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LETTERS TO PROGRESS IN PHYSICS

Take Fifteen Minutes to Compute the Fine Structure Constant

Jacques Consiglio

52 Chemin de Labarthe, 31600 Labastidette, France

E-mail: Jacques.Consiglio@gmail.com

This note complements the calculus of the fine structure constant provided in [2] in

agreement with the theory of mass/resonances developed therein. It shows that the

value of α can be predicted from geometry using a) the assumption of integral reso-

nances, b) de Broglie’s thesis, and c) the Wheeler-Feynman absorber theory and its

time-symmetry; hence independently of precision measurement.

1 Introduction

Using Quantum Electro-Dynamics (QED), precise measure-

ment of the electron magnetic moment anomaly enables to

compute the value of the fine structure constant.

In this note, we show that the resulting value of α pulls

us back almost to square one, namely Bohr’s model and de

Broglie’s thesis, since the assumption of integral resonances

used in [2] and its use of the Wheeler-Feynman absorber the-

ory [5], [6] give the same result, straight from geometry.

2 The calculus

In order to complete the calculus, we shall need two assump-

tions used sequentially:

• All elementary particles are integral-number based res-

onances of physical currents. We uses the verb “to be”

in its full sense: there is nothing else to deal with.

• The Wheeler-Feynman absorber theory [5], [6], is close

to the right picture. The universe expands in a 4th spa-

tial dimension and we live at some sort of boundary

or membrane that expands spherically. Up and Down-

time currents exist making particles.

Now according to de Broglie [1] the phase coherence of

the wave gives the Bohr orbits. Second, consider the first orbit

and imagine the figure, a helicoid, in x, y, t. Considering

a system of unit where the Bohr radius is 1 in x, y, and its

Compton frequency is 1 on the time axis, the helix length is:

L2
h = 1372 + (2π)2.

According to the assumptions, this expression is the effect

of a resonance, but α is the coupling of the electron with

the field; therefore it is the amplitude and the geometry from

which Lh develops. Since α < 1, we necessarily have:

α← L−1
h .

But the electron makes one turn when the helix makes two

turns. With respect to the electron “being” a resonance, its

rotational path length must be reduced by half and we get a

resonance length:

L2
r ≈ 1372 + π2.

Now we need to take into account the wavelength h/p as part

of the electron resonance. According to de Broglie, its phase

velocity is V = c2/v, with v the electron velocity; here dis-

tances are inverted and velocity dependent. Its length around

the proton is then 1/274 (the electron phase repeats every 274

Compton periods). But when the wave makes one turn the

electron progresses; therefore the resonance makes 275 turns

when the electron resonance makes a full turn. The wave

misses 1 turn over 275, which gives a negative term:

L2
r ≈ 1372 + π2

−

1

275
.

Here the negative term is not squared. The explanation is a

little less trivial than the rest of the calculus. Denoting an the

radius of the nth Bohr orbit and λdn the associated de Broglie

wavelength, we have:

an = n2 a0; λdn = n λd0 .

Those quantities are physical. The round trip of the wave is

n λdn = n2 λd0 and corresponds to quantized angular momen-

tum; at the opposite, the same trip includes 137 n2 Compton

periods. Therefore a different treatment is needed for 137 and

1/275. The former is squared in (1) and associated to n2; then

since the latter is associated to n, it cannot be squared; other-

wise this expression would be orbit dependent in n. This is the

physical aspect, it means that on any Bohr orbit we can use a

system of units in the space dimensions where n2 a0 = 1, and

the de Broglie wavelength and its angle (its phase velocity)

defines the unit for V > c. We end-up with a system of units

which is entirely defined by de Broglie’s geometry, where all

quantities are defined by h or ~, and the electron mass.

Let us now use the second assumption. The field is time-

symmetrical for an observer which is fixed in time (this is

also the perspective of QED). Time symmetry implies that

the electron is composite of up and down-time currents: Up-

time = – e/2, down-time = +e/2. Those currents are cen-
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tered like the electron resonance (on the helix) and mani-

fest an electric charge which contribution (sign) depends on

their own sign and time-orientation. Their interaction gives

(– e/2)(+e/2) = – e2/4, which compares to − e2, the interac-

tion electron-proton.

We must apply the same reasoning to the wave; by sym-

metry it is also composed of two currents of opposite direc-

tions, but of identical charges, centered on the electron. Then

we just add 1/4 as follows:

L2
r = 1372 + π2

−

1

275

(

1 +
1

4

)

. (1)

Last we compute the inverse of this length to get α:

(1)→ L−1
r = 7.29 735 256 656 433 e−3. (2)

Compare with CODATA 2014:

α = 7.29 735 256 64 (12) e−3. (3)

The difference is on the last digit and 1/7th the uncertainty.

You can stop your chronometer.

3 Conclusions

The fine structure constant was computed from de Broglie’s

geometry under the following assumptions:

• The electron “is” an integral resonance,

• The existence of symmetrical currents, where we see

the signature of a resonant system,

• Asymmetry in currents between space and time, which

is implicit in the reasoning.

This result completes the calculus provided in [2] where

a logical origin of 137 is uncovered.

Interestingly, it was possible to predict this value of α

about 70 years ago pushing Wheeler-Feynman’s absorber the-

ory to its natural consequences in terms of time-symmetry,

since α ≈ 1/137 was known.

By the way, it also requires to use de Broglie’s geometry

in its full extent; not only the wavelength λd = h/p, but also

the phase velocity V = c2/v > c for which no experimental

verification exists. We showed that this velocity is consistent

with the current best estimate of α.

Last but not least, the coefficient 1/4 in (1) addresses the

wave compositeness; an aspect of importance, or rather a

possibility meaning the incompleteness of wave mechanics,

quantum mechanics and field theory.

Submitted on July 5, 2016 / Accepted on July 7, 2016
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Does the Velocity of Light Depend on the Source Movement?
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Instituto de Física del Plasma (INFIP). Facultad de Ciencias Exactas y Naturales. Buenos Aires, Argentina.

E-mail: bilbao@df.uba.ar

Data from spacecrafts tracking exhibit many anomalies that suggest the dependence of
the speed of electromagnetic radiation with the motion of its source. This dependence
is different from that predicted from emission theories that long ago have been demon-
strated to be wrong. By relating the velocity of light and the corresponding Doppler
effect with the velocity of the source at the time of detection, instead of the time of emis-
sion, it is possible to explain quantitatively and qualitatively the spacecraft anomalies.
Also, a formulation of electromagnetism compatible with this conception is possible
(and also compatible with the known electromagnetic phenomena). Under this theory
the influence of the velocity of the source in the speed of light is somewhat subtle in
many practical situations and probably went unnoticed (i.e. below the detection limit)
in other measurements.

1 Introduction

In these lines I intend to show that there exists consistent ev-
idence pointing to the need of revision and further study of
what seem at present a settled issue, namely the independence
of the speed of electromagnetic radiation on the motion of its
source.

The main point in the evidence is the range disagreement
during the Earth flyby of the spacecraft NEAR in 1998. Its
range was measured near the point of closest approach using
two radar stations, Millstone and Altair, of the Space Surveil-
lance Network, and compared with the trajectory obtained
from the Deep Space Network [1]. As for the range, the
two measurements should match within a meter-level accu-
racy (the resolution is 5 m for Millstone and 25 m for Altair),
but actual data showed a difference that varies linearly with
time (with different slopes for the two radar stations) up to a
maximum difference of about 1 km, i.e. more than 100 times
larger than the accuracy of the equipment used (see figure 10
of [1]). Further, when NEAR crossed the orbits of Global Po-
sitioning System (GPS) satellites, orbital radius 26,600 km,
the measured range difference was 650 m, that is, a time dif-
ference of 2 µs. Is it reasonable that any standard GPS re-
ceiver performs better than the Deep Space Network or the
Space Surveillance Network?

There has not been a complete explanation for the range
discrepancy. It is very difficult to find any physical reason
that may produce this anomaly, for any physical disturbance
of the path of the spacecraft should manifest equally in the
Deep Space Network and the Space Surveillance Network
data. Guruprasad [2] proposed an explanation that points to
a time lag in the Deep Space Network signals proportional
to the range, but the model is, at best, within 10% of the
measured data (i.e. larger than the instrumental error) and,
more important, it fails to explain an important feature, that
is, the different slope for the two radars. If we assume that

systems are working properly, then the measured range dif-
ference (time lag) could be due to different propagation time
of the employed signals.

Additional points in the evidence come from anomalies
related to the tracking of spacecrafts, present in both Doppler
and ranging data. The Pioneer anomaly [3] and the flyby
anomaly [4] refer to small residuals of the differences be-
tween measured and modeled Doppler frequencies of the ra-
dio signals emitted by the spacecrafts. Although these resid-
uals are very small (less than 1 Hz on GHz signals) the prob-
lem is that they follow a non-random pattern, indicating fail-
ures of the model. According to the temporal variation of
those residuals the Pioneer anomaly exhibits a main term,
an annual term, a diurnal term and a term that appears dur-
ing planetary encounters. It should be clarified that a few
years ago an explanation of the Pioneer anomaly was pub-
lished [5]. However, it is a very specific solution that applies
only to the main term of the Pioneer spacecraft anomaly, but
left unresolved many other anomalies, including those of the
spaceships Cassini, Ulysses and Galileo; the annual term; the
diurnal term; the increases of the anomaly during planetary
encounters; the flyby anomaly; and the possible link between
all them (it is hard to think that there are so many different
causes for the mentioned anomalies). For all this, I believe
that the issue can not be closed as it stands.

2 Range disagreement

As a matter of fact, the range difference between the Space
Surveillance Network and the Deep Space Network, δR, is
perfectly fitted with

δR (t) = −
R (t) · v (t)

c
, (1)

where R (t) is a vector range pointing from the spacecraft to
the radar, v (t) the spacecraft velocity relative to the radar,
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and c the speed of light. Figure 1 shows this fit and its com-
parison with measured data. The orbital and measured data
were taken from [1]. Although the exact location of the radar
stations are unknown to the author (approximate values are:
Millstone 42.6◦ N 71.43◦ W, and Altair 9.18◦ N 167.42◦ E),
the fit is statistically significant for both radar stations (p <

10−3) including the first outliers points. It reproduces the (al-
most) linear dependence with time during the measured in-
terval, and the two different slopes for Millstone and Altair
stations due to their different locations.
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Fig. 1: Range disagreement between the Space Surveillance Net-
work and the Deep Space Network, for 1998 NEAR flyby (Millstone
blue points, upper trace, and Altair red points, lower trace). Also the
fit (1) is plotted (full lines, Millstone in blue and Altair in red). For
Millstone, the error bars refer to the uncertainties in the extraction
of the data from figure 10 of [1], rather than to its tracking error (5
m), while for Altair, the accuracy is 25 m.

Since range measurements are based on time-of-flight
techniques, the validity of (1) means that the electromagnetic
waves (microwave) of the Deep Space Network and the Space
Surveillance Network travel at different speeds. Specifically,
in the radar frame of reference, if the Space Surveillance Net-
work waves travel at c, then the Deep Space Network waves
travel at c plus the projection of the spacecraft velocity in the
direction of the beam, in sharp contrast with the Second Pos-
tulate of the Special Relativity Theory.

In view of the above result one may ask what is estab-
lished, at present, about the relation of the speed of elec-
tromagnetic radiation (light for short) to the motion of the
source. In order to elaborate this point the following ques-
tions are of relevance:

1. Are there simultaneous measurements of the speed of
light from different moving macroscopic sources (not
moving images) with different velocities?;

2. Since ballistic (emission) theories are ruled out (see,
for example, DeSitter [6,7], Brecher [8] and Alväger et
al [9]), how else could the speed of light depend on the
source movement?;

3. How is it possible that there is a first order difference
in v/c in spacecraft range measurements, while at the
same time there are many experiments on time dila-
tion that are consistent with Special Relativity Theory
to second order in v/c (see, for example, [10])?;

4. If the velocity of light depend on the velocity of the
source, why has this not been observed in other phe-
nomena in the past?

In answer to the previous questions, so far as the author is
aware, there is no known experimental work that simultane-
ously measures the speed of light from two different sources
(not images), or that simultaneously measures the speed of
light and that of its source. For example, in the work by
Alväger et al, [9] the speed of light is measured at a later time
(≈ 200 ns) than the emission time, and there is no measure-
ment of the speed of the source at the time of the detection of
the light.

Note that measurements involving moving images pro-
duce different results from those produced by mobile sources.
For example, under Special Relativity Theory, a moving
source is affected by time dilation while a moving image is
not. Therefore, to ensure the independence of the speed of
light from its source movement, it is essential to have two
sources with different movements.

Although controversial and beyond the scope of the this
note, time dilatation phenomena may be of different physi-
cal origin from first order terms, as it may be inferred from
the work of Schrödinger [11]. Thus, measurements of time
dilatation phenomena in accordance with Special Relativity
Theory, does not necessarily imply the independence of the
speed of light with the movement of the source.

The experiments mentioned above [6–9] only rule out bal-
listic theories in which radiation maintains the speed of the
source at the time of emission, but do not rule out other ideas,
like Faraday’s 1846 [12].

3 Faraday’s ray vibrations

In order to remove the ether, Faraday introduced the concept
of vibrating rays [12], in which an electric charge is con-
ceived as a center of force with attached “rays” that extend
to infinity. The rays move with their center, but without rotat-
ing. According to this view, the phenomenon of electromag-
netic radiation corresponds to the vibration of these “rays”,
that propagates at speed c relative to the rays (and the cen-
ter). That is, the radiation remains linked to the source even
after emitted. Today we could describe the interaction as a
kind of entanglement between the charge and the photon. A
framework for the electromagnetic phenomena according to
Faraday’s ideas was developed. It was called “Vibrating Rays
Theory” [13] in reference to Faraday’s “vibrating rays”.

Under Faraday’s idea, the velocity of radiation at a given
epoch will be equal to c plus the velocity of the source at
the same epoch, in contrast with ballistic theories in which

308 Luis Bilbao. Does the Velocity of Light Depend on the Source Movement?
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the emitted light retains the speed of the source at the emis-

sion epoch. In this sense the radiation is always linked to
the charge at every time after the emission. Consequently,
the measured Doppler Effect corresponds to the speed of the
source at the time of reception, as well.

Further, a difference between active and passive reflec-
tion is expected, since the latter is still related to the origi-
nal source according to Vibrating Rays Theory. The Deep
Space Network works with the so called active reflection (the
spacecraft re-emits in real time a signal in phase with the re-
ceived signal from Earth), while the Space Surveillance Net-
work works with passive radar reflection. In consequence, the
down-link signal from the approaching spacecraft will prop-
agate faster that the reflected one. Using the available orbital
data [1] we found that, under Vibrating Rays Theory, the the-
oretical time-of-flight difference between active and passive
reflection gives exactly the same range disagreement as (1),
see Part 6 of [13].

4 Pioneer anomaly

The Pioneer anomaly refers to the fact that the received
Doppler frequency differs from the modeled one by a blue
shift that varies almost linearly with time, and whose deriva-
tive is

d(∆ f )

dt
≈ −6 × 10−9 Hz/s, (2)

where ∆ f is the frequency difference between the measured
and the modeled values.

In the case of a source with variable speed, the main dif-
ference in Doppler (to first order) between Vibrating Rays
Theory and Special Relativity Theory, is that Special Rela-
tivity Theory relates to the speed of the source at the time of
emission, while Vibrating Rays Theory relates to the speed of
the source at the time of reception. Precisely, this difference
seems to be present in the spacecraft anomalies.

If Vibrating Rays Theory is valid, it automatically invali-
dates all calculations and data analysis of spacecraft tracking
which are based on Special Relativity Theory. So, it is not
easy to make a direct comparison between the expected re-
sults from Special Relativity Theory and Vibrating Rays The-
ory. However, to see whether or not the main features pre-
dicted by Vibrating Rays Theory are present in the measure-
ments, we can evaluate the residual by simulating a measured
Doppler signal assuming that light propagates in accordance
to Vibrating Rays Theory but analyzed according to Special
Relativity Theory.

Calling t2 the emission time of the downlink signal from
the spacecraft toward Earth and t3 the reception time at Earth,
the first order difference of the Doppler shift between Vibrat-
ing Rays Theory and Special Relativity Theory is (see [13]
Part 4)

∆ f = fVRT − fS RT ≈ f0r̂ ·
v2 − v3

c
, (3)

where v2 and v3 represent the velocities of the spacecraft at
the corresponding epoch, r̂ is the unit vector from the space-
ship to the antenna, and f0 the proper frequency of the sig-
nal. That is, the velocity used in the Special Relativity The-
ory formula is that at the time of emission while according
to Vibrating Rays Theory is that corresponding at the time of
reception.

Since the spacecraft slows down as it moves away, then
r̂ · (v2 − v3) > 0, therefore the difference corresponds to a
small blue shift mounted over the large red shift, as it has been
observed in the Pioneer anomaly. It should be noted that this
difference appears because of the active reflection produced
by the on-board transmitter. In case of a passive reflection (for
example, by means of a mirror) the above difference vanishes.

4.1 Main term

An estimate of the order of magnitude of 3 is obtained by us-
ing that the variation of the velocity of the spacecraft between
the time of emission and reception is approximately

v2 − v3 ≈ a (t2 − t3) , (4)

where a is a mean acceleration during the down-link interval.
An estimate for the duration of the down-link is simply

t3 − t2 ≈
r

c
, (5)

where r is a mean position of the spaceship between t2 and t3,
therefore

∆ f ≈ − f0
r · a

c2
.

Since

a = −
GM

r2
r̂,

where G is the gravitational constant, and M the mass of the
Sun, then, the time derivative becomes

d (∆ f )

dt
≈ f0

v · a

c2
. (6)

If the difference (6) is interpreted as an anomalous accel-
eration we get

aa ≈
v

c
a, (7)

that is, the so-called anomalous acceleration is v/c times the
actual acceleration of the spacecraft.

Using data from HORIZONS Web-Interface [14] for the
spacecraft ephemeris, some characteristic value for aa can be
obtained. Consider the anomalous acceleration detected at
the shortest distance of the Cassini spacecraft during solar
conjunction in June, 2002. The spacecraft was at a distance
of 7.42 AU moving at a speed of 5.76 km/s. The anomalous
acceleration given by (7) is aa ≈ 2×10−9 m/s2 of the same or-
der of the measured one (≈ 2.7×10−9 m/s2 ). Also, the closest
distance at which the Pioneer anomaly has been detected was
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about 20 AU. the anomalous acceleration predicted by (7) at
that distance is aa ≈ 7.3× 10−10 m/s2 of the same order as the
measured one.

The “anomaly” given by (7) decreases in time in a way
that has not been observed. Note, however, that according
to Markwardt [15] the expected frequency at the receiver in-
cludes an additional Doppler effect caused by small effective
path length changes, given by

∆ fpath = −
2 f0

c

dl

dt
, (8)

where dl/dt is the rate of change of effective photon trajec-
tory path length along the line of sight. This is a first order
effect that can partially hide the difference between Special
Relativity Theory and Vibrating Rays Theory. Therefore, a
more careful analysis should take into account the additional
contribution of (8) in (7).

Further, other first order effects may appear, for exam-
ple, by a slight rotation of the orbital plane. Due to spacecraft
maneuvers or random perturbations the orbital parameters are
obtained by periodically fitting the measurements with theo-
retical orbits. Therefore there is no straightforward way to
weight the importance of these fittings in (7). In other words,
data acquisition and analysis may hide part of the Vibrating
Rays Theory signature.

4.2 Annual term

Apart from the residual referred to in the preceding paragraph
there is also an annual term. According to Anderson et al [16]
the problem is due to modeling errors of the parameters that
determine the spacecraft orientation with respect to the refer-
ence system. Anyway, Levy et al [17] claim that errors such
as errors in the Earth ephemeris, the orientation of the Earth
spin axis or the stations coordinates are strongly constrained
by other observational methods and it seems difficult to mod-
ify them sufficiently to explain the periodic anomaly.

The advantage of studying the annual term over the main
term, is that the former is less sensitive to the first order cor-
rection mentioned above, and, for the case of Pioneer, also
to the thermal propulsion correction [5]. Clearly, the Earth
orbital position does not modify those terms.

As before, the annual term is explained by the difference
between the velocity of the spacecraft at the time of emis-
sion and that at the moment of detection, which depends on
whether the spaceship is in opposition or in conjunction rel-
ative to the Sun. When the spacecraft is in conjunction, light
takes longer to get back to Earth than in opposition. The time
difference between emission and reception will be increased
by the time the light takes in crossing the Earth orbit. Specif-
ically, taking into account the delay due to the position of
Earth in its orbit, in opposition equation (5) should be written
as

t3 − t2 ≈
r + Rorb

c
, (9)

while in conjunction it would be

t3 − t2 ≈
r − Rorb

c
, (10)

where Rorb is the mean orbital radius of Earth.
Therefore, an estimate of the magnitude of the amplitude

of the annual term is

∆ f ≈ f0
aRorb

c2
. (11)

For the case of Pioneer 10 at 40 AU we get

∆ f ≈ 14 mHz, (12)

and at 69 AU
∆ f ≈ 4.8 mHz, (13)

in good agreement with the observed values.
Using data from HORIZONS Web-Interface [14] a more

complete analysis of the time variation of ∆ f has be per-
formed. The residual (that is, simulated Doppler using Vi-
brating Rays Theory but interpreted under Special Relativ-
ity Theory) during 12 years time span is plotted in figure 2.
Also the dumped sine best fit of the 50 days average mea-
sured by Turyshev et al [18] is plotted showing an excellent
agreement between measurements and Vibrating Rays The-
ory prediction. The negative peaks (i.e., maximum anoma-
lous acceleration) occur during conjunction when the Earth
is further apart from the spacecraft, and positive peaks dur-
ing opposition. Also, the amplitude is larger at the beginning
of the plotted interval and decreases with time, as it was ob-
served [4, 18].

5 Flyby anomaly

Like the Pioneer anomaly, the Earth flyby anomaly can be as-
sociated to a modeling problem, in the sense that relativistic
Doppler includes terms that are absent in the measured sig-
nals. The empirical equation of the flyby anomaly is given
by Anderson et al [4], which, notably, can be derived using
Vibrating Rays Theory, as is done in Part 6 of [13].

Consider the case of NEAR tracked by 3 antennas lo-
cated in USA, Spain, and Australia (a full description of the
tracking system is found in a series of monographs of the Jet
Propulsion Laboratory [19]). The receiving antenna was cho-
sen as that having a minimum angle between the spacecraft
and the local zenith.

Using available orbital data, a simulated Doppler signal
has been calculated using Vibrating Rays Theory. Thus, the
simulated residual is obtained by subtracting the theoretical
Special Relativity Theory Doppler, from the Vibrating Rays
Theory calculation. We observed, however, that the term that
contains the velocity of the antennas, that is

d =
γu3

γu1

1 − r̂23 · u3/c

1 − r̂12 · u1/c
, (14)
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Fig. 2: Annual variation of the frequency difference between Vi-
brating Rays Theory and Special Relativity Theory (full line) and
anomalous dumped sine best fit of the 50 days average measured by
Turyshev et al [18] (dashed line), for Pioneer 10 from January 1987
to January 1999.

is not enough to completely remove the first order (in u/c)
Earth signature (u is the velocity of the antenna, 1 refers to
the emission epoch and 3 to the reception epoch, as in [13]
Part 4).

This is so because the velocity of the antennas is not uni-
form and the evaluation of the emission time is different for
Vibrating Rays Theory and Special Relativity Theory. Then,
a small first order term remains. Anyway, since orbital param-
eters are obtained by periodically fitting the measurements to
theoretical orbits, thus a similar procedure is needed for Vi-
brating Rays Theory. Curiously, by doing so, the first order
term is removed. The only difference between orbits adjusted
by Special Relativity Theory and Vibrating Rays Theory is a
slight rotation of the orbit plane, as mentioned above. Note
that in the case of range disagreement (discussed above) two
different orbital adjustment would be needed by the Deep
Space Network and the Space Surveillance Network due to
the different propagation speed. In consequence, it will be
impossible to fit a simultaneous measurement, as it seems to
happen with the range disagreement.

The final result shows that each antenna produces a sinu-
soidal residual with a phase shift at the moment of maximum
approach. Therefore, if we fit the data with the pre-encounter
sinusoid a post-encounter residual remains and vice versa.

In figure 3 are simultaneously plotted the result of fitting
the residual by pre-encounter data (right half in red, corre-
sponding to figure 2a of [4]) and by post-encounter data (left
half in blue, corresponding to figure 2b of [4]).

Note that the simulated plots are remarkably similar to the
reported ones, including the amplitude and phase (i.e., min-
ima and maxima) of the corresponding antenna. The fitting of
post-encounter data (blue) can be improved by appropriately
setting the exact switching times of the antennas (which are
unknown to the author). The flyby Doppler residual exhibits
a clean signature of the Vibrating Rays Theory.
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Fig. 3: Fitting the pre- (right half, in red) and post-encounter (left
half, in blue) X-band Doppler data residual, for the NEAR flyby
under an ideal hyperbolic orbit. Solid lines simulated according to
Vibrating Rays Theory. Crosses, actual data extracted from refer-
ence [4].

6 Conclusions

In this work I have presented observational evidence favoring
a dependence of the speed of light on that of the source, in the
manner implied in Faraday’s ideas of “vibrating rays”.

It is remarkable and very suggestive that, as derived from
Faraday’s thoughts, simply by relating the velocity of light
and the corresponding Doppler effect with the velocity of the
source at the time of detection, is enough to quantitatively and
qualitatively explain a variety of spacecraft anomalies.

Also, it is worth mentioning that a formulation of elec-
tromagnetism compatible with Faraday’s conception is pos-
sible, as shown in [13] Part 8, which is also compatible with
the known electromagnetic phenomena. The most remark-
able fact of this new formalism is the simultaneous presence
of instantaneous (static terms) and delayed (radiative terms)
interactions (i.e., local and nonlocal phenomena in the same
interaction).

Finally, under Vibrating Rays Theory the manifestation of
the movement of the source in the speed of light is more sub-
tle than the naive c+kv hypothesis (k is a constant, 0 ≤ k ≤ 1)
usually used to test their dependence [8]. Thus, it is also of
fundamental importance the fact that, from the experimental
point of view, it is very difficult to detect differences between
Vibrating Rays Theory and Special Relativity Theory, as dis-
cussed in [13], which is also manifest in the smallness of the
measured anomalies, and in the non clear manifestation of the
effect in usual experiments and observations. For example, it
produces a negligible effect on satellite positioning systems,
see Part 7 of [13].

I am aware of how counterintuitive these conceptions are
to the modern scientist, but also believe that, given the above
evidence, a conscientious experimental research is needed to
settle the question of the dependence of the speed of light on
that of its source as predicted by Vibrating Rays Theory, and
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that has been observed during the 1998 NEAR flyby. As a
closure, I recall Fox’s words regarding the possibility of con-
ducting an experiment on the propagation of light relative to
the motion of the source: “Nevertheless if one balances the

overwhelming odds against such an experiment yielding any-

thing new against the overwhelming importance of the point

to be tested, he may conclude that the experiment should be

performed” [20].
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Editorial Comment

This paper plays an importance in the understanding of the physical observ-
able velocity of light that differs from the world-invariant in the General The-
ory of Relativity.

Defining physical observable quantities in the General Theory of Rel-
ativity is not a trivial problem. This is because we are looking at objects
in a four-dimensional space-time, and we have to determine which compo-
nents of these four-dimensional tensor quantities are physically observable.
A complete mathematical theory for calculating physically observable quan-
tities in the four-dimensional space (space-time) of General Relativity was
introduced in 1944 by Abraham Zelmanov, and is known as the theory of

chronometric invariants∗. Landau and Lifshitz in §84 of their The Classi-

cal Theory of Fields also introduced physically observable time and observ-
able three-dimensional intervals similar to Zelmanov. But they limited them-
selves only to this particular case, while only Zelmanov arrived at the versa-
tile mathematical theory. A compendium of Zelmanov’s theory of physical
observable quantities can also be found in the books†.

In short, physically observable are the projections of four-dimensional
quantities onto the time line and the three-dimensional spatial section of the
observer, which can be non-uniform, deformed, curved and rotating. These
projections are calculated through the special projecting operators which take
all the aforementioned factors into account. In particular, the physical ob-
servable velocity of light differs from the world-invariant, and is depended
on the gravitational potential and the rotation velocity of the observer’s space.
In ultimate physical conditions, as is shown in Chapter 5 of Particles Here

and Beyond the Mirror†, the observable velocity of light can even become
zero, that is verified by the frozen light experiment (Lene Hau, 2001).

