an air temperature of 15◦C, different atmospheric
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Fig. 6: Flight power according to planet mass and the atmospheric fraction relative to that of the Earth. Aerial locomotion is possible
upwards of the solid contours. Dashed contours here represent the surface density of the atmosphere (kg m−3), and correspond to isobars
for the isothermal atmospheric model used here.

temperatures can be accommodated by applying a correction
factor of

√
288.15/Tatm to the right-hand sides of the inequal-

ities (14) and (15).
The results of this analysis are presented graphically in

Figs. 5 and 6. These limits are likely to be somewhat cau-
tious since it is possible that, with determined effort, whooper
swans may be capable of flying higher than the flock sight-
ing at 8200 m. Although it has been conjectured that their
initial ascent was aided by lee waves, such assistance would
not have been present during the sea crossing from Iceland
to Scotland [24]. Furthermore, this species regularly takes
off in the dense air present at sea level which prohibits the
evolution of larger wings that would tend to facilitate flight
at extreme altitudes. Flying animals of extraterrestrial origin
may not have been subjected to evolutionary pressures of this
kind, particularly if their planets lack elevated land masses
obstructing low altitude flight.

6 Discussion

Expressions (14) and (15) present criteria for aerial locomo-
tion to be realistically possible in circumplanetary atmosphe-

res. Comparisons of relative flight power under different en-
vironmental circumstances can utilise the expression P f ∝√
g3

s/ρs. This predicts, for example, that flight in conditions
resembling Saturn’s moon Titan would be ∼ 23 times easier
than at sea level on Earth. The wing-scaling exponent α has
a small but positive value [15]. If this holds for a wide range
of body masses then one can envisage animals flying in such
conditions which are larger than any that have ever graced
this planet. However, transport costs (or the energy/distance
ratio), should approximately scale as m0.7

b during flight but
only m0.6

b for running [1]. Above a certain body size, there-
fore, terrestrial locomotion would be energetically favoured
to flight, though transit times might increase.

A primary finding is that, in the presence of a breathable
atmosphere, winged animals of a body mass resembling the
majority of the Earth’s indigenous avian species could poten-
tially evolve the ability to fly on isoatmospheric planets of
at least 15 M⊕ (gs = 3.4g). However, this work also high-
lights how even mildly reduced atmospheric fractions might
potentially prohibit aerial locomotion. Novel techniques ca-
pable of remotely determining atmospheric composition, sur-
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face atmospheric density and oceanic coverage could there-
fore be useful in augmenting future exoplanetary searches.
Even worlds entirely covered in water could host flying an-
imals. If in time the Earth were to become an ocean planet
through continuing bombardment by comets and meteorites
then seabirds could emulate penguins by mating, laying eggs
and incubating them on floating icebergs.

That birds possess superb navigation skills has long been
apparent but only recently have we appreciated that numerous
species are adept problem-solvers [32] with an innate abil-
ity to fashion tools [33]. Eurasian Magpies (Pica pica) have
demonstrated self-recognition when confronted with a mirror,
a trait commonly associated with self-awareness [34]. Most
birds are proficient hunters, potentially capable of stimulat-
ing the evolution of higher intelligence in land-based prey –
such as our early mammalian ancestors. That cannot be said
of insect-like creatures, which should in general cope more
comfortably with higher gravitational fields due to the advan-
tages of relatively small body masses and large area to volume
ratios, facilitating respiration.

Flapping flight is a highly effective mode of locomotion
for animals possessing sufficient athleticism. However, as
aerial manoeuvres demand considerable coordination and spa-
tiotemporal awareness, and body weight is critical, evolution-
ary pressures arise for efficient neurochemistry and neuroar-
chitecture. Volant organisms may well have played a pivotal
role in shaping the Earth’s natural history, enriching its biodi-
versity and accelerating the evolution of intelligent life. Avian
species demonstrated considerable resilience in surviving the
ecological catastrophe responsible for the extinction of most
dinosaurs. In times of adversity, an ability to swiftly and ef-
ficiently relocate over planetary distances and flexibly forage
on both land and sea may assist the propagation of flying an-
imals over geological∼stellar timescales. Accurate determi-
nation of whether circumplanetary flight is possible should
not be overlooked if future missions to extrasolar worlds are
intent on maximising the chances of encountering complex
lifeforms and, perhaps, even extraterrestrial civilisations of
comparable sophistication to our own.
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Considering the complex vector electromagnetic field, the energy of the photon is ex-
pressed as an even multivector consisting of a scalar kinetic energy part and a bivector
rotational energy part. Since any even multivector can be expressed as a rotor represent-
ing internal rotations, the electromagnetic energy even multivector represents internal
complex rotations. It has been shown that the spin angular momentum is the generator
of rotations in the plane normal to the propagation direction and the orbital angular mo-
mentum is the generator of rotations in a plane normal to the spin plane. The internal
structure of the photon may be visualized as a superposition of electromagnetic field
flow or rotation in two normal orientations in complex vector space. The cause of such
complex rotations is attributed to the presence of electromagnetic zeropoint field.

