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Picometer Toroidal Structures Found in the Covalent Bond

Omar Yépez

Clariant Corporation, 2730 Technology Forest Blvd, The Woodlands, TX 77381. E-mail: omar.yepez@clariant.com

The same topology observed for the atom’s nuclei is identified in the covalent chemical
bond. A linear correlation is found between the normalized bond longitudinal cross
section area and its correspondent bond energy. The normalization number is a whole
number. This number is interpreted as the Lewis electron pair. A new electron dis-
tribution for different diatomic molecules follows. Same number of electrons present
different bond energies, occupying different areas. Therefore, it is inferred that the
chemical energy is a consequence of the mass defect or gain due to the mass fusion of
valence electrons participating in the bond.

1 Introduction

The topological analysis of the electron density has provided
useful information about the bonding in a molecule. How-
ever, not much progress has been made to reveal the fun-
damental features of chemical bonding postulated by Lewis,
i.e. the electron pair. According to Lewis structures there are
bonding electron pairs in the valence shell of an atom in a
molecule, and there are also nonbonding pairs or lone pairs
in the valence shell of many of the atoms in a molecule. So
far, it has not been seen any evidence of electron pairing in
the topological analysis of the electron density. An increased
concentration of electron density is observed between the two
bonded atoms, which could be interpreted as the electron den-
sity equivalent of a Lewis bonding pair [1]. Nevertheless,
there is no way to be sure about it. The same occurs about
the existence of lone pairs. This same reference arrives to
the conclusion that electron pairs are not always present in
molecules, and even when they are, they are not as localized
as the approximate models may suggest [2].

Therefore, a method to measure the number of electrons
that participate in the bond will definitely probe or not the
existence of Lewis electron pairs.

In 1996 the shapes of the deuteron at the femtometer scale
were reported. The deuteron presents three different shapes:
a torus, a sphere inside another sphere and two separated
spheres [3]. These are the same shapes observed in every
single molecule’s Laplacian of the electron density but at the
picometer scale. It is inferred that those are the shapes of
the electron while it is participating in the chemical bond.
Lack of identifying these shapes with the electron misleads
the molecule’s topological analysis.

This paper uses this new shapes in the analysis of differ-
ent diatomic molecules and CO2. Thanks to this, the topology
of the chemical bond is properly identified. The longitudinal
cross section area of the bond is correlated with its bond en-
ergy. Only when this area is divided by a whole number, a
linear correlation between this bond area and its energy oc-
curs. This whole number is most of the time an even num-
ber and thus, it is interpreted as the electron pair. Conse-

quently, an electron distribution in the molecule is possible.
First time model independent evidence of the Lewis electron
pair is found.

1.1 Electron pair topology

Covalent bonds or lone pairs will be detected by using the
structures observed in Fig. 1, namely: the two separated sphe-
res (ts), the torus (t) and the sphere in a sphere (ss). Valence
electrons participating in the σ bond (two electrons involved)
occur by adopting the two separated sphere structure, ts. Dou-
ble (four electrons involved) and quadruple bonds (eight elec-
trons involved) also use this structure. A lone pair occurs
as a torus shape around quadruple bonds or as a ss structure
around more electronegative atoms. As the electronegativity
of the nucleus increases, non-bonding electrons tend to form
a toroidal structure around its atom helium core. This occurs
until the next noble gas structure is fulfilled.

2 Experimental

By cutting the silhouette of the two separated sphere struc-
ture, involving the bonded atoms, the bond longitudinal cross
section areas (bond area) were determined from the contour
map of the Laplacian of its charge density. An example of
such silhouette (green lines) can be observed in Fig. 3 for
the fluorine molecule. They were printed on paper, cut and
weighted. The bond length was used to calibrate the longitu-
dinal cross section area measured in each bond. Then, these
areas were correlated with their respective bond energies.

The contour map of the Laplacian of the charge density
for fluorine, F2 and dicarbon, C2 molecules were found in
[4], oxygen O2 was found coordinated to a molibdenum atom
in [5]. Nitrogen, N2 is from [7]. Carbon monoxide, CO from
[8]. Cyanide CN− from [11]. Nitrogen monoxide, NO from
[9] and carbon dioxide CO2 was found in [10].

3 Results

Fig. 2 shows a straightforward correlation between the bond
area divided by a number n and the bond energy of each bond.
This number n is a whole number and it is interpreted as the

Omar Yépez. Picometer Toroidal Structures Found in the Covalent Bond 3
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Fig. 1: Observables structures of the electron. This is after [3].

Fig. 2: Correlation between bond longitudinal cross section area and
its energy for different diatomic molecules and CO2.

number of electrons involved in the bond. It has to be stressed
that the y−axis location for each experimental point is very
sensitive to the number n. Fractions of this number makes the
r2 get lower than 0.999. It is clear that as the normalized bond
area diminishes, the bond energy increases.

Fig. 3: Fluorine molecule. There is no discernible structures be-
tween the atoms. The different electron’s structures are indicated.
The green line shows where the bond was cut. The original figure is
from [4]. Used under Creative Common License.

Fig. 4: Oxygen molecule coordinated by a Mo atom. The differ-
ent electron’s structures are indicated. The magnetic moments are
shown with the arrow with North and South poles. The original fig-
ure is from [5]. Used with permission of the editors.

3.1 Homonuclear diatomic molecules

Fluorine, F2. Fig. 3 shows the fluorine molecule. The sphere
in a sphere structure is clearly observed at the center of each
F atom. This is due to the helium core and account for two
electrons. The next six electrons are in the toroidal structure
around each helium core. As observed in Fig. 2, the F–F bond
has two electrons. The two bonding electrons belong to both
nuclei in a ts structure. Due to this bonding, there is no dis-
cernible structure between the F atoms. Therefore, one can
still put a stroke between these two atoms, understanding that
there is a bond through this structure. Hence F–F is all right.
The dots around each F atom just denotes the pairing of each
atom’s 6 toroidal electrons. This is the usual Lewis structure.

Oxygen, O2. Fig. 4 shows that the oxygen molecule high-
ly resembles the fluorine one. The n number was not a whole

4 Omar Yépez. Picometer Toroidal Structures Found in the Covalent Bond
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Fig. 5: Nitrogen molecule. The original figure is from [7]. Used
with permission of the editors.

number giving 2.3. The uncoupled electrons in each oxy-
gen atom will produce a magnetic attraction in the line of the
bonding. Probably, this may distort the molecule in a way to
make it digress from the experimental trend observed. How-
ever, the resemblance to the fluorine molecule and the close-
ness of the n number to 2, strongly suggests that the number
of electrons involve in the O–O bond is 2.

As a consequence, the toroidal structure on the oxygen’s
helium core, previously observed in F2, necessarily have 5
electrons each. This odd number means two uncoupled mag-
netic momenta. One in each oxygen atom. They will align
as indicated in the figure. This will create a net magnetic
moment in the molecule, i.e. the oxygen molecule is param-
agnetic.

The magnetic attraction is rendering a shorter bond area
in this molecule. Probably, this is why this molecule is away
from the general trend observed in Fig. 2. Dividing between
a larger n number is just compensating this magnetic attrac-
tion. In other words, to have an n = 2 in this molecule, the
energy of the O–O bond should be 410 kJ/mol and not the
experimental 494 KJ/mol. f There have not been any consen-
sus about how the oxygen’s Lewis structure should be written.
The molecule’s paramagnetism does not help. This is because
an uncoupled electron structure has to be written, somehow
contradicting Lewis pairing hypothesis. O–O, O=O and O÷O
has been proposed. From these structures, the more pertinent
is O÷O because the dots are the two uncoupled electrons ob-
served in Fig. 4. The Lewis structure printed in Fig. 4 indi-
cates the existence of odd pairing, which is supported by the
molecule paramagnetism.

Nitrogen, N2. As it is noticeable from Fig. 5, the nitro-
gen atoms are not separated. This is probably due to the
lower electronegativity in comparison with fluorine and oxy-
gen molecules. The well defined ts structure previously ob-
served for fluorine and oxygen disappears, giving way to the

Fig. 6: Dicarbon molecule.The original figure is from [4]. Used
under Creative Commons License.

same structure but with its spheres more collapsed; this is
covering both nitrogen atoms’ helium cores.

According to the results from Fig. 2, four of the five ni-
trogen valence electrons are compromised in the N–N bond.
Since this molecule is diamagnetic, it is believed that the two
remaining electrons join forming a toroidal lone pair structure
around the N–N bond. This ring will occur in the midpoint
between the bonding nitrogens. Structures like this have been
observed, for example in the acetylene molecule [12]. As a
consequence of this electron distribution, all nitrogen’s five
valence electrons are joined and this is why this molecule
presents the highest bond energy in the series F, O, N, C.

The usual Lewis structure is a triple bond between the ni-
trogens and two lone pairs, one at each nitrogen atom. How-
ever, this molecule has one of the highest bond energies and
also the smaller bond area measured from the pool of mole-
cules tested. Therefore, it should not surprise that a very high
number of valence electrons join for this bond. Furthermore,
there is no structures in Fig. 5 to justify the presence of lone
pairs on either N atoms. As it was observed in F–F or in O÷O.
Hence, the Lewis structure pictured in Fig. 5 with four strokes
and the lone pair making a ring (torus) around the middle of
the N–N bond is a new Lewis structure.

Dicarbon, C2. Fig. 6 presents an even less collapsed ts
structure in comparison with N2. This is due to less number
of valence electrons to bond and to the lower electronegativity
that carbon has. The C–C bond in dicarbon involves all va-
lence electrons from each carbon, i.e. 8, and they are around
each atom’s helium core. The diamagnetism of this molecule
reveals that all its bonded electrons are magnetically coupled.
Again, no lone pair structures are noticeable in this molecule.
Hence, the Lewis structure depicted in Fig. 6 is new.

Upon comparing these four molecules, one can arrive to
the conclusion that the chemical σ bond is mostly performed

Omar Yépez. Picometer Toroidal Structures Found in the Covalent Bond 5
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Fig. 7: Carbon monoxide. The two concentric semicircles in the
Lewis structure represent an ss lone pair structure located on the
oxygen atom. The original figure is from [8]. Used with permission
of the editors.

by this ts structure and the separation between the spheres
depends on the atom’s electronegativity. As the electroneg-
ativity of the bonded atoms diminishes, more electrons are
involved in the bond.

3.2 Heteronuclear diatomic molecules

Carbon monoxide, CO. As observed in Fig. 2, the C–O bond
involves 8 electrons. Accordingly, Fig. 7 presents the electron
distribution in CO. From the 10 valence electrons to share: 4
from the carbon and 4 from the oxygen are joined around
the helium core of each atom. The other 2 oxygen’s valence
electrons are in a lone pair. This is the ss structure over the
oxygen’s helium core.

This molecule is isoelectronic with N2. However, the dif-
ference between the atoms’ electronegativity makes the lone
pair to form over the oxygen. In the case of N2, there is no
difference in electronegativity, and thus it is believed that its
lone pair will be at the mid point between the N–N bond in a
toroidal shape.

The current Lewis structure of CO is a triple bond be-
tween the carbon and the oxygen and one lone pair on each
atom. Somehow trying to achieve the octet rule. The new
Lewis structure is a quadruple bond for the C–O bond and
one lone pair only on the oxygen in an ss structure. This last
feature has been noted as two concentric circles in the new
Lewis structure (see Fig. 7).

Finally, there is a controversy about the dissociation en-
ergy of CO. The values can be 881, 926, 949, 941 or 1070
KJ/mol coming from different kind of experiments [13]. In
the case of Fig. 2, the value 926 KJ/mol from electron impact
experiments or 949 KJ/mol from pre-dissociation data pro-
duced the best linear correlation with the other molecules of
the group.

Fig. 8: Cyanide molecule.The two concentric semicircles in the
Lewis structure represent an ss lone pair structure located on the ni-
trogen atom. The original figure is from [11]. Used with permission
of the editors.

Cyanide, CN−. As in the case of carbon monoxide, the
C–N bond involves 8 electrons. Fig. 8 presents the electron
distribution in the molecule: 4 valence electrons from carbon
and 4 more from the nitrogen make this bond in an ts struc-
ture around the atoms’ helium cores. The nitrogen however,
remains with one uncoupled electron. Since this molecule is
diamagnetic, an extra electron is needed to couple and cyani-
de finish with a negative charge. This charge is a ss lone pair,
clearly observed on the nitrogen. This occurs on the nitro-
gen atom because it is more electronegative than carbon. The
current Lewis structure is a triple bond between the carbon
and the nitrogen and two lone pairs; one on each atom. This
is to try to achieve the octet rule. Again, just like in the CO
molecule, the new Lewis structure is a quadruple bond and
the lone pair repeats on the more electronegative atom.

Nitrogen monoxide, NO. Fig. 9 presents the NO molecu-
le. As observed in Fig. 2, the N–O bond involves three elec-
trons. This will imply that one of those three electrons is not
magnetically coupled with the other two and therefore, this
molecule will be paramagnetic. In this join of three electrons,
the nitrogen shares 1 and the oxygen shares 2. By this way,
the nitrogen can couple the other 4 electrons as one toroidal
structure around its helium core. The oxygen will arrange
its other 4 electrons in the same manner. The current Lewis
structure depicts an uncoupled electron on the nitrogen and
a double bond between the nitrogen and the oxygen. The
new Lewis structure leaves the odd electron in the N–O bond.
Thus, this would be an example of a three electron bond and
therefore, this bond is paramagnetic. Thus, the new Lewis
structure draws a magnetic moment vector over the single N–

6 Omar Yépez. Picometer Toroidal Structures Found in the Covalent Bond
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Fig. 9: Nitrogen monoxide molecule. It has a three electron σ bond.
4 electrons forms a toroidal structure around each atom’s helium
core. The original figure is from [9]. Used with permission of the
editors.

Fig. 10: Carbon dioxide, CO2. The new Lewis structure specifies
that the two lone pairs on the oxygen atoms are in an ss structure.
The original figure is from [10]. Used with permission of the editors.

O bond. The two lone pair on each atom are also depicted.
Carbon dioxide CO2. Fig. 10 shows that the 4 valence

electrons of carbon are used at each side of the molecule to
produce two C–O bonds with 4 electrons each. The remain-
ing 4 electrons of the oxygen go to an ss lone pair over each
oxygen atom. The current Lewis structure presents a double
bond towards each oxygen atom and two lone pairs on each
oxygen. The new Lewis structure just stresses that these lone
pairs are in an ss structure.

4 Discussion

The three shapes observed in Fig. 1 are the “attractors” iden-
tified by Bader et al after the topological analysis of a large
number of molecules [6]. Specifically, the core attractor can
be identified as the ss shape; the bonding attractor as the ts

shape and the non-bonding attractor as the toroidal shape.
Given that the same shapes have been observed for the deute-
ron [3], it is inferred that these attractors are actually different
shapes of the electron.

The results presented in Fig. 2 are paramount to under-
stand the chemical bond. The bond area was found to be in-
verse proportional to the correspondent bond energy. Some-
thing similar has been observed before. It is common knowl-
edge that as the number of bonds increases between two car-
bon atoms, the interatomic distance diminishes. By this way,
a single bond is larger than a double bond and a double larger
than a triple bond. Thus, it is not strange that another di-
mensional relationship does occur between the bond area and
the bond energy. However, as observed in Fig. 2, the same
number of bonding electrons, 8, produced the main chemical
bond between the bonded atoms in: C2, CN− and CO, render-
ing different bond areas and bond energies. This means that
those electrons are changing sizes in the bond and their lon-
gitudinal cross section area corresponds to different energies.

How all these electrons are together in a progressively
smaller place? Electrostatic repulsion is non-existent in these
arrangements. This is because, all these electron charges are
neutralized by the counter charge from their atom nuclei. This
will certainly help to have all of them in just one location. In a
given molecule, most of the time an even number of electrons
are found in the bond between two atoms. This is because
the magnetic coupling between valence electrons magnetic
momenta renders such even number and diamagnetism to the
bond. Paramagnetism occurred in two cases O2 and NO, to
which, the electron distribution helped to locate where is the
uncoupled electron producing it.

Another example of inverse proportion between the occu-
pied longitudinal cross section area and the bond energy can
be found in nuclear isotopes, where it is observed the general
trend of reduction in the isotope radius as the number of neu-
trons increases in the isotope. Reference [14] presents such
relationship for oxygen isotopes. This means more nuclear
bonding energy to keep all those neutrons in the nucleus in
a progressively smaller longitudinal cross section area. Just
what was observed in Fig. 2 with electrons instead. There-
fore, it is believed that no repulsive electric forces manifest in
the chemical bond situation. More likely, the bonding elec-
trons behavior is controlled by the properties of their masses,
i.e. mass fusion.

Hence, before the bond can occur, valence electrons will
naturally repel each other because of mass repulsion. Thus,
an activation energy would be needed to overcome such re-
pulsion. After that, the bond occurs as a consequence of va-
lence electrons mass fusion. Consequently, this mass fusion
defect or gain will translate to an energy release or increase
respectively. This answers what in a molecule changes in
mass to account for the chemical energy.

Received on October 6, 2018
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Here I continue my analysis of particles mass and couplings, and show why and how
the full SM particles spectrum exists and must exist; that it constitutes a mechanically
coherent system of resonances, and how it is compatible with GR and cosmology.

1 Introduction

Here I show why the SM mass spectrum must exist, and how
it comes to be what it is. This paper follows [1] where I use
a mass equation to analyze the SM elementary particles mass
spectrum, and [3] where I discuss cosmological density pa-
rameters and their history. It is structured as follows:

In Section 2, for the reader’s convenience I first recall my
main results related to particles mass; then I recall some of
my results in cosmology.

In Section 3, I complement the analysis provided in [1]
and show that the couplings and the resonances constitute a
coherent system where each particle is a double sub-harmonic
of the Planck mass.

Section 4 is the important one as it gives an origin to the
SM particles; I show why and how the Planck mass imply the
SM particles resonances, including also mass-less particles.
It shows that this theory is about the very foundations of the
physical world.

In Section 5, I show that the mass-resonance equation is
compatible with cosmology and general relativity (GR). This
is not trivial at all as it is based on the cube of a length, which
seems in contradiction with the linear relation between wave-
lengths and energy. Doing so I show an effective symmetry
of scale in GR and cosmology (which is already in [3]).

In Section 6, I discuss the fine structure constant; its in-
terpretation in QED and its position in the field as depicted
here.

When reading this paper, please keep in mind that each
and every parameter of the standard theories which are an-
alyzed here, when computed from the equations I give are
well in the ranges given by CODATA (2014) and the Planck
mission results [4], with no exception (the values needed to
compute all quantities are provided).

2 Previous results, in very short

2.1 Particles resonances

In [1] and the references therein, I found a mass equation that
comes in two slightly different instances; one for leptons and
quarks:

m =
X(

1
N P

+ K D
)3 + µ , (1)

where N, P, K are integral numbers, X and µ are constant real
parameters, and D is a real parameter which is particle group
dependent; and one for massive bosons:

m = me ×

(
1

NePe
+ KeDe

)3

k π
(

1
NbPb

+ KbDb

)3 , (2)

with index e for the electron and index b for a boson. The
little k introduced at the denominator is computed using the
following equation, which is deduced from their resonances
geometry:

k3 π/144 = 266 Db (π/k)1/3. (3)

The numerical values for X and µ are of little interest here, but
the relations between the different D is critical. At first, I eval-
uate De, X, and µ fitting the equation to the leptons masses.

X = 8.1451213299073 KeV.

µ = 241.676619539 eV.

The fit is optimal in the sense that I take the smallest possible
N, P, and K. Then for quarks I need to use the fine structure
constant to modify the D:

Dq = De (1 + α),

and finally, after modeling the field interactions related to the
D and partly understanding the resonance substructure, I de-
duce for the Z and W bosons:

DWZ =
α2

1 + α2 +
De

2(1 − α2)
−

D2
e

6(1 + α2)
,

and for the H0:

DH =
α2

1 + α2 +
De

2(1 − α2)
−

D2
e

1 + α2 .