Even more. In a physical space (space-time metric) wherein is a shift at
one of the spatial directions (that means a spatial anisotropy), the observable
velocity of light is depended on the signal source’s velocity at this preferred
direction. We drafted such a space-time metric in the last decade.

Einstein’s postulates have now only a historical meaning. Once Ein-
stein moved his theory on the mathematical basis of Riemannian geometry,
he found that all the postulates are the manifestations of geometry of Rie-
mannian spaces. It is as well true about the world-invariant of the velocity
of light. In a space, which is free of gravitation, is uniform, non-deformed,
and non-rotating, the physical observable velocity of light coincides with the
world-invariant. However in a real physical space it does not.

For this reason the experimental compendium and the analysis presented
in Bilbao’s paper will maybe give a new fresh stream in search for the further
theoretical predictions of the General Theory of Relativity.

Dmitri Rabounski, Editor-in-Chief

Larissa Borissova, Assoc. Editor
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hoboth (NM), 2006. Zelmanov A. Chronometric invariants and accompany-
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†Borissova L. and Rabounski D. Fields, Vacuum, and the Mirror Uni-

verse. 2nd ed., Svenska fysikarkivet, Stockholm, 2009. Rabounski D. and
Borissova L. Particles Here and Beyond the Mirror. 3rd ed., American Re-
search Press, Rehoboth (NM), 2012.
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We assume here a slightly varying cosmological term which readily induces a perma-
nent background field filling the physical vacuum. A precise form of the variable cos-
mological term is introduced containing an infinitesimal Killing vector which accounts
for the space-time variation of this term. As a result the term can be added to the Ein-
stein Lagrangian without affecting the varied action δS . As a result, we showed in an
earlier publications that the permanent background field filling the vaccum is excited in
the vicinity of matter which precisely corresponds to its gravitational field classically
described by a pseudo-tensor. With this preparation, the global energy-momentum ten-
sor of matter and gravity field is no longer a pseudo-tensor and is formally conserved
like the Einstein tensor. In the excited state, this antisymmetric tensor can be con-
veniently symmetrized by applying the Belinfante procedure which automatically self
excludes far from matter since the background field tensor is naturally symmetric.

Introduction

The substance of this study is inspired by the following con-
siderations. In the framework of the Theory of General Rel-
ativity (GR), the Einstein tensor exhibits a conceptually con-
served property, while any corresponding stress-energy tensor
does not, which leaves the theory with a major inconsistency.
When pure matter is the source, a so-called “pseudo-tensor”
describing its gravitational field is introduced so that the four-
momentum of both matter and its gravity field is conserved
[1]. Unfortunately in this approach, the gravitational field
maybe transformed away at any point and by essence, its
pseudo-tensor cannot appear in the Einstein’s field equations,
as it should be.

We will tackle the problem in another way : Restricting
our study to neutral massive flow, we proceed as follows. We
introduce a space-time variable term that supersedes the so-
called cosmological term Λgab in the Einstein’s field equa-
tions [2]. Under this latter assumption, we formally show that
the gravity field of a massive source is no longer described by
a vanishing pseudo-tensor, but it is represented by a true ten-
sor which can explicitly appear with the bare matter tensor
together with another specific field, on the right hand side of
the Einstein’s field equations. Inspection also shows that this
global stress-energy tensor now complies with the intrinsic
conservation property of the Einstein tensor as it should be.
As a result, the physical vacuum is here filled with a homoge-
neous vacuum background field which is always present in the
so-called Einstein’s “source free” equations and whose tensor
exhibits a conserved property. Our theory leads to admit that
matter causes the surrounding background field to produce
its gravitational field which decreases asymptotically to the
level of this vacuum field. Naturally, since we will deal with
energy-momentum canonical field tensors which are not sym-
metric, the total angular momentum of the isolated system is
not conserved. In this case, it is always possible to apply the

symmetrizing procedure to these tensors according to J. Be-
linfante [3]. In the absence of matter, the inferred Belinfante
tensor reduces to the symmetric background field tensor as it
should be.

Notations

Space-time Latin indices run from a = b: 0, 1, 2, 3, while
spatial Greek indices run from α = β: 1, 2, 3. The space-time
signature is −2. In the present text, κ is Einstein’s constant
4πG/c4, where G is Newton’s gravitational constant.

1 The field equations in General Relativity

1.1 The problem of the conserved gravity tensor

The General Theory of Relativity requires a 4-dimensional
pseudo-Riemannian manifold. A Riemannian manifold is
characterized by the line element ds2 = gab dxadxb. It is well
known that by varying the action S = LEd4x with respect to
the metric tensor gab with the Lagrangian density given by

LE =
√−g gab

[{
e

ab

} {
d

de

}
−

{
d

ae

} {
e

bd

}]
, (1.1)

g = det ∥ gab ∥. (1.2)

Also one infers the symmetric Einstein tensor

Gab = Rab −
1
2
gab R , (1.3)

where

Rbc = ∂a

{
a

bc

}
− ∂c

{
a

ba

}
−

{
d

bc

} {
a

da

}
−

{
d

ba

} {
a

dc

}
(1.4)

is the Ricci tensor with its contraction R, the curvature scalar
(the

{
e

ab

}
denote the Christoffel symbols of the second kind).

The 10 source free field equations are

Gab = 0 . (1.5)
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The second rank Einstein tensor Gab is symmetric and is only
function of the metric tensor components gab and their first
and second order derivatives. The relations

∇a Ga
b = 0 (1.6)

are the conservation identities provided that the tensor Gab

has the form [4]

Gab = k
[

Rab −
1
2
gab (R + 2Λ)

]
, (1.7)

where k is a constant, which is here assumed to be 1, while Λ
is usually named the cosmological constant.

Einstein’s field equations for a source free field are

Gab = Rab −
1
2
gab R − Λgab = 0 . (1.8)

In the case where the field source is present, the field equa-
tions become

Gab = Rab −
1
2
gab R − Λgab = κTab , (1.8 bis)

where Tab is the energy-momentum tensor of the source.
However, unlike the Einstein tensor Gab which is concep-

tually conserved, the conditions

∇a T a
b = 0 (1.9)

are never satisfied in a general coordinates system [5]. There-
fore, the Einstein tensor Gab which intrinsically obeys a con-
servation condition inferred from the Bianchi’s identities, is
generally related with a tensor Tab which obviously fails to
satisfy the same requirement.

Hence, we are faced here with a major inconsistency in
GR which can be removed in the case of a neutral massive
source upon a small constraint.

1.2 The tensor density representation

We first set
g

ab =
√−g gab (1.10)

thus the Einstein tensor density is

G
ab =

√−g Gab , (1.10 bis)

G
c
a =
√−g Gc

a , (1.10 ter)

R
ab =

√−g Rab . (1.11)

In the density notations, the field equations with a source
(1.8) will read

G
ab = Rab − 1

2
gab
R − √−g gabΛ = κTab , (1.12)

where Tab =
√−g T ab.

2 The new approach on gravity

2.1 The canonical gravity pseudo-tensor

Let us consider the energy momentum tensor for neutral mat-
ter density ρ

Tab = ρ c2uaub (2.1)

as the right hand side of the standard field equations

Gab = Rab −
1
2
gab R = κ Tab . (2.2)

The conservation condition for this tensor are written

∇a T a
b =
√−g ∂aT a

b −
1
2

Tac∂b gac = 0 (2.3)

with the tensor density

T
a
b =
√−g T a

b . (2.4)

However, across a given hypersurface dS b, the integral

Pa =
1
c

∫
T ab √−g dS b (2.5)

is conserved only if [6]

∂a T
a
b = 0 . (2.6)

This problem can be cured only if the metric admits a
Killing vector field [7]. If this is not so, we write (2.3) for the
bare matter tensor density

∂a(Ta
b)matter =

1
2

(Tcd)matter ∂b gcd . (2.7)

Inspection then shows that

Ril dgil =
√−g

[
−Rie +

1
2
gieR

]
dgie =

= − κ (Tie)matter dgie . (2.8)

Taking now into account the Lagrangian formulation for
Ril which is

Ril =
dLE

gil
= ∂k

[
∂LE

∂(∂k g
il)

]
− dLE

∂ gil
, (2.9)

we obtain

− κ (Til)matter dgil =

{
∂k

[
∂LE

∂ (∂k g
il)

]
− ∂LE

∂gil

}
dgil =

= ∂k

[
∂LE dgil

∂ (∂k g
il)

]
− dLE

or

− κ (Til)matter ∂m gil = ∂k

[
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm LE

]
=

= 2 κ ∂k(tkm)field , (2.10)
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where (tkm)field denotes the field tensor density extracted from

2 κ (tkm)field =
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm LE (2.11)

so that we have the explicit canonical form

(tkm)field =
1

2κ

{
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm LE

}
(2.12)

where

∂k(Tk
i )matter =

1
2

(Tek)matter ∂k gei = −∂k(tki )field

that is, the required conservation relation is

∂k

[
(Tk

i )matter + (tki )field

]
= 0 . (2.13)

Looking back of the deduction, (2.12) defines the canon-
ical gravity pseudo-tensor density of matter

(tkm)pseudogravity =
1

2κ

{
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm LE

}
. (2.14)

Expressed with the explicit form of the Lagrangian den-
sity LE (1.1), (2.14) can be written in the form

(tkm)pseudogravity =

=
1

2κ

({
k

il

}
∂m g

il −
{
i

il

}
∂m g

lk − δkm LE

)
. (2.15)

This is the mixed Einstein-Dirac pseudo-tensor density
[8] which is not symmetric on k and m, and therefore is not
suitable for basing a definition of angular momentum on.

Thus, our aim is to look for:

• A true tensor;
• A symmetric tensor.

2.2 The new canonical tensor

In the density notations, the field equations with a massive
source (1.8 bis) can be re-written as

G
ab = Rab − 1

2
g

ab
R − gab ζ = κ (Tab)matter , (2.16)

where in place of the constant cosmological term Λ
√−g, we

have introduced a scalar density denoted as

ζ = Ξ
√−g . (2.17)

Unlike Λ, the scalar Ξ is slightly space-time variable and
can be regarded as a Lagrangian characterizing a specific vac-
uum background field.

We will choose the variation of Ξ as follows

Ξ = ∇a κ
a, (2.17 bis)

where κa is a Killing vector. Hence

ζ =
√−g ∇a κ

a. (2.17 ter)

We will first write the field equations with a massive
source together with its gravity tensor density

G
ab = Rab − 1

2
gab
R = κ

[
(Tab)matter + (tab)gravity

]
(2.18)

where (tab)gravity is related to ζ as

G
ab = Rab − 1

2
gab
R = κ

[
(Tab)matter +

gabζ

2κ

]
. (2.19)

Re-instating the term ζ accordingly, the gravitational field
tensor density now reads

(tkm)gravity =
1

2κ

{
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm (LE − ζ)

}
. (2.20)

A first inspection shows that ζ represents the Lagrangian
density of the background field, therefore the modified field
equations (2.19) should be derived from an Einstein Lagran-
gian density different from LE (1.1) and which includes ζ.

By choosing the form (2.17 ter), we check that

ζ =
√−g ∇a κ

a = ∂a

(√−g κa) .
Now, if we write the new action as

SM =

∫
LM d4x =

∫
LE d4x +

∫
∂a

(√−g κa) d4x

due to Gauss’ theorem we see that the last integral can be
transformed in an integral extended to an hyperfurface which
does not contribute in the variation of SM and

δ

∫
LM d4x = δ

∫
LE d4x .

Therefore, it is legitimate to maintain (tkm)gravity as per (2.20).
The presence of the scalar density ζ characterizing the

background field is here of central importance, as it means
that (tkm)gravity can never be zero in contrast to the classical
theory where the gravitational field is only described by an
awkward pseudo-tensor.

The quantity (tkm)gravity constitutes thus a true tensor den-
sity describing the gravity field attached to the neighbouring
matter.

It is then easy to show that we have the conserved quantity

∂a

[
(Tb

a)matter + (tba)gravity

]
= 0 . (2.21)

In this picture and examining (2.20), we clearly see that
the gravitational field of matter appears as an excited state
of the homogeneous background energy field which perma-
nently fills the physical vacuum.
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Far from its matter source, the field sharply decreases
down to the level of the background field described by the
tensor density (tab)background field. Therefore the “source free”
field equations should always retain a non-zero right hand
side according to

G
ab = Rab − 1

2
gab
R = κ (tab)background field (2.22)

which are the equivalent of (1.8)

G
ab = Rab − 1

2
gab
R = κ

gab ζ

2κ
. (2.23)

In this case, the conservation law applied to the right hand
side of the tensor density field equations is straightforward

∂a(tba)background field = ∂a

(
ζ

2κ
δba

)
= 0 . (2.24)

2.3 Symmetrization of the gravity tensor

Let us consider the new gravity tensor expressed with the ex-
plicit form of the Lagrangian density LE (1.1):

(tkm)gravity =

=
1

2κ

[{
k

il

}
∂m g

il −
{
i

il

}
∂m g

lk − δkm (LE − ζ)
]
. (2.25)

Like we mentioned, this tensor includes the Einstein-
Dirac pseudo-tensor which is not symmetric. We can how-
ever follow the Belinfante procedure used to symmetrize the
canonical tensor (Θk

m)gravity that extracted from (tkm)gravity =√−g (Θk
m)gravity.

The total angular momentum is known to be the sum

Mcba = xb(Θca)gravity − xa(Θcb)gravity + S cab, (2.26)

where S cab is the contribution of the intrinsic angular mo-
mentum. By definition,

S cab = −S cba.

Local conservation of the total angular momentum, i.e.
∇c Mcab = 0, requires that

∇c S cab = (Θab)gravity − (Θba)gravity . (2.27)

We now add a tensor Υbca which is antisymmetric with
respect to the first two indices b, c:

(tca)gravity = (Θca)gravity + ∇b Υ
bca, (2.28)

where
Υcba =

1
2

(
S cba + S bab − S acb

)
. (2.29)

The (tab)gravity should be identified to the Belinfante-Rosenfeld
tensor [9] which is found to be symmetric.

In addition, the antisymmetry of Υcba guarantees that the
conservation law remains unchanged

∇a (Θa
b)gravity = ∇a (tab)gravity = 0 . (2.30)

Staying far distant from matter (unexcited state), we have

(Θab)gravity −→ (tab)background field , Υcba = 0 .

By essence, (tab)background field is thus symmetric.

Conclusions and outlook

Like we mentioned in an earlier publication, from the begin-
ning of General Relativity, the cosmological constant Λ has
played an unsavory rôle Einstein included this constant in his
theory, because he wanted to have a cosmological model of
the Universe which he wrongly thought static. Shortly after
the works published by De Sitter and Lemaı̂tre, he decided to
reject it.

But to-day, despite its smallness, a term like Λ seems
to be badly needed to explain some astronomical observa-
tions, all related with the basic dynamical expanding model
(Robertson-Walker et al.), even though its occurrence was
never clearly explained.

In the classical General Relativity, the space-time is ei-
ther filled with ponderomotive energy or devoid of source,
which is accepted as a physical vacuum. However, numer-
ous experiments predict that quantum vacuum is not “empty”
but permanently subjected to virtual particles exchanges of
energy.

Heisenberg’s Uncertainty Principle, which allows for this
process to take a place, has not been used in our demonstra-
tion, but it certainly plays a role in the variable property of
the cosmological background field which our study relied on.

To sum up all that above, we have eventually reached the
following important results:

• The gravitational energy can be represented by a true
tensor;
• Its nonlocalizability doesnot hold anymore;
• The existence of a vacuum field is inferred from GR,

which confirms the quantum predictions.

This last conclusion is noteworthy since our theory shows
that General Relativity and Quantum Physics have convergent
results.

Submitted on July 8, 2016 / Accepted on July 14, 2016
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On the Physical Nature of the de Broglie Wave
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Here is revisited de Broglie’s Wave Mechanics Theory of Double Solution wherein a

particle endowed with a variable proper mass is required to propagate within a hidden

medium in order to describe a physical scalar wave carrying its own associated mass.

Since the experiment that detected the wave applied to electrons, we extend the de

Broglie’s theory to the Dirac spinor, so that we can outline the physical reality of this

fermion field.

Introduction

Some hundred years ago, was established the famous rela-

tion E = hν later verified for the photon. On this basis,

in 1924, Louis de Broglie extended the wave dualism to all

massive particles. The predicted original wave function as-

sociated with a given particle was soon detected in 1927 by

Davisson and Germer in their famous experience on electrons

diffraction by a nickel crystal lattice [1]. The wave produc-

ing physical effects, was an overwhelming evidence of its true

existence.

Nevertheless, since the Brussels Solvay Symposium was

held in 1927, official physics interpretation prevailed which

considered quantum mechanics on the pure statistical grounds

and then leading to accept the notion of non-real wave

functions.

Although it is unquestionable that use of a probabilistic

wave and its generalization did lead to accurate prediction

and fruitful theories, de Broglie could never believe that ob-

servable physical phenomena follow from abstract mathemat-

ical wave functions. In his opinion, the wave function had to

remain an objective physical entity which is intimately re-

lated with its mass, rather than the subjective probabilistic

representation currently adopted in modern quantum physics.

Since the real wave was detected by means of electrons scat-

tering, we will here formally show that there is a strict identity

between its phase and the one of its associated wave which

therefore physically carries the particle. To make this iden-

tity possible, the electron proper mass must be variable ac-

cording to the Planck-Laue relation [2]. Within this frame,

de Broglie’s theory inferred a so-called “guidance formulae”

which forces the electron to be always in motion. However,

because of the stationary property of energy levels inside an

atom, a static electron is not compatible with its dynamic

guided state. de Broglie then postulated the existence of a hid-

den medium which permanently exchanges energy and mo-

mentum with the electron causing it to oscillate and then

avoiding a motionless location.

When I first met Louis de Broglie in summer 1966, this

issue was debated with a great deal of speculation. Today,

another explanation can be pushed forward.

Notations

Space-time Latin indices run from a = b: 0, 1, 2, 3, while

spatial Greek indices run from α = β: 1, 2, 3. The space-time

signature is −2.

1 Spinor field-electron duality

1.1 The origins of the Double Solution Theory

1.1.1 Basics of the wave mechanics

From standard optics, we first recall the definition of the clas-

sical wave with a frequency v

ψ = a(n) exp [i(νt − k · r)] (1.1)

which propagates along the direction of the unit vector n.

(Here k is the 3-wave vector, k · r = φ is the wave spatial

phase, n is the refractive index of the medium.)

Formula (1.1) is a solution of the classical propagation

equation

∆ψ =
1

w2

∂2ψ

c2∂t2
, (1.2)

where w is the wave phase velocity of the wave moving in

a dispersive medium whose refractive index is n(ν) generally

depending on the coordinates, and which is defined by

1

w
=

n(ν)

c
. (1.3)

This medium is assumed to be homogeneous and only de-

pends on the frequency ν. The (constant) phase φ of the

wave is progressing along the given direction with a sepa-

ration given by a distance λ = w/ν, called wavelength.

Consider now the superposition of a group of stationary

(monochromatic) waves having each a very close frequency

along the x-axis

ψ =

∫ ν0+∆ν

ν0−∆ν

a(n) exp
[

i(νt − φ(ν))
]

. (1.4)

Such a group of waves moves with a constant velocity called

group velocity vg according to the Rayleigh’s formula

1

vg
=

d(ν/v)

dν
=

1

ν0

∂nν

∂ν
. (1.5)
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The wave mechanics eventually shows that the group veloc-

ity vg of waves associated with a particle of rest mass m0,

coincides with the velocity of this particle whose momen-

tum along the x-axis (in vacuum) is given by the famous de

Broglie’s relation [3]

px = m0 vx =
h

λ
. (1.6)

We clearly note that there is an obvious first physical link

between the particle and its associated wave which will be

further substantiated.

1.1.2 Double nature of the wave function

Like we mentioned above, de Broglie was firmly convinced

that the wave associated with a massive particle should be a

real observable quantity, therefore, he introduced a true plane

wave of the usual form

ψ = a(xα) exp

[

i

h
φ(xα)

]

, (1.7)

which is connected to a probabilistic Ω-wave by the relation

Ω = f ψ , (1.8)

where f is a constant normalizing factor.

The original wave mechanics is thus complemented with

the Double Solution Theory [4], forΩ and ψ are two solutions

of the same propagation equation. The Ω-wave (normed in

the usual quantum machanical formalism), has the nature of a

subjective probability representation formulated by means of

the objective ψ-wave.

Defining ψ∗ as the complex conjugate of ψ, it is well

known that ψ2dV = ψψ∗ dV gives the absolute value of find-

ing the particle in the volume element dV so that the normal-

ization condition is adapted with f as

∫

V

ΩΩ∗dV = 1 . (1.8 bis)

This guarantees that the particle is present in the arbitrary vol-

ume V .

The Ω and ψ have the same phase φ, but the constant f

ought to be much larger than 1. Indeed, the current theory

which only uses the Ω-function assumes this quantity to be

spread out over the whole wave, i.e. spread out over a related

physical quantity b (e.g. energy of the particle) according to

∫

V

ΩΩ∗dV = b . (1.8 ter)

In the double solution theory however, b should be con-

centrated in a very small region occupied by the particle and

the integral of a2bdV taken over the ψ-wave in the volume V

is much smaller than b, which eventually leads to |b| ≫ 1.

2 Extension to the spinor

2.1 The real spinor wave

2.1.1 The Dirac operators and Dirac equation (reminder)

In order to write the Schrödinger equation under a relativistic

form, P. A. M. Dirac has defined a specific four-components

wave function ΨA called spinor [5] which must necessarily

apply to any spin-1/2 particles thus in our case, the electron.

(Capital Latin spinorial indices are: A = B = 1, 2, 3, 4.)

To this effect, he introduced a system of (4 × 4) non local

trace free matrices γa = (γa
A

B
). (In the classical theory, it is

customary to omit the spinorial indices.)

The matrices γ a can display the standard following com-

ponents [6]:

γ0 =





















0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0





















, γ1 =





















0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0





















,

γ2 =





















1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1





















, γ3 =





















0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0





















(2.1)

in order to satisfy the fundamental relation

γaγb + γbγa = −2ηab I , (2.2)

where ηab is the Minkowskian tensor, and I is the unit matrix.

Formula W = γa∂a is known as the Dirac operator where

the Planck constant h is absorbed in the ∂a.

For a free massive spin 1/2-field, the Dirac equation is

eventually written as

(W − m0c)Ψ = 0 , (2.3)

where the proper mass m0 is attributed to the associated spin

1/2-electron.

2.1.2 The normed spinor density

Since we are here considering a spin 1/2-fermion particle we

must look for a wave which is a real spinor Ψ that physically

carries the electron. From the classical Dirac theory, it is well

known that the probability density of the electron’s presence.

is the time component of the (real) Dirac current vector den-

sity [7]

(Ja)D = i ( ♯ΨγaΨ ) , (2.4)

where ♯Ψ is the Dirac adjoint spinor Ψ+γ0, and Ψ+ is the

(complex) conjugate transpose of Ψ. So, this density of the

electron reads

(J0)D = i ( ♯Ψγ0Ψ ) (2.4 bis)

which is easily shown to be always definite and positive.

Without the loss of generality, we could express Ψ under the

form of a plane wave spinor [8] as

Ψ = ̟(xa) exp

[

i

h
φ (xa)

]

,
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where the wave spinor amplitude ̟ and the phase φ are real

local functions. The Dirac spinor amplitudes ̟ could then

be tuned so as to possess the orthogonality and completeness

properties that guarantee that the plane waves Ψ have the ad-

equate normalization to delta functions [9]. However, only

a single spinor Ψ can be considered as a physical wave func-

tion, whereas we are left with 4-componentsΨA. Then, at first

glance, one might be tempted to consider the simple combi-

nation

Ψ = Ψ1 + Ψ2 + Ψ3 + Ψ4.

Unfortunately, theΨ-components are defined with respect

to a spinorial frame S (V4) distinct from the structural Min-

kowski space, which renders those physically irrelevant. In-

stead, we will follow another extremely simple way: since ρ

is here a real value, we have always the freedom to define a

scalar wave function Φ such that

ΦΦ∗ = ρ . (2.5)

Moreover, we assume that this wave function has the same

form as ψ (1.7)

Φ = ω (xa) exp

[

i

h
φ (xa)

]

. (2.6)

We state that Φ is the true wave function of the electron

which was actually detected in the Davisson and Germer ex-

periment upon a given set of gamma matrices γa, simply be-

cause it is derived from a real quantity which is itself inferred

from the 1/2-spinor definition (2.4 bis) as it should.

Thus, we apply the same hypothesis conjectured by de

Broglie (1.8 bis), and we are now able to write the normed

expression as
∫

V

ΞΞ∗ dV = 1 , (2.7)

where

Ξ = gΦ (2.7 bis)

is the subjective wave function and g is a normalizing factor

which satisfies (2.7).

In all the following text, Φ will be denoted as the “spinor

wave”.

2.1.3 Internal frequency of the electron

From (2.6), the energy and momentum of the electron located

at xa are

E = ∂tφ , (2.8)

P = Pa = −gradφ . (2.9)

In order to outline the physical nature of the Φ-spinor

wave, we start from the following consideration: in the frame-

work of the Special Theory of Relativity, the frequency of a

plane monochromatic wave is transformed as

ν =
ν0

√

1 − v2/c2
, v = va , (2.10)

whereas the clock’s frequency νc is transformed according to

νc = ν0

√

1 − v2/c2 . (2.11)

If an electron is assumed to contain a rest energy m0c2 = hν0,

it is likened to a small clock of frequency ν0, so that when

moving with velocity v, its frequency νc differs from that of

the wave which is here noted ν.

In this concept, our main task will consist of showing that

the electron is permanently in phase with its associated spinor

wave, thus justifying the true nature of Φ that physically car-

ries the electron

2.2 The physical nature of the spinor-electron duality

2.2.1 The Planck-Laue relation

We now postulate that the electron possesses a variable proper

mass m′
0

from which an important useful equation will be in-

ferred.

Let us first write the Lagrange function for an observer

who sees the electron of variable proper mass m′
0

moving at

the 3-velocity v

L = −m′0c2
√

1 − v2/c2 (2.12)

so that the least action principle applied to this Lagrangian be

still expressed by

δ

∫ t1

t0

Ldt = δ

∫ t1

t0

(

−m′0 c2
√

1 − v2/c2
)

dt = 0 . (2.13)

From this principle are inferred the equations of motion

d

dt

∂L

∂ẋa

=
∂L

∂xa

(2.14)

with ẋa = dxa/dt. It leads to

dP
′

dt
= −c2

√

1 − v2/c2 grad m′0 (2.15)

(since m′
0

is now variable).

Hence, by differentiating the well know relativistic rela-

tion
E′ 2

c2
= P

′ 2 + m′0
2 c2 (2.16)

we obtain
dE′

dt
= c2
√

1 − v2/c2
∂m′

0

∂t
. (2.17)

Combining (2.15) and (2.17) readily gives

dE′

dt
−

vdP
′

dt
= c2
√

1 − v2/c2
dm′

0

dt
(2.18)

where
dm′

0

dt
=
∂m′

0

∂t
+ grad m′0
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is the variation of the mass in the course of its motion.

On the other hand, we have

d
(

P
′
· v
)

dt
=

vdP
′

dt
+

m′
0
c2

√

1 − v2/c2

v

c

d v
c

dt
=

=
vdP

′

dt
− m′0 c2 d

dt

√

1 − v2/c2 (2.19)

or

d

dt

(

m′0

√

1 − v2/c2
)

=

= c2
√

1 − v2/c2
dm′

0

dt
+ m′0 c2 d

dt

√

1 − v2/c2 .

Hence, (2.18) can be written as

d

dt

(

E′ − v · P′ − m′0c2
√

1 − v2/c2
)

= 0 (2.20)

which is satisfied when the electron is at rest (that is v = 0,

E′
0
= m′

0
c2).

Therefore, we must have always

E′ =
m′

0
c2

√

1−v2/c2
= m′0c2

√

1−v2/c2 +
m′

0
v2

√

1−v2/c2
. (2.21)

This is known as the Planck-Laue formula which plays a

central rôle in our present theory.

2.2.2 Phase identity of the electron and its spinor wave

Let us first recall the relativistic form of the Doppler formula

ν0 = ν
1 − v/w
√

1 − v2/c2
, (2.22)

where ν0 is the wave’s frequency in the frame attached to the

electron, ν and w are respectively the frequency and phase

velocity of the spinor wave in a reference frame where this

electron has a velocity v.