1 Introduction

Even after the photon inception into the field of physics over a
century ago, the obscurity in understanding the photon struc-
ture persists. The concept of the photon, the energy quanta
of electromagnetic radiation, was introduced by Planck in the
blackbody radiation formula and Einstein in the explanation
of the photoelectric effect. The photon is normally consid-
ered as a massless bundle of electromagnetic energy and the
photon momentum is defined as the ratio between the energy
of the photon and the velocity of light. It is well known from
Maxwell’s theory that electromagnetic radiation carries both
energy and momentum [1]. The linear momentum density
is given by the Poynting vector E × B and the angular mo-
mentum is the cross product of the Poynting vector with the
position vector. Poynting suggested that circularly polarized
light must contain angular momentum and showed it as the
ratio between the free energy per unit volume and the angular
frequency. In 1936, Beth [2] first measured the angular mo-
mentum of light from the inference that circularly polarized
light should exert torque on a birefringent plate and that the
ratio between angular momentum J and linear momentum P
was found to be λ/2π, where λ is the wavelength of light. The
measured angular momentum agreed in spin magnitude with
that predicted by both wave mechanics and quantum mechan-
ics. The Beth angular momentum is in general considered as
the photon spin angular momentum.

The energy momentum tensor of the electromagnetic field
T µν is not generally symmetric. By adding a divergence term
∂µUµαν to T µν, one can construct a symmetric energy momen-
tum tensor Θµν which is normally known as the Belinfante
energy momentum tensor [3]. The tensor Uµαν is asymmet-
ric in the last two indices. The symmetric energy momen-
tum tensor satisfies the conservation law ∂µΘ

µν = 0. The
advantage of the symmetric energy momentum tensor is that
the angular momentum calculated from Θk0 is a conserved
quantity. Belinfante established the fact that the spin could
be regarded as a circulating flow of energy and this idea was
well explained by Ohanian [4]. In an infinite plane wave, the

electric and magnetic field vectors are perpendicular to the
propagation direction. In a finite transverse extent, the field
lines are closed loops and represent circulating energy flow
and imply the existence of angular momentum whose orien-
tation is in the plane of circulation and it is the spin angular
momentum. Further, as the electromagnetic waves propagate,
the energy also flows along the direction of propagation. The
translational energy flow implies the existence of additional
orbital angular momentum. The magnetic field vector can be
expressed as the curl of a vector potential A and the angu-
lar momentum density becomes E × A. A close inspection
shows that the total angular momentum has two components:
one the spin angular momentum associated with the polariza-
tion and the other the orbital angular momentum associated
with the spatial distribution [1]. The total angular momentum
J can be split into a spin angular momentum S and an orbital
angular momentum L [5]

J =
1

4π

∫
E × A d3r +

1
4π

∫
En(r × ∇)An d3r . (1)

The first term on the right is dependent on polarization and
hence it is called spin angular momentum S and the second
term is independent of polarization and depends on spatial
distribution and identified with orbital angular momentum L.
It has been argued that the photon angular momentum cannot
be separated into a spin part and an orbital part in a gauge
invariant way and the paradox was a subject for several papers
and in standard textbooks for the past few decades [6].

In recent times the definitions of these angular momenta
raised certain controversy. In all these definitions the angular
momentum is defined as a vector product containing the posi-
tion coordinate. The decomposition of total angular momen-
tum of the photon into spin and orbital parts basically involves
how we split the vector potential in a gauge invariant way and
it has been studied by several authors and a detailed discus-
sion is given in the review article by Leader and Lorce [7].
The absence of any rest frame for the photon suggests that
the total angular momentum is observable but not separately
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as spin angular momentum and orbital angular momentum.
Though this separation is normally considered to be unphysi-
cal and not observable, Van Enk and Nienhuis [8] argued that
both spin and orbital angular momenta are separately measur-
able quantities and gauge invariant. The gauge invariant spin
and angular momentum parts are expressed as

J =
1

4π

∫
E × A d3r +

1
4π

∫
r × En∇An d3r . (2)

In this expression A = A⊥ and therefore both terms are gauge
invariant. The canonical expression En∇An gives pure me-
chanical momentum which is responsible for the orbital an-
gular momentum of a photon. The azimuthal flow of elec-
tromagnetic field is given by En∇An which is half of E × B
and the other half is spin flow [9]. In an analogous way, in
quantum chromodynamics, the gluon angular momentum can
be decomposed into a spin part and an angular momentum
part which plays an important role in understanding nucleon
structure. Recently, Chen et al. [10] decomposed the gauge
potential into pure and physical parts: A = Apure + Aphys,
the pure part is related to gauge invariance and the physical
part is related to physical degrees of freedom. In the decom-
position by Wakamatsu et al. [11], the orbital angular mo-
mentum is defined similar to a classical expression r × Pkin,
where Pkin = − 1

4π

∫
Aphys × E d3r and in this decomposition

each term is gauge invariant and observable. Further studies
by several authors revealed the fact that there could be in-
finitely many different ways to perform such decomposition
in a gauge invariant way [7, 12]. In Beth’s experiment, ac-
tually the spin angular momentum was measured. The mea-
surement of orbital angular momentum has been performed in
recent times. The amplitude of a Laguerre-Gaussian mode of
light wave has an azimuthal angular dependence of exp(−ilφ),
where l is the azimuthal mode index. The ratio between the
angular momentum to the energy is 1/ω or L = l (E × B)/ω
and for Laguerre-Gaussian laser mode, it has been shown that
the angular momentum is equal to l~ and the total angular mo-
mentum of the whole light beam is (l+σz)~, whereσz is a unit
vector along the direction of propagation [13]. The measure-
ment of orbital angular momentum was reported by several
authors [14–16].