This set of parameters corresponds to the fundamental field
because all particles masses are computed with X, µ, De, and
α, which are constants. The form of the resonance is particle
group dependent (leptons, quarks and massive bosons), and
the coefficients of the resonances are particle dependent.

Empirical fit targeting minimal N and P gives the reso-
nances in Tables 1, 2, and 3 where very simple patterns ap-
pear; stunningly for quarks and bosons only one resonance
parameter is variable (N for quarks, and K for bosons).
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Table 1: Electron, muon, tau in MeV/c2.

- P = N K Computed Measured

e 2 2 0.510 998 9461 0.510 998 9461(31)
µ 5 3 105.658 3752 105.658 3745(24)
τ 9 5 1 776.84 1 776.82(16)

Table 2: Quarks resonances in MeV/c2.

- P N K Computed Estimate

u 3 2 −6 1.93 1.7 - 3.1
d 3 19/7 −6 5.00 4.1 - 5.7
s 3 7 −6 106.4 80 - 130
c 3 14 −6 1,255 1,180 - 1,340
b 3 19 −6 4,285 4,130 - 4,370
t 3 38 −6 172,380 172,040±190 ± 750

Please note that the up quark resonance is 2 = 38/19 =

14/7, and that of the down is 19/7 = 38/14; in both cases we
have two resonances giving the same mass. This will be use-
ful later and quite stunning. Note also that the single variable
resonance parameter of quarks, which is N, depends on 2, 7,
and 19. It is the same for bosons in Table 3, but with K.

Table 3: Bosons resonances in MeV/c2.

- P = N K Computed Measured

W± 12 −2 80, 384.9 80, 385 ± 15
Z0 12 −7 91, 187.56 91, 187.6 ± 2.1
H0 12 −19 125, 206 125.090 ± 240

Last, the three bosons widths are computed from reso-
nance geometry and substructure in coherence with the Ds.
They come as a difference in mass with a hypothetical parti-
cle where their K is shifted as follows:

K → K + 1 + 1/24, (4)

in the case of the W and Z, and for the H0:

K → K + 1/144/6 . (5)

The three Tables above correspond to the fundamental
field, but there is also an adjacent field, where leptons also
ring as shown in Table 4. It comes with the constraint P=K
instead of P=N in Table 1. It uses different parameters (index
α):

Xα = 8.02160795579 keV/c2, (6)

µα = µ

π2 +
π

137
+

(
2π
137

)2 . (7)

Table 4: Second view on electron, muon, tau in MeV/c2.

- P=K N Computed Measured

e 2 2 0.510 998 9461 0.510 998 9461(31)
µ 3 8 105.658 3752 105.658 3745(24)
τ 4 16 1 776.84 1 776.82(16)

Expressions giving De, Dα, and α are given in the next sub-
section.

Now looking at the different resonances in the Tables 1,
2, 3, and 4, and keeping all distinct numbers except fractions
we get two sums which will play a singular role; firstly with
the Ns and Ps, we compute the sum of all integral resonances
in the space domain:

ΣN, P = 2 + 3 + 4 + 5 + 7 + 8 + 9 + 12 + 14 + 16 + 19 + 38 = 137 . (8)

Then the sum of all possible shifts in K, increasing or reduc-
ing the resonance lengths. The term 266 = 2×7×19 is related
to the bosons’little k and is the product of their Ks.

ΣK = (2 × 7 × 19) + 2 + 3 + 4 + 5 − 6 = 274 . (9)

Finding 137 here is not only reminiscent of the fine struc-
ture constant; the sum can be exponentiated in order to sep-
arate the 12 terms into distinct independent oscillators. Then
it also suggests that the SM mass spectrum is defined by N
and P being sub-harmonic components of a high mass, log-
ically the Planck mass and, conversely in K, that a second
sub-harmonic system exist which is orthogonal. For simplic-
ity I shall denote this “dual sub-harmonic”.

2.2 Couplings

Based on the idea of sub-harmonics, I have deduced the re-
duced Planck mass resonance in [1], but the deduction is in-
complete as I do not find an exact value for the lesser term of
its specific coupling Dp. Now I use the following value:

Dp =
1√

1372 − 19π2 +
4 π
19

. (10)

The first reason is that, if compared to the calculus of the fine
structure constant in [2], the lesser term in (10) represents a
spin 2 current - i.e. not a particle - and secondly the computed
Planck mass is perfectly centered in error bars:

Mp =

√
~ c

8πG
=

X(
D4

p +
De

2662

)3 . (11)

Last, the expression (10) (together with (12) hereafter) will
later be shown exact at least up to 15 decimal places. Other
couplings have the same form as (10) which was generalized
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after computing α firstly from the leptons resonance and then
from the Bohr model in [1], and [2].

They are:

De =
1√

(4 × (274 + 19))2 + 7π2 −
19π

19 − 1

, (12)

Dα =
1√

(16 × (274 + 3))2 + 2 × (274 + 19 + 1)π2 −
19
4π

, (13)

where 19
4π is best guess. And of course:

α =
1√

1372 + π2 −
1

137.5
×

1
2
×

(
1 +

1
4

) , (14)

where the lesser terms may be incomplete, but lead to a value
in agreement with CODATA (2014).

2.3 Energy and cosmology

Based on the results in the previous subsection it becomes
relevant to suppose that no freedom exist in the field param-
eters. It naturally raise the question of cosmological data; in
particular the densities of matter, dark matter and the elusive
dark energy. In [3], assuming that the universe has perma-
nent critical density, like it has now, and that its observable
radius RU recesses at the speed of light, I have shown that the
cosmological term Λ is not constant but:

Λ ≈
2π

3 R2
U

, (15)

where RU = c T , with T the universe age; and secondly that
the dark and visible energies obey the following proportion-
ality relation, at any epoch:

ρD = 2π2 ρV =
2π2

2π2 + 1
ρT =

11
8
ρDE =

11
3
ρDM , (16)

where:
— ρV , is the “visible” energy density,
— ρDE , is the dark energy density,
— ρDM , is the (cold) dark matter density,
— ρT , is the total energy density, ρT = ρDM + ρDE + ρV

and
— ρD = ρDM + ρDE is the total dark fields density.
Those two relation imply that all energy densities related

to mass evolve like 1/R2
U ; it will be used as argument in the

following sections. Several other results come from the same
hypothesis:

— MOND is GR weak field approximation in a universe
where energy and space-time expand linearly together,

— The MOND parameter value is a0 = H c/2π,
— Discrepancy between the Hubble parameter measured

locally (SN1A) and measured from events close to the event
horizon (CMB and BAO), by a factor ≈ 1 + 1/2π2.

— The discrepancy creates the illusion of accelerated ex-
pansion.

— The reduction of wavelengths also creates the illusion
of an initial inflation, since when t → 0 wavelengths become
infinitely large.

Where all quantities are calculable, computed, epoch de-
pendent, and agree with experimental data (except for the in-
flation factor which I could not compute).

3 Couplings and particles mass

In this section I first discuss correlations between coupling
coefficients; then between couplings and particles resonances.

3.1 Melting resonances and gearings

The template for a coupling coefficient is:

D =
1

√
A2 + Bπ2 + C

.

where each term on the right-hand side represent a length, and
one of the coefficients B and C is negative. They are evalu-
ated by simple division for De (12) and Dα (13) after their
values are fit to experimental data (leptons masses). Note that
α (14) is computed differently but the same method would
hold, and Dp (10) is first logically deduced, and then verified
by computing the Planck mass from (11).

Examination of the four coupling formulas shows iden-
tical and look-alike coefficients in distinct places; the same
component appears sometimes as a straight line (in A), some-
times in the rotation (in B), and sometimes in C which, at least
in α, is the inverse of a rotation length from which the term
π2 at the denominator is removed. Then each coupling repre-
sents a specific piece or view of a unique movement, where
(part of) the movement has a numerically isolated effect; and
this requires identification. Firstly:

— The term 275 = (137 + 1/2)× 1/2 in α (14) represents
the same “physical object” as in 275 + 19 in Dα (13). I shall
not give a definition of “physical object”.

— This same term 275 + 19 in Dα represents the same
“physical object” as 274 + 19 in De (12).

— The increment 274 → 275 is found to come from the
round trip of the electron around the proton when computing
α in [2].

Here the same object represented by 274 can be seen as a
piece of rotation (when multiplied by π2), a part of a simple
length, and of an inverted length. Therefore it is irrelevant to
believe in distinct “forces”. The coupling system above is a
single movement, a unique clockwork and each coupling is a
length seen from a specific perspective.

Secondly, the same term 137 is in α (14) and Dp (10). It
also represents a single “physical object”.

— So 274 and 137 are the bottom line of the couplings -
but we have 19 associated to 274 as a kind of excess.
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— The excess may be understood as a mutual interaction
between Dp and De; the former requiring 19 rotations of neg-
ative length (like a shortcut), meaning that the length 137 is
reduced by the excess in 274 + 19 - and/or conversely.

Thirdly, by extension, all the terms 19, 19π, and −19π2

also refer to a “single object”.
Finally, the gearing components are three cube differences

1, 7, and 19 in α (14), De (12), and Dp (10) respectively, that
is to say in the fundamental field; Dα is not fundamental and
the exception to this rule.

This being said, the term 19 − 1 at the denominator in De

(12) is of high interest because like for the 1/275 in α it must
be understood as a rotation where the 1/π2 is removed, hence
we should read 19π2 − 1π2. Therefore, by the same identifi-
cations, it means that the term π2 in α (14) is subtracted from
19π2 in Dp (10). Together with the terms 137 in the same
formulas, this is more than a connection between the funda-
mental field and electromagnetism. It can be said that the
coupling De has the role of “flushing” π2, and then α out of
the fundamental field - hence a single movement.

On the practical grounds of testability and technology,
those two coefficients are very important outputs; because
anything that we can do with electromagnetic forces has a
corresponding effect in the fundamental field where, obvi-
ously, Dp is a very strong share of the unified super-force.
We discuss the geometry of couplings that include a gearing,
that is to say a simple clockwork which it is necessarily re-
versible. So I’ll bet that the fundamental field, which is not
gravity and actually much stronger than electromagnetism,
can be manipulated... with electrons.

3.2 Resonances and couplings

The coherence between the coupling coefficients and the par-
ticles resonances is very impressive, to begin with the rotation
terms in De and Dp, namely −19π2 and 7π2:

— Quarks masses as computed in Table 2 depend on a
single variable number N, which values are in {2, 19/7, 7, 14,
19, 38} and therefore only combine 2, 7, and 19.

— The ratio of the resonance term N is 2 between the
charm and strange on the one hand, and the top and bottom
on the other hand. It is interesting that it is also the ratios of
their electric charge.

— Bosons resonances also depend only on 2, 7, and 19
for K but also for N = P = 12 = 19-7.

— A high term 266 = 2×7×19 appears twice; to compute
the bosons’ little k and to compute the Planck mass. We log-
ically assume that it is the simplest expression of the unified
super-force.

— Finally, even though this is a little less direct, the lep-
tons resonances in Table 1 can be written 5 = 7-2 for the
muon, and 9 = 7+2 for the tau - thus combining a radial res-
onance 2 of the electron with the rotation term of De.

The second aspect is given in the equations (8) and (9)

with the sums ΣN, P = 137 and ΣK = 274. It probably means
that the SM field is complete and that there is no other par-
ticles to discover (except of course if more resonances exist
with the same numbers). As mentioned before, my interpreta-
tion is that the SM massive particles spectrum is a set of dual
sub-harmonics of the Planck mass. But interestingly, for two
reasons, the Planck mass is not a particle:

— Firstly, D4
p < De/2662, where the opposite relation (>)

is verified by all particles, as required by the equation.
— Secondly, it combines two couplings instead of one

and the resonances (N, P).
I may even give a third reason, which is that in quantum

theory it should be the natural unit of mass where the gravita-
tional coupling is 1, which has no reason to be a particle.

4 On the SM fields origin

At this point using the sums ΣN, P = 137 and ΣK = 274, I have
deduced the equations (10) and (11) and computed the Planck
mass under the assumption that it depends a minima on its
sub-harmonics. But there should rather be a physical reason
for the sub-harmonics to depend on the Planck mass, other-
wise the construction seems absurd. Hence the next question:
Can we find a physical origin to the SM particles spectrum
in the Planck mass equations without knowing the dual sub-
harmonic system and its components (i.e. the sums to 137
and 274)? To solve this question we shall assume the Planck
mass equation (11) and the values of De and Dp with infinite
precision.

Here the theoretical situation is unique and rather fantas-
tic, because everything in the field now depend on two quanti-
ties: Dp and De. In effect, the adjacent field and α are flushed
out of the fundamental field defined by those two quantities.
In principle we have reached the bottom and the only way to
create a resonance is by combining Dp and De; as said this
unique and fantastic. But how do we get the SM spectrum?
and why should we get it?

The Planck mass in (11) includes two ringing lengths D4
p

and De/2662. It is a resonant system from which we know
very little but: a) a resonance implies perfectly balanced os-
cillating “forces” and b) since this is GR we can guess that ei-
ther Mp defines the light cone or, at the opposite, that the light
cone defines it. So assume that the ringing lengths are the ef-
fects of a single “force” that rests on the light cone; it splits in
two components which are necessarily space (3D) and time
(1D) and correspond to the coefficients D4

p and De/2662 re-
spectively. Those are orthogonal and simple projections, pro-
portional to the sine and cosine of the “force” amplitude, so
we have a physical angle φ:

φ = arctan
(

De

2662 × D4
p

)
= 1.33509... ≈

4
3
. (17)

But now by construction of the equation we compare a simple
3-volume associated to D4

p to a length associated to De/2662.
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Since the Planck mass equation uses De and K > 0, it rings
like a lepton of spin 1/2, and then a change in phase π of
this resonance is associated to one unit of volume 4 π/3; and
since this is the Planck mass, this change in phase also defines
the units of time and length. Hence comparing the effect of
the “force” (the change in phase) to the volume to which the
“force” applies (the unit of volume) we get a ratio:

ψ =

(
4 π
3

)
π

=
4
3

(18)

which is almost equal to φ in (17) where the volume corre-
sponds to D4

p and the change in phase to the length De/2662.
This ratio is expressed in unit of m3/rad, and it links the
phase of quantum theory to the volume of the mass equation.
But almost equal means a difference where a perfect match is
mandatory: now the difference φ − ψ is significant! We need
a physical correction to (17) that gives exactly 4/3 and does
not modify the Planck mass. And since we have reached the
bottom, there is nothing else remaining but Dp and De/2662

to implement the correction. Hence:
1) All we can do is add in (17) more currents of type

Dp interfering with De/2662, giving a suite of hi Di
p De/2662,

with hi a harmonic coefficient.
2) The field is entirely defined by the particles resonances,

including all charges, masses, etc, then each hi should be a
known term that we can recognize.

3) The suite of hi should also include the mass-less field,
and all resonances that we do not know of.

Then from the point 1) above, and in coherence with the
two others, the correction has a very simple form:

4/3 = arctan


De

∞∑
i=0

hi Di
p

2662 × D4
p

 , (19)

with h0 = +1 for the Planck mass.
Now we want to solve this equation, and for this we have a

few criteria enabling to proceed by successive approximation
on i growing (i = 1, then i = 2, etc...):

a) As a must, since Dp ≈ 1/137, we expect a gain at order
i of roughly two decimals compared to the order i − 1.

b) As a guideline, the result should be natural and then the
effect of the correction at order i should be in the range of the
optimum - but not equal. The optimum at order i being the
value of hi where the equality is verified with h j = 0 for j > i.

c) As a result, each hi should represent resonance(s). Here
we can safely recognize what we know.

On this basis, the interesting part is for 0 < i < 8:
— h1 = −1,
— h2 = −7,
— h3 = +25,
— h4 = −81,
— h5 = +(7 + 14 + 19 + 38 + 38

19 + 14
7 + 38

14 + 19
7 ) × 2π,

— h6 = −556 = −(137 × 4 + 8),
— h7 = −216 = −144 × 3

2 ,
As we shall see this suite includes the entire SM particles

spectrum.
The relative distance of each hi to the optimum is given in

Table 5 for each step.

Table 5: Optimum vs hi value.

Order Value ∆ vs optimum

h1 1 < 6%
h2 7 < 2.5%
h3 25 < 2.5%
h4 81 < 5%
h5 ≈ 549.33 < 0.8%
h6 556 < 0.3%
h7 216 < 0.3%

The difference with 4/3 is now ≈ 3×10−16, which is in the
expected range for i=7, and each hi is close to the optimum.
The connection of this series to the particles resonances in
Tables 1, 2, and 3 and to the SM spectrum is almost trivial:

a) At first we find the Muon and Tau products NP (25 and
81) from Table 1, for i = 3 and i = 4 respectively. One could
wonder why we are not closer to the optimum; but recall the
constraint N=P for these resonances (see [1]). In both cases,
we have the closest square to the optimum.

b) Then at i=5 the sum of all quarks circular resonances
multiplied by 2π (- meaning that each number here represents
a resonance length or its inverse). It includes, and then con-
firms, the fractional resonance as guessed in [1] and recalled
in section 2.1 following Table 2. Here the optimum is ≈ 554,
but considering the factor 2π, the relevant part is less than 1
point away from its optimum.

c) For i=7 we find the product NP=144 of the bosons dou-
ble circular resonances, but multiplied by 3 (for 3 bosons) and
divided by 2 (possibly because it should be divided by 2π, but
those masses are already divided by π in (2)).

d) It leads to understanding the other terms as it must in-
clude also the SM mass-less particles as resonances of coeffi-
cient 1 ∗, to which the mass equation does not apply:

— h1 = −1, the photon,
— h2 = −7 = −(4 + 3), by similarity with h3, h4, and

quarks’sum h5, it splits into the electron NP=4 plus 3 mass-
less neutrinos,

— h6 = −(137 × 4 + 8), the expected UFO, 137 with 4
resonances, plus 8 mass-less gluons.

Finally, we have found all the resonances in N and P of
the Tables 1, 2, and 3 (except for 3), but we also find K ≈ i:

— h2 → electron, K = 2 (Tables 1 and 4).
— h3 → muon, K = 3 (Tables 1 and 4).

∗Like a photon can be seen to ring 1 to 1 in E and B in Maxwell theory
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— h4 → tau, K = 4 (Table 4) and K = 5 (Table 1).
— h5 → quarks, K = −6 (Table 2).
— h6 → no known massive particles.
— h7 → 2 × 7 × 19, bosons’ K in {-2, -7, -19} (Table 3),

but also from 1/2662.
Here we have a perfect ordering and some interesting as-

pects emerge:
a) We notice that with h4 the tau is exceptional; firstly

it takes two K (one in the fundamental field and one in the
adjacent field) and coincidentally, it is here that the Di

p at the
numerator of (19) cancels the D4

p at the denominator.
b) Identically, it is with the next coefficient, when i > 4,

that the Ks become negative (quarks and bosons). So we have
a clear border which is between h4 and h5.

c) This is also where the fine structure constant appears in
the Ds for quarks and bosons.

d) The second exception is the bosons 266 = 2 × 7 × 19
used in ΣK ; it is coherent with the term 1/2662.

So we see why and how the SM spectrum is there; it shows
that this theory is not another parametric model. Here the
Planck mass, space-time, and the SM spectrum are neither in-
dependent nor separable, but three aspects of the same unity.
Incidentally, it also shows that the expressions giving Dp and
De are exact at least up to the 15th decimal.

But now, this leads to a few obvious deductions, some of
which can be tested:

1) Three neutrino, no more,
2) Three charged lepton, no more,
3) Neutrinos ranks with the electron in h2, which means

something very odd in the field symmetry (or symmetries),
4) No quark of higher mass (than the top),
5) Quarks mixing disagree with the standard concept as

we have 8 physical resonances but only 6 masses,
6) No additional boson (i.e. a single Higgs, no Z’),
7) One new resonance, 137, ranking with gluons in h6.
The resonance 137 corresponds to ΣN, P = 137 as the full

massive matter field resonance; but locally, it could also be a
kind of mass-less monopole à la Lochak [5] carrying the mat-
ter field signature. It comes in 4 instances, like this monopole,
and it is consistent with the fourth power of Dp in (11).