With this formula, and taking the classical Planck relation

E = hν into account, we find

E = E0

1 − v2/c2

1 − v/w
. (2.23)

However, inspection shows that the usual equation

E =
E0

√

1 − v2/c2
(2.24)

holds only if

1 − v/w = 1 − v2/c2 (2.25)

that implies

wv = c2. (2.26)

This latter relation is satisfied provided we set up

E′ =
m′

0
c2

√

1 − v2/c2
, (2.27)

P
′ =

m′
0
v

√

1 − v2/c2
. (2.28)

A variable proper mass is then required to insure that the

electron as it moves, remains constantly in phase with that of

the associated spinor wave. To see this, let us first multiply

the Planck-Laue equation by dt















m′
0
c2

√

1−v2/c2
−

m′
0

v2

√

1−v2/c2















dt = m′0c2
√

1−v2/c2 dt. (2.29)

If n is the unit vector normal to the phase surface, we

then consider that the electron whose internal frequency is

ν0 = m′
0
c2/h has travelled a distance dn during a time interval

dt, so that its internal phase φi has been changed by

dφi = hν0

√

1 − v2/c2 dt = m′0c2
√

1 − v2/c2 dt . (2.30)

At the same time, the corresponding spinor wave phase vari-

ation is

dφ = ∂tφ dt + ∂nφ dn =
(

∂t φ + v gradφ
)

dt

and, by analogy with the classical formulae (2.8) and (2.9),

one can write

P
′ = − gradφ =

m′
0
v

√

1 − v2/c2
,

E′ = ∂t φ =
m′

0
c2

√

1 − v2/c2
,

so we find

dφ =















m′
0
c2

√

1 − v2/c2
−

m′
0

v2

√

1 − v2/c2















dt. (2.31)

Hence, from (2.29) we obtain the fundamental result

which states that the internal phase of the electron is identical

to that of its associated spinor wave

dφ = dφi . (2.32)

With (1.6), there is an obvious second physical link be-

tween the electron and the spinor wave Φ which clearly car-

ries the lepton.

This is what we wanted to show.
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Conclusions and outlook

Within the above theory, the electron is guided by its spinor

wave which means that it is always in motion. In this case,

the electron doesnot apparently comply with atomic quantum

stationary states for which the electron is required to have

zero velocity. De Broglie et al. [10] thus postulated a vacuum

hidden thermostat whereby the electron is permanently ex-

changing energy and momenta. According to the authors this

sub-quantum medium would cause the electron to fluctuate in

a Brownian-like manner so as to exhibit a static situation only

at the atomic level. In this way, the wavy-electron would be

allowed to undergo perpetual infinitesimal propagation. Our

opinion however differs from this hypothesis which we be-

lieve, would mark the limitation of the Double Solution the-

ory. Preferably, we suggest that each energy level of an atom

be characterized by a stationary limited spinor wave packet

carrying a dynamical electron: the mean energy of the pair

wavepacket-moving electron would then represent the quan-

tized energy level of the atom.

“Squeezing” stepwise the wave packet (i.e. increasing the

frequency) would mean jumping to a higher energy level and

vice versa, which actually could reflect the excited/desexcited

states of the atom. This process tends to validate the spectro-

scopic sharpness of the atomic rays as it is observed. All in

all, the exposed theory seems to cope with an electron whose

physical wave interacts with a physical diffraction device,

and yet satisfies the established relativistic features of Dirac’s

theory.
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5. Dirac P.A.M. The Principles of Quantum Mechanics. PUF, Paris, 1931.
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This paper explores the ideas of antigravity and vacuum propulsion from a fundamental-

physics point of view, making use of the Planck vacuum (PV) model of the vacuum

state.

1 Introduction

It is shown in a previous paper [1] that free-space gravita-

tional shielding is ineffective, because gravitational waves,

the carrier of the gravitational force, propagate within the PV

state rather than free space. This result suggests that, as the

gravitational waves are interior to the vacuum state, they may

be affected by perturbations to that state. The following cal-

culations are focused on that assumption in an attempt to de-

termine if antigravity and vacuum propulsion are viable con-

cepts.

Section 2 examines Newton’s gravitational force between

the earth (or any other large object), and a much smaller mass,

from the viewpoint of the PV theory. The structure of that

force is revealed in equations (2) and (3) in terms of n-ratios,

which are normalized mass/PV coupling forces between the

free space masses and the invisible vacuum state.

2 Newton’s gravity

Newton’s gravitational force Fgr between the two spherical

masses m ≪ M separated by a distance r (= a+ h+ A) can be

expressed as

− Fgr(r) =
mMG

r2
=

(mc2/r)(Mc2/r)

c4/G
(1)

=
(mc2/r)(Mc2/r)

m∗c2/r∗
= nr(m)nr(M)

m∗c
2

r∗
(2)

=
aA

r2
na(m) nA(M)

m∗c
2

r∗
=

mc2

r

AnA(M)

r
(3)

using G = e2
∗
/m2
∗

and r∗m∗c
2 = e2

∗
[2], where a and A are the

radii of the masses m and M respectively, and h is the shortest

distance between their surfaces. The mass m∗ and Compton

radius r∗ belong to the separate Planck particles making up

the degenerate PV state. The n-ratios in (2) and (3) are de-

fined as

nr(m) =
mc2/r

m∗c2/r∗
, nr(M) =

Mc2/r

m∗c2/r∗
, (4)

and

na(m) =
mc2/a

m∗c2/r∗
, nA(M) =

Mc2/A

m∗c2/r∗
. (5)

The coupling forces and the n-ratios are all less that one.

The force m∗c
2/r∗ (= c4/G) is the maximum coupling

force sustainable by the PV state [3, Fig.1]. Of particular

interest to the present paper is na(m), which is the normalized

coupling force the mass m exerts on the PV at the surface of

m. It is noted that the force m∗c
2/r∗ normalizing the coupling

forces also normalizes the Einstein field equation, and that

the n-ratios are at the core of the metrics associated with the

Schwarzschild equation [2] [4].

The mass/PV coupling forces in the numerators of (4) and

(5) represent gravity-like forces the various free-space masses

exert on the PV state. For example

mc2

r
=

mc2G

r ·G
=

mc2G

r · e2
∗
/m2
∗

=
mm2

∗
c2G

r · r∗m∗c2

=
mm∗G

rr∗
(6)

is the force the mass m exerts on the Planck particles within

the PV that are at a radius r from the center of m. The other

coupling forces in (4) and (5) are similarly interpreted — e.g.,

Mc2/A = Mm∗G/Ar∗.

Newton’s dynamical equations start from his second law

of motion (mr̈ = Fgr) and the final expression in (3). With

dr = dh and r̈ = ḧ:

mr̈ = mḧ = −
mc2

r

AnA(M)

r
(7)

or

r̈ = ḧ = −
c2

r

AnA(M)

r
(8)

for the acceleration of m toward M. Equation (8) is easily

integrated over r via

r̈ =
dṙ

dt
= ṙ

dṙ

dr
=

d(ṙ2/2)

dr
= −

Ac2

r2
nA(M) (9)

from r0 (> r + a) to r, and yields

ṙ2
− ṙ2

0 = 2c2
(

r0

r
− 1

)

nr0
(M)

= 2c2 [nr(M) − nr0
(M)
]

(10)

or
(

ṙ2
− ṙ2

0

)1/2
= −
{

2c2 [nr(M) − nr0
(M)
]

}1/2
(11)

which is an equation involving only n-ratios and implying that

the gravity dynamic takes place within the vacuum state.
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3 PV state

The PV state [2] is assumed to be a degenerate state of neg-

ative energy Planck particles (−e∗,m∗). Its degenerate nature

implies that the Planck particle eigenstates within the vacuum

are fully occupied. Thus the Planck particles are not free to

exhibit macroscopic motion. The vacuum is bathed, however,

in microscopic zero-point Planck-particle agitation.

Due to this degeneracy, when the PV is perturbed it ex-

hibits percussion-like response waves, much like the waves

on the surface of a kettle drum. For example, the free space

electron core (−e∗,me) perturbs the vacuum with the two-term

coupling force “e2
∗
/r2
−mec2/r”, leading to the Dirac-equation

response [5], where that response does not involve macro-

scopic Planck particle motion.

The previous section outlines the PV response to coupling

forces of the form mc2/r — thus the PV response is of the na-

ture of gravitational percussion waves traveling within the PV

between the positions of the free space masses m and M. It is

this type of wave motion that is envisioned in the discussion

to follow; i.e., wave motion that does not involve macroscopic

Planck particle motion.

4 Summary, conclusions, and comments

From a survey of equations (1)–(11), it is clear: that the final

expression in (3) is the springboard for the Newtonian dy-

namics, equations (7)–(11); and that none of the expressions

in (2) and (3) show any sign of a direct free-space gravita-

tional force acting between m and M — the force is channeled

through the vacuum state. The second conclusion implies that

there can be no free-space gravitational shielding [1].

The first expression in (3),

Fgr(r) = −
aA

r2
na(m) nA(M)

m∗c
2

r∗
(12)

suggests that, if the coupling force mc2/a in na(m) could be

masked or eliminated, then Fgr = 0 and m would experience

no gravitational attraction toward the mass M; so the mass m

would be effectively weightless. The vanishing of the n-ratio

na(m) thus leads to a simple explanation for antigravity, once

the physical mechanism for nullifying na(m) is specified.

It is difficult to find experimental data in the open litera-

ture that addresses the preceding theoretical calculations. The

one source germane to the present work the author could find

is contained in the e-book entitled “What Goes Up. . . ” [6],

which is a novel that claims to discuss real experimental data.

The principle interest here is the composite electrical coil that

is at the heart of a craft that is claimed to exhibit antigravity

and vacuum propulsion.

The doughnut shaped coil consists of two current loops

each of which supports a separate a.c.-d.c. signal, where the

two a.c. signals in the two loops are set at different frequen-

cies. This heuristic description is sketchy due to unavailable

details in the coil design. The book claims that the mag-

netic fields (or the magnetic flux) produced by the coil are

the source of antigravity and vacuum propulsion (though the

book doesn’t use the term “vacuum propulsion”). The a.c.

field destroys the gravity force Fgr; and the (±) d.c. field

causes the craft to move up or down at a high rate of speed.

The second paragraph of the present section and the a.c. cur-

rents in the coil thus account for antigravity. (The a.c. and

d.c. stand for “alternating current” and “direct current” re-

spectively.)

Although much theoretical knowledge concerning the PV

state exists [2], there is much still to be learned. The antigrav-

ity conundrum was readily resolved with the force equation

(12). Even then, details of how the a.c. flux from the coil

nullifies the effect of na(m) is not fully understood. Concern-

ing vacuum propulsion, things are even worse. For closure

sake, then, it will just be stated (assumed) that the ± d.c. flux

interacting with the charges (−e∗) of the separate Planck par-

ticles within the PV result in the rapid systematic movement

of the coil, and hence the space-craft. Reflecting upon the in-

tricacy of the electron spinor field caused by the electron/PV

interaction [5], the idea of vacuum propulsion doesn’t seem

so strange.
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The zitterbewegung of massless elementary electrical charges consists of two distinct

vacuum induced fluctuations. The first, random loops (spin) at the light speed (co-

moving frame) [1], is attributed to absorptions and emissions of zero-point radiation

at the Compton’s rate (stochastic electrodynamics). It will be shown that the second

(de Broglie) emerges because such radiation, just passing but tangled for a while (rest

mass), doesn’t submit to the ordinary motion of bodies; its light speed is ensured by

truncations and restoration of the translational motion (inertia). Synchronized with

absorption-emission, kinetic energy becomes vibrational energy (x-ray), and vice versa.

The implied works are due to back and forth self-stresses (contractions) triggered by im-

minent violations of the light speed limit (loops at the light speed plus ordinary motion)

implicit in the improper de Broglie phase velocity. Time spent to preserve the normal

motility of the tangled radiation is observed only in the fixed frame (time dilation).

1 Introduction

Due to permanent interactions with the Planck’s vacuum [2–

4], massless elementary electrical charges (MEEC) are in-

duced to move along quantum-relativistic paths at the speed

of the interacting radiation, independently of the observed or-

dinary motion of particles, as implicit in the approach origi-

nating the concept of zitterbewegung [5]. In such approach,

it was considered a particle (an electron) of rest mass m0,

which, therefore, must be attributed (respecting the peculiari-

ties of the interaction) to the mass-equivalent of the zero-point

energy absorbed (incident momentum) and emitted (reaction

momentum) by MEEC. It means that MEEC, on average, re-

tain zero-point radiation; a boson giving the rest mass.

In the particular case of free particles, the argued paths are

continual random “jumps” (diffusion of probability) among

trajectories belonging to the ensemble dictated by the Dirac

equation [6]. Theoretical results indicate that such trajec-

tories are curvilinear, over which particles are found at the

light speed, which agrees with experimental facts. Indeed, if

they are seen as random loops of electrical current in the co-

moving frame (a charge e moving at the light speed c over

a spherical shell of average radius rc), then we find that the

corresponding magnetic moment,

µz = IA =
ec

2πrc

πr2
c =

ecrc

2
, (1)

matches the observed magnetic moment of spin-1/2 particles,

µz ≈
e~

2m0

, (2)

if 2πrc = λc, where λc = h/m0c is the Compton’s wavelength.

Alternatively, if an electron can be found over circles at

the light speed (co-moving frame), then its momentum com-

ponents should fluctuate like p′ =m0q̇′ =m0c cos(ω′t′ + φq′),

where φq′ are random phases. It implies the coordinates

q′ =
c

ωc

sin(ω′t′ + φq′ ) , (3)

where c/ω′ is the radius of the loops of current (fluctuations

with spherical shape). Inserting the corresponding variances

(averaging over random phases),

∆p′2 =
1

2
(m0c)2, ∆q′2 =

1

2

c2

ω′2
, (4)

into the minimum uncertainty relation, ∆p′∆q′ = ~/2, yields

ω′ =
m0c2

~
, rc =

c

ω′
=
λc

2π
, (5)

that is, the Compton’s angular frequency (ω′ =ωc).

Considering the center of mass of the fluctuations (vibra-

tions) at the origin of the co-moving frame (x′ = 0), it implies

that a free particle moving in the x-direction of the fixed frame

will be seen as a material wave of wave number k= (k, 0, 0).

Phase invariance, considering special relativity, i.e.

ω′t′ − k′ · x′ = ωt − k · x, (6)

implies

t′ =
ω

ωc

(

t −
x

vp

)

, vp =
ω

k
, (7)

where vp is the phase velocity. Comparing the Eq. (7) with

the Lorentz transformation

t′ = γ

(

t −
v

c2
x

)

(8)

one gets the parameters of the material wave [7]:

ω = γ
m0c2

~
, k = γ

m0v

~
, vp =

ω

k
=

c2

v
, (9)

from which we can see that vp is a violation of the natural

speed of electromagnetic waves. This fact makes vp meaning-

less in the context of the special relativity, which is reinforced
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by the existence of a group velocity (transport of matter) co-

inciding with the particle velocity, i.e.

vg =
∂ω

∂k
=
∂E

∂p
= v . (10)

Technically, the concept of group velocity requires that

the resultant material wave be a superposition of waves of dif-

ferent frequencies, which agrees with the successful concept

of wave packet [8]. However, a wave packet implies a set of

phase velocities. As the phase velocity of the resultant mate-

rial wave is a violation of the natural speed of radiation, then

we should expect that the phase velocities of the constituent

waves also are speed violations (at least mostly).

Here, is it wise keep in mind that such speed violations,

being in full agreement with the concepts expressed by equa-

tions (6), (8) and (10), cannot be meaningless. In effect, no-

tice that an evolution at the phase velocity (x= vpt) implies

that time “stops” in the co-moving frame (t′ = 0). Emphasiz-

ing, in this particular situation, time is computed only in the

fixed frame. Remarkably, despite of being an improper evo-

lution, it agrees with the ultimate meaning of time dilation.

Until now, we have seen that single frequency (ωc) fluctu-

ations of spherical shape (rc = c/ωc) become multi-frequency

fluctuations in the fixed frame [9], which manifest as a wave

packet (material wave). The emergence of multiple angu-

lar frequencies implies that the translational motion cause a

break of the spherical shape of the fluctuations, given that

for each emerging angular frequency there must correspond

a different radius (ωiri = c, where c is invariant). Coinciden-

tally, this agrees with length contraction, i.e., according to the

theory of special relativity, in the fixed frame the fluctuations

must present an ellipsoidal shape.

The above argumentation implies that the phase velocity

vp is a statistical quantity; given that all frequencies implied in

the wave packet do not exist simultaneously but in the elapsed

time of an ordinary measurement (much greater than 2π/ωc).

Physically, contractions of the vacuum induced fluctua-

tions requires back and forth forces, whose resultant, at least

on average, must be zero. Moreover, these forces — defined

only in the fixed frame — do not have the same nature of the

electromagnetic forces (from the Planck’s vacuum) responsi-

ble by the fluctuations in the co-moving frame.

The search for forces triggered by the translational motion

must begin noting that the speed violation vp is dominant in

the Lorentz transformations (LT), i.e.

x′ = γ (x − vt) , t′ = γ

(

t −
x

vp

)

, γ =

(

1 −
v

vp

)

−
1
2

, (11)

which suggests that LT — to account for the light speed limit

in both reference frames — just consider imminent velocity

violations when the linear translational motion takes place.

In other words, the emerging vibrations, whose statistical su-

perposition gives vp, must relate to a mechanism ensuring the

speed limit of the zero-point radiation (ZPR) tangled for a

moment by MEEC (co-moving frame), given that the relative

velocity is lower than c.

Let us analyze, heuristically, the complete motion. From

the equations (1) to (5) and the presence of the Planck’s vac-

uum, it is implicit that in the co-moving frame MEEC are

found over circular trajectories at the speed of the “impreg-

nating” zero-point radiation (ZPR). Therefore, it be expected

the occurrence of all sort of violations of the light speed limit

when the ordinary translational motion is added. However,

resulting velocities for MEEC — imbued with the properties

of radiation — either greater or smaller than c are forbidden

by the well-known Maxwell’s relation µεc2 = 1. So, it is plau-

sible to think that the vibrations implied in the wave packet

— related to radii contraction of the fluctuations — arise to

avoid any possible speed violation of the tangled ZPR, which

would result from the simple combination of random orbits at

light speed with the observed motion of matter.

In the next sections, based on well-known physical facts,

it will be presented some evidences that the periodical mo-

tion induced by the Planck’s vacuum combined with the ordi-

nary motion of particles implies the appearance of periodical

back and forth self-stresses, which are imposed by the normal

motility of the tangled radiation. Here, it must be emphasized

the following: First, tangled radiation is ZPR continually im-

prisoned during an infinitesimal time (less than 2π/ωc) by

MEEC. Second, normal motility relates to evolutions of free

radiation; assumed to be extensible to the tangled radiation,

given the massless nature of the “host”.

2 The need for periodical longitudinal self-stresses

The energy carried by the material wave is the vibrational

energy, E = ~ω, which must be the energy of the particle,

E = γm0c2. Therefore,

ω =
m0c2

~
+

(γ − 1)m0c2

~
= ωc + ωT , (12)

where the Compton’s frequency (ωc) expresses the rate at

which zero-point energy is going in and out of the MEEC (on

average remaining as rest energy), and ωT accounts for all

vibrations implied in the wave packet; likewise that vp repre-

sents all corresponding phase velocities (one at a time).

Given the statistical nature of the wave packet (in the

sense of the quantum superposition), it implies that particles

can present, at a given time, only kinetic energy, or only vi-

brational energy, or a mix of them; all these possibilities oc-

curring, in accordance with energy conservation, at a very

high rate (synchronized with ωc).

Coincidentally, for v ≪ c, ωT is the maximum frequency

emitted by electrons in a x-ray apparatus (Duane-Hunt for-

mula, ~ωmax = eV =m0v
2/2), which does not contradict the

fact that electrons can collide presenting frequencies different

from ωmax. In effect, these other frequencies can be built into
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the well-known wavelength spread of x-ray data; the comple-

mentary energy (kinetic) simply warm the target.

The above facts suggest that kinetic energy becomes vi-

brational energy, and vice-versa, but the sum of them, at any

time, is (γ − 1)m0c2 or ~ωT , as required by energy conser-

vation. Inexorably, such changes of the kinetic energy imply

positive and negative works on the particle. Nonetheless, if

one takes into account that the MEEC-ZPR electromagnetic

interaction is completely resolved, in the sense that it yields

well-defined rest energy (mass), spin and Compton’s param-

eters, then there must be another reason for the emergence

of vibrations triggered by the translational motion. Only re-

mains to appeal to the dynamics allowed by the tangled ZPR,

which, in view of the above, only can be attributed to peri-

odical back and forth self-stresses, whose sole purpose is to

ensure its light speed limit; an imposition of the hindmost na-

ture of radiation.

Here, it should be pointed up that these self-stresses —

ensuring the normal motility of the tangled radiation — can-

not be interpreted in the same sense of Poincaré stresses [10],

which were postulated in order to guarantee the stability of

the Abraham-Lorentz model for the electron. In effect, the

semi-classical electron stability should be understood as an

electromagnetic pressure balance involving the Planck’s vac-

uum, as proposed by Casimir [11].

3 The Zitterbewegung and self-stresses

A formal account for the two kind of vacuum induced fluc-

tuations, as exposed elsewhere, can be seen in the quantum-

relativistic approach of the zitterbewegung [12], although not

working the properties of the Planck’s vacuum of explicit

way; that is, using the recipes of the stochastic electrodynam-

ics. This is possible because Lorentz transformations as well

as quantum equations takes into account non-localized statis-

tical features of the wave packet (the ultimate product of the

matter-vacuum interaction). Hence, the following results, de-

spite of evidencing the co-moving loops of electrical current

(spin), should be interpreted statistically [13].

Inserting the Dirac Hamiltonian, H = cα j p j+βm0c2, into

the Heisenberg picture of quantum mechanics and consider-

ing that the matrices α j and β commute with momentum (p j)

and position (x j) operators, one gets

dp j

dt
=

i

~

[

H, p j

]

= 0 ,
dx j

dt
=

i

~

[

H, x j

]

= cα j , (13)

where the first implies that H and p j commute (constants of

the motion), and the second, in the full sense of the operation

cα jψ = ±cψ , (14)

where ψ represents a four-component spinor, means that “a

measurement of a component of the velocity of a free electron

is certain to lead to the result ±c” [5, p. 262], which is not the

ordinary velocity of free particles, but that of the tangled ZPR.

The result (14) means that — on average, everywhere, in

all directions and with equal probability — electrons go forth

and back at the light speed; an expected behavior, consider-

ing the main properties of the interacting ZPR (homogeneity,

isotropy, randomness and Lorentz invariant spectral density).

Whenever the electron is on a permitted Dirac trajectory,

despite of being temporarily, it must obey the parameters of

such trajectory. As the trajectories are curvilinear, then there

are accelerations. In fact, they are given by ẍ j = (i/~)[H, ẋ j],

where ẋ j = cα j, which corresponds to the equations

ẍ j =
2i

(

Hẋ j − c2 p j

)

~
, ẍ j =

2i
(

c2 p j − ẋ jH
)

~
, (15)

since Hcα j + cα jH = 2cp j. Integrating, yields respectively

ẋ j = c2 p jH
−1 + η je

i2Ht/~, ẋ j = c2 p jH
−1 + η′je

−i2Ht/~, (16)

where the operators η and η′ (constants of integration) must

take into account that these components must match, peri-

odically, the tangential velocity (cα j), as implicit in Eq. (14),

which implies that η= η′ = cα j−c2 p jH
−1. Moreover, on aver-

age the velocity must be the observed one (c2 p jH
−1). There-

fore, the velocity operator becomes

ẋ j = c2 p j H−1 +
(

cα j − c2 p j H−1
)

cos (2Ht/~) , (17)

from which, considering the same above conditions, one gets

the position operator

x j(t) = c2 p j H−1t+

(

~cα j H−1
−~c2 p j H−2

)

2
sin

(

2H

~
t

)

. (18)

Notice, for p j = 0 the operators (17) and (18) violate the

minimum uncertainty relation (m0∆ẋ j∆x j = ~/2) by a factor 2

(the eigenvalues of α j are unitary and H → m0c2). This hap-

pens because the Dirac Hamiltonian takes into account matter

and antimatter, whose energy gap is 2H [14, p. 949]. For only

one kind of particle (e.g. free electrons in the two slit ex-

periment, where is not verified the presence of positrons), it

suffices to ignore the factor 2 in the equations (15).

Regardless of the comment made in the previous para-

graph, the statistical components of the velocity of an elec-

tron (moving at the speed of light), as expressed by Eq. (17),

show that — in order to maintain the speed imposed by the

tangled radiation — the translational velocity c2 p jH
−1 is pe-

riodically subtracted and added, depending on the sign of c.

Indeed, apart intermediary values, for forward evolutions of

the local motion (+c), the translational motion is completely

subtracted, and for backward evolutions (−c), it is completely

restored, as can be seen from the allowed values of the co-

sine and the Eq. (14). Clearly, synchronized with absorptions

and emission of zero-point energy (rest energy), the kinetic

energy changes at the Compton’s rate (considering only one

kind of particle). As truncations and restorations of the trans-

lational motion behaves as vibrations, then kinetic energy is
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being transformed into vibrational energy, and vice versa.

These positive and negative works, necessarily, imply back

and forth forces (zero, on average). However, as there are no

external forces — other than those yielding the well-defined

evolutions in the co-moving frame — then such works must

be assigned to periodical longitudinal self-stresses (PLSS),

which are imposed by the very motility of radiation, as in-

ferred in the preceding paragraph.

From the position operators (18) — statistical coordinates

defined in the fixed frame — we can verify the following:

First, they do not explicit a set of vibrations composing the

wave packet, but the motion of the resulting material wave,

whose statistical frequency is ω=H/~. Second, for p j = 0,

these coordinates agree with the proposed equations (3); evo-

lutions with spherical shape in the co-moving frame. Third,

in the fixed frame (p j , 0), the amplitude of the vibration (en-

closed difference of operators) suffers a contraction in the di-

rection of the motion; evolutions with ellipsoidal shape.

4 Final remarks

Fluctuations with spherical shape (co-moving frame) becom-

ing fluctuations with ellipsoidal shape (fixed frame) explains

the emergence of all vibrations implied in the wave packet,

but in the sense that a motion with constant tangential veloc-

ity (light speed) over an ellipsoid implies an infinite number

of angular frequencies. The wave packet is a statistical con-

cept; it simply expresses the fact that during the time of an

ordinary measurement the particle can be found at any posi-

tion on the ellipsoidal surface; each one corresponding to a

given angular frequency (particle states). This is the funda-

mental feature of quantum superposition.

As “self-impulses”, in principle, cannot be observed in

the co-moving frame, then the corresponding time intervals

also not. From another point of view, the strength of self-

stresses depends of the relative velocity, but an observer in the

co-moving frame cannot decide about the constant velocity

of such frame (principle of relativity); therefore, also cannot

decide about self-stresses (and its duration). This is implicit

in the LT, as can be seen inserting the improper evolution x =

(c2/v)t (triggering a given self-stress), which gives t′ = 0. In

short, the time spent to preserve the “integrity” of the tangled

ZPR is computed only in the fixed frame, which is in full

agreement with the cumulative time dilation.

The vibrational energy corresponding to self-stresses only

are emitted as radiation under non-uniform decelerations (as

in a x-ray apparatus). Contrasting with thermal excitations

(external forces), PLSS only imply restrictions to the mobility

of vacuum induced fluctuations (without external forces); so,

radiationless.

The corresponding back and forth strains (restrictions to

the translational motion) explain the non-cumulative length

contraction.

Newton’s inertia relates to the de Broglie periodicity [15];

that is, the periodicity of the wave packet, whose correspond-

ing vibrations come from PLSS; “opposing forces”.

To finalize, truncations of the ordinary motion followed

by complete restoration of the kinetic energy, as implicit in

the Eq. (17), is in full agreement with the observed energy

conservation (first Newton’s law).

5 Conclusion

In the light of the foregoing, the quantum relativistic behavior

of particles emerge because the ZPR, continually entrapped

by MEEC during the time of an absorption-emission of zero-

point energy, does not submit to the ordinary motion of bod-

ies. From another point of view, the quantum of the Higgs

field (Higgs boson) does not move with the observed veloc-

ities of the corresponding particle; its light speed is ensured

by conservative periodical truncations and restorations of the

ordinary motion, whose momentum dependent strength (am-

plitude of emerging vibrations) explain why inertia (mass) in-

creases with the particle velocity.
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We present a symmetric spacetime, admitting closed timelike curves (CTCs) which

appear after a certain instant of time, i.e., a time-machine spacetime. These closed

timelike curves evolve from an initial spacelike hypersurface on the planes z = constant

in a causally well-behaved manner. The spacetime discussed here is free from curvature

singularities and a 4D generalization of the Misner space in curved spacetime. The

matter field is of pure radiation with cosmological constant.