Another important aspect of the photon is its internal zit-
terbewegung motion. It is well known from the first observa-
tion of Schrödinger [17] that a Dirac electron possesses zit-
terbewegung motion which is the oscillatory motion of the
electron with very high frequency ω = 2mc2/~ with inter-
nal velocity equal to the velocity of light. Such internal mo-
tion arises because of the classical electromagnetic fluctuat-
ing zeropoint field present throughout space [18]. The spin
angular momentum of the electron is identified as the zero-
point angular momentum [18, 19]. On the basis of electron
internal oscillations, classical models of electron were devel-
oped [20–22]. It is quite interesting that such zitterbewe-
gung motion for the photon was derived from the relativis-

tic Schrödinger like equation of the photon by Kobe [23].
It has been proved that the photon velocity contains paral-
lel and perpendicular components with respect to the direc-
tion of propagation. The time dependent perpendicular com-
ponent of velocity rotates about the direction of propagation
with an angular frequency ω equal to the frequency of the
electromagnetic wave. The finite special extension of inter-
nal rotation is equal to the reduced wavelength. The photon
spin is then identified as the internal angular momentum due
to zitterbewegung. Considering internal dynamical variables
in the configuration space the zitterbewegung is attributed to
the normal component of velocity vector oscillations about
the particle centre [24]. In the quantum field theory, it has
been shown that the zitterbewegung of a photon is attributed
to the virtual transition process corresponding to the contin-
uous creation and annihilation of virtual pairs of elementary
excitations [25, 26]. Recently, Zhang [27] proposed that zit-
terbewegung of the photons may appear near the Dirac point
in a two dimensional photonic crystal. In the case of an elec-
tron, the spin angular momentum is an intrinsic property. In
the same way both spin and orbital momenta of the photon
are intrinsic in nature [28, 29]. Thus one can anticipate that
the photon is also having an internal spin structure described
by the internal oscillations or rotations.

One of the most important applications of the photon an-
gular momentum lies in the exploitation of the photon spin
and angular momentum states for quantum computation and
quantum information processing [30]. Superposition of po-
larization states can be used to construct qubits and transmit
information. A standard approach to visualise the transfor-
mation of qubits is provided by the Poincaré sphere repre-
sentation. Generally, any completely polarized state can be
described as a linear superposition of spin states and corre-
sponds to a point on the surface of a unit sphere. Analogous
representation of orbital angular momentum states of the pho-
ton was introduced by Padgett and Courtial [31] and Agar-
wal [32]. Quantum entanglement of states is a consequence of
quantum non-locality. The entanglement involving the spatial
modes of electromagnetic field carrying orbital angular mo-
mentum was studied by Mair et al. [33] and Franke-Arnold
et al. [34]. The phase dependence of angular momentum may
provide multi-dimensional entangled states which are of con-
siderable interest in the field of quantum information.

In vector algebra, the angular momentum is defined by a
cross product of position and momentum vectors and identi-
fied as a vector normal to the plane containing the position
and momentum vectors. However, the angular momentum is
basically a planar quantity and better defined as a bivector in a
plane [35]. Note that the cross product cannot be defined in a
plane. In the case of the electron, the classical internal bivec-
tor spin was obtained from the multivector valued Lagrangian
by Barut and Zhangi [20]. It has been shown that the particle
executes internal complex rotations by absorbing zeropoint
field and the angular momentum of these internal rotations
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is identified as the bivector spin of the particle [36]. In an
analogous way, the photon spin is a bivector quantity. There-
fore, the photon spin may be visualised as a bivector prod-
uct between an internal finite extension of the photon and an
internal momentum. Similarly, one can visualise the orbital
angular momentum of the photon as a bivector. Considering
the electromagnetic field as a complex vector, it is possible
to express the set of Maxwell’s equations into a single form.
The basics of complex vector algebra have been discussed in
detail previously in references [37, 38].

Recently, the nature of the photon was discussed at length
by several authors in the book edited by Roychoudhuri et
al. [39]. The main views of understanding the nature or the
structure of the photon are as follows. Einstein viewed the
photon as a singular point which is surrounded by electro-
magnetic fields. In quantum electrodynamics, the photon is
introduced as a unit of excitation associated with the quan-
tised mode of the radiation field and it is associated with pre-
cise momentum, energy and polarization. In another view, the
photon is interpreted as neither a quantum nor a wave but it
can be a meson which produces off other hadronic matter and
attains physical status. Photons are just fluctuations of ran-
dom field or wave packets in the form of needles of radiation
superimposed in the zeropoint field. However, understanding
the photon structure still remains an open question.

The aim of this article is to explore the structure of the
photon in complex vector space. To understand the struc-
ture of the photon, the electromagnetic field is expressed as
a complex vector and the total energy momentum even mul-
tivector is developed in section 2. Section 3 deals with the
internal angular momentum structure of the photon and con-
clusions are presented in section 4. Throughout this article,
Lorentz–Heaviside units are used, i.e. ε0 = µ0 = 1 and en-
ergy terms are divided by 4π and conveniently we choose
c = 1 [1]. However, for clarification sake in some places c
is reintroduced.