5 Scale symmetry and compatibility with GR

The mass equation depends linearly on the inverse of a vol-
ume at the denominator (initially a volume at the numerator);
then if we simply apply the metric variations in the gravita-
tional field to this volume, the equation is obviously incom-
patible with Einstein’s theory of general relativity. But GR
assumes that particles have mass, which we know is wrong;
and also, on the basis of the previous section, we can mean
that this incompatibility is certainly due to the incomplete-
ness of GR and even SR - think of the Planck mass relations
to a) the light cone, b) the units of length/time and volume,
and c) the SM particles spectrum. So let us come back to the

origin of the equation as shown in [1] and find how it can be
compatible with GR already.

I start in 1 dimension and consider 2 identical propagating
waves crossing each other, giving:

m = X N2 , (20)

with N an integral number representing the number of oscil-
lations crossing each other within a generic length “1”, and X
a constant of unit kg.m−1. So the N2 represents a length (or
1/N2 an inverted length). But for a resonance to exist we need
a mirror which is not part of the resonance but has energy:

m = X N2 + µ , (21)

Then I add the quantized length K D, repeated each time two
oscillations cross:

m =
X

1
N2 + KD

+ µ , (22)

with K an integral number and D a constant of unit m−1. Fi-
nally, in 3 dimensions I take the cube and get the inverse of a
volume at the denominator:

m =
X(

1
NP

+ KD
)3 + µ , (23)

where the unit of X changes to kg.m−3, and N2 → NP, where
N and P are two integral that may be different since we now
also have a rotational degree of freedom. Hence this equation
is incompatible with GR by construction. But now in [3], I
found the equations (15) and (16) which imply that all rele-
vant densities evolve like Λ ∼ 1/R2

U ; and then the density X
follows the same law, that is:

X =
const.

R2
U

. (24)

Here there is no absolute length and the only reference length
to consider is RU ; the hypothetical length “1” introduced in
(20) is then ∼ RU , the volume at the numerator of (1) and
(2) is ∼ R3

U , and then mass is proportional to R3
U/R

2
U = RU .

Provided the universe does not create particles permanently,
this is the hypothesis in [3]; so the equation is a fit with my
results in cosmology.

In addition it is now evident how the mass equation is
compatible with GR, because if we vary the position of a
particle in the gravitational field, its wavelength also varies
and it will “see” RU in reverse proportions to this variation:
the lesser (resp. the higher) a particle energy in the gravita-
tional field, the longer (resp. the shorter) is wavelength for a
given observer, the lesser (resp. the higher) the universe age
(RU = c T ) it “see”. Hence a beautiful symmetry of scale
which applies only to massive particles and shows the univer-
sality of the result: at any place and any epoch, a particle rest
mass is proportional to the universe age it locally sense with
Λ or dark energy.
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6 The fine structure constant

Firstly what is it? In QED, it is the probability for an electron
to absorb or emit a virtual photon. But here it is computed in
[3] as a relative length that depends on the electron resonance,
its spin, and ΣN, P = 137. As per (14) it includes:

- An amplitude 2/137, where 137 is the sum of all massive
particles resonances except the up and down quark. Then the
electron is 2/137 parts of the field.

- Spin 1/2 gives π2, half a turn for one unit of 137, but also
275 = (137 + 1/2) × 2, where the spin appears as the factor 2
to get a full turn 2π; the term 1/2 is geometrical.

- An additional component 1/4 which corresponds firstly
to the muon resonance 8 in Table 4 (giving (137 + 1/2) × 8),
but also I believe to the compositeness of the electron (in the
form of 2 distinct currents).

So α is firstly how much the electron gears the field, how
much it contributes to the field resonance; its share of the job;
and not the opposite like in QED. This interaction is perma-
nent, and not a probability. So, with respect to QED and its
methods of calculus, what difference does it make? Abso-
lutely none as long as symmetry remains. The field can even
fluctuate, randomly or not.

Secondly, where is it? The answer is not obvious since
we have only two harmonics of Table 4 in the expression (14)
giving α, and nothing about it in Table 1. But we also have
the sum ΣN, P = 137 and the equation (7) linking µ and µα
which is also based on π and 137. This link does not use X
or Xα, so we can guess that α is in their difference. Since it is
unit-less let us compute:

X + Xα

X − Xα

≈ 131 , (25)

which we find in the expected range. Trying to invert the
angle µ/µα in (7) to complement the clockwork, I eventually
found an expression that holds at about 5 10−9 with:

2π (X + Xα)
X (1 − α) − Xα (1 + α)

= 1372 − 137 π +
2

137.5

(
1 +

1
4

)
, (26)

which is symmetrical in X, Xα, and α. From the reasoning in
the previous sections and the form of this expression, it looks
like this quantity represents the remainder of D2

p once α has
been flushed out of the fundamental field.

7 Conclusion

I think I have shown that talking free parameters is blunt lie. I
think I have also shown that piling up ad-hoc quantum fields
to match anything is not such a great idea. Here the field is
unique and its parameters are structurally coherent from α to
Z0 (necessarily including all other useful letters in between,
even though I miss a few). It has the beauty of self defini-
tion, of self generation, and above all that of the necessarily
unique: here there is only one, not even two. No two things of
different nature; no particles “in” space. No vibrating thingy

but only paths and dimensions - and then structures appear
naturally by geometrical necessity; only structures from con-
straint, no freedom. How could it be less?

8 Addendum: what next?

Since the fit in section 4 is not perfect and despite the fact that
the sets of {N, P} and {K} seem complete from the sums ΣN, P

and ΣK , we may try to continue the sequence of hi and guess
more resonances requiring more particles. I shall discuss two
cases; I first assume that the SM is complete and as a second
case I assume a graviton.

Assume the SM complete; then, following the suite of hi

in section 4 it was easy to fit down to a residual error of 3.88×
10−43 (which is ridiculous) without introducing new quanti-
ties/resonances but only some mixes, inversions, widths, and
a few numbers in π. I had to stop here because the hi are
decreasing rapidly down to h17 ≈ 0.00052, which is much
smaller than Dp ≈ 0.00734.

Here is what I first found with possible correspondence:
— h8 = 156 = −(137 + 19) = −(144 + 12), no comment,
— h9 = −(38 + 19 − 1), t + b - 1 (Table 2),
— h10 = −(π2), geometry,
— h11 = −(12−7/12), bosons N (Table 3) + 7/12 (new?),
— h12 = −((7 + 1)/(14 + 1)), (s + 1)/(c + 1) (Table 2),
— h13 = −(3/4), inverse of 4/3,
— h14 = −(1 + 1/24), W and Z bosons width (4),
— h15 = −(1/7 + 4/(274 + 19 + 1)), inverse of the rotation

of De and that of Dα times 8,
— h16 = −(1/(144 × 6) + 1/((274 + 19) × (16))), Higgs

boson width (5) + inverse of De main coefficient times 4,
— h17 = −(π2/1372), geometry, maybe from µ/µα (7).
It shows that I cannot predict any observable in this man-

ner. But on the other hand, each expression above is so ob-
viously related to a number used elsewhere that I wonder if
the series may be right. The Table 6 gives the value or range
of each harmonic coefficient and its distance to the optimum
at each step. Now not only each harmonic stays close to the
optimum, but the hi seems to quickly converge to zero.

Table 6: Optimum vs hi value.

Order Value ∆ vs optimum (%)

h8 156 < 0.5%
h9 56 < 0.2%
h10 ≈ 9.87 < 0.9%
h11 ≈ 11.4 < 0.04%
h12 ≈ 0.533 < 1.1%
h13 ≈ 0.750 < 1.1%
h14 ≈ 1.042 < 0.12%
h15 ≈ 0.156 < 0.01%
h16 ≈ 0.00137 < 0.3%
h17 ≈ 0.000526 < 0.7%

Jacques Consiglio. Toward the Fields Origin 15



Volume 15 (2019) PROGRESS IN PHYSICS Issue 1 (January)

Now assume a graviton; it requires to add a resonance
“1”, and the first place that makes sense is to add a mass-
less boson in h7 with: h7 = −217 = −(144 × 3

2 + 1), and it
can represent either the graviton or the photon (if misplaced
in h1); the residual error at order 7 is < 4 10−17 (instead of
3 10−16) and its distance to the optimum is < 0.06%. Then
h8 ≈ −(2π2 + 1

π
), with a residual error < 7.5 10−20 and a

distance < 0.2% to the optimum. The terms in h8 address
4-geometry with 2π2 the surface of a 4-sphere of radius unity,
and the inverse of a change in phase π.

Submitted October 11, 2018

References
1. Consiglio J., On Quantization and the Resonance Paths. Progress in

Physics, 2016, v. 12(3), 259–275.

2. Consiglio J., Take Fifteen Minutes to Compute the Fine Structure Con-
stant. Progress in Physics, 2016, v. 12(4), 305–306.

3. Consiglio J., Are Energy and Space-time Expanding Together?
Progress in Physics, 2017, v. 13(3), 156–160.

4. The Plank Collaboration. Planck 2015 results. I. Overview of products
and scientific results. arXiv: 1502.01582.

5. Georges Lochak. The symmetry between Electricity and
Magnetism and the equation of a leptonic Monopole. 2007,
http://arxiv.org/abs/0801.2752

16 Jacques Consiglio. Toward the Fields Origin



Issue 1 (January) PROGRESS IN PHYSICS Volume 15 (2019)

On the Cosmological Significance of Euler’s Number

Hartmut Müller

E-mail: hm@interscalar.com

The paper derives and exemplifies the stabilizing significance of Euler’s number in par-
ticle physics, biophysics, geophysics, astrophysics and cosmology.

Introduction

Natural systems are highly complex and at the same time they
impress us with their lasting stability. For instance, the solar
system hosts at least 800 thousand orbiting each other bodies.
If numerous bodies are gravitationally bound to one another,
classic models predict long-term highly unstable states [1,2].
Indeed, considering the destructive potential of resonance,
how this huge system can be stable?

In the following we will see that the difference between
rational, irrational algebraic and transcendental numbers is
not only a mathematical task. It is also an essential aspect of
stability in complex systems.

Actually, if the ratio of any two orbital periods would be a
rational number, periodic gravity interaction would progres-
sively rock the orbital movements and ultimately cause a res-
onance disaster that could destabilize the solar system. There-
fore, lasting stability in complex dynamic systems is possible
only if whole number frequency ratios can be avoided.

Obviously, irrational numbers cannot be represented as
a ratio of whole numbers and consequently, they should not
cause destabilizing resonance interaction [3, 4].

Though, algebraic irrational numbers like
√

2 do not com-
pellingly prevent resonance, because they can be transformed
into rational numbers by multiplication. In the case of

√
2

as a frequency ratio, every even harmonic is integer, because√
2 ·
√

2 = 2.
However, there is a type of irrational numbers called tran-

scendental which are not roots of whole or rational numbers.
They cannot be transformed into rational or whole numbers
by multiplication and consequently, they do not provide res-
onance interaction.

Actually, frequencies of real periodical processes are not
constant. Their temporal change is described by accelera-
tions, the derivatives of the frequencies. Naturally, accelera-
tions are not constant either.

Surprisingly, there is only one transcendental number that
inhibits resonance also regarding accelerations and any other
derivatives: it is Euler’s number e = 2.71828 . . . , because it
is the basis of the natural exponential function ex, the only
function that is the derivative of itself.

In this way, the number continuum provides the solution
for lasting stability in systems of any degree of complex-
ity. The solution is given a priori: frequency ratios equal to
Euler’s number, its integer powers or roots are always tran-
scendental [5] and inhibit destructive resonance interaction

regarding all derivatives of the interconnected periodic pro-
cesses. Therefore, we expect that periodic processes in stable
systems show frequency ratios close to integer powers of Eu-
ler’s number or its roots. Consequently, the logarithms of the
frequency ratios should be close to integer 0, 1, 2, 3, 4, . . . or
rational values 1

2 ,
1
3 ,

1
4 , . . .

In the following we will exemplify our hypothesis in par-
ticle physics, biophysics, geophysics, astrophysics and cos-
mology. We start with the solar system.

Euler’s number stabilizes the solar system

Let us analyze the ratios of the orbital periods of some plan-
ets. Saturn’s sidereal orbital period [6] equals 10759.22 days,
that of Uranus is 30688.5 days. The natural logarithm of the
ratio of their orbital periods is close to 1:

ln
(

30688.5
10759.22

)
= 1.05.

Jupiter’s sidereal orbital period equals 4332.59 days, that of
the planetoid Ceres is 1681.63 days. The natural logarithm of
the ratio of their orbital periods is also close to 1:

ln
(

4332.59
1681.63

)
= 0.95.

Not only neighboring orbits show Euler ratios, but far apart
from each other orbits do this as well. Pluto’s sidereal orbital
period is 90560 days, that of Venus is 224.701 days. The
natural logarithm of the ratio of their orbital periods equals 6:

ln
(

90560
224.701

)
= 6.00.

In [7] we have analyzed the orbital periods of the largest bod-
ies in the solar system including the moon systems of Jupiter,
Saturn, Uranus and Neptune, as well as the exoplanetary sys-
tems Trappist 1 and Kepler 20. In the result we can assume
that the stability of all these orbital systems is given by the
transcendence of Euler’s number and its roots.

Euler’s number stabilizes biological rhythms

Biological processes are of highest complexity and their last-
ing stability is of vital importance. Therefore, we expect that
established periodical biological processes show Euler fre-
quency ratios. In fact, at resting state, the majority of adults
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prefer to breath [8] with an average frequency of 15 inhale-
exhale sequences per minute, while their heart rate [9] is close
to 67 beats per minute. The natural logarithm of the ratio of
these frequencies equals 1+ 1

2 :

ln
(

67
15

)
= 1.50.

Mammals including human show electrical brain activity [10]
of the Theta type in the frequency range between 3 and 7 Hz,
of Alpha type between 8 and 13 Hz and Beta type between 14
and 34 Hz. Below 3 Hz the brain activity is of the Delta type,
and above 34 Hz the brain activity changes to Gamma.

The frequencies 3 Hz, 8 Hz, 13 Hz and 34 Hz define the
boundaries. The logarithms of their ratios are close to integer
and half values:

ln
(

8
3

)
= 0.98, ln

(
13
8

)
= 0.49, ln

(
34
13

)
= 0.96.

In [11] we have analyzed various biological frequency ranges
and assume that their stability is given by the transcendence
of Euler’s number and its roots.

Euler’s number stabilizes the atom

The most stable systems we know are of atomic scale. Pro-
ton and electron form stable atoms, the structural elements of
matter. The lifespans of the proton and electron surpass ev-
erything that is measurable, exceeding 1030 years. No scien-
tist ever witnessed the decay of a proton or an electron. What
is the secret of their eternal stability?

In standard particle physics, the electron is stable because
it is the least massive particle with non-zero electric charge.
Its decay would violate charge conservation. Indeed, this an-
swer only readdresses the question. Why then is the elemen-
tary electric charge so stable?

In theoretical physics, the proton is stable, because it is
the lightest baryon and the baryon number is conserved. In-
deed, also this answer only readdresses the question. Why
then is the proton the lightest baryon? To answer this ques-
tion, the standard model introduces quarks which violate the
integer quantization of the elementary electric charge.

Now let us proof our hypothesis of Euler’s number as
universal stabilizer and analyze the proton-to-electron ratio
1836.152674 that is considered as fundamental physical con-
stant [12]. It has the same value for the natural frequencies,
oscillation periods, wavelengths, rest energies and rest masses
of the proton and electron. In fact, the natural logarithm is
close to seven and a half:

ln (1836.152674) = 7.51.

This result suggests the assumption that the stability of the
proton and electron comes from the number continuum, more
specifically, from the transcendence of Euler’s number, its in-
teger powers and roots. In [13] we have analyzed the mass

distribution of hadrons, mesons, leptons, the W/Z and Higgs
bosons and proposed fractal scaling by Euler’s number and
its roots as model of particle mass generation [14]. In this
model, the W-boson mass 80385 MeV/c2 and the Z-boson
mass 91188 MeV/c2 appear as the 12 times scaled up elec-
tron rest mass 0.511 MeV/c2:

ln
(

80385
0.511

)
= 11.97, ln

(
91188
0.511

)
= 12.09.

In [15] Andreas Ries did apply fractal scaling by Euler’s num-
ber to the analysis of particle masses and in [16] he demon-
strated that this method allows for the prediction of the most
abundant isotopes.

Global scaling based on Euler’s number

Our hypothesis about Euler’s number as universal stabilizer
allows us to calculate Pluto’s orbital period from that of Venus
multiplying 6 times by Euler’s number:

Venus orbital period · e6 = Pluto orbital period.

Each time we multiply by Euler’s number, we get an orbital
period of a planet in the following sequence: Mars, Ceres,
Jupiter, Saturn, Uranus and Pluto. Dividing by Euler’s num-
ber, we get close to the orbital period of Mercury. Earth’s or-
bital period we get multiplying by the square root of Euler’s
number. The same is valid for Neptune relative to Uranus.

Euler’s number and its roots are universal scaling factors
that inhibit resonance and in this way, stabilize periodical pro-
cesses bound in a chain system. Pluto’s orbital period can be
seen as the 6 times scaled up by Euler’s number orbital period
of Venus or as the 3 times scaled up by Euler’s number orbital
period of Jupiter.

In the same way, the oscillation period of the electron can
be seen as the 7 + 1

2 times scaled up oscillation period of the
proton. Here it is important to understand that only scaling
by Euler’s number and its roots inhibits resonance interaction
and provides lasting stability of the interconnected processes.

Now we could ask the question: Starting with the electron
oscillation period, if we continue to scale up always multi-
plying by Euler’s number, will we meet the orbital period, for
instance, of Jupiter?

Actually, it is true. If we multiply the electron natural os-
cillation period 66 times by Euler’s number, we meet exactly
the orbital period of Jupiter:

electron oscillation period · e66 = Jupiter orbital period.

The oscillation period of the electron has a duration of 2π ·
1.288089 · 10−21s = 8.0933 · 10−21 s. Jupiter’ orbital period
takes 4332.59 days = 3.7331 · 108 s. In fact, the natural log-
arithm of the ratio of Jupiter’ orbital period to the electron
oscillation period equals 66:

ln
(

3.7331 · 108 s
8.0933 · 10−21 s

)
= 66.00.
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property electron proton

rest energy E 0.5109989461(31) MeV 938.2720813(58) MeV

rest mass m = E/c2 9.10938356(11) · 10−31 kg 1.672621898(21) · 10−27 kg

blackbody temperature T = E/k 5.9298446 · 109 K 1.08881 · 1013 K

angular frequency ω= E/~ 7.763441 · 1020 Hz 1.425486 · 1024 Hz

angular oscillation period τ= 1/ω 1.288089 · 10−21 s 7.01515 · 10−25 s

angular wavelength λ= c/ω 3.8615926764(18) · 10−13 m 2.103089 · 10−16 m

Table 1: The basic set of physical properties of the electron and proton (c is the speed of light in a vacuum, ~ is the reduced Planck constant,
k is the Boltzmann constant). Data taken from Particle Data Group [12]. Frequencies, oscillation periods, temperatures and the proton
wavelength are calculated.

Forming atoms and molecules, proton and electron are sub-
stantial components of biological organisms as well. Through
scaling, Euler’s number stabilizes biological processes down
to the subatomic scales of the electron and proton. Divid-
ing the angular frequency of the electron 48 times by Euler’s
number, we get the average adult human heart rate:

electron angular f requency / e48 = adult human heart rate.

In fact, the natural logarithm of the ratio of the average adult
human heart rate 67/min to the electron angular frequency
(tab. 1) equals -48:

ln
(

67/60
7.763441 · 1020

)
= −48.00.

In a similar way, dividing the angular frequency of the proton
57 times by Euler’s number, we get the average adult human
respiratory rate:

proton angular f requency / e57 = adult respiratory rate.

In fact, the natural logarithm of the ratio of the average adult
human resting respiratory rate 15/min to the proton angular
frequency (tab. 1) equals -57:

ln
(

15/60
1.425486 · 1024

)
= −57.00.