1 Introduction

One of the most intriguing aspects of Einstein’s theory of

gravitation is that solutions of field equations admit closed

timelike curves (CTC). Presence of CTC in a spacetime leads

to time-travel which violates the causality condition. The first

one being Gödel’s spacetime [1] which admits closed time-

like curves (CTC) everywhere and an eternal time-machine

spacetime. There are a considerable number of spacetimes

in literature that admitting closed timelike curves have been

constructed. A small sample would be [1–21]. One way of

classifying such causality violating spacetimes would be to

categorize the metrics as either eternal time-machine in which

CTC always exist (in this class would be [1, 2]), or as time-

machine spacetimes in which CTC appear after a certain in-

stant of time. In the latter category would be the ones dis-

cussed in [18–20]. Many of the models, however, suffer from

one or more severe drawbacks. For instance, in some of these

solutions, for example [13,14,20], the weak energy condition

(WEC) is violated indicating unrealistic matter-energy con-

tent and some other solutions have singularities.

Among the time-machine spacetimes, we mention two:

the first being Ori’s compact core [17] which is represented

by a vacuum metric locally isometric to pp waves and sec-

ond, which is more relevant to the present work, the Misner

space [22] in 2D. This is essentially a two dimensional metric

(hence flat) with peculiar identifications. The Misner space is

interesting in the context of CTC as it is a prime example of

a spacetime where CTC evolve from causally well-behaved

initial conditions.

The metric for the Misner space [22]

ds2
Misn = −2 dt dx − t dx2 (1)

where −∞ < t < ∞ but the co-ordinate x is periodic. The

metric (1) is regular everwhere as det g = −1 including at

t = 0. The curves t = t0, where t0 is a constant, are closed

since x is periodic. The curves t < 0 are spacelike, but t > 0

are timelike and the null curves t = t0 = 0 form the chronol-

ogy horizon. The second type of curves, namely, t = t0 > 0

are closed timelike curves (CTC). This metric has been the

subject of intense study and quite recently, Levanony and

Ori [23], have studied the motion of extended bodies in the

2D Misner space and its flat 4D generalizations. A non-

flat 4D spacetime, satisfying all the energy conditions, but

with causality violating properties of the Misner space, pri-

marily that CTC evolve smoothly from an initially causally

well-behaved stage, would be physically more acceptable as

a time-machine spacetime.

In this paper, we shall attempt to show that causality vio-

lating curves appear in non-vacuum spacetime with compar-

atively simple structure. In section 2, we analyze the space-

time; in section 3, the matter distribution and energy condi-

tion; in section 4, the spacetime is classified and its kinemat-

ical properties discussed; and concluding in section 5.

2 Analysis of the spacetime

Consider the following metric

ds2 = 4 r2 dr2 + e2α r2
(

dz2
− t dφ2

− 2 dt dφ
)

+

+ 4 β z r e−α r2

dr dφ

(2)

where φ coordinate is assumed periodic 0 6 φ 6 φ0, where

α is an integer and β > 0 is a real number. We have used

co-ordinates x1 = r, x2 = φ, x3 = z and x4 = t. The ranges

of the other co-ordinates are t, z ∈ (−∞,∞) and 0 6 r < ∞.

The metric has signature (+,+,+,−) and the determinant of

the corresponding metric tensor gµν, det g = −4 r2 e6α r2

. The

non-zero components of the Einstein tensor are

G
µ
µ = 3α2,

Gt
φ = −

1

2
e−6α r2

β2 .
(3)

Consider an azimuthal curve γ defined by r = r0, z = z0 and

t = t0, where r0, z0, t0 are constants, then we have from the

metric (2)

ds2 = − t e2α r2

dφ2. (4)

These curves are null for t = 0, spacelike throughout for t =

t0 < 0, but become timelike for t = t0 > 0, which indicates the

presence of closed timelike curves (CTC). Hence CTC form

at a definite instant of time satisfy t = t0 > 0.

It is crucial to have analysis that the above CTC evolve

from a spacelike t = constant hypersurface (and thus t is a
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time coordinate) [17]. This can be ascertained by calculating

the norm of the vector ∇µt (or by determining the sign of the

component gtt in the inverse metric tensor gµν [17]). We find

from (2) that

gtt = t e−2α r2

+ β2 z2 e−6α r2

. (5)

A hypersurface t = constant is spacelike provided gtt < 0 for

t = t0 < 0, but becomes timelike provided gtt > 0 for t = t0 >

0. Here we choose the z-planes defined by z = z0, (z0, a con-

stant equal to zero) such that the above condition is satisfied.

Thus the spacelike t = constant < 0 hypersurface can be cho-

sen as initial conditions over which the initial may be speci-

fied. There is a Cauchy horizon for t = t0 = 0 called Chronol-

ogy horizon which separates the causal and non-causal parts

of the spacetime. Hence the spacetime evolves from a par-

tial Cauchy hypersurface (initial spacelike hypersurface) in a

causally well-behaved manner, up to a moment, i.e., a null

hypersurface t = 0 and CTC form at a definite instant of time

on z = constant plane.

Consider the Killing vector η = ∂φ for metric (2) which

has the normal form

ηµ = (0, 1, 0, 0) . (6)

Its co-vector is

ηµ =
(

2 β z r e−α r2

, −t e2α r2

, 0, −e2α r2
)

. (7)

The (6) satisfies the Killing equation ηµ ; ν + ην ; µ = 0. For

cyclicly symmetric metric, the norm ηµ η
µ of the Killing vec-

tor is spacelike, closed orbits [24–28]. We note that

ηµ ηµ = −t e2α r2

(8)

which is spacelike for t < 0, closed orbits (φ co-ordinate be-

ing periodic).

An important note is that the Riemann tensor Rµνρσ can

be expressed in terms of the metric tensor gµν as

Rµνρσ = k
(

gµρ gνσ − gµσ gνρ
)

(9)

where k = −α2 for the spacetime (2).

Another important note is that if we take β = 0, then the

spacetime represented by (2) is maximally symmetric vac-

uum spacetime and locally isometric anti-de Sitter space in

four-dimension. One can easily show by a number of trans-

formations the standard form of locally isometric AdS 4 met-

ric [29]

ds2 =
3

(−Λ) x2

(

−dt2 + dx2 + dφ2 + dz2
)

(10)

where one of the co-ordinate φ being periodic.

3 Matter distribution of the spacetime and energy con-

dition

Einstein’s field equations taking into account the cosmologi-

cal constant

Gµν + Λ gµν = T µν , µ, ν = 1, 2, 3, 4 . (11)

Consider the energy-momentum tensor of pure radiation field

[30]

T µν = ρ nµ nν (12)

where nµ is the null vector defined by

nµ = (0, 0, 0, 1) . (13)

The non-zero component of the energy-momentum tensor

T t
φ = −ρ e2α r2

. (14)

Equating field equations (11) using (3) and (14), we get

Λ = −3α2,

ρ =
1

2
β2 e−8α r2

, 0 6 r < ∞ .
(15)

The energy-density of pure radiation or null dust decreases

exponentially with r and vanish at r → ±∞. The matter

field pure radiation satisfy the energy condition and the en-

ergy density ρ is always positive.

4 Classification and kinematical properties of the space-

time

For classification of the spacetime (2), we can construct the

following set of null tetrads (k, l,m, m̄) as

kµ = (0, 1, 0, 0) , (16)

lµ =

(

−2 β z r e−α r2

,
t

2
e2α r2

, 0, e2α r2
)

, (17)

mµ =
1
√

2
(2 r, 0, i eα r, 0) , (18)

m̄µ =
1
√

2

(

2 r, 0,−i eα r2

, 0
)

, (19)

where i =
√

−1. The set of null tetrads above are such that

the metric tensor for the line element (2) can be expressed as

gµν = −kµ lν − lµ kν + mµ m̄ν + m̄µmν . (20)

The vectors (16)–(19) are null vectors and are orthogonal ex-

cept for kµ lµ = −1 and mµ m̄µ = 1. Using this null tetrad

above, we have calculated the five Weyl scalars

Ψ3 = −
iα β e−2α r2

2
√

2
,

Ψ4 = −
1

4
β e−2α r2

(

i + 2α z eα r2
)

(21)

are non-vanishing, while Ψ0 = Ψ1 = Ψ3 = 0. The space-

time represented by (2) is of type III in the Petrov classifi-

cation scheme. Note that the non-zero Weyl scalars Ψ3 and

Ψ4 are finite at r → 0 and vanish as r → ±∞ indicating

asymptotic flatness of the spacetime (2). The metric (2) is free
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from curvature singularities. The curvature invariant known

as Kretchsmann scalar is given by

Rµνρσ Rµνρσ = 24α4 (22)

and the curvature scalar

R = −12α2 (23)

are constant being non-zero.

Using the null tetrad (16) we have calculated the Optical

scalars [30] the expansion, the twist and the shear and they

are

Θ =
1

2
k
µ
; µ = 0 ,

ω2 =
1

2
k[µ ; ν] kµ ; ν = 0 ,

σ σ̄ =
1

2
k(µ ; ν) kµ ; ν

− Θ2 = 0

(24)

and the null vector (16) satisfy the geodesics equation

kµ ; ν kν = 0 . (25)

Thus the spacetime represented by (2) is non-diverging, has

shear-free null geodesics congruence. One can easily show

that for constant r and z, the metric (2) reduces to conformal

Misner space in 2D

ds2
con f o = Ω ds2

Misn (26)

where Ω = e2α r2

is a constant.

5 Conclusion

Our primary motivation in this paper is to write down a met-

ric for a spacetime that incorporates the Misner space and its

causality violating properties and to classify it. The solution

presented here is non-vacuum, cyclicly symmetric metric (2)

and serves as a model of time-machine spacetime in the sense

that CTC appear at a definite instant of time on the z-plane.

Most of the CTC spacetimes violate one or more energy con-

ditions or unrealistic matter source and are unphysical. The

model discussed here is free from all these problems and mat-

ter distribution is of pure radiation field with negative cosmo-

logical constant satisfying the energy condition.
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Several papers by Cahill, et al. assert that Michelson-Morley type experiments per-
formed in gas have small but non-null results which, when properly analyzed, show
that the absolute speed of the earth was detected. Here we show that Cahill made a
fundamental error in his assumptions and that the mathematical analysis upon which he
based his conclusions is invalid. We also include a report on an experiment that ver-
ifies these mathematical conclusions. The experiment uses water instead of air as the
wave medium. The much larger index of refraction of water (1.33 vs. 1.00029) greatly
amplifies the effect Cahill predicts and makes the null result of the new experiment
dramatically apparent. This confirms both theoretically and experimentally that abso-
lute velocity was not and cannot be detected in Michelson-Morley type experiments
regardless of the refractive medium in which they are performed.

1 Introduction

I was intrigued by several papers by Cahill [1–4] that purport
to re-evaluate the original Michelson-Morley (MM) and other
“gas-mode” interferometer experiments and prove that they
actually measured the absolute speed of the earth through
space. Cahill shows in these papers that the index of refrac-
tion of air caused results that although small were not com-
pletely null. He asserts that the absolute velocity of the earth
was measured and that absolute space was detected — but
was it?

I set out to test Cahill’s assertions by designing an exper-
iment capable of getting a larger non-null result. This ex-
periment uses water as the medium through which the light
propagates so that the “incomplete cancellation of the geo-
metrical effects” (according to Cahill) would be greatly am-
plified by the much larger index of refraction. This allows
easy detection of the interference-fringe shifts in a low-cost
Michelson-type interferometer.

The experiment had a resolution that was more than 103

times greater than the effect Cahill’s equations predicted. The
results of the experiment were unequivocally null. Based on
the null results, I set out to reexamine Cahill’s assumptions
and mathematical derivations. It was through this reexam-
ination that I derived the correct equations and proved that
the so-called “cancellation of the geometrical effects” is com-
plete and the results of any MM type experiment must be null
whether done in vacuum or in a refractive medium. We show
that both the herein derived equations and the results of the
present experiment are in complete agreement that absolute
space cannot be detected with these types of experiments.

Our derivations (and Cahill’s) are based on classical phy-
sics. By “classical physics” we mean merely that the equa-
tions of the special theory of relativity (SRT) will not be used
to transform values between inertial reference frames. All

measurements in the derivations are made in the rest frame
(or what Cahill calls the “quantum foam” frame) where light-
speed is constant and isotropic. But in SRT, light-speed is
constant and isotropic in all frames. Therefore our deriva-
tions will be in complete compliance with the formalism of
SRT, while at the same time satisfying Cahill and his follow-
ers that they are also valid in Cahill’s absolute frame.

The value measured in the experiment is the shift, mea-
sured in wavelengths, of the interference pattern of two light
beams. Because this measurement is a scalar value, indepen-
dent of the actual length of the wavelength, it is invariant in
all reference frames. This is what allows us to do the entire
analysis from the rest frame but make the actual measurement
in the laboratory frame — they must agree.

2 Correcting Cahill’s derivations

We will use Cahill’s equations as derived in [1] for this anal-
ysis.

Cahill begins his analysis by making the following (incor-
rect) assumption regarding the speed of light in the refractive
medium of air: “If the gas is moving with respect to the quan-
tum foam, as in an interferometer attached to the earth, then
the speed of light relative to the quantum foam is still V = c/n
up to corrections due to the Fresnel drag. But this dragging
is a very small effect and is not required in the present anal-
ysis”. [emphasis added]) He is correct that Fresnel drag is a
very small effect, but as will soon be evident, it is not small
compared to the effect he is trying to measure and it cannot
be ignored.

The laboratory frame is assumed to have an arbitrary ve-
locity v with respect to the rest frame. We also make the fol-
lowing two assumptions which Cahill made in his analysis
and which are entirely consistent with SRT: 1) clocks slow
down with velocity and 2) lengths contract with velocity. The
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factor by which they slow down is defined as

γ =
1√

1 − v2/c2
. (1)

For convenience, we also make the following definition:

β =
v

c
⇒ γ =

1√
1 − β2

. (2)

If both arms of the interferometer are of rest-length L and
one is aligned parallel to the velocity of the laboratory and the
other is aligned at right angles to this velocity, then the length
of the orthogonal arm in the rest frame is still L, but the length
of the parallel arm experiences a contraction if measured in
the rest frame,

L∥ = L
√

1 − β2 =
L
γ
. (3)

Cahill defines n to be the index of refraction of the gas
and uses the same value n in both frames. This seems per-
fectly reasonable, since n is a scalar and therefore invariant.
But just because it has the same value in both frames does
not mean that it affects the path of the waves in both frames
the same way. This will be demonstrated by observing from
within the rest frame how observers within the moving frame
measure and define n. It then becomes apparent that in the rest
frame the velocity of light in a moving refractive medium is
not simply c/n plus the traditional drag term.

Before observing how n is measured, we must first under-
stand how clocks are synchronized using Einstein’s method.
We will do this by observing from the rest frame as clocks
are synchronized in the laboratory frame. Let there be clocks
at each end of the arm aligned parallel to the velocity which
we designate as clock A and clock B. According to Eq. (3)
this distance between the two clocks is L/γ in the rest frame.
The procedure for synchronizing the two clocks in the mov-
ing frame is as follows:

1. A light wave leaves clock A at time 0 on clock A in the
moving frame and also at time 0 in the rest frame.

2. The light beam propagates towards clock B at velocity
c in both frames. In the rest frame clock B is moving at
velocity v in the same direction as the light beam.

3. The light arrives at B at time t1 in the rest frame.
4. The total distance the light travels in the rest frame on

the outbound path is c t1. This can be separated into two
distances: 1) the length of the contracted arm L/γ and
the distance clock B moved during the time t1 which is
v t1. Solving for t1, we get

t1 =
L

γ (c − v) . (4)

5. The light reflects from a mirror at B and returns to A at
time t2 in the rest frame. Since the clock at A was mov-
ing towards the light during this leg, the distance that

the light traveled before reaching A was L/γ−v (t2 − t1).
Using the same logic as above, the time t2 − t1 to make
the return trip as measured in the rest frame is

t2 − t1 =
L

γ (c + v)
. (5)

6. Solving for t2, the total time to make the round trip as
measured in the rest frame is

t2 =
L/γ
c + v

+
L/γ
c − v =

2 L/γ
c
(
1 − v2/c2) = 2 L

c
γ. (6)

7. The clocks in the moving frame run slower by a factor
of γ than the clocks in the rest frame. Therefore, the
time on clock A when the light returns is

tA =
t2
γ
=

2 L
c
. (7)

8. Using Einstein’s method of synchronization, clock B is
defined to be synchronized to clock A if at the moment
of reflection the time on clock B is set to tA/2.

tB =
L
c
. (8)

As expected, the observers in the laboratory frame mea-
sure the speed of light to be c in both directions. But notice
that at the moment of reflection of the light from clock B, the
time is t1 in the rest frame and tB on clock B in the moving
frame. But what is the time on clock A at that moment? Since
clock A was defined to be 0 at time 0 in the rest frame, and
since clock A runs slower by a factor of γ than clocks in the
rest frame, the time on clock A must be t1/γ. But that means
that to an observer in the rest frame, there is a bias between
clocks A and B,

tbias = tB −
t1
γ
=

L
c
− L
γ2 (c − v) = −

v L
c2 . (9)

Please note that this is in complete agreement with SRT.
Position-dependent clock biases are the source of relative si-
multaneity in SRT. Events are defined to be simultaneous in
the moving frame when the clocks at the sites of the two
events read the same value. But because of the permanent
bias between the clocks (when observed from the rest frame),
those same two events are never simultaneous within the rest
frame. From this exercise we see that there is nothing mys-
terious or magical about relative simultaneity — it is simply
a byproduct of defining the one-way time of flight of a light
wave to be 1/2 of the two-way time of flight.

The bias in Eq. (9) is the same position-dependent bias
that occurs in the transformation of time between frames us-
ing the Lorentz transformation of SRT. But we have deter-
mined its value not by performing this transformation but by
simply observing from the rest frame as clocks were synchro-
nized in the moving frame. We have used nothing more than
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this definition and classical physics to derive the same bias
between the clocks as defined in SRT.

Now that we understand how clocks in the moving frame
appear to observers in the rest frame, we are ready to see how
the index of refraction, when measured in the laboratory, ap-
pears to observers in the rest frame. To measure the index of
refraction in the laboratory, a light beam is sent from clock A
at time 0 through a refractive material and arrives at clock B
at time tBn, where the n in the subscript indicates time through
the refractive material. This is the time of flight of the light
beam as measured in the laboratory. The index of refraction
is then defined as

n =
c tBn

L
. (10)

This corresponds to a velocity of light in the refractive
medium of c/n as measured in the laboratory. Let us now look
at that same velocity as measured in the rest frame. Because
of the bias on clock B, although the time on clock A is 0
when the light is emitted, the observer in the rest frame sees
the light wave leave clock A when clock B reads −v L/c2. The
elapsed time on clock B for the time of flight is therefore

∆tBn = tBn +
v L
c2 . (11)

Using Eq. (10) to substitute for tBn, and remembering that
clocks in the moving frame run slower by a factor of γ, the
elapsed time in the rest frame for the time of flight is

∆t0 =
L (c n + v) γ

c2 . (12)

We defined the direction from A to B to be the same di-
rection as the velocity of the moving frame. Since lengths
contract with velocity, the total distance the light propagated
during this time, as measured in the rest frame, is

∆d0 =
L
γ
+ v∆t0 =

L
γ
+
v L (c n + v) γ

c2 . (13)

The velocity of the light beam in the refractive material
as measured in the rest frame is this distance divided by the
propagation time, which simplifies to

cn0+ =
∆d0

∆t0
=

c (c + n v)
c n + v

. (14)

Notice that this can be put in the following form:

cn0+ =
c/n + v

1 +
(c/n) v

c2

. (15)

In this form it is very obvious that we have derived the
velocity addition formula of SRT where the two velocities
are c/n and v. This shows that there is nothing mysterious
about the velocity addition formula of SRT. It is easily de-
rived using classical physics if one acknowledges that clocks

and lengths change with velocity. The only mystery is what
causes velocity-dependent lengths and clock-rates in the first
place. But that is a topic for a separate paper.

We can also write this equation in a different form,

cn0+ =
c
n
+

(
n2 − 1

n2

) (
n

n + β

)
v. (16)

In this form, we can clearly see that the Fresnel drag co-
efficient is simply a consequence of the velocity addition for-
mula. They are not separate phenomena. Prior to Lorentz and
Einstein, it was thought that the Fresnel drag term consisted

only of the
n2 − 1

n2 v term. The
n

n + β
term is so close to 1 that

except for extremely high velocities it was unobservable.
What we have shown in this derivation is that the Fresnel

drag term is automatically included in our derivation once we
acknowledge that lengths and times change with velocity. In
fact, Fresnel drag is proof that lengths and times really do
change with velocity.

When the light is sent in the opposite direction through
the refractive medium, the sign of the laboratory’s velocity v
in equation (14) is inverted resulting in a reverse speed of

cn0− =
c (c − n v)

c n − v . (17)

Summing the times of propagation for these out and back
velocities, we can calculate the total time for a round trip on
the parallel arm in the rest frame if the light is passing through
a moving refractive medium with an index of refraction n:

∆t∥0 =
L

γ (cn0+ − v)
+

L
γ (cn0− + v)

= 2
L

c/n
γ. (18)

Not surprisingly, this is the same value we would have
calculated if we had simply used the Lorentz transforms of
SRT to transform the time on clock A into the rest frame for a
round trip of length 2 L at velocity c/n. Be we have derived it
using nothing but classical physics and the two assumptions
regarding length contraction and the slowing of clocks with
velocity.

We will now look at the time for the round trip on the
orthogonal arm. In the laboratory frame, n has the same value
in all directions.∗ Therefore, as measured in the laboratory
frame, the round-trip time in the orthogonal direction is

∆t⊥ =
2 L
c/n
=

2 L n
c
. (19)

With the arm oriented orthogonal to the velocity, the light-
propagation times for the outbound and return trips are equal
in the rest frame so there is no bias between clocks A and B.
Since clocks in the moving frame run slower when observed

∗This is proven in Section 4.2 where the velocity of light in a moving
refractive medium is derived for any arbitrary direction.
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from the stationary frame, this same time in the stationary
frame is simply the elapsed time in the rest frame multiplied
by γ,

∆t⊥0 = 2
L

c/n
γ. (20)

We see that this is exactly the same as the time for the
parallel path given in equation (18) so the MM experiment is
doomed to give null results regardless of the index of refrac-
tion of the medium.

3 Comparing to Cahill’s results

We now compare these results to Cahill’s results (we use sub-
script C for Cahill’s times), which come from his equations
(7) and (10) in [1]:

∆t∥C =
2 L

γ
c
n

(
1 − v

2

c2 n2

) = 2 L γ
c/n

(
1

γ2 (
1 − n2 β2) )

∆t⊥C =
2L√

c2

n2 − v
2

=
2 L γ
(c/n)

 1

γ
√

1 − n2 β2




. (21)

The right-most terms in parenthesis are the error factors
Cahill introduced by ignoring the “drag” effect. Without these
terms, the times are identical. Notice that both of these error
terms are very close to 1. In fact for a velocity of 360 km/sec
and n = 1.00029 (which are the approximate values Cahill
used in his paper), the two terms in parenthesis are (1 + 8 ×
10−10) and (1 + 4 × 10−10), respectively. It is easy to see why
Cahill thought they could be ignored and simply set to 1.

The difference between equations (21) is Cahill’s mea-
sured time difference between the parallel and orthogonal ori-
entations. It can be shown that for v/c = β << 1 this differ-
ence can be approximated by

∆t∥C − ∆t⊥C =
L n
γ c


(
n2 − 1

)
β2

1 − n2β2

 . (22)

In the original MM experiment, L = 11 and n ≈ 1.00029.
The absolute velocity that Cahill calculated was on the order
of 360 km/sec, which results in β ≈ 0.0012. Substituting
these into equation (22) results in a measured time difference
of

∆t∥C − ∆t⊥C ≈ 3.1 × 10−17. (23)

This confirms Cahill’s estimate of a difference on the or-
der of 10−17 sec. The wavelength of light used in the original
experiment was approximately 600 nm which for a velocity
of c has a temporal period of about 2.0 × 10−15 sec. Since
there is one spatial period (wavelength) for each temporal pe-
riod, the fringe shift in wavelengths is the total time delay of
Eq. (23) divided by the temporal period of the light wave:

∆λ =
3.1 × 10−17

2.0 × 10−15 λ ≈ 0.016λ. (24)

This represents a predicted fringe shift of about 1.6% of
a wavelength in the original experiment. It is this value that
Cahill used to predict the non-null results.

We conclude that Cahill made a fatal mistake when he as-
sumed he could ignore the Fresnel drag effects. It is precisely
the ignoring of Fresnel drag that creates the 1.6% difference
in phase. Quoting Cahill, “Of course experimental evidence
is the final arbiter in this conflict of theories.” In that spirit,
we will present the design and results of an experiment that
proves that an index of refraction greater than 1 does not give
non-null results in Michelson-interferometer experiments as
Cahill asserts.

Cahill’s analysis of the raw data from the original MM ex-
periment shows a non-null result which is sidereal in nature
and which agrees, according to Cahill, with his above calcula-
tions. It is beyond the scope of this paper to address the source
of the non-null, sidereal effect found in the raw data. But one
paper that has addressed this issue shows that the very large
drift in the experiment combined with an improper statisti-
cal analysis is entirely responsible for the apparent non-null
result [5].

4 Design of the new experiment

The analysis of the experiment to test Cahill’s results is again
done as if we are an observer in a rest frame where light speed
is isotropic. Since we are constrained to make all of the ac-
tual measurements in the moving frame of our laboratory, we
define the results of the experiment in terms of an invariant
scalar value that will have the same value in all frames. This
is done by measuring the shift of an interference pattern in
units of wavelengths. This is a scalar value that must be the
same in all frames and allows us to make measurements in
the moving frame that are in full agreement with those same
measurements made in the hypothetical rest frame.

As mentioned above, the non-null result that Cahill pre-
dicted is less than 2% of a wavelength. This is much too small
to be measured in an inexpensive, home-built interferometer.
To increase the sensitivity of the experiment, the index of re-
fraction was increased from 1.00029 of air to 1.33 of water.
Of course, the experiment cannot be done completely sub-
merged in water, so a refractive block containing water was
introduced into one of the paths.

Figure 1 shows the physical layout of the experiment. A
laser emits a beam that is split into two separate beams. One
beam travels exclusively through air on its path to the de-
tector. The other beam travels the same distance, but part
of this path passes through a block of refractive material of
length L that slows the wave down. When it exits the refrac-
tive block (RB), it then continues at the normal speed of light
until it is recombined with its sister beam at the detector. Dis-
tilled water with an index of refraction of 1.33 is used for the
refractive block. Unfortunately, using a refractive block is
not the same as performing the entire experiment while im-
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Fig. 1: Layout of experiment.

mersed in a high-refractive medium. Specifically, it compli-
cates the mathematics by introducing refraction in the beam
as it passes through the boundary between the air and the
water. But the complication is worth it because it allows
a large enough fringe shift (according to Cahill’s equations)
that even our inexpensive interferometer is sensitive enough
to measure it.

The wavelength that is emitted from the laser after taking
into account the velocity-dependent slowing of the clocks and
the Doppler shift, is designated as the incident wavelength λi.
At the first beam splitter, one wave goes straight along an un-
refracted path. The other beam gets reflected downward (in
the figure) before reflecting off a second mirror that puts it on
a trajectory that is parallel to the first beam but which passes
through the refractive block. The two beams recombine at
the beam combiner and propagate together to the camera de-
tector. The phase and frequency shifts due to the reflection
of the mirrors and beam splitters are exactly the same for the
two paths and exactly cancel one another so they can be ig-
nored. The wavelength leaving the laser and arriving at the
phase detector is also the same for both paths.

It is the phase relationship between the two beams at the
detector that we are interested in. Since the entire path is
identical for both beams except for the length L of the RB,
we only need to calculate the phase shift that occurs through
the RB and compare it to the phase change that occurs over
this same distance in the other path to account for the entire
phase shift at the detector. All other effects will be identical
on both paths and cannot alter the phase difference caused
by the delay through the RB. By rotating the experiment 90
degrees we can measure the phase shift in each direction. Any
difference between the two directions is a measure of absolute
velocity through space — which Cahill predicts will be non-
zero.

4.1 Velocity and the path of the beam

In this analysis, we are only going to look at the two cases
where the velocity of the laboratory is orthogonal to the beam
and parallel to the beam, respectively. We will be discussing
multiple angles in this analysis. To keep these angles straight,
the following definitions will be used:

1. The symbol φ will be used for the angle between the
velocity vector of the refractive medium (laboratory)
and the light wave path within the medium. It will have
no subscript in the moving frame and a 0 subscript in
the rest frame.