2 Energy momentum multivector of the electromagnetic
field

In the complex vector formalism, we express the electric field
as a vector E and the magnetic field as a bivector iB and the
electromagnetic field F is expressed as a complex vector [37,
38]

F =
1
2

(E + iB) . (3)

Here, i is a pseudoscalar in geometric algebra of three dimen-
sions [40], it commutes with all elements of the algebra and
i2 = −1. A reversion operation changes the order of vectors
and is indicated by an overbar

F̄ =
1
2

(E − iB) . (4)

Now, the product F̄F is written as

F̄F =
1
4

(E2 + B2) +
1
2

(E ∧ iB) . (5)

Similarly, we find

FF̄ =
1
4

(E2 + B2) −
1
2

(E ∧ iB) . (6)

The energy density of the electromagnetic field can be ob-
tained from the scalar product

F̄ · F =
1
2

(F̄F + FF̄) =
1
4

(E2 + B2) . (7)

Further, the product F̄ ∧ F gives a vector of the form

p = −
1
c

F̄ ∧ F = −
1
2c

(F̄F − FF̄) = −
1
2c

(E ∧ iB) , (8)

and the dual of p is expressed as

ip =
1
2c

(E ∧ B) . (9)

From the above expression, one can express the energy den-
sity of internal electromagnetic flux flow in the bivector plane
normal to the propagation direction

ipc =
1
2

(E ∧ B) . (10)

This energy density of the photon can be identified as the ro-
tational energy density. However, the energy density obtained
in (7) represents the energy density of the photon as it prop-
agates and it may be treated as the kinetic energy density of
the photon. An even multivector is a sum of a vector and a
bivector. The energy terms in (7) and (10) combine to give
the total energy of the photon in even multivector form

E =
1

4π

∫
E2 + B2

4
d3r +

1
4π

∫
E ∧ B

2
d3r = Ekin +Erot. (11)

The scalar part shows the flow of energy in the direction of
propagation which can be identified as the kinetic part of en-
ergy Ekin and the bivector part can be identified as the rota-
tional energy Erot representing circulation of electromagnetic
energy in a plane normal to the direction of propagation. In
general, twice the kinetic energy is treated as the electromag-
netic energy per unit volume and it is the energy of the pho-
ton. Since the energy of a photon is expressed as momentum
times its velocity, we define kinetic momentum of a photon
as pk = Ekin/v, where the velocity v = nc and n is a unit
vector along the direction of propagation. Introducing an in-
ternal velocity u satisfying the condition u · v = 0 and |u| = c,
the internal momentum representing the rotational flux flow
can be defined as pr = Erot/u. From these definitions gen-
eralised photon velocity and momentum complex vectors can
be constructed as

U = v + iu , (12)
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P = pk + ipr . (13)

A reversion operation on P gives P̄ = pk − ipr. Since the mag-
nitudes |pk | and |pr | are equal, we have P2 = P̄2 = 0. There-
fore, the complex vector P is a complex null vector which
represents the lightlike nature of the photon. Similarly, the
complex velocity vector is also a complex null vector. Now,
the total energy of the photon is expressed as

E = pk · v + pr ∧ u . (14)

The even multivector form given in the above equation can
be compared to the symmetric energy momentum tensor Θµν

with the identification of the scalar part with Θ00 and bivector
part with Θi j . In three dimensions, the property of an even
multivector is that it represents rotations in the bivector plane
[35]. Then, the energy multivector can be expressed as a rotor
with angular frequency ω

E = E0 eĴωt , (15)

where Ĵ is a unit bivector in the plane normal to the prop-
agation direction. This relation shows that the photon con-
tains internal complex rotations and these rotations are anal-
ogous to the internal complex rotations or zitterbewegung of
the electron. The cause of these internal rotations is attributed
to the fluctuations of the zeropoint field [38]. In (15) the inter-
nal rotation represents the clockwise or right-handed rotation.
A reversion operation on E gives

Ē = E0 e−Ĵωt . (16)

In this case, the internal rotation represents counterclockwise
or left-handed rotation. The frequency of internal rotation is
the rate per unit energy flux flow within the photon

Ω = −Ĵωt = −
1
E

dE
dt

. (17)

Here, the frequency of internal rotation represents the coun-
terclockwise direction. The internal complex rotations sug-
gest that there exists an internal complex structure of the pho-
ton.

3 Internal structure of the photon

In general, the internal complex rotations represent the an-
gular momentum of the photon. The angular momentum of
a photon is defined as the ratio between the rotational en-
ergy of the photon and the frequency of internal rotation.
Since the energy of the photon is a sum of kinetic and ro-
tational energy components, we expect that the angular mo-
mentum of the photon contains two parts: one corresponding
to the rotational flow of energy and the other to the transla-
tional flow of energy. According to the definition given in
(2), the spin angular momentum bivector is in the orientation
of the plane A ∧ E which is a plane normal to the propaga-
tion direction. Let us consider a set of orthogonal unit vectors

{σk; k = 1, 2, 3} along x, y and z axes. If we choose the propa-
gation direction along the z-axis, then the unit bivector along
the spin orientation is iσ3. To understand the orientation of
spin and orbital angular momenta, let us consider circularly
polarized light waves propagating along the z-direction and
the waves have finite extent in the x− and y-directions. The
propagating wave has cylindrical symmetry about the z-axis.
The energy of the wave can be visualised as a sum of circu-
lating energy flow in the x-y plane and a translational energy
flow in the z-direction. In the case of circularly polarized light
the vector potential A contains only two components

A =
E0

ω
[σ1cos(k · r − ωt) + σ2sin(k · r − ωt)] . (18)

Here, k is the wave vector. The three vectors E, B and A
rotate in a plane normal to the propagation direction. Differ-
entiation of (18) with respect to time gives the electric field
vector

E = E0 [−σ1sin(k · r − ωt) + σ2cos(k · r − ωt)] . (19)