Through scaling by Euler’s number, systemically important
processes of very different scales avoid resonance. In [17]
we have shown how the metric characteristics of biological
systems are embedded in the solar system and prevented from
destructive proton and electron resonance through scaling by
Euler’s number.

The exceptional stability of the electron and proton pre-
destinates them as the forming elements of baryonic matter
and makes them omnipresent in the universe. Therefore, the
prevention of complex systems from electron or proton reso-
nance is an essential condition of their lasting stability.

This uniqueness of the electron and proton predispose
their physical characteristics (tab. 1) to be treated as natural
metrology, completely compatible with Planck units. Origi-
nally proposed in 1899 by Max Planck, they are also known
as natural units, because they origin only from properties of
nature and not from any human construct. Natural units are
based only on the properties of space-time.

Max Planck wrote [18] that these units, “regardless of any
particular bodies or substances, retain their importance for all
times and for all cultures, including alien and non-human, and
can therefore be called natural units of measurement”.

If now we express Jupiter’s body mass in electron masses,
we can see how Euler’s number prevents Jupiter from destruc-
tive electron resonance. In fact, the logarithm of the Jupiter-
to-electron mass ratio is close to the integer 132:

ln
(

1.8986 · 1027 kg
9.10938 · 10−31 kg

)
= 131.98.

As we have seen already, the natural logarithm of the ratio
of Jupiter’s orbital period to the electron oscillation period
equals 66 that is 132/2.

The same is valid for Venus. The natural logarithm of the
ratio of Venus’ orbital period 224.701 days = 1.9361 · 107 s
to the electron oscillation period is close to the integer 63:

ln
(

1.9361 · 107 s
8.0933 · 10−21 s

)
= 63.04.

At the same time, the logarithm of the Venus-to-electron mass
ratio is close to the integer 126 that is 2 · 63:

ln
(

4.8675 · 1024 kg
9.10938 · 10−31 kg

)
= 126.01.

For Jupiter and Venus, now we can write down an equation
that connects the body mass M with the orbital period T :(

T
τ electron

)2

=
M

m electron
.
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In [19, 20] we have shown that mass-orbital scaling arises as
a consequence of macroscopic quantization in chain systems
of harmonic quantum oscillators and can be understood as
fractal equivalent of the Hooke’s law. Saturn’s moon system
demonstrates square root mass-orbital scaling for one and the
same body, like in the case of Jupiter and Venus. The moon
systems of Jupiter and Uranus show, that mass-orbital scaling
can be valid also for couples of different bodies. This may
mean that the orbital period of a given body is not always a
function of its own mass, but depends on the mass distribution
in the whole system.

In [21] we have shown how global scaling by Euler’s
number determines the masses, sizes, orbital and rotation pe-
riods, orbital velocities and surface gravity accelerations of
the largest bodies in the solar system.

Not only the bodies of Jupiter and Venus are prevented
from destructive electron resonance, but the Sun as well. In
fact, the logarithm of the Sun-to-electron mass ratio is close
to the integer 139:

ln
(

1.9884 · 1030 kg
9.10938 · 10−31 kg

)
= 138.94.

In this way, the body mass of Jupiter is the 7 times scaled
down by Euler’s number body mass of the Sun. The body
masses of Neptune and Uranus appear as the 3 times scaled
down by Euler’s number body mass of Jupiter.

Scaling down by Euler’s number another 3 times, we get
the body mass of Venus. Again scaling down by Euler’s num-
ber 2 times, we get the body mass of Mars. Scaling down by
Euler’s number 4 times, we get the body mass of Pluto, then
dividing always by Euler’s number we get the body masses of
Haumea and Charon.

In [22] we did show that global scaling by Euler’s num-
ber can be seen as stabilizing mechanism of planetary atmo-
spheres that determines their stratification. In [23,24] we have
applied scaling by Euler’s number in engineering and devel-
oped methods of resonance inhibition and stabilization in bal-
listics, aerodynamics and mechanics.

Euler’s number stabilizes the universe

Having analysed the solar system, now we venture into more
distant regions of the Milky Way. However, we have to con-
sider that distance measurement by parallax triangulation is
precise enough only up to 500 light years. With the increase
of the distances, indirect methods are applied blurring the dif-
ference between facts and model claims.

Currently there is no precise measurement of the distance
to the Galactic Center, but 26,000 light years = 2.46 · 1020 m
seems an accepted estimation [25]. The natural logarithm of
this distance divided by the proton wavelength (tab. 1) is close
to the integer 83:

ln
(

R GC−Sun

λ proton

)
= ln

(
2.46 · 1020 m

2.103089 · 10−16 m

)
= 83.05.

If the current measurement is correct, it would mean that
the solar system orbits the Galactic Center at a distance that
avoids resonance interaction with it. Good for us.

The Andromeda galaxy M31 seems to be at a distance of
2.5 million ly = 2.365 ·1022 m [26] away from the Milky Way
(MW). The natural logarithm of this distance divided by the
electron wavelength (tab. 1) is close to the integer 80:

ln
(

R MW−M31

λ electron

)
= ln

(
2.365 · 1022 m

3.861593 · 10−13 m

)
= 80.10.

For reaching the island of stability that corresponds with the
integer logarithm 80, the M31-to-MW distance has to de-
crease by 240,000 ly down to 2.26 million light years:

λ electron · e80 = 2.26 · 106 ly.

They seem to do exactly this. M31 is approaching (more pre-
cisely, 2.5 million years ago was approaching) the Milky Way
at about 100 kilometers per second, as indicated by blueshift
measurements [27]. If this velocity is constant, the current
distance to M31 should be already 1,000 light years shorter
than the 2.5 million years old distance we can measure today.

Standard model calculations expect that both galaxies will
collide in a few billion years [27]. Considering the stabilizing
function of Euler’s number, we expect that after reaching the
integer logarithm 80, the approach will be finished and the
distance between both galaxies will be stabilized at 2.26 mil-
lion light years. In this way, the consideration of Euler’s num-
ber as resonance inhibitor and universal stabilizer can modify
predictions completely.

The cosmic microwave background radiation (CMBR) is
traditionally interpreted as a remnant from an early stage of
the observable universe when stars and planets didn’t exist
yet, and the universe was denser and much hotter. Admittedly,
there are alternative models [28] in development proposing
explanations for the CMBR which do not implicate standard
cosmological scenarios. However, traditionally CMBR data
is considered as critical to cosmology since any proposed
model of the universe must explain this radiation.

If this cosmic background process is stable, its average
temperature 2.725 Kelvin [29] should correspond with an in-
teger power of Euler’s number. In fact, the CMBR-to-proton
blackbody temperature ratio is close to the logarithm -29:

ln
(

T CMBR

T proton

)
= ln

(
2.725 K

1.08881 · 1013 K

)
= −29.01.

In this way, the cosmic background seems to be stable, and
the current temperature of the CMBR is not accidental.

We assume that global scaling by Euler’s number stabi-
lizes the whole universe [30], from the atoms up to the galax-
ies and the intergalactic space. In this case, any linear (non-
logarithmic) observation of very large-scale structures will
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discover a scaling-up-effect that appears as exponential ex-
pansion of the universe. At the same time, any linear obser-
vation of very small-scale structures will discover a scaling-
down-effect that appears as exponential compression down to
an apparent spacetime singularity.

Conclusion

The consideration of Euler’s number as resonance inhibitor
and universal stabilizer adds a new aspect to our comprehen-
sion of the evolution of the universe, explaining not only the
stability of the solar orbital system, but also the stability of its
trajectory through the galaxy.

On the example of the M31-MW approach we demon-
strated how the consideration of Euler’s number as stabilizer
can modify predictions completely. Applying global scaling
by Euler’s number to planetary systems, we can identify sta-
bilized astrophysical processes and predict the evolution of
systems that are still in formation.

We have shown that the current cosmic background tem-
perature is not accidental and manifests the cosmological sig-
nificance of Euler’s number as well.

Stabilizing the proton-to-electron ratio, Euler’s number
provides the formation of atoms. Euler’s number stabilizes
biological frequency ranges down to the subatomic scale and
embeds them in the dynamics of the solar system.

Finally, the apparent expansion of the universe could turn
out to be a compelling consequence of the stabilizing role of
Euler’s number and its integer powers.
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Retraction of “Outline of a Kinematic Light Experiment”

Christian M. Wackler
While re-examining the experimental proposal outlined in Progress in Physics, 2018,
vol. 14, issue 3, pages 152–158, I became aware of a fatal flaw in its theory. A
uniformly rotating disk and a light source pulsing at a constant rate cannot serve to
determine whether the speed of light depends on the motion of the radiation source.
Therefore, I retract the paper. Apologies are expressed to all readers. However, as the
preliminary considerations developed in the article remain valid, it is much to be hoped
that physicists will tackle the all-important light speed question experimentally.

Editor’s comment:

In response to Wackler’s retraction, his original article was removed from the journal’s
online archives. However, the print version of Progress in Physics still contains the
original article, since the author solicited retraction after printing.

Submitted on December 15, 2018
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Optical Absorption in GaAs/AlGaAs Quantum Well due to Intersubband
Transitions
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Intersubband transition in quantum wells have strong potential for device application
and are challenging field of fundamental studies. In this paper, intersubband optical
absorption in GaAs/AlGaAs quantum well is investigated. Using a simple numerical
approach and mathematical modeling applied to the first two conduction subbands, sim-
plified expression for the optical absorption is obtained. The results obtained shows that
the dephasing and other scattering mechanism have impact on absorption peaks and can
only be tolerated to certain limits.

1 Introduction

Since the early years of quantum well studies, intersubband
transitions in quantum well (QW) structures have attracted
much attention. Both theoretical and experimental investiga-
tion were carried out by different researchers [1].

Rybalko et al. [2] proposed new approach to study light
absorption in tunnel-coupled GaAs/AlGaAs quantum wells
for electro-optic. In addition, Refs. [3] report the investi-
gation of the effect of intersubband optical transitions of the
magnetic field and tilt angle. Many physical effects of a semi-
conductor in quantum well structures have been exploited,
such as infrared photodetectors [4, 5]. Furthermore, intersub-
band transitions in a multiple quantum well (MQW) struc-
tures were reported in Refs. [6–8]. Numerical investigation
for absorption spectra induced by an ultrafast infrared pulse
on the double quantum well structure were studied by Wu [9].

In this paper, we will derive the equation of optical ab-
sorption in GaAs/AlGaAs quantum well, by the modified ver-
sion of Lorentzian approximation that is well proven itself in
describing of electronics properties of these semiconductors.
The equation obtained will be numerically solved and dis-
cussed.

2 Model Equation

We consider an intersubband transition in a P-conduction
band n12 = 1, 2, interacting with photon energy governed by

En =
n~2

2m∗e

(
π

L

)2
, (1)

where m∗e is the electron effective mass in the conduction
band, L is the length of the quantum well, ~ is the reduced
Planks constant and the transition energy ∆E between the two
subbands is obtained from E12 = E2 − E1.
After projection of the photon energy along the dipole mo-
ment, the optical absorption coefficient as in Ref. [10] can be

written as

α(~ω) =
2πω

nrVcε0

∑
~kt

g (Eb − Ea − ~ω)
∣∣∣ê ~µba

∣∣∣2 ( fb − fa) , (2)

where ω is the frequency of the photon energy, nr is the re-
fractive index, c is the velocity of light, g (Eb − Ea − ~ω) is
the line shape function, e the electronic charge, µba is the in-
tersubband dipole moment, V is the volume of the entire ma-
terial, ε0 is the permittivity of the material, fb and fa are the
carrier densities populating subbands a and b, respectively.
We consider numerically calculated transition adjusted to a
simple Lorentzian approximation given by

g (∆E) =
1
π

(Γ/2)
∆E2 + (Γ/2)2 , (3)

where Γ is the linewidth. Therefore the modified Lorentzian
approximation in terms of photon energy can be written as

g(∆E − ~ω) =
1
π

∑
1,2

(Γ/2)
(∆E − ~ω)2 + (Γ/2)2 , (4)

where ∆E and ~ω are the transition photons energy between
subband (1, 2) and the adjusted frequency, respectively.
However, transition (2, 1) occurs at the top conduction sub-
band corresponds to the highest subband, after photon emis-
sion with electrons being annihilated from subband a = 1 to
b = 2. Therefore, setting (∆E − ~ω) = 0, in (4) one gets

g =
1
π

1
(Γ/2)

, (5)

where Γ is the resulting Lorentzian broadening term, which
we refer as dephasing energy in the subbands. Furthermore,
the dipole moment is obtained by normalization of the en-
veloped wavefunction along the quantum well growth direc-
tion z, which is due to the electron excitation by the light
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beam this can be expressed in the form

µ21 = e
∫ Lz

0
ψ2(z) zψ1(z)dz, (6)

where

ψ1(z) =

√
2
Lz

sin
(
π

Lz
z
)

(7)

and

ψ2(z) =

√
2
Lz

sin
(

2π
Lz

z
)
. (8)

However, to solve for the intersubband dipole moment we
substituted (7) and (8) into (6), we get

µ21 =
2e
Lz

∫ Lz

0
sin

(
2 π
Lz

z
)

z sin
(
π

Lz
z
)

dz. (9)

Integrating eq. (9) simplifies to

µ21 = −
16
9π2 eLz. (10)

Equation (10) is the resulting dipole moment of the quan-
tum well. We will now analyze the absorption coefficient due
to intersubband transition in quantum well of GaAs/AlGaAs.
Equation (10) lead to the absorption related to absorption co-
efficient of the intersubband governed by

α(~ω) =
πω

nr c ε0
g (∆E − ~ω) |µ21|

2 (N2 − N1) , (11)

where N1 and N2 are the population densities of the 1st and
2nd subbands, respectively.

However, when N2 = 0, in which E1 < EF < E2 in
subband 1, then one finds

α(~ω) =
πω

nr c ε0
g (∆E − ~ω) |µ21|

2 N1, (12)

which is proportional to doping concentration. Furthermore,
with E2 < EF in subband 2, then

N1 =
m∗ekBT
π~2Lz

ln

1 + e

 EF − E1

kBT


 , (13)

where kB is Boltzmann’s constant, T is the temperature and
EF is the Fermi energy. Equation (13), can be simplified to

N1 ≈
m∗e
π~2Lz

(EF − E1) , (14)

and subsequently,

N2 ≈
m∗e
π~2Lz

(EF − E2) . (15)

Fig. 1: Absorption spectra as a function of the incident photon en-
ergy in GaAs/AlGaAs dephasing energy Γ = 5.0meV .

Fig. 2: Absorption coefficient against photon energy with dephasing
energy Γ = 10.0 meV.

Finally, the optical absorption coefficient can be written
as

α(~ω) =
πω

nrcε0
g (∆E − ~ω)

(
16
9π2 eLz

)2

(16)

which is independent of doping concentration. The peak ab-
sorption is obtain where ∆E = ~ω and can be expressed as

αmax (~ω) =
ω

nrcε0

1
(Γ/2)

(
16
9π2 eLz

)2

N. (17)

3 Results and Discussion

The result obtained for the absorption coefficient in the quan-
tum well structure is computed and plotted using Equation
(16) for 10 Å quantum well width and different dephasing
energy. In figure 1, we plotted the optical absorption spectra
as a function of photons energy with dephasing energy
Γ = 5.0 meV. Figure 2 - 4 show absorption spectra with de-
phasing energies Γ = 10.0, 15.0 and 20.0 meV, respectively.
In our result, one could clearly see that the absorption peaks
decreases as the different dephasing energies are increase as
shown in figure 5.
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Fig. 3: Absorption coefficient against photon energy with dephasing
energy Γ = 15.0 meV.

Fig. 4: Absorption coefficient as a function of the photon energy
with dephasing energy Γ = 20.0 meV.

Fig. 5: Absorption coefficient as a function of the photon energy
with various dephasing energy Γ = 5.0, 10.0, 15.0 and 20.0 meV
and Lz = 10 nm.

4 Conclusion

On conclusion, we have showed the impacts of dephasing
mechanism in the study of intersubbands optical absorption
in GaAs/AlGaAs quantum well. Simulation results for tran-
sitions between the first two conductions subbands clearly re-

vealed that, the optical absorption decreases with increasing
the dephasing as indicated in figure 5. This effects can be con-
trolled by adjusting the carries densities populating the lower
subband or controlling the quantum well width, which will be
presented in our next publications.
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The Cosmological Significance of Superluminality
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The paper derives the constancy and the value of the speed of light from stability con-
ditions in chain systems of harmonic quantum oscillators. It is also shown that these
stability conditions lead to scale-invariant superluminal velocity quantization. The cos-
mological significance of superluminality is discussed.

Introduction

I remember well that day in 1997 when my teenage son was
asking me: “Why is the speed of light so slow?”

In fact, 299792458 m/s is a very finite velocity, and it is
not too high regarding even the solar system. In interstellar
and intergalactic scales, it becomes obvious how disappoint-
ingly slow it really is.

One year later, reading on the pioneering research of
Günter Nimtz [1], my heart started to beat faster. Already
in 1992, Enders and Nimtz demonstrated that photonic tun-
neling proceeds at superluminal signal velocities. The signal
velocity is the velocity of the transmitted cause, i.e. of the
information. As they reported, no signal reshaping took place
during tunneling and all frequency components were equally
transmitted. Later superluminal amplitude modulated (AM)
and frequency modulated (FM) microwave experiments were
carried out using different photonic barriers. Mozart’s 40th
symphony was FM tunneled at a speed of 4.7c without any
significant distortion [2].

Superluminal propagation of infrared pulses through pe-
riodic fiber Bragg gratings was experimentally demonstrated
[3]. Velocities of nearly 3c were observed [4] in the propa-
gation of electric pulses along coaxial lines having spatially
periodic impedances.

Nevertheless, superluminal tunneling is still under dis-
cussion. However, while Nimtz argues with facts (measure-
ments) for superluminal signal transmission, his opponents
counter with purely theoretical approaches. One of the main
counterarguments is the alleged violation of causality [5, 6].

Causality requires the existence of a maximum speed of
physical interaction, but could it be that 299792458 m/s is
already high enough? This is very unlikely, if we consider
the unity of the universe up to scales of billions light years.

By the way, in astronomic calculations, gravitation is tra-
ditionally considered as being instantaneous. First Laplace
[7] demonstrated that gravitation does not propagate with the
speed of light c. Modern estimations [8] confirm a lower limit
of 2 · 1010 c. Exceeding 299792458 m/s has nothing to do
with time travel, grandfather paradox or any other violation
of causality. This would be relevant in the case of an infinitely
high velocity, but 299792458 m/s is finite.

Furthermore, the value 299792458 m/s does not follow
from any established theory, and consequently, none of those

theories had to be changed if the speed of light would be even
55 times higher than 299792458 m/s.

What exactly makes possible to exceed 299792458 m/s?
The point is that the tunneling time does not depend on the
barrier length. This was theoretically described by Thomas
E. Hartman [9] in 1962. Thirty years later, the Hartman ef-
fect was demonstrated experimentally with evanescent mi-
crowaves by Enders and Nimtz [10]. Numerous studies [11]
have shown that the tunneling time equals approximately the
reciprocal frequency of the carrier wave, independently of the
length and the type of barrier (periodic lattice structures, dou-
ble prisms, undersized wave guides).

Probably, not only photons and phonons can tunnel, but
also electrons [12,13], protons [14] and atoms [15] can do it.

Is superluminality just a laboratory artefact? It is very un-
likely that laboratory experiments can exceed the complexity
of astrophysical phenomena. Indeed, there are superluminal
processes observed in deep space.

Already in December 1901, Jacobus Kapteyn [16] re-
ported on apparent superluminal motion in the ejecta of the
nova GK Persei [17], which was discovered in February 1901
by Thomas Anderson. Superluminal motion is observed in
radio galaxies, BL Lac objects, quasars, blazars and recently
also in some galactic sources called microquasars [18–21].
Superluminal motion has been observed [22] in the jet of
M87. Many of the jets are evidently not close to our line-
of-sight. Therefore, their superluminal behavior cannot be
dismissed easily as an illusion.