2. The symbol θi will be used for the incident angle of the
wave path at the surface of the refractive block. It is
defined as the angle between the light wave path and
the normal to the refractive surface, which is the stan-
dard definition from geometric optics. It will have a
subscript 0 when measured in the rest frame and no ad-
ditional subscript in the moving frame.

3. The symbol θr will be used for the refracted angle of
the wave path within the refractive block. It is defined
as the angle between the light wave path in the RB and
the line that is normal to the refractive surface, which is
again the standard definition from geometric optics. It
will have a subscript 0 when measured in the rest frame
and no additional subscript in the moving frame.

4. In the case where the velocity is parallel to the line that
is normal to the refractive surface, the θ angles will
have an additional ∥ symbol in the subscript. If the ve-
locity is orthogonal to the normal a ⊥ symbol will be
used. Since the φ angles are by definition between the
light path and the velocity, no subscript is necessary to
indicate velocity direction.

Figure 2 shows a laser diode with a highly divergent beam
that is collimated using an aperture. In actual lasers, a colli-
mating lens is used instead of an aperture because a lens can
capture most of the light. Obviously the aperture loses all of
the light that doesn’t pass through it. But for our purposes
the math and visualization is easier with the aperture and the
principle is the same. The view in Figure 2 is for a laser that
is stationary with respect to the observer.

Figure 3 shows what happens to the path of the beam if
the laser is moving up (orthogonal to beam) in this figure at
velocity v. The laser and aperture position are shown at time
t for an emission that occurred at time 0. Notice that during
the time that a wave front in the beam travels a distance c t
(in vacuum), the aperture and laser move a distance v t. This
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Fig. 2: Laser collimation using an aperture.

Fig. 3: Path of a single wavelet/photon for orthogonal direction.

means that only waves that left the laser at an angle of θi0⊥ (in
the rest frame) make it through the aperture — hence we have
only shown one path in the figure. This angle assures that the
orthogonal component of the velocity of the wave is exactly v
and the parallel velocity of the wave is

√
c2 − v2.

Since every wave leaving the laser that makes it through
the aperture follows a similar path, the resulting beam, which
is made up of all of these individual wavelets, appears to re-
main perfectly aligned with the laser and with the aperture.
The solid red line in Figure 3 shows the path of an individual
wavelet from its emission at the laser surface to its exit from
the aperture. Although the wavelet moves at an angle , the
beam one would see at any instant in time is the collection of
all of the wavelets that have left the laser. A “snapshot” of the
positions of several of these wavelets, each on its own unique
path, is shown in Figure 4 . Notice that the three wavelets that
have been propagating for times t1, t2 and t3 each remain per-
fectly aligned with each other and with the center of the laser
because the aperature assures that their velocity component
in the orthogonal direction is exactly v. Any wavelets with
different orthogonal velocities are blocked by the aperture.

Fig. 4: Snapshot of laser beam for orthogonal direction.

We see that Mother Nature has conspired with light so
that an observer in any frame sees a straight, horizontal beam
going from the center of the laser through the center of the
aperture and arriving at a distant target still centered — just
as it appears when the system is stationary. This assures that
the path of the composite beam relative to the laboratory is
independent of the velocity of the laboratory even though the
individual wavelets are moving at a velocity-dependent angle.

Since the index of refraction of air is so close to 1 and
since the effect of the index of refraction of the refractive
block is so much larger, we are going to simplify the math
by treating the air as if the index of refraction were exactly 1.
From Figure 3, we can see that the sine and cosine of θi0⊥ are
given by

sin θi 0⊥ =
v

c
= β

cos θi 0⊥ =

√
1 − sin2 θi 0⊥ =

√
1 − β2 =

1
γ

 . (25)

4.2 Velocity of light in a moving medium at arbitrary
angle

In the orthogonal direction, we can see that the wavelets enter
the refractive block at an angle. This means that the wavelet
angle will be refracted upon passing through the surface of
the RB. The angle of refraction of a moving block cannot be
determined by Snell’s law alone – it is much more compli-
cated.

Before calculating exactly how a beam refracts in a mov-
ing medium, we will first derive the general term for the ve-
locity of light in a moving medium where the angle between
the wavelet path and the velocity of the medium is an arbi-
trary angle between 0 and π.

In the rest frame of the medium, the geometry is as shown
in Figure 5. The path AB is that of a laser beam propagating a
distance L in a medium with an index of refraction of n. The
source A and destination B are on opposite ends of an arm
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Fig. 5: Beam path at arbitrary angle in rest frame of medium.

of the experiment. The arm and the medium are both moving
in the direction shown at velocity v with respect to the rest
frame. The values given in the figure are for measurements
made by an observer within the moving frame. In this frame,
the time for a wavelet in the beam to travel from the source to
the destination is by definition of the index of refraction n,

∆t =
L n
c
. (26)

Figure 6 shows the path of the same wavelet if the beam
is observed from the rest frame. The dotted lines show the in-
stantaneous positions of the ensemble of wavelets that make
up the beam at two different times. And the angle φ′0 is the an-
gle that the visible composite beam makes with the velocity.
The bold solid line shows the path that an individual wavelet
takes.

In the moving frame, the clocks at A and B are assumed
to have been synchronized using Einstein’s method. As we
derived earlier, synchronizing the clocks in the moving frame
will create a bias between the clocks when observed from the
rest frame:

t0bias =
v L cosφ

c2 . (27)

Taking this into account and also accounting for the fact
that clocks run slower in the moving frame, the time for a
wavelet to propagate from A to B′ in the rest frame is

∆t0 = (∆t − t0bias) γ =
(L n

c
+
v L cosφ

c2

)
γ. (28)

Length contraction in the direction of the velocity causes
the angle φ in the moving frame to increase to φ′0 in the rest

Fig. 6: Wavelet path at arbitrary angle in absolute frame.

frame (beam and wavelet path are the same within the moving
frame). The length of the arm L will decrease in the rest frame
to L0:

L0 = L

√
cos2 φ

γ2 + sin2 φ. (29)

Since lengths do not contract in directions orthogonal to
the velocity,

L sinφ = L0 sinφ′0. (30)

From the right triangle with hypotenuse AB′ in Figure 6,
we get the following relationship for angle φ0:

sinφ0 =
L sinφ
cn0 ∆t0

. (31)

Pythagorean’s Theorem requires that

(cn0∆t0)2 =
(
v∆t0 + L0 sinφ′0

)2
+

(
L0 sinφ′0

)2
. (32)

Using equations (30), (31) and (32) we can solve for cn0
and sinφ0:

cn0 =

√√√√
L2

0

∆t2
0

+ v2 ±
2
√(

L2
0 − L2 sin2 φ

)
v2

∆t0
, (33)

sinφ0 =
L sinφ√√√√

L2
0

∆t2
0

+ v2 ±
2
√(

L2
0 − L2 sin2 φ

)
v2

∆t0

. (34)
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Substituting equations (28) and (29) into these equations,
results in solutions involving only the angle φ in the rest frame
of the medium:

cn0 = c

√
1 − n2 − 1
γ2 (n + β cosφ)2 , (35)

sinφ0 =
sinφ√

γ2 (n + β cosφ)2 − n2 + 1
. (36)

From which we can also calculate the cosine:

cosφ0 =

√
1 − sin2 φ

γ2 (n + β cosφ)2 − n2 + 1
. (37)

Equation (35) is the speed of an individual wavelet as
measured in the rest frame when the medium (i.e. labora-
tory) is moving at velocity v = c β. It demonstrates that there
is not a unique index of refraction n0 = c/cn0 for a moving
medium. The speed of light through the medium is a func-
tion of both the velocity of the medium and the angle which
the beam makes with that velocity. Cahill ignored the “drag”
component and assumed the velocity in the moving medium
was the same c/n as in the stationary medium. This is what
introduced his error.

The angle φ is the angle as measured in the moving frame
between the velocity of the frame and the direction of the
light waves. Equations (36) and (37) describe the angle φ0 at
which the light waves are moving in the rest frame in terms
of φ in the moving frame.

The velocity of the light wavelets can be separated into
two components, one parallel to the laboratory velocity and
one orthogonal to the laboratory velocity. In Figure 6, these
two components are

cn0⊥ = cn0 sinφ0,

cn0∥ = cn0 cosφ0

 . (38)

Substituting equations (35), (36) and (37) into these equa-
tions gives us the expressions for the parallel and orthogonal
components of wavelet velocity in the rest frame:

cn0⊥ =
c
n

 sinφ

γ
(
1 +
β

n
cosφ

)


cn0∥ =
c
n

 cosφ + β n

1 +
β

n
cosφ




. (39)

With the parallel and orthogonal components of the ve-
locity, we know everything about the velocity and direction of
the wavelets within the moving medium. We are now ready
to investigate how this affects the refraction of a beam that is
entering a moving medium as observed from the rest frame.

4.3 Refraction of light entering a moving refractive me-
dium

For our analysis of refraction, we will refer to Figure 7 where
we have added the incident and refracted angles. This figure
again shows a moving refractive medium with index of re-
fraction n as measured in the moving frame. A laser source
is attached to and moving along with the refractive medium.
Both the medium and the laser are moving at velocity v in the
rest frame in the direction shown, which is orthogonal to the
line which is normal to the refractive surface. The line normal
to the refractive surface will be referred to as the normal line.
The medium is shown at two different positions separated in
time. The laser source is shown at three different times.

The dotted lines leaving the laser again show the location
of the ensemble of wavelets that make up the composite visi-
ble laser beam at these times. This is the apparent path of the
laser beam. The bold line shows the path that is actually taken
by an individual wavelet or photon within the beam in prop-
agating from the source to A and then through the medium
to B′.

It is readily apparent that the relationship between the an-
gles is

θr0⊥ =
π

2
− φ0. (40)

This can be expressed as

sinφ0 = cos θr0⊥

cosφ0 = sin θr0⊥

 . (41)

These angles as measured in the moving frame will have
a similar relationship:

sinφ = cos θr⊥
cosφ = sin θr⊥

 . (42)

From Snell’s law, the incident and refracted angles in the
moving frame (i.e. in the rest frame of the RB) are related by

sin θi⊥ = n sin θr⊥. (43)

Substituting this into equations (42) results in

sinφ =

√
1 − sin2θi⊥

n2

cosφ =
sin θi⊥

n

 . (44)

Substituting these into equations (39) gives us the parallel
and orthogonal components of the wave velocity in the rest
frame as a function of the incident angle in the moving frame:

cn0 ∥ =
c
n

 sin θi⊥ + β n2

n + βn sin θi⊥

 (45)
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Fig. 7: Refraction of laser beam upon entering a moving medium.

cn0⊥ =
c
n


n

√
1 − sin2θi⊥

n2

γ
(
n +
β

n
sin θi⊥

)
 . (46)

A similar set of equations can be obtained when the ve-
locity is parallel to the normal line. Although the parallel case
is not shown in the figure, it is easy to see that in this case the
refracted angle is equal to φ0 so that

sinφ = sin θr ∥ =
sin θi∥

n

cosφ = cos θr ∥ =

√
1 − sin2θi∥

n2

 . (47)

Substituting these into equation (39) gives the orthogonal
and parallel components of the wave velocity for the parallel
orientation:

cn0 ∥ =
( c
n

)
n β +

√
1 − sin2θi ∥

n2


1 +
β

n

√
1 − sin2θi ∥

n2

, (48)

cn0⊥ =
( c
n

) sin θi∥

γ

n + β
√

1 − sin2θi∥

n2


. (49)

We now have a complete description of how an incident
wave is refracted when it enters a moving refractive medium.
Equations (45) and (46) govern the refraction if the medium
is moving orthogonal to the normal line. Equations (48) and
(49) govern when the medium is moving parallel to the nor-
mal line.

4.4 Refraction with θi = 0 and velocity orthogonal to
beam

With the general equations derived, we are now ready to an-
alyze the specific situation of this experiment. The incident
angle, as measured in the moving frame (i.e. rest frame of
the medium) is zero whether the direction is orthogonal or
parallel:

θi ∥ = θi⊥ = 0. (50)

Substituting these into the expressions for the wave veloc-
ity components when the velocity is orthogonal to the normal
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line (Equations (45) and (46)), we get

cn0 ∥ =
c
n

(
β n2

n

)
= v, (51)

cn0⊥ =
c
n

n
√

1
γ (n)

 = c
n γ
. (52)

And for the case when the velocity is parallel to the nor-
mal line (Equations (48) and (49)), we have

cn0 ∥ =
( c
n

) (n β + 1)

1 + βn
=

c + c n β
n + β

=
c (c + n v)

c n + v
, (53)

cn0⊥ = 0. (54)

We already derived this expression for the parallel case in
equation (14). We repeat it here to show that equations (48)
and (49) are consistent with the earlier derivation.

The angle of propagation in the parallel case is 0, but in
the orthogonal case it is defined by

sinφ0 =
cn0 ∥√

cn0 ∥2 + cn0⊥2
=

v√
v2 +

c2

n γ2

. (55)

Equations (51) and (52) are quite remarkable. Equation
(51) shows that the velocity component of the wave veloc-
ity that is parallel to the medium velocity v is always exactly
equal to v. It is completely independent of the index of refrac-
tion n. This is what guarantees that the path that a wave takes
through the medium will not change relative to the medium
no matter how fast the source and medium are moving or no
matter what the index of refraction is. This is why observers
in the medium cannot detect any change in the trajectory of
the waves when their velocity changes.

Equation (52) gives the component of wave speed that is
orthogonal to the velocity of the medium. This is the term
that guarantees that the time measured for the wave to pass
through the medium is always measured to be c/n in the mov-
ing frame (the rest frame of the medium). For example, if the
laboratory is at rest the velocity of a wave is c/n, and the time
to pass through a block that is of length L is L n/c. If the lab-
oratory is then accelerated to a velocity of v in the orthogonal
direction, the clocks in that frame slow so that the time L n/c
becomes L n γ/c. But from equation (52) we see that the or-
thongonal component of the wave speed slows down by the
same factor of γ so that the time measured in the laboratory
to traverse length L remains at L n/c.

5 Calculating time delays and phase shifts

Knowing the incident wavelengths, velocities and directions,
we can calculate the change in phase shift that occurs with
velocity. The only place that the phase can be different be-
tween the two paths is when the beam is passing through

the refractive block. The distance that the unrefracted beam
races ahead of the refracted wave while the refracted wave is
slowed down by the RB is proportional to the phase difference
between the two paths.

We will begin by analyzing the parallel direction where
the velocity of the medium and velocity of the light beam are
aligned.

5.1 Time delay and phase shift with light beam parallel
to velocity

In this case, the laboratory is moving at velocity v with the
light beam parallel to the velocity. The length of the RB will
contract to

L0 ∥ =
L
γ
. (56)

The velocity of the light within the refractive material,
with respect to the rest frame, is given by equations (53)
and (54):

cn0 ∥ =
c
n

1 + β n

1 +
β

n

 = c (c + n v)
c n + v

cn0⊥ = 0


. (57)

The refractive block itself is moving at velocity v, so the
effective velocity of the light with respect to the RB is

cn0 ∥ e = cn0 ∥ − v =
c (c + n v)

c n + v
− v = c

γ2

(
1

n + β

)
. (58)

At this relative velocity, the total time it takes a wave to
propagate through the RB is

∆t0 ∥ =
L0 ∥

cn0 ∥ e
=

L

γ
c
γ2

(
1

n + β

) = L (n + β) γ
c

. (59)

The total distance a wavelet propagates in the parallel di-
rection while inside the RB is measured in the rest frame to
be

∆x0 ∥ =
L
γ
+ v∆t0 ∥ =

L
γ
+ L β (n + β) γ = L γ (1 + nβ) . (60)

The total distance the unrefracted beam propagates in this
same time is

∆x0u ∥ = c∆t0 ∥ = L (n + β) γ. (61)

The difference between these two distances for the re-
fracted and unrefracted paths is the spatial phase shift that oc-
curred between the two waves as a result of the path through
the RB:

∆x∥ = ∆x0 ∥ − ∆x0u ∥ = L γ (n − 1) (1 − β) . (62)
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Dividing this difference by the wavelength of the incident
wave gives the phase shift in wavelengths in the parallel ori-
entation:

k∥ =
L
λi0 ∥
γ (n − 1) (1 − β) . (63)

This is a scalar value. Like the number of marbles in a
bowl, it is the same for all observers in all frames. It rep-
resents the phase difference between the refracted path and
the unrefracted path in the parallel direction as measured in
wavelengths.

Since it is an invariant, we should be able to verify that
it is the same value as measured in the moving frame. The
phase shift in that frame that would be expected is

k∥ =
(
c − c

n

)
∆t
λi
=

(
c − c

n

) ( L n
λi c

)
=

L
λi

(n − 1) . (64)

To show that equations (63) and (64) are, in fact, the
same scalar value, we note that the frequency of the laser
source will be reduced in the rest frame and there will also
be a Doppler shift of the wavelength in that frame. Thus, the
wavelength of the incident wave in the rest frame is

λi0 ∥ = λi γ (1 − β) = λi

√
(1 − β)2

(1 + β) (1 − β) = λi

√
1 − β
1 + β

. (65)

Substituting this into equation (63) gives the total phase
shift in wavelengths between the two paths in the parallel ori-
entation:

k∥ =
L
λi

√
1 + β
1 − β γ (n − 1) (1 − β) = L

λi
(n − 1) . (66)

This is, of course, the same scalar value measured in the
moving frame in equation (64). The interesting thing about
this number is that it is completely independent of the veloc-
ity of the medium. That is just another way of saying that
no matter what the velocity of the frame, all observers will
always measure exactly the same phase shift.

Notice that k is a very large number since L is measured
in meters and the wavelength is measured in hundreds of
nanometers. This number is not measurable by the interfer-
ometer. It is only able to measure differences in phase. Fortu-
nately it is the difference between the orthogonal and parallel
phase shifts that we are interested in. We will now repeat the
above procedure to determine the phase shift for the orthogo-
nal direction.

5.2 Time delay and phase with the light beam orthogo-
nal to velocity

When the light beam is orthogonal to the velocity of the labo-
ratory, no contraction occurs and the length of the RB remains
at its rest length of L. Since the individual wavelets are mov-
ing through the RB at an angle, the time that it takes for an

individual wavelet to travel through the block is determined
by the component of its velocity that is parallel to the normal
line.

This is obtained from equation (52):

cn0⊥ =
c

n γ
. (67)

Of course, it propagates a distance L in this direction at
this speed. Since the velocity of the laboratory is orthogonal
to the RB, this is also the velocity of a wave relative to the
RB. The total time for a wave to propagate through the RB is

∆t0⊥ =
L

cn0⊥
=

L n γ
c
. (68)

During this same time, the unrefracted beam is propagat-
ing at speed c but not exactly orthogonal. It’s velocity in the
orthogonal direction is also given by equation (52), but with
n = 1, since it is moving through vacuum:

cn0u⊥ =
c
γ
. (69)

The distance that the unrefracted beam travels in this time
is

∆x0u⊥ =
c
γ
∆t0⊥ =

c
γ

L n γ
c
= L n. (70)

The difference between the two distances is

∆x⊥ = ∆x0u⊥ − ∆x0⊥ = n L − L = L (n − 1) . (71)

We divide this by the wavelength in the orthogonal direc-
tion to get the total phase shift:

k⊥ =
L
λi 0⊥

(n − 1) . (72)

For calculating λi0⊥ we must again account for the longer
wavelength due to the slowing of the frequency source. While
there is no Doppler shift orthogonal to a moving source, we
must consider the change in wavelength due to the angle at
which it is propagating in the rest frame. So

λi 0⊥ = λi γ cos θi 0⊥. (73)

Since this wavelength is measured in vacuum while the
wave is moving at velocity c, from equation (69), we see that

cos θi 0⊥ =
c/γ
c
=

1
γ
. (74)

Thus, λ0⊥ = λi and the total phase shift in wavelengths
from equation (72) becomes

k⊥ =
L
λi

(n − 1) . (75)

Comparing this to the phase shift for the parallel case in
equation (66), we see that they are identical. We have now
proven mathematically that regardless of whether or not the
experiment is performed in vacuum or in a refractive medium
there is no difference in phase between the two orientations
— it will always be a null experiment.
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6 Numerical values of Cahill’s predictions

Cahill, on the other hand, predicted that there will be a mea-
surable phase difference. Cahill predicts in his equation (11)
in [1] that the time difference between the two paths will ap-
proximate to his equation (12). Again using a “C” in the sub-
scripts to indicate Cahill’s predictions, his time difference is

∆tC ≈ L n
(
n2 − 1

) (β2

c

)
. (76)

But this is for a two-way experiment. Our experiment is
a one-way measurement. Cahill’s one-way time in the paral-
lel direction through the refractive block is derived from his
equations (1) and (2):

∆t0 ∥C =
L n
c

(
1

γ (1 − n β)

)
. (77)

His time in the orthogonal direction is given in his equa-
tion (8) in [1]:

∆t0⊥C =
L n
c

 1√
1 − n2 β2

 . (78)

Both of these times are as measured in the rest reference
frame and represent the total time between a wavelet entering
the refractive block until it exits.

According to Cahill, the speed of light in the refractive
material is approximately c/n in both cases and Fresnel drag
is insignificant. In the orthogonal case, from his Figure 1 (b)
this requires that the direction of the wave is actually at an
angle that satisfies the equations

sin θr0⊥C =
v n
c

cos θr0⊥C =

√
1 −

(
v n
c

)2
=

√
1 − n2 β2

 . (79)

Therefore the distances traveled in the parallel and or-
thogonal directions during the times of equations (77) and
(78) are respectively

∆x0 ∥C =
c
n
∆t0 ∥ =

L
γ (1 − n β)

∆x0⊥C =
c
n
∆t0⊥ cos θr0⊥

= L

 1√
1 − n2β2

 √
1 − n2 β2 = L


. (80)

On the other hand, the distances traveled by the light in
the unrefracted paths in these times are

∆x0u ∥C = c∆t0 ∥ =
L n

γ (1 − n β)

∆x0u⊥C = c∆t0⊥ cos θi0⊥ =
L n
γ

 1√
1 − n2 β2


 . (81)

For each direction, respectively, the differences between
the refracted and unrefracted lengths are

∆x∥C = ∆x0u ∥C − ∆x0 ∥C =
L

γ (1 − n β)
(n − 1)

∆x⊥C = ∆x0u⊥C − ∆x0⊥C = L

 n

γ
√

1 − n2β2
− 1


 . (82)

Using equation (65) for the parallel incident wavelength
(orthogonal incident wavelength is unchanged), we can con-
vert these distances to wavelengths:

k∥C =
∆x∥C
λi0 ∥C

=
L

γ λi (1 − nβ)
(n − 1)

√
1 + β
1 − β

k⊥C =
∆x⊥C

λi0⊥C
=

L
λi

 n

γ
√

1 − n2β2
− 1




. (83)

The total phase shift predicted by Cahill’s equations is the
difference between these two values, which simplifies to

∆kC =
L

λi (1 − n β)

n − β − n
γ

√
1 − n β
1 + n β

 . (84)

In this experiment

L = 1 m n = 1.33 λi = 650 nm. (85)

Cahill claims that the original MM experiment measured
a velocity of about 360 km/sec. Thus,

v = 3.6 × 105 ⇒ β = 0.0012. (86)

Substituting all these values into equation (84) gives us
the phase shift that Cahill predicts for this experiment:

∆kC = 1421 wavelengths. (87)

This is an enormous phase difference which would easily
be detected by this experiment if it existed.

7 Results of experiment

The present experiment is capable of measuring phase differ-
ences with a resolution of about 0.1 wavelengths. The phase
shift was measured between a north-south orientation and an
east-west orientation each hour for 12 hours. Had there been
any significant velocity difference in any direction, one or
more of these measurements would have been able to de-
tect it.

The peak phase difference (after averaging) was measured
to be 0.1 wavelengths at 10 a.m. This is within the error toler-
ance of the experiment and is therefore not statistically differ-
ent from zero. After averaging the 10 measurements at each
time, the measured phase shifts in wavelengths are graphed
in Figure 8.
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Fig. 9: Overview of interferometer system.

Fig. 8: Measured phase shift.

The results of this experiment are the “final arbiter” and
clearly rule in favor of the derivation in this paper and against
Cahill’s derivation. The measured phase shifts are 4 orders
of magnitude less than those predicted by Cahill and they are
within the measurement tolerances of the null prediction of
this paper. We can conclude that the mathematical derivations
in this paper are correct and that it is impossible to detect
the absolute velocity of the earth using MM type experiments
regardless of the index of refraction of the medium used.

8 Description and procedures of experiment

Figures 9, 10 and 11 show actual annotated photographs of
the interferometer system used in the experiment. It is ar-
ranged according to the layout shown in Figure 1. Not shown
in these pictures are two polarizers — one at the output of the
laser and one at the input to the camera. These were rotated
relative to one another to attenuate the light to just the right
brightness so that the camera image was optimized for visu-
alization of the fringe pattern. Without them the image was
too bright and the camera’s CMOS detector bloomed to an
all-white image.

Fig. 10: Closeup of camera/detector end.

Fig. 11: Closeup of laser diode end.

8.1 Measurement considerations

The fringe shifts are measured by displaying the output of the
camera on a computer monitor. Figure 12 shows the cam-
era output plus two drafting triangles that were placed on the
monitor as references to assist in measuring fringe movement.

The entire system is mounted on a 4-foot (1.22 m) alu-
minum base that is painted black. The thermal expansion co-
efficient of aluminum causes it to expand about 29 µm per
degree C. That is 45 wavelengths of light per degree C or
about one half wavelength for each hundredth of a degree C.
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Fig. 12: Fringe pattern output from camera.

An even larger sensitivity occurs due to the fluctuations in
barometric pressure which change the index of refraction of
the air. Because of this extreme sensitivity to temperature and
pressure, there is a constant drifting of the fringe patterns that
must be taken out of the measurement.

To minimize the thermal drift, the following mitigating
techniques were employed:

1. The entire interferometer was placed inside a cardboard
tubular shipping container and sealed on both ends.

2. The system was allowed to warm up and reach a stable
temperature prior to making any measurements.

3. The measurements were taken inside a room with no
outside walls or windows.

4. The heating and air conditioning system was turned off
so that only slow, convection heating from outside the
building could affect the temperature inside the room.

5. A 4 foot wooden dowel was used to rotate the system
so that human body temperature was kept away from
the system.

6. The system was rotated very slowly (about 30 seconds
for a 90 degree rotation) to minimize the cooling and
pressure effects of the air flow.

By doing all of these things, the drift was reduced to signifi-
cantly less than 1 fringe per minute (probably mostly due to
barometric pressure drift), which was easy to remove from
the measurements.

Mechanical disturbances were minimized by placing the
system on pillows and attaching it to a rotatable platform
with a bungee cord pressing it into the pillows. The plat-
form is made from an aluminum trailer hitch-mounted cargo
carrier with the hitch attachment removed. The platform was
mounted to the base of a rotating office chair (after removing
the seat) so that it could be rotated very smoothly and with lit-
tle effort. The pillows prevented any residual vibrations of the
platform from propagating to the interferometer. The result is
that almost no vibrations affected the fringes so they were
very easy to follow as they drifted slowly across the screen.

Fig. 13: Complete system with vibrational and thermal mitigation.

Figure 13 shows the system after employing these temper-
ature and vibration mitigating techniques. The interferometer
is sealed inside the tubular cardboard shipping container with
the camera output coming through a small hole in the back of
the container into the monitor.

8.2 Measurement procedure

To improve accuracy and resolution, 10 measurements were
made at 1 hour intervals for 12 hours – which corresponds to
10 measurements every 15 degrees of earth’s rotation for 180
degrees total rotation. The measurements were performed in
Longmont, Colorado between 7 am and 6 pm on September
22 and 23, 2015. The following procedure was used:

1. Turn on the system and let it warm up for 2 hours.

2. At the top of each hour, position the system in a north-
south orientation.

3. Place the edge of a triangle in the middle of the fringe
nearest to the center of the screen.

4. Very slowly rotate the system clockwise 90 degrees un-
til it reaches an east-west orientation. (about 30 sec-
onds)

5. Estimate the movement of the fringe to the nearest 0.1
wavelength – including any drift that occurred. Record
this as phase 1.

6. Reposition the edge of the triangle in the middle of the
center fringe.

7. Very slowly rotate the system counterclockwise to re-
turn to the north-south orientation.

8. Estimate the movement of the fringe to the nearest 0.1
wavelength – including any drift that occurred. Record
this as phase 2.