Then, the bivector product A ∧ E becomes

A ∧ E = iσ3
E2

0

ω
, (20)

where σ1σ2 = iσ3. The spin angular momentum of electro-
magnetic field or the photon is expressed as

S = iσ3
1

4π

∫
E2

0

ω
d3r = iσ3~ , (21)

where the energy density of the electromagnetic wave is nor-
malized so that the energy is one quantum. Normally, because
of the fact σ3 ∧ k = 0, the z-component of angular momen-
tum goes to zero but not the other components of the orbital
angular momentum. From the second term on the right of (2),
the angular momentum density is expressed as a sum of two
terms

r ∧ En∇An = r ∧ Ex∇Ax + r ∧ Ey∇Ay . (22)

Substituting individual components of E and ∇A in the above
equation, we find the orbital angular momentum density

r ∧ En∇An =
E2

0

ω
r ∧ k . (23)

Then the orbital angular momentum of the photon is express-
ed as

L = r ∧ k
1

4π

∫
E2

0

ω
d3r . (24)

In the above equation, the vector r is restricted to the plane
iσ3 and contains only x and y components. If the magni-
tude of r is equal to the reduced wavelength, then the product
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|r||k| = 1 for circularly polarized light. The orbital angular
momentum is now expressed as

L = r̂ ∧ σ3
1

4π

∫
E2

0

ω
d3r = im~ , (25)

where the unit vector r̂, in an arbitrary direction, lies in the
plane iσ3, the unit vector m is chosen normal to the orienta-
tion of r̂∧σ3 and the integral term in (25) represents the ratio
between the energy of the photon and the frequency. Thus the
orientation of the orbital angular momentum is always normal
to the orientation of spin angular momentum in a photon. In
the case the photon is propagating in an arbitrary direction say
n then from the above analysis, the spin angular momentum
and orbital angular momentum are expressed as

S = in~ , (26)

L = im~ . (27)

The vectors n and m satisfy the condition n · m = 0 and
the vector m lies in the plane of the unit bivector in. Since,
the direction of unit vector m or the orientation of the plane
im is arbitrary, the rotation of m is expressed by the relation
m′ = R̄mR. Here, R = einφ/2 is a rotor and in this way the
orbital angular momentum depends on the angle φ. The spin
angular momentum describes the intrinsic angular momen-
tum of a photon and commutes with the generator of trans-
lation n|k|. The spin angular momentum causes the complex
vector field F to rotate in the E ∧ B plane without chang-
ing the direction of propagation vector k. The photon spin
is the generator of rotations in the plane normal to the prop-
agation direction. Whereas, the orbital angular momentum
causes the plane having orientation defined by the bivector
r ∧ k to rotate without changing the direction of the vector k
and the orientation of the plane E ∧ B. The orbital angular
momentum does not commute with the generator of transla-
tion. The photon orbital angular momentum is the generator
of rotations in a plane normal to the spin plane. Thus one can
conclude that both the spin and orbital angular momenta of
a photon are intrinsic. The intrinsic nature of orbital angu-
lar momentum was discussed by Berry [28]. Further, Allen
and Padgett [29] argued that the spin and the orbital angular
momenta are intrinsic in nature in the case when the trans-
verse momentum is zero for the helical wave fronts. The spin
and orbital angular momenta of the photon are fundamental
quantities and produce complex rotations in space and such
rotations are actually produced by the fluctuating zeropoint
fields present throughout space [38, 41]. The internal com-
plex rotations are not only limited to the rotations pertain-
ing to the plane of spin angular momentum but also exists
in the plane of orbital angular momentum. In the Laguerre-
Gaussian modes of laser beams it has been shown explicitly
in the quantum mechanical approach that the orbital angular
momentum of light beams resembles the angular momentum
of the harmonic oscillator [42].

4 Conclusions

The electromagnetic field per unit volume is represented by
an energy momentum even multivector and expressed as a
sum of scalar and bivector components, and we identify the
scalar part as the kinetic part which shows the flow of energy
in the direction of propagation and the bivector part as the
rotational energy flow in the plane normal to the direction of
propagation over a finite extent. The even multivector form
of energy shows that there exist internal complex rotations
of the electromagnetic field. The cause of these internal ro-
tations is attributed to the fluctuations of the zeropoint field.
In general, the internal complex rotations represent the an-
gular momentum of the photon. The angular momentum of
the photon is defined as the ratio between the rotational en-
ergy of the photon and the angular frequency of rotation. The
spin angular momentum bivector represents a plane normal
to the propagation direction. We find that the orientation of
orbital angular momentum is always normal to the orientation
of spin angular momentum in a photon. The photon spin is the
generator of rotations in the plane normal to the propagation
direction. The photon orbital angular momentum is the gen-
erator of rotations in a plane normal to the spin plane. Thus,
one can conclude that both spin and orbital angular momenta
of a photon are intrinsic in nature. The internal structure of
the photon may be visualized as the superposition of elec-
tromagnetic field flow or rotation in two normal orientations
in complex vector space. Because of the formal similarity be-
tween gluons and photons, the conclusions obtained here may
be extended to the gluon structure.
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A theory is developed for the study of spherical gravitational waves by constructing a

Generalized Gravitational Field Equation from Newton’s gravitational field equation.