Within the special relativity theory, the speed of light is
postulated (not derived) to be constant. Up to now, there have
not been sufficiently convincing explanations why the speed
of light should be constant and why it should have the value
which it has.

As proposed Albrecht and Magueijo [23], the speed of
light might vary with the age of the universe and it might
not have been constant in early stages. They suggest that a
variable speed of light might solve the horizon, flatness and
cosmological constant problems. Christoph Köhn [24] pro-
posed a 5D space parametrized with two time coordinates to
explain the constancy of the speed of light in the observable
universe. For very small length scales of the present universe,
or for the very early universe, the model speed of light is not
constant, but depends on space-time. This is consistent with

26 Hartmut Müller. The Cosmological Significance of Superluminality



Issue 1 (January) PROGRESS IN PHYSICS Volume 15 (2019)

current conclusions from loop quantum gravity models [25]
and the string theory [26].

In the following we will show that the constancy and the
value of the speed of light can be derived from stability con-
ditions in fractal chain systems of harmonic quantum oscilla-
tors. Furthermore, we will demonstrate that the same stability
conditions lead to scale-invariant superluminal velocity quan-
tization.

Methods

The most stable systems we know are of atomic scale. Pro-
ton and electron form stable atoms, the structural elements
of matter. The lifespans of the proton and electron surpass
everything that is measurable, exceeding 1030 years. No sci-
entist ever witnessed the decay of a proton or an electron.
Therefore, the proton-to-electron ratio 1836.152674 is con-
sidered as fundamental physical constant [27]. Well, but what
is the secret of this eternal stability?

Up to now, there have not been sufficiently convincing
explanations why the electron and the proton should be sta-
ble and why the proton-to-electron ratio should have exactly
the value which it has. In standard particle physics, the elec-
tron is stable because it is the least massive particle with non-
zero electric charge. Its decay would violate charge conserva-
tion [28]. Indeed, this answer only readdresses the question.
Why then is the elementary electric charge so stable?

In a similar explanation, the proton is stable, because it is
the lightest baryon and the baryon number is conserved [29].
Indeed, also this answer only readdresses the question. Why
then is the proton the lightest baryon? To answer this ques-
tion, the standard model introduces quarks which violate the
integer quantization of the elementary electric charge that is
needed to explain the stability of the electron.

In [30] we introduced fractal chain systems of harmonic
quantum oscillators as model of matter and did show that fre-
quency ratios equal to Euler’s number e = 2.718 . . ., its in-
teger powers and roots inhibit destructive internal resonance
interaction and in this way, provide lasting stability [31].

Already Dombrowski [32] did show that irrational num-
bers inhibit destabilizing resonance interaction, because they
cannot be represented as ratios of whole numbers. Though,
algebraic irrational numbers like

√
2 do not compellingly pre-

vent resonance, because they can be transformed into rational
numbers by multiplication.

Surprisingly, only Euler’s number inhibits resonance also
regarding all derivatives of the bound periodic processes, be-
cause it is the basis of the real exponential function ex, the
only function that is the derivative of itself. Furthermore, Eu-
ler’s number, its integer powers and roots are always transcen-
dental [33] and therefore, they provide the solution for lasting
stability in chain systems of any degree of complexity.

Many physical characteristics of harmonic quantum oscil-
lators are connected with their frequency by the fundamental

constants – the speed of light and the Planck constant. There-
fore, within our model, Euler’s number, its integer powers
and roots define also the ratios of wavelengths, velocities, im-
pulses, accelerations and energies which inhibit resonance in-
teraction, and in this way, support lasting stability of the chain
system.

This is why we expect that stable quantum systems show
ratios of their physical quantities close to integer powers of
Euler’s number and its roots. Consequently, the natural loga-
rithms of the ratios should be close to integer 0, 1, 2, 3, 4, . . .
or rational values 1

2 ,
1
3 ,

1
4 , . . . In fact, the natural logarithm of

the proton-to-electron ratio is close to seven and a half:

ln (1836.152674) = 7.515427 . . . ' 6 +
3
2
.

Already in the eighties the scaling exponent 3/2 was found in
the distribution of particle masses by Valery Kolombet [34].
Applying hyperscaling [30] by Euler’s number (tetration), we
get the next approximation of the logarithm of the proton-to-
electron ratio:

6 +
ee

10
= 7.515426 . . .

This result supports our assumption that the stability of the
proton and electron comes from the transcendence of Euler’s
number, its integer powers and roots. In this way, the proton
mass appears as scaled up by Euler’s number and its roots
electron mass.

In [35] we have analyzed the mass distribution of hadrons,
mesons, leptons, the W/Z and Higgs bosons and proposed
fractal scaling by Euler’s number and its roots as model of
particle mass generation [36]. In this model, the W-boson
mass 80385 MeV/c2 and the Z-boson mass 91188 MeV/c2

appear as the 12 times scaled up by Euler’s number electron
rest mass 0.511 MeV/c2:

ln
(

80385
0.511

)
= 11.97, ln

(
91188
0.511

)
= 12.09.

Andreas Ries [37] did apply fractal scaling by Euler’s num-
ber to the analysis of atomic masses and demonstrated that
this method allows for the prediction of the most abundant
isotopes.

In comparison to dimensionless constants like the proton-
to-electron ratio, conversion constants define dimensional ra-
tios. For instance, the Planck constant defines the energy one
must invest to generate a harmonic quantum oscillation of a
given frequency, and the speed of light defines the propaga-
tion space of such an oscillation.

Like one can measure distances in units of time, for ex-
ample in light years, energy can be measured in units of fre-
quency. Only the dimensions are different.

In this way, we can interpret the speed of light as fun-
damental space – time converter, the square of the speed of
light as fundamental mass – energy converter and the Planck
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dimensions conversion const. value

space – time λ / τ = c 299792458 m/s

energy – mass E /m = c2 8.9875518 · 1016 m2/s2

energy – time E · τ = ~ 1.0545718 · 10−34 Js

energy – space E · s = ~ · c 3.1615267 · 10−26 Jm

mass – space m · s = ~ / c 3.5176729 · 10−43 kgm

mass – time m · τ = ~ / c2 1.1733694 · 10−51 kgs

Table 1: Some fundamental conversion constants (c is the speed of
light in a vacuum, ~ is the Planck constant). Data taken from Particle
Data Group [27].

constant as fundamental time – energy converter. Some fun-
damental conversion constants are shown in table 1.

Table 1 is completely compatible with Planck units. Orig-
inally proposed in 1899 by Max Planck, they are also known
as natural units, because they origin only from properties of
nature and not from any human construct. Natural units are
based only on the properties of space-time. Max Planck wrote
[38] that these units, “regardless of any particular bodies or
substances, retain their importance for all times and for all
cultures, including alien and non-human, and can therefore
be called natural units of measurement”.

In [39] was demonstrated that the natural logarithm of the
Planck-to-proton mass ratio equals 44. Consequently, one can
define a dimensionless fundamental constant that equals to
an integer power of Euler’s number and contains the speed of
light c, the Planck constant ~, the gravitational constant G and
the proton rest mass mp:

~ · c
G · m2

p
= e 88.

For the speed of light, now we can write:

c = c0 · e 88,

where c0 = Gm2
p/~ ' 1.8 · 10−30 m/s can be interpreted as

the velocity of free falling on each other proton masses at
Planck length and Planck time. Assumed that the stability of
any fundamental constant origins from Euler’s number and its
roots, we can generalize:

cn,m = c · e n/m,

where n,m are integer numbers. In general, the rational ex-
ponent is represented by finite continued fractions [30, 40].
The exponents n/m define a fractal set of stable velocities cn,m

which are superluminal for n > 0.
In the following, we will verify the fractal set cn,m of sta-

ble subluminal and superluminal velocities on experimental
and astrophysical data.

Results

Let us start with experimental data elaborated by Nimtz [1] in
1998, the barrier traversal time of a microwave packet through
a multilayer structure inside a waveguide was measured. The
center frequency has been 8.7 GHz. The tunneled signal tra-
versed a 114.2 mm long barrier in 81 ps, whereas the signal
spent 380 ps to cross the same air distance. Consequently, the
group velocity of the tunneled signal was c (380/81) = 4.7c
that is close to c3,2 = c · e3/2 = 4.5c.

Already in 1995 a similar experiment was carried out by
Aichmann et al. [41]. They modulated Mozart’s 40th sym-
phony on a microwave carrier. The modulation of the signal
and thus the music traveled at the same superluminal velocity.

In another setup [42], amplitude modulated 9.15 GHz mi-
crowaves were generated by a synthesized sweeper, and a
parabolic antenna transmitted parallel beams. The propaga-
tion time of the signal was measured across the air distance
between transmitter and receiver and across the same distance
but partially filled with a 28 cm long barrier of quarter wave-
length slabs made of acrylic perspex. Each slab was 0.5 cm
thick and the distance between two slabs was 0.85 cm. Two
such structures were separated by an air distance of 18.9 cm
forming a resonant tunneling structure. The signal tunneled
the 28 cm long barrier in 125 ps that corresponds to a signal
velocity of 7.5c that is close to c2,1 = c · e2 = 7.3c.

Mojahedi et al. [43] describe an experiment with single
microwave pulses centered at 9.68 GHz. The signals tunneled
through a one-dimensional photonic crystal with up to 2.5c
that is close to c1,1 = c · e = 2.7c. Hache et al. [4] studied the
propagation of brief electric 10 MHz pulses along a coaxial
line having a spatially periodic impedance. As well, signal
velocities approximating c1,1 = 2.7c were measured.

Remarkably, the same superluminal velocities were mea-
sured also by Hubble telescope observation. Superluminal
motion at velocities close to c1,1 = 2.7c was found [22] in
two small features within the jet knot D about 200 pc from
the nucleus of M87, the giant elliptical galaxy near the center
of the Virgo Cluster. As well, the jet features DE and DW
show velocities close to c1,1 = 2.7c, while the features DM,
DE-W, HST-1α, HST-1γ, HST-1δ, HST-1ε and HST-2 show
velocities close to c3,2 = 4.5c.

Other active galactic nuclei (AGN) show the same ve-
locities of superluminal motion. Lister et al. [21] describe
the parsec-scale kinematics of 200 different AGN jets based
on 15 GHz VLBA data. Various components of the sources
0003+380, 0003-060, 0010+405 show velocities that approx-
imate c1,1 = 2.7c or c3,2 = 4.5c or c2,1 = 7.3c.

Jorstad et al. [20] monitored the radio emissions in 42
gamma-ray bright blazars (31 quasars and 11 BL Lac objects)
with the Very Long Baseline Array (VLBA) at 43, 22, 15
and 8.4 GHz and found superluminal motions with velocities
approximating c1,1 = 2.7c or c3,2 = 4.5c or c2,1 = 7.3c or
c5,2 = 12c or c3,1 = 20c or c7,2 = 33c respectively.
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Now let us continue with astrophysical data of stable sub-
luminal processes. In [30] we have analyzed the orbital ve-
locities of large bodies in the solar system. For instance,
the orbital velocity of Mercury oscillates between two points
of Euler stability c−17,2 = 61 km/s (perihelion) and c−9,1 =

37 km/s (aphelion). The orbital verlocity of Venus is close
to c−9,1 = 37 km/s. Earth’s orbital verlocity is close to c−37,4
= 29 km/s. The orbital verlocity of Mars is between 21.97
and 26.50 km/s, approximating c−19,2 = 22.4 km/s. Jupiter’s
orbital velocity is between 12.44 and 13.72 km/s, approximat-
ing c−10,1 = 13.6 km/s. Saturn’s orbital verlocity is between
9.09 and 10.18 km/s, approximating c−31,3 = 9.8 km/s. The
orbital verlocity of Uranus is between 6.49 and 7.11 km/s,
approximating c−32,3 = 7 km/s. Neptune’s orbital verlocity is
close to c−11,1 = 5 km/s. Pluto’s orbital verlocity oscillates
between 6.10 and 3.71 km/s, approximating the same c−11,1 =

5 km/s. By the way, the same velocities are typical for under-
ground propagation of seismic P-waves [44].

Within our model, the quantized orbital velocities in the
solar system are velocities of free fall, scaled up by Euler’s
number and its roots from the velocity of free falling on each
other proton masses at Planck length and Planck time. The
stability [45] of the orbital system origins from the transcen-
dence of Euler’s number, its integer powers and roots. In this
way, Euler’s number, its integer powers and roots define frac-
tal sets of quantized subluminal and superluminal velocities
established by stable periodical processes.

Conclusion

The worldwide-reproduced tunneling experiments show con-
vincingly that the conditions required for superluminal signal
transmission are not exotic. Therefore, it is possible to imag-
ine that those conditions can emerge also in nature. For the
same reason, the probability is quite high that conditions for
superluminality can emerge in deep space, and this is already
suggested by astrophysical observations.

Our model [30] of matter as fractal chain system of har-
monic quantum oscillators suggests that stable processes es-
tablish subluminal or superluminal velocities corresponding
to the speed of light scaled by integer powers of Euler’s num-
ber and its roots. This circumstance could affect estimations
of intergalactic distances and the meaning of the cosmic light
horizon. Superluminal propagation of light and matter sug-
gests the existence of cosmic superluminal horizons with a
scale-invariant exponential distribution that follows the se-
quence of multiples of Euler’s number.

In [31] we have discussed the cosmological significance
of global scaling [46] and the stabilizing function of Euler’s
number regarding the apparent distances between the stars
and galaxies.

The concept of process stability based on the avoidance
of destructive resonance interaction provided by the transcen-
dence of Euler’s number and its roots, allowed us to derive the

constancy and the value of the speed of light. Deriving the
speed of light from the velocity of free falling on each other
proton masses at Planck length and Planck time, perhaps we
can reach a better understanding of gravitation and its sheer
infinite velocity.
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A modified Fermi coupling of the weak interactions is proposed and in analogy with
the Planck units, a Fermi scale is defined. We define a second Fermi length, a Fermi
mass (related to the threshold energy for unitarity), and a Fermi time. The holographic
principle (HP) is then applied to some two-dimensional objects, where the unit cell
size is given by the second Fermi length. With the aid of non-linear Dirac equation, a
formula is obtained relating the Fermi, the nucleon, and the electron masses. Another
relationship is found, linking the second Fermi length to cosmological constant and
Planck scales. Finally HP in 2-d is employed in a stationary condition for the free
energy, as a means to evaluate the neutral pion decay time.

1 Introduction

Once fixed the separation of them, the gravitational inter-
action between two particles of equal masses goes with the
product of the Newton’s gravitational constant G times the
mass squared. Analogously, the electrostatic interaction of
two equal charges is given by the product of the Ke-constant,
let us call it the Coulomb constant, times the electric charge
squared.

In quantum mechanics (QM) or in quantum field theory
(QFT), by considering for instance only the absolute value
of the proton-electron attraction in the hydrogen atom, it is
convenient to write

Kee2 = α~c. (1)

In (1) we have: e the quantum of elementary electric charge,
~ the reduced Planck constant, c the speed of light in vac-
uum, and α is the electromagnetic coupling strength. Rela-
tion (1) can be translated to the gravitational interaction case
and takes the form

GM2 = αg~c. (2)

According to the QFT the couplings are running with the
energy [1], and we may define an energy (mass) scale such
that we have αg = 1 [2]. We call this mass the Planck mass,
and using the value αg = 1 in (2), we obtain

MPl =

√
~c
G
. (3)

The Compton length of a particle with the Planck mass
gives the Planck length, and the Planck time can be also de-
fined by using c. We have

LPl =
~

MPl c
=

√
~G
c3 , (4)

tPl =
LPl

c
=

√
~G
c5 . (5)

An alternative way to obtain the Planck scale (units) is to
compare the Compton length of a particle with its Schwarz-
schild radius [3]. As is posted in Wikipedia [4]:

“Originally proposed by the German physicist Max
Planck, these units are also known as natural units because
the origin of their definition comes only from properties of
fundamental physics theories and not from interchangeable
experimental parameters.”

The idea of the Planck length as being the minimal length
(related to a discreteness of the space-time?), was first pro-
posed by C.A. Mead [5,6]. The difficulty to publish his results
is commented by Mead [8] and also highlighted by Sabine
Hossenfeld [9], in a more recent essay.

In reference [10], the Fermi coupling constant GF was
used as a means to estimate the muon decay time. The way of
using GF in those calculations resembles the employment of
Newton gravitational constant G in the Newtonian mechan-
ics. This has inspired the present author to look at the pos-
sibility of defining a Fermi scale (units) in an analogous way
as the Planck’s case (relations (3) to (5) of this work). In-
deed in a recent paper [11], Roberto Onofrio conjectured that
weak interactions could be a manifestation of gravity when
investigated through high energy probes (short distances).

In section 2, we use estimates of GF quoted in the lit-
erature, in order to evaluate numerically the principal Fermi
units, namely the second Fermi length, the Fermi mass (the
second Fermi energy), and the Fermi time. The second Fermi
length is named this way, to avoid confusion with the usual
Fermi length related to the electrical conductivity of metals,
for instance.

In section 3, we use the Holographic Principle (HP) in two
dimensions (2-d) plus a simple Dirac- like equation, besides
a relation connecting the wave function to the entropy, as a
means to obtain a closed relation encompassing the Fermi,
the electron and the nucleon masses.

In section 4, the HP in 2-d is used again, relating the
second Fermi length to a length related to the cosmological
constant [12], the Planck length and the electromagnetic cou-
pling α.

Section 5 provides an estimate of the neutral pion radius.
In section 6, the HP in 2-d is used to evaluate the neutral

pion decay time.
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Finally section 7 is reserved for the concluding remarks.

2 The Fermi scale (units)

In reference [10], the muon decay time was estimated starting
from the relation

mµc2 =
1

RW

GF c2

h2 m2
µ. (6)

In (6) mµ is the muon mass, GF is the Fermi constant of
the weak interactions and RW is the weak radius of the muon.
We observe from an inspection of (6) that it is possible to
define a modified Fermi constant G∗F , namely

G∗F =
GF c2

h2 . (7)

It is convenient to write the “inverse transform” of (7) as

GF = G∗F
h2

c2 . (8)

We will call (8): all-classic to quantum relativistic trans-
mutation. The reason to do so is: G∗F could in principle to
exist in the realm of the classical mechanics, while GF only
makes sense in a quantum relativistic treatment. Observe that
given a finite G∗F , GF vanishes if h → 0, or if c → ∞, and
naturally when both things happen. As can be verified in (6)
and (7) G∗F behaves for the weak interactions as G works in
the case of the Newton’s gravitational theory. As weak in-
teractions are non- linear interactions, it is possible to write a
set of equations similar to Einstein equations, putting in those
equations G∗F in the place of G.

The Schwarzschild-like metric for these equations gives
the Weak-Schwarzschild radius RWS . Here we apply this
recipe to a particle with the muon mass. We have

RWS =
2 G∗F mµ

c2 = 2 RW . (9)

Substituting (7) into (9), we get

RWS =
2 GF mµ

h2 . (10)

The establishment of a modified Fermi coupling, namely
G∗F (please see (7)) permit us immediately to define the Fermi
scale (units) in analogous way we have proceed in the Planck
scale case. Therefore taking in account relations (3) to (5) we
can write

MF =

√
~ c
G∗F

, (11)

LS F =
~

MF c
=

√
~ G∗F

c3 , (12)

tF =
LS F

c
=

√
~ G∗F

c5 . (13)

With respect to (11) we notice that as is discussed on page
526 of the book by Rohlf [13], in a modern description of
the weak interactions, the weak coupling constant is running
with the energy of the probe used to measure it. According
to Rohlf [13], “The weak interaction rate cannot increase for-
ever with increasing energy. At some very large energy, this
would violate conservation of probability or unitarity. Unitar-
ity is violated at the energy where the weak coupling becomes
unity.” In the present treatment this happens just at the energy
scale given by the Fermi mass (MF).

In order to estimate the quantities (11) to (13), related to
the Fermi scale of length, let us take the value of GF as quoted
in the book by Rohlf (formula 18.33, page 509).