9. Repeat steps 2 to 8 until 10 pairs of phase 1 and phase
2 measurements have been recorded.

10. Wait until the top of the next hour and repeat steps 2 to
9 until data for 12 hours have been recorded.
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After all data were recorded, the phase shift of each measure-
ment was calculated as

PhaseShift =
1
2

(Phase1 − Phase2) . (88)

This removes any drift from the measurement because
it will be constant in both phases.∗ For example, suppose
Phase1 includes a real shift of k and a drift of d. Then when
returning, Phase2 will measure a real shift of −k and the same
drift d. The phase shift recorded will be

PhaseShiftR =
(k + d) − (−k + d)

2
= k. (89)

This was done for each of the 10 measurements at each
hour. The 10 measurements for each hour were averaged.
This improves the resolution of the final answer and averages
out drift errors due to each “slow” rotation not being exactly
the same amount of time. These results are tabulated in Table
1 and were graphed earlier in Figure 8.

Time Average Phase Shift

7:00 0.01
8:00 0.06
9:00 −0.03

10:00 −0.10
11:00 −0.10
12:00 0.00
13:00 0.00
14:00 −0.01
15:00 0.02
16:00 0.02
17:00 0.04
18:00 −0.06

Table 1: Measured phase shifts.

9 Conclusions

We have now shown both mathematically and experimentally
that Michelson-Morely-type interferometer experiments can-
not detect the absolute speed of the earth through space re-
gardless of the medium through which the light is propagat-
ing. This experiment and the accompanying mathematical
analysis show that the conspiracy between Mother Nature and
light is complete. They have conspired to make it impossible
to detect our absolute speed using light signals.
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The dark matter problem in the context of spiral galaxies refers to the discrepancy be-
tween the galactic mass estimated from luminosity measurements of galaxies with a
given mass-to-luminosity ratio and the galactic mass measured from the rotational speed
of stars using the Newton’s law. Newton’s law fails when applied to a star in a spiral
galaxy. The problem stems from the fact that Newton’s law is applicable to masses rep-
resented as points by their barycenter. As spiral galaxies have shapes similar to a disk,
we shall correct Newton’s law accordingly. We found that the Newton’s force exerted
by the interior mass of a disk on an adjacent mass shall be multiplied by the coefficient
ηdisk estimated to be 7.44 ± 0.83 at a 99% confidence level. The corrective coefficient
for the gravitational force exerted by a homogeneous sphere at it’s surface is 1.00±0.01
at a 99% confidence level, meaning that Newton’s law is not modified for a spherical
geometry. This result was proven a long time ago by Newton in the shell theorem.

1 Introduction

Dark matter is an hypothetical type of matter, which refers
to the missing mass of galaxies, obtained from the difference
between the mass measured from the rotational speed of stars
using the Newton’s law and the visual mass. The visual mass
is estimated based on luminosity measurements of galaxies
with a given mass-to-luminosity ratio.

The problem of galaxy rotational curves was discovered
by Vera Rubin in the 1970s [1–3], with the assistance of the
instrument maker Kent Ford. In Figure 1, we show the ro-
tational velocity curve of stars versus the expected rotational
velocity curve from visible mass as a function of the radius of
a typical spiral galaxy. According to [4], the estimated dark
matter to visible matter ratio in the universe is about 5.5.

It has been hypothesized that dark matter is made of in-
visible particles which do not interact with electromagnetic
radiations. The hunt for the dark matter particle has already

Fig. 1: The problem of galaxy rotational curves, where (1) is the ac-
tual rotational velocity curve of stars; and (2) the expected rotational
velocity curve from the visible disk.

begun. The Xenon dark matter experiment [5] is taking place
in a former gold mine nearly a mile underground in South
Dakota. The idea is to find hypothetical dark matter particles
underneath the earth to avoid particule interference from the
surface.

Other experiments seek dark matter in space. In 2011,
NASA lauched the AMS (Alpha Magnetic Spectrometer) ex-
periment, a particle detector mounted on the ISS (Interna-
tional Space Station) aimed at measuring antimatter in cos-
mic rays and search for evidence of dark matter. In December
2015, the Chinese Academy of Sciences lauched the DAMPE
(Dark Matter Particle Explorer), a satellite hosting a powe-
ful space telescope for cosmic ray detection and investigating
particles in space and hypothetical dark matter.

An investigation of the amount of planetary-mass dark
matter detected via gravitational microlensing concluded that
these objects only represent a small portion of the total dark
matter halo [6]. The study of the distribution of dark matter
in galaxies led to the development of two models of the dark
matter halo. These models are known as the dark matter halo
profile of Navarro, Frenk and White [7], and the Burkert dark
matter halo profile [8, 9].

Dark matter is a hot topic in particle physics, and has led
to the development of various theories. According to [10],
the favoured candidates for dark matter are axions, supersym-
metric particles, and to some extent massive neutrinos. The
Majorana fermion has also been proposed as a candidate for
dark matter [11, 12]. Other candidates for dark matter would
be dark pions, a set of pseudo-Goldstone bosons [13]. Many
alternatives have been proposed including modified Newto-
nian gravity. Mordehai Milgrom proposed the MOND the-
ory, according to which Newton’s law is modified for large
distances [14, 15]. Moffat proposed a modified gravity the-
ory based on the action principle using field theory [16, 17].
James Feng and Charles Gallo proposed to model galaxy ro-
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Fig. 2: Force exerted by an infinitesimal mass dM of the disk on a
mass m located at the edge of the disk using polar coordinates. The
radius of the disk is R. Let the mass dM be at a distance r from the
center of the disk. Let α be the angle between the two axis passing
by the center of the disk in the direction of the two masses dM and m.

tational curves by applying Newtonian dynamics to a rotating
thin disk [18, 19]. Their approach is similar to the route we
undertake in the current work, although the latter was done
independently.

According to Pavel Kroupa, the dark matter crisis is a
major problem for cosmology [20]. In addition, he states
that the hypothesis that exotic dark matter exists must be re-
jected [21]. In the present study we find that dark matter is
mainly a problem of geometry because Newton’s law is ap-
plicable to masses which can be approximated by a point in
space. Below, we compute the corrective coefficient to New-
ton’s law in a disk and in a sphere.

2 Calculation of the gravitational force in a disk

The Newton’s law states that the gravitational force between
two bodies is expressed as follows:

FNewton =
G M m

R2 , (1)

where G is the gravitational constant, M and m the respective
masses of the two bodies in interaction, and R the distance
between the barycenters of the two masses.

The shape of spiral galaxies allows us to use the gravita-
tional force computed for a disk. Let us assume a homoge-
neous disk of surface density ρs, and radius R. A mass m is
located at the edge of this disk at a distance R from the center
of the disk.

In Figure 2, we represent the force exerted by an infinites-
imal mass dM of the disk on the mass m using polar coordi-
nates. Because of the symmetry of the disk with respect to

Fig. 3: Triangle to compute the projection of the force exerted by the
infinitesimal mass dM on mass m on the axis passing by the center
of the disk to the mass m

the axis passing between its center and the mass m, we need
to compute the projection of the force exerted by the infinites-
imal mass dM on this axis. For this purpose we apply basic
trigonometric rules (see figure 3). For convenience, we con-
sider the polar coordinates (r, α) to describe the position of
dM, where r is the radial distance, and α the angle between
the mass dM and an arbitrary direction as viewed from the
center of the disk.

Let us say x is the distance between the mass dM and m.
From trigonometry we calculate x as follows:

x2 = r2 sin2 α + (R − r cosα)2 . (2)

Hence, we get:

x2 = r2 + R2 − 2Rr cosα . (3)

Let β be the angle between the center of the disk and the
mass dM as viewed from the mass m. The angle β is calcu-
lated as follows:

cos β =
R − r cosα

x
. (4)

By Newton’s law, the infinitesimal force exerted by dM
on m projected on the axis passing through the center of the
disk and the mass m is as follows:

dF =
G m dM

x2 cos β . (5)

Combining (4) and (5), we get:

dF =
G m dM

x3 (R − r cosα) . (6)

Combining (3) and (6), we get:

dF =
G m dM (R − r cosα)(
r2 + R2 − 2Rr cosα

) 3
2

. (7)
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Fig. 4: Spherical coordinate system, where r is the radial distance, θ
the polar angle, and φ the azimutal angle.

Because we are using polar coordinates, the surface ele-
ment dA is as follows:

dA = r dr dα . (8)

To obtain the infinitesimal mass dM, we multiply the in-
finitesimal surface dA by the surface density ρs; hence, we
get:

dM = ρs r dr dα . (9)

Therefore, the infinitesimal force dF is as follows:

dF =
ρs G m

(
Rr − r2 cosα

)
(
r2 + R2 − 2Rr cosα

) 3
2

dr dα . (10)

Because the total mass of the disk is M = ρs π R2, we get:

dF =
G M m
πR2

(
Rr − r2 cosα

)
(
r2 + R2 − 2Rr cosα

) 3
2

dr dα . (11)

The total force F exerted by the disk on the mass m is
obtained by the following integral:

F =
G M m
πR2

∫ R

r=0

∫ 2π

α=0

(
Rr − r2 cosα

)
(
r2 + R2 − 2Rr cosα

) 3
2

dr dα . (12)

We rearrange the terms in the integral to obtain:

F =
G M m
πR2 ×

×
∫ R

r=0

∫ 2π

α=0

R2
(

r
R
−

( r
R

)2
cosα

)
R3

(( r
R

)2
+ 1 − 2

( r
R

)
cosα

) 3
2

dr dα . (13)

Hence:

F =
G M m
πR3 ×

×
∫ R

r=0

∫ 2π

α=0

(
r
R
−

( r
R

)2
cosα

)
(( r

R

)2
+ 1 − 2

( r
R

)
cosα

) 3
2

dr dα . (14)

We apply the change of variable u = r
R , hence dr = R du.

Therefore, we get:

F =
G M m
πR2

∫ 1

u=0

∫ 2π

α=0

(
u − u2 cosα

)
(
u2 + 1 − 2u cosα

) 3
2

du dα . (15)

From (15), we see that in a disk, Newton’s force FNewton =
G M m

R2 needs to be multiplied by the following coefficient:

ηdisk =
1
π

∫ 1

u=0

∫ 2π

α=0

(
u − u2 cosα

)
(
u2 + 1 − 2u cosα

) 3
2

du dα . (16)

3 Calculation of the gravitational force in a sphere

Let us consider a homogeneous sphere of radius R and aver-
age mass density ρ. We consider an infinitesimal mass dM
of the sphere represented by its spherical coordinates (r, θ, φ),
where r is the radial distance, θ the polar angle, and φ the az-
imuthal angle (see Figure 4). Let the volume of the sphere be
defined by the following boundaries: r ∈ [0,R], θ ∈ [0, π],
and φ ∈ [0, 2π]. We assume that a mass m is located at the
surface of this sphere on the x-axis.

In Cartesian coordinates we have x = r sin θ cosφ, y =
r sin θ sinφ and z = r cos θ. Hence, the distance x between the
mass dM and m is as follows:

x =
√

(R−r sin θ cosφ)2+r2 sin2 θ sin2 φ+r2 cos2 θ. (17)

Let β be the angle as viewed from the mass m between the
direction of the center of the sphere and the mass dM. Hence,
we get:

cos β =
R − r sin θ cosφ

x
. (18)

The volume element in spherical coordinates is as fol-
lows:

dV = r2 sin θ dθ dφ dr . (19)

Therefore, the infinitesimal force exerted by dM on m
projected in the axis passing through m and the center of the
sphere is as follows:
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dF =
G m ρ r2 sin θ cos β

x2 dθ dφ dr =
G m ρ r2 sin θ (R − r sin θ cosφ)

x3 dθ dφ dr . (20)

Let M = ρ 4
3πR

3 be the total mass of the sphere, hence:

F = G m M
3

4πR3

∫ R

r=0

∫ π

θ=0

∫ 2π

φ=0

r2 sin θ (R − r sin θ cosφ)(
R2 + r2 sin2 θ cos2 φ − 2Rr sin θ cosφ + r2 sin2 θ sin2 φ + r2 cos2 θ

) 3
2

dθ dφ dr . (21)

We rearrange the terms in the integral to obtain a function of ratios of r/R, and apply the substition u = r
R ; hence, we get:

F =
G m M

R2

3
4π

∫ 1

u=0

∫ π

θ=0

∫ 2π

φ=0

u2 sin θ (1 − u sin θ cosφ)(
1 + u2 sin2 θ cos2 φ − 2u sin θ cosφ + u2 sin2 θ sin2 φ + u2 cos2 θ

) 3
2

dθ dφ dr . (22)

Therefore, the corrective coefficient to Newton’s law in a sphere is as follows:

ηsphere =
3

4π

∫ 1

u=0

∫ π

θ=0

∫ 2π

φ=0

u2 sin θ (1 − u sin θ cosφ)(
1 + u2 sin2 θ cos2 φ − 2u sin θ cosφ + u2 sin2 θ sin2 φ + u2 cos2 θ

) 3
2

dθ dφ dr . (23)

4 Numerical evaluation of the gravitational corrective
coefficients

Because the integrals in (16) and (23) do not have a known
closed-form solution, we need to evaluate them numerically.
Monte Carlo simulation is an appropriate method for com-
puting multidimentional integrals. Using Monte Carlo simu-
lation we can compute both an estimate of the integral and its
standard deviation.

4.1 Numerical evaluation of the double integral over the
disk

Let us consider the integration of a function f (r, α) over a disk
of radius R in polar coordinates, where r is the radius and α
an angle from a reference direction. The integral to evaluate
is expressed as follows:∫ 2π

0

∫ R

0
f (r, α) r dr dα . (24)

We shall apply the following change of variables:

α = 2πu1 , (25)

and
r = R

√
u2 , (26)

where u1 and u2 are two independent random variables of uni-
form distribution over [0, 1]. This change of variables gives a
uniform distribution on the disk of radius R.

Let N be the number of times we generate the random set
(u1, u2). Hence, the integral of f (r, α) over the disk converges
towards the following estimate for N large:

I = πR2
∑N

1 fi
N
, (27)

where fi is the function f (r, α) evaluated for each draw of the
random set (u1, u2) with the change of variables (25) and (26).

Because the variance of a random variable X is given by
Var(X) = E[X2] − (E[X])2 and the variance of the sample
mean is Var(X̄) = Var(X)

N , the variance of the estimate is com-
puted as follows:

Var(I) =
π2R4

∑N
1 fi2

N
−

πR2
∑N

1 fi
N

2

N
. (28)

The standard deviation of the estimate of ηdisk is equal to
the square root of the variance of the estimate of the double
integral on the disk divided by π. To evaluate the integral in
(16), we used the Mersenne Twister pseudo-random number
generator [22] with N= 1.2×1010. We obtained ηdisk = 7.44
with standard deviation of 0.320.

4.2 Numerical evaluation of the triple integral over the
sphere

As for the disk, let us use Monte Carlo simulation to evaluate
the triple integral of f (r, θ, φ) over the sphere of radius R in
the spherical coordinate system. The integral to evaluate is
expressed as follows:∫ R

0

∫ π

0

∫ 2π

0
f (r, θ, φ) r2 sin θ dφ dθdr . (29)

For this pupose we generate a set of three independent
random variables (u1, u2, u3), each with a uniform distribution
over the interval [0, 1]. We apply the following change of
variables, which gives a uniform distribution over the sphere:

θ = 2 arcsin
(√

u1

)
, (30)
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and
φ = 2πu2 , (31)

and
r = R u

1
3
3 . (32)

Let N be the number of time we generate the random set
(u1, u2, u3). Hence, the triple integral over the sphere con-
verges towards the following estimate for N large:

I =
4πR3

3

∑N
1 fi
N
, (33)

where fi is the function f (r, θ, φ) evaluated for each draw of
the random set (u1, u2, u3) using the change of variables (30),
(31) and (32).

The variance of the estimate is computed as follows:

Var(I) =

(
4πR3

3

)2 ∑N
1 f 2

i

N
− 4πR3

3

∑N
1 fi
N

2

N
. (34)

The standard deviation of the estimate of ηsphere is equal
to the square root of the variance of the estimate of the triple
integral on the sphere multiplied by 3

4π . To evaluate the in-
tegral in (23), we used the Mersenne Twister pseudo-random
number generator with N= 1×108. We obtained ηsphere = 1.00
with standard deviation of 3.85×10−3.

5 Interpretation

In the present study, we have solved the dark matter puzzle
in the context of spiral galaxies by considering the geome-
try of massive bodies. Dark matter is a hypothetical mass
introduced to fill the discrepancy between galaxy mass as
measured from the rotational speed of stars and visible mass.
Isaac Newton proved the shell theorem [23], which applies to
objects of spherical geometry. The shell theorem states that:

1. A spherical body affects external objects gravitation-
ally as though all of its mass were concentrated in a
point at its barycenter.

2. For a spherical body, no net gravitational force is
exerted by the external shell on any object inside the
sphere, regardless of the position.

Because spiral galaxies have shapes which can be approx-
imated by a disk, the distribution of matter will directly affect
the perceived gravitational force for a mass rotating on such
a disk, and the shell theorem does not apply. By considering
an interior mass distributed in space according to an idealised
homogeneous disk, we found that Newton’s law is corrected
by a multiplicative coefficient. This coefficient is estimated
to be about 7.44 based on our calculations above of the dark
matter to visible mass ratio of 5.5. This coefficient can be in-
terpreted as if the mass of the disk was excentered towards the
object perceiving it. In our calculations, we only considered

the interior mass of the disk for radii below the position of the
object. For an object located on the disk, the outer mass of
the disk for radii above of the position of the object may also
exert a gravitational force of opposite direction on the object,
mitigating the gravitational force exerted by the interior of the
disk. This effect which was not quantified should create the
asymptotic behavior for galaxy rotational curves when mov-
ing far away from the galaxy’s central bulge.

Furthermore, for a spiral galaxy, the mass density may in-
crease as we move closer to the center of the disk, causing a
departure from the idealised homogeneous disk. In addition,
the closer we move towards the central supermassive black
hole, which is spherical, the more the interior mass tends
towards a sphere and the gravitational corrective coefficient
converges towards unity. The shift in the gravitational correc-
tive coefficient at different radii on the galactic disk ought to
explain the observed shape of galaxy rotational curves.

Let us illustrate the impact of the gravitational coefficient
we found on the mass of the Milky Way. The centripetal force
of a star in orbit is expressed as Fc =

mv2
R , where m is the

mass of the star, v the tangential velocity and R the radius
to the center of the galaxy. Hence, the interior mass of the
galaxy for a given star is expressed as M = Rv2

ηG , where v = wR
with w the angular velocity, η the gravitational coefficient,
and G the gravitational constant. The apparent mass of the
Milky Way was estimated to be around 6.82×1011 M⊙ [24].
Let us approximate the Milky Way by a homogeneous disk;
therefore, the gravitational coefficient at the periphery of the
disk is about η = 7.44. This leads to an intrinsic mass of the
Milky Way of 9.17×1010M⊙.

6 Conclusion

To address the discrepancy between galaxy mass estimated
from the rotational velocity of stars and visual mass estimated
from luminosity measurements, the existence of dark matter
was hypothesized. A number of approaches have taken to
hunt for both the dark matter particle and modified gravity.
For instance, Milgrom proposed that Newton’s law should be
modified for large distances. Dark matter remains an unre-
solved problem challenging cosmology and particle physics.

In the present study, we propose a geometrical approach
as Newton’s law applies to masses that can be approximated
by a point in space corresponding to their barycenter. As spi-
ral galaxies have shapes close to a disk, we derived the cor-
rective coefficient to Newton’s law in an idealised disk of ho-
mogeneous mass distribution. We found that the Newton’s
law in a homogeneous disk shall be multiplied by the coef-
ficient ηdisk estimated to be 7.44 ± 0.83 at a 99% confidence
level, which fills the dark matter gap in galaxy haloes. We
conclude that dark matter in spiral galaxies is a problem of
geometry, and that Newton’s law needs to be corrected to ac-
count for the geometry of the mass. For a spherical geometry,
we found that the corrective gravitational coefficient ηsphere is
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1.00 ± 0.01 at a 99% confidence level.
This means that the Newton’s law is not modified for

spherical geometry, which was proven a long time ago by
Newton.
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A new principle of spacetime black hole equivalence (SBHEP) is proposed. In addition
to Einstein’s general relativity and the cosmological principle, the SBHEP principle
provides the third base for the black hole universe model that was recently developed
by the author in attempt to model the universe, explain existing observations, and over-
come cosmic problems and difficulties without relying on a set of hypothetical entities.
A black hole universe does not have the horizon and flatness problems so that an in-
flation epoch is not required. Its origin from starlike and supermassive black holes
removes the initial big bang singularity and magnetic monopole problems. A black
hole or spacetime is static or in equilibrium when it does not accrete or merge with oth-
ers, otherwise it becomes dynamic, expands, and emits. Gamma ray bursts, X-ray flares
from galactic centers, and quasars can be self-consistently explained as emissions of dy-
namic starlike, massive, and supermassive black holes. Cosmic microwave background
radiations are blackbody radiations of the black hole universe, an ideal blackbody. A
black hole universe can accelerate if it accretes matter in an increasing rate, so that an
explanation of the supernova measurements does not need dark energy.

1 Introduction

Cosmology is the study of the origin and development of the
universe. The currently accepted standard big bang model of
the universe (BBU) stands on two bases, which are (1) Ein-
stein’s general relativity (GR) that describes the effect of mat-
ter on spacetime and (2) the cosmological principle (CP) of
spacetime isotropy and homogeneity that generates the Fried-
mann-Lemaı̂tre-Robertson-Walker (FLRW) metric of space-
time [1–4]. The Einstein field equation given in GR along
with the FLRW metric of spacetime derived from CP pro-
duces the Friedmann equation (FE) that governs the develop-
ment and dynamics of the universe. Although the big bang
theory has made incredible successes in explaining the uni-
verse, there still exists innumerable problems and difficulties.
Solutions of these problems and difficulties severely rely on
an increasing number of hypothetical entities (HEs) such as
dark matter, dark energy, inflation, big bang, and so on [5].
Therefore, the BBU consists of GR, CP, and innumerable
HEs, i.e. BBU = {GR, CP, HE, HE, HE,....} (see the blue
part of Fig. 1). Although it has only two bases (GR and CP),
the BBU severely relies on an increasing number of HEs that
have not yet been and may never be tested or falsifiable.

Fig. 1: The comparison of fundamentals between BBU and BHU
(see Section 1 for details).

Describing the universe without relying on a set of HEs
to explain observations and overcome cosmic problems and
difficulties is essential to developing a physical cosmology.
Recently, the author has developed a new physical cosmol-
ogy called black hole universe (BHU) [6–7]. Instead of mak-
ing many those HEs as the BBU did, the BHU proposes a
new principle to the cosmology – the Principle of Spacetime
Black Hole Equivalence (SBHEP) – in an attempt to explain
all the existing observations of the universe and overcome all
the existing problems and difficulties [8–12]. Standing on the
three bases (GR, CP, and SBHEP), the new cosmological the-
ory – BHU = {GR,CP,SBHEP} (see the red part of Fig. 1)
– can fully explain the universe in various aspects as well
as to conquer all the cosmic problems according to the well-
developed physics without making any other HEs and includ-
ing any other unsolved difficulties. GR and CP are common
to both BBU and BHU. The BBU stands on two legs unsta-
bly so that needs many crutches for support, while the BHU
stands on three legs stably without needing any other props.
In the BHU, a single SBHEP removes all of innumerable HEs
made in the BBU. This paper describes how this new black
hole universe model explains the universe and conquers the
cosmic difficulties with the principle of spacetime black hole
equivalence.

2 Equivalence between spacetime and black hole

The effect of matter on spacetime can be obtained by solving
Einstein’s field equation provided in GR [13],

Gµν =
8πG
c4 Tµν (1)

where the subscripts µ and ν are the four-dimensional (4D)
spacetime coordinate indices running through 0–3. Gµν is
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Einstein’s curvature tensor, G is the gravitational constant, c
is the speed of light in free space, and Tµν is the 4D energy-
momentum tensor. Adding a term of Λgµν to the left hand
side of (1), Einstein developed a static cosmology [14] and
de Sitter developed a dynamic cosmology [15]. Here Λ is the
cosmological constant and gµν is the metric of spacetime,

According to the cosmological principle, the universe, if
it is viewed on a scale that is sufficient large, is homogeneous
and isotropic. This principle implies that there is no special
location and direction in the universe. The properties of the
universe are the same for all observers in the universe. More
strongly, physical laws are all universal. If a physical law is
applicable to the Earth, then it can be applied to everywhere.
The isotropic and homogeneous spacetime can be described
by the FLRW metric [1–4],

ds2 = −gµνdxµdxν

= c2dt2 − R2(t)
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 θdφ2

)]
,

(2)

where R(t) is the radius of curvature of the space and k is the
curvature constant of the space.

Substituting the FLRW metric of spacetime into the Ein-
stein field equation of general relativity, one can have the
Friedmann equation [16],

H2(t) ≡
Ṙ2(t)
R2(t)

=
8πGρ(t)

3
−

kc2

R2(t)
, (3)

where H(t) is the Hubble parameter or the expansion rate of
the universe and ρ is the density of matter. The dot sign refers
to the derivative of the quantity with respect to time, Ṙ(t) ≡
dR(t)/dt. Including the cosmological constant, (3) has a term
of Λ/3 on the right hand side.

According to the Schwarzschild field solution of (1) [17],
the metric of spacetime surrounding a spherical body with
mass M appears to be singular at the Schwarzschild radius
rg = 2GM/c2, which divides the space into two disconnected
patches. This indicates that a region of space, where matter
accumulates up to a critical level such that the mass-radius
(M-R) ratio reaches up to M/R = c2/(2G) ' 6.67 × 1026

kg/m, forms a black hole and constructs its own spacetime,
which is singular in space and non-causal in time to the out-
side. Therefore, it is reasonable to suggest or postulate that
a black hole once formed constructs its own spacetime and a
spacetime encloses its own unique black hole [6–7]. In other
words, spacetime and black hole are equivalent. This pos-
tulate of the equivalence between spacetime and black hole
plays a fundamental role in the modeling of the universe;
therefore, we raise it as a new principle of the cosmology
[18]. Without matter, a physical spacetime cannot be formed;
without a spacetime, matter cannot become into existence. As
a moral idea or belief, we cannot prove its correctness math-
ematically, but the truth for the principle of spacetime black
hole equivalence can be justified and validated through ex-
plaining various observations of the universe, such as CMB

and supernova measurements, etc., and overcoming cosmic
problems, such as dark energy and inflation problems, etc., in
accordance with the black hole model of the universe that is
developed on the basis of this principle. In the following sec-
tions, we will demonstrate how the black hole model of the
universe developed on the basis of this new principle to ex-
plain the observations of the universe and overcome the cos-
mic problems and difficulties.

Fig. 2: The hierarchically layered structure of black hole universe.
Inside our spacetime or black hole universe (the region represented
or circled by the solid black lines), there are a number of subspace-
times (the regions represented or circled by the solid color lines),
which are the observed star-like, massive, and supermassive black
holes.

3 Black hole universe

From this principle of spacetime black hole equivalence, we
understand that our universe, because it is constructed in a
4D spacetime, is or wraps a black hole, which is extremely
supermassive and fully expanded. Its big radius and enor-
mous mass can be determined in terms of the measurement
of matter density of the universe as detailed below in the sub-
section 3.1. The inside observed star-like, massive, and super-
massive black holes can be considered as subspacetimes (or
called child universes) of our black hole universe (see Fig. 2).
This hierarchically layered structure of spacetimes and sub-
spacetimes genuinely overcomes the horizon problem, which
was identified to exist in the big bang model of the universe
primarily by Charles Misner in 1960s [19–20] and solved by
Alan Guth in 1980s with the hypothesis of cosmic inflation
[21] according to a field that does not correspond to any phys-
ical field. Therefore, in the black hole model of the universe,
there does not exist the horizon problem at all.

3.1 Mass-radius relation and spacetime equilibrium

The boundary of a spacetime or black hole is determined, ac-
cording to the Schwarzschild solution, by

2GM
c2R

= 1, (4)

which is also the relation of the effective mass and radius of
the universe according to Mach’s principle [22–24] as well as
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the relation of the observable mass and radius of the universe
according to observations. The mass and radius of a space-
time or black hole satisfy this Mach-Schwarzschild M-R re-
lation. The space curvature constant of a closed spacetime or
black hole is positive, i.e.

k = 1. (5)

It is noted here that the big bang model suggests that the
spacetime of the universe is flat (i.e. k = 0).