The Euclidean Laplacian ∇2 is replaced with the Riemannian Laplacian ∇2
R. A general

gravitational field equation is obtained which resolves the incompleteness in Newton’s

gravitational field equation. The general gravitational field equation reduces to the pure

Newtonian gravitational field equation in the limit of c0 as required by the Principle of

Equivalence of Physics. It also contains post Newton correction terms of orders of c−2

and all degrees of nonlinearity in the gravitational scalar potential and its derivatives.

Considering a sinusoidally varying homogeneous spherical distribution of mass in the

frame work of the obtained general gravitational field equation, gravitational waves are

predicted with phase velocity equivalent to the speed of light in vacuo.

1 Introduction

According to General Relativity Theory, gravitational waves

are oscillations of spacetime or small distortions of spacetime

geometry, or ripples of spacetime curvature which propagate

in the time through space as waves. Gravitational waves are

produced mainly by extremely massive binary stellar objects,

such as binary neutron stars or binary black holes. Though

gravitational waves can be produced by all mass interactions,

the amplitude of these waves is far too small to be detected.

Normal solar systems produce gravitational waves when their

planets orbit their primary, but again, these are incredibly

tiny ripples. Even a binary black hole — which produces

the most powerful gravitational waves we can imagine — re-

quires measurements of distances of about 1/1000 of the di-

ameter of a proton [1].

The search for gravitational waves has been the centre of

current research in Astronomy and Cosmology. Higher pre-

cision and more sensitive detectors have been developed over

the years. Experiments on gravitational waves started with

Weber’s experiments on gravitational antennae; in which he

registered weak signals [2]. He concluded that some pro-

cesses at the centre of the Galaxy were the origin of the de-

tected signals. Other attempts were made in detecting grav-

itational waves such as [3-6]. The most recent experimental

attempt by Abbott et al. in 2015 [7] claims that two detec-

tors of the Laser Interferometer Gravitational-Wave Observa-

tory simultaneously observed a transient gravitational-wave

signal.

Much theoretical work has also been done to either proof

or disproof the existence of gravitational waves. In a nut-

shell, theoretical studies of gravitational waves can be classi-

fied into three main groups [2]:

• Research targeted at giving an invariant definition for

gravitational waves. These include Pirani [8], Bondi

[9], and others.

• Searching for solutions to Einstein gravitational field

equations by proceeding from physical considerations

to describe gravitational radiations. These include

studies by Einstein and Rosen [10], Petrov [11], Chifu

and Taura [1] and others.

• Studying gravitational inertial waves, covariant with re-

spect of transformations of spatial coordinates and also

invariant with respect of transformations of time [12].

This research article falls in the second group. The so-

called “Great Metric Tensor” [13-14] is used to deduce a gen-

eral gravitational wave equation; which is later applied to a

sinusoidally varying mass for a homogeneous spherical dis-

tribution of mass.

2 The general spherical gravitational field equation

Newton’s gravitational field equation is given by

∇
2 f (r, t) = 4πGρ0(r, t) (1)

where, ρ0 is the density of proper mass in a distribution or

system, ∇2 is the pure Euclidean Laplacian, G is the universal

gravitational constant and f is the gravitational scalar poten-

tial.

The incompleteness of equation (1) are as follows:

1. The density of proper mass (source of gravitational

field) in equation (1) can vary with coordinate time and

the Euclidean Laplacian cannot account for this possi-

ble variation.
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2. Time variation of proper mass should result in the ra-

diation of energy possibly in the form of gravitational

waves or radiation that can propagate in space-time

with or without gravitational field.

3. Newton’s gravitational intensity vector g is given by

g = −∇ f (2)

where ∇ is the Euclidean gradient operator.

The Euclidean operator in equation (2) above has no vari-

ation with time and hence will not be sufficient for the com-

plete description of gravitational intensity vector of time de-

pendent gravitational fields.

From the foregoing it becomes necessary to seek a gen-

eral gravitational field equation which will be sufficient for

the description of all gravitational fields. Howusu in 2009

[13] proposed that a general gravitational field equation based

on Riemannian coordinate geometry may be obtained by re-

placing the Euclidean Laplacian with Riemannian Laplacian

to obtain

∇
2
R f (r, t) = 4πGρ0(r, t) (3)

where ∇2
R

is the Riemannian Laplacian based on the great

metric tensor for all possible gravitational fields. The gravi-

tational intensity (acceleration due to gravity) for all possible

gravitational fields can also be defined in terms of the Rie-

mannian gradient operator ∇R. The most general form of the

Riemannian Laplacian is given as

∇2
R =

1
√
g

∂

∂xµ

(

√
ggµν

∂

∂xν

)

(4)

where gµν is the contravariant metric tensor. Thus, for any

function f (r, t) we can write

∇2
R f (r, t) =

1
√
g

∂

∂xi

(

√
ggi j ∂

∂x j

)

f (r, t)

+
1
√
g

∂

∂x0

(

√
gg00 ∂

∂x0

)

f (r, t).

(5)

Using Einstein’s coordinates with x0 = ct, equation (5)

can be written explicitly as

∇2
R f (r, t) =

1
√
g

∂

∂xi

(

√
ggi j ∂

∂x j

)

f (r, t)

+
1

c2
√
g

∂

∂t

(

√
gg00 ∂

∂t

)

f (r, t).

(6)

Hence equation (3) can be written more explicitly as

4πGρ0(r, t) =
1
√
g

∂

∂xi

(

√
ggi j ∂

∂x j

)

f (r, t)

+
1

c2
√
g

∂

∂t

(

√
gg00 ∂

∂t

)

f (r, t).