GF = 8.96 × 10−8 GeV fm3. (14)

By using (7), we have

G∗F = 2.94 × 1021 Nm2/kg2. (15)

Substituting G∗F given by (15) into relations (11) to (13),
we find

MF � 1.84 TeV/c2. (16)

LS F � 1.07 × 10−19 m, (17)

tF � 3.57 × 10−28 s. (18)

3 Deducing the Fermi mass

In this section it is proposed that the Fermi mass can be de-
duced by considering the holographic principle (HP) in 2-d,
plus a non-linear Dirac-like equation (NLDE). A formula re-
lating an entropy estimate via HP in 2-d and the wave func-
tion evaluated in the NLDE is considered. We are inspired
in the neutron weak decay given a proton, an electron and a
neutrino.

Inspired in McMahon [14], the holographic principle in
2-d can be stated as

• The total information content of a 2-d universe, in this
case a spherical surface of radius Rx, can be registered
in the perimeter of one of its maximum circles.

• The boundary of this spherical surface, here the
perimeter of its maximum circle, contains at most a sin-
gle degree of freedom per unit cell length.

Making the requirement that the radius Rx coincides with
the Compton wavelength of the nucleon λn and choosing the
unit cell size as LS F , we can write

S 1 =
π λn

LS F
. (19)

Meanwhile, let us consider the non-linear Dirac-like
equation

δφ

δx
−

1
c
δφ

δt
=

1
λe
φ −

1
λn
φ3. (20)
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In (20) λe stands for the Compton wavelength of the elec-
tron and the equation (20) is conceived within the structure of
an abelian field theory. However in a paper dealing with the
proton-electron mass ratio [15], a π-factor has appeared in an
equation in order to take in account the curvature of the space
due to the non-abelian character of the QCD. Therefore let us
define

φ = π Ψ. (21)

Inserting (21) into (20), we look for the zero of the equa-
tion and we find

Ψ2 =
λn

π2 λe
. (22)

Now we combine the results of (19) and (22), but con-
sidering the possibility of an implicit spin-1 boson being at
work. We write

3 S 1 Ψ2 = 1. (23)

The insertion of (19) and (22) into (23) gives

λ2
n =

π

3
LS F λe. (24)

Remembering that (~ = c = 1)

λn =
1

mn
, λe =

1
me
, LS F =

1
MF

,

we finally obtain
3 MF me = πm2

n. (25)

Putting numbers in (25), we get

MF � 1.8 TeV/c2. (26)

As we can see, the value here deduced for the Fermi mass,
is very close to that obtained through of the use of the mea-
sured value of GF displayed in (16).

4 Deducing the second Fermi length – II

In a previous section a modified Fermi coupling, G∗F , was de-
fined and we found that a Fermi scale could be constructed in
analogy with the well-established Planck scale. Here we pur-
sue another path towards the deducing o f the second Fermi
length. The role played by relic neutrinos in cosmology and
its possible connection with the cosmological constant prob-
lem [16,17], stimuli us to seek for a relationship between LS F

and RΛ. Indeed according Cohen, Kaplan and Nelson [18],
RΛ may be thought as a geometric average between the ultra-
violet (LPl) and the infrared (RU) cut-offs of the gravitational
interaction.

Meanwhile, although matter is globally electrically neu-
tral, may be some connection to exist between charges fluctu-
ations and the weak coupling. In this section we also intend
to tie the Fermi scale LS F to a new scale Rα, related to the
electromagnetic coupling. Next we define Rα. We write

G M2
α = α2 ~ c. (27)

By taking ~ = c = 1, we get from (27)

Mα =
α
√

G
. (28)

Based on (28) we take Rα as

Rα =
1

Mα
=

LPl

α
. (29)

Now let us consider a spherical surface universe of radius
LS F . We apply The HP in 2-d to it, which unit cell size of its
maximum circle’s perimeter is given by Rα, and we get the
entropy S 2

S 2 =
2 π LS F

Rα
=

2 π α LS F

LPl
. (30)

Turning to the relationship connecting the LS F and the Rα

scales, we may write the non-linear Dirac equation

δΨ

δx
−

1
c
δΨ

δt
=

1
RΛ

Ψ −
1

LS F
Ψ3. (31)

Looking at the zero of (31), we get

Ψ2 =
LS F

RΛ

. (32)

Now we make the requirement that

S 2 Ψ2 = 1 (33)

and we find
L2

S F =
RΛ LPl

2 π α
. (34)

To numerically evaluate (34), we consider RΛ =
√

LPl RU

with LPl = 1.6162 × 10−35 m and RU = 0.8 × 1026 m [19],
which yields

LS F � 1.12 × 10−19 m. (35)

As can be verified, this value is close to that experimen-
tally determined (please see equation (17)).

5 The pion radius

In a paper dealing with the quark confinement related to the
metric fluctuations [20], we have estimated a string constant
K given by

K =
m2

q c3

αs ~
=

m2
q

αs
, (~ = c = 1). (36)

In (36) the symbols mq and αs, stand for the quark con-
stituent mass and the strong coupling, respectively. Now let
us take

K 2 Rπ = mπ, mq =
1
2

mπ. (37)

Combining the results of (36) and (37) and taking αs �
1/3 (please see ref. [21]), we obtain for the pion radius (being
mπ the neutral pion mass)

Rπ =
2 αs

mπ
�

2
3 mπ

. (38)
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Putting numbers in (38), we get

Rπ � 0.98 × 10−15 m = 0.98 fm. (39)

6 Neutral pion lifetime from the holographic principle
in 2-d

Let us consider the neutral pion decay, represented by the re-
action

π0 → 2 γ. (40)

Taking in account the stationary condition for the free en-
ergy (∆F = 0), we get

∆U = T ∆S . (41)

Next we consider a 2-d universe, represented by a spheri-
cal surface of radius Rπ and the entropy variation represented
by the information contained on its maximum-circle perime-
ter, having a unit cell size equal to 2 LS F . We can write

∆U =
α ~ c

Rπ
, ∆S =

π Rπ

LS F
. (42)

Besides this we consider

h ν =
h
τ

= T, (kB = 1). (43)

Inserting the results of (42) and (43) into (41) and solving
for τ, we obtain the neutral pion decay time given by

τ =
2 π2 R2

π

α c LS F
. (44)

Putting numbers in (44) we get

τestimated = 0.81 × 10−16 s. (45)

This value may be compared with [22]

τmeasured = 0.84 × 10−16 s. (46)

7 Concluding remarks

The estimate of the neutral pion decay time is usually ob-
tained through the employment of the current algebra calcu-
lations. Partial conservation of the axial current (PCAC) pre-
diction gives

h
τ

= Γ(π0 → 2γ) =
α2 m3

π

64 π3 f 2
π

. (47)

In the present paper, by using the concepts of the second
Fermi length and the Hp in 2-d, we found a novel way to look
at the neutral pion decay.

Meanwhile, Roberto Onofrio [11] conjectured that weak
interactions should be considered as empirical evidences of
quantum gravity at the Fermi scale. The “second” Fermi

length estimated by Onofrio (∼ 10−18 m) [11], is approxi-
mately one order of magnitude greater than that obtained in
section 2 of this work. This comes from the fact that Onofrio
used the expectation value of the Higgs field to fix the Fermi
scale of energy, instead the unitary scale threshold we have
used in the present work.

Submitted January 6, 2019
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We investigate some subtle points of the Majorana(-like) theories. We show explicitly
the incompatibility of the Majorana Anzatz with the Dirac-like field operator in the
original Majorana theory in various spin bases.

1 Introduction.

Majorana proposed his theory of neutral particles [1], in fact,
on the basis of the Dirac equation [2]. However, the quantum
field theory has not yet been completed in 1937. The Dirac
equation [2–4] is well known to describe the charged particles
of the spin 1/2.

Usually, everybody uses the following definition of the
field operator [5]:

Ψ(x) =
1

(2π)3

∑
h

∫
d3p
2Ep

[
uh(p)ah(p)e−ip·x

+vh(p)b†h(p)e+ip·x
]
,

(1)

as given ab initio. After actions of the Dirac operator at
exp(∓ipµxµ) the 4-spinors (u− and v−) satisfy the momentum-
space equations: (p̂ − m)uh(p) = 0 and ( p̂ + m)vh(p) = 0,
respectively; the h is the polarization index; p̂ = pαγα. It is
easy to prove from the characteristic equations Det( p̂ ∓ m) =

(p2
0−p2−m2)2 = 0 that the solutions should satisfy the energy-

momentum relation p0 = ±Ep = ±
√

p2 + m2 with both signs
of p0.

However, the general method of construction of the field
operator has been given in the Bogoliubov and Shirkov
book [6]. In the case of the (1/2, 0) ⊕ (0, 1/2) representation
we have:

Ψ(x) =
1

(2π)3

∫
d4 pδ(p2 − m2)e−ip·xΨ(p) =

√
m

(2π)3

∑
h=±1/2

∫
d3p
2Ep

θ(p0)
[
uh(p)ah(p)|p0=Ep e−i(Ept−p·x)

+uh(−p)ah(−p)|p0=Ep e+i(Ept−p·x)
]
.

(2)

θ(p0) is the Heaviside function(al). During these calculations
we did not yet assume, which equation did this field operator
(namely, the u− spinor) satisfy (apart from the Klein-Gordon
equation), with negative- or positive- mass. The explicit in-
troduction of the factor

√
m is caused by the following con-

sideration. The 4-spinor normalization is known [4] to be able

being chosen to the unit:

ū(µ)(p)u(λ)(p) = +δµλ , (3)
ū(µ)(p)u(λ)(−p) = 0 , (4)
v̄(µ)(p)v(λ)(p) = −δµλ , (5)
v̄(µ)(p)u(λ)(p) = 0 , (6)

where µ and λ are the polarization indices. The action should
be dimensionless in c = ~ = 1. Thus, the Lagrangian density
has the dimension [energy]4, and the 4-spinor field, the di-
mension [energy]3/2. From (3-6) we see that the momentum-
space 4-spinors should be dimensionless in this formulation.
The creation/ahhihilation operators should have the dimen-
sion [energy]−1 if we want to keep the standard (anti) com-
mutation relations (20-24). Therefore, a factor with the di-
mension [energy]1/2 can be introduced explicitly in (2) for
the sake of conveniency instead of that in the normalizations
or in the anticommutation relations [5].

The creation/annihilation quantum-field operators are de-
fined by their actions on the quantum-field states in the repre-
sentation of the occupation numbers:

a†h(Ep,p)|n >= |n + 1; p, h >,
ah(Ep,p)|n >= |n − 1; p, h >, (7)

ah(Ep,p)|0 >= 0 . (8)

Their explicit forms and excellent discussion can be found
in [7]. However, the action of ah(−p) ≡ ah(−Ep,−p) on
the quantum-field vacuum is different (according, in fact, to
the consideration below). Namely, the QFT vacuum contains
all negative-energy states according to the Dirac interpreta-
tion. So when acting ah(−Ep,−p) on the vacuum this opera-
tor changes it (destroys a “hole”). The result is not zero, as
opposed to the action of ah(+Ep,p) on vacuum.∗

In general we should transform uh(−p) to the v(p) in or-
der to follow the original Dirac idea, where antiparticles were
treated as particles with negative energy. The procedure is the
following one [8, 9]. In the Dirac case we should assume the

∗The similar situation is encountered in quantum mechanics of harmonic
oscillator, where the creation operator can be obtained after application of
reflection operators to the annihilation operator, and vice versa. This is not
surprising because quantum field theory has the oscillator representation too.
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following relation in the field operator:∑
h

vh(p)b†h(p) =
∑

h

uh(−p)ah(−p) . (9)

We need Λµλ(p) = v̄µ(Ep,p)uλ(−Ep,−p). By direct calcula-
tions, we find

−b†µ(p) =
∑
λ

Λµλ(p)aλ(−p) . (10)

where Λµλ = −i(σ · n)µλ, n ≡ p̂ = p/|p|, and

b†µ(p) = +i
∑
λ

(σ · n)µλaλ(−p) . (11)

Multiplying (9) by ūµ(−Ep,−p) we obtain

aµ(−p) = −i
∑
λ

(σ · n)µλb†λ(p) . (12)

The equations are self-consistent.
Next, we can introduce the helicity operator of

the (1/2, 0) ⊕ (0, 1/2) representation:

ĥ =

(
ĥ 02×2

02×2 ĥ

)
. (13)

where

ĥ =
1
2
σ · p̂ =

1
2

(
cos θ sin θe−iφ

sin θe+iφ − cos θ

)
, (14)

which commutes with the Dirac Hamiltonian, thus develop-
ing the theory in the helicity basis. We can start from the
Klein-Gordon equation, generalized for describing the spin-
1/2 particles (i. e., two degrees of freedom), Ref. [3]; again
c = ~ = 1. If the 2-spinors are defined as in [10, 11] then we
can construct the corresponding u− and v− 4-spinors in the
helicity basis.

u↑ = N+
↑

(
φ↑

E−p
m φ↑

)
=

1
√

2


√

E+p
m φ↑√
m

E+pφ↑

 , (15)

u↓ = N+
↓

(
φ↓

E+p
m φ↓

)
=

1
√

2


√

m
E+pφ↓√
E+p

m φ↓

 , (16)

v↑ = N−↑

(
φ↑

−
E−p

m φ↑

)
=

1
√

2


√

E+p
m φ↑

−
√

m
E+pφ↑

 , (17)

v↓ = N−↓

(
φ↓

−
E+p

m φ↓

)
=

1
√

2


√

m
E+pφ↓

−

√
E+p

m φ↓

 , (18)

where the normalization to the unit was again used. Please
note that as in Ref. [14] the γ−matrices are the same as in the
spinorial basis:

γ0 =

(
02×2 12×2
12×2 02×2

)
, γi =

(
02×2 −σi

σi 02×2

)
. (19)

Thus, in the helicity basis we also have vh(p) = γ5uh(p) as
usual. Next, both u− and v− spinors above are the eigen-
spinors of the helicity operator [14] because the 2-spinors φh

are the eigenspinors of ĥ.∗

We again define the field operator as in (2) except for the
polarization index h, which now answers for the helicity (not
for the third projection of the spin, see [14]). The commuta-
tion relations are assumed to be the standard ones [5,6,12,13],
except for adjusting the dimensional factor(see the discussion
above): [

aµ(p), a†λ(k)
]
+

= 2Epδ
(3)(p − k)δµλ , (20)[

aµ(p), aλ(k)
]
+

= 0 =
[
a†µ(p), a†λ(k)

]
+
, (21)[

aµ(p), b†λ(k)
]
+

= 0 =
[
bµ(p), a†λ(k)

]
+
, (22)[

bµ(p), b†λ(k)
]
+

= 2Epδ
(3)(p − k)δµλ , (23)[

bµ(p), bλ(k)
]
+

= 0 =
[
b†µ(p), b†λ(k)

]
+
. (24)

However, the attempt is now failed to obtain the previous re-
sult (11) for Λµλ(p). In this helicity case

v̄µ(p)uλ(−p) = iσyµλ . (25)

Please remember that the changes of the spin bases are per-
formed by the rotation in the spin-parity space.

2 Analysis of the Majorana Anzatz

It is well known that “particle=antiparticle” in the Majorana
theory. So, in the language of the quantum field theory we
should have

bµ(Ep,p) = eiϕaµ(Ep,p) . (26)

Usually, different authors use ϕ = 0,±π/2 depending on the
metrics and on the forms of the 4-spinors and commutation
relations. It is related to the Kayser phase factor.

So, on using (11) and the above-mentioned postulate we
come to:

a†µ(p) = +ieiϕ(σ · n)µλaλ(−p) . (27)

On the other hand, on using (12) we make the substitutions
Ep → −Ep, p→ −p to obtain

aµ(p) = +i(σ · n)µλb†λ(−p) . (28)

The totally reflected (26) is bµ(−Ep,−p) = eiϕaµ(−Ep,−p).
Thus,

b†µ(−p) = e−iϕa†µ(−p) . (29)

Combining with (28), we come to

aµ(p) = +ie−iϕ(σ · n)µλa†λ(−p) , (30)

∗However, when discussing the spin properties of u(−p) and v(−p)
in the helicity basis one should clarify the notational issues. Due to
φ↑↓(−p) = −iφ↓↑(p), u↑↓(−Ep,−p) = ±v↓↑(Ep,p) we have ĥu↑↓(−Ep,−p) =

− 1
2 v↓↑(Ep,p), and similarly for v(−p) 4-spinors. However, the equation (25)

below is valid within the used notation.
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and
a†µ(p) = −ieiϕ(σ∗ · n)µλaλ(−p) . (31)

This contradicts with the equation (27) unless we have the
preferred axis in every inertial system.

Next, we can use another Majorana anzatz Ψ = ±eiαΨc

with usual definitions

C =

(
0 iΘ
−iΘ 0

)
K , Θ =

(
0 −1
1 0

)
= −iσy . (32)

Thus, on using Cu∗
↑
(p) = iv↓(p), Cu∗

↓
(p) = −iv↑(p) we come

to other relations between creation/annihilation operators

a†
↑
(p) = ∓ie−iαb†

↓
(p) , (33)

a†
↓
(p) = ±ie−iαb†

↑
(p) , (34)

which may be used instead of (26). Due to the possible signs
± the number of the corresponding states is the same as in the
Dirac case that permits us to have the complete system of the
Fock states over the (1/2, 0)⊕ (0, 1/2) representation space in
the mathematical sense.∗ However, in this case we deal with
the self/anti-self charge conjugate quantum field operator in-
stead of the self/anti-self charge conjugate quantum states.
Please remember that it is the latter that answers for neutral
particles; the quantum field operator contains the information
about more than one state, which may be either electrically
neutral or charged.

As a discussion we observe that the origins and the con-
sequences of the contradiction between (27) and (31) may
be the following. In general, the QFT space reflection are
performed by the unitary transformations in the Fock space.
The time reflection is performed by the anti-unitary trans-
formation. However, after writing the present paper I learnt
from [15] about arguments of unitary time reversal on the first
quantization level. What would be the influence of this propo-
sition on the second quantization scheme and on the Majorana
Anzatz should be the subject of future publications.

3 Conclusions

We conclude that something is missed in the foundations of
the original Majorana theory and/or the Dirac “hole” theory.
At the moment the above consideration points to the rota-
tional symmetry breaking after application of the Majorana
Anzatz in the (1/2, 0) ⊕ (0, 1/2) representation, for higher
spins as well [16].
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∗Please note that the phase factors may have physical significance in
quantum field theories as opposed to the textbook nonrelativistic quantum
mechanics, as was discussed recently by several authors.
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The Janus Cosmological Model is based on a system of two coupled field equations.
It explains the nature of dark matter and dark energy with negative mass and without
the runaway paradox that arises in general relativity. We first recall how this system
was built, from a simple Newtonian toy model to a relativistic bimetric theory, that is
now improved in order to fulfill mathematical constraints and set up on a Lagrangian
derivation.

1 The long genesis of the Janus Cosmological Model

Roots of the Janus Cosmological Model are like assembling
different pieces of a puzzle. There are indeed several start-
ing points for this bimetric approach. The first is the missing
primordial antimatter, a problem solved in 1967 by Andrei
Sakharov in [1] with the representation of the universe not
as a single entity born from the beginning of time, but two
spacetimes with opposite arrows of time communicating only
through their common initial singularity, forming a “twin uni-
verse” in complete CPT symmetry, as represented in the di-
dactic Figure 1.

Then, the first step is to consider that these two entities
can interact gravitationally, which is equivalent to folding the
object of Figure 1 on itself as in Figure 2.

In 1977, a first modeling using non relativistic theoret-
ical tools is attempted in [2] and [3] with two Boltzmann
equations coupled with Poisson’s equation. We then realize
Sakharov’s seminal idea of a complete CPT symmetry be-
tween these two entities, an idea also independently used by
other authors recently [4]. Such work suggests that a pro-
found paradigm shift involving geometrical grounds should
be performed.

Early 1990’s, we explore, through computer simulations,
what could emerge from interaction laws associated with a
mix of positive and negative point masses, according to the
following assumption. Interactions laws:

• Like masses attract, according to Newton’s law.