The cosmological principle expresses the matter inside a
spacetime or black hole to be uniformly (i.e. isotropically and
homogeneously) distributed in a scale which is sufficiently
large (i.e. comparable rather than too small) in comparison
with respect to the size of the spacetime. Then, the density of
matter in a spacetime or black hole is given by

ρ ≡
M
V

=
3c2

8πGR2 =
3c6

32πG3M2 , (6)

which is inversely proportional to the square of radius or the
square of mass. This square-law density expression (ρR2 =

constant or ρM2 = constant) naturally removes the flatness
problem of the universe, which was first pointed out by Ro-
bert Dicke in the BBU [25–26].

Therefore, the flatness (or fine-tuning) problem does not
exist in the black hole model of the universe. Furthermore, by
measuring the density, we can determine both the radius and
mass of the universe. For the density of the present universe
to be about the critical density ρ0 ∼ ρc ≡ 3H2

0/(8πG), we
have the mass and radius of the present universe to be M0 ∼

8.8×1052 kg (about a half hundred sextillions of solar masses)
and R0 ∼ 1.32 × 1026 m (about forty-three hundred Mpc or
one Hubble length). Here, according to measurements [27–
30], the Hubble constant is chosen as H0 = 70 km/s/Mpc.
Therefore, the present universe is an extremely supermassive
and fully expanded black hole with extremely low density and
weak gravity. The gravitational field at its surface is g0 =

GM0/R2
0 ∼ 3 × 10−10 m/s2 and thus a 100-kg object at the

surface or inside only weighs 3 × 10−8 N or less.
The big bang universe is an isolated system and the to-

tal energy or mass (though unknown) is a constant, so that
the density is inversely proportional to the cube of radius (i.e.
ρR3 = constant). Fig. 3 plots the density of a black hole as a
function of its radius in the unit of kilometers (the solid line)
or a function of the mass in the unit of 0.337 solar masses (the
same line). The dashed line plots the density of the big bang
universe as a function of its radius with mass equal to M0 (for
a bigger mass, the line is shifted to a larger radius). The dot-
ted line marks the density of the present universe (ρ0) and its
intersection with the solid line shows the mass (M0), density
(ρ0), and radius (R0) of the present universe. Three circles
along the solid line represent a star-like black hole with three
solar masses, a supermassive black hole with three billion so-
lar masses, and the present black hole universe with mass M0.
The black hole universe is not an isolated system because its

mass increases as it expands. The density decreases inversely
proportional to the square of the radius (or the mass) of the
black hole universe. Considering that matter can enter but
cannot exit a black hole, we can suggest that the black hole
universe is a semi-open system surrounded by outer space and
matter. The entire space is infinite, existed forever, and iso-
lated. It contains everything without outside and edge. Inside
the entire space, any universe has outside space and matter
and thus cannot be isolated.

Fig. 3: The density of the black hole universe versus its mass and
radius (the solid line). The dotted line refers to ρ = ρ0, so that
the intersection of the solid and dotted lines represents the density,
radius, and mass of the present universe. The dashed line plots the
density of the big bang universe, if it has mass M0, as a function of
the radius.

In the black hole universe model, we have that the effec-
tive and observable radii are the actual radius of the universe
at all time, so that the black hole universe is always all ob-
servable and Mach’s principle holds forever. In the big bang
theory, the ratio between the effective radius and the radius of
the universe increases as the universe expands and will reach
the unity at a point, which is the present time if the universe
has mass M0. Before the point, the effective radius is less than
the radius of the universe. While, after the point, the effective
radius will be greater than the radius of the universe, at which
Mach’s principle does not hold, so that other physical laws
neither hold.

According to GR and the stellar physics, a star with 20
or more solar masses, at the end of its life, will form a black
hole after a supernova explosion [31]. Therefore, the black
hole model of the universe does not need a big bang. The
universe can be considered to originate from a star-like black
hole (child universe) with several solar masses, which grows
through a supermassive black hole with billion solar masses
to the present universe with hundred-sextillion solar masses
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by accreting ambient matter and merging with other black
holes. Which one was the first or initial black hole that the
universe has grown up from is not critical or important to the
present universe because the mass of the original one only
takes one part of a sextillion in the present universe. This ori-
gin of the universe from black holes not only overcomes the
fine-tuning problem but also conquer the difficulty of bang-
ing the universe out from nothing that violates the law of
conservation of energy. This resolves the big bang singu-
larity problem. In addition, if the universe originated from
a star-like black hole, it would not be hot enough to create a
magnetic monopole in any time period, thus solving the mag-
netic monopole problem. The recent discovery of gravita-
tional waves confirms the existence and merger of black holes
[32] and thus support this black hole model of the universe.

Substituting the Mach-Schwarzschild M-R relation (4) (or
density (6)) and positive space curvature constant (5) into the
Friedmann equation (3), we have Ṙ = 0 and Ṁ = 0 – a zero
rate of change in radius or mass. This indicates that a space-
time or black hole is static [7,33] when it neither accretes
matter from the outside nor merges with other black holes. In
the static state, the spacetime reaches equilibrium because the
positive curvature balances the gravity entirely. A spacetime
with the curvature radius R can hold the matter with mass
equal to c2R/(2G) in equilibrium. Hawking [34] theorized
the surface radiation of a static black hole with the quantum
effect. For a star-like or more massive black hole, the Hawk-
ing radiation is negligibly weak and ultra-cold, which leads
to the entropy of a static black hole to be 20 orders higher
than its massive parent star. Including the cosmological con-
stant, (3) determines Λ in the static state as Λ = 3H2, which
is ∼ 1.55 × 10−35 s−2.

3.2 Expansion and acceleration of spacetime

When a spacetime or black hole accretes its ambient matter
or merges with other black holes, it becomes dynamic and
expands. The rate of expansion or Hubble parameter is given
by

H =
Ṙ
R

=
Ṁ
M
, (7)

and the deceleration parameter is given by

q = −
RR̈
Ṙ2

= −
MM̈
Ṁ2

. (8)

Here, the double dot symbol refers to the second order deriva-
tive of the parameter with respect to time. A spacetime or
black hole expands if it gains matter, i.e. Ṁ > 0, and ac-
celerates if it gains matter in an increasing rate, i.e. M̈ > 0.
The expansion of spacetime is physical and outward with-
out violating Einstein’s light-speed upper limit and conserva-
tion of energy. A spacetime or black hole grows its space as
it accretes matter by taking the outside space rather than by
stretching the space of itself geometrically.

Fig. 4: A simple sketch of the innermost three layers of the entire
space that is structured hierarchically. The black circle represents the
mother universe. Our black hole universe is coded as red, in which
three child universes (i.e. star-like or supermassive black holes) were
drawn. Parallel to our universe, there are sister universes. Here two
adult sister universes (blue and green circles) and three little sister
universes (brown circles). The adult sister universes have also their
child or baby universes, but the little sister universes are too young
to have their babies.

For a spacetime or black hole including our black hole
universe to expand, it must have an outside, where matter is
available for accretion. The black hole model of the universe
suggests that the entire space is structured with layers, hierar-
chically and family-like. Fig. 4 sketches the innermost three
layers of the black hole universe including the mother uni-
verse (black circle), our universe itself (red circle), and child
or baby universes (i.e. star-like or supermassive black holes).
We have only drawn three child universes (yellow circles).
We have also drawn two adult sister universes (blue and green
circles) and three little sister universes (brown circles), which
are universes parallel to our black hole universe. The adult
sister universes have also their child universes. There should
have a number of child universes and may also have many
sister universes. A child universe grows by accreting mate-
rial from its outside or by merging with other child universes.
This universe grows up by accreting material from the mother
universe or by merging with sister universes. The mother uni-
verse will also grow up if it has outside; otherwise, it is static.
If the whole space is finite, then the number of layers is fi-
nite. Otherwise, it has infinite layers and the outermost layer
corresponds to the limit of zero Kelvin for the absolute tem-
perature, zero for the density, and infinite for the radius and
mass.

From the data of type Ia supernova measurements, Daly
et al. obtained the deceleration parameter of the present uni-
verse to be q0 ∼ −0.48 for the flat spacetime (for a closed
spacetime, q0 is smaller, e.g. q0 = −0.6) [35]. Riess et al.
and Perlmutter et al. explained the acceleration of the uni-
verse by suggesting the big bang universe to be dominated by
dark energy up to about ∼ 73% [36–37]. In the black hole
universe model, however, the universe accelerates because it
inhales the outside matter in an increasing rate, i.e. a positive
M̈ > 0. To have q0 = −0.48, the present black hole universe
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only needs to inhale the outside matter in an increasing rate
at M̈0 = −q0M0H2

0 ∼ 2.2 × 1017 kg/s2 (or about 220 solar
masses per year square).

Fig. 5: Mass of black hole universe versus time with various decel-
eration parameters q = −4,−2,−0.6, 0, 1, 3.

For a constant acceleration expansion universe, the time-
dependent mass can be analytically solved from (8) as [10],

M
M0

=
[
(q + 1)H0t + 1

]1/(q+1) . (9)

To quantitatively see how the mass M(t) varies with time and
depends on the deceleration parameter q, we plot in Fig. 5
according to (9) the mass as a function of time with various
values of q = −4,−2,−0.6, 0, 1, 3. The lines with negative
q are concave upward, which show that the mass increases in
an increasing rate and the universe accelerates. The lines with
positive q are concave downward, which show that the mass
increases in a decreasing rate and the universe decelerates.
For q = 0, the black hole universe accretes matter or increases
its mass in a constant rate and thus expands uniformly.

The cosmological redshift of light from a source in an
expanding spacetime is determined by

1 + Z =
R0

R
=

M0

M
. (10)

The luminosity distance of the light source depends on the
redshift as [10,38–39],

dL = (1 + Z)M0 sin
[∫ 0

t

cdt
M

]
= (1 + Z)R0 sin

[
c3

2GM0H0

1 − (1 + Z)−q

q

]
.

(11)

Here we have applied (9) and (10) to complete the integration.
Eq. (11) reduces to the Hubble law, H0dL = cZ, at Z � 1 [40]

and perfectly explains the type Ia supernova measurements if
the universe accretes matter in an increasing rate of q = −0.6
[34]) or M̈ ∼ 3 × 1017 kg/s2 in average [10].

Fig. 6: Luminosity distance-redshift relation of type Ia supernovae.
Blue dots are measurements credited by the Union2 compilation of
580 SNeIa data from Supernova Cosmology Project [41–42]. Red
line is analytical results from this study with q = −0.6. The distance
modulus is plotted as a function of the cosmological redshift.

Fig. 6 plots the luminosity distance-redshift relation (red
line) along with the type Ia supernova measurements (blue
dots), which are credited by the Union 2.1 compilation of
580 SNIA data from Supernova Cosmology Project [41–42].
In this plot the Hubble constant is chosen to be H0 = 70
km/s/Mpc and the deceleration parameter is chosen to be q =

−0.6. The distance modulus, which is defined by µ = 5 log10
dL − 5 with dL in parsecs, is plotted as a function of redshift.
The chi-square statistic is very close to unity [10]. Therefore,
the black hole universe model can perfectly explain the mea-
surements of type Ia supernovae without dark energy, which
is needed to take ∼ 73% in the big bang universe [36–37].

3.3 Temperature of spacetime and background radia-
tion

The temperature inside a spacetime or black hole depends on
the state and density of matter enclosed and hence depends
on the radius or mass. The stellar physics has shown that a
neutron star can reach trillions of Kelvin at the moment of
its birth and then quickly cools down to hundred millions of
Kelvin due to strong radiation and neutrino emissions. Since
it is compact as a neutron star, a star-like black hole should
also initially reach trillions of Kelvin but statically holds this
hotness due to lack of significant emissions to the outside
(the Hawking radiation is negligible). The thermal radiation
inside a spacetime or black hole is the blackbody radiation

T. X. Zhang. Principle of Spacetime Black Hole Equivalence 357



Volume 12 (2016) PROGRESS IN PHYSICS Issue 4 (October)

governed by the Planck law, from which one can derive the to-
tal energy of blackbody radiation inside a spacetime or black
hole with radius R and temperature T to be

Uγ = αR3T 4. (12)

Here, the constant α is given by, α ≡ 32π6k4/(45h3c3) ∼
3.2×−15 J/m3/K4, with k the Boltzmann constant and h the
Planck constant.

When a spacetime or black hole accretes matter and radi-
ation from its outside, it becomes dynamic and expands. Con-
sidering that the gain of matter and radiation inside is equal
to the loss of matter and radiation outside, we have [8]

dT
dR

= −
3T
4R

1 − (
Tp

T

)4 , (13)

where T is the temperature inside and Tp is the temperature
outside. This equation governs the thermal history of the
black hole universe from its origin as a star-like black hole
with several solar masses and growing through a supermas-
sive black hole with billions of solar masses to the present
state with hundred sextillions of solar masses. Since the tem-
perature outside is always less than that inside, Tp < T , the
temperature of a spacetime or black hole decreases with its ra-
dius. As the black hole universe grows in size from a star-like
black hole to the present state, its temperature decreases from
trillions of Kelvin to about 3 K [8]. The cosmic microwave
background radiation (CMB) is explained as the blackbody
radiation of the black hole universe – an ideal blackbody –
rather than the fireball leftover of the big bang universe.

Considering the black hole universe to decrease its rela-
tive temperature in a rate slightly faster than the mother uni-
verse, we have [8]

Tp = aT b, or Tp/T = aT b−1 (14)

Here b is a constant slightly less than 1 and a can be derived
from b according to the temperature and radius of the present
universe (T0 and R0). Then, (13) can be analytically solved as

T = R−3/4
(
a4R3−3b + T 4−4b

s R3−3b
s

)1/(4−4b)
, (15)

where the constant a is given by

a =

T 4−4b
0 −

(
Rs

R0

)3−3b1/4

. (16)

Choosing b appropriately (or slightly less than 1), we can
completely determine the thermal history of the black hole
universe that evolved from a hot star-like black hole with tem-
perature Ts and radius Rs to the present universe with tem-
perature T0 and radius R0. In Fig. 7, the temperature of the
black hole universe is plotted as a function of the universe
radius with b = 0.93. Here we have chosen T0 = 2.725 K,
R0 = 1.32 × 1026 m, Rs = 8.9 km, and Ts = 1012 K.

Fig. 7: The possible thermal history of the black hole universe. A
hot star-like black hole with Ts = 1012 K expands to the size of the
present universe and cools down to ∼ 2.725 K. The temperature line
is curved by concaving upward and approaches ∼ 2.725 K at the
present time as the black hole universe expands to the present size.

It is seen that the temperature line is concave upward and
approaches ∼ 2.725 K as the black hole universe expands to
the present size. The initial temperature of the star-like black
hole Ts is not critical to the present universe. The reason is be-
cause most matter and radiation are from the mother universe.
This reason also explains why all other physical properties of
the star-like black hole, including its size (or mass), angular
momentum, and charge, and the evolution of the early uni-
verse are not critical to the present universe. Furthermore, the
early process of material accretion and black hole mergers do
not have significant leftover in the present universe.

The above explanation of the CMB of this universe re-
quires a decreasing temperature outside, i.e. an expanding
mother universe. To have an expanding mother universe and
explain its CMB with a decreasing temperature, there needs
an expanding grandmother universe, and so forth. Therefore,
the entire space is eternal and infinite, containing everything
with infinite layers (Fig. 8). Nothing can be outside the en-
tire space. The star-like or supermassive black holes called
child universes belong to the innermost layer. They are sub-
spacetimes of our black hole universe (the second innermost
layer) that we live in. Our black hole universe is a subspace-
time of the mother universe (the third innermost layer). The
mother universe may contain a great number of child uni-
verses that are parallel to (and hence sisters of) our black hole
universe. Mathematically, we can use an infinite large fam-
ily tree that contains infinite generations or an infinite large
set that contains infinite subsets to represent the relationships
among different generations of black hole universes. The out-
ermost layer called grand universe is infinitely large in size,
mass, and entropy but has zero limits for both the density and
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absolute temperature.

Fig. 8: The entire space with infinite layers or subspacetimess [8].
The bottom layer is a child universe or an empty spacetime. The
child universe is a subspacetime of the universe in which we live in.
Similarly, our universe is a subspacetime of the mother universe, and
so on. The top layer is the entire space of all subspacetimes.

Each layer or black hole universe tends to absorb its out-
side matter and radiation and takes its outside space and ex-
pands outward. When our black hole universe expands to be
one as large as the mother universe, the inside star-like and su-
permassive black holes will have merged and grown up into
a black hole universe that is similar to the present one. This
process is irreversible with neither a beginning nor an end.
The evolution of black hole universe is iterative – beginning-
less and endless. When one black hole universe is expanded
out, a new similar black hole universe is formed from inside
child universes [7]. The black hole model of the universe is
complete because it can address our universe not only at the
present as well as its inside, but also in the past and future as
well as its outside.

The total radiation energy inside the black hole universe
is plotted in Fig. 9 as a function of the radius. It is seen that
a young black hole universe with radius less than 1015 m or
mass less than some hundred billions of solar masses remains
the total radiation energy as a constant. This characteristic
allows us to explain the activities and emissions of dynamic
star-like and supermassive black holes observed in the uni-
verse.

3.4 Emissions of dynamic black holes

For a star-like black hole with several solar masses to grow
through a supermassive black hole with billion solar masses,
the temperature outside is negligibly lower than the temper-
ature inside, i.e. Tp � T . In this case, (13) can be solved
as

R3T 4 = Constant, (17)

which implies that the total radiation energy inside a space-
time or black hole with mass about billions of solar masses or

Fig. 9: Radiation energy of the black hole universe. As a hot star-
like black hole with Ts = 1012 K expands to the size of the present
universe and cools down to ∼ 2.725 K, its radiation energy first re-
mains as a constant and then rapidly increases with radius when it
grows into a supermassive black hole with radius greater than about
thousand billions of kilometers or mass greater than about hundred
billions of solar masses.

less remains the same amount as shown in Fig. 9. Therefore,
accreting outside matter and radiation or merging with other
black holes into a single one, a black hole not only becomes
dynamic and expands but also intensively emits its inside hot
and hence high-frequency blackbody radiation out of its hori-
zon, which has been disturbed or broken by the accretion or
merger in order for the total energy of its inside radiation to
remain as a constant.

This emission mechanism of dynamic black holes can
self-consistently explain the observed gamma ray bursts, X-
ray flares from galactic centers, and quasar emissions as emis-
sions of dynamic star-like, massive, and supermassive black
holes, respectively (the details on these have been described
in [9,11–12]). Dynamic star-like black holes with trillions
of Kelvin radiate gamma rays and produce gamma ray bursts,
while dynamic massive or supermassive black holes with mil-
lions to billions of Kelvin radiate X-rays such as X-ray emis-
sions from quasars and X-ray flares from Sgr A* (a massive
black hole at the Milky Way center). The energetic events as-
sociated with black holes are activities of child universes. The
author has shown that a child universe with radius R & 1018

m or mass M & 3 × 1014 solar masses does not emit [9], but
can strongly attract and accrete its ambient matter including
galaxies, which may help us to understand great attractors ob-
served with thousand trillions of solar masses, e.g. the Norma
Cluster. On the other hand, quasars if electrically charged
may have a significant electric redshift as illustrated by [43].
The merger of star-like black holes if missing mass may re-
lease significant gravitational waves as recently detected by
LIGO [32].
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4 Discussion and conclusions

In addition to above issues that have been addressed in de-
tails in the early papers [7–12,39], the black hole model of
the universe can also self-consistently illustrate various other
problems of the universe such as why the redshifts of galax-
ies are quantized, how the galaxies and clusters are formed,
why the expansion of the universe can be anisotropic, how the
elements are synthesized, why the universe increases its en-
tropy extremely without significantly increasing its disorder,
how the heavy-ion enriched objects are formed in extremely
deep fields or the young universe, what the great attractor is,
why the voids exist, and so on. Preliminary results on some
of them have been presented in a sequence of AAS (213rd-
215th, 217th, 219th-224th, 228th) meetings and the details on
all these problems will be addressed in future in full length
papers.

The BHU stands on three bases, which are (1) GR of de-
scribing matter effect on spacetime, (2) CP of spacetime ho-
mogeneity and isotropy, and (3) SBHEP of spacetime black
hole equivalence. We have not yet explored the quantum ef-
fect on this model to pop up baby universes and holes. In this
model, baby or child universes are star-like and supermassive
black holes, which are formed from stars and galaxies. To
appropriately explain CMB, the entire space is favored to be
infinite and eternal and includes infinite universes, which are
layered hierarchically and evolved iteratively. Due to gravity
and Jeans collapse criterion, matter forms stars, which then, if
massive, end as black holes or child universes. A black hole,
once formed, will grow and expand by accreting its ambient
matter and merging with other black holes. A galaxy (usu-
ally including a massive black hole at its center), once most
stars run out their fuels and died as dwarfs, neutron stars, and
black holes, will eventually form a supermassive black hole
(or quasar) by accreting all galactic matter and objects, and
merging all stellar black holes into the massive black hole at
the center. LIGO recently discovered the gravitational wave
that confirms the existence of black holes and their merger
[32]. A black hole universe can be considered to be originated
or born from a star-like black hole (or child universe) with-
out a big bang singularity, flatness, horizon, and magnetic
monopole problems. It gradually grows or expands by accret-
ing outside matter or merging with other black holes without
dark energy and inflation problems. Each star-like black hole
or supermassive black hole is usually rotating with significant
angular momentum. But when many randomly rotating black
holes merge to form a large universe like our present universe,
the net angular velocity may be negligibly small. Inside a
fully expanded or grown universe, objects formed from the
collapse of matter (e.g. planets, stars, galaxies, clusters, etc.)
can rotate globally. Gamow speculated that the rotations of
these objects might be due to the cosmic rotation [44] and
Godel obtained a cosmological solution of Einstein’s field
equation for rotating universes [45]. The black hole model

of the universe is a model with multiverses (infinite or un-
countable), which are hierarchically layered. It is different
from other models of multiverse such that the many-world
(or universes) interpretation of quantum physics proposed by
[46] and the branes model of multiverse that suggested the
visible 4D spacetime universe to be restricted inside a higher-
dimensional space [47].

The three bases of BHU (GR, CP, and SBHEP) with well-
developed physics theories and laws such as the conservation
of energy, Planck’s radiation, and so on can derive some laws
or regularities of the BHU such as the spacetime equilibrium,
the spacetime expansion and acceleration, the conservation
of blackbody radiation, the increase of entropy, and so on
that regulate and govern the development and dynamics of
black hole universes. These laws or regularities can help us
to explain and describe the origin, structure, expansion, evo-
lution, acceleration of the universe, CMB, quasar, Sgr A* X-
ray flare, etc. and meantime to overcome problems such as
the horizon, flatness, monopole, dark matter, dark energy, low
initial entropy, redshift quantization, big bang, old objects in
the young universe, entropy, and so on. The BHU does not
have unknowns. Both the charge and angular momentum are
zero (Q = 0 and J = 0). The mass M is the only or key pa-
rameter. The radius or scale factor R, the temperature T , and
the entropy S are derived from M according to the relations
given by (4), (13), and entropy equations of thermodynamics.
Measuring density tells us the radius R, and thus T and S .
Measuring the Hubble parameter H tells the rate of change in
Ṁ, and thus Ṙ, Ṫ , Ṡ . Measuring the deceleration parameter q
tells us the double rate of change in mass M̈, and thus radius
R̈, temperature T̈ , entropy S̈ . Measuring CMB, supernovae,
etc. also tells us R and thus M, T , S , so that finds how the
universe expands, e.g. acceleration or not.

As a consequence, installing one more leg (or fundamen-
tal) – the Principle of Spacetime Black Hole Equivalence – to
the cosmology, we can attempt to fully explain the universe
and simply overcome the difficulties according to the well-
developed physics without needing to make other hypothe-
ses such as inflation, dark energy, and so on. The black hole
model of the universe is robust by only needing one stroke
(the single postulate or principle SBHEP) rather than rely-
ing on an increasing number of hypothetical entities (HEs) as
done in the big bang model [5] to explain the universe and
solve the cosmic problems.

Acknowledgements

This work was partially supported by the NSF HBCU-UP,
REU (PHY-1263253), and AAMU Title III programs.

Submitted on August 1, 2016 / Accepted on September 9, 2016

References
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Attempt to Replicate Cahill’s Quantum Gravity Experiment to Measure
Absolute Velocity

Jay R. Seaver

Energy Matters Foundation, PO BOX 2588, Longmont, CO 80502, USA
E-mail:jay@energy-matters.org

In December 2015 in a laboratory in Longmont, Colorado, USA, I attempted to repeat
the experiments of Reginald T. Cahill for detecting dynamical space by using reverse
biased Zener diodes as quantum tunnelling devices whose tunnelling currents are mod-
ulated by the motion of dynamical space relative to the earth. I successfully produced
the correlated signals of the same frequency and amplitude as Cahill has produced in
his laboratory in Adelaide, Australia. But I determined that rather than being distur-
bances in space, these signals were merely transient responses to local electromagnetic
disturbances which appeared to be correlated due to the identical natural frequencies of
the two detectors. This paper is a report on those experiments.

1 Introduction

Recent papers by Cahill [1–3] discuss gravity wave detection
using reverse-biased Zener diodes as “quantum gravitational
wave detectors”. In December 2015, in Longmont, Colorado,
I built these quantum wave detectors using the identical parts
and schematic as Cahill in order to confirm his measurements.
I consulted with Cahill via email to make sure they were ex-
actly as he designed them.

Fig. 1: Inside of Quantum Detector used in experiment.

Figure 1 shows a photograph of the inside one of the quan-
tum detectors used in the experiment. It consists of a parallel
connected array of three 3.0 V 1N4728 Zener diodes serially
connected to a 1.5 V battery and a 10 kOhm sense resistor.
The voltage across the sense resistor goes through a BNC
connector and a 3 ft. RG58 coax cable to the AC-coupled
input of a LeCroy 1 GHz bandwidth Digital Sampling Oscil-
loscope (DSO). The schematic and a picture of the inside of
Cahill’s detector can be seen in Figure 1 of [1].

Figure 2 shows the detector after it has been sealed up
inside an aluminum case and connected to the coax cable that
goes to the DSO input.

In my correspondence with Cahill in December 2015, he
was kind enough to take some additional measurements and
send me the oscilloscope pictures of the correlated quantum
waves he is detecting in his laboratory in Adalaide, Australia.

Fig. 2: Enclosed Quantum Detector used in experiment.

I was able to capture nearly identical correlated signals in my
laboratory in Longmont, Colorado. However, upon further
investigation of these signals I determined that they were of
local origin and that the frequency of the waveforms was tied
to the resonant frequency of the detector-cable system. I have
concluded that the “correlation” Cahill sees is only an ap-
parent correlation because the circuits of the two detectors,
when excited by an external disturbance, produce nearly the
same transient response due to their being nearly identical
circuits with nearly the same natural frequency. An external
disturbance, such as a nearby static discharge is required to
excite the transient response. The correlated signals start out
in phase but slip with time because the two resonant frequen-
cies are not exactly the same. The measured phase difference
is simply a function of how much time elapses from the mo-
ment of excitation until the scope triggers and captures the
waveforms.

This paper documents the experiments I performed and
my reasoning for coming to the above conclusions.

2 Cahill’s data

Figures 3 and 4 show data from Dec. 13 and 14, 2015, taken
by Cahill in his laboratory in Adelaide, Australia, and sent
to me via email as an example of what the current fluctua-
tions from the gravity waves look like for collocated detec-
tors. Similar pictures of gravity waves in his detectors can
be seen in [1–3]. Notice that the frequencies in these two
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Fig. 3: Cahill Dec 13 Typical Data with detectors collocated.

Fig. 4: Cahill Dec 14 Typical Data with detectors collocated.

plots are near 200 MHz and appear almost like a tone super-
imposed on noise. This seemed odd to me given that Cahill
in his papers says that the frequency spectrum of the fluctu-
ations in the detectors has a 1/f amplitude relationship. The
reason the tone seen in his data does not show up in the fre-
quency spectrum plots, is because they occur so infrequently.
Most of the time the current fluctuations are at very small qui-
escent levels that look like random, uncorrelated noise. This
quiescent current is disturbed at random periods by bursts of
energy at mostly a single frequency, which are the waveforms
captured in Cahill’s pictures. Because these energy bursts are
short with long periods of time between them, they have little
effect on the Fourier transform over a wide frequency band
— hence the 1/f relationship without evidence of these tones.

3 My experimental data

Figure 5 is a photo of my oscilloscope on Dec. 11, 2015,
showing the quiescent signal from the detectors. Notice that
there is little, if any, evidence of correlation between the two
waveforms. The scale is 2 mV per division vertically and
10 ns per division horizontally. Notice also that the peak-to-
peak fluctuations are typically less than 1 mV.

On December 11, when I took the picture in Figure 5, I
was unable to detect any signals except the quiescent current.