(7)

Equation (7) is the general field equation which resolves

the incompleteness of Newton’s gravitational field equation.

Remarkably, the general gravitational field equation reduces

to the pure Newton’s gravitational field equation in the limit

of c0 ( as required by the Principle of Equivalence of Physics).

It may also be noted that the gravitational field equation con-

tains post Newton correction terms of orders of c−2 and all de-

grees of nonlinearity in the gravitational scalar potential and

its derivatives.

The Great Metric Tensor for all spherical gravitational

fields in spherical polar coordinates (r, θ, φ, x0) is given as

[13-14]:

g11(r, θ, φ, x0) =

(

1 +
2

c2
f (r, θ, φ, x0)

)−1

, (8)

g22(r, θ, φ, x0) = r2, (9)

g33(r, θ, φ, x0) = r2 sin2 θ , (10)

g00(r, θ, φ, x0) = −

(

1 +
2

c2
f (r, θ, φ, x0)

)

(11)

where f is the gravitational scalar potential. From equation

(8) to (11) it can be deduced that

√
g = r2 sin θ. (12)

Equation (7) can thus be written as:

4πGρ0(r, t) =
1

r2

∂

∂r

[(

1 +
2

c2
f

)

r2

]

f

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

f

+
1

r2 sin2 θ

∂2

∂φ2
f

−
1

c2

∂

∂t















(

1 +
2

c2
f

)−1
∂

∂t
f















.

(13)

Equation (13) is the general spherical gravitational field

equation interms of the great metric tensor. The following

important facts can be drawn from equation (13):

1. It contains the
(

1 + 2
c2 f

)

term which is not found in

Newton’s gravitational field equation. The conse-

quence of this is that it predicts correction terms to the

gravitational field of all massive spherical bodies.

2. The time component of this equation predicts the ex-

istence of gravitational waves with velocity which is

equal to the speed of light in vacuo.

3 Special case: sinusoidally varying homogenous

spherical distribution of mass

Now, consider a sinusoidally varying homogenous spherical

distribution of mass. In this case, the mass varies in such a
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way that f is independent of the polar angle θ and the az-

imuthal angle φ, [15] such that equation (13) reduces to

4πGρ0(r, t) =
1

r2

∂

∂r

[(

1 +
2

c2
f

)

r2 ∂

∂r

]

f

−
1

c2

∂

∂t















(

1 +
2

c2
f

)−1
∂

∂t
f















.

(14)

Linearizing equation (14) we obtain:

f ′′ +
2

r
f ′ −

1

c2
f̈ = 4πGρ0. (15)

Suppose we have a dipole antenna which consists of two

spherical bodies where electrons are driven by an oscillator

[1]; then the movement of the electric charges driven by the

oscillator is equivalent to an exponential factor. We therefore

modify equation (15) in such a way that the proper mass den-

sity varies sinusoidally within a homogeneous spherical mass

distribution such that:

f ′′ +
2

r
f ′ −

1

c2
f̈ = 4πGρe eiωt. (16)

In order to solve equation (16) we seek a solution such that

f (r, t) = R(r) eiωt (17)

where R is the radius of the spherical mass distribution. Equa-

tion (15) will thus become

R′′(r) +
2

r
R′(r) +

1

c2
ω2R(r) = 4πGρe. (18)

Let

R(r) =
1

r
F(r),

then

R′ = −
1

r2
F(r),

and

R′′(r) =
1

r
F′′(r) −

2

r2
F′(r) +

2

r3
F(r).

It therefore follows that equation (18) becomes

1

r
F′′(r) +

ω2

c2r
F(r) = 4πGρe. (19)

Hence, the interior field equation for this distribution of mass

is given as

1

r
F′′(r) +

ω2

c2r
F(r) = 4πGρe ; r < R (20)

and the corresponding exterior field equation as:

1

r
F′′(r) +

ω2

c2r
F(r) = 0 ; r > R. (21)

Equation (21) is a simple harmonic function which can have

three solutions viz:

F(r) = Beikr, (22)

F(r) = D cos(kr), (23)

and

F(r) = E sin(kr). (24)

Taking the first and second derivatives of equation (22)

we have

F′(r) = ikB eikr

and

F′′(r) = −k2B eikr,

which can be substituted into (21) to yield

−k2B eikr +
ω2

c2
B eikr = 0, (25)

hence

k = ±
ω

c
. (26)

We thus state the complimentary solution as

F−c (r) = E sin

(

ω

c
r

)

; r > R (27)

F+c (r) = D cos

(

ω

c
r

)

; r < R. (28)

The particular solution for the interior field equation is

given by

1

r
F′′(r) +

ω2

c2r
F(r) = 4πGρe; r < R. (29)

Let F(r) = Ar, then F′(r) = A and F′′(r) = 0 and equa-

tion(29) yields

A =
4πGc2ρe

ω2
, (30)

and hence

F−p (r) =
4πGc2ρe

ω2
r. (31)

Equation (31) is thus the particular solution for the exte-

rior field equation. The general solution for the exterior field

is then given as

R+(r) =
D

r
cos

(

ω

c
r

)

4πGc2ρe

ω2
. (32)

Equation (17) can thus be fully expressed as

f +(r, t) =
D

r
cos

(

ω

c
r

)

cos(ωt) +
iD

r
cos

(

ω

c
r

)

sin(ωt) (33)

with independent solutions

f +(r, t) =
D

r
cos

(

ω

c
r

)

cos(ωt) (34)
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and

f +(r, t) =
D

r
cos

(

ω

c
r

)

sin(ωt). (35)