Fig. 1: 2D representation of Sakharov’s twin universe model.

Fig. 2: Sakharov’s model with “conjugate folds”.

• Unlike masses repel, according to “anti-Newton”.

At this stage, it is only a toy model. In 1992, first 2D
simulations of two populations with opposite mass and same
absolute value of density show a separation of the two enti-
ties, as shown in [5], a result reproduced below in Figure 3.

The purpose was to account for the large-scale structure
of the universe, which admittedly wasn’t a tight fit with these
early experiments. But if we now introduce asymmetry in the
two mass densities, taking a greater density for the negative
mass species, then this population has a shorter Jeans time,
hence it is the first to coalesce into conglomerates, by gravi-
tational instability.

if |ρ(−)| � ρ(+) ⇒ t j(−) =
1√

4 πG |ρ(−)|
� t j(+)

=
1√

4 πG ρ(+)

(1)

Following simulations confirm this second hypothesis as
they produce an evolution of the positive mass distribution
into a large-scale structure with big negative mass conglom-
erates (optically invisible) repelling the positive mass matter
in the remnant space around them as shown in [6], a deci-
sive result reproduced below in Figure 4, this time in very
good agreement with the observation of the lacunar, foam-
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Fig. 3: Flocculation and percolation phenomena between two populations of opposite mass and same overall density. Right: Showing the
optically-visible positive mass matter only.

like structure of the universe, where galaxies, clusters and
superclusters are organized as a web of filaments, walls and
nodes distributed around giant repulsive cosmic voids.

Same approach but different boundary conditions in [7],
reproduced in Figure 5.

Such a scenario also produces, in 3D, a mechanism help-
ing galaxy formation along. Indeed, after recombination, if
large volumes of gas can coalesce into giant conglomerates,
then a problem arises: how to dissipate such enormous gravi-
tational energy transformed into heat? Considering an object
of radius R, the amount of energy collected varies according
to R3 while the surface of the heatsink varies as R2. There-
fore, larger masses have a more important cooling time. But
the constitution of the large-scale structure suggested by these
simulations leads to a compression of the positive mass which
distributes according to walls (as observed) that are actually
sandwiched between two repulsive conglomerates of nega-
tive mass. A strong compression of the positive mass occurs
in such planar structures, which are optimal for a quick radia-
tive dissipation of energy, as explained in [6].

Besides 2D simulations, an effective confinement of
galaxies despite their high peripheral velocity is analytically
demonstrated using an exact solution of two Vlasov equations
coupled with Poisson’s equation, using the methodology ex-
posed in [5]. The flat rotation curve obtained from such a so-
lution, made possible by the repulsive effect of the surround-
ing negative mass, has been shown for the first time in [6],
a curve reproduced in Figure 6. It is worth noting that such
a typical rotation curve has been similarly obtained more re-
cently using the same repulsive action of a negative mass dis-
tribution around galaxies, but from 3D computer simulations
made by an independent researcher [8].

Using the exact solution of the analytical set of two
Vlasov equations coupled with Poisson’s equation (image of
a 2D galaxy confined by a repulsive negative mass environ-
ment), we show in numerical simulations that the rotational
motion of the galaxy generates a good-looking barred spiral
structure in a few turns (1992 DESY results, published in [6]
and [7]).

In order to progress beyond a simple toy model that opens
up interesting prospects thanks to the various above-men-
tioned positive results, it was still necessary at that time to
derive interaction laws from a coherent mathematical formal-
ism. The introduction of negative mass in cosmology had
been considered as soon as the 1950s, using general relativ-
ity, defined by the well-known Einstein field equations which
may be written, with a zero cosmological constant:

Rµν −
1
2

R gµν = +χTµν. (2)

Let’s notice that Einstein’s equation describes the motion
of point masses embedded in a given mass-energy field Tµν
along geodesics that derive from a single metric gµν . Then,
one gets Bondi’s result from [9]. Interaction laws with a sin-
gle metric:
• Positive masses attract everything.
• Negative masses repel everything.

Which inevitably produce the preposterous “runaway
motion” paradox (see Figure 8), a term coined by Bonnor
in [10].

Nonetheless, a few authors (Farnes [8], Chardin [11]) still
consider that it is possible to introduce negative mass in cos-
mology keeping the general relativity framework, hence
putting up with such phenomenon; despite the fact that the
runaway motion has been associated with the possibility of
perpetual motion machines since the 1950s, as discussed by
Gold with Bondi, Bergmann and Pirani in [12].

On the contrary, from 1995 in [13] we propose a bimet-
ric description of the universe with two coupled metrics and
which produce trajectories along their own geodesics, for
positive and negative mass particles, respectively. Then, the
classical Schwarzschild solution allows, by simply reversing
the integration constant, to get trajectories suggesting a grav-
itational repulsion of positive masses by a negative mass, and
vice versa:

ds2 =

(
1−

2 G M
r c2

)
c2dt2−

dr2

1−
2 G M

r c2

−r2dθ2−sin2 θdϕ2, (3)
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Fig. 4: Result of a 2D large-scale structure simulation [6].

Fig. 5: Result of a 2D large-scale structure simulation on a 2-sphere [7].

Fig. 6: Flat rotation curve of a galaxy surrounded by a negative mass
distribution [6].

ds2 =

(
1+

2 G M
r c2

)
c2dt2−

dr2

1+
2 G M

r c2

−r2dθ2−sin2 θdϕ2. (4)

Exploiting this idea, we introduce the concept of negative (di-
verging) gravitational lensing in the same paper [13]. Consid-
ering that a gap within a negative mass distribution is equiv-
alent to a positive mass concentration, we suggest to attribute
the strong gravitational lensing effects, observed in the vicin-
ity of galaxies and galaxy clusters, not to a dark matter halo
made of positive mass, but instead to their negative mass en-
vironment.

From 1994, we also suggest in [5] that such a bimet-
ric description could result from the combination of two La-
grangian densities, due to two Ricci scalars R(+) and R(−). In
2001 [6], we proposed for the first time a system of two cou-
pled field equations, which can be written as:

R(+)
µν −

1
2

R(+) g(+)
µν = +χ

[
T (+)
µν + T (−)

µν

]
, (5)

R(−)
µν −

1
2

R(−) g(−)
µν = −χ

[
T (+)
µν + T (−)

µν

]
, (6)

whose purpose was to account for the postulated interaction
laws. Indeed, we make such laws emerge from a dual Newto-
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Fig. 7: 2D barred spiral structure [6, 7].

Fig. 8: Runaway motion in general relativity.

nian approximation of this system of two coupled equations.
Depending locally on the type of dominant species in a given
region of space, equations with no RHS produce solutions of
type 36 or 37.

Aforementioned results of simulations showed that an
asymmetry in the mass densities of the positive vs negative
mass species is required to account for observations of the
large-scale structure of the universe. Such density asymme-
try can be caused, not because of a larger quantity of neg-
ative mass, but if the two space gauge factors a(+) and a(−)

are different. Alas, at this level it is impossible to produce a
time-dependent solution with a(+) , a(−). Inconsistency be-
comes inevitable when FRLW metrics are introduced in the
two field equations: similarly to Friedmann solutions, they
produce a couple of differential equations in a(+), a′(+), a”(+)

on one hand, and in a(−), a′(−), a”(−) on the other. In the calcu-
lation based on Einstein’s equations, compatibility betweeen
two equations leads to the relation ρ a3 = cst in the matter-
dominated era, which expresses mass-energy conservation.
In the bimetric framework of the Janus model based on the

two coupled equations 5 and 6, such compatibility reduces
the time-dependent solution to a(+) = a(−).

Still in the same 2001 paper [6], we establish the connec-
tion between Sakharov’s seminal work about two universes
with opposite arrows of time, and negative gravity, using dy-
namical group theory from [14], which shows that time re-
versal goes with energy inversion, hence mass inversion as
−m = − E/c2. We then introduce the “Janus group” to han-
dle the electric charge in a five-dimensional spacetime: λ µ 0 0

0 λ , L0 0
0 0 1

 with λ = ±1 and µ = ±1, (7)

where L0 is the component of the orthochronous (forward in
time) subset of the Lorentz group. It is the extension of the
Poincaré group to five dimensions, which describes the ex-
istence of two different kinds of antimatter: one being C-
symmetric with respect to normal matter, it has a positive
mass; while the other antichronous (backward in time) an-
timatter is PT-symmetric and has a negative mass. Therefore,
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the CPT theorem has to be reconsidered, since the exclusion
of negative energy states follows on from an a priori axiom in
quantum field theory, which postulates that the operator T has
to be antiunitary and antilinear, a hypothesis not necessarily
true as shown in [15].

Sakharov’s conditions in [1] states that the baryon cre-
ation rate from an excess of quarks has been faster than the
antibaryon creation rate from fewer antiquarks at t > 0, but
such CP violation is opposite for t < 0 (the “initial singular-
ity” triggering complete CPT reflections) thereby preserving
the global symmetry of the whole universe. This allows to de-
fine the true nature of the invisible antichronous components
of the universe: these are copies of antiparticles that are usu-
ally made in a lab, but with negative energy and mass, due to
T-symmetry.

The invisibility of such objects is deduced from the idea that
PT-symmetric antiparticles emit negative energy photons that
follow null-geodesics of their own metric g(−)

µν hence escape
detection by optical instruments that are made of positive
mass matter.

In 2002, Damour and Kogan in [16] situate the issue with
massive bigravity theories, where bimetry covers a different
approach. In such models, two branes interact using various
massive gravitons (hence the name) with a mass spectrum.
The authors propose a Lagrangian derivation, based on an ac-
tion, which leads to a system of two coupled field equations.
But such a model, although mathematically consistent, does
not stand up to scrutiny as it does not provide any solution
able to be confronted with observations. As it has not been
further pursued, it cannot answer this question.

On the other hand, in 2008 and 2009, Hossenfelder in [17]
and [18] builds her own bimetric model involving negative
mass, from a Lagrangian derivation where she produces a
system of two coupled field equations. This time, LHS are
identical to the system (5;6) which follows on from the pres-
ence of terms R(+)

√
g(+) and R(−)

√
g(−) in the Lagrangian den-

sities considered. Exploiting her Lagrangian derivation, she
reveals the determinant ratios of the two metrics

√
g(+)/g(−)

and
√
g(−)/g(+) that had already been pointed out in previous

work [19] and [20]. She finally tackles two Friedmann solu-
tions, without confronting them to observational data. Actu-
ally, although sharing many similarities, having the same kind
of coupled field equations regarding negative mass, a funda-
mental difference remains between Hossenfelder’s bimetric
theory and the Janus Cosmological Model.

Indeed, Hossenfelder doubts that the second entity can
have an important effect on the distribution of standard mat-
ter, qualifying the gravitational coupling between the two
species as “extremely weak”. This is because “for symme-
try reason” she considers that the absolute values of the mass
density of the two populations should be of the same order
of magnitude. Such hypothesis leads to a global zero field

configuration, which does not fit with observations, as she
notices. Then, examination of possible fluctuations seems to
be her main concern. Not perceiving that a profound dissym-
metry is on the contrary the key to the interpretation of many
phenomena, including the acceleration of the cosmic expan-
sion, she will not develop her model further during the fol-
lowing decade, focusing instead on other research topics.

Nonetheless, Hossenfelder points out a “smoking gun sig-
nal” that could highlight the existence of invisible negative
mass in the universe, through the detection of diffracted light
rays caused by diverging lensing, an effect previously pre-
dicted in [13]. We indeed showed from 1995 that photons
emitted by high redshift galaxies (z > 7) are diffracted by the
presence of invisible conglomerates of negative mass on their
path. This reduces the apparent magnitude of such galaxies,
making them appear as dwarf, which is consistent with obser-
vations.

In 2014 in [21] we take again the system (5;6) and attempt
to modify it according to:

R(+)
µν −

1
2

R(+) g(+)
µν = +χ

[
T (+)
µν + ϕT (−)

µν

]
, (8)

R(−)
µν −

1
2

R(−) g(−)
µν = −χ

[
φT (+)

µν + T (−)
µν

]
. (9)

Introducing two functions ϕ() and φ() that allow a time-
dependent homogeneous and isotropic solution, so that a(+) ,
a(−). This is possible by switching to the system:

R(+)
µν −

1
2

R(+) g(+)
µν = +χ

T (+)
µν +

(
a(−)

a(+)

)3

T (−)
µν

 , (10)

R(−)
µν −

1
2

R(−) g(−)
µν = −χ

(a(+)

a(−)

)3

T (+)
µν + T (−)

µν

 . (11)

We obtained such a result by assuring energy conservation,
not by deriving these equations from the system proposed
in [18]. From (10;11) we then build an exact solution involv-
ing a large asymmetry, so that |ρ(−)| � ρ(+) , accounting fot
the acceleration of the expansion of the universe. D’Agostini
thereafter showed in 2018 in [22] that this exact solution is in
very good agreement with latest observational data. In par-
allel we published in 2014 in [23] a Lagrangian derivation
based on the functional relation:

δg(−)µν = −δg(+)µν, (12)

giving the following system of two coupled field equations:

R(+)
µν −

1
2

R(+) g(+)
µν = +χ

T (+)
µν +

√
−g(−)

−g(+) T (−)
µν

 , (13)

R(−)
µν −

1
2

R(−) g(−)
µν = −χ

T (−)
µν +

√
g(+)

g(−) T (+)
µν

 , (14)
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which is similar to Hossenfelder’s system in her previous La-
grangian derivation [18], although both constructions are
completely different. In our derivation, the square root in
the determinant ratio of the metrics directly follows on from
hypothesis (14). Let’s recall that such a ratio always ap-
pears as soon as a bimetric approach is attempted, see for
example [19] and [20]. Admittedly however, we cannot rule
out that the system (15);(16), as well as the newer one ex-
posed hereinbelow, can be considered as a particular case of
Hossenfelder’s own model.

In 2014 in [23] we extend the Janus framework to a class
of solutions where the two speeds of light and, in the positive
and negative sectors, are different. In 2018 in [25] we pro-
pose to evaluate the magnitude of their ratio, based on a study
of the fluctuations in the CMB, which leads to the following
conclusion:

a(−)

a(+) '
1

100
,

c(−)

c(+) '
1

10
. (15)

The combination of such different space scale factors and
speeds of light would allow a gain factor of 1000 in travel
time, regarding a hypothetical technology making apparent
FTL interstellar travel by mass inversion possible, as evoked
in [23] and [26].

The paper [23] then summarizes many observational data
in good agreement with features of the Janus Cosmological
Model.

2 The 2014 JCM and the Bianchi identities

From 2014, the Janus system of two coupled field equations
(13; 14) satisfies the Bianchi identities, either trivially when
the RHS are zero, or when one considers time-dependent ho-
mogeneous and isotropic solutions. However, inconsistency
appears when one tries to describe with this system a time-
independent situation with a spherical symmetry, modeling
a star of constant density surrounded by a vacuum. Thus, a
new modification of the equation system must be considered,
as explained below.

Let’s consider a portion of the universe where one of the
two species is absent, e.g. the negative energy species, re-
pelled away by a local concentration of positive mass. Let’s
limit our analysis to the search of a time-independent solution
for a spherically symmetric system, and Newtonian approxi-
mation. The corresponding system is:

R(+)
µν −

1
2

R(+) g(+)
µν = +χT (+)

µν , (16)

R(−)
µν −

1
2

R(−) g(−)
µν = −χT (+)

µν . (17)

Then the two metrics have the form:

ds(+)2 = eν
(+)

c2dt2 − eλ
(+)

dr2 − r2dθ2 − r2 sin2 θ dφ2, (18)

ds(−)2 = eν
(−)

c2dt2 − eλ
(−)

dr2 − r2dθ2 − r2 sin2 θ dφ2. (19)

We consider a sphere whose radius rs is filled by matter
of constant density ρ(+) surrounded by vacuum. Outside of
the sphere, the two metrics are:

ds(+)2 =

(
1−

2m
r

)
c2dt2−

dr2

1−
2m
r

−r2dθ2−r2 sin2 θ dφ2, (20)

ds(−)2 =

(
1+

2m
r

)
c2dt2−

dr2

1+
2m
r

−r2dθ2−r2 sin2 θ dφ2, (21)

with:

m =
G
c2

4πr3
s

3
ρ(+). (22)

We can write the stress-energy tensor as:

T (+)ν
µ =


ρ(+) 0 0 0
0 −

p(+)

c2 0 0
0 0 −

p(+)

c2 0
0 0 0 −

p(+)

c2

 , (23)

where p(+) is the pressure insides the star of radius rs filled
with constant density ρ(+). Equations (16) and (17) give the
following differential equations:

p(+)′ = −
(
ρ(+)c2 + p(+)

) m(r) + 4πGp(+)r3/c4

r (r − 2m(r))
, (24)

p(+)′ = +
(
ρ(+)c2 + p(+)

) m(r) + 4πGp(+)r3/c4

r (r + 2m(r))
, (25)

where:

m(r) =
G
c2

4πr3

3
ρ(+). (26)

After Newtonian approximation:

p(+) � ρ(+)c2 , r � 2m, (27)

which gives:

p(+)′ = −
ρ(+)c2m(r)

r2 , (28)

p(+)′ = +
ρ(+)c2m(r)

r2 . (29)

So that we get a physical and mathematical contradiction,
that must be cured.

3 Lagrangian derivation of a new JCM, as of 2019

Consider the two diagonal constant matrices:

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , ϕ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (30)
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S =

∫
D4

[
IR(+)

√
−g(+) + ϕR(−)

√
−g(−) − χ (I + ϕ) L(+)

√
−g(+) + χ (I + ϕ) L(−)

√
−g(−)

]
d4x (31)

δ

∫
D4

R(+)
√
−g(+) d4x =

∫
D4

(
R(+)
µν −

1
2

R(+)g(+)
µν

) √
−g(+) δg(+)µν d4x (32)

δ

∫
D4

R(−)
√
−g(−) d4x =

∫
D4

(
R(−)
µν −

1
2

R(−)g(−)
µν

) √
−g(−) δg(−)µν d4x (33)

δ

∫
D4

L(+)
√
−g(+) d4x =

∫
D4

T (+)
µν

√
−g(+) δg(+)µν d4x (34)

δ

∫
D4

L(−)
√
−g(−) d4x =

∫
D4

T (−)
µν

√
−g(−) δg(−)µν d4x (35)

ds(+)2 =

(
1 −

8πG r3
s ρ

(+)

c2 r
)

c2dt2 −

(
1 +

8πG r3
s ρ

(+)

c2 r
)

dr2 − r2dθ2 − sin2 θdϕ2 (36)

ds(−)2 =

(
1 +

8πG r3
s ρ

(+)

c2 r
)

c2dt2 −

(
1 −

8πG r3
s ρ

(+)

c2 r
)

dr2 − r2dθ2 − sin2 θdϕ2 (37)

δg(+)
00 = −

8πG r3
s ρ

(+)

c2 r δρ(+) = −δg(−)
00 δg(+)

11 = −
8πG r3

s ρ
(+)

c2 r δρ(+) = −δg(−)
11 (38)

Introducing the action (eq. 31) and performing the fol-
lowing bivariation, taking account of Iϕ = ϕ and ϕϕ = I,
results in equations 32–35.

From a previous Lagrangian derivation [7] :

δg(−)µν = −δg(+)µν (39)

Our goal: to set up a system of two coupled field equa-
tions providing joint solutions corresponding to Newtonian
approximation. In such conditions the external metrics are
given in equations (36) and (37).