Fig. 5: Quiescent waveforms of collocated detectors.

Fig. 6: Burst of energy from collocated detectors in my laboratory
on Dec. 21, 2015.

I tried various orientations of the detectors but gave up after
a few hours of searching. After communicating with Cahill
via email, he sent me the pictures of Figures 3 and 4 showing
me what he was seeing in his laboratory. I then went back
into my laboratory on Dec 21 and set up my oscilloscope to
trigger on any signals above 1.5 mV. After several minutes, I
suddenly got a large burst of energy at about 200 MHz just
like Cahill. This is shown in Figure 6.

The fundamental frequency of this waveform is highly
correlated between the two detectors. However, I noticed a
subtle difference between the two waveforms that should not
be there if they are truly being modulated by the same source.
The phase of the two waveforms is nearly perfectly aligned on
the left side of the screen but it is drifting apart as one moves
towards the right side of the screen. This is what one would
see if two different, but nearly identical frequencies were ob-
served. It is not what one would see from a single modulating
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Fig. 7: Another captured waveform from collocated detectors in my
laboratory on Dec. 21, 2015.

source observed on two different detectors.
I set the scope up to capture another signal and got the

waveform shown in Figure 7. Notice again the same effect.
The phase is aligned on the left and is slowly drifting apart
as it moves to the right. If collocated detectors were being
excited by the exact same gravity waves, the phase between
them would not drift. At this point I realized that something
was not right. My first suspicion was that my two “identical”
detectors were not quite identical, but had natural frequencies
in their circuits (including the cables) that were not quite the
same. They were being excited by some external signal, but
the actual response I was seeing was not a gravity wave, but
simply the transient response of each of these circuits as they
resonated at their not-quite-equal natural frequencies.

To test this theory, I replaced the cable on one of the de-
tectors with a longer cable. I now had a 3 ft. coax cable on the
detector going to channel 3 (blue) of the scope and a 5 ft. ca-
ble on channel 2 (red). The result was the waveforms shown
in Figure 8. This shows very clearly that the red waveform
has a fundamental frequency significantly lower than the blue
waveform. I had proof positive that these 200 MHz energy
bursts were not from 200 MHz gravity waves.

But there was still the question of what caused the excita-
tion of the circuits to start with. Could it be Cahill’s gravity
waves that provide the initial excitation? Or was the source
of local origin? My next experiment was to separate the de-
tectors by a few millimeters to see if the phases of the two
waveforms would start out with an initial phase difference.
This is what would happen if they were being exited by pass-
ing through Cahill’s gravity waves due to the velocity of space
past the earth. Cahill asserts that the velocity of the earth is
about 500 km/sec which represents about 2 ns/mm in phase
shift if the detectors are directly aligned with this velocity. If

Fig. 8: Waveforms from collocated detectors with different cable
lengths.

they are not aligned, an even larger phase shift per mm would
be observed. I saw no change in the phase relationship be-
tween the two signals as the detectors were moved relative to
each other. The waveforms remained in phase at the begin-
ning and drifted with time. This indicates an initial excitation
disturbance moving at the velocity of light — not 500 km/sec.

In [4], Vrba noted that the battery, diode and resistor cir-
cuit form an electromagnetic wave sensing loop having a sub-
stantial cross section. Although the circuit is enclosed inside
an aluminum box that shields electric fields, it is not a perfect
shield. It will highly attenuate an electromagnetic wave, but
with the oscilloscope set to its most sensitive level of 2 mV
per division, even an attenuated signal could still be large
enough to be detected.∗

As I was pondering how to identify the source of the ini-
tial excitation, I noticed something very interesting. My oscil-
loscope would not trigger unless there were people in the lab-
oratory. If everyone left and there was no nearby human ac-
tivity, the signals would remain at their quiescent (< 1.4 mV)
level and the scope would never trigger. But once nearby hu-
man activity resumed the scope would begin triggering again
every few minutes. It didn’t take long to find a correlation be-
tween static discharges from human activity and the energy
bursts in the scope. By experimenting, I found that I could
generate a frequency burst that would trigger the scope from
as far away as 20 meters by shuffling my shoes on the car-

∗Although not reported in this paper, I designed a second experiment
using an architecture similar to Vrba’s. It included 200× amplification with
a bandwidth of 10 MHz to detect even smaller signals. The resonant distur-
bances disappeared, which left only the random noise. Visually examining
these waveforms, I saw no evidence of correlated signals. The raw data files
are available upon request at the email address given above for anyone de-
siring to perform a more sophisticated search for correlation between the
waveforms.
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Fig. 9: Waveforms from collocated detectors with battery bypassed
with 1 nF capacitor.

pet and touching something metallic. The waveforms looked
identical in amplitude and frequency to those above.

As an additional proof that the detected frequency was en-
tirely determined by the circuit, I made 2 modifications to the
circuit. First, I put a 1 nF capacitor across the battery to pro-
vide a low impedance path for high frequencies. It caused the
frequency of the transient response to drop to below 50 MHz
as shown in Figure 9. I then removed the quantum detector
entirely, and just left the two 3-foot, collocated coax cables
disconnected. The waveforms are shown in Figure 10. These
results further strengthen the argument that the frequency of
the waveforms are determined entirely by the circuit itself.

4 Conclusions

After attempting to repeat the gravity wave detection experi-
ments of Cahill using reverse biased Zener diodes as quantum
tunnelling devices, I found no evidence of current fluctua-
tions due to anything but normal random noise or local dis-
turbances followed by a transient oscillation at the natural fre-
quency of the detector circuits. The so-called correlation of
the signals between detectors was merely an apparent corre-
lation due to the fact that the circuits have natural frequencies
that are nearly identical. This was proven by changing the
natural frequencies of the circuits and showing that the fre-
quency of the “gravity waves” changed to the new frequency.

The initial excitation of the circuits was shown to be from
local sources — not disturbances in “dynamical space” as
proposed by Cahill. The detectors exhibited no evidence of
being excited by anything but uncorrelated random noise un-
less nearby human activity was generating static discharges.
No evidence of any correlated signals between detectors was
ever seen at any frequency other than the natural frequency
of the detector circuits (superimposed on noise and/or reflec-

Fig. 10: Waveforms from collocated disconnected coax cables.

tions in the cables).
Whether Cahill has ever detected disturbances due to dy-

namical space, I cannot say. But I am satisfied that in Long-
mont, Colorado in December of 2015, there was no evidence
that dynamical space was detectable using the Zener diode
circuit Cahill has proposed in his papers.
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In our publication “Vacuum Background field in General Relativity” (Progress in
Physics, 2016, v. 12, issue 4, 313–317) we introduced a kind of “relic” field perma-
nently filling the empty space-time. This proved to be a necessary ingredient to for-
mulate a true vector describing the gravitational field arising from matter, in contrast to
the awkward pseudo-tensor usually suggested to ensure the conservation of the energy-
momentum in the field equations. In this short paper, we give this field a mathematical
description in terms of geodesics.

The background field that persists in vacuum devoid of any
matter or energy, finds a physical meaning if we consider
the Landau-Raychaudhuri equation for a congruence of non-
intersecting timelike unit vectorial field X, (XaXa = 1), i.e.:

Ra
b XaXb = −◦Xa

;a − ωabω
ab + σabσ

ab + ◦θ +
1
3
θ2, (1)

where ◦ means differentiation with respect to proper time τ.
In the scalar ζ which is the Lagrangian density of the vacuum
background field

ζ =
√−g ∇a κ

a (2)

we set up
∇a κ

a = θ2, (3)

where θ is the space time volume expansion characterizing
this background field through

θ = Xa
;a = habθab (4)

with the expansion tensor θab = hc
a hd

b X(c;d) (hac = gac − Xac is
the projection tensor).

The formula of X(c;d) can be regarded as measuring the
rate of change of the space-time 4-volume, i.e. either expan-
sion if positive, or contraction if negative.

The form (3) has been chosen so as to preserve the in-
tegrity of the gravity tensor equation irrespective of the sign
of θ.

In our case (absence of energy/matter), the background
field obviously follows a contraction process (negative expan-
sion) of space-time, and the Landau-Raychaudhuri reduces to

◦θ = Ra
b XaXb − σabσ

ab − 1
3
θ2 < 0 (5)

(since the vorticity tensor ωab induces expansion, while the
shear tensor σab induces contraction and the geodesic equa-
tion ◦Xa

;a is zero).
Ra

b XaXb (sometimes referred to as the Raychaudhuri
scalar) is always positive ensuring that the Strong Energy

Condition (SEC) is not violated when energy/matter is there.
Therefore, we are left with the inequality

◦θ ⩽
1
3
θ2. (6)

Integrating it with respect to the proper time τ yields

θ−1 ⩾ θ−1
1 +

1
3
τ , (7)

where θ1 is the initial value which can be positive to start
with, but very soon after the short expansion, it is followed
by re-collapse. The mathematical fate of (timelike) geodesics
is a final focusing to a caustic (θ → −∞) after a finite proper
time of at most

τ ⩽
3
θ1

(8)

after the measurement of the initial value.
Such a state is called geodesic incompleteness which is a

notion introduced by Hawking-Penrose, to describe (or not !)
a geodesics path of observers through space-time that can
only be extended for a finite time as measured by an observer
travelling along one.

Presumably, at the end of the geodesic, the observer has
fallen into a “kink” or encountered some other pathology at
which the laws of General Relativity breakdown.

As Landau pointed out, in a synchronous comoving frame
of reference attached to a homogeneous fluid, such a singu-
larity can be removed by the introduction of a pressure which
tends to substantiate our space-time contraction hypothesis.

All these contribute to our impossibility to give a full de-
scription of the vacuum background field. In a sense, this
marks the lowest horizon level of the space-time.
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The universe is characterized by large concentrations of energy contained in small,
dense areas such as galaxies, which radiate energy towards the surrounding space. How-
ever, no current theory balances the loss of energy of galaxies, a requirement for a con-
servative universe. This study is an investigation of the physics nature might use to
maintain the energy differential between its dense parts and the vacuum. We propose
time contraction as a principle to maintain this energy differential. Time contraction has
the following effects: photons lose energy, while masses gain potential energy and lose
kinetic energy. From the virial theorem, which applies to a system of bodies, we find
that the net energy resulting from the gain in potential energy and the loss in kinetic en-
ergy remains unchanged, meaning that the orbitals of stars in galaxies remain unaffected
by time contraction. However, each object in a galaxy has an internal potential energy
leading to a surplus of energy within the object. This internal energy surplus should
balance with the energy radiated at the level of a galaxy. We illustrate this principle
with a calculation of the energy balance of the Milky Way.

1 Introduction

We are in a universe governed by energy fluxes and exchanges
either in the form of waves or particles in motion. Energy
flows in space allow life to exist. The universe is character-
ized by vast concentrations of energy confined in small spaces
such as galaxies in the immensity of a surrounding vacuum.
Supermassive black holes at the center of galaxies contain a
large portion of this energy. However, we do not understand
how such energy segregation came into existence. Most of
the energy in the universe radiates outward from these dense
galaxies. The supermassive black holes at the center of galax-
ies may be the cosmic embryos that give rise to the birth of the
stars and planets. Massive particles and atoms are attracted
by gravitation to the dense points of the universe, a process
which maintains the segregation between the vacuum and the
dense parts. Because galaxies radiate a large amount of en-
ergy, they appear to have energy deficits. Here we investigate
the physics of how the energy difference between the vacuum
and the dense parts of the universe is maintained.

Many profound questions related to this issue have not yet
been answered. Most notably, how did the galaxies come into
existence? Do the galaxies have a life time? About 90% of
galaxies are dwarf galaxies, and most are elliptical or lentic-
ular in shape. Large spiral galaxies such as the Milky Way
are the minority. What are the conditions for galaxies to form
stars? For a galaxy to form a spiral it must rotate rapidly. We
have observed powerful jets of particles ejected from galaxy
central supermassive black holes in the direction of the axis of
rotation of the galaxy. These jets, together with a vortex in the
black hole, supposedly induce the galaxy to rotate, and then
form arms and spirals of stars. A galaxy which has few stars
radiates less energy than a galaxy forming stars in abundance.
Without a doubt, the lives of galaxies should be considered
among the greatest mysteries in the universe.

Nowadays, many people consider the static model of the
universe outdated. Nevertheless, we believe there is a lesson
to learn when considering the energy balance of the universe.
After all, energy conservation is a cornerstone of physics. The
elusive dark energy encourages us to inspect the energy bal-
ance of the universe from a different angle, in a static uni-
verse.

2 The entropic principle

The entropic principle in a thermal context is regarded as
an indicator of the effectiveness or usefulness of a particu-
lar quantity of energy. Mixing a hot supply of energy with a
cold one produces a mix of intermediate temperature, which
is less effective. If we apply this principle at the level of
the universe, it will eventually lead to the so-called “heat
death of the universe”, when the outbound and inbound en-
ergy fluxes of galaxies reach an equilibrium that should stay
at low temperature provided that the universe does not main-
tain its present energy differential between the vacuum and
its denser parts. The inbound energy flow from cosmic radi-
ations is much lower than the outbound flow radiating from
a galaxy, giving galaxies the appearance of an energy deficit.
Present theories do not permit us to balance this deficit.

3 Photon-particle interactions

We could conceive of a wind of particles that sweeps the rem-
nant undulating energy in the vacuum of the universe in some-
thing like the Compton effect and brings it back to the denser
parts of the universe to enrich the galactic gas and nebulae
where new stars are formed. This scenario appears to be very
unlikely as the inbound flux of cosmic rays is very low, and
known interactions between low-energy photons and particles
do not subtract energy to the photons. In Thomson scatter-
ing, the scattered photon energy is left at the same level, and
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an increase of the scattered photon energy is obtained in the
photon-particle interaction of the Sunyaev-Zeldovich effect.
Compton scattering, which subtracts energy from the pho-
tons, is known to occur for high-energy light sources such
as X-rays and gamma rays. Furthermore, there is no ev-
idence that cosmic rays come from outside the galaxy, al-
though most cosmic rays originate from outside the solar sys-
tem [1]. Cosmic rays are composed primarily of high-energy
protons and atomic nuclei. Some cosmic rays originate from
supernovae [2]; however, this is not the only source of cos-
mic rays. Active galactic nulei also ought to produce cosmic
rays [3].

Compton scattering is an interaction between photons and
charged particles such as electrons [4,5]. During this interac-
tion, part of the photon energy is transferred to the recoiling
electron. The scattering of the photons produces a blurring
effect of light.

Thomson scattering intervenes between photons having
much lower energies compared to the mass energy of the par-
ticle [6–8]. This interaction occurs between free charged par-
ticles and photons. Thomson scattering is an elastic scatter-
ing, meaning that the energies of the particles and photons
remain unchanged in this interaction. However, the wave is
scattered, producing a blurring effect. This interaction pro-
duces polarization of light in the direction of its motion. The
cosmic microwave background ration (CMBR) is linearly po-
larized and as such must have undergone Thomson scattering.

The Sunyaev-Zel’dovich effect is an interaction occurring
between the CMBR and high-energy particles, which pro-
duces an inverse Compton effect [9]. It is the result of high-
energy electrons transferring some of their energy to the pho-
tons. This interaction is observed in the hot gases contained
in galaxy clusters, which change the frequency of the CMBR.

The images of galaxies we observe in the sky are not
blurred, meaning a priori that no photon-particle interactions
occur for these wave frequencies. For all these reasons we
dismiss photon-particle interaction as a mechanism to regu-
late photon energy in the vacuum.

4 Stationary waves

Stationary waves, also called standing waves, are formed by
the superposition of two waves of the same amplitude and
frequency moving in opposite directions [10]. The result of
this interference is a wave with no net propagation of energy.
The locations at which the amplitude of the wave intersect
with the x-axis are fixed points called the nodes, and the part
of the wave contained between two nodes oscillates upside
down in a given amplitude range. Because of the vibration of
the standing wave, some energy would be stored in the vac-
uum, but with no energy being transmitted. Because of the
isotropy of the universe we can assume that for every wave
there exists another wave of same frequency and amplitude
moving in the opposite direction. Standing waves may cause

Fig. 1: A photon climbs up to a heigh h. Then, the photon is con-
verted at the top of the tower into a mass m, and falls back to the
ground. Perpetual motion is created unless the photon loses energy
while climbing in the gravitational field.

an accumulation of energy in the vacuum, but do not explain
redshifts. Nevertheless, we would still need additional mech-
anisms to regulate the energy budget of galaxies and of the
universe as a whole.

5 Time contraction

5.1 Gravitational redshift and potential energy

Another way to look at the problem of energy budget in the
universe is by considering gravitational redshift, a phe-
nomenon based on the principle of energy conservation. Ein-
stein imagined the following thought experiment. Let us con-
sider a photon moving away from the ground surface in the
direction of the sky up to a given height h. At this height, the
photon is converted into mass according to E = mc2, and then
falls back to the ground (see Figure 1).

In this system there is an apparent gain of energy from
the time the photon left the ground to the time when the mass
came back to its initial position due to the potential energy
gain when the photon moved upwards. This energy gain, of
course is paradoxical. In terms of energy conservation, when
considering the energy of a photon, we associate it with the
potential energy of its virtual mass counterpart. In order to
maintain the system at constant energy, the photon must lose
energy when moving away from a mass in a gravitational
field, which causes a redshift. The reciprocal is also true:
when a photon moves towards a mass in a gravitational field,
it is blueshifted. Another solution of the gravitational redshift
is obtained with general relativity using the Schwarzschild
metric. Both methods give similar solutions that converge
asymptotically when the gravitational field is weak.

The gravitational redshift from mass-energy equivalence,
which stems from special relativity, is derived as follows. By
converting the photon energy into a rest mass we get E =
hν = mc2. The gravitational potential energy is:

U = −GMm
r
= −GMhν0

rc2 , (1)
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where ν is the light-wave frequency, G the gravitational con-
stant, M the mass producing the gravitational field, r the dis-
tance between the center of gravity of the mass M and the
photon, c the speed of light, and h the Planck constant.

Hence, the frequency change of a photon of frequency ν0
moving relative to a gravitational mass is hν = hν0

(
1 − GM

rc2

)
.

Therefore, we get:

ν

ν0
= 1 − GM

rc2 . (2)

The equation of the gravitational redshift from general
relativity with the Schwarzschild metric is obtained from the
equation [21]:

δτ =

(
1 − 2GM

rc2

) 1
2

δt , (3)

where δτ is the proper time interval, and δt the Schwarzschild
time interval.
Because the light wavelength can be expressed as a function
of the time interval, λ = cδτ, we get the gravitational redshift

ν

ν0
=

(
1 − 2GM

rc2

) 1
2

, (4)

where ν is the light-wave frequency, G the gravitational con-
stant, M the mass producing the gravitational field, r the dis-
tance between the center of gravity of the mass M and the
photon, and c the speed of light.

For weak gravitational fields, we can use the Taylor ap-
proximation (1 − x)

1
2 ≈ 1 − x

2 when x is small; hence, we ob-
tain the same equation as the gravitational redshift obtained
from mass-energy equivalence.

From general relativity, moving away from the ground
surface at increasing altitude causes the clock to tick more
rapidly, meaning that time is contracting as in the dichoto-
mous cosmology presented in [11–13]. Based on the prin-
ciple of time contraction in a static universe, we are able
to derive Etherington’s distance-duality equation [12]. This
principle as an explanation of cosmological redshift is worth
considering. One way to look at the problem of photon and
matter energy is by linking time with energy, meaning that
time contraction is causing both a decrease in the photon en-
ergy and an increase in the potential energy of a mass. If
this is valid in a gravitational field, does it hold in general?
From the mass-energy equivalence, there is an implicit dual-
ity between photon and mass, in which energies appear to be
indissociable from one another.

Emmy Noether proved a theorem according to which ev-
ery differentiable symmetry of the action of a physical system
has a corresponding conservation law. From the Noether the-
orem, the law of conservation of energy follows from time
homogeneity, meaning the Lagrangian is time-translation in-
variant. Time is preponderant in energy conservation. In spe-
cial relativity we learn that time dilation has a direct effect on

the energy balance between reference frames. In general rela-
tivity, the flow of time and gravitational potential are directly
linked. This is a very simple principle that nature could use
to regulate energy fluxes in the universe. Accordingly, time
contraction would allow maintenance of the energy differen-
tial between the vacuum and the massive parts of the universe.

5.2 Effect of time contraction on the photon energy and
the energy of a mass

In the dichotomous cosmology [12], we found that the time-
contraction factor is expressed as γt = exp(−H0t). Therefore,
the energy of the photon decreases according to an exponen-
tial law of the form:

Ephoton(t) = E0 exp(−H0t) , (5)

where H0 is the Hubble constant, E0 the initial photon energy,
and t the time.

Because the gain in potential energy is in the same propor-
tion as the photon energy loss from mass-energy equivalence,
the gravitational potential energy of a mass shall increase ac-
cording to the law:

Umass(t) = U0 exp(−H0t) , (6)

where U0 is a negative potential energy at time zero, H0 the
Hubble constant, and t the time.

We still need to quantify the effect of time contraction on
the kinetic energy of a mass. As time contracts, a clock is
ticking more rapidly, and an object in motion appears to slow
down. The apparent velocity of an object decreases in direct
proportion to the time-contraction factor. Because the kinetic
energy is expressed as K = 1

2 mv2, the kinetic energy of a mass
decreases by the square of the time-contraction factor. Hence,
the kinetic energy of a mass decreases according to the law:

Kmass(t) = K0 exp(−2H0t) , (7)

where K0 is the kinetic energy at time zero, H0 the Hubble
constant, and t the time.

These are the laws that we propose regulate the energy
budget of the universe.

Let us show that for a star in orbit in a galaxy, its orbital
radius remains unchanged under time contraction. The total
energy of the star with respect to other bodies in the galaxy is
expressed as follows:

Etot(t) = U + K = U0 exp(−H0t) + K0 exp(−2H0t) . (8)

Let us take the time derivative of Etot; therefore, we get:

dEtot

dt
(t) = −H0 U0 exp(−H0t) − 2H0 K0 exp(−2H0t) . (9)

We evaluate this expression at t = 0, hence:

dEtot

dt
= −H0 U0 − 2H0 K0 . (10)
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From the virial theorem, which applies to stable systems
composed of many bodies, we get:

2K0 + U0 = 0 , (11)

where K0 is the kinetic energy and U0 the potential energy
between the bodies.

From (10) and (11), we obtain dEtot
dt = 0. Therefore, the

total energy of a star in orbit remains unchanged under time
contraction, meaning its orbital radius is not affected. This is
the condition required to have stable galaxies in the universe.

The virial theorem only considers the potential energy be-
tween the bodies of the system. Because each object in a
galaxy, either solid or fluid, has an internal potential energy,
and that the kinetic energy inside a solid or fluid at rest is neg-
ligible, there is a surplus of potential energy from (6). This
surplus of potential energy is converted into internal energy
within the object. This is the principle we propose to balance
the energy radiated by galaxies.

5.3 Energy balance of the Milky Way

From this principle, we would expect that the surplus of in-
ternal potential energy due to time contraction, at the level of
a galaxy, balances with the outbound radiation flux. Let us
do a rough estimation for the Milky Way. The luminosity of
the Milky Way is estimated to be about 3.8×1010L⊙ [15], with
the Sun radiating about 4.6 ×1026 watts, leading to an overall
radiation of about 1.74×1037 watts. We need to estimate the
sum of the internal potential energy of each object contained
in the Milky Way.

For a spherical solid, the internal potential energy is given
by the equation [14]:

Usphere = −
3GM2

5R
, (12)

where G is the gravitational constant, M the mass, and R the
radius of the sphere.

Let us consider the estimated mass of the Milky Way in-
cluding dark matter to be about 1.39 ×1042 kg or 7×1011

M⊙ [16]. In [17] we show that the dark matter of a spiral
galaxy is due to a correction coefficient applied to Newton’s
force in a disk. Hence, we need an estimate of the total bary-
onic mass of the Milky Way, which is approximatly one sev-
enth of the apparent mass or about 1.87×1041 kg. The mass
of the cental supermassive black hole Sagittarius A* is about
4.0×106 solar masses [18], and its radius about 31.6 solar
radii. Hence, the potential energy of Sagittarius A* from (12)
is −1.15×1053 joules. We have used a gravitational constant
G of 6.67×10−11 m3 kg−1 s−2.

Because the majority of stars in the Milky Way are red
dwarfs, and due to other dense objects such as neutron stars,
white dwarfs, and black holes, the average radius of objects
in the Milky Way is lower than the radius of the Sun. An
estimate of 100 million neutron stars in the Milky Way was

obtained by estimating the number of stars that have gone
supernova [19]. Let us assume that these 100 million neu-
tron stars in the Milky Way have an average mass of 1.35
solar masses. From the density of neutronium, we can infer
that the radius of such a neutron star would be about 15 km.
Therefore, from (12), the internal potential energy of those
100 million neutron stars all together is −1.92×1054 joules.
According to [20] there are about 10 million black holes in
the Milky Way. Let us assume that these 10 million black
holes have an average mass of ten solar masses and a radius
of 45 km. The radius of a black hole is computed from the
“photon sphere” which is 1.5 times the Schwarzschild radius.
The internal potential energy of those 10 million black holes
all together is −6.42×1054 joules from (12). Let us assume
there are 2 billion white dwarfs having an average mass of
half a solar mass and a radius equal to the radius of the earth.
The internal potential energy of those 2 billion white dwarfs
is −1.28×1052 joules. Let us assume there are 200 billion
stars lefts (mainly red dwarfs) having an average radius of
0.3 solar radii and average mass of 9.36×1029 kg. The inter-
nal potential energy of those 200 billion stars all together is
−3.34×1052 joules from (12).

Adding together the potential energies of Sagittarius A*,
the 100 million neutron stars, the 10 million black holes, the
2 billion white dwarfs, and the 200 billion stars, the overall
internal potential energy of the Milky Way is estimated to
be about −8.49×1054 joules. The densest objects, although
not the most numerous, contribute the greatest share of to the
internal potential energy of the Milky Way. For this reason,
black holes and neutron stars are responsible for most of the
Milky Way’s internal potential energy. The calculations for
the internal potential energy of objects in the Milky Way are
summarized in Table 1.

When multiplying the overall internal potential energy of
the Milky Way by the Hubble constant of H0 = 2.16 × 10−18

per second (corresponding to 67.3 km s−1 Mpc−1), we obtain
a surplus of internal energy of 1.83×1037 watts. We com-
pare this value with the estimate of the energy radiated of
1.74×1037 watts. Of course this is a crude estimate, but from
our calculations the internal energy surplus of the Milky Way
is the same order of magnitude as the energy radiated by the
galaxy.

Compact objects such as black holes and neutron stars are
known to produce highly energetic jets emitted at relativistic
velocities along their axis of rotation. We propose that the
surplus of potential energy of compact objects is released to
the galaxy through these jets. These jets might be made of
neutrons that undergo beta decay to form protons, electrons
and antineutrinos.

6 Conclusion

According to the entropic principle in a thermal context, mix-
ing a hot source with a cold source produces a mix of average
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Table 1: Internal potential energy of objects in the Milky Way

Object Number Mass Radius Potential energy

Sagittarius A* (central black hole) 1 4.0×106 M⊙ 2.2×107 km −1.15 ×1053 joules

Black holes 10 million 10 M⊙ 45 km −6.42×1054 joules

Neutron stars 100 million 1.35 M⊙ 15 km −1.92×1054 joules

White dwarfs 2 billion 0.5 M⊙ 6.30×103 km −1.28×1052 joules

Remaining stars (mainly red dwarfs) 200 billion 0.47 M⊙ 2.09×105 km −3.34×1052 joules

Total — — — −8.49×1054 joules

temperature that is less useful from a mechanical standpoint.
The universe is based on energy fluxes and exchanges, and
galaxies radiate a large amount of energy. For the universe to
be conservative there must be a mechanism to balance the en-
ergy deficit of galaxies, otherwise it will lead to the so-called
“heat death of the universe”. We analyzed photon-particle
interactions, and concluded that such interactions cannot reg-
ulate the energy budget of the universe. We propose time
contraction as a principle to regulate the energy balance in
the universe, which would decrease photon energy, increase
the potential energy of a mass, and decrease the kinetic en-
ergy of a mass. From the virial theorem, which applies to
systems of bodies, we find that the net energy resulting from
the gain in potential energy and loss in kinetic energy remains
unchanged, meaning that the orbitals of stars in galaxies re-
main unaffected by time contraction. However, each object in
a galaxy has an internal potential energy leading to a surplus
of energy within the object. At the level of a galaxy, this in-
ternal energy surplus should balance with the energy radiated.
We illustrated this principle with a calculation of the energy
balance of the Milky Way.
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