The two solutions (34) and (35) can be combined to yield

f +(r, t) =
1

2

D

r

[

cos

(

ω

(

r

c
+ t

))

+ cos

(

ω

(

r

c
− t

))]

. (36)

From equation (36) it is clear that the phase of the wave equa-

tion φ is given by

φ =
ωr

c
± ωt, (37)

hence
dr

dt
= c. (38)

4 Concluding remarks

In this paper we have shown [equation (36)] that in the limit of

linear terms, the general gravitational field equation predicts

gravitational waves with phase velocity which is equal to the

speed of light in empty space. These waves will not vary with

any angle, hence they will move along radial lines from in-

side the sphere outwards(radial waves). A sinusoidally vary-

ing mass thus radiates spherical gravitational waves. The

obtained results gives similarlar predictions as in [1, 16] in

the limit c−2 though in the limit c0 [16] predicts gravitational

waves with imaginary phase.
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Gravitational Shielding as Viewed in the Planck Vacuum Theory

William C. Daywitt

National Institute for Standards and Technology (retired), Boulder, Colorado. E-mail: wcdaywitt@me.com

This paper argues that gravitational shielding does not exist, because gravitational

waves travel within the vacuum state rather than free space.

1 Introduction

The concept of gravitational shielding has been around for a

long time and it would incorrectly assert, for example, that

when the earth lines up between the moon and the sun, the

moon-sun gravitational attraction is reduced. The fact that

this shielding (by the earth in this case) does not occur is one

of the great mysteries in the history of physics. The theory of

the Planck vacuum (PV) state, however, offers an easy expla-

nation for the absence of such shielding.

As a counter example to the gravitational force, consider

the free space Coulomb force (e2/r2) between two charges e

separated by the distance r. If a shield of any type whatsoever

is placed between the charges, the resulting force is changed

dramatically. Indeed, if a large enough grounded screen were

inserted between the charges, the force would vanish entirely.

2 Newton Force

Now consider the gravitational force between two free space

masses m in the center-of-mass (CoM) coordinate frame de-

fined by mr1 + mr2 = 0 (with −r1 = r2 = r):

Fgr(r) = −
m2G

(2r)2
= −

m2c4

4r2(c4/G)
= −

(mc2/2r)2

(c4/G)
(1)

= −
(mc2/2r)2

(m∗c2/r∗)
= −n2

2r

m∗c
2

r∗
(2)

where the n-ratio

n2r =
mc2/2r

m∗c2/r∗
< 1 (3)

is the normalized force either mass m exerts on the PV at the

position of the opposite mass, where the masses are centered

at ±r from the origin of the CoM coordinates. The normaliza-

tion force m∗c
2/r∗ is the maximum force the PV can sustain

before breaking down. This force also normalizes the Ein-

stein field equation [1, eqn.15].

The three ratios in (1) are the force equation expressed

in terms of Newton’s secondary constant G, an experimental

constant that makes (1) agree with the experimental data. As

such, however, G hides a significant amount of physics. The

substitution c4/G = m∗c
2/r∗ [1, eqn.5] replaces G by a com-

bination of primary (fundamental) constants that lead to (2)

and the following nonrelativistic explanation of the gravita-

tional force.

The gravitational field g(r) of either mass can be defined

in the usual manner and yields

g(r) =
Fgr(r)

m
= −

c2n2r

2r
(4)

which is again centered at the radii ±r from the CoM origin,

where r is the coordinate radius common to both free space

and its underlying PV state.

From (2) and (4) it is easy to carry these calculations

a step further. Newton’s second law applied to either mass

gives the acceleration

r̈ =
dṙ

dt
= ṙ

dṙ

dr
= −

c2n2r

2r
= −

c2 · mc2

4 · m∗c2/r∗

1

r2
(5)

or

ṙdṙ = −
c2 · mc2

4 · m∗c2/r∗

dr

r2
(6)

of the masses. Integrating both sides of (6) from r0 to r leads

to
ṙ2 − ṙ2

0

2
=

c2n2r0

2

(

r0

r
− 1

)

(7)

where ṙ0 is the velocity of either mass at r = r0, and r ≤ r0.

Without changing the final conclusions, it is convenient to set

ṙ0 = 0 — i.e., to assume that the masses are released from

rest at ±r0. Then (7) yields their relative velocities toward the

origin
ṙ

c
= −

[

n2r0

(

r0

r
− 1

)]1/2

(8)

where

n2r0 =
mc2/2r0

m∗c2/r∗
(9)

and [· · ·] in (8) is the normalized force either mass exerts on

the PV at the position of the other mass.

3 Conclusions

Three important observations are evident from the previous

calculations: equations (2), (4), and (8) are all expressed in

terms of PV parameters, implying that the vacuum state me-

diates the dynamics of the gravitational force between free

space masses. A corollary to this conclusion is that gravi-

tational waves, the carrier of the gravitational force, do not

propagate in free space — they propagate within the degener-

ate PV state. Thus free-space gravitational shielding does not

change the gravitational force between free space masses.
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Finally, the fact that the PV is a degenerate state implies

that the Planck particles making up the PV quasi-continuum

cannot execute macroscopic (as opposed to microscopic) mo-

tions. Thus the gravitational waves that propagate through the

PV state must be percussion-like waves, similar to the waves

traveling on the surface of a kettle drum.
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