We may consider that such metrics belong to subsets of
Riemannian metrics with signature (+−−−) which obey rela-
tionship (39) (see eqs. (38)). If we consider that (39) defines
joint metrics, they obey:

R(+)
µν −

1
2

R(+) g(+)
µν = +χ

T (+)
µν +

√
−g(−)

−g(+) ϕT (−)
µν

 , (40)

R(−)
µν −

1
2

R(−) g(−)
µν = −χ

T (−)
µν +

√
g(+)

g(−) ϕT (+)
µν

 . (41)

4 Back to the star model

Starting from the new joint system (40);(41) we obtain the
analogous of the system (16);(17) where, in the second equa-
tion, we would replace the tensor T (+) g(+)

µν by T̂ (+)
µν , so that:

T̂ (+)
00 = T (+)

00 = ρ(+), (42)

T̂ (+)
ii = −T (+)

ii with j = {1, 2, 3} , (43)

R(−)
µν −

1
2

R(−) g(−)
µν = −χT̂ (+)

µν . (44)

With the joint metrics (18) and (19), inside the star, plus
compatibility conditions satisfying (20) and (21) at its border
r = rs we get the following result:

p(+)′ = −
(
ρ(+)c2 + p(+)

) m(r) + 4πGp(+)r3/c4

r (r − 2m(r))
, (45)

p(+)′ = −
(
ρ(+)c2 − p(+)

) m(r) − 4πGp(+)r3/c4

r (r + 2m(r))
, (46)

with m(r) given by (26).
Equation (45) is nothing but the famous Tolman-Oppen-

heimer-Volkoff equation.
Applying the Newtonian approximation, any inconsis-

tency vanishes. Such equations mean that inside the star,
the pressure counterbalances the gravitational pull. The geo-
desics are given by equations (48) and (49), with:

R̂2 =
3c2

8πGρ(+) . (47)

Linearizing leads to equations (50) and (51). Notice that
equation (52) fits (39).
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ds(+)2 =

3
2

√
1 −

r2
s

R̂2
−

1
2

√
1 −

r2

R̂2


2

c2dt2 −
dr2

1 −
r2

R̂2

− r2dθ2 − r2 sin2 θdφ2 (48)

ds(−)2 =

3
2

√
1 +

r2
s

R̂2
−

1
2

√
1 +

r2

R̂2


2

c2dt2 −
dr2

1 +
r2

R̂2

− r2dθ2 − r2 sin2 θdφ2 (49)

ds(+)2 =

(
1 −

3
2

r2
s

R̂2
+

1
2

r2

R̂2

)
c2dt2 −

(
1 +

3
2

r2
s

R̂2
−

1
2

r2

R̂2

)
dr2 − r2dθ2 − r2 sin2 θdϕ2 (50)

ds(−)2 =

(
1 +

3
2

r2
s

R̂2
−

1
2

r2

R̂2

)
c2dt2 −

(
1 −

3
2

r2
s

R̂2
+

1
2

r2

R̂2

)
dr2 − r2dθ2 − r2 sin2 θdϕ2 (51)

δg(+)
00 = −

4πG
(
3r3

s − r2
)

3c2 δρ(+) = −δg(−)
00 δg(+)

11 = −
4πG

(
3r3

s − r2
)

3c2 r δρ(+) = −δg(−)
11 (52)

5 Back to our basic assumption: δg(−)µν = −δg(+)µν

The time-dependent joint solutions presented in [21] corre-
spond to the following FRLW metrics:

ds(+)2 =
(
dx0

)2
−a(+)2 du2 + u2 dθ2 + u2 sin2 θ dϕ2(

1 +
k(+) u2

4

)2 , (53)

ds(−)2 =
(
dx0

)2
−a(−)2 du2 + u2 dθ2 + u2 sin2 θ dϕ2(

1 +
k(−) u2

4

)2 , (54)

which give, with the single solution k(+) = k(−) = −1:

a(+)2 d2a(+)

(dx0)2 ,−
8πGρ0

3c2
0

= 0 (55)

a(−)2 d2a(−)

(dx0)2 . +
8πGρ0

3c2
0

= 0 (56)

Whose exact parametric solutions are, for (55):

x0 =
4πGρ0

3c2
0

(
1 +

sh(2v)
2

+ v

)
, (57)

a(+) =
4πGρ0

3c2
0

ch2(v), (58)

and for (56):

x0 =
4πGρ0

3c2
0

(sh(2w) − 2w) , (59)

a(−) =
4πGρ0

3c2
0

(
ch2(w) − 1

)
. (60)

Let’s compute the variations δg(+)
µν and δg(−)

µν under a vari-
ation δρ0 of their single parameter, the dominant matter den-
sity ρ0. The variations δg(+)

00 , δg(−)
00 , δg(+)

11 , δg(−)
11 depend on the

factors a(+)δa(+) and a(−)δa(−). But we have:

da(+)

dx0 = th(v),

d2a(+)

(dx0)2 =
1

dx0

(
da(+)

dx0

)
=

3c2
0

4πGρ0

1
2 ch4(v)

,

(61)

and similar equations for the second metric solution, so that
δa(+)/δρ0 = δa(−)/δρ0 = 0 which fits our fundamental rela-
tionship (39).

6 Conclusion

A model is never definitively fixed in time. The set of two
coupled field equations first established in [9] corresponded
to a first step. The present paper proposes an updated sys-
tem that has been mathematically enriched to give a precise
description of the matter-dominated era. In its Newtonian ap-
proximation, it provides a new insight on astrophysics, espe-
cially in galactic dynamics which no longer depends on a set
of a single Vlasov equation plus Poisson but on two Vlasov
equations coupled with Poisson’s equation. New results in
that field will be published soon.

At the present time, JCM provides:

• joint solutions
(
g(+)
µν , g

(−)
µν

)
corresponding to the func-

tional space of Riemannian metrics of signature (+ −
−−), fitting fundamental relationship g(+)

µν = −g(−)
µν .

• with stationary and spherically symmetric conditions in
the vacuum.

• time dependent homogeneous and isotropic solutions.

Which cover everything that can currently be confronted with
observations.
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To a model already compliant with many observational
data [22], a physically and mathematically coherent repre-
sentation of joint geometries for positive energy and mass
species, in the solar system and its neighborhood, has been
added. Therefore, the Janus cosmological model agrees with
classical verifications of general relativity.

By reversing this situation, considering instead a portion
of space where negative mass largely dominates locally, i.e.
where positive mass has been repelled away so its mass den-
sity can be taken equal to zero, we obtain the first coherent
theoretical description of the Great Repeller, which has been
exposed in [26].

When photons emitted by high redshift galaxies (z>7)
cross negative mass conglomerates in the center of big cos-
mic voids, in the large-scale structure of the universe, neg-
ative gravitational lensing reduces their apparent magnitude,
making them appear as dwarf galaxies, which is consistent
with observations.

One may argue that the Janus theory exhibiting tow cou-
pled metrics as a “natural” hypothesis with the confidence
that subsequent results would eventually corroborate the pos-
tulate. However this bimetric model is formally sustained by
a specific splitting of the Riemann Tensor which yields to 2nd
rank tensor field equations, as shown in [27].
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Non-commutativity: Unusual View
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Some ambiguities have recently been found in the definition of the partial derivative (in
the case of presence of both explicit and implicit dependencies of the function subjected
to differentiation). We investigate the possible influence of this subject on quantum
mechanics and the classical/quantum field theory. Surprisingly, some commutators of
operators of space-time 4-coordinates and those of 4-momenta are not equal to zero.
We postulate the non-commutativity of 4-momenta and we derive mass splitting in the
Dirac equation. Moreover, two iterated limits may not commute each other, in general.
Thus, we present an example when the massless limit of the function of E,p,m does
not exist in some calculations within quantum field theory.

1 Introduction

The assumption that the operators of coordinates do not com-
mute [x̂µ, x̂ν]− , 0 has been made by H. Snyder [1]. There-
fore, the Lorentz symmetry may be broken. This idea [2, 3]
received attention in the context of “brane theories”. More-
over, the famous Feynman-Dyson proof of Maxwell equa-
tions [4] contains intrinsically the non-commutativity of ve-
locities [ẋi(t), ẋ j(t)]− , 0 that also may be considered as a
contradiction with the well-accepted theories (while there is
no any contradiction therein).

On the other hand, it was recently discovered that the con-
cept of partial derivative is not well defined in the case of both
explicit and implicit dependence of the corresponding func-
tion, which the derivatives act upon [5]. The well-known ex-
ample of such a situation is the field of an accelerated charge
[6].∗ Škovrlj and Ivezić [7] call this partial derivative as ‘com-
plete partial derivative’; Chubykalo and Vlayev, as ‘total
derivative with respect to a given variable’. The terminology
suggested by Brownstein [5] is ‘the whole-partial derivative’.

2 Example 1

Let us study the case when we deal with explicite and im-
plicite dependencies f (p, E(p)). It is well known that the
energy in relativism is related to the 3-momentum as E =

±
√

p2 + m2; the unit system c = ~ = 1 is used. In other
words, we must choose the 3-dimensional mass hyperboloid
in the Minkowski space, and the energy is not an independent
quantity anymore. Let us calculate the commutator of the
whole-partial derivatives ∂̂/∂̂E and ∂̂/∂̂pi. In order to make
distinction between differentiating the explicit function and
that which contains both explicit and implicit dependencies,
the ‘whole partial derivative’ may be denoted as ∂̂. In the

∗Firstly, Landau and Lifshitz wrote that the functions depended on t′,
and only through t′ + R(t′)/c = t they depended implicitly on x, y, z, t. How-
ever, later (in calculating the formula (63.7)) they used the explicit depen-
dence of R on the space coordinates of the observation point too. Jackson [8]
agrees with [6] that one should find “a contribution to the spatial partial
derivative for fixed time t from explicit spatial coordinate dependence (of
the observation point).”

general case one has

∂̂ f (p, E(p))

∂̂pi
≡
∂ f (p, E(p))

∂pi
+
∂ f (p, E(p))

∂E
∂E
∂pi

. (1)

Applying this rule, we find surprisingly

[
∂̂

∂̂pi
,
∂̂

∂̂E

]
−

f (p, E(p)) =

∂̂

∂̂pi

∂ f
∂E
−

∂

∂E

(
∂ f
∂pi

+
∂ f
∂E

∂E
∂pi

)
=

∂2 f
∂E∂pi

+
∂2 f
∂E2

∂E
∂pi
−

∂2 f
∂pi∂E

−
∂2 f
∂E2

∂E
∂pi
−
∂ f
∂E

∂

∂E

(
∂E
∂pi

)
.

(2)

So, if E = ±
√

m2 + p2 and one uses the generally-accepted
representation form of ∂E/∂pi = pi/E, one has that the ex-
pression (2) appears to be equal to (pi/E2) ∂ f (p,E(p))

∂E . Within
the choice of the normalization the coefficient may be related
to the longitudinal electric field in the helicity basis.† Next,
the commutator is ∂̂

∂̂pi
,
∂̂

∂̂p j


−

f (p, E(p)) =
1
|E|3

∂ f (p, E(p))
∂E

[pi, p j]− . (3)

This should also not be zero according to Feynman and
Dyson [4]. They postulated that the velocity (or, of course,
the 3-momentum) commutator is equal to [pi, p j] ∼ i~εi jkBk,
i.e., to the magnetic field. In fact, if we put in the corespon-
dence to the momenta their quantum-mechanical operators
(of course, with the appropriate clarification ∂ → ∂̂), we ob-
tain again that, in general, the derivatives do not commute[
∂̂

∂̂xµ
, ∂̂

∂̂xν

]
−

, 0.

Furthermore, since the energy derivative corresponds to
the operator of time and the i-component momentum deriva-

†The electric/magnetic fields can be derived from the 4-potentials which
have been presented in [9].
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tive, to x̂i, we put forward the following anzatz in the momen-
tum representation:

[x̂µ, x̂ν]− = ω(p, E(p)) Fµν
||

(p)
∂

∂E
, (4)

with some weight function ω being different for different
choices of the antisymmetric tensor spin basis. The physi-
cal dimension of xµ is [energy]−1 in this unit system; Fµν

||
(p)

has the dimension [energy]0, if we assume the mass shell
condition in the definition of the field operators δ(p2 − m2),
see [10]. Therefore, the weight function should have the di-
mension [energy]−1. The commutator [x̂µ, p̂ν] has the same
form as in the textbook nonrelativistic quantum mechanics
within the presented model.

In the modern literature, the idea of the broken Lorentz
invariance by this method concurs with the idea of the funda-
mental length, first introduced by V. G. Kadyshevsky [11] on
the basis of old papers by M. Markov. Both ideas and corre-
sponding theories are extensively discussed. In my opinion,
the main question is: what is the space scale, when the rela-
tivity theory becomes incorrect.

3 Example 2

In the previous Section (see also the paper [12]) we found
some intrinsic contradictions related to the mathematical
foundations of modern physics. It is well known that the par-
tial derivatives commute in the Minkowski space (as well as
in the 4-dimensional momentum space). However, if we con-
sider that energy is an implicit function of the 3-momenta
and mass (thus, approaching the mass hyperboloid formal-
ism, E2 − p2c2 = m2c4) then we may be interested in the
commutators of the whole-partial derivatives [5] instead. The
whole-partial derivatives do not commute, as you see above.
If they are associated with the corresponding physical oper-
ators, we would have the uncertainty relations in this case.
This is an intrinsic contradiction of the SRT. While we start
from the same postulates, on using two different ways of rea-
soning we arrive at the two different physical conclusions.

In this Section I would like to ask another question.
Sometimes, when calculating dynamical invariants (and other
physical quantities in quantum field theory), and when study-
ing the corresponding massless limits we need to calculate
iterated limits. We may encounter a rare situation when two
iterated limits are not equal each other in physics. See, for
example, Ref. [10]. We were puzzled calculating the iter-
ated limits of the aggregate E2−p2

m2 (or the inverse one, m2

E2−p2 ,
c = ~ = 1):

lim
m→0

lim
E→±
√

p2+m2

(
m2

E2 − p2

)
= 1 , (5)

lim
E→±
√

p2+m2

lim
m→0

(
m2

E2 − p2

)
= 0 . (6)

Similar mathematical examples are presented in [13]. Physics
should have well-defined dynamical invariants. Which iter-
ated limit should be applied in the study of massless limits?
The question of the iterated limits was studied in [14]. How-
ever, the answers leave room for misunderstandings and con-
tradictions with the experiments. One can say: “The two lim-
its are of very different sorts: the limit of E → ±

√
p2 + m2 is

a limit that subsumes the statement under the theory of Spe-
cial Relativity. Such limits should be done first.” However,
cases exist when the limit E → ±

√
p2 + m2 cannot be ap-

plied (or its application leads to the loss of the information).
For example, we have for the causal Green’s function used in
the scalar field theory and in the m → 0 quantum electrody-
namics (QED), Ref. [15]:

Dc(x) =
1

(2π)4

∫
d4 p

e−ip·x

m2 − p2 − iε
(7)

=
1

4π
δ(λ) −

m

8π
√
λ
θ(λ)

[
J1(m

√
λ) − iN1(m

√
λ)

]
+

im

4π2
√
−λ

θ(−λ)K1(m
√
−λ),

λ = (x0)2 − x2; J1,N1,K1 are the Bessel functions of the first
order. The application of E → ±

√
p2 + m2 − iδ results in

non-existence of the integral. Meanwhile, the massless limit
is made in the integrand in the Feynman gauge with no prob-
lems. Please remember that integrals are also the limits of
the Riemann integral sums. The m → 0 limits are made first
sometimes.

Next, the application of the mass shell condition in the
Weinberg-Tucker-Hammer 2(2S + 1)-formalism leads to the
fact that we would not be able to write the dynamical equa-
tion in the covariant form [γµν∂µ∂ν − m2]Ψ(6)(x) = 0. Apart,
the information about the propagation of longitudinal modes
would be lost (cf. formulas (19,20,27,28) of the first pa-
per [10]). Moreover, the Weinberg equation and the mapping
of the Tucker-Hammer equation to the antisymmetric tensor
formalism have different physical contents on the interaction
level [16, 17].∗

Next, if we would always apply the mass shell condition
first then we come to the derivative paradox of the previous
Section. Finally, the condition E2 − p2 = m2 does not always
imply the generally-accepted special relativity only. For in-
stance, see the Kapuscik work, Ref. [18], who showed that
similar expressions for energy and momentum exist for parti-
cles with V > c and m∞ ∈ <e.

Meanwhile, the case m = 0 appears to be equivalent to the
light cone condition r = ct, which can be taken even without

∗I take this opportunity to note that problems (frequently forgotten) may
also exist with the direct application of m → 0 in relativistic quantum equa-
tions. The case is: when the solutions are constructed on using the relativis-
tic boosts in the momentum space the mass may appear in the denominator,
∼ 1/mn, which cancels the mass terms of the equation giving the non-zero
corresponding result.
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the mass shell condition to study the theories extending the
special relativity. Not everybody realizes that it can be used
to deduce the Lorentz transformations between two different
reference frames. Just take squares and use the lineality: r2

1 −

c2t2
1 = 0 = r2

2 − c2t2
2. Hence, in d = 1 + 1 we have x2 =

γ(x1 − vt1) , t2 = α(t1 −
β
c x1) with α = γ = 1/

√
1 − v2

c2 , the
Lorentz factor; β = v/c.

4 Example 3

The problem of explaining mass splitting of leptons (e, µ, τ)
and quarks has a long history. See, for instance, a method
suggested in Refs. [19], and some new insights in [20]. Non-
commutativity [1] also exhibits interesting peculiarities in the
Dirac case. Recently, we analyzed the Sakurai-van der Waer-
den method of deriving the Dirac (and higher-spin) equa-
tion [21]. We can start from

(EI(2) − σ · p)(EI(2) + σ · p)Ψ(2) = m2Ψ(2) , (8)

or

(EI(4) + α · p + mβ)(EI(4) − α · p − mβ)Ψ(4) = 0 . (9)

E and p form the Lorentz 4-momentum. Obviously, the in-
verse operators of the Dirac operators exist in the non- com-
mutative case. As in the original Dirac work, we have β2 =

1, αiβ + βαi = 0, αiα j + α jαi = 2δi j.
We also postulate non-commutativity relations for the

components of 4-momenta:

[E,pi]− = Θ0i = θi , (10)

as usual. Therefore the equation (9) will not lead to the well-
known equation E2 − p2 = m2. Instead, we have{

E2 − E(α · p) + (α · p)E − p2 − m2

−i(σ ⊗ I(2))[p × p]
}
Ψ(4) = 0 .

For the sake of simplicity, we may assume the last term to
be zero. Thus, we arrive at{

E2 − p2 − m2 − (α · θ)
}
Ψ(4) = 0 . (11)

We can apply the unitary transformation. It is known [22,23]
that one can∗ U1(σ · a)U−1

1 = σ3|a| . For α matrices we re-
write as

U1(α · θ)U−1
1 = |θ|


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 = α3|θ| . (12)

∗Some relations for the components a must be assumed. Moreover, in
our case θ must not depend on E and p. Otherwise, we must take the non-
commutativity [E,pi]− into account again.

The explicit form of the U1 matrix is (ar,l = a1 ± ia2):

U1 =
1

√
2a(a + a3)

(
a + a3 al

−ar a + a3

)
= (13)

=
1

√
2a(a + a3)

[a + a3 + iσ2a1 − iσ1a2] ,

U1 =

(
U1 0
0 U1

)
. (14)

We now apply the second unitary transformation:

U2α3U
†

2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

α3


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 =

=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (15)

The final equation is then[
E2 − p2 − m2 − γ5

chiral|θ|
]
Ψ′(4) = 0 . (16)

In physical terms this implies mass splitting for a Dirac parti-
cle over the non-commutative space, m1,2 = ±

√
m2 ± θ. This

procedure may be attractive as explanation of mass creation
and mass splitting in fermions.

5 Conclusions

We found that the commutator of two derivatives may be not
equal to zero. As a consequence, for instance, the question
arises, if the derivative ∂̂2 f /∂̂pν∂̂pµ is equal to the deriva-
tive ∂̂2 f /∂̂pµ∂̂pν in all cases?† The presented consideration
permits us to provide some bases for non-commutative field
theories and induces us to look for further development of the
classical analysis in order to provide a rigorous mathematical
basis for operations with functions which have both explicit
and implicit dependencies. Several other examples are pre-
sented. Thus, while for physicists everything is obvious in
the solutions of the paradoxes, this is not so for mathemati-
cians.
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†The same question can be put forward when we have differentiation
with respect to the coordinates too, that may have impact on the correct cal-
culations of the problem of accelerated charge in classical electrodynamics.
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